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Introduction

New results and methods are discussed in this dissertation in the field of computer aided curve
and surface modeling. Three closely related topics are covered by the three chapters, where short
overview of the previous works and brief introduction to the topics are also provided. Apart from
these introductory notes, further parts of the dissertation contain exclusively new results of the
author and his co-authors.

In the first chapter one can find results in terms of knot modification of B-spline and NURBS
curves and surfaces, based on the papers [35, 37, 40, 57, 58, 59, 60]. New curve types and their
properties are discussed in chapter 2, discussing the contributions provided in [41, 42, 43, 45, 46,
61]. The last chapter provides an overview on non-control-point-based methods, based on the
results published in [2, 32, 33, 36, 38, 69, 110].

Here I would like to thank my distinguished colleagues and co-authors for the inspiring
atmosphere of our scientific discussions. This dissertation would not have been possible without
their help.
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1 Knots of B-spline and NURBS curves and surfaces

1.1 Basic definitions

B-spline and NURBS curves are standard description methods and hence widely used in com-
puter aided design today. There are several books and papers on these curves describing their
properties, with the help of which one can apply them as powerful design tools. The basic
definitions (as one can find e.g. in [90]) are the following:

Definition 1.1. The recursive function Nk
j given by the equations

N1
j (u) =

{
1 if u ∈ [uj , uj+1) ,

0 otherwise
Nk

j (u) = u−uj

uj+k−1−uj
Nk−1

j (u) + uj+k−u
uj+k−uj+1

Nk−1
j+1 (u)

is called normalized B-spline basis function of order k (degree k−1). The numbers uj ≤ uj+1 ∈ R
are called knot values or simply knots, where 0/0=̇0 by definition.

Definition 1.2. The curve s (u) defined by

s (u) =
n∑

l=0

dlN
k
l (u) , u ∈ [uk−1, un+1]

is called B-spline curve of order k (degree k − 1), where Nk
l (u) is the lth normalized B-spline

basis function, for the evaluation of which the knots u0, u1, . . . , un+k are necessary. The points
di are called control points or de Boor-points, while the polygon formed by these points is called
control polygon. The arcs of this B-spline curve are called spans. The jth span can be written
as

sj (u) =
j∑

l=j−k+1

dlN
k
l (u) , u ∈ [uj , uj+1) .

As one can observe from the definitions above, B-spline curve is uniquely defined by its
degree, control points and knot values, while in terms of NURBS curves the weight vector has
to be specified in addition. It is an obvious fact that the modification of each of these data will
affect the shape of the curve and some of its geometric properties. The modification of a curve
plays central role in CAD systems, hence numerous methods are presented to control the shape
of a curve by modifying one of its data mentioned above. The most basic possibilities can be
found in any book of the field. Further control point-based shape modification is discussed in
[88] and [26], weight-based modification is described e.g. in [88] and [55], while others present
shape control by simultaneous modification of control points and weights (see [1], [101]).

The effect of a change of the knot vector on the shape of the curve, however, has not been
described yet. Even in one of the most comprehensive books ([90]) one can read the following:
"Although knot locations also affect shape, we know of no geometrically intuitive or mathemati-
cally simple interpretation of this effect...". The aim of this section is to present the geometrical
and mathematical representation of the effects of knot modification for B-spline curves and sur-
faces, based on the contributions of Hoffmann and Juhász, presented in [35, 37, 40, 57, 58, 59, 60].
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Throughout this chapter the following properties of the normalized B-spline basis functions
will be used:

1. Nk
j (u) is equal to 0 everywhere except on the interval [uj , uj+k).

2. At the rth step of the recursive evaluation of Nk
j (u) the following functions can occur:

Nk−r
j+n (u) , r = 0, . . . , k − 1;n = 0, . . . , r.

3. Ṅk
j (u) = (k − 1)

(
1

uj+k−1−uj
Nk−1

j (u)− 1
uj+k−uj+1

Nk−1
j+1 (u)

)

4. The modification of the knot ui affects only the functions Nk
i−k (u) , . . . , Nk

i (u), hence only
the shape of the spans si−k+1 (u) , . . . , si (u) , . . . , si+k−2 (u) of the curve will be changed.

1.2 Geometric effects of the modification of a knot

When modifying the knot ui, the basis functions and spans described in Property 4 will depend
not only on u but on ui as well. To emphasize this fact, they will be denoted by Nk

i (u, ui) and
si (u, ui). Fixing the second one of the two variables (i.e. the knot value ui = ũi) one can receive
the original basis functions Nk

i (u, ũi) = Nk
i (u) and spans si (u, ũi) = si (u), but fixing the first

variable (i.e. the parameter u = ũ) the functions Nk
i (ũ, ui) will not remain the standard basis

functions any more, but some rational functions of ui, while si (ũ, ui) can be interpreted as a
curve on which a point of the original B-spline moves. More precisely, when modifying the knot
ui the point of the span sj (u) associated with the fixed parameter value ũ ∈ [uj , uj+1) will move
along the curve

sj (ũ, ui) =
j∑

l=j−k+1

dlN
k
l (ũ, ui) , ui ∈ [ui−1, ui+1] .

Hereafter, we refer to this curve as the path of the point sj (ũ). At the first part of this section
these functions and paths will be examined, especially in terms of their degree.

Lemma 1.3. Nk
i−k (ũ, ui), ũ ∈ [ui−m, ui−m+1), (m = 1, . . . , k − 1), ui ∈ [ui−1, ui+1] is a rational

function of degree k −m in ui.

Proof. In the recursive Definition 1.1

Nk
i−k (ũ, ui) =

ũ− ui−k

ui−1 − ui−k
Nk−1

i−k (ũ, ui) +
ui − ũ

ui − ui−k+1
Nk−1

i−k+1 (ũ, ui)

the first term is independent of ui because of Property 4, hence only the second term has to be
considered. This fact is also valid for the further steps of the recursion:

...

Nm+1
i−m−1 (ũ, ui) =

ũ− ui−m−1

ui−1 − ui−m−1
Nm

i−m−1 (ũ, ui) +
ui − ũ

ui − ui−m
Nm

i−m (ũ, ui)

Nm
i−m (ũ, ui) =

ũ− ui−m

ui−1 − ui−m
Nm−1

i−m (ũ, ui) +
ui − ũ

ui − ui−m+1
Nm−1

i−m+1 (ũ, ui) .
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The first term of the right hand side of both equations above is constant because of Property 4.
The second term of the last equation is equal to 0 due to Property 1. Thus ui appears only in
k −m terms, at degree 1 everywhere, consequently, the degree of the function Nk

i−k (ũ, ui) in ui

is k −m.

Theorem 1.4. The path si−m (ũ, ui) =
i−m∑

l=i−m−k+1

Nk
l (ũ, ui)dl, ui ∈ [ui−1, ui+1] is a rational

curve of degree k −m with respect to ui, ∀ũ ∈ [ui−m, ui−m+1), (m = 1, . . . , k − 1).

Proof. The lower limit of the summation can be increased to i − k, since ui has no effect on
Nk

l (ũ, ui) for l < i− k (see Property 4). Hence only the functions

Nk
i−k+z (ũ, ui) , z = 0, . . . , k −m (1.1)

have to be considered. The function Nk
i−k (ũ, ui) is of degree k−m because of Lemma 1.3. Thus

it is sufficient to prove that the degree of the functions (1.1) is at most k −m, for z > 0.
At the rth step of the recursion those functions which have influence on the functions men-

tioned above can be described in the following form (see Property 2):

Nk−r
i−k+z+n (ũ, ui) =

ũ− ui−k+z+n

ui+z+n−r−1 − ui−k+z+n
Nk−r−1

i−k+z+n (ũ, ui) +

ui+z+n−r − ũ

ui+z+n−r − ui−k+z+n+1
Nk−r−1

i−k+z+n+1 (ũ, ui)

r = 0, . . . , k − 1;n = 0, . . . , r.

In this form ui can occur in the following cases:

1. i − k + z + n = i, i.e. z + n − k = 0, that is the function Nk−r−1
i (ũ, ui) appears in the

first term, but this function is equal to 0 on the interval [ui−m, ui−m+1) for all permissible
values of m (see Property 1).

2. i + z + n− r− 1 = i, that is z + n = r + 1, hence the normalized B-spline basis function in
the first term is Nk−r−1

i−(k−r−1) (ũ, ui). According to Lemma 1.3, the degree of this function in
ui is k −m− r − 1, hence the degree of the first term can at most be k −m− r ≤ k −m.

3. i + z + n− r = i, that is z + n = r, which corresponds to case 2.

4. i− k + z + n + 1 = i, which corresponds to case 1.

Corollary 1.5. For m = k − 1, the resulted path is of degree 1, that is if ui runs from ui−1

to ui+1, then the points of the span si−k+1 (ũ, ui) move along straight lines parallel to the side
di−k,di−k+1 of the control polygon.

In this case the path has the following simple form:

si−k+1 (ũ, ui) = Nk
i−k (ũ, ui)di−k + Nk

i−k+1 (ũ, ui)di−k+1,
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while the normalized B-spline basis functions appearing in this form can be written as

Nk
i−k (ũ, ui) = C1(ũ) + C2(ũ)

ui − ũ

ui − ui−k+1

Nk
i−k+1 (ũ, ui) = C2(ũ)

ũ− ui−k+1

ui − ui−k+1

where
C1(ũ) =

ũ− ui−k

ui−1 − ui−k
Nk−1

i−k (ũ, ui) , C2(ũ) =
ũ− ui−k+1

ui−1 − ui−k+1
Nk−2

i−k+1 (ũ, ui)

are constants not depending on ui. This yields

si−k+1 (ũ, ui) =
(

C1 (ũ) + C2 (ũ)
(

1− ũ− ui−k+1

ui − ui−k+1

))
di−k + C2 (ũ)

ũ− ui−k+1

ui − ui−k+1
di−k+1

= (C1 (ũ) + C2 (ũ))di−k + C2 (ũ)
ũ− ui−k+1

ui − ui−k+1
(di−k+1 − di−k) .

Until now the movement of those points and parts of the B-spline curve was clarified, the
parameters of which are smaller than the knot value ui subject to change. Similar statements
hold for those parts of the B-spline curve, which correspond to the parameter values succeeding
the knot ui.

Lemma 1.6. The function Nk
i (ũ, ui), ũ ∈ [ui+m, ui+m+1), (m = 0, . . . , k − 2), ui ∈ [ui−1, ui+1]

is a rational function of degree k −m− 1 in ui.

Proof. The proof of this lemma is analogous to that of Lemma 1.3.

Theorem 1.7. The path si+m (ũ, ui) =
i+m∑

l=i+m−k+1

Nk
l (ũ, ui)dl, ui ∈ [ui−1, ui+1] is a rational

curve of degree k −m− 1 with respect to ui, ∀ũ ∈ [ui+m, ui+m+1), (m = 0, . . . , k − 2).

Proof. The upper limit of the summation can be decreased to i, since ui has no influence on
Nk

l (ũ, ui) for l > i (see Property 4). By using Lemma 1.6, the further part of the proof is
analogous to that of Theorem 1.4.

Corollary 1.8. For m = k− 2, the path is of degree 1, that is if ui runs from ui−1 to ui+1 then
the points of the span si+k−2 (ũ, ui) move along straight lines parallel to the side di−1,di of the
control polygon.

Now we can summarize our results based on Theorem 1.4 and 1.7 and their corollaries.
Modifying the knot value ui the points of the spans of a kth order B-spline curve move along
rational curves, the degree of which decreases symmetrically from k − 1 to 1 as the indices of
the spans getting farther from i. Hence the points of the spans si−k+1 (ũ, ui) and si+k−2 (ũ, ui)
move along straight lines parallel to the corresponding sides of the control polygon. Other parts
of the curve remain unchanged (see Figure 1.2).

7

               dc_933_14



Figure 1.1. Paths of the points of a cubic B-spline curve
when ui runs from ui−1 to ui+1 and the two extreme
positions of the curve: ui = ui−1 (solid line) and ui =

ui+1 (dashed line)

1.2.1 The envelope of the family of B-spline curves

The modification of a knot value ui results a one-parameter family of B-spline curves

s (u, ui) =
n∑

l=0

dlN
k
l (u, ui) , u ∈ [uk−1, un+1] , ui ∈ [ui−1, ui+1) . (1.2)

In case of k = 3 the spans of the curves are parabolic arcs. It is well-known that the tangent
lines of these arcs at the knot values coincide with the sides of the control polygon. Modifying
a knot value ui the tangent line remains the same, which can be interpreted as the side of the
control polygon is the envelope of the family of these quadratic B-spline curves. In the following
theorem the generalization of this property will be proved for arbitrary degree k.

Theorem 1.9. The family of the kth order B-spline curves s (u, ui) =
n∑

l=0

dlN
k
l (u, ui), u ∈

[uk−1, un+1], ui ∈ [ui−1, ui+1), k > 2 has an envelope. This envelope is a B-spline curve of order
(k − 1) and can be written in the form

b (v) =
i−1∑

l=i−k+1

dlN
k−1
l (v) , v ∈ [vi−1, vi] , (1.3)
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where vj =

{
uj if j < i

uj+1 if j ≥ i
, that is the ith knot value is removed from the knot vector (uj) of

the original curves.

Proof. We prove that the curve b (v) at its point corresponding to v = ui touches the curve
s (u, ui) at the point associated with u = ui, i.e. they have a point and a tangent line on
common.

Based on Definition 1.1 the span

si (u, ui) =
i∑

l=i−k+1

dlN
k
l (u, ui) , u ∈ [ui, ui+1] (1.4)

the starting point of which is s (ui, ui) can be written in the form

si (u, ui) =
i∑

l=i−k+1

dl

(
u− ul

ul+k−1 − ul
Nk−1

l (u) +
ul+k − u

ul+k − ul+1
Nk−1

l+1 (u)
)

. (1.5)

At the specific parameter ui the value of this function is

si (ui, ui) =
i−1∑

l=i−k+1

dl

(
ui − ul

ul+k−1 − ul
Nk−1

l (ui) +
ul+k − ui

ul+k − ul+1
Nk−1

l+1 (ui)
)

(1.6)

(the upper limit of the summation can be decreased to i− 1, since Nk−1
i (ui) = Nk−1

i+1 (ui) = 0).
Now we insert the knot value ui between vi−1 and vi (vi−1 = ui−1 ≤ ui ≤ ui+1 = vi) by the

Böhm’s insertion algorithm (cf. [8]). The new knot vector is

v̂j =





vj = uj if j < i

ui if j = i

vj−1 = uj if j > i

(1.7)

For the normalized B-spline basis functions Nk−1
l (v) and N̂k−1

l (v), defined over the knot vectors
(vj) and (v̂j) respectively, the following relation holds:

Nk−1
l (v) =





N̂k−1
l (v) if l < i− k + 1;

ui−v̂l
v̂l+k−1−v̂l

N̂k−1
l (v) + v̂l+k−ui

v̂l+k−v̂l+1
N̂k−1

l+1 (v) if l = i− k + 1, . . . , i− 1;

N̂k−1
l+1 (v) if l > i− 1.

Based on this fact the following form can be obtained

b (v) =
i−1∑

l=i−k+1

dl

(
ui−v̂l

v̂l+k−1−v̂l
N̂k−1

l (v) + v̂l+k−ui

v̂l+k−v̂l+1
N̂k−1

l+1 (v)
)

v ∈ [v̂i−1, v̂i+1)
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and using (1.7) this can be written in the form (since v̂j = uj , ∀j)

b (u) =
i−1∑

l=i−k+1

dl

(
ui−ul

ul+k−1−ul
Nk−1

l (u) + ul+k−ui

ul+k−ul+1
Nk−1

l+1 (u)
)

u ∈ [ui−1, ui+1) .
(1.8)

Comparing (1.6) and (1.8) one can see that b (ui) = si (ui, ui) holds.
The derivative of the curve (1.8) with respect to u is

ḃ (u) =
i−1∑

l=i−k+1

dl

(
ui − ul

ul+k−1 − ul
Ṅk−1

l (u) +
ul+k − ui

ul+k − ul+1
Ṅk−1

l+1 (u)
)
. (1.9)

Based on (1.4), the derivative of the curve si (u, ui) with respect to u is

ṡi (u, ui) =
i∑

l=i−k+1

dlṄ
k
l (u, ui) , (1.10)

while on the other hand, using (1.5)

ṡi (u, ui) =
i∑

l=i−k+1

dl

(
1

ul+k−1−ul
Nk−1

l (u)− 1
ul+k−ul+1

Nk−1
l+1 (u) +

u−ul
ul+k−1−ul

Ṅk−1
l (u) + ul+k−u

ul+k−ul+1
Ṅk−1

l+1 (u)
)

holds. Applying Property 3, this can be written as

ṡi (u, ui) =
i∑

l=i−k+1

dl

(
u−ul

ul+k−1−ul
Ṅk−1

l (u) + ul+k−u
ul+k−ul+1

Ṅk−1
l+1 (u)+

1
k−1Ṅk

l (u)
)

.

(1.11)

Based on (1.10) and (1.11) one can write

u− ul

ul+k−1 − ul
Ṅk−1

l (u) +
ul+k − u

ul+k − ul+1
Ṅk−1

l+1 (u) =
k − 2
k − 1

Ṅk
l (u) .

Hence from (1.10) and (1.9) we obtain

ḃ (ui) =
k − 2
k − 1

ṡi (ui, ui) .

The envelope is illustrated by Figure 2.

1.2.2 The envelope of the paths of curve points

Two families of curves have been considered so far, the paths of the points and the family of
B-spline curves themselves. These two families of curves can be considered as parameter lines of
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Figure 1.2. Envelope of the family of cubic B-spline
curves when ui runs from ui−1 to ui+1

the surface patch

s (u, ui) =
n∑

l=0

dlN
k
l (u, ui) , u ∈ [uk−1, un+1] , ui ∈ [ui−1, ui+1) .

The envelope mentioned above in Theorem 1.9 is a curve on this surface, but the parameter
lines behave in a singular way at the points of that curve. We have seen that it is an envelope of
the family of B-spline curves. In the next subsection, where we will restrict our consideration to
the cubic case (k = 4) we will prove, that this curve is also the envelope of the paths and both
families have the same osculating plane at every point of this envelope, which plane is also the
plane of the envelope itself (c.f. [34]).

Theorem 1.10. If we consider the surface si (u, ui) , u ∈ [uk−1, un+1] , ui ∈ [ui−1, ui+1) then
the envelope of the family of B-spline curves si (u, ũi) is also the envelope of the family of paths
si (ũ, ui) at the points corresponding to u = ui.

Proof. It is sufficient to prove, that the two families of curves have points and tangent lines on
common at the points corresponding to the parameter value u = ui. If we fix the parameters
u = ũ and ui = ũi then a member of both families of curves has been selected. Substituting
these parameters to both of the curves the existence of the common point si (ũ, ũi) = si (ũ, ũi)
immediately follows. For the proof of the common tangent lines the first derivatives of these
curves will be used. Substituting the parameter u = ui to the coefficients after some calculations
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one can receive, that

∂N4
i−3

∂ui

∣∣∣
u=ui

= −1
3

∂N4
i−3

∂u

∣∣∣
u=ui

= 1
ui+1−ui−2

ui+1−ui

ui+1−ui−1

∂N4
i−2

∂ui

∣∣∣
u=ui

= −1
3

∂N4
i−2

∂u

∣∣∣
u=ui

= 1
ui+1−ui−1

(
ui−ui−2

ui+1−ui−2
− ui+2−ui

ui+2−ui−1

)

∂N4
i−1

∂ui

∣∣∣
u=ui

= −1
3

∂N4
i−1

∂u

∣∣∣
u=ui

= − 1
ui+1−ui−1

ui−ui−1

ui+2−ui−1

∂N4
i

∂ui

∣∣∣
u=ui

= ∂N4
i

∂u

∣∣∣
u=ui

= 0

which yields, that
∂si (u, ui)

∂u

∣∣∣∣
u=ui

= −1
3

∂si (u, ui)
∂ui

∣∣∣∣
u=ui

i.e. the curves have also tangent lines in common at the points of the envelope.

With the help of the second derivatives of the coefficient functions the osculating plane of
these curves can also be examined.

Theorem 1.11. The osculating planes of the two families of curves si (u, ũi) and si (ũ, ui) coin-
cide at every point of the envelope and this plane is that of the three control points di−3,di−2,di−1

for every ui.

Proof. The osculating plane is uniquely defined by the first and second derivatives of the curve.
Since Theorem 3. holds for the first derivatives it is sufficient to prove that the second derivatives
of these curves are also parallel to each other. Using the second derivatives of the coefficient
functions and substituting the parameter value u = ui the following result can be obtained:

∂2N4
i−3

∂ui
2

∣∣∣
u=ui

= 1
3

∂2N4
i−3

∂u2

∣∣∣
u=ui

= 2 1
ui+1−ui−2

1
ui+1−ui−1

∂2N4
i−2

∂ui
2

∣∣∣
u=ui

= 1
3

∂2N4
i−2

∂u2

∣∣∣
u=ui

= 2 −ui+1+ui−2−ui+2+ui−1

(−ui+2+ui−1)(ui+1−ui−1)(−ui+1+ui−2)

∂2N4
i−1

∂ui
2

∣∣∣
u=ui

= 1
3

∂2N4
i−1

∂u2

∣∣∣
u=ui

= 2 1
(ui+1−ui−1)(ui+2−ui−1)

∂2N4
i

∂ui
2

∣∣∣
u=ui

= ∂2N4
i

∂u2

∣∣∣
u=ui

= 0

which immediately yields, that

∂2si (u, ui)
∂u2

∣∣∣∣
u=ui

=
1
3

∂2si (u, ui)
∂ui

2

∣∣∣∣
u=ui

.

