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1. Introduction

1 Introduction

In the 1800s, applying the basic principles of mass conservation and Newton’s
second law, Leonhard Euler described the fluid flow in terms of spatially vary-
ing three-dimensional pressure and velocity fields by two coupled nonlinear
partial differential equations. Euler did not account for the effect of friction
acting on the motion of the fluid elements. In 1822 Claude-Luis Navier [158]
and independently in 1845 George Stokes [192] took the viscous forces into
considerations and derived the mathematical description of a viscous fluid
flow by a system of more complex nonlinear partial differential equations
called Navier-Stokes equations. No one has given a general analytic solution
to them. In 1904 Ludwig Prandtl introduced the concept of the boundary
layer in a fluid flow. From that time the modern aerodynamics and fluid dy-
namics have been dominated by Prandtl’s idea. Prandtl has given the first
description of the boundary layer concept in his paper [168] entitled ”Über
Flüssigkeitsbewegung bei sehr kleiner Reibung” (”On the motion of fluids
with very little friction”). In his theory an effect of friction was to cause
the fluid adjacent to the solid surface to stick to the solid surface of the
body submerged in the fluid flow (i.e., no-slip condition at the surface) and
the frictional effect was experienced in a thin region near the surface. That
boundary layer is very thin in comparison with the size of the body of the
object. Prandtl concluded that if the viscosity is small, the velocity changes
substantially in a very short distance normal to the solid surface. Within
the boundary layer the velocity gradient is very large. With the Newton’s
shear-stress law (i.e. the shear stress is proportional to the velocity gradient
and viscosity) the local shear stress can also be very large. Near the solid
surface in the thin boundary layer the friction is dominant while in the outer
inviscid flow external to the boundary layer the friction is negligible. The
outer flow generates the boundary conditions at the edge of the layer.

With Prandtl’s idea it became available to reduce the Navier-Stokes equa-
tions to differential equations of simpler form called boundary layer equa-
tions [13]. While the Navier-Stokes equations are elliptic and the complete
flow field must be solved simultaneously, the boundary layer equations are
parabolic for which simplifications are available (see e.g., [10], [13], [74], [76],
[177], [178]). In 1908 Heinrich Blasius [30] gave solutions for two-dimensional
boundary layer flows over a flat plate and a circular cylinder. For constant
pressure along the flat plate oriented parallel to the flow, the coupled non-
linear partial differential equations were reduced to a nonlinear ordinary dif-
ferential equation called Blasius equation [30].

In 1921 von Kármán [119] and Pohlhausen [165] provided an approximate
method, which has been used with considerable success for the analysis of
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1. Introduction

boundary layer flows. The method is based on an integral formulation of
the problem and its result, the calculated flow field, usually satisfies the
equations of continuity and momentum. The boundary conditions for the
flow are expanded to polynomial functions as an approach for the velocity
profiles in the laminar boundary layer.

Exact solutions to problems involving the motion of fluids are very dif-
ficult, or even impossible to obtain, even when the geometry is simple and
the fluid’s physical properties are constant. Numerical solutions are usually
good options but, when an analytical description is required, approximate
methods of formulation and solution are often useful.

1.1 Lubrication and Materials Processing

Lubrication, spreading, polymer coating and processing, and thin film casting
are important applications of the flow near a solid wall in engineering. Com-
putational analysis of flow near solid surfaces is performed to complement the
experimental observations. The advantage of the theoretical investigations
over experiments is that one can control the conditions and parameters in
the analyzed problem to predict velocity profiles and shear stress, and it can
be used also for assessing the error of numerical simulations of the problem.

The first paper on fluid-film lubrication of journal bearings was published
in 1883. The hydrodynamic effect has been shown experimentally by Tower
[204]. In 1886, Reynolds developed on the base of Tower’s results his theory
of hydrodynamic lubrication by assuming the fluid as viscous and Newto-
nian. However, in real situations, non-Newtonian fluids are used in order to
increase the viscosity of the lubricants by adding additives to base oils. The
addition of polymers to mineral oils has spread in practice [198], [24]. To pre-
dict the mechanical behavior of these lubricants is much more complicated
than of mineral oil lubricants which are considered Newtonian fluids. The re-
sulting lubricants, e.g., silicone fluids and polymer solutions are described by
non-Newtonian power-law model due to the model’s simplicity ([154], [181],
[182], [183], [184]. The non-Newtonian lubricants are encountered in various
processes of lubrication. Recently, considerable effect has been expanded for
solving problems in tribology regarding the non-Newtonian influence on lu-
brication flow characteristics of squeeze films ([154], [181], [182]), externally
pressured bearings ([183], [184]), journal bearings ([198], [173], [211]) and
roller bearings ([186], [187]).

Because of the importance of tribology and materials processing, consid-
erable research effort has been directed at the transport phenomena in such
processes in recent years. Many books are available on the area of lubrication,
manufacturing and materials processing (see e.g., [9], [75], [87], [108], [126],
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1. Introduction

[149], [145], [195], [196], [198]). Fluids engineering research can impact on
the field of tribology and materials processing only if significant effort is also
directed at understanding the basic mechanisms. In the last four decades
the demand in materials processing of composites, ceramics and advanced
polymers has been increasing.

An intense research of fluid flow mechanism arising in many materials
processing applications is necessitated to improve product quality, reduce
costs and achieve custom-made material properties. Fluid flow appears in a
lot of material processing operations e.g., in crystal growth for semiconductor
fabrication, polymer extrusion, casting or continuous processing of thin films.
Due to the importance of fluid flow in materials processing, extensive research
is being done in this field. Jaluria [117] gave a review on the main aspects
that must be considered in material processing, on the fluid flow phenomena
involved in different areas, such as drying, heat treatments, metal forming,
casting, crystal growing, polymer extrusion, food processing, coating and
microgravity materials processing. He emphasized that relatively little in-
formation can be found in the literature on the link between the diverse
processing techniques and the basic mechanisms of the govern flow; and the
quantitative dependence of the product quality on the fluid flow. Fluid flow
properties are important in many manufacturing processes as they effect on
the transport mechanisms, on the impurities and defects, on the time spent
by the material in the system, on the properties and characteristics of the
final product and on the product quality [209]. It is important to understand
the basic flow mechanisms involved in these processes so that high quality
coatings can be achieved at relatively large speeds of the coated material (see
Kistler and Schweizer [122] ). The casting processes have been reviewed by
Ruschak [172]. Weinstein and Ruschak [209] have pointed out that predictive
analysis is usually not available for the coating methods. Therefore, it is ad-
vantageous to describe the mechanical details for the fluid flow components
and then combine this knowledge for the applications. The main interest
is the achievable coating thickness and the uniformity, the attainable speed
together with the rheological requirements.

The production and use of polymers have grown increasingly. The ex-
trusion process is one of the most important polymer processing techniques
today. The extruders produce a tremendous variety of products. For exam-
ple, in the plasticating extruder the solid polymer is melted, homogenized
and pumped through the die at high pressure and temperature (see and [27],
[87], [149], [153]).

The processing of sheet-like materials is a necessary operation in the
production of paper, linoleum, polymeric sheets, roofing shingles, insulating
materials, and fine-fiber matts. Virtually, in all such processing operations,
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1. Introduction

the sheet moves parallel to its own plane [9]. The moving sheet may in-
duce motion in the neighboring fluid or, alternatively, the fluid may have an
independent forced-convection motion that is parallel to that of the sheet.

1.2 The Basic Equations in Rectangular Coordi-
nate System

We shall consider laminar fluid flows with constant density ρ over a thin flat
plate in a uniform stream with velocity U∞. The kinematic and dynamic
viscosity are denoted by ν and µ, respectively. Consider the plate of length
L. We assume that the Reynolds number Re = ρU∞L/µ expressing the
quotient from inertial and viscous forces is small, the flows considered in this
study are laminar. The fluid flows in parallel layers next to the solid surface.

Fig. 1.1 Boundary layer flow along a plate

The x > 0 and y > 0 are the Cartesian coordinates along and normal to
the plate with y = 0 is the plate and the coordinate x is as taken positive in
the direction of the mainstream. The plate origin is located at x = y = 0,
and u, v represent the components of the fluid velocity in the direction of
increasing x and y, respectively (see Fig. 1.3).

The governing equations for fluid flow and the associated heat transfer
in materials processing are derived from the basic conservation principles for
mass, momentum and energy. The continuity equation for an incompressible
fluid can be formulated as

(1.1)
∂u

∂x
+
∂v

∂y
= 0.
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1. Introduction

The equation of motion is a vectorial equation. For steady, a two-
dimensional fluid flow it can be formulated under the assumptions that the
flow is independent of time, laminar and the gravity forces are neglected [26],
[149], [210]:

ρ(u
∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+

(
∂τxx
∂x

+
∂τyx
∂y

)
,(1.2)

ρ(u
∂v

∂x
+ v

∂v

∂y
) = −∂p

∂y
+

(
∂τxy
∂x

+
∂τyy
∂y

)
,(1.3)

where τxx, τyy, τxy, τyx are the components of the stress tensor.
Taking into consideration the components of the stress tensor in rectan-

gular coordinates [26] equations (1.2) and (1.3) are reduced to

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ 2

∂

∂x

[
(µ
∂u

∂x
)

]
+

∂

∂y

[
µ(
∂u

∂y
+
∂v

∂x
)

]
,(1.4)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

∂

∂x

[
µ(
∂u

∂y
+
∂v

∂x
)

]
+ 2

∂

∂y

[
(µ
∂v

∂y
)

]
,(1.5)

where µ denotes dynamic viscosity.
The velocity in the boundary layer increases until it reaches the outer

flow velocity U∞. As all fluid flows must be zero at a solid boundary, the
velocity must increase rapidly to U∞ in a boundary layer. The region of
velocity change is called a hydrodynamic boundary layer . The boundary
layer thickness δbl is defined as the distance required for the flow to reach
U∞.

Prandtl’s boundary layer theory applies to flows where there are extensive
inviscid regions separated by thin shear layers of boundary layer thickness
δbl � L. It is satisfied if Re � 1. Except this close neighborhood of the
solid surface, the flow velocity is comparable to the free stream velocity U∞.
Outside the boundary layer the velocity gradients are negligibly small and the
influence of the viscosity is unimportant. In the flow of the region near the
solid surface there is friction. In the normal direction y inside the thin layer
the gradient ∂u/∂y is very large compared with gradients in the streamwise
direction ∂u/∂x. Although the viscosity was meant to be very small in this
flow, the shear stress can be large. For steady flows the approximations used
by Prandtl (1904) in deriving the boundary layer equations are the following:

Re� 1, δbl � L, v � u, ∂u/∂x� ∂u/∂y, ∂v/∂x� ∂v/∂y.

moreover, ∂p/∂y ≈ 0, then p = p(x) only, and if the free stream outside the
boundary layer is U∞(x), then

∂p

∂x
= −ρU∞

dU∞
dx

.
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1. Introduction

Within the framework of these assumptions the governing equations of
motion (1.2) and (1.3) for a flow of constant property fluid neglecting the
buoyancy and the body forces can be substituted by ([171], [178], [225]):

(1.6) ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= ρU∞

dU∞
dx

+
∂τyx
∂y

.

If the temperature of the wall is different from that of the free stream,
there is a thermal boundary layer thickness different from the flow boundary
layer thickness. To predict the temperature variation we need an equation
for the temperature field in the boundary layer.

The equation of energy for a steady two-dimensional boundary layer with-
out heat sources in rectangular coordinates takes the form ([171], [178], [201],
[202], [225]):

(1.7) u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αt
∂T

∂y

)
,

where T is the temperature of the fluid in the boundary layer and αt is the
thermal diffusivity. Equation (1.7) includes the following approximations
i.) the pressure variations in the flow are not enough to affect the thermo-
dynamic properties,
ii.) the viscous stresses do not dissipate enough energy to warm the fluid
significantly and
iii.) in the boundary layer ∂2T/∂x2 � ∂2T/∂y2.

It should be noted that the boundary layer equations are not exact but are
asymptotic forms of the basic hydrodynamic equations when the Reynolds
number is large. The experimental flows at large Reynolds numbers are
turbulent, yet useful comparisons with laminar flow experiments at moderate
large Reynolds numbers can sometimes be made with large Reynolds number
asymptotic theories [71]. We restrict ourself for studying only the laminar
boundary layer flow.

In the following sections we study the possibility of reducing the system of
equations (1.1), (1.6) and (1.7) to ordinary differential equations by similarity
transformation. The term ”similarity solution” in fluid mechanics was first
introduced by Blasius [30] when he found a solution to a problem of Prandtl’s
boundary layer theory. Generally, a similarity solution is one in which the
number of variables can be reduced by some analytical techniques, e.g. by a
coordinate transformation. The theory of similarity in physical problems has
been investigated in several books from mathematical approaches by Ames
[10], or from physical viewpoint by Sedov [180] and Hansen [99].

The similarity method is a technique which reduces a set of partial differ-
ential equations into ordinary differential equation(s) involving only a single
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1. Introduction

variable. A systematic approach to provide solutions to partial differential
equations by the solution of ordinary differential equations which were ob-
tained by special transformations of the dependent/independent variables.
It is the use of specific combinations of variables which enables a conversion
of the partial differential equation to an ordinary differential equation.

Similarity analysis is applicable to certain problems in which the charac-
teristic lengths are determined by rate processes rather than by the geomet-
ric or physical dimensions. Such problems generally involve regions which
are regarded as being semi-infinite. The field variable of velocity attained
through similarity method has profiles which are identical in shape for all
positions or times, differing only by the scale over which the variations occur
and described by a variable of similarity. The benefit of the similarity anal-
ysis is that a set of partial differential equations can be reduced to ordinary
differential equations. This mathematical gain is accompanied by a loss in
generality. Similarity solutions are limited to certain geometries and certain
boundary conditions.

In sum, a primary advantage of the similarity method is that it is one of
the few general techniques for obtaining exact (nonlinear) solutions of partial
differential equations. A primary disadvantage of the similarity method is
that the solution found may satisfy only a very restricted set of initial and
boundary conditions.

1.3 Boundary Conditions

We must specify the boundary conditions to the set of differential equations
(1.1), (1.6) and (1.7). Many of the boundary conditions are the usual no-
slip conditions for velocity and the appropriate thermal or mass transfer
conditions at the boundaries. In general, boundary conditions are divided
into three types: initial conditions, surface boundary conditions and field
boundary conditions.

Initial conditions are specified at an initial position on the surfaces, e.g.
at the leading edge of a semi-infinite flat plate.

Surface boundary conditions are specified at the solid surface of the body.
Usually, it gives conditions on the velocity components and on the temper-
ature or heat transfer rate at the surface. The no-slip condition means that
the velocity of the fluid at the solid surface is assumed equal to the velocity
of the surface. Similarly, the temperature of the fluid at the solid surface is
assumed equal to the surface temperature. Instead of giving the temperature
at the surface, the heat transfer rate can also be given, i.e., the temperature
gradient at the solid surface can be specified. Surface tension effects are
important in many materials processing flows. Examples include flows in
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1. Introduction

welding, Czochralski and the floating-zone crystal growing methods, wave
soldering, and continuous casting. Surface tension can also have a significant
effect on the flow near the free surface. Large surface tension gradients can
arise along the interface due to temperature and concentration gradients.
Such surface tension gradients can generate significant shear stresses and
resulting flow along the interface. This flow, known as thermocapillary or
Marangoni convection, is important in many material processing flows [126].
Furthermore, the mass flow rate through the surface can be specified. If the
mass flow rate through the surface is zero the velocity component normal
to the surface is zero. Positive mass flow rates are referred to as blowing or
injection and negative mass flow rates as suction.

The field boundary conditions are given at some point in the flow field
usually at a large distance from the surface. The velocity components and/or
thermodynamic variables can be required to approach a constant or some
specific functional form.

1.4 Viscosity Variation

The properties of the material undergoing thermal processing play a very
important role in the mathematical and numerical modeling of the process.

The variation of dynamic viscosity µ requires special consideration for
materials such as lubricants, plastics, polymers, food materials and several
oils, that are of interest in a variety of manufacturing processes. Most of these
materials are non-Newtonian in behavior, implying that the shear stress is
not proportional to the shear rate. The viscosity µ is a function of the shear
rate. For Newtonian fluids like air and water, the viscosity is independent
of the shear rate, but increases or decreases with the shear rate for shear
thickening or thinning fluids, respectively. These are viscoinelastic fluids,
which may be time-independent or time-dependent.

The mechanical behavior of a material and its mechanical or rheological
properties can be characterized in terms how the shear stress and shear rate
are related. If the properties of the fluid are such that the shear stress and
shear rate are proportional, the material is known as a Newtonian fluid. This
relationship in the boundary layer is expressed by

(1.8) τyx = µ
∂u

∂y

called Newton’s law of viscosity. For materials which do not obey this law,
i.e., the shear stress and shear rate are not directly proportional but are
related by some function, the fluid is called non-Newtonian [213]. Many
of industrial liquids show non-Newtonian behavior, see for example [22],
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1. Introduction

[27]-[29], [213]. The physical origin of a non-Newtonian behavior relates
to the microstructure of the material. Materials such as slurries, pastes, gels,
drilling mud, paints, foams, polymer melts or solutions are examples of non-
Newtonian fluids. For such fluids the viscosity is not constant, it is a function
of either the shear rate or the shear stress.

Many papers have concentrated on the prediction of rheological proper-
ties under shear using molecular dynamics computations ([89], [90], [226]).
The observations of these simulations greatly assist us in understanding the
behavior of lubricant properties. Various models are employed to represent
the viscous or rheological behavior of fluids of practical interest. Frequently,
the fluid is treated with the non-Newtonian viscosity function given in terms
of the shear rate.

A chief difficulty in the theoretical study of non-Newtonian fluid mechan-
ics is to define this relationship. The apparent viscosity µapp is the ratio of
shear stress and shear rate, then

τyx = µapp
∂u

∂y

holds. We shall investigate boundary layer problems for non-Newtonian fluids
whose apparent viscosity depends only on the rate of strain. The actual
mathematical form of µapp for these materials will depend on the nature
of the particular material. The flow behavior of fluids determined by their
rheological properties is described by the relationship between the shear stress
and shear rate. This relationship is determined experimentally. The time-
independent viscoinelastic fluids are often represented by

(1.9) µapp = K φ

(
∂u

∂y

)
,

where φ is an empirically determined function.
The most common flow model is the so-called power-law model or the

Ostwald-de Waele power-law model, given by [195]. Throughout this work
we apply this model when the flow behavior of the non-Newtonian fluid is
described by

(1.10) µapp = K

∣∣∣∣∂u∂y
∣∣∣∣n−1 .

This provides an adequate representation of many non-Newtonian fluids over
the most important range of shear. The shear stress is related to the strain
rate ∂u/∂y by the expression

(1.11) τyx = K

∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂u∂y ,
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1. Introduction

where K and n > 0 are a positive constants called consistency and power-law
index, respectively, and defined by Bird [26]. The case 0 < n < 1 corresponds
to pseudoplastic fluids (or shear-thinning fluids), the case n > 1 is known
as dilatant or shear-thickening fluids. For n = 1, one recovers a Newtonian
fluid. The deviation of n from a unity indicates the degree of deviation from
Newtonian behavior [13].

It should be noted that without the above boundary layer simplifications
the dynamic viscosity µ in (1.4) and (1.5) for power-law fluids is calculated
by the following relationship

(1.12) µ = K

{
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2
}(n−1)/2

.

