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1. Introduction 

In 1699, Amontons found experimentally that the kinetic friction force arising between 

dry, apparently (macroscopically) smooth metal surfaces is approximately linearly propor-

tional to the applied normal force under a wide range of conditions. It is the case when e.g. 

both the friction force and applied load are linearly proportional to real area of contact. In 

other words, his friction tests showed that the ratio of friction force to normal force is constant 

and is independent of the nominal or apparent contact area, normal force, sliding velocity and 

roughness. This implies that the nominal frictional shear stress is approximately linearly pro-

portional to the nominal contact pressure defined as the ratio of applied normal load and the 

nominal (apparent) contact area. Traditionally, the constant ratio of friction (tangential) force 

and applied normal force is termed coefficient of friction. In connection with Amontons’s 

empirical law of dry friction, however, it must be noted that it can be considered as a very 

simple approximation of the real friction phenomenon only. In 1780, Coulomb revised Amon-

tons’s law and pointed out experimentally that the ratio of friction force and normal force, in 

reality, depends on the normal force, sliding velocity, nominal contact area, roughness, etc. 

Coulomb’s friction tests made it clear that apparently smooth metal-metal contact pairs, as a 

good approximation, obey Amontons’s law of friction while wood-metal and wood-wood 

contact pairs disobey this law. The ratio of dry friction force to normal force for sliding rub-

bers, and rubber-like (viscoelastic) materials is usually also not constant. In this thesis, the 

ratio of friction (tangential) force and applied normal force acting on sliding rubber compo-

nents is termed apparent coefficient of friction. Nowadays, it is widely accepted that the ratio 

of rubber friction force and normal force depends on the sliding velocity, nominal contact 

area, normal force, temperature and so on. Another important characteristic of rubber friction 

is that the friction force is caused by concurrently acting rubber friction mechanisms which 

differ from the friction producing mechanisms of contacting metal surfaces. Although Amon-

tons’s law of friction, due to its simplicity, is extensively used in engineering practice this 

very short review on the history of science of friction shows clearly that the traditional macro-

scopic approach where a constant coefficient of friction is assigned to the sliding pair cannot 

be applied for rubber and rubber-like materials. In order to develop reliable rubber friction 

laws it is essential to understand the causes and consequences of phenomena influencing fric-

tion. It was pointed out experimentally and theoretically that there exists a friction component 

which is directly related to hysteresis in the rubber bulk. This component is influenced by 

both macro- and micro-geometry (surface roughness) and is termed viscoelastic or hysteresis 

friction component. As the hysteresis has effect on both sliding and rolling friction the viscoe-

lastic component of friction is extensively studied in the literature. In most cases, however, 

the focus is put on tires being in contact with rough concrete, asphalt, etc. road surface (tire 

application) because the contribution of viscoelastic component to friction is more significant 

when the counter surface is rough. Root-mean-square roughness of asphalt road surface is 

typically few hundred microns, while that of polished steel surface is typically few tenth mi-

crons. In many cases, however, viscoelastic bodies are paired with apparently smooth, hard 

surfaces (e.g. sealing application). Although the latter is of great importance in mechanical 

engineering practice only a few studies are available in the literature on the prediction of vis-

coelastic friction component. One of these studies came to the conclusion that the seemingly 

mild roughness of a highly polished steel surface may also give the dominant contribution to 

the friction, even for lubricated surfaces. Although apparently smooth surfaces seem smooth 

for human eye, in the reality, they are rough. The increasing magnification makes visible their 

real surface micro-topography. When the magnification is low, the rough surface seems quite 

smooth because the short wavelength roughnesses do not appear. In most cases, rough surfac-

es are considered to be isotropic, where their statistical properties are translational and rota-
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tional invariant i.e. independent of the location and direction of line scans (1D surface rough-

ness measurements). However, many engineering surfaces have anisotropic surface roughness 

(e.g. unidirectionaly polished steel surfaces) yielding sliding direction dependent friction 

force. Another important character of rough surfaces is that the coarser scale asperities are 

covered with finer scale asperities (multi-scale character of rough surfaces) and the friction 

force predicted for a given surface roughness depends both on the shortest and on the longest 

wavelength components (the surface is considered to be rough between the longest and the 

shortest wavelength component only). The longest wavelength component of surface rough-

ness is usually determined by the dimensions of the nominal contact area of the contacting 

bodies. The viscoelastic nature of material behavior complicates further the problem. In the 

rubbery region (at very small excitation frequencies), the rubber behaves as a soft, perfectly 

elastic material since its energy dissipation is negligible. On the other hand, in the glassy re-

gion (at very high excitation frequencies) it behaves as a stiff, almost perfectly elastic material 

because its energy dissipation is negligible in this state. However, in the transition region, the 

energy dissipation of rubber cannot be neglected while its stiffness increases with orders of 

magnitude with increasing frequencies. Due to its great practical importance the first topic 

addressed in this thesis is the numerical prediction and experimental investigation of surface 

roughness generated viscoelastic friction. The studies summarized here apply one of the most 

important/frequently used continuum mechanics-based method of numerical tribology, name-

ly the finite element method. Using finite element method not only the detailed geometry of 

asperities but also the effect of large strains and viscoelasticity can be taken into considera-

tion. Due to the huge CPU time and memory demand, however, it is practically impossible to 

consider all length scales of the surface roughness in a single FE model. Contrary to this fact 

the FE models help us to understand the role of viscoelastic friction while the knowledge 

gained from them will enable engineers to design viscoelastic components/machine elements 

with improved tribological behavior. 

Reciprocating rubber seals as typical viscoelastic machine elements are widely used in 

mechanical engineering practice. In most engineering applications, rubber/metal sliding pairs 

are lubricated in order to decrease the friction force arising in dry case and hindering the dam-

ages of the contacting surfaces. In the presence of lubricant, rubber friction is influenced by 

the viscoelastic losses in the rubber, the boundary lubrication and the fluid friction. The lubri-

cation diminishes adhesion and decreases the contribution of surface roughness generated 

viscoelastic friction because lubricant fills out the valleys of surface roughness i.e. seemingly 

smoothes the rough surface. In the case of full film lubrication, there is a continuous lubricat-

ing film with load carrying capacity between the contacting surfaces which does not make it 

possible to come into direct, asperity type contacts. In this case, the total normal load is car-

ried by the lubricating film. Contrary to this, in mixed lubrication, the lubricating film is not 

able to separate surfaces from each other completely i.e. local solid contacts can be formed 

among asperities. As a consequence, one part of the normal load is carried by the lubricating 

film while the rest is carried by solid contacts. To predict the lubrication performance of a 

reciprocating seal engineers need effective and accurate models and algorithms. In the last 

two decades, intensive development was observable in the numerical modeling of lubrication 

of reciprocating seals. Main aims of the research work were, among others, to predict the 

thickness of the lubricant film, the pressure distribution due to hydrodynamic effect and sol-

id/solid contact, the friction resistance (friction force), the amount of leakage which can be 

defined as the difference between fluid transport during outstroke and instroke. Thanks to the 

research efforts the latest numerical models are able to take into consideration not only the 

seal deformation, the effect of surface roughness and the pressure dependent viscosity but also 

the cavitation. The second part of the thesis concentrates to the implementation and applica-

tion of a very recent stochastic, one-dimensional, steady-state mixed friction model. 
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Numerical methods of tribology can be divided into two parts. One part of methods 

uses the continuous approach (e.g. finite element method) while another part of them follows 

discrete approach (e.g. discrete element method, molecular dynamics simulation). In the last 

few decades, the importance of discrete approach, similarly to other fields of science, contin-

uously increases. Continuum mechanics-based numerical methods are widely used to model 

frictional contact of rough surfaces, flow of lubricant, etc. while the discrete element method 

(macro- and micro-scale) and the molecular dynamics simulation (atomic- or nano-scale) can 

be used to model solids, liquids and gasses. Due to the large CPU time, however, the time 

scale and space scale that can be modeled are strongly limited in the discrete modeling ap-

proach. By combining the continuous and discrete approach, however, it is possible to create 

multi-scale (time- and space scale) numerical models for contact mechanics problems. Conse-

quently the main aim of the community of numerical tribology is to couple the continuous and 

the discrete approaches. In accordance with these efforts the third part of the thesis concen-

trates on the implementation of three-dimensional discrete element method and its application 

for wall friction prediction in hoppers/silos containing viscoelastic granular material. 

2. Outline of the thesis 

In Chapter 3, the topics addressed in this thesis are collected. After highlighting their 

practical importance some related industrial R&D projects are presented. In order to charac-

terize the very complex frictional behavior of viscoelastic bodies Chapter 4 starts with the 

discussion of dry and lubricated rubber friction. Then the physical processes associated with 

rubber friction are introduced and described briefly. As a next step the viscoelastic friction 

predictions are reviewed briefly (see Chapter 4.2) which is followed by continuum mechan-

ics-based computations. Main aim of the FE models presented in Chapter 4.3 is to investigate 

the role of the surface roughness generated viscoelastic friction. For the sake of completeness 

measurement results on apparently smooth surface generated viscoelastic friction are cited 

and discussed in Chapter 4.4. Within the frame of numerical modeling of mixed elastohydro-

dynamic lubrication (Chapter 4.5), after a short literature review, the focus is placed on the 

relation between the mean interfacial separation and the contact pressure originating from 

Greenwood-Williamson’s as well as from Persson’s contact theory. Then a mixed friction 

model is presented and implemented in order to investigate the tribological behavior of O-

rings and wiper blades. In Chapter 5, the focus is placed on the numerical modeling of wall 

friction in nonaxisymmetric hoppers/silos using discrete modeling approach. The first part of 

the chapter gives insight into the implementation of a three-dimensional explicit discrete ele-

ment code at which material properties are incorporated into the contact laws. The computer 

code is composed of classical Newtonian dynamic model for the solution of equations of par-

ticle dynamics (discrete element computation) and for the visualization/evaluation of simula-

tion results. In the second part of the chapter, the discrete element code developed is applied 

for predicting the role of static and dynamic wall friction in three-dimensional containers con-

taining mono-sized, spherical, cohesionless viscoelastic particles. Finally, in Chapter 6, the 

new scientific results are summarized in compact form. 

The thesis is closed by three appendixes. Appendix A gives a detailed description on 

the theories used here for finite element modeling of time independent hyperelastic and 

small/large strain linear viscoelastic material behavior. The way of parameter identification 

and extension of the viscoelastic material model to viscoplasticity are also summarized brief-

ly. In Appendix B, the spectrum of the stationary stochastic surface roughness is introduced 

and characterized. For the sake of clarity the computation of surface roughness spectrum is 

also described. Appendix C contains the characterization and modeling of macro-scale viscoe-

lastic material behavior of an ethylene-propylene-diene-monomer (EPDM) rubber which is 
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the typical material of rubber seals built into real brake cylinders and is used in the majority of 

FE friction predictions of this thesis. 

3. Topics addressed in the thesis 

3.1. Practical importance of the topics 

The title of the thesis indicates clearly that topics addressed here are directly related to 

the numerical tribology. Similar to other fields of sciences, nowadays, the tribology as the 

science of friction, wear and lubrication cannot be imagined without computer simulations. In 

this thesis, three different topics are addressed: (a) FE prediction of apparently smooth surface 

generated viscoelastic friction, (b) numerical modeling of mixed elastohydrodynamic lubrica-

tion (EHL) of reciprocating rubber seals and components, (c) implementation of the three-

dimensional discrete element method and its application for the prediction of wall friction and 

static/dynamic wall pressure. 

Investigation of dry and lubricated friction of viscoelastic bodies is of great practical 

importance because many everyday life-related components (tire of automobiles, bicycles, 

motorbikes, agricultural machines; shoe sole; windscreen wiper; etc.) and important machine 

elements (seals, rollers, conveyor belts, guiding shoes, etc.) are made of rubber or rubber-like 

material. The friction relating to these components affects, among others, the energy con-

sumption, the fuel consumption, the CO2 emission, the amount of lubricant needed, the slip 

and fall accidents causing human injuries/deaths, the occupational safety and health, the traf-

fic safety, the friction related control and service problems, the friction related vibration and 

noise generation, the environment friendly design of rubber products, the reduction of envi-

ronmental impact, etc. It is worth to mention that real micro topography (surface roughness) 

of surfaces plays critical role not only in dry and lubricated friction of bodies but also in addi-

tional physical phenomena, such as wear and thermal/electrical conductance between surfac-

es. Although rubber friction has wide literature relative little information is available on ap-

parently smooth surface generated viscoelastic friction. Majority of studies dealing with hys-

teresis friction focuses on tire friction where the RMS roughness of the road surface is bigger 

with orders of magnitude than that of apparently smooth surfaces frequently used in sealing 

applications. In case of dynamic seals, however, one of the main uncertainties is the friction-

connected energy loss contribution arising from micro hysteresis. Consequently it is essential 

to get better insight into the mechanism of hysteresis friction and give reliable prediction for 

the hysteresis component of rubber friction. Accurate prediction of micro hysteresis friction 

makes the differentiation and quantification of other friction mechanisms (contribution to 

rubber friction from macro hysteresis, adhesion, rubber wear, etc.) possible. Additionally, the 

knowledge gained from theoretical and/or experimental works will enable engineers to design 

sliding/rolling viscoelastic components with prescribed (decreased or increased) friction. At 

the same time numerical tribology helps engineers to understand the causes and consequences 

of friction and to develop design tools with which the tribological aspects can be taken into 

consideration even in the design phase. One part of the research work (viscoelastic friction 

predictions, material characterization and parameter identification, surface roughness charac-

terization) presented in this thesis is directly related to the operation of automobile brake sys-

tems. In a typical automobile brake system the force exerted on the brake pedal is converted 

into hydraulic pressure in the master cylinder. A modern master cylinder contains two plung-

ers; each of them makes a separate brake circuit to operate. The brake plunger moves forward 

when the driver pushes the brake pedal and goes back in its initial position as the pedal is re-

leased. The primary plunger is operated through the brake pedal while the hydraulic pressure 

between the primary and secondary plunger forces the secondary plunger to press the fluid in 

its circuit. As the brake plungers are in contact with rubber seals the resulting friction force 
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has to be overcome when they move. Due to the non-zero frictional resistance the hydraulic 

pressure in the two separate brake circuits cannot be exactly the same. To minimize this pres-

sure difference the friction force at the plunger/rubber seal contact has to be kept as low as 

possible. 

Reciprocating hydraulic rod seals are widely used in different industrial applications 

and they operate frequently in the boundary lubrication or the mixed friction regime. In the 

last few decades, huge effort was made in the literature to minimize wear, friction resistance 

(friction force) and leakage (seals with less leak rate or possibly zero leakage). To predict the 

tribological behavior of rubber seals engineers need effective and accurate models and algo-

rithms (design tools) with which they can test different what-if scenarios and seal geometries, 

perform sensitivity analysis, optimize the geometry, surface roughness and surface treatment 

of rubber component and its counterpart, eliminate or minimize time consuming and expen-

sive measurements, reduce the number of prototypes, simulate real engineering problems, and 

understand the effect of different physical processes on the tribological behavior. Furthermore 

mixed friction simulations contribute to the better designing of rubber component and reduce 

the time to market. Numerical models are particularly useful because they usually allow engi-

neers to analyze more complex sealing problems where the frictional heat generation, thermal 

expansion, nonlinear material behavior, and temperature dependent material properties of the 

seal, seal wear, texturing and surface treatment of the seal, etc. play important/decisive role. 

Establishment of such numerical models is, however, very challenging due to the fact that the 

frictional loss of seals is affected, among others, by seal geometry, surface roughness of con-

tacting surfaces, material of contacting components, texturing, coating and antifriction treat-

ment of contacting surfaces, lubricant, temperature, etc. 

In order to improve the tribological properties it is essential to understand the interre-

lation between tribological behavior at macro and micro/nano-scale. Due to the lack of 

knowledge on scale dependent tribological behavior, in the majority of cases, the so called 

“trial and error” approach prevails in the present design practice of sliding systems. Numeri-

cal methods of tribology, however, allow us to change this. To predict friction, study contact 

conditions and simulate wear at macro-, micro- and nano-scale numerically both continuum 

(e.g. finite element method, boundary element method) and discrete methods (e.g. discrete 

element method, molecular dynamics simulation) can be used. As there exists no a generally 

applicable simulation method for multi-scale (time- and space-scale) systems, in many cases, 

it is needed to couple these methods. At this point, it must be mentioned that the three-

dimensional discrete element computation algorithm and program developed and implement-

ed by the author of this thesis can be used for multi-scale systems and, after minor modifica-

tion, for MD simulations. At the same time the computer code mentioned may be extended 

freely and with or without modifications can be used for wear simulation and for research in 

material science, fracture mechanics, rheology of particulate materials, soil mechanics, etc. 

3.2. Related industrial R&D projects of the author 

Beside direct application of the techniques and methods presented in this thesis the in-

direct application of those has also practical importance. In order to prove this, two different 

practical problems are mentioned here which emerged in the industrial sector and solved by 

the author of this thesis within the frame of industrial R&D projects. The first problem was 

connected with the sealing capability of soft, viscoelastic gaskets used in the gas industry and 

the focus was placed on the modeling and analyzing of stress relaxation caused by the viscoe-

lastic nature of gaskets. A considerable part of such gaskets is made of rubber or rubber-like 

material and, as a good approximation, shows thermorheologically simple material behavior. 

As it is well known the viscoelastic material behavior yields decreasing clamping force (it is 

the force that pushes the soft gasket against the counter surface in order to eliminate leakage 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



12 

through the small channels formed between the contacting rough surfaces) as the time elapses. 

If the magnitude of clamping force falls below a critical value the gasket starts to leak. In 

most cases, the critical value of clamping force can only be determined experimentally due to 

the large number of influencing factors. The leakage is dangerous and, at the same time, caus-

es financial losses for the gas suppliers. Nowadays the propensity of gas suppliers to minimize 

gas losses increases due to the high energy prices. To sum it up it can be concluded that re-

search efforts on reduction of leakage are of great practical importance because the gas saving 

and the accompanying money saving can be considerable due to the huge number of gaskets 

built into union joints of gas-meters and the high energy prices. Within the frame of the R&D 

project, it was pointed out that, based on the master curves of different gasket materials it is 

possible to estimate the necessary frequency of gasket replacements and to rank soft gaskets 

available on the market. The second industry induced problem was related to the modeling of 

fluid/structure interaction (FSI) which is arisen also in simulation of soft elastohydrodynamic 

lubrication of rubber seals. The overall aim was to connect CFD (Computational Fluid Dy-

namics) and FE structural analysis through transferring contact pressure distribution comput-

ed by Ansys Fluent to MSC.Marc for static stress analysis. In order to solve this problem the 

author of this thesis developed computer algorithm and program to convert the output pres-

sure distribution of CFD into an approximately equivalent input pressure distribution for FE 

analysis. 

4. Dry and lubricated sliding friction of rubbers and 
rubber-like (viscoelastic) materials 

Nowadays, major share of seals subjected to sliding friction made of rubber or rubber-

like (viscoelastic) material. Although these seals are widely used in the industry, the impact of 

time (load frequency)-and temperature-dependent material behavior on the friction force is 

not satisfactorily understood. To overcome this difficulty numerous theoretical and experi-

mental studies dealt with the physical background of rubber friction in the last years and dec-

ades. 

4.1. Separable rubber friction contributions 

Pioneering work of Grosch [1] has shown that rubber friction force and energy dissi-

pation arise, first of all, from interfacial adhesion and hysteresis losses in the rubber itself. 

Generally, it can be concluded that interfacial adhesion plays important role at clean, dry sur-

faces and at small sliding speeds. Contrary to this, in case of lubricated surfaces and high slid-

ing speeds, the friction dissipation is due primarily to hysteresis losses in the rubber. Further-

more, it has been found that both adhesion and deformation (hysteresis) losses are directly 

related to the viscoelastic properties of the rubber. 

