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Preface

The present work is a dissertation to obtain the title Doctor of Sciences (DSc)
of the Hungarian Academy of Sciences. The dissertation consists of four parts.
Part I is introductory, the other three resume eight papers, which appeared in well
established international mathematical journals. For �ve of these articles I was the
sole author, the other three had one or two coauthors. Roughly speaking, the eight
chapters of Parts II-IV correspond to these eight papers; in fact, the texts needed
a slight restructuring in order to avoid unnecessary repetitions.

The topics of the dissertation include di�erent mathematical areas, the main
guideline is that each of them is related to �nite loops. Although the theory of
loops and quasigroups is interesting on its own, in this presentation they are deeply
involved in the theory of groups. In Part II, we present the theory of simple Bol
loops using decompositions of abstract groups. Part III deals with �nite multiply
transitive sets; the results rely on the combinatorial and algebraic fundamentals of
the theory of �nite permutation groups. Finally in Part IV, we investigate the pro-
jective embedding of �nite 3-nets. There, beside combinatorial counting arguments
and the elementary geometry of conics and cubics, deep results are applied from
the theory of projective linear groups.

The regulation of the Academy requires the candidate to present his or her re-
sults in theses. I aimed to formulate my theses such that they are accessible to a
wider audience, even if this implied some mathematical inaccuracy. Moreover, my
theses are written in �rst person form, despite that most of them were achieved in
collaboration with my coauthors.

Thesis 1: Based on exact factorizations of groups, I give a construction of proper
Bol loops. This method is powerful enough to produce simple proper
Bol loops in di�erent categories: �nite, �nite of odd order, di�erentiable
and algebraic.

Thesis 2: Using the geometry of indecomposable F2S5-modules, I construct an
in�nite class of �nite simple Bol loops of exponent 2. The Bol loops of
this class have an automorphism with a �xed point free action on the
set of nontrivial elements of the loop.

Thesis 3: Using an extremely simple combinatorial lemma, I am able to show
the non-existence of sharply 2-transitive sets in the alternating group
of degree n ≡ 2, 3 (mod 4), and in two other 2-transitive �nite simple
groups: The Mathieu group of degree 23 and the Conway simple group
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Preface

of degree 276. As a corollary, I show that the group of projectivities of a
�nite non-Desarguesian projective plane is either the alternating or the
symmetric group.

Thesis 4: By combining the combinatorial lemma with computer methods and
geometric arguments, I classify the right multiplication groups of �nite
quasi�elds. As a corollary, I obtain a classi�cation of �nite transitive
linear groups which may contain a sharply transitive set, or equivalently,
a classi�cation of �nite 2-transitive groups of a�ne type which may
contain a sharply 2-transitive set.

Thesis 5: I prove that the multiplication group of a �nite semi�eld lies between the
projective special linear group and the projective general linear group.
Moreover, any loop whose multiplication group is contained in the pro-
jective linear group is the multiplicative structure of a semi�eld. This
answers an open question of A. Drápal.

Thesis 6: I give a complete classi�cation of �nite groups whose 3-net can be real-
ized in the projective plane over a �eld of characteristic 0. These groups
are the cyclic groups, the direct products of two cyclic groups, the dihe-
dral groups and the quaternion group of order 8. Moreover, I describe
the geometry of the realizations of these 3-nets.

As already mentioned, Part I is introductory. We listed all important de�nitions
in Chapter 1 and gave the references to the general literature in Chapter 2.

Part II is on Bol loop constructions. In Chapter 3, we present a construction
of Bol loops which is based on exact factorizations of groups. Using this method,
we are able to construct many classes of �nite and in�nite simple non-Moufang
non-Bruck Bol loops, and hence solve the problem of the existence of �nite simple
non-Moufang Bol loops. The Bol loop construction of Theorem 3.2, the simplicity
conditions of Theorems 3.5 and 3.8, and the Examples support Thesis 1 of the
dissertation. In Chapter 4, we apply Aschbacher's recipe to construct a class of
�nite simple Bol loops of exponent 2. In Chapter 5, I answer three questions on
simple Bol loops which were asked after my talk at the LOOPS'07 conference in
Prague. The chapter ends with a few open problems which are related to simple Bol
loops. Theorems 4.7, 4.14 and 5.7 support Thesis 2. In Chapter 6, we examine the
class of algebraic right Bol loops and explain the relations between the classes of
algebraic, strongly algebraic and local algebraic Bol loops by proving some structure
theorems and giving many examples.

The main topic of Part III is the existence and non-existence problem of sharply
transitive sets in �nite permutation groups. For �nite linear groups, this problem is
also related to the (non-)existence of certain quasi�elds and semi�elds. In Chapter 7,
we present simple combinatorial methods which are useful for non-existence proofs.
Lemma 7.1, Theorems 7.4, 7.8, 7.10 and Corollary 7.7 supportThesis 3. In Chapter
8, we investigate �nite transitive linear group can occur as right multiplication
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group of a �nite quasi�eld. A combination of theoretical arguments and computer
proofs result in an explicit classi�cation of all quasi�elds whose right multiplication
group is an exceptional �nite linear group. Theorem 8.17 supports the �rst part
of Thesis 4; the second part follows from the equivalence of sharply transitive
sets in the general linear group and sharply 2-transitive sets in the a�ne linear
group. In the main result of Chapter 9, I answer Drápal's question on �nite loops
whose multiplication group contains the projective special linear group. Theorem
9.4 supports Thesis 5.

In Chapter 10 of Part IV, we give a complete classi�cation of 3-nets realizing a
�nite group in a projective plane de�ned over an algebraically closed �eld of char-
acteristic 0. We also prove that the only in�nite families are previous constructions
of Yuzvinsky and Pereira, and, the only sporadic example is the one by Urzúa real-
izing the quaternion group of order 8. If the characteristic is larger than the order of
the group, the above classi�cation holds true apart from three possible exceptions.
Theorem 10.1 supports Thesis 6.

At the end of this preface, I would like to thank the persons whose constant
encouragement motivated me a lot in the preparation of this dissertation: my father
Péter T. Nagy and my friends Tamás Sz®nyi and Gábor Korchmáros. Similarly, I
would like to thank my wife Krisztina and our children for love and faith.
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Part I.

Fundamental ideas

11

               dc_821_13



               dc_821_13



1. Preliminaries

1.1. Historical overview

For almost 2000 years, by exact mathematics one meant axiomatic geometry, whose
rigorous order was set up by Euclid and his students in the 3rd century BC. In this
mathematics, the concept of a number and the computation with numbers played
a relatively peripheral role. For the ancient Greeks, the concept of a number did
not really exceeded the class of positive rational numbers. This situation started
to change in the 12th century AD, when the Hindu-Arabic numeral system �nally
arrived at Europe with Arabic mediation. In the Christian Europe, the Hindu-
Arabic numerals needed almost 300 more years to reach the same level of acceptance
than Roman numerals. However, from the 15th century AD on, the development of
the calculative mathematics was explosion-like.
In the 16th century, Descartes and Fermat invented the concept of a coordi-

nate system, which linked the world of geometry and computation. The �invention�
of the decimal representation of positive real numbers and the negative numbers fol-
lowed soon. The success story continued with the development of complex numbers,
linear algebra and calculus, and we extended our calculation knowledge to new do-
mains. In the beginning of the 19th century, Abel and Galois created the abstract
theories of �elds and groups. This allowed them to solve many problems which were
open for two millenniums. At the end of the 19th century, Felix Klein's Erlangen
Program formulated the object to characterize geometric structures by the abstract
properties of the group of their invariant transformations. Since then, the theory
of groups plays a central role in algebra and in the algebraization of almost all
mathematical disciplines.
In the algebraization of geometric structures, the two main tools are the trans-

formation group and the coordinate structure. From an abstract point of view, the
latter is more exotic. On the one hand, in most cases the �invertibility� of the oper-
ations is trivial by a geometric argument. On the other hand, the associativity and
distributivity of the operations correspond to special regularity properties of the ge-
ometry. For example, any desarguesian projective plane can be coordinatized with
a skew �eld, and the commutativity of the coordinatizing skew �eld is equivalent
with the Pappus property of the plane. This example shows another typical phe-
nomenon: both the Pappus and the Desargues properties correspond to a speci�c
inner symmetry of the projective plane.

The main topic of this dissertation is the theory of quasigroups. These are alge-
braic structures which can be seen as the nonassociative generalizations of groups.
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1. Preliminaries

The name is due to Ruth Moufang, who was motivated by the study of nondesar-
guesian projective planes. Approximatively in the same time, in the 1930's, starting
from di�erential geometric investigations, Blaschke and Bol got in touch with
abstract (local and global) quasigroups. In the 1940's, Albert and Bruck worked
out the foundations of the abstract theory; and the geometric and group theoretic
relations are usually attributed to Reinhold Baer.

1.2. Notation for groups and permutations

In mathematics, the abstract way of de�ning a map f : X → Y is to say that f is
an appropriate subset of the direct product X ×Y . The image of x ∈ X under f is
denoted by f(x), fx, xf , or xf . Although in this dissertation, all notations will be
used, I hope that the reader will not be confused. As a general rule, groups act on
the right.
If not stated otherwise, groups are multiplicative. The unit element of a group is

usually denoted by 1 or id. Let G be a group, X a set and ϕ : X ×G→ X a map
such that

(x, 1)ϕ = x, ((x, g)ϕ, hϕ) = (x, gh)ϕ.

Then ϕ is called a group action of G on X. If ϕ is clear from the context, then
(x, g)ϕ is denoted by xg or xg; in this case we say that G acts on X. Any group G
has a natural action on itself by conjugation. For g, h ∈ G, we say that gh = h−1gh
is the conjugate of g with h.
Let Ω be a set. Permutations of Ω are invertible maps Ω → Ω. The set of

permutations of Ω forms the symmetric group Sym(Ω). Subgroups of Sym(Ω) are
called permutations groups acting on Ω. The set of even permutations forms the
alternating group Alt(Ω). If |Ω| = n then we use the notations Symn, Sn, Altn, An
as well.
For x ∈ Ω, g ∈ Sym(Ω), xg denotes the image of x under g. For a positive integer

k, de�ne
Ω(k) = {(x1, . . . , xk) | xi 6= xj for all 1 ≤ i 6= j ≤ k}.

Then, any element g ∈ Sym(Ω) has a natural action

(x1, . . . , xk)
g = (xg1, . . . , x

g
k)

on Ω(k).

1.3. Loops and multiplications

We call the abstract algebraic structure (Q, {·, /, \}) a quasigroup, if the three
binary operations satisfy the identities

(x · y)/y = (x/y) · y = x, x\(x · y) = x · (x · y) = y. (1.1)
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1.3. Loops and multiplications

One sometimes says that the equation x·y = z has a unique solution whenever two of
the three variables are �xed. The multiplication is usually denoted by juxtaposition
x · y = xy. The left and right multiplication maps of the quasigroup Q are de�ned
by

Lx : y 7→ xy, Rx : y 7→ yx.

The requirement of the maps Rx, Lx to be bijective is equivalent with (1.1). If the
quasigroup Q has an element e such that ex = xe = x holds for all x ∈ Q, that is,
if Q has a unit element, then Q is called a loop. Since in an associative quasigroup,
x/x is a unit element for any x, the associative quasigroups are precisely the groups.
In most cases, we denote the unit element of a loop by 1 and hope not to confuse
the reader when 1 also stands for the unit of a group.
Analogously to groups, one can speak of subloops, loop homomorphisms and

factor loops. The subloop K of Q is normal in Q if

xK = Kx, x(yK) = (xy)K, x(Ky) = (xK)y, (Kx)y = K(xy)

hold for all x, y ∈ K. Normal subloops are precisely the kernels of loop homomor-
phisms. The loop is simple, if it has no proper normal subloops. A normal series
of Q is a �nite sequence of subloops

1 = H0 � H1 � · · · � Hn = Q,

such that Hi is normal in Hi+1. The loop Q is solvable, if it has a normal series
such that all factors Hi+1/Hi are cyclic groups. The Jordan-Hölder theorem holds
for loops, too.
The commutator-associator subloop Q′ is the smallest normal subloop of Q such

that Q/Q′ is an Abelian group. De�ne the sequence Q0 = Q, Qi+1 = Q′i for i =
1, 2, . . .. Then, Q is solvable if and only if Qk = 1 for some k; the smallest such k
is called the solvability degree of Q.
The left, middle and right nucleus and the center of a quasigroup are

Nλ(Q) = {n ∈ Q | n(xy) = (nx)y ∀x, y ∈ Q},
Nµ(Q) = {n ∈ Q | (xn)y = x(ny) ∀x, y ∈ Q},
Nρ(Q) = {n ∈ Q | (xy)n = x(yn) ∀x, y ∈ Q},
Z(Q) = {n ∈ Nλ ∩Nµ ∩Nρ | nx = xn ∀x ∈ Q}.

Quasigroups and loops can be classi�ed up to isomorphism or up to isotopism.
When Q1, Q2 are quasigroups, then the triple (α, β, γ) of bijections from Q1 onto
Q2 is an isotopism of Q1 onto Q2 if α(x) · β(y) = γ(x · y) holds for every x, y ∈ Q1.
An isotopism with Q1 = Q2 is called an autotopism. Every isomorphism α gives rise
to an isotopism (α, α, α). The notion of isotopism is super�uous in group theory,
as any two groups that are isotopic are already isomorphic.
In terms of multiplication tables, Q1 and Q2 are isotopic if the multiplication

table of Q2 can be obtained from the multiplication table of Q1 by permuting the
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1. Preliminaries

rows (by α), the columns (by β), and by renaming the elements (by γ). Isotopisms
are therefore appropriate morphisms for the study of quasigroups and loops. On the
other hand, every quasigroup is isotopic to a loop, which shows that the algebraic
properties of isotopic quasigroups can di�er substantially. A loop Q is a G-loop if
every loop isotopic to Q is isomorphic to Q.

Let Q be a quasigroup. The group generated by the right multiplication maps

RMlt(Q) = 〈Rx | x ∈ Q〉

is the right multiplication group of Q. Clearly, this is a permutation group acting
transitively on Q. If Q is a loop, then the stabilizer subgroup RInn(Q) of the unit
element is called the right inner mapping group of Q; the elements of RInn(Q) are
the right inner mappings of Q.
The class of loops we are the most interested in is the class of Bol loops. This

class is de�ned by the (right) Bol identity

((xy)z)y = x((yz)y). (1.2)

Using right multiplication maps, the identity can be written as RyRzRy = R(yz)y.
In fact, is su�ces to require that RyRzRy = Rw holds for some w ∈ Q, since by
applying both sides to the unit element, we have (yz)y = w.
Bol loops satisfy the right inverse property, that is, for an arbitrary element x of

a Bol loop Q there is an inverse element x−1 such that

(yx)x−1 = y = (yx−1)x

holds for all y ∈ Q. In other words, R−1
x = Rx−1 . More generally, for any integer k,

the right translations of a Bol loop satisfy Rk
x = Rxk . Finally, we mention that by

switching the factors in (1.2), we obtain the left Bol identity.

1.4. Special classes of Bol loops: Bruck and

Moufang

In this section, we de�ne two important subclasses of Bol loops. A Bol loop satis-
fying the so called automorph inverse identity

(xy)−1 = x−1y−1. (1.3)

is called a Bruck loop. Bruck loops are Ar-loops, that is, all right inner maps of a
Bruck loop Q are automorphisms: RInn(Q) ≤ Aut(Q). Bruck loops are also called
K-loops or B-loops. They play a central role in the theory of loops. On the one
hand, this is due to the hyperbolic plane loop, which is the classical example for an
in�nite simple Bruck loop. On the other hand, the study of B-loops were initiated
by G. Glauberman in [Gla64], leading to a celebrated result of �nite group theory:
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1.4. Special classes of Bol loops: Bruck and Moufang

the Z∗-theorem. Roughly speaking, it shows that �nite Bruck loops of odd order
are solvable. Notice that (1.3) is automatically satis�ed in Bol loops of exponent 2.
The underlying set of the hyperbolic plane loop is the unit disc {z ∈ C | |z| < 1}

and the operation is given by

x · y =
x+ y

1 + xȳ
. (1.4)

One can show that the right multiplication maps preserve the Poincaré model of
the hyperbolic plane; in fact, they generate PSL2(R).
In contrast to the odd order case, we mention the class of Bol loop of exponent

2. These clearly satisfy (1.3), hence they are Bruck loops.

Loops satisfying both left and right Bol identities are called Moufang loops. The
most important example of a Moufang loop is the multiplicative structure of octo-
nions. Octonions can be constructed by linear algebra over an arbitrary �eld. More
relevant for us is the construction of the split octonions O(F ) over the �eld F .
Following Zorn, one uses the vector matrices

x =

(
a α
β b

)
, (1.5)

where a, b ∈ F and α, β are vectors in F 3. The norm N is given as the �determinant�
detx = ab− α · β, where α · β is the usual dot product. The conjugate of x is

x =

(
b −α
−β a

)
, (1.6)

and two vector matrices are multiplied according to(
a α
β b

)(
c γ
δ d

)
=

(
ac+ α · δ aγ + dα− β × δ

cβ + bδ + α× γ β · γ + bd

)
, (1.7)

where β × δ is the usual vector product.
The invertible elements of O(F ) form a Moufang loop. The Moufang loop M(F )

consisting of elements of norm 1 modulo {±1} is a simple nonassociative Moufang
loop. If F = Fq is a �nite �eld, we obtained the complete class of nonassociative
�nite simple Moufang loops.

For many decades, the existence of non-Moufang non-Bruck simple Bol loops was
an open question, in both the �nite and in�nite case.

A useful result on the right multiplication groups of simple Moufang loops is the
following:

Proposition 1.1 ([Nag08a, Lemma 3]). Let Q be a simple Moufang loop. Then
RMlt(Q) is a simple group.
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1. Preliminaries

Proof. If Q is a simple group, then RMlt(Q) ∼= Q is simple. The left and right Bol
identities can be written in the form

R−1
x Rxz = LxRzL

−1
x , L−1

y Lxy = RyLxR
−1
y .

This means that for Moufang loops, the left and right multiplication groups are
normal in the full multiplication group. Theorem 4.3 of [NV04] says that for an
arbitrary nonassociative simple Moufang loop Q, the multiplication group is simple.
Hence, RMlt(Q) = RMlt(Q) = Mlt(Q) is a simple group.

1.5. The Baer correspondence

Let Q be a loop, G = RMlt(Q) its right multiplication group, H = RInn(Q) its
right inner mapping group and let K denote the set of the right multiplication maps
of Q. Then 1 ∈ K, and the triple (G,H,K) has the following properties

(*) K is a system of right coset representatives for all conjugates of H in G.

We rephrase this as a decomposition:

(**) For any x, y ∈ G there are unique elements h ∈ Hy, k ∈ K such that x = hk.

Although these properties hold almost trivially, this type of argument is important
therefore we explain it. Remember that e denotes the unit element of the loop Q.
For the existence of the decomposition, we de�ne the elements u = ey, v = ux and
w = u\v in Q. Put k = Rw ∈ K and h = xk−1. We have to show that h ∈ Hy,
which is equivalent with yxk−1y−1 ∈ H. First, uk = uw = v implies vk

−1
= u.

Second,
eyxk

−1y−1

= uxk
−1y−1

= vk
−1y−1

= uy
−1

= e.

The uniqueness follows from the fact that h ∈ Hy implies uh = u, and ux = uk

which determines k ∈ K uniquely.

De�nition 1.2. Let G be a group, H a subgroup and 1 ∈ K ⊆ G a subset of G.

(i) If (*) holds then the triple (G,H,K) is called a loop folder.

(ii) The loop folder (G,H,K) is faithful, if no proper normal subgroup of G is
contained in H.

(iii) The loop folder (G0, H0, K0) is a loop subfolder of (G,H,K) if G0 ≤ G,
H0 ≤ H and K0 ⊆ K.

(iv) The map π : (G,H,K) → (G1, H1, K1) between loop folders is a loop folder
homomorphism, provided π : G → G1 is a group homomorphism and H1 ≤
Gπ, K1 ⊆ Kπ hold.
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1.5. The Baer correspondence

Any loop folder (G,H,K) determines a loop operation on K in the following
way. Let x, y ∈ K and take the unique decomposition xy = hk with the elements
h ∈ H and k ∈ K. De�ne the operation x ∗ y = k. Then (K, ∗) is a loop with unit
element 1. In order to see this, let us �rst assume that y, k ∈ K are given. Let us
decompose ky−1 as h1x with h1 ∈ H, x ∈ K. Then xy = h−1

1 k and x ∗ y = k. We
have slightly more delicate situation when x, k ∈ K are given. Then, we decompose
x−1k as h2y with h2 ∈ Hx, y ∈ K. Since h2 = x−1h3x for some h3 ∈ H, we have

x−1k = h2y = x−1h3xy =⇒ xy = h−1
3 k =⇒ x ∗ y = k.

Let Loop and Folder be the categories of loops and loop folders, respectively. We
de�ne the functors λ : Folder → Loop and µ : Loop → Folder. The functor λ maps
the loop folder (G,H,K) to the loop (K, ∗). The functor µ maps the loop (Q, ∗) to
the loop folder (G,H,K), where G = RMlt(Q), H = RInn(Q) and K is the set of
the right multiplication maps of Q.
This functorial equivalence of the categories of loops and loop folders is called the

Baer correspondence. It allows us to describe loops by group theoretical tools. The
problem is that while λ(µ(Q)) ∼= Q for all loops Q, the loop folders σ = (G,H,K)
and µ(λ(σ)) may have very di�erent structure. In particular, one can obtain a loop
from many di�erent loop folders. This causes special di�culties when one has to
identify the subfolder corresponding to a subloop.

We have already seen that the Bol identity (1.2) can be expressed by right mul-
tiplication maps, as well. In terms of the loop folder (G,H,K), this means that
k`−1k ∈ K holds for all k, ` ∈ K. Bol loop folders have another useful property,
namely, it su�ces to require the factorization property (**) for the subgroup H
only:

(***) For any x ∈ G there are unique elements h ∈ H, k ∈ K such that x = hk.

In order to see that (***) implies (**), we mention �rst that for any ` ∈ K,
`−1 = 1`−11 ∈ K. Now, �x elements x, y ∈ G with decomposition yxy = hk,
h ∈ H, k ∈ K. De�ne ` = y−1ky−1 ∈ K. Then,

x = y−1hky−1 = y−1hy` = hy`

is a decomposition as required in (**) since hy ∈ Hy and ` ∈ K.
Remember that two loops (Q, ·) and (K, ◦) are isotopes if bijections α, β, γ : Q→

K exist such that α(x) ◦ β(y) = γ(x · y) for all x, y ∈ Q.

Proposition 1.3 ([Nag08a, Proposition 1]). (i) Let (G,H, S) be a loop folder
with associated loop Q = (S, ◦). For any a, b ∈ S, the triple (G,Ha, b−1S)
is a loop folder and the associated loop is isotopic to Q. Moreover, all isotopes
of Q can be represented in this way.

(ii) Let (G,H, S) be a Bol loop folder with associated Bol loop Q. Then up to
isomorphism, each isotope of Q corresponds to a folder (G,H, c−1S) for some
c ∈ S.
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(iii) Let (G,H, S) be a Bol loop folder. The associated Bol loop Q is a G-loop if
and only if for all s ∈ S there is an element h ∈ H with b−1S = hSh−1.

Proof. (i) It is clear that (G,Ha, b−1S) is a loop folder. By [P�90, III.2.1 Theorem],
it is su�cient to show that the respective associated loops of (G,H, b−1S) and
(G,Ha, S) are isomorphic to the loops (S, •) and (S, ∗), respectively, where

x • y = x ◦ b\y, x ∗ y = x/a ◦ y.

Here, the operations /, \ denote the right and left divisions of (S, ◦), respectively.
In the remaining of the proof, juxtaposition xy and inverting x−1 refer to group
operations in G, all other in�x operations refer to loop operations.
On the one hand, the loop (b−1S,⊕) corresponding to the folder (G,H, b−1S) is

de�ned by [(b−1x)⊕ (b−1y)]H = b−1xb−1yH.

b−1xb−1yH = b−1(x ◦ b\y)H = b−1(x • y)H

shows that the map x 7→ b−1x is a loop isomorphism between (S, •) and (b−1S,⊕).
On the other hand, we have

xH = (x/a ◦ a)H = (x/a)aH ⇒ (x/a)(aHa−1) = xHa−1.

Using this and the de�nition of the loop (S,~) corresponding to (G, aHa−1, S), we
obtain

[(x/a) ~ (y/a)](aHa−1) = (x/a)(y/a)(aHa−1)

= (x/a)((y/a) ◦ a)Ha−1

= (x/a)yHa−1

= ((x/a) ◦ y)Ha−1

= [((x ∗ y)/a) ◦ a]Ha−1

= ((x ∗ y)/a)(aHa−1).

This implies (x/a) ~ (y/a) = (x ∗ y)/a, showing that the map x 7→ x/a is an
isomorphism between the loops (S, ∗) and (S,~).
(ii) As the folders (G, aHa−1, b−1S) and (G,H, a−1b−1Sa) are isomorphic, the

statement follows from a−1b−1Sa = (aba)−1S.
(iii) If b−1S = hSh−1 then the loop folders (G,H, b−1S) and

(G,H, S) = (h−1Gh, h−1Hh, S)

are isomorphic.

The loop folder (G,H,K) determines a Bol loop of exponent 2 if and only if
K = {1} ∪

⋃
i∈I Ci, where the Ci's are conjugacy classes of involutions in G.
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1.6. Nets

Let k > 2 be an integer, P a set, and L1, . . . ,Lk disjoint sets of subsets of P . Put
L =

⋃
Li. We call the elements of P and L points and lines, respectively, and use

the common geometric terminology, such as �all lines through the point P �, etc. For
` ∈ Li, we also speak of a line of type i or an i-line. Lines of the same type are
called parallel.
The pair (P ,L) is a k-net if the following axioms hold:

1) Distinct lines of the same type are disjoint.

2) Two lines of di�erent types have precisely one point in common.

3) Through any point, there is precisely one line of each type.

Upon interchanging the roles of points and lines, we obtain dual k-nets. In that
case, the points can be partitioned into k classes so that:

1') Distinct points of the same type are not connected by a line.

2') Two points of di�erent types are connected by a unique line.

3') Every line consists of k points of pairwise di�erent types.

There is a natural relation between loops and 3-nets. Let us �rst start from a
loop L and put P = L× L. De�ne the line classes

L1 = {{(x, c) | x ∈ L} | c ∈ L},
L2 = {{(c, y) | y ∈ L} | c ∈ L},
L3 = {{(x, y) | x, y ∈ L, xy = c} | c ∈ L}.

Then, (P ,L = L1 ∪ L2 ∪ L3) is a 3-net. The lines of these classes are also called
horizontal, vertical and transversal lines, respectively. The point O = (e, e) is the
origin of the net.
Let us now consider a 3-net (P ,L = L1 ∪ L2 ∪ L3). Let O ∈ P be an arbitrary

point, and let `, k be the unique horizontal and vertical lines throughO, respectively.
Then the construction of Figure 1.1 de�nes a loop operation on ` with neutral
element O. Since the parallel projections are bijection between lines of di�erent
type, we can index the points of k by points of `, thus obtaining a bijection between
P and `× `. The three line classes are determined by the equations X = c, Y = c,
XY = c, respectively, where c is a constant. We say that (`, O) is a coordinate loop
of the 3-net (P , L).
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Figure 1.1.: The geometric de�nition of the coordinate loop.

1.7. Sharply transitive sets, projective and a�ne

planes

Let G ≤ Sym(Ω) be a subgroup and k be a positive integer. We say that G acts
k-transitively if for any (x1, . . . , xk), (y1, . . . , yk) ∈ Ω(k) there is a element g ∈ G
such that

xg1 = y1, · · · , xgk = yk.

If the element g is unique then the action is said to be sharply k-transitive.
In a similar way, we can introduce the concept of sharply k-transitive sets. We

say that the set S ⊆ Sym(Ω) is a sharply k-transitive set of permutations, if
for any (x1, . . . , xk), (y1, . . . , yk) ∈ Ω(k) there is a unique element s ∈ S with
xs1 = y1, · · · , xsk = yk. When k = 1, then we simply speak of a sharply transi-
tive set. The class of sharply transitive sets is essentially equivalent with the class
of quasigroups, since the binary system (Q, ·) is a quasigroup if and only if the set
of right multiplication maps is a sharply transitive set on Q.
The �nite sharply 2-transitive sets correspond to the class of �nite a�ne planes

in the following manner. Let S be a sharply 2-transitive set in Sym(n). Let P =
{1, . . . , n}2 and

L = {ξ1, . . . , ξn, η1, . . . , ηn} ∪ {`s | s ∈ S} ⊆ 2P ,

where

ξk = {(k, t) | t = 1, . . . , n},
ηk = {(t, k) | t = 1, . . . , n},
`s = {(t, ts) | t = 1, . . . , n}.

Then, the pair (P ,L) forms an a�ne plane of order n. By omitting the details, we
only mention that for the converse, we have to �x a coordinate frame on the a�ne
plane which is similar to the cartesian coordinate system. It is important to notice
that sharply transitive and sharply 2-transitive sets behave bad from the point of
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view of isomorphy. For example, it is very hard to decide if two sharply 2-transitive
sets correspond to isomorphic a�ne planes.

Let Π be a �nite projective plane. The line ` of Π is a translation line if the
translation group with respect to ` acts transitively (hence regularly) on the set
of points Π \ `. Assume ` to be a translation line and let Π` be the a�ne plane
obtained from Π with ` as the line at in�nity. Then Π` is a translation plane.

1.8. Quasi�elds

A translation plane is often represented by an algebraic structure called a quasi�eld.
The set Q endowed with two binary operations +, · is called a quasi�eld, if

(Q1) (Q,+) is an abelian group with neutral element 0 ∈ Q,

(Q2) (Q \ {0}, ·) is a quasigroup,

(Q3) the right distributive law (x+ y)z = xz + yz holds, and,

(Q4) for each a, b, c ∈ Q with a 6= b, there is a unique x ∈ Q satisfying xa = xb+ c.

For all x ∈ Q we have 0 · x = x · 0 = 0. Conversely, if Q is �nite and x · 0 = 0 then
(Q1), (Q2), (Q3) imply (Q4). Moreover, if Q is �nite then (Q,+) is an elementary
abelian group.
Many properties of the translation plane can be most easily understood by look-

ing at the appropriate quasi�eld. However, isomorphic translation planes can be
represented by nonisomorphic quasi�elds. Furthermore, the collineations do not
always have a nice representation in terms of operations in the quasi�elds.
Let p be a prime number and (Q,+, ·) be a quasi�eld of �nite order pn. We

identify (Q,+) with the vector group (Fnp ,+). With respect to the multiplication,
the set Q∗ of nonzero elements of Q form a loop. The right multiplication maps of
Q are the maps Ra : Q→ Q, xRa = x · a, where a, x ∈ Q. By the right distributive
law, Ra is a linear map of Q = Fnp . Clearly, R0 is the zero map. If a 6= 0 then
Ra ∈ GL(n, p). In geometric context, the set of right translations are also called
the slope set or the spread set of the quasi�eld Q. As the converse is also true, the
following concepts are essentially equivalent:

(1) Finite quasi�elds of order pn;

(2) Sharply transitive sets of the general linear group GL(n, p), acting on Fnp \ {0};

(3) Sharply 2-transitive sets of the a�ne linear group AGL(n, p), acting on Fnp .

The right multiplication group RMlt(Q) of the quasi�eld Q is the linear group
generated by the nonzero right multiplication maps. It is immediate to see that
RMlt(Q) is a transitive linear group, that is, it acts transitively on the set of nonzero
vectors of Q = Fnp . The complete classi�cation of �nite transitive linear groups is
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known, the proof relies on the classi�cation theorem of �nite simple groups. Roughly
speaking, there are four in�nite classes and 27 exceptional constructions of �nite
transitive linear groups.

1.9. Semi�elds

A special case of quasi�elds is the class of (pre-)semi�elds, where both distribu-
tive laws hold. More precisely, a pre-semi�eld is a set S endowed with two binary
operations x + y and x ◦ y such that the addition is an elementary Abelian group
with neutral element 0, S∗ = S \ {0} is a multiplicative quasi�eld and the two
operations satisfy both distributive laws. A semi�eld is a pre-semi�eld with mul-
tiplicative unit element, that is, where (S∗, ◦) is a loop. Semi�elds are sometimes
called non-associative division rings, as well.
The most known proper semi�eld is the division ring of the real octonions O

and its complex counterpart O(C). Both are alternating algebras of dimension 8
over the ground �eld. On the one hand, a disadventage of the complex octonions
is that they contain zero divisors. On the other hand, it can be constructed over
an arbitrary �eld F , and, the set of invertible elements form a loop in all cases. It
is well known that these structures play an important role in the understanding of
the orthogonal group O+(8, F ) and its triality automorphism. In fact, O+(8, F ) is
the multiplication group of the loop of the invertible elements of O(F ). Moreover,
the automorphism group of O(F ) is the exceptional Lie group G2(F ). This fact
explains the natural 7-dimensional orthogonal representation of G2(F ).

Any �nite semi�eld S de�nes a loop whose multiplication group is contained
in GL(n, q) where Fq is the center of S. The center Z(S∗) of S∗ is isomorphic to
F∗q, hence for the multiplication group of the factor loop Q = S∗/Z(S∗), we have
Mlt(Q) ≤ PGL(n, q). Conversely, let (Q, ·) be a loop and assume that for some
n, q, its multiplication group is contained in the group ΓL(n, q), where the latter is
considered as a permutation group acting on the nonzero vectors of V = Fnq . Then,
we can identify Q with V ∗ = V \ {0} and consider V = (V,+, ·) as endowed with
two binary operations, where 0 · x = x · 0 = 0. The fact that the left and right
multiplication maps are additive is equivalent with V being a semi�eld.
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The basic references in the theory of quasigroups are the early papers [Mou35;
Alb43; Alb44; Bae39] and the monographs [Bru58; Bel67; P�90; CPS90], or more
recently [NS02]. Concerning octonions, we refer the reader to [CS03]. The main
results on �nite simple Moufang loops are due to Paige [Pai56], Doro [Dor78] and
Liebeck [Lie87b]. The representation of the hyperbolic plane loop is from [KK95];
further references on Bruck loops are [Gla64; Gla68] and [AKP06]. The problems
on the existence of proper simple Bol loops were given in the papers [Rob76; Asc05]
and [FKP06]. On the Wikipedia page [Wik14], the reader may follow the progress
on problems in the theory of loops and quasigroups.
The idea of handling loops by group theoretical data based on their right multipli-

cation groups goes back to Baer [Bae39]. In the last decades, the main proponent
of this approach was Baer's student Karl Strambach. Baer's school preferred
terminology of sections in groups. Together with his coauthors Figula, Péter
Nagy and others, Strambach was able to tackle many problems from the theory of
analytic loops; see the monograph [NS02] and the references therein. The concept
of a loop folder and the Baer correspondence was introduced by Michael As-

chbacher in his paper [Asc05]. Although the idea doubtlessly goes back to Baer,
the small di�erences make this tool more e�ective for dealing with �nite loops.
The relation between sharply 2-transitive sets and �nite a�ne planes is folklore,

the reader is referred toDembowski's book [Dem68]. There are many excellent sur-
veys and monographs on translation planes and quasi�elds, see [HP73; JJB07; Lü80]
and the references therein. Our computational methods have similarities with those
in [CD98; Dem94]. The computations on loop folders, sharply transitive sets and
net embeddings were done usinge the computer algebra systems Magma [BCP97],
Gap4 [Gap] and Maple 13 [Map].
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groups
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3. Finite simple Bol loops

In this chapter, we present a construction of Bol loops which is based on exact
factorizations of groups. Group factorizations are intensively studied in many �elds
of mathematics. Using this method, we are able to construct many classes of �nite
and in�nite simple non-Moufang non-Bruck Bol loops, and hence solve the problem
of the existence of �nite simple non-Moufang Bol loops.