The two-parameter relations (1.11) or (1.12) have been useful in fitting
rheological data for a large variety of fluids (see [153], [179]). Parameters K
and n are determined empirically. Relation (1.11) may fail to fit the total
range of experimental data for some materials. However, the formula can
be fitted well to measured data over a restricted range of shear rate. The
properties of the material undergoing thermal processing must be known and
appropriately modeled to accurately predict the resulting flow and transport,
as well as the characteristics of the final product. Some of the values of n
are shown in Table 1.1 ([57], [63], [161]). In process industries most non-
Newtonian fluids are pseudoplastic (n < 1).

The ”functionalization” of solid and fluid materials by addition of chem-
ical compound is a process that is going back to Maxwell [147], [148] and
Rayleigh [170]. The effective viscosity was characterized by Einstein [80],
[81]. Due to measurements for crude oil and experiments with various liq-
uids ranging from simple molecular liquids to polymer melts it was shown
that the apparent viscosity dependent on the shear rate. On the base of
measurements the authors observed for the apparent viscosity a power law
of the form (1.10). The dependence of the power n on many factors (e.g. the
pressure, the temperature and the film thickness) was confirmed by simula-
tions ([2], [133], [134], [79]). Application of molecular dynamics to rheology
has helped to understand the behavior of non-Newtonian fluids to predict
quantitative rheological properties such as the viscosity of lubricants [116].
Some lubricants, e.g. silicone fluids and polymer solutions are described by
the non-Newtonian power-law model due to the model’s simplicity (see [154],
[181], [182], [183], [184]).

10
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1. Introduction

Material n
clay suspension 0.1
suspensions (kaolin in water, bentonite in water) ≈0.1-0.15
cosmetic cream ≈ 0.1-0.4
toothpaste 0.3
molten polymers ≈0.3-0.7
drilling fluid (oil based mud), paper pulp, latex paint ≈ 0.4-0.6
lubricants ≈ 0.4-1.1
water, glycerin 1
slurry (sand-water mixture) ≈ 1.1-1.4
saturated honey ≈1.5

Table 1.1

Thompson et al. [199] showed that at high shear rates the viscosity
of glassy films obeys a power law in the form (1.10) with n = 2/3. In
[41] and [52] the power exponent n was determined for a polyethylene and
n ≈ 0.3 was obtained in the range of temperature 160◦C-180◦C. It was shown
that both K and n depend on the temperature. In case of sand-bentonite-
water mixtures for different sand volumetric concentrations the experiments
gave n ≈ 1.4 and here the rheological parameters K, n do depend on the
volumetric concentration [49].

For simplicity, in our calculations we assume that the power-law exponent
n and the consistency K are constants. Even if the main advantage of the
power-law model is its relative simplicity, the non-Newtonian behavior of the
material complicates the viscous terms in the momentum equation.

Remark. Due to the wide range of applications a large number of ar-
ticles has been devoted to different mathematical aspects of the so-called p-
Laplacian operator ∆pu = ∇(|∇u|p−2∇u). Here, instead n the p parameter
is applied. On the mathematical examinations of the solutions to the equa-
tions involving ∆p we mention the book by Došlý and Rehák [77], Drábek
and Milota [78] and also some of my papers [31]-[37]. That type of nonlin-
earity appears also in nonlinear diffusion equations arising from a variety of
diffusion phenomena ([36], [216]).

1.5 Investigations

Analytical and numerical techniques can be applied to investigate flow char-
acteristics and how the fluid flow affects the process and the product. In
general, predictive modeling of complex processes is not yet known. The
practice remains largely empirical. However, physical insights and mathe-
matical models are greatly beneficial to explore the effect of the fluid flow on
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the lubricated machine elements or on the final product. Due to the prac-
tical necessity, it is important to study the influence of the viscosity on the
lubrication velocity and temperature fields. Within the thin boundary layer,
the wall shear stress and the friction drag of the solid surface can also be esti-
mated. It is important to understand the fluid flow mechanisms determined
by the governing equations and boundary conditions along with important
parameters to minimize and control their effects.

Due to the complexity of the governing equations and boundary condi-
tions that analytical methods can be used to obtain the solution in very
few practical circumstances. However, numerical approaches are extensively
used to obtain the flow characteristics, analytical solutions are very valuable
since they can be used for verifying numerical models, they provide infor-
mation about the basic mechanisms and give quantitative results for some
components. Analytical solutions can be obtained for simplified and idealized
models of certain processes.

The main topic of this dissertation is to introduce, review and discuss
several models which can be investigated by similarity analysis. Our results
are given for some boundary layer problems of Newtonian or non-Newtonian
fluid flows over horizontal solid surfaces.

In Section 2.1, the boundary layer problem for an idealized Newtonian
viscous fluid past a semi-infinite flat plate is one of the best known problems
in fluid mechanics, as its first analytic solution for the laminar case dates back
to the beginning of the last century with Blasius [30]. The classic book by
Schlichting and Gersten [177] describes the similarity approach of Newtonian
fluid flow problem called the Blasius problem. The similarity solution and
Töpfer’s transformation [203] are reviewed.

The first analysis of the boundary-layer equations for a power-law fluid
is due to Schowalter [179] and Acrivos et al. [4] in 1960. In Section 2.2, we
deal with the analysis of similarity solutions of the two-dimensional boundary
layer flow of a power-law non-Newtonian fluid past a semi-infinite flat plate.
The boundary value problem of the momentum equation is converted into
initial value problem by applying proper similarity variables and the partial
differential equations are transformed into the so called generalized Blasius
equation. For this we apply a Töpfer-like transformation to determine the
dimensionless wall gradient numerically. The power series expansion of the
solution is also presented for n > 0 ([38], [47]).

In Section 2.3, the similarity solutions to the Prandtl boundary layer
equations describing a non-Newtonian power law fluid past an impermeable
flat plate, driven by a power law velocity profile Ue = B̃yσ (B̃ > 0) are
investigated. We give that there are analytical solutions for any n > 0, n 6= 2
and any −1/2 ≤ σ < 0 and examine the effect of parameters σ, and n on the
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velocity profiles [46].
Boundary layer behavior on a moving continuous solid surface occurs in

a number of materials processes, an example is a polymer sheet or filament
extruded continuously from a die. The flow behavior was theoretically stud-
ied by Sakiadis [175] and experimentally by Tsou et al. [205]. Since some
polymers are flexible materials, the filament surface may stretch during the
production and therefore the surface velocity deviates from being uniform.
Sakiadis studied the flow induced by the uniform motion of a continuous
solid surface. Crane [72] gave an exact boundary layer solution, which is
an exact solution of the Navier-Stokes equations, for continuous sheet when
the sheet velocity is proportional to distance from the extrusion origin. In
Section 3.1, the boundary layer equations are considered for two-dimensional
boundary layer flows of Newtonian fluids over a moving flat surface moving
at a speed of Uw(x) in an otherwise quiescent Newtonian fluid medium. We
give a generalization of Crane’s solution for stretching wall with power law
stretching velocity [43]. The shear stress at the solid surface and the interval
of convergence are also discussed.

A technologically important source of the boundary layer phenomenon is
the non-Newtonian fluid flow over a continuously moving solid surface. For
example, hot rolling, glass-fiber production and conveyor belt are included
in the applications. In Section 3.2 we provide a theoretical analysis of the
boundary layer flow on a flat solid surface moving in an otherwise quiescent
non-Newtonian fluid medium. A special emphasis is given to the formulation
of boundary layer equations, which provide similarity solutions for the veloc-
ity profiles. We give numerical results on the velocity profiles and represent
the effect of the power exponent on the shape of the velocity distribution
[39].

After Blasius’ pioneering work in 1908, more than three decades later
the uniqueness of Blasius’ famous velocity boundary layer solution was rigor-
ously proved by Weyl [212]. On this background it was quite surprising that
further three decades later, Steinheuer [191] and Klemp and Acrivos [123],
[124] reported that in the Blasius-problem non-unique solutions may occur
when the plate is not at rest, but moves with a constant velocity Uw, oppo-
site in direction to the free stream of velocity U∞. It means that for positive
values of the velocity ratio λ = −Uw/U∞ dual solutions exist as long as λ
is smaller than the critical value λc = 0.3541. . . , after which no similarity
solutions exist. For λ < 0, Callegari and Nachman [62] have found unique
solutions. The aim of Section 4.1 is to give an introduction to the results
on the development of the doubly-driven Blasius flows reported by Klemp
and Acrivos in their Journal of Fluid Mechanics papers [123], [124] and by
Steinheuer [191]. In Section 4.2, our purpose is to give a theoretical analysis
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of similarity solutions for the boundary layer of a non-Newtonian fluid on a
flat plate moving opposite to the stream. The generalized Blasius boundary
value problem is considered with non-homogeneous lower boundary condi-
tions f(0) = 0, f ′(0) = −λ, where λ is the velocity ratio. The numerical
calculations indicate that for non-Newtonian fluids there is a critical value
λc such that solution to the boundary layer problem exists only if λ < λc.
For Newtonian fluid (n = 1) this phenomena was shown by Hussaini and
Lakin [110] and λc was found to be 0.3541. . . . We give estimation analyti-
cally for the critical velocity ratio λc depending on the power-law exponent
n and show the dependence of λc on the power exponent n [44].

When a free liquid surface is present, the surface tension variation result-
ing from the temperature gradient along the surface can also induce motion
in the fluid called thermal Marangoni convection. Marangoni convection is
mass transfer along a liquid surface and it appears in many engineering prob-
lems. e.g., in highly stressed lubricated ball or friction bearings [125], and in
crystal growth melts [67]. These phenomena have also been investigated by
similarity analysis (see [14], [16], [65]-[67], [164]). In Section 5.1, we present
the derivation of the equations and show how the boundary layer approxi-
mation leads to the two points boundary value problem and the similarity
solutions for Newtonian fluids. The new model, written in terms of stream
function and temperature, consists of two strongly coupled ordinary differen-
tial equations. Its analytical approximate solutions are represented in terms
of exponential series. The influence of various physical parameters on the
flow and heat transfer characteristics are discussed [48].

Many principal past studies concerning natural convection flows over a
semi-infinite vertical plate immersed in an ambient fluid have been found in
the literature ([141], [225]). In many cases, these problems may admit simi-
larity solutions. The idea of using a convective boundary condition for New-
tonian fluids was recently introduced by Aziz [18], while Magyari [143] revis-
ited this work, and obtained an exact solution for the temperature boundary
layer in a compact integral form. The effects of suction and injection have
been studied by the similarity analysis by Ishak [115] and a couple of recent
papers have been devoted to the subject of boundary layer flow with con-
vective boundary conditions (see e.g., [11], [45], [97], [100], [101], [144], [162],
[169], [193], [194], [217], [218]). Motivated by the above mentioned studies, in
Section 5.2 we investigate the steady laminar boundary layer flow of a non-
Newtonian fluid over a permeable flat plate in a uniform free stream, when
the bottom surface of the plate is heated by convection from a hot fluid. We
examine the heat and velocity distributions of a viscous and incompressible
power-law non-Newtonian fluid over a permeable steady sheet in a uniform
shear flow with a convective surface boundary condition ([45], [50]).
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2. Boundary layer flow on a flat plate

2 Boundary layer flow on a flat plate

The simplest example of application of boundary layer equations is the fluid
flow along a stationary solid surface. Although experimental studies of such
flows are important, it is crucial that the fluid mechanical properties are de-
termined. Theoretical understanding of the flow behavior is necessary. We
predict the boundary layer flow field by solving the equations that express
conservation of mass and momentum in the boundary layer for Newtonian
and non-Newtonian media. The geometry allows the governing partial dif-
ferential equations to be reduced to ordinary differential equations using a
similarity transformation.

2.1 Newtonian fluid flow

The problem of Newtonian fluid flow along a stationary, horizontal, infinite,
plate situated in a fluid stream moving with constant velocity U∞ is a classical
problem of fluid mechanics. In this problem, the fluid motion is produced
by the free stream. The Blasius flow is the result of the interaction of a flow
that is spatially uniform for large x with a solid plate, which is idealized
as being infinitely thin and extending infinitely far to the right as x → ∞.
The simplifications in the Navier-Stokes equations are valid for very high
Reynolds numbers

(2.1) Re =
ρU∞L

µ
.

Although the geometry is idealized, all flows past a solid body have thin
boundary layers similar to the Blasius flow. Air rushing past a bird or an
airplane, ocean currents streaming past an undersea mountain - all have
boundary layers. The Blasius problem has developed a vast bibliography
with the most well-known book written by Schlichting and Gersten [177].

2.1.1 Basic equations

We review the steady-state classical problem of a fluid flow along a horizontal,
stationary surface located in a uniform free stream U∞. This problem has
been solved first by Blasius [30].

Let us consider the boundary layer governing equations (1.1), (1.6) for the
two-dimensional steady flow of an incompressible fluid parallel to the x axis
(see Fig. 2.1). In this case the velocity of the potential flow is constant, and
∂p/∂x = 0. For Newtonian fluids the shear stress and shear rate relationship
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2. Boundary layer flow on a flat plate

Fig. 2.1 Boundary layer on a flat surface at zero incidence

given by (1.8). The boundary layer equations (1.1) and (1.6) become

∂u

∂x
+
∂v

∂y
= 0,(2.2)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= µ

∂2u

∂y2
.(2.3)

To solve these equations three boundary conditions are needed:
(i.) at the solid surface there is neither slip nor mass transfer:

(2.4) u (x, 0) = 0, v (x, 0) = 0,

(ii.) outside the viscous boundary layer the streamwise velocity component
u should approach the main stream velocity U∞:

(2.5) lim
y→∞

u (x, y) = U∞.

2.1.2 Similarity solution

In order to study this problem it is convenient to introduce the stream func-
tion ψ defined by

(2.6) u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Then, the continuity equation (2.2) is satisfied automatically and the equa-
tion (2.3) becomes

(2.7)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µc

∂3ψ

∂y3
, µc = µ/ρ.
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2. Boundary layer flow on a flat plate

The boundary conditions (2.4), (2.5) can be written as

∂ψ

∂y
(x, 0) = 0,

∂ψ

∂x
(x, 0) = 0, lim

y→∞

∂ψ

∂y
(x, 0) = U∞.

Now, we have a single unknown function ψ in the partial differential equation
(2.7). We look for similarity solutions using the linear transformation x →
ωx, y → ω−βy, ψ → ω−αψ with a positive parameter ω. Equation (2.7)
is invariant under this transformation for all ω > 0 when the scaling relation
α− β = 1 holds. Then one can write

(2.8) ψ = Axαf(η), η = Bxβy,

where A,B, α and β are constants to be determined (see [20]). Research on
this subject dates back to the pioneering works by Blasius [30], Falkner and
Skan [83].

In order to fulfill the differential equation and the boundary conditions,
the real numbers A,B > 0 are such that µcB/A = 1 and AB = U∞, that
means

(2.9) A = (µcU∞)
1
2 , B =

(
U∞
µc

) 1
2

,

and equation (2.7) with (2.9) leads to the following third order differential
equation

f ′′′ + αff ′′ = (α + β)f ′
2
,

where the prime on the f implies differentiation with respect to η. The
condition at infinity gives α + β = 0. Hence, α = 1/2, β = −1/2 and we
arrive at the Blasius problem

(2.10) f ′′′ +
1

2
ff ′′ = 0,

(2.11) f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = 1.

Therefore

ψ(x, y) = (µcU∞x)
1
2 f(η), η =

(
U∞
µc

) 1
2 y

x
1
2

and important characteristics of the flow, that the non-dimensional velocity
components can be given by f and η:

(2.12) u(x, y) = U∞f
′(η),

17

               dc_230_11



2. Boundary layer flow on a flat plate

v(x, y) = v∗(x) [ηf ′(η)− f(η)] ,

where

v∗(x) =
U∞
2

Re
− 1

2
x and Rex =

ρU∞x

µ
,

Rex denotes the local Reynolds number. The exact solution for u(x, y) reveals
a most useful fact that u can be expressed as a function of a single variable
η.

The solution f is called the shape function or the dimensionless stream-
function and its first derivative, after suitable normalization, represents the
velocity parallel to the plate. We point out that the function f(η) gives all
information about the flow in the boundary layer.

One of our main aim is to determine the value of f ′′(0) which is the
velocity gradient at the wall. It has an important physical meaning. It
appears in drag force due to wall shear stress. For a solid object moving in
a fluid, the drag force is a hydrodynamic force acting in the direction of the
movement to oppose the motion. The drag force is proportional to the drag
coefficient CD,τ , the density and the velocity square. In general, CD,τ is not
an absolute constant. The drag coefficient is a non-dimensional quantity and
it varies with the speed (or more generally with Reynolds number), the flow
direction, the fluid density and fluid viscosity. The value f ′′(0) is used to call
the skin friction parameter and it is involved in the drag coefficient

CD,τ = (2)
1
2 Re

−1
2 f ′′(0),

and in the wall shear stress

τw =

[
ρµU3

∞
x

] 1
2

f ′′(0).

The velocity profiles measured at different distances x from the leading
edge when represented in coordinate system u(x, y)/U∞ and y/x

1
2 collapse

into one. So, the velocity profiles are similar to one another, the boundary
layer is self-similar, i.e. they can be mapped onto one another by choosing
suitable scaling factors.

Applying the similarity method, the two independent variables x and y
are combined to form a new variable η in order to transform the partial
differential equation (2.7) into an ordinary differential equation (2.10). In
[212] Weyl has proved that there is a unique solution to the Blasius problem
(2.10), (2.11).
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2.1.3 Töpfer transformation

In this section instead of the Blasius problem (2.10), (2.11) we consider the
initial value problem

f ′′′ +
1

2
ff ′′ = 0,

f(0) = 0, f ′(0) = 0, f ′′(0) = γ.

The task is to determine γ such that the corresponding solution satisfies
(2.10) and (2.11). Töpfer [203] realized for the Blasius problem (2.10), (2.11)
that the knowledge of γ is in fact unnecessary. The reason is that there
is a second group invariance such that if g(η∗) denotes the solution to the
Blasius equation (2.10) with initial conditions g(0) = 0, g′(0) = 0, and for
its second derivative g′′(0) = 1, then the solution f with initial conditions
f(0) = 0, f ′(0) = 0, f ′′(0) = γ can be obtained as

(2.13) f(η) = γ1/3g
(
γ1/3η

)
(see [203]). It therefore suffices to compute g(η∗) and then rescale of g(η∗)
so that the rescaled function has the desired asymptotic behavior at large η,
namely, f ′(∞) = 1. The true value of the second derivative at the origin is
then

γ = lim
η∗→∞

[g′(η∗)]
−3/2

.

With Töpfer’s transformation, it is only necessary to solve the differential
equation as an initial value problem.

This scaling invariance has both analytical and numerical interest. From
numerical viewpoint this transformation allows us to find non-iterative nu-
merical solutions by the related initial value problem. From a numerical
point of view to calculate lim

η∗→∞
g′(η∗) is not simple. The most widely used

numerical technique to boundary value problems on infinite domains is to
introduce a suitable truncated boundary η∗t instead of +∞. Töpfer [203]
solved the initial value problem obtained for the Blasius equation (2.10) for
a large but finite η∗j , ordered such that η∗j < η∗j+1. He computed the corre-
sponding values of γj. If γj and γj+1 agree with a specified accuracy, then γ
is approximated by the common value of γj and γj+1. Töpfer kept repeating
his calculations with a larger value of η∗.

