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Multisine Measurement Technology of Linearly Approximated 
Weakly Non-linear Systems 

 

1. Introduction 
One should always keep in mind that mathematical models of physical systems are 
necessarily better or worse approximations. A model is good, if the approximation errors do 
not jeopardize the model usage and the simplifications (meaning usually the choice of a more 
convenient model structure) are reasonable. A model is bad, if the rough approximation 
invalidates theories or artifacts built with the help of the model [155]. 

Building a good model means also solving a complex engineering problem. Whatever is the 
task, the model must be ready in time and must be simple enough to provide in time results 
pertinent to the task goals. Even the best approximating model can easily turn 
inconsequential, if the costs of the model building and model computations, in terms of 
equipment and time, cross reasonable limits. 

The border between the linear and the non-linear behaviour is never very sharp, nor is it easy 
to handle. Linear systems exist as a pure abstraction, yet the linear system theory turned out to 
be one of the most fruitful practical engineering tools. If we conveniently forget that it is 
always an approximation we use, this theory provides us with a well developed methodology 
of linear analysis and synthesis [127]. 

Contrary to the linear theory based upon a single concept of a (linear) model, the non-linear 
system theory suffers from a multitude of possible non-linear models with widely varying 
functional properties [90-91, 155]. As a consequence non-linear models can be experimentally 
difficult to identify, to implement, and for the most part to evaluate. The so called semi-
physical modelling helps a bit, since at least there is a fair chance for a good approximation, 
even if the model itself could be difficult to handle [128]. 

 

1.1 The problem of the non-linear distortions 

In the linear system identification the cost function of the model fit is based upon the notion 
of the output and the measurement noises as the exclusive interfering agents1. Assuming that 
the phenomenon is linear and the model adequately fits it, the only difference between the 
both is the noise and the value of the cost function should reflect it. 

In most linear measurement (identification) problems, though, the cost function based on the 
noise alone yields too large values, sending the message that the modeling errors are larger, 
than to be expected on the basis of the noise analysis alone, and that something (a non-linear 

                                                 
1 Beside a priori information introduced in the optional regularization terms. 
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distortion) lurks inside the system, which cannot be approximated well within the linear 
model. 

Applying linear system theory without judging the importance and the potential consequences 
of the unexplainable discrepancies between the phenomena and their models is not an 
advisable engineering know-how. Furthermore the linear theory won't tell us how far, or how 
close are we to the validity limits of the model, or how robust it is2. The possible non-linear 
and other modelling problems can be taken into account only as the noise, where it may be 
impossible to identify and quantify them. 

The foremost problem is that the linear system theory warrants that the obtained linear model 
will be valid for any kind of future experimental conditions (i.e. input signals), yet if the 
phenomenon is truly non-linear, the linear model is in principle valid solely for the input 
signal used in its identification. Driving the phenomenon and the model with different inputs 
can result in discrepancy much larger than experienced or foreseen by the identification 
process. Yet another problem is that in particular cases the non-linearly distorted system will 
produce an output "noise" deceiving the user, used to the noisiness of the measurements, as to 
the true nature of the system. 

 

Example 1.1.1: Hidden non-linearity and the level of the input signal/1. 

 

Fig. 1.1.1 The system under study is composed from a 3rd order Butterworth high-pass filter (input linear 

system), a static nonlinearity: 2 3 4 5( ) ( ) .05 ( ) .1 ( ) .025 ( ) .01 ( )y t u t u t u t u t u t= + + + +  and a 3rd order Butterworth 

low-pass filter (output linear system), connected acc. to the Wiener-Hammerstein block-structure (see Section 
2.4). The Empirical Transfer Function Estimate (ETFE, [125]) of this system is measured from a single 
application of the harmonic excitation (odd random phase multisine, see Section 3.3) containing 409 frequency 

                                                 
2 With the increasing number of the measurement data the linear (and time invariant) identification techniques 
always provide an unfalsified linear model with the uncertainty decreasing to 0, regardless of what is the true 
nature of the measured system. The reason lies in the fact that the linear techniques use only second order signal 
statistics and that they cannot make distinction between the system and its second order (least squares) linear 
approximation [127]. 
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components with uniform amplitudes, under noiseless measurement conditions. The power level of the excitation 

was adjusted (from left to right) as σ = 0.01, 0.1, 0.5, and 1. For small input levels the behavior of the system is 
convincingly linear, but for higher input levels the nonlinearity steps in more forcibly producing a seemingly 
random "noisy behaviour". An inexperienced user is here potentially at risk of misinterpreting this phenomenon 
from the linear theory point of view. Please note that an odd multisine excites only odd harmonics, i.e. the last of 
the 409 harmonics falls on the 818th frequency index. All the subfigures but the last to the right are printed 
overlapped for better visual comparison. 

General note on the figures in the dissertation 

The majority of the presented results are analytic and the figures serve only the purpose of illustration. Figures 
are based on discrete system Matlab(R2007b) simulations, using usually Wiener-Hammerstein system structure 
with various input and output linear systems, and polynomial static nonlinearities. The frequency band [1 … fmax] 
to excite the nonlinear system is always chosen to ensure that  dmax * fmax < fs/2, where dmax is the maximum order 
of the nonlinearity and fs is the sampling frequency. The frequency axis of the figures usually shows the 
harmonic (frequency) index, and in some cases the relative frequency (as used in the parametrization of the 
Matlab functions). 

 
Example 1.1.2: Hidden non-linearity and the level of the input signal/2. 

A seemingly linear system 01.),()()( 3 =+= εε tututy  is measured in the noiseless measurement setup and is 

modeled as )()( tutyM α= . Its Empirical Transfer Function Estimate (ETFE) α is measured with zero mean 

Gaussian signal u(t) of σ =1 as 2 2{ ( ) ( )} / { ( )} 1 3 1.03E y t u t E u tα ε σ= = + = . In the truly linear 0ε =  noiseless 

case the MSE = }))()({( 2tytyE M−  would be zero. Now the MSE = 6ε 
2σ6 = 0.0006, which can be easily 

mistaken for some residual noise. The fraction of the non-linear power in the output seems also negligible:  

%14.0)156/(15%100)}({/}))({(%100 624262223 =++= σεσεσσεε tyEtuE ,   (1.1.1) 

and we may be satisfied with the linear identification results. In different experimental conditions, such model 

can be a source of trouble. Assume that the input is amplified 4 times (σ = 4). The fraction of the non-linear 
power is now 16.4%, and the MSE is 2.457 clearly indicating that the linear model is not serving its purpose.  

 

Linear system theory is well developed and  used efficiently, even if one may suspect or know 
that in the reality the system violates linearity assumptions. Linear system theory offers 
numerous advantages, like canonical model structures and the full theoretical equivalence 
between the identification problem posed in the time or the frequency domain, or as the input-
output and the state-space models. In the following thus we keep on the linear measurement 
techniques we are however aware that we measure nonlinear systems. A typical situation will 
be where the non-linear part is negligible within the actual experimental conditions, the 
nonlinear behaviour contributes little to the measurement results and can be considered a kind 
of (nonlinear) distortion, but it will be in the interest to the user to know how serious such a 
distortion could be.  

The state-of-the-art non-linear system identification, delivering a model describing well also 
the distortions, would of course yield answer to every question ([198, 188, 19, 104, 89-91, 54, 
155]). In many cases it will be yet impractical at least for two reasons. First, the non-linearity 
is usually responsible for only a small fraction of the phenomenon, so why to pay the full cost 
of the parametric non-linear system identification? Second, we do not really want to know the 
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model of the non-linear distortion exactly, but only its influence on the originally identified 
linear model. 

The literature shows that there is a considerable demand to embedd the nonlinear 
measurements in the linear measurement techniques, as this approach addresses a realistic 
situation. It also opens up possibilities for easier and faster measurements in the applications 
where the investigated system or behaviour is inherently nonlinear, but nobody wants or has 
the experience to tackle it with fully developed nonlinear models. 

In the following we seek answers to these problems. We propose solution to the situation 
where the system under study shows non-linear behaviour and we show how to express its 
influence as errors to the measured linear Frequency Response Function (FRF), sidestepping 
thus the full parametric non-linear system identification. In designing the methods we keep in 
mind that the computing time is cheap, but the experiments are expensive (duration, or if 
sophisticated measurements are needed). The ideal solution would be to amend the linear FRF 
measurements in such a way, that the non-linear effects can be measured, or at least qualified 
in parallel with the main linear experiments, without extensive additional measurements or 
nonlinearity tests.  

 

1.2 Overview of the literature  

Modeling nonlinear distortions to linear systems (i.e. modeling weakly nonlinear systems) is a 
widely research field with continuous influx of the new theoretical and practical contributions. 
Linear approximation to the nonlinear behavior became very early the focus of interest. In the 
context of control [6] used Booton’s decomposition of a static non-linearity into the best fitted 
(in the mean square sense) linear part and a “distortion factor” to analyze control systems with 
random inputs. J.L. Douce investigated the effect of the static non-linear distortions and their 
spectral behavior under random excitations [51, 53]; he even proposed a random-signal 
generator based upon the harmonic intermodulation due to non-linearity [52]. Distorting 
effect of the non-linearity on the input spectrum was analyzed in [263], and an interesting 
analysis of the static non-linear MIMO systems based on the separable signals was published 
in [264]. 

Probably the first serious attempt to deal with the non-linear distortions as a separate object of 
investigation, yet still within the linear system identification setting was [65]. Static or 
Volterra-like non-linear distortions of low order were tackled there from the measurement 
point of view, under harmonic excitations, within the deterministic setting. His aim was not to 
describe the non-linear distortions in general, but to get rid of them in concrete measurement 
and identification situations. To this purpose various kinds of harmonic signals were 
introduced [66-69], then a special kind of multisine signals was developed, to minimize the 
non-linear distortions for the assumed particular order of the non-linearity [70]. Later the 
investigations were extended to the concept of the best linear approximation to a Volterra 
system excited by the multisines with random harmonics (amplitudes and phases, or only 
phases), proposed by [30*]. Using Crest Factor minimization introduced in [85] in a series of 
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papers [72-73], [219-221, 223-225] presented heuristic comparison of modeling nonlinear 
errors if the Crest Factor minimization is also required. 

Modeling non-linear systems with so-called output-error linear time-invariant second order 
equivalents (OE-LTI-SOE), within the Gaussian and the quasi-stationary framework, was 
introduced in [55-58], [125-127]. The analysis focused on the Non-linear Finite Impulse 
Response (NFIR) systems and the full characterization of stable causal OE-LTI-SOEs of such 
systems was given in [59-61]. The problem of the non-linear distortions was addressed via the 
notion of slightly non-linear system [58]. Seeking general conditions for the SOE of an NFIR 
system to be also a FIR system, separable signals were used as an extension to the notion of 
Gaussianity [59]3. Bounds on the distance between the SOE and the linear part of the non-
linear system were also studied.  

Theoretically the most rigorous setting was the approach of Mäkilä and Partington, with the 
deterministic framework based upon the notion of the Generalized Harmonic Analysis (GHA) 
and quasi-stationary signals, drawing upon the normed space operator theory. In [134] the 
Frechet derivative was used to derive the best causal linear approximation of mildly non-
linear systems. Beside the mean square error approximation, the absolute error approximation 
was also considered for smooth and non-smooth static non-linear systems in [135]. In [136-
137] distribution theory of sequences was called in to refine the results obtained earlier for 
GHA and quasi-stationary signals. A very interesting notion of the nearly linear system and its 
LTI companion was introduced in [138], with the primary aim to investigate the 
controllability of a non-linear (NFIR) systems through the control of their LTI companions4. 
This work was extended in [139] to the linear approximations with the FIR and ARX 
parametrization, then in [140] to the notion of a non-linear companion system, providing also 
the state-space form for the linear companion. 

 

1.3 Research focus 

The reported work is based and extends the ideas put together in [27*, 28*, 30*], where the 
stochastic framework was proposed to deal with the Volterra-like non-linear distortions, 

                                                 
3 Although separable signals extend the properties of Gaussian signals with respect to the linear conditional 
expected value, their major disadvantage in the system identification is that the output of a linear system to a 
separable signal is not necessarily a separable signal. Separable signals are handy to identify systems with the 
non-linearity at the input (e.g. Hammerstein systems), they are not so useful where the non-linearity is hidden 
within the system, or at the system output (e.g. Wiener, or Wiener-Hammerstein systems) [148], [59-60]. 

4 Please note that the notion of a nearly linear system (and its linear companion) [138] is not comparable to the 
notion of a weakly non-linear Volterra series; see e.g. [15*]. The behavior of a nearly linear system, getting more 
and more linear as the input signal amplitude grows, does not reflect well what we observe in many practical 
measurement situations, where the signals are bounded, but the non-linearities (e.g. a cubic one, saturation, dead-
zone) are not asymptotically linear. For small signals, the linear companion of such non-linear linear system can 
still yield large approximation errors, the related linear dynamic system of a weakly non-linear Volterra series, on 
the other hand, will always be closed to its linear component [162], [15*].  
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randomizing them through the randomization of the input signals, for which, due to the 
practical measurement reasons, random multisine excitations were used.  

Contrary to the other contemporary approaches the aim was not only to produce the “best” 
linear approximation to a weakly5 non-linear system, but to observe (and to influence) where 
and how the non-linear distortions manifest themselves in the measured linear non-parametric 
Frequency Response Function (FRF) (i.e. Empirical Transform Function Estimate – ETFE 
[125]). The theory was developed for input signals with a finite number of harmonics, and the 
asymptotic properties have been analysed when the number of harmonics tends to infinity6. 

The stochastic setting was essential to our purpose; otherwise there would be no possibility to 
qualify the error on the approximation. The stochastic setting makes it possible to design 
measurement procedures (here it was averaging) warranting the proper approximation of the 
theoretical limiting results (expected values) from the finite measurement data.7 

Harmonic random signals are in the limit (in the number of harmonics) normally distributed, 
and even separable, the measured ETFE tends thus asymptotically to the FRF of the OE-LTI-
SOE of a non-linear system described by a convergent Volterra series. Issues like stability, 
causality, memory length, impulse response structure, etc. are no investigated for the non-
parametric FRF. However they may be pertinent to the parametric identification, which can be 
made after the analysis of the measured non-parametric FRF yields hints w.r.t. to the 
dynamics. 

It is important to observe that the measurement of the non-parametric FRF precedes always, 
as the necessary introductory step, the parametric modeling in the frequency domain. The 
accurate judgement of the linear properties of the identified system, but also of the possible 
non-linear errors is essential for the successful further identification. The proposed methods 

                                                 
5 There are many definitions of being weakly non-linear or almost-linear (e.g. based on the coherent and 
incoherent output power, ratio of norms, ratio of coefficients, etc.), all sharing the notion that while nonlinear 
effects are essential and are observable, the linear behaviour dominates, and as a first approximation, the system 
can be considered linear.  

6 Historically the starting point was the adoption in the 1980s by the Vrije Universiteit Brussel ELEC 
(Fundamental Electricity and Instrumentation) Department of the frequency-domain identification of the linear 
systems (contrary to the dominating then time-domain) and the following intensive research for the suitable 
deterministic excitation signals. From that time stems e.g. still state-of-the-art crest factor minimization 
technique [85]. Making research at the ELEC in the knowledge intensive signal processing methods ([24*-26*, 
1*-*4*]) I joined the group which started to tackle the non-linear problems and became a member of the team 
working out the basic theory [27*-28*, 30*]. During multiple visiting periods at the ELEC I dealt with a number 
of open SISO (Single-Input Single-Output) problems and later I worked out the respective MIMO (Multi-Input 
Multi-Output) theory and solved some other open problems. From that time on this theory is intensively 
researched by a number of scientific and application groups. 

7 Stochastic setting resembles the so called stochastic embedding of [129-130]. Stochastic embedding is a 
parametric framework where modeling errors are considered realizations of a random variable with a parametric 
distribution and the effort is to estimate these parameters. Our approach is nonparametric and the modeling 
errors will be classified into (nonparametric) systematic deterministic and stochastic components. 
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make it possible to measure the non-parametric FRF and to qualify the non-linear errors 
within the same experiments, minimizing the required measurement time8. 

In the following I review the principal assumptions underlying the research, and the basic 
theoretical concepts and results. Then I present my own research results, and finally I give a 
summary of the impact of these results on the applications. 

Basic equations of the Volterra series in the time and the frequency domain under harmonics 
excitations can be found in [34, 198, 22, 9, 112]. The more specific results are referenced 
locally.  

 

1.4 Research assumptions 

The field of non-linear systems is too vast and too complicated to tackle with success any 
particular problem without carefully devised limiting assumptions. Their role is to bring the 
problem to the size and scope still valuable in practical modeling situations, yet admitting 
theoretical analysis and synthesis. The essential working assumptions were applied thus to the 
selection of the: 

• non-linear system class, 

• excitation signals, 

• focus of the research. 

The focus is the measurement methodology of the nonparametric linear frequency 
characteristics (Frequency Response Function - FRF), via its Empirical Transfer Function 
Estimate (ETFE [125]). Due to this reason the results were formulated in the frequency-
domain for the input-output system descriptions. The information available in the time-
domain and in the frequency-domain measurements is the same and the formulation of the 
measurement problem is in itself equivalent. Nevertheless the required information appears 
differently in the measurement data paving the way to the advantages stemming from 
different processing algorithms.  

To the advantages of the frequency-domain belong the freedom in the selection of the 
frequencies where the model is matched to the measurements or freedom in restricting 
unwanted frequences, the possibility to model unstable systems, furthermore, if abiding to the 
periodic excitations (and periodic reference signals), no leakage bias on the ETFE, separation 
of the plant and the output noise modeling, possibility for the nonparametric noise modeling, 
possibility for modeling under close-loop conditions, finally (what is the topic of this work) 
the separation of the effect of the non-linearities and the output noise [204, 206, 125].  

                                                 
8 In recent developments the originally proposed harmonic random excitations are perturbed (power level, 
coloring) to verify how does it perturb the measured linear ETFE to gain indication about the possible structure 
of the nonlinear block model [63-64, 212-213, 114-116]. 

. 
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The non-linear system theory, as mentioned before, suffers from the multitude of possible 
models. Furthermore, the non-linear system identification is conditioned on the used 
excitation signals due to the presence of unavoidable model errors. Even if we intend to tackle 
practical situations when the level of the non-linear distortions is low, the choice of the class 
of the non-linear system models and the associated choice of the input signal class is 
important, as it is heavy in the consequences.  

On the system and signal models 

In the present work convergent Volterra series were assumed as the model the measured 
systems. The particular usefulness of such model is dictated by the following (summarizing 
the wisdom of [23-25, 19, 21-22, 202, 211, 54, 59-60, 104, 137, 134, 162, 198, 188, 76]): 

1. Natural (additive) way of how the linear and non-linear systems can be treated together, 
and the level of the non-linearity controlled; 

2. A number of pragmatically important non-linear systems can be already modeled by finite, 
low order Volterra series; 

3. Wide class of (even non-continuous) non-linear systems which can be approximated in the 
least square sense with the Volterra series; 

4. Well developed frequency-domain representation; 

5. Natural way of how the non-linear dynamics can be modeled; 

6. Volterra models contain a number of practically important non-linear block models, i.e. 
Wiener-, Hammerstein-, and Wiener-Hammerstein models; and also Non-Linear Finite 
Response (NFIR) models; 

7. Straightforward extension of the Single-Input Single-Output (SISO) models to the 
Multiple-Input Multiple-Output (MIMO) models; 

8. Possibility to include a priori physical knowledge into the models (the number, the order, 
the symmetry, and the frequency bands of the Volterra kernels); 

9. Volterra-series possess a unique steady state property and are Periodic-Input Same 
Periodic-Output (PISPO) systems, i.e. they do not generate subharmonics. Volterra series also 
yield almost periodic outputs to the almost periodic excitations. 

Volterra models are not a universal tool and their expressiveness is limited. A number of 
interesting and important non-linear phenomena cannot be modeled well or at all with the 
Volterra series. As the Volterra series generalize the Taylor expansion, bifurcations, chaos, 
non-linear resonances, generation of sub-harmonics, etc. are out of reach for the Volterra 
models.   

The second principal choice applied to the input excitation signals. Asymptotically Gaussian 
periodic signals were adopted (over non-periodic signals) due to: 

1. Less problems in the ETFE measurements (no leakage due to transients); 
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2. It is easy to distinguish or to separate the input signal properties (periodic) from the noise 
properties (non-periodic); 

3. An easy introduction of the randomness into the signal (via random phases and/or random 
spectral amplitudes); 

4. A free hand in the construction of different signal characteristics by manipulating the 
spectral properties (coloring), the frequency grid, and the phases; 

5. An easy realization of such signals in modern signal generators, meaning that the 
developed theory is straightforward enough to be widely used in practice; 

6. Possibility to model approximately the non-periodic signals also by choosing high enough 
number of the harmonics in a bounded frequency band. 

7. Considering that in many measurement application areas Gaussian (noise) signals are 
traditionally used, the proposed excitations signals provide portability of the new methods 
combined with additional advantages; 

8. Gaussian signals are "non-linearity-friendly" (i.e. when applied to static non-linear 
systems). 

9. Last, but not least harmonic signals can be analytically integrated and/or differentiated 
sparing error prone signal processing where different forms of the excitations are jointly 
needed (e.g. velocity, angular position, acceleration [227]). 

It is important to mention, that the approach presented in the following and based on the 
characterization of the non-linear distortions as a noise and bias on the linear FRF, is valid for 
any convergent Volterra series, i.e. for any smooth enough non-linear dynamic system. If 
however the non-linear behaviour is strong, using such linear model does not make sense, as 
the excessive non-linear noise will make the measurements long and costly and then still the 
bias to the linear FRF will be too large to get a feeling of what the linear system dynamics is 
really like. Despite hence the universal validity of the results, their practical usage is confined 
to the situations where the level of non-linearity is small and/or the order of the non-linear 
system is low. 

 

Research methodology 

The aim of the research was to separate in the measured FRF of a weakly non-linear system 
the systematic non-linear effects (resident and enduring in the measurement results) from 
other, noise-like non-linear effects that are removable with a suitable post-processing.  

To this end it is not enough to excite the system (like a linear system) with a single 
deterministic signal. A manageable stochastic process is needed, to excite the system with its 
sample functions, one after the other. The non-linear system will answer to every input sample 
function differently, camouflaging the systematic error (with respect to the linear system) with 
"non-linear noise" of varying behavior (see Example 1.1.1). 
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Considering that the input to the investigated system is a stochastic process, the system output 
will be a stochastic process alike and in principle the systematic (non-zero expected value) 
and "noise-like" (zero expected value) error components can be grasped by computing higher 
order moments. Higher order moment estimates can be computed by assembly averages. In 
the measurement technical language it means that we should generate independent sample 
functions from the input stochastic process, apply them as excitations to the system, and then 
average the individual measurement results. 

The used (usual) sample mean is appropriate because (1) sample averaging is a consistent 
estimate of the theoretical expected value.  The practical bound limiting the number of 
averages is only the measurement duration (cost of the equipment, not met stationarity 

conditions, etc.); (2) for Gaussian signals the average is also a minimum variance estimate; 
(3) an average can be computed recursively without unnecessary data storage (important due 
to (1))9. 

At the beginning of the research the used excitation signal was the periodic Gauss noise (so 
called periodic noise). The break-through was however brought by the observation that if the 
phases of the multi-harmonic signals are random, independent, and uniformly distributed on 
the unit circle, then with the increasing number of the harmonics such signal - called random 
multisine - tends to a Gaussian signal. Furthermore the FRF measurements performed with 
random multisines tend asymptotically to the measurements performed with Gaussian signals, 
also in case of the non-linear systems. 

 

1.5 Summary of the scientific results 

The basic concepts of the underlying theory were established at the VUB ELEC Department, 
but due to the frequent research visits (from University of Glamorgan (UK), University of 
Warwick (UK), Linköping University (S), KTH Royal Institute of Technology (S), and last 
but not least the BME researchers) the developments were discussed continuously almost on 
the daily basis and were published in deliberately jointly authored publications (at the 
Department of Measurement and Information Systems, BME, these contacts took between 
1997-2006 the organizational form of 4 successfully concluded Hungarian-Flemish Bilateral 
Research Grants). 

Among the scientific results there are thus results, especially from the beginning of the years 
long research, where the identification of the individual responsibility of the authors is not 
possible, but there are also results, which I can responsibly call my own, despite the joint 
authorship of the publications. Such inseparable results merit mentioning because they reveal 
the research process and provide the context for presenting the strictly individual 
contributions. After summary review of the joint results, the individual contributions are 
structures into the research Theses, to make a clear distinction in the presentation. 

                                                 
9 In recent developments, due to the industrial technological demands, discrete level excitation signals were also 
considered leading to the “nonlinear noise” of different properties where the processing of the measured results 
was based on median filtering instead of simple averaging [210, 268-269]. 
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Jointly achieved research results 

The starting point was the development of the theory of the nonparametric best linear 
approximation to weakly non-linear SISO (Single-Input Single-Output) systems. We gave the 
mathematical structure of the approximation and established the theoretical and practically 
verifiable properties of its components. This theoretical approach was extended, supported by 
analysis, simulations, and practical suggestions, to the measurement technology of the linear 
frequency characteristics ([27*-28*, 30*-31*, 33*-37*, 40*, 42*, 45*]). (Sections 2.2-2.3-2.4) 

One of the important design parameters in the measurement technology was the frequency 
grid of the multisine excitations, frequencies where the excitation injects energy into the 
measured system. The selection of the frequency grid in the non-linear measurements strongly 
influences the properties of the measurable quantities. In our research many kinds of grids 
were considered pursuing inherent theoretical and practical possibilities ([32*, 247, 162, 170]) 
(Sections 3.2-3.3) 

Expected values measured on the Volterra series with the harmonic signals with a large 
number of harmonics theoretically correspond to the Riemann integral sums. This made it 
possible to evaluate theoretically the robustness of the asymptotic properties of the systematic 
error (Best Linear Approximation - BLA) measurements. [17*]. (First part of Section 3.6) 

An interesting and pragmatically important issue was the fact that in the designed (Best 
Linear Approximation) measurements the non-linear noise variance is directly measurable, 
but not so the non-linear bias (i.e. the systematic error on the FRF). Research attempted to 
clarify how much these two error components are interdependent, with the prospect to 
estimate the systematic FRF error from the measurements of the nonlinear noise variance. 
[47*-48*]. (Section 2.5, equ. 2.5.14) 

Finally if the non-linearity is weak, linear system analysis may perhaps indicate that there are 
no problems with the stability in the close loop. The amplitude of the signals in the feed-back 
loop may nevertheless increase so much that the non-linear effects will appear with 
potentially unfavorable consequences. Some research was done to predict such situation well 
in advance ([38*, 41*, 43*]). (Section 6.3) 

 

Contributions to the SISO theory 

The strictly joined research not only established the basic theory but also led to the 
formulation of a vast number of problems (not everyone solved yet) where the scientific 
contributions can be already attributed to the concrete individuals. In case of SISO systems, I 
have dealt in particular with various aspects of the multisine design and the systematic 
nonlinear error in more specific measurement situations. These particular research problems 
and results are formulated as independent research Theses. 
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Thesis Group 1. Design methodology of multisine excitation signals – SISO systems 

Here I have collected results where the topic of the research was the flexibility of the 
multisine signals, shaping them to the application requirements and then analysing the related 
problem of how similar are the measurement results if the excitation signals differ in the 
design. 
 

Problem Topic 1.1 Before the theoretical and the practical well-founding of the multisine 
signals with a large number of harmonics the prevalent excitation signal in a number of 
measurement fields was the Gaussian noise. In theory both signals are asymptotically 
equivalent, but for the credibility the non-asymptotic behavior of the multisines had also to be 
examined. 

Thesis 1.1. Design considerations how to chose multisine excitation signals 

Based on the investigation I have proposed a methodology how to use multisine signals if 
nonasymptotic behavior is also important. In measuring the FRF of a weakly nonlinear 
systems I propose to use odd-odd (double odd: every second odd harmonic frequency) 
random phase multisine considering that: 

- the measured FRF is the same as measured on the system with the Gaussian signal, 

- the uncertainty of the measurement is largely reduced due to the drop-out of the effects of 
the even and in part of the odd nonlinearities (see Fig 3.5.1), 

- it is possible to separately measure the even and odd nonlinearities. 

It can be also stated that in case of the Gaussian noise excitation the required frequency band 
limitation and the amplitude censoring amplify the bias on the measured FRF, if the measured 
system does contain odd nonlinearities. Furthermore the usual amplitude censoring by ± 3 σ is 
not enough if the nonlinearity is involved (I propose censoring by ± 4 σ). [49*-50*, 5*, 8*, 
12*, 39*]. (Sections 3.2, 3.5, Th 3.2.1) 
 

Problem Topic 1.2 Frequency grid is the design parameter of the multisine signals. 
Frequency grids of various structures can be successfully used to solve special measurement 
problems. Important question is how consistent could be the measured FRF Best Linear 
Approximations, if the used multisine signals differ in the definition of the frequency grid? 

Thesis 1.2. Unifying asymptotic results for different frequency grids of the multisine 
excitation with the theory of the uniformly distributed sequences 

I have determined that if the frequency grids are are modeled as the uniformly distributed 
sequences with increasing resolution, then the error between the measurements obtained from 
different frequency grids gets smaller and is of the order of the magnitude of the grid 
resolution [20*, 46*]. (Section 3.6, from Def 3.6.1, Th 3.6.2) 
 

Problem Topic 1.3 In measuring non-linear systems an important issue is the control of the 
amplitude density of the excitation signals. It is a tool to put signal energy at the amplitudes 
relevant for the nonlinear behavior.  
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Thesis 1.3. Designing application dependent wide band multisine excitation signals 

I have determined that the phases of the multisine, which are a design parameter, with suitable 
phase iterating algorithms, can be used to the user-demanded forming of the amplitude 
density of the multisine signal.  Moreover, with some trade-off, the crest factor minimization 
can be also included [29*]. (Section 3.4, Algorithms 3.4.1-3.4.3) 
 

Thesis Group 2. Properties of the systematic nonlinear errors – SISO systems 

Here I have collected results of investigating in more detail the properties of the systematic 
error component and the mutual relation of the systematic and the stochastic nonlinear errors. 
 

Problem Topic 2.1 The systematic error on the FRF Best Linear Approximation measured in 
the presence of the non-linearity is in itself not measurable, however the variance of the non-
linear noise is measurable. Important problem is to find out how the measurable (stochastic) 
error can be used to estimate the nonmeasurable (systematic) error. 

Thesis 2.1. Establishing bounds on the systematic error of the Best Linear 
Approximation 

I have determined that for the static polynomial non-linearity the cubic system can be 
considered the worst case instance and based on it I have formulated the worst-case estimate 
of the non-measurable error. I have extended the estimate heuristically to the Wiener-
Hammerstein system model [9*]. (Section 2.5, Ths 2.5.3-2.5.4) 
 

Problem Topic 2.2 The coherence function is a well known tool in the recognition and 
examination of the non-linear systems (considered as black-box models). If the non-linear 
system admits the non-linear additive noise model, how this additional knowledge will 
influence the behavior of the coherence function? 

Thesis 2.2. Clarification of the relation of the Best Linear Approximation and the 
coherence function 

I have established that the coherence function can be expressed with the components of the 
Best Linear Approximation (non-linear bias and noise), as well as that the nonlinearity 
indicating properties of the measured coherence function are consistent with the behavior of 
the components of the Best Linear Approximation. To this end I have investigated general and 
also more specific non-linear system structures [10*-11*]. (Section 2.5, Ths 2.5.1-2.5.2) 
 

Problem Topic 2.3 The researched question was whether the product of the Best Linear 
Approximations to the superposed non-linear systems can be used to build an acceptable 
approximation of the whole system. 

Thesis 2.3. Analysis of the superposition of the SISO systems from the point of view of 
the Best Linear Approximation 

I have determined that in the frequency domain where both system components show high 
coherence, the product relation of the linear system theory (i.e. that the frequency 
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characteristic of the superposition is the product of the frequency characteristics of its 
components) remains valid [10*-11*]. (Section 6.1) 
 

Problem Topic 2.4 The Best Linear Approximation FRF is traditionally measured as a sample 
mean (for linear systems the minimum variance Maximum Likelihood estimate for Gaussian 
excitations). This minimum variance is the basis of the usual measurement time vs. 
measurement quality trade-off. However due to the non-linearity the sample mean is no more 
an optimal estimate; its variance is not an attainable theoretical minimum and can be 
improved. By using a limited a priori knowledge about the measured system this trade-off can 
be made sharper. 

Thesis 2.4. Reducing the measurement time of the Best Linear Approximation by Monte 
Carlo averaging methods 

I have developed an alternative method of measuring the Best Linear Approximation where a 
better trade-off between the measurement duration and the measurement accuracy can be 
achieved by using the Monte Carlo variance reduction techniques, without increasing the 
complexity of the measurement protocol [23*]. (Section 6.4) 
 

Contributions to the MIMO theory 

 In the real life problems there are usually more independent effects cumulated towards a 
common output. It is important thus to handle Multiple-Input (Multiple-Output) models also. 
It is also expected that the earlier SISO case should appear as a special case within the MIMO 
theory. 
 

Thesis Group 3. Properties of the systematic nonlinear errors – MISO systems 

Based on SISO Best Linear Approximation theory I have developed the ground results in the 
MIMO (MISO) Best Linear Approximation theory, focusing on the description of the 
systematic errors and the equivalence of the measurements for different kinds of excitations. I 
also have extended to the MISO case some of the more specific results developed for the 
SISO systems.  
 