As reported by Lorenz et al. [2] several different physical processes contribute to rub-

ber friction (see Fig. 4.1). (a) The substrate asperities deform the rubber which, during sliding, 

gives rise to energy dissipation in the bulk of the rubber (pink light dotted area). (b) Close to 

the opening crack tips very large viscoelastic deformations may occur resulting in locally very 

large energy dissipation (pink heavy-dotted area). (c) There will also be a contribution to the 

energy dissipation from shearing a thin solid or liquid or mixed contamination film (green 

area) on the rubber surface and/or on the substrate surface. In the absence of such a film direct 

bonding between the rubber molecules and the substrate, followed by viscoelastic defor-

mation and bond breaking, will also contribute to the energy dissipation and the friction force. 

(d) In addition, a contribution to rubber friction will arise from wear processes, e.g., the ener-

gy necessary to propagate cracks in the rubber surface region resulting in the removal of small 

rubber particles. As it is mentioned by Lorenz et al. [2], in most practical applications, rubber 
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friction is usually modeled using Amontons’s law with sliding velocity (v) and pressure (p) 

dependent apparent coefficient of friction (  pv, ). However this is a phenomenological ap-

proach where different physical processes of rubber friction are not described and modeled. 

Furthermore [2] mentions that the friction force, in case of a rubber block sliding on a con-

crete surface, is, among others, due to the combined effect of asperity-induced viscoelastic 

bulk deformation, opening cracks and shearing of a thin viscous film at the interface. In other 

words, only a fraction of the energy dissipated during sliding of a rough surface on rubber is 

due to asperity induced viscoelastic losses. 

 

Fig. 4.1. Asperity level physical processes contributing to rubber friction [2] 

The contribution of different components to the friction force depends on the macro 

geometry, detailed surface micro-topography, relative tangential velocity, cleanliness of sur-

faces, temperature, material and surface properties of rubbing bodies, applied normal load, 

filler material and content, lubricant and its additives, and surface treatment/coating of the 

harder counterpart and/or the rubber surface. The interaction of friction mechanisms and 

complexity of physical processes (complex nature of rubber friction), however, make the fric-

tion prediction and the modeling of physical processes associated with rubber friction very 

challenging. Consequently the applicability and prediction capability of analytical and/or nu-

merical models have been developed so far are limited and, in many cases, the different scales 

of tribological processes may be modeled only by combining discrete methods (e.g. discrete 

element method, molecular dynamics simulation) and numerical methods of continuum me-

chanics (e.g. finite element method). 

4.1.1. Dry friction 

Nowadays, it is commonly accepted that basically four mechanisms are responsible for 

rubber friction in dry case. As reported by Smith [8] rubber friction is controlled by adhesion, 

macro hysteresis, micro- or surface roughness generated hysteresis, and cohesion (friction 

contribution from rubber wear). When rubber slides on smooth clean surface the rubber fric-

tion is due to mainly adhesion. This is the case at rubber/glass sliding pairs where the adhe-

sive wear predominates. In case of clean, rough counter surface the rubber friction is mainly 

due to adhesion (especially at low sliding speeds) and energy dissipation in the rubber (visco-

elastic friction contribution) as emphasized by Grosch [1], Persson [3] and Klüppel and Hein-

rich [9]. The viscoelastic friction comes into being when the rubber is subjected to cyclic de-

formation by the macro and/or micro geometry (surface roughness) of the hard, rough sub-

strate [3, 9]. 

4.1.2. Lubricated friction 

In most engineering applications (e.g. sealing applications), sliding components made 

of rubber or rubber-like material are lubricated in order to decrease the friction force. In the 

case of fluid friction (full film lubrication), friction force comes from the shearing of a con-
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tinuous fluid film. This is the viscous component of friction which can be interpreted as ener-

gy loss due to the viscous nature of lubricant. At the same time, in regions where a very thin 

lubricating film covers the solid, the friction force comes partly from the shearing of this thin 

boundary layer. Consequently, in lubricated case, energy dissipation occurring in the sliding 

process is due to hysteresis losses in the rubber, boundary lubrication and fluid friction. The 

effect of adhesion usually can be neglected for the lack of direct contacts of solids. (Note: In 

many cases, the lubricant cannot eliminate the adhesion completely.) Furthermore the lubrica-

tion decreases the contribution of surface roughness to hysteresis friction because lubricant 

fills out the valleys of rough surfaces (smoothing effect of the lubricant) lowering the penetra-

tion of the rubber into these regions. 

From engineering point of view reciprocating rubber seals are of primary importance 

because they are frequently used machine elements. During operation most of them slide on 

(apparently) smooth hard (compared to rubber) counter surface in presence of lubricant. Seals 

have smooth surface but, as reported by Salant et al. [41], the surface of harder counterpart is 

usually even smoother in order to reduce friction, rubber wear and wear induced leakage. It is 

well known that reciprocating rubber seals operate frequently in boundary and mixed lubrica-

tion regime. However different explanations exist in the literature for the friction contribution 

arisen in the boundary lubrication regime. On the one hand, Campbell [42] states that the fric-

tion is determined predominantly by interaction between the solids and between the solids and 

the liquid. Bulk flow properties of the liquid play little or no part in friction. In other words, 

the friction contribution arisen in the boundary lubrication regime is considered to be due to 

the shearing of a thin boundary lubricant layer separating contacting surfaces or shearing of 

the interface between the boundary layer and the solid surfaces. Shear strength of the bounda-

ry lubricant layer is influenced by both properties of the contacting surfaces and those of the 

lubricant. Its magnitude can only be determined by experiments conducted at sufficiently low 

sliding velocity where the hydrodynamic effect is negligible. Persson et al. [43] pointed out 

that the applied normal pressure and the adhesion may induce solid/solid contact between the 

adhered boundary lubricant islands (discontinuous boundary lubricant layer) causing relative-

ly high coefficient of friction. In the boundary lubrication regime, applied normal load is car-

ried by asperity contacts and closed lubricant pools formed in the roughness valleys of harder 

surface. On the other hand, in the studies of Mofidi et al. [44] and Wohlers et al. [45], the im-

portance of micro hysteresis friction component is emphasized in case of boundary lubrica-

tion. The authors hypothesized that the friction contribution arisen in boundary lubrication 

regime is mainly due to surface roughness generated hysteresis (micro-hysteresis). The reason 

why this was hypothesized is that the very thin boundary layer formed typically from few 

layers of lubricant molecules makes solid type asperity contacts possible. In contrast, Smith’s 

theory [8] states that if the adhesion propensity is very low (this is the case when adhesion 

eliminating boundary layer separates contacting surfaces) the micro hysteresis friction will 

disappear. Consequently Smith’s theory is based on “adhesion-related surface deformation 

hysteresis” where the decreasing adhesion propensity results in decreasing micro hysteresis 

friction. Additionally Smith assumes that the micro hysteresis friction contribution is practi-

cally independent of the nominal contact pressure. 

The windscreen wiper application is particularly interesting because the lubricant is 

water. It is well known that the water causes perceptible reduction in sliding friction by creat-

ing a thin lubricant film between the contacting surfaces. This proves that the water has sig-

nificant friction reducing effect although its viscosity is low. As reported by Bódai and Goda 

[10] the lower friction measured in wet case is probably due to the following process. At very 

low sliding velocities the real contact area is practically the same as in dry case. However, 

within the asperity contact regions the surfaces are not perfectly dry. They are covered with a 

very thin water film (hydrophilic solid possesses high surface free energy) which does not 
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allow the formation of adhesion bonds (boundary lubrication). Results of [10] indicate that, in 

the boundary lubrication regime, the coefficient of friction depends strongly on the magnitude 

of normal load. By increasing the sliding velocity the water film, due to the increasing fluid 

pressure, becomes thicker which results in friction force to be controlled by fluid film friction 

and boundary layer friction. Due to the thicker water film the importance of real contact area 

is much less in the mixed friction regime than in the boundary lubrication state. 

4.1.3. Viscoelastic component of rubber friction 

Basically, both the macro and the micro deformations can cause energy dissipation. As 

reported by Felhős et al. [11], in case when a smooth steel ball slides or rolls over a rubber 

plate the viscoelastic friction is due to macro deformations caused by the ball. During sliding 

or rolling, work is done as the ball moves forward. This work is required to deform the rubber 

in front of the ball. Simultaneous with this elastic energy is recovered from the rear. Since 

rubber has viscoelastic material behavior it shows hysteresis and thus one portion of the work 

done is lost which can be considered as the work of the hysteresis friction force. When a rub-

ber component slides on a hard, rough solid the surface asperities of the hard surface exert 

oscillating forces on the rubber surface leading to energy dissipation via the ”internal friction” 

of the rubber (micro-hysteresis). In respect of asperity induced energy dissipation (micro hys-

teresis component of rubber friction), Lorenz et al. [2] emphasize that most of the energy dis-

sipation occurs in a volume element of order 3d , where d  denotes the diameter of an asperity 

contact region. Furthermore the authors note that in order to have a large asperity induced 

contribution to the friction, the excitation frequency caused by the sliding asperities should be 

close to that at which the maximum of the loss factor/tangent (  tan ) curve appears and the 

 tan  should be as large as possible. Correlation of loss factor with the viscoelastic friction 

force is also mentioned, among others, by Hegmon [4], Moore [5], Kummer [6] and Heinrich 

et al. [7]. Lorenz et al. [2] concluded that the viscoelastic or complex modulus E(ω) involved 

in Persson’s [3] hysteresis friction theory should be measured at as large strain (or stress) as 

possible because the strain (or stress) in the vicinity of an asperity contact region, will in gen-

eral be very high and real rubber materials, in particular filled rubbers, exhibit non-linear rhe-

ological properties. The surface roughness generated viscoelastic component of rubber fric-

tion is described qualitatively by Achenbach and Frank [22]. 

4.1.4. Adhesion component of rubber friction 

Adhesion component of rubber friction is an area of real contact related phenomenon. 

It is convenient to express adhesion friction as the frictional shear stress depending, among 

others, on sliding velocity and temperature multiplied with the real area of contact. According 

to Schallamach’s concept [15] the frictional shear stress is due to stretching and debonding of 

rubber molecules. In [13], Koenen at al. found that the apparent coefficient of friction of wip-

er blade sliding on dry glass is proportional to the loss factor (tan(δ)) of the rubber. This find-

ing is in accordance with that of Grosch. In [1], Grosch has pointed out experimentally that 

adhesion is directly related to the viscoelastic properties of the rubber. At the same time, ac-

cording to Le Gal et al.’s theory [14] the adhesive component of rubber friction depends not 

only on the real contact area but also on the sliding velocity, contact pressure and temperature 

dependent shear strength of adhesive contact. Due to the large number of influencing parame-

ters the shear strength of adhesive contact can be determined from measurements only. If the 

sliding velocity is lower than the so called critical one then the shear strength increases with 

increasing sliding velocity. Above the critical sliding velocity the shear strength is practically 

constant. In respect of a given rubber, there is a close correlation between the critical sliding 

velocity and the glass transition temperature (Tg). Generally, it can be stated that lower the 
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glass transition temperature the higher the critical sliding velocity. The works cited above 

show clearly that the rubber formulation (rubber compound recipe) plays critical role in rub-

ber friction. Additionally it is worth to mention that when viscoelastic solid slides on rough 

hard counterpart the contribution to the total friction from the area of real contact (adhesion 

component) is larger while the viscoelastic contribution (hysteresis component) is smaller for 

less rough surface than for more rough surface. In the simplest numerical friction predictions, 

contribution of adhesion to the friction force is modeled using nonzero input coefficient of 

friction. 

4.2. Viscoelastic friction predictions 

The evolution and the current state of viscoelastic friction prediction are discussed in 

depth by Pálfi [16] and Bódai [17]. Consequently only the latest results of analytical and nu-

merical hysteresis friction predictions are summarized here briefly. 

Hysteresis friction theories of Persson [3] (friction theory of randomly rough surfaces) 

and Klüppel and Heinrich [9] are based on the dissipated energy induced by a rigid surface 

being rough on many different length-scales and are given in frequency domain using a Fou-

rier transformation. As an example Fig. 4.2 illustrates a rough surface at which roughness 

occurs on two length-scales. The rough surface being considered usually as self-affine is in-

volved in the theories through the surface roughness spectrum (see Appendix B). Below the 

so-called smallest cut-off wavelength (see Section 4.5.2) the influence of roughness on the 

hysteresis friction is neglected. The interesting length-scales usually range from the millime-

ter to the micron scale. According to these theories and former theoretical and experimental 

works the hysteresis friction depends on the excited rubber volume (volume subjected to de-

formation) and the dissipated energy density. In many cases, the excited rubber volume is 

characterized by a mean surface layer thickness (see Klüppel and Heinrich’s [9] and Lindner 

et al.’s [19] studies). The theory presented by Lindner et al. [19] is similar to that of Klüppel 

and Heinrich [9] but is described in time domain. The constitutive behavior of rubber was 

modeled phenomenologicaly using a three-parameter Standard-solid model while the surface 

roughness effect was taken into account through measured surface profiles. Fig. 4.3 shows a 

Standard-solid model excited by a moving surface profile.  

 

 
Fig. 4.2. Rough surface being rough on two 

length-scales (To get the total energy dissipa-

tion during sliding one needs to sum up the 

contribution from asperity-induced defor-

mations of the rubber on all (relevant) 

length-scales.) [2] 

Fig. 4.3. Standard-solid model excited by a 

moving surface profile as an approximation 

of the real physical hysteresis friction process 

[19] 

In [20], Bui and Ponthot investigate the interaction between a soft rubber asperity and 

its hard counterpart by a two-dimensional finite element model. The analysis is aimed to esti-
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mate the influence of adhesion between surfaces and the energy losses arising from the de-

formation of rubber to the sliding resistance. The authors use a large strain Standard-solid 

model for describing the viscoelastic material behavior of rubber. During the FE contact 

simulations, the magnitude of friction force is computed as the sum of horizontal reaction 

forces of the rubber asperity. However hysteresis losses and their distribution in the rubber are 

not computed directly. 

The contribution of roughness on different length-scales may be involved in FE pre-

diction of hysteresis friction, for example, by assuming that the coefficient of friction belong-

ing to different length-scales are additive. The hysteresis friction predictions of Nettingsmeier 

and Wriggers [21] are based on this assumption. It is postulated that, as a first step, the appar-

ent coefficient of friction should be computed at the smallest length-scale then it should be 

added locally to the contact elements of the superior scale. In other words, the contact prob-

lem at the superior scale is solved by using the coefficient of friction computed at the smallest 

length-scale as an input coefficient of friction at the superior scale. At the same time, in the 

FE model reported by Nettingsmeier and Wriggers [21], only the first term of the Fourier se-

ries of a surface profile i.e. a sine wave was built in. 

Palasantzas and De Hosson [23], in their recent theoretical work dealing with the pre-

diction of hysteresis friction in presence of a liquid layer between a self-affine rough surface 

and a sliding rubber surface, pointed out that with smoothing of the substrate features, which 

are replicated on the rubber body, the apparent coefficient of friction drops very drastically. 

Remarkable apparent coefficients of friction are obtained for the cases when the length-scale 

below which the roughness is smoothed out is small. Based on this study it can be concluded 

that any liquid layer or layer of contaminants having smoothing effect with respect to the sur-

face roughness can modify drastically the value of the viscoelastic friction predicted by the 

theoretical model of Persson [3]. As found by Lorenz et al. [2] on contaminated road surfaces 

the smallest relevant length-scale of the roughness may be determined by the nature of the 

contamination. In [2], where the friction force acting on a rubber block sliding on a concrete 

surface was investigated both experimentally and theoretically, the smallest relevant wave-

length used in the hysteresis friction theory was 0.2 m  which was consistent with the size of 

the (smallest) wear particles which were in the order of magnitude of a few micrometers. 

In [24], Westermann et al. performed an experimental study to evaluate the predictive 

capability of the models of Persson [3] and Klüppel/Heinrich [9]. The apparent coefficient of 

friction of rubber/road asphalt contact pairs was measured under dry conditions and at a nom-

inal contact pressure of 0.4 MPa. The measured data were then compared with the predictions 

of the two friction theories. The main conclusion was that, at a sliding velocity above 10 

mm/s, both models overestimate the measured friction force. As a possible cause, the flash 

temperature effect being not included in the models was mentioned. 

In a very recent contribution of Scaraggi and Persson [25], rolling friction of a smooth 

hard cylinder rolling on a flat surface of a linear viscoelastic solid is studied using a numerical 

approach and an analytical theory. For the unfilled rubber, the authors found perfect agree-

ment in respect of the two theories while some small difference was pointed out for the filled 

rubber. 

In the work of Nguyen et al. [26] the hysteresis contributions to friction arising from 

localized viscoelastic dissipation at the nano-asperity scale are studied quantitatively. The 

manufacturing technique adopted by the authors makes it possible to prepare surfaces covered 

with various densities of spherical asperities with well-defined sizes and height distribution. It 

is noted that to some extent, such surfaces are reminiscent of the model surfaces considered in 

the rough contact theory by Greenwood and Williamson [27], in which asperities with spheri-

cal summits are assumed to be statistically distributed along the vertical direction. (For addi-

tional details on the GW theory see Section 4.5.2.) The authors emphasize that such patterned 
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surfaces are of particular interest for rubber friction studies because they offer the possibility 

to study the effect of roughness experimentally at a given length-scale. An order of magnitude 

agreement is obtained between experimental and theoretical results (the theory overestimated 

the hysteresis friction significantly) which indicates that the calculation of viscoelastic dissi-

pation within the contact is very sensitive to the geometrical details of the rigid asperities. 

(There is a huge difference in the strain rate at the periphery and at the center of an asperity 

contact region.) As it is noted by Nguyen et al. [26] this result highlights the problem of the 

accuracy of the current theoretical predictions of hysteresis friction in the much more complex 

case of statistically rough surfaces. According to the knowledge of authors it is likely that the 

associated spectral description of the surfaces makes only an order-of-magnitude estimate of 

the hysteresis friction force possible. It is also mentioned that their contact model, as others, is 

based on a small strain linear viscoelastic description of the rubber behavior. The final con-

clusion of this study is that the effect of large strains should be taken into consideration in the 

different friction theories.  

4.3. Finite element modeling of viscoelastic friction 

FE-based friction predictions presented in this chapter has been carried out by the au-

thor of the thesis jointly with others (PhD students, researchers). The main aim of this chapter 

is to summarize briefly the most important findings of the related numerical studies. Instead 

of modeling viscoelastic material behavior, as often made in the literature, in simplified form 

viscoelastic solids characterized by very large number of relaxation times are used here. This 

approach allowed us to predict viscoelastic friction component quantitatively. The relaxation 

time and the importance of the large number of relaxation times are explained in Appendix A. 

In majority of the simulations, material properties of carbon black filled ethylene-propylene-

diene-monomer (EPDM) rubber (see Appendix C) were used because EPDM is a frequently 

used material for reciprocating seals being built, among others, in piston rod sealings of real 

hydraulic brake cylinders. Contrary to the surface roughness spectral density-based theoretical 

predictions the elaborated FE technique makes the accurate modeling of asperity geometry 

and real rubber behavior (very large number of relaxation times, hyperelasticity, strongly 

temperature dependent material properties) possible on several length-scales. At the same 

time it must also be emphasized that all length-scales of the surface micro topography con-

tribute to the friction. However they contribute to the friction not equally because both the 

excitation frequency (=v/, where v is the relative tangential velocity between the rubber 

and the harder, rough counter surface, and  is the wavelength of a given roughness compo-

nent) and the excited volume are different length-scale by length-scale. Due to the huge CPU 

time and memory demand, however, it is practically impossible to consider all length-scales 

of surface roughness (from micro- to nano-level) in a single FE model. If the surface rough-

ness is modeled in form of a single sine wave, then the roughness exists on a single length-

scale. Superposition of two sine waves having given amplitude, wavelength and phase posi-

tion results in a surface roughness model having roughness on two length-scales, and so on. 

Finally, it must be noted that penetration of rubber into valleys of the harder, rough counter 

surface may be induced by both the applied normal load and the adhesion (adhesive forces). 