Most part of this chapter has been published in [Nag08a]; the exceptions are
Lemma 3.4 and Theorem 3.5 which are new, and Proposition 3.12 which is a gener-
alization of [GN11, Proposition 3.2]. These new results enables us to prove simplicity
of Bol loops. Example 3.14 is from [GN11]. The Bol loop construction of Theorem
3.2, the simplicity conditions of Theorems 3.5 and 3.8, and the Examples support
Thesis 1 of the dissertation.

The following papers make a substantial reference to the results of this chapter.

1) In [FS09], Figula and Strambach completed the structural description of topo-
logical loops in the case when the group G topologically generated by the right
multiplication maps is a proper direct product of simple Lie groups G1, G2 and
the stabilizer of 1 ∈ Q in G is a direct product H = H1×H2 with 1 6= Hi ≤ Gi,
i = 1, 2, and the transversal M is not the direct product of M1 = M ∩ G1 and
M2 = M ∩G2. The motivation for this completion was Example 3.11. Moreover,
the authors used the construction of Theorem 3.2 for simple permutation groups
G acting on a set Ω and having a sharply transitive subgroup C.

2) Foguel and Kinyon points out in the Introduction of [FK10] that the simple Bol
loop of odd order given in Example 3.15 motivates some questions concerning
nilpotence and solvability properties of �nite Bol loops of odd order. These
problems are investigated in [FK10].

3) The intention of the paper [JS10a] by Johnson and Smith is to provide a con-
ceptual understanding of the Bol loop construction of Theorem 3.2, employing
direct quasigroup-theoretical methods and the matched-pair approach to group
factorizations.

3.1. Exact factorizations of groups

De�nition 3.1. The triple (G,A,B) is called an exact factorization triple if G
is a group, A,B are subgroups of G satisfying A ∩ B = 1 and AB = G. The
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exact factorization triple (G,A,B) is faithful if A,B do not contain proper normal
subgroups of G.

If B does not contain any proper normal subgroup of G, then the fact that
(G,A,B) is an exact factorization is equivalent with the fact that A is a regu-
lar subgroup in the permutation represetation of G on the cosets of B. In the
mathematical literature, the group G is also called the Zappa-Szép product of the
subgroups A,B.
Most importantly for us, if (G,A,B) is an exact factorization triple, then any

element x ∈ G has a unique decomposition x = ab with elements a ∈ A, b ∈ B. The
next proposition describes the construction of the Bol loop folder from the exact
factorization triple.

Theorem 3.2. Let τ = (G,A,B) be a faithful exact factorization triple. Let us
de�ne the triple (G,H, K) by

G = G×G, H = A×B ≤ G, K = {(x, x−1) | x ∈ G}.

Then (G,H, K) is a Bol loop folder. The associated Bol loop (S, ◦) is a G-loop.

Proof. Clearly, 1 ∈ K and for any x, y ∈ G,

(x, x−1)(y, y−1)(x, x−1) = (xyx, (xyx)−1) ∈ K.

Hence, it su�ces to show the decomposition property (***). Let x1, x2 ∈ G be
arbitrary elements and de�ne a1, a2 ∈ A, b1, b2 ∈ B by the decompositions x1 = a1b1

and x−1
2 = a2b2. Straightforward calculation shows that with elements

c = a1a
−1
2 ∈ A, d = b−1

2 b1 ∈ B, x3 = a2b1 ∈ G,

we have (x1, x2) = (c, d)(x3, x
−1
3 ), which shows the existence of the decomposition

(***). In order to prove the uniqueness, we take arbitrary elements c, c0 ∈ A,
d, d0 ∈ B, x3 = a3b3, x0 ∈ G and deduce

(cx3, dx
−1
3 ) = (c0x0, d0x

−1
0 ) =⇒ x0 = c−1

0 cx3, x
−1
0 = d−1

0 dx−1
3

=⇒ 1 = c−1
0 cx3 · d−1

0 dx−1
3 = c−1

0 ca3b3 · d−1
0 db−1

3 a−1
3

=⇒ a−1
3 c−1c0a3 = b3d

−1
0 db−1

3 ∈ A ∩B = 1

=⇒ c−1c0 = d−1
0 d = 1

=⇒ c = c0, d = d0, x3 = x0.

This proves that (G,H, K) is a Bol loop folder. Take arbitrary elements x, y ∈ G,
and write y = ab−1 with a ∈ A, b ∈ B. Then

(a, b)(x, x−1)(a, b)−1 = (y, y−1)(bxa−1, ax−1b−1) ∈ (y, y−1)K.

Since (a, b) ∈ H, Proposition 1.3(iii) implies that the associated Bol loop is a G-
loop.

De�nition 3.3. Let τ = (G,A,B) be a faithful exact factorization triple and let
us de�ne G,H, K as in Theorem 3.2. The Bol loop corresponding to the Bol loop
folder (G,H, K) will be denoted by β(τ).

30

               dc_821_13



3.2. Simplicity conditions for Bol loop folders

3.2. Simplicity conditions for Bol loop folders

We need some technical information on the structure of the direct product G×G.

Lemma 3.4. Let G be a group, K = {(x, x−1) | x ∈ G} ⊆ G × G and de�ne the
maps π : G×G→ G and α : G×G→ G/G′ by

π(x, y) 7→ y, and α(x, y) = xyG′.

Then the following hold:

(i) π(〈K〉) = G and 〈K〉 ∩ kerπ = G′ × 1.

(ii) 〈K〉 = kerα.

(iii) AG′ ∩B ≤ π((A×B) ∩ kerα) for any A,B ∈ G.

Proof. π(〈K〉) = G and 〈K〉∩kerπ ≤ G′×1 are trivial. Since for arbitrary x, y ∈ G,

((xy)x−1y−1, (xy)−1xy) = (xyx−1y−1, 1) ∈ 〈K〉 ∩ kerπ,

we have (i). For (ii), 〈K〉 ≤ kerα is obvious. Let us assume (x, y) ∈ kerα, that is,
xy ∈ G′. Then (xy, 1) ∈ G′ × 1 ≤ 〈K〉 by (i), and

(xy, 1) = (x, y)(y, y−1) ∈ (x, y)〈K〉,

whence (x, y) ∈ 〈K〉. This shows (ii). Let b ∈ B be an arbitrary element:

b ∈ AG′ ∩B =⇒ ∃a ∈ A : b ∈ aG′

=⇒ ∃a ∈ A : (a−1, b) ∈ kerα

=⇒ b ∈ π((A×B) ∩ kerα).

This proves (iii).

Theorem 3.5. Let (G,A,B) be an exact factorization triple such that the following
hold:

(1) coreG(A) = coreG(B) = CG(G′) = 1.

(2) A is maximal in G and A′ is maximal in G′.

(3) The normal closure of AG′ ∩B in G is G.

Then, β(G,A,B) is a simple non-Moufang Bol loop.
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Proof. We write G = 〈K〉 and H = (A ∩ B) ∩ G. The faithful Bol envelop of
Q is (G,H, K). Let ϕ0 : Q → Q̄ be a surjective loop homomorphism. Let us
denote the corresponding folder homomorphism by ϕ : (G,H, K) → (Ḡ, H̄, K̄),
where (Ḡ, H̄, K̄) is the faithful Bol envelop of Q̄. Put kerϕ = (G0,H0, K0); then by
[Asc05, (2.7)], G0 / G, and

Ḡ ∼= G/G0, H̄ ∼= G0H/G0, K̄ ∼= G0K/G0.

As (Ḡ, H̄, K̄) is faithful, we have

G0 = coreG(G0H). (3.1)

By Lemma 3.4(i), A′×1 ≤ H. Moreover, [G0, G
′×1] = U×1 is a normal subgroup of

G0 for some U /G. Hence, UA′×1 ≤ G0H. Since A′ is maximal in G′ by assumption,
either U ≤ A′, or UA′ = G′.
Assume U ≤ A′. By coreG(A) = 1, U = 1. Then CG(G′) = 1 implies G0 ≤ 1×G,

thus, G0 = 1×V for some V /G. Furthermore, K0 = G0∩K = 1, and, G0 = H0K0 =
H0 ≤ H. As H is core-free, we have G0 = 1 and ϕ is injective.
Assume UA′ = G′. Then the normal subgroup G′ × 1 is contained in G0H;

G′ × 1 ≤ G0 holds by (3.1). As kerπ ≤ G0 by Lemma 3.4(i), there is a surjec-
tive homomorphism ψ : G→ Ḡ such that ϕ = ψπ.

G
ϕ

��

π // G

ψ��
Ḡ

By
K̄ = ϕ(K) = ψ(π(K)) = ψ(G) = Ḡ,

we have H̄ = ϕ(H) = 1. This implies

π(H) ≤ kerψ. (3.2)

By Lemma 3.4(iii),

π(H) = π((A×B) ∩ kerα) ≥ AG′ ∩B,

whose normal closure in G is G. Therefore G = kerψ, hence ψ and ϕ are trivial. We
have seen that ϕ is either injective or trivial, the simplicity of Q follows. Moreover,
Q is non-Moufang by Proposition 1.1.

Lemma 3.6. Let k be a �eld and A ≤ GLn(k) an irreducible linear group and let
G = A n kn. Then A is maximal in G and every normal subgroup of G contains
kn.

Lemma 3.7. Let (G,H,K) be a faithful Bol envelop with corresponding Bol loop
Q. Let σ be an automorphism of G such that xσ = x−1 for all x ∈ K. Assume that
for any σ-invariant normal subgroup N of G, NH = G holds. Then Q is simple.
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Proof. Let ϕ0 : Q→ Q̄ be a surjective loop homomorphism. Let us denote the cor-
responding folder homomorphism by ϕ : (G,H,K) → (Ḡ, H̄, K̄), where (Ḡ, H̄, K̄)
is the faithful Bol envelop of Q̄. Put kerϕ = (G0, H0, K0) and assume that G0 6= 1.
As G0 / G and H is core-free in G, 1 6= K0 = G0 ∩K. By [Asc05, 6.1(1)],

Kσ
0 = {x−1 | x ∈ K0} = K0.

This impliesK0 ⊆ Gσ
0 , and N = G0∩Gσ

0 is a nontrivial σ-invariant normal subgroup
of G. By assumption, NH = G. Therefore, G0H = G and G0H/G0 = G/G0, and
Ḡ = H̄ follows from [Asc05, (2.7)]. Since (Ḡ, H̄, K̄) is faithful, we obtained Ḡ = 1
and G = G0. The simplicity of Q follows.

We call the group G almost simple if T ≤ G ≤ Aut(T ) for some nonabelian
simple group T . The group T is the socle of G.

Theorem 3.8. Let G be an almost simple group with socle T . Let τ = (G,A,B)
be a faithful exact factorization triple and assume G = TA = TB. Then β(τ) is a
simple non-Moufang Bol loop.

Proof. Let σ be the automorphism ofG×Gmapping (x, y) 7→ (y, x). SinceKσ = K,
Gσ = G has an automorphism which inverts the elements of K. Clearly, T × T ≤
G′×G′ ≤ G and every σ-invariant normal subgroup of G contains T ×T . However,
(T ×T )(A×B) = G×G by assumption, which implies G = (T ×T )(G∩ (A×B)) =
(T × T )H. Thus, β(τ) is simple by Lemma 3.7. Moreover, Q is non-Moufang by
Proposition 1.1.

3.3. Some classes of simple proper Bol loops

In this section we present some �nite and in�nite simple proper Bol loops by ap-
plying the construction of Theorem 3.2.

Example 3.9. Put G = PSL(n, 2), let A be a Singer cycle and B be the stabilizer
of a projective point. Then β(G,A,B) is a �nite simple proper Bol loop by Theorem
3.8.

We notice that many other �nite simple groups have exact factorizations. The
factorizations of �nite groups are intensively studied, cf. [LPS00], [Giu06] and the
references therein.

Example 3.10. Let n be an even integer and put G = Sn, A = 〈(1, 2, . . . , n)〉 and
B = Sn−1 with n ≥ 4. De�ne the loop Qn = β(G,A,B). If n ≥ 6 then Qn is simple
by Theorem 3.8.

In the case n = 4, Q4 is a Bol loop of order 24. This loop can be constructed as
in Example 3.14, too. It turns out that this loop is simple, as well.
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Example 3.11. Put G = PSL2(R) and de�ne the subgroups

A =

{
±
(

cos t sin t
− sin t cos t

)
| t ∈ R

}
, B =

{
±
(
a b
0 a−1

)
| a ∈ R \ {0}, b ∈ R

}
of G. By Theorem 3.8, β(G,A,B) is a simple non-Moufang Bol loop.

The right multiplication group of β(G,A,B) is isomorphic to PSL2(R)×PSL2(R).
Moreover, the loop is isomorphic to all its isotopes; in particular, it is not isotopic
to a Bruck loop. Recall that by de�nition, Bruck loops are Bol loops satisfying the
automorphic inverse property (xy)−1 = x−1y−1. By [Rob76, Corollary 3.2.2], Bruck
G-loops are Abelian groups. Until this construction, all known simple non-Moufang
Bol loops were isotopes of Bruck loops, cf. [KK04].
In [Fig06], the author classi�ed all di�erentiable Bol loops having a semi-simple

right multiplications group of dimension at most 9. In fact, Example 3.11 showed
that one has to pay special attention to the case when the group G topologically
generated by the right multiplication maps is a proper direct product of simple Lie
groups G1, G2 and the stabilizer of 1 ∈ Q in G is a direct product H = H1 × H2

with 1 6= Hi ≤ Gi, i = 1, 2, and the transversal M is not the direct product of
M1 = M ∩G1 and M2 = M ∩G2. In [FS09], Figula and Strambach completed the
classi�cation and settled this problem in more generality.
Let k be an arbitrary �eld. With a vector v ∈ kn, we mean a row vector. If a is

an n×n matrix then the product of a and v is written as va. The commutator [a, v]
is the vector va − v. Let A ≤ GLn(k) be a linear group. The semi-direct product
An kn consists of the pairs (a, v), a ∈ A, v ∈ kn, with product

(a, v)(b, w) = (ab, vb+ w).

Proposition 3.12. Let k be a �eld and A ≤ GLn(k) be a linear group. Let γ : kn →
A be a homomorphism such that [T, kn] ≤ ker γ, where T = Im(γ). Put G = Ankn
and de�ne the subset

B = {(γ(−v), v) | v ∈ kn}

of G.

(i) B ≤ G and the triple τ = (G,A,B) is an exact factorization.

(ii) If A is irreducible and γ is nontrivial then τ is faithful.

(iii) If A,A′ are irreducible and the normal closure of Im(γ) in A is A then β(τ)
is a simple non-Moufang Bol loop.

Proof. (i) For any matrix t ∈ T and vector v ∈ kn, γ(vt) = γ(v + [t, v]) = γ(v) by
[T, kn] ≤ ker γ. This implies

(γ(−v1), v1)(γ(−v2), v2) = (γ(−v1 − v2), v1 + v2).
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In particular, B ≤ G. A ∩ B = 1 is obvious. The element (a, v) ∈ G can be
decomposed as

(a, v) = (aγ(v), 0)(γ(v)−1, v)

with (aγ(v), 0) ∈ A and (γ(v)−1, v) ∈ B.
(ii) Let us assume that A is irreducible. Then kn is a minimal normal subgroup

in G, hence, A,B are core-free since none of them contains kn.
(iii) Let us assume that A,A′ are irreducible and the normal closure of Im(γ) in

A is A. Since kn is a minimal normal subgroup, G′ = A′ n kn and Z(G′) = 1. This
implies Z(G) = CG(G′) = 1. Moreover, A′ is maximal in G′ by the irreducibility
of A′. Let N be the normal closure of AG′ ∩ B = B in G and write N as N0 n kn

with N0 / A. Then Im(γ) ≤ N0 and N0 = A by assumption. Thus, N = G. This
shows that G,A,B satisfy the conditions of Theorem 3.5, and β(τ) is a simple
non-Moufang Bol loop.

Let A and γ be as in Proposition 3.12. The corresponding simple Bol loop will
be denoted by β∗(A, γ).

Corollary 3.13. The right multiplication group of β∗(A, γ) is solvable if and only
if A is solvable. If the underlying �eld k = Fq is �nite then β∗(A, γ) has order |A|qn.

Proof. Since β∗(A, γ) is constructed from an exact factorization, its right multipli-
cation group is a subgroup between G × G and G′ × G′, where G = A n kn. The
solvability of the groups G,G′, A and A′ is equivalent.

Example 3.14. Let k be a �eld, A = SL2(k) and γ : k2 → A given by

γ(x1, x2) =

(
1 x1

0 1

)
.

Then γ is a homomorphism and

[γ(x1, x2), (y1, y2)] = (0, x1y1) ∈ ker γ.

Moreover, the normal closure of the group Im(γ) of unipotent matrices is SL2(k).
If |k| ≤ 3 then this can be veri�ed by hand. If |k| > 3 then SL2(k) is simple modulo
its center, which implies our claim since the elements γ(x1, x2) are not central.
Therefore, the pair A, γ satis�es the conditions of Proposition 3.12, hence, it yields
a simple non-Moufang Bol loop.

If k = F2 then the loop Q of Example 3.14 has order 24 and RMlt(Q) is a solvable
group, see Corollary 3.13. In fact, Q is the same loop than constructed by Example
3.10 with n = 4. The computer result [Moo07] of G. E. Moorhouse shows that all
Bol loops of order less than 24 are solvable, hence Q is a simple Bol loop of least
possible order.
The last example gives a simple Bol loop of order 34 ·13 = 1053. This construction

shows that the Odd Order Theorem does not hold for �nite Bol loops, cf. [FKP06].
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Example 3.15. Let k = F3 and identify k3 with F27. Let g be a primitive element
in F27 and de�ne the linear map σ : x 7→ g2x of order 13. Let Φ be the Frobenius
automorphism x 7→ x3 of F27. Then σΦ = Φσ3 and A = 〈Φ, σ〉 is a non-abelian
linear group such that A′ = 〈σ〉. For x ∈ F27, write Tr(x) = x9 + x3 + x. Notice
that for all y ∈ F27,

Tr([Φi, y]) = Tr(yΦi − y) = 0. (3.3)

De�ne the map γ : F27 → A by γ(x) = ΦTr(x). By (3.3), [γ(x), y] ∈ ker γ for all
x, y ∈ F27. This means that A, γ satisfy the conditions of Proposition 3.12, and,
β∗(A, γ) is a simple Bol loop of order 34 · 13.
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exponent 2

Bol loops of exponent 2 which are not elementary Abelian groups have long been
known to exist, the �rst construction is due to R. P. Burn [Bur78]. Later, many
in�nite classes of such loops were given, see [Kie02; KN02; KK95; Nag06]. All of
these examples were solvable loops; equivalently the group G was a 2-group. The
existence of nonsolvable �nite Bol loops of exponent 2 was considered as one of
the main open problem in the theory of loops and quasigroups. As the smallest
such loop must be simple, this question was related to the existence of �nite simple
proper right Bol loops. Here by proper we mean right Bol loops which are not
Moufang, that is, which do not satisfy the identity x(yx) = (xy)x.
By [Nag98], the solvability of a Bol loop of 2-power exponent is equivalent to

having 2-power order. Later, S. Heiss [Hei96] showed that the solvability of the
loop corresponding to the triple (G,H,K) is equivalent with the solvability of the
group G. The next major step was the paper [Asc05] by M. Aschbacher. His main
result gives a detailed description on the structure of the right multiplication group
of minimal nonsolvable Bol loops of exponent 2. This result was achieved by using
the classi�cation of �nite simple groups.
In this chapter we apply Aschbacher's recipe to construct a class of �nite simple

Bol loops of exponent 2. In this way, we give a negative answer to questions 2
and 3 of [Asc05] and [AKP06]. The smallest member of our class has order 96.
We emphasize that this example is so small and the structural description of the
smallest example in [Asc05] and [AKP06] is so precise that it was only a matter of
time that somebody �nds it by some short computer calculation. This explains the
fact that this loop was indepently discovered by the author and by B. Baumeister
and A. Stein [BS11] in 2007, with a time delay of 10 days.

The content of this chapter is almost identical with the paper [Nag09]. Theorems
4.7 and 4.14 support Thesis 2. These results had the following impacts:

1) Baumeister, Stein and Stroth continued the intensive investigations of �nite Bol
loops of 2-power exponent in a series of papers [BS10; BSS11; BS11; Bau12]. In
fact, they gave a partial answer to Problem 4.16 by showing that whenever T
is an almost simple groups for which an exponent 2 Bol loop folder (G,H,K)
exists such that T ∼= G/O2(G), T is isomorphic to PSL(2, q) for q = 9 or a
Fermat prime q ≥ 5, cf [BS11, Theorem 1].
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2) The paper [JS10b] by Johnson and Smith intends to give a more explicit combi-
natorial speci�cation of the smallest simple, unipotent Bol loop of Theorem 4.7,
making use of concepts from projective geometry and quasigroup theory along
with the group-theoretical background.

4.1. The construction of the �smallest

counterexample�

As usual, S5 and PGL(2, 5) are the permutation groups acting on 5 and 6 points,
respectively. It is well known that S5

∼= PGL(2, 5) ∼= Aut(L2(4)) ∼= O−4 (2), where
Aut(L2(4)) is the extension of L2(4) = PSL(2, 4) ∼= A5 by a �eld automorphism
of order 2, and O−4 (2) is the orthogonal group on a 4-dimensional orthogonal space
over F2 of Witt index 1. We denote by F20 the a�ne linear group acting on F5,
F20
∼= C5 o C4. On the one hand, F20 is the Borel subgroup of PGL(2, 5), that

is, the stabilizer of a projective point. On the other hand, F20 ≤ S5 is a sharply
2-transitive permutation group on 5 points.
In the sequel, we de�ne a group G which is a nonsplit extension of the elementary

Abelian group of order 32 by S5 such that the transpositions of S5 lift to involutions
in G and the even involutions of S5 lift to elements of order 4. Despite the relatively
small order of G, we found no simple description for this group; therefore our
de�nion will be rather ad hoc, as well. We start with two technical lemmas.

Lemma 4.1. We have the following presentations of groups with generators and
relations.

A5 = 〈a, b | a2 = b3 = (ab)5 = 1〉,
S5 = 〈c, d | c2 = d4 = (cd)5 = [c, d]3 = 1〉,

2.S5 = 〈C,D | C2 = D8 = (CD)5 = [C,D]3 = [C,D4] = 1〉,

where 2.S5 denotes the nonsplit central extension of S5 in which the transpositions
lift to involutions. In other words, 2.S5 is the semidirect product of SL(2, 5) = 2.A5

with a group of order 2.

Proof. The presentation for A5 is well known. Assume G = 〈c, d〉 is the group
presented by the second set of relations above. We observe �rst that S5 satis�es
these relations, hence no relation can collapse. Put a = d2 and b = [d, c] = [c, d]−1.
Then a2 = b3 = 1 and ab = (dc)2 = ((cd)2)c. This latter implies (ab)5 = 1,
hence G0 = 〈a, b〉 ∼= A5. Moreover, since dc = (dc)6 = (ab)3 ∈ G0, we have
cd = dc[c, d] = dcb−1 ∈ G0 and

dbd−1 = cdcd−1 = (cd)2d−2 ∈ G0.

This means that d and cd normalize G0, so G0 C G. So |G : G0| = 2 and d 6∈ G0

since A5 contains no element of order 4. This proves G ∼= S5. Finally, D4 is a central
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involution in H = 〈C,D〉 and H/〈D4〉 maps surjectively to S5. The order of D is
8, thus, the extension is nonsplit and the involution C covers a transposition in
S5.

Lemma 4.2. The permutations

c = (1, 4)(2, 9)(3, 10)(6, 11)(7, 12)(13, 21)(14, 22)(15, 24)(16, 23)(17, 30)
(18, 29)(19, 31)(20, 32)(33, 35)(38, 40),

d = (1, 2, 4, 6, 8, 7, 5, 3)(9, 13, 25, 18, 10, 14, 26, 17)(11, 15, 27, 20, 12, 16,
28, 19)(21, 30, 38, 34, 23, 31, 40, 35)(22, 32, 39, 36, 24, 29, 37, 33)

acting on 40 points satisfy the relations

c2 = d8 = (cd)5 = [c, d]3 = [d4, c]2 = [d4, cdcd−2c] = 1. (4.1)

Moreover, with u1 = d4, u2 = uc1, u3 = ucd1 , u4 = ucdc1 , u5 = ucdcd1 , u6 = ucdcdc1 the
identity u1u2u3u4u5u6 = 1 holds.

Proof. We leave the straightforward calculations to the reader.

Lemma 4.3. The group G = 〈c, d〉 given in Lemma 4.2 satis�es

(#) G has an elementary Abelian normal subgroup J of order 32 such that G/J ∼=
PGL(2, 5) and J is the F2-permutation module modulo its center. Moreover,

[G,G]/[G, J ] ∼= SL(2, 5)

and G splits over [G,G]J .

Proof. We claim that the conjugacy class of u1 = d4 in G is X = {u1, . . . , u6}. It
is immediate that c induces the permutation (u1u2)(u3u4)(u5u6) on X. Moreover,
d centralizes u1 and maps u2 7→ u3, u4 7→ u5. From the last relation in (4.1) follows
ucdc1 = ucd

2

1 , hence ud3 = uc3 = u4. By [d4, c]2 = 1 we have

ucd
4c

1 = cd4cd4cd4c = d4[d4, c]2 = d4 = u1,

thus u2 = uc1 = ucd
4

1 = ud
2

4 = ud5. To see that d acts on X, we need to show that d
centralizes u6:

ud6 = ucdcdcd1 = u
(cd)−2

1 = ud
−1cd−1c

1 = ucd
−1c

1 = ud
−1c

2 = uc5 = u6.

The action of d on X is therefore (u2u3u4u5). This not only shows that X is a
conjugacy class in G, but we also have the action of G on X. Indeed, one shows
by straightforward calculation that c̃ = (12)(34)(56) and d̃ = (2345) satisfy the
relations of S5 from Lemma 4.1. Since the action of S5 on 6 points is unique, we
have G/CG(X) ∼= PGL(2, 5).
As [u1, u2] = [d4, cd4c] = [d4, c]2 = 1 and PGL(2, 5) acts 2-transitively, [ui, uj] = 1

holds for all i, j. This means that J = 〈X〉 is an elementary Abelian 2-group
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and |J | = 32 by u1 · · ·u6 = 1. Using the presentation of 2.S5 from Lemma 4.1,
G/J0

∼= 2.S5. This implies

[G,G]/[G, J ] ∼= [G/J0, G/J0] ∼= 2.A5
∼= SL(2, 5).

Finally, G splits over [G,G]J as c 6∈ [G,G]J .

In the sequel, G will denote a group satisfying (#). We would like to make clear
that it can be shown using the computer algebra system GAP [Gap] that the group
given in Lemma 4.2 is the unique group with this property. However, we hope that
this more general approach will help in future generalization of the constructions
of this chapter.
Among other properties, we show in the next lemma that for our group G, G′ =

[G,G] is a perfect group. Actually, we found G′ by using the library of perfect
groups in the computer algebra system GAP [Gap] and constructed G as a split
extension of G′ by an outer automorphism of order 2.

Lemma 4.4. Let G be a group satisfying (#) and de�ne J0 = [G, J ].

(i) We have G′′ = G′ = [G,G] = [G,G]J and |G : G′| = 2.

(ii) G \ J contains a unique class cG of involutions, and |cG| = 80. In particular,
all involutions of G′ = [G,G] = [G,G]J lie in J .

(iii) Let P be a Sylow 5-subgroup. Then NJ0(P ) = {1} and NG(P ) ∼= C8 n C5.
Moreover, if the subgroup U ≤ G maps onto F20 modulo J then U = NG(P )
or U = NG(P )J0.

Proof. (i) Let V be the permutation F2-module of PGL(2, 5) with basis {u1, . . . , u6}.
Due to the 2-transitivity, the orbit of the element u1 + u2 consists of the elements
ui+uj, i 6= j which are di�erent modulo the center 〈u1 + . . .+u6〉 of V . Hence both
PGL(2, 5) and PSL(2, 5) act transitively on the nonidentity elements of J0 = [G, J ],
which implies that J0 is a minimal normal subgroup in G and [G,G]J . It follows
that J0 = [G′, J0] and G′′/J0 = (G′/J0)′ = G′/J0 by SL(2, 5)′ = SL(2, 5). This
means G′′ = G′. Finally, J ≤ G′ follows from J/J0 = Z(G/J0) ≤ (G/J0)′ = G′/J0.
(ii) Since G splits over G′ = G′J we can take an involution c from G \ G′;

the image of c in G/J ∼= S5 is a transposition. As J is the permutation module
modulo its center, dimF2(CJ0(c)) = 2 and dimF2(CJ(c)) = 3. It is easy to check that
2.S5

∼= G/J0 contains 20 non-central involutions and they are all conjugate.
Let c′ be another involution in G \ J ; we want show that c, c′ are conjugate. For

some g ∈ G, (cJ0)gJ0 = c′J0, that is, cg ∈ c′J0. Hence we can assume c ∈ c′J0,
c′ = cj with j ∈ J0. The element cj has order 2 if and only if j ∈ CJ0(c). On the
one hand, cJ0 ⊆ cCJ0(c). On the other hand,

|cJ0 | = |J0 : CJ0(c)| = 4 = |CJ0(c)| = |cCJ0(c)|.

This implies cJ0 = cCJ0(c) and c
′ ∈ cJ0 . No involution of G′ can be conjugate to c,

hence all involutions of G′ must lie in J . Finally, we show |cG| = 80. As cg ∈ cJ0
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if and only if cg = cj for some j ∈ J0, we have NG(cJ0) = CG(c)J0. Moreover,
CG/J0(cJ0) = NG(cJ0)/J0. Thus,

|G : CG(c)| = |G : NG(cJ0)||CG(c)J0 : CG(c)|
= |G/J0 : CG/J0(cJ0)||J0 : CJ0(c)|
= |(cJ0)G/J0||cJ0| = 20 · 4 = 80.

(iii) P acts �xed point free on the involutions of J0, thus, NJ0(P ) = 1. Moreover,
5 - |J | − 1, hence P centralizes a unique element a ∈ J . Let U be a preimage
of F20 modulo J and put Ū = U/〈a〉, J̄ = J/〈a〉. Then J̄ is a minimal normal
subgroup of Ū . Since F20 = Ū/J̄ acts faithfully on J̄ , we have CŪ(J̄) = J̄ . By
[Hup67, II.3.3. Satz], J̄ has a complement H̄ in Ū , H̄ ∼= F20. Let H be the preimage
of H̄, then H has a unique (hence normal) 5-Sylow and H ∼= C8 n C5. This shows
NG(P ) ∼= C8 nC5. For the last statement, record that U ∩ J0 is either 1 or J0.

The following proposition will apply in all of our examples of Bol loop folders of
exponent 2. We hope that it will also apply in future constructions not considered
here. Recall that O2(G) is the largest normal 2-subgroup of G.

Proposition 4.5. Assume G is a �nite group, J = O2(G) and G+ = G/J ∼= S5.
We denote by g+ the element of S5 corresponding to gJ . Set L = G′J , K1 the
involutions in G \L, K0 a G-invariant subset of J containing 1 such that K0 \ {1}
consists of involutions, and H ≤ G. Set K = K0∪K1, n0 = |K0|, and n1 = |K1∩aJ |
for a ∈ K1. Assume

(a) (J,H ∩ J,K0) is a Bol loop folder of exponent 2.

(b) n0 = 2n1.

(c) |G+ : H+| = 6.

(d) For each a ∈ K1, CH∩J(a) = 1.

(e) Every involution of L is contained in J .

Then (G,H,K) is a Bol loop folder of exponent 2, and |K| = 6n0 = 12n1.

Proof. First K+
1 is the set of transpositions of S5, so |K+

1 | = 10. This implies that
n1 is well de�ned. Indeed, for a, b ∈ K1, aJ, bJ are conjugate, hence K1∩aJ,K1∩bJ
are conjugate in G. Moreover, |K1| = 10n1 and by (b),

|K| = |K0|+ |K1| = 2n1 + 10n1 = 12n1 = 6n0.

Next by (a) and (c),

|G : H| = |G : HJ ||HJ : H| = |G+ : H+||J : J ∩H| = 6|K0| = 6n0,

so |G : H| = |K|.
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We claim xy 6∈ H for distinct x, y ∈ K. If so, as |G : H| = |K|, K is a set of
coset representatives for H in G. Then as K is G-invariant and K \ {1} consists of
involutions, (G,H,K) is a Bol loop folder of exponent 2.
If x, y ∈ J then x, y ∈ K0, so xy 6∈ H by (a). Next K+

1 ∩ H+ = ∅, so if x ∈ J
and y ∈ K1 then (xy)+ = y+ 6∈ H+, so xy 6∈ H. Thus we may take x, y ∈ K1

and xy ∈ H. Now as K+
1 is a set of transpositions in S5, the order of (xy)+ is 1, 2

or 3. Since H+ ∼= F20 has no element of order 3, we get (xy)2 ∈ J . In particular,
D = 〈x, y〉 is a 2-group. Let z be the unique involution in 〈xy〉. By xy ∈ L and (e),
z ∈ H ∩ J . Moreover, x, y commute with z, which contradicts to (d).

Remark 4.6. The fact that (e) is necessary can be seen from the counterexample
G = S5 n J .

Theorem 4.7. Assume G is a group satisfying condition (#) of Lemma 4.3. Let J0

be the minimal normal subgroup of G and put K = J0∪cG. De�ne H = NG(P ) where
P is a 5-Sylow subgroup of G. Then (G,H,K) is a Bol loop folder determining a
simple Bol loop of exponent 2 of order 96. Conversely, if (G,H∗, K∗) is an exponent
2 Bol loop folder then H∗ is a conjugate of H and K∗ = K.

