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Chapter 1

Introduction

Many decision-making tasks are too complex to be understood quantitatively, however, humans succeed
by using knowledge that is imprecise rather than precise. Fuzzy logic resembles human reasoning in its
use of imprecise information to generate decisions. This work summarizes my main results in multiple
criteria decision making with imprecise information, where the imprecision is modelled by possibility
distributions. It is organized as follows. It begins, in Chapter ’Preliminaries’, with some basic principles
and definitions.

The process of information aggregation appears in many applications related to the development
of intelligent systems. In 1988 Yager introduced a new aggregation technique based on the ordered
weighted averaging operators (OWA) [142]. The determination of ordered weighted averaging (OWA)
operator weights is a very important issue of applying the OWA operator for decision making. One of
the first approaches, suggested by O’Hagan, determines a special class of OWA operators having maxi-
mal entropy of the OWA weights for a given level of orness; algorithmically it is based on the solution of
a constrained optimization problem. In 2001, using the method of Lagrange multipliers, Fullér and Ma-
jlender solved this constrained optimization problem analytically and determined the optimal weighting
vector [84], and in 2003 they computed the exact minimal variability weighting vector for any level of
orness [86]. 313 independent citations show that the scientific community has accepted these two ap-
proaches to obtain OWA operator weights. In 1994 Yager [145] discussed the issue of weighted min
and max aggregations and provided for a formalization of the process of importance weighted transfor-
mation. In 2000 Carlsson and Fullér [24] discussed the issue of weighted aggregations and provide a
possibilistic approach to the process of importance weighted transformation when both the importances
(interpreted as benchmarks) and the ratings are given by symmetric triangular fuzzy numbers. Further-
more, we show that using the possibilistic approach (i) small changes in the membership function of the
importances can cause only small variations in the weighted aggregate; (ii) the weighted aggregate of
fuzzy ratings remains stable under small changes in the crisp importances; (iii) the weighted aggregate
of crisp ratings still remains stable under small changes in the crisp importances whenever we use a
continuous implication operator for the importance weighted transformation. 52 independent citations
show that the scientific community has accepted our approach to importance weighted aggregations.
In 2000 and 2001 Carlsson and Fullér [25, 30] introduced a novel statement of fuzzy mathematical
programming problems and provided a method for finding a fair solution to these problems. Suppose
we are given a mathematical programming problem in which the functional relationship between the
decision variables and the objective function is not completely known. Our knowledge-base consists
of a block of fuzzy if-then rules, where the antecedent part of the rules contains some linguistic values
of the decision variables, and the consequence part consists of a linguistic value of the objective func-
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tion. We suggested the use of Tsukamoto’s fuzzy reasoning method to determine the crisp functional
relationship between the objective function and the decision variables, and solve the resulting (usually
nonlinear) programming problem to find a fair optimal solution to the original fuzzy problem. 60 inde-
pendent citations show that the scientific community has accepted our statement and solution approach
to fuzzy mathematical programming problems.

Typically, in complex, real-life problems, there are some unidentified factors which effect the values
of the objective functions. We do not know them or can not control them; i.e. they have an impact we
can not control. The only thing we can observe is the values of the objective functions at certain points.
And from this information and from our knowledge about the problem we may be able to formulate the
impacts of unknown factors (through the observed values of the objectives). In 1994 Carlsson and Fullér
[13] stated the multiple objective decision problem with independent objectives and then adjusted their
model to reality by introducing interdependences among the objectives. Interdependences among the
objectives exist whenever the computed value of an objective function is not equal to its observed value.
We claimed that the real values of an objective function can be identified by the help of feed-backs from
the values of other objective functions, and showed the effect of various kinds (linear, nonlinear and
compound) of additive feed-backs on the compromise solution. 35 independent citations show that the
scientific community has accepted this statement of multiple objective decision problems.

Even if the objective functions of a multiple objective decision problem are exactly known, we
can still measure the complexity of the problem, which is derived from the grades of conflict between
the objectives. In 1995 Carlsson and Fullér [15] introduced the measure the complexity of multiple
objective decision problems and to find a good compromise solution to these problems they employed
the following heuristic: increase the value of those objectives that support the majority of the objectives,
because the gains on their (concave) utility functions surpass the losses on the (convex) utility functions
of those objectives that are in conflict with the majority of the objectives. 59 independent citations show
that the scientific community has accepted this heuristic.

In Chapter ”OWA Operators in Multiple Criteria Decisions” we first discuss Fullér and Majlen-
der [84, 86] papers on obtaining OWA operator weights and survey some later works that extend and
develop these models. Then following Carlsson and Fullér [24] we show a possibilistic approach to
importance weighted aggregations. Finally, following Carlsson and Fullér [25, 30] we show a solution
approach to fuzzy mathematical programming problems in which the functional relationship between
the decision variables and the objective function is not completely known (given by fuzzy if-then rules).

Possibilisitic linear equality systems are linear equality systems with fuzzy coefficients, defined by
the Zadeh’s extension principle. In 1988 Kovács [108] showed that the fuzzy solution to possibilisitic
linear equality systems with symmetric triangular fuzzy numbers is stable with respect to small changes
of centres of fuzzy parameters. In Chapter ”Stability in Fuzzy Systems” first we generalize Kovács’s
results to possibilisitic linear equality systems with Lipschitzian fuzzy numbers (Fullér, [74]) and to
fuzzy linear programs (Fullér, [73]). Then we consider linear (Fedrizzi and Fullér, [72]) and quadratic
(Canestrelli, Giove and Fullér, [12]) possibilistic programs and show that the possibility distribution of
their objective function remains stable under small changes in the membership function of the fuzzy
number coefficients. Furthermore, we present similar results for multiobjective possibilistic linear pro-
grams (Fullér and Fedrizzi, [82]).

In 1973 Zadeh [154] introduced the compositional rule of inference and six years later [156] the
theory of approximate reasoning. This theory provides a powerful framework for reasoning in the face
of imprecise and uncertain information. Central to this theory is the representation of propositions as
statements assigning fuzzy sets as values to variables. In 1993 Fullér and Zimmermann [81] showed
two very important features of the compositional rule of inference under triangular norms. Namely, they
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proved that (i) if the t-norm defining the composition and the membership function of the observation
are continuous, then the conclusion depends continuously on the observation; (ii) if the t-norm and the
membership function of the relation are continuous, then the observation has a continuous membership
function. The stability property of the conclusion under small changes of the membership function
of the observation and rules guarantees that small rounding errors of digital computation and small
errors of measurement of the input data can cause only a small deviation in the conclusion, i.e. every
successive approximation method can be applied to the computation of the linguistic approximation of
the exact conclusion in control systems. In 1992 Fullér and Werners [80] extended the stability theorems
of [81] to the compositional rule of inference with several relations. These stability properties in fuzzy
inference systems were used by a research team - headed by Professor Hans-Jürgen Zimmermann -
when developing a fuzzy control system for a ”fuzzy controlled model car” [5] during my DAAD
Scholarship at RWTH Aachen between 1990 and 1992.

In possibility theory we can use the principle of expected value of functions on fuzzy sets to de-
fine variance, covariance and correlation of possibility distributions. Marginal probability distributions
are determined from the joint one by the principle of ’falling integrals’ and marginal possibility dis-
tributions are determined from the joint possibility distribution by the principle of ’falling shadows’.
Probability distributions can be interpreted as carriers of incomplete information [106], and possibility
distributions can be interpreted as carriers of imprecise information. A function f : [0, 1]→ R is said to
be a weighting function if f is non-negative, monotone increasing and satisfies the following normal-
ization condition

∫ 1
0 f(γ)dγ = 1. Different weighting functions can give different (case-dependent)

importances to level-sets of possibility distributions. In Chapter ”A Normative View on Possibility Dis-
tributions” we will discuss the weighted lower possibilistic and upper possibilistic mean values, crisp
possibilistic mean value and variance of fuzzy numbers, which are consistent with the extension prin-
ciple. We can define the mean value (variance) of a possibility distribution as the f -weighted average
of the probabilistic mean values (variances) of the respective uniform distributions defined on the γ-
level sets of that possibility distribution. A measure of possibilistic covariance (correlation) between
marginal possibility distributions of a joint possibility distribution can be defined as the f -weighted av-
erage of probabilistic covariances (correlations) between marginal probability distributions whose joint
probability distribution is defined to be uniform on the γ-level sets of their joint possibility distribution
[88]. We should note here that the choice of uniform probability distribution on the level sets of possi-
bility distributions is not without reason. Namely, these possibility distributions are used to represent
imprecise human judgments and they carry non-statistical uncertainties. Therefore we will suppose
that each point of a given level set is equally possible. Then we apply Laplace’s principle of Insuf-
ficient Reason: if elementary events are equally possible, they should be equally probable (for more
details and generalization of principle of Insufficient Reason see [71], page 59). The main new idea
here is to equip the alpha-cuts of joint possibility distributions with uniform probability distributions.
In Chapter ”A Normative View on Possibility Distributions” we will introduce the concepts of possi-
bilistic mean value, variance, covariance and correlation. The related publications are the following:
Carlsson and Fullér [26] Carlsson, Fullér and Majlender [45], Fullér and Majlender [88] and Fullér,
Mezei and Várlaki [96], 941 independent citations show that the scientific community has accepted
these principles.

Properties of operations on interactive fuzzy numbers, when their joint possibility distribution is
defined by a t-norm have been extensively studied in the literature. In Chapter ”Operations on Inter-
active Fuzzy Numbers”, following Fullér [76, 77] we will compute the exact membership function of
product-sum and Hamacher-sum of triangular fuzzy numbers, and following Fullér and Keresztfalvi
[79] we will compute the exact membership function of t-norm-based sum of L-R fuzzy numbers. We
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will consider the extension principle with interactive fuzzy numbers, where the interactivity relation
between fuzzy numbers is defined by their joint possibility distribution. Following Fullér and Kereszt-
falvi [75] and Carlsson, Fullér and Majlender [41] we will show that Nguyen’s theorem remains valid
for interactive fuzzy numbers.

In Chapter ”Selected Industrial Applications” I will describe 6 industrial research projects in which
I participated as a researcher at Institute for Advanced Management Systems Research (IAMSR), Åbo
Akademi University, Åbo, Finland between 1992 and 2011. In the majority of these projects our re-
search team implemented computerized decision support systems, where all input data and information
were imprecise (obtained from human judgments) and, therefore, possessed non-statistical uncertain-
ties. Longer descriptions of these projects can be found in our three monographs: Carlsson and Fullér
[33], Carlsson, Fedrizzi and Fullér [44], and Carlsson and Fullér [63]. In many cases I developed the
mathematical models and algorithms for the decision problems arised in these projects. My doctoral
students (and later colleagues at IAMSR, Åbo Akademi University) Péter Majlender and József Mezei
(both graduated from Eötvös Loránd University) also participated in the development and verification
of mathematical models and algorithms.

”The Knowledge Mobilization project” has been a joint effort by IAMSR, Åbo Akademi University
and VTT Technical Research Centre of Finland. Its goal was to better ”mobilize” knowledge stored in
heterogeneous databases for users with various backgrounds, geographical locations and situations.
The working hypothesis of the project was that fuzzy mathematics combined with domain-specific data
models, in other words, fuzzy ontologies, would help manage the uncertainty in finding information
that matches the user’s needs. In this way, Knowledge Mobilization places itself in the domain of
knowledge management. I will describe an industrial demonstration of fuzzy ontologies in information
retrieval in the paper industry where problem solving reports are annotated with keywords and then
stored in a database for later use.

In the Woodstrat project we built a support system for strategy formation and show that the ef-
fectiveness and usefulness of hyperknowledge support systems for strategy formation can be further
advanced using adaptive fuzzy cognitive maps.

In the Waeno project we implemented fuzzy real options theory as a series of models, which were
built on Excel platforms. The models were tested on a number of real life investments, i.e. real (so-
called) giga-investment decisions were made on the basis of the results. The methods were thoroughly
tested and validated in 2001. The new series of models, for fuzzy real option valuation (ROV), have
been tested with real life data and the impact of the innovations have been traced and evaluated against
both the traditional ROV-models and the classical net present value (NPV) models. The fuzzy real
options were found to offer more flexibility than the traditional models; both versions of real option
valuation were found to give better guidance than the classical NPV models. The models are being run
from a platform built by standard Excel components, but the platform was enhanced with an adapted
user interface to guide the users to both a proper use of the tools and better insight. A total of 8 actual
giga-investment decisions were studied and worked out with the real options models.

In the AssessGrid project we developed a hybrid probabilistic and possibilistic model to assess
the success of computing tasks in a Grid. Using the predictive probabilistic approach we developed
a framework for resource management in grid computing, and by introducing an upper limit for the
number of possible failures, we approximated the probability that a particular computing task can be
executed. We also showed a lower limit for the probability of success of a computing task in a grid.
In the possibilistic model we estimated the possibility distribution defined over the set of node failures
using a fuzzy nonparametric regression technique.

In the OptionsPort project we developed a model for valuing options on R&D projects, when future
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cash flows and expected costs are estimated by trapezoidal fuzzy numbers. Furthermore, we repre-
sented the optimal R&D portfolio selection problem as a fuzzy mathematical programming problem,
where the optimal solutions defined the optimal portfolios of R&D projects with the largest (aggregate)
possibilistic deferral flexibilities.

In the EM-S Bullwhip project we worked out a fuzzy approach to reduce the bullwhip effect in
supply chains. The research work focused on the demand fluctuations in paper mills caused by the
frictions of information handling in the supply chain and worked out means to reduce or eliminate
the fluctuations with the help of information technology. The program enhanced existing theoretical
frameworks with fuzzy logic modelling and built a hyperknowledge platform for fast implementation
of the theoretical results.
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Chapter 2

Preliminaries

Fuzzy sets were introduced by Zadeh [153] in 1965 to represent/manipulate data and information pos-
sessing nonstatistical uncertainties. It was specifically designed to mathematically represent uncertainty
and vagueness and to provide formalized tools for dealing with the imprecision intrinsic to many prob-
lems. Fuzzy sets serve as a means of representing and manipulating data that was not precise, but
rather fuzzy. Some of the essential characteristics of fuzzy logic relate to the following [157]: (i) In
fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning; (ii) In fuzzy logic,
everything is a matter of degree; (iii) In fuzzy logic, knowledge is interpreted a collection of elastic
or, equivalently, fuzzy constraint on a collection of variables; (iv) Inference is viewed as a process of
propagation of elastic constraints; and (v) Any logical system can be fuzzified. There are two main
characteristics of fuzzy systems that give them better performance for specific applications: (i) Fuzzy
systems are suitable for uncertain or approximate reasoning, especially for systems with mathematical
models that are difficult to derive; and (ii) Fuzzy logic allows decision making with estimated values
under incomplete or uncertain information.

Definition 2.1. [153] Let X be a nonempty set. A fuzzy set A in X is characterized by its membership
function µA : X → [0, 1], and µA(x) is interpreted as the degree of membership of element x in fuzzy
set A for each x ∈ X .

It should be noted that the terms membership function and fuzzy subset get used interchangeably
and frequently we will write simply A(x) instead of µA(x). The family of all fuzzy (sub)sets in X is
denoted by F(X). Fuzzy subsets of the real line are called fuzzy quantities. Let A be a fuzzy subset
of X; the support of A, denoted supp(A), is the crisp subset of X whose elements all have nonzero
membership grades inA. A fuzzy subsetA of a classical setX is called normal if there exists an x ∈ X
such that A(x) = 1. Otherwise A is subnormal. An α-level set (or α-cut) of a fuzzy set A of X is a
non-fuzzy set denoted by [A]α and defined by [A]α = {t ∈ X|A(t) ≥ α}, if α > 0 and cl(suppA) if
α = 0, where cl(suppA) denotes the closure of the support of A. A fuzzy set A of X is called convex
if [A]α is a convex subset of X for all α ∈ [0, 1].

Definition 2.2. A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) convex and upper
semi-continuous membership function of bounded support. The family of fuzzy numbers will be denoted
by F .

Let A be a fuzzy number. Then [A]γ is a closed convex (compact) subset of R for all γ ∈ [0, 1]. Let
us introduce the notations

a1(γ) = min[A]γ and a2(γ) = max[A]γ .
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In other words, a1(γ) denotes the left-hand side and a2(γ) denotes the right-hand side of the γ-cut. It
is easy to see that if α ≤ β then [A]α ⊃ [A]β . Furthermore, the left-hand side function a1 : [0, 1]→ R
is monotone increasing and lower semi-continuous, and the right-hand side function a2 : [0, 1] → R is
monoton decreasing and upper semi-continuous. we will use the notation

[A]γ = [a1(γ), a2(γ)].

The support of A is the open interval (a1(0), a2(0)). If A is not a fuzzy number then there exists an
γ ∈ [0, 1] such that [A]γ is not a convex subset of R.

Definition 2.3. A fuzzy setA is called triangular fuzzy number with peak (or center) a, left width α > 0
and right width β > 0 if its membership function has the following form

A(t) =





1− a− t
α

if a− α ≤ t ≤ a

1− t− a
β

if a ≤ t ≤ a+ β

0 otherwise

and we use the notation A = (a, α, β). It can easily be verified that

[A]γ = [a− (1− γ)α, a+ (1− γ)β], ∀γ ∈ [0, 1].

The support of A is (a − α, b + β). A triangular fuzzy number with center a may be seen as a fuzzy
quantity ”x is approximately equal to a”.

1

aa-! a+"

4 1. Fuzzy Sets and Fuzzy Logic

[A]γ = [a1(γ), a2(γ)].

The support of A is the open interval (a1(0), a2(0)).
If A is not a fuzzy number then there exists an γ ∈ [0, 1] such that [A]γ

is not a convex subset of R.

Fig. 1.2. Triangular fuzzy number.

Definition 1.1.4 A fuzzy set A is called triangular fuzzy number with peak
(or center) a, left width α > 0 and right width β > 0 if its membership
function has the following form

A(t) =





1− a− t

α
if a− α ≤ t ≤ a

1− t− a

β
if a ≤ t ≤ a + β

0 otherwise

and we use the notation A = (a, α, β). It can easily be verified that

[A]γ = [a− (1− γ)α, a + (1− γ)β], ∀γ ∈ [0, 1].

The support of A is (a − α, b + β). A triangular fuzzy number with center a
may be seen as a fuzzy quantity

”x is approximately equal to a”.

Definition 1.1.5 A fuzzy set A is called trapezoidal fuzzy number with toler-
ance interval [a, b], left width α and right width β if its membership function
has the following form

A(t) =





1− a− t

α
if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1− t− b

β
if a ≤ t ≤ b + β

0 otherwise

Figure 2.1: Triangular fuzzy number.

Definition 2.4. A fuzzy set A is called trapezoidal fuzzy number with tolerance interval [a, b], left width
α and right width β if its membership function has the following form

A(t) =





1− a− t
α

if a− α ≤ t ≤ a
1 if a ≤ t ≤ b

1− t− b
β

if a ≤ t ≤ b+ β

0 otherwise

and we use the notation
A = (a, b, α, β). (2.1)

It can easily be shown that [A]γ = [a− (1− γ)α, b+ (1− γ)β] for all γ ∈ [0, 1]. The support of A is
(a− α, b+ β).
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and we use the notation
A = (a, b, α, β). (1.1)

It can easily be shown that

[A]γ = [a− (1− γ)α, b + (1− γ)β], ∀γ ∈ [0, 1].

The support of A is (a− α, b + β).

Fig. 1.3. Trapezoidal fuzzy number.

A trapezoidal fuzzy number may be seen as a fuzzy quantity

”x is approximately in the interval [a, b]”.

Definition 1.1.6 Any fuzzy number A ∈ F can be described as

A(t) =





L

(
a− t

α

)
if t ∈ [a− α, a]

1 if t ∈ [a, b]

R

(
t− b)

β

)
if t ∈ [b, b + β]

0 otherwise

where [a, b] is the peak or core of A,

L : [0, 1] → [0, 1], R : [0, 1] → [0, 1]

are continuous and non-increasing shape functions with L(0) = R(0) = 1 and
R(1) = L(1) = 0. We call this fuzzy interval of LR-type and refer to it by

A = (a, b, α, β)LR

The support of A is (a− α, b + β).

Figure 2.2: Trapezoidal fuzzy number.

A trapezoidal fuzzy number may be seen as a fuzzy quantity ”x is approximately in the interval
[a, b]”.

Definition 2.5. Any fuzzy number A ∈ F can be described as

A(t) =





L

(
a− t
α

)
if t ∈ [a− α, a]

1 if t ∈ [a, b]

R

(
t− b)
β

)
if t ∈ [b, b+ β]

0 otherwise

where [a, b] is the peak or core of A, L : [0, 1]→ [0, 1] and R : [0, 1]→ [0, 1] are continuous and non-
increasing shape functions with L(0) = R(0) = 1 and R(1) = L(1) = 0. We call this fuzzy interval of
LR-type and refer to it by A = (a, b, α, β)LR. The support of A is (a− α, b+ β).

Definition 2.6. Let A = (a, b, α, β)LR be a fuzzy number of type LR. If a = b then we use the notation

A = (a, α, β)LR (2.2)

and say that A is a quasi-triangular fuzzy number. Furthermore if L(x) = R(x) = 1− x, then instead
of A = (a, b, α, β)LR we write A = (a, b, α, β).

Let A and B are fuzzy subsets of a classical set X 6= ∅. We say that A is a subset of B if
A(t) ≤ B(t) for all t ∈ X . Furthermore, A and B are said to be equal, denoted A = B, if A ⊂ B and
B ⊂ A. We note that A = B if and only if A(x) = B(x) for all x ∈ X . The intersection of A and B
is defined as

(A ∩B)(t) = min{A(t), B(t)} = A(t) ∧B(t), ∀t ∈ X.
The union of A and B is defined as

(A ∪B)(t) = max{A(t), B(t)} = A(t) ∨B(t), ∀t ∈ X.

The complement of a fuzzy set A is defined as (¬A)(t) = 1−A(t), ∀t ∈ X.
A fuzzy set r̄ in the real line is said to be a fuzzy point, if its membership function is defined by

r̄(z) =

{
1 if z = r,

0 if z 6= r.
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That is, r̄ is nothing else but the characteristic function of the singleton {r}.
Triangular norms were introduced by Schweizer and Sklar [131] to model distances in probabilistic

metric spaces. In fuzzy sets theory triangular norms are extensively used to model logical connective
and.

Definition 2.7. A mapping T : [0, 1]× [0, 1]→ [0, 1] is said to be a triangular norm (t-norm for short)
iff it is symmetric, associative, non-decreasing in each argument and T (a, 1) = a, for all a ∈ [0, 1]. In
other words, any t-norm T satisfies the properties:

T (x, y) = T (y, x), ∀x, y ∈ [0, 1] (symmetricity)

T (x, T (y, z)) = T (T (x, y), z), ∀x, y, z ∈ [0, 1] (associativity)

T (x, y) ≤ T (x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)

T (x, 1) = x, ∀x ∈ [0, 1] (one identy)

These axioms attempt to capture the basic properties of set intersection. The basic t-norms are:

• minimum (or Mamdani [126]): TM (a, b) = min{a, b},

• Łukasiewicz: TL(a, b) = max{a+ b− 1, 0}

• product (or Larsen [110]): TP (a, b) = ab

• weak:

TW (a, b) =

{
min{a, b} if max{a, b} = 1

0 otherwise

• Hamacher [99]:

Hγ(a, b) =
ab

γ + (1− γ)(a+ b− ab), γ ≥ 0 (2.3)

All t-norms may be extended, through associativity, to n > 2 arguments. A t-norm T is called strict
if T is strictly increasing in each argument. A t-norm T is said to be Archimedean iff T is continuous
and T (x, x) < x for all x ∈ (0, 1). Every Archimedean t-norm T is representable by a continuous and
decreasing function f : [0, 1]→ [0,∞] with f(1) = 0 and T (x, y) = f−1( min{f(x) + f(y), f(0)} ).
The function f is the additive generator of T . A t-norm T is said to be nilpotent if T (x, y) = 0 holds
for some x, y ∈ (0, 1). The operation intersection can be defined by the help of triangular norms.

Definition 2.8. Let T be a t-conorm. The T -intersection of A and B is defined as

(A ∩B)(t) = T (A(t), B(t)), ∀t ∈ X.

Triangular conorms are extensively used to model logical connective or.

Definition 2.9. A mapping S : [0, 1] × [0, 1] → [0, 1] is said to be a triangular co-norm (t-conorm) if
it is symmetric, associative, non-decreasing in each argument and S(a, 0) = a, for all a ∈ [0, 1]. In
other words, any t-conorm S satisfies the properties:

S(x, y) = S(y, x) (symmetricity)
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S(x, S(y, z)) = S(S(x, y), z) (associativity)

S(x, y) ≤ S(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)

S(x, 0) = x, ∀x ∈ [0, 1] (zero identy)

If T is a t-norm then the equality S(a, b) := 1 − T (1 − a, 1 − b), defines a t-conorm and we say
that S is derived from T . The basic t-conorms are:

• maximum: SM (a, b) = max{a, b}

• Łukasiewicz: SL(a, b) = min{a+ b, 1}

• probabilistic: SP (a, b) = a+ b− ab

• strong:

STRONG(a, b) =

{
max{a, b} if min{a, b} = 0

1 otherwise

• Hamacher:

HORγ(a, b) =
a+ b− (2− γ)ab

1− (1− γ)ab
, γ ≥ 0

The operation union can be defined by the help of triangular conorms.

Definition 2.10. Let S be a t-conorm. The S-union of A and B is defined as

(A ∪B)(t) = S(A(t), B(t)), ∀t ∈ X.

2.1 The extension principle

In order to use fuzzy numbers and relations in any intelligent system we must be able to perform arith-
metic operations with these fuzzy quantities. In particular, we must be able to to add, subtract, multiply
and divide with fuzzy quantities. The process of doing these operations is called fuzzy arithmetic. we
will first introduce an important concept from fuzzy set theory called the extension principle. We then
use it to provide for these arithmetic operations on fuzzy numbers. In general the extension principle
pays a fundamental role in enabling us to extend any point operations to operations involving fuzzy
sets. In the following we define this principle.

Definition 2.11 (Zadeh’s extension principle, [153]). Assume X and Y are crisp sets and let f be a
mapping from X to Y , f : X → Y , such that for each x ∈ X, f(x) = y ∈ Y . Assume A is a fuzzy
subset of X , using the extension principle, we can define f(A) as a fuzzy subset of Y such that

f(A)(y) =
{

supx∈f−1(y)A(x) if f−1(y) 6= ∅
0 otherwise

(2.4)

where f−1(y) = {x ∈ X | f(x) = y}.
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If f(x) = λx and A ∈ F then we will write f(A) = λA. Especially, if λ = −1 then we have

(−1A)(x) = (−A)(x) = A(−x), x ∈ R.

It should be noted that Zadeh’s extension principle is nothing else but a straightforward generalization
of set-valued functions (see [114] for details).

The extension principle can be generalized to n-place functions using the sup-min operator.

Definition 2.12 (Zadeh’s extension principle for n-place functions, [153]). Let X1, X2, . . . , Xn and Y
be a family of sets. Assume f is a mapping

f : X1 ×X2 × · · · ×Xn → Y,

that is, for each n-tuple (x1, . . . , xn) such that xi ∈ Xi, we have

f(x1, x2, . . . , xn) = y ∈ Y.

Let A1, . . . , An be fuzzy subsets of X1, . . . , Xn, respectively; then the (sup-min) extension principle
allows for the evaluation of f(A1, . . . , An). In particular, f(A1, . . . , An) = B, where B is a fuzzy
subset of Y such that

f(A1, . . . , An)(y) =
{

sup{min{A1(x1), . . . , An(xn)} |x ∈ f−1(y)} if f−1(y) 6= ∅
0 otherwise.

(2.5)

For n = 2 then the sup-min extension principle reads

f(A1, A2)(y) = sup
f(x1,x2)=y

{A1(x1), A2(x2)}.

Example 2.1. Let f : X ×X → X be defined as f(x1, x2) = x1 + x2, i.e. f is the addition operator.
Suppose A1 and A2 are fuzzy subsets of X . Then using the sup-min extension principle we get

f(A1, A2)(y) = sup
x1+x2=y

min{A1(x1), A2(x2)} (2.6)

and we use the notation f(A1, A2) = A1 +A2.

Example 2.2. Let f : X×X → X be defined as f(x1, x2) = x1−x2, i.e. f is the subtraction operator.
Suppose A1 and A2 are fuzzy subsets of X . Then using the sup-min extension principle we get

f(A1, A2)(y) = sup
x1−x2=y

min{A1(x1), A2(x2)},

and we use the notation f(A1, A2) = A1 −A2.

The sup-min extension principle for n-place functions is also a straightforward generalization of
set-valued functions. Namely, let f : X1 ×X2 → Y be a function. Then the image of a (crisp) subset
(A1, A2) ⊂ X1 ×X2 by f is defined by

f(A1, A2) = {f(x1, x2) | x1 ∈ A and x2 ∈ A2}

and the characteristic function of f(A1, A2) is

χf(A1,A2)(y) = sup{min{χA1(x), χA2(x)} | x ∈ f−1(y)}.
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Then replacing the characteristic functions by fuzzy sets we get Zadeh’s sup-min extension principle
for n-place functions (2.5).

Let A = (a1, a2, α1, α2)LR, and B = (b1, b2, β1, β2)LR, be fuzzy numbers of LR-type. Using
the sup-min extension principle we can verify the following rules for addition and subtraction of fuzzy
numbers of LR-type.

A+B = (a1 + b1, a2 + b2, α1 + β1, α2 + β2)LR

A−B = (a1 − b2, a2 − b1, α1 + β2, α2 + β1)LR.

In particular if A = (a1, a2, α1, α2) and B = (b1, b2, β1, β2) are fuzzy numbers of trapezoidal form
then

A+B = (a1 + b1, a2 + b2, α1 + β1, α2 + β2) (2.7)

A−B = (a1 − b2, a2 − b1, α1 + β2, α2 + β1). (2.8)

If A = (a, α1, α2) and B = (b, β1, β2) are fuzzy numbers of triangular form then

A+B = (a+ b, α1 + β1, α2 + β2), A−B = (a− b, α1 + β2, α2 + β1)

and if A = (a, α) and B = (b, β) are fuzzy numbers of symmetric triangular form then

A+B = (a+ b, α+ β), A−B = (a− b, α+ β), λA = (λa, |λ|α).

Let A and B be fuzzy numbers with [A]α = [a1(α), a2(α)] and [B]α = [b1(α), b2(α)]. Then it can
easily be shown that

[A+B]α = [a1(α) + b1(α), a2(α) + b2(α)],
[A−B]α = [a1(α)− b2(α), a2(α)− b1(α)],

[λA]α = λ[A]α,

where [λA]α = [λa1(α), λa2(α)] if λ ≥ 0 and [λA]α = [λa2(α), λa1(α)] if λ < 0 for all α ∈ [0, 1],
i.e. any α-level set of the extended sum of two fuzzy numbers is equal to the sum of their α-level sets.
We note here that from

sup
x1−x2=y

min{A1(x1), A2(x2)} = sup
x1+x2=y

min{A1(x1), A2(−x2)},

it follows that the equality A1 − A2 = A1 + (−A2) holds. However A − A is defined by the sup-min
extension principle as

(A−A)(y) = sup
x1−x2=y

min{A(x1), A(x2)}, y ∈ R

which turns into
[A−A]α = [a1(α)− a2(α), a2(α)− a1(α)],

which is generally not a fuzzy point.

Theorem 2.1 (Nguyen, [129]). Let f : X → X be a continuous function and let A be fuzzy numbers.
Then

[f(A)]α = f([A]α)

where f(A) is defined by the extension principle (2.4) and f([A]α) = {f(x) |x ∈ [A]α}.
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If [A]α = [a1(α), a2(α)] and f is monoton increasing then from the above theorem we get

[f(A)]α = f([A]α) = f([a1(α), a2(α)]) = [f(a1(α)), f(a2(α))].

Theorem 2.2 (Nguyen, [129]). Let f : X×X → X be a continuous function and let A and B be fuzzy
numbers. Then

[f(A,B)]α = f([A]α, [B]α),

where
f([A]α, [B]α) = {f(x1, x2) |x1 ∈ [A]α, x2 ∈ [B]α}.

Let f(x, y) = xy and let [A]α = [a1(α), a2(α)] and [B]α = [b1(α), b2(α)] be two fuzzy numbers.
Applying Theorem 2.2 we get

[f(A,B)]α = f([A]α, [B]α) = [A]α[B]α.

However the equation
[AB]α = [A]α[B]α = [a1(α)b1(α), a2(α)b2(α)]

holds if and only if A and B are both nonnegative, i.e. A(x) = B(x) = 0 for x ≤ 0.

2.2 Fuzzy implications

If p is a proposition of the form ”x is A” where A is a fuzzy set, for example, ”big pressure” and q
is a proposition of the form ”y is B” for example, ”small volume” then one encounters the following
problem: How to define the membership function of the fuzzy implication A → B? It is clear that
(A→ B)(x, y) should be defined pointwise i.e. (A→ B)(x, y) should be a function ofA(x) andB(y).
That is (A→ B)(u, v) = I(A(u), B(v)). We shall use the notation (A→ B)(u, v) = A(u)→ B(v).
In our interpretation A(u) is considered as the truth value of the proposition ”u is big pressure”, and
B(v) is considered as the truth value of the proposition ”v is small volume”.

u is big pressure→ v is small volume ≡ A(u)→ B(v)

One possible extension of material implication to implications with intermediate truth values is

A(u)→ B(v) =

{
1 if A(u) ≤ B(v)

0 otherwise

This implication operator is called Standard Strict.

”4 is big pressure”→ ”1 is small volume” = A(4)→ B(1) = 0.75→ 1 = 1.

However, it is easy to see that this fuzzy implication operator is not appropriate for real-life applications.
Namely, let A(u) = 0.8 and B(v) = 0.8. Then we have

A(u)→ B(v) = 0.8→ 0.8 = 1.

Let us suppose that there is a small error of measurement or small rounding error of digital computation
in the value of B(v), and instead 0.8 we have to proceed with 0.7999. Then from the definition of
Standard Strict implication operator it follows that

A(u)→ B(v) = 0.8→ 0.7999 = 0.
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This example shows that small changes in the input can cause a big deviation in the output, i.e. our
system is very sensitive to rounding errors of digital computation and small errors of measurement.

A smoother extension of material implication operator can be derived from the equation

X → Y = sup{Z|X ∩ Z ⊂ Y },

where X,Y and Z are classical sets. Using the above principle we can define the following fuzzy
implication operator

A(u)→ B(v) = sup{z|min{A(u), z} ≤ B(v)}
that is,

A(u)→ B(v) =
{

1 if A(u) ≤ B(v)
B(v) otherwise

This operator is called Gödel implication. Using the definitions of negation and union of fuzzy subsets
the material implication p→ q = ¬p ∨ q can be extended by

A(u)→ B(v) = max{1−A(u), B(v)}

This operator is called Kleene-Dienes implication.
In many practical applications one uses Mamdani’s implication operator to model causal relation-

ship between fuzzy variables. This operator simply takes the minimum of truth values of fuzzy predi-
cates

A(u)→ B(v) = min{A(u), B(v)}
It is easy to see this is not a correct extension of material implications, because 0 → 0 yields zero.
However, in knowledge-based systems, we are usually not interested in rules, in which the antecedent
part is false. There are three important classes of fuzzy implication operators:

• S-implications: defined by
x→ y = S(n(x), y)

where S is a t-conorm and n is a negation on [0, 1]. These implications arise from the Boolean
formalism

p→ q = ¬p ∨ q.
Typical examples of S-implications are the Łukasiewicz and Kleene-Dienes implications.

• R-implications: obtained by residuation of continuous t-norm T , i.e.

x→ y = sup{z ∈ [0, 1] |T (x, z) ≤ y}

These implications arise from the Intutionistic Logic formalism. Typical examples ofR-implications
are the Gödel and Gaines implications.

• t-norm implications: if T is a t-norm then

x→ y = T (x, y)

Although these implications do not verify the properties of material implication they are used as
model of implication in many applications of fuzzy logic. Typical examples of t-norm implica-
tions are the Mamdani (x→ y = min{x, y}) and Larsen (x→ y = xy) implications.
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Name Definition

Early Zadeh x→ y = max{1− x,min(x, y)}
Łukasiewicz x→ y = min{1, 1− x+ y}
Mamdani x→ y = min{x, y}
Larsen x→ y = xy

Standard Strict x→ y =
{

1 if x ≤ y
0 otherwise

Gödel x→ y =
{

1 if x ≤ y
y otherwise

Gaines x→ y =
{

1 if x ≤ y
y/x otherwise

Kleene-Dienes x→ y = max{1− x, y}
Kleene-Dienes-Łukasiewicz x→ y = 1− x+ xy

Yager x→ y = yx

Table 2.1: Fuzzy implication operators.

The use of fuzzy sets provides a basis for a systematic way for the manipulation of vague and im-
precise concepts. In particular, we can employ fuzzy sets to represent linguistic variables. A linguistic
variable can be regarded either as a variable whose value is a fuzzy number or as a variable whose
values are defined in linguistic terms.

Definition 2.13. A linguistic variable is characterized by a quintuple

(x, T (x), U,G,M)

in which x is the name of variable; T (x) is the term set of x, that is, the set of names of linguistic values
of x with each value being a fuzzy number defined on U ; G is a syntactic rule for generating the names
of values of x; and M is a semantic rule for associating with each value its meaning.

