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Introduction

Representation theorems In this Thesis a new representation theory for algebraic logic

is analised in which the representative structures are relativized set algebras instead of

“ordinary” (square) set algebras. With this kind of representation we can associate Henkin-

style semantics and completeness theorems in Logic, but the results in the Thesis are

essential generalizations and extensions of Henkin’s classical results. We deal with cylindric-

type- and polyadic-type algebras, as algebraizations.

In the first Part of the Thesis we formulate representation theorems. As is known, in

contrast with Boolean algebras, cylindric algebras are not representable in the classical

sense in general (as isomorphic copies of cylindric set algebras in Gsα or as subdirect prod-

ucts of cylindric set algebras). However, the celebrated Resek-Thompson-Andréka theorem

states that if the system of cylindric axioms is extended by a new axiom schema, the merry-

go-round property (MGR, for short, see Definition 1.8), and axiom (C4) (the commutativity

property of the cylindrifications) is weakened (see (C4)∗), then the cylindric–type algebra

obtained is representable by a cylindric relativized set algebra and, in particular, by a set

algebra in Dα (instead of Gsα). By an r-representation of a cylindric- or polyadic-type

algebra we mean a representation by a cylindric- or polyadic-type relativized set algebra.

Upon analyzis of the merry-go-round property, it turns out, that in the background of

this property the existence of a kind of transposition operator is. As is known, the general

transposition operator cannot be introduced in every cylindric algebra (see [Fe07b]). These

facts led to research into the representability of transposition algebras (TAα). Transposi-
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tion algebras are cylindric algebras extended by abstract transposition operators (pij) and

single substitutions (sij), i, j < α (Definition 2.3). They are weakening of the (so-called)

finitary polyadic equality algebras introduced in [Sa-Th]. Furthermore, TAα is definition-

ally equivalent to the non-commutative quasi-polyadic equality algebras (Theorem 3.6).

Transposition algebras are not necessarily representable in the classical sense. However, it

is proven that they are r-representable by relativized set algebras in Gwtα (Theorem 2.8),

where the unit V of a Gwtα is of the form
⋃
k∈K

αU
(pk)
k (see Definition 2.2). Approaching our

topic from the starting point of the representative set algebras, this theorem says that the

class Gwtα is first-order axiomatizable by a finite schema of equations and the axioms can

be the TAα axioms. As is known, if the disjointness of the members αU
(pk)
k is assumed in

the above decompositions of V , then the classical class Gwsα is obtained and this class is no

longer first order finite schema axiomatizable (for classical representability, some additional

non-first order conditions are needed, for example, the condition of local finiteness).

A next question is whether or not polyadic equality algebras are r- representable. Recall

that polyadic algebras are essentially different from the quasi-polyadic algebras mentioned

above: in the case of polyadic algebras the substitution operations are defined for real

infinite transformations. The problem of r-representability of polyadic equality algebras

is answered affirmatively here for a large class: polyadic equality algebras having single

cylindrifications, called cylindric polyadic equality algebras (class CPEα, Definition 3.17).

Our representation theorem says that this class is r-representable by algebras in Gpreg
α

(Theorem 2.8). This is a kind of answer for the problem asked in [An-Go-Ne]: is the class

Gα (the cylindric version of Gpα) is a variety for infinite α? Furthermore, we prove that

Halmos’s result on the representability of locally finite, quasi-polyadic algebras ([Ha56])

can be generalized to m-quasi, locally–m cylindric polyadic algebras and r -representability,

where m is infinite (Theorem 3.24).

The representant set algebras Gwtα and Gpreg
α related to the above r -representations

are attractive and simple. The only difference between these kinds of set algebras and

the classical Gwsα and Gsα is the disjointness of the subunit components of the unit V .
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These r-representation theorems may be regarded as immediate generalizations of the Stone

representation theorem for Boolean algebras.

To briefly state the techniques used in the proofs of the r-representation theorems: three

methods are used, all of them are known from the literature, but new ideas are needed

for their applications here. The first one is the step-by-step method (this technique is

closely related to the technique “games”, see [Hi-Ho]). This technique is applied to prove

the main r-representation theorems for cylindric-type algebras and transposition algebras.

The other technique is the neat embedding technique. This method is applied to prove

the representation theorems for cylindric polyadic equality algebras (when the previous

technique cannot be used because of the infinite substitutions sτ ). This technique is based

on the so-called “neat embedding theorems”. Inside the neat embedding technique, we use

the ultrafilter technique due to Tarski. Further, we use the technique of the translation

from Algebra to Logic.

The concept of neatly embeddability is interesting in itself of course, discussion is

dedicated to this concept here.

Neat embedding theorems In the second Part of the Thesis we deal with neat em-

bedding theorems and their applications. Neat embedding is a concept of (universal)

algebra (see Definition 4.2). The classical neat embedding theorem for cylindric algebras

says that (classical) representability is equivalent to (classical) neat embeddability (see

[He-Mo-Ta II.], 3.2.10). Neat embeddability may be considered as the abstract algebraic

characterization of representability. On considering cylindric-type algebras, the question

arises: is it possible to characterize the concept of r-representability of a cylindric-type

algebra in terms of neat embeddability? The answer is affirmative (see Theorems 4.5 and

4.6). Of course, the concept of neat embeddability obtained in this way is different from

the standard one. This is a neat embedding into a many sorted structure, where the axioms

(C4) and (C6) are weakened, i.e., as an embedding class, a larger class than in the case of

classical neat embedding is allowed.
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The next question is whether this new kind of neat embedding theorem concerning

cylindric-type algebras can be transfered to other structures, to transposition algebras,

quasi-polyadic equality algebras or cylindric polyadic equality algebras. The answer de-

pends on which particular class we are considering. The answer is obviously affirmative for

transposition algebras and for quasi-polyadic equality algebras ([FePrepr]), but in the case

of cylindric polyadic equality algebras, in the presence of infinite substitutions, the situa-

tion is essentially different. For polyadic equality algebras, as is known, there is no classical

neat embedding theorem (neatly embeddability does not imply classical representability,

see [He-Mo-Ta II.]). The question whether some kind of neat embedding theorem for

polyadic equality algebras exists is a long standing problem. We prove a neat embedding

theorem here for these kind of algebras and, in particular, for m-quasi, locally-m cylindric

polyadic equality algebras (Theorem 6.2).

In order to apply neat embedding theorems to prove representability, we need neatly

embeddable classes of algebras, of course. To meet this need the Daigneault-Monk-Keisler

theorem ([Da-Mo]) and its variants is used.

There are remarkable connections between our subject and Logic. We mentioned that

there is a close connection between r-representation theorems and Henkin-style complete-

ness theorems in Logic, as well as between relativized set algebras and Henkin-style seman-

tics. In terms of neat embeddability we prove a theorem concerning conservative extensions

of provability relations (see Theorem 5.1). On considering the proof of the classical repre-

sentation theorem of cylindric algebras in terms of neat embeddability and the resultant

weakenings of the axioms (C4) and (C6), we can conclude that at proving the completeness

of the respective Logic, we need only a part of the usual calculus (Theorem 4.19).

History The pioneer of the research discussed here is Leon Henkin. He introduced the

concept of cylindric relativized set algebra (Crsα), developed the merry-go-round proper-

ties, he was Resek’s the doctoral advisor (Resek formulated her representation theorem

concerning cylindric relativized set algebras in her PhD Thesis [Res]) and, he developed
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the famous completeness theorem in mathematical logic based on Henkin-style semantics.

The detailed research of the class Crsα was initianed by István Németi. An extensive

paper on Crsα was published in [HMTAN] by Andréka and Németi. It was proved ([Nem81],

[Nem86]) that Crs is a decidable variety, but it is not finite schema axiomatizable. In Crs

the commutativity of the cylindrifications (axiom (C4)) fails to be true. It was Németi

who called attention to the importance of the commutativity of the cylindrification in the

cylindric algebra theory, and proved that for the lack of this property implies decidability

([Nem86]). Some remarkable subclasses of Crs were investigated in a detailed way, e.g.,

the “locally square” set algebras Gα (see [Nem86], [Nem92], [An-Ne-Be]). There are many

interesting applications of Crs. Crs may be considered as the algebraization of semantics of

several non-classical logics, e.g., many-sorted, higher order, modal, etc. logics ([An-Ge-Ne],

[An-Ne-Be]). Amongs of these, the most important is the so-called “guarded segment”

([An-Ne-Be], [Ben12], [Ben97], [Ben05]). It is a part of first order logic which corresponds

to a kind of decidable, first order modal logic. This logic has remarkable applications in

Computer Science.

Resek was the first to prove a representation theorem concerning cylindric relativized

set algebras. She proved it for simple, complete and atomic cylindric algebras satisfying

infinitely many merry-go-round equalities. This result was improved, in a sense, by Thomp-

son and Andréka who reduced the infinitely many merry-go-round equalities to just two

and replaced the cylindric axiom (C4) by a weaker axiom. The theorem thus improved

is called Resek-Thompson-Andréka theorem (RTA theorem, for short). Though the theo-

rem was announced in [He-Mo-Ta II.], in Remark 3.2.88, a proof was only published in

1986 ([An-Th]). That proof is relatively short (in contrast with Resek’s long proof) and it

is based on the step-by-step method. Later, some variants of the RTA theorem have also

found their way into the literature. Maddux has proved a somewhat stronger version of the

theorem (see [Mad89]). He also investigated the problem of representation by relativized

set algebras for relation algebras. The present author has published a simplification of the

RTA theorem, replacing the axiom (C4) with the commutativity of single substitutions (see
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[Fe07a]). For some classes of relativized set algebras, the existence of axiomatizability and

the fact of decidability was investigated (see [Sai],[An-Go-Ne], [Nem92] and [An-Ne-Be]).

Andréka in [And] constructed a concrete axiom system, for finite dimensional Gα.

The results concerning r-representation of polyadic-type algebras are due to the present

author. In [Fe11a] the connection between the merry-go-round properties and the operator

transposition is investigated. In [Fe11a], the r-representation theorem is proven for trans-

position algebras (also for quasi-polyadic equality algebras). In [An-Fe-Ne] and [Fe11b],

the r-representation theorem is proved for cylindric polyadic equality algebras. As regards

neat embeddability of cylindric-type algebras, the present author has published neat em-

bedding theorems for r-representation ([Fe10], [Fe00]). In [Fe09b] and [Fe09a], the logical

applications of the topic are investigated.

Conclusions The question can be asked: considering the Resek -Thompson- Andréka

theorem, which new ideas and aspects were developed after the publication of the theorem?

This Thesis answers the question as follows:

1. An interesting aspect is that in the new representation theorems the representant

classes are more attractive and simpler than the class Dα included in the RTA theorem.

These classes (for example, Gwtα or Gpα) can easily be described and visualized geomet-

rically. Furthermore, because of their simplicity, these representative classes are expected

to be applied in different areas of mathematics (in set theory, measure theory, topology,

etc.), similarly to the Stone theorem.

2. The cost of the r-representability of a cylindric-type or polyadic-type equality algebra

by relativized set algebras is that certain restrictions of the classical structures of algebraic

logic comes into the focus of research, for example, the MGR axioms for cylindric algebras

or the assumption of the existence of a transposition operator. However, in order to obtain

an elegant representation, certain axioms must be modified (weakened) a little in addition.

A common feature of the algebras occurring in these theorems is that the commutativity of

cylindrifications is not required. Instead of this, a weakening of it is assumed, for example,
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the commutativity of single substitutions. Similarly, in the polyadic case, instead of the

last two non diagonal axioms, certain weakenings are assumed.

3. The concept of r-representability (representability by relativized set algebras) can

be characterized by a kind of neat embeddability, i.e., a kind of neat embedding theorem

holds for r-representation. As is known, it is remarkable that no classical neat embedding

theorem previously existed for polyadic equality algebra, i.e., classical representability could

not be characterized by neat embeddability.

There are interesting applications of this new kind of neat embeddability, too. In

terms of the new neat embedding theorems, we can prove r-representation theorems, e.g.,

Henkin’s classical theorem on the representability of locally finite, quasi-polyadic algebras

can be generalized to locally-m, m-quasi-algebras, where m is infinite or a new proof can

be given for the RTA theorem.

4. There are remarkable logical aspects of the subject. For example, on proving the

completeness of the logical calculus corresponding to cylindric algebras, it was realized that

it is enough to use a part of the usual logical calculus. Neat embeddability has remarkable

applications at conservative extensions of provability relations.

In the first Part, representation theorems concerning relativized set algebras are formu-

lated. In the Chapters 1, 2 and 3 we deal with cylindric-type, transposition and cylindric

polyadic-type algebras respectively. In the second Part, neat embeddability theorems are

stated and their applications are investigated. In Chapter 4 we deal with the neat embed-

dability of cylindric-type algebras, in Chapter 5 the logical applications are considered and

in Chapter 6 the cylindric polyadic-type case is discussed.
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Part I

Representation theorems for

cylindric and polyadic-type

algebras, based on relativized set

algebras
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Chapter 1

Representation theorems for

cylindric-type algebras

In this Chapter the celebrated Resek-Thompson-Andréka theorem is analysed, and, a vari-

ant of the theorem is claimed.

First, we recall the concepts of cylindric relativized set algebras:

Definition 1.1 (Crsα)A is a cylindric relativized set algebra of dimension α (α ≥ 2)

with unit V if A is of the form:

〈A, ∪, ∩, ∼V , 0, V, CVi , D
V
ij 〉 i,j<α

where the unit V is a set of α–termed sequences, such that V ⊆ αU for some base set U , A

is a non-empty set of subsets of V , closed under the Boolean operations ∪, ∩, ∼V and

under the cylindrifications

CVi X = {y ∈ V : yiu ∈ X for some u}
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where i < α, X ∈ A, and A contains the sets ∅, V and the diagonals

DV
ij = {y ∈ V : yi = yj}

(see [He-Mo-Ta II.] 3.1.1).

Here the definition of yiu is (yiu)j = yj if j 6= i, and (yiu)j = u if j = i. Another notation

for yiu is y(i / u). If y is the sequence of ordinals, then yiu is denoted by [i / u] and it

is called elementary substitution. The superscript, V is often omitted from the notations

CVi and DV
ij . We note that an algebra in Crsα satisfies all the cylindric axioms, with the

possible exception of the axioms (C4) and (C6) (see [He-Mo-Ta II.] 3.1.19).

Let us denote CVi (DV
ij ∩X) (i 6= j) by V SijX. Notice that V SijX =

{y ∈ V : y ◦ [i / j] ∈ X} , where X ∈ A. Here y ◦ [i / j] = yiyj , by definition. In this sense,

if {y} ∈ A, then the elementary substitution yiyj can be defined in Crsα in terms of V Sij .

Definition 1.2 (Dα) Dα is the subclass of Crsα such that V SijV = V for every

i, j ∈ α, where V is the unit of the algebra (see [An-Th]).

It is easy to check that in Crsα the equality V SijV = V and (C6) are equivalent, thus

Dα satisfies all the CA axioms with the possible exception of (C4).

Definition 1.3 (Gα) Gα is a subclass of Dα, called the class of “locally square” cylindric

set algebras , such that the unit V is of the form
⋃
k∈K

αUk for some sets Uk, k ∈ K (Gα

was introduced in [Nem86]).

Recall that given a set U and a mapping p ∈ αU, the set

αU (p) = {x ∈ αU : x and p are different only in finitely many members}

is called the weak space determined by p and U.

3
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Definition 1.4 (Gwα) It is a subclass of Dα such that the unit V is of the form⋃
k∈K

αU
(pk)
k for some sets Uk, k ∈ K, and sequences pk ∈ αUk.

The difference between the classical class Gsα ([He-Mo-Ta II.], 3.1.1) and Gα is that

the disjointness for Uk’s in Gα is not assumed. The difference between the classes Gwsα

([He-Mo-Ta II.], 3.1.1) and Gwα is analogous.

Now, we define some abstract classes of algebras.

Definition 1.5 (CAα) A Boolean algebra 〈A,+, ·,−, 0, 1〉 enriched with a set of addi-

tional unary operations ci (i < α) and constants dij (i, j < α) is said to be a cylindric

algebra (α ≥ 2) of dimension α, if it satisfies the following axioms for every i, j < α:

(C1) ci0 = 0

(C2) x ≤ cix

(C3) ci(x · ciy) = cix · ciy

(C4) cicjx = cjcix

(C5) dii = 1

(C6) cj(dji · djk) = dik j 6∈ {i, k}

(C7) dij · ci(dij · x) = dijx i 6= j.

An algebra is a cylindric-type algebra if its type is that of cylindric algebras.

If K is a class of algebras, then IK denotes the class of the isomorphic copies of the

members of K.

Definition 1.6 A cylindric–type algebra A is r-representable if A ∈ ICrsα.

As is known, axiom (C6) is equivalent to the set of the following four properties:

4
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a. dij = dji b. dij · djk ≤ dik

c. ckdij = dij k /∈ {i, j} d. cidij = 1.
(1.1)

Lemma 1.7 The following propositions (i) and (ii) hold for every i, j < α:

(i) If A ∈ Crsα, then A ∈ Dα if and only if x ∈ V implies x ◦ [i / j] ∈ V.

(ii) If B is a cylindric–type algebra such that sij1 = 1 and B is r-representable, then

B∈ IDα.

Proof.

(i) The statement that x ∈ V implies x ◦ [i / j] ∈ V means that V ⊆ V SijV. But V SijV

⊆ V is always satisfied, thus V SijV = V. The latter together with A ∈ Crsα are equivalent

to A ∈ Dα, by definition.

(ii) If h denotes an isomorphism between B and an algebra in Crsα, then hsij1 = Sijh1,

where Sij is the abbreviation of V Sij . But, in the previous equality, hsij1 = h1 = V, and

Sijh1 = SijV, i.e., SijV = V.

qed.

The operator sij (single substitution operator) is defined for the element x as ci(dij · x)

if i 6= j, and x if i = j.

Definition 1.8 The merry-go-round properties are:

ski s
i
js
j
k ckx = skj s

j
is
i
k ckx

ski s
i
js
j
ms

m
k ckx = skj s

j
ms

m
i s

i
k ckx

for distinct ordinals i, j, k and n (see [He-Mo-Ta II.] 3.2.88). The two properties together

are denoted by MGR (for an equivalent form of MGR, see (1.9)).

5
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Definition 1.9 (CNA−α ) The axioms of CNA−α (α ≥ 4) are obtained from the cylindric

axioms so that the axiom (C4) is replaced by the property

−(C4) : siks
j
mx = sjms

i
kx (1.2)

i, k /∈ {j,m} .

Definition 1.10 (CNA+
α ) If the CNA−α axioms are extended by the MGR property,

then the axioms of CNA+
α are obtained ([Fe07a]).

Definition 1.11 (NA+
α ) The axioms of NA+

α are obtained from those of the class CNA+
α

(α ≥ 4) if the axiom −(C4) is replaced by the axiom

(C4)∗ : dik · cicjx ≤ cjcix (1.3)

([Fe07a] and Lemma 1.14 below).

Definition 1.12 (NAα) The axioms of NAα are obtained from those of CNA−α (α ≥ 2)

if the axiom −(C4) is replaced by (C4)∗.

The following theorem is the main r-representation theorem for cylindric-type algebras

in NA+
α :

Theorem (Resek-Thompson-Andréka):

A ∈ NA+
α if and only if A ∈ IDα.

where α ≥ 4 ([An-Th]).

6
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In other words, the theorem says that the class Dα is first-order axiomatizable by a finite

schema of equations and the axioms can be the NA+
α axioms. We note that, on modifying

(C4)∗ and MGR a little, the theorem also remains true for α = 2 and α = 3 too.

If Σ is a set of formulas, let Mod Σ denote the class of models satisfying Σ.

Let CA+
α denote the class of cylindric algebras satisfying the MGR property. Dα satisfies

(C6), thus the following holds:

Corollary 1.13 A ∈CA+
α if and only if A ∈ I(Dα∩ Mod (C4)), α ≥ 4.

The lemma below lists some equivalents of −(C4). Let us denote by Σ the set of cylindric

axioms except for (C4) and let us assume that α ≥ 4.

Lemma 1.14 Under Σ the following properties are equivalent :

(i) siks
j
mx = sjmsikx (property −(C4) )

(ii) cis
j
mx≤ sjmcix

(iii) dik · djm · cicjx = djm · dik · cjcix

(iv) dik · cicjx ≤ cjcix (property (C4)∗)

where i, j, k and m are different, except for k = m maybe (see [Fe07a] and [Tho]).

Proof.

A little more is proven than necessary, some pairwise equivalences are proven.

First, we prove the equivalences of (i) and (ii).

(ii)⇒(i). Substitute x = dik · y in (ii), we obtain: cis
j
m(dik · y)≤ sjmci(dik · y). But

(C3) and (C6)c. imply that cis
j
m(dik · y) =ci(dik · sjmy). This latter is siks

j
my. Therefore

siks
j
my =sjmsiky. By symmetry, we obtain (i).

(i)⇒(ii)

First ci cix = cix is proven.

ci cix = ci (cix · cix) = ci cix · cix ≤ cix ≤ ci cix by (C3) and (C2).

7
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On one hand,

sjmcix = sjms
i
kcix = siks

j
mcix = ci(dik · sjmcix) (1.4)

using (C6)d. and condition (i). Applying ci to both sides of (1.4) we obtain: cis
j
mcix =

ci(ci(dik · sjmcix)). Because of cicix = cix and (1.4), we obtain:

cis
j
mcix = ci(ci(dik · sjmcix)) = ci(dik · sjmcix) = sjmcix.

On the other hand, cis
j
mx ≤ cis

j
mcix is true (by monotonicity of ci). Using that

cis
j
mcix = sjmcix, we obtain (ii), i.e., cis

j
mx ≤ sjmcix is true in fact.

Then the equivalence of (i) and (iii) are proven.

Here the well-known operator tij defined in cylindric algebras where tijx = dij · cix if

i 6= j (and tijx = x, if i = j) is used. Obviously, (iii) is equivalent to the property (iii)’

below:

(iii)’ tikt
j
mx = tjmtikx.

We prove the equivalence of (i) and (iii)’.

(i)⇒(iii)’. Under Σ the operators sjm and tjm are conjugates of each other in the

Boolean algebraic sense, consequently if A � Σ then

a. tjms
j
my ≤ y

b. y ≤ sjmtjmy

for all y ∈ A and j,m ∈ α.

On one hand, it can be stated:

tjmt
i
ks
i
k(s

j
mt

i
kt
j
mx)

a.
≤ (tjms

j
m)tikt

j
mx

a.
≤ tiktjmx. (1.5)

That is, tjmtiks
i
ks
j
my ≤ tjmsjmy ≤ y. Let y be tikt

j
mx, we obtain (1.5).

On the other hand,
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tjmt
i
ks
j
ms

i
kt
i
kt
j
mx ≥ tjmtikx. (1.6)

Namely, sjmsikt
i
kt
j
my

b.
≥ sjmt

j
my

b.
≥ y. Let us apply the transformation tjmtik to this

inequality and replace y = x, we obtain (1.6).

(i) implies that the left-hand sides of (1.5) and (1.6) coincide. Comparing (1.5) and

(1.6) we obtain that

tjmtikx ≤ tikt
j
mx.

By symmetry, tikt
j
mx = tikt

j
mx follows.

The proof of (iii)’⇒(i) is completely similar: we swap s, t and swap ≤, ≥ throughout

the proof.