Proof. With the notation of Proposition 4.5, K0 = J0 and K1 = cG. Then n0 = 16,
n1 = |cG∩cJ | = 80/10 = 8 and |G+ : H+| = 6, so (b) and (c) hold. (e) follows from
Lemma 4.4(ii). Since J is elementary Abelian, H ∩ J consists of 1 and the unique
involution of H. This involution cannot be centralized by c, otherwise it would be
central in G = 〈c, P, J〉; hence (d). Finally, H ∩ J is not contained in J0, therefore
J0 is a complement to H ∩ J in J ; showing (a). By Proposition 4.5, (G,H,K) is a
Bol loop folder of exponent 2.
For the converse, we observe that (G,H∗, K∗) determines a Bol loop of exponent 2

with all proper subloops solvable. Thus, by the Main Theorem of [Asc05], H∗ maps
surjectively to F20. By Lemma 4.4(iii), H∗ = H or H∗ = HJ0 up to conjugaction.
In the latter case, the loop has order 6 which is impossible. Again by Aschbacher's
result, cG ⊂ K∗. Finally, if J0 * K∗, then K∗ will contain a conjugate of the
involution of H, which is not possible. This proves the theorem.

As the group given in Lemma 4.2 satis�es (#), we have:

Corollary 4.8. There exists a simple Bol loop of exponent 2 and order 96.

Remark 4.9. The Bol loop folder (G,H,K) of Theorem 4.7 was discovered in-
dependently by B. Baumeister and A. Stein [BS11] (Free University of Berlin), as
well.

4.2. S5-modules over F2

In this section we collect some useful facts about kS5-modules, where k is a �eld of
characteristic 2.
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4.2. S5-modules over F2

Lemma 4.10. The group S5 has three absolutely irreducible representations over
F2: the trivial representation and two representations M,N of dimension 4. The
two 4-dimensional modules can be distinguished by the fact that CM(x) = 0 and
dimF2(CN(x)) = 2 for an element x ∈ S5 of order 3. Moreover, the following hold.

(i) M is the 4-dimensional irreducible component in the 6-dimensional permu-
tation module for S5

∼= PGL(2, 5). Also, let V be the natural 2-dimensional
module of A5

∼= SL(2, 4) over the �eld F4 and σ be semilinear map of V in-
duced by the Frobenius automorphism of F4. Then S5

∼= SL(2, 4)o 〈σ〉 and V
is a 4-dimensional S5-module over F2. The S5-modules M and V are isomor-
phic.

(ii) N is is the 4-dimensional irreducible component in the 5-dimensional permu-
tation module of S5. Also if N is a 4-dimensional orthogonal space of Witt
index 1 over F2, then O(N) = O−4 (2) ∼= S5. Note that N has 5 singular and
10 nonsingular vectors and these are the S5-orbits on N .

(iii) N is absolutely irreducible as A5-module. M is irreducible but not absolutely
as an A5-module, the splitting �eld being F4. In particular, the modules are
nonisomorphic as A5-modules.

(iv) N and M are isomorphic absolutely irreducible projective F20-modules.

Proof. Let us �rst de�ne N,M as irreducible components of the permutation mod-
ules. By [Mor80, Table 1], they are absolutely irreducible. As S5 has 3 classes of
elements of odd order, by [Alp86; Alp86, Theorem 3.2] S5 has no other absolutely
irreducible modules over F2. The properties of N,M can be veri�ed by straight-
forward calculations, the irreducibility as A5 and F20-modules follows again from
[Mor80, Table 1]. We show NF20

∼= MF20 . As F20 has two classes of elements of odd
order, F20 has two absolutely irreducible modules: the trivial one and NF20 coming
from the 2-transitive permutation representation. So if MF20 were not isomorphic
to NF20 then it could be brought to upper triangular form over F̄2, which is clearly
impossible.
It remains to show that NF20 is projective. Since NC4 is isomorphic to the group

algebra F2C4, it is a projective C4-module by [Alp86, Theorem 4.2]. Using [Alp86,
Corollary 9.3], we obtain that N is projective as F20-module.

We observe that these S5-modules can immediately be constructed using the
Steinberg Tensor Product Theorem [Ste68, Theorem 13.1], as well.

We will now construct an S5-module U which will play a central role in the
generalization of our �rst construction of a Bol loop of exponent 2.
Let U = U1 ⊕ U2 be the direct sum of two copies of N as an F2A5-module. As

Ui is an orthogonal space, we can regard U as an orthogonal space which is the
orthogonal direct sum of the two nondegenerate subspaces U1 and U2. The stabilizer
B of {U1, U2} in O(U) is (G1 ×G2)〈τ〉 where

Gi = CO(U)(U3−i) ∼= O(Ui) ∼= S5
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and τ is an involution interchanging U1, U2. Thus B is the wreath product of S5

with C2. In particular, the elements τ and (g1, g2) ∈ G1G2 map u1 ⊕ u2 ∈ U to

(u1 ⊕ u2)τ = u2 ⊕ u1, and (u1 ⊕ u2)(g1, g2) = u1g1 ⊕ u2g2,

respectively. Set
G0 = CG1G2(τ) = {(g, g) | g ∈ S2} ∼= S5,

and let L = [G0, G0] ∼= A5, t0 an involution (transposition) in G0 \ L, t = t0τ , and
D = L〈t〉. Then tτ = τt and the action of t on U is

(u1 ⊕ u2)t = u2c⊕ u1c,

where c ∈ S5 is the transposition corresponding to t0. It is immediate that D ∼= S5.
Set W = CU(τ). Then W is an F2D-submodule of U , and also

W = [U, τ ] = {u+ uτ | u ∈ U1} = {u⊕ u | u ∈ N},

with the map u 7→ [u, τ ] = u + uτ an F2L-isomorphism of U1 with W . If Q is the
quadratic form on U then as Q(u1⊕u2) = Q(u1) +Q(u2) and Q(u) = Q(uτ), [u, τ ]
is singular, so W is totally singular.

Lemma 4.11. With the notation above, we have:

(i) U has 3 irreducible L-submodules, namely U1, U2 and W .

(ii) W is the unique proper D-submodule of U .

(iii) Let P be a Sylow 5-subgroup of D, D1 = ND(P ). Then D1
∼= F20 and U has

precisely 3 D1-submodules W,T1, T2.

(iv) The orbits of D1 on Ti have length 1, 5, 10. In particular, each member of Ti
is �xed by some involution of D1.

Proof. By Lemma 4.10,N is projective as F20-module. Since U/W is a 4-dimensional
irreducible for D1, UD1 splits over WD1

∼= ND1 and hence U = W ⊕ T1 with D1-
submodule T1. Again by Lemma 4.10, NL and ND1 are completely irreducible,
Schur's lemma then implies EndF2L(N) = EndF2D1(N) = F2. We can now apply
[Asc86, (27.14)] to obtain (i) and (iii). (ii) follows from (i). Finally, (iv) holds since
Ti and W are D1-isomorphic and W is the permutation module modulo the cen-
ter.

In the next lemma, we keep using the above notation.

Lemma 4.12. (i) dimCU(t) = 4, CU(t) + T1 = U and CU(t) ∩ T1 = 0.

(ii) Under the action of A5 on the submodules W,U1, U2 of U , the lengths of the
orbits are 1, 5, 10. Let S0, S1, S2 be the orbits of length 5 in W,U1, U2, respec-
tively. Then S = {0} ∪S0 ∪S1 ∪S2 is a (nonlinear) S5-invariant complement
to T1 in U , that is, S + T1 = U .
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Proof. (i) We have D = L〈t〉 ∼= S5. Let us denote the element of S5 corresponding
to a ∈ D by a+, w.l.o.g. we can assume t+ = (12) and P+ = 〈(12345)〉. Then
D+

1 = 〈(12345), (1325)〉. Let b ∈ D such that b+ = (12)(35). Then b ∈ D1 and b
commutes with t and τ . Record that the action of b, t, τ on U is

b : u1 ⊕ u2 7→ u1b
+ ⊕ u2b

+,

τ : u1 ⊕ u2 7→ u2 ⊕ u1,

t : u1 ⊕ u2 7→ u2t
+ ⊕ u1t

+.

De�ne the element c̃ ∈ B by

c̃ : u1 ⊕ u2 7→ u1t
+ ⊕ u2.

Then c̃ commutes with b and τ c̃ = t. Put E1 = 〈t, b〉, clearly E c̃
1 = 〈τ, b〉. On the

one hand, we have

dimF2(CU(E1)) = dim(CU(τ, b))

= dimCCU (b)(τ)

= dimCCU1
(b)⊕CU2

(b)(τ)

= dimCU1(b)

= dimCN(b+) = 2.

We show on the other hand that dimF2(CW (E1)) ≥ 2. Indeed, the S5-modules
W and N are isomorphic and dim(CW (t)) = dim(CN(t+)) = 3. Then CW (E1) =
CCW (t)(b) is of rank at least dim(CW (t))/2 = 3/2.
Now, from dim(CW (E1)) ≥ 2 follows CU(E1) ≤ W . However if CT1(t) 6= 0 then

CT1(E1) 6= 0, contradicting T1 ∩W = 0 and CU(E1) ≤ W .
(ii) We have seen that Si is the set of singular points in Ui for i = 1, 2. The action

of D1
∼= F20 on Si is its natural 2-transitive action on 5 points. D1 ∩ L contains

precisely 5 involutions and each member of Si is �xed by exactly one involution of
D1 ∩ L. Moreover, each member of T1 is �xed by some involution of D1.
We have to show that for distinct x, y ∈ S, x + y 6∈ T1; then S is a complement

to T1 by an order argument. Assume x + y ∈ T1 and denote by a an involution
of D1 �xing x + y. Then x, y are the projections of x + y on Si, Sj, so a �xes the
projections x and y. As T1∩Ui = 0 for 0 ≤ i ≤ 2, x ∈ Si and y ∈ Sj for some i 6= j.
If x ∈ S1 and y ∈ S2, then x and y are the unique �xed points of a in S1, S2. By
aτ = τa, xτ = y holds, and hence x+ y = [x, τ ] ∈ W , contradicting T1 ∩W = 0.
Thus we may take x ∈ S0 and y ∈ S1. Then x = x1 + x2 with xi = Si, and as

x ∈ S0, x2 = x1τ with xi ∈ Si. Now, xi is the unique �xed point of a in Si and y the
unique �xed point of a in S1, so y = x1 and x+ y = x1 +x2 + y = x2 ∈ T1∩U2 = 0,
a contradiction.
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4.3. An in�nite family of simple Bol loops of

exponent 2

In this section, G denotes a group satisfying condition (#) of Lemma 4.3, H is the
normalizer of a 5-Sylow P of G, c an involution from G\[G,G]J . The S5-modules N
and U are de�ned as in Section 4.2. Also U = U1⊕U2 = T1⊕T2 where U1, U2 are A5-
submodules, and T1, T2 are F20-submodules. Moreover, U1, U2, T1, T2 are di�erent
from the unique S5-submodule W of U . All these subspaces are irreducible F2P -
modules, which implies Ui ∩ Tj = 0.
Let us �x a positive integer k and put

U = Uk, Ui = Uk
i , Ti = T ki , W = W k.

Clearly, W is a S5-submodule and U = U1⊕U2 = T1⊕T2. We write G = GnU
where J / G acts trivially on the S5-module U . Moreover,

J = O2(G ) = 〈J,U 〉.

We will consider the elementary Abelian subgroup J of G as an S5-module over
the �eld F2. In particular, with some abuse of notation, we will denote the group
operation on J additively and write J = J + U , etc. It is easy to see that

G /J ∼= S5 and soc(G ) = J0 + W .

Moreover, since J0 andW are non-isomorphic S5-modules, J0⊕W does not contain
diagonal submodules. This implies that for any minimal submodule M of J , we
either have M = J0 or M ≤ W .
The action of the involution c ∈ G\J on U equals the action of the transposition

(12) ∈ S5, hence c interchanges U1,U2. This implies |CU (c)| = 16k and |cU | = 16k;
that is, U is transitive on the involutions in cU . As G ∼= G /U is transitive on the
80 involutions in G \ J , and as U is transitive on the 16k involutions on cU , G is
transitive on the 80 · 16k involutions in G \J .
Using Aschbacher's Main Theorem [Asc05] we conclude that a Bol loop folder

(G ,H ,K ) must have the following properties: The index of H has to be 96 · 16k,
that is, H must have order 40 · 16k. The set of involutions K is the union of cG

and K ∩J , thus, |K ∩J | = 16 · 16k.
There are very many possible choices for H and K .The most obvious choice is

the following.

Proposition 4.13. Put H = H nT1 and K = cG ∪ (J0⊕W ). Then (G ,H ,K )
is a Bol loop folder. Moreover, the homomorphism G → G with kernel U induces
a surjective homomorphism between the loop folders (G ,H ,K ) and (G,H,K).
In other words, the Bol loop corresponding to (G ,H ,K ) is an extension of the
elementary Abelian group of order 22k by the loop corresponding to (G,H,K).
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Proof. We apply Proposition 4.5, (a), (c) and (e) are trivial. (b) follows from

n1 = |cG ∩ cJ | = |CJ (c)| = 8|CU (c)| = 8 · 16k

and n0 = |J0||W | = 16 · 16k = 2n1. For (d), we use

CH ∩J (c) = CH∩J+T1(c) = CH∩J(c) = 1,

as by Lemma 4.12, T1 ∩T c
1 = 0.

In the rest of this section, for each integer k ≥ 1, we modify these H and K
such that the resulting loop will be simple. Let U∗ be a copy of U in U such that
U = U∗⊕Uk−1. We denote the subspaces corresponding to Ti, Ui,W by T ∗i , U

∗
i ,W

∗.
Let us de�ne the set S ⊆ U as in Lemma 4.12(ii) and let S∗ be the corresponding
subset of U∗. In order to construct the new K , we simply replace W ∗ by S∗.
Let ψ : J0 → T ∗1 be an isomorphism of F20-modules and de�ne

Tψ = {v + ψ(v) + u | v ∈ J0, u ∈ T k−1
1 }.

Then Tψ is normalized by H and we de�ne the new subgroup H of G by H =
H nTψ.

Theorem 4.14. Let H = H nTψ, W̃ = (W \W ∗)∪S∗ and K = cG ∪ (J0 + W̃ ).
Then the triple (G ,H ,K ) is a Bol loop folder such that the corresponding Bol loop
is simple of exponent 2.

Proof. Again, the �rst statement follows from Proposition 4.5 and Lemma 4.12; one
needs to verify hypothesis (a) and (d) of the Proposition only. Again (d) follows
from T1 ∩ T c1 = 0.
We prove (a) by showing that K0 = K ∩H J is a transversal to H in H J .

Since K0 ⊂J , this is equivalent with the fact that K0 = J0 + W̃ is a complement
of the subspace

H ∩J = H ∩ J + Tψ

in J , i.e.

K0 + H ∩J = J .

In order to show this, we use the identities

W + T1 = U ,

J0 + Tψ = J0 + T1,

J0 + H ∩J = J0 +H ∩ J + Tψ

= J0 +H ∩ J + T1.
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Then

J0 + W + H ∩J = J0 + W +H ∩ J + Tψ

= J0 + W +H ∩ J + T1

= J0 + U +H ∩ J
= J + U

= J ,

that is, J0 + W is a complement to H ∩J in J by the order argument |J0 +
W ||H ∩J | = |J |.
We constructed W̃ from W by deleting the minimal submoduleW ∗ and replacing

it by S∗. Therefore, it is enough to show that this deformations of W do not change
the property of being a complement.

J0 +W ∗ + H ∩J = J0 +W ∗ +H ∩ J + Tψ

= H ∩ J + J0 +W ∗ + T1

= H ∩ J + J0 +W ∗ + T ∗1 + T1

= H ∩ J + J0 + S∗ + T ∗1 + T1

= J0 + S∗ +H ∩ J + Tψ

= J0 + S∗ + H ∩J

This proves (a), hence (G ,H ,K ) is a Bol loop folder.
It remains to show that the Bol loop Q corresponding to (G ,H ,K ) is simple.

Let us therefore assume that Q → Q] is a nontrivial surjective loop homomor-
phism and let (G ],H ],K ]) be the loop folder of Q]. Then we have a surjective
homomorphism α : G → G ] with α(H ) = H ] and α(K ) = K ]. Let N = kerα
and c] = α(c) = cN . On the one hand, H ] is core-free, thus,

coreG (H N ) = N . (4.2)

On the other hand, N ≤J since otherwise H N = G and Q] = 1.
Let us �rst assume that J0 ≤ N . Since

J/J0 ≤ Z(G /J0) C G /J0 and J/J0 ≤H N /J0,

we have J ≤ N by (4.2). In this case the image G] of G ≤ G is a homomorphic
image of G/J ∼= S5. Furthermore, if [c], c]

g
] = 1 then c]c]

g
normalizes a Sylow

5-subgroup of G], thus, c]c]
g
is contained in a conjugate of H ], and hence c] = c]

g

in this case. As the commuting graph of transpositions in S5 is connected, c] = c]
g

for all g. This means [c,G ] ≤ N , contradicting to N ≤J .
Let us now assume J0 � M and let M be a minimal normal subgroup of G

contained in N . Then M ≤ soc(G ) = J0 + W . Since J0 and W are non-isomorphic
S5-modules, J0 + W contains no submodules isomorphic to J0 and di�erent from
J0. This implies M ≤ W and, in particular, N ∩W 6= 0.
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Let us take an element s ∈ S∗ \W ∗ ⊆ K . As W ∗ and T ∗0 are complements in U∗,
s 6= 0 has the unique decomposition s = w + t with 0 6= w ∈ W ∗ and 0 6= t ∈ T ∗1 .
Furthermore, for 0 6= j = ψ−1(t) ∈ J0, j + t ∈ Tψ ≤ H holds. We claim that
j + t ∈ N . Indeed, we have the decomposition

w = (s+ j) + (j + t), s+ j ∈ K , j + t ∈H .

If N ≤ U∗ then M = W ∗ and α(s+ j) = α(j + t) ∈ K ] ∩H ] = 1. In particular,
j+t ∈ N . If N � U∗ then for an arbitrary element n ∈ (N ∩W )\U∗, w+n ∈ K .
This means that the element α(w) has two H ]K ] decompositions:

α(w) = α(w + n) + 0 = α(s+ j) + α(j + t).

This is only possible if j + t ∈ N , thus our claim is proved.
Let M ′ be the S5-submodule generated by j + t, then J0 ≤ M ′ ≤ N as the

irreducible J0 is not S5-isomorphic to a submodule of U∗. This contradiction proves
the simplicity of Q.

Remark 4.15. We have seen that there are at least two possibilities for the choice
of H . Also in W̃ , we can replace any minimal submodule W ∗∗ by an appropriate
S∗∗. This shows that there are many Bol loops of exponent 2 which live in the same
non-solvable group. Many of these loops are simple. Using computer calculations,
we were able to construct over 30 nonisomorphic simple Bol loops of exponent 2 in
G in the case k = 1.

In fact, this phenomena in not unusual for Bol loops of exponent 2. In [KN02,
Section 5] and [Nag06, Theorem 5.5], the authors constructed rich classes of Bol
loops of exponent 2 having the same enveloping groups, namely the wreath product
Cn

2 o C2 and the extraspecial 2-group E+
22n+1 , respectively. In these cases, a simple

parametrization of the conjugacy classes of involutions enabled a description of
the associated loops. Unfortunately, the group G has many conjugacy classes of
involutions and these classes have no nice algebraic parametrization. Therefore, we
see no way of classifying all simple Bol loops with enveloping group G .
The above remark lets us make another observation. While the class of �nite

Bol loops of exponent 2 is very rich, the structure of the right multiplication group
of a Bol loop of exponent 2 is rather restricted. Di�erently speaking, while the
classi�cation of �nite simple Bol loops of exponent 2 seems to be hopeless, we
think that the classi�cation of right multiplication groups of such loops could be a
meaningful project.

We �nish this chapter with the following

Problem 4.16. Classify those almost simple groups T for which an exponent 2 Bol
loop folder (G,H,K) exists such that T ∼= G/O2(G).
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5. Three results on �nite simple

Bol loops

At the LOOPS'07 conference in Prague, the author of this dissertation received the
following questions on simple Bol loops.

Question 5.1 (A. Greil, München). Let Q2 be the 2-dimensional simple Bruck loop
de�ned on the hyperbolic plane and let Q3 be the 3-dimension simple Bol G-loop
obtained by the exact factorization of PSL2(R). Is Q2 isomorphic to a subloop of
Q3?

Question 5.2 (V. Shcherbacov, Chi³in u). Let Q be a �nite Bol loop which admits
a �xed-point-free automorphism of prime order. Is then Q solvable?

Question 5.3 (H. Kiechle, Hamburg). Are there �nite non-associative Bol loops
with transitive automorphism groups?

It turns out that all questions have negative answers. Question 3 was recently an-
swered by M. Aschbacher [Asc06, Theorem 1]. Aschbacher's proof is almost purely
group theoretical, and uses many deep results from the theory of �nite groups in-
cluding the classi�cation of �nite 2-transitive groups. In this chapter, we will present
a new proof for the non-existence of �nite Bol loops with transitive automorphism
group. This proof is of combinatorial nature, it uses a deep classi�cation theorem
[CK93, Theorem 1 and 3] of P. J. Cameron and G. Korchmáros concerening 1-
factorizations of complete graphs with a doubly transitive automorphism group.
Of course, the Cameron-Korchmáros proof also relays on the classi�cation of �nite
2-transitive groups. The possibility of the combinatorial argument was �rst pointed
out in [Nag01].

We �nish this chapter with a few open problems which are related to simple Bol
loops. The content of this chapter is included in [Nag08b]. Theorem 5.7 supports
the second claim in Thesis 2.
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5.1. 2-dimensional subloops and exact

factorizations

The hyperbolic plane loop (1.4) can be given by the loop folder (G2, H2, K2), where

G2 = PSL2(R),

H2 =

{
±
(

cos t sin t
− sin t cos t

)
| t ∈ R

}
,

K2 =

{
±
(
a b
b c

)
| a > 0, ac− b2 = 1

}
.

Observe that K2 is given by positive de�nite symmetric matrices. The polar decom-
position of real matrices implies that K2 is a system of right coset representatives of
H2 in G2 with aba ∈ K2 for a, b ∈ K2. The triple (G2, H2, K2) is a Bol loop folder;
we will denote the associated Bol loop by Q2. Clearly, the loop folder (G2, H2, K2)
is faithful.
LetM be a proper subgroup of PSL2(R) containing H2. Since the 2-dimensional

subgroups of PSL2(R) are the Borel subgroups and H2 is not contained in any
Borel subgroup, dim(M) = 1 and H2 is the connected component of M . Moreover,
straightforward calculation shows that NG2(H2) = H2. Therefore M = H2 is a
maximal subgroup of G2 = PSL2(R).

Lemma 5.4. Let (G0, H0, K0) be a Bol loop folder such that G0 = 〈K0〉 and let us
assume that the associated Bol loop is isomorphic to the 2-dimensional hyperbolic
loop Q2. Then H0 is a maximal subgroup of G0.

Proof. As the loop folder (G2, H2, K2) of Q2 is faithful, we have a surjective homo-
morphism G0 → G2 mapping H0 to H2. The kernel coreG0(H0) of this homomor-
phism is contained in H0. Since H2 is maximal in G2, the lemma follows.

Let τ = (G,A,B) be an exact factorization triple and de�ne
G = G×G,
H = A×B,
K = {(x, x−1) | x ∈ G}.

(5.1)

Let Q be the corresponding Bol loop. Then, the underlying set of Q can be
naturally identi�ed with the underlying set of the group G. In particular, if G,A,B
are Lie groups then Q is a di�erentiable loop and dim(Q) = dim(G).

Lemma 5.5. Let (G,A,B) be an exact factorization triple and de�ne the loop
folder (G,H, K) and the loop Q as in (5.1). Put A∗ = A × G, B∗ = G × B and
KA = A∗ ∩K, KB = B∗ ∩K. Then,

(A∗,H, KA) and (B∗,H, KB)

are subloop folders of (G,H, K) and the associated subloops are isomorphic to A
and B, respectively.
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Proof. Let us �rst observe that

KA = {(b, b−1) | b ∈ A}

and that (G,B,A) is a Bol loop folder corresponding to the group A. De�ne the
projections πi : G = G × G → G. Then π2 maps A∗ to G, H to B and KA to A,
that is, π2 induces a homomorphism between the loop folders

(A∗,H, KA) and (G,B,A).

Moreover, kerπ2∩A∗ = A×1 ≤ H, hence (A∗,H, KA) and (G,B,A) determine the
same loop. Finally, (G,B,A) and (〈A〉, A ∩ B,A) = (A, 1, A) determine the same
loop again, which is isomorphic to the group A. Similar argument proves that the
subloop corresponding to the loop folder (B∗,H, KB) is isomorphic to B.

Let us now put G = PSL2(R),

A =

{
±
(

cos t sin t
− sin t cos t

)
| t ∈ R

}
,

B =

{
±
(
a b
0 a−1

)
| a ∈ R \ {0}, b ∈ R

}
of G. Let (G3,H3, K3) be the Bol loop folder de�ned by (5.1) and let us denote by
Q3 the associated simple di�erentiable Bol G-loop; dim(Q3) = 3. As the loop folder
(G3,H3, K3) is faithful we can identify G3,H3 and K3 with RMlt(Q3),RInn(Q3) and
RSec(Q3), respectively.

Theorem 5.6. The 3-dimensional simple Bol G-loop Q3 has no subloop isomorphic
to the 2-dimensional hyperbolic loop Q2.

Proof. Let us assume that the subloop Q̃ ≤ Q3 is isomorphic to Q2 and de�ne the
set

K̃ = {Rx | x ∈ Q̃}

of right multiplication maps corresponding to the elements of Q̃. Put G̃ = 〈K̃〉 and
H̃ = G̃ ∩ H3, then (G̃, H̃, K̃) is a loop folder for Q̃ satisfying G̃ = 〈K̃〉. By Lemma
5.4, H̃ is a maximal subgroup in G̃.
De�ne the subgroups

M = {(a, c) | a ∈ G, c ∈ B} and M̃ = G̃ ∩M

of G3. SinceM ∼= G×B, dim(M) = 5 and dim(M̃) ≥ dim(G̃)−1. However,H3 ≤M
implies H̃ ≤ M̃ . As dim(H̃) = dim(G̃)− 2, we obtain that M̃ contains H̃ properly.
This is only possible if M̃ = G̃, that is, G̃ ≤M .
By Lemma 5.5, (M,H3,M∩K3) is a subloop folder and the corresponding subloop

is isomorphic to the group B. As Q̃ is not isomorphic to a subgroup of B, we
obtained a contradiction.
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5.2. Finite simple Bol loops with �xed-point-free

automorphisms

By Thompson's famous result [Tho59, Theorem 1], �nite groups with �xed-point-
free automorphisms of prime order are nilpotent. This motivated Victor Shcherba-
cov's Question 5.2; the answer relays on the smallest simple Bol loop of exponent
2.

Theorem 5.7. Let us de�ne G,H,K as in Theorem 4.7 and let Q be the simple
Bol loop corresponding to the loop folder (G,H,K). Let a be an element of order
5 in H and let us denote by α the inner automorphism of G induced by a. Then
Hα = H and Kα = K, thus, α induces an automorphism α̃ of Q. The order of α̃
is 5 and it has no �xed point in Q \ {1}.

Proof. As K is invariant under conjugation in G, α acts on K. Clearly, Hα = H,
thus, α̃ is well de�ned. The action of α̃ is equivalent with the action of α on K.
It is therefore enough to show that a does not centralize any element of K \ {1}.
However, if y ∈ K∩CG(a) then y ∈ H = NG(〈a〉) which implies y = 1 = K∩H.

5.3. A new proof on �nite Bol loops with

transitive automorphism group

In this section, we give a new proof for the non-existence of �nite Bol loops with
transitive automorphism groups. The hard part of the proof is when the loop has
exponent 2. We relate this case to 1-factorization of complete graphs and apply
deep results of P. J. Cameron and G. Korchmáros [CK93, Theorem 1 and 3] on the
automorphism groups of 1-factorizations.
Let Q denote a �nite Bol loop such that Aut(Q) acts transitively on Q] = Q\{1}.

It is well known that Bol loops are power-associative. Therefore, the orders of
elements are well de�ned and in the case of a �nite Bol loop, the orders divide the
order of the loop. In particular, each element of Q] has order p for some prime p.
Let us �rst consider the case when p is odd.
The next lemma is rather folklore, as well. It is more general and can be useful

in other context, too.

Lemma 5.8. Let Q be a �nite right Bol loop in which every non-trivial element
has order p for some odd prime p. Then RMlt(Q) is a p-group and Q is solvable.

Proof. Let G be the subgroup of RMlt(Q)× RMlt(Q) which is de�ned by the set

{(Rx, R
−1
x ) | x ∈ Q}.

Due to the right inverse property of Q, the map σ : (x, y) 7→ (y, x) leaves G
invariant, hence σ ∈ Aut(G). We consider σ as an element of the semidirect product
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G n 〈σ〉 and claim that the conjugacy class σG consists of the elements σ(Rx,R
−1
x ).

Indeed, using
σ(Rx,R

−1
x ) = σ(Rx2 , R

−1
x2 ), (5.2)

one can show by a somewhat tedious calculation that

σ(Rx,R
−1
x )(Ry ,R

−1
y ) = σ(Rz ,R

−1
z )

holds with z = ((yx2)y)
1
2 . Notice that x 7→ x

1
2 is well de�ned since every element

has odd order.
As the orders of the elements x,Rx and (Rx2 , R

−1
x2 ) are the same odd prime p, we

see that the product of two conjugates of σ has always odd order p. By [Fis64, Satz
4.1], the order of G is a power of p. This implies RMlt(Q) to be a p-group since
it is a homomorphic image of the G. We still have to show that Q is solvable. As
RMlt(Q) is nilpotent, the right inner mapping group of Q is contained in a normal
subgroup N of RMlt(Q). It is straightforward to show that the map

Q→ RMlt(Q)/N, x 7→ RxN

is a surjective homomorphism from Q to the p-group RMlt(Q)/N . Since the latter
is solvable, Q is solvable as well.

Remark 5.9. The above lemma holds also for right Bol loops in which the orders
of the elements are powers of p; the proof can be used without any change. It was
open for a long time if the solvability of Q can be strengthened to nilpotence. The
fact that this is not possible was shown by T. Foguel and M. Kinyon [FK10] who
constructed a right Bol loop of order 27 and exponent 3 with trivial center.

We can now come to the case of Bol loops of odd order with transitive automor-
phism groups.

Lemma 5.10. Let Q be a �nite right Bol loop with a transitive automorphism
group. Assume that every element of Q has order p with odd prime p. Then Q is
an elementary abelian p-group.

Proof. Let Q′ denote the commutator-associator subloop of Q. By Lemma 5.8, Q′

is properly contained in Q and Q\Q′ 6= ∅. As Q′ is a characteristic normal subloop
of Q, we obtain that all non-trivial elements are in Q \ Q′, thus Q′ = 1. Hence, Q
is an abelian group in which every element have the same order. This proves the
lemma.

Let us now turn to the much harder case when Q consists of elements of order
2. For this, we need the concept of 1-factorization of graphs. (Which is also called
a minimal edge coloring.)

De�nition 5.11. Let Γ = (V,E) be a �nite simple graph. A subset F ⊆ E of edges
of Γ is a 1-factor if for any v ∈ V there is a unique edge e ∈ F containing v. A
1-factorization of Γ is a partition of the set E of edges into 1-factors F1, . . . , Fk.

55

               dc_821_13



5. Three results on �nite simple Bol loops

It is easy to see that the 1-factors of Γ correspond to the involutorial permuta-
tions of the set V of vertices. Let n be a positive even integer, put V = {1, . . . , n}
and denote by Kn the complete graph on V . Let F = {F1, . . . , Fn−1} be a 1-
factorization Kn. Let UF be the set consisting of idV and the involutorial permuta-
tions u1, . . . , un−1 corresponding to the 1-factors F1, . . . , Fn−1, respectively. Then U
is a sharply transitive set on V , that is, for each x, y ∈ V , there is a unique element
u ∈ U with xu = y.
Conversely, let U = {idV , u1, . . . , un−1} be a sharply transitive set on V =
{1, . . . , n} such that u2

i = idV for each i = 1, . . . , n − 1. Then, the correspond-
ing 1-factors determine a 1-factorization of Kn. The following picture illustrates
the correspondence between the 1-factorization of the complete graph K4 and the
involutions of the elementary abelian group of order 4.

(12)(34)

(13)(24)

(14)(23) u4

u1

u 3

u 2

�
�
�
�
�@

@
@
@
@

The next lemma explains the relationship between Bol loops of exponent 2 and
1-factorizations of the complete graphs.

Lemma 5.12. Let Q be a �nite Bol loop of exponent 2 such that Aut(Q) acts
transitively on Q] = Q \ {1}. Then the set of right multiplication maps of Q deter-
mines a 1-factorization F of the complete graph Kn with n = |Q|. Moreover, the
automorphism group of F acts doubly transitively on the vertices of Kn.

Proof. Clearly, the set of right multiplication maps of Q consists of involutions and
forms a sharply transitive set on Q. Let us identify the elements of Q and the
vertices of the complete graph Kn. The 1-factor can be indexed with the elements
of Q]: For x ∈ Q], the 1-factors Fx consists of the edges {y, yx}, y ∈ Q.
Let us take an arbitrary element a ∈ Q, then

FRa
x = {{y, yx} | y ∈ Q}Ra

= {{ya, (yx)a} | y ∈ Q}
= {{ya, (((ya)a)x)a = (ya)((ax)a)} | y ∈ Q}
= F(ax)a.

Thus, every right multiplication map Ra is an automorphism of F . Similarly, one
shows that for any α ∈ Aut(Q), Fα

x = Fxα holds. This implies

RMlt(Q),Aut(Q) ≤ Aut(F ).

Let G be the subgroup of Sym(Q) generated by RMlt(Q) and Aut(Q); clearly G is
transitive on Q and G ≤ Aut(F ). Moreover, the stabilizer G1 of 1 contains Aut(Q),
hence G is doubly transitive on Q.
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We are now able to proof our theorem.

Theorem 5.13. Let Q be a �nite right Bol loop and assume that Aut(Q) acts
transitively on Q] = Q \ {1}. Then Q is an elementary abelian p-group for some
prime p.

Proof. We have seen that all non-trivial elements of Q have prime order p. Lemma
5.10 proves the theorem in the case p > 2. Assume p = 2 and suppose that Q is not
elementary abelian. Then by Lemma 5.12, we construct a unique 1-factorization F
of the complete graph Kn with n = |Q| such that Aut(F ) is doubly transitive on
the vertices. [CK93, Theorem 3] implies that n = 6, 12 or 28 and in all cases F
is unique. As the construction of the 1-factorization is explicitely given in [CK93,
Proposition 3], it is straightforward to verify that these 1-factorizations do not
correspond to Bol loops. This contradiction proves our theorem.

5.4. Open problems on simple loops

In this section, we propose �ve problems which are related to simple Bol loops.
The �rst two problems were proposed by the author at the LOOPS'07 conference
in Prague.