The latter, however, is not taken into consideration in the simulations presented here. The 

flowchart of the finite element-based viscoelastic (hysteresis) friction predictions can be seen 

in Fig. 4.4. 

In order to model viscoelastic behavior in FE environment spring-dashpot models are 

widely used because the most commercial FE software packages offer built-in fitting algo-

rithms for parameter identification and graphical user interface for the specification of model 

parameters. However, the quality of fitting is not presented and analyzed in most cases. In 

many cases, model parameters are determined from a fit to the storage modulus master curve 
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without investigating the quality of fitting with respect to loss modulus and loss factor (loss 

tangent). However, as it will be presented in this section and in Appendix C, in case of viscoe-

lastic friction predictions, it is of primary importance to reach good agreement for both stor-

age modulus and loss modulus (loss factor) master curve, because both the stiffness and inter-

nal dissipation of rubber-like materials influence the hysteresis component of friction. At mi-

cro-level, where the hysteresis friction is due to the real micro-topography (surface roughness) 

the contact problem has to be modeled at asperity level as it is reported by Persson [3] and 

Klüppel and Heinrich [9]. By using FE technique, in addition to the material model of the 

rubber a surface model replacing the real, measured rough surface is also needed. As a possi-

bility the micro-topography measured by AFM, contact profilometer (diamond stylus pro-

filometer) or optical technique can be replaced, for instance, with spline surface fitted on the 

measurement results. As an alternative, the measured micro-topography can be decomposed 

into harmonic components by using the discrete Fourier transformation. This approach allows 

engineers to estimate the contribution of each component to the viscoelastic friction. 

 

Fig. 4.4. Flowchart of the finite element-based viscoelastic friction prediction [12] 

4.3.1. Two-dimensional single asperity contact model for the 
simulation of asperity-asperity interaction: Qualitative analysis 

Here the asperity-asperity interaction is simulated qualitatively using a two-

dimensional plane strain FE model (see Fig. 4.5) in which both the stationary and the moving 

asperities are modeled by cylinders. Notwithstanding that the radius of cylinders is greater 

than the radius of curvature of typical asperities it is believed that the FE simulations per-

formed by Soós and Goda [28] are able to capture the essential characteristics of the asperity-

asperity interaction. For the sake of clarity it must also be noted that such a single asperity 

contact model does not take into consideration the interaction between the asperities located 

on the same surface. The interfacial adhesion is neglected and the material behavior is mod-

eled by using the simplest description of rubber rheology i.e. the small strain linear viscoelas-

tic Standard-solid model (see Appendix A) with glassy modulus of 7.5 MPa and relaxed mod-

ulus of 1.5 MPa. Contrary to the broad relaxation spectrum of real rubber-like materials the 

material model used has a single relaxation time ( s31058.5  ) only. These material model 

parameters result in practically zero loss modulus (E”) and loss factor ( tan ) at excitation 

(angular) frequencies lower than 0.1 rad/s or higher than 510  rad/s. The peak value of loss 

modulus and loss factor curves appears at an excitation (angular) frequency of about 100 

rad/s, which corresponds to sliding speed of smmv /8  ( Rvf 2 , where f denotes the 
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excitation cyclic frequency in [Hz]). The simulations have been performed under approxi-

mately constant mean normal force as well as constant overlap (s =0.0378 mm = const). In the 

former case, the actual magnitude of overlap was determined by the fact that the mean normal 

force ( yF ) to be kept approximately constant during the simulations independently of sliding 

speed. To compute the mean normal force reaction forces in y-direction were averaged over a 

cycle of contact. 

 
Fig. 4.5. Two dimensional (plane strain) FE model. Asperities of contacting rough surfaces 

are replaced with cylinders having radius of R=0.25 mm and the steel asperity is modeled as a 

perfectly rigid body with velocity varied between 0.1 mm/s and 100 mm/s. ux and uy denote 

displacement in x- and y-direction. [28] 

During the mechanical interaction, work is done as the steel cylinder moves forward. This 

work is required to deform the rubber in front of the hard asperity. At the same time elastic 

energy is recovered from the rear. Since rubber has viscoelastic material behavior it exhibits 

hysteresis and thus one portion of the work done is lost. If the interfacial adhesion and the 

friction at steel/rubber interface caused by physical processes other than adhesion are neglect-

ed (the input coefficient of friction was set to 0), hysteresis is the only source of frictional 

work. If the rubber were ideally elastic the elastic energy recovered would be identical the 

work done to deform rubber and no energy would be lost. In this case, the frictional work 

would be zero. Fig. 4.6 shows the normal force yF  (reaction force in y-direction) and tangen-

tial force xF  (reaction force in x-direction) as a function of the position of steel asperity. At 

smaller sliding speeds rubber is less stiff (excitation frequency dependent material behavior of 

rubber) thus to obtain approximately the same mean contact normal force a larger overlap is 

required. By increasing the sliding speed the elastic modulus of rubber increases and the over-

lap - to obtain approximately the same mean force – decreases due to the increasing excitation 

frequency. In Fig. 4.6a, each curve has the same tendency, that is, the absolute value of the 

force increases as the steel asperity moves toward the center of rubber one, reaches a maxi-

mum and then falls to zero. As it can be seen, both at small and high sliding speeds the 

curves, as a good approximation, are symmetrical. The reason for this is that the rubber be-

haves elastically at very low (rubbery region) and very high excitation frequencies (glassy 

region). At sliding speeds between the rubbery and the glassy region (for example at 

2.5mm/s) the curves of normal force are asymmetrical. The force reaches its maximum before 

the centers of asperities would be in the same horizontal position (x=0). When rubber behaves 

elastically the tangential force curves (see Fig. 4.6b) resemble a sine wave. In these cases, the 

average value of tangential force, over a cycle of contact, is zero. In the viscoelastic region 

(for example at v=2.5mm/s) force curves lose their sine wave form. Therefore, the average 
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tangential force and hereby the apparent friction force will be zero no longer. Here the appar-

ent friction force is defined as the mean value of the tangential force over a cycle of contact. 

(a) 

(b) 

Fig. 4.6. (a) Normal force yF  and (b) tangential force xF  as a function of horizontal position 

of steel asperity at different sliding speeds (approximately constant mean normal force) [28] 

Figs. 4.7a-b show similar tendencies for sliding speed dependency of the average apparent 

friction force and the apparent coefficient of friction. Amount of energy loss and hence mag-

nitude of the apparent friction force and apparent coefficient of friction are, as anticipated, 

very small at low ( smmv /1.0 ) and high ( smmv /103 ) sliding speeds due to the quasi-

elastic material behavior. Between these speed domains the rubber used shows rate-dependent 

material behavior (viscoelastic region). As it can be seen in Fig. 4.7a the energy loss and the 

apparent friction force are much greater in case of constant overlap than in case of approxi-

mately constant mean normal force. At the same time, the difference in apparent coefficient of 

friction is somewhat smaller. The cause of this is that the apparent coefficient of friction is 

defined, in conventional sense, as yx FF / . In case of constant overlap, both the tangential 

and the normal force increase with increasing sliding speed while, in case of approximately 

constant mean normal force, the increasing sliding speed has an influence on the magnitude of 

tangential force only. Since the rubber becomes stiffer with increasing sliding speed, the mag-
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nitude of overlap and the size of contact area have to vary in case of approximately constant 

mean normal force. 

 
(a) 

 
(b) 

Fig. 4.7. Variation of (a) the average apparent friction force and (b) the apparent coefficient of 

friction as a function of sliding speed [28] 

4.3.2. Two-dimensional single asperity contact model for the 
simulation of hard, ideally smooth asperity sliding on smooth rubber 
plane 

Here the asperity sliding on ideally smooth rubber plane (thickness = 2 mm) has a ra-

dius of 0.25 mm (see Fig. 4.8a). The asperity is squeezed against an EPDM rubber plane (see 

Appendix C) with prescribed vertical displacement of 0.042 mm which is kept constant dur-

ing the simulation. Sliding speed of the asperity ranges from 6105   to 7105   mm/s. 

mm

mm

m
m

mm

mm

m
m

 

 
(a) (b) 

Fig. 4.8. (a) Hard smooth asperity sliding on ideally smooth rubber plane and (b) comparison 

of computed apparent coefficient of friction and loss factor (tangent) measured by DMA as a 

function of excitation frequency. As it is represented schematically the bottom of the rubber 

plane is fixed. [29] 

FE analysis has been performed under plane strain condition and by using a 15-term general-

ized Maxwell-model connected parallel to a nonlinear spring (glassy modulus = 2220 MPa, 

relaxed modulus = 12.3 MPa). Parameters of the material model were determined from a fit to 

measured storage modulus master curve and, together with all details of the FE models, can 

be found in the works of Békési and Goda [29, 30]. Fig. 4.8b shows the apparent coefficient 
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of friction vs. excitation frequency curve and its comparison with the measured loss factor 

( tan ) vs. excitation frequency curve. The excitation frequency is defined as sliding speed 

divided by two times the asperity radius while the apparent coefficient of friction is computed 

based on the system of reaction forces. As the input real coefficient of friction was set to zero, 

Fig. 4.8b shows the viscoelastic component of rubber friction. As expected both the magni-

tude and the variation of the apparent coefficient of friction are in good agreement with those 

of loss factor (loss tangent). 

4.3.3. Two-dimensional single asperity contact models for the 
simulation of hard, rough asperity sliding on smooth rubber plane 

Main aim of this subsection is to study the effect of multi-scale nature of engineering 

surfaces on viscoelastic friction. The FE model used has been constructed based on the study 

by Archard [31]. Archard’s multi-scale surfaces are composed of rough hemispherical asperi-

ties where the larger hemispherical asperities are covered with smaller ones which are also 

covered with even smaller hemispherical asperities, and so on. In Archard’s two-scale model, 

it is assumed that the load on each fine scale asperity is equal to the ratio of the load supported 

by a small portion (an annulus of radius r with width dr) of the coarser scale contact area and 

the number of fine scale asperities within the investigated portion of the coarser scale contact 

area. Additionally, fine scale asperity peaks are considered to displace independently of the 

coarser scale deformation and the deformation of the neighboring asperities. In FE simula-

tions of Békési and Goda [29, 30], a two-scale surface has been introduced which consists of 

smaller cylindrical asperities with radius of 0.03 mm located on top of a larger one with radius 

of 0.25 mm (see Fig. 4.9). The distance between two neighboring fine scale asperities is 0.06 

mm. All the other characteristics of the FE model are the same as in the problem when a cy-

lindrical asperity with radius of 0.25 mm slides on an ideally smooth rubber plane (see Sec-

tion 4.3.2). In contrast with Archard’s model both the effect of fine scale asperities on the 

stress distribution and the coarser scale deformation together with the interaction between 

neighboring fine scale asperities are taken into account in the FE model. As it can be seen in 

Fig. 4.10a the contact area is discontinuous because the rubber is unable to fill out the valleys 

of the rough surface completely under the conditions studied here. Finally, comparison of 

viscoelastic friction generated by the one- (smooth asperity) and the two-scale surface (rough 

asperity) can be seen in Fig. 4.10b. FE results show that the two-scale surface generates about 

two times higher apparent coefficient of friction than the one-scale surface. Large contribution 

of small or fine scale asperities to viscoelastic friction may be explained by the higher strain 

rates. 

Two-dimensional FE models are presented by Pálfi et al. [32] in order to predict the 

hysteresis rubber friction generated by a sinusoidal hard asperity with multi-scale nature. The 

characteristic wavelengths and amplitudes are determined from surface roughness measure-

ments (measurements using diamond stylus profilometer and atomic force microscope) of the 

plunger of a TRW brake cylinder using 3D parameter-based technique, slicing method and 

surface roughness spectrum analysis (see Appendix B). During operation this plunger is in 

sliding contact with rubber seals in presence of brake fluid. In order to describe large strain 

viscoelastic material behavior of the EPDM rubber filled with carbon black, two-parameter 

Mooney-Rivlin material law combined with 40-term generalized Maxwell-model has been 

used. Parameters of the material model have been determined from a fit to the storage modu-

lus master curve using the software ViscoData [33]. Then the Maxwell-parameters were man-

ually adjusted to the tan(δ) master curve, using a trial-and-error technique, to improve the 

agreement between the measured and the simulated tan(δ) curve (see Appendix C). Tempera-

ture-dependency of the material behavior is taken into consideration by constructing master 

curves at temperature of -50, 25, and 150ºC. In order to study the effect of multi-scale nature 
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of engineering surfaces on viscoelastic friction three different roughness models (one-, two- 

and three-scale surfaces) were constructed and studied. 

(a) 

(b) 

Fig. 4.9. (a) Hard, rough asperity modeled as two-scale surface sliding on a smooth rubber 

plane (EPDM rubber with unknown chemical composition from TRW Automotive, see Ap-

pendix C) and (b) the variation of viscoelastic (apparent) coefficient of friction computed at 

different sliding velocities. In case of “smooth” surface, there are no fine scale asperities on 

top of the coarse scale asperity. [29] 

  
(a) (b) 

Fig. 4.10. (a) Roughness models studied and (b) the distribution of normal stress component 

σy (contact pressure distribution) [32] 

In the first model, the counter-surface was composed of a single sinusoidal asperity (referred 

as ‘A’) with wavelength of 200 μm and amplitude of 1 μm (amplitude/wavelength= 0.005) 

and without smaller length-scale asperities. In the second model, the sine wave with a wave-

length of 20 μm and amplitude of 0.1 μm (amplitude/wavelength= 0.005) was superimposed 

on the asperity ‘A’ (referred as ‘B’). Finally, in the third model, a sine wave with a wave-
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length of 2 μm and amplitude of 0.01 μm (amplitude/wavelength= 0.005) was superimposed 

on counter-surface ‘B’ (referred as ‘C’). Surfaces “A”, “B” and “C” can be seen in Fig. 4.10a. 

In all the FE simulations presented here, the counter-surface is pressed against a rubber block 

with constant penetration depth of 0.002 mm, and moves with a sliding speed of 0.1 mm/s. 

Like in the former cases bottom of the rubber block was fixed and the input real coefficient of 

friction was set to zero. In Fig. 4.10b, it can be seen that the rubber is not able to fill out the 

valleys of the rough counter-surface. The real area of contact becomes smaller and smaller as 

the number of length-scales involved in the roughness model increases. This finding is in ac-

cordance with the prediction of Archard’s [31] as well as Persson’s [3] model. The ratios of 

the real (Ar) and the nominal contact area (An) and the predicted viscoelastic (apparent) coef-

ficient of friction are depicted in Fig. 4.11a. The apparent coefficient of friction was calculat-

ed as the ratio of tangential and normal reaction force. At room temperature the normal (verti-

cal) reaction force was Fn= 0.0131, 0.0135 and 0.0136 N for surfaces ‘A’, ‘B’ and ‘C’. The 

slight difference in normal force is due to the fact that FE simulations are performed with 

constant penetration depth. These results prove that the real area of contact is overestimated 

while the viscoelastic (apparent) coefficient of friction is underestimated if small scale com-

ponents of surface roughness are neglected i.e. not involved in FE models. 

  
(a) (b) 

Fig. 4.11. (a) Ratios of real and nominal contact area and the predicted viscoelastic (apparent) 

coefficients of friction for surface ‘A’, ‘B’ and ‘C’ (A= 0.0032, B= 0.0066, C= 0.0077) at 

room temperature as well as (b) predicted apparent coefficient of friction vs. time curves at 

three different temperatures for surface ‘A’ [32] 

In order to test the effect of temperature on viscoelastic friction FE simulations have been 

performed with surface ‘A’. The apparent coefficient of friction vs. time curves can be seen in 

Fig. 4.11b. The results show that, in case of 150°C, the apparent coefficient of friction pre-

dicted is slightly higher than at 25°C. However, at the lowest temperature, the apparent coef-

ficient of friction is more than three times higher than at room temperature. This can be ex-

plained by the fact that, at the excitation frequency induced by surface ‘A’, the loss factor is 

much higher at -50°C than at higher temperatures (low temperature shifts master curves to-

wards lower frequencies), while the excited volume is the same. This proves that the viscoe-

lastic friction component may be particularly important at low temperatures. 

4.3.4. Two-dimensional FE model for the simulation of hard 
sinusoidal one-scale surface sliding on smooth rubber plane 

In one of the works of Békési and Goda [29], the viscoelastic friction generated by a si-

nusoidal hard surface having amplitude of A=1 m  and wavelength of =200 m  (see Fig. 

4.12a) is studied in 2D under plane strain condition. Amplitude and wavelength of the surface 
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were extracted from surface roughness measurements of the brake plunger of TRW having 

apparently smooth surface. As the input coefficient of friction was set to zero the friction pre-

dicted is due to hysteresis. FE simulations have been performed at a sliding velocity of 1 

mm/s and under nominal contact pressure of 5, 0.5 and 0.05 MPa. The hard surface is 

squeezed against an EPDM rubber plane with unknown chemical composition (see Appendix 

C). Parameters of the 15-term viscoelastic model were determined from a fit to measured re-

laxation modulus master curve. The Mooney-Rivlin material model parameters used were the 

followings: C10=320 MPa, C01=80 MPa. Fig. 4.12b shows the apparent coefficient of friction 

as a function of nominal contact pressure. It is worth to mention that at the highest pressure 

the rubber fills out completely the valleys of the hard surface. Although the apparent coeffi-

cient of friction increases with increasing pressure even its highest value is lower than 0.0025. 

The reason why the apparent coefficient of friction is very low is that the ratio between the 

amplitude and the wavelength of the surface roughness component studied (A/=0.005) and 

the excited rubber volume are very small. Békési and Goda [29] worked both with and with-

out input real coefficient of friction. Firstly, the input real coefficient of friction was set to 0.1 

and the computations were carried out at sliding velocity of 10 mm/s and under nominal con-

tact pressure of 0.2 MPa. Then the input real coefficient of friction was set to zero and the 

computations were repeated. With nonzero input real coefficient of friction the mean apparent 

coefficient of friction is 0.1023 while its value without input real coefficient of friction is 

0.0028. The difference is about the input real coefficient of friction of =0.1. 
 

 

 

 
(a) (b) 

Fig. 4.12. (a) Sinusoidal hard surface with amplitude of 1 m  and wavelength of 200 m  

sliding on smooth rubber plane, and (b) the viscoelastic (apparent) coefficient of friction pre-

dicted. As it is represented schematically bottom of rubber plane is fixed. [29] 

The effect of wavelength and amplitude was studied by Pálfi et al. [32]. Two-

dimensional FE models have been presented in order to predict the hysteresis rubber friction 

generated by hard sinusoidal surface with varying amplitude and wavelength. The rubber 

block with a height of 2 mm and width of 4 mm was made of EPDM filled with carbon black 

(TRW Automotive, see Appendix C) and modeled with 4000, 2D plain strain finite elements 

where the nodes on the bottom of the rubber block were fixed. Between the contacting surfac-

es there was no prescribed real coefficient of friction. Parameters of the material model (two-

parameter Mooney-Rivlin model (see Appendix A.3) combined with 40-term generalized 

Maxwell-model) have been determined from a fit to the storage modulus master curve using 

the software ViscoData [33]. Then the Maxwell-parameters were manually adjusted to the 

tan(δ) master curve, using a trial-and-error technique, to improve the agreement between the 

measured and the simulated tan(δ) curve (see Appendix C). The first asperity, referred as 

1x200, has a wavelength of λ=200 μm and amplitude of A=1 μm (A/=0.005). Then it was 

replaced with another, referred as 2x200, that had a wavelength of 200 μm and an amplitude 

of 2 μm (A/=0.01). Finally a sinusoidal surface with a wavelength of 400 μm and amplitude 
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of 1 μm, referred as 1x400, was studied (A/=0.0025). The sliding speed was v=1 mm/s while 

the nominal contact pressure was 0.5 MPa. The calculated values of the apparent coefficient 

of friction as a function of time can be seen in Fig. 4.13. As it can be seen the larger amplitude 

(A=2 μm) produces about 5 times higher viscoelastic friction with the same wavelength of 

200 μm. This proves that sinusoidal surfaces generating higher viscoelastic friction are char-

acterized at a given wavelength by higher amplitude per wavelength value. 

