Kémiai reakciók dinamikája *ab initio* potenciális energia felületeken

Czakó Gábor

MTA doktori értekezés tézisei

Szegedi Tudományegyetem Fizikai Kémiai és Anyagtudományi Tanszék 2015

A *Journal of Physical Chemistry A* folyóirat címlapja G. Czakó and J. M. Bowman, *J. Phys. Chem. A* 118, 2839 (2014)

I. Bevezetés és célkitűzések

A reakciók atomi-szintű dinamikájának és mechanizmusának megértése a kémia egyik alapvető feladata. A legegyszerűbb kémiai reakció a hidrogénatom és a hidrogénmolekula reaktív ütközése, amelynek háromdimenziós kvantummechanikai leírását a 70-es években oldotta meg Schatz és Kuppermann. A H + H₂ mellett számos más A + BC típusú reakciót (pl. F + H₂/HD, Cl + H₂/HD, stb.) vizsgáltak a reakciódinamika korai korszakában. Később az érdeklődés nagyobb rendszerek felé irányult, és a kutatók elkezdték az atom + poliatom típusú reakciók tanulmányozását. Kísérleti oldalon a 90-es években Crim és Zare csoportjai értek el úttörő eredményeket a H + H₂O/HDO reakciók vizsgálatai során, ezzel letéve a mód- és kötés-szelektív kémia alapjait. Megjegyzendő, hogy a mért eredményeket Schatz és munkatársai már 1984-ben megjósolták dinamikai szimulációk alapján. A 90-es években az atom + metán reakciók elméleti és kísérleti vizsgálata is elkezdődött, majd 2003-ban Liu és munkatársai kifejlesztettek egy új kísérleti technikát, amely minden korábbinál mélyebb betekintést adott az atom + metán reakciók mód-specifikus dinamikájába. A Liu kísérletek modellezése és a meglepő eredmények (a CH nyújtási gerjesztés gátolja a reakciót, a Polanyi-szabályok sérülése, stb.) értelmezése komoly kihívást jelentett az elméleti reakciódinamikával foglalkozó kutatók számára. Magam ebbe az elméleti munkába kapcsolódtam be 2008-ban, és kezdtem el az F + CH₄ reakció tanulmányozását, majd később a Cl, $O({}^{3}P)$ és Br + CH₄ reakciókat is vizsgáltam. A reakciódinamikai számítások számos alapkérdésre adhatnak választ, ezáltal bővítve a kémiai ismereteinket. Az egyik fő kérdés a Polanyi-szabályokhoz kapcsolódik. Ezeket a szabályokat a Nobel-díjas John Polanyi A + BC reakciók vizsgálata során fogalmazta meg, miszerint az ún. early-barrier (korai nyeregponttal rendelkező) reakciók esetén az ütközési energiának nagyobb hatása van a reaktivitásra, mint a reaktáns rezgési gerjesztésének és ennek a fordítottja igaz a late-barrier (késői nyeregponttal rendelkező) reakciókra. Hogyan terjeszthetők ki a Polanyi-szabályok többatomos reakciókra? Milyen hatása van a forgásnak és a reaktánsok orientációjának a reaktivitásra? Milyen rezgési és forgási állapotban képződnek a termékek egy kémiai reakció során? Számításaim ezekre és még számos más kérdésre adtak minden korábbinál megbízhatóbb választ.

3

A reakciódinamikai számítások két fő lépése a potenciális energia felület (*potential energy surface*, PES) meghatározása, és az atomok (atommagok) mozgásának leírása a PES-en. Munkám során a permutációra invariáns polinom módszer alkalmazásával analitikus *ab initio* teljes-dimenziós PES-eket fejlesztettem számos 6-atomos reaktív rendszerre, és a reakciók dinamikáját a kvázi-klasszikus trajektória (*quasi-classical trajectory*, QCT) módszerrel tanulmányoztam. A F, Cl, $O(^{3}P)$, Br + CH₄ hidrogén-absztrakciós reakciók mellett 2012-ben elkezdtük a bimolekuláris nukleofil szubsztitúciós (S_N2) reakciók vizsgálatát is. Az S_N2 reakciók alapvető jelentőségűek a szerves kémiában, de kémiai pontosságú analitikus globális PES-t mégsem fejlesztettek ki korábban ezekre a reakciókra. Célunk volt ilyen globális *ab initio* PES-ek kifejlesztése az X⁻ + CH₃Y (X, Y = F, Cl, stb.) S_N2 reakciókra, amelyek lehetővé teszik a dinamika minden eddiginél (direkt-dinamika számítások) pontosabb leírását, sőt akár új reakcióutak felfedezését is.