Problem Topic 3.1 In case of multiple input systems separate Best Linear Approximations 
can be defined for every input-output signal channel. In computing such BLA system other 
inputs act as disturbances and complicate the computation of the non-zero expected values. 
Similarily to the SISO case some kernels do not contribute to the systematic errors, however 
the general picture is much more complicated. 

Thesis 3.1. Developing general MIMO BLA theory from the point of view of the 
systematic FRF error 

I have determined that using the random multisine BLA SISO measurement technique, the 2-
dim MISO cubic system excited with independent random multisines defined on a common 
frequency grid, can be modeled (similarly to the SISO case) as a 2-dim linear FRF 

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



17 

 

characteristics and the nonlinear output noise [22*, 13*-14*, 44*]. (Sections 4.1-4.2, Ths 
4.1.2, 4.1.3, 4.1.4, 4.1.5). As a full generalization I have determined that the multiple-input 
Volterra system excited with the random multisine excitations can be expressed as a linear 
BLA FRF system network, completed with the output non-linear noises. The earlier SISO and 
2-dim results are the special cases of the general case [15*, 20*] (Sections 4.5-4.6, Ths 4.5.1, 
4.5.2, 4.6.1)  
 

Problem Topic 3.2 Similarly to the SISO systems (see Thesis 2.3) an interesting question for 
the MIMO systems is how robust is the FRF BLA matrix from the point of view of further 
distortions superposed on the system.  

Thesis 3.2. Superposition of the MIMO systems from the point of view of the Best Linear 
Approximation 

I have established that the Best Linear Approximation to a MIMO system is robust when the 
excitations are nonideal and are modelled by the output of a nonlinear Volterra MIMO system. 
I have established that the nonlinear distorting effects cause larger FRF characteristics errors 
than the linear distorting effects of similar amplitude, the distorting effects originated in the 
cross input-output signal paths cause larger errors than the distorting effects in direct signal 
paths, as well as that the FRF phase errors increase faster than the FRF amplitude errors. 
[18*] (Section 6.2) 
 

Thesis Group 4. Design considerations about the excitation signals – MISO systems 

Multiple inputs introduce additional freedom into the excitation design. Not only we dispose 
the design parameters at a single channel, we can also decide how the excitations at different 
input channels and in different experiments could be related to yield better measurement 
results. The challenge lies in designing excitations that are better from the measurement 
technical point of view (i.e. warranting equivalent measurements at a lower cost). In case of 
multiple inputs a distinction must be made between the 2-dimensional and more-dimensional 
weakly nonlinear systems. Surprisingly, in low nonlinear order 2-dimensional system 
measurements the traditional (linear system theory) noise attenuating techniques are 
henceforward applicable, but this advantage is lost for higher order nonlinearity and/or higher 
input dimensions. There new noise attenuation techniques has to be developed. 
 

Problem Topic 4.1 In linear MIMO measurements an important part of the measurement 
methodology is the input design suitable for the noise cancellation. I have investigated 
whether such noise cancelling methods could be also used to the advantage in the BLA 
measurements to cancel the non-linear noise. 

Thesis 4.1. Optimizing excitations used in the 2-dim BLA theory 

I have determined that the linear noise attenuating technique is in the same way effective in 
case of the 2-dim cubic BLA measurements. I have also determined that this approach is not 
suitable in case of the system of a higher nonlinear order or the higher number of the inputs. 
[22*, 13*-14*, 44*] (Sections 4.3, 4.4) 
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Problem Topic 4.2 The MIMO extension to the SISO BLA theory was formulated for the 
random multisine signals. An important question however is whether the excitation signals 
asymptotically equivalent in the SISO theory (multisine, periodic noise, Gaussian noise) are 
similarly equivalent in the MIMO case. 

Thesis 4.2. Equivalence of the excitations from the point of view of the systematic 
(MIMO) FRF error 

I have determined that the Gauss noise, the periodic noise, and the random phase multisine 
signal classes are asymptotically equivalent (if the number of harmonics is increasing and the 
spectral properties of the signals are comparable) also in the case of nonlinear MIMO Volterra 
systems in a sense that using these excitation signals the measured multidimensional FRF 
BLA systems tend in the limit to the same transfer characteristics matrix. [21*] (Section 5.4, 
Ths 5.4.1, 5.4.2) 
 

Problem Topic 4.3 In the detailed presentation of the results referred in Thesis 2.4 one can 
see that in the multidimensional case the inverse of the input matrix amplifies uncertainty, 
even in case of the multisine excitations (contrary to the SISO case). An important question is 
whether this situation can be improved or not? 

Thesis 4.3. Special orthogonal random multisines 

With the introduction of orthogonal random multisines I have developed a new efficient 
method of measuring the Best Linear Approximation of the MIMO Volterra systems. I have 
proved that the newly introduced excitation signals are equivalent in the sense of the Thesis 
2.4 to other listed excitation signals, but result in an essentially lower level of the non-linear 
noise experienced on the measured FRF characteristics. [15*-17*] (Sections 5.1-5.2, Ths 
5.1.1, 5.2.2, Lemma 5.2.1) 
 

 

1.6 Review of the content 

Section 2 introduces the general theory for the single-input single-output (SISO) systems. 
First a simple example is shown, without the in-depth formalism, providing the feeling of the 
problem and yet presenting every important issue and question, which later on will be 
elaborated in detail (Section 2.1). Section 2.2 presents the main result, i.e. the additive non-
linear noise model to the non-linear system, and then the properties of the systematic non-
linear distortion (Section 2.3) and the stochastic non-linear distortion (Section 2.4) are 
analyzed. As mentioned before, the Volterra models cover the usual non-linear block models. 
The developed theory is applied to them in Section 2.5. Finally the question of the mutual 
analysis of the distorting bias and variance is considered in Section 2.6. 

The purpose of Section 3 is to show the enormous flexibility of the multisines as the 
excitation signals. Section 3.1 discusses tunable free parameters, i.e. the frequency grid, the 
amplitude spectrum, and the phases. Then various types of the multisines are presented 
(Section 3.2), discussing their design and the intended effects on the measured linear 
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approximation. The aim of Section 3.3 is to show, that the measurement results obtainable 
with the multisines are comparable for the increasing number of harmonics with the results 
obtained with traditional excitation signals (Gaussian noise and periodic noise). 

Section 4 extends the results of Sect 2. to the multiple-input multiple-output (MIMO) Volterra 
models. The main result, the multidimensional additive non-linear noise model, is developed 
in Section 4.1 and the properties of the non-linear biases and non-linear noise variances are 
evaluated in Section 4.2 and 4.3. 

In MIMO measurements excitations are applied to more than one input simultaneously. The 
excitation signals must be designed thus not only in themselves, but also in relation to the 
signals applied at other input points. Section 5 presents excitation design problem for the 
MIMO systems. Free design parameters are discussed in Section 5.1. Various excitation 
schemes and their effect on the model developed in Section 4 are analyzed in Section 5.2. 
Finally in a manner similar to Section 3.3 the equivalence of the measured results for various 
MIMO excitation schemes is considered. 

Section 6 presents some applications of the introduced theory. In Section 6.1 simple 
measurement application are shown, based on the literature. Sections 6.2 and 6.3 elaborate on 
the problem of non-linear distortions in cascaded systems, for SISO and for MIMO systems 
respectively. Besides modeling practical measurement problems cascaded systems make it 
possible to study the robustness of the developed theoretical tools. In Section 6.4 an attempt is 
made to qualify stability problems in the non-linear feedback system based on the additive 
non-linear noise model.   

In the development of the additive non-linear noise model, necessarily, plenty of problems 
remain still open. Section 7 discusses some of the more interesting and difficult open research 
issues. 

Finally the Appendices contain the most lengthy proofs and examples. 
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2. General SISO theory 
An unexpected non-linearity can deceive the user not familiar with the non-linear phenomena, 
or the user versed solely in the linear measurement or identification methods, making her/him 
thinking that the nature of the problem is quite different. Consider simulated measurements in 
the Example 1.1.2. The FRF of a linear system, otherwise smooth, can become scattered and 
acquires the “noisy look” if the excitation signal hits the hidden non-linear component. 
Besides scattering, the measured FRF will also be biased, this though is more difficult to 
discern, as the true frequency dependence of the characteristic is not known in advance. It is 
common knowledge, however, that without the noise, the FRF measurements should yield 
more or less smooth functions. The visible “noisiness” can thus easily be taken as the proof 
that the output noise is the real problem here (especially as it is usually present). The 
scattering is caused by the non-linear mechanism of summing various harmonic components 
in the input signal and shifting them to different places (frequencies) along the frequency axis. 

Example 2.1: Scattering of the frequencies due to a non-linearity. Let the system )()()( 3 tututy ε+=  be 

excited by the input signal containing two harmonic components with frequencies ω 1 = 1 and ω 2 = 4. Then the 

output signal will have harmonics at frequencies ±1, ±2, ±3, ±4, ±6, ±7, ±9, ±12. 

 

2.1 Problem introduction via simplified examples 
In this Section the main points of the theory developed formally later will be shown in 
simplified measurement examples, without strict definitions and derivation.  
 

A. Measuring a linear system with a random signal. Assume that for linear FRF 
measurements a periodic random ),()( ξtutu =  stochastic process input signal is used. Let the 
collected measurement data come from noisy linear system, where the zero mean output noise 
is similarly a stochastic process bound to a random event ζ, then: 

),(),()()( 0 ζξ tntuqGty += ,  or       (2.1.1) 

in the frequency domain (l is the discrete frequency)10: ),(),()()( 0 ζξ lNlUlGlY += . 
           (2.1.2) 

The FRF is computed (from k = 1… M experiments) as: 
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This estimate is unbiased, i.e.: )()}(ˆ{ 0 lGlGE = ,     (2.1.4) 

because the output noise and the excitation are independent:  
                                                 
10 Considering that Y is the output to the stochastic input and contains also random noise, formally we should 

write: Y(l) = Y(l, ξ, ζ) and similarly G(l) = G(l, ξ, ζ), however these arguments have been omitted for clarity. 
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and its variance depends on the degree of averaging introduced in (2.1.3).  
 

Note: For the random multisine signals considered later: 2ˆ)},(),({ UlUlUE =ξξξ . 

 

B. Measuring a non-linearly distorted system with a deterministic signal. To measure the 
linear FRF it is enough to keep a single input realization (i.e. let ξ = ξ0) and to average the 
results to get rid of the output noise N(l,ζ). Reassured that we can thus simplify the 
measurement we continue overlooking the point, that now the measurement data is coming 
from a noisy non-linear system: 

),(),(),()()( 000 ζξξ lNlYlUlGlY NL ++= ,      (2.1.6) 

with ),]([),( 00 ξξ lUVlYNL =  the non-linear part of the system. The FRF estimate is now: 
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Averaging gets rid of the output noise, but the non-linear term is not random: 
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and the measurement results are heavily distorted. 
 

C. Measuring a non-linearly distorted system with a random signal. What will happen if 
we return to our original random input: ),(),(),()()( 0 ζξξ lNlYlUlGlY NL ++= ?  

Now: 
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           (2.1.9) 
 

The second expected value is not a problem, as both random components are independent and 
zero mean. What about the non-linear expected value in the middle?  

If the input signal has bounded realizations for every ξ and the non-linear system V[.] is well 
behaving (e.g. continuous, BIBO stable, etc.), then the output of the non-linearity ),( ξlYNL  
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will also have bounded realizations and the 
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variable for every frequency l will have finite expected value and finite variance, which 
symbolically can be written as: 

),,(),()()(

),,()}),(ˆ{),(ˆ()},(ˆ{)(),,(ˆ

0

0

ζξξ
ζξξξξζξ ξξ

lGlGlGlG

lGlGElGlGElGlG

NSB

NNLNLNL

+++=
+−++=

    (2.1.10) 

where )(0 lG is the true linear FRF, )(lGB  is systematic non-linear distortion, part of the 
measured FRF after averaging, ),( ξlGS  is a zero mean non-linear stochastic distortion, and 

),,( ζξlGN  is also a zero mean distortion caused by the output noise. Then:  

0
ˆ ˆ{ ( )} { ( , , )} ( ) ( )BE G l E G l G l G lξζ ξζ ξ ζ= = + ,       (2.1.11) 

and we will see later on that it is also possible to have: 

)],,([)],([)](ˆ[ ζξξ lGVarlGVarlGVar NS += .      (2.1.12) 

It is important to note that a part of the non-linear distortion observed in the transfer term 
( , )

( , )
NLY l

U l

ξ
ξ  has been eliminated by being pushed into the zero mean stochastic component, 

which can be got rid by averaging, already employed to get rid of the output noise, and this 
without any particular strict assumptions on the non-linear distortion.  
 

D. Measuring low order Volterra systems with random multisines. Assume now that for 
the FRF measurements so called uniform random phase multisine signal is used, i.e. a multi-
harmonic signal of period N, with M  harmonic components distributed on a particular 
frequency grid, with independent random phases and equal spectral amplitudes, normalized to 
unit power, i.e.: 
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and assume, that the non-linear part of the system is a 3rd order Volterra system, which in the 

frequency domain can be written as (k1, k2, k3 ≠ 0): 
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,   (2.1.14) 

where G3(., ., .) is so called (symmetric) Volterra kernel of the 3rd order, and 1 2 3k k k l+ + = .  

Now:  
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=
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=

∑ ∑

∑ ∑

  (2.1.15) 

Considering that at different frequencies phases are independently distributed on the unit 
circle, the expected value is nonzero only if the frequencies are suitably paired within the 

sum, e.g. k1 = l, or k2 = l, or k3 = l. Taking into account that: ϕ(-k) = -ϕ(k):  

1}{}{ )()()()()()()()( 222121 == −−−−− ljkjkjljljkkljkjkj eeeeEeeeeE ϕϕϕϕ
ϕ

ϕϕϕϕ
ϕ   (2.1.16) 

and with this: 1
3 3,

( , )
{ } ( ) 3(2 ) ( , , ) 3 ( , , )

( , )

MNL
B k M B

Y l
E G l M G l k k G l f f df

U l

ξ
ξ

−
=−

= = − ≈ −∑ ∫  

           (2.1.17) 

for large M, in some frequency band B (factor 3 comes from the ways frequency l could be 
paired). After the averaging the FRF results thus in: 

1
0 3,

ˆ ( ) ( ) 3(2 ) ( , , ) ( )
M

BLAk M
G l G l M G l k k G l−

=−
= + − =∑ .    (2.1.18) 

Taking together the points C and D we should note that: 

(a) The obtained results permit to write down the original measurement problem (no output 
noise is assumed for clarity) as:  

( ) ( ) ( ) ( )BLA SY l G l U l Y l= + ,        (2.1.19) 

i.e. under random multi-harmonic excitations the output of the Volterra system looks like the 
output of a linear system distorted by an additive noise; 

(b) This additive noise is naturally a function of the input signal (as the problem is non-
linear); 

(c) Non-linear errors have been decomposed. A part of the non-linear effects went into the 
systematic distortion on the measured FRF, another part into the non-linear stochastic 
component, which can be handled with traditional tools; with this development a non-linear 
system becomes now easier to analyse; 

 

Fig. 2.1.1: Non-linear SISO system and its the additive non-linear noise source model.
 

(d) Numerous questions haven’t been raised and addressing them requires a more formal 
setting, e.g.: what class of non-linear systems can we deal with, what class of excitations can 
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we use, what are the properties of the non-linear noise, what can we tell about the non-linear 
distortions if the system class or the excitation class is narrowed to well defined practical 
cases, etc.?  

(e) As it was visible in the derivations, the number of the harmonics and their frequencies 
weren’t particularly critical to the final result, especially interesting are thus the questions 
related to the frequency grid and the asymptotic behaviour of the excitations. 

 

2.2 Best Linear Approximation of SISO Systems 

System and signal models 
 

We will consider Volterra systems or systems being limits of convergent Volterra series. The 
reasons of this choice had been outlined in Section 1.3.  
 

Definition 2.2.1: Single-Input Single-Output (SISO) finite Kth order Volterra system. 
The output of such system can be written in time domain as [22, 198]: 

ii i

KK
K dtugtytuVty ττττ α

αα
α

α

α
∫ ∏∫∑∑

∞

∞− =

∞

∞
==

−===
11-

11

)( )(),,...(...)()]([)(   (2.2.1) 

where gα is the time-domain Volterra kernel of order α th. The primary domain of analysis 
will be the discrete frequency domain, where for the periodic inputs the so called fundamental 
frequency-domain formula [22, 25] is valid: 

1 1

( )
1 2 1 1

1 1 ,...,

( ) [ ]( ) ( ) ( , ,..., , ) ( )
K K M

K
ii

k k M

Y l V U l Y l G k k k k U k
α

αα
α α α

α α −

− =
= = =−

= = =∑ ∑ ∑ ∏  (2.2.2) 

where l = Σ ki, i = 1 … α, is a discrete frequency, Gα is a symmetrized frequency-domain 

kernel of order α th, and M is the number of harmonics present in the input signal. � 
 

Definition 2.2.2: Single-Input Single-Output (SISO) Volterra series. The Volterra series is 
defined by the convergent series: 

ii i dtugtytuVty ττττ α
αα

α

α

α
∫ ∏∫∑∑

∞

∞− =

∞

∞

∞

=

∞

=

−===
11-

11

)(),,...(...)()]([)(    (2.2.3) 

or in the frequency domain by: 

1 1

1 2 1 1
1 1 ,...,

( ) [ ]( ) ( ) ( , ,..., , ) ( )
M

ii
k k M

Y l V U l Y l G k k k k U k
α

αα
α α α

α α −

∞ ∞

− =
= = =−

= = =∑ ∑ ∑ ∏  (2.2.4) 

where the notation follows Def. 2.2.1. Kernels Gα are bounded by max |Gα| = Mα. The series 
is convergent for every l, if the input signal is normalized to unit power and has uniformly 

bounded spectral amplitudes 2UU M M≤ , furthermore if together [30*]: 

∞<∑
∞

=

α
α

α
UMM

1
          (2.2.5) 

 � 
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Note: The above conditions on signals and kernels are equivalent to the conditions stated in [22, 25] for the 

validity of the fundamental frequency-domain formula (2.2.2), where it is required that the bounded (||u||∞ < ∞) 
input signal should be of bounded variation over one period, otherwise the fundamental frequency-domain 
formula won’t converge absolutely. 

 

Corollary 2.2.1: Random multisine signal (2.1.13) is of bounded variation over one 
period. 

Proof: For ∑
=

+=
M

k
kkk tatu

1

)cos()( ϕω with period T, its variation is defined as: 

|)cos()cos(|lim|)(-)(|lim)](var[
1 11 1

11∑ ∑∑ ∑
= == =

+∞→+∞→
+−+==

N

n

M

k
knkk

N

n

M

k
knkk

n
nn

n
tatatututu ϕωϕω    

(2.2.6) 

|)cos()cos(|||lim)](var[
1 1

1 knk

N

n

M

k
knkk

n
ttatu ϕωϕω +−+≤ ∑∑

= =
+∞→    (2.2.7) 

where tn are timepoints within the period. Putting tn+1 = tn + ∆n, where ∆n ∼ O(T/N), using |ak| ≤ MU/√M, and after 
some trigonometric manipulations we obtain: 

∞<=∆≤∆≤ ∑∑∑∑∑
==∞→== =∞→
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M

M

M

M

M

M
tu

M

k
k

U
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n
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k
k

U
n

N

n

M

k
k

U

n
1111 1

lim||lim)](var[ ωωω .  (2.2.8) 

� 

 

Without the proof we state some essential theorems from [22, 25] about the behavior of the 
Volterra series. Everywhere we will assume bounded inputs within the convergence radius of 
the Volterra series. 

Theorem 2.2.1: Error bound for truncated Volterra series is [22, 25]: 

k
k

Kk

K ugtuVtuV )||(||||||||)]([)]([||
1

)(
∞∞

∞

+=
∞ ∑≤−      (2.2.9) 

where ||.||∞ is sup norm.  � 

Theorem 2.2.2: Continuity of Volterra series [22, 25]. Let Br be the ball of radius r in L∞, 

and suppose r < ρ, where ρ is the radius of convergence of the Volterra series (2.22-2.23), ρ = 

Rad V = (lim supn→∞ |gn|
1/n)-1. Then: V: Br → Bf(r)  is Lipschitz continuous, V: Bρ → L∞  is 

continuous, where f(x) = Σn=1,.., ∞||gn||∞ xn is so called gain bound function.  � 

Theorem 2.2.3: Steady state theorem [22, 25]. Let u, us be any signals with ||u||∞, ||us||∞ < ρ = 

Rad V, and suppose that u(t) → us(t) as t → ∞. Then V[u](t) → V[us](t) as t → ∞. � 

Theorem 2.2.4: Periodic steady state theorem [22, 25]. If the input u is periodic with period 

T for t ≥ 0 then the output V[u] approaches a periodic steady state, with period T. � 
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“Intuitively, an operator has fading memory, if two input signals which are close in the recent 
past, but not necessarily close in the remote past yield present outputs which are close” [23]. 
This intuitive definition will be enough for our purposes, for the formal definition see [22-23, 
25]. Then: 

Theorem 2.2.5: Approximating fading memory systems [22-23]. Finite Volterra system 
(operator) driven by bounded inputs has fading memory; Any time-invariant non-linear 

system with fading memory can be approximated by a finite Volterra system in ||.||∞ sense. � 

Note: The concept of fading memory is not unique. Beside fading memory in the sense of [23] on the full time 
axis, there are also related concepts of fading memory on the positive time axis, approximately finite memory, 
uniformly fading memory, or myopic maps (see [192]). These concepts differ depending on the time axis 
involved, assumed causality of the operators, or the properties of the input signals. The concept of fading 
memory of [23] is perhaps the most natural (scalar amplitude continuous signals on the full time axis), but the 
differences are inconsequential considering that all kinds of fading memory systems can be approximated by the 
finite Volterra series.  
 

Definition 2.2.3: Non-linear system class of interest. In the BLA modeling approach the 
class of systems of interest is restricted to those which are limits in least-square sense of the 
convergent Volterra series defined in Def. 2.2.2. If otherwise not specified, the term ‘non-
linear system’ will be used in this context. � 

Note: The possible convergence schemes, the conditions, and the consequences essential in the system 
identification are discussed in more detail in [45*], and are summarized in the Table below:  

System class Properties 

Wiener system Output converges in mean square sesnse. Point-wise convergence. Discontinuities and 
saturation allowed (bifurcations, chaos, sub harmonics, etc. excluded). Model valid for 
the Gaussian signals. 

Fading memory system Output converges uniformly. Saturation allowed. Model valid for bounded inputs. 
(bound set by the user) 

Volterra system Output converges uniformly. Derivation model converge uniformly. Saturation 
allowed. Model valid for bounded inputs. (bound cannot be set by the user) 

 

As mentioned earlier, periodic (multi-harmonic, so called multisine) excitations will be 
generally used and it’s time to define them exactly. 

Multisines will be defined on various, not necessarily uniform frequency grids. Beside some 
natural conditions (asymptotic Riemann-equivalence, see Section 3.6) the obtained general 
results do not depend on the particular frequency grid used. Let the period be N, the 
fundamental frequency0 1f N= , and let the set of the integer indices corresponding to the full 

frequency grid be 
,0 ,0 ,01 2 ... 1 ,2N N N

NS S S+ − + = − = − 
. Then an arbitrary permissible 

frequency grid of exactly M harmonics, of an N-periodic multisine is defined by the subset 

{ },0, 1 , ,M N M M M MS S S S S S M+ + + − + +⊆ ∈ = − = representing 0,M kk S f k f+∈ =  frequencies.  

Asymptotic computations will be done for an increasing N and M, keeping ( ) ( )O N O M∼ . 

The normalization is done by downscaling the otherwise (1)O spectral amplitudes by 1 2M . 
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Definition 2.2.4: Normalized random (phase) multisine. Normalized random multisines 
(called also periodic noise excitations) are N-periodic signals with randomness introduced in 
the amplitudes and phases, defined as: 

(2 / )1/2 1/2 2 /ˆ( ) (2 ) ( / ) (2 ) ( / )k

M M M M

j k t N j k t N

k S S k S S

u t M U k N e M U k N eπ φ π

− + − +

+− −

∈ ∩ ∈ ∩

= =∑ ∑ , 

           (2.2.10) 

ˆ( / ) ( / ) kj
kU U k N U k N eφ= = .       (2.2.11) 

The function ˆ ( )kU f  takes nonnegative real values. ˆ ( )kU f  and phases ϕ−k = -ϕk are the 

realizations of independent (jointly and over k) random processes satisfying the following 

conditions: phases ϕk are iid. random variables uniformly distributed on [0, 2π), ˆ ( )kU f has 

bounded moments of any order, and { }2ˆ ( ) ( )k u kE U f S f= , where ( )u kS f  is the input power 

spectrum defined for a continuous frequency argument. 

Signal (2.2.10) is called random phase multisine, if only its phases are random, and the 

spectral amplitudes take real nonnegative values ˆ ( ) ( ) 0u kU k S f= ≥ . Furthermore the spectral 

amplitudes are uniformly bounded by 2( ) ( )u k US f M≤ < ∞ , and have at most countable number 

of discontinuities in the considered band. The amplitudes of the sine waves in (2.2.10) 
decrease as O(M-1/2), and the power: 

( )
1 2

2 2

0

1 1 1 ˆ( ) | |
M M

N

k k
n k S k S

u n U U
N M M+ +

−

= ∈ ∈

= =∑ ∑ ∑       (2.2.12) 

is bounded by (MU)2 as there are exactly M nonzero harmonics in (2.2.10). � 

 

Definition 2.2.5: Uniform vs. colored multisines. If |Uk|= const, we speak about 
(normalized) uniform random phase multisines, otherwise we speak about (normalized) 
colored multisines. � 

When normalized random multisine signals (2.2.10) are applied to the system (2.2.4), the 
informal decomposition (2.1.19) can be stated formally as: 

Theorem 2.2.6: Non-linear additive noise model and the Best Linear Approximation . 
Under random phase multisine excitations (2.2.10) the output of the system (2.2.4) can be 
written as: 

1 , , , ,( ) ( ( ) ( )) ( ) ( ) ( ) ( ) ( )B M S M BLA M S MY l G l G l U l Y l G l U l Y l= + + = +    (2.2.13) 

where , ( )BLA MG l  is so called Best Linear Approximation, and is the solution of: 

22arg min ( ) ( ) arg min ( ) ( ) ( )
BLA BLA

BLA u BLA BLA U BLA
g G

g E y g u G l E Y l G l U l= − ∗ = −  (2.2.14) 

1( )G l  is the FRF of the true underlying linear system (if any exists), and the bias or 

systematic distortion term )(, lG MB  is: 
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)()()( 1

2

12
,,

−∞

=
− +=∑ MOlGlG MBMB α

α
       (2.2.15) 

1 1

1 22 1
, 1 1 1 11 1

,...,

( ) ( , , ,..., , ) ( )
M

B M ii
k k S

c
G l G l k k k k U k

M
α

αα α
α α αα

+
−

−−
− −− =

∈

= − −∑ ∏    (2.2.16) 

!)!12(2 1 −= − αα
αc          (2.2.17) 

and the non-linear stochastic distortion )(, lY MS  is zero mean, and is asymptotically 

uncorrelated over the frequency l and with input signal. Furthermore )(, lY MS  is 

asymptotically independent from U(k), for ∀ k, l; )(, lY MS  is asymptotically circular complex 
normally distributed and mixing of arbitrary order: 

0)}({ , =lYE MS          (2.2.18) 

0)}()({ , =lUlYE MS          (2.2.19) 

The even moments do not disappear, but the odd moments converge to zero (k ≠ l): 

2 0
,

,, 1

( ) ( ),
{ ( ) ( )}

( ),
SY M

S MS M

l O M k l
E M Y l Y k

O M k l

σ
−

 = == 
≠

     (2.2.20) 

)()}()({ 1
,,

−= MOkYlYME MSMS  for l ≠ k     (2.2.21) 



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=
≠

=−−
−

lkMO

lkMO
llYkkYME MYMSMYMS SS ),(

),(
)})(|)()(|)(|)((|{

0

1
2

,
2

,
2

,
2

,
2 σσ   (2.2.22) 

3/2 2 1
, ,{ ( )| ( ) | } ( )S M S ME M Y l Y k O M−=       (2.2.23) 

Proof: Original proof appeared in [30*], simplified and generalized later in [162-163, 170] to periodic and Gauss 
noises. 

From those proofs we emphasize only the method of computing nonzero expected values for random multisine 
excitations, as it is an standard tool in the BLA related proofs. 

Consider that we are interested in the calculation of the nonzero expected value of { }( ) ( )E Y l U l from (2.2.4). 

As the randomness is only in the amplitudes and the phases of the inputs, the computed expected value takes the 

form of { }1 2( ) ( )... ( )nE U k U k U k . The expected value will be different from zero, only if the number of 

terms is even and all the frequencies are paired like ( , )r q rk k k= −  leading to ( ) ( ) ( )r q rU k U k U k= = . 

Consequently { } { } { } { }2 2 2 2

1 1 /2 1 /2( )... ( ) ( ) ... ( ) ( ) ... ( )n n nE U k U k E U l U l E U l E U l= = , if all 

frequency indices are different. As the paired terms are of 
1( )O M −

, after summation in (2.2.4) they yield 

(1)O order contributions. In case when more indices coincide, like e.g. q rl l= , we obtain  moments 

{ }4
( )pE U l or higher. However the imposed additional constraint q rl l= reduces the number of possible 

summable frequency combinations resulting for the higher order moments in the contribution of order 
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1( )O M −
, which asymptotically disappears. When the number of indices (terms in the expected value) is odd, 

one of them cannot be paired resulting in zero expected value due to the circular distribution of the phase. 

In case of the random phase multisine { }2 2 2 2

1 /2 1 /2( ) ... ( ) ( ) ... ( )n nE U l U l U l U l= . � 

Notes:  

(1) All the expected values are with respect to the random phases of the input signal. 

(2) Measurements on a non-linear system depend on the input signal, consequently also on the number of 
harmonics in (2.2.10). This justifies the index notation in (2.2.15-2.2.23). 

(3) The Best Linear Approximation system (BLA ) , ( )BLA MG l  in (2.2.13), the measurable linear 

approximation to a non-linear system, was originally called Related Linear Dynamic System (RLDS) [27*-
28*], as a system strongly “related” to the linear part of a weakly non-linear system. From (2.2.15-2.2.17) one 
can see that it depends on the properties of the input random multisine and on the odd non-linear distortions 
present in the measured system. Considering that the RLDS is anyhow the best linear approximation in the mean 
square sense, and that the recent literature on the linear approximation to non-linear systems strongly emphasizes 
this point, this component has been renamed for the better correspondence with the literature.  

(4) From (2.2.13) and (2.2.19) we can see that the BLA can be measured as H1-FRF: 

, 2

{ ( ) ( )}
( )

{| ( ) | }BLA M

E Y l U l
G l

E U l
=         (2.2.24) 

i.e. as the ratio of the cross-power spectrum by the auto-power spectrum which is also the Best Linear 
Approximation in the least-squares sense. For the random multisines (2.2.24) simplifies to: 

, 2 2 2

{ ( ) ( )} { ( ) ( )} ( ) ( ) ( )
( ) { } { }

{| ( ) | } | ( ) | | ( ) | ( )BLA M

E Y l U l E Y l U l Y l U l Y l
G l E E

E U l U l U l U l
= = = =    (2.2.25) 

Dividing (2.2.13) by U(l) we can write it down as: 

,
, , ,

( )( )
( ) ( ) ( ) ( )

( ) ( )
S M

BLA M BLA M S M

Y lY l
G l G l G l G l

U l U l
= + = = +     (2.2.26) 

where )(, lG MS  represents the scattering visible on the measured non-linear FRF, see e.g. Example 2.1.1. 

(5) The stochastic properties of the phases theoretically could be relaxed, because what is really required is to 

have E{exp (jϕ)} = 0, which could be achieved with other distributions also. 

(6) In the research the true linear part of the weakly non-linear system was denoted interchangeably as G0 or G1. 
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Fig. 2.2.1: The effect of the non-linear distortion on the FRF measurements in the light of the additive non-linear 
noise model. The measured FRF differs from the linear part of the system in level (systematic bias) and 
smoothness (stochastic non-linear noise). The measurements can be smoothed by averaging (obtaining the BLA 
approximation), however the results remain biased. Weakly nonlinear Wiener-Hammerstein system composed 
from two Chebyshev filters (5th order, 10 dB ripple, 0.08 relative cut-off frequency (input dynamics), and 3rd 
order, 20 dB ripple, 0.035 relative cut-off frequency (output dynamics)) and a static polynomial nonlinearity 
(odd powers up to 11th order) was measured with an uniform amplitude odd random phase multisine with 2185 
harmonics. (The polynomial coefficients were set to the values corresponding to the nonlinear power content in 
the output signal being 10% of the overall output power) 

 

2.3 Some properties of the BLA and the additive non-linear noise model 

It is in the interest of the user leaning on the additive model (2.2.13) to know more about the 
properties of the systematic and the stochastic non-linear distortions. Three kinds of properties 
are investigated as being of interest to the practical applications: 

- asymptotic properties as the number of harmonics in the input signal tends to ∞. Modern, 
memory based signal generators permit an easy design of dense multisine signals, 
consequently asymptotic properties are within reach in the otherwise finite measurements. 

- properties of the systematic and stochastic distortions as the function of frequency. 

- robustness of the systematic and stochastic distortions to the free parameters of the 
measurement, like e.g. the amplitude spectrum of the excitations, the overall level of the 
non-linearity in the measured system, or changes to the frequency grid.  

 

Theorem 2.3.1: BLA (2.2.13) is a bounded system, continuous in the level of the non-
linear distortions and in the amplitudes of the input signal. 