 
Fig. 4.13. Calculated apparent friction vs. time curves in case of different amplitudes and 

wavelengths (COF denotes the apparent coefficient of friction computed). The apparent coef-

ficient of friction is calculated as the ratio of the total horizontal and vertical reaction force. 

[32] 

4.3.5. Two-dimensional FE model for the simulation of hard, multi-
scale sinusoidal surface sliding on smooth rubber plane 

Like in the study of Wriggers and Reinelt [34] real surface roughness is approximated 

here by a superposition of sine waves with different amplitudes and wavelengths (multi-scale 

model). Wriggers and Reinelt assumed that the different (length-) scales of surface roughness 

can be separated when calculating viscoelastic friction. The smaller scale roughness generated 

viscoelastic coefficient of friction is used as input coefficient of friction at the next larger 

scale. The proposed technique used scale by scale makes it possible to solve the problem of 

scale transition (interaction of scales). In [34], an abrasive paper surface being in frictional 

contact with an elastomer counterpart was modeled through the superposition of three as well 

as four sine waves (amplitudes of sine waves were 15, 6, 3, and 2 m  while the correspond-

ing wavelengths were 180, 78, 31, and 21 m ). The amplitude per wavelength values of the 

harmonic components were 0.083, 0.077, 0.097 and 0.095, respectively. Although approxima-

tion of surface roughness is similar the viscoelastic solid used is drastically different from that 

of Pálfi et al. [35]. In [34], a very simple viscoelastic solid characterized by 6 relaxation times 

was used while, in Pálfi et al. [35], a real viscoelastic solid characterized by 40 relaxation 

times is studied. Consequently FE simulation reported by Wriggers and Reinelt [34] can be 

considered as a qualitative analysis for the viscoelastic friction. (For additional details on the 

importance of number of relaxation times see Appendix C.) 

In order to examine the hysteresis portion of the coefficient of friction when smooth 

rubber block (carbon black filled EPDM rubber of TRW, see Appendix C) slides on a hard, 

rough surface, two-dimensional FE models were constructed by Pálfi et al. [35]. The micro-

scopic surface roughness of the hard counter surface was modeled by two different sine waves 

(counter surface A and B) having a wavelength of 100 µm (amplitude= 4 µm) and 11.11 µm 

(amplitude= 1 µm) and by their combination (counter surface A+B) where the counter surface 

B was superimposed on counter surface A. Consequently the amplitude per wavelength ratio 

for surface A and B is 0.04 and 0.09, respectively. Fig. 4.14 shows the three different surface 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



28 

roughness models used in [35]. In order to emphasize the difference among the models they 

were depicted in a single graph by using different scale in the horizontal and vertical direc-

tions. The sliding speed was considered to be 10 mm/s. With the help of surface roughness 

spectrum analysis of a measured rough surface, one can determine the wavelengths and am-

plitudes of its harmonic components. Using the harmonic components of the measured rough 

surface one by one and their combination one can examine the contribution of each compo-

nent of the surface roughness (from micro- to nano-level) to the hysteresis friction. Due to the 

periodicity in the surface roughness it is sufficient to model a small, repetitive segment of the 

rubber. Naturally, for such a small model the condition of repetition has to be applied as 

boundary condition. Due to the repetitive symmetry the length of the 2D plane strain FE mod-

el in sliding direction was the wavelength of the corresponding harmonic component of the 

rough surface. According to this the length of the FE models for counter surface A, B and 

A+B was 100 µm, 11.11 µm, and 100 µm, respectively. The length of the rigid counter sur-

face is larger than the wavelength of the irregularity. Its length was specified to insure contin-

uous contact with the rubber during the simulation. It means that the rigid counter surface is 

composed of identical irregularities having a wavelength of 100 or 11.11 µm, thus many ir-

regularities make a contact with the rubber during the simulation. The modeled rubber seg-

ment had a height of 500 µm to ensure that the load application zone (upper part in Fig. 4.15), 

which was defined to remain perfectly horizontal during the simulation, may not be able to 

affect the contact zone (lower part in Fig. 4.15). In the contact zone between the rubber and 

the rigid counterpart, the FE mesh consisted of elements having a size of 0.25 µm in x-

direction. The element size of 0.25 µm was obtained from sensitivity analysis. The rubber part 

was considered to obey the large strain linear viscoelastic material behavior and discretized by 

QUAD80 elements [36], while the rough counter surface was modeled as an analytical rigid 

surface. The sliding contact between the rubber and the counter surface was modeled as fol-

lows. As a first step the rubber segment was squeezed with a pressure of p=1 MPa against the 

counter surface. During the indentation the relative tangential velocity between contacting 

bodies was zero. At the end of the loading the uniform acceleration phase of the rubber block 

began. It took up to sliding speed of 10 mm/s. During the acceleration phase the counter sur-

face was fixed in vertical direction and the nodes on the lateral walls of the rubber were 

forced to move identically. The phase of uniform horizontal motion with constant speed of 10 

mm/s began after the acceleration phase had finished. In the course of steps 2 and 3 (accelera-

tion and motion with constant speed) nodes on the lateral walls moved horizontally in the 

same way (constraint equations have been defined for this purpose), in order to model a finite 

rubber sample being composed of identical sections, while pressure was applied on the top 

wall (see Fig. 4.15). Furthermore the same condition has been imposed for the vertical dis-

placement of the nodes at both lateral walls. Fig. 4.15 shows the deformed shape of the FE 

model, according to the boundary conditions discussed above. The real rubber rheology was 

taken into consideration through 40-term generalized Maxwell-models connected parallel 

with two-parameter Mooney-Rivlin model (see Appendix C). Like in all the cases presented 

in this thesis FE models were constructed and solved in MSC.Marc. Since the magnitude of 

the apparent friction force is sum of the horizontal component of the reaction forces the ap-

parent coefficient of friction (µForce) was defined as the ratio of the total horizontal and verti-

cal reaction force. 

Table 4.1 shows the apparent coefficients of friction at three different temperatures 

computed by viscoelastic material models with different parameters and zero input real coef-

ficient of friction at the contact interface (µinterface=0). The apparent coefficient of friction 

(COF) computed for counter surface A is the highest at T=25ºC while it is the lowest at -50ºC. 

It first rises as the temperature increases, then, having reached a peak value, it begins to fall. 

Similar tendency can be observed for counter surface B, however, in case of material model 
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fitted to loss tangent, the highest COF can be observed at 150ºC. In case of counter surface 

A+B, the viscoelastic friction for all the temperatures is greater than at counter surfaces A or 

B separately. Its maximum appeared at T=25ºC while at -50ºC nearly identical hysteresis 

COF can be computed. At T=25ºC and 150ºC the highest COF is generated at counter surface 

A+B, followed by counter surface B and then by counter surface A. The higher apparent coef-

ficients of friction obtained for surface B can be explained by the higher amplitude per wave-

length ratio. 

 

 

Fig. 4.14. Surface roughness models used in [35] 

Fig. 4.15. Deformed shape of the FE 

model and the applied boundary condi-

tions (u – displacement in x-direction; v – 

displacement in y-direction) [35] 

 
Table 4.1. Average steady-state apparent coefficient of friction and the average penetration 

depth at different temperatures in case of 40-term viscoelastic models (µinterface=0) [35] 
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4.3.6. Three-dimensional FE model for the simulation of hard, 
apparently smooth surface sliding on smooth rubber plane 

In order to examine the effect of sliding speed and temperature on the surface rough-

ness generated viscoelastic (hysteresis) friction a three-dimensional FE model has been con-

structed by Pálfi et al. [32, 37]. The hard counter surface modeled the measured micro-

topography of the plunger of a brake cylinder (TRW Automotive, Spain) through a NURBS 

surface. The NURBS surface was fit to data of surface roughness measurements (scanned 

area= 1x1 mm
2
, resolution= 1 μm, see Fig. 4.16). 

 

 
(a) (b) 

Fig. 4.16. (a) Surface topography of the brake plunger of TRW Automotive measured by di-

amond stylus profilometer and (b) the three-dimensional FE model. The rigid counter surface 

moves in negative z-direction. [32] 

For the sake of simplicity and to avoid unmanageably large amount of nodes and computation 

time smaller length-scales of measured surface roughness were not involved in the FE model. 

According to this the NURBS surface was fit to 100 x 100 measured points only where the 

lateral distance between two neighboring points was 10 μm. To reduce the CPU time only a 

small rubber (EPDM rubber of TRW Automotive, see Appendix C) segment (30 μm x 500 

μm x 1000 μm) has been modeled (see Fig. 4.16b). For discretization eight-noded incom-

pressible Hermann type elements were used [36]. Lateral walls of the rubber segment that are 

parallel to the x-y plane were fixed in direction z. Furthermore nodes on the upper plane of 

the rubber segment were constrained in x-, y- and z-direction. As it can be seen in Fig. 4.16b 

the modeled rubber segment is high enough (1000 µm) thus the constraint conditions used on 

the top of the rubber segment practically does not influence the solution of the contact prob-

lem. The average element size in the contact zone was 2 µm. The sliding contact between the 

counter surface and the rubber was modeled as follows. As a first step the rigid surface was 

pressed with a pressure of p=1 MPa against the rubber using incremental technique mean-

while the relative tangential velocity between contacting bodies was zero. Then the rough 

surface was moved in negative z-direction with prescribed sliding speed (v=1, 10 and 100 

mm/s). Fig. 4.17 shows the contact state and the distribution of normal stress component σy at 

three different temperatures. The areas in contact are visualized by red color while the purple 

area indicates the non-contacting part of the nominal contact area. The figure shows clearly 

that as the temperature rises the real area of contact becomes larger and larger. 
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Fig. 4.17. Contact states and distributions of normal stress component σy before sliding and at 

temperatures of (a) T=-50ºC, (b) T=25ºC, and (c) T=150ºC. Rubber behavior is modeled by 

two-parameter Mooney-Rivlin model connected parallel with 40-term generalized Maxwell-

model. Model parameters have been determined from a fit to loss tangent master curve. [32] 

Variation of the ratio of real and nominal contact area during sliding and at different sliding 

speeds and temperatures is shown in Fig. 4.18, while Fig. 4.19 depicts the variation of viscoe-

lastic (apparent) coefficient of friction at three different temperatures and sliding velocities. 

Based on Fig. 4.18 it can be concluded that at constant temperature the ratio of real and nomi-

nal contact area slightly decreases as the sliding speed increases because the rubber becomes 

stiffer and stiffer. At the same time at constant sliding speed the rough surface can penetrate 

deeper and deeper in the rubber as the temperature raises, resulting in increasing real area of 

contact. This is due to the fact that the modulus of rubber decreases as the temperature in-

creases. The highest viscoelastic (apparent) coefficient of friction is about 0.006 which is ob-

tained at T=-50ºC and v=1 mm/s. This proves that the viscoelastic friction component may be 

particularly important at low temperatures. 
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(a) (a) 

(b) (b) 

(c) (c) 

Fig. 4.18. Ratio of real ( rA ) and nominal 

contact area ( nA ) at three different tempera-

tures and sliding speeds: (a) v=1 mm/s, (b) 

v=10 mm/s, and (c) v=100 mm/s [32] 

Fig. 4.19. Viscoelastic (apparent) coefficient 

of friction computed at three different tem-

peratures and sliding speeds: (a) v=1 mm/s, 

(b) v=10 mm/s, and (c) v=100 mm/s [32] 

4.3.7. Three-dimensional FE modeling of viscoelastic friction at 
macro-scale 

As a first step the influence of sliding speed and temperature on the viscoelastic friction for a 

smooth, reciprocating steel bearing ball with diameter of 2 mm sliding on a smooth EPDM 

(TRW Automotive, see Appendix C) rubber plate (10 mm × 4 mm × 2 mm) is investigated 

numerically by Pálfi et al. [38]. The ball was forced to perform reciprocating motion with an 

amplitude of A = 0.3 mm at different, sinusoidally varying speeds through six cycles. The 

normal force was Fn = 100 mN while the peak values of the sinusoidally varying sliding 

speeds were vmax = 0.01, 0.1, 1, 10, and 100 mm/s. Figs. 4.20 and 4.21 show the FE model as 

well as the displacement control curve of the ball. The time and temperature dependent mate-

rial behavior of the rubber is modeled by 15-term and a 40-term generalized Maxwell-models 

connected parallel with a two-parameter Mooney-Rivlin model. One part of the material mod-

els were constructed by fitting to storage modulus master curves determined by DMTA meas-
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urements and pertaining to temperature of –50, +25 and +150°C, respectively. The rest of the 

material models were originated from the former ones through manual modification of the 

model parameters in order to describe the measured loss factor master curve more accurately. 

As it can be seen in Appendix C such material models cannot describe the storage modulus 

and the loss factor master curve with the same accuracy within the entire frequency range, 

therefore care must be taken at what excitation frequency and at what temperature the materi-

al model is used. 

 

 
 

Fig. 4.20. FE model of a steel ball sliding on a 

rubber plate (only half of the rubber plate is 

modeled due to the symmetry) [38] 

Fig. 4.21. x coordinate of the moving ball in 

function of time (vmax = 1 mm/s) [38] 

The FE model was built and solved in MSC.MARC [36]. The rubber plate was discretized by 

using incompressible elements, whereas the steel ball was modeled as an ideally rigid compo-

nent. As due to the symmetry only half of the rubber plate was modeled the nodes in the 

symmetry plane were fixed in z-direction (Fig. 4.20). The bottom of the rubber plate was 

fixed, i.e. the nodes on this plane were constrained in x-, y- and z-direction. The simulation 

was realized as follows. As a first step the steel ball was pressed downwards (in negative y-

direction) into the rubber plate with the force specified by using incremental technique. After 

the load reached its final value the ball was drawn horizontally (in negative x-direction) with 

sinusoidally varying speed. The reciprocating motion last six cycles with amplitude of A = 0.3 

mm. Fig. 4.21 shows the position of the ball as a function of time in the case of a maximum 

sliding speed of 1 mm/s. The excitation cyclic frequency induced by the ball performing re-

ciprocating motion can be estimated as Avf  22 max , where  is the angular fre-

quency. The grey band in Appendix C indicates the range between the lowest and the highest 

cyclic frequency. Tables 4.2 and 4.3 show the penetration depth (h), the radius of the contact 

area (a) computed by FE technique and the apparent coefficients of friction ( hysteresis ) induced 

by hysteresis. As it can be seen the penetration depth of the ball reduces as the speed increas-

es, due to the fact that the complex modulus of the rubber rises as the speed increases. For the 

15- and 40-term material models fitted to the storage modulus (see Appendix C) the values of 

the penetration depth were approximately the same, but for the 40-term material model fitted 

to the loss factor (see Appendix C), the values of penetration depth are much bigger because 

the material model underestimates the storage modulus curve within the interesting cyclic 

frequency range. As the tables show the biggest penetration depth values appears at T= 150°C 

where the storage modulus of the rubber is the lowest. With respect to the apparent coefficient 

of friction computed it can be concluded that the FE simulations incorporating material mod-

els fitted to the storage modulus underestimate hysteresis friction because at T=25 and 150°C 

these material models give much lower loss factor values than the DMA measurements (see 

Appendix C). Consequently the apparent coefficient of friction values seen at T=25 and 

150°C in Table 4.2 can be considered as rough lower estimations of the reality. At T=-50°C, 

however, there is a close agreement between the measured and simulated (material model 
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fitted to the storage modulus master curve) storage modulus and loss factor curves thus the 

apparent coefficient of friction computed is a good approximation of the reality. 

 

Table 4.2. Values of the penetration depth (h), radius of the contact area (a) and the hysteresis 

or apparent coefficient of friction in case of 40-term Maxwell-model fitted to the measured 

storage modulus master curve [38] 

 

Table 4.3. Values of the penetration depth (h), radius of the contact area (a) and the hysteresis 

or apparent coefficient of friction in case of 40-term Maxwell-model fitted to the measured 

loss factor master curve [38] 

When using the 40-term material model fitted to the storage modulus master curve the highest 

apparent coefficient of friction ( 012.0hysteresis ) appears at T=-50°C and smmv /01.0max  . 

At higher speeds the apparent coefficients of friction obtained at T=25°C are higher than 

those at T=-50 and 150°C and are increased as the sliding speed increases. In case of 40-term 

viscoelastic model fitted to the loss factor master curve the apparent coefficients of friction 

obtained at T=150°C are higher than those appearing at T=-50 and 25°C. At this point it must 

be mentioned that the 40-term model fitted to the loss factor master curve gives realistic loss 

factor but underestimates the measured storage modulus (see Appendix C). The inaccuracy 

caused by the underestimation is most critical at T=150°C but its degree decreases as the slid-

ing speed increases. Due to the underestimated storage modulus the apparent coefficient of 

friction values seen at T=25 and 150°C in Table 4.3 can be considered as rough upper estima-

tions of the real values. The comparison of measured and simulated storage modulus and loss 

factor curves in Appendix C shows, however, clearly that the apparent coefficient of friction 

obtained at T= 25°C and smmv /100max   (see Table 4.3) is a good approximation of the real 

value. It is worth to mention that its value is more than 50% higher than the one obtained by 

the 40-term model fitted to the storage modulus master curve (see Table 4.2). 

Sliding friction of a hard ball on viscoelastic solid has been studied analytically by 

Greenwood and Tabor [39]. They have shown that the viscoelastic friction contribution is 

inversely proportional to the viscoelastic (complex) modulus of rubber and directly propor-

tional to the average contact pressure and the fraction of the input elastic energy which is lost 

due to internal damping. FE results of Pálfi et al. [38] proved that the latter is larger than the 

loss tangent and, at each temperature, follows the changes in it due to the change in the fre-
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quency. According to this the Greenwood-Tabor formula can be used for qualitative predic-

tion of viscoelastic friction component if the fraction of the input elastic energy lost due to 

internal damping is replaced with tan. Theoretical work of Persson [40] for rolling friction of 

a spherical ball on viscoelastic solid supports also this finding. Persson’s comment on number 

of relaxation times requested when using the Prony-series representation of the viscoelastic 

modulus, however, must be criticized. Persson states that it is usually enough to include n15 

relaxation times ( 15...1, ii ) if ii  101  . Contrary this, in Appendix C, it is demonstrated 

clearly that viscoelastic models with 15 relaxation times yields strongly oscillating loss tan-

gent-cyclic frequency curve if the fitting is realized over a wide range of frequencies. 

Validation of the simulation results, as demonstrated by Felhős et al. [11], is simpler at 

macro-scale than at micro- or nano-scale. In this study, it is found that there is a good agree-

ment between predicted and measured hysteresis friction in case of steel ball rolling on an 

EPDM rubber plate (see Fig. 4.22a and b). Furthermore it can also be concluded that the FE 

model would give the same hysteresis friction for rolling and sliding. This is not surprising 

because as it is mentioned by Greenwood and Tabor [39], in the presence of lubricant, most of 

the (sliding) friction force is assumed to be due to hysteresis in the rubber bulk if the thickness 

of the lubricant film is larger than the amplitude of the roughness. In dry case, however, the 

rolling friction is lower because the additional surface-shear existing in sliding is absent. At 

the same time the sub-surface stresses consist of a large hydrostatic component superposed on 

shear in both cases. 