Hence the osculating planes of the two families of curves coincide at the parameter values u = ui.
Moreover, the second derivatives do no depend on ui, and using the notations

A :=
∂2N4

i−3

∂ui
2

, B :=
∂2N4

i−1

∂ui
2

they can be written in the form

∂2si(u,ui)
∂ui

2

∣∣∣
u=ui

= A (di−3 − di−2) + B (di−2 − di−1)
∂2si(u,ui)

∂u2

∣∣∣
u=ui

= 1
3A (di−3 − di−2) + 1

3B (di−2 − di−1) .
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This means that these derivative vectors are in the plane of the control points di−3,di−2,di−1

for every ui. The same holds for the first derivative vectors since the envelope is a quadratic
B-spline curve (a parabola) defined by these control points and it has common tangent lines with
both of the families of the curves at u = ui. This yields, that the osculating planes of the curves
coincide with the plane of the three control points mentioned above for every ui.

1.2.3 Extension of paths

Paths obtained by the modification of the knot ui are relatively short arcs. In order to get more
information about their characteristics we extend their domain, i.e., we let ui be smaller than
ui−1 and larger than ui+1. For these extended paths the following holds.

Theorem 1.12. Modifying the single multiplicity knot ui of the B-spline curve s (u), points of
the extended paths of the arcs si−1 (u) and si (u) tend to the control points di and di−k as ui

tends to −∞ and ∞, respectively, i.e.,

lim
ui→−∞

s (u, ui) = di, lim
ui→∞

s (u, ui) = di−k, ∀u ∈ [ui−1, ui+1) .

Proof. We prove the statement for the arc si (u), for si−1 (u) it can be proved analogously. Denote
the original knot values by ūj , (j = 0, 1, . . . , n + k). For the description of extended paths we
will use the knot values uj = ūj , (j = 0, 1, . . . , n + k) which will differ from the original values
only in ui along the proof. Paths of the points si (u) can be written as

si (u, ui) =
i∑

l=i−k+1

dlN
k
l (u, ui) , ui ∈ [ūi−1, ūi+1) , u ∈ [ūi, ūi+1] . (1.12)

Limits of this summation are modified when we extend these paths, since if ui > ūi+1 (i.e.,
ui → ∞) then Nk

i (u) ≡ 0, u ∈ [ūi, ūi+1] and Nk
i−k (u) 6= 0, u ∈ [ūi, ūi+1], thus these arcs of the

extended paths become

si (u, ui) =
i−1∑

l=i−k

dlN
k
l (u, ui) , ui > ūi+1, u ∈ [ūi, ūi+1] .

It can easily be seen that

Nk
i−k (u, ui) =

(ui − u)k−1

k−1∏
j=1

(ui − ui−j)

where both the numerator and the denominator are polynomials of degree k − 1 in ui, and the
main coefficient in both polynomials is 1. This yields lim

ui→∞
Nk

i−k (u, ui) = 1. Now we prove by

induction on k that lim
ui→∞

Nk
j (u, ui) = 0, (j = i− k + 1, . . . , i− 1).

i) for k = 3

N3
i−1 (u, ui) =

(u− ui−1)
2

(ui+1 − ui−1) (ui − ui−1)
,
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N3
i−2 (u, ui) =

(u− ui−2) (ui − u)
(ui − ui−2) (ui − ui−1)

+
(ui+1 − u) (u− ui−1)

(ui+1 − ui−1) (ui − ui−1)

for which the statement holds.
ii) k − 1 → k

By Definition 1.1

Nk
i−1 (u, ui) =

u− ui−1

ui+k−2 − ui−1
Nk−1

i−1 (u, ui) +
ui+k−1 − u

ui+k−1 − ui
Nk−1

i (u, ui)

Nk
i−2 (u, ui) =

u− ui−2

ui+k−3 − ui−2
Nk−1

i−2 (u, ui) +
ui+k−2 − u

ui+k−2 − ui−1
Nk−1

i−1 (u, ui)

...

Nk
i−k+1 (u, ui) =

u− ui−k+1

ui − ui−k+1
Nk−1

i−k+1 (u, ui) +
ui+1 − u

ui+1 − ui−k+2
Nk−1

i−k+2 (u, ui)

Therefore, the kth order functions are linear combinations of functions of order k − 1 where the
numerator is independent of ui and the denominator is linear at most in ui, i.e., the order of
the numerator can not be greater than that of the denominator. Thus, from the assumption for
k − 1, the case of k results too.

If ui < ūi−1 (ui → −∞) then the limits of the summation (1.12) are not modified. It is easy
to show that in this case

Nk
i (u, ui) =

(u− ui)
k−1

k−1∏
j=1

(ui+j − ui)

which immediately yields lim
ui→−∞

Nk
i (u, ui) = 1.

Equalities lim
ui→−∞

Nk
i−j (u, ui) = 0, (j = 1,. . .,k − 1) can be proved by induction on k.

This property of the extended paths is illustrated in Fig. 1.3.
It is easy to show that, by altering a knot of higher multiplicity, Theorem 1.12 will be of the

following form.

Theorem 1.13. Altering the knot ui of multiplicity m, points of the extended paths of the arcs
si−1 (u),. . ., si+m−1 (u) satisfy the equalities

lim
ui→−∞

si+j (u, ui) = di+m−1, lim
ui→∞

si+j (u, ui) = di−k,

(j = −1, 0, . . . , m− 1) , ∀u ∈ [ui+j , ui+j+1) .

1.2.4 The case of higher order contact and higher multiplicity of knots

Theorem 1.9 can be generalized in two ways. At first we prove that the family of B-spline curves
(1.2) and the envelope curve (1.3) have higher derivatives in common. Then we will consider the
case when the modified knot is of multiplicity m > 1.
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Figure 1.3. A cubic B-spline curve and its extended
paths (n = 12, k = 4, i = 8).

Theorem 1.14. Let us consider the one-parameter family of B-spline curves of order k

s (u, ui) =
n∑

l=0

dlN
k
l (u, ui) , u ∈ [uk−1, un+1] , ui ∈ [ui−1, ui+1) , k > 2

obtained by the modification of the knot ui of single multiplicity between its neighboring knots.
Also consider the B-spline curve

b (v) =
i−1∑

l=i−k+1

dlN
k−1
l (v) , v ∈ [vi−1, vi]

of order k−1 defined by the same control points dl, and the knots vj = uj if j < i and vj = uj+1

otherwise, i.e., we leave out the knot ui from the knot vector {uj}. Then the relation between the
derivatives of these two curves at u = v = ui is

dr

dvr
b (v)

∣∣∣
v=ui

=
k − 1− r

k − 1
dr

dur
s (u, ui)

∣∣∣
u=ui

, r ≥ 0.

Proof. The proof follows the basic idea of the proof of Theorem 1.9 where we proved the statement
for the case r = 1. To make the two curves compatible, we insert the knot ui into the knot vector
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{vj} with Boehm’s insertion algorithm [8]. After the conversion of knots from {vj} to {uj}, this
yields the new representation

b (u) =
i−1∑

l=i−k+1

dl

(
ui − ul

ul+k−1 − ul
Nk−1

l (u) +
ul+k − ui

ul+k − ul+1
Nk−1

l+1 (u)
)

, u ∈ [ui−1, ui+1) (1.13)

of curve (2.6). It is easy to show that b (ui) = s (ui, ui), ∀ui ∈ [ui−1, ui+1).
For the r > 0 case we consider the rth derivative of the curve (1.13)

dr

dur
b (u) =

i−1∑

l=i−k+1

dl

(
ui − ul

ul+k−1 − ul

dr

dur
Nk−1

l (u) +
ul+k − ui

ul+k − ul+1

dr

dur
Nk−1

l+1 (u)
)
. (1.14)

The rth derivative of a normalized B-spline basis functions of order k is

k − 1− r

k − 1
dr

dur
Nk

l (u) =
u− ul

ul+k−1 − ul

dr

dur
Nk−1

l (u) +
ul+k − u

ul+k − ul+1

dr

dur
Nk−1

l+1 (u)

k > 1, r ≥ 0,

cf. [13]. Thus the rth derivative of the arc si (u, ui) , (u ∈ [ui−1, ui+1)) with respect to u is

k − 1− r

k − 1
dr

dur
si (u, ui) =

i∑

l=i−k+1

dl

(
u− ul

ul+k−1 − ul

dr

dur
Nk−1

l (u) +
ul+k − u

ul+k − ul+1

dr

dur
Nk−1

l+1 (u)
)
.

The evaluation of this and of equation (1.14) at u = ui completes the proof.

Theorem 1.9 can also be generalized to the case when the multiplicity of the modified knot
is higher than 1.

Theorem 1.15. In the case when the modified knot is of multiplicity m > 1, the curve (1.3)
becomes

b (v) =
i−1∑

l=i−k+m

dlN
k−m
l (v) , v ∈ [vi−1, vi]

on the knots vj = uj if j < i and vj = uj+m otherwise, and the relation between the derivatives
is

dr

dvr
b (v)

∣∣∣
v=ui

=
dr

dur
s (u, ui)

∣∣∣
u=ui

m∏

j=1

k − j − r

k − j
, r ≥ 0.

Proof. For a proof of this statement we can show at first, by means of the considerations used
in the previous proof, that

dr

dur
N̂k−j

l (u)
∣∣∣
u=ui

=
k − j − r

k − j

dr

dur
Ñk−j+1

l (u)
∣∣∣
u=ui

, (j = 1, . . . , m) (1.15)

where N̂k−j
l is defined on the knots {. . . , ui−1, ui = ui+1 = · · · = ui+m−j−1, . . .} and Ñk−j+1

l is
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on {. . . , ui−1, ui = ui+1 = · · · = ui+m−j , . . .}. The repeated application of (1.15) completes the
proof.

We mention two corollaries of these properties of B-spline curves and of Theorem 1.10 and
Theorem 1.11.

Corollary 1.16. The curve b (v) of order k −m is an envelope of the family of curves s (u, ui)
of order k.

Corollary 1.17. For k > 3 spatial curves, b (v) and s (u, ui) have also a common osculating
plane at the point of contact. However, their curvatures are different, the relation between them
is

κb =
(k − 1) (k −m− 2)
(k − 2) (k −m− 1)

κs (1.16)

thus b (v) is a singular curve of the surface s (u, ui).

Until now only non-rational B-spline curves have been examined, but similar results hold for
the rational case. A rational B-spline curve Rd can always be considered as a central projection of
a non-rational B-spline curve in Rd+1. It is clear that G1 continuity contact and the coincidence
of the osculating planes remain valid, since these are preserved during central projection. The
degree of a curve cannot increase by a central projection, thus Theorem 1.9 and its corollaries
hold for paths of the points of a NURBS curve, except the parallel paths will be concurrent,
which will be discussed in the next section. Similarly Theorem 1.10 holds for the rational case,
but the envelope will also be a NURBS curve.

1.3 Shape control of B-spline and NURBS curves by knot modification

Constrained based shape control possibilities are discussed in this section, modifying knot values
of a non-rational B-spline curve, while the effect of simultaneous modification of knots and
weights is presented in the rational case. For the sake of simplicity in some cases we restrict our
consideration for the case of cubic curve (k = 4). Some of the algorithms discussed below can
be generalized for arbitrary k, while others use the specific properties of cubic curves. Results
about cubic curve modification are based on [59].

1.3.1 B-spline curve passing through a point

Let a non-rational cubic B-spline curve s(u) with control points di, (i = 0, ..., n) and knot values
uk, (k = 0, ..., n + 4) be given. Until now the only possibility for the modification of this curve
has been the repositioning of its control points. Now we give an algorithm for changing this
curve by modifying its knot values in such a way that the curve will pass through a given point p

at the given parameter value ũ. This point, of course cannot be anywhere: the algorithm works
if this point is inside the region defined by the sides of the control polygon and the envelopes
mentioned in Theorem 1.7, which are parabolic arcs in the cubic case.

Let point p be in the region defined by the control points dj−2,dj−1,dj . Let a parameter
value ũ ∈ [uj , uj+2) be also given. Consider a quadratic B-spline curve b(v) with the same
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control points and knot values v0 = u0, ...vj−1 = uj−1, vj = uj , vj+1 = uj+2, ..., vn+3 = un+4.
Hence the given value ũ ∈ [vj , vj+1). Consider the jth span of the quadratic curve

bj(v) =
j∑

l=j−2

N3
l (v)dl, . v ∈ [vj , vj+1) .

Using the monotonicity of the knot values one can write

v − vj−1 = (vj+1 − vj−1)− (vj+1 − v)

vj+2 − v = (vj+2 − vj)− (v − vj).

Substituting these formulae to the original equation we obtain the form

bj(v) = dj−1 + N3
j−2 (v) (dj−2 − dj−1)

+N3
j (v) (dj − dj−1).

Now consider the affine coordinate system the origin of which is dj−1 and the base vectors are
dj−2 − dj−1 and dj − dj−1. Let the coordinates of the given point p in this coordinate system
be x and y. This yields the following system of equations:

(vj+1 − v)(vj+1 − v)
(vj+1 − vj−1)(vj+1 − vj)

= x

(v − vj)(v − vj)
(vj+2 − vj)(vj+1 − vj)

= y

Hence x, y and v = ũ are given, one can choose two unknowns from the knot values
(vj−1, vj , vj+1, vj+2). The system can be solved for any two unknowns, but to avoid the un-
necessary changes of farther spans it is better to chose two neighboring values. Solving the
system e.g. for vj−1,vj and considering the quadratic curve b(v) with these knot values b(ũ) = p

holds. Hence, because of Theorem 1.7, the cubic curve s(u) with the knot values (...uj−1 = vj−1,
uj = vj , uj+1 = ũ, uj+2 = vj+1...) also passes through the point p at the parameter value ũ.

Since we have four free parameters vj−1, vj , vj+1 and vj+2, some additional conditions can
be assumed in advance. Such a condition can be the given tangent line t in p, which yields two
additional equations for the derivatives. This system of 4 equations

b(ũ) = p
∂b(u)

∂u
(ũ) = t

can be uniquely solved for (vj−1, vj , vj+1, vj+2). Thus modifying 5 neighboring knot values the
cubic curve will pass through a given point and have a given tangent at that point. This tangent
line, however cannot be chosen arbitrarily, but between some limits, otherwise the monotonicity
of knot values would be defected.
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1.3.2 NURBS curve passing through a point

It is a well-known fact, that the modification of the weight wj of a NURBS curve causes a
perspective functional translation of points of the effected arcs, i.e. it pulls/pushes points of the
curve toward/away from the control point dj . If a given point is on one of the line segments of
the paths of this perspective change, one can easily compute the new weight value such a way,
that the new curve will pass through the given point. This point can be almost anywhere in
the convex hull, but for k > 3 these concurrent line segments starting from dj do not sweep the
entire area of the triangle dj−1,dj ,dj+1. If the given point is close to the side of the control
polygon, the problem can be solved only for changing two neighboring weights. Now we give an
algorithm solving this problem with the change of one weight and one knot value [39].

Let a cubic NURBS curve s(u) and a point p in the convex hull be given. Let the point
p be in the triangle dj−1,dj ,dj+1. Consider the quadratic envelope b(v) of this NURBS curve
changing its knot value uj+1. This parabolic arc intersects all the lines starting from dj in this
triangle, hence suitably changing the weight wj there will be a parameter value ṽ, for which
b(ṽ) = p. Now if we modify the knot value uj+1of the cubic curve for uj+1 = ṽ, the cubic curve
will also pass through the point p. This type of shape modification is illustrated in Fig. 1.3.2.

Figure 1.4. Modifying the weight w3 and the knot u4

the NURBS curve passes through a given point p which
is outside the area accessible by modifying w3 only

In this subsection the quadratic envelope has been modified by a weight, where the points
of the curve moves along straight lines towards a control point. Similar effect, however, can
be achieved in terms of non-rational quadratic B-spline curves by appropriate simultaneous
modification of two knot values. More precisely, from the definition of the B-spline functions and
the Corollary of Theorem 1.4 one can easily prove the following property:

Theorem 1.18. The points of the span si+1 of a non-rational quadratic B-spline curve move
along concurrent straight lines with centre di, if the knot values ui and ui+3 are changed simul-
taneously toward (or away from) each other in such a way, that

ui+1 − ui = ui+3 − ui+2

holds.
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Proof. As we have seen above, the span si+1 can be written in the form

si+1(u) = di + N3
i−1(di−1 − di) + N3

i+1(di+1 − di).

Consider the path of the point si+1(ũ). Applying the assumption of the theorem we obtain

si+1(ũ, ui, ui+3) = di +
1

ui+2 − ui
(C1(di−1 − di) +

+C2(di+1 − di))

where C1and C2 are constants. This latter form is an equation of a straight line segment passing
through di.

The modification of these two knot values, of course, is not so effective, than that of a weight,
because the feasible area is greater for the latter case while the number of changing spans is fewer
(7 for the two knot values and 3 for the weight), but we have to emphasize, that this theorem
allows us to modify non-rational B-spline curves similarly to NURBS curves.

1.3.3 Modification of two weights and a knot value of a NURBS curve

Modifying two neighboring weights wj , wj+1 of a NURBS curve the points of the curve move
along straight lines toward or away from the leg dj ,dj+1 of the control polygon. This change
is neither perspective nor parallel. This property can be made more intuitive geometrically
by modifying a knot value in addition. Thus the points of a span of the curve will move along
concurrent lines passing through any given point of the line dj ,dj+1 except the inner point of the
leg. As we have mentioned in the preceding section, modifying a knot value uj of a cubic NURBS
curve the points of the spans sj−3, sj+2 will move along two families of concurrent straight lines.
Considering the span sj−3 and assuming that wj−4 6= wj−3 the following result can be achieved:
modifying the knot value uijthe points of this span move along concurrent lines the centre of
which is on the line dj ,dj+1 and its barycentric coordinates are

(
wj−4

wj−4 − wj−3
, 1− wj−4

wj−4 − wj−3
).

We can easily see, that one of its coordinates must be negative with the usual assumption wj ≥ 0
for ∀j. Hence this centre cannot be on the leg dj ,dj+1 but on the rest of the line. Fig.1.3.3
shows a case of this type of modification.

1.3.4 Further constrained modification tools by knots

Extending and improving the basic idea described in [59], in this section we show a method how
one can use the results above for constrained shape modification of cubic B-spline curves. These
methods are based on the results published in [60].

Let the point p be in the triangle defined by the control points dj−2,dj−1,dj . Let a parameter
value ũ ∈ [uj , uj+2) be also given. Consider a quadratic B-spline curve b(v) with the same control
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Figure 1.5. Modifying the knot value u7 the points of
the span s4 moves along concurrent straight lines the cen-
ter of which depends on w3 and w4 and can be arbitrary

chosen on the line of d3d4.

points, and knot values v0 = u0, ..., vj−1 = uj−1, vj = uj , vj+1 = uj+2, ..., vn+3 = un+4. Hence
the given value ũ ∈ [vj , vj+1). Consider the jth span of the quadratic curve

bj(v) =
j∑

l=j−2

N3
l (v)dl, v ∈ [vj , vj+1) . (1.17)

Utilizing that N3
j−2 (v) + N3

j−1 (v) + N3
j (v) = 1,∀v ∈ [vj , vj+1), equation (1.17) can be written

in the form

bj(v) = dj−1 + N3
j−2 (v) (dj−2 − dj−1)

+N3
j (v) (dj − dj−1)

where

N3
j−2 (v) =

(vj+1 − v)2

(vj+1 − vj−1)(vj+1 − vj)

N3
j (v) =

(v − vj)2

(vj+2 − vj)(vj+1 − vj)
.

Now, consider the affine coordinate system the origin of which is dj−1 and the base vectors are
e1 = dj−2−dj−1 and e2 = dj−dj−1. Let the coordinates of the given point p in this coordinate
system be x and y. This yields system of equations

(vj+1 − v)2

(vj+1 − vj−1)(vj+1 − vj)
= x

(v − vj)2

(vj+2 − vj)(vj+1 − vj)
= y

(1.18)
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Hence x, y and v = ũ are given, one can choose two unknowns from the four knot values
(vj−1, vj , vj+1, vj+2). Solving the system, e.g., for vj−1,vj and considering the quadratic curve
b(v) with these knot values b(ũ) = p holds. Therefore, because of Theorem 1.7, the cubic curve
s(u) with the knot values (...uj−1 = vj−1, uj = vj , uj+1 = ũ, uj+2 = vj+1...) also passes through
the point p at the parameter value ũ, and they share a common tangent line here. The point of
this solution is that a degree three problem is reduced to a degree two one.

Now, we discuss the relation between the permissible values of the given parameter, the
permissible positions of the given point and the choice of the two unknowns in the system of
equations (1.18).

Permissible position of the point Since the quadratic B-spline curve has to pass through
the point, it can be chosen inside the extreme positions of the curve. The extreme positions
of arcs of the quadratic B-spline curve concerning the knot values subject to change are the
following:

1. If vj−1 = vj < vj+1 = vj+2 holds, then bj (v) is the quadratic Bézier curve of control points
dj−2,dj−1 and dj .

2. If vj−1 = vj = vj+1 < vj+2 holds, then the parabolic arc degenerates to the side dj−2,dj−1

of the control polygon.

3. If vj−1 < vj = vj+1 = vj+2 holds, then the parabolic arc degenerates to the side dj−1,dj

of the control polygon.

These extreme positions form the boundary of a plane region (see the shaded area of Fig. 1.6)
choosing a point within which one can obtain infinitely many parabolic arcs that pass through the
point p and satisfy the equation (1.17). These quadratic B-spline curves differ from each other
only in the knot values vj−1, vj , vj+1 and vj+2 and can be chosen between two extreme positions.
To obtain these extreme arcs, consider the following two situations: b (vj−1) = b (vj) = dj−2

and b (vj+1) is an inner point of the segment dj−1,dj , and the other b (vj+1) = b (vj+2) = dj

and b (vj) is an inner point of the segment dj−2,dj−1. These parabolic arcs can easily be
calculated by considering the affine coordinate system dj−1, e1, e2 described in Section 1.3.4. In
this coordinate system let the coordinates of the point p be (x, y). The control points of the first
extreme arc are: dj−2,dj−1,dj−1 + µe2, µ < 1, and it can be written in the parametric form

c (v) = dj−1 + (1− v)2 e1 + v2µe2.

