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1 Introduction
This dissertation focuses on my research results of additive nature, most of them

using Fourier analysis in the proofs. This has been the central theme of my research
activity in the past 10 years. The dissertation is based on the results of the papers
[4,40,52,53,72,74,91,92,94–97], which are put into context by recalling the relevant
preceding results and follow-ups from the literature.

Fourier analysis is a standard tool in additive combinatorics and additive number
theory. Problems in these branches of mathematics typically concern the structure
or size (cardinality or measure) of a subset A of a locally compact Abelian group
G, given some additive properties of A. The most famous example, where Fourier
analysis is the central tool, is the estimation of the maximal cardinality of a set
A ⊂ [1, N ], such that A does not contain a 3-term arithmetic progression (cf. [120]
and references therein for the latest developments). Another example of similar
flavour is the estimation of the maximal cardinality of a set A in a cyclic group Zp
such that A − A does not contain quadratic residues. This latter problem, among
many-many others, will be considered in this work in detail.

The dissertation is organized as follows. After the Introduction the results are
presented in three chapters according to thematic concepts. Chapter 2 is devoted
to results concerning translational tilings of locally compact Abelian groups. Chap-
ter 3 describes a very general scheme, the Fourier analytic version of Delsarte’s
method, which is then applied to several problems from different parts of math-
ematics. Finally, Chapter 4 contains some interesting bounds on the cardinality
of k-fold sumsets. I will now briefly highlight the most important results of each
chapter below.

Chapter 2 contains selected results about translational tiles in Abelian groups.
A subset A of a locally compact Abelian group G is called a translational tile (or
simply tile) if one can cover G by the union of some disjoint translates of A. In this
work we are only able to describe a small and biased fraction of the vast literature
available on translational tiling.

In Section 2.1 we will review some well-known theorems and notoriously difficult
open problems about translational tiles. We will restrict our attention to results
needed in later sections and some of the most interesting results directly related to
those. In this preliminary section my own contributions are only Example 2.1.11 and
2.1.13 which answer questions of M. N. Kolountzakis and M. Szegedy, respectively.

The main results of Chapter 2 are contained in Section 2.2, where we investigate
Fuglede’s Conjecture 2.2.2. This conjecture stated that a bounded measurable set Ω
is a translational tile in Rd if and only if it is spectral (a notion to be defined rigorously
later). The conjecture has also been investigated in finite Abelian groups and Zd. In
Section 2.2.1 we prove several positive results which tentatively support the validity
of the conjecture (at least in special cases). We prove a general transition scheme
from Zd to Rd in Proposition 2.2.9, and from finite groups to Zd in Proposition 2.2.12.
These results are summarized in Corollary 2.2.13 which states that a counterexample
in any finite group can automatically be transferred to Zd and Rd. In finite groups
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we prove that the natural tiling construction of Proposition 2.2.16 works analogously
for spectral sets in Proposition 2.2.17. Also, in Propositions 2.2.18 and 2.2.20 we
prove the ’spectral → tile’ direction of the conjecture for sets of small cardinality in
finite groups or Zd. Then, in Section 2.2.2 we turn to the main results of the section:
counterexamples. Based on an example by T. Tao [132] and some observations of
the author [73, 91] we will construct a set in R3 which is spectral but does not tile,
in Theorem 2.2.21. For the converse direction, in Theorem 2.2.23 [40] we will make
a precise connection between the Universal Spectrum Conjecture of Lagarias and
Wang [82] and the ’tile → spectral’ direction Fuglede’s conjecture. Then we will
exhibit a non-spectral tile in R3 in Theorem 2.2.27.

In Section 2.3 we will use the existing connections between tiles and spectral sets
to produce new families of complex Hadamard matrices. Namely, some natural tiling
constructions work analogously for spectral sets, and such sets correspond directly
to complex Hadamard matrices. In this manner, some peculiar tiling constructions
of Szabó [126] lead to new families of complex Hadamard matrices, one of which is
described in detail in Example 2.3.2. In Proposition 2.3.5 we prove that the arising
family is indeed new (i.e. it has not been considered in the literature).

In Chapter 3 we describe a Fourier analytic version of Delsarte’s method. The
linear programming bound of Delsarte was first applied in [34] in coding theory to
the following problem: determine the maximal cardinality A(n, d) of binary code-
words of length n such that each two of them differ in at least d coordinates. The
original version of the method, as described by Delsarte, was not phrased in Fourier
analytic language. Here we will concentrate on a version which is general enough to
encompass most of the applications but simple enough to require only elementary
Fourier analysis.

Let G be a compact Abelian group, and let a symmetric subset A = −A ⊂ G,
0 ∈ A be given. We will call A the ’forbidden’ set. We would like to determine
the maximal cardinality of a set B = {b1, . . . bm} ⊂ G such that all differences
bj − bk ∈ Ac ∪ {0} (in other words, all differences avoid the forbidden set A). In
Section 3.1 we will describe the Fourier analytic version of Delsarte’s bound. The
maximal cardinality of the set B will be bounded above by constructing certain
positive exponential sums using frequencies from the forbidden set A. After intro-
ducing the necessary notations Delsarte’s linear programming bound will be given
as δ(A) ≤ λ−(A) in Theorem 3.1.4. We will then study the general properties of
the method. In particular, we prove several propositions describing the behaviour
of the δ and λ quantities under the set theoretical operations of union, intersection
and direct product. Maybe the most important general property is the duality re-
lation given in Theorem 3.1.13. We then study the limitations of the method by
considering the λ and δ quantities for random sets in Theorems 3.1.28 and 3.1.29.
Finally, the important consequence of Theorems 3.1.35 and 3.1.36 is that allowing
only nonnegative coefficients in the character sums can lead to drastically worsened
estimates in the Delsarte bound.

In Section 3.2 we will apply Delsarte’s method to give an improved upper bound
on the independence number s of the Paley-graph Pp, for a prime p ≡ 1 (mod 4). In
fact, the Delsarte bound, in itself, gives the trivial bound s ≤ √

p, only. However,
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a ’subgraph-trick’, introduced in [106] in connection with the unit-distance graph of
Rd, will come to our help to achieve a slightly improved upper bound in Theorem
3.2.2.

Section 3.3 gives a surprising application of Delsarte’s method to the problem
of mutually unbiased bases (MUBs). It is known that the existence of a complete
system of MUBs is equivalent to the existence of certain complex matrices (MUHs).
In this section we will view complex Hadamard matrices as finite sets in the compact
group Td, and apply Delsarte’s method in this group. In Theorem 3.3.6 we will
obtain a generalization of the fact that the maximal number of MUBs in dimension
d cannot exceed d+1. We also discuss the question whether a real Hadamard matrix
can be part of a complete system of MUHs. While it is known to be possible for
d = 2k, we show that the presence of a real Hadamard matrix puts heavy constraints
on the columns of the other matrices. In particular, Theorem 3.3.12 implies that it
is impossible to have two real Hadamards in a complete system of MUHs. We will
also prove in Theorem 3.3.15 that in dimension 6 the matrices of the Fourier family
F(a, b) cannot be extended to a complete system of MUBs.

In Section 3.4 we give a brief outlook on possible future applications of Delsarte’s
method in the following problems. What is the maximal density of a set of integers
B ⊂ [1, . . . , N ] such that B−B does not contain squares (or, in general, kth powers
for some fixed k)? What is the maximal upper density of a measurable set B ⊂ Rd

such that B−B does not contain vectors of unit length? Maybe the most surprising
possible application is given in Section 3.4.3: Littlewood’s conjecture on simultane-
ous approximation. Finally in Theorem 3.4.1 we give a possible improvement of the
Delsarte bound, under the assumption that some further information on the subset
B ⊂ G is available.

In Chapter 4 we describe some selected results concerning the cardinality of
sumsets. The structure and cardinality of sumsets are central objects of study in
additive combinatorics. In this chapter the methods are purely combinatorial and
do not use Fourier analysis, and therefore I will keep this chapter shorter.

In Section 4.1 we consider finite sets of integers A1, . . . , Ak and study the cardi-
nality of the k-fold sumset A1 + · · ·+Ak compared to those of (k − 1)-fold sumsets
A1+ · · ·+Ai−1+Ai+1+ · · ·+Ak. We prove interesting superadditivity and submul-
tiplicativity properties for these quantities in Theorems 4.1.1 and 4.1.2. A possible
generalization of the submultiplicativity property is then obtained in Theorem 4.1.6.

In Section 4.2, Theorem 4.2.3 extends Freiman’s inequality on the cardinality of
the sumset of a proper d dimensional set A. We also consider the case of different
sets A,B related by an inclusion of their convex hull, and one of them added possibly
several times, in Theorem 4.2.5.

Convention. All the theorems and propositions in this work are referenced. In
order to make it easier for the reader to distinguish my own results from those of
others, I will use the following convention throughout this work: references to my
papers will be marked with an asterisk, e.g. [72]∗. For the sake of readability, I will
use this convention only for marking the theorems and propositions and not in the
textflow.
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2 Translational tiling
This chapter focuses on some selected results about translational tiles in Abelian

groups. A subset A of a locally compact Abelian group G is called a translational
tile if one can cover G by the union of some disjoint translates of A (this somewhat
intuitive definition will be made more rigorous later). We emphasize that in this
work we are only able to describe a small and biased fraction of the vast literature
available on translational tiling.

In Section 2.1 we will review some well-known theorems and notoriously difficult
open problems about translational tiles. We will restrict our attention to results
needed in later sections and some of the most interesting results directly related to
these.

In Section 2.2 we will be concerned Fuglede’s conjecture, which stated that a
bounded measurable set Ω is a translational tile in Rd if and only if it is spectral
(a notion to be defined later). The conjecture has also been investigated in finite
groups and Zd. We will first show some special classes of sets for which the conjecture
holds true in Theorem 2.2.3, 2.2.5 and Proposition 2.2.18, as well as proving several
common properties of spectral sets and tiles. We will also prove a general transition
scheme from finite groups to Zd and Rd in Corollary 2.2.13. Then, based on an
example by T. Tao [132] and some observations of the author [73,91] we will construct
a set in R3 which is spectral but does not tile, in Theorem 2.2.21. For the converse
direction, in Theorem 2.2.23 [40] we will make a precise connection between the
Universal Spectrum Conjecture of Lagarias and Wang [82] and the ’tile → spectral’
direction Fuglede’s conjecture. Then we will exhibit a non-spectral tile in R3 in
Theorem 2.2.27. This section is based on the papers [40, 72,73,91]

In Section 2.3 we will use the existing connections between tiles and spectral sets
to produce new families of complex Hadamard matrices. Namely, some natural tiling
constructions work analogously for spectral sets, and such sets correspond directly
to complex Hadamard matrices. In this manner, some peculiar tiling constructions
of Szabó [126] lead to new families of complex Hadamard matrices, one of which is
described in detail in Example 2.3.2. This section is based on the paper [94].

2.1 Preliminary results on tiling

This introductory section reviews several well-known results concerning transla-
tional tiling.

2.1.1 Combinatorial and Fourier analytic conditions

In full generality, tiling can be discussed in any locally compact Abelian group,
but throughout this work we will restrict our attention to the following standard
cases: finite groups, Zd, and Rd. Also, we will make the discussion technically
easier by considering only bounded, open sets T as tiles (rather than allowing any
measurable sets). In notation, the indicator function of the set T will be denoted
by χT .
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Definition 2.1.1. Let G be a locally compact Abelian group of the following type:
finite group, Zd, or Rd. Let T ⊂ G be a bounded open set, and Λ ⊂ G be a discrete
set. We say that T tiles G with translation set Λ if

∑
λ∈Λ χT (x− λ) = 1 for almost

all x ∈ G. More generally, if Λ is a multiset (i.e. any element λ ∈ Λ can appear
with multiplicity more than one), and 0 ≤ f ∈ L1(G) is a nonnegative integrable
function then we say that f tiles G with Λ at level s if

∑
λ∈Λ f(x−λ) = s for almost

all x ∈ G. In notation we write T + Λ = G and f + Λ = sG, respectively.

The set Λ is also said to be a tiling complement of T . The assumption of T
being open ensures that the translated copies λ + T are pairwise disjoint, and the
non-covered points of G have measure zero (the measure is always meant to be the
appropriately normalized Haar measure on G, i.e. the counting measure if G is
discrete, and the Lebesgue measure if G = Rd).

The group of multiplicative characters of G will be denoted by Ĝ. In this chapter
we will use the additive notation for both G and Ĝ. That is, for γ1, γ2 ∈ Ĝ we define
(γ1 + γ2)(x) = γ1(x)γ2(x). This is motivated by the fact that in Section 2.2 we want
to treat tiles and spectral sets in an analogous manner.

We use the following definition for the Fourier transform of a function f : G → C:

f̂(γ) =

∫
x∈G

f(x)γ(x)dx, γ ∈ Ĝ. (2.1)

For a good textbook on Fourier analysis on locally compact Abelian groups we
refer to [113].

Tiling implies some trivial but important combinatorial and Fourier analytic
restrictions on T and Λ.

Lemma 2.1.2. Let G be finite. The following are equivalent:
(i) T + Λ = G is a tiling
(ii) (T − T ) ∩ (Λ− Λ) = {0}, and |T ||Λ| = |G|
(iii) suppχ̂T ∩ suppχ̂Λ = {0}, and |T ||Λ| = |G|.

Proof. The equivalence of (i) and (ii) is trivial: the translates λ+ T are disjoint
and cover G if and only if (ii) holds. For the equivalence of (i) and (iii) notice that
T + Λ = G can be written as χT ∗ χΛ = χG, and therefore χ̂T χ̂Λ = |G|δ0, which is
equivalent to (iii). �

The advantage of the Fourier characterization is that it remains valid for general
tilings f +Λ = G, even if G is infinite. Strictly speaking, we will not need this result
but let me quote a convenient formulation of it for completeness (this formulation
is a combination of Theorem 1.1 and 1.2 in [69]).

Lemma 2.1.3. ( [69]) Let 0 ≤ f ∈ L1(Rd) be a nonnegative function with integral
1, such that f̂ ∈ C∞(Rd). Let Λ ⊂ Rd be a discrete multiset of density 1, and let δΛ
denote the measure δΛ =

∑
λ∈Λ δλ, and assume that δ̂Λ is locally a measure. Then

the following conditions are equivalent:
(i) f + Λ = Rd is a tiling
(ii) suppδ̂Λ ⊂ {0} ∪ {f̂ = 0}.
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The characterization of lattice tilings is particularly elegant. We recall that the
dual lattice Λ∗ of a lattice Λ ⊂ Rd is defined as Λ∗ = {ξ ∈ Rd : ⟨ξ, λ⟩ ∈ Z for all λ ∈
Λ}.

Lemma 2.1.4. ( [69]) Let 0 ≤ f ∈ L1(Rd) be a nonnegative function with integral
1, and let Λ ⊂ Rd be a lattice of density 1. Let Λ∗ denote the dual lattice. The
following are equivalent:
(i) f + Λ = Rd is a tiling
(ii) Λ∗ ⊂ {0} ∪ {f̂ = 0}.

2.1.2 Tilings of Z and periodicity properties

Definition 2.1.5. A subset Λ ⊂ G is periodic with period 0 ̸= r ∈ G if x ∈ Λ
implies x+ r ∈ Λ. If G = Zd or Rd then we call Λ fully-periodic if there exist periods
r1, . . . , rd which are R-linearly independent.

Let A ⊂ Z be a finite set with diameter n (the diameter is the difference between
the largest element and the smallest element). It is well-known that in every tiling
A+ B = Z the translation set B must be periodic. For the minimal period r of B,
Newman [105] proved that r ≤ 2n, which was improved later by Kolountzakis [70],
Ruzsa [117], and finally Biró [15] who proves r ≤ en

1/3+ε.

In the other direction, tilings with long periods (r ≥ cn2) were first constructed
by Kolountzakis [70]. Then Steinberger [125] showed that r can be superpolynomial
in n (the first step of the construction in [125] is basically the same as Proposition
2.2.16 below).

Theorem 2.1.6. [15, 125] Let A ⊂ Z be a finite set of integers with diameter n,
and let A + B = Z be a tiling. Then B is periodic, and the smallest period r of B
satisfies r ≤ en

1/3+ε. On the other hand, there exist tilings A + B = Z such that
diameter of A is n and the least period r of B satisfies r ≥ e

1
4
log2 n/ log logn.

These upper and lower bounds refer to the largest possible period of a tiling of a
set A of diameter n. What about the shortest period? A famous conjecture of Coven
and Meyerowitz [30] implies that it can always be as small as 2n (as explained in
the remark following Lemma 2.1 in [30]). That is, the tiling complement B of A can
always be chosen so that the smallest period of B is at most 2n. For the discussion
of the Coven-Meyerowitz conjecture suppose that A is a finite set of nonnegative
integers and 0 ∈ A (one can always shift any A ⊂ Z to achieve this). Write, as is
customary, A(X) =

∑
a∈AX

a.

Let Φd(X) denote the dth cyclotomic polynomial, and let SA be the set of prime
powers pα such that Φpα(X) | A(X). In [30] Coven and Meyerowitz wrote down the
following two conditions on a such a polynomial A(X).

(T1) A(1) =
∏

s∈SA
Φs(1),

(T2) If s1, . . . , sm ∈ SA are powers of distinct primes then Φs1···sm(X) | A(X).

They proved the following important theorem in [30].
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Theorem 2.1.7. ( [30]) Let A ⊂ Z be a finite set of nonnegative integers such that
0 ∈ A. If (T1) and (T2) hold then A tiles Z by translation. If A tiles Z by translation
then (T1) necessarily holds. If A tiles Z and |A| has at most two different prime
factors then (T2) also holds.

It was explicitly conjectured by Konyagin and Laba [77] that A is a tile of the
integers if and only if both (T1) and (T2) hold. Nevertheless we call it the Coven-
Meyerowitz conjecture.

Conjecture 2.1.8. (Coven-Meyerowitz conjecture, [30,77].) A finite set of nonneg-
ative integers A (such that 0 ∈ A) tiles the integers by translation if and only if the
conditions (T1) and (T2) are satisfied.

This is probably the most important conjecture concerning the tilings of Z. It
is also easy to formulate ’local versions’ (TN1 ) and (TN2 ) of conditions (T1) and (T2)
for a set A ⊂ ZN to tile ZN . Using these, we described an algorithm in [74] to list
all non-periodic tilings A + B = ZN , if N has at most two different prime factors.
Interestingly, the same algorithm can be used to test the validity of the conditions
(TN1 ) and (TN2 ) if N has at least 3 prime factors. We have investigated many tilings
for fairly large values of N , and the conditions (TN1 ) and (TN2 ) were always satisfied.

Periodicity in dimension 1 remains valid also for tilings of the real line. Also,
the structure of translation sets can be described when we consider tilings of R with
nonnegative functions of compact support (although periodicity is not true anymore
for such general tilings).

Theorem 2.1.9. [71, 81, 84] Let T ⊂ R be a bounded open set, and T + Λ = R be
a tiling. Then Λ is periodic, i.e. Λ = ∪Nj=1(αZ + βj). Moreover, all the differences
βj−βk are rational multiples of α. More generally, if f +Λ = sR is a multiple tiling
for some nonnegative function f ∈ L1(R) with compact support, then Λ is a finite
union of lattices, Λ = ∪Nj=1(αjZ+ βj).

One important consequence of periodicity is that tiling is an algorithmically
decidable property in Z: given a finite set T ⊂ Z one can decide by a finite algorithm
whether T tiles Z or not. Surprisingly this is not known in higher dimensions:

Problem 2.1.10. Given a finite set T ⊂ Zd, is there an algorithm to decide whether
T tiles Zd by translation?

Already in Z2 this question is wide open, apart from the result of Szegedy [127]
who gave an algorithm for the special cases of |A| being a prime or 4. There are also
algorithms for other special cases but these all have topological conditions [45, 143]
on the tile (e.g. to be simply connected).

In a more general form of the problem, that of asking whether a given set of tiles
can be moved around (by a group of motions) to tile Rd, tiling has long been shown
to be undecidable. Berger [13] first showed this (it is undecidable to determine if a
given finite set of polygons can tile R2 using rigid motions). Many other models of
tiling have been shown to undecidable (cf. [112]).

In dimensions d ≥ 3 it is fairly easy to construct examples T +Λ = Zd such that
Λ does not have any periods. For d = 2 this was posed as an open problem in [69],
but it is not hard to find such an example, and we sketch the idea here.
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Example 2.1.11. Let T = {(0, 0), (0, 2), (2, 0), (2, 2)} ⊂ Z2. Then T tiles the
subgroup G0 = 2Z×2Z (the elements with even coordinates), and one can arrange a
tiling T +Λ1 = G0 so that Λ1 has only vertical periods, r = (0, 2). But one can also
tile the coset of G0 with odd coordinates, T + Λ2 = G0 + (1, 1), in such a way that
Λ2 has only horizontal periods, r = (2, 0). Then the choice Λ = Λ1 ∪ (Λ1 + (0, 1)) ∪
(Λ1 + (1, 0)) ∪ Λ2 shows that T + Λ = Z2 but Λ does not have any periods.

Although non-periodic tilings exist, it is still possible that whenever T tiles, it
can also tile periodically (after modification of the translation set, if necessary).

Problem 2.1.12. (Periodic Tiling Conjecture [50,81]) If a finite set T ⊂ Zd (resp.
a bounded measurable set T ) tiles Zd (resp. Rd) by translation, then the translation
set can be chosen to be fully-periodic.

Again, a positive answer to the Periodic Tiling Conjecture would provide a posi-
tive answer to Problem 2.1.10. These questions are discussed in detail by M. Szegedy
in [127]. He proves that if Zd (or any finitely generated Abelian group) is generated
by T , |T | is a prime, and T + T ′ = Zd then T ′ must be fully periodic. This is
stronger than the Periodic Tiling Conjecture, for the case of |T | being a prime. He
also conjectures that if |T | is a prime-power and T generates Zd then in every tiling
T + T ′ the translation set T ′ must have a period vector. However, this conjecture
fails, as a construction similar to Example 2.1.11 shows.

Example 2.1.13. Let 2T = {(0, 0), (0, 4), (4, 0), (4, 4)} be the dilated copy of the
set defined in Example 2.1.11, and consider the following union of its translated
copies: T0 = 2T ∪ (2T + (0, 1))∪ (2T + (1, 0))∪ (2T + (1, 1)). Then |T0| = 16 and it
is clear that T0 generates Z2 since (0, 1), (1, 0) ∈ T0. Also, if T + T ′ = Z2 is a tiling
such that T ′ is non-periodic, then T0 + 2T ′ = Z2 is also such a tiling.

Example 2.1.11 and 2.1.13 are some simple observations of the author, and they
have not been published.

What about periodicity in finite groups? Let G be finite, and A + B = G.
Hajós [55] called the group G ’good’ if in any tiling A + B = G at least one of the
sets A,B is necessarily periodic with a period r < |G|. Good groups have been fully
classified by Sands [122, 123], but we restrict our attention here to the cyclic case.
Classifying non-periodic tilings of cyclic groups ZN has been motivated by modern
compositions of music [2, 136]. We have given such a classification algorithmically
in [74].

We recall the classification of Sands for the cyclic case.

Theorem 2.1.14. [123] The cyclic groups ZN which are good are exactly those N
that divide one of pqrs, p2qr, p2q2 or pnq, where p, q, r, s are any distinct primes and
n ≥ 1.

The weaker property of quasi-periodicity was also introduced by Hajós: a tiling
A + B = G is called quasi-periodic if either A or B, say B, can be partitioned
into disjoint subsets B1, . . . , Bm with m > 1 such that there is a subgroup H =
{h1, . . . , hm} of G with A + Bi = A + B1 + hi. Hajós conjectured that all tilings of
finite Abelian groups are quasi-periodic, but this was disproved by an example of
Sands [121] in Z5 × Z25. However, the conjecture remains open in cyclic groups.
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Conjecture 2.1.15. (Hajós quasi-periodicity conjecture [55].) All tilings A+ B =
ZN of a cycling group ZN are quasi-periodic.

2.1.3 Geometric results on tiling

Let us now turn to classical geometric results of tiling Rd. There is a vast
literature on translational tilings and multi-tilings of Rd by geometric objects (cube
tilings alone have a very rich theory). We purposefully restrict our attention to some
famous results that we will need in connection with Fuglede’s conjecture.

Theorem 2.1.16. (Minkowski, [102]) If a convex body P tiles Rd by a lattice, then P
must be a centrally symmetric polytope whose d− 1-dimensional facets are centrally
symmetric.

A precise characterization of the polytopes which tile Rd by translation was later
given by Venkov [135] (and re-discovered by McMullen [101]). We will not recall this
characterization here, only the fact that the translation set can always be chosen to
be a lattice.

Theorem 2.1.17. ( [101,135]) If a convex body P tiles Rd, P + Λ = Rd, then P is
a polytope and the translation set Λ can be chosen to be a lattice.

We remark that a generalization of Minkowski’s theorem to multiple tilings was
recently given in [49].

Theorem 2.1.18. ( [49]) If a convex polytope tiles Rd at any level k by translations,
then it is centrally symmetric and its facets are centrally symmetric.

2.2 Fuglede’s conjecture

Let Ω be a bounded open domain in Rd (again, one could consider any measurable
set with finite measure, but we do not want to enter the arising technical difficulties).
In connection with commutation properties of the partial differential operators ∂j
on L2(Ω) Fuglede [44] introduced the notion of spectral sets. He also remarks that
this notion makes sense in any locally compact Abelian group, but as in the case of
translational tiling we will restrict our attention to finite groups, Zd, and Rd.

Definition 2.2.1. Let G be a locally compact Abelian group of the following type:
finite group, Zd, or Rd. A bounded open set Ω in G is called spectral if L2(Ω) has an
orthogonal basis consisting of restrictions of characters of G to Ω, i.e. there exists a
set S ⊂ Ĝ such that (S|Ω)s∈S is an orthogonal basis of L2(Ω). In such a case S is
called a spectrum of Ω and (Ω, S) is called a spectral pair.

Fuglede conjectured that the class of spectral sets in Rd is the same as the class
of translational tiles. He originally stated the conjecture for any measurable set of
finite measure but we restrict our attention to bounded open sets here. It will turn
out that counterexamples already exist in this setting.

Conjecture 2.2.2. (Fuglede’s conjecture, [44].) A bounded open set Ω ∈ Rd is
spectral if and only if it tiles Rd.
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There has been a tremendous amount of research in connection with this con-
jecture over the past decades. To keep the discussion at a reasonable length we
will mostly restrict our attention to results related to our own research. In the
next sections we will first discuss some positive results which prove or indicate the
validity of the conjecture in some special cases, and then we will proceed to give
counterexamples in the general case.

2.2.1 Positive results

We start by giving some useful equivalent characterizations of spectral sets.

The inner product and norm on L2(Ω) are

⟨f, g⟩Ω =

∫
Ω

fg, and ∥f∥2Ω =

∫
Ω

|f |2,

and therefore for any λ, ν ∈ Ĝ we have

⟨λ, ν⟩Ω = χ̂Ω(ν − λ).

This gives

Λ is an orthogonal set ⇔ ∀λ, µ ∈ Λ, λ ̸= µ : χ̂Ω(λ− µ) = 0

For Λ to be complete as well we must in addition have (Parseval)

∀f ∈ L2(Ω) : ∥f∥22 =
1

|Ω|
∑
λ∈Λ

|⟨f, λ⟩|2. (2.2)

For the groups we care about (finite groups, Zd, and Rd) in order for Λ to be
complete it is sufficient to have (2.2) for any character γ ∈ Ĝ, since then we have
it in the closed linear span of these functions, which is all of L2(Ω). An equivalent
reformulation for Λ to be a spectrum of Ω is therefore that∑

λ∈Λ

|χ̂Ω|2(γ − λ) = |Ω|2, (2.3)

for every γ ∈ Ĝ. Therefore, Fuglede’s conjecture is equivalent to the following: χΩ

tiles G at level 1 if and only if |χ̂Ω|2 tiles Ĝ at level |Ω|2.

For finite sets Ω (the group is finite or Zd) the characterization is even simpler:
for a set Λ ⊆ Ĝ to be a spectrum it is necessary and sufficient that Λ satisfy the two
conditions:

Λ− Λ ⊆ {χ̂Ω = 0} ∪ {0} (orthogonality), #Λ = #Ω (maximal dimension) (2.4)

Another useful characterization of finite spectral sets is given in terms of complex
Hadamard matrices. Recall that a k × k complex matrix H is called a (complex)
Hadamard matrix if all entries of H have absolute value 1, and HH∗ = kI (where I
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denotes the identity matrix). This means that the rows (and also the columns) of H
form an orthogonal basis of Ck. A log-Hadamard matrix is any real square matrix
(hi,j)

k
i,j=1 such that the matrix (e2πihi,j)ki,j=1 is Hadamard. It is clear that a finite set

Ω = {t1, . . . , tk} in a discrete group G is spectral with spectrum Γ = {γ1, . . . , γk} ⊂ Ĝ
if and only if the k × k matrix [H]j,m = γj(tm) is complex Hadamard.

For subsets Ω ⊆ Rd, when the spectra are infinite, we fall back on (2.3).

We now turn to results which show that spectral sets and tiles share many com-
mon properties. Most of the results will be quoted from the literature without proof.
The ones with proof are taken from [40, 72, 73, 91]. All the results in this section
support Fuglede’s conjecture (at least, in special cases). However, in the next section
it will turn out that counterexamples can still be constructed.

The first positive result is that of lattice tilings, or lattice spectra. This special
case was already proved by Fuglede.

