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Multisine Measurement Technology of Linearly Approated
Weakly Non-linear Systems

1. Introduction

One should always keep in mind that mathematicadeiso of physical systems are

necessarily better or worse approximations. A maglgjood, if the approximation errors do

not jeopardize the model usage and the simpliboatimeaning usually the choice of a more
convenient model structure) are reasonable. A maddad, if the rough approximation

invalidates theories or artifacts built with thdgef the model [155].

Building a good model means also solving a complegineering problem. Whatever is the
task, the model must be ready in time and mustrople enough to provide in time results
pertinent to the task goals. Even the best appratkiig model can easily turn

inconsequential, if the costs of the model buildengd model computations, in terms of
equipment and time, cross reasonable limits.

The border between the linear and the non-linehaweur is never very sharp, nor is it easy
to handle. Linear systems exist as a pure absirgatet the linear system theory turned out to
be one of the most fruitful practical engineerimgls. If we conveniently forget that it is
always an approximation we use, this theory pravige with a well developed methodology
of linear analysis and synthesis [127].

Contrary to the linear theory based upon a singlecept of a (linear) model, the non-linear
system theory suffers from a multitude of possibdm-linear models with widely varying
functional properties [90-91, 155]. As a conseqeeman-linear models can be experimentally
difficult to identify, to implement, and for the rsibpart to evaluate. The so called semi-
physical modelling helps a bit, since at leastdhera fair chance for a good approximation,
even if the model itself could be difficult to hdad128].

1.1 The problem of the non-linear distortions

In the linear system identification the cost fuantiof the model fit is based upon the notion
of the output and the measurement noises as thesese interfering agentsAssuming that
the phenomenon is linear and the model adequatslyt,fthe only difference between the
both is the noise and the value of the cost functizould reflect it.

In most linear measurement (identification) prokdetmough, the cost function based on the
noise alone yields too large values, sending thesage that the modeling errors are larger,
than to be expected on the basis of the noise sisajone, and that something (a non-linear

1 Beside a priori information introduced in theiopal regularization terms.
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distortion) lurks inside the system, which cannet dpproximated well within the linear
model.

Applying linear system theory without judging ttmeportance and the potential consequences
of the unexplainable discrepancies between the gvhena and their models is not an
advisable engineering know-how. Furthermore thedirtheory won't tell us how far, or how
close are we to the validity limits of the model,h@w robust it i& The possible non-linear
and other modelling problems can be taken into @ticonly as the noise, where it may be
impossible to identify and quantify them.

The foremost problem is that the linear systemmhaa@rrants that the obtained linear model
will be valid for any kind of future experimentabrditions (i.e. input signals), yet if the
phenomenon is truly non-linear, the linear modeinigrinciple valid solely for the input
signal used in its identification. Driving the ploenenon and the model with different inputs
can result in discrepancy much larger than expee@nor foreseen by the identification
process. Yet another problem is that in particakses the non-linearly distorted system will
produce an output "noise" deceiving the user, ts¢ke noisiness of the measurements, as to
the true nature of the system.

Example 1.1.1: Hidden non-linearity and the level bthe input signal/1.

RPhMS

g 4 L L i 30 i 1 I .30 I L i 1 I i
il 100 200 300 aIJU 100 200 300 1} 100 200 300 0 00 200 300 400 500 60D 70O GO0 90

Fig. 1.1.1 The system under study is composed from™ao8ler Butterworth high-pass filter (input linear
system), a static nonlinearit y(t) = u(t) +.057 (t)+ 107 (t)+ .0254 ¢ ) .01F ¢ and a &' order Butterworth
low-pass filter (output linear system), connected. do the Wiener-Hammerstein block-structure (Seetion

2.4). The Empirical Transfer Function Estimate (ETH125]) of this system is measured from a single
application of the harmonic excitation (odd randphase multisine, see Section 3.3) containing 46§uiency

2 With the increasing number of the measurement thetdinear (and time invariant) identification teajues
always provide an unfalsified linear model with tingcertainty decreasing to O, regardless of whahestrue
nature of the measured system. The reason liggifatt that the linear techniques use only secoddr signal
statistics and that they cannot make distinctiotwben the system and its second order (least ssjubmear

approximation [127].
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components with uniform amplitudes, under noisetesasurement conditions. The power level of thétatian
was adjusted (from left to right) @s= 0.01, 0.1, 0.5, and 1. For small input leveks iehavior of the system is
convincingly linear, but for higher input levelsetmonlinearity steps in more forcibly producingeemmingly
random "noisy behaviour". An inexperienced usdrdee potentially at risk of misinterpreting thisgolomenon
from the linear theory point of view. Please ndtattan odd multisine excites only odd harmonies,the last of
the 409 harmonics falls on the 81&equency index. All the subfigures but the lasttie right are printed
overlapped for better visual comparison.

General note on the figures in the dissertation

The majority of the presented results are anabpid the figures serve only the purpose of illugiratFigures
are based on discrete system Matlab(R2007b) simonfatusing usually Wiener-Hammerstein system sirec
with various input and output linear systems, aolyqomial static nonlinearities. The frequency béhd.. f;.J

to excite the nonlinear system is always chosemsure thatt . * fmax < f/2, whered . is the maximum order
of the nonlinearity and; is the sampling frequency. The frequency axis haf figures usually shows the
harmonic (frequency) index, and in some cases dlaive frequency (as used in the parametrizatiothe
Matlab functions).

Example 1.1.2:Hidden non-linearity and the level of the input sigal/2.

A seemingly linear systerY(t) =u(t) + £u®(t), &= 01 js measured in the noiseless measurement settis and
modeled asYu () =au(t) s Empirical Transfer Function Estimate (ETHE)s measured with zero mean
Gaussian signal(t) of c=1 asa=E{y() )}/ E &)} £ B £0°4.03 . Inthe truly lineais =0 noiseless

case the MSE =E{(Y(®) = Yu (0)*} would be zero. Now the MSE =¢&° = 0.0006, which can be easily
mistaken for some residual noise. The fractiorhefrion-linear power in the output seems also nibdgig

1006 E{(eu’(t))3}/ E{y*(1)} =100%15£° 0° /(0* +6£0* +156° 0°) = 014% (1.1.1)

and we may be satisfied with the linear identifimatresults. In different experimental conditiossch model
can be a source of trouble. Assume that the irpaniplified 4 times = 4). The fraction of the non-linear
power is now 16.4%, and the MSE is 2.457 cleardjdating that the linear model is not serving itsgose.

Linear system theory is well developed and usBde&itly, even if one may suspect or know
that in the reality the system violates linearitgs@mptions. Linear system theory offers
numerous advantages, like canonical model strustarel the full theoretical equivalence
between the identification problem posed in theeton the frequency domain, or as the input-
output and the state-space models. In the following we keep on the linear measurement
techniques we are however aware that we measutmeansystems. A typical situation will
be where the non-linear part is negligible withive tactual experimental conditions, the
nonlinear behaviour contributes little to the meament results and can be considered a kind
of (nonlinear) distortion, but it will be in thetarest to the user to know how serious such a
distortion could be.

The state-of-the-art non-linear system identifimatidelivering a model describing well also
the distortions, would of course yield answer tergwquestion ([198, 188, 19, 104, 89-91, 54,
155]). In many cases it will be yet impracticaledst for two reasons. First, the non-linearity
is usually responsible for only a small fractiontloé phenomenon, so why to pay the full cost
of the parametric non-linear system identificati@etond, we do not really want to know the
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model of the non-linear distortion exactly, butyrik influence on the originally identified
linear model.

The literature shows that there is a consideraldenashd to embedd the nonlinear
measurements in the linear measurement techniases)is approach addresses a realistic
situation. It also opens up possibilities for easied faster measurements in the applications
where the investigated system or behaviour is giter nonlinear, but nobody wants or has
the experience to tackle it with fully developedliear models.

In the following we seek answers to these probleWks.propose solution to the situation
where the system under study shows non-linear l@maand we show how to express its
influence as errors to the measured linear FrequBesponse Function (FRF), sidestepping
thus the full parametric non-linear system ideadfion. In designing the methods we keep in
mind that the computing time is cheap, but the Brpets are expensive (duration, or if
sophisticated measurements are needed). The mlaébs would be to amend the linear FRF
measurements in such a way, that the non-lineactsfitan be measured, or at least qualified
in parallel with the main linear experiments, wih@xtensive additional measurements or
nonlinearity tests.

1.2 Overview of the literature

Modeling nonlinear distortions to linear systems.(modeling weakly nonlinear systems) is a
widely research field with continuous influx of thew theoretical and practical contributions.
Linear approximation to the nonlinear behavior Ibeeaery early the focus of interest. In the
context of control [6] used Booton’s decompositadra static non-linearity into the best fitted
(in the mean square sense) linear part and a fti@tdactor” to analyze control systems with
random inputs. J.L. Douce investigated the effé¢he static non-linear distortions and their
spectral behavior under random excitations [51, %@ even proposed a random-signal
generator based upon the harmonic intermodulaties  non-linearity [52]. Distorting
effect of the non-linearity on the input spectrumswanalyzed in [263], and an interesting
analysis of the static non-linear MIMO systems dase the separable signals was published
in [264].

Probably the first serious attempt to deal withribe-linear distortions as a separate object of
investigation, yet still within the linear systerdentification setting was [65]. Static or
\olterra-like non-linear distortions of low ordereve tackled there from the measurement
point of view, under harmonic excitations, withiretdeterministic setting. His aim was not to
describe the non-linear distortions in general,tbuget rid of them in concrete measurement
and identification situations. To this purpose @as kinds of harmonic signals were
introduced [66-69], then a special kind of multesisignals was developed, to minimize the
non-linear distortions for the assumed particuladeo of the non-linearity [70]. Later the
investigations were extended to the concept ofbb&t linear approximation to a \Volterra
system excited by the multisines with random haig®itamplitudes and phases, or only
phases), proposed by [30*]. Using Crest Factor mirétion introduced in [85] in a series of
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papers [72-73], [219-221, 223-225] presented hearomparison of modeling nonlinear
errors if the Crest Factor minimization is alsouieed.

Modeling non-linear systems with so-called outpubelinear time-invariant second order
equivalents (OE-LTI-SOE), within the Gaussian ahd tuasi-stationary framework, was
introduced in [55-58], [125-127]. The analysis feed on the Non-linear Finite Impulse
Response (NFIR) systems and the full characteozaif stable causal OE-LTI-SOEs of such
systems was given in [59-61]. The problem of the-tear distortions was addressed via the
notion of slightly non-linear system [58]. Seekiggneral conditions for the SOE of an NFIR
system to be also a FIR system, separable sigreals wsed as an extension to the notion of
Gaussianity [59] Bounds on the distance between the SOE and rtbarlipart of the non-
linear system were also studied.

Theoretically the most rigorous setting was therapgh of Makila and Partington, with the
deterministic framework based upon the notion ef@eneralized Harmonic Analysis (GHA)
and quasi-stationary signals, drawing upon the edrispace operator theory. In [134] the
Frechet derivative was used to derive the bestatdumear approximation of mildly non-
linear systems. Beside the mean square error ajppatgn, the absolute error approximation
was also considered for smooth and non-smoothcstati-linear systems in [135]. In [136-
137] distribution theory of sequences was calledbimefine the results obtained earlier for
GHA and quasi-stationary signals. A very interggtiotion of the nearly linear system and its
LTI companion was introduced in [138], with the mary aim to investigate the
controllability of a non-linear (NFIR) systems thgh the control of their LTI companichs
This work was extended in [139] to the linear apprations with the FIR and ARX
parametrization, then in [140] to the notion ofanfinear companion system, providing also
the state-space form for the linear companion.

1.3 Research focus

The reported work is based and extends the ideagether in [27*, 28*, 30*], where the
stochastic framework was proposed to deal with \thiterra-like non-linear distortions,

3 Although separable signals extend the propedfeGaussian signals with respect to the linear tmml

expected value, their major disadvantage in théeaysdentification is that the output of a linegstem to a
separable signal is not necessarily a separabbalsi§eparable signals are handy to identify systesith the
non-linearity at the input (e.g. Hammerstein systgrthey are not so useful where the non-lineasitisidden
within the system, or at the system output (e.@eWi, or Wiener-Hammerstein systems) [148], [59-60]

4 Please note that the notion of a nearly linearesygand its linear companion) [138] is not compbadb the
notion of a weakly non-linear \olterra series; sag [15*]. The behavior of a nearly linear systegiting more
and more linear as the input signal amplitude gradees not reflect well what we observe in manyciical
measurement situations, where the signals are leoltadt the non-linearities (e.g. a cubic one,rséitan, dead-
zone) are not asymptotically linear. For small aignthe linear companion of such non-linear lirgetem can
still yield large approximation errors, the relategtar dynamic system of a weakly non-linear \flolieseries, on
the other hand, will always be closed to its line@amponent [162], [15%].

7
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randomizing them through the randomization of thput signals, for which, due to the
practical measurement reasons, random multisinéa¢xns were used.

Contrary to the other contemporary approaches ithewaas not only to produce the “best”
linear approximation to a weaklyon-linear system, but to observe (and to inflegwehere
and how the non-linear distortions manifest themeseln the measured linear non-parametric
Frequency Response Function (FRF) (i.e. Empiricah3form Function Estimate — ETFE
[125]). The theory was developed for input signailh a finite number of harmonics, and the
asymptotic properties have been analysed whenuimber of harmonics tends to infinfity

The stochastic setting was essential to our purpmberwise there would be no possibility to
qualify the error on the approximation. The stoticasetting makes it possible to design
measurement procedures (here it was averagingpamiarg the proper approximation of the
theoretical limiting results (expected values) frira finite measurement data.

Harmonic random signals are in the limit (in themner of harmonics) normally distributed,
and even separable, the measured ETFE tends tymgtasically to the FRF of the OE-LTI-
SOE of a non-linear system described by a convergelterra series. Issues like stability,
causality, memory length, impulse response stractetc. are no investigated for the non-
parametric FRF. However they may be pertinent ¢oprametric identification, which can be
made after the analysis of the measured non-parameRF yields hints w.rt. to the
dynamics.

It is important to observe that the measuremerth@fnon-parametric FRF precedes always,
as the necessary introductory step, the parametodeling in the frequency domain. The

accurate judgement of the linear properties ofideatified system, but also of the possible
non-linear errors is essential for the successftthér identification. The proposed methods

5 There are many definitions of being weakly nowdir or almost-linear (e.g. based on the coheredt a
incoherent output power, ratio of norms, ratio oéfficients, etc.), all sharing the notion that hmonlinear
effects are essential and are observable, ther Ioefzaviour dominates, and as a first approximatios system
can be considered linear.

6 Historically the starting point was the adoption the 1980s by the Vrije Universiteit Brussel ELEC
(Fundamental Electricity and Instrumentation) Dépent of the frequency-domain identification of tiveear
systems (contrary to the dominating then time-dojnand the following intensive research for thetahle
deterministic excitation signals. From that timenss e.g. still state-of-the-art crest factor miiation
technique [85]. Making research at the ELEC inkhewledge intensive signal processing methods (28t
1*-*4*]) 1 joined the group which started to tackibe non-linear problems and became a member detra
working out the basic theory [27*-28*, 30*]. Duringultiple visiting periods at the ELEC | dealt wahnumber

of open SISO (Single-Input Single-Output) probleans! later | worked out the respective MIMO (Multiplut
Multi-Output) theory and solved some other openbpmms. From that time on this theory is intensively
researched by a number of scientific and applioagi@ups.

7 Stochastic setting resembles the so called sttichambedding of [129-130]. Stochastic embeddima i
parametric framework where modeling errors are idemsd realizations of a random variable with aapaetric
distribution and the effort is to estimate theseap®eters. Our approach is nonparametric and theelngd
errors will be classified into (nonparametric) gysatic deterministic and stochastic components.

8
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make it possible to measure the non-parametric BRF to qualify the non-linear errors
within the same experiments, minimizing the requiimeeasurement tirfle

In the following | review the principal assumptionaderlying the research, and the basic
theoretical concepts and results. Then | presenbwy research results, and finally | give a
summary of the impact of these results on the egipdins.

Basic equations of the Volterra series in the tand the frequency domain under harmonics
excitations can be found in [34, 198, 22, 9, 112Je more specific results are referenced
locally.

1.4 Research assumptions

The field of non-linear systems is too vast and ¢omplicated to tackle with success any
particular problem without carefully devised limigf assumptions. Their role is to bring the
problem to the size and scope still valuable ircfocal modeling situations, yet admitting
theoretical analysis and synthesis. The essentigfing assumptions were applied thus to the
selection of the:

. non-linear system class,
. excitation signals,
. focus of the research.

The focus is the measurement methodology of theparametric linear frequency

characteristics (Frequency Response Function - FR&)its Empirical Transfer Function

Estimate (ETFE [125]). Due to this reason the tesulere formulated in the frequency-
domain for the input-output system descriptionse Thformation available in the time-

domain and in the frequency-domain measuremeniseisame and the formulation of the
measurement problem is in itself equivalent. Nénadess the required information appears
differently in the measurement data paving the waythe advantages stemming from
different processing algorithms.

To the advantages of the frequency-domain belomrg fteedom in the selection of the
frequencies where the model is matched to the memmnts or freedom in restricting
unwanted frequences, the possibility to model unstaystems, furthermore, if abiding to the
periodic excitations (and periodic reference sighalo leakage bias on the ETFE, separation
of the plant and the output noise modeling, pobsibdor the nonparametric noise modeling,
possibility for modeling under close-loop conditsoriinally (what is the topic of this work)
the separation of the effect of the non-lineariied the output noise [204, 206, 125].

8 In recent developments the originally proposedmioaic random excitations are perturbed (power lJeve
coloring) to verify how does it perturb the measulieear ETFE to gain indication about the poss#iteicture
of the nonlinear block model [63-64, 212-213, 1146]1
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The non-linear system theory, as mentioned befu#ers from the multitude of possible
models. Furthermore, the non-linear system ideatilon is conditioned on the used
excitation signals due to the presence of unavdéedaiodel errors. Even if we intend to tackle
practical situations when the level of the nondindistortions is low, the choice of the class
of the non-linear system models and the associatexice of the input signal class is
important, as it is heavy in the consequences.

On the system and signal models

In the present work convergent \olterra series wassumed as the model the measured
systems. The particular usefulness of such modeiciated by the following (summarizing
the wisdom of [23-25, 19, 21-22, 202, 211, 54, 89404, 137, 134, 162, 198, 188, 76]):

1. Natural (additive) way of how the linear and namelr systems can be treated together,
and the level of the non-linearity controlled;

2. A number of pragmatically important non-linear gyst can be already modeled by finite,
low order \Volterra series;

3. Wide class of (even non-continuous) non-linearesystwhich can be approximated in the
least square sense with the \olterra series;

4. Well developed frequency-domain representation;
5. Natural way of how the non-linear dynamics can loeleted;

6. \olterra models contain a number of practically artpnt non-linear block models, i.e.
Wiener-, Hammerstein-, and Wiener-Hammerstein ngdahd also Non-Linear Finite
Response (NFIR) models;

7. Straightforward extension of the Single-Input S&@lutput (SISO) models to the
Multiple-Input Multiple-Output (MIMO) models;

8. Possibility to include a priori physical knowledggo the models (the number, the order,
the symmetry, and the frequency bands of the \falteernels);

9. \olterra-series possess a unique steady state myoped are Periodic-Input Same
Periodic-Output (PISPO) systems, i.e. they do eoiegate subharmonics. Volterra series also
yield almost periodic outputs to the almost peigoghcitations.

\Volterra models are not a universal tool and tlesipressiveness is limited. A number of
interesting and important non-linear phenomena atibe modeled well or at all with the
\olterra series. As the \olterra series generalime Taylor expansion, bifurcations, chaos,
non-linear resonances, generation of sub-harmoeics,are out of reach for the \olterra
models.

The second principal choice applied to the inpuitakon signals. Asymptotically Gaussian
periodic signals were adopted (over non-periodjoais) due to:

1. Less problems in the ETFE measurements (no leakagéo transients);

10
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2. Itis easy to distinguish or to separate the irgigimal properties (periodic) from the noise
properties (non-periodic);

3. An easy introduction of the randomness into theaigvia random phases and/or random
spectral amplitudes);

4. A free hand in the construction of different sigméilaracteristics by manipulating the
spectral properties (coloring), the frequency gaiad the phases;

5. An easy realization of such signals in modern diggenerators, meaning that the
developed theory is straightforward enough to b#elyiused in practice;

6. Possibility to model approximately the non-periosiignals also by choosing high enough
number of the harmonics in a bounded frequency .band

7. Considering that in many measurement applicati@asarGaussian (noise) signals are
traditionally used, the proposed excitations signabovide portability of the new methods
combined with additional advantages;

8. Gaussian signals are "non-linearity-friendly" (iwhen applied to static non-linear
systems).

9. Last, but not least harmonic signals can be armalyyi integrated and/or differentiated
sparing error prone signal processing where diffeferms of the excitations are jointly
needed (e.g. velocity, angular position, accelendg227]).

It is important to mention, that the approach pnése in the following and based on the
characterization of the non-linear distortions a®ese and bias on the linear FRF, is valid for
any convergent \olterra series, i.e. for any smaatbugh non-linear dynamic system. If
however the non-linear behaviour is strong, usimghdinear model does not make sense, as
the excessive non-linear noise will make the meamsants long and costly and then still the
bias to the linear FRF will be too large to gekalihg of what the linear system dynamics is
really like. Despite hence the universal validifytlte results, their practical usage is confined
to the situations where the level of non-lineargysmall and/or the order of the non-linear
system is low.

Research methodology

The aim of the research was to separate in theurezh$&RF of a weakly non-linear system
the systematic non-linear effects (resident andueng in the measurement results) from
other, noise-like non-linear effects that are reai® with a suitable post-processing.

To this end it is not enough to excite the systdike (a linear system) with a single
deterministic signal. A manageable stochastic p®ie needed, to excite the system with its
sample functions, one after the other. The nomalisgstem will answer to every input sample
function differently, camouflaging the systematiooe (with respect to the linear system) with
"non-linear noise" of varying behavior (see Exanthik1).

11



dc_1199 16

Considering that the input to the investigatedesysis a stochastic process, the system output
will be a stochastic process alike and in princihle systematic (non-zero expected value)

and "noise-like" (zero expected value) error congms can be grasped by computing higher

order moments. Higher order moment estimates catobguted by assembly averages. In

the measurement technical language it means thathweld generate independent sample

functions from the input stochastic process, apipiym as excitations to the system, and then
average the individual measurement results.

The used (usual) sample mean is appropriate bec¢aisample averaging is a consistent
estimate of the theoretical expected value. Thactmal bound limiting the number of
averages is only the measurement duration (cogsh@fequipment, not met stationarity
conditions, etc;)(2) for Gaussian signals the average is also ammim variance estimate
(3) an average can be computed recursively withonecessary data storage (important due
to (1))’.

At the beginning of the research the used excnatignal was the periodic Gauss noise (so
called periodic noise). The break-through was hawévought by the observation that if the
phases of the multi-harmonic signals are randoatgependent, and uniformly distributed on
the unit circle, then with the increasing numbethef harmonics such signal - called random
multisine - tends to a Gaussian signal. FurtherntioeeFRF measurements performed with
random multisines tend asymptotically to the measents performed with Gaussian signals,
also in case of the non-linear systems.

1.5 Summary of the scientific results

The basic concepts of the underlying theory wetabdished at the VUB ELEC Department,
but due to the frequent research visits (from Ursig of Glamorgan (UK), University of
Warwick (UK), Linkdping University (S), KTH Royalnktitute of Technology (S), and last
but not least the BME researchers) the developmeets discussed continuously almost on
the daily basis and were published in deliberajeintly authored publications (at the
Department of Measurement and Information SysteBME, these contacts took between
1997-2006 the organizational form of 4 successfatipcluded Hungarian-Flemish Bilateral
Research Grants).

Among the scientific results there are thus reselipecially from the beginning of the years
long research, where the identification of the wdlial responsibility of the authors is not
possible, but there are also results, which | @apaonsibly call my own, despite the joint
authorship of the publications. Such inseparaldealte merit mentioning because they reveal
the research process and provide the context fesepting the strictly individual
contributions. After summary review of the jointsudts, the individual contributions are
structures into the research Theses, to make adikaction in the presentation.

9 In recent developments, due to the industridirietogical demands, discrete level excitation dgymgere also
considered leading to the “nonlinear noise” ofelidint properties where the processing of the meds@sults
was based on median filtering instead of simpleayiag [210, 268-269].
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Jointly achieved research results

The starting point was the development of the thewir the nonparametric best linear
approximation to weakly non-linear SISO (Singledtingle-Output) systems. We gave the
mathematical structure of the approximation anddisthed the theoretical and practically
verifiable properties of its components. This tletioal approach was extended, supported by
analysis, simulations, and practical suggestiomshée measurement technology of the linear
frequency characteristics ([27*-28*, 30*-31*, 3373 40%, 42*, 45*]). (Sections 2.2-2.3-2.4)

One of the important design parameters in the meawnt technology was the frequency
grid of the multisine excitations, frequencies whdne excitation injects energy into the
measured system. The selection of the frequendyigthe non-linear measurements strongly
influences the properties of the measurable quesititn our research many kinds of grids
were considered pursuing inherent theoretical aadtigal possibilities ([32*, 247, 162, 170])
(Sections 3.2-3.3)

Expected values measured on the \olterra seriels thi2 harmonic signals with a large
number of harmonics theoretically correspond to Riemann integral sums. This made it
possible to evaluate theoretically the robustnésseasymptotic properties of the systematic
error (Best Linear Approximation - BLA) measurengeil7*]. (First part of Section 3.6)

An interesting and pragmatically important issueswhe fact that in the designed (Best
Linear Approximation) measurements the non-lineaise variance is directly measurable,
but not so the non-linear bias (i.e. the systematior on the FRF). Research attempted to
clarify how much these two error components arerddpendent, with the prospect to
estimate the systematic FRF error from the measemesmof the nonlinear noise variance.
[47*-48*]. (Section 2.5, equ. 2.5.14)

Finally if the non-linearity is weak, linear systemalysis may perhaps indicate that there are
no problems with the stability in the close loopeTamplitude of the signals in the feed-back
loop may nevertheless increase so much that thelimeer effects will appear with
potentially unfavorable consequences. Some rese@stdone to predict such situation well
in advance ([38*, 41*, 43*]). (Section 6.3)

Contributions to the SISO theory

The strictly joined research not only establishéeé basic theory but also led to the

formulation of a vast number of problems (not eves solved yet) where the scientific

contributions can be already attributed to the oetecindividuals. In case of SISO systems, |
have dealt in particular with various aspects @& thultisine design and the systematic
nonlinear error in more specific measurement sauat These particular research problems
and results are formulated as independent resd¢aieses.
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Thesis Group 1. Design methodology of multisine eiation signals — SISO systems

Here | have collected results where the topic & thsearch was the flexibility of the
multisine signals, shaping them to the applicateouirements and then analysing the related
problem of how similar are the measurement restilitee excitation signals differ in the
design.

Problem Topic 1.1 Before the theoretical and the practical well-fdung of the multisine
signals with a large number of harmonics the pexvakxcitation signal in a number of
measurement fields was the Gaussian noise. In ythboth signals are asymptotically
equivalent, but for the credibility the non-asymtdehavior of the multisines had also to be
examined.

Thesis 1.1. Design considerations how to chose nisithe excitation signals

Based on the investigation | have proposed a methgy how to use multisine signals if
nonasymptotic behavior is also important. In meaguthe FRF of a weakly nonlinear
systems | propose to use odd-odd (double odd: esecpnd odd harmonic frequency)
random phase multisine considering that:

- the measured FRF is the same as measured oysteenswith the Gaussian signal,

- the uncertainty of the measurement is largelyiced due to the drop-out of the effects of
the even and in part of the odd nonlinearities {§ge3.5.1),

- it is possible to separately measure the everodddconlinearities.

It can be also stated that in case of the Gaussie®e excitation the required frequency band
limitation and the amplitude censoring amplify thias on the measured FRF, if the measured
system does contain odd nonlinearities. Furtherrtt@eaisual amplitude censoring by + &

not enough if the nonlinearity is involved (I prgeocensoring by + 4). [49*-50*, 5%, 8%,

12*, 39*]. (Sections 3.2, 3.5, Th 3.2.1)

Problem Topic 1.2 Frequency grid is the design parameter of the isiét signals.
Frequency grids of various structures can be sstddsused to solve special measurement
problems. Important question is how consistent ¢dug the measured FRF Best Linear
Approximations, if the used multisine signals difiie the definition of the frequency grid?

Thesis 1.2. Unifying asymptotic results for differat frequency grids of the multisine
excitation with the theory of the uniformly distrib uted sequences

| have determined that if the frequency grids are rmodeled as the uniformly distributed
sequences with increasing resolution, then the éetween the measurements obtained from
different frequency grids gets smaller and is of thrder of the magnitude of the grid
resolution [20*, 46*]. (Section 3.6, from Def 3.6.h 3.6.2)

Problem Topic 1.3In measuring non-linear systems an important issube control of the
amplitude density of the excitation signals. laisool to put signal energy at the amplitudes
relevant for the nonlinear behavior.
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Thesis 1.3. Designing application dependent wide bd multisine excitation signals

| have determined that the phases of the multisuhech are a design parameter, with suitable
phase iterating algorithms, can be used to the-desmanded forming of the amplitude
density of the multisine signal. Moreover, withremtrade-off, the crest factor minimization
can be also included [29*]. (Section 3.4, Algorith(4.1-3.4.3)

Thesis Group 2. Properties of the systematic nonlear errors — SISO systems

Here | have collected results of investigating iarendetail the properties of the systematic
error component and the mutual relation of theesystic and the stochastic nonlinear errors.

Problem Topic 2.1 The systematic error on the FRF Best Linear Apjpnaxion measured in
the presence of the non-linearity is in itself naasurable, however the variance of the non-
linear noise is measurable. Important problem i8nod out how the measurable (stochastic)
error can be used to estimate the nonmeasuralsieisatic) error.

Thesis 2.1. Establishing bounds on the systematia@r of the Best Linear

Approximation

| have determined that for the static polynomiah+iaearity the cubic system can be
considered the worst case instance and basedl ¢ravie formulated the worst-case estimate
of the non-measurable error. | have extended thiena@® heuristically to the Wiener-
Hammerstein system model [9%]. (Section 2.5, Tks322.5.4)

Problem Topic 2.2 The coherence function is a well known tool in tleeognition and

examination of the non-linear systems (consideredblack-box models). If the non-linear
system admits the non-linear additive noise motely this additional knowledge will

influence the behavior of the coherence function?

Thesis 2.2. Clarification of the relation of the Bst Linear Approximation and the

coherence function

| have established that the coherence functionbeaexpressed with the components of the
Best Linear Approximation (non-linear bias and edisas well as that the nonlinearity

indicating properties of the measured coherencetilum are consistent with the behavior of

the components of the Best Linear Approximationthie end | have investigated general and
also more specific non-linear system structure$-[1l0]. (Section 2.5, Ths 2.5.1-2.5.2)

Problem Topic 2.3 The researched question was whether the produtiheoBest Linear
Approximations to the superposed non-linear systears be used to build an acceptable
approximation of the whole system.

Thesis 2.3. Analysis of the superposition of the SO systems from the point of view of
the Best Linear Approximation

| have determined that in the frequency domain whmath system components show high
coherence, the product relation of the linear systiheory (i.e. that the frequency
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characteristic of the superposition is the prodottthe frequency characteristics of its
components) remains valid [10*-11*]. (Section 6.1)

Problem Topic 2.4The Best Linear Approximation FRF is traditionatheasured as a sample
mean (for linear systems the minimum variance MaxmLikelihood estimate for Gaussian
excitations). This minimum variance is the basis tbé usual measurement time vs.
measurement quality trade-off. However due to the-lmearity the sample mean is no more
an optimal estimate; its variance is not an attdamaheoretical minimum and can be
improved. By using a limited a priori knowledge abthe measured system this trade-off can
be made sharper.

Thesis 2.4. Reducing the measurement time of the 8d.inear Approximation by Monte
Carlo averaging methods

| have developed an alternative method of measuhedest Linear Approximation where a
better trade-off between the measurement duratimhthe measurement accuracy can be
achieved by using the Monte Carlo variance redactechniques, without increasing the
complexity of the measurement protocol [23*]. (S&Ti6.4)

Contributions to the MIMO theory

In the real life problems there are usually maordependent effects cumulated towards a
common output. It is important thus to handle Muéiinput (Multiple-Output) models also.

It is also expected that the earlier SISO caseldhappear as a special case within the MIMO
theory.

Thesis Group 3. Properties of the systematic nonlegar errors — MISO systems

Based on SISO Best Linear Approximation theoryuehdeveloped the ground results in the
MIMO (MISO) Best Linear Approximation theory, fodng on the description of the
systematic errors and the equivalence of the measants for different kinds of excitations. |
also have extended to the MISO case some of the syecific results developed for the
SISO systems.

Problem Topic 3.1In case of multiple input systems separate Beséan Approximations
can be defined for every input-output signal chanimecomputing such BLA system other
inputs act as disturbances and complicate the ctatipn of the non-zero expected values.
Similarily to the SISO case some kernels do notrdmute to the systematic errors, however
the general picture is much more complicated.

Thesis 3.1. Developing general MIMO BLA theory fromthe point of view of the

systematic FRF error

| have determined that using the random multisih& BISO measurement technique, the 2-
dim MISO cubic system excited with independent mandnultisines defined on a common
frequency grid, can be modeled (similarly to theés@lcase) as a 2-dim linear FRF
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characteristics and the nonlinear output noise ,[28*-14*, 44*]. (Sections 4.1-4.2, Ths
4.1.2, 4.1.3, 4.1.4, 4.1.5). As a full generaligzati have determined that the multiple-input
\olterra system excited with the random multisirxeigtions can be expressed as a linear
BLA FRF system network, completed with the outpom+inear noises. The earlier SISO and
2-dim results are the special cases of the genasa [15*%, 20*] (Sections 4.5-4.6, Ths 4.5.1,
4.5.2,4.6.1)

Problem Topic 3.2Similarly to the SISO systems (see Thesis 2.3ptaresting question for
the MIMO systems is how robust is the FRF BLA mafrom the point of view of further
distortions superposed on the system.