One of its points will be the point p at the parameter value v̂ ∈ (0, 1) which is to be determined.
For this point

p = dj−1 + xe1 + ye2

also holds. The vectors e1 and e2 are linearly independent, hence from the equation p = c (v̂)
we obtain the solutions v̂ = 1 −√x, µ = y/ (1−√x)2. The other extreme arc can analogously
be found. Fig. 1.6 shows the two extreme parabolic arcs passing through p and their tangent
lines.
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Figure 1.6. The permissible positions of the point p
(the shaded area) and the two extreme positions of the

parabolic arcs with their tangent directions

Choices of the parameter and the unknowns In the previous subsection we clarified the
permissible positions of the point the modified cubic B-spline curve has to pass through. On the
other hand, one can also choose a parameter value ũ which has to be between the two knots vj

and vj+1.
Once the parameter value ũ has been chosen and the value v = ũ has been substituted to

the system of equations (1.18), we have four free parameters vj−1, vj , vj+1 and vj+2 as possible
unknowns. The system can be solved for any two of them, but the knot values has to fulfill the
criteria of monotonicity vj−1 ≤ vj ≤ ũ ≤ vj+1 ≤ vj+2. Having in mind this criteria one can
describe an area for every parameter value ũ and for every pair of knot values chosen to be
unknown, inside which the point p can be specified to find a proper solution. The union of these
areas only slightly differs from the general permissible area of the point p described in subsection
1.3.4 and after fixing the parameter value ũ the two unknowns are either unique or can be chosen
optimally by the system. In most of the cases vj and vj+1 are the best choice but if the point
p is close to the control points dj−2 or dj , the pairs vj−1, vj or vj+1, vj+2 can yield smoother
curves, respectively.

Now we will describe some possible scenarios for interactive shape control of cubic B-spline
curves. A common characteristics of these shape modification methods, that the user do not
have to bother with knots, he/she has to specify geometric entities, such as points and lines.

Move a point of the curve to a specified location From the user’s point of view, one of
the most frequently applied shape control scenario is the following: the designer picks a point p̃

on the curve and another point p to which p̃ is to be moved. This modification can be done by
the repositioning of one or more control points, but now we can also apply the knot alteration to
achieve the desired modification. Since picking the curve point p̃ = s(ũ) yields the choice of the
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parameter value ũ as well, thus one can apply the knot alteration method described in Section
1.3.4.

As we have mentioned above, this modification can also be done by control point reposition-
ing. The advantages of our method are twofold. On the one hand, the modified curve will remain
inside the original convex hull, while using control point repositioning, the convex hull will also
be modified. On the other hand, in spite of the useful local control property of B-spline curves,
sometimes the broader interval of change the better to avoid sharp changes in the curvature in
comparison with the original one. With knot alteration the number of the modified spans will
be larger, but this solution preserves the original shape of the curve much better than the one
obtained by control point repositioning.

In Fig. 1.7 one can see a B-spline curve s(u) a part of which is close to be a straight line.
The modification of this part by knot alteration results the curve sk(u), and by control point
repositioning results the curve sp(u). The drawback of the latter method is obvious: the curve
sp(u) has inflection points, while the curve sk(u) obtained by knot alteration is still inside the
original convex hull. Fig. 1.8 shows the curvature plots (curvature vs arc length) of these curves.

Figure 1.7. A cubic B-spline curve s (u) with its control
polygon and its modifications, that move ep = s(0.39) to
a given location p. The curve sp (u) obtained by repo-
sitioning dj−1 has two undesired inflection points, while
the curve sk (u) obtained by knot alteration remains in-

side the original convex hull.

One can also be interested in the distance between the original and the modified curves. To
measure this distance we introduce a semi-orthogonal distance between two curves measured by
the function d(u) = dist(s(u), sk(ū)). Here dist denotes the Euclidean distance between the
points s(u) and sk(ū), where sk(ū) is the intersection point of the curve sk and the line which is
perpendicular to the curve s at its point s(u). The graph of this function for both shape control
methods is shown in Fig. 1.9. It shows that the greatest distance is two times larger for the
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Figure 1.8. A part of the curvature plot of the curves
in Fig. 1.7. One can observe the two undesired inflection
points of the curve obtained by control point reposition-

ing. Circles indicate the curvature at p and ep.

curve sp(u) obtained by control point repositioning, than for sk(u) obtained by knot alteration.
Further on, the change of this latter curve is more global but smaller in comparison with the
rather sudden change of sp(u). One can also observe that the greatest difference in the semi-
orthogonal distance for sk(u) is at p which is not the case for sp(u). This latter property is also
typical for knot alteration, however does not always hold. A counter-example can be constructed,
e.g., by picking a point of the given curve p̃ = s(ũ) and another point of the curve p = s(û).
Moving the point p̃ to p, the distance function will be 0 at p, however the two curves are not
identical. Apart from these special cases, that can not be considered common shape modification
objectives, the maximum of the distance function is typically close to the point picked by the
user.

Figure 1.9. The semi-orthogonal distance functions of
the curves in Fig. 1.7 obtained by knot alteration and by

control point repositioning.

Pass through a point Back to the viewpoint of the user, further scenarios of interactive
design can be described. One can pick a point p inside the permissible area without choosing a
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point on the curve to be modified, i.e., without fixing the parameter value ũ. In this case there
are infinitely many curves passing through the point thus the user can find a solution satisfying
some further constraint.

An evident option is to prescribe the tangent line at the specified point. After picking the
point p the user can choose a line between the two extreme cases that can be seen in Fig.
1.6. Once the tangent direction t = (tx, ty) in the affine coordinate system specified in Section
1.3.4 has been fixed, the system can compute the quadratic B-spline arc b (v) that satisfies the
constraints, i.e., the system of equations

(vj+1 − ũ)2

(vj+1 − vj−1)(vj+1 − vj)
= x

(ũ− vj)2

(vj+2 − vj)(vj+1 − vj)
= y

ũ− vj

vj+2 − vj
tx +

vj+1 − ũ

vj+1 − vj−1
ty = 0

(1.19)

has to be solved for ũ, vj , vj+1. The existence of a unique solution is guaranteed by the preliminary
constraints imposed on the position of p and t. The resulted arc b (v) has the properties b (ũ) = p

and ḃ (ũ) ‖t, therefore the cubic B-spline curve s (u) with the knots

ul =





vl if l < j + 1
ũ if l = j + 1

vl+1 if l > j + 1

(1.20)

shares the same properties due to Theorem 1.7.
Another option for the choice from the solutions is to preserve the original parametrization

as much as we can. The parametrization is determined by the knot values, three of which are
altered in this situation. We consider this change optimal, if the standard deviation, i.e., the
square root of the sum of the squared differences, is minimal. In Fig. 1.10 there are three
different curves passing through the same point at different parameter values, the one drawn in
thick solid line is the optimal. Fig. 1.11 shows the graph of the standard deviation function,
the minimum of which has to be determined in order to find the optimal parametrization for the
shape modification of Fig. 1.10.

Touch a line The modification of the curve s (u) can not only be determined by the specifica-
tion of a location through which the curve has to pass through (as we did in Subsection 1.3.4),
but by the specification of a line the curve has to touch as well. These two constraints can be
considered dual of each other.

For solvability, the specified tangent line has to intersect the legs dj−2,dj−1 and dj−1,dj

moreover, the straight line segment determined by the intersected points m1 and m2 has to be
within the region bounded by the segments dj−2,dj−1 and dj−1,dj , and the quadratic Bézier
curve of control points dj−2,dj−1,dj , see the shaded area of Fig. 1.12. This region coincides
with the area of permissible positions of p, cf. Subsection 1.3.4.

In the affine coordinate system dj−1, e1, e2 described in Section 1.3.4, the endpoints of the
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Figure 1.10. Three different curves passing through
a specified point, obtained by the modification of three
consecutive knots. The original curve(thin solid line)
has a uniform knot vector {..., 0.2, 0.3, 0.4, 0.5, 0.6, ...},
the optimal parametrization for the modified curve is:
eu = 0.413, {..., 0.2, 0.329, 0.413, 0.45, 0.6, ...} (thick solid
line), while the other two non-optimal parametrizations
are eu = 0.3, {..., 0.2, 0.20007, 0.3, 0.338, 0.6, ...} (dashed
line) and eu = 0.55, {..., 0.2, 0.51, 0.55, 0.58, 0.6, ....} (dot-

ted line).

tangential segment has the form

m1 = λ1e1, m2 = λ2e2

Points of this segment are inside the permissible region if and only if

λ1 + λ2 ≤ 1.

If λ1 + λ2 = 1 then there is a unique solution, namely the quadratic Bézier curve of control
points dj−2,dj−1,dj , i.e., the bounding parabolic arc of the permissible region. Otherwise, there
is an infinite number of such quadratic Bézier curves that touch the segment m1,m2 and for the
control points of which

b0 = dj−1 + (λ1 + α) e1, b1 = dj−1, b2 = dj−1 +
(

λ2 +
λ1λ2

α

)
e2

is fulfilled. For b0 and b2 to be on the segments dj−2,dj−1 and dj−1,dj , respectively, the
inequality

λ1λ2

1− λ2
≤ α ≤ 1− λ1

has to be satisfied. Points of contact of these parabolas with the line m1,m2 form a segment the
endpoints of which can be obtained with the substitutions α = λ1λ2/ (1− λ2) and α = 1 − λ1.
The free parameter α can be fixed by the specification of the point of contact p. Another option
is to specify the curvature of the modified cubic B-spline curve at the point of contact. It is
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Figure 1.11. The graph of the standard deviation func-
tion the minimum of which provides the optimal parame-

trization for the shape modification in Fig. 1.10.

feasible, since the curvature of the parabola is

κp (α) =
(α + λ1)

2

2αλ1

|m1 ×m2|
|m1 −m2|3

thus with the application of Corollary 1.17, the curvature of the parabola is

κc (α) =
(α + λ1)

2

3αλ1

|m1 ×m2|
|m1 −m2|3

at the point of contact. Thus the shape modification process is as follows:

• the user specifies the points m1 and m2,

• the system responds the segment of possible points of contact,

• the user locates the point of contact p, or specifies the curvature (or the more intuitive
radius of curvature),

• the system solves the system of equations (1.19) for ũ, vj , vj+1 with the substitution t =
(m2 −m1).

Thus with the settings of (1.20) the segment m1,m2 will touch the curve s (u) at the point
p.

Some geometric aspects of knot modification of B-spline curves were presented in this section.
We proved the existence of an envelope of the one-parameter family of B-spline curves, obtained
by the modification of a knot value of single or higher multiplicity. Constrained local shape
control methods for cubic B-spline curves has also been presented, that are based on the alteration
of knot values, and utilize this envelope. A definite advantage of knot modification over the
repositioning of control points is that the modified curve always remains within the convex hull
of the original curve. Several scenarios were described for shape modification of cubic B-spline
curves, including:
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Figure 1.12. Permissible position of tangent segments
(shaded region), the range of points of contact and the

two extreme positions of the parabolas.

• pass through a point at a prescribed parameter value,

• pass through a point with a prescribed tangent direction,

• pass through a point with the minimal change of parametrization,

• touch a line with a prescribed point of contact.

Using these methods, users do not have to deal with knots, they just have to specify geometric
constraints.

Shape modifications methods, we have described for cubic B-spline curves, can be generalized
for B-spline curves of arbitrary degree, using Theorem 1.14. Thus, if we have a B-spline curve
s (u) of order k > 3, and we want to perform a shape modification of the type described in
Section 1.3.4 with the modification of the knot uj+1, we have to insert uj+1 repeatedly with
Böhm’s knot insertion algorithm (cf. [8]) until its multiplicity becomes k− 3. Thus the envelope
of the family of curves s (u, uj+1) will be a quadratic B-spline for which considerations described
in the previous sections are valid. Nevertheless, one has to take into account that knot insertion
results a new control polygon the concerned part of which is closer to the curve than the original
one, consequently, the region of change (permissible position of p, cf. Subsection 1.3.4) becomes
smaller.

1.4 Extension to surfaces

In the previous section we have described the effect of knot modifications of B-spline and NURBS
curves. These results are generalized to surfaces in [35] and [40]. Altering one or two knot values
of a B-spline surface, we proved that the family of B-spline surfaces obtained by knot alteration
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Figure 1.13. A (5,4) order B-spline surface and its
modifications by altering a knot in the u (vertical) di-
rection. Left: the original surface; middle: the modified
strip of the surface if ui = ui−1 and right: if ui = ui+1.

possesses an envelope which is a lower order B-spline surface. We also proved that simultaneously
modifying the knot values up and vq a topologically quadrilateral part of the surface is effected
containing at most 4(k − 1) (l − 1) number of patches around the patch sp,q (u, v). The points
of these patches move on rational surfaces the degree of which decrease in a central symmetrical
way as we consider farther patches in both parameter directions. Along the sides of this array
of patches path-surfaces are ruled surfaces, while at the four corners one can find bilinear path-
surfaces. We also proved that the envelope of the family of B-spline surfaces is also an envelope
of these paths.
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2 New curve types in geometric modeling

In the last decade several new types of spline curves and surfaces have been introduced to CAGD.
In one hand, additional parameters are frequently incorporated into the functions in order to
control the shape of the curve. The NURBS curve itself associates weights with the control
points, which can also be considered as shape parameters. This curve however, suffers from
several drawbacks due to the relative complexity of rational basis functions (c.f. [23], [89]). The
first attempt to describe B-spline curve with shape parameters, while preserving polynomial basis
functions was β-spline curve [5], [6], but several other approaches can be found in recent papers
as well [29], [106], [115]. Among them, one of the most promising curve types is the quartic
curve of Han [30], which preserves all the nice properties of B-spline curve, having local shape
parameters and quartic polynomial basis functions.

On the other hand, instead of polynomial basis, that was a reasonable choice in the epoch
of computers with modest computational capabilities, trigonometric functions are incorporated
into the base functions. The theoretical fundamentals for this kind of curves have been laid in
[92]. C-Bézier and uniform CB-spline curves are defined by means of the basis {sin t, cos t, t, 1},
that was generalized to {sin t, cos t, tk−3, tk−4, ..., t, 1} (cf. [15], [117], [118], [119]). Wang et al.
introduced NUAT B-spline curves [111] that are the non-uniform generalizations of CB-spline
curves. The other basic type is the HB-spline curve, the basis of which is {sinh t, cosh t, t, 1}, and
{sinh t, cosh t, tk−3, tk−4, ..., t, 1} in higher order [74], [92]. Li andWang developed its non-uniform
generalization [71].

The reason for the introduction of these new spline curves and surfaces is that they are capable
of the exact description of such curves and surfaces that are of great importance in applications.
Such curves and surfaces are circle and circular cylinder [117], ellipse [119], surfaces of revolution
[82], cycloid [78], helix [92], hyperbola and catenary [74]. Although, some of these object can be
described by the traditional NURBS technique, the evaluation of CB-spline and HB-spline are
more stable [79], [78].

These splines of uniform parametrization have been unified in two similar papers by Zhang
and Krause [120], and Zhang et al. [121] with the name FB-spline. FB-spline curves that
include uniform HB-spline, CB-spline curves and the uniform B-spline curve itself inherit most
advantageous properties of B-spline curves.

Properties of these curves have been clarified mainly from theoretical point of view ([79], [78],
[82], [93], [114]). However, in order to be applied, it is essential to develop tools that can be used
for constrained shape modification. The objective of this section is to examine the effect of the
modification of control points and shape parameters on the shape of these curves, based on the
results published in [41, 42, 43, 45, 46, 61].

2.1 Linear blending of curves - the quartic curve of Han

The purpose of this subsection is to provide a general framework of certain types of curves with
shape parameters by linear blending, and study geometric properties of these curve, especially
the effect of shape parameters on the shape of the curve, based on [61]. We describe the linear
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blending method in Section 2.1.1 and 2.1.2. Based on this approach general properties of shape
parameters are discussed in Section 2.1.3, while practical computational methods for constrained
shape modification are presented in Section 2.1.4.

2.1.1 Definition and linear blending description

In [30] a quartic polynomial curve with shape parameters is defined in the following way:

Definition 2.1. Given a sequence of control points pi, (i = 0, .., 3) the arc is defined by

c(λ1, λ2, t) =
3∑

i=0

Bi(λ1, λ2, t)pi, λ1, λ2 ∈ [−8, 1], t ∈ [0, 1], (2.1)

where the basis functions are

B0(λ1, λ2, t) =
1
24

(
(4− λ1) (1− t)4 + 4 (1− λ1) (1− t)3 t

)
,

B1(λ1, λ2, t) =
1
24

(
2 (8 + λ1) (1− t)4 + 8 (8 + λ1) (1− t)3 t + 72 (1− t)2 t2+

4 (7− λ2) (1− t) t3 + (4− λ2) t4
)
,

B2(λ1, λ2, t) =
1
24

(
(4− λ1) (1− t)4 + 4 (7− λ1) (1− t)3 t + 72 (1− t)2 t2+

8 (8 + λ2) (1− t) t3 + 2 (8 + λ2) t4
)
,

B3(λ1, λ2, t) =
1
24

(
4 (1− λ2) (1− t) t3 + (4− λ2) t4

)
.

Remark 2.2. For the sake of simplicity, in the definition and throughout the section we deal
with a curve arc defined by four control points. A curve with arbitrary number of control points
pi, (i = 0, .., n) can naturally be defined by consecutive arcs

cj(λj , λj+1, t) =
3∑

i=0

Bi(λj , λj+1, t)pi+j−1, j = 1, ..., n− 2.

Remark 2.3. The curve can also be extended to the non-uniform case in the usual way, i.e.
by intersecting knots 0 = u1 < u2 < ... < un−1 = 1 into the domain of definition [0, 1] and
substituting the parameter t in the jth arc with

t =
u− uj

uj+1 − uj
.

All results of this section can easily be generalized to non-uniform curves composed of multiple
arcs.

After some calculations one can observe that for uniform shape parameter (λ1 = λ2 = λ) the
curve (2.1) can also be described by linearly blending the classical uniform cubic B-spline curve
b(t) and a quartic polynomial curve l(t) =

∑3
i=0 Qi(t)pi by

c(λ, t) = λl(t) + (1− λ)b(t), (2.2)
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where the basis functions of l(t) are of the form

Q0(t) = 1
8 − 1

2 t + 3
4 t2 − 1

2 t3 + 1
8 t4,

Q1(t) = 3
4 − 3

2 t2 + t3 − 1
8 t4,

Q2(t) = 1
8 + 1

2 t + 3
4 t2 − 1

2 t3 − 1
8 t4,

Q3(t) = 1
8 t4.

(2.3)

2.1.2 Linear blending on a common basis

Here we provide a more general framework for the linear blending approach. A common charac-
teristic of shape modification methods is that they modify the shape of the curve

b (t) =
3∑

i=0

Bi (t)pi

by pulling it towards (or pushing it away from) a target curve

l (t) =
m∑

j=0

Gj (t)gj

by means of a convex combination of the two curves. Thus, the modified curve is of the form

c(λ, t) = q(λ)l(t) + (1− q(λ))b(t).

If, e.g., gi = pi, Bi (t) are the cubic uniform normalized B-spline basis functions, n = m = 3,
q (λ) = λ and Gi (t) = Qi (t) defined by (2.3) we obtain the quartic curve of Han with uniform
shape parameters, but other curves with shape parameter, like αB-spline curve [73], [106], GB-
spline curve [29] or SPB-spline curve [115] can also be described by this framework.

An obvious reparametrization of the target curve would be the Gi (t) = Bi (t) choice, i.e.,
when the target curve is described in the basis of the curve to be modified. In our case the
original curve is a cubic B-spline curve, while the modified curve is a quartic one, thus our aim
is now to describe these curves in a common basis, which will turn to be the quartic Bernstein
basis. As we will see, this reparametrization allows us to describe the effects of shape parameter
alteration by simple control point repositioning.

Due to [30] the curve (2.1) can be written in the following form:

c(λ1, λ2, t) =(1− t)4c(λ1, λ2, 0) + 2(1− t)3ta1+

2
(
(1− t)3t + 3(1− t)2t2 + (1− t)t3

)
m+

2(1− t)t3a2 + t4c(λ1, λ2, 1),

where

ai =
1
12

((1− λi)pi−1 + 2(5 + λi)pi + (1− λi)pi+1) i = 1, 2

33

               dc_933_14



m =
1
2

(p1 + p2) .

Now, we want to rewrite this quartic curve into Bézier form

c ((λ1, λ2, t) =
4∑

i=0

N4
i (t)gi(λ1, λ2), (2.4)

where N4
i (t) are the well-known Bernstein basis functions

N4
i (t) =

(
4
k

)
(1− t)kt(4−k), k = 0, ..., 4.

After some calculation we obtain the control points gi of the Bézier curve

g0(λ1, λ2) = c(λ1, λ2, 0) =
1
24

((4− λ1)p0 + 2(8 + λ1)p1 + (4− λ1)p2) ,

g1(λ1, λ2) =
1
2

(a1 + m) =
1
24

((1− λ1)p0 + 2(8 + λ1)p1 + (7− λ1)p2) ,

g2(λ1, λ2) = m =
1
2

(p1 + p2) ,

g3(λ1, λ2) =
1
2

(a2 + m) =
1
24

((7− λ2)p1 + 2(8 + λ2)p2 + (1− λ2)p3) ,

g4(λ1, λ2) = c(λ1, λ2, 1) =
1
24

((4− λ2)p1 + 2(8 + λ2)p2 + (4− λ2)p3) .