Theorem 2.2.3. ( [44]) Let Ω ⊂ Rd be a bounded open domain of measure 1, and
let Λ ⊂ Rd be a lattice of density 1. Then Ω + Λ = Rd if and only if Λ∗ (the dual
lattice) is a spectrum of Ω.

Proof (sketch, [69]). By (2.3) Λ∗ is a spectrum of Ω if and only if |χ̂Ω|2(γ−λ) = 1
for almost all γ ∈ Rd. By Lemma 2.1.4 this is equivalent to the Fourier transform
of |χ̂Ω|2 vanishing on the dual lattice of Λ∗ (except at 0), i.e. χΩ ∗ χ−Ω vanishing on
Λ except at 0. The latter condition is equivalent to Ω− Ω ∩ Λ = {0}, which means
that the translates Ω + λ, λ ∈ Λ do not intersect each other. By the assumptions
on the volume of Ω and the density of Λ this is equivalent to Ω + Λ = Rd. �

Together with Theorem 2.1.17 this means that the "tile → spectral" direction of
Fuglede’s conjecture is true for convex bodies:

Corollary 2.2.4. ( [44]) If Ω ⊂ Rd is a convex body which tiles Rd then it is also
spectral in Rd.

Quite remarkably, the converse implication was also proven in dimension 2 by
Iosevich, Katz and Tao:

Theorem 2.2.5. ( [59]) Fuglede’s conjecture is true in R2 for convex domains.
That is, the tiles and spectral sets are the parallelograms and centrally symmetric
hexagons.

The counterpart of Minkowski’s Theorem 2.1.16 for spectral sets was proved by
Kolountzakis:

Theorem 2.2.6. ( [68]) If a convex domain Ω ⊂ Rd is spectral then it is centrally
symmetric.

If a convex body has smooth boundary then it cannot be a tile in any dimension
d. The same is true for spectral sets:

Theorem 2.2.7. ( [58]) If Ω ⊂ Rd is a convex body with smooth boundary then Ω
cannot be spectral.
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We will now turn away from convex bodies and lattice tilings, but let us remark
that Fuglede’s conjecture may be true in any dimension d ≥ 1 for convex bodies,
counterexamples are not known. In the rest of the section we will consider sets of
the type

Ω = A+ (0, 1)d, A ⊂ Zd, (2.5)

that is, unions of unit cubes situated at points with integer coordinates. Fuglede’s
conjecture for such sets has a rich theory invoking ideas from combinatorics, number
theory (for d = 1), and Fourier analysis.

As the zero-sets of Fourier transforms play a central role in our investigations, it
will be convenient to introduce the following notation.

Notation 2.2.8. For any function f : G → C the set of zeros of f is denoted by
Z(f) = {x ∈ G : f(x) = 0}.

Our first result is that considering sets of type (2.5) is equivalent to investigating
Fuglede’s conjecture in Zd. The ’spectral’ part of the following lemma is taken
from [72] while the ’tile’ part is basically trivial.

Proposition 2.2.9. ( [72]∗) A set Ω of the form (2.5) is spectral (respectively, a
tile) in Rd if and only if the set A is spectral (resp. a tile) in Zd.

Proof. We first prove the spectral part of the lemma. Write Q = (0, 1)d, Ω =
A+Q. Then χ̂Ω = χ̂Aχ̂Q and Z(χ̂Ω) = Z(χ̂A) ∪ Z(χ̂Q). By calculation we have

Z(χ̂Q) =
{
ξ ∈ Rd : ∃j such that ξj ∈ Z \ {0}

}
.

Now suppose Λ ⊂ Td is a spectrum of A as a subset of Zd. Viewing Td as Q
we observe that the set Z(χ̂A) is periodic with Zd as a period lattice. Define now
S = Λ+Zd. The differences of S are either points which are on Z(χ̂A) (mod Zd) or
points with all integer coordinates. In any case these differences fall in Z(χ̂Ω), hence∑

s∈S |χ̂Ω(x− s)|2 ≤ (#A)2. Furthermore, the density of S is #A which, along with
the periodicity of S, implies that |χ̂Ω|2 + S is a tiling of Rd at level (#A)2. That is,
S is a spectrum for Ω.

Conversely, assume S is a spectrum for Ω as a subset of Rd. It follows that
the density of S is equal to |Ω| = #A, hence there exists k ∈ Zd such that k + Q
contains at least #A points of S. Call the set of these points S1, and observe that
the differences of points of S1 are contained in Q − Q = (−1, 1)d, and that Q − Q
does not intersect Z(χ̂Q). It follows that the differences of the points of S1 are all
in Z(χ̂A), and, since their number is #A, they form a spectrum of A as a subset of
Zd.

Let us now turn to the ’tile’ part of the lemma. If A tiles Zd then it is trivial
that Ω tiles Rd. In the converse direction the simplest proof I know of was given by
G. Kós, as follows. Assume Ω + Λ is a tiling of Rd. Due to Zd being countable and
the boundary of Ω being measure zero we can find a vector x ∈ Rd such that for all
λ ∈ Λ the set λ + x + Ω does not contain any points of Zd on its boundary. That
is, in the tiling Ω + (Λ + x) = Rd in each translated copy of Ω the integer points
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correspond to a translated copy of A. Therefore, we get a tiling of Zd by translated
copies of A as required. �

The situation is particulary interesting in dimension 1. Due to the rational
periodicity result of Lagarias and Wang [81] (cf. Theorem 2.1.9 above), all bounded
open sets that tile Z are essentially equivalent to sets of the type (2.5). Therefore,
the ’tile → spectral’ direction of Fuglede’s conjecture holds in R if and only if it
holds in Z. Intriguingly, an observation of Laba shows that the validity of the
Coven-Meyerowitz conjecture would be sufficient for this.

Theorem 2.2.10. ( [79]) If A ⊂ Z is a finite set of nonnegative integers (such that
0 ∈ A), and the corresponding polynomial A(X) =

∑
a∈AX

a satisfies the conditions
(T1) and (T2) of Conjecture 2.1.8, then A is spectral in Z.

It is less clear whether the ’spectral → tile’ direction of Fuglede’s conjecture in R
is also equivalent to its validity in Z. A recent breakthrough by Bose and Madan [19],
followed by that of Kolountzakis and Iosevich [60] shows that the spectrum of a
bounded measurable set must be periodic.

Theorem 2.2.11. ( [60]) Let Ω ⊂ R be a bounded measurable set with measure 1,
and let S be a spectrum of Ω. Then S is periodic and any period is an integer.

However, this in itself does not mean that it is enough to consider the ’spectral →
tile’ implication in Z instead of R. A very good account of the known implications
concerning Fuglede’s conjecture in Zn,Z and R is given in [37].

The following ’amplification’ property is also shared by spectral sets and tiles.

Proposition 2.2.12. ( [72, 91]∗) Let n = (n1, . . . , nd) ∈ Zd, consider a set A ⊂
[0, n1 − 1) × · · · × [0, nd − 1) ⊂ Zd and let Ã ⊂ G = Zn1 × · · · × Znd

denote the
reduction of A modulo n. Write

T = T (n, k) = {0, n1, 2n1, . . . , (k − 1)n1} × · · · × {0, nd, 2nd, . . . , (k − 1)nd}, (2.6)

and define Ak = A + T . Then, for large enough values of k, the set Ak ⊂ Zd is
spectral (resp. a tile) in Zd if and only if Ã is spectral (resp. a tile) in G.

Proof. The ’if’ part for tiles follows from the fact that the reduction Ãk of Ak
modulo (kn1×, · · · × knd) tiles the group Gk = Zkn1 × · · · × Zknd

in an obvious
way. The ’if’ part for spectral sets follows in a similar manner: it will be shown in
Proposition 2.2.17 (in a more general form) that Ãk is spectral in the group Gk.

We now prove the ’only if’ part of the lemma for spectral sets. Observe first that
χAk

= χA ∗ χT , hence we obtain

Z(χ̂Ak
) = Z(χ̂A) ∪ Z(χ̂T ).

Elementary calculation of χ̂T (it is a cartesian product) shows that it is a union of
“hyperplanes”

Z(χ̂T ) =

{
ξ ∈ Td : ∃j ∃ν ∈ Z, k does not divide ν, such that ξj =

ν

knj

}
. (2.7)
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Define the group

H =

{
ξ ∈ Td : ∀j ∃ν ∈ Z such that ξj =

ν

nj

}
.

which is the group of characters of the group G and does not depend on k. Observe
that H + (Q−Q) does not intersect Z(χ̂T ), where

Q =

[
0,

1

kn1

)
× · · · ×

[
0,

1

knd

)
.

Assume now that S ⊆ Td is a spectrum of Ak, so that #S = #Ak = rkd, if
r = #A. Define, for ν ∈ {0, . . . , k − 1}d, the sets

Sν =

{
ξ ∈ S : ξ ∈ (

ν1
kn1

, . . . ,
νd
knd

) +Q+ (
m1

n1

, . . . ,
md

nd
), for some m ∈ Zd

}
.

Since the number of the Sν is kd and they partition S, it follows that there exists
some µ for which #Sµ ≥ r.

We also note that, if k is sufficiently large, then any translate of Q may contain
at most one point of the spectrum. The reason is that Q − Q contains no point of
Z(χ̂T ) (for any k) and no point of Z(χ̂A) for all large k (as χ̂A(0) > 0).

Observe next that if x,y ∈ Sµ then

x− y ∈ H + (Q−Q)

= H +

(
− 1

kn1

,
1

kn1

)
× · · · ×

(
− 1

knd
,

1

knd

)
and that this set does not intersect Z(χ̂T ) (from (2.7)). It follows that for all
x,y ∈ Sµ we have x− y ∈ Z(χ̂A).

Let k be sufficiently large so that for all points h ∈ H for which χ̂A(h) ̸= 0 the
rectangle h + Q − Q does not intersect Z(χ̂A). It follows that if x,y ∈ Sµ then
x− y ∈ h+ (Q−Q), where h ∈ Z(χ̂A).

For each x ∈ Td define λ(x) to be the unique point z whose j-th coordinate
is an integer multiple of 1

knj
for which x ∈ z + Q. If x,y ∈ Sµ it follows that

λ(x) − λ(y) ∈ H ∩ Z(χ̂A). Define now Λ =
{
λ(x) : x ∈ Sµ

}
(and shift Λ to

contain 0, so that Λ ⊂ H). It is obvious that #Λ ≥ r and Λ − Λ ⊆ Z(χ̂Ã) ∪ {0},
therefore Λ is a spectrum of Ã.

We now prove the ’only if’ part of the lemma for tiles. For the sake of technical
simplicity we assume n1 = n2 = · · · = nd =: m, which will be the case in applications
later. The proof remains valid for general n1, . . . , nd after obvious modifications. The
proof proceeds along the same lines as in [91,132].

Assume, for contradiction, that Ak tiles Zd with some translation set Σ. Take a
cube Cl = [0, l)d, where l is much larger than k. Let Σl := {σ ∈ Σ : (σ+Ak)∩Cl ̸=
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∅}. Note that #Ak = rkd. We have #Σl ≤ (l+2mk)d

rkd
, because all Σl-translates of Ak

are contained in the cube (−mk, l +mk)d.

Let A denote the annulus A := [−m,mk + m)d − [m,mk − m)d. Then
#A (≈ 4dm(mk)d−1) ≤ 5dm(mk)d−1, if k is large enough compared to m.
Hence, Σl + A cannot cover the cube Cl−m := [0, l − m)d because (#Σl)(#A) ≤
(l + 2mk)d

(
5dm(mk)d−1

rkd

)
< (l − m)d, if the numbers k, l are chosen so that k is

sufficiently large compared to m, and l is sufficiently large compared to k.

Take a point x ∈ Cl−m not covered by Σl + A. Consider the cube Cx
m :=

x+ [0,m)d. This cube is fully inside Cl, therefore if any translate σ +Ak intersects
Cx
m then σ necessarily belongs to Σl. The point x is not covered by the annulus

σ + A, therefore Cx
m is contained in the cube σ + [0,mk)d. Let S denote the set

A+m ·Zd. In view of what has been said, we have (σ+Ak)∩Cx
m = (σ+S)∩Cx

m =
(x+[0,m)d)∩(σ+A+mZd). The mod m reduction of this set is exactly the translate
σ + A mod m. Hence, the tiling of the cube Cx

m by Σ-translates of Ak contradicts
the assumption that Ã does not tile Zdm. �

While Proposition 2.2.9 and 2.2.12 prove that certain properties are shared by
spectral sets and tiles, they have the important implication that it is enough to find
a counterexample in any finite Abelian group, and the transition to Zd and Rd will
be automatic. We summarize this important fact in the following corollary.

Corollary 2.2.13. ( [72]∗) Let G = Zn1 × · · · × Znd
be a finite Abelian group, and

assume Ã ⊂ G is a spectral set which is not a tile (resp. a tile which is not a spectral
set). Consider a set A ⊂ [0, n1 − 1)× · · · × [0, nd − 1) ⊂ Zd such that the reduction
of A modulo (n1, . . . , nd) is Ã. Then, for large enough k, the set Ak = A + T (n, k)
defined in Proposition 2.2.12 is spectral (resp a tile) in Zd but it is not a tile (resp.
not spectral) in Zd. Furthermore, the union of unit cubes Ak+(0, 1)d ⊂ Rd is spectral
(resp. a tile) in Rd but it is not a tile (resp. not spectral).

We now turn to properties in finite Abelian groups. First we show that tiles and
spectral sets behave in the same way in subgroups and under homomorphic images.
The tiling part of Lemma 2.2.15 was given by Szegedy in [127].

Lemma 2.2.14. Let G be a finite Abelian group, and let G0 be a subgroup. A set
T ⊂ G0 is spectral (resp. a tile) in G0 if and only if it is spectral (resp. a tile) in G.

Proof. The statement is trivial for tiles. For spectral sets the ’if’ part is trivial
because the restriction of any character γ ∈ Ĝ to G0 is a character of G0. Conversely,
for any character γ0 ∈ Ĝ0 there exists a character γ ∈ Ĝ (typically not uniquely),
such that γ|G0 = γ0, and therefore any spectrum S0 ⊂ Ĝ0 gives rise to a spectrum
S ⊂ Ĝ. �

Lemma 2.2.15. Let G,H be finite Abelian groups, T ⊂ G and suppose that there
exists a homomorphism ϕ : G → H such that ϕ is injective on T and ϕ(T ) is spectral
(resp. a tile) in H. Then T is spectral (resp. a tile) also in G.
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Proof. If γ ∈ Ĥ then one can define γ′ ∈ Ĝ by γ′(g) = γ(ϕ(g)), and therefore
any spectrum SH of T gives rise to a spectrum SG of T . For the tiling property, it
is easy to check that if ϕ(T ) + L = H then T + ϕ−1(L) = G. �

Next, we consider a ’natural’ tiling construction (which is a generalization of the
amplification procedure of Proposition 2.2.12), and show that the same construction
works for spectral sets, too.

Proposition 2.2.16. ( [72]∗) Let G be a finite Abelian group, and H ≤ G a sub-
group. Let T1, T2, . . . Tk ⊂ H be subsets of H such that they share a common tiling
complement in H; i.e. there exists a set T ′ ⊂ H such that Tj + T ′ = H is a tiling
for all 1 ≤ j ≤ k. Consider any tiling decomposition S + S ′ = G/H of the factor
group G/H, with #S = k, and take arbitrary representatives s1, s2, . . . sk from the
cosets of H corresponding to the set S. Then the set Γ := ∪kj=1(sj + Tj) is a tile in
the group G.

Proof. The proof is simply the observation that for any system of representatives
S̃ ′ := {s′1, s′2, . . . } of S ′ the set T ′ + S̃ ′ is a tiling complement for Γ in G. �

Proposition 2.2.17. ( [72, 94]∗) Let G be a finite Abelian group, and H ≤ G a
subgroup. Let T1, T2, . . . Tk ⊂ H be subsets of H such that they share a common
spectrum in Ĥ; i.e. there exists a set L ⊂ Ĥ such that L is a spectrum of Tm for all
1 ≤ m ≤ k. Consider any spectral pair (Q,S) in the factor group G/H, with |Q| = k,
and take arbitrary representatives q1,q2, . . .qk from the cosets of H corresponding
to the set Q. Then the set Γ := ∪km=1(qm + Tm) is spectral in the group G.

Proof. The proof is trivial, although the notations are somewhat cumbersome.
We will simply construct a spectrum Σ ⊂ Ĝ for Γ. Let n denote the number of
elements in each Tm (they necessarily have the same number of elements as there
exists a common spectrum), and tmr (r = 1, . . . n and m = 1, . . . k) the rth element
of Tm. By assumption, there exist characters lj ∈ Ĥ (j = 1, . . . n) such that the
matrices [Am]j,r := [lj(t

m
r )] are n× n complex Hadamard for each m. Let l̃j denote

any extension of lj to a character of G (such extensions always exist, although not
unique). Also, the elements s1, . . . , sk of S ⊂ Ĝ/H can be identified with characters
s̃i ∈ Ĝ which are constant on cosets of H. Then we consider the product characters
s̃ĩlj and let Σ := {s̃ĩlj}i,j where i = 1, . . . , k and j = 1, . . . , n. We claim that Σ is
a spectrum of Γ. For each m = 1, . . . k let DLqm denote the n × n diagonal matrix
with entries [DLqm ]j,j = l̃j(qm). Then, for fixed i and m the product characters s̃ĩlj
(j = 1, . . . , n) restricted to the set qm + Tm = {qm + tm1 , . . . ,qm + tmn } simply give
the n× n matrix

Bi,m := s̃i(qm)DLqmAm, (2.8)

because the entries are given as [Bi,m]j,r = s̃ĩlj(qm+tmr ) = s̃i(qm)̃lj(qm)̃lj(t
m
r ). This

means that the characters s̃ĩlj ∈ Σ restricted to Γ will give the nk×nk block matrix

H :=


B1,1 · · B1,k

· · · ·
· · · ·

Bk,1 · · Bk,k

 . (2.9)
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Now, observe that each block Bi,m is given as a product s̃i(qm)DLqmAm where Nm :=
DLqmAm is a complex Hadamard matrix (because Am is such and DLqm is a unitary
diagonal matrix), and s̃i(qm) is the entry of a k × k complex Hadamard matrix by
the assumption that S is a spectrum of Q. Therefore H is seen to be a complex
Hadamard matrix arising directly with formula (2.10) (see Section 2.3.1), and hence
Σ is indeed a spectrum of Γ. �

It turns out that the the construction of Proposition 2.2.16 is so general that it
is not trivial to produce tilings which do not arise in such manner. In fact, it was
once asked by Sands [124] whether every tiling of finite Abelian groups is such that
one of the factors is contained in a subgroup (note that such tilings correspond to
the special case Q = G/H in Proposition 2.2.16). This question was then answered
in the negative by a construction of Szabó [126]. Quite intriguingly, we will see in
Section 2.3 that Szabó’s construction also works analogously for spectral sets.

In the last part of this section we show that the ’spectral → tile’ direction of
Fuglede’s conjecture holds for sets of size ≤ 5. This is best possible, as the coun-
terexamples in Section 2.2.1 will show.

Proposition 2.2.18. ( [73]∗) Let G be any finite Abelian group and A ⊂ G a spectral
set in G with |A| ≤ 5. Then A tiles G.

Proof. For any finite Abelian group G we may choose natural numbers N, d such
that G ≤ ZdN . Therefore, by Lemma 2.2.14, it is enough to prove the statement for
groups of the type G = ZdN . This observation makes the proof technically simpler.

It will be convenient to regard any element x ∈ G = ZdN as a column vector of
length d with integer entries ranging from 0 to N − 1. Also, an element γ ∈ Ĝ will
be regarded as a row vector of length d with entries ranging from 0 to N − 1. The
action of the character γ on x is then given by γ(x) = e2iπ⟨γ,x⟩/N .

The essential part of the proof relies on the fact that we have a full characteri-
zation of complex Hadamard matrices up to order 5.

We identify the elements of G and Ĝ with d-dimensional column- and row-vectors,
respectively. Let A ⊂ G = ZdN , with |A| = k ≤ 5. We regard A as a d × k matrix
with integer coefficients. If L ⊂ Ĝ is a spectrum of A (regarded as a k × d matrix),
then H := 1

N
L ·A is a log-Hadamard (where the matrix multiplication can be taken

mod N). Multiplication by the matrix L defines a homomorphism from G to ZkN ,
and the images of the elements of A are given by the columns cj of L ·A (1 ≤ j ≤ k).
By Lemma 2.2.15 it is enough to prove that the vectors cj tile ZkN .

In the cases k = 1, 2, 3, 5 this follows immediately from the uniqueness (up to
natural equivalence) of complex Hadamard matrices of order k. This uniqueness is
trivial for k = 1, 2, 3, while the case k = 5 is settled in [54]. Indeed, we can assume
without loss of generality that 0 ∈ A and 0 ∈ L (due to the trivial translation
invariance of the notion of spectrality and spectrum), and this already implies that
the matrix H = hm,j is (after a permutation of columns) given by hm,j = 1

k
mj

(0 ≤ m, j ≤ k−1). It follows that N is a multiple of k, say N =Mk, and the column
vectors cj are given as cj = (0, jM, 2jM, . . . , (k−1)jM)T . In order to see that these
vectors tile ZdN we invoke Lemma 2.2.15 once again. Let V := (0, 1, 0, . . . , 0), and
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consider the mod N product V ·L ·A = (0,M, 2M, . . . (k− 1)M). It is obvious that
the set {0,M, 2M, . . . (k − 1)M} tiles ZN , and therefore the columns cj tile ZkN .

The case k = 4 is settled in a similar manner, although we have no uniqueness
of Hadamard matrices in this case. The general form of a 4× 4 complex Hadamard
matrix is given (see e.g. [54], Proposition 2.1) by the parametrization

U =


1 1 1 1
1 1 −1 −1
1 −1 e2πiϕ −e2πiϕ
1 −1 −e2πiϕ e2πiϕ

 .

Due to the presence of -1’s it follows that N must be a multiple of 2, say N = 2M .
Also, t := Nϕ must be an integer. The matrix LA is then given by

LA =


0 0 0 0
0 0 M M
0 M t M + t
0 M M + t t

 .

To see that the columns of this matrix tile Z4
N , consider the matrix

V2 :=

(
0 1 0 0
0 0 1 0

)
.

Then
V2LA =

(
0 0 M M
0 M t M + t

)
.

It is easy to check that the columns of this matrix tile Z2
N , and by Lemma 2.2.15

this implies that the columns of LA tile Z4
N . �

Next, we extend the previous result to the infinite grid Zd. First, we need to
establish the rationality of the spectra in the cases considered.

Proposition 2.2.19. ( [73]∗) Let A ⊂ Zd be a spectral set with |A| ≤ 5. Then A
admits a rational spectrum.

Proof. Note that we do not claim that all spectra of A must be rational, but
only that the spectrum can be chosen rational.

The proof is an easy argument from linear algebra. Let us first consider the case
|A| = 5 (the cases |A| = 1, 2, 3 are settled the same way, while |A| = 4 will require
some extra considerations). Let L ⊂ Td denote a spectrum of A. We may assume
that 0 ∈ A and 0 ∈ L. Then, after a permutation of elements of A, we have

LA =
1

5


0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

 (mod 1).
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Let lm,j denote the elements of L. Considering, for example, the second row of L we
see that there exist integers z2,1, . . . , z2,5 such that

(l2,1, . . . , l2,d) · A =

(
z2,1, z2,2 +

1

5
, . . . z2,5 +

4

5

)
.

Regarding this equation as a set of linear equations with variables l2,1, . . . , l2,d we see
that if there exists a solution, then the solution can be chosen rational. The same
argument holds for the other rows of L.

We now turn to the case |A| = 4. Then, for some q ∈ [0, 1] we have

LA =


0 0 0 0
0 0 1

2
1
2

0 1
2

1
2
+ q q

0 1
2

q 1
2
+ q

 (mod 1).

If q is rational then the previous argument applies. If q is irrational we need some
additional considerations. Applying the previous argument we see that the first two
rows of L can be chosen rational even in this case (they do not depend on q). It is
also clear that the fourth row of L can be chosen as the sum of the second and third
rows. Consider therefore the third row only. For some integers z3,1, . . . , z3,4 we have

(l3,1, . . . , l3,d) · A =

(
z3,1, z3,2 +

1

2
, z3,3 +

1

2
+ q, z3,4 + q

)
Regard this equation as a set of linear equations with variables x1, . . . , xd, y in place
of l3,1, . . . , l3,d, q. By assumption, a solution x1 = l3,1, . . . , xd = l3,d, y = q of this
set of equations exists. By the coefficients being rational this means that a solution
consisting of rational numbers also exists, i.e. we can replace l3,1, . . . , l3,d, q by ratio-
nal numbers. Finally, we can choose the fourth row of L as the sum of the second
and third rows, which automatically becomes rational. �

Now, we are in position to prove the analogue of Proposition 2.2.18 in Zd.

Proposition 2.2.20. ( [73]∗) Let A ⊂ Zd be a spectral set in Zd with |A| ≤ 5. Then
A tiles Zd.

Proof. By Proposition 2.2.19 we can choose the spectrum of A rational. This
means that A is already spectral in some finite group G = Zn1 × · · · × Znd

. By
Theorem 2.2.18 we conclude that A tiles G, and therefore it tiles Zd. �

2.2.2 Counterexamples

In the previous section we have seen many properties that are common for spec-
tral sets and tiles. On the other hand, we have also seen in Corollary 2.2.13 that
any counterexample in a finite group will automatically lead to counterexamples in
Zd and Rd. This section will be devoted to constructing such counterexamples.

Let us first consider the ’spectral → tile’ direction of the conjecture. We have
seen in Proposition 2.2.18 that no counterexamples exist with |A| ≤ 5. However,
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the abundance of complex Hadamard matrices of order 6 allows us to construct
counterexamples already with |A| = 6. This was first done by T. Tao in [132], by
first constructing a non-tile spectral set in Z5

3 and then transferring the example to
Z5 and R5. The credit to refuting this direction of Fuglede’s conjecture therefore
goes to T. Tao. Subsequently, a minor observation in [91] allowed me to decrease
the dimension to 4, and finally to 3 in [73] in a joint work with M. N. Kolountzakis.
We will only include the 3-dimensional example here. All the known examples are
based on particular complex Hadamard matrices of order 6. At present, we do not
have a full characterization of complex Hadamard matrices of order 6 or greater.
On the other hand we do possess particular examples and even descriptions of some
parametric families of 6×6 Hadamard matrices. The family described in [35] contains
a matrix which leads to a 3-dimensional counterexample.

Theorem 2.2.21. ( [73]∗) There exists a spectral set A ⊂ Z3
8 which is not a tile.

As a consequence, there exist sets in Z3 and R3 which are spectral but do not tile Z3

and R3, respectively.

Proof. Consider the following 6× 6 log-Hadamard matrix:

H :=
1

8


0 0 0 0 0 0
0 4 2 6 6 2
0 2 4 1 5 6
0 6 3 4 2 7
0 6 7 2 4 3
0 2 6 5 1 4

 .

It is easy to check that H is log-Hadamard (i.e. the entry-wise exponential [e2iπhj,k ]j,k
is complex-Hadamard).

Next, we observe that there exist integer matrices A and L of size 3 × 6 and
6 × 3, respectively, such that 8H = LA (mod 8). A possible example of such a
decomposition is the following:

A :=

 0 2 4 1 5 6
0 6 3 4 2 7
0 6 7 2 4 3

 and L :=


0 0 0
0 1 1
1 0 0
0 1 0
0 0 1
7 1 1

 .

This means that the set (of the columns of) A is spectral in the group G = Z3
8.

However, |A| = 6, therefore A cannot tile G due to obvious divisibility reasons. �
We now turn to the ’tile → spectral’ direction of Fuglede’s conjecture. Con-

structing counterexamples in finite groups causes considerably greater difficulties in
this case. The reason for this is that the ’natural’ properties and constructions of
tiles are also shared by spectral sets, as described in Section 2.2.1. The breakthrough
observation in [72] was that Propositions 2.2.16 and 2.2.17 are not entirely analo-
gous. This observation led the authors to consider the following Universal Spectrum
Conjecture of Lagarias and Wang.
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Conjecture 2.2.22. (Universal Spectrum Conjecture [82]) Assume T ⊂ G is a tile
in a finite Abelian group. Then T possesses a "universal spectrum" S ⊂ Ĝ, i.e. a
set S which is a common spectrum for all the tiling complements T1, . . . , Tn of T .

In [72] we first refuted the Universal Spectrum Conjecture in a particular fi-
nite group by a duality argument, and then proceeded to construct a non-spectral
tile in an appropriate finite group. The transition to Z5 and R5 was achieved by
using Corollary 2.2.13. Subsequently, the connection of Fuglede’s conjecture and
the Universal Spectrum conjecture was clarified in [40], and the dimension of the
counterexample was lowered to 3. Here we will restrict our attention to the latter
(stronger) results, but we emphasize that the credit for the first counterexample goes
to [72].

Theorem 2.2.23. ( [40]∗) For any dimension d, the Universal Spectrum Conjecture
is valid for all finite groups Zn1×· · ·×Znd

if and only if the ’tile → spectral’ direction
of Fugelede’s conjecture is valid for all such groups.

Proof. One direction of this statement is trivial. Namely, if T is a non-spectral
tile in a group G then any tiling complement T ′ does not possess a universal spectrum
in Ĝ.

