
Answers to the referee report of László Györfi

I would like to thank László Györfi for his positive report, for a careful reading of

my dissertation and for the pertinent questions he posed. I will answer each of them

in detail below.

Question 1: Knowing the distributions of the price process, is there any result how to

construct φ∗ or its approximation?

Standard numerical maximization procedures are applicable in the one-step case.

They may have multiple local optima though due to the lack of (strict) concavity.

In the multistep-case, however, a dynamic programming procedure needs to be

performed which is rather costly. I see hope only for Ω finite (say, with a tree struc-

ture such as binomial or trinomial trees): in this case one-step maximization can be

combined with dynamic programming easily and the optimal strategy can be found.

For general Ω, it seems feasible to approximate the probability space with finite

ones Ωn. However, the respective optimal strategies do not necessarily converge (due

to the lack of uniqueness). I expect that such a sequence of strategies will have a

condensation point that is optimal on Ω but I know of no such result in the literature.

It seems to require rather tedious estimates, in the spirit of Theorem 2.49.

Question 2: Not knowing the distributions of the price process, the problem is more

difficult, because the components of the price process have positive growth rate,

therefore the components of the price-difference process are not stationary. Is there

any result how to estimate φ∗ or its approximation, if the relative price processes

Sjt+1/S
j
t are stationary and ergodic, j = 1, . . . , d ?

This question leads quite far into uncharted waters. Let us define the simplex

Σ := {x ∈ R
d
+ :

∑d
j=1 x

j = 1}. We will use multiplicative parametrization where

strategies π lie in Σ and πj represents the proportion of wealth allocated to asset j.
For simplicity, let d := 2 and consider only constant proportion strategies. That is,

the strategy is described by π ∈ [0, 1] representing the constant proportion of wealth

allocated to the stock (the rest is allocated to the bond). Assuming interest rate r ≥ 0,

a standard problem would be to consider maximizing

lim inf
T→∞

1

T
lnEu(VT (π))

with u(x) := xp/p, p < 1, p 6= 0 and VT (π) = V0
∏T
t=1(π(St/St−1) + (1 − π)(1 + r)), the

wealth corresponding to strategy π. This can be rewritten as a risk-sensitive control

problem. These are well-studied for Markovian S, however, the usual Bellmann equa-

tion approach requires the knowledge of the distribution. If S is a Markov chain then

a stochastic approximation scheme has been proposed in [*] which could perhaps be

adapted to determine the optimal π∗, without knowing the distributions.

The setting of [*] looks, however, very restrictive and it is unclear how to develop

implementable stochastic approximation schemes for risk-sensitive cost functions in

general. To highlight the degree of difficulty, a similitude can be formulated as fol-

lows: if u is logarithmic then we stay in the realm of ergodic control (laws of large

numbers) while for u a power function, we enter the arena of risk-sensitive control

(large deviations). It would be important to cover the case of non-logarithmic u since

these correspond better to the observed behaviour of market paticipants.

Here I reflected only on the case of concave u. The non-concave case looks com-

pletely out of reach.
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Question 3: Is it possible to show that

Eu(z +Xz,φ∗

T −B) > Eu



z +
d

∑

j=1

X
z/d,φ∗j
T −B



 (1)

if the components of the price process are independent ?

The answer is no, in general. Let z = B = 0, T = 1 and d = 2, that is, we consider

a one-step model with two assets, 0 initial capital and 0 reference random variable.

Furthermore let ∆Si1, i = 1, 2 be independent. If we choose the popular exponential

utility u(x) = −e−x, x ∈ R it is clear that, for any strategies φ1, φ2 (representing

the holdings in assets 1 and 2) Eu(φ1∆S
1
1 + φ2∆S

2
1) = −Eu(φ1∆S

1
1)Eu(φ2∆S

2
1). This

means that utility maximization can be performed separately in the two assets. In

particular, the pair of minimzers for trading in the respective single assets, φ∗1, φ
∗
2,

provide the global minimizer in the two-asset problem as well. That is, equality

holds in (1).