For example, if speed is interpreted as a linguistic variable, then its term set T (speed) could be

T = {slow, moderate, fast, very slow, more or less fast, sligthly slow, . . .}

where each term in T (speed) is characterized by a fuzzy set in a universe of discourse U = [0, 100].
We might interpret

• slow as ”a speed below about 40 mph”

• moderate as ”a speed close to 55 mph”

• fast as ”a speed above about 70 mph”
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These terms can be characterized as fuzzy sets whose membership functions are

slow(v) =





1 if v ≤ 40
1− (v − 40)/15 if 40 ≤ v ≤ 55
0 otherwise

moderate(v) =
{

1− |v − 55|/30 if 40 ≤ v ≤ 70
0 otherwise

fast(v) =





1 if v ≥ 70

1− 70− v
15

if 55 ≤ v ≤ 70

0 otherwise
In many practical applications we normalize the domain of inputs and use the following type of fuzzy
partition: NVB (Negative Very Big), NB (Negative Big), NM (Negative Medium), NS (Negative Small),
ZE (Zero), PS (Positive Small), PM (Positive Medium), PB (Positive Big), PVB (Positive Very Big). We
will use the following parametrized standard fuzzy partition of the unit inteval. Suppose that U = [0, 1]
and T (x) consists of K + 1, K ≥ 2, terms,

T = {small1, around 1/K, around 2/K, . . . , around (K-1)/K, bigK }
which are represented by triangular membership functions {A1, . . . , AK+1} of the form

A1(u) = [small1](u) =

{
1−Ku if 0 ≤ u ≤ 1/K
0 otherwise

(2.9)

Ak(u) = [around k/K](u) =





Ku− k + 1 if (k − 1)/K ≤ u ≤ k/K
k + 1−Ku if k/K ≤ u ≤ (k + 1)/K
0 otherwise

(2.10)

for 1 ≤ k ≤ (K − 1), and

AK+1(u) = [bigK ](u) =

{
Ku−K + 1 if (K − 1)/K ≤ u ≤ 1
0 otherwise

(2.11)

If K = 1 then the fuzzy partition for the [0,1] interval consists of two linguistic terms {small, big}
which are defined by

small(t) = 1− t, big(t) = t, t ∈ [0, 1]. (2.12)

Suppose that U = [0, 1] and T (x) consists of 2K + 1, K ≥ 2, terms,

T = {small1, . . . , smallK = small, big0 = big, big1, . . . , bigK}
which are represented by triangular membership functions as

smallk(u) =





1− K

k
u if 0 ≤ u ≤ k/K

0 otherwise
(2.13)

for k ≤ k ≤ K,

bigk(u) =





u− k/K
1− k/K if k/K ≤ u ≤ 1

0 otherwise
(2.14)

for 0 ≤ k ≤ K − 1.
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2.3 The theory of approximate reasoning

In 1979 Zadeh introduced the theory of approximate reasoning [156]. This theory provides a powerful
framework for reasoning in the face of imprecise and uncertain information. Central to this theory is
the representation of propositions as statements assigning fuzzy sets as values to variables. Suppose
we have two interactive variables x ∈ X and y ∈ Y and the causal relationship between x and y is
completely known. Namely, we know that y is a function of x, that is y = f(x). Then we can make
inferences easily

”y = f(x)” & ”x = x1” −→ ”y = f(x1)”.

This inference rule says that if we have y = f(x), for all x ∈ X and we observe that x = x1 then y
takes the value f(x1). More often than not we do not know the complete causal link f between x and
y, only we now the values of f(x) for some particular values of x, that is

<1 : If x = x1 then y = y1

<2 : If x = x2 then y = y2

. . .
<n : If x = xn then y = yn

If we are given an x′ ∈ X and want to find an y′ ∈ Y which correponds to x′ under the rule-base
< = {<1, . . . ,<m} then we have an interpolation problem.

Let x and y be linguistic variables, e.g. ”x is high” and ”y is small”. The basic problem of
approximate reasoning is to find the membership function of the consequence C from the rule-base
{<1, . . . ,<n} and the fact A.

<1 : if x is A1 then y is C1,

<2 : if x is A2 then y is C2,

· · · · · · · · · · · ·
<n : if x is An then y is Cn
fact: x is A

consequence: y is C

In fuzzy logic and approximate reasoning, the most important fuzzy inference rule is the Generalized
Modus Ponens (GMP). The classical Modus Ponens inference rule says:

premise if p then q
fact p

consequence q

This inference rule can be interpreted as: If p is true and p → q is true then q is true. If we have
fuzzy sets, A ∈ F(U) and B ∈ F(V ), and a fuzzy implication operator in the premise, and the fact
is also a fuzzy set, A′ ∈ F(U), (usually A 6= A′) then the consequnce, B′ ∈ F(V ), can be derived
from the premise and the fact using the compositional rule of inference suggested by Zadeh [154]. The
Generalized Modus Ponens inference rule says

premise if x is A then y is B
fact x is A′

consequence: y is B′
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where the consequenceB′ is determined as a composition of the fact and the fuzzy implication operator
B′ = A′ ◦ (A→ B), that is,

B′(v) = sup
u∈U

min{A′(u), (A→ B)(u, v)}, v ∈ V.

The consequence B′ is nothing else but the shadow of A→ B on A′. The Generalized Modus Ponens,
which reduces to classical modus ponens when A′ = A and B′ = B, is closely related to the forward
data-driven inference which is particularly useful in the Fuzzy Logic Control. In many practical cases
instead of sup-min composition we use sup-t-norm composition.

Definition 2.14. Let T be a t-norm. Then the sup-T compositional rule of inference rule can be written
as,

premise if x is A then y is B
fact x is A′

consequence: y is B′

where the consequenceB′ is determined as a composition of the fact and the fuzzy implication operator
B′ = A′ ◦ (A→ B), that is,

B′(v) = sup{T (A′(u), (A→ B)(u, v)) |u ∈ U}, v ∈ V.

It is clear that T can not be chosen independently of the implication operator.

Suppose that A, B and A′ are fuzzy numbers. The GMP should satisfy some rational properties

Property 2.1. Basic property:

if x is A then y is B
x is A

y is B

Property 2.2. Total indeterminance:

if x is A then y is B
x is ¬A

y is unknown

Property 2.3. Subset:

if x is A then y is B
x is A′ ⊂ A

y is B

Property 2.4. Superset:

if x is A then y is B
x is A′

y is B′ ⊃ B
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Suppose that A, B and A′ are fuzzy numbers. The GMP with Mamdani implication inference rule
says

if x is A then y is B
x is A′

y is B′

where the membership function of the consequence B′ is defined by

B′(y) = sup{A′(x) ∧A(x) ∧B(y)|x ∈ R}, y ∈ R.

It can be shown that the Generalized Modus Ponens inference rule with Mamdani implication operator
does not satisfy all the four properties listed above. However, it does satisfy all the four properties with
Gödel implication.

20

               dc_817_13



Chapter 3

OWA Operators in Multiple Criteria
Decisions

The process of information aggregation appears in many applications related to the development of in-
telligent systems. In 1988 Yager introduced a new aggregation technique based on the ordered weighted
averaging operators (OWA) [142]. The determination of ordered weighted averaging (OWA) operator
weights is a very important issue of applying the OWA operator for decision making. One of the first
approaches, suggested by O’Hagan, determines a special class of OWA operators having maximal en-
tropy of the OWA weights for a given level of orness; algorithmically it is based on the solution of
a constrained optimization problem. In 2001, using the method of Lagrange multipliers, Fullér and
Majlender [84] solved this constrained optimization problem analytically and determined the optimal
weighting vector. In 2003 using the Karush-Kuhn-Tucker second-order sufficiency conditions for opti-
mality, Fullér and Majlender [86] computed the exact minimal variability weighting vector for any level
of orness.

In 1994 Yager [145] discussed the issue of weighted min and max aggregations and provided for
a formalization of the process of importance weighted transformation. In 2000 Carlsson and Fullér
[24] discussed the issue of weighted aggregations and provide a possibilistic approach to the process
of importance weighted transformation when both the importances (interpreted as benchmarks) and
the ratings are given by symmetric triangular fuzzy numbers. Furthermore, we show that using the
possibilistic approach (i) small changes in the membership function of the importances can cause only
small variations in the weighted aggregate; (ii) the weighted aggregate of fuzzy ratings remains stable
under small changes in the nonfuzzy importances; (iii) the weighted aggregate of crisp ratings still
remains stable under small changes in the crisp importances whenever we use a continuous implication
operator for the importance weighted transformation.

In 2000 and 2001 Carlsson and Fullér [25, 30] introduced a novel statement of fuzzy mathematical
programming problems and provided a method for finding a fair solution to these problems. Suppose
we are given a mathematical programming problem in which the functional relationship between the
decision variables and the objective function is not completely known. Our knowledge-base consists
of a block of fuzzy if-then rules, where the antecedent part of the rules contains some linguistic values
of the decision variables, and the consequence part consists of a linguistic value of the objective func-
tion. We suggested the use of Tsukamoto’s fuzzy reasoning method to determine the crisp functional
relationship between the objective function and the decision variables, and solve the resulting (usually
nonlinear) programming problem to find a fair optimal solution to the original fuzzy problem.
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In this Chapter we first discuss Fullér and Majlender [84, 86] papers on obtaining OWA operator
weights and survey some later works that extend and develop these models. Then following Carlsson
and Fullér [24] we show a possibilistic approach to importance weighted aggregations. Finally, fol-
lowing Carlsson and Fullér [25, 30] we show a solution approach to fuzzy mathematical programming
problems in which the functional relationship between the decision variables and the objective function
is not completely known (given by fuzzy if-then rules).

3.1 Averaging operators

In a decision process the idea of trade-offs corresponds to viewing the global evaluation of an action as
lying between the worst and the best local ratings. This occurs in the presence of conflicting goals, when
a compensation between the corresponding compatibilities is allowed. Averaging operators realize
trade-offs between objectives, by allowing a positive compensation between ratings. An averaging (or
mean) operator M is a function M : [0, 1]× [0, 1]→ [0, 1] satisfying the following properties

• M(x, x) = x, ∀x ∈ [0, 1], (idempotency)

• M(x, y) = M(y, x), ∀x, y ∈ [0, 1], (commutativity)

• M(0, 0) = 0, M(1, 1) = 1, (extremal conditions)

• M(x, y) ≤M(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)

• M is continuous

It is easy to see that if M is an averaging operator then

min{x, y} ≤M(x, y) ≤ max{x, y}, ∀x, y ∈ [0, 1]

An important family of averaging operators is formed by quasi-arithmetic means

M(a1, . . . , an) = f−1

(
1
n

n∑

i=1

f(ai)
)

This family has been characterized by Kolmogorov as being the class of all decomposable continuous
averaging operators. For example, the quasi-arithmetic mean of a1 and a2 is defined by

M(a1, a2) = f−1

[
f(a1) + f(a2)

2

]
.

The concept of ordered weighted averaging (OWA) operators was introduced by Yager in 1988
[142] as a way for providing aggregations which lie between the maximum and minimums operators.
The structure of this operator involves a nonlinearity in the form of an ordering operation on the ele-
ments to be aggregated. The OWA operator provides a new information aggregation technique and has
already aroused considerable research interest [149].
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Definition 3.1 ([142]). An OWA operator of dimension n is a mapping F : Rn → R, that has an
associated weighting vector W = (w1, w2, . . . , wn)T such as wi ∈ [0, 1], 1 ≤ i ≤ n, and w1 + · · ·+
wn = 1. Furthermore

F (a1, . . . , an) = w1b1 + · · ·+ wnbn =
n∑

j=1

wjbj ,

where bj is the j-th largest element of the bag 〈a1, . . . , an〉.

A fundamental aspect of this operator is the re-ordering step, in particular an aggregate ai is not
associated with a particular weightwi but rather a weight is associated with a particular ordered position
of aggregate. When we view the OWA weights as a column vector we will find it convenient to refer to
the weights with the low indices as weights at the top and those with the higher indices with weights at
the bottom. It is noted that different OWA operators are distinguished by their weighting function. In
[142] Yager pointed out three important special cases of OWA aggregations:

• F ∗: In this case W = W ∗ = (1, 0 . . . , 0)T and F ∗(a1, . . . , an) = max{a1, . . . , an},

• F∗: In this case W = W∗ = (0, 0 . . . , 1)T and F∗(a1, . . . , an) = min{a1, . . . , an},

• FA: In this case W = WA = (1/n, . . . , 1/n)T and FA(a1, . . . , an) =
a1 + · · ·+ an

n
.

A number of important properties can be associated with the OWA operators. we will now discuss some
of these. For any OWA operator F holds

F∗(a1, . . . , an) ≤ F (a1, . . . , an) ≤ F ∗(a1, . . . , an).

Thus the upper an lower star OWA operator are its boundaries. From the above it becomes clear that
for any F

min{a1, . . . , an} ≤ F (a1, . . . , an) ≤ max{a1, . . . , an}.
The OWA operator can be seen to be commutative. Let 〈a1, . . . , an〉 be a bag of aggregates and let
{d1, . . . , dn} be any permutation of the ai. Then for any OWA operatorF (a1, . . . , an) = F (d1, . . . , dn).
A third characteristic associated with these operators is monotonicity. Assume ai and ci are a collection
of aggregates, i = 1, . . . , n such that for each i, ai ≥ ci. Then F (a1, . . . , an) ≥ F (c1, c2, . . . , cn),
where F is some fixed weight OWA operator. Another characteristic associated with these operators is
idempotency. If ai = a for all i then for any OWA operator F (a1, . . . , an) = a. From the above we
can see the OWA operators have the basic properties associated with an averaging operator.

Example 3.1. A window type OWA operator takes the average of the m arguments around the center.
For this class of operators we have

wi =





0 if i < k

1
m

if k ≤ i < k +m

0 if i ≥ k +m

(3.1)
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In order to classify OWA operators in regard to their location between and and or, a measure of
orness, associated with any vector W is introduced by Yager [142] as follows

orness(W ) =
1

n− 1

n∑

i=1

(n− i)wi.

It is easy to see that for any W the orness(W ) is always in the unit interval. Furthermore, note that the
nearer W is to an or, the closer its measure is to one; while the nearer it is to an and, the closer is to
zero. It can easily be shown that orness(W ∗) = 1, orness(W∗) = 0 and orness(WA) = 0.5. A measure
of andness is defined as andness(W ) = 1 − orness(W ). Generally, an OWA operator with much of
nonzero weights near the top will be an orlike operator, that is, orness(W ) ≥ 0.5, and when much of
the weights are nonzero near the bottom, the OWA operator will be andlike, that is, andness(W ) ≥ 0.5.
In [142] Yager defined the measure of dispersion (or entropy) of an OWA vector by

disp(W ) = −
n∑

i=1

wi lnwi.

We can see when using the OWA operator as an averaging operator disp(W ) measures the degree to
which we use all the aggregates equally.

3.2 Obtaining OWA operator weights

One important issue in the theory of OWA operators is the determination of the associated weights. One
of the first approaches, suggested by O’Hagan, determines a special class of OWA operators having
maximal entropy of the OWA weights for a given level of orness; algorithmically it is based on the
solution of a constrained optimization problem. Another consideration that may be of interest to a
decision maker involves the variability associated with a weighting vector. In particular, a decision
maker may desire low variability associated with a chosen weighting vector. It is clear that the actual
type of aggregation performed by an OWA operator depends upon the form of the weighting vector
[144]. A number of approaches have been suggested for obtaining the associated weights, i.e., quantifier
guided aggregation [142, 144], exponential smoothing and learning [150]. O’Hagan [98] determined
a special class of OWA operators having maximal entropy of the OWA weights for a given level of
orness. His approach is based on the solution of he following mathematical programming problem,

maximize disp(W ) = −
n∑

i=1

wi lnwi

subject to orness(W ) =
n∑

i=1

n− i
n− 1

· wi = α, 0 ≤ α ≤ 1 (3.2)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, . . . , n.

In 2001, using the method of Lagrange multipliers, Fullér and Majlender [84] transformed constrained
optimization problem (3.2) into a polynomial equation which is then was solved to determine the maxi-
mal entropy OWA operator weights. By their method, the associated weighting vector is easily obtained
by

lnwj =
j − 1
n− 1

lnwn +
n− j
n− 1

lnw1 =⇒ wj = n−1

√
wn−j1 wj−1

n
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and

wn =
((n− 1)α− n)w1 + 1
(n− 1)α+ 1− nw1

then
w1[(n− 1)α+ 1− nw1]n = ((n− 1)α)n−1[((n− 1)α− n)w1 + 1]

where n ≥ 3. For n = 2 then from orness(w1, w2) = α the optimal weights are uniquely defined as
w∗1 = α and w∗2 = 1 − α. Furthemore, if α = 0 or α = 1 then the associated weighting vectors are
uniquely defined as (0, 0, . . . , 0, 1)T and (1, 0, . . . , 0, 0)T , respectively.

An interesting question is to determine the minimal variability weighting vector under given level
of orness [148]. The variance of a given weighting vector is computed as follows

D2(W ) =
n∑

i=1

1
n

(wi − E(W ))2 =
1
n

n∑

i=1

w2
i −

(
1
n

n∑

i=1

wi

)2

=
1
n

n∑

i=1

w2
i −

1
n2
.

where E(W ) = (w1 + · · ·+ wn)/n = 1/n stands for the arithmetic mean of weights.
In 2003 Fullér and Majlender [86] suggested a minimum variance method to obtain the minimal

variability OWA operator weights. A set of OWA operator weights with minimal variability could
then be generated. Their approach requires the solution of the following mathematical programming
problem:

minimize D2(W ) =
1
n
·
n∑

i=1

w2
i −

1
n2

subject to orness(w) =
n∑

i=1

n− i
n− 1

· wi = α, 0 ≤ α ≤ 1, (3.3)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, . . . , n.

Fullér and Majlender [86] computed the exact minimal variability weighting vector for any level of
orness using the Karush-Kuhn-Tucker second-order sufficiency conditions for optimality:

Let us consider the constrained optimization problem (3.3). First we note that if n = 2 then from
orness(w1, w2) = α the optimal weights are uniquely defined as w∗1 = α and w∗2 = 1−α. Furthemore,
if α = 0 or α = 1 then the associated weighting vectors are uniquely defined as (0, 0, . . . , 0, 1)T and
(1, 0, . . . , 0, 0)T , respectively, with variability

D2(1, 0, . . . , 0, 0) = D2(0, 0, . . . , 0, 1) =
1
n
− 1
n2
.

Suppose now that n ≥ 3 and 0 < α < 1. Let us

L(W,λ1, λ2) =
1
n

n∑

i=1

w2
i −

1
n2

+ λ1

( n∑

i=1

wi − 1
)

+ λ2

( n∑

i=1

n− i
n− 1

wi − α
)
.

denote the Lagrange function of constrained optimization problem (3.3), where λ1 and λ2 are real
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numbers. Then the partial derivatives of L are computed as

∂L

∂wj
=

2wj
n

+ λ1 +
n− j
n− 1

· λ2 = 0, 1 ≤ j ≤ n, (3.4)

∂L

∂λ1
=

n∑

i=1

wi − 1 = 0,

∂L

∂λ2
=

n∑

i=1

n− i
n− 1

· wi − α = 0.

We shall suppose that the optimal weighting vector has the following form

W = (0, . . . , 0, wp, . . . , wq, 0 . . . , 0)T (3.5)

where 1 ≤ p < q ≤ n and use the notation

I{p,q} = {p, p+ 1, . . . , q − 1, q},

for the indexes from p to q. So, wj = 0 if j /∈ I{p,q} and wj ≥ 0 if j ∈ I{p,q}.
For j = p we find that

∂L

∂wp
=

2wp
n

+ λ1 +
n− p
n− 1

· λ2 = 0,

and for j = q we get
∂L

∂wq
=

2wq
n

+ λ1 +
n− q
n− 1

· λ2 = 0.

That is,
2(wp − wq)

n
+
q − p
n− 1

· λ2 = 0

and therefore, the optimal values of λ1 and λ2 (denoted by λ∗1 and λ∗2) should satisfy the following
equations

λ∗1 =
2
n

[
n− q
q − p · wp −

n− p
q − p · wq

]
and λ∗2 =

n− 1
q − p ·

2
n
· (wq − wp). (3.6)

Substituting λ∗1 for λ1 and λ∗2 for λ2 in (3.4) we get

2
n
· wj +

2
n

[
n− q
q − p · wp −

n− p
q − p · wq

]
+
n− j
n− 1

· n− 1
q − p ·

2
n
· (wq − wp) = 0.

That is the jth optimal weight should satisfy the equation

w∗j =
q − j
q − p · wp +

j − p
q − p · wq, j ∈ I{p,q}. (3.7)

From representation (3.5) we get
q∑

i=p

w∗i = 1,
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that is,
q∑

i=p

(
q − i
q − p · wp +

i− p
q − p · wq

)
= 1,

i.e.

wp + wq =
2

q − p+ 1
.

From the constraint orness(w) = α we find

q∑

i=p

n− i
n− 1

· wi =
q∑

i=p

n− i
n− 1

· q − i
q − p · wp +

q∑

i=p

n− i
n− 1

· i− p
q − p · wq = α,

that is,

w∗p =
2(2q + p− 2)− 6(n− 1)(1− α)

(q − p+ 1)(q − p+ 2)
, (3.8)

and

w∗q =
2

q − p+ 1
− w∗p =

6(n− 1)(1− α)− 2(q + 2p− 4)
(q − p+ 1)(q − p+ 2)

. (3.9)

The optimal weighting vector

W ∗ = (0, . . . , 0, w∗p, . . . , w
∗
q , 0 . . . , 0)T

is feasible if and only ifw∗p, w
∗
q ∈ [0, 1], because according to (3.7) any otherw∗j , j ∈ I{p,q} is computed

as their convex linear combination.
Using formulas (3.8) and (3.9) we find

w∗p, w
∗
q ∈ [0, 1] ⇐⇒ α ∈

[
1− 1

3
· 2q + p− 2

n− 1
, 1− 1

3
· q + 2p− 4

n− 1

]

The following (disjunctive) partition of the unit interval (0, 1) will be crucial in finding an optimal
solution to problem (3.3):

(0, 1) =
n−1⋃

r=2

Jr,n ∪ J1,n ∪
n−1⋃

s=2

J1,s. (3.10)

where

Jr,n =
(

1− 1
3
· 2n+ r − 2

n− 1
, 1− 1

3
· 2n+ r − 3

n− 1

]
, r = 2, . . . , n− 1,

J1,n =
(

1− 1
3
· 2n− 1
n− 1

, 1− 1
3
· n− 2
n− 1

)
,

J1,s =
[
1− 1

3
· s− 1
n− 1

, 1− 1
3
· s− 2
n− 1

)
, s = 2, . . . , n− 1.

Consider again problem (3.3) and suppose that α ∈ Jr,s for some r and s from partition (3.10).
Such r and s always exist for any α ∈ (0, 1), furthermore, r = 1 or s = n should hold.

Then
W ∗ = (0, . . . , 0, w∗r , . . . , w

∗
s , 0 . . . , 0)T , (3.11)
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where

w∗j = 0, if j /∈ I{r,s},

w∗r =
2(2s+ r − 2)− 6(n− 1)(1− α)

(s− r + 1)(s− r + 2)
,

w∗s =
6(n− 1)(1− α)− 2(s+ 2r − 4)

(s− r + 1)(s− r + 2)
, (3.12)

w∗j =
s− j
s− r · wr +

j − r
s− r · ws, if j ∈ I{r+1,s−1}.

and I{r+1,s−1} = {r + 1, . . . , s− 1}. We note that if r = 1 and s = n then we have

α ∈ J1,n =
(

1− 1
3
· 2n− 1
n− 1

, 1− 1
3
· n− 2
n− 1

)
,

and
W ∗ = (w∗1, . . . , w

∗
n)T ,

where

w∗1 =
2(2n− 1)− 6(n− 1)(1− α)

n(n+ 1)
,

w∗n =
6(n− 1)(1− α)− 2(n− 2)

n(n+ 1)
,

w∗j =
n− j
n− 1

· w1 +
j − 1
n− 1

· wn, if j ∈ {2, . . . , n− 1}.

Furthermore, from the construction of W ∗ it is clear that

n∑

i=1

w∗i =
s∑

i=r

w∗i = 1, w∗i ≥ 0, i = 1, 2, . . . , n,

and orness(W ∗) = α, that is, W ∗ is feasible for problem (3.3).
We will show now that W ∗, defined by (3.11), satisfies the Kuhn-Tucker second-order sufficiency

conditions for optimality ([66], page 58). Namely,

(i) There exist λ∗1, λ
∗
2 ∈ R and µ∗1 ≥ 0, . . . , µ∗n ≥ 0 such that,

∂

∂wk

(
D2(W ) + λ∗1

[ n∑

i=1

wi − 1
]

+ λ∗2

[ n−1∑

i=1

n− i
n− 1

· wi − α
]

+
n∑

j=1

µ∗j (−wj)
)∣∣∣∣

W=W ∗
= 0

for 1 ≤ k ≤ n and µ∗jw
∗
j = 0, j = 1, . . . , n.

(ii) W ∗ is a regular point of the constraints,
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(iii) The Hessian matrix,

∂2

∂W 2

(
D2(W ) + λ∗1

[ n∑

i=1

wi − 1
]

+ λ∗2

[ n−1∑

i=1

n− i
n− 1

· wi − α
]

+
n∑

j=1

µ∗j (−wj)
)∣∣∣∣

W=W ∗

is positive definite on

X̂ =
{
y

∣∣∣∣h1y
T = 0, h2y

T = 0 and gjyT = 0 for all j with µj > 0
}
, (3.13)

where

h1 =
(
n− 1
n− 1

,
n− 2
n− 1

, . . . ,
1

n− 1
, 0
)T

, (3.14)

and
h2 = (1, 1, . . . , 1, 1)T . (3.15)

are the gradients of linear equality constraints, and

gj = (0, 0, . . . , 0,

jth︷︸︸︷
−1 , 0, 0, . . . , 0)T (3.16)

is the gradient of the jth linear inequality constraint of problem (3.3).
Proof

(i) According to (3.6) we get

λ∗1 =
2
n
·
[
n− s
s− r · w

∗
r −

n− r
s− r · w

∗
s

]
and λ∗2 =

n− 1
s− r ·

2
n
· (w∗s − w∗r)

and
2
n
· w∗k + λ∗1 +

n− k
n− 1

· λ∗2 − µk = 0.

for k = 1, . . . , n. If k ∈ I{r,s} then

µ∗k =
2
n
·
[
s− k
s− r · w

∗
r +

k − r
s− r · w

∗
s

]
+

2
n
·
[
n− s
s− r · w

∗
r −

n− r
s− r · w

∗
s

]

+
n− k
n− 1

· n− 1
s− r ·

2
n
· (w∗s − w∗r)

=
2
n
· 1
s− r

[
(s− k + n− s− n+ k)w∗r + (k − r − n+ r + n− k)w∗s

]

= 0.

If k /∈ I{r,s} then w∗k = 0. Then from the equality

λ∗1 +
n− k
n− 1

· λ∗2 − µk = 0,
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we find

µ∗k = λ∗1 +
n− k
n− 1

· λ∗2

=
2
n
·
[
n− s
s− r · w

∗
r −

n− r
s− r · w

∗
s

]
+
n− k
n− 1

· n− 1
s− r ·

2
n
· (w∗s − w∗r)

=
2
n
· 1
s− r ·

[
(k − s)w∗r + (r − k)w∗s

]
.

We need to show that µ∗k ≥ 0 for k /∈ I{r,s}. That is,

(k − s)w∗r + (r − k)w∗s = (k − s) · 2(2s+ r − 2)− 6(n− 1)(1− α)
(s− r + 1)(s− r + 2)

+(r − k) · 6(n− 1)(1− α)− 2(s+ 2r − 4)
(s− r + 1)(s− r + 2)

≥ 0.

(3.17)

If r = 1 and s = n then we get that µ∗k = 0 for k = 1, . . . , n. Suppose now that r = 1 and s < n. In
this case the inequality k > s > 1 should hold and (3.17) leads to the following requirement for α,

α ≥ 1− (s− 1)(3k − 2s− 2)
3(n− 1)(2k − s− 1)

.

On the other hand, from α ∈ J1,s and s < n we have

α ∈
[
1− 1

3
· s− 1
n− 1

, 1− 1
3
· s− 2
n− 1

)
,

and, therefore,

α ≥ 1− 1
3
· s− 1
n− 1

Finally, from the inequality

1− 1
3
· s− 1
n− 1

≥ 1− (s− 1)(3k − 2s− 2)
3(n− 1)(2k − s− 1)

we get that (3.17) holds. The proof of the remaining case (r > 1 and s = n) is carried out analogously.
(ii) The gradient vectors of linear equality and inequality constraints are computed by (3.14), (3.15)

and (3.16), respectively. If r = 1 and s = n then w∗j 6= 0 for all j = 1, . . . , n. Then it is easy to see
that h1 and h2 are linearly independent. If r = 1 and s < n then w∗j = 0 for j = s + 1, . . . , n, and in
this case

gj = (0, 0, . . . , 0,

jth︷︸︸︷
−1 , 0, 0, . . . , 0)T ,

for j = s+ 1, . . . , n. Consider the matrix

G = [hT1 , h
T
2 , g

T
s+1, . . . , g

T
n ] ∈ Rn×(n−s+2).
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Then the determinant of the lower-left submatrix of dimension (n− s+ 2)× (n− s+ 2) of G is
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n− s+ 1
n− 1

1 0 . . . 0

n− s
n− 1

1 0 . . . 0

n− s− 1
n− 1

1 −1 . . . 0
...

...
...

. . . 0
0 1 0 . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n−s

∣∣∣∣∣∣∣∣

n− s+ 1
n− 1

1

n− s
n− 1

1

∣∣∣∣∣∣∣∣
=

1
n− 1

(−1)n−s

which means that the columns of G are linearly independent, and therefore, the system

{h1, h2, gs+1, . . . , gn},

is linearly independent.
If r > 1 and = n then w∗j = 0 for j = 1, . . . , r − 1, and in this case

gj = (0, 0, . . . , 0,

jth︷︸︸︷
−1 , 0, 0, . . . , 0)T ,

for j = 1, . . . , r − 1. Consider the matrix

F = [hT1 , h
T
2 , g

T
1 , . . . , g

T
r−1] ∈ Rn×(r+1).

Then the determinant of the upper-left submatrix of dimension (r + 1)× (r + 1) of F is
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n− 1
n− 1

1 −1 . . . 0
...

...
...

. . . 0
n− r + 1
n− 1

1 0 . . . −1

n− r
n− 1

1 0 . . . 0

n− r − 1
n− 1

1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)r−1

∣∣∣∣∣∣∣∣

n− r
n− 1

1

n− r − 1
n− 1

1

∣∣∣∣∣∣∣∣
=

1
n− 1

(−1)r−1

which means that the columns of F are linearly independent, and therefore, the system

{h1, h2, g1, . . . , gr−1},

is linearly independent. So W ∗ is a regular point for problem (3.3).
(iii) Let us introduce the notation

K(W ) = D2(W ) + λ∗1

[ n∑

i=1

wi − 1
]

+ λ∗2

[ n−1∑

i=1

n− i
n− 1

· wi − α
]

+
n∑

j=1

µ∗j (−wj).

The Hessian matrix of K at W ∗ is

∂2

∂wk∂wj
K(W )

∣∣∣∣
W=W ∗

=
∂2

∂wk∂wj
D2(W )

∣∣∣∣
W=W ∗

=
2
n
· δkj ,
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where

δjk =
{

1 if j = k
0 otherwise.

That is,

K ′′(W ∗) =
2
n
·




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




which is a positive definite matrix on Rn.
So, the objective function D2(W ) has a local minimum at point W = W ∗ on

X =
{
W ∈ Rn

∣∣∣∣W ≥ 0,
n∑

i=1

wi = 1,
n∑

i=1

n− i
n− 1

· wi = α

}
(3.18)

where X is the set of feasible solutions of problem (3.3). Taking into consideration that D2 : Rn → R
is a strictly convex, bounded and continuous function, and X is a convex and compact subset of Rn, we
can conclude that D2 attains its (unique) global minimum on X at point W ∗.

Following Fullér and Majlender [86] we show an example for obtaining the minimal variability
five-dimensional weighting vector under orness levels α = 0, 0.1, . . . , 0.9 and 1.0. First, we construct
the corresponding partition as

(0, 1) =
4⋃

r=2

Jr,5 ∪ J1,5 ∪
4⋃

s=2

J1,s.

where

Jr,5 =
(

1
3
· 5− r − 1

5− 1
,

1
3
· 5− r

5− 1

]
=
(

4− r
12

,
5− r

12

]
,

for r = 2, 3, 4 and

J1,5 =
(

1
3
· 5− 2

5− 1
,

1
3
· 10− 1

5− 1

)
=
(

3
12
,

9
12

)
,

and

J1,s =
[
1− 1

3
· s− 1

5− 1
, 1− 1

3
· s− 2

5− 1

)
=
[

13− s
12

,
14− s

12

)
,

for s = 2, 3, 4, and, therefore we get,

(0, 1) =
(

0,
1
12

]
∪
(

1
12
,

2
12

]
∪
(

2
12
,

3
12

]
∪
(

3
12
,

9
12

)

∪
[

9
12
,
10
12

)
∪
[

10
12
,
11
12

)
∪
[

11
12
,
12
12

)
.

Without loss of generality we can assume that α < 0.5, because if a weighting vector W is optimal
for problem (3.3) under some given degree of orness, α < 0.5, then its reverse, denoted by WR, and
defined as

wRi = wn−i+1
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is also optimal for problem (3.3) under degree of orness (1−α). Really, as was shown by Yager [144],
we find that

D2(WR) = D2(W ) and orness(WR) = 1− orness(W ).

Therefore, for any α > 0.5, we can solve problem (3.3) by solving it for level of orness (1 − α) and
then taking the reverse of that solution.

Then we obtain the optimal weights from (3.12) as follows

• if α = 0 then W ∗(α) = W ∗(0) = (0, 0, . . . , 0, 1)T and, therefore,

W ∗(1) = (W ∗(0))R = (1, 0, . . . , 0, 0)T .

• if α = 0.1 then

α ∈ J3,5 =
(

1
12
,

2
12

]
,

and the associated minimal variablity weights are

w∗1(0.1) = 0,
w∗2(0.1) = 0,

w∗3(0.1) =
2(10 + 3− 2)− 6(5− 1)(1− 0.1)

(5− 3 + 1)(5− 3 + 2)
=

0.4
12

= 0.0333,

w∗5(0.1) =
2

5− 3 + 1
− w∗3(0.1) = 0.6334,

w∗4(0.1) =
1
2
· w∗3(0.1) +

1
2
· w∗5(0.1) = 0.3333,

So,
W ∗(α) = W ∗(0.1) = (0, 0, 0.033, 0.333, 0.633)T ,

and, consequently,

W ∗(0.9) = (W ∗(0.1))R = (0.633, 0.333, 0.033, 0, 0)T .

with variance D2(W ∗(0.1)) = 0.0625.

• if α = 0.2 then

α ∈ J2,5 =
(

2
12
,

3
12

]

and in a similar manner we find that the associated minimal variablity weighting vector is

W ∗(0.2) = (0.0, 0.04, 0.18, 0.32, 0.46)T ,

and, therefore,
W ∗(0.8) = (0.46, 0.32, 0.18, 0.04, 0.0)T ,

with variance D2(W ∗(0.2)) = 0.0296.
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• if α = 0.3 then

α ∈ J1,5 =
(

3
12
,

9
12

]

and in a similar manner we find that the associated minimal variablity weighting vector is

W ∗(0.3) = (0.04, 0.12, 0.20, 0.28, 0.36)T ,

and, therefore,
W ∗(0.7) = (0.36, 0.28, 0.20, 0.12, 0.04)T ,

with variance D2(W ∗(0.3)) = 0.0128.

• if α = 0.4 then

α ∈ J1,5 =
(

3
12
,

9
12

]

and in a similar manner we find that the associated minimal variablity weighting vector is

W ∗(0.4) = (0.12, 0.16, 0.20, 0.24, 0.28)T ,

and, therefore,
W ∗(0.6) = (0.28, 0.24, 0.20, 0.16, 0.12)T ,

with variance D2(W ∗(0.4)) = 0.0032.

• if α = 0.5 then
W ∗(0.5) = (0.2, 0.2, 0.2, 0.2, 0.2)T .

with variance D2(W ∗(0.5)) = 0.

3.3 Constrained OWA aggregations

Yager [147] considered the problem of maximizing an OWA aggregation of a group of variables that
are interrelated and constrained by a collection of linear inequalities and he showed how this problem
can be modeled as a mixed integer linear programming problem. The constrained OWA aggregation
problem [147] can be expressed as the following mathematical programming problem

max F (x1, . . . , xn)
subject to Ax ≤ b, x ≥ 0,

where F (x1, . . . , xn) = wT y = w1y1 + · · · + wnyn and yj denotes the jth largest element of the bag
< x1, . . . , xn >.

Following Carlsson, Fullér and Majlender [37] we shall show an algorithm for solving the following
(nonlinear) constrained OWA aggregation problem

max wT y; subject to {x1 + · · ·+ xn ≤ 1, x ≥ 0}. (3.19)

Note 1. As an illustration of the general constrained OWA aggregation problem, Yager [147] consid-
ered problem (3.19) for n = 3 and showed how it can be modelled as a mixed integer linear program-
ming problem. Then he used the Storm software to solve it. In fact, our work has been motivated by the
observation that the dual of problem (3.19) can be solved by a simple inspection.
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First using the relations y1 ≥ y2 ≥ · · · ≥ yn ≥ 0, we rewrite (3.19) in the form

max wT y; subject to Ĝy ≤ q, (3.20)

where

Ĝ =
[
eT

G

]
,

and q = (1, 0, 0, . . . , 0)T ∈ Rn+1, e = (1, 1, . . . , 1)T ∈ Rn, and G = (gij) with gij = 1 if i = j − 1,
gij = −1 if i = j, and gij = 0 otherwise, for i, j = 1, . . . , n.

We note here that the condition y ≥ 0 is implicitly included in problem (3.20). The dual problem
of (3.20) can be formulated as

min qT ẑ; subject to {ẑT Ĝ = wT , ẑ ≥ 0}, (3.21)

where ẑ = [t, z1, . . . , zn]T ∈ Rn+1 and t ∈ R is a real number. It is easy to see that problem (3.21) can
be written as

min t; subject to {t− z1 = w1, t− z2 + z1 = w2, . . . , t− zn + zn−1 = wn}, (3.22)

where t ≥ 0 and z ≥ 0. Summing up the first k conditions of (3.22) for k = 1, . . . , n, we get
kt− zk = w1 + · · ·+ wk, that is,

t =
w1 + · · ·+ wk

k
+
zk

k
, k = 1, . . . , n. (3.23)

So problem (3.21) is equivalent to the problem

min t; subject to
{
t =

w1 + · · ·+ wk

k
+
zk

k
, k = 1, . . . , n

}
, (3.24)

where z1, . . . , zn ≥ 0. The optimal solution ẑ∗ = [t∗, z∗1 , . . . , z
∗
n] to (3.24) can be obtained immediately

by inspection. We merely have,

t∗ =
w1 + · · ·+ wk∗

k∗
,

and
z∗k
k

=
w1 + · · ·+ wk∗

k∗
− w1 + · · ·+ wk

k
, k = 1, . . . , n,

where k∗ ∈ {1, . . . , n} is such that

w1 + · · ·+ wk∗

k∗
= max

k=1,...,n

w1 + · · ·+ wk

k
.