 

 

(a) (b) 

Fig. 4.22. (a) FE model of a steel ball rolling on a rubber plate and (b) comparison of meas-

ured and computed (simulated) apparent coefficient of friction in case of 15-term generalized 

Maxwell-model combined with two-parameter Mooney-Rivlin material law and fitted to stor-

age modulus master curve (T=20°C, diameter of rolling steel ball=14 mm, amplitude of recip-

rocating motion=25.06 mm, cyclic frequency=1/30 Hz, normal load=140 N) [11] 

As it has already been mentioned (see Appendix C) if the 15-term generalized Maxwell model 

is fitted to measured storage modulus master curve spanning more than 15/2 decades of time 

(see the work of Felhős et al. [11]) then the material model yields oscillating loss factor (loss 

modulus) curve. This oscillation, however, can be decreased by (a) using increased number of 

Maxwell elements, (b) fitting the 15-term model over a narrower frequency range or (c) using 

other relaxation times. The results prove that rolling friction of rubbers is directly interrelated 

to its viscoelastic nature. In [40], Persson came to the same conclusion when calculating the 

rolling friction for a hard cylinder or spherical ball rolling on a flat surface of a viscoelastic 

solid. 
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4.4. Experimental investigation of apparently smooth, hard surface 
generated viscoelastic friction on the basis of literature results 

This chapter is based on the findings of Goda [131] and its main objective is to inves-

tigate the contribution of micro-hysteresis to rubber friction in case of apparently smooth sur-

faces. In order to attain this objective it is needed to reanalyze measurement results of Mofidi 

et al. [44], and compare them with additional test results. Like in [44], friction test results re-

ported for nitrile butadiene rubber (NBR) are in the focus of this work because, contrary to its 

great practical importance, surprisingly little attention is paid in the literature to oil lubricated 

sliding friction of NBR squeezing against (apparently) smooth steel surface. 

Nowadays considerable effort is made in the literature to study the role of micro hyste-

resis component of rubber friction both theoretically and experimentally. Accurate prediction 

of micro hysteresis friction contributes to the differentiation and quantification of friction 

mechanisms (contribution to rubber friction from macro hysteresis, adhesion, rubber wear, 

etc.). Furthermore, the knowledge gained from theoretical and/or experimental works enables 

engineers to design rubber components or rubber friction related tribological systems with 

improved tribological behavior. Several studies and results prove that the micro hysteresis 

friction may be dominant when the rubber slides on rough (silicon carbide paper) or very 

rough surface (asphalt road surface). At the same time, the combined experimental (see Fig. 

4.23) and theoretical study of Mofidi et al. [44] on surface roughness generated friction 

showed that micro-hysteresis may give the dominant contribution to rubber friction even in 

case of lubricated, apparently smooth surfaces. 

 

 

Fig. 4.23. Test configuration 

used in [44]. The figure is taken 

from [131]. 

Fig. 4.24. Apparent coefficient of friction vs. nominal con-

tact pressure (back-calculated from [51]). The shaded area 

represents the range of nominal contact pressure values 

appeared at room temperature in [44]. The figure is taken 

from [131]. 

Wohlers et al. [45] emphasize also the importance of micro-hysteresis for the case 

when rubber slides on apparently smooth steel surface. Mixed friction of reciprocating O-

rings was analyzed numerically as well as experimentally and it was concluded that, in the 

boundary lubrication regime, the friction force can be explained by Persson’s micro hysteresis 

friction theory [3]. 

Conclusion drawn by Mofidi et al. [44] is very interesting especially in the light of the 

fact that the friction of NBR specimens studied was complicated by very unfavorable lubrica-
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tion condition, frictional heating and wear. In [44], the viscoelastic (hysteresis) friction con-

tribution was calculated by using Persson’s friction theory [3] which is based on spectral de-

scription of the surface roughness and a new contact theory. The latter is investigated in depth 

in section 4.5.2. However, in [26], Nguyen et al. pointed out that the computed viscoelastic 

contribution is very sensitive to the geometrical details of rigid asperities and hence the spec-

tral description of surface roughness does not allow us to predict micro hysteresis contribution 

accurately. At the same time, in a very recent paper, Fina and his co-authors [46] found that, 

in case of rough surfaces, Persson’s model predicts correctly the peak value of hysteresis (or 

apparent) coefficient of friction and the sliding velocity at which it appears but results are in 

poor correlation for the shape of the hysteresis friction master curve. The latter implies that 

the computed apparent coefficients of friction, excepting the peak value and the ones in its 

small vicinity, differ considerably from the measured values. However it must be mentioned 

that Fina et al. [46] did not consider friction test results for smooth surfaces. Persson’s theory 

may also be criticized for the small strain linear viscoelastic description of rubber behavior 

incorporated in it because does not allow researchers to take into consideration neither the 

effect of large strains nor the strain amplitude dependence of the storage modulus and the loss 

factor of rubber. The influencing effect of strain on rubber viscoelastic properties was studied, 

among others, by Wang et al. [47]. Contrary to its great importance the effect of strain on the 

rubber viscoelastic properties is usually neglected in the hysteresis friction predictions be-

cause there is no consensus in the literature in respect of strain at which DM(T)A (dynamic 

mechanical (thermal) analysis) tests should be performed. Arbitrary choosing of strain value, 

however, may cause serious uncertainty in hysteresis friction predictions. In [48], Mokhtari et 

al. performed friction tests at T=27°C to study the friction process between dry rubber disks 

(carbon black- and silica-reinforced BR and S-SBR elastomers) and smooth (polished, 

Ra=0.52 m ) or rough (Ra=2.28 m ) granite balls with diameter of 30 mm. The sliding ve-

locity and the nominal contact pressure were 5 mm/s and 0.4 MPa, respectively. In dry case, 

the smooth surface produced higher friction force than the rough one. In order to estimate the 

contribution of micro hysteresis component to rubber friction the tests were repeated in pres-

ence of lubricating oil having dynamic viscosity of 78 mPas at 20°C. In case of smooth ball, it 

was found that a thin boundary lubricant layer decreases the coefficient of friction drastically 

(from 1.55 to 0.05 for 85 phr silica-filled rubber). This experimental finding and additional 

calculations proved that the high friction force cannot be explained by the micro-hysteresis 

component of friction. It was also concluded that the real area of contact is 3-5 times greater 

when the smooth ball is in contact with the rubber. Additionally, it was pointed out that wear 

debris attached to the granite surface decreases the surface roughness (smoothing effect of the 

adhering wear debris) and increases the real area of contact. 

4.4.1. Unlubricated frictional behavior of nitrile butadiene rubber 
(NBR) 

Firstly, the most important conclusions of friction tests conducted on rubber sliding on 

dry, apparently smooth harder surfaces will be reviewed. According to the aim of this study, 

most of them refer to nitrile rubber. 

From the friction test results analyzed by Smith [8] it can be concluded that when the 

rubber block slides on dry and smooth glass surface with a velocity lower than 1 mm/s (negli-

gible frictional heat generation) the sliding friction coefficient is dominated by adhesion and 

usually load dependent i.e. decreases with increasing applied normal pressure (nominal con-

tact pressure). At the same time, rubber frictional resistance to sliding on dry, smooth track 

can be reduced by using rougher rubber specimens (smaller real contact area at low loads). 

Friction reducing effect of rubber roughening, however, completely disappears at high loads 

(entirely flattened rubber asperities). 
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In one part of the dynamic friction tests of Grosch [1], flat NBR specimens (containing 

various amount of carbon black) of 25.4 x 25.4 x 6.3 mm (length x width x thickness) were 

pressed against dry, polished stainless steel track moving with constant velocity under con-

trolled ambient temperature (varied between -50 and 100°C). The velocity ranged from 510  

to 30 mm/s while the highest normal pressure was 0.054 MPa. Grosch came to the conclusion 

that the dry friction of NBR specimens on a smooth surface is due to interfacial adhesion. He 

pointed out that under constant load and temperature the apparent coefficient of friction first 

increases then decreases with increasing sliding velocity. Additionally he was able to identify 

experimentally the sliding velocity at which the apparent coefficient of friction reached its 

maximum value (adhesion hump). The highest apparent coefficient of friction at T=20°C was 

about 2.4 which appeared at a sliding velocity of  10 mm/s in case of NBR containing no 

carbon black. Increasing carbon black content resulted in reducing apparent coefficient of 

friction (at 50 phr carbon black the peak value was half as high as at zero carbon black con-

tent) and a slight shift of adhesion peak towards lower velocities (from 1 to 0.1 mm/s) in case 

of smooth glass counter surface. This tendency was explained by the fact that the addition of 

carbon black to NBR shifts slightly the peak value of the loss modulus towards lower fre-

quencies and flattens the loss curves (loss modulus and loss factor). At the same time, on in-

creasing carbon black content the hysteresis friction appeared to decrease more rapidly than 

the adhesion component. When replacing polished steel surface with a rough silicon carbide 

paper (particle size  0.1 mm, average spacing between abrasive particles  0.14 mm) a hyste-

resis peak (hysteresis hump) appeared beside the adhesion peak (adhesion hump) in the ap-

parent coefficient of friction vs. sliding velocity (master) curve. However the dusting of rough 

surface with magnesium oxide powder eliminated the adhesion peak and reduced the hystere-

sis peak. The adhesion-reducing powder resulted in an adhesion component being almost in-

dependent of the velocity and the temperature. The cyclic frequency at which the maxima of 

loss modulus (E”) of NBR appeared was 6102   Hz at temperature of 30°C. It is worth to 

mention that both the magnitude and the location of adhesion peak in apparent coefficient of 

friction vs. sliding velocity curve were about the same for NBR/polished steel and NBR/wavy 

glass sliding pair. The waviness on the glass was needed to enhance the reproducibility of 

measurement results. The apparent coefficient of friction of NBR (with 0, 20 and 50 phr car-

bon black content) measured on dry wavy glass surface at T=20°C and sliding velocity of 10 

mm/s was 2.3, 1.9 and 1, respectively. Increasing the temperature from 20 to 80°C decreased 

the adhesion (apparent) coefficient of friction from 2.3 to 1.5 for unfilled NBR sliding on 

wavy glass surface at a sliding velocity of 10 mm/s. When NBR specimens rubbed against 

polished steel counter surface no hysteresis peak appeared in Grosch’s apparent coefficient of 

friction vs. sliding velocity master curve. It is due to the fact that the wavelength of the 

roughness component which would be able to excite the rubber surface with frequency of 
6102   Hz (frequency belonging to the maxima of loss modulus) is unrealistically low i.e. is in 

the nanometer range. At the same time the longer wavelength roughness components are una-

ble to generate considerable hysteresis due to the lower loss modulus. 

Friction behavior of NBR (with 76.1 Shore A hardness and unknown carbon black 

content) paired with steel surfaces of different surface roughness was studied at T=22°C and 

under unidirectional dry sliding conditions by Mofidi and Prakash [49]. Experiments were 

conducted using a block-on-ring configuration where a rubber block of 16 x 4 x 2 mm (length 

x width x thickness) was pressed against the external cylindrical surface of a rotating steel 

ring with external diameter of 35 mm, and internal diameter of 19 mm. Three sets of bearing 

steel rings with different ranges of surface roughness (fine, medium and rough) were used. 

The arithmetic mean roughness (Ra) ranged between 0.15 and 0.3 m  for fine, 0.35 and 0.55 

m  for medium, 0.5 and 0.7 m  for rough steel surface. The width of the nominal contact 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



39 

area was 4 mm while the sliding velocity was 18 mm/s. At very low cyclic frequency (relaxed 

state) and room temperature the modulus of rubber specimens was about 10 MPa. The appar-

ent coefficient of friction decreased continuously during the test until a steady state value but 

the decrease was most intensive in the first 15 min (running-in period). At low load (nominal 

contact pressure is about 0.24 MPa) the apparent coefficient of friction measured at t=15 min 

was 1.4 and 0.9 for fine/medium and rough steel surface, respectively. At higher load (nomi-

nal contact pressure is about 0.75 MPa) the apparent coefficient of friction measured at the 

end of the running-in period was about 1 for medium rough steel. The steady state apparent 

coefficient of friction for medium rough steel and at the higher load was 0.6 while at the low-

er load was 1.2 (fine surface), 0.75 (medium rough surface), and 0.65 (rough surface). Based 

on these results, it can be concluded that the increasing nominal contact pressure and surface 

roughness decreases the apparent coefficient of friction. The transition from fine to medium 

rough surface resulted in significant reduction in the steady state apparent coefficient of fric-

tion but the further increase in surface roughness between the medium rough and the rough 

surface was accompanied with a slight decrease in the dry apparent coefficient of friction. 

Although measurement results are consistent with those of Grosch [1] the authors assumed 

that the micro hysteresis component is the most dominant component of steady state sliding 

friction. Unfortunately, the reason why it was assumed is not explained in the study of Mofidi 

and Prakash [49]. Finally, the authors mentioned that when an unlubricated rubber slides 

against the same counter face repeatedly, a decrease in friction may occur until a complete 

layer of material is deposited from the rubber onto the opposing surface. 

In case of rubber block - made from tread rubber having unknown chemical composi-

tion - sliding on dry, apparently smooth, unidirectional polished steel track (RMS roughness ≈ 

0.08 μm from the 2D data and ≈ 0.5 m from the 1D line scan data) with velocity of 0.2 mm/s 

(sliding direction is orthogonal to the polishing direction) and at room temperature Carbone et 

al. [50], however, found experimentally that the sliding friction coefficient is practically load- 

or nominal contact pressure-independent. More precisely the sliding friction coefficient in-

creases slightly with increasing normal load or nominal contact pressure. This finding is con-

sistent with that of Hurry and Prock reported in 1953 for rubber belting/polished steel (RMS 

roughness=0.3 m ) sliding pair (see Smith’s book [8] for a short summary on test results). 

Their variable-load friction tests conducted at constant velocity of 0.25 mm/s resulted in con-

stant sliding friction coefficient. Carbone et al. hypothesized that if adhesion was the domi-

nant friction component the apparent coefficient of friction would decrease with increasing 

normal load. According to the authors’ knowledge this fact emphasizes the importance of 

micro hysteresis friction contribution even for dry, apparently smooth surfaces. They, howev-

er, did not mention that surface free energy of rubbers has an effect not only on the magnitude 

but also the tendency of the adhesion component of rubber friction. As concluded by Smith 

[8] decreasing surface free energy yields smaller variation in dry apparent coefficient of fric-

tion as the applied normal load increases. 

4.4.2. Frictional behavior of nitrile butadiene rubber (NBR) under oil 
lubricated condition 

One of the earliest experimental studies in this category is the work of Denny [51]. His 

main conclusion was that in addition to the adhesion component of rubber friction, an addi-

tional contribution of comparable magnitude may arise due to the roughness of the track sur-

face. Among others the friction of NBR with 60, 75 and 90 Shore A hardness was measured at 

constant sliding velocity of 0.1 mm/s and against various lubricated apparently smooth track 

surfaces. The velocity dependence of friction was negligible below this sliding velocity. At 

the same time the low sliding velocity implies that the effect of frictional heat generation on 
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friction force can also be neglected. The size of the rectangular shape rubber specimens varied 

from 5 mm thick and 10000 mm
2
 area to 1 mm thick and 8 mm

2
 area. In relation to the load 

effect he found that the apparent coefficient of friction decreases with increasing pressure and 

depends only on the nominal contact pressure and not on shape or size of the specimen (see 

Fig. 4.24). When NBR 75 slides on olive oil lubricated polished steel track under nominal 

contact pressure of 0.25 and 0.75 MPa the apparent coefficient of friction was 0.31 and 0.22, 

respectively. The back-calculated frictional shear stress vs. nominal contact pressure curve 

(see Fig. 4.25) shows clearly that, in case of NBR 60, the frictional shear stress (friction force 

per unit nominal contact area) reaches a practically constant value with increasing contact 

pressure. The constant friction force suggests that the magnitude of real contact area saturated 

i.e. reached a practically normal load independent value. Probably the magnitude of real con-

tact area cannot reach the magnitude of nominal contact area because in case of complete con-

tact the oil should be squeezed out entirely. The pressure inducing complete contact, as seen, 

becomes higher and higher with increasing rubber hardness. 

Measurement results showing the effect of track surface roughness are particularly in-

teresting. Friction tests on NBR 90 against light mineral oil lubricated polymethyl methacry-

late (PMMA) track surfaces with Ra=0.01 (0.01), 0.13 (0.25), 0.2 (0.38), 0.38 (1.37) and 0.38 

(1.62) m  (values without and with brackets are valid along and across finishing marks) 

showed that at any contact pressure between 0.01 and 10 MPa the apparent coefficient of fric-

tion increases as the track surface becomes rougher (see Fig. 4.26). Measured Ra values indi-

cate anisotropic surface roughness which is in accordance with the fact that they were pre-

pared by unidirectional abrasion with emery cloth of various grades. 

 
Fig. 4.25. Mean frictional shear stress vs. nominal contact pressure (back-calculated from 

[51]). The shaded area represents the range of nominal contact pressure values appeared at 

room temperature in [44]. The figure is taken from [131]. 

Fig. 4.27 depicts the variation of the apparent coefficient of friction in function of 

nominal contact pressure for NBR 90 sliding on smooth PMMA track. In respect of track ma-

terial Denny mentioned that when replacing steel track with PMMA the apparent coefficients 

of friction became about 60% higher. The latter allows us to estimate the apparent coefficient 

of friction for NBR 90/smooth steel sliding pair under oil lubrication (see Fig. 4.27). As the 

track is smooth Denny hypothesized that friction is due to friction mechanism other than mi-

cro-hysteresis. In order to represent the effect of track roughness on the apparent coefficient 

of friction Denny subtracted the coefficients of friction measured on smooth track (Ra=0.01 

m ) from the ones measured on rougher tracks. 
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Fig. 4.26. Variation in apparent coefficient of friction as a function of nominal contact pres-

sure in log-log scale when sliding across finishing marks (based on [51]). The shaded area 

represents the range of nominal contact pressure values appeared at room temperature in [44]. 

The figure is taken from [131]. 

 
Fig. 4.27. Variation in apparent coefficient of friction as a function of nominal contact pres-

sure for smooth PMMA and steel track (based on [51]). The shaded area represents the range 

of nominal contact pressure values appeared at room temperature in [44]. The figure is taken 

from [131]. 

In the study of Denny [51], the difference is termed average excess coefficient above 

smooth track value (contribution of surface roughness to the apparent coefficient of friction). 

Fig. 4.28a shows the contribution of surface roughness back-calculated from [51] (data 

points) and as reported in [51] (solid line) in function of track roughness along direction of 

sliding. In Denny’s opinion, the solid line can be considered as a largely pressure independent 

upper limit for the average excess coefficient above smooth track value. This statement is 

based on the fact that friction test results complicated with neither frictional heat generation 

nor elastohydrodynamic effects showed only slightly increasing track roughness effect on 

rubber friction as the nominal or mean contact pressure increased (see Fig. 4.28a). Denny 

pointed out also experimentally that the increasing rubber roughness decreases the apparent 

coefficient of friction at lower nominal contact pressure but has no effect at higher loads. 

When NBR 75 slides on light mineral oil lubricated, smooth PMMA surface with Ra= 0.01 

m , the rubber roughness has effect on the apparent coefficient of friction only when nominal 

contact pressure is lower than  0.3 MPa. From engineering point of view Denny’s work is of 
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great importance because he pointed out also that sliding friction is higher across the finishing 

marks than parallel to them (sliding direction sensitivity of the friction when rubber slides on 

grooved surfaces) and the effect of undulation in sliding direction on the friction force is 

greater than that of the overall height of the asperities. Using a combined experimental and 

theoretical approach Carbone et al. [50] came to the same conclusion in their recent study. 

Two possible energy dissipating (friction) mechanisms were mentioned by Denny to explain 

the track roughness introduced friction force contribution: the material tearing out and the 

hysteresis in the path of track asperities. Finally, Denny’s friction tests show clearly that the 

harder the rubber is the higher the apparent coefficient of friction is under oil lubrication. 
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Fig. 4.28. (a) Variation of back-calculated average excess coefficient of friction above smooth 

track value with track roughness along direction of sliding (based on [51]). Data points repre-

sent back-calculated values while solid line is from Denny’s original publication (see [51]). In 

the original publication, only the solid line was reported. The shaded area represents the Ra 

value appeared in [44]. The figure is taken from [131]. (b) Apparent coefficients of friction of 

lubricated rubber/glass and rubber/steel sliding pairs measured at room temperature. (Based 

on the results of [56].) Oil viscosity=65.9 mm
2
/s. The figure is taken from [35]. 