Description (2.1) of the curve is useful from user interface point of view, while description
(2.4) is advantageous if we want to integrate the curve into nowadays CAD systems, i.e. when
we have to convert the curve into B-spline or NURBS representation.

In accordance with this form, for λ1 = λ2 = 0 curve (2.1) is the cubic B-spline curve, which
can also be written in quartic Bézier form:

c(0, 0, t) =
3∑

i=0

Bi(t)pi =
4∑

j=0

N4
j (t)gj(0, 0),

where, using the notations bj = gj(0, 0),

b0 =
1
6

(p0 + 4p1 + p2) ,

b1 =
1
24

(p0 + 16p1 + 7p2) ,

b2 =
1
2

(p1 + p2) ,

b3 =
1
24

(7p1 + 16p2 + p3) ,

b4 =
1
6

(p1 + 4p2 + p3) .

Note, that the first two control points g0 and g1 of the Bézier curve depend only on λ1, g2

is fixed, while g3 and g4 depend exclusively on λ2.
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2.1.3 Shape parameter alteration

Now, we describe some results altering the shape parameter λ1 ∈ [−8, 1] with some fixed value
of λ2 (analogous results can be achieved for λ2 ∈ [−8, 1] with fixed λ1). The extreme positions of
the Bézier curve (2.4) are c(−8, λ2, t) and c(1, λ2, t). As we have seen, the original definition of
Han provides fixed control points and altering shape parameter, but now this shape parameter
alteration can also be described by the repositioning of the first two new control points of the
Bézier representation, without using the shape parameter (see Fig. 2.1).

Figure 2.1. The original B-spline curve with its Bézier
control polygon (upper left), the curve of Han with its
Bézier polygon for λ1 = −0.5, λ2 = 0.7 (upper right), for
λ1 = −2, λ2 = 0.7 (éower left) and for λ1 = λ2 = 4 (lower

right) along with the original curve

As one can observe in Equation (2.2), the curve c (t) can be described as the linear blending
of two extreme curves, the cubic B-spline curve and a quartic curve. Since these curves have all
been described in the same basis by Equation (2.4), and g0 and g1 are linear functions of λ1,
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after some calculation we get the linear blending form

c (λ1, λ2, t) =
4∑

i=0

(q(λ1)gi(1, λ2) + (1− q(λ1))gi(−8, λ2))N4
i (t) .

If λ1 ∈ [0, 1], i.e. we let the curve be modified only between the B-spline curve and the upper
limit curve, as is usual in other shape parameter forms, then the linear blending function is
q(λ1) = λ1 (while gi(−8, λ2) has to be substituted by gi(0, λ2), of course). In this case and for
λ2 = 0 this equation is of the special form

c (λ1, 0, t) =
4∑

i=0

(λ1gi(1, 0) + (1− λ1)bi) N4
i (t) .

If we let λ1 to be changed in the whole domain, i.e. λ1 ∈ [−8, 1], then the blending function
is

q(λ1) =
8
9

+
1
9
λ1.

More generally, linear blending can handle any range of the shape parameter, that is if we would
let λ1 ∈ [a, b] then the form remains valid (naturally substituting gi(1, λ2) by gi(b, λ2) and
gi(−8, λ2) by gi(a, λ2)) with blending function

q(λ1) =
λ1 − a

b− a
.

Here a and b are not necessarily in the range [−8, 1], although exceeding this range the curve will
lose important features like the convex hull property. For λ1 = 4, however the curve interpolates
p1, as one can immediately observe from the equation of the control point g0 of the Bézier curve
(2.4).

We also have to note, that altering the shape parameters one can naturally expect similar
curvature plots and monotonicity properties than that of the original curve. But for λ1 < −2 or
λ2 < −2 the curve can have undesired inflexion points. This is a consequence of the fact, that if
λ1 = −2 then

g0(−2, λ2) =
1
4

(p0 + 2p1 + p2) = a1,

but, as we have seen,

g1(λ1, λ2) =
1
2

(a1 + m)

g2(λ1, λ2) = m,

which immediately yields, that the control points g0, g1, g2 of the Bézier representation of the
curve are collinear for λ1 = −2 and g2 bisects the segment g0g1. The curvature at g0 (at t = 0)
vanishes, since it is proportional to the area of the triangle with vertices g0, g1, g2. (This can
also be seen by Theorem 2 in [30].) In case of plane curves, if λ1 < −2 the sign of the curvature
of the modified curve will defer from that of the original curve. Similar results can be derived
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for λ2 = −2, i.e. for the collinearity of the control points g2, g3, g4 (c.f. Fig. 2.2).

Figure 2.2. The original B-spline curve and the curve
of Han for λ1 = λ2 = −2 with two sets of collinear control
points g0, g1, g2 and g2, g3, g4, consequently with zero

curvature at g0 and g4

The linear blending description instantly yields, that altering the shape parameter any fixed
point c (λ1, λ2, t0) of the curve will move along a line segment, with endpoints c (a, λ2, t0) and
c (b, λ2, t0) independently of the range of [a, b] in which λ1 varies.

If λ1 = λ2 = 4 (c.f. lower right in Fig. 2.1), i.e. if the curve interpolates both p1 and p2,
the curvature of the curve vanishes at t = 0.5. In order to prove this statement we consider the
Bézier form (2.4) of the curve and its discriminant curve that corresponds to the control point
g0 (c.f. [56]). As is shown in [56], this discriminant is of the form

s0 (t) = g1 +
3∑

j=1

(
3
j

)(
t

1− t

)j

(gj+1 − gj) (2.5)

We have to show that the tangent line of this discriminant at its point t = 0.5 passes
through the control point g0 (4, 4) = p1. It is enough to prove that vectors s0 (0.5) − p1 and
ṡ0 (0.5) = d

dts0 (t) |t=0.5 are parallel.
After substitution and some rearrangement we obtain

s0 (0.5)− p1 =
11
4

(p2 − p1) +
1
4

(p0 − p3)

ṡ0 (0.5) =
33
2

(p2 − p1) +
3
2

(p0 − p3)

from which it is obvious that

(s0 (0.5)− p1)× ṡ0 (0.5) = 0
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that completes the proof.

2.1.4 Constrained shape modification

Control points gi, (i = 0, . . . , 4) can be written in the form

g0 = b0 + λ1d1,

g1 = b1 + λ1d1,

g2 = b2,

g3 = b3 + λ2d2,

g4 = b4 + λ2d2,

with directions

d1 =
1
24

((p1 − p0)− (p2 − p1)) ,

d2 =
1
24

((p2 − p1)− (p3 − p2)) .

Thus, curve (4) has the form

c (λ1, λ2, t) =
4∑

i=0

biN
4
i (t) + λ1d1

(
N4

0 (t) + N4
1 (t)

)
+ λ2d2

(
N4

3 (t) + N4
4 (t)

)
. (2.6)

From this we can see that

• if λ1 is altered points of the curve move along straight lines that are parallel to d1;

• if λ2 is altered points of the curve move along straight lines that are parallel to d2;

• if λ1 and λ2 are simultaneously altered, points of the curve move on a plane that is parallel
to the directions d1 and d2, provided d1 ∦ d2. If d1 ‖ d2 points of the curve move parallel
to this common direction.

For the parallelism of directions d1 and d2 the coplanarity of control points pi, (i = 0, .., 3)
is necessary, moreover the locus of control point p3 is the straight line indicated in Fig. 2.3.

The knowledge of path (curves or surfaces along which points of the modified curve move when
shape parameters are altered) enables us to perform constrained shape modifications. Further
practical computational techniques to modify the curve in a way that it will pass through a given
point are described in [61].

2.2 C-curves

C-curves are extensions of the widely used cubic spline curves and are introduced by [117] apply-
ing the basis {sin t, cos t, t, 1}. In the case of C-B-splines this extension coincides with the helix
splines defined by [93]. These tools provide exact representations of several important curves and
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Figure 2.3. The locus of p3 for the parallelism of di-
rections d1 and d2 (the three parallel lines are equally

spaced)

surfaces such as the circle and the cylinder [117], the ellipse [119], the sphere [82], the cycloid
and the helix [78]. Further properties of C-curves have been studied by [79] and by [114].

C-curves are all defined on the interval t ∈ [0, α], where α ∈ (0, π] is a given real number.
Since α appears in all the basis functions, it heavily affects the shape of the curve. While it is
already proved [117], that the limiting case α → 0 is a cubic polynomial curve, the effects of the
modification of α have not been described yet. The aim of this subsection is to give a geometric
interpretation of the change of α for C-Bézier and C-B-spline curves, based on [41].

Modifying one or more data of a given spline curve, the points of the curve will move on
certain curves called paths, as we have seen in the case of B-spline curves in the preceding
chapter. If the parameter α of a C-curve is altered, the points of the curve obviously change
their positions as well. In this subsection these paths of C-Bézier and C-B-spline curves will
be discussed. These paths can closely be approximated by lines and have some nice geometric
properties which may yield to a better understanding of the role of α in terms of the shape of
these curves.

2.2.1 Paths of C-Bézier curves and their extensions

Consider the C-Bézier curve (c.f. [117]):

b(t, α) =
3∑

i=0

Zi(t, α)pi, t ∈ [0, α], α ∈ (0, π]

where the basis functions are defined as:

M =





1 if α = π,
sin(α)

α−2
α−sin(α)
1−cos(α)

otherwise

Z0(t, α) =
(α− t)− sin(α− t)

α− sin(α)

Z1(t, α) = M

(
1− cos(α− t)

1− cos(α)
− (α− t)− sin(α− t)

α− sin(α)

)
(2.7)
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Z2(t, α) = M

(
1− cos(t)
1− cos(α)

− t− sin(t)
α− sin(α)

)

Z3(t, α) =
t− sin(t)
α− sin(α)

.

We would like to describe the movement of a single point of the curve as the parameter α changes.
Altering this parameter we receive a family of C-Bézier curves with family parameter α. Due
to the changing domain of definition there is not much sense to examine a point of these curves
with fixed parameter t. Instead we consider the point at each curve associated to the parameter
(α/ratio), where ratio ∈ [1,∞) is a fixed value. This parameter changes from curve to curve
but if the domain of definition [0, α] would be normalized to [0, 1] for each α, then the specified
parameter (α/ratio) would have been transformed to the constant value (1/ratio). This way we
can define the relative α-paths of the family of C-Bézier curves:

s(α, ratio) =
3∑

i=0

Zi(α/ratio)pi, α ∈ (0, π]; ratio ∈ [1,∞)

where α is the running parameter along the path, while ratio is the parameter of the path among
the family of paths (see Fig.2.4).

Figure 2.4. Two C-Bézier curves defined by the same
control polygon and their relative α-paths

Note, that the basis functions of the original C-Bézier curve are symmetric in t for the
parameter t = α/2, thus the relative α-paths also have a symmetric property in ratio for the
parameter ratio = 2. The relative α-path associated to ratio = 2 can be described by the
functions

Z0(α, 2) = Z3(α, 2) =
(α/2)− sin(α/2)

α− sin(α)

Z1(α, 2) = Z2(α, 2) = M

(
1− cos(α/2)
1− cos(α)

− (α/2)− sin(α/2)
α− sin(α)

)

which obviously yields that this path is a part of the line connected the midpoints of p0p3 and
p1p2. Paths associated to α 6= 2 are not lines as one can easily observe by the mathematical
extension of the paths (see Fig 2.5.). This extension is defined by the points
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Figure 2.5. Extension of the paths for α ≥ π

s(α, ratio) =
3∑

i=0

Zi(α/ratio)pi, ratio ∈ [1,∞)

for α ≥ π. We have to emphasize that these points do not belong to any C-Bézier curves and
the substitution of these values of α is merely a mathematical extension. Similar extension have
been successfully used for paths of B-spline curves by Hoffmann and Juhász in [37].

The paths, as we have seen are not lines, but in the original interval α ∈ (0, π] they can
closely be approximated by lines. The approximate line of the path s(α, ratio) can be defined
by the joint segment of the point s(π, ratio) and s(0, ratio) (more precisely, since α cannot be
equal to 0, we consider the point obtained by α → 0 in this latter case).

2.2.2 Paths of C-B-spline curves and their approximate lines

C-B-spline curves are also introduced by [117] who also provided the following formula of this
curve in [119](for the sake of simplicity here we consider only four control points with a single
C-B-spline arc):

b(t, α) =
3∑

i=0

Bi(t, α)pi, t ∈ [0, α], α ∈ (0, π]

where the basis functions are defined as:

B0(t, α) =
(α− t)− sin(α− t)

2α(1− cosα)

B3(t, α) =
t− sin t

2α(1− cosα)
(2.8)

B1(t, α) = B3(t, α)− 2B0(t, α) +
2(α− t)(1− cosα)

2α(1− cosα)

B2(t, α) = B0(t, α)− 2B3(t, α) +
2t(1− cosα)
2α(1− cosα)

.

Relative α-paths s(α, ratio) of C-B-spline curves can analogously be defined to the case of
C-Bézier curves. Mathematical extension of these paths for α ≥ π is also similar to that one we
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have seen in the previous section (see Fig. 2.6). The path associated to ratio = 2 is a line again,
due to the equalities

B0 = B3 =
2 sin (α/2)− α

4α(cosα− 1)

B1 = B2 =
−2 sin (α/2)− α + 2α cosα

4α(cos α− 1)
.

a=0

a p=

Figure 2.6. Relative α-paths of a C-B-spline arc and
their extensions

Just as for C-Bézier curves, apart from the case ratio = 2 these paths are not lines but can
be approximated by lines. The approximate line of the path s(α, ratio) can be defined by the
joint segment of the point s(π, ratio) and s(0, ratio).

If α = π and t = π/ratio, then we obtain:

B0(π/ratio, π) =
ratio sin (π/ratio) + π − πratio

−4πratio

B1(π/ratio, π) =
−ratio sin (π/ratio) + π − 2πratio

−4πratio
(2.9)

B2(π/ratio, π) =
−ratio sin (π/ratio)− π − πratio

−4πratio

B3(π/ratio, π) =
ratio sin (π/ratio)− π

−4πratio
,

while applying the limit α → 0 for equations (2.8):

B0lim =
ratio3 − 3ratio2 + 3ratio− 1

6ratio3

B1lim =
4ratio2 − 6ratio + 3

6ratio3
(2.10)

B2lim =
ratio3 + 3ratio2 + 3ratio− 3

6ratio3

B3lim =
1

6ratio3
.
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Connecting the points
3∑

i=0
Bi(π/ratio, π)pi and

3∑
i=0

Bi lim(ratio)pi the result is a family of lines

with family parameter ratio. The intersection curve of the symmetric lines has the same property
as in the C-Bézier case (here we suppose that the control points are coplanar so the intersection
curve exists). For the proof of the following theorems and further details of approximate lines,
see [41].

Theorem 2.4. The intersection curve of the symmetric lines is a straight line segment if p0p3

is parallel to p1p2. Furthermore, the line segment is just on the line connecting the midpoints of
p0p3 and p1p2.

The approximate lines of the relative α-paths of C-B-spline curves have a property which has
no analogue in the C-Bézier case: for a certain position of control points all the lines are parallel
(see Fig. 2.7).

Figure 2.7. In a special case paths can be replaced by
parallel lines

Theorem 2.5. Dividing the line p0p3 into three equal parts by points q1,q2, the approximate
lines are parallel if the line p1q1 is parallel to the line p2q2.

2.3 FB-spline curves

The objective of this section is to examine the effect of the modification of control points and
shape parameters on the shape of FB-spline curves, and to provide shape modification methods
based on them, based on the results published in [42]. These methods are indispensable for the
application of FB-spline curves in design. After basic definitions, we have collected control point
based methods, then we study the influence of shape parameters, and endpoint interpolation.
Throughout the section, we use the definition of FB-spline curves specified in [121].

Definition 2.6. Given control points b0,b1, . . . ,bn+1, (n ≥ 2) and parameters C1, C2, . . . , Cn,
(Ci ∈ [0,∞)). The curve that consists of arcs

pi (τ) = Ni,0 (τ)bi−1 + Ni,1 (τ)bi + Ni,2 (τ)bi+1 + Ni,3 (τ)bi+2 (2.11)

τ ∈ [0, 1] , (i = 1, 2, . . . , n− 1)

is called FB-spline curve, where, using the abbreviations

spr(x) = x−sin(x)
x3 , cpr(x) = 1−cos(x)

x2 ,
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sph(x) = sinh(x)−x
x3 , cph(x) = cosh(x)−1

x2

the basis functions are

Ni,0 (τ) =





spr(2 arccos(Ci)(1−τ))
2cpr(2 arccos(Ci))

(1− τ)3 if Ci ≤ 1

sph(2arccosh(Ci)(1−τ))
2cph(2arccosh(Ci))

(1− τ)3 if Ci > 1

Ni,3 (τ) =





spr(2 arccos(Ci+1)τ)
2cpr(2 arccos(Ci+1))

τ3 if Ci+1 ≤ 1

sph(2arccosh(Ci+1)τ)
2cph(2arccosh(Ci+1))

τ3 if Ci+1 > 1

Ni,1 (τ) = Ni,3 (τ)− 2Ni,0 (τ) + (1− τ)
Ni,2 (τ) = Ni,0 (τ)− 2Ni,3 (τ) + τ.

Scalars Ci are called shape parameters. Practically if these shape parameters are all greater
than 1, then we get a curve between the classical B-spline curve and its control polygon, which is
identical to the CB-spline curve. If the shape parameters are all less than 1, then we get a curve
"below" the classical B-spline curve which is identical to the HB-spline curve. The definition
described above allow us to get curves which somehow mix these two possibilities. The classical
B-spline curve can be obtained as a limit case (all the shape parameters Ci = 1) but here we
have to approximate the applied trigonometric functions.

If x = 0 or x ≈ 0, i.e. Ci = 1 or Ci ≈ 1, we use expansions

spr(x) =
1
3!
− x2

5!
+

x4

7!
− · · ·+ (−1)n−1 x2n−2

(2n + 1)!
+ · · ·

cpr(x) =
1
2!
− x2

4!
+

x4

6!
− · · ·+ (−1)n−1 x2n−2

(2n)!
+ · · ·

sph(x) =
1
3!

+
x2

5!
+

x4

7!
+ · · ·+ x2n−2

(2n + 1)!
+ · · ·

cph(x) =
1
2!

+
x2

4!
+

x4

6!
+ · · ·+ x2n−2

(2n)!
+ · · ·

The arc pi (τ) can also be described in the form

pi (τ) = Ni,0 (τ) (bi−1 − 2bi + bi+1) + Ni,3 (τ) (bi − 2bi+1 + bi+2) (2.12)

+(1− τ)bi + τbi+1.

Varying one of the defining data (control point or shape parameter) of the curve, its points move
along curves that we also call path.
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2.3.1 Control point based methods

Move a curve point to a specified location Any control point of curve (2.11) affects at
most four consecutive arcs. When a control point of an FB-spline curve is translated, paths of
curve points are straight line segments that are parallel to the translation vector. This is the
property of all curves that are combinations of control points and basis functions, therefore we
discuss it briefly only for the sake of completeness.

If the control point bi is translated by the vector d, the shape of the arcs pj (τ), (j = i + k,
k = −2,−1, 0, 1) are modified in the form

p̃j (τ) = pj (τ) + Nj,1−k (τ)d.

If we want to move the curve point pj (τ) with prescribed parameter value τ to an arbitrarily
chosen point q (there is no restriction to the location of q at all) by the translation of control
point bi, the translation vector is

d =
1

Nj,1−k (τ)
(q− pj (τ)) .

Multiple control points We examine the effect of coinciding consecutive control points on
the shape of the curve.

In case of double control point we assume that bi = bi+1. The ith arc becomes

pi (τ) = bi + Ni,0 (τ) (bi−1 − bi) + Ni,3 (τ) (bi+2 − bi) .

τ = 0 implies Ni,3 (0) = 0, thus

pi (0) = bi + Ni,0 (0) (bi−1 − bi) ,

i.e., the beginning point of the arc is on the segment bi−1bi which segment is the tangent at this
point.

τ = 1 implies Ni,0 (1) = 0 and

pi (1) = bi + Ni,3 (1) (bi+2 − bi) ,

therefore the line bi+2bi touches the arc at its endpoint which point is on the segment.
The (i− 1)th arc is

pi−1 (τ) = Ni−1,0 (τ) (bi−2 − 2bi−1 + bi) + Ni−1,3 (τ) (bi−1 − bi) +

(1− τ)bi−1 + τbi.

At τ = 1
pi−1 (1) = bi + Ni−1,3 (1) (bi−1 − bi) . (2.13)

Utilizing that Ni,0 (0) = Ni−1,3 (1) we can see that line bi−1bi is the tangent at the point of
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joint.
The (i + 1)th arc is

pi+1 (τ) = Ni+1,0 (τ) (bi+2 − bi) + Ni+1,3 (τ) (bi − 2bi+2) + bi+3

(1− τ)bi + τbi+2,

at τ = 0
pi+1 (0) = bi + Ni+1,0 (0) (bi+2 − bi) ,

moreover Ni+1,0 (0) = Ni,3 (1), i.e. at this point of joint the tangent is the control polygon side
bi+2bi (cf. Fig. 2.8).

This property enables us to specify shape parameters Ci and Ci+1 intuitively by the direct
specification of the point of contact pi (0) and pi (1), respectively.

Figure 2.8. FB-splines with multiplicity 1, 2 and 3 of
control point b3

In case of triple control point we assume that bi = bi+1 = bi+2 (cf. Fig. 2.8) which implies

pi (τ) = bi + Ni,0 (τ) (bi−1 − bi) .