A poliatomos kémiai reakciók szimulációja számos elméleti kihívást rejt magában. Melyik a leghatékonyabb elektronszerkezet számító módszer a globális PES fejlesztéséhez? Hogyan kezelhetjük a zérusponti energia problémáját a QCT számítás során? Hogyan számíthatunk mód-specifikus rezgési kvantumszámokat egy klasszikus trajektória elemzése során? Hogyan vehetünk figyelembe kvantumeffektusokat a QCT módszer keretein belül? Módszerfejlesztési eredményeim javaslatokkal és megoldásokkal szolgálnak a fenti kérdésekre. Az új módszerek tették lehetővé a víz dimer és trimer dinamikájának vizsgálatát, számos kísérleti eredmény reprodukálását, illetve új eredmények jóslását.

Végül kiemelném az elméleti kutatómunkám szoros kapcsolatát a kísérlettel, hiszen egyrészt az elmélet és a kísérlet motiválhatja egymást, másrészt a számítások elengedhetetlenek a kísérleti adatok értelmezéséhez, sőt néha rávilágíthatnak a mérések hibáira is. A kísérleti eredmények ugyanakkor fontos referenciaként szolgálnak az elméleti módszerek tesztelése során. A víz dimer dinamikáját Hanna Reisler (University of Southern California, CA, USA), az atom + metán rendszereket Kopin Liu (Academia Sinica, Tajvan) és az S_N2 reakciókat Roland Wester (University of Innsbruck, Ausztria) professzorok kísérleti csoportjaival vizsgáltuk közösen.

4

II. Eredmények

1. A kvázi-klasszikus termékelemzés módszereinek fejlesztése

1.1. Poliatomos termékek mód-specifikus rezgési analízise

A kvázi-klasszikus trajektóriák elemzése során hagyományosan csak a poliatomos termékek teljes belső energiáját határozták meg a kutatók. A legújabb kísérleti eredmények értelmezése viszont megkívánja a termékek mód-specifikus rezgési analízisét, ezért eljárást fejlesztettem ki rezgési kvantumszámok a meghatározására [4,17]. A módszer főbb lépései: (1) normálmód analízis a referencia szerkezetben; (2) a forgási impulzusmomentum levonása a sebességek változtatásával; (3) egzakt transzformáció a referencia szerkezetnek megfelelő Eckart rendszerbe; (4) a termék Descartes koordinátáinak és sebességeinek transzformálása a normál koordináták terébe; (5) a mód-specifikus harmonikus rezgési energiák számítása; és (6) a rezgési hatások meghatározása és egész kvantumszámokra történő kerekítése.

1.2. A Gaussian binning

A QCT számítások során a kvantumeffektusok figyelembe vételére az ún. Gaussian binning (GB) módszert javasolták a 90-es években. A GB módszer annál nagyobb súlyt rendel egy reaktív trajektóriához, minél közelebb van a termékmolekula klasszikus valósértékű rezgési "kvantumszáma" egy egész számhoz. A GB módszer kiváló eredményeket adott kétatomos termékek esetén, de a módszer nem bizonyult hatékonynak a poliatomos termékelemzés során. A 2009-ben javasolt 1GB (1-dimenziós GB) módszerem [4] viszont alkalmazható nagy rendszerek vizsgálatára is, mert az 1GB közelítés a teljes rezgési energia alapján számolja a súlyokat, ellentétben a mód-specifikus kvantumszámokon alapuló GB módszerrel. Így az 1GB módszer számítási ideje – a rendszer méretétől függetlenül – nagyságrendileg 10-szeres a standard QCT-hez képest, míg a GB módszer 10^{3N-6} szerint exponenciálisan skálázódik, ahol *N* az atomok száma. Az elmúlt években számos kutatócsoport alkalmazta sikeresen az 1GB módszert.

2. Kis víz klaszterek dinamikája

2.1. Zérusponti energia megszorításos dinamika

A gázfázisú reakciódinamikai szimulációk során sikeresen alkalmazott QCT módszer használata igen problémás klaszterek és folyadékok esetén, mert a zérusponti energia a nagyfrekvenciájú intramolekuláris rezgési módusokról a kisfrekvenciájú intermolekuláris módusokra "szivárog", ami idővel a klaszter széteséséhez vezet. A probléma megoldására 1989-ben javasoltak egy aktív megszorításos módszert, ami végül technikai nehézségek miatt – néhány tesztrendszertől eltekintve – nem került széleskörű alkalmazásra. A 2009-ben végzett módszerfejlesztéseim [4] lehetővé tették az aktív megszorításos dinamika hatékony implementálását. A módszert a víz dimer [5] és trimer [8] dinamikájának vizsgálatára alkalmaztam sikerrel. Megmutattam, hogy a megszorításos QCT módszer sokkal pontosabban reprodukálja a kvantummechanikai radiális eloszlásfüggvényeket, mint a hagyományos klasszikus molekuladinamika [5,8].