Conversely, assume that we find a d-dimensional group G = Zn1 ×· · ·×Znd
and a

tile T ⊂ G which does not have a universal spectrum. Let k := |T | and n := |G|. We
will exhibit a non-spectral tile R in a larger group G1 := Zn1×· · ·×Znd

×Zp, where p
is a large integer, relatively prime to n1, . . . , nd. (G1 is isomorphic to Zn1×· · ·×Zpnd

,
so the dimension does not increase.) Note that S ⊂ Ĝ is a universal spectrum of
T if and only if |S| = n/k and S − S ⊂ ∩mj=1ZT ′

j
∪ {0}, where T ′

j run through
all possible tiling complements of T . By assumption T does not have a universal
spectrum, which implies that for any set S ⊂ Ĝ, |S| = n/k we have a “witness”
vS ∈ S − S such that vS /∈ ∩jZT ′

j
∪ {0}. Let v1,v2, . . . ,vr denote the finite set of

all such witnesses. Consider now the matrix

A =


χ̂T ′

1
(v1) χ̂T ′

2
(v1) · · · χ̂T ′

m
(v1)

χ̂T ′
1
(v2) χ̂T ′

2
(v2) · · · χ̂T ′

m
(v2)

... . . . ...
χ̂T ′

1
(vr) χ̂T ′

2
(vr) · · · χ̂T ′

m
(vr)

 .

We know that each row contains a non-zero entry. We now choose an integer vector
k := (k1, k2, . . . , km)

⊤ such that Ak ̸= 0 and k1 + k2 + · · · + km = p is relatively
prime to n1, n2, . . . , nd. (It is easy to see that such choice is possible, as the Ak ̸= 0
condition means only an exclusion of r hyperplanes, and the relative prime condition
means only an exclusion of a set of density strictly less than 1.)

We will now glue together the desired non-spectral tile R ⊂ G1 from several
copies of the sets T ′

1, . . . , T
′
m. The idea is that we can consider G1 as p “layers” of G

and we will copy the sets T ′
j on different layers.

We can regard the elements of G1 as column vectors of length d + 1. (Note,
however, that the dimension of G1 is still d as p was chosen relatively prime to
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n1, . . . , nd; in fact it would suffice that p is relatively prime to one them.) Also,
the elements of Ĝ can be regarded as row vectors, the action of a character γ ∈ Ĝ
on an element x ∈ G being defined as γ(x) := e

∑d+1
j=1 γjxj/nj (where nd+1 := p). Let

zj = (0, 0, . . . , j)⊤. For any set A ⊂ G the notation Ã will stand for the set A
extended by zero in the last coordinate. Let also 1 = σ1 ≤ σ2 ≤ · · · ≤ σp = m be a
sequence of integers, the number i occurring exactly ki times among σj (recall that
k1 + k2 + · · ·+ km = p). Consider the set

R =

p∪
j=1

(
zj + T̃ ′

σj

)
We claim that R is a tile in G1 and it is not spectral. It is clear that R tiles G1

because a tiling complement can be given as T̃ .

Consider any set L ⊂ Ĝ1, |L| = |R| as a candidate for being a spectrum of R.
By the pigeonhole principle there exist an L1 ⊂ L, |L1| = n/k such that the last
coordinates of the elements of L1 are equal. Consider the set S̃1 whose elements
have the same coordinates as those of L1 except for the last coordinate which is
set to 0 in S̃1. Then S̃1 − S̃1 = L1 − L1 ⊂ L − L. Consider now the witness vS1

corresponding to S1, and the extended vector ṽS1 . We have

χ̂R(ṽS1) = k1 · χ̂T ′
1
(vS1) + k2 · χ̂T ′

2
(vS1) + · · ·+ km · χ̂T ′

m
(vS1) ̸= 0

by construction. This shows that R is not spectral in G1 and the proof is complete.
�

Remark 2.2.24. One can also introduce the notion of universal tiling complement.
A set U ⊂ Ĝ is a universal tiling complement of T ⊂ G if U is a tiling complement
in Ĝ of all spectra of T .

Then one can prove the “dual” of the statement above, i.e., that all spectral sets
are tiles in all d-dimensional finite groups if and only if all spectral sets possess
universal tiling complements in all d-dimensional finite groups. In fact, one can use
an analogous construction as above, building up layer by layer a spectral set which is
not a tile in a larger group G1 = G×Zp (to see that the constructed set does not tile
G1 one needs to recall the Fourier condition ZT ∪ ZT ′ = G \ {0} of tiling pairs). We
do not give a detailed proof here as we will not need this result. However, we remark
that the 1-dimensional case was studied recently in detail in [38], and it is very well
possible that these considerations will be useful in producing 1 or 2 dimensional
examples in the future. Let us also remark that the recent paper [37] clarifies all
the existing implications among the two directions of the Fuglede conjecture, the
Universal Spectrum Conjecture and the Universal Tiling Conjecture in the groups
Zn,Z and R. �

The result of the previous theorem shows that our task is reduced to finding a
tile T of a 3-dimensional finite group G which does not have a universal spectrum.
We will exhibit such a set in Z3

24. Unfortunately, it is not at all straightforward
to check whether a set T possesses universal spectra or not. There is an elegant
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sufficient condition for this by Lagarias and Szabó [80], which also turns out to be
sufficient for the existence of a universal tiling complement:

Proposition 2.2.25. ( [80], [40]∗) For a given set T in a finite group G, if a set
S ⊂ Ĝ satisfies the conditions |S| = |G|/|T | and S − S ⊂ Zc

T then S is a universal
spectrum of T , and also S is a universal tiling complement of T .

Proof. Assume T ′ is a tiling complement of T . Then Zc
T ⊂ ZT ′ ∪ {0}, and

|T ′| = |G|/|T | = |S|. Therefore S is a spectrum of T ′ by condition (2.4).

Conversely, assume that L is any spectrum of T . Then |L| · |S| = Ĝ and L−L∩
S−S = {0}, because L−L ⊂ ZT ∪{0} and S−S ⊂ Zc

T . It follows that L+S = Ĝ.
�

In fact, in [80] it is tentatively conjectured that the existence of such set S is also
a necessary condition for the existence of universal spectrum. If it were so, we could
simply use the duality argument of [72] to produce a set without universal spectrum
in G = Z3

24. The idea is to use the mod 8 log-Hadamard matrix H given in the proof
of Theorem 2.2.21. Then, one can define a spectral set T1 in Z3

24 with spectrum L
as follows (again the columns are the elements of G, while the rows correspond to
elements of the dual group Ĝ)

T1 :=

 0 2 4 1 5 6
0 6 3 4 2 7
0 6 7 2 4 3

 and L := 3


0 0 0
0 1 1
1 0 0
0 1 0
0 0 1
7 1 1

 .

Note that 24H = LT1 mod 24, therefore L is indeed a spectrum of T1 in G. Note also,
that L is contained in the subgroup of elements whose coordinates are all divisible by
3. This subgroup has 83 elements, hence L cannot tile this subgroup due to obvious
divisibility reasons, and therefore L cannot tile Ĝ either, by Lemma 2.2.14.

On the other hand, it is not hard to see that T1 tiles G (this can be seen e.g.
via the homomorphism φ : G → Z24 induced by the row vector (2, 9, 3)), but the
existence of a set S ⊂ Ĝ, |S| = 243/6 and S − S ⊂ Zc

T1
is impossible due to the

following reason: such an S would be a tiling complement of L by Proposition 2.2.25,
which is impossible as L does not tile Ĝ.

If the sufficient condition of Proposition 2.2.25 were also necessary then we could
conclude that T1 does not have a universal spectrum in G. However, it was shown in
the Appendix of [40], by means of a particular example, that the condition of Propo-
sition 2.2.25 is not necessary. Of course it still might happen that the set T1 above
does not have a universal spectrum but, in any case, we are unable to check it at
the time of writing. (In general, even the elegant sufficient condition of Proposition
2.2.25 seems to be hard to check algorithmically in large groups, let alone finding all
tiling complements of a given set.) The failure of the necessity of the Lagarias–Szabó
condition poses some difficulty in checking whether a set possesses universal spec-
tra, and therefore presents an obstacle to finding a 3-dimensional counterexample to
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Fuglede’s conjecture. We will use ideas of Farkas and Révész [41] to overcome this
difficulty. The observation is that we are free to add +8 or +16 to the entries of T1
without ruining the decomposition 24H = LT1 mod 24. We must find an alteration
T of T1 such that the existence of a universal spectrum of T can be excluded.

Proposition 2.2.26. ( [40]∗) The set

T :=

 0 10 20 1 21 14
0 22 3 20 2 7
0 22 23 18 4 11


is a tile in G = Z3

24 which does not have a universal spectrum.

Proof. As observed before, the decomposition 24H = LT still holds, therefore L
is a spectrum of T .

Consider all the mod 24 vectors vij := li − lj ∈ Ĝ where li, lj are arbitrary rows
of the matrix L. For each such vector vij we will exhibit a tiling complement T ′

ij of
T in G in such a way that vij /∈ ZT ′

ij
. Accepting the existence of such T ′

ij for the
moment, we can easily show that T does not have a universal spectrum. Indeed, if
S were a universal spectrum, then |S| = |G|/|T | and S − S ⊂ ∩ijZT ′

ij
∪ {0} would

hold, and therefore S − S ∩ L − L = {0} would follow. That is, S + L would be
a tiling of Ĝ, which is a contradiction because L is not a tile, as observed in the
paragraph after the definition of L. It remains to show the existence of T ′

ij.

Consider all possible mod 8 differences hi − hj of the rows of the integer matrix
8H. Let H−H denote the matrix containing these differences as row vectors. Now,
regard H − H as a mod 24 matrix and modify the entries by +8 or +16 in such a
way that each row becomes a tile in Z24, and also the mod 3 rank of the resulting
matrix P is 3. It will soon be apparent why these modifications are helpful in finding
the sets T ′

ij. We remark that the existence of such modifications appears to be pure
luck. We give a possible example below:
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H −H =



0 0 2 4 4 6
0 0 4 2 6 4
0 0 4 6 2 4
0 0 6 4 4 2
0 2 1 6 4 5
0 2 4 1 5 6
0 2 5 4 6 1
0 2 6 5 1 4
0 4 1 5 3 7
0 4 2 6 6 2
0 4 3 1 7 5
0 4 5 7 1 3
0 4 6 2 2 6
0 4 7 3 5 1
0 6 2 3 7 4
0 6 3 4 2 7
0 6 4 7 3 2
0 6 7 2 4 3



−→



0 16 2 4 12 14
0 16 12 2 14 4
0 16 12 14 2 4
0 16 14 12 4 2
0 2 1 14 12 13
0 2 12 1 13 14
0 2 13 12 14 1
0 2 14 13 1 12
0 12 1 13 11 23
0 12 2 22 14 10
0 12 11 1 23 13
0 12 13 23 1 11
0 12 22 2 10 14
0 12 23 11 13 1
0 22 10 11 23 12
0 22 11 12 10 23
0 22 12 23 11 10
0 22 23 10 12 11



= P

It is easy to check that all required properties are fulfilled. In fact, each row of
the modified matrix P has tiling complement C1 = {0, 3, 6, 9} or C2 = {0, 1, 6, 7} in
Z24, and regarding P mod 3 an easy Gaussian elimination shows that the 1st, 2nd

and 4th rows p1,p2,p4 generate the others.

Observe that the set T above is defined in such a way that the rows coincide mod
3 with p1,p2,p4 (and, of course, the entries of T coincide mod 8 with those of T1).

Consider now an arbitrary row vector vij = li− lj. We will exhibit the existence
of the required tiling complement T ′

ij. For the sake of clarity we follow the proof
through a particular example: let v31 = l3 − l1 = (3, 0, 0)− (0, 0, 0) = (3, 0, 0). Take
the corresponding row ki−kj ofH−H, i.e., k3−k1 = (0, 2, 4, 1, 5, 6) in our particular
case. Consider the corresponding row pij of the matrix P , i.e., (0, 2, 12, 1, 13, 14) in
our case. We claim that there exists a mod 24 row vector yij which is a solution
of the equation yijT = pij mod 24. Clearly, a solution of the same equation mod 3
exists, as pij is in the linear span of the rows of T mod 3 (recall that T was chosen
in such a way that its rows generate every vector pij mod 3). In our case the mod
3 solution is seen to be (0, 2, 0). A solution of the same equation mod 8 is simply
obtained by dividing each entry of vij by 3, i.e., in our case a mod 8 solution is
(3, 0, 0)/3 = (1, 0, 0). (This is because 1

3
LT = 8H mod 8.) Then, a solution yij mod

24 can easily be obtained from the mod 3 and mod 8 solutions; in our example it is
y31 = (9, 8, 0).

Given such yij we can define a homomorphism φij : Z3
24 → Z24 by the formula

φij(x) := ⟨yij,x⟩. This homomorphism takes the set T to the elements of the row
pij by construction, and this resulting set tiles Z24 with complement Cij := C1

or Cij := C2 also by construction. In our example, φ31(T ) = (0, 2, 12, 1, 13, 14),
which tiles Z24 with complement C31 := C1 = {0, 3, 6, 9}. Finally, the desired tiling
complement T ′

ij is defined as the pre-image of Cij under φij. Here we need to invoke
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Lemma 2.2.15.

Thus, we define T ′
ij := φ−1(Cij). It remains to check that vij /∈ ZT ′

ij
. The point

of the whole construction above is that we can now evaluate χ̂T ′
ij
(vij). Note that

each homomorphism φij is easily seen to be surjective (indeed, a homomorphism
φ(x, y, z) := ⟨(a, b, c), (x, y, z)⟩ is not surjective if and only if a, b, c are all even or
all are divisible by 3; whereas our vectors are not of this type). Therefore every
element in Z24 has 242 pre-images in Z3

24. Observe that 3yij = vij mod 24, hence
for any x ∈ T ′

ij we have ⟨vij,x⟩ ∈ 3Cij. Let ρ = (1 + i)/
√
2 denote the first 8th root

of unity. Then

χ̂T ′
ij
(vij) =

∑
x∈T ′

ij

e2πi/24⟨vij ,x⟩ =
∑
x∈T ′

ij

e2πi/24⟨3yij ,x⟩ =
∑
x∈T ′

ij

e2πi/8⟨yij ,x⟩ = 242
∑
k∈Cij

ρk ̸= 0.

The last sum is non-zero as ρ0 + ρ3 + ρ6 + ρ9 ̸= 0 and ρ0 + ρ1 + ρ6 + ρ7 ̸= 0. �
Putting together Proposition 2.2.26, Theorem 2.2.23, and Corollary 2.2.13 we obtain
a 3-dimensional counterexample to Fuglede’s “tile → spectral” conjecture:

Theorem 2.2.27. ( [40]∗) There exists an appropriate finite union of unit cubes in
R3 which tiles the space but which is not spectral.

Remark 2.2.28. At present, all known counterexamples to Fuglede’s conjecture (in
either direction, and in any dimensions) have their origins in the existence of complex
Hadamard matrices with certain properties. It is conceivable that a tile having no
universal spectrum (or a spectral set having no universal tiling complement) can be
exhibited in a 1 or 2 dimensional finite group without any reference to Hadamard
matrices. By the results of this section such an example would immediately lead
to a counterexample to (the corresponding direction of) Fuglede’s conjecture. The
1-dimensional case seems particularly interesting, as it is related to the conjecture
of Coven and Meyerowitz. In search of a tile without universal spectrum we have
conducted some numerical experiments in several cyclic groups. The main difficulty
is the lack of quick algorithms for deciding whether a set is a tile, and whether it
has universal spectrum. Given the lack of such algorithms we were unable to search
large groups exhaustively, but our “sporadic” tests indicate that such examples, if
they exist at all, are to be found in cyclic groups of fairly large order. �

2.3 Construction of complex Hadamard matrices via tiling

This section describes a beautiful example of how seemingly distant parts of
mathematics are related to each other. In the previous sections we have seen that
Fuglede’s conjecture fails in general. However, there are several special cases in
which the conjecture is true, and we can make use of this connection between tiles
and spectral sets in an interesting manner. Namely, we have seen that spectral
sets are directly related complex Hadamard matrices, and therefore there is some
hope that peculiar tiling constructions will lead to the discovery of new complex
Hadamard matrices. This is the content of this section.
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Hadamard matrices, real or complex, appear in several branches of mathematics
such as combinatorics, Fourier analysis and quantum information theory. Various
applications in quantum information theory have raised recent interest in complex
Hadamard matrices.

One example, taken from quantum tomography, is the problem of existence of
mutually unbiased bases, which is known to be a question on the existence of certain
complex Hadamard matrices. The existence of d + 1 such bases is known for any
prime power dimension d, but the problem remains open for all non prime power
dimensions, even for d = 6 (for a more detailed exposition of this example see the
Introduction of [131]). We will return to this problem in detail in Section 3.2.

Other important questions in quantum information theory, such as construction
of teleportation and dense coding schemes, are also based on complex Hadamard
matrices. Werner in [141] proved that the construction of bases of maximally en-
tangled states, orthonormal bases of unitary operators, and unitary depolarizers are
all equivalent in the sense that a solution to any of them leads to a solution to any
other, as well as to a corresponding scheme of teleportation and dense coding. A
general construction procedure for orthonormal bases of unitaries, involving complex
Hadamard matrices, is also presented in [141].

On the one hand, it seems to be impossible to give any complete, or satisfactory
characterization of complex Hadamard matrices of high order. On the other hand,
we can hope to give fairly general constructions producing large families of Hadamard
matrices, and we can also hope to characterize Hadamard matrices of small order
(currently a full characterization is available only up to order 5). A recent paper
by Dita [35] describes a general construction which leads to parametric families of
complex Hadamard matrices in composite dimensions. Another recent paper by
Tadej and Życzkowski [131] gives an (admittedly incomplete) catalogue of complex
Hadamard matrices of small order (up to order 16).

The aim of this section is to show how tiling constructions of Abelian groups can
lead to constructions of complex Hadamard matrices, and in this way to complement
the catalogue of [131] with new parametric families. In particular, we first show how
Dita’s construction can be arrived at via a natural tiling construction (this part does
not lead to new results, but it is an instructive example of how tiling and Hadamard
matrices are related). Second, we observe some regularities satisfied by all Dita-type
matrices, and thus arrive at an effective method to decide whether a given complex
Hadamard matrix is of Dita-type. Then we use a combinatorial tiling construction
due to Szabó [126] to produce Hadamard matrices not of Dita-type, and complement
the catalogue of [131] with new parametric families of order 8, 12 and 16.

2.3.1 Recovering Dita’s construction via tiling

One approach to tackle Fuglede’s conjecture was to look for ’canonical’ con-
structions for tilings of Abelian groups, and see whether similar constructions work
also for spectral sets. This, indeed, turned out to be the case for the very general
construction of Proposition 2.2.16. The spectral counterpart of this construction is
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given in Proposition 2.2.17, and it leads directly to Dita’s construction of complex
Hadamard matrices.

Let us recall the most general form of Dita’s construction, formula (12) in [35] (his
subsequent results on parametric families of complex Hadamard matrices with some
free parameters follow easily from this formula, as described very well in Proposition
3 and Theorem 2 of [35]).

K :=


m11N1 · · m1kNk

· · · ·
· · · ·

mk1N1 · · mkkNk

 (2.10)

In this formula Dita assumes mij to be the entries of any k × k complex Hadamard
matrix M , while Nj are any n × n complex Hadamard matrices (possibly different
from each other). Then he shows that K is a complex Hadamard matrix of order
kn. While this construction is fairly natural (a less general construction was given
earlier in [54]), we remark that it is so powerful that it leads to most of the parametric
families included in [131].

Definition 2.3.1. A complex Hadamard matrix K is called Dita-type if it is equiv-
alent to a matrix arising with formula (2.10). Here we use the standard notion of
equivalence of Hadamard matrices (see e.g. [131]), i.e. K1 and K2 are equivalent if
K1 = D1P1K2P2D2 with unitary diagonal matrices D1, D2 and permutation matrices
P1, P2.

Recall now the set Γ of Proposition 2.2.17, and its spectrum Σ constructed in
the proof. We see that the spectral pair (Σ,Γ) gives rise to a Dita-type complex
Hadamard matrix in formula (2.9). We remark that the set Γ might well have many
other spectra than Σ above (and other spectra might produce complex Hadamard
matrices not of the Dita-type). There is no efficient algorithm known to list out all
the spectra of a given set.

Proposition 2.2.17 remains in the finite group setting. This has the disadvantage
that the entries of the arising complex Hadamard matrices are necessarily some
Nth roots of unity. Therefore, in this way one cannot expect to obtain continuous
parametric families of complex Hadamard matrices, such as the ones described in
[35]. However, an obvious generalization of the construction of Proposition 2.2.17
works also in the infinite setting G = Zd, Ĝ = Td, and it turns out that every Dita-
type matrix arises in this manner (including the parametric families). The details
are described in [94] but we do not include them here, as the basic idea is the same
as in Proposition 2.2.17.

2.3.2 Other tiling constructions yield new families of complex Hadamard
matrices

Once the connection between tilings and complex Hadamard matrices has been
noticed, it is natural to look for tiling constructions other than that of Proposition
2.2.17 above, in the hope of producing new complex Hadamard matrices not of the
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Dita-type. Furthermore, when a new complex Hadamard matrix M is discovered,
the ’linear variation of phases’ method of [131] gives hope to find new parametric
affine families of complex Hadamard matrices stemming from M . This is exactly
the route we are going to follow in this section. First, we show how a tiling method
of Szabó [126] leads to complex Hadamard matrices not of the Dita-type. Then,
stemming from these matrices, we produce new parametric families of order 8, 12,
and 16 which complement the catalogue [131].

Let us now turn to the construction of Szabó [126]. Assume G = Zp1q1 ×Zp2q2 ×
Zp3q3 where pj, qj ≥ 2. The idea of Szabó is to take the obvious tiling G = A + B
where

A = {0, 1, . . . p1 − 1} × {0, 1, . . . p2 − 1} × {0, 1, . . . p3 − 1} (2.11)

and B = {0, p1, . . . , (q1 − 1)p1}× {0, p2, . . . , (q2 − 1)p2}× {0, p3, . . . , (q3 − 1)p3} and
then modify the grid B by pushing three grid-lines in different directions (see [126]
for details. Here we use the analogous construction for spectral sets which we now
describe in detail (it may be easier to follow the general construction by looking at
the specific Example 2.3.2 below).

Consider the set A above. By formula (2.4) a set S ⊂ Ĝ is a spectrum of A if and
only if |S| = |A| and S − S ⊂ ZA ∪ {0} := {r ∈ Ĝ : χ̂A(r) = 0} ∪ {0} Recall that Ĝ
is identified with 3-dimensional row vectors. It is clear that if r = (r1, r2, r3) ∈ Ĝ is
such that q1 divides r1 and r1 ̸= 0 then χ̂A(r) = 0. Similarly, if q2|r2 ̸= 0 or q3|r3 ̸= 0
then χ̂A(r) = 0. Therefore the grid

S = {0, q1, . . . (p1 − 1)q1} × {0, q2, . . . (p2 − 1)q2} × {0, q3, . . . (p3 − 1)q3} (2.12)

is a spectrum of A. Using an analogous idea to that of Szabó we now modify this
grid.

Consider the grid-line L1 := {{0, q1, . . . (p1 − 1)q1}× {q2}× {0} and change it to
L′

1 := {1, q1+1, . . . (p1− 1)q1+1}×{q2}×{0} (adding +1 to the first coordinates).
Similarly, change L2 := {0} × {0, q2, . . . (p2 − 1)q2} × {q3} to L′

2 := {0} × {1, q2 +
1, . . . (p2 − 1)q2 + 1} × {q3}, and change L3 := {q1} × {0} × {0, q3, . . . (p3 − 1)q3} to
L′

3 := {q1} × {0} × {1, q3 + 1, . . . (p3 − 1)q3 + 1}. It is easy to see that

S ′ := S ∪ (L′
1 ∪ L′

2 ∪ L′
3) \ (L1 ∪ L2 ∪ L3) (2.13)

is still a spectrum of A. Indeed, for any r ∈ S ′ −S ′ it still holds that either the first
coordinate is divisible by q1 or the second by q2 or the third by q3. Then the spectral
pair (A, S ′) gives rise to a complex Hadamard matrix of size p1p2p3. Below we will
apply this construction in the groups G1 = Z2·2 ×Z2·2 ×Z2·2, G2 = Z2·2 ×Z2·2 ×Z3·3
and G3 = Z2·2 × Z4·2 × Z2·4 (it may be instructive to see the step-by-step numerical
exposition of the construction in Example 2.3.2 in group G1 below).

We will then prove that these matrices are not of the Dita-type. (It would be
very interesting to see a proof of a general statement that all matrices arising with
the above construction are non-Dita-type.) As a result we will conclude that these
matrices have not been included in the catalogue [131].
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We can see from the construction above that the size of the arising matrix is
p1p2p3, while the numbers q1, q2, q3 are chosen arbitrarily to determine the group
we are working in. It is not clear whether different choices of q1, q2, q3 lead to non-
equivalent Hadamard matrices. Here we only list the three examples for which the
dimension is not greater than 16 (as in [131]) and for which we can prove that the
arising matrices are new, i.e. non-equivalent to any matrix listed in [131].

Example 2.3.2. Let us follow the construction above, step by step, in G1 = Z2·2 ×
Z2·2 × Z2·2 = Z4 × Z4 × Z4.

By (2.11) we take A = {0, 1}×{0, 1}×{0, 1}. This is a Cartesian product, each
element of which is a 3-dimensional vector composed of 0’s and 1’s. We list out the
elements in lexicographical order as

A =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 , (2.14)

where the columns represent the elements of A ⊂ G1, in accordance with our notation
introduced earlier. (The order of the elements is up to our choice, but a permutation
of the elements only corresponds to a permutation of the columns of the matrix S8

below.)
Then, by equation (2.12) we have S = {0, 2} × {0, 2} × {0, 2}, which we list out

(also in lexicographical order) as

S =



0 0 0
0 0 2
0 2 0
0 2 2
2 0 0
2 0 2
2 2 0
2 2 2


(2.15)

Now, S is a spectrum of A, therefore the product 1
4
SA already gives a log-

Hadamard matrix but we do not take that matrix (which is Dita-type, as can
be verified by the reader), but modify the set S first. The grid-line L1 in S
is given as L1 = {0, 2} × {2} × {0} = {(0, 2, 0); (2, 2, 0)}. This we replace by
L′

1 = {(1, 2, 0); (3, 2, 0)}. Similarly, the grid-line L2 = {(0, 0, 2); (0, 2, 2)} is re-
placed by L′

2 = {(0, 1, 2); (0, 3, 2)} and finally L3 = {(2, 0, 0); (2, 0, 2)} by L′
3 =
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{(2, 0, 1); (2, 0, 3)}. Therefore, by (2.13) we get

S ′ = S ∪ (L′
1 ∪ L′

2 ∪ L′
3) \ (L1 ∪ L2 ∪ L3) =



0 0 0
0 1 2
0 3 2
1 2 0
2 0 1
2 0 3
2 2 2
3 2 0


(2.16)

(Once again, the order of the elements of S ′ is arbitrary, and we take lexicographical
order.) The point, as explained above in the general description of this construction,
is that the set S ′ is still a spectrum of A. Therefore the matrix product 1

4
S ′A is a

log-Hadamard matrix (we reduce the entries mod 1 because the integer part of an
entry plays no role after exponentiation) given by:

1

4
S ′A = logS8 =

1

4



0 0 0 0 0 0 0 0
0 2 1 3 0 2 1 3
0 2 3 1 0 2 3 1
0 0 2 2 1 1 3 3
0 1 0 1 2 3 2 3
0 3 0 3 2 1 2 1
0 2 2 0 2 0 0 2
0 0 2 2 3 3 1 1


(2.17)

with the corresponding complex Hadamard matrix given by

S8 =



1 1 1 1 1 1 1 1
1 −1 i −i 1 −1 i −i
1 −1 −i i 1 −1 −i i
1 1 −1 −1 i i −i −i
1 i 1 i −1 −i −1 −i
1 −i 1 −i −1 i −1 i
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −i −i i i


(2.18)

�
Having described how to produce the matrix S8 the remaining questions are

whether S8 is new (i.e. not already included in the catalogue [131]), and whether
any parametric family of complex Hadamard matrices stems from S8.

We will first proceed to show that S8 is not Dita-type (nor is it its trans-
pose). This is a delicate matter, as not many criteria are known to decide in-
equivalence of Hadamard matrices. The Haagerup condition with the invariant set
Λ := {hijhkjhklhil} (see [54] and Lemma 2.5 in [131]) cannot be used here. Also, the
elegant characterization of equivalence classes of Kronecker products of Fourier ma-
trices [130] does not apply to S8. The ’regular’ structure of a Dita-type matrix must
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be exploited in some way. The key observation relies on the following definition.

Definition 2.3.3. Let L be an N × N real matrix. For an index set I =
{i1, i2, . . . , in} ⊂ {1, 2, . . . , N} two rows (or columns) s and q are called I-equivalent,
in notation s ∼I q, if the fractional part of the entry-wise differences si − qi are the
same for every i ∈ I (we need to consider fractional parts as the entries of a log-
Hadamard matrix are defined only mod 1). Two rows (or columns) s and q are
called (d)-n-equivalent if there exist n-element disjoint sets of indices I1, . . . , Id such
that s ∼Ij q for all j = 1, . . . , d.

We have the following trivial observation.

