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Abstract

In this paper, we present an approach to improve detectors used in med-
ical image processing by fine-tuning their parameters for a certain dataset.
The proposed algorithm uses a stochastic search algorithm to deal with large
search spaces. We investigate the effectiveness of this approach by evaluating
it on an actual clinical application. Namely, we present promising results
with outperforming four state-of-the-art algorithms used for the detection of
the center of the sharp vision (macula) in digital fundus images.

Keywords: biomedical image processing, simulated annealing, learning and
adaptive systems

1 Introduction

Diabetic Retinopathy (DR) is the most common cause of blindness in the developed
countries. Nowadays, the automatic screening of DR received much attention in
the medical imaging community [1], [7], [9], since replacing a resource-demanding
and expensive manual screening is a very challenging task. Automatic screening
is based on the analysis of retinal images taken at eye hospitals. One class of the
difficulties originates from the use of different kinds of retinal images, which leads to
varying performance in the anatomy or lesion detection processes. Some detectors
are based on machine learning, while others consider non-training approaches.

In this paper, we present a technique to improve a detection algorithm on retinal
images via a learning-based approach. The idea behind this technique is to fine-
tune the parameter setup for a certain detector. Since the selection of the optimal
parameter setup usually traverses a large search space, we decided to use a stochas-
tic approach, simulated annealing for this task. To demonstrate the effectiveness
of this technique, we present a novel macula detector and show that the proposed
framework improves detection performance. The contribution in this particular
area is justified by the fact that the detection of macula involves the lowest number
of reported works in the field of DR screening research [16]. A comparative analysis
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reveals that our tuned algorithm outperforms other state-of-the-art algorithms in
the field.

The main contributions of the paper are organized into the following sections:

1. A stochastic approach to improve detector performance is introduced. We
also discuss the advantages of using simulated annealing over stochastic hill
climbing (Section 2).

2. We show how to adopt the simulated annealing based search method to im-
prove the performance of the proposed macula detector (Section 3).

3. A novel macula detector is proposed, which, in addition to its good perfor-
mance, can be easily fine-tuned by a search algorithm (Section 3.1).

4. We define an error measure to efficiently characterize macula detection per-
formance (Section 3.3).

5. We evaluate the performance of our macula detector using the proposed tun-
ing also in comparison with four state-of-the-art algorithms (Section 4).

2 A stochastic approach to improve detector per-
formance

In this section, we present our approach to select an optimal parameter setup for a
detector algorithm. For this task, we have to prepare for a large search space, since
these algorithms may operate with several parameters. In literature, stochastic hill
climbing is often recommended [10] [13]. Stochastic hill climbing is based on the
idea that using random jumps between the neighbouring elements of the search
space converges faster to the extrema than using exhaustive enumerations. An
element is accepted, if it provides better result than the current extremum. This
approach is an effective solution for many problems, but it can get stuck in a local
extrema in search spaces with many peaks.

To overcome this difficulty, we used a simulated annealing-based method. Sim-
ulated annealing [5] avoids getting stuck in local extrema by using a random ac-
ceptance function for rejected elements. That is, if an element does not provide
a better result than the current one, it is still accepted if the acceptance function
allows that. See Figure 1 for a visual comparison of hill climbing and simulated
annealing.

The formal description of the algorithm can be given as follows:

Algorithm 1.: Parameter setup selection by simulated annealing.

Input:

• An initial temperature T ∈ R.

• A minimal temperature Tmin ∈ R.
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Figure 1: The path of the hill climbing and the simulated annealing algorithm is
represented with gray and black colors, respectively. While hill climbing reaches
only the local optimum, simulated annealing can continue towards the global opti-
mum by using chaotic jumps.

• A temperature change q ∈ R with (0 ≤ q ≤ 1).

• A search space S ⊂ Rn with s ∈ S is a parameter setup.

• A function r (X), which chooses a random element x from a set X.

• A function accept : R4 → {true, false}, which is defined as the follows:

accept (e, ei, T, y) =

{
true, if exp

(
e−ei
T

)
> y,

false, otherwise.

• An energy function E : S → R.

Output: soptimal ∈ S, where E (soptimal) = min
s∈S

E (s). That is, soptimal is the

parameter setup minimizing the energy function E.

1. s← r(S)
2. e← E (s)
3. S ← S − {s}
4. while S 6= ∅ or T < Tmin do
5. si ← r(S)
6. ei ← E (si)
7. S ← S − {si}
8. if ei < e then
9. s← si
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10. e← ei
11. T ← T · q
12. else
13. y ← r (R)
14. if accept (e, ei, T, y) = true then
15. s← si
16. e← ei
17. T ← T · q
18. end if
19. end if
20. end while
21. return s

3 Using the proposed approach: an example

In this section, we present an example to demonstrate the power of the proposed
method. For this task, we chose a novel approach for macula detection in retinal
images, which algorithm requires only two parameter to be optimized. Our pro-
posed approach for obtaining the optimal parameter setup can be adapted to any
similar problem, as well.

3.1 Macula detection

The macula is the central region of sharp vision in the human eye, with its center
referred to as the fovea (see Figure 2). Any lesions (e.g. microaneurysms) which
appear here can lead to severe loss of vision. Therefore, the efficient detection of
the macula is essential in an automatic screening system for diabetic retinopathy.