2.2. A víz dimer disszociációs dinamikája

A H_2O és D_2O dimerek disszociációs dinamikáját Hanna Reisler kísérleti csoportjával közösen vizsgáltuk [12,18,28]. Az elméleti szimuláció kulcsa volt az általam javasolt 1GB módszer alkalmazása. Megmutattuk, hogy a hidrogénkötésdonor OH/OD nyújtás gerjesztése által kiváltott disszociációt követően a monomerek elsősorban a (000) + (010) rezgési állapotban keletkeznek. A kísérlet a disszociáció után nem tud különbséget tenni a dimer donor és akceptor molekulái között. A számítások megmutatták, hogy a donor és akceptor fragmensek rezgési és forgási eloszlásai gyakorlatilag azonosak, mivel a disszociációs folyamat során a donor és akceptor szerepek akár többször is felcserélődhetnek.

3. A metán reakciója F, O, Cl és Br atomokkal

3.1. Potenciális energia felületek

A F, $O({}^{3}P)$, Cl, Br + CH₄ reakciókra teljes-dimenziós *ab initio* PES-eket fejlesztettem ki, illetve meghatároztam a fontosabb stacionárius pontok nagypontosságú relatív energiáit is az ún. *focal-point* analízis (FPA) módszer segítségével [2,9,10,13,14,16,21]. Az azonos atomok permutációjára invariáns, analitikus PES függvények paramétereit néhány tízezer CCSD(T)/TZ, vagy QZ minőségű kompozit *ab initio* energiapont illesztésével határoztam meg. Az FPA számítások extrapolációval közelítik a végtelen bázis határt, valamint figyelembe veszik a CCSD(T) szinten túli elektronkorrelációt, a törzselektronok korrelációját, a skaláris relativisztikus effektusokat és a spin-pálya csatolást. Az FPA eredményeim a jelenleg elérhető legpontosabb referencia adatok a fenti reakciókra. A PES-eket számos (kvantum) reakciódinamikai számításokkal foglalkozó kutatócsoport használja Kínától az Egyesült Államokig.

3.2. Reakciódinamika

A F, O(³P), Cl, Br + CH₄ reakciókra az általam fejlesztett analitikus PES-eken végzett QCT számítások legfontosabb eredményei a következők:

- A F + CH₄(v = 0) reakcióban rezgésileg gerjesztett HF termék keletkezik, elsősorban v = 2 rezgési állapotban. A számított rezgési és forgási eloszlás kiváló egyezést mutat a kísérleti adatokkal [2].
- A CH nyújtás gerjesztése a D atomhoz irányítja a lassú F atomot a F + CHD₃ reakcióban [3,4]. Ez az elméleti megfigyelés adta egy korábbi meglepő kísérleti eredmény magyarázatát.
- Az ütközési energia növelésével a visszaszórás helyett az előreszórás válik dominánssá a Cl + CH₄ reakcióban, ami a direkt *rebound* helyett a *stripping* mechanizmus jelentőséget mutatja nagy ütközési energiánál [15].
- A CH nyújtás gerjesztése növeli a "reaktív tölcsért", ezáltal növelve az O(³P) + CHD₃ reakció hatáskeresztmetszetét [16].
- A Br + CH₄ reakció hatáskeresztmetszete igen kicsi, viszont a metán rezgési gerjesztése jelentősen növeli a reaktivitást [21].
- A Polanyi-szabályok általánosítása poliatomos reakciókra (lásd 3.4).

3.3. A X⁻-CH₄ [X = F, Cl, Br, I] anionok fotoelektron spektroszkópiája

Ab initio számításaim megmutatták, hogy az X^--CH_4 anion komplexek fotoelektron spektrumaiban kísérletileg megfigyelt dublett felhasadások – a felhasadás X = F esetben kb. háromszorosa a fluor atom spin-pálya felhasadásának, míg X = Cl, Br, I esetén alig tér el az atomi értéktől – megfelelnek az X + CH_4 rendszer két elektronállapota közti átmenetnek [11].