Proposition 2.3.4. ( [94]∗) Let L be an N×N complex Hadamard matrix. Assume
that there exists an index set I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N} and m different
rows (resp. columns) rs1 , . . . rsm in the log-Hadamard matrix logL such that each
two of them are I-equivalent. Let M be any complex Hadamard matrix equivalent
to L. Then the same property holds for logM , i.e. there exists an index set J =
{j1, j2, . . . , jn} ⊂ {1, 2, . . . , N} and m different rows (resp. columns) rk1 , . . . rkm such
that each two of them are J-equivalent. (Of course, the index sets I and {s1, . . . sm}
might not be the same as J and {k1, . . . km}.)

Proof. It follows from the definition of the equivalence of Hadamard matrices that
logM is obtained from logL by permutation of rows and columns, and addition of
constants to rows and columns. It is clear that such operations preserve the existing
equivalences between rows and columns (with the index sets being altered according
to the permutations used). �

The essence of the proposition is that "existing equivalences between rows and
columns are retained". The next main point is that there are many equivalences
among the rows of a Dita-type matrix and we will see that such equivalences are not
present in logS8.

By formula (2.10), the structure of an N×N Dita-type matrixD (whereN = nk)
implies for the log-Hadamard matrix logD that there exists a partition of indices
to n-element sets I1 = {1, 2, . . . n}, . . . , Ik = {(k − 1)n + 1, . . . kn} and k-tuples of
rows Rj = {rj, rj+n . . . rj+(k−1)n} (j = 1, . . . n) such that any two rows in a fixed
k-tuple are equivalent with respect to any of the Im’s, i.e. rj+(i−1)n ∼Im rj+(s−1)n for
all j = 1, . . . n, and i, s,m = 1, . . . k. In other words, in any k-tuple Rj any two rows
are (k)-n-equivalent with respect to the Im’s. We will use the terminology (k)-n-
Dita-type for such matrices D. Naturally, the same property holds for the transposed
of a (k)-n-Dita-type matrix, with the role of rows and columns interchanged.

This observation makes it possible to prove the following proposition.

Proposition 2.3.5. ( [94]∗) S8 and its transposed are not Dita-type.

Proof. The matrix size being 8× 8 the only possible values for n are 2 and 4 (with
k being 4 and 2, respectively). Therefore we only need to check existing (2)-4-
equivalences and (4)-2-equivalences in logS8 and its transposed.

First, let us assume that n = 4, k = 2 and look for (2)-4-equivalences among the
rows of log S8. If S8 were (2)-4-Dita type, there should be a partition of indices to
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two 4-element sets I1, I2 such that in logS8 four pairs of rows are equivalent with
respect to I1, I2. The first row r1 of logS8 consists of zeros only, therefore it must be
paired with a row containing only two different values. There is only one such row
r7 and then the index sets must correspond to the position of 0’s and 2’s in r7, i.e.
I1 = {1, 4, 6, 7} and I2 = {2, 3, 5, 8}. However, there should exist three further pairs
of rows which are equivalent with respect to the same set of indices I1, I2. It is easy
to check that such pairs do not exist (e.g. the second row r2 is not (2)-4-equivalent
with respect to I1, I2 to any other row), and hence S8 cannot be (2)-4-Dita type.

To check the transposed matrix we interchange the role of rows and columns
and see that the first column c1 of logS8 (all zeros) should be paired with a column
containing two values only. But such column does not exist, therefore c1 is not
(2)-4-equivalent to any other column, and hence the transposed of S8 cannot be
(2)-4-Dita type.

Let us turn to the case n = 2, k = 4. If S8 were (4)-2-Dita type, there should be a
partition of indices to four 2-element sets I1, I2, I3, I4 such that in logS8 two 4-tuples
of rows R1 = {rs1 , . . . , rs4} and R2 = {rs5 , . . . , rs8} are equivalent with respect to
I1, I2, I3, I4. Assume, without loss of generality that 1 ∈ I1 (i.e. I1 = {1,m} for
some m) and that rs1 = r1. Then rs2 , rs3 , rs4 are I1-equivalent to r1 which implies
that there should be a 4 × 2 block of 0’s in logS8 corresponding to R1 and I1, i.e.
[log S8]i,j = 0 for all i ∈ R1 and j ∈ I1. Such block of 0’s does not exist, therefore
S8 is not (4)-2-Dita-type.

In the transposed case there exists such a 2 × 4 block of zeros, corresponding
to the row indices I1 = {1, 7} and column indices C1 = {1, 4, 6, 7}. This means
that there should be further two-element index sets I2, I3, I4 such that the columns
{c1, c4, c6, c7} are equivalent with respect to I2, I3, I4. It is trivial to check that such
indices do not exist. This concludes the proof that S8 and its transposed are not
Dita-type. �

The significance of this fact is that the only known 8 × 8 parametric family of
complex Hadamard matrices so far is the one constructed by Dita’s method (see
[131]). It is an affine family F (5)

8 (a, b, c, d, e) containing 5 free parameters. We have
established that this family does not go through S8, therefore S8 is indeed new.
In particular, the matrix S8 cannot be equivalent to any of the well-known tensor
products of Fourier-matrices F2 ⊗ F2 ⊗ F2, F4 ⊗ F2, F8 which are all contained in
the family F (5)

8 (a, b, c, d, e).

Now, applying to S8 the linear variation of phases method of [131] one can
hope to obtain new parametric families of complex Hadamard matrices. Indeed,
we have been able to obtain (with the help of some computational contribution
from W. Tadej) the following maximal affine 4-parameter family (the notation is
used as in [131], i.e. the symbol ◦ denotes the Hadamard product of two matrices
[H1 ◦H2]i,j = [H1]i,j · [H2]i,j, and the symbol EXP denotes the entrywise exponential
operation [EXP H]i,j = exp([H]i,j)): S

(4)
8 (a, b, c, d) = S8 ◦ EXP (iR(4)

8 (a, b, c, d),
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where

R
(4)
8 (a, b, c, d) =



• • • • • • • •
• d a a− d d • a− d a
• d a a− d d • a− d a
• d d • b b− d b− d b
• c d c− d d c− d • c
• c d c− d d c− d • c
• • • • • • • •
• d d • b b− d b− d b


(2.19)

We do not claim that each matrix in S(4)
8 (a, b, c, d) is non-Dita-type (in fact, it is not

hard to see that the orbit S(4)
8 (a, b, c, d) contains the only real 8×8 Hadamard matrix

H8, which is Dita-type, so the families F (5)
8 (a, b, c, d, e) and S

(4)
8 (a, b, c, d) intersect

each other at H8). However, this is certainly true in a small neighbourhood of S8 as
the set of Dita-matrices is closed.

In [94] the construction above was also carried out in the groups G2 = Z2·2×Z2·2×
Z3·3 and G3 = Z2·2 ×Z4·2 ×Z2·4, to produce the 5-parameter family R(5)

12 (a, b, c, d, e),
and the 11-parameter family R

(11)
16 (a, b, c, d, e, f, g, h, i, j, k) of complex Hadamard

matrices of order 12 and 16, respectively. We do not include the details here.

In principle, the method of [126] works in any finite Abelian group G = Zp1q1 ×
Zp2q2 ×Zp3q3 and the corresponding spectral sets yield complex Hadamard matrices
of size p1p2p3 for any p1, p2, p3 ≥ 2. It is not clear whether different choices of
q1, q2, q3 lead to non-equivalent matrices. In the paper [94] we only included the
cases where p1p2p3 ≤ 16, and for which we could prove that the arising matrices
are new and thus complement the catalogue [131]. It would be interesting to see
a conceptual proof that the Hadamard matrices constructed with this method are
never Dita-type (for the matrices S8, S12, S16 in [94] we proved this with the help of
Proposition 2.3.4 by a case-by-case analysis of the rows and columns).

The correspondence between tilings and complex Hadamard matrices is interest-
ing in its own right and may well lead to new families of Hadamard matrices in the
future. To achieve this, one would need any new tiling construction (different from
that of [72] and [126] which have been used in this section), and use the spectral set
analogue of the construction to produce new Hadamard matrices.
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3 The Fourier analytic version of Delsarte’s method
The linear programming bound of Delsarte was first applied (to the best of

my knowledge in [34]) in coding theory to the following problem: determine the
maximal cardinality A(n, d) of binary codewords of length n such that each two of
them differ in at least d coordinates. In the past decades the method of Delsarte
has been applied to several other problems, most notably to sphere packings [29],
and the unit-distance graph of Rn [106].

In this work I will not describe Delsarte’s method in its most general form (as
far as i know, the most general form is given by commutative association schemes),
but rather concentrate on a version which is general enough to encompass most of
the applications but simple enough to require only elementary Fourier analysis.

Let G be a compact Abelian group (actually, it is best to think of a finite group,
for simplicity), and let a symmetric subset A = −A ⊂ G, 0 ∈ A be given. We will
call A the ’forbidden’ set. We would like to determine the maximal cardinality of a
set B = {b1, . . . bm} ⊂ G such that all differences bj − bk ∈ Ac ∪ {0} (in other words,
all differences avoid the forbidden set A).

In Section 3.1 we will describe the Fourier analytic version of Delsarte’s bound.
The maximal cardinality (or density, in non-compact cases) of the set B will be
bounded above by constructing certain positive exponential sums using frequencies
from the forbidden set A. After introducing the necessary notations Delsarte’s linear
programming bound will be given below as δ(A) ≤ λ−(A) in Theorem 3.1.4. We will
then study the general properties and some theoretical limitations of the method.
This section is based on [96].

In Section 3.2 we will apply Delsarte’s method to give an improved upper bound
on the independence number s of the Paley-graph Pp, for a prime p ≡ 1 (mod 4). In
fact, the Delsarte bound, in itself, gives the trivial bound s ≤ √

p, only. However,
a ’subgraph-trick’, introduced in [106] in connection with the unit-distance graph of
Rd, will come to our help to achieve a slightly improved upper bound in Theorem
3.2.2. This section is based on [4]. However, the published version of [4] contains a
simplification by I. Ruzsa which makes no reference to Delsarte’s method. Here we
include the original proof.

In Section 3.3 we give a surprising application of Delsarte’s method to the prob-
lem of mutually unbiased bases (MUBs). Complex Hadamard matrices were already
discussed in Section 2.3 in connection with spectral sets. It is also known that the
existence of a complete system of MUBs is equivalent to the existence of certain
complex matrices. In this section we will view complex Hadamard matrices as finite
sets in the compact group Td, and apply Delsarte’s method in this group. In The-
orem 3.3.6 we will obtain a generalization of the fact that the maximal number of
MUBs in dimension d cannot exceed d + 1. We also discuss the question whether
a real Hadamard matrix can be part of a complete system of MUHs. While it is
known to be possible for d = 2k, we show that the presence of a real Hadamard
matrix puts heavy constraints on the columns of the other matrices. In particular,
Theorem 3.3.12 implies that it is impossible to have two real Hadamards in a com-
plete system of MUHs. We will also prove in Theorem 3.3.15 that in dimension 6
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the matrices of the Fourier family F(a, b) cannot be extended to a complete system
of MUBs. This section is based on [92,97].

In Section 3.4 we give a brief outlook on possible future applications of Delsarte’s
method.

3.1 General properties

In this section we give an overview of the Fourier analytic version of Delsarte’s
method. We establish general properties of the method for sets in finite Abelian
groups.

Difference sets are always symmetric and contain 0; similarly, the spectrum of a
positive exponential sum is symmetric and contains 0. This motivates the following
definitions.

Definition 3.1.1. Let G be a finite commutative group. We call a set A ⊂ G a
standard set, if A = −A and 0 ∈ A (i.e. we require that A be both symmetric and
contain 0).

Definition 3.1.2. Let G be a finite commutative group, |G| = q, and let A ⊂ G be
a standard set. Write

∆(A) = max
{
|B| : B ⊂ G, (B −B) ∩ A = {0}

}
,

∆(A) = max
{
|B| : B ⊂ G, B −B ⊂ A

}
,

δ(A) = ∆(A)/q,

δ(A) = 1/∆(A).

We call δ(A) the measure of intersectivity of the set A.

Next we list the quantities related to positive character sums. We fix our notation
as follows. A character is a homomorphism into

C1 = {z ∈ C : |z| = 1}.

The set of all characters is the dual group of G, denoted by Ĝ. In this chapter we
will use additive notation for G and multiplicative notation for Ĝ, and accordingly
1 ∈ Ĝ denotes the identity element of Ĝ, the principal character. This is different
from the additive notation of Ĝ used in Chapter 2, but our emphasis here is to make
a clear distinction between elements of G and those of Ĝ.

The Fourier transform of a function f on G is defined as

f̂(γ) =
∑
x∈G

γ(x)f(x).

We define certain classes of functions, whose behaviour on A and G \ A is pre-
scribed in various senses. The notation f ̸≡ 0 means that f is not identically zero.
Put
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S(A) =
{
f : G → R, f ̸≡ 0, f |G\A = 0

}
,

S−(A) =
{
f : G → R, f ̸≡ 0, f |G\A ≤ 0

}
,

S+(A) =
{
f : G → R, f ̸≡ 0, f |G\A = 0, f |A ≥ 0

}
,

S±(A) =
{
f : G → R, f ̸≡ 0, f |G\A ≤ 0, f |A ≥ 0

}
.

These classes of functions are used to define the relevant quantities in relation
with positive exponential sums.

Definition 3.1.3. Let G be a finite commutative group, |G| = q, and let A ⊂ G be
a standard set. Write

λ(A) = min

{
f(0)

f̂(1)
: f ∈ S(A), f̂(γ) ≥ 0 for all γ

}
,

λ−(A) = min

{
f(0)

f̂(1)
: f ∈ S−(A), f̂(γ) ≥ 0 for all γ

}
,

λ+(A) = min

{
f(0)

f̂(1)
: f ∈ S+(A), f̂(γ) ≥ 0 for all γ

}
,

λ±(A) = min

{
f(0)

f̂(1)
: f ∈ S±(A), f̂(γ) ≥ 0 for all γ

}
.

Sometimes λ(A) is called the Turán constant, λ−(A) the Delsarte constant of the
set A (for the history of these names and some related problems see [111]).

Of these quantities λ± seems to be the least interesting, as it has not yet come
up in any applications to the best of our knowledge. We include it to exhaust all
possible combinations of restrictions on A and G \ A. Seemingly these definitions
depend on the ambient group G; in the next section we will show that this is not
the case, so the notations are justified.

We shall study inequalities between these numbers; how they change under set-
theoretical operations (union, intersection, complement, direct product); and how
they behave for a random set.

The main inequality connecting the various δ and λ quantities is the following.

Theorem 3.1.4. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A ⊂ G be a standard set. We have

1/q ≤ δ(A) ≤ λ−(A) ≤
{
λ(A)
λ±(A)

}
≤ λ+(A) ≤ δ(A) ≤ 1. (3.1)

All the inequalities can hold with equality, as well as with strict inequality. There
is no inequality between λ(A) and λ±(A); each can be greater than the other, and
they can also be equal.
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The inequality δ(A) ≤ λ−(A) above is usually referred to as Delsarte’s bound.
We will prove this theorem in Section 3.1.2. The main unsolved problem is whether
there is any connection between these quantities in the other direction.

Problem 3.1.5. ( [96]) Is there a function f : [0, 1] → [0, 1] such that f(x) → 0 as
x→ 0 and we have always λ−(A) ≤ f

(
δ(A)

)
? Is there such a function for which we

have always λ(A) ≤ f
(
λ−(A)

)
?

This question can be asked for any other pair of the quantities defined above.
We have the following partial answer.

Theorem 3.1.6. ( [96]∗)
(a) Let G be a finite commutative group, |G| = q, and assume that 3 - q. There

is a standard set A ⊂ G such that δ(A) = 1/2 and

λ+(A) ≤ cq−1/6(log q)1/2,

with an absolute constant c.
(b) Let ε > 0. For every sufficiently large n there is a standard set A ⊂ Zn2 such

that
λ(A) < ε, λ±(A) > 1/2− ε.

(c) Let ε > 0. For infinitely many values of q there is a standard set A ⊂ Zq
such that

δ(A) < ε, λ+(A) > 1/2− ε.

We will prove part (a) of this theorem in Section 3.1.8 and part (b) in Section
3.1.9. Part (c) is essentially a theorem of Bourgain [20] Bourgain’s setting and
terminology is quite different from ours. We do not give an account of his method in
the hope that the stronger result in part (b) can also be extended to cyclic groups.
We also remark here that the most difficult part in the proof of part (b) is a result
of Samorodnitsky [118]; more details are given in Section 3.1.9.

Most of the defined quantities make sense also in infinite groups; the exception
is δ, whose definition involves division by q. Here the proper generalization involves
a concept of density; a very general formulation in locally Abelian groups can be
found in a paper of Révész [111]. Here we restrict our attention to the finite case.

It seems to be difficult to say anything nontrivial about the cases of equality in
Theorem 3.1.4. However, the extremal values are easily described.

Proposition 3.1.7. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A ⊂ G be a standard set.

(a) If A = G, then

δ(A) = λ−(A) = λ(A) = λ±(A) = λ+(A) = δ(A) = 1/q. (3.2)

In any other case δ(A) ≥ 2/q.
(b) If A = {0}, then

δ(A) = λ−(A) = λ(A) = λ±(A) = λ+(A) = δ(A) = 1. (3.3)
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In any other case δ(A) ≤ 1/2.

Both statements are immediate consequences of the definitions.

3.1.1 Invariance properties

In Definition 3.1.2 and 3.1.3 the ambient group G occurs. A set A may be
a subset of several groups (they being subgroups of a common group), and the
definitions could, in principle, return different values. We show here that this is not
the case, hence our notations δ(A), λ(A), etc. are justified.

To formulate the results rigorously we temporarily extend the notation and write
δ(A,G), λ(A,G), . . . , instead. Also, it will be convenient to introduce the following
general notation.

Definition 3.1.8. If X is a subset of Y , and f : Y → R is a function on Y then
fX denotes the restriction of f to X. Conversely, if g : X → R is a function on X
then gY denotes the extension of g to Y with value 0 outside X.

Proposition 3.1.9. ( [96]∗) Let G be a finite commutative group, G1,G2 finite sub-
groups of G, and A ⊂ G1 ∩ G2 a standard set. Let φ be any of the functionals
δ, δ, λ, λ−, λ+, λ±. We have

φ(A,G1) = φ(A,G2).

Proof. The claim is obvious for δ: in the definition of ∆(A) one can assume that
0 ∈ B (by shift-invariance), and then B ⊂ A follows, making the ambient group G
irrelevant.

For the rest of the quantities we first consider the particular case when G2 = G.
Write |G1| = q1, |G| = q.

Consider the case of δ. Let B,B1 be the maximal sets in G and G1, resp., with
the property that

(B −B) ∩ A = (B1 −B1) ∩ A = {0}.

Consider a coset t+G1 of G1. Since the set Bt = (t+G1)∩B satisfies B′
t = Bt−t ⊂ G1

and (B′
t−B′

t)∩A ⊂ {0}, we conclude |Bt| ≤ |B1|. Applying this for each coset and
summing we obtain |B| ≤ (q/q1)|B1|. On the other hand, take a representative from
each coset, say t1, . . . , tq/q1 . The set

∪
(ti +B1) demonstrates |B| ≥ (q/q1)|B1| .

Consider now the case when φ is any of the functionals λ, λ−, λ+, λ±. First,
if f : G1 → R is an appropriate function with f(0)/f̂(1) = φ(A,G1) then it is
straightforward to see that fG has all the required properties to testify that φ(A,G) ≤
φ(A,G1).

To see the reverse inequality assume that g : G → R is an appropriate function
with g(0)/ĝ(1) = φ(A,G), and consider the restricted function h = gG1 . If φ = λ or
λ+ then h obviously testifies that φ(A,G1) ≤ φ(A,G). In the case φ = λ− or λ± we
still have h(0) = g(0) and ĥ(1) ≤ ĝ(1), and therefore h(0)/ĥ(1) ≤ φ(A,G). Also,
h falls into the class S−(A,G1) or S±(A,G1). It remains to show that the Fourier
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coefficients of h are nonnegative. To see this, let γ ∈ Ĝ1 and consider all ψ ∈ Ĝ such
that ψG1 = γ. There exist q/q1 such characters ψ. Then

0 ≤
∑

ψ:ψG1=γ

ĝ(ψ) =
∑
ψ

∑
x∈G

ψ(x)g(x) =
∑
ψ

∑
x∈G1

ψ(x)g(x) +
∑
ψ

∑
x/∈G1

ψ(x)g(x)

=
q

q1
ĥ(γ) +

∑
x/∈G1

(
g(x)

∑
ψ

ψ(x)

)
=

q

q1
ĥ(γ)

(3.4)

where we have used that the inner summation in the last sum always returns 0. This
shows that ĥ(γ) ≥ 0.

Finally, in the general case, G1,G2 ≤ G, let H ≤ G be the subgroup generated by
G1 and G2. Then H is also finite, and by the argument above φ(A,G1) = φ(A,H) =
φ(A,G2). �

3.1.2 The basic inequality

In this section we prove Theorem 3.1.4. We will only prove δ(A) ≤ λ−(A) and
λ+(A) ≤ δ(A), the other inequalities are trivial.

To see δ(A) ≤ λ−(A), assume f ∈ S−(A) is any function such that f̂ ≥ 0,
and B ⊂ G is such that (B − B) ∩ A = {0}. We usually call such a function f
a "witness" function. Introduce the function B̂(γ) =

∑
b∈B γ(b), and notice that

|B̂(γ)|2 =
∑

b1,b2∈B γ(b1− b2). We now evaluate the sum S =
∑

γ∈Ĝ f̂(γ)|B̂(γ)|2. On
the one hand, all terms are nonnegative, hence by considering the term γ = 1 only
we get a lower bound S ≥ f̂(1)|B|2. On the other hand, by exchanging the order of
summation and using the Fourier inversion formula we obtain

S =
∑
γ

∑
b1,b2

f̂(γ)γ(b1 − b2) =
∑
b1,b2

∑
γ

f̂(γ)γ(b1 − b2) = q
∑
b1,b2

f(b1 − b2).

In the last summation all the terms are non-positive by assumption, except when
b1 = b2. Hence, S ≤ qf(0)|B|, and comparing the lower and upper bounds |B|

q
≤ f(0)

f̂(1)

follows.
To see λ+(A) ≤ δ(A), assume B ⊂ G is such that B−B ⊂ A. Define the function

f : G → R by setting f(x) to be the number of ways x can be written in the form
x = b1 − b2 where b1, b2 ∈ B. In other words, f = 1B ∗ 1−B. Clearly, f ∈ S+(A) and

f(0)

f̂(1)
=

|B|
|B|2

=
1

|B|
.

Furthermore, f̂ = |1̂B|2 ≥ 0, so f satisfies each criterion in the definition of λ+(A),
and we conclude that λ+(A) ≤ 1/|B|. �

Example 3.1.10. The cases when all our quantities are equal are connected with
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tilings. Indeed, assume that δ(A) = δ(A) = δ, say. Take sets B,B such that

|B| = δq, (B −B) ∩ A = {0},
|B| = 1/δ, (B −B) ⊂ A.

The conditions on difference sets imply that all the sums x + y : x ∈ B, y ∈ B
are distinct and their number is |B||B| = q, so (B,B) is a tiling of G. Conversely,
any tiling (B,B) induces examples of equality as follows. Take any set E ⊂ G \(
(B − B) ∪ (B − B)

)
. The set A = (B − B) ∪ E satisfies δ(A) ≤ 1/|B| and

δ(A) ≥ |B −B|/q = 1/|B|, hence δ(A) = δ(A) = 1/|B|. �

Example 3.1.11. Let q be a prime, q ≡ 1 (mod 4), G = Zq and let A be the set
of quadratic residues. By the familiar properties of Gaussian sums one easily shows
that λ−(A) = λ+(A) = 1/

√
q (the case of composite q is more difficult). On the

other hand δ(A) < 1/
√
q < δ(A), since the δ’s must be rational. It is natural to

conjecture that δ is much smaller, perhaps of size O
(
(log q)c

)
, like for a random set

(for random sets see Section 3.1.8), but nothing much stronger than 1/
√
q is known.

We will return to this example in Section 3.2 in detail. �

Examples where the λ’s are different, as well as examples where the δ’s are very
different from the λ’s, will be given in Sections 3.1.8 and 3.1.9.

3.1.3 Complements and linear duality

Definition 3.1.12. Two standard sets in a group G are standard complements, if
A ∪ A′ = G and A ∩ A′ = {0}.

The various quantities δ and λ of standard complements are nicely related to
each other by the following theorem.

Theorem 3.1.13. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A,A′ ⊂ G be standard complements. We have

δ(A)δ(A′) = λ(A)λ(A′) = λ−(A)λ+(A′) = λ±(A)λ±(A′) = 1/q. (3.5)

We express this by saying that δ and δ are dual quantities, and so are λ− and
λ+, while λ and λ± are self-dual.

Proof. The relation δ(A)δ(A′) = 1/q is clear from ∆(A′) = ∆(A). We prove the
other three equalities. Let φ denote one of the functionals λ, λ−, λ± and φ′ its dual,
i.e. λ, λ+, λ±, respectively.

First we show the easy inequality 1/q ≤ φ(A)φ′(A′). To this end take any two
functions f1 and f2 satisfying the requirements in the definition of φ(A) and φ′(A′).
Consider the function h = f1f2. Then h(0) = f1(0)f2(0) and

ĥ(1) =
1

q
(f̂1 ∗ f̂2)(1) ≥

1

q
(f̂1(1)f̂2(1)).
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Also, by the signs of f1 and f2 we see that h is non-positive everywhere except at 0.
Therefore h(0) ≥ ĥ(1) which implies

f1(0)f2(0) ≥
1

q
(f̂1(1)f̂2(1)).

To prove the converse inequality we will apply linear duality. Let f be any real
function on G and consider the values f(x) as variables (as x ranges through G).
Consider the following systems of inequalities:
For φ = λ:

f(x) = 0 if x /∈ A,
∑
x∈G

f(x) ≥ 1,
∑
x∈G

f(x)γ(x) ≥ 0 if 1 ̸= γ ∈ Ĝ (3.6)

For φ = λ−:

f(x) ≤ 0 if x /∈ A,
∑
x∈G

f(x) ≥ 1,
∑
x∈G

f(x)γ(x) ≥ 0 if 1 ̸= γ ∈ Ĝ (3.7)

For φ = λ±:

f(x) ≤ 0 if x /∈ A, f(x) ≥ 0 if x ∈ A,
∑
x∈G

f(x) ≥ 1,
∑
x∈G

f(x)γ(x) ≥ 0 if 1 ̸= γ ∈ Ĝ

(3.8)
In each case we know that the inequalities imply f(0) ≥ φ(A). Therefore, by the

principle of linear duality (see e.g. [134] Theorem 5.2 for a convenient formulation),
the inequality f(0) ≥ φ(A) is the weighted linear combination of the inequalities
above, i.e. there exist coefficients h1(1) ≥ 0, h1(γ) ≥ 0 (for γ ̸= 1), and h2(x) (with
appropriate signs for x ∈ A and x /∈ A; see the restrictions below), such that

f(0) = h1(1)

(∑
x∈G

f(x)

)
+
∑
γ ̸=0

h1(γ)

(∑
x∈G

f(x)γ(x)

)
+
∑
x∈G

h2(x)f(x) ≥ (3.9)

≥ h1(1) = φ(A).

The restrictions for h2(x) are as follows:

For φ = λ:
h2(x) = 0 if x ∈ A (3.10)

For φ = λ−:
h2(x) = 0 if x ∈ A, h2(x) ≤ 0 if x /∈ A (3.11)

For φ = λ±:
h2(x) ≥ 0 if x ∈ A, h2(x) ≤ 0 if x /∈ A (3.12)

From (3.9) we conclude that h1(1) = φ(A). Let g : G → R be the function
such that ĝ = h1. Then ĝ ≥ 0 by definition. Also, ĝ(1) = φ(A), and qg(0) =∑

γ∈Ĝ h1(γ) = 1 − h2(0), as it is the coefficient of f(0) in (3.9). For any x ̸= 0,
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comparing the coefficients of f(x) in (3.9) we get

0 =
∑
γ∈Ĝ

h1(γ)γ(x) + h2(x) = qg(x) + h2(x),

which implies the following inequalities:
For φ = λ:

g(x) = 0 if x ∈ A (x ̸= 0) ⇒ g ∈ S(A′). (3.13)

For φ = λ−:

g(x) = 0 if x ∈ A (x ̸= 0), g(x) ≥ 0 if x /∈ A⇒ g ∈ S+(A′). (3.14)

For φ = λ±:

g(x) ≤ 0 if x ∈ A (x ̸= 0), g(x) ≥ 0 if x /∈ A⇒ g ∈ S±(A′). (3.15)

Therefore, the function g testifies that

φ′(A′) ≤ 1− h2(0)

qφ(A)
≤ 1

qφ(A)
.

�

Remark 3.1.14. Perhaps the first application of linear duality to this sort of prob-
lem is in a paper by Ruzsa [115]; a good account can be found in Montgomery’s
book [103].

3.1.4 Automorphisms

In this section we state some simple but useful properties of the behaviour of our
quantities under automorphisms.

Proposition 3.1.15. ( [96]∗) Let G be a finite commutative group, π an automor-
phism of G and let φ be any of the functionals δ, δ, λ, λ−, λ+, λ±. For every A ⊂ G
we have

φ(A) = φ(π(A)).

