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1 INTRODUCTION 

The economical operation of production and service systems has always been a major concern 
of engineers. In 1886, Henry Towne of the Yale and Towne Company in a paper titled 
“Engineer as an Economist” recommended that a new section should be organized within the 
American Society of Mechanical Engineers (ASME). This new section could be a forum for 
those professionals, who are mechanical engineers, but interested in the economic aspects of 
production (Towne, 1886). The recommendation of Towne initiated the rapid development of 
a new branch of engineering, which is called industrial engineering (IE) (Hicks, 1977). The 
official definition of industrial engineering formulated by the Institute of Industrial 
Engineering (IIE) states (Salvendy, 1992) that 

“Industrial engineering is concerned with the design, improvement and installation 
of integrated systems of people, materials, information, equipment and energy. It 
draws upon specialized knowledge and skill in the mathematical, physical and social 
sciences together with the principles and methods of engineering analysis and 
design, to specify, predict, and evaluate the results to be obtained from such 
systems.” 
The problems, scientific foundations and information processing infrastructure of IE have 

changed considerably since the time of Towne. By now, all stages of the lifecycle of 
production systems − design, implementation, operation, improvement and restructuring − are 
influenced by industrial engineering. The problems discussed in the dissertation are related to 
planning and scheduling of production operations. Production planning and production 
scheduling determines the allocation of manufacturing resources to production task on the 
medium and short run, that is, a plan should be prepared a priori, to determine how much and 
when to produce of the different parts/products, and what amount of resources should be 
applied during production. In the course of production, the difference of the plan and the 
actual operation must be compared, analyzed, and appropriate control actions are to be 
implemented if required.  

The solution of the complicated problems of production planning and control is supported 
by operations research methods. Frequently, optimization models are formulated to 
determine the best possible production plan and production schedule. By the time of 
implementation or during operation several parameters − which were used to obtain the 
implemented solution − may change. Some of these changes are important and require actions 
on behalf of the decision maker. Other changes, however, may not influence the implemented 
decision, although influence the result of operation. Consequently, the robustness of the plan, 
that is, the sensitivity of the results with respect to some model parameters is important 
information for management decision-making (see for example, Little, 1970; Ragsdale, 2007; 
Monostori et al., 2010). 

Sensitivity analysis methods can be applied to get information about the effect of 
parameter changes on an optimal or on a heuristic solution. The objective of sensitivity 
analysis is to determine the effect of the change of parameters or conditions assumed in the 
planning phase on some performance measures important for decision-making. The method 
used for generating sensitivity information depends on the planning model, on the changing 
factor (parameter, condition) and on the performance measure. 

Sometimes, calculating the value of the objective function with the original and with the 
changed values of a parameter, and analyzing the difference may lead to general sensitivity 
conclusions. One of the first, widely documented sensitivity analysis applied in industrial 
engineering has been the examination of the robustness of the classical economic order 
quantity (EOQ) formula in inventory management, which dates back to 1913 (Harris, 1913). 
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This analysis is based on the examination of the total cost function when some parameters 
(order cost, inventory holding rate) change, and the results are discussed in most of the basic 
production management related university textbooks (see for example, Nahmias, 1993; 
Anderson, 1994; Waters, 1996). 

The simple analysis of the change of the objective function value, however, may not 
always be sufficient to get proper sensitivity information. Sometimes, studying the structure 
of the problem may lead to analytical description of robustness and sensitivity. In linear 
programming, for example, the simplex method provides information about the sensitivity of 
the objective function and about the validity range of this sensitivity. This information is 
provided by the simplex table of the optimal solution (see for example Hillier and Lieberman, 
1996; Prékopa, 1968). In case of discrete event simulation, perturbation analysis can be used 
to obtain sensitivity information related to a performance measure from a single sample path 
(Ho and Cao, 1991). 

Frequently, in complex models, numerical examination of the behavior of an objective 
function in a predefined parameter range must be performed. Such analysis, however, requires 
extensive computations and advanced information processing environment. 

No matter which technique is applied, information about sensitivity is important for the 
decision maker due to the following three reasons: 

− Some model parameters may change despite of the intention of the decision maker. For 
example, a customer demand may change, an operation cost may increase or production 
capacity may decrease by the time a production plan is implemented. The operation manager 
must know whether the change of operation is required or the change of the parameters does 
not influence the plan, consequently, the change of operation is not necessary. 

− The decision maker may have the possibility to change some parameters. For example, 
a selling price can be changed, a production capacity can be increased by overtime or a new 
production route of a part can be implemented. Analysis of the possible effects of these 
parameter changes is required before decision on implementation is made. 

− Sometimes model parameters may change but the change of operation is not possible 
even if it were required. In these cases, the analysis of the consequences of the change helps 
to determine how far the actual operation is from the optimum, and what measures should be 
taken to avoid the unfavorable effects in the future. 

The proper presentation of sensitivity information for management decision-making is 
also a very important question. Generally, sensitivity results consist of a large amount of data. 
The range information of a linear programming solution contains the sensitivity range of 
several thousand objective function coefficients and shadow prices. Filtering and clustering 
this information is necessary for efficient decision-making. Graphical presentation of these 
data might considerably direct the attention of the decision maker to critical points, and 
highlights the most efficient intervention areas (Eschenbach, 1992). 

Consequently, sensitivity analysis is important from theoretical and from practical points 
of view as well, and a strong emphasis is made to develop both theory and technique to obtain 
sensitivity information in several production related fields (see for example Wagner, 1995; 
Saltelli, Tarantola and Campolongo, 2000; Higle and Wallace, 2003 or Hall and Posner, 2004; 
Kövesi, 2011). 

The application of sensitivity information to improve decision-making is not just a 
possibility, but also a necessity. The development of the theory and technology of data mining 
has a strong impact on production related decisions as well (Jackson, 2002). The information 
obtained by the processing of a large amount of data can be a source of competitive advantage 
according to Davenport (2006). If these data are efficiently collected (about customer 
behavior, about operation, about environmental conditions, etc.), if proper (statistical, 
operational research) methods are used to process these data, and the results are adequately 
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channeled into the decision-making process, then the competitors can be outperformed. The 
emphasis on the collection of a large amount of data and on the efficient processing of the 
collected information forms the basis of a new paradigm in management decision-making 
which is called competing on analytics (Davenport, 2006; Davenport and Harris, 2007; 
Koltai, 2007). 

The support of competition with the results of the processing of a large amount of data is 
possible as a consequence of the development of information technology. Data can be 
collected automatically about the progress of a production or a service process at reasonably 
low cost and with acceptable speed. The collected data can be processed with efficient and 
easy to use statistical and operation research software even on an ordinary computer.  
Consequently, competing on analytics and big data management is becoming a general 
approach when decision support systems are designed (Davenport 2013). 

On the one hand, the availability of a large amount of data about actual operation, and the 
possibilities of advanced data processing environment provide excellent opportunities for 
generating sensitivity information. On the other hand, sensitivity information is constantly 
demanded in a system which strives for continuous improvement of its operation. 

The dissertation discusses the theoretical and practical aspects of sensitivity analysis 
results related to production planning and scheduling problems. In some cases, the derivation 
and analysis of sensitivity results of existing models are the main objective of the research. In 
other cases, new models are formulated and sensitivity analysis supports the application of the 
models. The following research problems are discussed in details in the dissertation: 

1) Linear Programming (LP) is frequently applied to solve production planning problems. 
The sensitivity information of the optimal plan with respect to the model parameters is 
important information for capacity extension, operation improvement and customer related 
decisions. In case of degenerate optimal solution, however, sensitivity information generated 
by the traditional LP solvers can be misleading. I have investigated the reason of the 
misleading sensitivity results and the ways of correcting this information. 

2) In flexible manufacturing systems (FMS), products/parts can be manufactured by 
visiting different machines, that is, the same part may follow several different routes in the 
manufacturing process. Routing influences the available capacity of the system. Frequently, 
however, capacity related decisions must be made before parts are assigned to the specific 
routes. I have investigated how capacity of FMSs can be determined before the routing 
information is available, and I have analyzed the sensitivity of the results with respect to some 
basic model parameters. 

3) In case of assembly lines, frequently, 0-1 mathematical programming models are used 
to allocate tasks to workstations. One important shortcoming of assembly line balancing 
(ALB) models is that the models do not take into consideration several real life conditions. 
One important group of such conditions is related to workforce skills. I have developed a 
general framework to formulate workforce skill constraints. I have also investigated the effect 
of the change of production quantity on the optimal solution.   

4) Scheduling problems of production systems are frequently solved with the help of 
discrete event simulation. The sensitivity of the scheduling criteria to the change of some 
model parameters is important information for the decision maker. I have analyzed the 
sensitivity of the throughput time and the sensitivity of waiting time with respect to some 
operation times, and I have determined the validity of these gradient information using 
perturbation analysis. 

5) Frequently, the objective of scheduling is the minimization of inventory holding cost. 
There are, however, several ways to determine the value of inventory holding cost. I have 
investigated how the optimal schedule of a single resource scheduling problem is influenced 
by the method of inventory holding cost calculation. I have also analyzed the robustness of 
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the optimal schedule using analytical and numerical methods as well. 
Some remarks must be made about the structure and the content of this work. 
− Each chapter of the dissertation is related to sensitivity analysis, however, the problems 

examined, the techniques used for modeling, and the generation of sensitivity information is 
different in each chapter. Consequently, a different method of notation is required in each 
chapter. To facilitate the reading of the text, each main chapter has a separate list of notation. 

− The results of the main chapters have already been published in relevant scientific 
journals of the related areas. The content of the main chapters of this work is an edited and 
integrated version of the corresponding papers. Since these papers were written in the last 20 
years, new results, algorithms, software and computing technology may have appeared. Those 
chapters which are based on earlier papers may not reflect the most up-to date technology, but 
the scientific results of the chapters are independent of the changes of the technological 
conditions and of the change of information technology. 
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2 THE DIFFERENCE BETWEEN THE MANAGERIAL AND MATHEMA TICAL 
INTERPRETATION OF SENSITIVITY ANALYSIS RESULTS IN L INEAR 
PROGRAMMING 

One important problem of production planning is the allocation of production resources to 
production tasks. This problem is frequently solved by mathematical programming models. 
Linear programming (LP) has a special role within mathematical programming, because 
resource allocation problems can be easily described or efficiently approximated by linear 
relationships. The theory and practice of linear programming is well established and several 
software are available to support real life applications. The main result an LP problem is the 
optimal solution. In a production planning context the optimal solution determines the optimal 
allocation of production resources to production tasks. Further results of an LP problem are 
related to the sensitivity analysis of the optimal solution. In some cases LP sensitivity analysis 
results of the currently available LP solvers provide misleading information. In this chapter 
the problems of LP sensitivity information are explained, a new categorization of sensitivity 
information is provided and a calculation framework is suggested. The results of this chapter 
are based on the papers of Koltai and Terlaky (2000), Koltai and Tatay (2008) and Koltai and 
Tatay (2011). 

2.1 Introduction 

Linear programming (LP) is one of the most extensively used operations research technique in 
production and operations management (Johnson and Montgomery, 1974; Cane and Parker, 
1996). As a result of the development of computer technology and the rapid evolution of user 
friendly LP software every operation manager can run an LP software easily and quickly on a 
laptop computer. Although to solve LP models is now accessible for everybody, the 
interpretation of the results requires a lot of skill. Most of the management science and 
operational research textbooks pay a special attention to sensitivity analysis, and to the 
problems of degeneracy, but sensitivity analysis under degeneracy is rarely discussed. 
Commercially available software do not give enough information to the user about the 
existence and about the consequences of these, very common, special cases. In practice, 
managers very frequently misinterpret the LP results which may lead to erroneous decisions 
and to important financial and/or strategic disadvantages. 

Several papers have addressed this issue. Evans and Baker (1982) draw the attention to 
the consequences of the misinterpretation of sensitivity analysis results in decision-making. 
They illustrate their point with a simple example and list some published cases in which the 
erroneous interpretation of sensitivity analysis results is obvious. Aucamp and Steinberg 
(1982) also warn that shadow price analysis is incorrect in many textbooks, and that the 
shadow price is not equal to the optimal solution of the dual problem when the obtained 
optimal solution is degenerate. They present some examples of shadow price calculations by 
commercial packages. Akgül (1984) refines the shadow price definition of Aucamp and 
Steinberg, and introduces the negative and positive shadow prices for the increase and for the 
decrease of the right-hand side (RHS) elements. Greenberg (1986) shows that very frequently 
practical LP models have a netform structure; and netform structures are always degenerate. 
He illustrates sensitivity analysis of netform type models by one of the Midterm Energy 
Market Model of the U.S. Department of Energy. Gal (1986) summarizes most of the critics 
concerning sensitivity analysis of LP models and highlights some important research 
directions. Rubin and Wagner (1990) illustrate the traps of the interpretation of LP results by 
using the industry cost curve model in a tutorial type paper written for managers and 
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instructors. Jansen, et al. (1997) explains the effect of degeneracy on sensitivity analysis by 
using a transportation model, and presents the shortcomings of the most frequently used LP 
packages. Wendell also pays special attention to correct and practically useful calculation of 
sensitivity information (see for example Wendell, 1985 and Wendell, 1992). The problem is 
not that operations researchers are unaware of the difficulties of sensitivity analysis. This 
issue is discussed thoroughly in the scientific literature, (see for example Gal, 1979; and 
Wendell, 1992) and a complete, mathematically correct treatment of sensitivity analysis is 
presented e.g. in Jansen et al. (1997), and in Roos at al. (1997). Practice, however, shows that 
the problem is not widely known among LP users, and available commercial software 
packages are not helping to recognize the difficulties. 

The main objective of this chapter is to explain the difference between the managerial 
questions and the traditional mathematical interpretation of sensitivity analysis. In the first 
part of this chapter the basic definitions are introduced, the most important types of sensitivity 
information are classified, and degenerate LP solutions are illustrated graphically. Next, a 
production planning problem is used to demonstrate the consequences of incorrect 
interpretations of the provided sensitivity information. In the second part of the chapter a 
practice oriented framework for calculating sensitivity information is provided and sensitivity 
information for management decision-making are presented for a degenerate production 
planning problems. Finally, some recommendations are formulated both for decision makers 
and for software developers. All notations used in this chapter are summarized in Table 2.1. 

2.2 Basic definitions and concepts 

Every LP problem can be written in the following standard form, 

{ }0xbxAxc
x

≥= ;min T  (2.1) 

where A is a given J x I matrix with full row rank and where the column vector b represents 
the right-hand side (RHS) terms and the row vector cT represents the objective function 
coefficients. Problem (2.1) is called the primal problem and a vector x≥0 satisfying Ax=b is 
called a primal feasible solution. The objective is to determine those values of the vector x 
which minimize the objective function. To every primal problem (1) the following problem is 
associated, 

{ }cyAyb
y

≤TTmax  (2.2) 

Problem (2.2) is called the dual problem and a vector y satisfying ATy≤c is called a dual 
feasible solution. For every primal feasible x and dual feasible y it holds that cTx≥bTy and the 
two respective objective function values are equal if and only if both solutions are optimal 
(see for example Hillier and Liberman, 1995). 

Most computer programs to solve linear programming problems are based on a version of 
the simplex method. Modern, hi-performance packages are furnished with interior point 
solvers as well; however, the implemented sensitivity analysis is based always on the simplex 
method. The simplex procedure selects a basis of the matrix A in every step The selected 
basis solution is calculated and the optimality criteria are checked. To define the optimal basis 
solution some preparation is needed. 

Let B be a set of m indices, and AB be the matrix obtained by taking only those columns 
of A whose indices are in B. If AB is a nonsingular matrix then by using the vector xB=AB

–1b a 
basis solution can be defined as 

( )




=
otherwise.0

,∈Biif
x iB

i
x

 (2.3) 
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Table 2.1 Summary of notation of Chapter 2 

Subscripts: 
i − index of the variables of a primal LP problem (i=1,…,I), 
j − index of the variables of a dual LP problem (j=1,…,J), 
t − index of the time period in the production planning example (t=1,…,T) 
n − index of the products in the production planning example (n=1, …,N). 
Parameters: 
A – coefficient matrix with elements aji, 
AB − coefficient matrix containing only the columns of A in the basis, 
b – right-hand side vector with elements bj, 
c – objective function coefficient vector with elements ci, 
cB − objective function coefficients belonging to the variables in the basis, 
ei – unit vector with I elements, and with ei=1 and ek=0 for all k≠i, 
ej – unit vector with J elements, and with ej=1 and ek=0 for all k≠j, 
δ – perturbation of a right-hand side parameter 
nt – number of working days in month t 
Dnt – demand of product n in period t, 
pnt – unit production cost of product n in period t, 
hnt – unit inventory holding cost of product n in period t, 
Ct – production capacity in period t, 
Wt – warehouse capacity in period t. 
Sets: 
B − index set containing the indices of the basis variables.  
Variables: 
x – variable vector of the primal problem with elements xi, 
xB – vector of the basis variables with elements (xB)i, 
x* – optimal solution of the primal problem with elements xi

*, 
y – variable vector of the dual problem with elements yj, 
y* – optimal solution of the dual problem with elements yj

* , 
s − slack variable vector with elements sj, 
OF* – optimal value of the objective function, 
yj

– – the left shadow price of right-hand side element bj (δ<0), 
yj

+ – the right shadow price of right-hand side element bj (δ>0), 
γi – change of objective function coefficient ci, 
γi

– – feasible decrease of objective function coefficient ci,  
γi

+ – feasible increase of objective function coefficient ci, 
ξj – change of right-hand side element bj, 
ξj

– – feasible decrease of right-hand side element bj, 
ξj

+ – feasible increase of right-hand side element bj, 
nξj

– – feasible decrease of bj belonging to the left shadow price, 
nξj

+ – feasible increase of bj belonging to the left shadow price, 
pξj

– – feasible decrease of bj belonging to the right shadow price, 
pξj

+ – feasible increase of bj belonging to the right shadow price, 
xnt – production quantity of product n in period t, 
Int – inventory of product n in period t. 
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 If in addition xB≥0 holds then x is called a primal feasible basic solution. The variables 
with their index in B are the basic variables; the others are the non-basic variables. Dual 
variables can be associated to any basis AB as follows: 

( ) BB cAy
T1−=  (2.4) 

If c−ATy≥0 then y is a feasible solution for the dual problem, and y is called dual 
feasible basic solution. If the basis AB is both primal and dual feasible, then AB is an optimal 
basis, and the corresponding basic solutions x and y are optimal basis solutions for the primal 
and for the dual problems respectively. It might happen that a basis gives an optimal primal 
solution, but the related dual basis solution is dual infeasible. Such a basis is called primal 
optimal. Analogously, when a basis gives a dual optimal solution, but the related primal 
solution is infeasible, then the basis is called dual optimal. 

Sometimes the optimal basis is not unique, more than one basis may yield an optimal 
solution either for the primal or for the dual problem or for both. This is called degeneracy 
and occurs very frequently in practice. Formally, a basis is called primal degenerate when 
there are variables with zero value among the basis variables and it is called dual degenerate 
when some dual slack variables si=ci−(ATy)i, not belonging to the basis indices B, are zero. In 
general, if a basis is either primal, or dual, or from both sides degenerate then we simply say 
that it is degenerate. In case of degeneracy many optimal solutions exists that are not basic 
solutions.   

Very frequently the main parameters of an LP model changes (e.g. cost coefficients, 
resource capacities, etc.) and it would be important to know if any action on behalf of the 
decision maker is required as a consequence of these changes. Sensitivity analysis can help to 
answer this question if it is applied correctly. The objective of sensitivity analysis is to 
analyze the effect of the change of the objective function coefficients (OFC) and the effect of 
the change of the right-hand side (RHS) elements on the optimal value of the objective 
function, furthermore, the validity ranges of these effects. Depending on how this analysis is 
performed three types of sensitivities can be defined (Koltai and Terlaky, 1999, 2000): 

− Type I sensitivity: Type I sensitivity determines those values of some model 
parameters for which a given optimal basis remains optimal. Sensitivity analysis of the 
optimal basis for the OFC elements determines within which range of an OFC the current 
optimal basis remains optimal and what is the rate of change (directional derivative) of the 
optimal objective function value when the OFC changes within this range. In case of the RHS 
elements the question is, within which range a RHS element can change so that the current 
optimal basis stays optimal, and what is the rate of change (shadow price) of the optimal 
objective function value within the determined interval.  

Type I sensitivity analysis is implemented in almost all commercial software packages. In 
case of primal degeneracy, however, several bases may belong to the same optimal solution 
yielding different ranges and rate of changes for the same parameter to different optimal basis. 
In case of dual degeneracy many primal optimal solutions, and therefore, many different 
optimal basis may exist resulting in different intervals and rates of changes. From 
mathematical point of view the provided information is correct, because the question is the 
sensitivity of the given optimal basis, but, can be misleading for decision makers, if the given 
information is not interpreted correctly. 

−  Type II sensitivity: Type II sensitivity determines those values of some model 
parameters for which the positive variables in a given primal and dual optimal solution 
remain positive, and the zero variables remain zero, i.e. the same activities remain active. 
More accurately, we have an optimal solution (not necessarily basis solution) x with its 
support set supp(x)={  ixi >0}. We are looking for those model parameters, for which an 
optimal solution (basis or not basis) exists with precisely the same support set. Sensitivity 
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analysis of a given optimal solution for an OFC determines within which range of the OFC an 
optimal solution with the same support set exists and what is the rate of change (directional 
derivative) of the optimal objective function value when the OFC changes within this range. 
In case of the RHS elements the question is, within which range a RHS element can change 
without the change of the support set of the optimal solution, and what is the rate of change 
(shadow price) of the optimal objective function value within the determined interval. 

Contrary to Type I sensitivity, Type II sensitivity depends on the produced optimal 
solution, but not on which basis − if any − represents the given optimal solution. 

− Type III sensitivity: Type III sensitivity determines those values of some model 
parameters for which the rate of change of the optimal value function is the same. Roughly 
speaking sensitivity (and range) analysis means the analysis of the effects of the change of 
some problem data, in particular an objective coefficient cj or right-hand side element bj. Let 
us assume that either ci+γi or bj+ξj is the perturbation. It is known that the optimal value 
function is a piecewise linear function of the parameter change (see for example Gal, 1979, 
Jansen et al., 1997 or Roos, Terlaky and Vial, 1997). In performing Type III sensitivity 
analysis one wants to determine the rate of the change of the optimal value function and the 
intervals within which the optimal value function changes linearly. 

Type III sensitivity information is independent of the solution obtained, it depends only 
on the problem data and on which OFC or RHS element is changing. 

The calculation and importance of the three different types of sensitivity information 
depends on the optimum solution produced by the LP solver. Most of the LP solvers used for 
small and medium size problems are based on some versions of the simplex method and they 
provide an optimal basis solution. Other solvers, typically used for (very) large scale 
problems are based on interior point methods and they provide an interior (i.e. strictly 
complementary) optimal solution.  To distinguish among the three types of sensitivities is 
necessary because of the existence of degeneracy. The following cases can be observed: 

− When the optimal solution is neither primal nor dual degenerate, then all the three 
types of sensitivities are the same, since there is a unique optimal solution with a unique 
optimal basis. In this case, the sensitivity analysis output of the available LP solvers provides 
reliable, useful information for decision-making. 

− When the optimal solution is only primal degenerate then a unique primal optimal 
solution exists. Moreover, several optimal bases belong to the same, unique primal optimal 
solution. In this case Type I and Type II sensitivities may be different since there are different 
Type I sensitivity information for all the optimal basis. One important case is when the 
increase and the decrease of a RHS parameter results in different rate of changes, i.e. the 
optimal value function at the current point is not differentiable. Due to this fact the 
introduction of the right side and left side shadow prices and their respective sensitivities 
(Aucamp and Steinberg, 1982) was needed.  Type II and Type III sensitivity information for 
the RHS elements are split into two parts: the left and right side sensitivities. The left and 
right linearity intervals of the optimal value function provide the Type III information. When 
the left and right side shadow prices are identical, then only one interval is given. Type II and 
Type III sensitivity information for an OFC are identical in the case when the solution is only 
primal degenerate. 

−  When the optimal solution is only dual degenerate, then several different primal 
optimal basis and non-basis solutions may exist with different support sets, while the dual 
optimal solution is unique. In this case Type I and Type II sensitivities at each alternative 
primal optimal basic solution are identical, but Type II sensitivities can be calculated from 
non-basic solutions as well. Type II sensitivity is interested only in the optimal solutions 
belonging to the same support sets, therefore, Type III sensitivity may be different from the 
Type II sensitivities of each optimal solution. 
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−  When the optimum is both primal and dual degenerate, then all the three types of 
sensitivities may be different. In this case each optimal basis of each optimal basis solution 
may have a different Type I sensitivity information. Optimal solutions with different support 
sets may have different Type II sensitivities and can be examined at non-basis solutions as 
well. As it is known, Type III sensitivity information is uniquely determined; it is independent 
of the optimal solution obtained. Typically, the intervals provided by Type I and Type II 
sensitivities are subintervals of the Type III sensitivity intervals. The rates of changes 
produced by Type I and Type II either coincide with Type III information or are useless, their 
validity (as a sub-differential) is restricted to the current point only. 

− In case of large models, solvers based on interior point methods (IPMs) are frequently 
used. IPM solvers generally provide strictly complementary optimal solutions. In this case 
Type I sensitivity cannot be asked because, in case of degeneracy, the produced optimal 
solution is not a basis solution. When one is interested in obtaining an optimal basis solution, 
a basis identification procedure might be applied to produce an optimal basis. Such 
procedures are implemented in many software packages. Type II and Type III sensitivity 
information are identical in this case, because the change of the support set of a strictly 
complementary optimal solution is in one to one correspondence with the linearity intervals of 
the optimal value function (Roos, Terlaky and Vial, 1997). 

An important question is, when the difference between Type II and Type III sensitivities 
is important for the decision maker. When the decision maker implements an optimal solution 
then, in many situations, the important information is the sensitivity of the implemented 
optimal solution (Type II sensitivity). For example if an optimal production plan, determined 
by LP, is already running, then the important question is how the change of certain costs, or 
the change of a machine capacity influences the implemented plan. When the question is, how 
much a RHS element can be increased with the same consequences, and independently of the 
possible change of an optimal solution, then it is a Type III sensitivity question. For example 
if a machine capacity can be increased economically at the calculated shadow price, the 
decision maker should know how much the capacity can be increased economically in total. It 
is possible that different production plans (different optimal solutions, especially when 
optimal basis solutions are implemented) belong to different amount of capacity increases, but 
all capacity extensions are made at the same marginal benefits. 

Type I sensitivity analysis is the classical sensitivity analysis, provided by most LP 
solvers. Type III sensitivity analysis examines the sensitivity of the decision criteria, and 
provides the widest range for the possible change of the parameter. Type II sensitivity 
analysis examines the sensitivity of an important property of the optimal operation. In this 
case the sensitivity range provided by Type III sensitivity is narrowed down with constraints 
expressing the required property of the optimal solution.  

 As a summary it can be stated that in case of degeneracy commercial packages do not 
provide the sensitivity information useful for the decision maker (note that in practice l 
problems are very frequently degenerate). They give answer to a less ambitious question. 
They provide information about the interval of a parameter value within which the current 
optimal basis remains optimal, and at what rate the change of the parameter varies the optimal 
objective function value in that interval (Type I sensitivity). This answer is intimately related 
to the optimal basis obtained by the simplex solver. In case of degeneracy many different 
optimal bases exist, thus many different ranges and rates of changes might be obtained. To 
obtain the true Type III sensitivity information about the change of the value of the OFC and 
RHS elements one needs extra effort. In fact one has to solve some subsidiary LP=s for 
determining linearity intervals, and left and right derivatives of the optimal value function 
(see Chapter 2.4).  
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2.3 Graphical illustration of the problem of sensitivity analysis 

When the LP problem has no more than two variables then the solution space and all the 
information concerning the optimum and its sensitivity, can be represented in a two 
dimensional space. The following problem will be our prototype problem (Koltai and Terlaky, 
2000), 
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 (2.5) 

 
The feasible set and the solution of problem (2.5) can be seen on Figure 2.1.  

Figure 2.1 Graphical illustration of the prototype problem 

 
The two constraints (C1 and C2) and the upper bounds on x1 and x2 (L1 and L2) are 

represented as half spaces. The boundary of these spaces with the corresponding labels is 
depicted on the figure. The intersection of these half spaces is represented as a shaded area, 
which contains all the primal feasible solutions. The objective function (iso-profit line) is 
drawn as a straight dashed line. The objective function touches the shaded area at point P3, 
therefore the unique optimal solution is at x1=400 and x2=200. 

In order to transform problem (2.5) into the standard form, indicated by problem (2.1), 
slack variables (denoted by si, i=1,...,4) are introduced for all the constraints, and the 
objective function is changed to have a minimization problem. The problem in standard form 
is as follows, 
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Problem (2.6) shows that A is a 4x6 matrix with rank equal to 4. The values of the slack 

variables at P3 are the following, 
s1=0; s2=0; s3=0; s4=300. 

Since at P3 there are three nonzero variables (x1, x2 and s4) and the rank of matrix A is 4, 
the optimal solution is degenerate. This can be seen in Figure 2.1. The point P3 is the 
intersection of three lines (C1, C2 and L1). Two lines would be enough to determine the 
location of a point in a two dimensional space, therefore P3 is over determined. Even if we 
remove any one of C2, or L1, the point P3 remains the only optimal solution. This over 
determination of the optimal point is a graphical illustration of primal degeneracy.  

Let us see the consequences of degeneracy on sensitivity analysis. The shadow prices and 
the corresponding validity ranges for the optimal solution, calculated with the help of Figure 
2.1, are given in Table 2.2. The change of a RHS element is represented by a parallel shift of 
the corresponding line in Figure 2.1. 
 

Table 2.2 Shadow prices and validity ranges of the optimal values 
Dual 

variable 
Current 

RHS 
value 

Left side 
shadow 
price 

Validity range Right side 
shadow 
price 

Validity range 

LL UL LL UL 

yC1 600 10 400 600 8 600 750 
yC2 1000 2 700 1000 0 1000 ∞ 
yL1 400 2 100 400 0 400 ∞ 
yL2 500 0 200 500 0 500 ∞ 

 
If the RHS of any of these constraints are decreased, then the left side shadow prices are 

obtained for each constraint respectively (column three of Table 2.2). The optimal point P3 is 
at the intersection of constraints C1, C2 and L1. The decrease of any of the RHS of these 
constraints results in the move of the optimum point, P3, which consequently changes the 
objective function value as well. Since the change of the RHS of L2 does not affect the 
location of P3 its shadow price is zero. C1 can be moved to P4, C2 and L1 can be moved to P2 
with the same shadow price value. L2 can be moved to P3 without affecting the objective 
function value. The corresponding lower limits (LL) are given in the fourth column of Table 
2.2. In case of left side shadow prices the upper limits (UL) are equal to the current values of 
the RHS elements (fifth column of Table 2.2). 

If the RHS of any of these constraints are increased, then the right side shadow prices are 
obtained for each constraint, respectively (column six of Table 2.2). In case of constraints C2 
and L2 the increase of the right-hand side values do not affect the location of the optimum 
point, because C1 and either C2 or L1 fixes its place. Therefore the corresponding right side 
shadow prices are equal to zero. When the right-hand side of C1 is increased, then the 
optimum point will stay at the intersection of C1 and C2 and the shadow price will be equal to 
8. Since L2 does not affect the location of P3 its shadow price is also zero. In case of right side 
shadow prices the lower limits (LL) are equal to the current values of the RHS elements, 
while the upper limits (UL) are determined by the geometrical properties of the solution 
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space. When C1 is moved upward the intersection of C1 and C2 (P3) moves upward as well. 
When P3 reaches L2, then the move of C1 does not affect the location of P3, and the shadow 
price turns into zero. The RHS value at this point is the UL of the sensitivity range, and it is 
equal to 750. The UL of all the other constrains are equal to infinity. 