Weyl [212] noted that the Blasius problem ”was the first boundary-layer
problem to be numerically integrated . . . [in] 1907.”
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2. Boundary layer flow on a flat plate

2.1.4 Power series solutions

The Blasius function is defined as the unique solution to the boundary value
problem (2.10), (2.11). Blasius [30] derived power series expansion which
begins

(2.14) f(η) ≈ 1

2
γη2 − 1

240
γ2η5 +

11

161280
γ3η8 − 5

4257792
γ4η11 + . . . ,

where γ = f ′′(0) is the curvature of the function at the origin. A closed form
for the coefficients is not known. However, the coefficients can be computed
for

f(η) = η2
∞∑
k=0

(
−1

2

)k
Akγ

k+1

(3k + 2)!
η3k,

from the recurrence

Ak =

k−1∑
j=0

(
3k − 1

3r

)
ArAk−r−1, if k ≥ 2,

with A0 = A1 = 1. Here γ must be numerically given. Howarth [109] obtained
a numerical result γ ≈ 0.332057. Recently, Abbasbandy [1] proposed an
Adomians’s decomposition method to the Blasius’s problem and obtained
γ = 0.333329 with a 0.383% relative error of the initial slope, and Tajvidi
et al. [197] has used a modified rational Legendre method, to show that
γ = 0.33209 with a 0.009% relative error. By the fourth-order Runge-Kutta
method γ is determined γ ≈ 0.33205733621519630, where all the sixteen
decimal places are believed correct [56]. A fully analytical solution (i.e. not
relying on any approximation) of the Blasius problem has been found by
Liao [128] using the homotopy analysis method. He’s homotopy perturbation
method has been successfully applied in fluid mechanics (see e.g. [15], [150],
[219], [220]).

It should be noted that Blasius’ series has only a finite radius of conver-
gence:

(2.15) ρ = lim
k→∞

(
(3k)(3k + 1)(3k + 2)Ak−1

Akγ

) 1
3

= 5.688.

The limitation of a finite radius of convergence can be overcome by con-
structing power series by Padé approximants or an Euler-accelerated series,
which both apparently converge for all positive real x [55].
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2. Boundary layer flow on a flat plate

Although the Blasius problem is almost a century old, it is still a topic of
active current research (see e.g. [1], [5], [6], [55], [69], [84], [102], [103], [128],
[206]).

A brief history of the numerical determination of γ:
• (1912) γ = 0.332, Töpfer [203]
• (1938) γ = 0.332057, Howarth [109]
• (1941) Weyl [212]
• (1941) John von Neumann
• (1948) Ostrowski [163]
• (1956) Meksyn [151]
• (1998) Fazio [86]
• (1999) Liao [128]
• (2006) γ = 0.33209, Tajvidi et al. [197]
• (2007) γ = 0.333293, Abbasbandy [1]
• (2008) γ = 0.33205733621519630, Boyd [56]
• (2011) Peker, Karaoğlu, Oturanc [166]

2.2 Non-Newtonian fluid flow with constant main

stream velocity

Fluids such as molten plastics, pulps, slurries and emulsions, which do not
obey the Newtonian law of viscosity are increasingly produced in the indus-
try. By analogy with the Blasius description [30] for Newtonian fluid flows,
similarity solutions can be studied and investigated to the model arising for
a laminar boundary layer with power-law viscosity. The first analysis of the
boundary layer approximations to power-law pseudoplastic fluids was given
by Schowalter [179] in 1960. The author derived the equations governing the
similarity flow. The numerical solutions were presented of the laminar flow of
non-Newtonian power-law model past a two-dimensional horizontal surface
by Acrivos, Shah and Petersen [4]. When the geometry of the surface is sim-
ple the system of differential equations can be examined in details and can
be obtained fundamental information about the behavior of non-Newtonian
fluids in motion (e.g., to predict the drag). The existence of a unique so-
lution was proved in [25]. We show that a Töpfer-like transformation can
be applied for the determination of the dimensionless wall gradient and we
provide power series solution near the wall [38]. Moreover, we can give a
method for the determination of the power series approximation similar to
Blasius’s form (2.14) for n > 0.
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2.2.1 Boundary layer governing equations

We consider two-dimensional steady flow of a viscous fluid with constant
velocity U∞. The problem is a model for the the laminar incompressible flow
of a non-Newtonian power-law fluid past a flat surface. The surface is located
at y = 0.

The analysis is restricted to the cases when the usual boundary layer
approximations can be made, for large Reynolds numbers, defined for power-
law fluids by

(2.16) Re =
ρU2−n
∞ Ln

K
.

This allows to simplify the basic equations of conservation of momentum and
mass. The problem is deduced from the boundary layer approximation (1.1),
(1.6), where the shear stress τyx is given by the power-law expression (1.11):

∂u

∂x
+
∂v

∂y
= 0,(2.17)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= K

∂

∂y

(∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂u∂y

)
.(2.18)

At the solid surface the usual impermeability and no-slip are applied
and outside the viscous boundary layer the streamwise velocity component
u should approach the exterior streaming speed U∞:

(2.19) u (x, 0) = 0, v (x, 0) = 0, lim
y→∞

u (x, y) = U∞.

The boundary layer equations (2.17) and (2.18) are nonlinear and have
boundary conditions at 0 and at +∞.
Introducing the stream function ψ defined in (2.6), the continuity equation
(1.1) is automatically satisfied and (2.18) can be written as

(2.20)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µcn

∂

∂y

[∣∣∣∣∂2ψ∂y2
∣∣∣∣n−1 ∂2ψ∂y2

]
, µcn = K/ρ.

Boundary conditions in (2.19) can be formulated as

(2.21)
∂ψ

∂y
(x, 0) = 0,

∂ψ

∂x
(x, 0) = 0,

and

(2.22) lim
y→∞

∂ψ

∂y
(x, 0) = U∞,
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2. Boundary layer flow on a flat plate

where the unknown function is the stream function ψ.
Let us define the stream function ψ and similarity variable η such as

ψ = Axαf(η), η = Bxβy,

where A,B, α and β are constants to be determined, and f(η) denotes the
dimensionless stream function. Choosing β = −α and AB = U∞, the bound-
ary value problem (2.20)-(2.22) is transformed by means of dimensionless
variables ([4], [25], [38],[179])

(2.23) ψ(x, y) = µ
1

n+1
cn U

2n−1
n+1
∞ x

1
n+1f(η),

(2.24) η = µ
− 1
n+1

cn U
2−n
n+1
∞

y

x
1

n+1

into the so-called generalized Blasius problem

(2.25)
(
|f ′′|n−1 f ′′

)′
+

1

n+ 1
ff ′′ = 0,

(2.26) f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = 1,

where the prime denotes the differentiation with respect to the similarity
variable η and the non-dimensional velocity components are obtained by f
as follows:

u(x, y) = U∞f
′(η),

v(x, y) = v∗(x) [ηf ′(η)− f(η)] ,

with

v∗(x) =
U∞
n+ 1

Re
− 1
n+1

x ,

when for power-law non-Newtonian fluids the local Reynolds number Rex is
defined by

Rex =
ρU2−n
∞ xn

K
.

If n = 1, equation (2.25) is the same as the famous Blasius equation (2.10).
Equation (2.25) is nonlinear except in the case n = 2, when explicit solution
exists. For detailed analysis we refer to the paper by Liao [129].

Since the boundary layer equations are valid when the Reynolds number
is large, it is worth to examine under what conditions laminar boundary
layer flows would be expected to occur. In [4] the following conclusions were
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2. Boundary layer flow on a flat plate

deduced:
(i.) If U∞ is sufficiently small and the inertia terms of the equations of motion
may be neglected, all fluids approach Newtonian behavior.
(ii.) If n < 2, boundary layer type flow can be obtained when U∞ is large
and therefore the Reynolds number is sufficiently large.
(iii.) If n > 2, boundary layer type flow can be obtained for moderate
values of U∞ when the Reynolds number is large. If U∞ is too large then
Re will be small. So, if U∞ is sufficiently large the boundary layer flow
is not an asymptotic state of laminar motion. If U∞ tends to zero then
Re tends to ∞ and the characteristic velocity is small as the model (1.11)
is valid when ∂u/∂y is relatively large. When U∞ and therefore ∂u/∂y is
small non-Newtonian boundary layer flow do not occur. So, for n > 2, the
laminar boundary layer flows are probably not of interest because their range
of validity is rather limited.

For the numerical solution to (2.25), (2.26) we refer to the paper by
Acrivos et al. [4] when the Polhausen-type momentum integral method was
applied for the determination of the velocity distribution and the shear stress
at the wall. It should be noted that when n ≥ 2 there is no solution f to
(2.25), (2.26). Then, the boundary condition at infinity in (2.26) has to be
changed

(2.27) f(0) = 0, f ′(0) = 0, f ′(η) = 1, for η ≥ η0,

where η0 = ∞ for n < 2 and η0 is finite for n ≥ 2. The phenomenon of a
finite η0 has not appeared in the case of laminar Newtonian boundary layer
fluid flows.

2.2.2 Töpfer-like transformation

Here we want to provide a transformation similar to Töpfer’s transformation
for power-law type viscosity. We replace the condition at infinity by one at
η = 0. Therefore, the generalized Blasius problem (2.25), (2.26) is converted
into the initial value problem

(2.28)
(
|f ′′|n−1 f ′′

)′
+

1

n+ 1
ff ′′ = 0,

(2.29) f(0) = 0, f ′(0) = 0, f ′′(0) = γ.

The solution can be obtained if only γ = f ′′(0) were known such that the
corresponding solution satisfies (2.25), (2.26).
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2. Boundary layer flow on a flat plate

We present a modified version of Töpfer-method for non-Newtonian fluid
flows [38]. In order to transform the boundary value problem (2.25), (2.26)
into an initial value problem let us introduce the scaling transformation

(2.30) g = λκf, η∗ = λεη,

where κ and ε are real, non-zero parameters. Our aim is to determine κ
and ε such that the boundary conditions are substituted by suitable initial
conditions. After simple calculations we have

df

dη
= λκ−ε

dg

dη∗
,

d2f

dη2
= λκ−2ε

d2g

dη∗2
,

d3f

dη∗3
= λκ−3ε

d3g

dη∗3
.

The governing differential equation is left invariant by the new variables
g and η∗

(2.31)
(
|g′′|n−1 g′′

)′
+

1

n+ 1
gg′′ = 0,

where the prime for g denotes the derivatives with respect to η∗, when

κ(2− n) = (1− 2n)ε.

The initial conditions in (2.29) correspond to

(2.32) g(0) = 0, g′(0) = 0,

moreover, with the choice of λ = γ, one gets

g′′(0) = γκ−2εf ′′(0) = γκ−2ε+1.

So, with κ = 1−2n
3

and ε = 2−n
3

, i.e., g = γ
1−2n

3 f, η∗ = γ
2−n
3 η, we obtain

(2.33) g′′(0) = 1.

Then
f(η) = γ(2n−1)/3g

(
γ(2−n)/3η

)
,

which is reduced to Töpfer’s form (2.13) for Newtonian fluid ( n = 1). Value
γ will be determined by the boundary condition at +∞ in (2.29) such as

1 = lim
η→∞

f ′(η) = lim
η∗→∞

γκ−εg′(η∗) = lim
η∗→∞

γ
n+1
3 g′(η∗),

that is
lim
η∗→∞

g′(η∗)) = γ−
n+1
3 ,
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2. Boundary layer flow on a flat plate

and hence
γ = lim

η∗→∞
[g′(η∗)]

−n+1
3 .

Table 2.1 shows numerical results for η∗t of the solutions to (2.31)-(2.33) for
n-values between 0.1 and 5. Here we represent suitable truncated boundaries
η∗t instead of +∞.

The classical fourth-order Runge-Kutta method is applied and a local
error of the order of 10−6 is maintained. Table 2.1 also contains the corre-
sponding values, g′(η∗t ), and the values of γ for n-values between 0.1 and 5

such that γ = [f ∗′(η∗t )]
−3/(n+1) with the present numerical techniques. These

values give approximations for the dimensionless wall gradient, with f ′′(0)
represented for n-values between 0.1 and 25 in Fig. 2.5.

n g′(η∗t ) η∗t γ
0.1 1.082888 1580 0.8047872846
0.2 1.338859 980 0.4821258779
0.3 1.507245 450 0.3879770360
0.4 1.634506 180 0.3489340836
0.5 1.737550 60 0.3312265785
0.6 1.824658 40 0.3238052732
0.7 1.900523 21 0.3220110529
0.8 1.968071 11 0.3235427888
0.9 2.029252 8.6 0.3271391413
1 2.085409 6.8 0.3320574397

1.1 2.137511 5.01 0.3378333248
1.2 2.186271 4.44 0.3441653539
1.4 2.275793 3.83 0.3577535406
1.6 2.356978 3.562 0.3718424054
1.8 2.431724 3.431 0.3859405042
2 2.501222 3.362 0.3997908558

2.5 2.657653 3.29999 0.4326575477
3 2.796410 3.33381 0.4624333153
4 3.035898 3.44260 0.5136031483
5 3.241207 3.57487 0.5554521362

Table 2.1.

Since the pioneering work by Acrivos et al. [4], different approaches have
been investigated for γ in the case of non-Newtonian fluids. It has a physical
meaning. It appears in drag force due to wall shear stress which is a fluid
dynamic force. The skin friction parameter γ originates from the wall shear
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2. Boundary layer flow on a flat plate

stress

(2.34) τw(x) =

[
ρnKU3n

∞
xn

] 1
n+1

|γ|n−1 γ,

and it gives the non-dimensional drag coefficient

CD,τ = (n+ 1)
1

n+1 Re
−n
n+1 |γ|n−1 γ.

The solutions to the generalized Blasius equation (2.28), displayed in
Figs. 2.2-2.4, were found by rescaling. Fig. 2.2 shows the dimensionless
velocity components f ′(η) parallel to the wall, for some different values of
the power law index n (n = 0.5; 1; 3). It is observed that the form of
the velocity profiles changes dramatically as n is varied. The slope of the
profiles is strongly dependent on n. This dependency is also represented by
f ′′(0) in Fig. 2.5 The transverse components of the dimensionless velocity are
demonstrated in Fig. 2.3 by plotting v(x, y)/v∗(x) for some different values
of n.

Fig. 2.2 Similarity velocity profiles f ′ = u(x, y)/U∞

The cross-stream variation of the dimensionless velocity gradient f ′′(η) is
shown in Fig. 2.4 for some different n-values. The solutions are monotoni-
cally decreasing from f ′′(0) at the wall to zero outside the viscous boundary
layer.

27

               dc_230_11



2. Boundary layer flow on a flat plate

Fig. 2.3 Similarity velocity profiles v(x,y)
v∗(x)

= ηf ′(η)− f(η)

Fig. 2.4 The cross-stream variation of the dimensionless velocity
gradient f ′′(η)
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n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ηt = γ
n−2
3 η∗t 1813 1518 769 315 104 67 34 17

n 0.9 1 1.1 1.2 1.4 1.6 1.8 2

ηt = γ
n−2
3 η∗t 12.9 9.7729 6.9379 5.9008 4.7042 4.0642 3.6554 3.362

Table 2.2

Table 2.2 shows the rescaled values ηt, and the results suggest that the
thickness ηt is a rapidly decreasing function of n until n = 2.

Using numerical techniques in [4], the authors noted that for n > 1, the
boundary layer has a finite thickness; that is f ′′(η) = 0 for η ≥ η0 > 0.
This phenomena is also represented on Fig. 2.4 for n = 3. However, for
n 6= 1, differential equation in (2.29) can be either degenerate or singular at
the point η0, where f ′′(η0) = 0. In the case 0 < n ≤ 1, f ′′ is strictly positive,
so the equation is not degenerate [224].

Fig. 2.5 Dimensionless wall gradient parameter f ′′(0) with power
exponent n

Remark. The scaling invariant property remains valid, when the flow be-
havior of the non-Newtonian fluid is characterized by (1.9) and function φ
satisfies some prescribed properties. Then equation (2.25) is substituted by

(2.35) [φ(f ′′)]′ + ff ′′ = 0,
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and the solution to (2.35)-(2.26) has similar properties to solution of (2.25)-
(2.26) (see Bognár [47]).

2.2.3 Power series solutions

It is obvious from the complexity of the equations and boundary conditions
that analytical methods can be used to obtain exact solution in very few
practical circumstances. Approximate analytic solutions are very valuable
because they provide physical insight into the basic mechanisms. The nu-
merical studies of such boundary value problems involve more than one in-
tegration process. The use of different type of series presents an attractive
alternative approach. The series solution is very useful in analyzing some
of the boundary layer problems. It is more efficient in its implementation
on a computer than a purely numerical method. The numerical and ana-
lytic methods of these nonlinear problems have their own advantages and
limitations.

The object of this section is to determine an approximate local solution
f(η) to the initial value problem (2.28), (2.29). Let us suppose that 0 < n <
2, and f ′′ is positive in the neighborhood of zero. In this case, (2.28), (2.29)
can be written as

(2.36) f ′′′ +
1

n(n+ 1)
f (f ′′)

2−n
= 0, f(0) = 0, f ′(0) = 0, f ′′(0) = γ

for appropriate values of γ. In [38] we considered the equation in (2.36) as
a system of certain differential equations, namely, the special Briot-Bouquet
differential equations [59]. For this type of differential equations we refer to
the book by Hille [105], Ince [112]. We showed that there exists a formal
solution to (2.36) in the form

(2.37) f(η) = η2
∞∑
k=0

akη
3k,

where the first three coefficients are given by

a0 =
γ

2
,(2.38)

a1 = − γ3−n

5!n(n+ 1)
,(2.39)

a2 =
γ5−2n(21− 10n)

8!n2(n+ 1)2
.(2.40)

30

               dc_230_11



2. Boundary layer flow on a flat plate

The Briot-Bouquet theorem ensures the convergence of formal solutions. We
note that this theorem has been successfully applied to the determination of
local analytic solutions of different nonlinear initial value problems [35], [37].

For the determination of coefficients ak, k > 2, one can use the J.C.P.
Miller formula [91], [104], namely:

(2.41)

[
L∑
k=0

ckx
k

]p+1

=

(p+1)L∑
k=0

dk(p)x
k,

for a polynomial with coefficients ck; moreover, d0(p) = 1 for c0 = 1, and

(2.42) dk(p) =
1

k

k−1∑
j=0

[(p+ 1)(k − j)− j]dj(p)ck−j, (k ≥ 1).

From (2.37)

f ′′(η) =
∞∑
k=0

(3ak + 2)(3ak + 1)η3k,

f ′′′(η) = η2
∞∑
k=0

(3ak + 5)(3ak + 4)(3ak + 3)η3k,

and

[f ′′(η)]
2−n

=

[
∞∑
k=0

(3ak + 2)(3ak + 1)η3k

]2−n
=
∞∑
k=0

Akη
3k,

where coefficients Ak can be expressed in terms of ak (k = 0, 1, . . .) by apply-
ing the J.C.P. Miller formula. Substituting them into the differential equation
(2.36) we get

(2.43)
∞∑
k=0

(3ak+5)(3ak+4)(3ak+3)η3k+
1

n(n+ 1)

∞∑
k=0

akη
3k

∞∑
k=0

Akη
3k = 0.

Applying the recursion formula (2.42) for the determination of Ak and
the comparison of the proper coefficients in (2.43) one can have

a3 = − γ7−3nb3(n)

11!n3 (n+ 1)3
,

b3(n) = 560n2 − 2054n+ 1869,
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a4 = − γ9−4nb4(n)

14!n4 (n+ 1)4
,

b4(n) = 92400n3 − 467840n2 + 784616n− 437073,

a5 = − γ11−5nb5(n)

17!n5 (n+ 1)5
,

b5(n) = 33633600n4 − 214361000n3 + 509689280n2

−536861976n+ 211717233,

a6 = − γ13−6nb6(n)

20!n6 (n+ 1)6
,

b6(n) = 22870848000n5 − 174571028800n4 + 530727289280n3

−804421691584n2 + 608609067906n− 1840803558917.