Proof: The boundedness of the BLA is the result of the boundedness of the Volterra system, of the input signal 
and of the BLA measurement procedure (2.2.24). For continuity in non-linear distortions let the Volterra system 
be decomposed as follows: 

)()()]([)]([)]([)( 2121
)( lYalYlUValUVlUVlY a +=+==     (2.3.1) 

where a is arbitrary real number which will represent the level of the non-linearities. If V is well defined Volterra 
series, then V1 and V2 are also well defined (sub-series of a convergent series in (2.2.4)). By additive 
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decomposition (we omit the frequency and the index indicating finite numbers of harmonics): 

( ) ( ) ( )
1 2 1 1 2 2

1 2 1 2

( ) ( )

( ) ( )

a a a
BLA S BLA S BLA S

BLA BLA S S

Y Y a Y G U Y G U Y a G U Y

G a G U Y a Y

= + = + = + + +
= + + +    (2.3.2) 

Multiplying by )(lU , taking expectation, and using (2.39) (Ys-U are uncorrelated) we can see that: 

( ) ( )
1 2 1 2,a a

BLA BLA BLA S S SG G a G Y Y a Y= + = +       (2.3.3) 

Let ak converge to some a*, and let 2 2| |BLAG M≤  (BLA is bounded). Let choose arbitrary ε > 0. Then there 
exists N0, that | ak - a

* | ≤ ε/M2, for k ≥ N0, and: 

( ) ( )
2 2 2 2

2

| | | | | || |ka a
BLA BLA k BLA BLA BLA kG G a G a G G a a M

M

ε ε
∗ ∗ ∗− = − < − < =   (2.3.4) 

The proof of the continuity in input amplitudes is based on the product, ratio, expected value, superposition of 
continuous functions being also continuous functions. 

kUU →ˆ , )(ˆ tuU → , )]([)()( tuVtytu =→ , kYty →)( , 
2|| kk YY → , 

2|| kk UU → ,  

kkkk UYYU →, , { }k k k k BLAY U E Y U G→ = .     (2.3.5) 

� 

Theorem 2.3.2: Variance of the non-linear noise is continuous in the level of the non-
linear distortions and in the amplitudes of the input signal. 

Proof: Consider the decomposition from Th. 2.3.1. For zero mean stochastic contributions we have similarly: 

( ) ( ) 2 2 2 2
21 1 2[ ] {| | } {| | } 2 Re { } {| | }a a

SS S S S SVar Y E Y E Y a E Y Y a E Y= = + +    (2.3.6) 

( ) ( ) 2
1 2 2| [ ] [ ] | ( )[2Re { } {| | }(( )]ka a

S S k S S S kVar Y Var Y a a E Y Y E Y a a
∗ ∗ ∗− = − + +   (2.3.7) 

The expected values are bounded, the term in the squared parentheses can be also bounded (say by M1), and 
choosing ε/M1 for the ak series, we have: 

( ) ( )
1| [ ] [ ] | | |ka a

S S kVar Y Var Y M a a ε
∗ ∗− < − =       (2.3.8) 

Let system V1 be the whole linear part of system V, and system V2 the whole non-linear part of system V, let 
further a* = 0. Then the additive noise model (the BLA and the noise variance) tends, as the level of the non-
linearity decreases, to the noiseless linear FRF measurement, i.e.: 

( ) (0 )
1

a
BLA BLAG G G→ = , and 0][][ )0()( =→ S

a
S YVarYVar      (2.3.9) 

For the input amplitudes consider that the product, ratio, expected value, superposition of continuous functions 
are also continuous functions. 

kUU →ˆ , )(ˆ tuU → , )]([)()( tuVtytu =→ , kYty →)( , 
2|| kk YY → , 

2|| kk UU → , 

}|{||| 22
kk YEY →   

finally from 
2 2 2 2 2 2| | , ,| | [ ] {| | } {| | } | | | |k BLA k S S k BLA kY G U Var Y E Y E Y G U→ = = − .   (2.3.10) 

� 

The BLA model derived for the random multisines has been extended to the periodic noise 
(random amplitudes Û(f)) and to the Gaussian noise. For all these signal classes it has been 
shown that the measurement results are equivalent [162-163, 170]. The FRF of a SISO system 
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measured with the periodic signals and 1/2
,[ ( )]S MVar M Y l−  the non-linear noise variance tend 

in the least square sense (as the number of the harmonics tend to infinity, M → ∝) to the best 
linear approximation and non-linear variance measured with the Gaussian signals, assuming 
that the spectral properties of the excitations are equivalent. For the finite number of the 
harmonics the respective results are comparable in order of O(1/M)  [30*, 162, 170]. 

From the point of view of the BLA measurements (2.2.24) the Gaussian noise causes leakage 
on the finite length records. Due to the small amplitudes in the amplitude spectrum of the 
Gaussian or periodic noise the FRF estimate (2.2.24) is noise sensitive and shows fluctuation 
and spikes difficult to be averaged. In comparison the amplitude spectrum of the random 
multisines does not fluctuate over sample functions, the denominator in (2.2.25) is constant 
and the FRF estimate is more stable. For this reason we advise to use random multisines in the 
measurements of weakly non-linear SISO systems [162, 170] (see Fig. 2.3.1). 

 

Fig. 2.3.1: Spectral behavior of investigated excitation signals. All signals are colored with a 3rd order 
Butterworth filter. For better readability the spectra are plotted at M=26 frequency points, which for periodic 
signals conincides with the number of the harmonics. Please take notice of the deterministic, nonoscillatory 
character of the random phase multisine spectra (contrary to the random multisine and the Gaussian noise) which 
ensures a better stability of the BLA measurements. 

It is important to note that the above introduced characterization of the non-linear system as 
the biased and noisy linear FRF is valid for every convergent Volterra series. If however the 
non-linear effects are strong, such linear model is pointless, because its approximation errors 
will be high and the model won’t convey any useful information (e.g. about the system 
dynamics). Despite the universal validity of the results their practical usage is limited to 
weakly non-linear (low order) non-linear systems. 

Note: The basic theory is not suited for the close loop identification, because some essential assumptions are 
violated within the loop. Close loop BLA model (between the loop reference signal and the loop output signal) 
has been formulated later [171-172]. 

 

In measuring linear FRF BLA of nonlinear (Volterra) systems one must be ready for 
unexpected results. One such fortunate development is the following property: 

Theorem 2.3.3: Variance of the nonparametric BLA estimate. Variance of the 

nonparametric BLA estimate ˆBLAG  can be computed using the linear theory expression, i.e.: 

2 1
ˆ

( )
lim ( ) ( )

( )
S S

BLA

Y Y

GM
UU

S l
M l O N

S l
σ −

→∞
= +        (2.3.11) 
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where M is the number of averaged realizations of the input excitations and N is the length of 
the excitation.  

Proof: See Th. 1. in [208-209]. � 

Note: The surprise lies in the fact that although the nonlinear stochastic distortions are uncorrelated with the 
input (BLA is the solution to a least-squares problem), nevertheless they are mutually dependent which violates 
the classical hypothesis that the distortion (to be averaged out) should be independent from the input. The 

surprise stops here because e.g. in the parametric estimation ˆ
BLAG  linear variance expression and the derived 

confidence intervals are no more applicable, a non-linear analysis is needed [205, 207-209]. 

 

2.4 Special case of block-models 

Volterra model covers so called block models (Hammerstein, Wiener, and Wiener-
Hammerstein models) widely used in the non-linear system modeling practice [91]. Block-
models are built from linear dynamic and static non-linear blocks. Static non-linearity is also a 
special case of this model. Of theoretical interest is also the fact that general (fading-memory) 
non-linear systems can be approximated with relatively simple block structures composed 
from linear dynamic and non-linear static components [153-154, 19, 21, 24]. 

Special block structure of the block models (Fig. 2.4.1) is translated into special structure of 
the Volterra kernels and the principal question here is whether it may mean a new knowledge 
about the non-linear distortions. For the sake of brevity in the following we will use the 

notation 〈R(f)-NL-S(f)〉 to designate a Wiener-Hammerstein system with linear input dynamic 
R(f), linear output dynamic S(f), and the in-between static non-linearity NL. 

Volterra kernels of order αth are [198]: 

(a) ∏ =
×= α

αα 121 )(),,,(
n nkRconstkkkG L       (2.4.1) 

(b) )(),,,( 2121 ααα kkkSconstkkkG LL ++×=      (2.4.2) 

(c) ∏ =
++×= α

ααα 12121 )()(),,,(
n nkRkkkSconstkkkG LL    (2.4.3) 

(d) constkkkG =),,,( 21 αα L         (2.4.4) 

 

 

 

Fig. 2.4.1 Some simpler non-linear block  

models: (a) Wiener 〈R→NL〉, (b) Hammerstein 

〈NL→S〉, (c) Wiener-Hammerstein 〈R→NL→S〉, 

(d) static non-linearity 〈NL〉. From such basic 
blocks more involved model structures can be 
created, like e.g. parallel-branch Wiener, parallel-
branch Wiener-Hammerstein, models with a 
feed-back, and also models where the static 
nonlinearity is substituted by a NFIR system.

 

The most unexpected result for the block-models is the behavior of the bias. Generally the 
bias is frequency dependent, but for Wiener-Hammerstein systems the bias on the measured 
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FRF is asymptotically (in the number of harmonics) proportional to the linear system (i.e. the 
relative bias is constant) (2.4.6). This proportionality called Wiener-Hammerstein property 
can be easily tested by exciting the system with a number of random multisines with a large 
number of harmonics and shifted power levels (Fig. 2.4.2).  
 

 

Fig. 2.4.2. Illustration of Wiener-Hammerstein 
property. The FRF characteristics of the 
nonlinear system from Fig. 2.2.1 (partly 
covered) is measured with different magnitude 

levels of the input signal (σ = 0.5, 1, 1.5). A 
blow-up (left) shows varying levels (varying 
amount of the bias) of the BLA for different 
levels of the input, a blow-up (right) shows the 
measured relative bias for the same levels of the 
input signal. 

 

 

Theorem 2.4.1: For Wiener-Hammerstein systems the BLA is proportional to the 
product of the linear dynamics. Assume that the 〈R(f)-NL-S(f)〉 Wiener-Hammerstein system 
is measured with normalized multisines with a large number of harmonics M. Then the bias is 
proportional to the linear part of the system, i.e. to the product S(f) R(f): 

2 1 1
, ( )B MG C S R O Mα

α
− −= × +         (2.4.5) 

Consequently: )()()( 1
1

1

1 1

12
,,

−−∞

=

∞

=
− +=+==∑ ∑ MOGMORSCGG MBMB ε

α α α
α , 

1
, 1(1 ) ( )BLA MG G O Mε −= + +         (2.4.6) 

and ε constant depends solely upon the excitation signal and the system  dynamics. 

Proof: Please recollect that a Volterra kernel of an odd (2α-1) order adds to the bias as (2.2.15): 

1 1

1
2 1
, 1

1 2 1
2 1 1, 1 1, 1 1

2 (2 1)!!
( )

( , , , ) | ( ) | ( )
M M

B M

nk S k S n

G l
M

G l k k k k U k O M
α

α
α

α

α
α α α

α

+ +
−

−
−

−

− −
− − −∈ ∈ =

−= ×

− − +∑ ∑ ∏L L

         (2.4.7) 

Substituting (2.4.3) into (2.4.7) we get: 

1 1

1
12 1 2 2 1

, 1 1

1 2 2 1 1

1

2 (2 1)!!
( ) ( ) ( ) | ( ) | | ( ) | ( )

( ) ( ) | ( ) | | ( ) | ( ) ( ) ( ) ( )

M M

n M

B M n nk S k S n

n nk Sn

G l S l R l R k U k O M
M

c S l R l R k U k O M c S l R l O M

α

α
αα

α

α
α α

α
+ +

−

+

−
−− −

− ∈ ∈ =

−∗ − −
∈=

−= +

= + = +

∑ ∑ ∏
∑∏

L
 

           (2.4.8) 

where: 1 2 2

1
| ( ) | | ( ) |

n M
n nk Sn

c c R k U k
α

α α +

−∗
∈=

= ∑∏      (2.4.9) 

For normalized multisines of a large number of harmonics and for suitably smooth dynamics and input 
amplitude spectrum this constant can be written as:  
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max1 2 2 2 2 1

1 0

ˆ| ( ) | | ( ) | ( | ( ) | ( ) )
n M

f

n nk Sn
c c R k U k c R f U f df

α α
α α α+

−∗ ∗ −
∈=

= ≈∑∏ ∫   (2.4.10) 

and the (2.4.5) follows. � 

 

Note: Hammerstein and Wiener systems are special cases of the Th. 2.20 with S(l) = 1, or R(l) = 1. Static non-
linearity is also a special case of Th. 2.4.1 with S(l) = R(l) = 1. 

 

Theorem 2.4.2 For Wiener-Hammerstein systems the non-linear noise variance is 
proportional to the output dynamics. 

Proof: In case of an arbitrary Wiener-Hammerstein system, the variance of the zero mean stochastic component 
can be written as (we omit for brevity the frequency and the finite harmonics indices): 

∑∑∑ ∑∑∑
≠

∞=∞=∞= ∞=∞=∞=

+===
βα

βα

βα

α

α

α β

βα

β

β

α

α

 ... 2, ... 2

2

 ... 2  ... 2 ... 2 ... 2

2 }{Re2}|{|}{}{}|{| YYEYEYYEYYEYE S
  (2.4.11) 

where Y α are the outputs of the non-linear kernels of order αth (2.2.2). Then: 

1 2 1 1 2 1 2 1 1 2

1 1 1 1

, ,..., , , ,..., ,{ } { ... ... ... ... }
k k z z

M M M M M M M M

k k k L k k L z z z L z z L
k S S k S S z S S z S S

E Y Y E G U U U G U U U
α β

α β

α β α β
− −

− + − + − + − +
− −∈ ∪ ∈ ∪ ∈ ∪ ∈ ∪

= ×∑ ∑ ∑ ∑  

           (2.4.12) 

The expected value will be nonzero when both α and β are odd or even. Substituting Wiener-Hammerstein 
kernels (2.4.3) into (2.4.12) we can observe that for:  

}......{............||}{
11

1 1 1 1

11

2

zkzk LzLk
k k z z

LzLk UUUUERRRRSaaYYE ∑ ∑∑ ∑
− −

×=
α β

βα
βα

   (2.4.13) 

We get nonzero expected value with frequency pairing k1 = z1, k2= z2, etc. for α = β, and pairing the remaining 

frequencies within themselves for α ≠ β. Other nonzero expected value pairings in the kernels went to the bias 

(BLA) terms or yields terms of lower order (i.e. 1( )O N α− − , α > 0). The expression under the sums is a kind of a 

multiple (and thus smooth) convolution of the output linear system. Consequently: 

22 ||||}{ UCSaaYYE αβ
βααβ

βα κ= , and:       (2.4.14) 

∗

∞= ∞=∞= ∞=

=== ∑ ∑∑ ∑ CUSCaaUSYYEYE kS
22

 ... 2  ... 2

22

 ... 2  ... 2

2 ||||||||}{}|{|
α β

αβ
βααβ

α β

βα κ
   (2.4.15) 

where ∗C  is an overall smooth function of R . � 

 

2.5 Non-linear bias and variance: the question of the mutual information 

In the additive non-linear noise model the impact of the non-linear distortions appears in the 
measured FRF in two places, in its systematic, bias-like error, and in additional noise, blurring 
the FRF shape. Although in principle one can get rid of the stochastic component by 
averaging, still we have to deal with the bias, severity of which, without detailed a priori 
information about the non-linear system, is difficult to judge. 

From the construction of the bias and the non-linear variance (2.2.15-2.2.17) we see that the 
same non-linear kernels (albeit being summed in different way) contribute to both. It is thus 
highly unlikely that the distorted FRF will be noisy, but not biased, or vice versa. On the other 
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hand we know already that both quantities are continuous in the level of non-linear 
distortions, and both grow or shrink, as the contribution of the non-linearity to the overall 
system increases or decreases.  

The fact that we can get rid of the non-linear noise, but not of the non-linear bias, means also 
that the noise (its variance) is measurable, but the bias is not (only the BLA). In conclusion 
we can ask whether the bias could be roughly bounded by the measured variance. In the 
following we analyze the connection between the levels of the systematic and stochastic 
distortions. 

 

 

 

Fig. 2.5.1 The inverse relation between the 
coherence function (gray) and the relative non-
linear variance (dark gray) in case of a weak 
cubic Wiener-Hammerstein system composed 
from the 5th order 10 dB ripple Chebyshev 
high-pass input filter, a cubic static nonlinearity 
(y = x + .1 x3) and the 9th order 1 dB ripple 
low-pass Chebyshev output filter, measured 
with an odd random phase multisine of 546 
harmonic components.  N=10 measurements 
were averaged. 

 

Theorem 2.5.1 The additive BLA model and the coherence function. The coherence of a 
non-linear system, excited with the uniform multisines, can be naturally expressed in terms of 
the BLA and the non-linear variance VS(l) = Var[GS(l)] = E{|YS(l)|

2}/|U|(l)2 of the GS (2.2.26) 
(the finite harmonic index and the frequency argument are omitted for clarity): 

2
2 1

2 2

| |
(1 )

| | | |
SBLA

BLA S BLA

VG

G V G
γ −= = +

+        (2.5.1) 

Proof: Using the definitions of the coherence function [8], the BLA, and the properties of the multisine 

excitation, and noticing that =|)(| lU constant, we obtain: 

   

2 22 4 2
2

2 2 2 22

| | | || { } | | | | { }|

{| | } {| | } { | | } | | {| | }
BLAU GE Y U U E Y U

E Y E U E Y U E Y
γ = = =      (2.5.2) 

with the expected value calculated over different realizations of the random multisines. The denominator can be 
written as: 

 

2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

{| | } { | | } | | | | 2 Re { } {| | }

| | | | {| | } | | | | | | var[ ] | | | | | | | |

BLA S BLA BLA S S

BLA S BLA S BLA S

E Y E G U Y G U G E Y U E Y

G U E Y U U G U G U G U V U

= + = + +

= + = + = +   (2.5.3) 

due to the lack of correlation of the stochastic component and the input signal (2.2.19). Substituting (2.5.3) into 
(2.5.2), and dividing by |U|2, yields (2.5.1). � 

Theorem 2.5.2 Coherence for a Wiener-Hammerstein system. For a Wiener-Hammerstein 
system 〈R(f)-NL-S(f)〉 driven with a uniform random multisines, the coherence function 
depends strongly on its input dynamics. 
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constR

R

+
≈ 2

2
2

||
||γ          (2.5.4) 

Proof: In case of an arbitrary Wiener-Hammerstein system, its Best Linear Approximation and the variance of 
the stochastic component can be written as: 

∗

∞= ∞=∞= ∞=

=== ∑ ∑∑ ∑ CUSCaaUSYYEYE kS
22

 ... 2  ... 2

22

 ... 2  ... 2

2 |||||||}{}|{|
α β

αβ
βααβ

α β

βα κ
   (2.5.5) 

where ∗C  is an overall smooth function of R  (c.f. Th. 2.4.2 and (2.4.15)), and:  

BLAG S R S Rα
α

ν ρ= =∑          (2.5.6) 

Comparing (2.5.5-2.5.6) with (2.5.1) we see that indeed a behavior indicated in (2.5.4) is to be expected. � 

 

Example 2.5.1: 3rd order Wiener-Hammerstein system. For the Wiener-Hammerstein system possessing only 
linear and cubic terms (NL = a1 x + a3 x

3), VS at the frequency k can be calculated as follows: 

1 21 2 1 2 1 2

1 2 1 2

1 2 1 2

2 2 3 3
, , , ,

3 2 2 2 2 2 2 2 2 2 2 2 2
, , 3

2 2 2
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{| | } | | { }

| | | | | | | | 3! | | | | | | | | | | | | | |

3! 2 | |

zk k z
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z z LS S k k L k k L z z L
k S S k S S z S S z S S

k k L k k L k l n k l n l n k l n
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E Y V U E G U U U G U U U

G U U U a S R R R U U U

a S

− + − + − + − +∈ ∪ ∈ ∪ ∈ ∪ ∈ ∪

− − − −

−

= =

= =
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∑ ∑ ∑ ∑

∑∑ ∑∑
2 2 2 2 2 2 2

32

1 3
| | | | | | | | | | | |

2
M M

l n k l n k k k k
l S n S

R R R U a S C U
M + +

− −
∈ ∈

=∑ ∑

 (2.5.7) 

where k1 = z1, etc. frequency pairings yield nonzero expected value, Lk = k-k1-k2 and Lz = k-z1-z2 .The expression 
is simplified further by the subsequent substitution of the Wiener-Hammerstein kernels and normalized input 
amplitudes. Finally for a large number of multisine components the double sum can be treated as the 

approximation of the convolution kC . Let us introduce the coefficient measuring the level of non-linearity as: 

)31(23 1rεεχ += , with 13 aa=ε . Accordingly to (2.5.6) the Best Linear Approximation FRF can be written 

as: 1 3 1( 3 )BLAG a a r S R= + , with 1 2
1 | |

M
kk S

r M R+
−

∈
= ∑ . 

The coherence function can be now computed accordingly to (2.5.1), using (2.5.7). The coherence function 
shows strong dependence upon the input dynamics: 

2 2
2 1

2 2 2 2 2 2 2

1 | | | |
(1 )

| | | | 1 | | | | |
S

BLA

V R R

G U C R R C R const
γ

χ χ
−= + = = ≈

+ + +       (2.5.8) 

where χ  is proportional to the level of non-linearity, C  is smoothly behaving, and the constant is of order 2ε . 

Consequently the coherence function is close to 1 in the pass-band of Rand then follows the shape of 
2||R when it drops, see Fig. 2.5.2. That way it can serve as an indicator of how the dynamics of the overall 

system are distributed between its input and output. 
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Fig. 2.5.2. Coherence function (d, black) of a 
cubic Wiener-Hammerstein system (Fig. 2.5.1), 
with input dynamics (a), output dynamics (b), 
and the overall dynamics (c). The coherence is 
dependent solely upon the input dynamics. For 
the comparison the coherence for the case of a 
general non-linear system (up to 9th order) is 
also shown (d, gray). K=10 measurements were 
averaged. 

Now we switch over to a more involved situation. Even if no a priori information is available, 
the measurement still yields the Best (albeit distorted) Linear Approximation GBLA of G1 with 
the observed level of the non-linear noise Var[YS]. An interesting question is whether this 
directly measurable quantity can be used to estimate the level of the systematic non-linear 
distortions.  

We will investigate the worst-case situation, i.e. given the level of the measured non-linear 
noise, what order of a non-linearity may be assumed to yield systematic error bounds 
necessarily majoring the actual systematic error level. We show that for static monomial non-
linearity the measurable non-linear variance contains enough information to compute the 
bounds on the FRF bias, even if the order of the non-linearity is not known. The result is 
based upon the fact that different powers contribute in different way to the bias and to the 
stochastic terms. We will compare the ratio of the non-linear variance to the bias as the 
relative variance: 

22

2

22 |)(||)(|
}|)({|

|)(||)(|
)]([

)(
lUlG

lYE

lUlG

lYVar
lv

B

S

B

S
B ==      (2.5.9) 

We will see that for a measured level of the variance the cubic system yields the largest bias, 
i.e. the cubic power is the safest (the worst-case) assumption with respect to the unknown 
bias. 
 

Theorem 2.5.3 For the pure α α α α th odd static monomial non-linear system the relative 
variance vB yields minimum for the cubic system αααα = 3. 

Proof: Taking into account that the multisine excitations are asymptotically normally distributed, we will show 
the point using Gaussian signals, which generally yields O(1/M) (M is the number of harmonics) approximation 
to the behavior of the random multisine. The exact derivation, counting harmonics, with a finite M harmonics 
random multisine can be found in [6*, 9*].  

Let the system be: )()( tucty α
α= , with α odd, excited with Gaussian u(t) with unit σ. With no linear term: 

GBLA = GB = E{ yu}/ E{ u2} = cα E{ uα+1}/ E{ u2} = cα α!! σ α+1/ σ 2
  = cα α!! σ α-1. The variance of the stochastic 

component is:  

E{( y - GBLA u)2} = E{ y2} - (GBLA)
2 E{ u2} = (cα)2 E{ u2α} - (GBLA)

2 E{ u2}  

                          = (cα)2
 (2α −1) !! σ 2α - (cα α !! σ α -1)2 σ 2 = (cα)2

  σ 2α [(2α −1) !! - (α !!) 2] (2.5.10) 

The relative variance vB can be derived now as: 
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(cα)2
  σ 2α [(2α −1) !! - (α !!) 2] / (cα α !! σ α -1)2 σ 2  = [(2α −1) !! - (α !!) 2 ] / (α !!) 2,   (2.5.11) 

which is an increasing function of the odd α, see Fig.2.5.3. � 

 

  

Fig. 2.5.3 Behavior of the relative variance of a static 
monomial  non-linear system, computed exactly for the 
random multisine with finite number of the harmonics, 
computed approximately via the Gaussian approximation, 
and measured with odd random multisines (2048 harmonic 
components, N=100 averages). 

 

Example 2.5.2 Cubic non-linearity is indeed the roughest. 

The heuristic explanation to the Th. 2.5.3 could be that the cubic non-linearity yields the least amount of 
frequency summations leading to the scattering (see [6*]). The higher the non-linearity, the more scattering, and 
due to the randomization through the input signal, the higher non-linear variance. Consider this phenomenon on 

a weakly non-linear system defined as: )()()( tututy αε+= , with α odd, excited with Gaussian u(t) with some 

σ.  

Now: GBLA = E{ yu}/ E{ u2} = E{ u2 + ε uα +1}/ E{ u2} = 1+ε α !! σ α −1. The variance of the stochastic component is:  

E{( y - GBLA u)2} = E{ y2} - (GBLA)
2 E{ u2} = E{ u2+2ε uα +1+ε2 u2α} - (GBLA)

2 E{ u2}  

= σ 2
 + 2ε α !! σ α +1 + ε2 (2α −1) !! σ 2α} - (1+ε α !! σ α −1)2 σ 2 = ε2 σ 2α [(2α −1) !! - (α !!) 2]   (2.5.12) 

The relative variance vB is: ε2 σ 2α [(2α −1) !! - (α !!) 2 ] / (1+ε α !! σ α −1)2 σ 2. 

Let us investigate its behaviour not only as a function of the order of the non-linearity, but also of the level of 

non-linearity ε. In Fig. 2.5.3 we can see that the cubic non-linearity is always the worst in the sense of the Th. 
2.5.3.  

 

 

 

Fig. 2.5.4 Ratio of the non-linear std to the BLA of 
the weakly non-linear system with static non-linear 
distortion of order α (i.e. y = u + ε uα) as a function 
of the level ε of the non-linear distortions. For large 
distortions (right side of the figure) the GBLA ≈ GB.  

 

The assumption of the pure αth order non-linearity is not realistic. Even if one of the powers 
in the non-linear system is dominant, the effect of the remaining powers should be tested, 
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especially when considering the worst-case without any a priori information. Although the 
general case of a dynamic non-linearity is too difficult to handle, some insight can be gained 
into the behavior of the static polynomial non-linearity, where it also turns out that in majority 
of practical cases the cubic order assumption can still serve as the worst case to judge the 
amount of the bias based upon the variance measurements. 

An arbitrary static non-linear system poses a problem because the value of the relative 
variance will depend upon the unknown order of the system and the values of its coefficients. 
The way out is the worst-case derivation of the ratio of the variance to the bias (i.e. assuming 
the worst-case polynomial coefficients for a given level of the variance). Although vB cannot 

be measured, nor derived directly, vBLA a variance relative to the BLA approximation can be 

measured instead, serving as a useful empirical constraint in looking for the worst-case bias. 
The derivation shows that the situation does not change – the assumption of the cubic system 
is still the most conservative, yielding the largest possible bias for a given measured variance. 

2 2{| | }/ | |BLA BLA BLAv E Y G U G U= −        (2.5.13) 
 

Theorem 2.5.4 Bias bounds on a static polynomial non-linearity. For an arbitrary 
polynomial static non-linear system, fulfilling the conditions of the proof, the relative 
variance vBLA yields minimum for the (lowest order) cubic system. 

Proof: in Appendix A.1 � 

In the view of the Th. 2.14 the unknown G1 linear part of the system can now be bounded 

under the worst-case assumption by the measured GBLA: 1(1 ) (1 )BLA BLAG G Gκ κ− < < + , with the 

bounding  term κ computed under the worst-case cubic assumption as: 2 BLAκ ν= ,  see 
(A.1.21-A.1.22). 
 

Note: In this case the obtained bounds are not exactly the bias, because we defined them around the measured 
Best Linear Approximation, and not around the true linear system. 
 

Note: In Appendix A.1 we make the assumption about the invertibility of the matrix (A.1.5). Such assumption 
can be violated in practice for certain combinations of the polynomial coefficients (typically for polynomial 
coefficients with alternating sign, leading to the mutual cancellation of the power terms in the bias or the non-
linear variance expressions), however such non-linear systems are infrequent in practice. In practice the 
applicability of the Th. 2.5.4 requires the verification of the condition, based upon the measurements of the 
relative variance and the estimate of the highest non-linear order in the system. 
 

The investigation of the systematic error bounds can be extended heuristically to the case of 
Wiener-Hammerstein systems, taking into account the constant relative bias property (2.4.5) 
and the frequency dependence of the non-linear noise (2.4.15) [6*, 9*]. 

It is important to note that due to the constant relative bias the smallest value of the relative 
variance measured somewhere in the band can be used to bound the bias in the whole band as 
well. Consequently the measurement should be done in the pass-band of the input linear 
system. This band can be easily judged from the measured vBLA itself. 

This yields the following measurement strategy. After exciting the system with a broadband 
multisine excitation with a high number of harmonics M, the FRF should be measured to 
provide an insight into its dynamic behaviour. Next a rough estimate of the BLA system and 
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the non-linear noise variance should be computed by averaging the measured FRF over the 
neighbouring frequencies. Then the frequency band should be chosen where the amplitude of 
the measured relative variance is the smallest and the average ratio of the variance to the FRF 
(A.1.1) should be measured and used to compute the bounds (Fig. 2.5.5). This value can be 
used to bound the measured (averaged) BLA system acc. to (A.1.21). 

The research of the interplay between the systematic non-measurable and stochastic 
measurable non-linear error components continued and was aimed next at the non-linear 
system without a true linear component [47*-48*]. At a particular excitation a polynomial 
system can expose a prominent linear behavior even if the linear term is in itself missing. In 
this case it is impossible to bound the bias from the variance and a new measure has to be 
designed for the characterization of the non-linear bias. The new measure (2.5.14) was 
analytically designed for the static polynomial systems. 

 

 

Fig. 2.5.5 Heuristic 
systematic error bounds on 
the measured FRF of a 
weakly non-linear system 
(see Fig. 2.2.1), based on the 
measurements of the relative 
non-linear variance. Within 
the bounds one can see the 
measured 'noisy' FRF, its 
expected (averaged) value, 
i.e. the BLA, and below it the 
true linear component of the 
system. Odd uniform random 
phase multisine was used 
with 2185 harmonics. 

 

The measure is based on a reference measurement with an excitation signal of a reference 
level P0 (σ = 1), and on a new measurement at a different (lesser) level P1 (σ σ<ɶ ). Different 

levels yield different bias levels and R(P1) the ratio of the bias error (difference in bias) to the 

power of the reference stochastic contribution can be express in terms of moments (µp) and 

polynomial coefficients (ap): 
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and can be effectively bounded, yielding a hint of how the bias error evolves.  

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



42 

 

The worst-case behavior of the R(P1) for a particular power level P1, non-linear order n, and a 

choice of the excitation signal was computed via numerical optimization and is visualized in 
contour plots in [48*]. These results were extended to the (generalized) Wiener-systems, but 
further steps toward more general non-linear systems were deemed practically infeasible. 
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3. Multisine excitations for SISO measurements 
The used excitations – possibly colored normalized random multisines – are periodic signals. 
The reason of using periodic signals is that they generate no leakage in the FRF 
measurements. For the non-periodic noise input, the leakage error at the output of the linear 
system is of order O(N-1/2), where N is the number of the data points, and despite averaging it 
can scale up to a considerable bias error around sharp resonances in the measured FRF [125, 
162]. Another reason is the easy control over their harmonic content, which can be impaired at 
most by the limits of the generating equipment (i.e. in high frequency microwave 
measurements). With time it turned out also that the primary tools of the multisine design are 
not the spectral amplitudes, but rather the phases and the frequency grid.  

 

3.1 Multisine design – free parameters 

Multisine signals are characterized by their spectral amplitude, phase, and frequency grid 
vectors, and altering them (with a little care if frequencies are also manipulated) won’t affect 
the key asset – the periodicity of the signal. It means nonetheless that we are quite free in 
shaping the behavior of the multisines, which offers an enormous flexibility in the experiment 
design. 

The normalized spectral amplitudes can be chosen to be uniform or colored, if more power is 
required in particular frequency bands to secure the persistence of the excitations. The 
coloring of the spectral amplitudes has no effect on the majority of the theoretical results 
presented here, albeit some of the results are much simpler for the uniform multisines. It may 
also happen that the coloring of the spectral amplitudes will influence the convergence rate of 
the iterative algorithms manipulating the phases. 

Of special interest is the manipulation of the frequency grid. It can be full, i.e. every 
harmonics is present in the signal within the frequency band, or can be “hole-ridden”, with 
particular harmonics purposefully left out. We speak in such case about the excitation 
frequencies (present in the signal) and test frequencies (omitted in the signal). The point is 
that (1) the non-linear scattering will generate output components also at the test frequencies, 
providing an “insight” into the character of the non-linearity; (2) a “hole-ridden” frequency 
grid may lead to less scattering on the excitation lines, distorting the linear FRF less. Both 
effects have been successfully explored. 