Table 2.3 shows the shadow prices and their validity ranges found by the STORM 
computer package (Emmons at al, 2001) at the optimal basis B1={1, 2, 3, 6}. It can be seen 
that at this basis the left side shadow prices and validity ranges were provided for constraints 
C1 and L1, and the right side shadow price and validity range was found for constraint C2. 

 
Table 2.3 Shadow prices and 

validity ranges at the optimal bases B1 

Dual 
variable 

Current 
RHS 
value 

Left side 
shadow 
price 

Validity range 

LL UL 

yC1 600 10 400 600 
yC2 1000 0 1000 ∞ 
yL1 400 2 100 400 
yL2 500 0 200 ∞ 

 
Table 2.4 contains the shadow prices and their validity ranges found at the optimal basis 

B2={1, 2, 5, 6} . At this basis the right side shadow prices and validity ranges were provided 
for constraints C1 and L1, and the left side shadow price and validity range was found for 
constraint C2. The left and right side shadow prices for constraint L1 are identical, and its 
correct value and validity range was found in both optimal bases as the last rows of Table 2.3 
and 2.4 shows. 

 
Table 2.4 Shadow prices and 

validity ranges at the optimal bases B2 

Dual 
variable 

Current 
RHS 
value 

Left side 
shadow 
price 

Validity range 

LL UL 

yC1 600 8 600 750 
yC2 1000 2 700 1000 
yL1 400 0 400 ∞ 
yL2 500 0 200 ∞ 

 
The reason of the differences of Table 2.2, 2.3 and 2.4 can be explained if we look at the 

mathematical interpretation of degeneracy. Every corner point of the shaded area of Figure 
2.1 can be represented by one or more basis. The corner point which is over determined, i.e. 
defined by the intersection of more than two lines, represents more than one basis. Depending 
on which two lines are taken to define this point different basis is considered, that is, different 
sets of B in (2.3) may lead to the same basis solution. This is the case at P3, where Table 2.3 
was calculated with the help of a basis containing columns 1, 2, 4 and 6, and Table 2.4 was 
calculated with the help of a basis containing columns 1, 2, 5 and 6 of problem (2.6). 

The main problem of RHS sensitivities in the prototype problem is that in case of a 
degenerate primal optimal solution the dual problem has no unique solution. Different basis 
belonging to the same optimal solution provide different shadow prices and validity ranges. 
Table 2.3 and Table 2.4 show that the results provided by the two optimal basis are mixtures 
of the left side, right side and full shadow prices and validity ranges. The complete Type III 
information, similar to Table 2.2, is not given at any of the basis. It depends on the computer 
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code at which basis, among the many optimum ones, the program stops. Different 
commercially available software may report different RHS sensitivities for the same problem 
(Jensen et al., 1997). All these results are correct mathematically, because they describe the 
validity of an optimal basis (Type I sensitivity), but not useful for decision-making, because 
these are not reflecting the validity of the positivity status of the decision variables at 
optimality (Type II sensitivity), or not characterizes the validity range of the left/right 
marginal values (Type III sensitivity). The correct RHS information, which refers to the rate 
of change of the optimal objective value, and the range where these rates are valid are given 
in Table 2.2. 

It can be seen in Table 2.2 that most of the right side shadow prices are zero. An 
interesting question is how the optimal objective function value can be increased by the 
simultaneous increase of those RHS elements which have a zero shadow price.  This question 
is equivalent to the problem of increasing the capacity of bottleneck resources of production 
systems. Figure 2.1 shows that the RHS of C1 can be increased alone, but the RHS of C2 and 
L1 need to be increased simultaneously. This information is summarized in Table 2.5.  

 
Table 2.5 Increase of the objective 

function by a unit of the increment of RHS elements 
RHS 

elements 
Rate of change of the 

objective function 
Validity range 

C1 10 400≤∆bC1≤600 
C1, L1 2 400≤∆bL1≤600 

∆bC2=∆bL1 
 

The optimum value of the objective function increases by 10 if the RHS of C1 is 
increased by one unit. This is true within the interval [400, 600]. When the RHS of C2 and L1 
are simultaneously increased by one unit, the change of the objective function value is 2 and 
the validity range is a line segment in a two dimensional space, given in the last window of 
Table 2.5. 

Since the objective function coefficient sensitivity of the primal problem is the same as 
the RHS sensitivity of the dual problem, all what was said for the RHS is valid for the 
objective function coefficients as well. Graphically, the change of an OFC can be represented 
by the change of the slope of the line of the objective function. In Figure 2.1 the optimal 
solution of problem (2.6) is P3 as long as the objective function line stays between L1 and C1. 
The corresponding OFC sensitivities are given in Table 2.6. These data coincide with the 
sensitivities provided by the STORM computer package when the optimum was calculated at 
the basis B1. 

 
Table 2.6 Objective function coefficient 

sensitivities and rate of changes at the optimal bases B1 

Dual 
variable 

Current 
RHS 
value 

Rate of 
changes 

Validity range 

LL UL 

c1 12 400 10 ∞ 
c2 10 200 0 12 

 
The results provided at the basis B2 are given in Table 2.7. The intervals obtained in this 

case are subsets of the correct sensitivity ranges. The last columns of Table 2.6 and 2.7 show 
the rate of changes of the optimum value function. The identical rate of changes of the 
respective coefficients in both optimal basis B1 and B2 indicate that the optimal solution is not 
dual degenerate. This is also clear from Figure 2.1 since the optimal solution is unique. 
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Table 2.7 Objective function coefficient 

sensitivities and rate of changes at the optimal bases B2 

Dual 
variable 

Current 
RHS 
value 

Rate of 
changes 

Validity range 

LL UL 

c1 12 400 10 20 
c2 10 200 6 12 

 
Since the optimum at P3 is not dual degenerate Type II and Type III sensitivities for the 

OFC are the same, and are given in Table 2.6. The Type III sensitivity of the RHS elements 
are given in Table 2.2, in which for yC1, yC2, yL1, the left and right side sensitivities are Type 
III information for two different linearity intervals. For yL2, the Type II and Type III 
sensitivity information are identical. 

Figure 2.2 illustrates a slight modification of the sample problem. A new constraint (C3: 
x1−2x2≤200) is added to the problem and the objective function is also modified 
(min[−12x1−0x2]).  

In this case the optimal objective function coincides with constraint L1, and all the points 
in the interval [P3, P4] are optimal. Consequently, all bases at P3 and the basis at P4 are 
optimal and the optimal solution is both primal and dual degenerate, and we expect different 
Type I, Type II and Type III sensitivities. 

Let us consider now the shadow price and sensitivity range of the RHS of constraint L1. It 
can be seen that as long as L1 increases or decreases the shaded area the shadow price is equal 
to 12. This is true between points P0 and P’ and corresponds to the RHS values of L1 in the 
interval [0, 440], which is the Type III sensitivity information for the RHS of L1. If, however, 
the problem is solved by a computer code of the simplex method, then depending on the basis 
found by the program, the following intervals can be obtained: [100, 400], [200, 440], [400, 
400], [400, 440], that is, there are four different Type I sensitivities. In this modified example 
the left and right shadow prices are equal. In the case of the optimal solution at P3 the Type II 
sensitivity range is [400, 400], and the Type II sensitivity rang at P4 is [200, 440]. 

 

Figure 2.2 Graphical illustration of the modified prototype problem 

C1

C2 L1

L2

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700

x2

x1P0

P1

P2

P3

P4
P’

OF

P5

C3

               dc_924_14



 16

 
As a conclusion, it can be said that the sensitivity results based on an optimal basis 

characterize correctly the optimality of that basis. The graphical representation, however, 
shows that several results are either incomplete or irrelevant from the point of view of the 
information required by a decision maker. The next chapter shows, how Type III sensitivity 
analysis results can be obtained by solving several additional LP problems. 

2.4 A practical approach to sensitivity analysis under degeneracy  

To get the Type III validity ranges for the primal and for the dual optima additional LP 
problems must be solved. These additional LP problems are summarized in Table 2.8 (Koltai  
and Tatay, 2011). 

 
Table 2.8 Summary of additional LP problems for sensitivity analysis 

 Maximal decrease Maximal increase 
Sensitivity analysis of 
objective function 
coefficients 
(OFC) 
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Optimal solution: pξj
+ 

 
Ranges can be expressed by determining the maximal decrease and the maximal increase 

of a parameter. The maximal decreases are determined by the LP problems of the second 
column of Table 2.8, while the maximal increases are determined by the third column of 
Table 2.8. When validity ranges of the OFCs of the primal problem are determined the 
additional LP problems are based on the dual problem (see the first row of Table 2.8). The 
OFCs of the original primal problem are the RHS elements of the dual problem. If the validity 
range of the OFC of a decision variable is examined a γi variable can be used to express the 
change of ci, that is, the new OFC is equal to ci+γi. It is assumed that within the validity range 
the optimal solution of the primal problem is always the same. Therefore, the original optimal 
objective function value (OF*) is changed exclusively by the change of ci. This change is 
equal to γixi

*, where xi
* is the original optimal value of xi. Adding this condition to the dual 

conditions, and minimizing a non-positive γi we get LP problem (2.7) for finding the maximal 
decrease of ci. Adding this condition to the dual conditions, and maximizing a non-negative γi 
we get LP problem (2.8) for finding the maximal increase of ci. For I variables 2I additional 
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LP problems must be solved to get the proper validity ranges for all OFCs. 
When validity ranges of the RHS elements of the primal problem are determined the 

additional LP problems are based on the primal problem (see the second and third rows of 
Table 2.8). In this case a ξj variable is used to express the change of bj, that is, the new RHS 
value is equal to bj+ ξj. It is assumed that within the validity range the optimal solution of the 
dual problem is always the same. Therefore, the original optimal objective function value 
(OF*) is changed exclusively by the change of bj. This change is equal to ξjyj

*, where yi
* is the 

original optimal value of yi. Adding this condition to the primal conditions, and minimizing a 
non-positive ξj we get an LP problem for finding the maximal decrease of bj. Adding this 
condition to the primal conditions, and maximizing a non-negative ξj we get an LP problem 
for finding the maximal increase of bj. 

Under degeneracy the effect of increase and the effect of decrease of the RHS elements 
can be different. Since information about the marginal increase and about the marginal 
decrease of each RHS element are necessary, a δ>0 perturbation is used to get information 
about the increase, and a δ<0 perturbation is used to get information about the decrease. That 
is, the original problem must be solved with a positive and with a negative perturbation as 
well, and with each perturbation a maximal decrease (LP problems (2.9) and (2.11)) and a 
maximal increase (LP problems (2.10) and (2.12)) must be determined. In these problems the 
new value of a RHS element is equal to bj+δ+ξj. For J RHS elements 6J additional LP 
problems must be solved to get the proper validity ranges for all RHS parameters. 

Altogether, in case of I variables and J constraints 2I+6J additional LP problems must be 
solved if range information for each OFC and RHS element of the original problem is 
required. A possible implementation of the suggested calculations is illustrated in Figure 2.3. 
The LP problems are solved with the Lingo mathematical programming software (Schrage, 
2003). The successive solution of the additional LP problems is controlled by Visual Basic 
Application (VBA) implemented in Excel. The data and the results are stored and presented in 
Excel. 

First the basic LP problem is solved, and the primal optimum (x*) and dual optimum (y*), 
furthermore the optimal value of the objective function (OF*) is stored. Next, two FOR cycles 
must be run. The first cycle (i=1,…,I) is used for solving LP problems (2.7) and (2.8) to get 
the validity ranges of OFCs, that is, to obtain the γi

–, and γi
+ values. The second cycle (j=1,…, 

J) is used to get the left and right shadow prices (yj
– and yj

+), and the corresponding sensitivity 
ranges (nξj

–, nξj
+, pξj

–, nξj
+). In those cases, when the left and right shadow prices are equal (yj

–

=yj
+), it is not necessary to solve the extended dual problems with perturbations, that is, δ=0. 

The left and right shadow prices are equal, if neither the maximal decrease (ξj
–) nor the 

maximal increase (ξj
+) is equal to zero in the sensitivity report originally provided by Lingo. 

In this case the validity range embraces the original value of the corresponding RHS element. 
Therefore, first the existence of two sided shadow price is checked (ξj

–=0 or ξj
+=0), and next 

LP problems (2.9), (2.10), (2.11) and (2.12) are solved with the proper value of δ. If for K 
number of RHS elements yj

–=yj
+ then the total number of LP problems to solve is reduced by 

4K. 
The presented method determines the Type III sensitivity ranges. The method, however, 

can be used for calculating Type II sensitivity ranges as well, but in this case the original 
problem must be completed with the conditions expressing the required property of the 
optimal solution. 
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Figure 2.3 Implementation of sensitivity analysis 

2.5 Calculation of Type III sensitivity results of a production planning example  

In this chapter a production planning example is used to illustrate the misleading results of 
traditional sensitivity analysis results. On the one hand, the selected sample problem is small 
enough to get the correct sensitivity results based on simple reasoning. On the other hand the 
sample problem have more than two variables, consequently graphical solution (similar to the 
sample problem in Chapter 2.3) cannot be possible (Koltai and Terlaky, 2009). 

The basic data of the production planning example are summarized in Table 2.9. The 
production quantity of two products (P1 and P2) in two production periods (T1 and T2) 
should be determined. The demand for P1 is zero in the first period and 200 units in the 
second period. The demand for P2 is 100 units in both periods. The production cost is the 
same ($10 per unit) for both products in T1, and $25 per unit for P1, and $20 per unit for P2 
in T2. The inventory holding cost is the same in all periods for all products ($5 per unit). 
There is capacity to produce 300 units in the first period, and to produce 200 units in the 
second period. The inventory cannot exceed 200 units in any of the two periods. 
 
  

j=j+1 

γi
–, γi

+ 

i=i+1 

For i=1 
to I 

extended DUAL 
(problem (2.7) and (2.8)) 

yes 

no 

extended PRIMAL 
(δ<0, δ>0) 

(problem (2.9), (2.10), (2.11) 
and (2.12)) 

yj
–; yj

+  
nξj

–, nξj
+; pξj

– pξj
+ 

Extended PRIMAL 
(δ=0) 

(problem (2.9) and (2.10)) 

ξj
–, ξj

+ 

For j=1 
to J 

ξj
–=0 or 
ξj

+=0 

: LINGO 
(optimization) 

: Excel 
(data exporting, 
storing, reporting) 

: VBA 
(controlling FOR cycles, 
checking logic conditions) 

PRIMAL 

x*, OF*, y* 
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Table 2.9 Data of the sample production planning model 
Model parameters Period 1 

(T1) 
Period 1 

(T2) 
Demand 
(units/period) (Dit) 

Prod 1 (P1) 0 200 
Prod 2 (P2) 100 100 

Production cost 
($/units) (pit) 

Prod 1 (P1) 10 25 
Prod 2 (P2) 10 20 

Inventory cost 
($/units) (hit) 

Prod 1 (P1) 5 5 
Prod 2 (P2) 5 5 

Production capacity (units/period) (Kt) 300 200 
Inventory capacity (units/period) (INVt) 200 200 

 
Using the data of Table 2.9 a production planning model with eight variables, four 

equalities, and four inequalities are obtained. Completing this model with four slack variables 
the following LP model, written in the standard form, is obtained: 
 

0,,,,,,,

200:Inv(T2)

200:Inv(T1)

200:Prod(T2)

300:Prod(T1)

100:Dem(P2_T2)

200:Dem(P1_T2)

100:Dem(P2_T1)

0:Dem(P1_T1)

555520251010:Min
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2,22,1
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2,22,1
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≥
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IIIIxxxx

II

II

xx

xx

IIx

IIx

Ix

Ix

IIIIxxxx

 
(2.13) 

  
This small size problem can be solved with any LP software, but the optimal solution can 

be found easily by simple reasoning as well. The data show that there is a considerable 
difference between the production costs in T1 and in T2. It would be cheaper to produce all 
the products in T1. The products demanded in T1 are produced first. If there is free capacity, 
products demanded in T2 can be produced in T1 as well. After producing 100 units of P2, 
there is free production capacity, therefore the production of P1 demanded in T2 is scheduled 
for T1 as well. The planned 200 units of P1 and 100 units of P2 are exactly equal to the 
production capacity of the first period. There is also enough inventory capacity to store the 
200 units of P1 until the second period. Since there is no more free production capacity, the 
second period demand of P2 cannot be produced in T1, although it would be advantageous 
financially. The optimal solution, therefore, is the following, 

x1,1=200; x2,1=100; x1,2=0; x2,2=100; 
I1,1=200; I2,1=0;  I1,2=0; I2,2=0; 
s1=0;  s2=100; s3=0;  s1=200. 
There are six non-zero values and the rank of the matrix of problem (2.13) is 8, therefore 

the solution is primal degenerate, and since there is no alternative optimum, the solution is not 
dual degenerate. In this case Type I and Type II (which is in this case is equivalent to Type 
III) sensitivities are the relevant information. 

Solving the model with the STORM computer program, the same solution is obtained. 
However, the Type I sensitivity results depend on which basis is found by the software. Koltai 
and Terlaky (2000) provided a detailed analysis of the results obtained in two different bases. 
In the following, Type I sensitivity results obtained with STORM, and Type II (Type III) 
results obtained by the suggested method in the previous section will be compared. 
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2.5.1 Sensitivity analysis of the right-hand side (RHS) elements 

Table 2.10 summarizes the results of sensitivity analysis of the RHS elements. The first part 
of the table contains the shadow prices and the ranges provided by the linear programing 
solver of the STORM software. The second part of the table contains the left and right shadow 
prices and the corresponding linearity intervals calculated by the suggested method. The 
linearity interval is defined by the maximal decrease (dec.) and the maximal increase (inc.) of 
the original RHS value. When the right and left shadow prices are identical, the single shadow 
price is given in the yj

– (yj) column.  
 

Table 2.10 Sensitivity analysis of the RHS elements 

RHS 
parameter 

 
j 

Original 
RHS 
value 

STORM Suggested method 

yj
  dec. inc. yj

–( yj) nξj
– nξj

+ yj
+ pξj

– pξj
+ 

D1,1 1 0 15 0 0 10 -200 0 20 0 100 
D2,1 2 100 15 0 0 10 -100 0 20 0 100 
D1,2 3 200 20 -100 0 20 -100 0 25 0 100 
D2,2 4 100 20 -100 100 20 -100 100 - - - 
C1 5 300 -5 0 0 -10 -100 0 0 0 ∞ 
C2 6 200 0 -100 ∞ 0 -100 ∞ - - - 
W1 7 200 0 0 ∞ -10 -100 0 0 0 ∞ 
W2 8 200 0 -200 ∞ 0 -200 ∞ - - - 

 
Note that a shadow price is negative if the direction of change of the objective function is 

opposite to the direction of change of the respective RHS element. For example, if D2,1 
decreases by one unit, the optimal production cost decreases by $10 (y2

–=10). If C1 decreases 
by one unit, the cost of the new optimal production plan increases by $10 (y5

–=−10). 
The results show that STORM provided the correct shadow prices and ranges for D2,2, C2, 

and W2. For D1,1, D2,1 and C1 STORM provides a shadow price which has no managerial 
significance, but the suggested method provided the correct left and right shadow prices. 
Finally, for D1,2, only the left shadow price and for W1 only the right shadow price is found by 
STORM. 

In the following some of the differences between the two different sensitivity information 
are analyzed and explained. 

− The analysis of the shadow price of D1,1: 
The production cost of P1 in T1 is $10. If one extra unit should be produced in T1, then 

the production of another unit, which was originally produced in T1, but demanded in T2, has 
to be produced in T2 because of production capacity limitations. The shift of the production 
of this one unit from T1 to T2 will increase production cost from $10 to $25, and at the same 
time eliminates the $5 inventory holding cost. The total cost of the shift is therefore $10 for 
every unit (25-10-5). The result is the sum of the production cost of the new product ($10) 
and the cost of shift ($10), which yields a $20 increase of the objective function for every unit 
of new P1 produced for T1. There are 100 units free capacity in T2 to reschedule P1. 
Therefore, the $20 shadow price is valid as long as the new demand for P1 in the first period 
is less than 100 units. 

The sensitivity information provided by STORM for D1,1 is incorrect. The $15 shadow 
price, shown in the second row of Table 2.10, is not the deduced value. The validity range 
shows that we are at a break point of the piecewise linear optimal value function. $15 is just a 
sub-differential, the true right and left derivatives might be different from $15. 

− The analysis of the shadow price of D1,2: 
Producing one unit less from P1 for T2 will result in the savings of $10 production cost, 

               dc_924_14



 21

and in the savings of $5 inventory holding cost because all P1 is produced in T1. Since there 
will be free capacity in T1, one unit of P2 produced for T2 can be shifted to T1, saving by this 
way another $5 (20-10-5). This is altogether $20 per unit. Since 100 units of P1 can be 
substituted by 100 units of P2, this $20 left side shadow price is valid as long as the demand 
decreases from 200 units to 100 units. 

When the demand for P1 increases by one unit in T2, this extra quantity should be 
produced in T2 because in T1 there is no free production and inventory capacity. This will 
result in a $25 increase of the objective function for every unit (right side shadow price). 
Production can be increased up to 100 units as a consequence of the 100 units free production 
capacity in T2. 

STORM has found the left side shadow price and validity range (see Table 2.10).  
− The analysis of production capacity increase in T1 (right shadow price of C1): 
Since the 200 units of P1 are produced for T2, these products must be kept in the 

warehouse. Inventory constraints indicate that there is no more space to store, therefore the 
demand of P2 in the second period cannot be produced earlier, although, financially it would 
be advantageous. Therefore, no matter how much the production capacity is increased in T1, 
it will not influence the objective function; the shadow price is zero. 

The zero shadow price is not found by STORM (see Table 2.10). 
− The analysis of production capacity decrease in T1 (left shadow price of C1): 
Since production capacity is fully utilized in T1, the lost capacity will decrease the 

production of P1. If P1 is produced in T2 production cost increases by $15 (from $10 to $25) 
but inventory cost disappears ($5). The objective function therefore increases by $10 per unit. 
No more than 100 units of production can be shifted to T2 because of capacity limitations; 
therefore the $10 is valid when production capacity does not decrease below 200 units. 

The shadow price found by STORM is incorrect (see Table 2.10). The validity range 
indicates that this is true just in the very near neighborhood of the current capacity, but from 
practical point of view this information is irrelevant. 

2.5.1 Sensitivity analysis of the objective function coefficients (OFCs) 

Table 2.11 summarizes the results of sensitivity analysis of the OFCs. The first part of the 
table contains the OFC ranges provided by STORM. The second part of the table contains the 
OFC ranges calculated by the suggested method. The ranges are defined by the maximal 
decrease (dec.) and the maximal increase (inc.) of the original OFC value.  It can be seen that 
the correct ranges are found by STORM only for p1,2 and for h2,2. In all other cases the range 
found by the suggested method is larger. 

 
Table 2.11 Sensitivity analysis of the OFCs 

OFC 
 
i 

Original 
OFC 

STORM Suggested method 
decrease increase γi

– γi
+ 

p1,1 1 10 -25 5 -∞ 5 
p2,1 2 10 -5 5 -5 ∞ 
p1,2 3 25 -5 ∞ -5 ∞ 
p2,2 4 20 -5 5 -25 5 
h1,1 5 5 -25 5 -∞ 5 
h2,1 6 5 -5 5 -5 ∞ 
h1,2 7 5 -25 ∞ -30 ∞ 
h2,2 8 5 -25 ∞ -25 ∞ 

 
In the following some of the differences between the two different sensitivity information 

are analyzed and explained. 
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− The analysis of the decrease of p2,2: 
At the current production cost it would be better to move the production of P2 to T1, but 

the production capacity is fully utilized. If production cost of P2 decreases in T2 then the 
possible benefit by producing P2 in T1 decreases as well. When production cost drops to $15, 
the production cost in T2 will be equal to the production plus inventory cost in T1, therefore it 
is not advantageous any more shifting the production to T1. Since the production was not 
moved to T1 because of the capacity constraints, this $15 is just a symbolic value. This value 
indicates that if we could change the plan it would be advantageous to do it as long as the 
production cost is higher than $15. But the correct answer to the question is, that no matter 
how much the production cost of P2 in T2 decreases, the production plan will stay optimal. 

Based on the information of STORM we may conclude that the production plan should be 
changed when the cost decreases below $15, because the fifth row of Table 2.11 indicates a 
$15 ($20–$5) lower limit for the validity of the optimal production plan. 

− The analysis of the increase of h2,1: 
Since only the demand of P2 in T1 is scheduled for production in T1, there is no 

inventory of P2 in the optimal production plan. It means that no matter how much the 
inventory holding cost of P2 increases it will not influence the optimal plan. It is true, 
however, that reaching $10 has a symbolic importance. Above this level it will not be worth 
to move the production of all the P2 to T1 even if it were possible, because the high 
production cost in the second period will still be better than the low production cost in T1 plus 
the increased inventory cost. 

Based on the information provided by STORM we may conclude that the production plan 
should be changed when the cost increases above $10 ($5+$5), because the seventh row of 
Table 2.11 indicates a $10 upper limit for the validity of the optimal production plan. 

2.6 Decreasing the number of additional LP problems 

According to Figure 2.3, for an LP problem with I variables and J constraints 2I+6J additional 
LP problems must be solved. This can be a very high number in case of large problems. Some 
of the additional LP problems, however, are unnecessary to solve. There are mathematical and 
managerial possibilities for the reduction of the number of LP problems. 

When the optimal solution is analyzed mathematically, we may conclude, that for some 
RHS elements the right and left shadow prices are identical. In these cases the perturbation of 
the RHS elements is not necessary; therefore instead of 6 additional LP problems only 2 must 
be solved (for the maximal decrease and for the maximal increase). To filter those RHS 
elements, for which perturbation is not necessary, the sensitivity results referring to the 
optimality of a basis – and provided automatically by the LP solvers – must be analyzed. If 
neither end of the validity range of a shadow price is 0; that is, the maximal increase and the 
maximal decrease of the RHS element is non-zero; then the left and right shadow prices are 
identical. In Table 2.10 it can be seen that for 3 RHS elements perturbations are not necessary. 
This way the solution of 12 additional LP problems can be saved. 

When the optimal solution is analyzed from managerial point of view the solution of 
several additional LP problems can be ignored. The decision-making situation strongly 
determines which OFCs and RHS elements must be analyzed in details, therefore, general 
rules cannot be given. Here are some examples for managerial filtering of the sensitivity 
analysis information: 

– Frequently, managers are interested only in the shadow price of some critical bottleneck 
resources. In this case additional LP problems must be solved just for the capacity constraints 
of these resources. 

– Sometimes either the increase or the decrease of an RHS element is not a feasible 
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alternative. For example, for technological reasons a manufacturing capacity cannot be 
increased, or a production limit cannot be decreased. In this case either the positive or the 
negative perturbation can be omitted. 

– Frequently we use such variables in the model formulations for which the OFC 
sensitivity results have no practical significance. In these cases the solution of the additional 
LP problems can also be saved. 

– We saw in Tables 2.10 and 2.11 that the sensitivity ranges provided by STORM for 
OFCs and for RHS elements are frequently narrower, than the ranges given by the suggested 
method. A narrower range, however, can be large enough for management decision-making. 
In this case it is not necessary to solve the additional LP problems. 

Finally, it is important to stress the advantage of sensitivity analysis over parametric 
analysis. In case of parametric analysis the change of the objective function is calculated for 
several different values of a parameter by solving the LP problem repeatedly with different 
parameter values. In case of sensitivity analysis the change of the objective function is known 
for all parameter values within the validity range. That is, if the exact value of a parameter 
change is not known yet, sensitivity analysis provides more information about the effect of 
the possible changes than parametric analysis. 

2.7 Conclusions of Chapter 2 

The main objective of Chapter 2 is to show that sensitivity analysis results provided by the 
generally used LP solvers and sensitivity analysis results required for decision-making are 
different. The sensitivity information given by the simplex based LP software tell the user in 
what range some basic parameters can vary to keep the obtained optimal basis optimal, and 
how the current optimal basis solution changes as a function of these parameters. When the 
optimal solution of an LP model is degenerate then there are several optimal bases providing 
the same optimal value, and possibly all optimal bases provide different sensitivity results. 
These results are mathematically correct, but their information content either incomplete or 
irrelevant from management decision point of view. Management wants to know either the 
sensitivity information concerning activities in an optimal solution (Type II sensitivity), or the 
sensitivity information concerning the objective function (Type III sensitivity). 

Both the graphical solution of the small LP model and the logical solution of the 
production planning model have illustrated the existence of the three types of sensitivities. 
Consequently, users should be careful when sensitivity results of an LP software are used for 
management decisions. Almost all practical size problems are degenerate, and the sensitivity 
information depends on the basis found by the computer program. Different software may 
give different result to the same model. Sometimes the goodness of the sensitivity output can 
be checked by simple logic, but in most of the cases there is no direct way of evaluating the 
results. 

Linear programming will probably stay one of the most popular operations research tool 
used in practice. The development of computer technology makes it possible to solve linear 
production planning problems routinely by inexperienced users as well. The interpretation of 
the sensitivity output of the currently available solvers is difficult and contains several traps. 
The proposed definition of the three types of sensitivities may help the analyst to place the 
proper questions about sensitivity, and the suggested computation method may help to 
provide the correct answers to these questions. 

As a summary, based on Chapter 2, the following scientific results can be formulated: 
 

Result 1/1 
I have defined the following three different types of sensitivity information for the sensitivity 
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analysis of the optimal solution of linear programming problems: 
Type I sensitivity: Type I sensitivity determines those values of some model parameters 

for which a given optimal basis remains optimal. 
Type II sensitivity: Type II sensitivity determines those values of some model parameters 

for which the positive variables in a given primal and dual optimal solution remain positive, 
and the zero variables remain zero, i.e. the same activities remain active. 

Type III sensitivity: Type III sensitivity determines those values of some model 
parameters, for which, the rate of change of the optimal objective value function is 
unchanged. 

 
Result 1/2 
To obtain Type III sensitivity information of the optimal solution of a linear programming 
problem I have developed an algorithm which is based on the LP models summarized in 
Table 2.8. With these models sensitivity information related to the objective function 
coefficients (OFC) and to the right-hand side (RHS) parameters can be determined. 

 
The definition and detailed explanation of the three sensitivity types can be found in 

Koltai and Terlaky (1999, 2000). The algorithm for calculating the Type III sensitivity 
information is published in Koltai and Tatay (2008a, 2008b, 2011). The interpretation of the 
different sensitivity types in case of linear production planning models are discussed in Koltai 
(1995, 2006), Koltai, Romhányi and Tatay (2009), and Koltai and Tatay (2008a). 
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3 ROUTE-INDEPENDENT ANALYSIS OF AVAILABLE CAPACITY IN FLEXIBLE 
MANUFACTURING SYSTEMS 

One of the objectives of production planning is the optimal allocation of production tasks to 
production resources. In conventional manufacturing systems, generally, production planning 
models allocate parts/products directly to the machines. In flexible manufacturing systems a 
wide range of operations can be performed by the machines. In these systems parts/product 
can be prepared along several routes, consequently, instead of the classical product mix 
problem, the best possible routing mix must be determined. This chapter discusses some 
important questions of the analysis of routing. The requirement of a new way of aggregation 
in the planning stage is explained and justified. Capacity analysis of flexible manufacturing 
systems based on the suggested operation type aggregation concept is explained, and 
sensitivity of the optimal capacity allocation with respect to machine capacity changes and to 
operation time changes is analyzed. The results of this chapter are based on the papers of 
Guerrero et al. (1999), Koltai et al., (2000) and Koltai and Stecke (2008). 