Problem 5.14. Are there simple Bol loops which are neither G-loops nor isotopes
of Bruck loops?

Problem 1 is not reduced to �nite Bol loops. By the author's best knowledge
all known simple Bol loops are either G-loops or isotopes of Bruck loops. Here by
Bruck loop we mean a right Bol loop with the automorphic inverse property. We
mention that all groups and all known simple Moufang loops are G-loops.
A su�cient but not neccesary condition of the simplicity of a loop is that its

right multiplication group acts primitively. Trivial examples of simple loops with
imprimitive right multiplication groups are non-abelian simple groups. For non-
associative simple Moufang loops, the left, right and full multiplication groups
coincide, hence they act primitively on the loop. All known non-Moufang �nite
simple Bol loops have imprimitive right multiplication group. This motivates the
following question.

Problem 5.15. Is there a �nite simple non-Moufang Bol loop where the right
multiplication group acts primitively on the loop?

The �rst step towards settling Problem 2 can be the following result of E. K.
Loginov [Log07]: If the right multiplication group of a Bol loop Q is a �nite simple
group of Lie type then Q is a �nite simple group. Moreover, as Bol loops of prime
power order are solvable, RMlt(Q) cannot be a primitive group of a�ne type.
The next problem is folklore for di�erent loop classes. Lagrange's Theorem was

shown for �nite Moufang loops by A. Grishkov and Zavarnitsine [GZ05]. It is known
that in an equationally de�ned class of loops, the problem can be reduced to simple
loops.
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Problem 5.16. Does Lagrange's Theorem hold for �nite Bol loops?

Let O be a non-degenerate octonion algebra over the �eld k. It is well known that
modulo the center, the elements of norm 1 form a simple Moufang loop; we call
them classical. Liebeck's theorem [Lie87b] says that all �nite simple non-associative
Moufang loops classical with �nite ground �eld. This result was recently extended
to locally �nite simple Moufang loops by J. I. Hall [Hal07]. Moreover, it also holds
for di�erentiable Moufang loops, see [HS90, IX.6.31. Theorem]. However, no non-
classical simple Moufang loops are known.

Problem 5.17. Do there exist non-classical in�nite simple Moufang loops?

Our last problem was proposed by M. Kinyon at the Mile High Conference 2007
in Denver. It is not directly related to Bol loops. The loop Q is said to be an A-loop
if all inner maps of Q are automorphisms of Q. Clearly, all groups are A-loops.

Problem 5.18. Do there exist �nite simple non-associative A-loops?
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Let G be an algebraic group over an algebraically closed �eld k with closed subgroup
H and closed subset K and assume that for each conjugate Hg of H in G, the map

Hg ×K → G, (h, k) 7→ hk

is a biregular morphism. Then the triple (G,H,K) is an algebraic loop folder and
the corresponding loop L is a strongly algebraic loop.
There is a more natural de�nition of the concept of algebraic loops, see [Nag03].

A loop L is algebraic if L is an algebraic variety over an algebraically closed �eld k
with regular morphisms

m : L× L→ L, φ : L× L→ L, ψ : L× L→ L,

such that the identities

x = m(e, x) = m(x, e) = m(y, φ(y, x)) = m(ψ(x, y), y) (6.1)

hold for all x, y ∈ L and some �xed e ∈ L. In this case m(x, y) = x · y is the
loop product and ψ(x, y) = x/y, φ(x, y) = y\x are the right and left divisions,
respectively.
If the morphisms m,ψ, φ are well de�ned rational maps from L × L → L such

that the identities (6.1) hold on a Zariski-open subset of L × L then we shall call
L a local algebraic loop.
In this chapter, we examine the class of algebraic right Bol loops. We explain the

relations between the classes of algebraic, strongly algebraic and local algebraic Bol
loop. We will show some structure theorems and give many examples.

The results of this chapter have appeared in [GN11].

6.1. Algebraic vs. strongly algebraic loops

One of the main questions in the theory of algebraic loops for a given class of loops
is the equivalence of the notion of algebraic and strongly algebraic loops.
It is known that via the localization process, any algebraic group determines a

formal group. This method works for the class of local algebraic loops, as well, see
[Nag02]. A formal algebraic loop over the �eld k is a system

µ(X,Y ) = (µi(X1, . . . , Xn, Y1, . . . , Yn)), i = 1, . . . , n
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of formal power series in 2n variables over k such that the identities

µ(X,0) = µ(0,X) = X

hold. The integer n is the dimension of the formal loop. If the formal loop µ is the
localization of a local Bol loop, then it clearly satis�es the formal Bol identity

µ(X,µ(µ(Y ,Z),Y )) = µ(µ(µ(X,Y ),Z),Y ).

Moreover, any algebraic automorphism of an algebraic loop induces an automor-
phism of the associated formal loop.
A �nite dimensional R-vector space B with trilinear operation (., ., .) and bilinear

operation [., .] is a Bol algebra if

(x, y, y) = 0, (x, y, z) + (y, z, x) + (z, x, y) = 0

((x, a, b), y, z) + (x, (y, a, b), z) + (x, y, (z, a, b)) = ((x, y, z), a, b)

([x, y], a, b) = [(x, a, b), y]− [x, (y, a, b)] + ([a, b], x, y) + [[a, b], [x, y]]

holds for all x, y, z, a, b ∈ B. L. Sabinin [Sab99] developed a complete theory for local
di�erentiable Bol loops. [Sab99, 5.34 Proposition] says that local di�erentiable right
Bol loops are functorially equivalent to Bol algebras. This functorial equivalence
works perfectly between �nite dimensional Bol k-algebras and formal Bol loops
over �elds of characteristic 0. In particular, the automorphisms of a formal Bol
loop over a �eld of characteristic 0 correspond biuniquely to linear automorphisms
of the tangent Bol k-algebra. Let X be a variety and G be a group consisting of
algebraic transformations of X. We de�ne connectedness and dimension of G as in
[Ram64].

Lemma 6.1. Let L be a global algebraic Bol loop over an algebraically closed �eld k
of characteristic 0 and G a connected group consisting of algebraic automorphisms
of L. Then G is biregularly isomorphic to a closed subgroup of GLn(k) where n =
dim(L). In particular, G is �nite dimensional and has a unique structure of an
algebraic transformation group on L.

Proof. Let α be an algebraic automorphism of L and denote by µ(X,Y ) the formal
Bol loop associated to L. As α(e) = e, it has a localization α(T ) which is a formal
automorphism of µ. The action of α on the tangent Bol algebra is given by the
Jacobian (∂α

i

∂T j
(0)) ofα. Hence, we have an algebraic embedding ϕ ofG intoGLn(k).

Let us de�ne the action of G on GLn(k) by Xg = Xϕ(g). By [Ram64, Lemma 2],
the orbit of 1 is a locally closed subvariety of GLn(k). On the one hand, this orbit is
precisely Imϕ. On the other hand, Imϕ = Imϕ by [Hum75, Proposition 7.4.A].

The main result of this sections is the following.

Theorem 6.2. Let L be a connected algebraic Bol loop over a �eld k of character-
istic 0. Then the right multiplication group RMlt(L) of L is a connected algebraic
group; in particular, L is a strongly algebraic loop.
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Proof. For any x ∈ L, we de�ne the algebraic transformation αx = (R−1
x , LxRx) on

L×L. Let G be the group generated by the connected algebraic family {αx | x ∈ L},
then G is itself connected. It is easy to see that any element (β1, β2) of G can be
uniquely extended to an autotopism (β1, β2, β3) of L. Hence, the stabilizer G(e,e)

of (e, e) ∈ L × L is contained in Aut(L). We show that G is �nite dimensional of
dimension at most n2 + 2n where n = dim(L). Let {ϕt | t ∈ T} be an injective
family of elements of G with connected variety T of dimension N > n2 + 2n. By
[Ram64, Lemma 2], X = {ϕt(e, e) | t ∈ T} is a locally closed subvariety of L × L.
The set {t ∈ T | ϕt(e, e) = (e, e)} is a closed subvariety of T , let T0 be a connected
component of maximal dimension. As dimT0 + dimX = dimT and dimX ≤ 2n,
we have dimT0 > n2. However, {ϕt | t ∈ T0} is a connected injective algebraic
family in Aut(L), hence a subset of GLn(k) by Lemma 6.1, a contradiction. The
main theorem of [Ram64] implies the claimed result.

Clearly, if RMlt(L) is an algebraic transformation group on L, then L can be
given by the algebraic loop folder (G,H,K) where G = RMlt(L), H = RInn(L)
and K = {Rx | x ∈ L}. Indeed, the decomposition G → H × K, g 7→ hRx

with x = eg, h = gR−1
x is a biregular bijection between G and H × K. This

implies that in this case, L is strongly algebraic. Conversely, let L be given by a
connected algebraic loop folder (G,H,K). We do not destroy the algebraic property
of the folder by assuming that H does not contain a proper normal subgroup of G.
Then, by identifying L with the coset space G/H, G can be seen as an algebraic
transformation group acting on L. Moreover, every right multiplication map of
L will be contained in G. Since K is connected, it generates a closed connected
subgroup of G, hence RMlt(L) is a connected algebraic transformation group.

Corollary 6.3. Let L be an algebraic Bol loop over an algebraically closed �eld k
of characteristic 0. Then L is a strongly algebraic loop.

Unfortunately, Lemma 6.1 does not hold when char(k) > 0. More precisely, a
connected group of automorphisms of L can have in�nite dimension. The rest of
the proof works �ne. Therefore we have the following

Conjecture 6.4. Let L be a connected algebraic Bol loop over an algebraically
closed �eld k. Then RMlt(L) is an algebraic transformation group. In particular,
every algebraic Bol loop is strongly algebraic.

From the proof of Theorem 6.2 follows that in order to show the strong algebraic
property, it is su�cient to study the right inner mapping group of an algebraic Bol
loop.

Proposition 6.5. Let L be an algebraic Bol loop over an algebraically closed �eld
k and assume that the right inner mapping group H = RInn(L) of L is �nite
dimensional. Then L is strongly algebraic.
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6.2. Simple algebraic and local algebraic Bol loops

Throughout this section k denotes an algebraically closed �eld. As all known alge-
braic Bol loops are strongly algebraic, in the following examples, we will often skip
the adjective �strongly�. It is known that given any algebraic group G with closed
normal subgroup S, one can give the abstract group G/S the structure of (a�ne)
algebraic group, see [Hum75, Section 11 and 12]. This problem is rather subtle al-
ready for algebraic groups, and in general the solution is not known for algebraic
loops. The next theorem gives a solution for strongly algebraic loops, that is, for
loops given by algebraic loop folders. The normality condition for loop folders was
given in [Asc05, (2.6)]. A subfolder (G0, H0, K0) corresponds to a normal subloop
if and only if

(NC) for each g ∈ G, k0 ∈ K0 and k ∈ K, k0k = l0k
′ for some l0 ∈ Hg ∩ G0 and

k′ ∈ K.

In particular, K0K ⊆ H0K holds.

Theorem 6.6. Let (G,H,K) be an algebraic loop folder with corresponding loop
L. Let N be a closed normal subloop of L. Then there is an algebraic loop folder
(Ḡ, H̄, K̄) such that the corresponding algebraic loop L̄ is isomorphic to the abstract
factor loop L/N . Moreover, the natural homomorphism L→ L̄ = L/N is a regular
morphism. The algebraic loop L̄ is unique up to algebraic isomorphism.

Proof. We assume w.l.o.g. that coreG(H) = 1 and identify the homogenous space
G/H with L. Let H1 denote the stabilizer of the the closed set N ⊆ L; H1 ≤ G is
closed by [Hum75, Proposition 8.2]. G0 = coreG(H1) = ∩g∈GHg

1 is an intersection of
closed sets, hence is a closed normal subgroup ofG. WriteH0 = G0∩H,K0 = G0∩K
for the closed subsets of G. (G0, H0, K0) is the normal subfolder corresponding to
the abstract loop homomorphism L → L/N . By the normality condition (NC),
K0K = H0K, thus, G0K = H0K0K ⊆ H0K. As H0 ∩ K = 1, this means that
the subset K1 = G0K of G is biregularly isomorphic to the subvariety H0 ×K of
H × K. In particular, G0K is closed in G, since the varieties G and H × K are
biregularly equivalent.
Let ϕ be the natural homomorphism G→ Ḡ = G/G0 and de�ne H̄ = ϕ(H) and

K̄ = ϕ(K). The loop homomorphism L → L/N corresponds to an abstract folder
homomorphism ϕ : (G,H,K) → (Ḡ, H̄, K̄). In order to see that L/N is algebraic,
we have to show that H̄, K̄ are closed in Ḡ. Indeed, the respective preimages H1 =
G0H and K1 = G0K of H̄ and K̄ are closed in G. As Ḡ = G/G0 is endowed with
the quotient topology (cf. [Hum75, Section 12]), H̄, K̄ are closed. This completes
the proof.

The (strongly) algebraic loop L is said to be simple if it has no proper closed
normal subloops. The most important example of strongly algebraic Bol loops is the
Paige loop M(k), for the de�nition see [Pai56]. It is known that M(k) is a nonasso-
ciative simple Moufang loop, its multiplication group is the projective orthogonal
group PΩ+

8 (k).
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Now, we give examples of simple algebraic Bol loops. The examples are con-
structed from an exact factorization G = AB of the group G.

Proposition 6.7. Let (G,A,B) be an exact factorization triple such that G is an
algebraic group over the algebraically closed �eld k, and A,B are closed subgroups
of G. Then the Bol loop β(G,A,B) is a strongly algebraic Bol loop.

Proof. Clearly, G,A,B determine an algebraic Bol loop folder, hence the corre-
sponding loop is strongly algebraic.

Our main example for a simple strongly algebraic non-Moufang non-Bruck Bol
loop is the one in Example 3.14.

The local hyperbolic plane loop

By Weil's theorem [Wei55], any local algebraic group is birationally equivalent to
an algebraic group. In this section, we construct a local algebraic Bol loop and
prove that it is not birationally equivalent to a global algebraic loop.
The translations of the hyperbolic plane are de�ned as products of two central

symmetries; the set of hyperbolic translations forms a sharply transitive set on the
hyperbolic plane, the associated loop is the classical simple Bruck loop given by
(1.4). Formal expansion using x = x1 + ix2, y = y1 + iy2 gives the formal operation

(x1, x2) · (y1, y2) = (z1, z2)

with 
z1 =

x1 + x2
1y1 + y1 + x1y

2
1 + 2y1x2y2 + x2

2y1 − y2
2x1

1 + 2x1y1 + 2x2y2 + x2
1y

2
1 + x2

2y
2
2 + x2

1y
2
2 + x2

2y
2
1

,

z2 = −−x
2
1y2 − 2x1y1y2 + x2y

2
1 − x2 − x2

2y2 − y2 − y2
2x2

1 + 2x1y1 + 2x2y2 + x2
1y

2
1 + x2

2y
2
2 + x2

1y
2
2 + x2

2y
2
1

.
(6.2)

This operation de�nes a simple local algebraic right Bruck loop on k2 for any
�eld k. The unit element is (0, 0) and the inverse of (x1, x2) is (−x1,−x2). Straight-
forward calculation gives that the right inner map R(y1,y2),(z1,z2) is

(x1, x2) 7→ (ax1 + bx2,−bx1 + ax2),

where

a =
z2

2y
2
2 + 2z2y2 − z2

2y
2
1 + 4z1z2y1y2 − z2

1y
2
2 + z2

1y
2
1 + 2z1y1 + 1

1 + 2z1y1 + 2z2y2 + z2
1y

2
1 + z2

2y
2
2 + z2

2y
2
1 + z2

1y
2
2

,

b =
2z1z2y

2
2 + 2z2

1y1y2 − 2z2
2y1y2 − 2z1z2y

2
1 − 2y1z2 + 2z1y2

1 + 2z1y1 + 2z2y2 + z2
1y

2
1 + z2

2y
2
2 + z2

2y
2
1 + z2

1y
2
2

.

Moreover, a2 + b2 = 1 holds identically. Thus, the right inner maps are contained
in a 1-dimensional algebraic group H acting on k2.
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6. Algebraic Bol loops

We claim that this local loop is not birationally equivalent to an algebraic loop.
Let us assume that (L, ·) is an algebraic loop such that α : k2 → L is a bira-
tional isomorphism. Then RInn(L) has the structure of a 1-dimensional algebraic
transformation group on L. By Proposition 6.5, G = RMlt(L) is a 3-dimensional
algebraic transformation group. Moreover, as L is a simple Bruck loop, G is a sim-
ple group, hence G ∼= PSL(2, k). Any simple Bruck loop can be given by a loop
folder (G,H,K) where H = CG(σ) and K = {g ∈ G | gσ = g−1} for an involutorial
automorphism σ of G. It is easy to check that PSL2(k) has no such automorphism.
This proves that (6.2) indeed de�nes a proper local algebraic Bol loop.

6.3. Algebraic solvable Bol loops

In this section, we investigate the relation between solvable (strongly) algebraic
groups and and algebraic loop folders (G,H,K) with solvable group G. We �rst
show that the Jordan decomposition is well-de�ned in the class of power-associative
strongly algebraic loops.

Proposition 6.8. Let L be a connected power-associative strongly algebraic loop.
If x ∈ L, there exist unique elements s, u ∈ L such that: Rx = RsRu, s and u are
contained in a closed Abelian subgroup of L, Rs is semisimple and Ru is unipotent in
RMlt(L). If ϕ : L→ L̄ is a morphism of strongly algebraic loops then ϕ(x)s = ϕ(xs)
and ϕ(x)u = ϕ(xu).

Proof. Let L be given by a faithful algebraic loop folder (G,H,K) with G =
RMlt(L). Since L is power-associative and K closed in G, Rx is contained in a
closed Abelian subgroup U of G such that U ⊆ K. Let Rx = s0u0 be the unique
Jordan decomposition of Rx in U . As U is contained in K, there are unique ele-
ments s, u ∈ L such that s0 = Rs, u0 = Ru. Finally, the set {y ∈ L | Ry ∈ U} is a
closed Abelian subgroup of L, which contains s, u. The last assertion follows from
the fact that morphisms of strongly algebraic loops are equivalent to morphisms of
algebraic loop folders, see Theorem 6.6.

Now, we are able to prove the Lie-Kolchin theorem for strongly algebraic Bol
loops.

Theorem 6.9. Let L be a connected strongly algebraic Bol loop and assume that
RMlt(L) is solvable. Then L has a closed connected solvable normal subloop Lu
consisting of the unipotent elements of L. The factor loop L/Lu is a torus. In
particular, L is solvable.

Proof. Let L be given by the faithful algebraic loop folder (G,H,K) with G =
RMlt(L). Let U be the unipotent radical of G and put U1 = HU . We claim that
U1 ∩K ⊆ U . Take an arbitrary Rx ∈ U1 ∩K, Rx = RsRu its Jordan decomposition
with Rs, Ru ∈ U1 ∩ K. By the Lie-Kolchin theorem, we have the decomposition
H = HsHu of the solvable algebraic group H; thus, U1 = HsU and Hs is a maximal
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torus in U1. This implies that Rs is conjugate to an element of Hs, hence Rs = 1
and Rx = Ru ∈ U . Clearly, (U1, U1 ∩ H,U1 ∩K) determines a closed subfolder of
(G,H,K). Moreover, as it satis�es the normality condition (NC), the corresponding
subloop N is normal in L. By U1∩K = U∩K, N consists precisely of the unipotent
elements of L. The factor loop L/N has the algebraic loop folder (G/HU, 1, G/HU),
thus L/N ∼= G/HU is a torus.
In order to show the solvability of L, it remains to deal with the case when

L consists of unipotent elements. Then K ⊆ Gu and G = 〈K〉 = Gu can be
assumed. In this case, H is contained in a proper closed normal subgroup M of G
and the surjective morphism (G,H,K)→ (G/M, 1, G/M) of algebraic loop folders
corresponds to a surjective morphism L→ G/M of algebraic loops.

Global algebraic Bol loops with trivial center in nilpotent

groups

After Theorem 6.9, it is natural to ask about the structure of algebraic Bol loop fold-
ers (G,H,K) where G is a connected unipotent group. The following construction
shows that the nilpotence of the enveloping group does not imply the nilpotence of
the Bol loop even in the strongly algebraic case.
This example was constructed in collaboration with M. A. Reis (São Paulo).

Example 6.10. Let k be a �eld of characteristic di�erent from 2. Let V be a
k-linear space of dimension n and X a k-linear subspace of End(V ) consisting of
nilpotent elements. In particular, xn = 0 for all x ∈ X and the map

x 7→ (1− x)−1 = 1 + x+ · · ·+ xn−1

is a k-morphism from X to End(V ). For any x ∈ X, v ∈ V , we denote the image
of v under x by xv. Put G = X ⊕ V ⊕ V and de�ne the operation

(x1, v1, w1)(x2, v2, w2) = (x1 + x2, v1 + v2, w1 + w2 +
1

2
(x1v2 − x2v1)).

It is straightforward to see that this operation makes G to a 2-step nilpotent alge-
braic group with commutator

[(x1, v1, w1), (x2, v2, w2)] = (0, 0, x1v2 − x2v1).

The set K = {(x, v, 0) | x ∈ X, v ∈ V } consists of the anti-�xed elements of the
involutorial automorphism σ : (x, v, w) 7→ (−x,−v, w) of G. Thus, if x, y ∈ K then
xyx ∈ K. De�ne the subgroup H = {(0, w, w) | w ∈ V } of G; then H ∼= (V,+).
Any element

(x, v, w) =

(
0,
(

1− x

2

)−1

w,
(

1− x

2

)−1

w

)(
x, v −

(
1− x

2

)−1

w, 0

)
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of G can be factorized uniquely as product of elements of H and K. Moreover, the
maps

G→ H, (x, v, w)→
(

0,
(

1− x

2

)−1

w,
(

1− x

2

)−1

w

)
,

G→ K, (x, v, w)→
(
x, v −

(
1− x

2

)−1

w, 0

)
are k-morphisms. This implies that the triple (G,H,K) is an algebraic Bol loop
folder. The explicit formula for the loop operation is

(x1, v1)(x2, v2) = (x1 + x2, v1 + v2 − (2− x1 − x2)−1(x1v2 − x2v1)), (6.3)

where the underlying set of the loop is X ⊕ V .

Now, we give a k-linear subspace X of End(V ) such that Example 6.10 de�nes
an algebraic Bol loop with trivial center. The following construction appeared �rst
in [Sut72]. Let us put V = k3 and

X =


 0 s 0

t 0 s
0 −t 0

 | s, t ∈ k
 .

For any x1 ∈ X \{0}, there is a v2 ∈ V such that x1v2 6= 0 and for any v1 ∈ V \{0}
there is an x2 ∈ X such that x2v1 6= 0. Hence by (6.3), (x1, v1) does not commute
with (0, v2) and (0, v1) does not commute with (x2, 0). This means that the center
of the corresponding algebraic Bol loop is trivial.
We remark that by dropping the condition of nilpotency on the elements of X,

formula (6.3) gives a local algebraic Bol loop. However, it is not clear in which cases
are these local algebraic Bol loops birationally equivalent to global algebraic loops.

Problem 6.11. What are the necessary and su�cient conditions for a local (solv-
able) algebraic Bol loop to be birationally equivalent to a global algebraic loop?

We �nish this section with a proposition which gives a condition for the envelop-
ing group of a Bol loop to have nilpotency class 2. The advantage of this result is
that it is rather easy to check when the loop operation is given explicitely.

Proposition 6.12. Let (L, ·) be a right Bol loop and de�ne the core x+y = (yx−1)y
of L. Then the following are equivalent.

(i) For all x, y, z ∈ L, ((x+ y) + 1) + z = ((x+ z) + 1) + y.

(ii) The group M generated by the maps Py = LyRy, y ∈ L, is Abelian.

(iii) The group Γ generated by the autotopisms αy = (R−1
y , LyRy, Ry), y ∈ L, is

nilpotent of class at most 2.
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6.4. Constructions of solvable algebraic Bol loops

(iv) RMlt(L) is nilpotent of class at most 2.

Proof. We have

xPyPz = (((x+ 1) + y) + 1) + z and xPzPy = (((x+ 1) + z) + 1) + y,

hence (i) implies (ii). The projection pr2 maps Γ onto M , the kernel consists of
autotopisms of the form (Ln, 1, Ln) with n ∈ Nλ. As for n ∈ Nλ, Ln centralizes
RMlt(L), ker pr2 ≤ Z(Γ). Thus, (ii) implies (iii). Since RMlt(L) is a homomorphic
image of Γ, from (iii) follows (iv). Finally, Rx +Ry = RyR

−1
x Ry = Rx+y shows that

y 7→ Ry is an embedding of (L,+) into the core of RMlt(L). The identity in (i) can
be easily shown for groups of nilpotency class 2.

6.4. Constructions of solvable algebraic Bol loops

In this class of examples, we assume that G is an algebraic group over k which is a
semidirect product of the connected algebraic groups A and B; G = AoB. Clearly,
G = AB is an exact factorization. Explicit calculation shows that the resulting Bol
loop L is isomorphic to the split extension constructed by Johnson and Sharma
[JS80]. In particular, if the action of B on A is not Abelian then L is non-Moufang
and non-Bruck, see [JS80, Theorem 2].
Take A = kn and B = Tn(k) the group of n× n upper triangular matrices; then

G = AB is solvable. The following proposition says that the associated Bol loop L
is solvable.

Proposition 6.13. Let G = AB be an exact factorization and N ≤ A is normal
in G. De�ne K = {(x, x−1) | x ∈ G} ⊆ G × G and K̄ = {(xN, x−1N) | xN ∈
G/N} ⊆ G/N ×G/N . Then the following hold:

(i) ϕ : (G×G,A×B,K)→ (G/N×G/N,A/N×B, K̄) is a surjective morphism
of loop folders. The kernel of ϕ is the normal subfolder (N×N,N×1, KN) with
KN = {(x, x−1) | x ∈ N}. The corresponding normal subloop is isomorphic
to the group N .

(ii) If N ≤ Z(G) ∩ A then kerϕ ≤ Z(L), where L is the Bol loop associated to
the exact factorization G = AB.

Proof. We �rst notice that it is meaningful to speak of the subgroup A/N × B of
G/N × G/N , since B ∩ N = 1 implies that the image of B in G/N is isomorphic
to B. Moreover, G/N is has an exact factorization with subgroups A/N,B. We
leave to the reader to check that ϕ is indeed a morphism of loop folders with kernel
(N ×N,N × 1, KN). The corresponding loop is precisely the group N . This shows
(i). To see (ii), assume N ≤ Z(G)∩A and take an arbitrary element (n, n−1) of the
transversal belonging to kerφ. Then (n, n−1)K = K implies that the corresponding
loop element x ∈ L is contained in the right and middle nucleus Nρ(L) = Nµ(L).
Furthermore, by (n, n−1) ∈ Z(G × G), the associated loop element x commutes
with all elements of L. Thus, x ∈ Z(L).
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We mention that for solvable algebraic G = AB, the solvability of the corre-
sponding Bol loop follows from Theorem 6.9, as well. However, Proposition 6.13 is
also useful for the construction of non-Moufang nilpotent algebraic Bol loops. In
fact, if A and B are nilpotent groups and B ≤ Aut(A) is not Abelian, then by
Proposition 6.13(ii), L is nilpotent.
Finally, we mention that many examples of nilpotent algebraic nonassociative

Bruck and Moufang loops are known. For the Moufang case, see [Bru58, Example
VII.5.3]. For nilpotent algebraic Bruck loops, one has to consider the operation
x ◦ y = x

1
2yx

1
2 on any unipotent group G with char(k) 6= 2, cf. [NS02, Section 12].
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7. On the non-existence of

sharply transitive sets

A permutation code (or array) of length n and distance d is a set S of permutations
of some �xed set Ω of n symbols such that the Hamming distance between each
distinct x, y ∈ S is at least d, see [FD77]. By elementary counting, one has |S| ≤
n(n− 1) · · · d and equality holds if and only if for any two tuples (x1, . . . , xn−d+1),
(y1, . . . , yn−d+1) of distinct symbols, there is a unique element s ∈ S with xs1 =
y1, . . . , x

s
n−d+1 = yn−d+1. Such sets of permutations are called sharply t�transitive,

where t = n − d + 1. It is well known that sharply 1� and 2�transitive sets of
permutations correspond to Latin squares and a�ne planes, respectively [Dem68].
In general, there are very few results on permutation codes and there is a large

gap between the lower and upper estimates for |S|; see [Tar99], [Qui06]. Most of
the known constructions are related to multiply transitive permutation groups.
In the 1970's, P. Lorimer started the systematic investigation of the question of
existence of sharply 2�transitive sets in �nite 2�transitive permutation groups. This
program was continued by Th. Grundhöfer, M. E. O'Nan, P. Müller, see [GM09]
and the references therein. Some of the 2�transitive permutation groups needed
rather elaborated methods from character theory in order to show that they do not
contain sharply 2�transitive sets of permutations.
In this chapter, we present some simple combinatorial methods which are useful

to exclude the existence of sharply 1� and 2�transitive sets of permutations in given
�nite permutation groups.

Lemma 7.1, Theorems 7.4, 7.8, 7.10 and Corollary 7.7 support Thesis 3.Most of
the results of this chapter appeared in the papers [MN11]; the exception is Theorem
7.10 from [MN07]. The essential references to these results are the following.

1) Kantor and Pentilla use Theorem 7.10 to prove the main result of their paper
[KP12] on �nite projective planes in which every quadrangle lies on a unique
Baer subplane.

2) In [HL12], Hiss and Lübeck use [MN07, Lemma 2.1] to show that M22 does
not contain the multiplication group of a quasigroup. In fact, the original proof
of [MN07, Lemma 2.1] is computer based, but it follows immediately from the
computer free proof of Theorem 7.5.
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7.1. Contradicting subsets

We remind that if S is a sharply t�transitive set of permutations on Ω, then it
is also a sharply 1�transitive set of permutations on the set Ω(t) of t�tuples of
pairwise distinct elements from Ω. In other words, the t�transitive permutation
group G contains a sharply t�transitive set if and only if in its induced action on
Ω(t), G contains a sharply 1�transitive set.
Let G be a permutation group on the set Ω = {ω1, . . . , ωn} and for g ∈ G,

denote by π(g) the corresponding permutation matrix. Let J denote the n × n
all-one matrix. The existence of sharply transitive sets in G is equivalent to the
{0, 1}�solvability of the matrix equation∑

g∈G

xgπ(g) = J. (7.1)

The following simple lemma will be our main tool.

Lemma 7.1. Let S be a sharply transitive set of permutations on a �nite set Ω.
Let B and C be arbitrary subsets of Ω. Then

∑
g∈S|B ∩ Cg| = |B||C|.

Proof. Count the set of triples (b, c, g), where b ∈ B, c ∈ C, g ∈ S and cg = b, in
two ways: If b, c is given, then there is a unique g by sharp transitivity. If g is given,
then the number of pairs b, c is |B ∩ Cg|.

An immediate consequence is

Lemma 7.2. Let G be a permutation group on a �nite set Ω. Assume that there
are subsets B, C of Ω and a prime p such that p - |B||C| and p | |B ∩ Cg| for all
g ∈ G. Then G contains no sharply transitive set of permutations.

Remark 7.3. It is easy to see that under the assumption of Lemma 7.2, the system
(7.1) does not have a solution in the �nite �eld Fp, so in particular (7.1) has no
integral solution.

We give several applications of these lemmas. First, we show that in even char-
acteristic, the symplectic group does not contain sharply transitive sets of permu-
tations.

Theorem 7.4. Let n,m be positive integers, n ≥ 2, q = 2m. Let G1 = PSp(2n, q)o
Aut(Fq) and G2 = Sp(2n, q) o Aut(Fq) be permutation groups in their natural
permutation actions on Ω1 = PG(2n− 1, q) and Ω2 = F2n

q \ {0}. Then, G1 and G2

do not contain a sharply transitive set of permutations.

Proof. We deal �rst with the projective group G1. Let E be an elliptic quadric
whose quadratic equation polarizes to the invariant symplectic form 〈., .〉 of G1. Let
` be a line of PG(2n−1, q) which is nonsingular with respect to 〈., .〉. Then for any
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g ∈ G1, `g is nonsingular, that is, it is not tangent to E . In particular, |E ∩ `g| = 0
or 2 for all g ∈ G1. Furthermore, we have

|E| = q2n−1 − 1

q − 1
− qn−1, |`| = q + 1,

both odd for n ≥ 2. We apply Lemma 7.2 with B = E , C = ` and p = 2 to obtain
the result of the theorem.
In order to show the result for the group G2, we de�ne the subsets E ′ = ϕ−1(E)

and `′ = ϕ−1(`), where ϕ : Ω2 → Ω1 is the natural surjective map. Then,

|E ′| = (q − 1)|E|, |`′| = (q − 1)|`| and |E ′ ∩ `′| ∈ {0, 2(q − 1)}.

Hence, Lemma 7.2 can be applied with B = E ′, C = `′ and p = 2.

It was a long standing open problem whether the Mathieu group M22 contains
a sharply transitive set of permutations, cf. [Gru83]. The negative answer given in
the following theorem implies the nonexistence of sharply 2�transitive sets in the
Mathieu group M23.
We will use the Witt design W23. This is a S(4, 7, 23)�Steiner system. The fact

which we use here and again in the proof of Theorem 7.8 is that any two blocks of
W23 intersect in 1, 3, or 7 points.

Theorem 7.5. In its natural permutation representation of degree 22, the Mathieu
group M22 does not contain a sharply transitive set of permutations.

Proof. Let Ω′ = {1, . . . , 23}, Ω = {1, . . . , 22} and G = M22 be the stabilizer of
23 ∈ Ω′. Let B ⊂ Ω be a block of the Witt design W23, and C = Ω \ B. Then,
|B| = 7, |C| = 15 and for all g ∈ G, |B ∩ Cg| = 0, 4 or 6. Lemma 7.2 implies the
result with p = 2.

We can apply our method for certain alternating groups, as well. The follow-
ing simple result is somewhat surprising because until now, the symmetric and
alternating groups seemed to be out of scope in this problem.

Theorem 7.6. If n ≡ 2, 3 (mod 4) then the alternating group An does not contain
a sharply 2�transitive set of permutations.

Proof. Assume n ≡ 2, 3 (mod 4) and let G be the permutation action of An on
the set Ω(2) with Ω = {1, . . . , n}. A sharply 2�transitive set of permutations in An
corresponds to a sharply transitive set of permutations in G. De�ne the subsets

B = {(x, y) | x < y}, C = {(x, y) | x > y}

of Ω(2). By the assumption on n, |B| = |C| = n(n−1)/2 is odd. For any permutation
g ∈ Sn, we have

|{(x, y) | x < y, xg > yg}| ≡ sgn(g) (mod 2).

