Opponensi vélemény

Alpár Alán:
„Funkcionális anatómiai változások Alzheimer-kórban”
című doktori disszertációjáról.

A „Bevezetés” bírálata

Előljáróban tőmör leírást kapunk az Alzheimer-kórról a citoszkeleton patológia felé irányítva az olvasó figyelmét; a patomechanizmus sok szempontból homályos, ezért érdemes transzgenikus állatokat használni. Utalás történik az agyi extracelluláris mátrix szerepére is. Alfejezet foglalkozik az amiloid prekursor fehérje szerkezetével: szerző röviden összefoglalja az amiloid prekursor fehérje normális és patológias jelentőségét. Rövid fejezet foglalkozik a tau fehérje foszforilációjának fontosságával, majd a Ras G-fehérje és a MAPK fehérjescsalád következik. Mindezek bevezetik a neuron-alak és neuron-méret változásaiakat kapcsolatos vizsgálatok ismertetését. Következő alfejezetben az endokannabinoid rendszer szerepét foglalja össze: itt utalás történik az endokannabinoidok lehetséges szerepére a központi idegrendszeri
gyulladásokban. Végül kissé hosszabb bevezető szöveg foglalkozik az agyi extracelluláris matrix kémiai összetételével, és a matrix lehetséges patológiai jelentőségével neurodegenerációban. Miután a szöveg nem könyvfejezet, hanem egy szerettegazó problematikájú disszertáció része, megfelel a célnak, és bevezeti az olvasót a mű problémakörébe.

A „Célkitűzések”

A disszertáció célkitűzései a bevezetés alfejezeteinek megfelelő problémafelvetések. Emellett célkitűzésként szerepel differenciálaltlán neuronpopulációk (neuroblastok) keresése az emlős agyban – egyfajta plaszticitási „megoldásként” a neurodegeneráció ellensúlyozására. Mindeddig a tartalom jól követhető és a szerkesztés következetes.

Az „Anyag és módszer” fejezet

Ebben a fejezetben viszonylag részletesen ismerteti a kutatási módszereket. Megtörténik a transzgenikus egértörzsek rövid jellemzése: előállításuk illetve felhasználásuk bizonyos molekuláris mechanizmusok modellezésére. A vizsgált transzgenikus egerek:

2. PDGF-hAPPWt: szintén humán amiloid prekurzor proteint expresszál. Nincs amiloid lerakódás az állatban.
3. Tg2576: hAPP695 expressziót mutat. Az állatban amiloid plakkok képződnek.

Valamely oknál fogva egy transzgén törzset szerző nem említt ebben a fejezetben (APdE9: a táblázatokban szerepel). Ismertetésre kerülnek a műtéti technikák, a pályakötési módszerek, a neurogenezis vizsgálata és az *in vivo* sejtfeltöltés; a viselkedési tesztek és egyéb, az állatok fizikai aktivitásával és a hibernációval kapcsolatos módszerek. Ismerteti a vezikuláris GABA transzporter antitest *in vivo* felhasználási módszerét is. Ezt az antitestet gátló interneuron populációk elpusztítására használta a deafferentációs kíséletekben. A függelékben lévő táblázatokkal együtt és kiegészítve azt mondhatjuk, hogy a módszertani fejezet kimerítő és alapos. A bírálok követni tudják a kíséletek részleteit, és ellenőrizni lehet a felhasznált reagenseket is.
Az „Eredmények” fejezet

A dendritfa morfológiai változásainak vizsgálata agyékéregben, transzgenikus egerekben

A transzgenikus állatokban, melyekben béta-amiloid lerakódások vannak (Tg2576 egértörzs) mérsékelt dendrit degeneráció is kimutatható. A B6-Py8.9 egértörzsben, mely humán amiloid prekurozor fehérjét expresszál, dendrit hipértrófia mérhető. Miután a dendritfa morfológiai változásai az afferentáció változásait is tükrözőhetik, szerző megvizsgálta az axonterminálisok eloszlását a kérdéses transzgenikus állatokban. Nem talált igazán szignifikáns változást (a cholinergic végződések mérsékelt növekedést mutattak). Ezért megvizsgálta azt, hogy műtéti deaferentációval milyen dendritikus elváltozások következnek be. A dendrit degenerációt mutató egértörzsben elvégzett deaferentáció (vibrissa eltávolítás) súlyosítja a dendrit degenerációt. A dendrit degenerációt mérsékelte, ha az állatok rendszeresen többet mozogtak (ketrecükbe műköskeretek helyeztek). Ezek az eredmények összecsengenek a klinikai megfigyelésekkel.