3.1 Introduction 

A Flexible Manufacturing System (FMS) is an automated manufacturing system consisting of 
a set of numerically controlled machine tools with automatic tool interchange capabilities, 
linked together by an automated material handling system. One of the most important features 
of an FMS is the capacity to efficiently produce a great variety of part types in variable 
quantities. The aim of FMS is to achieve the efficiency of automated mass production, while 
conserving the ability of a job shop to simultaneously machine several part types. However, 
managing the production of an FMS is more difficult than managing production lines or job 
shops because the additional, flexibility-related degrees of freedom greatly increase the 
number of decision variables. 

There are several production management problems which must be solved simultaneously 
or hierarchically in the operation planning phase of an FMS. Stecke (1986) defined the 
following problems: 

a) Part type selection: from a set of part types a subset must be determined which 
contains those parts, which will be simultaneously processed. This can also be called 
batching. 

b) Machine grouping: The machine tools of each type must be partitioned into groups. In 
each groups the machine tools are identically tooled and can perform the same operations. 

c) Production ratios: the calculation of the ratios of those part types which are selected in 
problem a). 

d) Resource allocation: The limited number of pallets and fixtures of each fixture type 
must be allocated to the selected part types. 

e) Loading: The operations and the associated cutting tools of the selected set of part 
types must be allocated to the selected machine groups subject to technological and capacity 
constraints of an FMS. This problem includes the scheduling and routing information as well. 

Several models are developed in the literature which solves a set of the above problems 
simultaneously or hierarchically (see the literature review in Chapter 3.3). The exact 
evaluation of the capacity of an FMS can be determined, only if all the above problems are 
solved. Often, however, operations managers need a route-independent answer to production 
planning questions. For example “How much can be produced of a certain part type and 
when” are important capacity questions in business negotiations, when the detailed routing 
and scheduling is not yet of interest or cannot be known. 
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The objective of this chapter is to provide an aggregate approach to a route-independent 
capacity analysis for FMS production planning. The chapter is organized as follows. In 
Chapter 3.2 the problem of capacity analysis in FMS is illustrated with a simple example. In 
Chapter 3.3, the relevant literature is reviewed. In Chapter 3.4, some preliminary research 
which provided the basis of the introduced aggregation concept is discussed. In Chapter 3.5 
the concepts of operation type and available capacity range are introduced and the basic 
definitions and notation are explained. Next, the mathematical formulation of the capacity 
constraints and its application in production planning models are presented and the sensitivity 
analysis of the feasible capacity range is described in Chapters 3.6, 3.7 and 3.8. Finally, 
Chapter 3.9 provides some general conclusions. 

3.2 Illustration of the problem 

Manufacturing systems produce parts to meet demand, which is either forecasted and/or is an 
actual quantity. When developing a production plan, an initial question is whether there is 
enough capacity of the system for the different operations needed. Production planning for 
conventional manufacturing systems is more straightforward than in flexible manufacturing 
systems. In some conventional systems, the capacity available for production can be 
determined directly from the available capacities of the different single-purpose machines, as 
they can usually perform only a small variety of operations. A system with multi-purpose 
computer numerical control (CNC) machines provides additional opportunities to increase 
system utilization through machine flexibility, since each machine can be used for a variety of 
operations. In this case, however, the capacity of the system is related to the routing of the 
parts. The problem of route dependence of manufacturing capacity is illustrated with the help 
of Figure 3.1. 
 

Figure 3.1 Illustration of the routing of part type i 
 

For example, consider two identical flexible machines. In a current configuration, M1 is 
tooled for drilling and milling operations, while M2 is tooled just for the milling operations. 
The milling operations of part type i can be done on either M1 or M2 while the drilling 
operations can be performed only on M1. In this case, the capacity of the system to produce 
part type i depends on the quantity produced on the two different routes (r i,1, r i,2) indicated in 
Figure 3.1. Therefore, an operations manager’s questions on the production quantity of this 
part type cannot be answered without solving the routing problem. In practice, however, 
managers frequently face situations where the production quantity should be determined prior 
to deciding the routing of parts. It would be desirable to be able to determine the available 
capacity independent of the future routing. 

To illustrate this problem, consider a part manufacturer which produces two different part 
types on four CNC machines (M1, M2, M3 and M4)1. In the current setup configuration, there 

                                                      
1 This example is based on the manufacturing of two simple parts in the Machine Division of GE Lighting 
Tungsram in Budapest, Hungary.   
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are several ways to perform the required operations, which are summarized in Table 3.1. P1, 
for example, can be manufactured on a route visiting all machines, and/or on a route visiting 
just machines M2 and M4, as well as other routes. P2 can only be manufactured on two 
different routes visiting either machines M1 and M4 or machines M2 and M4. Production 
quantity related questions therefore can’t be answered without knowing the routing mix of the 
parts. A production planner at times would like to know the answers to the following 
questions: 

1) Is there enough capacity to produce the required quantities of the different part types? 
2) A design change of a part requires an increase in the processing time of one of its 

operations. Can we complete the orders on time, despite the change in this operation 
time? 

3) Maintenance of some machines is scheduled for a given period. Can we complete the 
orders of that period, despite the decrease in capacity? 

4) Is it worthwhile or necessary or possible to schedule overtime in case of a lack of 
capacity? 

In many situations, a route-independent answer is desired to these questions. If, for 
example, we are negotiating with a customer about some order (whether to accept the order or 
not; how to set a due date), we would like to have a global view of available capacity. We 
want to know if some orders can be completed, independent of how the parts of that order will 
be routed. If maintenance of some machines is planned, we want to know whether the orders 
can still be completed with less capacity on some machines. In these cases, the routing and 
scheduling of the parts is not known yet. We only need to know if the system is capable of 
manufacturing the required parts both with the current available capacity and also when there 
is less capacity during planned maintenance. If the answer is yes, and decision is made on the 
maintenance, then the subsequent detailed planning process can determine the routing of the 
parts. Route-independent answers to the above questions are given in Chapters 3.7, and 3.8. 

 
Table 3.1 Basic data of the sample problem 

(operation times in capacity units) 

Part Type Operation M1 M2 M3 M4 
Operation 

type 

P1 

Turning 0.0062 0.0062   ot1 

Drilling 1  0.0069  0.0069 ot2 
Drilling 2   0.0074 0.0074 

ot3 Screw cutting   0.0049 0.0049 

P2 
Turning 0.0106 0.0106   ot1 
Milling    0.0543 ot4 
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Table 3.2 Summary of literature review 
Objective function Loading Grouping and 

loading 
Batching and loading Loading and scheduling Tool allocation and 

routing 
Workload balancing Berrada and Stecke (1986) 

Wilson (1992) 
Kim and Yano (1993) 
Kirkavak and Dincer(1993) 
Kim and Yano (1994) 

Stecke (1983) 
Stecke (1986) 
Stecke and 
Raman(1994) 
 

Bastos (1988) 
Shanker and Sirinivasulu (1989) 
Stecke and Kim (1991) 
Moreno and Ding (1993) 
Solomon, Millen and  Afentakis 
(1995) 

Sanker and Tzen (1985) 
Sawik (1990) 

Arbib, Lucertini and 
Nicolo (1990) 
Sodhi, Agnetis and 
Askin (1994) 

Cost optimization Sarin and Chen (1987) 
Ram, Sarin and Chen (1990) 
Kouvelis and Lee (1991) 
Basnet (1996) 

 Liang and Dutta (1993)  Liang and Dutta (1990) 
Sodhi, Askin and Sen 
(1994) 

Part movement 
minimization 

Shanker and Rajamarthandan 
(1989) 
Wilson (1989) 

Stecke (1983) 
Stecke (1986) 
 

  Arbib, Lucertini and 
Nicolo (1990) 
D’Alfonso and Ventura 
(1995) 

Sum of part type 
priorities 
maximization 

  Bastos (1988) 
Hwang and Shogan (1989) 
Liang and Dutta (1993) 
Srivastava and Chen (1993) 
Mohamed (1996) 

  

Tool changeovers 
minimization 

De Werra and Widmer (1990)   Sawik (1990)  

Makespan 
minimization 

  Chen and Chung (1996) 
Liang and Dutta (1993) 

Greene and Sadowski 
(1986) 
Sherali, Sarin and Desai 
(1990) 
Chen and Chung (1996) 

Chen and Chung (1991) 
Liang and Dutta (1990) 

Total processing time 
minimization 

Chakravarty and Shtub (1984) 
De Werra and Widmer (1990) 

    

Part type lateness 
minimization 

  Moreno and Ding (1993) Shanker and Tzen (1985) 
Green and Sadowski 
(1986) 
Sawik (1990) 

 

Other Lashkari, Bopari, and Paulo 
(1987) 
De Werra and Widmer (1990) 

Stecke (1983) 
Stecke (1986) 

Shanker and Sirinivasulu (1989) Greene and Sadowski 
(1986) 

Chen and Chung (1991) 
Atan and Pandit (1996) 
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3.3 Literature review 

The loading problem has been extensively studied due to its importance in FMS production 
planning. The available capacity for production in an FMS is generally examined together 
with the loading and routing problem. The loading problem has been considered separately as 
well as together with other related problems such as machine grouping, part type selection and 
scheduling. A variety of loading objectives have been considered. Also, instead of loading, 
some researchers consider only one of the two issues that make up the loading problem: tool 
allocation and routing. Table 3.2 provides a summary of the approaches categorized by 
problem type and objective function.  Since some researchers use more than one objective 
function, the same item may appear more than once in the same column. Note the following: 

– Overall, the most common objective function is workload balancing, followed by the 
more traditional cost minimization approach. 

– When not alone, loading has been solved most often together with part type selection 
and with scheduling. In the first case, the usual objective function is the maximization of the 
sum of part type priorities. In the second case, traditional scheduling performance measures 
such as makespan and lateness are used. 

– Many researchers have either proposed alternative objective functions or have tried to 
harmonize more than one objective. 

Two assumptions of most existing approaches can be observed. The first general 
assumption is that each part type is required to follow only one of its alternative production 
routes. This makes only a partial use of the routing flexibility of the FMS. The second 
assumption is that the models consider only one copy of each tool type to be assigned to a 
machine when the tool is required. However, multiple copies may be beneficial, or even 
necessary, if they are used heavily or have short lives. It is thus desirable to allow for 
duplicate copies of tools to be loaded in tool magazines. This increases the length of time until 
the system is stopped to change tools and also augments the amount of processing that can be 
shared among machines. 

Note that Table 3.2 summarizes the literature available in the period when this research 
was conducted between 1991 and 1997 (Guerrero et al., 1999). 

Finally, it can be concluded that, although many mathematical programming models have 
been proposed to solve the FMS loading problem, none considers explicitly the concept of 
production route, which is the major source of operational flexibility of an FMS, and has a 
crucial role in capacity planning.  

3.4 The requirement of an aggregation concept 

Since routing of parts is one of the major sources of complexity in the planning phase, any 
effort which results in acceptable simplification of planning models may have scientific and 
practical significance. Two of my earlier research must be mentioned, which lead to the 
suggested aggregation concept. 

One possible way to describe routing possibilities in production planning models is the 
introduction of the routing parameter θir which expresses the proportion of parts i following 
route r in the system. In a paper written with Guerrero et al. (1999) we have formulated a 
production planning model which determined optimal batching of parts together with optimal 
routing and tooling. The objective function in this model expressed deviation from a balanced 
workload, which was minimized. The recommended model has limited practical significance 
as a consequence of the high number of variables, but the proposed introduction of the routing 
parameter (θij) gained wide acceptance in the scientific literature (See for example Lashkari, 
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Bopari and Paulo, 2004; Magarjuna, Mahesh and Rajagopal, 2006; Sujono and Lashkari, 
2007; Navala and Awari, 2011; Arikan and Erol, 2012). 
 Flexible manufacturing systems have high fixed cost which makes product costing 
very complicated. Costing in high fixed cost production and service system can be efficiently 
performed with activity based costing (Johnson, 1991). Fixed costs must be assigned to the 
products according to the resource consumption during manufacturing. Parts following 
different routes, however, might have different resource consumption characteristics, and 
consequently several different unit manufacturing cost may belong to a product if not all units 
follow the same route. To illustrate this problem, I have developed a costing model based on 
activity based costing (ABC) which is illustrated in Figure 3.2. 

According to the suggested model, production overhead is divided into five activity 
centers. Obviously each activity center represents several activities, but the applied cost 
drivers must correctly estimate the resource consumption of the pooled activities. The “other 
activities” can be further split based on the specific characteristics of an FMS. Three out of 
the five overhead allocation bases are calculated from the results of a production planning 
model and the other two are calculated from the output of the real or simulated performance 
of an FMS. Detailed numerical results generated by the proposed costing system can be found 
in Koltai et al. (2000). 

Figure 3.2 Activity based costing in a FMS 
 

The analysis of the performance of the suggested flexible costing system shows the 
complexity of the overhead allocation process. Production planning selects different orders 
under different conditions, which influences the batch makespan, the overhead allocation 
bases and rates and the overall resource consumption. The interaction of these four elements 
makes unit production costs unpredictable unless a sophisticated costing system similar to the 
suggested one is available. The several different unit costs obtained for the same product do 
not imply that selling price of the product should constantly be updated. But monitoring the 
constantly changing manufacturing cost of a product in a longer period can help to examine 
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whether an FMS is really using its potential flexibility, and whether the products produced in 
different product mixes are really requiring the available flexibility. 

The complexity of modeling of routing in the production planning phase and the difficulty 
of production cost evaluation indicate that the elimination of routing with some kind of 
aggregation technique may help to ease the complexity problem. 

Aggregation is a widely used tool in production planning. Among the reasons for 
aggregation, the following three are especially important. 

– First, when some elements of a production system are aggregated, simpler models can 
be applied for capacity, inventory, and production planning. When more detailed information 
is required, then the aggregated elements are disaggregated and/or a more detailed model is 
applied. In traditional production planning models, products and/or facilities are aggregated 
(Thomas and McClain 1993). Products using the same setup of a production process are 
aggregated into product families and/or products with similar resource consumption are 
aggregated into product types. When a feasable aggregate production plan and capacity 
utilization is determined, a detailed production program can be prepared, in which product 
types and/or families are disaggregated into products (see, for example, Johnson and 
Montgomery 1974, Hax and Candea 1984). Facility-level aggregation consolidates several 
different production resources, such as machines, workforce, and materials, into a single 
resource or facility (see, for example, Holt et al. 1960). 

– Second, in situations where the production environment changes constantly (e.g., 
changing demand, machine breakdowns, online control decisions), capacity planning should 
be insensitive to such changes. Robust planning methods are required, which provide results 
for a large variety of possible scenarios (Váncza and Kovács, 2004; Taal and Wortmann, 
1997; Tolio, Urgo and Váncza, 2011). Aggregation of products and/or resources helps to 
decrease the consequences of changes in the production environment (Nam and Logendran 
1992; Vollman, Berry and Whybark, 1997).  

– Third, when not all information is available for planning (e.g., scheduling decisions are 
not made yet), a rough estimate of the required workforce and machine capacities can be done 
at an aggregate level. There are several rough-cut capacity planning methods based on the 
aggregation of several elements of a production system (see, for example, Vollman, Berry and 
Whybark, 1997).  These methods are built into most of the standard software packages 
prepared for production and capacity planning (Wortman et al., 1996). 

In most decision-making-contexts aggregate models serve as a link between strategic and 
tactical decisions (Singhal and Singhal 2007).  These models can be used as rough cut 
planning tools, which provide aggregate information for strategic decisions without the 
unnecessary (and frequently unknown) details of operation. Furthermore, their results provide 
a planning framework for operational decisions as well. 

What should be aggregated is an important question of aggregate planning. A special-
purpose machine performs just a small set of technologically different operations. In this case, 
aggregation of machines is approximately equivalent to the aggregation of operations. In 
FMSs, machines and operations have to be treated separately, since an operations manager 
decides the set of operations a machine can perform. This was recognized by Niess (1980), 
who aggregated similar operations into operation types. Niess developed an algorithm to 
determine a series of sets of orders for several production periods. The generated production 
plan provides balanced capacity utilization. Niess applied this method to conventional 
production systems consisting of several single- and multi-purpose machines. 

Bertrand and Wortmann (1981) formulated capacity constraints that consider the 
alternative use of several resources. These constraints were first formulated for machine 
operators. If several operators can tend several machines, the situation is similar to an FMS, in 
which several machines can perform several operations. The formulated capacity constraints 
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were extended from operators to machines, but used for detailed planning, and not for 
aggregate planning.  

It can be concluded that methods that reduce the complexity of FMS capacity analysis, 
and provide aggregate, rough-cut, route-independent estimates of available capacity can be 
useful for operations managers of these systems (Koltai and Stecke, 2008).  

3.5 Basic definitions and concepts of the aggregation based on operation types 

The notations used in Chapter 3.5 are summarized in Table 3.3. A flexible manufacturing 
system (FMS) is a collection of machines, linked by an automated materials handling system 
and directed by a central computer. Different part types are produced in the system and each 
part type has a finite number of operations. 

An operation, oj, is defined by its processing time on a machine and by the set of cutting 
tools required. In FMSs, generally more than one machine can perform certain operations. In 
Figure 3.1, for example, each machine can perform milling operations. This provides routing 
flexibility. 

The set of all operations, which can be performed on any machine in a particular group of 
machines, is called operation type, oth. An operation type is an aggregated set of operations. 
In the example of Figure 3.1, the drilling operations can only be performed on machine M1. 
Therefore this operation is also an operation type (ot1). Milling can be done on machines M1 
and M2. Therefore the milling operations of these two machines can be aggregated into 
another operation type (ot2). 

To analyze the capacity of an FMS, the available capacity of every combination of the 
operation types has to be known. A specific combination of different operation types is called 
an operation type set, Sk. 

The tooling of a machine determines the operations that the machine can perform. 
Operations are aggregated into operation types. Therefore a machine can perform a set of 
operation types. An operation type set assignment parameter, zkm, specifies the operation type 
sets assigned to machine m. If zkm=1, then machine m can perform all operations belonging to 
operation type set k. 

The calculation of the capacity of each operation type set is based on machine capacity. 
The capacity of a machine, cm, is expressed in capacity units (CUs) over a period of, for 
example, a shift or two, or a day, or a week. The capacity unit is a normalized measure of the 
available capacity for the period examined. For example, 1 CU is equal to 8 hours, if the 
production capacity of one 8 hour long shift is to be examined. 

An upper capacity bound of a particular operation type set k, uk, is the maximum amount 
of capacity available for operation type set k. It is calculated as the sum of the CUs of those 
machines that are capable of performing any and all operations belonging to that operation 
type set, that is,  

{ }
∑∑

=
′′

′′∈′′
=⋅=

′′

M

m
mkm

SSk
k Kkzcu

kk 1

,,1K  (3.1) 

In equation (3.1), kS′′  is the set of all operation type sets that contain any of the operation 

types of operation type set Sk. For each operation type set k, it is checked to see if the 
corresponding kS′′  sets can be found on any of the machines. If they can, then the 

corresponding machine capacities are considered at the calculation. 
In each column of the matrix defined by zkm, only one element is equal to 1, since only 

one operation type set can be assigned to a machine m. Therefore, the capacity of each 
machine can be considered only once in the summation in (3.1). But the capacity of machine 
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m is considered in the summation only if the operation type of that machine is an element of 
the set kS′′ , that is, for which kk SS ′′∈′′  and 1=′′mkz . 

 
Table 3.3 Summary of notation of Chapter 3 

 
A lower capacity bound of an operation type set k, lk, is the minimum amount of 

unassigned capacity for operation type set k that is available only for the operations that 
belong to that operation type set. It is calculated as the sum of the CUs of those machines that 
are capable of performing only those operations belonging to that particular operation type 
set. 

{ }
Kkzcl

M

m
mkm

SSk
k

kk

,,1
1

K=⋅= ∑∑
=

′
′∈′ ′

 (3.2) 

In equation (3.2), kS′  is the set of those operation type sets that contain only operation 

types belonging to Sk. For each operation type set k it is checked to see if the corresponding 

Subscripts: 
i – index of part type (1, ...,I), 
h – index of operation type (1, ...,H), 
k – index of a set of operation types (1, ...,K), 
k′ – index of a subset of a set of operation types (1, ...,K′), 
k″ – index of a subset of the set of all operation types (1, ...,K″), 
m – index of machines (1, ...,M). 
Parameters: 
oj – operation j, 
oth – operation type h, 
Sk – operation type set k, 
S′k – set of operation type sets that contain only operation types belonging to Sk, 
S″k –  set of operation type sets that contain any of the operation types of  
  operation type set Sk, 
cm –  production capacity of machine m, 
zkm – operation type set assignment parameter. It is equal to 1 if operation type set  
  k is assigned to machine m, and it is equal to 0 otherwise, 
uk – upper capacity bound of operation type set k, 
lk – lower capacity bound of operation type set k, 
α – acceptable ratio of capacity under-utilization, 
β – acceptable ratio of capacity over-utilization, 
pji – processing time of operation j of a part of type i, 
pthi – processing time of all operations of operation type h of type i, 
pski  – processing time of all operations of operation type set k of a part of type i, 
rth – capacity requirement of operation type h, 
rsk – capacity requirement of operation type set k, 
wi – weight of part type i, 
∆rth

– – feasible decrease of the capacity requirement of operation type h,  
∆rth

+ – feasible increase of the capacity requirement of operation type h, 
∆cm

– – feasible decrease of the capacity of machine m, 
∆cm

+ –  feasible increase of the capacity of machine m, 
wi – weight of a part type in the objective function. 
Variables: 
xi – production requirements of part type i. 
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kS′  sets can be found on any of the machines. If they can, then the corresponding machine 

capacities are considered at the calculation. The capacities of those machines need to be 
summed, which contain any of the operation type sets of kS′ , that is, for which kk SS ′∈′  and 

1=′mkz . 

Some details about these bounds are as follows. If each machine that can perform any of 
the operation types of a specific operation type set k can perform operation types not 
belonging to operation type set k, then the lower capacity bound of operation type set k is 
equal to zero. For example, if each machine can perform all operation types, then the lower 
capacity bound of all but one operation type sets are equal to zero. In this case, the only non-
zero lower capacity bound will belong to the operation type set that contains all operations 
types. For this operation type set, the lower and upper capacity bounds always coincide, and 
are non-zero. 

The available capacity per period for an operation type set is a range defined by the upper 
and lower capacity bounds. A necessary condition of capacity availability is that the capacity 
requirements from all operation type sets must be less than their corresponding upper bounds. 
When all operations have been assigned to machines and the workload is less than the lower 
capacity bound of any operation type set, then there is machine idle time. 

In real manufacturing systems, production managers may need to work around a certain 
amount of lack of capacity. To supplement capacity, management may consider overtime, 
subcontracting, or other possible capacity adjustments. The size of acceptable capacity over-
utilization, β, is expressed as a percentage of total capacity. The capacity increased by 
acceptable over-utilization is called the extended capacity upper bound. 

Also, production managers are generally resigned to a certain amount of idle capacity. 
Idle capacity is either planned and serves as buffer capacity to absorb the effect of unexpected 
events (i.e., machine breakdowns, tool breakages, quality problems, expected or unexpected 
rush orders) or it is a consequence of scheduling constraints. The size of acceptable capacity 
under-utilization, α, is expressed as a percentage of total capacity. The capacity decreased by 
the acceptable idle time is called the extended capacity lower bound. 

The upper and lower capacity bounds are necessary but not sufficient conditions for the 
feasibility of a production plan. The role of the extended upper and lower capacity bounds is 
to provide a capacity reserve for those phenomena not considered in the aggregate planning 
phase. The extended capacity bounds allow a link between the aggregate and the operational 
planning and control levels. 

The available capacity range and the extended capacity range are information about 
capacity that can be used for production planning. To analyze the utilization of a production 
system, the capacity requirements of the operation types and operation type sets should also 
be known. This data is based on the processing times of the individual operations. 

The processing time of operation j of a part of type i, pij, is expressed in terms of CUs, 
rather than in hours or minutes. The processing time of operation type h of part type i, pthi, is 
the sum of the processing times of all of those operations that belong to operation type h, that 
is, 

{ }
∑

∈
=

hj otoj
jihi ppt  (3.3) 

The processing time of operation type set k of one part of type i, pski, is the sum of the 
processing times of all of those operation types that belong to operation type set k, that is, 

{ }
∑

∈
=

kh Soth
hiki ptps  

(3.4) 

               dc_924_14



 35

If the production requirements of part type i, xi, are known, then the capacity 
requirements of operation type h can be calculated as the sum of the processing times of all of 
those operations that belong to operation type h, that is, 

{ }
∑∑

∈=
=

hj otoj
iij

I

i
h xprt

1

 
(3.5) 

The capacity requirements of operation type set k is the sum of the capacity requirements 
of all of those operation types that belong to operation type set k, that is, 

{ }
∑

∈
=

kh Soth
hk rtrs  

(3.6) 

Note that neither the calculation of the available capacity of the operation type sets, nor 
the calculation of the capacity requirements of the operation type sets, require routing 
information. 

Using operation type aggregation, a machine capacity problem can be transformed into an 
operation type set capacity problem. In an FMS, the capacity of a machine is relative to its 
tooling and routing decisions. If a machine is tooled both for milling and drilling as in Figure 
3.1, then the available capacity of that machine for drilling depends on how much capacity is 
required or used for milling. This, however, depends on the routing of the manufactured parts 
in the whole system. In Figure 3.1, if those routes that require the milling operation of M1 are 
not used, then we have a lot of capacity for drilling. If, however, many parts are routed to M1 
for milling, then less capacity is left for the drilling operation. Consequently, what is 
important is not the machine capacity, but the operation type capacity, that is, how much 
capacity the production system has for those operations that can be performed on any machine 
in a particular group of machines. 

3.6 Illustration of the available and extended capacity ranges 

The introduced notation and concepts in Chapter 3.5 are illustrated with the help of Table 3.1 
and Figures 3.3 and 3.4. The illustration is based on the example used in Chapter 3.2 to 
introduce some basic concepts. The capacity requirements for manufacturing two part types 
(P1 and P2) are analyzed. These part types require several operations as indicated in Table 
3.1. Some operations can be produced on two different machines. For example, M4 is a 
machine center that can perform most of the operations of P1. Several milling operations of 
P2, however, can only be performed on M4. Therefore, in practice, some capacity of M4 may 
be reserved for the production of P2. 

For the sake of illustration and simplicity, it is assumed that the processing times of those 
operations that can be manufactured on any of several machines are identical on all of the 
possible machines. This assumption simplifies a general problem of aggregation. If operation 
times of an operation are not identical on each machine, then alternative uses of the machines 
results in different operation times. For example, suppose that the operation times of the 
operations of ot1 in Figure 3.3 are different on the two different machines (M1 and M2). Then 
there is no single operation time that can be used when the capacity requirement of ot1 is 
evaluated, because the aggregated operation time will depend on how many parts are routed to 
each machine. There are several possible ways to cope with this problem in practice. Here are 
some examples. 

a) The operations with different operation times on two machines are aggregated into two 
different operation types. In this case, the number of operation types, and therefore the 
number of operation type sets, will increase. (Exact solution) 
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b) A weighted average of the operation times is used. The weights assume a possible 
routing ratio between the two machines. In this case, the aggregated operation time is 
approximate. 

c) Identical operation times are used, and the actual difference in operation times is 
reflected in the available capacity. 

 

Figure 3.3 Allocation of operation types to machines 
 

The processing times of the operations of the two part types are given in Table 3.1 in 
capacity units (CUs). In this example, the production system works in one 7.5 hour shift with 
0.9 efficiency. Therefore, 0.0062 CUs in Table 3.1 is equivalent to 2.5 minutes 
(0.0062*7.5*60*0.9). 

Since an operation type is an aggregate set of all operations that can be performed on the 
same group of machines, 4 operation types are identified in Table 3.1. Those operations that 
can be done on M1 and M2 are aggregated into ot1. ot1 is the result of aggregating the turning 
operations of P1 and P2 into one operation type. The operations that can be done on M2 and 
M4 are aggregated into ot2. Those operations that can be done on M3 and M4 are aggregated 
into ot3. ot3 is the result of aggregating two different operations of P1 into one operation type. 
The operations that require only M4 are ot4. The machines with their aggregated operations 
are illustrated in Figure 3.3. 

The available capacity ranges for all operation type sets are displayed in Figure 3.4. All 
operation type sets are placed on the horizontal axis. In this case, there are four operation type 
sets (S1, …, S4) with single operation types, six operation type sets (S5, …, S10) with two 
operation types, four operation type sets (S11, …, S14) with three operation types, and one 
operation type set (S15) with four operation types. The total number of operation type sets, K, 
can be calculated as K=2H–1=24–1=15.  

The vertical axis of Figure 3.4 represents the upper capacity bounds, the lower capacity 
bounds, and the available capacity range of each operation type set. One capacity unit is equal 
to 405 minutes/day (one 7.5 hour shift, with 0.9 efficiencies). 

The upper capacity bounds (uk) in Figure 3.4 are calculated with equation (3.1). The 
elements of the kS′′  set in case of the sample problem of Figure 3.3 are listed in Table 3.4. For 

example, S5 contains ot1 and ot2; therefore 5S′′ contains all of those operation type sets that 

contain either ot1 or ot2, as seen in Table 3.4. Since S1 belongs to M1, S5 belongs to M2, and 
S13 belongs to M4, and S1, S5, and S13 are all elements of 5S′′ , the sum of the capacities of these 

three machines is calculated according to the left-hand side of equation (3.1). 
The lower capacity bounds (lk) in Figure 3.4 are calculated with equation (3.2). Table 3.4 

shows the elements of kS′  for all operation type sets of the sample problem illustrated in 

Figures 3.3. For example, S5 contains ot1 and ot2; therefore 5S′  contains all operation type sets 

that contain only ot1, ot2, or both ot1 and ot2, as can be seen in Table 3.4. Since S1 belongs to 

M1

ot1

M3

ot3

M2

ot1, ot2

M4

ot2, ot3, ot4

M1

ot1

M3

ot3

M2

ot1, ot2

M4

ot2, ot3, ot4
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M1, S5 belongs to M2, and S1 and S5 are all elements of 5S′ , the sum of the capacities of these 

two machines is calculated using the left-hand side of equation (3.2). 

Figure 3.4 Illustration of the ideal available capacity range and the capacity requirements 

(α=0.25, β=0.25, x1=100, x2=20) 
 
The lk and uk values are indicated as the lower and upper sides of the grey block at each Sk 

in Figure 3.4. 
For example, for operation type set S1, the lower bound l1=1 CU (405 minutes), because 

M1 is the only machine which exclusively performs the operations of ot1. The upper bound 
u1=2 CUs (810 minutes), since M1 and M2 are both capable of performing the operations of 
ot1. For S6, which is an operation type set containing operation types ot1 and ot3, l6=2 CUs 
(810 minutes) because M1 can perform ot1 and M3 can perform ot3; u6=4 CUs (1620 
minutes), as all four of the machines can do either ot1 or ot3. 

