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Introduction

Representation theorems In this Thesis a new representation theory for algebraic logic
is analised in which the representative structures are relativized set algebras instead of
“ordinary” (square) set algebras. With this kind of representation we can associate Henkin-
style semantics and completeness theorems in Logic, but the results in the Thesis are
essential generalizations and extensions of Henkin’s classical results. We deal with cylindric-
type- and polyadic-type algebras, as algebraizations.

In the first Part of the Thesis we formulate representation theorems. As is known, in
contrast with Boolean algebras, cylindric algebras are not representable in the classical
sense in general (as isomorphic copies of cylindric set algebras in Gs,, or as subdirect prod-
ucts of cylindric set algebras). However, the celebrated Resek-Thompson-Andréka theorem
states that if the system of cylindric axioms is extended by a new axiom schema, the merry-
go-round property (MGR, for short, see Definition 1.8), and axiom (C4) (the commutativity
property of the cylindrifications) is weakened (see (C4)*), then the cylindric-type algebra
obtained is representable by a cylindric relativized set algebra and, in particular, by a set
algebra in D, (instead of Gs,). By an r-representation of a cylindric- or polyadic-type
algebra we mean a representation by a cylindric- or polyadic-type relativized set algebra.

Upon analyzis of the merry-go-round property, it turns out, that in the background of
this property the existence of a kind of transposition operator is. As is known, the general
transposition operator cannot be introduced in every cylindric algebra (see [Fe07b]). These

facts led to research into the representability of transposition algebras (TA,). Transposi-
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tion algebras are cylindric algebras extended by abstract transposition operators (p;;) and
single substitutions (sé-), i,j < a (Definition 2.3). They are weakening of the (so-called)
finitary polyadic equality algebras introduced in [Sa-Th]. Furthermore, TA, is definition-
ally equivalent to the non-commutative quasi-polyadic equality algebras (Theorem 3.6).
Transposition algebras are not necessarily representable in the classical sense. However, it
is proven that they are r-representable by relativized set algebras in Gwt, (Theorem 2.8),
where the unit V of a Gwt,, is of the form | *U ]Ep k) (see Definition 2.2). Approaching our
topic from the starting point of the represfrf‘iative set algebras, this theorem says that the
class Gwty, is first-order axiomatizable by a finite schema of equations and the axioms can

be the TA, axioms. As is known, if the disjointness of the members “U, ,Ep )

is assumed in
the above decompositions of V, then the classical class Gws,, is obtained and this class is no
longer first order finite schema axiomatizable (for classical representability, some additional
non-first order conditions are needed, for example, the condition of local finiteness).

A next question is whether or not polyadic equality algebras are r- representable. Recall
that polyadic algebras are essentially different from the quasi-polyadic algebras mentioned
above: in the case of polyadic algebras the substitution operations are defined for real
infinite transformations. The problem of r-representability of polyadic equality algebras
is answered affirmatively here for a large class: polyadic equality algebras having single
cylindrifications, called cylindric polyadic equality algebras (class CPE,, Definition 3.17).
Our representation theorem says that this class is r-representable by algebras in Gpg®
(Theorem 2.8). This is a kind of answer for the problem asked in [An-Go-Ne]: is the class
Gq (the cylindric version of Gp,) is a variety for infinite a? Furthermore, we prove that
Halmos’s result on the representability of locally finite, quasi-polyadic algebras ([Ha56])
can be generalized to m-quasi, locally—m cylindric polyadic algebras and r-representability,
where m is infinite (Theorem 3.24).

The representant set algebras Gwt, and Gpg®° related to the above r-representations
are attractive and simple. The only difference between these kinds of set algebras and

the classical Gws, and Gs, is the disjointness of the subunit components of the unit V.
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These r-representation theorems may be regarded as immediate generalizations of the Stone
representation theorem for Boolean algebras.

To briefly state the techniques used in the proofs of the r-representation theorems: three
methods are used, all of them are known from the literature, but new ideas are needed
for their applications here. The first one is the step-by-step method (this technique is
closely related to the technique “games”, see [Hi-Ho]). This technique is applied to prove
the main r-representation theorems for cylindric-type algebras and transposition algebras.
The other technique is the neat embedding technique. This method is applied to prove
the representation theorems for cylindric polyadic equality algebras (when the previous
technique cannot be used because of the infinite substitutions s.). This technique is based
on the so-called “neat embedding theorems”. Inside the neat embedding technique, we use
the wultrafilter technique due to Tarski. Further, we use the technique of the translation
from Algebra to Logic.

The concept of neatly embeddability is interesting in itself of course, discussion is

dedicated to this concept here.

Neat embedding theorems In the second Part of the Thesis we deal with neat em-
bedding theorems and their applications. Neat embedding is a concept of (universal)
algebra (see Definition 4.2). The classical neat embedding theorem for cylindric algebras
says that (classical) representability is equivalent to (classical) neat embeddability (see
[He-Mo-Ta IL.], 3.2.10). Neat embeddability may be considered as the abstract algebraic
characterization of representability. On considering cylindric-type algebras, the question
arises: is it possible to characterize the concept of r-representability of a cylindric-type
algebra in terms of neat embeddability? The answer is affirmative (see Theorems 4.5 and
4.6). Of course, the concept of neat embeddability obtained in this way is different from
the standard one. This is a neat embedding into a many sorted structure, where the axioms
(C4) and (Cg) are weakened, i.e., as an embedding class, a larger class than in the case of

classical neat embedding is allowed.
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The next question is whether this new kind of neat embedding theorem concerning
cylindric-type algebras can be transfered to other structures, to transposition algebras,
quasi-polyadic equality algebras or cylindric polyadic equality algebras. The answer de-
pends on which particular class we are considering. The answer is obviously affirmative for
transposition algebras and for quasi-polyadic equality algebras ([FePrepr]), but in the case
of cylindric polyadic equality algebras, in the presence of infinite substitutions, the situa-
tion is essentially different. For polyadic equality algebras, as is known, there is no classical
neat embedding theorem (neatly embeddability does not imply classical representability,
see [He-Mo-Ta I1.]). The question whether some kind of neat embedding theorem for
polyadic equality algebras exists is a long standing problem. We prove a neat embedding
theorem here for these kind of algebras and, in particular, for m-quasi, locally-m cylindric
polyadic equality algebras (Theorem 6.2).

In order to apply neat embedding theorems to prove representability, we need neatly
embeddable classes of algebras, of course. To meet this need the Daigneault-Monk-Keisler
theorem ([Da-Mo]) and its variants is used.

There are remarkable connections between our subject and Logic. We mentioned that
there is a close connection between r-representation theorems and Henkin-style complete-
ness theorems in Logic, as well as between relativized set algebras and Henkin-style seman-
tics. In terms of neat embeddability we prove a theorem concerning conservative extensions
of provability relations (see Theorem 5.1). On considering the proof of the classical repre-
sentation theorem of cylindric algebras in terms of neat embeddability and the resultant
weakenings of the axioms (Cy4) and (Cg), we can conclude that at proving the completeness

of the respective Logic, we need only a part of the usual calculus (Theorem 4.19).

History The pioneer of the research discussed here is Leon Henkin. He introduced the
concept of cylindric relativized set algebra (Crs,), developed the merry-go-round proper-
ties, he was Resek’s the doctoral advisor (Resek formulated her representation theorem

concerning cylindric relativized set algebras in her PhD Thesis [Res]) and, he developed
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the famous completeness theorem in mathematical logic based on Henkin-style semantics.

The detailed research of the class Crs, was initianed by Istvan Németi. An extensive
paper on Crs, was published in [HMTAN] by Andréka and Németi. It was proved ([Nem81],
[Nem86]) that Crs is a decidable variety, but it is not finite schema axiomatizable. In Crs
the commutativity of the cylindrifications (axiom (Cy)) fails to be true. It was Németi
who called attention to the importance of the commutativity of the cylindrification in the
cylindric algebra theory, and proved that for the lack of this property implies decidability
([Nem86]). Some remarkable subclasses of Crs were investigated in a detailed way, e.g.,
the “locally square” set algebras G, (see [Nem86], [Nem92], [An-Ne-Be]). There are many
interesting applications of Crs. Crs may be considered as the algebraization of semantics of
several non-classical logics, e.g., many-sorted, higher order, modal, etc. logics ([An-Ge-Ne],
[An-Ne-Be]). Amongs of these, the most important is the so-called “guarded segment”
([An-Ne-Be], [Benl2], [Ben97], [Ben05]). It is a part of first order logic which corresponds
to a kind of decidable, first order modal logic. This logic has remarkable applications in
Computer Science.

Resek was the first to prove a representation theorem concerning cylindric relativized
set algebras. She proved it for simple, complete and atomic cylindric algebras satisfying
infinitely many merry-go-round equalities. This result was improved, in a sense, by Thomp-
son and Andréka who reduced the infinitely many merry-go-round equalities to just two
and replaced the cylindric axiom (C4) by a weaker axiom. The theorem thus improved
is called Resek-Thompson-Andréka theorem (RTA theorem, for short). Though the theo-
rem was announced in [He-Mo-Ta IL], in Remark 3.2.88, a proof was only published in
1986 ([An-Th]). That proof is relatively short (in contrast with Resek’s long proof) and it
is based on the step-by-step method. Later, some variants of the RTA theorem have also
found their way into the literature. Maddux has proved a somewhat stronger version of the
theorem (see [Mad89]). He also investigated the problem of representation by relativized
set algebras for relation algebras. The present author has published a simplification of the

RTA theorem, replacing the axiom (C,) with the commutativity of single substitutions (see

vil
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[Fe07a]). For some classes of relativized set algebras, the existence of axiomatizability and
the fact of decidability was investigated (see [Sai],[An-Go-Ne|, [Nem92| and [An-Ne-Be]).
Andréka in [And] constructed a concrete axiom system, for finite dimensional G,,.

The results concerning r-representation of polyadic-type algebras are due to the present
author. In [Fella] the connection between the merry-go-round properties and the operator
transposition is investigated. In [Fella], the r-representation theorem is proven for trans-
position algebras (also for quasi-polyadic equality algebras). In [An-Fe-Ne| and [Fellb],
the r-representation theorem is proved for cylindric polyadic equality algebras. As regards
neat embeddability of cylindric-type algebras, the present author has published neat em-
bedding theorems for r-representation ([Fel0], [Fe00]). In [Fe09b] and [Fe09a], the logical

applications of the topic are investigated.

Conclusions The question can be asked: considering the Resek -Thompson- Andréka
theorem, which new ideas and aspects were developed after the publication of the theorem?
This Thesis answers the question as follows:

1. An interesting aspect is that in the new representation theorems the representant
classes are more attractive and simpler than the class D, included in the RTA theorem.
These classes (for example, Gwt, or Gp,) can easily be described and visualized geomet-
rically. Furthermore, because of their simplicity, these representative classes are expected
to be applied in different areas of mathematics (in set theory, measure theory, topology,

etc.), similarly to the Stone theorem.

2. The cost of the r-representability of a cylindric-type or polyadic-type equality algebra
by relativized set algebras is that certain restrictions of the classical structures of algebraic
logic comes into the focus of research, for example, the MGR axioms for cylindric algebras
or the assumption of the existence of a transposition operator. However, in order to obtain
an elegant representation, certain axioms must be modified (weakened) a little in addition.
A common feature of the algebras occurring in these theorems is that the commutativity of

cylindrifications is not required. Instead of this, a weakening of it is assumed, for example,
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the commutativity of single substitutions. Similarly, in the polyadic case, instead of the

last two non diagonal axioms, certain weakenings are assumed.

3. The concept of r-representability (representability by relativized set algebras) can
be characterized by a kind of neat embeddability, i.e., a kind of neat embedding theorem
holds for r-representation. As is known, it is remarkable that no classical neat embedding
theorem previously existed for polyadic equality algebra, i.e., classical representability could
not be characterized by neat embeddability.

There are interesting applications of this new kind of neat embeddability, too. In
terms of the new neat embedding theorems, we can prove r-representation theorems, e.g.,
Henkin’s classical theorem on the representability of locally finite, quasi-polyadic algebras
can be generalized to locally-m, m-quasi-algebras, where m is infinite or a new proof can

be given for the RTA theorem.

4. There are remarkable logical aspects of the subject. For example, on proving the
completeness of the logical calculus corresponding to cylindric algebras, it was realized that
it is enough to use a part of the usual logical calculus. Neat embeddability has remarkable

applications at conservative extensions of provability relations.

In the first Part, representation theorems concerning relativized set algebras are formu-
lated. In the Chapters 1, 2 and 3 we deal with cylindric-type, transposition and cylindric
polyadic-type algebras respectively. In the second Part, neat embeddability theorems are
stated and their applications are investigated. In Chapter 4 we deal with the neat embed-
dability of cylindric-type algebras, in Chapter 5 the logical applications are considered and

in Chapter 6 the cylindric polyadic-type case is discussed.

ix



dc_597 12

Part 1

Representation theorems for
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Chapter 1

Representation theorems for

cylindric-type algebras

In this Chapter the celebrated Resek-Thompson-Andréka theorem is analysed, and, a vari-

ant of the theorem is claimed.
First, we recall the concepts of cylindric relativized set algebras:

Definition 1.1 (Crs,)2 is a cylindric relativized set algebra of dimension a (a > 2)

with unit V if 2 is of the form:
<A7 U7 ma ~V, 07 ‘/7 sza Dz‘; > i,j<a

where the unit V' is a set of a—termed sequences, such that V' C U for some base set U, A
is a non-empty set of subsets of V', closed under the Boolean operations U, N, ~y and

under the cylindrifications

CYX ={yeV :y e€X for some u}
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where i < o, X € A, and A contains the sets (), V and the diagonals

Djj={yeV :y =y;}

(see [He-Mo-Ta II.] 3.1.1).

Here the definition of ¥/, is (y%); = y; if j # i, and (y,); = u if j = i. Another notation
for ¢ is y(i / u). If vy is the sequence of ordinals, then g is denoted by [i / u] and it
is called elementary substitution. The superscript, V is often omitted from the notations
C’Z-V and D}; . We note that an algebra in Crs, satisfies all the cylindric axioms, with the

possible exception of the axioms (C4) and (Cg) (see [He-Mo-Ta IL.] 3.1.19).

Let us denote CzV(Dz‘g NX) (i #j) by VS;-X. Notice that VS]Z'-X =
{yeV:yoli/jle X}, where X € A. Here yo[i / j] = yéj, by definition. In this sense,

if {y} € A, then the elementary substitution y;j can be defined in Crs, in terms of VS;'..

Definition 1.2 (D,) D, is the subclass of Crs, such that VS;-V = V for every

i,7 € a, where V' is the unit of the algebra (see [An-Th]).

It is easy to check that in Crs, the equality VS;V = V and (Cg) are equivalent, thus

D, satisfies all the CA axioms with the possible exception of (Cy).

Definition 1.3 (G,) G, is a subclass of D, called the class of “locally square” cylindric
set algebras , such that the unit V' is of the form |J ®Uy for some sets Uy, k € K (G,

keK
was introduced in [Nem86]).

Recall that given a set U and a mapping p € “U, the set
ap(p) = {z € “U : x and p are different only in finitely many members}

is called the weak space determined by p and U.
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Definition 1.4 (Gw,) It is a subclass of D, such that the unit V is of the form

U @ ,gp’“) for some sets Uy, k € K, and sequences p € “Uy.
keK

The difference between the classical class Gs, ([He-Mo-Ta IL.], 3.1.1) and G, is that
the disjointness for Up’s in G, is not assumed. The difference between the classes Gws,

([He-Mo-Ta I1.], 3.1.1) and Gw,, is analogous.
Now, we define some abstract classes of algebras.

Definition 1.5 (CA,) A Boolean algebra (A, +,-, —,0,1) enriched with a set of addi-
tional unary operations ¢; (i < «) and constants d;; (i, < «) is said to be a cylindric

algebra (o > 2) of dimension a, if it satisfies the following axioms for every i, j < a:
ci(z -qy) =czr -y
dii =1

cj(dji - dji) =di, & {i,k}

(C1)
(C2)
(Cs)
(Cy) cicjz = cjeim
(Cs)
(Ce)
(Cr) dij - cildij - x) = digz i # .

An algebra is a cylindric-type algebra if its type is that of cylindric algebras.

If K is a class of algebras, then IK denotes the class of the isomorphic copies of the

members of K.

Definition 1.6 A cylindric—type algebra 2 is r-representable if 2 € ICrs,.

As is known, axiom (Cg) is equivalent to the set of the following four properties:
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J J g %k k (1.1)
C. Ck’dij = dij k ¢ {’L,]} d Cidij =1.

Lemma 1.7 The following propositions (i) and (ii) hold for every i,j < a:
(i) If A € Crsy, then A € Dy, if and only if x € V implies x o [i |/ j] € V.
(ii) If B is a cylindric—type algebra such that 5?-1 =1 and B is r-representable, then

Be ID,.

Proof.

(i) The statement that = € V implies z o [i / j|] € V means that V C VS;V. But VS;-V
C V is always satisfied, thus VS;-V = V. The latter together with 2 € Crs,, are equivalent
to A € Dg, by definition.

(ii) If h denotes an isomorphism between B and an algebra in Crs,, then hsé-l = S;-hl,
where Sj- is the abbreviation of VS;-. But, in the previous equality, hsz-l = hl =V, and

S}hl = S}-V, ie., SJZ.V =V.
qed.

i.

The operator s s

(single substitution operator) is defined for the element x as ¢;(d;; - )

ifi # 4, and x if i = j.

Definition 1.8 The merry-go-round properties are:

ki J _ ki
8; 855, CkT = 8§ 8; S}, CkT
k. i j om _ kg oom i
8 8557, Sk ChT = 87 87,8; S, CkT

for distinct ordinals ¢, j, k and n (see [He-Mo-Ta I1.] 3.2.88). The two properties together

are denoted by MGR (for an equivalent form of MGR, see (1.9)).
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Definition 1.9 (CNA,) The axioms of CNA,, (a > 4) are obtained from the cylindric

axioms so that the axiom (C,) is replaced by the property

(Cy) : sishx =5l st (1.2)

ik ¢ {j,m}.

Definition 1.10 (CNA) If the CNA, axioms are extended by the MGR property,

then the axioms of CNA! are obtained ([FeO7al).

Definition 1.11 (NA}) The axioms of NA} are obtained from those of the class CNAY

(o > 4) if the axiom ~(Cy) is replaced by the axiom

(Cy)" : dig - cicjz < cjeix (1.3)

([Fe07a] and Lemma 1.14 below).

Definition 1.12 (NA,) The axioms of NA_ are obtained from those of CNA, (a > 2)

if the axiom ~(Cy) is replaced by (Cy4)*.

The following theorem is the main r-representation theorem for cylindric-type algebras

in NAZ:

Theorem (Resek-Thompson-Andréka):

20 € NAY if and only if A € ID,.

where a > 4 ([An-Th]).
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In other words, the theorem says that the class D, is first-order axiomatizable by a finite
schema of equations and the axioms can be the NAT arioms. We note that, on modifying

(C4)* and MGR a little, the theorem also remains true for & = 2 and a = 3 too.

If ¥ is a set of formulas, let Mod ¥ denote the class of models satisfying 3.
Let CAl denote the class of cylindric algebras satisfying the MGR property. D,, satisfies

(Cg), thus the following holds:
Corollary 1.13 A €CAY if and only if A € I(DoN Mod (Cy)), a > 4.

The lemma below lists some equivalents of ~(Cy). Let us denote by ¥ the set of cylindric

axioms except for (C4) and let us assume that o > 4.

Lemma 1.14 Under % the following properties are equivalent:

J J

i) SZSﬁx = s}ns};x (property —(Ca) )

(i
(ii) cis%xg sznci:c

(ili) dik, - djm - cicjx = djm - dif; - cjcix
(iv) di, - cicjo < cjciz (property (Cq)*)

where 1,7,k and m are different, except for k =m maybe (see [Fe07a] and [Thol).

Proof.

A little more is proven than necessary, some pairwise equivalences are proven.

First, we prove the equivalences of (i) and (ii).

(il)=(i). Substitute z = dy - y in (ii), we obtain: ¢;sh (dig - y)< shci(diy, - y). But
(C3) and (Cg)e. imply that cish(di - y) =ci(dig - shy). This latter is s};siny. Therefore

sﬁcsf}by :s%si:y. By symmetry, we obtain (i).

(i)=(ii)
First ¢; ;& = ¢;x is proven.

cicix =¢ (gr-cx) =c¢ cxr-cx <cx <c¢ ¢z by (Cs) and (Ca).
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On one hand,
sl cix = sl spciw = sp.s) cix = ¢i(dg - s),¢i7) (1.4)

using (Cg)d. and condition (i). Applying ¢; to both sides of (1.4) we obtain: ¢;shciz =
ci(ei(dik - sfnczx)) Because of ¢;c;x = ¢;x and (1.4), we obtain:
Ccishcir = ci(ci(dig - sfncix)) = ¢;(dik - sgncix) = shcix.

On the other hand, cisznx < cisfﬁcix is true (by monotonicity of ¢;). Using that

CiShCi¥ = Shcix, we obtain (ii), i.e., ¢;sha < shyc;z s true in fact.

Then the equivalence of (i) and (iii) are proven.
Here the well-known operator t; defined in cylindric algebras where téw = d;j - if
i #j (and téw =z, if i = j) is used. Obviously, (iii) is equivalent to the property (iii)’

below:
(iii)’ th tha = thtir.