We omit the simple proof. As an application, let q be a prime, q ≡ 1 (mod 4),
G = Zq, and let A be the set of quadratic residues. The standard complement
of A is A′, the set of nonresidues. Since the multiplication by a nonresidue is an
automorphism that transforms A into A′, we have φ(A) = φ(A′) for any of the above
functionals. On the other hand, from Theorem 3.1.13 we know that λ(A)λ(A′) =
λ±(A)λ±(A′) = 1/q, so we immediately get that λ(A) = λ±(A) = 1/

√
q. While this

fact, and also the values of λ+(A) and λ−(A) are easily found directly using Gaussian
sums, it is somewhat surprising that we can find them without resorting to any real
number theory. We will return to this example in Section 3.2. Unfortunately this
argument does not work for composite moduli or higher powers.
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Proposition 3.1.16. ( [96]∗) Let G be a finite commutative group, A ⊂ G, and let Π
be the set of those automorphisms that leave A fixed (as a set, not necessarily point-
wise). Let φ be any of the functionals λ, λ−, λ+, λ±, and let T be the corresponding
class of functions (one of S(A),S−(A),S+(A) or S±(A), restricted to functions with
nonnegative Fourier transform). There is an f ∈ T such that φ(A) = f(0)/f̂(1)
which is invariant under Π, that is, f = f ◦ π for all π ∈ Π.

Proof. Indeed, take any f0 ∈ T for which φ(A) = f0(0)/f̂0(1) and form

f(x) =
∑
π∈Π

f(π(x)).

�
For sets that have lots of automorphisms, like power residues, this restricts the

class of functions to be considered for finding the value of λ, λ−, λ+, λ±.

3.1.5 Union and intersection

In this section we consider the behaviour of the various δ and λ quantities under
intersection and union of standard sets.

Proposition 3.1.17. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A1, A2 ⊂ G be standard sets. We have

δ(A1 ∩ A2) ≤ qδ(A1)δ(A2). (3.16)

Proof. Take sets Bi such that Bi − Bi ⊂ Ai, i = 1, 2. Any set of the form
B = B1 ∩ (t − B2) satisfies B − B ⊂ A1 ∩ A2, and an obvious averaging argument
shows that there exists a t such that |B| ≥ |B1||B2|/q. �

Proposition 3.1.18. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A1, A2 ⊂ G be standard sets. We have

δ(A1 ∪ A2) ≥ δ(A1)δ(A2), (3.17)

Proof. Using the duality δ(A)δ(A′) = 1/q the statement follows from the previous
result applied to the standard complements of A1 and A2. �

Proposition 3.1.19. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A1, A2 ⊂ G be standard sets. We have

λ(A1 ∩ A2) ≤ qλ(A1)λ(A2), (3.18)

λ+(A1 ∩ A2) ≤ qλ+(A1)λ
+(A2), (3.19)

λ−(A1 ∩ A2) ≤ qλ−(A1)λ
+(A2), (3.20)

λ±(A1 ∩ A2) ≤ qλ±(A1)λ
+(A2). (3.21)
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Proof. Let f1, f2 be functions, belonging to some of the S-classes of the sets
A1, A2. Their product h = f1f2 belongs to an S-class of the intersection as follows:

f1 ∈ S(A1), f2 ∈ S(A2) ⇒ h ∈ S(A1 ∩ A2),

f1 ∈ S+(A1), f2 ∈ S+(A2) ⇒ h ∈ S+(A1 ∩ A2),

f1 ∈ S−(A1), f2 ∈ S+(A2) ⇒ h ∈ S−(A1 ∩ A2),

f1 ∈ S±(A1), f2 ∈ S+(A2) ⇒ h ∈ S±(A1 ∩ A2).

Clearly h(0) = f1(0)f2(0). Furthermore we have ĥ = (f̂1 ∗ f̂2)/q, which shows
that ĥ ≥ 0 and ĥ(1) ≥ f̂1(1)f̂2(1)/q, and we conclude

h(0)

ĥ(1)
≤ q

f1(0)

f̂1(1)

f2(0)

f̂2(1)
.

By taking the minimum over all admissible f1, f2 we get the inequalities of the
theorem. �

Proposition 3.1.20. ( [96]∗) Let G be a finite commutative group, |G| = q, and let
A1, A2 ⊂ G be standard sets. We have

λ(A1 ∪ A2) ≥ λ(A1)λ(A2), (3.22)

λ+(A1 ∪ A2) ≥ λ+(A1)λ
−(A2), (3.23)

λ−(A1 ∪ A2) ≥ λ−(A1)λ
−(A2), (3.24)

λ±(A1 ∪ A2) ≥ λ±(A1)λ
−(A2). (3.25)

Proof. Using the duality relations these statements are easily seen to be equiva-
lent to the statements of the previous theorem applied to the standard complements
of A1 and A2. For example, in the case of (3.23) the calculation runs as follows:

1/q

λ+(A1 ∪ A2)
= λ−(A′

1 ∩ A′
2) ≤ qλ−(A′

1)λ
+(A′

2) = q
1/q

λ+(A1)

1/q

λ−(A2)

�
Most of the above functionals satisfy a trivial monotonicity property. Let φ be

any of the functionals δ, δ, λ, λ−, λ+.

If A1 ⊂ A2 then φ(A2) ≤ φ(A1). (3.26)

This observation can be applied to complement the upper estimates for intersec-
tion by the lower estimate

φ(A1 ∩ A2) ≥ max
(
φ(A1), φ(A2)

)
,

and the lower estimates for union by the upper estimate

φ(A1 ∪ A2) ≤ min
(
φ(A1), φ(A2)

)
.
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Equality holds when A1 = A2, so in general nothing stronger can be asserted.

We will see in Example 3.1.37 that inequality (3.26) may fail for λ±.

Problem 3.1.21. ( [96]) Find a nontrivial lower estimate for λ±(A1 ∩ A2) and a
nontrivial upper estimate for λ±(A1 ∪ A2).

3.1.6 Subgroups and factor groups

Let G be a commutative group and H a subgroup. We use G/H to denote the
factor group, and we use the cosets of H to represent its elements. We also introduce
the following natural notions.

Definition 3.1.22. For any set A ⊂ G we write A/H = {H+ a : a ∈ A} to denote
the collection of cosets that intersect A (= the image of A under the canonical homo-
morphism from G to G/H). For any function f : G → R we introduce the factoriza-
tion of f by H as the function f/H on G/H defined by f/H(x+H) =

∑
t∈H f(x+ t).

Conversely, for a function g : G/H → R we introduce the lifting g×H of g to the
group G as g×H(x) = g(x+H).

The following is essentially a result of Kolountzakis and Révész [75].

Proposition 3.1.23. ( [75], [96]∗) Let G be a finite commutative group, H a sub-
group, G1 = G/H. Let A ⊂ G be a standard set, and put AH = A ∩ H ⊂ H,
A1 = A/H ⊂ G1. We have

δ(A) ≥ δ(AH)δ(A1), (3.27)

δ(A) ≥ δ(AH)δ(A1), (3.28)

λ(A) ≥ λ(AH)λ(A1), (3.29)

λ+(A) ≥ λ+(AH)λ
+(A1), (3.30)

λ−(A) ≥ λ−(AH)λ
−(A1), (3.31)

λ±(A) ≥ λ±(AH)λ
−(A1). (3.32)

Proof. To see (3.27) let BH be a set such that BH ⊂ H and (BH−BH)∩AH = {0},
and let B1 ⊂ G1 be a set such that (B1 − B1) ∩ A1 = {0}. The elements of B1 are
cosets of H. Take a representative xi ∈ G from each such coset, and consider the set
B = ∪i(xi +BH) ⊂ G. It is clear that |B| = |BH||B1| and (B −B) ∩ A = {0}.

Inequality (3.28) is equivalent to ∆(A) ≤ ∆(AH)∆(A1). Take a set B ∈ G such
that B − B ⊂ A. In each coset x + H there can be at most ∆(AH) elements of
B. Also, the number of cosets that contain some elements of B is at most ∆(A1).
Therefore, |B| ≤ ∆(AH)∆(A1).

We will prove the remaining four inequalities. Let f : G → R be any function and
consider the functions fH : H → R and f/H : G1 → R. The following implications
are straightforward:
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f ∈ SG(A) ⇒ fH ∈ SH(AH), f/H ∈ SG1(A/H),

f ∈ S+(A) ⇒ fH ∈ S+
H(AH), f/H ∈ S+

G1
(A/H),

f ∈ S−(A) ⇒ fH ∈ S−
H(AH), f/H ∈ S−

G1
(A/H),

f ∈ S±(A) ⇒ fH ∈ S±
H(AH), f/H ∈ S−

G1
(A/H), .

(3.33)

Assuming that f̂ ≥ 0 the relation f̂H ≥ 0 can be seen in the same manner as in
(3.4) in the proof of Proposition 3.1.9. Note also that

fH(0)

f̂H(1)
=

f(0)∑
x∈H f(x)

. (3.34)

Furthermore, f̂/H ≥ 0 also holds, because for each γ ∈ Ĝ1 we have
f̂/H(γ) =

∑
x+H∈G1

f/H(x + H)γ(x + H) =
∑

x+H∈G1
(
∑

y∈(x+H) f(y))γ(x + H) =∑
x+H∈G1

(
∑

y∈(x+H) f(y)γ
×H(y)) = f̂(γ×H) ≥ 0. Observing that

f/H(0)

f̂/H(1)
=

∑
x∈H f(x)

f̂(1)
(3.35)

and using (3.34) we obtain the required inequalities (3.29), (3.30), (3.31), (3.32). �
We note here that the last inequality is less symmetric than the others. We do

not know whether the stronger inequality

λ±(A) ≥ λ±(AH)λ
±(A1)

holds or not.

3.1.7 Direct products

In this section we consider the behaviour of the various δ and λ quantities under
the direct product operation.

Proposition 3.1.24. ( [96]∗) Let G = G1 × G2 be the direct product of two finite
commutative groups, and let A = A1 × A2, where A1 ⊂ G1, A2 ⊂ G2. We have

λ(A) = λ(A1)λ(A2), (3.36)

λ+(A) = λ+(A1)λ
+(A2), (3.37)

λ−(A1)λ
−(A2) ≤ λ−(A) ≤ λ−(A1)λ

+(A2), (3.38)

λ±(A1)λ
−(A2) ≤ λ±(A) ≤ λ±(A1)λ

+(A2). (3.39)

Proof. The claimed lower bounds on λ(A), λ+(A), λ−(A), λ±(A) follow from
inequalities (3.29), (3.30), (3.31), (3.32), respectively.
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To prove the upper bounds, let f1 and f2 be appropriate functions for the sets
A1, A2, and consider the function h(x, y) = f1(x)f2(y). The following implications
are straightforward:

f1 ∈ S(A1), f2 ∈ S(A2) ⇒ h ∈ S(A1 × A2),

f1 ∈ S+(A1), f2 ∈ S+(A2) ⇒ h ∈ S+(A1 × A2),

f1 ∈ S−(A1), f2 ∈ S+(A2) ⇒ h ∈ S−(A1 × A2),

f1 ∈ S±(A1), f2 ∈ S+(A2) ⇒ h ∈ S±(A1 × A2).

Also, ĥ ≥ 0 follows from f̂1 ≥ 0 and f̂2 ≥ 0, and h(0) = f1(0)f2(0) and ĥ(1) =
f̂1(1)f̂2(1). Therefore, the function h testifies the upper bounds in (3.36), (3.37),
(3.38) and (3.39), �

Proposition 3.1.25. ( [96]∗) Let G = G1 × G2 be the direct product of two finite
commutative groups, and let A = A1 × A2, where A1 ⊂ G1, A2 ⊂ G2. We have

δ(A) = δ(A1)δ(A2), (3.40)

δ(A1)δ(A2) ≤ δ(A) ≤ δ(A1)δ(A2). (3.41)

Proof. Given sets B1, B2 with B1 − B1 ⊂ A1, B2 − B2 ⊂ A2, their product
B = B1 × B2 satisfies B − B ⊂ A. Conversely, if B − B ⊂ A, and B1, B2 are the
projections of B, then we have B1−B1 ⊂ A1, B2−B2 ⊂ A2 and B ⊂ B1×B2. This
shows (3.40).

Given sets B1 ⊂ G1, B2 ⊂ G2 with (B1 − B1) ∩ A1 = {0}, (B2 − B2) ∩ A2 = {0}
their product B = B1 × B2 satisfies (B − B) ∩ A = {0}. This shows the lower
estimate in (3.41).

To prove the upper estimate we rewrite it in the form

∆(A)

q
≤ ∆(A1)

q1

1

∆(A2)
,

where qi = |Gi| and q = |G| = q1q2. This can be rearranged as

∆(A2)∆(A) ≤ q2∆(A1) = ∆(A1 × {0}). (3.42)

Let B2 ⊂ G2, B ⊂ G be maximal sets with the properties B2−B2 ⊂ A2, (B−B)∩A =
{0}. Then the left hand side of (3.42) is |B2||B|. Notice that ({0} × B2) + B is a
packing in G: if (0, bi) ∈ B2 and (ti, ui) ∈ B (for i = 1, 2) then (0, b1) + (t1, u1) =
(0, b2) + (t2, u2) is equivalent to (0, b1 − b2) = (t2 − t1, u2 − u1), which is possible
only if both coordinates are 0. Let C = ({0} ×B2) +B. Then |C| = |B2||B| due to
the packing property. Also, we claim that C − C ∩ (A1 × {0}) = {(0, 0)}. Consider
(v1, v2) = (0, b1− b2)+(t1− t2, u1−u2) ∈ C−C. Here b1− b2 ∈ A2 so v2 can only be
zero if u2 − u1 ∈ A2, which means that u1 − u2 ∈ A2 (recall that A2 is symmetric).
Also, v1 ∈ A1 means that that t1 − t2 ∈ A1. Therefore (t1 − t2, u1 − u2) ∈ A1 × A2,
which is only possible if (t1 − t2, u1 − u2) = {0, 0}, and (v1, v2) = {(0, 0)}. �
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Example 3.1.26. Let G1 = G2, A1 ⊂ G1 arbitrary, A2 its standard complement,
A = A1 × A2 ⊂ G = G1 × G2, |G| = q = q21. We have

δ(A) = λ(A) = 1/q1 = q−1/2.

Indeed, δ(A) ≤ λ(A) = λ(A1)λ(A2) = |G1|−1 = 1/q1 by the previous theorem and
duality. We also have δ(A) ≥ 1/q1, since the diagonal B = {(x, x) : x ∈ G1} satisfies
(B −B) ∩ A = {0}.

This is also an example when the upper estimate of (3.41) holds with equality,
since δ(A1)δ(A2) = 1/q1 by duality.

In contrast, δ(A) = δ(A1)δ(A2) can be quite near 1. A random set satisfies

max(∆(A1),∆(A2) . (log q)2,

see the next section, and then we have δ(A) & (log q)−4. �

3.1.8 Random sets

First we describe our notion of a random standard set. Given a finite group G,
write

G1 = {x ∈ G : 2x = 0},

the set of elements of order 2 (and the unit). The set G \ G1 is a disjoint union of
pairs {x,−x}; let G2 be a set containing exactly one element of each pair. We have

G = G1 ∪ G2 ∪ −G2,

a disjoint union. Write |Gi| = qi, so that q = q1 + 2q2.

Take a real number ρ ∈ (0, 1). Let {ξy, y ∈ G1∪G2} be a collection of independent
0-1 valued random variable satisfying

Pr(ξy = 1) = ρ.

Our random standard set corresponding to the prescribed probability ρ will be

R = {0} ∪ {y ∈ G1 : ξy = 1} ∪
∪

y∈G2,ξy=1

{y,−y}.

Nothing depends on the value of ξ0 as 0 must be in R deterministically, but some
formulas will look nicer using it. Observe that

E(|R|) = 1 + ρ(q − 1).

The standard complement of a random set will be a random standard set cor-
responding to the probability 1 − ρ. In the case ρ = 1/2 this observation, together
with the dualities of Section 3.1.3 shows that the medians of λ and λ± are both
q−1/2.
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To control various quantities related to our random set we need a large deviation
estimate. Many forms of Bernstein’s (or Chernov’s) inequality will work; we quote
one from Tao and Vu’s book [133, Theorem 1.8] which is comfortable for us.

Lemma 3.1.27. ( [133]) Let X1, . . . , Xn be independent random variables satisfying
|Xi −E(Xi)| ≤ 1 for all i. Put X = X1 + . . .+Xn and let σ2 be the variance of X.
For any t > 0 we have

Pr(|X − E(X)| ≥ tσ) ≤ 2max
(
e−t

2/4, e−tσ/2
)
.

Theorem 3.1.28. ( [96]∗) Assume

1 < c <
q

32 log q

(hence implicitely q ≥ 164) and

16c
log q

q
< ρ < 1− 16c

log q

q
.

With probability exceeding 1 − 2q1−c the random set R corresponding to probability
ρ satisfies ∣∣|R| − ρq

∣∣ < 3
√
cρ(1− ρ)q log q,

1

3
√
c log q

√
1− ρ

ρq
< λ−(R) ≤ λ+(R) < 3

√
c log q

√
1− ρ

ρq
.

Proof. Put f0(x) = ξx if x ∈ G1 ∪ G2, f0(x) = ξ−x if x ∈ −G2. The function
testifying the upper estimate will be this with a modified value at 0.

We calculate the expectation and variance of f̂0. Clearly

f̂0(γ) =
∑
y∈G1

ξyγ(y) + 2
∑
y∈G2

ξyRe γ(y),

hence

E(f̂0(γ)) = ρ
∑
y∈G1

γ(y) + 2ρ
∑
y∈G2

Re γ(y) =

{
ρq if γ = 1,

0 otherwise.

Similarly, the variance is

D2(f̂0(γ)) = ρ(1− ρ)

(∑
y∈G1

γ(y)2 +
∑
y∈G2

(
2Re γ(y)

)2)

=

{
ρ(1− ρ)(2q2 + q) if γ2 = 1,

2ρ(1− ρ)q2 otherwise,

consequently

D2(f̂0(γ)) < 2ρ(1− ρ)q.
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We apply Lemma 3.1.27 with an obvious rescaling (the variables 2Re γ(y)ξy are
bounded by 2 rather than 1) to obtain that in the range t ≤ 2

√
ρ(1− ρ)q

Pr
(
|f̂0(γ)| ≥ t

√
ρ(1− ρ)q

)
≤ 2e−t

2/8 (γ ̸= 1),

Pr
(
|f̂0(1)− ρq| ≥ t

√
ρ(1− ρ)q

)
≤ 2e−t

2/8.

We put t =
√
8c log q (this is in accordance with t ≤ 2

√
ρ(1− ρ)q, as the assumptions

of the theorem on ρ show), so that the right hand sides above become 2q−c. Since
there are altogether q possible characters γ, with probability 1 − 2q1−c none of the
above events happens. In this favourable case we write

a = t
√
ρ(1− ρ)q =

√
8cρ(1− ρ)q log q,

f(x) =

{
f0(x) + a if x = 0,

f0(x) otherwise,

f̂(γ) = f̂0(γ) + a ≥

{
0 always ,
ρq if γ = 1.

This shows f ∈ S+(R) and consequently

λ+(R) ≤ f(0)

f̂(1)
<

1 + a

ρq
< 3
√
c log q

√
1− ρ

ρq
.

To prove the lower estimate let R′ be the standard complement of R, which is a
random standard set for probability 1− ρ, hence the above argument gives

λ+(R′) < 3
√
c log q

√
ρ

(1− ρ)q

with the same probability. The lower estimate follows from the duality relation in
Theorem 3.1.13.

The estimate of |R| follows from |R| = f̂0(1) or f̂0(1) + 1. �
Our lower and upper estimates differ by a factor of log q. We have no guess

whether this is necessary, or the values of the λ’s are more concentrated. The large
deviation estimate used is quite sharp. If the values of f̂0(γ) were independent for
different characters γ, one could deduce that

min f̂0(γ) < −c1a

with high probability, with some positive constant c1. They are far from indepen-
dent, but still it is likely that their dependence is not very strong, and the existence
of large negative values can be proved. On the other hand there is no reason to
think that the uniform weights used in the proof above are near optimal.

Now we turn to estimating the δ quantities. This problem drew some attention
in the case ρ = 1/2, in the context of estimating the clique number of Cayley
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graphs. Alon and Orilitsky [1] proved that typically ∆(R) . (log q)2 in this case.
Below we adapt their proof for general ρ. Green [48] improved this estimate to the
optimal O(log q) for cyclic groups. (Green considers sumsets rather than difference
sets, but an adaptation to differences is possible.) Prakash [108] improved Alon and
Orilitsky’s estimate for general commutative groups with cardinality composed of
few primes. It is likely that Green’s and Prakash’ methods can also be extended to
general ρ.

Theorem 3.1.29. ( [96]∗)
(a) Assume

q−1/2 < ρ < 1− q−1/3log q.

With probability exceeding 1−exp
(
−c1 log2 q/ log 1

ρ

)
the random set R corresponding

to probability ρ satisfies

∆(R) < c2

(
log q

log 1
ρ

)2

, δ(R) >
1

c2

(
log 1

ρ

log q

)2

. (3.43)

Here c1, c2 are absolute constants. In the range

1− q−1/3log q < ρ < 1− 16c
log q

q
, 1 < c <

q

32 log q

with probability exceeding 1− 2q1−c we have

∆(R) < 3
√
c log q

√
ρq

1− ρ
, δ(R) >

1

3
√
c log q

√
1− ρ

ρq
.

(b) Assume
q−1/3log q < ρ < 1− q−1/2.

With probability exceeding 1−exp
(
−c1 log2 q/ log 1

1−ρ

)
the random set R correspond-

ing to probability ρ satisfies

∆(R) < c2

(
log q

log 1
1−ρ

)2

, δ(R) <
c2
q

(
log q

log 1
1−ρ

)2

. (3.44)

Here c1, c2 are the same constants. In the range

16c
log q

q
< ρ < q−1/3log q, 1 < c <

q

32 log q

with probability exceeding 1− 2q1−c we have

∆(R) < 3
√
c log q

√
(1− ρ)q

ρ
, δ(R) < 3

√
c log q

√
(1− ρ)

ρq
.

For small values of ρ estimate (3.43) stops improving; we shall study later the
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passage of ∆ from 2 to 3. For ρ very near 1 the estimate becomes trivial.

We need some preparation before turning to the proof of Theorem 3.1.29.

We define the effective cardinality of a standard set by the formula

|A|′ = |A ∩ (G1 ∪ G2)| − 1.

This quantity is between (|A| − 1)/2 and |A| − 1. The probability that a difference
set of a given set B is contained in a random standard set is

Pr(B −B ⊂ R) = ρ|B−B|′ .

Consequently the expected number of difference sets of sets of cardinality k contained
in R is ∑

B⊂G,|B|=k

ρ|B−B|′ .

This quantity is difficult to control, because we do not know enough about the
distribution of |B − B|. When k is small compared to q, we expect that for most
sets |B − B| will be of size > ck2, but there is no applicable result of this kind.
Instead we will select such subsets of an arbitrary set.

Lemma 3.1.30. ( [96]∗) Let A be a finite set in a commutative group, |A| = m, and
let k be an integer, 1 ≤ k ≤

√
m. There is a B ⊂ A, |B| = k satisfying

|B −B| ≥ 1 +
k(k − 1)

2

(
1− k(k − 1)

2m

)
. (3.45)

This lemma is also in Alon and Orilitsky’s paper; below we give a slightly simpler
proof.

Proof. We use induction on k. Assume we found a k-element subset

B = {b1, . . . , bk}.

We try to add a further element a ∈ A. The elements a− bi will be in the difference
set of the set B′ = B∪{a}; let za be the number of those that are already contained
in B −B. This quantity does not exceed the number of solutions of

a− bi = bu − bv, 1 ≤ i, u, v ≤ k

(it may be smaller, as several pairs u, v may exist for a given i). Hence∑
a∈A

za ≤ k3,

consequently there is an a ∈ A with za ≤ k3/m. This means that at least k − k3/m
new differences occur, and this provides the inductive step. �

By a theorem of Komlós, Sulyok, Szemerédi [76], in Zq we can find a set B ⊂ A
of size |B| > c

√
m which is a Sidon set, that is, all differences are distinct. In
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general groups we could only show the analogous result with |B| > c 3
√
m; however,

the weaker property given in Lemma 3.1.30 is equally applicable for our aims.

Proof of Theorem 3.1.29. We are going to estimate Pr
(
∆(R) ≥ m

)
. Set k =

[
√
m]. By the lemma above, the event ∆(R) ≥ m is contained in the event

∃B : B −B ⊂ R, |B| = k, B satisfies (3.45).

Since (3.45) implies

|B −B|′ ≥ |B −B| − 1

2
≥ c4m

with a suitable positive constant c4, for a given B the probability is ≤ ρc4m. Since
the number of k-element sets is less than qk, we obtain

Pr
(
∆(R) ≥ m

)
< q

√
mρc4m.

This immediately gives the estimate in (3.43). The validity of this estimate is not
restricted to the range given in Theorem 3.1.29; however, for ρ near to 1 we get a
better result by applying Theorem 3.1.28 and the inequality δ(R) ≥ λ+(R). This is
presented in the next formula.

This proves part (a); part (b) is the dual formulation. �

Remark 3.1.31. One can give a lower estimate for ∆(R) as follows. Select sets
B1, . . . , Bm satisfying |Bi| = k and

(Bi −Bi) ∩ (Bj −Bj) = {0}

whenever i ̸= j. Then the events Bi −Bi ⊂ R will be independent and we have

Pr
(
∆(R) ≥ k

)
≥ Pr

(
Bi −Bi ⊂ R for some i

)
=
∏
i

(
1− ρ|Bi−Bi|′

)
.

To make use of this one needs to find many such Bi with small difference set. This is
comparably easy, if G has no element of order < k: we take arithmetic progressions
Bi = {0, bi, 2bi, . . . , (k − 1)bi}, and a simple greedy algorithm yields m ≥ q/k2 such
sets. For ρ = 1/2 this shows that ∆(R) & log q with high probability, so together
with Green’s bound this shows the proper order of magnitude for certain groups.
For general groups a weaker form of this argument gives ∆(R) &

√
log q. �

We now study the threshold as ∆ passes from 2 to 3. Elements of order 3 play
a special role here. Assume x is an element of order 3. The difference set of the
3-element set (subgroup) {0, x,−x} is itself, hence ∆(A) < 3 is possible only if
elements of order 3 are all absent from A. To avoid this we assume that 3 - q, that
is, there are no elements of order 3. With some extra effort the next result can be
extended (with a properly modified notion of a random set) to all groups, save those
isomorphic to Zk3.
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Proposition 3.1.32. ( [96]∗) Let G be a finite commutative group, |G| = q, and
assume that 3 - q. For 6

5
q−1 < ρ < q−2/3 the random set R corresponding to

probability ρ satisfies
Pr(∆(R) ≤ 2) > 1− q2ρ3.

Proof. It is easy to see that the property ∆(R) ≥ 3 is equivalent to the existence
of a, b, c ∈ R, all different from 0, such that a+ b+ c = 0. For a given a, b, c ∈ G we
have

Pr(a, b, c ∈ R) =

{
ρ3 if they are all distinct,
ρ2 if two coincide .

(All three cannot coincide by the absence of elements of order 3, and one cannot
coincide with the negative of another.) The number of such triples a, b, c containing
distinct elements is < q2, order counted, so without ordering it is < q2/6; the number
of triples containing two identical elements (that is, a, a,−2a) is exactly q − 1. We
obtain

Pr(∆(R) ≥ 3) < q2ρ3/6 + qρ2 < q2ρ3.

�

Remark 3.1.33. If ∆(R) ≤ 2, its value can be 1 or 2. The probability that it is 1
is exactly (1− ρ)q1+q2−1; it becomes negligible around ρ ∼ (log q)/q.

With some effort the above proposition could be complemented by an upper
estimate showing that Pr(∆(R) ≥ 3) → 1 if ρq2/3 → ∞. �

Part (a) of Theorem 3.1.6 follows from the results of this section. Indeed,
if ρ = q−2/3/2, then the corresponding random set satisfies δ(R) = 1/2 and
λ+(R) < cq−1/6(log q)1/2 with positive probability, according to Proposition 3.1.32
and Theorem 3.1.28.

3.1.9 Balls in dyadic groups

In this section we will prove part (b) of Theorem 3.1.6 by studying some sets in
the group G = Zn2 (so now q = 2n). The elements will be written as 0-1 sequences.
For an x ∈ G by its norm we mean the number of coordinates equal to 1, denoted
by ∥x∥. We consider the ball

Bk = {x ∈ G : ∥x∥ ≤ k},

and its standard complement, the antiball

Ak = {x ∈ G : ∥x∥ > k} ∪ {0}.

The size of maximal difference sets contained in Bk is known: for even k < n we
have

∆(Bk) = ∆(Ak) = |Bk/2| =
∑
i≤k/2

(
n

i

)
, (3.46)

see Kleitman [67]. Much less is known about ∆(Bk), in spite of much attention,
due to its interpretation as the maximal size of a set of error-detecting codes. In
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this context the inequality δ(Bk) ≤ δ(Bk) is known as the Hamming bound, while
Delsarte [34] introduced the improved bound δ(Bk) ≤ λ−(Bk). Asymptotically, as
k/n → γ for some 0 < γ < 1, the best current upper estimate for λ−(Bk) is by
McEliece et al. [100], and numerical results in [8] suggest this estimate actually
gives the correct value of λ−(Bk). The best lower bound for δ(Bk) is the Gilbert-
Varshamov bound given by the usual covering argument (see [88]). Samorodnitsky
[119] proved that the Delsarte bound cannot match the Gilbert-Varshamov bound.