This means that the ith arc is a segment with endpoint bi of the control polygon side bi−1bi.
The endpoint of the (i− 1)th arc is (2.13), since in the evaluation of this arc the considered

control point is of multiplicity two. Therefore, arcs pi−1 (τ) and pi (τ) form a C2 continuous
straight line segment and curved arc. Similar results can be derived for arcs pi+1 (τ) and pi+2 (τ).

By means of this property one can describe C2 continuously joining straight line segments
and curved arcs with an FB-spline curve.

Finally, in case of quadruple control point, the assumption bi = bi+1 = bi+2 = bi+3 implies
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pi (τ) = bi + Ni,0 (τ) (bi−1 − bi)

pi+1 (τ) = bi

pi+2 (τ) = bi + Ni+2,3 (τ) (bi+4 − bi)

that is arc pi+1 (τ) degenerates to a single point, arcs pi (τ) and pi+2 (τ) are FB-spline arcs of
a triple control point. At point bi the FB-spline curve is of C0 continuity.

2.3.2 Shape parameter based methods

Modifying a single shape parameter Parameter Ci affects only arcs pi−1 (τ) and pi (τ). We
fix τ and Ci+1 and let Ci vary in the range [0,∞). In expression (2.12) only Ni,0 (τ) depends on
Ci, thus paths are straight line segments that are parallel to the vector (bi−1 − bi)+(bi+1 − bi).
Therefore, path of points of the affected arcs form a cylinder with base curve pi−1 (τ) ,pi (τ) and
generator direction (bi−1 − 2bi + bi+1) (Fig. 2.9).

Figure 2.9. Paths of an FB-spline curve obtained by
the alteration of shape parameter C3

Limiting positions of the affected arcs are at values Ci = 0 and Ci → ∞. In case of the arc
pi−1 (τ)

lim
Ci→∞

Ni−1,3 (τ) = 0,

therefore

lim
Ci→∞

Ni−1,1 (τ) = (1− τ)− 2Ni−1,0 (τ) , lim
Ci→∞

Ni−1,2 (τ) = Ni−1,0 (τ) + τ

from which the limiting position of the arc is

pCi∞
i−1 (τ) = Ni−1,0 (τ) (bi−2 − 2bi−1 + bi) + (1− τ)bi−1 + τbi.

Its derivative with respect to τ is

ṗCi∞
i−1 (τ) = Ṅi−1,0 (τ) (bi−2 − 2bi−1 + bi) + bi − bi−1.
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In case of τ = 1
pCi∞

i−1 (1) = bi, ṗCi∞
i−1 (1) = bi − bi−1,

thus the endpoint of the arc pCi∞
i−1 (τ) is the control point bi where the tangent is the side bi−1bi

of the control polygon.
By analogous considerations we obtain that the beginning point of the arc pCi∞

i (τ) is bi,
where the tangent is the control polygon side bibi+1.

The cylinder of paths generated by the alteration of Ci, always passes through the control
point bi and the tangent plane along its incident generator is spanned by control points bi−1,bi

and bi+1.

Shape control by modifying a single shape parameter In practical CAGD systems con-
strained modification of a curve is essential, e.g. moving a curve point to a specified location.
Based on the previous observations, by the alteration of a shape parameter we can modify an
FB-spline curve in such a way that a selected point of the modified curve will pass through
a specified point, but using purely shape parameter alteration, the target point must be on a
well-defined line segment (see Fig.2.10). Steps of the procedure in an implementation are as
follows:

• select the point r to be moved on the arc, i.e. fix the parameter τ , (r = p(τ));

• chose the shape parameter to be modified (there are two options, in the rest we assume
that shape parameter Ci has been chosen);

• the system displays the path of the selected point, i.e. the straight line segment bounded
by points o and o + M0 (τ) e, where

o = (1− τ)bi + τbi+1 + Ni,3 (τ) (bi − 2bi+1 + bi+2)

e = bi−1 − 2bi + bi+1

M0 (τ) =
π (1− τ)− sin (π (1− τ))

4π

• specify the new position q of the selected point on the path.

The new position can be written in the form

q = o + λe, λ ∈ [0,M0 (τ)] .

The Ni,0 (τ) = λ trigonometric equation has to be solved for the unknown shape parameter
Ci. There will always be a unique solution due to the geometric constraints. The solution is an
HB-spline if λ ∈ [0, limCi→∞Ni,0 (τ)), and a CB-spline if λ ∈ [limCi→∞Ni,0 (τ) ,M0 (τ)). Ci will
be in the ranges (1,∞) and [0, 1], respectively. The high accuracy computation of the root is
essential for the satisfactory geometric result. In our experience, the false position (regula falsi)
root finding method is fast and accurate enough.
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Figure 2.10. A selected point p (τ) of the FB-spline
curve is moved to the given position q by modifying the
shape parameter C3; the green line is the permissible

positions of q

Fig.2.10 illustrates shape modification subject to positional constraints by means of a single
shape parameter.

Certainly, such a shape modification objective can also be obtained by control point reposi-
tioning. However, the shape of resulted curves of different methods are not the same, as we can
see in Fig. 2.11. The advantage of shape parameter alteration is twofold. The alteration affects
only two arcs (not four, like in case of control point repositioning), and the modified curve is
always within the convex hull of the original control points.

Figure 2.11. Point p (τ) of the FB-spline curve is
moved to q by the reposition of control point b3 (red)

and by the shape parameter C3 (dashed blue)

As another practical method one can modify a curve by passing through a point, without
specifying the corresponding parameter value. In this case the point through which we want the
modified curve to pass can be specified on the cylinder of paths. (In case of plane curves this
cylinder degenerates to a plane region.) Using the generator that passes through the specified
point, we can determine the corresponding parameter τ of the curve. Then, we can proceed
according to the previous Subsection.
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Simultaneous modification of two shape parameters We assume that shape parameters
Ci and Ci+1 are modified simultaneously. Both parameters affect only the arc pi (τ). It is obvious
from expression (2.12) that any point pi (τ) of the arc moves within a parallelogram. Sides of
this parallelogram are parallel to the directions bi−1−2bi +bi+1 and bi−2bi+1 +bi+2, and the
endpoints of one of its diagonals are (1− τ)bi + τbi+1 and pi (τ) with Ci = Ci+1 = 0. Based
on these observations, we can develop shape modification methods simultaneously altering two
shape parameters. Shape control by modifying two shape parameters and endpoint interpolation
are also discussed in detail in [42].

2.4 A trigonometric curve with exponential shape parameters

In [31] a new trigonometric curve, which can be considered as a kind of generalisation of the
well-known quartic Bézier curve, has been introduced using five new trigonometric blending
functions with two exponential shape parameters. In this section we will study this curve, its
generalizations and geometric properties, based on [46]. The definition of the curve [31] is as
follows.

Definition 2.7. Let control points pi are given. Then the trigonometric Bézier curve with shape
parameters α, β ∈ [2,∞) is defined as

c(t, α, β) =
4∑

i=0

Ti(t, α, β)pi for t ∈ [0, π/2],

where

T0(t, α, β) = (1− sin t)α

T1(t, α, β) = α sin t(1− sin t)α−1

T3(t, α, β) = β cos t(1− cos t)β−1

T4(t, α, β) = (1− cos t)β

T2(t, α, β) = 1−
∑

i6=2

Ti(t, α, β).

The authors prove in [31] that these blending functions form a basis. Nonnegativity, partition
of unity and some properties of the curve itself are also shown. Unfortunately, the number of
control points of the curve is restricted to be five. However, it is a well-known fact, that the
concatenation of short Bézier arcs is not ideal for the design of complex shapes due to the
positional restrictions.

The aim of this section is to extend this definition into two directions. On the one hand,
the generalized curve is defined for an arbitrary number of control points, preserving the same
properties and having the same shape parameters as the original curve. To this aim, the function
basis Ti(t, α, β), i = 0, . . . , 4 is generalized for arbitrary dimension. On the other hand, while the
original blending functions are based on the function pair sin t, cos t satisfying sin2 t+cos2 t = 1, in
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this section it is substituted by a more general function pair ϕ(t), ψ(t) with the property ϕn1 (t)+
ψn2 (t) = 1, where the positive integers n1, n2 replace the exponents 2. In the next subsections
we define the new basis functions, prove their important properties, such as nonnegativity, linear
independence and partition of unity, moreover we study their total positivity. Based on these
blending functions, the curve is defined and some of its properties are demonstrated.

2.4.1 New basis functions

Given positive integers n1, n2, let ϕ,ψ : [a, b] → [0, 1] be increasing resp. decreasing bijective
functions satisfying the relation

ϕn1 (t) + ψn2 (t) = 1 (2.14)

for every t ∈ [a, b]. In particular,

ϕ(a) = ψ(b) = 0, ϕ(b) = ψ(a) = 1, (2.15)

both functions are continuous, and ψ is expressed in terms of ϕ as

ψ(t) =
(
1− ϕn1(t)

) 1
n2 .

According to Newton’s generalized binomial theorem, assuming ϕ(t) < 1/2,

1 =
(
ϕ (t) + (1− ϕ (t))

)α =
∞∑

k=0

(
α

k

)
ϕk (t) (1− ϕ (t))α−k (2.16)

holds for every real number α with

(
α

k

)
=

1
k!

k−1∏

m=0

(α−m) =
(α− k + 1)k

k!
,

where we use the Pochhammer symbol (x)k = x(x+1) . . . (x+k−1) to represent rising factorials.
Fix α ∈ [n1,∞) and β ∈ [n2,∞). By means of the terms in the above series expansion, we

define functions
Li (t, α) =

(
α

i

)
ϕi (t)

(
1− ϕ (t)

)α−i

and
Rn1+n2−j (t, β) =

(
β

j

)
ψj (t)

(
1− ψ (t)

)β−j

for i = 0, 1, . . . , n1 − 1 and j = 0, 1, . . . , n2 − 1.

Definition 2.8. Using the functions introduced above, let

T = T (a, b; n1, n2; ϕ,ψ;α, β) := {Tj (t, α, β)}n1+n2

j=0
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Figure 2.12. Basis functions Tj (t, α, β) with settings
n1 = 3, n2 = 2, α = 4, β = 3 and ϕ(t) = sin(t)

denote the system of n1 + n2 + 1 functions given in the form

Tj (t, α, β) =





Lj(t, α) for 0 ≤ j ≤ n1 − 1,

Rj(t, β) for n1 + 1 ≤ j ≤ n1 + n2,

1−
∑

i 6=n1

Ti (t, α, β) for j = n1.

It is immediate that the elements of T form a partition of unity on the interval [a, b]. The
particular choice of a = 0, b = π/2, n1 = n2 = 2, ϕ(t) = sin t, ψ(t) = cos t results in the function
system introduced by Han and Zhu (cf. Definition 2.7). Fig 2.12 illustrates basis functions
Tj (t, α, β) for settings n1 = 3, n2 = 2, α = 4, β = 3 and ϕ(t) = sin(t).

2.4.2 Nonnegativity

Using the properties of the functions ϕ,ψ one readily infers that

Ti (a, α, β) =

{
1 for i = 0 and
0 otherwise,

(2.17)

Ti (b, α, β) =

{
1 for i = n1 + n2 and
0 otherwise,

(2.18)

and that the functions Ti are nonnegative for i 6= n1. Our proof that Tn1 is also nonnegative
depends on the following inequality, which may be of independent interest.

Lemma 2.9. For any positive integer n and real numbers α ∈ [n,∞), x ∈ [0, 1] one has

Kα(x) := 1− xn −
n−1∑

k=0

(
α

k

)
xk(1− x)α−k ≥ 0.
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Moreover, Kα(x) > 0 holds for x ∈ (0, 1) when α ∈ (n,∞).

Proof. Fix the positive integer n. When α = n, the left hand side is identically zero. It is also
zero for arbitrary α, when x = 0 or x = 1. Therefore it is enough to show that for any fixed
x ∈ (0, 1), the function

f(α, x) =
n−1∑

k=0

(
α

k

)
xk(1− x)α−k

as a continuous function of α is strictly decreasing on the interval [n,∞). Using the polynomial

p(α, x) =
n−1∑

k=0

(
α

k

)
xk(1− x)n−1−k

we can write f(α, x) = (1− x)α+1−np(α, x) and thus it is enough to prove that

d

dα
f(α, x) = (1− x)α+1−n

(
log(1− x)p(α, x) +

d

dα
p(α, x)

)
< 0

holds for any x ∈ (0, 1) and α ∈ (n,∞). Given that in this domain p(α, x) > 0 and using the
power series expansion of log(1 − x) valid on the interval (−1, 1) this amounts to checking the
inequality ( ∞∑

k=1

xk

k

)
p(α, x) >

d

dα
p(α, x) (2.19)

for x ∈ (0, 1), α ∈ (n,∞). Write

p(α, x) =
n−1∑

k=0

ck(α)xk,

( ∞∑

k=1

xk

k

)
p(α, x) =

∞∑

k=1

dk(α)xk.

Inequality (2.19) thus follows immediately from the following two facts:

(i) dk(α) > 0 for every α ≥ n and positive integer k;

(ii) dk(α) = c′k(α) for every α ≥ n and positive integer k ≤ n− 1.

The key to both points is the Chu–Vandermonde convolution formula [12], which implies that

ck(α) =
k∑

i=0

(
α

i

)
(−1)k−i

(
n− 1− i

k − i

)
=

k∑

i=0

(
α

i

)(
k − n

k − i

)
=

(
α− n + k

k

)

Thus, ck(α) > 0 holds for every α ≥ n, k = 0, 1, . . . , n − 1. It follows that dk(α) > 0 for every
α ≥ n and positive integer k, proving (i). Turning to (ii), notice that

dk(α) =
k−1∑

i=0

ci(α)
k − i

.
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Therefore (ii) amounts to proving

k−1∑

i=0

1
k − i

(
α− n + i

i

)
=

k∑

i=1

1
α− n + i

(
α− n + k

k

)

for every α ≥ n and positive integer k ≤ n− 1. Thus it will be enough to prove the identity

k−1∑

i=0

1
k − i

(
i− β

i

)
=

k∑

i=1

1
i− β

(
k − β

k

)
(2.20)

for positive integers k and real numbers β. This is all standard and can be done by manipulating
the Chu–Vandermonde identity, but we prefer here to present a more direct approach. Notice
that for any positive integer k, each side of the equation represents a polynomial in β whose
degree is k − 1. Therefore it is enough to check that with any fixed positive integer k, (2.20)
holds for k different values of β. The case β = 0 being obvious, assume that β = j where j is a
positive integer not exceeding k − 1. Then (2.20) reads as

k−1∑

i=0

1
k − i

(
i− j

i

)
=

k∑

i=1

(1− j)k

(i− j)k!
.

Since in the given range
(
i−j
i

)
= 0 for i ≥ j and (1−j)k

i−j = 0 for i 6= j, this equation simplifies to

j−1∑

i=0

1
k − i

(
i− j

i

)
=

(k − j)!(−1)j−1(j − 1)!
k!

,

or equivalently, to
j−1∑

i=0

(−1)i

(
j − 1

i

)
(k + 1− j)j

k − i
= (−1)j−1(j − 1)!.

Thus it will be enough to prove the identity

j−1∑

i=0

(−1)i

(
j − 1

i

)
(γ + 1− j)j

γ − i
= (−1)j−1(j − 1)! (2.21)

for positive integers j and real numbers γ. For any fixed positive integer j, the left hand side
represents a polynomial in γ whose degree is at most j − 1, whereas the right hand side is
independent of γ. Therefore it is enough to check that with any fixed positive integer j, (2.21)
holds for j different values of γ. Let γ ∈ {0, 1, . . . , j − 1}, then (γ+1−j)j

γ−i = 0 holds for i 6= γ, and
indeed

j−1∑

i=0

(−1)i

(
j − 1

i

)
(γ + 1− j)j

γ − i

= (−1)γ

(
j − 1

γ

)
γ!(−1)j−1−γ(j − 1− γ)! = (−1)j−1(j − 1)!.
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The proof is thus complete.

Proposition 2.10. Recall that α ∈ [n1,∞), β ∈ [n2,∞). If α = n1 and β = n2, then Tn1(t, α, β)
is identically zero on the interval [a, b]. Otherwise we have

Tn1(t, α, β) ≥ 0

for every t ∈ [a, b]. Apart from the endpoints t = a and t = b, the inequality is strict.

Proof. In view of Definition 2.8 and Eq. (2.14) we can write

Tn1(t, α, β) = 1−
n1−1∑

i=0

Li (t, α)−
n2−1∑

i=0

Rn1+n2−i (t, β)

= 1−
n1−1∑

i=0

(
α

i

)
ϕi(t)(1− ϕ(t))α−i −

n2−1∑

i=0

(
β

i

)
ψi(t)(1− ψ(t))β−i

= Kα

(
ϕ(t)

)
+ Kβ

(
ψ(t)

)
.

If α = n1 and β = n2, then both summands are identically zero because of the binomial theorem.
The rest of the statement follows directly from Lemma 2.9.

2.4.3 Linear independence

In order to prove the linear independence of the function system T , initially we assume that
the functions ϕ,ψ are sufficiently smooth and satisfy certain boundary conditions. These as-
sumptions will be dropped later. Recall that a real function is smooth on an interval [a, b] if
it is continuously differentiable on [a, b] up to any order. Of course at the endpoints a and b

only right resp. left continuity/differentiability is assumed, but for simplicity this subtlety will
be suppressed both in language and in notation. In addition we say that it is analytic around
an endpoint if has an extension which is analytic on some open interval that contains the given
endpoint.

For a smooth real function f = f(t) the following conventions will be employed: f (0) = f ,
f (1) = f ′ and in general f (r) = dr

dtr f denote higher order derivatives of f . These notations will
be used interchangeably throughout the section.

Definition 2.11. Let ϕ,ψ be as in the definition of T . The pair (ϕ,ψ) is admissible if they
satisfy the following additional conditions:

• the function ϕ is smooth on [a, b] and ϕ′(a) 6= 0;

• the function ψ is smooth on [a, b] and ψ′(b) 6= 0;

• the function ϕ is analytic around b and ϕ(j)(b) = 0 for j = 1, . . . , n2 − 1;

• the function ψ is analytic around a and ψ(j)(a) = 0 for j = 1, . . . , n1 − 1.
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For example, the pair (sin t, cos t) which occurs in Definition 2.7 is admissible on the interval
[0, π/2] with n1 = n2 = 2. Our construction of admissible pairs for arbitrary values of n1, n2

depends on the following observation.
Let m,n denote arbitrary positive integers. Since R[t] is a principal ideal domain in which

the polynomials (1− t)m and tn coprime, there exists a unique pair of polynomials f = fm,n, g =
gm,n ∈ R[t] with deg f ≤ n− 1 and deg g ≤ m− 1 such that

(1− t)mfm,n(t) + tngm,n(t) ≡ 1. (2.22)

Since the resultant of the polynomials (1−t)m and tn is obviously 1, it follows from [62, Theorem
1.1] that in fact fm,n, gm,n ∈ Z[t].

Lemma 2.12. For arbitrary positive integers m, n we have

fm,n(t) =
n−1∑

j=0

(
m− 1 + j

j

)
tj

and gm,n(t) = fn,m(1− t). In particular, fm,n(0) = gm,n(1) = 1 and

fm,n(1) =
(

m + n− 1
m

)
, gm,n(0) =

(
m + n− 1

n

)

are different from zero.

Proof. Write

f∗m,n(t) =
n−1∑

j=0

(
m− 1 + j

j

)
tj .

Based on the recursive formula for the binomial coefficients it is easy to show that

(1− t)f∗m,n(t) = f∗m−1,n(t)−
(

m + n− 2
n− 1

)
tn.

By induction on i we obtain for i = 1, . . . , m− 1 the identity

(1− t)if∗m,n(t) = f∗m−i,n(t)− tngm,n,i(t)

with some auxiliary polynomial gm,n,i ∈ Z[t] whose degree is i− 1, and finally also

(1− t)mf∗m,n(t) = (1− t)
(
f∗1,n(t)− tngm,n,m−1(t)

)
= 1− tng∗m,n(t)

with a polynomial g∗m,n ∈ Z[t] of degree m− 1. By the uniqueness of the polynomials satisfying
(2.22) under the given degree conditions we conclude that fm,n = f∗m,n and gm,n = g∗m,n for every
m,n. Substituting 1− t for t in (2.22) gives

tmfm,n(1− t) + (1− t)ngm,n(1− t) ≡ 1
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for every m,n. Therefore fm,n(1− t) = gn,m(t) and gm,n(1− t) = fn,m(t).

Proposition 2.13. Let m,n be arbitrary positive integers. Then the pair of functions

ϕ(t) = t n

√
gm,n(t) = t n

√
fn,m(1− t), ψ(t) = (1− t) m

√
fm,n(t)

is admissible on the interval [a, b] = [0, 1] with n1 = n, n2 = m.

Proof. The functions ϕ,ψ obviously satisfy (2.14) and (2.15). To see that they are increasing
resp. decreasing bijective functions it is enough to check that

F (t) = (1− t)mfm,n(t)

is a strictly decreasing continuous function on the interval [0, 1], which follows from

F ′(t) = (1− t)m−1
(
(1− t)f ′m,n(t)−mfm,n(t)

)

= (1− t)m−1


(1− t)

n−1∑

j=1

j

(
m− 1 + j

j

)
tj−1 −m

n−1∑

j=0

(
m− 1 + j

j

)
tj




= −(1− t)m−1tn−1(m + n− 1)
(

m + n− 2
n− 1

)

< 0

for 0 < t < 1.
Since ϕ and ψ are positive on the interval (0, 1), so are the functions fm,n, gm,n. In view

of the boundary values given in Lemma 2.12 and by the continuity of the functions there exist
ε, δ > 0 such that

fm,n(t), gm,n(t) > δ for t ∈ (−ε, 1 + ε).

It follows that the functions m
√

fm,n(t) and n
√

gm,n(t) are analytic on the interval (−ε, 1 + ε),
hence so are ϕ and ψ. Thus the pair ϕ,ψ satisfy all the smoothness requirements.