Let us introduce the notations

yk = (

1-st︷︸︸︷
1/k , . . .

k-th︷︸︸︷
1/k , 0, . . . , 0)T ∈ Rn, k = 1, . . . , n. (3.25)
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It can easily be checked that each yk satisfies all conditions of problem (3.20). Using the duality
theorem we have

max
k=1,...,n

w1 + · · ·+ wk

k
= max

k=1,...,n
wT yk ≤ max{wT y|Ĝy ≤ q} ≤

min{qT ẑ|ẑT Ĝ = wT , ẑ ≥ 0} = max
k=1,...,n

w1 + · · ·+ wk

k
,

which means that the optimal value

t∗ =
w1 + · · ·+ wk∗

k∗

can be reached with yk
∗
.

Summary 1. To find an optimal solution to (3.20) we should proceed as follows: select the maximal
element of the set

max
{
w1,

w1 + w2

2
, . . . ,

w1 + · · ·+ wn

n

}
,

and then choose the corresponding element from (3.25).

Note 2. Let d > 0 be a real number. Then the constraint x1 + · · · + xn ≤ 1 can be replaced by
x1 + · · ·+ xn ≤ d without modifying the solution algorithm. Thus, the problem studied in this paper is
nothing else but a nonlinear version of the well-known continuous knapsack problem.

Following Carlsson, Fullér and Majlender [37] we shall show an example. Consider the following
4-dimensional constrained OWA aggregation problem

max F (x1, x2, x3, x4); subject to {x1 + x2 + x3 + x4 ≤ 1, x ≥ 0}. (3.26)

Then the set of all conceivable optimal values is constructed as

H =

{
w1,

w1 + w2

2
,
w1 + w2 + w3

3
,
w1 + w2 + w3 + w4

4

}

and, the correspending optimal solutions are

1. If maxH = w1 then an optimal solution to problem (3.26) will be x∗1 = 1, x∗2 = x∗3 = x∗4 = 0
with F (x∗) = w1.

2. If maxH = (w1 + w2)/2 an optimal solution to problem (3.26) will be x∗1 = x∗2 = 1/2, x∗3 =
x∗4 = 0 with F (x∗) = (w1 + w2)/2.

3. If maxH = (w1 + w2 + w3)/3 an optimal solution to problem (3.26) will be x∗1 = x∗2 = x∗3 =
1/3, x∗4 = 0 with F (x∗) = (w1 + w2 + w3)/3.

4. If maxH = (w1 + w2 + w3 + w4)/4 an optimal solution to problem (3.26) will be x∗1 = x∗2 =
x∗3 = x∗4 = 1/4 with F (x∗) = (w1 + w2 + w3 + w4)/4.

Note 3. From the commutativity of OWA operators it follows that all permutations of the coordinates
of an optimal solution are also optimal solutions to constrained OWA aggregation problems.
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3.4 Recent advances

In this Section we will give a short chronological survey of some later works that extend and develop
the maximal entropy and the minimal variability OWA operator weights models. We will mention only
those works in which the authors extended, improved or used the findings of our original papers Fullér
and Majlender [84, 85].

In 2004 Liu and Chen [116] introduced the concept of parametric geometric OWA operator (PGOWA)
and a parametric maximum entropy OWA operator (PMEOWA) and showed the equivalence of para-
metric geometric OWA operator and parametric maximum entropy OWA operator weights.

In 2005 Wang and Parkan [137] presented a minimax disparity approach, which minimizes the
maximum disparity between two adjacent weights under a given level of orness. Their approach was
formulated as

minimize max
i=1,2,...,n−1

| wi − wi+1 |

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.

Majlender [124] developed a maximal Rényi entropy method for generating a parametric class of OWA
operators and the maximal Rényi entropy OWA weights. His approach was formulated as

maximize Hβ(w) =
1

1− β log2

n∑

i=1

wβi

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.

where β ∈ R and H1(w) = −∑n
i=1wi log2wi. Liu [117] extended the the properties of OWA opera-

tor to the RIM (regular increasing monotone) quantifier which is represented with a monotone function
instead of the OWA weighting vector. He also introduced a class of parameterized equidifferent RIM
quantifier which has minimum variance generating function. This equidifferent RIM quantifier is con-
sistent with its orness level for any aggregated elements, which can be used to represent the decision
maker’s preference. Troiano and Yager [133] pointed out that OWA weighting vector and the fuzzy
quantifiers are strongly related. An intuitive way for shaping a monotonic quantifier, is by means of the
threshold that makes a separation between the regions of what is satisfactory and what is not. Therefore,
the characteristics of a threshold can be directly related to the OWA weighting vector and to its metrics:
the attitudinal character and the entropy. Usually these two metrics are supposed to be independent,
although some limitations in their value come when they are considered jointly. They argued that these
two metrics are strongly related by the definition of quantifier threshold, and they showed how they can
be used jointly to verify and validate a quantifier and its threshold.

In 2006 Xu [141] investigated the dependent OWA operators, and developed a new argument-
dependent approach to determining the OWA weights, which can relieve the influence of unfair ar-
guments on the aggregated results. Zadrozny and Kacprzyk [158] discussed the use of the Yager’s
OWA operators within a flexible querying interface. Their key issue is the adaptation of an OWA opera-
tor to the specifics of a user’s query. They considered some well-known approaches to the manipulation
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of the weights vector and proposed a new one that is simple and efficient. They discussed the tuning
(selection of weights) of the OWA operators, and proposed an algorithm that is effective and efficient
in the context of their FQUERY for Access package. Wang, Chang and Cheng [138] developed the
query system of practical hemodialysis database for a regional hospital in Taiwan, which can help the
doctors to make more accurate decision in hemodialysis. They built the fuzzy membership function of
hemodialysis indices based on experts’ interviews. They proposed a fuzzy OWA query method, and
let the decision makers (doctors) just need to change the weights of attributes dynamical, then the pro-
posed method can revise the weight of each attributes based on aggregation situation and the system
will provide synthetic suggestions to the decision makers. Chang et al [65] proposed a dynamic fuzzy
OWA model to deal with problems of group multiple criteria decision making. Their proposed model
can help users to solve MCDM problems under the situation of fuzzy or incomplete information. Amin
and Emrouznejad [4] introduced an extended minimax disparity model to determine the OWA operator
weights as follows,

minimize δ

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

wj − wi + δ ≥ 0, i = 1, . . . , n− 1, j = i+ 1, . . . , n
wi − wj + δ ≥ 0, i = 1, . . . , n− 1, j = i+ 1, . . . , n

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.

In this model it is assumed that the deviation |wi − wj | is always equal to δ, i 6= j.
In 2007 Liu [118] proved that the solutions of the minimum variance OWA operator problem under

given orness level and the minimax disparity problem for OWA operator are equivalent, both of them
have the same form of maximum spread equidifferent OWA operator. He also introduced the concept
of maximum spread equidifferent OWA operator and proved its equivalence to the minimum variance
OWA operator. Llamazares [123] proposed determining OWA operator weights regarding the class of
majority rule that one should want to obtain when individuals do not grade their preferences between
the alternatives. Wang, Luo and Liu [139] introduced two models determining as equally important
OWA operator weights as possible for a given orness degree. Their models can be written as

minimize J1 =
n−1∑

i=1

(wi − wi+1)2

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.

and

minimize J2 =
n−1∑

i=1

(
wi

wi+1
− wi+1

wi

)2

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.
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Yager [151] used stress functions to obtain OWA operator weights. With this stress function, a user
can ”stress” which argument values they want to give more weight in the aggregation. An important
feature of this stress function is that it is only required to be nonnegative function on the unit interval.
This allows a user to completely focus on the issue of where to put the stress in the aggregation without
having to consider satisfaction of any other requirements.

In 2008 Liu [119] proposed a general optimization model with strictly convex objective function to
obtain the OWA operator under given orness level,

minimize
n∑

i=1

F (wi)

subject to orness(w) =
n∑

i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n.

and where F is a strictly convex function on [0, 1], and it is at least two order differentiable. His ap-
proach includes the maximum entropy (for F (x) = x lnx) and the minimum variance (for F (x) = x2

problems as special cases. More generally, when F (x) = xα, α > 0 it becomes the OWA problem of
Rényi entropy [124], which includes the maximum entropy and the minimum variance OWA problem
as special cases. Liu also included into this general model the solution methods and the properties of
maximum entropy and minimum variance problems that were studied separately earlier. The consis-
tent property that the aggregation value for any aggregated set monotonically increases with the given
orness value is still kept, which gives more alternatives to represent the preference information in the
aggregation of decision making. Then, with the conclusion that the RIM quantifier can be seen as the
continuous case of OWA operator with infinite dimension, Liu [120] further suggested a general RIM
quantifier determination model, and analytically solved it with the optimal control technique. Ahn [1]
developed some new quantifier functions for aiding the quantifier-guided aggregation. They are related
to the weighting functions that show properties such that the weights are strictly ranked and that a
value of orness is constant independently of the number of criteria considered. These new quantifiers
show the same properties that the weighting functions do and they can be used for the quantifier-guided
aggregation of a multiple-criteria input. The proposed RIM and regular decreasing monotone (RDM)
quantifiers produce the same orness as the weighting functions from which each quantifier function
originates. the quantifier orness rapidly converges into the value of orness of the weighting functions
having a constant value of orness. This result indicates that a quantifier-guided OWA aggregation will
result in a similar aggregate in case the number of criteria is not too small.

In 2009 Wu et al [140] used a linear programming model for determining ordered weighted averag-
ing operator weights with maximal Yager’s entropy [146]. By analyzing the desirable properties with
this measure of entropy, they proposed a novel approach to determine the weights of the OWA operator.
Ahn [2] showed that a closed form of weights, obtained by the least-squared OWA (LSOWA) method,
is equivalent to the minimax disparity approach solution when a condition ensuring all positive weights
is added into the formulation of minimax disparity approach. Liu [121] presented some methods of
OWA determination with different dimension instantiations, that is to get an OWA operator series that
can be used to the different dimensional application cases of the same type. He also showed some OWA
determination methods that can make the elements distributed in monotonic, symmetric or any func-
tion shape cases with different dimensions. Using Yager’s stress function method [151] he managed to
extend an OWA operator to another dimensional case with the same aggregation properties.
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In 2010 Ahn [3] presented a general method for obtaining OWA operator weights via an extreme
point approach. The extreme points are identified by the intersection of an attitudinal character con-
straint and a fundamental ordered weight simplex that is defined as

K = {w ∈ Rn | w1 + w2 + · · ·+ wn = 1, wj ≥ 0, j = 1, . . . , n}.

The parameterized OWA operator weights, which are located in a convex hull of the identified extreme
points, can then be specifically determined by selecting an appropriate parameter. Vergara and Xia
[136] proposed a new method to find the weights of an OWA for uncertain information sources. Given
a set of uncertainty data, the proposed method finds the combination of weights that reduces aggregated
uncertainty for a predetermined orness level. Their approach assures best information quality and pre-
cision by reducing uncertainty. Yager [152] introduced a measure of diversity related to the problem of
selecting of selecting n objects from a pool of candidates lying in q categories.

In 2011 Liu [122] summarizing the main OWA determination methods (the optimization criteria
methods, the sample learning methods, the function based methods, the argument dependent methods
and the preference methods) showed some relationships between the methods in the same kind and the
relationships between different kinds. Hon [105] proved the extended minimax disparity OWA problem.

3.5 Benchmarking in linguistic importance weighted aggregations

In this Section we concentrate on the issue of weighted aggregations and provide a possibilistic ap-
proach to the process of importance weighted transformation when both the importances (interpreted
as benchmarks) and the ratings are given by symmetric triangular fuzzy numbers. Following Carlsson
and Fullér [18, 24] we will show that using the possibilistic approach

(i) small changes in the membership function of the importances can cause only small variations in the
weighted aggregate;

(ii) the weighted aggregate of fuzzy ratings remains stable under small changes in the nonfuzzy impor-
tances;

(iii) the weighted aggregate of crisp ratings still remains stable under small changes in the crisp impor-
tances whenever we use a continuous implication operator for the importance weighted transfor-
mation.

In many applications of fuzzy sets such as multi-criteria decision making, pattern recognition, di-
agnosis and fuzzy logic control one faces the problem of weighted aggregation. Unlike Herrera and
Herrera-Viedma [101] who perform direct computation on a finite and totally ordered term set, we use
the membership functions to aggregate the values of the linguistic variables rate and importance. The
main problem with finite term sets is that the impact of small changes in the weighting vector can be
disproportionately large on the weighted aggregate (because the set of possible output values is finite,
but the set of possible weight vectors is a subset of Rn). For example, the rounding operator in the
convex combination of linguistic labels, defined by Delgado et al. [67], is very sensitive to the values
around 0.5 (round(0.499) = 0 and round(0.501) = 1).

Following Carlsson and Fullér [24] we consider the process of importance weighted aggregation
when both the aggregates and the importances are given by an infinite term set, namely by the values
of the linguistic variables ”rate” and ”importance”. In this approach the importances are considered as
benchmark levels for the performances, i.e. an alternative performs well on all criteria if the degree of
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satisfaction to each of the criteria is at least as big as the associated benchmark. The proposed ”stable”
method in [24] ranks the alternatives by measuring the degree to which they satisfy the proposition:
”All ratings are larger than or equal to their importance”. We will also use OWA operators to measure
the degree to which an alternative satisfies the proposition: ”Most ratings are larger than or equal to
their importance”, where the OWA weights are derived from a well-chosen linguistic quantifier.

Recall that a fuzzy set A is called a symmetric triangular fuzzy number with center a and width
α > 0 if its membership function has the following form

A(t) =





1− |a− t|
α

if |a− t| ≤ α
0 otherwise

and we use the notationA = (a, α). If α = 0 thenA collapses to the characteristic function of {a} ⊂ R
and we will use the notation A = ā. We will use symmetric triangular fuzzy numbers to represent the
values of linguistic variables rate and importance in the universe of discourse I = [0, 1]. The set of all
symmetric triangular fuzzy numbers in the unit interval will be denoted by F(I). Let A = (a, α) and
B = (b, β). The degree of possibility that the proposition ”A is less than or equal to B” is true, denoted
by Pos[A ≤ B], is computed by

Pos[A ≤ B] =





1 if a ≤ b

1− a− b
α+ β

if 0 < a− b < α+ β

0 otherwise

(3.27)

Let A be an alternative with ratings (A1, A2, . . . , An), where Ai = (ai, αi) ∈ F(I), i = 1, . . . , n.
For example, the symmetric triangular fuzzy number Aj = (0.8, α) when 0 < α ≤ 0.2 can represent
the property ”the rating on the j-th criterion is around 0.8” and ifα = 0 thenAj = (0.8, α) is interpreted
as ”the rating on the j-th criterion is equal to 0.8” and finally, the value of α can not be bigger than 0.2
because the domain of Aj is the unit interval.

Assume that associated with each criterion is a weight Wi = (wi, γi) indicating its importance
in the aggregation procedure, i = 1, . . . , n. For example, the symmetric triangular fuzzy number
Wj = (0.5, γ) ∈ F(I) when 0 < γ ≤ 0.5 can represent the property ”the importance of the j-th
criterion is approximately 0.5” and if γ = 0 then Wj = (0.5, γ) is interpreted as ”the importance of the
j-th criterion is equal to 0.5” and finally, the value of γ can not be bigger than 0.5 because the domain of
Wj is the unit interval. The general process for the inclusion of importance in the aggregation involves
the transformation of the ratings under the importance. Following Carlsson and Fullér [24] we suggest
the use of the transformation function g : F(I) × F(I) → [0, 1], where, g(Wi, Ai) = Pos[Wi ≤ Ai],
for i = 1, . . . , n, and then obtain the weighted aggregate,

φ(A,W ) = Agg〈Pos[W1 ≤ A1], . . . ,Pos[Wn ≤ An]〉. (3.28)

where Agg denotes an aggregation operator.
For example if we use the min function for the aggregation in (3.28), that is,

φ(A,W ) = min{Pos[W1 ≤ A1], . . . ,Pos[Wn ≤ An]} (3.29)

then the equality φ(A,W ) = 1 holds iffwi ≤ ai for all i, i.e. when the mean value of each performance
rating is at least as large as the mean value of its associated weight. In other words, if a performance
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rating with respect to a criterion exceeds the importance of this criterion with possibility one, then this
rating does not matter in the overall rating. However, ratings which are well below the corresponding
importances (in possibilistic sense) play a significant role in the overall rating. In this sense the impor-
tance can be considered as benchmark or reference level for the performance. Thus, formula (3.28) with
the min operator can be seen as a measure of the degree to which an alternative satisfies the following
proposition: ”All ratings are larger than or equal to their importance”. It should be noted that the min
aggregation operator does not allow any compensation, i.e. a higher degree of satisfaction of one of the
criteria can not compensate for a lower degree of satisfaction of another criterion. Averaging operators
realize trade-offs between criteria, by allowing a positive compensation between ratings. We can use an
andlike or an orlike OWA-operator to aggregate the elements of the bag

〈Pos[W1 ≤ A1], . . . ,Pos[Wn ≤ An]〉.
In this case (3.28) becomes,

φ(A,W ) = OWA〈Pos[W1 ≤ A1], . . . ,Pos[Wn ≤ An]〉,
where OWA denotes an Ordered Weighted Averaging Operator. Formula (3.28) does not make any
difference among alternatives whose performance ratings exceed the value of their importance with
respect to all criteria with possibility one: the overall rating will always be equal to one. Penalizing
ratings that are ”larger than the associated importance, but not large enough” (that is, their intersection
is not empty) we can modify formula (3.28) to measure the degree to which an alternative satisfies
the following proposition: ”All ratings are essentially larger than their importance”. In this case the
transformation function can be defined as

g(Wi, Ai) = Nes[Wi ≤ Ai] = 1− Pos[Wi > Ai],

for i = 1, . . . , n, and then obtain the weighted aggregate,

φ(A,W ) = min{Nes[W1 ≤ A1], . . . ,Nes[Wn ≤ An]}. (3.30)

If we do allow a positive compensation between ratings then we can use OWA-operators in (3.30). That
is,

φ(A,W ) = OWA〈Nes[W1 ≤ A1], . . . ,Nes[Wn ≤ An]〉.
The following theorem shows that if we choose the min operator for Agg in (3.28) then small

changes in the membership functions of the weights can cause only a small change in the weighted
aggregate, i.e. the weighted aggregate depends continuously on the weights.

Theorem 3.1 (Carlsson and Fullér, [24]). LetAi = (ai, α) ∈ F(I), αi > 0, i = 1, . . . , n and let δ > 0
such that

δ < α := min{α1, . . . , αn}
If Wi = (wi, γi) and W δ

i = (wδi , γ
δ) ∈ F(I), i = 1, . . . , n, satisfy the relationship

max
i
D(Wi,W

δ
i ) ≤ δ (3.31)

then the following inequality holds,

|φ(A,W )− φ(A,W δ)| ≤ δ

α
(3.32)

where φ(A,W ) is defined by (3.29) and

φ(A,W δ) = min{Pos[W δ
1 ≤ A1], . . . ,Pos[W δ

n ≤ An]}.
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From (3.31) and (3.32) it follows that

lim
δ→0

φ(A,W δ) = φ(A,W )

for any A, which means that if δ is small enough then φ(A,W δ) can be made arbitrarily close to
φ(A,W ).

As an immediate consequence of (3.32) we can see that Theorem 3.1 remains valid for the case of
crisp weighting vectors, i.e. when γi = 0, i = 1, . . . , n. In this case

Pos[w̄i ≤ Ai] =





1 if wi ≤ ai
A(wi) if 0 < wi − ai < αi

0 otherwise

where w̄i denotes the characteristic function of wi ∈ [0, 1]; and the weighted aggregate, denoted by
φ(A,w), is computed as

φ(A,w) = Agg{Pos[w̄1 ≤ A1], . . . ,Pos[w̄n ≤ An]}

If Agg is the minimum operator then we get

φ(A,w) = min{Pos[w̄1 ≤ A1], . . . ,Pos[w̄n ≤ An]} (3.33)

If both the ratings and the importances are given by crisp numbers (i.e. when γi = αi = 0, i =
1, . . . , n) then Pos[w̄i ≤ āi] implements the standard strict implication operator, i.e.,

Pos[w̄i ≤ āi] = wi → ai =

{
1 if wi ≤ ai
0 otherwise

It is clear that whatever is the aggregation operator in

φ(a,w) = Agg{Pos[w̄1 ≤ ā1], . . . ,Pos[w̄n ≤ ān]},

the weighted aggregate, φ(a,w), can be very sensitive to small changes in the weighting vector w.
However, we can still sustain the benchmarking character of the weighted aggregation if we use an R-
implication operator to transform the ratings under importance [15, 17]. For example, for the operator

φ(a,w) = min{w1 → a1, . . . , wn → an}. (3.34)

where→ is an R-implication operator, the equation φ(a,w) = 1, holds iff wi ≤ ai for all i, i.e. when
the value of each performance rating is at least as big as the value of its associated weight. However,
the crucial question here is: Does the

lim
wδ→w

φ(a,wδ) = φ(a,w), ∀a ∈ I,

relationship still remain valid for any R-implication?
The answer is negative. φ will be continuous in w if and only if the implication operator is contin-

uous. For example, if we choose the Gödel implication in then φ will not be continuous in w, because
the Gödel implication is not continuous.
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To illustrate the sensitivity of φ defined by the Gödel implication consider (3.34) with n = 1,
a1 = w1 = 0.6 and wδ1 = w1 + δ. In this case

φ(a1, w1) = φ(w1, w1) = φ(0.6, 0.6) = 1,

but
φ(a,wδ1) = φ(w1, w1 + δ) = φ(0.6, 0.6 + δ) = (0.6 + δ)→ 0.6 = 0.6,

that is,
lim
δ→0

φ(a1, w
δ
1) = 0.6 6= φ(a1, w1) = 1.

But if we choose the (continuous) Łukasiewicz implication in (3.34) then φ will be continuous in w,
and therefore, small changes in the importance can cause only small changes in the weighted aggregate.
Thus, the following formula

φ(a,w) = min{(1− w1 + a1) ∧ 1, . . . , (1− wn + an) ∧ 1}. (3.35)

not only keeps up the benchmarking character of φ, but also implements a stable approach to importance
weighted aggregation in the nonfuzzy case.

If we do allow a positive compensation between ratings then we can use an OWA-operator for
aggregation in (3.35). That is,

φ(a,w) = OWA 〈(1− w1 + a1) ∧ 1, . . . , (1− wn + an) ∧ 1〉. (3.36)

Taking into consideration that OWA-operators are usually continuous, equation (3.36) also implements
a stable approach to importance weighted aggregation in the nonfuzzy case.

We illustrate our approach by an example. Consider the aggregation problem,

A =




(0.7, 0.2)
(0.5, 0.3)
(0.8, 0.2)
(0.9, 0.1)


 and W =




(0.8, 0.2)
(0.7, 0.3)
(0.9, 0.1)
(0.6, 0.2)


 .

Using formula (3.29) for the weighted aggregate we find

φ(A,W ) = min{3/4, 2/3, 2/3, 1} = 2/3.

The reason for the relatively high performance of this object is that, even though it performed low on
the second criterion which has a high importance, the second importance has a relatively large tolerance
level, 0.3.

In this Section we have introduced a possibilistic approach to the process of importance weighted
transformation when both the importances and the aggregates are given by triangular fuzzy numbers.
In this approach the importances have been considered as benchmark levels for the performances, i.e.
an alternative performs well on all criteria if the degree of satisfaction to each of the criteria is at
least as big as the associated benchmark. We have suggested the use of measure of necessity to be
able to distinguish alternatives with overall rating one (whose performance ratings exceed the value
of their importance with respect to all criteria with possibility one). We have shown that using the
possibilistic approach (i) small changes in the membership function of the importances can cause only
small variations in the weighted aggregate; (ii) the weighted aggregate of fuzzy ratings remains stable
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under small changes in the nonfuzzy importances; (iii) the weighted aggregate of crisp ratings still
remains stable under small changes in the crisp importances whenever we use a continuous implication
operator for the importance weighted transformation. These results have further implications in several
classes of multiple criteria decision making problems, in which the aggregation procedures are rough
enough to make the finely tuned formal selection of an optimal alternative meaningless.

3.6 Optimization with linguistic variables

In 2000 and 2001 Carlsson and Fullér [25, 30] introduced a novel statement of fuzzy mathematical pro-
gramming problems and provided a method for finding a fair solution to these problems. Suppose we
are given a mathematical programming problem in which the functional relationship between the deci-
sion variables and the objective function is not completely known. Our knowledge-base consists of a
block of fuzzy if-then rules, where the antecedent part of the rules contains some linguistic values of the
decision variables, and the consequence part consists of a linguistic value of the objective function. We
suggest the use of Tsukamoto’s fuzzy reasoning method to determine the crisp functional relationship
between the objective function and the decision variables, and solve the resulting (usually nonlinear)
programming problem to find a fair optimal solution to the original fuzzy problem. When Bellman and
Zadeh [6], and a few years later Zimmermann [159], introduced fuzzy sets into optimization problems,
they cleared the way for a new family of methods to deal with problems which had been inaccessible
to and unsolvable with standard mathematical programming techniques. Fuzzy optimization problems
can be stated and solved in many different ways. Usually the authors consider optimization problems
of the form

max/min f(x); subject to x ∈ X,
where f or/and X are defined by fuzzy terms. Then they are searching for a crisp x∗ which (in certain)
sense maximizes f under the (fuzzy) constraints X . For example, fuzzy linear programming (FLP)
problems are stated as [130]

max/min f(x) := c̃1x1 + · · ·+ c̃nxn
subject to ãi1x1 + · · ·+ ãinxn . b̃i, i = 1, . . . ,m,

(3.37)

where x ∈ Rn is the vector of crisp decision variables, ãij , b̃i and c̃j are fuzzy quantities, the opera-
tions addition and multiplication by a real number of fuzzy quantities are defined by Zadeh’s extension
principle, the inequality relation, ., is given by a certain fuzzy relation, f is to be maximized in the
sense of a given crisp inequality relation between fuzzy quantities, and the (implicite) X is a fuzzy set
describing the concept ”x satisfies all the constraints”.

Unlike in (3.37) the fuzzy value of the objective function f(x) may not be known for any x ∈ Rn.
In many cases we are able to describe the causal link between x and f(x) linguistically using fuzzy
if-then rules. Following Carlsson and Fullér [30] we consider a new statement of constrained fuzzy
optimization problems, namely

max/min f(x); subject to {<(x) | x ∈ X}, (3.38)

where x1, . . . , xn are linguistic variables, X ⊂ Rn is a (crisp or fuzzy) set of constrains on the domains
of x1, . . . , xn, and <(x) = {<1(x), . . . ,<m(x)} is a fuzzy rule base, and

<i(x) : if x1 is Ai1 and . . . and xn is Ain then f(x) is Ci,
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constitutes the only knowledge available about the (linguistic) values of f(x), and Aij and Ci are fuzzy
numbers.

Generalizing the fuzzy reasoning approach introduced by Carlsson and Fullér [14] we shall deter-
mine the crisp value of f at y ∈ X by Tsukamoto’s fuzzy reasoning method, and obtain an optimal
solution to (3.38) by solving the resulting (usually nonlinear) optimization problem max/min f(y),
subject to y ∈ X .

The use of fuzzy sets provides a basis for a systematic way for the manipulation of vague and im-
precise concepts. In particular, we can employ fuzzy sets to represent linguistic variables. A linguistic
variable can be regarded either as a variable whose value is a fuzzy number or as a variable whose values
are defined in linguistic terms. Fuzzy points are used to represent crisp values of linguistic variables. If
x is a linguistic variable in the universe of discourse X and y ∈ X then we simple write ”x = y” or ”x
is ȳ” to indicate that y is a crisp value of the linguistic variable x.

Recall the three basic t-norms: (i) minimum: T (a, b) = min{a, b}, (ii) Łukasiewicz: T (a, b) =
max{a+ b− 1, 0}, and (iii) product (or probabilistic): T (a, b) = ab. We briefly describe Tsukamoto’s
fuzzy reasoning method [134]. Consider the following fuzzy inference system,

<1: if x1 is A11 and . . . and xn is A1n then z is C1

. . .
<m: if x1 is Am1 and . . . and xn is Amn then z is Cm
Input: x1 is ȳ1 and . . . and xn is ȳn
Output: z0

where Aij ∈ F(Uj) is a value of linguistic variable xj defined in the universe of discourse Uj ⊂ R,
and Ci ∈ F(W ) is a value of linguistic variable z defined in the universe W ⊂ R for i = 1, . . . ,m
and j = 1, . . . , n. We also suppose that W is bounded and each Ci has strictly monotone (increasing
or decreasing) membership function on W . The procedure for obtaining the crisp output, z0, from the
crisp input vector y = {y1, . . . , yn} and fuzzy rule-base < = {<1, . . . ,<m} consists of the following
three steps:

• We find the firing level of the i-th rule as

αi = T (Ai1(y1), . . . , Ain(yn)), i = 1, . . . ,m, (3.39)

where T usually is the minimum or the product t-norm.

• We determine the (crisp) output of the i-th rule, denoted by zi, from the equation αi = Ci(zi),
that is,

zi = C−1
i (αi), i = 1, . . . ,m,

where the inverse of Ci is well-defined because of its strict monotonicity.

• The overall system output is defined as the weighted average of the individual outputs, where
associated weights are the firing levels. That is,

z0 =
α1z1 + · · ·+ αmzm

α1 + · · ·+ αm
=
α1C

−1
1 (α1) + · · ·+ αmC

−1
m (αm)

α1 + · · ·+ αm

i.e. z0 is computed by the discrete Center-of-Gravity method.
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defined in the universe W ⊂ R for i = 1, . . . , m and j = 1, . . . , n. We also
suppose that W is bounded and each Ci has strictly monotone (increasing
or decreasing) membership function on W . The procedure for obtaining the
crisp output, z0, from the crisp input vector y = {y1, . . . , yn} and fuzzy rule-
base ℜ = {ℜ1, . . . ,ℜm} consists of the following three steps:

• We find the firing level of the i-th rule as

αi = T (Ai1(y1), . . . , Ain(yn)), i = 1, . . . , m, (5.29)

where T usually is the minimum or the product t-norm.
• We determine the (crisp) output of the i-th rule, denoted by zi, from the

equation αi = Ci(zi), that is,

zi = C−1
i (αi), i = 1, . . . , m,

where the inverse of Ci is well-defined because of its strict monotonicity.
• The overall system output is defined as the weighted average of the indi-

vidual outputs, where associated weights are the firing levels. That is,

z0 =
α1z1 + · · · + αmzm

α1 + · · · + αm
=
α1C

−1
1 (α1) + · · · + αmC−1

m (αm)
α1 + · · · + αm

i.e. z0 is computed by the discrete Center-of-Gravity method.

If W = R then all linguistic values of x1, . . . , xn also should have strictly
monotone membership functions on R (that is, 0 < Aij(x) < 1 for all x ∈ R),
because C−1

i (1) and C−1
i (0) do not exist. In this case Aij and Ci usually have

sigmoid membership functions of the form

big(t) =
1

1 + exp(−b(t− c))
, small(t) =

1
1 + exp(b′(t− c′))

where b, b′ > 0 and c, c′ > 0. Let f : Rn → R be a function and let X ⊂ Rn.

Fig. 5.4. Sigmoid membership functions for ”z is small” and ”z is big”.

A constrained optimization problem can be stated as

min f(x); subject to x ∈ X.

Figure 3.1: Sigmoid membership functions for ”z is small” and ”z is big”.

If W = R then all linguistic values of x1, . . . , xn also should have strictly monotone membership
functions on R (that is, 0 < Aij(x) < 1 for all x ∈ R), because C−1

i (1) and C−1
i (0) do not exist. In

this case Aij and Ci usually have sigmoid membership functions of the form

big(t) =
1

1 + exp(−b(t− c)), small(t) =
1

1 + exp(b′(t− c′))
where b, b′ > 0 and c, c′ > 0.

Let f : Rn → R be a function and let X ⊂ Rn. A constrained optimization problem can be stated
as

min f(x); subject to x ∈ X.
In many practical cases the function f is not known exactly. In this Section we consider the following
fuzzy optimization problem

min f(x); subject to {<1(x), . . . ,<m(x) | x ∈ X}, (3.40)

where x1, . . . , xn are linguistic variables, X ⊂ Rn is a (crisp or fuzzy) set of constrains on the domain
of x1, . . . , xn, and the only available knowledge about the values of f is given as a block fuzzy if-then
rules of the form

<i(x) : if x1 is Ai1 and . . . and xn is Ain then f(x) is Ci,

here Aij are fuzzy numbers (with continuous membership function) representing the linguistic values
of xi defined in the universe of discourse Uj ⊂ R; and Ci, i = 1, . . . ,m, are linguistic values (with
strictly monotone and continuous membership functions) of the objective function f defined in the
universe W ⊂ R. To find a fair solution to the fuzzy optimization problem (3.40) we first determine the
crisp value of the objective function f at y ∈ X from the fuzzy rule-base < using Tsukamoto’s fuzzy
reasoning method as

f(y) :=
α1C

−1
1 (α1) + · · ·+ αmC

−1
m (αm)

α1 + · · ·+ αm

where the firing levels,
αi = T (Ai1(y1), . . . , Ain(yn)),

for i = 1, . . . ,m, are computed according to (3.39). To determine the firing level of the rules, we
suggest the use of the product t-norm (to have a smooth output function).

In this manner our constrained optimization problem (3.40) turns into the following crisp (usually
nonlinear) mathematical programming problem

min f(y); subject to y ∈ X.
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The same principle is applied to constrained maximization problems

max f(x); subject to {<1(x), . . .<m(x) | x ∈ X}. (3.41)

If X is a fuzzy set in U1 × · · · × Un ⊂ Rn with membership function µX (e.g. given by soft
constraints as in [159]) and W = [0, 1] then following Bellman and Zadeh [6] we define the fuzzy
solution to problem (3.41) as

D(y) = min{µX(y), f(y)},
for y ∈ U1×· · ·×Un, and an optimal (or maximizing) solution, y∗, is determined from the relationship

D(y∗) = sup
y∈U1×···×Un

D(y). (3.42)

Example 3.2. Consider the optimization problem

min f(x); {x1 + x2 = 1/2, 0 ≤ x1, x2 ≤ 1}, (3.43)

and f(x) is given linguistically as

<1 : if x1 is small and x2 is small then f(x) is small,

<2 : if x1 is small and x2 is big then f(x) is big,

and the universe of discourse for the linguistic values of f is also the unit interval [0, 1].
We will compute the firing levels of the rules by the product t-norm. Let the membership functions

in the rule-base < be defined by (2.12) and let [y1, y2] ∈ [0, 1] × [0, 1] be an input vector to the fuzzy
system. Then the firing levels of the rules are

α1 = (1− y1)(1− y2),
α2 = (1− y1)y2,

It is clear that if y1 = 1 then no rule applies because α1 = α2 = 0. So we can exclude the value y1 = 1
from the set of feasible solutions. The individual rule outputs are

z1 = 1− (1− y1)(1− y2), z2 = (1− y1)y2,

and, therefore, the overall system output, interpreted as the crisp value of f at y, is

f(y) :=
(1− y1)(1− y2)(1− (1− y1)(1− y2)) + (1− y1)y2(1− y1)y2

(1− y1)(1− y2) + (1− y1)y2
=

y1 + y2 − 2y1y2

Thus our original fuzzy problem

min f(x); subject to {<1(x),<2(x) | x ∈ X},

turns into the following crisp nonlinear mathematical programming problem

(y1 + y2 − 2y1y2)→ min

y1 + y2 = 1/2,
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0 ≤ y1 < 1, 0 ≤ y2 ≤ 1.

which has the optimal solution
y∗1 = y∗2 = 1/4

and its optimal value is
f(y∗) = 3/8.

It is clear that if there were no other constraints on the crisp values of x1 and x2 then the optimal
solution to (3.43) would be y∗1 = y∗2 = 0 with f(y∗) = 0.

This example clearly shows that we can not just choose the rule with the smallest consequence part
(the first first rule) and fire it with the maximal firing level (α1 = 1) at y∗ ∈ [0, 1], and take y∗ = (0, 0)
as an optimal solution to (3.40). The rules represent our knowledge-base for the fuzzy optimization
problem. The fuzzy partitions for linguistic variables will not ususally satisfy ε-completeness, normality
and convexity. In many cases we have only a few (and contradictory) rules. Therefore, we can not make
any preselection procedure to remove the rules which do not play any role in the optimization problem.
All rules should be considered when we derive the crisp values of the objective function. We have
chosen Tsukamoto’s fuzzy reasoning scheme, because the individual rule outputs are crisp numbers,
and therefore, the functional relationship between the input vector y and the system output f(y) can be
relatively easily identified (the only thing we have to do is to perform inversion operations).

Consider the problem
max
X

f(x) (3.44)

where X is a fuzzy subset of the unit interval with membership function

µX(y) =
1

1 + y
, y ∈ [0, 1],

and the fuzzy rules are
<1 : if x is small then f(x) is small,

<2 : if x is big then f(x) is big,

Let y ∈ [0, 1] be an input to the fuzzy system {<1,<2}. Then the firing leveles of the rules are

α1 = 1− y,
α2 = y.

the individual rule outputs are computed by

z1 = (1− y)y,

z2 = y2,

and, therefore, the overall system output is

f(y) = (1− y)y + y2 = y.

Then according to (3.42) our original fuzzy problem (3.44) turns into the following crisp biobjective
mathematical programming problem

max min{y, 1
1 + y

}; subject to y ∈ [0, 1],
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which has the optimal solution

y∗ =

√
5− 1
2

and its optimal value is f(y∗) = y∗.
Consider the following one-dimensional problem

max f(x); subject to {<1(x), . . . ,<K+1(x) | x ∈ X}, (3.45)

where U = W = [0, 1],
<i(x) : if x is Ai then f(x) is Ci.

andAi is defined by equations (2.9, 2.10, 2.11), the linguistic values of f are selected from (2.13, 2.14),
i = 1, . . . ,K + 1. It is clear that exactly two rules fire with nonzero degree for any input y ∈ [0, 1].
Namely, if

y ∈ Ik :=
[
k − 1
K

,
k

K

]
,

then <k and <k+1 are applicable, and therefore we get

f(y) = (k −Ky)C−1
k (k −Ky) + (Ky − k + 1)C−1

k+1(Ky − k + 1)

for any k ∈ {1, . . . ,K}. In this way the fuzzy maximization problem (3.45) turns into K indepen-
dent maximization problem

max
k=1,...,K

{max
X∩Ik

(k −Ky)C−1
k (k −Ky) + (Ky − k + 1)C−1

k+1(Ky − k + 1)}

If x ∈ Rn, with n ≥ 2 then a similar reasoning holds, with the difference that we use the same fuzzy
partition for all the linguistic variables, x1, . . . , xn, and the number of applicable rules grows to 2n. It
should be noted that we can refine the fuzzy rule-base by introducing new lingusitic variables modeling
the linguistic dependencies between the variables and the objectives [15].