3.2 A novel algorithm for macula detection

In this section, we present a novel approach to detect macula in a retinal image. As
we can see later on, this algorithm outperforms state-of-the-art macula detectors
with the use of the proposed framework for optimal parameter setup.

The proposed macula detection algorithm can be formulated as follows:

Algorithm 2.: A novel macula detector

Input:

• A digital retinal image I in 24 bit RGB format.

• A parameter q ∈ R with 0 ≤ q ≤ 1 to adjust of the mask size in the median
filtering step.

• A threshold t ∈ [−255, . . . , 255].



A Stochastic Approach to Improve Macula Detection in Retinal Images 9

Figure 2: A sample fundus image with the main anatomical parts annotated.

Output: An image containing the macula region of the eye.

1. Extract the green intensity channel G from I.

2. Let A = dMin (width (I) , height (I)) · qe.

3. Produce image M with the same size as G by applying median filtering [12]
on G with a mask size A×A.

4. Create the difference image D = G−M .

5. Produce a binary image B by assigning all pixels with larger intensity than t
in the D to the foreground, while the rest to its background.

6. Select the largest binary component to locate the macula.

The results after each step of the algorithm can also be observed in Figure 3.
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(a) (b)

(c) (d)

Figure 3: Steps of the proposed macula detection: (a) The green channel of the
input image. (b) The result of the median filtering. (c) The difference image. (d)
The binary image after thresholding and largest component selection.

3.3 Error measurement of macula detectors

To select the optimal parameter setup for the above detector algorithm, we need
a proper energy function to be minimized. An obvious choice for this task is to
minimize the distance of the centroid of the macula found by the detector and
the manually selected center of the macula for each image in a dataset. To avoid
overtraining, we also take into account the distance from the optic disc (see Figure
2), as the macula and the optic disc are spatially constrained [11].

Thus, we define the following energy function for this problem:

E =
∑

I∈DS

d (Malg (I) ,Mhm (I)) +
∑

I∈DS

|d (Malg (I) , O)−MOavg|,

where
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• DS is the dataset,

• d denotes the 2D Euclidean distance,

• Malg is the centroid pixel of the detected macula,

• Mhm is the manually selected macula center,

• O is the manually selected optic disc center,

• MOavg is the average Euclidean distance of the manually selected macula
and optic disc center for the dataset DS.

4 Comparative results

We evaluate our method by comparing it with four other state-of-the-art macula
detectors (Section 4.1) on different datasets (Section 4.2). As our results will show,
the novel macula detector outperforms the others after finding its optimal param-
eter setup.

4.1 State-of-the-art macula detection algorithms

In this section, we list four macula detection algorithms, which are involved in our
comparative analysis. The parameters of the algorithms were set according to the
corresponding recommendations in literature.

4.1.1 Petsatodis et al. [8]

In [8] a region of interest (ROI) is defined to process macula detection. A Gaussian
low-pass filter is applied to smooth the image. The statistical mean and standard
deviation of the ROI area are used to compute a threshold for segmentation to
get binary objects. The object that is located nearest to the center of the ROI is
labelled as macula. Its center of mass is considered to be the center of the macula.
However, we did some modification to this approach, because it is not mentioned
how this ROI is defined; therefore we applied the smoothing to the whole image
using a large kernel (70 × 70 pixels with σ = 10) so that vascular network and
small patches do not interfere in detection. Then, an iterative thresholding process
is launched to generate a set of binary images corresponding to different threshold
values. In each binary image, the component satisfying the area and distance from
the center constraints are identified, and the component found nearest to the center
with minimum area is marked as macula.

4.1.2 Sekhar et al. [11]

In [11] a region of interest (ROI) for macula is defined regarding its spatial rela-
tionship to the optic disc. That is the portion of a sector subtended at the center of
the optic disc by an angle of 30 ◦ above and below the line between this center and
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the center of the retinal image disc. The macula is identified within this ROI by
iteratively applying a threshold, and then applying morphological opening (erosion
followed by dilation) on the resulting blob. The value of the threshold parameter
is selected such that the area of the smoothed macula region is not more than 80%
of that of the detected optic disc. The fovea is simply determined as the centroid
of this blob.

4.1.3 Fleming et al. [2]

Fleming et al. [2] proposed to identify the macular region based on the informa-
tion of the temporal arcade and OD center. First, the arcade is found by using
semielliptical templates. Next, the optic disc is detected by using Hough trans-
formation with circular templates having diameters from 0.7 to 1.25 OD diameter
(DD). Finally, the fovea was detected by finding the maximum correlation coeffi-
cient between the image and a foveal model. The search was restricted to a circular
region with diameter 1.6 DD centered on a point that is 2.4 DD from the optic
disc and on a line between the detected optic disc and the center of the semi-ellipse
fitted to the temporal arcades.

4.1.4 Zana et al. [17]

Zana et al. [17] presented a region merging algorithm based on watershed cell
decomposition and morphological operations for macula recognition. After noise
removal, morphological closing followed by opening is performed to remove the
small dark holes and white spots. A watershed based decomposition of the gradient
image into cells is done, and the cell with darkest gray level inside the macula is
selected as the first step of a merging algorithm. A complex criterion based on the
gray values and of edges of the filtered image is calculated to merge the cells of
the macula, while rejecting perifoveal inter-capillary zones in order to produce the
contour of the macula.