The proof of equivalence of (iii) and (iv):

Instead of (iv) we use the property (iv)’ below:

(iv)’ dik · cicjx ≤ dik · cjcix.

Multiplying (iv) by dik we can see that (iv) is really equivalent to the property (iv)’.

(iv)’ implies (iii), because by multiplying (iv)’ by djm we obtain the one direction of

(iii). By symmetry, the opposite inequality follows, too.

(iii) implies (iv)’. Apply the operation cj to both sides of (iii). We obtain by (C6)c.,

(C6)d. and (C3) that

dik · sjmcicjx = dik · cjcix. (1.7)

Now we state that

dik · cicjx ≤ dik · sjmcicjx. (1.8)

9
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We can use the property (ii) because the equivalence of (i) and (ii), and the equivalence

of (i) and (iii) are proven above. Therefore by (ii), cis
j
m(cjx) ≤ sjmci(cjx). But cis

j
m(cjx) =

cicjx because (C3) and cjdjm = 1. So cicjx ≤ sjmci(cjx). Multiplying this inequality by

dik, (1.8) is obtained.

Comparing (1.7) and (1.8) we really obtain (iv)’.

qed.

Taking into consideration the previous lemma, the Resek-Thompson-Andéka theorem

can be reformulated as follows (due to the present author, see [Fe07a], Corollary 3.2):

Theorem 1.15

A ∈ CNA+
α if and only if A ∈ IDα.

where α ≥ 4.

***

We can ask the question: what is the intuitive background of the merry-go-round prop-

erties playing a key role in the Resek-Thompson-Andréka theorem?

Recall that by the elementary transposition operator [i, j] we mean the operator chang-

ing i and j (in the sequence of ordinals).

Let us consider the operator ks(i, j) in CAα, where ks(i, j)y = ski s
i
js
j
ky and i, j, k are

different. The properties of ks(i, j) are investigated in detail in [He-Mo-Ta I.]1.5. Andréka

and Thompson proved that the following property is equivalent to the two merry-go-round

properties:

ks(i, j)ks(j,m)ckx = ks(j,m)ks(m, i)ckx (1.9)
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under the other NAα axioms if k /∈ {i, j,m} , j /∈ {m, i} (Proposition 3 in [An-Th]). Ele-

mentary transposition, of course, satisfies (1.9).

(1.9) means that the cylindric algebra has a kind of “weak” abstract transposition

operator (for the meaning of “weak”, see [Fe11a]). Thus, the Resek-Thompson-Andréka

theorem says that the existence of such an operator implies r-representability.

It is known that, in general, abstract transposition operators cannot be introduced in

arbitrary cylindric algebra ([Fe07b]), and, likewise, the substitution operator sτ for finite

τ. For example, a sufficient condition for this is that the α-dimensional cylindric algebra is

a “neat subreduct” of some α+ 2-dimensional cylindric algebra (see in [Fe07b]).

***

In the first published proof of the Resek-Thompson-Andréka theorem due to Andréka

(see [An-Th]), the so-called step-by-step method (or iteration method, see [Hi-Ho]) is applied

to construct the suitable representation. We will refer to this proof in the next Chapter,

therefore Andréka’s proof is outlined below.

The proof of the non-trivial part of the theorem is decomposed into parts (Parts 1–4)

so that the beginning of the original proof is cited almost word for word (Parts 1–3), while

the remainder is only outlined (Part 4).

The sketch of the proof of the non-trivial part of the RTA Theorem:

Part 1 About the framework of the proof.

A can be assumed to be atomic. Namely, by [He-Mo-Ta I.], 2.7.5, 2.7.13, every Boolean

algebra B with operators can be embedded into an atomic one such that all the equations

valid in B, and in which “−” does not occur, continue to hold in the atomic one. This
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latter condition is satisfied in B because it is easy to eliminate the “−” from the axioms.

As a consequence, from now on A is assumed to be atomic, satisfying the axioms.

Let AtA denote the set of all atoms of A. We want to “build” an isomorphism rep:

A � B, for some B ∈ Crsα, such that the equality below holds:

rep(x) =
⋃
{rep(a) : a ∈ AtA, a ≤ x} for every x ∈ A. (1.10)

Let V be a set of α-sequences and for every X ⊆ V and i, j < α let CiX
d
=

{f ∈ V : (∃u) f(i / u) ∈ X} , Dij
d
= {f ∈ V : fi = fj} .Assume that rep: A→ {X : X ⊆ V }

is a function such that (1.10) holds. Then it is easy to check that rep is an isomorphism

onto a B ∈ Crsα with 1B ⊆ V if and only if conditions (i)−(v) below hold for every a, b ∈

AtA and i, j < α :

(i) rep(a) ∩ rep(b) = ∅ if a 6= b

(ii) rep(a) ⊆ Dij if a ≤ dAij and rep(a) ∩ Dij = ∅ if a · dAij = 0

(iii) rep(a) ⊆ Cirep(b) if a ≤ cAi b,

(iv) rep(a) ∩ Cirep(b) = ∅ if a · cAi b = 0

(v) rep(a) 6= ∅.

. (1.11)

A set V of α-sequences and a function rep with the above properties will be constructed,

step by step.

Part 2 About the 0th step.

For every α-sequence f let ker (f)
d
=
{

(i, j) ∈ 2α : fi = fj
}
.

For every a ∈ AtA let Ker(a)
d
=
{

(i, j) ∈ 2α : a ≤ dAij
}
.

Then Ker(a) is an equivalence relation on α by the axioms (C5)–(C7). For every a ∈

AtA let fa be an α–sequence such that for every a, b ∈ AtA
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a) ker(fa) = Ker(a), b) Rg (fa) ∩ Rg (fb) = ∅ if a 6= b. (1.12)

Such a system {fa : a ∈ AtA} of α-sequences does exist. Define

rep0(a)
d
= {fa} , for every a ∈ AtA.

Then the function rep0 satisfies conditions (i),(ii),(iv) and (v) but it does not satisfy

condition (iii). Below, we shall make condition (iii) become true step by step, and later we

shall check that conditions (i),(ii),(iv) and (v) remain true in each step.

Part 3 About the (n+1)th step, i.e., about the definition of the function repn+1.

Let R =AtA×AtA×α, ρ be an ordinal and let r : ρ→ R be an enumeration of R such

that for all n ∈ ρ and (a, b, i) ∈ R there is m ∈ ρ,m > n such that r(m) = (a, b, i). Such ρ

and r clearly exists.

Assume that n ∈ ρ and repn : AtA → {X : X ⊆ V ′} is already defined where V ′ is

a set of α-sequences. We define repn+1 : AtA → {X : X ⊆ V ”} , where V ” is a set of

α-sequences. Let r(n) = (a, b, i). If a � cib, then

repn+1
d
= repn. (1.13)

Assume a ≤ cib. Then repn+1(e)
d
= repn(e) for all e ∈AtA, e 6= b.

Furthermore,

case 1. b ≤ dij for some j < α, j 6= i. Then

repn+1(b) = repn(b) ∪ {f ( i / fj) : f ∈ repn(a)} . (1.14)

case 2. b � dij for all j < α, j 6= i. For every f ∈ repn(a) let uf be such that

(i) uf /∈
⋃
{Rg (h) : h ∈

⋃
{repn(e) : e ∈ AtA}}

(ii) uf 6= uh if f 6= h, f, h ∈ repn(a).
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Now

repn+1(b) = repn(b) ∪ {f (i / uf ) : f ∈ repn(a)} . (1.15)

Let n ∈ ρ be a limit ordinal and assume that repm is defined for all m < n. Then

repn(e)
d
=
⋃
{repm(e) : m < n} (1.16)

for all e ∈ AtA.

By this, 〈repn : n ∈ ρ〉 is defined. Now we define

rep(a)
d
=
⋃
{repn(a) : n ∈ ρ} (1.17)

for all a ∈ AtA. Let

V
d
=
⋃
{rep(a) : a ∈ AtA} . (1.18)

We will check that conditions (i)–(v) hold for the above rep and V .

Part 4. On the proof of the properties (i)–(v).

They are proven by induction. The proof of the properties (ii), (iii) and (v) are relatively

easy. Instead of (i) and (iv) a stronger property, denoted by (iv)’, is proven such that it

implies both (i) and (iv). In the proof of (iv)’ Jónsson’s famous theorem plays a key role

([He-Mo-Ta II.], 3.2.17, p. 68). It concerns the extension of a mapping, having certain

fixed properties, from the elementary transformations [i / j] and [i, j], to arbitrary finite

transformations.

End of the sketch of the proof.

14

               dc_597_12



Main references in this Chapter are: [An-Th], [And], [Fe07a], [An-Ne-Be], [Hi-Ho97,

Hi-Ho97], [Ben12], [Nem86] and [Fe07b].
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Chapter 2

Representation theorems for

transposition algebras

In this Chapter the concept of transposition algebra is introduced. In the previous Chapter

we noted that if a cylindric algebra has at least a weak transposition operator, then the

algebra is r-representable. In accordance with this, the cylindric reduct of transposition

algebras will be r-representable. Next, we investigate the problem whether or not the

transposition algebras themselves are r-representable.

Definition 2.1 (Trsα) The structure

〈A, ∪, ∩, ∼V , ∅, V, CVi , [i, j]V , DV
ij 〉 i,j<α

is a transposition relativized set algebra, if its cylindric reduct is in Crsα, and A is closed

under [i, j]V , where

[i, j]VX = {y ∈ V : y ◦ [i, j] ∈ X} .
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Here [i, j] denotes the elementary transposition.

The upper index V is often omitted from [i, j]V and, in this case we can disambiguate

[i, j] taking the context into consideration.

Notice that [i, j]V V = V in Trsα. To see this, recall that [i, j]V V ⊆ V , by definition.

Now, let us apply [i, j]V to this inclusion. Then the equality y ◦ [i, j] ◦ [i, j] = y implies

that, for the left-hand side, [i, j]V [i, j]V V = V, and thus we obtain the opposite inclusion

V ⊆ [i, j]V V.

Definition 2.2 (Gwtα) A set algebra A in Trsα is called a generalized weak transposition

relativized set algebra (A ∈Gwtα) if there are sets Uk, k ∈ K and sequences pk ∈ αUk such

that V =
⋃
k∈K

αU
(pk)
k , where V is the unit.

We can associate the cylindric set algebra class Gwsα with the class Gwtα (see

[He-Mo-Ta II.] 3.1.1). Besides their different types, a further difference between these

classes is that the disjointness of the sets αU
(pk)
k is not assumed in Gwtα. The subclass of

Gwtα in which this disjointness is assumed is denoted by
•

Gwtα.

Now, we define some abstract classes of algebras.

Definition 2.3 (TAα) A transposition algebra of dimension α (α ≥ 3) is the algebra

A = 〈A, +, ·, −, 0, 1, ci, sij , pij , dij〉i,j<α

where + and · are binary operations, −, ci, sij , pij are unary operations, dij are constants,

and the axioms (F0–F11) below are assumed for every i, j, k < α:

(F0) 〈A, +, ·, −, 0, 1〉 is a Boolean algebra, sii = pii = dii = Id � A and pij = pji

(F1) x ≤ cix

(F2) ci(x+ y) = cix+ ciy

(F3) sijcix = cix
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(F4) cis
i
jx = sijx i 6= j

(F5)∗ sijs
k
mx = skms

i
jx, if i, j /∈ {k, m}

(F6) sij and pij are Boolean endomorphisms

(i.e., sij(−x) = −sijx, etc.)

(F7) pijpijx = x

(F8) pijpikx = pjkpijx, if i, j, k are distinct

(F9) pijs
i
jx = sjix

(F10) sijdij = 1

(F11) x· dij ≤ sijx.

Notice that axiom (F5)∗is the same as −(C4) for cylindric algebras.

Definition 2.4 (TASα) The concept of strong transposition algebra can be obtained

from that of transposition algebra TAα, if the axiom (F5)* is changed by the stronger

axiom

(F5) : sijckx = cks
i
jx k /∈ {i, j} .

The class TASα is the same as the class of finitary polyadic equality algebras (FPEAα)

introduced in [Sa-Th]. We preserve the notation of the axioms in [Sa-Th], but it seems

expedient to change the terminology of FPEAα, especially in the case of TAα.

Definition 2.5 A transformation τ defined on α is called finite if τi = i with finitely

many exceptions (i ∈ α). The notation of the set of finite transformations on α is FTα.

By [Sa-Th] Theorem 1 (i), a substitution operator sτ can be introduced in every FPEAα

so that the extended algebra is a quasi-polyadic equality algebra (see Definition 3.3). The

existence of such a substitution operator sτ holds for TAα, too (instead of FPEAα) namely,

it is easy to check that the proof in [Sa-Th] works supposing (F5)∗ instead of (F5) (e.g.,
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the inequality skj pijx ≤ skj pijs
i
kx in (16) on p. 553 there, follows from the TAα axioms).

Therefore throughout this Chapter we assume that the transposition algebras occurring

here are equipped with the operator sτ , where τ is finite. Further, sτ is assumed to have

the following properties for arbitrary finite transformations τ and λ and ordinals i, j < α

(by [Sa-Th], p. 547):

sτ◦λ = sτ◦sλ

pij = s[i, j]

sij = s[i / j]

sτdij = dτi τj

cisτ ≤ sτ cτ−1i, where τ is finite permutation.

. (2.1)

Definition 2.6 An algebra A with the type of TAα is r-representable if A ∈ ITrsα.

Lemma 2.7 The following propositions (i) and (ii) hold :

(i) If A ∈ Trsα, then A ∈ Gwtα if and only if x ∈ V implies both

x ◦ [i, j] ∈ V and x ◦ [i / j] ∈ V , for every i, j < α.

(ii) If B ∈ TAα and B is r-representable, then B∈ IGwtα.

Proof.

(i) If A ∈ Gwtα, then, by the definition of V, V is closed under the operators [i, j] and

[i / j]. Conversely, we need to prove that V is of the form
⋃
k∈K

αU
(pk)
k . The condition

implies that V is closed under the finite transformations of α, i.e., x ∈ V implies x ◦ τ ∈ V

if τ is finite, since, as is known, finite transformations can be composed by finitely many

applications of elementary transpositions and replacements. It can now be shown that V is

of the form
⋃
x∈V

α(Rg x)(x) (this latter is really a Gwtα unit). V ⊆
⋃
x∈V

α(Rg x)(x) obviously

holds by definition.
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Conversely, if y ∈
⋃
x∈V

α(Rg x)(x), then y = x ◦ τ for some x ∈ V and finite

τ, by the definition of the weak space α(Rg x)(x). But, x ◦ τ ∈ V, by assumption.

Thus
⋃
x∈V

α(Rg x)(x) ⊆ V and, consequently, V =
⋃
x∈V

α(Rg x)(x), as we claimed.

(ii) The proof is similar to that of Lemma 1.7 (ii), making use of the above part (i) and

the fact that the isomorphism h, in question, preserves the operators sij and pij .

qed.

The following main r-representation theorem holds for TAα ([Fe11a], Theorem 3.1):

Theorem 2.8 (Ferenczi):

A ∈ TAα if and only if A ∈ IGwtα

where α ≥ 3 .

If we set out from the problem of the axiomatizability of the class Gwtα of set algebras,

then the reformulation of the theorem is the following one: The class Gwtα is first-order

axiomatizable by a finite schema of equations and the axioms can be the TAα axioms.

Notice that Gwtα is a canonical variety (see [HHGames], 2.69). Notice that he theorem

above is valid also for finite α′s, while, in general, the classical representation theorems are

not.

By Definition 2.4, the class TASα is obtained from TAα so that axiom (F5)∗ is replaced

by the stronger (F5). Thus, the following is obtained:

Corollary 2.9 A ∈ TASα if and only if A ∈ I(Gwtα∩ Mod (F5)) (α ≥ 3).

As is known, TASα is not representable in the classical sense (see [Sa-Th]), thus Gwtα

cannot be replaced by
•

Gwtα in the Corollary and in Theorem 2.8.
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The proof of Theorem 2.8 follows Andréka’s proof (step-by-step method) for the Resek-

Thompson-Andréka theorem (from now on, AP or the cylindric case), assuming some

modifications in accordance with the transposition type of the algebras and some additional

requirements. But, the proof is a non-trivial modification of Andréka’s proof. Among

others, a difference between the cylindric and transposition cases is that the definition of

the function rep0 is more complex in the transposition case. Here only the differences

between the two proofs are emphasized, discussing the proof in accordance with the Parts

1–4 of the AP.

The proof of Theorem 2.8:

The following lemma states the easy part of the theorem:

Lemma 2.10 If A ∈ Gwtα, then A ∈ TAα, where α ≥ 4.

Proof.

We assume that A ∈ Gwtα and we need to check the axioms (F1)–(F11). As examples

we check the axioms (F4), (F9) and (F10):

Axiom (F4): cis
i
jx = sijx i 6= j.

z ∈ CiSijX ⇔ ziu ∈ SijX for some u⇔ zizj ∈ X.

z ∈ SijX ⇔ zizj ∈ X.

Axiom (F9): pijs
i
jx = sjix.

z ∈ [i, j] SijX ⇔ z ◦ [i, j] ∈ SijX ⇔ zjzi ∈ X.

z ∈ SjiX ⇔ zjzi ∈ X.

Axiom (F10): sijdij = 1.

We show that z ∈ V implies z ∈ SijDij . Namely if z ∈ V, then zizj ∈ V by the definition

of a Gwt unit V. But this implies that zizj ∈ Dij , i.e., z ∈ SijDij .

qed.
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First, let us consider the framework (Part 1) of Andréka and Thompson’s proof in

Chapter 1. On the modification of that framework:

The only necessary change is that a property (vi) is needed which states the preservation

of the operator pij . By (2.1) pij may be considered as s[i, j]. We will use s[i, j] rather than

pij . So we need to prove:

(vi) rep(s[i, j] a) = [i, j] rep(a).

We will prove the following more general property

(vi)’ rep(sσa) = Sσrep(a) (2.2)

where σ is an arbitrary finite permutation on α.

We note that the original representation is complete (see (1.10)), and this will also be

transmitted to our construction.

The next part (Part 2) of the original proof is the definition of the 0th step, i.e., the

definition of the function rep0..

We need to essentially change the definition of rep0 to handle property (vi)’.

First, as a preparation, we introduce two equivalence relations:

1. Let a be an arbitrary fixed atom. The definition of the relation ≡a (≡, for short) on

α is:

i ≡ j if and only if s[i, j]a = a. (2.3)
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≡ is an equivalence relation. For example, if i ≡ j and j ≡ k, then i ≡ k, because

s[i, j]a = a and s[j, k]a = a imply s[i, k]a = a. Namely, by (2.1), [i, k] = [i, j] ◦ [j, k] ◦ [i, j]

implies that s[i, k]a = (s[i, j] ◦ s[j, k] ◦ s[i, j])a.

Notice that

(i, j) ∈ Ker(a) implies that i ≡ j. (2.4)

Namely, a ≤ dij implies that a = s[i, j]a. (C7) is equivalent to (C7)∗ : dij · ci(dij · x) =

dij · x. If x = a, then a ≤ dij implies that dij · cia = a. Applying s[i, j] to this equality we

obtain that s[i, j](dij · cia) = s[i, j]a, i.e., dji · sji (cia) = s[i, j]a.

Replacing cia for x in (C7)∗ and changing i and j we obtain that dji · cj(dij · cia) =

dji · cia, i.e., dji · sji cia = dji · cia. Comparing this equality with dij · cia = a and with

dji · sji (cia) = s[i, j]a we obtain that a = s[i, j]a.

2. Let us consider the following equivalence relation ∼ on AtA:

a ∼ b if and only if b = sτa for some finite permutation τ (2.5)

a, b ∈ AtA.

In fact, the relation ∼ is an equivalence relation: it is reflexive because a = sIa. It is

symmetrical because b = sτa implies sτ−1b = a. It is transitive because b = sτa and c = sσb

imply that c = sσ(sτa) = sσ◦τa, where σ ◦ τ is also a finite permutation.

Let us choose and fix representative points for the equivalence classes concerning ∼ and

let Rp denote this fixed set of representative points.

We define the function rep0 :

Definition 2.11 If c ∈ Rp, then let
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rep0(c) = {Sτfc : sτ c = c} (2.6)

where fc is the sequence defined in the original proof and τ is a finite permutation on α.

If b = sσc, then let

rep0(b) = Sσ rep0(c). (2.7)

Lemma 2.12 The above definition is unique.

Proof.

It must be proved that if

sτ c = sσc (2.8)

for some c ∈ Rp and finite permutations τ and σ, then

rep0(sτ c) = rep0(sσc). (2.9)

(2.8) is equivalent to c = (sτ−1 ◦ sσ)c = sτ−1◦σc, so is equivalent to

c = sβc (2.10)

where β = τ−1 ◦ σ. Similarly, using (2.7), (2.9) is equivalent to
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rep0(c) = Sβ rep0(c). (2.11)

By (2.6), (2.11) is equivalent to {Sτ1fc : sτ1c = c} = Sβ {Sτ2fc : sτ2c = c} .

But Sβ {Sτ2fc : sτ2c = c} = {(Sβ Sτ2)fc : sτ2c = c} . So it must be proved that

{Sτ1fc : sτ1c = c} = {(SβSτ2)fc : sτ2c = c} . (2.12)

We show that the left-hand side of (2.12) is a subset of the right-hand side and

conversely. Assume that Sτfc ∈ {Sτ1fc : sτ1c = c} for some fixed τ1 = τ. Then let us

choose β−1 ◦ τ on the right-hand side for τ2. We need to prove that sβ−1◦τ c = c. But

sβ−1◦τ c = (sβ−1sτ )c = sβ−1(sτ c). sτ c = c by condition and sβ−1c = c by (2.10). So, really

sβ−1◦τ c = c. The proof of the converse inclusion in (2.12) is completely similar.

qed.

Lemma 2.13 rep0(sσa) = Sσ rep0(a), where σ is an arbitrary finite permutation on α

and a is an arbitrary atom, i.e., the property (vi)’ in (2.2) is satisfied.

Proof.

We need to prove that (2.7) is true for arbitrary atoms b and a with b = sσa, not only

for representative points c, i.e., we need to prove that

rep0(b) = Sσrep0(a). (2.13)

Namely if the representative point representing a is c and a = sτ c for τ, then rep0(b) =

rep0(sσa) = rep0(sσsτ c) = rep0(sσ◦τ c). But rep0(sσ◦τ c) =

= Sσ◦τ rep0(c) by (2.7). Sσ◦τ rep0(c) = (SσSτ )rep0(c) = Sσrep0(sτ c) = Sσrep0(a) by (2.7).

So, really rep0(b) = Sσrep0(a) and the proof is complete.

qed.

25

               dc_597_12



Similarly to the original proof, we show that rep0 satisfies the conditions (i), (ii) and

(iv) in (1.11). The proof requires a bit more complex consideration than the original proof.

Lemma 2.14 rep0(a) ∩ rep0(b) = ∅ if a 6= b a, b ∈ AtA, i.e., the property (i) in (1.11)

is true.

Proof.

If a � b and a = sσc, b = sλd for some c, d ∈ Rp and finite permutations σ and λ, then

the condition b) Rg(fc)∩ Rg(fd)= ∅ in (1.12) and (2.6) imply that rep(a) ∩ rep(b) = ∅.

Assume that a ∼ b and a = sσc, b = sηc for some c ∈ Rp and finite permutations σ

and η, a 6= b, i.e., sσc 6= sηc. We need to prove that

rep0(sσc) ∩ rep0(sηc) = ∅.