The principles presented above can be extended to multiple objective optimization problems under
fuzzy if-then rules. Namely, following Carlsson and Fullér [25], we consider the following statement
of multiple objective optimization problem

max/min {f1(x), . . . , fK(x)}; subject to {<1(x), . . . ,<m(x) | x ∈ X}, (3.46)

where x1, . . . , xn are linguistic variables, and

<i(x) : if x1 is Ai1 and . . . and xn is Ain thenf1(x) is Ci1 and . . . and fK(x) is CiK ,

constitutes the only knowledge available about the values of f1, . . . , fK , and Aij and Cik are fuzzy
numbers. To find a fair solution to the fuzzy optimization problem (3.46) with continuous Aij and with
strictly monotone and continuous Cik, representing the linguistic values of fk, we first determine the
crisp value of the k-th objective function fk at y ∈ Rn from the fuzzy rule-base < using Tsukamoto’s
fuzzy reasoning method as

fk(y) :=
α1C

−1
1k (α1) + · · ·+ αmC

−1
mk(αm)

α1 + · · ·+ αm
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where
αi = T (Ai1(y1), . . . , Ain(yn))

denotes the firing level of the i-th rule, <i and T is a t-norm. To determine the firing level of the
rules, we suggest the use of the product t-norm (to have a smooth output function). In this manner the
constrained optimization problem (3.46) turns into the crisp (usually nonlinear) multiobjective mathe-
matical programming problem

max/min {f1(y), . . . , fK(y)}; subject to y ∈ X. (3.47)

Example 3.3. Consider the optimization problem

max {f1(x), f2(x)}; {x1 + x2 = 3/4, 0 ≤ x1, x2 ≤ 1}, (3.48)

where f1(x) and f2(x) are given linguistically by

<1(x) : if x1 is small and x2 is small then f1(x) is small and f2(x) is big,

<2(x) : if x1 is small and x2 is big then f1(x) is big and f2(x) is small,

and the universe of discourse for the linguistic values of f1 and f2 is also the unit interval [0, 1]. We
will compute the firing levels of the rules by the product t-norm. Let the membership functions in the
rule-base < = {<1,<2} be defined by small(t) = 1− t and big(t) = t. Let 0 ≤ y1, y2 ≤ 1 be an input
to the fuzzy system. Then the firing leveles of the rules are

α1 = (1− y1)(1− y2), α2 = (1− y1)y2.

It is clear that if y1 = 1 then no rule applies because α1 = α2 = 0. So we can exclude the value y1 = 1
from the set of feasible solutions. The individual rule outputs are

z11 = 1− (1− y1)(1− y2),
z21 = (1− y1)y2,

z12 = (1− y1)(1− y2),
z22 = 1− (1− y1)y2,

and, therefore, the overall system outputs are

f1(y) =
(1− y1)(1− y2)(1− (1− y1)(1− y2)) + (1− y1)y2(1− y1)y2

(1− y1)(1− y2) + (1− y1)y2
= y1 + y2 − 2y1y2,

and

f2(y) =
(1− y1)(1− y2)(1− y1)(1− y2) + (1− y1)y2(1− (1− y1)y2)

(1− y1)(1− y2) + (1− y1)y2
= 1− (y1 + y2 − 2y1y2).

Modeling the anding of the objective functions by the minimum t-norm our original fuzzy problem
(3.48) turns into the following crisp nonlinear mathematical programming problem

max min{y1 + y2 − 2y1y2, 1− (y1 + y2 − 2y1y2)}

subject to {y1 + y2 = 3/4, 0 ≤ y1 < 1, 0 ≤ y2 ≤ 1}.
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which has the following optimal solutions

y∗ =
(
y∗1
y∗2

)
=
(

1/2
1/4

)
,

and (
1/4
1/2

)
,

from symmetry, and its optimal value is

(f1(y∗), f2(y∗)) = (1/2, 1/2).

We can introduce trade-offs among the objectives function by using an OWA-operator in (3.47).
However, as Yager has pointed out in [147], constrained OWA-aggregations are not easy to solve,
because the usually lead to a mixed integer mathematical programming problem of very big dimension.

Typically, in complex, real-life problems, there are some unidentified factors which effect the values
of the objective functions. We do not know them or can not control them; i.e. they have an impact we
can not control. The only thing we can observe is the values of the objective functions at certain points.
And from this information and from our knowledge about the problem we may be able to formulate
the impacts of unknown factors (through the observed values of the objectives). In 1994 Carlsson and
Fullér [13] stated the multiobjective decision problem with independent objectives and then adjusted
their model to reality by introducing interdependences among the objectives. Interdependences among
the objectives exist whenever the computed value of an objective function is not equal to its observed
value. We claimed that the real values of an objective function can be identified by the help of feed-
backs from the values of other objective functions, and show the effect of various kinds (linear, nonlinear
and compound) of additive feed-backs on the compromise solution. 35 independent citations show that
the scientific community has accepted this statement of multiobjective decision problems.

Even if the objective functions of a multiobjective decision problem are exactly known, we can
still measure the complexity of the problem, which is derived from the grades of conflict between the
objectives. In 1995 Carlsson and Fullér [15] introduced the measure the complexity of multi objective
decision problems and to find a good compromise solution to these problems they employd the follow-
ing heuristic: increase the value of those objectives that support the majority of the objectives, because
the gains on their (concave) utility functions surpass the losses on the (convex) utility functions of those
objectives that are in conflict with the majority of the objectives. 59 independent citations show that the
scientific community has accepted this heuristic.
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Chapter 4

Stability in Fuzzy Systems

Possibilisitic linear equality systems are linear equality systems with fuzzy coefficients, defined by
the Zadeh’s extension principle. In 1988 Kovács [108] showed that the fuzzy solution to possibilisitic
linear equality systems with symmetric triangular fuzzy numbers is stable with respect to small changes
of centres of fuzzy parameters. First we generalize Kovács’s results to possibilisitic linear equality
systems with Lipschitzian fuzzy numbers (Fullér, [74]) and to fuzzy linear programs (Fullér, [73]).
Then we consider linear (Fedrizzi and Fullér, [72]) and quadratic (Canestrelli, Giove and Fullér, [12])
possibilistic programs and show that the possibility distribution of their objective function remains
stable under small changes in the membership function of the fuzzy number coefficients. Furthermore,
we present similar results for multiobjective possibilistic linear programs (Fullér and Fedrizzi, [82]).

In 1973 Zadeh [154] introduced the compositional rule of inference and six years later [156] the
theory of approximate reasoning. This theory provides a powerful framework for reasoning in the face
of imprecise and uncertain information. Central to this theory is the representation of propositions as
statements assigning fuzzy sets as values to variables. In 1993 Fullér and Zimmermann [81] showed
two very important features of the compositional rule of inference under triangular norms. Namely, they
proved that (i) if the t-norm defining the composition and the membership function of the observation
are continuous, then the conclusion depends continuously on the observation; (ii) if the t-norm and the
membership function of the relation are continuous, then the observation has a continuous membership
function. The stability property of the conclusion under small changes of the membership function
of the observation and rules guarantees that small rounding errors of digital computation and small
errors of measurement of the input data can cause only a small deviation in the conclusion, i.e. every
successive approximation method can be applied to the computation of the linguistic approximation of
the exact conclusion in control systems. In 1992 Fullér and Werners [80] extended the stability theorems
of [81] to the compositional rule of inference with several relations. These stability properties in fuzzy
inference systems were used by a research team - headed by Professor Hans-Jürgen Zimmermann -
when developing a fuzzy control system for a ”fuzzy controlled model car” [5] during my DAAD
Scholarship at RWTH Aachen between 1990 and 1992.

4.1 Stability in possibilistic linear equality systems

Modelling real world problems mathematically we often have to find a solution to a linear equality
system

ai1x1 + · · ·+ ainxn = bi, i = 1, . . . ,m, (4.1)
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or shortly, Ax = b, where aij , bi and xj , j = 1, . . . , n are real numbers. It is known that system (4.1)
generally belongs to the class of ill-posed problems, so a small perturbation of the parameters aij and
bi may cause a large deviation in the solution. A possibilistic linear equality system is

ãi1x1 + · · ·+ ãinxn = b̃i, i = 1, . . . ,m, (4.2)

or shortly, Ãx = b̃, where ãij , b̃i ∈ F(R) are fuzzy quantities, x ∈ Rn, the operations addition and
multiplication by a real number of fuzzy quantities are defined by Zadeh’s extension principle and the
equation is understood in possibilistic sense. Recall the truth value of the assertion ”ã is equal to b̃”,
written as ã = b̃, denoted by Pos(ã = b̃), is defined as

Pos(ã = b̃) = sup
t
{ã(t) ∧ b̃(t)} = (ã− b̃)(0). (4.3)

We denote by µi(x) the degree of satisfaction of the i-th equation in (4.2) at the point x ∈ Rn, i.e.

µi(x) = Pos(ãi1x1 + · · ·+ ãinxn = b̃i).

Following Bellman and Zadeh [6] the fuzzy solution (or the fuzzy set of feasible solutions) of
system (4.2) can be viewed as the intersection of the µi’s such that

µ(x) = min{µ1(x), . . . , µm(x)}. (4.4)

A measure of consistency for the possibilistic equality system (4.2) is defined as

µ∗ = sup{µ(x) | x ∈ Rn}. (4.5)

Let X∗ be the set of points x ∈ Rn for which µ(x) attains its maximum, if it exists. That is

X∗ = {x∗ ∈ Rn | µ(x∗) = µ∗}

If X∗ 6= ∅ and x∗ ∈ X∗, then x∗ is called a maximizing (or best) solution of (4.2).
If ã and b̃ are fuzzy numbers with [a]α = [a1(α), a2(α)] and [b]α = [b1(α), b2(α)] then their

Hausdorff distance is defined as

D(ã, b̃) = sup
α∈[0,1]

max{|a1(α)− b1(α)|, |a2(α)− b2(α)|}.

i.e. D(ã, b̃) is the maximal distance between the α-level sets of ã and b̃.
Let L > 0 be a real number. By F(L) we denote the set of all fuzzy numbers ã ∈ F with

membership function satisfying the Lipschitz condition with constant L , i.e.

|ã(t)− ã(t′)| ≤ L|t− t′|, ∀t, t′ ∈ R.

In many important cases the fuzzy parameters ãij , b̃i of the system (4.2) are not known exactly and we
have to work with their approximations ãδij , b̃

δ
i such that

max
i,j

D(ãij , ãδij) ≤ δ, max
i
D(b̃i, b̃δi ) ≤ δ, (4.6)

where δ ≥ 0 is a real number. Then we get the following system with perturbed fuzzy parameters

ãδi1x1 + · · ·+ ãδinxn = b̃δi , i = 1, . . . ,m (4.7)
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or shortly, Ãδx = b̃δ. In a similar manner we define the solution

µδ(x) = min{µδ1(x), . . . µδm(x)},

and the measure of consistency

µ∗(δ) = sup{µδ(x) | x ∈ Rn},

of perturbed system (4.7), where

µδi (x) = Pos(ãδi1x1 + · · ·+ ãδinxn = b̃δi )

denotes the degree of satisfaction of the i-th equation at x ∈ Rn. Let X∗(δ) denote the set of maximiz-
ing solutions of the perturbed system (4.7).

The following lemmas build up connections between C∞ and D distances of fuzzy numbers.

Lemma 4.1.1 (Kaleva, [107]). Let ã, b̃, c̃ and d̃ be fuzzy numbers. Then

D(ã+ c̃, b̃+ d̃) ≤ D(ã, b̃) +D(c̃, d̃), D(ã− c̃, b̃− d̃) ≤ D(ã, b̃) +D(c̃, d̃)

and D(λã, λb̃) = |λ|D(ã, b̃) for any λ ∈ R.

Let ã ∈ F be a fuzzy number. Then for any θ ≥ 0 we define ω(ã, θ), the modulus of continuity of
ã as

ω(ã, θ) = max
|u−v|≤θ

|ã(u)− ã(v)|.

The following statements hold [100]:

If 0 ≤ θ ≤ θ′ then ω(ã, θ) ≤ ω(ã, θ′) (4.8)

If α > 0, β > 0, then ω(ã, α+ β) ≤ ω(ã, α) + ω(ã, β). (4.9)

lim
θ→0

ω(ã, θ) = 0 (4.10)

Recall, if ã and b̃ are fuzzy numbers with [ã]α = [a1(α), a2(α)] and [b̃]α = [b1(α), b2(α)] then

[ã+ b̃]α = [a1(α) + b1(α), a2(α) + b2(α)]. (4.11)

Lemma 4.1.2 (Fullér, [78]). Let λ 6= 0, µ 6= 0 be real numbers and let ã and b̃ be fuzzy numbers. Then

ω(λã, θ) = ω

(
ã,

θ

|λ|

)
, (4.12)

ω(λã+ λb̃, θ) ≤ ω
(

θ

|λ|+ |µ|

)
, (4.13)

where
ω(θ) := max{ω(ã, θ), ω(b̃, θ)},

for θ ≥ 0.
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Lemma 4.1.3 (Fullér, [78]). Let ã ∈ F be a fuzzy number and. Then a1 : [0, 1] → R is strictly
increasing and

a1(ã(t)) ≤ t,
for t ∈ cl(suppã), furthemore ã(a1(α)) = α, for α ∈ [0, 1] and

a1(ã(t)) ≤ t ≤ a1(ã(t) + 0),

for a1(0) ≤ t < a1(1), where

a1(ã(t) + 0) = lim
ε→+0

a1(ã(t) + ε). (4.14)

Lemma 4.1.4 (Fullér, [78]). Let ã and b̃ be fuzzy numbers.Then

(i) D(ã, b̃) ≥ |a1(α+ 0)− b1(α+ 0)|, for 0 ≤ α < 1,

(ii) ã(a1(α+ 0)) = α, for 0 ≤ α < 1,

(iii) a1(α) ≤ a1(α+ 0) < a1(β), for 0 ≤ α < β ≤ 1.

Proof. (i) From the definition of the metric D we have

|a1(α+ 0)− b1(α+ 0)| = lim
ε→+0

|a1(α+ ε)− lim
ε→+0

b1(α+ ε)|

= lim
ε→+0

|a1(α+ ε)− b1(α+ ε)|

≤ sup
γ∈[0,1]

|a1(γ)− b1(γ)| ≤ D(ã, b̃).

(ii) Since ã(a1(α+ ε)) = α+ ε, for ε ≤ 1− α, we have

ã(a1(α+ 0)) = lim
ε→+0

A(a1(α+ ε)) = lim
ε→+0

(α+ ε) = α.

(iii) From strictly monotonity of a1 it follows that a1(α+ ε) < a1(β), for ε < β − α. Therefore,

a1(α) ≤ a1(α+ 0) = lim
ε→+0

a1(α+ ε) < a1(β),

which completes the proof.

The following lemma shows that if all the α-level sets of two (continuous) fuzzy numbers are close
to each other, then there can be only a small deviation between their membership grades.

Lemma 4.1.5 (Fullér, [78]). Let δ ≥ 0 and let ã, b̃ be fuzzy numbers. If D(ã, b̃) ≤ δ, then

sup
t∈R
|ã(t)− b̃(t)| ≤ max{ω(ã, δ), ω(b̃, δ)}. (4.15)

Proof. Let t ∈ R be arbitrarily fixed. It will be sufficient to show that

|ã(t)− b̃(t)| ≤ max{ω(ã, δ), ω(b̃, δ)}.
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If t /∈ suppã ∪ suppb̃ then we obtain (4.15) trivially. Suppose that t ∈ suppã ∪ suppb̃. With no loss of
generality we will assume 0 ≤ b̃(t) < ã(t). Then either of the following must occur:

(a) t ∈ (b1(0), b1(1)),
(b) t ≤ b1(0),
(c) t ∈ (b2(1), b2(0))
(d) t ≥ b2(0).

In this case of (a) from Lemma 4.1.4 (with α = b̃(t), β = ã(t)) and Lemma 4.1.3(iii) it follows that

ã(a1(b̃(t) + 0)) = b̃(t), t ≥ a1(ã(t)) ≥ a1(b̃(t) + 0)

and
D(ã, b̃) ≥ |a1(b̃(t) + 0)− a1(b̃(t) + 0))|.

Therefore from continuity of ã we get

|ã(t)− b̃(t)| = |ã(t)− ã(a1(b̃(t) + 0))|
= ω(ã, |t− a1(b̃(t) + 0)|)
= ω(ã, t− a1(b̃(t) + 0))

≤ ω(ã, b1(b̃(t) + 0)− a1(b̃(t) + 0)) ≤ ω(ã, δ).

In this case of (b) we have b̃(t) = 0; therefore from Lemma 4.1.3(i) it follows that

|ã(t)− b̃(t)| = |ã(t)− 0|
= |ã(t)− ã(a1(0))|
≤ ω(ã, |t− a1(0)|)
≤ ω(ã, |b1(0)− a1(0)|) ≤ ω(ã, δ).

A similar reasoning yields in the cases of (c) and (d); instead of properties a1 we use the properties of
a2.

Let L > 0 be a real number. By F(L) we denote the set of all fuzzy numbers ã ∈ F with
membership function satisfying the Lipschitz condition with constant L , i.e.

|ã(t)− ã(t′)| ≤ L|t− t′|, ∀t, t′ ∈ R.

In the following lemma (which is a direct consequence of Lemma 4.1.2 and Lemma 4.1.5) we see that
(i) linear combinations of Lipschitzian fuzzy numbers are also Lipschitzian ones, and (ii) if all the α-
level sets of two Lipschitzian fuzzy numbers are closer to each other than δ, then there can be maximum
Lδ difference between their membership grades.

Lemma 4.1.6 (Fullér, [74]). Let L > 0, λ 6= 0, µ 6= 0 be real numbers and let ã, b̃ ∈ F(L) be fuzzy
numbers. Then

λã ∈ F
(
L

|λ|

)
,

λã+ µb̃ ∈ F
(

L

|λ|+ |µ|

)
.
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Furthermore, if D(ã, b̃) ≤ δ, then
sup
t
|ã(t)− b̃(t)| ≤ Lδ.

If the fuzzy ã and ã are of symmetric triangular form then Lemma 4.1.6 reads

Lemma 4.1.7 (Fullér, [74]). Let δ > 0 be a real number and let ã = (a, α) and b̃ = (b, β) be symmetric
triangular fuzzy numbers. Then

λã ∈ F
[

1
α|λ|

]
,

λã+ µb̃ ∈ F
(

max{1/α, 1/β}
|λ|+ |µ|

)
.

Furthermore, from the inequality D(ã, b̃) ≤ δ it follows that

sup
t
|ã(t)− b̃(t)| ≤ max

{
δ

α
,
δ

β

}
.

Kovács [108] showed that the fuzzy solution to system (4.2) with symmetric triangular fuzzy num-
bers is a stable with respect to small changes of centres of fuzzy parameters. Following Fullér [74] in
the next theorem we establish a stability property (with respect to perturbations (4.6)) of the solution of
system (4.2).

Theorem 4.1 (Fullér, [74]). Let L > 0 and ãij , ãδij , b̃i, b̃
δ
i ∈ F(L). If (4.6) holds, then

||µ− µδ||∞ = sup
x∈Rn

|µ(x)− µδ(x)| ≤ Lδ, (4.16)

where µ(x) and µδ(x) are the (fuzzy) solutions to systems (4.2) and (4.7), respectively.

Proof. It is sufficient to show that
|µi(x)− µδi (x)| ≤ Lδ

for each x ∈ Rn and i = 1, . . . ,m. Let x ∈ Rn and i ∈ {1, . . . ,m} be arbitrarily fixed. From (4.3) it
follows that

µi(x) =




n∑

j=1

ãijxj − b̃i


 (0) and µδi (x) =




n∑

j=1

ãδijxj − b̃δi


 (0).

Applying Lemma 4.1.1 we have

D




n∑

j=1

ãijxj − b̃i,
n∑

j=1

ãδijxj − b̃δi


 ≤

n∑

j=1

|xj |D(ãij , ãδij) +D(b̃i, b̃δi ) ≤ δ(|x|1 + 1),
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where |x|1 = |x1|+ · · ·+ |xn|. Finally, by Lemma 4.1.6 we have

n∑

j=1

ãijxj − b̃i ∈ F
(

L

|x|1 + 1

)
and

n∑

j=1

ãδijxj − b̃δi ∈ F
(

L

|x|1 + 1

)

therefore,

|µi(x)− µδi (x)| =

∣∣∣∣∣∣




n∑

j=1

ãijxj − b̃i


 (0)−




n∑

j=1

ãδijxj − b̃δi


 (0)

∣∣∣∣∣∣

≤ sup
t∈R

∣∣∣∣∣∣




n∑

j=1

ãijxj − b̃i


 (t)−




n∑

j=1

ãδijxj − b̃δi


 (t)

∣∣∣∣∣∣

≤ L

|x|1 + 1
× δ(|x|1 + 1) = Lδ.

Which proves the theorem.

From (4.16) it follows that
|µ∗ − µ∗(δ)| ≤ Lδ,

where µ∗, µ∗(δ) are the measures of consistency for the systems (4.2) and (4.7), respectively. It is easily
checked that in the general case ãij , b̃i ∈ F(R) the solution to possibilistic linear equality system (4.2)
may be unstable (in metric C∞) under small variations in the membership function of fuzzy parameters
(in metric D). When the problem is to find a maximizing solution to a possibilistic linear equality system
(4.2), then according to Negoita [128], we are led to solve the following optimization problem

maximize λ (4.17)

µ1(x1, . . . , xn) ≥ λ,
· · ·

µm(x1, . . . , xn) ≥ λ,

x ∈ Rn, 0 ≤ λ ≤ 1.

Finding the solutions of problem (4.17) generally requires the use of nonlinear programming tech-
niques, and could be tricky. However, if the fuzzy numbers in (4.2) are of trapezoidal form, then the
problem (4.17) turns into a quadratically constrained programming problem. Even though the fuzzy so-
lution and the measure of consistency of system (4.2) have a stability property with respect to changes of
the fuzzy parameters, the behavior of the maximizing solution towards small perturbations of the fuzzy
parameters can be very fortuitous, i.e. supposing that, X∗, the set of maximizing solutions to system
(4.2) is not empty, the distance between x∗(δ) and X∗ can be very big, where x∗(δ) is a maximizing
solution of the perturbed possibilistic equality system (4.7).

Consider now the possiblistic equality system (4.2) with fuzzy numbers of symmetric triangular
form

(ai1, α)x1 + · · ·+ (ain, α)xn = (bi, α), i = 1, . . . ,m,

or shortly,
(A,α)x = (b, α) (4.18)
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Then the fuzzy solution of (4.18) can be written in a compact form

µ(x) =





1 if Ax = b

1− ||Ax− b||∞
α(|x|1 + 1)

if 0 < ||Ax− b||∞ ≤ α(|x|1 + 1)

0 if ||Ax− b||∞ > α(|x|1 + 1)

where
||Ax− b||∞ = max{|〈a1, x〉 − b1|, . . . , |〈am, x〉 − bm|}.

If
[µ]1 = {x ∈ Rn | µ(x) = 1} 6= ∅

then the set of maximizing solutions, X∗ = [µ]1, of (4.18) coincides with the solution set, denoted by
X∗∗, of the crisp system Ax = b. The stability theorem for system (4.18) reads

Theorem 4.2 (Kovács, [108]). If D(Ã, Ãδ) = maxi,j |aij − aδij | ≤ δ, D(b̃, b̃δ) = maxi |bi − bδi | ≤ δ
hold, then

||µ− µδ||∞ = sup
x
|µ(x)− µδ(x)| ≤ δ

α
,

where µ(x) and µδ(x) are the fuzzy solutions to possibilistic equality systems (A,α)x = (b, α) and
(Aδ, α)x = (bδ, α), respectively.

Theorem 4.1 can be extended to possibilistic linear equality systems with (continuous) fuzzy num-
bers.

Theorem 4.3 (Fullér, [78]). Let ãij , ãδij , b̃i, b̃
δ
i ∈ F be fuzzy numbers. If (4.6) holds, then ||µ−µδ||∞ ≤

ω(δ), where ω(δ) denotes the maximum of modulus of continuity of all fuzzy coefficients at δ in (4.2)
and (4.7).

In 1992 Kovács [109] showed a wide class of fuzzified systems that are well-posed extensions of
ill-posed linear equality and inequality systems.

Consider the following two-dimensional possibilistic equality system

(1, α)x1 + (1, α)x2 = (0, α) (4.19)

(1, α)x1 − (1, α)x2 = (0, α)

Then its fuzzy solution is

µ(x) =





1 if x = 0

τ2(x) if 0 < max{|x1 − x2|, |x1 + x2|} ≤ α(|x1|+ |x2|+ 1)

0 if max{|x1 − x2|, |x1 + x2|} > α(|x1|+ |x2|+ 1)

where

τ2(x) = 1− max{|x1 − x2|, |x1 + x2|}
α(|x1|+ |x2|+ 1)

,
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Figure 4.1: The graph of fuzzy solution of system (4.19) with α = 0.4.

and the only maximizing solution of system (4.19) is x∗ = (0, 0). There is no problem with stability of
the solution even for the crisp system

[
1 1
1 −1

](
x1

x2

)
=
(

0
0

)

because det(A) 6= 0.
The fuzzy solution of possibilistic equality system

(1, α)x1 + (1, α)x2 = (0, α) (4.20)

(1, α)x1 + (1, α)x2 = (0, α)

is

µ(x) =





1 if |x1 + x2| = 0

1− |x1 + x2|
α(|x1|+ |x2|+ 1)

if 0 < |x1 + x2| ≤ α(|x1|+ |x2|+ 1)

0 if |x1 + x2| > α(|x1|+ |x2|+ 1)

and the set of its maximizing solutions is

X∗ = {x ∈ R2 | x1 + x2 = 0}.

In this case we have
X∗ = X∗∗ = {x ∈ R2 |Ax = b}.

We might experience problems with the stability of the solution of the crisp system
[

1 1
1 1

](
x1

x2

)
=
(

0
0

)
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Figure 4.2: The graph of fuzzy solution of system (4.20) with α = 0.4.

because det(A) = 0.
Really, the fuzzy solution of possibilistic equality system

(1, α)x1 + (1, α)x2 = (δ1, α) (4.21)

(1, α)x1 + (1, α)x2 = (δ2, α)

where δ1 = 0.3 and δ2 = −0.3, is
µ(x) =

{
τ1(x) if 0 < max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|} ≤ α(|x1|+ |x2|+ 1)

0 if max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|} > α(|x1|+ |x2|+ 1)

where

τ1(x) = 1− max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|}
α(|x1|+ |x2|+ 1)

and the set of the maximizing solutions of (4.21) is empty, and X∗∗ is also empty. Even though the set
of maximizing solution of systems (4.20) and (4.21) varies a lot under small changes of the centers of
fuzzy numbers of the right-hand side, δ1 and δ2, their fuzzy solutions can be made arbitrary close to
each other by letting

max{δ1, δ2}
α

to tend to zero.

4.2 Stability in fuzzy linear programming problems

In this Section, following Fullér [73] we investigate the stability of the solution in FLP problems (with
symmetric triangular fuzzy numbers and extended operations and inequalities) with respect to changes
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Figure 4.3: The graph of fuzzy solution of system (4.21) with α = 0.4.

of fuzzy parameters and show that the solution to these problems is stable (in metric C∞) under small
variations in the membership functions of the fuzzy coefficients.

The conventional model of linear programming (LP) can be stated as

〈a0, x〉 → min

subject to Ax ≤ b.
In many real-world problems instead of minimization of the objective function 〈a0, x〉 it may be suffi-
cient to determine an x such that

a01x1 + · · ·+ a0nxn ≤ b0; subject to Ax ≤ b. (4.22)

where b0 is a predetermined aspiration level.
Assume that all parameters in (4.22) are fuzzy quantities and are described by symmetric triangular

fuzzy numbers. Then the following flexible (or fuzzy) linear programming (FLP) problem can be
obtained by replacing crisp parameters aij , bi with symmetric triangular fuzzy numbers ãij = (aij , α)
and b̃i = (bi, di) respectively,

(ai1, α)x1 + · · ·+ (ain, α)xn ≤ (bi, di), i = 0, . . . ,m. (4.23)

Here d0 and di are interpreted as the tolerance levels for the objective function and the i-th constraint,
respectively. The parameter α > 0 will guarantee the stability property of the solution of (4.23) under
small changes in the coefficients aij and bi. We denote by µi(x) the degree of satisfaction of the i-th
restriction at the point x ∈ Rn in (4.23), i.e.

µi(x) = Pos(ãi1x1 + · · ·+ ãinxn ≤ b̃i).

Then the (fuzzy) solution of the FLP problem (4.23) is defined as a fuzzy set on Rn whose membership
function is given by

µ(x) = min{µ0(x), µ1(x), . . . , µm(x)},
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and the maximizing solution x∗ of the FLP problem (4.23) satisfies the equation

µ(x∗) = µ∗ = max
x

µ(x).

The degree of satisfaction of the i-th restriction at x in (4.23) is the following:

µi(x) =





1 if 〈ai, x〉 ≤ bi,

1− 〈ai, x〉 − bi
α|x|1 + di

otherwise,

0 if 〈ai, x〉 > bi + α|x|1 + di,

(4.24)

where |x|1 = |x1|+ · · ·+ |xn| and 〈ai, x〉 = ai1x1 + · · ·+ ainxn, i = 0, 1, . . . ,m.
In the extremal case α = 0 but di > 0 in (4.24), we get a linear membership function for µi, i.e.

Zimmermann’s principle [160]. Really, for α = 0 we get

(ai1, 0)x1 + · · ·+ (ain, 0)xn ≤ (bi, di), (4.25)

and the µi’s have a very simple form

µi(x) =





1 if 〈ai, x〉 ≤ bi,

1− 〈ai, x〉 − bi
di

if bi < 〈ai, x〉 ≤ bi + di,

0 if 〈ai, x〉 > bi + di,

for i = 0, 1, . . . ,m.
If α = 0 then µi has an easy interpretation: If for an x ∈ Rn the value of 〈ai, x〉 is less or equal than

bi then x satisfies the i-th constraint with the maximal conceivable degree one; if bi < 〈ai, x〉 < bi + di
then x is not feasible in classical sense, but the decision maker can still tolerate the violation of the crisp
constraint, and accept x as a solution with a positive degree, however, the bigger the violation the less is
the degree of acceptance; and if 〈ai, x〉 > bi+di then the violation of the i-th costraint is untolerable by
the decision maker, that is, µi(x) = 0. Following Fullér [73] we investigate the stability of the solution
in FLP problems (with symmetric triangular fuzzy numbers and extended operations and inequalities)
with respect to changes of fuzzy parameters and show that the solution to these problems is stable (in
metric C∞) under small variations in the membership functions of the fuzzy coefficients. Consider now
the perturbed FLP problem,

(aδi1, α)x1 + · · ·+ (aδin, α)xn ≤ (bδi , di), i = 0, . . . ,m. (4.26)

where aδij and bδi satisfy the inequalities

max
i,j
|aij − aδij | ≤ δ, max

i
|bi − bδi | ≤ δ. (4.27)

In a similar manner we can define the solution of FLP problem (4.26) by

µδ(x) = min{µδ0(x), µδ1(x), . . . , µδm(x)}, x ∈ Rn,

where µδi (x) denotes the degree of satisfaction of the i-th restriction at x ∈ Rn and the maximizing
solution x∗(δ) of FLP problem (4.26) satisfies the equation

µδ(x∗(δ)) = µ∗(δ) = sup
x
µδ(x). (4.28)

In the following theorem we establish a stability property of the fuzzy solution of FLP problem (4.23).
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Theorem 4.4 (Fullér, [73]). Let µ(x) and µδ(x) be solution of FLP problems (4.23) and (4.26) respec-
tively. Then

||µ− µδ||∞ = sup
x∈Rn

|µ(x)− µδ(x)| ≤ δ
[

1
α

+
1
d

]
(4.29)

where d = min{d0, d1, . . . , dm}.

Proof. First let δ ≥ min{α, d}. Then from |µ(x)− µδ(x)| ≤ 1, ∀x ∈ Rn and

δ

α+ d
≥ 1,

we obtain (4.29). Suppose that
0 < δ < min{α, d}.

It will be sufficient to show that

|µi(x)− µδi (x)| ≤ δ
[

1
α

+
1
d

]
, ∀x ∈ Rn, i = 0, . . . ,m, (4.30)

because from (4.30) follows (4.29). Let x ∈ Rn and i ∈ {0, . . . ,m} be arbitrarily fixed.
Consider the following cases:

(1) µi(x) = µδi (x). In this case (4.30) is trivially obtained.

(2) 0 < µi(x) < 1 and 0 < µδi (x) < 1. In this case from (4.24), (4.27) we have

|µi(x)− µδi (x)| =
∣∣∣∣∣1−

〈ai, x〉 − bi
α|x|1 + di

−
(

1− 〈a
δ
i , x〉 − bδi
α|x|1 + di

)∣∣∣∣∣

=
|bi − bδi |+ 〈aδi , x〉 − 〈ai, x〉|

α|x|1 + di

≤ |bi − b
δ
i |+ |〈aδi − ai, x〉|
α|x|1 + di

≤ δ + |aδi − ai|∞|x|1
α|x|1 + di

≤ δ + δ|x|1
α|x|1 + di

≤ δ
[

1
α

+
1
di

]
≤ δ
[

1
α

+
1
d

]
,

where aδi = (aδi1, . . . , a
δ
in) and |aδi − ai|∞ = maxj |aδij − aij |.
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(3) µi(x) = 1 and 0 < µδi (x) < 1. In this case we have 〈ai, x〉 ≤ bi. Hence

|µi(x)− µδi (x)| =
∣∣∣∣∣1−

[
1− 〈a

δ
i , x〉 − bδi
α|x|1 + di

]∣∣∣∣∣

=
〈aδi , x〉 − bδi
α|x|1 + di

≤ (〈aδi , x〉 − bδi )− (〈ai, x〉 − bi)
α|x|1 + di

≤ δ
[

1
α

+
1
d

]
.

(4) 0 < µi(x) < 1 and µδi (x) = 1. In this case the proof is carried out analogously to the proof of the
preceding case.

(5) 0 < µi(x) < 1 and µδi (x) = 0. In this case from

〈aδi , x〉 − bδi > α|x|1 + di

it follows that

|µi(x)− µδi (x)| =
∣∣∣∣∣1−

〈ai, x〉 − bi
α|x|1 + di

∣∣∣∣∣

=
1

α|x|1 + di
×
∣∣∣∣α|x|1 + di − (〈ai, x〉 − bi)

∣∣∣∣

≤ |〈ai(δ), x〉 − bi(δ)− (〈ai, x〉 − bi)|
α|x|1 + di

≤ δ
[

1
α

+
1
d

]
.

(6) µi(x) = 0 and 0 < µδi (x) < 1. In this case the proof is carried out analogously to the proof of the
preceding case.

(7) µi(x) = 1 µδi (x) = 0, or µi(x) = 0, µδi (x) = 1. These cases are not reasonable. For instance
suppose that case µi(x) = 1, µδi (x) = 0 is conceivable. Then from (4.27) it follows that

|〈ai, x〉 − bi − (〈ai(δ), x〉 − bi(δ))| ≤ |bi − bδi |+ |aδi − ai|∞|x|1
≤ δ(|x|1 + 1).

On the other hand we have

|〈ai, x〉 − bi − (〈aδi , x〉 − bδi )| ≥ |〈aδi , x〉 − bδi | ≥ α|x|1 + di

> δ|x|1 + δ = δ(|x|1 + 1).

So we arrived at a contradiction, which ends the proof.
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From (4.29) it follows that

|µ∗ − µ∗(δ)| ≤ δ
[

1
α

+
1
d

]

and
||µ− µδ||C → 0 if δ/α→ 0 and δ/d→ 0,

which means stability with respect to perturbations (4.27) of the solution and the measure of consistency
in FLP problem (4.23). To find a maximizing solution to FLP problem (4.23) we have to solve the
following nonlinear programming problem

maxλ

λ(α|x|1 + d0)− α|x|1 + 〈a0, x〉 ≤ b0 + d0,

λ(α|x|1 + d1)− α|x|1 + 〈a1, x〉 ≤ b1 + d1,

· · · · · ·
λ(α|x|1 + dm)− α|x|1 + 〈am, x〉 ≤ bm + dm,

0 ≤ λ ≤ 1, x ∈ Rn.

It is easily checked that in the extremal case α = 0 but di > 0, the solution of FLP problem (4.23) may
be unstable with respect to changes of the crisp parameters aij , bi.

4.3 Stability in possibilistic linear programming problems

Following Fedrizzi and Fullér [72] we show that the possibility distribution of the objective function
of a possibilistic linear program with continuous fuzzy number parameters is stable under small per-
turbations of the parameters. First, we will briefly review possibilistic linear programming and set up
notations. A possibilitic linear program is (see Buckley in [8])

max/min Z = x1c̃1 + · · ·+ xnc̃n, (4.31)

subject to x1ãi1 + · · ·+ xnãin ∗ b̃i, 1 ≤ i ≤ m, x ≥ 0.

where ãij , b̃i, c̃j are fuzzy numbers, x = (x1, . . . , xn) is a vector of (nonfuzzy) decision variables,
and ∗ denotes <, ≤, =, ≥ or > for each i. We will assume that all fuzzy numbers ãij , b̃i and c̃j are
non-interactive. Non-interactivity means that we can find the joint possibility distribution of all the
fuzzy variables by calculating the min-intersection of their possibility distributions. Following Buckley
[8], we define Pos[Z = z], the possibility distribution of the objective function Z. We first specify
the possibility that x satisfies the i-th constraints. Let Π(ai, bi) = min{ãi1(ai1), . . . , ãin(ain), b̃i(bi},
where ai = (ai1, . . . , ain), which is the joint distribution of ãij , j = 1, . . . , n, and b̃i. Then

Pos[x ∈ Fi] = sup
ai,bi

{Π(ai, bi) | ai1x1 + · · ·+ ainxn ∗ bi },

which is the possibility that x is feasible with respect to the i-th constraint. Therefore, for x ≥ 0,

Pos[x ∈ F ] = min
1≤i≤m

Pos[x ∈ Fi],
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which is the possibility that x is feasible. We next construct Pos[Z = z|x] which is the conditional
possibility that Z equals z given x. The joint distribution of the c̃j is

Π(c) = min{c̃1(c1), . . . , c̃n(cn)}
where c = (c1, . . . , cn). Therefore,

Pos[Z = z|x] = sup
c
{Π(c)|c1x1 + · · ·+ cnxn = z}.