In the sequel we apply Samorodnitsky’s method from [118] to estimate certain
λ’s of the sets Bk and Ak. We focus on the case k > n/2, which is uninteresting
from the point of view of coding theory. Samorodnitsky’s aspect is rather different
from ours, so we repeat a part of the argument in our words. The central ingredient
is the following inequality, which is Lemma 3.3 in [118].

Lemma 3.1.34. ( [118]) Let F be a polynomial of degree at most k, satisfying
F (0) = 1 and F (i) ≥ 0 for integer values of i, 0 ≤ i ≤ n. Assume k ≤ n and write
α = k/(2n). We have

n∑
i=0

(
n

i

)
F (i) ≥ c1n

−1/4

(
2n

k

)−1/2

2n ≥ c2α
1/4
(
2αα(1− α)1−α

)n (3.47)

with positive absolute constants c1, c2.

Theorem 3.1.35. ( [96]∗) Assume k ≤ n and write α = k/(2n),

β = −(α log2 α + (1− α) log2(1− α)).

We have
λ(Bk) ≥ c2α

1/4
(
αα(1− α)1−α

)n
= c2α

1/4q−β, (3.48)

λ(Ak) ≤ c3α
−1/4qβ−1, (3.49)

with positive absolute constants c2, c3.

Proof. We want to estimate f(0)/f̂(1) for functions f ∈ S(Bk) such that f̂ ≥ 0.
By Proposition 3.1.16 we may assume that f is invariant under automorphisms
that leave Bk fixed. Permutations of coordinates are such automorphisms, hence f
depends only on the number of coordinates equal to 1. This means that there are
real numbers a0, . . . , ak such that f(x) = ai if ∥x∥ = i ≤ k, and f(x) = 0 if ∥x∥ > k.
Consequently

f̂(γ) =
k∑
i=0

ai
∑
∥x∥=i

γ(x). (3.50)

The characters of G are easily described in the form

γy(x) = (−1)⟨x,y⟩, y ∈ G

where ⟨x, y⟩ is the scalar product in the usual sense, so it is an integer between 0
and n. This defines a natural norm for characters; we write ∥γ∥ = ∥y∥ if γ = γy.
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It is easily seen, by grouping the elements x ∈ G according to the value of
j = ⟨x, y⟩ that whenever ∥y∥ = m, we have

∑
∥x∥=i

γy(x) =

min(i,m)∑
j=0

(−1)j
(
m

j

)(
n−m

i− j

)
.

The important point is that this is a polynomial of degree i in m (these are called
Krawchouk polynomials). By substituting this into (3.50) we obtain that

f̂(γ) = F (∥γ∥),

where F is a polynomial of degree at most k. We have

f̂(1) = F (0)

and, by Fourier inversion,

f(0) =
1

q

∑
γ

f̂(γ) =
1

q

∑
γ

F (∥γ∥) = 1

q

n∑
m=0

(
n

m

)
F (m).

Inequality (3.48) now follows by applying (3.47), and inequality (3.49) by duality
(Theorem 3.1.13). �

So far we did not succeed in finding a function that would constructively demon-
strate inequality (3.49).

We complement these inequalities by some easy bounds for λ±.

Theorem 3.1.36. ( [96]∗) Assume n/2− 1 < k ≤ n.
We have

λ±(Bk) ≤
2k + 2

q(2k + 2− n)
, (3.51)

λ±(Ak) ≥ 1− n

2k + 2
. (3.52)

Proof. Consider the characters, corresponding to the basis vectors (with some
abuse of notation):

γj(x1, . . . , xn) = (−1)xj = 1− 2xj.

Clearly ∑
γj(x) = n− 2∥x∥,

hence the function

f(x) = 2k + 2− n+
∑

γj(x) = 2(k + 1− ∥x∥)

satisfies
f ∈ S±(Bk), f(0) = 2k + 2, f̂(1) = q(2k + 2− n).

This shows (3.51), and (3.52) follows by duality (Theorem 3.1.13). �
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Let us summarize the results for the set Ak in the case when 1
4
< α = k

2n
< 1

2
.

By equation (3.46) and standard approximations for the binomial coefficients we
have δ(Ak) = qβ−1+o(1). Equation (3.49) shows that λ(Ak) is in the same range
λ(Ak) = qβ−1+o(1). On the other hand, equation (3.52) shows that λ±(Ak) ≥ 1− 1

4α
.

If α ≈ 1/2 this proves part (b) of Theorem 3.1.6.

Example 3.1.37. We show how examples of λ− < λ± are related to monotonicity
of λ±. Let A be a set such that λ−(A) < λ±(A), e.g. the antiball Ak above. Take
an f ∈ S−(A) which produces the value of λ−(A), and put

A+ = {x : f(x) > 0}.

We have clearly A+ ⊂ A and f ∈ S±(A+), hence

λ±(A+) ≤ f(0)/f̂(1) = λ−(A) < λ±(A).

�

3.2 Application to Paley graphs

For a prime p ≡ 1 (mod 4), the Paley graph Pp is the graph with vertex set Zp
and an edge between x and y if and only if x − y = a2 for some non-zero a ∈ Zp.
More generally, Paley graphs can also be defined in the same manner for any finite
field Fq, q ≡ 1 (mod 4), but we will only be concerned with the prime case.

Paley graphs are self-complementary, vertex and edge transitive, and
(p, (p− 1)/2, (p− 5)/4, (p− 1)/4)-strongly regular (see [16] for these and other basic
properties of Pp). Paley graphs have received considerable attention over the past
decades because they exhibit many properties of random graphs G(p, 1/2) where
each edge is present with probability 1/2. Indeed, Pp form a family of quasi-random
graphs, as shown in [26].

In this note we will be concerned with the independence number of Pp, i.e. the
maximal cardinality s(p) of a set B ⊂ Zp such that the difference set B−B contains
only quadratic non-residues (and zero). It is clear by self-complementarity that
the independence number of Pp is equal to its clique-number. The general lower
bound s(p) ≥ (1

2
+ o(1)) log2 p is established in [28], while it is proved in [47] that

s(p) ≥ c log p log log log p for infinitely many primes p. The "trivial" upper bound
s(p) ≤ √

p has been re-discovered several times (see [34, Theorem 3.9], [87, Problem
13.13], [25, Proposition 4.7], [16, Chapter XIII, Theorem 14], [86, Theorem 31.3], [78,
Proposition 4.5], [33, Section 2.8] for various proofs). This bound is notoriously
difficult to improve, and it is mentioned explicitly in the selected list of problems
[33]. The only improvement we are aware of concerns the special case p = n2 +
1 for which it is proved in [90] that s(p) ≤ n − 1 (the same result was proved
independently by T. Sanders – unpublished, personal communication). It is more
likely, heuristically, that the lower bound is closer to the truth than the upper bound.
Numerical data [137,138] up to p < 10000 suggest (very tentatively) that the correct
order of magnitude for the clique number of Pp is c log2 p (see the discussion and the
plot of the function s(p) at [139]).
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In this note we prove the slightly improved upper bound s(p) ≤ √
p − 1 for the

majority of the primes p = 4k + 1 (we will often suppress the dependence on p, and
just write s instead of s(p)). The proof has two cornerstones. The first is Delsarte’s
bound as described in Theorem 3.1.4. The second is a "subclique trick" introduced
in [106], which can be incorporated to the linear programming bound to yield an
improvement. This will be described in Lemma 3.2.1 below.

We will denote the set of nonzero quadratic residues by Q, and that of nonzero
non-residues by NQ. Note that 0 /∈ Q and 0 /∈ NQ.

3.2.1 The improved upper bound

We will first formulate the "subclique trick" introduced in [106], in the general
setting. We will describe it in finite groups for simplicity.

Lemma 3.2.1. ( [106]) Assume B = {b1, . . . bm} ⊂ G is such that bj−bk ∈ Ac∪{0}.
Let h(x) = 1

|B|
∑

y∈G 1B(y)1B(x+ y). Assume D ⊂ G is such that any selection of k
distinct elements of D contains two such that their difference falls in A. Then∑

x∈D

h(x) ≤ k − 1. (3.53)

Proof. Let us evaluate the sum in question:∑
x∈D

h(x) =
1

|B|
∑
x,y∈G

1D(x)1B(y)1B(x+ y) = (3.54)

1

|B|
∑
y∈G

1B(y)
∑
x∈G

1D(x)1B(x+ y).

The point is that the inner sum is ≤ k − 1 for each y ∈ G. Indeed, if it were ≥ k
for some y then there would exist distinct elements d1, . . . dk ∈ D such that the
elements b1 = d1 + y, . . . , bk = dk + y are all in B. By assumption, however, there
would exist two of them, say di and dj such that di− dj ∈ A which contradicts that
bi − bj ∈ Ac.

In what way is this an improvement to Delsarte’s bound? The function h(x)
trivially belongs to the set S+(G \ A), and satisfies ĥ ≥ 0. The point is that
inequality (3.53) might introduce new linear constraints on h(x) if appropriate sets
D ⊂ G exist.

After this preparation we are in position to state the slightly improved upper
bound on the independence number of Paley-graphs.

Theorem 3.2.2. ( [4]∗) Let p = 4k + 1 be a prime, and B ⊂ Zp, |B| = s, be a
maximal set such that B −B ⊂ NQ ∪ {0}. The following hold:
(i) if n = [

√
p] is even then s2 + s− 1 ≤ p

(ii) if n = [
√
p] is odd then s2 + 2s− 2 ≤ p.
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Proof. Consider the function f(x) = 1B ∗ 1−B(x) =
∑

y∈Zp
1B(y)1B(x + y), which

gives the number of representations x = b− b′ with b, b′ ∈ B. This function has the
following properties:

f(0) = s (3.55)

f̂(1) =
∑
x∈Zp

f(x) = s2 (3.56)

f(x) ≥ 0 if x ∈ NQ, f(x) = 0 if x ∈ Q (3.57)

f̂(γ) =
∑
x∈Zp

f(x)γ(x) ≥ 0 for all γ ∈ Ẑp. (3.58)

Using the notations of Section 3.1, properties (3.55), (3.56), (3.57) mean that
f ∈ S+(NQ), and f̂ ≥ 0 by (3.58). It is quite easy to determine the quantities
λ+(Q) and λ−(Q), both of which turn out to be 1√

p
. This implies the trivial bound

|B| ≤ √
p, but we will impose further restrictions on f to get an improvement.

In order to use Lemma 3.2.1 we would need to identify a ’large’ set D ⊂ Zp such
that D−D ⊂ Q∪{0}. At first glance this seems to be impossible, as such sets D are
cliques themselves, and hence are necessarily ’small’. However, we can circumvent
this problem by considering the translated copies of the hypothetical set B. The
details are as follows.

Let χ denote the quadratic multiplicative character, i.e. χ(t) = ±1 according to
whether t ∈ Q or t ∈ NQ (and χ(0) = 0). Let

φ(t) =
∑
b∈B

χ(t+ b), (3.59)

giving the number of quadratic residues minus the number of non-residues in the
shifted set t + B. If t ∈ −B then by assumption φ(t) = −s + 1 < 0 (for
the last inequality note that s ≥ 2 for every p = 4k + 1). Also,

∑
t∈Zp

φ(t) =∑
b∈B
∑

t∈Zp
χ(t + b) = 0. Therefore, φ(t) must also assume some positive values.

Let t0 be the place where φ assumes its maximum, φ(t0) > 0 (note that t0 /∈ −B).
Let Bt0 = (t0 + B) ∩ Q denote the set of quadratic residues contained in t0 + B,
and let r = |Bt0 |. Then r > s

2
, and Bt0 is a set of quadratic residues such that

Bt0 −Bt0 ⊂ NQ ∪ {0}. We claim that

s ≤ 1 +
p− 1

2r
. (3.60)

Let z ∈ NQ be arbitrary, and consider the set Cz = zBt0 . Then Cz ⊂ NQ and
Cz − Cz ⊂ Q ∪ {0}. By Lemma 3.2.1 we have∑

x∈Cz

f(x) ≤ s. (3.61)
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Summing up (3.61) for all z ∈ NQ we obtain∑
x∈NQ

f(x) ≤ p− 1

2

s

r
. (3.62)

Finally, putting together (3.55), (3.56), (3.57), (3.62) we conclude

s2 =
∑
x∈Zp

f(x) = f(0) +
∑
x∈NQ

f(x) ≤ s+
p− 1

2

s

r
, (3.63)

and hence we obtain (3.60).

We have seen that r > s
2
. So, if s is even, r ≥ s

2
+ 1, and if s is odd, r ≥ s+1

2
.

However, in the latter case we will need the stronger inequality r ≥ s+3
2

.

Lemma 3.2.3. ( [4]∗) If s is odd, then r ≥ s+3
2

.

Proof. Assume to the contrary that r = s+1
2

. Consider the numbers φ(t), t /∈ −B,
and denote them for simplicity by a1 ≤ · · · ≤ ap−s. They are odd integers, and

p−s∑
j=1

aj =
∑
t∈Zp

φ(t)−
∑
t∈−B

φ(t) = s(s− 1). (3.64)

We also know the sum of the squares:

p−s∑
j=1

a2j =
∑
t/∈−B

φ(t)2 =
∑
t∈Zp

φ(t)2 −
∑
t∈−B

φ(t)2

=
∑

b1,b2∈B

∑
t∈Zp

χ(t+ b1)χ(t+ b2)− s(s− 1)2.

We have ∑
b1=b2∈B

∑
t∈Zp

χ(t+ b1)χ(t+ b2) =
∑
b∈B

∑
t∈Zp

χ(t+ b)2 = s(p− 1).

For b1 ̸= b2 ∈ B, b1 − b2 ∈ NQ; from the strong regularity of the Paley graph we
obtain ∑

b1 ̸=b2∈B

∑
t∈Zp

χ(t+ b1)χ(t+ b2) = −s(s− 1).

Putting everything together, we find

p−s∑
j=1

a2j = s(p− s2 + s− 1). (3.65)

By our assumption, all the positive values of φ(t) are equal to 1. Also, by the
definition of φ we have φ(t) ≥ −s for all t. Notice, however, that the less trivial
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inequality
−s+ 2 ≤ φ(t) ≤ 1 (3.66)

also holds. Indeed, φ(t) = −s is impossible because in that case the set B could be
further extended by the element −t. Also, φ(t) = −s+1 is impossible due to parity
reasons.

The end of the argument is that the constraints (3.64), (3.65), (3.66) contradict
each other. Indeed, from (3.64) and (3.65), we compute

p−s∑
j=1

(
aj +

s− 3

2

)2

=
9p− s− 2ps− 6s2 + ps2 − s3

4
(3.67)

and from (3.66) we have

p−s∑
j=1

(
aj +

s− 3

2

)2

≤
(
s− 1

2

)2

(p− s), (3.68)

but (3.67) and (3.68) imply p ≤ s2, a contradiction.

Therefore, we conclude that there exists a t such that φ(t) > 1, and hence
φ(t) ≥ 3 and r ≥ s+3

2
.

Now we can conclude the proof of the theorem. Indeed, if s ≤ n− 1, then both
parts of the claim follow immediately. We assume therefore that s = n. If s is even
we have seen that r ≥ s

2
+1, hence s2+ s− 1 ≤ p follows directly from (3.60). If s is

odd, the trivial estimate r ≥ s+1
2

combined with (3.60) just leads to the well-known
s ≤ √

p. But we have proved that r ≥ s+3
2

and hence s2 + 2s − 2 ≤ p follows from
(3.60).

Remark 3.2.4. It is clear from (3.60) that any improved lower bound on r will
lead to an improved upper bound on s. If one thinks of elements of Zp as being
quadratic residues randomly with probability 1/2, then we expect that r ≥ s

2
+ c

√
s.

This would lead to an estimate s ≤ √
p − cp1/4. This seems to be the limit of this

method. In order to get an improved lower bound on r one can try to prove non-
trivial upper bounds on the third moment

∑
t∈Zp

φ3(t). To do this, we would need
that the distribution of numbers b1−b2

b1−b3 is approximately uniform on Q as b1, b2, b3
ranges over B. This is plausible because if s ≈ √

p then the distribution of B − B
must be close to uniform on NQ. However, we could not prove anything rigorous in
this direction.

Remark 3.2.5. An alternative proof of Lemma 3.2.3 is as follows. The multiplica-
tive character χ is a polynomial of degree p−1

2
, χ(x) = x

p−1
2 , and therefore so is

the function φ(t). The sum of the positive values of φ(t) is ≥ s(s − 1), by (3.64).
However, the value +1 is assumed at most p−1

2
< s(s − 1) times due to the degree

of φ. Therefore, there must be other positive values, i.e. values where φ(t) ≥ 3. It
is instructive to see how both proofs break down in Fp2 where the example C = Fp
shows that there exists a clique of size p. In that case the function φ(t) assumes the
values −p+ 1 and +1 only (it becomes a constant polynomial over Fp).
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Remark 3.2.6. Theorem 3.2.2 gives the bound s ≤ [
√
p]−1 for about three quarters

of the primes p = 4k + 1. Indeed, part (ii) gives this bound for almost all p such
that n = [

√
p] is odd, with the only exception when p = (n+ 1)2 − 3. Part (i) gives

the improved bound s ≤ n − 1 if n2 + n − 1 > p. This happens for about half of
the primes p such that n is even. To make these statements rigorous we note that√
p/2 is uniformly distributed modulo one, when p ranges over primes of the form

p = 4k + 1: this is a special case of a result of Balog, [6, Theorem 1].

3.3 Application to mutually unbiased bases (MUBs)

This section describes a surprising application of Delsarte’s method to the prob-
lem of mutually unbiased bases (MUBs) in Cd. The fact that it can be applied
to a problem from a completely different part of mathematics also highlights the
flexibility of the method.

The section is organized as follows. In Section 3.3.1 we give a standard summary
of relevant notions and results concerning mutually unbiased bases (MUBs) and
mutually unbiased Hadamard matrices (MUHs). Then we describe how the problem
of the MUBs fits the Delsarte scheme of Section 3.1. In Section 3.3.2 we use discrete
Fourier analysis to prove several structural results on MUHs in low dimensions.
Finally, in Section 3.3.3 we prove non-existence results. We also give a new proof,
without using computer algebra, of the fact the Fourier matrix F6 cannot be part of
a complete system of MUHs in dimension 6.

3.3.1 Mutually unbiased bases

Two orthonormal bases in Cd, A = {e1, . . . , ed} and B = {f1, . . . , fd} are called

unbiased if for every 1 ≤ j, k ≤ d, |⟨ej, fk⟩| =
1√
d
. In general, we will say that

two unit vectors u and v are unbiased if |⟨u,v⟩| = 1√
d
. A collection B0, . . .Bm of

orthonormal bases is said to be (pairwise) mutually unbiased if every two of them
are unbiased. What is the maximal number of pairwise mutually unbiased bases
(MUBs) in Cd? This question originates from quantum information theory and
has been investigated thoroughly over the past decades. The motivation behind
studying MUBs is that if a physical system is prepared in a state of one of the
bases, then all outcomes are equally probable when we conduct a measurement
in any other basis, and this fact finds applications in dense coding, teleportation,
entanglement swapping, covariant cloning, and state tomography (see [36] for a
recent comprehensive survey on MUBs and its applications). The following result is
well-known:

Theorem 3.3.1. ( [7, 12, 144]) The maximal number of mutually unbiased bases in
Cd is at most d+ 1.

Another important result concerns prime-power dimensions.

Theorem 3.3.2. ( [7,61,66,144]) A collection of d+1 mutually unbiased bases (called
a complete set of MUBs) exists if the dimension d is a prime or a prime-power.
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However, if the dimension d = pα1
1 . . . pαk

k is composite then very little is known
except for the fact that there are at least pαj

j +1 mutually unbiased bases in Γd where
p
αj

j is the smallest of the prime-power divisors. In some specific square dimensions
there is a construction based on orthogonal Latin squares which yields more MUBs
than p

αj

j + 1 (see [142]). It is also known [140] that the maximal number of MUBs
cannot be exactly d (i.e. it is either d+ 1 or strictly less than d).

The following basic problem remains open for all non-primepower dimensions:

Problem 3.3.3. Does a complete set of d+ 1 mutually unbiased bases exist in Cd

if d is not a prime-power?

The answer is not known even for d = 6, despite considerable efforts over the
past few years ( [12,21,22,62,110]). The case d = 6 is particularly tempting because
it seems to be the simplest to handle with algebraic and numerical methods. As of
now, numerical evidence suggests that the maximal number of MUBs for d = 6 is 3
(see [21,22,24,145]).

It will also be important for us to recall that mutually unbiased bases are natu-
rally related to mutually unbiased complex Hadamard matrices. Indeed, if the bases
B0, . . . ,Bm are mutually unbiased we may identify each Bl = {e(l)1 , . . . , e

(l)
d } with the

unitary matrix

[Ul]j,k =

[⟨
e
(0)
j , e

(l)
k

⟩
1≤k,j≤d

]
,

i.e. the k-th column of Ul consists of the coordinates of the k-th vector of Bl in the
basis B0. (Throughout the section the scalar product ⟨., .⟩ of Γd is conjugate-linear
in the first variable and linear in the second.) With this convention, U0 = I the
identity matrix, and all other matrices are unitary and have all entries of modulus
1/
√
d. Therefore, for 1 ≤ l ≤ m the matrices Hl =

√
dUl have all entries of modulus

1 and complex orthogonal rows (and columns). Such matrices are called complex
Hadamard matrices. It is thus clear that the existence of a family of m+1 mutually
unbiased bases B0, . . . ,Bm is equivalent to the existence of a family of m complex
Hadamard matrices H1, . . . , Hm such that for all 1 ≤ j ̸= k ≤ m, 1√

d
H∗
jHk is again a

complex Hadamard matrix. In such a case we will say that these complex Hadamard
matrices are mutually unbiased (MUHs).

A system H1, . . . , Hm of MUHs is called complete if m = d (cf. Theorem 3.3.1).
We remark that there has been a recent interest in real unbiased Hadamard matri-
ces [14,57,83], and one result of this section is that no pair of real unbiased Hadamard
matrices can be part of a complete system of MUHs (see Corollary 3.3.13). The sys-
tem H1, . . . Hm of MUHs will be called normalized if the first column of H1 has
all coordinates 1, and all the columns in all the matrices have first coordinate 1.
It is clear that this can be achieved by appropriate multiplication of the rows and
columns by umimodular complex numbers. We will also use the standard defini-
tion that two complex Hadamard matrices H1 and H2 are equivalent, H1

∼= H2, if
H1 = D1P1H2P2D2 with unitary diagonal matricesD1, D2 and permutation matrices
P1, P2.

One possible approach to the MUB problem in dimension 6 is to try to classify
(up to equivalence) all complex Hadamard matrices of order 6. However, such a
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full classification is still out of reach, despite some promising recent developments
[9, 64,65,98,129].

The crucial observation here is that the columns of H1, . . . , Hm can be regarded
as elements of the group G = Td, where T stands for the complex unit circle ( [92]).
By doing so, we can use Fourier analysis on G to investigate the problem of MUHs.
We will now collect some notations that will be used in later sections. In this
setting it is natural to use reversed notations compared to Section 3.1: the group
operation in G is complex multiplication in each coordinate, while the operation will
be addition in the dual group. In particular, the unit element will be denoted by
1 in G and by 0 in Ĝ. The dual group is Ĝ = Zd, and the action of a character
γ = (r1, r2, . . . , rd) ∈ Zd on a group element v = (v1, v2, . . . , vd) ∈ Td is given by
exponentiation in each coordinate γ(v) = vγ = vr11 v

r2
2 . . . vrdd . The Fourier transform

of (the indicator function of) a set S ⊂ G is given as Ŝ(γ) =
∑

s∈S s
γ .

The notion of orthogonality and unbiasedness makes it natural to introduce the
following definitions.

Definition 3.3.4. The orthogonality set ORTd is defined as ORTd = {v =
(z1, . . . , zd) ∈ Td : z1 + · · · + zd = 0}, and the unbiasedness set is UBd = {v =
(z1, . . . , zd) ∈ Td : |z1 + · · ·+ zd|2 − d = 0}.

If H1, . . . , Hm are MUHs then the (coordinate-wise) quotient v/u =
(v1/u1, v2/u2, . . . , vd/ud) of any two distinct columns from the matrices will fall into
either ORTd (if v and u are in the same matrix) or into UBd (if v and u are in
different matrices). This enables us to invoke the general scheme of Section 3.1,
Delsarte’s method. As the group Td is not finite (but still compact), we include here
the analogue of Theorem 3.1.4.

Lemma 3.3.5. ( [92]∗) Let G = Td, and let a symmetric subset A = 1/A ⊂ G,
1 ∈ A be given. Assume h is a nonzero function with the following properties:
h(x) = h(1/x), h(x) ≤ 0 for all x ∈ Ac, ĥ(γ) ≥ 0 for all γ ∈ Ĝ. Assume also that
the Fourier inversion formula holds for h (in particular, h can be any finite linear
combination of characters on G). Then for any B = {b1, . . . bm} ⊂ G such that
bj/bk ∈ Ac ∪ {1} the cardinality of B is bounded by |B| ≤ h(1)

ĥ(0)
.

Proof. The proof is analogous to that of Theorem 3.1.4. For any γ ∈ Ĝ define
B̂(γ) =

∑m
j=1 γ(bj). Now, evaluate

S =
∑
γ∈Ĝ

|B̂(γ)|2ĥ(γ). (3.69)

All terms are nonnegative, and the term corresponding to γ = 0 (the trivial
character) gives |B̂(0)|2ĥ(0). Therefore

S ≥ |B|2ĥ(0). (3.70)

On the other hand, |B̂(γ)|2 =
∑

j,k γ(bj/bk), and therefore S =∑
γ,j,k γ(bj/bk)ĥ(γ). Summing up for fixed j, k we get
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∑
γ γ(bj/bk)ĥ(γ) = h(bj/bk) (the Fourier inversion formula), and therefore S =∑
j,k h(bj/bk). Notice that j = k happens |B|-many times, and all the other terms

(when j ̸= k) are non-positive because bj/bk ∈ Ac, and h is required to be non-
positive there. Therefore

S ≤ h(1)|B|. (3.71)

Comparing the two estimates (3.70), (3.71) we obtain |B| ≤ h(1)

ĥ(0)
.

We are now in position to prove a generalization of Theorem 3.3.1.

Theorem 3.3.6. ( [92]∗) Let A be an orthonormal basis in Cd, and let B =
{c1, . . . cr} consist of unit vectors which are all unbiased to A. Assume that for
all 1 ≤ j ̸= k ≤ r the vectors cj and ck are either orthogonal or unbiased to each
other, i.e. either ⟨cj, ck⟩ = 0 or |⟨cj, ck⟩| = 1/

√
d. Then r ≤ d2.

Proof. Let us define the ’forbidden’ set Ad = (ORTd ∪ UBd)
c. As we saw in the

discussion above, the vectors u1, . . .ur ∈ Td (associated to
√
dc1, . . .

√
dcr) satisfy

uj/uk ∈ Acd ∪ {1} for all 1 ≤ j, k ≤ r. Therefore Lemma 3.3.5 can be applied.

Define the ’witness’ function h : Td → R as follows:

h(z1, . . . zd) =
1

(d− 1)d
|z1 + · · ·+ zd|2

(
|z1 + · · ·+ zd|2 − d

)
. (3.72)

It is straightforward to check that h satisfies all requirements. Indeed, h is an
even function which vanishes on ORTd ∪ UBd. The Fourier coefficients of h are
simply the coefficients of the terms after expanding the brackets, and these are
clearly nonnegative. Also ĥ(0) = 1 because ĥ(0) is the integral of h, which is just
the constant term. Also, h(1) = d2, so that we conclude from Lemma 3.3.5 that
|B| ≤ d2.

As shown by Theorem 3.3.2 the result of Theorem 3.3.6 is sharp if d is a prime-
power. If d is not a prime-power then, in principle, it could be possible to find
a better witness function than the h above. However, so far we have not been
able to identify such an improved function in dimension 6, and I personally do not
believe that such an improvement exists (although I cannot prove it). I believe that
Delsarte’s method alone, as presented in Lemma 3.3.5, is not sufficient to prove
|B| < d2 in any dimension d.

All known complete systems of MUHs, in prime-power dimensions, contain ex-
clusively roots of unity as entries. This means that it makes sense to consider the
MUB problem in discrete subgroups of Td, containing Nth roots of unity. We have
done this for d = 6 and N = 12, 16, and Delsarte’s bound shows that for those values
complete sets of MUBs cannot exist.

Proposition 3.3.7. ( [92]∗) For N = 12, 16 there exists no complete system of
MUBs in dimension 6 such that the coordinates of all appearing vectors are N th
roots of unity.

Another observation is that if r = d2 in Theorem 3.3.6 then both estimates
(3.70), (3.71) must hold with equality. On the one hand, it is trivial that (3.71)
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automatically becomes an equality for the h above (because h is zero on ORTd
and UBd). On the other hand, inequality (3.70) becomes an equality if only if
|B̂(γ)|2ĥ(γ) = 0 for all γ ̸= 0. These are non-trivial conditions and we obtain the
following corollary, which is a generalization of Theorem 8 in [11].