Indirectly, assume that rep0(sσc) ∩ rep0(sηc) 6= ∅. We show that a = b, i.e., sσc = sηc

and this contradicts the condition a = b.

Taking into consideration (2.7) we obtain that

Sσ {Sτ1fc : sτ1c = c} ∩ Sη {Sτ2fc : sτ2c = c} 6= ∅,

i.e., SσSτ1fc = SηSτ2fc for some finite permutations τ1 and τ2. This latter equality is

equivalent to fc = Sτ−1
1
Sσ−1SηSτ2fc, i.e., to fc = Sτ−1

1 ◦σ−1◦η◦τ2 fc. Let γ denote the

permutation τ−1
1 ◦ σ−1 ◦ η ◦ τ2, then fc = Sγfc.

Using that sτ1c = c and sτ2c = c, a = b (i.e., sσc = sηc ) is equivalent to sσsτ1c = sηsτ2c.

Similarly to the equivalences above, this latter equality is equivalent to c = sτ−1
1 ◦σ−1◦η◦τ2c,

i.e., to c = sγc.

Generally, we prove that

fc = Sβfc implies c = sβc, (2.14)

where β is an arbitrary finite permutation on α.
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We remind the reader that every finite permutation β can be formulated as a compo-

sition of finitely many cyclic permutations. Further, a cyclic permutation δ of length n

can be formulated as a composition
[
δn−1i, δni

]
◦ ... ◦

[
δi, δ2i

]
◦ [i, δi] of transpositions,

where δni = i. This obviously implies that every finite permutation β can be formulated

as a finitely many compositions of transpositions of the form [j, βj] . To prove (2.14) let

us decompose β in this form:

β = [jm, βjm] ◦ ... ◦ [j2, βj2] ◦ [j1, βj1] . (2.15)

fc = Sβfc implies that (fc)j = (Sβfc)j for every j < α. Therefore (Sβfc)j = (fc)β−1j .

Therefore (fc)j = (fc)β−1j for every j < α. Here β is an arbitrary finite permutation, so

it can be written that (fc)βi = (fc)i for arbitrary j < α and permutation β. This latter is

equivalent to (fc)βj = (fc)j . This means that (j, βj) ∈ ker(f). The property a) in (1.12),

i.e., Ker(c)=ker(fc) implies that (j, βj) ∈Ker(c). (2.4) implies that j ≡ βj, i.e.,

s[j, βj]c = c (2.16)

for every j < α.

Applying (2.15) we obtain that sβc = s[jm, βjm]◦...◦[j2, βj2]◦[j1, βj1]c =

=s[jm, βjm]...s[j2, βj2]s[j1, βj1]c. Using (2.16) step by step, we obtain that

sβc = c (2.17)

and (2.14) is proven.

Applying (2.14) to the transformation γ we obtain a contradiction and the proof is

complete.

qed.
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Lemma 2.15 rep0(a) ⊆ Dij if a ≤ dij and rep0(a) ∩ Dij = ∅ if a · dij = 0 for every

i, j < α, i.e., the property (ii) in (1.11) is true.

Proof.

First we prove that rep0(a) ⊆ Dij if a ≤ dij .

Assume that a = sσc for some c ∈ Rp. Then the condition a ≤ dij is of the form

sσc ≤ dij . By (2.7) we need to prove that

Sσ {Sτfc : sτc = c} ⊆ Dij (2.18)

i.e.,

(SσSτfc)i = (SσSτfc)j . (2.19)

Let us consider the following equivalences:

(SσSτfc)i = (SσSτfc)j ⇔ (Sσ◦τfc)i =

= (Sσ◦τfc)j ⇔ (fc)(σ◦τ)−1 i = (fc)(σ◦τ)−1 j ⇔ (λ−1i, λ−1j) ∈ ker(fc)=Ker(c) by (1.12) ,

where λ denotes the permutation σ ◦ τ.

(λ−1i, λ−1j) ∈ Ker(c) means that c ≤ dλ−1i λ−1j . Applying sλ to this inequality, we

obtain that sλc ≤ dij . So (2.19) is equivalent to

sλc ≤ dij . (2.20)

But sλc = sσ◦τ c = sσsτ c = sσc = a using the fact that sτ c = c in (2.18) and a = sσc.

Therefore the condition sσc ≤ dij is equivalent to sλc ≤ dij .

Applying the equivalences above we obtain that, a = sσc ≤ dij implies (2.18).

The other case: we need to prove that rep0(a) ∩ Dij = ∅ if a · dij = 0. Indirectly,

assume that rep(a) ∩ Dij 6= ∅ for some i, j < α. Similarly to the first case, (2.19) is true
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for some i, j < α. (SσSτfc)i = (SσSτfc)j for some finite permutation τ and i, j < α. By

the argument above, a ≤ dij follows and this contradicts the condition a · dij = 0.

qed.

Lemma 2.16 rep0(a) ∩ Cirep0(b) = ∅ if a · cAi b = 0, i.e., the property (iv) in (1.11)

is true.

Proof.

If a � b, then (2.7) and (1.12) b) imply that rep0(a) ∩ Cirep0(b) = ∅.

Assume that a ∼ b (a 6= b) and the representative point is c, so a = sσc and b = sηc for

some permutations σ and η.

Indirectly, assume that

rep0(a) ∩ Cirep0(b) 6= ∅. (2.21)

This means that there exists a g ∈ rep0(b) such that giu ∈ rep0(a) for some u. By

(2.7), this means that g = SηSτ2fc for some τ2 and giu = SσSτ1fc for some τ1, that is,

(SηSτ2fc)
i
u = SσSτ1fc. Therefore

fc = Sτ−1
1
Sσ−1(SηSτ2fc)

i
u = (Sτ−1

1
Sσ−1SηSτ2fc)

δi
u , (2.22)

where δ = τ−1
1 ◦ σ−1.

Let β denote the permutation τ−1
1 ◦ σ−1 ◦ η ◦ τ2. Then fc = (Sβfc)

δi
u implies that

(fc)j = (Sβfc)j for every j 6= δi, i.e.,

(fc)j = (fc)β−1j , if j 6= δi. (2.23)
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Let us consider the decomposition of β−1 being analogous with (2.15): β−1 =[
km, β

−1km
]
◦...◦

[
k2, β

−1k2

]
◦
[
k1, β

−1k1

]
, where km = δi can be assumed without

loss of generality. Similarly to (2.17) we obtain that

sβ−1c = s[δi, β−1(δi)]c. (2.24)

By definition of β, β−1 = τ−1
2 ◦ η−1◦ σ◦ τ1, therefore sβ−1c =

= sτ−1
2 ◦η−1(sσ◦τ1c) = sτ−1

2 ◦η−1a because sτ1c = c and sσ = a.

(2.24) implies that sτ−1
2 ◦η−1a = s[δi, β−1(δi)]c. Applying sη◦τ2 to this equality we obtain

that

a = sη◦τ2s[δi, β−1(δi)]c = s[(η◦τ2◦δ)i , (η◦τ2◦β−1◦δ)i]sη◦τ2c (2.25)

The second equality follows from (η ◦ τ2) ◦
[
δ, β−1 ◦ δ

]
= [η ◦ τ2 ◦ δ, η ◦ τ2 ◦ β−1 ◦ δ]◦

( η ◦ τ2) on α and from the property sτ◦λ = sτ ◦ sλ in (2.1) applying it to both sides.

The transformation η ◦ τ2 ◦β−1 ◦ δ is the identity, namely η ◦ τ2 ◦β−1 ◦ δ = η ◦ τ2 ◦ τ−1
2 ◦

η−1 ◦ σ ◦ τ1 ◦ τ−1
1 ◦ σ−1 = I. So (2.25), c = sτ2 and b = sηc imply that

a = s[m, i]b (2.26)

where m denotes (η ◦ τ2 ◦ δ) i.

(2.13) and (2.26) imply that rep0(a) = [m, i] rep0(b).
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Notice that a = s[m, i]b, a 6= b and Lemma 2.14 imply that

[m, i] rep0(b) ∩ rep0(b) = ∅. (2.27)

Further, the (indirect) condition in (2.21) is of the form

[m, i] rep0(b) ∩ Cirep0(b) 6= ∅.

Then, on one hand, there exists a g ∈ rep0(b) such that g ◦ [m, i] ∈ Ci rep0(b), i.e.,

(g ◦ [m, i])iw ∈ rep0(b), for some w. Let h denote the sequence (g ◦ [m, i])iw.

On the other hand, both g and h are elements of rep(b) so (2.6) implies that both of

them are finite permutations of the representative sequence fc. Therefore they are finite

permutations of each others too, for example, let h = Sτg for some finite permutation τ. If

τk = i, then gk = w. For the sake of simplicity let us consider here the finite permutation

τ to be defined on some finite subset of α.

Let us denote gi and gm by u and v, so gi = u, gm = v and gk = w. Then h =

(g ◦ [m, i])iw, hi = w, hm = u and

gj = hj (2.28)

for every j /∈ {i,m} . We state that the expected finite permutation τ between the se-

quences g and h, having the above properties, cannot exist.

The problem, in question, will now be discussed. First notice that u 6= v. Namely u = v

implies g = g◦ [m, i] , so g◦ [m, i] ∈ rep0(b) and this contradicts (2.27). For similar reason,

u 6= w.

First, let us consider the case v 6= w. We show that this case is impossible. Assume

that τm = t for some t < α. Then ht = v, v /∈ {u,w} imply that t /∈ {i,m} . ht = v and
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gt = ht imply that gt = v by (2.28). Assume that τt = p for some p < α. u 6= v and the

τ is finite permutation, therefore p /∈ {i,m, t} . Similarly to the previous step, we obtain

that gp = hp = v. τ is a finite permutation so there are only finitely many nj and qj such

that τnj = qj and gnj = hqj = gqj = v. Let qn be the last qj with this property in this

sequence. τ is a permutation, so τqn = i or τqn = m. Therefore gqn = v implies that hi = v

or hm = v which contradicts the conditions hi = w, hm = u and v /∈ {u,w} .

If v = w, then h ◦ [m, i] = h, i.e., g ◦ [m, i] = g. This contradicts (2.27), so the original

proposition is true.

qed.

Notice that in the 0th step, similarly to the original proof, the condition a · cAi b = 0 is

not used.

As regards the (n+1)th step of the proof, i.e., the definition of the function repn+1, let

us consider Andréka’s proof again (see Part 3 in the proof). The modified construction is:

In order to assure the validity of the property (vi)’ in (2.2), the original construction is

modified. Here equivalence classes of triples are considered instead of single triples. From

the point of view of the original proof, this means that the single triples are classified

according to an equivalence relation to be introduced.

The original construction uses an arbitrary fixed free transfinite enumeration of the

(a, b, i) triples, where a, b ∈ AtA, i < α. In contrast with this, certain restrictions for this

enumeration will be assumed, and the triples will be classified in a sense. The function

repn will be defined in accordance with this classification. Beyond this small change, the

original procedure is not changed, so the original proof works. We shall prove that property

(vi)’ in (2.2) is preserved in every step.

Let us consider the following relation ≈ on R :
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(a1, b1, i1) ≈ (a2, b2, i2) if and only if a2 = sσa1, b2 = sσb1, i2 = σi1 (2.29)

for some permutation σ. ≈ is obviously an equivalence relation. Let us fix representative

points in the equivalence classes and denote by R′ the class of the representative points.

We note that the relation ≈ preserves the inequalities a ≤ cib and b ≤ dij in the

following sense: if (a1, b1, i1) ≈ (a2, b2, i2), then

a1 ≤ ci1b1 if and only if a2 ≤ ci2b2 (2.30)

and

b ≤ dij if and only if sσb ≤ dσi σj . (2.31)

Namely, if a1 ≤ ci1b1, i.e., sσ−1sσa1 ≤ ci1sσ−1sσb1, then by the last property in (2.1)

ci1sσ−1sσb1 ≤ sσ−1cσi1sσb1, therefore applying sσ, sσa1 ≤ cσi1sσb1 so a2 ≤ ci2b2. This

argument is symmetrical. The second property is trivial.

Now it is possible to define a special enumeration of R. If p ∈ R′, then let Rp be the

members of the ≈ -equivalence class with representative point p. So R equals the union of

the sets Rp (r ∈ R′), obviously.

Let us fix an ordering ≤∗ of R′ and fix the following lexicographic extension of ≤∗ to

R :

if q ∈ Rp, then set p ≤∗ q
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if p1 ≤∗ p2 (p1, p2 ∈ R′) and p1 ≈ γ, p2 ≈ λ (γ, λ ∈ R), then let γ ≤∗ λ. (2.32)

Let ρ be an ordinal and let r : ρ→ R be an enumeration of R such that r preserves the

lexicographic ordering ≤∗ and for all n ∈ ρ and (a, b, i) ∈ R there is a m ∈ ρ,m > n such

that r(m) = (a, b, i). Such ρ and r clearly exist.

Now the definition of the function repn+1 is:

We will define repn+1 for this case. In the case of the limit ordinal and the general

definition of the function rep, let repn+1 be the same as the originals in (1.16) and (1.17).

Assume that n is a successor ordinal.

For the representative point p = (a, b, i) (p ∈ R′) let the definition of repn+1 be the

same as the original one, so be the same as the one included in (1.13), (1.14) or (1.15),

depending on the cases discussed there.

Then we extend the definition of repn+1 for the members of the equivalence class in-

cluding the respective representative points depending on the cases included in the original

definition. The motivation of these definitions is that ≈ preserves the respective inequalities

(see (2.30) and (2.31)).

If a � cib, let

repn+1 = repn (2.33)

for all the members of the equivalence class containing (a, b, i).

If a ≤ cib, we define the function repn+1 simultaneously for all the triples (a1, b1, i1)

such that (a1, b1, i1) ≈ (a, b, i).

Assume that a1 = sτa, b1 = sτ b, i1 = τi for some permutation τ .

If b ≤ dij for some j < α, j 6= i, then let
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repn+1(sτ b) = repn(sτ b) ∪ {g (τi / gτj) : g ∈ repn(sτa)} . (2.34)

If b � dij for all j < α, j 6= i, then let

repn+1(sτ b) = repn(sτ b) ∪ {g (τi / uh) : g ∈ repn(sτa)} , (2.35)

where uh is the constant in (1.15) and h denotes the sequence Sτ−1g.

That is, repn+1(sτ b) = Sτ repn+1(b) in (2.34) and (2.35) by definition. In both cases

infinitely many steps of the original proof can be reduced into one schema. The definition

of repn+1 for the representative triple (a, b, i) assures the desired properties of repn+1 for

the members of the equivalence class determined by (a, b, i). For example, such a property

is the one denoted by (iv)’ in the original proof.

The definition of the function rep should be the original (1.17).

We check property (vi)’ in (2.2) for the function rep:

Lemma 2.17 rep(sσe) = Sσrep(e) for every e ∈ AtA, where Sσ is the substitution on

the unit V and σ is a permutation on α – i.e., the property (vi)’ in (2.2) is true for the

function rep.

Proof.

It is proven that if repn(sσe) = Sσrepn(e) for every e ∈ AtA, then

repn+1(sσe) = Sσ repn+1(e) (2.36)

for every e ∈ AtA and successor ordinal n.

If this implication is proven, then by the definition in (1.16) and the induction condition,
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(2.36) is true for every ordinal n. From this and from (2.7) we obtain that rep(sσe) =

Sσrep(e) for every e ∈ AtA, i.e., the proposition of the lemma is true.

To prove (2.36), the definition of repn+1 will be used. Let us consider the representative

point (a, b, i) for the equivalence relation ≈ and consider an arbitrary point (sτa, sτ b, τ i)

being ≈ -equivalent to (a, b, i). Let us consider the cases listed in the definition of repn+1:

Case 1.

If a � cib (i.e., sτa � cτisτ b), then by the definition in (2.33), repn+1 = repn for all

the members of the class containing (a, b, i), therefore the property (2.36) is transmitted

from n to n+ 1.

Case 2.

a ≤ cib (i.e., sτa ≤ cτisτ b) and b ≤ dij for some j and for every i 6= j. We need to prove

(2.36) for e = sτ b, i.e., that

repn+1(sσ(sτ b)) = Sσrepn+1(sτ b) (2.37)

for any permutation σ.

Let us consider the left-hand side of (2.37):

repn+1(sσ(sτ b)) = repn+1(sσ◦τ b) = repn(sαb) ∪ {g (αi / gαj) : g ∈ repn(sαa)} by (2.34),

where α = σ ◦ τ. Here repn(sαb) = repn(sσ(sτ b)) = Sσrepn(sτ b) by induction.

For the right-hand side of (2.37):

Sσ repn+1(sτ b) = Sσ(repn(sτ b) ∪ {g (τi / gτj) : g ∈ repn(sτa)}) =

= Sσ repn(sτ b) ∪ Sσ {g (τi / gτj) : g ∈ repn(sτa)} .

Comparing the above reformulations of the left and right-hand sides, it is sufficient to

prove that

{g (αi / gαj) : g ∈ repn(sαa)} = Sσ {g (τi / gτj) : g ∈ repn(sτa)} . (2.38)
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To prove (2.38), first let us consider the left-hand side. We show that for any finite

permutation β the following is true:

{g (βi / gβj) : g ∈ repn(sβa)} = Sβ {f (i / fj) : f ∈ repn(a)} . (2.39)

But Sβ {f (i / fj) : f ∈ repn(a)} = {(Sβ f) (βi / fj) : f ∈ repn(a)} . Denoting Sβf by

g we obtain that f = Sβ−1g. Further,

(Sβf) (βi / fj) = g (βi /gβj). (2.40)

So

Sβ f (i / fj) = g (βi /gβj). (2.41)

Considering (2.39) if f = Sβ−1g, then f ∈ repn(a) is equivalent to

g ∈ Sβ repn(a) = repn(sβa). So (2.39) is true.

Now let us consider (2.38). On one hand, {g (αi / gαj) : g ∈ repn(sαa)} =

Sα {f (i / fj) : f ∈ repn(a)} = SσSτ {f (i / fj) : f ∈ repn(a)} applying (2.39) for β = α.

On the other hand,

Sσ {g (τi / gτj) : g ∈ repn(sτa)} = Sσ(Sτ ({f (i / fj) : f ∈ repn(a)}) applying (2.39) for

β = τ. Therefore (2.38), so (2.37) is proven.

Case 3.

a ≤ cib (i.e., sτa ≤ cτisτ b) and b � dij (i.e., sτ b � dτi τj) for all j < α, j 6= i.

Similarly to the above arguments, considering the definition in (2.35) instead of (2.34),

we need to prove the following equality rather than (2.38):

{g (αi / uh1) : g ∈ repn(sαa)} = Sσ {g (τi / uh2) : g ∈ repn(sτa)} , (2.42)
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where α = τ ◦ τ1, h1 = Sα−1 g and h2 = Sτ−1 g.

We can prove the following equality by being analogous with (2.39) for an arbitrary

finite permutation β :

{g (βi / uh) : g ∈ repn(sβa)} = Sβ {f (i / uf ) : f ∈ repn(a)} , (2.43)

where uh is the constant in (1.15) and h denotes Sβ−1g.

Namely let us apply the same argument as in the proof of (2.39), but in (2.41) let us

use Sβf (i / uf ) = g (βi / uh) instead of Sβf (i / fj) = g (βi / gβj), where h = Sβ−1 g.

The proof of (2.42):

{g (αi / uh1) : g ∈ repn(sαa)} = Sα {f (i / uf ) : f ∈ repn(a)} =

= SσSτ {f (i / uf ) : f ∈ repn(a)} applying (2.43) for β and α = σ ◦ τ. Further,

Sσ {g (τi / uh2) : g ∈ repn(sτa)} = Sσ(Sτ ({f (i / uf ) : f ∈ repn(a)}) applying (2.43)

for β = τ. Therefore (2.42), so (2.37) is proven.

qed.

Let Dpα denote the polyadic version of the cylindric class Dα.

Lemma 2.18 Dpα = Gwtα.

Proof.

The notation introduced in Chapter 1 is used. Gwtα ⊆ Dpα is trivial. To prove the

converse inclusion, we use the following characterization of Gwtα : y ∈ V implies y ◦ τ

∈ V for every finite transformation τ. But τ can be composed in terms of finitely many

elementary transformations substitution [i / j] and transposition [i, j] . It is sufficient to

prove that V is closed under these transformations. But V is closed under [i / j] because
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V is a Dpα unit. Furthermore, V is a Trsα unit, therefore it is closed under [i, j] too.

qed.

The completion of the proof of Theorem 2.8 is:

In [Fe07a] it is proven that (F5)∗ and (C4)∗ are equivalent under the other Fα axioms.

Andréka and Thompson proved that there is an isomorphism, denoted by rep’, between

the algebra RdcaA and some algebra B’∈ Dα. We proved in Lemma 2.17 that this isomor-

phism preserves the operators sσ for any finite permutations σ on α. Therefore B’ may

be considered as an algebra B in Dpα. Lemma 2.18 implies that B ∈ Gwtα. So rep’ is an

isomorphism between A and a B ∈ Gwtα.

qed.

Gwα denotes the class {RdcaB: B ∈ Gwtα} by definition, where RdcaB denotes the

cylindric reduct of B (see [He-Mo-Ta I.], p. 226). The following claim obviously follows

from Theorem 2.8:

Corollary 2.19 If A ∈ TAα, then RdcaA ∈ IGwα, α ≥ 4.

Main references in this Chapter are: [Fe12a], [Sa-Th] and [Fe11a].
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Chapter 3

Representation theorems for

polyadic-type equality algebras

In this Chapter we deal with “polyadic-type” algebras other than transposition algebras.

We assume that these algebras have only single cylindrifications ci, because the non-

commutativity of cylindrifications (for quasi-polyadic algebras this is only a formal re-

striction, but for polyadic algebras, in general, not). This is the reason for the terminology

cylindric polyadic algebras. While the type of cylindric-type algebras is unique, the type of

polyadic-type algebras depends on the definite subset Q of αα, where the transformation τ

of sτ runs. The following concrete classes of “polyadic-type” algebras will be investigated:

cylindric quasi-polyadic equality, cylindric polyadic equality, cylindric m-quasi-polyadic

equality algebras.

3.1 Cylindric quasi-polyadic equality algebras

The concept of quasi-polyadic algebra was introduced in Halmos [Ha56] (here Definition

3.3). Sain and Thompson proved ([Sa-Th]) that quasi-polyadic equality algebras and alge-

bras in FPEAα (or strong transposition algebras) are definitionally equivalent. Nevertheless,
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it is worth investigating quasi-polyadic algebras in themselves because quasi-polyadic alge-

bra is a well-known class and can be considered as a bridge to the polyadic algebras having

infinite substitution operators.

The following two definitions are closely related to the Definitions 2.1 and 2.2 concerning

transposition algebras.

Definition 3.1 (Cqrsα) The structure

〈A, ∪, ∩, ∼V , 0, V, CVi , S
V
τ , D

V
ij 〉τ∈FTα, i,j<α

is a cylindric quasi-polyadic relativized set algebra if its cylindric reduct is in Crsα, and A

is closed under the substitutions

SVτ X = {y ∈ V : y ◦ τ ∈ X, τ ∈ FTα}

([He-Mo-Ta II.], 5.4.22).

Definition 3.2 (Gwqα) A set algebra in Cqrsα is called a generalized weak quasi-polyadic

relativized set algebra if there are sets Uk, k ∈ K and sequences pk ∈ αUk such that

V =
⋃
k∈K

αU
(pk)
k , where V is the unit.