Before going on the discussion of lubricated frictional behavior of NBR rubbers it is 

worth to cite the work of Rana et al. [56]. They developed an experimental reciprocating rig 

to study the contact conditions of an elastomeric seal with a hard surface at room temperature. 

The stroke length, stroke speed and the load on the rectangular seal was varied. The counter 

surfaces included smooth glass (Ra=0.0075 m) and steel having a mean surface roughness of 
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Ra=1.4 m. The tests were carried out at a mean surface pressure of p3 MPa in dry and lu-

bricated conditions. The stroke length was 5 mm, while the reciprocating frequency varied 

between 1.5 and 11 Hz. The velocity of the slider changed with time in a sinusoidal manner 

since rotary motion was converted into linear. A reciprocation frequency of 1.5 Hz implied an 

average stroking speed of 15 mm/s with a peak velocity of 47 mm/s. They concluded that the 

reciprocating with a rough steel plate increases the friction due to the interaction of hard steel 

asperities with soft rubber ones. Apparent coefficients of friction computed based on the 

measured friction force values of Rana et al. [56] can be seen in Fig. 4.28b. Measured COFs 

show clearly that the higher surface roughness of steel causes higher sliding friction due to the 

increased hysteresis friction. The increase in rubber friction is about 0.1. It is worth to men-

tion as the sliding speed is low neither the hydrodynamic effect nor the frictional heat genera-

tion play role in the measured sliding behavior of rubber.  

The frictional behavior of nitrile butadiene rubber (NBR) with 76.1 Shore A hardness, 

arithmetic surface roughness of Ra 0.08 m and relaxed modulus of about 10 MPa (meas-

ured at room temperature) sliding against steel surface (Ra 0.38 m ) was studied under uni-

directional paraffinic oil lubricated conditions by Mofidi and Prakash [52]. The same block-

on-ring test configuration was used as in their former study [49] but the steel ring had aniso-

tropic surface roughness with finishing marks (grooves) parallel to the sliding (circumferen-

tial) direction. All the tests were performed at room temperature (T=22°C) and after an initial 

running in phase taking 50 min at a sliding velocity of 18.33 mm/s. The nominal contact pres-

sure was 0.37 MPa and the sliding velocity using in the test phase was set to 0.24, 0.33, 0.58, 

1.03, 1.83, 3.26, 5.79, 10.3, 18.33, and 32.58 mm/s. The friction test phase took 10 min at 

each sliding velocity. The measured apparent coefficient of friction decreased with increasing 

sliding velocity showing the transition from the boundary to mixed and from the mixed to 

elastohydrodynamic lubrication regime (see Fig. 4.29). It is worth to mention that as the slid-

ing direction was parallel to finishing marks of steel surface the real roughness in the direction 

of sliding was likely significantly smaller than 0.38 m . 

 
Fig. 4.29. Variation in apparent coefficient of friction as a function of sliding velocity (based 

on [52]). The figure is taken from [131]. 

In order to test the tribological behavior of sliding rubber components, in many cases, a spe-

cial test rig is used where a metallic cylinder performing reciprocating motion with given am-

plitude and frequency is squeezed against a rubber sample (see the studies of Mofidi et al. [44, 

53] and Fernandez-Diaz [54] and Fig. 4.23). In [53], a steel cylinder with diameter of 15 mm 

and length of 22 mm was reciprocated along its axis of revolution against curved (cylinder-
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on-curved sample i.e. CoCS) and flat (cylinder-on-flat sample i.e. CoFS) NBR samples. The 

curved rubber samples were used to eliminate completely the edge effect. The specimen 

thickness was 6 mm and all the tests were performed at temperature of T=26°C. Apparent 

coefficients of friction measured at 60 (CoCS) as well as 30 min (CoFS) and in presence of 

lubricant (uncontaminated polyol and complex ester) can be seen in Fig. 4.30. 

 
Fig. 4.30. Variation in apparent coefficient of friction as a function of nominal contact pres-

sure for uncoated/coated steel cylinder reciprocating against lubricated NBR samples at room 

temperature (based on [44], [53] and [54]). The figure is taken from [131]. 

The lubrication was realized in a way that a small amount of lubricant was applied to the con-

tacting surfaces prior to the tests. In case of cylinder-on-curved sample test configuration, 

independently of the lubricant used, the apparent coefficient of friction decreased with about 

0.1 as the mean contact pressure increased from 1.3 to 1.5 MPa. However, this was accompa-

nied by enhanced wear (roughening rubber surface). In cylinder-on-flat sample test configura-

tion rubber samples were paired with smoother steel cylinder and showed less wear but much 

higher apparent coefficients of friction. The latter indicates that the lubrication conditions 

were more favorable (larger stroke, rougher counter surface, no edge effect) in CoCS test con-

figuration (mixed friction) than in CoFS one (boundary lubrication). In the CoFS test configu-

ration, the boundary lubricating film was likely very thin (few layers of lubricant molecules) 

thus it was unable to reduce the rubber-steel asperity contact i.e. the micro hysteresis compo-

nent of friction. The effect of lubricant on the apparent coefficient of friction, the presence of 

wear, and the very smooth counter surface, however, imply that the high apparent coefficient 

of friction values (0.5-0.6) cannot be completely due to micro-hysteresis. Finally, Fig. 4.31 

shows the ambient temperature dependency of measured apparent coefficient of friction for 

lubricated fluorocarbon rubber (FKM), nitrile butadiene rubber (NBR) and hydrogenated ni-

trile butadiene rubber (HNBR). The apparent coefficient of friction decreases as the ambient 

temperature increases but the change is very small. Contrary to Mofidi et al.’s finding [44] it 
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was found that ambient temperature has little effect on friction. This result will be of great 

importance when analyzing Mofidi et al.’s findings in depth. 

 
Fig. 4.31. Variation in apparent coefficient of friction as a function of ambient temperature for 

uncoated steel cylinder reciprocating against lubricated FKM (fluorocarbon rubber), NBR 

(nitrile butadiene rubber) and HNBR (hydrogenated nitrile butadiene rubber) samples (based 

on [53]). The figure is taken from [131]. 

In Fernandez-Diaz et al.’s study [54], coated steel cylinders (diameter=19 mm, 

length=33 mm) with different Ra roughness were reciprocated along their axis of revolution 

against oil lubricated NBR samples (85 Shore A hardness, length or size in sliding direc-

tion=8 mm, width=15 mm, thickness=8 mm). Using high velocity oxygen fuel coating and 

hard chromium plating processes a thin layer of different materials (AlBronze, NiCrBSi, 

WCCoCr, chromium) was made onto the steel cylinders. Then the coated cylinders were sub-

jected to surface modification processes, such as grinding and grinding+superfinishing, in 

order to reach the desired surface roughness (Ra= 0.2-0.23 m  for grinded surface, Ra= 0.03-

0.04 m  for grinded+superfinished surface). The ambient temperature, average sliding veloc-

ity, applied normal load, and stroke was T=25°C, v=63.7 mm/s, FN=100 N, and s=2 mm, re-

spectively. Test duration was 30 min and the sliding pairs were lubricated with AeroShell 

Fluid 41 hydraulic mineral oil. Friction test results showed that the apparent coefficient of 

friction, independently of the material of the coating, increases with decreasing Ra roughness. 

The apparent coefficient of friction was about 0.33-0.36 for grinded+superfinished and 0.23-

0.25 for grinded surfaces independently of the material of the coating. The experimental find-

ing that surfaces with same Ra roughness yields the same apparent coefficient of friction inde-

pendently of the material of the coating may be interpreted as the indicative of dominating 

micro-hysteresis. At the same time as no results are available for dry surfaces in [54] the real 

contribution of micro-hysteresis to rubber friction cannot be estimated reliably. It must be, 

however, mentioned that the measured apparent coefficients of friction values are considera-

bly lower than those of Mofidi et al. [44] due to the more favorable lubrication conditions. 

In [44], Mofidi et al. came to the conclusion that micro-hysteresis generated by the 

roughness of a highly polished steel surface may give the dominant contribution to the lubri-

cated friction. They mentioned that this is particularly valid at low sliding velocities (negligi-

ble hydrodynamic effect and frictional heat generation) and low temperatures (enhanced hys-

teresis). In their friction tests, a steel cylinder (diameter = 15 mm, length = 22 mm, RMS 

roughness  0.1 m ) was reciprocated (stroke = 1 mm, cyclic frequency = 50 Hz, average 

sliding velocity  100 mm/s) against NBR discs (75 Shore A hardness, RMS roughness prior 
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to tests 0.4 m ) at room (T=25°C) and elevated temperatures (T=40 and 80°C). The cylin-

der reciprocated longitudinally i.e. along its axis of revolution (see Fig. 4.23). Unfortunately 

sizes of the rubber samples used were not reported by Mofidi et al. [44]. However majority of 

measurement results reported in [44] for non-aged and aged rubber samples can also be found 

in an another study of Mofidi et al. [55] where rubber discs with diameter of 25 mm and 

thickness of 4 mm were used. This proves that the same rubber discs were used in both stud-

ies. In order to avoid the edge effects edges of steel cylinder were well-rounded (see Fig. 

4.23). Measurement results are represented in Figs. 4.32 and 4.33. As Mofidi et al. did not 

provide nominal contact pressure values they were estimated by me based on the data being 

available and using the Hertz theory. Friction tests of Mofidi et al. [44] on non-aged samples 

in different lubrication oils of different viscosities showed that the lubricant has only slight 

effect on the apparent coefficient of friction at T=40°C. (The influence of lubricant on the 

friction will be discussed in depth in the next section.) Consequently the authors came to the 

conclusion that the rubber friction is not (mainly) due to shearing a thin viscous layer, but due 

to the internal friction of the rubber. The significantly lower apparent coefficient of friction at 

normal load of 20 N (see Fig. 4.32) was explained as follows. At small load the initial mold-

ing grooves on the rubber surface are not fully flattened thus they are able to store lubricant. 

When the molding grooves oriented parallel to the reciprocating direction of the steel cylinder 

they flatten completely and most of the lubricant squeezes out from the contact region result-

ing unfavorable lubrication. However it is worth to mention that apparent coefficients of fric-

tion measured by Mofidi et al. [44] at higher loads are much higher than the values measured 

by Denny [51] and Mofidi and Prakash [52]. The apparent coefficient of friction measured at 

normal load of 20 N (small load), however, is consistent with Denny’s friction test results (see 

Figs. 4.24 and 4.25). The decrease in apparent coefficient of friction at higher ambient tem-

perature (see Figs. 4.32 and 4.33) was explained by the temperature dependence of the inter-

nal friction (decreasing internal friction with increasing temperature) of the rubber. 

 
Fig. 4.32. Measured apparent coefficient of friction in function of estimated nominal contact 

pressure (T= 25°C, lubricant: polyalphaolefin with dynamic viscosity of 40°C = 3104.4   Pas, 

RMS roughness of steel surface  0.1 m , rubber specimen: NBR 75 Shore A hardness, test 

duration: 15 min, average sliding velocity  100 mm/s, stroke = 1 mm) (based on [44]). The 

figure is taken from [131]. 
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Fig. 4.33. Measured apparent coefficient of friction in function of estimated nominal contact 

pressure (T=80°C, lubricant: polyalphaolefin with dynamic viscosity of 40°C = 3104.4   Pas, 

RMS roughness of steel surface  0.1 m , rubber specimen: NBR 75 Shore A hardness, test 

duration: 15 min, average sliding velocity  100 mm/s, stroke = 1 mm) (based on [44]). The 

figure is taken from [131]. 

4.4.3. Critical discussion of the most important literature results 

Findings of Mofidi et al. have been used in this study for comparison with experi-

mental data taken from the literature. The evaluation of Mofidi et al.’s test results, however, is 

complicated by the fact that the nominal contact area varies as a function of the applied nor-

mal load and no information on wear and deformation of rubber due to the friction force is 

available in the study of Mofidi et al. [44]. For the sake of completeness, in this section, the 

effect of hysteresis, adhesion, rubber roughness, wear, ambient temperature, lubricant, fric-

tional heating and rubber elasticity on rubber friction will be discussed in depth. 

It is very interesting to compare Persson’s [3] (micro hysteresis) theory with that of 

Smith [8]. Persson considers micro hysteresis friction to be adhesion and applied normal pres-

sure dependent phenomenon but, in his predictions, the effect of adhesion is not taken into 

account. According to his opinion if the roughness is large enough (this is not the case for 

apparently smooth surfaces) the increase in the hysteresis contribution to the friction from the 

adhesion induced increase in the contact area may be very small [50]. The larger the rough-

ness is the smaller the adhesion-induced increase is in the micro hysteresis friction contribu-

tion. Smith’s theory contrasts strongly with this because he assumes an adhesion dependent 

micro hysteresis friction contribution which is apparently independent of the applied normal 

pressure (see the largely nominal contact pressure independent results of Denny in Fig. 

4.28a). In his theory, the penetration of the rigid asperities into the rubber surface is controlled 

by the adhesional interaction between the surfaces and the increasing applied normal pressure 

does not measurably increase the hysteresis friction contribution due to the small micro asper-

ity depth of the harder, apparently smooth surface. Smith concluded that higher the adhesion 

larger the micro hysteresis friction contribution. 

In [44], Mofidi et al. studied the effect of micro hysteresis friction in the presence of 

lubricant but the conditions for adhesion-eliminating lubricant film formation were unfavora-

ble. The very high apparent coefficients of friction reported prove that there was no continu-

ous adhesion-eliminating boundary lubricant layer between contacting surfaces. As it is 

known a discontinuous boundary lubricant layer, however, cannot eliminate adhesion entirely 

but can reduce its effect. It must also be mentioned that as the cylinder was smooth a relative-
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ly large real area of contact was formed in the tests of Mofidi et al. [44]. Adhesive component 

of rubber friction depends not only on the real area of contact but also on the sliding velocity, 

contact pressure and temperature dependent shear strength of adhesive contact. For the first 

sight it seems that the sliding velocity dependency of friction does not play role in [44] be-

cause the amplitude and frequency of the reciprocating motion were kept constant during fric-

tion tests. The real sliding velocity, however, may differ from the theoretical one (especially 

at higher temperatures) as it will be pointed out at the end of this section. As it is well known 

adhesion component of friction originates from interaction of contacting surfaces, acts at the 

interface of the contacting bodies and is directly correlated to the real area of contact. As re-

ported by Smith [8], in case of apparently smooth surfaces, adhesive friction may be very high 

because the smoothness of the paired, harder surface promotes adhesion. Contrary to the very 

unfavorable lubrication conditions Mofidi et al. made no mention of the possible development 

of adhesive friction and did not provide measurement results for dry surfaces. Without dry 

results, however, the real contribution of micro hysteresis component to rubber friction cannot 

be estimated reliably. 

Importance of rubber roughness is emphasized, among others, by Salant et al. [41], 

Rana et al. [56] and Arnold et al. [57]. Studies cited by Rana et al. [56] shows clearly that the 

roughness of metal surfaces does not affect the friction much if its roughness is significantly 

lower than the seal roughness. It was found experimentally that when oil-lubricated smooth 

metal surface is reciprocated with a rough elastomeric seal at a velocity lower than 100 mm/s 

mixed friction or boundary lubrication dominates the friction. Arnold et al. [57] emphasize 

also the importance of rubber roughness and point out that roughening a rubber surface de-

creases its adhesion-friction-force-development potential when sliding on smooth materials. 

In the friction tests of Mofidi et al. [44], the RMS roughness of rubber surface prior to tests 

was about 0.4 m . Although experimental results show clearly that rubber roughness and 

surface energies of the contacting bodies have considerable effect on the friction force the 

common practice in friction prediction is not in accordance with this. Effect of rubber rough-

ness and surface energies is, almost without exception, neglected in friction force predictions. 

Albeit rubber wear (deposited rubber layer on the metal surface, damage of rubber sur-

face, etc.) has considerable effect on friction neither microscopic images on worn surfaces nor 

surface roughness measurements are presented by Mofidi et al. [44]. The real area of contact 

reduction and the smoothing effect of wear debris may also be mentioned among the effects 

of rubber wear. Effect of lubricant on the rubber friction can be appear in different forms such 

as frictional resistance due to the lubricant viscosity, change in the frictional resistance due to 

the change in lubricant viscosity, real area of contact and surface roughness reduction due to 

lubricant pool formation in the roughness valleys of harder, rough surface, formation of adhe-

sion eliminating boundary layer, development of capillary forces, decreasing friction and in-

creasing separation of contacting surfaces due to the increasing hydrodynamic effect, etc. An 

important consequence of the latter is the decreasing adhesive and micro hysteresis friction. 

At the same time while both the hydrodynamic effect and the closed fluid pools decrease the 

real (solid-solid) area of contact while the squeezing effect increases it. 

Very little information is available in the literature on the effect of ambient tempera-

ture on apparently smooth steel surface generated micro-hysteresis. Studies of Mofidi et al. 

[44, 53] are exceptions of this. Their results show that the friction force for apparently smooth 

steel surface sliding on lubricated nitrile rubber decreases with increasing ambient tempera-

ture. Although the cylinder on flat sample test configuration was used in both cases, condi-

tions were not exactly the same. As in [44] disc shaped NBR 75 Shore A specimens were 

used in [53] but the thickness was 6 mm instead of 4 mm. Additionally lubricating oil (polyol 

ester in [53] and polyalphaolefin in [44]), test duration (30 min in [53] and 15 min in [44]), 

mean sliding velocity (200 mm/s in [53] and 100 mm/s in [44]), stroke (2.5 mm in [53] and 1 
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mm in [44]), and applied normal load (200 N in [53] and 20, 50, 100, 150, 300 N in [44]) 

were also different. Mean sliding velocity of 200 mm/s implies that friction processes are 

complicated with frictional heat generation yielding real contact temperature higher than the 

ambient one. At the same time the higher velocity increases the frequency with which the 

rubber surface is excited. While the latter increases the former (higher contact temperature) 

decreases the micro-hysteresis, nevertheless, at room temperature, the apparent coefficients of 

friction reported by Mofidi et al. in [44] and [53] are consistent (they are close to 0.6). How-

ever, the decrease in apparent coefficient of friction due to an increase in the ambient temper-

ature from 25°C to 80°C is much smaller in [53] than in [44] (see Figs. 4.31, 4.32 and 4.33). 

The small change in the apparent coefficient of friction (see Fig. 4.31) does not reflect the 

strongly temperature dependent properties of rubber. In other words, the temperature depend-

ent micro-hysteresis, contrary to [44], has little contribution to rubber friction in [53]. It is 

worth to mention that while the apparent coefficients of friction measured at room tempera-

ture are similar, the ones observed at elevated temperature are drastically different in [53] and 

[44]. At room temperature the apparent coefficients of friction reported are in accordance with 

each other and indicate boundary lubrication. Unfortunately, in [44], no measurement results 

are available on the temperature dependency of apparent coefficient of friction for polyol es-

ter. However friction test results of [44] show clearly that the apparent coefficient of friction 

is 0.66 for polyol ester and about 0.5 for polyalphaolefin at T=40°C. Contrary to this signifi-

cant difference in apparent coefficient of friction Mofidi et al. concluded that the lubricant has 

negligible influence on the friction in their tests. As it is demonstrated in Smith’s book [8], the 

adhesion friction force is also lower at higher temperatures because both the hysteresis and 

adhesion component of rubber friction are directly related to viscoelastic properties of rubber. 

According to Grosch [1], the expected sliding velocity and temperature dependence of rubber 

friction under constant normal load and on a given surface can be described by a friction 

force-sliding velocity master curve and the Williams-Landel-Ferry (WLF) equation (see Ap-

pendix A.4). Consequently, the increasing ambient temperature decreases both the hysteresis 

and adhesion component of friction. 

In [44], it is assumed that the friction measured is due to the internal friction (hystere-

sis) of the rubber and the drop in the apparent coefficient of friction for large loads (applied 

normal load  100 N) is most likely due to the increasing frictional heat generation caused by 

the internal friction in the rubber. The frictional heat fluxes (heat energy production per unit 

area and unit time) defined as vp  , where  , p and v denote apparent coefficient of fric-

tion, mean contact pressure, and sliding velocity, however, do not support the increasing fric-

tional heating because they are nearly equal for loads larger than or equal to 100 N. The cause 

of this is that the increasing mean contact pressure is accompanied by decreasing apparent 

coefficient of friction. 