3.4. A Polanyi-szabályok

2011-ben a Cl + CHD₃ reakció esetén megmutattuk, hogy a reakciódinamika A + BC reakciókra kidolgozott alapszabályai (az ún. Polanyi-szabályok) nem mindig terjeszthetőek ki poliatomos rendszerekre [13]. A Cl + CHD₃ reakció szimulációi rámutattak a van der Waals komplexek jelentőségére, ami kis ütközési energiánál egy nem-reaktív orientációba irányíthatja a reaktánsokat. Ilyen esetben az ütközési energiának nagyobb szerepe lehet, mint a rezgési gerjesztésnek még egy *late-barrier* reakció esetén is, ami a Polanyi-szabályok sérülését eredményezi. A 2012-ben közölt kvantumdinamikai eredményeink megerősítették a Polanyiszabályok sérülését kis ütközési energiáknál, de nagyobb energiákon a szabályok érvényesülését mutatták, ellentétben a korábbi kísérleti eredményekkel [19]. Munkánk hatására megismételték a kísérletet, és az új mérések már összhangba kerültek az elméleti eredményekkel.

3.5. A forgás hatása a reaktivitásra

A Cl és O(³P) + CHD₃($v_1 = 1$, *JK*) reakciók esetén megmutattuk, hogy a reaktáns forgási gerjesztése növeli a reaktivitást [29,30]. A forgás hatása jelentős, ha J > 0és K = 0, míg K = J esetén csak kis forgási effektus tapasztalható.

4. Bimolekuláris nukleofil szubsztitúciós reakciók

4.1. Potenciális energia felületek

Teljes-dimenziós *ab initio* analitikus PES-eket fejlesztettünk a F^- + CH₃Cl [24,31] és F^- + CH₃F [34] reakciókra. A globális PES-ek a jól ismert Walden-inverziós reakcióút mellett leírják az elölről támadásos és az általunk felfedezett duplainverziós retenciós mechanizmusokat és a proton absztrakciós csatornát is. A stacionárius pontok relatív energiáit a nagypontosságú FPA módszerrel is meghatároztuk.

4.2. Reakciódinamika

Az általunk fejlesztett analitikus PES-ek minden eddiginél pontosabb reakciódinamikai szimulációkat tettek lehetővé, a legfontosabb kapcsolódó eredmények a következők:

- Az F⁻ + CH₃Cl S_N2 reakció hatáskeresztmetszete csökken az ütközési energia növekedésével [24,31].
- Alacsony ütközési energiánál a komplexképződéssel járó indirekt reakcióút dominál, míg magasabb energiákon a direkt *rebound* mechanizmus [24].
- Alacsony ütközési energiánál a reaktivitás szinte független a reaktánsok relatív orientációjától, míg magasabb energiákon a hátulról támadás esetén jóval nagyobb a reakció valószínűsége [24,34].
- A CH nyújtás gerjesztése kis hatással van a szubsztitúciós reakcióra, és jelentősen növeli a proton absztrakció valószínűségét [31].
- A forgási gerjesztés gátolja a F^- + CH₃Y(*JK*) [Y = F és Cl] reakciókat [35].
- A F⁻ + CH₃Cl reakcióra végzett szimulációink kiváló egyezést mutatnak a kísérleti eredményekkel, és rávilágítanak, hogy a távozó csoport jelentősen befolyásolja a F⁻ + CH₃Y [Y = Cl és I] S_N2 reakciók dinamikáját [36].

4.3. A dupla-inverziós mechanizmus

Felfedeztünk egy új retenciós reakcióutat a $F^- + CH_3Cl S_N2$ reakció QCT szimulációja során, amely a "dupla-inverziós mechanizmus" nevet kapta [31]. A dupla-inverzió első lépése egy proton absztrakció által indukált inverzió, amelyet egy második inverzió követ, így a reakció végül retencióhoz vezet. Azonosítottunk egy FH…CH₂Cl⁻ típusú átmeneti állapotot is, amelyen keresztül az indukált inverzió lejátszódik. A szimulációk rávilágítottak, hogy a dupla inverzió egy lassú, indirekt folyamat, míg a szintén retenciós elölről támadás egy gyors, direkt mechanizmus. Később megmutattuk, hogy a XH…CH₂Y⁻ átmeneti állapot létezik X, Y = F, Cl, Br és I esetén is, és ha X = F, akkor a dupla inverzió gátmagassága jóval alacsonyabb, mint az elölről támadásos mechanizmusé [33]. Végül kiemelném, hogy a F⁻ + CH₃F reakció szimulációja során is találtunk duplainverziós trajektóriákat [34].