Thesis 3.2. Superposition of the MIMO systems frorthe point of view of the Best Linear
Approximation

| have established that the Best Linear Approxiamato a MIMO system is robust when the
excitations are nonideal and are modelled by thputwf a nonlinear Volterra MIMO system.

| have established that the nonlinear distortifigot$ cause larger FRF characteristics errors
than the linear distorting effects of similar arydie, the distorting effects originated in the
cross input-output signal paths cause larger ett@s the distorting effects in direct signal
paths, as well as that the FRF phase errors irereater than the FRF amplitude errors.
[18*] (Section 6.2)

Thesis Group 4. Design considerations about the atation signals — MISO systems

Multiple inputs introduce additional freedom inttetexcitation design. Not only we dispose
the design parameters at a single channel, welsardacide how the excitations at different
input channels and in different experiments couddrblated to yield better measurement
results. The challenge lies in designing excitatidhat are better from the measurement
technical point of view (i.e. warranting equivaleneasurements at a lower cost). In case of
multiple inputs a distinction must be made betwe®n2-dimensional and more-dimensional
weakly nonlinear systems. Surprisingly, in low noear order 2-dimensional system
measurements the traditional (linear system theargijse attenuating techniques are
henceforward applicable, but this advantage isftoshigher order nonlinearity and/or higher
input dimensions. There new noise attenuation tgcies has to be developed.

Problem Topic 4.1 1In linear MIMO measurements an important part lig tmeasurement
methodology is the input design suitable for thes@ocancellation. | have investigated
whether such noise cancelling methods could be adsal to the advantage in the BLA
measurements to cancel the non-linear noise.

Thesis 4.1. Optimizing excitations used in the 2-aii BLA theory

| have determined that the linear noise attenuagegnique is in the same way effective in
case of the 2-dim cubic BLA measurements. | hase dktermined that this approach is not
suitable in case of the system of a higher nontioeder or the higher number of the inputs.
[22*, 13*-14*, 44*] (Sections 4.3, 4.4)
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Problem Topic 4.2 The MIMO extension to the SISO BLA theory was fotated for the
random multisine signals. An important question aeer is whether the excitation signals
asymptotically equivalent in the SISO theory (nuifte, periodic noise, Gaussian noise) are
similarly equivalent in the MIMO case.

Thesis 4.2. Equivalence of the excitations from th@oint of view of the systematic
(MIMO) FRF error

| have determined that the Gauss noise, the periogise, and the random phase multisine
signal classes are asymptotically equivalent @ftamber of harmonics is increasing and the
spectral properties of the signals are comparaid®)in the case of nonlinear MIMO \olterra
systems in a sense that using these excitatioralsighe measured multidimensional FRF
BLA systems tend in the limit to the same transteairacteristics matrix. [21*] (Section 5.4,
Ths 5.4.1, 5.4.2)

Problem Topic 4.31n the detailed presentation of the results reféin Thesis 2.4 one can
see that in the multidimensional case the invefsthe input matrix amplifies uncertainty,
even in case of the multisine excitations (conttarthe SISO case). An important question is
whether this situation can be improved or not?

Thesis 4.3. Special orthogonal random multisines

With the introduction of orthogonal random multesinl have developed a new efficient
method of measuring the Best Linear Approximatibnhe MIMO V\olterra systems. | have
proved that the newly introduced excitation sigraks equivalent in the sense of the Thesis
2.4 to other listed excitation signals, but resulan essentially lower level of the non-linear
noise experienced on the measured FRF charaatsri$fi5*-17*] (Sections 5.1-5.2, Ths
5.1.1,5.2.2, Lemma 5.2.1)

1.6 Review of the content

Section 2 introduces the general theory for thgletimput single-output (SISO) systems.
First a simple example is shown, without the intddprmalism, providing the feeling of the
problem and yet presenting every important issug amestion, which later on will be
elaborated in detail (Section 2.1). Section 2.Z@nés the main result, i.e. the additive non-
linear noise model to the non-linear system, armh ttihe properties of the systematic non-
linear distortion (Section 2.3) and the stochastan-linear distortion (Section 2.4) are
analyzed. As mentioned before, the Volterra modelser the usual non-linear block models.
The developed theory is applied to them in Secldn Finally the question of the mutual
analysis of the distorting bias and variance issaered in Section 2.6.

The purpose of Section 3 is to show the enormoesilility of the multisines as the

excitation signals. Section 3.1 discusses tunakle parameters, i.e. the frequency grid, the
amplitude spectrum, and the phases. Then variopsstyf the multisines are presented
(Section 3.2), discussing their design and thenohtd effects on the measured linear
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approximation. The aim of Section 3.3 is to shdwattthe measurement results obtainable
with the multisines are comparable for the incregsiumber of harmonics with the results
obtained with traditional excitation signals (Gaassnoise and periodic noise).

Section 4 extends the results of Sect 2. to theiphedinput multiple-output (MIMO) Volterra
models. The main result, the multidimensional adelihon-linear noise model, is developed
in Section 4.1 and the properties of the non-lif@ases and non-linear noise variances are
evaluated in Section 4.2 and 4.3.

In MIMO measurements excitations are applied toartban one input simultaneously. The
excitation signals must be designed thus not amlthemselves, but also in relation to the
signals applied at other input points. Section &sents excitation design problem for the
MIMO systems. Free design parameters are discusseédkection 5.1. Various excitation
schemes and their effect on the model developé&settion 4 are analyzed in Section 5.2.
Finally in a manner similar to Section 3.3 the ®&glénce of the measured results for various
MIMO excitation schemes is considered.

Section 6 presents some applications of the intredutheory. In Section 6.1 simple
measurement application are shown, based on #ratlire. Sections 6.2 and 6.3 elaborate on
the problem of non-linear distortions in cascadgstesns, for SISO and for MIMO systems
respectively. Besides modeling practical measurérpesblems cascaded systems make it
possible to study the robustness of the develdpearétical tools. In Section 6.4 an attempt is
made to qualify stability problems in the non-lindeedback system based on the additive
non-linear noise model.

In the development of the additive non-linear naisedel, necessarily, plenty of problems
remain still open. Section 7 discusses some ofibie interesting and difficult open research
issues.

Finally the Appendices contain the most lengthyofs@nd examples.
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2. General SISO theory

An unexpected non-linearity can deceive the uséefamiliar with the non-linear phenomena,
or the user versed solely in the linear measuremeittentification methods, making her/him
thinking that the nature of the problem is quitiedent. Consider simulated measurements in
the Example 1.1.2. The FRF of a linear system,ratise smooth, can become scattered and
acquires the “noisy look” if the excitation signhits the hidden non-linear component.
Besides scattering, the measured FRF will also ibsell, this though is more difficult to
discern, as the true frequency dependence of thecteristic is not known in advance. It is
common knowledge, however, that without the noike, FRF measurements should yield
more or less smooth functions. The visible “noissiecan thus easily be taken as the proof
that the output noise is the real problem hereg@afly as it is usually present). The
scattering is caused by the non-linear mechanissuwiming various harmonic components
in the input signal and shifting them to differg@taces (frequencies) along the frequency axis.

Example 2.1: Scattering of the frequencies due to mon-linearity. Let the systerr y(t) = u(t) + cu®(t) be
excited by the input signal containing two harmorimponents with frequencies; = 1 andw, = 4. Then the
output signal will have harmonics at frequenciés+2, £3, +4, £6, +7,+9, +12.

2.1 Problem introduction via simplified examples

In this Section the main points of the theory depell formally later will be shown in
simplified measurement examples, without strictrdebns and derivation.

A. Measuring a linear system with a random signal Assume that for linear FRF
measurements a periodic rand u(t) = u(t, ) stochastic process input signal is used. Let the
collected measurement data come from noisy lingstem, where the zero mean output noise
is similarly a stochastic process bound to a randeemtd, then:

y(t) =G, (Qu(t,$) +n(t,{), or (2.1.1)
in the frequency domain is the discrete frequendy) Y(1) =G,(DU (1,&) + N (1,{).
(2.1.2)

The FRF is computed (froko= 1... M experiments) as:

AR Y009 L3 N9, 0,8
G(l) === o o - Gr—= P

w2,V GO L3 IUM )
This estimate is unbiased, i. E{G(1)} = G, (1), (2.1.4)
because the output noise and the excitation aepertient:

(2.1.3)

10 Considering that is the output to the stochastic input and contaiss random noise, formally we should
write: Y(I) = Y(l, &, ¢ and similarlyG(l) = G(l, &, ), however these arguments have been omitted doitycl
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I NOEO0Y L. 2 EAN® (,O}ELUY A &)
Eel 1k (k) 2 - : 1 (k) 2 =0. (2.1.5)
w2, UY &) I3 ELU®,H

and its variance depends on the degree of averagnmogluced in (2.1.3).

Note: For the random multisine signals considered 1 E . {U (I, aHU(l, &} =U2.

B. Measuring a non-linearly distorted system with a deerministic signal. To measure the
linear FRF it is enough to keep a single inputizasibn (i.e. leté = &) and to average the
results to get rid of the output noid(l,{). Reassured that we can thus simplify the
measurement we continue overlooking the point, tleat the measurement data is coming
from a noisy non-linear system:

Y (1) =Gy (DU (1,&0) + Yy (L&) +N(1,0) (2.1.6)
with Yy, (1,&,) =V[U](l,&,) the non-linear part of the system. The FRF esénsahow:

Y(1) _GoMU&) +Ya (L&) +N (L) _ (|)+YNL(|,50)+ N(,?)
U(.<,) u(,é&,) VTUGE) UdLE) @1

Averaging gets rid of the output noise, but the-hoear term is not random:

S — Y() 4 YNL('!EO)
E{ 1)} = E{m} =G(l) +m, (2.1.8)

and the measurement results are heavily distorted.

G(l) =

C. Measuring a non-linearly distorted system with a radom signal What will happen if
we return to our original random inplY (1) =G,(1NU(1,£) +Y, (1,é) + N (1,{) ?

Now:

1 w g ® 1 waq a0 ® 1 ) = (k)
=L YR, _ G, 1)+ DY 1HU (.8 L > NOCOU T8

G() = - > >
ﬁZkIU(k)G,E)I ﬁZkIU(”(I,f)I lekIU(k)(l,f)I

and:

YR a,au" (.2,

A3 N9 QU 0.9,
AY UM

EAG)} =G, (1) +EH >
I3 1U9 0,8

+EL

(2.1.9)

The second expected value is not a problem, asraotom components are independent and
zero mean. What about the non-linear expected valtree middle?

If the input signal has bounded realizations foerg\é and the non-linear system V[.] is well
behaving (e.g. continuous, BIBO stable, etc.), ttien output of the non-linearitY,, (1,¢)
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3 v90,80" 0,8
I3 U® 8

variable for every frequencl will have finite expected value and finite varianavhich
symbolically can be written as:

G(,£,9) = Gy() + ELGy(L O} +(Gy (1,E) ~EHG, (1LE) + Gy (L.0)
=G (N +G (1) +Gs(1,4) + Gy (1,€,4)
where G(l)is the true linear FRFG: () is systematic non-linear distortion, part of the

measured FRF after averagirG,(l,¢) is a zero mean non-linear stochastic distortiow, a
G, (,¢,¢) is also a zero mean distortion caused by the ouipse. Then:

will also have bounded realizations and 1G, (I,¢{) = random

(2.1.10)

EAGN =Ef GI1&J =q) +G)I | (2.1.12)

and we will see later on that it is also possibléave:

Var[G(1)] =VarGy(l, £)] +VarG, (I.£ )] (2.1.12)

It is important to note that a part of the non-inglistortion observed in the transfer term

u(,é) has been eliminated by being pushed into the mean stochastic component,

which can be got rid by averaging, already emplayedet rid of the output noise, and this
without any particular strict assumptions on tha-finear distortion.

D. Measuring low order Volterra systems with random mutisines. Assume now that for
the FRF measurements so called uniform random phaiesine signal is used, i.e. a multi-
harmonic signal of periodN, with M harmonic components distributed on a particular
frequency grid, with independent random phasesegel spectral amplitudes, normalized to
unit power, i.e.:

M

u(t):iﬁ(k)cosmtﬂq(): Z U(k)éant/N

y , (2.1.13)
Uk) =20k €%, 2> |U(K’ =1, |U(K'=12M, =2 M

and assume, that the non-linear part of the syi&ars® order \olterra system, which in the
frequency domain can be written &g ko, ks # 0):

Yu (D=2 >0 Gl ke, k) UCK) UCk) UCK)
S MYEY L T Gl k) e g

(2.1.14)

whereGs(., ., .) is so called (symmetric) Volterra kernéthe 3% order, anck +k, + k= 1.

Now:
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el g %Q

u(,s)
(M )_3/222:—M,thA:—M,G3(k1’k2’k3) drl) dole)  plke)
=E/{ : o0 } (2.1.15)

:(ZM)_:LZZ=—M,ZZ=—M,G3(I<1'kZ’k3) E{ ) fela) glke) ety

Considering that at different frequencies phasesiadependently distributed on the unit
circle, the expected value is nonzero only if thegfiencies are suitably paired within the
sum, e.gk; =1, ork; =1, or ks =1. Taking into account tha#(-k) = -¢(k):

E¢{ej¢("l) eltle) aid(i-kke) o= ¢(|)} — E¢{ej¢(') gltle) ald(-ke) e—i¢(|)} =1 (2.1.16)

and with this:a% =G{) 32 M) —123:_'\/',(;3( Ik —K =3IB G(| f,— f) df
(2.1.17)

for largeM, in some frequency barl (factor 3 comes from the ways frequenayould be
paired). After the averaging the FRF results timus i

G()=Gy(N+3(M )Y | G,k ~K)= Gya (). (2.1.18)

Taking together the points C and D we should i t

() The obtained results permit to write down thiginal measurement problem (no output
noise is assumed for clarity) as:

Y (1) = Goa(DU (1) +Ys() | (2.1.19)

I.e. under random multi-harmonic excitations thépati of the Volterra system looks like the
output of a linear system distorted by an additivese;

(b) This additive noise is naturally a function tbe input signal (as the problem is non-
linear);

(c) Non-linear errors have been decomposed. A gfatthe non-linear effects went into the
systematic distortion on the measured FRF, anofazst into the non-linear stochastic
component, which can be handled with traditionalgpwith this development a non-linear
system becomes now easier to analyse;

] Y
—_— NL }—»

Ys
T
—»| Gga

Fig. 2.1.1:Non-linear SISO system and its the additive naedr noise source model.

(d) Numerous questions haven't been raised andeaslthg them requires a more formal
setting, e.g.: what class of non-linear systemsvearmeal with, what class of excitations can
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we use, what are the properties of the non-line@aen what can we tell about the non-linear
distortions if the system class or the excitatitesg is narrowed to well defined practical
cases, etc.?

(e) As it was visible in the derivations, the numbé the harmonics and their frequencies
weren’t particularly critical to the final resukespecially interesting are thus the questions
related to the frequency grid and the asymptoti@b®ur of the excitations.

2.2 Best Linear Approximation of SISO Systems
System and signal models

We will consider Volterra systems or systems béimgts of convergent \olterra series. The
reasons of this choice had been outlined in Sedti8n

Definition 2.2.1: Single-Input Single-Output (SISO)finite Kth order Volterra system.
The output of such system can be written in timmaio as [22, 198]:

YO =VOIO =3 'O =3 [f 8,E1,) []Lut-r)dr (221)

whereg, is the time-domain Volterra kernel of ordeith. The primary domain of analysis
will be the discrete frequency domain, where fa pleriodic inputs the so called fundamental
frequency-domain formula [22, 25] is valid:

M

K K

Y =VOIUI) =2 Y ()= > Gk ke ko )], U (22:2)
a=1 a=1 K ,..k,;=—M

wherel =2 k, i =1 ... qa, is a discrete frequenc, is a symmetrized frequency-domain

kernel of ordent th, andM is the number of harmonics present in the inpyriaim

Definition 2.2.2: Single-Input Single-Output (SISO)Volterra series The \olterra series is
defined by the convergent series:

VO =MUO =Y v © = [ 9,Cnr,) [,0¢-7) T (2239

or in the frequency domain by:

M

YOVUID =3 Y ()=3 > Gk ke ko, H[JLUK  (224)

= a=1 K gy =M

where the notation follows Def. 2.2.1. Kern@8g are bounded by ma&{| = Mq. The series
is convergent for everly if the input signal is normalized to unit powerdahas uniformly

bounded spectral amplitudU|< M, /N[2M | furthermore if together [30]:

z M, MJ <o (2.2.5)

a=1l
|
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Note: The above conditions on signals and kernels quévalent to the conditions stated in [22, 25] the
validity of the fundamental frequency-domain form®.2.2), where it is required that the boundjegl.(k «)
input signal should be of bounded variation ovee qeriod, otherwise the fundamental frequency-domai
formula won't converge absolutely.

Corollary 2.2.1: Random multisine signal (2.1.13) is of bounded variation \@r one
period.

M
Proof: For U(t) = z a, cos(y,t +@,) with periodT, its variation is defined as:
k=1

varl] = im Y [, -ut, )= m D[ 3, costat,, +4,) - a, cos@at, +4,)|

n=1 k=1

(2.2.6)

varu(] < lim > > 13, llcos@at,,., + @) —cost, +4,)| (2.2.7)

—

n=1 k=1

wheret, are timepoints within the period. Puttibg = t, + A,, whereA, OO(T/N), using & < My/VM, and after
some trigopnometric manipulations we obtain:

) N M M M M ) N M M
varfu(t)] < lim = A | lim) A =—2Y T<w
u(t)] nqw;;NQJ n| N; nqw; n N;% . (2.2.8)

Without the proof we state some essential theoreams [22, 25] about the behavior of the
\olterra series. Everywhere we will assume boundedts within the convergence radius of
the Volterra series.

Theorem 2.2.1 Error bound for truncated Volterra series is [22, 25]:

IVIul(t) =V Lul(t) . < i g IL (lull)" (2.2.9)

k=K +1
where ||.{ is sup norm.m

Theorem 2.2.2 Continuity of Volterra series [22, 25]. LetB; be the ball of radius in L”,
and suppose < p, wherep is the radius of convergence of the Volterra sef@22-2.23)p =
Rad V = (lim sup_. [g.[*™™ Then: V: B, — By is Lipschitz continuousy: B, - L* is
continuous, wherfX) = Zn-1.._|lgn|k X" is so called gain bound functiom.

Theorem 2.2.3 Steady state theorenj22, 25]. Letu, us be any signals withu|l., |Uslk < 0=
Rad V, and suppose that) — ugt) ast - c. ThenV[u](t) - V[ug(t) ast — . m

Theorem 2.2.4 Periodic steady state theorenji22, 25] If the inputu is periodic with period
T fort = 0 then the outpW[u] approaches a periodic steady state, with periad
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“Intuitively, an operator hakading memoryif two input signals which arelosein therecent
past butnot necessarily closm theremote pasyield present outputs which acose [23].
This intuitive definition will be enough for our qoses, for the formal definition see [22-23,
25]. Then:

Theorem 2.2.5 Approximating fading memory systems[22-23]. Finite \olterra system
(operator) driven by bounded inputs has fading nigmAny time-invariant non-linear
system with fading memory can be approximated figie Volterra system in.||.. sensem

Note: The concept of fading memory is not unique. Bedatling memory in the sense of [23] on the fulidi
axis, there are also related concepts of fading engmon the positive time axis, approximately finitemory,
uniformly fading memory, or myopic maps (see [192[hese concepts differ depending on the time axis
involved, assumed causality of the operators, er floperties of the input signals. The conceptasfiry
memory of [23] is perhaps the most natural (scataplitude continuous signals on the full time axim)t the

differences are inconsequential considering tHdtiadls of fading memory systems can be approxichatethe
finite Volterra series.

Definition 2.2.3 Non-linear system class of interestin the BLA modeling approach the
class of systems of interest is restricted to thwlsieh are limits in least-square sense of the
convergent \Volterra series defined in Def. 2.2f2otherwise not specified, the term ‘non-
linear system’ will be used in this content.

Note: The possible convergence schemes, the conditiand, the consequences essential in the system
identification are discussed in more detail in [4%hd are summarized in the Table below:

System class Properties

Wiener system Output converges in mean squareed3nimt-wise convergence. Discontinuities and
saturation allowed (bifurcations, chaos, sub haiosyrtc. excluded). Model valid for
the Gaussian signals.

Fading memory systenOutput converges uniformly. Saturation allowed. Mioealid for bounded inputs.
(bound set by the user)

\olterra system Output converges uniformly. Delivatmodel converge uniformly. Saturation
allowed. Model valid for bounded inputs. (boundmatrbe set by the user)

As mentioned earlier, periodic (multi-harmonic, salled multisine) excitations will be
generally used and it's time to define them exactly

Multisines will be defined on various, not necesgamiform frequency grids. Beside some
natural conditions (asymptotic Riemann-equivalerss® Section 3.6) the obtained general
results do not depend on the particular frequenag gsed. Let the period bbl, the
fundamental frequen f, =1/N, and let the set of the integer indices correspantb the full

frequency grid besgqoz[l 2 .. %—1} So=" S, Then an arbitrary permissible
frequency grid of exactli harmonics, of amN-periodic multisine is defined by the subset

Si0Se {#0%., $=-% | = representink0s,, { = kf frequencies.

Asymptotic computations will be done for an inciagsN and M, keepingO(N) ~ O(M).
The normalization is done by downscaling the otfg® O(1) spectral amplitudes t1/\/2M .
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Definition 2.2.4: Normalized random (phase) multisine Normalized random multisines
(called alsgoeriodic noiseexcitations) ard\-periodic signals with randomness introduced in
the amplitudes and phases, defined as:

U(t) - (2M )—1/2 Z 0 (k/ N)é(Zﬂk tIN+g) — (2 M)—1/2 Z U( k/ N) éZﬂkt/N '
KOSy n S KOSin S
(2.2.10)

U, =U(k/N)=U(k/ N) * (2.2.11)

The functionU(f,) takes nonnegative real valueU (f) and phaseg« = -¢ are the
realizations of independent (jointly and ougrrandom processes satisfying the following
conditions: phasegy are iid. random variables uniformly distributed [@) 2r), L](fk) has
bounded moments of any order, aE{OZ(fk)} =S,( 1), where §,(f) is the input power

spectrum defined for a continuous frequency argamen

Signal (2.2.10) is calledandom phase multisine, if only its phases are random, and the
spectral amplitudes take real nonnegative veU (k) =./S,( t) = 0. Furthermore the spectral

amplitudes are uniformly bounded S ( f)<(M,)? <», and have at most countable number

of discontinuities in the considered band. The aunbés of the sine waves in (2.2.10)
decrease a®(M™*?), and the power:

—Nz_luz(n)=iz U F=-2Y (G.) (2.2.12)
N 7% M kO S ‘ Mg S ‘
is bounded byNly)? as there are exacth nonzero harmonics in (2.2.1G.

Definition 2.2.5 Uniform vs. colored multisines If |Uy|= const, we speak about
(normalized) uniform random phase multisines, otiwx we speak about (normalized)
colored multisiness

When normalized random multisine signals (2.2.1@) applied to the system (2.2.4), the
informal decomposition (2.1.19) can be stated fdlynzes:

Theorem 2.2.6 Non-linear additive noise model and the Best LineaApproximation.
Under random phase multisine excitations (2.2.b@) dutput of the system (2.2.4) can be
written as:

Y() =(G()+ Gy (NUN) +Ys (1) = Ggp u(NU1) +Y5 (1) (2.2.13)

whereGg,, (1) is so calledBest Linear Approximation, and is the solution of:

Jga =ArgminE, (y- gBLADU)2 Gya(l)= areg min EU| Y(y G (U (||)2 (2.2.14)

98LA BLA

G,(I) is the FRF of the true underlying linear systernafiy exists), and the bias or

systematic distortion terGg ,, (1) is:
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G ()= G ()+OM™) (2.2.15)
2a-1 _ Ca
QW(D_MmﬂlgﬁxG(lK ..... Kok k)] Juky (2.2.16)
c, =277 (2a -1 (2.2.17)

and the non-linear stochastic distorticYe,, (I) is zero mean, and is asymptotically
uncorrelated over the frequencly and with input signal. FurthermorY, (I) is
asymptotically independent from U(k), fark, I; Y¢ (1) is asymptotically circular complex
normally distributed and mixing of arbitrary order:

E{Ysm(1)} =0 (2.2.18)
E{Ysw (DU(1)} =0 (2.2.19)

The even moments do not disappear, but the odd mismenverge to zer& € |):

E(MY, () Ysm( B} = Pen()=OM?), k=] (2.2.20)
sl T oM™, k#l -

EIMYsy (DYsw(K}=OMM™)  forl 2k (2.2.21)
) 2 . oM™, kzl

E(M (lYS,M k)| ~ Oy (k))(leM (3] _UYS,M(l) )}_{O(MO), Kk=| (2.2.22)

E{M*2Y, ) Ys (R1% = @ M) (2.2.23)

Proof: Original proof appeared in [30*], simplified andrgzalized later in [162-163, 170] to periodic anauSs
noises.

From those proofs we emphasize only the methodwiputing nonzero expected values for random moéisi
excitations, as it is an standard tool in the Bekated proofs.

Consider that we are interested in the calculatiothe nonzero expected value E{Y( HU( |)} from (2.2.4).
As the randomness is only in the amplitudes angt@ses of the inputs, the computed expected vakas the
form of E{U (k)U(k,)...U(k )} . The expected value will be different from zeralyoif the number of

terms is even and all the frequencies are paitec (K, , Kk, = —k') leading toU (k ) =U(k,) = U(k).
Consequenty E{U (k)..U (k} = E{[UC.Ju (.S} = E{ua)} - E{u .1 o a

frequency indices are different. As the paired temre of O(M _1), after summation in (2.2.4) they yield

O(2) order contributions. In case when more indices @de like e.g.l, =I,, we obtain moments

4
E{‘U(|p)‘ } or higher. However the imposed additional constr |, =1, reduces the number of possible

summable frequency combinations resulting for thghdr order moments in the contribution of order
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Oo(M _1) , Which asymptotically disappears. When the nundfendices (terms in the expected value) is odd,
one of them cannot be paired resulting in zero ebgukvalue due to the circular distribution of ese.

In case of the random phase multis E{|U (|1)|2 |U (In,2)|2} = |U (|1)|2 p (n,zjz. m

Notes
(1) All the expected values are with respect torttrelom phases of the input signal.

(2) Measurements on a non-linear system depencherinput signal, consequently also on the number of
harmonics in (2.2.10). This justifies the indexatimtn in (2.2.15-2.2.23).

(3) The Best Linear Approximation system BLA) Gg,y(I) in (2.2.13), the measurable linear
approximation to a non-linear system, was originallled Related Linear Dynamic System(RLDS) [27*-
28*], as a system strongly “related” to the lingart of a weakly non-linear system. From (2.2.1527) one
can see that it depends on the properties of et irandom multisine and on the odd non-linearodigtns
present in the measured system. Considering thaREDS is anyhow the best linear approximatiorhi tnean
square sense, and that the recent literature dimtrer approximation to non-linear systems strgreghphasizes
this point, this component has been renamed fobdhier correspondence with the literature.

(4) From (2.2.13) and (2.2.19) we can see thaBth& can be measured as+HRF:
E{Y() U(D}
E{] U(1) %}

i.e. as the ratio of the cross-power spectrum by dlto-power spectrum which is also the Best Linear
Approximation in the least-squares sense. Foraghdam multisines (2.2.24) simplifies to:

aam () = (2.2.24)

CEYO U B _ 0IOL )
GB M )= P 2 =E 2} - 2.
A =TV YCRRTTTOY AT IRARDT (2:2.25)
Dividing (2.2.13) byJ(l) we can write it down as:
Y. |
JL(,')) =Gy (1) + 3%()) = G(1) = Gy (1) + G ) 2.2.26)

where GS’M 0] represents the scattering visible on the measwadinear FRF, see e.g. Example 2.1.1.

(5) The stochastic properties of the phases thiealigt could be relaxed, because what is reallyunegl is to
haveE{exp (j¢)} = 0, which could be achieved with other disttilbns also.

(6) In the research the true linear part of theklyeaon-linear system was denoted interchangeabyor Gj.
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Effect of nonlinerity on the FRF
20

r”/ N )
e \«@«

-40

dB

-60 I AR N - . S -
| 1 1

: GBLA: L 1«, :- . .

True Iipear syétem —— L, M

SacrGs— LT T VI T

&
3

-1g0

-120
o

i
500 1000 1500 2000 ' '
Number of averages—| ! ! ! :

Fig. 2.2.1:The effect of the non-linear distortion on the FREasurements in the light of the additive nondme
noise model. The measured FRF differs from thealingart of the system in level (systematic bias) an
smoothness (stochastic non-linear noise). The measants can be smoothed by averaging (obtainingti#e
approximation), however the results remain bias®dakly nonlinear Wiener-Hammerstein system composed
from two Chebyshev filters {5order, 10 dB ripple, 0.08 relative cut-off frequgn(input dynamics), and'3
order, 20 dB ripple, 0.035 relative cut-off freqagnoutput dynamics)) and a static polynomial nosdirity
(odd powers up to I"order) was measured with an uniform amplitude @ddiom phase multisine with 2185
harmonics. (The polynomial coefficients were seth® values corresponding to the nonlinear poweterd in

the output signal being 10% of the overall outpuver)

2.3 Some properties of the BLA and the additive nchinear noise model

It is in the interest of the user leaning on thdithee model (2.2.13) to know more about the
properties of the systematic and the stochastielinear distortions. Three kinds of properties
are investigated as being of interest to the praktipplications:

- asymptotic properties as the number of harmonics in the input signati$etioco. Modern,
memory based signal generators permit an easy rdesigdense multisine signals,
consequently asymptotic properties are within readhe otherwise finite measurements.

- properties of the systematic and stochastic distortiasthe function of frequency.

- robustness of the systematic and stochastic distortidasthe free parameters of the
measurement like e.g. the amplitude spectrum of the excitaiothe overall level of the
non-linearity in the measured system, or changdsedrequency grid.

Theorem 2.3.1: BLA (2.2.13) is a bounded system, dmuous in the level of the non-
linear distortions and in the amplitudes of the inut signal.

Proof: The boundedness of the BLA is the result of thenbledness of the Volterra system, of the input digna
and of the BLA measurement procedure (2.2.24).ceatinuity in non-linear distortions let the Voltarsystem
be decomposed as follows:

YO ) =V[U](1) =V[U](l) + aV,u](1) = Y,(1) + aY,(1) (2.3.1)

wherea is arbitrary real number which will represent tieel of the non-linearities. N is well defined Volterra
series, thenV; and V, are also well defined (sub-series of a convergaartes in (2.2.4)). By additive
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decomposition (we omit the frequency and the iriddicating finite numbers of harmonics):

Y(a):!"'a!: L)AU"'Yd)z( Ga U YN+ &Gy, ¥ Y

2.3.2
=(Ggu taGy U+ (Ygt+ aYy) ( )

Multiplying by U(l) , taking expectation, and using (2.39}-{ are uncorrelated) we can see that:
GI(BT_)A = Gya T aGyp Y(sa) =Yt aYg (2.3.3)

Let & converge to some, and lel| Gy ,, |< M, (BLA s bounded). Let choose arbitrasy 0. Then there
existsN,, that |a - a'| < &M, for k= Ny, and:

a’) |— 3 —
|G|(3T_k/3 _GELA =18y Ggre — a Gop K1Gas lla— d ¥ M M=¢e (2.3.4)
2

The proof of the continuity in input amplitudeshiased on the product, ratio, expected value, sopéign of
continuous functions being also continuous funation

U - U, U -u@, ut) - y) =VIu®l, y) - Y Y =Y P U - U, [,

U Y = Y /Ui /U - BY/U} = G, (2.3.5)
|

Theorem 2.3.2: Variance of the non-linear noise isontinuous in the level of the non-
linear distortions and in the amplitudes of the inut signal.

Proof: Consider the decomposition from Th. 2.3.1. For zeean stochastic contributions we have similarly:
VarlY*1=B ¥13=§ Y} 2 Re EY ¥ + HE W (2.3.6)
IVar[Y*'] - Vaf ¥*]|=( a- §[2Re EX ¥+ {E YI( & )h (2.3.7)

The expected values are bounded, the term in th#red parentheses can be also bounded (skiy)bwnd
choosinge/M; for theay series, we have:

IVar[Y{*] - Vaf ¥l|< M| a- &l=¢ (2:38)

Let systemV; be the whole linear part of systévn and systenV, the whole non-linear part of systevh let
furthera* = 0. Then the additive noise model (the BLA ahé hoise variance) tends, as the level of the non-
linearity decreases, to the noiseless linear FR&sorement, i.e.:

Gith » Gia= G angVar[Ys¥] - Var[Y{"]=0 (2.3.9)

For the input amplitudes consider that the prodiattp, expected value, superposition of continufwmtions
are also continuous functions.

A

Uu-U,, U ut), u) - y®)=viu®)l, vyt -Y., Y -|Y, |2, Uy - Uy |2,
1Y P~ E{l Y, |%}

finally from | Y F,Garas U, f~ Varl]= Bl XfF}= B Y31 GJA1 U? (2.3.10)

The BLA model derived for the random multisines bagn extended to the periodic noise
(random amplitude$)(f)) and to the Gaussian noise. For all these sigiaases it has been
shown that the measurement results are equivalé@t163, 170]. The FRF of a SISO system

31



dc_1199 16

measured with the periodic signals évarfM ™Y, ()] the non-linear noise variance tend

in the least square sense (as the number of tineoh&ss tend to infinityM — [J) to the best
linear approximation and non-linear variance meagwrith the Gaussian signals, assuming
that the spectral properties of the excitations exqaivalent. For the finite number of the
harmonics the respective results are comparaldedier ofO(1/M) [30*, 162, 170].