If the capacity requirements are smaller than the lower bound of any operation type set, 
then the system is underloaded, and there is idle capacity on one or more machines. For 
example, if less than 1 CU (405 minutes) from ot1 is required, then M1 would have idle 
capacity. If the capacity requirement is greater than the upper bound of any operation type set, 
then the system is overloaded, i.e., there is not enough capacity available for the required 
operations. For instance, if more than 2 CUs (810 minutes) are required for ot1, then M1 and 
M2 will not have enough capacity to perform the turning operations. When the capacity 
requirements of each operation type set are within the lower and upper capacity bounds (the 
gray area in Figure 3.4), then there is neither unutilized nor excess capacity on any of the 
machines. In the most favorable situation, the capacity requirements of a set of orders of a 
given period fall into the ranges defined by the lower and the upper bounds for each operation 
type set. 

The capacity requirements for each operation type set are also shown in Figure 3.4 by a 
bold horizontal line at each operation type set. The capacity requirement data are calculated 
for a production plan that calls for production of 100 parts of P1 and 20 parts of P2.  
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Table 3.4 Definition of sets S′ and S″ in the sample problem 
k Sk kS′  kS′′  

1 {ot1} { S1} 
{ S1; S5; S6; S7; S11; S12; S14; S15} 
 

2  { ot2} { S2} 
{ S2; S5; S8; S9; S11; S12; S13; S15} 
 

3  { ot3} { S3} 
{ S3; S6; S8; S10; S11; S13; S14; S15} 
 

4 {ot4} { S4} 
{ S4; S7; S9; S10; S12; S13; S14; S15} 
 

5 {ot1; ot2} { S1; S2; S5} 
{ S1; S2; S5; S6; S7; S8; S9; S11; S12; S13; S14; 
S15} 

6 {ot1; ot3} { S1; S3; S6} 
{ S1; S3; S5; S6; S7; S8; S10; S11; S12; S13; S14; 
S15} 

7 {ot1; ot4} { S1; S4; S7} 
{ S1; S4; S5; S6; S7; S9; S10; S11; S12; S13; S14; 
S15} 

8 {ot2; ot3} { S2; S3; S8} 
{ S2; S3; S5; S6; S8; S9; S10; S11; S12; S13; S14; 
S15} 

9 {ot2; ot4} { S2; S4; S9} 
{ S2; S4; S5; S7; S8; S9; S10; S11; S12; S13; S14; 
S15} 

10  { ot3; ot4} { S3; S4; S10} 
{ S3; S4; S6; S7; S8; S9; S10; S11; S12; S13; S14; 
S15} 

11 
{ ot1; ot2; 
ot3} 

{ S1; S2; S3; S5; S6; S8; S11} 
{ S1; S2; S3; S5; S6; S7; S8; S9; S10; S11; S12; 
S13; S14; S15} 

12 
{ ot1; ot2; 
ot4} 

{ S1; S2; S4; S5; S7; S9; S12} 
{ S1; S2; S4; S5; S6; S7; S8; S9; S10; S11; S12; 
S13; S14; S15} 

13 
{ ot2; ot3; 
ot4} 

{ S2; S3; S4; S8; S9; S10; S13} 
{ S2; S3; S4; S5; S6; S7; S8; S9; S10; S11; S12; 
S13; S14; S15} 

14 
{ ot1; ot3; 
ot4} 

{ S1; S3; S4; S6; S7; S10; S14} 
{ S1; S3; S4; S5; S6; S7; S8; S9; S10; S11; S12; 
S13; S14; S15} 

15 
{ ot1; ot2; ot3; 
ot4} 

{ S1; S2; S3; S4; S5; S6; S7; S8; S9; S10; S11; 
S12; S13; S14; S15} 

{ S1; S2; S3; S4; S5; S6; S7; S8; S9; S10; S11; 
S12; S13; S14; S15} 

 
The graphical display is used to determine whether or not the manufacturing system is in 

technological balance, i.e., to check whether there is any excess capacity or lack of capacity 
from certain operation types. Figure 3.4 indicates underload of operation type sets S1, S5, S11, 
and S15. For example, the underload at S5 indicates that idle capacity may exist on M1 and 
M2. 

Figure 3.4 also shows overload of operation type sets S4, S10, and S13. For example, the 
overload of the operations of S10 indicates that the capacity requirements of ot3 and ot4 
together are higher than the available capacities on machines M3 and M4.  

In summary, there could be idle capacity on some machines, while there might not be 
enough capacity on other machines to fulfill production. Figure 3.4 displays the increased 
available capacity ranges when 25 percent capacity over- and under-utilization are acceptable 
for management (α=β=0.25). The thin vertical lines represent the increased upper bounds and 
lower bounds. The capacity requirements are within this extended range for all operation type 
sets. 

Another capacity analysis could be done by changing the part mix, i.e., increasing and/or 
decreasing the production requirements of the part types (see Chapter 3.7). Requirements 
could be changed until there is no capacity overload or underload. 

The example of Figure 3.4 shows a potential difficulty when performing capacity 
analyses based on operation types. There could be a high number of operation type sets. The 
total number of operation type sets is K=2H–1, where H is the total number of operation types. 
In our example, K=15. In general, however, the value of K is determined by the number of 
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machines and by the number of alternative manufacturing possibilities. In the worst case, 
where for M machines all possible operation types exist (H=2M–1), the total number of 
operation type sets is 

( ) 12 12 −= −M
K  (3.7) 

In practice, the number of machines is small. Usually a group of 3-5 machines is 
dedicated to manufacturing a set of part types. If the number of machines is large, then 
methods exist to decompose the system into small independent or partly independent 
subsystems (Bertran and Wortmann 1981; Juhasz and Koltai 2003). Even if the number of 
machines is high and the system cannot be decomposed into subsystems, the value of K can 
be small; because it is unlikely that for all manufacturing possibilities at least one operation 
exists. It is more common that some group of operations can alternatively be performed on 
more than one machine. Therefore, although theoretically the value of H can be large, 
practically it is within a tractable range (5-20). In this range, computational time is acceptable 
for practical applications as is seen later in Table 3.5 of Chapter 3.7. 

3.7 Model formulation 

In this chapter, the route-independent mathematical programming formulation of the FMS 
capacity constraints is presented, using the notation of Table 3.3. 

If the capacity requirements of all operation type sets are lower than the capacity upper 
bounds, then there is sufficient capacity to manufacture the required quantity. Constraint (3.8) 
imposes that the capacity requirements for all operations of operation type set k should be less 
than the upper capacity bound of operation type set k, that is, 

( ) Kkpsxu
I

i
kiik ,,11

1

K=≥⋅β+ ∑
=

 (3.8) 

Since the upper capacity bound is the maximum amount of available capacity for 
operation type set k, constraint (3.8) ensures that there is enough capacity to perform all 
operations of operation type set k.  

The parameter β expresses the acceptable percentage of capacity over-utilization. For 
example, in Figure 3.4 the capacity requirement for all operations of S2 is lower than the 
upper capacity bound of S2. In this case constraint (3.8) is feasible for k=2. For S4, the 
capacity requirement is higher than the upper bound and therefore constraint (3.8) for k=4 is 
infeasible with β=0, and without a certain amount of overtime, the required production 
quantities cannot be completed. If, for example, β=0.25, then 2.083 (7.5*0.25/0.9) hours of 
overtime is allowed by management on those machines (M4) which perform the operations of 
ot4. 

If the capacity requirements of all operation type sets are higher than the capacity lower 
bounds, then all machines are fully utilized. Constraint (3.9) imposes that the capacity 
requirements of all operations of operation type set k should be higher than the lower capacity 
bound of operation type set k, that is, 

( ) Kkpsxl
I

i
kiik ,,11

1

K=≤⋅α− ∑
=

 (3.9) 

Since the lower capacity bound of operation type set k is the sum of the capacities of 
those machines that are capable of performing only the operations of operation type set k, 
constraint (3.9) ensures that there is no idle capacity on those machines.  

Of course, one doesn’t want to plan for a fully utilized system. Some amount of idle time 
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is necessary. The parameter α provides the acceptable percentage of capacity under-utilization 
of the machines. For example, in Figure 3.4, the capacity requirements for all operations of S1 
is lower than the lower capacity bound of S1, which makes constraint (3.9) infeasible for 
α=0.1, but feasible for α=0.25. For S2, the capacity requirement is above the lower bound, so 
constraint (3.9) is satisfied. 

Equation (3.9) helps avoid capacity under-utilization. If machines are idle because of lack 
of capacity requirements, then there is no feasible solution for equation (3.9). Then other 
operation management measures can be taken, such as decreasing working hours, increasing 
order numbers or order sizes, or ultimately accepting underutilized capacity. 

Finally, objective function (3.10) allows a variety of management objectives to be 
expressed when the production quantities of part types are to be determined. 

∑
=

I

i
ii xwMax

1

 (3.10) 

If, for example, management would like to maximize the production quantity, then 
objective function (3.10) with wi=1, i=1,…,I maximizes the sum of the quantities produced of 
each part type. If management wants to determine an economic part mix, then wi can be, for 
example, the contribution margin of a part of type i. 

Since the quantity of parts is measured in pieces, the variables xi i=1,…,I are integers. 
Equations (3.8) – (3.10) provide an integer programming model, which can be solved by any 
available mathematical programming solver. 

Other constraints may exist in practice. Generally, if other resources limit production 
(e.g., the material handling system) or waiting time or scheduling problems cause delay, then 
these issues can be considered in two possible ways by the presented approach. 

a) Parameter α in equation (3.9) can be used to provide enough capacity reserve to 
address the above mentioned problems. 

b) If further issues are also considered important by the decision maker (for example, 
scheduling or material handling details and/or delays), then additional constraints can be 
formulated. 

To illustrate the use of the model, let us determine, for example, the maximum quantity 
that can be produced of the two products presented in the example in a working day. 15 
extended lower bounds and 15 extended upper bounds can be formulated using equations 
(3.8) and (3.9). 

Note that sometimes the constraints for certain operation type sets are redundant. It is 
easy to see that the lower and upper bound constraints for operation type sets S6, S7, and S14 
can be ignored. To see this, consider operation type set S6. It contains two operation types, ot1 
and ot3. ot1 is assigned to M1 and M2, and ot3 is assigned to M3. These two operation types 
do not use the same machines. Therefore, if there is enough capacity separately for ot1 and ot3, 
then there is enough capacity for these two operation types together. Similar considerations 
explain the redundancy of constraints for operation type sets S7 and S14. An algorithm that 
finds redundant operation type set constraints can be found in Juhász and Koltai (2003). 

To develop the model, we need the machine capacities; the operation type set assignment 
parameters, and the processing time information. All machines have the same working hours. 
Therefore cm=1 CU, m=1,…,4. Based on Table 3.1 and Figure 3.3, z1,1=z3,3=z5,2=z13,4=1, and 
all other values of zkm are equal to zero. The value of pski (k=1,…,15, and i=1,2) can be 
calculated with the data of Table 3.1 and using equations (3.3) and (3.4). Finally, for the 
production quantity to be maximized, w1=w2=1. 

The resulting integer programming model consists of two integer variables (x1 and x2) and 
24 constraints. The lower and upper bounds of the three redundant operation type sets are not 
needed. This small problem can easily be solved, for example, by Excel Solver. The optimal 
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maximum quantities are x1=194 and x2=0 parts/day. If the weight in the objective function 
forces production of P2, then the total production quantity decreases. If w1=1 and w2=5, then 
the optimum solution is x1=101 and x2=23 parts/day.  

The optimum solution consists of two values, the manufacturing quantities of the two part 
types. These quantities are independent of the several available manufacturing routes. We do 
not know yet how the parts will be routed, but the necessary condition of capacity availability 
is met with these quantities. This demonstrates that the first question of Chapter 3.2 can be 
answered without considering the routing of parts. 

The example is simple for illustration. In real cases, other constraints, more machines, 
operation types, and products, minimum and maximum production requirements, and more 
complex objective functions can be formulated. 

Table 3.5 provides test results from different size problems solved with the Lingo 6.0 
mathematical programming software on a Pentium IV processor. It can be seen that, if only 
the number of machines increases, then the number of constraints does not change, and the 
change of CPU time is insignificant. Generally, however, an increase in the number of 
machines implies more alternative routes. Therefore, the number of operation types may 
increase. For example, for 8 operation types, 510 lower and upper bound constraints are 
necessary, but the required CPU time to solve the problem is still very small, 8 or 9 seconds. 

Our general experience with solving test problems is that as a consequence of increasing 
the number of operation types, the increase in computation time is not significant. However, 
an increase in the number of operation type sets and the memory requirements to generate and 
store the kS′  and kS′′  sets for large problems require careful data management. Even for large 

problems, however, the capacity constraints are easily formulated with equations (3.8) and 
(3.9). 

Table 3.5 Test results of different size problems 
(Lingo 6.0 solver, Pentium IV processor) 

Test 
problems 

Number of 
CPU 
time 

(mm:ss) 

Operation 
types 
(H) 

Machines 
 

(M) 

Operation 
type sets 

(K) 

Constraints Iterations 

1 4 4 15 30 25 0:01 
2 4 5 15 30 15 0:01 
3 6 4 63 126 33 0:01 
4 6 5 63 126 37 0:01 
5 8 4 255 510 90 0:08 
6 8 5 255 510 167 0:09 
7 8 6 255 510 115 0:09 

 
 Finally, note that although the results are route independent, the model is part mix 

dependent. If new part types are introduced or existing part types are completed, the operation 
types and type sets may change. However, part mix change, if it exists, can be easily handled 
by the presented approach. Two possible decision-making scenarios can be envisioned. 

a) Part mix is stable. Process plans are known, operation types and operation type sets are 
formed, and management has to answer product mix, maximum production quantity, and 
capacity availability related questions. In this scenario, there is no part mix change, and the 
application is straightforward. If the decision-making period is short enough, this scenario is 
valid. 

b) Frequent part mix changes. As the mix changes, new operation types have to be 
determined and new operation type sets have to be formed. Since operation types are easily 
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determined (see the definition in Chapter 3.5) and operation type set formation is 
straightforward, the extra computational work can be easily performed. Even if part mix 
frequently changes, our previous remarks concerning the number of operation type sets are 
valid.  Therefore, frequent part mix change does not increase the size of the problem.  It only 
increases the frequency of model update. 

This problem, however, exists in the case of machine capacity (route dependent) type 
models as well; if part mix changes, a new model has to be built. The route independent 
modeling, however, results in simpler models as compared to route dependent models. To 
illustrate this, we use the example of Table 3.1 in Chapter 3.2. The number of variables and 
constraints are summarized in Table 3.6 for both route dependent and route independent 
approaches. It can be seen that in the route independent model, 2 integer variables and 24 
constraints are needed. If a machine-based approach is used, then only 4 capacity lower 
bounds and 4 capacity upper bounds (8 constraints) are necessary. But for all of the possible 
manufacturing routes of the two products, an integer variable is needed. Then 10 integer 
variables are required to determine something (routing), which is not of interest to 
management at an early stage of the decision-making process. 

 
Table 3.6 Comparison of problem sizes 

 Route independent 
modeling 

Route  dependent 
modeling 

Number of variables 2 10 

Number of constraints 24 8 
 
If more products can be manufactured on several routes, then the number of integer 

variables increases faster in the machine-based approach than in the operation type-based 
approach. The price of simplicity is the loss of information about the quantities on the 
different routes. But if a manager does not want a detailed plan, just information about the 
feasibility of producing some new orders, then the operation type-based approach is faster and 
simpler. 

3.8 Sensitivity analyses of the operation type set constraints 

Sensitivity analyses of the parameters of the model presented in Chapter 3.7 can help to 
analyze how certain changes affect the capacity over- and under-utilization of the 
manufacturing system. The capacity requirement (rth) of an operation type and the machine 
capacity (cm) are the most important parameters altered by unexpected changes. For these 
parameters, sensitivity analysis can determine the validity range of a chosen parameter within 
which the capacity requirement remains feasible, that is, it remains within the extended 
available capacity range. This sensitivity range can be determined by the feasible increase and 
by the feasible decrease of a given parameter. Like most software packages in linear 
programming, we provide sensitivity analysis for only one parameter at a time. 

3.8.1 Sensitivity of operation type set constraints to capacity requirements 

Changes concerning orders may result in changes of their capacity requirements. A customer 
may request an increase of an order. Another customer may cancel an entire order. A 
customer may require a small modification of a part, which may result in, for example, more 
(or less) drilling time. In case of a rush order, the capacity requirements of many operation 
types may change. All of these changes affect the capacity requirements of certain operations, 
which affects the capacity requirements of the associated operation type. The sensitivity 
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analysis of the capacity requirements of an operation type can help analyze the consequences 
of these situations. 

The sensitivity range of a particular capacity requirement, rth, can be determined by 
calculating the possible change of rth for all operation type sets that contain operation type h. 
That is, a range is computed for all Sk, when oth∈Sk. The feasible decrease of the capacity 
requirements of operation type h, ∆rth

–, is determined by the minimum of the algebraic 
differences between the capacity requirements and the capacity lower bounds for all operation 
type sets that contain operation type h, that is, 

( )
( )[ ] KkHhlrsMinrt kk

Sotk
h

kh

,,1,,,11 K

&

K ==α−−=∆
∈

−  
(3.11) 

The feasible increase of the capacity requirement of operation type h, ∆rth
+, is determined 

by the minimum of the algebraic differences between the capacity upper bounds and the 
capacity requirements for all operation type sets that contain operation type h, that is, 
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(3.12) 

The results obtained from equations (3.11) and (3.12), when applied to the optimum 
solution of the sample problem (x1=101, x2=23), are given in Table 3.7.  
 

Table 3.7 Sensitivity of operation type set constraints 
to capacity requirements of operation types (α=β=0.25) 

Operation type rth ∆rth
– 

∆rth
+ 

ot1 0.87 0.066 0.935 

ot2 0.70 0.066 0.552 

ot3 1.25 0.497 0.004 

ot4 1.25 1.062 0.001 

 
The sensitivity ranges are valid for 25% acceptable capacity over- and under-utilization 

(α=β=0.25). Table 3.7 shows that the capacity requirements of ot1 can be decreased by 0.066 
CUs (26.73 minutes) without violating the lower capacity bound (∆rt1

–=0.066). This value is 
found at S5, when equation (3.11) is applied. On the other hand, the feasible increase of this 
operation type set is much higher. The minimum of equation (3.12) is found at S12 (∆rt1

+= 
0.935 CUs=378.675 minutes). 

The same value is obtained for the feasible decrease of ot2 (∆rt2
–=0.066 CUs=26.73 

minutes) indicating that a small decrease in the capacity requirements of these operation types 
will not cause capacity under-utilization. The feasible increase of ot2 is 0.552 (223.56 
minutes), which is much less than the feasible increase of ot1.  

The opposite is true for ot3 and ot4. For these capacity requirements, there is a large 
possibility for decrease (∆rt3

–=0.497 CUs=201.285 minutes, ∆rt4
–=1.062 CUs=430.11 

minutes). But changes in orders that result in an increase in capacity requirements are 
unacceptable because of lack of capacity (∆rt3

+=0.004 CUs=1.62 minutes, ∆rt4
+=0.001 

CUs=0.405 minutes).  
The results in Table 3.7 are independent validity ranges, that is, a feasible decrease or 

feasible increase is valid only if the capacity requirements of a single operation type change. 
If the capacity requirements of more than one operation type change, a joint range for all of 
the simultaneously changing parameters has to be determined. The sensitivity space of several 
simultaneously changing capacity requirements can be determined by calculating the possible 
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change of all operation type sets that contain these operation types. The result is a multi-
dimensional space described by the resulting inequalities. 

Finally, note that the values of a feasible increase or a feasible decrease of the capacity 
requirements of an operation type can be negative as well. This indicates to management the 
infeasibility of a production plan. 

Using the results of Table 3.7, a route-independent answer can be given to the second 
question of Chapter 3.2. If a customer requires a modification of a product, and this 
modification changes the operation times of a specific operation type, then the feasibility of 
this modification can be checked with the help of the sensitivity range of that operation type. 

3.8.2 Sensitivity of the operation type set constraints to machine capacity 

Machine capacity may decrease because of machine breakdowns, scheduled maintenance, 
unexpected production stops, or waiting for operators, repairpersons, tools, or materials. A 
capacity increase can occur from scheduled overtime or extra shifts. Sensitivity analysis of 
machine capacity can help analyze both benefits and consequences of these situations. 

The sensitivity range of the available capacity of a particular machine can be determined 
by calculating the feasible change of the upper and lower capacity bounds of all of those 
operation type sets that are affected by the changes in the operation type sets assigned to that 
machine. For example, if a machine is tooled just for drilling, then the feasible changes of the 
upper and lower capacity bounds of all of the operation type sets which contain drilling have 
to be examined. 

The capacity decrease of a machine diminishes both lower and upper capacity bounds. 
For our purposes, the decrease of an upper bound is relevant, because it may result in an 
infeasible capacity over-utilization. When the capacity of a particular machine changes, then 
all of the capacity upper bounds of those operation type sets, which contain any and all of the 
operation types assigned to this machine, are affected. The feasible decrease of capacity of 
machine m, ∆cm

–, is determined by the minimum of the algebraic differences between the 
capacity upper bound and the capacity requirements for all of the affected operation type sets, 
that is, 
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The capacity increase of a machine augments both the lower and upper capacity bounds. 
For our purposes, the increase of the lower bound may be relevant, because it may result in 
infeasible capacity under-utilization. When the capacity of a machine changes, all of those 
capacity lower bounds of operation type sets, for which the operation type set assigned to the 
machine is a subset, are affected. The feasible increase of the capacity of machine m, ∆cm

+, is 
determined by the minimum of the algebraic differences between the capacity requirements 
and the capacity lower bound for all of the affected operation type sets, that is, 
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(3.14) 

The results computed for the optimum solution of the sample problem (x1=101, x2=23) 
using equations (3.13) and (3.14) are given in Table 3.8. 

The sensitivity ranges are valid for 25% acceptable capacity over- and under-utilization 
(α=β=0.25). Table 3.8 shows that the capacity of M1 can be decreased without violating the 
upper capacity bounds (∆c1

–=0.935 CUs=378.675 minutes). Only ot1 is assigned to M1. 
Therefore, every operation type set that contains ot1 must be selected, that is, S1, S5, S6, S7, S11, 
S12, S14, and S15. The difference between the 25% increase of the upper bounds and the 
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capacity requirements of these operation type sets must be checked. The minimum of these 
differences is found at S12 when equation (3.13) is applied. 

 
Table 3.8 Sensitivity of the operation type 

set constraints to machine capacity (α=β=0.25) 
Machines cm ∆cm

– 
∆cm

+ 

M1 1 0.935 0.066 

M2 1 0.552 0.066 

M3 1 0.004 0.497 

M4 1 0.001 1.062 

 
The feasible increase is much smaller, it is equal to 0.066 CUs (∆c1

+=0.066 CUs=26.73 
minutes), indicating that only a small possibility of increasing capacity would be feasible. 
Only ot1 is assigned to M1. In this simple case, again every operation type set that contains ot1 

must be selected, that is, S1, S5, S6, S7, S11, S12, S14, and S15. The maximum value is found at S5, 
when equation (3.14) is applied. 

Table 3.8 shows that the capacity of M2 can also be decreased without violating the upper 
capacity bounds (∆c1

–=0.552 CUs=223.56 minutes). Both ot1 and ot2 are assigned to M2. 
Therefore, every operation type set that contains ot1 or ot2 must be selected. The difference 
between the 25% increased value of the upper bounds and the capacity requirements of these 
operation type sets must be checked. The minimum of these differences is found at S9 when 
equation (3.13) is applied. 

The feasible increase is much smaller, it is equal to 0.066 CUs (∆c1
+=0.066 CUs=26.73 

minutes), indicating that only a small possibility of increasing capacity would be feasible. 
Both ot1 and ot2 are assigned to M2. Therefore, every operation type set that contains ot1 and 
ot2 must be selected, that is, S5, S11, S12, and S15. The 0.066 value is found at S5 when equation 
(3.14) is applied.  

The capacity of machines M3 and M4 cannot be decreased (∆c3
–=0.004 CUs=1.62 

minutes, ∆c4
–=0.001 CUs=0.405 minutes). On the other hand, their capacity can be increased 

considerably (∆c3
+=0.497 CUs= 201.285 minutes, ∆c4

+=1.062 CUs= 430.11 CUs). 
Note that in practice, the values of a feasible increase or a feasible decrease of machine 

capacity can be negative. This can indicate to managers a lack of or excess capacity, for a 
given production plan. 

The results in Table 3.8 are independent validity ranges. That is, a feasible decrease or a 
feasible increase is valid only if the capacity of a single machine changes. If the capacity of 
more than one machine changes, a joint range for all of the simultaneously changing 
parameters has to be determined. The sensitivity range of the available capacity of several 
machines can be determined by calculating the feasible change of the upper and lower 
capacity bounds of all of those operation type sets that are affected by the change of the 
operation type sets assigned to the machines in question. The result is again a multi-
dimensional space described by the resulting inequalities. 

Using the results of Table 3.8, a route-independent answer can be given to the third 
question of Chapter 3.2. If, for example, scheduled maintenance decreases the capacity of M2 
by less than 50%, then it would not affect the feasibility of the optimum production plan. 
Maintenance of M3 or M4, however, cannot be scheduled in this specific period. 

 The answer to the fourth question of Chapter 3.2 requires information from both Tables 
3.7 and 3.8. If sensitivity ranges in Table 3.7 indicate capacity shortages for some operation 
type sets, overtime might be needed. The overtime can be applied at those machines whose 
sensitivity ranges show a lack of capacity in Table 3.8. 
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3.9 Conclusions of Chapter 3 

In this chapter, a new method for the formulation of capacity constraint in FMSs is presented. 
This new formulation is based on the concept of operation types, and expresses the capacity 
of operation type sets, instead of the capacity of machines. The proposed method allows the 
route-independent evaluation of some capacity-related questions in FMSs. 

There are two major application areas for the results provided by the presented approach. 
First, the product mix and sensitivity information may provide guidelines for on-line control. 
That is, disaggregating operation types into operations can be done by a real time dispatching 
and scheduling system. Details about how to do this are a subject for future research.  Second, 
an aggregated plan can be disaggregated using a detailed routing and scheduling model (e.g., 
a disaggregation mathematical programming model). In both cases, however, the suggested 
quantities are analyzed and major part mix decisions are made with the presented approach, 
using it as a rough cut planning tool. 

There are three main reasons to use the proposed methods. First, in an automated flexible 
manufacturing environment, routing often can be decided in real time. It is not necessary to 
determine the entire production routing far in advance of production. 

Second, the approach and formulations presented in this chapter have major advantages, 
when a quick, route-independent estimation of available capacity is desired. When a decision 
maker would like to estimate whether the available capacity of a flexible system is enough to 
manufacture a set of orders, then it is not necessary (or maybe not even possible) to determine 
the detailed production plan containing route and machine assignments.  

Third, the operation type-based approach can be complemented with a sensitivity analysis 
of the major parameters of a production system. How a change in machine capacity or a 
change in the capacity requirements of an operation type changes the feasibility of a 
production plan can easily be analyzed. In the traditional, machine-based approach, this 
sensitivity analysis can only be performed by the repeated solution of a mathematical 
programming model. 

The route-independent formulation of capacity constraints in this chapter is for FMS 
production planning. However, this approach may have other application areas, when the 
simplification of capacity constraints provides benefits for operations managers, while the 
missing information about operation (routing) details is acceptable. For example, Farkas, 
Koltai and Stecke (1999) used the operation type concept for balancing workload of machines 
in several consecutive production periods in case of given orders. In Koltai, Farkas and Stecke 
(1998), Koltai, Farkas and Stecke (2001) and Koltai, Stecke and Juhasz, (2004), tooling of 
machines for a given production requirement is determined using operation type set capacity 
constraints.  

As a summary, based on Chapter 3, the following scientific results can be formulated: 
 

Result 2/1 
I have defined the set of those operations, which can be performed on any machine in a 
particular group of machines, as operation type. A specific combination of different operation 
types is called an operation type set. The upper capacity bound of operation type set k (uk) can 
be calculated with formula (3.1). The lower capacity bound of operation type set k (lk) can be 
calculated with formula (3.2). I showed that there is enough capacity to manufacture a given 
quantity of parts independently of the specific routing of parts without unnecessary idle time 
of machines if conditions (3.8) and (3.9) are satisfied. 
 
Result 2/2 
The feasibility of a production plan with respect to the change of operation type requirements 
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(rth) can be determined by sensitivity analysis. If the change of an operation type requirement 
is within the feasible increase (∆rth

+) and the feasible decrease (∆rth
–), then there is enough 

capacity to produce the planned quantity without unnecessary idle time of machines. I have 
determined formula (3.11) for the calculation of the feasible decrease and formula (3.12) for 
the calculation of the feasible increase of operation type requirement h. 
 
Result 2/3 
The available capacity of operation types is determined by the capacity of the machines (cm), 
and machine capacity may change during operation. The feasibility of a production plan with 
respect to machine capacity is determined by sensitivity analysis. If the change of machine 
capacity is within the feasible increase (∆cm

+) and the feasible decrease (∆cm
–), then there is 

enough capacity to produce the planned quantity without unnecessary idle time of machines. I 
have determined formula (3.13) for the calculation of the feasible decrease and formula (3.14) 
for the calculation of the feasible increase of machine capacity of machine m. 

 
The importance of routing in FMSs and the effect of routing on capacity analysis is 

discussed in Guerrero et al. (1999), and Koltai et al. (2000).  The introduction of the concept 
of operation type aggregation and the formulation of operation type set capacity constraints 
are presented in Koltai and Stecke (2008), and Koltai, Juhász and Stecke (2004). The 
application possibilities of operation type aggregation in different areas of operation analysis 
are explored in Koltai, Farkas and Stecke (1998, 2001), Farkas, Koltai and Stecke (1999), 
Koltai et al. (2004), and  Koltai, Stecke and Juhász (2004). 
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4 FORMULATION OF WORKFORCE SKILL CONSTRAINTS IN ASS EMBLY LINE 
BALANCING MODELS 

Assembly lines are generally dedicated to the production of one or a few similar products in 
large quantities. The production capacity of an assembly line is strongly influenced by the 
allocation of tasks to workstations. The tasks assignment to workstations influences the output 
rate, and consequently the cycle time as well. One important element of production planning 
of assembly lines is, therefore, the optimal assignment of tasks to workstations. To solve this 
problem, assembly line balancing (ALB) models are used. Traditional assembly line 
balancing is generally described as a 0-1 mathematical programming problem. In this chapter 
a general framework is provided to complete ALB models with workforce skill constraints. 
The example of a bicycle assembly process shows, how the consideration of workforce skill 
conditions influences task assignment. The sensitivity of the optimal assignment with respect 
to the change of production quantity is also presented. The results of this chapter are based on 
the papers of Koltai and Tatay (2008), Koltai and Tatay (2013) and Koltai, Tatay and Kalló 
(2013). 

4.1 Introduction 

Assembly line balancing (ALB) problems occur when several indivisible work elements 
(tasks) are to be grouped into (work)stations along a continuous production line. Workers may 
work at each station, and in case of efficient allocation of tasks to workstations, the number of 
workers and consequently the cost of operation can be decreased. Application of assembly 
line balancing can be found frequently, for example, in the automobile, electronic, and 
clothing industry (see Chan et al., 1998; Sawik, 2002; Lapierre and Ruiz, 2004 and Cortes, 
Onieva and Guadix, 2010). The operation of some service systems, however, is also very 
similar to assembly line operations (Scholl and Becker, 2006; Boysen, Fliedner and Scholl, 
2008). 

Tasks cannot be allocated to the stations arbitrarily. Capacity constraints, precedence 
relations – generally visualized by a precedence graph –, zoning conditions, technological and 
logical requirements may influence the optimal assignment. Even considering these 
restrictions many feasible solutions may exist for the allocation of tasks to workstations and 
optimization models can be used to find the best task assignment.  