We note that our computations indicate that all the coefficients obtained
from (2.43) can be written in the form

(2.44) ak = γ1−k(n−2)
bk(n)

(3k + 2)!nk(n+ 1)k
,

where bk is a polynomial of n of order (k − 1).
One can calculate coefficients ak for the determination of f ′(η) for any n.

We present an example where the coefficients have been evaluated by using
the symbolic algebra software Maple 12:

2.1. Example For n = 0.5 the initial value problem (2.36)

f ′′′ +
1

0.75
f (f ′′)

1.5
= 0

f(0) = 0, f ′(0) = 0, f ′′(0) = 0.3312265785

has power series solution near zero in the form:

f(η) ≈ η2
(
0.165613− 0.000702η3 + 0.84913710−5η6

−0.13380110−6η9 + 0.23813310−8η12 − 0.45456310−10η15

+0.90801810−12η18 − 0.18724610−13η21 + 0.39530710−15η24

−0.84977010−17η27 + 0.18530210−18η30
)
.
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The series expansion of f(η) is presented above for 0 < n < 2. Numerical
results for the case n = 2 were obtained by Kim et al. [121] and Liao [129].
In this case equation (2.25) becomes(

f ′′′ +
1

6
f

)
f ′′ = 0

subject to the boundary conditions (2.26). The above equation gives either

f ′′′(η) +
1

6
f(η) = 0

or f ′′(η) = 0. In [129] it was shown that this boundary value problem has
infinite number of analytic solutions.

Fig. 2.6 reports the approximations obtained by the partial sums (thin
lines) compared to the numerical solution (thick line) obtained by the fourth-
order Runge-Kutta method for the case n = 0.5.

Fig. 2.6 Velocity profiles for n = 0.5

The convergence radius for the series (2.37) can be found by applying the
ratio test, expressed with (2.44) in the form:

(2.45) ηc = 3γ
n−2
3 [n(n+ 1)]

1
3 lim
k→∞

k

∣∣∣∣ bk(n)

bk+1(n)

∣∣∣∣ 13 .
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The numerical results for ηc using the first ten terms from the series are
presented in Table 2.3. We point out that our result for n = 1 is the same
as the Blasius result (2.15).

n 0.3 0.5 0.7 1 1.1 1.3 1.5
ηc 2.612 3.579 4.355 5.688 6.261 7.735 10.225

Table 2.3

2.3 Non-Newtonian fluid flow driven by power-law
velocity profile

The problems of heat and mass transfer in two-dimensional boundary layers
on continuous stretching surfaces, moving in a fluid medium, have attracted
considerable attention for the last few decades. There are numerous appli-
cations in industrial manufacturing processes, such as rolling, wire drawing,
glass-fiber and paper production, drawing of plastic films, metal and polymer
extrusion and metal spinning.
For Newtonian fluids, the laminar boundary layer to en exterior power law
velocity profile of the form Ue = B̃yσ was investigated by Weidman et al.
[207] for a large range of the power law parameter σ. An analytical solution of
the momentum equation in terms of Airy function was proposed for the case
σ = −1/2. The power law velocity profile form Ue = B̃yσ was proposed by
Barenblatt [20] for the mean velocity to fully developed turbulent shear flows,
and in [21] Barenblatt and Protokishin proved that σ = 3/(2 lnRe). Recently,
Magyari et al. [139] have examined the effect of a lateral suction/injection
of the fluid for the existence of similarity solutions in the Newtonian case. It
was shown that while for σ = −2/3 the flow over an impermeable plate to
power law shear is not possible, the presence of suction allows for a family
of boundary layer solutions. In the case σ = −1/2, the solutions were found
both for suction and injection, and the skin friction parameter is independent
of the suction/injection parameter.

For both Newtonian fluids [94] and non-Newtonian fluids [95] Guedda has
given a theoretical analysis of the existence of the boundary layer similarity
flows for a range of exponents σ and B̃ .

For Newtonian fluid with σ = 0 the problem of laminar boundary layer
problem is described by the famous Blasius equation [30].

Our interest has been motivated by the work of Cossali [70]. In [46]
the similarity flow over an impermeable flat plate driven by a power law
velocity profile for Newtonian fluid has been considered, for which power
series solutions were found for all the allowed range of the parameter σ.
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In this section our aim is to present analysis for the steady-state laminar
boundary layer flow, governed by the Ostwald-de Waele power law model of
an incompressible non-Newtonian fluid driven by a power law velocity pro-
file. A generalization of the usual Blasius similarity transformation is used
to find similarity solutions. We establish the existence of analytic solutions,
i.e., solutions are expandible in convergent power series to the momentum
boundary layer equation under the general case of the power law velocity
profile, thus extending the classical Blasius result for the shear driven case
and Cossali’s results for non-Newtonian fluid flow when n 6= 2. Some prop-
erties of the solutions are discussed depending on the viscosity power law
index.

2.3.1 Derivation of the problem

Consider a steady two-dimensional laminar flow of an incompressible fluid
of density ρ, past a semi-infinite flat plate. The continuity and momentum
equations (2.17) and (2.18) are accompanied by the boundary conditions

(2.46) u (x, 0) = 0, v (x, 0) = 0 and lim
y→∞

u (x, y) = Ue,

where Ue = B0y
σ as y →∞. In term of the stream-function ψ, which satisfies

(2.6) equations (2.17) and (2.18) can be reduced to the equation

(2.47)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µcn

∂

∂y

[∣∣∣∣∂2ψ∂y2
∣∣∣∣n−1 ∂2ψ∂y2

]
,

where µcn = K/ρ, with the boundary conditions

(2.48)
∂ψ

∂y
(x, 0) = 0,

∂ψ

∂x
(x, 0) = 0,

and

(2.49) lim
y→∞

∂ψ

∂y
(x, 0) = Ue.

To look for similarity solutions we define the stream function ψ and similarity
variable η as

(2.50) ψ = Ax−αf(η), η = Bx−βy,

where A,B, α and β are constants to be determined, and f(η) denotes the
dimensionless stream function. Using (2.47) and (2.50) we find that the
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profile function f satisfies

µcnB
2n+1A2nx−(α+2β)n−β

(
|f ′′|n−1 f ′′

)′
− αB2A2x−2(α+β)−1ff ′′

+(α + β)B2A2x−2(α+β)−1f ′2 = 0(2.51)

Equation (2.51) is an ordinary differential equation if and only if

(2.52) (2− n)α + (1− 2n) β = 1,

and α + β = M ; the scaling relation, i.e.,

(2.53) α =
M (2n− 1)− 1

n+ 1
, β =

M (2− n) + 1

n+ 1
,

and the parameters A and B satisfy

(2.54) µcnB
2n−1An−2 = 1.

Moreover,

(2.55) M = − σ

(2− n)σ + (n+ 1)
.

So, function f satisfies the following boundary value problem

(2.56)
(
|f ′′|n−1 f ′′

)′
− αff ′′ +Mf ′2 = 0,

(2.57) f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = Ãησ,

where the prime denotes the differentiation with respect to the similarity
variable η, and

(2.58) Ã = B̃/
(
AB1+σ

)
, σ + 1 = −α/β.

With the choice B = 1 we get that

(2.59) A = µ1/(2−n)
cn , Ã = B̃µ−1/(2−n)cn , n 6= 2,

and the non-dimensional velocity components are obtained by f as follows:

(2.60) u(x, y) = µ1/(2−n)
cn x−Mf ′(η),

(2.61) v(x, y) = x−(α+1) [αf(η) + βηf ′(η)] .

For σ = 0, equation (2.56) is referred to as generalized Blasius equation [38]
and for the Newtonian case, equation (2.56) coincides with the well-known
Blasius equation (2.10). If σ = 0, then (2.57) is reduced to

(2.62) f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = Ã.

We shall not consider the case n = 2. For that case with σ = 0, n = 2, we
refer to the numerical results obtained by Kim et al. [121] and Liao [129].
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2.3.2 Analytic solutions

Our objective is to determine the approximate local solution f(η) to the
boundary value problem (2.56), (2.57). We use the shooting method and
replace the condition at infinity by one at η = 0. Therefore, (2.56), (2.57) is
converted into an initial value problem of (2.56) with initial conditions

(2.63) f(0) = 0, f ′(0) = 0, f ′′(0) = γ.

We suppose that n > 0, n 6= 2 and f ′′ is positive in the neighborhood of zero.
We consider (2.56) as a system of the Briot-Bouquet differential equations
[59].

In the paper [46], we showed that there exists a formal solution

(2.64) f(η) = η2
∞∑
k=0

akη
3k,

where the first three coefficients are known

a0 =
γ

2
,

a1 =
1

5!

(α
n
γ3−n − 2Mγ2

)
,

a2 =
1

8!

(
α(21− 10n)

n
γ2−n − 10Mγ

)(α
n
γ3−n − 2Mγ2

)
.

For the determination of coefficients ak, k > 2, one can use the J.C.P. Miller
formula (2.41). From (2.64)

(2.65) [f ′′(η)]
2−n

=

[
∞∑
k=0

(3k + 2)(3k + 1)akη
3k

]2−n
=
∞∑
k=0

Akη
3k,

(2.66) [f ′′(η)]
1−n

=

[
∞∑
k=0

(3k + 2)(3k + 1)akη
3k

]1−n
=
∞∑
k=0

Ckη
3k,

where coefficients Ak, Ck can be expressed in terms of ak ( k = 0, 1, . . .).
Substituting them into equation (2.56) we get

∞∑
k=0

(3k + 5)(3k + 4)(3k + 3)ak+1η
3k − α

n

∞∑
k=0

akη
3k

∞∑
k=0

Akη
3k
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(2.67) +
M

n

[
η
∞∑
k=0

(3k + 2)akη
3k

]2 ∞∑
k=0

Ckη
3k = 0.

Applying the recursion formula (2.42) for the determination of Ak and com-
paring the proper coefficients in (2.67) one can have the necessary values of
ak for some given values of n, M, α. We note that the coefficients obtained
by this method for n = 1, σ 6= 0 are the same as the coefficients of the power
series approximation given by Cossali [70] for Newtonian fluids. Moreover, if
n 6= 1 and σ = 0, coefficients ak are fully consistent with the result obtained
in [38]. If n = 1, σ = 0, the coefficients coincide with the Blasius results
given in (2.14).

2.3.3 Some special cases

In this section we present numerical results obtained for Ã = 1, three different
values of n (0.5; 1; 1.5) and three different values of σ (−1/2; −1/3; 0). Figs.
2.7-2.9 represent the effect of power-law index on f ′(η)/ησ for σ = −1/2,
σ = −1/3, σ = 0. We note that Fig. 2.9 is the same as Fig. 2.2. Figs.
2.10-2.12 exhibit how the graph of f ′(η)/ησ changes for different values of n
(n = 0.5; n = 1; n = 1.5). Figs. 2.10-2.12 exhibit how the graph of f ′(η)/ησ

changes for different values of n (n = 0.5; n = 1; n = 1.5).

Fig. 2.7 σ = −1/2

For σ = 0, the numerical results for γ and the boundary layer thickness
ηbl are exhibited in Table 2.4.

38

               dc_230_11



2. Boundary layer flow on a flat plate

Fig. 2.8 σ = −1/3

Fig. 2.9 σ = 0

Fig. 2.10 n = 0.5
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Fig. 2.11 n = 1

Fig. 2.12 n = 1.5
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n γ γn ηbl
0.5 0.331226 0.57552 3.579
1 0.332057 0.332057 5.688
1.5 0.364798 0.22033 10.225

Table 2.4 Case σ = 0

In case of σ = −1/2, the value of f ′′(0) can be obtained as (see [95])

(2.68) γ =

(
2

3n

) 1
n

.

Applying (2.68) for the determination of the coefficients ak from (53) we
obtain

a0 = γ
2

a1 = 1
3 5! n

(
γ3−n

n
+ 2γ2

)
a2 = 1

32 8! n2

(
γ3−n

n
+ 2γ2

) (
21−10n

n
γ2−n + 10γ

)
...

and for f(η) the following approximations are valid:

n=0.5: f (η) = η2(0.888888888−0.819387287 ·10−1η3+0.152220095 ·10−1η6

−0.335551670 · 10−2η9 + 0.922430723 · 10−3η12 − 0.269036066 · 10−3η15)

n=1: f (η) = η2(0.3333333− 0.370370370 · 10−2η3 + 0.514403292 · 10−4η6

−0.427226078 · 10−6η9 + 0.464427254 · 10−8η12 − 0.521840015 · 10−10η15)

n=1.5: f (η) = η2(0.291193488− 0.180489903 · 10−2η3 + 0.10595952 · 10−4η6

−0.856898347 · 10−8η9 + 0.187290094 · 10−10η12 − 0.557628629 · 10−13η15)

n γ γn ηbl
0.5 1.777778 1.333333 1.439
1 0.666667 0.666667 4.465
0.5 0.582387 0.444444 6.951

Table 2.5 Case σ = −1/2

According to the numerical results in the two cases (σ = 0; σ = −1/2),
increasing the power-law exponent leads to an increase in the thickness ηbl,
or in γ.

We note that the power series formulation of the similarity solution of
the Newtonian flow over an impermeable flat plate driven by a power law
velocity profile obtained by Cossali [70] can be generalized to non-Newtonian
fluid flow with Ostwald-de Waele power law nonlinearity when for the power
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law index the condition n 6= 2 holds. The coefficients of the more general
problem coincide with the coefficients obtained for problems related to special
values of the parameters.
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3 Boundary layer flow due to a mov-

ing flat plate in an otherwise quiescent

fluid

The study of flow generated by a moving surface in an otherwise quiescent
fluid plays a significant role in many material processing applications such as
hot rolling, metal forming and continuous casting (see e.g., [9], [87], [196]).
Boundary layer flow induced by the uniform motion of a continuous plate
in a Newtonian fluid has been analytically studied by Sakiadis [176] and
experimentally by Tsou et al. [205]. A polymer sheet extruded continuously
from a die traveling between a feed roll and a wind-up roll was investigated
by Sakiadis [175], [176]. He pointed out that the known solutions for the
boundary layer on surfaces of finite length are not applicable to the boundary
layer on continuous surfaces. In the case of a moving sheet of finite length,
the boundary layer grows in a direction opposite to the direction of motion
of the sheet. Figure 3.1 shows the model of a long continuous plane sheet
which issues from a slot and moves steadily to the right through an otherwise
quiescent fluid environment. Tsou et al. [205] showed in their analytical
and experimental study that the obtained analytical results for the laminar
velocity field is in excellent agreement with the measured data, therefore it
validates that the mathematical model for boundary layer on a continuous
moving surface describes a physically realizable flow.

In tribology it is important and useful to study the behavior of lubricants
on solid surfaces and their role in friction. In tribological systems, lubri-
cant reduces adhesion, friction and wear. Among the lubricant properties,
viscosity and its dependence on shear rate are investigated in the litera-
ture ([108], [145], [214]). It is known that the relative velocity between the
moving surface and each layer of the lubricant is affected by the lubricant
viscosity. In a thin boundary layer, the wall shear stress and from this the
friction drag caused by the shear next to the wall can be estimated. This
drag depends on the fluid properties, and on the shape, size and speed of the
solid object submerged in the fluid. Journal bearing is the most commonly
used application of the hydrodynamic lubrication theory. The friction loss
in the bearing is caused by shearing of the lubricant film. Journal bearings
are designed such that during the operation the hydrodynamic lubrication
is ensured when there is no solid-solid contact. In this case, the friction
results entirely from the shear stress within the lubricant. Hydrodynamic
lubrication is the most desired regime of lubrication since it is possible to
achieve very low coefficients of friction, and there is no wear. The viscosity
of the lubricant is an important factor as hydrodynamic friction increases
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with viscosity. The higher the viscosity, the higher the friction between the
lubricant and the solid surface, but the thicker the hydrodynamic film. The
heat generated by friction will reduce the viscosity and also the thickness of
the film that makes the solid-solid contact more likely [214].

The flow of an incompressible fluid over a stretching surface has appli-
cations in the extrusion of a polymer sheet from a die or in the drawing
of plastic film. During the manufacturing process of these sheets, the melt
issues from a slit and is stretched to achieve the desired thickness. Material
traveling between the feed roll and wind-up roll or on conveyor belts possess
the characteristics of a moving continuous surface. The quality of the final
product strictly depends on the stretching rate.

Fig. 3.1 The physical model on a continuous moving surface

Crane [72] has studied the boundary layer flow of a Newtonian fluid caused
by a linearly stretched surface. It is one of the rare problems in fluid dynamics
that admits an exact closed form solution. Weidman and Magyari [208]
investigated the solutions to the boundary layer equations for different types
of stretching when the stretching velocity is linear, a quadratic or general
polynomial, and for exponential and periodic wall stretching velocity.

It has been extended in various ways to include many important physical
features, see, for example, Kumaran and Ramanaiah [127] , Banks [19], and
Magyari and Keller [135]. Crane’s original solution was provided for an im-
permeable plate. The flat surface with wall suction or injection has practical
interest in mass transfer, drying, transpiration cooling, etc. The effect of
transpiration across a permeable surface moving at constant speed was con-
sidered by Erickson et al. [82] and that for a linearly increasing surface was
examined by Gupta and Gupta [96]. Further investigations for permeable
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stretching sheets are given in Magyari and Keller [137]. Authors of many
papers are interested in finding out analytical solutions and if it does not
exist, then to suggest suitable approximate solutions which can be used by
practising engineers.

We consider in Section 3.1 the boundary layer of Newtonian fluid over an
impermeable stretching wall [43] and in Section 3.2 the boundary layer of a
power-law non-Newtonian fluid along an impermeable sheet moving with a
constant velocity [39].

3.1 Newtonian fluid flow

Analytic solutions to similarity boundary layer equations are given for bound-
ary layer flows of Newtonian fluid over a stretching wall with power law
stretching velocity. The Crane’s solution is generalized as the solution to the
problem is given by an exponential series. We give how the coefficients can
be evaluated.

3.1.1 Governing equations for boundary layers

The problem considered here is the steady boundary layer flow due to a
moving flat surface in an otherwise quiescent Newtonian fluid medium moving
at a speed of Uw(x). In the absence of body force and external pressure
gradient, laminar boundary layer equations expressing conservation of mass
and the momentum boundary layer equations for an incompressible fluid are
written as (1.1) and

(3.1) u
∂u

∂x
+ v

∂u

∂y
= µc

∂2u

∂y2
,

where µc is the kinematic viscosity of the ambient a fluid which will be
assumed constant [127]. We consider the boundary-layer flow induced by a
continuous surface stretching with velocity Uw(x). The surface is assumed
in general to be permeable and a lateral suction/injection with a certain
velocity distribution vw(x) is applied. Accordingly, the boundary conditions
are

(3.2) u (x, 0) = Uw(x), v (x, 0) = vw(x), lim
y→∞

u (x, y) = 0

The streamfunction ψ is formulated by (2.6) and equation (3.1) reduces to

(3.3)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µc

∂2ψ

∂y
.
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Sakiadis studied the boundary layer over a continuously stretching surface
with a constant speed. For similarity, only a certain variation of the surface
velocity Uw(x) is allowed. Following the papers by Sakiadis [175] and Tsou
et al. [205], the boundary condition on the surface was generalized such that
the velocity was extended to be a function of distance from the slot, where
the surface was stretched out. A power-law velocity distribution was the
most common case. We take the velocity of the plate in the form

Uw(x) = Axκ, vw(x) = B x(κ−1)/2,

where A, B and κ are constants, A > 0. The case B < 0 corresponds to the
suction and B > 0 to the injection of the fluid. If the wall is impermeable
then B = 0. Under transformation

ψ =

√
2µc

A(κ+ 1)
Ax

κ+1
2 f(η), η =

√
A(κ+ 1)

2µc
yx

κ−1
2

equation (3.3) can be written

(3.4) f ′′′ + ff ′′ − 2κ

κ+ 1
f ′2 = 0,

and the boundary conditions (3.2) become

(3.5) f(0) = fw, f ′(0) = 1, lim
η→∞

f ′(η) = 0,

where

fw = −B
[
µcA

κ+ 1

2

]− 1
2

.