 

Example 3.1 “Seeing the non-linearity” at the test frequencies. 

A system containing both the 2nd and 3rd order non-linearities is measured with multisines containing harmonics 
up the 13th harmonic. Instead of using all harmonics (full) we may resort to the purely odd frequency grid, or 
retaining only every second of the odd harmonics, the so-called odd-odd grid. The 2nd and the 3rd order non-
linearities will introduce frequency mixing and scattering, generating output power at the sums of two, or three 
excitation input frequencies. It is instructive to see how the choice of the grid makes it possible firstly to test for 
the presence, secondly to get rid of the 2nd order distortions (odd), or even 3rd order distortions (odd-odd).  

In the Table below we see for both kinds of signals (odd, odd-odd) which harmonics are excited (•), and how 
many mixed spectral components (frequency combinations) appear at every excitation and test frequency (within 
the excited frequency band). Cubic non-linearity still can place non-linear power at the excitation frequencies, 
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distorting the measured linear FRF. It is not possible in the second odd-odd case, where the cubic power falls on 
test frequencies, and the linear FRF comes undistorted. Of course non-linearity of the 5th order would foul the 
design, or we would have to design even sparser odd harmonic signal. 

 
 Only odd harmonics Only odd-odd harmonics 

Full  Excited 
lines 

Lin Square Cubic Excited 
lines 

Lin Square Cubic 

1 • 1   • 1   
2   1    1  
3 • 1  1    1 
4   2      
5 • 1  3 • 1   
6   3    2  
7 • 1  6    3 
8   4      
9 • 1  10 • 1   

10   5    3  
11 • 1  15    6 
12   6      
13 • 1  21 • 1   

 

Theoretically phases shouldn’t be considered a design parameter, as random phases of 
prescribed stochastic behavior are required in the very definition of the input signal. Besides, 
the input phases do not appear in spectral measurements and do not appear in the measured 
linear FRF. However phases do influence the time-domain behavior of the signal and with 
keeping the same spectral content phases can make it more advantageous in a particular 
situation, e.g. with respect to the measurement noise. We will see later how the algorithms 
developed to manipulate phases in the linear measurements can be effectively used when 
measuring non-linear distortions.   

Multisine design, until recently, was addressed in the research literature as a tool:  

- to provide persistency by shaping power injected into the system in different frequency 
bands (spectral amplitudes); 

- to improve the SNR in the linear measurements by shaping crest-factor of the multisine 
signal (phases);  

- to provide control over how much non-linearity is hit by the input power by shaping the 
amplitude spectrum of the multisine signal (phases); 

- to minimize non-linear distortions of particular kind on the measured linear FRF (frequency 
grid); 

- to qualify arbitrary non-linear distortions on the measured linear FRF (frequency grid, 
phases). 

In the Section 3.3 some problems will be addressed in turn. 

 

3.2 Multisines – asymptotic properties 

In case of the finite number of harmonics, defined on different grids, with different amplitude 
and phase spectra, properties of the multisines are hopeless to analyze and compare 
effectively. Nonetheless the question of properties is important because otherwise measured 
results derived for different kinds of input signals wouldn’t be comparable. The answer can be 
given in terms of the asymptotic properties, i.e. when the number of harmonics in the signal 
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grows beyond limit. We have seen already similar results in the additive non-linear noise 
model (Th. 2.2.6). With the technology allowing for an easy design of signals with O(M) ∼ 
103-104 we are close to the asymptotic properties already in the majority of practical 
measurement situations. The key asymptotic property is the Gaussianity, or the recently 
revived property of being separable [148, 59-61]. For the multisines defined earlier we have: 
 

Theorem 3.2.1: Random multisines are in the limit normally distributed and separable 
signals. 

Proof: in Appendix A.2 � 

 

Corollary 3.2.1: The uniform random multisine (i.e. Uk = U = const) is separable. 

Proof: See [148], [59-62], but in the relation to the proof of the Th. 3.2.1 in App. 2, please note that that (A.2.22) 
for the uniform multisines yields: 
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   (3.2.1) 

consequently (A.2.6) is 0, and the signal by definition is separable. � 

 

Note: The concrete finite frequency grid does not play any role in the derivation, i.e. the results are valid for 
multisines defined on arbitrary grid. 

 

3.3 Frequency grid families of multisine excitations 

Shaping the spectral content of the signal is a task not particular to the multisines. On the 
other hand manipulating the frequencies and the phases is intimately related to the multisine 
structure. Modern instrumentation with PC-based computing power makes it easy to develop 
multisines with arbitrary frequency grids and phase properties. In the following we give a 
short review of these attempts, stating the design purpose and the effects they produce. 
 

Note: Although making the frequency grid sparser serves always particular measurement purpose, in a finite 
frequency band of interest it easily leads to a contradictory situation, when making sparse grid dense enough 
pushes the first harmonic toward the zero frequency introducing thus extremely slow signals, which require 
considerable measurement time to settle the transients and to acquire the required amount of data. 

 

Regular grid based multisines 
 

A. Full grid  multisines 

f0 * [1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 … ]  f0 * k, k ∈ N,  natural numbers 

Full grid multisines contain all of the odd and even harmonics and have the best frequency 
resolution. They are signals of choice when no non-linear distortion is present. In the presence 
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of the non-linear distortions, measuring with the full grid multisines introduces non-linear bias 
and variance scattered all over the excited frequencies. 
 

B. Prime multisines 

f0 * [1 3 5 7 11 13 17 19 … ]  f0 * p, p ∈ P, prime numbers   

Prime grid was used to get rid of the influence of the even non-linearities (odd frequency lines 
are not excited by the even non-linearities, if there are no even harmonics in the signal). The 
primary draw-back of the prime multisines was their sparse behavior for higher frequencies, 
consequently problems with an even frequency resolution and with the measurement time. 
[177, 66, 73] 
 

C. Odd-multisines 

f0 * [1 3 5 7 9 11 13 15 17 19 21 23 …]  f0 * (2k-1), k ∈ N,  natural odd numbers 

Leaving out even harmonics serves more ends at the same time. Considering that the 
measured FRF is distorted by a smooth bias, the frequency resolution will still be sufficient, if 
we design sparser multisines with a number of frequencies left out. These left-out (test) 
frequencies can be used to estimate the level of the distorting non-linear noise, which can be 
used then to compensate FRF measurements at the remaining excited frequencies. If we leave 
out all the even harmonics from the excitation signal, then (a) the systematic distortion on the 
excitation lines will be smaller (less frequency combinations of nonzero expected value); (b) 
the non-linear noise caused by the even order non-linearity will be placed only on even (test) 
frequency lines; (c) even test lines can be used to detect whether even non-linearity is present 
in the system, and how strong it is, see Example 3.1. [68, 71, 73] 
 

D. Odd-odd multisines  

f0 * [1 5 9 13 17 21 25 …]    f0* (4k-3), k ∈ N,  every second natural odd number 

Accepting further limitation in the frequency resolution, even more opportunities open in 
handling the non-linear distortions. If we leave out e.g. every second line from the odd 
excitation lines, then beside every advantage listed above, the 3rd order non-linearity won’t 
affect the measurements at the excitation lines, and will place its influence solely at the left-
out odd test frequency lines (see Example 3.1.1). It means that if the non-linearly distorted 
system possesses non-linearities of only 2nd and 3rd order, it can be measured (albeit with 
sparser resolution) without non-linear errors at all, because the non-linearity will place its 
influence solely at the test frequency lines. In addition the noise variance measured at the test 
frequency lines can be used to detect and to judge the order and the severity of the non-linear 
distortions. The odd-odd multisine is not a cure for every problem, because already the non-
linearity of 5th order will place its influence at the excitation lines, distorting the measurement. 
It will also mix up with the effects of the cubic non-linearity at the odd test lines, masking  the 
problem. The effect of the 5th order non-linearity could be handled by an odd multisine with 
every second and third odd harmonic removed, such a signal would be however too sparse for 
practical applications, see Example 3.1.1. [66, 68, 72-73] 
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E. Special-odd multisines  

f0 * [1 3 9 11 17 19 25 27…]  f0* (8k - 7) ∪ f0* (8k - 5), k ∈ N,  every fourth natural odd number 

In case when the non-linearity is higher than the 3rd order (i.e. when the odd-odd multisines 
do not serve their purpose), a variation of the odd-odd grid has been tried, called special-odd 
multisines, where the odd excitation and the test frequencies are not coming in turn, but are 
grouped more closely together. The aim was to extrapolate the non-linear variance of the 
excitation lines from its measurements on the neighboring test lines. Published simulations 
have shown that special-odd multisines are better in this respect, than the odd-odd multisines. 
[49*-50*, 246-247] 
 

F. Log-tone multisines 

an example: f0 * [1 3 5 11 21 51 101 … ]   log(f0* k), k ∈ N,  approximately uniformly spaced 

Log-tone multisines place the excitation at frequencies providing uniform resolution, when 
the measured FRF will be displayed on the logarithmic axis (Bode plot). The advantages of 
the log-tone multisines are however limited. They become sparser for higher frequencies, are 
difficult to suppress with Crest-Factor minimizing algorithms, increase the measurement time, 
and anyhow a dense enough odd multisine is easier to handle [81-82]. 
 

G. No-interharmonic distortion (NID) multisines  

an example: f0 * [1 5 13 29 49 81 119 141 207 263 359 459 … ] no close formula 

Interharmonic distortions or so called Type II contributions are non-linear stochastic 
contributions in the nomenclature of C. Evans. His idea was to devise multisine excitations 
with specially developed spacing between the harmonics to warrant that no Type II 
contribution will be generated at the excitation frequencies for a given order of the non-
linearity. The example shows the grid designed for the cubic non-linearity. Beside the 
advantages warranted by the special design, the primary deficiency is the dependence on the 
assumed order of the non-linearity, a log-tone like sparseness for the higher frequencies, and 
the iterative, search-based procedure to procure the required exact harmonic numbers. [67, 69-
70, 72] 

 

Random grid based multisines 
 

H. Random grid multisines   

an example: f0 * [1 3 5 9 13 15 17 19 23 …]  no close formula 

Random grid multisines are derivative of the special-odd multisines, where it was observed 
that the value of the non-linear noise variance computed from the observations at the test 
frequency lines does not entirely agree with those on the excitation lines, consequently only a 
rough extrapolation could be done. 
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The strict regularity of the grid was thought to be the culprit, and the idea was to destroy it in 
a random manner. The odd-multisines grid had been divided into consecutive blocks, where 
one frequency (but not the first in the block) was chosen at random to be left out (i.e. to serve 
as a test line). Extensive simulations show that the idea works and that the value of the non-
linear distortions estimated at the test frequencies is in good agreement with the non-linear 
distortions on the excitation lines. Furthermore the grid is dense enough and approximately 
uniform, it does not suffer thus from the problems related to the more sparse grids. [49*-50*] 
 

 

Fig. 3.3.1 Examples of the multisine frequency grids: odd grid (upper), special grid (middle) and random grid 
(lower). 

 

I. Randomized grid multisines   

an example: f0 * [1 2 3 • 5 6 • 8 • 10 11 12 13 • …]  no close formula 

Randomizing the frequency grid, i.e. changing the grid randomly from excitation to 
excitation, creates a nonstationary excitation which can be used to detect non-linearities in a 
fast way. The output of the system non-linearity, as a result of being a function of the 
nonstationary excitation, is therefore nonstationary too. Assuming that the measurement noise 
is stationary, the presence of non-linearities can be distinguished on that basis. To generate a 
randomized grid, groups of L (>2) consecutive lines are collected into blocks on a full 
frequency grid, from where one frequency line is dropped randomly, so as to form a random 
harmonic grid. [271] 

In another approach used in the FRF measurements of the slowly time-varying linear systems 
a non-uniformly randomly spaced harmonics are used. For a multisine with M frequency lines 
randomly selected (l-q)M, with 0 < q < 1, harmonics are not excited (their amplitudes are set 
to zero), and the amplitudes of the qM excited harmonics are all equal and chosen such that 
the rms value of the excitation equals 1. [173-174, 113] 
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3.4 Algorithms to work with the phases 
 

Crest Factor minimization 

Phases in multisines were traditionally manipulated to keep their Crest-Factor low, i.e. to 
guarantee that: 

min
||)(||

||)(||

))((

|)(|max
))((

2

=== ∞

tu

tu

tuMSE

tu
tuCR        (3.49) 

Crest-Factor minimized signal has the smallest amplitude range for the same power level, 
which means that such signal can be amplified (injecting more power into the system and 
improving the SNR of the measurement) without fearing that the excessively large amplitudes 
will hit the hidden non-linearities and introduce non-linear distortions into the linear FRF 
measurements [199-201]. Crest Factor is minimal for the binary signal yielding value of 1. 
For any other signal this minimal value can be only approximated. 

The required phases can be set algorithmically as so-called Schröder phases [214], [26-27], or 
by iterative minimizing algorithms: by suppressing the signal amplitudes by clipping [235], 
[189], or by minimizing ||u(t)||2p norms with increasing p (as (||u(t)||p)

p → || u(t)||∞ for p → ∞) 
[85]. Recently it is considered that the second algorithm is a winner, yielding on the average 
better (lower) values of the Crest Factor in the general case and for large number of 
harmonics. It should be also noted that whatever the algorithm, log-tone like multisines are 
more difficult to compress and have higher Crest Factor values, than the more or less 
uniformly spaced multisines. 
 

L ∞∞∞∞ multisines   

The term was coined by [65] to denote the multisines with their Crest Factor minimized with 
the algorithm of [85]. 

Note: Manipulation of the phases seemingly destroys the randomness conditions imposed on the random 
multisines in (2.2.10-2.2.11), required in the proofs, so for a long time Crest Factor minimization was considered 
impossible in the non-linearly distorted FRF measurements. It turned out later (experimentally) that the situation 

isn’t hopeless and that the L∞ multisines seem to retain their random properties required for the BLA 
measurements. The phenomenon is possibly related to the richness in local minima of the Crest Factor 
minimization surface, where randomly started minimum search stops at still randomly distributed places. The 
phenomenon however resists any kind of formal analysis11.  

 

Shaping amplitude density 

Crest Factor minimization improves the SNR conditions of the measurement, but it changes 
drastically the amplitude density towards that of a binary signal (the lowest Crest Factor = 1). 
Fig. 3.4.1 (left top) shows amplitude density of a Crest Factor optimized multisine. Such a 
design emphasizes strongly the extreme amplitudes; hence the linear approximation will be 
the best at the extreme amplitudes of the excitation. This unbalanced situation may be 
                                                 
11  Some experimental (not published) work of C. Evans, M. Solomou, J. Schoukens, and also my own. 
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undesirable for the general purpose excitation signal. An ideal signal would be a signal with 
e.g. a uniform (or normal) amplitude density. This requires an extended optimization method 
that would not only minimize the Crest Factor but would also impose the amplitude density 
with a specified power spectrum. The problem seems contradictory, because what improves 
Crest Factor, destroys good amplitude distribution and vice versa. The way out is the 
(heuristic) algorithm, which allows modifying the tails of the amplitude density function so 
that the user can balance between requirements regarding the distribution and the low Crest 
Factor [29*]. 
 

Algorithm 3.4.1: Shaping amplitude density -  basic algorithm 

Consider a single period of the multisine ∑ =
+= M

k kk tkUtu
1 0 )cos()( ϕω , sampled at tk = kTs, with 

k = 0, 1, …, N-1 and ω0 = 2π/(NTs). Consider the desired amplitude density function: fd (u) 

with ∫ −∞=
=

u

v dd dvvfuF )()( , and define Q as: 

)()( 1
ld PFlQ −= , with N

l
N

Pl

1
)1(

2

1 −+= , l = 1, …, N.      (3.4.2) 

One iteration of the algorithm consists of four steps: 

(1) Consider the set U = {uL(tk), k = 0, 1, …, N-1} in the Lth iteration with: 

∑ =
+= M

k

L
kkL tkUtu

1 0 )cos()( ϕω ;       (3.4.3) 

(2) Sort uL(tk) in the increasing order: (YL,τ) = sort(uL(tk)), with τ the time instances of the 
sorted points; 

(3) Create a new multisine yL(tk) by replacing YL with Q, such that yL = sort-1(Q, τ); 

(4) Calculate the spectrum of yL (with the DFT applied to the samples yL(tk)), retain the phases 
and restore the original amplitude Uk in this spectrum. The result is a new multisine:  

∑ =
+

+ += M

k

L
kkL tkUtu

1

1
01 )cos()( ϕω .       (3.4.4) 

This process is repeated until a suitable convergence criterion is met. ����    
    

Algorithm 3.4.2: Amplitude density with controlling  the crest factor with a don’t care 
zone 

If fd has long tails, the resulting multisine would have a very large Crest Factor. For this 
reason the amplitude domain must be partitioning into Dcrest and Df.  

Assuming symmetric distributions:  

U ],]],] ∞−∞−= aaDcrest , and ],[ aaD f −= ,      (3.4.5) 

where [-a, a] is the support of the desired amplitude density with ).1(),0( 11 −− ==− dd FaFa  
Consequently after imposing Fd, all samples of the signal are concentrated in Df, however 
after imposing Uk some of the samples xL+1(tk) will be smeared outside Df, into Dcrest, 
increasing the crest factor over the value of a.  

The amplitude domain will be now partitioned in three parts by adding a don’t care region. 
The amplitude distribution is only imposed in the given amplitude interval Df and left free 
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outside this interval: 

U ],]],] ∞−∞−= aaDcrest , ]),1(])[(,[ 11 aFFaD dddc εε −−= −− U , and  

5.00)],1(),([ 11 ≤≤−= −− εεε ddf FFD .      (3.4.6) 

To reduce the crest factor the samples belonging to Dcrest are clipped to the borders a or –a 
before a new iteration cycle is started. � 

Note: In practice Fd is imposed on Nε = [(1-2ε)N]ceil points belonging to Df  and distributed following the Alg. 

3.4.1 as: )()( 1
ld PFlQ −= , N

Nl
Pl

)2/(

2

1 ε−
+= , l = 1, …, Nε.      (3.4.7) 

During the design of the desired density function fd it is necessary to take care that no conflicting constraints are 

imposed. The power of the multisine is imposed by its amplitude spectrum by 
2| |kU∑ , on the other hand also 

the amplitude density function sets the power via its second moment ∫
∞

∞−

duufu d )(2
. In case of desired densities 

of the infinite support, they must be truncated to a suitable finite interval (e.g. ±α σ) to get an acceptable Crest 
Factor. The second order moment is restored by selecting a proper scaling factor S for fd:  

 


 ≤≤−

=
elsewhere

auaSuf
uf d 0

/)(
)(        (3.4.8) 

with S the area under the truncated density.  
 

Algorithm 3.4.3: Amplitude density – optimizing the Crest Factor 

The algorithm resembles the Alg. 3.4.2., only the clipping algorithm is improved. Instead of 
clipping all the samples in Dcrest to the borders a and –a, a varying clipping level )(1 ε−≥ dL FC  is 
chosen using the algorithm of [235] to compress the signal. All samples with amplitude larger 
than CL are clipped towards this level. That way even better Crest Factor can be achieved. � 

 

In the presentation of the algorithm the uniform frequency grid was used, however in theory 
the algorithm could work with any frequency grid. Experience shows that the irregular grids 
are much more difficult to obtain a fast convergence. Although no formal proof of the 
convergence is available, the tests indicate a good convergence of the algorithms in case of 
uniform grids. However theoretical handling of the convergence question seems hopeless, 
considering: 

1. A particular solution is a fixed point (by construction). More solutions are possible for 
dense grids and finite error approximation.  

2. The operator of Alg. 3.4.1 is a non-linear, discontinuous, and non-expansive operator.  

3. The multisine in the algorithm is confined to a non-convex set (a shell of a fixed MSE 
value, as the amplitude sorting and similarly the imposing of the pdf and the amplitude 
spectrum is ||.||∞, ||.||2 invariant). 
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Fig. 3.4.1 Multisine signal containing 204 linearly 
spaced harmonics and 8192 data points: (left top) 
amplitude spectrum of the Crest Factor optimized 
multisine, (left bottom) the same multisine with 
amplitude density shaped to be uniform. Log tone 
multisine with 204 harmonics shaped to the Gaussian 
amplitude density (top). 

 

3.5 The question of choice 

When multiple signals are available as the excitation, the well balanced choice is not always 
easy, and usually it is also a part of the trade-off, which may adversely affect the measurement 
results. What is then the situation with the multisine excitations?  

Before the multisine signals of high harmonic content became theoretically and practically 
(instrumentation!) established, the prevailing excitation in many measurement fields was the 
white Gaussian noise. Although the developed theory stated the asymptotic equivalence of 
both kinds of excitations from the point of view of the non-linear distortions modelled by the 
Volterra series, practically important was to analyse the excitations within finite measurement 
conditions and to formulate pragmatic guidelines for the measurement design. The 
experimental comparison covered: 

- ideal Gauss noise, 

- Gauss noise filtered with 10th order low-pass Butterworth filter and clipped in the amplitude 
("practical" Gauss noise), 

- full frequency grid random phase multisine, 

- random phase multisine defined on the odd frequency grid, 

- random phase multisine defined on the odd-odd frequency grid, 

- multisine defined on the odd frequency grid with the amplitude density shaped with the 
suitable choice of the phases. 
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Based on the theory and the simulations the practical advice for weakly non-linear FRF 
measurements is to use odd-odd random multisines of high harmonic content, considering 
that: 

- the measured FRF is the same as the one measured with the Gaussian excitation, 

- due to the drop-out of the effects of the even non-linearities the uncertainty of the 
measurement (the non-linear noise) is less, 

- it is possible to detect and quantify odd and even nolinearities separately (even non-
linearities at the even frequency lines, and odd non-linearities at the non-excited odd 
frequency lines). 

It was also established that clipping the (amplitude of the) Gaussian noise elevates the bias on 
the FRF, assuming that the non-linear distortions do contain odd components. Furthermore it 
turned out  that the usual ± 3 σ clipping is not enough in the weakly nonlinear measurements 
(it is advised to clip at ± 4 σ). [8*, 27*, 29*, 33*, 162] 

 

 

Fig. 3.5.1.  A qualitative example: ETFE of a weakly nonlinear system from Fig. 1.1.1 measured with a single 
application of the Gaussian noise (left) and the random phase multisine defined on full, odd, and odd-odd 
frequency grids (all signals normalized to the unit power) (right). Using the random phase multisine yields lower 
level of the non-linear noise, consequently demands shorter measurement (averaging) time. This advantage can 
be further amplified by manipulating the frequency grid. 

 

Misusing random multisines  

The extensive usage of the random multisine excitations, and the work on the Matlab Toolbox 
[106], where as the designing aim a “user-resistant” excitation was sought (which would 
provide acceptable results even if the user misuses the excitations in the measurement set-up), 
brought into light a very interesting phenomenon. 

Random multisine (whatever the frequency grid) is a periodic signal and its proper usage 
requires processing of the integral number of periods in the measurement data. In a number of 
measurement applications however the measurement time (due to the chosen basic harmonic 
frequency and settling of the transients) can be so long, that the user will be tempted or 
pressed to stop the measurement before due. Are then the measurement results lost as not 
properly processable? Simulations indicate that the random multisines are very resistant to 
such misuse. Random multisine measured only in a part of its period is still very close in its 
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spectral properties to the ideal signal, meaning that the FRF measurement with such an input 
won’t be much distorted.  [215, 203] 
 

Compound experiment design  

The periodicity of the excitation not only means a tool against the leakage. It is a powerful 
property as it is (usually) not shared by the noise disturbances covering the measured data. 
The presence and the amount of the output or the measurement noise can be discovered on the 
fly by putting the periodicity at work [50]. 

The normal application of the random multisines would be to apply to the system input the 

series of the realizations for different independent phases: {u(t,ϕ1),  …, u(t,ϕk), …, u(t,ϕN)}. 

Such measurement yields the Best Linear Approximation of the system. If the measurement 
noise is also present, it would be good idea to measure its variance to judge properly the 
amount of averaging needed to suppress it (or to introduce it as a weighting factor into the 
criterion function for the parametric estimates). Although the random multisine is a stochastic 
signal, its every single realization is deterministic, and the output of the non-linear system to 
such excitation will also be deterministic. Let M = K*N and let stretch the input a bit more: 

 1 1 1 2 2 2{ ( , ), ( , ), , ( , ) , ( , ), ( , ), , ( , ) , , ( , ), ( , ), , ( , )}N N N

K times K times K times

u t u t u t u t u t u t u t u t u tφ φ φ φ φ φ φ φ φ⋯ ⋯ ⋯ ⋯
����������������������� ����������������������� �������������������������  (3.5.1) 

In case when ),(),]([),,()( ηϕηϕ lNlUVlYlY +== , i.e. the measurements are noisy, and the 
measured output depends not only on the input random parameter ϕ, but also on a random 

parameter η characterizing the realization of the measurement noise, the usual computation of 
the Best Linear Approximation (averaging over all available records) will yield: 

{ ( , , )}( ) ( , , )ˆ ( ) { } { } { }
( ) ( , ) ( , )BLA

E Y lY l Y l
G l E E E

U l U l U l
η

φη φη φ

φ ηφ η
φ φ

≈ = = .    (3.5.2) 

As a result, within the same measurement set-up the measurement noise variance will be 
attenuated by 1/K, and the non-linear noise variance by 1/N. During the averaging both 
variances can be measured independently providing a fine insight into the distortion situation 
of the measurement (Fig. 3.5.2). 
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Fig. 3.5.2. Measurement setup to separate the ETFE BLA measurements from those of the output noise. When a 
single realization of a periodic input is applied and more periods measured from the output, the non-periodic 
output noise can be easily separated and its variance and nonparametric spectral properties measured. Applying 
independent inputs and averaging along them, on the other hand, gets rid of the non-linear noise and yields the 
FRF BLA. 

 

 

3.6 Robustness in the SISO BLA measurements 

Various signals can be used as the excitations for the FRF measurements. Some of them lead 
already in many measurement areas to the development of a specific measurement 
methodology (based upon these particular signals, e.g. the Gaussian noise). If new (better) 
excitations are proposed, the primary issue is that of portability and comparison – will we 
measure the same quantity or not? 

If the measurements made by the older and the newer excitations are comparable, it makes it 
possible to switch over to the new methods and to extend the measurement technological 
toolbox, without the fear that the existing achievements will be uncomparable and 
jeopardized. 

In the related research two questions were addressed. If the number of the harmonics tends to 
infinity, is the BLA asymptotically equivalent for different excitation signals? The second 
question dealt with the asymptotic properties of the BLA FRF measured with multisines 
defined on different frequency grids.  
 

SISO BLA equivalence of the multisine excitations 
 

Luckily the first results were encouraging: 

Theorem 3.6.1: SISO model equivalence of random multisines, periodic noise, and 
Gaussian noise. For the listed types of the excitation signals the SISO BLA and the non-
linear variance retain all the properties proved for the random phase multisines and converge 

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



56 

 

(also in the moments) to the same limit values at the rate O(M -1). The BLA is a continuous 
function of the frequency, with the continuous derivatives if the approximated Volterra system 
is continuous, with continuous derivatives. 

Proof: See [162-163]. ����    

 

Robustness of the SISO BLA measurements 
 

Further research developed a mature model of the asymptotic robustness of the SISO BLA 
measurements. It was recognized that if the Volterra-series is excited with a random multisine 
of a high harmonic content, then with the proper normalization, the BLA expression (2.2.16) 
is formally equivalent to a Riemann-(integral) sum. From this starting point, for a number of 
practically relevant excitations, we succeeded to formulate (Riemann) equivalence conditions, 
warranting for these excitations and for the non-linear systems approximable in the mean 
square sense by the Volterra-series the portability of the BLA measurements. 

The BLA measured with the Riemann-equivalent excitation signals (taking into account the 
spectral equivalence from Fig. 3.6.1) can be written as: 
 

1 1 1

/2 /22 1 2 1
, , , ..., 1 1 1 10 0

( ) ... ( ) ... ( ) ...
s sf f

BLA f f f f U UG f c G S f S f df df
α

α α
α α α−

− −
− − −= ∫ ∫    (3.6.1) 

 

and similar expression can be formulated for the non-linear noise variance (albeit with no so 
simple direct reference to the Volterra-kernels) (for the derivation, see [46*]). 
 

 

Fig. 3.6.1.  Correspondence in the spectral content for various excitation signals. 
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The robustness of the BLA measurements for various families of the multisines can be 
addressed also from the frequency grid perspective. There are already many frequency grids 
defined in the measurement practice (see Section 3.3, but also other ideas found in the 

literature, e.g. [121]). Due to the fact that the grid, in the limit M → ∞, is responsible in the 
bias and in the variance expressions for the convergence of the finite sums to the multiple 
frequency integrals (of arbitrarily high dimensions, see series (3.6.1)), this grid must fill the 
frequency band in a more and more uniformly dense manner, i.e. it must be a uniformly 
distributed sequence [144, 20*].  
 
Definition 3.6.1: Uniformly distributed multisine. An uniformly distributed N-periodic 

random phase multisine with M harmonics is defined on the frequency grid MS+ , which is a 

uniformly distributed sub-set of the reference frequency grid (i.e. the discrete full frequency 

grid of N/2 harmonics): [ ] [ ]1 2 ,0... 1 2 ... ( / 2) 1M M NS k k k S N+ += ⊆ = − (k1=1, see Def. 

2.2.4, the multiplication by the fundamental frequency f0 is omitted for clarity), in a sense that 
for every M and N and for every frequency sub-band I = [m1, m2], 1 < m1 < m2 < N/2, the 
limit: 

2 11
lim 1

2 /M
m I

m m

M N→ ∞ ∈

−=∑ .        (3.6.2) 

exists, meaning that in the limit the frequencies of the MS+  grid uniformly and densely fill up 

every subband of the full frequency band of the signal . � 

The question now is to what extend the BLA measurements performed over different 
frequency grids are equivalent (and with the proper spectral equivalence, converge to the limit 
(3.6.1)). Based on the theory of the uniformly distributed sequences it can be stated that if the 
frequency grids used in the measurement design are characterized - as point sets - with the 
decreasing so called discrepancy, then the corresponding BLA measurements are 
asymptotically equivalent. 

Let us start with a simple 3rd order SISO Volterra system. Let the frequency grid of the 
excitation be modeled as the point set: 

[ ] [ ]1 2 ,0... 1 2 ... ( / 2) 1M M NS k k k S N+ += ⊆ = −     (3.6.3) 

Then: 
1 2

3
1 3

1 2 3 3 1 2
1,

( ) ( ) ( ) ( , , ) ( ),
M M

i
ik k S S

Y l G l U l G k k k U k k l k k
+ − =∈ ∪

= + = − −∑ ∏   (3.6.4) 

Denoting as: 3 3
3, 3

0

1
( , , ), ( , , )

M

B

M
k S

K G l k k K G l f f df
M +∈

= − = −∑ ∫    (3.6.5) 

the kernels appearing in the BLA expression the question now is what is the bound on the: 

1 , 3, 3( ) ( ) ( ) 6 ?BLA M BLA Ml G l G l K Kε = − = − ≤      (3.6.6) 
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error, where K3 is the kernel measured with the reference noise and K3,M is the kernel 
measured over the given frequency grid. In the general case, for the measurements performed 
over two different frequency grids the error is similarly: 

1 2 1 22 , , 3, 3,( ) ( ) ( ) 6 ?BLA M BLA M M Ml G l G l K Kε = − = − ≤      (3.6.7) 

and can be bounded using so called Koksma-Hlawka inequality [144] as: 

1 2

3
2( ) 6 ( ( , , )) ( )M Ml V G l f f D Dε ∗ ∗≤ − +          (3.6.8) 

where V is the variation function measuring the smoothness of the kernel and D*
M  is so called 

star discrepancy, the measure of the largest difference from the uniform distribution. Below 
one can see the discrepancy of some, already mentioned, characteristic frequency grids. 

If the discrepancy of the frequency grids is of order O(M -1), of similar order is the difference 
in the BLA measurements. The results can be generalized for the arbitrary order Volterra-
system: 

1 ,
3,

( ) ( ) ( ) 6BLA M BLA
odd

l G l G l Kα α
α

ε ε
∞

=

= − ≤ ∑       (3.6.9) 

where Kα depends on the kernel functions (cf. (3.6.5)) and εα can be estimated from the 
Koksma-Hlawka inequality [20*]: 

1 2

( )
1

0 1 ...

( ; , ..., )
k

k
M k

k i i i

D V G i i
α

α
α

α
ε ∗

= ≤ < < < ≤
≤ ∑ ∑       (3.6.10) 

where the term in the parentheses is the multidimensional variation of the frequency kernel 

Gα  [144]. The results can be extended to the colored excitations with the additional condition 
on the bounded variation of the signal frequency spectrum (see [20*]). In consequence, based 
on the smoothness of the bias and the variance (Th. 3.6.1), furthermore on the standard 
properties of the Riemann sums (2.2.8) for (3.6.1) and on (3.6.10), the variations in the BLA 
measurements can be bounded by the variations in the frequency grid discrepancy leading to 
the following Corollary: 

 

Corollary 3.6.2: Frequency grid robustness of the BLA measurements. The BLA and the 
non-linear variance are robust to the perturbations of the frequency grid. � 
 

More can be said in case of Wiener-Hammerstein systems, with more insight into the system 
structure and the place of the non-linear component. In such case [20*]: 

1 2

1 2
2( ) ( ) ( ( ) )( )M Ml C G l V R f D Dε ∗ ∗≤ | | | | +       (3.6.11) 

The error thus is more dependent on the smoothness of the input linear system. [44*-45*]. 
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Fig. 3.6.2 Quantities used to qualify properties of the uniformly distributed sequences: (a) mass distribution of 
the point set (point measure), (b) cumulative mass distribution (continuous) and the volume measure of the 
interval (point line), (c) star discrepancy. 