Finally, applying Bellman and Zadeh’s method for fuzzy decision making [6], the possibility distribu-
tion of the objective function is defined as

Pos[Z = z] = sup
x≥0

min{Pos[Z = z|x],Pos[x ∈ F ]}.

It should be noted that Buckley [9] showed that the solution to an appropriate linear program gives the
correct z values in Pos[Z = z] = α for each α ∈ [0, 1].

An important question is the influence of the perturbations of the fuzzy parameters to the possibility
distribution of the objective function. We will assume that there is a collection of fuzzy parameters ãδij ,
b̃δi and c̃δj available with the property

D(Ã, Ãδ) ≤ δ, D(b̃, b̃δ) ≤ δ, D(c̃, c̃δ) ≤ δ, (4.32)

where D(Ã, Ãδ) = maxi,j D(ãij , ãδij), D(b̃, b̃δ) = maxiD(b̃i, b̃δi )andD(c̃, c̃δ) = maxj D(c̃j , c̃δj).
Then we have to solve the following perturbed problem:

max/min Zδ = x1c̃
δ
1 + · · ·+ xnc̃

δ
n (4.33)

subject to x1ã
δ
i1 + · · ·+ xnã

δ
in ∗ b̃δi , 1 ≤ i ≤ m, x ≥ 0.

Let us denote by Pos[x ∈ Fδi ] the possibility that x is feasible with respect to the i-th constraint in
(4.33). Then the possibility distribution of the objective function Zδ is defined as follows:

Pos[Zδ = z] = sup
x≥0

(min{Pos[Zδ = z | x],Pos[x ∈ Fδ]}).

The next theorem shows a stability property (with respect to perturbations (4.32) of the possibil-
ity dostribution of the objective function of the possibilistic linear programming problems (4.31) and
(4.33).

Theorem 4.5 (Fedrizzi and Fullér, [72]). Let δ ≥ 0 be a real number and let ãij , b̃i, ãδij , c̃j , c̃
δ
j be

(continuous) fuzzy numbers. If (4.32) hold, then

sup
z∈R
| Pos[Zδ = z]− Pos[Z = z] |≤ ω(δ) (4.34)

where ω(δ) = maxi,j{ω(ãij , δ), ω(ãδij , δ), ω(b̃i, δ), ω(bδi , δ), ω(c̃j , δ), ω(c̃δj , δ)}.
From (4.34) follows that supz |Pos[Zδ = z] − Pos[Z = z]| → 0 as δ → 0, which means the

stability of the possiibility distribution of the objective function with respect to perturbations (4.32).
As an immediate consequence of this theorem we obtain the following result: If the fuzzy numbers in
(4.31) and (4.33) satisfy the Lipschitz condition with constant L > 0, then

sup
z∈R
| Pos[Zδ = z]− Pos[Z = z] |≤ Lδ

It is easy to see that in the case of non-continuous fuzzy parameters the possibility distribution of the
objective function may be unstable under small changes of the parameters.
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4.4 Stability in possibilistic quadratic programming problems

In this Section, following Canastrelli, Giove and Fullér [12] we show that possibilistic quadratic pro-
grams with crisp decision variables and continuous fuzzy number coefficients are well-posed, i.e. small
changes in the membership function of the coefficients may cause only a small deviation in the possi-
bility distribution of the objective function.

A possibilistic quadratic program is

maximize Z := xT C̃x+ 〈d̃, x〉 (4.35)

subject to 〈ãi, x〉 ≤ b̃i, 1 ≤ i ≤ m, x ≥ 0

where C̃ = (c̃kj) is a matrix of fuzzy numbers, ãi = (ãij) and d̃ = (d̃j) are vectors of fuzzy numbers,
b̃i is a fuzzy number and

〈d̃, x〉 = d̃1x1 + · · ·+ d̃nxn.

We will assume that all fuzzy numbers are non-interactive. We define, Pos[Z = z], the possibility
distribution of the objective functionZ. We first specify the possibility that x satisfies the i-th constraint.
Let

Π(ai, bi) = min{ãi1(ai1), . . . , ãin(ain), b̃i(bi)}
where ai = (ai1, . . . , ain), which is the joint possibility distribution of ãi, 1 ≤ j ≤ n and b̃i. Then

Pos[x ∈ Fi] = sup
ai,bi

{Π(ai, bi) | ai1x1 + · · ·+ ainxn ≤ bi}

which is the possibility that x is feasible with respect to th i-th constraint. Therefore, for x ≥ 0,

Pos[x ∈ F ] = min{Pos[x ∈ F1], . . . ,Pos[x ∈ Fm]}.

We next construct Pos[Z = z|x] which is the conditional possibility that Z equals z given x. The
joint possibility distribution of C̃ and d̃ is

Π(C, d) = min
k,j
{C̃kj(ckj), d̃j(dj)}

where C = (ckj) is a crisp matrix and d = (dj) a crisp vector. Therefore,

Pos[Z = z|x] = sup
C,d
{Π(C, d) | xTCx+ 〈d, x〉 = z}.

Finally, the possibility distribution of the objective function is defined as

Pos[Z = z] = sup
x≥0

min{Pos[Z = z|x],Pos[x ∈ F ]}.

We show that possibilistic quadratic programs with crisp decision variables and continuous fuzzy num-
ber coefficients are well-posed, i.e. small changes in the membership function of the coefficients may
cause only a small deviation in the possibility distribution of the objective function. We will assume
that there is a collection of fuzzy parameters Ãδ, b̃δ, C̃δ and d̃δ are available with the property

D(Ã, Ãδ) ≤ δ, D(C̃, C̃δ) ≤ δ, D(b̃, b̃δ) ≤ δ, D(d̃, d̃δ) ≤ δ, (4.36)
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Then we have to solve the following perturbed problem:

maximize xT C̃δx+ 〈d̃δ, x〉 (4.37)

subject to Ãδx ≤ b̃δ, x ≥ 0

Let us denote by Pos[x ∈ Fδi ] that x is feasible with respect to the i-th constraint in (4.37). Then
the possibility distribution of the objective function Zδ is defined as follows

Pos[Zδ = z] = sup
x≥0

min{Pos[Zδ = z|x],Pos[x ∈ Fδ]}.

The next theorem shows a stability property of the possibility distribution of the objective function of
the possibilistic quadratic programs (4.35) and (4.37).

Theorem 4.6 (Canastrelli, Giove and Fullér, [12]). Let δ > 0 be a real number and let c̃kj , ãij , d̃j , b̃i,
c̃δkj , ã

δ
ij , d̃

δ
j , b̃

δ
i ∈ F be fuzzy numbers. If (4.36) hold then

sup
z∈R
|Pos[Zδ = z]− Pos[Z = z]| ≤ ω(δ)

where ω(δ) denotes the maximum of modulus of continuity of all fuzzy number coefficients at δ in (4.35)
and (4.37).

From Theorem 4.6 it follows that supz |Pos[Zδ = z]− Pos[Z = z]| → as δ → 0 which means the
stability of the possibility distribution of the objective function with respect to perturbations (4.36).

4.5 Stability in multiobjective possibilistic linear programming problems

In this Section, following Fullér and Fedrizzi [82], we show that the possibility distribution of the
objectives of an multiobjective possibilistic linear program (MPLP) with (continuous) fuzzy number
coefficients is stable under small changes in the membership function of the fuzzy parameters.

A multiobjective possibilistic linear program (MPLP) is

max/min Z = (c̃11x1 + · · ·+ c̃1nxn, . . . , c̃k1x1 + · · ·+ c̃knxn) (4.38)

subject to ãi1x1 + · · · ãinxn ∗ b̃i, i = 1, . . . ,m, x ≥ 0,

where ãij , b̃i, and c̃lj are fuzzy quantities, x = (x1, . . . , xn) is a vector of (non-fuzzy) decision variables
and |ast denotes <, ≤, =, ≥ or > for each i, i = 1, . . . ,m.

Even though ∗ may vary from row to row in the constraints, we will rewrite the MPLP (4.38) as

max/min Z = (c̃1x, . . . , c̃kx)

subject to Ãx ∗ b̃, x ≥ 0,

where ã = {ãij} is anm×nmatrix of fuzzy numbers and b̃ = (b̃1, ..., b̃m) is a vector of fuzzy numbers.
The fuzzy numbers are the possibility distributions associated with the fuzzy variables and hence place
a restriction on the possible values the variable may assume. For example, Pos[ãij = t] = ãij(t). We
will assume that all fuzzy numbers ãij , b̃i, c̃l are non-interactive. Following Buckley [10], we define
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Pos[Z = z], the possibility distribution of the objective function Z. We first specify the possibility that
x satisfies the i-th constraints. Let

Π(ai, bi) = min{ãi1(ai1), . . . , ãin(ain), b̃i(bi},

where ai = (ai1, . . . , ain), which is the joint distribution of ãij , j = 1, . . . , n, and b̃i. Then

Pos[x ∈ Fi] = sup
ai,bi

{Π(ai, bi) | ai1x1 + · · ·+ ainxn ∗ bi },

which is the possibility that x is feasible with respect to the i-th constraint. Therefore, for x ≥ 0,

Pos[x ∈ F ] = min{Pos[x ∈ F1], . . . ,Pos[x ∈ Fm]}.

which is the possibility that x is feasible. We next construct Pos[Z = z|x] which is the conditional
possibility that Z equals z given x. The joint distribution of the c̃lj , j = 1, . . . , n, is

Π(cl) = min{c̃l1(cl1), . . . , c̃ln(cln)}

where cl = (cl1, . . . , cln), l = 1, . . . , k. Therefore,

Pos[Z = z|x] = Pos[c̃1x = z1, . . . , c̃kx = zk] = min
1≤l≤k

Pos[c̃lx = zl] =

min
1≤l≤k

sup
cl1,...,clk

{Π(cl) | cl1x1 + · · ·+ clnxn = zl}.

Finally, the possibility distribution of the objective function is defined as

Pos[Z = z] = sup
x≥0

min{Pos[Z = z|x],Pos[x ∈ F ]}

We will assume that there is a collection of fuzzy parameters ãδij , b̃
δ
i , c̃

δ
lj available with the property

max
i,j

D(ãij , ãδij) ≤ δ, max
i
D(b̃i, b̃δi ) ≤ δ, max

l,j
D(c̃lj , c̃δlj) ≤ δ. (4.39)

Then we have to solve the following problem:

max/min Zδ = (c̃δ1x, . . . , c̃
δ
kx) (4.40)

subject to Ãδx ∗ b̃δ, x ≥ 0.

Let us denote by Pos[x ∈ Fδi ] the possibility that x is feasible with respect to the i-th constraint in
(4.40). Then the possibility distribution of the objective function Zδ in (4.40) is defined as:

Pos[Zδ = z] = sup
x≥0

(min{Pos[Zδ = z | x],Pos[x ∈ Fδ]}).

The next theorem shows a stability property (with respect to perturbations (4.39) of the possibility
distribution of the objective function, Z, of multiobjective possibilistic linear programming problems
(4.38) and (4.40).
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Theorem 4.7 (Fullér and Fedrizzi, [82]). Let δ ≥ 0 be a real number and let ãij , b̃i, ãδij , c̃lj , c̃
δ
lj be

(continuous) fuzzy numbers. If (4.39) hold, then

sup
z∈Rk

| Pos[Zδ = z]− Pos[Z = z] |≤ ω(δ)

where ω(δ) is the maximum of moduli of continuity of all fuzzy numbers at δ.

From Theorem 4.7 it follows that

sup
z∈Rk

| Pos[Zδ = z]− Pos[Z = z] |→ 0 as δ → 0

which means the stability of the possibility distribution of the objective function with respect to per-
turbations (4.39). It is easy to see that in the case of non-continuous fuzzy parameters the possibility
distribution of the objective function may be unstable under small changes of the parameters.

Example 4.1 (Fullér and Fedrizzi, [82]). As an example, consider the following biobjective possibilistic
linear program

max/min (c̃x, c̃x) (4.41)

subject to ãx ≤ b̃, x ≥ 0.

where ã = (1, 1), b̃ = (2, 1) and c̃ = (3, 1) are fuzzy numbers of symmetric triangular form. Here x is
one-dimensional (n = 1) and there is only one constraint (m = 1). We find

Pos[x ∈ F ] =





1 if x ≤ 2,

3
x+ 1

if x > 2.

and Pos[Z = (z1, z2)|x] = min{Pos[c̃x = z1],Pos[c̃x = z2]}, where

Pos[c̃x = zi] =





4− zi

x
if zi/x ∈ [3, 4],

zi

x
− 2 if zi/x ∈ [2, 3],

0 otherwise,

for i = 1, 2 and x 6= 0, and

Pos[Z = (z1, z2)|0] = Pos[0× c̃ = z] =

{
1 if z = 0,

0 otherwise.

Both possibilities are nonlinear functions of x, however the calculation of Pos[Z = (z1, z2)] is easily
performed and we obtain

Pos[Z = (z1, z2)] =





θ1 if z ∈M1,

min{θ1, θ2, θ3} if z ∈M2,

0 otherwise,
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where
M1 = {z ∈ R2 | |z1 − z2| ≤ min{z1, z2}, z1 + z2 ≤ 12},
M2 = {z ∈ R2 | |z1 − z2| ≤ min{z1, z2}, z1 + z2 > 12},

and

θi =
24

zi + 7 +
√
z2
i + 14zi + 1

.

for i = 1, 2 and

θ3 =
4 min{z1, z2} − 2 max{z1, z2}

z1 + z2
.

Consider now a perturbed biobjective problem with two different objectives (derived from (4.41) by a
simple δ-shifting of the centres of ã and c̃):

max/min (c̃x, c̃δx) (4.42)

subject to ãδx ≤ b̃, x ≥ 0.

where ã = (1 + δ, 1), b̃ = (2, 1), c̃ = (3, 1), c̃δ = (3 − δ, 1) and δ ≥ 0 is the error of measurement.
Then

Pos[x ∈ Fδ] =





1 if x ≤ 2
1 + δ

,

3− δx
x+ 1

if x >
2

1 + δ
.

and
Pos[Zδ = (z1, z2)|x] = min{Pos[c̃x = z1],Pos[c̃δx = z2]}

where

Pos[c̃x = z1] =





4− z1

x
if z1/x ∈ [3, 4],

z1

x
− 2 if z1i/x ∈ [2, 3],

0 otherwise,

Pos[c̃δx = z2] =





4− δ − z2

x
if z2/x ∈ [3− δ, 4− δ],

z2

x
− 2 + δ if z2/x ∈ [2− δ, 3− δ],

0 otherwise,

x 6= 0, and

Pos[Zδ = (z1, z2)|0] = Pos[0× c̃ = z] =

{
1 if z = 0,

0 otherwise.

So,

Pos[Zδ = (z1, z2)] =





θ1(δ) if z ∈M1(δ),

min{θ1(δ), θ2(δ), θ3(δ)} if z ∈M2(δ),

0 otherwise,
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where

M1(δ) =

{
z ∈ R2 | |z1 − z2| ≤ (1− 0.5δ) min{z1, z2}, z1 + z2 ≤

2(6− δ)
1 + δ

}
,

M2(δ) =

{
z ∈ R2 | |z1 − z2| ≤ (1− 0.5δ) min{z1, z2}, z1 + z2 >

2(6− δ)
1 + δ

}
,

θ1(δ) =
24 + δ

(
7− z1 −

√
z2
1 + 14z1 + 1 + 4z1δ

)

z1 + 7 +
√
z2
1 + 14z1 + 1 + 4z1δ + 2δ

θ2(δ) =
24− δ

(
δ + z2 − 1 +

√
(1− δ − z2)2 + 16z2

)

z2 + 7 +
√

(1− δ − z2)2 + 16z2 + δ

and

θ3(δ) =
(4− δ) min{z1, z2} − 2 max{z1, z2}

z1 + z2
.

It is easy to check that
sup
x≥0
|Pos[x ∈ F ]− Pos[x ∈ Fδ]| ≤ δ,

sup
z
|Pos[Z = z|x]− Pos[Zδ = z|x]| ≤ δ, ∀x ≥ 0,

sup
z
|Pos[Z = z]− Pos[Zδ = z]| ≤ δ.

On the other hand, from the definition of metric D the modulus of continuity and Theorem 4.7 it follows
that

D(ã, ãδ) = δ,D(c̃, c̃δ) = δ,D(c̃, c̃) = 0, D(b̃, b̃) = 0, ω(δ) = δ,

and, therefore supz |Pos[Z = z]− Pos[Zδ = z]| ≤ δ.

4.6 Stability in fuzzy inference systems

In this Section following Fullér and Zimmermann [81], and Fullér and Werners [80] we show two
very important features of the compositional rule of inference under triangular norms. Namely, we
prove that (i) if the t-norm defining the composition and the membership function of the observation
are continuous, then the conclusion depends continuously on the observation; (ii) if the t-norm and the
membership function of the relation are continuous, then the observation has a continuous membership
function. We consider the compositional rule of inference with different observations P and P ′,

Observation: X has property P
Relation: X and Y are in relation R

Conclusion: Y has property Q

Observation: X has property P ′

Relation m: X and Y are in relation R

Conclusion: Y has property Q′
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According to Zadeh’s compositional rule of inference, Q and Q′ are computed as Q = P ◦ R and
Q′ = P ′ ◦R i.e.,

µQ(y) = sup
x∈R

T (µP (x), µR(x, y)), µQ′(y) = sup
x∈R

T (µP ′(x), µR(x, y)).

The following theorem shows that when the observations are close to each other in the metric D, then
there can be only a small deviation in the membership functions of the conclusions.

Theorem 4.8 (Fullér and Zimmermann, [81]). Let δ ≥ 0 and T be a continuous triangular norm, and
let P , P ′ be fuzzy intervals. If D(P, P ′) ≤ δ then

sup
y∈R
|µQ(y)− µQ′(y)| ≤ ωT (max{ωP (δ), ωP ′(δ)}).

where ωP (δ) and ωP ′(δ) denotes the modulus of continuity of P and P ′ at δ.

It should be noted that the stability property of the conclusionQwith respect to small changes in the
membership function of the observation P in the compositional rule of inference scheme is independent
from the relation R (it’s membership function can be discontinuous). Since the membership function
of the conclusion in the compositional rule of inference can have unbounded support, it is possible that
the maximal distance between the α-level sets of Q and Q′ is infinite, but their membership grades
are arbitrarily close to each other. The following theorem establishes the continuity property of the
conclusion in the compositional rule of inference scheme.

Theorem 4.9 (Fullér and Zimmermann, [81]). Let R be continuous fuzzy relation, and let T be a
continuous t-norm. Then Q is continuous and ωQ(δ) ≤ ωT (ωR(δ)), for each δ ≥ 0.

From Theorem 4.9 it follows that the continuity property of the membership function of the con-
clusion Q in the compositional rule of inference scheme is independent from the observation P (it’s
membership function can be discontinuous).

Theorems 4.8 and 4.9 can be easily extended to the compositional rule of inference with several
relations:

Observation: X has property P
Relation 1: X and Y are in relation W1

. . .
Relation m: X and Y are in relation Wm

Conclusion: Y has property Q

Observation: X has property P ′

Relation 1: X and Y are in relation W1

. . .
Relation m: X and Y are in relation Wm

Conclusion: Y has property Q′.

According to Zadeh’s compositional rule of inference, Q and Q′ are computed by sup-T composi-
tion as follows

Q =
m⋂

i=1

P ◦Wi and Q′ =
m⋂

i=1

P ′ ◦Wi. (4.43)

Generalizing Theorems 4.8 and 4.9 about the case of single relation, we show that when the ob-
servations are close to each other in the metric D, then there can be only a small deviation in the
membership function of the conclusions even if we have several relations.
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Theorem 4.10 (Fullér and Werners, [80]). Let δ ≥ 0 and T be a continuous triangular norm, and let
P , P ′ be continuous fuzzy intervals. If D(P, P ′) ≤ δ then

sup
y∈R
|µQ(y)− µQ′(y)| ≤ ωT (max{ωP (δ), ωP ′(δ)})

where Q and Q′ are computed by (4.43).

In the following theorem we establish the continuity property of the conclusion under continuous
fuzzy relations Wi and continuous t-norm T .

Theorem 4.11 (Fullér and Werners, [80]). Let Wi be continuous fuzzy relation, i=1,. . . ,m and let T be
a continuous t-norm. Then Q is continuous and ωQ(δ) ≤ ωT (ω(δ)) for each δ ≥ 0 where ω(δ) =
max{ωW1(δ), . . . , ωWm(δ)}.

The above theorems are also valid for Multiple Fuzzy Reasoning (MFR) schemes:

Observation: P P ′

Implication 1: P1 → Q1 P ′1 → Q′1
. . . . . .

Implication m: Pm → Qm P ′m → Q′m
Conclusion: Q Q′

where Q and Q′ are computed by sup-T composition as follows

Q = P ◦
m⋂

i=1

Pi → Qi, Q′ = P ′ ◦
m⋂

i=1

P ′i → Q′i,

i.e.,
µQ(y) = sup

x∈R
T (µP (x), min

i=1,...,m
µPi(x)→ µQi(y)),

µQ′(y) = sup
x∈R

T (µP ′(x), min
i=1,...,m

µP ′i (x) → µQ′i(y)).

Then the following theorems hold.

Theorem 4.12 (Fullér and Werners, [80]). Let δ ≥ 0, let T be a continuous triangular norm, let P , P ′,
Pi, P ′i , Qi, Q

′
i, i = 1, . . . ,m, be fuzzy intervals and let→ be a continuous fuzzy implication operator.

If
max{D(P, P ′), max

i=1,...,m
D(Pi, P ′i ), max

i=1,...,m
D(Qi, Q′i)} ≤ δ,

then
sup
y∈R
|µQ(y)− µQ′(y)| ≤ ωT (max{ω(δ), ω→(ω(δ))}),

where ω(δ) = max{ωPi(δ), ωP ′i (δ), ωQi(δ), ωQ′i(δ)}, and ω→ denotes the modulus of continuity of the
fuzzy implication operator.

Theorem 4.13 (Fullér and Werners, [80]). Let → be a continuous fuzzy implication operator, let P ,
P ′,Pi, P ′i , Qi, Q

′
i, i = 1, . . . ,m, be fuzzy intervals and let T be a continuous t-norm. Then Q is

continuous and
ωQ(δ) ≤ ωT (ω→(ω(δ)) for each δ ≥ 0,

where ω(δ) = max{ωPi(δ), ωP ′i (δ), ωQi(δ), ωQ′i(δ)} and ω→ denotes the modulus of continuity of the
fuzzy implication operator.
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From limδ→0 ω(δ) = 0 and Theorem 4.12 it follows that

‖µQ − µQ′‖∞ = sup
y
|µQ(y)− µQ′(y)| → 0

whenever D(P, P ′) → 0, D(Pi, P ′i ) → 0 and D(Qi, Q′i) → 0, i = 1, . . . ,m, which means the
stability of the conclusion under small changes of the observation and rules.

The stability property of the conclusion under small changes of the membership function of the
observation and rules guarantees that small rounding errors of digital computation and small errors of
measurement of the input data can cause only a small deviation in the conclusion, i.e. every successive
approximation method can be applied to the computation of the linguistic approximation of the exact
conclusion.

These stability properties in fuzzy inference systems were used by a research team - headed by
Professor Hans-Jürgen Zimmermann - when developing a fuzzy control system for a ”fuzzy controlled
model car” [5] during my DAAD Scholarship at RWTH Aachen between 1990 and 1992.
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Chapter 5

A Normative View on Possibility
Distributions

In possibility theory we can use the principle of expected value of functions on fuzzy sets to define
variance, covariance and correlation of possibility distributions. Marginal probability distributions are
determined from the joint one by the principle of ’falling integrals’ and marginal possibility distri-
butions are determined from the joint possibility distribution by the principle of ’falling shadows’.
Probability distributions can be interpreted as carriers of incomplete information [106], and possibility
distributions can be interpreted as carriers of imprecise information. A function f : [0, 1]→ R is said to
be a weighting function if f is non-negative, monotone increasing and satisfies the following normal-
ization condition

∫ 1
0 f(γ)dγ = 1. Different weighting functions can give different (case-dependent)

importances to level-sets of possibility distributions. In Chapter ”A Normative View on Possibility Dis-
tributions” we will discuss the weighted lower possibilistic and upper possibilistic mean values, crisp
possibilistic mean value and variance of fuzzy numbers, which are consistent with the extension prin-
ciple. We can define the mean value (variance) of a possibility distribution as the f -weighted average
of the probabilistic mean values (variances) of the respective uniform distributions defined on the γ-
level sets of that possibility distribution. A measure of possibilistic covariance (correlation) between
marginal possibility distributions of a joint possibility distribution can be defined as the f -weighted av-
erage of probabilistic covariances (correlations) between marginal probability distributions whose joint
probability distribution is defined to be uniform on the γ-level sets of their joint possibility distribution
[88]. We should note here that the choice of uniform probability distribution on the level sets of possi-
bility distributions is not without reason. Namely, these possibility distributions are used to represent
imprecise human judgments and they carry non-statistical uncertainties. Therefore we will suppose that
each point of a given level set is equally possible. Then we apply Laplace’s principle of Insufficient
Reason: if elementary events are equally possible, they should be equally probable (for more details
and generalization of principle of Insufficient Reason see [71], page 59). The main new idea here is
to equip the alpha-cuts of joint possibility distributions with uniform probability distributions and to
derive possibilistic mean value, variance, covariance and correlation of possibility distributions, in such
a way that they would be consistent with the extension principle. The idea of equipping the alpha-cuts
of fuzzy numbers with a uniform probability refers to early ideas of simulation of fuzzy sets by Yager
[143], and possibility/probability transforms by Dubois et al [70] as well as the pignistic transform
of Smets [132]. In this Chapter, following Carlsson and Fullér [26] Carlsson, Fullér and Majlender
[45], Fullér and Majlender [88] and Fullér, Mezei and Várlaki [96], we will introduce the concepts of

78

               dc_817_13



possibilistic mean value, variance, covariance and correlation. 941 independent citations show that the
scientific community has accepted these principles.

5.1 Possibilistic mean value, variance, covariance and correlation

Fuzzy numbers can be considered as possibility distributions [153, 155]. Possibility distributions are
used to represent imprecise human judgments and therefore they carry non-statistical uncertainties. If
A ∈ F is a fuzzy number and x ∈ R a real number then A(x) can be interpreted as the degree of
possiblity of the statement ”x isA”. Let a, b ∈ R∪{−∞,∞} with a ≤ b, then the degree of possibility
that A ∈ F takes its value from interval [a, b] is defined by [155]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

We should note here that if [a, b] and [c, d] are two disjoint intervals such that they both belong to the
support of fuzzy number A then

Pos(A ∈ [a, b] ∪ [c, d]) < Pos(A ∈ [a, b]) + Pos(A ∈ [c, d]).

since
max

x∈[a,b]∪[c,d]
A(x) < max

x∈[a,b]
A(x) + max

x∈[c,d]
A(x)

That is, Pos is a sub-additive set function and there is no way that it can be considered as a (probability)
measure. The degree of necessity that A ∈ F takes its value from [a, b] is defined by Nec(A ∈ [a, b]) =
1− Pos(A /∈ [a, b]).

Definition 5.1. Let n ≥ 2 an integer. A fuzzy set C in Rn is said to be a joint possibility distribution of
fuzzy numbers A1, . . . , An if its projection on the i-th axis is Ai, that is,

Ai(xi) = max
xj∈R, j 6=i

C(x1, . . . , xn), ∀xi ∈ R, i = 1, . . . , n. (5.1)

Then Ai is called the i-th marginal possibility distribution of C.

For example, if n = 2 then C is a joint possibility distribution of fuzzy numbers A,B ∈ F if

A(x) = max
y∈R

C(x, y), ∀x ∈ R, B(y) = max
x∈R

C(x, y), ∀y ∈ R.

We should note here that there exists a large family of joint possibility distributions that can not be
defined directly from the membership values of its marginal possibility distributions by any aggregation
operator. On the other hand, if A and B are fuzzy numbers and T is a t-norm, then

C(x, y) = T (A(x), B(y)

always defines a joint possibility distribution with marginal possibility distributions A and B.

Definition 5.2. Fuzzy numbers Ai ∈ F , i = 1, . . . , n are said to be non-interactive if their joint
possibility distribution C satisfies the relationship

C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)},
or, equivalently,

[C]γ = [A1]γ × · · · × [An]γ

hold for all x1, . . . , xn ∈ R and γ ∈ [0, 1].
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If Ai ∈ F , i = 1, . . . , n and C is their joint possibility distribution then the relationships

C(x1, . . . , xn) ≤ min{A1(x1), . . . , An(xn)},

or, equivalently,
[C]γ ⊆ [A1]γ × · · · × [An]γ

hold for all x1, . . . , xn ∈ R and γ ∈ [0, 1].
If A,B ∈ F are non-interactive then their joint membership function is defined by A × B, where

(A×B)(x, y) = min{A(x), B(y)} for any x, y ∈ R. It is clear that in this case any α-level set of their
joint possibility distribution is a rectangular. On the other hand, A and B are said to be interactive if
they can not take their values independently of each other [69].

The possibilistic mean (or expected value), variance, covariance and correlation were originally
defined from the measure of possibilistic interactivity (as shown in [45, 88]) but for simplicity, we
will present the concept of possibilistic mean value, variance, covariance and possibilistic correlation
in a probabilistic setting and point out the fundamental difference between the standard probabilistic
approach and the possibilistic one. Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)] and let Uγ
denote a uniform probability distribution on [A]γ , γ ∈ [0, 1]. Recall that the probabilistic mean value
of Uγ is equal to

M(Uγ) =
a1(γ) + a2(γ)

2
,

and its probabilistic variance is computed by

var(Uγ) =
(a2(γ)− a1(γ))2

12
.

In 2001 Carlsson and Fullér [26] defined the possibilistic mean (or expected) value of fuzzy number
A as

E(A) =
∫ 1

0
M(Uγ)2γ dγ =

∫ 1

0

a1(γ) + a2(γ)
2

2γ dγ =
∫ 1

0
(a1(γ) + a2(γ))γ dγ,

where Uγ is a uniform probability distribution on [A]γ for all γ ∈ [0, 1].
In [26] we named E(A) as the ”possibilistic mean value” of A since it can be defined by using

possibilities. Really, following [26] we can rewrite E(A) as

E(A) =
∫ 1

0
γ(a1(γ) + a2(γ))dγ =

2 ·
∫ 1

0
γa1(γ)dγ + 2 ·

∫ 1

0
γa2(γ)dγ

2

=
1
2




∫ 1

0
γa1(γ)dγ

1
2

+

∫ 1

0
γa2(γ)dγ

1
2


 =

1
2




∫ 1

0
γa1(γ)dγ
∫ 1

0
γdγ

+

∫ 1

0
γa2(γ)dγ
∫ 1

0
γdγ


 .

Let us take a closer look at the right-hand side of the equation for E(A). The first quantity, denoted

80

               dc_817_13



by E∗(A) can be reformulated as

E∗(A) = 2
∫ 1

0
γa1(γ)dγ =

∫ 1

0
γa1(γ)dγ
∫ 1

0
γdγ

=

∫ 1

0
Pos[A ≤ a1(γ)]a1(γ)dγ
∫ 1

0
Pos[A ≤ a1(γ)]dγ

=

∫ 1

0
Pos[A ≤ a1(γ)]×min[A]γdγ
∫ 1

0
Pos[A ≤ a1(γ)]dγ

,

where Pos denotes possibility, i.e.

Pos[A ≤ a1(γ)] = sup
u≤a1(γ)

A(u) = γ.

since A is upper-semicontinuous. So E∗(A) is nothing else but the lower possibility-weighted average
of the minima of the γ-sets, and it is why we call it the lower possibilistic mean value of A. In a similar
manner we introduce E∗(A) , the upper possibilistic mean value of A, as

E∗(A) = 2
∫ 1

0
γa2(γ)dγ =

∫ 1

0
γa2(γ)dγ
∫ 1

0
γdγ

=

∫ 1

0
Pos[A ≥ a2(γ)]a2(γ)dγ
∫ 1

0
Pos[A ≥ a2(γ)]dγ

=

∫ 1

0
Pos[A ≥ a2(γ)]×max[A]γdγ
∫ 1

0
Pos[A ≤ a2(γ)]dγ

,

where we have used the equality

Pos[A ≥ a2(γ)] = sup
u≥a2(γ)

A(u) = γ.

In [26] we introduced the crisp possibilistic mean value of A as the arithemetic mean of its lower
possibilistic and upper possibilistic mean values, i.e.

Ē(A) =
E∗(A) + E∗(A)

2
.

In 1986 Goetschel and Voxman [97] introduced a method for ranking fuzzy numbers [A]γ =
[a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)] as

A ≤ B ⇐⇒
∫ 1

0
γ(a1(γ) + a2(γ)) dγ ≤

∫ 1

0
γ(b1(γ) + b2(γ)) dγ

As was pointed out by Goetschel and Voxman this definition of ordering was motivated in part by the
desire to give less importance to the lower levels of fuzzy numbers. In this terminology, the ordering
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by Goetschel and Voxman can be written as A ≤ B ⇐⇒ E(A) ≤ E(B). We note further that from
the equality

E(A) =
∫ 1

0
γ(a1(γ) + a2(γ))dγ =

∫ 1

0
2γ · a1(γ) + a2(γ)

2
dγ

∫ 1

0
2γ dγ

,

it follows thatE(A) is nothing else but the level-weighted average of the arithmetic means of all γ-level
sets, that is, the weight of the arithmetic mean of a1(γ) and a2(γ) is just 2γ.

Example 5.1. If A = (a, α, β) is a triangular fuzzy number with center a, left-width α > 0 and
right-width β > 0 then a γ-level of A is computed by

[A]γ = [a− (1− γ)α, a+ (1− γ)β], ∀γ ∈ [0, 1],

Then,

E(A) =
∫ 1

0
γ[a− (1− γ)α+ a+ (1− γ)β]dγ = a+

β − α
6

.

When A = (a, α) is a symmetric triangular fuzzy number we get E(A) = a.

Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function f : [0, 1] → R
is said to be a weighting function if f is non-negative, monoton increasing and satisfies the following
normalization condition ∫ 1

0
f(γ)dγ = 1. (5.2)

Definition 5.3 (Fullér and Majlender, [85]). We define the f -weighted possibilistic mean (or expected)
value of fuzzy number A as

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ. (5.3)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0
[a1(γ) + a2(γ)] γdγ = E(A).

That is the f -weighted possibilistic mean value defined by (5.3) can be considered as a generalization
of possibilistic mean value introduced earlier by Carlsson and Fullér [26]. From the definition of a
weighting function it can be seen that f(γ) might be zero for certain (unimportant) γ-level sets of A.
So by introducing different weighting functions we can give different (case-dependent) importances to
γ-levels sets of fuzzy numbers. Let us introduce a family of weighting function (which stands for the
principle ”all level sets are equally important”) defined by

one(γ) =
{

1 if γ ∈ (0, 1]
a if γ = 0

where a ∈ [0, 1] is an arbitrary real number. Then,

Eone(A) =
∫ 1

0

a1(γ) + a2(γ)
2

× one(γ)dγ =
∫ 1

0

a1(γ) + a2(γ)
2

dγ. (5.4)
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Definition 5.4 (Fullér and Majlender, [85]). Let f be a weighting function and letA ∈ F be fuzzy num-
ber with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. Then we define the f -weighted interval-valued possibilistic
mean of A as

Mf (A) = [M−f (A),M+
f (A)],

where

M−f (A) =
∫ 1

0
a1(γ)f(γ)dγ, M+

f (A) =
∫ 1

0
a2(γ)f(γ)dγ.

The following two theorems can directly be proved using the definition of f -weighted interval-
valued possibilistic mean.

Theorem 5.1 (Fullér and Majlender, [85]). Let A,B ∈ F two non-interactive fuzzy numbers and let f
be a weighting function, and let λ be a real number. Then

Mf (A+B) = Mf (A) +Mf (B), Mf (λA) = λMf (A),

where the non-interactive sum of fuzzy numbers A and B is defined by the sup-min extension principle
2.6.

Note 4. The f -weighted possibilistic mean of A, defined by (5.3), is the arithmetic mean of its f -
weighted lower and upper possibilistic mean values, i.e.

Ef (A) =
Mf
−(A) +M+

f (A)

2
. (5.5)

Theorem 5.2 (Fullér and Majlender, [85]). Let A and B be two non-interactive fuzzy numbers, and let
λ ∈ R. Then we have

Ef (A+B) = Ef (A) + Ef (B), Ef (λA) = λEf (A),

where the non-interactive sum of fuzzy numbers A and B is defined by the sup-min extension principle
2.6

We will show an important relationship between the interval-valued probabilistic mean D(A) =
[D∗(A), D∗(A)] introduced by Dubois and Prade in [68] and the f -weighted interval-valued possibilis-
tic mean Mf (A) = [M−f (A),M+

f (A)] for any fuzzy number with strictly decreasing shape functions.
An LR-type fuzzy number A can be described with the following membership function:

A(u) =





L

(
q− − u
α

)
if q− − α ≤ u ≤ q−

1 if u ∈ [q−, q+]

R

(
u− q+
β

)
if q+ ≤ u ≤ q+ + β

0 otherwise

where [q−, q+] is the peak of fuzzy number A; q− and q+ are the lower and upper modal values;
L,R : [0, 1] → [0, 1] with L(0) = R(0) = 1 and L(1) = R(1) = 0 are non-increasing, continuous
functions. We will use the notation A = (q−, q+, α, β)LR. Hence, the closure of the support of A is
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exactly [q− − α, q+ + β]. If L and R are strictly decreasing functions then the γ-level sets of A can
easily be computed as

[A]γ = [q− − αL−1(γ), q+ + βR−1(γ)], γ ∈ [0, 1].