Recall the classical definition of quasi-polyadic equality algebra (containing general

cylindrification c(Γ), Γ ⊂ α):

Definition 3.3 (QPEAα) By a quasi-polyadic equality algebra of dimension α, we mean

an algebra A=
〈
B, c(Γ), sτ , dij

〉
i,j<α

such that c(Γ) and sτ are unary operations, dij are

constants and the following equations (Q0)-(Q9),(E1)-(E3) are valid in A for every finite

Γ,∆ ( Γ,∆ ⊂ α), τ, σ ∈ FTα and i, j < α :
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(Q0) B = 〈A; +, ·,−, 0, 1〉 is a Boolean algebra

(Q1) x ≤ c(Γ)x

(Q2) c(Γ)(x · c(Γ)(y)) = c(Γ)(x) · c(Γ)(y)

(Q3) c(∅)x = x

(Q4) c(Γ)c(∆)x = c(Γ∪∆)x

(Q5) sIdx = x

(Q6) sσ◦τx = sσsτx

(Q7) sσ(x+ y) = sσx+ sσy and sσ(−x) = −sσx

(Q8) if σ|α∼Γ = τ |α∼Γ then sσc(Γ)x = sτ c(Γ)x

(Q9) c(Γ)sτx = sτ c(∆)x, where ∆ = τ−1[Γ] and τ |∆ is one-one

(E1) dii = 1

(E2) x · dij ≤ s[i/j]x

(E3) sτdij = dτ(i)τ(j).

(see Halmos [Ha57], [Sa-Th], Def. 5, or [He-Mo-Ta II.]).

It is obvious that replacing the general cylindrifications c(Γ) by single cylindrifications

ci, this does not mean any essential change due to the finiteness of the sets Γ. In [Fe13] it

is proven that this usual axiom system is redundant, because axiom (Q8) can be omitted.

.

The following definition is closely related to that of quasi-polyadic equality algebra, but,

as it was mentioned above, this latter is adapted to the non-commutative case of cylindri-

fications (the polyadic axiom (Q4) is missing and (Q9) has changed, see [He-Mo-Ta II.],

5.4.1.

Definition 3.4 (CQEα) A cylindric quasi-polyadic equality algebra of dimension α (α ≥

2) is a structure
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A = 〈A, +, ·, −, 0, 1, ci, sτ , dij〉τ∈ FTα, i.j<α
(3.1)

where +, and · are binary operations, −, ci and sτ are unary operations, 0, 1 and dij are

constants in A such that for every i, j ∈ α, x, y ∈ A, σ, τ ∈ FTα, the following postulates

are satisfied:

(CP0) 〈A, +, ·, −, 0, 1〉 is a Boolean algebra

(CP1) ci0 = 0

(CP2) x ≤ cix

(CP3) ci(x · ciy) = cix · ciy

(CP4) sIdx = x

(CP5) sσ◦τx = sσsτx

(CP6) sσ(x+ y) = sσx+ sσy

(CP7) sσ(−x) = ∼ sσx

(CP8) sσx = sτx, assuming that σi = τi if i /∈ Γ and Γ is such that cix = x if i ∈ Γ

(Γ ⊂ α)

(CP9)∗ cisσx ≤ sσcjx if σ−1∗ {i} equals {j} or the empty set (in this latter case ci is

the identity operator), and the equality holds instead of ≤ if σ is a permutation of α

(E1) dii = 1

(E2) x · dij ≤ s[i / j]x

(E3) sτdij = dτi τj .

Definition 3.5 (CQESα) A strong cylindric quasi-polyadic equality algebra is such a

CQEα that, instead of (CP9)∗, the axiom

(CP9) : cisσx = sσcjx
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is assumed, where σ−1∗ {i} equals {j} or the empty set (in this latter case ci is the identity

operator) and, in addition, the cylindric axiom (C4), i.e., the commutativity of cylindrifi-

cations

cicjx = cjcix if i, j ∈ α

is assumed.

As a consequence of Sain and Thompson’s result (Theorem 1 in [Sa-Th]) TASα (also

FPEAα), CQESα and quasi-polyadic equality algebras are definitionally equivalent (α ≥ 3).

The question arises: which class is the quasi-polyadic counterpart of the class TAα?

The following theorem answers this question ([Fe13, Fe13]):

Theorem 3.6 The axiomatizations of TAα and CQEα are definitionally equivalent

(α ≥ 3).

Proof.

If A ∈ CQEα, then checking the FPEAα (TASα) axioms, the commutativity of the

cylindrifications is used only in the proof of (F5). So, now we only need to prove (F5)∗.

The property sijs
k
mx = skms

i
jx (i, j /∈ {k, m}) is equivalent to the special case of (CP9)*:

cis
j
mx ≤ sjmcix (i /∈ {j,m}) (3.2)

supposing that both properties hold for every possible ordinal in the conditions (see [Fe07b],

Theorem 1). Here we need the direction that (3.2) implies axiom (F5)∗ (in this proof only

the polyadic axiom (Q2) is used in [Fe07b]). Originally, the polyadic axiom (Q9) is applied

in proving axiom (F3). But, (F3) follows from (CP9)*.
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Conversely, assume that A ∈ TAα. We refer to the proof of Theorem 1 in [Sa-Th],

following the applications of axiom (F5) in that proof, and investigating whether (F5) can

be replaced by axiom (F5)∗.

The first occurrence of (F5) is in the proof of the commutativity of the cylindrifications

(Claim 1.1). In CQEα, this latter property fails to be true, therefore we must not use Claim

1.1.

The next occurrences of (F5) are in the Claims 1.2 and 1.3 which state that the operator

sτ can be introduced in the algebra for an arbitrary τ ∈ FTα. These claims are based on

Jonsson’s famous theorem which requires the validity of certain conditions (J1)–(J7). These

properties can obviously be proven in CQEα without (F5) or they are axioms (e.g., (J6) is

exactly (F5)∗). The only critical property is (J4): pijs
k
i x = skj pijx, because the proof of

this property uses axiom (F5) in proving the inequality skj pijx ≤ skj pijsikx (row (16) there).

We show that this property can be proven without (F5):

skjx = ck(x · dkj) holds in TAα (the proof is similar to that of [He-Mo-Ta II.] Thm.

5.4.3). Then

skj pijx = ck(pijx · dkj) = ck(dkj · pijx · dkj). But dkj = pijdki (dkj = sijdkj = pijs
j
idkj =

pijdki by (F9)). Thus, ck(dkj · pijx · dkj) = ck(dkj · pijx · pijdki) = ck(dkj · pij(x · dki)) ≤

ck(dkj · pijci(x · dki)) = skj pijs
i
kx.

Thus, the existence of the operator sτ is proven.

The next part of the proof in Theorem 1 in [Sa-Th] is the proof of the CQEα axioms.

The only non-trivial case is the proof of the polyadic axiom (Q9), namely (F5) occurs in

Lemma 1.5 (iii). This part (iii) states that cisτx = sτ cix if τi = i. The proof uses that

cis
j
mx = sjmcix (i /∈ {j,m}). But, instead of this, we can use property (3.2) above. As it is

mentioned above, (F5)∗ implies this property (see [Fe07a]) and the proof uses only (CP3)

and cidij = 1 (this latter is trivially true in CQEα). Therefore in Lemma 1.5 (iii) only the

inequality cisτx ≤ sτ cix (where τi = i) holds instead of equality. Using this inequality in

the remainder of the proof of (Q9), we obtain exactly (CP9)* instead of (Q9).

qed.
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Definition 3.7 An algebra A with the type of CQEα is r-representable, if A ∈ ICqrsα.

Lemma 3.8 The following propositions (i) and (ii) hold:

(i) If A ∈ Cqrsα, then A ∈ Gwqα if and only if x ∈ V implies x ◦ τ ∈ V for every finite

τ on α.

(ii) If B ∈ CQEα and B is r-representable, then B∈ IGwqα.

The proposition can be reduced to Lemma 2.7, noticing that for finite τ on α, the

condition x ◦ τ ∈ V is equivalent to the pair of conditions

x ◦ [i, j] ∈ V and x ◦ [i/j] ∈ V.

The following basic representation theorem follows from Theorem 2.8, Theorem 3.6 and

from the proof of Lemma 3.8.

Theorem 3.9 (Main r-representation theorem for algebras in CQEα):

A ∈ CQEα if and only if A ∈ IGwqα

where α ≥ 3.

The reformulation of the theorem is:

The class Gwqα is first-order axiomatizable by a finite schema of equations and the

axioms can be the CQEα axioms.
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By definition, the class CQESα is obtained from CQEα if axiom (CP9) is replaced by

(CP9)∗, and, (C4) is assumed. Thus, we obtain the following:

Corollary 3.10 A ∈CQESα if and only if

A ∈ I(Gwqα ∩Mod {(CP9), (C4)})

(α ≥ 3).

Let us denote by
•

Gwqα the subclass of Gwqα such that the disjointness of subunit is

assumed. CQESα is not representable in the classical sense (see[Sa-Th]), thus Gwqα in the

Corollary cannot be replaced by
•

Gwqα. But, recall that the locally finite algebras in CQESα

are already representable in the classical sense ([Ha56], [Ha57]).

3.2 Cylindric polyadic and m-quasi polyadic equality

algebras

In this Section we study α-dimensional “polyadic-type” equality algebras having infinite

substitution operators (sτ or Sτ ). Here “polyadic” is used in the classical, Halmos polyadic

sense, except for the fact that the algebra contains only single cylindrifications. From

now on, the dimension α is assumed to be infinite (because the finite dimensional case

is closely connected to the quasi-polyadic case). The other ordinals included later in the

chapter (e.g., m) are infinite, as well. These investigations focus on the analysis of the

substitution operators with infinite transformations and equalities (in another terminology,

on transformation systems with equalities, see [Da-Mo]). The techniques needed for these

investigations are different from the case of finite transformations.

First, some classes of set algebras are introduced: the classes Cprsα, Gpα, Gpreg
α , mCprsα,

Gpwα and Gpwreg
α .
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The following definition is a variant of that of Cqrsα. It includes αα instead of FTα,

where α is infinite.

Definition 3.11 (Cprsα) The structure

〈A, ∪, ∩, ∼V , 0, V, CVi , S
V
τ , D

V
ij 〉τ ∈ αα, i,j<α

is a cylindric polyadic relativized set algebra if its cylindric reduct is in Crsα, and A is closed

under the substitutions

SVτ X = {y ∈ V : y ◦ τ ∈ X, τ ∈ αα}

(see [He-Mo-Ta II.], Definition 5.4.22).

Obviously, the cylindric reduct of a Cprsα is a Crsα.

A dimension set ∆x of an element x of a cylindric or polyadic-type algebra is the set

(i : cix 6= x, i < α) .

Definition 3.12 (Gpα and Gpreg
α ) A set algebra A in Cprsα is called a generalized

polyadic relativized set algebra (A ∈ Gpα) if there are sets Uk and k ∈ K, such that

V =
⋃
k∈K

αUk, where V is the unit. An algebra A in Gpα is called regular (A ∈ Gpreg
α ) if,

for each X ∈ A, x ∈ X and y ∈ V, the condition (∆X ∪ 1) � x ⊆ y implies y ∈ X.

Remarks

a) One of the differences between the classical cylindric class Gsα (generalized cylindric

set algebras, see [He-Mo-Ta II.], Definition 3.1.2) and Gpα is that in Gpα the pairwise

disjointness of the Uk’s is not required.
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b) The cylindric reduct of a Gpα is the “locally square” cylindric set algebra Gα, intro-

duced by Németi (see [Nem86], [An-Go-Ne] and [And]).

c) The concept of regularity (see [He-Mo-Ta II.], Definition 3.1.1 (viii)) compensates, in

a sense, for the lack of general cylindrification CΓ (Γ ⊂ α) because if such a cylindrification

exists, then (∆X ∪ 1) � x ⊆ y implies that y ∈ C(α∼(∆X∪1))X = X.

d) The subclass of Gpα such that the pairwise disjointness of the Uk’s is assumed is

denoted by
•

Gpα.

Assume that m < α is infinite and fixed. Given a set U and a fixed sequence p ∈ αU ,

the set

α
mU

(p) = {x ∈ αU : x and p are different at most in m-many members}

is called the m-weak space (or m-weak Cartesian space) determined by p and U . Here p is

called a support of the m-weak space and U is called the base.

Recall that the definition of the weak space, in notation αU (p) (see Chapter 1 here, and

[He-Mo-Ta II.], 3.1.2) is the ω-version of the above definition if the term “at most in” is

replaced by “less than” in it.

Definition 3.13 A transformation τ defined on α is said to be an m-transformation

(m ≤ α is infinite and fixed) if τi = i except for m-many i ∈ α. The class of m-

transformations is denoted by mTα.

Definition 3.14 (mCprsα) If, in the definition of Cprsα, αα is changed by mTα (m < α

infinite and fixed), then the definition of the class mCprsα is obtained.

Obviously, αCprsα is Cprsα. We note that there exists a generalized definition of Cprsα

such that, instead of αα, the domain of the τ ′s is a fixed subset Q of αα. In this case it is

necessary to assume certain compatibility conditions for Q (see [Sai]).

49

               dc_597_12



Now, we can summarize the types of polyadic-type algebras included in the Thesis: the

types of Trsα, Cqrsα, Cprsα and mCprsα.

Definition 3.15 (mGwpα and mGwp
reg) A set algebra A in mCprsα (m < α infinite and

fixed) is called a generalized m-quasi (m < α) polyadic relativized set algebra (A ∈mGwpα)

if there are sets Uk, k ∈ K and sequences pk ∈ αUk such that V =
⋃
k∈K

α
mU , where V is

the unit. The relation of mGwp
reg
α and mGwpα is similar to that of mGpα and mGp

reg
α .

The characterizations of the classes mGwpα and Gpα are the following ones:

Lemma 3.16

(i) If A ∈ mCprsα, then A ∈ mGwpα if and only if x ∈ V implies x ◦ τ ∈ V for every

transformation τ, τ ∈ mTα. Another equivalent condition for A ∈ mGwpα is: SτV = V for

every transformation τ, τ ∈ mTα.

(ii) If A ∈ Cprsα, then A ∈ Gpα if and only if x ∈ V implies x ◦ τ ∈ V for every

transformation τ, τ ∈ αα. Another equivalent condition for A ∈ Gpα is: SτV = V for

every τ, τ ∈ αα (see [And]).

This lemma is analogous with the Lemma 3.8. As regards the equivalency of the first

property and SτV = V in (i), for example, the condition x ∈ V implies x ◦ τ ∈ V for every

transformation τ, τ ∈ mTα means that V ⊆ SτV. Conversely, SτV ⊆ V is always holds in

mGwpα.

Now, some classes of abstract algebras are introduced: the classes CPEα, CPESα and

mCPEα.

Definition 3.17 (CPEα) If, in the definition of CQEα, FTα is changed by αα (α is

infinite), and, instead of (CP8) the axiom
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(CP8)∗ : d · sσx = d · sτx if the product d of the elements dτi σi (i ∈ 4x)

exists.

is assumed, then the concept of cylindric polyadic equality algebra of dimension α is ob-

tained.

Definition 3.18 (CPESα) A strong cylindric polyadic equality algebra of dimension α

is an algebra in CPEα such that instead of (CP9)∗ the axiom

(CP9) : cisσx = sσcjx

is required if σ−1∗ {i} equals {j} or the empty set (in the latter case cj is the identity) and,

in addition, the axiom

(C4) : cicjx = cjcix

is assumed, where α is infinite, i, j ∈ α, σ ∈ αα.

Definition 3.19 (mCPEα) If, in the definition of CPEα the transformations τ and σ

are assumed to be m-transformations (m < α infinite and fixed), i.e., τ, σ ∈ mTα, then the

concept of cylindric m-quasi-polyadic equality algebra of dimension α (mCPEα) is obtained.

Lemma 3.20 mGwp
reg
α ∪ Gpreg

α ⊂ CPEα

Proof.
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As examples, we check the validity of (CP8)∗ and (CP9)∗ for an algebra A ∈ Gpreg
α .

Axiom (CP8)∗. Assume that z ∈ d ∩ SσX, where X ∈ A. Then, Sσz ∈ X, by definition.

z ∈ d implies zτi = zσi if i ∈ ∆X, i.e., (Sσz)i = (Sτz)i if i ∈ ∆X. The regularity of A

implies that Sτz ∈ X, as well. Thus, z ∈ SτX. Therefore z ∈ SσX implies z ∈ SτX, i.e.,

SσX ⊆ SτX. By symmetry, SσX = SτX.

Axiom (CP9)∗. Assume that z ∈ CiSσX. Then, ziu ∈ SσX for some u. By definition,

Sσz
i
u ∈ X. Notice that Sσz

i
u = (Sσz)

j
u, where {j} = σ−1∗ {i} and Sσz ∈ V (the latter follows

from the facts that RgSσz = Rgz and the definition of a Gpα unit). Thus, (Sσz)
j
u ∈ X, as

well. (Sσz)
j
u ∈ X means that z ∈ SσCjX. Therefore CiSσX ⊆ SσCjX.

We check the converse inclusion, assuming that σ is a permutation of α. Assume that

z ∈ SσCjX, where {j} = σ−1∗ {i} . This means that (Sσz)
j
u ∈ X for some u. If σ is a

permutation, then Rg(Sσz)
j
u = Rg ziu, therefore by definition of a Gpα unit, ziu ∈ V. In this

case, the argument above can be repeated, i.e., (Sσz)
j
u = Sσz

i
u implies z ∈ CiSσX. Thus,

SσCjX ⊆ Ci SσX.

qed.

Remarks

a) An algebra in Cprsα satisfies all the CPESα axioms, with the possible exceptions

of the axioms (C4), (CP5), (CP7), (CP8)∗, (CP9) and (E3) (see [He-Mo-Ta II.], Theorem

5.4.15). mGwp
reg
α ∪ Gpreg

α * CPESα, because the CPESα axioms (C4) and (CP9) fail to hold

for the union on the left-hand side. But,
•

mGwp
reg
α ∪

•
Gpreg

α ⊆ CPESα. Notice that mGwpα∪

Gpα satisfies all the CPEα axioms except for (CP8)∗.

b) We note that CPEα and CPESα can be conceived of as so-called transformation

systems equipped by diagonals and cylindrifications (see [Da-Mo], 3§ and 4§).

Definition 3.21 An algebra A with the type of CPEα is r-representable if A ∈ ICprsα.

An algebra A with the type of mCPEα is r-representable if A ∈ I mCprsα.
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The next lemma motivates the representation theorems. For r-representable algebras

it gives necessary conditions for the representants.

Lemma 3.22 The following propositions ( i) and ( ii) hold:

(i) If B is r-representable and B ∈ mCPEα, then B ∈ I mGwpα

(ii) If B is r-representable and B ∈ CPEα∪ CPESα, then B ∈ IGpα.

Proof.

(i) By r-representability, B ∈ IA for some A ∈ mCprsα implies that f(sλ1) = Sλf1,

where f is an isomorphism between B and A, and λ is an arbitrary m-transformation (i.e.,

λ ∈ mTα). But sλ1 = 1 and f1 = V, and therefore f1 = SλV, i.e., V = SλV. By Lemma

3.16 (i), B ∈ I mGwpα.

(ii) The proof is similar to the previous one, but we have to use Lemma 3.16 (ii) instead

of (i).

qed.

Definition 3.23 Assume that m is infinite and m < α. An algebra A ∈ mCPEα is

locally-m dimensional (locally-m, for short), if |∆b| ≤ m for each b ∈ A. The class of

α-dimensional locally-m algebras is denoted by Lmα.

The main r-representation theorems concerning cylindric polyadic equality algebras are

the following ones (see [Fe12b, Fe12b], [Fe11b, Fe11b]):

Theorem 3.24 (Representation theorem for mCPEα∩ Lmα)

A ∈ mCPEα∩ Lmα if and only if A ∈ I(mGwp
reg
α ∩ Lmα), where m is infinite, m < α.

This theorem generalizes Halmos’s classical theorem that locally finite, infinite dimen-

sional, quasi-polyadic algebras are representable (see [Ha56]). Similarly to Halmos’s theo-

rem, where the local finiteness condition implies that the quasi-polyadic condition can be

omitted, in the theorem above the (implicit) condition m-quasi can be omitted.
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Let α be infinit.

Theorem 3.25 (Representation theorem for CPEα and CPESα)

(i) A ∈ CPEα if and only if A ∈ IGpreg
α .

(ii) A ∈ CPESα if and only if A ∈ I(Gpreg
α ∩ Mod{( C4), (CP9)}).

We return to the proofs of the above theorems in Part 2 dealing with neat embedding

theorems.

This result, in a sense, generalizes Andréka’s result ([And]) concerning the finite scheme

axiomatizability of the class Gα of finite dimensional locally square cylindric algebras (α

is infinit).

Theorem 3.25 gives a kind of answer for the problem asked in [An-Go-Ne] and [And]

whether Gα is a variety. And, Theorems 3.24 and 3.25 answer the other problem, whether

transformation systems equipped with equalities and cylindrifications are representable

(see [Kei] and [Slo]).

We do not know whether r-representation theorem exists for classical polyadic equality

algebras (having infinite cylindrifications).

Remarks

a) The classes CPESα and CPEα are not representable in the classical sense (see [Da-Mo],

[Slo]), therefore the class Gpreg
α cannot be replaced by

•
Gpreg

α in the above representation

theorems. Similarly, mGwp
reg
α cannot be replaced by

•
mGwpα in Theorem 3.24.

b) With the second proposition of Theorem 3.25, the following cylindric algebraic the-

orem can be associated: cylindric algebras satisfying the merry-go-round axioms are repre-

sentable by set algebras in Crsα∩ Mod{(C4), (C6)} (or in Crsα∩ CAα, see [He-Mo-Ta II.],

3.2.88).

Finally, we state a consequence of Theorem 3.25 for cylindric algebras.
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Corollary 3.26 If B is the cylindric reduct of some A ∈ CPEα, where α is infinite,

then B is r-representable and B ∈ IGreg
α .

Concerning the concept of cylindric reduct, see below Definition 4.1.

Main references in this Chapter are: [Fe12a], [And], [Sa-Th], [Ha57], [Da-Mo], [Fe12b],

[Nem86], [An-Go-Ne] and [Sai] .
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Part II

Neat embedding theorems and

their applications
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Chapter 4

Neat embedding theorems for

cylindric-type algebras

The classical neat embedding theorem of cylindric algebras says: A is representable if

and only if A ∈ SNrαCAα+ε, where ε ≥ ω is an arbitrary but fixed ordinal, α ≥ 2,

and SNrαCAα+ε is the class of CAα’s that have the neat embedding property. The fol-

lowing question arises: can this theorem be generalized from classical representability to

r-representability? In this Chapter, this question is investigated. At the end of the Chap-

ter, some conclusions are drawn about the classical neat embedding theorem with respect

to itself.

Definition 4.1 The α-reduct of a β-dimensional (α < β) cylindric algebra

C = 〈A,+, ·,−, 0, 1, ci, dij〉i,j<β

is the cylindric algebra A = 〈A,+, ·,−, 0, 1, ci, dij〉i,j<α, in notation A = RdαC. The neat

α-reduct of C is the algebra D = 〈D,+, ·,−, 0, 1, ci, dij〉i,j<α, where D = {b ∈ A : cib = b

for every α ≤ i < β}, in notation D = NrαC.