We prove the equivalence of (i) and (iii)’.
(i)=-(iii)’. Under ¥ the operators sh, and t), are conjugates of each other in the
Boolean algebraic sense, consequently if 2l £ ¥ then
a. thshy <y
b. y < Shthy

for all y € A and j,m € a.

On one hand, it can be stated:

t] sy (shtit) x) < (¢, s8]Vt t] x < it . (1.5)

That is, ti'nt}'gs};sgny < tanszny <. Let y be t};t{nx, we obtain (1.5).

On the other hand,
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thths sititd o >t tha (1.6)

S b. L b. o
Namely, shsitithy > shthy > y. Let us apply the transformation t/,t; to this
inequality and replace y = x, we obtain (1.6).
(i) implies that the left-hand sides of (1.5) and (1.6) coincide. Comparing (1.5) and

(1.6) we obtain that
thtt e < tithx.
By symmetry, t};ﬁ'nx = t};ﬁlnﬂv follows.

The proof of (iii)’=-(i) is completely similar: we swap s,tand swap <, > throughout
b

the proof.

The proof of equivalence of (iii) and (iv):

Instead of (iv) we use the property (iv)’ below:

(iv)’ dik, - cicjx < di, - ¢jci.

Multiplying (iv) by d;; we can see that (iv) is really equivalent to the property (iv)’.

(iv)” implies (iii), because by multiplying (iv)’ by dj;, we obtain the one direction of
(iii). By symmetry, the opposite inequality follows, too.

(iii) implies (iv)’. Apply the operation ¢; to both sides of (iii). We obtain by (Cg)c.,
(Cg)d. and (Cj3) that

dig - szncicj:r: = djj, - cjci. (1.7)

Now we state that

di - cicjx < d;f; - sgncicj:p. (1.8)
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We can use the property (ii) because the equivalence of (i) and (ii), and the equivalence
of (i) and (iii) are proven above. Therefore by (ii), cisﬁ'n(cj’:c) < sinci(ij). But cisfn(c]m) =
cicjxz because (C3) and ¢jdj, = 1. So cicjoz < sznci(cj:c). Multiplying this inequality by
d;, (1.8) is obtained.

Comparing (1.7) and (1.8) we really obtain (iv)’.
qed.

Taking into consideration the previous lemma, the Resek-Thompson-Andéka theorem

can be reformulated as follows (due to the present author, see [Fe07a], Corollary 3.2):

Theorem 1.15

21 € CNAY if and only if A € ID,.

where o« > 4.

$okk

We can ask the question: what is the intuitive background of the merry-go-round prop-
erties playing a key role in the Resek-Thompson-Andréka theorem?

Recall that by the elementary transposition operator [i, j] we mean the operator chang-
ing ¢ and j (in the sequence of ordinals).

Let us consider the operator ps(i,j) in CA,, where ;s(i,j)y = sfsé

siy and i, 7,k are
different. The properties of ;s(i, j) are investigated in detail in [He-Mo-Ta I.]1.5. Andréka
and Thompson proved that the following property is equivalent to the two merry-go-round

properties:

kS(i, rs(d,m)cxr = gs(4, m)rs(m,i)cpx (1.9)

10
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under the other NA, axioms if k ¢ {i,j,m},j ¢ {m,i} (Proposition 3 in [An-Th]). Ele-
mentary transposition, of course, satisfies (1.9).

(1.9) means that the cylindric algebra has a kind of “weak” abstract transposition
operator (for the meaning of “weak”, see [Fella]). Thus, the Resek-Thompson-Andréka
theorem says that the existence of such an operator implies r-representability.

It is known that, in general, abstract transposition operators cannot be introduced in
arbitrary cylindric algebra ([Fe07b]), and, likewise, the substitution operator s, for finite
7. For example, a sufficient condition for this is that the a-dimensional cylindric algebra is

a “neat subreduct” of some a + 2-dimensional cylindric algebra (see in [Fe07b]).

$okok

In the first published proof of the Resek-Thompson-Andréka theorem due to Andréka
(see [An-Th]), the so-called step-by-step method (or iteration method, see [Hi-Ho]) is applied
to construct the suitable representation. We will refer to this proof in the next Chapter,

therefore Andréka’s proof is outlined below.

The proof of the non-trivial part of the theorem is decomposed into parts (Parts 1-4)
so that the beginning of the original proof is cited almost word for word (Parts 1-3), while

the remainder is only outlined (Part 4).

The sketch of the proof of the non-trivial part of the RTA Theorem:

Part 1 About the framework of the proof.

2( can be assumed to be atomic. Namely, by [He-Mo-Ta 1.], 2.7.5, 2.7.13, every Boolean
algebra B with operators can be embedded into an atomic one such that all the equations

valid in 28, and in which “—” does not occur, continue to hold in the atomic one. This

11
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latter condition is satisfied in B because it is easy to eliminate the “—” from the axioms.

As a consequence, from now on 2l is assumed to be atomic, satisfying the axioms.

Let At2l denote the set of all atoms of 2. We want to “build” an isomorphism rep:

A — B, for some B € Crs,, such that the equality below holds:

rep(x) = U {rep(a) : a € At2, a < x} for every z € A. (1.10)

Let V be a set of a-sequences and for every X C V and 4,5 < « let C;X 4

{feV:(u) f(i /u) e X}, Dy i{fe Vi fi=f;}.Assumethatrep: A - {X : X CV}
is a function such that (1.10) holds. Then it is easy to check that rep is an isomorphism
onto a B € Crs, with 1% C V if and only if conditions (i)—(v) below hold for every a,b €
Atland 7,5 < a:

i) rep(a) Nrep(b) =D ifa #b

ii) rep(a) C Dyj if a < d?;- and rep(a) N Dij =0 if a- d% =0

(

(

(iii) rep(a) C Cirep(b) if a < b,

(iv) rep(a) N Cirep(b) = B if a- b =0
(

(1.11)

A set V of a-sequences and a function rep with the above properties will be constructed,

step by step.
Part 2 About the 0th step.

For every a-sequence f let ker (f) 4 {(i,j) € *a: fi=f;}.
For every a € At2 let Ker(a) 4 {(i,j) € 2a:a< d?;} .
Then Ker(a) is an equivalence relation on « by the axioms (Cs)—(Cy). For every a €

At let f, be an a—sequence such that for every a,b € At

12
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a) ker(f,) = Ker(a), b) Rg (fo) "Rg (fy) =0 if a # b. (1.12)

Such a system {f, : a € At} of a-sequences does exist. Define

repg(a) L {fa}, for every a € At2.

Then the function repg satisfies conditions (i),(ii),(iv) and (v) but it does not satisfy
condition (iii). Below, we shall make condition (iii) become true step by step, and later we
shall check that conditions (i),(ii),(iv) and (v) remain true in each step.

Part 3 About the (n+1)th step, i.e., about the definition of the function reppi1.

Let R =AtAx At X «, p be an ordinal and let r : p — R be an enumeration of R such
that for all n € p and (a,b,i) € R there is m € p,m > n such that r(m) = (a,b,7). Such p
and r clearly exists.

Assume that n € p and rep, : At — {X : X C V'} is already defined where V' is
a set of a-sequences. We define rep, 11 : At — {X : X CV 7}, where V' 7 is a set of

a-sequences. Let r(n) = (a,b,i). If a i ¢ib, then

d
rep, .1 = rep,. (1.13)

Assume a < ¢;b. Then rep,11(e) 4 repy(e) for all e €AtA, e # b.
Furthermore,

case 1. b < d;; for some j < a, j # i. Then

repp11(b) = rep, (b)) U{f (i / fj) : f € repy(a)}. (1.14)

case 2. b i d;j for all j < «a, j # i. For every f € rep,(a) let us be such that
(i) ug ¢ U{Rg (h) : h € U{rep,(e) : e € AtA}}
(i) up # up if f # h, f,h € repy(a).

13
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Now

e, 1 (8) = rep,(b) U{f (i / uy) : f € rep,(a)} (1.15)

Let n € p be a limit ordinal and assume that rep,, is defined for all m < n. Then

rep,,(e) 4 U {rep,,(e) : m < n} (1.16)

for all e € At2.

By this, (rep,, : n € p) is defined. Now we define

rep(a) 4 U {rep,(a) : n € p} (1.17)

for all @ € At2(. Let
v U {rep(a) : a € At} . (1.18)

We will check that conditions (i)—(v) hold for the above rep and V.
Part 4. On the proof of the properties (i)—(v).

They are proven by induction. The proof of the properties (ii), (iii) and (v) are relatively
easy. Instead of (i) and (iv) a stronger property, denoted by (iv)’, is proven such that it
implies both (i) and (iv). In the proof of (iv)’ Jénsson’s famous theorem plays a key role
([He-Mo-Ta IL.], 3.2.17, p. 68). It concerns the extension of a mapping, having certain
fixed properties, from the elementary transformations [i / j] and [i, j|, to arbitrary finite

transformations.
End of the sketch of the proof.

14
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Main references in this Chapter are: [An-Th|, [And], [Fe07a], [An-Ne-Be]|, [Hi-Ho97,

Hi-Ho97], [Ben12], [Nem86] and [Fe07b].
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Chapter 2

Representation theorems for

transposition algebras

In this Chapter the concept of transposition algebra is introduced. In the previous Chapter
we noted that if a cylindric algebra has at least a weak transposition operator, then the
algebra is r-representable. In accordance with this, the cylindric reduct of transposition
algebras will be r-representable. Next, we investigate the problem whether or not the

transposition algebras themselves are r-representable.

Definition 2.1 (Trs,) The structure
<A7 U, N, ~vy, (Z)v Va szv [Z7 j]va DV > i,j<a

ij

is a transposition relativized set algebra, if its cylindric reduct is in Crs,, and 2A is closed

under [i, 7]V, where

i, VX ={yeV:yoli, jle X}.
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Here [i, j] denotes the elementary transposition.

The upper index V is often omitted from [i, 5]V and, in this case we can disambiguate
[i, j] taking the context into consideration.

Notice that [i, j]¥'V =V in Trs,. To see this, recall that [i, j]¥'V C V, by definition.
Now, let us apply [i, 5]V to this inclusion. Then the equality y o [i, j] o [i, j] = y implies
that, for the left-hand side, [i, 7]V [i, j]¥'V = V, and thus we obtain the opposite inclusion
v Cli, 5]V,

Definition 2.2 (Gwt,) A set algebra 2 in Trs, is called a generalized weak transposition
relativized set algebra (2 €Gwt,) if there are sets Uy, k € K and sequences py € Uy, such

that V.= | @ ,gpk), where V' is the unit.
keK

We can associate the cylindric set algebra class Gws, with the class Gwt, (see
[He-Mo-Ta II.] 3.1.1). Besides their different types, a further difference between these
classes is that the disjointness of the sets *U ,gp %) is not assumed in Gwt,. The subclass of

[
Gwt,, in which this disjointness is assumed is denoted by Gwt,,.
Now, we define some abstract classes of algebras.

Definition 2.3 (TA,) A transposition algebra of dimension « (a > 3) is the algebra

9’[: <A7 +7 v T 07 17 Ci, 8§7pij7 dij>’i,j<o¢
where + and - are binary operations, —, c;, s}, p;j are unary operations, dl-j are constants,
and the axioms (FO-F11) below are assumed for every i, j, k < «:
F0) (A, +, -, —, 0, 1) is a Boolean algebra, s! = p;; = d;; = Id | Aand p;; = pji

F2

(F0)

(F1) z<¢z
(F2)  cilz+y) =zt ay
(F3)

F3

s}cim = ¢

17
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(F4) cisém = sém 1#£ 7
(F5)* shskx = spsha, if i,j ¢ {k, m}
(F6) 3§ and p;; are Boolean endomorphisms

. i i
(ie., sj(—z) = —sjz, etc.)
F7) pijpijz =x

EF8)  pijpirx = pjkpijx, if 4,j, k are distinct

(

(

(F9) pijséx = s{x
(F10) shdij =1

(

Fll) x: dij < S;Q?

Notice that axiom (F5)*is the same as ~(Cy) for cylindric algebras.

Definition 2.4 (TAS,) The concept of strong transposition algebra can be obtained
from that of transposition algebra TA,, if the axiom (F5)* is changed by the stronger

axiom
(F5) : shepw = cpsia k ¢ {i, 4}

The class TAS,, is the same as the class of finitary polyadic equality algebras (FPEAL)
introduced in [Sa-Th]. We preserve the notation of the axioms in [Sa-Th], but it seems

expedient to change the terminology of FPEA,, especially in the case of TA,.

Definition 2.5 A transformation 7 defined on « is called finite if 7¢ = ¢ with finitely

many exceptions (i € «). The notation of the set of finite transformations on « is FT,,.

By [Sa-Th] Theorem 1 (i), a substitution operator s, can be introduced in every FPEA,
so that the extended algebra is a quasi-polyadic equality algebra (see Definition 3.3). The
existence of such a substitution operator s, holds for TA,, too (instead of FPEA,) namely,

it is easy to check that the proof in [Sa-Th] works supposing (F5)* instead of (F5) (e.g.,

18
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the inequality s?pijx < sfpijszx in (16) on p. 553 there, follows from the TA, axioms).
Therefore throughout this Chapter we assume that the transposition algebras occurring
here are equipped with the operator s, where 7 is finite. Further, s, is assumed to have
the following properties for arbitrary finite transformations 7 and A and ordinals i, j < «
(by [Sa-Th], p. 547):

7oA = 5708)

Pij = S, 4]

Sj = 5/ 4

Srdij = drirj

¢S+ < s;c.—1;, where 7 is finite permutation.

Definition 2.6 An algebra 2l with the type of TA, is r-representable if A € ITrs,.

Lemma 2.7 The following propositions (i) and (ii) hold:
(i) If A € Trsq, then A € Gwt,, if and only if x € V implies both
xoli,j]€V and xoli /] j] €V, for every i,j < .

(i) If B € TA, and B is r-representable, then B IGwt,.

Proof.

(i) If A € Gwt,, then, by the definition of V, V' is closed under the operators [i, j] and
[i / j]. Conversely, we need to prove that V is of the form [J aUkEp ®) The condition
implies that V' is closed under the finite transformations of «, ifcee.,K:L‘ € V implieszoT €V
if 7 is finite, since, as is known, finite transformations can be composed by finitely many
applications of elementary transpositions and replacements. It can now be shown that V is
of the form |J *(Rg 2)® (this latter is really a Gwt, unit). V C |J “(Rgz)® obviously

zeV zeV
holds by definition.
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Conversely, if y € |J *(Rg z)®, then y = z o7 for some = € V and finite
zeV
7, by the definition of the weak space “(Rg x)(””). But, z o 7 € V, by assumption.

Thus |J *(Rg z)® C V and, consequently, V = |J *(Rg z)®, as we claimed.
eV zeV
(ii) The proof is similar to that of Lemma 1.7 (ii), making use of the above part (i) and

the fact that the isomorphism h, in question, preserves the operators sé» and p;;.
qed.
The following main r-representation theorem holds for TA, ([Fella], Theorem 3.1):

Theorem 2.8 (Ferenczi):

A € TA, if and only if A € IGwt,

where o« > 3 .

If we set out from the problem of the axiomatizability of the class Gwt,, of set algebras,
then the reformulation of the theorem is the following one: The class Gwt, is first-order

axiomatizable by a finite schema of equations and the axioms can be the TA, axioms.

Notice that Gwt, is a canonical variety (see [HHGames], 2.69). Notice that he theorem

above is valid also for finite s, while, in general, the classical representation theorems are

not.

By Definition 2.4, the class TAS,, is obtained from TA, so that axiom (F5)* is replaced

by the stronger (F5). Thus, the following is obtained:
Corollary 2.9 2 € TAS,, if and only if A € I(Gwt,N Mod (F5)) (a > 3).

As is known, TAS, is not representable in the classical sense (see [Sa-Th]), thus Gwt,

cannot be replaced by Gwt, in the Corollary and in Theorem 2.8.
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The proof of Theorem 2.8 follows Andréka’s proof (step-by-step method) for the Resek-
Thompson-Andréka theorem (from now on, AP or the cylindric case), assuming some
modifications in accordance with the transposition type of the algebras and some additional
requirements. But, the proof is a non-trivial modification of Andréka’s proof. Among
others, a difference between the cylindric and transposition cases is that the definition of
the function repy is more complex in the transposition case. Here only the differences
between the two proofs are emphasized, discussing the proof in accordance with the Parts

1-4 of the AP.
The proof of Theorem 2.8:

The following lemma states the easy part of the theorem:
Lemma 2.10 If A € Gwt,, then 2 € TA,, where a > 4.

Proof.
We assume that 2 € Gwt, and we need to check the axioms (F1)-(F11). As examples
we check the axioms (F4), (F9) and (F10):
Axiom (F4): cz-séx = séw i # j.
z € C’iS;-X & z2le S;-X for some u < zij e X.
ZES’;X@Z:% e X.
Axiom (F9): pijséw = sf:r:
z€li, j] SiX & zoli, jl€ SIX & 2, € X.
zGSfX@zgieX.
Axiom (F10): sédij =1
We show that z € V implies z € S;-Dij. Namely if z € V, then zij € V by the definition

of a Gwt unit V. But this implies that zi]. € Djj,ie., z€ S’;Dij.

qed.

21



dc_597 12

First, let us consider the framework (Part 1) of Andréka and Thompson’s proof in

Chapter 1. On the modification of that framework:

The only necessary change is that a property (vi) is needed which states the preservation
of the operator p;;. By (2.1) p;; may be considered as s(i, j]- We will use s|; ;) rather than
pij- So we need to prove:

(vi) rep(s, 51 @) = [i, j]rep(a).

We will prove the following more general property

(vi)’rep(ssa) = Syrep(a) (2.2)

where o is an arbitrary finite permutation on a.

We note that the original representation is complete (see (1.10)), and this will also be

transmitted to our construction.

The next part (Part 2) of the original proof is the definition of the Oth step, i.e., the

definition of the function repy..
We need to essentially change the definition of repy to handle property (vi)’.

First, as a preparation, we introduce two equivalence relations:

1. Let a be an arbitrary fized atom. The definition of the relation =, (=, for short) on

o is:
i = j if and only if sj; ja = a. (2.3)
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= is an equivalence relation. For example, if 1 = j and j = k, then ¢ = k, because
s, 5)a = a and s(; ya = a imply s; pa = a. Namely, by (2.1), [i, k] = [i, jlo [, k] o [i, j]
implies that sj; yja = (s, j] © S[j, k] © 83, )@

Notice that

(i,7) € Ker(a) implies that i = j. (2.4)

Namely, a < d;; implies that a = s|; ja. (C7) is equivalent to (C7)* : dyj - ci(dij - x) =
dij - x. If z = a, then a < d;; implies that d;; - c;a = a. Applying s; ;) to this equality we
obtain that s, ﬂ(dij Lga) = S[i, 4@, i-e., dji - sz(cia) = s[;, j]a-

Replacing c;a for = in (C7)* and changing i and j we obtain that dj; - ¢;(d;j - ¢;a) =
dj; - c;a, ie., dj; - sgcia = dj; - c;a. Comparing this equality with d;; - c;a = a and with

dji - Sg(cia) = s[;, j)a we obtain that a = s; ja.

2. Let us consider the following equivalence relation ~ on At2l:

a ~ b if and only if b = s,a for some finite permutation 7 (2.5)

a,b € At2l.

In fact, the relation ~ is an equivalence relation: it is reflexive because a = sya. It is
symmetrical because b = sra implies s,-1b = a. It is transitive because b = s;a and ¢ = s,b
imply that ¢ = sy(sra) = Sgora, where o o 7 is also a finite permutation.

Let us choose and fix representative points for the equivalence classes concerning ~ and

let Rp denote this fixed set of representative points.
We define the function repy :

Definition 2.11 If ¢ € Rp, then let
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repg(c) = {S-fc: src=c} (2.6)

where f. is the sequence defined in the original proof and 7 is a finite permutation on «.

If b = s,c, then let

repo(b) = S, repy(c). (2.7)

Lemma 2.12 The above definition is unique.

Proof.

It must be proved that if

S7C = S5C (2.8)

for some ¢ € Rp and finite permutations 7 and o, then

repg(s-c) = repy(sqc). (2.9)

(2.8) is equivalent to ¢ = (s,-1 0 $5)¢ = S,-1,4¢, SO is equivalent to

c=sgc (2.10)

1

where f = 77" o ¢. Similarly, using (2.7), (2.9) is equivalent to
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repg(c) = Sp repg(c). (2.11)

By (2.6), (2.11) is equivalent to {Sr, f¢ : s;,¢ = ¢} = Sg{Sn fc : spc=c}.

But Sg{Sr fe: sme=c} ={(S5 Sr,)fe: e =c}. So it must be proved that

{Srfe:snc=c}={(95)fc: smc=rc}. (2.12)

We show that the left-hand side of (2.12) is a subset of the right-hand side and
conversely. Assume that S;f. € {Sr fc: src=c} for some fixed 71 = 7. Then let us
choose ! o 7 on the right-hand side for 75. We need to prove that Sg-1orCc = c. But
8g-16,C = (Sg-15:)c = 83-1(5-¢). 87¢ = ¢ by condition and sz-1c = ¢ by (2.10). So, really

5g-16,¢ = ¢. The proof of the converse inclusion in (2.12) is completely similar.
qed.