The lower and upper probability mean values of the fuzzy number A are computed by Dubois and
Prade [68] as

D∗(A) = q− − α
∫ 1

0
L(u)du, D∗(A) = q+ + β

∫ 1

0
R(u)du. (5.6)

and we will use the notation

D̄(A) =
D∗(A) +D∗(A)

2
.

The f -weighted lower and upper possibilistic mean values are computed by

M−f (A) =
∫ 1

0

(
q− − αL−1(γ)

)
f(γ)dγ =

∫ 1

0
q−f(γ)dγ −

∫ 1

0
αL−1(γ)f(γ)dγ

= q− − α
∫ 1

0
L−1(γ)f(γ)dγ,

M+
f (A) =

∫ 1

0

(
q+ + βR−1(γ)

)
f(γ)dγ =

∫ 1

0
q+f(γ)dγ +

∫ 1

0
βR−1(γ)f(γ)dγ

= q+ + β

∫ 1

0
R−1(γ)f(γ)dγ.

(5.7)

We can state the following theorem.

Theorem 5.3 (Fullér and Majlender, [85]). Let f be a weighting function and let A be a fuzzy number
of type LR with strictly decreasing and continuous shape functions. Then, the f -weighted interval-
valued possibilistic mean value of A is a subset of the interval-valued probabilistic mean value, i.e.
Mf (A) ⊆ D(A).

Example 5.2. Let f(γ) = (n + 1)γn and let A = (a, α, β) be a triangular fuzzy number with center
a, left-width α > 0 and right-width β > 0 then a γ-level of A is computed by

[A]γ = [a− (1− γ)α, a+ (1− γ)β], ∀γ ∈ [0, 1].

Then the power-weighted lower and upper possibilistic mean values of A are computed by

M−f (A) =
∫ 1

0
[a− (1− γ)α](n+ 1)γndγ

= a(n+ 1)
∫ 1

0
γndγ − α(n+ 1)

∫ 1

0
(1− γ)γndγ = a− α

n+ 2
,

and,

M+
f (A) =

∫ 1

0
[a+ (1− γ)β](n+ 1)γndγ

= a(n+ 1)
∫ 1

0
γndγ + β(n+ 1)

∫ 1

0
(1− γ)γndγ = a+

β

n+ 2
,
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and therefore,

Mf (A) =

[
a− α

n+ 2
, a+

β

n+ 2

]
.

That is,

Ef (A) =
1
2

(
a− α

n+ 2
+ a+

β

n+ 2

)
= a+

β − α
2(n+ 2)

.

So,

lim
n→∞

Ef (A) = lim
n→∞

(
a+

β − α
2(n+ 2)

)
= a.

Example 5.3. Let A = (a, b, α, β) be a fuzzy number of trapezoidal form with peak [a, b], left-width
α > 0 and right-width β > 0, and let f(γ) = (n+ 1)γn, n ≥ 0. A γ-level of A is computed by

[A]γ = [a− (1− γ)α, b+ (1− γ)β], ∀γ ∈ [0, 1],

then the power-weighted lower and upper possibilistic mean values of A are computed by

M−f (A) =
∫ 1

0
[a− (1− γ)α](n+ 1)γndγ

= a(n+ 1)
∫ 1

0
γndγ − α(n+ 1)

∫ 1

0
(1− γ)γndγ = a− α

n+ 2
,

and,

M+
f (A) =

∫ 1

0
[b+ (1− γ)β](n+ 1)γndγ

= b(n+ 1)
∫ 1

0
γndγ + β(n+ 1)

∫ 1

0
(1− γ)γndγ = b+

β

n+ 2
,

and therefore,

Mf (A) =

[
a− α

n+ 2
, b+

β

n+ 2

]

That is,

Ef (A) =
1
2

(
a− α

n+ 2
+ b+

β

n+ 2

)
=
a+ b

2
+

β − α
2(n+ 2)

.

So,

lim
n→∞

Ef (A) = lim
n→∞

(
a+ b

2
+

β − α
2(n+ 2)

)
=
a+ b

2
.

Example 5.4. Let f(γ) = (n + 1)γn, n ≥ 0 and let A = (a, α, β) be a triangular fuzzy number with
center a, left-width α > 0 and right-width β > 0 then

Mf (A) =
[
a− α

n+ 2
, a+

β

n+ 2

]
⊂ D(A) =

[
a− α

2
, a+

β

2

]

and for n > 0 we have

Ef (A) = a+
β − α

2(n+ 2)
6= D̄(A) = a+

β − α
4

.
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Note 5. WhenA is a symmetric fuzzy number then the equationEf (A) = D̄(A) holds for any weighting
function f . In the limit case, when A = (a, b, 0, 0) is the characteristic function of interval [a, b], the
f -weighted possibilistic and probabilistic interval-valued means are equal, D(A) = Mf (A) = [a, b].

Definition 5.5 (Fullér and Majlender, [88]). The f -weighted possibilistic variance of A ∈ F can be
written as

Varf (A) =
∫ 1

0
var(Uγ)f(γ)dγ =

∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

where Uγ is a uniform probability distribution on [A]γ and var(Uγ) denotes the variance of Uγ .

If f(γ) = 2γ then the f -weighted possibilistic variance is said to be a possibilistic variance of A,
denoted by Var(A), and is defined by

Var(A) =
∫ 1

0
var(Uγ)2γ dγ =

1
6

∫ 1

0
(a2(γ)− a1(γ))2γ dγ,

where Uγ is a uniform probability distribution on [A]γ and var(Uγ) denotes the variance of Uγ .

Example 5.5. If A = (a, α, β) is a triangular fuzzy number then

Var(A) =
1
6

∫ 1

0
γ
(
a+ β(1− γ)− (a− α(1− γ))

)2
dγ =

(α+ β)2

72
.

Example 5.6. Let A = (a, b, α, β) be a trapezoidal fuzzy number and let f(γ) = (n + 1)γn be a
weighting function. Then,

Varf (A) = (n+ 1)
∫ 1

0

[
a2(γ)− a1(γ)

2

]2

γndγ =
n+ 1

4

∫ 1

0
[(b− a) + (α+ β)(1− γ)]2 γndγ

=
n+ 1

4

[
(b− a)2

∫ 1

0
γndγ + 2(b− a)(α+ β)

∫ 1

0
(1− γ)γndγ + (α+ β)2

∫ 1

0
(1− γ)2γndγ

]

=
n+ 1

4

[
(b− a)2

n+ 1
+

2(b− a)(α+ β)
(n+ 1)(n+ 2)

+
2(α+ β)2

(n+ 1)(n+ 2)(n+ 3)

]

=
(b− a)2

4
+

(b− a)(α+ β)
2(n+ 2)

+
(α+ β)2

2(n+ 2)(n+ 3)
=
[
b− a

2
+

α+ β

2(n+ 2)

]2

+
(n+ 1)(α+ β)2

4(n+ 2)2(n+ 3)
.

So,

lim
n→∞

Varf (A) = lim
n→∞

([
b− a

2
+

α+ β

2(n+ 2)

]2

+
(n+ 1)(α+ β)2

4(n+ 2)2(n+ 3)

)
=
b− a

2
.

In 2001 Carlsson and Fullér [26] originally introduced the possibilistic variance of fuzzy numbers
as

Var(A) =
1
2

∫ 1

0
(a2(γ)− a1(γ))2γ dγ,

and in 2003 Fullér and Majlender [85] introduced the f -weighted possibilistic variance of A by

Varf (A) =
1
4

∫ 1

0
(a2(γ)− a1(γ))2f(γ)dγ.
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In 2004 Fullér and Majlender [88] introduced a measure of possibilistic covariance between marginal
distributions of a joint possibility distribution C as the expected value of the interactivity relation be-
tween the γ-level sets of its marginal distributions. In 2005 Carlsson, Fullér and Majlender [45] showed
that the possibilistic covariance between fuzzy numbersA andB can be written as the weighted average
of the probabilistic covariances between random variables with uniform joint distribution on the level
sets of their joint possibility distribution C.

Definition 5.6 (Fullér and Majlender, [88]; Carlsson, Fullér and Majlender [45]). The f -weighted mea-
sure of possibilistic covariance between A,B ∈ F , (with respect to their joint distribution C), can be
written as

Covf (A,B) =
∫ 1

0
cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ and cov(Xγ , Yγ)
denotes their covariance, for all γ ∈ [0, 1].

Now we show how the possibilistic variance can be derived from possibilistic covariance. Let
A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)] and letUγ denote a uniform probability distribution
on [A]γ , γ ∈ [0, 1]. First we compute the level-wise covariances by

cov(Uγ , Uγ) = M(U2
γ )− (M(Uγ))2

=
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
x2dx−

(
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx

)2

=
a2

1(γ) + a1(γ)a2(γ) + a2
2(γ)

3
−
(
a1(γ) + a2(γ)

2

)2

=
a2

1(γ)− 2a1(γ)a2(γ) + a2
2(γ)

12
=

(a2(γ)− a1(γ))2

12
,

and we get

Varf (A) = Covf (A,A) =
∫ 1

0
cov(Uγ , Uγ)f(γ)dγ =

∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

IfA andB are non-interactive, i.e. C = A×B. Then [C]γ = [A]γ×[B]γ , that is, [C]γ is rectangular
subset of R2 for any γ ∈ [0, 1]. Then Xγ , the first marginal probability distribution of a uniform
distribution on [C]γ = [A]γ × [B]γ , is a uniform probability distribution on [A]γ (denoted by Uγ) and
Yγ , the second marginal probability distribution of a uniform distribution on [C]γ = [A]γ × [B]γ , is a
uniform probability distribution on [B]γ (denoted by Vγ) that is Xγ and Yγ are independent. So,

cov(Xγ , Yγ) = cov(Uγ , Vγ) = 0,

for all γ ∈ [0, 1], and, therefore, we have

Covf (A,B) =
∫ 1

0
cov(Xγ , Yγ)f(γ)dγ =

∫ 1

0
cov(Uγ , Vγ)f(γ)dγ = 0.

If A and B are non-interactive then Covf (A,B) = 0 for any weighting function f .
We should emphasize here that the inclusion of the weighting function f does not play any crucial

role in our theory, since by setting f(γ) = 1 for all γ ∈ [0, 1], f could be eliminated from the definition.
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Example 5.7. Now consider the case when A(x) = B(x) = (1 − x) · χ[0,1](x), for x ∈ R, that is,
[A]γ = [B]γ = [0, 1− γ] for γ ∈ [0, 1]. Suppose that their joint possibility distribution is given by

F (x, y) = (1− x− y) · χT (x, y),

where
T = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x+ y ≤ 1}.

This situation is depicted on Fig. 5.7, where we have shifted the fuzzy sets to get a better view of the
situation.

Figure 5.1: Illustration of joint possibility distribution F .

Figure 5.2: Partition of [F ]γ .

It is easy to check that A and B are really the marginal distributions of F . A γ-level set of F is
computed by

[F ]γ = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x+ y ≤ 1− γ}.
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The density function of a uniform distribution on [F ]γ can be written as

f(x, y) =





1∫

[F ]γ
dxdy

if (x, y) ∈ [F ]γ

0 otherwise

in details,

f(x, y) =





1
∫ 1−γ

0

∫ 1−γ−x

0
dxdy

if (x, y) ∈ [F ]γ

0 otherwise

that is,

f(x, y) =





2
(1− γ)2

if (x, y) ∈ [F ]γ

0 otherwise

The marginal functions are obtained as

f1(x) =
1∫

[F ]γ
dxdy

∫ 1−γ−x

0
dy =





2(1− γ − x)
(1− γ)2

if 0 ≤ x ≤ 1− γ

0 otherwise

and

f2(y) =
1∫

[F ]γ
dxdy

∫ 1−γ−y

0
dx =





2(1− γ − y)
(1− γ)2

if 0 ≤ y ≤ 1− γ

0 otherwise

Furthermore, the probabilistic expected values of marginal distributions of Xγ and Yγ are equal to
(1− γ)/3 see (Fig. 5.2). Really,

M(Xγ) =
2

(1− γ)2

∫ 1−γ

0
x(1− γ − x)dx = (1− γ)/3.

M(Yγ) =
2

(1− γ)2

∫ 1−γ

0
y(1− γ − y)dy = (1− γ)/3.

And the covariance between Xγ and Yγ is positive on H1 and H4 and negative on H2 and H3. In this
case we get (see Fig. 5.2 for a geometrical interpretation),

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) =
1∫

[F ]γ
dxdy

∫

[F ]γ
xydxdy

− 1∫

[F ]γ
dxdy

∫

[F ]γ
xdxdy × 1∫

[F ]γ
dxdy

∫

[F ]γ
ydxdy.
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That is,

cov(Xγ , Yγ) =
2

(1− γ)2
×
∫ 1−γ

0

∫ 1−γ−x

0
xydxdy − (1− γ)2

9
.

cov(Xγ , Yγ) =
2

(1− γ)2
×
∫ 1−γ

0
x(1− γ − x)dx− (1− γ)2

9
.

cov(Xγ , Yγ) =
(1− γ)2

12
− (1− γ)2

9
= −(1− γ)2

36
.

Therefore we get

Covf (A,B) = − 1
36

∫ 1

0
(1− γ)2f(γ)dγ,

and

Varf (A) = Varf (B) =
1
12

∫ 1

0
(1− γ)2f(γ)dγ.

Definition 5.7 (Fullér, Mezei and Várlaki, [96]). The f -weighted possibilistic correlation coefficient of
A,B ∈ F (with respect to their joint distribution C) is defined by

ρf (A,B) =
∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ (5.8)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)

and, where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ for all γ ∈
[0, 1].

For any joint distribution C and for any f we have, −1 ≤ ρf (A,B) ≤ 1. In other words, the
f -weighted is nothing else, but the f -weighted average of the probabilistic correlation coefficients
ρ(Xγ , Yγ) for all γ ∈ [0, 1]. Since ρf (A,B) measures an average index of interactivity between the
level sets of A and B, we sometimes call this measure as the index of interactivity between A and B.

Note 6. There exist several other ways to define correlation coefficient for fuzzy numbers, e.g. Liu
and Kao [115] used fuzzy measures to define a fuzzy correlation coefficient of fuzzy numbers and they
formulated a pair of nonlinear programs to find the α-cut of this fuzzy correlation coefficient, then, in
a special case, Hong [104] showed an exact calculation formula for this fuzzy correlation coefficient.
Vaidyanathan [135] introduced a new measure for the correlation coefficient between triangular fuzzy
variables called credibilistic correlation coefficient.

In 2005 Carlsson, Fullér and Majlender [45] defined the f -weighted possibilistic correlation of
A,B ∈ F , (with respect to their joint distribution C) as

ρoldf (A,B) =
Covf (A,B)√

Varf (A) Varf (B)
. (5.9)

where Uγ is a uniform probability distribution on [A]γ and Vγ is a uniform probability distribution on
[B]γ , and Xγ and Yγ are random variables whose joint probability distribution is uniform on [C]γ for
all γ ∈ [0, 1]. If [C]γ is convex for all γ ∈ [0, 1] then −1 ≤ ρold

f (A,B) ≤ 1 for any f .
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The main drawback of the definition of the former index of interactivity (5.9) is that it does not
necessarily take its values from [−1, 1] if some level-sets of the joint possibility distribution are not
convex. For example, consider a joint possibility distribution defined by

C(x, y) = 4x · χT (x, y) + 4/3(1− x) · χS(x, y), (5.10)

where,
T =

{
(x, y) ∈ R2 | 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1/4, x ≤ y

}
,

and,
S =

{
(x, y) ∈ R2 | 1/4 ≤ x ≤ 1, 1/4 ≤ y ≤ 1, y ≤ x

}
.

Furthermore, we have,

[C]γ =
{

(x, y) ∈ R2 | γ/4 ≤ x ≤ 1/4, x ≤ y ≤ 1/4
}⋃

{
(x, y) ∈ R2 | 1/4 ≤ x ≤ 1− 3/4γ, 1/4 ≤ y ≤ x

}
.

We can see that [C]γ is not a convex set for any γ ∈ [0, 1) (see Fig. 5.3).

Figure 5.3: Not convex γ-level set.

Then the marginal possibility distributions of (5.10) are computed by (see Fig. 5.4),

A(x) = B(x) =





4x, if 0 ≤ x ≤ 1/4
4
3

(1− x), if 1/4 ≤ x ≤ 1

0, otherwise

After some computations we get ρoldf (A,B) ≈ 1.562 for the weighting function f(γ) = 2γ. We get
here a value bigger than one since the variance of the first marginal distributions, Xγ , exceeds the
variance of the uniform distribution on the same support.

We will show five important examples for the possibilistic correlation coefficient. If A and B are
non-interactive then their joint possibility distribution is defined by C = A × B. Since all [C]γ are
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Figure 5.4: Marginal distribution A.

rectangular and the probability distribution on [C]γ is defined to be uniform we get cov(Xγ , Yγ) = 0,
for all γ ∈ [0, 1]. So Covf (A,B) = 0 and ρf (A,B) = 0 for any weighting function f .

Fuzzy numbers A and B are said to be in perfect correlation, if there exist q, r ∈ R, q 6= 0 such that
their joint possibility distribution is defined by [45]

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2), (5.11)

where χ{qx1+r=x2}, stands for the characteristic function of the line

{(x1, x2) ∈ R2|qx1 + r = x2}.

In this case we have

[C]γ =
{

(x, qx+ r) ∈ R2
∣∣x = (1− t)a1(γ) + ta2(γ), t ∈ [0, 1]

}

where [A]γ = [a1(γ), a2(γ)]; and [B]γ = q[A]γ + r, for any γ ∈ [0, 1], and, finally,

B(x) = A

(
x− r
q

)
,

for all x ∈ R. Furthermore, A and B are in a perfect positive [see Fig. 5.6] (negative [see Fig. 5.7])
correlation if q is positive (negative) in (5.11).

If A and B have a perfect positive (negative) correlation then from ρ(Xγ , Yγ) = 1 (ρ(Xγ , Yγ) =
−1) [see [45] for details], for all γ ∈ [0, 1], we get ρf (A,B) = 1 (ρf (A,B) = −1) for any weighting
function f .

Consider the case, when A(x) = B(x) = (1 − x) · χ[0,1](x), for x ∈ R, that is [A]γ = [B]γ =
[0, 1− γ], for γ ∈ [0, 1]. Suppose that their joint possibility distribution is given by F (x, y) = (1−x−
y) · χT (x, y), where

T =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1
}
.

A γ-level set of F is computed by

[F ]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1− γ
}
.

This situation is depicted on Fig. 5.8, where we have shifted the fuzzy sets to get a better view of
the situation.
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Figure 5.5: The case of non-interactive marginal distributions.

Figure 5.6: Perfect positive correlation.
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Figure 5.7: Perfect negative correlation.

The density function of a uniform distribution on [F ]γ can be written as

f(x, y) =





1∫
[F ]γ dxdy

, if (x, y) ∈ [F ]γ

0 otherwise
=





2
(1− γ)2

, if (x, y) ∈ [F ]γ

0 otherwise

The marginal functions are obtained as

f1(x) =





2(1− γ − x)
(1− γ)2

, if 0 ≤ x ≤ 1− γ
0 otherwise

f2(y) =





2(1− γ − y)
(1− γ)2

, if 0 ≤ y ≤ 1− γ
0 otherwise

We can calculate the probabilistic expected values of the random variables Xγ and Yγ , whose joint
distribution is uniform on [F ]γ for all γ ∈ [0, 1]:

M(Xγ) =
2

(1− γ)2

∫ 1−γ

0
x(1− γ − x)dx =

1− γ
3

and,

M(Yγ) =
2

(1− γ)2

∫ 1−γ

0
y(1− γ − y)dy =

1− γ
3

.

We calculate the variations of Xγ and Yγ with the formula var(X) = M(X2)−M(X)2 :

M(X2
γ) =

2
(1− γ)2

∫ 1−γ

0
x2(1− γ − x)dx =

(1− γ)2

6
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Figure 5.8: Illustration of joint possibility distribution F .

and,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

(1− γ)2

6
− (1− γ)2

9
=

(1− γ)2

18
.

And similarly we obtain

var(Yγ) =
(1− γ)2

18
.

Using that

M(XγYγ) =
2

(1− γ)2

∫ 1−γ

0

∫ 1−γ−x

0
xydydx =

(1− γ)2

12
,

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) = −(1− γ)2

36
,

we can calculate the probabilistic correlation of the random variables:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −1

2
.

And finally the f -weighted possibilistic correlation of A and B:

ρf (A,B) =
∫ 1

0
−1

2
f(γ)dγ = −1

2
.

We note here that using the former definition (5.9) we would obtain ρold
f (A,B) = −1/3 for the corre-

lation coefficient (see [45] for details).
Now consider the case when A(1− x) = B(x) = x · χ[0,1](x) for x ∈ R, that is, [A]γ = [0, 1− γ]

and [B]γ = [γ, 1], for γ ∈ [0, 1]. Let E(x, y) = (y − x) · χS(x, y), where

S = {(x, y) ∈ R2|x ≥ 0, y ≤ 1, y − x ≥ 0}.
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This situation is depicted on Fig. 5.9, where we have shifted the fuzzy sets to get a better view of the
situation. A γ-level set of E is computed by

[E]γ = {(x, y) ∈ R2|x ≥ 0, y ≤ 1, y − x ≥ γ}.

Figure 5.9: ρf (A,B) = 1/2.

In this case, the probabilistic expected value of marginal distribution Xγ is equal to (1− γ)/3 and
the probabilistic expected value of marginal distribution of Yγ is equal to 2(1 − γ)/3 see (Fig. 5.10).
And the covariance between Xγ and Yγ is positive on H1 and H4 and negative on H2 and H3. After
some calculations (see Fig. 5.10) we get ρf (A,B) = 1/2, for any weighting function f .

Consider the case, when A(x) = B(x) = (1 − x2) · χ[0,1](x), for x ∈ R, that is [A]γ = [B]γ =
[0,
√

1− γ], for γ ∈ [0, 1]. Suppose that their joint possibility distribution is given by:

C(x, y) = (1− x2 − y2) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}
.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1− γ
}
.

The density function of a uniform distribution on [F ]γ can be written as

f(x, y) =





1∫
[C]γ dxdy

, if (x, y) ∈ [C]γ

0 otherwise
=





4
(1− γ)π

, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =





4
√

1− γ − x2

(1− γ)π
, if 0 ≤ x ≤ 1− γ

0 otherwise
f2(y) =





4
√

1− γ − y2

(1− γ)π
, if 0 ≤ y ≤ 1− γ

0 otherwise
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Figure 5.10: Partition of [E]γ .

We can calculate the probabilistic expected values of the random variables Xγ and Yγ , whose joint
distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
4

(1− γ)π

∫ √1−γ

0
x
√

1− γ − x2dx =
4
√

1− γ
3π

M(Yγ) =
4

(1− γ)π

∫ √1−γ

0
y
√

1− γ − y2dx =
4
√

1− γ
3π

.

We calculate the variations of Xγ and Yγ with the formula var(X) = M(X2)−M(X)2 :

M(X2
γ) =

4
(1− γ)π

∫ √1−γ

0
x2
√

1− γ − x2dx =
1− γ

4

var(Xγ) = M(X2
γ)−M(Xγ)2 =

1− γ
4
− 16(1− γ)

9π2
=

(1− γ)(9π2 − 64)
36π2

.

And similarly we obtain

var(Yγ) =
(1− γ)(9π2 − 64)

36π2
.

Using that

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) =
(1− γ)(9π − 32)

18π2
,

we can calculate the probabilisctic correlation of the reandom variables:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
=

2(9π − 32)
(9π2 − 64)

≈ −0.302.

And finally the f -weighted possibilistic correlation of A and B:

ρf (A,B) =
∫ 1

0

2(9π − 32)
(9π2 − 64)

f(γ)dγ =
2(9π − 32)
(9π2 − 64)

.
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Suppose that the joint possibility distribution of A and B is defined by,

C(x, y) =





A(x) if y = 0
B(y) if x = 0
0 otherwise

where,
A(x) = B(x) = (1− x) · χ[0,1](x),

for x ∈ R. Then a γ-level set of C is computed by

[C]γ =
{

(x, 0) ∈ R2 | 0 ≤ x ≤ 1− γ
}⋃{

(0, y) ∈ R2 | 0 ≤ y ≤ 1− γ
}
.

Since all γ-level sets of C are degenerated, i.e. their integrals vanish, we calculate everything as a limit
of integrals. We calculate all the quantities with the γ-level sets:

[C]γδ =
{

(x, y) ∈ R2 | 0 ≤ x ≤ 1− γ, 0 ≤ y ≤ δ
}⋃{

(x, y) ∈ R2 | 0 ≤ y ≤ 1− γ, 0 ≤ x ≤ δ
}
.

First we calculate the expected value and variance of Xγ and Yγ :

M(Xγ) = lim
δ→0

1∫
[C]γδ dxdy

∫

[C]γδ

xdx =
1− γ

4
,

M(X2
γ) = lim

δ→0

1∫
[C]γδ dxdy

∫

[C]γδ

x2dx =
(1− γ)2

6
,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

(1− γ)2

6
− (1− γ)2

16
=

5(1− γ)2

48
.

Because of the symmetry, the results are the same for Yγ . We need to calculate their covariance,

M(XγYγ) = lim
δ→0

1∫
[C]γδ dxdy

∫

[C]γδ

xydydx = 0,

Using this we obtain,

cov(Xγ , Yγ) = −(1− γ)2

16
,

and for the correlation,

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −3

5
.

Finally we obtain the f -weighted possibilistic correlation:

ρf (A,B) =
∫ 1

0
−3

5
f(γ)dγ = −3

5
.

In this extremal case, the joint distribution is unequivocally constructed from the knowledge that
C(x, y) = 0 for positive x, y.
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Figure 5.11: Illustration of [C]0.4.

We emphasize here that zero correlation does not always imply non-interactivity. Let A,B ∈ F
be fuzzy numbers, let C be their joint possibility distribution, and let γ ∈ [0, 1]. Suppose that [C]γ is
symmetrical, i.e. there exists a ∈ R such that

C(x, y) = C(2a− x, y),

for all x, y ∈ [C]γ (the line defined by {(a, t)|t ∈ R} is the axis of symmetry of [C]γ). In this case
cov(Xγ , Yγ) = 0. Indeed, let

H = {(x, y) ∈ [C]γ |x ≤ a},
then ∫

[C]γ
xydxdy =

∫

H

(
xy + (2a− x)y

)
dxdy = 2a

∫

H
ydxdy,

∫

[C]γ
xdxdy =

∫

H

(
x+ (2a− x)

)
dxdy = 2a

∫

H
dxdy,

∫

[C]γ
ydxdy = 2

∫

H
ydxdy,

∫

[C]γ
dxdy = 2

∫

H
dxdy,

therefore, we obtain

cov(Xγ , Yγ) =
1∫

[C]γ
dxdy

∫

[C]γ
xydxdy − 1∫

[C]γ
dxdy

∫

[C]γ
xdxdy

1∫

[C]γ
dxdy

∫

[C]γ
ydxdy = 0.

For example, let G be a joint possibility distribution with a symmetrical γ-level set, i.e., there exist
a, b ∈ R such that

G(x, y) = G(2a− x, y) = G(x, 2b− y) = G(2a− x, 2b− y),
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Figure 5.12: A case of ρf (A,B) = 0 for interactive fuzzy numbers.

for all x, y ∈ [G]γ , where (a, b) is the center of the set [G]γ , In Fig. 5.12, the joint possibility distri-
bution is defined from symmetrical marginal distributions as G(x, y) = TW (A(x), B(y)), where TW
denotes the weak t-norm.

Consider now joint possibility distributions that are derived from given marginal distributions by
aggregating their membership values. Namely, let A,B ∈ F . We will say that their joint possibility
distributionC is directly defined from its marginal distributions ifC(x, y) = T (A(x), B(y)), x, y ∈ R,
where T : [0, 1]× [0, 1]→ [0, 1] is a function satisfying the properties

max
y
T (A(x), B(y)) = A(x),∀x ∈ R, (5.12)

and
max
x

T (A(x), B(y)) = B(y),∀y ∈ R, (5.13)

for example a triangular norm. In this case the joint distribution depends barely on the membership
values of its marginal distributions, and the covariance (and, consequently, the correlation) between its
marginal distributions will be zero whenever at least one of its marginal distributions is symmetrical.

Theorem 5.4 (Carlsson, Fullér and Majlender, [42]). Let A,B ∈ F and let their joint possibility
distribution C be defined by C(x, y) = T (A(x), B(y)), for x, y ∈ R, where T is a function satisfying
conditions (5.12) and (5.13). If A is a symmetrical fuzzy number then Covf (A,B) = 0, for any fuzzy
number B, aggregator T , and weighting function f .

Really, if A is a symmetrical fuzzy number with center a such that A(x) = A(2a−x) for all x ∈ R
then, C(x, y) = T (A(x), B(y)) = T (A(2a − x), B(y)) = C(2a − x, y), that is, C is symmetrical.
Hence, considering the results obtained above we have cov(Xγ , Yγ) = 0, and, therefore, Covf (A,B) =
0, for any weighting function f . In 2010 Fullér, Mezei and Várlaki [93] introduced a possibilistic
correlation ratio (for marginal possibility distributions of joint possibility distributions).
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Chapter 6

Operations on Interactive Fuzzy Numbers

Properties of operations on interactive fuzzy numbers, when their joint possibility distribution is defined
by a t-norm have been extensively studied in the literature [33]. In this Chapter, following Fullér [76,
77] we will compute the exact membership function of product-sum and Hamacher-sum of triangular
fuzzy numbers, and following Fullér and Keresztfalvi [79] we will compute the exact membership
function of t-norm-based sum of L-R fuzzy numbers. We will consider the extension principle with
interactive fuzzy numbers, where the interactivity relation between fuzzy numbers is defined by their
joint possibility distribution. Following Fullér and Keresztfalvi [75] and Carlsson, Fullér and Majlender
[41] we will show that Nguyen’s theorem remains valid for interactive fuzzy numbers.

In the definition of the extension principle (2.5) one can use any t-norm for modeling the conjunction
operator.

Definition 6.1. Let T be a t-norm and let f be a mapping from X1 × X2 × · · · × Xn to Y , Assume
(A1, . . . , An) is a fuzzy subset of X1 × X2 × · · · × Xn, using the extension principle, we can define
f(A1, A2, . . . , An) as a fuzzy subset of Y such that

f(A1, A2, . . . , An)(y) =

{
sup{T (A1(x), . . . , An(x)) |x ∈ f−1(y)} if f−1(y) 6= ∅
0 otherwise

(6.1)

This is called the sup-T (or generally sup-t-norm) extension principle.

Specially, if T is a t-norm and ∗ is a binary operation on R then ∗ can be extended to fuzzy quantities
in the sense of the sup-T extension principle as

(
A1 ∗A2

)
(z) = sup

x1∗x2=z
T
(
A1(x1), A2(x2)

)
, z ∈ R.

For example, if A and B are fuzzy numbers, TP (u, v) = uv is the product t-norm and f(x1, x2) =
x1 + x2 is the addition operation on the real line then the sup-product extended sum of A and B, called
product-sum and denoted by A+B, is defined by

f(A1, A2)(y) = (A1 +A2)(y) = sup
x1+x2=y

T (A1(x1), A2(x2)) = sup
x1+x2=y

A1(x1)A2(x2).

The sup-T extension principle is a very important in fuzzy arithmetic. For example, if we have a se-
quence of symmetric triangular fuzzy numbers ãi, i ∈ N then their sup-min extended sum ã1 + ã2 +
· · ·+ ãn + · · · is always the universal fuzzy set in R independently of α. This means that the minimum
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norm, because it is too big, might be inappropriate in situations where we have to manipulate with many
fuzzy quantities (for example, fuzzy time series analysis, fuzzy linear programming problems, fuzzy
control with a large number of rules, etc.). To compute the exact membership function of the interactive
sum of fuzzy numbers is not an easy task. However if all the fuzzy numbers are of symmetrical trian-
gular form then it is possible to compute the exact membership function of their product-sum. Namely,
1991 Fullér [76] proved the following theorem.

Theorem 6.1 (Fullér, [76]). Let ãi = (ai, α), i ∈ N be symmetrical triangular fuzzy numbers. If

A := a1 + a2 + · · ·+ an + · · · =
∞∑

i=1

ai,

exists and is finite, then with the notations Ãn := ã1 + · · · + ãn and An := a1 + · · · + an, n ∈ N we
have (

lim
n→∞

Ãn

)
(z) = exp

(
−|A− z|

α

)
, z ∈ R.

Proof. It will be sufficient to show that

Ãn(z) =





(
1− |An − z|

nα

)n
if |An − z| ≤ nα

0 otherwise

(6.2)

for each n ≥ 2, because from (6.2) it follows that

(
lim
n→∞

Ãn

)
(z) = lim

n→∞

(
1− |An − z|

nα

)n
= exp

(
− | limn→∞An − z |

α

)
= exp

(
− | A− z |

α

)

for z ∈ R. From the definition of product-sum of fuzzy numbers it follows that

suppÃn = supp(ã1 + · · ·+ ãn) = suppã1 + · · ·+ suppãn =

[a1 − α, a1 + α] + · · ·+ [an − α, an + α] = [An − nα,An + nα], n ∈ N.

We prove (6.2) by making an induction argument on n. Let n = 2. In order to determine Ã2(z), z ∈
[A2 − 2α,A2 + 2α] we need to solve the following mathematical programming problem:

(
1− |a1 − x|

α

)(
1− |a2 − y|

α

)
→ max

subject to |a1 − x| ≤ α,
|a2 − y| ≤ α, x+ y = z.

By using Lagrange’s multipliers method and decomposition rule of fuzzy numbers into two separate
parts it is easy to see that Ã2(z), z ∈ [A2− 2α,A2 + 2α] is equal to the optimal value of the following
mathematical programming problem:

(
1− a1 − x

α

)(
1− a2 − z + x

α

)
→ max (6.3)

102

               dc_817_13



subject to a1 − α ≤ x ≤ a1,

a2 − α ≤ z − x ≤ a2, x+ y = z.

Using Lagrange’s multipliers method for the solution of (6.3) we get that its optimal value is
(

1− |A2 − z|
2α

)2

and its unique solution is

x =
a1 − a2 + z

2
,

where the derivative vanishes. Indeed, it can be easily checked that the inequality
(

1− |A2 − z|
2α

)2

≥ 1− A2 − z
α

holds for each z ∈ [A2 − 2α,A2].
In order to determine Ã2(z), z ∈ [A2, A2 + 2α] we need to solve the following mathematical

programming problem: (
1 +

a1 − x
α

)(
1 +

a2 − z + x

α

)
→ max (6.4)

subject to a1 ≤ x ≤ a1 + α,

a2 ≤ z − x ≤ a2 + α.

In a similar manner we get that the optimal value of (6.4) is
(

1− |z −A2|
2α

)2

.

Let us assume that (6.2) holds for some n ∈ N. By similar arguments we obtain

Ãn+1(z) = (Ãn + ãn+1)(z) = sup
x+y=z

Ãn(x) · ãn+1(y) = sup
x+y=z

(
1− |An − x|

nα

)(
1− |an+1 − y|

α

)

=

(
1− |An+1 − z|

(n+ 1)α

)n+1

,

for z ∈ [An+1 − (n+ 1)α,An+1 + (n+ 1)α], and Ãn+1(z) = 0, for z /∈ [An+1 − (n+ 1)α,An+1 +
(n+ 1)α]. This ends the proof.

If ã and b̃ are fuzzy numbers and γ ≥ 0 a real number, then their Hamacher-sum (Hγ-sum for short)
is defined as

(ã+ b̃)(z) = sup
x+y=z

Hγ(ã(x), b̃(y)) = sup
x+y=z

ã(x)b̃(y)

γ + (1− γ)(ã(x) + b̃(y)− ã(x)b̃(y))
,

for x, y, z ∈ R, where Hγ the Hamacher t-norm (2.3) with parameter γ.
If all the fuzzy numbers are of symmetrical triangular form then it is possible to compute the exact

membership function of their Hamacher-sum.
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Theorem 6.2 (Fullér, [77]). Let γ = 0 and ãi = (ai, α), i ∈ N. Suppose that A :=
∑∞

i=1 ai exists and
is finite, then with the notation Ãn = ã1 + · · ·+ ãn and An = a1 + · · ·+ an we have

(
lim
n→∞

Ãn

)
(z) =

1
1 + |A− z|/α, z ∈ R.

Theorem 6.3 (Fullér, [77]). Let γ = 2 and ãi = (ai, α), i ∈ N. If A :=
∑∞

i=1 ai exists and is finite,
then we have (

lim
n→∞

Ãn

)
(z) =

2

1 + exp
[ − 2|A− z|

α

], z ∈ R.

In 1992 Fullér and Keresztfalvi [79] determined a class of t-norms in which the addition of fuzzy
numbers is very simple.

Theorem 6.4 (Fullér and Keresztfalvi, [79]). Let T be an Archimedean t-norm with additive generator
f and let ãi = (ai, bi, α, β)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. If L and R are twice differ-
entiable, concave functions, and f is twice differentiable, strictly convex function then the membership
function of the T -sum Ãn = ã1 + · · ·+ ãn is

Ãn(z) =





1 if An ≤ z ≤ Bn

f [−1]

(
n× f

(
L

(
An − z
nα

)))
if An − nα ≤ z ≤ An

f [−1]

(
n× f

(
R

(
z −Bn
nβ

)))
if Bn ≤ z ≤ Bn + nβ

0 otherwise

where An = a1 + · · ·+ an and Bn = b1 + · · ·+ bn.

In 1991 Fullér and Keresztfalvi [75] generalized Theorems 2.1 and 2.2 to sup-t-norm extended
functions.

Theorem 6.5 (Fullér and Keresztfalvi [75]). Let X 6= ∅, Y 6= ∅, Z 6= ∅ be sets and let T be a t-norm.
If f : X × Y → Z is a two-place function and A ∈ F(X), B ∈ F(Y ) then a necessary and sufficient
condition for the equality

[f(A,B)]α =
⋃

T (ξ,η)≥α
f([A]ξ, [B]η), α ∈ (0, 1], (6.5)

is, that for each z ∈ Z,
sup

f(x,y)=z
T (A(x), B(y))

is attained.