Definition 4.2 An A ∈ CAα is neatly embeddable into a C ∈ CAβ (α < β) if there is
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an embedding e of A into RdαC such that we have ciea = ea for every a ∈ A and for every

α ≤ i < β. So A is neatly embeddable into C, if it is isomorphic to a subalgebra of NrαC,

i.e., A ∈ SNrαC.

If K is a fixed subclass of CAβ, then SNrαK denotes the class of the algebras neatly

embeddable into some member of K, where S denotes forming subalgebra. These definitions

can be reformulated analogously for cylindric-type algebras.

Recall that CNA+
α denotes the class of cylindric-type algebras where the commutativity

of the single substitutions is assumed instead of that of the cylindrifications, furthermore,

the MGR is supposed (Definition 1.9). In this Chapter we use the short notation Fα for

CNA+
α .

Two unusual classes of algebras are introduced, denoted by Fαα+ε and Mα
α+ε. These

classes are obtained from Fα+ε and CAα+ε, respectively. Instead of the axioms (C4) and

(C6) certain consequences of them are postulated moreover, the schemas of these conse-

quences are restricted to certain ordinals depending on α and ε. These axiom schemas may

be considered as many sorted schemas.

Definition 4.3 (Fαα+ε) The axioms of Fαα+ε are obtained from those of Fα+ε if axioms

(C4), (C6) and MGR are replaced by the axioms (C−4 ), (C−6 ) and MGR− below, where

α ≥ 3, ε ≥ 1 and α+ ε is denoted by β:

(C−4 ) is the set of the following four properties:

(C−4 )a) sims
j
nx = sjnsimx if i, j,m, n ∈ β, i 6= j except for two cases: i, j ∈ α, m /∈ α

and i, j ∈ α, n /∈ α

(C−4 )b) sims
j
nx ≤ sjnsimx if i, j, n ∈ α, m /∈ α, (i, j, n, m are different)

(C−4 )c) dik · sims
j
nx ≤ sjnsimx if i, j, k ∈ α, n /∈ α, (i, j, k, n, m are different)

(C−4 )d) cicmx = cmcix, m /∈ α
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(C−6 ) is the set of the diagonal properties in (1.1) with the following restriction for

property d., denoted by (C−6 )d.:

cidij = 1 if i, j ∈ β, except for the case i ∈ α, j /∈ α

MGR− : MGR restricted to α.

Another notation for Fαα+ε is Fα, α+ε.

Definition 4.4 (Mε
α+ε) This class is obtained from Fαα+ε if we assume axiom (C4) and

(C6) for the α-reduct of Fαα+ε (α ≥ 3, ε ≥ 1).

Obviously Mα
α+ε ⊆ Fαα+ε and, the α-reducts of the algebras in Fαα+ε and Mα

α+ε are

algebras in Fα and CAα respectively. A generic example for an algebra in Fαα+ε will be

shown in the proof of Theorem 4.6.

Remark

The class Fαα+ε is essentially different from the class CAα+ε. For example, the equation

cidim = 1 is not necessarily true in Fαα+ε if i ∈ α, m /∈ α. Also the equations cjcidim = cidim

or cjcicjdjm = cicjdjm are not necessarily true in Fαα+ε (see the proof of Theorem 4.6). For

example, the latter equation may be considered as a special case of cjcicjb = cicjb which

is not true in Fαα+ε in general.

Recall that an A ∈Fα is called r-representable if A ∈ IDα. The following two the-

orems are necessary and sufficient parts of a Main neat embedding theorem concerning

r-representability (Corollary 4.7 due to the present author):

Theorem 4.5 If A ∈ SNrαF
α
α+ε, then A ∈ IDα, where α ≥ 4, ε is any fixed infinite

ordinal.

Theorem 4.6 If A ∈ Dα, then A ∈ SNrαF
α
α+ε for any fixed α ≥ 4, ε ≥ 2.

These theorems will be proven below.
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Theorem 4.5 and Theorem 4.6 together imply the following neat embedding theorem

for r-representability:

Corollary 4.7 Let A ∈ Fα (α ≥ 4) and let ε be any fixed infinite ordinal. Then the

following properties (i) and (ii) are equivalent:

(i) A is r-representable (i.e., A ∈ IDα)

(ii) A ∈ SNrαF
α
α+ε.

The following proposition is an easy consequence of Theorem 4.6 and the RTA theorem:

Corallary 4.8 Fα ∈ SNrαF
α
α+ε for ε ≥ 2, α ≥ 4 (see [Fe07a]).

The following theorems are variants of Theorems 4.5 and 4.6, they are necessary and

sufficient parts of a neat embedding theorem concerning r-representation and cylindric

algebras. Since, recall that an A ∈ CAα is r-representable if A ∈ ICrsα, i.e., A ∈ ICrsα∩CAα.

Theorem 4.9 If A ∈ SNrαM
α
α+ε, α ≥ 4, then A ∈ ICrsα ∩ CAα, where ε is any fixed

infinite ordinal.

Theorem 4.10 If A ∈ ICrsα ∩ CAα, α ≥ 4, then A ∈ SNrαM
α
α+ε for any fixed ε ≥ 2.

* * *

Now we come to the proofs of Theorem 4.5 and Theorem 4.6. First Theorem 4.5 is

proved.

The outline of the proof is: We define a Dα-unit, denoted by V , then we define an

embedding of A into the full set algebra in Dα with unit V . To perform this, some lemmas

are needed.

60

               dc_597_12



Let us fix an algebra B ∈ Fαα+ε such that A is a subalgebra of the neat α-reduct of B.

First, we introduce some concepts needed in the proof:

Let τ be a transformation on α + ε such that τi0 = m0, τi1 = m1, . . . , τin−1 = mn−1,

else τi = i if i /∈ {i0, . . . , in−1}. We refer to {i0, . . . , in−1} as the domain of τ (Dom τ), and

to {m0, . . . ,mn−1} as the range of τ (Rg τ). τ defines a unary operator sτ on B as follows:

sτ = si0mi . . . s
in−1
mn−1 .

Such a transformation sτ is called an admitted transformation if Dom τ ⊆ α and

Rg τ ∩ α 6= ∅ (this latter is equivalent to Rg τ ⊆ β ∼ α if β = α+ ε).

We refer to the single substitutions sin contained in sτ as the members of sτ . Let R be

the set of the admitted transformations on B.

A Boolean ultrafilter F in B is perfect if, for any element of the form sτ cjx included

in F , where j ∈ α, x ∈ A and sτ is any admitted transformation, there exists an m /∈ α ∪

Rg τ such that sτs
j
mx ∈ F .

As is known, neat embeddability into ω extra dimensions implies neat embeddability

into any infinite number of infinitely many extra dimensions, i.e., SNrαF
α
α+ε =SNrαF

α
α+ω.

Therefore from now on, we can assume that ε > max(α, |A|) and ε is infinite.

Lemma 4.11 Let a be an arbitrary, but fixed non zero element of A and ε > max(α, |A|).

Then there exists a perfect ultrafilter F in the algebra B ∈ Fαα+ε such that a ∈ F .

Proof.

Henkin’s proof for completeness is adapted to the axioms of Fαα+ε.

Let

X = {sτ cjy : τ ∈ R, j ∈ α, y ∈ A}.

Let β denote the ordinal α + ε. By condition, ε > max(|A|, α), ε is infinite, therefore

α+ ε = ε (β = ε) and |X| = β. Let ρ : β → X be a fixed enumeration of X.
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Let F0 be the Boolean (BA) filter of B generated by a. Now we define recursively an

increasing sequence 〈Fi : i < β〉 of proper BA filters of B.

Let n be a fixed ordinal (n < β). Assume that Fi (0 ≤ i < n− 1) has been defined.

Let ρn = sτ cjy, where τ ∈ R, j ∈ α and y ∈ A.

If n is a limit ordinal, then let Fn =
⋃
i<n

Fi.

And, let 〈mn : n < β, mn < β, α < mn〉 be a sequence of ordinals such that mn /∈

α ∪
⋃
i<n

( dim ρi)∪ Rg τ .

Such a sequence mn exists because n < β (= ε) and the finiteness of (dim ρk) ∼ α

imply that
⋃
i<n

( dim ρi) ∼ α < ε. Further Rg τ is finite and ε is infinite.

If n is a successor ordinal, let Fn be the filter generated by the set

Fn−1 ∪ {sτ cjy → sτs
j
mny}

where y ∈ A. Obviously Fi ⊆ Fn if i < n.

We show that Fn is a proper filter. The only case worthwhile considering is the case

when n is a successor ordinal. So assume that Fn−1 is proper and assume, seeking a

contradiction, that Fn is not.

Let m denote now mn. Suppose, on the contrary, that −(sτ cjy → sτs
j
my) belongs to

Fn. The property of generating filters in Boolean algebras implies that there are finitely

many elements in Fn−1 such that

a (sτ1cj1y1 → sτ1s
j1
m1
y1) . . . (sτkcjkyk → sτks

jk
mk
yk) ≤ −(sτ cjy → sτs

j
my) (4.1)

where y1, y2, . . . , yk, y are in A. Let us apply c∂m to both sides of this inequality (where c∂m

denotes the operator −cm−).

If x is any factor of the left-hand side, then the condition m /∈dim ρk, x ∈ Fn−1 in the

62

               dc_597_12



construction imply that

cm(sτicjiyi → sτis
ji
miy) = sτicjiyi → sτis

ji
miy. (4.2)

But (4.2) is true for c∂m instead for cm, using that cm(−cmx) = −cmx, x ∈ B. Thus

applying c∂m to the left-hand side of (4.1), it does not change and it must be different from

0 because Fn−1 is a proper one. Here we used that c∂m(u + v) = c∂mu + c∂mv, which is a

consequence of (C3), and therefore it is true in Fαα+ε.

Applying c∂m to the right-hand side of (4.1), we show that it is zero. We have

c∂m(−(sτ cjy → sτs
j
my)) = −[cm(−sτ cjy) + sτs

j
my)] = (4.3)

−[cm(−sτ cjy) + cmsτs
j
my] (4.4)

because cm(u+ v) = cmu+ cmv.

On one hand, by m /∈ Dom τ , (C−4 )d) and (4.16)

cm(−sτ cjy) = cm(−cmsτ cjy)

and here

cmsτ cjy = sτ cjcmy = sτ cms
j
mcmy

therefore

cm(−sτ cjy) = −sτ cmsjmcmy (4.5)

by cm(−cmx) = −cmx.

On the other hand, similarly, for cmsτs
j
my, i.e., for cmsτs

j
mcmy

cmsτs
j
mcmy = sτ cms

j
mcmy. (4.6)
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From (4.5) and (4.6) we obtain that (4.3) is zero. Therefore applying c∂m to the right-

hand side of (4.1), we show that it is zero. It is a contradiction, because the left-hand side

is different from zero. It has been shown that Fn is a proper filter, in fact.

Now we have a sequence G0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . of proper filters. Now

let D = ∪{Fn : n < β}. Then D is a proper filter, too. Let F be the ultrafilter generated

by this filter. It is easily seen that F is a desired ultrafilter including the element a.

qed.

Let F be any fixed perfect ultrafilter. Let us consider the following equivalence relation

≡ on β ∼ α:

m ≡ n (m,n ∈ β ∼ α) if and only if dmn ∈ F. (4.7)

The axioms (C5), (C6)a. and (C6)b. ensure that ≡ is an equivalence relation. Denote

by Π the set of the equivalence classes and let us denote by M , N , L, . . . the classes

m/ ≡, n/ ≡, l/ ≡ . . ., respectively.

First we prove three useful properties:

Lemma 4.12 Assume that sν , sσ and sτ are admitted substitutions. The following

properties (i), (ii) and (iii) are true:

(i)

sνs
j
msσz = sνs

j
msσs

j
mz, (4.8)

where j /∈ Dom σ, i.e., supplying sνs
j
msσ by sjm on the right-hand side, “nothing changes”,

(ii)

sτz ∈ F if and only if sτs
j
mz ∈ F (4.9)

if j /∈ Dom τ , j ∈ α and djm ∈ F , m ∈ β ∼ α,
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(iii)

For every i ∈ α there exists a unique m/ ≡, m /∈ α such that dim ∈ F. (4.10)

Proof.

(i)

sνs
j
msσz

def. of sjm= sνs
j
m(djm · sσz)

(C6)c. and (C3)
= sνs

j
msσ(djm · z) (4.11)

because j /∈ Dom σ. But really sνs
j
msσ(djm · z)

(C7)
= sνs

j
msσ(djm · sjmz)

(4.11)
= sνs

j
msσs

j
mz .

(ii) Similarly to the proof of (i), djm · sτu = sτ (djm · u). Therefore

djm · sτsjmz = sτ (djm · sjmz)
(C7)
= sτ (djm · z) = djm · sτz.

So djm ∈ F implies that sτs
j
mz ∈ F if and only if sτz ∈ F .

(iii) Namely, 1
(C6)d.

= cjdji ∈ F (j 6= i) and the perfect ultrafilter property imply that

sjmdji ∈ F for some m /∈ α. But sjmdij = cj(djm · dji)
(C6)b.

≤ cjdmi
(C6)c.

= dmi implies that

dmi ∈ F .

If dim ∈ F and din ∈ F for different n and m, then n ≡ m. Namely dim · din ∈ F and

dim · din ≤ dmn, so really dmn ∈ F . So by (4.7), with every i ∈ α an equivalence class with

respect ≡ can be uniquely associated.

qed.

Now, we define a Dα-unit V , as we indicated in the outline of the proof. The members

of the alpha-sequences in V will be equivalence classes with respect to ≡. We define V by

“subunits”.

For the fixed y, y ∈ A, y 6= 0, let us consider a fixed ultrafilter Fy containing y. Such a

filter exists by Lemma 4.11. With y and Fy we associate a subset Wy of V in the following

way (we omit the index y if misunderstanding is excluded):
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Let the support of Wy be an α-sequence Y such that Yi is the equivalence class in Π

associated with i by (4.10). Let

Wy = {fτY : sτ1 ∈ Fy, sτ is admitted} , (4.12)

where fτY is defined in the following way: with the admitted substitution sτ = sins
j
m . . . skp

and let us associate the α-sequence

(((Y i
N )jM ) . . .)kP ,

where N,M, . . . , P are the classes in Π containing n,m, . . . , p, respectively, i.e., the classes

n/ ≡, m/ ≡, . . . , p/ ≡. Here the meaning of Y i
N is the usual, i.e., (Y i

N )i = n/ ≡ and (Y i
N )j =

Yj if j 6= i. We denote the sequence Y i
M by f iMY too, so the sequence (((Y i

N )jM ) . . .)kP can

be denoted by fkP . . . f
j
Mf

i
NY or by fτ Y , for short.

Lemma 4.13 The definition (4.12) of Wy is sound and Wy is a subunit with support

Y .

Proof.

We show that the definition (4.12) does not depend on the choice of the representative

points, i.e.,

sin1
sjm1

. . . skp11 ∈ Fy if and only if sin2
sjm2

. . . skp21 ∈ Fy (4.13)

where n1 ≡ n2, m1 ≡ m2, . . . , p1 ≡ p2 (i.e., dn1n2 , dm1m2 , . . . , dp1p2 ∈ Fy). Namely, for

example,

dn1n2 · sin1
sjm1

. . . skp11
(C3)
= sin1

(dn1n2 · sjm1
. . . skp11)

def. of sin1=

= ci(din1 · dn1n2 · sjm1
. . . skp11)

(C6)b.

≤ ci(din2 · sjm1
. . . skp11) = sin2

sjm2
. . . skp21.
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But dn1n2 ∈ Fy and sin1
sjm1 . . . s

k
p11 ∈ Fy imply sin2

sjm2 . . . s
k
p21 ∈ Fy. Repeating this

procedure, multiplying by the elements dm1m2 , . . . , dp1p2 step by step, we obtain that

sin2
sjm2 . . . s

k
p21 ∈ Fy. The proof of the other implication in (4.13) is similar.

Now it is shown that Y ∈Wy. Namely, we choose the relativized identity for τ in (4.12),

i.e., let sτ = sins
j
m . . . skp such that din, djm, . . . , dkp ∈ Fy. Then sτ1 = sins

j
m . . . skp1 =

cicj . . . ck(din · djm · . . . · dkp) ≥ din · djm · . . . · dkp ∈ Fy, so really sτ1 ∈ Fy. It is obvious

that Wy is a subunit of a Crsα, with support Y .

qed.

It will be proved in Lemma 4.17 that V is a Dα unit.

We continue to realize our plan for the proof. Let the definition of the expected em-

bedding h′ of A into the full Crsα with unit V be

hz = {fτY : sτz ∈ F, sτ is admitted}, (4.14)

where z ∈ A and h denotes the restriction of h′ to the subunit Wy.

Two remarks concerning the definitions (4.12) and (4.14) are:

a) Wz = h1, by definition.

b) Notice that hz ⊆ Wy because sτz ≤ sτ1, therefore sτz ∈ Fy imply that sτ1 ∈ Fy.

Therefore really fτY ∈Wy, by definition.

It will be shown in Lemma 4.16 that h′ is really an embedding of A. But first, in

Lemma 4.14 below we check that the definition in (4.14) is sound. That is, we prove

that the definition does not depend on the choice of τ (especially from the choice of the

representatives concerning ≡).

Lemma 4.14 Assume that E ∈ Fαα+ε. The following two properties are true:

sj0t s
j1
t . . . s

jn−1

t sj0m0
sj1m1

. . . sjn−1
mn−1

z = sj0t s
j1
t . . . s

jn−1

t sk0p0s
k1
p1 . . . s

kn−1
pn−1

z, (4.15)
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where z ∈ C, j0, j1, . . . , jn−1 ∈ α are distinct, t /∈ {j0, j1, . . . , jn−1}, m0,m1, . . . ,mn−1 ∈

β ∼ α, and the sequence sk0p0s
k1
p1 . . . s

kn−1
pn−1 is a permutation of the sequence sj0m0s

j1
m1 . . . s

jn−1
mn−1 ,

furthermore

cms
j
mcmz = cjcmz (4.16)

j ∈ α, m /∈ α.

Proof of (4.15): Consider the case n = 2. We prove that sjts
i
ts
j
msinz = sjts

i
ts
i
ns
j
mz. But

sjts
i
ts
j
ms

i
nz

def. of sjt= sjt (djt · sitsjmsinz)
(C6)c.

= sjts
i
t(djt · sjmsinz)

(C−4 ) c)

≤ sjts
i
ts
i
ns
j
mz).

The proof of the converse is the same.

The proof of the general case is similar because we can change any neighboring members

of sj0m0s
j1
m1 . . . s

jn−1
mn−1 making use of (C6)c. and (C−4 ) c) and the fact that j0, j1, . . . , jn−1 and

t are different.

Proof of (4.16):

cms
j
mcmz =

= cmcj(djm · cmz)
(C−4 ) d)

= cjcm(djm · cmz)
(C3)
= cj(cmz · cmdjm)

(C−6 )d.
= cjcmz.

qed.

Let the admitted substitutions sτ with the property sτ1 ∈ Fy be called realized substitu-

tions.

The origin of this definition is that Wy is obtained in (4.12) in terms of this kind of

substitutions only. The substitutions in (4.14) are also this kind of substitutions.
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Fix the subunit Wy (W , for short) corresponding to the perfect ultrafilter Fy (F , for

short).

Lemma 4.15 If fτy = fσy for some realized substitutions sτ and sσ, then

sτz ∈ F if and only if sσz ∈ F (4.17)

for every z ∈ B.

Proof.

First, consider the case when the upper indices are different in sτ and the single members

of sσ are a permutation of that of sτ .

So let sτ be of the form: sj0m0s
j1
m1 . . . s

jn−1
mn−1 , where j0, j1, . . . , jn−1 are different and let

sk0p0s
k1
p1 . . . s

kn−1
pn−1 be a permutation of the members sjimi in sτ .

Let sH denote the transformation sj0t s
j1
t . . . s

jn−1

t , where t ∈ α is an arbitrary fixed and

t /∈ Dom{j0, j1, . . . , jn−1}.

Consider the transformation sHsτ .

One one hand,

sτz ≤ sHsτz. (4.18)

To prove this, consider the special case n = 3. If

sτ = sjms
i
ps
l
r (4.19)

then

sHsτz = sjts
i
ts
l
ts
j
ms

i
ps
l
rz ≥ s

j
ts
i
ts
j
ms

l
ts
i
ps
l
rz ≥ s

j
ts
i
ts
j
ms

i
ps
l
ts
l
rz (4.20)

by (C−4 ) b).

But slts
l
r z = cl(dlt · (cl(dlr · z))) = (cldlt) · cl(dlr · z) = slrz in A by (C3) and by cldlt = 1.

So we can eliminate slt from the right-hand side in (4.20). Repeating this procedure for the

element sjts
i
ts
j
msips

l
ts
l
rz obtained, for sit and sjt we obtain (4.18).
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The proof of the general case of (4.18) is completely similar. On the other hand,

sHsτz = sHsσz (4.21)

by (4.15).

Comparing (4.18) and (4.21)

sτz ≤ sHsσz. (4.22)

To go on with the proof of (4.17) we prove the following inequality:

sHsσz · sσ1 ≤ sσz. (4.23)

We consider again the case n = 3. Assume that sτ is of the form as in (4.19) and let sσ (a

permutation of the members in sτ ) be slrs
j
msin. Then the inequality (4.23) is:

sjts
i
ts
l
ts
l
rs
j
ms

i
nz · slrsjmsin1 ≤ slrsjmsinz. (4.24)

By (C−4 ) a).

sjts
i
ts
l
ts
l
rs
j
ms

i
nz = slts

j
ts
i
ts
l
rs
j
ms

i
nz (4.25)

so the right-hand side begins with slt. Then we can move the first factor slts
j
ts
i
ts
l
rs
j
msinz of

the left-hand side of (4.24) into slrs
j
msin1 behind slr, i.e.,

slts
j
ts
i
ts
l
rs
j
ms

i
nz · slrsjmsin1 = slr((s

l
ts
j
ts
i
ts
l
rs
j
ms

i
nz) · sjmsin1) (4.26)

using (C3).

Applying the argument above twice, we obtain that the left-hand side of (4.24) is equal

to

slrs
j
ms

i
n(sits

j
ts
l
ts
l
rs
j
ms

i
nz). (4.27)
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Notice here that the order of the upper indices in sits
j
ts
l
ts
l
rs
j
msin is symmetrical: i, j, l, l, j, i.

The element in (4.27) is less than the element

slrs
j
ms

i
ns
i
ts
j
tcls

l
rs
j
ms

i
nz = slrs

j
ms

i
ns
i
ts
j
ts
l
rs
j
ms

i
nz (4.28)

so we can eliminate slt in (4.27).

But on the right-hand side in (4.28) the single substitution slr is repeated and l does

not occur in the “upper indices” between these members. Therefore similarly to (4.8) in

Lemma 4.12 (i), the right-hand side of (4.28) is

slrs
j
ms

i
ns
i
ts
j
ts
j
ms

i
nz. (4.29)

So, by increasing the element in (4.27) we eliminated slt, then the second slr. Similarly,

increasing the element in (4.29), we can eliminate sjt and the second sjm, then sit and the

second sin. So really we obtain (4.24).

The proof of the general case in (4.23) is similar.

Comparing the relations in (4.22) and (4.23), using that sσ is realized, i.e., sσ1 ∈ F ,

we obtain that sτz ∈ F implies sσz ∈ F . Using symmetry we obtain in the same way that

sσz ∈ F implies sτz ∈ F , therefore Lemma 4.15 is proven for the case of permutations.