Now, the velocity components are given by

u(x, y) = Axκf ′(η),

v(x, y) = −
(

2µcA

κ+ 1

)1/2

x(κ−1)/2
[
κ+ 1

2
f(η) +

κ− 1

2
ηf ′(η)

]
.

We note that the same boundary value problem appears for the steady free
convection flow over a vertical semi-infinite flat plate embedded in a fluid
saturated porous medium of ambient temperature T∞, and the temperature
of the plate is Tw = T∞ + Ā xκ. There is a difference in the region of κ
between the two physical problem. For flows in a porous medium, there is a
physical meaning when −1/2 < κ < +∞ (see [113]), and for boundary layer
flows over a stretching wall −∞ < κ < −1, and −1/2 < κ < +∞ [19].
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Banks [19] has proved if the wall is impermeable then the boundary value
problem (3.4), (3.5) does not admit similarity solution when −1 < κ ≤ −1/2.
Numerical solutions were given in papers [19] and [113]. For some special
cases of κ problem (3.4), (3.5) is exactly solvable. These particular cases are
κ = 1 and κ = −1/3. For impermeable case with κ = 1 we refer to the exact
solution by Crane [72] and for the permeable case Gupta and Gupta [96].
For an impermeable case with κ = −1/3 the exact solution in [19] and the
exact analytic solution for the permeable case by Magyari and Keller [137].

By generalizing Crane’s solution we give exponential series solution to the
nonlinear boundary value problem (3.4), (3.5) (see [43]) for both permeable
and impermeable cases. Numerical results are also presented.

3.1.2 Exact solutions

Exact solutions are known for some special values of κ. These are κ = 1 and
κ = −1/3.

i.) κ = 1:
The solution to the boundary-value problem (3.4), (3.5) for the velocity

Uw(x) = Ax, (κ = 1) of an impermeable surface, vw(X) = 0, has been
reported by Crane [72]. Thus, the stream function of Crane’s problem has
the form

ψ =

√
µc
A
Ax f(η), η =

√
A

µc
y,

where f(η) is the solution to the ordinary differential equation

f ′′′ + f f ′′ − f ′2 = 0,

subject to the boundary conditions

f(0) = 0, f ′(0) = 1, lim
η→∞

f ′(η) = 0.

Crane’s well known solution for f(η) when is

(3.6) f(η) = 1− e−η,

and the velocity components are

u(x, y) = A x e−η,

v(x, y) = − (µcA)1/2 (1− e−η).

For that solution one gets f ′′(0) = −1.
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For permeable case the solution has been given by Gupta and Gupta [96]

(3.7) f(η) = fw −
1

f0

[
1− ef0η

]
,

with

f0 = −1

2

[
fw +

√
f 2
w + 4

]
.

In this way the velocity field is obtained as

u(x, y) = A x ef0η,

v(x, y) = − (µcA)1/2
[
fw −

1

f0

(
1− ef0η

)]
,

and f ′′(0) = f0.

ii.) κ = −1/3:
The exact solution for κ = −1/3 and fw = 0 can be given

f(η) =
√

2 tanh(η/
√

2),

and for that solution one obtains f ′′(0) = 0.

3.1.3 The exponential series solution

The aim of this section is to show that Crane’s solution can be generalized
for any κ by exponential series solution to the boundary value problem (3.4),
(3.5). We present a method how to determine the approximate local solution
f(η). We use the shooting method and replace the condition at infinity by
one at η = 0. Therefore, (3.4), (3.5) is converted into an initial value problem
of (3.4) with initial conditions

(3.8) f(0) = fw, f
′(0) = 1, f ′′(0) = γ.

We consider the nonlinear differential equation (3.4) as a system of Briot-
Bouquet differential equations [59]. Applying the results of paper [43], we
can assume that

(3.9) f(η) = α
(
A0 +

∑∞

i=1
Ai a

i e−αiη
)
,

where α > 0, A0 = 1, and Ai (i = 1, 2, ...) are coefficients.
The conditions in (3.5) yield the following equations:

α
(
A0 +

∑∞

i=1
Ai a

i
)

= fw,(3.10)

−α2
∑∞

i=1
iAi a

i = 1.(3.11)
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It is evident that the third of the boundary conditions is automatically sat-
isfied. Substituting (3.9) into (3.4) one gets

−
∑∞

i=1
i3Ai Z

i +
(
A0 +

∑∞

i=1
Ai Z

i
)∑∞

i=1
i2Ai Z

i

− 2κ

κ+ 1

(∑∞

i=1
i Ai Z

i
)2

= 0

or

−
∑∞

i=1
i3Ai Z

i + A0

∑∞

i=1
i2Ai Z

i +
∑∞

i=2

∑i−1

k=1
k2Ak Ai−k Z

i

− 2κ

κ+ 1

∑∞

i=1

∑i−1

k=1
k(i− k)Ak Ai−k Z

i = 0.

Equating the coefficients of like powers of Z, we get recurrence relations for
A2 , A3 , ... and we obtain

A2 = −1

4
A2

1

κ− 1

κ+ 1
,

A3 =
1

72
A3

1

(κ− 1) (3κ− 5)

(κ+ 1)2
,

A4 = − 1

864
A4

1

(κ− 1) (6κ2 − 19κ+ 17)

(κ+ 1)3
,

A5 =
1

86400
A5

1

(κ− 1) (93κ3 − 464κ2 + 783κ− 484)

(κ+ 1)4
,

A6 = − 1

2592000
A6

1

(κ− 1) (432κ4 − 2889κ3 + 7461κ2 − 8759κ+ 4139)

(κ+ 1)5
,

A7 =
1

4572288000
A7

1

(κ− 1) P5(κ)

(κ+ 1)6
,

P5(κ) = 115839κ5 − 983892κ4 + 3399550κ3 − 6012140κ2

+5447171κ− 2081728

A8 = − 1

64012032000
A8

1

(κ− 1) P6(κ)

(κ+ 1)7

P6(κ) = 44854κ6 − 2521077κ5 + 10974320κ4 − 25899165κ3 + 35072231κ2

−25921218κ+ 8309255

A9 =
1

9217732608000
A9

1

(κ− 1) P7(κ)

(κ+ 1)8

P7(κ) = 5288733κ7 − 64112391κ6 + 337072482κ5 − 997781298κ4

+1799062257κ3 − 1980424339κ2 + 1236353168κ− 341103412
...
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The coefficients A2, A3, A4, . . . are expressed as functions of κ. We note that
our computations indicate that all the coefficients obtained above can be
written in the form

An = An1
κ− 1

(κ+ 1)n−1
Pn−2 (κ) ,

where Pn−2 is a polynomial of κ of order n−2. When κ = 1 is substituted then
we get that each coefficient Ak, k > 1 is equal to zero. With A1 = 1, this case
results the Crane’s solution (3.6) or Gupta’s solution (3.7) for impermeable
or permeable case, respectively.

κ a α f ′′(0)

-5 -0.7410 0.8687 -1.4033
-4 -0.7207 0.8575 -1.4417
-3 -0.6831 0.8364 -1.5156
-2 -0.5915 0.7826 -1.7166

-1.5 -0.4678 0.7040 -2.0337

-1/3 -1.5919 0.7957 -5.2423
-1/6 -1.5089 1.1868 -1.1407
-1/8 -1.4521 1.1859 -0.7543
-1/10 -1.4207 1.1786 -0.6684

0 -1.3186 1.1419 -0.6433
1/3 -1.1358 1.0628 -0.8300
1/2 -1.0864 1.0403 -0.8896
3/4 -1.0351 1.0166 -0.9540
1 -1 1 -1

Table 3.1. For impermeable case (fw = 0)

The shear stress at the surface is

(3.12) τw =

[
ρµA3κ+ 1

2

] 1
2

x
3κ−1

2 f ′′(0),

where f ′′(0) can be calculated as

f ′′(0) = α3
∑∞

i=1
i2Ai a

i.

From system (3.10), (3.11) with coefficients A2, A3, A4, . . . and with the
choice of A1 = 1 one can obtain the values of parameters a and α. Table
3.1 and Table 3.2 represent the numerical results for some values of κ ∈
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(−∞, − 1) ∪ (−1/2, +∞), fw = 0 and fw = 1 on the base of the first 10
terms in the series.

The radius of the convergence of the series can be found by applying the
ratio test and the series converges absolutely for

η > − 1

α

[
ln

(
limn→∞

∣∣∣∣ AnAn+1

∣∣∣∣)− ln |a|
]
.

We note that the sequence of terms An/An+1 converges very slowly, and
for the determination of the convergence interval an alternative method was
given by Samuel and Hall [174].

κ a α f ′′(0)

-5 -0.3195 1.5663 -1.9547
-4 -0.3140 1.5615 -1.9883
-3 -0.3036 1.5523 -2.0538
-2 -0.2765 1.5279 -2.2376

-1.5 -0.2359 1.4889 -2.5620

-1/3 -0.5357 1.7320 -1.0014
-1/6 -0.4753 1.6890 -1.2179
-1/8 -0.4656 1.6819 -1.2553
-1/10 -0.4604 1.6781 -1.2757

0 -0.4433 1.6654 -1.3445
1/3 -0.4099 1.6400 -1.4878
1/2 -0.4000 1.6323 -1.5325
3/4 -0.3985 1.6240 -1.5820
1 -0.3820 1.6180 -1.6180

Table 3.2. For permeable case (fw = 1)

3.2 Non-Newtonian fluid flow

The problems of the boundary layer over a continuous surface moving in an
otherwise quiescent fluid environment have attracted considerable attention
([58], [85], [93], [130], [131], [137], [138]). In this section we use the power-law
rheological model for the flow of a fluid over a sheet. In the absence of an
exact solution in closed form, numerical solutions for the velocity distribution
in the boundary layer for different power exponents will be presented, and the
dependence of the skin friction parameter and the boundary layer thickness
on the power exponent n are examined.
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3.2.1 Boundary layer equations

Consider the two-dimensional steady flow of a non-Newtonian fluid of density
ρ modeled by a power law fluid due to Ostwald-de Waele over a flat plate
moving continuously with a constant velocity Uw in an otherwise quiescent
fluid medium [39].

The boundary layer equations are

(3.13)
∂u

∂x
+
∂v

∂y
= 0

and

(3.14) u
∂u

∂x
+ v

∂u

∂y
=
K

ρ

∂

∂y

[∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂u∂y

]
.

The boundary conditions of the flow can be expressed as

(3.15) u (x, 0) = Uw, v (x, 0) = 0, lim
y→∞

u (x, y) = 0.

If a flat plate in surroundings at rest is moved with constant velocity Uw,
the no-slip condition means that boundary layer exists close to the wall (see
Fig. 3.1). The moving plate emerges from the wall. This fixes the origin of
the coordinate system and has an analog to the leading edge of a flat plate
at zero incidence in a flow. Both permit only then a steady solution in a
spatially fixed coordinate system.

3.2.2 Similarity solution

The stream function ψ is defined by (2.6) then

(3.16)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µcn

∂

∂y

[∣∣∣∣∂2ψ∂y2
∣∣∣∣n−1 ∂2ψ∂y2

]
.

The boundary conditions can be expressed for ψ as

∂ψ

∂y
(x, 0) = Uw,

∂ψ

∂x
(x, 0) = 0, lim

y→∞

∂ψ

∂y
(x, 0) = 0.

In (3.16) applying the similarity variables

ψ(x, y) = µcn
1

n+1Uw
2n−1
n+1 x

1
n+1f(η) and η = µcn

− 1
n+1Uw

2−n
n+1 yx−

1
n+1 ,
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one can get the nonlinear ordinary differential equation

(3.17)
(
|f ′′|n−1 f ′′

)′
+

1

n+ 1
ff ′′ = 0

with boundary conditions

(3.18) f(0) = 0, f ′(0) = 1, lim
η→∞

f ′(η) = 0.

Remarks. (i) Let us note that from (3.17) it follows f ′′(η) < 0 in (0,+∞)
and

lim
η→∞

f ′′(η) = 0.

(ii) Equation (3.17) is the same as the Blasius equation for n = 1, but
the boundary conditions differ from the usual conditions applied in case of
Blasius problem (see Section 2.1).

Here, the non-dimensional velocity components are obtained by f as fol-
lows:

u(x, y) = Uwf
′(η),

v(x, y) = v∗(x) [ηf ′(η)− f(η)] ,

with

v∗(x) =
Uw
n+ 1

Re
− 1
n+1

x ,

when for power-law non-Newtonian fluids the local Reynolds number Rex is
defined by

Rex =
ρU2−n

w xn

K
.

3.2.3 Numerical results

Equation (3.17) subject to conditions (3.18) must be solved. The shooting
method is applied by using the standard fourth order Runge-Kutta method
for the determination of f ′ which provides the velocity component u. The
calculations were done by using Maple 12 for three various parameters of
n (n = 0.3; 0.7; 1). The numerical integration is restricted to the finite
dimensions (ηmax = 300), where we ensure the condition lim

η→ηmax

f ′(η) = 0.

Velocity profiles f ′(η) = u(x, y)/Uw, calculated from the boundary value
problem (3.17), (3.18) are seen in Fig. 3.2. plotted for pseudoplastic fluids.
Generally, the shear stress at the wall is of prime interest. From (1.11) and
(3.2.2) we get

(3.19) τw(x) =

[
ρnµU3n

w

xn

] 1
n+1

|f ′′(0)|n−1 f ′′(0).
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Fig. 3.2 Dimensionless velocity profiles for n=0.3, 0.7, 1

The shear stress parameter − |f ′′(0)|n−1 f ′′(0) can be determined from the
numerical solution (see Table 3.3).

n −f ′′(0) − |f ′′(0)|n−1 f ′′(0)

0.3 0.5539 0.8376
0.7 0.4568 0.5778
1 0.4437 0.4437

Table 3.3.

On the base of Table 3.3. and Fig. 3.2 we note that the skin friction pa-
rameter [−f ′′(0)]n decreases with an increase of n and it gives the following
conclusions:
(i) by a small n fluid exert a greater shear stress on the plate,
(ii) the boundary thickness tends to increase with decreasing power law index
n.

For Newtonian fluid and continuous surface boundary layer f ′′(0) =
−0.4437 while the corresponding numerical constant for the Blasius flow
is 0.332 [205]. Thus, the friction coefficient for continuous moving surface
exceeds that for the flat plate.
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4 Boundary layer flow on a moving wall

4.1 Newtonian fluid flow

The theoretical analysis for the boundary layer flow of a non-Newtonian fluid,
represented by a power-law model, over a flat surface which has a constant
velocity opposite in direction to that of the uniform mainstream or in the
same direction as the uniform mainstream is examined. Boundary layer
behavior on a moving surface is an important type of flow, which occurs in a
number of engineering processes, e.g., the cooling of polymer films or sheets
and metallic plates on conveyers.

Historically, in 1908, the boundary layer flow past a steady flat surface was
the first example considered by Blasius. Weyl [212] established the existence
of a unique solution and Callegari and Friedman [61] developed an analytical
solution to the classical problem of a uniform stream past a semi-infinite flat
plate. In 1968, Steinheuer [191] examined the boundary layer above a moving
surface in the same or in the opposite direction of the main stream. In 1972,
Klemp and Acrivos [123] studied the Blasius problem when the plate moves
in the direction opposite to that of main stream. In both papers ([123], [191])
on the basis of numerical results, the authors showed that similarity solutions
of such boundary layer problems exist up to a certain critical value of the
velocity ratio Uw/U∞. Hussaini and Lakin [110] have proved this fact and
Hussaini et al. [111] studied the analyticity of the solutions. It turned out
that for a semi-infinite plate, the existence of solutions depends on the ratio
of the plate surface velocity to the free stream velocity. It has been proved
that a solution exists only if this parameter does not exceed a certain critical
value, and numerical calculations were done to show that this solution is
non-unique [152].

We recall that x ≥ 0 and y ≥ 0 denote the Cartesian coordinates along
and normal to the plate with y = 0 is the plate and the coordinate x is as
taken positive in the direction of the mainstream. The plate origin is located
at x = y = 0.
The governing differential equations for Newtonian fluids in a two-
dimensional case are the following:

(4.1)
∂u

∂x
+
∂v

∂y
= 0

and

(4.2) u
∂u

∂x
+ v

∂u

∂y
=
µ

ρ

∂2u

∂y2
,
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where u and v represent the components of the fluid velocity in the direction
of increasing x and y.

Fig. 4.1 Velocity profiles in the boundary layer for velocity ratio
λ (λ > 0, λ = 0, λ < 0)

4.2 Non-Newtonian fluid flow

Since the non-linear fluid rheology is encountered in numerous industrial ap-
plications, the study of non-Newtonian fluid motion is an important part
of the fluid mechanics. The power-law model provides an adequate repre-
sentation of many non-Newtonian fluids over the most important range of
shear stress. In 1960, the theoretical analysis of a non-Newtonian power-law
problem was first performed in [4] and [179]. In the first paper, the authors
derived the equations governing the similarity flow of a non-Newtonian fluid,
and obtained numerical similarity solutions to the boundary-layer equations.
Recently, for non-Newtonian power-law fluid the variation of the velocity
profiles and of the skin friction coefficient have been determined numerically
for different values of velocity ratio parameter and power-law index and the
effects of these parameter have been investigated by Ishak and Bachok [114].

4.2.1 Boundary layer equation

Consider an incompressible uniform parallel flow of the non-Newtonian fluid,
with a constant velocity U∞ along an impermeable semi-infinite flat plate
whose surface is moving with a constant velocity Uw in the opposite direction
to the main stream.

The governing differential equations in a two-dimensional case are the
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following:

(4.3)
∂u

∂x
+
∂v

∂y
= 0

and

(4.4) u
∂u

∂x
+ v

∂u

∂y
=
K

ρ

∂

∂y

[∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂u∂y

]
.

The appropriate boundary conditions are:

(4.5) u (x, 0) = −Uw, v (x, 0) = 0, lim
y→∞

u (x, y) = U∞.

In terms of the stream function ψ defined in (2.6) equation (4.3) is satisfied
automatically and equation (4.4) can be written as

(4.6)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µcn

∂

∂y

[∣∣∣∣∂2ψ∂y2
∣∣∣∣n−1 ∂2ψ∂y2

]
.

The boundary conditions are

(4.7)
∂ψ

∂y
(x, 0) = −Uw,

∂ψ

∂x
(x, 0) = 0, lim

y→∞

∂ψ

∂y
(x, 0) = U∞.

Let us define the stream function ψ and similarity variable η as

(4.8) ψ(x, y) =
[
µcnU

2n−1
∞ x

] 1
n+1 f(η), η = µcn

− 1
n+1U∞

2−n
n+1 yx−

1
n+1 .