 

 

Fig. 3.6.3 Behavior of the error for the 
measurements with various random multisines. 
The measured system is a 3rd order Wiener-
Hammerstein system with the 9th order 
Butterworth input system and the 9th order 
Tchebishev output system (10dB pass-band 
ripple). (*) full, (o) odd, (x) odd-odd, and 
(square) random frequency grid. 
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4. General MIMO BLA theory 
 

4.1 MIMO Volterra systems 

In numerous real life phenomena multiple independent or interdependent effects act together 
toward joint results. These can be modelled as so called Multiple-Input Multiple-Output 
(MIMO) systems. It is easy to extend SISO Volterra models to MIMO Volterra systems 
without feedback, i.e. when the outputs can be modelled separately as multiple-input single-
output (MISO) systems with N inputs.  

A number of questions pops up naturally regarding the portability of the SISO BLA results 
and also about possible new phenomena specific to the higher dimensional systems. Once we 
define well behaving MIMO Volterra systems the primary issue will be the choice of the 
multiple input signals and the analysis how the measurements in one input-output channel 
influence or perturb the measurements in the other channels.  
 

General Assumptions 

The well developed SISO Volterra theory (Sect 2.2) lists numerous advantageous properties 
for well behaving kernels and input signals, resulting in further nice properties of the BLA 
approximation (Sect 2.3). 

In the MIMO case there is more freedom. Feed-forward kernels and the cross-channel kernels 
can differ in properties, diverse input signals can be applied to various inputs, and in 
consequence the analysis of the MIMO Volterra systems can be difficult. 

In the following we recall that the informal scope of the research is the nonparametric linear 
FRF measurement on a weakly non-linear system, i.e. the situation when little if any a priori 
information exists about the system under study and it is just the aim of the measurement to 
gain some information about the frequency band, the shape of dynamics, the level of non-
linear distortions, etc. Consequently there is usually no measurement technical reason to 
specify essentially different excitation signals at the system inputs.  
Considering the multisine signals applied to different inputs we may assume thus, that: 

Assumption 4.1.1 

(a) The frequency grids at the inputs coincide, whatever they are, or 

(b) Though multisines at different k inputs can be distributed on different frequency grids 

,M kS+ (see Def. 2.2.4), but these frequency grids are dense subsets of the same uniformly 

distributed frequency grid 0,NS+ , in a sense, that for 
, 0, ,, , ( )M k N M kk

k S S S O M+ + +∀ ⊆ ∩ =  (i.e. they 

have plenty of common frequencies); that way all inputs will have the same common period. 
� 

 

The derivations in Sect 4.1 are made for the output of the MIMO Volterra system with 
bounded kernels, excited by normalized excitations, at the frequencies common to the all 
inputs (Case a.), as this situation constitutes the FRF measurement practice almost 
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exclusively. We will also assume that no other disturbing noise sources are present, focusing 
thus the analysis on the input signals and the non-linear effects. Although not investigated 
formally it can be nevertheless conjectured that a number of results will be valid also for the 
Case b. 

 
Definition 4.1.1. N-input K-output MIMO Volterra series.  An N-input K-output MIMO 
Volterra series can be described in the time domain as: 
 

∑∑∑
∞

=

∞

=
===

α

α

α

α

α jjj

jjj
Nk tytytuuuVty

...

...

11
21

21

21 )()()](,,,[)( L     (4.1.1) 

 

where the second sum runs over the outputs of all pure and mixed αth order kernels, and a 

particular αth order kernel, excited by input signals of indices j1, j2,…,jα , in time domain 
yields: 
 

ααα τττττττ
α

αα ddtututugty
jjj

jjjjjjj ...)()...()(),...,(...)( 1211
...

-

...

21

2121 −−−= ∫∫
∞

∞−

∞

∞
 (4.1.2) 

and k = 1, …, K, and every  jm ∈ {1, 2, …, N}. In the following we will drop the output index, 
as redundant. Every output can be considered separately as the result of a different Volterra 
series.  

In the frequency domain the system model is (c.f. (2.2.3-2.2.4) for SISO): 
 

∑∑∑
∞

=

∞

=
===

α

α

α

α

α jjj

jjj
N lYlYlUUUVlY

...

...

11
21
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21 )()()](,,,[)( L     (4.1.3) 
 

1 2 1 2

1 2

1 1

... .../2
1 2 1 1 2

,...,

( ) ( , ,..., , ) ( ) ( )... ( )
M M

j j j j j j
j j j

k k S S

Y l M G k k k k U k U k U kα α
α

α

α
α α α

− +
−

−
−

∈ ∪

= ∑   (4.1.4) 

 

where l is the discrete frequency, l = Σ ki, i = 1 … α, and: 
 

( )ˆ( ) ( / ) ( / ) jj k

j j jU k U k N U k N e
φ= =       (4.1.5) 

 

Similarly to the SISO case the kernels and the signals must be bounded. Kernels αjjjG ...21  are 

bounded by max | αjjjG ...21 | = αjjjM ...21 . The series is convergent for every l, if the inputs are 

normalized to unit power and have uniformly bounded spectral amplitudes |Uk| ≤ MU, k/√M < 

∞, furthermore if together (c.f. (Def. 2.2.2)): 

∞<∑
∞

=

α
α

α
UMM

1
         (4.1.6) 

where ||max|,|max ,...21 kU
signalsinputall

Ujjj
kernelsorderall

MMMM ==
ααα . � 

 
Definition 4.1.2: Non-linear system class of interest. The class of systems of interest in the 
following is restricted to those systems which are the limits in the least-square sense of the 
convergent Volterra series defined in Def. 4.1.1. If otherwise not specified, the term ‘non-
linear system’ will be used in this context. � 
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Note: Special measurement situations, like e.g. measuring modulators with carrier inputs, or industrial 
installations with step-like signals, can be handled as a normal FRF measurement at a specific "working points" 
of the system. Furthermore the BLA theory was recently extended to (periodic) multilevel excitation signals 
[267-269]. 

 

We summarize now in the analogy to the SISO case some useful properties of the MIMO 
Volterra systems.  
 

Theorem 4.1.1: Error bound for the truncated MIMO Volterra series . 

k
k

Kk

K ugtuVtuV )||(||||||||)]([)]([||
1

)(
∞∞

∞

+=
∞ ∑≤−      (4.1.7) 

Proof: By the analogy to Th. 2.2.1, where ||.||∞ is normal sup norm, maximized over all inputs, and the bounds 
are taken similarly as the maximum over all kernels of the same order, or over all inputs. � 

 

Theorem 4.1.2: Boudedness of the MIMO Volterra series. MIMO Volterra series is a 
Bounded-Input Bounded-Output for each of its input-output paths. 

Proof: Inputs are bounded, so majorizing them with the worst-case input bound reduces the problem to the SISO 
case.  ����    

Within the measurement technical circumstances assumed in the dissertation the following 
observation may actually serve as theorems, however formally they can be stated only as the 
assumptions:  

Assumption 4.1.2: Continuity of the MIMO Volterra series.   

Comment: If the MIMO Volterra series is convergent (Def 4.1.1), due to (4.1.4)-(4.1.6) it can be stated that 
when all but one input are fixed in their properties (spectral content, frequency grid, phases) the remaining SISO 

Volterra system (characterized by 1 2...1 j j j
UM G αα −  kernels) posses all the properties listed in Sect 2.2 for the 

bounded kernel, bounded input SISO Volterra systems, consequently is continuous. This is so called separate 
(component-like) continuity, which in itself does not imply the joint continuity of the multivariable function. 
However if an N-dim multivariable function is separately continuous in all of its variables, then on suitable 
domains (unit cube) the set of discontinuity points is of at most N-2 dimension, and with additional smoothness 
conditions, the set of discontinuity points is nowhere dense. The counter examples usually show discontinuity at 
the origin, which is without significance, as the origin means not applying the input signals at all. So for the 
practical purposes we assume that the MIMO Volterra system (if properly bounded) is also continuous. [103] � 
 

Assumption 4.1.3: Steady state theorem for MIMO Volterra series. For every input k, let 
u

k
 and u

steady,k
 be signals within the region of convergence of (4.1.2), and suppose that u

k
(t) → 

u
steady,k

(t) as t → ∞ for all k. Then V[u
1
,u

2
,…,u

N
](t) → V[u

steady,1
,u

steady,2
,…,u

steady,N
](t) as t → ∞. 

Comment: By the assumed continuity of the MIMO Volterra system, see Ass. 4.1.2. ����    
 

Assumption 4.1.4: Periodic steady state theorem for MIMO Volterra series. If the inputs 

uk are all periodic with the same period T for t ≥ 0 then the output V[u1,u2,…,uN] approaches a 
steady state, also periodic with period T. 
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Comment: If the inputs are of the same period, then their spectra can be jointly bounded and then SISO theorem 
Th. 2.2.3 applies. ����    
 

Assumption 4.1.5: Extended periodic steady state theorem for MIMO Volterra series. If 
the inputs uk are all periodic with the periods Tk, possessing the least common multiple T = 
lcm(T1, T2, …, TN), then the output V[u1,u2,…,uN] approaches a steady state, also periodic 
with period T. 

Comment: Since every input is also T-periodic by definition, then by Ass. 4.1.4 the output should be also T-
periodic. There cannot be shorter periodicity in the output, because it would assume that all the inputs reached 
already a repetition, impossible by the definition of the least common multiple. � 

 

In a number of MIMO applications block models are also a useful modeling tool. The general 
unified definition of the MIMO Wiener-Hammerstein system and the related special cases 
does not exist. Here we present a definition used in the followings: 
 
Definition 4.1.3: N-input K-output MIMO Wiener-Hammerstein system is built from K 
independent N-input MISO Wiener-Hammerstein systems. Every N-input MISO Wiener-
Hammerstein system has N parallel different input dynamics, N-to-1 static non-linearity, and a 
common output dynamics (see Fig. 4.1.1 for 2-input MISO Wiener-Hammerstein system). � 

 

 
Fig. 4.1.1. Generic MISO Wiener-Hammerstein structure. Rp1(l) and Rp2 (l) are the linear input dynamics, Sp(l) 
is the linear output dynamics for the pth output, and NL is the static non-linearity.  

 

Volterra kernels of order α of N-input MISO Wiener-Hammerstein system are: 

∏ =
++×= α

αα
α

12121
... )()(),,,(21

k njpp
jjj kRkkkSconstkkkG

k
LL    (4.1.8) 

where j1, j2, …, jα are not necessarily all different (and similarly for Hammerstein, or Wiener 
systems). 
 

4.2 MIMO FRF measurements 

Multiple input setups were investigated extensively in the linear FRF measurements [199, 
210, 125, 162]. As it was assumed in the SISO case in the following we consider the output 
error scheme, and the primary object of the investigation are the nonlinear effects coming 
from the system itself and not from the measurement noises. The MIMO system with N inputs 
and K outputs is measured as a set of MISO systems. To this purpose J experiments are made, 
generating J times all the input signals, then cutting (after the transients settle) the successive 
records from the inputs and the output.  
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The measured signal amplitudes at the frequency l can be arranged as:  
 

=





















=+=

)()()(

)()()(

)()()(

)()()()(

)()2()1(

)(
2

)2(
2

)1(
2

)(
1

)2(
1

)1(
1

lYlYlY

lYlYlY

lYlYlY

llll

J
KKK

J

J

Y

L

LLLL

L

L

NUGY     (4.2.1) 

 





















+









































)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)(
,

)2(
,

)1(
,

)(
2,

)2(
2,

)1(
2,

)(
1,

)2(
1,

)1(
1,

)()2()1(

)(
2

)2(
2

)1(
2

)(
1

)2(
1

)1(
1

21

2
2
2

1
2

1
2
1

1
1

lNlNlN

lNlNlN

lNlNlN

lUlUlU

lUlUlU

lUlUlU

lGlGlG

lGlGlG

lGlGlG

J
KYKYKY

J
YYY

J
YYY

J
NNN

J

J

N
KKK

N

N

L

LLLL

L

L

L

LLLL

L

L

L

LLLL

L

L

 

 

The indices in parentheses are the serial numbers of the experiments. U is a N × J input matrix 
of complex input amplitudes (2.2.11), and will play important role in the followings: 
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G is a K × N matrix of the true FRF values for a particular input-output channel; Y and NY are 

K × J matrices of the output amplitudes and the output measurement noise amplitudes 

accordingly. We will assume also in the following that J = NB × N, i.e. the number of 
experiments is an integral number of N experiment blocks. In the future we will distinguish 
also a special N × N input matrix built from J = N experiments: 
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Note: The notation )(lGm
k calls for an explanation. To conform to the notation used in the Volterra kernels, the 

lower index is the output channel index, and the upper index always means the index of the input signal applied 
to the system. 

 
As the MIMO system can be decoupled into K MISO systems with the same inputs the 
general equation can be written for a single output channel (dropping also the redundant 
output index): 
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 (4.2.4) 

 
From now on G will be a 1×N matrix, and Y, NY are 1×J matrices accordingly. The FRF 

estimates )(ˆ lGi can be computed from (4.2.4) as (from here on we will drop also the 

frequency argument when not explicitly required):  
 

BNGUUUNGUUYUG Y
HH

Y
HH +=+== −− 11 )()(ˆ     (4.2.5) 

where: 1)( −= HH UUUB , and ( )H is the conjugate transpose.    (4.2.6) 

Taking GGG −= ˆ~
, (and assuming that GBNGG =+= }{}ˆ{ YEE ) the variances on the 

measured FRF-s can be computed from: 
 

}{}
~~

{}ˆ{ BNNBGGG Y
H
Y

HH EECov ==       (4.2.7) 
 

Matrix B  will generally attenuate the distortion introduced by the output noise, its entries 
however could be complicated functions of the complex amplitudes of the input signals, and 
thus the noise smoothing effect of B  will depend upon the particular choice of the inputs. 
 
Note:  Inverting the input matrix (direct, or pseudo inverse) is possible if all inputs are exciting at a given 
frequency (there are no zero rows in the input matrix). We have the following possibilities: 

(a) every input is exciting at the frequency l; 

(b) the measurement equation is considered only at the frequencies, where every input is exciting. 

 

4.3 Problem of the input design – linear MIMO systems 

The problem is now not only how to design the excitation at a particular input, but how to 
relate it to the other system inputs, i.e. instead of separately designing U(l) we should design a 

full matrix )]([ )( lU n
k=U  in (4.2.1), thinking globally about the all inputs and experiments. 

As a given column in U means the design of a single experiment, we should be free to change 
the input design from the experiment to the experiment. 

The main problem can be best illustrated with the SISO FRF measurements, where the FRF 
estimate is (2.1.3) (2.2.24): 

)(ˆ
)(ˆ
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)()(
)(ˆ

lS

lS

lUlU

lUlY
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k kk

k kk ==
∑
∑

        (4.3.1) 

 

For the small number of averages the input auto spectrum estimate in the denominator can 
exhibit large variations and can take small values leading to the excessive variance of the FRF 
estimate. Such variations are present when the excitation signals are e.g. Gaussian noise or 
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periodic noise, and disappear when using random phase multisines, because then the 
denominator is deterministic:  
 

2ˆ ( ) ( ) ( ) | ( ) |UU k k kk k
S l U l U l U l const= = =∑ ∑       (4.3.2) 

 

In the MIMO case we can relate the inverse matrix in (4.2.5) to the denominator of (4.3.1). 
Intuitively if we use random signals as the excitations, the entries in (4.2.1) will be random, 
and in consequence the inverse in (4.2.5) will also fluctuate increasing the variance (4.2.7). 
Using random multisines won’t entirely get rid of this problem in the MIMO case, because 
the randomness in the phases will still be visible in the off-diagonal entries in the matrix UUH, 
consequently also in the inverse in (4.2.5). However the fluctuation will be less than for more 
randomized signals.  

Linear MIMO FRF measurement theory developed input matrix design related to the 
minimization of the variances over the parametric FRF estimates [86, 87], [189-190]. Only 
when a suitable structure is enforced in the excitations applied to different inputs, i.e. into the 
input matrix U, we can expect a better behavior of the FRF estimates.  

One of the possible approaches is through the uncertainty of the estimate (4.2.5), which can 
be characterized by an N-dim ellipsoid, which volume should be the smallest [125]. The 
smallest volume ellipsoid is related to the determinant of UUH, and that to the determinant of 
U (det UNUN

H = (det UN)2), which should be the largest and this brings into picture so called 
Hadamard maximum determinant problem.  
 

Note: This is so called D-optimal design in the theory of linear measurements. There are more optimality 
criteria, like A-optimal design, etc. but the determinant based criterion is the most pertinent to the discussion 
[199, 125, 175]. 

 

Definition 4.3.1: Hadamard maximum determinant problem. The Hadamard maximum 
determinant problem [29] seeks complex N × N matrices A with entries in the unit disc 

satisfying the Hadamard bound |det A|≤ NN/2. For dimensions N = 2K = 0 mod 4 the real 

solutions are so called Hadamard matrices with entries ±1. For complex matrices the bound is 
always attained by the Vandermonde matrices of the nth roots of unity, i.e. the DFT matrices, 
which are defined for any dimension N ≠ 2K. ���� 
 

Hadamard matrices can be computed recursively via the Kronecker product as: 

1222 −⊗= KK HHH , where        (4.3.3) 


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The Hadamard matrix of e.g. order N = 23 = 8 is: 
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Hadamard matrices are also orthogonal, i.e.: NN
H
N

H
NN N IHHHH ==   (4.3.6) 

where IN is an N × N unit matrix. 

Using Hadamard matrix to structure the MIMO excitation design for input dimension N = 2K 
= 0 mod 4 would yield: 

)()( lUl NN HU = , and with this:       (4.3.7) 
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,       (4.3.8) 
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assuming Gaussian white measurement noises: 

N
Y

Y
H
Y

HH

lUN
EECov IBNNBGGG
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σ===     (4.3.10) 

 

Note: Input signal (matrix) designs in the linear and in the non-linear case essentially differ. Linear FRF 
estimates are input independent, only the output noise attenuation depends upon the inputs. In the non-linear case 
the measured FRF is only the Best Linear Approximation and is a kind of a least-square “linearization at the 
input point”, i.e. theoretically input dependent.  

Note: The principal drawback of using Hadamard input design is that Hadamard matrices are defined for input 
dimensions N = 0 mod 4. For other input dimensions a typical measurement practice is to approximate (4.3.7) 

with: )(ˆ)( lUl MM HU =  , where for M < 2K , MĤ  is the left upper M × M submatrix of K2
H . The 

approximation yields of course correct solution for every N = 2K. Note that due to the special structure in (4.3.7), 
the approximation will yield deterministic variance similar to (4.3.10) even for the approximated dimensions 
(with nonzero off-diagonal elements instead of diagonal IN) . To get a feeling of the phenomenon, consider: 
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Comparison of the input designs based on the random multisines, the Hadamard matrices, the approximate 
Hadamard matrices, and the orthogonal matrices generalizing the idea of (4.3.3) designed for the non-linear 
systems (see Section 5.2.) can be found in [17*]. It was concluded, “… that for small system dimensions, in 
situations when no non-linear distortions are present and consequently when the Crest Factor minimization is 
allowed, the approximate orthogonal multisines yield the best results. For larger input dimensions, or when non-
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linear distortions are present and the Crest Factor optimization won’t be usually allowed, the ideal orthogonal 
multisines provide the best option.”  

 

4.4 Input design – non-linear effects in two-input two-output systems 

The problem of an adequate input design to handle non-linear effects is introduced in case of 
simple Two-Input Two-Output (TITO) systems of low non-linear order, in noiseless 
measurement conditions, driven by the random phase multisines, defined on the same 
frequency grid. This particular choice is dictated by the theoretical importance of such 
models, e.g. in the microwaves, and also by the unexpected results, that in this case the linear 
FRF measurement technique is still fully functionable. The experimental setup is the special 
case of (4.2.4), for J = N = 2: 
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The required FRF estimates )(ˆ lGi can be obtained simply as: 
 

[ ] )()()(ˆ)(ˆ)(ˆ 121 lllGlGl −== UYG        (4.4.2) 
 

Now consider that the outputs Y belong to an up to 3rd order Volterra system: 
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where L = l - k for the 2nd order, L = l - k1 - k2 for the 3rd order kernels. All sums run over the 

M MS S− +∪ frequency grid, and M is the number of harmonics in the input signal. In the general 

case the output of two experiments (j = 1, 2) is:  
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With:  
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the FRF estimates from (4.4.2) are: 
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Consider the 1ˆ ( )G l . Substituting the full expressions (4.4.4) into the estimate (4.4.7) yields: 
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The linear term cancels to )(1 lG . The measured FRF is the expected value of the 1ˆ ( )G l  (with 

respect to the random phases). The expected value of the terms in the parentheses will differ 
from 0 if suitable pairing of the frequencies can be found (see the Th. 2.2.1, consider also that 
different experiments and different input signals are statistically independent and that 

21kUU kk ,,|||| 2)2(2)1( == ).  

Consider e.g. the expression containing the kernel ),,( 21
111 LkkG . Three frequency pairings {k 

= k2 = - k1 , L = l}, {  k = k2 = - L1 , k1 = l}, and { k = L = - k1 , k2 = l} are possible, yielding the 
nonzero expectation of: 
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          (4.4.10) 

Similar derivation but with less pairing is possible for 122G  kernel, and no nonzero pairing is 
possible at all for the other 3rd and 2nd order kernels: 
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1 1
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k k l U k O M
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   (4.4.11) 

 

Within the 3rd order kernels the second and the fourth terms are zero, and the numerators in 
the first and the third terms equal to D(l), leading finally to the nonzero expected value of 
(omitting for clarity the M-dependent asymptotic term): 

( ) ( )

1 1

1 111 2 122 2 1 1
1 2

ˆ( ) { ( )}

( ) 3 , , | ( | , , | ( | ( ) ( )
BLA

B
k k

G l E G l

G l G l k k U k G l k k U k G l G l

= =

+ − + − = +∑ ∑
  (4.4.12) 

The 2ˆ ( )G l  can be evaluated similarly as: 

( ) ( )

2 2

2 112 2 222 2 2 2
1 2

ˆ( ) { ( )}

( ) 3 , , | ( | , , | ( | ( ) ( )

BLA

B
k k

G l E G l

G l G l k k U k G l k k U k G l G l

= =

+ − + − = +∑ ∑
  (4.4.13) 

 

Zero mean terms (i.e. where the frequency pairing wasn’t possible) belong to the non-linear 

noise )(lYS  - the noise observed over the measured FRF (see Th. 2.2.1 for more details). 

Considering that in (4.4.9) multiple terms (every kernel!) contribute to the noise and that the 
determinant (4.4.6) can be small, we should expect considerable non-linear noise and the 
lengthy averaging. 

With this we have arrived to the linear representation of the TITO Volterra system as 
(introducing now the respective output indices): 

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



71 

 

 
1 2

,1,1 ,11 1
1 2

,2,2 ,22 2

( )( ) ( )
Y( ) G ( )U( ) Y ( )

( )( ) ( )
SBLA BLA

SBLA BLA

Y lG GY l U l
l l l l

Y lG GY l U l

      
= + = = +      

       
BLA S

  (4.4.14) 

 

where ,G j
BLA iG =  BLA  is the linear best approximation TITO system and )(lSY is the non-

linear noise. The particular investigated output can be written then as: 
 

1 2
1 2( ) ( ) ( ) ( ) ( ) ( )BLA BLA SY l G l U l G l U l Y l= + +       (4.4.15) 

 

where the Best Linear Approximations: { }k k k
BLA k BG E Y U G G= = + , k=1, 2, are (as worked out 

in (2.2.13) for SISO systems) biased approximations to the non-linear relations described by 

Volterra series and 
k
BG  are the bias terms introduced by the non-linearity. The equivalent noise 

source )(lYS  captures all other non-systematic effects. 
 

 

 

Fig. 4.4.1. Equivalent model of a non-linear TITO 

system. ,
k
BLA mG  are the best linear approximation 

systems. 

 
In the SISO theory we could see that the Best Linear Approximation takes on an especially 
simple form for the Wiener-Hammerstein systems. Assume then, that the computed 3rd order 
TITO Volterra model is really a Wiener-Hammerstein system. 
 

Example 4.4.1. Bias on the measured FRF of a 2-dim MISO Wiener-Hammerstein system. The kernels 
(4.4.11) for the Wiener-Hammerstein model are particularly easy to compute: 

( ) )()()()(,, 1111122 nklSnRkRlRnklG cba
abc ++= α      (4.4.16) 

With (4.4.16) the bias in (4.4.12-4.4.13) becomes: 
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(4.4.17) 

similarly for )(2
1, lGB :  )()()

3
()( 2

12
2
1

2

12222

2

111122
1, lGKlG

rr
lGB =+=

α
α

α
α

,   (4.4.18) 

because the input amplitudes are of order )( 2/1−NO and thus the sums r11 and r12 are of order )( 0NO . We can 
see that also in the MIMO case the relative bias remains constant for the Wiener-Hammerstein system (for 
general case see Section 4.6.) (the M-dependent asymptotic term has been omitted for clarity). 
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Let us turn to the orthogonal input design (4.3.7) proposed for linear MIMO FRF 
measurements. For dimension N = 2 the input matrix is: 
 

)()( )1(
1 lU

11

11
l 









−
=U          (4.4.19) 

 

reapplying the same inputs in the second experiment, with sign reversed. The optimal choice 
(4.4.19) has been actually proposed for linear systems, yet it works extremely well also in this 
case. The common sense (and heuristically a powerful property of the Best Linear 
Approximation) is that the non-linear noise appears in the position of the output noise, thus 
techniques designed for the output noise should work also in this case. With (4.4.19): 
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

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=−

11

11

lU2

1
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)1(
1

1U         (4.4.20) 

 

and the FRF estimates are (c.f. with (4.4.7) and (4.4.8)): 
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    (4.4.21) 

 

Consider now the 1ˆ ( )G l . Substituting the full expressions of the outputs (4.4.4) into the 

equation of the FRF estimate (4.4.21) and taking into account that )()()( )1(
2

)2(
1

)1(
1 lUlUlU ==  and 

)()( )1(
1

)2(
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  (4.4.22) 

 

Terms with other kernels ( 22211212 ,, GGG ) are simply canceled out due to the change of sign in 

the input matrix. It is important to note, that: 

• The expected value of (4.4.22) is exactly the same as that of (4.4.9) (nonzero mean 
frequency pairing is possible for 3rd order kernels, but not for 2nd order kernels).  

• In the optimized case only four kernels visible in (4.4.22) will contribute to the non-
linear variance, contrary to all(!) kernels contributing in the general case (c.f. (4.35)).  

2ˆ ( )G l  can be evaluated similarly. 
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Example 4.4.2. Non-linear FRF measurements using optimal linear input design. 
 

 

Fig. 4.4.2. The measured system is a 2-input MISO Wiener-
Hammerstein system with the input dynamics, output 
dynamics, and overall dynamics in both channels shown in 
the figure. The static non-linearity NL is: 

xp=z1+z1
2/2+z1

3/5+z2+z2
2/2+z2

3/5+z1z2/5+z1
2z2/2+z1z2

2/2.

 

 

Fig. 4.4.3. The influence of 
various measurement setups on 
the measured FRF. (a) Linear 
systems for comparison. (b) 
FRF of a non-linearly distorted 
system measured with random 
multisines, without averaging, 
and (c) averaged from M = 100 
measurements, then (d) with 
orthogonal multisines, without 
averaging, and (e) averaged 
from M = 100 measurements. 

 

 

Fig. 4.4.4. The case of higher order non-
linearity. All pure and mixed non-linearities 
up to the 5th order had been added to the 
static non-linearity NL in Fig. 4.4.2. Here we 
see the FRFs in Channel-2 (left), measured 
with general full grid multisines (middle) and 
with orthogonal multisines (right). The 
proposed method works well also in this case.  

 

As expected from the derivations, optimizing the inputs (orthogonal multisines, (4.4.19)) yields a considerable 
gain in non-linear noise variance (almost 50 dB of difference, i.e. 300 times less averaging) with respect to the 
general case. We can conclude that when the Best Linear Approximation of a (weakly) non-linear Volterra TITO 
system is measured, it is profitable to used optimized orthogonal inputs (in addition to the odd frequency grid). 
 

Note: The derivation shows that when (4.4.19) signal design is applied, the level of the variance is much lower, 
but the Best Linear Approximation to the cubic TITO Volterra system remains the same, which is an unexpected 
and positive result. In measuring non-linear systems one would normally expect that the measurement results 
depend strongly on the applied input signals. The same linear approximation with less noise makes the 
orthogonal inputs (4.4.19) a tool of choice for the TITO systems. We should add that when the output noise is 
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also present, the orthogonal input signals would tackle it as well. The question now is how much these results 
can be generalized to the MIMO Volterra series of arbitrary dimensions and arbitrary order of non-linearity? 

 

 

4.5 Main results extended to MIMO (MISO) systems 

We investigate now how the previous results can be extended to an arbitrary non-linear order 
Volterra MIMO system (4.1.1-4.1.2) (N-input MISO system). 

In the MIMO measurements N experiments are made, using random multisines (2.2.10). As 
before the indices in parentheses indicate the serial number of the experiment. The upper 
index in the Volterra kernels lists the input signals belonging to the kernel. To prove the main 
theorem we will require a number of assumptions about the signals and the system: 

Assumption 4.5.1. All multisines are defined on the same frequency grid. Signals at different 
inputs are independent from each other; their phases are independent over the frequency lines. 
� 

Assumption 4.5.2. MIMO system can be of arbitrary finite input dimension N and an 
arbitrary order of the non-linearity (assuming that the sums in (4.1.1)-(4.1.3) converge). � 

Assumption 4.5.3. Signals in different experiments are independent. � 

Then we have: 

(1) (2) ( )
1 1 1
(1) (2) ( )

(1) ( ) 1 2 2 2

(1) (2) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ... ( ) ( ) ... ( )
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N

N
N N

N

N
N N N

U l U l U l

U l U l U l
l l l Y l Y l G l G l

U l U l U l

 
 
    = = =     
 
  

Y G U

L

L

L L L L

L

 

            (4.5.1) 

and the required FRF estimatesˆ ( )iG l can be computed as: 

[ ] )()()(ˆ)(ˆ)(ˆ 1 lllGlGl N
N BYG == ... ,      (4.5.2) 

with ( )N ijl b =  B  N × N any matrix fulfilling (e.g.: 1( ) ( )N Nl l−=B U , or 1( ) ( )H H
N N N Nl −=B U U U , 

etc.): 

( ) ( )N N Nl l =U B I           (4.5.3) 

where NI is the N × N unit matrix. In the following we will omit the frequency argument l, 

when unambiguous. First we will consider the general case, when: 1( ) ( )N Nl l−=B U . 

 

Theorem 4.5.1: Bias on the general Volterra MIMO system. When a Volterra MIMO 
system of arbitrary order is measured with random phase multisines (2.2.10) fulfilling the 
Assumptions 4.5.1 – 4.5.3, the bias on the Best Linear Approximation in the kth input signal 
channel is composed from the terms: 

∑ ∑∑ −=
1 '

'1

21

2

21
2

'

2

111
...... )(...)()...,,,(...)(

k k
jj

jjj

k

jjj
B kUkUlkkGlG

PP

α
α

αα
α    (4.5.4) 
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where αjjjG ...21  are all those odd order Volterra kernels, where the input signal belonging to the 
investigated channel appears an odd number of times (linear kernels are the special case of 
this). The overall bias is: 

∑∑∑
∞

=

∞

=

==
α

α

α

α

α jjj

jjj
B

oddodd

lGlGlG
...

...

,3,3 21

21 )()()( BB       (4.5.5) 

Proof: in Appendix A.3 ���� 

 

Please also note that the Theorem 2.2.1. and the bias expression for the SISO system (2.2.4) 
are special cases of the Theorem 4.5.1. (i.e. other inputs are not present, the input appears an 
odd number of times, consequently all odd and only odd non-linearities contribute to the bias 
in the SISO case). 
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L    (4.5.6) 

Note: It is important to observe, that the proof of the Th. 4.5.1. did not require the assumption on the uniformity 
of the spectral amplitudes, consequently the Th. 4.5.1. and the bias expression is valid for the (normalized) 
multisine inputs independently colored over the input channels. 

 

Theorem 4.5.2: The Best Linear Approximation model of a MIMO Volterra system. 
When the inputs of an arbitrary Volterra MIMO system are excited with multisine signals 
(2.2.10), the system outputs can be written as:  

[ ] [ ]
[ ] [ ]

, ,

, ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k
m BLA BLA m k S m

k k
m k B m k S m

l Y l l l l G l U l Y l

G l U l G l U l Y l

   = = + = + =   

     = + +     

SY G U Y
   (4.5.7) 

where the systems: { }, ,
k k k
BLA l l k l B lG E Y U G G= = +  are biased Best Linear Approximations to the 

non-linear relations described by Volterra series and 
,

k
B lG  are the biases introduced by the 

non-linearity (note that the output index had been added for clarity). The equivalent noise 

sources )(, lY mS  capture other nonsystematic non-linear effects. This yields the additive non-
linear noise model for the MIMO system, a straightforward extension to the SISO and TITO 
cases. 