Proof of the general case:

The general case is reduced to the case of permutation.

So let sτ be of the form sj0m0s
j1
m1 . . . s

jn−1
mn−1 , where repetitions are allowed in the sequence

j0, j1, . . . , jn−1.

First the “multiple upper indices” are eliminated from sτ , i.e., we achieve that the

upper indices should be different.
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Choose a t ∈ α such that t /∈ {j0, j1, . . . , jn−1}. We know that for example, cj0dj0t = 1.

Then by (C3)

(cj0dj0t) · sj0m0
sj1m1

. . . sjn−1
mn−1

z = cj0(dj0t · sj0m0
sj1m1

. . . sjn−1
mn−1

z). (4.30)

If j0 6= j1, then by (C−4 ) c), (4.30) is less than cj0(dj0t · sj1m1s
j0
m0 . . . s

jn−1
mn−1z).

If j0 = j1, then for (4.30), by (C3)

cj0(dj0t · cj0(dj0m0 · sj1m1
. . . sjn−1

mn−1
z)) ≤

≤ cj0(dj0t · sj1m1
. . . sjn−1

mn−1
z) · cj0dj0m0 ≤ cj0(dj0t · sj1m1

. . . sjn−1
mn−1

z).

Repeating this procedure we can eliminate the single substitutions with upper index

j0 except for the last one in sτ . Moreover, this procedure can be applied for the indices

j1, . . . , jn−1 too, and we obtain that

sτz ≤ sτ1z (4.31)

where the upper indices in sτ1z are already different.

Now among the upper indices of sτ1 there is no repetition, but in sτ1 members of type

sin can occur, where i ≡ n, i.e., din ∈ F . Let us omit these members from sτ1 and denote

by sτ2 the substitution obtained. We state that

sτ1z ∈ F if and only if sτ2z ∈ F. (4.32)

If sτ1 is of the form sjmsins
l
r e.g., then multiplying it by din we obtain that

din · sjmsinslrz = sjm(din · sinslrz) = sjm(din · slrz) = din · sjmslrz by (C6)c. and (C7). Since

din ∈ F , really sjmsins
l
rz ∈ F if and only if sjmslrz ∈ F . The proof of the general case in

(4.32) is similar.

Let us associate the transformations sσ1 and sσ2 with sσ in the same way as we associ-
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ated sτ1 and sτ2 with sτ . The condition fτy = fσy of Lemma 4.15 and the constructions of

sτ2 and sσ2 imply that sσ2 is a permutation of the single substitutions in sτ2 and fτ2y = fσ2y.

Therefore applying (4.17) for the case of permutation τ

sτ2z ∈ F if and only if sσ2z ∈ F. (4.33)

Further, similarly to (4.32) and (4.18) we obtain

sσ1z ∈ F if and only if sσ2z ∈ F (4.34)

and

sσ1z ≤ sKsσ2z, (4.35)

where the set K for σ1 is analogous with the set H for τ .

We state the following inequality:

sKsσ1z · sσsσ11 ≤ sσsσ1z. (4.36)

The proof is similar to that of (4.23):

First, by (C−4 ) a) changing the order of the members in sK , we can move sKsσ1z behind

sσsσ1 in sσsσ11 and similarly to (4.27) we obtain that the left-hand side of (4.36) equals

sσsσ1sKsσ1z. (4.37)

As at the proof of (4.23), increasing (4.37), sKsσ1 can be eliminated from (4.37), so

sσsσ1sKsσ1z ≤ sσsσ1z, so really (4.36) is true.

Given that sσ is realized (sσ1 ∈ F ), and using the definition of sσ1 , by (4.8)

sσ1 ∈ F implies sσsσ11 ∈ F.
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Moreover, by (4.8) and the definitions of sσ and sσ1

sσsσ1z ∈ F if and only if sσz ∈ F. (4.38)

Finally, let us compare the following relations:

sτz
(4.31)

≤ sτ1z
(4.32)∼ sτ2z

(4.33)∼ sσ2z
(4.34)∼ sσ1z

(4.35)

≤ sKsσ1z
(4.36)∼ sσsσ1z

(4.38)∼ sσz,

where the meaning of a ∼ b is: a ∈ F is equivalent to b ∈ F .

Therefore sτz ∈ F implies sσz ∈ F .

Using the symmetry of the argument, this relation can be reversed. The proof is

complete.

qed.

Now we will prove that the mapping h′ defined in (4.14) is an embedding of A.

Lemma 4.16 h′ is a homomorphism on A and h′z 6= ∅ if z 6= 0 (i.e., h′ is an embedding

of A).

Proof.

First we check that h′z 6= ∅ if z 6= 0. It can be proved in the same way as checking in

Lemma 4.13 that Y ∈Wy because specially z ∈ Fz, by the definition of Fz. We state that

simz ∈ Fz, where m is the ordinal associated with i in (4.10). Namely, dim ∈ F and z ∈ Fz

imply that simz = ci(dim · z) ∈ F . Then ziM ∈ hz by (4.14), so really h′z 6= ∅.

We prove the homomorphism property by subunits. Let us fix a subunit Wy correspond-

ing to the ultrafilter Fy. Let us denote Wy and Fy by W and F , for short and, further, let

h denote the restriction of h′ to Wy.
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First we prove that

hciz = Cihz

where Ci is relativized to W , so Ci is C
[W ]
i .

The left-hand side is

hciz = {fνY : sνciz ∈ F} , (4.39)

the right-hand side is Cihz = Ci {fτY : sτz ∈ F} . hciz ⊆ Cihz. If fνY ∈ hciz, i.e.,

sνciz ∈ F, then sνs
i
nz ∈ F for some n /∈ α because F is perfect. Therefore by definition of

hz, f iNfνY ∈ hz, so fνY ∈ Cihz.

Cihz ⊆ hciz. If fνY ∈ Cihz, then f iNfνY ∈ hz for some N ∈ Π, so sνs
i
nz ∈ F .

But sνs
i
nz = sνcidinz ≤ sνciz, therefore sνciz ∈ F . Thus by (4.39), really fνY ∈ hciz .

We state that h(u + v) = hu ∪ hv. Here h(u + v) = {fτY : sτ (u+ v) ∈ F}, hu =

{fτY : sτu ∈ F}, hv = {fτY : sτv ∈ F}. ci(u + v) = ciu + civ implies that sτ (u + v) =

sτu+ sτv.

If fτY ∈ hu ∪ hv then, for example, fτY ∈ hv, i.e., sτv ∈ F . But sτv ∈ F and the

ultrafilter property imply that

sτu+ sτv ∈ F. (4.40)

So sτ (u+ v) ∈ F , consequently fτY ∈ h(u+ v).

If fτY ∈ h(u+v), then sτ (u+v) = sτu+sτv ∈ F . F is an ultrafilter, therefore sτu ∈ F

or sτv ∈ F . Therefore fτY ∈ hu or fτY ∈ hv, so fτY ∈ hu ∪ hv.

Then we prove that

h(−z) = ∼ hz

where ∼ concerns W , so ∼ is ∼W .

Here hz = {fσY : sσz ∈ F} and h(−z) = {fτY : sτ (−z) ∈ F}, therefore using the
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ultrafilter property of F

∼ hz = ∼ {fσY : sσz ∈ F} = {fσY : sσz /∈ F} = {fσY : −sσz ∈ F}

where sσ is a realized substitution.

We note that

sτz + sτ (−z) = sτ (z + (−z)) = sτ1 ∈ F. (4.41)

We state that ∼ hz ⊆ h(−z). Assume that fσY ∈∼ hz, i.e., sσz /∈ F . It must be

proved that fσY ∈ h(−z), i.e., sσ(−z) ∈ F . By (4.41) we know that sσz+ sσ(−z) ∈ F . So

sσz /∈ F and the ultrafilter property imply that sσ(−z) ∈ F .

Conversely h(−z) ⊆∼ hz.

We note that sτ (−z) = −sτz is not true in an Fαα+ε algebra, in general. But we prove

the following two properties of sτ (where sτ is a realized substitution):

sτz · sτ (−z) = 0 (4.42)

sτ (−z) = sτ1 · (−sτz). (4.43)

We prove them simultaneously, by induction, by the number k of the single substitutions

in sτ .

Assume that k = 1. Then for (4.42)

sinz · sin(−z) = 0

is true by (C7).

Adding −sinz · sin(−z) to both sides we obtain

sin(−z) = −sinz · sin(−z). (4.44)
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By (4.41), sinz + sin(−z) = sin1. Multiplying this equation by −sinz and using (4.44), we

obtain sin(−z) = sin1 · −sinz, and this is really (4.43).

Assume that the properties (4.42) and (4.43) are true if k ≤ m.

They are proved if k = m + 1. Let sτ be of the form sinsσ, where the number of the

single substitutions in sσ is m.

(sinsσz) · (sinsσ(−z)) = sinsσz · sin(sσ1 · (−sσz)) using (4.43) for sσ(−z). But sσ1 ≤ 1,

therefore sinsσz · sin(sσ1 · (−sσz)) ≤ sinsσz · sin(−sσz) = 0 by (C7). So

(sinsσz) · (sinsσ(−z)) = 0

i.e., (4.42) follows. From this, similarly to (4.44), we obtain

(sinsσ(−z)) = (−sinsσz) · (sinsσ(−z)). (4.45)

To prove (4.43), if k = m + 1, (4.41) is used, i.e., (sinsσz) + (sinsσ(−z)) = sinsσ1.

Multiplying the equation by −sinsσz and using (4.45) we obtain (4.43).

Coming to the proof of h(−z) ⊆ ∼ hz, assume that fτY ∈ h(−z), i.e., sτ (−z) ∈ F .

We prove that fτY ∈∼ hz, i.e., −sτz ∈ F . Indirectly if −sτz /∈ F, then sτz ∈ F . (4.43)

and the ultrafilter property imply that sτ (−z) /∈ F . This is a contradiction. So really

−sτz ∈ F .

h′ preserves 0 and 1 by definition. Now we prove that h preserves the diagonals.

We fix a subunit W with support element Y . DW
ij will denote the restriction of the

diagonal element Dij to W .

First it is shown that we can assume, without the loss of generality, that Dij restricted

to W is of the form:

Dij =
{
f iLf

j
LfνY : sνs

j
ms

i
n1 ∈ F, dmn ∈ F

}
(4.46)
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where L is the equivalence class containing m and n.

Namely, assume that X ∈ DW
ij and X is of the form fτY (fτY ∈ V ), so Xi = Xj . By

definition of V , sτ is realized, so sτ1 ∈ F .

First case: i, j ∈Dom τ . Then fτ can be composed into the form

fαf
i
Lfβf

j
Lfγ (4.47)

where α and β are such that i, j /∈ Dom α, j /∈ Dom β. So sτ = sγs
j
msβs

i
nsα is a realized

substitution (where m ≡ n and L is the equivalence class containing them).

But by (4.8), sτ1 = sγs
j
msβs

i
nsα1 = sγs

j
msβs

i
nsαs

j
msin1 = sτs

j
msin1 so sτs

j
msin is also

realized. Further f iLf
j
LfτY = fτY because fτ is of the form in (4.47), so DW

ij is of the form

in (4.46).

Second case: i, j /∈ Dom τ . Then obviously fτY = f iLf
j
LfτY , where L is the class

containing m and n, and m,n are such that djm ∈ F and djn ∈ F . Such m and n exist by

(4.10). By (4.9), sτ1 ∈ F if and only if sτs
j
m1 ∈ F if and only if sτs

j
msin1 ∈ F . Further,

djm · djn ≤ dmn implies that dmn ∈ F . So sτs
j
msin is realized too. So DW

ij is of the form

(4.46).

Third case: exactly one of i and j is an element of Dom τ . This case can be reduced

to the first and second case.

So it can be assumed that DW
ij is of the form in (4.46).

We prove that hdij = DW
ij .

hdij = {fνY : sνdij ∈ F} .

By (4.8) sνdij = sνs
j
msindij , where sjm and sin are the last members of sν respectively,

with upper indices j and i, supposing that there are such members in sν . If i and j are

not included in Dom ν then, by (4.8) and (4.9) sνdij ∈ F if and only if sνs
j
msindij ∈ F,

where djm ∈ F , din ∈ F . The case i ∈ Dom ν, j /∈ Dom ν is similar. Therefore hdij may
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be considered to be of the form

{
f iNf

j
MfνY : sνs

j
ms

i
ndij ∈ F

}
. (4.48)

We prove that hdij ⊆ DW
ij . Assume that f iNf

j
MfνY ∈ hdij , i.e., sνs

j
msindij ∈ F .

First we show that

sνs
j
ms

i
ndij ∈ F implies that dmn ∈ F. (4.49)

We check that

djm · din · dij = dmn · djm · din. (4.50)

Namely, djm · din · dij ≤ din · dmi ≤ dmn by (C6)b., so by multiplying the inequality by

djm · din we obtain the one direction of (4.50)

djm · din · dij ≤ djm · din · dmn. (4.51)

As regards the other direction: din ·djm ·dmn ≤ din ·djn ≤ dij by (C6)b. and multiplying

the inequality by din · djm we obtain

din · djm · dmn ≤ din · djm · dij .

Further

sνs
j
ms

i
ndij = sνcj(djm · ci(din · dij)) = sνcjci(djm · din · dij)

= sνcjci(dmn · djm · din) = dmn · sνsjmsin1 (4.52)

by (4.50) and (C6)c.

sνs
j
msin1 ∈ F since sνs

j
msindij ∈ F . So by (4.52), sνs

j
msindij ∈ F implies that really
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dmn ∈ F . If L is the equivalence class containing m and n, then f iNf
j
MfνY = f iLf

j
LfνY,

where sνs
j
msin1 ∈ F and dmn ∈ F . So considering the form of DW

ij in (4.46), hdij ⊆ DW
ij is

proven.

The proof of the inequality DW
ij ⊆ hdij is similar comparing the forms in (4.46) and

(4.48) and using (4.52) in the other direction.

qed.

Lemma 4.17 V is a Dα unit, i.e., CiDij = V for any fixed i, j ∈ α.

Proof.

It must be proved that V ⊆ CiDij . Assume that X ∈ Wy ⊆ V , where Wy is a

fixed subunit defined by a perfect ultrafilter Fy with support Y . Then X = fτY for a

transformation τ such that sτ1 ∈ Fy.

By (4.8) (for the case j ∈ τ) and by (4.9) (for the case j /∈ τ)

sτ1 ∈ Fy if and only if sτs
j
m1 ∈ Fy

for the fixed j and some m ∈ β ∼ α such that j ≡ m (i.e., djm ∈ Fy). sτsjm1 ∈ Fy, so

f jMfτY ∈Wy ⊂ V.

By definition and by j ≡ m, X = f jMfτY . We know that cidij = 1 and sτ1 ∈ Fy,

therefore sτs
j
m1 = sτs

j
mcidij ∈ Fy if and only if sτs

j
msindij ∈ Fy for some n /∈ α. Therefore

sτs
j
msindij ∈ Fy. sτs

j
msindij ≤ sτs

j
msin1 implies that sτs

j
msin is realized, so

f iNf
j
MfτY ∈Wy ⊂ V. (4.53)
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Using (4.52) for ν = τ we obtain that dmn ∈ Fy, therefore M = N in (4.53), so

f iMf
j
MfτY ∈Wy ⊂ V.

Considering that X = f jMfτY we obtain that X ∈ CiDij .

qed.

* * *

Summing up the above lemmas, the proof of Theorem 4.5 can be completed:

By Lemma 4.17 a Dα unit V is constructed, and by Lemma 4.16 h′ is an embedding of

A into the full set algebra in Dα with unit V . Therefore really A ∈ IDα.

Now, we come to the proof of Theorem 4.6:

We refer to the following Proposition concerning neat reducts of algebras in Crsα:

Proposition. Let us assume that A is in Crsα with base U and unit element V . Assume

that α ≤ β, W ⊆ βU and the next two hypotheses are satisfied:

V = {x : x = α � y for some y ∈W} (4.54)

for every y ∈W, i ∈ α and u ∈ U if (α � y)iu ∈ V, then yiu ∈W. (4.55)

Let ΘX = {y ∈ W : α � y ∈ X}, X ∈ A. Then there exists an algebra B with unit W

in Crsβ such that Θ ∈ I(A, RdαB) and CB
i ΘX = ΘX for every X ∈ A and i ∈ β ∼ α (see

[He-Mo-Ta II.] Lemma 3.1.120). So A is neatly embeddable into B.
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We extend A by subunits to an algebra in Fαβ , where β denotes α+ ε. Let an arbitrary,

fixed subunit of A be Qk and its subbase be Uk. Let us extend Qk to a β-dimensional

subunit Wk to let Wk = Qk × U ε. Let B denote the full Crsβ algebra with subunit Wk.

Then the conditions (4.54) and (4.55) are obviously satisfied. Therefore by the above

Proposition, A is neatly embeddable into an algebra B in Crsβ, with subunits Wk respec-

tively.

We state that B is a member of Fαβ .

As is known, algebras in Crsβ with Dα α-reduct satisfy all the axioms of Fαβ except for

(C−4 ) maybe. We check (C−4 ).

Consider (C−4 ) b). Assume that x ∈ SimS
j
nX, i, j, n ∈ α, m /∈ α. Then

(
xixm

)j
xn
∈ X.

But
(
xixm

)j
xn

=
(
xjxn

)i
xm

. xjxn ∈ W by construction, because α � xjxn ∈ Q, namely

CjDjn ⊇W is true in A. So xjxn ∈Wk and
(
xjxn

)i
xm
∈ X imply that x ∈ SjnSimX.

The proof of (C−4 ) a) is similar.

Consider (C−4 ) c). Assume that x ∈ Dik ∩ SimS
j
nX, i, j, k ∈ α, n /∈ α. Then xi = xk

and
(
xixm

)j
xn
∈ X. But

(
xixm

)j
xn

=
(
xjxn

)i
xm

. We state that xjxn ∈ W . By construction of

W, it is sufficient to show that α � xjxn ∈ Q. We have
(
xixm

)j
xn
∈ W so α �

(
xixm

)j
xn
∈ Q.

(α �
(
xixm

)j
xn

)ixk ∈ Q by CiDik ⊇ W . But (
(
xixm

)j
xn

)ixk = (xjxn)ixk = xjxn by xi = xk, so

(α �
(
xixm

)j
xn

)ixk = α � xjxn .

Therefore α � xjxn ∈ Q. So xjxn ∈W and
(
xjxn

)i
xm
∈ X imply that x ∈ SjnSimX.

Consider (C−4 ) d). Assume that x ∈ CmCiX, m /∈ α. Then (xmv )iu ∈ X for some

u, v ∈ U . We prove that x ∈ CiCmX, i.e.,
(
xiu
)m
v
∈ X. But

(
xiu
)m
v

= (xmv )iu. It merely

needs to be shown that xiu ∈ W . But (xmv )iu ∈ X, therefore α � (xmv )iu ∈ Q. But

α � (xmv )iu = α � xiu by definition of W , therefore xiu ∈ W indeed. So CmCiX ⊆ CiCmX.

The proof of the opposite inclusion is similar.

qed.

***
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Now we return to the classical neat embedding theorem. We apply the methods used

previously in the Chapter.

Recall the theorem:

A is representable, α ≥ 2 (i.e., A ∈Gwsα) if and only if A ∈ SNrαCAα+ε, where ε ≥ ω

is an arbitrary but fixed ordinal, Gwsα is the class of generalized cylindric set algebras of

dimension α, CAα is the class of cylindric algebras of dimension α and SNrαCAα+ε is the

class of CAα’s that have the neat embedding property.

The part “only if” is trivial. Regarding the other part “if A ∈ SNrαCAα+ε then A is

r-representable” the following question arises: is it possible to replace the class CA in the

hypothesis A ∈ SNrαCAα+ε by a larger class so that the theorem still holds?

The answer is affirmative. Such a larger class Kαβ will be defined below where β = α+ε,

ε ≥ ω. The character of Kαβ is similar to the class Fαβ included in Theorem 4.5.

The weakenings (C4)− and (C6)− of the cylindric axioms (C4) and (C6) are introduced

and it is shown that the class satisfying these axioms, together with the other cylindric

axioms is suitable to replace the class CA in the hypothesis above.

Assume that ω ≤ α < β. We now introduce the class Kαβ indexed by the ordinals α and β,

with the similarity type of CAβ. Kαβ is defined as follows:

Definition 4.18 (Kαβ) Kαβ is a class such that

Kαβ |= {(C0), (C1), (C2), (C3), (C5), (C7), (C4)−, (C6)−}

where (C0), . . . , (C7) denote the usual cylindric axioms, (C4)− denotes the following in-

stances (C4)− a) and (C4)− b):

(C4)− a) cms
j
ncmx = sjncmx if j ∈ α, n,m ∈ β, n 6= m

(C4)− b) cms
j
mcmx = cjcmx if j ∈ α, m ∈ β

and (C6)− denotes the properties a., b., c., in (1.1).
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Another notation for Kαβ is Kα,β .

Suppose that A ∈ CAα, α ≥ ω. Now, the neat embedding theorem in question is

formulated:

Theorem 4.19 A is representable (i.e., A ∈ IGwsα) if and only if A ∈ SNrαK
α
α+ε,

where ε ≥ ω, α ≥ 2 are fixed.

We omit the proof (see [Fe00]).

Remark

Notice that if B ∈Kαβ , A ⊆ NrαB and A happens to be a CAα, then part d. in (1.1),

follows only partially in B, that is,

cmdim = 1 if i ∈ α, m ∈ β . (4.56)

Indeed, in (C4)− b) let us choose a = dij , i, j ∈ α, m 6= i, where i, j,m are all distinct.

Then

1 = cjdij = cjcmdij = cms
j
mcm(dij) = cms

j
mdij =

= cmcj(dmjdij) ≤ cmcjdmi = cmdmi .

It is easy to show that i ∈ α is necessary in (4.56).

Let us onsider A ∈ Crsα ∩ CAα with unit V = ∪P (r), where P (r)’s are the subunits.

Let T r be the subbase of P (r). Let us take any sets U r’s and form the extended unit

W = ∪P (r)×U ε
r of α + ε dimension and consider the full B ∈ Crsα+ε with unit W . W

satisfies 4.54 and 4.55 obviously. Let us consider the following special cases (i) and (ii):
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(i) Let A be a non-representable Crsα∩CAα (see [He-Mo-Ta II.], p. 85). (C4)−a) is false

in B. Namely if a = dij , m = i, then cicjdjn = cjdjn fails to be true in B. B is in

Kαβ obviously. This example shows that (C4)− cannot be rejected in Theorem 4.19.

It is also an example for an algebra A such that A ∈ SNrKαα+ω ∼ RCAα, where RCA

is the class of the representable cylindric algebras.

(ii) Let A be a Gwsα and choose the sets U r’s so that T r should be a proper subset

of Ur. It is easy to check that B ∈ Kαβ . But cidim = 1, i ∈ α, m /∈ α is not

satisfied in B, i.e. B /∈ CAβ. This example shows that CAβ is a proper subclass of

Kαβ , furthermore Theorem 4.19 is stronger than the classical representation theorem

because it states that it is enough to embed an algebra neatly into Kαα+ε instead of

CA, to be representable.