A simple ALB problem is illustrated in Figure 4.1. This problem is published in an early 
paper of Bowman (1960), and with some changes, it will be used to illustrate the proposed 
method in this chapter as well.  

Figure 4.1 Precedence diagram of the sample problem 
 

The time of each operation (ti) is considered deterministic. The indicated 8 tasks in Figure 
4.1 must be assigned to workstations. At each workstation one worker performs all the tasks 
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assigned to the station. Precedence relations, indicated by the arrows in the figure, must be 
considered at task assignment. The time required to perform all the tasks assigned to a station 
is the station time (sj). The workstation with the highest station time is the bottleneck of the 
system. The station time of the bottleneck station is called cycle time (Tc) which determines 
the production capacity of the assembly line. Several objectives and additional constraints can 
be considered when the tasks are assigned to workstations. 

Early research in this area focused on the simple assembly line balancing problem 
(SALBP) with its restrictive characteristics such as deterministic task times, no assignment 
restrictions other than the precedence constraints, serial line layout, etc (Becker and Scholl, 
2006; Scholl and Becker, 2006). Extended forms of the SALBP consider for example the 
possibility of U-shaped lines, parallel stations, and stochastic task times. These models are 
referred in the literature as general assembly line balancing problems (GALBP). GALBPs 
may be closer to practical problems, and their solution procedures, in most cases, are based on 
SALBP algorithms (Scholl and Becker, 2006). Depending on the management objective of 
assembly line balancing, the two most frequently used versions of SALBPs are the following, 

– When management objective is related to operating cost reduction the ALB model 
minimizes the number of workstations (workers) for a given cycle time. The related problems 
are referred in the literature as SALBP-1. 

– When management objective is related to production quantity the ALB model 
minimizes the cycle time for a given number of workstation. The related problems are 
referred in the literature as SALBP-2. 

SALBPs can be formulated as mathematical programming models. The first analytical 
formulation of ALB was given by Bryton (1954) and the first linear programming problem 
that might have infeasible solutions because of split tasks was given by Salveson (1955). 
Bowman was the first to suggest integer programming (IP) models to solve the classical ALB 
problem (Bowman, 1960). Whiten (1961) modified Bowman’s IP model and defined 0-1 
decision variables for the problem. Since ALB models are NP hard the research in the past 
focused on reducing the number of variables and constraints in order to reduce the complexity 
of the models (see for example Thangavelu and Shetty, 1971; Patterson and Albracht, 1975; 
Baybars, 1986 and Scholl and Becker, 2006). 

Today mathematical programming models of practical size ALB problems can be solved 
by optimization software very efficiently. Therefore, the focus of research should be shifted to 
practice driven model formulation and to the investigation of new areas of application 
(Boysen, Fliedner and Scholl, 2008). One of the possibilities of increasing the relevance of 
ALB models is the consideration of worker skill conditions. There are not too many papers 
which are dedicated to the consideration of skill constraints. 

Johnson (1983) applies some very simple skill constraints in a paper dedicated mostly to 
some mathematical questions of the optimization process. 

Wong, Mok and Leung (2006) used the concept of skill inventory in an apparel assembly 
process to organize the proper assignment of tasks to workers and to workstations. This 
concept, however, was used in an on-line control mechanism, and not in an assembly line 
balancing optimization model. 

Miralles et al. (2007) used skill constraint in a production environment for disabled 
workers. Different task times for the same tasks expressed different skill levels and 
workstations with similar skill levels were formed. Later this model was extended with the 
possibility of job rotation as well (Cosat and Miralles, 2009). 

Corominas, Pastor and Plans (2008) considered temporary and permanent workers in a 
motor-cycle assembly process, and these two worker groups are able to perform different set 
of tasks.  

Moon, Logendran, and Lee (2009) considered an assembly line in which multi-functional 
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workers are applied with different salaries, and one of their objectives was to minimize the 
total annual workstation cost.  

Cortes, Onieva and Guadia (2010) prepared the assembly line balancing model of a 
motorcycle assembly process with homogeneous workers groups. The complexity of the 
model, however, required the application of sophisticated heuristics to get a feasible solution.  

There are models, which consider the change of skill level during the assembly process. 
The decrease of task time can be attributed to the learning effect (Cohen, Vitner and Sarin, 
2006), and the increase of task time can be the consequence of technological and 
physiological reasons (see for example Toksari et al., 2010 and Emrani et al., 2011). In these 
cases, however, skill constraints were not added to the ALB models, the change of skill level 
is embedded in task time functions. 

This chapter is structured as follows. First, formulation of the basic ALB models used in 
this chapter is provided. Next, skill constraints are generalized and the mathematical 
description of the different skill conditions is given. The results of the suggested models are 
illustrated with the help of the production process of a bicycle manufacturer. The sensitivity 
of the optimal assignment with respect to the change of production quantity is analyzed with 
the production quantity/efficiency chart. All notations used in this chapter are summarized in 
Table 4.1. 

4.2 Formulation of the basic simple ALB models 

Tasks are numbered in increasing order. The number i assigned to a task is called the task 
index. We refer to a task either by its name or by its task index. Those tasks which are not 
succeeded by any other task are called last tasks. The index set of last tasks is denoted by L. 

Workstations are also numbered in increasing order. The first workstation is numbered 1 
and the last workstation is numbered N. The number j assigned to a workstation is called the 
workstation index. Workstations are referred in the following by the workstation index. An 
assumption must be made about the possible number of stations prior to task assignment. The 
number of stations used in the model is J. That is, J is the number of stations used in the 
mathematical model, and N is the number of stations used in the actual line. 

The assignment of tasks to workstations is expressed with binary decision variable xij. If 
task i is assigned to workstation j, then xij=1, otherwise xij=0. 

In this chapter the following integer linear programming formulation of SALBP-1 is used, 
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The objective of the model is to minimize the number of stations used in the actual 
system; that is, to minimize the largest index belonging to a station with task assignment. 
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Table 4.1 Summary of notation of Chapter 4 

Subscripts: 
i – index of tasks (i=1,…,I), 
p – index of a subset of tasks, 
q – index of a subset of tasks, 
v – index of a subset of tasks, 
j – index of workstations (j=1,…,J), 
k – index of skill level (j=1,…,K). 
Parameters: 
I – number of tasks, 
J – number of workstations in the mathematical model, 
N – actual number of workstations applied, 
R – set of pair of indices which belong to tasks with precedence relations, that is,  
  (p;q)∈R , if  task p immediate precedes task q, 
K – number of skill levels, 
ti – time necessary to perform task i (task time), 
sj – time necessary to perform all tasks at station j (station time), 
sj(Q) – station time of station j as a function of production quantity, 
Tc – cycle time of the assembly line, 
T – total available time for production, 
LTi – the earliest workstation which can be used as a consequence of preceding tasks of 
  task i, 
UTi – the latest workstations which can be used by task i as a consequence of succeeding 
  tasks of task i, 
LSk – the earliest workstation which can be used by tasks belonging to skill level k as a 
  consequence of preceding tasks, 
USk – the latest workstations which can be used by tasks belonging to skill level k as a 
  consequence of preceding tasks, 
Q – production quantity, 
Q(j–d, j) – production quantity at which station j–d enters, and station j leaves the bottleneck, 
cj – capacity utilization of station j, 
Wk – limit on special workers with skill level k, 
z – sufficiently high number (higher than I), 
E(Q,N) –  efficiency of an assembly line with N workstation at Q production quantity, 
QMax(N) – maximal production quantity of a line configuration with N stations, 

( )NQOPT
Max  – maximal production quantity of the optimal line configuration with N stations, 

bj – power of the learning curve function at station j, 
d – distance of the station index of two stations. 
Sets: 
L – set of final tasks, that is, i∈L if task i does not precede any other tasks, 
R – set of the index pairs of immediately preceding tasks, 
Pi – index set of those tasks which must be finished before task i is started, 
Fi – index set of those tasks which cannot be started before task i is finished, 
Sk – index set of tasks belonging to skill level/type k. 
Decision variables: 
N – number of workstations applied, 
xij – 0-1 variable; if xij=1, then task i is assigned to workstation j, otherwise xij=0, 
l jk – 0-1 decision variable in case of low-skill constraints; if l jk=1, worker with skill  
  level k is applied at workstation j, otherwise l jk=0, 
hjk – 0-1 decision variable in case of high-skill constraints; if hjk=1, then worker with  
  skill level k is applied at workstation j, otherwise hjk=0, 
ejk – 0-1 decision variable in case of exclusive-skill constraints; if ejk=1, then worker  
  belonging to skill type k is applied at workstation j, otherwise ejk=0. 
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The right-hand side of constraint (4.5) determines the index of those workstations which 
perform last tasks. The highest such index must be minimized. If each of these indices is 
smaller than or equal to N, and N is minimized, then the index of the final workstation, and 
consequently the number of workstations, is minimized.  

Cycle time constraints are expressed by constraints (4.2). For each workstation the sum of 
task times of the assigned tasks is not allowed to exceed the cycle time. As a consequence of 
constraints (4.3) each task is assigned to one of the workstations.  

Constraints (4.4) express the precedence constraints. If task p must be performed before 
task q, the difference in the bracket is equal to -1, 0 or 1 for each workstation. Since task p 
must be assigned to an earlier or to the same workstation as task q; the weighted sum of these 
differences is always greater than or equal to 0, if the weights are the indices of the 
corresponding workstations. 

Finally, the number of variables is reduced by constraints (4.6). Some tasks cannot be 
assigned to very early workstations because of preceding tasks. For example, if in the 
problem indicated by Figure 4.1, the required cycle time is 25 minutes then the earliest station 
for task B is the second station. On the first station, the sum of task times of tasks A and B 
(11+17= 28 minutes) would violate the cycle time constraint. The earliest workstations which 
can be used by task i is determined by LTi. LTi is a lower limit of the feasible station indices 
of task i, and its value is calculated as follows, 
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where  x  is the smallest integer value not smaller than x. 
Some tasks cannot be assigned to very late workstations because of succeeding tasks. For 

example, if in the problem indicated by Figure 4.1, the required cycle time is 35 minutes then 
the latest station for task C is the last but one station. On the last station, the sum of task times 
of task C and the succeeding tasks (F, E, H, G) would violate the cycle time constraint. The 
latest workstation which can be used by task i is determined by UTi. UTi is an upper limit of 
the feasible station indices of task i, and its value is calculated as follows, 


















+

−+=
∑
∈

c

Sk
ki

i T

tt

JUT i1  (4.8) 

 (4.1)-(4.8) is a linear programming model with several 0-1 variables. The required 
number of binary variables can be determined using the LTi and UTi values with the following 
formula, 
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We note that model (4.1)-(4.8) is slightly different from the models used in the literature. 
Most models formulate the problem for a single last task, that is, only one index belongs to L 
(see for example White, 1961). If several final tasks exist (see the sample problem in Figure 
4.1) then a dummy task is used which directly succeeds the real final tasks. This dummy task 
increases the number of 0-1 variables; because in that case I+1 task must be assigned to J 
workstations. In formulation (4.1) to (4.8), however, instead of the dummy task, the index of 
the final workstation is used. This way only one new variable (N) is required. The value of N 
must be integer, but as a consequence of the integer lower bound and of the minimization 
objective, N can be considered as continuous variable. 
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SALBP-2 minimizes the cycle time for a given number of workstations (N), that is, the 
objective function is as follows, 

cTMin  (4.10) 
Cycle time constraint (4.2), constraints for the performance of each operation (4.3) and 

precedence constraints (4.4) are the same as in SALBP-1. That is, SALBP-2 is determined by 
objective function (4.10) and constraints (4.2)-(4.4). The limit on the number of variables in 
this case can be determined by using an estimate of the upper bound of the cycle time 
( ( )cTUB ). A trivial upper bound of Tc is the sum of task times, however, generally more 

efficient approximations can be found. For example, the cycle time of the optimal solution of 
a corresponding SALBP-1 can be used to determine an upper bound for Tc. 

The earliest workstations which can be used by task i is now the following, 
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The latest workstation which can be used by task i is now calculated as follows, 
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Pastor and Ferrer (2009) published an improved method for the calculation of the feasible 
lower and upper workstation indices. Their method increases computational efficiency in case 
of large problems. In the problems presented in the following chapters, however, the estimate 
of the feasible workstation indices with formula (4.7), (4.8), (4.11) and (4.12) is sufficient, 
because computation time is insignificant. 

Consequently SALBM-1 is defined by constraints (4.1)-(4.8) and SALBM-2 is defined by 
constraints (4.2)-(4.4), (4.6) and (4.10)-(4.12). These models are summarized in the first row 
of Table 4.2. 

In the following chapter the basic SALBP-1 and SALBP-2 models will be completed with 
constraints expressing work force skill requirements. 

4.3 Formulation of workforce skill constraints 

Frequently, a set of tasks performed at an assembly line requires special skills of workers, and 
a set of workers working at an assembly line may have special or limited skills. This must be 
considered when tasks are assigned to workstations. 

It is assumed that each worker is assigned to a skill level k, k=1,…,K. For each task the 
minimum skill level necessary to perform the task is determined. The index set of those tasks 
which require skill level k is denoted by Sk. Three different types of skill constraints can be 
distinguished (Koltai and Terlaky, 2011, 2013). 

– A limited number of workers belonging to skill level k must be applied at the assembly 
line. In this case, there are workers who are not able to perform each task. Workers with the 
lowest skill level (k=1) perform only the simplest tasks. Workers with the highest skill level 
(k=K) can perform the most complicated tasks as well. A worker with skill level k can only 
perform tasks requiring skill level smaller than or equal to k, and are not able to perform tasks 
which require skill level higher than k. Consequently, a worker with skill level k can only 
work at stations which have tasks with skill level equal to or lower than k, and the number of 
such stations is constrained from below. We call the constraint describing this situation low-
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skill constraint (LSC). 
– Only a limited number of workers are able to perform the most complicated tasks. In 

this case there are tasks which require qualified workers. There are only a limited number of 
workers available to perform such tasks. Workers with the highest skill level (k=1) perform 
the most complicated tasks. Workers with the lowest skill level (k=K) can perform only the 
simplest tasks. A worker with skill level k can perform tasks requiring skill level higher than 
or equal to k, and are not able to perform tasks which require skill level smaller than k. 
Consequently, a worker with skill level k can only work at stations which have tasks with skill 
level equal to or lower than k, and the number of such stations is constrained from below. We 
call the constraint describing this situation high-skill constraint (HSC). 

– Some tasks can be performed only by special workers. In this case workers have 
different skills/specializations, and a worker specialized in one type of skill, is not able to 
perform tasks requiring other type of skills. Tasks are grouped according to skill 
requirements, and at a workstation only tasks belonging to a given skill type can be 
performed. Since a worker working at a station can perform exclusively those tasks which 
correspond to his/her qualification, we call the constraint describing this situation exclusive-
skill constraint (ESC).  

4.3.1 Formulation of low-skill constraints (LSC) 

In this case each task is assigned to the lowest skill level necessary to perform the task. Index 
set Sk contains the index of those tasks which require workers with skill level k. The lowest 
skill level belongs to k=1. The binary skill variable l jk is used to indicate worker assignment. 
If l jk=1, then worker with skill level k is assigned to workstation j, otherwise l jk=0. In case of 
LSC any worker with skill level k is capable to perform those tasks, which require skill level 
smaller than or equal to k, that is the following constraints must be satisfied, 
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 (4.13) 

If tasks belonging to skill level k are assigned to workstation j, then the left-hand side of 
constraint (4.13) is higher than zero, and consequently the right-hand side must be higher than 
zero as well. If z is a sufficiently high number, then a skill variable belonging to skill level k 
or higher must be equal to 1 in the right-hand side of equation (4.13).  

 According to (4.13) more than one skill variable belonging to workstation j may have 
non-zero value. Since only one worker must be assigned to each workstation, the following 
constraints must be added, 
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 (4.14) 

According to (4.14), the sum of the skill variables belonging to workstation j is either 
equal to zero, or equal to 1, that is, the maximum number of workers assigned to workstation j 
is equal to 1. 

  In some cases tasks are not assigned to a workstation at all. In SALBP-1, for example, 
at the beginning of the calculation an upper bound (J) is used for the total number of 
workstations, and finally the optimal number of workstations is equal to N. Consequently, no 
tasks are assigned to J–N workstations. The skill variable at these workstations must be equal 
to zero, that is, 
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 (4.15) 

According to (4.15), if tasks are not assigned to workstation j, then the left-hand side is 
equal to 0, and consequently the skill variables on the right-hand side are also equal to 0. 
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Finally, a given number of workers with skill level k (Wk) must be applied, that is, 

KkWl k
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 (4.16) 

According to (4.16) the sum of workstations with nonzero k level skill variables must be 
higher than or equal to the available number of workers with skill level k. In this case the 
focus is on the application of low-skilled workers. For example, we may have just two skill 
levels (K=2), that is, k=1 for unskilled workers, and k=2 for skilled workers. If W1>0 and 
W2=0, then W1 number of workstations with tasks for unskilled workers will be definitely 
applied, and skilled workers work at the rest of the workstations. 

4.3.2 Formulation of high-skill constraints (HSC) 

Each task is assigned to the lowest skill level necessary to perform the task again. Index set Sk 
contains the index of those tasks which require workers with skill level k. Now, the highest 
skill level belongs to k=1. The binary skill variable hjk is used to indicate worker assignment. 
If hjk=1, then worker with skill level k is assigned to workstation j, otherwise hjk=0. In case of 
HSC any worker with skill level k is capable to perform those tasks, which require skill level 
lower than or equal to k, that is, the following constraints must be satisfied, 
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If tasks belonging to skill level k are assigned to workstation j, then the left-hand side of 
constraint (4.17) is higher than zero, and consequently the right-hand side must be higher than 
zero as well. If z is a sufficiently high number, then a skill variable belonging to skill level k 
or lower must be equal to 1 in the right-hand side of equation (4.17).  

According to (4.17) more than one skill variable may have non-zero value. Since only one 
worker must be assigned to each workstation, the following constraints must be added, 
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 (4.18) 

According to (4.18), the sum of the skill variables belonging to workstation j is either 
equal to zero, or equal to 1, that is, the maximum number of workers assigned to workstation j 
is equal to 1. 

In some cases tasks are not assigned to a workstation at all. In SALBP-1, for example, at 
the beginning of the calculation an upper bound (J) is used for the total number of 
workstations, and finally the optimal number of workstations is equal to N. Consequently, no 
tasks are assigned to J–N workstations in the calculation. The skill variable at these 
workstations must be equal to zero, that is, 
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According to (4.19), if tasks are not assigned to workstation j, then the left-hand side is 
equal to 0, and consequently the skill variables on the right-hand side are also equal to 0. 

Finally, no more than the available number of workers with skill level k can be applied, 
that is, 
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 (4.20) 

According to (4.20) the sum of workstations with nonzero k level skill variables must be 
lower than or equal to the available number of workers with skill level k. In this case the focus 
is on the application of high-skilled workers. For example, we may have just two skill levels 
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(K=2), that is, k=1 for skilled workers, and k=2 for unskilled workers. If W1>0 and W2=∞, 
then no more than W1 workstations with tasks for skilled workers can be organized, and 
unskilled workers work at the rest of the workstations. 

4.3.3 Formulation of exclusive-skill constraints (ESC) 

This case is found in practice when there are special tasks, which require special qualification 
of workers. The workers with the required qualifications can only perform these special tasks. 
Tasks requiring the same skill are assigned to skill type k (or keeping the previously used 
terminology, to skill level k). The index set of the tasks belonging to skill type k is Sk. The 
binary skill variable ejk is used to indicate worker assignment. If ejk=1, then worker with skill 
type k is assigned to workstation j, otherwise ejk=0. 

Tasks belonging to different skill type cannot be mixed on a workstation. To satisfy this 
condition two group of constraints must be satisfied. 

1. If tasks belonging to skill type k are assigned to workstation j, then skill variable ejk 
must be equal to 1, that is, 
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 (4.21) 

If tasks belonging to skill type k are assigned to workstation j then the left-hand side of 
(4.21) is higher than 0, and the right-hand side must be higher than 0 as well. If z is a 
sufficiently high number, then the right-hand side of (4.21) is higher than zero only if ejk is 
equal to 1. If tasks belonging to skill type k are not assigned to workstation j, then the left-
hand side of (4.21) is equal to 0 and the skill variable ejk on the right-hand side can be either 0 
or 1. 

2. If tasks not belonging to skill type k are assigned to workstation j, then skill variable ejk 
must be equal to 0, that is, 
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 (4.22) 

If tasks not belonging to skill type k are assigned to workstation j then the left-hand side 
of (4.22) is higher than 0, and the right-hand side must be higher than 0 as well. If z is a 
sufficiently high number, then the right-hand side of (4.22) is higher than zero only if ejk is 
equal to 0. If tasks not belonging to skill type k are not assigned to workstation j, then the left-
hand side of (4.22) is equal to 0 and the skill variable ejk on the right-hand side can be either 0 
or 1. 

If (4.21) and (4.22) are simultaneously satisfied, then the different groups of tasks are 
separated on the workstations, and the proper worker skill is applied at each station. 

4.3.4 Summary of the suggested worker skill models 

Table 4.2 summarizes the simple assembly line balancing models and the corresponding 
worker skill constraints. The basic models are presented in the first row of the table. SALBP-1 
is an integer linear programming model and it is given in the first column. SALBP-2 is a 0-1 
linear programming model and it is given in the second column. Note, that if there is only a 
single final task in SALBP-1, then the right-hand side of (4.5) can be directly minimized, and 
consequently there is no need for variable N. The workstation index limits (LTi and UTi) are 
calculated with expressions (4.7) and (4.8) or (4.11) and (4.12) respectively. 
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Table 4.2 Summary of ALB models and skill constraints 

 Minimization of workstations 
(SALBP-1) 

Minimization of cycle time 
(SALBP-2) 
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For SALBP-1 and SALBP-2 the corresponding worker skill constraints are given in the 
LSC, HSC and ESC rows. Note, that LSC and HSC constraints can easily be transformed into 
each other, because they express similar requirements, just focus on two different 
management problems: a given number of low-skilled workers must be applied, or the 
available number of high-skilled workers is limited. If both LSC and HSC constraints exist in 
a problem, then different Wk and Sk must be determined for the LSC and for the HSC 
formulations. Applying the different Wk values and Sk sets, the indicated constraints can be 
simultaneously used.  

The application of skill constraints increases the number of binary variables, which 
increases computation time. The total number of skill variables in practice, however, is not 
very high, compared to the total number of variables of the problem. Nevertheless, applying 
conditions similar to (4.6), the number of skill constraints can be reduced. 

The decrease of the number of variables in the basic SALBP-1 and SALBP-2 is based on 
the calculation of the lower bound and the upper bound of the workstation index of each task. 
If the lowest feasible workstation index (LTi) of each task is known, then the lowest feasible 
workstation index of a skill variable (LSk) is the minimum of the lowest feasible workstation 
indexes of those tasks which belong to skill level k, that is, 

( )i
Si

k LTMinLS
k∈

=  (4.23) 

Furthermore, if the highest feasible workstation index (UTi) of each task is known, then 
the highest feasible workstation index of a skill variable (USk) is the maximum of the feasible 
highest workstation indexes of those tasks which belong to skill level k, that is, 

( )i
Si

k UTMaxUS
k∈

=  (4.24) 

Those skill variables, which are definitely equal to 0 in any feasible solution, can be 
excluded from the calculations with the following constraints, 

KkUSjLSjl kkjk ,...,1 and 0 =><=  (4.25) 
KkUSjLSjh kkjk ,...,1 and 0 =><=  (4.26) 
KkUSjLSje kkjk ,...,1 and 0 =><=  (4.27) 

Finally, in Table 4.2 skill constraints are added to SALBP-1 and to SALBP-2, that is, the 
number of workstation (line utilization) or the cycle time is minimized. The proposed models, 
however, can easily incorporate other objective functions which express the different labor 
cost of differently skilled workers. 

The performance of the suggested skill constraints was tested is several examples. An 
illustration of two level (K=2) skill constraints based on a slightly modified example of 
Bowman (1960) can be found in Koltai and Tatay (2011) and a multi-level example is given 
in Koltai and Tatay (2013). The next chapter shows, how skill constraints are applied in case 
of the assembly process of a bicycle manufacturer. 

 4.4 Application of simple ALB models with skill constraints at a bicycle manufacturer 

Olympia Bicycle Ltd. is a bicycle manufacturer company producing bicycles in small and 
medium lots. Lot sizes range between 200-1000 units. All parts necessary for assembly are 
provided by suppliers. The only non-assembly operation is painting. The frames provided by 
suppliers are painted in the painting shop. Assembly is performed in three stages: there are 
two preassembly lines and one final assembly line. 

The first preassembly line prepares the wheels; the second preassembly line assembles the 
frame and the handle bar. The preassembly lines are short and simple. The assignment of 
tasks to workstations does not require any sophisticated quantitative tool. Therefore, this 
analysis deals only with the final assembly. 
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Final assembly is made along a U shaped line. U shape, however, only describes the 
geometrical form of the line. Each workstation is attended by a single worker, and each 
worker is assigned to a single workstation. Depending on the bicycle model, about 30-80 
tasks are performed at 10-15 workstations. The line moves with a steady speed set by the 
operations manager based on the expected cycle time. Some tasks are simple and can be 
learned by any workers, while some tasks require more expertise and experience. The tasks of 
a typical product of the company are given in Table 4.3. 

The table shows the list of tasks of final assembly, the immediately preceding tasks, and 
the task times. Based on the information of Table 4.3, the precedence graph of tasks can be 
easily depicted (see Figure 4.2). 

Demand for this particular product is 200 units and 5 hour is assigned to produce this 
quantity in a given day. Based on these data, the required cycle time is 90 seconds 
(5·60·60/200). 

Table 4.4 summarizes the optimal solution of each model presented in this chapter. 
Boldface numbers in the Tc and N columns indicate the optimal solutions, while regular face 
numbers are parameters of the corresponding model. The optimal assignment/station time 
columns show which tasks are assigned to the specific workstations, and how much time is 
needed to complete these tasks at the given station. 

The row of model 1 in Table 4.4 shows the optimal solution of SALBP-1. According to 
the optimal solution at least 10 workstations are necessary to produce the required number of 
bicycles. The cycle time belonging to this optimal assignment is 90 seconds. The highest 
station time is at workstation 1 (90 second) and the line is very unbalanced. The difference 
between the smallest and the largest station time is 40 second. 
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Figure 4.2 Precedence graph of a sample bicycle 

 
The row of model 2 in Table 4.4 shows the optimal solution of SALBP-2. It is assumed 

that 10 workstations are used. An upper bound on the optimal value of the cycle time is the 
cycle time of the optimal solution of SALBP-1 (90 sec). It can be seen that the optimal 
solution is 80 seconds. This line configuration is much more balanced. The difference 
between the highest and smallest station time is reduced and the smallest station time belongs 
only to one workstation. 

The calculation of the optimal solution of the presented models takes only a few seconds 
on a common computer using Excel as the input and output interface of Lingo mathematical 
programming software. 

The assignment of tasks to workstations is frequently influenced by workforce skill 
conditions. In the following, two different workforce skill conditions are illustrated with the 
help of the bicycle production process. 
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Table 4.3 Tasks and precedence relations of the sample bicycle model 

i Tasks 
Time of 
task i 
(sec) 

Immediate 
precedent of 

task i 
LJi UJi 

1 
Connecting the front break with the 
Bowden cable housing 

21 - 
1 25 

2 
Linking the front part of the rear break 
with the Bowden cable housing  

23 1 
1 25 

3 
Connecting the first part of the front 
derailleur with the Bowden cable housing  

10 2 
1 26 

4 
Linking the rear part of the derailleur with 
the Bowden cable housing 

10 2 
1 27 

5 
Positioning the plastic holder of the 
Bowden cable housing 

10 2 
1 27 

6 
Connecting the rear part of the rear break 
with the Bowden cable housing 

10 2 
1 28 

7 
Linking the first part of the derailleur with 
the Bowden cable housing 

10 3 
1 26 

8 
Linking the middle part of the derailleur 
with the Bowden cable housing 

10 4 
1 28 

9 Positioning and securing the derailleur 30 - 1 26 
10 Supplying the rear derailleur 16 - 1 27 
11 Supplying the front derailleur 14 5 1 28 
12 Positioning the chain 50 9,10,11 2 27 
13 Positioning the front wheel 10 - 1 28 
14 Positioning the rear wheel 10 12 2 28 
15 Fastening the front wheel 20 13 1 28 
16 Fastening the rear wheel 20 14 3 28 
17 Installing the front break 24 1 1 27 
18 Installing the rear break 24 2 1 28 

19 
Linking the rear part of the rear derailleur 
with the Bowden cable housing 

10 8,16 
3 28 

20 Installing the front derailleur 35 7,9,11 2 28 
21 Installing the rear derailleur 25 4,5,12,15,17 3 28 

22 
Cutting the Bowden cables (to right 
length) 

10 6,7,17,18,19 
4 28 

23 Positioning the ends of the Bowden cable 15 20,21,22 5 28 
24 Setting the derailleur 50 23 6 28 
25 Setting the breaks 70 24 6 29 
26 Positioning the cardboard on the frame 10 25 7 30 
27 Positioning quick-release on frame 10 26 7 30 

28 
Removing the first wheel and secure it to 
the frame 

35 27 
7 30 

29 Positioning the brakes 15 28 7 30 
30 Packing 1 50 29 8 30 
31 Packing 2 50 30 8 31 
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Table 4.4 Optimal solutions of the SALB models 
Models Tc N WH/ 

WS 
 

H/S 
 

Optimal assignment/station time (sec) 
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 

1. SALBP-1 90 10 - - 1,2,3,4, 
5,10 

6,7,9, 
11,17 

13,15,20 
 

12,14,18 
 

8,16, 
19,21 

22,23, 
24 

25 26,27, 
28 

29,30 31  

90 88 65 84 65 75 70 55 65 50  
2. SALBP-2 80 10 - - 9,10, 

13,15 
1,2,5, 
6,11 

3,4,7 
12 

8,14 
18,20 

16,17 
19,21 

22,23, 
24 

25 26,27 
28 

29,30 31  

76 78 80 79 79 75 70 55 65 50  
3. SALBP-1+HSC 90 Inf. 1 20,24            

           
4. SALBP-2+HSC 100 10 1 20,24 1,2,4,8, 

13,17 
3,9,18 5,6,7, 

11,15 
10,12, 
14,16 

19,21, 
22 

20,23, 
24 

25 26,27 28,29, 
30 

31 
 

 

98 64 64 96 45 100 70 20 100 50  
5. SALBP-1+HSC 90 10 2 20,24 1,2,3,4 

7,13 
5,9,11,
15 

10,12,18 17,20,21 6,8,14, 
16,19,22 

23,24 25 26,27 
28 

29,30 31  

84 74 90 84 70 65 70 55 65 50  
6. SALBP-2+HSC 80 10 2 20,24 1,2,4, 

10,13 
3,7,8, 
17,18 

5,9,11, 
15 

12,14,16 6,19,20, 
21 

22,23, 
24 

25 26,27 
28 

29,30 31  

80 78 74 80 80 75 70 55 65 50  
7. SALBP-1+LSC 90 11 2 3,4,5,6,7, 

8,26,27 
1,2,5, 
10,11 

9,12, 
13 

4,6,8 14,15, 
16,18,19 

3,7,17, 
20,22 

21,23, 
24 

25 26,27 28,29 30 31 

84 90 30 84 89 90 70 20 50 50 50 
8. SALBP-2+LSC 84 11 2 3,4,5,6,7, 

8,26,27 
1,2,9, 
13 

4,8 3,5,6,7 10,11,12 14,15,16, 
17,19 

18,20, 
21 

22,23,
24 

25 26,27,28, 
29 

30 31 

84 20 40 80 84 84 75 70 70 50 50 
9. SALBP-2+LSC 100 10 2 3,4,5,6,7, 

8,26,27 
1,2,9, 
13 

3,4,5, 
6,7,8 

10,11,15, 
17,18 

12,14, 
16,19 

20,21, 
22,23 

24 25 26,27 28,29,30 31  

84 60 98 90 85 50 70 20 100 50  
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4.4.1 Application of high-skill constraints (HSC) 

Generally, workers of the bicycle plant are able to perform all the required tasks. The line 
manager, however, thinks that some complicated tasks must be assigned to the best workers. 