4.2 Datasets

We have tested our approach on 199 images from three publicly available data
sources: DiaretDB0 [3], DiaretDB1 [4] and DRIVE [15]. The characteristic prop-
erties of these datasets can be seen in Table 1. We have selected the optimal
parameter setup for each dataset using a separate training subset of a total of 60
images (20 images from each dataset). For each dataset, the ground truth are used
only for parameter selection.

4.3 Results

Table 2 shows the selected optimal parameters for each dataset. The size param-
eter q and the threshold parameter t have been found by the proposed stochastic
approach. Each dataset performed optimally using a different parameter setup.
We have evaluated our approach in two aspects [6]: whether the detected macula



A Stochastic Approach to Improve Macula Detection in Retinal Images 13

Dataset Images Normal DR FOV Resolution
DiaretDB0 130 20 110 50 1500x1152
DiaretDB1 89 5 84 50 1500x1152

DRIVE 40 33 7 45 768x584

Table 1: Properties of the datasets.

Dataset q t
DiaretDB0 0.6 0
DiaretDB1 0.6 5

Drive 0.7 0

Table 2: Parameters selected by the proposed algorithm for macula detection.

center falls into the 0.5DD (Optic Disc Diameter) distance of the manually selected
macula center and we also measured the Euclidean distance of them (calculated on
normalized images). Table 3 and 4 contain the quantitative results using these mea-
sures, respectively. We disclose the results for each macula detector evaluated in all
dataset. For the more straight-forward comparison, we also calculated the simple
average of these performance values. In the terms of the first measure, the use of
the proposed algorithm on the novel macula detector resulted in a 85% average
accuracy, while the second best method only earned 77%. However, in the terms
Euclidean error it is only third in the comparison, mainly because of its difficulties
on the DRIVE database.

Dataset Petsatodis Sekhar Fleming Zana Proposed
DiaretDB0 68% 72% 85% 63% 86%
DiaretDB1 62% 76% 79% 71% 92%

DRIVE 66% 76% 53% 82% 68%
Average 66% 74% 77% 69% 85%

Table 3: Percentage of detected macula centers falling in the correct region.

5 Conclusion

In this paper, we have presented an approach to improve detection algorithms by
fine-tuning their parameters. For this task, we have used a simulated annealing-
based search algorithm. As our experiments have proved, this approach is capable
of improving a detector that outperforms state-of-the-art algorithms in the field of
macula detectors. As a future work, the selection of different preprocessing methods
for the dataset can further improve the detection of the macula. In addition, both
simulated annealing [14] and the proposed detector could be implemented in parallel
to reduce their computational needs.
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Dataset Petsatodis Sekhar Fleming Zana Proposed
DiaretDB0 26.59 26.85 37.82 24.11 24.02
DiaretDB1 26.32 27.45 35.67 24.77 25.72

DRIVE 18.15 26.20 37.29 20.85 30.25
Average 23.69 26.83 36.92 23.24 26.75

Table 4: Average euclidean distance of the detected macula centers from the man-
ually selected ones.

Acknowledgement

This work was supported in part by the János Bolyai grant of the Hungarian
Academy of Sciences, and by the TECH08-2 project DRSCREEN - Developing
a computer based image processing system for diabetic retinopathy screening of
the National Office for Research and Technology of Hungary (contract no.: OM-
00194/2008, OM-00195/2008, OM-00196/2008). We also acknowledge the Moore-
fields Eye Hospital, London for their clinical support. We are thankful to Brigitta
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ABSTRACT

The proper segmentation of the vascular system of the retina
currently attracts wide interest. As a precious outcome, a suc-
cessful segmentation may lead to the improvement of auto-
matic screening systems. Namely, the detection of the ves-
sels helps the localization of other anatomical parts and le-
sions besides the vascular disorders. In this paper, we rec-
ommend a novel approach for the segmentation of the vascu-
lar system in retina images, based on Hidden Markov Ran-
dom Fields (HMRF). We extend the optimization problem of
HMRF models considering the tangent vector field of the im-
age to enhance the connectivity of the vascular system con-
sisting of elongated structures. To enhance the probability es-
timation during the solution of the Hidden Markov problem,
the Averaged One-Dependence Estimator (AODE) is used in-
stead of the commonly used naive Bayes estimators, since
AODE uses a weaker assumption than total independence of
features. The advantages of our method is discussed through
a quantitative analysis on a publicly available database.