The next theorem shows that the equality (6.5) holds for all upper semi-continuous triangular norm
T and continuous function f in the class of upper semi-continuous fuzzy sets of compact support.
When X is a topological space, we denote by F(X,K) the set of all fuzzy sets of X having upper
semi-continuous, membership function of compact support.
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Theorem 6.6 (Fullér and Keresztfalvi, [75]). If f : X × Y → Z is continuous and the t-norm T is
upper semi-continuous, then

[f(A,B)]α =
⋃

T (ξ,η)≥α
f([A]ξ, [B]η), α ∈ (0, 1], (6.6)

holds for each A ∈ F(X,K) and B ∈ F(Y,K).

Equation (6.6) is known in the literature as Nguyen-Fullér-Keresztfalvi (NFK) formula [11].

Example 6.1. Let f : R2 → R be defined as f(x, y) = x + y. Suppose [A]α = [a1(α), a2(α)] and
[B]α = [b1(α), b2(α)] are fuzzy numbers. Then using the sup-product-t-norm extension principle we
get

(A+B)(z) = sup
x+y=z

A(x)B(y)

Then,
[A+B]α =

⋃

ξη≥α

(
[A]ξ + [B]η

)

for all α ∈ [0, 1].

The interactivity relation between fuzzy numbers may be given by a more general joint possibility
distribution, which can not be directly defined from the membership values of its marginal possibility
distributions by t-norms. In 2004 using the concept of joint possibility distribution Carlsson, Fullér and
Majlender, [41] introduced the following extension principle.

Definition 6.2 (Carlsson, Fullér and Majlender, [41]). Let C be the joint possibility distribution with
marginal possibility distributions A1, . . . , An ∈ F , and let f : Rn → R be a continuous function. Then
fC(A1, . . . , An) is defined by

fC(A1, . . . , An)(y) = sup
y=f(x1,...,xn)

C(x1, . . . , xn). (6.7)

if f−1(y) 6= ∅ and fC(A1, . . . , An)(y) = 0 if f−1(y) = ∅ (the supremum is set to zero).

We should note here that ifA1, . . . , An are non-interactive, that is, their joint possibility distribution
is defined by C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)}, then (6.7) turns into the extension principle
(2.4) introduced by Zadeh in 1965 [153],

f(A1, . . . , An)(y) = sup
y=f(x1,...,xn)

min{A1(x1), . . . , An(xn)}.

Furthermore, ifC(x1, . . . , xn) = T (A1(x1), . . . , An(xn)), where T is a t-norm then we get the t-norm-
based extension principle,

fC(A1, . . . , An)(y) = sup
y=f(x1,...,xn)

T (A1(x1), . . . , An(xn)).

Carlsson, Fullér and Majlender [41] showed that Nguyen’s theorem remains valid in this environ-
ment.
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Theorem 6.7 (Carlsson, Fullér and Majlender, [41]). Let A1, . . . , An ∈ F be fuzzy numbers, let C be
their joint possibility distribution, and let f : Rn → R be a continuous function. Then,

[fC(A1, . . . , An)]γ = f([C]γ),

for all γ ∈ [0, 1].

Following [41] we will give explicit formulas for the γ-level sets of the extended sum of two inter-
active fuzzy numbers in perfect correlation. We will show that (i) the interactive sum A + B of two
fuzzy numbers A and B having a correlation coefficient minus one, where B(x) = (−A)(x) = A(−x)
for all x ∈ R, is equal to fuzzy zero; (ii) the interactive difference A − B, of two fuzzy numbers A
andB having a correlation coefficient one and having identical membership functions, is equal to fuzzy
zero. Recall that fuzzy numbers A and B are said to be in perfect correlation, if there exist q, r ∈ R,
q 6= 0 such that their joint possibility distribution is defined by

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2), (6.8)

where χ{qx1+r=x2}, stands for the characteristic function of the line {(x1, x2) ∈ R2|qx1 + r = x2}. In
this case we have,

[C]γ =
{

(x, qx+ r) ∈ R2
∣∣x = (1− t)a1(γ) + ta2(γ), t ∈ [0, 1]

}

where [A]γ = [a1(γ), a2(γ)], and [B]γ = q[A]γ + r, for any γ ∈ [0, 1], and, finally, their membership
functions satisfy the following property,

B(x) = A

(
x− r
q

)
,

for all x ∈ R.
Now let us consider the extended addition of interactive fuzzy numbers A and B that are in perfect

correlation,
(A+B)(y) = sup

y=x1+x2

C(x1, x2).

That is,
(A+B)(y) = sup

y=x1+x2

A(x1) · χ{qx1+r=x2}(x1, x2).

Then from (6.7) and (6.8) we find,

[A+B]γ = cl{x1 + x2 ∈ R|A(x1) > γ, qx1 + r = x2}
= cl{(q + 1)x1 + r ∈ R|A(x1) > γ}
= (q + 1)cl{x1 ∈ R|A(x1) > γ}+ r = (q + 1)[A]γ + r,

that is,
[A+B]γ = (q + 1)[A]γ + r, (6.9)

for all γ ∈ [0, 1]. If q = −1 then (see Fig. 6.1) [B]γ = −[A]γ + r for all γ ∈ [0, 1], then A+B will be
a crisp number. Really, from (6.9) we get [A+B]γ = 0× [A]γ + r = [r, r]γ = {r}, for all γ ∈ [0, 1].
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Figure 6.1: The correlation coefficient between A and B is -1.

If q = −1 and r = 0, i.e. A(x) = (−B)(x) = B(−x),∀x ∈ R, then from (6.9) we get

(A+B)(z) =

{
0 if z 6= 0
1 if z = 0

that is, A+B = 0̄, where 0̄ denotes a fuzzy point with support {0}. The interactive sum A+B, of two
fuzzy numbers A and B having a correlation coefficient -1 and with A(x) = (−B)(x) = B(−x), ∀x ∈
R, is equal to 0̄.

Let us consider now the subtraction operator for interactive fuzzy numbers A and B, where their
joint possibility distribution is defined by (6.8).

(A−B)(y) = sup
y=x1−x2

C(x1, x2).

That is,
(A−B)(y) = sup

y=x1−x2

A(x1) · χ{qx1+r=x2}(x1, x2).

Then for a γ-level set of A−B we get,

[A−B]γ = cl{x1 − x2 ∈ R|A(x1) > γ, qx1 + r = x2} = (1− q)[A]γ − r

for all γ ∈ [0, 1]. In particular if q = 1, i.e. [B]γ = [A]γ + r, ∀γ ∈ [0, 1] then [A− B]γ = −[r, r]γ =
−{r}, that is, the fuzziness of A−B vanishes.

If q = 1 and r = 0 we have A(x) = B(x), for x ∈ R and

C(x, y) = A(x)χ{x=y}(x, y) = B(y)χ{x=y}(x, y)

for all x, y ∈ R and from (6.9) we get A − B = 0̄, for all z ∈ R. The interactive difference A − B,
of two fuzzy numbers A and B having a correlation coefficient 1 and having identical membership
functions, is equal to 0̄.
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Let A and B be fuzzy numbers, where the membership function of B is defined by

B(x) = A

(
x− r
q

)
,

for any x ∈ R, then for any q > 0 we find

[A+B]γ = [A]γ + [B]γ = [A]γ + q[A]γ + r = (q + 1)[A]γ + r = [A+C B]γ .

for all γ ∈ [0, 1]. So, A +C B = A + B. that is, the membership function of the interactive sum of
fuzzy numbers with correlation coefficient one (defined by (6.7) and (6.8)) is equal to the membership
function of their non-interactive sum (defined by their sup-min convolution).
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Chapter 7

Selected Industrial Applications

In Chapter ”Selected Industrial Applications” I will describe 6 industrial research projects in which I
participated as a researcher at Institute for Advanced Management Systems Research (IAMSR), Åbo
Akademi University, Åbo, Finland between 1992 and 2011. In the majority of these projects our re-
search team implemented computerized decision support systems, where all input data and information
were imprecise (obtained from human judgments) and, therefore, possessed non-statistical uncertain-
ties.

”The Knowledge Mobilization project” has been a joint effort by Institute for Advanced Manage-
ment Systems Research, Åbo Akademi University and VTT Technical Research Centre of Finland. Its
goal was to better ”mobilize” knowledge stored in heterogeneous databases for users with various back-
grounds, geographical locations and situations. The working hypothesis of the project was that fuzzy
mathematics combined with domain-specific data models, in other words, fuzzy ontologies, would help
manage the uncertainty in finding information that matches the user’s needs. In this way, Knowledge
Mobilization places itself in the domain of knowledge management. We will describe an industrial
demonstration of fuzzy ontologies in information retrieval in the paper industry where problem solving
reports are annotated with keywords and then stored in a database for later use.

In the Woodstrat project we implemented a support system for strategy formation and show that the
effectiveness and usefulness of hyperknowledge support systems for strategy formation can be further
advanced using adaptive fuzzy cognitive maps.

In the Waeno research project we implemented fuzzy real options theory as a series of models,
which were built on Excel platforms. The models were tested on a number of real life investments,
i.e. real (so-called) giga-investment decisions were made on the basis of the results. The new series of
models, for fuzzy real option valuation (ROV), have been tested with real life data and the impact of the
innovations have been traced and evaluated against both the traditional ROV-models and the classical
net present value (NPV) models. The fuzzy real options were found to offer more flexibility than the
traditional models; both versions of real option valuation were found to give better guidance than the
classical NPV models. A total of 8 actual giga-investment decisions were studied and worked out with
the real options models.

In the EM-S Bullwhip project we suggested a fuzzy approach to reduce the bullwhip effect in supply
chains. The research work focused on the demand fluctuations in paper mills caused by the frictions of
information handling in the supply chain and worked out means to reduce or eliminate the fluctuations
with the help of information technology. The program enhanced existing theoretical frameworks with
fuzzy logic modelling and built a hyperknowledge platform for fast implementation of the theoretical
results.
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In the Assessgrid project we developed a hybrid probabilistic and possibilistic model to assess
the success of computing tasks in a Grid. Using the predictive probabilistic approach we developed
a framework for resource management in grid computing, and by introducing an upper limit for the
number of possible failures, we approximated the probability that a particular computing task can be
executed. We also showed a lower limit for the probability of success of a computing task in a grid.
In the possibilistic model we estimated the possibility distribution defined over the set of node failures
using a fuzzy nonparametric regression technique.

In the OptionsPort project we developed a model for valuing options on R&D projects, when future
cash flows and expected costs are estimated by trapezoidal fuzzy numbers. Furthermore, we repre-
sented the optimal R&D portfolio selection problem as a fuzzy mathematical programming problem,
where the optimal solutions defined the optimal portfolios of R&D projects with the largest (aggregate)
possibilistic deferral flexibilities.

7.1 The Knowledge Mobilisation project

Knowledge Mobilisation - KNOWMOBILE, TEKES [40211/08] project (2008-2011). Partners: Insti-
tute for Advanced Management Systems Research, Åbo University, VTT Technical Research Centre
of Finland, UC Berkeley. Industrial partners: Metso Automation, Kemira, Ruukki, UPM-Kymmene.
Our publications in this project: Carlsson, Fullér and Mezei [59], Carlsson, Fullér and Fedrizzi [61],
Juhani Hirvonen, Tommila, Pakonen, Carlsson, Fedrizzi and Fullér, [102]. A longer description of this
project can be found in Carlsson and Fullér [63]. The key research question of the Knowledge Mobili-
sation project was [61, 102]: How to build fuzzy ontologies for the process industry domain to enhance
knowledge retrieval? My contribution to this project: Carlsson, Fedrizzi and Fullér [61] showed an al-
gorithm for approximating keyword dependencies in the keyword ontology, then computed the degrees
of dependency between keywords on the immediate upper level using the max-min approach. Then
repeated this procedure until the top layer.

In the Knowledge Mobilisation project, we have developed a concept of a tool for searching plant
knowledge with a search engine based on a fuzzy ontology. The usage scenario for the tool was that
a process expert, dealing with a problem in the process chemistry of a paper machine, wishes to find
past problem solving cases of a similar setting in order to find possible solutions to a current issue. This
setting is a universal one: pieces of knowledge, called ”nuggets”, are written and stored by companies
on different domains in the form of incident reports.

In the Knowledge Mobilisation project we have focused on the chemistry of the ”wet end” in order
to limit the work effort needed to construct the domain ontology and concentrate on a subject on which
domain expertise and actual data were available. Nuggets are documents than can contain all kinds of
raw data or multimedia extracted from different information systems. An expert author annotates the
nuggets with suitable keywords, and it is these keywords that the search is then based on. In addition to
providing exact results to queries, the tool uses a fuzzy domain ontology to extend the query to related
keywords (see Figure 7.1). As a result, the search results include nuggets that may not necessary deal
with exactly the same process equipment, variable, function or chemical, but nuggets that may still
provide valuable insight to solving the problem at hand. The key research question of the Knowledge
Mobilisation project was [61, 102]: How to build fuzzy ontologies for the process industry domain to
enhance knowledge retrieval?

Our demonstration works with both engineering and operational knowledge of an industrial plant.
Therefore, the fuzzy ontology should not be developed in separation from existing engineering tools
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a paper mill there are other stakeholders besides chemistry experts; for example, the 
plant owner and equipment suppliers, who are also interested in the performance of the 
plant. While trying to preserve some general applicability, we have focused on the 
chemistry of the ”wet end” in order to limit the work effort needed to construct the do-
main ontology and concentrate on a subject on which domain expertise and actual data 
were available. 

Nuggets are documents than can contain all kinds of raw data or multimedia extracted 
from different information systems. An expert author annotates the nuggets with suit-
able keywords, and it is these keywords that the search is then based on. In addition to 
providing exact results to queries, the tool uses a fuzzy domain ontology to extend the 
query to related keywords (Figure 3). As a result, the search results include nuggets that 
may not necessary deal with exactly the same process equipment, variable, function or 
chemical, but nuggets that may still provide valuable insight to solving the problem at 
hand. 

 

Figure 3. System concept – a knowledge base of event reports that are annotated with domain-
specific keywords. 

The use of an ontology helps make sure that the extended keywords actually have a 
common sense relation to the concepts used in the query. For example, the process sec-
tion ”wet end” is related to the function of ”forming” of the paper web, so a nugget de-
scribing forming-related activities might be relevant if the user is interested in the wet 
end. Similarly, since the process component “head box” is a physical part of ”wet end”, 
similar conclusions can be made. Applying a fuzzy ontology makes it easier to use some 
flexibility in the query. When strict queries come up with too few results), extension of 
the query to find also related nuggets can be quite useful. 

14 

Figure 7.1: System concept-a knowledge base of event reports [61, 102].
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Figure 7.2: System example - a fuzzy decomposition of a paper making line. [61, 102].

and knowledge repositories, but existing terminologies, taxonomies and data models should be used if
possible. This leads to a taxonomic system consisting of several layers,

• Top layer: general concepts (i.e. based on international standards) that apply to several industries.

• Middle layer: vocabulary defined and shared by business partners (within a certain industry, again
based on standards) to share knowledge of, e.g. the type and structure of process equipment. This
layer extends the top layer with domain-specific keywords.

• Bottom layer: custom, company-specific concepts, e.g. specific products and component types, or
even individual process plants.

In order to speak about an ontology, our system of keywords should represent concepts, properties,
relationships, axioms, and reasoning schemes relevant for the application area. On the basis of various
upper ontologies and industrial data models we identified that the following keyword categories are
needed to characterize event reports:

• Systems: types of real-world components of a process plant, e.g. machines, buildings, software and
people.
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Figure 7.3: Overall domain concepts [61, 102].

• Functions: phenomena and activities carried out at an industrial plant in order to fulfill its purpose.

• Variables: properties and state variables of various entities, e.g. temperature.

• Events: types of interesting periods of plant life described in event reports, e.g. test runs or equip-
ment failures.

•Materials: raw materials, products, consumables etc. handled in a process plant.

Our basic approach to conceptualize our application is shown in the informal UML class diagram
below (Figure 7.1).

Event reports describe events that are related to various entities of a process plant, e.g. to equip-
ment, processing functions and materials. Nothing is assumed about the internal structure of event
reports. Instead, they are characterized by an expert with keywords selected from a fuzzy ontology.
The expert can select the keywords from five categories: event, system, function, material and variable.
All keywords represent an entity type and can have subtypes and smaller parts. Therefore, keywords
can be understood as representatives of populations of real-world entities that overlap and are related in
many ways. For example, the keyword ”paper machine” might represent the set of all paper machines
in the world. Classification (is-a) and decomposition (part-of) can be found in most ontologies and data
models. They are important in the industrial context as well. So, the keywords in each category are
linked by is-a and part-of relationships. Furthermore, the ontology should model functional and other
kinds of dependencies between keywords in various keyword categories. As an example, systems can
be or are used for some purposes, i.e. they play various roles in carrying out one or more functions. This
creates a link between the keywords ”wire section (a part of paper machine)” and ”formation (a quality
measure of the produced paper)”. Modeling classifications, decompositions and various dependencies
leads to a situation where we have a taxonomy tree for each keyword category and a set of partonomy
(part-of relationships) trees describing the decomposition to various domain entities.

For developing a software tool the ontology should be expressed and stored in a more formal way.
The basic approach for representing a fuzzy ontology is illustrated in Figure 7.4 with a combination of
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Figure 7.4: Representing fuzzy keyword ontology with object classes and their instances [61, 102].

UML class and instance diagrams. Fuzzy dependencies between keyword instances are described by
a few fundamental relationship types like is-a (specialization), part-of and, as an option, instantiation.
In the first version we focus on ”specializations”, i.e. fuzzy classification of keywords. The degree of
overlapping (or inclusion) of the sets represented by the keywords is described by linguistic labels, i.e.
natural language words like ”moderate” or ”significant”. So, the instance named ”Specialization #1” in
Figure 7.4 tells us that ”Holes” is ”to a large extent” understood as a subclass of ”Quality problem but
only represents a minor part of its scope”. In addition, the keyword ”Holes” may also specialize other
problem types.

Carlsson, Fedrizzi and Fullér [61] showed a method for approximating keyword dependencies in
the keyword ontology. Their method uses Bellman-Zadeh’s principle to fuzzy decision making [6].
An event type fuzzy taxonomy is shown in Figure 7.5. For example, consider the second column of
event classification matrix ”Problem”. All ”Technical problems” are ”Problems” and they represent
around 80% of all possible problems. That is ”Technical problem” covers ”Problem” with degree 0.8.
Similarly, ”Human errors” are ”Problems ” and they represent around 30% of all possible problems.
That is ”Human error” covers ”Problem” with degree 0.3.

We will assume that if A and B are two keywords in the keyword taxonomic tree then

coverage(A,B) = fuzzy inclusion(A,B). (7.1)

For example, ”System fault = {Device fault, Design flaw}” that is, ”System fault” is a union of these two
events. Furthermore, ”Function failure = {Design flaw, Drift, Oscillation}” that is ”Function failure” is
the union of these three events. ”Design flaw” covers ”System fault” with degree 0.6 and at the same
time ”Design flaw” covers ”Function failure” with degree 0.4 (see Figure 7.5). Moreover, ”System
fault” and ”Function failure” do not have any more component in common. We compute the degree of
dependency between ”System fault” (SF) and ”Function failure” (FF) as their joint coverage by ”Design
flaw” (DF)

dependency(SF, FF ) = min{coverage(DF,SF ), coverage(DF,FF )},
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Figure 7.5: A fragment of the event type fuzzy taxonomy [61, 102].

that is,
dependency(SF, FF ) = min{0.6, 0.4} = 0.4 (7.2)

It is easy to see in Figure 7.5 that keywords ”Function failure” and ”Fire” are independent since they
do not have any component in common. In this case we have,

dependency(”Function failure”, ”Fire”) = 0. (7.3)

Zero means independence, one means full dependence, and values between zero and one denote inter-
mediate degrees of dependency between keywords. It can happen that two keywords have more than
one joint component. Then we apply Bellman-Zadeh’s principle (max-min approach) to fuzzy deci-
sion making to measure their dependency. For example, suppose that ”System fault” and ”Function
failure” wrere to have two joint components, where the first one is ”Design flaw” and the second one
”Fluctuation” that has a coverage values 0.7 and 0.5, respectively. Then we measure the degree of
dependency between ”System fault” and ”Function failure” according to Bellman-Zadeh’s principle to
fuzzy decision making as

dependency{SF, FF} = max{min{0.6, 0.4},min{0.7, 0.5}} = max{0.4, 0.5} = 0.5.

Supposing that all the coverage degrees are given by experts. Then we can summarize our algorithm
as follows: Compute the degrees of dependency between keywords on the immediate upper level using
the max-min approach. Then repeat this procedure until the top layer. For example, consider keywords
”Technical problem” (TP) and ”Operational problem” (OP). Then we find (Figure 7.5),

dependency{TP,OP} = min{coverage(FF, TP ), coverage(FF,OP )} = 0.5.
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One can further improve this model by introducing degrees of inclusion and coverage between concepts
as suggested by Holi and Hyvönen [103].

Demo architecture and implementation

The component-based demo architecture has been implemented by VTT Technical Research Centre
of Finland, using the Protégé ontology editor to maintain the fuzzy ontology in OWL format. The
GUI component (Graphical User Interface) guides the user in specifying the information query, and
presents the results. Tools for browsing and evaluating the fuzzy reasoner component directly were also
provided. A database adapter is used to access report data, which in this case was stored locally in XML
files. Similarly, an ontology adapter is used to provide access to the fuzzy ontology, in this case stored
in OWL files. The adapters help hide the different interfaces and protocols of different data sources
(e.g. SQL, HTTP) and provide transparent access via an agreed interface. The fuzzy ontology reasoner
component is used to process ontology-based information. Its main function in the demo is to extend
a list of query keywords to a list of their closest neighbours in terms of fuzzy ontology relationships.
For maintenance and evaluation purposes, the component interface also provides methods for directly
accessing the ontology concepts and relationships. Finally, the application logic component binds all
the functionality together by taking the query, using the reasoner component to extend it, passing the
extended query to the report database and then combining and ordering the results for the GUI. The
fuzzy ontology with fuzzy concepts, relations, and instances was defined using Protégé version 3.4.

7.2 The Woodstrat project

Woodstrat/Tekes-konsortium(1992-1994), ERUDIT-WOOD/Tekes-konsortium (1995-1996). Ipari part-
nerek: Metsä-Serla (coordinator), L M Ericsson, Sampo és Valmet. Our publications in this project:
Carlsson and Fullér [16]. My contribution to the project: In [16] we suggested an adaptive fuzzy cogni-
tive map for modelling the strategy formation process and and implemented an error correction learning
algorithm for fine-tuning the cause-effect relationships among the elements of the strategy building pro-
cess.

Strategic Management is defined as a system of action programs which form sustainable competitive
advantages for a corporation, its divisions and its business units in a strategic planning period. A
research team of the IAMSR institute has developed a support system for strategic management, called
the Woodstrat, in two major Finnish forest industry corporations in 1992-96. The system is modular
and is built around the actual business logic of strategic management in the two corporations, i.e. the
main modules cover the market position (MP), the competitive position (CP), the productivity position
(PROD), the profitability (PROF) , the investments (INV) and the financing of investments (FIN).

The innovation in Woodstrat is that these modules are linked together in a hyperknowledge fashion,
i.e. when a strong market position is built in some market segment it will have an immediate impact
on profitability through links running from key assumptions on expected developments to the projected
income statement. There are similar links making the competitive position interact with the market
position, and the productivity position interact with both the market and the competitive positions, and
with the profitability and financing positions. The basis for this is rather unusual: the Woodstrat system
was built with Visual Basic in which the objects to create a hyperknowledge environment were built.
The Woodstrat offers an intuitive and effective strategic planning support with object-oriented expert
systems elements and a hyperknowledge user interface.
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around the actual business logic of strategic management in the two corporations,
i.e. the main modules cover the market position (MP), the competitive position
(CP), the productivity position (PROD), the profitability (PROF) , the investments
(INV) and the financing of investments (FIN). The innovation in Woodstrat is that
these modules are linked together in a hyperknowledge fashion, i.e. when a strong
market position is built in some market segment it will have an immediate impact on
profitability through links running from key assumptions on expected developments
to the projected income statement. There are similar links making the competitive
position interact with the market position, and the productivity position interact
with both the market and the competitive positions, and with the profitability and
financing positions.

Figure 1 The framework of Woodstrat.

The Woodstrat offers an intuitive and effective strategic planning support with
object-oriented expert systems elements and a hyperknowledge user interface. In
this paper we will show that the effectiveness and usefulness of a hyperknowledge
support system can be further advanced using adaptive fuzzy cognitive maps.

2 Hyperknowledge and Cognitive Maps

Hyperknowledge is formed as a system of sets of interlinked concepts [9], much in the
same way as hypertext is built with interlinked text strings [16]; then hyperknowledge-
functions would be constructs which link concepts/systems of concepts in some pre-
determined or wanted way.

There are some useful characteristics of a hyperknowledge environment [9]: (i) the
user can navigate through and work with diverse concepts; (ii) concepts can be
different epistemologically, (iii) concepts can be organized in cognitive maps, (iv)

2

Figure 7.6: The framework of Woodstrat.

Carlsson and Fullér [16] showed that the effectiveness and usefulness of a hyperknowledge support
system can be further advanced using adaptive fuzzy cognitive maps (FCM).

It is relatively easy to create cause-effect relationships among the elements of the strategy building
process, however it is time-consuming and difficult to fine-tune them. Neural nets give a shortcut
to tuning fuzzy cognitive maps. The trick is to let the fuzzy causal edges change as if they were
synapses (weights) in a neural net. Each arrow in Fig. 7.7 defines a fuzzy rule. We weigh these rules or
arrows with a number from the interval [−1, 1], or alternatively we could use word weights like little,
or somewhat, or more or less. The states or nodes are fuzzy too. Each state can fire to some degree
from 0% to 100%. In the crisp case the nodes of the network are on or off. In a real FCM the nodes
are fuzzy and fire more as more causal juice flows into them. Adaptive fuzzy cognitive maps can learn
the weights from historical data. Once the FCM is trained it lets us play what-if games (e.g. What if
demand goes up and prices remain stable? - i.e. we improve our MP)

Carlsson and Fullér [16] described a learning mechanism for the fuzzy cognitive maps of the strat-
egy building process, and illustrated the effectiveness of the map by a simple training set.

Inputs of states are computed as the weighted sum of the outputs of its causing states

net = Wo

where W denotes the matrix of weights, o is the vector of computed outputs, and net is the vector of
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3 Adaptive FCM for strategy formation

It is relatively easy to create cause-effect relationships among the elements of the
strategy building process, however it is time-consuming and difficult to fine-tune
them. Neural nets give a shortcut to tuning fuzzy cognitive maps. The trick is to
let the fuzzy causal edges change as if they were synapses (weights) in a neural net.

Each arrow in Fig. 2 defines a fuzzy rule. We weight these rules or arrows with
a number from the interval [−1, 1], or alternatively we could use word weights like
little, or somewhat, or more or less. The states or nodes are fuzzy too. Each state
can fire to some degree from 0% to 100%. In the crisp case the nodes of the network
are on or off. In a real FCM the nodes are fuzzy and fire more as more causal juice
flows into them.

Adaptive fuzzy cognitive maps can learn the weights from historical data. Once the
FCM is trained it lets us play what-if games (e.g. What if demand goes up and
prices remain stable? - i.e. we improve our MP) and can predict the future.

In the following we describe a learning mechanism for the FCM of the strategy
building process, and illustrate the effectiveness of the map by a simple training set.

Fig. 3 shows the structure of the FCM of the strategy building process.

Fig. 3 Adaptive fuzzy cognitive map for the strategy formation process.

Inputs of states are computed as the weighted sum of the outputs of its causing
states

net = Wo

where W denotes the matrix of weights, o is the vector of computed outputs, and

4

Figure 7.7: Adaptive fuzzy cognitive map for the strategy formation process (see Carlsson and Fullér
[16]).

inputs to the states. In our case the weight matrix is given by

W =




0 w12 0 0 0 0
w21 0 0 0 0 0
w31 0 0 w34 w35 w36

0 w42 0 0 0 0
0 0 w53 w54 0 0
0 0 0 w64 0 0




where the zero elements denote no causal link between the states, and

net =




net1
net2
net3
net4
net5
net6




=




net(MP )
net(CP )
net(PROF )
net(INV )
net(FIN)
net(PROD)




o =




o1
o2
o3
o4
o5
o6




=




o(MP )
o(CP )

o(PROF )
o(INV )
o(FIN)
o(PROD)




That is,
net1 = net(MP ) = w12o2, net2 = net(CP ) = w21o1,

net3 = net(PROF ) = w31o1 + w34o4 + w35o5 + w36o6, net4 = net(INV ) = w42o2,

net5 = net(FIN) = w54o4 + w53o3, net6 = net(PROD) = w64o4

The output of state i is is computed by a squashing function

oi =
1

1 + exp(−neti)
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Suppose we are given a set of historical training data

(MP (t), CP (t), PROF (t), INV (t), F IN(t), PROD(t))

where t = 1, . . . ,K. Here MP (t) is the observed value of the market position, CP (t) is the value of
the competitive position at time t, and so on. Using an error correction learning procedure we find the
weights by minimizing the overall error

E(W ) =
1
2

K∑

t=1

{
(MP (t)− o1(t))2 + (CP (t)− o2(t))2+

(PROF (t)− o3(t))2 + (INV (t)− o4(t))2 + (FIN(t)− o5(t))2 + (PROD(t)− o6(t))2
}

where oi(t), the computed value of the i-th state at time t, is determined as

oi(t) =
1

1 + exp [−neti(t− 1)]
=

1
1 + exp [−∑j wijoj(t− 1)]

where j is a causing state for state i. The weights are initialized at small random values. The rule for
changing the weights of the states is derived from he gradient descent method.

In the Woodstrat project the development work was done interactively with the strategic business
units management teams and involved more than 60 managers in 14 strategic business units. In terms
of technology, the Woodstrat is a hybrid of an object-oriented expert system and a hyperknowledge
system. It is built with Visual Basic (version 3.0) in which the expert and hyperknowledge properties
of the previous prototypes in Lisp and Toolbook were reconstructed.

7.3 The AssessGrid project

AssessGrid - Advanced Risk Assessment & Management for Trustable Grids, EU Sixth Framework,
Programme acronym: FP6-IST, Contract number: IST-2005-031772. Partners: CETIC, University of
Leeds, Wincor-Nixdorf, Paderborn Center for Parallel Computing, Atos Origin, Technical University
of Berlin, Åbo Akademi University. Publications in this project: Carlsson and Fullér [57, 60, 64],
Carlsson, Fullér and Mezei [53, 56]. A longer description of this project can be found in Carlsson and
Fullér [63]. My contribution to this project: Carlsson and Fullér [64] developed a hybrid probabilistic
and possibilistic model to assess the success of computing tasks in a Grid.

The AssessGrid project aimed to satisfy the demands for transparent and understandable risk eval-
uation by extending the Grid technology with methods for risk assessment and management as core
services of future Grids. Since end-users, brokers, and providers have different perspectives on risk en-
hanced Grid services, they define the three major AssessGrid objectives: the end-user seeks a reliable
and trustworthy provider, the broker looks for the best offer for its customer, and the provider aims to
reduce the risk of Service Level Agreement (SLA) violation. Furthermore, providers need objective
measures to lower the execution risk and to analyse their infrastructure in order to remove bottlenecks.
Therefore, the main objectives of the AssessGrid project were: (i) Mechanisms for risk identification,
risk assessment, risk treatment, and risk monitoring on all Grid layers as decisive components for ne-
gotiation and enforcement of SLAs as well as the definition of business models. (ii) Risk-based support
for decision making in quality and capacity planning leading to higher productivity and cost-effective
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usage of virtualized resources. (iii) Risk measures as parameters for self-organizing fault-tolerant sys-
tems Improved transparency, usability, and trustiness by customized presentation of confidence and risk
information to end-users, brokers, and providers. (iv) Aggregated quality and reliability information of
performance as fundament for provider evaluation and competition (v) A consistent realization based
on existing Grid developments and standards as well as the evaluation of risk management methods in
real-world environments. (see http://pc2.uni-paderborn.de/research-projects/project/assessgrid/)

Our research team at IAMSR, Åbo Akademi University, developed and integrated methods for risk
assessment and management for Grids. Namely, Carlsson and Fullér [64] developed a hybrid proba-
bilistic and possibilistic model to assess the success of computing tasks in a Grid. Using the predictive
probabilistic approach we developed a framework for resource management in grid computing, and by
introducing an upper limit for the number of possible failures, we approximated the probability that a
particular computing task can be executed. We also showed a lower limit for the probability of success
of a computing task in a grid [56]. In the possibilistic model we estimated the possibility distribution
defined over the set of node failures using a fuzzy nonparametric regression technique. The probabilistic
models scale from 10 nodes to 100 nodes (and then on to any number of nodes); while the possibilistic
models scale to 100 nodes. The resource Provider can use both models to get two alternative risk assess-
ments. In the AssessGrid project we carried out a number of validation tests in order to find out (i) how
well the predictive possibilistic models can be fitted to the Los Alamos National Laboratory dataset,
(ii) what differences can be found between the probabilistic and possibilistic predictions and (iii) if
these differences can be given reasonable explanations. In the testing we worked with short and long
duration computing tasks scheduled on a varying number of nodes and the Service Level Agreement
probabilities of failure estimates remained reasonable throughout the testing.

7.4 The Waeno project

Waeno research project on giga-investments (TEKES [40682/99; 40470/00], industrial partners: For-
tum, M-Real, Outokumpu, Rautaruukki). Publications in this project: Carlsson and Fullér [21, 27, 28,
32, 36]. My contribution to this project: Carlsson and Fullér [36] developed a hybrid heuristic fuzzy real
option valuation method which was used in assessing the productivity and profitability of the original
giga-investment.

Giga-investments made in the paper- and pulp industry, in the heavy metal industry and in other base
industries, today face scenarios of slow (or even negative) growth (2-3 % p.a.) in their key markets and
a growing over-capacity in Europe. The energy sector faces growing competition with lower prices and
cyclic variations of demand. There is also some statistics, which shows that productivity improvements
in these industries have slowed down to 1-2 % p.a., which opens the way for effective competitors to
gain footholds in their main markets. Giga-investments compete for major portions of the risk-taking
capital, and as their life is long, compromises are made on their short-term productivity. The short-
term productivity may not be high, as the life-long return of the investment may be calculated as very
good. Another way of motivating a giga-investment is to point to strategic advantages, which would
not be possible without the investment and thus will offer some indirect returns. The core products
and services produced by giga-investments are enhanced with life-time service, with gradually more
advanced maintenance and financial add-on services. These make it difficult to actually assess the
productivity and profitability of the original giga-investment, especially if the products and services
are repositioned to serve other or emerging markets. New technology and enhanced technological
innovations will change the life cycle of a giga-investment. The challenge is to find the right time and
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the right innovation to modify the life cycle in an optimal way.
Decision trees are excellent tools for making financial decisions where a lot of vague information

needs to be taken into account. They provide an effective structure in which alternative decisions and
the implications of taking those decisions can be laid down and evaluated. They also help us to form
an accurate, balanced picture of the risks and rewards that can result from a particular choice. In our
empirical cases we have represented strategic planning problems by dynamic decision trees, in which
the nodes are projects that can be deferred or postponed for a certain period of time. Using the theory
of real options we have been able to identify the optimal path of the tree, i.e. the path with the biggest
real option value in the end of the planning period.

In 1973 Black and Scholes [7] made a major breakthrough by deriving a differential equation that
must be satisfied by the price of any derivative security dependent on a non-dividend paying stock. For
risk-neutral investors the Black-Scholes pricing formula for a call option is

C0 = S0N(d1)−Xe−rTN(d2),

where

d1 =
ln(S0/X) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T ,

and where, C0 is the option price, S0 is the current stock price, N(d) is the probability that a random
draw from a standard normal distribution will be less than d, X is the exercise price, r is the annualized
continuously compounded rate on a safe asset with the same maturity as the expiration of the option, T
is the time to maturity of the option (in years) and σ denotes the standard deviation of the annualized
continuously compounded rate of return of the stock. In 1973 Merton [127] extended the Black-Scholes
option pricing formula to dividends-paying stocks as

C0 = S0e
−δTN(d1)−Xe−rTN(d2) (7.4)

where,

d1 =
ln(S0/X) + (r − δ + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T

where δ denotes the dividends payed out during the life-time of the option. Real options in option
thinking are based on the same principles as financial options. In real options, the options involve
”real” assets as opposed to financial ones. To have a ”real option” means to have the possibility for a
certain period to either choose for or against making an investment decision, without binding oneself
up front. For example, owning a power plant gives a utility the opportunity, but not the obligation, to
produce electricity at some later date.

Real options can be valued using the analogue option theories that have been developed for financial
options, which is quite different from traditional discounted cash flow investment approaches. Leslie
and Michaels [113] suggested the following rule for computing the value of a real option,

ROV = S0e
−δTN(d1)−Xe−rTN(d2) (7.5)

where,

d1 =
ln(S0/X) + (r − δ + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T

and where ROV denotes the current real option value, S0 is the present value of expected cash flows, X
is the (nominal) value of fixed costs, σ quantifies the uncertainty of expected cash flows, and δ denotes
the value lost over the duration of the option.
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Usually, the present value of expected cash flows can not be be characterized by a single number.
However, our experiences with the Waeno research project on giga-investments show that managers are
able to estimate the present value of expected cash flows by using a trapezoidal possibility distribution
of the form S̃0 = (s1, s2, α, β), i.e. the most possible values of the present value of expected cash flows
lie in the interval [s1, s2] (which is the core of the trapezoidal fuzzy number S̃0), and (s2 + β) is the
upward potential and (s1 − α) is the downward potential for the present value of expected cash flows.
In a similar manner one can estimate the expected costs by using a trapezoidal possibility distribution
of the form X̃ = (x1, x2, α

′, β′), i.e. the most possible values of expected cost lie in the interval
[x1, x2] (which is the core of the trapezoidal fuzzy number X̃), and (x2 + β′) is the upward potential
and (x1 − α′) is the downward potential for expected costs.

Following Carlsson and Fullér [36] we suggest the use of the following (heuristic) formula for
computing fuzzy real option values

FROV = S̃0e
−δTN(d1)− X̃e−rTN(d2), (7.6)

where,

d1 =
ln(E(S̃0)/E(X̃)) + (r − δ + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T , (7.7)

and where, E(S̃0) denotes the possibilistic mean value [26] of the present value of expected cash flows,
E(X̃) stands for the the possibilistic mean value of expected costs and σ := σ(S̃0) is the possibilis-
tic variance [26] of the present value expected cash flows. Using formulas (2.7 - 2.8) for arithmetic
operations on trapezoidal fuzzy numbers we find

FROV = (s1, s2, α, β)e−δTN(d1)− (x1, x2, α
′, β′)e−rTN(d2) =

(s1e−δTN(d1)− x2e
−rTN(d2), s2e−δTN(d1)− x1e

−rTN(d2),

αe−δTN(d1) + β′e−rTN(d2), βe−δTN(d1) + α′e−rTN(d2)).