As for the boundary conditions,

ϕ′(0) = n

√
gm,n(0) =

(
m + n− 1

n

)1/n

6= 0.

In view of (2.22) the function ϕ can be represented as

ϕ(t) = n

√
1− (1− t)mfm,n(t) = n

√
1− F (t)

on the interval (0, 1 + ε). Accordingly we have

ϕ′(t) = − 1
n

F ′(t)
(
1− F (t)

) 1
n
−1 = (1− t)m−1G(t)

where
G(t) = − 1

n

(
(1− t)f ′m,n(t)−mfm,n(t)

)(
1− F (t)

) 1
n
−1
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is a smooth function on (0, 1 + ε). Thus it is immediate from the general Leibniz rule that
ϕ′(1) = . . . = ϕ(m−1)(1) = 0. Similarly,

ψ′(1) =
(

m + n− 1
m

)1/m

6= 0

and ψ′(0) = . . . = ψ(n−1)(0) = 0.

Next we establish analogues of (2.17) and (2.18) for the derivatives of the functions Ti. Note
that the functions Li(t, α) can be defined on the interval [a, b) for arbitrary nonnegative integers
i.

Lemma 2.14. Assume that the pair (ϕ,ψ) is admissible and let r ∈ {1, 2, . . . , n1 − 1}, i ≥ r.
Then

dr

dtr
Li(t, α)

∣∣∣
t=a

=

{
0 for i > r,(

ϕ′(a)
)r(α− r + 1)r 6= 0 for i = r.

Proof. By the general Leibniz rule, the rth order derivative of the function Li can be written in
the form

dr

dtr
Li (t, α) =

(
α

i

) r∑

k=0

(
r

k

)
dr−k

dtr−k

(
ϕ(t)

)i dk

dtk
(
1− ϕ(t)

)α−i.

Using the Leibniz rule again (see also [54, Lemma on p. 225]) we obtain the formula

dr−k

dtr−k

(
ϕ (t)

)i =
∑

j1+j2+···+ji=r−k

(
r − k

j1, j2, . . . , ji

)
ϕ(j1) (t) ϕ(j2) (t) · · ·ϕ(ji)(t).

Here the jl are nonnegative integers. Since ϕ (a) = 0, we have

ϕ(j1) (a) ϕ(j2) (a) · · ·ϕ(ji)(a) = 0

unless jl ≥ 1 for every l. Therefore

dr−k

dtr−k

(
ϕ(t)

)i
∣∣∣
t=a

= 0

when i > r − k. Consequently,
dr

dtr
Li (t, α)

∣∣∣
t=a

= 0

for i > r. Furthermore,

dr

dtr
Li (t, α)

∣∣∣
t=a

=
(

α

r

)(
r

0

)
dr

dtr
(
ϕ(t)

)r
∣∣∣
t=a

(
1− ϕ(a)

)α−r

=
(

α

r

)(
r

1, 1, . . . , 1

)(
ϕ′(a)

)r

=
(
ϕ′(a)

)r(α− r + 1)r
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is nonzero due to α ≥ n1 > r and the boundary condition ϕ′(a) 6= 0.

Lemma 2.15. Assume that the pair (ϕ, ψ) is admissible and let r ∈ {1, 2, . . . , n1 − 1}. Then

dr

dtr
Rn1+n2−i(t, β)

∣∣∣
t=a

= 0

holds for i ∈ {0, 1, . . . , n2 − 1}. Moreover,

dr

dtr
Tn1(t, α, β)

∣∣∣
t=a

= 0.

Proof. According to the general Leibniz rule,

dr

dtr
Rn1+n2−i (t, β) =

(
β

i

) r∑

m=0

(
r

m

)
dr−m

dtr−m

(
ψ (t)

)i dm

dtm
(
1− ψ (t)

)β−i
.

For the calculation of the derivatives dm

dtm (1− ψ (t))β−i with m ≤ r ≤ n1 − 1 we apply Faà di
Bruno’s formula (see e.g. [54]), which yields

dm

dtm
(
1− ψ (t)

)β−i =
∑(

m

b1, b2, . . . bm

)(
β − i

k

)
(−1)k

(
1− ψ (t)

)β−i−kΨb(t).

Here k = b1 + b2 + · · ·+ bm,

Ψb(t) =

(
ψ(1) (t)

1!

)b1 (
ψ(2) (t)

2!

)b2

· · ·
(

ψ(m) (t)
m!

)bm

and the summation is taken over all nonnegative solutions b = (b1, b2, . . . , bm) of the Diophantine
equation b1 + 2b2 + · · ·+ mbm = m.

Since ψ is analytic around a and ψ(j)(a) = 0 for j = 1, . . . , n1 − 1, (an extension of) ψ has a
convergent Taylor series expansion on an interval (a− ε, a + ε) in the form

ψ(t) = 1 + cu(t− a)u + · · · ,

where u ≥ n1 and cu 6= 0. Then
(
1 − ψ(t)

)n2−i−kΨb(t) can be expanded into Taylor series on
the interval [a, a + ε) as

(
1− ψ(t)

)n2−i−kΨb(t) = c∗u∗(t− a)u∗ + · · · ,

where

c∗u∗ = (−1)n2−i−kcn2−i
u

m∏

j=1

(
(u− j + 1)j

)bj 6= 0

and

u∗ = u(n2 − i− k) +
m∑

j=1

bj(u− j) = u(n2 − i)−
m∑

j=1

jbj ≥ u−m ≥ 1.
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Therefore

lim
t→a+

(
1− ψ(t)

)β−i−kΨb(t) =
(
1− ψ(a)

)β−n2 · lim
t→a+

(
1− ψ(t)

)n2−i−kΨb(t) = 0.

This implies that
dm

dtm
(
1− ψ (t)

)β−i
∣∣∣
t=a

= 0

for m ≤ r, and finally
dr

dtr
Rn1+n2−i (t, β)

∣∣∣
t=a

= 0

for i = 0, 1, . . . , n2 − 1.
To prove the other equality, first we take the derivative of (2.16), valid on the interval [a, c),

where ϕ(c) = 1/2. This can be rephrased as

dr

dtr

∞∑

i=0

Li (t, α) = 0.

Since r ≤ n1 − 1, it follows from Lemma 2.14 that

n1−1∑

i=0

dr

dtr
Li (t, α) = 0

is valid on the interval [a, c). Therefore

dr

dtr
Tn1 (t, α, β)

∣∣∣
t=a

= −
n1−1∑

i=0

dr

dtr
Li (t, α)

∣∣∣
t=a

−
n2−1∑

i=0

dr

dtr
Rn1+n2−i (t, β)

∣∣∣
t=a

= 0,

which completes the proof.

Due to the symmetry of the construction, in particular the symmetry in Eq. (2.14), switching
the role of the parameters according to a ↔ b, n1 ↔ n2, ϕ ↔ ψ, α ↔ β we arrive at the following
counterpart of Lemmas 2.14 and 2.15.

Lemma 2.16. Assume that the pair (ϕ,ψ) is admissible and let r ∈ {1, 2, . . . , n2 − 1}, i ≥ r.
Then

dr

dtr
Rn1+n2−i(t, β)

∣∣∣
t=b

=

{
0 for i > r,(

ψ′(b)
)r(β − r + 1)r 6= 0 for i = r.

In addition
dr

dtr
Li(t, α)

∣∣∣
t=b

= 0

holds for i ∈ {0, 1, . . . , n1 − 1}, and

dr

dtr
Tn1(t, α, β)

∣∣∣
t=b

= 0.

Proposition 2.17. If (α, β) 6= (n1, n2), then the function system T is linearly independent.
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Proof. Throughout the proof we may assume that the pair (ϕ,ψ) is admissible. Indeed, consider
an arbitrary system

T ∗ = T (a∗, b∗; n1, n2; ϕ∗, ψ∗;α, β)

based on an admissible pair (ϕ∗, ψ∗). The existence of such a system is guaranteed by Proposition
2.13. The monotone increasing bijective function

h = (ϕ∗)−1ϕ : [a, b] → [a∗, b∗]

satisfies ϕ(t) = ϕ∗(h(t)) for every t ∈ [a, b]. In view of Eq. (2.14) ψ(t) = ψ∗(h(t)) also holds
for every t ∈ [a, b]. By the construction of the systems T and T ∗ it is clear that T is linearly
independent if and only if T ∗ is so.

Consider a relation
n1+n2∑

i=0

λiTi (t, α, β) = 0

and its derivatives
n1+n2∑

i=0

λi
dr

dtr
Ti (t, α, β) = 0.

In order to prove that all the coefficients λi are zero, we first evaluate the derivatives at t = a.
If r = 0, then in view of (2.17) we obtain

0 =
n1+n2∑

i=0

λiTi (a, α, β) = λ0T0 (a, α, β)

with T0 (a, α, β) 6= 0, yielding
λ0 = 0.

When r = 1, we can use Lemmas 2.14 and 2.15 to infer that

n1+n2∑

i=0

λi
d

dt
Ti (t, α, β)

∣∣∣
t=a

= λ0
d

dt
T0 (t, α, β)

∣∣∣
t=a

+ λ1
d

dt
T1 (t, α, β)

∣∣∣
t=a

= 0.

Since λ0 = 0, Lemma 2.14 applied for i = r = 1 implies

λ1 = 0.

This process can be continued for r = 2, . . . , n1− 1. In the rth step, taking into account that we
have already established λj = 0 for j = 0, 1, . . . , r − 1, we obtain

0 =
n1+n2∑

i=0

λi
dr

dtr
Ti (t, α, β)

∣∣∣
t=a

=
r∑

i=0

λi
dr

dtr
Ti (t, α, β)

∣∣∣
t=a

= λr
dr

dtr
Tr (t, α, β)

∣∣∣
t=a

which results in λr = 0 according to Lemma 2.14. This way

λ0 = λ1 = . . . = λn1−1 = 0

61

               dc_933_14



Figure 2.13. α-paths (red dashed lines) of a curve with
settings n1 = 2, n2 = 3, β = 3, α ∈ [2, 15]

is established.
Evaluating derivatives at t = b, we obtain λj = 0 for j = n1+n2, . . . , n1+1 as well by the step

by step process shown above. Finally, λn1 also has to be zero, since the rest of the coefficients
are zero and Tn1 (t, α, β) is not the zero function according to Proposition 2.10.

We conclude this section with the following summary of the advantageous properties of T .

Proposition 2.18. With fixed parameters α ∈ [n1,∞), β ∈ [n2,∞), the function system T has
the following properties:

• nonnegativity,

• partition of unity,

• linear independence if (α, β) 6= (n1, n2).

2.4.4 The curve

Definition 2.19. Given control points pi ∈ Rd (d ≥ 2), by means of the basis functions Ti the
curve is defined in the form

c(t, α, β) =
n1+n2∑

i=0

Ti (t, α, β)pi for t ∈ [a, b] (2.23)

where α ∈ [n1,∞) and β ∈ [n2,∞) are global shape parameters.

The properties of the blending functions Ti (t, α, β) described in Proposition 2.18 involve the
following characteristics of the curve (2.23), similar to those of the original Bézier curve and
analogous to the properties of the curve defined in [31]:
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• Affine invariance: since the function system T provides a partition of unity, the curve is
closed for affine transformations of its control points.

• Convex hull property: due to nonnegativity and partition of unity, the curve lies within
the convex hull of its control points.

• Endpoint interpolation: due to Eqs. (2.17) and (2.18), the curve passes through the first
and last control points.

• Global control: if α = n1 and β = n2, then the control point pn1 has no influence on the
shape of the curve, otherwise the curve is globally controlled, that is, each control point
affects the shape of the whole curve.

• Endpoint tangency: tangent lines at the endpoints are parallel to the first and last sides
of the of the control polygon, since the derivative of the curve at its first and last point is
αϕ′(a) (p1 − p0) and βψ′(b) (pn1+n2 − pn1+n2−1), respectively.

Remark 2.20. Recall that for the linear independence of T one has to impose the constraint
(α, β) 6= (n1, n2). Linear independence is required for the generation of interpolating curves
of type (2.23), i.e. for the solution to the following problem. Given a sequence of data points
{qi}n1+n2

i=0 along with associated fixed parameter values ti < ti+1 in the range [a, b] and shape
parameters α, β, find suitable control points {pi}n1+n2

i=0 for the curve (2.23) so that

c (ti, α, β) = qi (i = 0, 1, . . . , n1 + n2) .

In order to describe the impact of the shape parameters of the curve, the path of a fixed
curve point is considered. Let t0 and β0 be fixed values and consider the path a(α) = c(t0, α, β0)
along which the point of the curve associated with t0 moves. These paths are called α-paths of
the curve points. It is obvious from the definition of the basis functions, that each α-path is part
of an exponential curve (cf. Fig. 2.13). Similarly, β-paths b(β) = c(t0, α0, β) can be computed
by fixing the values t0 and α0. When increasing any of the shape parameters, the curve is pulled
towards the control point pn1 . This phenomenon can be observed in Fig. 2.13 for the shape
parameter α.

Changing the function pair ϕ,ψ means only the reparametrization of the curve (2.23), that is,
for any permissible function ϕ we obtain the same shape. The simplest choice would be ϕ (t) = t,
t ∈ [0, 1], however this parametrization is quite poor concerning the distribution of the points
on the curve corresponding to uniformly specified parameter values in the domain. The function
ϕ (t) = sin (t), t ∈ [0, π/2] or its rational counterpart ϕ (t) = 2t/

(
1 + t2

)
, t ∈ [0, 1] is a much

better choice from this point of view. In Fig. 2.14 it can be observed that in the latter case
the points lie closer to each other where the curvature is higher. In our experience the function
ϕ (t) = −2t3 + 3t2, t ∈ [0, 1] also provides a reasonable parameterization.
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Figure 2.14. Comparison of different parametrizations,
settings are n1 = 3, n2 = 2, α = 3, β = 2.5 and domains

are divided into 30 equal parts
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3 Non-control-point-based methods

In the previous sections all curves and surfaces are defined by control points, which method has
been applied since the beginning of computer aided modeling of geometric objects. There are,
however, problems where this classical approach cannot be applied, or a set of preprocessing
steps is required in order to use the standard methods. In this section two of these problems will
be discussed, based on the publications [2, 32, 33, 36, 38, 69, 110].

3.1 Modeling unorganized points by artificial neural networks

Surface reconstruction from a set of unorganized spatial points is one of the central problems in
computer aided design. In many applications, such as ship and car design, creating a surface
from scattered data is a frequently applied technique. One can find numerous methods for
approximation or interpolation of scattered data or updating existing surfaces by scattered points
using space warping, NURBS, subdivision or algebraic surfaces (see e.g. [109] and references
therein for a general overview of the problem).

Throughout this section we will apply B-spline surface as final surface. For the sake of sim-
plicity generally bicubic surfaces are used. As we have previously seen, a B-spline surface is
uniquely given by its degree, knot values and control points, which latter ones form a topolog-
ically quadrilateral mesh. In surface reconstruction problems the input is a set of unorganized
points, thus the order, the knots and the control points are all unknowns. The overall aim of
reconstruction methods is to determine these values where the basic strategy is the following (see
[113] for overview):

1. Fix the order (k, l), the number of control points (n, m) and the knot values ui, vj .

2. Assign a pair of parameters (ur, vr) to each scattered point Pr.

3. Solve the system s (ur, vr) = Pr or minimize
∑
r
‖s (ur, vr)−Pr‖2 .

In terms of B-spline surfaces the crucial point of this strategy is step 2, which is frequently
referred as the parametrization of the given data. Parametrization is the way how to assign
parameter values to each point, where normally several restrictions and assumptions are intro-
duced. One can try to consider the assigned values as unknown parameters in an optimization
problem, but for large amount of data this approach leads to a complex non-linear system with
several unknowns (see also [109]). At the recently developed base surface method data points are
projected onto a predefined parametric surface to find the corresponding parameter value (c.f.
[77], [91]). This technique can work well for certain type of data, but there are several conditions
in terms of creating the base surface and the projection has to be a function, i.e. no overlapping
allowed. Sometimes it is quite difficult to find a base surface which satisfies all the conditions.

This section is devoted to the neural network approach of scattered data fitting. The earliest
approaches of surface reconstruction by Kohonen self-organizing neural network can be found in
the author’s previous works ([32], [33], [110]) and Yu’s paper [116]. Later on similar methods
in different contexts have been developed in the recent papers of Barhak et. al. ([3], [4], [66]),
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Echevarría et. al. ([20]), Ivrissimtzis et. al. ([51], [52], [53]), and Knopf and Sangole ([63]).
In this method we create different types of B-spline surfaces by Kohonen neural network in an
iterative way. The quality of approximation can be controlled by the number of iteration steps
and by other numerical parameters. The obtained surface can be used as a coarse approximant
of the scattered data set or as a base surface for further reconstruction process. This way one
can create base surfaces for more general types of data sets than by earlier methods. In this
section the method is also applied for creating 3D ruled surfaces which are of great importance
in computer aided manufactory.

In the next section we give a brief introduction to Kohonen neural network and the network
will be applied to create base surface for scattered points.

3.1.1 The Kohonen neural network and its application

Artificial neural networks are widely used in computer science and its applications thus there are
several types of networks for specific problems. A neural network consists of numerous compu-
tational elements (neurons or nodes), highly interconnected to each other. A weight is associated
to every connection. Normally nodes are arranged into layers. During a training procedure input
vectors are presented to the input layer with or without specifying the desired output. According
to this difference neural networks can be classified as supervised or unsupervised (self-organizing)
neural nets. Networks can also be classified according to the input values (binary or continuous).
The learning procedure itself contains three main steps, the presentation of the input sample, the
calculation of the output and the modification of the weights by specified training rules. These
steps are repeated several times, until the network is said to be trained. For details and survey
of artificial neural networks see e.g. [27],[96].

The Kohonen network, also known as self-organizing map, is a two-layer unsupervised contin-
uous valued neural network [64]. The network has a strong self-organizing ability, which practi-
cally used for dragging a predefined structure - a polygon for curve modelling and a quadrilateral
grid for surface modelling - towards the given points. After the so-called training procedure this
predefined grid will follow the structure and distribution of the given points.

The outline of the training steps of a Kohonen network containing n input and m output
node are the following (see Fig.3.1.):

1. Present new input values xi, i = 1, ..., n.

2. Input nodes send them to each output node.

3. Output nodes compute the output values dj by

dj =
n∑

i=1

(xi − wij)
2 j = 1, ..., m

where wij is the weight associated to the connection from the ith input node to the jth

output node.

4. The node with the minimum output dmin = min {dj} is the winning node.
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Figure 3.1. The training procedure of the Kohonen
neural network

5. The weights of the connections to the winning node as well as their neighbors are updated
in a well-defined way.

6. Go to step 1 until the network is trained.

How can we apply this tool for surface fitting? Let the number of input nodes n = 3, thus
each output node has three connections. The three weights associated to these connections can
be considered as spatial coordinates of a point Qj(w1j , w2j , w3j) in 3D (see Fig.3.2).

One can fix the neighborhood relations of the network in advance, which yields a topologically
fixed grid in 3D. If the weights of the network are changed during the training steps, some points
of the spatial grid will change their spatial positions but the topology remains the same as before.

Now if the input values are spatial coordinates of one of the scattered points, then the training
procedure will move this grid slightly towards the input point. This is because the winning node
is associated to that point of the grid which is closest to the input point. The next iteration comes
with another scattered point and the grid will move a little towards that point etc., thus after
several iteration the grid will spread out and follow the overall shape of the scattered points. The
movement can be controlled by numerical parameters as we will discuss it in the next section,
based on [38].

The precise algorithm of the training procedure is as follows [32], [38]:
Input: scattered points Pr (the number of the points are irrelevant)
Output: a grid with predefined topology which follows the overall shape of the scattered point

set

1. Fix the topology of the grid and the number of output nodes m. Let the number of input
nodes n = 3. Let t = 1.

2. Initialize the weights wij (i = 1, 2, 3; j = 1, ..., m) of the network as small random numbers
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Figure 3.2. The application of the Kohonen network
for surface fitting

around the centroid of the point set or according to additional data (e.g. border of the
point cloud).

3. Present an input – three coordinates of a randomly selected spatial point Pi(x1, x2, x3).

4. Compute the output values and find the winning node by

dmin = min

{
dj =

3∑

i=1

(xi − wij)
2 , j = 1, ...,m

}

i.e. the node which is associated to the closest point Qmin of the grid to the output point
in 3D.

5. Find the neighbors of the winning node by the neighborhood function N(t) and update
the weights of these nodes by

wij(t + 1) = wij(t) + η(t)(xi − wij(t)) (3.1)

where η(t) is a real-valued function called gain term.

6. Let t = t + 1 and decrease η(t) and N(t).

7. Go to step (3) and start next iteration until the network is trained. The network is said
to be trained if the movement of the grid (i.e. the value of the gain term) falls under a
predefined limit (normally η(t) = 0.001).
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Some steps of the algorithm may need some further explanation. The topology of the grid in
Step 1 means the structure of connections and the overall topology of the grid as well. Here the
points of the grid are connected in quadrilateral way since the B-spline surface originally defined
on this kind of grid. Other types of connectivity, however, can also be defined: triangular
topology may be better suited for other applications (c.f. [116], [52]). The overall topology of
the grid is a much harder problem, since normally we have no information of the topological
properties of the input data. It has to be defined in advance and here we assume that the
desired surface is of genus 0. The change of the overall topology of the grid during the training
session would be the solution of the problem. Recent results in [52] and [66] show the problems
of this direction of research which is, generally speaking, one of the main problems of surface
reconstruction techniques today.