Lemma 2.13 repg(sya) = S, repo(a), where o is an arbitrary finite permutation on «

and a is an arbitrary atom, i.e., the property (vi)’ in (2.2) is satisfied.

Proof.
We need to prove that (2.7) is true for arbitrary atoms b and a with b = s,a, not only

for representative points ¢, i.e., we need to prove that

repy(b) = Syrepy(a). (2.13)

Namely if the representative point representing a is ¢ and a = s,c for 7, then repg(b) =
repo(sya) = repo(Sesr¢) = repo(Syorc). But repo(sporc) =
= Syorrepo(c) by (2.7). Syorrepo(c) = (SoS7)repo(c) = Syrepo(s-c) = Syrepo(a) by (2.7).
So, really repy(b) = S,repp(a) and the proof is complete.

qed.
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Similarly to the original proof, we show that repg satisfies the conditions (i), (ii) and

(iv) in (1.11). The proof requires a bit more complex consideration than the original proof.

Lemma 2.14 repg(a) Nrepo(b) = 0 if a #b a,b € At, i.e., the property (i) in (1.11)

18 true.

Proof.
If a » b and a = s,c, b = s)d for some ¢,d € Rp and finite permutations o and A, then

the condition b) Rg(f.)N Rg(fq)= 0 in (1.12) and (2.6) imply that rep(a) N rep(b) = 0.

Assume that a ~ b and a = ssc, b = s;c for some ¢ € Rp and finite permutations o
and 7, a # b, i.e., s;c # s;c. We need to prove that
repo(sec) N repo(syc) = 0.

Indirectly, assume that repg(ssc) N repg(syc) # 0. We show that a = b, i.e., s,c = sy
and this contradicts the condition a = b.

Taking into consideration (2.7) we obtain that

So {Srife:smc=c} NSy {Sr,fe: smec=c}F#0,
ie., S;S fc = SySn fe for some finite permutations 71 and 72. This latter equality is

equivalent to f. = STl_1SJ_1SnSTch, ie, to fo = S -1 Let ~ denote the

7, oo ~lonors Je-
permutation 7, ' 0 0~ o5 o 1y, then f. = S, fe.
Using that s, ¢ = cand s.,c = ¢, a = b (i.e., s,c = 5,c ) is equivalent to 5557, ¢ = s,57,¢.

Similarly to the equivalences above, this latter equality is equivalent to ¢ = s_-1 c,
1

oo~ lonory
ie., toc=syc

Generally, we prove that

fe = Saf. implies ¢ = sgc, (2.14)

where 3 is an arbitrary finite permutation on «.
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We remind the reader that every finite permutation 8 can be formulated as a compo-
sition of finitely many cyclic permutations. Further, a cyclic permutation 0 of length n
can be formulated as a composition [5”_11', 5”1’} 0..0 [5@', (522'] o [i, i] of transpositions,
where §"¢ = ¢. This obviously implies that every finite permutation § can be formulated
as a finitely many compositions of transpositions of the form [j, 5j]. To prove (2.14) let

us decompose S in this form:

B = lim: Bimlo ..o ja, Bjal o [j1, Bir]- (2.15)

fe = Safe implies that (f.); = (Sgfe); for every j < a. Therefore (Sgfec); = (fe)g—1;-
Therefore (f.); = (fe)s-1; for every j < a. Here § is an arbitrary finite permutation, so
it can be written that (f.)g; = (f.); for arbitrary j < o and permutation . This latter is
equivalent to (f.)g; = (fc);. This means that (j, 3j) € ker(f). The property a) in (1.12),

i.e., Ker(c)=ker(f.) implies that (j, 3j) €Ker(c). (2.4) implies that j = 57, i.e.,

S[j, BjIC = ¢ (2.16)

for every j < a.
Applying (2.15) we obtain that sgc = s[;,, gj,.]o...olja, Bjalolir, Bi1]C =

=50jm, Bim]--Slja, Bi2) S[j1, Bjr]C- Using (2.16) step by step, we obtain that

sgc=c (2.17)

and (2.14) is proven.
Applying (2.14) to the transformation v we obtain a contradiction and the proof is

complete.

qed.
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Lemma 2.15 repo(a) C D;; if a < d;; and repo(a) N Djj = 0 if a-dij =0 for every

i,j < «, i.e., the property (ii) in (1.11) is true.

Proof.

First we prove that repg(a) C D;; if a < dij-

Assume that a = s,c for some ¢ € Rp. Then the condition a < dij is of the form

sq¢ < dj;. By (2.7) we need to prove that

So {Srfe:src=c} C Dyj (2.18)

ie.,

(SO'Sch)i = (SO'STfC)j' (219)

Let us consider the following equivalences:

(SeSrfe)i = (SoSrfe)j € (Soorfe)i =
= (Ssorfe)j & (f)or-1i = (f)(gor)-1; & (A1, A7) € ker(fe)=Ker(c) by (1.12) ,
where A denotes the permutation o o 7.

(A1, A71j) € Ker(c) means that ¢ < dy-1; A-1j- Applying sy to this inequality, we

obtain that syc < d;;. So (2.19) is equivalent to

S)\C < dz‘j. (2.20)

But sy¢ = SporC = S$g87¢ = Sy = a using the fact that s;c = ¢ in (2.18) and a = s,c.
Therefore the condition s,c < d;; is equivalent to syc < djj.

Applying the equivalences above we obtain that, a = syc < d;; implies (2.18).

The other case: we need to prove that repg(a) N D;; = 0 if a - d;j; = 0. Indirectly,

assume that rep(a) N D;; # 0 for some ¢,j < a. Similarly to the first case, (2.19) is true
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for some i,j < . (SeSrfe)i = (S5Srfc); for some finite permutation 7 and ¢,j < . By

the argument above, a < d;; follows and this contradicts the condition a - d;; = 0.

qed.

Lemma 2.16 repg(a) N Cirepg(b) = 0 if a-ci'b =0, i.e., the property (iv) in (1.11)

18 true.

Proof.

If a = b, then (2.7) and (1.12) b) imply that repg(a) N Cirepg(b) = 0.

Assume that a ~ b (a # b) and the representative point is ¢, so a = syc and b = s,c for
some permutations o and 7).

Indirectly, assume that

repg(a) N Cirepg(b) # 0. (2.21)

This means that there exists a g € repo(b) such that ¢¢, € repg(a) for some u. By
(2.7), this means that g = S, S, f. for some 7 and ¢!, = S,S;, f. for some 71, that is,
(SySr, fe)l, = SySr, fe. Therefore

fe=8,-185-1(8ySry fe)iy = (S, 151975 fo)2 (2.22)

where § = Tfl oo~ 1.

Let 8 denote the permutation Tfl oo tonom. Then f. = (Sﬁfc)ff implies that

(fe)j = (Safe); for every j # di, i.e.,

(fe)j = (fe)g—y, if j # di. (2.23)
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Let us consider the decomposition of 37! being analogous with (2.15): B! =
[kzm, B_lkm] 0...0 [kg, B_lkﬂ o [kl, B_lkl] , where k,, = di can be assumed without

loss of generality. Similarly to (2.17) we obtain that

85716 = S[&i, 571(&)]6. (2.24)

By definition of 3, 37! = 72_10 n~1o oo 71, therefore sg-1c =
= 87_2—1077_1(50—07—16) = 8,-1,,-10 because sy, ¢ = ¢ and 55 = a.
(2.24) implies that 8 —lon—10 = S(si, B=1(83)|C- Applying s,0-, to this equality we obtain

that

@ = Snora S[gi, B=1(81)]C = S[(nor200)i , (nor208~108)i] Snor2€ (2.25)

The second equality follows from (o 7)o [§, 871 08| =[nomod, noroB~todlo
(moTe) on a and from the property s;on = s 0 sy in (2.1) applying it to both sides.

The transformation o7 0 871 04 is the identity, namely nomo S tod =nomo 7'{1 o

ntoogor o Tfl oo t=1.So (2.25), c = s, and b = s,c imply that

a = Sp, b (2.26)

where m denotes (1 o7y 06) i.

(2.13) and (2.26) imply that repg(a) = [m, i] repo(b).
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Notice that a = s, b, a # b and Lemma 2.14 imply that

[m, i]repy(b) Nrepy(b) = 0. (2.27)

Further, the (indirect) condition in (2.21) is of the form

[m, ] repy(b) N Cirepy(b) # 0.

Then, on one hand, there exists a g € repg(b) such that g o [m, ] € C; repy(b), i.e.,
(g o [m, i])i, € repo(b), for some w. Let h denote the sequence (g o [m, i])%,.

On the other hand, both g and h are elements of rep(b) so (2.6) implies that both of
them are finite permutations of the representative sequence f.. Therefore they are finite
permutations of each others too, for example, let h = S, g for some finite permutation 7. If
7k =i, then g, = w. For the sake of simplicity let us consider here the finite permutation
7 to be defined on some finite subset of .

Let us denote ¢g; and g,, by v and v, so ¢g; = u, g = v and g = w. Then h =

(g © [m7 Z])zua hz =w, hm =y and

9i = hy (2.28)

for every j ¢ {i,m}. We state that the expected finite permutation 7 between the se-

quences g and h, having the above properties, cannot exist.

The problem, in question, will now be discussed. First notice that u # v. Namely u = v
implies g = go[m, i], so go[m, i] € repy(b) and this contradicts (2.27). For similar reason,

u # w.

First, let us consider the case v # w. We show that this case is impossible. Assume

that 7m = t for some ¢t < . Then hy = v, v ¢ {u,w} imply that t ¢ {i,m}. hy = v and
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g+ = hy imply that g, = v by (2.28). Assume that 7¢ = p for some p < a. u # v and the
7 is finite permutation, therefore p ¢ {i,m,t}. Similarly to the previous step, we obtain
that g, = h, = v. 7 is a finite permutation so there are only finitely many n; and g; such
that 7n; = ¢; and gn; = hg; = gq; = v. Let g, be the last g; with this property in this
sequence. T is a permutation, so 7g, = 7 or T7g, = m. Therefore g,, = v implies that h; = v

or h,, = v which contradicts the conditions h; = w, hy, = u and v ¢ {u,w}.

If v =w, then ho[m,i] = h,ie., go|m,i] = g. This contradicts (2.27), so the original

proposition is true.
qed.

Notice that in the Oth step, similarly to the original proof, the condition a - c?lb =0is

not used.

As regards the (n+1)th step of the proof, i.e., the definition of the function rep,1, let

us consider Andréka’s proof again (see Part 3 in the proof). The modified construction is:

In order to assure the validity of the property (vi)’ in (2.2), the original construction is
modified. Here equivalence classes of triples are considered instead of single triples. From
the point of view of the original proof, this means that the single triples are classified
according to an equivalence relation to be introduced.

The original construction uses an arbitrary fized free transfinite enumeration of the
(a,b,1i) triples, where a,b € At2l, i < a. In contrast with this, certain restrictions for this
enumeration will be assumed, and the triples will be classified in a sense. The function
rep, will be defined in accordance with this classification. Beyond this small change, the
original procedure is not changed, so the original proof works. We shall prove that property
(vi)” in (2.2) is preserved in every step.

Let us consider the following relation ~ on R :
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(a1,b1,11) = (ag, by, ig) if and only if ay = sya1,bes = s4;b1,12 = 011 (2.29)

for some permutation ¢. &~ is obviously an equivalence relation. Let us fix representative
points in the equivalence classes and denote by R’ the class of the representative points.
We note that the relation ~ preserves the inequalities a < ¢;b and b < d;; in the

following sense: if (a1, b1,71) =~ (a2, ba,i2), then

a1 < ¢, b1 if and only if ag < ¢;,b9 (2.30)

and

b < d;; if and only if 5,0 < dg; 5. (2.31)

Namely, if a; < ¢;,b1, i.e., sy-15,a1 < ¢j,S,-185b1, then by the last property in (2.1)
CiySo-150b1 < S5-1C4iy Sob1, therefore applying sy, Ssa1 < ¢piySob1 80 a2 < cjyba. This

argument is symmetrical. The second property is trivial.

Now it is possible to define a special enumeration of R. If p € R/, then let R, be the
members of the &~ -equivalence class with representative point p. So R equals the union of
the sets R, (r € R'), obviously.

Let us fix an ordering <* of R’ and fix the following lexicographic extension of <* to

if ¢ € Ry, then set p <* ¢
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if p1 <" po (p1,p2 € R') and pr =, p2 = X (7, A € R), then let v <* X, (2.32)

Let p be an ordinal and let r : p — R be an enumeration of R such that r preserves the
lexicographic ordering <* and for all n € p and (a,b,i) € R there is a m € p,m > n such

that r(m) = (a, b,7). Such p and r clearly exist.

Now the definition of the function repp41 is:
We will define rep,+1 for this case. In the case of the limit ordinal and the general
definition of the function rep, let rep,4; be the same as the originals in (1.16) and (1.17).

Assume that n is a successor ordinal.

For the representative point p = (a,b,i) (p € R’) let the definition of rep,1 be the
same as the original one, so be the same as the one included in (1.13), (1.14) or (1.15),
depending on the cases discussed there.

Then we extend the definition of rep,+; for the members of the equivalence class in-
cluding the respective representative points depending on the cases included in the original
definition. The motivation of these definitions is that & preserves the respective inequalities
(see (2.30) and (2.31)).

If a £ ¢;b, let

rep, .1 = rep, (2.33)

for all the members of the equivalence class containing (a, b, ).

If a < ¢;b, we define the function rep,y; simultaneously for all the triples (a1, b,i1)
such that (a1,b1,41) = (a,b,1).

Assume that a1 = s,a,b; = s,:b,4; = 7i for some permutation 7.

If b < d;; for some j < «, j # i, then let
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rep,,1(s-b) = rep,,(s:b) U{g (7i / grj) : g € rep,(s-a)} . (2.34)

If b £ dyj for all j < o, j # i, then let

rep,, 1(s7b) = rep,(s:b) U{g (7i / up) : g € rep, (sra)}, (2.35)

where uy, is the constant in (1.15) and h denotes the sequence S,-1g.

That is, repp4+1(s:0) = S; repyy1(b) in (2.34) and (2.35) by definition. In both cases
infinitely many steps of the original proof can be reduced into one schema. The definition
of rep,y1 for the representative triple (a,b,7) assures the desired properties of rep,11 for
the members of the equivalence class determined by (a, b, 7). For example, such a property
is the one denoted by (iv)’ in the original proof.

The definition of the function rep should be the original (1.17).
We check property (vi)’ in (2.2) for the function rep:

Lemma 2.17 rep(s,e) = S,rep(e) for every e € At, where S, is the substitution on
the unit V and o is a permutation on « — i.e., the property (vi)’ in (2.2) is true for the

function rep.

Proof.

It is proven that if rep,(ss-€) = Syrep,(e) for every e € At2l, then

rep, 1 1(s0€) = Sy rep, ;1 (€) (2.36)

for every e € At and successor ordinal n.

If this implication is proven, then by the definition in (1.16) and the induction condition,
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(2.36) is true for every ordinal n. From this and from (2.7) we obtain that rep(s,e) =
Serep(e) for every e € At i.e., the proposition of the lemma is true.

To prove (2.36), the definition of rep,,+1 will be used. Let us consider the representative
point (a,b,i) for the equivalence relation ~ and consider an arbitrary point (sa, s;b, 7%)

being ~ -equivalent to (a,b,7). Let us consider the cases listed in the definition of rep,;:

Case 1.

If a i cib (ie., sra ;E ¢ris:b), then by the definition in (2.33), rep,+1 = rep,, for all
the members of the class containing (a, b, ), therefore the property (2.36) is transmitted
from n to n + 1.

Case 2.

a < ¢b (ie., sra < ¢r48,.b) and b < d;; for some j and for every i # j. We need to prove

(2.36) for e = s;b, i.e., that

rep,11(84(570)) = Sorep,,1(s+b) (2.37)

for any permutation o.

Let us consider the left-hand side of (2.37):
repn+1(So(srb)) = repn+1(Soorb) = repn(sab) U {g (@i / gaj) : g € rep,(saa)} by (2.34),
where oo = 0 o 7. Here repy,(sq4b) = repn(ss(s+b)) = Sorepy(s-b) by induction.

For the right-hand side of (2.37):

S reDus1(570) = So(repn(s7b) ULg (71 / gr3) : g € rep, (s7a)}) =

=5, repn(STb) USs {g (Ti / gTj) g€ repn(sTa)} .

Comparing the above reformulations of the left and right-hand sides, it is sufficient to

prove that
{9 (@i / gaj) : g € vep,,(saa)} = So{g (Ti [ grj) : g € vep,(sra)}. (2.38)
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To prove (2.38), first let us consider the left-hand side. We show that for any finite

permutation § the following is true:

{9 (Bi / gs;) : g € repy(spa)} = Sg{f (i / f;) : [ € rep,(a)}. (2.39)

But Sg{f (i/ fj): ferep,(a)} ={(Ss f) (Bi/ fj): f €rep,(a)}. Denoting Szf by

g we obtain that f = Sz-1g. Further,

(Sgf) (Bi [ f;) =g (Bi /g5;)- (2.40)

So

Sg f i/ fj)= g (Bi/gsj) (2.41)

Considering (2.39) if f = Sz-1g, then f € rep,(a) is equivalent to

g € Sg repy(a) = repy(sga). So (2.39) is true.

Now let us consider (2.38). On one hand, {g (ai / gaj) : g € rep,(saa)} =

Sa{f @/ fj):ferep,(a)} = SeS-{f (i/fj):f€rep,(a)} applying (2.39) for = .
On the other hand,

So {9 (7i / 97j) : g € vep,(sra)} = So(S-({f (i / f;) : f € rep,(a)}) applying (2.39) for

B = 7. Therefore (2.38), so (2.37) is proven.

Case 3.

a < ¢b (ie., sra < cris7b) and b i dij (ie., s:b g dri7j) for all j < a, j # 1.

Similarly to the above arguments, considering the definition in (2.35) instead of (2.34),

we need to prove the following equality rather than (2.38):

{9 (ai [ up,) : g € rep,,(saa)} = So{g (77 / up,) : g € rep,(s-a)}, (2.42)
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where « =707, hy =S,-1gand hg =S5.-1¢.

We can prove the following equality by being analogous with (2.39) for an arbitrary

finite permutation (3 :

{9 (B [ up) - g €vepy(spa)} = Sp{f (i [ us) : f €repyla)}, (2.43)

where uy, is the constant in (1.15) and h denotes Sz-1g.
Namely let us apply the same argument as in the proof of (2.39), but in (2.41) let us
use Sgf (i [ uy) =g (Bi [ up) instead of Sgf (i / f;) = g (Bi / gsj), where h = Sz-1 g.
The proof of (2.42):
{9 (i / un,) : g €repp(saa)} = Saf{f (i [ uf): f €rep,(a)} =
=S58 {f (i / us) : f €rep,(a)} applying (2.43) for 8 and o = o o 7. Further,
Se{g (Ti [ un,) : g € rep,(sra)} = So(Sr({f (i / ug) : f € rep,(a)}) applying (2.43)

for = 7. Therefore (2.42), so (2.37) is proven.
qed.
Let Dp, denote the polyadic version of the cylindric class Dg.
Lemma 2.18 Dp, = Gwt,.

Proof.

The notation introduced in Chapter 1 is used. Gwt, C Dp, is trivial. To prove the
converse inclusion, we use the following characterization of Gwt, : y € V implies y o T
€ V for every finite transformation 7. But 7 can be composed in terms of finitely many
elementary transformations substitution [i / j] and transposition [z, j]. It is sufficient to

prove that V' is closed under these transformations. But V' is closed under [i / j] because
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V is a Dp,, unit. Furthermore, V' is a Trs, unit, therefore it is closed under [i, j| too.

qed.
The completion of the proof of Theorem 2.8 is:

In [Fe07a] it is proven that (F5)* and (C4)* are equivalent under the other F, axioms.
Andréka and Thompson proved that there is an isomorphism, denoted by rep’, between
the algebra R0.,2l and some algebra 8’c D,. We proved in Lemma 2.17 that this isomor-
phism preserves the operators s, for any finite permutations o on «. Therefore B’ may
be considered as an algebra 9% in Dp,. Lemma 2.18 implies that B € Gwt,. So rep’ is an

isomorphism between 2 and a B € Gwt,,.
qed.

Gw, denotes the class {Rd.,B: B € Gwt,} by definition, where 930,28 denotes the
cylindric reduct of B (see [He-Mo-Ta L], p. 226). The following claim obviously follows

from Theorem 2.8:

Corollary 2.19 If 2 € TA,, then R0, € IGw,, a > 4.

Main references in this Chapter are: [Fel2al, [Sa-Th| and [Fella].
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Chapter 3

Representation theorems for

polyadic-type equality algebras

In this Chapter we deal with “polyadic-type” algebras other than transposition algebras.
We assume that these algebras have only single cylindrifications ¢;, because the non-
commutativity of cylindrifications (for quasi-polyadic algebras this is only a formal re-
striction, but for polyadic algebras, in general, not). This is the reason for the terminology
cylindric polyadic algebras. While the type of cylindric-type algebras is unique, the type of
polyadic-type algebras depends on the definite subset () of “«, where the transformation
of s, runs. The following concrete classes of “polyadic-type” algebras will be investigated:
cylindric quasi-polyadic equality, cylindric polyadic equality, cylindric m-quasi-polyadic

equality algebras.