Hibernáció hatása a neuron morfológiára és a memóriára

Miután hibernáció során olyan reverzibilis molekuláris változások történnek (tau protein hiperfoszforiláció), melyek az Alzheimer kórban irreverzibiliszen zajlanak, szerző a hibernáció neuromorfológiai és neurokémiai jellemzőit vette göröcső alá. Szíria aranyhőrcsög hippocampus vizsgálata hibernáció során nem eredményezett értékelhető-szignifikáns-, illetve az Alzheimer kórban értelmezhető eredményeket. Ebben a fejezetben az ábrák minősége olyan rossz, hogy opponens bírálata során csak a szövegre és a grafikonokra tudott hagyatkozni.

A p21H-Ras fehérje lehetséges szerepének vizsgálata transzgenikus egérben

A transzgenikus állatok neuronjai az ontogenezis vége felé (P14) kezdik magas szinten expresszálni a p21H-Ras fehérjét, mely a neurotöfín jelátviteli mechanizmosokban vesz részt. Az állatok agykérgi volumene szignifikáns növekedést mutat. Piramissejtejek nagyobbak, a dendritvek vastagabbak, a dendrittülés kék száma magasabb a vad típusú kontrollokéhoz képest. A piramissejteken végződő afferens axonok száma is növekszik, és a piramissejtek igen jól reagálnak a fizikai aktivitásra. A transzgenikus állattörzs jellemzése (feltehetően) bizonyítja a
neurotrofikus jelátviteli utak fontosságát az agyvégtartományokban és neuronjainak funkciója
szempontjából - egyben felveti a lehetőségeit annak, hogy a neurodegenerációt ebből az
aspektusból meg lehetne előzni. A fejezetben szép és demonstratív ábrák vannak.

Az endokannabinoid rendszer változásai Alzheimer-kórban

Ez a fejezet humán minták analíziséről szól. A minták diagnosztizált betegekből és kontrollként
használt tünetmentes elhunytakból származnak. A receptorok nem mutattak szignifikáns
változást. A bontóenzimek azonban megváltoztatták lokalizációjukat: a beteg neuronokból
mikroglia sejtekbe kerülték át. A fejezetben szép és demonstratív ábrák látunk.

A sejtproliferáció megfigyelése és kapcsolata a neurodegenerációval

Szerzői sün agyban vizsgálta a BrdU pozitív sejtek számát és eloszlását – az életkor függvényében
jelentős számú osztódó sejttet talált. Ezek a referencia-kísérletek a humán amiloid prekurzor
fehérje neurogenetikus hatásának vizsgálatához: ezen utóbbi kísérleteket a fehérjét erőszen
expresszáló PDGF-HAPPWt transzgenikus egerekben végezte. Kísérleteiben beigazolódott, hogy
ingergazdag környezet hatására a fehérje serkenti a sejtproliferációt. Ezek az eredmények
összhangban vannak az irodalmi adatokkal.

Differenciálatlan neuronok az emberi szaglórendszerben

A következőkben a tractus olfactorius secretagogen-tartalmú sejteinek leírása következik. Ezek a
sejtek neuronszerű sejtek, amelyek feltehetően kevésbé differenciáltak és szerepük lehet az
Alzheimer-kórra jellemző szaglási defektus kialakulásában. Szerző megvizsgálta a sejtek
markereit, a sejtek eloszlását emberi agyban és transzgenikus egerekben. Nem talált jellemző
eváltozásokat, amiket oki kapcsolatba lehetett volna hozni a betegséggel. A sejtek eloszlását a
plakkok sem befolyásolják (APdE9 transzgenikus egér).

Az extracelluláris mátrix szerepe/változásai Alzheimer-kórban

Szerző részletesen leírja az extracelluláris mátrix kiterjesztését és lokalizációját házicirke,
fehérpatkány és ember agyában. Fény- és elektronmikroszkópos képekkel illusztrája a leírásokat
– sajnálatos, hogy itt is előfordulnak rossz minőségű mikrofotógrafiák (69., 70., 73., 78. ábrák),
melyek semmiféle információt nem közvetítenek. Vannak azonban szép és informatív ábrák is.
Az Alzheimer-kór illetve transzgenikus egér (plakkokkal) nem mutat igazán szignifikáns
eltéréseket ebben a kérdésben sem.
A „Megbeszélés”

Értékes eredmények születtek a p21Ras expresszió vizsgálata során az agykéreg morfológiaja tekintetében. A p21Ras génzabályozott mennyiségi növekedése az agykéreg volumenét szignifikánsan megnöveli, a piramissejteket szintén (beleértve a dendritiüske-denzitást) – ami önmagában is érdekes alternatívája (lehetséges ellentételezése) a neurodegenerációból. Amint azt a szerző említ, humán mintákon is detekálható a p21Ras jelátvívó rendszer aktivációja Alzheimer-kórban. Így a szerző által a transzgén állatban leírt elváltozások használhatók lehetnek az patogenezis magyarázatában.