Main references in this Chapter are: [Fe10], [Fe07a] and [Fe00].
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Chapter 5

Logical applications

An obvious logical application of our results (e.g., that of representation theorems) is

that they can be translated to the Logics corresponding to the respective cylindric-type-

or polyadic-type algebras ([He-Mo-Ta II.], [Kei]). In this way we obtain new Henkin-style

completeness theorems. In this Chapter we deal with a logical application of our topic, with

conservative extensions of provability relations. Mainly, the concept “neat embeddability”

and the logical calculus corresponding to cylindric algebras are used to obtain these results.

There are also many other logical aspects of our subject. For example, considering the

weakenings of the axioms (C4) and (C6) and the results at the end of the previous Chapter

(Theorem 4.19), their logical background can be summarized as follows: thinking of the

logical calculus corresponding to cylindric algebras (see [He-Mo-Ta II.]) and the proof of

its completeness, only a fragment of the calculus is needed to construct a model for a

consistent set of sentences. Another logical connection of our subject is that Crsα occurs

in the algebraizations of the semantics of many non-classical logics (e.g., many-sorted,

higher-order and modal logics). Among these logics, one of the most important is the

so-called guarded segment which corresponds to a kind of first order modal logic (see van

Benthem, Andréka, Németi [An-Ne-Be]). Crsα apply to Stochastics as well ([Fe09a]).

We come to conservative extensions of provability relations. Let us consider the stan-
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dard first order logic with a usual deduction system. If the language is extended by any

set of new individual variables preserving the other components of the original deduction

system, then the provability relation
+
` obtained is a conservative extension of the original

one ` . That is, if ϕ is any formula of the original language, then
+
` ϕ implies ` ϕ. Namely,

at the deduction of ϕ by
+
`, the new individual variables can be changed to old ones and in

this way a deduction of ϕ by ` is obtained. This method works if we set out from a first

order logic with predicates of ranks being at most β, where β < α and α is a limit ordinal,

where α is associated with the sequence of the individual variables in the original language.

Now, we deal with first order logic with infinitary predicates (i.e., with relations of

arbitrary infinite ranks). This logic was investigated in [Kei], [He-Mo-Ta II.] e.g., it can be

associated with cylindric algebras and quasi -polyadic algebras, among others. If we set

out from such a logic and we extend the original deduction system so that the language is

extended by new individual variables, then the respective extension fails to be conservative,

as counterexamples show.

We present conditions for these logics to have a conservative extension of the kind

above (Theorem 5.1). On one hand, a slightly stronger deduction system is chosen for

the basic logic than usual, namely, we suppose an additional axiom, the merry-go-round

axiom (this property is always satisfied in classical first order logic). On the other hand,

instead of the extended deduction system above, a restricted deduction system is assumed:

the usual commutativity of quantifiers and the equality axioms are weakened. We can

show that these latter restrictions are crucial: if the extended deduction system is not a

restricted one, i.e., it is of the same kind as in the classical case, then the extension is not

conservative, even if the merry-go-round axiom is supposed in the basic system.

Next, we briefly review the basic notions to be used.

Let L be the type-free first-order language described in [He-Mo-Ta II.] Sect.4.3. So L

has the logical constants ∨, ∧,→,↔, ¬, ∃, ∀, the equality symbol =, a sequence of α-many

individual variables 〈vj : j ∈ α〉 and a sequence of relation symbols 〈Ri : i ∈ Q〉, where the

87

               dc_597_12



rank ρi of Ri is allowed to be infinite (ρi ≤ α). By the type-free property, the formulas

in L are restricted, i.e., the atomic subformulas are of the forms vk = vj (k, j ∈ α) or

Ri(v0, v1,v2....). Let Z denote the set of individual variables.

We suppose the following Hilbert type system of axioms (see [He-Mo-Ta II.]

4.3 and [Mon76] p.196).

(0) ϕ is a propositional tautology

(1) ∀vi(ϕ→ ψ)→ (∀viϕ→ ∀viψ)

(2) ∀viϕ→ ϕ

(3) ϕ→ ∀viϕ if vi does not occur freely in ϕ

(4) ∃vi∃vjϕ↔ ∃vj∃viϕ

(5) vi = vi

(6) ∃vi(vi = vj)

(7) vi = vj → (vi = vk → vj = vk) j 6∈ {i, k}

(8) vi = vj → (ϕ→ ∀vi(vi = vj → ϕ)) i 6= j

(9) ∃viϕ↔ ¬∀vi¬ϕ

where ϕ and ψ are arbitrary restricted formulas, i, j and k are ordinals (i, j, k < α).

Let AxZ0 (or Ax0, for short) denote this system of axioms.

Inferences rules are the modus ponens and the generalization.

Let us suppose a fixed set Σ of non-logical axioms in L and let
r
` denote the provability

relation obtained above. Thus
r
` ϕ denotes Σ

r
` ϕ, for short.

We obtain an extended system of axioms (see [He-Mo-Ta II.] 3.2.88, and [An-Th]) if

the system Ax0 is extended by the merry-go-round axiom

∃u(u = vi ∧ ∃vi(vi = vj ∧ ∃vj(vj = vn ∧ ∃vn(vn = u ∧ ∃uϕ))))↔
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↔ ∃u(u = vj ∧ ∃vj(vj = vn ∧ ∃vn(vn = vi ∧ ∃vi(vi = u ∧ ∃uϕ))))

where u /∈ {vj , vn} and vi /∈ {vj , u, vn} .

(5.1)

Denote this extended system of axioms by AxZ (or just by Ax, for short), and denote

the resulting provability relation by
q

` (the set of non-logical axioms remains the same).

We note that the system Ax0 has some redundancy because axiom (3) implies axiom

(4), but this form of the system of axioms will be more adequate for our investigations (see

[Mon76] p.193).

If the language L is extended by a set of new individual variables (where the extended

set is denoted by Z+), while the set of relation symbols remains the same, then the new

language is denoted by L+ and the extensions of the axiom systems AxZ0 and AxZare

denoted by AxZ
+

0 and AxZ
+

respectively. Here the original language, system of axioms and

provability relation will be referred to as the basic language, basic system of axioms and

basic provability relation respectively.

In L+ we can speak about the conservative extension of the provability relation defined

on the formulas of the basic language, too:

As is known, if
r
` is a provability relation defined on the formulas in L and

r+

` is

a provability relation defined on the formulas in L+ extending
r
`, then

r+

` is said to be a

conservative extension of
r
` if

r+

` γ implies
r
` γ for any formula γ in L.

It is known that, with the language L, with the provability relation
r
`, a formula alge-
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bra can be associated as an α-dimensional cylindric algebra – it is denoted by FmLr (see

[He-Mo-Ta II.] 4.3.1.). Conversely if A is an α-dimensional cylindric algebra, then A '

FmLr for a suitable language L and provability relation
r
` of the kind above, so cylindric

algebras can be representable by formula algebras (see [He-Mo-Ta II.] Theorem 4.3.28).

The element of a formula algebra corresponding to the formula ϕ is denoted by |ϕ| .

In general, if L’ is a language and
r′

` is a provability relation on the formulas in L’,

then FmL’
r′

will denote the formula algebra associated with L’ and
r′

` . So, in particular if
r′

` is specially the relation
q

` (so the merry-go-round axiom is supposed), then the formula

algebra is denoted by FmLq .

Let us take L as basic language, take the system Ax as basic logical axioms and the

provability relation
q

` as basic provability relation – so the merry-go-round axiom and a

fixed set Σ of non-logical axioms are assumed.

Let us extend the language L by β∼α -many new individual variables vi’s (α ≤ i < β),

where β is any fixed ordinal, β > α. Let us denote by L+ the extended language and denote

by Z+ the set of individual variables in L+. We will show that if a restricted version of

the system AxZ
+

is assumed (AxZ
+

is the system Ax with the set Z+ of individual

variables), then the provability relation obtained in this way will be a conservative extension

of
q

`.

Definition of the restricted axioms in L+:

Consider the system AxZ
+

in L+. This system is modified so that the schemas of

axioms are restricted, i.e., we restrict the possibilities for the choice of the formulas and

the individual variables occurring in the schemas (3), (4), (6) and 5.1.

The schemas (3)−, (4)−, (6)− and MGR− rather than (3), (4), (6) and the merry-go-

round axioms are:
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(3)− ϕ→ ∀viϕ if ϕ is in L and vi is not free in ϕ, i ∈ β

(4)− ∃vi∃vjϕ↔ ∃vj∃viϕ except for the case if ϕ is not in L and i, j ∈ α

(6)− ∃vi(vi = vj) except for i ∈ α and j /∈ α

−MGR is the merry-go-round formula in (5.1) if ϕ, u, vi, vj and vn are in L.

The other axioms in AxZ
+

are the same.

Let us denote by Ax+ the system of axioms obtained in this way.

In L+, assume the system Ax+, suppose the set Σ of non-logical axioms (the same as

in L) and denote the provability relation obtained by
r1
` .

The following theorem due to the present author holds (see [Fe09b]):

Theorem 5.1 The provability relation
r1
` is a conservative extension of the provability

relation
q

` .

Proof.

Obviously
r1
` is an extension of

q

` . It must be proved that if
r1
` ϕ holds, then also

q

` ϕ

holds for any formula ϕ in L.

Let us consider the formula algebra FmLq and a representation A of this algebra by a set

algebra in ICrsα ∩ CAα (such a representation exists). Let g denote an isomorphism from

FmLq onto A. First, we show that A is neatly embeddable into a β-dimensional set algebra

B in Crsβ.

We need the Proposition concerning neat reducts of algebras in Crs, cited in the proof

of Theorem 4.6 (see [He-Mo-Ta II.] Lemma 3.1.120). The notation introduced there used.

To apply the Proposition we will extend A to an algebra in Crsα+ε, where β = α+ε, ε ≥

1.

Let us extend V to a β-dimensional subunit W to let W = V × εU. Then the conditions

(4.54) and (4.55) above are obviously satisfied. Therefore by the Proposition above, A is

neatly embeddable into an algebra B in Crsβ with unit W.
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With every atomic formula in L+ an element (a set) can be associated in the β-

dimensional set algebra B defined above. Namely with the formula vi = vj i, j ∈ β we

can associate the diagonal element Dij of B, and with any other atomic formula R we can

associate the element in B which corresponds to the image of the equivalence class |R|

in FmLq , under the composition of the isomorphism FmLq ' A and the neat embedding of

A into B. Because R is included in L by definition and the type-free property of L+, R does

not include new variables. Further A is neatly embeddable into B.

Therefore by formula induction, with every formula ψ in L+ a unique element, denoted

by [ψ] , can be associated in the algebra B (here, using axiom (9), ∀viϕ is considered as

¬∃vi¬ϕ, so we can use only the quantifier ∃ in the language L). Denote by h this assignment

from the formulas of L+ into B, so let

hψ = [ψ] . (5.2)

We note that if ψ is in L, then V � [ψ] is in A and V � [ψ] = g |ψ| because of the definition

of h, the homomorphism property of g and the embeddability of A into B.

First, we state that if ψ is an axiom in Ax+, then

[ψ] = W (5.3)

where W is the unit of B.

On evaluating [ψ] , i.e., hψ, we may consider the cylindric algebraic expression corre-

sponding to ψ because the type of L+ and that of cylindric algebras coincide (ϕ→ ψ and

∀viϕ are defined in L+ as ¬ϕ ∨ ψ and ¬∃vi¬ϕ). So h may be considered to be de-

fined on cylindric algebraic expressions (for example, the “translation” of axiom (2) is

−ci(−y) ≤ y, where ≤ is the usual defined concept in Boolean algebras or the translation

of axiom (5) is dii = 1. So it is sufficient to prove that the value of the cylindric algebraic
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expressions corresponding to the axioms in Ax+ is W in B.

The cylindric expressions corresponding to the axioms (0), (1), (2), (5), (7), (8) and

−MGR are the cylindric axioms (C0), (C1), (C2), (C3), (C5), (C7) and the merry-go-round

axiom respectively, or known consequences of these axioms (see [He-Mo-Ta II.] proof of

Lemma 4.3.25 ). Therefore the interpretation of these expressions is exactly the set W in

B, because B ∈ Crsβ, and B satisfies the cylindric axioms except for (C4) and (C6)d.

(5.3) is also true for those instances of the axioms (3), (4) and (6) which include individ-

ual variables only from L. Namely, the cylindric expressions corresponding to these axioms

are cylindric axioms or simple consequences of cylindric axioms. Further, h associates an

element in A with these expressions apart from isomorphism and A is a cylindric algebra.

It remains to check the other instances of the axioms (3), (4) and (6).

We start with (4)−. With (4)− and the case i ∈ α, j /∈ α we can associate the cylindric

expression cicjy = cjciy, i.e., it must be proved that

CiCjb = CjCib (5.4)

in B where b ∈ B.

Suppose that x ∈ CiCjb. Then (xiu)jv ∈ b for some u, v ∈ U but (xiu)jv = (xjv)iu. x
j
v ∈

W by j /∈ α and the definition of W, therefore (xjv)iu ∈ b implies that x ∈ CjCib. Conversely,

suppose that x ∈ CjCib, then (xjv)iu ∈ b for some u, v ∈ U. It is sufficient to prove that

(xiu)jv ∈ b. Because (xiu)jv = (xjv)iu it is sufficient to prove that xiu ∈W. But xiu = ((xiu)jv)
j
xj =

((xjv)iu)jxj . From the definition of W, it follows that (xjv)iu ∈W implies that ((xjv)iu)jxj ∈W.

The proof for (4)− is trivial in the case i /∈ α, j /∈ α.

If ψ is the axiom (3)− in (5.3), first we show that

Ci [ϕ] = [ϕ] (5.5)
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whenever ϕ is in L, i < β and vi is not free in ϕ.

If i < α and vi is not free in ϕ, then vi → ∀viϕ is an axiom of
q

`, so its equivalence class

in FmLq is 1 in B by neat embeddability. If i ≥ α, since ϕ is in L, we have [ϕ] = Θg |ϕ| .

By the Proposition [He-Mo-Ta II.] Lemma 3.1.120 (here, after the conditions (4.54) and

(4.55)), CiΘ(a) = Θ(a) for all a ∈ A and i ≥ α. Since [ϕ] has the form Θ(a), where

a = g |ϕ|, we have Ci [ϕ] = [ϕ] .

Having the relation (5.5) we can translate axiom (3)− in this way: y ≤ −ci(−y) i /∈ α

if ciy = y is true. So we need to prove that b ≤ ∼Ci(∼b) i /∈ α holds in B, if b = Cib. But

Cib ≤ ∼Ci(∼Cib) or equivalently Ci(∼Cib) ≤ ∼Cib holds in B. Namely, if x ∈ Ci(∼Cib),

then xiu ∈ ∼Cib for some u, where xiu ∈ W, so xiu /∈ Cib. This implies the relation x ∈

∼Cib, i.e., x /∈ Cib because x ∈ Cib implies xiu ∈ Cib if xiu ∈W.

With the axiom (6)− and for example, with the cases i /∈ α, j ∈ α the expression

cidij = 1 i /∈ α, j ∈ α can be associated so we need to check that CiDij = W if i ∈ α, j /∈

α in B. It is sufficient to check that W ⊆ CiDij . We need to prove that if x ∈ W , then

x ∈ CiDij , that is, xiu ∈ Dij for some u ∈ U. But, by the definition of W, for every v ∈ U,

xiv ∈W, so xiu ∈W too.

The other instances of (6)− are obvious. So (5.3) is proven.

Then we prove that

if
r1
` ϕ, then [ϕ] = W (5.6)

for an arbitrary ϕ in L.

Suppose that ϕ1, ϕ2, ϕ3, ..., ϕn = ϕ is a deduction of ϕ by
r1
`, where ϕ is a formula in

L. We state that

[ϕi] = W (5.7)
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i = 1, 2, ....n. We prove it by induction.

[ϕ1] = W . Namely, if ϕ1 is a logical axiom, then (5.7) is true by (5.3). If ϕ1 ∈ Σ, then

|ϕ1| = 1 in FmLq by definition, further [ϕ1] = g |ϕ1| because of the homomorphism property

of g, where g is the isomorphism from FmLq into

A. Further, g |ϕ1| = W because of the embeddability of A into B. Assume that (5.7) is

true if i ≤ k (1≤ k < n). We prove (5.7) for k + 1.

If ϕk+1 is a logical axiom in Ax+ or non-logical axiom in Σ, then the proof is completely

similar to the case k = 1.

If we obtain ϕk+1 by generalization from a formula ϕi, that is, ϕk+1 = ∀vϕi for some

i ≤ k, then by definition (5.2) we obtain [∀vϕi] = [¬∃v¬ϕi] = ∼Ci∼ [ϕi] . The induction

condition [ϕi] = W and Ci0 = 0 imply that ∼Ci∼ [ϕi] = W.

If we obtain ϕk+1 by modus ponens from the formulas ϕi and ϕj and ϕj = ϕi →

ϕk+1, i, j ≤ k, then ϕi → ϕk+1
r2↔ ¬ϕi ∨ ϕk+1 by axiom (0). But [ϕi → ϕk+1] =

[¬ϕi ∨ ϕk+1] = ∼ [ϕi] ∪ [ϕk+1] . By the induction condition, [ϕi] = W and by ∼ [ϕi] ∪

[ϕk+1] = W, we obtain [ϕk+1] = W .

By the remark after (5.2), if ϕ is in L, then V � [ϕ] = g |ϕ| , but if
r1
` ϕ, then

[ϕ] = W by (5.6). But V �W = V so g |ϕ| = V.

Therefore with ϕ we associate the unit element V at the isomorphism FmLq ' A, i.e.,

|ϕ| = 1 in FmLq . By definition of the formula algebra, this means that
q

` ϕ is true.

qed.

We may ask whether there are other restrictions of the system AxZ
+

such that the

Theorem 5.1 should remain true. The answer is affirmative.

Analysing the proof, a given weakening ϕ of axiom (4) could be a new axiom (as a part

of the restriction for AxZ
+

) if the corresponding cylindric algebraic expression equals 1
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in the embedding algebra B. For example, AxZ
+

can be restricted also by the following

additional weakening (4)− − of (4)

∃vi(vi = vm ∧ ∃vj(vj = vn ∧ ϕ))→ ∃vj(vj = vn ∧ ∃vi(vi = vm ∧ ϕ))

where i, j, n ∈ α and m /∈ α. Because the respective cylindric algebraic (defined) expres-

sion sims
j
nx ≤ sjnsimx i, j, n ∈ α, m /∈ α is true in B – we assume here that i, j and n are

distinct. Since, if t ∈ SimS
j
nb, b ∈ B then (tiu)jtn ∈ x. And (tiu)jtn =(tjtn)iu. But CjDjn = W

implies that tjtn ∈W. Therefore t ∈ SjnSimx, in fact.

The next question is: Does a distinguished restriction of axiom (4) exist in L+ among

the possible ones? The following is true: there is such a restriction of axiom (4) in L+ that

the conservative extensibility of
q

` into this restricted system of axioms already implies the

completeness of
q

` (we do not prove this proposition).

Main references in this Chapter are: [Fe09b], [Kei], [He-Mo-Ta II.], [Fe07a], [Fe10] and

[Fe07b].
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Chapter 6

Neat embedding theorem for

polyadic-type algebras and its

applications

For transposition algebras and quasi-polyadic algebras similar neat embedding theorems

hold, as was proved for cylindric-type algebras in Chapter 4 (see [FePrepr]). But the case

of polyadic-type algebras having substitution with infinite τ ’s is essentially different.

In this Chapter, first we prove a neat embedding theorem for cylindric m-quasi-polyadic

equality, locally-m algebras (algebras in mCPEα∩ Lmα). Let m < α < β be fixed, infinite

ordinals and let Kβ be a class of algebras with the type of mCPEβ.

The definition of neat embeddability of an algebra A in mCPEα into an algebra B in

mCPEβ is specified as follows (see [He-Mo-Ta II.], Def. 5.4.16 and [Say12]):

Definition 6.1 Let

NrαB =
〈
B0, +, ·, −, 0, 1, ci, s

′
τ , dij

〉
τ∈ mTα , i,.j<α
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where B0= {b ∈ B : cib = b, for every i ∈ β ∼ α} , and s′τ = sσ with σ = τ∪{i : i ∈ β ∼ α}

for each τ ∈ mTα. An algebra A ∈ mCPEα is neatly embeddable into B (B ∈ Kβ) if A ∈

SNrαB.

Let mCPE
−
α+ε denote the class such that the mCPEα+ε axioms hold in it, except for the

axiom (CP9)∗ in which the part “the equality holds if σ is a permutation” is replaced by

the following two instances of (CP9)∗:

cix = cms[i / m]x if i ∈ α,m /∈ α, x ∈ A (6.1)

cmsτz = sτ cmz if τm = m, m /∈ α, τ ∈ mTβ, z ∈ B. (6.2)

The following theorem holds (see [Fe11b], [Fe12b]):

Theorem 6.2 (Neat embedding theorem for mCPEα∩ Lmα) Assume that A ∈ mCPEα∩

Lmα, m is infinite, m < α. Then A ∈ I mGwp
reg
α (i.e., A is r-representable) if and only if

A ∈ SNrαB for some B ∈ mCPE
−
α+ε, where ε is infinite.

Let us consider the direction in which A ∈ SNrαB implies A ∈ I mGwp
reg
α . The proof

follows a classical line of thought, it is analogous with that of Theorem 4.5. In addition

to the necessary adaptation to the mCPEα axioms, a further unusual aspect of the proof

is the simulation of the relativization in algebraic syntax (see the definition of the set M

below, i.e., that of the subunit Wy in (4.12)).
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The outline of the proof of Theorem 6.2 is: A Cprsα-unit V will be defined, next, an

embedding of A into the full set algebra with unit V is constructed. Finally, it will be

shown that V is a mGwpα unit and the set algebra is regular.

To implement this plan some concepts and lemmas are needed.

Assume that A ∈ Cprsα, V is the unit of A. Let us consider the following equivalence

relation ∼ on V :

x ∼ y if and only if x and y are different at most in m-ary members. (6.3)

Definition 6.3 The equivalence classes concerning ∼, regarding them as subsets of V,

are called the m-subunits of A. If W is an m-subunit, then
⋃
x∈W

Rgx is called the m-base

of W, and any x ∈W is called a support of W .

If, at the definition (6.3) of the equivalence relation ∼ , “m-ary” is replaced by “finitely

many”, then the concept of m-subunit means subunit ([HMTAN] Def. 0.1). Notice that a

subunit is a subset of an m-weak space with the same m-base and support. The subunits

are disjoint, by definition. If A ∈ mGwpα, then an m-subunit, in particular, is a union of

some α
mU

(pk)
k .

A preparation for the first lemma is needed. Let us fix an algebra B occuring in the

theorem. Let us denote by adm the class of m-transformations τ ∈ αβ, i.e., τ ∈ mTα ∩

αβ, where α+ ε is denoted by β.

We formulate a version of the concept perfect ultrafilter introduced in Chapter 4:

A Boolean ultrafilter F in B is a regular perfect ultrafilter if for any element of the

form sτ cjx included in F , where j ∈ α, x ∈ A and τ ∈ adm, there exists an m, m /∈ α,

τm = m such that sτs[j / m]x ∈ F .
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Lemma 6.4 Let a be an arbitrary, but fixed non-zero element of A and let m < α be

fixed ordinal, let ε > max (α, |A|), where ε+α is regular, and assume that A ∈ SNrαB for

some B ∈ mCPE
−
α+ε. Then, there exists a proper Boolean filter D in B, such that a ∈ D

and an arbitrary ultrafilter containing D is a regular perfect ultrafilter in B.