This implies |B ∩ Cg| ≡ 0 (mod 2) for all g ∈ An. Thus, we can apply Lemma 7.2
to obtain the nonexistence of sharply transitive sets in G and sharply 2�transitive
sets in An.
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Theorems 7.5 and 7.6 can be used to prove the nonexistence of sharply 2�
transitive sets in the Mathieu group M23.

Corollary 7.7. In its natural permutation representation of degree 23, the Mathieu
group M23 does not contain a sharply 2�transitive set of permutations.

As the last application of our contradicting subset method, we deal with the
stabilizer of the sporadic group Co3 in its doubly transitive action on 276 points.
As a corollary, we obtain a purely combinatorial proof for a theorem by Grundhöfer
and Müller saying that Co3 has no sharply 2�transitive set of permutations. Notice
that the original proof used the Atlas of Brauer characters.

Theorem 7.8. Let G be the group McL : 2 in its primitive permutation action on
275 points. Then, G does not contain a sharply transitive set of permutations.

Proof. Identify G with the automorphism group of the McLaughlin graph Γ, acting
on the 275 vertices. We claim that there are subsets B and C of vertices with
|B| = 22, |C| = 56, and |B ∩ Cg| ∈ {0, 3, 6, 12} for all g ∈ G. The theorem then
follows from Lemma 7.2 with p = 3.
In order to describe B and C, we use the construction of Γ based on the Witt

design W23, see e.g. [BCN89, 11.4.H]. Let B ∪ {q} be the 23 points of W23. Let U
be the 77 blocks of W23 which contain q, and V be the 176 blocks which do not
contain q. The vertices of Γ are the 22 + 76 + 176 = 275 elements from B ∪U ∪ V .
Adjacency ∼ on Γ is de�ned as follows: The elements in B are pairwise non�
adjacent. Furthermore, for b ∈ B, u, u′ ∈ U , v, v′ ∈ V de�ne: b ∼ u if b 6∈ u, b ∼ v
if b ∈ v, u ∼ u′ if |u ∩ u′| = 1 (so u ∩ u′ = {q}), v ∼ v′ if |v ∩ v′| = 1, and u ∼ v if
|u ∩ v| = 3.
This construction gives the strongly regular graph Γ with parameters (275, 112, 30, 56).

Pick two vertices i 6= j which are not adjacent, and let C be the set of vertices which
are adjacent to i and j. Then |C| = 56. For g ∈ G = Aut(Γ), Cg is again the com-
mon neighborhood of two non�adjacent vertices. Thus without loss of generality
we may assume g = 1, so we need to show that |B ∩ C| = 0, 3, 6, or 12. Suppose
that |B ∩ C| > 0. Then there is a vertex x ∈ B ∩ C which is adjacent to i and j.
Therefore i, j 6∈ B. Recall that two distinct blocks of W23 intersect in either 1 or 3
points.
We have to consider three cases: First i, j ∈ U . Then |i ∩ j| = 3 and q ∈ i ∩ j.

Furthermore, B ∩C = B \ (i∪ j), so |B ∩C| = 12. Next, if i, j ∈ V , then |i∩ j| = 3
and B ∩ C = i ∩ j, so |B ∩ C| = 3. Finally, if i ∈ U , j ∈ V , then |i ∩ j| = 1 and
B ∩ C = j \ i, so |B ∩ C| = 6 and we have covered all cases.

7.2. On 2�transitive symmetric designs

As another application of the lemma we reprove [GM09, Theorem 1.10] without
using character theory. In particular, Lorimer's and O'Nan's results [O'N85] about
the nonexistence of sharply 2�transitive sets of permutations in PΓLk(q) (k ≥ 3)
hold by simple counting arguments.

74

               dc_821_13



7.3. Remarks on M24

Theorem 7.9. Let G be an automorphism group of a nontrivial symmetric design.
Then the stabilizer in G of a point does not contain a subset which is sharply
transitive on the remaining points. In particular, G does not contain a subset which
is sharply 2�transitive on the points of the design.

Proof. Let v > k > λ be the usual parameters of the design. So the set Ω′ of points
of the design has size v, each block has size k, and two distinct blocks intersect in
λ point. We will use the easy relation (v− 1)λ = k2− k (see any book on designs).
Fix ω ∈ Ω′, let Gω be the stabilizer of ω in G, and suppose that S ⊆ Gω is

sharply transitive on the set Ω := Ω′ \ {ω} of size v− 1. As each point is contained
in k < v blocks, there is a block B with ω /∈ B. Apply Lemma 7.1 with C = B, so∑

g∈S

|B ∩Bg| = |B|2 = k2.

Let a be the number of g ∈ S with B = Bg. In the remaining |S| − a = v − 1− a
cases we have B 6= Bg, hence |B ∩Bg| = λ.
We obtain ak + (v − 1− a)λ = k2. Recall that (v − 1)λ = k2 − k, so

a(k − λ) = k.

Now let B′ be a block with ω ∈ B′. Set B = C = B′ \ {ω}. Then |B ∩Bg| = k − 1
or λ− 1. Let b be the frequency of the �rst case. As above we get b(k − 1) + (v −
1− b)(λ− 1) = (k − 1)2, which simpli�es to

b(k − λ) = v − k.

We obtain:

(k − λ)2 divides k(v − k), and k − λ divides k + (v − k) = v.

On the other hand, the basic relation (v− 1)λ = k2− k is equivalent to k(v− k) =
(v− 1)(k− λ), so k− λ divides v− 1. Therefore k− λ = 1, hence k = v− 1 and we
have the trivial design, contrary to our assumption.

7.3. Remarks on M24

In the last section, we make two remarks on the Mathieu group M24 of degree
24. First, we show that M24 cannot be the group of projectivities of a �nite non-
desarguesian projective plane. Second, we sketch a computer based proof showing
that (7.1) has an integer solution for G = M24 in its 2-transitive action.
The following result completes the solution of the conjecture in [Dem68, p. 160].

Theorem 7.10. The group of projectivities of a non-desarguesian projective plane
of �nite order n contains the alternating group An+1.
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Proof. By [Gru88], we only have to exclude the case n = 23 and P = M24. How-
ever, if this case would exist, then by [MN07, Lemma 2.2], M22 would contain the
multiplication group of a loop, which contradicts Theorem 7.5.

Now we present a computer based approach showing that (7.1) has an integer so-
lution for G = M24 in its permutation representation on Ω(2) with Ω = {1, . . . , 24}.
Thus the technique of Sections 2 and 3 cannot answer the question whether M24

contains sharply 2�transitive sets of permutations. As the tedious proofs of Lem-
mas 7.11, 7.12 and Theorem 7.13 are not directly related to the main goal of this
chapter, we omit them.
For a subgroup H ≤ G, we consider the following system (7.2) of linear equations:

Let Ω1,Ω2, . . . ,Ωr be the orbits of H on Ω× Ω, and T be a set of rep-
resentatives for the action of H on G by conjugation. For i = 1, 2, . . . , r
and g ∈ G set

ai(g) = |{(ω1, ω2) ∈ Ωi|ωg1 = ω2}|

and consider the system of r linear equations in the variables xg, g ∈ T :∑
g∈T

xgai(g) = |Ωi|, i = 1, 2, . . . , r. (7.2)

The system (7.1) is the same as the system (7.2) with H = 1. Furthermore, note
that ai(g) depends only on the H�class of g, so the system of equations does not
depend on the chosen system T of representatives.

Lemma 7.11. Let U ≤ V ≤ G be subgroups of G. If (7.2) has an integral solution
for H = U , then (7.2) has an integral solution for H = V .

Lemma 7.12. Let pm > 1 be a power of a prime p, and R = Z/pmZ. Suppose that
(7.2) has a solution in R for some p′�subgroup H of G. Then also (7.1) is solvable
over R.

The proof of Lemma 7.12 only uses that |H| is a unit in R. So if (7.2) has a
rational solution for some H ≤ G, then (7.1) has a rational solution too. So the
rational solubility of (7.1) can be decided by the rational solubility of (7.2) for
H = G, which gives a very weak condition.
A useful criterion to decide whether (7.1) has an integral solution is

Theorem 7.13. The following are equivalent:

(i) The system (7.1) has an integral solution.

(ii) For each prime divisor p of |G|, the system (7.2) has an integral solution for
some p′�subgroup H of G.
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In order to apply this theorem to the action of G = M24 on Ω(2), we �rst choose
a Sylow 2�subgroup H of G. So H is a p′�subgroup of G for each odd prime p. The
number of H�orbits on G is 241871. So the number of unknowns is reduced by a
factor |G|/241871 = 1012.2 . . .. The number of equations is 603. In order to solve
this system, one can pick about 270 variables at random, and set the remaining
ones to 0. Experiments with the computer algebra system Magma [BCP97] show
that this system usually has an integral solution.
It remains to take a 2′�subgroup of G. For this we let H be the normalizer of a

Sylow 23�subgroup. Then |H| = 253. This reduces the number of unknowns from
|G| = 244823040 by a factor of about 253 to 967692. Here, picking 520 unknowns
at random usually gives an integral solution.
In both cases, the running time is a few minutes.
There are several modi�cations of this method. In (7.1) it su�ces to consider

the sum over the �xed-point-free elements and 1, and likewise in (7.2) (and the
lemmas and the theorem), it su�ces to consider 1 together with the H�orbits on
�xed-poin-free elements. However, even under this assumption, (7.1) still has an
integral solution. To do so, one simply sets x1 = 1 and randomly picks the variables
xg for �xed-point-free elements g from T .
Also, Theorem 7.13 and Lemma 7.11 remain true if we replace `integral' by `non-

negative integral'. So we are faced with an integer linear programming problem.
Experiments have shown that (7.2) has a non-negative integral solution for each of
the 29 subgroups H of G = M24 with [G : H] ≤ 26565.
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8. On the right multiplication

groups of �nite quasi�elds

The �rst question this chapter asks which �nite transitive linear group can occur
as right multiplication group of a �nite quasi�eld. It turns out that some of the
exceptional �nite transitive linear groups may happen to be the right multiplication
group of a quasi�eld. Since these groups are relatively small, in the second part of
the chapter, we are able to give an explicit classi�cation of all quasi�elds whose right
multiplication group is an exceptional �nite linear group. These results are obtained
with computer calculations using the computer algebra system GAP4 [Gap] and
the program CLIQUER [NÖ03].
Right multiplication groups of quasi�elds have not been studied intensively. The

most important paper in this �eld is [Kal87] by M. Kallaher, containing results
about �nite quasi�elds with solvable right multiplication groups.
Finally, we notice that our results can be interpreted in the language of the theory

of �nite loops, as well. Loops arise naturally in geometry when coordinatizing point-
line incidence structures. Most importantly, the multiplicative structure (Q∗, ·) of
Q is a loop. In fact, any �nite loop Q̂ gives rise to a quasi�eld, provided the right
multiplication maps of Q̂ generate a group which is permutation isomorphic to a
subgroup of GL(n, q), where the latter is considered as a permutation group on the
nonzero vectors of Fnq . Therefore in this chapter, we investigate loops whose right
multiplication groups are contained is some �nite linear group GL(n, q).

This chapter is almost identical with the paper [Nag13]. Theorem 8.17 supports
the �rst part of Thesis 4; the second part follows from the equivalence of sharply
transitive sets in GL(n, p) and sharply 2-transitive sets in AGL(n, p), cf. Section
1.8.

8.1. Translation planes, spreads and quasi�elds

In this section we give the de�nitions of concepts which are standard in the the-
ory of translation planes. Moreover, we brie�y explain the relations between the
automorphisms of these mathematical objects.

Let Π be a �nite projective plane. By the theorems of Skornyakov-San Soucie and
Artin-Zorn [HP73, Theorem 6.18 and 6.20], Π is either Desarguesian or contains
at most one translation line. This means that two �nite translation planes are
isomorphic if and only if the corresponding projective planes are.
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The relation between translation planes and quasi�elds is usually explained using
the notion of (vector space) spreads.

De�nition 8.1. Let V be a vector space over the �eld F . We say that the collection
σ of subspaces is a spread if (1) A,B ∈ σ, A 6= B then V = A⊕ B, and (2) every
nonzero vector x ∈ V lies in a unique member of σ. The members of σ are the
components of the spread.

If σ is a spread in V then André's construction yields a translation plane Π(σ)
by setting V as the set of points and the translates of the components of σ as the
set of lines of the a�ne plane. Conversely, if Π is a �nite translation plane with
origin O then we identify the point set of Π with the group T (Π) of translations.
As T (Π) is an elementary Abelian p-group, Π becomes a vector space over (some
extension of) Fp and the lines through O are subspaces forming a spread σ(Π).
André's construction implies a natural identi�cation of the components of the

spread with the parallel classes of the a�ne lines, and the points at in�nity of the
corresponding a�ne plane.
The approach by spreads has many advantages. For us, the most important one is

that they allow explicit computations in the group of collineation of the translation
plane. Let Π be a nondesarguesian translation plane and let us denote by T (Π) the
group of translations of Π. The full group Aut(Π) of collineations contains T (Π) as
a normal subgroup. Up to isomorphy, we can choose a unique point of origin O in Π.
The stabilizer CO(Π) of O in Aut(Π) is the translation complement of Π with respect
to O. The full group Aut(Π) of collineations is the semidirect product of T (Π) and
CO(Π). In particular, CO(Π) has the structure of a linear group of V . By [JJB07,
Theorem 2.27], the collineation group CO(Π) is essentially the same as the group
of automorphisms of the associated spread, that is, there is a natural isomorphism
between the two groups. The automorphism group of a spread is de�ned as follows.

De�nition 8.2. Let σ be a spread in the vector space V . The automorphism group
Aut(σ) consists of the additive mappings of V that permutes the components of σ
among themselves.

As the translations act trivially on the in�nite line, the permutation action of
Aut(σ) is equivalent with the action of Aut(Π) on the line at in�nity.
Spreads are usually represented by a spread set of matrices. Fix the components

A,B of the spread σ with underlying vector space V . The direct sum decomposition
V = A⊕B de�nes the projections pA : V → A, pB : V → B. As for any component
C ∈ σ \ {A,B} we have A ∩ C = B ∩ C = 0, the restrictions of pA and pB to C
are bijections C → A, C → B. Therefore, the map uC : A → B, xuC = (xp−1

A )pB
is a linear bijection from A to B. When identifying A,B with Fkp, uC can be given
in matrix form UC . The set S(σ) = {UC | C ∈ σ} is called the spread set of
matrices representing σ relative to axes (A,B). This representation depends on the
choice of A,B ∈ σ. It is also possible to think at a spread set as the collection
S ′(σ) = {uDu−1

C | D ∈ σ} of linear maps A→ A, with �xed C.
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A spread set S ⊆ hom(A,B) can be characterized by the following property:
For any elements x ∈ A \ {0}, y ∈ B \ {0}, there is a unique map u ∈ S such
that xu = y. Indeed, if S = S(σ) then u = uC where C is the unique component
containing x⊕ y. Conversely, S de�nes the spread

σ(S) = {0⊕B,A⊕ 0} ∪ {{x⊕ xu | x ∈ A} | u ∈ S}

with underlying vector space V = A⊕B.

De�nition 8.3. The autotopism group of the spread set S of k × k matrices over
F consists of the pairs (T, U) ∈ GL(k, F )×GL(k, F ) such that T−1SU = S.

[JJB07, Theorems 5.10] says that autotopisms of spread sets relative to axes
(A,B) and automorphism of spreads �xing the components A,B are essentially the
same.

By �xing a nondegenerate quadrangle o, e, x, y, any projective plane can be co-
ordinatized by a planar ternary ring (PTR), see [HP73]. Let Π be a translation
plane and �x a�ne points o, e and in�nite points x, y. Then, the coordinate PTR
becomes a quasi�eld.

De�nition 8.4. The �nite set Q endowed with two binary operations +, · is called
a �nite (right) quasi�eld, if

(Q1) (Q,+) is an Abelian group with neutral element 0 ∈ Q,

(Q2) (Q \ {0}, ·) is a loop,

(Q3) the right distributive law (x+ y)z = xz + yz holds, and,

(Q4) x · 0 = 0 for each x ∈ Q.

The link between tranlation planes and quasi�elds can be extended to spread
sets, as well. In fact, the set S(Q) = {Rx | x ∈ Q} of nonzero right multiplication
maps of Q is a spread set relative to the in�nite points of the x- and y-axes of the
coordinate system. Collineations correspond to autotopisms of the quasi�eld.

De�nition 8.5. Let (Q,+, ·) be a quasi�eld, S, T, U : Q → Q bijections such that
S, U are additive and 0T = 0. The triple (S, T, U) is said to be an autotopism of Q
if for all x, y ∈ Q, the identity xS · yT = (x · y)U holds.

It is easy to see that the triple (S, T, U) is an autotopism of the quasi�eld Q if
and only if the pair (S, U) is an autotopism of the associated spread set S(Q).
We summarize the above considerations in the next proposition.

Proposition 8.6. Let Π be a translation plane, σ the associated spread. Let A,B
be �xed components of σ and a, b the associated in�nite points of Π. Let S be the
spread set of σ relative to axes (A,B). Let c, d be arbitrary a�ne points of Π such
that a, b, c, d are in general position, and let (Q,+, ·) be the coordinate quasi�eld of
Π with respect to the quadrilateral abcd. Then the following groups are isomorphic.
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1. The autotopism group of S.

2. The stabilizer subgroup of the components A,B in Aut(σ).

3. The stabilizer subgroup of the triangle abc in the full collineation group Aut(Π).

4. The autotopism group of Q.

In particular, the structure of the autotopism group of the coordinate quasi�eld
does not depend on the choice of the base points c, d.

8.2. Isotopy, parastrophy and computation

When investigating the isomorphism between translation planes, the isotopy of
quasi�elds is a central concept. We borrow the concept of parastrophy from the
theory of loops in order to de�ne a wider class of equivalence for quasi�elds.

De�nition 8.7. Let S,S ′ be spread sets of matrices in GL(d, p). We say that S,S ′
are

1. isotopes if there are matrices T, U ∈ GL(d, p) such that T−1SU = S ′ holds.

2. parastrophes if there are matrices T, U ∈ GL(d, p) such that T−1SU = S ′ or
T−1SU = (S ′)−1 holds.

Analogously, we say that the quasi�elds Q,Q′ are isotopic (parastrophic) if their sets
of nonzero right multiplications of matrices are isotopic (parastrophic) as spread sets
of matrices.

In Section 8.1, we explained the method of obtaining the spread set S of matrices
from the spread σ by �xing the components A,B. It follows that interchanging A
and B, the resulting spread set of matrices will be S−1 = {u−1 | u ∈ S}. Hence,
S and S−1 determine isomorphic translation planes. Taking into account [JJB07,
Propositions 5.36 and 5.37], we obtain that parastrophic quasi�elds (or spread sets)
determine isomorphic translation planes. On the one hand, the next proposition
shows that the right multiplication group of a quasi�eld is parastrophy invariant.
On the other hand, it will give us an e�ective method for the computation of
parastrophy for quasi�elds with �small� right multiplication group.

Lemma 8.8. Let S1,S2 be spread sets of matrices in GL(d, p). Assume that 1 ∈
S1,S2 and de�ne the transitive linear groups G1 = 〈S1〉 and G2 = 〈S2〉 generated by
the spread sets. If (T, U) de�nes a parastrophy between S1 and S2 then T−1U ∈ S2

and T−1G1T = U−1G1U = G2. In particular, if G1 = G2 then U, T ∈ NGL(d,p)(G1).

Proof. As 〈S〉 = 〈S−1〉, it su�ces to deal with isotopes. Since 1 ∈ S1, we have
T−1U = T−11U ∈ S2. Moreover, T−1S1T = T−1S1U ·U−1T = S2 U

−1T ⊆ G2, which
implies T−1G1T = G2. The equation U−1G1U = G2 follows from T−1U ∈ G2.
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We will use the above lemma to compute the classi�cation of quasi�elds up to
parastrophy.

Proposition 8.9. Let S,S ′ be spread sets of matrices in GL(d, p). Assume that
1 ∈ S,S ′ and G = 〈S〉 = 〈S ′〉. Let G∗, G∗∗ be the permutation groups acting on
G, where the respective actions are the right regular action of G on itself, and the
action of NGL(d,p)(G) on G by conjugation. Let ι be the inverse map g 7→ g−1 on
G. De�ne the permutation group G] = 〈G∗, G∗∗, ι〉 acting on G. Then, S,S ′ are
parastrophic if and only if they lie in the same G]-orbit.

Proof. For any U ∈ G, T ∈ NGL(d,p)(G), the sets T−1ST , SU and S−1 are paras-
trophes of S. Hence, if S,S ′ are in the same G]-orbit then they are parastrophes.
Conversely, assume that the pair (T, U) de�nes an isotopy between S and S ′. By
Lemma 8.8, S ′ = T−1ST ·T−1U where T ∈ NGL(d,p)(G) and T−1U ∈ G, that is, they
are in the same G]-orbit. The proof goes similarly for the case of parastrophy.

In general, the explicit computation of the collineation group of a translation
plane is very challenging. Another application of Lemma 8.8 is the computation of
the autotopism group of a quasi�eld, that is, the computation of the stabilizer of
two in�nite points in the full collineation group of the corresponding translation
plane.

Proposition 8.10. Let S be a spread set of matrices in GL(d, p) with 1 ∈ S and
G = 〈S〉. De�ne the group

H = {(T, U) ∈ NGL(d,p)(G)2 | T−1U ∈ G}

and the permutation action Φ : G×H → G of H on G by

Φ : (X, (T, U)) 7→ T−1XU.

Then, H and Φ are well de�ned. The isotopism group of S is the setwise stabilizer
of S in H with respect to the action Φ.

Proof. In order to see that H is a group, take elements (T, U), (T1, U1) ∈ H.
On the one hand, (T−1)−1U−1 = T (T−1U)−1T−1 ∈ TGT−1 = G, which implies
(T−1, U−1) ∈ H. On the other hand, (TT1, UU1) ∈ H follows from

(TT1)−1UU1 = T−1
1 (T−1U)T1 · T−1

1 U1 ∈ T−1
1 GT1 ·G = G.

Since T−1XU = T−1XT ·T−1U ∈ G holds for all X ∈ G, H and Φ are well de�ned.
The claim for the autotopism group of S follows from Lemma 8.8.

As for an exceptional �nite transitive linear group G, NGL(d,p)(G) is also excep-
tional, it is a small subgroup of GL(d, p) and the autotopism group of S is com-
putable by GAP4. Using Proposition 8.6, we obtain a straightforward method for
computing the stabilizer of two in�nite points of our translation planes. However,
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the stabilizer of some in�nite points is not an invariant of the translation plane in
general.
More precisely, let Π be a translation plane with in�nite line `∞ and P =
{a1, . . . , at} ⊆ `∞ be a set of in�nite points. Denote by BP the pointwise stabilizer of
P in Aut(Π). In the rest of this section we show that under some circumstances, the
structure of BP is an invariant of Π. We start with a lemma on general permutation
groups.

Lemma 8.11. Let G be a group acting on the �nite set X (not necessarily faith-
fully). For any Y ⊆ X, we denoty by F (Y ) the pointwise stabilizer of Y . Let Y1, Y2

be subsets of X such that |Y1| = |Y2| < |X|/2, and suppose that F (Yi) acts tran-
sitively on X \ Yi, i = 1, 2. Then, there is an element g ∈ G with Y g

2 = Y1. In
particular, the subgroups F (Y1), F (Y2) are conjugate in G.

Proof. Up to the action of G on the orbit Y G
2 , we may assume that |Y1 ∩ Y2| ≥

|Y1 ∩ Y g
2 | for all g ∈ G. Suppose that Y1 6= Y2 and take elements x ∈ X \ (Y1 ∪ Y2),

y1 ∈ Y1 \ Y2, y2 ∈ Y2 \ Y1. As F (Yi) acts transitively on X \ Yi, there are elements
g1 ∈ F (Y1), g2 ∈ F (Y2) such that xg1 = y2 and xg2 = y1. Put h = g−1

1 g2. Then h ∈
F (Y1∩Y2) and yh2 = y1 ∈ Y1. This implies |Y1∩Y h

2 | > |Y1∩Y2|, a contradiction.

We can apply the lemma for the stabilizer of in�nite points of a translation plane.

Proposition 8.12. Let Π be a translation plane of order q, with in�nite line `∞.
For a subset P ⊆ `∞, let BP denote the pointwise stabilizer subgroup in Aut(Π).
Fix the integer t ≤ (q + 1)/2 and de�ne the set

Dt = {P ⊆ `∞ | |P | = t and BP act transitively on `∞ \ P}.

Then, Aut(Π) acts transitively on Dt. In particular, the structure of BP (as a per-
mutation group on Π ∪ `∞) does not depend on the particular choice P ∈ Dt.

8.3. Sharply transitive sets and permutation

graphs

Let G be a permutation group acting on the �nite set Ω, n = |Ω| is the degree of
G. The subset S ⊆ G is a sharply transitive set of permutations if for any x, y ∈ Ω
there is a unique element σ ∈ S such that xσ = y. Sharply transitive sets can be
characterized by the property |S| = |Ω| and, for all σ, τ ∈ S, στ−1 is �xed point
free. In particular, if 1 ∈ S then all σ ∈ S \ {1} are �xed point free elements of G.

De�nition 8.13. Let G be a �nite permutation group. The pair G = (V, E) is the
permutation graph of G, where V is the set of �xed point free elements of G and
the edge set E consists of the pairs (x, y) where xy−1 ∈ V .
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The set K of vertices is a k-clique if |K| = k and all elements of K are connected.
Sharply transitive subsets of G containing 1 correspond precisely the (n−1)-cliques
of the permutation graph of G. Assume that the action of G on Ω is imprimitive and
let Ω′ be a nontrivial block of imprimitivity. Let S be a sharply transitive subset of
G and de�ne the subset S ′ = {σ ∈ S | Ω′σ = Ω′} of S. Then, the restriction of S ′

to Ω′ is a sharply transitive set on Ω′. We will call Σ′ the subclique corresponding
to the block Ω′.
For the connection between quasi�elds and sharply transitive sets of matrices

see [JJB07, Chapter 8]. In our computations, we represent quasi�elds by the corre-
sponding sharply transitive set of matrices, or, more precisely by the corresponding
(maximal) clique of the permutation graph.

8.4. Finite transitive linear groups

In this section, we give an overview on �nite transitive linear groups. The classi-
�cation is due to C. Hering [Her74; Her85], and to M. W. Liebeck [Lie87a]. For
self-contained lists and further details see [HB82, p. XII.7.5] or [JJB07, Theorem
69.7].
Let p be a prime, V = Fdp, and Γ = GL(d, p). Let G ≤ Γ be a subgroup acting

transitively on V ∗ = V \ {0}. Then G0 E G ≤ NΓ(G0), where we have one of the
following possibilities for G and G0:

1.a) G ≤ ΓL(1, pd). In particular, G is solvable.

1.b) G0
∼= SL(d/e, pe) with 2 ≤ e | d.

2) G0
∼= Sp(d/e, pe) with e | d, d/e even.

3) p = 2, d = 6e > 6, and G0 is isomorphic to the Chevalley group G2(2e). If
d = 6 then G0 is isomorphic to G2(2)′. Notice that the Chevalley group G2(2)
is not simple, its commutator subgroup has index two and the isomorphism
G2(2)′ ∼= PSU(3, 3) holds.

4) There are 27 exceptional �nite transitive linear groups, their structure is listed
in Table 8.1. The information given in the last column can be used to generate
the sporadic examples in the computer algebra systems GAP4 [Gap] in the
following way. The split extension of G by the vector group Fdp is 2-transitive,
hence primitive, and can be loaded from the library of primitive groups us-
ing the command PrimitiveGroup(pd,k). As 592 > 2500, case (4.i) is not
included in this library, but since this group is regular on V ∗, it will not be
interesting from our point of view.

We have seven sporadic transitive linear groups which are regular, these are
denoted by an asterix. These groups have been found by Dickson and Zassen-
haus, and they are also known as the right multiplication groups of the Zassen-
haus near�elds.
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Case Cond. on p Cond. on d G0 # Primitive id. of pd : G
(4.a) p = 5 d = 2 SL(2, 3) 3 15∗, 18, 19
(4.b) p = 7 d = 2 SL(2, 3) 2 25∗, 29
(4.c) p = 11 d = 2 SL(2, 3) 2 39∗, 42
(4.d) p = 23 d = 2 SL(2, 3) 1 59∗

(4.e) p = 3 d = 4 SL(2, 5) 4 124, 126, 127, 128
(4.f) p = 11 d = 2 SL(2, 5) 2 56∗, 57
(4.g) p = 19 d = 2 SL(2, 5) 1 86
(4.h) p = 29 d = 2 SL(2, 5) 2 106∗, 110
(4.i) p = 59 d = 2 SL(2, 5) 1 (no id)∗

(4.j) p = 3 d = 4 21+4 5 71, 90, 99, 129, 130
(4.k) p = 2 d = 4 A6 2 16, 17
(4.l) p = 2 d = 4 A7 1 20
(4.m) p = 3 d = 6 SL(2, 13) 1 396

Table 8.1.: Exceptional �nite transitive linear groups

In this chapter, without mentioning explicitly, we consider all �nite linear groups
as a permutation group acting on the nonzero vectors of the corresponding linear
space.

8.5. Non-existence results for �nite right

quasi�elds

In this section, let (Q,+, ·) be a �nite right quasi�eld of order pd with prime p.
Write G = RMlt(Q∗) for the right multiplication group of Q. As in Section 8.4, we
denote by G0 a characteristic subgroup of G. Moreover, we denote by S the set of
nontrivial right multiplication maps of Q. Then 1 ∈ S and S is a sharply transitive
set of permutations in G. We write G = (V, E) for the permutation graph of G.
Remember that |S| = pd − 1 and S \ {1} is a clique of size pd − 2 in G.

Proposition 8.14. Assume that G is a transitive linear group belonging to the
in�nite classes (1)-(3). Then one of the following holds:

1. G ≤ ΓL(1, pd).

2. G . SL(d/e, pe) for some divisor e < d of d.

3. p is odd and G . Sp(d/e, pe) for some divisor e of d.

Proof. We have to show that if p = 2 then the cases G0
∼= Sp(d/e, pe) and G0

∼=
G2(2e)′ are not possible. Recall that the transitive linear group G2(2e) is a subgroup
of Sp(6, 2e). The impossibility of both cases follow from [MN11, Theorem 1].
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8.5. Non-existence results for �nite right quasi�elds

Case pd G0 Orders (primitive id.)
(4.a) 52 SL(2, 3) 48 (18), 96 (19)
(4.b) 72 SL(2, 3) 144 (29)
(4.c) 112 SL(2, 3) 240 (42)
(4.e) 34 SL(2, 5) 960 (128)
(4.f) 112 SL(2, 5) 600 (57)
(4.g) 192 SL(2, 5) 1080 (86)
(4.h) 292 SL(2, 5) 1680 (110)
(4.l) 24 A7 2520 (20)

Table 8.2.: Exceptional transitive linear groups as right multiplication groups

Proposition 8.15. If G is an exceptional �nite transitive linear group, then it is
either a regular linear group or one of those in Table 8.2.

This proposition is proved in several steps.

(5.1) G cannot be an exceptional transitive linear group of type (4.k) and (4.m).

Computer proof. Assume G of type (4.k) and G0
∼= A6. Since A6

∼= Sp(4, 2)′ ≤
Sp(4, 2) as permutation groups on F4

2, [MN11, Theorem 1] applies.
Assume G of type (4.m). Let W be a Sylow 7-group of G and H = NG(W ).

Then |H| = 28 and H has orbits of length 28. One can �nd H-orbits A,B of size
28 such that |A ∩ Bg| ∈ {0, 6} for all g ∈ G. Again by [MN11, Lemma 2], G does
not contain a sharply transitive set of permutations.

(5.2) G cannot be an exceptional transitive linear group of type (4.e) and order
240 or 480.

Computer proof. We proceed similarly to the cases in (5.1). Assume G of type (4.e)
and |G| ∈ {240, 480}. Let H be the normalizer of a Sylow 5-group in G. Then
|H| = 40 and H has orbits A,B of length 40 such that |A ∩ Bg| ∈ {0, 24} for all
g ∈ G. This proves the claim by [MN11, Lemma 2] with p = 3.

Beside the �nite regular linear groups, the remaining exceptional transitive linear
groups are those of type (4.j), that is, when G0 is the extraspecial group E

+
32 of order

25. In this class, there are �ve groups, three of them are solvable. The cases of the
three solvable group of type (4.j) were left unsolved by M. Kallaher [Kal87], as well.
The computation is indeed very tedious even with today's hardware and software.
The construction of the groups of type (4.j) is as follows. Up to conjugacy,

GL(4, 3) has a unique subgroup L0 of order 25 which is isomorphic to the ex-
traspecial 2-group E+

32, cf. [Hup67, Satz V.16.14.]. The normalizer L = NGL(4,3)(L0)
has order 3840. L has �ve transitive linear subgroups containing L0; the orders are
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160, 320, 640, 1920, 3840. Clearly, it su�ces to prove the nonexistence of 79-cliques
for the permutation graph of L only.
The action of L is not primitive; it has blocks of imprimitivity of size 2, 8 and

16. These blocks are unique up to the action of L.

(5.3) Let A be a block of L of size 16. Let K be a 15-clique corresponding to A
and assume that the group 〈K〉 generated by K is not a 2-group. Then, K cannot
be extended to a 79-clique of L.

Computer proof. Let A be a block of size 8. Denote by H the setwise stabilizer of
A in L; H stabilizes another block B of size 8 and A ∪ B is a block of size 16.
Let A be the set of all 7-cliques corresponding to the block A. As NL(H) operates
on the permutation (sub)graph of H, it also acts on A; let A0 be a set of orbit
representatives. We use [Soi12] to compute A0; |A0| = 98. Then in all possible ways,
we extend the elements of A0 to 15-cliques corresponding to the block A∪B, let B
denote the set of extended cliques. Finally, we �lter out the 15-cliques generating
a non-2-group and show that none of them can be extended to a 79-clique.

We have to deal with subcliques generating a 2-group. An important special case
is the following.

(5.4) Up to conjugacy in L, there is a unique 15-clique K∗ corresponding to an
imprimitivity block of size 16 such that the setwise stabilizer in L has order 192.
K∗ has the further properties:

1. The subgroup 〈K∗〉 has order 32.

2. 〈K∗〉 interchanges two blocks of size 16 and �xes the other three.

Computer proof. Let S be a Sylow 2-subgroup of L. Using [Soi12], one can compute
all 15-cliques of the permutation graph of S. Up to conjugacy in S, there are 17923
such cliques, only one of them has stabilizer of size 192. The properties of K∗ are
obtained by computer calculations.

(5.5) Let A be a block of L of size 16. Let K be a 15-clique corresponding to A
and assume that the group 〈K〉 generated by K is a 2-group. Then, K cannot be
extended to a 79-clique of L.