From the point of view of the BLA measurements 42 the Gaussian noise causes leakage
on the finite length records. Due to the small amgés in the amplitude spectrum of the
Gaussian or periodic noise the FRF estimate (2)2s2doise sensitive and shows fluctuation
and spikes difficult to be averaged. In comparitom amplitude spectrum of the random
multisines does not fluctuate over sample functidghe denominator in (2.2.25) is constant
and the FRF estimate is more stable. For this reagoadvise to use random multisines in the
measurements of weakly non-linear SISO systems, [IIBZ (see Fig. 2.3.1).

150 : 18l : 150
: @, : W
' e NG :

100 100 1t ............. 100 ______________

S0 SO FEEH A AR e e e oo S0k ..........

2 D i D >
0 500 1000 0 500 1000 i 500 1000
Gaussian Random MS Random Phase MS

Fig. 2.3.1: Spectral behavior of investigated excitation signall signals are colored with a™3order
Butterworth filter. For better readability the spacare plotted aM=26 frequency points, which for periodic
signals conincides with the number of the harmonRlsase take notice of the deterministic, nontagoity
character of the random phase multisine spectratr@y to the random multisine and the Gaussiasa)avhich
ensures a better stability of the BLA measurements.

It is important to note that the above introduckdracterization of the non-linear system as
the biased and noisy linear FRF is valid for evesgvergent \Volterra series. If however the
non-linear effects are strong, such linear mod@loistless, because its approximation errors
will be high and the model won’t convey any usefuformation (e.g. about the system

dynamics). Despite the universal validity of theulés their practical usage is limited to

weakly non-linear (low order) non-linear systems.

Note: The basic theory is not suited for the close lodgntification, because some essential assumptiens a

violated within the loop. Close loop BLA model (laeen the loop reference signal and the loop owtjmutal)
has been formulated later [171-172].

In measuring linear FRF BLA of nonlinear (\olterraystems one must be ready for
unexpected results. One such fortunate developmméme following property:

Theorem 2.3.3: Variance of the nonparametric BLA e@mate. Variance of the
nonparametric BLA estima'éBLA can be computed using the linear theory expressan

S (D

O(N™ 2.3.11
5, () O (2:3.40)

H 2 —
I\llllrpoo M JéBLA(l) B
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whereM is the number of averaged realizations of thetigxgitations andN is the length of
the excitation.

Proof: See Th. 1. in [208-209.

Note: The surprise lies in the fact that although thelinear stochastic distortions are uncorrelated \lith
input (BLA is the solution to a least-squares peaot, nevertheless they are mutually dependent whalhtes
the classical hypothesis that the distortion (toaleraged out) should be independent from the inple

surprise stops here because e.g. in the paranestiivationGg, , linear variance expression and the derived

confidence intervals are no more applicable, alim@ar analysis is needed [205, 207-209].

2.4 Special case of block-models

\Volterra model covers so called block models (Hamsteen, Wiener, and Wiener-
Hammerstein models) widely used in the non-lingatesn modeling practice [91]. Block-
models are built from linear dynamic and static-inear blocks. Static non-linearity is also a
special case of this model. Of theoretical inteiesiiso the fact that general (fading-memory)
non-linear systems can be approximated with redftisimple block structures composed
from linear dynamic and non-linear static compoa¢hb3-154, 19, 21, 24].

Special block structure of the block models (Figl. D) is translated into special structure of
the Volterra kernels and the principal questiorehisrwhether it may mean a new knowledge
about the non-linear distortions. For the sake rafvity in the following we will use the
notation{R(f)-NL-Sf)) to designate a Wiener-Hammerstein system withatimgut dynamic
R(f), linear output dynami§(f), and the in-between static non-lineaiitl.

\olterra kernels of ordexth are [198]:

(2) Gq (K, Ky, k,) = constx [, R(k,) (2.4.1)

(b) G, (K, Ky, o+, k,) = constx S(k, +k, +---k, ) (2.4.2)

(C) Ga(k1) k2)"' ' ka) = constx S(kl + k2 T ka) |_|::1 R(kn) (243)

(d) Ga (ki ks, o+ K, ) = const (2.4.4)
u(t) it ) — v Fig. 2.4.1 Some simpler non-linear block
— LN ‘@“ =1 UN HNLH LN = models: (a) WienefR—NL), (b) Hammerstein

(@) (c) (NL-S), (c) Wiener-HammersteifR-NL- S),
ut) vt . (d) static non-linearity{NL). From such basic
-@— LIN f— ”ﬂ@ﬁ) (d) blocks more involved model structures can be

created, like e.g. parallel-branch Wiener, parallel
branch Wiener-Hammerstein, models with a
feed-back, and also models where the static
nonlinearity is substituted by a NFIR system.

(b)

The most unexpected result for the block-modelthésbehavior of the bias. Generally the
bias is frequency dependent, but for Wiener-Hamtegrsystems the bias on the measured

33



dc_1199 16

FRF is asymptotically (in the number of harmonieg)portional to the linear system (i.e. the
relative bias is constant) (2.4.6). This propordidy called Wiener-Hammerstein property

can be easily tested by exciting the system wittumber of random multisines with a large
number of harmonics and shifted power levels (Eig.2).

— e Fig. 2.4.2 lllustration of Wiener-Hammerstein
] L] property. The FRF characteristics of the
nonlinear system from Fig. 2.2.1 (partly
] covered) is measured with different magnitude
. ; levels of the input signalo(= 0.5, 1, 1.5). A
e blow-up (left) shows varying levels (varying

Eadlmated R sl Dynamis Systame fa
]

"
Wi ) bl |

S——— . ] amount of the bias) of the BLA for different
S| ) G.(J levels of the input, a blow-up (right) shows the
” ; ' i 5 (J®) = const measured relative bias for the same levels of the
. el lﬁ“ N =300 . . .
IS Vo G (J@) input signal.

Theorem 2.4.1: For Wiener-Hammerstein systems the LB\ is proportional to the
product of the linear dynamics Assume that théR(f)-NL-f)) Wiener-Hammerstein system
iIs measured with normalized multisines with a largenber of harmonickl. Then the bias is
proportional to the Ilinear part of the system, it the product S(f) R(f).

Gi=C,xSRr @ M) (2.4.5)
ConsequentlyGg,, =>" GZ*=(}."_C,) SR+O(M ™) =£G,+O(M™),
Ggiam =(1+€) G+ O( M™) (2.4.6)
ande constant depends solely upon the excitation signdlthe system dynamics.
Proof: Please recollect that a \olterra kernel of an & X) order adds to the bias as (2.2.15):
27 (20 — N 9
M (2.4.7)
a-1
Zkims*\‘a z KOS GZa—l(llkl,_ Ky, K:—l,_ Kz—])l_l n=1 |U(k) F + O(Ml)
Substituting (2.4.3) into (2.4.7) we get:

ey =B Mgy myy, 3, L TSI RPIUG F+ oOm)

=6 SR [Tia 2o | REFIUK) P+ QM= & §) R+ @ M)
(2.4.8)

whereic, = ¢ [ Zios | RO FIUG) T 249

For normalized multisines of a large number of hamims and for suitably smooth dynamics and input
amplitude spectrum this constant can be written as:

Ga' () =
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6= G a2 s |RKFIUGR) F= ¢ (™ IRCDT U (1) afy (2.4.10)

and the (2.4.5) follows

Note: Hammerstein and Wiener systems are special edgbe Th. 2.20 witl§() = 1, orR(l) = 1. Static non-
linearity is also a special case of Th. 2.4.1 #th = R(I) = 1.

Theorem 2.4.2 For Wiener-Hammerstein systems the ndinear noise variance is
proportional to the output dynamics.

Proof: In case of an arbitrary Wiener-Hammerstein systhmyvariance of the zero mean stochastic component
can be written as (we omit for brevity the frequenaad the finite harmonics indices):

EIYd3=E XY YY1= Y S EYVA= SEIY}+Re Y HYV)
a=2..0 f[=2..0 a=2...0 f= 2.0 a=2..0 gf;z...m (2411)

whereY ¢ are the outputs of the non-linear kernels of oodbr(2.2.2). Then:
BYVI=E ¥ o ¥ G Ul Ux Y oo Y G, U0
kOSy O Sy k40 0 8 7205, 0 % 30 /O »
(2.4.12)

The expected value will be nonzero when batland 3 are odd or even. Substituting Wiener-Hammerstein
kernels (2.4.3) into (2.4.12) we can observe tbat f

BYY }=a,a,sf x> ..> > > R.R R.R EU,.U U, .U}

% loan 7 (2.4.13)
We get nonzero expected value with frequency pakir= z, k= 2, etc. fora = £, and pairing the remaining
frequencies within themselves far# S. Other nonzero expected value pairings in thedsrwent to the bias
(BLA) terms or yields terms of lower order (iO(N™), a > 0). The expression under the sums is a kind of a

multiple (and thus smooth) convolution of the ottimear system. Consequently:

BYY’} =k, 8,8, 18°C” VP ang: (2.4.14)
EIYd = >, D EYVYA=ESPUP Y >k, a,8,CF =BFUIC”
a=2..0 f= 2.0 a=2..0 f= 2.0 (2415)

whereC" is an overall smooth function R .

2.5 Non-linear bias and variance: the question ohe mutual information

In the additive non-linear noise model the impdcthe non-linear distortions appears in the
measured FRF in two places, in its systematiclikaserror, and in additional noise, blurring
the FRF shape. Although in principle one can gdt af the stochastic component by
averaging, still we have to deal with the bias,esigy of which, without detailed a priori
information about the non-linear system, is diffid¢o judge.

From the construction of the bias and the non-lineaiance (2.2.15-2.2.17) we see that the
same non-linear kernels (albeit being summed iterdint way) contribute to both. It is thus
highly unlikely that the distorted FRF will be ngi®ut not biased, or vice versa. On the other
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hand we know already that both quantities are naotis in the level of non-linear
distortions, and both grow or shrink, as the ctwition of the non-linearity to the overall
system increases or decreases.

The fact that we can get rid of the non-linear episut not of the non-linear bias, means also
that the noise (its variance) is measurable, baitbias is not (only the BLA). In conclusion
we can ask whether the bias could be roughly baliimethe measured variance. In the
following we analyze the connection between theslewf the systematic and stochastic
distortions.

Relative variance v and the coherence function
150 | T T T :

! | Fig. 2.5.1 The inverse relation between the
100} b R S A I EEiai coherence function (gray) and the relative non-

| : : : | linear variance (dark gray) in case of a weak
cubic Wiener-Hammerstein system composed
from the %' order 10 dB ripple Chebyshev
high-pass input filter, a cubic static nonlinearity
(y = x + .1 X) and the 8 order 1 dB ripple
low-pass Chebyshev output filter, measured

. | with an odd random phase multisine of 546

aeomEr harmonic components. N=10 measurements
were averaged.

] e e I R IS SRR | EEERFERRE

dB

50 Bl gy - - - - -7 - R A | IEERLEEE

‘ :
Coherence functiop
g : . :

Theorem 2.5.1 The additive BLA model and the cohenee function The coherence of a
non-linear system, excited with the uniform muitess, can be naturally expressed in terms of
the BLA and the non-linear varian®g(l) = Var[G«(l)] = E{| Ys()[3/|U]|(1)? of the Gs (2.2.26)
(the finite harmonic index and the frequency argaiage omitted for clarity):

y2 - |GBLAI2 - (1+ VS )—l
|GBLA|2 +VS |GBLAF

Proof: Using the definitions of the coherence function, [8]je BLA, and the properties of the multisine
excitation, and noticing thilU () |= constant, we obtain:

V= E(YGI®? _IUWIEYY? MNFBu.f
EIVYE YUY 8ami v EM (2.5.2)

with the expected value calculated over differeatizations of the random multisines. The denorminean be
written as:

E(IV®} = Bl GLU+ ¥ 9 GLT W+2Re G, E YU+ {E )
:lGBLAIZU |2+ E{IYS/UIZ }|U|2= |GBLAF 9 f+ varGg ]U1= GBLAZI Y 2"' Vs LIJZ

due to the lack of correlation of the stochastimponent and the input signal (2.2.19). Substituth§.3) into
(2.5.2), and dividing bydf, yields (2.5.1)m

(2.5.1)

(2.5.3)

Theorem 2.5.2 Coherence for a Wiener-Hammerstein siem. For a Wiener-Hammerstein
system (R(f)-NL-S(f)) driven with a uniform random multisines, the came function
depends strongly on its input dynamics.
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2

y'= —IRI const (2.5.4)

Proof: In case of an arbitrary Wiener-Hammerstein systiésrBest Linear Approximation and the variance of
the stochastic component can be written as:

BV} = Y Y EYV=BUE Y Yk, a,a,C7 =BfUfC

a=2..0 f= 2.0 a=2..0 = 2.0 (255)

where c is an overall smooth function R (c.f. Th. 2.4.2 and (2.4.15)), and:
Gen=D V,SR=p St (2.5.6)

Comparing (2.5.5-2.5.6) with (2.5.1) we see thdeld a behavior indicated in (2.5.4) is to be etqubm

Example 2.5.1: 8 order Wiener-Hammerstein systemFor the Wiener-Hammerstein system possessing only
linear and cubic term\NL = a, x + a5 X°), Vs at the frequenci can be calculated as follows:

YL =viu=g > 3 ca;wu&uku > 02X G lwuuw

KOSy DS kO §O 1@ B0 S 2 uE S

=Y Y6k P UL TY, T e ST RIRIR VN,
=325 Y ¥ RFRTR. I Hi 4 B1¢ N1

I0S, o S

(2.5.7)

wherek,; = z;, etc. frequency pairings yield nonzero expectdded, = k-ki-k, andL, = k-z;-z, .The expression
is simplified further by the subsequent substitutaf the Wiener-Hammerstein kernels and normalimgait
amplitudes. Finally for a large number of multisieemponents the double sum can be treated as the

approximation of the convolutioC,. Let us introduce the coefficient measuring theeleof non-linearity as:
X =+32¢/(L+3¢r), with £ =a,/a, . Accordingly to (2.5.6) the Best Linear Approxirieat FRF can be written
as: Gy A= (a+3a 1) S R, with n=M 712,@ s, IR, £

The coherence function can be now computed acagigdito (2.5.1), using (2.5.7). The coherence fueti
shows strong dependence upon the input dynamics:

Vo - 1 _ RE _  Rf
y=a |GBLA|2UI2) " #x°C/R R#x’C R cons (2.5.8)

where X is proportional to the level of non-lineari C is smoothly behaving, and the constant is of 0&%r
Consequently the coherence function is close ta the pass-band cRand then follows the shape of

IR |2 when it drops, see Fig. 2.5.2. That way it can ees an indicator of how the dynamics of the overal
system are distributed between its input and output
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Fig. 2.5.2 Coherence function (d, black) of a
cubic Wiener-Hammerstein system (Fig. 2.5.1),
with input dynamics (a), output dynamics (b),
and the overall dynamics (c). The coherence is
dependent solely upon the input dynamics. For
the comparison the coherence for the case of a
general non-linear system (up to 9th order) is
also shown (d, grayK=10 measurements were
averaged.

1000 1500

Now we switch over to a more involved situationeBvf no a priori information is available,
the measurement still yields the Best (albeit distt) Linear ApproximatiotGg 4 of G; with
the observed level of the non-linear noMa{Yg]. An interesting question is whether this
directly measurable quantity can be used to estirtta level of the systematic non-linear
distortions.

We will investigate the worst-case situation, gezen the level of the measured non-linear
noise, what order of a non-linearity may be assuntedield systematic error bounds

necessarily majoring the actual systematic ernaglléeNe show that for static monomial non-
linearity the measurable non-linear variance cosstanough information to compute the
bounds on the FRF bias, even if the order of thelmearity is not known. The result is

based upon the fact that different powers conteibatdifferent way to the bias and to the
stochastic terms. We will compare the ratio of tlen-linear variance to the bias as the
relative variance:

varYs(Dl  _  E{IYs(DI%}
1IGGOFIVOF 1GOFIVNF
We will see that for a measured level of the vargathe cubic system yields the largest bias,

i.e. the cubic power is the safest (the worst-cassumption with respect to the unknown
bias.

V(1) =

(2.5.9)

Theorem 2.5.3 For the pureath odd static monomial non-linear system the relatie
variance vg yields minimum for the cubic systema = 3.

Proof: Taking into account that the multisine excitati@me asymptotically normally distributed, we willost
the point using Gaussian signals, which genera#idg O(1M) (M is the number of harmonics) approximation
to the behavior of the random multisine. The exdmivation, counting harmonics, with a finis harmonics
random multisine can be found in [6*, 9*].

Let the system be Y(t) = c,u”(t), with o odd, excited with Gaussias{t) with unit o. With no linear term:
Geia = Gg = E{yu/ E{u?} = ¢, E{u™VE{u?} = ¢, al! 0™ 0% =c, all . The variance of the stochastic
component is:

E{(y - Geia )} = E{y’} - (Gera)® E{U%} = (c)” E{U""} - (Gera)” E{U%}
)2 (2a -1 0* - (coa!! 0N g = (c,)* o [a-! - (ah)? (2.5.10)

The relative variances can be derived now as:
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(€)? d[a-)!-(a)F/(coalt oY o? =[Ra-)! - (a)?]] (a)? (2.5.11)

which is an increasing function of the oddsee Fig.2.5.3

o ‘ _ Stochastic Variance/ Bias® . Fig. 2.5.3 Behavior of the relative variance of a static
e § i monomial non-linear system, computed exactly foe t
o e T

TR ) W S - random multisine with finite number of the harmanic

| | | i | ; computed approximately via the Gaussian approxonati
and measured with odd random multisines (2048 haieno
components, N=100 averages).

5 7 5 3 0 I
Order of the Nonlinearity

Example 2.5.2Cubic non-linearity is indeed the roughest

The heuristic explanation to the Th. 2.5.3 couldthat the cubic non-linearity yields the least antoaf
frequency summations leading to the scattering [&8® The higher the non-linearity, the more geang, and
due to the randomization through the input sigtied, higher non-linear variance. Consider this phesmon on

a weakly non-linear system defined y(t) =u(t) + eu’(t), with a odd, excited with Gaussiaift) with some
.

Now: Gg_a = E{yuy E{u?} = E{u*+ eu”*}/E{u?} = 1+ a!l 0” . The variance of the stochastic component is:
E{(Y - GeraU)?} = E{y’} - (GeL)” E{U"} = E{u*+2eu”""+£ "%} - (GgLa)” E{U%}

=g?+2eall 0"+ EQRa-1) I o*) - At+eall 07 P =07 [Ra-)N - (a)F (2.5.12)

The relative variances is: &€ o [a-1)!! - (a!)?]/ (L+ea !l o® 2 o2

Let us investigate its behaviour not only as a fiemcof the order of the non-linearity, but alsotbé level of
non-linearity&. In Fig. 2.5.3 we can see that the cubic non-lite& always the worst in the sense of the Th.
2.5.3.

Fig. 2.5.4Ratio of the non-linear std to the BLA of
the weakly non-linear system with static non-linear
distortion of ordem (i.e.y = u + ¢ u”) as a function
of the levele of the non-linear distortions. For large
distortions (right side of the figure) ti&s, o = Gg.

Ratio in dB

I : G PG —
B0 &0 40 30 =20 0 0 10 20 30 40
€ distortion in dB

The assumption of the pucgh order non-linearity is not realistic. Even ifeonf the powers
in the non-linear system is dominant, the effectha remaining powers should be tested,
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especially when considering the worst-case withteut a priori information. Although the
general case of a dynamic non-linearity is tooialifft to handle, some insight can be gained
into the behavior of the static polynomial non-anigy, where it also turns out that in majority
of practical cases the cubic order assumption t#lrserve as the worst case to judge the
amount of the bias based upon the variance measatem

An arbitrary static non-linear system poses a @mobbecause the value of the relative
variance will depend upon the unknown order of¢ypgem and the values of its coefficients.
The way out is the worst-case derivation of therat the variance to the bias (i.e. assuming
the worst-case polynomial coefficients for a givewel of the variance). Althoug¥ cannot

be measured, nor derived directly, , a variance relative to the BLA approximation can b
measured instead, serving as a useful empiricatnt in looking for the worst-case bias.

The derivation shows that the situation does nahgk — the assumption of the cubic system
is still the most conservative, yielding the latgesssible bias for a given measured variance.

Vea = Il Y- GLUIY | GLU* (2.5.13)

Theorem 2.5.4 Bias bounds on a static polynomial ndinearity. For an arbitrary
polynomial static non-linear system, fulfilling theonditions of the proof, the relative
variancevg_a yields minimum for the (lowest order) cubic system

Proof: in Appendix A.1m

In the view of the Th. 2.14 the unknov@ linear part of the system can now be bounded
under the worst-case assumption by the measbggad G; A(1-«) <G < G; ,(1+«), with the

bounding termx computed under the worst-case cubic assumptick =v2,/v,,, see
(A.1.21-A.1.22).

Note: In this case the obtained bounds are not exactbths, because we defined them around the measured
Best Linear Approximation, and not around the tmear system.

Note: In Appendix A.1 we make the assumption about theritibility of the matrix (A.1.5). Such assumption
can be violated in practice for certain combinatiaf the polynomial coefficients (typically for gwolomial
coefficients with alternating sign, leading to timeitual cancellation of the power terms in the lmashe non-
linear variance expressions), however such noradirgy/stems are infrequent in practice. In practice
applicability of the Th. 2.5.4 requires the veddfiion of the condition, based upon the measuremaithe
relative variance and the estimate of the highestlimear order in the system.

The investigation of the systematic error bounds lma extended heuristically to the case of
Wiener-Hammerstein systems, taking into accountctivestant relative bias property (2.4.5)
and the frequency dependence of the non-lineaer{gig.15) [6*, 9*].

It is important to note that due to the constatdtinee bias the smallest value of the relative
variance measured somewhere in the band can baasbednd the bias in the whole band as
well. Consequently the measurement should be doené@e pass-band of the input linear
system. This band can be easily judged from thesoredvg, » itself.

This yields the following measurement strategyeAgxciting the system with a broadband
multisine excitation with a high number of harmaM, the FRF should be measured to
provide an insight into its dynamic behaviour. Naxtough estimate of the BLA system and
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the non-linear noise variance should be computedveyaging the measured FRF over the
neighbouring frequencies. Then the frequency b&dld be chosen where the amplitude of
the measured relative variance is the smallestl@dverage ratio of the variance to the FRF
(A.1.1) should be measured and used to computedbeds (Fig. 2.5.5). This value can be
used to bound the measured (averaged) BLA system@(A.1.21).

The research of the interplay between the systematin-measurable and stochastic
measurable non-linear error components continuet veas aimed next at the non-linear
system without a true linear component [47*-48*]. & particular excitation a polynomial
system can expose a prominent linear behavior gwbe linear term is in itself missing. In
this case it is impossible to bound the bias frtwm tariance and a new measure has to be
designed for the characterization of the non-linems. The new measure (2.5.14) was
analytically designed for the static polynomialteyss.

Fig. 255 Heuristic
systematic error bounds on
the measured FRF of a
weakly non-linear system
(see Fig. 2.2.1), based on the
measurements of the relative
non-linear variance. Within
the bounds one can see the
measured 'noisy’ FRF, its
expected (averaged) value,
i.e. the BLA, and below it the
true linear component of the

Bias bounds around the Best Linear Approximation
20 T 1

. i qi : =t system. Odd uniform random
,]T]vf .,""\{ ; N s phase multisine was used
:g!' W f#g\{\. . with 2185 harmonics.
%ﬂ( J‘__'._ / ”“-w.:_. \ *{I‘ y x rﬁp‘ q &\H 1“;# :u? '-1

PHT .“;",.
. : i "N
1500 2000 2500 3 \
Frequency TETT e - ¢

The measure is based on a reference measureménanviexcitation signal of a reference
level Py (o= 1), and on a new measurement at a differerd€f@develP; (& < o). Different

levels yield different bias levels af{P;) the ratio of the bias error (difference in bits}the
power of the reference stochastic contribution lbarexpress in terms of momentg)(and
polynomial coefficientsgy):

0-2 (Z p)up+1(:L Jp 1))
Z::ZZq:Zap 8 (g™ HpaH 1)

and can be effectively bounded, yielding a hinbh@dv the bias error evolves.

(2.5.14)

R(R) =
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The worst-case behavior of tRgP,) for a particular power levé!;, non-linear orden, and a

choice of the excitation signal was computed vimercal optimization and is visualized in
contour plots in [48*]. These results were extenttethe (generalized) Wiener-systems, but
further steps toward more general non-linear systesre deemed practically infeasible.
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3. Multisine excitations for SISO measurements

The used excitations — possibly colored normalizg@iom multisines — are periodic signals.
The reason of using periodic signals is that theynegate no leakage in the FRF
measurements. For the non-periodic noise input|ehieage error at the output of the linear
system is of orde®(N %), whereN is the number of the data points, and despiteaaey it
can scale up to a considerable bias error arouaip sksonances in the measured FRF [125,
162]. Another reason is the easy control over thermonic content, which can be impaired at
most by the limits of the generating equipment. (ke high frequency microwave
measurements). With time it turned out also thatghmary tools of the multisine design are
not the spectral amplitudes, but rather the phasdshe frequency grid.

3.1 Multisine design — free parameters

Multisine signals are characterized by thepectral amplitude, phase andfrequency grid
vectors, and altering them (with a little careréduencies are also manipulated) won't affect
the key asset — the periodicity of the signal. #ams nonetheless that we are quite free in
shaping the behavior of the multisines, which affen enormous flexibility in the experiment
design.

The normalized spectral amplitudes can be chosée taniform or colored, if more power is

required in particular frequency bands to secume persistence of the excitations. The
coloring of the spectral amplitudes has no effatttloe majority of the theoretical results

presented here, albeit some of the results are siogbler for the uniform multisines. It may

also happen that the coloring of the spectral aongéis will influence the convergence rate of
the iterative algorithms manipulating the phases.

Of special interest is the manipulation of the éreigcy grid. It can be full, i.e. every
harmonics is present in the signal within the festry band, or can be “hole-ridden”, with
particular harmonics purposefully left out. We dpea such case about thexcitation
frequencies(present in the signal) andst frequencies(omitted in the signal). The point is
that (1) the non-linear scattering will generatépoti components also at the test frequencies,
providing an “insight” into the character of themlmearity; (2) a “hole-ridden” frequency
grid may lead to less scattering on the excitalioes, distorting the linear FRF less. Both
effects have been successfully explored.

Example 3.1 “Seeing the non-linearity” at the tesfrequencies

A system containing both thé“and &' order non-linearities is measured with multisicestaining harmonics
up the 18 harmonic. Instead of using all harmonics (full) may resort to the purely odd frequency grid, or
retaining only every second of the odd harmonike, go-called odd-odd grid. Thé°2nd the % order non-
linearities will introduce frequency mixing and &eaing, generating output power at the sums of, wvahree
excitation input frequencies. It is instructives®ee how the choice of the grid makes it possilbogtlyito test for
the presence, secondly to get rid of tAa2der distortions (odd), or eveff 8rder distortions (odd-odd).

In the Table below we see for both kinds of sigrialdd, odd-odd) which harmonics are excitelj &nd how
many mixed spectral components (frequency comlingfiappear at every excitation and test frequénitiiin
the excited frequency band). Cubic non-linearitlf san place non-linear power at the excitatioeguencies,
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distorting the measured linear FRF. It is not gassin the second odd-odd case, where the cubieptails on
test frequencies, and the linear FRF comes untistoOf course non-linearity of thd' ®rder would foul the
design, or we would have to design even sparsehaddonic signal.

Only odd harmonics Only odd-odd harmonics
Full | Excited | Lin | Square| Cubic| Excited Lin | Square Cubic
lines lines

1 1 . 1

2 1 1

3 1 1 1
4 2

5 1 3 . 1

6 3 2

7 1 6 3
8 4

9 1 10 1
10 5 3

11 1 15 6
12 6
13 1 21 1

Theoretically phases shouldn't be considered agdegiarameter, as random phases of
prescribed stochastic behavior are required invémg definition of the input signal. Besides,
the input phases do not appear in spectral measatsrand do not appear in the measured
linear FRF. However phases do influence the timealn behavior of the signal and with
keeping the same spectral content phases can rhakeré advantageous in a particular
situation, e.g. with respect to the measuremerdendVe will see later how the algorithms
developed to manipulate phases in the linear measnts can be effectively used when
measuring non-linear distortions.

Multisine design, until recently, was addressetheresearch literature as a tool:

- to provide persistency by shaping power injedtd@d the system in different frequency
bands (spectral amplitudes);

- to improve the SNR in the linear measurementshmgping crest-factor of the multisine
signal (phases);

- to provide control over how much non-linearityhig by the input power by shaping the
amplitude spectrum of the multisine signal (phases)

- to minimize non-linear distortions of particulkdnd on the measured linear FRF (frequency
grid);

- to qualify arbitrary non-linear distortions onettmeasured linear FRF (frequency grid,
phases).

In the Section 3.3 some problems will be addregséarn.

3.2 Multisines — asymptotic properties

In case of the finite number of harmonics, defineddifferent grids, with different amplitude

and phase spectra, properties of the multisines hageless to analyze and compare

effectively. Nonetheless the question of propertgesnportant because otherwise measured

results derived for different kinds of input sighalouldn’t be comparable. The answer can be

given in terms of the asymptotic properties, i.@ew the number of harmonics in the signal
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grows beyond limit. We have seen already similaults in the additive non-linear noise
model (Th. 2.2.6). With the technology allowing fam easy design of signals wid(M) [
10*-10* we are close to the asymptotic properties alreidyhe majority of practical
measurement situations. The key asymptotic propisrtthe Gaussianity, or the recently
revived property of being separable [148, 59-6b}. the multisines defined earlier we have:

Theorem 3.2.1: Randommultisines are in the limit normally distributed and separable
signals.

Proof: in Appendix A.2 B

Corollary 3.2.1: The uniform random multisine (i.e. Ux= U = const) is separable.

Proof: See [148], [59-62], but in the relation to thegfrof the Th. 3.2.1 in App. 2, please note that {A\.2.22)
for the uniform multisines yields:

D(£. r)=%U3Jl(u5)3g”-1(u5)zm% > s, (COS@T ) cosigr )y
%U SJl(UE)Jg“-l(Uf)(zm% ZMm cos@r =Y os > , cosyr ) (3.2.1)
%U?’Jl(UE)J(’;"‘l(U{) M(kas& cosmr)—zm% cosr )F 0

consequently (A.2.6) is 0, and the signal by dgéiniis separablaa

Note: The concrete finite frequency grid does not pday role in the derivation, i.e. the results arédvéor
multisines defined on arbitrary grid.

3.3 Frequency grid families of multisine excitatios

Shaping the spectral content of the signal is k test particular to the multisines. On the
other hand manipulating the frequencies and thegshes intimately related to the multisine
structure. Modern instrumentation with PC-based matimg power makes it easy to develop
multisines with arbitrary frequency grids and phaseperties. In the following we give a
short review of these attempts, stating the desigpose and the effects they produce.

Note: Although making the frequency grid sparser seme@gys particular measurement purpose, in a finite
frequency band of interest it easily leads to atremlictory situation, when making sparse grid demiseugh
pushes the first harmonic toward the zero frequantyducing thus extremely slow signals, which uieg
considerable measurement time to settle the tnatsséand to acquire the required amount of data.

Regular grid based multisines

A. Full grid multisines

| f,*[1 234567 891011121314 151761819 ... ] f,* k, k O N, natural numbers |

Full grid multisines contain all of the odd and evwearmonics and have the best frequency
resolution. They are signals of choice when no lnogar distortion is present. In the presence
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of the non-linear distortions, measuring with thi grid multisines introduces non-linear bias
and variance scattered all over the excited fregesn

B. Prime multisines

| f,*[135711131719...]  fo* p, p 0P, prime numbers |

Prime grid was used to get rid of the influencéhef even non-linearities (odd frequency lines
are not excited by the even non-linearities, if¢hare no even harmonics in the signal). The
primary draw-back of the prime multisines was tlsgarse behavior for higher frequencies,
consequently problems with an even frequency résolland with the measurement time.

[177, 66, 73]

C. Odd-multisines

fp*[1357911131517192123...] fy*(2k-1),kON, natural odd numbers ‘

Leaving out even harmonics serves more ends atséimee time. Considering that the
measured FRF is distorted by a smooth bias, tlygiémecy resolution will still be sufficient, if
we design sparser multisines with a number of feagies left out. These left-out (test)
frequencies can be used to estimate the leveleollistorting non-linear noise, which can be
used then to compensate FRF measurements at thenegnexcited frequencies. If we leave
out all the even harmonics from the excitation algthen (a) the systematic distortion on the
excitation lines will be smaller (less frequencyntmnations of nonzero expected value); (b)
the non-linear noise caused by the even order inea+ity will be placed only on even (test)
frequency lines; (c) even test lines can be usatktect whether even non-linearity is present
in the system, and how strong it is, see Examle[88, 71, 73]

D. Odd-odd multisines
fo*[1591317 2125 ..] fo* (4k-3), k O N, every second natural odd number ‘

Accepting further limitation in the frequency restibn, even more opportunities open in
handling the non-linear distortions. If we leavet @ig. every second line from the odd
excitation lines, then beside every advantagedisteove, the "3 order non-linearity won't
affect the measurements at the excitation lineg,vafl place its influence solely at the left-
out odd test frequency lines (see Example 3.1tlnhdans that if the non-linearly distorted
system possesses non-linearities of ofyahd & order, it can be measured (albeit with
sparser resolution) without non-linear errors &t la¢cause the non-linearity will place its
influence solely at the test frequency lines. Idiadn the noise variance measured at the test
frequency lines can be used to detect and to jtlugerder and the severity of the non-linear
distortions. The odd-odd multisine is not a curedweery problem, because already the non-
linearity of 8" order will place its influence at the excitatigmels, distorting the measurement.
It will also mix up with the effects of the cubiom-linearity at the odd test lines, masking the
problem. The effect of the™order non-linearity could be handled by an oddtisinke with
every second and third odd harmonic removed, swiyreal would be however too sparse for
practical applications, see Example 3.1.1. [66,7@373]
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E. Special-odd multisines

fo*[1391117 192527...] fo* (8k - 7) O fg* (8k - 5),k OO N, every fourth natural odd number ‘

In case when the non-linearity is higher than tfeo&ler (i.e. when the odd-odd multisines
do not serve their purpose), a variation of the-odd grid has been tried, called special-odd
multisines, where the odd excitation and the tegjufencies are not coming in turn, but are
grouped more closely together. The aim was to pgtede the non-linear variance of the
excitation lines from its measurements on the rmghg test lines. Published simulations
have shown that special-odd multisines are batténis respect, than the odd-odd multisines.
[49*-50*, 246-247]

F. Log-tone multisines

an examplef, *[1 35112151101 ...1 log(f* k), kO N, approximately uniformly spaced ‘

Log-tone multisines place the excitation at freques providing uniform resolution, when
the measured FRF will be displayed on the logaiithaxis (Bode plot). The advantages of
the log-tone multisines are however limited. Thegdime sparser for higher frequencies, are
difficult to suppress with Crest-Factor minimiziatgorithms, increase the measurement time,
and anyhow a dense enough odd multisine is easleartdle [81-82].