The boundary value problem (4.6), (4.7) is transformed by means of dimen-
sionless variables into the following nonlinear ordinary differential equation:

(4.9)
(
|f ′′|n−1 f ′′

)′
+

1

n+ 1
ff ′′ = 0,

with the boundary conditions

(4.10) f(0) = 0, f ′(0) = −λ, lim
η→∞

f ′(η) = 1,

where the velocity ratio parameter is λ = Uw/U∞.
Remark, when λ = 0, and n = 1, equation (4.9) with (4.10) is the Blasius
problem (over stationary plate). When λ > 0 the fluid and the plate move
in the opposite directions, while they move in the same directions if λ < 0
(see Fig. 4.1).
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Equation (4.9) can be readily integrated to yield

(4.11) f ′′ (η) = f ′′ (0) exp

− 1

n (n+ 1)

η∫
0

f (z)

|f ′′ (z)|n−1
dz

 ,
that is the shear stress f ′′ (η) has the same sign as the skin friction at the
wall f ′′ (0) .

Now, consider the initial value problem(
|f ′′|n−1 f ′′

)′
+

1

n+ 1
ff ′′ = 0,(4.12)

f(0) = 0, f ′(0) = −λ, f ′′(0) = γ,(4.13)

the solution is obtained if only f ′′(0) were known such that the corresponding
solution satisfies (4.10). The real number f ′′(0) provides the non-dimensional
drag coefficient ([4], [177])

(4.14) CD,τ = (n+ 1)
1

n+1 Re
−n
n+1 |f ′′(0)|n−1 f ′′(0),

where the Reynolds number is Re = U2−n
∞ Ln/µcn.

The main physical quantity of interest is the value of f ′′(0) = γ. It is
important to investigate how the values of f ′′(0) vary with the velocity ratio
parameter λ. We employ the Runge-Kutta method with shooting technique
to solve (4.9) subject to the boundary conditions (4.10). The numerical
calculations show that there is a critical value λc for any fixed n such that
solution exists only if λ ≤ λc. The variation of f ′′(0) with λ for different
values of n is examined. The influences of λ and n on the parameter f ′′(0)n

are represented in Fig. 4.2. The numerical results indicate that that there
is a critical value λc for any fixed n such that solution exists only if λ ≤ λc.
The value of λc depends on n. This phenomena is represented in Table 4.3
and on Fig. 4.3.

Table 4.1. The values of f ′′(0)
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Fig. 4.2 The variation of f ′′(0)n with λ for different values of n

n
0,6 0,8 1,0 1,2 1,4

lc

0,33

0,34

0,35

0,36

0,37

Fig. 4.3 Variation of λc(n) with n
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The nonlinear ordinary differential equation (4.9) with the boundary con-
ditions in (4.10) was solved for some values of the power-law index n and ve-
locity ratio parameter λ by an iterative transformation method using MAT-
LAB in [53]. The fourth order Runge-Kutta method was implemented and
ηmax was determined when the local error was less than 10−6. The results
of the numerical calculations are represented for f ′′(0), and ηmax by taking
different values for λ and n in Table 4.1-4.2.

Table 4.2. The values of ηmax

If λ > 0, then there is one solution (see e.g., Fig. 4.4). Figs. 4.5-4.7
exhibit the upper and lower solutions for velocities u(x, y)/U∞ as a function
of η to show the effect of a positive parameter λ for different power-law
exponent n. We see that f ′ monotonically increases from −λ to 1.

Fig. 4.4 Velocity distribution for λ = −0.3 and n = 0.1
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Fig. 4.5 Velocity distribution for λ = 0.15 and n = 0.5

Fig. 4.6 Velocity distribution for λ = 0.25 and n = 1
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Fig. 4.7 Velocity distribution for λ = 0.3 and n = 1.5

n 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
λc 0.3391 0.3445 0.3495 0.3541 0.3584 0.3624 0.3661 0.3696 0.3728

Table 4.3. The values of λc

For pseudoplastic, Newtonian and dilatant media, Figs. 4.8-4.10 intro-
duce the effect of the power exponent n and λ on the profiles for f ′′(η) which
is included in the shear stress. The boundary layer thickness increases as the
value of λ > 0 increases, and f ′′(η) reaches a maximum in the interior of the
flow field. Klemp and Acrivos [123] remarked that at this similarity solution,
the downstream influence has not been neglected on the flow. The reason is
the lack of the characteristic length in the case of the semi-infinite surface. If
the solution exists, it must be self-similar in order to remain independent of
whatever length scale is chosen. Therefore, both upstream and downstream
effects on the solution at any point in the flow must be such that the shape
of the similarity solution.

Our aim is to give upper estimation on λc. As in [73], we employ the fol-
lowing Crocco-like transformation w = f ′ and G(w) = f ′′. By this approach
we arrive at the following problem

G
(
G′ |G|n−1

)′
+

w

n+ 1
= 0, w ∈ (−λ, 1) ,(4.15)

G(1) = 0, G′(−λ) = 0.(4.16)
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Fig. 4.8 The graph of f ′′(η) for n = 0.5 applying different λ

Fig. 4.9 The graph of f ′′(η) for n = 1 applying different λ

Fig. 4.10 The graph of f ′′(η) for n = 1.5 applying different λ
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Equation (4.15) can be also written in the form

(4.17) G |G|n−1G′′ + (n− 1) |G|n−1G′2 +
w

n (n+ 1)
= 0.

We find that if G is a solution to (4.17) then −G is also its solution. So,
the sign of G(w) is determined by G(0). Without loss of generality we can
assume that G(0) > 0.
Using the transformation x = w + λ, [G (w) = g (x)] to map the interval
−λ < w < 1 to 0 < x < 1 + λ, equations (4.15) or (4.17) and boundary
conditions (4.16) can be formulated as

(4.18) g(x) |g(x)|n−1 g′′(x) + (n− 1) |g(x)|n−1 g′2 +
x− λ

n (n+ 1)
= 0

or

(4.19)
(
g(x)n−1g′(x)

)′
=

λ− x
n(n+ 1)g(x)

,

with

(4.20) g′ (0) = 0, g (1 + λ) = 0.

For the Newtonian case (n = 1) with λ = 0, problem (4.9), (4.10) is reduced
to the well-known Blasius problem.

When n = 1, λ ≤ 0, the existence, uniqueness and analyticity of solution
to (4.9), (4.10) were shown by Callegari and Friedman [61] and Callegari and
Nachman [62] using the Crocco variable formulation. If λ > 0, Hussaini and
Lakin proved that there is a critical value λc such that solution exists only
if λ ≤ λc (see [110]). The numerical value of λc was found to be 0.3541. . . .
The analyticity of solutions to (4.18), (4.19) has been presented by Hussaini
et. al. [111] and also upper bound on the critical value of the wall velocity
parameter λc has been derived which was found to be 0.46824. . . . The
non-uniqueness and analyticity of solution for λ ≤ λc has been proved in
[111]. Allan investigated the effect of the parameter λ on the boundary layer
thickness in [8].
For non-Newtonian fluids (n 6= 1) with λ = 0, in the paper by Nachman
and Callegari [155], the existence, uniqueness, and some analytical results
for problem (4.9),(4.10) were established when 0 < n < 1. The existence
and uniqueness result for n > 1 was considered in [25] via Crocco variable
transformation. In [38] it was shown that for the non-Newtonian case there
also exists analytic solution to the problem (4.9), with f(0) = 0, f ′(0) = 0,
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lim
η→∞

f ′(η) = 1; moreover, the coefficients in the power series solution f(η) =

η2
∑∞

k=0akη
3k and the convergence radius have been determined.

When n 6= 1, λ 6= 0, the boundary layer equation (4.9) with (4.10) has
been solved numerically through employing Runge-Kutta method by Ishak
and Bachok [114] and the effects of power-law index n and velocity ratio
parameter λ was analyzed for some values of n and λ. Moreover, the behavior
of the skin friction parameter (f ′′ (0)) was examined. It was found that
similarly to the Newtonian case dual solutions exist for some λ < λc, and λc
varies with power-law index n. From the numerical results it was established
that the drag force is reduced for dilatant fluids (n > 1) compared to the
case 0 < n < 1.

If λ > λc, the flow separates. The boundary layer structure collapses and
the boundary layer approximations are no longer applicable.

In [44] we provided upper bound for the critical velocity parameter for
non-Newtonian fluids as in [111] it was for Newtonian fluids.

4.2.2 Properties of the solution g

In this section we summarize some properties of solution g to (4.18), (4.20)
(for the proof we refer to [44]):
1. If g(0) = α > 0 then g and g′ are positive and gn(x) is convex in (0, λ) .
2. There exists exactly one value x0 in (λ, 1 + λ) such that gn(x) has its
maximum value at x0.
3. The initial value α of g and the maximal value β of g satisfy the inequality
0 < g(x0) = β < 2α.
4. For the solution g of (4.18), (4.20) the following equality holds:
(4.21)

n

n+ 1

(
βn+1 − αn+1

)
−

x0∫
0

(x0 − ξ) g′ (ξ) ([g (ξ)]n)
′
dξ =

1

6(n+ 1)

(
3λx20 − x30

)
.

5. For x0, the lower bound x0 ≥ 2λ is valid.

6. For g(0) = α and g(x0) = β the estimation

βn+1 − αn+1 ≥ 2λ3

3(n+ 1)

holds.

65

               dc_230_11



4. Boundary layer flows on a moving surface

7. For any positive n, except n = 1/2 and n = 1/3, the positive solution to
(4.18) and (4.20) satisfies the estimation

λ3

3 (2n − 1) (n+ 1)
≤ αn+1 ≤ n2

(n+ 1) (2n− 1) (3n− 1)
,

where g(0) = α > 0 is the skin friction coefficient.

4.2.3 Upper bound on λc

When n = 1, it is known that there exists a solution to (4.9), (4.10) only
if λ ≤ λc. In [111] the critical value λc was determined numerically λc =
0.3541 . . . [110], and upper bounds are provided for λc analytically. For non-
Newtonian fluids the numerical calculations (see [114]) indicate that generally
λc depends on the power-law index n, i.e., λc = λc(n). Here we derive upper
bounds for λc depending on n.

By an integration from 0 to 1 + λ, from equality from (4.21), one can get
(see [44])

(4.22) − n

n+ 1
αn+1 − I (1 + λ) =

1

6(n+ 1)

(
3λ (1 + λ)2 − (1 + λ)3

)
,

where

(4.23) I (ν) =

ν∫
0

(1 + λ− ξ) g′ (ξ)
(
|g (ξ)|n−1 g (ξ)

)′
dξ.

Therefore,

(4.24)

(
(1 + λ)3 − 3λ (1 + λ)2

)
6

= nαn+1 + (n+ 1)I (1 + λ) .

Next, we provide three upper bounds for λ depending on the applied estima-
tion of the right side of (4.24).

Case (i.) Simply take that the right side of (4.24) is positive then 1−2λ ≥ 0,
that means

(4.25) λ ≤ 1

2
for any n.

Case (ii.) Here we use the inequality I (1 + λ) > 0, then

(4.26)

(
2 +

2n

(2n − 1) (n+ 1)

)
λ3 + 3λ2 − 1 ≤ 0.
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We note that (4.26) corresponds to the one obtained for n = 1 in [111]. Nu-
merical solutions to (4.26) for different values of n are demonstrated in Table
4.4 for different values of n and compared to the numerical results by Ishak
and Bachok [114].

n λc [114] λc(ii)
0.6 0.3333 0.46578
0.8 0.3445 0.47104
1 0.3541 0.47533

1.2 0.3641 0.47889
1.4 0.3636 0.48187
1.6 0.48438
1.8 0.48650
2 0.48832
3 0.49421
4 0.49708

Table 4.4. Upper bounds for λ

Case(iii.) Now, we use the relation that I (1 + λ) > I (λ) , then one gets
the following inequality for λ[

2BC +
1

n(n+ 1)22+ 1
n

]
λ6 +

[
1

5n(n+ 1)2
1
n
−2

+ 3B

]
λ5

(4.27) + [2AC −B]λ3 + 3Aλ2 − A ≤ 0,

where A = n2

(2n−1)(3n−1) , B = (2n−1)
1
n

3(n+1)
, C = 1 + n

(n+1)(2n−1) are constants
depending on n.

The numerical results obtained from (4.27) are demonstrated in Table
4.5 for 0.6 ≤ n ≤ 4 and compared to the numerical results obtained in [114].
The calculated numerical values give slightly better approximations for λc as
in the case (ii). Remark, that even for n = 1 the upper bound for λc is worse
than in [111] due to the applied inequality:

(4.28) (a+ b)q ≤ 2q−1 (aq + bq) for a, b > 0 and q ≥ 1,

applied for the case (iii) with q = 1 + 1/n.
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n λc [114] λc(iii)
0.6 0.3333 0.46522
0.8 0.3445 0.46944
1 0.3541 0.47317

1.2 0.3641 0.47648
1.4 0.3636 0.47939
1.6 0.48194
1.8 0.48417
2 0.48613
3 0.49262
4 0.49593

Table 4.5. Upper bounds for λ

4.2.4 The analytic solution

We can show the existence of analytic solution g (x) to (4.18) with initial
conditions g(x0) = β, g′(x0) = 0.

In [44] it was provided that solution g(x) has a convergent power series
expansion near zero of the form
(4.29)

g(x) =
∑∞

k=0
ak(x−x0)2k = β− x0 − λ

2n (n+ 1)

1

βn
(x−x0)2 +

∑∞

k=2
ak(x−x0)2k

in [x0, 1 + λ] . For the determination of the coefficients ak (k ≥ 2) we refer
the paper [51]. We remark to that in the interval [0, x0] the power series
expansion of the solution to (4.18) can be obtained similarly with the modi-
fications β to α and x0 to 0.

4.3 Comparison of Similarity Solutions with Nu-
merical Solutions

Now, the flow induced by a flat plate, with finite length, moving reversely to
a parallel ambient stream of a power-law non-Newtonian fluid is considered.
This problem has been investigated in Section 4.2.

A horizontal plate, with finite length L, moves with constant velocity Uw
from right to left against a horizontal free stream which moves with constant
velocity from the left to the right. The moving plate forces the fluid in front
of it to move to the left.

As it was noted, the boundary layer theory is valid only for some special
conditions. Instead of the boundary layer equations (1.1), (1.6), the system
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of full equations (1.1), (1.4), (1.5) is considered, where p is the pressure and
µapp is the apparent viscosity calculated by the relationship (1.12):

µ = K

{
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2
}(n−1)/2

.

The flow is governed by the Reynolds number which is given by

(4.30) Re =
ρU2−n
∞ Ln

K
.

This means that the results for this problem are quite different from
those of Steinheuer [191], and Klemp and Acrivos [123] for a Newtonian fluid
and what we presented for power-law non-Newtonian flows by the similarity
method. Our investigation is based on the numerical solution of the complete
system of equations using the commercial code ANSYS FLUENT Version
14.0. The two-dimensional, steady, laminar solver is used in the momentum
equations. In our computations we apply the coupled scheme for coupling
of the pressure and the velocity with the non-Newtonian power-law model
(1.12). A double precision accuracy was used and a convergence criterion
of 10−8 was applied for the velocity components. The CFD (Computational
Fluid Dynamics) has been used extensively in the literature, both for New-
tonian (see e.g., [54], [167]) and non-Newtonian fluids ([188], [189], [216]).
The boundary parallel to the plate were placed far away from the plate (at
distance 20L, where L is the plate length. Larger computational field is not
necessary as in our examples we calculate for large Reynolds numbers. Ac-
cording to the ANSYS FLUENT code, the applied boundary conditions are
the following:
- ”velocity inlet” where the horizontal velocity is constant and the vertical
velocity is zero,
- ”pressure outlet” where the static pressure is placed equal to ambient pres-
sure and all other flow quantities are extrapolated from the interior domain,
- boundaries parallel to the plate, are defined as ”symmetry” where the
velocity gradients in the vertical direction are forced to be zero,
- the plate is defined as ”moving wall”.

Fluid Newtonian dilatant [49] pseudoplastic [118]
n [−] 1 1.475 0.8
K [Pasn] 0.001003 0.000313 0.319
ρ [kg/m3] 998 1340 1070

Table 4.6.
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4. Boundary layer flows on a moving surface

The numerical calculations were carried out for L = 0.06 [m], U∞ = 0.2
[m/s] and three types of fluids: water (n = 1), dilatant fluid (n = 1.475)
and pseudoplastic fluid (n = 0.8). The material properties are summarized
in Table 4.6.

We compare the theoretical or similar velocity solution u/U∞ with the
numerical solutions obtained by ANSYS FLUENT when the similarity vari-
able η is applied. For a Newtonian fluid in Fig. 4.11 it is clearly seen that
with increasing distance x/L from the leading edge, the numerically calcu-
lated dimensionless velocity profiles u(x, y)/U∞ always approach the simi-
larity solution f ′(η) associated with (4.9), (4.10) obtained by the iterative
transformation method and denoted by ’ITM’.

For the outflow (x/L = 1) the numerical and similar solutions are exhib-
ited in Figs. 4.12-14. The solutions u(x, y)/U∞ to (1.1), (1.4), (1.5) with
(1.12) on the one hand and the similarity solution (4.9), (4.10) on the other
hand, for different values of n and λ at Figs. 4.15-4.19 become undistinguish-
able. Figs. 4.20-4.22 exhibit the wall shear stress for different values of n
and λ.

The shear stress obtained from the similarity solution is a function of x,
and it has an asymptote at zero, while the numerical solution of the momen-
tum equations provides a finite value for the shear stress at zero. However,
except a close neighborhood of the leading edge, the numerical values calcu-
lated with ANSYS are very close to those of the similarity solution.

For numerical simulations the discretization error was determined by
Richardson’s extrapolation. The error in absolute value for the velocity com-
ponent u is not greater than 10−4. For the shear stress the absolute value of
the error is remarkable on the interval [0, 0.01], otherwise the error is very
small.

Comparing the theoretical (similar) velocity solution u/U∞ with the nu-
merical solutions obtained by ANSYS FLUENT, satisfactory agreement has
been found. Therefore, the similarity solutions verify the numerical simula-
tions calculated by ANSYS FLUENT.

We summarize the advantages of the similarity method and the numerical
simulation obtained with ANSYS.

The finite volume solution calculated with ANSYS has the following ad-
vantages: there is no assumption on the pressure and on the velocity compo-
nents and on their derivatives; the momentum equation is a vector equation,
it describes the phenomenon more accurately as it doesn’t contain the as-
sumptions which was made for the similarity solutions; at the leading edge
(x = 0), the similarity solution is not applicable as the similarity variable η
is not defined there.

The similarity solution has the advantages over the finite volume solution:
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4. Boundary layer flows on a moving surface

Fig. 4.11 Numeric and similar velocity profiles of a Newtonian
fluid at different distances from the leading edge

Fig. 4.12 Comparison of numeric and similar velocity profiles of
a Newtonian fluid for λ = −0.2
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Fig. 4.13 Comparison of numeric and similar velocity profiles of
a Newtonian fluid for λ = 0.2

Fig. 4.14 Comparison of numeric and similar velocity profiles of
a dilatant non-Newtonian fluid for λ = −0.2, n = 1.475

72

               dc_230_11



4. Boundary layer flows on a moving surface

Fig. 4.15 Comparison of numeric and similar velocity profiles of
a pseudoplastic non-Newtonian fluid for λ = −0.2, n = 0.8

Fig. 4.16 The wall shear stress τw for λ = −0.2 and n = 1
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the length of the surface is not included in the equation; in case of industrial
applications, it is often important to model very long sheets; such calcula-
tions can be very time-consuming; the numerical solution of the initial value
problems, or even the boundary value problems are less time-consuming than
of the momentum equation; stable methods are available for the solution of
the initial value problems of ordinary differential equations, the solution to
the similarity problem does not require mesh, so it does not affect the result.