Computer proof. Let S be a Sylow 2-subgroup of L. S leaves a block of size 16, say
A, invariant. We compute the set A of S-orbit representatives of the 15-cliques of
the permutation graph of S. A contains precisely one element conjugate to K∗, in
fact, we assume that K∗ ∈ A.
For all elements K ∈ A\{K∗}, the computer shows within a few seconds that K

cannot be extended to a 79-clique. For K∗, the direct computation takes too long,
we therefore give a theoretical proof. Let us assume that D is a clique of size 79 in
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type # of cliques up to parastrophy proper G # CCFPs'

(4.a) 4; 8 2; 3 1; 0 1; 0
(4.b) 12 4 2 2
(4.c) 16 4 3 3
(4.e) 27648 32 21 20
(4.f) 6 2 0 0
(4.g) 9 3 3 3
(4.h) 64 9 8 8
(4.l) 450 2 2 1

Table 8.3.: Maximal cliques in exceptional transitive linear groups

the permutation graph of L. We may assume that all subcliques of D corresponding
to 16-blocks are conjugate of K∗.
Denote by DA the subclique of D of size 15, corresponding to A. By (5.4), 〈DA〉

interchanges two 16-blocks, say B,B′, and leaves the others invariant. Denote by
DB the subclique of D, corresponding to B. Clearly, DA 6= DB. As 〈DB〉 leaves
three blocks invariant, there is a 16-block C which is invariant under all elements
of DA ∪DB. However, as |C| = 16, D cannot have more than 15 elements mapping
C to C, a contradiction to |DA ∪DB| > 15.

The claims (5.3), (5.4) and (5.5) imply the following result.

(5.6) G cannot be an exceptional transitive linear group of type (4.j).

The combination of the claims (5.1), (5.2) and (5.6) yields the proof of the Propo-
sition 8.15.

8.6. Exhaustive search for cliques and their

invariants

Let G ≤ GL(d, p) be a transitive linear group. We use the program CLIQUER
[NÖ03] to compute all cliques of size pd − 1 in the permutation graph G of G.
For the exceptional transitive linear groups of Table 8.1, the result is presented in
the second column of Table 8.3. Proposition 8.9 allows us to reduce our results on
cliques in exceptional transitive linear groups modulo parastrophy, as shown in the
third column of Table 8.3. In column 4, we �ltered out those cliques which do not
generate the whole group G.
In the �nal step, we compute the Conway-Charnes �ngerprint of all spread sets

of matrices, cf. [CD98; MR95]. The Conway-Charnes �ngerprint is an invariant of
the translation plane which can be easily computed from any spread set of matrices.
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De�nition 8.16. Given a spread set S = {U1, . . . , Uq−1} of nonzero matrices, one
forms a (q − 1) × (q − 1) matrix whose (i, j) entry is 0, +1 or −1 according as
det(Ui − Uj) is zero, square or nonsquare, respectively. Border this matrix with
a leading row and column of 1s (except for the �rst entry on the diagonal which
remains zero) to form a symmetric q×q matrix A with 0 on the diagonal, and ±1 in
every non-diagonal entry. Finally, form the matrix F = AAt (with the product being
taken in the rational numbers). The �ngerprint of the spread set is the multiset of
the absolute values of the entries of F .

The last column of Table 8.3 contains the number of di�erent Conway-Charnes
�ngerprints of the spread sets of matrices in the corresponding exceptional transitive
linear group G. One sees that only for two pairs of spread sets do we obtain the
same �ngerprint.
Let us denote by Q1, Q

′
1 the quasi�elds of order 34 and by Q2, Q

′
2 those of order 24.

We compute the corresponding autotopism groups A1,A′1 and A2,A′2. GAP4 shows
that A1 and A′1 are nonisomorphic groups of order 640, acting transitively on the
80 points of `∞ \ {(0), (∞)}. By Proposition 8.12, Q1, Q

′
1 determine nonisomorphic

translation planes. A2 and A′2 are both isomorphic to PSL(2, 7). Both groups �x
a third point a, a′ of the in�nite line and act transitively on the remaining 14
in�nite points. Hence, both groups are the stabilizer of a triple of in�nite points
and Proposition 8.12 applies. As the orbit lengths of A2 and A′2 are di�erent, we
can conclude that the two translation planes are nonisomorphic.

8.7. Right multiplication groups of �nite right

quasi�elds

We compile our results in the following theorem.

Theorem 8.17. Let (Q,+, ·) be a �nite right quasi�eld of order pd with prime p.
Then, for G = RMlt(Q∗), one of the following holds:

1. G ≤ ΓL(1, pd) and the corresponding translation plane is a generalized André
plane.

2. G . SL(d/e, pe) for some divisor e < d of d with e 6= d.

3. p is odd and G . Sp(d/e, pe) for some divisor e of d.

4. pd ∈ {52, 72, 112, 172, 232, 292, 592} and G is one of the seven �nite sharply
transitive linear groups of Zassenhaus [Zas35]. The corresponding translation
planes are called Zassenhaus near�eld planes.

5. pd ∈ {52, 72, 112}, and G is a solvable exceptional transitive linear group.
These quasi�elds and the corresponding translation planes have been given by
M. J. Kallaher [Kal87].

90

               dc_821_13
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6. pd = 34, 192 or 292, and the number of translation planes is 21, 3 or 8, re-
spectively.

7. pd = 16 and G = A7. The corresponding translation planes are the Lorimer-
Rahilly and Johnson-Walker planes.

Proof. By Proposition 8.14, (1), (2) or (3) holds if G belongs to one of the in�nite
classes of �nite transitive linear groups. If G ≤ ΓL(1, pd) then the corresponding
translation plane is a generalized André plane by [Kal87, Theorem 3.1]. (Here the
concept of generalized André planes includes the so called regular near�eld planes,
see [JJB07, Section 8.1].) The cases of the Zassenhaus near�eld planes are in (4).
The arguments in Sections 8.5 and 8.6 imply (6) and that there are two quasi�elds
having A7 as right multiplication group. Moreover, the corresponding translation
planes are nonisomorphic. [JK82, Corollary 4.2.1] implies that the two translation
planes are the Lorimer-Rahilly and Johnson-Walker planes.

We close this chapter with two remarks.

1. No quasi�eld Q is known to the author with RMlt(Q∗).Sp(d/e, pe). Even the
smallest case of Sp(4, 3) is computationally challenging.

2. The Lorimer-Rahilly and Johnson-Walker translation planes are known to
be polar to each other, that is, one spread set of matrices is obtained by
transposing the matrices in the other spread set. (See [JJB07, (29.4.4)].)

The GAP programs used in this chapter are avaible on the author's web page:

http://www.math.u-szeged.hu/~nagyg/pub/rightmlt.html
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9. On the multiplication groups

of �nite semi�elds

In this chapter, we investigate the following problem: Let G be a �nite permutation
group on the set Q. Is there a loop operation x · y on Q such that Mlt(Q) ≤ G? In
particular, we are interested in the cases where G is a projective linear group or a
big Mathieu group. Concerning this question, the most general results are due to A.
Vesanen [Ves95] and A. Drápal [Drá02], who showed that (a) if Mlt(Q) ≤ PΓL(2, q)
(q ≥ 5), then Q is a cyclic group, and, (b) the answer is negative for the groups
PSp(2n, q) (n ≥ 2), PU(n, q2) (n ≥ 6), PO(n, q) (n ≥ 7 odd), and POε(n, q)
(n ≥ 7 − ε even). Recall that for the loop Q of units of O(Fq) modulo the center,
Mlt(Q) = PΩ+(8, q).
In [Cam03, Problem 398], A. Drápal asked the above question in the following

formulation: Given n ≥ 3 and a prime power q, does there exist a normalized
Latin square such that for the group G generated by the rows and the columns,
PSL(k, q) ≤ G ≤ PΓL(k, q) holds? We answer this question a�rmatively when
qn > 8. Our construction uses multiplicative loops of semi�elds and it is unique
in the the following sense. Let Q be a �nite loop such that PSL(n, q) ≤ M(Q) ≤
PGL(n, q). Then there is a semi�eld S with center Fq and dimension n over Fq such
that Q ∼= S∗/Z(S∗).
The results of this chapter have been published in the paper [Nag10]. Theorem

9.4 supports Thesis 5. These results had an impact to the following papers:

1) In [Ves13], Vesanen sharpens Theorem 9.4 by showing that the group PSL(n, q)
in its natural permutation representation is the multiplication group of a loop
if and only if n ≥ 3, (n, q) 6= (3, 2), and gcd(n, q − 1) = 1.

2) In [HL12], Hiss and Lübeck investigates �nite 2-transitive groups occuring as
multiplication groups of quasigroups. They refer to our loop construction in
Table 9.1, to Theorem 9.4 and Proposition 9.6 concerning M23. Moreover, they
compare their algorithm to our computer algebra methods.

9.1. Finite semi�elds with large multiplication

groups

Using the computer algebra software GAP4 [Gap], the followsing result can easily
be checked:
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9. On the multiplication groups of �nite semi�elds

Lemma 9.1. No exceptional �nite transitive linear group can be the group of mul-
tiplications of a �nite loop.

Proposition 9.2. Let S be a �nite semi�eld of dimension n over its center Fq.
Let G be the group of multiplications of the multiplicative loop S∗. Then SL(n, q) ≤
G ≤ GL(n, q).

Proof. Let the socle G0 of G be SL(n0, r), Sp(n0, r) or G2(r). Then G ≤ ΓL(n0, r)
and Fr is a normal sub�eld of S. The generalized Cartan-Brauer-Hua theorem
([Gru83, Lemma 1.1]) implies that Fr is central in S, hence r = q, n0 = n and
G ≤ GL(n, q). Let us assume that G0 = Sp(n, q) or G0 = G2(q). In the latter case
n = 6 and q is even, hence G2(q) < Sp(6, q). Indeed, for q even, the 6-dimensional
representation of the exceptional Lie group G2(q) is constructed from its natural 7-
dimensional orthogonal representation by using the isomorphism O(7, q) ∼= Sp(6, q),
cf [Tay92, Theorem 11.9]. Thus, in both cases, the multiplication group of the
central factor loop Q = S∗/Z(S∗) is contained in PSp(n, q). This contradicts [Ves95,
Theorem S].

Proposition 9.3. Let n ≥ 3 be an integer and q a prime power such that qn > 8.
Then, there is a semi�eld S such that the multiplication group G of S∗ satis�es
SL(n, q) ≤ G ≤ GL(n, q).

Proof. By Proposition 9.2, we only have to present a semi�eld which has dimension
n over its center Fq. We distinguish between three cases: (1) q ≥ 3, (2) q = 2 and
n is odd, and (3) q = 2 and n is even.
In case (1), we can use Albert's twisted �elds [Alb61]. Let F be the �nite �eld

Fqn . Let θ : x 7→ xq and σ : x 7→ xq
n−1

be automorphisms of F and c ∈ F such that
c = xq−1 has no solution in F . As in [Alb61], the semi�eld S = (F,+, ∗) is de�ned
using the quadruple (F, θ, σ, c) . As n ≥ 3, θ 6= σ and we can use [Alb61, Theorem
1] to deduce that the center of S is Fq.
In case (2), we construct a proper binary semi�eld S = (F,+, ∗) of Knuth's type

from the �elds F = F2n , F0 = F2 and F0-linear map f : F → F0. As in [Knu65a,
Section 2], we �rst de�ne x◦y = xy+(f(x)y+f(y)x)2 and put x∗y = (x/1)◦(y/1)
where x/1 is given by (x/1)◦1 = x. Let z be a nonzero element of Z(S,+, ∗). Then
(x ◦ 1) ∗ ((y ◦ 1) ∗ z) = ((x ◦ 1) ∗ (y ◦ 1)) ∗ z implies

x ◦ (y ◦ z/1)/1 = (x ◦ y)/1 ◦ z/1.

We de�ne the maps α, β : S→ S by

α(u) = (u ◦ z/1)/1, β(u) = u/1 ◦ z/1.

Then the above equation has the form

x ◦ α(y) = β(x ◦ y),
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and the triple (id, α, β) de�nes an autotopism of the pre-semi�eld (F,+, ◦). By
[Knu65a, Theorem 6], α(u) = z′u for some z′ ∈ F0. As α 6= 0, this implies z′ = 1
and α = id. Thus,

u ◦ 1 = α(u) ◦ 1 = u ◦ z/1 =⇒ 1 = z/1

=⇒ z = 1 ◦ 1 = 1 + (2f(1))2 = 1.

Hence, Z(S) consists of 0 and 1.
In case (3), put F = F2n/2 and pick elements f, g ∈ F such that y3 + gy + f 6= 0

for all y ∈ F . De�ne the multiplication on S = F + λF by

(a+ λb)(c+ λd) = (ac+ bσdτ
2

f) + λ(bc+ aσd+ bσdτg),

where xσ = x2 and τ = σ−1. As n ≥ 4, σ 6= id and by [Knu65b, Section 7.4], S is a
semi�eld with unit element 1 = 1 + λ · 0. Assume that a+ λb ∈ Z(S). If c ∈ F such
that cσ 6= c then

ac+ λ(bc) = (a+ λb)c = c(a+ λb) = ac+ λ(cσb)⇐⇒ b = 0.

Furthermore,
λa = aλ = λaσ ⇐⇒ a = aσ ⇐⇒ a ∈ F2.

This shows Z(S) = F2.

Remarks: It is an easy exercise to show that a semi�eld cannot have dimension
2 over its center. Moreover, it is also easy to see that no proper semi�eld of order
8 exists.

9.2. The main result on multiplication groups of

semi�elds

The �rst part of the following theorem gives a general a�rmative answer to Drápal's
problem. The second part of the theorem is a partial converse of our construction
based on semi�elds. The proof of this part is basically contained in the proof of
[Ves95, Theorem S]. However, as it is not formulated in this way, we present a
self-contained proof, using a slightly di�erent notation.

Theorem 9.4. (a) For any integer n ≥ 3 and prime power q with qn > 8, there
is a loop Q such that PSL(n, q) ≤ Mlt(Q) ≤ PGL(n, q).

(b) Let Q be a loop such that Mlt(Q) ≤ PGL(n, q) with n ≥ 3. Then there is a
semi�eld S of dimension n over its center Fq such that Q ∼= S∗/Z(S∗).

Proof. Part (a) follows immediately from Proposition 9.2 and 9.3. Let Q be a loop
with multiplication group G = Mlt(Q) ≤ PGL(n, q). We simply put F = Fq and
write the elements of Q = PG(n − 1, q) in the form xF with x ∈ F n \ {0}. Let
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us denote the unit element of Q by eF . For any element xF , the left and right
translations LxF , RxF are represented by n × n matrices over F and we assume
LeF = ReF = I. We have

(xF ) · (yF ) = (xRyF )F = (yLxF )F,

and for all vectors x, y there is a unique nonzero scalar cx,y with

xRyF = yLxF · cx,y. (9.1)

Clearly, cλx,y = λcx,y holds. For any x, y, z with x+ y 6= 0, the following yields:

zL(x+y)F · cx+y,z = (x+ y)RzF = xRzF + yRzF = zLxF · cx,z + zLyF · cy,z.

Let us now �x the elements x, y with x+ y 6= 0 and de�ne the matrices

U = L(x+y)FL
−1
xF , V = LyFL

−1
xF

and the scalars
α(z) =

cx,z
cx+y,z

, β(z) =
cy,z
cx+y,z

.

By [Ves95, Lemma A], α(z) and β(z) are nonzero constants; in particular, α(z) =
α(e) and β(z) = β(e). Thus, for any x, y ∈ F n \ {0} with x+ y 6= 0, we have

L(x+y)F · cx+y,e = LxF · cx,e + LyF · cx,e. (9.2)

Let us now consider the set

L = {0} ∪ {αLxF | α ∈ F ∗, x ∈ F n \ {0}}

of matrices. L is closed under addition. Indeed, for �xed nonzero scalars α, β and
vectors x, y, there are unique scalars λ, µ in F such that cλx,e = α, cµy,e = β. Then
either αLxF + βLyF = 0 ∈ L or by (9.2),

αLxF + βLyF = cλx,eLxF + cµy,eLyF = cλx+µy,eL(λx+µy)F ∈ L.

We make the vector space V = F n into a semi�eld in the following way. Denote by
Tx the element cx,eLxF of L. Then by (9.1),

eTx = eLxF · cx,e = xReF = x.

For x, y ∈ V , de�ne x ◦ y = yTx.
Claim 1: (V \ {0}, ◦) is a loop with unit element e.
Clearly, Te is the identity matrix, hence e ◦ x = xTe = x. x ◦ e = eTx = x by

de�nition. The equation x ◦ y = z has a unique solution y = zT−1
x in y. Let us �x

nonzero vectors y, z and take an element x0 ∈ V such that (x0F )(yF ) = zF , that
is, yLx0F = αz for some α ∈ F . Then α−1 = cλx0,e for some nonzero scalar λ. With
x = λx0, we have Tx = α−1Lx0F and z = yTx = x ◦ y.
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Claim 2: (V,+, ◦) is a semi�eld.
Since the left multiplication maps of V are the Tx's, we have left distributivity.

Moreover, as L is closed under addition, for any x, y ∈ V there is a unique z such
that Tx + Ty = Tz. Applying both sides to e, we obtain z = x+ y. Therefore,

(x+ y) ◦ z = zTx+y = z(Tx + Ty) = zTx + zTy = x ◦ z + y ◦ z.

Claim 3: The loop Q is the central factor of V .
Let I denote the identity matrix on V . Then for all α ∈ F , αI = Tαe ∈ L. Using a

trick as above, one can show that Tλx = λTx, which implies that (λx)◦y = λ(x◦y).
This means that the right multiplication maps are in GL(V ), as well. In particular,
the multiplication maps corresponding to the elements λe are centralized by all left
and right multiplication maps, thus, λe ∈ Z(V ) for all λ ∈ F . By

(x ◦ y)F = (yTx)F = (yLxF )F = (xF )(yF ),

the map ϕ : x → xF is a surjective loop homomorphism. The kernel of ϕ consists
of the elements λe, thus, kerϕ is central in V . Since PSL(n, q) ≤ Mlt(Q) acts
primitively, Q is a simple loop and the kernel K of the homomorphism is a maximal
normal subloop. This proves that kerϕ = Z(V ∗).

9.3. Mathieu groups as multiplication groups of

loops

In [Drá02], A. Drápal made some remarks on the question whether the Mathieu
group can occur as multiplication groups of loops. As noted, there it is rather
straigthforward to show that the small Mathieu groups M10,M11 are not the mul-
tiplication groups of loops. Moreover, extensive computer calculation showed that
the same holds for the big Mathieu groups M22 and M23. For M22, the computa-
tion was independently repeated in [MN07]. Later we proved the result on M22 be
theoretical argument; in fact it follows from Theorem 7.5. Moreover, we performed
an independent veri�cation on M23 which gave the same result as Drápal had.
The computation was implemeted in the computer algebra GAP4 [Gap]. In order

to reduce the CPU time we used some tricks. First of all, let L be an n×n normalized
Latin square and let A = {a1, . . . , an},B = {b1, . . . , bn} be the permutations de�ned
by the rows and columns of L, in order. Then a1 = b1 = id, 1ai = 1bi = i and
aibja

−1
i b−1

j leaves 1 �xed. Conversely, assume that A,B are sets of permutations of
degree n such that

(T1) id ∈ A,B,

(T2) for all i ∈ {1, . . . , n} there are unique elements a ∈ A, b ∈ B such that
i = 1a = 1b, and,

(T3) for all a ∈ A, b ∈ B, aba−1b−1 leaves 1 �xed,
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then a normalized Latin square can be constructed such that the rows and columns
of L determine the elements of A and B. Indeed, for any i, j ∈ {1, . . . , n}, the jth
element of the ith row will be ja, where a is the unique element of A with 1a = i.
Let A,B be sets of permutations of degree n satisfying (T1)-(T3) and put G =
〈A,B〉. Then, the following pairs of sets satisfy (T1)-(T3) as well:

(a) B,A;

(b) Ah, Bh, where h ∈ G1;

(c) Au−1, uBu−1, where u ∈ A;

(d) vAv−1, Bv−1, where v ∈ B.

This implies the following

Lemma 9.5. Let L be a Latin square of order n and assume that the rows and
columns generate the group G. Let a be an arbitrary row of L. Then for any a∗ ∈
aG∪ (a−1)G there is a Latin square L∗ such that a∗ is a row of L∗ and the rows and
columns of L∗ generate G.

Proof. Let A,B denote the sets of permutations given by the rows and columns
of L. If a∗ = a−1 then de�ne L∗ from the sets A∗ = Aa−1, B∗ = aBa−1. Thus, it
su�ces to deal with the case a∗ = ag. We can write g = hv−1 where h ∈ G1, v ∈ B.
The sets Ah, Bh determine a Latin square Lh such that ah is a row of Lh. This
means that we can assume that a∗ = vav−1 where u ∈ A. It follows from (d) that
vAv−1, Bv−1 determines a Latin square L∗ with row a∗. In all cases, the rows and
columns generate G.

Put G = M23 ≤ S23 such that {1, . . . , 7} is a block of the corresponding Witt
design D. Let us assume that L is a Latin square such that the rows A and columns
B generate G. Let a14, a15, a23 be elements of orders 14, 15 and 23 of G, respectively,
mapping 1 to 2. Any �xed point free permutation x ∈ G is conjugate to one of
the following elements: a14, a15, a23, a

−1
14 , a

−1
15 , a

−1
23 . By Lemma 9.5, we can assume

that the second row of L is a14, a15 or a23. De�ne X = {(1g, . . . , 7g) | g ∈ G},
|X| = 637 560.
On an o�ce PC running GAP4 [Gap], it takes about 72 hours to list all 7 × 7

submatrices K which have the property that all rows and columns are in X, with
given �rst column and �rst and second rows. If the second row is determined by a14

of a15 then the number of such submatrices is about 4000 and it takes 1 hour more
to show that none of these submatrices can be extended to a Latin square of order
23 such that the rows and columns are in G. That is, about 150 hours of CPU time
su�ces to show that no column or row of L can be of order 14 or 15. Thus, we can
assume that all rows and columns of L have order 23. Moreover, for any two rows
x, y of L, xy−1 has order 23, as well. About 3 hours of computation shows that any
Latin square with these properties must correspond to a cyclic group of order 23.
We have therefore the following
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 1 4 3 15 18 11 24 8 17 21 20 9 10 22 7 5 19 23 6 12 13 16 14

3 4 1 2 20 17 9 16 23 21 8 14 19 11 6 13 12 5 15 10 24 18 22 7

4 3 2 1 19 22 14 21 11 6 10 5 7 20 23 24 18 13 9 15 17 16 8 12

5 8 7 6 12 10 13 23 15 3 19 2 4 17 14 18 24 21 16 11 20 9 1 22

6 7 8 5 16 9 17 20 1 15 14 18 24 23 19 4 2 22 10 3 13 12 11 21

7 6 5 8 2 3 4 1 18 12 16 10 23 19 17 15 11 20 14 24 22 21 13 9

8 5 6 7 9 16 20 17 21 13 1 23 10 24 3 14 19 2 18 22 11 15 12 4

9 17 20 16 24 11 18 15 19 8 12 7 5 4 13 22 21 23 2 14 1 3 6 10

10 13 23 12 22 19 21 14 5 11 2 24 18 9 4 6 8 1 20 7 16 17 15 3

11 18 15 24 1 4 3 2 14 16 5 9 20 12 7 21 22 8 13 19 10 23 17 6

12 23 13 10 11 24 15 18 7 19 20 22 21 2 9 8 6 16 4 5 3 1 14 17

13 10 12 23 17 20 16 9 4 22 18 19 14 6 24 1 3 11 8 2 5 7 21 15

14 22 19 21 8 7 6 5 13 4 17 1 3 15 16 23 10 9 11 12 18 24 2 20

15 24 11 18 23 13 10 12 17 14 6 21 22 3 8 20 9 7 1 16 2 4 19 5

16 20 17 9 18 15 24 11 12 1 22 4 2 5 21 10 23 14 7 13 6 8 3 19

17 9 16 20 4 1 2 3 10 18 7 15 11 22 5 12 13 6 21 23 19 14 24 8

18 11 24 15 21 14 22 19 16 23 3 13 12 8 1 9 20 4 6 17 7 5 10 2

19 21 14 22 13 23 12 10 6 20 4 17 16 18 2 5 7 3 24 8 15 11 9 1

20 16 9 17 10 12 23 13 2 7 15 8 6 21 11 3 1 24 22 4 14 19 5 18

21 19 22 14 6 5 8 7 20 24 13 11 15 1 12 17 16 10 3 9 4 2 18 23

22 14 21 19 3 2 1 4 24 9 23 16 17 7 10 11 15 12 5 18 8 6 20 13

23 12 10 13 7 8 5 6 22 2 24 3 1 16 18 19 14 15 17 21 9 20 4 11

24 15 18 11 14 21 19 22 3 5 9 6 8 13 20 2 4 17 12 1 23 10 7 16

Table 9.1.: Cayley table of a loop whose multiplication group is M24

Proposition 9.6. (a) There is no loop Q of order 10 or 22 such that Mlt(Q) ≤
M10 or Mlt(Q) ≤M22.

(b) Let Q be a loop of order 11 or 23 such that Mlt(Q) ≤M11 or Mlt(Q) ≤M23.
Then Q is a cyclic group.

(c) There are loops Q1 and Q2 of order 12 and 24 such that Mlt(Q1) = M12 and
Mlt(Q2) = M24.

Proof. The loop Q1 is Conway's arithmetic progression loop given in [Con88, Sec-
tion 18]. Q1 is commutative and its automorphism group is transitive. The mul-
tiplication table of the loop Q2 is given in Table 9.1. Q2 is noncommutative and
|Aut(Q2)| = 5.

99

               dc_821_13



               dc_821_13



Part IV.

Dual nets in projective planes
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10. Projective realizations of

3-nets

In a projective plane a 3-net consists of three pairwise disjoint classes of lines such
that every point incident with two lines from distinct classes is incident with exactly
one line from each of the three classes. If one of the classes has �nite size, say n,
then the other two classes also have size n, called the order of the 3-net.
There is a long history about �nite 3-nets in Combinatorics related to a�ne

planes, Latin squares, loops and strictly transitive permutation sets. In this chapter
we are dealt with 3-nets in a projective plane PG(2,K) over an algebraically closed
�eld K which are coordinatized by a group. Such a 3-net, with line classes A,B, C
and coordinatizing group G = (G, ·), is equivalently de�ned by a triple of bijective
maps from G to (A,B, C), say

α : G→ A, β : G→ B, γ : G→ C

such that a · b = c if and only if α(a), β(b), γ(c) are three concurrent lines in
PG(2,K), for any a, b, c ∈ G. If this is the case, the 3-net in PG(2,K) is said to
realize the group G. In recent years, �nite 3-nets realizing a group in the complex
plane have been investigated in connection with complex line arrangements and
Resonance theory see [FY07; Buz09; PY08; Yuz04; Yuz09].
In the present chapter, combinatorial methods are used to investigate �nite 3-

nets realizing a group. Since key examples, such as algebraic 3-nets and tetrahedron
type 3-nets, arise naturally in the dual plane of PG(2,K), it is convenient to work
with the dual concept of a 3-net.

The results of this chapter have been published in the paper [KNP13b]. The
details on the classi�cation of low order dual 3-nets are given in [NP13]. The study
of the embedding of k-nets into projective planes continued in [KNP13a]. Theorem
10.1 supports Thesis 6.

Main result on group realizations

Formally, a dual 3-net of order n in PG(2,K) consists of a triple (Λ1,Λ2,Λ3) with
Λ1,Λ2,Λ3 pairwise disjoint point-sets of size n, called components , such that every
line meeting two distinct components meets each component in precisely one point.
A dual 3-net (Λ1,Λ2,Λ3) realizing a group is algebraic if its points lie on a plane
cubic, and is of tetrahedron type if its components lie on the six sides (diagonals)
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10. Projective realizations of 3-nets

of a non-degenerate quadrangle such a way that Λi = ∆i ∪ Γi with ∆i and Γi lying
on opposite sides, for i = 1, 2, 3.
The goal of this chapter is to prove the following classi�cation theorem.

Theorem 10.1. In the projective plane PG(2,K) de�ned over an algebraically
closed �eld K of characteristic p ≥ 0, let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4
which realizes a group G. If either p = 0 or p > n then one of the following holds.

(I) G is either cyclic or the direct product of two cyclic groups, and (Λ1,Λ2,Λ3)
is algebraic.

(II) G is dihedral and (Λ1,Λ2,Λ3) is of tetrahedron type.

(III) G is the quaternion group of order 8.

(IV) G has order 12 and is isomorphic to Alt4.

(V) G has order 24 and is isomorphic to Sym4.

(VI) G has order 60 and is isomorphic to Alt5.

A computer aided exhaustive search shows that if p = 0 then (IV) (and hence
(V), (VI)) does not occur, see [NP13].
Theorem 10.1 shows that every realizable �nite group can act in PG(2,K) as a

projectivity group. This con�rms Yuzvinsky's conjecture for p = 0.
The proof of Theorem 10.1 uses some previous results due to Yuzvinsky [Yuz09],

Urzúa [Urz10], and Blokhuis, Korchmáros and Mazzocca [BKM11].
Our notation and terminology are standard, see [HP73]. In view of Theorem

10.1, K denotes an algebraically closed �eld of characteristic p where either p = 0
or p ≥ 5, and any dual 3-net in the present chapter is supposed to be have order n
with n < p whenever p > 0.

10.1. Some useful results on plane cubics

A nice in�nite family of dual 3-nets realizing a cyclic group arises from plane cubics
in PG(2,K); see [Yuz04]. The key idea is to use the well known abelian group
de�ned on the points of an irreducible plane cubic, recalled here in the following
two propositions.

Proposition 10.2. [HKT08, Theorem 6.104] A non-singular plane cubic F can be
equipped with an additive group (F ,+) on the set of all its points. If an in�ection
point P0 of F is chosen to be the identity 0, then three distinct points P,Q,R ∈ F
are collinear if and only if P +Q+R = 0. For a prime number d 6= p, the subgroup
of (F ,+) consisting of all elements g with dg = 0 is isomorphic to Cd × Cd while
for d = p it is either trivial or isomorphic to Cp according as F is supersingular or
not.
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10.2. 3-nets, quasigroups and loops

F

P

R

P ⊕Q

Q

P0

Figure 10.1.: Abelian group law on an elliptic curve

Proposition 10.3. [Yuz04, Proposition 5.6, (1)]. Let F be an irreducible singular
plane cubic with its unique singular point U , and de�ne the operation + on F \{U}
in exactly the same way as on a non-singular plane cubic. Then (F ,+) is an abelian
group isomorphic to the additive group of K, or the multiplicative group of K,
according as P is a cusp or a node.

If P is a non-singular and non-in�ection point of F then the tangent to F at
P meets F a point P ′ other than P , and P ′ is the tangential point of P . Every
in�ection point of a non-singular cubic F is the center of an involutory homology
preserving F . A classical Lame con�guration consists of two triples of distinct lines
in PG(2,K), say `1, `2, `3 and r1, r2, r3, such that no line from one triple passes
through the common point of two lines from the other triple. For 1 ≤ j, k ≤ 3, let
Rjk denote the common point of the lines `j and rk. There are nine such common
points, and they are called the points of the Lame con�guration.

Proposition 10.4. Lame's Theorem. If eight points from a Lame con�guration lie
on a plane cubic then the ninth also does.

10.2. 3-nets, quasigroups and loops

A Latin square of order n is a table with n rows and n columns which has n2 entries
with n di�erent elements none of them occurring twice within any row or column.
If (L, ∗) is a quasigroup of order n then its multiplicative table, also called Cayley
table, is a Latin square of order n, and the converse also holds.
For two integers k, n both bigger than 1, let (G, ·) be a group of order kn con-

taining a normal subgroup (H, ·) of order n. Let G be a Cayley table of (G, ·).
Obviously, the rows and the columns representing the elements of (H, ·) in G form
a Latin square which is a Cayley table for (H, ·). From G, we may extract k2 − 1
more Latin squares using the cosets of H in G. In fact, for any two such cosets H1

and H2, a Latin square H1,2 is obtained by taking as rows (respectively columns)
the elements of H1 (respectively H2).

105

               dc_821_13
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Proposition 10.5. The Latin square H1,2 is a Cayley table for a quasigroup isotopic
to the group H.

Proof. Fix an element t1 ∈ H1. In H1,2, label the row representing the element
h1 ∈ H1 with h′1 ∈ H where h1 = t1 · h′1. Similarly, for a �xed element t2 ∈ H2,
label the column representing the element h2 ∈ H2 with h′2 ∈ H where h2 = h′2 · t2.
The entries in H1,2 come from the coset H1 ·H2. Now, label the entry h3 in H1 ·H2

with the element h′3 ∈ H where h3 = t1 · h′3 · t2. Doing so, H1,2 becomes a Cayley
table for the subgroup (H, ·), whence the assertion follows.

In terms of a dual 3-net, the relationship between 3-nets and quasigroups can
be described as follows. Let (L, ·) be a loop arising from an embeddable 3-net, and
consider its dual 3-net with its components Λ1,Λ2,Λ3. For i = 1, 2, 3, the points in
Λi are bijectively labeled by the elements of L. Let (A1, A2, A3) with Ai ∈ Λi denote
the the triple of the points corresponding to the element a ∈ L. With this notation,
a · b = c holds in L if and only if the points A1, B2 and C3 are collinear. In this way,
points in Λ3 are naturally labeled when a · b is the label of C3. Let (E1, E2, E3) be
the triple for the unit element e of L. From e · e = e, the points E1, E2 and E3 are
collinear. Since a · a = a only holds for a = e, the points A1, A2, A3 are the vertices
of a (non-degenerate) triangle whenever a 6= e. Furthermore, from e · a = a, the
points E1, A2 and A3 are collinear; similarly, a · e = a yields that the points A1, E2,
and A3 are collinear. However, the points A1, A2 and E3 form a triangle in general;
they are collinear if and only if a · a = e, i.e. a is an involution of L.
In some cases, it is useful to relabel the points of Λ3 replacing the above bijection

A3 → a from Λ3 to L by the bijection A3 → a′ where a′ is the inverse of a in (L, ·).
Doing so, three points A1, B2, C3 with A1 ∈ Λ1, B2 ∈ Λ2, C3 ∈ Λ3 are collinear if
and only if a · b · c = e with e being the unit element in (L, ·). This new bijective
labeling will be called a collinear relabeling with respect to Λ3.
In this chapter we are interested in 3-nets of PG(2,K) which are coordinatized

by a group G. If this is the case, we say that the 3-net realizes the group G. In
terms of dual 3-nets where Λ1,Λ2,Λ3 are the three components, the meaning of this
condition is as follows: There exists a triple of bijective maps from G to (Λ1,Λ2,Λ3),
say

α : G→ Λ1, β : G→ Λ2, γ : G→ Λ3

such that a · b = c if and only if α(a), β(b), γ(c) are three collinear points, for any
a, b, c ∈ G.
Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order kn containing

a subgroup (H, ·) of order n. Then the left cosets of H provide a partition of
each component Λi into k subsets. Such subsets are called left H-members and
denoted by Γ

(1)
i , . . . ,Γ

(k)
i , or simply Γi when this does not cause confusion. The left

translation map σg : x 7→ x+g preserves every leftH-member. The following lemma
shows that every left H-member Γ1 determines a dual 3-subnet of (Λ1,Λ2,Λ3) that
realizes H.