G. No-interharmonic distortion (NID) multisines

an examplefy * [1 5 13 29 49 81 119 141 207 263 359 459 ... ] cluse formula ‘

Interharmonic distortions or so called Type Il adnitions are non-linear stochastic
contributions in the nomenclature of C. Evans. idsa was to devise multisine excitations
with specially developed spacing between the harmsomo warrant that no Type Il
contribution will be generated at the excitatiorgnencies for a given order of the non-
linearity. The example shows the grid designed tfee cubic non-linearity. Beside the
advantages warranted by the special design, tieapyideficiency is the dependence on the
assumed order of the non-linearity, a log-tone sgarseness for the higher frequencies, and
the iterative, search-based procedure to procerectuired exact harmonic numbers. [67, 69-
70, 72]

Random grid based multisines

H. Random grid multisines

an examplef, *[1 359131517 19 23 ...] no close formula ‘

Random grid multisines are derivative of the sdemilal multisines, where it was observed
that the value of the non-linear noise variance pated from the observations at the test
frequency lines does not entirely agree with thmsé¢he excitation lines, consequently only a
rough extrapolation could be done.
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The strict regularity of the grid was thought tothe culprit, and the idea was to destroy it in
a random manner. The odd-multisines grid had béadedl into consecutive blocks, where

one frequency (but not the first in the block) veassen at random to be left out (i.e. to serve
as a test line). Extensive simulations show thatitlea works and that the value of the non-
linear distortions estimated at the test frequen@ein good agreement with the non-linear
distortions on the excitation lines. Furthermore grid is dense enough and approximately
uniform, it does not suffer thus from the problemisited to the more sparse grids. [49*-50%]

il

M ITTTRRTRRT

Fig. 3.3.1Examples of the multisine frequency grids: odd gtipper), special grid (middle) and random grid
(lower).

I. Randomized grid multisines

an examplef, *[12 356+ 8. 10111213 ...] no close formula ‘

Randomizing the frequency grid, i.e. changing th& gandomly from excitation to
excitation, creates a nonstationary excitation tvluan be used to detect non-linearities in a
fast way. The output of the system non-linearity, aaresult of being a function of the
nonstationary excitation, is therefore nonstatigriao. Assuming that the measurement noise
is stationary, the presence of non-linearities lwaristinguished on that basis. To generate a
randomized grid, groups of L>2) consecutive lines are collected into blocks ofula
frequency grid, from where one frequency line ispiired randomly, so as to form a random
harmonic grid. [271]

In another approach used in the FRF measuremetite slowly time-varying linear systems
a non-uniformly randomly spaced harmonics are useda multisine witiM frequency lines
randomly selected @M, with 0 <q < 1, harmonics are not excited (their amplitudessaet

to zero), and the amplitudes of th®l excited harmonics are all equal and chosen suwath th
the rms value of the excitation equals 1. [173-11248]
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3.4 Algorithms to work with the phases

Crest Factor minimization

Phases in multisines were traditionally manipulateckeep their Crest-Factor low, i.e. to
guarantee that:

_maxju®)|_ @)l _
CRUO = srue) - ot ™" (3.49)

Crest-Factor minimized signal has the smallest aotd range for the same power level,
which means that such signal can be amplified ¢tmg more power into the system and
improving the SNR of the measurement) without fegthat the excessively large amplitudes
will hit the hidden non-linearities and introducendlinear distortions into the linear FRF

measurements [199-201]. Crest Factor is minimalttier binary signal yielding value of 1.

For any other signal this minimal value can be @gproximated.

The required phases can be set algorithmicallypasabed Schroder phases [214], [26-27], or
by iterative minimizing algorithms: by suppressitng signal amplitudes by clipping [235],
[189], or by minimizing {j(t)|b, norms with increasing (as (Mi(t)|)° - || u(t)| for p — )
[85]. Recently it is considered that the secondmtigm is a winner, yielding on the average
better (lower) values of the Crest Factor in thewegal case and for large number of
harmonics. It should be also noted that whateverallgorithm, log-tone like multisines are
more difficult to compress and have higher Cresttéravalues, than the more or less
uniformly spaced multisines.

L o multisines

The term was coined by [65] to denote the multsiwéh their Crest Factor minimized with
the algorithm of [85].

Note: Manipulation of the phases seemingly destroys rdmedomness conditions imposed on the random
multisines in (2.2.10-2.2.11), required in the gspao for a long time Crest Factor minimizatiorsveansidered
impossible in the non-linearly distorted FRF measgnts. It turned out later (experimentally) the situation
isn't hopeless and that the,Lmultisines seem to retain their random propertieguired for the BLA
measurementsThe phenomenon is possibly related to the richnestcal minima of the Crest Factor
minimization surface, where randomly started minimsearch stops at still randomly distributed pladdse
phenomenon however resists any kind of formal aigtly

Shaping amplitude density

Crest Factor minimization improves the SNR condgi@f the measurement, but it changes
drastically the amplitude density towards that dirzary signal (the lowest Crest Factor = 1).
Fig. 3.4.1 (left top) shows amplitude density o€eest Factor optimized multisine. Such a
design emphasizes strongly the extreme amplitudesce the linear approximation will be

the best at the extreme amplitudes of the exciatithis unbalanced situation may be

11 Some experimentghot published) work of C. Evans, M. Solomou, h@&@tkens, and also my own.
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undesirable for the general purpose excitationasighn ideal signal would be a signal with
e.g. a uniform (or normal) amplitude density. Theguires an extended optimization method
that would not only minimize the Crest Factor budwd also impose the amplitude density
with a specified power spectrum. The problem seeomsradictory, because what improves
Crest Factor, destroys good amplitude distributeord vice versa. The way out is the
(heuristic) algorithm, which allows modifying thails of the amplitude density function so
that the user can balance between requirementsdiegahe distribution and the low Crest
Factor [29*].

Algorithm 3.4.1: Shaping amplitude density - basi@lgorithm

Consider a single period of the multisiu(t) = ZLUk coskapt +¢,), sampled ats = kTs, with
k=0,1, ..N-1andw = 21/(NTs). Consider the desired amplitude density functigiiu)
with Fyu) = [ f,(dv, and defineQ as:

4 1 1
QM =Fs (R), with R =+ =05, 1=1, ...N. (3.4.2)

One iteration of the algorithm consists of foumpste

(1) Consider the sét = {u(t), k=0, 1, ...,N-1} in the Lth iteration with:

u ()= U, coskeyt + @) (3.4.3)

(2) Sortu(ty) in the increasing order¥Y|(,7) = sort(.(ts)), with 7 the time instances of the
sorted points;

(3) Create a new multising(t) by replacingy, with Q, such thay, = sortY(Q, 7);

(4) Calculate the spectrum wf (with the DFT applied to the samphgsty)), retain the phases
and restore the original amplitutg in this spectrum. The result is a new multisine:

L+1

Upa(t) = Z:iluk coskapt +¢, ) . (3.4.4)

This process is repeated until a suitable convesgeriterion is metm

Algorithm 3.4.2: Amplitude density with controlling the crest factor with a don’t care
zone

If fy has long tails, the resulting multisine would haverery large Crest Factor. For this
reason the amplitude domain must be partitionitg Ryes: andDs.

Assuming symmetric distributions:
Dees =] ~-al Ul @], and D, =[-a 4], (3.4.5)

where [a, a] is the support of the desired amplitude densifthv-a=F;*(0),a=F*(.
Consequently after imposingy, all samples of the signal are concentrateddnhowever
after imposingUx some of the samplesg .1(ty) will be smeared outsid®;, iNt0 Deress
increasing the crest factor over the valua.of

The amplitude domain will be now partitioned ing@rparts by adding a don’'t care region.
The amplitude distribution is only imposed in theem amplitude intervaD; and left free
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outside this interval:
Dcrest :] - oo!_a] U]a’ oo] , Ddc = [_a' Fd_l(‘g)[ U]Fd_l (1_8)! a] , and
D, =[F;'(6), Fy'0-¢)], 0<e<05 (3.4.6)

To reduce the crest factor the samples belonging.itg; are clipped to the bordeesor -a
before a new iteration cycle is startad.

Note: In practiceFq is imposed o\, = [(1-2¢)N]e; points belonging t®; and distributed following the Alg.

1 (I-N,/2)

3.4.1asQ()=F,*(P), R =St =L N (3.4.7)

During the design of the desired density funcfipit is necessary to take care that no conflictiogstraints are

imposed. The power of the multisine is imposedtbyaimplitude spectrum kZlUk f , on the other hand also

2
the amplitude density function sets the power tdas€écond momet JU fe(WdU |n case of desired densities

of the infinite support, they must be truncatedtsuitable finite interval (e.g:a o) to get an acceptable Crest
Factor. The second order moment is restored bgtsmdea proper scaling fact&for fg:

fd(u):{f(u)/s -asu<a

0 elsewhere (3.4.8)

with Sthe area under the truncated density.

Algorithm 3.4.3: Amplitude density — optimizing the Crest Factor

The algorithm resembles the Alg. 3.4.2., only thpping algorithm is improved. Instead of
clipping all the samples iD¢stto the bordera and -a, a varying clipping leveC, =F;*(¢) is
chosen using the algorithm of [235] to compresssigeal. All samples with amplitude larger
thanC_ are clipped towards this level. That way evendrefrest Factor can be achievad.

In the presentation of the algorithm the uniformqginency grid was used, however in theory
the algorithm could work with any frequency grickperience shows that the irregular grids
are much more difficult to obtain a fast convergenglthough no formal proof of the
convergence is available, the tests indicate a goodergence of the algorithms in case of
uniform grids. However theoretical handling of tbenvergence question seems hopeless,
considering:

1. A particular solution is a fixed point (by consttion). More solutions are possible for
dense grids and finite error approximation.

2. The operator of Alg. 3.4.1 is a non-linear, discwnus, and non-expansive operator.

3. The multisine in the algorithm is confined to a rommvex set (a shell of a fixed MSE
value, as the amplitude sorting and similarly thgpasing of the pdf and the amplitude
spectrum is |[.J] || |4 invariant).
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nAmpfmde histogram of multisine with optimized CR . Amplitude density, after N= 500 terations

3 K 3 35

Fraction = 0.02, sigma =+ 3

Anmmd-e- (crest factor = 1.4805)
Amplitude density, after N= 100 iterations
[ SR e Fig. 3.4.1 Multisine signal containing 204 linearly
spaced harmonics and 8192 data points: (left top)
1o} 1 amplitude spectrum of the Crest Factor optimized
- multisine, (left bottom) the same multisine with
, amplitude density shaped to be uniform. Log tone
multisine with 204 harmonics shaped to the Gaussian
amplitude density (top).

" Fraction = 0.05, Bins: mean =81.92, std=9.051

3.5 The question of choice

When multiple signals are available as the excitatthe well balanced choice is not always
easy, and usually it is also a part of the tradevdiich may adversely affect the measurement
results. What is then the situation with the murgsexcitations?

Before the multisine signals of high harmonic cabteecame theoretically and practically
(instrumentation!) established, the prevailing &t@n in many measurement fields was the
white Gaussian noise. Although the developed thetated the asymptotic equivalence of
both kinds of excitations from the point of viewtbe non-linear distortions modelled by the
\olterra series, practically important was to asalyhe excitations within finite measurement
conditions and to formulate pragmatic guidelines the measurement design. The
experimental comparison covered:

- ideal Gauss noise,

- Gauss noise filtered with 10th order low-passt&wtorth filter and clipped in the amplitude
("practical" Gauss noise),

- full frequency grid random phase multisine,
- random phase multisine defined on the odd frequenid,
- random phase multisine defined on the odd-odguiacy grid,

- multisine defined on the odd frequency grid witle amplitude density shaped with the
suitable choice of the phases.
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Based on the theory and the simulations the pidctidvice for weakly non-linear FRF
measurements is to use odd-odd random multisindsgbf harmonic content, considering
that:

- the measured FRF is the same as the one meagitingtie Gaussian excitation,

- due to the drop-out of the effects of the evem-inearities the uncertainty of the
measurement (the non-linear noise) is less,

- it is possible to detect and quantify odd andnewelinearities separately (even non-
linearities at the even frequency lines, and odd-lheearities at the non-excited odd
frequency lines).

It was also established that clipping the (ampébtod the) Gaussian noise elevates the bias on
the FRF, assuming that the non-linear distortiomg@htain odd components. Furthermore it
turned out that the usual +o3clipping is not enough in the weakly nonlinear sweaments

(it is advised to clip at £ 4). [8*, 27*, 29*, 33*, 162]

Gaussian

RPhMS odd-odd RPhMS

L -30 . -30 L 4 i
500 1000 ] 500 1000 ] 500 1000 ] 500 1000

Fig. 3.5.1. A qualitative example: ETFE of a weakly nonlinegstem from Fig. 1.1.1 measured with a single
application of the Gaussian noise (left) and thedeen phase multisine defined on full, odd, and odd-
frequency grids (all signals normalized to the witver) (right). Using the random phase multisireddg lower
level of the non-linear noise, consequently demastdster measurement (averaging) time. This adgantan

be further amplified by manipulating the frequegeid.

Misusing random multisines

The extensive usage of the random multisine exaitat and the work on the Matlab Toolbox
[106], where as the designing aim a “user-resistartitation was sought (which would
provide acceptable results even if the user mistiesxcitations in the measurement set-up),
brought into light a very interesting phenomenon.

Random multisine (whatever the frequency grid) ipegsiodic signal and its proper usage
requires processing of the integral number of plsrio the measurement data. In a number of
measurement applications however the measurenmeat(tiue to the chosen basic harmonic
frequency and settling of the transients) can bdosg, that the user will be tempted or

pressed to stop the measurement before due. Arettieemeasurement results lost as not
properly processable? Simulations indicate thatrémelom multisines are very resistant to
such misuse. Random multisine measured only inrtagbats period is still very close in its
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spectral properties to the ideal signal, meanimg tihe FRF measurement with such an input
won't be much distorted. [215, 203]

Compound experiment design

The periodicity of the excitation not only meansoal against the leakage. It is a powerful
property as it is (usually) not shared by the nalsturbances covering the measured data.
The presence and the amount of the output or tlEsunement noise can be discovered on the
fly by putting the periodicity at work [50].

The normal application of the random multisines laddoe to apply to the system input the
series of the realizations for different indeperiggrases: §(t,@1), ..., u(t,@), ..., u(t,®n)}.

Such measurement yields the Best Linear Approxomadif the system. If the measurement
noise is also present, it would be good idea tosomeaits variance to judge properly the
amount of averaging needed to suppress it (orttodace it as a weighting factor into the
criterion function for the parametric estimatedthaugh the random multisine is a stochastic
signal, its every single realization is determigisand the output of the non-linear system to
such excitation will also be deterministic. IMt= K*N and let stretch the input a bit more:

{Wt g U@, utg), ute) ute) - ute,): - u(tg ) u(tg )i ,ulty )}

K times K fimes K times

(3.5.1)

In case wherY(l)=Y(l,¢,n7) =V[UI(l,¢)+N(l,n), i.e. the measurements are noisy, and the
measured output depends not only on the input rangarameterp, but also on a random
parameter characterizing the realization of the measuremeige, the usual computation of
the Best Linear Approximation (averaging over ahitable records) will yield:

A Y( (o YU g}
Gu)=E, () =54 1ol = A @52

Ut.o)

As a result, within the same measurement set-uprtéasurement noise variance will be
attenuated by K/, and the non-linear noise variance by.1During the averaging both

variances can be measured independently providingeansight into the distortion situation

of the measurement (Fig. 3.5.2).
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Assembly averaging wrt. to the output noise

c
=
=<

| Wi i s
§ ur Y1+N11 Y1+ N12 Y1+ N1k
)]

S0 e e i

;, T Y2+N21 Y2+ N22 Y2+ N2k

% ........................................

E L gl e ey i
U | Ym+Nml Ym+Nm2 Yt Nk

Fig. 3.5.2.Measurement setup to separate the ETFE BLA measunts from those of the output noise. When a
single realization of a periodic input is appliesdamore periods measured from the output, the moiogic
output noise can be easily separated and its \@iand nonparametric spectral properties measApalying
independent inputs and averaging along them, omwttier hand, gets rid of the non-linear noise aiettly the
FRF BLA.

3.6 Robustness in the SISO BLA measurements

Various signals can be used as the excitationth®oFRF measurements. Some of them lead
already in many measurement areas to the develdpmiera specific measurement
methodology (based upon these particular signags,tke Gaussian noise). If new (better)
excitations are proposed, the primary issue is dfigiortability and comparison — will we
measure the same quantity or not?

If the measurements made by the older and the nexefiations are comparable, it makes it
possible to switch over to the new methods andxtenel the measurement technological
toolbox, without the fear that the existing achmesmts will be uncomparable and
jeopardized.

In the related research two questions were addiefstie number of the harmonics tends to
infinity, is the BLA asymptotically equivalent fatifferent excitation signals? The second
guestion dealt with the asymptotic properties & BLA FRF measured with multisines
defined on different frequency grids.

SISO BLA equivalence of the multisine excitations

Luckily the first results were encouraging:

Theorem 3.6.1: SISO model equivalence of random ntigdines, periodic noise, and
Gaussian noiseFor the listed types of the excitation signals 8180 BLA and the non-
linear variance retain all the properties provedtii® random phase multisines and converge
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(also in the moments) to the same limit valuesatrateO(M -1). The BLA is a continuous
function of the frequency, with the continuous datives if the approximated \olterra system
is continuous, with continuous derivatives.

Proof: See[162-163].1

Robustness of the SISO BLA measurements

Further research developed a mature model of thm@stic robustness of the SISO BLA
measurements. It was recognized that if the Valtsaries is excited with a random multisine
of a high harmonic content, then with the propemmadization, the BLA expression (2.2.16)
is formally equivalent to a Riemann-(integral) sufnom this starting point, for a number of
practically relevant excitations, we succeededtmilate (Riemann) equivalence conditions,
warranting for these excitations and for the nowedir systems approximable in the mean
square sense by the \Volterra-series the portabilithe BLA measurements.

The BLA measured with the Riemann-equivalent exoitasignals (taking into account the
spectral equivalence from Fig. 3.6.1) can be writs:

()= [ G L 90D S( S o df. (36.2)

and similar expression can be formulated for the-lneear noise variance (albeit with no so
simple direct reference to the \Volterra-kernelsy (he derivation, see [46*]).

SIGNALS OF THE EQUIVALENCE CLASS E'g,, AT FREQUENCY

Q=2 foko/N
Signal E'reql_t_i:ncy J-’m'.-'elr{JT.afnplimdc
z orid spectrum
G;lu.tlcsj.'m full "Q[(_Q} {user defined)
noise /
periodic full - el 21 =« :
noise EX U(P‘Q} b= Si(Q)f,
multisine full
[U(ka)]* = S Q)
random | full random with
glid ok - T o i
multisine prob p E{|{"{|AQ) } = SL,-{Q)I.,’_‘/;J
odd odd 1l 2 _ Ag -
random |b(|f‘£l|)| o _b;_,-[Q}j;
multisine if k(?_ is odd,
and
zero elsewhere
odd odd ~r1ricle Py 0 NE S
random random with E{ l{‘ (i;”ﬁl }] b= “Sf-{g'}-’r*/-”
grid C if ke, isodd,
multisine pb p Q 10
and
FETD L‘E’SE wh:‘.r:‘

Fig. 3.6.1. Correspondence in the spectral content for vargxggation signals.
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The robustness of the BLA measurements for variamsilies of the multisines can be
addressed also from the frequency grid perspeciiere are already many frequency grids
defined in the measurement practice (see Sectidn it also other ideas found in the
literature, e.g. [121]). Due to the fact that th&gin the limitM - o, is responsible in the
bias and in the variance expressions for the cgevee of the finite sums to the multiple
frequency integrals (of arbitrarily high dimensipsse series (3.6.1)), this grid must fill the
frequency band in a more and more uniformly dens@&mer, i.e. it must be a uniformly
distributed sequence [144, 20*].

Definition 3.6.1 Uniformly distributed multisine. An uniformly distributedN-periodic
random phase multisine witld harmonics is defined on the frequency ¢S], , which is a

uniformly distributed sub-set of the reference trelacy grid (i.e. the discrete full frequency
grid of N/2 harmonics):S;, =[k k .. k]O §,=[1 2 .. (N/2)y }(k=1, see Def.
2.2.4, the multiplication by the fundamental freqcef, is omitted for clarity), in a sense that
for everyM andN and for every frequency sub-bahé [my, mp], 1 <my < nmp < N/2, the
limit:

1w, m-m
jim === M 3.6.2
M”;noo mo 2/N ( )

exists, meaning that in the limit the frequenciéshe S, grid uniformly and densely fill up
every subband of the full frequency band of theaigm

The question now is to what extend the BLA measerdm performed over different
frequency grids are equivalent (and with the pragperctral equivalence, converge to the limit
(3.6.1)). Based on the theory of the uniformly dligited sequences it can be stated that if the
frequency grids used in the measurement desigiclaeacterized - as point sets - with the
decreasing so called discrepancy, then the comelspp BLA measurements are
asymptotically equivalent.

Let us start with a simple 3rd order SISO \oltesgstem. Let the frequency grid of the
excitation be modeled as the point set:

Se=[k k .. k]OS.=[1 2 ... (N/2-1] (3.6.3)

Then:Y()=G (UM + Y Gk b, K] UK), k= Fk-k (3.6.4)
k. kO 0 & 1=1

Denoting asK,,, :ﬁ > Gk, —k), K, =TG3(I, f,— f)df (3.6.5)
kO S5 0

the kernels appearing in the BLA expression thestiore now is what is the bound on the:

&)= ‘GBLA,M Q) _GBLA(I)‘ = 6‘K3,M -K 3‘ <? (3.6.6)
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error, whereKs is the kernel measured with the reference nois Ky is the kernel
measured over the given frequency grid. In the gegmase, for the measurements performed
over two different frequency grids the error is isamty:

£,(1) =[Goran, ) ~Giran, )] = 6]K 5, =K | <2 (3.6.7)
and can be bounded using so called Koksma-Hlawdguiality [144] as:
s <oV (G, f,—f ))(D51+D5,2) (3.6.8)

whereV is the variation function measuring the smoothréshe kernel an®’y, is so called
star discrepancy, the measure of the largest differ from the uniform distribution. Below
one can see the discrepancy of some, already menticharacteristic frequency grids.

If the discrepancy of the frequency grids is ofes@(M ™), of similar order is the difference
in the BLA measurements. The results can be gemedafor the arbitrary order \olterra-
system:

£(1) =[Goau () ~Gpi)| <6 Y K&, (3.6.9)

a=30dd
where K, depends on the kernel functions (cf. (3.6.5)) @apdtan be estimated from the
Koksma-Hlawka inequality [20*]:

a

£,<DyY. D> VG0 (3.6.10)
k=01<i<i,<.<i <a
where the term in the parentheses is the multidéoaal variation of the frequency kernel

G [144]. The results can be extended to the colesaitations with the additional condition
on the bounded variation of the signal frequenacspm (see [20*]). In consequence, based
on the smoothness of the bias and the variance 3®l), furthermore on the standard
properties of the Riemann sums (2.2.8) for (3.6rid on (3.6.10), the variations in the BLA
measurements can be bounded by the variationeifrequency grid discrepancy leading to
the following Corollary:

Corollary 3.6.2: Frequency grid robustness of the BA measurements.The BLA and the
non-linear variance are robust to the perturbatadriee frequency grica

More can be said in case of Wiener-Hammersteiresyst with more insight into the system
structure and the place of the non-linear comporerguch case [20*]:

£0)<CIG()IVIRHF)(D,, + 0,,) (3.6.11)

The error thus is more dependent on the smootlafdks input linear system. [44*-45*].

58



dc_1199 16

Integration error
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Fig. 3.6.3 Behavior of the error for the

Fig. 3.6.2Quantities used to qualify properties of the umily distributed sequences: (a) mass distribution of
the point set (point measure), (b) cumulative mdisfibution (continuous) and the volume measurehef
interval (point line), (c) star discrepancy.

Error term in Koksma-Hlawka inequality
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measurements with various random multisines.
The measured system is a 3rd order Wiener-
Hammerstein system with the 9th order
Butterworth input system and the 9th order
Tchebishev output system (10dB pass-band
ripple). (*) full, (o) odd, (x) odd-odd, and
(square) random frequency grid.
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4. General MIMO BLA theory

4.1 MIMO Volterra systems

In numerous real life phenomena multiple independernnterdependent effects act together
toward joint results. These can be modelled as aled Multiple-Input Multiple-Output
(MIMO) systems. It is easy to extend SISO Voltemadels to MIMO \olterra systems
without feedback, i.e. when the outputs can be mediseparately as multiple-input single-
output (MISO) systems witN inputs.

A number of questions pops up naturally regardimg gortability of the SISO BLA results
and also about possible new phenomena specifletbigher dimensional systems. Once we
define well behaving MIMO \olterra systems the paimy issue will be the choice of the
multiple input signals and the analysis how the sneaments in one input-output channel
influence or perturb the measurements in the athennels.

General Assumptions

The well developed SISO \olterra theory (Sect 2s1y numerous advantageous properties
for well behaving kernels and input signals, rasglin further nice properties of the BLA
approximation (Sect 2.3).

In the MIMO case there is more freedom. Feed-foawaarnels and the cross-channel kernels
can differ in properties, diverse input signals daa applied to various inputs, and in
consequence the analysis of the MIMO \olterra systean be difficult.

In the following we recall that the informal scopkthe research is the nonparametric linear
FRF measurement on a weakly non-linear systemthieesituation when little if any a priori
information exists about the system under studyitigdjust the aim of the measurement to
gain some information about the frequency band,stiepe of dynamics, the level of non-
linear distortions, etc. Consequently there is lguao measurement technical reason to
specify essentially different excitation signalshe system inputs.

Considering the multisine signals applied to défarinputs we may assume thus, that:
Assumption 4.1.1

(a) The frequency grids at the inputs coincide, tevner they are, or

(b) Though multisines at differett inputs can be distributed on different frequencylsgy
S, « (see Def. 2.2.4), but these frequency grids ares@laubsets of the same uniformly

n 4= QN (e they

have plenty of common frequencies); that way gluis will have the same common period.
[

distributed frequency gris;, , in a sense, that f(Ok, 5§, O S,

The derivations in Sect 4.1 are made for the outguthe MIMO \olterra system with

bounded kernels, excited by normalized excitati@isthe frequencies common to the all

inputs (Case a.), as this situation constitutes BERF measurement practice almost
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exclusively. We will also assume that no otherudlsihg noise sources are present, focusing
thus the analysis on the input signals and thelmear effects. Although not investigated
formally it can be nevertheless conjectured thatmber of results will be valid also for the
Case b.

Definition 4.1.1. N-input K-output MIMO Volterra series. An N-input K-output MIMO
\olterra series can be described in the time domsin

VIORSY (PRTRSSRIN GED ATGED WD LI (@.1.1)

a=l jizea

where the second sum runs over the outputs ofusé# pnd mixedath order kernels, and a
particular ath order kernel, excited by input signals of ingi¢g j»,...,jz, in time domain
yields:

yhlza (1) = f:ﬁ gl (g, L Uy =) U (=)0 (t-7,)dr.d7,  (4.1.2)

andk =1, ...,K, and everyj, 0 {1, 2, ...,N}. In the following we will drop the output index,
as redundant. Every output can be considered depaes the result of a different Volterra
series.

In the frequency domain the system model is (2.2.8-2.2.4) for SISO):

ORVIRUSSITN OB WEE) WSNTI0 (4.1.3)
VI =M Y GH (K ke ko, DU (DU, ()Y, (k) (414)
Koo O S5 O S

wherel is the discrete frequendy= 2 ki, i =1 ... a, and:

_ — 1 @ ()
U, (k) =U,; (k/ N) = U, (k/ N) € (4.1.5)
Similarly to the SISO case the kernels and theadggmust be bounded. Kern¢giiz-i= are

bounded by maxG'=-=| = My, ;. The series is convergent for evénjf the inputs are
normalized to unit power and have uniformly boundpdctral amplitudesJi| < My VM <
oo, furthermore if together (c.f. (Def. 2.2.2)):

> M,MJ <o (4.1.6)

a=1

where M a = max | M

all a order kernels

My= max |[My,|. =

o
2o all input signals

Definition 4.1.2 Non-linear system class of interesfThe class of systems of interest in the
following is restricted to those systems which e limits in the least-square sense of the
convergent \Volterra series defined in Def. 4.1flotherwise not specified, the term ‘non-

linear system’ will be used in this content.
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Note: Special measurement situations, like e.g. meagumodulators with carrier inputs, or industrial
installations with step-like signals, can be haddis a normal FRF measurement at a specific "worgints"
of the system. Furthermore the BLA theory was rdgeextended to (periodic) multilevel excitationgeals
[267-269].

We summarize now in the analogy to the SISO cassesgseful properties of the MIMO
\olterra systems.

Theorem 4.1.1 Error bound for the truncated MIMO Volterra series .

IVIul(®) =V Lul(t) . < :?: gy I (lull,)" (4.1.7)

k=K +1

Proof: By the analogy to Th. 2.2.1, where,|if§ normal sup norm, maximized over all inputs, &mel bounds
are taken similarly as the maximum over all kerélghe same order, or over all inpuss.

Theorem 4.1.2 Boudedness of the MIMO Volterra series.MIMO \olterra series is a
Bounded-Input Bounded-Output for each of its inputput paths.

Proof: Inputs are bounded, so majorizing them with thestvoase input bound reduces the problem to th® SIS
case.n

Within the measurement technical circumstancesnasdun the dissertation the following
observation may actually serve as theorems, howfeverally they can be stated only as the
assumptions:

Assumption 4.1.2 Continuity of the MIMO Volterra series.

Comment If the MIMO \olterra series is convergent (Defl4.), due to (4.1.4)-(4.1.6) it can be stated that
when all but one input are fixed in their propest{spectral content, frequency grid, phases) thmi@ng SISO
\olterra system (characterized IMS_lGjljz“'j” kernels) posses all the properties listed in Se2tfor the
bounded kernel, bounded input SISO \olterra systemssequently is continuous. This is so callecasEp
(component-like) continuity, which in itself doestnimply the joint continuity of the multivariableinction.
However if anN-dim multivariable function is separately contingoim all of its variables, then on suitable
domains (unit cube) the set of discontinuity poistsf at mosiN-2 dimension, and with additional smoothness
conditions, the set of discontinuity points is n@ndense. The counter examples usually show diecdy at

the origin, which is without significance, as thegmm means not applying the input signals at &b. for the
practical purposes we assume that the MIMO Voltsystem (if properly bounded) is also continuo@83] m

Assumption 4.1.3 Steady state theorem for MIMO Volterra series.For every inpuk, let
u, andusteadyykbe signals within the region of convergence of.@), and suppose thaft) —

y,@ ast — oo for allk. Then Vp,u,,....u J(t) - V[u (t) ast - oo.

ustead steady,iusteady,2 T ’usteady,IJ

Comment: By the assumed continuity of the MIMO Volterrateys, see Ass. 4.1.1

Assumption 4.1.4 Periodic steady state theorem for MIMO Volterra series.If the inputs
ux are all periodic with the same periddor t > 0 then the output W,u,,...,uy] approaches a
steady state, also periodic with peribd
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Comment: If the inputs are of the same period, then thedécsra can be jointly bounded and then SISO theorem
Th. 2.2.3 appliem

Assumption 4.1.5 Extended periodic steady state theorem for MIMO Vdierra series If

the inputsu, are all periodic with the period&, possessing the least common multiple
lcem(Ty, Ty, ..., Tn), then the output \,Up,...,un] approaches a steady state, also periodic
with periodT.

Comment: Since every input is alst-periodic by definition, then by Ass. 4.1.4 the mutt should be alsd-

periodic. There cannot be shorter periodicity ie tutput, because it would assume that all thetenmrached
already a repetition, impossible by the definitafrihe least common multipla

In a number of MIMO applications block models aleaa useful modeling tool. The general
unified definition of the MIMO Wiener-Hammersteilystem and the related special cases
does not exist. Here we present a definition usdde followings:

Definition 4.1.3 N-input K-output MIMO Wiener-Hammerstein system is built from K
independentN-input MISO Wiener-Hammerstein systems. Evétynput MISO Wiener-
Hammerstein system hakparallel different input dynamicsl-to-1 static non-linearity, and a
common output dynamics (see Fig. 4.1.1 for 2-ifgl8O Wiener-Hammerstein systens).

Uss Z
o Ry X Y,
Pt
Ups
—»| Rp2

Fig. 4.1.1 Generic MISO Wiener-Hammerstein structds;(1) andR,; (1) are the linear input dynamicS,(1)
is the linear output dynamics for tpth output, and\L is the static non-linearity.