The number of output nodes m has to be fixed in Step1 of the algorithm. This work well
in several cases but sometimes the refinement of the grid would yield a better surface. This
problem can be solved by the dynamic version of the Kohonen neural network also known as
growing cell structure [28]. The basic idea of the refinement is that further nodes are incorporated
to the grid around the most frequent winners. In this case each node has a counter which is
increased by 1 if this node is the winner. If one of the counters will be equal to a predefined
limit a row or a column will be inserted next to that neuron. For the detailed description of this
modified algorithm see [110]. If we want to preserve the quadrilateral topology of connectivity
we have to insert rows or columns anyway. In the case of triangular connectivity vertex split
and edge collapse can be executed to refine the grid (c.f. [52]). This dynamic version of neural
network certainly has some advantages: the number of training iterations decreases dramatically,
the algorithm is generally faster even with the additional counters. The main drawback of this
version is that the convergence of the dynamic version has not been established theoretically as
yet.

Step 2 of the algorithm includes the initialization of the weights. This process determines
the initial position of the grid. If we have no additional information about the point cloud, this
initial situation can be a shranked grid somewhere "close" to the cloud. That’s why we applied
the following technique: some points are randomly chosen from the set and the centroid of them
is computed. The grid is positioned initially around this center adding small random values to
the coordinates of the center to obtain the vertices meanwhile the quadrilateral connections are
fixed. This yields the shrinked grid which will spread out during the iterations. Actually this
initial position is not extremely important in terms of the final surface - the first few iterations
drag the grid towards the center of the point cloud anyway. Most of the techniques not even
mention the initial position ([51]) or using a very similar technique ([63]). The only important
thing is that if the desired surface has a sphere-like shape and topology, like in our example (Fig.
3.3), the initial position should be somewhere inside the point cloud.

If we have additional information of the data, we can use it to determine an even better initial
position. If for example we know the plane where the surface has a boundary, we can apply the
"SOM boundary first" technique (c.f. [3]) to determine a planar grid with correct boundary
which does not move during the training (see our example Fig. 3.3).
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Figure 3.3. Movement of the grid during the training
session: a) the scattered data and one of the first itera-
tions b)-c) further iteration steps of the training d) the

surface computed from the trained network

Figure 3.4. The gain term and the neighborhood func-
tion are for control of the movement of the grid: the gain
term influences the measure of the movement of Qmin, the
neighborhood function influences the moving part (filled

circles)

Fig. 3.3. shows some iterations of the training procedure as the grid is spreading out towards
the input points. Finally the output of the algorithm is a topologically predefined grid which
can be used as a control mesh for a B-spline surface. This B-spline surface is a rough approx-
imant of the point cloud but can also be used for further process as a base surface for surface
reconstruction. The reconstructed surface can be seen in Fig.3.3.d).

3.1.2 Numerical control of the training: the gain term and the neighborhood func-
tion

The algorithm given above contains two "hidden" functions: the gain term and the neighborhood
function. These functions are for numerical control of the speed and accuracy of the approxima-
tion, i.e. the quality of the final surface.

The gain term, as one can see from equation (3.1) at step (5) of the algorithm, is for control
of the measure of movement of the grid. The less the value of the gain term the smaller the
movement of the point Qmin and its neighbors towards the input point Pi (see Fig.3.4.). The
value of the gain term has to be in [0, 1). If it would be equal to 1, the point Qmin would reach
Pi.

The movement of the grid is desired to be large at the first iterations of the training session,
when the overall shape of the scattered data should be found. The final iterations however require
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Figure 3.5. Graph of the gain term with parameter
values q=100 (leftmost), 200, 300 and 400 (rightmost)

smaller movements when the final tuning of the grid is executed. Thus the gain term should be
a Gaussian function. Notice that the gain term tends to 0 which guarantees the convergence of
the algorithm as it has already been declared in [64]. Using the original suggestion of Kohonen
here we applied the following function

η(t) =
1√
2π

e
− 1

2

�
t
q

�2

,

where t is the actual number of iterations and q is a parameter which has to be fixed in advance.
It is very useful to incorporate the parameter q to the function by which one can control the
steepness of the gain term : if the overall structure of the scattered data seems to be quite simple,
then the decrease of the gain term can be very fast. If the shape is more complicated then slower
change of the gain term is required to achieve good approximation (see Fig. 3.5). Naturally this
latter case requires more iteration steps for the neural network to be trained.

The other function for the control of the training session is the neighborhood function N(t).
From step (5) of the algorithm it is clear that N(t) is for the control of the moving part of
the grid: the less the value of the neighborhood function the smaller the part of the grid which
moves. During the training session movement of large parts at the first steps and small parts at
the final tune are desired. Thus similarly to the gain term the neighborhood function is also a
Gaussian:

N(t) = INT

(
m

2
e
− 1

2( t
s)

2
)

,

where t is the actual number of iterations, m is the number of output neurons and s is a parameter
which has to be fixed in advance. The role of s is similar to that of q. For simple shape the
neighborhood function can be decreased faster than for more complicated structure to fasten the
training session as well. If we have no information about the input data, q and s can be settled
for 200.

Finally we have to mention that unfortunately these parameters cannot be settled for ever
since different scattered data sets require different values. There is not much hope to determine
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Figure 3.6. Construction of ruled surface from a set of
unordered rulings

these values in an automatic way as well, since in that case the overall structure of the input
point set should have been described automatically on a point based method before the modeling
process. If we fix these parameters q and s as 200, the learning rate and accuracy will be a kind
of average, i.e. probably better result can be achieved by modifying the parameters in advance.
Other approaches, like [52], [53] also use some parameters to control the learning procedure and
these also should be adjusted in a data dependent way.

3.1.3 Ruled surfaces from a set of rulings

Ruled surfaces are surfaces which contain a line through each point of the surface. They are of
great importance in CAD/CAM. A further application of the described neural network technique
is the construction of ruled surfaces from an unordered set of line segments, called rulings (c.f.
Fig.3.6.).

To apply the method described above first we shift the problem from E3 to the five dimensional
projective space P5 with the help of Plücker-coordinates (c.f.[47]). Thus a point in P5 will be
associated to each line in E3 and the original algorithm will be executed in P5. The output will
be transformed back to E3 then.

Pick up two arbitrary points A(x1, x2, x3) and B(y1, y2, y3) of a line e and use the homo-
geneous coordinates (x1, x2, x3, x4 = 1) and (y1, y2, y3, y4 = 1), respectively. Compute the six
Plücker-coordinates (l1, l 2, ..., l6) of the line e by the following equations

lij = xiyj − xjyi, i, j = 1, ..., 4

(l1, l 2, ..., l6) = (l41, l42, l43, l23, l31, l12).

The Plücker-coordinates are independent to the selected points and are unique, thus a point
Le(l1, l2, l3, l4, l5, l6) ∈ P5 is assigned to the line e ∈ E3.

Now the algorithm to create ruled surface from a set of rulings is as follows:
Input: a set of unordered rulings er in E3.

Output: a topologically quadrilateral grid which contains only line segments in one direction

1. A point Lr in P5 is assigned to each given ruling er by the Plücker-coordinates. Thus an
unordered set of points is obtained.
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Figure 3.7. Ruled surface from a set of rulings: a) the
input lines, b)-e) the training steps, f) the surface

2. A Kohonen network is defined with 6 input nodes and the topology of the output nodes is
fixed in a linear way. Let the points assigned to the nodes are Qj ∈ P5. These points form
a polygon which moves during the training session.

3. Applying the Kohonen network algorithm we obtain a polygon Qj in P5 which follows the
overall shape of the point set Lr.

4. Using the Plücker-coordinates backwards ordered lines qj ∈ E3 are assigned to the vertices
Qj of the polygon in P5.

5. Connecting the lines qj and cut them by two planes a topologically quadrilateral grid is
obtained with line segments in one direction.

The resulted grid can be applied as a control mesh for a B-spline surface which is a good
approximant of the given rulings. An example can be seen in Fig.3.7. (the training steps are
executed in P5 but shown in E3 for better visibility).

3.2 Sphere-based modeling

Interpolation of geometric data sets is of central importance in Computer Aided Geometric
Design. If geometric data consist of points, then we have several, now standard methods to
interpolate them [24, 90, 49].

Creating various shapes is always the first step of many computer graphics related problems.
Nowadays there is a growing demand to extend the well-known, point based surface methods (all
the spline and subdivision surfaces are based on a predefined set of points) to new algorithms
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which rely on other types of geometric primitives such as spheres. Animation and creation of
characters are of central importance in computer graphics, where skinning methods are also
applied [102].

If, however, the data set consists of other types of objects (e.g. circles), interpolation is
transferred to skinning, that is construction of a curve or surface which touches each of the
objects and somehow bounds the given data. Since this is a largely ill-posed problem, constraints
have to be defined for the data set as well as for the desired solution.

As a new tool, surface modeling by spheres has already appeared in computer graphics in
the last couple of years. Several papers have been published in this topic, where theory of sphere
based surface modeling has been introduced, and applied in several fields, including medical and
biological applications, character animation or covering problems, see e.g. [102], [103], [104],
[97], [98]. Moreover, commercial software tools have also been developed in this field, such as
ZSpheresr [124] by Pixologic, or SporeTM [105] by Electronic Arts.

In this subsection we introduce a novel approach of sphere based shape modeling. Based
on the theoretical approach of blending of spheres developed in [69], the method introduced in
[2] provides a parametric surface, skinning of a predefined, ordered set of spheres. The surface
can be interactively modified in real time by adjusting the positions and radii of the spheres.
New branches can also be added by simply defining new sequences of spheres. The result is a
piecewisely defined surface, where the branches are connected automatically in a smooth (G1

continuous) way. In Figure 3.24 we can see a comparison between our result and the result of
ZSpheresr.

At first we address the problem of skinning of a sequence of circles. This problem is sometimes
called 2D ball skinning, with a natural extension to 3D, where a skinning surface of a set of given
spheres is computed.

Since the problem of skinning is not necessarily defined in a unique way in the literature,
here we formally describe what type of input is admissible for us and what type of output we
are searching for.

Definition 3.1. A sequence of circles C = {c1, c2, c3, . . . , cn} (n ∈ N) is called admissible
configuration if the following conditions are fulfilled (di denotes the closed disk defined by circle
ci):

• di ⊂
n⋃

j=1,j 6=i

dj , i ∈ {1, 2, . . . , n}

• di ∩ dj = ∅, i, j ∈ {1, 2, . . . , n}, j /∈ {i− 2, i− 1, i, i + 1, i + 2}

• if di−1 ∩ di+1 6= ∅, then di−1 ∩ di+1 ⊂ di

These assumptions also yield

ri /∈
i+1⋃

j=i−1

dj , i = 2, .., n− 1
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where ri is the radical center of three consecutive circles ci−1, ci, ci+1. The second restriction is for
avoiding closed loops of four or more circles. In Fig. 3.8 one can see an admissible configuration
and a configuration where some circles do not fulfill the conditions.

Figure 3.8. An admissible configuration (left) and a
non-admissible configuration (right) where circles c2−c4,
c6 and c8 do not fulfill the conditions: circles are not
allowed to be entirely in the union of other circles while
radical center r3 of three consecutive circles must be out

of c3

Since the position of radical center will be of central importance in the algorithm, we briefly
remind the reader to the definition and computation of it. The radical axis (or radical line) of
two circles is the locus of points at which tangents drawn to both circles have the same length.
Since it is evidently orthogonal to the line passing through the centers, it is enough to compute
the distances dist1 and dist2 of the axis to the centers:

dist1 =
1
2

(
dist +

r2
1 − r2

2

dist

)
dist2 =

1
2

(
dist− r2

1 − r2
2

dist

)

where dist is the distance of the two centers, r1, r2 are the radii of the circles. By a classical
theorem of Monge [19] the radical lines of three circles are either concurrent in a point, known
as radical center, or parallel iff the three circle centers are congruent.

Now we define the desired output.

Definition 3.2. Given an admissible configuration of circles C = {c1, c2, c3, . . . , cn}, we are
looking for two, at least G1 continuous curves s(t) and s̄(t), called skins of the given circles
satisfying the following requirements (see also Fig. 3.9):

• There is a point of contact pi ∈ ci for all i = 1, ..., n such that pi ∈ s(t) and tangent lines
of circle ci and s(t) are identical at pi. Analogously exist points p̄i for s̄(t).

• Tangent vector vi of skin s(t) at pi can be rotated to the direction of the center of ci by
90◦ in clockwise direction. Analogously this rotation is in counterclockwise direction for
tangent vectors of s̄(t).

• pi /∈
n⋃

j=1,j 6=i

dj , and p̄i /∈
n⋃

j=1,j 6=i

dj , i ∈ {1, 2, . . . , n}
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For the sake of simplicity s(t) will be called “left" skin and s̄(t) will be called “right" skin,
based on the second requirement which ensures us that running along the skins, at the points of
contact the circles will always be in one (right or left) side of the curves.

Note, that due to the last restriction, points of contact on the actual circle are required to
be out of other circles, which seemed to us a natural condition for skinning.

This or similar problem - beside its theoretical interest - frequently arises in applications
like designing tubular structures, covering problems, molecule modeling [16, 21]. Medical image
processing applies these methods e.g. in blood vessel reconstruction [97, 104]. In computer
animation, characters can also be constructed from a skeletal structure and a corresponding
geometric skin [102].

Figure 3.9. On the left, two curves satisfying all the
requirements to be skins. At right there are two curves
which also touch each circles but they do not fulfill the
requirements: some of the touching points are inside of
other circles and separation of the two sides is not appro-

priate

After briefly discussing the previous approaches, we describe the new method and show that
for an admissible configuration of circles it always works. Detailed algorithm, several examples
and comparison to Slabaugh’s method can also be found in this section. Spatial extension to
sphere skinning by a surface is also provided.

3.2.1 Previous work

The first and most natural approach of the problem would be the application of the deep theo-
retical knowledge of the computation of envelope curves and surfaces, dated back to Monge [81],
who first dealt with canal surfaces. Skin is definitely not an envelope, since this latter notion is
defined for continuous data set, for a one- or two-parameter family of curves or surfaces. The
first requirement at Definition 3.4, however may be considered as the discrete version of envelope
property. An important contribution of this topic with computational aspects is the PhD thesis
of Josef Hoschek [48]. Since then a large number of papers have dealt with envelope design, most
of them with numerical computation (for the survey see e.g. [25]). For circles and spheres, exact
computation of rational envelopes are presented in [87, 86], based on a cyclographic approach.
In 2D cyclography defines a one-to-one correspondence between the oriented circles with center
x, y and radius r of the plane and spatial points (x, y, r) (if the orientation is counterclockwise)
or (x, y,−r) (if the orientation is clockwise). This way the sequence of given circles can be
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transformed to a sequence of spatial points. An interpolating curve through these points can be
defined and finally points of this spatial curve can be transferred back to planar circles by the
same transformation. The envelope of these circles is obtained as the intersection of the plane
and the envelope surface of the cones defined by the spatial points as apices and the correspond-
ing circles. Similar correspondence works for spheres and points in 4D space. For a more detailed
description, see [67, 86] .

Figure 3.10. Given a set of discrete circles (black),
classical interpolation may yield further circles (dashed
blue) in a way that the skin cannot be constructed for
the original circles since the new set of circles do not sat-
isfy the requirements to form an admissible configuration

(positions pointed by red arrows)

Although the papers mentioned above do not deal with skinning, one may try to transfer
the discrete data set to a one-parameter family of circles/spheres, having centers and radii as
functions of a parameter. These functions can be achieved from the set of discrete data by
classical interpolating methods in the space, but this way the set of new circles do not necessarily
satisfy our requirements to be an admissible configuration, as one can observe in Fig. 3.10.

A recent approach to the skinning problem for circles and spheres is Slabaugh’s method
[103, 104]. It is an iterative way to construct the desired curves or surfaces. Let the sequence of
circles with centers oi and radii ri, (i = 1, . . . , n) be given. Considering two neighboring circles
ci and ci+1, initial Hermite arcs are specified with touching points pi,pi+1 and tangents vi,vi+1

for the skin. The final positions of these points and tangents are obtained by the end of several
iteration steps.

The iteration itself is based on the minimization of a predefined energy function. For com-
putational reasons the positions of the touching points and the tangents are transferred into one
single variable, namely the angle αi between the x axis and the radius pointing towards the
touching point.

pi = oi +

[
ri cosαi

ri sinαi

]

vi =

[
−ki sinαi

ki cosαi

]
,

where ki is a predefined constant for each circle, half of the distance between centers oi and oi+1.
The method provides energy-minimized, C1 continuous skin without any user interaction,
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Figure 3.11. A one-sided (left) skin obtained by the
method of Slabaugh (left figure, from [103]). For two-
sided skin they constrain the points of contact to be
separated by 180◦, but this way some of the points of
contact may fall into other circles (middle figure). Right
figure shows the result of the proposed method: the green
touching points of the left skin are almost identical to the
ones obtained by Slabaugh. The right (lower) skin has

significantly different touching points.

which, in this sense, the optimal solution, if it exists. But the method also suffers from problems.
The touching points are not guaranteed to be out of the circles, especially not for two-sided skin,
when the two touching points at each circle are constrained to be separated by 180◦ (c.f. Fig.
3.11). There are simple configurations when it is theoretically impossible to find two diametrically
opposite points on a circle being out of other given circles, see e.g. the second circle in the
leftmost figure of Fig. 3.16 or the lower right figure of Fig.3.12. Slabaugh’s method does not
provide acceptable skin by our definition, especially the last requirement in Definition 3.2 is not
necessarily fulfilled. From this point of view our method can handle a larger class of data sets.
One would try to omit this 180◦ constraint from that method but then we are facing to solve the
separation of touching points, which is far from being trivial in a numerical iteration. The same
problem arises in 3D-ball skinning, where Slabaugh’s method allows only great circles as possible
touching circles. A further problem is that the convergence of iteration to a global minimum is
not proved and the number of iterations can be over 100 which is time consuming. Moreover,
the process has to be restarted after any modification of data, thus this method is not suitable
for real time modeling and adjustment. For comparison to our method: the one-sided skin in
Figure 3.11 (left) has been computed by Slabaugh in 143 milliseconds [103], the two-sided skin
(right) has been computed by our method in 14 milliseconds (both at single core 3GHz CPU).

3.2.2 Skinning of circles

Now our task of skinning can be divided into the following steps:

• check if the given circles form an admissible configuration

• find appropriate points of contact for each circle ci, i = 1, ..., n

• separate points into two classes, denoted by pi and p̄i for left and right skin

• define tangent vectors vi and v̄i

• compute the skins

The admissible criteriae of Definition 3.4 can be tested by elementary computation.
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Localization of touching points As we have learned from the previous section, the local-
ization of possible touching points on the given circles is essential for skinning. Our solution
of finding the touching points is based on the circles of Apollonius, which are touching circles
to three given circles. This ancient construction provides suitable touching points to each inner
circle in the data set, while the first and last circles are handled in a simple special way.

A classical result [84] on the possible positions of three circles and solutions of problem of
Apollonius states that for three given circles ci−1, ci, ci+1, (i /∈ {1, n}) which satisfy our admissible
conditions, exactly one of the following statements holds:

• There exist exactly two circles touching externally by all the three given ones

• There exist exactly two circles touching internally by all the three given ones

• There exists exactly one circle touching externally and another one touching internally by
all the three given ones.

Figure 3.12. Considering three consecutive given cir-
cles (black), the touching points of the second circle are
computed by the two circles of Apollonius (red). Orien-
tation of circles help to find the correct solutions. The
method always works for circles in admissible configura-

tion

These touching circles together with their touching points can be found by a classical geo-
metric method, the cyclography. Consider the three given circles to be oriented, having the
same orientation (all clockwise or all counterclockwise). The touching circle is always expected
to have the same orientation at each touching point as the given circles. The solutions of these
two cases provide the touching points pi and p̄i of the circle ci (c.f. Fig.3.12). These points can
be constructed and computed by known methods [83, 17]. Moreover, it is also proved [83] that
these touching points and the radical center of the three given circles are collinear (see Fig.3.13).

In the very special situation, when centers of the three circles are collinear and having equal
radii, simply the common tangent lines give the points of contact.
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Figure 3.13. Given three circles ci−1, ci and ci+1 in ad-
missible configuration, one can find the future points of
contact for skinning at ci by the two special solutions of
the problem of Apollonius. The three possible situations:
one circle touching externally and another one touching
internally by all the three given ones (upper left); two
circles touching externally (upper right); and two circles
touching internally (middle). Radical center and touch-

ing points are collinear.

After defining the touching points at each inner circle, the first and last circles in the sequence
have to be handled as well. Touching points to these two circles can also be defined by the
common external tangent lines of the first two and the last two circles, respectively.

Separation to left and right groups Finally two points have been localized at the circles
ci which all satisfy the last requirement of Definition 3.2. The next step is to separate them for
“left" and “right" classes, i.e. to identify which one should be denoted by pi and which one by
p̄i.

At first it is proved in [83] that these points of ci can always be separated by the circle
with radical center ri as center and intersecting orthogonally the three given circles ci−1, ci and
ci+1. Moreover it is mentioned that the radical center and the two touching points are collinear.
Thus the separation can easily be computed by the following steps (see notations of Fig. 3.14):
if the vector oi−1oi can be rotated to the direction of vector oi−1oi+1 by a positive angle (in
counterclockwise direction, with less than 180◦) then the touching point being closer to the
radical center ri will be in the left group, i.e. will be denoted by pi. If the direction of rotation
is opposite (as it is for the next circle in Fig. 3.14) then the touching point being closer to the
radical center ri+1 is in the right group: p̄i+1. Special attention must be payed to the first and
last circle as well as for circles with collinear centers. In these cases the vector oi−1oi is rotated
to the direction of oi−1pi and the angle is similarly measured and evaluated as above.
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Figure 3.14. Grouping of the constructed touching
points into two groups, “left" and “right" (green and
blue). Detailed explanation can be found in the text.