As the rubber has very low elastic modulus the friction force may be able to deform 

the rubber sample. This may cause that in certain part of the stroke the displacement of the 

rubber surface measured in sliding direction equals to that travelled by the cylinder (sticking 

phase). At high temperatures where the rubber has low modulus the effect of sticking on rub-

ber friction may be particularly important. In order to prove this a simple, three-dimensional, 

linear elastic finite element model has been developed (see Fig. 4.34a). The bottom of the 

rubber sample was fixed while the displacement of the nodes being in the symmetry plane 

was restrained perpendicularly to the symmetry plane (symmetry condition). Like in friction 

tests of Mofidi et al. [44] the steel cylinder was pressed against the rubber sample with a giv-

en normal load (due to the half model only half of the applied normal load must be used in the 

FE model) and reciprocated with cyclic frequency of 50 Hz and amplitude of 0.5 mm. Normal 

load, apparent coefficient of friction and elastic modulus concerning excitation frequency of 

50 Hz were specified based on [44]. Fig. 4.34b shows the x-position of the center point of the 
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rubber sample being in contact with the cylinder as a function of the x-position of the cylinder 

in the first cycle. 

(a) 

(b) 

Fig. 4.34. (a) FE model of Mofidi et al.’s test configuration. Restraints are not visualized and 

due to the symmetry only half of the rubber disc is modeled. The figure is taken from [131]. 

(b) Position of the center point of rubber sample being in contact with the cylinder as a func-

tion of position of the cylinder. Applied normal load referring to the complete rubber sample 

is FN= 100 N. The figure is taken from [131]. 

The FE results prove that the effect of sticking may be considerable, especially at 

higher temperatures where the modulus is very low. Based on these results not only the real 

sliding distance and real mean sliding velocity but the real frictional heat flux can also be de-

termined. Finally, it is worth to mention that the sticking phase indicated by the simulation 

was the longest in the center point of the contact area. 

As a last point, it must be mentioned that the effect of stresses and frictional heat gen-

eration on the mechanical properties of the rubber should also be considered when studying 

rubber friction. In [133], Mokhtari and Schipper pointed out that a tribo-modified surface lay-

er with degraded elastic modulus exists on the top of a rubber surface being in contact with a 

rigid counter surface. Furthermore it was found that the thermal and stress-induced degrada-

tion of a thin rubber layer becomes more intensive as the contact pressure and sliding velocity 

increases. However, as demonstrated by Mokhtari et al. [134], excessive wear can prevent the 

formation of such layer. Additionally, it was also concluded that the degradation of rubber 

matrix at the surface does not affect the real area of contact but change the frictional shear 

stress required to shear a thin surface layer (adhesion component of rubber friction) and mi-

cro-hysteresis substantially. 
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4.4.4. Conclusions 

Micro hysteresis component of rubber sliding friction generated by harder, apparently 

smooth track surfaces is studied here. Experimental and theoretical results of Mofidi et al. 

[44] obtained at room and elevated temperature suggest that the friction of nitrile rubber slid-

ing on apparently smooth steel surface may be dominated by micro-hysteresis. These friction 

test results, however, were not compared with similar results taken from the literature. A pos-

sible reason for this is that the little experimental result available in this category (almost 

without exception) focuses on the room temperature behavior only. Here an attempt has been 

made to collect and analyze experimental results on micro-hysteresis generated by apparently 

smooth surfaces. Additionally, friction test results of Mofidi et al. [44] obtained at T=25 and 

80°C has also been reanalyzed and compared to literature results. The apparent coefficient of 

friction decreased with increasing ambient temperature in all the cases but the change in fric-

tion was drastically different. In other words, the temperature dependent micro-hysteresis-

based explanation of Mofidi et al. for the temperature dependency of apparent coefficient of 

friction is not of universal validity in case of apparently smooth surfaces. The contribution to 

the friction from the area of contact and rubber wear was not analyzed by Mofidi et al. [44], 

but due to the very unfavorable lubrication conditions it seems possible as well that the coef-

ficient of friction measured is, at least in part, due to these phenomena. The present study 

shows clearly both the weak points of already existing friction tests and the need for a com-

prehensive testing program on the apparently smooth surface generated hysteresis contribu-

tion to rubber friction. Additionally it is found that none of experimental results discussed 

here proves the dominancy of micro-hysteresis for the sliding pair of Mofidi et al. and the real 

contribution of micro-hysteresis is likely considerably lesser than suggested in [44]. All of 

these prove that the role of micro-hysteresis is not fully understood for apparently smooth 

surfaces. 

4.5. Numerical modeling of mixed friction of sliding rubber compo-
nents using stochastic modeling approach 

4.5.1. State of the art 

Reciprocating rubber seals are commonly used viscoelastic machine elements, which, in 

many cases, operate in the mixed elastohydrodynamic lubrication (EHL) regime. As it is well 

known, in the mixed-EHL regime, both the hydrodynamic effect and the surface roughness 

contribute to the frictional effect characterized by the forces acting against the motion. In case 

of reciprocating rubber seals, the prediction of friction force, leakage rate (the difference be-

tween fluid transport during outstroke and instroke) and wear rate is the main motivation for 

modeling. In the field of numerical modeling of lubrication an intensive development was 

observable for both stochastic and deterministic modeling approach in the last few decades. 

Compared to lubrication between ideally smooth sliding surfaces the stochastic model pro-

posed by Patir and Cheng [58] (it is termed PC model in the literature) for modeling lubrica-

tion between rough sliding surfaces brought a decisive improvement. In the PC model, the 

transition from smooth surface lubrication to rough surface one is solved by introducing flow 

factors in the Reynolds equation. These factors have been determined from separate determin-

istic models using elementary rough surfaces by Patir and Cheng [58]. Weak point of the PC 

model is that the three-dimensional surface topography is characterized by two parameters 

(surface descriptors) only. As reported by Czifra et al. [60] these parameters, namely the 

standard deviation of the profile heights (RMS roughness) and the roughness orientation, do 

not allow analysts to describe precisely the real micro-topography. Contrary to the stochastic 

modeling approach the deterministic one where rough surfaces are modeled as realistic as 
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possible provides more realistic localized (non-averaged) pressure/film thickness distribution 

and peak values (see studies of Ren et al. [61] and Minet et al. [62]). In this case, the main 

problem is the strongly limited area of modeled rough surfaces which is usually much smaller 

than the entire sealing zone. It must also be mentioned that the lubrication problem between 

rough sliding surfaces is essentially transient (time-dependent) due to the relative motion of 

the asperities in contact. The lubrication problem of rough surfaces, however, may be trans-

formed into an equivalent stationary lubrication problem consisting of an ideally smooth sur-

face being in motion with constant velocity and a rough surface (combination of the two 

rough surfaces) being at rest [41]. 

In the past decade, great effort was taken to develop numerical models for the analysis 

of mixed friction in reciprocating rubber components. In a recent paper of Salant et al. [41], a 

one-dimensional stochastic approach has been developed for rough surface mixed EHL in 

reciprocating rod seals. It is based on Greenwood and Williamson’s contact model [27] and 

Patir and Cheng’s stochastic lubrication model [58, 59]. On the contrary Persson and Scaraggi 

[63] use a very recent contact theory for the same purpose which was developed for the con-

tact between a rigid solid with isotropic surface roughness on many different length-scales 

(self-affine fractal surface) and an elastic block with flat surface. The models consist of cou-

pled fluid mechanics, deformation mechanics, and contact mechanics analyses. The fluid me-

chanical analysis deals with the solution of the Reynolds equation, while the deformation of 

rubber component is computed numerically through the use of influence coefficients (see Sec-

tion 4.5.3 and the study of Salant et al. [41]) or analytically by applying the theory of elastici-

ty (see study of Persson and Scaraggi [63]). Both mixed friction models take into considera-

tion the effect of cavitation and consider the fluid to be Newtonian. Cavitation usually occurs 

in the regions of diverging gap where the gap between the contacting surfaces expands. Hy-

drodynamic pressure is achieved until the gap expands to a level where the lubricant does not 

occupy the complete gap and cavitates. In the cavitated region, a gas-lubricant mixture fills 

out the gap between contacting solid surfaces. The cavitation model in Salant et al.’s algo-

rithm [41] assumes the conservation of the lubricant mass, the continuity and a constant con-

tact pressure (cavitation pressure) i.e. a zero pressure gradient in the cavitated region. Due to 

the asperity type contact model incorporated in Salant et al.’s model it is possible to study 

both the full film and the mixed lubrication in reciprocating seals. In the case of full film lu-

brication, there is a continuous lubricating film with load carrying capacity between surfaces 

which does not make it possible for surfaces to come into direct, solid-solid contact. In such a 

case, the total normal load is carried by the lubricating film. Contrary to this, in mixed lubri-

cation, the lubricating film is not able to separate surfaces from each other completely i.e. 

local solid contacts can be formed among asperities. As a consequence, one part of the normal 

load is carried by the lubricating film while the rest is carried by asperity contacts. The effect 

of asperity type contact on the friction force is taken into account by an empirical coefficient 

of friction in Salant et al.’s model [41]. 

4.5.2. Separation of nominally flat rough surfaces in contact: 
Greenwood-Williamson’s contact theory vs. Persson’s contact theory 

When studying the contact between two nominally flat rough surfaces the separation is 

of primary importance. (The distance between the mean surface heights or mean planes of the 

nominally flat surfaces is referred to as the separation.) At the same time there is no consensus 

in the literature on how this separation should be computed. In this section, the frictionless 

static (non-sliding) contact between elastic, rough solids is studied using Greenwood and Wil-

liamson’s and Persson’s contact mechanical theories. The review of the theories is based on 

Greenwood and Williamson’s and Persson’s original papers. 
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Contact theory of Greenwood and Williamson [27] is one of the most well-known and 

the most frequently used theories of contact mechanics. As reported by Johnson [66] “in the 

frictionless contact of elastic solids the contact stresses depend only upon the shape of the gap 

between them before loading. The system may then be replaced by a flat, rigid surface in con-

tact with a body having an effective modulus and a profile which results in the same unde-

formed gap between the surfaces” (Fig. 4.35a). The effective elastic modulus (composite con-

tact modulus) E’ is defined as 

2

2

2

1

2

1 11

'

1

EEE

 



 ,      (4.3) 

where 1 and 2 denote the one and the other surface. When highly elastic rubber-like material 

(denoted by 2) slides on hard surface 
*' EE   is approximately equal to 

2

2

2

1 

E
. In [27], 

Greenwood and Williamson studies the contact between a rigid plane (rigid smooth surface) 

and a nominally flat rigid surface covered with large number of elastic asperities under the 

assumption that the summits of the asperities are spherical and have the same radius R and the 

height of the summits (z) varies randomly (Fig. 4.35b). In such a case, the normal force NF  

acting on the rigid plane is supported by those asperities whose heights are greater than the 

separation, denoted by d, between the smooth rigid plane and the reference plane of the rough 

surface (mean surface height). The probability that a summit has a height between z and z+dz 

above the reference plane of the rough surface is dzz)(  where )(z  is the probability density 

function. 

(a) 

(b) 

Fig. 4.35. (a) Contact of a rough surface with a smooth flat [66] (At the representation of the 

measured profile larger magnification is used in the normal than in the tangential direction.), 

(b) Greenwood and Williamson’s spherical asperity summits with a constant radius R [140] 

The probability of making contact at any given summit of height z is [27] 

   



d

dzzdzprob  ,     (4.4) 
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while the expected number of summits in contact at a separation d is given by [27] 

 



d

dzzNn  .      (4.5) 

In Eq. 4.5, N denotes the total number of asperities in the nominal or apparent contact area 

nA . (Note: the correct form of Eq. 4.4 would be 



d

dzzdzprob ')'()(   but as it has already 

been mentioned the equations are presented in the form in which they were originally report-

ed.) If the ith summit height denoted by iz  exceeds the separation d then the ith summit is in 

contact with the rigid plane and is compressed by dzii  . From the Hertz equation for the 

contact between a sphere and a flat rigid plate (

31

2

22

'16

9










RE

F

R

a N  where a is the radius of 

the contact area and NF  is the normal force) the circular contact area of the ith summit ( iA ) 

and the force required to compress it ( NiF ) can be expressed as 

   RdzRaA iiii  2 ,    (4.6a) 

and 

  23212321
32

'
3

4
'

3

4

9

'16
dzERER

RE
F iiNi  


. (4.6b) 

The total real area of contact and the total normal force required to compress the asperities in 

contact may be determined by summing the contact areas and normal forces of all the asperi-

ties in contact. Thus the expected total real area of contact is given by [27] 

       



dd

dzzdzRNdzzRdzNA  ,    (4.7) 

while the expected total normal load is [27] 

       



dd

N dzzdzRENdzzdzERNF 
23212321 '

3

4
'

3

4
.   (4.8) 

Introducing the surface density of asperities ( nAN ) and describing heights in terms of 

the standard (or RMS) deviation  of the height distribution ( sz   and hd  ) the total 

real area of contact A and the total normal load NF  can be written as [27] 

 hFRAA n 1 ,      (4.9) 

and 

 hFREAF nN 23

2321'
3

4
 ,    (4.10) 

where nA  is the nominal contact area and 

     



h

dsshshF *1       (4.11) 
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     



h

dsshshF *
23

23  .    (4.12) 

In the equations,  s*  denotes the normalized height distribution. If the rough surface has 

Gaussian height distribution, then   2

2

2

1
*

s

es





  [27]. Using these results the nominal 

contact pressure can be expressed as 

 hFRE
A

F
p

n

N
23

2321'
3

4
 .    (4.13) 

The latter equation can be used to compute the relation between nominal contact pressure p 

and normalized separation h. 

Persson’s contact mechanical theory [3] was originally developed for the contact of a 

rigid isotropic rough surface having fractal nature and a smooth rubber (viscoelastic) block. 

One of the most important characteristics of Persson’s theory is that the rough surface consid-

ered has surface roughness on many different length-scales   (asperities at multiple scales) 

which can be described by the surface roughness spectral density C(q) where q denotes the 

magnitude of the wavevector ( 2q ) i.e. the spatial angular frequency or the wave-

number of the wave. In other words, for isotropic rough surfaces not the direction of the wave 

vector is important but its magnitude. Persson [3] assumed that between 0q  and 1q the rough 

surface is a self-affine fractal surface with fractal dimension fD  (q0 is the lower cut-off 

wavenumber and q1 is the upper cut-off wavenumber) whose surface roughness spectral den-

sity can be approximated in the following form  
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,  (4.14) 

where H is the Hurst exponent ( fDH  3 ) and 22

0 2 RMShh  . RMSh  denotes the RMS 

roughness of the rough surface ( 



N

i

iRMS z
N

h
1

22 1
, where N is the total number of heights sam-

pled and iz  is the ith height measured from the mean surface). Furthermore it was also as-

sumed that there exists a roll-off wavenumber below which surface roughness spectral density 

is approximately constant (see Fig. 4.36 taken from Yang and Persson [67]). As it can be seen 

for a self-affine fractal surface the surface roughness spectral density has power-law behavior 

i.e. surface roughness spectral density is proportional to  12  Hq  [67]. The computation of the 

surface roughness spectral density for measured surface height profiles is detailed in Appen-

dix B. In order to investigate the surface roughness on many different length-scales rough 

surfaces are studied at different magnification   (  00  qq  where 0  is the roll-off 

wavelength of the surface roughness spectral density) in Persson’s contact theory [3]. When 

the magnification is high, the surface is quite rough because there are many short-wavelength 

roughnesses as demonstrated by Yang and Persson [67]. When the magnification is low, the 

small scale components of surface roughness do not appear in the surface height profile thus 

the surface seems much smoother (see Fig. 4.37). Generally speaking, when a rough surface is 

studied at given magnification the surface is considered to be smooth on all length-scales 

shorter than . 
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Fig. 4.36. Surface roughness spectral density (C(q)) of a self-affine fractal surface. Lq  is the 

smallest surface roughness wavenumber. [67] 

  

Fig. 4.37. Surface height profile of a mathematically generated self-affine fractal sur-

face ( 2104104 nmx  square surface area) with the root mean square (RMS) roughness of 

nm1 : (a) high magnification ( 216 ), (b) low magnification ( 4 ) [67] 

 

Fig. 4.38. An elastic block squeezed against a rigid rough substrate. The separation and the 

applied squeezing pressure are denoted by u (with 0u ) and p, respectively. In case of com-

plete contact, 0u  and p  [65]. 

The contact problem of an elastic block with a flat surface squeezing against a hard self-affine 

fractal surface (Fig. 4.38) is studied by Persson [3, 65], where the separation of contacting 

surfaces is denoted by u and is defined as the distance between the block and the mean plane 

(mean surface height) of the counter surface [67]. As it has already been mentioned this con-

tact problem is equivalent with the one when two elastic solids with rough surfaces are 

squeezed together. Persson [67] assumes that the separation depends on the squeezing pres-
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sure (as the applied squeezing pressure increases the separation between the surfaces decreas-

es) and the elastic energy stored in the hard asperity-elastic block contact regions is equal the 

work done by the external pressure in displacing the lower surface of the block towards the 

rough counter surface, i.e.  



u

el uUduAup )('' 0  or 
du

dU

A
up el

0

1
)(  , where 0A  is the nomi-

nal contact area and )(uUel  is the separation dependent elastic energy stored in the contact 

regions. According to these there must be an interrelation between the elastic energy stored in 

the contact regions and the (separation dependent) applied squeezing pressure. In other words, 

if the dependence of the surface separation on the squeezing pressure is known then one can 

obtain the elastic energy stored in the asperity contact regions. In [65], Persson concluded that 

the elastic energy stored in the contact regions, in the simplest approximation, takes the form 

   
1

0

2*

0
2

q

q

el dqqCqPqEAU 


,    (4.15) 

where *E  is the effective elastic modulus (  2* 1  EE ),  qP  is the relative area of real 

contact when the interface is studied at magnification   (     0AAqP  , where )(A  de-

notes the real area of contact at a given magnification), and  qC  is the surface roughness 

spectral density (see Appendix B). For perfect contact (high squeezing pressures) P=1 and, 

with 1 , Eq. 4.15 is exact. For low squeezing pressures the parameter  in Eq. 4.15 takes 

into account that the elastic energy stored in the contact region (per unit surface area), in gen-

eral, is less than the average elastic energy (per unit surface area) for perfect contact. In case 

of elastic nonadhesive contact, the relative area of real contact may be written as [3] 
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and 
222 pse
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du

dU

A
up el

0

1
)(   with the equation for elU  and subse-

quently with the one for 
u

P




 the applied squeezing pressure dependency of the separation 

may be written as [65] 
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In [65], Persson noted that the results of his theory differ drastically from those of Greenwood 

and Williamson’s theory and the latter does not correctly describe the interfacial separation 

between contacting rough solids. However [65] does not quantify the difference therefore it is 

very difficult to imagine how big it is and how this difference depends on the contact pres-

sure. At the same time the comparison is difficult because the two different contact models 

are based on different input parameters (surface descriptors). From scientific point of view 

such a comparison is of great importance because both contact models are widely used in the 

prediction of lubrication performance of sliding rubber components. Greenwood-

Williamson’s and Persson’s contact theories have been compared quantitatively in a recent 

study of Bódai and Goda [64], where the separation (between an elastomer plate and a rigid 

flat) as a function of the applied squeezing pressure has been computed using the authors’ 
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home-made computer code. The code was implemented in C++ and verified through the con-

tact problem studied by Persson [65]. Computational results obtained by numerical integration 

had been compared to those of Persson and excellent agreement was found. When calculating 

with Persson’s theory surface descriptors reported by Persson and Scaraggi [63] were used 

(RMS roughness is 1m, fractal dimension is Df = 2.2, surface roughness is self-affine fractal 

for q0qq1, where the lower wavenumber is mq /1104

0   and the upper one is 

mq /11078.0 10

1  , Young modulus is E=10 MPa, Poisson’s ratio is =0.5, =1). The param-

eter  shows the ratio of the elastic energy stored in the asperity contact regions (per unit sur-

face area) and the average elastic energy (per unit surface area) for perfect contact [65]. In 

case of GW model, statistical parameters reported by Salant et al. [41] were used: RMS 

roughness is 1 m, asperity radius is R=1 m, asperity density is 2131010  m . The results 

are shown in Fig. 4.39 for nominal contact pressure ranging from 0.001 MPa to 2 MPa. Based 

on Fig. 4.39, it can be concluded that the difference in separation (distance between the mean 

plane of a nominally flat rough surface and a smooth flat) varies between one and four orders 

of magnitude if the nominal contact pressure is between 0.1 and 1 MPa. Additionally, the dif-

ference becomes smaller and smaller as the contact pressure decreases. This huge difference 

in the separation draws attention to the necessity of experimental testing of contact theories. 