Volterra kernels of ordex of N-input MISO Wiener-Hammerstein system are:

a

Gjﬂz---ia (kl,kz,"',ka)=ConSthp(k1+k2+'“ka)|_| R (kn) (418)

k=1 P ik

wherejy, j2, ..., Jo @re not necessarily all different (and similady Hammerstein, or Wiener
systems).

4.2 MIMO FRF measurements

Multiple input setups were investigated extensivielythe linear FRF measurements [199,
210, 125, 162]. As it was assumed in the SISO oadee following we consider the output
error scheme, and the primary object of the ingasittn are the nonlinear effects coming
from the system itself and not from the measuremerses. The MIMO system witk inputs
andK outputs is measured as a set of MISO systemdiI@tirposel experiments are made,
generatingl times all the input signals, then cutting (afteg transients settle) the successive
records from the inputs and the output.
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The measured signal amplitudes at the frequécay be arranged as:

MAORRAS DRSS A ()

vo=eoup,0= 0 O 0 42
YOO Yam - Y30

Gi() GX() - G'O[|UPM) U2 - U NGO NZO) - N

G() G() - GO)[|ULM) U2 - U], [ NeD NGO - Ne()

Ge() GZ(1) - GYMH|IUEM U@ - uQM] INSM NZ&WO) - NOO)

The indices in parentheses are the serial numlbéing @xperimentdJ is aN x J input matrix
of complex input amplitudes (2.2.11), and will piayportant role in the followings:

UM U@ - U0

ugm U2 - U0

u()= (4.2.2)

udm uPwm - U
G is aK x N matrix of the true FRF values for a particularutiputput channely andNy are
K x J matrices of the output amplitudes and the outpefisurement noise amplitudes
accordingly. We will assume also in the followingatJ = Ng x N, i.e. the number of

experiments is an integral numberMfexperiment blocks. In the future we will distinguis
also a specidll x N input matrix built fromJ = N experiments:

uoa) UL - UM

uea) uR@ - UM

Uy(h)= (4.2.3)

udm u@@ - U
Note: The notatiorGS‘(l)caIIs for an explanation. To conform to the notaticsed in the \Volterra kernels, the

lower index is the output channel index, and theempndex always means the index of the input sigpplied
to the system.

As the MIMO system can be decoupled iltoMISO systems with the same inputs the
general equation can be written for a single outghannel (dropping also the redundant
output index):
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YO =GOUD)+N, () =[YO1) ... YO )=
ul@)y u@@) - U

2 U2 - U (4.2.4)

Gy ... e oy)|" «NOOY . NOW)]

ug® u@@ - U@

From now onG will be a IxN matrix, andY, Ny are XJ matrices accordingly. The FRF

estimate é‘(|)can be computed from (4.2.4) as (from here on wi dvbp also the
frequency argument when not explicitly required):

G=YU"(UUM =G +N,U"(UU") =G +N,B (4.2.5)
where:B = U" (UU™)™, and (' is the conjugate transpose. (4.2.6)

Taking G =G -G, (and assuming the E{G} = E{G + N,B} =G ) the variances on the
measured FRF-s can be computed from:

Co{G} = E{G"G} = E{B"N!'N,B} 4.2.7)

Matrix B will generally attenuate the distortion introdudey the output noise, its entries
however could be complicated functions of the cax@mplitudes of the input signals, and
thus the noise smoothing effect Bfwill depend upon the particular choice of the itspu

Note: Inverting the input matrix (direct, or pseudoénse) is possible if all inputs are exciting agigen
frequency (there are no zero rows in the input gatWe have the following possibilities:

(a) every input is exciting at the frequergy
(b) the measurement equation is considered ornheafrequencies, where every input is exciting.

4.3 Problem of the input design — linear MIMO systms

The problem is now not only how to design the etmh at a particular input, but how to
relate it to the other system inputs, i.e. instefaskeparately designind(l) we should design a

full matrix U =[U{"()] in (4.2.1), thinking globally about the all inpuisd experiments.

As a given column it means the design of a single experiment, we shmellidlee to change
the input design from the experiment to the expenin

The main problem can be best illustrated with tH@®GSFRF measurements, where the FRF
estimate is (2.1.3) (2.2.24):

< 2 Y OU D S,
G()= k =
0 > UOUD S0 (4.3.1)

For the small number of averages the input autatepa estimate in the denominator can
exhibit large variations and can take small valeasling to the excessive variance of the FRF
estimate. Such variations are present when thdagei signals are e.g. Gaussian noise or
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periodic noise, and disappear when using randonsephaultisines, because then the
denominator is deterministic:

Su(D=>, U (U, ()= |U,()F =const (4.3.2)

In the MIMO case we can relate the inverse matrix4.2.5) to the denominator of (4.3.1).
Intuitively if we use random signals as the exmtas, the entries in (4.2.1) will be random,
and in consequence the inverse in (4.2.5) will digctuate increasing the variance (4.2.7).
Using random multisines won't entirely get rid aig problem in the MIMO case, because
the randomness in the phases will still be visiblthe off-diagonal entries in the mattisU"™,
consequently also in the inverse in (4.2.5). Howele fluctuation will be less than for more
randomized signals.

Linear MIMO FRF measurement theory developed inmatrix design related to the
minimization of the variances over the parametiiRFFFestimates [86, 87], [189-190]. Only
when a suitable structure is enforced in the etioita applied to different inputs, i.e. into the
input matrixU, we can expect a better behavior of the FRF ettina

One of the possible approaches is through the taiobr of the estimate (4.2.5), which can
be characterized by aN-dim ellipsoid, which volume should be the smallgs25]. The
smallest volume ellipsoid is related to the deteant ofUU", and that to the determinant of
U (detUyUy" = (detUy)?), which should be the largest and this brings jmitiure so called
Hadamard maximum determinant problem.

Note: This is so called D-optimal design in the theafylinear measurements. There are more optimality
criteria, like A-optimal design, etc. but the deté@rant based criterion is the most pertinent to dlseussion
[199, 125, 175].

Definition 4.3.1: Hadamard maximum determinant problem. The Hadamard maximum
determinant problem [29] seeks complexx N matricesA with entries in the unit disc
satisfying the Hadamard boundet Al< NV, For dimensiondN = 2 = 0 mod 4 the real
solutions are so called Hadamard matrices withieswd. For complex matrices the bound is
always attained by the Vandermonde matrices ofitheoots of unity, i.e. the DFT matrices,
which are defined for any dimensidi# 2. m

Hadamard matrices can be computed recursivelyh@d&tonecker product as:
H, =H,UOH . where (4.3.3)

H = 1 1
271 1 - (4.3.4)

The Hadamard matrix of e.g. ordér= 2° = 8 is:
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1 1 1 1 1 1 1
-1 1 -1 1-1 1 -1
1 -1-1 1 1 -1 -1
-1 -1 1 1-1-1 1
1 1 1 -1-1-1-1 (4.3.5)

-1 1 -1-1 1 -1 1
1 -1-1-1-1 1 1
-1 -1 1-1 1 1 -1

T
©
1
N e

Hadamard matrices are also orthogonal, HyHy =HYH = NI (4.3.6)
wherely is anN x N unit matrix.

Using Hadamard matrix to structure the MIMO exditatdesign for input dimensiod = 2
= 0mod4 would yield:

U,()=HyU(l), and with this: (4.3.7)
_H Hya_ 1
B=Uy(UUy) _WHN' (4.3.8)
G=—2 VYH,=G+ 1 NH
NL_J(|) N NL_J(|) vyAN (4.3.9)

assuming Gaussian white measurement noises:

2
A T .
Co{G} = E{G"G}=E{B"N!N,B} =—— |

Y Y N |U (I ) |2 N (4.3.10)
Note: Input signal (matrix) designs in the linear amdthe non-linear case essentially differ. LinearFFR
estimates are input independent, only the outpiserattenuation depends upon the inputs. In thelinear case
the measured FRF is only the Best Linear Approximmadnd is a kind of a least-square “linearizatiirthe
input point”, i.e. theoretically input dependent.

Note: The principal drawback of using Hadamard inpuigie is that Hadamard matrices are defined fortinpu
dimensiondN = 0 mod 4. For other input dimensions a typicabswugement practice is to approximate (4.3.7)

with: U,, (1) =H,, U(l) , where forM < 2, H,, is the left uppeM x M submatrix of H . The
approximation yields of course correct solutiondeeryN = 2. Note that due to the special structure in (4,3.7)
the approximation will yield deterministic variansa@milar to (4.3.10) even for the approximated disiens
(with nonzero off-diagonal elements instead of dizgj 1) . To get a feeling of the phenomenon, consider:

1 1 1 3 1 -1
A,=| 1 -1 1] HHAN = 1 3 1 (4.3.11)
-1 -1 1 1 1 3

Comparison of the input designs based on the rancwitisines, the Hadamard matrices, the approximate
Hadamard matrices, and the orthogonal matricesrgkriag the idea of (4.3.3) designed for the niowdr
systems (see Section 5.2.) can be found in [1T*vds concluded, “... that for small system dimensjdn
situations when no non-linear distortions are presed consequently when the Crest Factor mininoizat
allowed, the approximate orthogonal multisinesdyittle best results. For larger input dimensionsylogn non-
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linear distortions are present and the Crest Fagptimization won't be usually allowed, the ideathmgonal
multisines provide the best option.”

4.4 Input design — non-linear effects in two-inputwo-output systems

The problem of an adequate input design to hanaltelinear effects is introduced in case of
simple Two-Input Two-Output (TITO) systems of lowomlinear order, in noiseless
measurement conditions, driven by the random phastisines, defined on the same
frequency grid. This particular choice is dictateg the theoretical importance of such
models, e.g. in the microwaves, and also by thepewed results, that in this case the linear
FRF measurement technique is still fully functiolealdhe experimental setup is the special
case of (4.2.4), fal =N = 2:

(4.4.1)

uo 2
YO =60U.0 =l 0 YP0l=[en) o ()]{ by U E:ﬂ

The required FRF estima G'(l) can be obtained simply as:

Sm=|6'0 & ml=ynuro (4.4.2)
Now consider that the outpu¥sbelong to an up to'8order Volterra system:

Y()=G' (U, (1) +G* (U, (1) +
+3 Gk, LU, (KU, (L) + Y G (k, L)U, (K)U, (L) + > G (K, L)U, (KU, (L) +
£33 Gk, Ky, L) U, (k) U, (k) U, (L) + 3 S GH2(k, Ky, L) U, (k) Uy (K,)U, (L) + (4.4.3)

ki K ko k

22 G (K ko, LU (k) U, (k) U, (L) + 30D G (K ky, LU, (KU, (K,)U (L)

ki ks

whereL = - k for the 29 order,L = | - k; - k; for the 3? order kernels. All sums run over the
S, O S, frequency grid, and!l is the number of harmonics in the input signal. In the general

case the output of two experiments(1, 2) is:

YO =G UL 1) +G*(HUP (1) +
ZG“(k LU (KU (L) +ZG“(k LU (KU (L) +2622(k LU (kU (L) +

56k ko UL U (U (1) + 3 60k, ki DU (U0 (U (1)

3 ¥ 6, ke LU (R)UL () U (L) + X 67 (K, by UL (k)US (k)US (L)
ki ko ko k
(4.4.4)
G UTY(]) = ~ (|) -U,2()
D(l) =detU=U,“()) Uz(Z) ORAS OIS A () (4.4.6)
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the FRF estimates from (4.4.2) are:
YOMUL WD) -Y 2(hU()

Gi(l) = 0 (4.4.7)
D(1)

Consider theG'(l) . Substituting the full expressions (4.4.4) inte #stimate (4.4.7) yields:

~ ()] @ny—) @ ()
&1y = iy U DU (Ig)(ltjl QU L0,

36 L)(U SO REERORTIEIN 2)(L)U(l)(I)J

D) D()

12 o) @ 2 (I) @ @ U’ (1)
;G (k, L)(U (KU (L) —== D{) U7 (kU7 (L) D(l)J (4.4.9)

22 1) 1) U(2 (1) 2 2 ug’ ()
o ® @ @ 2
ZG (K, L)(U (KUP(L)—2>= 0 -U,” (KU,7 (L) 0 j+

226 M k)| U () UA R)UP L) Z(I()') U (k) U (k, )U(Z)(L)UD(I()I) +
leanz(kvkz-L) P (k)UL (k)UL (L) D(I()l) U2 (k)UL (K, )u<2>(L)UD(1(I()') ;
2,267 (ke D) | UP () U2 () U (L) D(I()l) U@ (k)UP2 (kU2 (L) D(I()') ¥
kZlkZZGm(kl.kz.L)[ 9 (k)UL (k,)UD (L) S(I()I) _U@(k)UP (k,)U D (L)UD(I()I)

The linear term cancels G'(l). The measured FRF is the expected value oél(l) (with

respect to the random phases). The expected valhe terms in the parentheses will differ
from O if suitable pairing of the frequencies canfbund (see the Th. 2.2.1, consider also that
different experiments and different input signal®e atatistically independent and that
VS F=U@ P k=12).

Consider e.g. the expression containing the keG'*'(k,,k,, L) . Three frequency pairingk{

=k =-ky,L=1},{ k=ko=-L1,ky =1}, and { k=L = -k; , ky =1} are possible, yielding the
nonzero expectation of:
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els s ek v U0 U U YE0 - U Ul K ue UH)J}
ST e 0 w0 woo - uey Uy wi e D

3ZG111(I k,- k)(U(l(k)U(l( k)U(l(I)U 10 - U2(k) U= k)U(z(I) z (I)J

D() D(l)
111 _ ) 2 11 U(Z (l) (2) (2) U(l (I)

3Zk:G (I.k, k)(IUl (K)F Y G)W U2 &) F U, “WJ

3 Gk, —k) U i) P U )Dzll; A0 L o)

(4.4.10)

Similar derivation but with less pairing is possilibr G'** kernel, and no nonzero pairing is
possible at all for the othef*2and 29 order kernels:

E{G()} =Gt ) +

BZGllll(k,— K, I)‘Ul(l)(k){z Ul(l) (I éz)(l )-U 1(2)(| )3, él)q )

D(1)
12 () _ w2 U5 (U520 -U 200 20) (4.4.11)
+zk:G1 (k=K 1)U (k) 50)
122 1 2 Ufl) [ Uéz) 1)-U fz) él)
+ZK:G1 (|,k,—k)‘U2()(k)‘ (1) (|)3(|) (Y2 0)
22(y, _ @712 Uél)(l)U EZ)(I )-U éZ)(I )y él)@ ) -1
+3zk:c31 (k. =k, 1)U (k) o0) + O(M™)

Within the 3% order kernels the second and the fourth termger® and the numerators in
the first and the third terms equal Bql), leading finally to thenonzero expected value of
(omitting for clarity theM-dependent asymptotic term):

Gia(l) =E{G( )} =

GH()+3> G (1,k,~K) |U, (kP +>. G 1.k~ K |U (kf= G-(I¥ G (I (4.4.12)
The G?(I) can be evaluated similarly as:
G2 () =E{G{ )} =

aa(l) = E{G(D} (4.4.13)

G*(1)+3>.G™*(I,k,~K) [U (kP +> G 1L,k~K |U, (kf= G*(¥ G*(

Zero mean terms (i.e. where the frequency pairiagnit possible) belong to the non-linear
noise Ys(I) - the noise observed over the measured FRF (se@.ZH for more details).
Considering that in (4.4.9) multiple terms (evegrrel!) contribute to the noise and that the
determinant (4.4.6) can be small, we should expeasiderable non-linear noise and the
lengthy averaging.

With this we have arrived to the linear represemtatof the TITO \olterra system as
(introducing now the respective output indices):
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Y,(I Goar Gias [U()T [Ysa(!
Y(1) =G (HNUQ) +Ys(l) = {Y((lﬂ = {Gf“‘l G?”“}[UIEI))HY ' ilﬂ (4.4.14)
2 BLA2 BLA 2 2 S,2

where Gg , :[Géw] is the linear best approximation TITO system Y¢(l)is the non-

linear noise. The particular investigated outpurt loa written then as:
Y (1) = G (D Uy (1) + Gaa(D U, () +Y (1) (4.4.15)

where the Best Linear ApproximatiorG§ , = Y/ U} = G'+ G, k=1, 2, are (as worked out
in (2.2.13) for SISO systems) biased approximationthe non-linear relations described by

\olterra series anGs are the bias terms introduced by the non-lineafig equivalent noise
sourceY<(l) captures all other non-systematic effects.

U, - Y;% Y, Fig. 4.4.1 Equivalent model of a non-linear TITO
_T GEM.1 system. GéLAm are the best linear approximation
25 iz systems.
Gz Yo
U ‘ : Y,
BLA2

In the SISO theory we could see that the Best lidggroximation takes on an especially
simple form for the Wiener-Hammerstein systems.uftss then, that the computelf 8rder
TITO Volterra model is really a Wiener-Hammerstsystem.

Example 4.4.1.Bias on the measured FRF of a 2-dim MISO Wiener-Hamerstein system The kernels
(4.4.11) for the Wiener-Hammerstein model are paldilly easy to compute:

G™(1,k,1) = @,0,R, (R, (R (NS, (1 +k +1) (4.4.16)

With (4.4.16) the bias in (4.4.12-4.4.13) becomes:
GL,(1)=3> GIM(1,k, k)|, (K)[* + > GIZ(1,k,~k)U (k)| =
k k

=30, Ru(DS O TR W0 + @R () SOXIR(N 0 4159

3a
= 0,1, Ry (1) S.0) 1y + @ R (D) S(1) 1, = (il y Tizefizy 1) = K, G1(1)
1 1
.. 2 2 —_ allZ r.ll 3a222 r.12 2 —_ 2
similarly for Gg ,(1) : Gg (1) =( o + )G () =K, G/ (1), (4.4.18)

2 2

because the input amplitudes are of 0/O(N ™2) and thus the sums; andry, are of orde O(N°). We can
see that also in the MIMO case the relative biamaies constant for the Wiener-Hammerstein system (f
general case see Section 4.6.) ((hdependent asymptotic term has been omitted foityla
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Let us turn to the orthogonal input design (4.3pfpposed for linear MIMO FRF
measurements. For dimensiNrF 2 the input matrix is:

0 =E _juf” 0) (4.4.19)

reapplying the same inputs in the second experimtit sign reversed. The optimal choice
(4.4.19) has been actually proposed for linearesyst yet it works extremely well also in this
case. The common sense (and heuristically a polvenfoperty of the Best Linear
Approximation) is that the non-linear noise appearthe position of the output noise, thus
techniques designed for the output noise should aiso in this case. With (4.4.19):

L 1 101
u (l)_ZUl(l)(l)[l _J (4.4.20)

and the FRF estimates are (c.f. with (4.4.7) andl.):

_YP0)+Y,2q)
2U,°()

Y20 -Y,2()

,andG?() = 200

G'() (4.4.21)

Consider now theG'(l). Substituting the full expressions of the outp(#st.4) into the
equation of the FRF estimate (4.4.21) and takitg account thaU® (1) =U2 () =uP(I) and
U@ =-ul(), yields:

A1y = nU (UL (L) 2 U (U, (L)
Gm_em+ge ) +;G T

556U (UL (UL (L) | 550 uae UL (kUL (UL (L)
< e Ul () - u()

(4.4.22)

Terms with other kernelsG**,G'*?,G*?) are simply canceled out due to the change ofisign
the input matrix. It is important to note, that:

. The expected value of (4.4.22) is exactly the sam¢hat of (4.4.9) (nonzero mean
frequency pairing is possible fof®rder kernels, but not fof2order kernels).

. In the optimized case only four kernels visible(4n4.22) will contribute to the non-
linear variance, contrary to all(!) kernels contiing in the general case (c.f. (4.35)).

G%(l) can be evaluated similarly.
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Example 4.4.2 Non-linear FRF measurements using optimal limgaut design.

Ch: Input - output fnear systems, and the overalldynamics Fig. 4.4.2.The measured system is a 2-input MISO Wiener-
- 2 Hammerstein system with the input dynamics, output
dynamics, and overall dynamics in both channelsvshio
-20 -60 . . . . .
the figure. The static non-lineariNL is:
50 = -100
Xo=21+2,°12+2, %5+ 2+ 2,712+ 2,5+ 212,15+ 2,2,/ 2 +2,2,°12.

1 0 0.05 0.

o 005 01 (]

Ch2: Input - output linear systems, and the overall dynamics.

[ [
-10

50
20

-100

30

0.05 0.
150 L -40 B .
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1

Linear system and the measured FRFs

20 20

20 20 20 . .
Fig. 4.4.3. The influence of
0 , 0 , 0 : 0 , 0 , various measurement setups on
the measured FRF. (a) Linear
5 0 20 il 11-20 20 120 : systems for comparison. (b)
FRF of a non-linearly distorted
-40 -40 -40 -40 -40 .
: system measured with random
D L L multisines, without averaging,
and (c) averaged fromd = 100
@ (b) (© @ (@ measurements, then (d) with
20 24 20 i 20 orthogonal multisines, without
. . . ] . averaging, and (e) averaged
: from M = 100 measurements.
g -20 -20 -20 . -20 -20
-40 -40 -40 : -40 -40
-60 -60 -60 -60 -60
o] 500 o] 500 0 500 0 500 0 500
Frequency
Linear system and measured FRFs
20 20 7 T 20
10 ] Fig. 4.4.4.The case of higher order non-

linearity. All pure and mixed non-linearities

i 1 ° °l up to the 5th order had been added to the
» \ static non-linearityNL in Fig. 4.4.2. Here we

@ 20 b 20 20 - see the FRFs in Channel-2 (left), measured
307/ Nl ol with general full grid multisines (middle) and
| with orthogonal multisines (right). The

""’/ ™ 1 1 proposed method works well also in this case.

- i i i 60 i i i 60 i i i
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Frequency

As expected from the derivations, optimizing thputs (orthogonal multisines, (4.4.19)) yields asidarable
gain in non-linear noise variance (almost 50 dRlifference, i.e. 300 times less averaging) witlpees to the
general case. We can conclude that when the BeeatApproximation of a (weakly) non-linear Vol@FITO
system is measured, it is profitable to used ogtahiorthogonal inputs (in addition to the odd fremmzy grid).

Note: The derivation shows that when (4.4.19) signaigieis applied, the level of the variance is mlwker,

but the Best Linear Approximatida the cubic TITO Volterra system remains the sanféch is an unexpected
and positive result. In measuring non-linear systeme would normally expect that the measurementltee
depend strongly on the applied input signals. Thmes linear approximation with less noise makes the
orthogonal inputs (4.4.19) a tool of choice for &8O systems. We should add that when the outpigenis
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also present, the orthogonal input signals woutlléait as well. The question now is how much thessults
can be generalized to the MIMO Volterra seriesrbfteary dimensions and arbitrary order of non-dirig/?

4.5 Main results extended to MIMO (MISO) systems

We investigate now how the previous results caextended to an arbitrary non-linear order
\olterra MIMO system (4.1.1-4.1.2N{input MISO system).

In the MIMO measurementd experiments are made, using random multisines1(@)2As
before the indices in parentheses indicate thalseumber of the experiment. The upper
index in the Volterra kernels lists the input silgnaelonging to the kernel. To prove the main
theorem we will require a number of assumptionsuaitite signals and the system:

Assumption 4.5.1All multisines are defined on the same frequermay. goignals at different

inputs are independent from each other; their ghaseindependent over the frequency lines.
|

Assumption 4.5.2.MIMO system can be of arbitrary finite input dimems N and an
arbitrary order of the non-linearity (assuming ttreg sums in (4.1.1)-(4.1.3) converge).

Assumption 4.5.3.Signals in different experiments are independent.
Then we have:

U@y v - U0

@) (2) (N)
Y(|):G(|)UN(|):[Y(1)(|) Y(N)(I):|:[Gl(|) GNG):I Uz (I) Uz (I) Uz (I)

ugn U@ - U0
(4.5.1)

and the required FRF estimz G'(I) can be computed as:

GM=|6) .. GYO)]=Y0BO), (4.5.2)

with B, (1) =[b, ] N x N any matrix fulfilling (e.9.:B, (1) =U(1), or B, (1) = U} (UUW™,

etc.):

Uy()By() =1y (4.5.3)

where | vis theN x N unit matrix. In the following we will omit the fopiency argumerit
when unambiguous. First we will consider the gelneaae, whenB, (1) =U/(1).

Theorem 4.5.1: Bias on the general Volterra MIMO sgtem. When a \olterra MIMO
system of arbitrary order is measured with randdrasp multisines (2.2.10) fulfilling the
Assumptions 4.5.1 — 4.5.3, the bias on the Bestdril\pproximation in th&th input signal
channel is composed from the terms:

Gyl (1) =Y Y G (ky, =k, ) U jm(kl)(z..‘u . (ka.)\2 (4.5.4)

kioke ke
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where G''>-)= are all those odd order Volterra kernels, wheeeitiput signal belonging to the
investigated channel appears an odd number of t{tmesar kernels are the special case of
this). The overall bias is:

0

Go(1)= Y GI()= Y TGy () (4.5.5)

a=3,0dd a=3,0ddj4j;,...j4

Proof: in Appendix A.3 B

Please also note that the Theorem 2.2.1. and #sedxpression for the SISO system (2.2.4)
are special cases of the Theorem 4.5.1. (i.e. atipats are not present, the input appears an
odd number of times, consequently all odd and odly non-linearities contribute to the bias
in the SISO case).

S>3 GH (k=K ) U () U ()

bk ke | I1=12=la (4.5.6)
>33 6 (k=) [Tl K, @ =(@-1)/2
kl kZ ka

Note: It is important to observe, that the proof of e 4.5.1. did not require the assumption on thiétmity
of the spectral amplitudes, consequently the Th.14.and the bias expression is valid for the (radizad)
multisine inputs independently colored over thauinghannels.

Theorem 4.5.2: The Best Linear Approximation modelof a MIMO Volterra system.
When the inputs of an arbitrary Volterra MIMO systare excited with multisine signals
(2.2.10), the system outputs can be written as:

Y (1) =[Y, (D] =G ea MU +Ys0) =[G, ) U O]+]Y s ) =
=[G U M]+[GE MU O]+[Y s ]

where the system:Gg., =E{Y/U}= G+ G, are biased Best Linear Approximations to the

(4.5.7)

non-linear relations described by Volterra seried Gf, are the biases introduced by the

non-linearity (note that the output index had beeded for clarity). The equivalent noise
sourcesYsn(l) capture other nonsystematic non-linear effectss Jtelds the additive non-
linear noise model for the MIMO system, a straighwfard extension to the SISO and TITO
cases.

Proof: Zero mean terms in (A.3.8) (i.e. where frequenciripg wasn’t possible) are the non-linear noises

YS,k(I), or Gs,k(l)zYS,k(l)/Uk(l) the noises observed over the measured FRF. Fram ithis

straightforward to get (4.5.7). Please note thaltiple terms (every kernel!) contribute to the mo&nd that as
the determinant déd can be closed to 0, we should expect considesbtaint of the non-linear noisa.
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4.6 Properties of the BLA approximation

The construction (4.5.4), analogous to the SIS@ ¢ab 2.2.6), the measurement friendly
properties of the MIMO Volterra system under Asstions 4.1.1-4.1.5 and 4.5.1-4.5.3 permit
to conjecture that the MIMO BLA model has similariige properties.

Conjecture 4.6.1: Properties of the MIMO BLA bias and non-linear variance. Under
similar conditions on the kernels as in Def 2.2.2-2, the MIMO BLA bias and non-linear
variance are smooth functions in the frequency, ewatinuous in the input spectral
amplitudes, and are robust with respect to theugaqy grid of the input signalm.

Theorem 4.6.1: The Best Linear Approximation of theMIMO Wiener-Hammerstein
system (Def 4.1.3) has constant relative bias.

Proof: In the MIMO Volterra measurements (with randomltisines) the bias on the Best Linear Approximation
in thekth input signal channel is composed from terms like:

Géﬂz...ia H= ZZ_IIZGMZ.-U (kl'_ kl,,|) ‘Uim (kif "lUjPa‘ (K, I)Z (4.5.8)

ki ky Ky

G'=") s are those odd order kernels, where the input kigrthe investigated channel appears an odd number
of times (linear kernels as special case). Keroktsdera of N-input MISO Wiener-Hammerstein system are:

Gzdo (k, k-, k)= consk S( k- Je--- ak)n::l R( .k (4.5.9)

Consequently, after substitution and introducingeeding frequencies, the bias in the kth channilhe
S o 2 2
Gyl () =const< [ L, X[ B, (W[ | Yo SOF RO

which with the normalization of the inputs yielc G§(1) = ¢, S, (DR, (D= GC()m

The question we tackle now is could the input dgiee designed in some special way, to
make the BLA measurements even more advantagedes8€eEd of the idea is the successful
application of the optimal input signal design floe 2-dim linear FRF measurements, applied
to the 2-dim 3 order \olterra systems. Is it a solution that dooé generalized to the higher
dimensions and nonlinear orders, or not? We seektine answer to this problem.
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5. Multisine excitations for MIMO measurements

MIMO measurement setup presents additional degkégedom to the design of the input
signals. Besides focusing on the design of the iimadels, phases, and frequencies of a
particular signal at the particular input, we cak guestions of how these parameters should
be related to the similar parameters set at ottgutichannels. We could see already that
applying independently the random multisines tdaesysinputs yields extension to the MIMO
case of the Best Linear Approximation devised far §1SO systems (Th. 2.2.1). We could
also see that the introduction of a structure te thput matrix (4.3.7) can provide
considerable gains not only when measuring lindf-B, but also in case of the non-linear
distortions (4.4.21). Our question now is whetheraan improve (Th.4.5.1-Th.4.5.2) in the
following sense:

. the measured Best Linear Approximation should kestime (“equivalence”), but

. the non-linear noise variance should possibly fss,lé0 make the measurements
faster, and the collected data of better qualibptimality”).

5.1 MIMO multisine design

Can the results obtained for TITO systems (4.4(#2)eneralized to the full MIMO case?
The problem is that the orthogonalization of theuits and using only single random
amplitude for all of the inputs and experiment®éstl with different weighting) can introduce
constraints, which influence the bias. The answéhat it is indeed the case.

The traditional input matrix (4.2.2) built from @om excitations is not a good choice. Even
in the absence of disturbing output noise the FR&asurements will vary from one

realization to the other. The reason is the fluibmeof the inverse matrix in (4.2.5), due to the
randomness of the excitations. Note, that the mguU")? fluctuates even when random

phase multisines are used, contrary to the measmtson SISO systems [162].

Example 5.1.1 Fluctuation of the input matrix for the randomltisine measurements. We illustrate the
problem with the simplest 2-dim case:

sy 250 800)

uP) UL e-LD
Omitting for brevity the frequency index we have:
D, S
u,uf :[é Dj (5.1.2)

whereDy = |Uk(l)|2 + |Uk(2)|2 is deterministic, and off-diagon&l= U,Y0,® + U,%0,? is a zero mean
random term. Consequently:

_ 1 D, -
uuyiyt=-— - |2
(U,U;) D.D,-[SF [_S D, (5.1.3)
and the random off-diagonal terms introduce addidfluctuation in the FRF measurements. Note #i%o
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expression of the determinant in the denominat®stall values can further amplify the variance.

Generally the variance on the measured FRF is etitmof the used input signals and the
particular composition of the non-linear part oé thystem. In the SISO case the expected

~ ~ A J e r1n 1 (® .
Gaussian > Va{r @ Periodic> Var}G random phas? because SJU (l) = Zezlu( )(I)U (l) n

noise noise mulin e

ranking is Va{G

(2.2.24) (4.3.1) randomly fluctuates for the nojdms is deterministic for the (random phase)
multisines.

In the MIMO case this wisdom won't be valid, becauss mentioned earlier

é[,t () =(U,U) ™ in (4.2.5) will contain random components for allee considered inputs.

For static non-linearities there is no leakage @aadances will be comparable. For dynamic
non-linear systems the leakage of the Gaussiare nalsincrease the variance comparing to
the periodic input signals. In the comparison & fferiodic noise and the random phase
multisine periodic noise turns out a bit bettecdese its input matrix is better conditioned.

Example 5.2.1.Condition number of the periodic noise and the randm phase multisines Consider for
illustration and simplicity the cadé¢ = 2 and let us assume that signals are indepemdentthe channels, and
that the amplitudes for the periodic noise are Isiryi distributed in different input channels, wiE{A} = A =
1.

ej¢11 ej¢12 _ Ailej(tu Aizej%z Ul(l) U]Fl)
elifn @itz for

Let: U, = and F = i i
2 |: 2 A21e] P21 Azzel #22 U 2(1) U 2(2)
the random phase multisines and the periodic meispectively, where all the phases are uniformgyrithiuted

on the unit circle and the amplitudég,, are exponentially distributed with unit expectealue. All the
considered random variables are independent.

} represent the input mat{

The condition number equaiU) = |J|| [U™|| [84], and let choose for the investigation thebienius norm, i.e.:
[UIF=Zkm [ukml’. In this simple case the respective inverse megrize:

a 1 { ei¢2z —_ ej¢1z} a _ 1 |: A22ej¢22 — Aizej¢12:|

=" - and P. ‘ ' 5.1.4
2 D(U,)| - elfn @it 2 D(R,)| - AZlemu Auemu ( )
with the determinants:
D(UZ) = ej¢11ei¢zz - ej¢1zej¢21 and D(PZ) = AlleWMAZZeWZZ - Azej%z A21e1¢21 .
The condition numbers become then:
K2(U,) =V, IFIIUS IP= 4/‘ej¢11ej¢22 _ plfgitn| = 4/‘ejfl — % and (5.1.5)
2 — -1 )2 — 2 i ié,
K*(P,) =1IP, IFIIP; IP=, | Al,/|Be™ - B,e’® (5.0.6)

where the phaseg, are uniformly distributed and independent, aBgs are independent products of
independent, exponentially distributed variablelea@y for (5.1.6) to be singular not only the pbeszmust be
colineated as for (5.1.5), but also the random #ug#s should match, which is an event of lowerbpiwlity
than the singularity of (5.1.5). On the other h#hd.6) can be excessively large without the caliiom of the
phases, simply when the amplitudes are small. Sitionls show that the average condition number Her t
periodic noise is a bit better (simulations indécatrough factor of 2, not really a difference).
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If an input matrix built from random multisines doaot work well, then what? Hadamard
matrix makes the experiments the simplest; no caation is required to find the amplitudes
for the new experiments. Using Hadamard matrix tfee input matrix (4.2.3) makes it
possible to Crest Factor optimize the input sigoakse for all, because the subsequent change
of sign in an input channel does not influencepghases of the already optimized signal.