Index Terms— averaged one-dependence estimator, hid-
den markov fields, retina, vessel

1. INTRODUCTION

Algorithms for segmenting the vascular system of the retina
have high importance in automatic systems for detecting dis-
eases (such as diabetic retinopathy) based on digital fundus
images. One of the most reliably detectable anatomical parts
even for low quality images is the vascular system, because
there are no similar lesions on the retina. Using an accu-
rately segmented vascular system, we have better chances to
locate other anatomical parts (e.g. optic disc and fovea) of
the retina and explore the disorders of the vascular system
itself. The extraction of the vascular system is a rather com-
plex task, knowing only that the vascular system has lower
intensity than its background and the widths of the vessels
are varying. Motivated by its importance, several vessel seg-
mentation approaches can be found in the literature including
intensity edges [1], adaptive thresholding [2], region growing

[3], mathematical morphology [4], machine learning [5], en-
semble learning [6]. In this paper we propose a novel vascu-
lature segmentation approach based on Hidden Markov Ran-
dom Fields (HMRF). HMRF is a popular approach for the
statistical segmentation of images. The segmentation process
means the maximization of an energy functional defined on
the set of all possible labelings of the image, where the global
maximum of the energy functional belongs to the best seg-
mentation according to the image model. HMRF-based vas-
cular system extraction of the retina has already been sug-
gested in [7]. This method considers angiographic retinal im-
ages as input, where the appearance of the vessel system is
much more defined than in normal fundus images. However,
the usage of angiography is not allowed for the state-of-the-art
automatic screening systems and the method presented in [7]
gives poor results fo normal retinal images. In the commonly
used form of the HMRF based segmentation, the background
and foreground probability estimations are performed by con-
inuous naive Bayesian estimation[8], based on the continuous
model extracted from the training data. In the segmentation
of color images this approach performs well, however using
features extracted from intensity images, like the green chan-
nel of retinal images, the assumption that the distribution of
features is Gaussian or Mixture of Gaussians and the coor-
dinates of the feature vectors are independent, seems to be
too strong, smoothing the boundaries of classes in the fea-
ture space. To overcome this problem, we have integrated
the averaged one-dependence estimator (AODE) [9] into our
segmentation model, which does not have the assumption of
Gaussian feature distributions and total independence of fea-
ture coordinates. The use of AODE estimators has not yet
been reported in HMRF segmentation models. To enhance
the segmentation of thin vessels, we have trained the AODE
model for three classes: background, thin vessels and thick
vessels, but during the segmentation, the latter two classes
are considered to be one class. Since HMRF is a general ap-
proach that does not consider orientation information at the
pixels in its basic formulation, we integrate a corresponding
new term into the model. However, instead of following the
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classic way with using the local gradients directly, first we
determine the structure tensor field from them. Then, the ten-
sor field is smoothed and weighted and the local tangents are
estimated as the eigenvectors corresponding to the smaller
eigenvalues of the tensors. This approach leads to a more
reliable estimation of the vessel directions that helps to pre-
serve the connectivity of the vascular system during segmen-
tation. The rest of the paper is organized as follows. Section
2 describes the steps of our proposed method. In Section 3
we exhibit our experimental results on the publicly available
database DRIVE [10] and compare the results to a state-of-
the-art method. Finally in Section 4, some conclusions are
drawn.

2. THE PROPOSEDMETHOD

The input of our algorithm is the RGB retina image, the
output is a label image containing two labels: vessel, back-
ground. For the training of the segmentation model, the
DRIVE database is prepared by applying simple morpholog-
ical operators to isolate thick and thin vessels. In Figure 1 a
sample from the training database, the corresponding manu-
ally labeled mask and the extracted thick and thin vessels can
be seen, respectively.

(a) (b) (c) (d)

Fig. 1. Retina image from the training set (a), its standard
manual labeling (b), the extracted thin (c) and thick (d) vessels

Let I ∈ [0..255]m×n be an intensity image (in our case the
green channel, since mainly the green channel contains infor-
mation about the vascular system) and L ∈ {fg, bg}m×n a
possible labeling of the input image. The HMRF based seg-
mentation means the maximization of the functional

E(I, L) =
∑
i,j

P (L(i, j)|I(i, j)) +
∑
i,j

CD(L, i, j), (1)

where P is the conditional probability of the (i, j) pixel be-
longing to the L(i, j) class andCD(L, i, j)measures the con-
nectivity of the labeling in the (i, j) position. The maximiza-
tion of the functional is performed by simulated annealing.

2.1. Probability term

The first term of the energy functionalE estimates the proba-
bility of L being the most appropriate labeling of I . The more
accurate probability estimation we use, the more accurate the

segmentation becomes. Since the distribution of the features
we use to characterize the pixels and their neighborhood usu-
ally does not follow Gaussian distribution, we have chosen
discrete classifiers. The drawback of the commonly used dis-
crete naive Bayesian classifier is that it considers the corre-
lation of one feature and the class label independently from
other features, that is it assumes the total independence of
features. The averaged one-dependence estimator (AODE),
published in 2002 [9] considers the joint probabilities of every
pair of features, as well. Therefore, the probability estimation
becomes more accurate, but the computation demand is still a
fraction of that of multivariate Bayesian classification.