III. Publikációk

1. Tudománymetriai adatok (2015. 11. 19.)

Cikkek száma: 64 (első szerzős: 28, levelező szerzős (*): 32) Összes hivatkozás: >1400 H-index: 23 Impakt faktor: 283 (*Science, PNAS, Acc. Chem. Res., Nature Chem., Nat. Commun., JACS, Chem. Sci.,...*)

2. Az értekezés alapjául szolgáló közlemények

- G. Czakó,* B. J. Braams, and J. M. Bowman Accurate *ab initio* structure, dissociation energy, and vibrational spectroscopy of the F⁻-CH₄ anion complex, *J. Phys. Chem. A* **112**, 7466 (2008)
- [2] G. Czakó,* B. C. Shepler, B. J. Braams, and J. M. Bowman Accurate *ab initio* potential energy surface, dynamics, and thermochemistry of the $F + CH_4 \rightarrow HF + CH_3$ reaction, *J. Chem. Phys.* **130**, 084301 (2009) *JCP Editors' Choice for 2009*
- [3] G. Czakó* and J. M. Bowman
 CH stretching excitation steers the F atom to the CD bond in the F + CHD₃ reaction,
 J. Am. Chem. Soc. 131, 17534 (2009)
 Science, Editors' Choice: Fluorine diverted
- [4] G. Czakó* and J. M. Bowman
 Quasiclassical trajectory calculations of correlated product distributions for the F + CHD₃(v₁ = 0, 1) reactions using an *ab initio* potential energy surface, *J. Chem. Phys.* 131, 244302 (2009)
- [5] G. Czakó,* A. L. Kaledin, and J. M. Bowman A practical method to avoid zero-point leak in molecular dynamics calculations: Application to the water dimer, *J. Chem. Phys.* 132, 164103 (2010)
- [6] J. M. Bowman, B. J. Braams, S. Carter, C. Chen, G. Czakó, B. Fu,
 X. Huang, E. Kamarchik, A. R. Sharma, B. C. Shepler, Y. Wang, and Z. Xie *Ab initio*-based potential energy surfaces for complex molecules and molecular complexes, *J. Phys. Chem. Lett.* 1, 1866 (2010)
- [7] G. Czakó,* Q. Shuai, K. Liu, and J. M. Bowman

Communication: Experimental and theoretical investigations of the effects of the reactant bending excitations in the F + CHD₃ reaction, *J. Chem. Phys.* **133**, 131101 (2010)

- "Top 20 Most Downloaded" JCP cikk 2010 októberében
- [8] G. Czakó,* A. L. Kaledin, and J. M. Bowman Zero-point energy constrained quasiclassical, classical, and exact quantum simulations of isomerizations and radial distribution functions of the water trimer using an *ab initio* potential energy surface, *Chem. Phys. Lett.* 500, 217 (2010)
- [9] G. Czakó* and J. M. Bowman
 An *ab initio* spin-orbit-corrected potential energy surface and dynamics for the F + CH₄ and F + CHD₃ reactions, *Phys. Chem. Chem. Phys.* 13, 8306 (2011)
- [10] J. M. Bowman, G. Czakó, and B. Fu
 High-dimensional *ab initio* potential energy surfaces for reaction dynamics calculations, *Phys. Chem. Chem. Phys.* 13, 8094 (2011)
- [11] M. Cheng, Y. Feng, Y. Du, Q. Zhu, W. Zheng, G. Czakó,* and J. M. Bowman Communication: Probing the entrance channels of the X + CH₄ → HX + CH₃ (X = F, Cl, Br, I) reactions via photodetachment of X⁻-CH₄, J. Chem. Phys. 134, 191102 (2011)
- [12] G. Czakó,* Y. Wang, and J. M. Bowman Communication: Quasiclassical trajectory calculations of correlated product-state distributions for the dissociation of (H₂O)₂ and (D₂O)₂, *J. Chem. Phys.* 135, 151102 (2011) *"Top 20 Most Downloaded" JCP cikk 2011 októberében*
- [13] G. Czakó* and J. M. Bowman Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface, *Science* 334, 343 (2011)

Kiemelte a ChemPhysChem: "Reaction Dynamics: Rules Change with Molecular Size"

[14] G. Czakó* and J. M. Bowman

Accurate *ab initio* potential energy surface, thermochemistry, and dynamics of the $Cl(^{2}P, ^{2}P_{3/2}) + CH_{4} \rightarrow HCl + CH_{3}$ and $H + CH_{3}Cl$ reactions, *J. Chem. Phys.* **136**, 044307 (2012) *Egyike a "Most Cited 2012 JCP" cikkeknek*