In this case, it is implicitly assumed that there are complicated tasks which require special 
skills and can be performed by special, qualified workers. The tasks which require special 
skills belong to set S1. The rest of the tasks do not require special skill and/or special 
qualification of the workers, consequently two skill levels (K=2) are defined.  The regular 
tasks belong to set1S which is in this case is S2. 

In our sample assembly process, one of the workers at the line is considered the most able 
and the most complicated tasks are generally assigned to the workstation of this worker. This 
implicit requirement of the line manager can be formulated explicitly as high-skill constraint. 
It is assumed that only this high-skilled worker (W=1) is able to perform that subset of the 
tasks (S1) which are considered complicated by the line manager. At the product of the sample 
problem, tasks with indices 20 and 24 are considered complicated (S1={20, 24}). 

Adding constraints (4.17), (4.18), (4.19) and (4.20) to the SALBP-1, the minimum 
number of workstations considering high-skill constraints can be obtained. The results in the 
row of model 3 in Table 4.4 indicate that the model has infeasible solution. This can be easily 
explained by looking at Figure 4.2. Task 20 immediately precedes task 23 and task 23 
immediately precedes task 24. Since tasks 20 and 24 have to be assigned to the only high-
skilled worker, all these tasks (20, 23, 24) must be performed by the one available high-
skilled worker. This would result in a station time equal to 100 seconds (35+15+50), which is 
infeasible according to the cycle time constraints (100>Tc=90). 

Solving the SALBP-2 with 10 workstations (with the optimal solution of the SALBP-1 
without HSC) and completed with constraints (4.17), (4.18), (4.19) and (4.20), we obtain 100 
seconds for the minimal cycle time (see the row of model 4 in Table 4.4), and the high-skilled 
worker works at workstation 6. This result also shows that the original cycle time (90 
seconds) cannot be met with a single high-skilled worker. 

According to the row of model 5 in Table 4.4, the optimal solution of SALBP-1 with 2 
high-skilled workers (W=2) is 10 workstations. The two high-skilled workers work at 
workstations 4 and 6. Worker skill constraints in the analyzed case will not lengthen the 
assembly line if two high-skilled workers are available; however, the operation costs could be 
higher because of the application of two high-skilled workers. 

Finally, solving the SALBP-2 with 2 high-skilled workers, the minimum of the cycle time 
is 80 minutes, and high-skilled workers work at workstations 5 and 6 (see the row of model 6 
in Table 4.4). Consequently, HSC will not deteriorate cycle time if two high-skilled workers 
are available. 

Based on these results, the management may consider providing special training to some 
workers, because with only one high-skilled worker the capacity of the line is insufficient. 

4.4.2. Application of low-skill constraints (LSC) 

Generally workers of our sample bicycle plant are able to perform all the required tasks. 
Sometimes (e.g. in holiday seasons), however, because of labor shortage, temporary workers 
are applied. The line manager knows that these workers are not skilled properly and only the 
simplest tasks can be assigned to them. In this case, it is assumed that only a subset of tasks 
can be assigned to a limited number of workers. 

These tasks are called simple tasks and they belong to set S1. The rest of the tasks are 
regular tasks and belong to set 

1S , which is equivalent to S2. We again face a two-skill level 
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case (K=2). It is assumed that a limited number of low-skilled workers are already employed; 
therefore, workstations for them must be organized.  

Let us assume in the sample assembly process that two temporary workers are applied 
(W=2) and only eight tasks (listed in Table 4.4 in column S1 of the last three models) can be 
assigned to these workers. The solution of model 7 in Table 4.4 shows that the minimum 
number of workstations necessary in this case is 11. Consequently, the application of low-
skilled workers increases the length of the line by one workstation compared to the original 
case (see the results of model 1). 

The minimal cycle time for 11 workstations with low-skill constraints is 84 seconds. This 
is also higher than the minimal cycle time obtained for the original problem (see the results of 
model 2). Consequently, the application of temporary workers increases line length and 
deteriorates cycle time as well. 

The deterioration of cycle time is even more apparent if the SALBP-2 is solved for 10 
workstations and with low-skill constraints (see the row of model 9 in Table 4.4). In this case, 
cycle time is 20 percent higher than in the original case (100 seconds). 

Based on these results the management may consider, for example, a special training for 
temporary workers to eliminate the unfavorable effect of low-skilled workers on line length 
and on cycle time. 

4.5 Sensitivity analysis of line efficiency with respect to production quantity 

An important problem of assembly line operation is the proper reaction to production 
requirement changes. If production requirement increases, line capacity generally must be 
increased. If production requirement decreases utilization of the line decreases as well, and, 
consequently, the decrease of line capacity is required. These types of problems can be 
analyzed with the help of the Efficiency-quantity (E(Q,N)) chart (Koltai and Tatay, 2010; 
Koltai, Tatay and Kalló,  2014). 

The calculation of line efficiency for a specific line configuration with N workstations is 
as follows, 
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Expression (4.28) shows that line efficiency is determined by the number of workstations 
(N). At the ideal task assignment, station time of each workstation is equal to the cycle time; 
that is, sj=Tc. In this case, the line is perfectly balanced, there is no idle time at the 
workstations and line efficiency is equal to 1. If the line cannot be perfectly balanced, idle 
time exists and line efficiency decreases. If, for some reasons, more workstations are applied 
than necessary, line efficiency also decreases. 

Expression (4.28) shows that line efficiency (E(Q,N)) is a linear function of production 
quantity (Q). If production quantity increases, then cycle time decreases and, consequently, 
line efficiency increases. There is, however, a maximum quantity which can be produced 
during the available total time (T). This quantity is determined by the maximal station time of 
the line (Max{sj}), that is, 

{ }j
Jj

s

T
NQ

,...,1

Max Max
)(

=

=

 

(4.29) 

 If target production quantity is above the maximum production quantity, either the 
increase of total time required or a new line configuration must be determined. Therefore, 
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QMax(N) is the upper production limit of the current task assignment. 
If production quantity decreases, line efficiency decreases as well. After a certain amount 

of production quantity decrease, the line configuration is not optimal anymore; the required 
quantity can be produced with fewer workstations. The lowest production quantity at which 
the line with N workstations is still optimal is determined by the maximal production quantity 
of the optimal line with N–1 workstations. This quantity is denoted by QMax(N–1). 

If the SALBP-1 is solved, a solution which provides a line configuration with the 
minimum number of workstations (N) is obtained. As long as production quantity is within 
the validity range defined by the minimal and maximal production quantity, the line 
configuration is optimal with respect to the number of workstations and task assignment. If 
production increases, N workstation is not enough and more workstations are required. If 
production decreases, less workstation should be applied; therefore, the line with N 
workstations is not optimal any more. Consequently, the line with N workstation is optimal 
only if production quantity is within the following range, 

( ) ( )NQQNQ MaxMax 1 ≤<−  (4.30) 
Note that expressions (28) and (29) can be calculated for any line configuration with N 

workstations. Several task assignments may belong to a line with N workstations and different 
cycle time and maximum production quantity may belong to each assignment. The 
assignment with the smallest cycle time can be obtained by solving the SALBP-2 for N 
workstations. In this case, the highest (optimal) maximal production quantity belonging to N 
can be obtained. The optimal maximum production quantity is denoted by ( )NQOPT

Max . Using 

this value, the validity range for the optimal cycle time line configuration, that is, the 
maximum validity range is the following, 

( ) ( )NQQNQ OPTOPT

MaxMax
1 ≤<−  (4.31) 

The validity range of optimality is closely related to line efficiency. If production is 
within the validity range, line efficiency is the highest possible. If production is outside of this 
range, a new line must be formed.  

Figure 4.3 shows the change of line efficiency with respect to production quantity for 
each possible line configuration of the bicycle assembly line.  

The figure shows the E(Q,N) function for several optimal workstation configurations 
(N=1,…,14). Each line in the figure is obtained by solving a SALBP-2 with the corresponding 
N. In the case of N=1, each task is performed at a single workstation. Cycle time is equal to 
the sum of task times (707 seconds) and the maximum production quantity is equal to 25,5 
according to (4.29). At the maximum production quantity line efficiency is 1, because there is 
no idle time at the workstation. The rest of the functions are obtained by solving the SALBP-2 
for N=2,…,14, and the highest value of the independent variable Q is ( )NQOPT

Max  at each line. 

In Chapter 4.4, the SALBP-1 was solved for Q=200 units. According to the results the 
optimal number of workstations is equal to 10. Cycle time is 90 seconds which is higher than 
the optimal cycle time obtained by the SALBP-2; therefore, QMax(10)=200. The optimal cycle 
time in the case of N=10 is 80 seconds, and ( )10OPT

MaxQ =225 units. Solving the SALBP-2 for 

N=9 we get ( )9OPT
MaxQ =189.5. According to (30), the validity range at the task assignment 

obtained by the SALBP-1 in Chapter 4.3 is as follows, 
2005.189 ≤< Q  (4.32) 

According to (31) the maximum validity range of the optimal cycle time line 
configuration with 10 workstations is as follows, 

2255.189 ≤< Q  (4.33) 
Assume now that production decreases to 180 units. Figure 4.3 shows that 180 units can 

be produced with 9 workstations. The operation manager must decide which line 
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configuration to use. Continue producing with 10 workstations at 0.707 line efficiency or 
reorganize the line and produce with 9 workstations at 0.78 line efficiency. The answer is 
partly influenced by expected further changes. If production further decreases, it is probably 
better to apply 9 workstations. If the production decrease is temporary and production 
quantity is expected to return to the previous level (200), then it is not worth to reorganize the 
line. 

Assume now that production increases to 210 units. Currently, the solution of the 
SALBP-1 is used; therefore, 210 is outside of the validity range. This value is, however, 
within the maximal validity range, therefore, 10 workstations with a task assignment provided 
by the solution of the SALBP-2 is feasible. Looking at Figure 4.3 managers can see the 
possibilities of the current line configuration and can make a proper decision when production 
requirement changes. 

 

Figure 4.3 Effect of production quantity on line efficiency 

4.6 The effect of the change of task times  

The task times used in the models presented in this chapter may change for several reasons 
during production. Two of these reasons are investigated next. First, since tasks are performed 
by workers, the task times are random variables. Second, as a consequence of the learning 
process, task times may decrease as production proceeds. 

4.6.1 The effect of the variation of task times  

The presented simple ALB models cannot take into considerations the stochastic 
characteristics of task times. Therefore, a simulation model was prepared to analyze the effect 
of the variability of task times. The objective of simulation is to examine the robustness of the 
optimal solutions of the mathematical programming models presented in Chapter 4.4 with 
respect to the stochastic change of task times.  

Different distributions (deterministic, normal, and uniform) and different relative standard 
deviations (5, 10, 15, 20%) were applied to model the variations of task times. The length of 
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the replications was chosen according to the time requirement of the minimal lot size 
(200·90=18000 sec). Some results based on 500 replications are summarized in Table 4.5. 

Table 4.5 shows the statistical characteristics (mean and half width) of production 
quantities in the given 5 hour production period as a function of the distribution function and 
relative standard deviation using the optimal solution of the SALBP-1 as an input. The data 
clearly show that only large standard deviations have considerable effect on the target 
production quantity (200 units).  

We have also examined the effect of high-skilled and temporary workers. We assumed 
the same mean task times, but different relative standard deviations for the same task if it is 
performed by differently skilled workers. Lower variance is assumed for high-skilled workers, 
and higher variance is assumed for low-skilled workers. Simulating the operation of the 
assembly line using the optimal solutions of each model of Table 4.4 as an input, similar 
results (with small differences in accordance to the input variations) were obtained to the data 
shown in Table 4.5.  
 

Table 4.5 Summary of simulation results 

Distribution 

Relative standard deviation 

0% 5% 10% 15% 20% 

Mean Mean 
Half 
width 

Mean 
Half 
width 

Mean 
Half 
width 

Mean 
Half 
width 

Deterministic 200 --- --- --- --- --- --- --- --- 
Normal  200 199.6 0.04 199.3

4 
0.05 199.0

8 
0.08 198.8

5 
0.09 

Uniform 200 199.2
1 

0.01 198.6
5 

0.1 197.9 0.13 196.8
8 

0.16 
 

Based on the simulation results, we can conclude that if efforts are made by the 
management to reduce the variance of task times by proper organization of the line and by 
training the workers, the output variance is relatively small. In this case, the effect of variance 
of task times on the cycle time and, consequently, on the output quantity is relatively small. 
Therefore, the optimal solutions of SALBM-1 and SALBM-2 can be accepted as valuable 
information for line configuration decisions. 

4.6.1 The influence of the learning effect 

In case of the presence of learning effect, it is presumed, that station time decreases as the 
number of the performance of the tasks at the station increases. In this case sj is the station 
time only at the first performance of the operation at station j. An sj(Q) function describes the 
station time as a function of the number of processed parts. Applying the classical exponential 
learning function (Yelle, 1979) the value of sj(Q) is the following, 

( ) jb
jj QsQs = , (4.34) 

where bj<0 determines the decrease of station time at station j in case of learning effect. 
In this case, any calculation, which is based on the assumption of a constant cycle time, 

must be revised, since cycle time constantly changes for two main reasons: 
1) If station j is the bottleneck of an assembly line, then, as a consequence of the learning 

effect, cycle time decreases exponentially according to the sj(Q) function. 
2) In case of the presence of learning effect, bottleneck may shift from one station to 

another at certain point of time. 
The cycle time change is continuous (exponentially decreasing) in the case of point 1). In 

the case of point 2, however, the change of the cycle time is not continuous as it is illustrated 
in Figure 4.4.  
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Figure 4.4 Illustration of bottleneck shift 
 
Figure 4.4 shows the station time functions of two different stations (station j−d  and j) as 

a function of production quantity. The difference between the two station indexes is expressed 
with d. To depict the station time functions of stations j−d  and j in the same diagram, a 
common independent variable must be selected since each station processes a different part at 
the same time. For practical reasons, we select the production quantity of the latest 
workstation (station j in this case) as independent variable. Consequently, sj−d(Q) denotes the 
station time of station j−d  as a function of the part manufactured at station j. 

According to Figure 4.4, at first, station j is in the bottleneck, since sj(Q)>sj-d(Q), and 
cycle time exponentially decreases. Station time of stations j−d  and j are equal at quantity 
Q(j-d,j). After this quantity, station j−d  is in the bottleneck of the line because sj(Q)<sj-d(Q). 
Q(j−d ,j) indicates bottleneck shift. At this quantity, station j leaves the bottleneck and station 
j−d  enters the bottleneck. In case of an assembly line with several workstations, the output 
rate of the line is determined by the envelopment curve of all the station time functions of the 
line. 

Assembly line balancing in case of learning effect is very complicated, since a constantly 
changing cycle time cannot be minimized (Cohen, Vitner and, 2006). However, the results of 
assembly line balancing based on constant cycle time can be acceptable as a good 
approximation of optimal line configuration under the following conditions: 

– Station time doesn’t decreases infinitely in practice. Even in case of learning effect, a 
constant station time is assumed after an initial production period (warm-up period) of the 
line. If this constant station time is used, the line configuration is optimal for the operation 
after the warm-up period. 

– Bottleneck change occurs generally at small quantities (small Q(j-d,j) values), therefore, 
its effect on production quantity and on throughput time is significant only in case of small 
production batches. 

Consequently, if steady state station times can be estimated, and production batches are 
relatively large, the results of assembly line balancing models presented in the previous 
chapters can provide acceptable information for line configuration decisions. 

A detailed examination of the effect of learning on the bottleneck shifts and on the 
throughput time can be found in Koltai and Györkös (2012) and in Koltai, Györkös and Kalló 
(2014). The change of the efficiency function as a consequence of learning is discussed in 
Koltai and Györkös (2013). 
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4.7 Conclusions of Chapter 4 

This chapter showed how basic assembly line balancing models can be completed with 
workforce skill constraints. First, the two basic models, that is, the workstation minimization 
model and the cycle time minimization model are presented. Next, in order to generalize 
workforce skill constraints the basic cases are classified into three categories. Low-skill 
constraints are applied when the focus of operations manager is to provide work for low-
skilled workers. High-skill constraints are applied when the responsibility of operations 
managers is the performance of complicated tasks with limited number of high-skilled 
workers. In both cases the consideration of several skill levels makes the constraints generally 
applicable in practical context. Finally, exclusive-skill constraints are applied for tasks 
requiring specialists. Mathematical formulation of the three skill constraint types is presented 
and the constraints are integrated into the basic simple assembly line balancing models. 

The effect of skill constraints on the optimal solution of ALB models is analyzed in a 
bicycle assembly process. The optimal solution of the models helps the operations manager to 
make decisions when frequent reconfiguration of the line is required as a consequence of 
frequent production quantity changes under changing workforce skill conditions. 

Implicit management considerations about workforce skill are translated into explicit 
mathematical constraints. The solution of the ALB problems completed with HSC and LSC 
may help to evaluate the effect of the availability of different workers on line length and on 
line capacity. 

Based on the optimal solutions of several SALB-2 problems a graphical tool is developed 
to analyze the effect of production quantity changes on efficiency. 

The presented ALB models are deterministic; therefore, they do not take into 
consideration the variance of task times. However, simulation analysis of the operation of the 
assembly line based on the optimal solution of ALB models was performed. The results of 
simulation revealed that the optimal solution of ALB models provides robust information 
related to production quantity. Consequently, the solution of the presented simple ALB 
models can provide relevant information for the production manager of the bicycle assembly 
plant. 

The mathematical programming models in the case of the bicycle manufacturer require 
less than 1200 binary variables even in the most complicated case. The application of skill 
constraints with two skill levels requires about 24 new skill variables (2 skill level*12 
workstations=24 skill variables). Run time is strongly influenced by the structure of the 
precedence graph. For any problem at this company, however, the optimal solution can be 
obtained in less than 1 minute with Lingo software on an average laptop computer. These data 
show that there are no computational constraints when these models are applied in practice. 

As a summary, based on Chapter 4 the following scientific results can be formulated: 
 

Result 3/1 
I have defined the following three types of multi-level workforce skill constraints in case of 
simple assembly line balancing problems: 

– Low-skill-constraint (LSC): A given number of workers belonging to skill level k must 
be applied at the assembly line. These workers cannot perform tasks belonging to skill levels 
higher than k. They can only work at stations which have tasks with skill level equal to or 
lower than k, and the number of such stations is constrained from below. 

– High-skill-constraint (HSC): Only a limited number of workers are able to perform the 
most complicated tasks. These workers cannot perform tasks belonging to skill levels higher 
than k. They can only work at stations which have tasks with skill level equal to or lower than 
k, and the number of such stations is constrained from above. 
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– Exclusive-skill-constraint (ESC): Some tasks can be performed only by special workers. 
In this case workers have different skills/specializations, and a worker specialized in one type 
of skills is not able to perform tasks requiring other type of skills. Consequently, tasks 
belonging to different skill types cannot be mixed at a station.  

The formulation of the three different constraint types is summarized in Table 4.2.  
 

Result 3/2 
The efficiency of an optimal simple assembly line configuration is a linear function of 
production quantity. For several production quantities, the same task assignment is optimal, 
and these production quantities determine the sensitivity range of the optimal task assignment. 
I showed that a task assignment of a line with N workstations is optimal if production quantity 
is within the range specified by constraint (4.31). Within this range, line efficiency linearly 
changes with respect to production quantity, but all the resulting efficiencies are optimal. 
 

The definition and mathematical description of the different workforce skill constraints 
are presented in Koltai and Tatay (2011, 2013), Tatay and Koltai (2011) and Koltai (2013). 
The practical application of the presented approach, and the interpretation of the results in a 
practical case are presented in Koltai and Tatay (2010), Tatay and Koltai (2010), Koltai, Tatay 
and Kalló (2011, 2014), Koltai (2012) and Koltai and Györkös (2012). The effect of learning 
on the operation of simple assembly lines and the analysis of the efficiency function in case of 
the presence of learning effect can be found in Koltai and Györkös (2013), Koltai, Györkös 
and Kalló (2014), and Györkös, Koltai and Kalló (2014). 
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5 APPLICATION OF PERTURBATION ANALYSIS FOR SENSITIV ITY ANALYSIS 
OF A PRODUCTION SCHEDULE 

Production planning generally determines the production quantities of parts/products in a 
given production period, and the amount of resources assigned to perform production tasks. 
Next, a detailed schedule of the performance of the production tasks must be determined. 
Production scheduling is generally presented in form of a Gantt chart for every machine 
participating in production. The Gantt chart shows the starting and completion time of the 
operations on the machines. A production schedule, in most cases, is very sensitive to several 
stochastic events. Operation times may change, machines may break down and operators may 
not be available. An important question is, how the occurrence of unexpected events 
influences the production schedule. This chapter shows how the sensitivity of a production 
schedule can be analyzed with perturbation analysis (PA). The example of a continuous steal 
casting process shows, how the change of production schedules can be analyzed with PA, and 
how requirement for the modification of the schedule can be forecasted. The results of this 
chapter are based on the papers of Koltai (1992), Koltai, Larraneta and Onieva (1993), Koltai, 
Larraneta and Onieva (1994), Koltai et al., 1994 and Koltai and Lozano (1998). 

5.1 Introduction 

A challenging possibility for the examination of discrete event dynamic systems (DEDS) 
is the application of perturbation analysis (PA) which can provide gradient information from a 
single simulation experiment (see for example Ho, Euler and Chen, 1983 and Ho, 1987). The 
idea of PA is to perform a simulation experiment, and via an algorithm an estimate can be 
derived about the gradient of a performance measure of the system with respect to one of its 
parameters (Ho, 1983). This gradient information can be used for iterative improvement of 
system performance (Ho et al., 1984; Rubinstein, 1986). 

Various intriguing problems have been solved since the first publication of the method. 
Propagation rules for infinitesimal and finite perturbations (Ho, Cao and Cassandras, 1983), 
examination of multi-class networks (Cao, 1988), various suggestions for avoiding or at least 
smoothing the effect of discontinuities are extending the application area of PA (Ho and Li, 
1988). Researchers of this field, however, have mostly concentrated on generating and/or 
propagating perturbations, but have avoided the examination of the validity range within 
which the gradient information is valid. The infinitesimal approach deals with this problem by 
simply saying that the size of the perturbation is small enough not to hurt the deterministic 
similarity. The finite approach calculates accurately the effect of finite changes of a parameter 
with higher order propagation rules, but it also fails to provide information about the validity 
range (Ho, Cao and Cassandras, 1983). The effect of a specific perturbation is calculated 
correctly but if the perturbation changes the calculation has to be performed again. 

In the proceeding part of this chapter I shortly explain the concept of PA, and show how 
the validity range of deterministic similarity can be derived if the event sequence table is 
generated by simulation. A small example illustrates the implementation of the calculation in 
a discrete event simulation environment. The application of PA is also presented for the 
calculation of the gradient of the throughput with respect to a routing parameter in flexible 
manufacturing systems. Finally, the application of PA and validity range calculation is 
illustrated with a practical example. In this example validity range calculation is performed in 
case of an automated steel manufacturing process, where the sensitivity of a production 
schedule must be examined, but the event sequence table is provided by a scheduler, and not 
by discrete event simulation. 
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5.2 Basic concepts of perturbation analysis (PA)  

PA was developed for the gradient estimation of performance measures with respect to certain 
system control variables in DEDS, when the performance measure is obtained by discrete 
event simulation. The basic idea is that a sample path of the simulation contains information 
about certain system characteristics. Therefore, it is not necessary to rerun the simulation 
when the performance measure sensitivity is estimated (Ho and Cassandras, 1983). To 
facilitate further discussion we introduce here some basic concepts of PA based on the work 
of Ho and Cao (1991). 

The change of a system control variable is called perturbation. The original sample path 
is called nominal path and the one belonging to the perturbed control variable is called the 
perturbed path. A sample path represents a specific structure of events that occur at the 
resource elements of the system. Three of these events can be specified: 

a.) operation (OP) when a resource performs operation on an entity. 
b.) no-input (NI) when a resource is idle because there is no entity it could work on.  
c.) full-output (FO) when a resource is blocked, because the entity it was working on, 

cannot leave the resource. 
The event sequence table contains the order of these events at the resources. The event 

sequence table changes if any of its events disappears or a new one appears as a consequence 
of any change of the system control variables. Deterministic similarity means that the event 
sequence tables of the nominal and perturbed sample path are equal. 

The appearance of perturbation is called perturbation generation. When a perturbation 
appears at a specific entity, it may spread through the system, changing the beginning and 
ending operation time of other entities. This is called perturbation propagation. The change 
of the finishing time of the last entity at a sample path is the sample path gradient. If 
deterministic similarity is not hurt when the control variable changes, then the performance 
measure is a linear function of the control variable. The interval of the perturbation, within 
which this linear function has the same gradient, is the validity range of the gradient of the 
sample path (Koltai 1992). When many sample paths are generated both the gradient and its 
validity range can be estimated. 

My main concern is the calculation of the gradient of the throughput time with respect to 
the mean of the operation time of a resource, furthermore, the calculation of the range within 
which changing this mean operation time, the gradient remains the same. 

5.3 Formal treatment of perturbation analysis 

Let us consider a queuing network consisting of Rj, j=1,...,M single server resources with 
finite buffers and FIFO queuing disciplines. The capacity of the queue of Rj is cj, and includes 
the entity occupying the resource as well. The number of entities in the queue of Rj is qj. The 
Ei, i=1,...,N entities are served at the resources. The mean operation time of Rk is perturbed, 
and the throughput time is measured when Eu terminates the operation at Rv. Relative to Ei at 
Rj we define the following functions: 

nr(i,j) − the next resource entity i visits after finishing the operation at Rj, 
pr(i,j) − the previous resource entity i visited before arriving to Rj, 
ne(i,j) − the next entity following the operation of Ei on Rj, 
pe(i,j) − the entity processed previous to Ei on Rj, 
a(i,j) − the entity which is in process at Rnr(i,j) the time Ei finishes its operation at Rj, 
Notations used in this chapter are summarized in Table 5.1. Note, that in order to avoid 

the application of two level indexing, in case of some variables running indices are written in 
parenthesis.  
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Our main objective is to determine the expected value of the gradient of a performance 
measure, based on the gradient of the performance measure obtained from a single sample 
path, that is, 
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and its validity, 
( )[ ] ( )[ ]ξθ≤θ≤ξθ ,, kkk ULELLE  (5.2) 

 

The conditions of interchangeability of differentiation and expectation are briefly 
discussed in Chapter 5.5. 

To calculate (5.1) and (5.2) the sample path gradient and the sample path validity have to 
be determined. To facilitate the formal description of the calculations, first the occurrence of 
NI and FO events are analyzed. 

5.3.1 Analysis of the NI and FO events 

In Chapter 5.2 I have already introduced the concept of full-output (FO) and no-input (NI) 
events. In this section the duration of these events will be formally described. 

a) The occurrence of NI is illustrated in Figure 5.1. Entity Ei, after leaving resource Rj, 
finds Rnr(i,j) idle, therefore its service can be initiated immediately upon arrival. The waiting 
time of Rnr(i,j) for the arrival of Ei after finishing the operation of Epe(i,nr(i,j) ), is calculated as 
follows: 

jijinrjipeij bbni 2,),(2),,( −=
 (5.3) 

This time interval is calculated when qnr(i,j)=0, therefore, niij≤0 in case of the occurrence 
of NI. 

b.) The occurrence of FO is represented in Figure 5.2. Ei, after finishing its operation on 
Rj, finds the queue of Rnr(i,j) full, therefore it stays in Rj, keeping it blocked until R nr(i,j) finishes 
the operation of Ea(i,j). The time, while Rj is blocked, can be calculated as follows: 

( ) jinr(i,j)i,jaij bbfo 2,2, −=
 (5.4) 

This time interval is calculated when qnr(i,j)= cnr(i,j), therefore, foij ≥0 in case of the 
occurrence of FO. 

c.) If Ri finds neither NI nor FO, there is no idle time before Ei enters Rnr(i,j) and after Ei 
leaves Rj. In these cases qnr(i,j) must be evaluated from the point of view of the possibility of 
NI or FO. If there is just one entity in the queue of Rnr(i,j), there is a high possibility of the 
occurrence of NI. This situation is called potential no-input (PNI) (Ho, Cao and Cassandras 
1983) and it is illustrated in Figure 5.3. PNI occurs if at the moment Ei finishes its operation at 
Rj the value of qnr(i,j)=1. The duration of the PNI can be calculated as follows: 

jijinrjinripeij bbpni 2,),(2)),,(,( −=
 (5.5) 

This time interval is calculated when qnr(i,j)=1, therefore, pniij ≥0 in case of the occurrence 
of PNI. 

d.) If there is just one free space in the queue of Rnr(i,j) when Ei finishes its operation at Rj, 
then there is a high possibility of the occurrence of FO. This situation is called potential full-
output (PFO) (Ho, Cao and Cassandras, 1983) and it is illustrated in Figure 5.4. PFO occurs if 
at the moment Ei finishes its operation at Rj the value of qnr(i,j)=cnr(i,j)−1. The duration of the 
PFO can be calculated as follows: 

jijinrjiaij bbpfo 2,),(),,( −=  (5.6) 

This time interval is calculated when qnr(i,j)=cnr(i,j)−1, therefore, pfoij≤0 in case of the 
occurrence of PFO. 
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Table 5.1 Summary of notation of  Chapter 5 

Subscripts: 
i –  index of entities (i=,…,I), 
j –  index of resources (j=,…,J), 
k –  index of the resource at which perturbation is generated, 
u –  index of the last entity, 
v –  index of the last resource. 
Parameters: 
cj –  the capacity of the queue of Rj, including the entity in Rj as well, 
tij –  operation time of Ei at Rj, 
bi,2j-1 –  beginning time of the operation of Ei at Rj, 
bi,2j –  ending time of the operation of Ei at Rj. 
Variables: 
nr(i,j) –  the next resource entity i visits after finishing the operation at Rj, 
pr(i,j) –  the previous resource entity i visited before arriving to Rj, 
ne(i,j) –  the next entity following the operation of Ei on Rj, 
pe(i,j) –  the entity processed previous to Ei on Rj, 
a(i,j) –  the entity which is in process at Rnr(i,j) the time Ei finishes its operation on Rj, 
θk –  mean operation time of Rk, 
ξ – random variable, representing a particular realization of all the random variables in the system, 
L(θk,ξ) –  performance measure of the system belonging to a sample path, 
q(j) –  number of entities occupying the queue of Rj, 
niij –  duration of no-input caused by Ei when finishing operation at Rj, 
foij –  duration of full-output experienced by Ei when finishing operation at Rj, 
pniij –  duration of potential no-input caused by Ei when finishing operation at Rj, 
pfoij –  duration of potential full-output experienced by Ei when finishing operation at Rj, 
otij –  duration of overtake belonging to Ei on Rj, 

ikt̂  –  random variable of the operation time of Ei at Rk, 

δij –  perturbation of the finishing time of the operation of Ei at Rj, 
LL(θk,ξ) –  lower limit of the change of θk at which deterministic similarity still holds, 
UL(θk,ξ) –  upper limit of the change of θk at which deterministic similarity still holds, 

)NI(
ijD  – coefficient of accumulated perturbations in case of no-input caused by Ei when finishing 

operation at Rj, 
)FO(

ijD  – coefficient of accumulated perturbations in case of full-output experienced by Ei when 

finishing operation at Rj, 
)PNI(

ijD  – coefficient of accumulated perturbations in case of potential no-input caused by Ei when 

finishing operation at Rj, 
)PFO(

ijD  – coefficient of accumulated perturbations in case of potential full-output experienced by Ei 

when finishing operation at Rj, 
)OT(

ijD  –  coefficient of accumulated perturbations in case of overtake belonging to Ei on Rj, 

wij(ξ) –  waiting time of Ei before entering Rj in a simulation experiment, 
)(k

ijLL  –  lower limit of the change of the operation time of Ei on Rj in the kth iteration step, 

)(k
ijUL  –  upper limit of the change of the operation time of Ei on Rj in the kth iteration step, 

TP0 –  system throughput in the FMS example, 
θts –  ratio of part type t visiting route s in the FMS example. 
Set: 
s{ i,j} – index set of those Em on Rk whose generated perturbation participate in the perturbation of Ei 

on Rj. 
Other notation: 
Ei –  identification of entity i, 
Rj –  identification of resource j. 
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Figure 5.1 Illustration of no-input 
 

Figure 5.2 Illustration of full-output 
 

Figure 5.3 Illustration of potential no-input 
 

Figure 5.4 Illustration of potential full-output 
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5.3.2 Generation of perturbations 

Our objective is to evaluate the effect of the change of the mean of the operation time of Rk. 
Therefore we have to provide  

Nittt ikikik ,,1ˆ ; K=∆+=
 (5.7) 

so that, 
[ ] kktE θ∆+θ=ˆ

 (5.8) 
∆tik can be generated based on the perturbation generation rules introduced by Suri and 

Zazanis (1988). It can be proved that if θk is a scale parameter of a distribution, then ∆tik are 
calculated as follows: 

k

k
ikik tt

θ
θ∆=∆

 
(5.9) 

and if θk is a location parameter, then 

kikt θ∆=∆  (5.10) 

5.3.3 Perturbation propagation 

The spread of the ∆tik values in the event sequence table is based on the structure of the event 
sequence table and can be formally treated based on the evaluation of the event, preceding the 
beginning of the operation of entities. When an entity receives a perturbation, it is added to 
the perturbation generated throughout its operation. Three basic types of propagation 
operations can be defined for infinitesimal perturbations (Ho and Cao, 1991). 