Let Y be the set of class labels and X ⊂ Z
d be a set of d

dimensional discrete feature vectors with

{xi|x ∈ X}
⋂

{xj |x ∈ X} = ∅, 1 ≤ i, j ≤ d, i �= j. (2)

The training of the AODE classifier means the maintenance
of a two dimensional P̂ (y, xi) and a three dimensional
P̂ (y, xi, xj) joint frequency table. The probability of the
d-dimensional feature vector x̂ belonging to the class y can
be estimated by the following formula:

P̂ (y|x̂) =

∑
i P̂ (y, x̂i)

∏
j P̂ (x̂j |y, x̂i)∑

y′∈Y

∑
i P̂ (y′, x̂i)

∏
j P̂ (x̂j |y′, x̂i)

. (3)

(a) (b)

(c) (d)

Fig. 2. Test image (a), standard manual segmentation (b),
orientation field (c), HMRF-segmentation (d)
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2.2. Connectivity term

The connectivity term of the HMRF optimization problem
tries to quantitatively characterize the connectivity of the la-
beling to avoid the fragmented segmentation results based on
the probability term only. In the classic model of HMRF, 4-
connectivity is preferred:

C(L, i, j) = −(d(Li,j , Li+1,j) + d(Li,j , Li−1,j)+
d(Li,j , Li,j+1) + d(Li,j , Li,j−1)) ∗ β,

(4)
where d(l1, l2) = 1 if the l1 and l2 labels are equivalent. Oth-
erwise, d(l1, l2) = 0. β is a penalty parameter of the objec-
tive functional E, used to control the connectivity property.
Since thin vessels have fine structure of 1 pixel width, this
commonly used connectivity term is a rough constraint on the
final segmentation. To enhance this component, we have de-
veloped the direction dependent connectivity termCD , where
the connectivity is examined and penalized only in the di-
rection of the strongest tangents in the neighborhood of each
pixel (i, j):

CD(L, i, j) = −(d(Li,j , Li+tx(I,i,j),j+ty(I,i,j))+
d(Li,j , Li−tx(I,i,j),j−ty(I,i,j)) ∗ β,

(5)
where tx(I, i, j) and ty(I, i, j) are the estimation of the x and
y components of the strongest tangent in the local neighbor-
hood of (i, j), respectively:

tx(I, i, j) =

{
1, if A(I)i,j < 3∗π

8 or A(I)i,j > 5∗π
8 ,

0, otherwise,
(6)

ty(I, i, j) =

{
1, if A(I)i,j > π

8 and A(I)i,j < 7∗π
8 ,

0, otherwise,
(7)

where A(I) is the estimation of the main tangent angels in
each pixel (i, j) of I . For the estimation of A, we have com-
puted the structure tensor field STF of the image I , assigning
a 2× 2 sized matrix to each pixel:

STFi,j =

[
G2

xi,j
Gxi,j

∗Gyi,j

Gxi,j
∗Gyi,j

G2
yi,j

]
, (8)

whereGxi,j
andGyi,j

are the respective x and y components
of the gradient at pixel (i, j), estimated by the commonly
used Sobel-operators. The tensor field is then weighted by
the edge magnitudes and convolved by a Gaussian mask to
provide smooth estimates:

SFTsmoothedi,j
= G(σ, k) ∗ (Ti,j(G

2
xi,j

+G2
yi,j

)
μ

2 ). (9)

This step is similar to the step of smoothing the orientation
information in the scale-invariant feature transform (SIFT).
Using this smoothed tensor field the estimation of object tan-
gent directions comes as

A(I)i,j = tan−1

(
Exi,j

Eyi,j

)
, (10)

whereE is the vector field containing the eigenvector belong-
ing to the smallest eigenvalue of SFT , elementwise. In Fig-
ure 2, one test image and the orientation field can be seen, the
latter one represented by spikes.

(a) (b)

(c) (d)

Fig. 3. Convolution based MLSF (a), correlation based
MLSF, matched Gabor filter magnitude (c), adaptive local
contrast enhancement (d)

3. RESULTS

The proposed method is trained on the training set and tested
on the testing set of the publicly available DRIVE database.
In the training phase, 200 features (eccentricity, invariant im-
age moments, central moments, matched line segment filters
using convolution and correlation, matched Gabor filters, and
the result of several contrast enhancement methods with var-
ious parametrizations) have been extracted for each pixel in
the database and after forward feature subset selection, the fi-
nal AODE classifier is trained on the features providing the
best accuracy (in our case matched line segment filters using
correlation and convolution, Gabor filters and the result of the
adaptive local contrast enhancement with three parameteri-
zation). In Figure 3, four feature images of the six selected
features can be seen. To enhance the recognition of thin struc-
tures, we have used three classes in the training process, but in
the segmentation process the thin and thick vessel labels are
considered to be equivalent. Using only the AODE classifier
the accuracy became 93.7%, but the result is noisy. Keeping
only the largest connected component, the accuracy decreases
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to 85.3%. See Figure 2. Using the HMRF-based segmen-
tation with orientation estimation and directional connectiv-
ity term, the result becomes less noisy and after extracting
the largest connected component, the accuracy increases to
91.2%. The specificity of the HMRF-based segmentation be-
comes 89.8% alghough several thin vessels are not labeled on
the manually segmented images but labeled by our method.
In Figure 4 one part of the same test image is highlighted, in
which the thin and low contrast vessel found by our method
is not labeled in the manual annotation available as part of the
DRIVE database. The state-of-the-art method published by
Oost et al. [6] reached 88.5% accuracy and 93.6% specificity,
on the same database. See Figure 2 for the standard manual
labeling and the HMRF segmentation of a test image.

(a) (b) (c)

Fig. 4. A really thin and low contrast vessel on the test image
(a), its standard manual labeling (b), and the segmentation of
the proposed method.