- [15] B. Zhang, K. Liu, G. Czakó, and J. M. Bowman Translational energy dependence of the Cl + CH₄(v_b= 0, 1) reactions: A joint crossed-beam and quasiclassical trajectory study, *Mol. Phys.* 110, 1617 (2012)
- [16] G. Czakó* and J. M. Bowman

Dynamics of the $O({}^{3}P)$ + CHD₃(v_{CH} = 0, 1) reactions on an accurate *ab initio* potential energy surface, *Proc. Natl. Acad. Sci. U.S.A.* 109, 7997 (2012)

[17] G. Czakó*

Gaussian binning of the vibrational distributions for the Cl + CH₄($v_{4/2}=0,1$) \rightarrow H +

CH₃Cl(*n*₁*n*₂*n*₃*n*₄*n*₅*n*₆) reactions, J. Phys. Chem. A **116**, 7467 (2012)

[18] L. C. Ch'ng, A. K. Samanta, G. Czakó, J. M. Bowman, and H. Reisler

	Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking
	in the water dimer, J. Am. Chem. Soc. 134, 15430 (2012)
[19]	Z. Zhang, Y. Zhou, D. H. Zhang, G. Czakó, and J. M. Bowman
	Theoretical study of the validity of the Polanyi rules for the late-barrier Cl + CHD ₃ reaction,
	J. Phys. Chem. Lett. 3, 3416 (2012)
	Science, Editors' Choice: Stretching the Polanyi Rules
[20]	R. Liu, M. Yang, G. Czakó,* J. M. Bowman, J. Li, and H. Guo
	Mode selectivity for a "central" barrier reaction: Eight-dimensional quantum studies of the
	$O(^{3}P) + CH_{4} \rightarrow OH + CH_{3}$ reaction on an ab initio potential energy surface,
	J. Phys. Chem. Lett. 3, 3776 (2012)
[21]	G. Czakó*
	Accurate ab initio potential energy surface, thermochemistry, and dynamics of the
	$Br({}^{2}P, {}^{2}P_{3/2}) + CH_{4} \rightarrow HBr + CH_{3}$ reaction, J. Chem. Phys. 138 , 134301 (2013)
[22]	D. Y. Wang and G. Czakó
	Quantum dynamics study of the $F + CH_4 \rightarrow HF + CH_3$ reaction on an ab initio potential energy
	surface, J. Phys. Chem. A 117, 7124 (2013)
[23]	G. Czakó,* R. Liu, M. Yang, J. M. Bowman, and H. Guo
	Quasiclassical trajectory studies of the O(³ P) + CX ₄ (v_k =0,1) \rightarrow OX(v) + CX ₃ ($n_1n_2n_3n_4$) [X = H
	and D] reactions on an ab initio potential energy surface, J. Phys. Chem. A 117, 6409 (2013)
[24]	I. Szabó, A. G. Császár, and G. Czakó*
	Dynamics of the F^- + CH ₃ Cl \rightarrow Cl ⁻ + CH ₃ F S _N 2 reaction on a chemically accurate potential
	energy surface, <i>Chem. Sci.</i> 4 , 4362 (2013)
	"HOT Chemical Science articles for October" és Chemical Science borító
[25]	G. Czakó,* I. Szabó, and H. Telekes
	On the choice of the ab initio level of theory for potential energy surface developments,
	J. Phys. Chem. A 118, 646 (2014)
[26]	G. Czakó* and J. M. Bowman
	Reaction dynamics of methane with F, O, Cl, and Br on ab initio potential energy surfaces,
	J. Phys. Chem. A 118, 2839 (2014) Feature Article
	JPCA címlap
[27]	G. Czakó*
	Communication: Direct comparison between theory and experiment for correlated angular and
	product-state distributions of the ground-state and stretching-excited $O(^{3}P) + CH_{4}$ reactions,
	J. Chem. Phys. 140, 231102 (2014)
	"Editors' Picks from The Journal of Chemical Physics"
[28]	A. K. Samanta, G. Czakó, Y. Wang, J. S. Mancini, J. M. Bowman, and H. Reisler
	Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking
	in small water and HCl clusters, Acc. Chem. Res. 47, 2700 (2014)

- [29] R. Liu, F. Wang, B. Jiang, G. Czakó,* M. Yang, K. Liu, and H. Guo Rotational mode specificity in the Cl + CHD₃ → HCl + CD₃ reaction, *J. Chem. Phys.* 141, 074310 (2014)
- [30] G. Czakó*