(7.8)

We have a specific context for the use of the real option valuation method with fuzzy numbers,
which is the main motivation for our approach. Giga-investments require a basic investment exceeding
300 million euros and they normally have a life length of 15-25 years. The standard approach with the
NPV or DCF methods is to assume that uncertain revenues and costs associated with the investment can
be estimated as probabilistic values, which in turn are based on historic time series and observations
of past revenues and costs. We have discovered that giga-investments actually influence the end-user
markets in non-stochastic ways and that they are normally significant enough to have an impact on
market strategies, on technology strategies, on competitive positions and on business models. Thus, the
use of assumptions on purely stochastic phenomena is not well-founded.

We will show now a simple example for computing FROV. Suppose we want to find a fuzzy real
option value under the following assumptions,

S̃0 = ($400 million, $600 million, $150 million, $150 million),

r = 5% per year, T = 5 years, δ = 0.03 per year and

X̃ = ($550 million, $650 million, $50 million, $50 million),

First calculate

σ(S̃0) =

√
(s2 − s1)2

4
+

(s2 − s1)(α+ β)
6

+
(α+ β)2

24
= $154.11 million,
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i.e. σ(S̃0) = 30.8%,

E(S̃0) =
s1 + s2

2
+
β − α

6
= $500 million,

and

E(X̃) =
x1 + x2

2
+
β′ − α′

6
= $600 million,

furthermore,

N(d1) = N

(
ln(600/500) + (0.05− 0.03 + 0.3082/2)× 5

0.308×
√

5

)
= 0.589, N(d2) = 0.321.

Thus, from (7.6) we obtain the fuzzy value of the real option as

FROV = ($40.15 million, $166.58 million, $88.56 million, $88.56 million).

1

40.15 166.58 255.15-48.41

FROV

millions
103.37
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furthermore,

N(d1) = N

(
ln(600/500) + (0.05− 0.03 + 0.3082/2)× 5

0.308×
√

5

)
= 0.589,

N(d2) = 0.321.

Thus, from (4.4) we obtain the fuzzy value of the real option as

FROV = ($40.15 million, $166.58 million, $88.56 million, $88.56 million).

Figure 4.1. The possibility distribution of real option values.

The expected value of FROV is $103.37 million and its most possible
values are bracketed by the interval

[$40.15 million, $166.58 million],

the downward potential (i.e. the maximal possible loss) is $48.41 million,
and the upward potential (i.e. the maximal possible gain) is $255.15
million. From Fig. 4.1 we can see that the set of most possible values
of fuzzy real option [40.15, 166.58] is quite big. It follows from the huge
uncertainties associated with cash inflows and outflows.

Following Carlsson and Fullér [5, 7, 8, 9] we shall generalize the prob-
abilistic decision rule for optimal investment strategy to a fuzzy setting:
Where the maximum deferral time is T , make the investment (exercise
the option) at time t∗, 0 ≤ t∗ ≤ T , for which the option, C̃t∗ , attends its
maximum value,

C̃t∗ = max
t=0,1,...,T

C̃t = Ṽte
−δtN(d1)− X̃e−rtN(d2), (4.7)

where

Ṽt = PV(c̃f0, . . . , c̃fT ,βP )− PV(c̃f0, . . . , c̃ft,βP )

= PV(c̃ft+1, . . . , c̃fT ,βP ),

Figure 7.8: The possibility distribution of real option values.

The expected value of FROV is $103.37 million and its most possible values are bracketed by the
interval [$40.15 million, $166.58 million], the downward potential (i.e. the maximal possible loss) is
$48.41 million, and the upward potential (i.e. the maximal possible gain) is $255.15 million. From
Fig. 7.4 we can see that the set of most possible values of fuzzy real option [40.15, 166.58] is quite big.
It follows from the huge uncertainties associated with cash inflows and outflows.

Following Carlsson and Fullér [21, 27, 28, 32] we shall generalize the probabilistic decision rule
for optimal investment strategy to a fuzzy setting: Where the maximum deferral time is T , make the
investment (exercise the option) at time t∗, 0 ≤ t∗ ≤ T , for which the option, C̃t∗ , attends its maximum
value,

C̃t∗ = max
t=0,1,...,T

C̃t = Ṽte
−δtN(d1)− X̃e−rtN(d2), (7.9)

where

Ṽt = PV(c̃f0, . . . , c̃fT , βP )− PV(c̃f0, . . . , c̃ft, βP ) = PV(c̃ft+1, . . . , c̃fT , βP ),

that is,

Ṽt = c̃f0 +
T∑

j=1

c̃fj
(1 + βP )j

− c̃f0 −
t∑

j=1

c̃fj
(1 + βP )j

=
T∑

j=t+1

c̃fj
(1 + βP )j

,
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where c̃ft denotes the expected (fuzzy) cash flow at time t, βP is the risk-adjusted discount rate (or
required rate of return on the project). However, to find a maximizing element from the set

{C̃0, C̃1, . . . , C̃T },

is not an easy task because it involves ranking of trapezoidal fuzzy numbers. In our computerized
implementation we have employed the following value function to order fuzzy real option values, C̃t =
(cLt , c

R
t , αt, βt), of trapezoidal form:

v(C̃t) =
cLt + cRt

2
+ rA ·

βt − αt
6

,

where rA ≥ 0 denotes the degree of the investor’s risk aversion. If rA = 0 then the (risk neutral)
investor compares trapezoidal fuzzy numbers by comparing their possibilistic expected values, i.e. he
does not care about their downward and upward potentials.

In 2003 Carlsson and Fullér [36] outlined the following methodology used in the Waeno project (to
keep confidentiality we have modified the real setup).
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by using the postponement period to explore and implement production
scalability benefits and/or to utilise learning benefits.

The longer the time to maturity, the greater will be the FROV. A
proactive manage-ment can make sure of this development by (i) main-
taining protective barriers, (ii) communicating implementation possibil-
ities and (iii) maintaining a technological lead.

The following example outlines the methodology used (to keep confi-
dentiality we have modified the real setup) in the the Nordic Telekom
Inc. (NTI) case:

Example 4.2. Nordic Telekom Inc. is one of the most successful mobile
communications operators in Europe2 and has gained a reputation among
its competitors as a leader in quality, innovations in wireless technology
and in building long-term customer relationships.

Figure 4.2. A simplified decision tree for Nordic telecom Inc.

2NTI is a fictional corporation, but the dynamic tree model of strategic decisions has been
succesfully implemented for the 4 Finnish companies which participate in the Waeno project
on giga-investments.

Figure 7.9: A simplified decision tree for Nordic telecom Inc. (Carlsson and Fullér [36]).

The World’s telecommunications markets are undergoing a revolution. In the next few years mobile
phones may become the World’s most common means of communication, opening up new opportuni-
ties for systems and services. Characterized by large capital investment requirements under conditions
of high regulatory, market, and technical uncertainty, the telecommunications industry faces many sit-
uations where strategic initiatives would benefit from real options analysis. As the FROV method is
applied to the telecom markets context and to the strategic decisions of a telecom corporation we will
have to understand in more detail how the real option values are formed. The FROV will increase with
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an increasing volatility of cash flow estimates. The corporate management can be proactive and find (i)
ways to expand to new markets, (ii) product innovations and (iii) (innovative) product combinations as
end results of their strategic decisions. If the current value of expected cash flows will increase, then the
FROV will increase. A proactive management can influence this by (for instance) developing market
strategies or developing subcontractor relations. The FROV will decrease if value is lost during the
postponement of the investment, but this can be countered by either creating business barriers for com-
petitors or by better managing key resources. An increase in risk-less returns will increase the FROV,
and this can be further enhanced by closely monitoring changes in the interest rates. If the expected
value of fixed costs goes up, the FROV will decrease as opportunities of operating with less cost are
lost. This can be countered by using the postponement period to explore and implement production
scalability benefits and/or to utilise learning benefits. The longer the time to maturity, the greater will
be the FROV. A proactive management can make sure of this development by (i) maintaining protective
barriers, (ii) communicating implementation possibilities and (iii) maintaining a technological lead.

138 FUZZY LOGIC IN MANAGEMENT

Still it does not have a dominating position in any of its customer
segments, which is not even advisable in the European Common market,
as there are always 4-8 competitors with sizeable market shares. NTI
would, nevertheless, like to have a position which would be dominant
against any chosen competitor when defined for all the markets in which
NTI operates. NTI has associated companies that provide GSM services
in five countries and one region: Finland, Norway, Sweden, Denmark,
Estonia and the St. Petersburg region.

We consider strategic decisions for the planning period 2004-2012.
There are three possible alternatives for NTI: (i) introduction of third
generation mobile solutions (3G); (ii) expanding its operations to other
countries; and (iii) developing new m-commerce solutions. The intro-
duction of a 3G system can be postponed by a maximum of two years,
the expansion may be delayed by maximum of one year and the project
on introduction of new m-commerce solutions should start immediately.

Figure 4.3. The optimal path.

Our goal is to maximize the company’s cash flow at the end of the
planning period (year 2012). In our computerized implementation we
have represented NTI’s strategic planning problem by a dynamic decision

Figure 7.10: The optimal path (Carlsson and Fullér [36]).

The following example outlines the methodology used (to keep confidentiality we have modified the
real setup) in the the Nordic Telekom Inc. (NTI) case: Nordic Telekom Inc. is one of the most successful
mobile communications operators in Europe [NTI is a fictional corporation, but the dynamic tree model
of strategic decisions has been successfully implemented for the 4 Finnish companies which participate
in the Waeno project on giga-investments.] and has gained a reputation among its competitors as a
leader in quality, innovations in wireless technology and in building long-term customer relationships.

Still it does not have a dominating position in any of its customer segments, which is not even
advisable in the European Common market, as there are always 4-8 competitors with sizeable market
shares. NTI would, nevertheless, like to have a position which would be dominant against any chosen
competitor when defined for all the markets in which NTI operates. NTI has associated companies that
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provide GSM services in five countries and one region: Finland, Norway, Sweden, Denmark, Estonia
and the St. Petersburg region. We consider strategic decisions for the planning period 2004-2012.
There are three possible alternatives for NTI: (i) introduction of third generation mobile solutions (3G);
(ii) expanding its operations to other countries; and (iii) developing new m-commerce solutions. The
introduction of a 3G system can be postponed by a maximum of two years, the expansion may be
delayed by maximum of one year and the project on introduction of new m-commerce solutions should
start immediately.

In 2003 our goal was to maximize the company’s cash flow at the end of the planning period (year
2012). In our computerized implementation we have represented NTI’s strategic planning problem by
a dynamic decision tree, in which the future expected cash flows and costs are estimated by trapezoidal
fuzzy numbers. Then using the theory of fuzzy real options we have computed the real option values
for all nodes of the dynamic decision tree. Then we have selected the path with the biggest real option
value in the end of the planning period. The imprecision we encounter when judging or estimating
future cash flows is genuine, i.e. we simply do not know the exact levels of future cash flows. The
proposed model that incorporates subjective judgments and statistical uncertainties may give investors
a better understanding of the problem when making investment decisions.

7.5 The OptionsPort project

OptionsPort - Real Option Valuation and Optimal Portfolio Strategies, TEKES [662/04]. Industrial
partners: Kemira Oyj, Cargotec Oyj, UPM-Kymmene Oyj, Kuntarahoitus Oyj. Publications in this
project: Carlsson, Fullér, Heikkilä and Majlender [51] and Carlsson, Fullér and Heikkilä [58]. My
contribution to the project: Using the possibilistic mean value and variance for ranking projects with
imprecise future cash flows.

A major advance in development of project selection tools came with the application of options rea-
soning to R&D. The options approach to project valuation seeks to correct the deficiencies of traditional
methods of valuation through the recognition that managerial flexibility can bring significant value to a
project. The main concern is how to deal with non-statistical imprecision we encounter when judging
or estimating future cash flows. In our OptionsPort project we developed a model for valuing options on
R&D projects, when future cash flows and expected costs are estimated by trapezoidal fuzzy numbers.
Furthermore, we represented the optimal R&D portfolio selection problem as a fuzzy mathematical
programming problem, where the optimal solutions defined the optimal portfolios of R&D projects
with the largest (aggregate) possibilistic deferral flexibilities. Carlsson, Fullér, Heikkilä and Majlender
[51] suggested the following algorithm for ordering R&D projects. This paper was Number 1 in Top
25 Hottest Articles Computer Science, International Journal of Approximate Reasoning April to June
2007. (see http://top25.sciencedirect.com/subject/computer-science/7/journal/international-journal-of-
approximate-reasoning/0888613X/archive/12/)

Facing a set of project opportunities of R&D type, the company is usually able to estimate the
expected investment costs, denoted by X , of the projects with a high degree of certainty. Thus, in the
following we will assume that the X is a crisp number. However, the cash flows received from the
projects do involve uncertainty, and they are modelled by trapezoidal possibility distributions. Let us
fix a particular project of length L and maximum deferral time T with cash flows

c̃fi = (Ai, Bi,Φi,Ψi).

Now, instead of the absolute values of the cash flows, we shall consider their fuzzy returns on investment
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(FROI) by computing the return that we receive on investment X at year i of the project as

FROIi = R̃i =
(
Ai

X
,
Bi

X
,
Φi

X
,
Ψi

X

)
= (ai, bi, αi, βi).

We compute the fuzzy net present value of project by

FNPV =
( L∑

i=0

R̃i

(1 + r)i
− 1
)
×X.

where r is the project specific risk-adjusted discount rate. If a project with fuzzy returns on invest-
ments {R̃0, R̃1, . . . , R̃L} can be postponed by maximum of T years then we will define the value of its
possibilistic deferral flexibility by

DT = (1 + σ(R̃0))× (1 + σ(R̃1))× · · · × (1 + σ(R̃T−1))× FNPV,

where 1 ≤ t ≤ L. If a project cannot be postponed then its possibilistic flexibility equals to its fuzzy
net present value. That is, if T = 0 then DT = FNPV . The basic optimal R&D project portfolio
selection problem can be formulated as the following fuzzy mixed integer programming problem

maximize D =
N∑

i=1

uiDi

subject to
N∑

i=1

uiXi +
N∑

i=1

(1− ui)ci ≤ B (7.10)

ui ∈ {0, 1}, i = 1, . . . , N.

where N is the number of R&D projects; B is the whole investment budget; ui is the decision variable
associated with project i, which takes value one if project i starts now (i.e. at time zero) and takes value
zero if it is postponed and is going to start at a later time; ci denotes the cost of postponing project i (i.e.
the capital expenditure required to keep the associated real option alive); finally,Xi andDi stand for the
investment cost and the possibilistic deferral flexibility of project i, respectively, i = 1, . . . , N . In our
approach to fuzzy mathematical programming problem (7.10) , we have used the following defuzzifier
operator for D,

ν(D) = (E(D)− τσ(D))×X
where 0 ≤ τ ≤ 1 denotes the decision makers risk aversion parameter.

I presented the following example at Seminar on New Trends in Intelligent Systems and Soft Com-
puting, February 8-9, 2007, Granada, Spain. Let us assume that we have 5 different types of R&D
projects with the following characteristics:

Project 1 has a large negative estimated NPV (which is due to the huge uncertainty it involves), and it
can be deferred up to 2 years (ν(FNPV ) < 0, T = 2).

Project 2 includes positive NPV with low risks, and has no deferral flexibility (ν(FNPV ) > 0, T =
0).

Project 3 has revenues with large upward potentials and managerial flexibility, but its reserve costs (c)
are very high.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

Figure 7.11: Expected cash-flows from projects.

Project 4 requires a large capital expenditure once it has been undertaken, and has a deferral flexibility
of a maximum of 1 year.

Project 5 represents a small flexible project with low revenues, but it opens the possibility of further
projects that are much more profitable.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

This project is going to be rejected, because 
the future (upward) potentials do not seem to 

counter-balance its large negative NPV 

Figure 7.12: Analysis of Project 1.

128

               dc_817_13



Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

This project will be abandoned as well, since 
there are more profitable projects in the 

system with higher expected revenues 
(although it generates some revenues, we 
cannot support it, because of our budget 

constraint) 

Figure 7.13: Analysis of Project 2.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

This project is going to be undertaken now, 
because its generated revenues are high 

enough to compensate us for giving up its 
deferral flexibility (in fact, by delaying the 

project, we do not expect a significant boost 
in its cash flows); furthermore, the first 

revenues of this project will contribute to 
our budget in the near future 

Figure 7.14: Analysis of Project 3.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

This project will be kept alive (and 
therefore will require a spending on its 

”reserve costs”), because it involves huge 
expected future revenues; however, since 
we are assumed to pay out a large capital 
expenditure when entering the project, we 

shall use some managerial flexibility 
(waiting) to learn more about the 

circumstances of the project, and therefore 
reduce the risks associated with the large 

investment costs 

Figure 7.15: Analysis of Project 4.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
M = (10.5%) 
σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 

M = 17.8% 
σ = 24% 

FNPV = 
(5%,24%,17%,218%) 

M = 48.0% 
σ = 56.0% 

FNPV = 
((12%),85%,71%,6%) 

M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 

1 
FROV1 = 

((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

This project is going to be supported, and 
kept alive, since it can open other project 

opportunities (thus it involves huge upward 
potentials), while only implying limited risks 

for financial losses (i.e. it represents a 
starting link of a chain of compounded real 

options) 

Figure 7.16: Analysis of Project 5.
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Deferral 
time (T) Project 1 Project 2 Project 3 Project 4 Project 5 

0 
FNPV = 

((75%),17%,15%,126%) 
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σ = 71.5% 

FNPV = 
(12%,20%,45%,56%) 
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σ = 24% 

FNPV = 
(5%,24%,17%,218%) 
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FNPV = 
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M = 25.7% 
σ = 62.0% 

FNPV = 
((5%),12%,4%,358%) 

M = 62.5% 
σ = 81.0% 
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((90%),20%,18%,151%) 
M = (12.6%) 
σ = 85.8% 

FROV1 = 
(6%,26%,19%,240%) 

M = 52.8% 
σ = 61.6% 

FROV1 = 
((15%),106%,89%,8%) 

M = 32.1% 
σ = 77.5% 

FROV1 = 
((6%),13%,4%,394%) 

M = 68.8% 
σ = 89.1% 

2 
FROV2 = 

((104%),23%,21%,174%) 
M = (14.5%) 
σ = 98.7% 

FROV2 = 
(7%,31%,23%,288%) 

M = 63.4% 
σ = 73.9% 

FROV2 = 
((7%),14%,5%,433%) 

M = 75.7% 
σ = 98.0% 

Project 1 and 2 will 
be rejected 

Project 4 and 5 will 
be supported 

Project 3 
will be 
started 

now 

Optimal strategy 

Figure 7.17: The optimal strategy.
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7.6 The EM-S Bullwhip project

EM-S Bullwhip [TEKES 40965/98], industrial partners: Metsä-Serla and Stora-Enso. Our publications
in this project: Carlsson and Fullér [20, 22, 23, 29, 35]. A longer description of this project can be found
in Carlsson and Fullér [33] and Carlsson, Fedrizzi and Fullér [44]. My contribution to this project: As
the optimal, crisp ordering policy drives the bullwhip effect we decided to try a policy in which orders
are imprecise. This means that orders can be fuzzy intervals, and we will allow the actors in the supply
chain to make their orders more precise as the (time) point of delivery gets closer. I suggested a neural
fuzzy system for reducing the bullwhip effect in demand signal processing (possibilistic variance of
orders).

We will consider a series of companies in a supply chain, each of which orders from its immediate
upstream collaborators. Usually, the retailer’s order do not coincide with the actual retail sales. The
bullwhip effect refers to the phenomenon where orders to the supplier tend to have larger variance than
sales to the buyer (i.e. demand distortion), and the distortion propagates upstream in an amplified form
(i.e. variance amplification). The factors driving the bullwhip effect appear to form a hyper-complex,
i.e. a system where factors show complex interactive patterns. The theoretical challenges posed by a
hyper-complex merit study, even if significant economic consequences would not have been involved.
The costs incurred by the consequences of the bullwhip effect (estimated at 200-300 Million Finnish
Marks annually for a 300 kiloton paper mill) offer a few more reasons for carrying out serious work
on the mechanisms driving the bullwhip. Thus, we have built a theory to explain at least some of the
factors and their interactions, and we have created a support system to come to terms with them and to
find effective means to either reduce or eliminate the bullwhip effect. With a little simplification there
appears to be three possible approaches to counteract the bullwhip effect:

1. Find some means to share information from downstream the supply chain with all the preceding
actors.

2. Build channel alignment with the help of some co-ordination of pricing, transportation, inventory
planning and ownership - when this is not made illegal by anti-trust legislation.

3. Improve operational efficiency by reducing cost and by improving on lead times.

In 1998-2000 we carried out a research program on the bullwhip effect with two major fine paper
producers: Metsä-Serla and Stora-Enso. The project, known as EM-S Bullwhip, worked with actual
data and in interaction with senior decision makers. The two corporate members of the EM-S Bullwhip
consortium had observed the bullwhip effects in their own markets and in their own supply chains for
fine paper products. They also readily agreed that the bullwhip effect is causing problems and significant
costs, and that any good theory or model, which could give some insight into dealing with the bullwhip
effect, would be a worthwhile effort in terms of both time and resources. Besides the generic reasons
we introduced above, there are a few practical reasons why we get the bullwhip effect in the fine paper
markets.

The first reason is to be found in the structure of the market (see Fig. 7.18).
The paper mills do not deal directly with their end-customers, the printing houses, but fine paper

products are distributed through wholesalers, merchants and retailers. The paper mills may (i) own
some of the operators in the market supply chain, (ii) they may share some of them with competitors or
(iii) the operators may be completely independent and bound to play the market game with the paper
producers. The operators in the market supply chain do not willingly share their customer and market
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data, information and knowledge with the paper mills. Thus, the paper producers do not get neither pre-
cise nor updated information on the real customer demand, but get it in a filtered and/or manipulated
way from the market supply chain operators. Market data is collected and summarized by independent
data providers, and market forecasts are produced by professional forest products consultants and mar-
ket study agencies, but it still appears that these macro level studies and forecasts do not apply exactly
to the markets of a single paper producer.

Silvaculture & Timber Farming

Logging & Chipping

Pulp Manufacturing

Paper Manufacturing

Converting Operations

Merchanting & Distribution

End-Users [Printing houses, etc.]

148 FUZZY LOGIC IN MANAGEMENT

needs to come from the individual market, and this information is not
available to paper mills.

Figure 5.1. The supply chain of the market for fine paper products.

The second, more practical, reason for the bullwhip effect to occur is
found earlier in the supply chain. The demand and price fluctuations
of the pulp markets dominate also the demand and price patterns of
the paper products markets, even to such an extent, that the customers
for paper products anticipate the expectations on changes in the pulp
markets and act accordingly. If pulp prices decline, or are expected to
decline, demand for paper products will decline, or stop in anticipation
of price reductions. Then, eventually, prices will in fact go down as the
demand has disappeared and the paper producers get nervous. The ini-
tial reason for fluctuations in the pulp market may be purely speculative,
or may have no reason at all. Thus, the construction of any reasonable,
explanatory cause-effect relationships to find out the market mechanisms
that drive the bullwhip may be futile. If we want to draw an even more
complex picture we could include the interplay of the operators in the
market supply chain: their anticipations of the reactions of the other op-
erators and their individual, rational (possibly even optimal) strategies
to decide how to operate. This is a later task, to work out a composite
bullwhip effect among the market supply chain operators, as we cannot
deal with this more complex aspect here.

The third practical reason for the bullwhip effect is specialized form of
order batching. The logistics systems for paper products favor shiploads

Figure 7.18: The supply chain of the market for fine paper products.

The second, more practical, reason for the bullwhip effect to occur is found earlier in the supply
chain. The demand and price fluctuations of the pulp markets dominate also the demand and price
patterns of the paper products markets, even to such an extent, that the customers for paper products
anticipate the expectations on changes in the pulp markets and act accordingly. If pulp prices decline,
or are expected to decline, demand for paper products will decline, or stop in anticipation of price re-
ductions. Then, eventually, prices will in fact go down as the demand has disappeared and the paper
producers get nervous. The initial reason for fluctuations in the pulp market may be purely specula-
tive, or may have no reason at all. Thus, the construction of any reasonable, explanatory cause-effect
relationships to find out the market mechanisms that drive the bullwhip may be futile.

The third practical reason for the bullwhip effect is specialized form of order batching. The logistics
systems for paper products favour shiploads of paper products, the building of inventories in the supply
chain to meet demand fluctuations and push ordering to meet end-of-quarter or end-of-year financial
needs. The logistics operators are quite often independent of both the paper mills and the wholesalers
and/or retailers, which will make them want to operate with optimal programs in order to meet their
financial goals. Thus they decide their own tariffs in such a way that their operations are effective and
profitable, which will - in turn - affect the decisions of the market supply chain operators, including the
paper producers.

There is a fourth practical reason, which is caused by the paper producers themselves. There are
attempts at influencing or controlling the paper products markets by having occasional low price cam-
paigns or special offers. The market supply chain operators react by speculating in the timing and the
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level of low price offers and will use the (rational) policy of buying only at low prices for a while. This
normally triggers the bullwhip effect.
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of paper products, the building of inventories in the supply chain to meet
demand fluctuations and push ordering to meet end-of-quarter or end-of-
year financial needs. The logistics operators are quite often independent
of both the paper mills and the wholesalers and/or retailers, which will
make them want to operate with optimal programs in order to meet
their financial goals. Thus they decide their own tariffs in such a way
that their operations are effective and profitable, which will - in turn -
affect the decisions of the market supply chain operators, including the
paper producers. The adjustment to proper shipload or FTL batches
will drive the bullwhip effect.

There is a fourth practical reason, which is caused by the paper pro-
ducers themselves. There are attempts at influencing or controlling the
paper products markets by having occasional low price campaigns or
special offers. The market supply chain operators react by speculating
in the timing and the level of low price offers and will use the (rational)
policy of buying only at low prices for a while. This normally triggers
the bullwhip effect.

Figure 5.2. The bullwhip effect in the fine paper products market.

The bullwhip effect may be illustrated as in Fig. 5.2 The variations
shown in Fig. 5.2 are simplifications, but the following patterns appear:
(i) the printer (an end-customer) orders once per quarter according to
the real market demand he has or is estimating; (ii) the dealer meets this
demand and anticipates that the printer may need more (or less) than he
orders; the dealer acts somewhat later than his customer; (iii) the paper
mill reacts to the dealer’s orders in the same fashion and somewhat later
than the dealer. The resulting overall effect is the bullwhip effect.

Figure 7.19: The bullwhip effect in the fine paper products market.

The bullwhip effect may be illustrated as in Fig. 7.19 The variations shown in Fig. 7.19 are sim-
plifications, but the following patterns appear: (i) the printer (an end-customer) orders once per quarter
according to the real market demand he has or is estimating; (ii) the dealer meets this demand and an-
ticipates that the printer may need more (or less) than he orders; the dealer acts somewhat later than his
customer; (iii) the paper mill reacts to the dealer’s orders in the same fashion and somewhat later than
the dealer. The resulting overall effect is the bullwhip effect.

Lee et al [111, 112] focus their study on the demand information flow and worked out a theoretical
framework for studying the effects of systematic information distortion as information works its way
through the supply chain. They simplify the context for their theoretical work by defining an idealised
situation. They start with a multiple period inventory system, which is operated under a periodic review
policy. They include the following assumptions: (i) past demands are not used for forecasting, (ii) re-
supply is infinite with a fixed lead time, (iii) there is no fixed order cost, and (iv) purchase cost of the
product is stationary over time. If the demand is stationary, the standard optimal result for this type of
inventory system is to order up to S, where S is a constant. The optimal order quantity in each period
is exactly equal to the demand of the previous period, which means that orders and demand have the
same variance (and there is no bullwhip effect).

This idealized situation is useful as a starting point, as is gives a good basis for working out the
consequences of distortion of information in terms of the variance, which is the indicator of the bullwhip
effect. By relaxing the assumptions (i)-(iv), one at a time, it is possible to produce the bullwhip effect.

Let us focus on the retailer-wholesaler relationship in the fine paper products market (the frame-
work applies also to a wholesaler-distributor or distributor-producer relationship). Now we consider a
multiple period inventory model where demand is non-stationary over time and demand forecasts are
updated from observed demand. Lets assume that the retailer gets a much higher demand in one period.
This will be interpreted as a signal for higher demand in the future, the demand forecasts for future peri-
ods get adjusted, and the retailer reacts by placing a larger order with the wholesaler. As the demand is
non-stationary, the optimal policy of ordering up to S also gets non-stationary. A further consequence
is that the variance of the orders grows, which is starting the bullwhip effect. If the lead-time between
ordering point and the point of delivery is long, uncertainty increases and the retailer adds a ”safety
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margin” to S, which will further increase the variance - and add to the bullwhip effect.
Lee et al simplify the context even further by focusing on a single-item, multiple period inventory,

in order to be able to work out the exact bullwhip model.
The timing of the events is as follows: At the beginning of period t, a decision to order a quantity

zt is made. This time point is called the ”decision point” for period t. Next the goods ordered ν periods
ago arrive. Lastly, demand is realized, and the available inventory is used to meet the demand. Excess
demand is backlogged. Let St denote the amount in stock plus on order (including those in transit) after
decision zt has been made for period t. Lee at al [111] assume that the retailer faces serially correlated
demands which follow the process

Dt = d+ ρDt−1 + ut

where Dt is the demand in period t, ρ is a constant satisfying −1 < ρ < 1, and ut is independent and
identically normally distibuted with zero mean and variance σ2. Here σ2 is assumed to be significantly
smaller than d, so that the probability of a negative demand is very small. The existence of d, which is
some constant, basic demand, is doubtful; in the forest products markets a producer cannot expect to
have any ”granted demand”. The use of d is technical, to avoid negative demand, which will destroy
the model, and it does not appear in the optimal order quantity. Lee et al proved the following theorem,

Theorem 7.1 (Lee, Padmanabhan and Whang, [111]). In the above setting, we have,

1. If 0 < ρ < 1, the variance of retails orders is strictly larger than that of retail sales; that is,
Var(z1) > Var(D0).

2. If 0 < ρ < 1, the larger the replenishment lead time, the larger the variance of orders; i.e.
Var(z1) is strictly increasing in ν.

This theorem has been proved from the relationships

z∗1 = S1 − S0 +D0 =
ρ(1− ρν+1)

1− ρ (D0 −D−1) +D0, (7.11)

and

Var(z∗1) = Var(D0) +
2ρ(1− ρν+1)(1− ρν+2)

(1 + ρ)(1− ρ)2
> Var(D0),

where z∗1 denotes the optimal amount of order. Which collapses into Var(z∗1) = Var(D0) + 2ρ, for
ν = 0.

The optimal order quantity is an optimal ordering policy, which sheds some new light on the bull-
whip effect. The effect gets started by rational decision making, i.e. by decision makers doing the best
they can. In other words, there is no hope to avoid the bullwhip effect by changing the ordering policy,
as it is difficult to motivate people to act in an irrational way. Other means will be necessary.

It appears obvious that the paper mill could counteract the bullwhip effect by forming an alliance
with either the retailers or the end-customers. The paper mill could, for instance, provide them with
forecasting tools and build a network in order to continuously update market demand forecasts. This is,
however, not allowed by the wholesalers.

As the optimal, crisp ordering policy drives the bullwhip effect we decided to try a policy in which
orders are imprecise. This means that orders can be intervals, and we will allow the actors in the
supply chain to make their orders more precise as the (time) point of delivery gets closer. We can
work out such a policy by replacing the crisp orders by fuzzy numbers. Following Carlsson and Fullér
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[20, 22, 23, 29, 35] we will carry this out only for the demand signal processing case. It should be
noted, however, that the proposed procedure can be applied also to the price variations module and -
with some more modeling efforts - to the cases with the rationing game and order batching.

Let us consider equation (7.11) with trapezoidal fuzzy numbers

z∗1 = S1 − S0 +D0 =
ρ(1− ρν+1)

1− ρ (D0 −D−1) +D0. (7.12)

Then from the definition of possibilistic mean value [26] we get,

Var(z∗1) > Var(D0),

so the simple adaptation of the probabilistic model (i.e. the replacement of probabilistic distributions
by possibilistic ones) does not reduce the bullwhip effect.

We will show, however that by including better and better estimates of future sales in period one,
D1, we can reduce the variance of z1 by replacing the old rule for ordering (7.12) with an adjusted rule.
If the participants of the supply chain do not share information, or they do not agree on the value of D1

then we can apply a neural fuzzy system that uses an error correction learning procedure to predict z1.
This system should include historical data, and a supervisor who is in the position to derive some initial
linguistic rules from past situations which would have reduced the bullwhip effect. A typical fuzzy logic
controller (FLC) describes the relationship between the change of the control ∆u(t) = u(t)− u(t− 1)
on the one hand, and the error e(t) (the difference between the desired and computed system output)
and its change

∆e(t) = e(t)− e(t− 1).

on the other hand. The actual output of the controller u(t) is obtained from the previous value of control
u(t − 1) that is updated by ∆u(t). This type of controller was suggested originally by Mamdani and
Assilian in 1975 and is called the Mamdani-type FLC [125].

A prototype rule-base of a simple FLC, which is realized with three linguistic values {N: negative,
ZE: zero, P: positive} is listed in Table 7.1. To reduce the bullwhip effect we suggest the use of a
fufCarzzy logic controller. Demand realizations Dt−1 and Dt−2 denote the volumes of retail sales in
periods t− 1 and t− 2, respectively. We use a FLC to determine the change in order, denoted by ∆z1,
in order to reduce the bullwhip effect, that is, the variance of z1.

∆e(t) | e(t)→ N ZE P
↓

N N N ZE
ZE N ZE P
P ZE P P

Table 7.1: A Mamdani-type FLC in a tabular form.

We shall derive z1 from D0, D−1 (sales data in the last two periods) and from the last order z0 as

z1 = z0 + ∆z1
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where the crisp value of ∆z1 is derived from the rule base {<1, . . . ,<5}, where e = D0 − z0 is the
difference between the past realized demand (sales), D0 and order z0, and the change of error

∆e := e− e−1 = (D0 − z0)− (D−1 − z−1),

is the change between (D0 − z0) and (D−1 − z−1).
To improve the performance (approximation ability) we can include more historical data Dt−3,

Dt−4 . . ., in the antecedent part of the rules. The problem is that the fuzzy system itself can not learn
the membership function of ∆z1, so we could include a neural network to approximate the crisp value
of z1, which is the most typical value of z0 + ∆z1. It is here, that the supervisor should provide crisp
historical learning patterns for the concrete problem, for example, {5, 30, 20} which tells us that if at
some past situations (Dk−2 − zk−2) was 5 and (Dk−1 − zk−1) was 30 then then the value of zk should
have been (zk−1 + 20) in order to reduce the bullwhip effect. The meaning of this pattern can be
interpreted as: if the preceding chain member ordered a little bit less than he sold in period (k− 2) and
much less in period (k − 1) then his order for period k should have been enlarged by 20 in order to
reduce the bullwhip effect (otherwise - at a later time - the order from this member would unexpectedly
jump in order to meet his customers’ demand - and that is the bullwhip effect). Then the parameters
of the fuzzy system (i.e. the shape functions of the error, change in error and change in order) can be
learned by a neural network (see Fullér [83]).

Demo architecture and implementation
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to deal with it. Our first step was to build a platform for experimenting
with the drivers of the bullwhip effect and for testing our understanding
of how to reduce or eliminate the effect.

This platform is one in the series of hyperknowledge platforms, which
have been developed by IAMSR in the last 6-7 years. The platform
shown in fig. 6.12 is a prototype, which was built mainly to validate and
to verify the theory we have developed for coping with the bullwhip effect
- a more advanced platform is forthcoming, as the work with finding new
ways to tame the bullwhip effect continues in other industries than the
fine paper products.

The platform is built in Java 2.0 and it was designed to operate over
the Internet or through a corporate intranet. This makes it possible
for a user to work with the bullwhip effect as (i) part of a corporate
strategic planning session, as (ii) part of a negotiation program with
retailers and/or wholesalers, as (iii) part of finding better ECR solutions
when dealing with end customers, as (iv) support for negotiating with
transport companies and logistics subcontractors, and as (v) a basis
for finding new solutions when organizing the supply chain for the end
customers. In the future, we believe that some parts of the platform
could be operated with mobile, WAP-like devices.

The platform includes the following elements (Fig. 5.3):

Figure 5.3. A soft computing platform.

The platform is operated on a secure server, which was built at IAMSR
in order to include some non-standard safety features.

Figure 7.20: A soft computing platform for reducing the bullwhip effect.

The platform shown in Fig. 7.20 is a prototype, which was built in 2000 mainly to validate and
to verify the theory we have developed for coping with the bullwhip effect. The platform is built in
Java 2.0 and it was designed to operate over the Internet or through a corporate intranet. This makes it
possible for a user to work with the bullwhip effect as (i) part of a corporate strategic planning session,
as (ii) part of a negotiation program with retailers and/or wholesalers, as (iii) part of finding better
solutions when dealing with end customers, as (iv) support for negotiating with transport companies
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and logistics subcontractors, and as (v) a basis for finding new solutions when organizing the supply
chain for the end customers.

The platform is operated on a secure server, which was built at IAMSR in order to include some
non-standard safety features. There are four models operated on the platform: (i) DSP for demand
signal processing, (ii) Rationing Game for handling the optimal strategies as demand exceeds supply
and the deliveries have to be rationed, (iii) Order Batching for working out optimal delivery schemes
when there are constraints like full shipload, and (iv) Price Variations for working out the best pricing
policies when the paper mill wants to shift between low and high prices. The hyperknowledge features
allow the models to be interconnected, which means that the effects of the DSP can be taken as input
when working out either Order Batching or Price Variations effects. Thus, models can be operated
either individually or as cause-effect chains. Data for the models is collected with search agents, which
operate on either databases in the corporate intranet or on data sources in the Internet. Also the search
agents have been designed, built in Java and implemented for corporate partners by IAMSR as part of
a series of research programs.
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