Proof: Zero mean terms in (A.3.8) (i.e. where frequency pairing wasn’t possible) are the non-linear noises 
)(, lY kS , or )()()( ,, lUlYlG kkSkS =  the noises observed over the measured FRF. From this it is 

straightforward to get (4.5.7). Please note that multiple terms (every kernel!) contribute to the noise and that as 
the determinant det U can be closed to 0, we should expect considerable amount of the non-linear noise. � 
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4.6 Properties of the BLA approximation 

The construction (4.5.4), analogous to the SISO case (Th 2.2.6), the measurement friendly 
properties of the MIMO Volterra system under Assumptions 4.1.1-4.1.5 and 4.5.1-4.5.3 permit 
to conjecture that the MIMO BLA model has similarly nice properties.  
 

Conjecture 4.6.1: Properties of the MIMO BLA bias and non-linear variance. Under 
similar conditions on the kernels as in Def 2.2.1-2.2.2, the MIMO BLA bias and non-linear 
variance are smooth functions in the frequency, are continuous in the input spectral 
amplitudes, and are robust with respect to the frequency grid of the input signals. � 

 

Theorem 4.6.1: The Best Linear Approximation of the MIMO Wiener-Hammerstein 
system (Def 4.1.3) has constant relative bias. 

Proof: In the MIMO Volterra measurements (with random multisines) the bias on the Best Linear Approximation 
in the kth input signal channel is composed from terms like: 

1 2 1 2

1 '

1 2 '

22... ...
1 1 1 '( ) ... ( , ,..., ) ( ) ... ( )

P P

j j j j j j
B j j

k k k

G l G k k l U k U kα α
α

α

α= −∑∑ ∑    (4.5.8) 

αjjjG ...21 -s are those odd order kernels, where the input signal in the investigated channel appears an odd number 
of times (linear kernels as special case). Kernels of order α of N-input MISO Wiener-Hammerstein system are: 

1 2...
1 2 1 2 1

( , , , ) ( ) ( )
k

j j j
p p j nk

G k k k const S k k k R kα
α

α α =
= × + + ∏⋯ ⋯     (4.5.9) 

Consequently, after substitution and introducing canceling frequencies, the bias in the kth channel will be: 

1 2
2 2...

1
( ) ( ) ( ) ( ) ( )

j

j j j
B p j j j j p pkj

k

G l const R k U k S l R lα
α ′

=
= × ∑∏  

which with the normalization of the inputs yields: ( ) ( ) ( ) ( )k k
B k p pk kG l c S l R l c G l∗= =  � 

 

The question we tackle now is could the input signals be designed in some special way, to 
make the BLA measurements even more advantageous? The seed of the idea is the successful 
application of the optimal input signal design for the 2-dim linear FRF measurements, applied 
to the 2-dim 3rd order Volterra systems. Is it a solution that could be generalized to the higher 
dimensions and nonlinear orders, or not? We seek now the answer to this problem. 
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5. Multisine excitations for MIMO measurements 
MIMO measurement setup presents additional degrees of freedom to the design of the input 
signals. Besides focusing on the design of the amplitudes, phases, and frequencies of a 
particular signal at the particular input, we can ask questions of how these parameters should 
be related to the similar parameters set at other input channels. We could see already that 
applying independently the random multisines to system inputs yields extension to the MIMO 
case of the Best Linear Approximation devised for the SISO systems (Th. 2.2.1). We could 
also see that the introduction of a structure to the input matrix (4.3.7) can provide 
considerable gains not only when measuring linear FRF-s, but also in case of the non-linear 
distortions (4.4.21). Our question now is whether we can improve (Th.4.5.1–Th.4.5.2) in the 
following sense: 
• the measured Best Linear Approximation should be the same (“equivalence”), but 

• the non-linear noise variance should possibly be less, to make the measurements 
faster, and the collected data of better quality (“optimality”). 
 

5.1 MIMO multisine design 

Can the results obtained for TITO systems (4.4.22) be generalized to the full MIMO case? 
The problem is that the orthogonalization of the inputs and using only single random 
amplitude for all of the inputs and experiments (albeit with different weighting) can introduce 
constraints, which influence the bias. The answer is that it is indeed the case. 

The traditional input matrix (4.2.2) built from random excitations is not a good choice. Even 
in the absence of disturbing output noise the FRF measurements will vary from one 
realization to the other. The reason is the fluctuation of the inverse matrix in (4.2.5), due to the 
randomness of the excitations. Note, that the matrix (UUH)-1 fluctuates even when random 
phase multisines are used, contrary to the measurements on SISO systems [162].  

 

Example 5.1.1. Fluctuation of the input matrix for the random multisine measurements. We illustrate the 
problem with the simplest 2-dim case: 









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)()(

)()(
)(

)2(
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)1(
2

)2(
1

)1(
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lUlU

lUlU
lU         (5.1.1) 

Omitting for brevity the frequency index we have: 









=

2

1
22 DS

SDHUU          (5.1.2) 

where Dk = |Uk
(1)|2 + |Uk

(2)|2   is deterministic, and off-diagonal S =  U1
(1)
Ū2

(1) + U1
(2)
Ū2

(2) is a zero mean 

random term. Consequently: 
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
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−
=−

1

2

2
21

1
22 ||

1
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and the random off-diagonal terms introduce additional fluctuation in the FRF measurements. Note also the 
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expression of the determinant in the denominator. Its small values can further amplify the variance. 

 

Generally the variance on the measured FRF is a function of the used input signals and the 
particular composition of the non-linear part of the system. In the SISO case the expected 

ranking is 
sin

ˆ ˆ ˆ{ } { } { }
Gaussian periodic random phase
noise noise multi e

Var G Var G Var G> > , because ∑ =
= J

e

ee
UU lUlUlS

1

)()( )()()(ˆ  in 

(2.2.24) (4.3.1) randomly fluctuates for the noises, but is deterministic for the (random phase) 
multisines.  

In the MIMO case this wisdom won’t be valid, because as mentioned earlier 
11 )()(ˆ −− = H

NNUU l UUS in (4.2.5) will contain random components for all three considered inputs. 

For static non-linearities there is no leakage and variances will be comparable. For dynamic 
non-linear systems the leakage of the Gaussian noise will increase the variance comparing to 
the periodic input signals. In the comparison of the periodic noise and the random phase 
multisine periodic noise turns out a bit better, because its input matrix is better conditioned.  
 

Example 5.2.1. Condition number of the periodic noise and the random phase multisines. Consider for 
illustration and simplicity the case N = 2 and let us assume that signals are independent over the channels, and 
that the amplitudes for the periodic noise are similarly distributed in different input channels, with E{ Akm} = A = 
1.  

Let: 
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1

)1(
1

UU

UU
 for 

the random phase multisines and the periodic noise respectively, where all the phases are uniformly distributed 
on the unit circle and the amplitudes Akm are exponentially distributed with unit expected value. All the 
considered random variables are independent.  

The condition number equals κ(U) = ||U|| ||U-1|| [84], and let choose for the investigation the Frobenius norm, i.e.: 

||U||2=Σkm |ukm|2. In this simple case the respective inverse matrices are: 
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P ,  (5.1.4) 

with the determinants: 

21122211)( 2
ϕϕϕϕ jjjj eeeeD −=U  and 21122211

211222112)( ϕϕϕϕ jjjj eAeAeAeAD −=P .  

The condition numbers become then: 

2121122211 44||||||||)( 21
2

2
22

2 ξξϕϕϕϕκ jjjjjj eeeeee −=−== −UUU , and   (5.1.5) 

21
21,

221
2

2
22

2 ||||||||)( ξξκ jj

mk km eBeBA −== ∑−PPP     (5.1.6) 

where the phases ξk are uniformly distributed and independent, and Bk-s are independent products of 
independent, exponentially distributed variables. Clearly for (5.1.6) to be singular not only the phazors must be 
colineated as for (5.1.5), but also the random amplitudes should match, which is an event of lower probability 
than the singularity of (5.1.5). On the other hand (5.1.6) can be excessively large without the colineation of the 
phases, simply when the amplitudes are small. Simulations show that the average condition number for the 
periodic noise is a bit better (simulations indicate a rough factor of 2, not really a difference). 
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If an input matrix built from random multisines does not work well, then what? Hadamard 
matrix makes the experiments the simplest; no computation is required to find the amplitudes 
for the new experiments. Using Hadamard matrix for the input matrix (4.2.3) makes it 
possible to Crest Factor optimize the input signals once for all, because the subsequent change 
of sign in an input channel does not influence the phases of the already optimized signal. 

Another issue to consider is that although only Hadamard matrix is proposed in the literature 
to minimize the noise influence [88], it can be used with full impact only for the system with 
N = 2K inputs. Approximate design fares already not so well for linear systems, and is dubious 
when the Best Linear Approximation comes into question. One could use in (4.3.7) another 
orthogonal (or unitary) matrix, e.g. the Fourier matrix (DFT matrix), defined for any 
dimension (i.e. number of inputs). This choice however introduces already additional 
computation to the amplitudes. 

First we will present a negative result telling that (4.4.20-4.4.22) cannot be generalized fully. 
This will lead to the introduction of a new input matrix design for which the equivalence and 
the optimality will be proved in the general case. 
 

Theorem 5.1.1: Input matrix design (4.3.7) does not generalize to the general MIMO 
Volterra system of arbitrary dimension and order. When a Volterra MIMO system (Def. 
4.1.1) of arbitrary order, with a number of inputs N > 2, is measured with random orthogonal 
inputs (2.2.10), with Hadamard or Fourier matrix, acc. to (4.3.7), the bias on the Best Linear 
Approximation (in the kth signal channel), besides terms mentioned in Theorem 4.5.1 will 
also contain some (not many) other terms as well. 

Proof:  In Appendix A.4 ���� 

 

Example 5.1.1: Some of the kernels adding to the bias, beside the “normal” bias terms (4.5.4) from Th. 4.5.1.: 

N = 4, α =3,  k =1, kernel (j1j2j3) = (234) for both Fourier and Hadamard matrix, 

k =2, kernel (j1j2j3) = (123) for Fourier matrix, 

k =2, kernel (j1j2j3) = (134) for both Fourier and Hadamard matrix,  

k =3, kernel (j1j2j3) = (124) for both Fourier and Hadamard matrix, 

k =4, kernel (j1j2j3) = (233) for Fourier matrix, etc. 

Generally it can be seen that Fourier matrix introduces more bias terms, than the Hadamard matrix. On the other 
hand Fourier matrix can be applied for an arbitrary (e.g. odd) number of inputs, but the Hadamard matrix cannot. 

Note: Using orthogonal inputs amounts to a modified increased bias. Beside this all the evaluation leading to the 
additive non-linear noise source model remains valid; consequently in this case we also have the additive noise 
model, albeit with different Best Linear Approximation and non-linear variance. 

Note: Although direct analytic comparison between the influence of the Fourier and the Hadamard cases (with 
respect to the level of the non-linear variance) does not seem realistic (different algebraic operations involved), 
low order calculations show that they eliminate roughly similar number of (similar) kernels, consequently, if the 
number of inputs permits, Hadamard matrix could be proposed as a simpler one for the calculations. 
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5.2 Orthogonal random multisines 

Using arbitrary random phase multisines (i.e. independent phases for every input and 
experiment) yields too much of the variance. Restricting inputs to orthogonal combinations of 
the first channel-first experiment input (A.4.1) yields too much of the constraints. We would 
like then to be sure, as a designing principle, that the bias is always the same and the 
variance is always less, than in the general input case. To this end we should have a 
situation, where: 

• V  in (A.3.8) has a form similar to (A.4.5), i.e. V = A x B, 

• A = 0 for a number of index combinations (non-linear kernels), to have less variance, 

• E{ B} should be nonzero only where the investigated input appears an odd number of 
times, and other inputs an even number of times (the usual bias term, Th. 4.5.1). 

Let us assume that J = NB x N experiments are made (NB is the number of blocks in the 
experiments) and let partition the N × J input matrix U in (4.2.4) into NB rectangular blocks 
as: U = [UN UN … UN] and Y in the similar way.  

Instead of the general input design: 
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which requires independent excitations for every input and every experiment, I propose to 
use: 
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 (5.2.2) 

where wkj are entries of an arbitrary, deterministic unitary (orthogonal) matrix: 

IWWWW NHH ==         (5.2.3) 

e.g. the DFT matrix, with [W]kn = e-j 2π (k-1) (n-1) / N. Such signals will be called the orthogonal 
multisines. 

The essence of this measurement design is that we use independent (phase) inputs for the first 
experiment and then for the next experiments we simply reuse them weighting with entries of 
a unitary coefficient matrix. Such input matrix is also unitary, if the amplitudes of various 

inputs are the same, i.e. if: kconstlU k ∀= ,|)(| 2)1( . 
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Example 5.4. For N = 4 and Hadamard coefficients the inputs are: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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U l U l U l U l

U l U l U l U l
l

U l U l U l U l

U l U l U l U l

 
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U       (5.2.4) 

For N = 3 and Fourier coefficients the inputs are: 
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U       (5.2.5) 

 

The measurement procedure is thus to generate random excitations for the first experiment in 
the block of the first N experiments and to shift them orthogonally, accordingly to (5.2.2) for 
the next N-1 experiments, then to start with another random choice for the next block.  

It is easy to see, that due to the unitary matrix W (the experiment index is omitted for clarity): 

[ ] })({)()()()()()(
2

1
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NN ==
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δUU ,  (5.2.6) 

where δkj is the Kronecker Delta, is a simple amplitude scaling. Furthermore: 
11 )()( −− = H

NNB
H N UUUU  and finally:      (5.2.7) 
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)(ˆ GG , with:        (5.2.8) 
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lllll H
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H
NNiN UYUUUYG −− ==     (5.2.9) 

computed without taking the inverse from one block of N equations.  

Because )(ˆ 1 lUU
−S  gets rid of the random fluctuations (for advantageous condition number see 

below), a reasonable drop in variance should be expected, at least only for that reason.  

 

Lemma 5.2.1. Condition number of the orthogonal multisines. Orthogonal multisines 
(5.2.2) with uniform amplitudes have relative condition number = 1, for any unitary matrix W 
built from the roots of unity and for equal input spectra at different inputs.  

Proof: For simplicity we will omit the frequency and the experiment indices: 





















×



















=

NNNNN

NN

NN

NNNNNNN

N

N

H
NN

UwUwUw

UwUwUw

UwUwUw

UwUwUw

UwUwUw

UwUwUw

...

............

...

...

...

............

...

...

2211

2222112

1221111

21

22222221

11112111

UU  (5.2.10) 

Then from (5.2.3): 
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where δkj  is Kronecker Delta.  

Now: DUU NH
NN = , and }|{| 2
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With the choice of the Frobenius matrix norm: 
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The condition number becomes [84]: 

∑∑ =
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=
− == N

k k

N

k kFNFNN UU
1

2

1

21 ||||||||||||)( UUUκ ,     (5.2.16) 

If the amplitudes are all equal, then κ(UN) = N, and κ(UN)/N = 1. The condition number becomes worse of 
course when the input amplitude levels are not equal. � 

 

Example 5.2.1: Determinant of NU . 

Due to (5.2.2): ∏ =
=== N

k kH
H
NN

H
NN UN

1

22 |||)det(|)det()det()det( UUUUU   (5.2.17) 

Thus: ∏ =
−= N

k k
j

N UNe
1

||)det( θU ,  with some random θ ∈ [0, 2π[.   (5.2.18) 

 

Theorem 5.2.2: The Best Linear Approximation with orthogonal multisines. When a 
Volterra MIMO system of arbitrary order, with inputs N > 2, is measured with random 
orthogonal multisines (5.2.2), the bias on the Best Linear Approximation (in the kth signal 
channel) equals to that from the Theorem 4.5.1, the additive non-linear noise source model 
from the Theorem 4.5.2 remains valid. The only difference is that the non-linear variance in 
case of the orthogonal inputs is lower, than in the general case, due to the deterministic 

inverse 
1)( −H

NNUU  and the cancellation of a number of kernels. 

Proof: The main part of the required results had been derived already in the proof of the Theorem 5.1.1 (see 
App. A.4). With matrix (5.2.2) the random component of the kernel (A.3.5-A.3.6) appears now as (cf. A.4.5): 
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(the upper index of the first experiment is omitted for clarity). For such matrix coefficient A behaves exactly as 
before, and B also yields exactly the same bias, as for the general inputs, because pairing the frequencies in 
inputs with different indices still retains the randomness of the phases and yields zero expected value (viz. 
(A.4.12): 
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, j ≠ k   (5.2.20) 

� 

Note:  As mentioned before, if for a particular choice of the orthogonal matrix and the combination of the input 

indices in the kernel, it turns out, that 0...
1

21
==∑

=
ikij

N

i
ijij wwwwA

α , this term will drop out and won’t 

contribute to the variance at all. The exact quantification how much we can gain in the variance from the kernel 
drop out is possible only if N, a, and W are known. 

 

Example 5.2.2: Measurement on MIMO Wiener-Hammerstein system with general and orthogonal inputs. 
Simulated measurements had been performed on a Wiener-Hammerstein MISO system with 4 inputs, containing 
pure and mixed non-linear kernels up to the 5th order (see Fig. 5.2.1) (Large ripples were chosen in simulation to 
provide resemblance to the FRF of highly resonant mechanical systems). Results for all channels are visible in 
Figs. 5.2.2 and 5.2.3. 

  
Fig. 5.2.1. MISO Wiener-Hammerstein system used in the simulations: R1 is 9th order low-pass Chebyshev filter 
with 25 db ripple, R2 is 3rd order high-pass Chebyshev filter with 10 dB ripple, R3 is 9th order low-pass 
Chebyshev filter with 10 dB ripple, R4 is 9th order high-pass Chebyshev filter with 25 dB ripple, and S1 is 3rd 
order low-pass Chebyshev filter with 1 dB ripple. Proportion of the non-linear power in the channels of order 
from -5dB … -10 dB. 
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Fig. 5.2.2. FRF BLA measurements with a single application of the ordinary odd random phase multisine (M = 
819). Input-Output Channel 1: upper left, Channel 2: upper right, Channel 3: lower left, and Channel 4: lower 
right. 

 
Fig. 5.2.3. FRF BLA measurements with a single application of the orthogonal odd random phase multisine (M = 
819 harmonics, 4-dim DFT matrix as the orthogonal coefficient matrix). Input-Output Channel 1: upper left, 
Channel 2: upper right, Channel 3: lower left, and Channel 4: lower right. 
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5.3 Other developments 

Minimizing Crest Factor with time-domain constraints was used in the input signal design for 
linear SISO and MIMO measurements in [183-186]. The primary criterion was the Crest Factor 
minimization with a variant of the L∞ algorithm [85], with so called “plant-friendly” constraints 
on the maximum permissible time-domain amplitudes and moves (rates of change) in the inputs 
(or also jointly with the outputs). To account for the presence of the non-linearities Crest Factor 
minimization with dropped even harmonics was considered, to suppress even order non-linear 
effects. Accordingly to the advice in [85] “snowing effect” was intensively used [183-186] at 
both sides of the primary excitation band. 

 
Note: Contrary to the claims, the design is not useful for the non-linear measurements as it is heavily optimized for 
a particular situation. If odd order non-linearities are present, then “snowing” the side bands “snows in” distortions 
into the primary band beside those interharmonic distortion already caused by the primary frequencies themselves. 
As the “snowing” is set by the optimizing algorithm and outside the reach of the user, the amount of the non-linear 
distortions on the primary excitations frequencies is difficult to quantify.  

Note: This multisine design is oriented toward parametric identification, where the number of useful harmonics in 
the input needs to be higher (but not excessively higher), than the number of the parameters in the model [124]. 
Proper setting of the constraints requires plenty of information about the plant (like e.g. the desired closed-loop 
speed of response, estimated range of dominant time constant, order and structure of the model to be fit, acceptable 
signal length and amplitude, etc.) [28].  

 

An extension to the constrained MIMO multisine design was the orthogonalization introduced 
by “zippering” the signal spectra [122], i.e. placing the spectrum of every input signal 
(otherwise a multisine optimized with constraints as before) on a different frequency grid, 
arranged alternately as Ch1, Ch2, Ch1, Ch2, … Signals with spectra having no common support 
are by definition mutually orthogonal, and the construction can be extended to an arbitrary 
number of inputs. 
 

Example 5.3.1: If even harmonic are suppressed, then e.g. for the 4-dim systems the input signals will have the 
following grids in the primary excitation frequency band: 

Ch1:  1    9   17   25  …. 

Ch2:  3  11   19   27 … 

Ch3:  5  13   21   29 …. 

Ch4:  7  15   23   31 …. etc. 

Note: Although signals at different channels are mutually orthogonal, as multisines (for higher input dimension 
systems) they are quite sparse. If the primary band is not densely filled up with the harmonics, the persistency at 
various inputs can be a problem. There is also the lost advantage of not having the basic harmonic in every 
frequency grid. 
 

Pure orthogonal “zipper” multisines turned out not so useful, and to help the problem 
correlation was introduced into the inputs for large spectral amplitudes in the primary frequency 
band [119-122]. Such modified “zippered” multisines had frequency grids with mutually 
orthogonal sub-grids (smaller amplitude excitations) and a common grid (for larger excitations 
to introduce correlation into the signals).  
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So called directional multisine input design was done via manipulating amplitudes and phases 
to colineate the input signal with one of the SVD vectors of the gain matrix, selecting thus the 
low gain input direction [122]. Still another idea was to design signals at various inputs as 
delayed version of the signal (multisine) applied to the first channel [121]. 

 
Note: For random phase multisines the delay is not an issue. It does not destroy the properties of the random 
phases. 
 
Another development in the constrained optimization of the multisine inputs is the 
optimization-based design of plant-friendly multisine signals using geometric discrepancy 
criteria for uniformly distributed sequences [142, 185]. The aim is to design excitations for 
which the output of the system will fill the state-space with its behaviour approximately 

uniformly, e.g. that e.g. the output state vector [y(t) y(t-τ)] is uniformly distributed in some 2-
dim domain (the idea can be generalized to higher dimensions, with certain computational 
difficulties). To design such signals so called Weyl-criterion [143] is added to the criteria 
applied to the Crest Factor and the “plant-friendliness”. As the Weyl-criterion can be verified 
only approximately for finite domains; also the overall optimum is sought up to a small error 
level. 

 

5.4 MIMO equivalence of the random multisine excitations 

For the portability of the theoretical results it is not enough to show that we measure exactly the 
same Best Linear Approximation for various multisine signals. Much more far reaching result is 
to show that these measurements are equivalent (in terms of the Best Linear Approximation) to 
the measurements made with the more traditional methods. We are able that way to present an 
(faster, cheaper, more precise, etc.) alternative to the measurement community, without 
instilling fear that the new results won’t be compatible with the already gained experimental 
insight. In [163] it was shown that the random phase multisine measurements are in this sense 
equivalent to the periodic and Gaussian noise excitations (Th. 3.6.1). Here we prove the MIMO 
analogue of this theorem, extended also to the case of the newly introduced orthogonal 
multisines. 
 

Assume that the signals have the following comparable spectral behavior: 

- random phase multisines (2.2.10):  )()(ˆ
ˆˆ

2 fSfU
UUk = ,            (5.4.1) 

- periodic noise with random spectral amplitudes:  { } )()(ˆ
ˆˆ

2 fSfUE
UUk = ,  (5.4.2) 

- Gaussian noise with power spectrum:  maxˆˆ /)()( ffSfS
UUUU = .   (5.4.3) 

 

Extending theory from SISO to MIMO systems requires assumptions how signals at different 
inputs are related to each other. We will require that (cf. Assumptions 4.5.1-4.5.3): 

Assumption 5.4.1. Signals at different inputs are independent from each other, their phases and 
(in case of the periodic noise) spectral amplitudes are independent over the frequency. Signals 
have comparable spectral powers (5.4.1)-(5.4.3) and are defined on the same frequency grid. � 
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Assumption 5.4.2. MIMO system can be of arbitrary input dimension N and an arbitrary order 
of the non-linearity (assuming that the sums in (4.1.1)-(4.1.3) converge). � 

Assumption 5.4.3. Signals in different experiments are independent. � 
 

As introduced before J independent experiments are made with independent realizations of the 

input signals )()1( , JUU L . After the transients settle, the successive records to process are cut 
from the input and output signals. Signal amplitudes at frequency l are then arranged into: 
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The required FRF estimates )(ˆ lG i can be computed as:  

[ ] )(ˆ)(ˆ))()()(()()(ˆ)(ˆ 11 lllllllGl UUYU
HHi −− === SSUUUYG     (5.4.5) 

where ( )H is the conjugate transpose.  

By proving the Best Linear Approximation equivalence we actually also imply that in the limit 
(M → ∝) the output of the Volterra MIMO system, excited by the above mentioned types of 
input signals, can be written for all these classes of the excitations as:  
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BLA S B SY G U Y G U G U Y
 (5.4.6) 

where the measured quantities are the Best Linear Approximations 

{ }, ,
k k k
BLA m m k m B mG E Y U G G= = +  (with expected value taken with respect to the random phases), 

to the non-linear relations described by the multidimensional Volterra series in the signal path 

km UY − , and 
k

mBG ,  are biases on the linear FRF introduced by the non-linearity. The equivalent 

noise sources )(, lY mS , { } 0)(, =lYE mS  capture all the nonsystematic non-linear effects (Section 
2.2, Th. 2.2.6), [30*]. 

Equation (5.4.6) yields thus the additive non-linear noise source model for MIMO systems, a 
straightforward extension to the SISO and Two-Input Two-Output (TITO) cases. 

In the following the index of the output will be omitted, because we investigate essentially a 
MISO system. The index k of the measured signal path is called the ‘reference input index’. 

The results on the equivalence can be collected in the following theorems: 
 

Theorem 5.4.1: Equivalence of the excitations I. Under Assumptions 5.4.1.-5.4.3., with the 
input signals normalized to the same spectral behavior (5.4.1)-(5.4.3), all of the mentioned 
signal classes, i.e. the periodic noise, the random phase multisines in the limit M → ∝, and the 
Gaussian noise, yield exactly the same linear approximation to a non-linear MIMO system, 
described by a multidimensional Volterra series (4.1.1)-(4.1.4). Kernels with nonzero expected 
value (with respect to the random parameters of the excitation signals) contributing to the bias 
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are only those odd order kernels, which contain the reference input an odd number of times, and 
any other input an even number of times, including 0. 

Proof: In Appendix A.5 ���� 
 
Note: For the illustration consider that e.g. in the signal path with the reference input of index ‘1’ kernels: 

 
12233122111 ,, GGG , … etc. contribute to the bias, but kernels: 

123423312 ,, GGG , … etc. will not. 

 

Considering that the orthogonal random phase multisines yield the same Best Linear 
Approximation as the normal random phase multisines, the Th. 5.4.1 can be immediately 
extended to:  
 

Theorem 5.4.2: Equivalence of excitations II. Under Assumptions 5.4.1. – 5.4.2. the 
orthogonal random phase multisines defined by (5.2.2) are equivalent to all signals specified in 
the Th. 5.4.1. The orthogonal random phase multisines, when suitably normalized to the same 
spectral behavior (5.4.1) and in the limit M → ∝, yield exactly the same Best Linear 
Approximation GBLA. The presence of the orthogonal entries wij combined within the kernels 
leads to three possible behaviors of the zero mean (stochastic) kernel contributions: 

a. The cumulative effect of the entries wij is nonzero and frequency independent. Such kernels 
contribute to the non-linear variance fully. 

b. The cumulative effect of the entries wij is zero and frequency independent. Such kernels drop 
out entirely from the non-linear variance. 

c. The cumulative effect of the entries wij is nonzero, but frequency dependent. Such kernels 
contribute to the non-linear variance in part and at particular frequencies only. 

Proof: Due to (5.2.6-5.2.9) (and the expectation) it is enough to show the equivalence of the FRF measured for a 
single block of data (J = N). In that case: 

∑ ∑∑
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 (5.4.7) 

which with (by definition, see also (5.2.2)):   )()()( lUwlU jnj
n

j =      (5.4.8) 

2|)(|

)(
)(

lUN

lUw
lb

k

knk
kn =          (5.4.9) 

can be written as: 

∑
−

=
11

1
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,...,
121

......
, )}()(...)({

|)(|

1
),...,()(

α

αα
kk

kjj
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jjjj
kB lUkUkUE

lU
kkGAlG

K

KK
 (5.4.10) 

For the expected value to be nonzero exactly the same conditions on the inputs are required as before (i.e. the 
reference input present odd number of times, other inputs present even number of times).  

Coefficient A represents dependency of the bias on the choice of the particular unitary or orthogonal matrix W: 

∑
=

=
N

n

nknjnjnjN
A

1

...
1

21
νννν

α          (5.4.11) 
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



<
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=
0,

0,

kw

kw

nk

nk
nkν          (5.4.12) 

Considering, that:  )()()(
)()( lUwlUlU jnj

n
j

n
j ==−      (5.4.13) 

consequently pairing the frequencies, which introduces complex conjugate to the signal amplitudes, will perform 
conjugation also on entries wkn. For frequency pairings leading to the nonzero expected value in (5.4.10): 

11
1

||...||||
1

1

2

1

22

21
=== ∑∑

==

N

n

N

n
nknjnj N

www
N

A       (5.4.14) 

due to |wnk|
2 = 1, and the bias again coincides with (A.5.17).  

The value of (5.4.11) depends naturally on the choice of the orthogonal matrix W, on the indices of the inputs in 
the kernel, on the reference signal index of the measured signal path and on the frequency pairing introducing 
complex conjugate for the negative frequencies. Three cases can be distinguished in general for zero expected 
value kernels: 

a. A = 1 for all frequencies (as in (5.4.14)). Such kernel contributes fully to the non-linear variance on the FRF. 

b. A = 0 for all frequencies (if e.g. A is reduced by the properties of orthogonal entries to ∑ =
= N

n npN wA
1

1
 for 

some  p ≠ 1 . Such kernel drops out (does not contribute to) from the variance. 

c. A = 0 only for some frequencies (when complex conjugate leads at a particular frequency to suitable reduction in 
the product of the entries in (5.4.11)). Such kernel contributes to the variance at those frequencies only. � 

 

Note: The orthogonal multisines will generate less variance because: 

(1) due to (5.2.6) they do not introduce random fluctuations in the denominator of the estimate; 

(2) due to (cases a., b., and c. in the proof) they eliminate some of the non-linear kernels from the non-linear 
stochastic component of (4.1.4). 
 

Example 5.4.1.: A comparison is made of the non-linear variance levels measured in a 3-dim MISO system, 
excited with Gaussian noise, periodic noise, random phase multisines, and orthogonal random phase multisines 
accordingly. Matrix W is the DFT matrix. All input signals are scaled to unit power and in the measurement NB = 
1, 2, 5, 10 number of blocks were used (note that now J = 3NB). The MISO system has a Wiener-Hammerstein 
structure shown in Fig. 5.4.1. In the first simulation the static non-linearity contains all mixed powers up to the 5th 
order: 

51,10 325..0,, 1
2

221 ≤++<+++= ∑ =
− kjixxxxxxNL kj

kji

i
    (5.4.15) 

and was designed to show the general situation with a weakly non-linear system. As mentioned before, no other 
noise sources are considered. The variance depends solely on the frequency and the signal channel.  

Excitations that randomize the inverse in (4.2.5) show the expected rapid decrease in the variance for small J.  For 
a higher number of data all signals tend to the same limit.  

Variances produced with the orthogonal random phase multisines can be even lower due to the drop-out effect of 
some kernels. This effect can be seen amplified in Fig. 5.4.4., which presents variances measured in case of: 

51,10 325..0, 1
2

21221 ≤++<++++= ∑ =
− kjixxxxxxxxNL kj

ji

i
   (5.4.16) 

The strong non-linear kernel x1x2 drops out entirely from the G1 measurements (Th. 5.4.2., case a.), appears fully 

in G2 measurements (case b.), and partly in the G3 measurements (case c.). Please note that the drop-out effect is 
not influenced by the number of data, only by the structure of the kernels of the measured MIMO system. 

 

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



90 

 

 

 

Fig. 5.4.1 Linear dynamics of 3-dim Wiener-
Hammerstein system used in the simulations.

 

 

Fig. 5.4.2 Variances (in dB) of the FRF 

measured in the signal path Y-U1, for the 

static non-linear system (5.4.15), for NB=1, 2, 
5, 10. The decreasing levels of the variance 
are clearly visible for each kind of signals. 

 

 

 

 

 

Fig. 5.4.3 Variances (in dB) of the FRF 

measured in the signal path Y-U1, for a 
Wiener-Hammerstein system composed from 
the dynamics in Fig. 5.4.1 and the static non-

linearity (5.4.15), for NB =1, 2, 5, 10. The 
appearance of the leakage elevates the 
variance of the Gaussian measurements. Note 
also that the system dynamics influence the 
frequency behavior of the variance. 
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Fig. 5.4.4 Variances (in dB) of the FRF 
measured for a Wiener-Hammerstein 
system composed from the dynamics in 
Fig. 5.4.1. and the static non-linearity 

(5.4.16), for NB=1, 2, 5, 10, for random 
and orthogonal multisines. Due to 
interactions between non-linear kernels 

and the unitary matrix W, kernels usually 
generating the variance, when measured 
with random multisines, can drop-out in 

particular channels (here the kernel x1x2 
does not affect the variance measured in 
the channel Y–U1) when measured with 
orthogonal multisines.
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6. Special applications 
Modeling non-linear distortions with a bias on the linear FRF and the associated non-linear 
noise can be used alone as a well defined and flexible measurement technique, especially if 
the advantages of the periodic excitations will be amplified by the opportunities provided by 
the frequency grids. The approach can be used also as a part of methodology to tackle more 
involved modeling problems.  
 

6.1 Non-linear distortion in cascaded SISO systems 

The FRF Q  of two cascaded linear systems with the FRF 1G  and 1H  is given by the product 

)()()( 11 lHlGlQ = . It is tempting to generalize this rule to the Best Linear Approximations of 
weakly non-linear systems, especially if the experiments indicate that passing random 
multisine excitation through a weakly non-linear Volterra system does not destroy much of 
their essential properties needed to measure the BLA [7*]. 