Another issue to consider is that although only &hadrd matrix is proposed in the literature
to minimize the noise influence [88], it can bedigéth full impact only for the system with
N = 2 inputs. Approximate design fares already not st foelinear systems, and is dubious
when the Best Linear Approximation comes into goestOne could use in (4.3.7) another
orthogonal (or unitary) matrix, e.g. the Fourier trda (DFT matrix), defined for any
dimension (i.e. number of inputs). This choice hesreintroduces already additional
computation to the amplitudes.

First we will present a negative result tellingttfé4.20-4.4.22) cannot be generalized fully.

This will lead to the introduction of a new inpuatrix design for which the equivalence and
the optimality will be proved in the general case.

Theorem 5.1.1: Input matrix design (4.3.7) does nageneralize to the general MIMO
Volterra system of arbitrary dimension and order. When a Volterra MIMO system (Def.
4.1.1) of arbitrary order, with a number of inpbits> 2, is measured with random orthogonal
inputs (2.2.10), with Hadamard or Fourier matrig¢.ao (4.3.7), the bias on the Best Linear
Approximation (in thekth signal channel), besides terms mentioned in Tineat&b.1 will
also contain some (not many) other terms as well.

Proof: In Appendix A.4 m

Example 5.1.1 Some of the kernels adding to the bias, besidértormal” bias terms (4.5.4) from Th. 4.5.1.:
N=4,a=3, k =1, kernel f4j5j3) = (234) for both Fourier and Hadamard matrix,

k =2, kernel f3j,j3) = (123) for Fourier matrix,

k =2, kernel f3j,j3) = (134) for both Fourier and Hadamard matrix,

k =3, kernel f3j,j3) = (124) for both Fourier and Hadamard matrix,

k =4, kernel f4j5js) = (233) for Fourier matrix, etc.

Generally it can be seen that Fourier matrix intices more bias terms, than the Hadamard matrixh®nother
hand Fourier matrix can be applied for an arbitarg. odd) number of inputs, but the Hadamard imasmnot.

Note: Using orthogonal inputs amounts to a modified iasesl bias. Beside this all the evaluation leadiritye
additive non-linear noise source model remaingdyaionsequently in this case we also have the igddibise
model, albeit with different Best Linear Approxiritat and non-linear variance.

Note: Although direct analytic comparison between théumfice of the Fourier and the Hadamard cases (with
respect to the level of the non-linear variancedsdnot seem realistic (different algebraic operatimvolved),

low order calculations show that they eliminategfdly similar number of (similar) kernels, consedignf the
number of inputs permits, Hadamard matrix coulgptmposed as a simpler one for the calculations.
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5.2 Orthogonal random multisines

Using arbitrary random phase multisines (i.e. iraejent phases for every input and
experiment) yields too much of the variance. Restig inputs to orthogonal combinations of
the first channel-first experiment input (A.4.1els too much of the constraints. We would
like then to be sure, as a designing principlet tha bias is always the same and the
variance is always less, than in the general inputase To this end we should have a
situation, where:

. V in (A.3.8) has a form similar to (A.4.5), i¥=AX B,

. A = 0 for a number of index combinations (non-linkamels), to have less variance,

. E{B} should be nonzero only where the investigateduirgppears an odd number of
times, and other inputs an even number of timesygual bias term, Th. 4.5.1).

Let us assume that = Ng x N experiments are mad&l{ is the number of blocks in the
experiments) and let partition tiex J input matrixU in (4.2.4) intoNg rectangular blocks
as:U = [Uy Uy ... Uy] andY in the similar way.

Instead of the general input design:

uP() UP@) .. UM

Uy u20) .. U0

U,()= (5.2.1)

ud@) uP@) .. UM
which requires independent excitations for evemyutnand every experiment, | propose to
use:

UN(I):
wUL(1) wuP(M) . ow, UP()

Wll \NlN
WU (1) WU () wUP()

=diagU®®)} .. .. .. |=p,w ©22
WP WU . w o) M M

wherew,; are entries of an arbitrary, deterministic unit@gthogonal) matrix:
wHw=ww" =NI (5.2.3)
e.g. the DFT matrix, withW]y, = e! 27«1 @D/N gych signals will be called tlethogonal
multisines.

The essence of this measurement design is thasevendependent (phase) inputs for the first
experiment and then for the next experiments welsimeuse them weighting with entries of
a unitary coefficient matrix. Such input matrixatso unitary, if the amplitudes of various

inputs are the same, i.e. |U® (1)[P=const Ok
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Example 5.4.ForN = 4 and Hadamard coefficients the inputs are:

U() U, () U0) U0
Uy -U,() U.l) Y.,0) (5.2.4)
U, (1) U.() Usl) Y.0)
(U () U,() Usl) UL

ForN = 3 and Fourier coefficients the inputs are:

Uy()=

U U0 Us()
Uu)=|U,0) e 20,0) e 2uy0) (5.2.5)

U,() e'3U,() e 2u,()

The measurement procedure is thus to generatemaggoitations for the first experiment in
the block of the firsN experiments and to shift them orthogonally, acaaglyi to (5.2.2) for
the nextN-1 experiments, then to start with another randboice for the next block.

It is easy to see, that due to the unitary matfixthe experiment index is omitted for clarity):

U Hun ) :|:L_Jk(|)UJ- (I)iV_VikVVijj| = N [L_Jk(l)uj (|)5kj]= N diag{|U ( I)|2} , (5.2.6)
whered is the Kronecker Delta, is a simple amplitudeisgalFurthermore:

(UU™)™ =(NgUUR)™ and finally: (5.2.7)
- 1 g .

G() =N—ZGN,i (), with: (5.2.8)
éNJG)=YNG)UEGXUNG)UEU)Y1=f5mam]UkrﬁYNG)UEU) (5.2.9)

computed without taking the inverse from one bloEN equations.

BecauseSi (1) gets rid of the random fluctuations (for advantageoondition number see
below), a reasonable drop in variance should bearg, at least only for that reason.

Lemma 5.2.1. Condition number of the orthogonal muisines. Orthogonal multisines
(5.2.2) with uniform amplitudes have relative cdimi number = 1, for any unitary matrix W
built from the roots of unity and for equal inppiestra at different inputs.

Proof: For simplicity we will omit the frequency and theperiment indices:

wl,  wlU,  .oowU wialUr waaUz ... wnalUnw
wU, wlU, .. w,U wl, Wl Wi2U
Ho_ bV b o hnY 2 i 2 n2U N
TNV x ! 2 (5.2.10)
WN1UN WNZUN WNNUN W1NU1 W2NU2 e WU N

Then from (5.2.3):
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_ N _ _ _
[U U], :{UKU ,—Zwkiwn} =u,0,[Www*],=N 5, U0,
i=1 i

(5.2.11)
kj
whered, is Kronecker Delta.
. _ _ 1 _
Now: UNUE =N D, andD =d|ag{| Uklz}, and U: =N UNlD , andUNl =ﬁ U:D !
(5.2.12)
P
11 N1
L L 4| WP Uy F
Uy =—Ujy xdiag{ ——} = — . v (5.2.13)
N lUk l N VV Ui V_V Un
A1)\ — NN
UL P U |
With the choice of the Frobenius matrix norm:
N N N N N
Uy ”52:: Zk:lezll Uy |2 = Zkzlluk |sz=1|ij |2 = Nzkzlluk |2 (5.2.14)
- qp. -1 N -2\ »_ 1 N -2
Slmllarly: ”UN “F_"'_W kzlluk | ijll ij | _Nzkzlluk | (5215)
The condition number becomes [84]:
_ N N _
k(U UG = S0, B U, T2 5216

If the amplitudes are all equal, theUy) = N, and x(Uy)/N = 1. The condition number becomes worse of
course when the input amplitude levels are notlequa

Example 5.2.1 Determinanto U .

Due to (5.2.2) detU, UY) = detU ) detU? ) =|detU,, ) = N[ |U, I (5.2.17)

Thus: detU,,) = e‘“’\/ﬁn :l—lluk | with some randor® O [0, 2. (5.2.18)

Theorem 5.2.2: The Best Linear Approximation with orthogonal multisines When a
Volterra MIMO system of arbitrary order, with inguN > 2, is measured with random
orthogonal multisines (5.2.2), the bias on the Basear Approximation (in théth signal
channel) equals to that from the Theorem 4.5.1 atifditive non-linear noise source model
from the Theorem 4.5.2 remains valid. The onlyad#hce is that the non-linear variance in
case of the orthogonal inputs is lower, than in gemeral case, due to the deterministic

inverse(UyUn)™ and the cancellation of a number of kernels.

Proof: The main part of the required results had beerveéralready in the proof of the Theorem 5.1.1 (see
App. A.4). With matrix (5.2.2) the random componehthe kernel (A.3.5-A.3.6) appears now as (cf.B):

V=(Nvmwhmwhﬁfﬁhxhﬁhxhlihdﬁ

oy

(5.2.19)

B

A
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(the upper index of the first experiment is omitted clarity). For such matrix coefficie#t behaves exactly as
before, andB also yields exactly the same bias, as for the rgéneputs, because pairing the frequencies in
inputs with different indices still retains the dmness of the phases and yields zero expectee Vair
(A.4.12):

1
NU P

E{U O (k)U O (—k)} = E{w,U ® (k)wic U (K)} =
NESS (5.2.20)

w, Wi EU© () U (K} =0

NIU [
]

Note: As mentioned before, if for a particular choidete orthogonal matrix and the combination of ithgut

N _
indices in the kernel, it turns out, thA:ZWujquz---Wija Wik =0 this term will drop out and won't
i=1

contribute to the variance at all. The exact qui@ation how much we can gain in the variance friw® kernel
drop out is possible only N, a, andV are known.

Example 5.2.2: Measurement on MIMO Wiener-Hammersta system with general and orthogonal inputs.
Simulated measurements had been performed on aYAlEmmerstein MISO system with 4 inputs, contajnin
pure and mixed non-linear kernels up to theoBder (see Fig. 5.2.1) (Large ripples were chdsesimulation to
provide resemblance to the FRF of highly resonamthanical systems). Results for all channels aiblei in
Figs. 5.2.2 and 5.2.3.

R1 Input System

x1(t)

ul(t)

g ey .........
-100

0 0.05 01
R2 Input System

w2t " / .
Enl R

51 Cuiput System

i
; i : t
N 005 01 B e i v
R3 Input System i ;
usity ; ) 0.0s 0.1
RN kressmae] sl ;
e i i 4(?4
- : )= W) x2(1) x3({t) x4
R4 Input System 20 o= 1 LR URS
ud(t) ; pl1+p2+p3+pd =p
-100

] 0.05 0.1

Fig. 5.2.1.MISO Wiener-Hammerstein system used in the siraratR1 is §" order low-pass Chebyshev filter
with 25 db ripple, R2 is "3 order high-pass Chebyshev filter with 10 dB rippR8 is 9" order low-pass
Chebyshev filter with 10 dB ripple, R4 i§' @rder high-pass Chebyshev filter with 25 dB ripglad S1 is 8
order low-pass Chebyshev filter with 1 dB rippleofportion of the non-linear power in the channdi®er
from -5dB ... -10 dB.
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500 1000 1500

500 1000 1500 T 500 1000 1500

Fig. 5.2.2 FRF BLA measurements with a single applicationhef ordinary odd random phase multisiive %
819). Input-Output Channel 1: upper left, Channel@er right, Channel 3: lower left, and Channelodver
right.

a00 1000 1SDD T a00 1000 1500

a00 1000 1500 0 500 1000 1500

Fig. 5.2.3 FRF BLA measurements with a single applicatiotheforthogonal odd random phase multisie(
819 harmonics, 4-dim DFT matrix as the orthogorg@fficient matrix). Input-Output Channel 1: uppeit|
Channel 2: upper right, Channel 3: lower left, &fthnnel 4: lower right.
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5.3 Other developments

Minimizing Crest Factor with time-domain constraintas used in the input signal design for
linear SISO and MIMO measurements in [183-186]. phmary criterion was the Crest Factor
minimization with a variant of thk., algorithm [85], with so called “plant-friendly” ostraints

on the maximum permissible time-domain amplitudes moves (rates of change) in the inputs
(or also jointly with the outputs). To account foe presence of the non-linearities Crest Factor
minimization with dropped even harmonics was cogrgd, to suppress even order non-linear
effects. Accordingly to the advice in [85] “snowiedfect” was intensively used [183-186] at
both sides of the primary excitation band.

Note: Contrary to the claims, the design is not us&futhe non-linear measurements as it is heavitinuped for
a particular situation. If odd order non-lineasti&re present, then “snowing” the side bands “srinidistortions
into the primary band beside those interharmorstodiion already caused by the primary frequenitiemselves.
As the “snowing” is set by the optimizing algoritrand outside the reach of the user, the amouititeofidn-linear
distortions on the primary excitations frequendgegifficult to quantify.

Note: This multisine design is oriented toward paraiéttentification, where the number of useful hamies in

the input needs to be higher (but not excessivigiidr), than the number of the parameters in thdahfi24].

Proper setting of the constraints requires pleffitinformation about the plant (like e.g. the dedidosed-loop
speed of response, estimated range of dominantcmstant, order and structure of the model tathadceptable
signal length and amplitude, etc.) [28].

An extension to the constrained MIMO multisine deswas the orthogonalization introduced
by “zippering” the signal spectra [122], i.e. plagithe spectrum of every input signal
(otherwise a multisine optimized with constraints lzefore) on a different frequency grid,
arranged alternately as Chl, Ch2, Chl, Ch2, ... &gmith spectra having no common support
are by definition mutually orthogonal, and the damgion can be extended to an arbitrary
number of inputs.

Example 5.3.1 If even harmonic are suppressed, then e.g. fordtdim systems the input signals will have the
following grids in the primary excitation frequenignd:

Chl: 1 9 17 25 ...

Ch2: 311 19 27 ...

Ch3: 5 13 21 29 ...

Ch4: 7 15 23 31 ....etc.

Note: Although signals at different channels are muyuatthogonal, as multisines (for higher input dimsi®n
systems) they are quite sparse. If the primary bamebt densely filled up with the harmonics, thergistency at
various inputs can be a problem. There is alsoldbe advantage of not having the basic harmonievary
frequency grid.

Pure orthogonal “zipper” multisines turned out rsm useful, and to help the problem
correlation was introduced into the inputs for &agpectral amplitudes in the primary frequency
band [119-122]. Such modified “zippered” multisinead frequency grids with mutually
orthogonal sub-grids (smaller amplitude excitatjassd a common grid (for larger excitations
to introduce correlation into the signals).
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So called directional multisine input design wasi@w®ia manipulating amplitudes and phases
to colineate the input signal with one of the SV&tors of the gain matrix, selecting thus the
low gain input direction [122]. Still another ideeas to design signals at various inputs as
delayed version of the signal (multisine) appliedhe first channel [121].

Note: For random phase multisines the delay is notsane. It does not destroy the properties of thelamn
phases.

Another development in the constrained optimizatioh the multisine inputs is the
optimization-based design of plant-friendly muhisi signals using geometric discrepancy
criteria for uniformly distributed sequences [1485]. The aim is to design excitations for
which the output of the system will fill the stapace with its behaviour approximately
uniformly, e.g. that e.g. the output state vecir) [y(t-7)] is uniformly distributed in some 2-
dim domain (the idea can be generalized to higherexsions, with certain computational
difficulties). To design such signals so called W@iterion [143] is added to the criteria
applied to the Crest Factor and the “plant-friemetlis”. As the Weyl-criterion can be verified
only approximately for finite domains; also the mteoptimum is sought up to a small error
level.

5.4 MIMO equivalence of the random multisine excitdons

For the portability of the theoretical resultssitnot enough to show that we measure exactly the
same Best Linear Approximation for various multssignals. Much more far reaching result is
to show that these measurements are equivaletdr(ims of the Best Linear Approximation) to
the measurements made with the more traditionahoadst We are able that way to present an
(faster, cheaper, more precise, etc.) alternatvethe measurement community, without
instilling fear that the new results won't be coripig with the already gained experimental
insight. In [163] it was shown that the random ghasultisine measurements are in this sense
equivalent to the periodic and Gaussian noise a&aits (Th. 3.6.1). Here we prove the MIMO
analogue of this theorem, extended also to the oésthe newly introduced orthogonal
multisines.

Assume that the signals have the following comgdarspectral behavior:

- random phase multisines (2.2.11ljk2(f) =S55(f), (5.4.1)
- periodic noise with random spectral amplitud E{ijZ( f )} =S5 (1), (5.4.2)
- Gaussian noise with power spectru Sy (f) = S5 (F)/ frax . (5.4.3)

Extending theory from SISO to MIMO systems requiassumptions how signals at different
inputs are related to each other. We will requa {cf. Assumptions 4.5.1-4.5.3):

Assumption 5.4.1.Signals at different inputs are independent frochezther, their phases and
(in case of the periodic noise) spectral amplitugiesindependent over the frequency. Signals
have comparable spectral powers (5.4.1)-(5.4.3)aandlefined on the same frequency gmid.
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Assumption 5.4.2.MIMO system can be of arbitrary input dimensidrand an arbitrary order
of the non-linearity (assuming that the sums id.-(4.1.3) convergeh

Assumption 5.4.3.Signals in different experiments are independent.

As introduced beford independent experiments are made with independahtations of the

input signalsU ®,---U® _ After the transients settle, the successive tscty process are cut
from the input and output signals. Signal ampligidefrequency are then arranged into:

TRIO TSV

Y =6Mu®) =ly?0) .. yOml=ley .. e'0)) . uPn .. | (544
UM .. U0

The required FRF estima G'(I) can be computed as:

() =[6'm]= YOU" OuOUT )t = 5,055 0) (5.4.5)
where (¥ is the conjugate transpose.
By proving the Best Linear Approximation equivalenge actually also imply that in the limit
(M - [) the output of the Volterra MIMO system, exciteg the above mentioned types of
input signals, can be written for all these clasddble excitations as:
Y1) =Gea OUO) +Y ) =G OU()+GUL) +Yl() =

[Ghan U] +[Ys 0]=[G D]V M]+[6% MV OI+[Y 1]
where the measured quanties are the Best LinearpproXimations
Gaam=E{Y,/U} = G+ Gy , (with expected value taken with respect to theloam phases),
to the non-linear relations described by the minitehsional Volterra series in the signal path

(5.4.6)

Yo —Uy, and G:;,m are biases on the linear FRF introduced by thelinearity. The equivalent

noise source: Ysm(l), E{Ysym(l)}:o capture all the nonsystematic non-linear effe&sc{ion
2.2, Th. 2.2.6), [30*].

Equation (5.4.6) yields thus the additive non-lmeaise source model for MIMO systems, a
straightforward extension to the SISO and Two-Inpwo-Output (TITO) cases.

In the following the index of the output will be died, because we investigate essentially a
MISO system. The indelk of the measured signal path is called tleéerence input index’

The results on the equivalence can be collectéderfiollowing theorems:

Theorem 5.4.1:Equivalence of the excitations 1.Under Assumptions 5.4.1.-5.4.3., with the
input signals normalized to the same spectral behd®%.4.1)-(5.4.3), all of the mentioned
signal classes, i.e. the periodic noise, the randbase multisines in the lim - [, and the
Gaussian noise, yield exactly the same linear apiation to a non-linear MIMO system,
described by a multidimensional \Volterra seried.)-(4.1.4). Kernels with nonzero expected
value (with respect to the random parameters okuo#tation signals) contributing to the bias
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are only those odd order kernels, which contairréfierence input an odd number of times, and
any other input an even number of times, including

Proof: In Appendix A5 m

Note: For the illustration consider that e.g. in thgnsil path with the reference input of index ‘1’ tels:

111 ~122 ~12233 . . 12 ~233 ~1234 .
G ,G ,G , ... etc. contribute to the bias, but kernt G ,G ,G , ... etc. will not.

Considering that the orthogonal random phase nnass yield the same Best Linear
Approximation as the normal random phase multisibe Th. 5.4.1 can be immediately
extended to:

Theorem 5.4.2: Equivalence of excitations Il.Under Assumptions 5.4.1. — 5.4.2. the
orthogonal random phase multisines defined by Zp&.e equivalent to all signals specified in
the Th. 5.4.1. The orthogonal random phase mudtssivhen suitably normalized to the same
spectral behavior (5.4.1) and in the linM - [, yield exactly the same Best Linear
Approximation Ga. The presence of the orthogonal entrigscambined within the kernels
leads to three possible behaviors of the zero f&anhastic) kernel contributions:

a. The cumulative effect of the entri@g is nonzero and frequency independent. Such kernels
contribute to the non-linear variance fully.

b. The cumulative effect of the entrieg is zero and frequency independent. Such kernejs dr
out entirely from the non-linear variance.

c. The cumulative effect of the entrieg is nonzero, but frequency dependent. Such kernels
contribute to the non-linear variance in part ahgaaticular frequencies only.

Proof: Due to (5.2.6-5.2.9) (and the expectation) énm®ugh to show the equivalence of the FRF meaduoreal
single block of data (J = N). In that case:

Géf'k‘“(')=E{Zbkn(l)Y“"jK(”)(l)}= > Gh'"“E{ZUFF)(M)---U,‘Z)(ka) b (1)} (5.47)

-

which with (by definition, see aiso (5.2.2)U {” (I) =w,U (1) (5.4.8)
wikU « (1)

B (1) =——mm= (5.4.9)
N UL )P

can be written as:

Ghl()=A > GM(k,...k E{U, (k)-U, (k) U} (5410

1
)TN
i U M1

For the expected value to be nonzero exactly theeszonditions on the inputs are required as befioee the
reference input present odd number of times, dtiprts present even number of times).

CoefficientA represents dependency of the bias on the choitte gfarticular unitary or orthogonal matix:

A= VoV Vi, Vik (5.4.11)
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L = w,, k>0
=) W, k<O (5.4.12)
Considering, that U fn) (-H= U(jn) = V_anL_Jj ()] (5.4.13)

consequently pairing the frequencies, which inteeducomplex conjugate to the signal amplituded, peitform
conjugation also on entri@&,. For frequency pairings leading to the nonzerceetgd value in (5.4.10):

1 N 1 N
A==y Blwg, P lwy ==>"1=1 (5.4.14)
N n=1 N n=1

due to,f?= 1, and the bias again coincides with (A.5.17).

The value of (5.4.11) depends naturally on the ehoif the orthogonal matriw/, on the indices of the inputs in
the kernel, on the reference signal index of the@sueed signal path and on the frequency pairingdiicing
complex conjugate for the negative frequenciese@&hrases can be distinguished in general for z2qveceed
value kernels:

a.A=1for all frequencies (as in (5.4.14)). Such kewitributes fully to the non-linear variance on EiF.

N
b. A =0 for all frequencies (if e.d\ is reduced by the properties of orthogonal entige A= ﬁznzlwnp for
somep# 1. Such kernel drops out (does not contributértoj the variance.

c.A =0 only for some frequencies (when complex coafjadeads at a particular frequency to suitablectain in
the product of the entries in (5.4.11)). Such kkecoatributes to the variance at those frequenuidg B

Note: The orthogonal multisines will generate lessatace because:
(1) due to (5.2.6) they do not introduce randorutfiations in the denominator of the estimate;

(2) due to (cases a., b., and c. in the proof) #laypinate some of the non-linear kernels from tlom-linear
stochastic component of (4.1.4).

Example 5.4.1.:A comparison is made of the non-linear varianogelke measured in a 3-dim MISO system,
excited with Gaussian noise, periodic noise, rangivase multisines, and orthogonal random phasesimels
accordingly. MatrixXW is the DFT matrix. All input signals are scaledutut power and in the measureméat=

1, 2, 5, 10 number of blocks were used (note toat 51 = 3Ng). The MISO system has a Wiener-Hammerstein
structure shown in Fig. 5.4.1. In the first simidatthe static non-linearity contains all mixed @&/ up to the s
order:

NL = X1+X2+X2+1O_22i,j,k:o,5 ){ijx(lg(! 1<|+J+k£5 (5415)
and was designed to show the general situation avitbeakly non-linear system. As mentioned befocepther

noise sources are considered. The variance degetalg on the frequency and the signal channel.

Excitations that randomize the inverse in (4.2t&)ve the expected rapid decrease in the variancenfiatl J. For
a higher number of data all signals tend to theeskmit.

Variances produced with the orthogonal random phasiisines can be even lower due to the drop-ffeteof
some kernels. This effect can be seen amplifideldn5.4.4., which presents variances measuredsa of:

NL= X +%+% +X% +10°) XXX, 1<i+j+k<5 (5.4.16)

The strong non-linear kerng{X, drops out entirely from th€&' measurements (Th. 5.4.2., case a.), appears fully
in G* measurements (case b.), and partly in@ieneasurements (case c.). Please note that theodtagffect is
not influenced by the number of data, only by tinecure of the kernels of the measured MIMO system
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Fig. 5.4.1 Linear dynamics of 3-dim Wiener-
Hammerstein system used in the simulations.

Fig. 5.4.2 Variances (in dB) of the FRF
measured in the signal patf+tU,, for the
static non-linear system (5.4.15), fdg=1, 2,

5, 10. The decreasing levels of the variance
are clearly visible for each kind of signals.

Fig. 5.4.3 Variances (in dB) of the FRF
measured in the signal pat¥-U,, for a
Wiener-Hammerstein system composed from
the dynamics in Fig. 5.4.1 and the static non-
linearity (5.4.15), forNg =1, 2, 5, 10. The
appearance of the leakage elevates the
variance of the Gaussian measurements. Note
also that the system dynamics influence the
frequency behavior of the variance.
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Fig. 5.4.4 Variances (in dB) of the FRF
measured for a Wiener-Hammerstein
system composed from the dynamics in
Fig. 5.4.1. and the static non-linearity
(5.4.16), forNg=1, 2, 5, 10, for random
and orthogonal multisines. Due to
interactions between non-linear kernels
and the unitary matri¥V, kernels usually
generating the variance, when measured
with random multisines, can drop-out in
particular channels (here the kerngk;
does not affect the variance measured in
the channelY-U;) when measured with
orthogonal multisines.
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6. Special applications

Modeling non-linear distortions with a bias on thmear FRF and the associated non-linear
noise can be used alone as a well defined andofeexneasurement technique, especially if
the advantages of the periodic excitations willaoeplified by the opportunities provided by

the frequency grids. The approach can be usedaslsopart of methodology to tackle more
involved modeling problems.

6.1 Non-linear distortion in cascaded SISO systems

The FRFQ of two cascaded linear systems with the FG'=and H" is given by the product
Q()=G*(I)H'(1). It is tempting to generalize this rule to the Basear Approximations of
weakly non-linear systems, especially if the expents indicate that passing random
multisine excitation through a weakly non-lineart¥aa system does not destroy much of
their essential properties needed to measure tiAe[Bi].

To get a feel the investigated problem will be tedito the uniform random phase multisines

and to the SISO Wiener-Hammerstein systems, wilticcstatic non-linearity S=ar +a,r?
(&, is set to 0, because even non-linearities do nutribuite to the BLA measurements).

The general case is computationally too involvedd @he cubic system constitutes an
important special case. Furthermore the genera cas be qualitatively extrapolated from

this special case. We will consider weakly nondinsystems, i.eHaeszz/H%erSf, with no
other additive output measurement noises.

For the approximation of the cascaded Wiener-Harsteir systems it will be shown that in
those frequency bands where the coherence (2.6.B)gh, the cascaded systems can be
approximated by the product of their Best LineapAgximations. In the other bands (where
the linear input system attenuates the signal) suclapproximation is useless because the
stochastic outpLY<(l) is much larger than the linear out|G, (1) U(l) (see Figs. 6.1.1-6.1.2).

Let us investigate now the situation when two (cubViener-Hammerstein systems are
cascaded, like in Fig. 6.1.1.

Fig. 6.1.1 Cascade of two cubic Wiener-Hammerstein systems,
with: NL; = a; X + & X and NL, = by x + by x°.

U, Z

Assuming small levels of non-linearity we will siiifp the evaluation further, dropping out
terms of orde £’ and higher. The output of the cascade can be wi{t®.3-2.3.4) as:

M M

zZ()=Z'M+Z2)=G' Y+ D DG z,2,L,)Y(2)Y(2,)Y(L,) (6.1.1)

7=-M z,=-M

92



dc_1199 16

YO =Y O)+Y2)=H OUD+ D D H™ (K, Ky, LU (k)U (k,)U (L) (6.1.2)

k=—M k,=—M

Multiplication of three or more cubic terms meammtcibution of order higher thag’and
such terms will be omitted from further considevatiWe have:

Theorem 6.1.1 The Best Linear Approximation FRF of the cascade afwo cubic Wiener-
Hammerstein systems is:

Qun() =ELZD/U(D} =K(L + 2 GU) H) (6.1.3)
whereL(l) =S (DR.(1). (6.1.4)
For small levels o0& =&/a, & =by/b, K=1+0(), C=O(£°), (£= maxg, &)), and (6.1.3)
yields: Qeall)= Geall) H 1) DG (HH'() | (6.1.5)

i.e. the usual product expression for the cascaglsms holds also in the case of weak non-
linear systems in those frequency bands, wheredherence function is high (see Fig. 6.1.2).
Observe however a small biEsdue to the presence of non-linearity, (& = 0.1). In those

frequency bands using the best linear approximasoa sound modeling strategy, which
provides the proper view of the dynamics of thecads.

Proof: In Appendix A.6 &

Cascade of weakly nonlinear systems Fig. 6.1.2 Cascading weakly non-
i SO PP S S U S linear systems: the FRF of the
; : : : : cascade of linear components, Rg.
S R S (solid black), the product
: : : : : Geia Heia (gray o), and theQgia
S A N averaged fromN=10 (noisy solid
; ' ' A ' ' black). In the frequency bands, where

dB

: : ; : : the coherence functions of the

P L SRR S Y SRUUROU SO cascade components are high (see
| | | i | Figs. 2.5.1-25.2), the linear

approximation is sufficient.

-150 L i H ; L
i 200 400 GO0 &0 1000 1200

Frequency

6.2 Non-linear distortion in cascaded MIMO systems

The simplified SISO cascade problem will be nowesstigated in the fully blown MIMO
setting. Cascading is an elementary way to builshglex systems and to model and solve
practically important questions. Here we name dwty.
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(1) The excitation signals are applied through r®al actuators and/or are distorted by the
non-linear loads. Should we accept the measurerasults as they are or should we redesign
the excitations to counter the effects of the a@ohsaand the loads? [117-118]

(2) Linear FRF approximation to a non-linear systmmtheoretically valid only for the

particular choice of input signals used during teasurements. This limits the usability of
the linear approximations, because in differentliappons the inputs will generally be
different. If however the new inputs do not difieuch, the original linear approximation
should hold, or shouldn'’t it? (see also Sect 3r@lits problem)

These questions will be modeled as follows. Whahes deterioration of the measurement
quality, if the ideal excitation signal is distadtby passing through a non-linear system?

The measurement set-up is presented in Fig. 6l@ally the designed reference sighal
should be applied directly to the input of the eys¥/. The Best Linear Approximation FRF

G, =[G\] of this system can be estimated from YheR measurements. We call this FRF the

reference estimatéNote that in the kerneG" « the upper index, or indices, refer to the input
signals and the multiple equals the order of thedde the lower index refers to the output
signal and will be left out, if unambiguous).

In practice the reference signal undergoes distastbefore reaching the excited input. Thus

the FRF characteristicG :[ékm] are estimated from thé - U data, wherdJ is the output of
the systenmJ modeling the distortions. We assume that the dexdcsignald) can be directly
measured. The question now is when is the estin G eal fair approximation to the Best
Linear Approximationér? The answer is not trivial becauG depends upon the actual
excitation!

To tackle the problem we assume that both cascagstgms are MIMO \olterra systems
limited to be at most '3 order, to enumerate the distorting effects. Fa ithput signals

random phase multisines (2.2.17) and the orthogomaiisines will be used but results are
valid also for other random excitations [15*, 18%* 163].

R Measured Y Fig. 6.2.1 The ideal and the real
r -
System :'> measurement set-up.
— Y=V[R]
R Distorting U Measured Y
:/ System | System >
U=MI[R] Y=V[U]
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R, u Fig. 6.2.2Channel distortions fdd,, for N
5 L ! = 2. Similar scheme is valid for signidb.

— 0

| E

R2 = N

The distorting systenM is the sum of an ideal systelmy (phase distortion only), a linear
distortion systenE (cross channel distortions) and a non-linear disto systemN, Fig.
6.2.2.

Generally the linear distortion between the refeeemputsk and the distorted inputd will
be modeled as:

(1+ ‘911(| ))ei #a(l) 512(|)ei¢12(|) £ (|)ej¢1N Q)
£ (|)ei¢21(|) (1+ £ (| ))ej¢zz(l) £ (|)ej¢zN(l)
|_(|): 21 22 2N :Lo(|)+E(|)(621)
£ (|)ej¢N1(|) £ (|)ei¢Nz(|) (1+ £ (| ))ei¢NN(|)
N1 N2 NN

whereN is the input dimension of the cascade hista discrete frequency.