Fig. 4.17 Velocity component v for n = 1

Fig. 4.18 Static pressure for n = 1

Figures 4.17-4.18 exhibit the velocity component u and the pressure for
Newtonian fluid. As a consequence of our calculations, we find that for
both the pressure and the velocity distributions Prandtl’s boundary layer
assumptions are valid.
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5 Similarity solutions to hydrodynamic

and thermal boundary layer

5.1 Marangoni effect

The film flows are ubiquitous in manufacturing, in engineering, in physics
and in life sciences. In many practical film models, surface tension plays a
significant role, e.g. in surface coatings, biofluid and agrochemical applica-
tions. When a free liquid surface is present, the surface tension variation
resulting from the concentration or temperature gradient along the surface
can induce motion in the fluid called solutal capillary, or thermocapillary
motion, respectively.

The study of liquid movement resulting from thermocapillarity (or so
called Marangoni) convection is very important for a liquid system either
in microgravity or in normal gravity [17]. Under normal gravity, liquid
movement is mainly driven by buoyancy force because of the temperature-
dependent density, while the liquid is exposed to a temperature gradient field.
As the size of the liquid system decreases especially having the size decrease
in the direction of gravity, the buoyancy effect begins to diminish and the
Marangoni effect will then dominate the system as the main driving force for
liquid interface movement. In the absence of gravity, Marangoni convection
always plays a main role in the determination of the fluid movement because
of varying liquid surface tension in a temperature gradient. It has signifi-
cance in the processing of materials, especially in small scale and low gravity
hydrodynamics [156].

Marangoni convection appears in many industrial processes and space
technologies, e.g., in the flip-chip industry, in tribology, in surface coatings,
in crystal growth melts, where the flow produces undesirable effects (see
[14], [66], [67], [140]) and it occurs around vapor bubbles during nucleation
[67]. In several papers authors investigate Marangoni driven boundary layer
flow in nanofluids. These fluids can tremendously enhance the heat transfer
characteristics of the base fluid and have many industrial applications in
lubrication theory, in heat exchangers and coolants. Nanofluids are studied
when different types of nanoparticles ([16], [60], [75]). Marangoni flow has
also significance in welding, semiconductor processing and other fields of
space science. Its mathematical model is studied in [16], [68] and [107].

In the lubrication theory, a thin film flow consists of a spread of fluid
bounded by free surface. Due to the Marangoni effect, even small surface
tension can lead to significant changes. On lubricated surfaces, the problem
of lubricant migration is examined in highly stressed lubricated machine el-
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ements (e.g. in bearings). The frictional heat makes the moving machine
elements warmer than its surroundings. In bearing systems, which are open
at one side, the conditions for the appearance of the Marangoni effect are
given. The bearing runs dry, when the temperature gradient is high enough
and the force induced by the Marangoni effect overcomes the capillary forces,
which pull the lubricant into the bearing contact. The Marangoni phenom-
ena causes the temperature driven migration on tribological surfaces, the oil
film flows away from the hot to the cooler regions, and it leads to the lack of
lubricant. Klien et al. [125] have shown experimental results on the influence
of the temperature gradient and of the lubricant properties on the migration
speed. Dewetting is often undesirable: dry spots on tribological surfaces can
lead to spontaneous failures [125], dewetting of tear film in the eye is a serious
health problem, dewetting in printing often appears with nonuniform coating
patterns. However, dewetting is desirable some cases, e.g., waxy coatings on
plant leaves or balling up water on freshly polished cars [160].

The Marangoni effect has been investigated for various substances in ge-
ometries with flat surfaces by similarity analysis (see [14], [16], [65], [98],
[164], [222]), [223]. Arufane and Hirata [14] presented a similarity analysis
for just the velocity profile for Marangoni flow when the surface tension vari-
ation is linearly related to the surface position. Christopher and Wang [66]
studied Prandtl number effects for Marangoni convection over flat surface
and presented approximate analytical solutions for the temperature profile.
They showed that the calculated temperature distribution in vapor bubble
attached to a surface and in the liquid surrounding the bubble was primarily
due to the heat transfer through the vapor rather than in liquid region and
the temperature variation along the surface was not linear but could be de-
scribed by a power-law function [65]. Using the similarity transformation, the
governing system of non-linear partial differential equations are transformed
into a pair of similarity non-linear ordinary differential equations, one for the
stream function and one for the temperature. The velocity and temperature
distributions can be given by numerically by using the Runge-Kutta method
([16], [64], [65], [67]), analytical approximate solutions can be determined for
these problems by using Adomian decomposition method and Padé technique
([120], [221], [222], [223]) or by power series method [38].

In this section, we investigate a similarity analysis for Marangoni con-
vection inducing flow over a flat surface due to an imposed temperature
gradient. The analysis assumes that the temperature variation is a power
law function of the location and the surface tension is assumed to depend on
the temperature linearly.

We first present the derivation of the equations and show how the bound-
ary layer approximation leads to the two point boundary value problem and
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the similarity solutions. The new model, written in terms of stream func-
tion and temperature, consists of two strongly coupled ordinary differential
equations. Its analytical approximate solutions are represented in terms of
exponential series. The influence of various physical parameters on the flow
and heat transfer characteristics are discussed.

5.1.1 Boundary layer equations

Consider the steady laminar boundary layer flow of a viscous Newtonian
fluid over a flat surface in the presence of surface tension due to temperature
gradient at the wall. Assuming that the surface is impermeable, the sur-
face tension varies linearly with temperature and the interface temperature
is a power-law function of the distance along the surface. The governing
equations for two-dimensional Navier-Stokes and energy equations describ-
ing thermocapillary flows in a liquid layer of infinite extent is considered.
The layer is bounded by a horizontal rigid plate from one side and opened
from the other one. The rigid boundary is considered as thermally insulated.
The physical properties of the liquid are assumed to be constant except the
surface tension. For Newtonian fluid the balance laws of mass, momentum
and energy can be written in the form [156]:

∂u

∂x
+
∂v

∂y
= 0,(5.1)

u
∂u

∂x
+ v

∂u

∂y
= µc

∂2u

∂y2
,(5.2)

u
∂T

∂x
+ v

∂T

∂y
= αt

∂2T

∂y2
,(5.3)

where αt denotes the thermal diffusivity, µc = µ/ρ.
Marangoni effect is incorporated as a boundary condition relating the

temperature field to the velocity. The boundary conditions at the surface (at
y = 0) are

µ
∂u

∂y

∣∣∣∣
y=0

= −σT
∂T

∂x

∣∣∣∣
y=0

,(5.4)

v(x, 0) = 0,(5.5)

T (x, 0) = T (0, 0) + Āxm+1(5.6)

and as y →∞

u(x,∞) = 0,(5.7)

∂T

∂y

∣∣∣∣
y=∞

= 0,(5.8)
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where σT = dσ/dT , Ā denotes the temperature gradient coefficient, m is a
parameter relating to the power law exponent. Napolitano and Golia [157]
have shown that similarity solution of Marangoni boundary layer exists when
the interface temperature gradient varies as a power of x. When T (x, 0) is
proportional to x, it was examined by Slavtchev and Miladovina [190]. When
T (x, 0) is proportional to x2, it was examined by Al-Mudhaf and Chamka [7]
and Magyari and Chamka [140], and when T (x, 0) is proportional to xm+1,
the solution was investigated by Christopher and Wang [66], [67], Arifin et al.
[16] and Zheng et al. [223]. The case m = 0 refers to a linear profile, m = 1
to the quadratic one. The minimum value of m is −1 which corresponds to
no temperature variation on the surface and no Marangoni induced flow.

Introducing the stream function ψ by (2.6) equation (5.2) is reduced to

(5.9)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µc

∂3ψ

∂y3
.

Applying similarity functions

ψ = C1x
af (η) , Θ =

T − T (0, 0)

Āxm+1

and similarity variable η = C2x
by with C1 = 3

√
(m+ 1)µσT Ā/ρ2, C2 =

3
√

(m+ 1) ρσT Ā/µ2, a = (m+ 2)/3 and b = (m− 1)/3 one can obtain from
the partial differential equation (5.9) one single ordinary differential equation
of the third order

(5.10) f ′′′ − 2m+ 1

3
f ′2 +

m+ 2

3
ff ′′ = 0

and boundary conditions (5.4)-(5.8) become

(5.11) f (0) = 0, f ′′ (0) = −1, f ′ (∞) = 0.

For equation (5.3) by the similarity temperature function Θ with the corre-
sponding boundary conditions we get

(m+ 1)f ′Θ− m+ 2

3
f Θ′ =

1

Pr
Θ′′,(5.12)

Θ(0) = 1, Θ′(∞) = 0,(5.13)

where Pr = µ/(ραt) is the Prandtl number. For the dimensionless stream
function f(η) and the temperature field Θ(η), the system (5.10), (5.12) is
derived and the primes denote the differentiation with respect to η.
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Now, the velocity components can be expressed by similarity function f
as follows

u (x, y) =
∂ψ

∂y
= κ2 3

√
ρ

µ
x

2m+1
3 f ′ (η) ,

v (x, y) = −∂ψ
∂x

= −κ
3
x
m−1

3

[
(m+ 2) 3

√
µ

ρ
f(η) + (m− 1)κ 3

√
ρ

µ
x
m−1

3 yf ′(η)

]
,

where κ = 3
√

(m+ 1)σT Ā/ρ, σT = constant.

It should be noted that u and v are proportional to x
2m+1

3 and x
m−1

3 ,
respectively. It means, that for m = −1/2 the velocity component u is
a constant on the upper surface of the boundary layer. If m = 1 then
η = 3

√
2ρσT Ā/µ2y. In the case of m > 1, v is proportional to x

m−1
3 and is

strictly monotone increasing to infinity as x tends to infinity, which is not
accepted in physics. Therefore, we restrict our investigations to the interval
−1 < m ≤ 1.

We note that the special case m = 1 do admits explicit solution. In [72]
and [136] the solution to (5.10), (5.11) is given by :

(5.14) f(η) = 1− e−η

and easy computation shows that

(5.15) Θ(η) = Φ (Pr)−Ψ (Pr) e−η + Ω (Pr) e−2η,

with Φ (Pr) = 1
Pr−1
Pr

+ Pr
Pr−2

−2
Pr−1
Pr

, Ψ (Pr) = 2
Pr−1
Pr

+ Pr
Pr−2

−2 , Ω (Pr) =

1
Pr−1
Pr

+ Pr
Pr−2

−2
Pr

Pr−2 is the solution to (5.12), (5.13).

Due to the inherent complexity of such flows, to give exact analytical so-
lutions of Marangoni flows are almost impossible. Exact analytical solutions
were given by Magyari and Chamka for thermosolutal Marangoni convec-
tion when the wall temperature and concentration variations are quadratic
functions of the location [140].

Our goal is to present approximate exponential series solution to the
nonlinear boundary value problem (5.10), (5.11), moreover to (5.12), (5.13)
for any m when −1 < m ≤ 1. Several values of the power law exponent
and Prandtl number are considered. Numerical results are exhibited. The
influences of the effects of these parameters are illustrated [48].

5.1.2 Exponential series solution

First, our aim is to generalize solution (5.14) for any m and to determine
the approximate local solution of f (η) to (5.10), (5.11). We replace the
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condition at infinity by one at η = 0. Therefore, and is converted into an
initial value problem of (5.10) with initial conditions

(5.16) f (0) = 0, f ′ (0) = ζ, f ′′ (0) = −1.

In view of the third of the boundary conditions (5.11), let us take the
solution of the initial value problem (5.10), (5.16) in the form

(5.17) f (η) = α

(
A0 +

∞∑
i=1

Aid
ie−αηi

)
,

where α > 0, A0 = 3/(m + 2), Ai (i = 1, 2, . . .) are coefficients and α > 0
and d are constants. Conditions in (5.11) yield the following equations:

(5.18) α

(
A0 +

∞∑
i=1

Aid
i

)
= 0,

(5.19) α3

∞∑
i=1

i2Aid
i = −1.

It may be remarked that the classic Briot-Bouquet theorem [59] guarantees
the existence of formal solutions (5.17) to the boundary value problem (5.10),
(5.16); the value of A0 and also the convergence of formal solutions.

Let us introduce the new variable Z such as Z = de−αη.
It is evident that the third boundary condition in (5.11) is automatically

satisfied. From differential equation (5.10) with (5.17) we get
(5.20)

−
∞∑
i=1

i3AiZ
i+
m+ 2

3

(
A0 +

∞∑
i=1

AiZ
i

)
∞∑
i=1

i2AiZ
i−2m+ 1

3

(
∞∑
i=1

iAiZ
i

)2

= 0.

Equating the coefficients of like powers of Z one can obtain the expressions
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for coefficients A2, A3, ... with m and A1.

A2 = − 1

12
A2

1(m− 1)

A3 =
1

216
A3

1(m− 1)(m− 2)

A4 = − 1

15552
A4

1(m− 1)(4m2 − 15m+ 17)

A5 =
1

4665600
A5

1(m− 1)(62m3 − 371m2 + 757m− 610)

A6 = − 1

46656000
A6

1(m− 1)(32m4 − 257m3 + 810m2 − 1171m+ 730)

A7 =
1

740710656000
A7

1(m− 1)

(25742m5 − 263609m4 + 1108202m3 − 2419211m2 + 2737856m− 1383380)

(5.21)
...

m d α ζ = f ′(0)
−0.7 −3.647038235 1.151595555 2.124598444
−0.6 −2.965760980 1.127415834 1.983315576
−0.5 −2.637757681 1.06387919 1.732325541
−0.4 −2.376172862 1.033354073 1.593916052
−0.3 −2.162310710 1.014414456 1.494034266
−0.2 −1.984074328 1.001820070 1.415321059
−0.1 −1.833183771 0.9933978501 1.350675806

0 −1.703758050 0.9879394966 1.296185235
0.1 −1.591498354 0.9846733013 1.249367842
0.2 −1.493186863 0.9830710732 1.208532122
0.3 −1.406365745 0.9827560858 1.172472117
0.4 −1.329124551 0.9834517804 1.140299628
0.5 −1.259955423 0.9849505390 1.111343438
0.6 −1.197652064 0.9870936108 1.085085341
0.7 −1.141237758 0.9897577103 1.061117897
0.8 −1.089913110 0.9928458034 1.039115668
0.9 −1.043017465 0.9962806209 1.018815071
1 −1 1 1

Table 5.1.
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From system (5.18), (5.19) with the choice of A1 = 1 the parameter values
of d and α can be numerically determined. By these parameters the complete
series solution (5.17) is reached.

Table 5.1 shows the calculated values of d, α and f ′(0) and Fig. 5.1 the
variation of f(0) with m.

The series forms for f(η) and f ′(η) are given below for some special values
of the exponent m (m = −0.5; m = 0; m = 1) :

m = −0.5 :

f(η) = 2.1277− 2.8062(e−1.0639η) + 0.92528(e−1.0639η)2

−0.33898(e−1.0639η)3 + 0.12667(e−1.0639η)4

−0.047564(e−1.0639η)5 + 0.017882(e−1.0639η)6

−0.00672(e−1.0639η)7 + 0.00253(e−1.0639η)8

−0.00095(e−1.0639η)9 + 0.00036(e−1.0639η)10

f ′(η) = 2.9855(e−1.0639η)− 1.9687(e−1.0639η)2

+1.0819(e−1.0639η)− 0.5391(e−1.0639η)4

+0.2530(e−1.0639η)5 − 0.1141(e−1.0639η)6

+0.0501(e−1.0639η)7 − 0.0215(e−1.0639η)8

+0.00910(e−1.0639η)9 − 0.0038(e−1.0639η)10

m = 0 :

f(η) = 1.4819− 1.6832(e−0.9879η) + 0.23898(e−0.9879η)2

−0.04524(e−0.9879η)3 + 0.00909(e−0.9879η)4

−0.00185(e−0.9879η)5 + 0.00038(e−0.9879η)6

−0.00007(e−0.9879η)7 + 0.000015(e−0.9879η)8

−0.000003(e−0.9879η)9 + 0.0000006(e−0.9879η)10

f ′(η) = 1.6629(e−0.9879η)− 0.47219(e−0.9879η)2

+0.13408(e−0.9879η)3 − 0.0359(e−0.9879η)4

+0.00916(e−0.9879η)5 − 0.00224(e−0.9879η)6

+0.00053(e−0.9879η)7 − 0.00012(e−0.9879η)8

+0.000028(e−0.9879η)9 − 0.000006(e−0.9879η)10
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m = 1 :

f(η) = 1− e−η

f ′(η) = e−η

It can be seen that for the case m = 1 the obtained solution coincides with the
exact solution (5.14). The effect of the exponent m on the velocity profiles
f ′(η) is illustrated in Fig. 5.2. The values of f ′(0) = ζ decrease as m is
changing from negative values to positive ones.

Fig. 5.1 Variation of ζ with m

Applying the series solution to f the second order linear differential equa-
tion (5.12) for Θ can be solved similarly, which presents the temperature
distribution. Here we define Θ(η) as the series

Θ(η) = B0 +
∞∑
i=1

Bid
ie−αηi,

with coefficients Bi (i = 0, 1, 2, . . .) and hence the individual coefficients will
be determined from differential equation (5.12) with (5.17) as follows
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Fig. 5.2 Variation of f ′ with η

B1 = A1B0
Pr

Pr − 1
(m+ 1)

B2 =
1

12

A2
1B0Pr

(Pr − 1)(Pr − 2)
(3m2Pr +m2 + 6mPr + 3Pr − 1)

B3 = − 1

216

A3
1B0Pr

(Pr − 1)(Pr − 2)(Pr − 3)
F (Pr,m)(5.22)

F (Pr,m) = ((m3 −m)(3Pr2 − 19Pr − 2) + (m2 − 1)(4Pr2 − 20Pr + 4))
...

Remark that these coefficients as expressions of B0 can be calculated
only for non integer values of the low Prandtl numbers. In (5.13) the second
boundary condition is automatically satisfied, and from the first condition
coefficient B0 is to be determined, i.e., from the equation

B0 +B1d+B2d
2 +B3d

3 + . . . = 1

together with (5.22) (see Table 5.2).
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Fig. 5.3 Variation of Θ with Pr (0.27 ≤ Pr ≤ 1.00001) for m = 1

Fig. 5.4 Variation of Θ with Pr (2.5 ≤ Pr ≤ 7.00001) for m = 1

Fig. 5.5 Variation of Θ with Pr (70 ≤ Pr ≤ 298) for m = 1
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Pr \ m −0.5 0 1
0.27 0.699360103 0.617716289 0.556343613
0.7 0.261867340 0.187464188 0.144444444
2.5 −6.868890324 0.732352234 0.166666667
5.5 −0.010101191 −0.020338815 2.100000049
70 −129.5918440 90.92275412 391/6
298 −521.5866457 −253.8172206 7326/25

Table 5.2. The values of B0

For Θ(η) with Prandtl number Pr= 298 and three values of m (m =
−0.5; 0; 1) the first ten terms are given below

m = −0.5 :

Θ(η) = −521.59 + 690.22(e−1.0639η)− 228.35(e−1.0639η)2

+83.601(e−1.0639η)3 − 31.324(e−1.0639η)4

+11.728(e−1.0639η)5 − 4.4378(e−1.0639η)6

+1.6497(e−1.0639η)7 − 0.6357(e−1.0639η)8

+0.2268(e−1.0639η)9 − 0.0955(e−1.0639η)10

m = 0 :

Θ(η) = −253.81 + 433.90(e−0.9879η)− 185.85(e−0.9879η)2

+23.32(e−0.9879η)3 − 11.64(e−0.9879η)4

−0.6457(e−0.9879η)5 − 1.77477(e−0.9879η)6

−0.87084(e−0.9879η)7 − 0.69922(e−0.9879η)8

−0.51095(e−0.9879η)9 − 0.40457(e−0.9879η)10

m = 1 :

Θ(η) =
7326

25
− 44104

75
(e−η) +

22201

75
(e−η)2

It may be noted that the Prandtl number Pr = 298 corresponds to the
power transformer oil. We point out that for the case m = 1 the solution
Θ(η) coincides with the exact solution (5.15).