3.1 Cylindric quasi-polyadic equality algebras

The concept of quasi-polyadic algebra was introduced in Halmos [Ha56] (here Definition
3.3). Sain and Thompson proved ([Sa-Th]) that quasi-polyadic equality algebras and alge-

bras in FPEA,, (or strong transposition algebras) are definitionally equivalent. Nevertheless,
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it is worth investigating quasi-polyadic algebras in themselves because quasi-polyadic alge-
bra is a well-known class and can be considered as a bridge to the polyadic algebras having
infinite substitution operators.

The following two definitions are closely related to the Definitions 2.1 and 2.2 concerning

transposition algebras.

Definition 3.1 (Cqrs,) The structure

(A, U, N, ~y, 0, V, Y, SY, DY )repra, ij<a

is a cylindric quasi-polyadic relativized set algebra if its cylindric reduct is in Crs,, and A

is closed under the substitutions

SVX={yeV:yoreX, 1 €FT,}

([He-Mo-Ta IL], 5.4.22).

Definition 3.2 (Gwq,) A set algebra in Cqrs,, is called a generalized weak quasi-polyadic
relativized set algebra if there are sets Uy, k € K and sequences pp € “U such that
V=UU O‘U,gp’“), where V' is the unit.

keK
Recall the classical definition of quasi-polyadic equality algebra (containing general

cylindrification ¢y, I' C «):

Definition 3.3 (QPEA,) By a quasi-polyadic equality algebra of dimension «, we mean

an algebra Ql:<‘3, Iy, St dij> such that ¢r) and s; are unary operations, d;; are

1,j<a
constants and the following equations (Qq)-(Qg),(E1)-(E3) are valid in 2 for every finite

A (T,ACa), 7,0 € FT, and i,j < v :

41



Qo
Q1

2

o O

3

I®)

4

o

5

)
)
)
)
)
)
6)
)
)
)
)
)
)

o O

7

'®)

8

'®)

9

&3]

1

(
(
(
(
(
(
(
(
(
(
(
(B2
(

E3

dc_597 12

B = (A;+,-,—,0,1) is a Boolean algebra

EM)EA)T = Erua)®

Spgr =

Soor® = Su ST

So(r +Y) = sox + s,y and s,(—x) = —s,x

if ola~r = Tla~r then sycryz = srcry

¢(rys+& = sr¢(a)®, where A = 77 1[I'] and 7| is one-one
dis = 1

T - dij < S5

Srdij = dr(iyr(j)-

(see Halmos [Ha57], [Sa-Th], Def. 5, or [He-Mo-Ta IL.]).

It is obvious that replacing the general cylindrifications ¢(ry by single cylindrifications
¢, this does not mean any essential change due to the finiteness of the sets I'. In [Fel3] it

is proven that this usual axiom system is redundant, because axiom (Qg) can be omitted.

The following definition is closely related to that of quasi-polyadic equality algebra, but,
as it was mentioned above, this latter is adapted to the non-commutative case of cylindri-
fications (the polyadic axiom (Qg) is missing and (Qg) has changed, see [He-Mo-Ta IL.],

5.4.1.

Definition 3.4 (CQE,) A cylindric quasi-polyadic equality algebra of dimension « (v >

2) is a structure
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A = <A7 +7 By T 07 17 Ciy, St, dl]> (31)

7€ FTa, ij<a

where +, and - are binary operations, —, ¢; and s, are unary operations, 0,1 and d;; are
constants in 2 such that for every ¢,j € a, z,y € A, 0,7 € FT,, the following postulates

are satisfied:

CP7

So(—x) =~ sy

(CPO) (A, 4+, -, —, 0, 1) is a Boolean algebra
(CP1) 0 =0

(CP2) =z <c¢x

(CP3) c¢i(z-cy) =ciz - cy

(CP4) spgr ==

(CP5)  Sgor® = S$58+T

(CP6)  so(x +y) = sox + S0y

(CP7)

(CP8)

CP8) s,x = s;x, assuming that oi = 70 if i ¢ T and T is such that ¢z =z ifi € T
(T Ca)

(CP9)* cispr < syciw if o~ {i} equals {j} or the empty set (in this latter case ¢; is
the identity operator), and the equality holds instead of < if ¢ is a permutation of «

(E1) di=1

(E2)  x-dij < s, 57

(E3)  srdij = dri 75

Definition 3.5 (CQES,) A strong cylindric quasi-polyadic equality algebra is such a

CQE, that, instead of (CP9)*, the axiom

(CP9) : ¢cisex = sqCjx
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is assumed, where o~ 1* {i} equals {j} or the empty set (in this latter case ¢; is the identity
operator) and, in addition, the cylindric axiom (Cjy), i.e., the commutativity of cylindrifi-

cations

cicjx = cjcix if 1,7 € a

is assumed.

As a consequence of Sain and Thompson’s result (Theorem 1 in [Sa-Th]) TAS, (also
FPEA,), CQES,, and quasi-polyadic equality algebras are definitionally equivalent (o > 3).

The question arises: which class is the quasi-polyadic counterpart of the class TA,?

The following theorem answers this question ([Fel3, Fel3]):

Theorem 3.6 The aziomatizations of TA, and CQE, are definitionally equivalent

(a > 3).

Proof.
If A € CQE,, then checking the FPEA, (TAS,) axioms, the commutativity of the
cylindrifications is used only in the proof of (F5). So, now we only need to prove (F5)*.

The property s;-sfnx = s’fnséw (1,7 ¢ {k, m}) is equivalent to the special case of (CP9)*:

cishax < shcx (i ¢ {j,m}) (3.2)

supposing that both properties hold for every possible ordinal in the conditions (see [FeQ7b],
Theorem 1). Here we need the direction that (3.2) implies axiom (F5)* (in this proof only
the polyadic axiom (Q2) is used in [Fe07b]). Originally, the polyadic axiom (Qg) is applied

in proving axiom (F3). But, (F3) follows from (CP9)*.
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Conversely, assume that 2 € TA,. We refer to the proof of Theorem 1 in [Sa-Th],
following the applications of axiom (F5) in that proof, and investigating whether (F5) can
be replaced by axiom (F5)*.

The first occurrence of (F5) is in the proof of the commutativity of the cylindrifications
(Claim 1.1). In CQE,, this latter property fails to be true, therefore we must not use Claim
1.1.

The next occurrences of (F5) are in the Claims 1.2 and 1.3 which state that the operator
sy can be introduced in the algebra for an arbitrary 7 € FT,. These claims are based on
Jonsson’s famous theorem which requires the validity of certain conditions (J1)—(J7). These
properties can obviously be proven in CQE, without (F5) or they are axioms (e.g., (J6) is
exactly (F5)*). The only critical property is (J4): pijsfx = sfpijx, because the proof of
this property uses axiom (F5) in proving the inequality sfpijx < sé?pijs};x (row (16) there).
We show that this property can be proven without (F5):

S

Sl

x = c(z - di;) holds in TA, (the proof is similar to that of [He-Mo-Ta IL] Thm.

5.4.3). Then

T —

s§pijr = cx(pij - dj) = ci(dpj - pijx - dij). But dig = pijdy; (dj = shdij = pijs]dp; =

IN

pijdii by (F9)). Thus, ck(dkj - pijx - dij) = ci(dij - pijz - pijdei) = c(dij - pij(@ - dii))
cx(dij - pijei(x - dii)) = s§pijsje.

Thus, the existence of the operator s, is proven.

The next part of the proof in Theorem 1 in [Sa-Th] is the proof of the CQE, axioms.
The only non-trivial case is the proof of the polyadic axiom (Qg), namely (F5) occurs in

Lemma 1.5 (iii). This part (iii) states that ¢;s,x = src;z if 7 = i. The proof uses that

cisha = shew (i ¢ {j,m}). But, instead of this, we can use property (3.2) above. As it is

mentioned above, (F5)* implies this property (see [Fe07a]) and the proof uses only (CP3)
and c;d;; = 1 (this latter is trivially true in CQE,). Therefore in Lemma 1.5 (iii) only the
inequality ¢;s;z < s,yc;x (where 7i = i) holds instead of equality. Using this inequality in
the remainder of the proof of (Qg), we obtain exactly (CP9)* instead of (Qg).

qed.
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Definition 3.7 An algebra 2 with the type of CQE,, is r-representable, if 2 € ICqrs,,.

Lemma 3.8 The following propositions (i) and (ii) hold:
(i) If A € Cqrsy, then A € Gwa, if and only if © € V implies xoT € V for every finite
T on a.

(ii) If B € CQE, and B is r-representable, then Be IGwqy.

The proposition can be reduced to Lemma 2.7, noticing that for finite 7 on «, the

condition x o 7 € V is equivalent to the pair of conditions

xoli,jleVand zol[i/j] € V.

The following basic representation theorem follows from Theorem 2.8, Theorem 3.6 and

from the proof of Lemma 3.8.

Theorem 3.9 (Main r-representation theorem for algebras in CQE,):

A € CQE, if and only if A € IGwq,,

where o > 3.

The reformulation of the theorem is:

The class Gwqy is first-order axiomatizable by a finite schema of equations and the

azxioms can be the CQE,, axioms.
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By definition, the class CQES,, is obtained from CQE,, if axiom (CP9) is replaced by
(CP9)*, and, (C4) is assumed. Thus, we obtain the following:

Corollary 3.10 2 €CQES,, if and only if

A € I(Gwg, N Mod {(CP9), (C4)})

(a > 3).

Let us denote by Gv;qa the subclass of Gwq, such that the disjointness of subunit is
assumed. CQES, is not representable in the classical sense (see[Sa-Th]), thus Gwq, in the
Corollary cannot be replaced by Gv;q o But, recall that the locally finite algebras in CQES,,

are already representable in the classical sense ([Hab6], [Hab7]).

3.2 Cylindric polyadic and m-quasi polyadic equality

algebras

In this Section we study a-dimensional “polyadic-type” equality algebras having infinite
substitution operators (s, or S;). Here “polyadic” is used in the classical, Halmos polyadic
sense, except for the fact that the algebra contains only single cylindrifications. From
now on, the dimension « is assumed to be infinite (because the finite dimensional case
is closely connected to the quasi-polyadic case). The other ordinals included later in the
chapter (e.g., m) are infinite, as well. These investigations focus on the analysis of the
substitution operators with infinite transformations and equalities (in another terminology,
on transformation systems with equalities, see [Da-Mo]). The techniques needed for these

investigations are different from the case of finite transformations.

First, some classes of set algebras are introduced: the classes Cprs,,, Gpa, Gpa °, mCprs,,

reg

Gpw,, and Gpw,,°.
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The following definition is a variant of that of Cqrs,. It includes “« instead of FT,,

where « is infinite.

Definition 3.11 (Cprs,) The structure

<A7 U7 ﬂ, ~V, 07 ‘/7 CZV’ S‘I"/7 Dl‘; >T€aa: 1,j<a

is a cylindric polyadic relativized set algebra if its cylindric reduct is in Crs,, and A is closed

under the substitutions

SVYX={yeV:yorecX, 7€ %}

(see [He-Mo-Ta II.], Definition 5.4.22).
Obviously, the cylindric reduct of a Cprs, is a Crs,.

A dimension set Az of an element x of a cylindric or polyadic-type algebra is the set

(i:x#x,i<a).

Definition 3.12 (Gp, and Gpy®) A set algebra 21 in Cprs, is called a generalized
polyadic relativized set algebra (A € Gpy) if there are sets Uy and k € K, such that
V = Ukex Uk, where V is the unit. An algebra 2 in Gp,, is called regular (A € Gpa®) if,

for each X € A, x € X and y € V, the condition (AX U1) | 2 C y implies y € X.

Remarks
a) One of the differences between the classical cylindric class Gs,, (generalized cylindric
set algebras, see [He-Mo-Ta IL.], Definition 3.1.2) and Gp, is that in Gp, the pairwise

disjointness of the Uy’s is not required.
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b) The cylindric reduct of a Gp,, is the “locally square” cylindric set algebra G, intro-
duced by Németi (see [Nem86], [An-Go-Ne| and [And]).

c) The concept of regularity (see [He-Mo-Ta I1.], Definition 3.1.1 (viii)) compensates, in
a sense, for the lack of general cylindrification Cp (I' C «) because if such a cylindrification
exists, then (AX U1) 1 x Cy implies that y € C(oaxuinX = X.

d) The subclass of Gp, such that the pairwise disjointness of the Uy’s is assumed is

denoted by Gp,.

Assume that m < « is infinite and fixed. Given a set U and a fixed sequence p € *U,

the set

ay®P) = {z € U : xand p are different at most in m-many members}

is called the m-weak space (or m-weak Cartesian space) determined by p and U. Here p is

called a support of the m-weak space and U is called the base.

Recall that the definition of the weak space, in notation *U®) (see Chapter 1 here, and
[He-Mo-Ta IL.], 3.1.2) is the w-version of the above definition if the term “at most in” is

replaced by “less than” in it.

Definition 3.13 A transformation 7 defined on « is said to be an m-transformation
(m < « is infinite and fixed) if 7¢ = i except for m-many i € «. The class of m-

transformations is denoted by ,,, T.
Definition 3.14 (,,,Cprs,,) If, in the definition of Cprs,, “« is changed by ,, T, (m < «

infinite and fixed), then the definition of the class ,,Cprs, is obtained.

Obviously, Cprs,, is Cprs,. We note that there exists a generalized definition of Cprs,
such that, instead of “a, the domain of the 7’s is a fixed subset @ of “«. In this case it is

necessary to assume certain compatibility conditions for @ (see [Sai]).
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Now, we can summarize the types of polyadic-type algebras included in the Thesis: the

types of Trsy, Cqrsy, Cprsy and ,,,Cprs,,.

Definition 3.15 (,,Gwp, and ,,, Gwp*®8) A set algebra 2 in ,,,Cprs,, (m < « infinite and
fixed) is called a generalized m-quasi (m < «) polyadic relativized set algebra (A €,Gwpg,)
if there are sets Uy, k € K and sequences py, € “Uy, such that V = J,c mU, where V is

the unit. The relation of ,,,Gwpa® and ,,Gwp,, is similar to that of ,,Gp, and ,,Gpa®.

The characterizations of the classes ,,Gwp,, and Gp, are the following ones:

Lemma 3.16

(i) If A € ,,Cprs,, then A € ,,Gwp,, if and only if x € V implies xoT € V for every
transformation 7, T € 1, To. Another equivalent condition for 2 € ,,Gwpg is: S;V =V for
every transformation 1, T € ,Tq.

(ii) If A € Cprs,, then A € Gpy if and only if © € V implies xoT € V for every
transformation T, T € “a. Another equivalent condition for A € Gpy is: S;V =V for

every T, T € “a (see [And]).

This lemma is analogous with the Lemma 3.8. As regards the equivalency of the first
property and S;V =V in (i), for example, the condition 2z € V' implies zoT € V for every
transformation 7,7 € ;, T, means that V' C S.V. Conversely, S;V C V is always holds in

mGWpq.

Now, some classes of abstract algebras are introduced: the classes CPE,, CPES, and

mCPE,.

Definition 3.17 (CPE,) If, in the definition of CQE,, FT, is changed by “«a (« is

infinite), and, instead of (CP8) the axiom
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(CP8)" : d-s,xr =d- s;x if the product d of the elements d; »; (i € Ax)

exists.

is assumed, then the concept of cylindric polyadic equality algebra of dimension « is ob-

tained.

Definition 3.18 (CPES,) A strong cylindric polyadic equality algebra of dimension «

is an algebra in CPE, such that instead of (CP9)* the axiom

(CP9) : ¢cisox = Socjx

is required if o~1* {i} equals {j} or the empty set (in the latter case c; is the identity) and,

in addition, the axiom

(Cyq) : cicjr = cjcix

is assumed, where « is infinite, 7,j € a, 0 € “a.

Definition 3.19 (,,,CPE,) If, in the definition of CPE, the transformations 7 and o
are assumed to be m-transformations (m < « infinite and fixed), i.e., 7,0 € ,,, T4, then the

concept of cylindric m-quasi-polyadic equality algebra of dimension « (,,,CPE,) is obtained.
Lemma 3.20 ,,Gwp,® U Gpa® C CPE,

Proof.
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As examples, we check the validity of (CP8)* and (CP9)* for an algebra 2 € Gpg®.

Axiom (CP8)*. Assume that z € d N S, X, where X € A. Then, S,z € X, by definition.
z € d implies z;; = zo; if i € AX, ie., (S,2); = (S;r2); if i € AX. The regularity of 2
implies that S;z € X, as well. Thus, z € S;X. Therefore z € S, X implies z € S5; X, i.e.,
Sy, X C S;X. By symmetry, S, X = S;X.

Axiom (CP9)*. Assume that z € C;S,X. Then, 2 € S,X for some u. By definition,
S,z € X. Notice that S,z = (Sy2)), where {j} = 0~ {i} and S,z € V (the latter follows
from the facts that RgS,z = Rgz and the definition of a Gp,, unit). Thus, (Saz)i € X, as
well. (Saz)i € X means that z € S,C;X. Therefore C;S, X C 5,C;X.

We check the converse inclusion, assuming that o is a permutation of «. Assume that
z € SyC;X, where {j} = o~!*{i}. This means that (Sy2)) € X for some u. If o is a
permutation, then Rg(SUz)% = Rg 2!, therefore by definition of a Gp,, unit, 2% € V. In this
case, the argument above can be repeated, i.e., (Saz)ﬂ = 5,2 implies z € C;S,X. Thus,

S.C; X C C; S, X.
qed.

Remarks

a) An algebra in Cprs, satisfies all the CPES, axioms, with the possible exceptions
of the axioms (Cy4), (CP5), (CP7), (CP8)*, (CP9) and (E3) (see [He-Mo-Ta II.|, Theorem
5.4.15). 1 Gwpa® U Gpa® € CPES,, because the CPES,, axioms (C4) and (CP9) fail to hold
for the union on the left-hand side. But, mGV\./pffg U Gp;geg C CPES,,. Notice that ,,,Gwp, U
Gp,, satisfies all the CPE,, axioms except for (CP8)*.

b) We note that CPE, and CPES, can be conceived of as so-called transformation

systems equipped by diagonals and cylindrifications (see [Da-Mo], 3§ and 48).

Definition 3.21 An algebra 2 with the type of CPE, is r-representable if 21 € ICprs,.

An algebra 2 with the type of ,,,CPE,, is r-representable if A € I ,,,Cprs,.
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The next lemma motivates the representation theorems. For r-representable algebras

it gives necessary conditions for the representants.

Lemma 3.22 The following propositions (i) and (ii) hold:
(i) If B is r-representable and B € ,,,CPE,, then B € 1 ,,Gwp,

(i) If B is r-representable and B € CPE,U CPES,, then B € IGp,.

Proof.

(i) By r-representability, B € I for some 2 € ,,Cprs,, implies that f(s\1) = S\f1,
where f is an isomorphism between 6 and 2, and A is an arbitrary m-transformation (i.e.,
A€ nTa). But syl =1 and f1 = V, and therefore f1 = S,V i.e., V = S\V. By Lemma
3.16 (i), B € I ,,Gwp,.

(ii) The proof is similar to the previous one, but we have to use Lemma 3.16 (ii) instead

of (i).
qed.

Definition 3.23 Assume that m is infinite and m < «. An algebra 2 € ,,CPE, is
locally-m dimensional (locally-m, for short), if |Ab] < m for each b € A. The class of

a-dimensional locally-m algebras is denoted by Lm,,.

The main r-representation theorems concerning cylindric polyadic equality algebras are

the following ones (see [Fel2b, Fel2b], [Fellb, Fellb]):

Theorem 3.24 (Representation theorem for ,,CPE,N Lmy)

20 € ,,CPELN Lmy, if and only if A € I(;,nGwpa® N Lmy,), where m is infinite, m < a.

This theorem generalizes Halmos’s classical theorem that locally finite, infinite dimen-
sional, quasi-polyadic algebras are representable (see [Hab6]). Similarly to Halmos’s theo-
rem, where the local finiteness condition implies that the quasi-polyadic condition can be

omitted, in the theorem above the (implicit) condition m-quasi can be omitted.

53



dc_597 12

Let o be infinit.

Theorem 3.25 (Representation theorem for CPE, and CPES,,)

(i) 2 € CPE,, if and only if A € IGpy®.

(ii) A € CPES,, if and only if A € I(Gpa® N Mod{( Cy), (CP9)}).

We return to the proofs of the above theorems in Part 2 dealing with neat embedding
theorems.

This result, in a sense, generalizes Andréka’s result ([And]) concerning the finite scheme
axiomatizability of the class G, of finite dimensional locally square cylindric algebras («

is infinit).

Theorem 3.25 gives a kind of answer for the problem asked in [An-Go-Ne] and [And]
whether G, is a variety. And, Theorems 3.24 and 3.25 answer the other problem, whether
transformation systems equipped with equalities and cylindrifications are representable
(see [Kei] and [Slo]).

We do not know whether r-representation theorem exists for classical polyadic equality

algebras (having infinite cylindrifications).

Remarks

a) The classes CPES,, and CPE,, are not representable in the classical sense (see [Da-Mo],

[ ]
reg
o

[Slo]), therefore the class Gpa® cannot be replaced by Gpi® in the above representation
theorems. Similarly, ,, Gwps ® cannot be replaced by mG\.Npa in Theorem 3.24.

b) With the second proposition of Theorem 3.25, the following cylindric algebraic the-
orem can be associated: cylindric algebras satisfying the merry-go-round axioms are repre-

sentable by set algebras in Crs, Mod{(Cy4), (Cg)} (or in Crs,N CA,, see [He-Mo-Ta I1.],

3.2.88).