4. SUMMARY

The proposed method delegates several new approaches into
the field of segmentation of vascular system in retinal images.
In the method we utilize the powerful AODE classifier which
does not use the assumption of Gaussian distribution of fea-
tures like many other classifiers and also weakens the strong
assumption of naive Bayesian classifiers, i.e. the features are
independent from each other. To increase the connectivity of
the final segmentation, the classic HMRF model is extended
with a direction dependent connectivity term. To increase ac-
curacy, in the training database the thin and thick vessels are
distinguished, but in the segmentation process, when the con-
nectivity is examined, both of them is considered belonging
to the same class. The overall method is straightforward, in-
creasing the variety of extracted features, the accuracy and
specificity of the segmentation may be increased further.
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ABSTRACT 
 
Retinal image analysis is currently a very vivid field in 
biomedical image analysis. One of the most challenging 
tasks is the reliable automatic detection of microaneurysms 
(MAs). Computer systems that aid the automatic detection 
of diabetic retinopathy (DR) greatly rely on MA detection. 
In this paper, we present a method to construct an MA score 
map, from which the final MAs can be extracted by simple 
thresholding for a binary output, or by considering all the 
regional maxima to obtain probability scores. In contrary to 
most of the currently available MA detectors, the proposed 
one does not use any supervised training and classification. 
However, it is still competitive in the field, with a prominent 
performance in the detection of MAs close to the 
vasculature, regarding the state-of-the-art methods. The 
algorithm has been evaluated in a publicly available online 
challenge. 
 

Index Terms— Biomedical image processing, pattern 
recognition, microaneurysm detection, intensity profile  
 

1. INTRODUCTION 

Automated analysis of retinal (fundus) images has become a 
quite active field among ophthalmologists and researchers in 
digital image processing. One of the most important 
motivations is the need for an effective computer-aided 
diagnostic (CAD) system to recognize diabetic retinopathy 

(DR). DR is the damage of the retina caused by diabetes. It 
is a sight-threatening disease that develops in most of the 
patients with long-standing illness. An automated DR 
screening system would be a great assist in the processes of 
diagnosing and progression tracking. Currently, these tasks 
are done by human graders who categorize each image 
manually according to the diagnosis protocol. 

The presence of microaneurysms (MAs) in the retina is 
the earliest symptom of retinopathy, thus their reliable 
detection is essential in an automatic DR screening system. 
MAs are circular dark spots, whose diameters are less than 
the diameter of the major optic veins. Figure 1 shows a 
retinal image with an MA marked. In this paper, we present 
a method for retinal MA detection, which in contrast to most 
of the existing algorithms does not require any training. 
Still, it is able to precisely locate MAs with high sensitivity 
at low false positive rate. Moreover, it has an outstanding 
performance on lesions close to the vasculature regarding 
the state-of-the-art methods. 

In section 2 we will briefly review the available 
algorithms for retinal MA detection, after which in section 3 
the proposed method is described in details. In section 4, the 
results of our method in an open online challenge of MA 
detectors are presented. 

 
2. STATE-OF-THE-ART MA DETECTORS 

 
Most of the currently available methods divide MA 
detection into two consequent stages: candidate extraction 
and classification. Usually, the first step of candidate 
extraction is image preprocessing to reduce noise and 
improve contrast. After preprocessing, specific image 
segmentation is used to extract as much regions as possible 
that probably correspond to MAs. In the second step, the 
resulting candidates are labeled as true or false ones using a 
supervised learning based method. This classification 
requires a training set to establish the boundaries of the 
classes. The training set consists of pairs of feature vectors 
and class labels. Feature vectors are ordered sets of certain 
property values, mostly geometrical or color descriptors that 
may help to distinguish MAs from other objects. Such state 
of the art methods are proposed by e.g. Niemeijer et al. [1], 
Quellec et al. [2], and Zhang et al. [3].  

 
 

Fig. 1. Retinal image with microaneurysm marked. 
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Methods different from this two-phase approach have 
been also proposed. E.g. in [4] Giancdardo et al. presented a 
method based on Radon transformation that does not require 
explicit training. 
 

3. THE PROPOSED METHOD 
 

The method described in this paper is based on the two most 
characteristic attributes of MAs: diameter and circularity. 
We will show that it is possible to construct a score-map 
that assigns a score value to every pixel in the image, where 
the dark small circular objects will achieve the highest 
scores, while the vessel structure almost completely 
disappears.  
 
3.1. Preprocessing 
 
The only actual parameter of the proposed algorithm is the 
maximal MA diameter (dmax). We consider this value as 7 
pixels in the case of a horizontal resolution of 760 pixels for 
the visible retinal part. Thus, input images in different 
spatial resolution need to be rescaled. When working with a 
retinal image, the usual approach is to use its green channel, 
since it has the most useful information content. Though the 
proposed method does not require a specific preprocessing, 
a certain amount of noise reduction is necessary in most 
fundus images. We suggest the use of a simple two 
dimensional Gaussian blurring with a standard deviation of 
1.4. Also, the input images are inverted, thus MAs and 
vessels will appear as bright structures. From now on, when 
referring to a retinal image, it is meant as the smoothened 
inverted green channel Isg of the original retinal image. 
 
3.2. Cross-sectional profiles 
 
Probably the most challenging task during automatic MA 
detection is the distinction between MAs and thin vessel 
fragments. Vessel segments are such structures in the retinal 
image whose points are local maxima in at least one 
direction. On the other hand, MAs are circular objects, thus 
they appear as local maxima from all directions. 