The effects of the power law exponent m and the Prandtl number are
exhibited in Figs. 5.3-5.12. Pr = 0.27 corresponds to the mercury and
Pr = 0.7 to the air. Figs. 5.3-5.5 illustrate the influence of the Prandtl
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Fig. 5.6 Variation of Θ for Pr = 0.27

Fig. 5.7 Variation of Θ for Pr = 2.2

Fig. 5.8 Variation of Θ for Pr = 298
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Fig. 5.9 The effect of the Prandtl number on Θ′ for m = 1
(0.27 ≤ Pr ≤ 1.00001)

Fig. 5.10 The effect of the Prandtl number on Θ′ for m = 1
(2.5 ≤ Pr ≤ 7.00001)
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Fig. 5.11 The effect of the Prandtl number on Θ′ for m = 1
(70 ≤Pr≤ 298)

Fig. 5.12 The effect of m on Θ′ for Pr = 0.27 (m = −0.5; 0; 1)
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number on the temperature Θ for m = 1. It can be observed in Fig. 5.3
that for low Prandtl numbers 0.27 ≤ Pr ≤ 1.00001 the maximum value of Θ
decreases as Pr increases while for high Prandtl numbers 2.5 ≤ Pr ≤ 7.00001
and 70 ≤ Pr ≤ 298 the maximum value of Θ increases as Pr increases. In
all three cases the boundary layer thickness increases as Pr increases. Figs.
5.6-5.8 depict the effect power exponent m for fixed values of Pr. It can
be observed in Figs. 5.6-5.7 that the boundary layer thickness increases
as m increases and the maximum value of Θ decreases as m increases for
Pr = 0.27; 2.2, while for high Prandtl number (Pr = 298) the reverse effect
of m on the maximum of Θ can be seen. Figs. 5.9-5.11 illustrate the effect
of Pr on Θ′ for m = 1 and Fig. 5.12 represents the effect of m for Θ′ with
Pr = 0.27.

To sum up, we can observe the effects of the power exponent and the
Prandtl number in the figures and it is seen that the values of f ′ decrease
as power exponent m increases. Moreover, the boundary layer thickness
increases as m or Pr increases. From the temperature profiles, it is observed
that for low Prandtl number the temperature Θ decreases as Pr increases
and for high Prandtl numbers the influence of Pr is opposite.

5.2 Convective boundary condition

Boundary layer flows with internal heat generation past a horizontal plate
continues to receive considerable attention because of its practical appli-
cations in a broad spectrum of engineering systems like cooling of nuclear
reactors, thermal insulation, combustion chamber and geothermal reservoirs.

Many principal past studies concerning natural convection flows over a
semi-infinite vertical plate immersed in an ambient fluid have been found in
the literature ([18], [27]). In many cases, these problems may admit similarity
solutions.

The idea of using a convective boundary condition was recently intro-
duced by Aziz [18], while Magyari [141] revisited this work, and obtained an
exact solution for the temperature boundary layer in a compact integral form.
Bataller [23] investigated the same problem by considering radiation effects
on Blasius and Sakiadis flows ([5], [30], [69], [102], [103], [128]). The effects
of suction and injection have been studied by the similarity analysis by Ishak
[115] and a couple of recent papers have been devoted to the subject of bound-
ary layer flow with convective boundary conditions (see e.g., [11], [45], [97],
[100], [101], [144], [162], [169], [193], [194], [217], [218]). The similarity solu-
tions to the convective heat transfer problems for Newtonian fluids have been
studied by Aziz [18] and Magyari [141] for impermeable plate and by Ishak
[115] for permeable plate. Motivated by the above mentioned investigations,
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we consider the heat transfer characteristics of a viscous and incompressible
power-law non-Newtonian fluid over a permeable moving sheet in a uniform
shear flow with a convective surface boundary condition ([45], [50]).

5.2.1 Basic equations

Fig. 5.13 Representation of the boundary layer velocity

We consider a uniform laminar flow of an incompressible viscous fluid with
constant velocity U∞ at high Reynolds number, past a parallel porous semi-
infinite plate moving with a constant velocity Uw in the direction opposite to
the main stream (see Fig. 5.13). The fluid temperature is T∞ over the top
surface of the flat plate. It is assumed that the bottom surface of the plate
is heated by convection from a hot fluid of temperature Tf .

Within the framework of the above-noted assumptions, the governing
equations of motion and heat transfer for non-Newtonian power-law flow ne-
glecting pressure gradient and body forces can be described by the equations
(1.1), (1.6) and (1.7) [225]:

∂u

∂x
+
∂v

∂y
= 0,(5.23)

u
∂u

∂x
+ v

∂u

∂y
=

K

ρ

∂

∂y

[∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂u∂y

]
,(5.24)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αt
∂T

∂y

)
.(5.25)
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The applicable boundary conditions for the present model are :
i.) on the plate surface y = 0 (no slip, permeable surface and convective
surface heat flux)

u (x, 0) = −Uw,(5.26)

v (x, 0) = vw (x) ,(5.27)

−k∂T
∂y

= hf (Tf − Tw),(5.28)

where hf is the heat transfer coefficient, and k denotes the thermal conduc-
tivity; vw (x) is the mass transfer velocity at the surface, and vw (x) > 0 for
injection (blowing), vw (x) < 0 for suction and vw (x) = 0 for impermeable
surface. As indicated in [199], a similarity solution is possible only if the

injection/suction velocity vw has an x variation of the form x
−n
n+1 .

ii.) matching with the free stream as y →∞

u (x,∞) = U∞,(5.29)

T (x,∞) = T∞.(5.30)

For the uniform temperature Tw over the top surface of the plate we have
the relations: Tf > Tw > T∞.
Introducing the stream function, the equation of continuity (1.1) is satisfied
identically. On the other hand, we have

(5.31)
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= µcn

∂

∂y

[∣∣∣∣∂2ψ∂y2
∣∣∣∣n−1 ∂2ψ∂y2

]
,

and conditions (5.26), (5.27), (5.29) can be written as

(5.32) ψy(x, 0) = 0, ψx(x, 0) = vw(x), ψy(x,∞) = U∞.

Equation (5.31) with the transformed boundary conditions has the form
(see Section 2.2 and [45]):(

|f ′′|n−1 f ′′
)′

+
1

n+ 1
ff ′′ = 0,(5.33)

f (0) = fw, f ′ (0) = −λ, f ′ (∞) = lim
η→∞

f ′ (η) = 1,(5.34)

where

fw = − (n+ 1) vw (x)

(
xn

µcnU2n−1
∞

) 1
n+1
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determines the transpiration rate at the surface. Then fw > 0 corresponds
to suction, fw < 0 to injection and fw = 0 to impermeable surface. The
dimensionless velocity components have the form

u(x, y) = U∞f
′(η),

v(x, y) =
U∞
n+ 1

Re
− 1
n+1

x (ηf ′(η)− f(η)),

η = Re
1

n+1

x

y

x
, Rex = ρ

U2−n
∞ xn

K
.

The thermal diffusivity can be defined as

(5.35) αt = ω

∣∣∣∣∂u∂y
∣∣∣∣n−1

for u 6= 0 ( ω positive constant) and αt = 0 for u = 0 (see paper by Zheng et
al. [225]). Hence, from equation (5.25) we have

(5.36) u
∂w

∂x
+ v

∂w

∂y
= ω

∂

∂y

(∣∣∣∣∂u∂y
∣∣∣∣n−1 ∂w∂y

)
.

Defining the non-dimensional temperature by

Θ(η) = w(x, y),

i.e.,
T = T∞ + Θ(η)(Tf − T∞),

we get

(5.37)
(
|f ′′(η)|n−1 Θ′(η)

)′
+

Pr

n+ 1
f(η)Θ′(η) = 0,

where Pr = K/ρω is the Prandtl number. The transformed boundary con-
ditions for the energy equation (5.37) is

Θ′(0) = −
(
µcn
U2−n
∞

x

) 1
n+1 hf (x)

k
(1−Θ (0))

and substituting

(5.38) ā =
c

k

(
µcn
U2−n
∞

) 1
n+1

,
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one can obtain

(5.39) Θ′(0) = −ā(1−Θ(0))

under the assumption that the heat transfer coefficient

hf = cx−1/(n+1).

We note that for Newtonian case it was shown in [18], [23], [115] and [210] that
similarity solutions exist if hf is proportional to x−1/2. For a uniform surface
temperature Θ(0) = 1 holds and from (5.39) Θ′(0) = 0. This adiabatic case
has been analyzed by Magyari for Newtonian fluid [141].
Boundary condition (5.30) can be formulated as

(5.40) Θ(∞) = lim
η→∞

Θ (η) = 0.

There is no exact solution to (5.33), (5.34) and (5.37), (5.39), (5.40), therefore
we solve the boundary value problems associated with the similarity problems
numerically to examine the behavior of the solutions.

5.2.2 Numerical results

The symbolic algebra software Maple 12 was used to solve the nonlinear
ordinary differential equation (5.33) subject to the boundary conditions in
(5.34) by applying the Runge-Kutta-Felhberg fourth-fifth method. On the
flow and thermal fields the influence of the governing parameters, the Prandtl
number, the power-law index n, the convective parameter ā and the constant
value fw characterizing the transpiration rate at the surface is discussed.

Fig. 5.15 shows the Maple generated numerical solution to the velocity
profiles for different values of n. The velocity gradient at the surface, which
represents the skin friction coefficient, increases with increasing n (see [38])
and also with increasing fw (see Fig. 5.14 and [115]). Suction thins the
boundary layer and increases the wall slope. Hence, the wall shear stress
is higher for suction compared to injection. Blowing thickens the boundary
layer and make the profile S-shaped.

For fixed Prandtl numbers 0.72 and 50, for selected values of the power
index n, for a range of parameters ā, for fw = −1; 0; 2 the numerical data
for −Θ′(0) and Θ(0) were calculated [45]. Fig. 5.16 shows the temperature
profiles for different Prandtl numbers and Fig. 5.17 for different values of n.
Fig. 5.16 represents that the heat transfer rate at the surface is higher as
Pr is increasing. Moreover, the heat transfer rate at the surface is higher for
dilatant fluids (n > 1) than for pseudoplastics (n < 1).
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Fig. 5.14 The profiles of f ′(η) for different values of fw

Fig. 5.15 The profiles of f ′(η) = u(x, y)/U∞ for different values of n
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Fig. 5.16 Temperature profiles for different values of Pr when
n = 0.5, fw = 0 and ā=1

Fig. 5.17 Temperature profiles for different values of n when
Pr = 10, fw = 0 and ā=1
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In case of Newtonian fluid (n = 1), the numerical values show a good
agreement with those reported by Aziz [18] and Ishak [115].

Fig. 5.19 exhibits that that the heat transfer rate at the surface is higher
for suction and smaller for injection. This is due to the fact that the surface
shear stress increases for suction. Fig. 5.18 shows the numerical solutions for
different values of ā when Pr = 0.72 for a pseudoplastic fluid with n = 0.5.
We see that the surface temperature increases as ā increases.

Fig. 5.18 Temperature profiles for different values of ā when
Pr = 0.72, fw = 0 and n = 0.5

Fig. 5.19 Temperature profiles for different values of fw when
n = 0.5, Pr = 1 and ā = 0.2
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6 Conclusions

Due to the practical necessity, it is important to study the influence of the
non-Newtonian behavior on the lubrication velocity and temperature fields.
Within the thin boundary layer, the wall shear stress and the friction drag
of the surface can also be estimated.

This dissertation is concerned to derive useful information in the bound-
ary layer by calculating the velocity and the temperature distributions, and
predict the drag coefficients for non-Newtonian power-law fluids.

The main results of the dissertation are listed below:
1. Applying a similarity transformation, the boundary layer governing

equations (2.17) and (2.18) for the two-dimensional steady flow of an incom-
pressible, non-Newtonian power-law fluid flow along a stationary, horizontal
plate situated in a fluid stream moving with constant velocity U∞ have been re-
duced to an ordinary differential equation called generalized Blasius equation
(2.25). For non-Newtonian fluid flows using a modified version of Töpfer’s
method, instead of the boundary value problem (2.25) (2.26) an initial value
problem (2.31)-(2.33) has been solved to determine the non-dimensional ve-
locity gradient f ′′(η). The influence of the power exponent n on the velocity
components has been examined. From the velocity profiles f ′(η) = u(x, y)/U∞
and v(x, y)/v∗(x) = ηf ′(η)−f(η), we have concluded that the boundary layer
thickness decreases as n increases (Figs. 2.2-2.3). The non-dimensional ve-
locity gradient f ′′(η) is decreasing from a positive f ′′(0) = γ at the wall to
zero outside the viscous boundary layer (Fig.2.4). It was observed that the
rate of decrease is greater with increasing the value n (Fig.2.4). I found that
the effect of power n on f ′′(0) is significant (Fig.2.5); it is decreasing up to
n ≈ 0.7 and after it is monotonically increasing [38], [51], [47].

2. It was shown that there exists a series solution of the form f(η) =

η2
∞∑
k=0

akη
3k to the generalized Blasius problem (2.25), (2.26), where the first

three coefficients are given by

a0 =
γ

2
, a1 = − γ3−n

5!n(n+ 1)
, a2 =

γ5−2n(21− 10n)

8!n2(n+ 1)2
,

and for the further coefficients the recursive formula (2.43) was given. The
radius of convergence of the power series can be calculated by (2.45). The
numerical simulations exhibit that the radius of convergence is significantly
increasing with increasing power exponent n [38].

3. From the continuity equation (2.17) and momentum equation (2.18)
for a non-Newtonian power-law fluid flow with fluid velocity U∞ = B̃yσ, a
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boundary value problem has been derived applying the similarity transforma-
tion method. The basic equations are subjected to the boundary conditions
in (2.46) and are transformed to (2.56), (2.57). If n 6= 2, the velocity com-
ponents are expressed with similarity variables in (2.60) and (2.61). The
similarity solutions are determined in power series form and the recursive
formula (2.67) has been obtained for the determination of the coefficients.
Numerical calculations were obtained for some values of n (0.5; 1; 1.5) and
for different values of σ (−1/2; −1/3; 0) (see Figs.2.7-2.12). On the base of
simulations, it was observed that with increasing the power exponent n, the
boundary layer thickness and the parameter [f ′′(0)]n involved in the wall shear
stress are decreasing both for σ = 0 and σ = −1/2. For the non-Newtonian
power-law fluids when n 6= 2, my results [42], [46] generalize Cossali’s results
obtained for the Newtonian case [70].

4. For permeable and non-permeable surface moving with velocity
Uw(x) = Axκ in an otherwise quiescent fluid medium, the Crane’s solution
[72], and Gupta and Gupta’s solutions [96] are generalized into the exponen-
tial series form f(η) = α (A0 +

∑∞
i=1Ai a

i e−αiη) , where α > 0, and A0 = 1,
Ai (i = 1, 2, ...) denote the coefficients. A method was presented for the de-
termination of the coefficients when the surface is impermeable or permeable.
The values of f ′′(0) involved in the wall shear stress

(6.1) τw =

[
ρµA3κ+ 1

2

] 1
2

x
3κ−1

2 f ′′(0),

have been calculated for each case (see Tables 3.1-2). [43]

5. The fluid flow properties over an impermeable flat plate moving with
a constant velocity Uw in an otherwise quiescent fluid medium are examined.
The boundary layer equations (2.17), (2.18) are considered with the bound-
ary conditions given in (3.15). The similarity solutions satisfy the equation
(2.25) with boundary conditions

f(0) = 0, f ′(0) = 1, lim
η→∞

f ′(η) = 0.

The simulations were carried out for pseudoplastic media. It was observed
that the skin friction parameter in absolute value, the value of [−f ′′(0)]n and
the boundary layer thickness decrease as the power exponent n increases [39].

6. According to our simulations of the flow characteristics in a uniform
mainstream U∞ over a surface moving with velocity Uw in the direction op-
posite to that of main stream, it was observed that similarity solution exists
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only if the velocity ratio λ = Uw/U∞ < λc. An iterative method was de-
termined for the solution of the boundary value problem (2.25), (4.10) to
evaluate the skin friction parameter f ′′(0) for different values of n and λ. It
was shown that the upper bound λc increases as n increases (see Fig.4.3). On
the base of numerical simulations, we represented how [f ′′(0)]n changes with
λ for different power exponents n (see Fig.4.2) [53]. For some values of λ, it
was observed that f ′′ is strictly monotonically decreasing for negative values
of λ while for positive λ it takes its maximum in the boundary layer. Upper
bounds were given for λc [44], thus generalizing the results of Hussaini, Lakin
and Nachman [111].

7. The similarity solutions are compared with numerical simulations ob-
tained by using the commercial code ANSYS FLUENT when a flat surface is
moving parallel to an ambient stream of a power-law fluid media. Instead of
the boundary layer equations (1.1), (1.6), the system of full equations (1.1),
(1.4), (1.5) is considered, where the apparent viscosity is calculated by the re-
lationship (1.12). In our computations, the coupled scheme for the pressure
and the velocity is applied. Comparing the theoretical (similar) velocity solu-
tion u/U∞ with the numerical solutions obtained by ANSYS FLUENT, satis-
factory agreement has been found. Therefore, the similarity solutions verify
the numerical simulations calculated by ANSYS FLUENT. Moreover, the
numerical pressure and velocity distributions prove the validity of Prandtl’s
boundary layer assumptions.

8. Assuming that the solid surface is impermeable, the surface tension
varies linearly with the temperature and the interface temperature is a power-
law function of the distance along the surface, the Marangoni effect has been
investigated for Newtonian fluid flow. The power in the temperature gradient
was denoted by m with minimum value -1, which corresponds to no tempera-
ture variation on the surface and no Marangoni induced flow. The similarity
solution has been determined in exponential series form. For m = 1, our
solution is the same as Crane’s solution [72]. Applying solutions of f , the
temperature profiles were generated in series form and the influence of m and
the Prandtl number Pr was investigated. It was observed that f ′ decreases
with increasing m. The thermal boundary layer thickness increases with in-
creasing m, or Pr. From the temperature profiles, it is observed that for
low Prandtl number the temperature decreases as Pr increases and for high
Prandtl numbers the influence of Pr is opposite [48].

9. The boundary layer flow with internal heat generation past a hori-
zontal surface has been investigated. The heat transfer characteristics of a
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viscous and incompressible power-law non-Newtonian fluid over a permeable
moving sheet in a uniform shear flow with a convective surface boundary
condition were examined using the similarity method ([45], [50]). Both the
hydrodynamic and thermal boundary layer thickness increase as λ increases,
or Pr decreases, or n decreases. Our calculations indicate that the velocity
gradient at the surface, which is involved in the wall shear stress and in the
drag coefficient, increases with increasing n and also with increasing fw which
characterizes the transpiration rate at the surface. Suction thins the thermal
boundary layer and increases the wall slope. Blowing thickens the boundary
layer and make the profile S-shaped. The heat transfer rate at the surface
is higher for suction and smaller for injection. Moreover, the heat transfer
rate at the surface is higher for dilatant fluids than for pseudoplastics. For
a Newtonian fluid, our numerical results are in good agreement with those
reported by Aziz [18] and Ishak [115].
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