Finally, we state a consequence of Theorem 3.25 for cylindric algebras.
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Corollary 3.26 If 8 is the cylindric reduct of some A € CPE,, where a is infinite,

then B is r-representable and B € 1Gy®.

Concerning the concept of cylindric reduct, see below Definition 4.1.

Main references in this Chapter are: [Fel2al, [And], [Sa-Th], [Ha57], [Da-Mo], [Fel2b],

[Nem86], [An-Go-Ne] and [Sai] .

55



dc_597 12

Part 11

Neat embedding theorems and

their applications
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Chapter 4

Neat embedding theorems for

cylindric-type algebras

The classical neat embedding theorem of cylindric algebras says: 2 is representable if
and only if 2 € SNr,CA,4+., where ¢ > w is an arbitrary but fixed ordinal, o > 2,
and SNr,CA, ¢ is the class of CA,’s that have the neat embedding property. The fol-
lowing question arises: can this theorem be generalized from classical representability to
r-representability? In this Chapter, this question is investigated. At the end of the Chap-
ter, some conclusions are drawn about the classical neat embedding theorem with respect

to itself.

Definition 4.1 The a-reduct of a S-dimensional (o < [3) cylindric algebra
¢ = <A7 +,5 = 07 17 Ci, dzj>7,,j<,8

is the cylindric algebra A = (A4,+,-,—,0,1,¢;,d;j)i j<a, in notation A = Ro,&. The neat
a-reduct of € is the algebra ©® = (D, +,-,—,0,1,¢,dij)i j<a, where D = {be€ A : ¢;b=10

for every a < i < 8}, in notation © = N, C.

Definition 4.2 An 2 € CA,, is neatly embeddable into a € € CAg (a < ) if there is
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an embedding e of 2 into R0, € such that we have c;ea = ea for every a € A and for every
a <1< B. So A is neatly embeddable into €, if it is isomorphic to a subalgebra of M, <,

ie., A e SN, C.

If K is a fixed subclass of CAg, then SNr,K denotes the class of the algebras neatly
embeddable into some member of K, where S denotes forming subalgebra. These definitions

can be reformulated analogously for cylindric-type algebras.

Recall that CNAY denotes the class of cylindric-type algebras where the commutativity
of the single substitutions is assumed instead of that of the cylindrifications, furthermore,
the MGR is supposed (Definition 1.9). In this Chapter we use the short notation F, for

CNAZ.

Two unusual classes of algebras are introduced, denoted by Fg,. and Mg, .. These

e

classes are obtained from F_ . and CA,., respectively. Instead of the axioms (Cj4) and

&
(Cg) certain consequences of them are postulated moreover, the schemas of these conse-

quences are restricted to certain ordinals depending on a and €. These axiom schemas may

be considered as many sorted schemas.

Definition 4.3 (FS,.) The axioms of F§,  are obtained from those of F,, . if axioms
(C4), (Cg) and MGR are replaced by the axioms (C;), (Cg) and MGR™ below, where

a>3,e>1and a+ ¢ is denoted by S:

(C,) is the set of the following four properties:
(Cy)a) sﬁnsﬂx = s%sfnx if 4,j,m,n € B, i # j except for two cases: i,j € a, m ¢ «
and i,j €a,n ¢ «
(C;)b) sfnsq%a: < s,j@sfna: ifi,j,n € o, m ¢ «, (i, j, n, m are different)

(Cy)e) dig - sins%x < s%sfnac ifi,j,k€a,né¢a,(i,j, k, n, m are different)

(C;)d) cicma = cpeiz, m ¢ o

58



dc_597 12

(Cy) is the set of the diagonal properties in (1.1) with the following restriction for

property d., denoted by (Cy)d.:
cidij =11if i,j € B, except for the case i € o, j ¢ «
MGR™ : MGR restricted to a.

Another notation for Fg, . is F, ...

Definition 4.4 (Mg, .) This class is obtained from F{, _ if we assume axiom (C4) and

(Cg) for the a-reduct of F3, . (o >3, > 1).

Obviously Mg,. C Fg,. and, the a-reducts of the algebras in F;, . and Mg,  are
algebras in F, and CA, respectively. A generic example for an algebra in F{ . will be

shown in the proof of Theorem 4.6.

Remark

The class Fg . is essentially different from the class CA, .. For example, the equation
¢idim = 1is not necessarily true in FS, _ if i € a, m ¢ a. Also the equations c;cidim = cidim
or ¢jciCjdjm = cicjdjm are not necessarily true in Fy, . (see the proof of Theorem 4.6). For
example, the latter equation may be considered as a special case of c;jc;cjb = c;c;b which

. e s
is not true in Fg, . in general.

Recall that an 2 €F, is called r-representable if 24 € ID,. The following two the-
orems are necessary and sufficient parts of a Main neat embedding theorem concerning

r-representability (Corollary 4.7 due to the present author):

Theorem 4.5 If 2 € SNr,Fg ., then % € ID,, where o > 4, € is any fized infinite

ordinal.
Theorem 4.6 If % € D, then A € SNroF, . for any fived o > 4, € > 2.

These theorems will be proven below.
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Theorem 4.5 and Theorem 4.6 together imply the following neat embedding theorem

for r-representability:

Corollary 4.7 Let 2 € F,, (a > 4) and let € be any fized infinite ordinal. Then the
following properties (i) and (ii) are equivalent:
(i) 2 is r-representable (i.e., A € ID,)

(ii) A € SNr Fg ..
The following proposition is an easy consequence of Theorem 4.6 and the RTA theorem:
Corallary 4.8 F, € SNr,Fg,, for € > 2, a > 4 (see [FeO7al).

The following theorems are variants of Theorems 4.5 and 4.6, they are necessary and
sufficient parts of a neat embedding theorem concerning r-representation and cylindric

algebras. Since, recall that an A € CA, is r-representable if A € ICrs,, i.e., A € ICrs,NCA,.

Theorem 4.9 If A € SNr Mg, ., o > 4, then 2 € ICrs, N CA,, where € is any fized

infinite ordinal.

Theorem 4.10 If 2 € ICrs, N CA,, o > 4, then A € SNro Mg, for any fized € > 2.

Now we come to the proofs of Theorem 4.5 and Theorem 4.6. First Theorem 4.5 is

proved.

The outline of the proof is: We define a Dg-unit, denoted by V, then we define an
embedding of A into the full set algebra in Do with unit V. To perform this, some lemmas

are needed.
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Let us fix an algebra B € FG . such that 2 is a subalgebra of the neat a-reduct of °B.

First, we introduce some concepts needed in the proof:

Let 7 be a transformation on « + ¢ such that 7;, = mo, 7%, = m1,..., 7, , = Mp_1,
else 7; =i if i ¢ {ig,...,ip—1}. We refer to {ig,...,in—1} as the domain of 7 (Dom 7), and
to {mo,...,mp_1} as the range of 7 (Rg 7). 7 defines a unary operator s, on B as follows:
Sy =S ... st

Such a transformation s; is called an admitted transformation if Dom 7 C « and

Rg 7N« # O (this latter is equivalent to Rg 7 C B ~ a if 8 = a +¢).

We refer to the single substitutions sfl contained in s, as the members of s,. Let R be

the set of the admitted transformations on ‘B.

A Boolean ultrafilter F' in ‘B is perfect if, for any element of the form srcjx included
in F, where j € a, x € A and s; is any admitted transformation, there exists an m ¢ o U

Rg 7 such that STS‘an e F.

As is known, neat embeddability into w extra dimensions implies neat embeddability
into any infinite number of infinitely many extra dimensions, i.e., SNr,Fg, . =SNr,F

a
atw:*

Therefore from now on, we can assume that ¢ > max(«, |A|) and ¢ is infinite.

Lemma 4.11 Let a be an arbitrary, but fized non zero element of A and € > max(«, |A]).

Then there exists a perfect ultrafilter F' in the algebra B € Fy, . such that a € F'.

Proof.
Henkin’s proof for completeness is adapted to the axioms of Fg ..
Let

X ={srcjy: TER, jea, ye A}

Let /5 denote the ordinal a + €. By condition, € > max(|A|, @), € is infinite, therefore

a+e=¢e¢(f=¢)and |X|=p. Let p : 5 — X be a fixed enumeration of X.
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Let Fy be the Boolean (BA) filter of B generated by a. Now we define recursively an
increasing sequence (F; : i < f3) of proper BA filters of ‘B.

Let n be a fixed ordinal (n < ). Assume that F; (0 <i <n — 1) has been defined.

Let p, = s;cjy, where T € R, j € « and y € A.

If n is a limit ordinal, then let F,, = U F;.

And, let (m, : n< B, my, < f, « <Z<nzn> be a sequence of ordinals such that m,, ¢
aU U (dim p;)U Rg 7.

i<n

Such a sequence m,, exists because n < (= ¢) and the finiteness of (dim p;) ~ «
imply that | ( dim p;) ~ o <e. Further Rg 7 is finite and ¢ is infinite.

<<n

If n is a successor ordinal, let F,, be the filter generated by the set
Fo 1 U{srcjy — sTsfnny}

where y € A. Obviously F; C F,, if i < n.

We show that F), is a proper filter. The only case worthwhile considering is the case
when n is a successor ordinal. So assume that F,_; is proper and assume, seeking a
contradiction, that F}, is not.

Let m denote now m,,. Suppose, on the contrary, that —(s-c;y — sTsfny) belongs to
F,,. The property of generating filters in Boolean algebras implies that there are finitely

many elements in Fj,_; such that
a (Snciyyr — Srshh y1) ... (Sr.Ciuyn — sTks{,’;kyk) < —(8rcjy — 5750 y) (4.1)

where y1,s,..., Yk, y are in A. Let us apply c‘?n to both sides of this inequality (where c‘?n
denotes the operator —c,,—).

If z is any factor of the left-hand side, then the condition m ¢dim pg, = € F,,—; in the
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construction imply that
Cm(s’ricjiyi — STiS%iy) = S$7,C5;Yi — STiSZriLiy' (4'2)

But (4.2) is true for ¢, instead for ¢, using that c,,(—cmz) = —cpmx, © € B. Thus
applying ¢ to the left-hand side of (4.1), it does not change and it must be different from
0 because F,,_; is a proper one. Here we used that ¢2,(u + v) = c2u + c2v, which is a
consequence of (Cg), and therefore it is true in Fg ..

Applying ¢, to the right-hand side of (4.1), we show that it is zero. We have

G (= (srejy = srshy)) = —[em(—s:¢jy) + srshy)] = (4.3)

—[Cm(—STij) + Cmsngny] (4'4)

because ¢y (u +v) = ¢+ cpo.

On one hand, by m ¢ Dom 7, (C;)d) and (4.16)

Cm(_STij) = Cm(_CmSTij)

and here
CmS7CjY = SrCjCmYy = sTcms,J;lcmy
therefore
cm(—8rcy) = —sTcms%cmy (4.5)
by ¢m(—cmz) = —cpa.

On the other hand, similarly, for cmsngny, i.e., for cmsTs%@cmy

CmSrShCmY = SrCmS) Cmy. (4.6)
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From (4.5) and (4.6) we obtain that (4.3) is zero. Therefore applying ¢2, to the right-
hand side of (4.1), we show that it is zero. It is a contradiction, because the left-hand side
is different from zero. It has been shown that F}, is a proper filter, in fact.

Now we have a sequence Gy = Fy C F; C F5 C ... C F,, C ... of proper filters. Now
let D = U{F, : n < p}. Then D is a proper filter, too. Let F' be the ultrafilter generated

by this filter. It is easily seen that F' is a desired ultrafilter including the element a.
qed.

Let F be any fixed perfect ultrafilter. Let us consider the following equivalence relation
=on [~ a:

m=n (m,n €~ «a)if and only if d;,, € F. (4.7)

The axioms (Cs), (Cg)a. and (Cg)b. ensure that = is an equivalence relation. Denote
by II the set of the equivalence classes and let us denote by M, N, L, ... the classes

m/ =,n/ =1/ =..., respectively.
First we prove three useful properties:

Lemma 4.12 Assume that sy, s, and s; are admitted substitutions. The following
properties (i), (ii) and (iii) are true:
(i)
s,,sfnsgz = s,,sgnsgsznz, (4.8)
where j & Dom o, i.e., supplying SuSh Sy by sh, on the right-hand side, “nothing changes”,
(ii)
syz € F if and only if s;s) 2z € F (4.9)
if j¢ Dom 7, j € a and djp, € F, m € 8 ~ a,
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(iii)

For every i € « there exists a unique m/ =, m ¢ « such that d;,, € F. (4.10)

Proof.

def. of s,

(Cs)c. gﬂ (Cy)

s,,sfnsgz s,,sfn(djm “S52) s,,sfnsg(djm - Z) (4.11)

; C ; S (411
because j ¢ Dom o. But really s, 505, (djm - 2) (@) SySinSo(djm + Shz) (41D SyShSeSh

(ii) Similarly to the proof of (i), djm, - s;u = $7(djm - u). Therefore

C7)

djm - sr8) 2 = Sr(djm - sl 2) (G Sr(djm - 2) = djm - 5+2.

So dj,, € F implies that 575%2 € F if and only if s,z € F.
(Ce)d.

(iii) Namely, 1 =" ¢;jdj; € F (j # i) and the perfect ultrafilter property imply that
) . (Ce)b. .
sindj; € F for some m ¢ a. But shdij = ¢j(djm - dji) < c¢jdmi (Co)e dm; implies that

dmi € F.
If d;y, € F and d;,, € F for different n and m, then n = m. Namely d;,, - d;;, € F and
dim * din, < din, S0 really dp,, € F. So by (4.7), with every i € a an equivalence class with

respect = can be uniquely associated.
qed.

Now, we define a D,-unit V', as we indicated in the outline of the proof. The members
of the alpha-sequences in V will be equivalence classes with respect to =. We define V' by
“subunits”.

For the fixed y, y € A, y # 0, let us consider a fixed ultrafilter F}, containing y. Such a
filter exists by Lemma 4.11. With y and F}, we associate a subset W, of V' in the following

way (we omit the index y if misunderstanding is excluded):
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Let the support of W, be an a-sequence Y such that Y; is the equivalence class in II

associated with ¢ by (4.10). Let

Wy ={fY : 5.1 € Fy, s, is admitted}, (4.12)

where f,Y is defined in the following way: with the admitted substitution s, = s s7, . .. s’;

and let us associate the a-sequence

((YA)h) - ),

where N, M, ..., P are the classes in II containing n, m, ..., p, respectively, i.e., the classes
n/ =,m/=,...,p/ =. Here the meaning of Y}, is the usual, i.e., (Y%); = n/ = and (Y}); =
Y; if j # i. We denote the sequence Y}, by fi,Y too, so the sequence (((Y](,)g\/[) .k can

be denoted by fjli . f]jwf}VY or by f;Y, for short.

Lemma 4.13 The definition (4.12) of Wy is sound and W, is a subunit with support

Y.
Proof.
We show that the definition (4.12) does not depend on the choice of the representative
points, i.e.,
st st ...5’;11 € F, if and only if s!,_s? ... 311221 € Fy (4.13)
where n1 = no, m1 = ma,...,p1 = p2 (i€, dnings dmymas - - - dpypy, € Fy). Namely, for
example,
Lo (C3) k def. of s,
dnyng = Sny Sty -+ Sp L = Spy (dnyng = Sty -+ - S, =
Ky (COP k i o
= Ci(diny * dnyny * Shy -+ S 1) < Cilding * Sy -+ Sp, 1) = 83,80, - 8, 1
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But dyp,pn, € Fy and sfusﬁ'nl . .51511 € Fy imply 3223%2 . ..3];21 € F,. Repeating this

procedure, multiplying by the elements dy,,my,--.,dp,p, Step by step, we obtain that

Sty Sty - - - 31521 € F,. The proof of the other implication in (4.13) is similar.

Now it is shown that Y € W,,. Namely, we choose the relativized identity for 7 in (4.12),

ie., let s, = sflsfn...s’; such that din,djm,...,dg € F,. Then s;1 = si s ...slgl =
ciCj .. Cp(din - djm ... - dip) > din - djm - ... - dip € Fy, so really s.1 € F,. It is obvious

that W, is a subunit of a Crs,, with support Y.

qed.

It will be proved in Lemma 4.17 that V is a D, unit.

We continue to realize our plan for the proof. Let the definition of the expected em-

bedding A’ of 2 into the full Crs, with unit V be

hz={fY : s;z € F, s, is admitted}, (4.14)

where z € A and h denotes the restriction of A’ to the subunit Wy.

Two remarks concerning the definitions (4.12) and (4.14) are:
a) W, = h1, by definition.
b) Notice that hz C Wy because s,z < s:1, therefore s,z € F, imply that s;1 € F,.

Therefore really f,Y € Wy, by definition.

It will be shown in Lemma 4.16 that h’ is really an embedding of 2. But first, in
Lemma 4.14 below we check that the definition in (4.14) is sound. That is, we prove
that the definition does not depend on the choice of 7 (especially from the choice of the

representatives concerning =).

Lemma 4.14 Assume that £ € Fy .. The following two properties are true:

Jo J1 Jn—1 _jo o1 Jn—1 » _ oJ0J1 Jn—1 _ko
8308y ...8 St Sty S 2 =St S ... 8y S

poslgi . slgzjz, (4.15)
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where z € €, jo,J1,...,Jn—1 € @ are distinct, t & {jo, 1, -, Jn—1}, M0, M1, .., Mp_1 €
o ‘ o -
B ~ «, and the sequence 8588];% ... SprT1 is a permutation of the sequence si, Sty ... S,
furthermore
CmSh,CmZ = CjCm2 (4.16)
jea,mé¢a.

Proof of (4.15): Consider the case n = 2. We prove that sgsésﬁns%z = sisészs%z. But

S def. of &7 C o (Ce)e. i o Cilo . .
Jolod oF %t (A Gted o ’6) Jot( . . o] of J ol ot o
51 5tSmSn”? - 5t (d] Stsmsnz) - St‘st(d] Smsn'z) S Ststsnsmz)'

The proof of the converse is the same.

The proof of the general case is similar because we can change any neighboring members

of s 50t ... s%;ﬁl making use of (Cg)c. and (C; ) c) and the fact that jo, ji,...,jn—1 and

t are different.

Proof of (4.16):

CmS) Cmz =

= cmCj(djm - cm2) 0 cicm(djm - cm2) %) cj(emz - emdjm)

(Cg )d
= cjCma.

qed.

Let the admitted substitutions s, with the property s;1 € Fy be called realized substitu-

tions.

The origin of this definition is that W, is obtained in (4.12) in terms of this kind of

substitutions only. The substitutions in (4.14) are also this kind of substitutions.
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Fix the subunit W, (W, for short) corresponding to the perfect ultrafilter F, (F, for

short).

Lemma 4.15 If f,y = f,y for some realized substitutions s, and s, then
srz € F if and only if spz € F (4.17)

for every z € B.

Proof.
First, consider the case when the upper indices are different in s; and the single members

of s, are a permutation of that of s,.

Jjo J1 Jn—1

So let s, be of the form: sy sm, - .- Sm,_., where jo, ji,...,jn—1 are different and let
slggs’;} - sﬁﬁj be a permutation of the members s%l in s,.
Let sg denote the transformation s{o s{l .. .sz”_l, where t € « is an arbitrary fixed and
t ¢ Dom{jo, j1,. .-, Jn—1}
Consider the transformation sgs..
One one hand,
$:2 < SHSZ. (4.18)

To prove this, consider the special case n = 3. If

S

Sy = 5%18; L (4.19)
then

SHS7Z = sisisisﬁns; Lz > sis%sﬁnsis;sfnz > sis%sﬁns;sisiz (4.20)

by (Cy) b).
But sksl z = ¢;(dy - (ci(dyy - 2))) = (crdi) - i(dyy - 2) = sb.z in A by (C3) and by ¢dy; = 1.
So we can eliminate Sf5 from the right-hand side in (4.20). Repeating this procedure for the

element s} Sisins;sésfﬂz obtained, for si and s} we obtain (4.18).
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The proof of the general case of (4.18) is completely similar. On the other hand,
SHS+Z = SHSx% (4.21)

by (4.15).
Comparing (4.18) and (4.21)

$:2 < SHSgZ. (4.22)

To go on with the proof of (4.17) we prove the following inequality:
SHSeZ - S5l < s52. (4.23)

We consider again the case n = 3. Assume that s, is of the form as in (4.19) and let s, (a

permutation of the members in s;) be sks?,si. Then the inequality (4.23) is:

s)sistslsl stz slsl si1 < slsl siz (4.24)
By (Cy) a).
slsislslsl stz = stslsislsl stz (4.25)

so the right-hand side begins with s!. Then we can move the first factor s.s]sis!s},s! z of

the left-hand side of (4.24) into sks’,s? 1 behind s, i.c.,

I Jaid g i Uoj i1 Jdralodaidd g of o
Sy818pSpsh sy z - 5.8l 501 = s, ((sys1sys,.8h s02) - shsy,1) (4.26)

using (Cs).
Applying the argument above twice, we obtain that the left-hand side of (4.24) is equal

to

lod ol (tadolol o of
rsmsn(stststsrsmsnz)'

(4.27)

S
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Notice here that the order of the upper indices in sis]s!slsh,s! is symmetrical: 4, 7,1,1, j, i.