Érdekesek a mikrogliális endokannabinoid metabolizmus változásaival kapcsolatos megfigyelések, melyek bizonyítják a mikroglia metabolizmus szignifikáns erősödését – és ahogyan szerző fogalmaz a neuron-glia interakciók károsodását Alzheimer-kórban. Ezek a vizsgálatok egy valódi, humán neuropatológiai jelenséget írtak le, amely egészen biztosan belekerül majd az Alzheimer-kór neuropatológiai leírásaiba.

A sejtproliferációval kapcsolatos vizsgálatok leíró jellegűek, és precitizálunk miatt mindenki önmagában érdekesek lennén az a pont azonban nem sikerült kapcsolatot találni a neurodegenerációval. Hasonlóképpen, nagyon szép és alapos a secretagigin pozitív sejtek leírása humán szaglórendszerben – az eredmények azonban itt sem mutatnak szoros kapcsolatot az Alzheimer-kórral.

Mégis, ebből a hatalmas adathalmazból lehetett volna egy koncepciózusabb diszkusszió: sorra lehetett volna venni (kritikai szemszögölő) azokat a morfológiai-neurokémiai változásokat (akár
transzgén állatban, akár humán agyban voltak megfigyelhetők), amelyek az Alzheimer-kór neuropatológiájához szorosabban kapcsolódnak, és így valószínűsíthetően a beteg humán agyvelőben is lejátszódnak. Hiányzik egy koncepciózus molekuláris biológiai összefoglalás is – amíg a bevezetésben részletes molekula-leírások vannak, a diszkusszióban már csak irodalmi hivatkozásokat találunk; nincs (pedig az eredmények alapján lehetne) molekuláris koncepció a prekurzor fehérje, vagy a Ras, vagy az endocannabinoidok, vagy a mátrix molekulák patogenetikai szerepét illetően.

Opponens a következő eredményeket ismeri el a disszertáció eredeti megállapításaiként:

1. Szerző kimutatta és morfometriai méréseivel bizonyította, hogy az amiloid prekurzor proteint túlzott mértékben expresszió során levágtott, egértörők számára elsődlegesen az állatok mutatnak dendrit degenerációt, amelyekben a mutáció következtében plakkok képződnek. Az APP hatása inkább trofikus és neuroprotektív.

2. Szerző kimutatta, hogy a hibernáció során (valószínűleg az intracelluláris transzport lassulása miatt) a piramisztájú dendritek átménten a trófia és a szinapszisok számának vélhető csökkentése jelentkezik. Mindezt a tau-féhérje hiperfosforilálója kíséri. Nem fogadjuk el szerző azon állítását, hogy ez a jelenség az Alzheimer-kórhoz hasonló (de általában) állapotot hoz létre.

3. Szerző kimutatta, hogy a p21 Ras túlzott neuronális expressziója jellegzetes morfológiai változásokkal jár, amelyek az agykéreg „hipertrófiáját” jelentik. A sejtek, a dendritek és a dendrittűskék morfológiai változásait precíz morfometriai adatokkal támasztotta alá.

4. Humán agykérgi mintákon figyelte meg azt, hogy Alzheimer-kórban a 2-arachidonoil- lactorol lebontásáért felelős enzim dendritikus koncentrációja csökken, és az enzim mikroglia sejtekben jelenik meg.

Szerző a kutatási módszerek hatalmas arzenáljával dolgozik. Morfometriai megfigyelései fontos adatokat szolgáltatnak a neuronális plaszticitás és neurodegeneráció jobb megismeréséhez. Megfigyelései mellett megpróbálja összekapcsolni a molekuláris mechanizmusokat és a mikroszkópból látható képét, amely törekvés (és a minőségi megvalósítás) mindenképpen a neurobiológia jelenlegi élvonalába sorolja a vizsgálatait és eredményeit. Eredményei

Szeged, 2016. január 14.

Dr. habil. Mihály András

az MTA doktora
tanszékvezető egyetemi tanár