To utilize this approach in practice, we need to test 
whether a pixel in the image is a local maximum in a 
particular direction. Therefore, we consider discrete line 
segments (scan lines) with different slopes, passing through 
the specific position being tested. The recordings of the 
pixel values along these scan lines result in a set of one 
dimensional intensity profiles, or in other words, in a set of 
cross-sectional profiles. 

If we examine these profiles, we find that MAs show a 
definite peak for all directions. In the case of vessel points, 
only the profiles of scan lines perpendicular to the vessel 
show strong peaks, and as the direction of the scan line 
approximates the vessel segment, the peak on the profile 
becomes more and more elongated, until it almost 
completely disappears. Figure 2 shows the cross-section 

profiles of a vessel segment and an MA point at different 
directions, respectively.  

 
3.3 Scanning of the entire image 
 
To exploit the observation about the cross-section profiles of 
MAs and vessel segments, every pixel of the image has to 
be accessed from every possible direction. For this reason 
we will use scan lines that pass through the entire image. Let 
us consider the slope-intercept equation  of 
the line. By modifying the y-intercept parameter b at a fixed 
slope m, every pixel of the image can be accessed for that 
given m direction, except the vertical case which has to be 
handled separately. This way, we define the scan line , 
a point vector, whose ith element ( ) is the ith point of 
the discrete line defined by the  equation. 
That is, 

 

 
The intensity profile of  is defined as an integer valued 
vector, whose ith element is the intensity value of the image 
at the  position. That is, . To 
handle the intensity profile of vertical scan lines, we define 
the VIPx vector, whose ith element is the intensity value of 
the image in the ith row and xth column. That is, 

. As it can be seen from the definition of the scan 
lines, the possible directions cover 180°. Also, we specify 
that the scan directions have to be equidistantly sampled, 
i.e.: 

, 

 

  

90° 
  

- 45° 
  

0° 
  

45° 

  
 Vessel fragment MA 

Fig. 2. Cross-section profiles of a vessel segment and an MA, 
respectively. 
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where  denotes the scan step parameter. Theoretically, 
choosing a small  would result in a finer scanning. 
However, our experiments showed that, choosing  to be 
less than 3° will not make relevant difference in the final 
results. Figure 3 shows 4 examples of scan lines for 
different directions. The arrows represent the direction of 
the scanning. 

 
3.4. Peak localization and height measurement 
 
Since MAs appear as peaks on the intensity profiles of scan 
lines, the next step is to detect these peaks. In this case we 
have a width restriction to the peaks, that is, only those 
peaks whose width is less than or equal to dmax can 
correspond to MAs. Besides the position of the peaks, the 
measure of their height is also required, since this 
information describes how much the object is separated 
from its surroundings in a particular direction. Such measure 
is needed that will consider both the peak height and its 
width, that is, peaks that are wide will receive a lower value, 
even if their height would suggest otherwise. This 
requirement is fulfilled by applying area opening, a special 
type of attribute opening [5] on the intensity profiles. By 
considering the difference of the result and the original 
profile (top-hat transformation), we may obtain a proper 
corrected peak height measure for every position in the 
profile. 

Attribute opening can be applied for both one and two 
dimensional data as well. It is based on the successive 
extension of all the regional maxima by progressively 
lowering the local threshold level, until a certain criterion 
becomes satisfied. 

In the case of area opening, this halt condition is that 
the area of the extended region becomes larger than the 
given parameter. Let  denote the result of area opening 
applied to vector v with parameter . This way, the area 
opening top-hat operator is defined as . 
Figure 4 shows the result of the attribute opening top-hat 
operator applied to an intensity profile with  = dmax. It can 
be seen, that the top-hat values give a proper measure of the 
peak height values along the profile. 

 
3.5. Assigning a directional height value to every pixel 
 
To assign a height value for a given direction to every pixel, 
we define the directional height map function 

, whose value is calculated as the 
corresponding value of the area opening top-hat operator 
applied to the intensity profile of the scan line that passes 
through the (x,y) point at an  angle. That is, 
 

 

 
where . Let  denote the vector 
containing the height values for a given position, i.e.: 

. Considering the DHV of 
an MA and a vessel point, we find that only MAs achieve 
nearly equal height values for all the scan directions, while 
in the case of vessel segments, there is a gap at the 
directions when the scan line fits the vessel segment. The 
DHV of an MA and a vessel point can be seen in Figure 5. 

3.6. MA score map construction 
 
Eventually, our goal is to create a score map, from which 
the MAs can be extracted by a simple thresholding for a 
binary output, or by considering all the regional maxima to 
obtain candidate points with the corresponding probability 
scores. We have several requirements regarding this map. It 
has to have high values for small circular objects (MAs), 
while the response to elongated structures (vessels) has to be 
minimal. Moreover, the response to MAs has to be 
proportionate to their strength. 

We have seen that MAs have nearly equal height 
values for all scan directions. To obtain a measure of the 
proportion of directions in which the height value was larger 

Fig. 4. Top-hat result of attribute opening on an intensity profile. 

MA 

  

Vessel

  
  -90° -45° 0° 45° 90°

 

 
Fig. 5. Plot of height values for an MA and a vessel point as the 

scan direction is rotating. 