The element in (4.27) is less than the element

Gt 0 dod i o o
P SISh 2 = 8.80,51,51515,.80,50,% (4.28)

g oiogid.
5,.89.5,8:51C1S

so we can eliminate s. in (4.27).

But on the right-hand side in (4.28) the single substitution s is repeated and I does
not occur in the “upper indices” between these members. Therefore similarly to (4.8) in

Lemma 4.12 (i), the right-hand side of (4.28) is

L] ot obodod oF
8,.8),8),5(51 50,8, %. (4.29)

So, by increasing the element in (4.27) we eliminated s., then the second s.. Similarly,
increasing the element in (4.29), we can eliminate sJ and the second s, then s and the
second s¢. So really we obtain (4.24).

The proof of the general case in (4.23) is similar.

Comparing the relations in (4.22) and (4.23), using that s, is realized, i.e., s,1 € F,
we obtain that s;z € F' implies s,z € F'. Using symmetry we obtain in the same way that

Soz € F implies s;z € F, therefore Lemma 4.15 is proven for the case of permutations.
Proof of the general case:

The general case is reduced to the case of permutation.
So let s, be of the form 5220 sfﬁl .. sz,’{,;ll, where repetitions are allowed in the sequence

jO’jla s ajnfl-

First the “multiple upper indices” are eliminated from s., i.e., we achieve that the

upper indices should be different.
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Choose a t € « such that t ¢ {jo,j1,...,Jn—1}. We know that for example, cjod;or = 1.
Then by (Cs)

(cjodjor) - sigosf}bl st 2= cjo(djor - sigosfﬁl st ). (4.30)

If jo # j1, then by (CJ) ¢), (4.30) is less than cjo(djor - sih, 595, . .- st 7).

If jo = j1, then for (4.30), by (C3)

Cjo(dj()t . CjO(djOmO . 8%1 . S%L;_llz)) S

< cjo(djor - sty - st 2) - cjodjomo < cjo(djor - Ty, - - STt 2).

Repeating this procedure we can eliminate the single substitutions with upper index
j0 except for the last one in s,. Moreover, this procedure can be applied for the indices

J1y .-+, Jn—1 too, and we obtain that
$r2 < 84,2 (4.31)

where the upper indices in s, z are already different.
Now among the upper indices of s;, there is no repetition, but in s; members of type
st can occur, where i = n, i.e., d;, € F. Let us omit these members from s,, and denote

by s, the substitution obtained. We state that

sy, 2z € F if and only if s,z € F. (4.32)

If s, is of the form s},s’s. e.g., then multiplying it by d;, we obtain that

di - Shhsi sz = sl (di - s1.5L2) = )y (din - 5L.2) = dip - Shuskz by (Cg)e. and (Cr). Since
din € F, really sfnsflsiz € F if and only if sinsﬁqz € F. The proof of the general case in
(4.32) is similar.

Let us associate the transformations s,, and ss, with s, in the same way as we associ-
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ated s;, and s, with s;. The condition f;y = f,y of Lemma 4.15 and the constructions of
S, and S,, imply that s, is a permutation of the single substitutions in s, and fr,y = fs,¥.

Therefore applying (4.17) for the case of permutation 7
Sz € F if and only if 5,2 € F. (4.33)
Further, similarly to (4.32) and (4.18) we obtain

Sg,2 € F if and only if s5,2 € F (4.34)

and

86172 < SKSgy2, (4.35)

where the set K for o7 is analogous with the set H for 7.

We state the following inequality:
SKSo1%Z " S68011 < S680, 2. (4.36)

The proof is similar to that of (4.23):
First, by (C; ) a) changing the order of the members in sx, we can move sk s,, z behind

S68¢, 1N SxSoy, 1 and similarly to (4.27) we obtain that the left-hand side of (4.36) equals
86801 SK Soy Z- (4.37)

As at the proof of (4.23), increasing (4.37), Sxss, can be eliminated from (4.37), so
S686,SK S0, %2 < S554, 2, s0 really (4.36) is true.

Given that s, is realized (s,1 € F'), and using the definition of s,,, by (4.8)

So1 € F implies s554,1 € F.
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Moreover, by (4.8) and the definitions of s, and s4,
S¢85,2 € F if and only if s,z € F. (4.38)

Finally, let us compare the following relations:

(4.31) (4.32) (4.33) (4.34)
$:2 < 8p2 o~ 8z N~ 8gy2 ~ 84.%

(4.35) (4.36) (4.38)
< SKSg 2~ 868572~ S6%,
where the meaning of a ~ b is: a € F is equivalent to b € F'.
Therefore s,z € F implies s,z € F'.
Using the symmetry of the argument, this relation can be reversed. The proof is

complete.

qed.

Now we will prove that the mapping h’ defined in (4.14) is an embedding of 2.

Lemma 4.16 /' is a homomorphism on A and h'z # () if z # 0 (i.e., h' is an embedding

of A).

Proof.

First we check that h'z # () if z # 0. It can be proved in the same way as checking in
Lemma 4.13 that Y € W, because specially z € F,, by the definition of F,. We state that
st z € F,, where m is the ordinal associated with 7 in (4.10). Namely, d;,, € F and z € F,
imply that s¢ 2 = ¢;(dim, - 2) € F. Then 2%, € hz by (4.14), so really h'z # 0.

We prove the homomorphism property by subunits. Let us fix a subunit W, correspond-
ing to the ultrafilter F},. Let us denote W, and F, by W and F', for short and, further, let

h denote the restriction of A’ to W,.
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First we prove that

hciz = Cihz

where C; is relativized to W, so C; is Ci[W}.
The left-hand side is

heiz ={f,Y : syciz € F}, (4.39)

the right-hand side is Cihz = C; {f;Y : s,z € F}. heiz C Cihz. If Y € hez, ie.,
syciz € F, then sys%z € F for some n ¢ « because F is perfect. Therefore by definition of
hz, f]"vfl,Y € hz, so f,Y € Cihz.

Cihz C hejz. If f,Y € C;hz, then f]ivf,,Y € hz for some N €11, so sl,sflz e F.

But s,8,2 = sycidinz < 8,¢;z, therefore s,c;z € F. Thus by (4.39), really f,Y € he;z .

We state that h(u + v) = hu U hv. Here h(u +v) = {f;Y : s;(u+v) € F}, hu =
{frY : s;ue F}, ho ={f;Y : s;v € F}. ¢i(u+ v) = cju + ¢;v implies that s.(u+v) =
Sru + S;v.

If f-Y € hu U hv then, for example, f;Y € hv, ie., s;v € F. But s;v € F and the
ultrafilter property imply that

S:u+ $;v € F. (4.40)

So s;(u+v) € F, consequently f;Y € h(u+v).

If f;Y € h(u+v), then s, (u+v) = s;u+s,v € F. F is an ultrafilter, therefore s;u € F
or s;v € F. Therefore f,Y € hu or f;Y € hv, so f;Y € huU hv.

Then we prove that

h(—z)= ~ hz

where ~ concerns W, so ~ is ~yy.

Here hz = {f,Y : s,z € F} and h(—z) = {f;Y : s;(—z) € F}, therefore using the
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ultrafilter property of F
~hz= ~{foY : sez € F} ={foY : s562 ¢ F} ={fsY : —s,2 € F}

where s, is a realized substitution.
We note that

Srz2+ 8:(—2) = s:(2+ (—2)) = s;1 € F. (4.41)

We state that ~ hz C h(—z). Assume that f,Y €~ hz, ie., s;z ¢ F. It must be
proved that f,Y € h(—=z), i.e., so(—2) € F. By (4.41) we know that s,z + s,(—2) € F.. So
sez ¢ F and the ultrafilter property imply that s,(—z) € F.

Conversely h(—z) C~ hz.

We note that s;(—z) = —s;z is not true in an F3,, algebra, in general. But we prove

the following two properties of s; (where s; is a realized substitution):
Srz-8:(—2) =0 (4.42)

Sr(—2) = s:1-(—s72). (4.43)

We prove them simultaneously, by induction, by the number & of the single substitutions
in s;.

Assume that & = 1. Then for (4.42)
stz sh(—2)=0

is true by (Cz).

Adding —s!,z - s!,(—z) to both sides we obtain

si(—z) = —slz-5'(—2). (4.44)
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By (4.41), stz + si(—z) = si, 1. Multiplying this equation by —s¢ > and using (4.44), we

obtain s (—z) = si1- —s’ 2, and this is really (4.43).
Assume that the properties (4.42) and (4.43) are true if £ < m.
They are proved if k = m + 1. Let s, be of the form s s,, where the number of the
single substitutions in s, is m.

(88552) - (8885,(—2)) = 84852 - 84 (551 - (—842)) using (4.43) for s,(—2). But s,1 < 1,

therefore s¢ 5,2 - 8 (5,1 (—852)) < 88552 - 84 (—8,2) = 0 by (C7). So
(5n502) * (sp50(=2)) =0
i.e., (4.42) follows. From this, similarly to (4.44), we obtain

(5n50(—2)) = (=sp502) - (s50(—2)). (4.45)

To prove (4.43), if k = m + 1, (4.41) is used, i.e., (s},5,2) + (s85,(—2)) = sis,1.
Multiplying the equation by —s' s,z and using (4.45) we obtain (4.43).

Coming to the proof of h(—z) C ~ hz, assume that f;Y € h(—z), i.e., s;(—z) € F.
We prove that f.Y €~ hz, ie., —s;z € F. Indirectly if —s;z ¢ F|, then s,z € F. (4.43)
and the ultrafilter property imply that s;(—z) ¢ F. This is a contradiction. So really

—s;z € F.

I’ preserves 0 and 1 by definition. Now we prove that h preserves the diagonals.

We fix a subunit W with support element Y. DZ-V]V will denote the restriction of the
diagonal element D;; to W.

First it is shown that we can assume, without the loss of generality, that D;; restricted

to W is of the form:

Dyj = {fﬁf,{qu D syshyshl € F, dmp € F} (4.46)
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where L is the equivalence class containing m and n.
Namely, assume that X € DZV]V and X is of the form f.Y (f;Y € V), so X; = X;. By
definition of V, s, is realized, so s,;1 € F.

First case: 1,57 €Dom 7. Then f. can be composed into the form

fafifsflty (4.47)

where o and 3 are such that 4,7 ¢ Dom a, j ¢ Dom 3. So s; = $,5h,535} 4 is a realized

substitution (where m = n and L is the equivalence class containing them).

But by (4.8), s,1 = 578%55525041 = s,ys%lslgsﬁlsas%sf@l = s;50,501 80 srshyst is also
realized. Further f! fi f-Y = f;Y because f; is of the form in (4.47), so DZV]V is of the form
in (4.46).

Second case: i,j ¢ Dom 7. Then obviously f;Y = fzfifTY, where L is the class
containing m and n, and m,n are such that d;,, € F' and dj, € F'. Such m and n exist by
(4.10). By (4.9), s;1 € F if and only if s;s%,1 € F if and only if s,s},s:1 € F. Further,
djm - djn, < dpy implies that dp,, € F. So sTsZns% is realized too. So DZ-V]V is of the form
(4.46).

Third case: exactly one of ¢ and j is an element of Dom 7. This case can be reduced
to the first and second case.

So it can be assumed that D}/JV is of the form in (4.46).

We prove that hd;; = DZV]V
hdij = {fZ,Y : Sydij € F}

By (4.8) s,d;; = s,,sznsﬁldij, where s/, and s/, are the last members of s, respectively,
with upper indices j and ¢, supposing that there are such members in s,. If ¢ and j are
not included in Dom v then, by (4.8) and (4.9) s,d;; € F if and only if s,,sfnsfldij e F,

where dj, € F, d;p, € F. The case i € Dom v, j ¢ Dom v is similar. Therefore hd;; may

78



dc_597 12

be considered to be of the form
{ ALY+ sushsidy e (4.48)

We prove that hd;; C DZVJV Assume that f};,f&f,,Y € hd;j;, i.e., sysgns%dij € F.

First we show that
sys) st d;; € F implies that dpy, € F. (4.49)

We check that

djm - din - dij = dmp - djm - dip. (4.50)

Namely, djn, - din, - dij < din, - dni < dmp by (Ce)b., so by multiplying the inequality by

djm - din, we obtain the one direction of (4.50)

i - i, - dij < djm - dig - do. (4.51)

As regards the other direction: dip-djm - dmn < din-djn < d;ij by (Cg)b. and multiplying

the inequality by d;, - d;,, we obtain
din - djm - A < dip - djim - dij.
Further

Susgnsidij = S,/Cj (djm . Ci(dm . d”)) = S,,Cjci(dj . dm . dij)

= 5,¢iCi(dmn - djm - din) = dmn - sl,sfnsle (4.52)

by (4.50) and (Cg)c.

sysﬁﬁsfll € I since s,,sfnsfldij € F. So by (4.52), sysﬁﬁs%dij € F implies that really
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dmn € F. If L is the equivalence class containing m and n, then f}'\, f@ LY = f}; fi 1Y,
where s,s5,51 € F and d,,,, € F. So considering the form of DZV‘J./ in (4.46), hd;; C DZV]V is
proven.

The proof of the inequality DZV‘J»/ C hd;; is similar comparing the forms in (4.46) and

(4.48) and using (4.52) in the other direction.

qed.

Lemma 4.17 V is a Dy unit, i.e., C;D;; =V for any fized i,j € .

Proof.
It must be proved that V' C C;D;;. Assume that X € W, C V, where W, is a
fixed subunit defined by a perfect ultrafilter F, with support Y. Then X = f;Y for a

transformation 7 such that s;1 € Fj,.

By (4.8) (for the case j € 7) and by (4.9) (for the case j ¢ )
s;1 € F if and only if 875%1 €Ly
for the fixed j and some m € 8 ~ « such that j =m (i.e., djn, € Fy). srshl € F,, so
Y eWw, cV.

By definition and by j = m, X = f]]\'/[f.,Y. We know that ¢;d;; = 1 and s;1 € Fy,
therefore sTsznl = sfsf}bcidij € Fy if and only if sTs%siLdij € F, for some n ¢ o. Therefore

SrShshdij € Fy. srshsthdij < srsipst1 implies that s;sh,s!, is realized, so

NP Y €W, CV. (4.53)
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Using (4.52) for v = 7 we obtain that d,, € Fy, therefore M = N in (4.53), so
firfl f-Y e W, c V.

Considering that X = fj'/IfTY we obtain that X € C;D;;.

qed.

Summing up the above lemmas, the proof of Theorem 4.5 can be completed:

By Lemma 4.17 a D, unit V is constructed, and by Lemma 4.16 i’ is an embedding of

2l into the full set algebra in D, with unit V. Therefore really 2 € ID,,.

Now, we come to the proof of Theorem 4.6:
We refer to the following Proposition concerning neat reducts of algebras in Crs,:

Proposition. Let us assume that 2 is in Crs, with base U and unit element V. Assume

that o < B, W C BU and the next two hypotheses are satisfied:

V=A{z:xz=alyfor someyc W} (4.54)

foreveryy e W, i caandu e U if (a]y) €V, then y, € W. (4.55)

Let OX ={ye W : alye X}, X € A. Then there exists an algebra B with unit W
in Crsg such that © € I(2, R0,B) and CFOX = OX for every X € A and i € B ~ « (see

[He-Mo-Ta II.] Lemma 3.1.120). So 2 is neatly embeddable into 8.
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We extend 2 by subunits to an algebra in F%, where 8 denotes a4+ €. Let an arbitrary,
fixed subunit of 2 be @ and its subbase be Ug. Let us extend ) to a (-dimensional
subunit Wy, to let Wi, = Q) x U¢. Let ‘B denote the full Crsg algebra with subunit Wj.

Then the conditions (4.54) and (4.55) are obviously satisfied. Therefore by the above
Proposition, A is neatly embeddable into an algebra 98 in Crsg, with subunits W}, respec-
tively.

We state that B is a member of F3.

As is known, algebras in Crsg with Do a-reduct satisfy all the axioms of Fj except for
(C, ) maybe. We check (C}).

Consider (C7) b). Assume that z € St S3X, i,5,n € a, m ¢ . Then (xlm); € X.

T

. : (2
But (x;m)i = (:cgc > . x3, € W by construction, because o |1 z7, € @, namely
n "Em

CjDj, 2 W is true in 2. So z},, € W}, and <a:§;n> € X imply that x € 55,5, X.

Tm

The proof of (C;) a) is similar.
Consider (C7) ¢). Assume that z € Dy NSt S4X, i,j,k € a, n ¢ o. Then z; = 3
and (xém)in € X. But (m;m);n = (mi )m . We state that z7, € W. By construction of

W, it is sufficient to show that « 1 :):én € Q. We have (xl )in e Wsoal (x’ )jn € Q.

Tm Tm /) x

(a1 (x;m)in);k € Q by C;D;j;, 2 W. But ((x;m)in)ék = (a%,)%, = ah, by x; = xp, S0
(] (:r;m)in);k =aldl,.

Therefore a | 2%, € Q. So x}, € W and (ac]m ) € X imply that x € 57,5 X.
Tm

Consider (C;) d). Assume that z € C,,C; X, m ¢ a. Then (xm)z € X for some

v

u,v € U. We prove that z € C;C,, X, i.e., (:L‘l)T € X. But (xz);n = (xm)Z It merely

u v /u

needs to be shown that z/, € W. But (z)’ € X, therefore o | (™)) € Q. But

v /u v u

o (fvvm)Z = a | 2!, by definition of W, therefore 2!, € W indeed. So C,,C; X C C;Cp, X.

U

The proof of the opposite inclusion is similar.

qed.

kkk
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Now we return to the classical neat embedding theorem. We apply the methods used

previously in the Chapter.

Recall the theorem:

20 is representable, a > 2 (i.e., A €Gws,) if and only if 2 € SNr,CA,+c, where ¢ > w
is an arbitrary but fixed ordinal, Gws,, is the class of generalized cylindric set algebras of
dimension «, CA, is the class of cylindric algebras of dimension o and SNr,CA, . is the
class of CA,’s that have the neat embedding property.

The part “only if” is trivial. Regarding the other part “if 2f € SNr,CA, . then 2 is
r-representable” the following question arises: is it possible to replace the class CA in the
hypothesis A € SNro,CAL+c by a larger class so that the theorem still holds?

The answer is affirmative. Such a larger class K‘g will be defined below where f = a+¢,

€ > w. The character of K%‘ is similar to the class Fg included in Theorem 4.5.

The weakenings (C,)— and (Cy)— of the cylindric axioms (Cy4) and (Cg) are introduced
and it is shown that the class satisfying these axioms, together with the other cylindric

axioms is suitable to replace the class CA in the hypothesis above.

Assume that w < a < 5. We now introduce the class K3 indexed by the ordinals o and B,

with the similarity type of CAg. K3 is defined as follows:

Definition 4.18 (Kg) K% is a class such that

K% ': {(00)7 (Cl)v (C2)7 (C3)7 (C5)a (C7)a (04)_7 (CG)_}

where (Cp),...,(C7) denote the usual cylindric axioms, (C4)— denotes the following in-

stances (C,)— a) and (C4)— b):

(Cy)— a) CmShemT = shema if jEa, nnmepG, n#£m

(C)—b)  cmShemz = cicmr if jE€a, mef

and (Cg)— denotes the properties a.,b.,c., in (1.1).
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Another notation for Kg is Kasg -

Suppose that A € CA,, a > w. Now, the neat embedding theorem in question is

formulated:

Theorem 4.19 2 is representable (i.e., A € IGws,) if and only if A € SNr Kg, .,

where € > w, a > 2 are fized.

We omit the proof (see [Fe00]).

Remark
Notice that if B €K%, 2A C 9B and A happens to be a CA,, then part d. in (1.1),

follows only partially in B, that is,
cmdim =1ifi€a, meg. (4.56)

Indeed, in (Cy)— b) let us choose a = d;j;, i,j € o, m # i, where 4, j,m are all distinct.
Then

1= deij = cjcmdij = cmsfncm(dij) = Cmszndij =
= cmCi(dmjdij) < cmCjdmi = Cmdmi .
It is easy to show that i € «v is necessary in (4.56).

Let us onsider A € Crs, N CA, with unit V = UP(T), where P(")’s are the subunits.
Let T, be the subbase of P("). Let us take any sets U,’s and form the extended unit
W = UP"x U of a + ¢ dimension and consider the full B € Crs, . with unit W. W

satisfies 4.54 and 4.55 obviously. Let us consider the following special cases (i) and (ii):
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Let 2 be a non-representable Crs, N CA,, (see [He-Mo-Ta IL], p. 85). (C,)—a) is false
in B. Namely if a = d;;, m = i, then c;c;dj, = cjd;, fails to be true in 5. B is in
K% obviously. This example shows that (C,)— cannot be rejected in Theorem 4.19.
It is also an example for an algebra 2 such that 2 € SNrKg, , ~ RCA,, where RCA

is the class of the representable cylindric algebras.

Let 2 be a Gws, and choose the sets U,’s so that T, should be a proper subset
of U,.. It is easy to check that B € Kg. But ¢idiy, = 1, 1 € o, m ¢ « is not
satisfied in B, i.e. B ¢ CAg. This example shows that CAg is a proper subclass of
Kg, furthermore Theorem 4.19 is stronger than the classical representation theorem
because it states that it is enough to embed an algebra neatly into K¢, . instead of

CA, to be representable.