1) If the operation of an entity is preceded by a NI event, then this entity receives 
perturbation from the downstream resource. Based on Figure 5.1, its perturbation can be 
calculated as follows: 

),(,),(, jinriijjinri t∆+δ=δ
 (5.11) 

2) If the operation of an entity is preceded by a FO event, then this entity receives 
perturbation from the upstream resource. Based on Figure 5.2, its perturbation can be 
calculated as follows: 

jjinejinrjiajjine t ),,(),(),,(),,( ∆+δ=δ
 (5.12) 

3) If the operation of an entity is preceded by an OP event, then this entity receives 
perturbation from the preceding entity on the same resource. Based on Figure 5.3 and 5.4, its 
perturbation can be calculated as follows: 

jjineijjjine t ),,(),,( ∆+δ=δ
 (5.13) 

We assume finite perturbations, which are, however, small enough not to hurt 
deterministic similarity. That is the way infinitesimal perturbation propagation rules (Ho, Cao 
and Cassandras, 1983) are used, although the perturbations are finite. 

Finally if Eu on Rv is the last entity, the gradient of the throughput time of the sample path 
is calculated as follows: 

( )
k

uv

k

kL

θ∆
δ=

θ∂
ξθ∂ ,

 
(5.14) 

5.3.4 Calculation of the validity range of deterministic similarity 

Deterministic similarity holds if the nominal and the perturbed sample path are equal. The 
calculation of the validity limits requires the calculation of the highest and the lowest value of 
∆θk for which the original and the perturbed event sequence tables are identical. This occurs if 
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as a consequence of the appearance of perturbations: 
- existing NI or FO do not disappear, 
- new NI or FO do not appear, 
- there is no overtake (OT) of entities at queues which are fed by more than one resource. 
The conditions on the non-disappearance of NI and FO can easily be checked. The change 

of the duration of FO and NI, due to the appearance of the perturbations, should be less than 
the actual duration of NI and FO, that is, 

ijijjinrjinripeij nini −≤δ−δ=∆ ),()),,(,(  (5.15) 
 

ijijjinrjiaij fofo −≥δ−δ=∆ ),(),,(  (5.16) 
The condition on the appearance of new NI and new FO requires some further remarks. A 

new NI appears before Ei on Rnr(i,j) if the waiting time of Ei upon arrival to Rnr(i,j) will decrease 
to 0 (see Figure 5.3). This situation can be approximated by saying that it is enough to check 
the decrease of the waiting time when Ei finds PNI, that is, when there is just one entity in the 
queue of Rnr(i,j). It is very probable that limits will be imposed by entities waiting for the end 
of one operation instead of, by entities waiting for the end of two or more operations. This is 
not necessarily true, because a waiting time caused by one long operation can be longer than a 
waiting time caused by two or more short operations. Considering that generally small (but 
finite) perturbations occur and operation times with relatively small variances are applied, this 
approximation may give good results. Similarly, when the appearance of FO is examined, 
only those cases will be checked, when upon arrival to a resource, there is only one free space 
in the queue (see Figure 5.4). 

Ho and Cao (1991) recommended the application of the first order propagation rules to 
approximate the propagation of finite perturbations, on the same basis. The errors committed 
by this approximation are analyzed in various examples and are found acceptable for practical 
purposes (Ho, Cao and Cassandras, 1983). An exact treatment is given by Koltai (1992) by 
introducing the two-level FO and NI matrices. The approximation by PNI and PFO, however, 
may considerably facilitate data management at the calculations. Applying the first order 
approximation of validity limits, the conditions on the non-appearance of NI and FO are the 
following; 

ijijjinrjinripeij pnipni −≥δ−δ=∆ ),()),,(,(  (5.17) 
 

),(),()),,(),,(( jipfopfo ijjinrjinrjiapeij −≤δ−δ=∆
 (5.18) 

There will be no overtake at a queue which is fed by more than one resource if, as a 
consequence of perturbation, the order of arrival of entities will not change. Based on Figure 
5.5 this condition is as follows: 

),(2,)),,((2),,( jiprijjipeprjipeij bbot −=
 (5.19) 

and 

ijjiprijjipeprjipeij otot −≤δ−δ=∆ ),(2,)),,((2),,(  (5.20) 
Due to the form of perturbation propagation rules, and to the simple form of the 

perturbation generation rules for location and scale parameters, the validity limits of ∆θk can 
be easily calculated. 

Let s{i,j} be the index set of those Em on Rk whose generated perturbation participate in 
the perturbation of Ei at Rj. In case of scale parameters equation (5.15) has the following form, 

{ } { }
0),(

,),(),,(,(

=−≤













−

θ
θ∆

∑∑ jinrij
jis

ik
jinrjinripes

ik
k

k qifnitt

 

(5.21) 

Let us introduce the following coefficient for the expression of the accumulated 
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perturbations, 

{ } { }
0; ),(

,),(),,(,(

)NI( =−= ∑∑ jinr
jis

ik
jinrjinripes

ikij qifttD

 
(5.22) 

Using the notation introduced with the help of (5.22), equation (5.21) can be written as, 

)NI(
ij

ij

k

k

D

ni
−≤

θ
θ∆

 

(5.23) 

After similar transformation of (5.16), (5.17), (5.18), and (5.20), furthermore introducing, 
Dij

(FO), Dij
(PNI), Dij

(PFO) and Dij
(OT) we get the following limits for the validity of deterministic 

similarity of the sample path, 

( )

0;0;0;0;0

;;;;,
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(5.24) 

and 

( )

0;0;0;0;0
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(5.25) 

In case of location parameters equation (5.15) is as follows, 

{ } { }
ij

jisjinrjinripes
k ni−≤














−θ ∑∑

,),(),,(,(

11

 

(5.26) 

Introducing 

{ } { }
0),((;11

,),(),,(,(

)NI( =−= ∑∑ jinrqifD
jisjinrjinripes

ij

 
(5.27) 

and applying the previous procedure again for FO, PNI, PFO and OT, (5.24) and (5.25) also 
hold. 

Figure 5.5 Illustration of the overtake possibility 

5.4 Gradient of the mean waiting time in the queue  

The presented analysis can easily be extended for the gradient and validity range calculation 
of the waiting time in queue. 

Based on Figure 5.3 and 5.4 the waiting time of Ei in the queue of Rn(j) is the following: 
( ) jijinrjinripekij bbW 2,),(2)),,(,(, −=ξθ

 (5.28) 
and the gradient is 

Ei
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Epe(i,j) otij
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( )
k

ji

k

jinrjinripe

k

kij bbW

θ∂

∂
−

θ∂

∂
=

θ∂

ξθ∂ 2,),(2)),,(,(,

 
(5.29) 

Expression (5.29) shows that the gradient of the waiting time in queue of an entity is the 
difference of the gradient of the finishing times of two different entities. It looks as if it were 
the difference of the gradient of the throughput time of two sub processes of the whole 
process. These gradients can easily be calculated according to the presented method, applying 
the appropriate indices in (5.14). 

As the gradients of the sub-processes are valid within the validity range of the throughput 
time gradient of the whole process, the same validity will be true for the gradient of the 
waiting time in the queue of Rj as well. 

5.5 Convergence properties of the gradient estimates 

So far, we have presented the calculation of the gradients and validity limits of one sample 
path. The estimate of these characteristics can be carried out correctly only if (5.1) holds. The 
conditions of interchangeability of differentiation and expectation are a constant research 
topic of PA (see for example Heidelberg et al., 1988; Glasserman, 1991).  

If deterministic similarity cannot be assumed than, the extended perturbation analysis 
(EPA) can be applied (Ho and Li, 1988). It is based on the stochastic similarity concept and 
consists of a cut-and-paste method which constructs a new nominal path. This nominal path is 
created by removing certain parts of the original nominal path. These removed parts should 
start and end with the same system state and the resulting reconstructed nominal path should 
be deterministically similar to the perturbed one. A dual version of this approach (paste and 
insert), and additionally a state and event matching algorithm exists to facilitate the 
computationally efficient implementation (Ho and Cao, 1991). 

With EPA, all previously mentioned gradients can be calculated, and their validity limits 
describe the range of θk, within which the constructed nominal path and the perturbed path are 
deterministically similar. 

5.6 Computational results 

In this chapter the implementation of sensitivity analysis with PA will be presented with the 
help of three examples. The first to examples show how PA can be performed in a discrete 
event simulation environment. The third example shows how PA can be applied if the event 
sequence table is given in the form of a Gantt chart (Wilson, 2003) of a production schedule. 

5.6.1 Implementation of gradient calculation with PA in discrete event simulation 

With the description of the gradient and validity range estimation, my objective was to give a 
formal treatment, which facilitates the implementation of perturbation analysis in a discrete 
simulation environment. Entities are passing through the system and at the occurrence of 
appropriate events, the beginning and ending operation times of entities preceding or 
following them on the current or next resource are evaluated. The queue content of the 
destination resources is also observed. The logic of the calculation can be seen in Figure 5.6. 

Ei, after leaving the queue of Rj, takes perturbation from the upstream or downstream 
resources or from the entity preceding it on the same resource (P1). The origin of the received 
perturbation depends on the state of the queue of Rj at the termination time of the operation of 
Ei at the previous resource (I2). This is also the time epoch of evaluating the change of 
validity limits since all the information for calculating (5.21) is available due to the 
observation made at the preceding resource (I2, I3). The waiting time perturbation of this 
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entity can also be calculated. 
At the end of the operation, perturbation is propagated upstream if NI is observed at the 

destination resource. If this is the resource where the mean operation time is perturbed, then 
the operation time change is also generated (P2). 

If the queue of the destination resource is blocked, then at the end of blocking, 
perturbation is propagated from the blocking resource. 

If there is a possibility of overtake of entities, its effect on the validity has to be evaluated 
before entering the queue (C4). 

 

 

Figure 5.6 Implementation of perturbation analysis in discrete event simulation 
 
The implementation of the presented method was carried out in the SIMAN IV simulation 

language (Pedgen, Shannon and Sadowski, 1991). The steps of the algorithms were performed 
by 4 event blocks, denoted by I1-I4 in Figure 5.6. 

A simple problem is illustrated in Figure 5.7 and the simulation results of this example 
are summarized in Tables 5.2 and 5.3. 
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Figure 5.7 Transfer line example with three resources 
 
The main characteristics of the problem are the following: 
– three resources are used (R1, R2 and R3), 
– 100 entities passing through the system, 
– queue capacities are the followings, c1=4, c2=2, c3=2, 
– FIFO queuing disciplines are applied at each queue, 
– expected values of the exponential operation times (in minutes) are the followings, 
θ1=4,  θ1=6, θ1=6, 

– all the 100 entities are available at the beginning of the process, in the first queue. 
The estimates of the traditional outputs and the gradients with respect to θ2, based on 100 

simulation runs can be seen in Table 5.2. The rigorous examination of the distribution of the 
gradients is not discussed here. 

Data concerning the calculation of the difference based on repetition of the experiment 
with θk+∆θk is given in Table 5.3. Note, that in the table difference calculation is based on the 
relative change of operation time (∆θk/ θk). 

The results show the most attractive features of PA. Based on one experiment similar 
sensitivity information can be gained, than by brute force repetition of the simulation. 

 
Table 5.2 Results of a single simulation run 

 
The next example shows how the gradient of the throughput with respect to the routing 

parameter can be determined with PA in a flexible manufacturing system. I proved in Koltai 
and Lozano (1998) that the gradient of the throughput with respect to a routing parameter is a 
function of the gradient of the throughput with respect to the operation time of workstations 
and this gradient can be determined with PA. The following simple example illustrates the 
gradient calculation results. 

 
 

IDENTIFIER   AVERAGE   STANDARD         .950 C.I.        MINIMUM     MAXIMUM       NUMBER 

                                              DEVIATION     HALF-WIDTH     VALUE           VALUE         OF OBS. 

-------------------------------------------------------------------------------------------------------------------------------------  

THROUGHPUT   423.00          42.90                 8.51                   310.00          519.00             100  

TIME IN Q2              6.39            1.05                 0.209                     3.93              8.53             100  

TIME IN Q3              3.58              0.866             0.172                     1.40              6.27             100  

 

IDENTIFIER             AVERAGE   STANDARD         .950 C.I.         MINIMUM       MAXIMUM     NUMBER 

                                                        DEVIATION    HALF-WIDTH     VALUE            VALUE          OF OBS. 

--------------------------------------------------------------------------------------------------------------------------------------------  

GR THROUGHPUT    196.00              54.90                10.90                 80.20            358.00             100  

GR TIME IN Q2               4.66                1.25                    .248                 2.27                8.32              100  

GR TIME IN Q3              -1.66                0.713                 .141                -4.29               -0.551            100  

LOWER LIMIT                -2.014E-02    2.092E-02          4.150E-03        -9.375E-02     -3.477E-05    100  

UPPER LIMIT                  2.165E-02    2.141E-02          4.248E-03         3.604E-04        .122             100  

Exp(4) Exp(6) Exp(6)

c1=inf c2=2 c3=2

R1 R2 R3

∆θk

Ei i= 1,…,100
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Table 5.3 Comparison of difference calculation and gradient estimation 

 
Suppose we have an FMS consisting of four single server workstations (Rj, j=1,...4) (see 

Figure 5.8). Two part types are produced (PR1 and PR2) and two types of pallets are used. 
Three pallets are available in each pallet class. Each part type uses a different pallet type (two 
pallet class). Each part type may follow two different routes. The sequence of operations with 
their respective mean operation times are given in Table 5.4. The last column of the table 
gives the routing mix applied in the experiments. The operation times are exponentially 
distributed. In total, 10 000 parts are produced. In this example, the workstations are the 
resources and the parts are the entities. 

 

Figure 5.8 FMS sample problem 
 

Table 5.4 Basic data of the FMS routing sample problem 
Part type 

(t) 
Route number 

(s) 
Operation sequence 

(station no./mean operation time) 
θts 

1 
 

1 (1/0.5) → (3/0.5) 0.25 
2 (1/0.5) → (4/1.0) 0.75 

2 
 

1 (2/1.0) → (3/0.5) 1.00 
2 (2/1.0) → (4/1.0) 0.00 

 
Figure 5.8 shows that there is not a unique load/unload station, however, R1 is visited by 

every PR1 once and not visited at all by PR2. At the same time R2 is visited by every PR2 
once and not visited at all by PR1. This can be interpreted as if each class had a different 
load/unload station. In this case the relative visiting ratios of each class at its own load/unload 
station should be set to one. Alternatively, one could consider a virtual unique load/unload 
station (R0) – with zero operation time – which is visited by all part types prior to starting 
their true sequence of operations. 

The throughput as a function of θ11 and θ21 is shown in Figure 5.9. The values of this 
function were calculated using the MVA algorithm by Kobayashi and Gerla (1983), and two 
local maxima of this function were determined. One local maximum was found at θ1,1=0.544, 
θ2,1=1 which can very well be seen in the θ2,1=1 cut of Figure 5.9. The results of the gradient 

Identifier θk=6 θk=6.6 
Difference 
calculation 

Gradient  
estimation 

Difference (%) 

THROUGHPUT 423 443 201  196 2.5  

TIME IN Q2 6.39 6.86 4.73  4.66 1.5  

TIME IN Q3 3.58 3.42 -1.66 -1.66 0.0  

R1R1

R2R2

R3R3

R4R4

Route 1

Route 2

Route 3

Route 4
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calculation at one of the points in the θ2,1=1 cut (θ1,1=0.25, θ2,1=1) are summarized in Table 
5.5. A total of 30 simulation runs were carried out to calculate the mean and 95% confidence 
interval of the throughput gradients with respect to the routing mix (∂TP0/∂θts). Change of the 
routing of any part type means that at least two routing ratios change with opposite signs, 
since θ1,1+θ1,2=1 and θ2,1+θ2,2=1. The data of Table 5.5 show that ∂TP0/∂θ1,2<∂TP0/∂θ1,1<0 
therefore directing a small fraction of PR1 from route 2 to route 1 (θ1,1 increases and θ1,2 
decreases) would result in the increase of the throughput. This coincides with the results of 
Kobayashi and Gerla (1983) because they found a local maximum at θ1,1=0.544 which is 
higher than the θ1,1=0.25 value applied in the experiment. Table 5.5 also shows that 
∂TP0/∂θ2,2<∂TP0/∂θ2,1<0 therefore directing a small part of PR2 from route 2 to route 1 (θ2,1  

increases and θ2,2 decreases) would result in the increase of the throughput. This is not 
possible because θ2,1 cannot be higher than 1 but the gradient correctly indicates that the 
throughput function in the θ1,1 cut reaches a feasible maximum at θ2,1=1. 

 

Figure 5.9 Throughput as a function of routing parameters 
 
 

Table 5.5 Gradient information at θ1,1=0.25, θ2,1=1 
∂TP0/∂θts Route (s) 

s=1 s=2 
t=1 -0.3496 

0.0100 
-0.8011 
±0.0423 

t=2 -1.1020 
±0.0435 

-1.5549 
±0.2148 

 
Figures 5.10 and 5.11 show the throughput as a function of the routing mix. In Figure 

5.10, θ2,1 is held constant and equal to the value of the local maximum (1.00). The system 
throughput and the corresponding directional derivative along θ1,1 are shown in the same 
chart. The change of routing mix means that θ1,1 increases from 0.00 to 1.00, while at the 
same time θ1,2 decreases from 1.00 to 0.00. The directional derivative (∂TP0/∂θ1,1−∂TP0/∂θ1,2) 
contains the effect of both changes. 

This derivative indicates a maximum between 0.45 and 0.55 which agrees with the results 
of Kobayashi and Gerla (1983). Figure 5.11 shows the same function but with the other 
directional derivatives (∂TP0/∂θ2,1−∂TP0/∂θ2,2). This derivative indicates that when θ1,1<0.45 
then the throughput function in the different θ1,1 cuts reaches a feasible maximum while when 
θ1,1>0.55 then the throughput function in the different θ1,1 cuts reaches a feasible minimum. It 
can also be seen that in the neighborhood of the optimum the directional derivatives do not 
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give statistically significant results about the sign of the gradient. This is due to the fact that in 
this example the throughput function is very flat around the local maximum. 

 

 

 

 

 

5.6.2 Implementation of gradient calculation when a production schedule is given 

In this chapter I illustrate the application of PA when the event sequence table is determined 
by a short term production schedule of a production system. The production schedule is 
described with a Gantt chart. The starting and completion time of each operation on each 
workstation is given, that is, the bi,j and bi,2j  values are known. In this case the nr(i,j), pr(i,j), 
ne(i,j), pe(i,j) a(i,j) values, furthermore, the ni(i,j), fo(i,j), pni(i,j), pfo(i,j) and ot(i,j) values 
must be determined from the data of the Gantt chart. The details of the generation of all these 
data, based on the concept of virtual queue, can be found in Koltai (1992) and in Koltai, 
Larraneta and Onieva (1994). No matter, however, how the schedule is determined (with 
discrete event simulation or with any deterministic scheduling technique) if the bi,j and bi,2j 
values are known, the gradient of the throughput time or the gradient of the waiting time and 
the corresponding validity ranges can be determined with PA.  

I have implemented PA for the examination of some critical waiting times in an 
automated continuous steel casting process. The queuing network representation of the 
process is illustrated in Figure 5.12. 

Figure 5.12 Queuing network representation of the steel casting process 
 
The system consists of four workstations, and transforms pig iron into steel slabs (Díaz et 

al., 1991). The production process manufactures about 40 steel slabs a day. The daily 
production schedule is generated by a heuristic. Entering the system the first work station is a 
converter where high pressure oxygen is injected into a furnace at high temperature to reduce 
the carbon content of the iron. From here a transporter (TR1) carries the workload to the 
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second workstation. The queue in front of the second workstation has a capacity of one work 
load. If this machine is occupied the converter is blocked. At the second workstation chemical 
treatment of the steel is carried out (secondary metallurgical process). From here a second 
transporter (TR2) carries the workload to one of the two feeders of the continuous casting 
machines according to the production program. In front of the feeders there are queues with 
capacity of two workloads. These queues are called "WAIT POSITION", and those are 
critical points of the process. If the melted steel has to wait more than 25 minutes then the 
steal freezes and has to be re-melted again. If there is no workload available then the 
continuous casting process breaks, and the size and quality of the steel slabs will not meet the 
technological requirements. For security reasons the minimum waiting times in the 3rd and 4th 
queue are 5 minutes. The heuristic provides a feasible production plan, but perturbations may 
occur especially at the first workstation, where an on-line quality check automatically 
modifies the operation time of the converter. 

The presented queuing network is a special mixture of a transfer line and a general type 
queuing network. There are no assembly type nodes but routing information is necessary due 
to branching after the second workstation. The number of resources can be kept at 4 by 
ignoring the transporters under certain conditions. The planned workload never exceeds 100. 
At these parameters the CPU time for calculating the gradients and the validity limits is 
negligible. 

I applied perturbation analysis for the examination of the following two problems: 
a) I determined that range of the operation time of a workload at the first workstation, 

within which, break of sequence or excess waiting time do not occur.  
b) I analyzed the effect of a given finite perturbation on the "WAIT POSITION" and on 

the throughput time. This waiting time is a linear function of the operation time with constant 
slope within the calculated validity range. 

Each problem is solved by PA. The logic of the calculation is illustrated in Figure 5.13. 
 

Figure 5.13 Sensitivity analysis of the break of sequence 
 

An infinitesimal perturbation is introduced at workload i on machine j=1. The validity 
range is calculated (LL(0)

i,1, UL(0)
i,1) and the waiting time is checked in the "WAIT 

POSITION". If there is no problem then a perturbation equals to the upper limit of 
deterministic similarity is introduced, the new Gantt chart is generated with the help of the 
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perturbation propagation rules and the calculation is started again. The whole process goes on 
until the break of sequence limits (∆LLi,1, ∆ULi,1) are found.  

Table 5.6 shows the output list of the analysis. In the table, the result of each iteration step 
is presented. At the end a comment on the feasibility of the introduced perturbation is made. If 
there is no infeasibility then the new Gant chart is generated, and the program is ready to 
receive the next perturbation. If the perturbation is infeasible then indications are given, on 
how to modify the operation schedule to get feasible schedule again. 

A table about the upper and lower limits of the feasibility of all the operation times at the 
various workstations can be generated for an overall preliminary sensitivity evaluation of the 
schedule. A part of the break of sequence sensitivity list is presented in Table 5.7. 

 
 

Table 5.6 Calculation steps of sensitivity analysis 

 
 

Table 5.7 Break of sequence sensitivity table 

 

                   RESULTS OF SENSITIVITY CALCULATION 
 
       THE PERTURBATION IS INTRODUCED AT MACHINE:  CONV 
                                         SERIAL:      5 
                                         WORKLOAD:    6 
                                         SIZE:       18 
 
       STEP    TIME     ∆LL      ∆UL    GRAD1    GRAD2 
 
         1            30            0           8              0               0 
         2            38           -8           6              0               0 
         3            44            0           7              0               1 
 
  ***  BREAK AT: 45 min 
 
  ***  SERIAL: 5   WORKLOAD: 6    WAIT POSITION:   4 min 
 
  ***  SERIAL: 5   WORKLOAD: 8    WAIT POSITION:  26 min 

                       BREAK OF SEQUENCE SENSITIVITY 
 
     MACHINE   SERIAL  WORKLOAD   TIME    ∆LLi,1    ∆ULi,1 
 
       CONV              1                  1                    30         16           30 
       CONV              1                  2                    30           0           36 
       CONV              1                  3                    30         30           30 
       CONV              1                  4                    30           0           35 
       CONV              1                  5                    30         30           50 
       CONV              1                  6                    30         30           50 
       CONV              1                  7                    30         30           30 
       CONV              2                  1                    30           0           30 
       CONV              2                  2                    30         30           30 
       CONV              2                  3                    30         30           30 
        .         .        .        .       .        . 
        .         .        .        .       .        . 
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5.7 Conclusions of Chapter 5 

In this chapter an algorithm is presented to calculate the validity range of deterministic 
similarity of a sample path of a discrete event dynamic system when a single perturbation is 
introduced at the operation times. Based on the calculated range, sensitivity analysis 
concerning both the gradient of the throughput and some special technological feasibility of 
an operation schedule are analyzed. The presented method completes scheduling models 
which fail to give sensitivity information. 

Due to the big amount of input data the application is recommended in systems where the 
number of entities is relatively small. This is the case in many types of manufacturing systems 
when small scale, technology intensive production is performed. The efficiency of the 
algorithm can be increased, either by taking advantage of the information incorporated into 
the model used for the generation of the operation schedule, or by exploiting some special 
dual characteristics existing among no-input and full-output activities. The suggested 
calculations are illustrated with two sample problems. Furthermore, the successful 
implementation of the method at a real continuous steal manufacturing process has also 
provided to show the application possibilities of validity range calculation with PA in 
practice. 

We note that the proposed method provides gradient information of the performance 
measure related to a production schedule but fails to provide information about the methods 
of rescheduling. The gradient information indicates the requirement for rescheduling, which 
afterwards must be carried out with any methods available in the literature (see for example 
Pfeiffer et al., 2008). 

As a summary, based on Chapter 5, the following scientific result can be formulated: 
 

Result 4 
If a production schedule is generated by the single simulation run of a discrete event 
simulation model then the gradient of the throughput time L(θ,ξ) with respect to the operation 
time θk is valid if the change of θk is within the feasible range. I have derived formula (5.24) 
for the calculation of the feasible upper bound and formula (5.25) for the calculation of the 
feasible lower bound of θk. 

The calculations of the validity range are based on the definition of the no-input, full-
output, potential no-input, potential full-output and overtake matrixes. The basic data for the 
calculation are generated by discrete event simulation. The data for the defined matrixes, 
however, can also be obtained from any production schedule if the schedule is given in the 
form of a Gantt chart. This way the proposed validity range calculation can be used for the 
examination of the robustness of any production schedule. 

 
The definition of the sensitivity range of the gradient of the throughput time and the 

algorithm for calculating the gradient and range is published in Koltai (1992) and Koltai, 
Larraneta and Onieva (1993, 1994). The generalization of sensitivity range calculation for any 
schedule which is defined by a Gantt chart is discussed in Koltai (1992) and Koltai et al. 
(1994). The practical application of the gradient calculation and the extension of the results to 
other performance measures are presented in Koltai, Larraneta and Onieva (1993), Koltai and 
Lozano (1996, 1998), and Koltai (1994). 
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6 SENSITIVITY OF A PRODUCTION SEQUENCE TO INVENTORY  COST 
CALCULATION METHODS IN CASE OF A SINGE RESOURCE, DE TERMINISTIC 
SCHEDULING PROBLEM 

Scheduling rules are frequently used either to determine the optimal production sequence or 
as heuristics to get acceptable solutions in complex sequencing situations. Single resource 
scheduling is a simple special case of practical scheduling situations. Frequently, however, 
complex systems can be approximated as single resource scheduling problems. Many times 
the objective of scheduling is the minimization of inventory holding cost. There are several 
ways to calculate or approximate the value of inventory holding cost. This chapter shows that 
scheduling decisions can be very insensitive to the method of inventory holding cost 
calculation. Financial conditions strongly influence the financial result of the company but not 
necessarily relevant at scheduling decisions. The case of a calendar manufacturer illustrates 
this statement, and helps to derive several new scheduling rules. The results of this chapter are 
based on the papers of Koltai (2006) and Koltai (2009). 

6.1 Introduction 

In practice, operations management objectives frequently contradict financial objectives. For 
example, operations management might be interested in high inventory level to satisfy 
fluctuating demand while financial management might be interested in low inventory level to 
reduce inventory holding cost. At times, operations management is interested in low capacity 
utilization of service facilities to reduce waiting time of customers while financial 
management is interested in high machine utilization to show high return on investment of 
expensive resources. There are cases, however, when the contradiction between operational 
and financial objectives is only apparent. This chapter presents a production scheduling 
situation in which scheduling decision is relatively insensitive to certain financial 
considerations. 

The research presented in this chapter was motivated by the production scheduling 
problem of a small calendar manufacturer. Raw materials for calendars arrive to the 
production process at the required time, and their cost has to be paid to the supplier upon 
arrival. Income, however, is received only at the delivery time of finished products. All 
calendars are prepared for a fixed common due date around the last quarter of the year. Delay 
is not allowed because calendars are perishable items, generally can only be sold around the 
beginning of the New Year. Based on the analysis of the production process the cutting 
machine was identified as the bottleneck of the system. Since the company manufactures 
without any income in the first three quarters of the year, minimization of inventory holding 
cost is a major objective for production scheduling. 

The objective of this chapter is to provide production schedules, which minimize 
inventory holding cost of the calendar manufacturer and to analyze how the optimal schedule 
is influenced by the method of inventory holding cost calculation. 

This problem outlined above is a single machine scheduling problem with fixed common 
due date and sequence independent setup times. The scheduling criterion is to minimize a 
function of total lateness. However, since all calendars are shipped on time, an earliness 
related cost function must be minimized (Baker and Scudder, 1990). Depending on the 
calculation of the cost of financing raw materials a linear or a non-linear objective function is 
appropriate. 