 
 

Fig. 3. Examples of scan lines with different directions. 
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than a given h level to the number of all scan directions, we 
define the peak ratio map function PRMh, i.e.: 

 

 
PRMh has a value near to 1.0 in the case of MA points. 
However, usually it has high values for vessels, especially 
for vessel crossings, as well. Figure 6 shows PRM6, the peak 
ratio map for height level 6 for the fundus image in 
Figure 1. 

By applying a modified version of diameter opening 
top-hat operation on PRMh, vessels can be filtered out, and 
an MA probability image can be constructed for height level 
h. Diameter opening is a type of attribute opening, where the 
diameter of the extended region is tested. We apply two 
modifications. First, only those maximum regions have to be 
extended, where the PRMh of the seed point is near to 1.0, 
since only these regions correspond to MAs. Theoretically, 
this value should be always 1.0 in the case of circular 
objects. However, we found that, in practice, it is 
recommended to lower the seed threshold to e.g. 0.9. This 
limitation for the seed regions result in a faster execution, 
since most of the regional maxima can be ignored. Second, 
in the resulting top-hat, the extended regions are multiplied 

with the PRMh value of the corresponding seed. Let  
denote the result of this modified diameter opening tophat 
operation on image X, with parameter . This way, we 
obtain the MA probability map at height level h, denoted as 

Ph, by applying  on PRMh, i.e.: 
 

. 
 

To construct the final MA score map, which is 
independent from the height level parameter, we consider all 
possible Ph probability maps and combine them in a 
weighted pixelwise maximum selection. The value of each 
pixel in the final score map will be the product of the 

maximal probability value among the probability maps, and 
the corresponding height level, i.e.: 
 

 
, 

 
where Score denotes the final MA score map. We found that 
it is sufficient to consider only the first 30 (h = {1 … 30}) 
probability maps. Moreover, the calculation of the Ph 
probability maps can be performed in parallel for the 
different h values, which gives a further boost to the 
method. The final MA score map of the fundus image in 
Figure 1 is shown in Figure 7. We can see that the highest 
score value was achieved by the strongest MA in the image. 

 
4. EXPERIMENTAL RESULTS 

 
To examine the performance of the proposed method in 
comparison with other state-of-the-art algorithms, we have 
submitted our results to the Retinopathy Online Challenge 
(ROC) [6]. To the best of our knowledge, currently ROC is 
the only possibility to compare MA detectors under the 
same conditions. This dataset consists of a training and a 
test set. Both sets contain 50 fundus images. The reference 
MAs are available for the training set only, which enables 
the participating teams to train their algorithms, and then 
submit the results obtained on the test set. The organizers 
evaluate the received data, and construct the FROC (free 
receiver operating characteristic) curve. The final score is 
calculated as the average sensitivity at seven fixed false 
positive (FP) rates (from 0.125 to 8 FPs per image). Figure 8 
shows the FROC curve of our algorithm. At the time of the 
submission of this paper, our method (team Lazar et al.) is 
ranked at the 5th place among the 10 best participants. 
Besides the method proposed by team ISMV [4], our 
method is the only one that has achieved such a competitive 
score without using any supervised training or classification. 
Moreover, our method has achieved the highest score with 
respect to detecting MAs close to the vasculature (0.339). 
The currently first placed method (team DRSCREEN) is an 
ensemble-based detector that combines multiple individual 

 
 

Fig. 6. The peak ratio map at height level 6 (PRM6) of the fundus 
image in Fig. 1.  

 
Fig. 7. The final MA score map of the fundus image in Fig. 1. 

1408



algorithms, including this one, as well. The results of the 
individual teams can be seen in Table 1.  

The proposed method was implemented entirely in 
Java SE 1.6. The average run time of an image from the 
ROC dataset was 15 seconds, using a PC with an Intel® 
Core™2 Quad Q8200 Processor and 2 GB RAM. 
 

5. CONCLUSION 
 

In this paper, we have presented a method that is capable of 
constructing a score map to a fundus image, in which the 
points corresponding to MAs will achieve high scores, while 
the response to the vasculature is minimal. This is 
accomplished without the usage of supervised learning 
based classification, and the only actual parameter of the 
method is the maximal MA diameter. The final MAs can be 
extracted by simple thresholding for a binary output, or by 

considering all the regional maxima to obtain probability 
scores. The proposed algorithm has been evaluated in a 
public online challenge aiming the comparison of MA 
detectors, where it has achieved a competitive score among 
the ten best participants; moreover, it has achieved the 
highest score with respect to the detection of MAs close to 
the vasculature. The method is also a component of an 
ensemble based algorithm, which at the time of the 
submission of this paper, holds the first place in the 
mentioned online competition. 
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 Team name Score 
1. DRSCREEN 0.434 
2. Niemeijer et al. [1] 0.395 
3. LaTIM [2] 0.381 
4. OKmedical [3] 0.357 
5. Lazar et al. 0.355 
6. GIB Valladolid 0.322 
7. Fujita Lab 0.310 
8. IRIA-Group 0.264 
9. ISMV [4] 0.256 
10. Waikato Retinal Imaging Group 0.206 

 
Table 1. The participating teams in ROC with their achieved 

scores. 
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