Main references in this Chapter are: [Fel0], [Fe07a] and [Fe00].
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Chapter 5

Logical applications

An obvious logical application of our results (e.g., that of representation theorems) is
that they can be translated to the Logics corresponding to the respective cylindric-type-
or polyadic-type algebras ([He-Mo-Ta II.], [Kei]). In this way we obtain new Henkin-style
completeness theorems. In this Chapter we deal with a logical application of our topic, with
conservative extensions of provability relations. Mainly, the concept “neat embeddability”
and the logical calculus corresponding to cylindric algebras are used to obtain these results.
There are also many other logical aspects of our subject. For example, considering the
weakenings of the axioms (C4) and (Cg) and the results at the end of the previous Chapter
(Theorem 4.19), their logical background can be summarized as follows: thinking of the
logical calculus corresponding to cylindric algebras (see [He-Mo-Ta I1.]) and the proof of
its completeness, only a fragment of the calculus is needed to construct a model for a
consistent set of sentences. Another logical connection of our subject is that Crs, occurs
in the algebraizations of the semantics of many non-classical logics (e.g., many-sorted,
higher-order and modal logics). Among these logics, one of the most important is the
so-called guarded segment which corresponds to a kind of first order modal logic (see van

Benthem, Andréka, Németi [An-Ne-Be]). Crs, apply to Stochastics as well ([Fe09al).

We come to conservative extensions of provability relations. Let us consider the stan-
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dard first order logic with a usual deduction system. If the language is extended by any
set of new individual variables preserving the other components of the original deduction
system, then the provability relation Jl—r obtained is a conservative extension of the original
one . That is, if ¢ is any formula of the original language, then J}—r © implies = @. Namely,
at the deduction of ¢ by lt, the new individual variables can be changed to old ones and in
this way a deduction of ¢ by I is obtained. This method works if we set out from a first
order logic with predicates of ranks being at most 5, where § < a and « is a limit ordinal,

where « is associated with the sequence of the individual variables in the original language.

Now, we deal with first order logic with infinitary predicates (i.e., with relations of
arbitrary infinite ranks). This logic was investigated in [Kei], [He-Mo-Ta II.] e.g., it can be
associated with cylindric algebras and quasi -polyadic algebras, among others. If we set
out from such a logic and we extend the original deduction system so that the language is
extended by new individual variables, then the respective extension fails to be conservative,
as counterexamples show.

We present conditions for these logics to have a conservative extension of the kind
above (Theorem 5.1). On one hand, a slightly stronger deduction system is chosen for
the basic logic than usual, namely, we suppose an additional axiom, the merry-go-round
axiom (this property is always satisfied in classical first order logic). On the other hand,
instead of the extended deduction system above, a restricted deduction system is assumed:
the usual commutativity of quantifiers and the equality axioms are weakened. We can
show that these latter restrictions are crucial: if the extended deduction system is not a
restricted one, i.e., it is of the same kind as in the classical case, then the extension is not

conservative, even if the merry-go-round axiom is supposed in the basic system.

Next, we briefly review the basic notions to be used.
Let £ be the type-free first-order language described in [He-Mo-Ta II.] Sect.4.3. So L
has the logical constants V, A, —, <>, =, 3, V, the equality symbol =, a sequence of a-many

individual variables (v; : j € ) and a sequence of relation symbols (R; : i € @), where the
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rank p; of R; is allowed to be infinite (p; < «). By the type-free property, the formulas
in £ are restricted, i.e., the atomic subformulas are of the forms vy, = v; (k,j € a) or

Ri(vo, v1,v2....). Let Z denote the set of individual variables.

We suppose the following Hilbert type system of axioms (see [He-Mo-Ta IL.]

4.3 and [Mon76] p.196).

0) ¢ is a propositional tautology

1) Yoi(p = ¥) = (Vi — Yo0)

2) Yvipo —

3) ¢ — Yu;p if v; does not occur freely in ¢
4) Jv;dvjp < Ju;Tve

5) v, =v;

6) Jvi(v; = vy)

7 Ui:vj%(vizvk—)'l)j:vk‘) ]g{l’k}

8) vi=vj = (p =2 Vui(vi=vj > @) i#]

(
(
(
(
(
(
(
(
(
(9

)
)
)
)
)
)
)
)
)
)

Fuip > Vo

where ¢ and v are arbitrary restricted formulas, ¢, j and k are ordinals (4,7, k < «).
Let AxOZ (or Axg, for short) denote this system of axioms.
Inferences rules are the modus ponens and the generalization.

T
Let us suppose a fized set 3 of non-logical axzioms in £ and let - denote the provability

T T
relation obtained above. Thus F ¢ denotes 3 I ¢, for short.

We obtain an extended system of axioms (see [He-Mo-Ta II.] 3.2.88, and [An-Th]) if

the system Azxg is extended by the merry-go-round axiom

Fu(u = v; A Jvi(vi = v; A Fvj(v; = vy A Jup (v = u A Jup)))) <
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< Ju(u = v; A Jvj(v; = vy A Jop(vy, = v; A Fui(v; = w A Jup))))

where u ¢ {v;,v,} and v; ¢ {vj,u,v,}.

(5.1)

Denote this extended system of axioms by Az (or just by Ax, for short), and denote

q
the resulting provability relation by F (the set of non-logical axioms remains the same).

We note that the system Az has some redundancy because axiom (3) implies axiom
(4), but this form of the system of axioms will be more adequate for our investigations (see

[Mon76] p.193).

If the language L is extended by a set of new individual variables (where the extended
set is denoted by Z1), while the set of relation symbols remains the same, then the new
language is denoted by £ and the extensions of the axiom systems Azf and AzZare
denoted by Amg Tand AxZ" respectively. Here the original language, system of axioms and
provability relation will be referred to as the basic language, basic system of axioms and
basic provability relation respectively.

In £ we can speak about the conservative extension of the provability relation defined

on the formulas of the basic language, too:

T rt
As is known, if &= is a provability relation defined on the formulas in L and F is
T T‘+
a provability relation defined on the formulas in LT extending -, then + is said to be a

T 7’+ T
conservative extension of & if F v implies = v for any formula ~ in L.

T
It is known that, with the language £, with the provability relation -, a formula alge-
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bra can be associated as an a-dimensional cylindric algebra — it is denoted by Fm¥% (see
[He-Mo-Ta II.] 4.3.1.). Conversely if 2 is an a-dimensional cylindric algebra, then 2 ~
Fm? for a suitable language £ and provability relation Ii of the kind above, so cylindric
algebras can be representable by formula algebras (see [He-Mo-Ta II.] Theorem 4.3.28).
The element of a formula algebra corresponding to the formula ¢ is denoted by |¢| .

T/

In general, if £’ is a language and F is a provability relation on the formulas in £’,

/

,
then me, will denote the formula algebra associated with £’ and - . So, in particular if

r/ q

I is specially the relation F (so the merry-go-round axiom is supposed), then the formula

algebra is denoted by quc.

Let us take £ as basic language, take the system Az as basic logical axioms and the
q
provability relation F as basic provability relation — so the merry-go-round axiom and a

fixed set 3 of non-logical axioms are assumed.

Let us extend the language £ by S~a -many new individual variables v;’s (a < i < ),
where f3 is any fixed ordinal, 3 > «. Let us denote by £ the extended language and denote
by Z7T the set of individual variables in £T. We will show that if a restricted version of
the system AzZ" is assumed (ALL’Z+ is the system Az with the set ZT of individual

variables), then the provability relation obtained in this way will be a conservative extension

q
of .
Definition of the restricted axioms in £7:

Consider the system AzZ" in £T. This system is modified so that the schemas of
axioms are restricted, i.e., we restrict the possibilities for the choice of the formulas and

the individual variables occurring in the schemas (3), (4), (6) and 5.1.

The schemas (3)7, (4)7, (6)~ and MGR™ rather than (3), (4), (6) and the merry-go-

round axioms are:
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(3)” ¢ — Yvip if pisin L and v; is not free in ¢, i €
(4)7 FviFvje < Fu;Fvip except for the case if ¢ is not in L and 4, j € a
(6)" Fvi(v; = vj) except for i € a and j ¢ o

“MGR is the merry-go-round formula in (5.1) if ¢, u, v;, v; and v, are in L.
The other axioms in AzZ" are the same.
Let us denote by Ax™ the system of azioms obtained in this way.

In LT, assume the system Ax™, suppose the set ¥ of non-logical axioms (the same as

in £) and denote the provability relation obtained by I—1 .
The following theorem due to the present author holds (see [Fe09b]):

71
Theorem 5.1 The provability relation & is a conservative extension of the provability

q
relation .

Proof.
1 q 1 q
Obviously I is an extension of I . It must be proved that if F ¢ holds, then also F ¢

holds for any formula ¢ in L.

Let us consider the formula algebra quﬁ and a representation 2l of this algebra by a set
algebra in ICrs, N CA, (such a representation exists). Let g denote an isomorphism from
quﬁ onto 2. First, we show that 2 is neatly embeddable into a [-dimensional set algebra

B in Crsg.

We need the Proposition concerning neat reducts of algebras in Crs, cited in the proof
of Theorem 4.6 (see [He-Mo-Ta II.] Lemma 3.1.120). The notation introduced there used.

To apply the Proposition we will extend 2 to an algebra in Crs,, ., where 8 = a+¢, € >

Let us extend V to a S-dimensional subunit W to let W = V x €U. Then the conditions
(4.54) and (4.55) above are obviously satisfied. Therefore by the Proposition above, 2 is

neatly embeddable into an algebra 95 in Crsg with unit W.
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With every atomic formula in LT an element (a set) can be associated in the (-
dimensional set algebra 5 defined above. Namely with the formula v; = v; 4,5 € 8 we
can associate the diagonal element D;; of B, and with any other atomic formula R we can
associate the element in B which corresponds to the image of the equivalence class |R)|
in quﬁ, under the composition of the isomorphism quﬁ ~ 2 and the neat embedding of
20 into B. Because R is included in £ by definition and the type-free property of L, R does
not include new variables. Further 2 is neatly embeddable into 5.

Therefore by formula induction, with every formula v in L a unique element, denoted
by [¢], can be associated in the algebra 9B (here, using axiom (9), Vuv;p is considered as
—3v;—¢p, so we can use only the quantifier 3 in the language £). Denote by h this assignment

from the formulas of £T into B, so let

h = [0)]. (5.2)

We note that if ¢ is in £, then V' | [¢] is in R and V' 1 [¢)] = g|¢| because of the definition

of h, the homomorphism property of g and the embeddability of 2l into B.

First, we state that if 1 is an axiom in Ax™, then

W] =W (5:3)

where W is the unit of 8.

On evaluating [¢], i.e., hy), we may consider the cylindric algebraic expression corre-
sponding to 1) because the type of LT and that of cylindric algebras coincide (¢ — 1 and
Vo;p are defined in L1 as —¢ V ¢ and —3Jv;—p). So h may be considered to be de-
fined on cylindric algebraic expressions (for example, the “translation” of axiom (2) is
—ci(—y) <y, where < is the usual defined concept in Boolean algebras or the translation

of axiom (5) is d;; = 1. So it is sufficient to prove that the value of the cylindric algebraic
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expressions corresponding to the axioms in Az is W in B.

The cylindric expressions corresponding to the axioms (0), (1), (2), (5), (7), (8) and
~“MGR are the cylindric axioms (Cyp), (C1), (C2), (Cs), (Cs), (C7) and the merry-go-round
axiom respectively, or known consequences of these axioms (see [He-Mo-Ta II.] proof of
Lemma 4.3.25 ). Therefore the interpretation of these expressions is exactly the set W in
B, because B € Crsg, and B satisfies the cylindric axioms except for (C4) and (Cg)d.

(5.3) is also true for those instances of the axioms (3), (4) and (6) which include individ-
ual variables only from £. Namely, the cylindric expressions corresponding to these axioms
are cylindric axioms or simple consequences of cylindric axioms. Further, h associates an
element in 2 with these expressions apart from isomorphism and 2{ is a cylindric algebra.

It remains to check the other instances of the axioms (3), (4) and (6).

We start with (4)~. With (4)~ and the case i € «, j ¢ a we can associate the cylindric

expression c;cjy = c;jc;y, i.e., it must be proved that

CiCyb = C;Cib (5.4)

in B where b € B.

Suppose that x € C;C;b. Then (x%)} € b for some u,v € U but (ziY = (2))i. @) €

u

W by j ¢ o and the definition of W, therefore ()i, € b implies that = € C;C;b. Conversely,

suppose that x € C;C;b, then (x3)! € b for some u,v € U. It is sufficient to prove that

(z1)) € b. Because (¢,)) = (21)i it is sufficient to prove that =i, € W. But i = ((xz)%){q] =

((x%)z)in] From the definition of W, it follows that (z}). € W implies that ((x{,)z)%] ew.
The proof for (4)~ is trivial in the case i ¢ «, j ¢ a.

If 4 is the axiom (3)~ in (5.3), first we show that
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whenever ¢ is in £, ¢ < 8 and v; is not free in ¢.

If i < o and v; is not free in ¢, then v; — Vu;p is an axiom of Ig, so its equivalence class
in Fm% is 1 in B by neat embeddability. If i > o, since ¢ is in £, we have [p] = Og|¢|.
By the Proposition [He-Mo-Ta II.] Lemma 3.1.120 (here, after the conditions (4.54) and
(4.55)), C;©(a) = O(a) for all @ € A and ¢ > «. Since [¢| has the form ©(a), where
a = glpl, we have C; [¢] = [¢].

Having the relation (5.5) we can translate axiom (3)~ in this way: y < —c¢;i(—y) i ¢ «
if ¢;y = y is true. So we need to prove that b < ~C;(~b) i ¢ a holds in B, if b = C;b. But
Cib < ~C;(~C;b) or equivalently C;(~C;b) < ~C;bholds in B. Namely, if z € C;(~C;b),
then x! € ~C;b for some u, where z{, € W, so x!, ¢ C;b. This implies the relation z €
~Cib, i.e., x ¢ C;b because x € C;b implies x%, € C;b if ¢, € W.

With the axiom (6)~ and for example, with the cases i ¢ «, j € « the expression
cidij =11 ¢ «, j € a can be associated so we need to check that CiDjj=Witica, j ¢
a in B. It is sufficient to check that W C C;D;;. We need to prove that if x € W, then
x € C;D;j, that is, Tl € D;; for some u € U. But, by the definition of W, for every v € U,
zt € W, so xi, € W too.

The other instances of (6)~ are obvious. So (5.3) is proven.

Then we prove that

if @, then [p] =W (5.6)

for an arbitrary ¢ in L.
1
Suppose that ©1, @2, @3, ..., 0n = @ is a deduction of ¢ by I, where ¢ is a formula in

L. We state that

[ps] =W (5.7)
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i =1,2,...n. We prove it by induction.

[p1] = W. Namely, if ¢; is a logical axiom, then (5.7) is true by (5.3). If ¢; € X, then
lp1] =1 in Fm& by definition, further [p1] = g |¢1] because of the homomorphism property
of g, where ¢ is the isomorphism from quﬁ into
2. Further, g|pi| = W because of the embeddability of 2 into 8. Assume that (5.7) is
true if i < k (1< k < n). We prove (5.7) for k + 1.

If oy 1 is a logical axiom in Az or non-logical axiom in 3, then the proof is completely
similar to the case k = 1.

If we obtain ¢iy1 by generalization from a formula ¢;, that is, pr11 = Vvy; for some
i < k, then by definition (5.2) we obtain [Vuy;| = [-3v—¢;] = ~Ci~ [pi]. The induction
condition [p;] = W and C;0 = 0 imply that ~C;~ [p;] = W.

If we obtain ¢r11 by modus ponens from the formulas ¢; and ¢; and ¢; = ¢; —
Ort1, 4,5 < k, then ¢; = @pp1 S =@ V @pe1 by axiom (0). But [@; = ppi1] =
[m¢i Vort1] = ~[@i] Upk+1] - By the induction condition, [p;] = W and by ~ [¢;] U

[pr+1] = W, we obtain [¢g41] = W.

By the remark after (5.2), if ¢ is in £,then V 1 [p] = g]¢|, but if & v, then
[p] =W by (5.6). Bt VI W =Vso gle| =W
Therefore with ¢ we associate the unit element V' at the isomorphism Fm§ ~ 9, ie.,

q
lp| =11in quﬁ. By definition of the formula algebra, this means that - ¢ is true.

qed.

We may ask whether there are other restrictions of the system AxZ"such that the
Theorem 5.1 should remain true. The answer is affirmative.
Analysing the proof, a given weakening ¢ of axiom (4) could be a new axiom (as a part

of the restriction for Aar:Z+) if the corresponding cylindric algebraic expression equals 1
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in the embedding algebra 5. For example, AzZ" can be restricted also by the following

additional weakening (4)~ ~ of (4)

Fvi(v; = v A FVj(v; = v A ) = Fvi(vj = vy A Fvi(v = v A @)

where i, j, n € o and m ¢ «. Because the respective cylindric algebraic (defined) expres-

sion s snx < shsb.x i,j,n € a, m ¢ « is true in B — we assume here that 4, j and n are

distinct. Since, if t € Si,S4b, b € B then (£,)] € x. And ()] =(t] )i. But C;D;,, = W

implies that t{n € W. Therefore t € S%S};l:c, in fact.

The next question is: Does a distinguished restriction of axiom (4) exist in £ among

the possible ones? The following is true: there is such a restriction of axiom (4) in £ that
q

the conservative extensibility of - into this restricted system of axioms already implies the

q
completeness of - (we do not prove this proposition).

Main references in this Chapter are: [Fe09b], [Kei|, [He-Mo-Ta I1.], [Fe07al, [Fel0] and

[Fe07b].
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Chapter 6

Neat embedding theorem for
polyadic-type algebras and its

applications

For transposition algebras and quasi-polyadic algebras similar neat embedding theorems
hold, as was proved for cylindric-type algebras in Chapter 4 (see [FePrepr]). But the case
of polyadic-type algebras having substitution with infinite 7’s is essentially different.

In this Chapter, first we prove a neat embedding theorem for cylindric m-quasi-polyadic
equality, locally-m algebras (algebras in ,, CPE,N Lmg). Let m < a < § be fixed, infinite

ordinals and let Kg be a class of algebras with the type of ,,CPEg.

The definition of neat embeddability of an algebra 2 in ,,CPE, into an algebra B in

mCPEg is specified as follows (see [He-Mo-Ta IL.], Def. 5.4.16 and [Say12]):

Definition 6.1 Let

Ne,B = <%Oa +, 5 — 0, 1, ¢ 82—7 d’Lj>

7€ mTa , i,.j<a
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where BY={b € B : ¢;b=b,for every i € 3~ a},and s. = s, witho =7U{i:i € ~a}
for each 7 € ,,To. An algebra 2 € ,,,CPE, is neatly embeddable into B (B € Kp) if A €

SO, B.

Let ,,CPE_, . denote the class such that the ,,CPE,,. axioms hold in it, except for the
axiom (CP9)* in which the part “the equality holds if o is a permutation” is replaced by

the following two instances of (CP9)*:

CGT = cmSji ymr fi€amé¢azeA (6.1)

CmSr2 = Srcpmz if Tm=m, mé¢ o, 7€ , T, z € B. (6.2)

The following theorem holds (see [Fellb], [Fel2b]):

Theorem 6.2 (Neat embedding theorem for ,,, CPE,N Limy,) Assume that 2 € ,,, CPE,N
Lmg, m is infinite, m < «. Then 2 € 1 ,,Gwpy? (i.e., A is r-representable) if and only if

2A € SNe,B for some B € ,,CPE,, _, where ¢ is infinite.

Let us consider the direction in which 21 € S9t,B implies A € I ,,Gwpy®. The proof
follows a classical line of thought, it is analogous with that of Theorem 4.5. In addition
to the necessary adaptation to the ,,CPE, axioms, a further unusual aspect of the proof
is the simulation of the relativization in algebraic syntax (see the definition of the set M

below, i.e., that of the subunit W, in (4.12)).
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The outline of the proof of Theorem 6.2 is: A Cprs,-unit V will be defined, next, an
embedding of 2 into the full set algebra with unit V is constructed. Finally, it will be

shown that V is a ,,Gwpy unit and the set algebra is regular.

To implement this plan some concepts and lemmas are needed.

Assume that 2 € Cprs,, V is the unit of 2. Let us consider the following equivalence

relation ~ on V :

x ~ vy if and only if z and y are different at most in m-ary members. (6.3)

Definition 6.3 The equivalence classes concerning ~, regarding them as subsets of V,
are called the m-subunits of A. If W is an m-subunit, then |J Rgz is called the m-base
of W, and any x € W is called a support of W. <

If, at the definition (6.3) of the equivalence relation ~ , “m-ary” is replaced by “finitely
many”, then the concept of m-subunit means subunit ((HMTAN] Def. 0.1). Notice that a
subunit is a subset of an m-weak space with the same m-base and support. The subunits

are disjoint, by definition. If 2 € ,,Gwp,, then an m-subunit, in particular, is a union of

a 77(PK)
some o, U7

A preparation for the first lemma is needed. Let us fix an algebra B occuring in the
theorem. Let us denote by adm the class of m-transformations 7 € “f, i.e., 7 € ,,To N
“38, where a + € is denoted by S.