106

               dc_821_13



10.3. The in�nite families of dual 3-nets realizing a group

Lemma 10.6. Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order
kn containing a subgroup (H, ·) of order n. For any left coset g ·H of H in G, let
Γ1 = g ·H, Γ2 = H and Γ3 = g ·H. Then (Γ1,Γ2,Γ3) is a 3-subnet of (Λ1,Λ2,Λ3)
which realizes H.

Proof. For any h1, h2 ∈ H we have that (g ·h1) ·h2 = g · (h1 ·h2) = g ·h with h ∈ H.
Hence, any line joining a point of Γ1 with a point of Γ2 meets Γ3.

Similar results hold for right cosets of H. Therefore, for any right coset H · g,
the triple (Γ1,Γ2,Γ3) with Γ1 = H, Γ2 = H · g and Γ3 = H · g is a 3-subnet of
(Λ1,Λ2,Λ3) which realizes H.
The dual 3-subnets (Γ1,Γ2,Γ3) introduced in Lemma 10.6 play a relevant role.

When g ranges over G, we obtain as many as k such dual 3-nets, each being called
a dual 3-net realizing the subgroup H as a subgroup of G.
Obviously, left cosets and right cosets coincide if and only if H is a normal

subgroup of G, and if this is the case we may use the shorter term of coset.
Now assume that H is a normal subgroup of G. Take two H-members from

di�erent components, say Γi and Γj with 1 ≤ i < j ≤ 3. From Proposition 10.5,
there exists a member Γm from the remaining component Λm, with 1 ≤ m ≤ 3
and m 6= i, j, such that (Γ1,Γ2,Γ3) is a dual 3-net of realizing (H, ·). Doing so,
we obtain k2 dual 3-subnets of (Λ1,Λ2,Λ3). They are all the dual 3-subnets of
(Λ1,Λ2,Λ3) which realize the normal subgroup (H, ·) as a subgroup of (G, ·).

Lemma 10.7. Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order
kn containing a normal subgroup (H, ·) of order n. For any two cosets g1 ·H and
g2 ·H of H in G, let Γ1 = g1 ·H, Γ2 = g2 ·H and Γ3 = (g1 ·g2) ·H. Then (Γ1,Γ2,Γ3)
is a 3-subnet of (Λ1,Λ2,Λ3) which realizes H.

If g1 and g2 range independently over G, we obtain as many as k2 such dual 3-
nets, each being called a dual 3-net realizing the normal subgroup H as a subgroup
of G.

10.3. The in�nite families of dual 3-nets realizing

a group

A dual 3-net (Λ1,Λ2,Λ3) with n ≥ 4 is said to be algebraic if all its points lie
on a (uniquely determined) plane cubic F , called the associated plane cubic of
(Λ1,Λ2,Λ3). Algebraic dual 3-nets fall into three subfamilies according as the plane
cubic splits into three lines, or in an irreducible conic and a line, or it is irreducible.

10.3.1. Proper algebraic dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is said to be proper if its points lie on an
irreducible plane cubic F .
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Proposition 10.8. Any proper algebraic dual 3-net (Λ1,Λ2,Λ3) realizes a group
M . There is a subgroup T ∼= M in (F ,+) such that each component Λi is a coset
T + gi in (F ,+) where g1 + g2 + g3 = 0.

Proof. We do some computation in (F ,+). Let A1, A2, A3 ∈ Λ1 three distinct points
viewed as elements in (F ,+). First we show that the solution of the equation in
(F ,+)

A1 − A2 = X − A3 (10.1)

belongs to Λ1. Let C ∈ Λ3. From the de�nition of a dual 3-net, there exist Bi ∈
Λ2 such that Ai + Bi + C = 0 for i = 1, 2, 3. Now choose C1 ∈ Λ3 for which
A1 +B2 + C1 = 0, and then choose A∗ ∈ Λ1 for which A∗ +B3 + C1 = 0. Now,

A∗ − A3 = −B3 − C1 − (−B3 − C) = C − C1

A1 − A2 = −B2 − C1 − (−B2 − C) = C − C1
(10.2)

Therefore, A∗ is a solution of Equation (10.2).
Now we are in a position to prove that Λ1 is a coset of a subgroup of (F ,+). For

A0 ∈ Λ1, let T1 = {A−A0|A ∈ Λ1}. Since (A1−A0)−(A2−A0) = A1−A2, Equation
(10.2) ensures the existence of A∗ ∈ Λ1 for which A1 − A2 = A∗ − A0 whenever
A1, A2 ∈ Λ1. Hence (A1 − A0) − (A2 − A0) ∈ T1. From this, T1 is a subgroup of
(F ,+), and therefore Λ1 is a coset T + g1 of T1 in (F ,+).
Similarly, Λ2 = T2+g2 and Λ3 = T3+g3 with some subgroups T2, T3 of (F ,+) and

elements g2, g3 ∈ (F ,+). It remains to show that T1 = T2 = T3. The line through
the points g1 and g2 meets Λ3 in a point t∗ + g3. Replacing g3 with g3 + t∗ allows
to assume that g1 + g2 + g3 = 0. Then three points gi + ti with ti ∈ Ti is collinear
if and only if t1 + t2 + t3 = 0. For t3 = 0 this yields t2 = −t1. Hence, every element
of T2 is in T1, and the converse also holds. From this, T1 = T2. Now, t3 = −t1 − t2
yields that T3 = T1. Therefore T = T1 = T2 = T3 and Λi = T + gi for i = 1, 2, 3.
This shows that (Λ1,Λ2,Λ3) realizes a group M ∼= T .

10.3.2. Triangular dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is regular if the components lie on three lines,
and it is either of pencil type or triangular according as the three lines are either
concurrent, or they are the sides of a triangle.

Lemma 10.9. Every regular dual 3-net of order n is triangular.

Proof. Assume that the components of a regular dual 3-net (Λ1,Λ2,Λ3) lie on three
concurrent lines. Using homogeneous coordinates in PG(2,K), these lines are as-
sumed to be those with equations Y = 0, X = 0, X − Y = 0 respectively, so that
the line of equation Z = 0 meets each component. Therefore, the points in the
components may be labeled in such a way that

Λ1 = {(1, 0, ξ)|ξ ∈ L1}, Λ2 = {(0, 1, η)|η ∈ L2}, Λ3 = {(1, 1, ζ)|ζ ∈ L3},
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with Li subsets of K containing 0. By a straightforward computation, three points
P = (1, 0, ξ), Q = (0, 1, η), R = (1, 1, ζ) are collinear if and only if ζ = ξ + η.
Therefore, L1 = L2 = L3 and (Λ1,Λ2,Λ3) realizes a subgroup of the additive group
of K of order n. Therefore n is a power of p. But this contradicts the hypothesis
p > n.

For a triangular dual 3-net, the (uniquely determined) triangle whose sides con-
tain the components is called the associated triangle.

Proposition 10.10. Every triangular dual 3-net realizes a cyclic group isomorphic
to a multiplicative group of K.

Proof. Using homogeneous coordinates in PG(2,K), the vertices of the triangle are
assumed to be the points O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0). For i = 1, 2, 3,
let `i denote the fundamental line of equation Y = 0, X = 0, Z = 0 respectively.
Therefore the points in the components lie on the fundamental lines and they may
be labeled in such a way that

Λ1 = {(ξ, 0, 1)|ξ ∈ L1}, Λ2 = {(0, η, 1)|η ∈ L2}, Λ3 = {(1,−ζ, 0)|ζ ∈ L3}

with Li subsets of K∗ of a given size n. With this setting, three points P = (ξ, 0, 1),
Q = (0, η, 1), R = (1,−ζ, 0) are collinear if and only if ξζ = η. With an appropriate
choice of the unity point of the coordinate system, both 1 ∈ L1 and 1 ∈ L2 may
also be assumed. From 1 ∈ L1, we have that L2 = L3. This together with 1 ∈ L2

imply that L1 = L2 = L3 = L. Since 1 ∈ L, L is a �nite multiplicative subgroup of
K. In particular, L is cyclic.

Remark 10.11. In the proof of Proposition 10.10, if the unity point of the coor-
dinate system is arbitrarily chosen, the subsets L1, L2 and L3 are not necessarily
subgroups. Actually, they are cosets of (the unique) multiplicative cyclic subgroup
H, say L1 = aH, L2 = bH and L3 = cH, with ac = b. Furthermore, since every
h ∈ H de�nes a projectivity ϕh : x 7→ hx of the projective line, and these projec-
tivities form a group isomorphic to H, it turns out that Li is an orbit of a cyclic
projectivity group of `i of order n, for i = 1, 2, 3.

Proposition 10.12. Let (Λ1,Λ2,Λ3) be a triangular dual 3-net. Then every point of
(Λ1,Λ2,Λ3) is the center of a unique involutory homology which preserves (Λ1,Λ2,Λ3).

Proof. The point (ξ, 0, 1) is the center and the line through Y∞ and the point
(−ξ, 0, 1) and is the axis of the involutory homology ϕξ associated to the matrix 0 0 ξ2

0 −ξ 0
1 0 0

 .

With the above notation, if ξ ∈ aH then hξ preserves Λ1 while it sends any point
in Λ2 to a point in Λ3, and viceversa. Similarly, for η ∈ bH and ζ ∈ cH where ψη
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and θζ are the involutory homologies associated to the matrices −η 0 0
0 0 η2

0 1 0

 and

 0 1 0
ζ2 0 0
0 0 ζ

 .

With the notation introduced in the proof of Proposition 10.10, let Φ1 = {ϕξϕξ′|ξ, ξ′ ∈
aH} and Φ2 = {ψηψη′ |η, η′ ∈ bH}. Then both are cyclic groups isomorphic to H.
A direct computation gives the following result.

Proposition 10.13. Φ1 ∩ Φ2 is either trivial or has order 3.

Some useful consequences are stated in the following proposition.

Proposition 10.14. Let Θ = 〈Φ1,Φ2〉. Then

|Θ| =
{
|H|2, when gcd.(3, |H|) = 1;

1
3
|H|2, when gcd.(3, |H|) = 3.

Furthermore, Θ �xes the vertices of the fundamental triangle, and no non-trivial
element of Θ �xes a point outside the sides of the fundamental triangle.

We prove another useful result.

Proposition 10.15. If (Γ1,Γ2,Γ3) and (Σ1,Σ2,Σ3) are triangular dual 3-nets such
that Γ1 = Σ1, then the associated triangles share the vertices on their common side.

Proof. From Remark 10.11, Γ1 is the orbit of a cyclic projectivity group H1 of the
line ` containing Γ1 while the two �xed points of H1 on `, say P1 and P2, are vertices
of the triangle containing Γ1,Γ2,Γ3.
The same holds for Σ1 with a cyclic projectivity group H2, and �xed points

Q1, Q2. From Γ1 = Σ1, the projectivity group H of the line ` generated by H1 and
H2 preserves Γ1. Let M be the projectivity group generated by H1 and H2.
Observe thatM is a �nite group since it has an orbit of �nite size n ≥ 3. Clearly,
|M | ≥ n and equality holds if and only if H1 = H2. If this is the case, then
{P1, P2} = {Q1, Q2}. Therefore, for the purpose of the proof, we may assume on
the contrary that H1 6= H2 and |M | > n.
Now, Dickson's classi�cation of �nite subgroups of PGL(2,K) applies toM . From

that classi�cation, M is one of the nine subgroups listed as ((1), . . . , (9) in [MV83,
Theorem 1] where e denotes the order of the stabilizer MP of a point P in a short
M -orbit, that is, an M -orbit of size smaller than M . Observe that such an M -orbit
has size |M |/e. There exist a �nitely many short M -orbits, and Σ1 is one of them.
It may be that an M -orbit is trivial as it consists of just one point.
Obviously, M is neither cyclic nor dihedral as it contains two distinct cyclic

subgroups of the same order n ≥ 3.
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Also,M is not an elementary abelian p-group E of rank ≥ 2, otherwise we would
have |E| = |M | > n since the minimum size of a non-trivial E-orbit is |E|, see (2)
in [MV83, Theorem 1].
From (5) in [MV83, Theorem 1] with p 6= 2, 3, the possible sizes of a short Alt4-

orbit are 4, 6 each larger than 3. On the other hand, Alt4 has no element of order
larger than 3. Therefore, M 6∼= Alt4 for p 6= 2, 3.
Similarly, from (5) in [MV83, Theorem 1] with p 6= 2, 3, the possible sizes of a

short Sym4-orbit are 6, 8, 12 each larger than 4. Since Sym4 has no element of order
larger than 4. Therefore, M 6∼= Sym4 for p 6= 2, 3.
Again, from (6) in [MV83, Theorem 1] with p 6= 2, 5, the possible sizes of a short

Alt5-orbit are 10, 12 for p = 3 while 12, 20, 30 for p 6= 2, 3, 5. Each size exceeds 5.
On the other hand Alt5 has no element of order larger than 5. Therefore,M 6∼= Alt5

for p 6= 2, 5.
The groupM might be isomorphic to a subgroup L of order qk with k|(q−1) and

q = ph, h ≥ 1. Here L is the semidirect product of the unique (elementary abelian)
Sylow p-subgroup of L by a cyclic subgroup of order k. No element in L has order
larger than k when h > 1 and p when h = 1. From (7) in [MV83, Theorem 1], any
non-trivial short L-orbit has size q. ThereforeM ∼= L implies that h = 1 and n = p.
But this is inconsistent with the hypothesis p > n.
Finally, M might be isomorphic to a subgroup L such that either L = PSL(2, q)

or L = PGL(2, q) with q = ph, h ≥ 1. No element in L has order larger than q+ 1.
From (7) and (8) in [MV83, Theorem 1], any short L-orbit has size either q + 1 or
q(q − 1). For q ≥ 3, if M ∼= L occurs then n = q + 1 ≥ p+ 1, a contradiction with
the hypothesis p > n. For q = 2, we have that |L| = 6 which is smaller than 12.
Therefore M 6∼= L.
No possibility has arisen for M . Therefore {P1, P2} = {Q1, Q2}.

10.3.3. Conic-line type dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is of conic-line type if two of its three compo-
nents lie on an irreducible conic C and the third one lies on a line `. All such 3-nets
realize groups and they can be described using subgroups of the projectivity group
PGL(2,K) of C. For this purpose, some basic results on subgroups and involutions
in PGL(2,K) are useful which essentially depend on the fact that every involution
in PGL(2,K) is a perspectivity whose center is a point outside C and axis is the
pole of the center with respect to the orthogonal polarity arising from C. We begin
with an example.

Example 10.16. Take any cyclic subgroup Cn of PGL(2,K) of order n ≥ 3 with
n 6= p that preserves C. Let Dn be the unique dihedral subgroup of PGL(2,K)
containing Cn. If j is the (only) involution in Z(Dn) and ` is its axis, then the
centers of the other involutions in Dn lie on `. We have n involutions in Dn other
than j, and the set of the their centers is taken for Λ1. Take a Cn-orbit O on C
such that the tangent to C at any point in O is disjoint from Λ1; equivalently, the
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Dn-orbit Q be larger than O. Then Q is the union of O together with another
Cn-orbit. Take these two Cn-orbits for Λ2 and Λ3 respectively. Then (Λ1,Λ2,Λ3) is
a conic-line dual 3-net which realizes Cn. It may be observed that ` is a chord of C
and the multiplicative group of K has a subgroup of order n.

The cyclic subgroups Cn form a unique conjugacy class in PGL(2,K). For a cyclic
subgroup Cn of PGL(2,K) of order n, the above construction provides a unique
example of a dual 3-net realizing Cn. Using the classi�cation of �nite subgroups of
PGL(2,K) as in the proof of [BKM11, Theorem 6.1], the following result can be
proven.

Proposition 10.17. Up to projectivities, the conic-line dual 3-nets of order n are
those described in Example 10.16.

A corollary of this is the following result.

Proposition 10.18. A conic-line dual 3-net realizes a cyclic group Cn.

The result below can be proven with an argument similar to that used in the
proof of Proposition 10.15.

Proposition 10.19. Let (Γ1,Γ2,Γ3) and (∆1,∆2,∆3) be two conic-line type dual
3-nets where Γ3 lies on the line ` and ∆3 lies on the line s. If Γ1 = ∆1 then ` = s.

10.3.4. Tetrahedron type dual 3-nets

In PG(2,K), any non-degenerate quadrangle with its six sides (included the two
diagonals) may be viewed as the projection of a tetrahedron of PG(3,K). This
suggests to call two sides of the quadrangle opposite, if they do not have any
common vertex. With this de�nition, the six sides of the quadrangle are partitioned
into three couples of opposite sides. Let (Λ1,Λ2,Λ3) be a dual 3-net of order 2n
containing a dual 3-subnet

(Γ1,Γ2,Γ3) (10.3)

of order n. Observe that (Λ1,Λ2,Λ3) contains three more dual 3-subnets of order
n. In fact, for ∆i = Λi \ Γi, each of the triples below de�nes such a subnet:

(Γ1,∆2,∆3), (∆1,Γ2,∆3), (∆1,∆2,Γ3). (10.4)

Now, the dual 3-net (Λ1,Λ2,Λ3) is said to be tetrahedron-type if its components
lie on the sides of a non-degenerate quadrangle such that Γi and ∆i are contained
in opposite sides, for i = 1, 2, 3. Such a non-degenerate quadrangle is said to be
associated to (Λ1,Λ2,Λ3). Observe that each of the six sides of the quadrangle
contains exactly one of the point-sets Γi and ∆i. Moreover, each of the four dual
3-subnets listed in (10.3) and (10.4) is triangular as each of its components, called a
half-set , lies on a side of a triangle whose vertices are also vertices of the quadrangle.
Therefore there are six half-sets in any dual 3-net of tetrahedron type.
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Proposition 10.20. Any tetrahedron-type dual 3-net realizes a dihedral group.

Proof. The associated quadrangle is assumed to be the fundamental quadrangle of
the homogeneous coordinate system in PG(2,K), so that its vertices are O, X∞, Y∞
together with the unity point E = (1, 1, 1). By de�nition, the subnet (10.3) is
triangular. Without loss of generality,

Γ1 = {(ξ, 0, 1)|ξ ∈ L1}, Γ2 = {(0, η, 1)|η ∈ L2}, Γ3 = {(1,−ζ, 0)|ζ ∈ L3}

where L1 = aH,L2 = bH,L3 = cH are cosets of H with ac = b, see Remark
10.11. We �x such triple {a, b, c}. Observe that (a, 0, 1) ∈ Γ1, (0, b, 1) ∈ Γ2 and
(1,−c, 0) ∈ Γ3. Furthermore,

∆1 = {(1, α, 1)|α ∈M1}, ∆2 = {(β, 1, 1)|β ∈M2}, ∆3 = {(1, 1, γ)|γ ∈M3}

with M1,M2 and M3 subsets of K \ {0, 1}, each of size n.
An alternative approach to the proof is to lift (Λ1,Λ2,Λ3) to the fundamental

tetrahedron of PG(3,K) so that the projection π from the point P0 = (1, 1, 1, 1) on
the plane X4 = 0 returns (Λ1,Λ2,Λ3). For this purpose, it is enough to de�ne the
sets lying on the edges of the fundamental tetrahedron:

Γ′1 = {(ξ, 0, 1, 0)|ξ ∈ L1}, Γ′2 = {(0, η, 1, 0)|η ∈ L2},
Γ′3 = {(1,−ζ, 0, 0)|ζ ∈ L3}, ∆′1 = {(0, α− 1, 0,−1)|α ∈M1},
∆′2 = {(β − 1, 0, 0,−1)|β ∈M2}, ∆′3 = {(0, 0, γ − 1,−1)|γ ∈M3},

and observe that π(Γ′i) = Γi and π(∆′i) = ∆i for i = 1, 2, 3. Moreover, a triple
(P1, P2, P3) of points with Pi ∈ Γi ∪ ∆i consists of collinear points if and only if
if their projection does. Hence, (Γ′1 ∪ Γ′2,Γ

′
3 ∪ ∆′1,∆

′
2 ∪ ∆′3) can be viewed as a

�spatial� dual 3-net realizing the same group H. Clearly, (Γ′1∪Γ′2,Γ
′
3∪∆′1,∆

′
2∪∆′3)

is contained in the sides of the fundamental tetrahedron. We claim that these sides
minus the vertices form an in�nite spatial dual 3-net realizing the dihedral group
2.K∗.
To prove this, parametrize the points as follows.

Σ1 = {x1 = (x, 0, 1, 0), (εx)1 = (0, 1, 0, x) | x ∈ K∗},
Σ2 = {y2 = (1, y, 0, 0), (εy)2 = (0, 0, 1, y) | y ∈ K∗},
Σ3 = {z3 = (0,−z, 1, 0), (εz)3 = (1, 0, 0,−z) | z ∈ K∗}.

(10.5)

Then,

x1, y2, z3 are collinear ⇔ z = xy,

(εx)1, y2, (εz)3 are collinear ⇔ z = xy ⇔ εz = (εx)y,

x1, (εy)2, (εz)3 are collinear ⇔ z = x−1y ⇔ εz = x(εy),

(εx)1, (εy)2, z3 are collinear ⇔ z = x−1y ⇔ z = (εx)(εy).

Thus, (Γ′1 ∪ Γ′2,Γ
′
3 ∪ ∆′1,∆

′
2 ∪ ∆′3) is a dual 3-subnet of (Σ1,Σ2,Σ3) and H is a

subgroup of the dihedral group 2.K∗. As H is not cyclic but it has a cyclic subgroup
of index 2, we conclude that H is itself dihedral.
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10.4. Classi�cation of low order dual 3-nets

An exhaustive computer aided search gives the following results.

Proposition 10.21. Any dual 3-net realizing an abelian group of order ≤ 8 is alge-
braic. The dual of Urzúa's 3-nets are the only dual 3-net which realize the quaternion
group of order 8.

Proposition 10.22. Any dual 3-net realizing an abelian group of order 9 is alge-
braic.

Proposition 10.23. If p = 0, no dual 3-net realizes Alt4.

10.5. Characterizations of the in�nite families

Proposition 10.24. Every dual 3-net realizing a cyclic group is algebraic.

Proof. For n = 3, we have that 3n = 9, and hence all points of the dual 3-net lie
on a cubic. Therefore, n ≥ 4 is assumed.
Let (Λ1,Λ2,Λ3) be a dual 3-net of order n which realizes the cyclic group (L, ∗).

Therefore, the points of each component are labeled by In. After a collinear rela-
beling with respect to Λ3, consider the con�guration of the following nine points:
0, 1, 2 from Λ1, 0, 1, 2 from Λ2 and n − 1, n − 2, n − 3 from Λ3. For the seek of a
clearer notation, the point with label a in the component Λm will be denoted by
am.
The con�guration presents six triples of collinear points, namely

(i) {01, 12, (n− 1)3}, {11, 22, (n− 3)3}, {21, 02, (n− 2)3};

(ii) {01, 22, (n− 2)3}, {11, 02, (n− 1)3}, {21, 12, (n− 3)3};

Therefore, the corresponding lines form a Lame con�guration. Furthermore, the
three (pairwise distinct) lines determined by the two triples in (i) can be regarded
as a totally reducible plane cubic, say F1. Similarly, a totally reducible plane curve,
say F2, arises from the triples in (ii). Obviously, F1 6= F2. Therefore, the nine
points of the above Lame con�guration are the base points of the pencil generated
by F1 and F2. Now, de�ne the plane cubic F to be the cubic from the pencil which
contains 31.
Our next step is to show that F also contains each of the points (n− 4)3 and 32.

For this purpose, consider the following six triples of collinear points

(iii) {11, 22, (n− 3)3}, {21, 02, (n− 2)3}, {31, 12, (n− 4)3};

(iv) {11, 12, (n− 2)3}, {21, 22, (n− 4)3}, {31, 02, (n− 3)3};
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Again, the corresponding lines form a Lame con�guration. Since eight of its points,
namely 11, 21, 31, 02, 12, 22, (n − 2)3, (n − 3)3 lie on F , Lame's theorem shows that
(n−4)3 also lies on F . To show that 32 ∈ F , we proceed similarly using the following
six triples of collinear points

(v) {01, 32, (n− 3)3}, {11, 12, (n− 2)3}, {21, 22, (n− 4)3};

(vi) {01, 22, (n− 2)3}, {11, 32, (n− 4)3}, {21, 12, (n− 3)3};

to de�ne a Lame con�guration that behaves as before, eight of its points, namely
01, 11, 21, 12, 22, (n − 2)3, (n − 3)3, (n − 4)3 lie on F , from Lame's theorem, 32 also
lies on F .
This completes the proof for n = 4. We assume that n ≥ 5 and show that (n−5)3

lies on F . Again, we use the above argument based on the Lame con�guration of
the six lines arising from the following six triples of points:

(vii) {11, 32, (n− 4)3}, {21, 12, (n− 3)3}, {31, 22, (n− 5)3};

(viii) {11, 22, (n− 3)3}, {21, 32, (n− 5)3}, {31, 12, (n− 4)3};

From the previous discussion, eight of these points lie on F . Lame's theorem yields
that the ninth, namely (n− 5)3, also lies on F . From this we infer that 41 ∈ F also
holds. To do this, we repeat the above argument for the Lame con�guration arising
from the six triples of points

(ix) {21, 22, (n− 4)3}, {31, 02, (n− 3)3}, {41, 12, (n− 5)3};

(x) {21, 12, (n− 3)3}, {31, 22, (n− 5)3}, {41, 02, (n− 4)3};

Again, we see that eight of these points lie on F . Hence the ninth, namely 41, also
lies on F , by Lame's theorem.
Therefore, from the hypothesis that F passes through the ten points

01, 11, 21, 31, 02, 12, 22, (n− 1)3, (n− 2)3, (n− 3)3,

we have deduced that F also passes through the ten points

11, 21, 31, 41, 12, 22, 32, (n− 2)3, (n− 3)3, (n− 4)3.

Comparing these two sets of ten points shows that the latter derives from the former
shifting by +1 when the indices are 1 and 2, while by −1 in when the indices are
3. Therefore, repeating the above argument n− 4 times gives that all points in the
dual 3-net lie on F .

Proposition 10.25. [Yuz04, Theorem 5.4] If an abelian group G contains an ele-
ment of order ≥ 10 then every dual 3-net realizing G is algebraic.

Proposition 10.26. [Yuz04, Theorem 4.2] No dual 3-net realizes an elementary
abelian group of order 2h with h ≥ 3.
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Proposition 10.27. [BKM11, Theorem 5.1] Let (Λ1,Λ2,Λ3) be a dual 3-net such
that at least one component lies on a line. Then (Λ1,Λ2,Λ3) is either triangular or
of conic-line type.

Lemma 10.28. Let (Γ1,Γ2,Γ3) be an algebraic dual 3-net lying on a plane cubic F .
If F is reducible, then (Γ1,Γ2,Γ3) is either triangle or of conic-line type, according
as F and splits into three lines or into a line and an irreducible conic.

Proposition 10.29. Every dual 3-net realizing a dihedral group of order 2n with
n ≥ 3 is of tetrahedron type.

Proof. Let (Λ1,Λ2,Λ3) be a dual 3-net realizing a dihedral group

Dn =
〈
x, y | x2 = yn = 1, yx = xy−1

〉
.

Labeling naturally the points in the components Λi as indicated in Section 10.2,
every u ∈ Dn de�nes a triple of points (u1, u2, u3) where ui ∈ Λi for i = 1, 2, 3, and
viceversa. Doing so, three points u1 ∈ Λ1, v2 ∈ Λ2, w3 ∈ Λ3 are collinear if and only
if uv = w holds in Dn.
Therefore, for 1 ≤ i ≤ n−2, the triangle with vertices x2, (xy)2, (xy

−i)3 and that
with vertices (1)3, y3, (y

−i)2 are in mutual perspective position from the point x1.
For two distinct points ui and vj with ui ∈ Λi and vj ∈ Λj and 1 ≤ i, j ≤ 3, let uivj
denote the line through ui and vj. From the Desargues theorem, the three diagonal
points, that is, the points

U = (x)2(xy)2 ∩ (1)3(y)3,

(yi)1 = (x)2(xy−i)3 ∩ (y−i)2(1)3,

(yi+1)1 = (xy)2(xy−i)3 ∩ (y−i)2(y)3,

are collinear. Hence, a line `1 contains each point (1)1, (y)1 . . . , (y
n−1)1 in Λ1, that

is,
(1)1, (y)1 . . . , (y

n−1)1 ∈ `1.

There are some more useful Desargues con�gurations. Indeed, the pairs of trian-
gles with vertices

(x)2, (xy
−1)2, (y

−i−1)3 and (xy)3, (x)3, (y
−i)2;

(yi)2, (y
i+1)2, (y

i+1)3 and (x)3, (xy)3, (xy)2;

(xyi)2, (xy
i+1)2, (y

i)3 and (x)3, (xy)3, (1)2;

(1)2, (y)2, (x)3 and (yi)3, (y
i+1)3, (xy

i)2;

(x)2, (xy)2, (1)3 and (xyi)3, (xy
i+1)3, (y

i)2

are in mutual perspective position from the points

(y−1)1, (xy
−i)1, (y

i)1, (y
i)1, (y

−i)1,
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respectively. Therefore, there exist �ve more lines m1, `2,m2, `3,m3 such that

{(x)1, (xy)1, . . . , (xy
n−1)1} ⊂ m1, {(1)2, (y)2, . . . , (y

n−1)2} ⊂ `2,

{(x)2, (xy)2, . . . , (xy
n−1)2} ⊂ m2, {(1)3, (y)3, . . . , (y

n−1)3} ⊂ `3,

{(x)3, (xy)3, . . . , (xy
n−1)3} ⊂ m3.

By Proposition 10.15, the lines `1, . . . ,m3 are the sides of a nondegenarate quad-
rangle, which shows that the dual 3-net (Λ1,Λ2,Λ3) is of tetrahedron type.

Remark 10.30. From Proposition 10.29, the dual 3-nets given in [PY08, Section
6.2] are of tetrahedron type.

Proposition 10.31. Let G be a �nite group containing a normal subgroup H of
order n ≥ 3. Assume that G can be realized by a dual 3-net (Λ1,Λ2,Λ3) and that
every dual 3-subnet of (Λ1,Λ2,Λ3) realizing H as a subgroup of G is triangular.
Then H is cyclic and (Λ1,Λ2,Λ3) is either triangular or of tetrahedron type.

Proof. From Proposition 10.10, H is cyclic. Fix an H-member Γ1 from Λ1, and
denote by `1 the line containing Γ1. Consider all the triangles which contain some
dual 3-net (Γ1,Γ

j
2,Γ

s
3) realizingH as a subgroup of G. From Proposition 10.15, these

triangles have two common vertices, say P and Q, lying on `1. For the third vertex
Rj of the triangle containing (Γ1,Γ

j
2,Γ

s
3) there are two possibilities, namely either

the side PRj contains Γj2 and the side QRj contains Γs3, or viceversa. Therefore,
every H-member Γj2 from Λ2 (as well as every H-member Γs3 from Λ3) is contained
in a line passing through P or Q.
Now, replace Γ1 by anotherH-orbit Γi1 lying in Λ1 and repeat the above argument.

If `i is the line containing Γi1 and Pi, Qi denote the vertices then again every H-
member Γj2 from Λ2 (as well as every H-member Γs3 from Λ3) is contained in a line
passing through Pi or Qi.
Assume that {P,Q} 6= {Pi, Qi}. If one of the vertices arising from Γ1, say P ,

coincides with one of the vertices, say Pi, arising from Γi1 then the line QQi must
contain either Γj2 or Γs3 from each (Γ1,Γ

j
2,Γ

s
3). Therefore, the line QQi must contain

every H-member from Λ2, or every H-member from Λ3. Hence Λ2 or Λ3 lies on
the line QQi. From Proposition 10.27, (Λ1,Λ2,Λ3) is either triangular or conic-line
type. The latter case cannot actually occur as Λ1 contains Γ1 and hence it contains
at least three collinear points.
Therefore {P,Q}∩ {Pi, Qi} = ∅ may be assumed. Then the H-members from Λ2

and Λ3 lie on four lines, namely PPi, PQi, QPi, QQi. Observe that these lines may
be assumed to be pairwise distinct, otherwise Λ2 (or Λ3) is contained in a line, and
again (Λ1,Λ2,Λ3) is triangular. Therefore, half of the H-members from Λ2 lie on
one of these four lines, say PQi, and half of them on QPi. Similarly, each of the
lines PPi and QQi contain half from the H-members from Λ3.
In the above argument, any H-member Γ2 from Λ2 may play the role of Γ1.

Therefore there exist two lines such that each H-member from Λ1 lies on one or on
other line. Actually, these two lines are PQ and PiQi since each of them contains
a H-member from Λ1. In this case, (Λ1,Λ2,Λ3) is of tetrahedron type.
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Since a dihedral group of order ≥ 8 has a unique cyclic subgroup of index 2 and
such a subgroup is characteristic, Propositions 10.31 and 10.20 have the following
corollary.

Proposition 10.32. Let G be a �nite group of order n ≥ 12 containing a normal
dihedral subgroup D. If G is realized by a dual 3-net then G is itself dihedral.

10.6. Dual 3-nets preserved by projectivities

Proposition 10.33. Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group
G. If every point in Λ1 is the center of an involutory homology which preserves Λ1

while interchanges Λ2 with Λ3, then either Λ1 is contained in a line, or n = 9. In
the latter case, (Λ1,Λ2,Λ3) lies on a non-singular cubic F whose in�ection points
are the points in Λ1.