Quasiclassical trajectory study of the rotational mode specificity in the

 $O(^{3}P) + CHD_{3}(v_{1}=0,1, JK) \rightarrow OH + CD_{3}$ reactions, J. Phys. Chem. A **118**, 11683 (2014)

[31] I. Szabó and G. Czakó*

Revealing a double-inversion mechanism for the F^- + CH₃Cl S_N2 reaction,

Nat. Commun. **6**, 5972 (2015)

Kiemelte a National Geographic Magyarország és az Index.hu

[32] B. Zhang, K. Liu, and G. Czakó* Correlated dynamics of the $O({}^{3}P) + CHD_{3}(v = 0)$ reaction: A joint crossed-beam and

quasiclassical trajectory study, J. Phys. Chem. A 119, 7190 (2015)

[33] I. Szabó and G. Czakó*

Double-inversion mechanisms of the X^- + CH₃Y [X,Y = F, Cl, Br, I] S_N2 reactions,

J. Phys. Chem. A 119, 3134 (2015)

[34] I. Szabó, H. Telekes, and G. Czakó*

Accurate *ab initio* potential energy surface, thermochemistry, and dynamics of the F^- + CH₃F S_N2 and proton-abstraction reactions, *J. Chem. Phys.* **142**, 244301 (2015)

[35] I. Szabó and G. Czakó*

Rotational mode specificity in the $F^- + CH_3Y$ [Y = F and Cl] S_N2 reactions,

J. Phys. Chem. A DOI: 10.1021/acs.jpca.5b06212 (2015)

[36] M. Stei, E. Carrascosa, M. A. Kainz, A. H. Kelkar, J. Meyer, I. Szabó, G. Czakó,* and R. Wester Influence of the leaving group on the dynamics of a gas-phase S_N2 reaction, *Nature Chem.* DOI: 10.1038/nchem.2400 (2015)

3. További közlemények

- [37] V. Szalay, G. Czakó, Á. Nagy, T. Furtenbacher, and A. G. Császár
 On one-dimensional discrete variable representations with general basis functions, J. Chem. Phys. 119, 10512 (2003)
- [38] G. Czakó, T. Furtenbacher, A. G. Császár, and V. Szalay Variational vibrational calculations using high-order anharmonic force fields, *Mol. Phys.* 102, 2411 (2004)
- [39] G. Czakó, V. Szalay, A. G. Császár, and T. Furtenbacher Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates, J. Chem. Phys. 122, 024101 (2005)
- [40] A. G. Császár, G. Czakó, T. Furtenbacher, J. Tennyson,

V. Szalay, S. V. Shirin, N. F. Zobov, and O. L. Polyansky

On equilibrium structures of the water molecule, J. Chem. Phys. 122, 214305 (2005)

- [41] G. Tarczay, T. A. Miller, G. Czakó, and A. G. Császár Accurate *ab initio* determination of spectroscopic and thermochemical properties of mono- and dichlorocarbenes, *Phys. Chem. Chem. Phys.* 7, 2881 (2005)
- [42] T. Furtenbacher, G. Czakó, B. T. Sutcliffe, A. G. Császár, and V. Szalay The methylene saga continues: stretching fundamentals and zero-point energy of X ³B₁ CH₂, *J. Mol. Struct.* 780-781, 283 (2006)
- [43] G. Czakó, V. Szalay, and A. G. Császár
 Finite basis representations with nondirect-product basis functions
 having structure similar to that of spherical harmonics, J. Chem. Phys. 124, 014110 (2006)
- [44] A. G. Császár, T. Furtenbacher, and G. CzakóThe greenhouse effect on Earth and the complete spectroscopy of water, *Magy. Kém. Foly.* 112, 123 (2006)
- [45] G. Czakó, A. G. Császár, V. Szalay, and B. T. Sutcliffe
 Adiabatic Jacobi corrections for H₂⁺-like systems, *J. Chem. Phys.* 126, 024102 (2007)
- [46] A. G. Császár, G. Czakó, T. Furtenbacher, and E. Mátyus
 An active database approach to complete rotational-vibrational spectra of small molecules, *Ann. Rep. Comp. Chem.* 3, 155 (2007)
- [47] G. Czakó, T. Furtenbacher, P. Barletta, A. G. Császár, V. Szalay, and B. T. Sutcliffe Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations, *Phys. Chem. Chem. Phys.* 9, 3407 (2007)
- [48] E. Mátyus, G. Czakó, B. T. Sutcliffe, and A. G. Császár Vibrational energy levels with arbitrary potentials using the Eckart–Watson Hamiltonians and the discrete variable representation, *J. Chem. Phys.* 127, 084102 (2007)
- [49] G. Czakó, E. Mátyus, A. C. Simmonett, A. G. Császár, H. F. Schaefer III, and W. D. Allen Anchoring the absolute proton affinity scale, *J. Chem. Theory Comput.* 4, 1220 (2008)
- [50] G. Tarczay, T. A. Miller, G. Czakó, and A. G. Császár Additions and corrections to "Accurate *ab initio* determination of spectroscopic and thermochemical properties of mono- and dichlorocarbenes", *Phys. Chem. Chem. Phys.* 10, 7324 (2008)
- [51] T. Szidarovszky, G. Czakó, and A. G. Császár Conformers of gaseous threonine, *Mol. Phys.* 107, 761 (2009)
- [52] G. Czakó, B. Nagy, G. Tasi, Á. Somogyi, J. Simunek, J. Noga, B. J. Braams, J. M. Bowman, and A. G. Császár
 Proton affinity and enthalpy of formation of formaldehyde, *Int. J. Quant. Chem.* 109, 2393 (2009)
- [53] E. Mátyus, G. Czakó, and A. G. Császár

Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations, *J. Chem. Phys.* **130**, 134112 (2009)

- [54] C. Fábri, G. Czakó, G. Tasi, and A. G. Császár
 Adiabatic Jacobi corrections on vibrational band origins of H₂⁺ isotopologues,
 J. Chem. Phys. 130, 134314 (2009)
- [55] G. Czakó, E. Mátyus, and A. G. Császár Bridging theory with experiment: a benchmark study of thermally averaged structural and effective spectroscopic parameters of the water molecule, *J. Phys. Chem. A* 113, 11665 (2009)
- [56] E. Mátyus, C. Fábri, T. Szidarovszky, G. Czakó, W. D. Allen, and A. G. Császár Assigning quantum labels to variationally computed rotational-vibrational eigenstates of polyatomic molecules, J. Chem. Phys. 133, 034113 (2010)
- [57] T. Szidarovszky, A. G. Császár, and G. Czakó*
 On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H₃⁺ up to dissociation, *Phys. Chem. Chem. Phys.* 12, 8373 (2010)
- [58] A. G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, and G. Czakó The fourth age of quantum chemistry: molecules in motion, *Phys. Chem. Chem. Phys.* 14, 1085 (2012)
 "Top 10 Most Downloaded" PCCP cikk 2011 decemberében és PCCP címlap
- [59] V. Szalay, T. Szidarovszky, G. Czakó, and A. G. Császár A paradox of grid-based representation techniques: accurate eigenvalues from inaccurate matrix elements, J. Math. Chem. 50, 636 (2012)
- [60] I. Szabó, C. Fábri, G. Czakó, E. Mátyus, and A. G. Császár
 Temperature-dependent, effective structures of the ¹⁴NH₃ and ¹⁴ND₃ molecules,
 J. Phys. Chem. A 116, 4356 (2012)
- [61] A. G. Császár, G. Czakó, T. Furtenbacher, E. Mátyus, C. Fábri,
 T. Szidarovszky, I. Szabó, and J. Sarka
 Molecular structure and dynamics, *Magy. Kém. Foly.* 118, 181 (2012)
- [62] C. Fábri, A. G. Császár, and G. Czakó*
 Reduced-dimensional quantum computations for the rotational-vibrational dynamics of F⁻-CH₄ and F⁻-CH₂D₂, *J. Phys. Chem. A* 117, 6975 (2013)
- [63] G. Czakó,* A. G. Császár, and H. F. Schaefer III
 Surprising quenching of the spin-orbit interaction significantly diminishes H₂O•••X [X = F, Cl, Br, I] dissociation energies, *J. Phys. Chem. A* 118, 11956 (2014)
- [64] H. Wang, Y. Qiu, G. Czakó, and H. F. Schaefer III
 Pathways for the OH + Cl₂ → HOCl + Cl and HOCl + Cl → HCl + ClO reactions, *J. Phys. Chem. A* 119, 7802 (2015)

Egy S_N2 reakció "dupla-inverziós" mechanizmusa I. Szabó and G. Czakó, *Nat. Commun.* 6, 5972 (2015)

A *Chemical Science* folyóirat borítója I. Szabó, A. G. Császár, and G. Czakó, *Chem. Sci.* 4, 4362 (2013)