The ideal systenh can contain deterministic phase shifts. It will moluence the results
because the random phases of the chosen excitsigmals are random and uniformly
distributed on the unit circle. The “ideal” chanieethen:

e o . 0
0 &0 . 0
L,()= (6.2.2)
O O ej¢NN(|)
Observe also thal oL} =1 (6.2.3)

The linear distortion system models the phase &edamplitude distortion between any
referenceR and actual input:
811(|) ei¢11(|) N (|) ej¢1N 0

EO=| el et s, 624)
gNl(I)eWNl(I) gNN(|)ei¢u(l)

The non-linear distortions are modeled as a MIMQtevea system of at most“3order
(without linear terms, which are accounted forH)y

3 3 S

u®=>u®=> > u" W (6.2.5)
a=2 =2 jyjz-ja

u, e () = jjm NS (1, T,) 1 (=1, (t=T,) dr,..dT, (6.2.6)

In the frequency domain the model is:
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U ) =20, M=> X Utk (6.2.7)
a=2 a=2 jyjp..Jg
Uee () =M= 5 N (kb ) R () R (K) R(K) (6.2.8)
ko0 50§
wherel is a discrete frequency,= Z k, i =1 ... a, andM is the number of the excited

frequency lines. E.g. fdd = 2, the model of a particular distorted excitatidncontainsiN?,
N2, andNy22 2" order kernels, anbi'™, N2 N2 andN 22 39 order kernels. The model is
both general and simple. Effects of even and odéronon-linearities can be analyzed and it
can be extended to higher order models, if requivé¢al will also assume that the kernels can
be written as:

Nki1jz---ia — 5{7 ijljZ'--ja (629)

whered, is the level of non-linear perturbations ¢Q)”" is normalized as:

||ij1j2"'ja ”m: malekjlj2"'ja |:1.

The measured system is a MIMO Volterra system af@st 3 order (with linear terms):
3 3 S

V=2 vi®=2 > v (6.2.10)
a=1

a=l jijz-ia

where a particulamth order kernel, excited by input signals of indigej, ..., IS:

y U (t) = J':J'_Z 97 (1T, Uy (=T u (t-7,)dz,...dr, (6.2.11)
In the frequency domain the system model is:
3 3 S
Y=Y 0= YY) (6.2.12)
a=l a=1 jyjz-ja

Y, hiz-la ([) = M4 Z G e (K, ko, kL k) U (kY (k)..y (k) (6.2.13)

Kpyokyt DSy O 0

wherel is a discrete frequency,= Z k, i =1 ... a, andM is the number of the excited
frequency lines. The kernel ~ are assumed to be ©(1) order.

The main result can be stated then as:

Theorem 6.2.1: If the cascaded MIMO systems in Fig. 6.2.1-6.a2r8 weak non-linear
systems in the sense that:

E=max§,, << 1,0= mad, << 1= ma¥ 9§ I< (6.2.14)

then the 1 order perturbation (in the introduced distortion$)the measured Best Linear
Approximation of the systeri=V[U] is:

A

GBLA =G LIN +G BIAS(I _EL_ol —N BLLr _ol) +H 1+H 2+O(<(2)

_ 6.2.15
=G G guell M ol D) ,H ,+0(E) G 1, +OQ) (6.2.15)

where:
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Gpa=Gin +Gpnas=[Gh, 1 =A1) s the true Best Linear Approximation (under zero
distortionse and d) of the signal chann&f, - Un,; and the T order distortions are:

GansE Lo =0(€) | due to the superposition of the linear distosiemthe inputs;

GansN sl s =O(9) , whereN,,, is the Best Linear Approximation of the non-lingart of
the distorting system, is due to the superposiiothme non-linear distortions in the inputs;

Gens(l =M gk 5) =0(&) , WhereMg, , =L, +E N 4,;
H, =0O(e) comes from the distortion of the non-linear kesnalthe measured system caused
by the linear mixing of the excitation channels;

H, =0O(9) is caused by the interaction of the non-lineankkr between the two (measured
and distorting) systems.
Proof: In Appendix A.7 m

The analysis of (6.2.15) shows that weak distogtido not cumulate and that the degradation
in the measured FRF can be accounted for sbyrtler distortions, if the overall distortion
level is low. Furthermore, the effects of feed-fard and cross-channel distortions can be
separated under such assumptions.

A weakly non-linear system does not make this niemage to the random multisines, and
that they are still suitable to gain insight inke toehavior of the measured system. But what
about the orthogonal multisines?

If Ry(l) is an orthogonal random multisine:

w,RO(D) wRY() e wy RO

@) @ @
R (=] ERED WREW) W REQ) 6216

WNlRIEll) (l) WNZRIEll) (l) WNNRIEID (l)
with wiy, entries of an orthogonal or unitary matrix:
[Wiod [Wen] ™ =N Ty Ry RGO =N (6.2.17)

When such signal is distorted passing through tstesn U[R\], we have for the case of
linear distortions:

Uy () =[L,()+EMIRL(), and (6.2.18)

UyOUR ) =L, +EMIRyORYD [LS (1) +E" (1]

=NIL, (LS 1) +L (HE" (1) +ENLE (1) +E@)E" ()] (6.2.19)

Taking into account (6.2.3) and retaining only fin& order terms, we have:
Uy (HUR () =N Iy +2N RefE()L (1)} (6.2.20)
I.e. the orthogonality of the excitations is peoeot up to the order of the linear distortions,

but the deterministic character Uy (DU (1) is not affected.
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On the other hand when the non-linear distortiorsatgso present in the systéiR]:

Uy() =[Lo() +EMIR () +N[RI(1), (6.2.21)
then retaining only the first order expressions:
Uy(HUR () =N 1 +2N Re{E()L5(1)} + 2Refl o(DR (HNT[R](1)} (6.2.22)

the last term brings in also the randomness (whenfrequencies in the non-linear kernels
and the frequenclyare not paired [30*]), which means that the varéanf the FRF estimate
increases comparing to the ideal orthogonal case.

Example 6.2.1:(for the full experiment see [19*]) For the illustion 2-dim Wiener-Hammerstein systems were
driven by unit power orthogonal multisines. Suclstegns permit an easy manipulation of the nonlitieari
(contained between input and output dynamics).Heunhore the BLA to a Wiener-Hammerstein system is
proportional to its linear dynamics (it >> 1), which means that the expected influencehefdistortion will
mainly change the level oBg s and less in its frequency behavior. The linear ailgics of the Wiener-
Hammerstein systems are shown in Figs. 6.2.3-6v2hgre every linear dynamics was normalized touhi¢
[I.l norm. The static non-linearity within systeidsandN, is:

U= G[r+rl+rirg] + Grld+rl+ rr + i), (6.2.23)
and that in the system is:
Y= U +Up + @ [U+ U2+ U] + as[u + s + ugtn® + gy, (6.2.24)

with suitably adjusted coefficients. The measureiiare made on the output chanviglthus the output indek
=1 is dropped. The comparison is based on thevititlg measures of distortion, calculated in thespgznd:

1. Theoy* gain needed to scale up the measured GiFo match (in the LSE sense) the theoretical value
Gaga (i.e. the FRF measured without any distortions):

a, = arg minzrja G* (aGh, 0] (6.2.25)

The actual measure shown is the differedge= |1 - a*| in dB. The ideal gain is 1, consequenfly grows
steadily with the increasing distortion levels.

2. The rms value of the residual character G —a, G ,:

RMS, =22 3% | G (0-ay G () f (6.2.26)

3. The phase error of the measu Gdwith respect to that of the ideGga: (a) its maximum value in the
frequency band, and (b) the rms value of the phesdual.

In the first test onle,y, €5, were set and the systévndid not contain the™ order terms (Test A), thed“order
terms have been addedudTest B), thercross distortions were added to the syske(fest C), and finally non-
linear distortiondN were added (Test D) to the full systén with linear and nonlinear distortions kept at the
same level. The figures show results for a smdl) @nd a large number of averages (1000). For theisin
figures, the SNR of the overall distortion levelsngsed, defined as:

2, UM -l Ju R OP
Dist = 5 RO (6.2.27)

The figures show the expected slow increase imistertion measures as the level of (13) increaRebustness
is attained until the distortion level becomes éa(gig. 6.2.7-6.2.9). Nonlinear distortions prodleger errors
than those caused by linear distortions of similegnitude (Fig. 6.2.7, Fig. 6.2.9). Similarly cradsannel
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distortions yield larger errors than feed-forwardtattions. The phase errors grow faster compatmghe

averaged amplitude errors. It means that the FRBrhes locally “twisted” rather, than globally digtd over

larger frequency range. These effects are bettsiblei in the results averaged from a larger numdfer
measurements. For a low number of averages thetefége screened partly by the variance of theimeaul

noise on the FRF estimates.

In conclusion, the best linear approximation measemts are robust under perturbed excitations raddey
weakly nonlinear MIMO \olterra system (weak nonhnemplitude and phase disturbances). Considesdd th
finite order Volterra systems are smooth, thesalt®sire not so unexpected. Intuitively drasticnges for low
level distortions could be difficult to explain. dgtires show that distortions with respect to theeresfce
measurements grow steadily but smoothly, evenhieigvel of distortions for which thé'brder approximation
cannot be justified. Consequently th&atder approximation, for small distortions, yiekdegitimate view of
the system behavior. The presented results extendingle-input single-output results obtainedieafll0*].
Finally the £' order approximation yields tools to investigate thfluence of distortions positioned in particular
places in the MIMO structure.

1
Input Dynamics Overall Dynamics Input Dynamics Overall Dynamics
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Fig. 6.2.3 Dynamics of the systdm=N, [Ry,R;]. Fig. 6.2.4 Dynamics of the systdsh=N, [Ry,R,].
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Fig. 6.2.5 Dynamics of the systefsV [U;,U,].
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Fig. 6.2.8. The maximum value of the phase residual

6.3 Risk of unstable behavior

The problem of weak non-linear effects, neglectethe close-loop design, but ready to pop
up when the experimental conditions change, wadieddualso from the point of view of the

close-loop stability. The expected phenomenon @dyced in simulations) was to observe
how a weakly non-linear system placed within these-loop, driven by some excessive

noise values shows more and more perceptible remarlinoise and finally drives the loop into
instability [38*, 41*, 43*].

Clg) =
2 Fig. 6.3.1 Feed-back system used in the analysis.

u(f) . elt

iF)
Doy v Al o (ge) L2
{-.__, J} ENL q.e)
Clg)
uln | 1 (A e(r) = v (r)
7 - ~ S —s NL
1 +Clg)Glg) s

The basic idea was to decompose the output pouwethe coherent (with the input) and non-
coherent components and to introduce the non-lipeaver gain coefficient (6.3.1), to
measure the sensitivity of the non-coherent powéhé input perturbations. The gain permits
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to define the stability conditions of the feed-bagistem, furthermore by estimating the gain
and by using the theory of the extreme value thstion (GEV - General Extreme Value
distribution) we can estimate the probability ttheg loop becomes instable with time.

oG, = max M ©31)
s oe(uy)l, 3.

Extreme value techniques are based on the follav@ogsideM, = max{X, ..., X}, where
X1, Xz, ... IS @ sequence of independent random variatdes¢p a common distributioF.
For a very wide class of distributions [226, 434 extreme values are asymptoticatly (
- o) described by the general extreme value distonufGEV):

Gey (2 =exp{-{1+ £, 1+87F) >0 (6.3.2)

with location parameterzand scale parameter. The parameterg, 1, o can be estimated
from the available data, using a Maximum Likelihosstimator [43]. Starting from (6.3.2),
the probabilityp thatz exceeds a given return levglwithin a given time interval can be

calculated. So called return periTZD =T/ p is then connected to this probability, and this
time can be interpreted as the mean time betweenctassings of the level,. With this

apparatus we can estimate the probability thag#ie |C(q)|k IGn will be larger than 1 for a
given class of excitations in a given time interval

In practice, a number of successive values of threlmear gains (6.3.1) will be estimated
from the input and output records. These measureraeards are broken iN; subrecords of
Ns samples each. Each of these records is analypedagely, resulting imN; non-linear gain
measurements. These are grouped ldhocks containing eaam gains (N; = n x m). Next the
maximum is calculated over each block, resultingh@ measuremenis,... X,, whereX; is
the maximum gain of thigh block of non-linear gains.

: Fig. 6.3.2. The percentiles of the squared nonlinear
power gain ||C(q)|.dGn. and the observed relative

frequency to get an unstable realization as a ifomaif
the input amplitude for the high-gain system.

NLgain & P(unstable)

Plunstable)

04 05 06 07 08 09 1 11 12 13
Input amplitude

The proposed method is experimental and requirgleiuresearch. It is important that no
non-linear model of the system is needed to es#irttad risk of unstable operation of a non-
linear system in a given time span. If the nondimgain comes close to 1, the non-linear

101



dc_1199 16

feedback loop becomes potentially unstable. Theomagvantage of the method is its
simplicity. The major disadvantage is the stocltakghavior of the gain factor, due to the
stochastic nature of the input signal. This miglad to long experiments in order to get not
too conservative risk estimates. The problem wahdu investigated in [237-240], but with
no essential break-through.

6.4 Reducing the measurement time of the BLA by Mde Carlo averaging

The BLA is traditionally measured as the sample meansidering that for linear systems
and Gaussian excitations it is the minimum variaMaximum Likelihood estimate. This
minimum variance is the basis of the measuremard tis. measurement accuracy trade-off.
However due to a non-linearity sample mean is ncerao optimal estimate and consequently
its variance is not an attainable theoretical mumimand can be improved. By using a limited
a priori knowledge about the measured system thasumement time vs. measurement
accuracy trade-off can be made sharper, reduceggasurement variance solely as a part of
the data processing, without affecting the measargmrotocol [23*].

Suppose that the measurement ¢Z,, ...,Z,, are independent and identically distributed,
and that the objective is to estimate their exgbetdueE{ Z;}. Then the usual estimator is the

sample mean Zy=(Z,+2Z,+..2)IN, (6.4.1)
If the variance o¥; is finite, this estimate is consistent and unhdaee all N. Furthermore it
is asymptotically normally distributed, with var@an o*=0;/N (6.4.2)

Assume now the Z, are functions of some uniformly independent idelly distributec ¢,
le.:

Z=2p, @y Py ), O 0U (O,l)’ (6.4.3)
then eaclZ; is a random realization drawing from the rancg, ¥s

Z=24p;, 05,8 ), ¢ 001 0k, (6.4.4)
and the expected vallE{Z} becomes E{Z} :JJ 49y 5. ) Wy B (6.4.5)

The (6.4.1) sample mean is thus the Monte Carlimnast of the multidimensional integral
(6.4.5) [109]. The BLA FRF (2.2.25) simplifies flandom multisine excitations to:

G ()=E) U, E|ONF =[0)l | =consi (6.4.6)
and is usually estimated from measuremY, (1),U, (I) as:
aanD =S YOO =13 GO 6.4.7)

U, ()| i=
Considering that the random phases of the inputtismg are independently uniformly

distributed, measurinqéBLA,N (6.4.7) is equivalent to the Monte Carlo simulati(6.4.1-
6.4.5).
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In the Monte Carlo simulation the key issue isthdance reduction [109, 98, 105], which is
extremely important also from the measurement pofnview. An estimate with a lower
variance means shorter measurement time for the sacuracy, or conversely an increased
accuracy if the measurement time is kept constant.

The variance of (6.4.2) can be reduced by reduo?j or by increasing the order of the
numerator, say froml to N 2,

A whole spectrum of approaches (antithetic varigbbentrol variates, stratified, importance,
Latin Hypercube sampling, quasi Monte Carlo, ef@9]) is available in the literature. A

method best suited for the real measurements wllthat demanding limited a priori

knowledge and introducing additional computatiooigly to the pre or post processing of the
measurement data. That way the original measurersetip, the protocol of applying

excitations and collecting the measurement reswdtdd remain intact.

Such method for the variance reduction is the dledaontrol variates method [98, 105].
When estimatind={ Z}, let X be another (control) variable with the a priorolam expected
valueXy = E{ X}, and letb be a suitable constant. Then:

Y=Z-0b(X~-X) (6.4.8)
modified data yields the same desired mean:
Bz} =EY €% {8Y, (6.4.9)

i.e. instead 07, =(Z +Z+...Z,)/ N, we can usY, =(Y, + ¥ +... Y,)/ \, if advantageous. Note
that
o, =Va{} =0, + B0, 2 bov ;. (wherecov, , =E{Z, X}). (6.4.10)

If X has high positive correlation with (and has also an exactly known expected value, and
is easily computable), thea? < g2. For a fixedX, o2=02(b), which can be minimized with
respect td, yielding:

b =cov, /0%, 050 )=0%1-p%x), P,x=COV,, IO ¢, (6.4.11)
Consequently by selecting Znwith o, , #0, the estimate variance can always be reduced.
The exact value of the optimial is not known, but it can be approximated from the data as:

b*k :a\l e >
2i X7 %) (6.4.12)

In the BLA FRF measurements we assume that beside measuringghea theV[u(t)] we
can compute the outpuft) of another (non-linear) system excited with the safte and

from these we can estima HABLA,N(I), the BLA FRF of that system. Then the proposed
scheme is:

G (1) =G (1)~ (N[H; (1) —H,(1)]

Goian() =Gauy (1) =0 (NIH 51y (1) ~Ho(1)] (6.4.13)

measured computed
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There are a number of issues to solve. Firstlyctivdrol variates method should be extended
to complex numbers and the whole frequency axienTa usefu H;(I) non-linear system
should be found, correlated with the measuG,(l), yielding outputs easily computable
when excited with multisine signals, and possessixactly known, and easily computable
BLA FRF.

What kind of control systetH, () to use? Two natural choices are:

I. If nothing is known about the measured systegepkthat it is non-linear one, a static low
order non-linear system can be tried to controlestanate.

II. If some computing effort can be spent to obtairough view of the measured dynamics, a
Wiener control system can be built from this estamollowed by a low order static non
linearity. The theoretical BLA FRF of a Wiener sistis proportional to the linear dynamics,
computing output of a Wiener system is easy, ardrlyf some non vanishing correlation is
expected.

The measurement setup is presented in Fig. 6.44.0UT is a non-linear system yielding
Gi(l) FRF in (6.4.13), the CTRL is a known non-linegstem providing the control estimate
Hi(l) with the known theoretical BLAHy(I). The dashed part designates the pre-compiled
control information and the final Best Linear Appimation FRF is computed frong*-u
input/output signal pair.

In the experiments the approximate valueb >fvas smoothed with an 11th order regression,
and considering that the BLA variance depends alsofrequency, a rough measure of
improvement was defined as:

ty=_mean [Vaf G} 4~ Var & I (6.4.14)

in excited ban:

A number of tests, with experimental data gener&tah various weakly nonlinear systems
are presented in [23*].

Technically, if the correlation (6.4.11) is not @ethere is always a gain in variance. The gain
is high when the correlation is close to 1, antess, if the correlation is lower. Considering
that the proposed method does not influence thesunement protocol, and is confined
entirely to the measurement data processing, egemadler gain may be of importance.

Collecting satisfactory a priori information in @stonal, short measurements may be
difficult, and the proposed method is probably itle use there. If the task is repetitive
measurements, on systems with similar dynamics. (gcgeening and diagnostic tests,
industrial process measurements, end producti@entéiats), then the loss in time to estimate
the control quantities is minute, and the returnsimorter measurement time may be
substantial.
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Fig.6.4.1 The control estimate measurement setup.
The DUT is a non-linear system yieldig(l) FRF

in (6.5.13), the CTRL is a known non-linear system
providing the control estimatéd;(I) with known
CTRLg A Ho(l). The dashed part can be precomputed
from the measurement design and the final Best
Linear Approximation FRF is computed fromy*
input/output signal pair.

Fig.6.4.2 Test setup was made with a low-order
Wiener-Hammerstein system with high-pass input
(Butterworth,f, = 0.025, orders = 1, 2, 3), low-pass
output (Butterworth, f. = 0.1, orders = 1, 2, 3), and

the static nonlinearity + 0.5u° + 0.11°,

Fig.6.4.3. BLA FRF estimated in the test: (cont),
variance (o) of the common estimate (6.4.7), and
variance (*) of the controlled estimate (6.4.13); f
the number of averagé§, = 100.

Fig.6.4.4 Variances of the BLA FRF estimated in the
test: variance (0) of the common estimate (6.49,
variance (*) of the controlled estimate (6.4.13); f
the frequency liné = 45.
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7. Utilization of the research results

What method or tool do we get by the developed Bhéory? Its user gets a ,qualitatively
better linear measurement technique” in s sensestha obtains a better insight into the
possible non-linear distortions lurking in her/himodel. With easily implementable
measurement-technical advices it is possible taint#tuch optimized measurement-technical
solutions, which beside providing the non-lineaiormation, will diminish essentially the
time demands of the measurement and will yield ggnmcertainty bounds for the non-linear
distortion related problems. That way there willlegs risk for the misinterpretation and later
misusage of the results of the widely used lingatesn identification methods.

The deficiency of the developed theory is thatuker won't have the true non-linear system
model (it was never the aim), is limited in the ideoof excitations to the periodic signals, and
finally that the assumed non-linear system class @ too limited for her/his application
field.

BLA theory and the random multisine excitations everoposed and used in a wide spectrum
of practical problems:

- to build approximate models to design Iteratieaining Control for scanning inkjet printers
[17].

- for measuring and testing analogue-digital cotersrf{151], [11-12], [131], [253]
- for measuring the quantization distortion of P systems [152].
- to enhance the vertical resolution of low cost@\[3].

- extensively for measuring and testing microwaveudtry [236], [30-31], [48-49], [18],
[46], [231], [123], [13], [145], [47], [156-157]2A1-243], [79-80].

- to qualify the bit-error rate (BER) propertiesdahe nonlinearities in the-A converters
[244-245].

- (with carefully chosen multisine excitations)nmdel the nonlinearites and to separate the
linear and nonlinear behaviour in the analysishefmechanical transmission in precision
mechanical systems with dry friction [147], [11[17], [176], [101].

- and also to model wet-clutch systems [265].

- in the identification of the multiple-joint indur&l robots, [258-262], [92], [133], [179-182],
[193-194], [149], with orthogonal multisines beiagegular routine already at the ABB
Robotics [146].

- to measure the nonlinearities in the biologioghédances [95-97].

- in the broadband electrical impedance spectrospgp[189-191].

- and for the measurements of the electrochemgaédance [14-15], [99], [77].
- in design of electronic tongue [110].

- for the non-invasive glucose measurements [150].

- as the first stage in the nonlinear structuratielimg of the thin film deposition [266].
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- in characterizing the nonlinearity in the ionmymer transducers [108].

- as a component in the model of the direction-ddpat processes in [228].
- to measure the Young's modulus [164-165, 167].

- to identify distillation columns [232-233].

- in the analysis and characterization of the ajpmral amplifiers [141], [166, 168-169],
[230], [229].

- in the detecting damage in mechanical struct{ir@®], [248-250].

- for localizing errors in loudspeakers [32-33].

- in measuring nonlinear errors in discrete tindiaaeceivers [83].

- in the analysis of the aircraft gas turbines 433 [74].

- in the analysis of the rotor bearings [4], [9459-160];

- in micromanufacturing (modeling of the micro-nmity process) [16].
- in the analysis of the agricultural machines &gpr devices) [2], [42].
- in modeling granule stream [132].

- in the modeling of electrical machines (synchummachines) [254], (permanent magnet
motors) [187].

- in the analysis and modal testing of the vibraté the automotive structures, [255-257],
[195]; [78]; [270], [178], [45], [88].

- the analysis of the vehicle suspension [117-118)6-197].

- the ground vibration analysis of the aircraftQ1B51].

- and the identification of the head-neck compleger the upper body vibration [75], [3].
- to model RGA (Relative Gain Array) [100].

- as an auxiliary tool helping the selection ofttohstructures and controller designs [35-37],
[216], [93], [251-252], [222], [234], [218].
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Appendix A.

A.1 Proof of Th 2.5.4(For the arbitrary polynomial static non-lineartgys the relative
variancevg,a yields minimum for the cubic system.)

2K +1
Proof: Let the system now b Y(t) =u(t)+>_ "~ c,u’(t). The only available knowledge is the assumption

on the highest order of the non-linearitg+2.. The relative variance will depend in conseqeeamgon the order

of the system and the values of its coefficientth@ughvg cannot be measured directlyga variance (2.5.13)
relative to the Best Linear Approximation systerm dze measured instead, serving as a useful enpirica
constraint. UsindN(0,1) noise as the input signal and performingwégion similar to that in the proof of the Th.
2.5.3. we obtain:

2K+1 K+l B
_za:S,Odd p=3.0dd% P5 G _ (BX,X)

VA . =

BLA (1+Zj:3::ddcﬂ a, )’ [L+ (@ X (A.1.1)
whereX=[¢;C;---C ], a, =[a], =a!!, B,; =[B] ; =(a + S-D!-a! B, (A.1.2)
the vectors are XK dimensional, the matrix iK xK dimensional, the terms in the round brackets asdas
product.

The measured value @, 5 constraints now the possible valuesdf.e. system coefficients), among which the
worst-case is sought for the relative biax). The problem can be formulated as a constrairedtonal
problem of finding the extremes of:

F(X) = (@, %)+ A((BX, X) ~Vga (1+ @, X)), (A.1.3)

whereA is a Lagrange multiplier. Differentiatirfg(x) with respect tx yields:

a+t2ABx-2Avga(lt (a,x))=C (A.1.4)
Defining 4 =Vg ,—(24)™, aa'= A, we get:Bx = pa+vy ,AX, and x= (B —Vg JA) A= ux,,
(A.1.5)
ing that the i ists. Substitutingsibistion into (A.1.1) Y = £ (8%, %) A16

assuming that the inverse exists. Substitutingdtigtion into (A.1.1) YsLa [+ (2 %) (A.1.6)
it yields a quadratic equation in B =V, 1+ A, (A.1.7)
where B =(BX,,X,) and A= (a,X,) for simplicity. Assuming thaB > 0, there are two roots:

— VBLA Ai VBLA B

T o o 2 (A.1.8)

h B- VBLAA2
The two solutions fog, and consequently fot. X;, = #4,Xq, belong to the minimum and the maximum of the
relative bias4, x): t42A. Further computation yields:

i = :—i = :L A.1.9
minG, /G =¢, D’ maxG,/ G =¢, =y (A.1.9)
where: 7° = (BXo’Xo)/ (Ve (@, Xo)z) = B/ Az\él_A (A.1.10)

The analysis of (A.1.9) for the increasing ordertlodé highest non-linearity shows, that in agreemeitt
(2.5.11) the cubic system means the worst-casehentirgest bias. Witls, ande, computed from the measured

level of the variance, , the Gy can now be bounded under the worst-case assunripfioine measureGg a
as:
Gual+6,)<G <G ,(1+¢&), orinamore straightforward way ¢G, ,(1-«)< G < Gy ,(1+k)
(A.1.12)
with the bounding terrr computed under the worst-case cubic assumption as:
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Xy = a3/(B33_VBLAa?3.)7 (Bx ono): ByX éa/( By Vaia 392
(@ %) =a3/(Byy=Vg 18)° (A.1.12)
= (BXO’XO)/(VBLAX @ Xo)z) = Bsa/ (VBLAag)

Kz:l/r:aSVVBLA/%S

with: ag = 31, By = £(k) (5!! — 311 311) = 6E(K) (see [6])
Kk =3V 6EK), the best value off(K) is 3/4 (see (15) in [6*]) yieldingk =v2\Vgs (A.1.13)
| ]

A.2 Proof of Th 3.2.1(Random multisines are in the limit normally distried and separable
signals)

Proof:
A. Normal distribution
First we will prove that the amplitude of the cadr random multisines is normally distributed as

M
N (O, \/%Zkzlukz) . For the purpose of the proof let the random rsiniéi be as:

u(t) = ZLU « COS@t +¢,) (A.2.1)
Then: E{u(t) = >." U, cos@, t+4,)} =" U, Elcosw,t+4,)} = 0.
The correlation function of (A.2.1) is (computati@rtrivial):

R() =3 YUz cos@n), R (0= U (22

Remember that a normalized random multisine isredldf its amplitude spectruitdy # const, but the behavior
of the amplitudes can still be modeled @gV™?. Please note that for normalized random multisitiee
variance is of orde®(1). On the amplitude distribution we have:

Lemma 3.2.1: The Central Limit Theorem holds for tre sum of independent cosine
random variables.

Proof: Let us check the Lyapunov Condition [10], i.e. that

M
E X - 2+0°
00 > 0, z":l U~ 7 00 -0 (A.2.3)

2+0

where in our cas X, =U, cosg,, 4, =0, Zk lU 2 and the phases are uniformly distributed on [0,
21{. Considering, thaSw is of orderOQ(1), it is enough to check the limit of the numeraif (A.2.3):

g 1 |y|2+(5 2 2+0 2U 2+9 U, y/Uk)2+(5 _
E{l Xy | } _I_TJ'_UK \/r J' \/r J. - (y/U d(y/Uk) -
2+0 2 +0 2+9 2+0
2U, _[ = 2U, jo r2sin™ wcosa)dwz—zuk _[0 " sinz a)da)=—o(2127 = Mofg),z
01— 72 T cosw T M 2z
(A.2..4)

o
The summation in the numerator in (A.2.3) leavédkast order oiw, which tends to zero for ary> 0.
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B. Asymptotic separability

Signal is called separable if [148, 59]:

a(t,7) = E{u(t - n)u(®)} - a(r)u(t) = 0 (A2.5)
or after Fourier transform (in terms of characterifinctions):

A7) =G, (€,1) ~a(n) f,,(£) =0 (A2.6)
where [148, 59]:

G, (£,7) = JE{u(t - 1)e™} (A2.7)
f,:(8) = iE{uhe "} (A2.8)
a(r) =R,(1)/R,(0) (A.2.9)

For the colored random multisines (A.2.7-A.2.8) drees:

G,.(&,7) = JE{ut-r)e 0} =

jZLU « COS@,T) E{ cos@it + @, )ej‘(erﬂ=1“m°°s(“*“”¢m)}+ (A2.10)
P> U, sin(w,r) E{sin(a)kt + ¢k)ej"m=lumc°s@m“¢m)}

G,,(6,7) =

jzfﬂu . Cos@,T) E{ cosyt + ¢k)e”uk°°s(“‘*“¢k)} [ ::1,m E{ eiwm°°s(%‘+¢m)}+ (A2.11)
i U, sin(r) E{sin(t + g, e o] [ ::Lm E{ gi®neosatrsn |

The expected values are:

(a) E{ eJ'EUmCOS(me!ﬂm)} = 1(U_¢)

(b) E{ cos@, t+g, )& e @al} = jg (U&) (A.2.12)
(c) E{ sin(w, t+ ¢k)eiwk°°s(“k‘+%)} =0

(a) is by definition of the Bessel function (expttvalue integrated for the uniform density). For gee the
argument in [59]. In case of (b) consider:

' 1 pom f
jéUy cos@dt+g) § — jé Uy cos(g) -
E{cos@Kt+¢k)e }——Zﬂjo cos@)e d¢
1 T i CO: T = Kk CO! —_
5], cos@)e* 0 dg [ ‘cosg)e " dg) = (A2.13)

1 [ cosg)sin(€U, cose)) dg = 3,0,)
This last line is due to the decomposition [107]:

sin(zcosg) =2 " (-1)"J,,.(2) cosen+1)g (A.2.14)

with both sides multiplied by cgsand integrated from 0 tm We follow now with:

Gus(6:0) ==X U, o@D LU [Ty e s Und) = =2 U R () COS@I)  (a2.15)

whereF, designates the product of all Bessel functionsil&ily:
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(&0 = E{uye )=

i30U, E{coseyt + g eicinesirin | = A2.16)
= U AN 3 Und) == UL F ()

and

A7) ==Y, U F (&) cos@r) +a(r)Y, U,F,(é) (A2.17)

Now let introduce the correlation function (A.2i@)o (A.2.17):

1w M 1w M
5 Y |sz:1U «Fc(§) cosr) - 2 2|:1U ? cosy T)zkzlu «F($)
AC.T) == Iom,
E ZI :1U|
considering that the denominator (i.e. the variamicthe multisine) is of constant order with regpcM, it is

enough to investigate the behavior of the numeraidg will prove, that the colored random multisiize
asymptotically separable in the sense, that:

(A.2.18)

lim,, A, 7)=0 (A.2.19)
and consequently (via the Fourier transform)
lim, . o(t7)=0 (A.2.20)
Let D(&r) denote the numerator of (A.2.18). With the reagement of terms it can be written
M M 1
asD(,1) =), > UMUF() > (cos@,r) - cosT)) (A.2.21)
By rearranging of terms the (A.2.21) can be reemiths:
M-1 M 1
D, 1) = Z,:1 zk:,+1U|Uk E(COS@T) —-cos@1))U F -UF), (A.2.22)

we will estimate the order of ttU, F, —U,F, term (the sums introduce orddr?, and the other terms under the
sums are of ordev ™). Remember that:

Fe(@ = 30U [Tt e JoU) (A.2.23)

Jo(U,.£) is the characteristic function ofU,, COS@®) random variable. The product of the Oth order Bess
functions is the characteristic function of the softhe independent cosine random variables, wtighto the
Central Limit Theorem tends to the normal distribnt(see first part of the proof, consider alsa the number
of the variables equals the number of the frequanti the signal, consequently this number is langye the
Gaussian approximation good). Conversely the cheniatic function of a Gaussian random variablealso
Gaussian, i.e., see Lemma 3.2.2:

_20-252 . 2 _ 1 M 2
Mo, U8 =e2™ +aM™2), with O =5 2 (A.2.24)
i J, U DU—"E

Furthermore for small values of the argument (wegtigate the case whéeh.& - 0): 1U4) >
(A.2.25)

With this approximation:

U, -Lote U ot UUE, —ote  -loie
UkFI _Ule :Uk je a _Ul ;(e - - kzlf(e 2" 2" ) (A.2.26)

Let us introduce:
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1 1
Z Ur=0i+ZUl=07+ZU} (A.2.27)
2 2
The (A.2.26) can be now written as:

1o 52 U2 U2s2
Ukulfeza uzE vz
2

UF -UF, = (2 )=

Ukulf_EZ;z 122 11 2g2y2 122 11 272\2
——e? 1+=-U +—(=U +... -1-=-U -—(=U -...)a
> ( > X3 2!(2 X)) > < 2!(2 ) ) (A.2.28)

U, ¢ ok ] 222 1200
—x "D g2 —U -=U
5 (2 € > <€)

With (A.2.28) the numerator (A.2.22) becomes:

Y
D(,1)=¢ Z. 1Zk ™ 2U2 (cos@Kr) cos@r)) e 2 7 Uz-up (A.2.29)
the terms under the sums are of or@eM % yielding the overall order of (A.2.29) &M ™):
D(¢,7)=OM™) (A.2.30)
__DEn_om™) _ 1
A, 1)=- = =
(¢.1) R OMY) (M™) (A.2.31)

proving the Theorenm

Note: The practical order (A(&,7) is even smaller, because the computation doescootiat for the fact that
the term (A.2.26) is bipolar and the summation3ir28) has an averaging character. Simulation iteléca

decreasing of an ord O(M ~¥?).
Lemma 3.1: Approximation (A.2.24) holds
Proof: To see that the approximation (A.2.24) holds, abssithat the Taylor series chO(Z) and for

_52
e "*coincide in the first two terms [107]:

RN Sl T P S

& (my 27 2@y
1 ® m 2m 2 4 (A.2.32)
Py e CN@IDT 27
et =e@ =) - =1 o iz T
1 22
thus: J,(z)=e  + R2), |R2)EO(Z") (A.2.33)
With z=U,& the remainder becomes of ordeMDY), i.e.: J,(U, &) =€ el +R, R= @ M?)
(A.2.34)
and
1% (ukf>-|‘|( Rk>-|‘| T YR AT SRR+
X (A.2.35)
e_EZk(Uk 12)¢* (l+ O(M —1))
]
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A.3 Proof of Theorem 4.5.1(Bias of the general Volterra MIMO system)

Proof: In the general case the experiments are made difagent (independent phase) realizations of tipaut
random multisines:

V.
Bm=hmﬂ=umn=ﬂ§] (3.0

where D =detU,, and theV; are elements of the adjoint mat adjB(l) . Due to the properties of the minors
we have (Theorems 13.5.1-2, or 13.5.3, [84] pp-183):

N 0] Vk N ) Vk' N 0} N (1)
ZUj _IZZUiJ _IZZUj b :ZUinlkzdjk (A.3.2)
i=1 D i=1 D i=1 i=1
wheredy is the Kronecker symbol. The general model forsystem output in thith experiment is now:
Y@ =G1(I)U1(”(I) +...+Gk(I)US’(I) +...+GN(I)US’(I) +
+2 Gk UL (UL (L) + X G2k, UL (UD (L) +..+ D G™ (k, LU (KU R (L) +

k k k

+ 2. 2. Gk ko, UL (k) UL (k) UY (L) + 30> GH2(ky kg, LU (k) UL (k) U S (L) + ..