Sequencing jobs on a single machine is a well-known and thoroughly studied problem in 
the literature. Since the appearance of the classical sequencing rules of Smith (1956) several 
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other special cases for optimizing flow time and tardiness related objective functions have 
been solved (e.g. Baker, 1974; Convey, Maxwell and Miller, 1976). However, as a 
consequence of the combinatorial nature of sequencing problems most of the practically 
relevant situations can only be handled by heuristics.  

Sequencing with a common due date for all jobs is an important set of sequencing 
problems (Bector, Gupta and Gupta, 1991). If the common due date is fixed in advance, then 
the problem is more tractable but still most of the problems are NP hard. When the due date is 
fixed in advance and it is higher than the completion time of each job, the problem is reduced 
to an earliness related single machine sequencing problem. 

In most cases, the objective of scheduling is to improve some cost related performance 
measures. If inventory holding cost is minimized, the cost of capital is an important element 
of the calculation. Inventory holding cost is generally calculated with the help of inventory 
holding rate. (see, for example Anderson, 1994; Waters, 1996; Wollmann, Berry and 
Whybarck, 1997) This rate expresses the percentage of the cost of materials which should be 
considered as holding cost. 

The application of inventory holding rate is a pragmatic approach. Generally, there are 
several causes of the change of inventory holding cost with respect to the change of inventory 
level. Instead of identifying all these causes and determining the effect of each cause, an 
aggregate measure, the inventory holding rate is applied. Sometimes, the cost of capital tied 
up by inventory can be simply calculated, especially if inventory is financed from credit. In 
this case, a more accurate inventory holding cost calculation can be given by calculating the 
exact value of the interest. There are several ways of determining this interest. All these 
methods can be approximated by two extreme situations: interest is not compounded, and 
interest is continuously compounded. In the first case the objective function is a linear 
function of flow time while in the second case the objective function is non-linear 
(exponential). Inventory holding cost approximated by these two situations provides a lower 
and an upper approximation of the exact value of interest for all practically relevant situations. 

If the inventory cost is financed directly and completely from credit, and credit conditions 
are known, then the appropriate cost should be calculated using the actual credit payment. If, 
however, conditions are not known at the time of the inventory holding cost estimation, or it 
is not decided yet, how inventory should be financed, then the lower and upper approximation 
of inventory holding cost is equivalent to the estimation of opportunity cost. 

Scheduling based on a non-linear objective function is widely discussed in the literature 
(e.g. Rinnoy Kan, Lageweg, Lenstra, 1975; Sung and Joo, 1992; Alidaee, 1993). Since most 
of these problems are also NP hard, generally branch and bound based heuristics are 
suggested for the solutions. In some special cases (like the one presented in this chapter), 
efficient algorithms using the Adjacent Pair Interchange (API) principle can be applied 
(Andreson, 1994). 

Successful applications of classical scheduling theory results are constrained, on the one 
hand, by several restricting conditions and, on the other hand, by the complex and dynamic 
nature of reality (McKay, Safayeni and Buzacott, 1988). However, in some simple situations, 
the application of scheduling rules may lead to better results than random or habit-driven 
sequencing of jobs. When the situation is complex, sensitivity analysis can help to outline the 
validity of a simple approach by filtering out the non-relevant complicating factors 
(constraints, parameter). For this reason, sensitivity analysis is used frequently in various 
areas of management when the complexity of a problem must be reduced (see for example 
Borgonovo and Peccati, 2004; Borgonovo and Peccati, 2006; Koltai and Terlaky, 2006). 

In the following, firs, two scheduling rules for minimizing inventory holding cost are 
derived. First, the interest on the tied up capital by inventory is not compounded, next the 
interest is continuously compounded. Next, sensitivity of the schedule to the method of 
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interest calculation is analytically examined, and the original problem is extended for different 
due dates. Finally, the application of the suggested rules in the case of the calendar 
manufacturer is presented, and some general conclusions are provided. Notations used in this 
chapter are summarized in Table 6.1. 

 
Table 6.1 Summary of notation of Chapter 6 

6.2 Minimization of inventory holding cost with common due dates 

The major element of inventory holding cost, in the case of the calendar manufacturer, is the 
cost of capital tied up by raw materials. Raw materials are financed from credit; therefore the 
cost of capital can be approximated by the interest on the cost of raw materials. For the sake 
of simplicity, inventory holding cost will be approximated by the interest accumulated on the 
cost of raw materials until the arrival of income for finished products in the rest of this 
chapter.  

In the case of the calendar manufacturer it is assumed that raw material for job i arrives 
only when its cutting operation is started.  The cost of raw materials is paid upon arrival, and 
all jobs can be finished for the delivery date. According to this assumption, raw material 
delivery is organized as a just-in-time system. This delivery process implies that no holding 
cost is incurred for the raw materials before the start of the manufacturing operation. Let 
delivery due date (D) be equal to the sum of the operation times of all jobs, that is, 

∑
=

=
N

k
ktD

1

 (6.1) 

If all jobs finished earlier than the delivery due date, then for all jobs a fixed inventory 
holding cost incurs. This cost is not influenced by scheduling therefore the above 
simplification is acceptable. 

Inventory holding cost of a job is calculated based on the interest incurred on the cost of 
its raw material during the period between the starting time of cutting operation and the 
delivery time of the finished products. Let us call this period the residence time (Ri) of job i. If 
Ti is the flow time of job i and ti is the operation time of job i, the starting time of the cutting 
operation of job i is equal to Ti–ti. The residence time of the raw material of job i is calculated 
as follows, 

Subscript: 
i − index of jobs ( i=1,…,N). 
Parameters: 
N − number of jobs, 
ti − operation time of job i, 
f(ti) – transformed exponential operation time of job i, 
ci − raw material cost of job i, 
di – delivery date of job i, 
D − common delivery date of all jobs, 
r − periodic yearly interest rate, 
q − continuous yearly interest rate. 
Variables: 
Ti − flow time of job i,  
T0 − flow time of the last job directly preceding jobs i and j, 
Ri – residence time of job i, i=1,…,N, 
I i – inventory holding cost of job i, i=1,…,N, 
W − objective function value for all jobs except jobs i and j. 
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The residence time is illustrated in Figure 6.1.  

Figure 6.1 Illustration of the residence time of job i 
 
For a residence time related objective function an adjacent pair interchange (API) 

algorithm can provide optimal solution in finite calculation steps. Figure 6.2 shows the 
principle of API algorithms. 

 

Figure 6.2 Interchange of job i and job j 
 
If jobs i and j are adjacent jobs, interchanging these jobs will not influence the residence 

times of the other jobs, that is, the inventory holding cost of the other jobs will not change 
either. The interchange of adjacent jobs can be continued as long as objective function 
improves. If inventory holding cost of a job increases with the increase of residence time, then 
there is a finite possibility of interchanging adjacent jobs, and consequently the API algorithm 
converges to the optimum. 

In the following, inventory holding cost is calculated in two different ways. First, the cost 
of capital is calculated without compounding interest. Next, the cost of capital is determined 
by continuously compounded interest calculation. 

6.2.1 Optimal schedule when interest is not compounded 

If r is the yearly periodic interest rate and time is measured in days, inventory holding cost of 
a production sequence is the following, 
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The objective is to find a production sequence of N jobs which minimizes (6.3). If setup 
time is sequence independent and included in ti, an API algorithm can be constructed to find 
the minimum for objective function (6.3). 

Let us write objective function (6.3) for both cases of Figure 6.2; first for an i–j sequence 
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and next for a j–i sequence of the indicated adjacent jobs. Let T0 denote the time when the i 
and j job pair can be started. Furthermore, let W denote the total inventory holding cost of all 
jobs except i and j. To compare the inventory holding costs of the two sequences of Figure 6.2 
only the inventory holding cost of jobs i and j must be detailed. 

In the case of the i–j sequence of the jobs, job i is started at T0, job j is started at T0+ti, and 
the objective function is the following, 
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 (6.4) 

In the case of the j–i sequence of jobs, job j is started at T0, job i is started at T0+tj, and the 
objective function is the following, 
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The objective function improves by the change of the i–j sequence of jobs if inventory 
holding cost decreases, that is, if 

0)()( >− −− ijji OFOF  (6.6) 
Otherwise, the i–j sequence is optimal. Subtracting (6.5) from (6.4) we get the following 

simple condition for the optimality of the i–j sequence, 
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Based on condition (6.7), it can be concluded that a schedule of jobs is optimal only if the 
jobs are sequenced according to a non-increasing order of the ti/ci values. 

This result is the opposite of the classical weighted shortest processing time (WSPT) rule 
for minimizing weighted total flow time (Smith, 1956). The sequencing rule based on (6.7) 
can be called Weighted Longest Processing Time (WLPT) rule. Finally, it can be seen in 
condition (6.7) that the optimal sequence of jobs is independent of the interest rate r. 

6.2.2 Optimal schedule when interest is continuously compounded 

If interest is continuously compounded, the inventory holding cost of a job is calculated using 
the continuously compounded interest formula. In this case the inventory holding cost of job i 
is the following, 
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where q is the yearly continuous interest rate and Ri is expressed in days. The objective is to 
find the job sequence which minimizes total inventory holding cost, that is, to find the 
minimum of the following function, 
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The second term of (6.9) is independent of the production sequence, therefore, it is 
sufficient to find the minimum of the first summation, that is, 
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For objective function (6.10) the API principle again leads to the minimal inventory 
holding cost job sequence.  

Based on Figure 6.2, the objective function for the i–j sequence of jobs is the following, 
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In the case of the j–i sequence of jobs, the objective function is the following,  
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The objective function improves by the change of the i–j sequence of jobs if inventory 
holding cost decreases, that is, if 

0)()( >− −− ijji OFOF  (6.13) 
Otherwise, the i–j sequence is optimal. Subtracting (6.12) from (6.11) the following 

condition is obtained for the optimality of the i–j sequence, 
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Simplifying and rearranging condition (6.14) we get the following simple condition, 
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Condition (6.15) is similar to condition (6.7) except that operation time is transformed 
with the help of an exponential function.  

Let us call the numerators in (6.15) transformed exponential operation time and 
consequently, the scheduling rule can be called Weighted Longest Transformed Exponential 
Processing Time (WLTEPT) rule. According to condition (6.15) the value of objective 
function (6.10) is minimal if jobs are sequenced according to a non-increasing order of the 
weighted transformed exponential operation times. The optimal sequence of jobs now 
depends on the value of the interest rate q. 

6.2.3 Comparison of the optimal sequences 

The two different interest calculations provide a lower and an upper bound for the possible 
value of inventory holding cost. If the interest is not compounded, then the smallest possible 
value of inventory holding cost is approximated. If the interest is calculated continuously 
during the residence time, then the highest possible value of inventory holding cost is 
approximated. In reality, inventory holding cost is between these two approximations. 

The optimal production sequence of jobs is, however, not necessarily different for the 
different calculation methods. Conditions (6.7) and (6.15) provide optimality conditions for 
the sequence of two adjacent jobs. According to condition (6.7) the i–j sequence is optimal if 
the ci/cj ratio is smaller than the ratio of the corresponding operation times. According to 
condition (6.15) the i–j sequence is optimal if the ci/cj ratio is smaller than the ratio of the 
corresponding transformed exponential operation times. Consequently, the i–j sequence is 
optimal for both methods of interest calculations if the ci/cj ratio is smaller than both the ratio 
of corresponding operation times and the ratio of the corresponding transformed exponential 
operation times, that is,  
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To draw general conclusions about the robustness of the optimal sequence to the method 
of interest calculations the relationship of the right-hand sides of conditions (6.16) must be 
analyzed. This relationship can be made transparent by analyzing the transformed exponential 
operation time function 
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Function (6.17) is depicted in Figure 6.3. It is straightforward to show by differentiation 
that the slope of the f(t) function is monotonically decreasing, that is,  
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Applying conditions (6.18) for the adjacent i and j jobs, it can be concluded that the i–j 
sequence is optimal for both type of interest calculations if either of the two following 
conditions holds, 
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Based on conditions (6.19) and (6.20), it can be seen that for the i–j adjacent pair of jobs 
a) if ti≤tj, then the i–j sequence is optimal for both methods of interest calculations only if 

the i–j sequence is optimal for the first type of calculation (interest is not compounded), 
b) if ti>tj, then the i–j sequence is optimal for both methods of interest calculations only if 

the i–j sequence is optimal for the second type of calculation (interest is continuously 
compounded). 

Figure 6.3 Transformed exponential operation time function (q=0.6) 

 
In both cases the two optimal sequences are different if the ratio of the corresponding 

costs falls between the ratio of operation times and the ratio of transformed exponential 
operation times. In other words, the ratio of corresponding costs falls between the ratio of two 
independent values and the ratio of the corresponding two dependent values of the f(t) 
function. 

Studying the f(t) function (see Figure 6.3) it can be concluded that this may occur very 
rarely in practice. There are two typical situations when the sequence of two adjacent jobs can 
be different in the optimal solutions of the two different interest calculation methods: 

a) Large difference between the operation times of two adjacent jobs. As a consequence 
of the concave nature of the f(t) function if differences are large between the operation times 
of adjacent jobs then the differences between the ratio of the dependent values and the ratio of 
the independent values can be also large. The larger the difference between these two ratios is, 
the higher the possibility for the cost ratios to fall between the ratio of the dependent and the 
ratio of the independent values.  
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b) Large continuous interest rate (q). The larger the value of q, the larger the decrease of 
the gradient of the f(t) function is. For relatively small values of q the f(t) function is almost 
linear in the practically relevant range of t. Therefore, the difference between the ratio of two 
dependent values and the ratio of the corresponding two independent values is very small. 

Figure 6.3 shows the f(t) function for q=0.6. This high interest rate is used only to 
emphasize the shape of the function. Continuous interest rates in practice are much smaller. 
Furthermore operation times generally fall into the nearly linear section of the f(t) function. 
Therefore, there is just a very small chance of having different optimal sequence of jobs for 
the different interest calculation methods. As a result, from a practical point of view, 
sequencing decisions are very insensitive to the method of interest calculation. This 
conclusion does not mean that the inventory holding costs for different methods of interest 
calculations are not different. But the best way of operating the system is generally not 
influenced by the corresponding inventory holding cost calculation method.  

6.3 Extension of the calculation for different due dates of jobs 

In Chapters 6.2.1 and 6.2.2 it was assumed that each job is delivered to the customer at a 
given common delivery date D. Even in case of the calendar manufacturer it is possible to 
give different due dates for each job or for some groups of jobs within a small range of the 
common delivery date. 

In the following, it will be shown that although the difference of delivery dates slightly 
modifies the calculation of the optimal schedule the general conclusions of Chapter 6.2 are 
still valid. In the following it is assumed that each job has a different delivery date equal to di. 
Furthermore, it is also assumed that all jobs are delivered in time, that is, delay and the 
corresponding penalty cost are not considered. 

6.3.1 Optimal schedule when delivery dates are different and interest is not compounded 

Applying an API algorithm for the different delivery date situation the objective function 
must be written for an i–j sequence and next for a j–i sequence of the indicated adjacent jobs. 

 The objective function for the i–j sequence of the jobs is obtained if D is substituted by di 
in case of job i and by dj in case of job j in equation (6.4), that is, 
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The objective function for the j–i sequence of the jobs is obtained if D is substituted by di 
in case of job i and by dj in case of job j in equation (6.5), that is, 
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The change of the objective function as a consequence of the interchange of jobs i and j 
can be analyzed again by taking the difference between (6.21) and (6.22). It can easily be seen 
that due dates di and dj drop out of the calculation and the optimal sequence can again be 
given by the WLPT sequence. That is, an i–j sequence is optimal if 
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as before in Chapter 6.2.1. 

6.3.2 Optimal schedule when delivery dates are different and interest is continuously 
compounded 

Applying an API algorithm for the different delivery date situation the objective function 
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must be written again for an i–j sequence and next for a j–i sequence of the indicated adjacent 
jobs. 

The objective function for the i–j sequence of jobs can be obtained if di and dj substitute 
D in equation (6.11), that is, 
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The objective function for the j–i sequence of jobs can be obtained if di and dj substitute 
D in equation (6.12), that is, 
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The objective function is improved by the change of the i–j sequence of jobs if inventory 
holding cost decreases. Subtracting (6.25) from (6.24) the following condition is obtained for 
the optimality of the i–j sequence of jobs, 
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Simplifying and rearranging condition (6.25) we get the following condition, 
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Applying again notation f(t) for the transformed exponential operation time we get the 
following, 
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Condition (6.28) shows that if interest is continuously compounded, due dates can 
influence the optimal order. 

In the following, let us call the transformation of the due date with the help of the 
exponential function exponential due date. Condition (6.28) shows that in the case of different 
due dates the WLTEPT rule must be modified by including the corresponding exponential due 
date values in the weights. 

6.3.3 Comparison of the optimal sequences 

The analysis of the robustness of a schedule to the interest calculation method is not so 
straightforward now as it was in the case of common due dates. The condition for the optimal 
sequence of an i–j order in the case of continuously compounded interest calculation is 
determined by both the ratio of the cost of jobs and by the ratio of the exponential due dates.   

Applying the previously demonstrated condition (6.18) and knowing that the exponential 
function is monotonically decreasing, four different cases can be distinguished. The possible 
cases are summarized in Table 6.2. 

In Case 1, if the i–j sequence is optimal for the first type of interest calculation (interest is 
not compounded), then it is also optimal for the second type of interest calculation (interest is 
continuously compounded), and the optimal sequence is not influenced by the due dates. 

In Case 4, if the i–j sequence is optimal for the second type of interest calculation 
(interest is continuously compounded), then it is also optimal for the first type of interest 
calculation (interest is not compounded), and the optimal sequence is influenced by the due 
dates. 

In Cases 2 and 3, the optimality of a sequence for one type of interest calculation is not a 
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sufficient condition of optimality for the other type of interest calculation. Furthermore, when 
the interest is continuously compounded the optimal sequence is influenced by the due dates. 

In the next chapter it will be demonstrated, however that if due dates are not very 
different, then the ratio of exponential due dates hardly modifies the ratio of costs, 
consequently their effect can be ignored. 

 
Table 6.2 Optimality conditions of the i–j sequence of jobs 
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6.4 Illustration of the results with the help of a calendar manufacturing process 

In the following, the effect of the derived sequencing rules is demonstrated with the help of 
the situation of the calendar manufacturer. The company buys sheets of printed calendar 
pages for several types of calendars from printing companies. The sheets are cut into pages, 
bound with the corresponding technology, packaged, and stored until the delivery date. The 
company prepares approximately 200 different calendars yearly, in lot sizes ranging between 
50 and 15 000 pieces. 

The bottleneck of the production process is the cutting machine. There are very 
sophisticated cutting machines on the market with short setup time and with high cutting 
accuracy. However, these types of machines are financially not feasible for the company 
because of the relatively small volume and range of production. A manual cutting machine is 
used with long (sequence independent) setup times and operated by a skilled worker. Identical 
calendars are cut in one batch to reduce setup time. The cutting machine has enough capacity 
to cut the yearly production requirement if the machine operates continuously. Therefore, one 
of the major operational constraints of scheduling is to provide work for the cutting machine 
continuously.  

Calendars are perishable items which can only be sold around the end of the year. Those 
calendars which are not sold in this period can be considered waste. The majority of calendars 
are produced for orders. Orders are known in advance, and the ordered calendars are delivered 
in September to the customers. In this chapter I deal with production scheduling of those 
orders which are known in advance and all have to be shipped at a given date in September. 
The scheduling of random orders occurring after September is not topic of this research. 

The objective of scheduling is to minimize inventory holding cost. Calendars are 
produced during 9 months but delivery and income occur only in September. The printed 
sheets are delivered for the required date and paid upon arrival. Therefore, the raw materials 
of calendars have to be financed from the beginning of production until the date of delivery in 
September. Raw materials (and production) are financed from credits. 

The company currently schedules production randomly. Some raw material supply 
priorities and common sense considerations are applied but scheduling theory results are not 
used. The schedule of the production of 78 orders of calendars for an 89 day long production 

               dc_924_14



 97

period from last year with all the relevant data (cutting operation times, raw material costs) 
were provided by the company to demonstrate inventory cost saving when the derived 
scheduling rules are applied. 

Table 6.3 contains the inventory holding cost for the actual production and also for the 
schedules generated by the WLPT and WLTEPT rules in the case of both type of interest 
calculation. Optimal values in the table are indicated by bold face numbers. 

The first column shows the result when interest is not compounded and the second 
column shows the result when interest is continuously compounded. These two columns 
provide a lower and an upper estimate for the real inventory holding cost. Since the difference 
is very small, the method of interest calculation does not seem to be relevant. This is true even 
if the interests for the different type of interest calculation methods differ slightly. 

Applying the WLPT rule derived in Chapter 6.2.1 a considerable saving can be seen in 
Table 6.3. Cost saving is 1218.9 Euros (3864.3–2645.4) if production is performed in the 
sequence provided by the WLPT rule. This is 31.54% cost decrease which can be realized 
simply by changing the production sequence of jobs. 

Table 6.3 also shows that the same inventory holding cost is obtained for the WLPT and 
for the WLTEPT rules. The detailed analysis of the sequences shows that the identical 
inventory holding costs belong to identical production sequences.  In the case of the WLTEPT 
rule the optimal value of the inventory holding cost is 2666.2 Euros. The slight increase of 
cost compared to the WLPT optimum (2645.4 Euros) is the result of the different interest 
calculation methods and not the consequence of the change of production sequence. 

 
Table 6.3 Inventory holding cost of different production schedules (Euros) 

 
Interest is not 
compounded 
(r=0.1092) 

Interest is continuously 
compounded 
(q=0.1092) 

Actual 3864.3 3900.6 
WLPT 2645.4  2666.2 
WLTEPT 2645.4 2666.2 

 
The similar results for the two different scheduling rules are not surprising based on the 

conclusions of Chapter 6.2. The f(t) function is almost linear  at 10.92% interest rate in the 
range of operation times (1-15 days) relevant at the company (see Figure 6.4). 

The range between the ratio of operation times and the ratio of transformed exponential 
operation times is very small (around 0.0002) in the relevant section of the f(t) function. 
Therefore, there is only a very small possibility that the two optimal sequences will differ. 
Even if the sequences were different, applying one of the two optimums for both interest 
calculations would have no significant cost consequences. 

If due dates of orders are different, then, according to Table 6.2, the ratio of exponential 
due dates has to be considered. Due dates, however, cannot be very different in practice. On 
the one hand customers do not need next year calendars very early; on the other hand 
customers cannot get calendars very late because the product cannot be sold long after the 
beginning of New Year. If the company applies different due dates, those due dates are 
certainly within a narrow range of the existing common due date. Applying the 10.92% 
interest rate used at the company and a 25% possible increase and decrease of the existing due 
date for some calendars, the smallest and highest possible values of the ratio of the 
exponential due dates are as follows, 
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 (6.29) 

These results show that despite of the difference of the delivery dates optimal sequence of 
jobs is practically not influenced by the interest calculation method. 

Figure 6.4 The f(t) function for the parameters of the calendar manufacturer (q=0.1092) 

6.5 Conclusions of Chapter 6 

In this chapter the effect of interest calculation methods on inventory holding cost and 
consequently on production scheduling decisions is analyzed. 

First, two scheduling rules are derived; one for a linear and one for a non-linear earliness 
related objective function, when all due dates are identical. The WLPT rule – for the case 
when interest is not compounded – is independent of the interest rate. The WLTEPT rule – in 
case of continuous interest calculation – depends on the interest rate. However, it is proved in 
Chapter 6.2 and it is illustrated in Chapter 6.4 that in practice the optimal sequences provided 
by the WLPT and by the WLTEPT rules are very frequently identical. Even if the optimal 
sequences are different, applying any of the optimal sequences is financially acceptable. 

Second, the problem is extended to the consideration of different due dates. It is 
demonstrated that in Case 1 (see Table 6.3) the conclusions made for common due dates are 
valid for different due dates as well. In all other cases (Cases 2, 3 and 4 in Table 6.3) the 
difference of due dates theoretically influences the optimal sequence but in practice the effect 
of this difference is insignificant. 

Based on the insensitivity of the optimal sequences to the method of interest calculation, 
it can be concluded that in most cases the optimal sequence can be determined by using only 
the raw material costs (ci) and the processing times (ti). The method of interest calculation and 
the value of interest rate do not affect the optimal sequence. This conclusion does not mean 
that the value of inventory holding cost is not influenced by financial conditions but the 
optimal operation of the system is independent of these factors. 

The results presented in this chapter assume that all orders are delivered for the required 
due dates. If due dates are not met and penalty cost for delay must be considered, the 
suggested API algorithm cannot be applied. In this case mathematical programming models 
and the cumbersome application of branch and bound algorithms may be appropriate. 

As a summary, based on Chapter 6, the following scientific result can be formulated: 
 

Result 5/1 
I proved that in the case of a single resource scheduling problem 
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− if task times (ti) are deterministic, 
− the sequence independent setup time is part of the task time (ti), 
− there are no precedence constraints of tasks, 
− each task must be performed for the same due date, 
− inventory holding cost is calculated with periodic interest calculation, 

then inventory holding cost is minimized if condition (6.7) is met by any two adjacent i and j 
jobs if i<j. This condition can be called weighted longest processing time (WLPT) rule. 

If inventory holding cost is calculated with continuous interest calculation (compounded 
interest), then condition (6.15) must be met by any two adjacent i and j jobs if i<j. This 
condition can be called weighted longest transformed exponential processing time (WLTEPT) 
rule. 

 
Result 5/2 
I proved that in the case of a single resource scheduling problem 

− if task times (ti) are deterministic, 
− the sequence independent setup time is part of the task time (ti), 
− there are no precedence constraints of tasks, 
− each task has different due date (di), 
− inventory holding cost is calculated with periodic interest calculation, 

then inventory holding cost is minimized if condition (6.23) is met by any two adjacent i and j 
jobs if i<j. This condition is equivalent to the longest processing time (WLPT) rule. Based on 
formula (6.23) it can be concluded, that the due dates (di) do not influence the optimal 
schedule. 

If inventory holding cost is calculated with continuous interest calculation (compounded 
interest), then condition (6.28) must be met by any two adjacent i and j jobs if i<j. This 
condition is equivalent to the weighted longest transformed exponential processing time 
(WLTEPT) rule, but in this case the due dates (di) influence the optimal schedule and are 
incorporated in the weights. 

 
Result 5/3 
I proved that in the case of a single resource scheduling problem 

− if task times (ti) are deterministic, 
− the sequence independent setup time is part of the task time (ti), 
− there are no precedence constraints of tasks, 

then the optimal schedule based on the lower estimate of inventory holding cost (calculated 
by periodic interest calculation), and the optimal schedule based on the upper estimate of 
inventory holding cost (calculated by continuous interest calculation) differs only in extreme 
situations in practice. That is, scheduling results of the presented problems are very 
insensitive to the inventory cost calculation methods. 

 
The derivation of the scheduling rules which minimizes inventory holding cost in case of 

common due dates are published in Koltai (2006a, 2006b). The generalization of the result for 
different due dates are presented in Koltai (2009). 
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7 SUMMARY OF THE DISSERTATION 

This dissertation summarizes my main research results related to sensitivity analysis in the 
area of production planning and scheduling in the past 20 years. Production planning and 
scheduling is a very diversified area. Depending on the type of production processes (project 
based, small batch production, mass production), depending on the demand characteristics 
(hectic, stable) and depending on the implemented production planning and control systems, 
there are several ways of planning and scheduling production. Frequently, in practice, only a 
simple spreadsheet model is used to get a feasible plan. Sometimes, complex simulation 
models are built to analyze operation possibilities. Occasionally, large mathematical 
programming models are solved to get optimal solution. No matter, however, how a 
production plan and production schedule is generated, the change of some planning 
parameters or planning conditions is expected. If some planning parameters change, the 
analysis of the effect of these changes on the production plan or on the production schedule 
must be analyzed and evaluated. Consequently, sensitivity analysis provides important 
information for production related decision-making. 

Since the formulations and solution techniques of production planning and scheduling 
problems are very diverse, it is not possible to develop a general theory of sensitivity analysis. 
In case of each problem presented in this work, special methods must have been developed, 
based on the characteristics of the model applied for the generation of the plan. 

The dissertation contains five different methods for sensitivity analysis: 
− In Chapter 2 (Results 1/1 and 1/2), sensitivity analysis of a linear production planning 

model is used to illustrate some problems related to degenerate optimal solutions. 
− In Chapter 3 (Results 2/1, 2/2 and 2/3), a new aggregation approach is developed for 

capacity analysis of FMSs, and a special sensitivity analysis based on the characteristics of 
this new approach is developed. 

− In Chapter 4 (Results 3/1 and 3/2), integer mathematical programming models are 
applied, and the characteristics of a pricewise linear efficiency function is analyzed. 

− In Chapter 5 (Result 4), a scheduling problem is modeled as discrete a event dynamic 
system and perturbation analysis is implemented to get sensitivity results. 

− Finally, in Chapter 6 (Results 5/1, 5/2 and 5/3), a scheduling problem is approached as a 
combinatorial problem, and the special characteristics of the investigated case lead to 
sensitivity conclusions. 

Each presented problem is different, consequently, the applied techniques for sensitivity 
analysis are different as well, but the objective is the same in all cases: the minimal change of 
a planning parameter which requires the modification of the plan has to be determined. 

The presented scientific results have different scientific and practical relevance. The 
results of Chapters 2 and 3 have mostly theoretical significance.  

− The analysis of citations shows that, the proposed new classification of sensitivity 
information (Chapter 2) motivated several researchers to calculate these sensitivities in 
different special LP models (see for example Lin and Wen, 2003; Kavitha and Pandian, 2012 
or Ma, Lin and Wen, 2013). Furthermore, the better understanding of the traps of misleading 
information, and the proposed tool for getting the appropriate sensitivity values, may improve 
the decision-making process in the related areas (Arsham, 2012). 

− The proposed aggregation method based on the concept of operation types (Chapter 3) 
may contribute to a the better understanding of the available capacity of flexible 
manufacturing systems (see for example Matta, Tomasella and Valente, 2007 or Zaeh and 
Mueller, 2007). 

Besides the theoretical significance, the results of Chapters 4, 5 and 6 have direct 
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practical impacts as well. 
− The extension of ALB models with workforce skill constraints (Chapter 4) provides 

information to line configuration decisions in case of a bicycle assembly process (Koltai, 
Tatay and Kalló, 2013). 

− The application of perturbation analysis for the examination of the sensitivity of 
production schedules (Chapter 5) facilitates the control of waiting time in a technologically 
critical point of a continuous steel casting process (Koltai, Larraneta and Onieva, 1993). 

− The proposed new scheduling rules (Chapter 6) can help to improve the financial 
performance of a simple calendar manufacturing process (Koltai, 2006).  

Finally, it must be noted that, although, the objective of this dissertation is sensitivity 
analysis related to production systems, sensitivity information are very important in service 
systems as well. For example, Koltai, Kalló and Lakatos (2009) examined, how the arrival 
characteristics of customers and the main parameters of the purchasing process influence 
waiting time in front of the check-out counters in a supermarket. In general, it can be 
concluded that what is true for production systems, it is also true for service systems: Some 
major planning parameters may change, and the effect of these changes on some performance 
measures must be analyzed and evaluated with special methods, developed for the problem in 
question. 

As a summary, it can be concluded that in production systems, some major parameters 
used for planning may change for several reasons. In these cases, information about the effect 
of the change on some performance measures is important information for the decision maker. 
Today, company excellence depends more and more on the efficient collection and processing 
of a large amount of data related to the production process and to the production environment, 
in order to support decision-making. In this environment, sensitivity analysis related research 
is highly relevant and its frontiers are constantly extending. The presented results are going to 
provide some modest contribution to this area. 
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