Corollary 3.3.8. ( [92]∗) Let A be an orthonormal basis in Cd, and let B =
{c1, . . . cd2} consist of unit vectors which are all unbiased to A. Assume that for all
1 ≤ j ̸= k ≤ d2 the vectors cj and ck are either orthogonal or unbiased to each other.
Write B as a d×d2 matrix, the columns of which are the vectors cj, j = 1, . . . d2. Let
r1, . . . rd denote the rows of the matrix B, and let rj/k = rj/rk denote the coordinate-
wise quotient of the rows. Then the vectors rj/k (1 ≤ j ̸= k ≤ d) are orthogonal to
each other in Cd2, and they are all orthogonal to the vector (1, 1, . . . 1) ∈ Cd2.

3.3.2 Structural results on MUBs in low dimensions

In this section we extend the investigations of Section 3.3.1 with new ideas, and
prove several non-existence results concerning complete systems of MUBs, as well
as some structural results in low dimensions.

In what follows we will assume that a complete system of MUHs H1, . . . Hd

is given. In fact, much of the discussion below remains valid for non-complete
systems after appropriate modifications, but it will be technically easier to restrict
ourselves to the complete case. The general aim is to establish structural properties
ofH1, . . . Hd which give restrictions on what a complete system may look like. If some
of these properties were to contradict each other in a non-primepower dimension d,
then we could conclude that a complete system of dimension d does not exist. This
is one of the main tasks for future research, mainly for d = 6. We will give some
non-existence results in this direction in Section 3.3.3.

Consider each appearing complex Hadamard matrix Hj as a d-element set in
Td (the elements are the columns c1, . . . cd of the matrix; the dependence on j is
suppressed for simplicity), and introduce its Fourier transform

gj(γ) := Ĥj(γ) =
d∑

k=1

cγk for each γ ∈ Zd. (3.73)

Notice that the orthogonality of the rows of Hj implies that if ρ ∈ Zd is any permu-
tation of the vector (1,−1, 0, 0, . . . , 0) then

gj(ρ) = 0. (3.74)

Also, note that conjugation is the same as taking reciprocal for unimodular numbers,
i.e. gj(γ) =

∑d
k=1 c

−γ
k , and therefore the square of the modulus of gj(γ) can be

written as

Gj(γ) := |gj(γ)|2 =
d∑

k,l=1

(ck/cl)
γ for each γ ∈ Zd. (3.75)
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Also, introduce the notation

G(γ) :=
d∑
j=1

Gj(γ) for each γ ∈ Zd. (3.76)

In similar fashion, introduce the Fourier transform of the whole system as

f(γ) :=
d∑
j=1

gj(γ) for each γ ∈ Zd, and (3.77)

F (γ) := |f(γ)|2 =
d∑

u,v

(u/v)γ for each γ ∈ Zd, (3.78)

where the summation goes for all pairs of columns u,v in the matrices H1, . . . , Hd.

The main advantage of taking Fourier transforms is that any polynomial relation
(such as orthogonality or unbiasedness) among the entries of the matrices Hj will be
turned into a linear relation on the Fourier side. We will collect here linear equalities
and inequalities concerning the functions F (γ) and G(γ).

Let πr = (0, 0, . . . 0, 1, 0, . . . 0) ∈ Zd denote the vector with the rth coordinate
equal to 1. Then for each j = 1, . . . d we have

d∑
r=1

Gj(γ + πr) =
d∑
r=1

(
d∑

k,l=1

(ck/cl)
γ+πr

)
=

d∑
k,l=1

(ck/cl)
γ

(
d∑
r=1

(ck/cl)
πr

)
,

and observe that the last sum is zero by orthogonality if k ̸= l, while it is d if k = l.
This means that for each j = 1, . . . d,

d∑
r=1

Gj(γ + πr) = d2 for each γ ∈ Zd, (3.79)

which then implies

d∑
r=1

G(γ + πr) = d3 for each γ ∈ Zd. (3.80)

In a similar fashion we can turn the unbiasedness relations also to linear con-
straints on the Fourier side. Let u/v = (z1, z2 . . . , zd) ∈ Td be the coordinate-wise
quotient of any two columns from two different matrices from H1, . . . Hd. Then u
and v are unbiased, which means that

0 = |
∑
r

zr|2 − d =
∑
r ̸=t

zr/zt. (3.81)
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Using this we can write

∑
r ̸=t

F (γ + πr − πt)−
∑
r ̸=t

G(γ + πr − πt) =
∑
u,v

(u/v)γ

(∑
r ̸=t

(u/v)πr−πt

)
= 0, (3.82)

where the summation on u,v goes for all pairs of columns from different matrices,
and the last equality is satisfied because each inner sum is zero by (3.81). Also, by
(3.80) we have dG(γ) +

∑
r ̸=tG(γ + πr − πt) = d4, and we can use this to rewrite

(3.82) as
dG(γ) +

∑
r ̸=t

F (γ + πr − πt) = d4, (3.83)

which is somewhat more convenient than (3.82).

We also have some further trivial constraints on F and G. Namely,

F (0) = d4, G(0) = d3, and (3.84)

0 ≤ F (γ) ≤ d4, 0 ≤ G(γ) ≤ d3, for each γ ∈ Zd. (3.85)

Also, by the Cauchy-Schwartz inequality we have

F (γ) ≤ dG(γ), for each γ ∈ Zd. (3.86)

Note that the linear constraints (3.80), (3.83), (3.84), (3.85), (3.86) put severe
restrictions on the functions F and G. In fact, it turns out that all the structural
results on complete systems of MUHs in dimensions 2, 3, 4, 5 follow from these
constraints. These structural results are not new (cf. [23]) but nevertheless we list
here the two most important ones as an illustration of the power of this Fourier
approach. The first one is a celebrated theorem of Haagerup [54] which gives a full
classification of complex Hadamard matrices of order 5. In the original paper [54] the
author combines several clever ideas with lengthy calculations to derive the result,
whereas it follows almost for free from the formalism above.

Proposition 3.3.9. ( [54]) Any complex Hadamard matrix of order 5 is equivalent
to the Fourier matrix F5, given by F5(j, k) = ω(j−1)(k−1), (j, k = 1, . . . , 5), where
ω = e2iπ/5.

Proof. Let H1 be a complex Hadamard matrix of order 5. Then the function
G1(γ) = |Ĥ1(γ)|2 satisfies equation (3.79) for all γ ∈ Z5. Now, regard each G1(γ)
as a variable as γ ranges through the following set: Γ = {γ = (γ1, . . . γ5) ∈ Z5 :
|γ1|+ · · ·+ |γ5| ≤ 10}. (We remark that it is possible to reduce the number of vari-
ables considerably due to permutation equivalences. However, it does not change the
essence of the forthcoming argument, only makes the computations much quicker).
Let ρ = (5,−5, 0, 0, 0) ∈ Z5. Set the following linear programming problem: mini-
mize G1(ρ) subject to the conditions (3.79), and G1(0) = 25, and 0 ≤ G1(γ) ≤ 25
for all γ ∈ Γ. A short computer code testifies that the solution to this linear pro-
gramming problem is G1(ρ) ≥ 25, which actually implies G1(ρ) = 25. And the same
holds for any permutation of ρ.
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Also, we may assume without loss of generality that H1 is normalized (i.e. its
first row and column are made up of 1s), and then the information above implies
that all other entries of H1 are 5th roots of unity. It is then trivial to check that
there is only one way (up to equivalence) to build up a complex Hadamard matrix
from 5th roots of unity, namely the matrix F5.

We remark here that all the linear programming problems mentioned in this
section have rational coefficients, so no numerical errors are encountered, and each
result is certifiable (by hand, if necessary). Let us also remark that Proposition 3.3.9
is the only non-trivial result concerning MUHs and MUBs in dimensions d ≤ 5. The
classification of complex Hamamard matrices and MUBs is more or less trivial for
d = 2, 3, 4 due to the geometry of complex unit vectors. We give here the essence of
this classification (for full details see [23]).

Proposition 3.3.10. ( [23], [97]∗) In any normalized complete system of MUHs in
dimension d = 3, 4, 5 all entries of the matrices are dth roots of unity. For d = 2 all
entries are 4th roots of unity.

Proof. The proof of this statement is similar to that of Proposition 3.3.9. Let d =
3, 4, 5. Assume H1, . . . Hd is a normalized complete system of MUHs. Then the
functions F and G must satisfy the linear constraints (3.80), (3.83), (3.84), (3.85),
(3.86). Regarding each F (γ) andG(γ) as a nonnegative variable (as γ ranges through
a sufficiently large cube around the origin in Zd), a short linear programming code
testifies that under these conditions F (ρ) = d4 for all such ρ ∈ Zd which is a
permutation of (d,−d, 0, . . . , 0). This means that all entries in all of the matrices
must be dth roots of unity. The proof is analogous for d = 2 except that in this
case we can only conclude F (4,−4) = 16, so that the matrices contain 4th roots of
unity.

Let us make a remark here about d = 4. In this case it is not true that all nor-
malized Hadamard matrices must be composed of 4th roots of unity. However, it is
true that a complete system of MUHs must be composed of such. This phenomenon
shows up very clearly in our linear programming codes. Writing the constraints
(3.79) on G1(γ), and G1(0) = 16, and 0 ≤ G1(γ) ≤ 16 does not enable us to con-
clude that G1(ρ) = 16 with ρ being a permutation of (4,−4, 0, 0). However, writing
all the constraints (3.80), (3.83), (3.84), (3.85), (3.86) on the functions F and G we
can indeed conclude that F (ρ) = 4G(ρ) = 256.

We end this section with a few remarks concerning d = 6. If we could similarly
conclude that

F (ρ) = 64 for all ρ being a permutation of (6,−6, 0, 0, 0, 0) (3.87)

then it would mean that a complete system of normalized MUHs in dimension 6
can only be composed of 6th roots of unity. Such a structural information would
be wonderful, as it is proven in [12] that no such complete system of MUHs exists.
Therefore, we could conclude that a complete system of MUHs does not exist at
all. Unfortunately, the constraints (3.80), (3.83), (3.84), (3.85), (3.86) do not seem
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to imply (3.87). At least, we have run a linear programming code with γ ranging
through as large a cube as possible (due to computational limitations), and could not
conclude (3.87). Nevertheless, our main strategy for future research in dimension 6
must be as follows: using the linear constraints on F and G try to establish some
structural information on the vectors appearing in a hypothetical complete system
of MUHs, and then show by other means (e.g. a brute force computer search) that
such constraints cannot be satisfied. We formulate here one conjecture which could
be crucial in proving the non-existence of a complete system of MUHs in dimension
6.

Conjecture 3.3.11. ( [97]∗) Let H1 be any complex Hadamard matrix of order 6,
not equivalent to the isolated matrix S6 (cf. [131] for the matrix S6). Let ρ be any
permutation of the vector (1, 1, 1,−1,−1,−1). Then g1(ρ) = 0 for the function g1
defined in (3.73).

This conjecture is supported heavily by numerical data. We have tried hundreds
of matrices randomly from each known family of complex Hadamard matrices of
order 6 (including numerically given matrices from the most recent 4-parameter
family [129]). Currently we cannot prove this conjecture, but in Section 3 we will
show an example of how it could be used in the proof of non-existence results (cf.
Remark 3.3.15). We also mention that the conjecture has recently been proved
in [99] for Karlson’s 3-parameter family [65] of complex Hadamard matrices of order
6.

3.3.3 Non-existence results

We now turn to non-existence results, namely that complete systems of MUHs
with certain properties do not exist. The first of these is that any pair of real
unbiased Hadamard matrices cannot be part of a complete system of MUHs. In
fact, we prove the following stronger statement.

Theorem 3.3.12. ( [97]∗) Let H1, . . . Hd be a complete system of MUHs such that
H1 is a real Hadamard matrix. Then any column vector v = (v1, . . . , vd) of the other
matrices H2, . . . Hd satisfies that

∑d
k=1 v

2
k = 0.

Proof. Let 0 ̸= ρ = (r1, . . . , rd) ∈ Zd be such that
∑d

k=1 rk = 0 and
∑d

k=1 |rk| ≤
4. There are five types of these vectors (up to permutation): (1,−1, 0, . . . , 0),
(2,−2, 0, . . . , 0), (2,−1,−1, 0, . . . , 0), (−2, 1, 1, 0, . . . , 0), and (1, 1,−1,−1, 0, . . . 0).
Then, Theorem 8 in [11] (or Corollary 2.4 in [92]) shows that the function f defined
in (3.77) satisfies

f(ρ) = 0 (3.88)

for all these vectors ρ.

Let c1, c2, . . . , cd2 denote the column vectors appearing in the system H1, . . . Hd.
For each γ ∈ Zd let

v(γ) = (cγ1 , . . . c
γ
d2) ∈ Td2 (3.89)

for k = 1, . . . d. Consider the vectors γk = (0, . . . 0, 2, 0, . . . 0) ∈ Zd with the 2
appearing in position k. Finally, consider the vector w =

∑d
k=1 v(γk), and let us
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evaluate ∥w∥2. On the one hand, the vectors v(γk) are all orthogonal to each other
by (3.88), and they all have length ∥v(γk)∥2 = d2, and hence ∥w∥2 = d3. On the
other hand we know the first d coordinates of w. Each v(γk) has first d coordinates
equal to 1, because H1 is a real Hadamard matrix. Therefore the first d coordinates
of w are all equal to d. Therefore, ∥w∥2 ≥ d3 on account of the first d coordinates.
Hence, all other coordinates of w must be zero, which is exactly the statement of
the theorem.

Theorem 3.3.12 implies immediately the following corollary.

Corollary 3.3.13. ( [97]∗) Let H1, . . . Hd be a complete system of MUHs such that
H1 is a real Hadamard matrix. Then there is no further purely real column in any of
the matrices H2, . . . , Hd. In particular, it is impossible to have two real Hadamard
matrices in a complete set of MUHs.

This statement is sharp in the sense that for d = 2, 4 the complete systems of
MUHs are known to contain one real Hadamard matrix. Also, in several dimensions
d = 4n2 pairs (and even larger systems) of real unbiased Hadamard matrices are
known to exist [14, 57], so that the corollary above is meaningful and non-trivial.

Our next result is a new proof of the fact in dimension 6 the Fourier matrix F6

cannot be part of a complete system of MUHs. This result is well-known, but the
only proof we are aware of uses some computer algebra, while we present an easy
conceptual proof here.

Proposition 3.3.14. ( [97]∗) There exists no complete system of MUHs in dimen-
sion 6 which contains the Fourier matrix F6.

Proof. Assume by contradiction that such a system H1, . . . H6 exists, and assume
H1 = F6. Consider the vectors γ1 = (1, 1, 1, 0, 0, 1), γ2 = (0, 0, 1, 1, 1, 1), γ3 =
(1, 1, 0, 1, 1, 0), γ4 = (0, 1, 0, 1, 0, 2), γ5 = (1, 0, 0, 0, 1, 2), and γ6 = (0, 1, 0, 0, 2, 1),
and consider the corresponding vectors v(γk) defined in (3.89), and let w =∑6

k=1 v(γk). All the vectors v(γk) are orthogonal to each other by (3.88), there-
fore ∥w∥2 = 216. On the other hand, we know the first 6 coordinates of w. It
is easy to calculate that each of these coordinates has modulus 6, and therefore
∥w∥2 ≥ 216 on account of the first 6 coordinates. This implies that all the other
coordinates of w must be zero. This yields a polynomial identity for the coordinates
of any column vector appearing in the matrices H2, . . . , H6. Instead of using this
identity directly, however, we observe that the same argument applies to the vectors
γ1, . . . γ5 and γ′6 = (2, 0, 0, 1, 0, 1), and w′ = v(γ′6) +

∑5
k=1 v(γk). By considering the

difference w−w′ we conclude that v(γ6) and v(γ′6) must coincide in the last 30 coor-
dinates. That is, if (z1, . . . , z6) is any column vector in the matrices H2, . . . H6 then
z2z

2
5z6 = z21z4z6, and hence z2z25 = z21z4. Furthermore, one can permute the coordi-

nates of γk in a cyclic manner, and the argument remains unchanged, yielding this
time z5z22 = z24z1. Dividing these two equations finally gives z5/z2 = z1/z4 for each
of the last 30 vectors in our complete system of MUHs. This means, by definition,
that the last 30 coordinates of the vectors v(0,−1, 0, 0, 1, 0) and v(1, 0, 0,−1, 0, 0)
coincide. But this is a contradiction, because these vectors should be orthogonal to
each other by (3.88).
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Finally, we discuss a non-existence result which states that the matrices F6(a, b)
of the Fourier family (cf. [131] for a formula of these matrices) cannot be extended
to a complete system of MUHs in dimension 6.

Theorem 3.3.15. ( [62,97]∗) There exists no complete system H1, . . . , H6 of MUHs
in dimension 6 which contains any of the matrices F6(a, b) of the Fourier family.

Proof. This theorem was proved rigorously in [62] by a massive computer search after
a discretization scheme. We sketch the proof here, on the condition that Conjecture
3.3.11 is valid. The argument is very elegant, and shows a possible way forward in
proving the non-existence of complete systems of MUHs in dimension 6.

First, note that it is equivalent to prove the statement for the transposed fam-
ily F T

6 (a, b). To see this, assume in general that H1, . . . , H6 is a complete sys-
tem of MUHs, and consider the extended system H1, . . . , H6,

√
dI (where I is

the identity matrix). Multiplying everything from the left by 1√
d
H∗

1 we see that√
dI, 1√

d
H∗

1H2, . . .
1√
d
H∗

1H6, H
∗
1 is also a complete system of MUHs. Therefore, H1

can be part of a complete system of MUHs if and only if H∗
1 can. Then conjugating

each column in all the matrices we see that H∗
1 can be part of a complete system

of MUHs if and only if HT
1 can. The significance of this fact is that the transposed

family F T
6 (a, b) is technically easier to handle because each member of the family

contains the three column vectors c1 = (1, 1, 1, 1, 1, 1), c2 = (1, ω, ω2, 1, ω, ω2) and
c3 = (1, ω2, ω, 1, ω2, ω), where ω = e2iπ/3.

Also, it is well-known (see [22]) that a complex Hadamard matrix equivalent to
S6 cannot be part of a complete system of MUHs (in fact, it cannot even be part
of a pair of MUHs), so that we can assume without loss of generality that none
of H1, . . . H6 are not equivalent to S6. The significance of this fact is that now
Conjecture 3.3.11 (if true) can be invoked.

Assume now, by contradiction, that H1 = F T
6 (a, b), H2, . . . , H6 is a complete

system of MUHs. One can make a clever selection of vectors in Z6 such that the
same argument as in Proposition 3.3.14 can be used. Namely, let
γ1 = (0, 0, 0, 0, 0, 0), γ2 = (0, 0, 1,−1,−1, 1), γ3 = (0, 0, 1, 0, 0,−1),
γ4 = (0, 0, 2,−1,−1, 0), γ5 = (0, 1, 0, 0,−1, 0), γ6 = 1(0, 1, 1, 0,−1,−1),
γ7 = (1, 0, 0,−1, 0, 0), γ8 = (1, 0, 1,−1, 0,−1), γ9 = (1, 1, 0,−1,−1, 0),
γ10 = (1, 1, 1,−1,−1,−1), γ11 = (1,−1, 1, 0,−1, 0), γ12 = (1, 0, 1, 0,−2, 0),
while let γ′11 = (−1, 1, 1,−1, 0, 0), γ′12 = (0, 1, 1,−2, 0, 0).

For the system γ1, , . . . , γ10, γ11, γ12 all the vectors v(γk) are orthogonal to each
other by either (3.88) or by Conjecture 3.3.11, so that ∥w∥2 = |

∑12
k=1 v(γk)|2 = 432.

(This is where we use Conjecture 3.3.11.) On the other hand, three coordinates of w
corresponding to the columns c1, c2, c3 are known exactly, and they happen to be 12
(the vectors γk were chosen accordingly). As in Proposition 3.3.14 this leads us to
conclude that all the other 33 coordinates of w must be zero. The same is true for the
vector w′ generated by the system γ1, , . . . , γ10, γ

′
11, γ

′
12. By considering the difference

w−w′ we conclude that if (z1, . . . , z6) is any column (different from c1, c2, c3) in our
complete system of MUHs then the identity z1z3

z2z5
+ z1z3

z25
= z2z3

z1z4
+ z2z3

z24
must hold. After

simplifying by z3 and conjugating the equation we get z1z4(z1 + z4) = z2z5(z2 + z5).
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By applying a cyclic permutation to the coordinates of the selected γk’s we can
derive in the same manner that z2z5(z2 + z5) = z3z6(z3 + z6). Furthermore, 30 of
these columns (z1, . . . , z6) – the ones contained in H2, . . . , H6 – must be unbiased to
c1 = (1, 1, 1, 1, 1, 1), and hence they must satisfy |z1 + · · ·+ z6| =

√
6. It is not hard

to show that there are exactly 56 vectors (z1, . . . , z6) satisfying all these constraints
(one can write up the solutions exactly). However, one can form pairs among these
56 vectors such that in any pair the two vectors are neither orthogonal nor unbiased
to each other. Therefore, our system can contain at most one vector from each pair,
i.e. at most 28 vectors, a contradiction.

We believe that the proof of the non-existence of complete systems of MUHs
in dimension 6 will hinge on Conjecture 3.3.11. The reason is that it introduces
yet another non-trivial linear constraint on the function G, and these constraints
will ultimately lead to a contradiction (maybe indirectly, as in Proposition 3.3.14).
Therefore, we would be very interested to see a proof of Conjecture 3.3.11.

3.4 Future prospects

In this section we list some further possible applications of Delsarte’s method. It
is remarkable that the method is so flexible that it can be applied to several problems
coming from different parts of mathematics.

3.4.1 Integer sets avoiding kth powers

It is a famous problem in number theory to give bounds on the cardinality of a
set B ⊂ {0, 1, . . . , N} such that the differences bi−bj avoid the square numbers. The
best known lower bound is given by a construction of Ruzsa [114], which provides
such a set with |B| ≥ cNα with α ≈ 0.733 (actually, Ruzsa’s construction was
recently used in [10] to improve the exponent a tiny bit to α ≈ 0.7334). The best
known upper bound is given by Pintz, Steiger and Szemerédi [107] who prove that
|B| ≤ cN

(logN)c′ log log log logN .

The same problem can also be asked if we replace the squares with cubes or
any kth powers. Interestingly, the application of Delsarte’s method seems to be
significantly easier if we consider sets avoiding the cubes (or any odd powers) than
those avoiding the squares (or any even powers). The reason for lies in the modular
formulation of the problem: for a fixed N , what is the maximal cardinality of a set
B ⊂ ZN such that B−B avoids quadratic (or cubic) residues? The crucial difference
is that cubic residues are symmetric to 0 for any N , while quadratic residues are
not.

In these problems it is clear that Delsarte’s method can be applied, but it is not
at all clear how to find the "best" witness function f (cf. the proof of Theorem 3.1.4
in Section 3.1.2), and what upper bound it gives. In a joint work with I. Ruzsa
we aim to improve the upper bound of [107]. In the modular formulation of the
problems we can prove |B| ≤ N1−δ for the cubic residues, but not for the quadratic
residues. The transition from the modular case to the original setting of the integers
seems equally difficult (and has not yet been done) for the squares and the cubes.
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3.4.2 Sets avoiding unit distances

What is the maximal possible asymptotic upper density m1(Rd) of a measurable
set B ⊂ Rd such that B − B avoids the unit sphere (i.e. no two points of B are
of distance 1 from each other)? The Frankl and Wilson intersection theorem [42]
implies the exponential bound m1(Rd) ≤ 1.207−d, which was improved later by Raig-
orodskii [109] to m1(Rd) ≤ 1.239−d, using similar ideas. A different approach, based
on Delsarte’s method and the clever subgraph trick of Lemma 3.2.1, was introduced
by Filho and Vallentin in [106]. This method resulted in improved upper bounds
for small values of d, but gave the inferior bound m1(Rd) ≤ 1.165−d asymptotically.
However, Bachoc, Pasuello and Thiery [3] managed to combine the ideas of [42,109]
and [106] to obtain the best known asymptotic upper bound m1(Rd) ≤ 1.268−d.

We are primarily interested in the planar case, d = 2. The best known construc-
tion, due to Croft [32], gives the lower bound m1(R2) ≥ 0.2293. The best known
upper bound m1(R2) ≤ 0.268 is given in [106] by a combination of Delsarte’s method
and the subgraph trick of Lemma 3.2.1. It improves an earlier bound of Székely [128],
m1(R2) ≤ 0.279. However, the conjecture of Erdõs, m1(R2) < 1/4 remains open. In
the near future we plan to tackle this conjecture by combining Delsarte’s method,
the subgraph trick [106], and earlier ideas of Székely [128], altogether.

3.4.3 Littlewood’s conjecture

Here we describe a rather surprising possible application of Delsarte’s method.
In the original formulation of Littlewood’s conjecture it is not at all obvious how
Delsarte’s method could be of any use.

Littlewood’s conjecture states that for all real numbers α, β ∈ R we have
lim inf n∥nα∥∥nβ∥ = 0, where ∥x∥ denotes the distance of x from the closest in-
teger. This conjecture has been open for some 80 years and the strongest result so
far asserts that the set of possible exceptions α, β has Hausdorff dimension 0 in the
plane [39].

One can only see the relevance of Delsarte’s method after reading a combi-
natorial reformulation of the problem on Tim Gowers’ web-blog [46] (actually,
I was introduced to the same reformulation by I. Ruzsa a few weeks earlier).
Following Gowers, let us assume by contradiction that there exists a counterex-
ample α, β to Littlewood’s conjecture. Then there exists a δ > 0 such that
n∥nα∥∥nβ∥ > δ, for all n. Now, consider a large even integer M , and take the
points Pj = (j/M, {ja}, {jb}) in the 3-dimensional torus T3 = [−1/2, 1/2)3, for
j = 1, . . .M/2. (Here {x} denotes the fractional part of x.) There are M/2 such
points Pj and they have the property that the difference of any two of them lies
outside the hyperboloid Hε = {(x, y, z) : |xyz| < ε}, where ε = δ/M . This leads
to the fact that for every ε > 0 there must exist c/ε points in the 3-dimensional
torus T3 = [−1/2, 1/2)3 such that the difference of any two of them falls outside the
hyperboloid Hε = {(x, y, z) : |xyz| < ε}. Therefore, in the language of Delsarte’s
scheme the underlying group is G = T3 and the forbidden set is A = Hε.

What is the maximum number of points in T3 such that all the pairwise differ-
ences lie outside Hε? In order to prove Littlewood’s conjecture we must show that
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this quantity is o(1/ε). To do so, it is sufficient to exhibit witness functions hε on
the torus T3 such that hε(x) = hε(−x), hε|G\Hε ≤ 0, ĥ(γ) ≥ 0 for all γ ∈ Ĝ = Z3,
and h(0)/ĥ(0) = o(1/ε). Of course, it is not at all obvious how to construct such
functions, but neither is it obvious that such witness functions cannot exist.

In fact, using the duality principle described in the Section 3.1.3, we can also
see what is needed to refute Delsarte’s method in this setting (i.e. to prove that
it cannot lead to the solution of Littlewood’s conjecture; but be aware that such a
refutation would only mean the failure of Delsarte’s method and not the falsity of
Littlewood’s conjecture). We should find dual-witness functions fε on the torus T3

such that fε(x) = fε(−x), fε is supported on Hc
ε , f̂ε(0) = 1, and f̂(γ) ≥ −cε for all

γ ∈ Z3.

Starting from scratch it is not at all obvious whether the witnesses hε or the
dual-witnesses fε exist. What we know, by duality, is that either hε or fε exist. Tim
Gowers ventured to call it a "win-win" situation. The only way we can "lose" is if we
are not able to decide whether hε or fε exists. And this is exactly the situation right
now, unfortunately. Nevertheless, this remains a promising approach to Littlewood’s
conjecture.

3.4.4 Improving the Delsarte bound

The Delsarte bound, in itself, is so strong that it provides the best known asymp-
totic upper bound in some famous problems. Such is the case of the original setting
of Delsarte: the maximum number A(n, d) of binary codewords in G = Zn2 such that
any two of them differ in at least d positions. As mentioned in Section 3.1.9, asymp-
totically, as d/n → γ for some 0 < γ < 1, the best current upper bound is given
by McEliece et al. [100] using the Delsarte bound with specific witness functions.
Another famous example is the maximal density of sphere-packings in Rd where the
best known asymptotic upper bound is also given by Delsarte’s method in [63], and
in small dimensions in [29].

Therefore, any improvement on Delsarte’s bound could be of paramount im-
portance. We have already seen such an improvement, Lemma 3.2.1, which was
introduced in [106]. It led to the improved asymptotic upper bound [3] on the max-
imal density of sets avoiding unit-distances in Rd, and also to the improved upper
bound on the independence number of Paley-graphs in [4]. Here I will describe
another possible improvement of the Delsarte bound (not yet published).

Assume that G is a compact Abelian group, and A ⊂ G is a standard set in the
sense of Section 3.1. As usual we are looking for the maximal cardinality of a subset
B ⊂ G such that (B − B) ∩ A = {0}. Assume we have some further restriction on
the set B: not only must each bj−bk fall into Ac∪{0} but also B must be contained
in some prescribed set C ⊂ G. We can turn this information to an improvement of
the Delsarte bound as follows.