+2.2.G™M (ku ke, UL (k) UR (k) U Q (L) +.4 D7D G (b, LU (k)UQ (K)U (L) +

£33 3G Ky Ky, DU (K)U (K, U O (L) +...

kokp o kg

(A.3.3)

whereL = | - k for the 2 order,L = | - k, - k, for the 3 order kernels, etcq is the order of the kernel and the
sums run over positive and negative frequency §, [ s{,, . To evaluate the bias (and the non-linear noise) o
the FRF, true non-linear outputs (A.3.3) must Hestituted into (4.5.2). The FRF estimates (4.518) a

G() =B (YO () +... By (Y™ ()= B, () YO () (A3.4)

Now we will consider the influence on (A.3.4) ofimgle kernel. Linear kernel is treated as a speaise of an
odd order kernel. A single-th order kernel contribution to (A.3.4) is:

C= ZN:bki x> G (kK ek, UL (U O (K,).. U V(L) =

ko ko kg

ZZ...ZG““"'L’ (K, Ky ek, L) (%U l(l') (kU J('z) (k,)..U J(L) (L)b, (I)j

ko ko kg

(A.3.5)

For random inputs (A.3.5) is a random variable.Wileanalyze conditions for (A.3.5) to have zeroanevalue.
In the following it will be enough to investigatalg the random variable component from (A.3.5)..i.e

V=3 000U k). U0 (L)) A6

a. Odd order kernels

When the kernel input indicgsj, ... j, contain inputs grouped in pairs except one (€1833), then the inputs
with the same index can be paired with frequenkesk) (there is no such pairing term for linear kerhels
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Considering that in the experiments only the randumases of the inputs vary, the paired inputs tal
independent from the experiment index and can bra&eed from the inner sum as:

UOkUO (k) =\, (K (A3.7)
let o = (a-1)/2), then by (A.3.2):

2

VUL ), () UM B0 =Y, K, ) 3 (A38)

where théndex|s denotes the single non-paired input. ConsequéAtB.5) becomes:

C=K Y Y. 3G (k, =k, o) U (k) U ()

koke kg

2
X 0.
Jlsk

(A.3.9)

whereK counts the various ways the frequencies can lregai inputs of the same ind@x...jp» (€.9.K =3
for the kernelG**?, andK = 1 for the kerneG**?), and the sums run over the gS{,I . Forjs =k it yields the

usual bias term of ord€d(1). This kernel yields nonzero contribution to thepected value oék(l) , when the

kth input appears an odd number of times among éneek inputs and other inputs appear pair wise éven
number of times).

When the indiceg j, ... j, contain more single inputs (emg.pairs and® = a - 2m single inputs, consider also
= 0 as a special case), then the contributionek#rnel can be written as:

Kkz%kzkzelu (A N S S SURD & VRN (% W VI (S
' (A.3.10)

« 3 U0 ) U (D), )

where the input pairs with frequencies paired yigdderministic term, and only the last sum contaarslom
variables. Due to the different input indi j51 % J'S, R jSD . pairing frequencies in the last sum is of no

use (random phases Ufi)(k) are independent for different frequencies, inpntl @&xperiment indices).

Consequently the expected value of this sum ansl dfithe whole contribution is zero. These randa@mables
contribute however fully to the non-linear noiseiaace.

b. Even order kernels

For even kernels, (A.3.6) contains an odd numbeehs. Pairing frequencies for signals with digferinput
indices does not get rid of the randomness. Evéwpiit signals with the same indices are preseiting their
frequencies reduces the random part of (A.3.6} toast:

V=2 U U -K)b () (A3.11)

which, due to the different frequencies, is zeremenhatever the signal indices are. These randanables
contribute fully to the non-linear noise variantle overall bias to the FRF estimate is given tgn

E{G*mf=c 1)+ S 6L (A3.12)
B

where the sum applies to (A.3.9)-like terms ofatii order (see earlier).

The last step is to verify that the infinite sereddias terms (4.5.5) is convergent. It is so tuéhe inequality:
| x} < E{| X[}, and the convergence of the series (4.m3).
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A.4 Proof of the Th 5.1.1
Proof: In the general MIMO case the input matrix U(l) =T Ul(l) )] (A.4.1)

where Ty =H is so called Hadamard matrix of ordér= 2¢, or Ty =W, is DFT matrix of an arbitrary

orderN. Based on the experience of the optimal inpu3.844.3.19, 4.3.20) in the TITO case, we consitay
unitary inputs:

B()=]p, ()]=

N|U| ()-N|U| TOU() = N|U| L wiloq (A42)

(normalized, transposed, complex conjugate of tipait), also fulfilling (4.5.3, A.3.2), where thepiat signals
for later experiments are some combinations of dbmplex amplitudes of the multisines used in thet fi
experiment. The condition (4.5.3, A.3.2) can bdten now as:

N ) N L N — N _
YUPUO =SUuO0" =S w weu () = wi w, UO)F =NUfs, (A43)
i=1 i=1 i=1 i=1

a. Odd order kernels:
We will investigate now (A.3.5), taking into accdyd.5.3, A.3.2) and that:

U(l (-1) = U (|)_ |U| WqU(l) (A.4.4)

(th W, VvikJ(u (kU (k,)..0 (1))

With (A.4.4), (A.3.6) can be written a< .

(A.4.5)

A
It is important to see now, that the contributidri&.4.5) to the estimate (4.5.4) can be:
- systematic if A# 0,E{B} # 0, contributing to the bias,
- zero mean random if if A # 0, E{B} = 0, contributing to the non-linear variance, or
- simply nonexistent if A = 0 (this is the most interesting case to inveséigbecause it will provide the way to
decrease the variance of the estimate and to shiliéemeasurement time).

The expected value & will be nonzero, if all frequencies are pair@&icpntains even number of terms, so it is
possible). Otherwise the expected valu® efill be zero (due to independent phases at diffefrequencies).

.21, .
. . . —-j—(0-D(j-1 ..
To evaluateéA let consider that for Fourier matnwij —e P 0 ), i, j=1..N.

. . .2, . .2,
+J* i-D(j1-1) +J*”(|—)(lz—l) £ =(-D(jz-D) j—(-D(k-1)
N N N —
A= Ewh W Wm—E .8 e =

N N -2 ) N2 (A4.9)
_ze—J—( 1 =2 (o= D2 (o -1~ (k)] ze N =Ze_JW(I_DZ
i= i=1 i=1
a -
7 = Zli (Jm —1) -k+1) (A.4.7)
m=

depending on which frequencies are paired.

1. A =N, if Z=0 (modN), otherwiseA = 0. It means that for a number of input combinaidhe
contribution of the kernel to the variance will henexistent.

2. If all frequencies are paire E{B} # 0)and all inputs to the kernel but one (let itjeappear in pairs,
then Z = j. —k, andZ = 0, ifjs = k. These are the usual bias terms measured withrglenputs, see Theorem
45.1.
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3. If N > 2 and the inputs do not appear in pairs, the frecjes however are paired, it can happen that in
the same tim A% 0, E{B} # 0, i.e. the bias will contain more terms, than aghcase of general inputs (i.e.
a bit more bias, but much less variance).

Note: For TITO systems already the cubic non-lineardyuires one of the inputs to appear in pair, seetlis no
problem here (low complexity).

The same analysis applies to the Hadamard mattigrex W; =wal,_,(i =1) i,j=1...N= 2 i.e. its rows are
discrete values of the Walsh functions. Walsh fiomst posses group property, i.e.:

wal,_, (i —Dwal,_, (i =2) =wal;_y; 4 (i =2) , (A.4.8)

where O is so called dyadic addition, i.e. addition modighout carry [1]:

00k=k, kOk=0 et (A.4.9)

Now:

N _ N
A=Y wow W Wik = wal, (i -D..wal, ,(i-Dwal, ,(i-1)=
i=1 i=1
. . (A.4.10)
=lewal (-2 (120000 (1 =D = lez
1= i=

Z=(j, =900, -0..(, ~) U (k-1) (A.4.11)

Here we have the same 1.-3. cases, as beforeuglthmarticular nonzero contributions can differegde note
however, that comparison between Fourier and Hadthozses is meaningful only fbr= 2°).

b. Even order kernels:
For even order kernels the expected valu® @§ zero, whatever the pairing of the frequencisnpt). The

essential difference with respect to the genersé da that for particular mixed kernels the valfi'Aacan be
zero, eliminating those kernels from the varianug thus decreasing the level of the non-lineares@urce.

We can summarize the proof as follows. The orthafiped inputs (A.4.2) work well for TITO systemfdause
there they provide the same level of the bias ammkiderably less non-linear variance (with resgecthe
general case). For systems with more inputs, higinder mixed kernels can provide situations, whibe
dependency between inputs introduced by the ortalgmtion (A.4.2) will add nonzero terms to thadi
comparing to the general case. The problem carabed to the fact, that pairing the frequenciesriputs with
different indices can for such special matricesipo® nonzero expected value:

1
NU[

E{U O ()U & (~K)} = —— Efw, U (k)i U(K)} = ——w wie U (KU (K) = —w, wie
i i NUIZ N E

(A.4.12)

A.5 Proof of Theorem 5.4.1

Proof: To prove the equivalence of the input signais @énough to compute a singltlf order) kernel in (4.1.1-
4.1.4). Bias on the measured FRF is the sum dfyallematic contributions with nonzero expected eslwith
respect to the random inputs. The non-linear neése@nce comes from all other zero expected valehastic
contributions.

The aim is now to show that in every case kernélexactly the same order and combination of inpuits
contribute to the bias. Scale factors based osyhenetry of the Volterra kernels and the frequethegendence
of the kernels based on equivalent signal spectialemad in the limitM - [ to exactly the same bias
expressions.
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For the analysis signal indices in the kernel @4.1.4) will be grouped together as:

| ET YR PP E ETUPRII PR PO PAPINS PRSSI [°3) IO 'y

where inpuf; appears in the kernbkl; times, inpuj, M, times, ..., etc., there are altogetkedifferent inputs to

K
the kernel, anc Z,:1M| =0a andj,<j, < ... jx. Reference input inddxwill be identified usually with input
indexj;.

A.1 Gaussian noise

The FRF measured with Gaussian noise isSKRF):

Kpo oy ks koo S, ()
Gr(jw) =G (J%)"‘GB(J%)—W (A5.1)

To compute a singleth order ¢ = 25-1) contribution:

. . S i1-la (JCUT()
Gu---Ja(jcq() —_Y Uk_ A5.2
° Su, (i) #.o2)

we need the correlation:
R i, (7o) = Ely" (U, (t - 7o)} =
[ @ (g, B{U (t = 1)U (t = 7,).u, (t=7,)}d7,..dT,

If the reference input is not present iy, ..., jk, the expected value is zero, soket ;. Due to the independent
inputs the expected value can be written as (greatiplifying the notation):

(A5.3)

E{ujluh...uja} =K ujluh...uh} E{ ujzujz...ujz}...E{ u,u; ...qu}

o . . (A.5.4)

Each of the expected values in (A.5.4) is zeraafondd number of terms.

For even number of terms they can be decompose&d suis of combinations of pair wise correlations
21 Runum (Ti - Tj) , see [198, 162]. Consequently the orlfierof the reference signal in the kernel must be
odd, and the ordeid, of other input signals even.

For the final form of (A.5.2) we must take into aaat that by the symmetry of the kernels every doatipbn of
pair wise correlations leads the same bias teromKA.5.2) we have:

20 Ruuuu (T, —1;)x2N Ruj2le2 (1 —7))x.. x 2N RJJKUJK (r;-7,)=N2x0n Ry (7 —75) (A.5.5)

where the outmost product at the right side rurer alistinct inputs to the kernel (and the sum-pobduthin
comes from the Schetzen-decomposition). The expre$8.5.5) can be written further as:

Z |_| un| (Ti - Tj) = Z I_l |_| RU1U| (Ti a Ti) (A.5.6)

inputs decomp Ng inputs decomp

The number of possible combinatioNg is the product of the numbers of combinationshat left side of
(A.5.5),i.e.

K

N, =M, "J (M, -1t (A5.7)

Now we must introduce the frequency power spectvianithe Fourier transform, similarly to the SISGeaWe
will follow the philosophy of the derivation for SO case [162], where the correlation is transforinéal the
bias term for a particular single partition in (&h For the SISO kernel of order, the power spectrum
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contained the input spectrum raised to the pawen the MIMO case a kernel of an overall orderbehaves
like anM, order kernel for th@ input signal /;+1 forj,).

Other partitions yield exactly the same bias tedoe to the symmetry of the Volterra kernel. Thealffiresult is
thus a single computed bias term scaletNyfimes. Let the particular partition be defined by:

(7o, T (T, T3) e e e (Top-21T2p4)

j1 input jk input

(A.5.8)

with this (and with a certain simplification in thetation):

gjl"'jK (T ""'TZﬂ—l) ej[’-)ifoe‘j“’lrl X

R . = w... ) - i
g 0= I-wsukuk(jcul)fjsuhuh(J'wr)e“‘“”'2’“”’

g1 gjl-"ja (Tl,“_)e-mrl X
el Sow G [) S0, e (- | g2 dr,..d7,,.,) df,..df,

jad (Tor-27To4)
1 Top |_! e
r=

The time domain integral within the expression miesi the multidimensional frequency transform of\tbkerra
kernel:

xdr,..dr,, df,..df, =

(A.5.9)

o S Y
Glilk (f,— fz, f2 R j J'gJJJzJ---JK (Tl,__.)e-ma rj em(T”’Z_Tzr’l)dTl...deﬁ_l (A5.10)

T Top

With it the correlation is:

R iy, (o) = j“’m (L;“Ifﬂ Gl (f,=F, 15,0, (J@) ﬁ Su,u, (jw)df,..dfy) e df, (a511)
The term in the parenthesis is the required nogalirspectral cross contribution:

100 (10 = S (00 ] GH (11, )] S, (0 e, (A512)

It remains now to scale up the cross spectrum aad®48) to obtain the final result as:

e iS — Crammel [ [minoie (s . .

Gy (“")‘WLO"JG' K(F )X S (1) g (@)df.dfy  (a513)
K

Ckemel :2/3_1M1!! ” (MI _1)” (A514)

where 3-1 = a = ZM; +1. For missing details see [162]. SISO case fdlow as a special case with=j, = ...
ja =k

A.2 Random phase multisine and periodic noise-FRF measurements

Periodic noise and random phase multisines wifirséinvestigated with the FRF measured as:

G (N =E{G()} =G ) +Gf) =E )l /U )} (A5.15)

The expectation of a particular kernel from (4.14)
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. _ le---jK (|) B
G (l) = E{W} =
“ . (A5.16)
M a2 G =ie (K, .., (K)..U
Ky kal;SM 0, ol " e U, ()

For random phase multisines the expectation in.(&)papplies only to the random phases. To yieldzew
expected value the reference inputust be present among the inpuis., jk , then it must be possible to pair
the remaining inputs (phases of different inputsiadependent). The condition on the kernel is equently the
same as for Gaussian noise and with it and witldéiimition of the signal spectrum (5.4.1) the HiAS.16) is:

C o (g

—kemel_ N Gl =k k. )FTPTYS L (K) .S (ko) (ASLD)

1
(M )ﬂ Keseon K10 Sy

With M - O the sum converges to the value of the integra.(i8) (equivalence in the limit (2.2.10)).

Gle---jK (|) =

The periodic noise is more involved, because theeetation in (A.5.16) applies to the amplitudes &mel
phases:

B

]¢J1(k1 ¢k()
=} xE {e" .. e7*} (A5.18)

I I (I)
Here also it can be noted that the reference input be present (and an odd number of times) ikeheel and
other inputs must appear in even numbers, othethé&expectations are zero. In this case the derasori and
phase expectation cancel and:

Es{U}, ()--U ), (k,)} = Eg{U%(K)} -.E;{U7 (ks )} +O(M ™) (A5.19)

The asymptotically vanishing term contains highgere order moments. To create higher than 2nd order
moments more than two (four, six, etc.) frequenomst be paired and run together. This cancelsrtaoy of
degrees of freedom and together with the normatizatf the signals yields vanishing order of magaé for
such contributions (equivalence in the limit). Takinto account all these assumptions the biasag#iin equal
(A.5.16).

A.3 Random phase multisine and periodic noise, skequation measurements

When (4.2.5) is used as the measurement procedure:
Gl () = B[y UF OO 1)) = B b ) XY+ U (0} =
7(")'1 = (A.5.20)

Z GJ1 JKZZ E{U(l)(k) U(I)(k )U (l)bkn(l)}
k

..... n=1i=1

where: (b (1)] ={ius”a)u S’(I)}

With phases independent over the frequencies atidhigher than 2nd order moments (pairing more tian
frequencies together) leading®M ) order contributions the internal term containihg expectation is:

S SEUO () U O (K,) Un (DB} = U &) F - JU (k) PXELY. YU ()00 ()b (1)}

n=1 i=1 n=1 i=1

(A5.21)
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It is easy to recognize that this term in the etqu@mn is d;, (Kronecker Delta) because it is an expansion of
entries of a matrix multiplied by its inverse (frq@h2.5)). Substituting (A.5.21) into (A.5.20) wgaan obtain
(A.5.17).

For periodic noise the expectation in (A.5.19) nmhstinvestigated accordingly to (A.5.18-A.5.19)wkeer the
entries of the inverse matrix pose now more problem

Y B U0 () UL (,) UR (Db} =

(A.5.22)

N J

22 EAUL (). U (k) UP(E,{e

n=1 i=1

i)

R YO

Analyzing the possible pairings which are requifed the nonzero expected value leads to the interim
expression of:

E;{U2 (k) U2 (k) XE,{}"Y Un’ ()-U"(1) b ()} (A5.23)

n=1 i=1

which with the comments made to (A.5.19) and (AlY.d.e. that the contribution of higher order manse
disappears in the limit, that the term within exjption equals Kronecker Delta, and with the ddfnitof the
signal spectral content (5.4.2)) yields exactlyshme expression as (A.5.1H).

A.6 Proof of Theorem 6.1

Proof: In computing the output of the cascade (6.1.1-6.W& can observe that the multiplication of three o

more cubic term: G or Y®means contribution of order higher th&”and such terms will be omitted from
further consideration. The approximate output ef¢hscade is thus:

ZOH=G'OYM+G MY+ > > GHz. 2. L)X XF ¥

2050 % 0 j0 »

3 Y 2 GUzz. L)X D= &2 & 2+ L2

200 % @ /0 »

(A.6.1)

To obtain the BLA FRF of the cascaQ, , (1) = w the components (Z(l) being in phase with

2
U
the U (I) must be computed. The first term is the linear phthe cascade:
E{Z, )V ()} =aR(DS() BR(NS, () =G ()H"(I) (A.6.2)
In the 2nd term the effect of the first non-linéashows. After pairing the frequencies like in 2.6, it
becomes:

EZ,()/U(D} =B RE)S(YE > > HEkkDOUKkUEUYUN|OIP

kOShO S kO R0 §
=a,R()S() AR() S(I3"2e,rY | ROBFIU RF =3le, rrG() H(D,

K S (A.6.3)
& =a/a, r=ahb, rn= Z |R1(k)|2|U(k)r

kO Sy

The third term expresses the effect of the secomndinearity. After suitable pairing we have:
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EZ, (VU =B Y X Gfzz ) HyupH ruUr B LULMY |V

205,08 20 80 %

=H'(DbR,()S,() 3!!2% >, IR(RFIH (KFU(KE = 3k, 5, G () H ()
kO Sy
(A.6.4)

where:€2 =03/b. 0= Y R, (KF [HY (K)F U (K)F (A65)

kO Sy

The computation of the last mixed term is more ined.

E{Z,(D/U() }=B3 2 Gtzz hH 30z H I UEX

2050 % 30 §0 %

> HM(K Ky L) U (k) U (k) UCL)U(= D} U]
kOSy O S kO S0 §
(A.6.6)

with Ly=L,- k; - k; andL,=1- z; - z. In evaluating (A.6.6) we must distinguish betwéles cases, when one of
the frequencieg is paired withl, and when none of the frequencieis paired withl value. The first case is a
simple superposition of the non-linear effects:

E{Z,()/U(l) §,=3x(3"x2)*xb, S() R() H() > | R(BI*H(B U Kk
kS (A.6.7)

xa, SR REBU- KD IR OFIW M =2%¢, ry G() H(D

pd Sy

The second case brings in mixed multiple convongiof both kernels:

E{Z,()/U()) §, =33!xa,b, S() R ) x
2. 2 R@RPRAFz I HEYHEESIz))ZRIZARYZA Y ( Y=

2050 % #2050 %
(A.6.8)

2abSOR): Y X RO FRA 2 20 )2H2Z(S 172)%R) &R)

2050 % 4 %0 $

=gelez FN()C2() :—Zelszr GHHY) CLZG('))
(A.6.9)
where:L(N=S,(NR,(1), N(D=R (DS, (1), and N() L(N=G (1) H*(1). (A.6.10)
C?(l) is the sum approximation of the double convolutibrthe form
JIRCCEDP LCE)[ IR (F)F L(F,)L(f~ = f,)dfdf,.
Collecting (A.6.2-A.6.9) together yields:
Gur(D= E(Z(D /U(D} =K(1 + 49 G0 HTD (A6.11)
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where: K =1+3¢& 1, +36,1,, +275,£,1, 1, (A.6.12)

*

K * 9
Cl:?’ K :EElEZrCZ(l), (A.6.13)

Outside the frequency bands of high coherence &wlia case of higher levels of non-linearities iiddal
effects come into the play yielding:

—1GBLA(|1) =K (1+&) # const, (A.6.14)
G'(HH*(1) L)

and the overall related FRF shows an increasirgivel constant (due t) and frequency dependent (due to

L(1)) bias. However, due tK=1+0(¢), C=O(£’), this effect is not always visible, if the systeyndmics
and the level of non-linearity are small (it wascahssumed that the convolution (A.6.9) is muchensonoother
than the system dynamias.

A.7 Proof of Theorem 6.2.1

Proof: In the derivatiore, dwill be used instead &y, dxm When dependence on the levels of the linear laad t
non-linear distortions is considered in generatl & maxg, J), when the dependence on the level of any kind
of distortion is considered (for the more detaifrdof, see [19*]). Distorted inputs can be writeh a sum of
ideal, linearly distorted, and non-linearly diseattsignals:

U=M[R]=U,+U; =U,+U,+U =L ,R+ER+N[R] (A.7.1)
and the measured outputs similarly as:

Y =V[U]=V[Uy +U +U, 1 =Y, +Y, =Y, +Y, +Y, + O(?) (A7.2)
where Yo = V[Uo] , andYe, Y. are the first order approximations in distortions:

Ye = Yel,'in + Ygon”n = G LINUe+ Vl[ UO’ U J ' Yn = Yr:in + Y:On”n = G LIN Un + Vl[ UO! Un]

Kernels Vl[Uo,U] are all those kernels V[U] with exactly one input beinU , all other inputs bein U,.
This 1st order decomposition is justified bUy,=O@), U,=O(¢e), U, = 0(9), Y.=0O(e),
Y, =0(9) .

Denote the ideal measurements as:

Y, =V[R], Y, =VI[U(], (A.7.3)
then the FRF estimated from the measured data are:
G, =Y,R" (RR")™ and G, = Y, Ug (U U )™ (A7.4)
respectively, whertg is a block of the experimental data:
Ug() o Ugl()
U0 = Uéfi) (|) (A.7.5)
Usx . Ug()

(index in the parentheses is the serial numbeneekperiment).
With the decompositions (A.7.1-A.7.2) we can wihat:
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G =YUM(UU")™ = (Y, + Y, )(US +UD[(U, +U, ) (U +UH]™

= (Yo +Yq)(Ug +Ug)(UUg) (1 +U4Ug (UgUg )™ + U Ug (UgUg ) ™+ U Uy (UUg) ™1™
(A.7.6)

Let the inverse in the squared parenthesis (I +P)™. Then if [P|<1, (1 +P)*=(1-P), if &is small

enough, because every componenPncontains at least one signal of ord@®é). Introducing U, =U. +U,
leads to (from here on the equality means that sh@rder approximation):

A~

G=G, +G, +..+G (A.7.7)

G, =Yg (UUg)™ (A.7.8)

G, =-Y,Ug (UUg ) U Ug (UUg)™ (A.7.9)

Gy =-YoUg (UUg ) MU, Ug (UgUg )™ (A.7.10)
Gy ==YoUg (UgUg ) "UgU (UgUg )™ (A.7.11)
Gy =-Y,Ug (UUg ) U Uy (UUg )™ (A.7.12)
Gy = YoUg (UUg )™ (A.7.13)
Gy = YoUy (UUg)™ (A.7.14)
Gun =Y Ug (UUg)™ (A.7.15)
Gy =Y, Ug (UUy)™ (A.7.16)

To see how good the measurements are we shoulda¢wahe differenc E{ é} -Gga-

Case of G, : By definition: E{G } = E G} =Gy, =G\ +Gpgps (A.7.17)
Case of G” : With (A.7.1) and (6.2.1-6.2.4) it is easy to see:

U,=ER, R=LjU, UMUgU,uy)"=ELy (A.7.18)
Consequently E{G |} = -G, ,EL, =-G EL3 -G z.EL (A.7.19)

Case of Gy : It is also easy to see (directly from the squdrén (A.7.5) and through the singular value
decomposition for the rectanguldj that:

Ug (UgUg ) U, =1 (A.7.20)
With this simplification it turns out, that:
Gy ==Y,Ug (UUg ) "U,Ug (UUg ) ==Y, Ul (UUg )™ =-G,, (A.7.21)

Case ofGV: Similarly:
Gy =-YUg (UUg ) TUoUg (UUg )™ ==Y, U (UUg ) " =-G,, (A.7.22)

Case of G,” : Here we can write:

G, =-Y Ul UUNHTUURU P ™=-G Ny Lt (A.7.23)
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where:
UUS (UU5) ™" =U R (RR") L =N LY (A.7.24)

is the best linear approximation of the purely fiaear part of the distortions. The expressiorhissta product
of two FRF estimates coming from two independeni-lmear systems, driven by common input. Consider
further that every FRF estimate can be decompagedhe Best Linear Approximation and the non-limeaise:

A

Gy =Gpa+Gg, |§|B,_A:NB,_A+NS (A.7.25)

A A

G m o= _GONBLAL_Ol = (G BLA +G s)(N BLA+N S)L _01
=-G BLAN BLAL_Ol_G BL/I\I é_ol -G gl BLIﬂ _ol_G N Ls_ol

The best linear approximations are deterministie,ion-linear noises are circularly normally disited, noise
in (A.7.25) is of ordeD(&), the noise amplitudes are of ord&(N /2, altogether we have:

(A.7.26)

EG,} = _GRNBLAL;J:L -~EG N}k I-_ol =6 N gk —01+ O &NY (A.7.27)
Case OTGV||| .
Gy = YeUg' (UU g )_1 (A.7.28)

From the point of view of the Best Linear Approxiima, kernels of every Volterra system can be di@ssas
“bias” (nonzero mean) and “variance” (zero meanjnkts. Bias kernels will appear in the best linear
approximation and will also contribute to the norear noise, variance kernels contribute solelyh® non-
linear noise [163]. In case of a MIMO \olterra ®yst bias kernels for measurement chanfiél, are those

kernels lellzmja, which within input indicegy, j», ..., j« contain input reference inddkan odd number of
times, and every other input index an even numbgmes ([15*-16%)]), i.e.:
]1' 12"" Ja :<,\|§ "'k>< Jll "'Jl> < JK’ 'J'K > 1 MreferenceZOdd ' M k: even, Mreferencéi- k=L M k: Od(
reference M1 MK
(A.7.29)

. 122 . 112 ) . 3
i.e. for channel-U; G, is a bias kernel ar G, is a variance kernel, however for chanvidl, the situation
is just opposite.

The problem with evaluating (A.7.28) is that thesiand the variance kernels Y, may exchange roles

comparing to the ideal case. The reason is thaalEY., contrary to signaltly, are linear combinations of all
the reference inputR, and R, will appear in place oblox changing the actual input indices of the kernels.

Remember also, thY, contains only a single inp U,

When investigating a particular kernel we must adgrsthus every variation when one of the inputided
changes to some other value. In consequence biasl&ecan turn into variance kernels and vice verse
expected value of (A.7.28) can be written as:

E{G}, } = tr{B,E} (A.7.30)
with:
GJE;LA G;LA G:;LA
Bl - Ggﬂ.lZ GElZZ GE 123 (A731)
GD].13 GD123 65133
B B

where «kmre is the permutation of the indicksl, andm in an increasing order and the bias tefbgsare those
appearing in the BLA&Sg 4 [15*-16*]. Similar construction can be done foetmeasurements in other channels,
ie.

E{é\i;m} =tr{B,E} (A.7.32)
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GP m=k
B — BLA A.7.33
[ k] mn {Géknmb m# k ( )

case 0iGy: G, =Y, UM (U U™ (A.7.34)
The analysis of this term is even more involved hae we will simplify the analysis using the asptions of
the low order systems. However the line of reaspaind the results can be extended to higher oydtzrss.

The distortion componeny, depends on a single appearance of the distoitimlsU,,;
Y, =Vi[Ug U,] (A.7.35)

U, is the output of a 2nd and 3rd order Volterraesystwith kernels of orde®(d). We will investigate when the
expected valu E{'Y, Uoi 70 (A.7.36)

Contrary to the substitution of the sigralinto the kernels oY, which did not change the order of the kernels,
the substitution ofJ, into the kernels of,, means the substitution of a kernel into a kerocehsequently the
order of the resulting kernels will change.

SubstitutingU,, into Y, takes place of one input signal, but introducemary new signals as is the order of the
kernel present ibJ,. Consequently to have a nonzero mean bias odd kedeel:

orden(Y, kerne) + order(U, kerne) = even

For the assumed low order systems we need to @msicB, 2+2, and 3+3 kernel order combinationsthis
case the even order kernels normally present ortlya non-linear noise, will contribute also to twerall bias.

Consider now & system kernel with one of the inplUg,ji (k) substituted with a singll system kernel:

ijljz"'j”(lﬂ’ I@"'-’lﬁ—lil_zizl..a—lk) '\Inrhnzmrk Gl""fﬁ—l’ii(_zﬁ 1-5‘5 )
o050 $ anter 50 50, (K Uoy (-3, , K)U o €). U k-2 15 &)

(A.7.37)
and consider for simplicity only the product of thputs (the sole random component of the wholeesgion):
Uy, (k,)--U 0l (I =%y 4uk)*xU on, (1)U ong (ki =Zisy paS) (A.7.38)

Let rename the frequency variables as follows:
Ko =Kn, M#Zi, K =k -Z 546 (A.7.39)

we can see that the resulting expression is afagltied Volterra kernel:

Uo (KMo (KU, (KU (K. W (o) XUy (€1)-- Moy, (§50) XU (1 =Zicy 4K =2y 50)
(A.7.40)

which we will denote as:
G/ (N, ") (A.7.41)

12 11 111
e.g.G1 (N,7) is actually like arG order kernel.

To see, what is the true order of a mixed kernef #1), as a rule of thumb delete input inderomj, j,, ...,
jo and mix the resulting indices with, n,, ..., ng ordering them in the increasing order. Such a kewmel to
have nonzero mean should show properties of a driamkernel mentioned before.

For the assumed low order systems the overall astican be written as:

G=Gga-G BIAS(EL_Ol -N gk —01) tH  +H , (A.7.42)
Using L ol—_o1 =1 this can be written finally as:
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G =Gga+Gons(l M gk &)+ ,+H ,+0(&?) (A7.42)

where the term H1 and H » are difficult to handle in a closed form and arstlie be enumerated for particular
applications, accordingly to the derived rulms.
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