Clearly, if we relax the independence hypothesis on ∆Si1 then strict inequality

may arise in (1). For instance, if ∆S1
1 = ∆S2

1 is Gaussian with unit mean and unit

variance then the maximizer for the single assets is φ∗1 = φ∗2 = 1, by direct calculation.

However, the optimizer for the market with both assets is any ψ1, ψ2 with ψ1+ψ2 = 1.

Thus, (1) holds in this case since

−Ee−ψ1∆S1

1
−ψ2∆S2

1 = −Ee−∆S1

1 > −Ee−2∆S1

1 = −Ee−φ
∗

1
∆S1

1
−φ∗

2
∆S2

1 ,

again by direct calculation.

Question 4: Is there any result on a trading strategy φ, which has been derived from

a non-concave utility such that the wealth process Xz,φ
t , t = 1, . . . , T has good growth

rate and risk properties?

I am unaware of any such result about the growth rate. As far as the risk prop-

erties are concerned: the utility function u can itself provide a measure of risk (cor-

responding to the preferences of the given agent) and φ with maximal Eu(Xz,φ
T ) is a

strategy that has the best risk profile at time T in this sense. By the dynamic pro-

gramming principle, this property is also time consistent, that is, at any time t, the

best portfolio choice for t + 1, t + 2, . . . , T is φt+1, . . . , φT , starting from the present

wealth is Xz,φ
t . However, all this is closely linked with u. I am unaware of a result

stating a “good risk property” for a u-independent criteria (e.g. for variance or other

central moments).

Question 5: In a real trading situation the transactions are executed with a positive

delay δ. What happens if φt is measurable with respect to Ft−δ ?

When we assume this delayed setting the arguments go through without modifi-

cation up to Theorem 4.18. However, when the existence of an optimizing strategy

needs to be established we use that, roughly speaking, “anything” can be replicated

by a stochastic integral. When we are allowed to use only strategies with a delay,

this replication property becomes extremely delicate. We would need, e.g., that, for

any function f , the functional f(dQ/dP ) is replicable. In the almost sure sense such

a result certainly fails in general.

One may, however, try to replicate in the sense of probability laws, i.e. find a

(delayed) φ such that the law of f(dQ/dP ) is the same as that of the stochastic integral

with respect to φ. There is little chance for proving this, even in specific models.
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In the setting of Section 5 (illiquid markets), one may prove Theorem 5.2 with the

delayed filtration Ft−δ replacing the original one Ft in the definition of admissible

strategies, without any changes in the proof.

Question 6: Do we lose generality, if the strategies are piecewise constant?

One may formulate the problem of expected utility over piecewise constant strate-

gies (i.e. where the strategies φ are step functions). There are two natural questions:

Does the optimization problem have the same value ? It is attained by a piecewise

constant strategy ?

For the second question there is no hope for a positive answer in general, since the

portfolio values corresponding to piecewise constant strategies do not form a closed

set in any reasonable topology hence one cannot expect to find an optimizer in it (only

in its appropriate closure which is the whole set of strategies anyway).

The first question can be answered in the affirmative under appropriate technical

assumptions. Let Ap denote the class of piecewise constant strategies with
∫ T
0
φt dt =

0 and assume B = 0 and Gt(x) = x2 for simplicity. Without going into details, if the

price process S is uniformly bounded and the concave utility u is bounded above and

satisfies u(x) ≥ −c|x|κ for some c > 0 and κ > 1 then

sup
φ∈Ap

Eu(VT (φ)) = sup
φ∈A′

Eu(VT (φ))

holds.

[*] A. Basu, T. Bhattacharyya, V. Borkar. A learning algorithm for risk-sensitive

cost. Math. Oper. Res., 33:880–898, 2008.

Miklós Rásonyi

Gödöllő, 13th June, 2017.
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