Proof. After labeling (Λ1,Λ2,Λ3) naturally, take an element a ∈ G and denote
by ϕa the (unique) involutory homology of center A1 which maps Λ2 onto Λ3.
Obviously, ϕa also maps Λ3 onto Λ2. Moreover, ϕa(X2) = Y3 ⇐⇒ a · x = y, that is,
ϕa(X2) = ϕa′(X

′
2)⇐⇒ a · x = a′ · x′, where G = (G, ·). Therefore,

ϕa′ϕa(X2) = X ′2 ⇐⇒ (a′
−1 · a) · x = x′. (10.6)

From this, for any b ∈ G there exists b′ ∈ G such that

ϕa′ϕa(X2) = ϕb′ϕb(X2) (10.7)

for every X2 ∈ Λ2, equivalently, for every x ∈ G.
Let Φ be the the projectivity group generated by all products ϕa′ϕa where both

a, a′ range over G. Obviously, Φ leaves both Λ2 and Λ3 invariant. In particular, Φ
induces a permutation group on Λ2. We show that if µ ∈ Φ �xes Λ2 pointwise then µ
is trivial. Since n > 3, the projectivity µ has at least four �xed points in PG(2,K).
Therefore, µ is either trivial, or a homology. Assume that µ is non-trivial, and let
C be the center and c the axis of µ. Take a line ` through C that contains a point
P ∈ Λ3, and assume that C is a point in Λ2. Then P is the unique common point of
` and Λ3. Since µ preserves Λ2, µ must �x P . Therefore, µ �xes Λ3 pointwise, and
hence Λ3 is contained in c. But then µ cannot �x any point in Λ2 other than C since
the de�nition of a dual 3-net implies that c is disjoint from Λ2. This contradiction
means that µ is trivial, that is, Φ acts faithfully on Λ2.
Therefore, (10.7) states that for any a, a′, b ∈ G there exists b′ ∈ G satisfying the

equation ϕa′ϕa = ϕb′ϕb. This yields that Φ is an abelian group of order n acting on
Λ2 as a sharply transitive permutation group. Also,

Φ = {ϕaϕe | a ∈ G}

where e is the identity of G. Therefore, Φ ∼= G, and G is abelian.
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Let Ψ be the projectivity group generated by Φ together with some ϕa where
a ∈ G. Then |Ψ| = 2n and Ψ comprises the elements in Ψ and the involutory
homologies ϕa with a ranging over G. Obviously, Ψ interchanges Λ2 and Λ3 while
it leaves Λ1 invariant acting on Λ1 as a transitive permutation group.
Two cases are investigated according as Φ contains a homology or does not.

Observe that Φ contains no elation, since every elation has in�nite order when
p = 0 while it's order is at least p when p > 0 but p > n is assumed throughout
the chapter.
In the former case, let ρ ∈ Φ be a homology with center C ∈ Λ1 and axis c.

Since ρ commutes with every element in Φ, the point C is �xed by Φ, and the line
is preserved by Φ. Assume that C is also the center of φa with some a ∈ G. The
group of homologies generated by φa and ρ preserves every line through C and it
has order bigger than 2. But then it cannot interchange Λ2 with Λ3. Therefore, the
center of every φa with a ∈ G lies on c. This shows that Λ1 is contained in c.
In the case where Φ contains no homology, Φ has odd order and δ ∈ Φ has three

�xed points which are the vertices of a triangle ∆. Since δ commutes with every
element in Φ, the triangle ∆ is left invariant by Φ.
If Φ �xes each vertex of δ, then Φ must be cyclic otherwise Ψ would contain a

homology. Therefore Ψ is a dihedral group, and we show that Λ1 is contained in
a line. For this purpose, take a generator ρ = ϕaϕb of Φ, and consider the line `
through the centers of ϕa and ϕb. Obviously, ρ preserves `, and this holds true for
every power of ρ. Hence Ψ also preserves `. Since every ϕc is conjugate to ϕa under
Ψ, this shows that the center of ϕc must lie on `, as well. Therefore Λ1 is contained
in `.
We may assume that some ρ ∈ Φ acts on the vertices of ∆ as a 3-cycle. Let ∆′ be

the triangle whose vertices are the �xed points of ρ. Then ρ3 = 1 since ρ3 �xes not
only the vertices of ∆′ but also those of ∆′. Therefore Φ = 〈ρ〉 ×Θ where Θ is the
cyclic subgroup of Φ �xing each vertex of ∆. A subgroup of Θ of index ≤ 3 �xes
each vertex of ∆′, and hence it is trivial. Therefore, |Θ| = 3 and Φ ∼= C3×C3. This
shows that n = 9 and if Λ1 is not contained in a line then the con�guration of their
points, that is the the centers of the homologies in Ψ, is isomorphic to AG(2, 3),
the a�ne plane of order 3. Such a con�guration can also be viewed as the set of
the nine common in�ection points of the non-singular plane cubics of a pencil P ,
each cubic left invariant by Ψ. For a point P2 ∈ Λ2, take that cubic F in P that
contains P2. Since the orbit of P2 under the action of Ψ consists of the points in
Λ2 ∪ Λ3, it follows that F contains each point of (Λ1,Λ,Λ3).

A corollary of Proposition 10.33 is the following result.

Proposition 10.34. Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a
group G. If every point of (Λ1,Λ2,Λ3) is the center of an involutory homology which
preserves (Λ1,Λ2,Λ3), then (Λ1,Λ2,Λ3) is triangular.

Proof. From Proposition 10.17 and Example 10.16, (Λ1,Λ2,Λ3) is not of conic-line
type. For n = 9, (Λ1,Λ2,Λ3) does not lie on any non-singular cubic F since no non-
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10. Projective realizations of 3-nets

singular cubic has twenty-seven in�ection points. Therefore the assertion follows
from Proposition 10.33.

A useful generalization of Proposition 10.34 is given in the proposition below.

Proposition 10.35. Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a
group G. Let U be the set of all involutory homologies preserving (Λ1,Λ2,Λ3) whose
centers are points of (Λ1,Λ2,Λ3). If |U| ≥ 3 and U contains two elements whose
centers lie in di�erent components, then the following assertions hold:

(i) every component contains the same number of points that are centers of in-
volutory homologies in U .

(ii) the points of (Λ1,Λ2,Λ3) which are centers of involutory homologies in U form
a triangular dual 3-subnet (Γ1,Γ2,Γ3).

(iii) LetM be the cyclic subgroup associated to (Γ1,Γ2,Γ3). Then either (Λ1,Λ2,Λ3)
is also triangular, or

|G| <
{
|G : M |2, when gcd.(3, |G|) = 1;

3|G : M |2, when gcd.(3, |G|) = 3.

Proof. Let G be the projectivity group preserving (Λ1,Λ2,Λ3). Let (ijk) denote
any permutation of (123). As we have already observed in the proof of Proposition
10.33, if ϕ ∈ G is an involutory homology with center P ∈ Λi, then ϕ preserves
Λi and interchanges Λj with Λk. If σ ∈ G is another involutory homology with
center R ∈ Λj then σϕσ is also an involutory homology whose center S is the
common point of Λk with the line ` through P and R. In terms of dual 3-subnets,
this yields (i) and (ii). Let m be the order of (Γ1,Γ2,Γ3). For m = 2, (Γ1,Γ2,Γ3) is
triangular. For m = 3, Γ1∪Γ2∪Γ3 is the Hesse con�guration, and hence (Γ1,Γ2,Γ3)
is triangular. This holds true for m ≥ 4 by Proposition 10.34 applied to (Γ1,Γ2,Γ3).
To prove (iii), assume that (Λ1,Λ2,Λ3) is not triangular and take a point P from

some component, say Λ3, that does not lie on the sides of the triangle associated
to (Γ1,Γ2,Γ3). Since (Γ1,Γ2,Γ3) is triangular, it can play the role of (Λ1,Λ2,Λ3) in
Section 10.3.2, and we use the notation introduced there. From the second assertion
of Proposition 10.14, the point has as many as |Θ| distinct images, all lying in Λ3.
Therefore, |G| = |Λ3| > |Θ|. Using Proposition 10.14, |Θ| can be written in function
of |M | giving the assertion

Let U2 be the set of all involutory homologies with center in Λ2 which interchanges
Λ1 and Λ3. There is a natural injective map Ψ from U2 to G where Ψ(ψ) = g holds
if and only if the point g2 ∈ Λ2 is the center of ψ.

Proposition 10.36. Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a
group G. If |U2| ≥ 2 then the following hold.

(i) U2 is closed by conjugation, that is, ψωψ ∈ U2 whenever ψ, ω ∈ U2.
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10.7. Dual 3-nets containing algebraic 3-subnets of order n with n ≥ 5.

(ii) If g, h ∈ Ψ(U2) then gh−1g ∈ Ψ(U2).

(iii) If G has a cyclic subgroup H of order 6 with |H ∩ Ψ(U2)| ≥ 3 and 1 ∈
H ∩Ψ(U2), then either Ψ(U2) = H, or Ψ(U2) is the subgroup of H of order 3.

Proof. For ψ, ω ∈ U2, the conjugate τ = ψωψ of ω by ψ is also an involutory
homology. Let g = Ψ(ψ) and h = Ψ(ω). Then the center of τ is ψ(h2). For x ∈ G,
the image of x1 under τ is y3 ∈ Λ3 with y = xgh−1g. This shows that the center of
τ is also in Λ2; more precisely

Ψ(ψωψ) = Ψ(ψ)(Ψ(ω))−1Ψ(ψ). (10.8)

In the case where G has a cyclic subgroup H of order 6, assume the existence of
three distinct elements ψ, ω ρ ∈ U2 such that g = Ψ(ψ), h = Ψ(ω), and r = Ψ(ρ)
with g, h, r ∈ H. Then H contains gh−1g, hg−1h, g2 and h2. From this assertion
(iii) follows.

10.7. Dual 3-nets containing algebraic 3-subnets

of order n with n ≥ 5.

A key result is the following proposition.

Proposition 10.37. Let G be a group containing a proper abelian subgroup H of
order n ≥ 5. Assume that a dual 3-net (Λ1,Λ2,Λ3) realizes G such that all its
dual 3-subnets (Γj1,Γ2,Γ

j
3) realizing H as a subgroup of G are algebraic. Let Fj be

the cubic through the points of (Γj1,Γ2,Γ
j
3). If (Λ1,Λ2,Λ3) is not algebraic then Γ2

contains three collinear points and one of the following holds:

(i) Γ2 is contained in a line.

(ii) n = 5 and there is an involutory homology with center in Γ2 which preserves
every Fj and interchanges Λ1 and Λ3.

(iii) n = 6 and there are three involutory homologies with center in Γ2 which
preserves every Fj and interchanges Λ1 and Λ3.

(iv) n = 9 and Γ2 consists of the nine common in�ection points of Fj.

Lemma 10.38. Let A = (A,⊕), B = (B,+) be abelian groups and consider the
injective maps α, β, γ : A → B such that α(x) + β(y) + γ(z) = 0 if and only if
z = x⊕ y. Then, α(x) = ϕ(x) + a, β(x) = ϕ(x) + b, γ(x) = −ϕ(x)− a− b for some
injective homomorphism ϕ : A→ B and elements a, b ∈ B.

Proof. De�ne a = α(0), b = β(0) and ϕ(x) = −γ(x)− a− b. For x = 0, z = y, we
obtain that α(0) + β(y) + γ(y) = 0 whence β(y) = −γ(y)− a = ϕ(y) + b. Similarly,
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for y = 0, z = x, we obtain that α(x)+β(0)+γ(x) = 0 whence α(x) = −γ(x)−b =
ϕ(x) + a. Finally, for any x, y ∈ G

ϕ(x) + ϕ(y)− ϕ(x+ y) = ϕ(x) + a+ ϕ(y) + b− (ϕ(x+ y) + a+ b)
= α(x) + β(y) + γ(x+ y) = 0.

Therefore, ϕ : A→ B is a group homomorphism.

Let A = (A,⊕) be an abelian group and α, β, γ injective maps from A to
PG(2,K). The triple (α, β, γ) is a realization of A if the points α(x), β(y), γ(z)
are collinear if and only if z = x⊕y. Since (Λ1,Λ2,Λ3) realizes G, the natural label-
ing gives rise to a realization (α, β, γ) such that α(G) = Λ1, β(G) = Λ2, γ(G) = Λ3.
Let u ∈ G. Since H is a subgroup of G, the triple

(αu(x) = α(ux), β(y) = β(y), γu(z) = α(uz))

provides a realization of H such that

αu(H) = Γu1 , β(H) = Γ2, γu(H) = Γu3 .

Therefore, Lemma 10.38 has the following corollary where (Fj, ∗) denotes the ad-
ditive groups of the plane cubic Fj through the points of (Γj1,Γ2,Γ

j
3) where, for

u = 1, we write (F ,+), α, β, γ,Γ1,Γ2,Γ3.

Lemma 10.39. There exist two realizations from H into PG(2,K), say (α, β, γ)
and (αj, βj, γj) with

α(H) = Γ1, β(H) = Γ2, γ(H) = Γ3, αj(H) = Γj1, βj(H) = Γ2, γj(H) = Γj3

such that

α(x) = ϕ(x) + a, β(y) = ϕ(y) + b, γ(z) = ϕ(z) + c,

αj(x) = ϕj(x) ∗ aj, βj(y) = ϕj(y) ∗ bj, γj(z) = ϕj(z) ∗ cj

for every x, y, z ∈ H where both ϕ : H → (F ,+) and ϕj : H → (Fj, ∗) are injective
homomorphisms, and ϕ(y) + b = ϕj(y) ∗ bj for every y ∈ H.

To prove Proposition 10.37 we point out that 3b ∈ ϕ(H) if and only if Γ2 contains
three collinear points. Suppose that ϕ(x1)+b, ϕ(x2)+b, ϕ(x3)+b are three collinear
points. Then ϕ(x1) + b+ϕ(x2) + b+ϕ(x3) + b = 0 whence ϕ(x1 +x2 +x3) + 3b = 0.
Therefore 3b ∈ ϕ(H). Conversely, if ϕ(t) = 3b, take three pairwise distinct elements
x1, x2, x3 ∈ H such that x1+x2+x3+t = 0. Then ϕ(x1)+b+ϕ(x2)+b+ϕ(x3)+b = 0.
Therefore, the points ϕ(x1) + b, ϕ(x2) + b and ϕ(x3) + b of Γ2 are collinear. Notice
that the element t = −x1−x2−x3 ∈ H is the same even if we make the computation
with ϕj and bj.
We separately deal with two cases.
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10.7.1. Γ2 contains no three collinear points

By the preceding observation, 3b 6∈ ϕ(H). For any z ∈ H take four di�erent elements
x1, y1, x2, y2 in H such that

z = x1 ⊕ y1 = x2 ⊕ y2. (10.9)

Then ϕ(x1)+b+ϕ(y1)+b = ϕ(z)+2b = ϕ(x2)+b+ϕ(y2)+b. Let Pi = β(xi), Qi =
β(yi) for i = 1, 2. Then Pi 6= Qi and the lines P1Q1 and P2Q2 meet in a point S in
F outside Γ2. The same holds for Fj. Therefore each point S is a common point
of F and Fi other than those in Γ2. As S only depends on z which can be freely
choosen if |H| ≥ 4, there are at least n such points S. Hence, F ∩ Fj contains at
least 2n ≥ 10 points. By Bézout's theorem either F = Fj, or they are reducible.
We may assume that the latter case occurs. By Lemma 10.28, we may assume that
both (Γ1,Γ2,Γ3) and (Γj1,Γ2,Γ

j
3) are of conic-line type. Here Γ2 is contained in an

irreducible conic C which is a common component of F and Fj. By Proposition
10.19, F = Fj.

10.7.2. Γ2 contains three collinear points

This time, 3b ∈ ϕ(H). Let ϕ(t) = 3b with t ∈ H. If either F or Fj is reducible, then
Γ2 is contained in a line. Therefore, both F and Fj are assumed to be irreducible.
First, suppose in addition that t 6∈ 3H. For any x ∈ H, let y = 2(	x)	t. Observe

that y 6= x. From

2(ϕ(x) + b) + ϕ(y) + b = ϕ(t) + ϕ(2x) + ϕ(y) = 0,

the point Q = β(y) is the tangential point of P = β(x) on F . Therefore, β deter-
mines the tangents of F at its points in Γ2. This holds true for Fj. From Lemma
10.39, F and Fj share the tangents at each of their common points in Γ2. Therefore
|F ∩ Fj| ≥ 2n ≥ 10, and F = Fj holds.
It remains to investigate the case where 3b = ϕ(3t0) holds for some t0 ∈ H.

Replacing b by b− ϕ(t0) shows that 3b = 0 may be assumed. Therefore, the point
P = ϕ(y) + b with y ∈ H is an in�ection point of F if and only if 3y = 0.
Furthermore, if 3y 6= 0 then Q = ϕ(	(2y)) + b is the tangential point of P on F .
Therefore, β determines the tangents of F at its points in Γ2. The same holds true
for Fj. By Lemma 10.39, P = β(y) is an in�ection point of both F and Fj or none
of them. In the latter case, F and Fj have the same tangent at P .
Let m be the number of common in�ection points of F and Fj lying in Γ2.

Obviously, P = ϕ(0) + b is such a point, and hence m ≥ 1. On the other hand, m
may assume only three values, namely 1, 3 and 9. If m = 9, then F is non-singular
and Γ2 consists of all the nine in�ection points of F . The same holds for Fj. If
m = 3 then F and Fj share their tangents at n − 3 common points. Therefore,
2n− 3 ≤ 9 whence n ≤ 6.
If n = 6 there are three common in�ection points of F and Fj, and they are

collinear. Let H be the additive group of integers modulo 6. Then the in�ection
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points of F lying on Γ2 are Pi = ϕ(i) + b with i = 0, 2, 4 while the tangential point
of Pi = ϕ(i) + b with i = 1, 3, 5 is P−2i = ϕ(−2i) + b. Now �x a projective frame
with homogeneous coordinates (X, Y, Z) in such a way that

P0 = (1, 0, 1), P1 = (0, 0, 1), P2 = (0, 1, 1),
P3 = (0, 1, 0), P4 = (−1, 1, 0), P5 = (1, 0, 0).

A straightforward computation shows that Fj is in the pencil P comprising the
cubics Gλ of equation

(X − Z)(Y − Z)(X + Y ) + λXY Z = 0, λ ∈ K,

with the cubic G∞ of equation XY Z = 0. The intersection divisor of the plane
cubics in P is P0 + P2 + P4 + 2P1 + 2P3 + 2P5. Moreover, the points P0, P2, P4 are
in�ection points of all irreducible cubics in P , and

ψ0 : (X, Y, Z)→ (Z,−Y,X),
ψ2 : (X, Y, Z)→ (−X,Z, Y ),
ψ4 : (X, Y, Z)→ (Y,X,Z),

are the involutory homologies preserving every cubic in P , the center of ψi being
Pi, for i = 0, 2, 4.
If n = 5, the zero of H is the only element y with 3y = 0. This shows that F

(and Fj) has only one in�ection point P0 in Γ2 and P0 is not the tangential point of
another point in Γ2. Each of the remaining four points is the the tangential point
of exactly one point in Γ2. These four points may be viewed as the vertices of a
quadrangle P1P2P3P4 such that the side PiPi+1 is tangent to F at Pi for every i with
P5 = P1. Therefore the intersection divisor of F and Fj is P0+2P1+2P2+2P3+2P4,
and Fj is contained in a pencil P .
Fix a projective frame with homogeneous coordinates (X, Y, Z) in such a way

that
P1 = (0, 0, 1), P2 = (1, 0, 0), P3 = (1, 1, 1), P4 = (0, 1, 0).

Then P0 = (1, 1, 0). The pencil P is generated by the cubics G and D with equations
Y (X − Z)Z = 0 and X(Y −X)(Y − Z) = 0, respectively. Therefore it consists of
cubics Gλ with equation

Y 2X −X2Y + (λ− 1)XY Z +X2Z − λY Z2 = 0,

together with G = G∞. Since the line Z = 0 contains three distinct base points
of the pencil, P0 is a non-singular point of Gλ for every λ ∈ K, the tangent `λ to
Gλ at P0 has equation −X + Y + λZ = 0. Assume that Q0 is an in�ection point
of Gλ. Then `λ contains no point P = (X, Y, 1) from Gλ, that is, the polynomials
Y 2X −X2Y + (λ− 1)XY +X2 − λY = 0 and −X + Y + λ = 0 have no common
solutions. On the other hand, eliminating Y from these polynomials gives λ2. This
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shows that Q0 is an in�ection point for every irreducible cubic in P . Hence P0 = Q0.
Therefore the involutory homology

ϕ : (X, Y, Z) 7→ (−Y + Z,−X + Z,Z)

with center P0 preserves each cubic in P .
This completes the proof of Proposition 10.37.
In the case where H is an abelian normal subgroup of G, we have the following

result.

Proposition 10.40. Let G be a group containing a proper abelian normal subgroup
H of order n ≥ 5. If a dual 3-net (Λ1,Λ2,Λ3) realizes G such that all its dual 3-
subnets realizing H as a subgroup of G are algebraic, then either (I) or (II) of
Theorem 10.1 holds.

Proof. The essential tool in the proof is Proposition 10.37. Assume on the contrary
that neither (I) nor (II) occurs.
If every H-member is contained in a line then every dual 3-net realizing H as a

subgroup of G is triangular. From Proposition 10.31, either (I) of (II) follows.
Take a H-member not contained in a line. Since H is a normal subgroup, that

H-member can play the role of Γ2 in Proposition 10.37. Therefore, one of the three
sporadic cases in Proposition 10.37 holds. Furthermore, from the proof of that
proposition, every Fj is irreducible, and hence neither Γj1 nor Γj3 is contained in a
line. Therefore, no H-member is contained in a line. Since H is a normal subgroup,
every 3-subnet (Γi1,Γ

j
2,Γ

s
3) realizing H as a subgroup of G lies in an irreducible

plane cubic F(i, j).
Therefore we can assume that all H-members have the exceptional con�gurations

described in (ii), (iii) or (iv) of Proposition 10.37. We separately deal with the cases
n = 5, 6 and 9.

10.7.3. n = 9

From (iv) of Proposition 10.37, the cubics Fj share their nine in�ection points which
form Γ2. So it is possible to avoid this case by replacing Γ2 with Γ1 so that Γ2 will
not have any in�ection point of F .

10.7.4. n = 6

Every H-member Γ2 contains three collinear points, say Q1, Q2, Q3, so that Qr is
the center of an involutory homology ψr interchanging Λ1 and Λ3. Relabeling the
points of the dual 3-net permits us to assume that Q1 = 12. Then for all x ∈ G,
ψ1 interchanges the points x1 and x3. The point a2 ∈ Λ2 is the intersection of the
lines y1(ya)3, with y ∈ G. These lines are mapped to the lines (ya)1y3, which all
contain the point (a−1)2 of Λ2. Therefore, the involutory homology ψ1 leaves Λ2

invariant. This holds true for all involutory homologies with center in Λ1 ∪ Λ2 ∪
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Λ3. Since the H-members partition each component of (Λ1,Λ2,Λ3) and every H-
member comprises six points, it turns out that half of the points of (Λ1,Λ2,Λ3) are
the centers of involutory homologies preserving (Λ1,Λ2,Λ3). Therefore, Proposition
10.35(iii) applies. As in Proposition 10.35, let M denote the subgroup of G such
that the dual 3-subnet consisting of the centers of involutory homologies realizes
M . As |G : M | = 2, 10.35(iii) implies |G| < 6, a contradiction.

10.7.5. n = 5

The arguments in discussing case n = 6 can adapted for case n = 5. This time,
Proposition 10.37 gives |G : M | = 5. By Proposition 10.35(iii), if G contains an
element of order 3 then |G| < 75, otherwise |G| < 25. In the former case, the
element of order 3 of G is in CG(H), hence G contains a cyclic normal subgroup of
order 15. Then, (Λ1,Λ2,Λ3) is algebraic by Proposition 10.37. If G has no element
of order three then |G| < 25 and G contains a normal subgroup of order 10 which
is either cyclic or dihedral. By Propositions 10.32 and 10.37 either (I) or (II) of
Theorem 10.1 holds.

A corollary of Proposition 10.40 is the following result.

Theorem 10.41. Every dual 3-net (Λ1,Λ2,Λ3) realizing an abelian group G is
algebraic.

Proof. By absurd, let n be the smallest integer for which a counter-example (Λ1,Λ2,Λ3)
to Theorem 10.41 exists. Since any dual 3-net of order ≤ 8 is algebraic by Proposi-
tions 10.21 and 10.24, we have that n ≥ 9. Furthermore, again by Proposition 10.24,
G has composite order. Since n is chosen to be as small as possible, from Propo-
sition 10.40, |G| has only one prime divisor, namely either 2 or 3. Since |G| ≥ 9,
either |G| = 2r with r ≥ 4, or |G| = 3r with r ≥ 2. In the former case, G has a
subgroupM of order 8, and every dual 3-subnet realizingM is algebraic, by Propo-
sition 10.21. But, this together with Proposition 10.40 show that (Λ1,Λ2,Λ3) is not
a counter-example. In the latter case G contains no element of order 9 and hence
it is an elementary abelian group. But then (Λ1,Λ2,Λ3) is algebraic by Proposition
10.22.

10.8. Dual 3-nets realizing 2-groups

Proposition 10.42. Let G be a group of order n = 2h with h ≥ 2. If G can be
realized by a dual 3-net (Λ1,Λ2,Λ3) then one of the following holds.

(i) G is cyclic.

(ii) G ∼= Cm × Ck with n = mk.

(iii) G is a dihedral.
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10.9. Dual 3-nets containing algebraic 3-subnets of order n with 2 ≤ n ≤ 4.

(iv) G is the quaternion group of order 8.

Proof. For n = 4, 8, the classi�cation follows from Propositions 10.21, 10.29 and
[Yuz04, Theorem 4.2]. Up to isomorphisms, there exist fourteen groups of order 16;
each has a subgroup H of index 2 that is either an abelian or a dihedral group.
In the latter case, G is itself dihedral, by Proposition 10.32. So, Proposition 10.40
applies to G and H yielding that G is abelian. This completes the proof for n = 16.
By induction on h we assume that Proposition 10.42 holds for n = 2h ≥ 16 and
we are going to show that this remains true for 2h+1. Let H be a subgroup of G of
index 2. Then |H| = 2h and one of the cases (i), (ii), and (iii) hold for H. Therefore,
the assertion follows from Propositions 10.40 and 10.32.

10.9. Dual 3-nets containing algebraic 3-subnets

of order n with 2 ≤ n ≤ 4.

It is useful to investigate separately two cases according as n = 3, 4 or n = 2. An
essential tool in the investigation is M = CG(H), the centralizer of H in G.

Proposition 10.43. Let G be a �nite group containing a normal subgroup H of
order n with n = 3 or n = 4. Then every dual 3-net (Λ1,Λ2,Λ3) realizing G is either
algebraic, or of tetrahedron type, or, G is isomorphic either to the quaternion group
of order 8, or to Alt4, or to Sym4.

Proof. First we investigate the case whereM > H. Take an elementm ∈M outside
H. Then the subgroup T of G generated by m and H is abelian, and larger than
H. Since |H| ≥ 3, then |T | ≥ 6. If all H-members of (Λ1,Λ2,Λ3) are contained in
a line then (Λ1,Λ2,Λ3) is either triangular or of tetrahedron type by Proposition
10.31. Assume that Γ2 is an H-member which is not contained in a line. Let Γ′2 be
the T -member containing Γ2. We claim that (Λ1,Λ2,Λ3) is algebraic. If not then
one of the exceptional cases (iii) or (iv) of Proposition 10.37 must hold. Clearly, in
these cases |H| = 3. However, the centers of the involutory homologies mentioned
in Proposition 10.37 correspond to the points in the H-member Γ2. As these centers
must be collinear, we obtain that Γ2 is contained in a line, a contradiction.
Assume that M = H. Then G/H is an automorphism group H. If H is C3 or

C4 then |Aut(H)| = 2 and G is either a dihedral group or the quaternion group
of order 8. If H ∼= C2 × C2, then G is a subgroup of Sym4. The possibilities for G
other than H and the dihedral group of order 8 are two, either Alt4, or Sym4. Since
all these groups are allowed in the proposition, the proof is �nished.

Proposition 10.44. Let G be a �nite group with a central involution which contains
no normal subgroup H of order 4. Then a dual 3-net (Λ1,Λ2,Λ3) realizing G is either
algebraic or of tetrahedron type.
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10. Projective realizations of 3-nets

Proof. Let H be the normal subgroup generated by the (unique) central involution
of G. Two cases are separately investigated according as a minimal normal sub-
group N̄ of the factor group Ḡ = G/H is solvable or not. Let σ be the natural
homomorphism G→ Ḡ. Let N = σ−1(N̄).
If N̄ is solvable, then N̄ is an elementary abelian group of order dh for a prime

d. Furthermore, N is a normal subgroup of G and N̄ = N/H. If N is abelian, then
|N | ≥ 6 and the assertion follows from Proposition 10.40 and Theorem 10.41.
Bearing this in mind, the case where d = 2 is investigated �rst. Then N has order

2h+1 and is a normal subgroup of G. From Proposition 10.42, N is either abelian
or it is the quaternion group Q8 of order 8. We may assume that N ∼= Q8. From
Proposition 10.42, N is not contained in a larger 2-subgroup of G. Therefore N
is a (normal) Sylow 2-subgroup of G. We may assume that G is larger than N .
If M = CG(N) is also larger than N , take an element t ∈ M of outside N . Then
t has odd order ≥ 3. The group T generated by N and t has order 8m and its
subgroup D generated by t together with an element of N of order 4 is a (normal)
cyclic subgroup of M of order 4m. But this contradicts Proposition 10.40, as T is
neither abelian nor dihedral. Therefore M = N , and hence G/N is isomorphic to
a subgroup L of the automorphism group Aut(Q8). Hence |G|/|N | divides 24. On
the other hand, since N is a Sylow 2-subgroup of G, |G/N | must be odd. Therefore
|G| = 24. Two possibilities arise according as either G ∼= SL(2, 3) or G is the
dicyclic group of order 24. The latter case cannot actually occur by Proposition
10.40 as the dicyclic group of order 24 has a (normal) cyclic subgroup of order 12.
To rule the case G ∼= SL(2, 3) out we relay on Proposition 10.37 and 10.36 since

SL(2, 3) has four cyclic groups of order 6. For this purpose, we show that every
point in Λ2 is the center of an involutory homology preserving (Λ1,Λ2,Λ3) whence
the assertion will follow from Proposition 10.33 applied to Λ2. With the notation
in Section 10.6, (iii) Proposition 10.37 yields that |U2| ≥ 3. With the notation
introduced in the proof of Proposition 10.24, we may assume that the point 12 is
the center of an involutory homology ε in U2. From (iii) of Proposition 10.36 every
(cyclic) subgroup of G of order 6 provides (at least) two involutory homologies
other than ε. Therefore, |U2| ≥ 9, and every point u2 ∈ Λ2 such that u3 = 1 is
the center of an involutory homology in U . A straightforward computation shows
that every element in G other than the unique involution e can be written as gh−1g
with g3 = h3 = 1. Thus |U| ≥ 23. The involutory homology with center e2 cannot
actually been an exception. To shows this, take an element g ∈ G of order 4. Then
g2 is the center of an element in U . Since e = g2 = g · 1 · g, this holds true for
e2. Therefore |U| = 24. From (i) of Proposition 10.36, U also preserves Λ2. This
completes the proof.
Now, the case of odd d is investigated. Since |H| = 2 and d are coprime, Zassen-

haus' theorem [Hup67, 10.1 Hauptsatz] ensures a complement W ∼= N̄ such that
N = W nH = W ×H. Obviously, W is an abelian normal subgroup of G of order
at least 3. The assertion follows from Propositions 10.40 and 10.43.
If N̄ is not solvable then it has a non-abelian simple group T̄ . Let S̄2 be a Sylow

2-subgroup of T̄ . By Proposition 10.42, the realizable 2-group S2 is either cyclic,
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10.10. 3-nets and non-abelian simple groups

product of two cyclic groups, dihedral or quaternion of order 8. Thus, S̄2 is either
cyclic, product of two cyclic groups or dihedral. As T̄ is simple, S̄2 cannot be cyclic.
In the remaining cases we can use the classi�cation of �nite simple groups of 2-rank
2 to deduce that T̄ is either T̄ ∼= PSL(2, qh) with an odd prime q and qh ≥ 5, or
T̄ ∼= Alt7, cf. the Gorenstein-Walter theorem [GW65].
If H 6≤ T ′ then T = H × T ′. As T ′ ∼= T̄ , T ′ contains an elementary abelian

subgroup of order 4, G contains an elementary abelian group of order 8, a contra-
diction. Therefore, T is a central extension of either PSL(2, qh), with qh as before,
or Alt7, with a cyclic group of order 2. From a classical result of Schur [Asc86,
Chapter 33], either T ∼= SL(2, q) or T is the unique central extension of Alt7 with a
cyclic group of order 2. In the latter case, no dual 3-net can actually realize T since
Proposition 10.42 applies, a Sylow 2-subgroup of T being isomorphic to a gener-
alized quaternion group of order 16. To �nish the proof it su�ces to observe that
SL(2, qh), with qh as before, contains SL(2, 3) whereas no dual 3-net can realize
SL(2, 3) as we have already pointed out.

10.10. 3-nets and non-abelian simple groups

Proposition 10.45. If a dual 3-net realizes a non-abelian simple group G then
G ∼= Alt5.

Proof. Let G be a non-abelian simple group, and consider a Sylow 2-subgroup S2

of G. From Proposition 10.42, S2 is dihedral since no Sylow 2-subgroup of a non-
abelian simple group is either cyclic or the direct product of cyclic groups, see
[Gor83, Theorem 2.168], or the quaternion group of order 8 , see [BS59]. From
the Gorenstein-Walter theorem [GW65], either G ∼= PSL(2, qh) with an odd prime
q and qh ≥ 5, or G ∼= Alt7. In the former case, G has a subgroup T of order
qh(qh − 1)/2 containing a normal subgroup of order qh. Here T is not abelian and
is dihedral only for qh = 5. Therefore, Theorem 10.41 and Proposition 10.40 leave
only one case, namely q = 5. This also shows that Alt7 cannot occur since Alt7

contains PSL(2, 7).

Notice that by Proposition 10.23, computer results [NP13] show that if p = 0
then Alt4 cannot be realized in PG(2,K). This implies that that no dual 3-net can
realize Alt5.

10.11. The proof of Theorem 10.1

Take a minimal normal subgroup H of G. If H is not solvable then H is either a
simple group or the product of isomorphic simple groups. From Proposition 10.26,
the latter case cannot actually occur as every simple group contains an elementary
abelian subgroup of order 4. Therefore, if H is not solvable, H ∼= Alt5 may be
assumed by Proposition 10.45. Two cases are considered separately according as
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10. Projective realizations of 3-nets

the centralizer CG(H) of H in G is trivial or not. If |CG(H)| > 1, take a non-trivial
element u ∈ CG(H) and de�ne U to be the subgroup of G generated by u together
with a dihedral subgroup D5 of H of order 10. Since u centralizes D5, the latter
subgroup is a normal subgroup of U . Hence D5 a normal dihedral subgroup of U .
From Proposition 10.32, M itself must be dihedral. Since the center of a dihedral
group has order 2, this implies that u is an involution. Now, the subgroup generated
by u together with an elementary abelian subgroup of H of order 4 generate an
elementary abelian subgroup of order 8. But this contradicts Proposition 10.26.
Therefore, CG(H) is trivial, equivalently, G is contained in the automorphism group
of H. From this, either G = H or G ∼= PGL(2, 5). In the latter case, G contains a
subgroup isomorphic to the semidirect product of C5 by C4. But this contradicts
Proposition 10.32. Therefore, if H is not solvable then H ∼= Alt5.
If H is solvable then it is an elementary abelian group of order d ≥ 2. If d is

a power of 2 then d = 2 or d = 4 and Theorem 10.1 follows from Propositions
10.42 and 10.44. If d is a power of an odd prime, Theorem 10.1 is obtained by
Propositions 10.40 and 10.43.
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