We formulate a version of the concept perfect ultrafilter introduced in Chapter 4:

A Boolean ultrafilter F in B is a regular perfect ultrafilter if for any element of the
form sycjx included in F', where j € a, x € A and T € adm, there exists an m, m ¢ «a,

Tm = m such that s:sj; j mx € F.
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Lemma 6.4 Let a be an arbitrary, but fized non-zero element of A and let m < « be
fizxed ordinal, let € > mazx (o, |A|), where e+« is reqular, and assume that A € SN, B for
some B € ,,CPE_ .. Then, there exists a proper Boolean filter ® in B, such that a € D

and an arbitrary ultrafilter containing © is a reqular perfect ultrafilter in B.

The proof is similar to that of Lemma 4.11. Among others, the properties (6.1) and

(6.2) need to be used. We omit the proof.

We prefix a regular perfect ultrafilter F' in ‘B, extending the filter ® guaranteed in
the lemma, letting it be defined as follows: let us take the cylindric algebraic completion
B’ of B (see [He-Mo-Ta 1.], 2.7.21). Let us consider the filter F” in B’ generated by the
generators of ® — such a filter F” exists. Let us consider any fixed ultrafilter (F')* in 9,
which extends F’. The restriction F' of (F')* with respect to B is an ultrafilter in B. Let

us choose such an ultrafilter F' for the extension of the filter ® in ‘B.

Let us consider the following relation = on 3, where 8 denotes the ordinal a4 ¢ :

m=n (m,n € B) if and only if d,,, € F. (6.4)

Lemma 6.5 = is an equivalence relation on B and, furthermore, for every i € « there

exists an m ¢ « such that d;y, € F.

Proof.

The (E1), (E2) and (E3) axioms ensure that = is an equivalence relation on . Let us
denote by II the set of the equivalence classes.

1 =¢jdj; € F (i,j € o, j # i). The regular perfect ultrafilter property implies that

s(j / m)dji € F for some m ¢ a. By (E3), Sj / m|@ji = dmi, therefore d,; = dim, € F follows.

qed.
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As it was mentioned at the outline of the proof, we define a set M of m-transformations

in “f (in some steps). Let us assume that m, « are infinite and m < a.

Let R be the set {m : m € 3,3i € a such that d;,, € F}.

An m-transformation 7 € “f is called a basic transformation on « if for 7, there is a
set N (N C «) such that [N| < m and d;,; € Fifi € N and 7i =i if i ¢ N, and, in
addition, [] d; -; € F.

1EN
Let My be the set {7 : 7 is basic transformation on a} .

Let M; be the set

{n:ne€ *B, ni =i for some 7 € My except for finitely many i € a}.

Let M denote the set {noA:n € M, A € %a, ) is an m-transformation} of

m- transformations.

Remarks

a) My # (). For example, if N is finite, then let 7 be such that 7 = n;, where i = n;
(din; € F), n; ¢ o, and let 7 be the identity otherwise. Lemma 6.5 implies that such a 7
exists and T € M.

b) In general, M # “3 N ,, Ty. Furthermore, R is infinite by Lemma 6.5, a C R.

c) Notice that if the set N (|N| < m) occuring in the definition of the basic transforma-
tion is replaced by a set having cardinality « (for example, by the set a), and 9B’ is locally-m
(this may be assumed, too), then H d; -; € F cannot hold, because H di +i = cgdm (by
[He-Mo-Ta 1.] 1.11.6). Indeed, ngollec% F, apart from trivial cases. -

Lemma 6.6 The following propositions (i), (ii) and (iii) hold:

(i) Id, € My

(ii) 7 € M implies that To[i / m| € M for each fized i € o and m €

(iii) 7 € M implies that T o Ay € M for each m-transformation A1, A1 € “a.

Proof.
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(i) It follows from d;; = 1 € F, i € o, and the definition of M.

(ii) Assume that 7 is of the form 7o A, where n € M;. For a fixed i € a, let us fix a
j € asuch that A\j = j, 77 = j and there is no k € o, k # j such that Ak = j. A and 7 are
m-transformations, thus such a j exists. Let \' € ,, T, such that \i = j and Nk = Ak if
k # i and, furthermore, let 7/ € “8 N ,,, Ty be such that 7/j =m and 7'l = 71 if [ # j. It
is easy to see that To[i / m]=7"0o)X and 7o N € M. That is, To[i / m] € M.

(iii) It follows from the fact that the composition of m-transformations is an m-

transformation and from the definition of M.
qed.

Remark

Of course, part (ii) is true for finitely many compositions, too, i.e., for
Toliy / my]olia / mo]o...o[i, / my]. (iii) fails to be true for compositions by an arbitrary
m-~transformation n € “3, i.e., for 7 o 7. This will be the reason why the proof of Theorem

6.2 does not work for polyadic equality algebras, i.e., for infinite cylindrifications.

Now, we define a Cprs,-unit V', as we indicated in the outline of the proof. The members
of the a-sequences in V' will be equivalence classes with respect to =. V will be defined by

m-subunits.

For the fixed y (y € A, y # 0), let us consider the fixed ultrafilter F} containing y,
defined after Lemma 6.4, and let II, denote the set of equivalence classes corresponding to
Fy, defined in (6.4). Let Z, be a f-sequence such that

(Zy)n=n/=ifn e p. (6.5)

With y, Z, and F, we can associate an m-subunit W, in the following way (we omit

the index y if misunderstanding is excluded):
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Wy ={5:2Z, : 7€ M}. (6.6)

Let the definition of the expected embedding A’ of 2 into the full Cprs,, with unit V' be
hx ={S;Zy : s,z € F;, T€ M} (6.7)

where z € A and h denotes the restriction of &' to the m-subunit Wy.

Remarks

a) By Lemma 6.6 (i), 7 may be Id, in (6.6). Then we obtain a support of Wy, i.e., we
obtain the a-sequence Zg such that (Zg)i is the equivalence class in II, associated with i
by Lemma 6.5 (Zg € Wy). Wy is a subset of the m-weak space by support ZS and m-base
II,. By Lemma 6.6 (iii), W), is really an m-subunit, because 7 € M implies 70 A € M for
each m-transformation A.

b) Wy = h1l because s;1 = 1, by the neat embedding property. Notice that hz C W,

by definition.

In the lemma below, we check that the definition in (6.7) is sound. Next, it is shown
in Lemma 6.8 that A’ is indeed an embedding of 2.

Lemma 6.7 S;Z, = S,Z, implies that s;x € F if and only if s,x € F, where
T,0€ M, z € A

Proof.
Indirectly. Assume that

SrZy = 8472y, s;rx € F, but s,z ¢ F (6.8)
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for some 7,0 € M, v € A. By (6.5), S;Z, = S,Z, means that 7i = 0%, i.e., dr; o; € F if
i € a. This implies that dr; ; € F if i € Az, of course. (Here |Az| < m, by condition).
Let us consider the product ‘11 dri »;- This product does not necessarily exists or, if
it exists, does not necessarily belfngacs to F.
Let us consider the completion B’ of B and recall the definition of F' (after Lemma 6.4)
in %B’. From now on, we identify the elements in B and their images at the embedding.
[ drioi exists in B’, by the completion property. It is shown that

1€EAT

H dri i € F (6.9)

1EAT

where d,; ,; € F'if i € Ax.

Let us take the definition of the transformations 7,0 € M. Assume that 7 = 7A; and
o =\ for some 7,5 € M; and m-transformations A\j, Ao € “a (where TA; abbreviates 7
oA, e.g.,). Then [] drioiisoftheform [] dzy )i zr,)i- In this product, let us separate
1€EAT 1€EAT
the diagonal elements such that at least one of their indices is not in R. By the definition
of My, there are only finitely many diagonals in [[ d(zx,)i (5r,); having this property, so
1€EAT

let us assume that this property is satisfied for i € P, for example, (P may be infinite).

Thus we obtain:

I[I deaier)i = 11 daai@ric I deai Gaie
1€EAx i€AzNP i€Az~P
The first member of this product is an element of F' because it contains finitely many
diagonals and the diagonals are elements of F, by assumption. As regards the second

member of the product, let us consider the following inequality:

H d(?)\l)i (5/\2)2' Z H d(?)\l)i A1t
i€EAx~P i€Az~P
This follows from the known property d,,;, > dy; - d;y of diagonals.
After the above separation, 7 and @ may already be considered as basic transformations

in My by the definition of M7, considering these transformations to be the identity if ¢ € P.
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Therefore the following inequality is true:

ZEAI;INP dEa )i ai Z_eAl;INP dxgi (GA2)i = kg[\h dri 1 - kg\& dy, 5
where N; and Ns are the sets occuring in the definition of basic transformation. This
inequality follows from the fact that the set of the members on the right-hand side is a
subset of those on the left-hand side, by the definition of M and M.
But, by the definition of My, the two products on the right-hand side are elements of
F'. Therefore, using the filter properties, we obtain that (6.9) is true.
Then, let us consider the inequality ‘]1 drigi - $rx < sex (i.e.,
]1 drigi- (1, 72,...,7k,...) < x(il,moQ, ...,0k,...)). This holds, by (CP8)*. This
;rele;uality implies a contradiction because '11 dri i € F, s;x € F and the properties of
filters imply s,z € F, contradicting (6.8). Tziu: the lemma is proven.

qed.

Now, we will prove that the mapping b’ defined in (6.7) is an embedding of 2.

Lemma 6.8 1/ is a homomorphism defined on A and h'y #0 if y#0 (i.e., ' is an

embedding of 2L).

Proof.

First, we check that h'y # () if y # 0.

Since 7 = Id, € M, by Lemma 6.6 (i), therefore by Remark a) before Lemma 6.7,
ZS € hy, where Zz(/) is a support.

We prove the homomorphism property by m-subunits. Let us fix an m-subunit W,
corresponding to the ultrafilter F,. Let us denote W,, Z, and Fy, by W, Z and F', for
short, and let h denote the restriction of A’ to W,. We need to show that h preserves the

operations ¢;, sy, +, — and the diagonals.
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1. h preserves the cylindrifications ¢;,i € «, i.e.,
heix = Cihx (6.10)
: W]
where x € A and C; abbreviates C; .

We use axiom (CP5) several times. By definition, (6.10) means that

{S:Z : s,z e Fir e My =Ci{SyZ : syw € F,ne M}. (6.11)

For the right-hand side of (6.11), C; {S,,Z : syx € F,n e M} =

={Sp; ) n)SnZ : syz € F, noli / n] € M for some n € f} =

= {Sno[i/n] Z:syx € F, noli / n] € M for some n € 8} (6.12)

by Sji jnSnZ = Syoli yn] Z-

First, we prove that the left-hand side is a subset of the right-hand side in (6.11).
Assume that S;Z is an element of the left-hand side in (6.11).

By the regular perfect ultrafilter property, src;xz € F' implies s;s|; / @ € F for some

m ¢ (o« URg 7). And,

8r8[; / m]% = Sroli / m]L- (6.13)

T € M implies that 7o [i / m] € M, by Lemma 6.6 (ii).
Let us choose 7o [i / m] for n in (6.12). So, n € M holds. s,z € F, by (6.13). n =
7o [i / m] implies that 7 is of the form no[i / n] for some n € 8. n € M implies that no i

/ n] € M by Lemma 6.6 (ii). Hence S;Z, i.e., Syo[; /)2 is indeed in the set in (6.12).
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Next, we check that the right-hand side in (6.11) (i.e., the set in (6.12)) is a subset of

the left-hand side. Assume that S,[; ) ,)Z is an element of (6.12)

spx € F implies that s,c;x € F. Considering the left-hand side of (6.11), let 7 be

noli/n]. Then 7 € M holds. But, by (CP5),

Snoli / n]Ci% = (8n © S[; / n])Cil- (6.14)

Here (8,05 / nj)ciz = s;ciw, hence (s, 05[; ) n)e;iz € F. This latter together with (6.14)

imply 8,0[; ) njciT € F, i.e., s;c;x € F. Hence, Syof; ) )2 is in {S:-Z : srciz € F,7 € M} .

2. h preserves the transformations sy for every m-transformation \ € “a, i.e.,

h(syz) = Sy hz, (6.15)
where S abbreviates SXV.
(6.15) means that
{5:Z : sr(syx) e F,re M} =S\{S,Z : syx € F,ne M} (6.16)

where z € A, A\ € %« is m-transformation.
We use (CP5) again. Let us denote the set {S,Z : s,z € F,n € M} by X. For the
right-hand side of (6.16), by the definition (6.6) of W,

S)\X:{S(;Z 1 S)\S57 € X, 5€M}:{S(;Z 1 S5002 € X, (5€M}.And,

{SgZ 1 S5002 € X, (5€M}:{552 D Ssoar EF,6EM, 50)\€M} (6.17)
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by the definition of the set X.

For the left-hand side of (6.16)

{5:Z : s;(sxx) e F,re M} ={S:Z : s;o xx€F, Te M }. (6.18)

Comparing (6.17) and (6.18), choosing 7 = ¢, and recalling that 6 € M implies d o \ €

M by Lemma 6.6 (iii), we obtain that these sets coincide.

3. h preserves the diagonals, i.e.,

hdij= Dij,
where 1,j € o and D;; abbreviates DZVJV
hd;; = D;; means that
{5:Z : s;djje F,re My ={5;7Z : (S:2); = (5;:Z)j, 7€ M } (6.19)

where i, j € a.

The left-hand side of (6.19) is a subset of the right-hand side. Indeed, by (E3), s-d;; =
drirj, hence dr; 5 € F. But (S;2); = (5;2);, i.e.,, 7i /| = = 7j / = means, by definition
of =, that d;; ;; € F. Conversely, the right-hand side of (6.19) is a subset of the left-hand
side. Similarly to the previous line of reasoning, (5;Z); = (57Z); means that d,; ;; € F.

From this, by (E3), s-d;; € F obviously follows.

4. h preserves the operation +, i.e.,

h(z + z) = hx Uhz
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if x,z € A.

Here h(z +2) ={S;Z : s;(x +2) € F,7 € M}, hx =
{8:Z : s,rge F,re MY, hz ={S;Z : s;z€ F,7 € M}, wherex,z € A. By (CP6), s;(z+
z) = 8;x + 872

If S;Z € hx U hz, then, for example, S;Z € hz, which means by the definition of h

that s;z € F. But s;z € F and the ultrafilter properties imply that
;x4 srz € F. (6.20)

By (CP6), s (z + z) € F, consequently, S;Z € h(x + z), by the definition of h.
The converse is similar. If S;Z € h(z + z), then s;(x + 2) = s,z + s,z € F. Fisa

filter, therefore s;x € F or s,z € F. Thus, S;Z € hx or S;Z € hz, so, S;Z € hx U hz.

5. h preserves the operation —, i.e.,

where ~ abbreviates ~yy .

Here ha = {SoZ : s;x € F,0 € M} and h(—z) =

={S;Z : s;(—x) € F,7 € M}. Using the ultrafilter properties and (CP7)

~ hr=W~{5,Z : spx € F,o€e M} ={5,Z : s;x ¢ F,o€ M} =
= {S;Z : —s;x € Floe M} ={5,Z : so(—x) € F,o € M}.
Comparing h(—x) and ~ hx, choosing T = o, we obtain the proposition.

So, h/ preserves the operations restricted to the m-subunits. Notice that the preserva-

tion is true for the unit V' as well, instead of the m-subunits W’s. Here, the only non-trivial
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case is the operation minus. But, the disjointness of the m-subunits assures that h’ pre-

serves the minus, too.
qed.

The proofs of the preservation of +, — and the diagonals are similar. They are not

detailed.
Finally, using the Lemmas 6.4-6.8, we obtain
The proof of Theorem 6.2:

By Lemma 6.8, A/ is an isomorphism between 2[ and a Cprs, with unit V. We need
to prove that V is a ,,,Gwp, unit and the representant algebra is regular. The ,,Gwp,
unit property follows from Lemma 3.16 (i), i.e., from the preservation of the operator sy,
where A € ®*a and A is m-transformation (Lemma 6.8, part 2). In particular, we know
that h/(syx) = S\h'x. Let us choose 1 for z. On one hand, h'(s)1) = h'1 = V. On the
other hand, S\h'1l = S, V. Comparing these equalities, we obtain that SV =V, i.e., 2 €
mGWp,.

To prove the regularity property, let us consider an arbitrary element hx in the repre-
sentant algebra (see 6.7). Assume that ¢t € h'z. By definition, ¢ is an element of a subunit
W, for some y. By the definition of regularity of ,,Gwp,, assume that ¢ € W, such that
(AWzU1)1tCq (¢ € W, may be assumed).

Using (6.6) and (6.7), t is of the form S;Z, for some 7 € M, where 7 is such that
srx € Fy, and ¢ is of the form S,Z, for some o € M. It must be proved that ¢ € h'z, i.e.,
sex € Fy. I/ is an isomorphism, therefore Ah'z = Az. By condition, (S-Z,); = (SxZy); if
i€ (AxzUl), ie., i = oiifi € (AzU1). But, by the proof of Lemma 6.7, s;x € F), follows.

As regards the proof of the other part of the Theorem 6.2, 2 € I ,,Gwp,, implies 2 €
mCPE, (by Lemma 3.20). Then we can refer to the respective version of Daigneault-Monk-
Keisler theorem (see also the proof of Theorem 3.24 below).

qed.
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k k%

We come to the applications of the above neat embedding theorem. It was mentioned
that neat embedding theorems, together with theorems about neatly embeddable alge-
bras, imply representation theorems. In terms of our neat embedding theorem and the
Daigneault-Monk-Keisler theorem below (and its variants), we prove two representation

theorems.

Let us recall the definitions of polyadic and polyadic equality algebras (PA, and PEA,,

[He-Mo-Ta IL.], 5.4.1) and the following important result, closely related to our subject:

Theorem (Daigneault—-Monk—Keisler) If A € PA,, then 2 € SNt B for some B €
PAo+e, where ais a fized infinite ordinal and € > 1 (see [Da-Mo], [Kei] and [He-Mo-Ta II.]

Thm. 5.4.17).

This form of the theorem (apart from terminology) is due to Daigneault and Monk
([Da-Mo], Theorem 4.3). Keisler published the proof theoretical variant of the theorem in
the same issue ([Kei]). Here we will refer to the proof of Theorem 4.3 in [Da-Mo] and its
variant for polyadic equality algebras ( [He-Mo-Ta I1.] 5.4.17).

The Daigneault—-Monk—Keisler theorem holds if the class PA, is replaced by ,,CPE,

and PA,4. is replaced by the class ,,CPE_, .. We return to these versions below.

The proof of Theorem 3.24:

Assume that 2% € ,,CPE,N Lm,. By Theorem 6.2, it is enough to prove that 21 €
SNe,B, for some B € ,CPE_, ., where ¢ is infinite. We refer to the proof of Daigneault-
Monk-Keisler’s theorem, specifically to the proof of Theorem 4.3 in [Da-Mo] and its variant
for algebras with equality ([He-Mo-Ta II.] 5.4.17).

A special case of the proof is when only single cylindrifications are defined. Omitting the

axiom of the commutativity of cylindrifications (axiom (P5) there), the proof also works.
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If the transformations in 2 are supposed to be m-transformations, where m is infinite,
i.e., % is an m-quasi-polyadic algebra, then it is easy to check that each transformation
occuring in the proof is m-transformation. Thus we obtain only m-transformations in the
embedding algebra B, i.e., 9B also is an m-quasi one. Thus, all ,,, CPE, axioms are satisfied
in B, except for (CP9)* maybe. An important special case is when 2 is locally-m, m is
infinite, then, as the proof implies, 8 can be assumed to be locally-m, too.

It must be checked that the properties (6.1) and (6.2) are satisfied in B. These equations
follow from the construction included in the proof of Theorem 4.3 in [Da-Mo]. We refer to
the notation used there. (6.1) means the equation in (16) there if K = {m}, =[j / m]
and p = [m / j]. This holds, obviously. If K = {m} and 7 is such that 7m = m, then (16)
means Cp,SrCmT = CpS;2, which is equivalent to (6.2). In this case, in the next equation
(following (16)) instead of equality, the inequality < holds by the original (CP9)*. But the
right-hand side of this inequality equals that of the equation in (16).

The other direction of the theorem follows by Lemma 3.20.
qed.
The proof of Theorem 3.25:

First, assume that A € CPE,. Similarly to the proof of Theorem 4.3 in [Da-Mo], we
can obtain that 2l is neatly embeddable into a S-dimensional algebra B satisfying all the
CPEs axioms, except for (CP9)* maybe, where a < 8. The embedding of 2 in B may be
considered as a B-dimensional algebra. Let us denote this algebra by 20’. This algebra is a
locally-a and a-quasi -dimensional algebra for each 5 (5 < «), i.e., A€ aCPEE N Lag.
Now, applying to 21, as to fS-dimensional algebra, the same argument as in the proof of
Theorem 3.24, we obtain that there exists a 8 + e-dimensional algebra € € aCPEE te (e is
infinite) such that A’e SNrz€. Thus, the conditions of Theorem 6.2 are satisfied with the

reg

following choices: 2’ for 2, o for m and 3 for a. By Theorem 6.2, ’¢ 1 O[Gwpﬁ . But, as

is known, the a-reduct of an algebra in OéGWpY;g (o < p) is a set algebra in Gp,, and the
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regularity is preserved as well. This set algebra in Gpa® is obviously isomorphic to 2(. If

2A € IGpy?, then the proposition follows by Lemma 3.20.

The second proposition of the theorem follows immediately from the first proposition

and the definition of the class CPES,,.
qed.

Main references in this Chapter: [Ha57], [Da-Mo], [Fel2b], [Fel0] and [Fe0T7a).
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