The proof is similar to that of Lemma 4.11. Among others, the properties (6.1) and

(6.2) need to be used. We omit the proof.

We prefix a regular perfect ultrafilter F in B, extending the filter D guaranteed in

the lemma, letting it be defined as follows: let us take the cylindric algebraic completion

B’ of B (see [He-Mo-Ta I.], 2.7.21). Let us consider the filter F ′ in B’, generated by the

generators of D – such a filter F ′ exists. Let us consider any fixed ultrafilter (F ′)+ in B’,

which extends F ′. The restriction F of (F ′)+ with respect to B is an ultrafilter in B. Let

us choose such an ultrafilter F for the extension of the filter D in B.

Let us consider the following relation ≡ on β, where β denotes the ordinal α+ ε :

m ≡ n (m,n ∈ β) if and only if dmn ∈ F. (6.4)

Lemma 6.5 ≡ is an equivalence relation on β and, furthermore, for every i ∈ α there

exists an m /∈ α such that dim ∈ F .

Proof.

The (E1), (E2) and (E3) axioms ensure that ≡ is an equivalence relation on β. Let us

denote by Π the set of the equivalence classes.

1 = cjdji ∈ F (i, j ∈ α, j 6= i). The regular perfect ultrafilter property implies that

s[j / m]dji ∈ F for some m /∈ α. By (E3), s[j / m]dji = dmi, therefore dmi = dim ∈ F follows.

qed.
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As it was mentioned at the outline of the proof, we define a set M of m-transformations

in αβ (in some steps). Let us assume that m,α are infinite and m < α.

Let R be the set {m : m ∈ β,∃i ∈ α such that dim ∈ F} .

An m-transformation τ ∈ αβ is called a basic transformation on α if for τ, there is a

set N (N ⊂ α) such that |N | ≤ m and di τi ∈ F if i ∈ N and τi = i if i /∈ N , and, in

addition,
∏
i∈N

di τi ∈ F.

Let M0 be the set {τ : τ is basic transformation on α} .

Let M1 be the set

{η : η ∈ αβ, ηi = τi for some τ ∈M0 except for finitely many i ∈ α} .

Let M denote the set {η ◦ λ : η ∈M1, λ ∈ αα, λ is an m-transformation} of

m- transformations.

Remarks

a) M0 6= ∅. For example, if N is finite, then let τ be such that τi = ni, where i ≡ ni

(dini ∈ F ), ni /∈ α, and let τ be the identity otherwise. Lemma 6.5 implies that such a τ

exists and τ ∈M0.

b) In general, M 6= αβ ∩ mTα. Furthermore, R is infinite by Lemma 6.5, α ⊂ R.

c) Notice that if the set N (|N | ≤ m) occuring in the definition of the basic transforma-

tion is replaced by a set having cardinality α (for example, by the set α), and B’ is locally-m

(this may be assumed, too), then
∏
i∈α

di τi ∈ F cannot hold, because
∏
i∈α

di τi = c∂0d01 (by

[He-Mo-Ta I.] 1.11.6). Indeed, c∂0d01 /∈ F, apart from trivial cases.

Lemma 6.6 The following propositions (i), (ii) and (iii) hold:

(i) Idα ∈ M0

(ii) τ ∈M implies that τ ◦ [i / m] ∈M for each fixed i ∈ α and m ∈ β

(iii) τ ∈M implies that τ ◦ λ1 ∈M for each m-transformation λ1, λ1 ∈ αα.

Proof.
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(i) It follows from dii = 1 ∈ F, i ∈ α, and the definition of M0.

(ii) Assume that τ is of the form η ◦ λ, where η ∈ M1. For a fixed i ∈ α, let us fix a

j ∈ α such that λj = j, τj = j and there is no k ∈ α, k 6= j such that λk = j. λ and τ are

m-transformations, thus such a j exists. Let λ′ ∈ mTα such that λ′i = j and λ′k = λk if

k 6= i and, furthermore, let τ ′ ∈ αβ ∩ mTα be such that τ ′j = m and τ ′l = τ l if l 6= j. It

is easy to see that τ ◦ [i / m] = τ ′ ◦ λ′ and τ ′ ◦ λ′ ∈M. That is, τ ◦ [i / m] ∈M.

(iii) It follows from the fact that the composition of m-transformations is an m-

transformation and from the definition of M.

qed.

Remark

Of course, part (ii) is true for finitely many compositions, too, i.e., for

τ ◦ [i1 / m1]◦ [i2 / m2]◦ . . .◦ [in / mn]. (iii) fails to be true for compositions by an arbitrary

m-transformation η ∈ αβ, i.e., for τ ◦ η. This will be the reason why the proof of Theorem

6.2 does not work for polyadic equality algebras, i.e., for infinite cylindrifications.

Now, we define a Cprsα-unit V , as we indicated in the outline of the proof. The members

of the α-sequences in V will be equivalence classes with respect to ≡. V will be defined by

m-subunits.

For the fixed y (y ∈ A, y 6= 0), let us consider the fixed ultrafilter Fy containing y,

defined after Lemma 6.4, and let Πy denote the set of equivalence classes corresponding to

Fy, defined in (6.4). Let Zy be a β-sequence such that

(Zy)n = n/ ≡ if n ∈ β. (6.5)

With y, Zy and Fy we can associate an m-subunit Wy in the following way (we omit

the index y if misunderstanding is excluded):
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Wy = {SτZy : τ ∈M} . (6.6)

Let the definition of the expected embedding h′ of A into the full Cprsα with unit V be

hx = {SτZy : sτx ∈ Fy, τ ∈M} (6.7)

where x ∈ A and h denotes the restriction of h′ to the m-subunit Wy.

Remarks

a) By Lemma 6.6 (i), τ may be Idα in (6.6). Then we obtain a support of Wy, i.e., we

obtain the α-sequence Z0
y such that (Z0

y )i is the equivalence class in Πy associated with i

by Lemma 6.5 (Z0
y ∈Wy). Wy is a subset of the m-weak space by support Z0

y and m-base

Πy. By Lemma 6.6 (iii), Wy is really an m-subunit, because τ ∈ M implies τ ◦ λ ∈ M for

each m-transformation λ.

b) Wy = h1 because sτ1 = 1, by the neat embedding property. Notice that hx ⊆ Wy,

by definition.

In the lemma below, we check that the definition in (6.7) is sound. Next, it is shown

in Lemma 6.8 that h′ is indeed an embedding of A.

Lemma 6.7 SτZy = SσZy implies that sτx ∈ F if and only if sσx ∈ F, where

τ , σ ∈M , x ∈ A.

Proof.

Indirectly. Assume that

SτZy = SσZy, sτx ∈ F, but sσx /∈ F (6.8)
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for some τ, σ ∈ M, x ∈ A. By (6.5), SτZy = SσZy means that τi ≡ σi, i.e., dτi σi ∈ F if

i ∈ α. This implies that dτi σi ∈ F if i ∈ ∆x, of course. (Here |∆x| ≤ m, by condition).

Let us consider the product
∏
i∈∆x

dτi σi. This product does not necessarily exists or, if

it exists, does not necessarily belongs to F.

Let us consider the completion B’ of B and recall the definition of F (after Lemma 6.4)

in B′. From now on, we identify the elements in B and their images at the embedding.∏
i∈∆x

dτi σi exists in B’, by the completion property. It is shown that

∏
i∈∆x

dτi σi ∈ F (6.9)

where dτi σi ∈ F if i ∈ ∆x.

Let us take the definition of the transformations τ ,σ ∈ M. Assume that τ = τλ1 and

σ = σλ2 for some τ , σ ∈M1 and m-transformations λ1, λ2 ∈ αα (where τλ1 abbreviates τ

◦λ1, e.g.,). Then
∏
i∈∆x

dτi σi is of the form
∏
i∈∆x

d(τλ1)i (σλ2)i. In this product, let us separate

the diagonal elements such that at least one of their indices is not in R. By the definition

of M1, there are only finitely many diagonals in
∏
i∈∆x

d(τλ1)i (σλ2)i having this property, so

let us assume that this property is satisfied for i ∈ P , for example, (P may be infinite).

Thus we obtain:∏
i∈∆x

d(τλ1)i (σλ2)i =
∏

i∈∆x∩P
d(τλ1)i (σλ2)i ·

∏
i∈∆x∼P

d(τλ1)i (σλ2)i.

The first member of this product is an element of F because it contains finitely many

diagonals and the diagonals are elements of F, by assumption. As regards the second

member of the product, let us consider the following inequality:∏
i∈∆x∼P

d(τλ1)i (σλ2)i ≥
∏

i∈∆x∼P
d(τλ1)i λ1i

This follows from the known property dnm ≥ dni · dim of diagonals.

After the above separation, τ and σ may already be considered as basic transformations

in M0 by the definition of M1, considering these transformations to be the identity if i ∈ P.
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Therefore the following inequality is true:∏
i∈∆x∼P

d(τλ1)i λ1i ·
∏

i∈∆x∼P
dλ2i (σλ2)i ≥

∏
k∈N1

dτk k ·
∏
k∈N2

dk σk

where N1 and N2 are the sets occuring in the definition of basic transformation. This

inequality follows from the fact that the set of the members on the right-hand side is a

subset of those on the left-hand side, by the definition of M and M0.

But, by the definition of M0, the two products on the right-hand side are elements of

F. Therefore, using the filter properties, we obtain that (6.9) is true.

Then, let us consider the inequality
∏
i∈∆x

dτi σi · sτx ≤ sσx (i.e.,∏
i∈∆x

dτi σi· x(τ1, τ2, . . . , τk, . . .) ≤ x(σ1, σ2, . . . , σk, . . .)). This holds, by (CP8)∗. This

inequality implies a contradiction because
∏
i∈∆x

dτi σi ∈ F, sτx ∈ F and the properties of

filters imply sσx ∈ F, contradicting (6.8). Thus the lemma is proven.

qed.

Now, we will prove that the mapping h′ defined in (6.7) is an embedding of A.

Lemma 6.8 h′ is a homomorphism defined on A and h′y 6= ∅ if y 6= 0 (i.e., h′ is an

embedding of A).

Proof.

First, we check that h′y 6= ∅ if y 6= 0.

Since τ = Idα ∈ M, by Lemma 6.6 (i), therefore by Remark a) before Lemma 6.7,

Z0
y ∈ hy, where Z0

y is a support.

We prove the homomorphism property by m-subunits. Let us fix an m-subunit Wy

corresponding to the ultrafilter Fy. Let us denote Wy, Zy and Fy by W, Z and F , for

short, and let h denote the restriction of h′ to Wy. We need to show that h preserves the

operations ci, sλ,+,− and the diagonals.
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1. h preserves the cylindrifications ci, i ∈ α, i.e.,

hcix = Cihx (6.10)

where x ∈ A and Ci abbreviates C
[W ]
i .

We use axiom (CP5) several times. By definition, (6.10) means that

{SτZ : sτ cix ∈ F, τ ∈M} = Ci {SηZ : sηx ∈ F, η ∈M} . (6.11)

For the right-hand side of (6.11), Ci {SηZ : sηx ∈ F, η ∈M} =

=
{
S[i / n]SηZ : sηx ∈ F, η ◦ [i / n] ∈M for some n ∈ β

}
=

=
{
Sη◦[i / n] Z : sηx ∈ F, η ◦ [i / n] ∈M for some n ∈ β

}
(6.12)

by S[i / n]SηZ = Sη◦[i / n] Z.

First, we prove that the left-hand side is a subset of the right-hand side in (6.11).

Assume that SτZ is an element of the left-hand side in (6.11).

By the regular perfect ultrafilter property, sτ cix ∈ F implies sτs[i / m]x ∈ F for some

m /∈ (α ∪ Rg τ). And,

sτs[i / m]x = sτ◦[i / m]x. (6.13)

τ ∈ M implies that τ ◦ [i / m] ∈ M, by Lemma 6.6 (ii).

Let us choose τ ◦ [i / m] for η in (6.12). So, η ∈ M holds. sηx ∈ F, by (6.13). η =

τ ◦ [i / m] implies that τ is of the form η ◦ [i / n] for some n ∈ β. η ∈ M implies that η ◦ [i

/ n] ∈ M by Lemma 6.6 (ii). Hence SτZ, i.e., Sη◦[i / n]Z is indeed in the set in (6.12).
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Next, we check that the right-hand side in (6.11) (i.e., the set in (6.12)) is a subset of

the left-hand side. Assume that Sη◦[i / n]Z is an element of (6.12)

sηx ∈ F implies that sηcix ∈ F. Considering the left-hand side of (6.11), let τ be

η ◦ [i / n] . Then τ ∈ M holds. But, by (CP5),

sη◦[i / n]cix = (sη ◦ s[i / n])cix. (6.14)

Here (sη ◦s[i / n])cix = sηcix, hence (sη ◦s[i / n])cix ∈ F. This latter together with (6.14)

imply sη◦[i / n]cix ∈ F, i.e., sτ cix ∈ F. Hence, Sη◦[i / n]Z is in {SτZ : sτ cix ∈ F, τ ∈M} .

2. h preserves the transformations sλ for every m-transformation λ ∈ αα, i.e.,

h(sλx ) = Sλhx , (6.15)

where Sλ abbreviates SWλ .

(6.15) means that

{SτZ : sτ (sλx) ∈ F, τ ∈M} = Sλ {SηZ : sηx ∈ F, η ∈M} (6.16)

where x ∈ A, λ ∈ αα is m-transformation.

We use (CP5) again. Let us denote the set {SηZ : sηx ∈ F, η ∈M} by X. For the

right-hand side of (6.16), by the definition (6.6) of Wy,

SλX = {SδZ : SλSδZ ∈ X, δ ∈M} = {SδZ : Sδ ◦ λZ ∈ X, δ ∈M} . And,

{SδZ : Sδ ◦ λZ ∈ X, δ ∈M} = {SδZ : sδ ◦ λx ∈ F, δ ∈M, δ ◦ λ ∈M } (6.17)
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by the definition of the set X.

For the left-hand side of (6.16)

{SτZ : sτ (sλx) ∈ F, τ ∈M} = {SτZ : sτ ◦ λx ∈ F, τ ∈M } . (6.18)

Comparing (6.17) and (6.18), choosing τ = δ, and recalling that δ ∈ M implies δ ◦ λ ∈

M by Lemma 6.6 (iii), we obtain that these sets coincide.

3. h preserves the diagonals, i.e.,

hd ij= D ij ,

where i, j ∈ α and Dij abbreviates DW
ij .

hdij = Dij means that

{SτZ : sτdij ∈ F, τ ∈M} = {SτZ : (SτZ)i = (SτZ)j , τ ∈M } (6.19)

where i, j ∈ α.

The left-hand side of (6.19) is a subset of the right-hand side. Indeed, by (E3), sτdij =

dτi τj , hence dτi τj ∈ F. But (SτZ)i = (SτZ)j , i.e., τi / ≡ = τj / ≡ means, by definition

of ≡, that dτi τj ∈ F. Conversely, the right-hand side of (6.19) is a subset of the left-hand

side. Similarly to the previous line of reasoning, (SτZ)i = (SτZ)j means that dτi τj ∈ F.

From this, by (E3), sτdij ∈ F obviously follows.

4. h preserves the operation +, i.e.,

h(x+ z) = hx ∪ hz
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if x, z ∈ A.

Here h(x+ z) = {SτZ : sτ (x+ z) ∈ F, τ ∈M}, hx =

{SτZ : sτx ∈ F, τ ∈M}, hz = {SτZ : sτz ∈ F, τ ∈M} , where x, z ∈ A. By (CP6), sτ (x+

z) = sτx+ sτz.

If SτZ ∈ hx ∪ hz, then, for example, SτZ ∈ hz, which means by the definition of h

that sτz ∈ F . But sτz ∈ F and the ultrafilter properties imply that

sτx+ sτz ∈ F. (6.20)

By (CP6), sτ (x+ z) ∈ F , consequently, SτZ ∈ h(x+ z), by the definition of h.

The converse is similar. If SτZ ∈ h(x + z), then sτ (x + z) = sτx + sτz ∈ F . F is a

filter, therefore sτx ∈ F or sτz ∈ F . Thus, SτZ ∈ hx or SτZ ∈ hz, so, SτZ ∈ hx ∪ hz.

5. h preserves the operation −, i.e.,

h(−x) = ∼ hx

where ∼ abbreviates ∼W .

Here hx = {SσZ : sσx ∈ F, σ ∈M} and h(−x) =

={SτZ : sτ (−x) ∈ F, τ ∈M} . Using the ultrafilter properties and (CP7)

∼ hx = W ∼ {SσZ : sσx ∈ F, σ ∈M} = {SσZ : sσx /∈ F, σ ∈M} =

= {SσZ : −sσx ∈ F, σ ∈M} = {SσZ : sσ(−x) ∈ F, σ ∈M} .

Comparing h(−x) and ∼ hx, choosing τ = σ, we obtain the proposition.

So, h′ preserves the operations restricted to the m-subunits. Notice that the preserva-

tion is true for the unit V as well, instead of the m-subunits W ′s. Here, the only non-trivial
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case is the operation minus. But, the disjointness of the m-subunits assures that h′ pre-

serves the minus, too.

qed.

The proofs of the preservation of +, − and the diagonals are similar. They are not

detailed.

Finally, using the Lemmas 6.4–6.8, we obtain

The proof of Theorem 6.2:

By Lemma 6.8, h′ is an isomorphism between A and a Cprsα with unit V. We need

to prove that V is a mGwpα unit and the representant algebra is regular. The mGwpα

unit property follows from Lemma 3.16 (i), i.e., from the preservation of the operator sλ,

where λ ∈ αα and λ is m-transformation (Lemma 6.8, part 2). In particular, we know

that h′(sλx) = Sλh
′x. Let us choose 1 for x. On one hand, h′(sλ1) = h′1 = V. On the

other hand, Sλh
′1 = SλV. Comparing these equalities, we obtain that SλV = V , i.e., A ∈

mGwpα.

To prove the regularity property, let us consider an arbitrary element hx in the repre-

sentant algebra (see 6.7). Assume that t ∈ h′x. By definition, t is an element of a subunit

Wy for some y. By the definition of regularity of mGwpα, assume that q ∈ Wy such that

(∆h′x ∪ 1) � t ⊆ q (q ∈Wy may be assumed).

Using (6.6) and (6.7), t is of the form SτZy for some τ ∈ M, where τ is such that

sτx ∈ Fy, and q is of the form SσZy for some σ ∈M. It must be proved that q ∈ h′x, i.e.,

sσx ∈ Fy. h′ is an isomorphism, therefore ∆h′x = ∆x. By condition, (SτZy)i = (SσZy)i if

i ∈ (∆x∪1), i.e., τi ≡ σi if i ∈ (∆x∪1). But, by the proof of Lemma 6.7, sσx ∈ Fy follows.

As regards the proof of the other part of the Theorem 6.2, A ∈ I mGwpα implies A ∈

mCPEα (by Lemma 3.20). Then we can refer to the respective version of Daigneault-Monk-

Keisler theorem (see also the proof of Theorem 3.24 below).

qed.
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∗ ∗ ∗

We come to the applications of the above neat embedding theorem. It was mentioned

that neat embedding theorems, together with theorems about neatly embeddable alge-

bras, imply representation theorems. In terms of our neat embedding theorem and the

Daigneault-Monk-Keisler theorem below (and its variants), we prove two representation

theorems.

Let us recall the definitions of polyadic and polyadic equality algebras (PAα and PEAα,

[He-Mo-Ta II.], 5.4.1) and the following important result, closely related to our subject:

Theorem (Daigneault–Monk–Keisler) If A ∈ PAα, then A ∈ SNrαB for some B ∈

PAα+ε, where α is a fixed infinite ordinal and ε > 1 (see [Da-Mo], [Kei] and [He-Mo-Ta II.]

Thm. 5.4.17).

This form of the theorem (apart from terminology) is due to Daigneault and Monk

([Da-Mo], Theorem 4.3). Keisler published the proof theoretical variant of the theorem in

the same issue ([Kei]). Here we will refer to the proof of Theorem 4.3 in [Da-Mo] and its

variant for polyadic equality algebras ( [He-Mo-Ta II.] 5.4.17).

The Daigneault–Monk–Keisler theorem holds if the class PAα is replaced by mCPEα

and PAα+ε is replaced by the class mCPE
−
α+ε. We return to these versions below.

The proof of Theorem 3.24:

Assume that A ∈ mCPEα∩ Lmα. By Theorem 6.2, it is enough to prove that A ∈

SNrαB, for some B ∈ mCPE
−
α+ε, where ε is infinite. We refer to the proof of Daigneault-

Monk-Keisler’s theorem, specifically to the proof of Theorem 4.3 in [Da-Mo] and its variant

for algebras with equality ([He-Mo-Ta II.] 5.4.17).

A special case of the proof is when only single cylindrifications are defined. Omitting the

axiom of the commutativity of cylindrifications (axiom (P5) there), the proof also works.
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If the transformations in A are supposed to be m-transformations, where m is infinite,

i.e., A is an m-quasi-polyadic algebra, then it is easy to check that each transformation

occuring in the proof is m-transformation. Thus we obtain only m-transformations in the

embedding algebra B, i.e., B also is an m-quasi one. Thus, all mCPEα axioms are satisfied

in B, except for (CP9)∗ maybe. An important special case is when A is locally-m, m is

infinite, then, as the proof implies, B can be assumed to be locally-m, too.

It must be checked that the properties (6.1) and (6.2) are satisfied in B. These equations

follow from the construction included in the proof of Theorem 4.3 in [Da-Mo]. We refer to

the notation used there. (6.1) means the equation in (16) there if K = {m} , τ = [j / m]

and ρ = [m / j] . This holds, obviously. If K = {m} and τ is such that τm = m, then (16)

means cmsτ cmx = cmsτx, which is equivalent to (6.2). In this case, in the next equation

(following (16)) instead of equality, the inequality ≤ holds by the original (CP9)∗. But the

right-hand side of this inequality equals that of the equation in (16).

The other direction of the theorem follows by Lemma 3.20.

qed.

The proof of Theorem 3.25:

First, assume that A ∈ CPEα. Similarly to the proof of Theorem 4.3 in [Da-Mo], we

can obtain that A is neatly embeddable into a β-dimensional algebra B satisfying all the

CPEβ axioms, except for (CP9)∗ maybe, where α < β. The embedding of A in B may be

considered as a β-dimensional algebra. Let us denote this algebra by A’. This algebra is a

locally-α and α-quasi β-dimensional algebra for each β (β < α), i.e., A’∈ αCPE
−
β ∩ Lαβ.

Now, applying to A’, as to β-dimensional algebra, the same argument as in the proof of

Theorem 3.24, we obtain that there exists a β + ε-dimensional algebra C ∈ αCPE
−
β+ε (ε is

infinite) such that A’∈ SNrβC. Thus, the conditions of Theorem 6.2 are satisfied with the

following choices: A’ for A, α for m and β for α. By Theorem 6.2, A’∈ I αGwp
reg
β . But, as

is known, the α-reduct of an algebra in αGwp
reg
β (α < β) is a set algebra in Gpα, and the
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regularity is preserved as well. This set algebra in Gpreg
α is obviously isomorphic to A. If

A ∈ IGpreg
α , then the proposition follows by Lemma 3.20.

The second proposition of the theorem follows immediately from the first proposition

and the definition of the class CPESα.

qed.

Main references in this Chapter: [Ha57], [Da-Mo], [Fe12b], [Fe10] and [Fe07a].
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