Theorem 3.4.1. ( [93])∗ Let C ⊂ G be a measurable subset. Assume h is a witness
function as in the Delsarte bound: h : G → R, h(x) ≤ 0 for all x ∈ Ac, ĥ(γ) ≥ 0 for
all γ ∈ Ĝ, and the Fourier inversion formula holds for h. Let Null denote the set
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of γ’s where ĥ(γ) = 0. Assume furthermore that we have another witness function
K : G → C with the following properties: K(x) ≥ 1 for x ∈ C, K̂(1) = 0, and
K̂(γ) = 0 for all γ ∈ Null. Then any B ⊂ C such that B −B ⊂ Ac ∪ {0} satisfies

|B| ≤ h(0)

ĥ(1) +
(∑

γ /∈Null
|K̂(γ)|2
ĥ(γ)

)−1 (3.90)

Proof. As in the proof of Lemma 3.3.5 define

S =
∑
γ∈Ĝ

|B̂(γ)|2ĥ(γ). (3.91)

We will make use of the non-trivial terms in (3.91). Namely, ∑
γ ̸=1,γ /∈Null

|B̂(γ)|2ĥ(γ)

 ∑
γ ̸=1,γ /∈Null

|K̂(γ)|2

ĥ(γ)

 ≥ (3.92)

∣∣∣∣∣∣
∑

γ ̸=1,γ /∈Null

B̂(γ)K̂(γ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
γ∈Ĝ

B̂(γ)K̂(γ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∑
x∈G

B(x)K(x)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
x∈C

B(x)K(x)

∣∣∣∣∣
2

≥ |B|2

where we used Cauchy-Schwarz, the assumptions on K̂(γ), Parseval, and the as-
sumptions on B(x) and K(x), respectively. Therefore, we get an improved version
of (3.70), namely:

S ≥ |B|2ĥ(1) + |B|2∑
γ ̸=0,γ /∈Null

|K̂(γ)|2
ĥ(γ)

. (3.93)

Comparing this with S ≤ h(1)|B| (as proven in (3.71)) yields the desired bound
(3.90).

We see that Theorem 3.4.1 requires a combination of two witness functions h(x)
and K(x) (as well as a prescribed set C in which B is assumed to be located).
Unfortunately, it is not at all clear how to optimize h and K in actual applications.
I believe that the best chance to apply (3.90) successfully arises in situations when
the Delsarte bound is already sharp. In such cases the sheer existence of any K
can lead to new results. Such is the case, for example, in the problem of MUBs.
It remains to be seen whether Theorem 3.4.1 will be as useful for applications as
Lemma 3.2.1 has turned out to be.
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4 Cardinality of sumsets
In this chapter we describe some selected results concerning the cardinality of

sumsets. The structure and cardinality of sumsets are central objects of study in
additive combinatorics.

The results of this chapter are based on the papers [52, 53, 95]. They constitute
an important part of my work in additive combinatorics, but the methods here are
purely combinatorial and do not use Fourier analysis. For this reason I will keep
this chapter shorter.

In Section 4.1 we consider finite sets of integers A1, . . . , Ak and study the cardi-
nality of the k-fold sumset A1 + · · ·+Ak compared to those of (k − 1)-fold sumsets
A1+ · · ·+Ai−1 +Ai+1 + · · ·+Ak. We prove superadditivity and submultiplicativity
properties for these quantities in Theorems 4.1.1 and 4.1.2. This section is based
on [52].

In Section 4.2 we extend Freiman’s inequality on the cardinality of the sumset of
a d dimensional set. We also consider different sets related by an inclusion of their
convex hull, and one of them added possibly several times, in Theorem 4.2.5. This
section is based on [95].

4.1 Superadditivity and submultiplicativity properties

Let A1, A2, . . . , Ak be finite sets of integers. How does the cardinality of the
k-fold sumset A1 + A2 + · · · + Ak compare to the cardinalities of the (k − 1)-fold
sums A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak?

In the special case when all the sets are the same, Ai = A ⊂ Z, Vsevolod Lev [85]
proved that the quantity |kA|−1

k
is increasing (where we have used the standard

notation for the k-fold sum A + A + · · · + A = kA). The first cases of this result
assert that

|2A| ≥ 2|A| − 1 (4.1)

and
|3A| ≥ 3

2
|2A| − 1

2
. (4.2)

Inequality (4.1) can be extended to different summands as

|A+B| ≥ |A|+ |B| − 1, (4.3)

and this inequality also holds for sets of residues modulo a prime p, the only ob-
struction being that a cardinality cannot exceed p, i.e.

|A+B| ≥ min(|A|+ |B| − 1, p); (4.4)

this familiar result is known as the Cauchy-Davenport inequality.

Motivated by these results Imre Ruzsa asked whether inequality (4.2) can also
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be extended to different summands in the following form:

|A+B + C| ≥ |A+B|+ |B + C|+ |A+ C| − 1

2
. (4.5)

Lev noticed (personal communication) that this is true in the case when the sets
have the same diameter. (The diameter of a set is the difference of its maximum
and minimum.) In this section we establish this property in general, for an arbi-
trary number of summands, and with the extra twist that in the k-fold sumset it is
sufficient to use the smallest or largest element of at least one of the summands.

Theorem 4.1.1. ( [52]∗) Let A1, . . . , Ak be finite, nonempty sets of integers. Let
A′
i be the set consisting of the smallest and the largest elements of Ai (so that 1 ≤

|A′
i| ≤ 2). Put

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak,

S ′
i = A1 + · · ·+ Ai−1 + A′

i + Ai+1 + · · ·+ Ak,

S ′ =
k∪
i=1

S ′
i.

We have

|S| ≥ |S ′| ≥ 1

k − 1

k∑
i=1

|Si| −
1

k − 1
. (4.6)

The possibility to extend inequality (4.2) to residues modulo a prime p was
investigated in a paper by Gyarmati, Konyagin, Ruzsa [51]. A naive attempt to
extend it in the form

|3A| ≥ min

(
3

2
|2A| − 1

2
, p

)
fails unless |A| is very small in comparison to p, and for larger values the relationship
between the sizes of 2A and 3A is complicated.

In a sense, Theorem 4.1.1 means that the cardinality of sumsets grows faster
than linear. On the other hand, we show that it grows slower than exponential. For
identical summands this means that |kA|1/k is decreasing, which is Theorem 7.5 in
Nathanson’s book [104].

Here we establish a more general result for different summands.

Theorem 4.1.2. ( [52]∗) Let A1, . . . , Ak be finite, nonempty sets in an arbitrary
commutative semigroup. Put

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak.

We have

|S| ≤

(
k∏
i=1

|Si|

) 1
k−1

. (4.7)
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For three summands this inequality was established earlier by Imre Ruzsa, [116,
Theorem 5.1]. The proof given in [116] is different and works also for noncommu-
tative groups with a proper change in the formulation. On the other hand, that
argument relied on the invertibility of the operation, so we do not have any result
for noncommutative semigroups. Neither could we extend that argument for more
than three summands, and hence the following question remains open.

Problem 4.1.3. ( [52]) Let A1, . . . , Ak be finite, nonempty sets in an arbitrary
noncommutative group. Put

S = A1 + · · ·+ Ak,

ni = max
a∈Ai

|A1 + · · ·+ Ai−1 + a+ Ai+1 + · · ·+ Ak| .

Is it always true that

|S| ≤

(
k∏
i=1

ni

) 1
k−1

? (4.8)

The superadditivity property clearly does not hold in such a general setting (as
it fails already mod p, see [51]). However, it can easily be extended to torsion-free
groups (just as everything that holds for finite sets of integers) with the change of
formulation that “smallest” and “largest” do not make sense in such generality.

Theorem 4.1.4. ( [52]∗) Let A1, . . . , Ak be finite, nonempty sets in a torsion-free
group G,

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak.

There are subsets A′
i ⊂ Ai having at most two elements such that with

S ′
i = A1 + · · ·+ Ai−1 + A′

i + Ai+1 + · · ·+ Ak,

S ′ =
k∪
i=1

S ′
i

we have

|S| ≥ |S ′| ≥ 1

k − 1

k∑
i=1

|Si| −
1

k − 1
. (4.9)

Another natural way of generalizing Theorem 4.1.2 is to restrict the summation
of elements to a prescribed addition graph. A possible meaning of this in the case
k = 3 (and identical sets) could read as follows. We consider a graph G on our
set A; on the right hand side of the proposed inequality we take the number of
different sums of connected pairs; on the left hand side we take the number of
different sums of those triplets where each pair is connected. However, the resulting

inequality, |A
G
+ A

G
+ A|2 ≤ |A

G
+ A|3, can fail spectacularly. Take A = [1, n], let S

be some subset of the even integers lying in the interval (2n/3, 4n/3), and connect
two elements of A if their sum is in S. Then for every s1, s2, s3 ∈ S we can find
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a1, a2, a3 ∈ A, a1 = (−s1 + s2 + s3)/2, etc., whose pairwise sums give these si’s.
Also, a1 + a2 + a3 = (s1 + s2 + s3)/2. Therefore, if S is such that all the triple sums
s1+s2+s3 are distinct, then the above mapping (s1, s2, s3) 7→ (a1, a2, a3) is injective,
and the left-hand side of the inequality will be at least

(|S|
3

)2 ≈ 1
36
|S|6, much larger

than the right hand side, which is |S|3. It would be interesting to say something
when the graphs are sufficiently dense.

4.1.1 Proof of superadditivity

In this section we prove Theorems 4.1.1 and 4.1.4.

Proof of Theorem 4.1.1. Both sides of the inequality are invariant under translation,
therefore we can assume that the smallest element of each Ai is 0. Also, let us
denote the largest element of Ai by ai. Then S is a subset of the interval I =
[0, a1 + a2 + · · ·+ ak].

We will use the notation A≤a := A∩ (−∞, a], and A>a := A∩ (a,+∞). Consider
the sets

(a1 + S1)>a1 (S2)≤a1
(a2 + S2)>a1+a2 (S3)≤a1+a2

. . . . . .

(ak−2 + Sk−2)>a1+···+ak−2
(Sk−1)≤a1+···+ak−2

(ak−1 + Sk−1)>a1+···+ak−1
(Sk)≤a1+···+ak−1

We are going to calculate the total cardinality of these sets in two ways. First,
each Si, 2 ≤ i ≤ k − 1 contributes two items to this table, an initial segment to a
right hand column and a translation of the corresponding final segment to the left
hand column of the next row; these add up to |Si|. The set S1 occurs only as the
very first item and it contributes |S1| − 1; the set Sk occurs as the last item and it
contributes |Sk|. Hence the sum of cardinalities is

∑
|Si| − 1.

On the other hand, the two sets in each row are disjoint and they are subsets of
S ′. Consequently the total size of the sets is at most (k− 1) |S ′|. By comparing this
upper estimate to the previous sum we obtain

(k − 1)|S| ≥ (k − 1)|S ′| ≥
k∑
i=1

|Si| − 1 (4.10)

as claimed.

Proof of Theorem 4.1.4. This is a standard reduction argument to the case of inte-
gers. Let H denote the subgroup generated by the elements of ∪ki=1Ai. As a finitely
generated torsion-free group H is isomorphic to Zd for some d, therefore we can
assume without loss of generality that Ai ⊂ Zd. Then, for a large enough integer m
the homomorphism ϕm : Zd → Z defined by (z1, z2, . . . zd) 7→ mz1 +m2z2 + . . .mdzd
preserves the additive identities of all elements of sumsets involved in the desired
inequality (this means that ϕm is one-to-one restricted to these elements). Finally,
if Bi denotes the image of Ai under ϕm then the desired two-element subsets A′

i can
be chosen as A′

i = ϕ−1
m (B′

i).
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4.1.2 Proof of submultiplicativity

In this section we prove Theorem 4.1.2. We begin with a lemma on the size of
projections.

Lemma 4.1.5. ( [52]∗) Let d ≥ 2 be an integer, X1, . . . , Xd arbitrary sets,

B ⊂ X1 × · · · ×Xd

be a finite subset of their Cartesian product. Let

Bi ⊂ X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xd

be the corresponding “projection” of B:

Bi = {(x1, . . . , xi−1, xi+1, . . . , xd) : ∃x ∈ Xi such that (x1, . . . , xi−1, x, xi+1, . . . , xd) ∈ B}.

We have

|B|d−1 ≤
d∏
i=1

|Bi| . (4.11)

This lemma is not new. It is essentially equivalent to an entropy inequality of
Han [56], see also Cover–Thomas [31, Theorem 16.5.1]. It also follows from Shearer’s
inequality [27] or from Bollobás and Thomason’s Box Theorem [17]. We include a
proof for convenience.

Proof. We prove this lemma by induction on d. For d = 2 the statement is obvious.
Assume now that the statement holds for d− 1, and consider the case d.

Make a list {b1, b2, . . . , bt} of those numbers which appear as a first coordinate
of some element in B. Partition the set B according to these first coordinates as

B = B(b1) ∪B(b2) ∪ · · · ∪B(bt), (4.12)

where
B(bi) = {(bi, x2, x3, . . . , xd) = b : b ∈ B}. (4.13)

By the inductive hypothesis we have |B(bi)|d−2 ≤ |B(bi)2| · · · |B(bi)d| , that is,

|B(bi)|
d−2
d−1 ≤ (|B(bi)2| · · · |B(bi)d|)

1
d−1 . (4.14)

It is also clear that |B(bi)| ≤ |B1| , and hence

|B(bi)| ≤ (|B(bi)2| · · · |B(bi)d|)
1

d−1 |B1|
1

d−1 . (4.15)
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Using this and Hölder’s inequality we obtain

|B| =
t∑
i=1

|B(bi)| ≤ |B1|
1

d−1

t∑
i=1

(|B(bi)2| · · · |B(bi)d|)
1

d−1 ≤ (4.16)

≤ |B1|
1

d−1

d∏
j=2

(
t∑
i=1

|B(bi)j|

) 1
d−1

=
d∏
j=1

|Bj|
1

d−1 , (4.17)

which proves the statement.

We now turn to the proof of Theorem 4.1.2.

Proof. Let us list the elements of the sets A1, A2, . . . , Ak in some order:

A1 = {c11, c12, . . . , c1t1},

A2 = {c21, c22, . . . , c2t2},
...

Ak = {ck1, ck2, . . . , cktk}.

For each s ∈ S let us consider the decomposition

s = c1i1 + c2i2 + · · ·+ ckik , (4.18)

where the finite sequence (i1, i2, . . . , ik), composed of the (second) indices of cjij , is
minimal in lexicographical order. Let us define a function f from S to the Cartesian
product A1 × A2 × · · · × Ak, by

f(s) = (c1i1 , c2i2 , . . . , ckik) ∈ A1 × · · · × Ak. (4.19)

This function is well-defined, and it maps the set S to a set B ⊂ A1 × · · · ×Ak such
that |B| = |A1 + · · ·+ Ak| . Applying Lemma 4.1.5 to the set B we get

|B|k−1 ≤ |B1| |B2| · · · |Bk| . (4.20)

Therefore, it is sufficient to show that

|Bj| ≤ |A1 + A2 + · · ·+ Aj−1 + Aj+1 + · · ·+ Ak| . (4.21)

This inequality, however, follows easily from the fact that sum of the coordinates
is distinct for each element in Bj. Indeed, assume that there exist two elements
z ̸= z′ ∈ Bj such that

z = (c1i1 , c2i2 , . . . , cj−1ij−1
, cj+1ij+1

, . . . ckik),

z′ = (c1i′1 , c2i′2 , . . . , cj−1i′j−1
, cj+1i′j+1

, . . . , cki′k),

and
c1i1 + c2i2 + · · ·+ ckik = c1i′1 + c2i′2 + · · ·+ cki′k .
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We may assume that

(i1, i2, . . . , ij−1, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, i

′
j+1, . . . , i

′
k).

in lexicographical order.
Now, z′ ∈ Bj therefore there exists an element d ∈ Aj and u ∈ S, such that

u = c1i′1 + c2i′2 + · · ·+ cj−1i′j−1
+ d+ cj+1i′j+1

+ · · ·+ cki′k ,

and
f(u) = (c1i′1 , c2i′2 , . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′k) ∈ B.

Note that

u = c1i1 + c2i2 + · · ·+ cj−1ij−1
+ d+ cj+1ij+1

+ · · ·+ ckik ,

also holds. However, with d = cjij we have

(i1, i2, . . . , ij−1, ij, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, ij, i

′
j+1, . . . , i

′
k).

in lexicographical order, therefore the definition of f implies that
f(u) ̸= (c1i′1 , c2i′2 , . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′k), a contradiction.

4.1.3 Generalizations

The results of Section 4.1.1 and 4.1.2 have been generalized in several ways since
their publication. In particular, the following generalization of Theorem 4.1.2 was
already conjectured in [52], and later proved in [53], and independently in [89].
The paper [89] also proves many interesting entropy-inequality analogues of sumset-
inequalities.

Theorem 4.1.6. ( [89], [53]∗) Let A,B1, . . . Bk be finite sets of integers, and S ⊂
B1 + · · ·+Bk. Then

|S + A|k ≤ |S|
k∏
i=1

|A+B1 + · · ·+Bi−1 +Bi+1 + · · ·+Bk|. (4.22)

Theorem 4.1.2 corresponds to the special case S = B1 + · · · + Bk. The proof
of Theorem 4.1.6 in [53] proceeds via the following generalized Plünnecke-type in-
equality, proven in [53].

Theorem 4.1.7. ( [53]∗) Let l < k be integers, and let A, B1, . . . , Bk be finite sets
in a commutative group G. Let K = {1, 2, . . . , k}, and for any I ⊂ K put

BI =
∑
i∈I

Bi,

|A| = m, |A+BI | = αIm.
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(This is compatible with the previous notation if we identify a one-element subset of
K with its element.) Write

β =

 ∏
L⊂K,|L|=l

αL

(l−1)!(k−l)!/(k−1)!

(4.23)

There exists an X ⊂ A, X ̸= ∅ such that

|X +BK | ≤ β|X|. (4.24)

Another generalization was given by Balister and Bollobás in [5]. A collection
C of subsets C ⊂ {1, . . . , k} is called a uniform m-cover if each j ∈ {1, . . . , k} is
contained in exactly m subsets C.

Theorem 4.1.8. ( [5]) Let A1, . . . , Ak be finite sets in a commutative semigroup,
and let S = A1 + · · · + Ak. Let C be a uniform m-cover, and for any C ∈ C let
SC =

∑
j∈C Aj. Then |S|m ≤

∏
C∈C |SC |.

If the sets Aj lie in a torsion-free commutative group then m(|S| − 1) ≥∑
C∈C(|SC | − 1).

The proof of the first part of the theorem is based on the following Box Theorem
of Bollobás and Thomason [17].

Theorem 4.1.9. ( [17]) Given a body K ⊂ Rn, there is a box B ⊂ Rn with |K| = |B|
and |KA| ≥ |BA| for every A ⊂ [n], where KA denotes the volume of the projection
of the body to the subspace corresponding to A.

4.2 Sumsets and the convex hull

The aim of this section is to give a lower estimate for the cardinality of certain
sumsets in Rd.

We say that a set in Rd is proper d-dimensional if it is not contained in any affine
hyperplane. Our starting point is the following classical theorem of Freiman.

Theorem 4.2.1. ( [43, Lemma 1.14]) Let A ⊂ Rd be a finite set, |A| = m. Assume
that A is proper d-dimensional. Then

|A+ A| ≥ m(d+ 1)− d(d+ 1)

2
.

We will show that to get this inequality it is sufficient to use the vertices (extremal
points) of A.

Definition 4.2.2. We say that a point a ∈ A is a vertex of a set A ⊂ Rd if it is
not in the convex hull of A \ {a}. The set of vertices will be denoted by vertA.

The convex hull of a set A will be denoted by convA.
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Theorem 4.2.3. ( [95]∗) Let A ⊂ Rd be a finite set, |A| = m. Assume that A is
proper d-dimensional, and let A′ = vertA, We have

|A+ A′| ≥ m(d+ 1)− d(d+ 1)

2
.

This can be extended to different summands as follows.

Theorem 4.2.4. ( [95]∗) Let A,B ⊂ Rd be finite sets, |A| = m. Assume that B is
proper d-dimensional and A ⊂ convB. We have

|A+B| ≥ m(d+ 1)− d(d+ 1)

2
.

Finally we extend it to several summands as follows. We use kB = B + · · ·+B
to denote repeated addition. As far as we know even the case of A = B seems to be
new here.

Theorem 4.2.5. ( [95]∗) Let A,B ⊂ Rd be finite sets, |A| = m. Assume that B is
proper d-dimensional and A ⊂ convB. Let k be a positive integer. We have

|A+ kB| ≥ m

(
d+ k

k

)
− k

(
d+ k

k + 1

)
=

(
m− kd

k + 1

)(
d+ k

k

)
. (4.25)

The case d = 1 of the above theorems is quite obvious. A natural problem is to
try to generalize Theorem 4.1.1 to multidimensional sets.

Problem 4.2.6. ( [95]) Generalize Theorem 4.1.1 to multidimensional sets. A
proper generalization should give the correct order of magnitude, hence the analog of
(4.6) could be of the form

|S| ≥ |S ′| ≥
(

kd−1

(k − 1)d
− ε

) k∑
i=1

|Si|

if all sets are sufficiently large.

Another natural question is whether an analogue of (4.25) remains valid for
different summands.

Problem 4.2.7. ( [95]) Let A,B1, . . . , Bk ⊂ Rd such that the Bi are proper d-
dimensional and

A ⊂ convB1 ⊂ convB2 ⊂ · · · ⊂ convBk.

Does the esimate given in (4.25) also hold for A+B1 + · · ·+Bk?

This is easy for d = 1.

4.2.1 A simplicial decomposition

We will need a result about simplicial decompositions. By a simplex in Rd we
mean a proper d-dimensional compact set which is the convex hull of d+ 1 points.
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Definition 4.2.8. Let S1, S2 ⊂ Rd be simplices, Bi = vertSi. We say that they are
in regular position, if

S1 ∩ S2 = conv(B1 ∩B2),

that is, they meet in a common k-dimensional face for some k ≤ d. (This does not
exclude the extremal cases when they are disjoint or they coincide.) We say that a
collection of simplices is in regular position if any two of them are.

Lemma 4.2.9. ( [95]∗) Let B ⊂ Rd be a proper d dimensional finite set, S = convB.
There is a sequence S1, S2, . . . , Sn of distinct simplices in regular position with the
following properties.

a) S =
∪
Si.

b) Bi = vertSi = Si ∩B.
c) Each Si, 2 ≤ i ≤ n meets at least one of S1, . . . , Si−1 in a (d−1) dimensional

face.

We include a proof of this lemma for completeness. This proof was communicated
to us by Károly Böröczki.

Proof. We use induction on |B|. The case |B| = 2 is clear. Let |B| = k, and assume
we know it for smaller sets (in any possible dimension).

Let b be a vertex of B and apply it for the set B′ = B \ {b}. This set may be d
or d− 1 dimensional.

First case: B′ is d dimensional. With the natural notation let

S ′ =
n′∪
i=1

S ′
i

be the prescribed decomposition of S ′ = convB′. We start the decomposition of S
with these, and add some more as follows.

We say that a point x of S ′ is visible from b, if x is the only point of the segment
joining x and b in S ′. Some of the simplices S ′

i have (one or more) d−1 dimensional
faces that are completely visible from b. Now if F is such a face, then we add the
simplex

conv(F ∪ {b})

to our list.

Second case: B′ is d − 1 dimensional. Again we start with the decomposition
of S ′, just in this case the sets S ′

i will be d − 1 dimensional simplices. Now the
decomposition of S will simply consist of

Si = conv(S ′
i ∪ {b}), n = n′.

The construction above immediately gave property c). We note that it is not
really an extra requirement, every decomposition has it after a suitable rearrange-
ment. This just means that the graph obtained by using our simplices as vertices
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and connecting two of them if they share a d−1 dimensional face is connected. Now
take two simplices, say Si and Sj. Take an inner point in each and connect them
by a segment. For a generic choice of these point this segment will not meet any of
the ≤ d− 2 dimensional faces of any Sk. Now as we walk along this segment and go
from one simplex into another, this gives a path in our graph between the vertices
corresponding to Si and Sj.

4.2.2 The case of a simplex

Here we prove Theorem 4.2.5 for the case |B| = d+ 1.

Lemma 4.2.10. ( [95]∗) Let A,B ⊂ Rd be finite sets, |A| = m, |B| = d+1. Assume
that B is proper d-dimensional and A ⊂ convB. Let k be a positive integer. Write
|A ∩B| = m1. We have

|A+ kB| = (m−m1)

(
d+ k

k

)
+

(
d+ k + 1

k + 1

)
−
(
d−m1 + k + 1

k + 1

)
. (4.26)

In particular, if |A ∩B| ≤ 1, then

|A+ kB| = m

(
d+ k

k

)
. (4.27)

We have always

|A+ kB| ≥ m

(
d+ k

k

)
− k

(
d+ k

k + 1

)
=

(
m− kd

k + 1

)(
d+ k

k

)
. (4.28)

Proof. Put A1 = A ∩ B, A2 = A \ B. Write B = {b0, . . . , bd}, arranged in such a
way that

A1 = A ∩B = {b0, . . . , bm1−1}.

The elements of kB are the points of the form

s =
d∑
i=0

xibi, xi ∈ Z , xi ≥ 0,
∑

xi = k,

and this representation is unique. Clearly

|kB| =
(
d+ k

k

)
.

Each element of A has a unique representation of the form

a =
k∑
i=0

αidi, αi ∈ R , αi ≥ 0,
∑

αi = 1,

a =
d∑
i=0

αibi, αi ∈ R , αi ≥ 0,
∑

αi = 1,
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and if a ∈ A1, then some αi = 1 and the others are equal to 0, while if a ∈ A2, then
at least two αi’s are positive.

Assume now that a+s = a′+s′ with certain a, a′ ∈ A, s, s′ ∈ kB. By substituting
the above representations we obtain∑

(αi + xi)bi =
∑

(α′
i + x′i)bi,

∑
(αi + xi) =

∑
(α′

i + x′i) = k + 1,

hence αi + xi = α′
i + x′i for all i. By looking at the integral and fractional parts we

see that this is possible only if αi = α′
i, or one of them is 1 and the other is 0. If

the second possibility never happens, then a = a′. If it happens, say αi = 1, α′
i = 0

for some i, then αj = 0 for all j ̸= i and then each a′j must also be 0 or 1, that is,
a, a′ ∈ A1.

The previous discussion shows that (A1 + kB) ∩ (A2 + kB) = ∅ and the sets
a+ kB, a ∈ A2 are disjoint, hence

|A+ kB| = |A1 + kB|+ |A2 + kB|

and
|A2 + kB| = |A2| |kB| = (m−m1)

(
d+ k

k

)
. (4.29)

Now we calculate |A1 + kB|. The elements of this set are of the form

d∑
i=0

xibi, xi ∈ Z , xi ≥ 0,
∑

xi = k + 1,

with the additional requirement that there is at least one subscript i, i ≤ m1 − 1
with xi ≥ 1. Without this requirement the number would be the same as

|(k + 1)B| =
(
d+ k + 1

k + 1

)
.

The vectors (x0, . . . , xd) that violate this requirement are those that use only the
last d−m1 coordinates, hence their number is(

d−m1 + k + 1

k + 1

)
.

We obtain that

|A1 + kB| =
(
d+ k + 1

k + 1

)
−
(
d−m1 + k + 1

k + 1

)
.

Adding this formula to (4.29) we get (4.26).

If m1 = 0 or 1, this formula reduces to the one given in (4.27).

To show inequality (4.28), observe that this formula is a decreasing function of
m1, hence the minimal value is at m1 = d + 1, which after an elementary trans-
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formation corresponds to the right side of (4.28). Naturally this is attained only if
m ≥ d+1, and for small values ofm the right side of (4.28) may even be negative.

4.2.3 The general case

Proof of Theorem 4.2.5. We apply Lemma 4.2.9 to our set B. This decomposition
induces a decomposition of A as follows. We put

A1 = A ∩ S1, A2 = A ∩ (S2 \ S1), . . . , An = A ∩
(
Sn \ (S1 ∪ S2 ∪ · · · ∪ Sn−1)

)
.

Clearly the sets Ai are disjoint and their union is A. Recall the notation Bi = vertSi.

We claim that the sets Ai + kBi are also disjoint. Indeed, suppose that a+ s =
a′ + s′ with a ∈ Ai, a′ ∈ Aj, s ∈ kBi, s′ ∈ kBj, i < j. We have

a+ s

k + 1
∈ Si,

a′ + s′

k + 1
∈ Sj,

and these points are equal, so they are in

Si ∩ Sj = conv(Bi ∩Bj).

This means that in the unique convex representation of (a′ + s′)/(k + 1) by points
of Bj only elements of Bi ∩Bj are used. However, we can obtain this representation
via using the representation of a′ and the components of s′, hence we must have
a′ ∈ conv(Bi ∩Bk) ⊂ Si, a contradiction.

This disjointness yields

|A+ kB| ≥
∑

|Ai + kBi| .

We estimate the summands using Lemma 4.2.10.

If i > 1, then |Ai ∩Bi| ≤ 1. Indeed, there is a j < i such that Sj has a common
d−1 dimensional face with Si, and then the d vertices of this face are excluded from
Ai by definition. So in this case (4.27) gives

|Ai + kBi| = |Ai|
(
d+ k

k

)
.

For i = 1 we can only use the weaker estimate (4.28):

|A1 + kB1| ≥ |A1|
(
d+ k

k

)
− k

(
d+ k

k + 1

)
.

Summing these equations we obtain (4.25).

Very recently Böröczky, Santos and Serra [18] has investigated the case of equality
in (4.25). They called the sets A,B ⊂ Rd, A ⊂ convB, k-critical if equation (4.25)
holds with equality, and gave a full characterization of k-critical pairs in terms of
geometric and arithmetic properties of A and B.
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