Definition of the tangent vectors Finally we have two groups of well defined touching points
on the circles. Between each pair of points an Hermite interpolation curve will be computed at
each group, separately. To these arcs, one has to define the length of the tangent vectors at
these points (the direction of the tangents is inherited from the actual circle). In Slabaugh’s
method the length of the tangent vectors was a simple function of the radius of the current
circle. This method works well if there is no large difference between the radii and the distance
of the consecutive circles. Contrary to that method we specify the length of the tangent in a way
that beside the radii, the distance of the circles, as significant information, is also incorporated.
The radical line of two circles provides information about the radii and the distance of the circles
as well. Thus we use this line to obtain unified information about the positions and size of the
circles. For two consecutive circles and touching points pi and pi+1, the distances of these points
to the radical line are computed. Multiplying this distance by a scalar value the length of the
tangent vector is given. This scalar can be considered as a global shape parameter of the skin,
similarly to the scalar at the energy function of Slabaugh’s method. In our experience the value
2 provided the most natural shape, thus this value is applied throughout our approach (see Fig.
3.15).

Construction of the skin Our final step is to construct the curve which is now a simple
interpolation problem for given points pi and tangent vectors vi. At this point it is irrelevant that
these data are computed from a set of circles, so we have to emphasize that other interpolation
methods may work as well as our choice, the Hermite interpolation. We define a cubic curve
q(t), t ∈ [0, 1], where

q(0) = pi, q(1) = pi+1, q′(0) = vi, q′(1) = vi+1,

and
q(t) = H3

0 (t)q(0) + H3
1 (t)q(1) + H3

2 (t)q′(0) + H3
3 (t)q′(1), t ∈ [0, 1] ,
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Figure 3.15. Definition of tangent vectors at the touch-
ing points by the help of radical line ri

where

H3
0 (t) = 2t3 − 3t2 + 1

H3
1 (t) = −2t3 + 3t2

H3
2 (t) = t3 − 2t2 + t

H3
3 (t) = t3 − t2.

The Hermite interpolation arcs computed from these data serve as a G1 continuous skin of the
given circles. Results can be seen in Fig. 3.16, comparison to Slabaugh’s method is in Fig. 3.11
and Fig. 3.17.

Figure 3.16. Results of the proposed method. It works
for rather complicated data sets while provides correct

result in the simplest case as well.
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Figure 3.17. Comparison of Slabaugh’s method (left)
and the proposed method (right). Note the difference in

the zoomed part below.

3.2.3 Extension to spheres

As aforesaid, we can define the problem in larger dimensions, too. Given an ordered set of
(hyper)spheres, we are looking for a skinning (hyper)surface with similar properties as it had in
2D. Definition 3.4 of admissible configuration of circles can directly be applied to spheres. It is a
consequence of the second point of this definition, that the union of balls may not be connected
but each connected component must have genus 0. The definition of skin is however, different
from the one given in Def. 3.2. We would like to obtain a G1 continuous surface, which touches
each sphere along a circle, that is tangent to the spheres.

Definition 3.3. Given an admissible configuration of spheres C = {s1, s2, s3, . . . , sn}, we are
looking for a G1 continuous surface s(φ, t) of the given spheres, called skin, satisfying the following
requirements:

• There is a circle of contact (touching circle) ci for all i = 1, ..., n such that the skin s(φ, t)
and sphere si have common tangent planes at each point of ci. Circle ci is an isoparametric
curve of s(φ, t).

• ci ⊂
n⋃

j=1,j 6=i

dj , i ∈ {1, 2, . . . , n}.

We have to emphasize again that, due to the last restriction, circle of contact on the actual
sphere is required to be out of other spheres, which is a natural condition for skinning from our
point of view.

Steps of our solution are analogous to that ones applied in the planar case.
First of all, we have to localize the touching circles with centers õi and radii r̃i (i = 1, . . . , n).

For this step we can invoke the solution of the planar problem. Let us consider a sphere si,
where i = 2, . . . , n− 1, that is we exclude the first and the last spheres for a moment (Fig.3.19).

83

               dc_933_14



Figure 3.18. The algorithm can handle distant spheres
as well as sudden changes in size. Note that the upper
part of the stomach or the neck of the vase cannot be

modeled by great circles as touching circles.

Now consider the plane Pi, determined by the centers oi−1,oi,oi+1 of the considered sphere
and its neighbors. Intersecting the spheres by this plane we obtain three circles. With the help
of the above mentioned planar method with Apollonius circles, we can find two points in the
second circle. There exists exactly one plane Ti (for all i = 2, . . . , n − 1), which passes through
these two points and orthogonal to plane Pi. The intersection of sphere si and this orthogonal
plane Ti is the touching circle for the future skinning surface. We can localize a circle by this
method on every sphere, which has two neighbors. Due to the facts that the touching circles are
directly computed from the planar touching points and the admissible configuration guarantees
the existence and proper positions of these points, the touching circles exist and satisfy the
requirements of Definition 3.

The Appollonius problem itself can also be generalized in 3D, where touching spheres of
three given spheres have to be found. The envelope of these spheres is the Dupin cyclide, which
surface is widely used in CAGD (for an overview, see [25, 94, 95]). The touching circle we
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Figure 3.19. Touching circle localization on the sphere
si, where i 6= 1, n. Ti⊥Pi, where Ti is the plane of the
touching circle and Pi is the plane passing through the
centers. Dashed line shows Apollonius circles as solution
of the planar problem in Pi. Note that in general the

touching circle is not a great circle of the sphere si

Figure 3.20. Construction of touching circle on s1

constructed now is identical to the one in which the Dupin cyclide defined by the three given
spheres si−1, si, si+1 touches the sphere si.

Touching circles for the first and the last spheres have to be defined in a different way. Let
us consider the first and the second spheres and the regular cone which touches both spheres.
The touching circle of this cone on the first sphere will be the touching circle for the skinning
surface as well (Fig. 3.20). The circle on the last sphere is defined analogously.

It directly follows from the planar construction, that this method always works in every
admissible case.

Now we obtained touching circle with center õi and radius r̃i on each sphere, thus we can
start to create the skin, following the ideas developed in the planar case: patches are defined
successively to each pair of spheres using Hermite interpolants through corresponding points of
the touching circles.

Consider the future patch si(φ, t) of the skin between touching circle ci on sphere si and
touching circle ci+1 on sphere si+1. Circle ci is the isoparametric curve si(φ, 0), while ci+1 is
the isoparametric curve si(φ, 1) of this patch. At first we will define the starting point on ci as
zi = si(0, 0) and on ci+1 as zi+1 = si(0, 1), then rotating them by the same angle φ ∈ [0, 2π]
along the circles, corresponding pairs of points zi(φ) = si(φ, 0), zi+1(φ) = si(φ, 1) will be defined.
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Lengths of tangent vectors are computed by the help of the radical plane of the two spheres.
Lines of all the tangents pass through the pole wi of the plane of the touching circle with respect
to the sphere si (i = 1, . . . , n), see Fig. 3.21. To avoid unnecessary torsion, corresponding points
are selected by the help of a fixed spatial direction e, which is not parallel to any of the vectors
wi − õi, for example e = (wi − õi)× (wi+1 − õi+1).

Figure 3.21. Computation of tangent lengths is analo-
gous to the planar case, now using radical plane Mi. Cor-
responding points zi and zi+1 are connected by isopara-

metric curve of the skin surface.

Let s : R→ {−1, 1} and p : {si} → {−1, 1} be functions defined by

s(x) =




−1 if x < 0,

1 else

p(si) =





s
(〈

wi−oi
‖wi−oi‖ ,

oi+1−oi

‖oi+1−oi‖
〉)

if i 6= n,

s
(〈

wi−oi
‖wi−oi‖ ,

oi−oi−1

‖oi−oi−1‖
〉)

else

where 〈, 〉 is the standard inner product.

Figure 3.22. Result of the proposed algorithm. This
data set has also been used in [104], but, contrary to that
algorithm, our method always provide symmetric skin for

symmetric data.

Let zi be defined by

zi = õi + r̃i · e× (p(si) · (wi − õi))
‖e× (p(si) · (wi − õi))‖ (i = 1, 2, . . . , n) .
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Figure 3.23. A complex data set and its skin produced
by the proposed algorithm. Note, that centers of spheres

are not coplanar.

Further corresponding points zi(φ) of the touching circles are defined by rotating zi by angle φ

around the line passing through õi and having direction p(si) · (wi − õi).
Let Mi be the radical plane of spheres si and si+1. Our skinning surface contains n − 1

patches, where the ith patch is defined as:

si(φ, t) = H3
0 (t) zi(φ) + H3

1 (t) zi+1(φ)+

H3
2 (t) · p(si) · 2 · d(Mi, zi(φ)) · wi − zi(φ)

‖wi − zi(φ)‖+

H3
3 (t) · p(si+1) · 2 · d(Mi, zi+1(φ)) · wi+1 − zi+1(φ)

‖wi+1 − zi+1(φ)‖

t ∈ [0, 1] , φ ∈ [0, 2π] , i = 1, . . . , n− 1

where d() is the Euclidean distance function and H3
i are the cubic Hermite-polynomials.

Results of the algorithm can be seen in Figure 3.22, 3.23, and 3.18.

3.2.4 Surfaces with multiple branches

The main contribution of this subsection is to extend our previous method in order to handle
surfaces with multiple branches, based on the algorithm developed in [2]. The method presented
here is based on the idea of our prior algorithm, but it is extended to shapes with several branches,
which can help the creation of animation characters or more structured tubular surfaces.

The final input of our method is a rooted tree graph in 3D, where at each node we have
a sphere. The spheres can have different radii. During the modeling phase the graph is built
from one single sequence of edges (spheres) and can be modified in an interactive way, by adding
new branches to the tree and altering the radii and positions of the spheres. In one branch (one
sequence of spheres) the admissible positions of spheres are defined as follows.

Definition 3.4. A sequence of spheres C = {s1, s2, s3, . . . , sn} (n ∈ N) is called admissible
configuration if the following conditions are fulfilled:

• si ⊂
n⋃

j=1,j 6=i

sj , i ∈ {1, 2, . . . , n}

• si ∩ sj = ∅, i, j ∈ {1, 2, . . . , n}, j /∈ {i− 2, i− 1, i, i + 1, i + 2}
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• if si−1 ∩ si+1 6= ∅, then si−1 ∩ si+1 ⊂ si

These conditions can easily be checked by simple computation.
Conditions of adding a new branch to the existing tree are as follows:

• spheres of the new branch have to form an admissible configuration described in Def.3.4

• the first sphere of the new branch has to be one of the spheres of the existing structure

• none of the spheres of the new branch (except, of course the first one) can intersect any of
the other spheres of the existing structure.

These assumptions are natural restrictions in order to avoid intersecting branches and closed
loops, but at the same time the construction involves (i.e. the surface touches) all of the given
spheres. As it is described in [69] the G1 continuity of the surface is guaranteed along the
branches, while at the junctions of the branches it is also assured by the new method as described
in Section 3.2.4. All given spheres are touched along a circle, and the surface does not intersect
the spheres, as it follows from the original algorithm.

This structure is appropriate for an important set of applications, including medical and
biological applications and constructing characters. In theory, our method could handle more
than three neighbors of one single sphere, which would yield junctions with more than two
branches started from the same sphere. But in this case the smoothness of the joining patches
is not always ensured, especially when the curve along which a new branch is connected to the
existing structure has arcs in the surface of two or more existing branches. In Figure 3.33 one
can observe this kind of junctions. The possible extension of the presented method in order to
handle more complicated structures can be the direction of future research.

Figure 3.24. Defined by an ordered set of spheres, the
software ZSpheresr (above) applies subdivided cylinders
and cones, while our method (below) computes a para-
metric surface between the spheres. The given spheres
with the blending pieces (left) and the final, rendered

surfaces (right) can be seen in both methods.

New branches To extend the original method, in this section we provide the algorithm for
adding new branches to the existing structure. The first step is to choose the starting sphere
among the existing spheres and to define a new admissible sequence of spheres by the user. Let
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us denote the starting sphere by si, chosen from the existing branch of spheres ...si−1, si, si+1, ...,
and denote the spheres of the new branch by pij , j = 1, ...,m, where pi1 = si. The new spheres
pij , j = 2, ..., m can be blended by the original algorithm described above, thus the main goal is
to smoothly connect this new branch with the branch of si (see Fig.3.28, where the blue patches
are computed by the original algorithm in both branches, while the new red patch is to connect
the new branch to the original one). Since the original algorithm provides G1 continuous surface
along the branches, it is a natural requirement to produce a G1 connection between the branches
as well. It is also worth mentioning that this method is not symmetric in terms of branches, that
is there is a "parent" branch and "child" branch(es) in each connection, similarly to a rooted
tree graph.

Details of the computation of the connecting (red) patch of the two branches are provided in
the next subsections.

The new touching circle Let us consider three neighbouring spheres si−1, si, si+1 from the
original sequence and assume that we would like to connect a new branch starting at si.

At first we determine a new touching circle on si from where the new branch can start.
For this purpose we apply the basic algorithm for sphere triplets si−1, si, pi2 and si+1, si, pi2,
respectively, to obtain two circles on si, ci1 and ci2 (Figure 3.25).

The new touching circle (let us denote it by c′i) is fitting on the common points of ci1 and
ci2. We can determine its normal vector n′i as the sum of the normalized normal vectors of ci1

and ci2, ni1, ni2, respectively. Actually the plane of c′i is the bisector plane of the planes of ci1

and ci2. In most cases the common points of ci1 and ci2 exist, if not, then we can consider the
plane passing through the center of ci1 and having normal vector n′i. The intersection of this
plane and the sphere pi1 will be the circle c′i in question.

Figure 3.25. Constructing new touching circle (red) for
the joining branch.

Although other methods of creating the new circle may also work well, it is important to
note that we have constructed a new touching circle on si with a method which is simple,
and sensitive to its neighbours. The simplicity is important in order to preserve the real time
computation ability, while the sensitivity is especially advantageous when neighbouring spheres
have drastically different radii. In our practice the method behaved correctly in any admissible
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circumstances.
After this step we can construct a new branch starting from si = pi1 with the help of the

original algorithm, blending the spheres pij , (j = 1, . . . ,m). This way the branch surfaces will
not be connected smoothly, but they will have a sharp intersection.

In the following part we describe how we can achieve a G1 continuous connection of the
branches. The original algorithm is applied only from the second sphere of the new branch (to
the spheres pi2, pi3..., etc.), and a smooth connection patch is created between the sphere pi2

and the original branch (the branch of si). For this purpose we create a boundary curve on the
original branch and the sphere pi2 will be connected to the original branch by a patch which will
touch the original branch along this curve in a G1 continuous way.

Boundary curve for G1 continuous connection At first we determine a point mi on circle
ci which is the original touching circle on the sphere si for the original ("parent") branch. This
point will be the so-called "midpoint" of the closed boundary curve.

To define point mi, let ni denote the normal vector of ci, ||ni|| = 1. We would like to find
vector hi such that

n′i = hi + λ · ni and 〈hi,ni〉 = 0,

where λ ∈ R.
From equation 〈n′i − λ · ni,ni〉 = 0 we can easily calculate the value of λ, so hi can be

determined as hi = n′i − λ · ni. After this step hi can be used to describe vector mi:

mi
.= õi + r̃i · hi

||hi|| .

Practically this is an orthogonal projection of a special representant of n′i to the plane of ci (for

Figure 3.26. Constructing the center of the boundary
curve.

the notations see Figure 3.26).
Now we can define a continuous boundary curve on the blending surface of the original branch

along which the new branch will touch this original branch. It is clear from the computation (see
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Figure 3.26) that mi fits on ci. Let us consider zi, the starting point of the parameterization of
circle ci. Based on the notes of [69] we can determine an angle αi ∈ [0, 2π], such that rotating zi

along the circle ci by αi, we reach the point mi, that is zi(αi) = mi holds.
Now we define the two arcs Li1 and Li2 of the boundary curve. Let us consider the following

arc:
Li1(θ) = H3

0 (t0) zi(αi + θ) + H3
1 (t0) zi+1(αi + θ)+

H3
2 (t0) · p(si) · 2 · d(Mi, zi(αi + θ)) · wi−zi(αi+θ)

‖wi−zi(αi+θ)‖+

H3
3 (t0) · p(si+1) · 2 · d(Mi, zi+1(αi + θ))·

wi+1−zi+1(αi+θ)
‖wi+1−zi+1(αi+θ)‖ ,

where t0 = 4q
π

√
(π

4 )2 − θ2 (based on the equation y =
√

r2 − x2 of a semicircle with radius r and
centered at the origin), θ ∈ [−π

4 , π
4

]
and q ∈ ]0, 1[. Increasing q the boundary curve will run

closer to the neighbouring spheres. This curve will be one arc of the boundary curve between si

and si+1. The second arc is defined from si to si−1 by

Li2(θ) = H3
0 (1− t0) zi−1(αi + θ) + H3

1 (1− t0) zi·
(αi + θ) + H3

2 (1− t0) · p(si−1) · 2 · d(Mi−1, zi−1·
(αi + θ)) · wi−1−zi−1(αi+θ)

‖wi−1−zi−1(αi+θ)‖ + H3
3 (1− t0) · p(si)·

2 · d(Mi−1, zi(αi + θ)) · wi−zi(αi+θ)
‖wi−zi(αi+θ)‖ ,

where t0 and θ has the same value as above. The two arcs of the boundary curve can be seen in
Figure 3.27.

Figure 3.27. The two arcs of the boundary curve, q =
0.3.

As we have mentioned previously, with the help of the basic algorithm and the new touching
circle c′i on sphere si we can determine touching circles on the spheres of the new branch. So to
create a G1 continuous connection from the boundary curve we have to consider its points and
assign endpoints on the touching circle of pi2 to them. Let us denote this circle by ci2.

With the above mentioned technique based on orthogonal projection we can localize a match-
ing point for Li1(0) by projecting vector Li1(0)−mi (the starting point is the center of c′i) onto
the plane of ci2. This point will be the endpoint of the Hermite arc starting at Li1(0). Then with
rotations by angles between 0 and 2π the first part of the blending surface of the new branch
can be constructed from si to pi2 analogously to the basic algorithm (see Figure 3.28).

To compute the tangent vectors at the points of the boundary curve, the tangent plane of
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Figure 3.28. Connection of two branches. Hermite
arcs (isoparametric curves of the patch), starting at the

boundary curve can be seen.

the original surface si(φ, t) has to be computed first. The partial derivatives of the surface are
as follows

∂
∂φsi(φ, t) =H3

0 (t) żi(φ) + H3
1 (t) żi+1(φ)

+H3
2 (t) · v̇i(φ) + H3

3 (t) · v̇i+1(φ)

∂
∂tsi(φ, t) = d

dtH
3
0 (t) zi(φ) + d

dtH
3
1 (t) zi+1(φ)

+ d
dtH

3
2 (t) · vi(φ) + d

dtH
3
3 (t) · vi+1(φ).

The normal vector of the tangent plane will be the cross product of the partial derivatives.
Now we use the described orthogonal projection again to create tangent vectors at each point

of the boundary curve. For this purpose we project orthogonally the vector Li1(θ)−mi onto the
tangent plane at Li1(θ) for each θ ∈ [−π

4 , π
4

]
. The length of the tangent vector is the distance

of the point from the radical plane of the two spheres multiplied by 2.

3.2.5 Results and comparison with other methods

Based on the theoretical results described above, an easy-to-use software tool is provided to create
surfaces and characters by spheres. We used our own C libraries for the required geometrical
calculations and OpenGL for the rendering process. The software is able to generate its output
in EPS format, using the Asymptote vector graphics language. We can define spheres, adjust
their positions and radii, and choose a sphere from where a new branch will start. The blending
surface is computed in real-time, automatically, with several possibilities of modification (colour,
rendering etc.).

As we have mentioned, this kind of tools have already been introduced in computer graphics,
but in several cases our method provides better results, especially in terms of connection of
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branches. This problem of smooth connection is especially noteworthy when branches meet at
small spheres, that is the radius of the sphere pi1 = si is much smaller than the radii of si−1, si+1

and pi2. It can cause unwanted and sometimes unacceptable forms in other softwares, while our
method is not sensitive to the suddenly changed radii of the given spheres. In Figure 3.29 and
3.30 one can observe the problematic issue of connection of branches in the case of ZSpheresr. If
the new branch starts at a relatively small sphere, then the obtained branches can be connected
in an unpredictable manner (Figure 3.30), and/or can have unwanted shape, such as flat triangle-
like shape at the connection (Figure 3.29). In these cases our software provides a more natural
connecting patch. In case of SporeTM, the other alternative of sphere based modeling tools, the
smooth connection of branches is not everywhere solved in a satisfactory way, the surface can
have crisps or sharp edges at this point (see Figure 3.31), while our method can provide smooth
connection of different branches.

Figure 3.29. Given a simple join in ZSpheresr (above
and middle) with small sphere at the connection, the
resulted ZSpheresr surface can have unwanted triangle-
shape flat part at the connection (middle). With similar
input, our method provides more natural connection of

branches (below).
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Figure 3.30. If the radii of spheres are drastically
changed around the connection, ZSpheresr surfaces (left)
can have unpredictable behaviour at the join. Our
method (right) can handle this problem (branch connec-

tion with smoothing).

Figure 3.31. In SporeTM, connection of branches are
less attractively solved (above). Our software provides

smoother (G1 continuous) connection (below).

Our method can also handle several branches of different size and shape, multiple connections,
spheres with neighbours having significantly different radius, as well as neighbours intersecting
each other, see Figure 3.32 and Figure 3.33.
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Figure 3.32. Our presented method can also handle sit-
uations when the radii and distance of the neighbouring
spheres vary significantly, and the neighbouring spheres

can also be intersecting.

Figure 3.33. Our method can handle several branches
and multiple connections as well.
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