To get a feel the investigated problem will be limited to the uniform random phase multisines 

and to the SISO Wiener-Hammerstein systems, with cubic static non-linearity: 
3

31 raras +=  

( 2a is set to 0, because even non-linearities do not contribute to the BLA measurements). 

The general case is computationally too involved, and the cubic system constitutes an 
important special case. Furthermore the general case can be qualitatively extrapolated from 

this special case. We will consider weakly non-linear systems, i.e.: ε≤
212

3
3 rara , with no 

other additive output measurement noises. 

For the approximation of the cascaded Wiener-Hammerstein systems it will be shown that in 
those frequency bands where the coherence (2.5.2) is high, the cascaded systems can be 
approximated by the product of their Best Linear Approximations. In the other bands (where 
the linear input system attenuates the signal) such an approximation is useless because the 

stochastic output )(lYS  is much larger than the linear output )()( lUlGR  (see Figs. 6.1.1-6.1.2).  

Let us investigate now the situation when two (cubic) Wiener-Hammerstein systems are 
cascaded, like in Fig. 6.1.1. 
 

 

Fig. 6.1.1  Cascade of two cubic Wiener-Hammerstein systems, 
with: NL1 = a1 x + a3 x

3 and  NL2 = b1 x + b3 x
3 . 

 

Assuming small levels of non-linearity we will simplify the evaluation further, dropping out 

terms of order 3ε and higher. The output of the cascade can be written (2.2.3-2.3.4) as: 

)()()(),,()()()()()( 2121
111131

1 2

z

M

Mz

M

Mz
z LYzYzYLzzGlYlGlZlZlZ ∑ ∑

−= −=
+=+=   (6.1.1) 
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)()()(),,()()()()()( 2121
111131

1 2

k

M

Mk

M

Mk
k LUkUkULkkHlUlHlYlYlY ∑ ∑

−= −=
+=+=   (6.1.2) 

Multiplication of three or more cubic terms means contribution of order higher than 2ε and 
such terms will be omitted from further consideration. We have: 
 

Theorem 6.1.1: The Best Linear Approximation FRF of the cascade of two cubic Wiener-
Hammerstein systems is: 

1 11( ) { ( ) ( )} (1 ) ( ) ( )
( )BLA

C
Q l E Z l U l K G l H l

L l
= = +      (6.1.3) 

where )()()( 21 lRlSlL = .         (6.1.4) 

For small levels of 132131 , bbaa == εε , )(1 εOK +≈ , ),( 2
1 εOC ≈  (ε = max(ε1, ε2)), and (6.1.3) 

yields: 
1 1( ) ( ) ( ) ( ) ( )BLA BLA BLAQ l G l H l G l H l≈ ≅ ,       (6.1.5) 

i.e. the usual product expression for the cascaded systems holds also in the case of weak non-
linear systems in those frequency bands, where the coherence function is high (see Fig. 6.1.2). 
Observe however a small bias K due to the presence of non-linearity (ε1, ε2 = 0.1). In those 

frequency bands using the best linear approximation is a sound modeling strategy, which 
provides the proper view of the dynamics of the cascade. 

Proof:  In Appendix A.6 ���� 

 

 

Fig. 6.1.2 Cascading weakly non-
linear systems: the FRF of the 
cascade of linear components, i.e. R1 
S1 R2 S2 (solid black), the product 
GBLA HBLA (gray o), and the QBLA 
averaged from N=10 (noisy solid 
black). In the frequency bands, where 
the coherence functions of the 
cascade components are high (see 
Figs. 2.5.1-2.5.2), the linear 
approximation is sufficient.

 

6.2 Non-linear distortion in cascaded MIMO systems 

The simplified SISO cascade problem will be now investigated in the fully blown MIMO 
setting. Cascading is an elementary way to build complex systems and to model and solve 
practically important questions. Here we name only two:  
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(1) The excitation signals are applied through non-ideal actuators and/or are distorted by the 
non-linear loads. Should we accept the measurement results as they are or should we redesign 
the excitations to counter the effects of the actuators and the loads? [117-118] 

(2) Linear FRF approximation to a non-linear system is theoretically valid only for the 
particular choice of input signals used during the measurements. This limits the usability of 
the linear approximations, because in different applications the inputs will generally be 
different. If however the new inputs do not differ much, the original linear approximation 
should hold, or shouldn’t it? (see also Sect 3.6 for this problem) 

These questions will be modeled as follows. What is the deterioration of the measurement 
quality, if the ideal excitation signal is distorted by passing through a non-linear system? 

The measurement set-up is presented in Fig. 6.2.1. Ideally the designed reference signal R 
should be applied directly to the input of the system V. The Best Linear Approximation FRF 

][ˆ
,

m
krr G=G  of this system can be estimated from the Y - R measurements. We call this FRF the 

reference estimate. (Note that in the kernels 
m

kG..., the upper index, or indices, refer to the input 
signals and the multiple equals the order of the kernel, the lower index refers to the output 
signal and will be left out, if unambiguous).  

In practice the reference signal undergoes distortions before reaching the excited input. Thus 

the FRF characteristics ]ˆ[ˆ m
kG=G  are estimated from the Y - U data, where U is the output of 

the system U modeling the distortions. We assume that the distorted signals U can be directly 

measured. The question now is when is the estimated Ĝ  a fair approximation to the Best 

Linear Approximation rĜ ? The answer is not trivial because Ĝ  depends upon the actual 
excitation! 

To tackle the problem we assume that both cascaded systems are MIMO Volterra systems 
limited to be at most 3rd order, to enumerate the distorting effects. For the input signals 
random phase multisines (2.2.17) and the orthogonal multisines will be used but results are 
valid also for other random excitations [15*, 16*, 21* 163].  

 

 

Fig. 6.2.1 The ideal and the real 
measurement set-up. 
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Fig. 6.2.2 Channel distortions for U1, for N 
= 2. Similar scheme is valid for signal U2.

 

The distorting system M  is the sum of an ideal system L 0 (phase distortion only), a linear 
distortion system E (cross channel distortions) and a non-linear distortion system N, Fig. 
6.2.2. 

Generally the linear distortion between the reference inputs R and the distorted inputs U will 
be modeled as: 
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(6.2.1) 

where N is the input dimension of the cascade and l is a discrete frequency. 

The ideal system L 0 can contain deterministic phase shifts. It will not influence the results 
because the random phases of the chosen excitation signals are random and uniformly 
distributed on the unit circle. The “ideal” channel is then: 
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Observe also that: ILL =H
00         (6.2.3) 

The linear distortion system models the phase and the amplitude distortion between any 
reference R and actual input U: 
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The non-linear distortions are modeled as a MIMO Volterra system of at most 3rd order 
(without linear terms, which are accounted for by E): 

∑∑∑
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∞
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α
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In the frequency domain the model is: 
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where l is a discrete frequency, l = Σ ki, i = 1 … α, and M is the number of the excited 
frequency lines. E.g. for N = 2, the model of a particular distorted excitation Uk contains Nk

11, 
Nk

12, and Nk
22 2nd order kernels, and Nk

111, Nk
112, Nk

122, and Nk
222 3rd order kernels. The model is 

both general and simple. Effects of even and odd order non-linearities can be analyzed and it 
can be extended to higher order models, if required. We will also assume that the kernels can 
be written as: 

αα
αδ jjj

k
jjj

k QN ...... 2121 =         (6.2.9) 

where δα is the level of non-linear perturbations and 
αjjj

kQ ...21

 is normalized as: 

1||max|||| ...... 2121 ==∞
αα jjj

k
jjj

k QQ . 

The measured system is a MIMO Volterra system of at most 3rd order (with linear terms): 
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where a particular αth order kernel, excited by input signals of indices j1, j2,…,jα , is: 
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In the frequency domain the system model is: 
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where l is a discrete frequency, l = Σ ki, i = 1 … α, and M is the number of the excited 
frequency lines. The kernels Gk

… are assumed to be of O(1) order. 

The main result can be stated then as: 
 

Theorem 6.2.1:  If the cascaded MIMO systems in Fig. 6.2.1-6.2.2 are weak non-linear 
systems in the sense that:  

max 1, max 1, max( , ) 1.km kε ε δ δ ξ ε δ= << = << = <<     (6.2.14) 

then the 1st order perturbation (in the introduced distortions) of the measured Best Linear 
Approximation of the system Y=V[U] is: 

1 1 2
0 0 1 2

1 2
0 1 2

ˆ ( ) ( )

( ) ( ) ( )
BLA LIN BIAS BLA

BLA BIAS BLA BLA

O

O O

ξ
ξ ξ

− −

−

= + − − + + +

= + − + + + = +

G G G I EL N L H H

G G I M L H H G
   (6.2.15) 

where: 
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,[ ] (1)m
BLA LIN BIAS BLA kG O= + = =G G G  is the true Best Linear Approximation (under zero 

distortions ε and δ) of the signal channel Yk - Um; and the 1st order distortions are: 

)(1
0 εOBIAS =−LEG , due to the superposition of the linear distortions in the inputs; 

1
0 ( )BIAS BLA O δ− =G N L , where BLAN  is the Best Linear Approximation of the non-linear part of 

the distorting system, is due to the superposition of the non-linear distortions in the inputs; 
1

0( ) ( )BIAS BLA O ξ−− =G I M L , where 0BLA BLA= + +M L E N ; 

1 ( )O ε=H  comes from the distortion of the non-linear kernels in the measured system caused 

by the linear mixing of the excitation channels; 

2 ( )O δ=H  is caused by the interaction of the non-linear kernels between the two (measured 

and distorting) systems. 

Proof: In Appendix A.7 ���� 
 

The analysis of (6.2.15) shows that weak distortions do not cumulate and that the degradation 
in the measured FRF can be accounted for by 1st order distortions, if the overall distortion 
level is low. Furthermore, the effects of feed-forward and cross-channel distortions can be 
separated under such assumptions.  

A weakly non-linear system does not make this much damage to the random multisines, and 
that they are still suitable to gain insight into the behavior of the measured system. But what 
about the orthogonal multisines? 

If RN(l) is an orthogonal random multisine: 
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with wkm entries of an orthogonal or unitary matrix:  

N
H

kmkm Nww I=][][ , N
H
NN Nll IRR =)()( .      (6.2.17) 

When such signal is distorted passing through the system U[RN], we have for the case of 
linear distortions:  

)()]()([)( 0 llll NN RELU += , and       (6.2.18) 

)]()()()()()()()([

)]()([)()()]()([)()(

0000

00

llllllllN

llllllll
HHHH

HHH
NN

H
NN

EELEELLL

ELRRELUU

+++=

++=
   (6.2.19) 

 

Taking into account (6.2.3) and retaining only the first order terms, we have: 

)}()(Re{2)()( 0 llNNll H
N

H
NN LEIUU +=       (6.2.20) 

i.e. the orthogonality of the excitations is perturbed up to the order of the linear distortions, 

but the deterministic character of )()( ll H
NN UU is not affected. 
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On the other hand when the non-linear distortions are also present in the system U[R] : 

)]([)()]()([)( 0 lllll NNN RNRELU ++= ,      (6.2.21) 

then retaining only the first order expressions: 

)}]([)()(Re{2)}()(Re{2)()( 00 lllllNNll N
H

N
H

N
H
NN RNRLLEIUU ++=   (6.2.22) 

the last term brings in also the randomness (when the frequencies in the non-linear kernels 
and the frequency l are not paired [30*]), which means that the variance of the FRF estimate 
increases comparing to the ideal orthogonal case.  
 

Example 6.2.1: (for the full experiment see [19*]) For the illustration 2-dim Wiener-Hammerstein systems were 
driven by unit power orthogonal multisines. Such systems permit an easy manipulation of the nonlinearities 
(contained between input and output dynamics). Furthermore the BLA to a Wiener-Hammerstein system is 
proportional to its linear dynamics (if M >> 1), which means that the expected influence of the distortion will 
mainly change the level of GBLA and less in its frequency behavior. The linear dynamics of the Wiener-
Hammerstein systems are shown in Figs. 6.2.3-6.2.5, where every linear dynamics was normalized to the unit 

||.||∞ norm. The static non-linearity within systems N1 and N2 is: 

u = δ2 [r1
2 + r2

2 + r1r2] + δ3 [r1
3 + r2

3 + r1r2
2 + r1

2r2],      (6.2.23) 

and that in the system V is: 

y = u1 + u2 + α2 [u1
2 + u2

2 + u1u2] + α3 [u1
3 + u2

3 + u1u2
2 + u1

2u2],     (6.2.24) 

with suitably adjusted coefficients. The measurements are made on the output channel Y1, thus the output index k 
= 1 is dropped. The comparison is based on the following measures of distortion, calculated in the pass band: 

1. The αk* gain needed to scale up the measured FRF Ĝ  to match (in the LSE sense) the theoretical value of 

BLAG  (i.e. the FRF measured without any distortions): 

2

1

2ˆarg min | ( ) ( ) |
F k k

k BLAl F
a

G l aG lα ∗
=

= −∑        (6.2.25) 

The actual measure shown is the difference ∆k = |1 - αk*| in dB. The ideal gain is 1, consequently ∆k grows 
steadily with the increasing distortion levels.  

2. The rms value of the residual characteristic ˆ
k BLAα∗−G G : 

2

2 1 1

21 ˆ| ( ) ( ) |
F k k

k k BLAF F l F
RMS G l G lα ∗

− =
= −∑       (6.2.26) 

3. The phase error of the measured Ĝ  with respect to that of the ideal BLAG : (a) its maximum value in the 
frequency band, and (b) the rms value of the phase residual. 

In the first test only e11, e22 were set and the system V did not contain the 2nd order terms (Test A), then 2nd order 
terms have been added to V (Test B), then cross distortions were added to the system E (Test C), and finally non-
linear distortions N were added (Test D) to the full system M , with linear and nonlinear distortions kept at the 
same level. The figures show results for a small (10) and a large number of averages (1000). For the x-axis in 
figures, the SNR of the overall distortion level was used, defined as: 

2

1

2
11101

|)(|

|)(][)(|

∑
∑ −

=
l

l

lR

lRlU
Dist

L
        (6.2.27) 

The figures show the expected slow increase in the distortion measures as the level of (13) increases. Robustness 
is attained until the distortion level becomes large (Fig. 6.2.7-6.2.9). Nonlinear distortions produce larger errors 
than those caused by linear distortions of similar magnitude (Fig. 6.2.7, Fig. 6.2.9). Similarly cross channel 
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distortions yield larger errors than feed-forward distortions. The phase errors grow faster comparing to the 
averaged amplitude errors. It means that the FRF becomes locally “twisted” rather, than globally distorted over 
larger frequency range. These effects are better visible in the results averaged from a larger number of 
measurements. For a low number of averages the effects are screened partly by the variance of the nonlinear 
noise on the FRF estimates. 

In conclusion, the best linear approximation measurements are robust under perturbed excitations modeled by 
weakly nonlinear MIMO Volterra system (weak nonlinear amplitude and phase disturbances). Considered that 
finite order Volterra systems are smooth, these results are not so unexpected. Intuitively drastic changes for low 
level distortions could be difficult to explain. Figures show that distortions with respect to the reference 
measurements grow steadily but smoothly, even for the level of distortions for which the 1st order approximation 
cannot be justified. Consequently the 1st order approximation, for small distortions, yields a legitimate view of 
the system behavior. The presented results extend the single-input single-output results obtained earlier [10*]. 
Finally the 1st order approximation yields tools to investigate the influence of distortions positioned in particular 
places in the MIMO structure. 

 

 

Fig. 6.2.3 Dynamics of the system U1=N1 [R1,R2]. 

 

Fig. 6.2.4 Dynamics of the system U2=N2 [R1,R2]. 
 

 

Fig. 6.2.5 Dynamics of the system Y=V [U1,U2]. 
 

 
Fig. 6.2.6 Scaling gain |1 - αk*|.
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Fig. 
6.2.7. The rms value of the FRF residual. 

 

Fig. 6.2.8. The maximum value of the phase residual. 

 

Fig. 6.2.9. The rms value of the FRF phase residual 

 

 

6.3 Risk of unstable behavior 

The problem of weak non-linear effects, neglected in the close-loop design, but ready to pop 
up when the experimental conditions change, was studied also from the point of view of the 
close-loop stability. The expected phenomenon (reproduced in simulations) was to observe 
how  a weakly non-linear system placed within the close-loop, driven by some excessive 
noise values shows more and more perceptible nonlinear noise and finally drives the loop into 
instability [38*, 41*, 43*]. 

 

 

Fig. 6.3.1. Feed-back system used in the analysis.

The basic idea was to decompose the output power into the coherent (with the input) and non-
coherent components and to introduce the non-linear power gain coefficient (6.3.1), to 
measure the sensitivity of the non-coherent power to the input perturbations. The gain permits 
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to define the stability conditions of the feed-back system, furthermore by estimating the gain 
and by using the theory of the extreme value distribution (GEV - General Extreme Value 
distribution) we can estimate the probability that the loop becomes instable with time. 

 2

2,

( )
max

( ( ))u

u

y

NL
u S

u u u S

t
G

e u tδδ
δ

δν
δ

δ∈
+ ∈

=         (6.3.1) 

Extreme value techniques are based on the following. Consider Mn = max{X1, …, Xn}, where 
X1, X2, … is a sequence of independent random variables having a common distribution F. 
For a very wide class of distributions [226, 43-44], the extreme values are asymptotically (n 

→ ∞) described by the general extreme value distribution (GEV):  

1/( ) exp{ [1 ( )] }, 1 ( ) 0EV

z z
G z ξµ µξ ξ

σ σ
−− −= − + + >      (6.3.2) 

with location parameter µ and scale parameter σ. The parameters ξ, µ, σ can be estimated 
from the available data, using a Maximum Likelihood estimator [43]. Starting from (6.3.2), 
the probability p that z exceeds a given return level zp within a given time interval T can be 

calculated. So called return period pTT
pz /=  is then connected to this probability, and this 

time can be interpreted as the mean time between two crossings of the level zp. With this 
apparatus we can estimate the probability that the gain ||C(q)||2 δGNL will be larger than 1 for a 
given class of excitations in a given time interval.  

In practice, a number of successive values of the non-linear gains (6.3.1) will be estimated 
from the input and output records. These measurement records are broken in N1 subrecords of 
Ns samples each. Each of these records is analyzed separately, resulting in N1 non-linear gain 
measurements. These are grouped in n blocks containing each m gains (N1 = n × m). Next the 
maximum is calculated over each block, resulting in the measurements X1… Xn, where Xi is 
the maximum gain of the ith block of non-linear gains.  

 

 
Fig. 6.3.2. The percentiles of the squared nonlinear 
power gain  ||C(q)||2δGNL and the observed relative 
frequency to get an unstable realization as a function of 
the input amplitude for the high-gain system. 

 
The proposed method is experimental and requires further research. It is important that no 
non-linear model of the system is needed to estimate the risk of unstable operation of a non-
linear system in a given time span. If the non-linear gain comes close to 1, the non-linear 
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feedback loop becomes potentially unstable. The major advantage of the method is its 
simplicity. The major disadvantage is the stochastic behavior of the gain factor, due to the 
stochastic nature of the input signal. This might lead to long experiments in order to get not 
too conservative risk estimates. The problem was further investigated in [237-240], but with 
no essential break-through.  
 

6.4 Reducing the measurement time of the BLA by Monte Carlo averaging 

The BLA is traditionally measured as the sample mean, considering that for linear systems 
and Gaussian excitations it is the minimum variance Maximum Likelihood estimate. This 
minimum variance is the basis of the measurement time vs. measurement accuracy trade-off. 
However due to a non-linearity sample mean is no more an optimal estimate and consequently 
its variance is not an attainable theoretical minimum and can be improved. By using a limited 
a priori knowledge about the measured system the measurement time vs. measurement 
accuracy trade-off can be made sharper, reducing the measurement variance solely as a part of 
the data processing, without affecting the measurement protocol [23*]. 

Suppose that the measurement data 1 , ..., NZ Z  are independent and identically distributed, 
and that the objective is to estimate their expected value E{ Zi}. Then the usual estimator is the 

sample mean:  1 2
ˆ ( ... )/N NZ Z Z Z N= + + ,       (6.4.1) 

If the variance of Zi is finite, this estimate is consistent and unbiased for all N. Furthermore it 

is asymptotically normally distributed, with variance: 
2 2 /Z Nσ σ=    (6.4.2) 

Assume now that iZ  are functions of some uniformly independent identically distributed iϕ , 
i.e.: 

 1 2( , ,..., )MZ Zϕ ϕ ϕ= ,   (0,1)i Uϕ∀ ∈ ,      (6.4.3) 

then each iZ  is a random realization drawing from the random iϕ -s 

 1 2( , ,..., )i i i MiZ Z ϕ ϕ ϕ= ,   [0,1], ,ik i kϕ ∈ ∀ ,     (6.4.4) 

and the expected value { }iE Z  becomes: 
1

1 2 1{ } ... ( , ,..., ) ...
M

i M ME Z Z d d
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ= ∫ ∫  (6.4.5) 

The (6.4.1) sample mean is thus the Monte Carlo estimate of the multidimensional integral 
(6.4.5) [109]. The BLA FRF (2.2.25) simplifies for random multisine excitations to:  

2 2
( ) { ( ) ( )}, { ( ) } ( )BLAG l E Y l U l E U l U l const≈ = =       (6.4.6) 

and is usually estimated from measurements ( ) , ( )i iY l U l  as: 

, 2
1 1

1 1ˆ ( ) ( ) ( ) ( )
( )

N N

BLA N i i i
i ii

G l Y l U l G l
NU l N = =

= =∑ ∑       (6.4.7) 

Considering that the random phases of the input multisine are independently uniformly 

distributed, measuring ,
ˆ

BLA NG  (6.4.7) is equivalent to the Monte Carlo simulation (6.4.1-
6.4.5). 
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In the Monte Carlo simulation the key issue is the variance reduction [109, 98, 105], which is 
extremely important also from the measurement point of view. An estimate with a lower 
variance means shorter measurement time for the same accuracy, or conversely an increased 
accuracy if the measurement time is kept constant. 

The variance of (6.4.2) can be reduced by reducing 2
Zσ , or by increasing the order of the 

numerator, say from N to N 2. 

A whole spectrum of approaches (antithetic variables, control variates, stratified, importance, 
Latin Hypercube sampling, quasi Monte Carlo, etc. [109]) is available in the literature. A 
method best suited for the real measurements will be that demanding limited a priori 
knowledge and introducing additional computations solely to the pre or post processing of the 
measurement data. That way the original measurement setup, the protocol of applying 
excitations and collecting the measurement results would remain intact. 

Such method for the variance reduction is the so called control variates method [98, 105]. 
When estimating E{ Zi}, let X be another (control) variable with the a priori known expected 
value X0 = E{ Xi}, and let b be a suitable constant. Then: 

0( )i i iY Z b X X= − −          (6.4.8) 

modified data yields the same desired mean: 

ˆ ˆ{ } { }, { } { }i i N NE Z E Y E Z E Y= = ,       (6.4.9) 

i.e. instead of 1 2
ˆ ( ... )/N NZ Z Z Z N= + + , we can use 1 2

ˆ ( ... )/N NY Y Y Y N= + + , if advantageous. Note 
that 

2 2 2 2
,{ } 2 covY Z X Z XVar Y b bσ σ σ= = + − , (where ,cov { }Z X i iE Z X= ).            (6.4.10) 

If X has high positive correlation with Z (and has also an exactly known expected value, and 

is easily computable), then 2 2
Y Zσ σ< . For a fixed X, 2 2( )Y Y bσ σ= , which can be minimized with 

respect to b, yielding: 
* 2 2 * 2 2

, , , ,cov / , ( ) (1 ), cov /Z X X Y Z Z X Z X Z X Z Xb bσ σ σ ρ ρ σ σ= = − =     (6.4.11) 

Consequently by selecting an X with , 0Z Xσ ≠ , the estimate variance can always be reduced. 

The exact value of the optimal b* is not known, but it can be approximated from the data as: 

01,...,* *
2

01,...,

ˆ( )( )
ˆ

( )

i N ii N
N

ii N

Z Z X X
b b

X X
=

=

− −
≈ =

−
∑
∑        (6.4.12) 

In the BLA FRF measurements we assume that beside measuring the output of the V[u(t)] we 
can compute the output x(t) of another (non-linear) system excited with the same u(t), and 

from these we can estimate ,
ˆ ( )BLA NH l , the BLA FRF of that system. Then the proposed 

scheme is: 

     

* *
0

* *
, , , 0

( ) ( ) ( )[ ( ) ( )]

ˆˆ ˆ ˆ( ) ( ) ( )[ ( ) ( )]

i i i

BLA N BLA N BLA N

measured computed

G l G l b l H l H l

G l G l b l H l H l

= − −

= − −
��������� ���������������������

      (6.4.13) 
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There are a number of issues to solve. Firstly, the control variates method should be extended 
to complex numbers and the whole frequency axis. Then a useful ( )iH l  non-linear system 

should be found, correlated with the measured ( )iG l , yielding outputs easily computable 
when excited with multisine signals, and possessing exactly known, and easily computable 
BLA FRF. 

What kind of control system ( )iH l  to use? Two natural choices are: 

I. If nothing is known about the measured system except that it is non-linear one, a static low 
order non-linear system can be tried to control the estimate. 

II. If some computing effort can be spent to obtain a rough view of the measured dynamics, a 
Wiener control system can be built from this estimate followed by a low order static non 
linearity. The theoretical BLA FRF of a Wiener system is proportional to the linear dynamics, 
computing output of a Wiener system is easy, and clearly some non vanishing correlation is 
expected. 

The measurement setup is presented in Fig. 6.4.1. The DUT is a non-linear system yielding 
Gi(l) FRF in (6.4.13), the CTRL is a known non-linear system providing the control estimate 
Hi(l) with the known theoretical BLA H0(l). The dashed part designates the pre-compiled 
control information and the final Best Linear Approximation FRF is computed from y*-u 
input/output signal pair. 

In the experiments the approximate value of *b̂  was smoothed with an 11th order regression, 
and considering that the BLA variance depends also on frequency, a rough measure of 
improvement was defined as: 

 
*[ { } { } ]N N dB N dB

in excited band
mean Var G Var Gµ = −        (6.4.14) 

A number of tests, with experimental data generated from various weakly nonlinear systems 
are presented in [23*]. 

Technically, if the correlation (6.4.11) is not zero, there is always a gain in variance. The gain 
is high when the correlation is close to 1, and is less, if the correlation is lower. Considering 
that the proposed method does not influence the measurement protocol, and is confined 
entirely to the measurement data processing, even a smaller gain may be of importance. 

Collecting satisfactory a priori information in occasional, short measurements may be 
difficult, and the proposed method is probably of little use there. If the task is repetitive 
measurements, on systems with similar dynamics (e.g. screening and diagnostic tests, 
industrial process measurements, end production line tests), then the loss in time to estimate 
the control quantities is minute, and the return in shorter measurement time may be 
substantial. 
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Fig.6.4.1. The control estimate measurement setup. 
The DUT is a non-linear system yielding Gi(l) FRF 
in (6.5.13), the CTRL is a known non-linear system 
providing the control estimate Hi(l) with known 
CTRLBLA H0(l). The dashed part can be precomputed 
from the measurement design and the final Best 
Linear Approximation FRF is computed from u-y* 
input/output signal pair. 

 

 

 
Fig.6.4.2. Test setup was made with a low-order 
Wiener-Hammerstein system with high-pass input 
(Butterworth, fc = 0.025, orders = 1, 2, 3), low-pass 
output (Butterworth,  fc = 0.1, orders = 1, 2, 3), and 
the static nonlinearity u + 0.5 u2 + 0.1 u3. 

 

 

Fig.6.4.3. BLA FRF estimated in the test: (cont), 
variance (o) of the common estimate (6.4.7), and 
variance (*) of the controlled estimate (6.4.13), for 
the number of averages Nm = 100. 

 

 

Fig.6.4.4. Variances of the BLA FRF estimated in the 
test: variance (o) of the common estimate (6.4.7), and 
variance (*) of the controlled estimate (6.4.13), for 
the frequency line l = 45. 
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7. Utilization of the research results 
What method or tool do we get by the developed BLA theory? Its user gets a „qualitatively 
better linear measurement technique” in s sense that s/he obtains a better insight into the 
possible non-linear distortions lurking in her/his model. With easily implementable 
measurement-technical advices it is possible to obtain such optimized measurement-technical 
solutions, which beside providing the non-linear information, will diminish essentially the 
time demands of the measurement and will yield general uncertainty bounds for the non-linear 
distortion related problems. That way there will be less risk for the misinterpretation and later 
misusage of the results of the widely used linear system identification methods.  

The deficiency of the developed theory is that the user won't have the true non-linear system 
model (it was never the aim), is limited in the choice of excitations to the periodic signals, and 
finally that the assumed non-linear system class can be too limited for her/his application 
field. 

BLA theory and the random multisine excitations were proposed and used in a wide spectrum 
of practical problems: 

- to build approximate models to design Iterative Learning Control for scanning inkjet printers 
[17]. 

- for measuring and testing analogue-digital converters [151], [11-12], [131], [253] 

- for measuring the quantization distortion of the DSP systems [152]. 

- to enhance the vertical resolution of low cost ADC [5]. 

- extensively for measuring and testing microwave circuitry [236], [30-31], [48-49], [18], 
[46], [231], [123], [13], [145], [47], [156-157], [241-243], [79-80]. 

- to qualify the bit-error rate (BER) properties and the nonlinearities in the σ-∆ converters 
[244-245]. 

- (with carefully chosen multisine excitations) to model the nonlinearites and to separate the 
linear and nonlinear behaviour in the analysis of the mechanical transmission in precision 
mechanical systems with dry friction [147], [111], [217], [176], [101]. 

- and also to model wet-clutch systems [265]. 

- in the identification of the multiple-joint industrial robots, [258-262], [92], [133], [179-182], 
[193-194], [149], with orthogonal multisines being a regular routine already at the ABB 
Robotics [146]. 

- to measure the nonlinearities in the biological impedances [95-97]. 

- in the broadband electrical impedance spectroscopy [7], [189-191]. 

- and for the measurements of the electrochemical impedance [14-15], [99], [77]. 

- in design of electronic tongue [110]. 

- for the non-invasive glucose measurements [150]. 

- as the first stage in the nonlinear structural modeling of the thin film deposition [266]. 
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- in characterizing the nonlinearity in the ionic polymer transducers [108]. 

- as a component in the model of the direction-dependent processes in [228]. 

- to measure the Young's modulus [164-165, 167]. 

- to identify distillation columns [232-233]. 

- in the analysis and characterization of the operational amplifiers [141], [166, 168-169], 
[230], [229]. 

- in the detecting damage in mechanical structures [102], [248-250]. 

- for localizing errors in loudspeakers [32-33]. 

- in measuring nonlinear errors in discrete time radio receivers [83]. 

- in the analysis of the aircraft gas turbines [38-41], [74]. 

- in the analysis of the rotor bearings [4], [94], [159-160]; 

- in micromanufacturing (modeling of the micro-milling process) [16]. 

- in the analysis of the agricultural machines (sprayer devices) [2], [42]. 

- in modeling granule stream [132]. 

- in the modeling of electrical machines (synchronous machines) [254], (permanent magnet 
motors) [187]. 

- in the analysis and modal testing of the vibration of the automotive structures, [255-257], 
[195]; [78]; [270], [178], [45], [88]. 

- the analysis of the vehicle suspension [117-118], [196-197]. 

- the ground vibration analysis of the aircraft [160-161]. 

- and the identification of the head-neck complex under the upper body vibration [75], [3]. 

- to model RGA (Relative Gain Array) [100]. 

- as an auxiliary tool helping the selection of control structures and controller designs [35-37], 
[216], [93], [251-252], [222], [234], [218]. 
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Appendix A. 
A.1 Proof of  Th 2.5.4 (For the arbitrary polynomial static non-linear system the relative 
variance vBLA yields minimum for the cubic system.) 

Proof: Let the system now be: ∑
+

=
+= 12

,3
)()()(

K

odd
tuctuty

αα
α

α . The only available knowledge is the assumption 

on the highest order of the non-linearity 2K+1. The relative variance will depend in consequence upon the order 
of the system and the values of its coefficients. Although vB cannot be measured directly, a vBLA variance (2.5.13) 
relative to the Best Linear Approximation system can be measured instead, serving as a useful empirical 
constraint. Using N(0,1) noise as the input signal and performing derivation similar to that in the proof of the Th. 
2.5.3. we obtain:  
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where ,!!!!!)!1(][,!!][],[ 53 βαβαα αβαβαα −−+===== Bax Baccc KL     (A.1.2) 

the vectors are 1×K dimensional, the matrix is K ×K dimensional, the terms in the round brackets are scalar 
product.  
The measured value of vBLA constraints now the possible values of x (i.e. system coefficients), among which the 
worst-case is sought for the relative bias (a,x). The problem can be formulated as a constrained variational 
problem of finding the extremes of: 
 

2( ) ( , ) (( , ) (1 ( , ))BlAF vλ= + − +x a x Bx x a x ,        (A.1.3) 
 

where λ is a Lagrange multiplier. Differentiating F(x) with respect to x yields: 
 

2 2 (1 ( , )) 0BLAvλ λ+ − + =a Bx a a x .       (A.1.4) 
 

Defining 1(2 ) , 'BLAvµ λ −= − =aa A , we get: BLAvµ= +Bx a A x , and 
1

0( )BLAvµ µ−= − =x B A a x , 
           (A.1.5) 
 

assuming that the inverse exists. Substituting this solution into (A.1.1): 

2
0 0
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( , )

[1 ( , )]BLAv
µ

µ
=

+
Bx x

a x , (A.1.6) 

 it yields a quadratic equation in µ: 
2 2(1 )BLAB v Aµ µ= + ,     (A.1.7) 

 

where ),( 00 xBx=B and ),( 0xa=A for simplicity. Assuming that B > 0, there are two roots: 

1,2 2
BLA BLA

BLA

v A v B

B v A
µ

±
=

− .         (A.1.8) 

The two solutions for µ, and consequently for x: 02,12,1 xx µ= , belong to the minimum and the maximum of the 

relative bias (a, x): A2,1µ .  Further computation yields: 

1 1 1 2

1 1
min , max ,

( 1) ( 1)B BG G G Gε ε
τ τ

= = − = =
+ −

                      (A.1.9) 

where: 2 2 2
0 0 0( , ) ( ( , ) )BlA BLAv B A vτ = × =Bx x a x                            (A.1.10) 

 

The analysis of (A.1.9) for the increasing order of the highest non-linearity shows, that in agreement with 
(2.5.11) the cubic system means the worst-case and the largest bias. With ε1 and ε

2
 computed from the measured 

level of the variance v
BLA

, the G1 can now be bounded under the worst-case assumption by the measured GBLA  

as: 

2 1 1(1 ) (1 )BLA BLAG G Gε ε+ < < + ,  or in a more straightforward way as: 
1(1 ) (1 )BLA BLAG G Gκ κ− < < +            

           (A.1.11) 

with the bounding term κ computed under the worst-case cubic assumption as: 
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with: a3  = 3!!, B33 = ξ(k) (5!! – 3!! 3!!) = 6 ξ(k)  (see [6*]) 

3 6 ( )BLA kκ ν ξ= , the best value of  ξ(k) is 3/4 (see  (15) in [6*]) yielding: 2 BLAκ ν=   (A.1.13) 
� 

 
 

A.2 Proof of Th 3.2.1 (Random multisines are in the limit normally distributed and separable 
signals) 

Proof: 

A. Normal distribution 

First we will prove that the amplitude of the colored random multisines is normally distributed as 

),0(
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2
2
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k kUN . For the purpose of the proof let the random multisine be as: 

∑ =
+= M

k kkk tUtu
1

)cos()( ϕω         (A.2.1) 
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The correlation function of (A.2.1) is (computation is trivial):  
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Remember that a normalized random multisine is colored if its amplitude spectrum Uk ≠ const, but the behavior 
of the amplitudes can still be modeled as O(M-1/2). Please note that for normalized random multisines the 
variance is of order O(1). On the amplitude distribution we have: 
 

Lemma 3.2.1: The Central Limit Theorem holds for the sum of independent cosine 
random variables. 

Proof: Let us check the Lyapunov Condition [10], i.e. that: 
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where in our case ∑ =
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12,0,cos µϕ , and the phases are uniformly distributed on [0, 

2π[. Considering, that 
2
Ms  is of order O(1), it is enough to check the limit of the numerator of  (A.2.3): 
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The summation in the numerator in (A.2.3) leaves still an order of 2/

)1(
δM

O
, which tends to zero for any δ > 0. 
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B. Asymptotic separability 
 
Signal is called separable if [148, 59]: 

{ } 0)()()()(),( =−−= tuatutuEt τττδ        (A.2.5) 

or after Fourier transform (in terms of characteristic functions): 
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where [148, 59]: 
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For the colored random multisines (A.2.7-A.2.8) becomes: 
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The expected values are: 
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(a) is by definition of the Bessel function (expected value integrated for the uniform density). For (c) see the 
argument in [59]. In case of (b) consider: 
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This last line is due to the decomposition [107]: 
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      (A.2.14) 

with both sides multiplied by cosϕ and integrated from 0 to π. We follow now with: 
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where Fk designates the product of all Bessel functions. Similarly: 
 

dc_1199_16

Powered by TCPDF (www.tcpdf.org)



125 

 

{ }
{ }

)()()(

)cos(

)(),(

1,1 011

)cos(

1

)('
1,

1

ξξξ

ϕω

τξ
ϕωξ

ξ

k

M

k k

M

kmm mk

M

k k

tUj
kk

M

k k

tuj
u

FUUJAJU

etEUj

etujEf

mm
N
m m

∑∏∑
∑

=≠==

+∑

=

−=−

=+

==
=

     (A.2.16) 

and 
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Now let introduce the correlation function (A.2.2) into (A.2.17): 
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considering that the denominator (i.e. the variance of the multisine) is of constant order with respect to M, it is 
enough to investigate the behavior of the numerator. We will prove, that the colored random multisine is 
asymptotically separable in the sense, that: 

0),(lim =∆∞→ τξM          (A.2.19) 

and consequently (via the Fourier transform) 

0),(lim =∞→ τδ tM          (A.2.20) 

Let D(ξ,τ) denote the numerator of (A.2.18). With the rearrangement of terms it can be written 

as: ∑ ∑= =
−= M

l lkk

M

k kl FUUD
1 1

2 ))cos()(cos(
2

1
)(),( τωτωξτξ     (A.2.21) 

By rearranging of terms the (A.2.21) can be rewritten as:  
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= +=
τωτωτξ ,   (A.2.22) 

we will estimate the order of the kllk FUFU −  term (the sums introduce order M 2, and the other terms under the 
sums are of order M -1). Remember that: 

∏ ≠=
= M

kmm mkk UJUJF
,1 01 )()()( ξξξ        (A.2.23) 

)(0 ξmUJ  is the characteristic function of a )cos(ϕmU  random variable. The product of the 0th order Bessel 
functions is the characteristic function of the sum of the independent cosine random variables, which due to the 
Central Limit Theorem tends to the normal distribution (see first part of the proof, consider also that the number 
of the variables equals the number of the frequencies in the signal, consequently this number is large and the 
Gaussian approximation good). Conversely the characteristic function of a Gaussian random variable is also 
Gaussian, i.e., see Lemma 3.2.2: 
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Furthermore for small values of the argument (we investigate the case when Umξ →0): 2
)(1

ξξ k
k

U
UJ ≅  

           (A.2.25) 

With this approximation: 
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Let us introduce: 
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The (A.2.26) can be now written as: 
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With (A.2.28) the numerator (A.2.22) becomes: 
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the terms under the sums are of order O(M -3) yielding the overall order of (A.2.29) as O(M -1): 
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proving the Theorem. � 

Note: The practical order of ),( τξ∆ is even smaller, because the computation does not account for the fact that 
the term (A.2.26) is bipolar and the summation in (3.23) has an averaging character. Simulation indicates 

decreasing of an order )( 2/3−MO . 

 

Lemma 3.1: Approximation (A.2.24) holds. 

Proof: To see that the approximation (A.2.24) holds, consider that the Taylor series for )(0 zJ  and for 

4/2ze− coincide in the first two terms [107]: 
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With z =Ukξ  the remainder becomes of order O(M -2), i.e.: 
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A.3 Proof of Theorem 4.5.1 (Bias of the general Volterra MIMO system) 

Proof: In the general case the experiments are made using different (independent phase) realizations of the input 
random multisines: 
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V
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Nij )()()( 1UB ,         (A.3.1) 

where ND Udet=  and the jiV are elements of the adjoint matrix )(lBadj . Due to the properties of the minors 
we have (Theorems 13.5.1-2, or 13.5.3, [84] pp. 189-192): 
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where δjk is the Kronecker symbol. The general model for the system output in the ith experiment is now: 
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where L = l - k for the 2d order, L = l - k1 - k2 for the 3rd order kernels, etc., α is the order of the kernel and the 

sums run over positive and negative frequency grid M MS S− +∪ . To evaluate the bias (and the non-linear noise) on 

the FRF, true non-linear outputs (A.3.3) must be substituted into (4.5.2). The FRF estimates (4.5.2) are: 
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Now we will consider the influence on (A.3.4) of a single kernel. Linear kernel is treated as a special case of an 

odd order kernel. A single α-th order kernel contribution to (A.3.4) is: 
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For random inputs (A.3.5) is a random variable. We will analyze conditions for (A.3.5) to have zero mean value. 
In the following it will be enough to investigate only the random variable component from (A.3.5), i.e.: 
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a. Odd order kernels 

When the kernel input indices j1 j2 … jα contain inputs grouped in pairs except one (e.g. 11233), then the inputs 
with the same index can be paired with frequencies (k, -k) (there is no such pairing term for linear kernels). 
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Considering that in the experiments only the random phases of the inputs vary, the paired inputs will be 
independent from the experiment index and can be extracted from the inner sum as: 
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j
i

j =−         (A.3.7) 

let α' = (α -1)/2), then by (A.3.2): 
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where the index jS denotes the single non-paired input. Consequently (A.3.5) becomes: 
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where K counts the various ways the frequencies can be paired in inputs of the same index jP1…jPα’ (e.g. K = 3 

for the kernel 111G , and K = 1 for the kernel 122G ), and the sums run over the grid MS+ . For jS = k it yields the 

usual bias term of order O(1). This kernel yields nonzero contribution to the expected value of ̂ ( )kG l , when the 

kth input appears an odd number of times among the kernel inputs and other inputs appear pair wise (i.e. even 
number of times). 

When the indices j1 j2 … jα  contain more single inputs (e.g. m pairs and P = α - 2m single inputs, consider also m 
= 0 as a special case), then the contribution of the kernel can be written as: 
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  (A.3.10) 

where the input pairs with frequencies paired yield deterministic term, and only the last sum contains random 

variables. Due to the different input indices
PSSS jjj ≠≠≠ L

21 ,  pairing frequencies in the last sum is of no 

use (random phases in )()( kU i
j  are independent for different frequencies, input and experiment indices). 

Consequently the expected value of this sum and thus of the whole contribution is zero. These random variables 
contribute however fully to the non-linear noise variance. 

b. Even order kernels 

For even kernels, (A.3.6) contains an odd number of terms. Pairing frequencies for signals with different input 
indices does not get rid of the randomness. Even if input signals with the same indices are present, pairing their 
frequencies reduces the random part of (A.3.6) to at most: 
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which, due to the different frequencies, is zero mean, whatever the signal indices are. These random variables 
contribute fully to the non-linear noise variance. The overall bias to the FRF estimate is given then by: 

{ } ∑+=
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β )()()( lGlGlGE B
kk

)

        (A.3.12) 

where the sum applies to (A.3.9)-like terms of suitable order (see earlier). 

The last step is to verify that the infinite series of bias terms (4.5.5) is convergent. It is so due to the inequality: 
|}{||}{| xExE ≤ , and the convergence of the series (4.1.3). � 
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A.4 Proof of the Th 5.1.1 

Proof: In the general MIMO case the input matrix is: )()( )1(
1 lUl NTU =    (A.4.1) 

where NN HT =  is so called Hadamard matrix of order N = 2K, or NN WT =  is DFT matrix of an arbitrary 
order N. Based on the experience of the optimal inputs (4.3.8, 4.3.19, 4.3.20) in the TITO case, we consider now 
unitary inputs: 
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(normalized, transposed, complex conjugate of the input), also fulfilling (4.5.3, A.3.2), where the input signals 
for later experiments are some combinations of the complex amplitudes of the multisines used in the first 
experiment. The condition (4.5.3, A.3.2) can be written now as: 
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a. Odd order kernels: 

We will investigate now (A.3.5), taking into account (4.5.3, A.3.2) and that: 
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With (A.4.4), (A.3.6) can be written as:   
( )

444 3444 21
444 3444 21 B

A

ikij

N

i
ijij lUkUkUwwwwV )(...)()(... 21

1
21








= ∑
=

α  (A.4.5) 

It is important to see now, that the contribution of (A.4.5) to the estimate (4.5.4) can be: 

- systematic, if  A ≠ 0, E{ B} ≠ 0, contributing to the bias, 

- zero mean random, if if  A ≠ 0, E{ B} = 0, contributing to the non-linear variance, or 
- simply nonexistent, if A = 0 (this is the most interesting case to investigate, because it will provide the way to 
decrease the variance of the estimate and to shorten the measurement time). 
 
The expected value of B will be nonzero, if all frequencies are paired (B contains even number of terms, so it is 
possible). Otherwise the expected value of B will be zero (due to independent phases at different frequencies). 

To evaluate A let consider that for Fourier matrix: 
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depending on which frequencies are paired.  

1. A = N, if Z = 0 (mod N), otherwise A = 0. It means that for a number of input combinations the 
contribution of the kernel to the variance will be nonexistent. 

2. If all frequencies are paired ({ } 0≠BE ) and all inputs to the kernel but one (let it be jS) appear in pairs, 
then kjZ S −= , and Z = 0, if jS = k. These are the usual bias terms measured with general inputs, see Theorem 
4.5.1. 
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3. If N > 2 and the inputs do not appear in pairs, the frequencies however are paired, it can happen that in 
the same time { } 0,0 ≠≠ BEA , i.e. the bias will contain more terms, than as in the case of general inputs (i.e. 
a bit more bias, but much less variance).   

 

Note: For TITO systems already the cubic non-linearity requires one of the inputs to appear in pair, so there is no 
problem here (low complexity). 

The same analysis applies to the Hadamard matrix, where: )1(1 −= − iwalw jij , i, j = 1… N = 2K, i.e. its rows are 
discrete values of the Walsh functions. Walsh functions posses group property, i.e.: 

)1()1()1( )1()1(11 −=−− −⊕−−− iwaliwaliwal kjkj ,      (A.4.8) 

where  ⊕ is so called dyadic addition, i.e. addition mod 2 without carry [1]: 

0,0 =⊕=⊕ kkkk , etc.        (A.4.9) 

Now: 
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)1()1...()1()1( 21 −⊕−⊕−⊕−= kjjjZ α        (A.4.11) 

Here we have the same 1.-3. cases, as before, although particular nonzero contributions can differ (please note 
however, that comparison between Fourier and Hadamard cases is meaningful only for N = 2K).  

b. Even order kernels: 

For even order kernels the expected value of B is zero, whatever the pairing of the frequencies (or not). The 
essential difference with respect to the general case is that for particular mixed kernels the value of A can be 
zero, eliminating those kernels from the variance and thus decreasing the level of the non-linear noise source. 

We can summarize the proof as follows. The orthogonalized inputs (A.4.2) work well for TITO systems, because 
there they provide the same level of the bias and considerably less non-linear variance (with respect to the 
general case). For systems with more inputs, higher order mixed kernels can provide situations, where the 
dependency between inputs introduced by the orthogonalization (A.4.2) will add nonzero terms to the bias, 
comparing to the general case. The problem can be traced to the fact, that pairing the frequencies for inputs with 
different indices can for such special matrices produce nonzero expected value: 
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�

 

A.5 Proof of Theorem 5.4.1 

Proof: To prove the equivalence of the input signals it is enough to compute a single (αth order) kernel in (4.1.1-
4.1.4). Bias on the measured FRF is the sum of all systematic contributions with nonzero expected values with 
respect to the random inputs. The non-linear noise variance comes from all other zero expected value stochastic 
contributions.  

The aim is now to show that in every case kernels of exactly the same order and combination of inputs will 
contribute to the bias. Scale factors based on the symmetry of the Volterra kernels and the frequency dependence 

of the kernels based on equivalent signal spectra will lead in the limit M → ∝ to exactly the same bias 
expressions.  
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For the analysis signal indices in the kernel (4.1.2-4.1.4) will be grouped together as: 

j1, j2, …, jα  →  j1, j1, … , j1,  j2, j2, …, j2, …, jK, jK, …,  jK,  

where input j1 appears in the kernel M1 times, input j2 M2 times, …, etc., there are altogether K different inputs to 

the kernel, and  α=∑ =

K

l lM
1 , and  j1 < j2 < … jK. Reference input index k will be identified usually with input 

index j1.  

A.1 Gaussian noise 

The FRF measured with Gaussian noise is (H1-FRF): 
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To compute a single αth order (α = 2β -1) contribution: 
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we need the correlation: 

{ }
ααα τττττττ

ττ

α

α

α
α

ddtututuEg

tutyER

jjk
jjjj

k
jj

uy k
jj

...)}()...()({),...,(...

)()()(

1101
...

-

0
...

0

1

21

1
...1

∫∫
∞

∞−

∞

∞
−−−

=−=
  (A.5.3) 

If the reference input k is not present in j1, …, jK, the expected value is zero, so let k = j1. Due to the independent 
inputs the expected value can be written as (greatly simplifying the notation): 
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Each of the expected values in (A.5.4) is zero for an odd number of terms.  

For even number of terms they can be decomposed into sums of combinations of pair wise correlations 

)( jiuu mn
R ττ −ΠΣ , see [198, 162]. Consequently the order M1 of the reference signal in the kernel must be 

odd, and the orders Mn of other input signals even. 

For the final form of (A.5.2) we must take into account that by the symmetry of the kernels every combination of 
pair wise correlations leads the same bias term. From (A.5.2) we have: 
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where the outmost product at the right side runs over distinct inputs to the kernel (and the sum-product within 
comes from the Schetzen-decomposition). The expression (A.5.5) can be written further as: 

∑∏ ∏∏ ∑∏ −=−
R

llll
N inputs decomp

jiuu
inputs decomp

jiuu RR )()( ττττ
     (A.5.6) 

The number of possible combinations NR is the product of the numbers of combinations at the left side of 
(A.5.5), i.e.: 

∏
=

−=
K

l
lR MMN

2
1 !)!1(!!         (A.5.7) 

Now we must introduce the frequency power spectrum via the Fourier transform, similarly to the SISO case. We 
will follow the philosophy of the derivation for SISO case [162], where the correlation is transformed into the 

bias term for a particular single partition in (A.5.5).  For the SISO kernel of order α, the power spectrum 
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contained the input spectrum raised to the power α. In the MIMO case a kernel of an overall order α, behaves 
like an Ml order kernel for the j l input signal (M1+1 for j1).  

Other partitions yield exactly the same bias term, due to the symmetry of the Volterra kernel. The final result is 
thus a single computed bias term scaled up NR times. Let the particular partition be defined by: 
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      (A.5.8) 

with this (and with a certain simplification in the notation): 
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           (A.5.9) 

The time domain integral within the expression defines the multidimensional frequency transform of the Volterra 
kernel: 
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   (A.5.10) 

With it the correlation is: 
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The term in the parenthesis is the required non-linear spectral cross contribution: 
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It remains now to scale up the cross spectrum and use (5.48) to obtain the final result as: 
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1
ker !)!1(!!2β

        (A.5.14) 

where 2β -1 = α = ΣMi +1. For missing details see [162]. SISO case follows up as a special case with: j1 = j2 = … 
jα = k. 

 

A.2 Random phase multisine and periodic noise, H1-FRF measurements 

Periodic noise and random phase multisines will be first investigated with the FRF measured as: 

ˆ( ) { ( )} ( ) ( ) { ( ) ( )}k k k k
BLA B kG l E G l G l G l E Y l U l= = + =      (A.5.15) 

The expectation of a particular kernel from (4.1.4) is: 
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 (A.5.16) 

For random phase multisines the expectation in (A.5.16) applies only to the random phases. To yield nonzero 
expected value the reference input k must be present among the inputs j1,…, jK , then it must be possible to pair 
the remaining inputs (phases of different inputs are independent). The condition on the kernel is consequently the 
same as for Gaussian noise and with it and with the definition of the signal spectrum (5.4.1) the bias (A.5.16) is: 
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With M → ∝ the sum converges to the value of the integral (A.5.13) (equivalence in the limit (2.2.10)). 

The periodic noise is more involved, because the expectation in (A.5.16) applies to the amplitudes and the 
phases: 
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Here also it can be noted that the reference input must be present (and an odd number of times) in the kernel and 
other inputs must appear in even numbers, otherwise the expectations are zero. In this case the denominator and 
phase expectation cancel and:  
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The asymptotically vanishing term contains higher even order moments. To create higher than 2nd order 
moments more than two (four, six, etc.) frequencies must be paired and run together. This cancels too many of 
degrees of freedom and together with the normalization of the signals yields vanishing order of magnitude for 
such contributions (equivalence in the limit). Taking into account all these assumptions the bias will again equal 
(A.5.16). 
 

A.3 Random phase multisine and periodic noise, set-of-equation measurements 

When (4.2.5) is used as the measurement procedure: 
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  (A.5.20) 

where: [ ]
1

1

)()( )()()(
−
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i

i
k

i
nkn lUlUlb .  

With phases independent over the frequencies and with higher than 2nd order moments (pairing more than two 
frequencies together) leading to O(M -1) order contributions the internal term containing the expectation is: 
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           (A.5.21)  
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It is easy to recognize that this term in the expectation is δkn (Kronecker Delta) because it is an expansion of 
entries of a matrix multiplied by its inverse (from (4.2.5)). Substituting (A.5.21) into (A.5.20) we again obtain 
(A.5.17).  

For periodic noise the expectation in (A.5.19) must be investigated accordingly to (A.5.18-A.5.19), however the 
entries of the inverse matrix pose now more problems:  
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    (A.5.22) 

Analyzing the possible pairings which are required for the nonzero expected value leads to the interim 
expression of: 
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which with the comments made to (A.5.19) and (A.5.21) (i.e. that the contribution of higher order moments 
disappears in the limit, that the term within expectation equals Kronecker Delta, and with the definition of the 
signal spectral content (5.4.2)) yields exactly the same expression as (A.5.17). � 

 

 

A.6 Proof of Theorem 6.1 

Proof: In computing the output of the cascade (6.1.1-6.1.2) we can observe that the multiplication of three or 

more cubic terms 111G or 3Y means contribution of order higher than 
2ε and such terms will be omitted from 

further consideration. The approximate output of the cascade is thus:  
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(A.6.1) 

To obtain the BLA FRF of the cascade 
2

{ ( ) ( )}
( )

( )
BLA

E Z l U l
Q l

U l
= , the components of )(lZ  being in phase with 

the )(lU  must be computed. The first term is the linear part of the cascade: 

)()()()()()()()( 11
221111 lHlGlSlRblSlRalUlZE I ==}{     (A.6.2) 

In the 2nd term the effect of the first non-linearity shows. After pairing the frequencies like in Th. 2.2.6,  it 
becomes: 

1 2

2111
1 2 2 1 2 1 2{ ( ) ( )} ( ) ( ) { ( , , ) ( ) ( ) ( ) ( )} / ( )

M M M M

II k k
k S S k S S

E Z l U l b R l S l E H k k L U k U k U L U l U l
− + − +∈ ∪ ∈ ∪

= −∑ ∑
2 2 1 1

3 1 1 1 2 2 1 1 1 1

2 2
1 3 1 1 1 1 1

( ) ( ) ( ) ( ) 3!!2 | ( )| | ( )| 3!! ( ) ( ),

, , | ( )| | ( )|
M

M

k S

k S

a R l S l b R l S l r R k U k r r G l H l

a a r a b r R k U k

ε ε

ε

+

+

∈

∈

= =

= = =

∑

∑
  (A.6.3) 

The third term expresses the effect of the second non-linearity. After suitable pairing we have:  
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where: 
2 1 2 2
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The computation of the last mixed term is more involved. 
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           (A.6.6) 

with Lk = Lz - k1 - k2 and Lz = l - z1 - z2. In evaluating (A.6.6) we must distinguish between the cases, when one of 
the frequencies z is paired with l, and when none of the frequencies z is paired with l value. The first case is a 
simple superposition of the non-linear effects: 

2 1 2 1
1 3 2 2 2

2 2 1 1
3 1 1 1 1 2 1 21

{ ( ) ( )  }| 3 (3!! 2) ( ) ( ) ( ) | ( )| ( ) ( )

( ) ( ) ( ) | ( )| | ( )| 27 ( ) ( )

M

M

IV
k S

p S

E Z l U l b S l R l H l R k H k U k

a S k R k U k R p U p r r G l H lε ε

+

+

∈

∈

= × × ×

× − − − =

∑

∑
   (A.6.7) 

The second case brings in mixed multiple convolutions of both kernels: 
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(A.6.9) 

where: )()()( 21 lRlSlL = , )()()( 21 lSlRlN = , and )()()()( 11 lHlGlLlN = .   (A.6.10) 

)(2 lC  is the sum approximation of the double convolution of  the form 

2 2
1 1 1 1 2 2 1 2 1 2| ( ) | ( ) | ( ) | ( ) ( )R f L f R f L f L f f f d f d f− −∫ ∫ .  

Collecting (A.6.2-A.6.9) together yields: 
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G l E Z l U l K G l H l

L l
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dc_1199_16

Powered by TCPDF (www.tcpdf.org)



136 

 

where: 2112121211 27331 rrrrK εεεε +++=       (A.6.12) 

*
* 2

1 1 2

9
, ( ),

2

K
C K r C l

K
ε ε= =        (A.6.13)  

Outside the frequency bands of high coherence and also in case of higher levels of non-linearities additional 
effects come into the play yielding: 

1
1 1

( )
(1 )

( ) ( ) ( )
BLAG l C

K const
G l H l L l

= + ≠ ,       (A.6.14) 

and the overall related FRF shows an increasing relative constant (due to K) and frequency dependent (due to 

)(lL ) bias. However, due to )(1 εOK +≈ , ),( 2
1 εOC ≈  this effect is not always visible, if the system dynamics 

and the level of non-linearity are small (it was also assumed that the convolution (A.6.9) is much more smoother 
than the system dynamics. � 

 

A.7 Proof of Theorem 6.2.1 

Proof: In the derivation ε, δ will be used instead of ε km, δ km, when dependence on the levels of the linear and the 
non-linear distortions is considered in general, and ξ = max(ε, δ), when the dependence on the level of any kind 
of distortion is considered (for the more detailed proof, see [19*]). Distorted inputs can be written as a sum of 
ideal, linearly distorted, and non-linearly distorted signals: 

][][ 000 RRRUUUUURU NELM ++=++=+== ned     (A.7.1) 

and the measured outputs similarly as: 

)(][][ 2
000 ξOnedne +++=+=++== YYYYYUUUUY VV    (A.7.2) 

where ][ 00 UY V= , and eY , nY  are the first order approximations in distortions: 

1 0[ , ]lin nonlin
e e e LIN e e= + = +G VY Y Y U U U ,  1 0[ , ]lin nonlin

n n n LIN n n= + = +G VY Y Y U U U  

Kernels ],[ 01 UUV  are all those kernels in ][UV  with exactly one input being U , all other inputs being 0U . 

This 1st order decomposition is justified by: )1(0 OU ≈ , )(εOUe ≈ , )(δOUn ≈ , )(εOYe ≈ , 

)(δOYd ≈ . 

Denote the ideal measurements as: 

][RY V=r ,   ][ 00 UY V= ,        (A.7.3) 

then the FRF estimated from the measured data are: 

1)(ˆ −= HH
rr RRRYG  and 

1
00000 )(ˆ −= HH UUUYG      (A.7.4) 

respectively, where U0 is a block of the experimental data: 
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(index in the parentheses is the serial number of the experiment). 

With the decompositions (A.7.1-A.7.2) we can write that: 
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           (A.7.6) 

Let the inverse in the squared parenthesis be: 
1)( −+ PI . Then if 1<P , )()( 1 PIPI −≈+ − , if ξ is small 

enough, because every component in P  contains at least one signal of order O(ξ). Introducing ned UUU +=  
leads to (from here on the equality means that the 1st order approximation): 
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1
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To see how good the measurements are we should evaluate the difference ˆ{ } BLAE −G G . 

Case of  IG : By definition: 0{ } { }I BLA LIN BIASE E= = = +G G G G G    (A.7.17) 

Case of  IIG : With (A.7.1) and (6.2.1-6.2.4) it is easy to see: 
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Consequently: 1 1 1
0 0 0{ }II BLA LIN BIASE − − −= − = − −G G EL G EL G EL     (A.7.19) 

Case of  IVG : It is also easy to see (directly from the square U in (A.7.5) and through the singular value 
decomposition for the rectangular U) that: 

IUUUU =−
0

1
000 )( HH

         (A.7.20) 

With this simplification it turns out, that: 
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Case of  VG : Similarly: 
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Case of  IIIG : Here we can write: 

1 1 1
0 0 0 0 0 0 0 0 0

ˆ ˆ( ) ( )H H H H
III n BLA

− − −= − = −G Y U U U U U U U G N L     (A.7.23) 
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where: 

1 1 1 1
0 0 0 0 0

ˆ( ) ( )H H H H
n n BLA

− − − −= =U U U U U R RR L N L        (A.7.24) 

is the best linear approximation of the purely non-linear part of the distortions. The expression is thus a product 
of two FRF estimates coming from two independent non-linear systems, driven by common input. Consider 
further that every FRF estimate can be decomposed into the Best Linear Approximation and the non-linear noise: 

0
ˆ

BLA S= +G G G ,   ˆ
BLA BLA S= +N N N        (A.7.25) 
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   (A.7.26) 

The best linear approximations are deterministic, the non-linear noises are circularly normally distributed, noise 
in (A.7.25) is of order O(ξ), the noise amplitudes are of order O(N -1/2), altogether we have: 

1 1 1 1
0 0 0{ } { } ( )III R BLA S S BLA BLAE E O Nξ− − − −= − − = − +G G N L G N L G N L    (A.7.27) 

Case of VIIIG : 

1
0 0 0( )H H

VIII e
−=G Y U U U         (A.7.28) 

From the point of view of the Best Linear Approximation, kernels of every Volterra system can be classified as 
“bias” (nonzero mean) and “variance” (zero mean) kernels. Bias kernels will appear in the best linear 
approximation and will also contribute to the non-linear noise, variance kernels contribute solely to the non-
linear noise [163]. In case of a MIMO Volterra system bias kernels for measurement channel Y-Uk are those 

kernels 
αjjj

kG ...21

, which within input indices j1, j2, …, jα contain input reference index k an odd number of 
times, and every other input index an even number of times ([15*-16*]), i.e.: 

1

1 2 1 1 1
 ... ... ... ... ... , , ,

reference
K

K

K K reference k reference kkM M M

j , j ,  j k k j j j j M odd M even M M oddα =
 = <    >< , > < , > = = + =∑    

(A.7.29) 

i.e. for channel Y-U1 
122

1G  is a bias kernel and 
112

1G  is a variance kernel, however for channel Y-U2 the situation 
is just opposite.  

The problem with evaluating (A.7.28) is that the bias and the variance kernels in eY  may exchange roles 
comparing to the ideal case. The reason is that signals Ue,k, contrary to signals U0,k, are linear combinations of all 
the reference inputs Rm and Rm will appear in place of Ue,k changing the actual input indices of the kernels. 

Remember also, that eY  contains only a single input eU . 

When investigating a particular kernel we must consider thus every variation when one of the input indices 
changes to some other value. In consequence bias kernels can turn into variance kernels and vice versa. The 
expected value of (A.7.28) can be written as: 
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with: 
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where <kmn> is the permutation of the indices k, l, and m in an increasing order and the bias terms GB are those 
appearing in the BLA GBLA [15*-16*]. Similar construction can be done for the measurements in other channels,  
i.e.: 
 

}{}ˆ{ EBk
k
VIII trGE =          (A.7.32) 
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Case of IXG :   1
000 )( −= HH

nIX UUUYG        (A.7.34) 

The analysis of this term is even more involved and here we will simplify the analysis using the assumptions of 
the low order systems. However the line of reasoning and the results can be extended to higher order systems. 

The distortion component Yn depends on a single appearance of the distortion signals Un: 

1 0[ , ]n n= VY U U          (A.7.35) 

Un is the output of a 2nd and 3rd order Volterra system, with kernels of order O(δ). We will investigate when the 

expected value 0,{ } 0knE Y U ≠         (A.7.36) 

Contrary to the substitution of the signal Ue into the kernels of Yn, which did not change the order of the kernels, 
the substitution of Un into the kernels of Yn means the substitution of a kernel into a kernel, consequently the 
order of the resulting kernels will change. 

Substituting Un into Yn takes place of one input signal, but introduces as many new signals as is the order of the 
kernel present in Un. Consequently to have a nonzero mean bias odd order kernel: 

order(Yn kernel) + order(Un kernel) = even.  

For the assumed low order systems we need to consider 1+3, 2+2, and 3+3 kernel order combinations. In this 
case the even order kernels normally present only in the non-linear noise, will contribute also to the overall bias. 

Consider now a V system kernel with one of the inputs )(,0 ij kU
i

substituted with a single N system kernel: 
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           (A.7.37) 

and consider for simplicity only the product of the inputs (the sole random component of the whole expression): 

)(...)()(...)( 1...1,01,01...1,01,0 11
ξξ βα βα −=−= Σ−×Σ− iinniijj kUUklUkU    (A.7.38) 

Let rename the frequency variables as follows: 

iiiimm kkimkk ξβ 1...1,, −=
•• Σ−=≠=        (A.7.39) 

we can see that the resulting expression is a well formed Volterra kernel: 
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           (A.7.40) 

which we will denote as: 

)( ...... 2121 βα nnn
km

jjj
k NG          (A.7.41) 

e.g. )( 11
2

12
1 NG is actually like an 

111
kG  order kernel. 

To see, what is the true order of a mixed kernel (A.7.41), as a rule of thumb delete input index m from j1, j2, …, 
jα and mix the resulting indices with n1, n2, …, nβ ordering them in the increasing order. Such a new kernel to 
have nonzero mean should show properties of a normal bias kernel mentioned before. 

For the assumed low order systems the overall estimate can be written as: 

1 1
0 0 1 2

ˆ ( )BLA BIAS BLA
− −= − − + +G G G EL N L H H      (A.7.42) 

Using ILL =−1
00  this can be written finally as: 
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1 2
0 1 2

ˆ ( ) ( )BLA BIAS BLA O ξ−= + − + + +G G G I M L H H      (A.7.42) 

where the terms 1H  and 2H are difficult to handle in a closed form and are best to be enumerated for particular 
applications, accordingly to the derived rules. � 
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