At present the reliability of these contact theories is still an open question. 

 
Fig. 4.39. Separation of contacting surfaces as a function of nominal contact pressure (applied 

squeezing pressure) in case of two different contact theories [64] 

From application point of view it is extremely important to know the limitations of the 

contact theories used. As a last point, an attempt is made here to describe briefly the most 

important assumptions and limitations of the theories studied. Persson’s contact theory has 

been developed for the contact between a rigid solid with isotropic surface roughness on 

many different length-scales (self-affine fractal surface) and an elastic block with flat surface. 

It is valid for surface roughness with translational and rotational invariant (i.e. isotropic) sta-

tistical properties only where 1D surface roughness spectral densities are independent of the 

location and direction of line scans. In [3], Persson developed a model based on his contact 

theory for the prediction of viscoelastic friction force generated by the surface roughness. 

From the characteristics of Persson’s contact theory, however, it is clear that his viscoelastic 

friction theory results in sliding direction independent real area of contact and micro hystere-

sis friction force. In [50], Carbone et al. realized that many surfaces of practical interest have 

surface roughness with anisotropic statistical properties and sliding direction dependent fric-

tional properties. In order to treat sliding direction dependency of rubber friction the authors 

extended Persson’s theory to surfaces with anisotropic surface roughness. They pointed out 

that the micro hysteresis friction contribution may depend significantly on the sliding direc-

tion (in case of sliding friction orthogonal to the wear tracks the energy dissipation-based hys-
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teresis friction is significantly higher than along them), while the real area of contact depends 

weakly on the sliding direction. On a uniaxial polished steel surface the real area of contact 

was a bit larger when sliding along the direction of the wear tracks than when sliding orthog-

onal to the wear tracks. The latter implies that adhesion component of rubber friction depends 

weakly on the sliding direction as the adhesive friction is a real area of contact related phe-

nomenon. They carried out friction tests for rubber blocks sliding on dry unidirectionally pol-

ished steel surfaces at sliding velocity of 0.2 mm/s (negligible frictional heat generation) and 

found a good qualitative (but no quantitative) agreement between the experiment and the the-

ory. It is also known that Persson’s surface roughness spectral density-based modeling ap-

proach considers the multi-scale nature of engineering surfaces (asperities at multiple scales) 

but is developed for self-affine fractal surfaces only. For real engineering surfaces, however, 

the assumption of fractal nature (scale- or magnification-dependent surface roughness) is an 

approximation only. Furthermore the theory is not able to model real asperity geometry accu-

rately. It has been pointed out by Czifra et al. [60] that the fractal dimension, which measures 

the complexity of the rough surface and characterizes the change in surface roughness with 

change in scale at which it is measured, does not characterize uniquely the surface finishing 

technique with which the surface is manufactured. In other words, fractal dimensions may be 

very similar even if they belong to two different surface finishing techniques. Consequently, 

rough surfaces with drastically different asperity geometry may have the same or very similar 

surface roughness spectrum. In the GW contact theory, the same radius of curvature is as-

signed to each asperity tip which is equal to the average radius of curvature of asperities of 

measured surface topography. The local asperity deformations are taken into account through 

the Hertz theory which implies that each asperity deforms independently of the neighboring 

asperities (interaction between laterally spaced asperities is neglected) and can be modeled as 

a spring having nonlinear force-body approach characteristic. Another weakness of the theory 

is that the multi-scale nature of rough surfaces is considered by a two-scale model where the 

longer wavelength waviness is taken into consideration through the height distribution of the 

smaller asperity tips (fine scale asperities). As it is known from the literature the Greenwood-

Williamson statistical contact model can be modified in various ways if the Hertz-theory is 

replaced with another asperity deformation model. At this point it must be mentioned that the 

GW contact model is based on statistical parameters extracted from measured surface topog-

raphy. These are the asperity density (  ), the RMS roughness ( ), and the asperity radius of 

curvature ( R ). In [68], however, it has been pointed out that both R and χ are quite sensitive 

to the choice of resolution (sampling length divided by the number of data points). The au-

thors of [68] cite studies from the literature which prove that the choice of sampling resolution 

can bias the statistical parameters. Finally, it is worth to mention that the RMS roughness of 

the rough surface is dominated by the components of larger wavelength, thus small scale 

components have minor effect on it. 

4.5.3. Salant et al.’s stochastic mixed friction model and its imple-
mentation 

Overall aim of this chapter is to summarize briefly Salant et al.’s [41] stochastic mixed 

friction model and its implementation. The numerical model has been implemented in Visual 

C++ (Mixed Friction Code for Hydraulic Reciprocating Rod Seals or MFCforHRRS) by 

Goda [69]. The numerical model takes into consideration the effect of surface roughness, de-

formation of seal, pressure dependency of viscosity and cavitation, respectively. As an asperi-

ty type contact theory is incorporated into the model it can be used not only for full film but 

also for mixed lubrication. Typical outputs of the numerical simulation are the pressure distri-

bution within the lubricating film, the amount of fluid flow transport during outstroke and 
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instroke (their difference defines the amount of leakage) and the magnitude of the apparent 

coefficient of friction. 

As it is well known, the load carrying capacity can be built up in a hydrodynamic seal 

from the wedge-film and the squeeze-film actions. For the wedge-film action, among others, a 

relative tangential velocity between contacting surfaces while for the squeeze-film action a 

decreasing gap due to the normal approach of surfaces has to be existed. The pressure distri-

bution in a thin viscous fluid film can be described by the classical Reynolds equation. As-

sumptions used in derivation of the classical, one-dimensional Reynolds equation are as fol-

lows. (a) The lubricant’s flow is laminar. (b) The temperature is constant (isothermal case). 

(c) Contacting surfaces are rigid. (d) The lubricant is Newtonian, and the viscosity is constant 

across the lubricant film. (e) Inertial forces are small and can be neglected. (f) The weight of 

the lubricant can be neglected relative to other forces. (g) There is no slip at the lubricant/solid 

interface i.e. the lubricant adheres to the solid surfaces. (h) The film thickness is small. (i) The 

pressure across the film (in radial direction) and in the direction perpendicular to the sliding 

direction is constant. (j) Side-leakage is negligible. (k) The mass is conserved. Using these 

assumptions, the one-dimensional Reynolds equation governing the pressure in the lubricant 

film for compressible lubricant and at a given temperature can be written as [76] 
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,  (4.18) 

where   is the lubricant’s density which can be a function of pressure, Th  is the local film 

thickness ( 21   hhT , where h is the local nominal film thickness and 1 , 2  is the 

roughness profile (height of the surface) measured from the mean level (mean height) of sur-

face profiles 1 and 2 as seen in Fig. 4.40),   is dynamic viscosity of the lubricant which can 

also be a function of pressure, p  is the pressure in the lubricant film, x  is the coordinate in 

axial or sliding direction, U is the relative tangential velocity and t is the time. If the lubricant 

is considered as incompressible, i.e. its density does not depend on the magnitude of the pres-

sure, then the   can be eliminated from the Reynolds equation. In addition, if the tangential 

velocity is set to zero, then we obtain an ordinary differential equation that governs the 

squeezing of the lubricant in axisymmetric seals. 

 

Fig. 4.40. Contact of rough surfaces (based on [141]) 

The steady state form of Eq. (4.18) i.e. when the film thickness does not varies in function of 

time, can be written as [76] 
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Eq. (4.19) is valid for large stroke length where the operational conditions do not vary during 

the stroke. It can also be used for the case when one of the contacting surfaces is considered to 

be rough (as it is the case in [41]) if the coordinate system is attached to the rough stationary 

surface. For an incompressible lubricant with pressure dependent viscosity the steady-state 

Reynolds equation has the form [76] 
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where 0  is the dynamic viscosity at ambient pressure and the pressure dependency of viscos-

ity is given by the Barus formula (   pep   0 ).   is the pressure-viscosity coefficient. 

Patir and Cheng [58] have performed numerical flow simulations for rough surfaces in order 

to obtain an averaged Reynolds equation which takes into consideration the effect of surface 

roughness on the lubricant flow through pressure and shear flow factors. These surface 

roughness specific flow factors depend on the directionality of the surface topography of mat-

ing surfaces and the nominal film thickness and characterize both the pressure induced fluid 

transport (pressure flow factors in the sliding direction and in the transverse direction) and the 

shearing effects (entrainment) induced fluid transport (shear flow factor). At the computation 

of the pressure flow factors the rough mating surfaces are considered to be stationary (surfac-

es without relative tangential displacement) with a macro-scale pressure gradient in the slid-

ing direction and in the transverse direction. For instance, the pressure flow factor in the slid-

ing direction can be found if the macro-scale pressure gradient is in the same direction and the 

average flow rate of mating rough surfaces with given separation is compared to that of ideal-

ized smooth surfaces with the same separation. For rough surfaces the average lubricant flow 

rate is a function of the local film thickness while, for idealized smooth surfaces, it is ex-

pressed as a function of the nominal film thickness and the flow factor. The flow factor can be 

determined from the condition that the average lubricant flow rate for these two cases must be 

the same. In other words, Patir and Cheng’s “average flow model” replaces the flow between 

rough surfaces with an averaged flow between nominally smooth surfaces where the effect of 

surface roughness is taken into consideration through flow factors. The one-dimensional form 

of Patir and Cheng’s average (ensemble-averaged) Reynolds equation valid for incompressi-

ble lubricant with pressure dependent viscosity can be written as [58] 


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
 

0

3 6 ,  (4.21) 

where x  is the non-dimensional pressure flow factor, p  is the average pressure, Th  is the 

average gap or average film thickness (equals the expected or mean value of local film thick-

ness Th ),   is the RMS roughness, h  is the local nominal film thickness defined as the dis-

tance between the mean levels of rough surfaces and scx  is the non-dimensional shear flow 

factor. In the studies of Patir and Cheng [58, 59], the flow factors have been expressed as em-

pirical relations in terms of film thickness, RMS roughness and the length-to-width ratio of a 

representative asperity of a Gaussian surface. Patir and Cheng’s average Reynolds equation is 

widely applicable since (a) instead of modeling rough surfaces deterministically the expected 

lubricant flow is predicted based on the separation only, the surface statistics and the operat-

ing conditions, and (b) the flow factors can be evaluated numerically for any rough surface. 
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The asperity scale and the macroscopic scale cavitation were incorporated into Patir and 

Cheng’s average Reynolds equation by Harp and Salant [142]. In Harp and Salant model 

[142] (average Reynolds equation for cavitation), the asperity scale lubricant cavitation (inter-

asperity cavitation) is induced by divergences associated with the roughness while the macro-

scopic cavitation is induced by the nominal divergence of mating surfaces and extends over a 

significant number of asperities. The dimensionless form of Eq. (4.21) valid for both cavitated 

and noncavitated lubricant flow between a stationary rough and a sliding perfectly smooth 

surface (dimensionless universal average Reynolds equation) is written by Salant et al. [41] as 

    
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where x̂  is the dimensionless axial coordinate (
L

x
x ˆ , where L  is the length of the solution 

domain in x- or axial direction), ĥ  is the dimensionless local nominal film thickness (


h
h ˆ ), 

̂  is the dimensionless pressure-viscosity coefficient ( ap̂ ), ap  is the ambient pressure, 

TH  is the dimensionless average (or expected) local film thickness (      dfhH
h

T 





ˆ

ˆ , 

where  f  denotes the probability density function of roughness [41]. TH  equals dimen-

sionless local nominal film thickness if not in contact), F  is the cavitation index and   is an 

universal variable which has different interpretation in the liquid region and the cavitated re-

gion. In case of cavitation, it is assumed that only a fraction of the space between the mating 

surfaces is occupied by the lubricant; the rest is occupied by air pockets. Thus the average 

density in the cavitation zones is less than the density in the noncavitating zones. In the liquid 

(noncavitating) region, 

,,1,0   F
p

p
F

a

    (4.23) 

where   can be interpreted as dimensionless fluid pressure. In the cavitated region, 

  ,11,0,0 



 FF

c

    (4.24) 

where   is the density of the fluid-gas mixture, and c  is the density of the fluid at cavitation 

pressure. The ratio 
c


 can be interpreted as fractional film content. If the cavitation index is 

equal to zero, then Eq. (4.22) reduces to an expression of mass conservation with variable 

density. Three types of boundary conditions are used during the numerical solution of Eq. 

(4.22). If 0  (
c


<1) and F=0 at the boundary the domain is termed starved, if 1

ap

p
 and 

F=1 the domain is flooded, and if 1
ap

p
 and F=1 the domain is pressurized. 

In the model implemented, Eq. (4.22) is discretized and solved by iteration for   and F 

using the control volume finite difference scheme of Patankar [143]. At the beginning of the 

iteration it is assumed that there is no cavitation inside the solution domain and the pressure is 

equal to the atmospheric pressure at these locations. The numerical model developed can be 

used for real reciprocating seals because, as it can be seen in the flow chart of the model (Fig. 

4.40), it is able to take into account the effect of elastic deformation of the seal on the film 
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thickness and the flow factors. The reason why iteration is needed is that the pressure field 

induces elastic deformations in the seal that directly influence the film thickness. At the same 

time, the latter modifies the Reynolds equation used for the computation of a new pressure 

field. Additionally, two inner iterations are needed to calculate the locations of the cavitated 

regions and to handle non-linearity caused by pressure-dependent viscosity. In the latter case, 

the cause of iteration is that one wants to calculate pressure distribution at a given film thick-

ness on the basis of the Reynolds equation which consists of a pressure-dependent viscosity. 

In order to determine the film thickness distribution, it is necessary to compute the elastic 

deformation of the rubber component normal to the common surface tangent. Like in [41] the 

influence coefficient method has been chosen for this purpose. This method states that the 

deformation at any location within the nominal contact area is proportional to the forces ap-

plied at every location. The “influence coefficients” are collected in the influence coefficient 

matrix (I). Coefficient Iik of the matrix shows the normal displacement at the ith node due to a 

force (F) (corresponding to a unit pressure) applied at the jth node. Elements of the influence 

coefficient matrix were computed using a separate FE model. 

The computational procedure shown in Fig. 4.41 can be summarized as follows. The 

computational scheme starts with the computation of the length of the sealing zone (nominal 

contact area) and the static contact pressure distribution by using the finite element method. 

Here it is assumed that the frictional stress or frictional traction (friction force per unit area) 

has little effect on the contact pressure distribution. Consequently the contact pressure distri-

bution, which will be divided into fluid and asperity type contact pressure distribution, is de-

termined for the frictionless case only (static contact pressure). Then the influence coefficients 

(elements of the influence coefficient matrix) are computed in a separate FE model. These FE 

models are not involved directly in the iterative computational procedure; they are used to 

provide input data for it only. The FE computations are followed by contact calculations (see 

Greenwood-Williamson contact model) to determine the static film thickness distribution that 

is also input data for the iterative procedure. The iterative computational procedure starts with 

an initial guess for the film thickness. Then the contact/fluid pressure distribution and the film 

thickness distribution are computed based on iterative scheme. When the converged solution 

is reached the iteration is stopped. Finally, the leakage rate and the average frictional stress 

are computed. In case of negligible fluid acceleration, there is no net force in axial (x-) direc-

tion i.e. the pressure forces and shear viscous forces acting on an infinitesimal volume of fluid 

equate each other. Substitution of Newton’s definition of viscosity into the equilibrium equa-

tion yields a differential equation for the relation between fluid pressure distribution and ve-

locity distribution in (across) the fluid film. As the fluid velocity does not vary in circumfer-

ential direction the volumetric flow rate per unit circumferential length ( q ) can be computed 

by integrating the velocity distribution over the film thickness. Consequently, the nondimen-

sional volumetric flow rate per unit circumferential length (  3

0 /12ˆ  apqLq  ) or the instan-

taneous leakage can be found from (see [41]) 
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The first term is the contribution of the pressure difference to the flow rate (pressure flow) 

while the second term is the contribution due to the shear flow, dragged by the moving rod. 
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Fig. 4.41. Flow chart of the computational scheme [69] 

The total frictional stress on the rod is the sum of the average viscous shear stress and the 

shear stress due to contacting asperities (see [41]). 

     contactviscousavgtotalavg  ˆˆˆ  ,    (4.26) 

where  
totalavg̂  is the dimensionless total frictional stress,  

viscousavg̂  is the dimensionless av-

erage viscous shear stress (     E
viscousavgviscousavg /ˆ   ), and  contact̂  is the dimensionless shear 
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stress due to contacting asperities (     Econtactcontact /ˆ   ). The dimensionless average viscous 

shear stress is 
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where ̂  is the dimensionless RMS roughness ( 3231ˆ  R  where R denotes the asperity 

radius and   denotes the asperity density), apELR /3231   , and f , fss , fpp  are the 

shear stress factors to take into consideration the influence of the roughness on the viscous 

shear. The shear stress factors can be obtained numerically as described in the work of Patir 

and Cheng [59]. Finally, the dimensionless shear stress due to contacting asperities can be 

computed using an empirical coefficient of friction   as 

 
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











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U

U
Pccontact ̂ ,      (4.28) 

where cP  denotes the dimensionless contact pressure ( EpP cc  , where E is the elastic mod-

ulus of the rubber seal). Based on the numerical model presented above a computer code has 

been developed and implemented by Goda [69]. Main objective of the next chapters is to pre-

sent briefly the verification problems with which the reliability of the code can be proved. 

4.5.4. Verification problem: Ideal smooth flat surface in contact with 
combined sinusoidal/flat surface 

The first verification problem is taken from the study of Sahlin et al. [70]. Fig. 4.42a 

shows the geometry of the contacting bodies examined. The stationary surface can be divided 

into two parts: its left half is a sinusoidal wave while its right half is an ideal smooth horizon-

tal plane which is parallel to the ideal smooth counterpart with velocity of U=0.25 m/s=250 

mm/s. Both the inlet and the outlet of the solution domain are flooded that is the cavitation 

index is F=1 and the pressure is equal to the atmospheric pressure at these locations. The 

wavelength of the sinusoidal wave is 10 mm while its amplitude is m5 . In the numerical 

simulations, the cavitation pressure is assumed to be MPa1.0  that is equal to the ambient or 

atmospheric pressure. In [69], the same problem was studied by Goda using his computer 

code. Fig. 4.42b shows Goda’s [69] numerical results for the pressure distribution if the dy-

namic viscosity of the lubricant at atmospheric pressure is 0=0.04 Pas and the pressure-

viscosity coefficient is Pa/11020 9 . The solution domain was divided into equidistant 

control volumes. Altogether 201 grid points were located along the solution domain implying 

that the distance between two neighboring grid points is 0.5 mm. In order to obtain a grid in-

dependent solution computations were repeated with finer discretization, where the number of 

grid points was 401 and 801, respectively. Since both bodies are considered as ideal smooth, 

their RMS roughness is set to be three orders of magnitude smaller than the double of the am-

plitude of the sine wave in the numerical simulation. Goda’s [69] pressure distribution seen in 

Fig. 4.42b is in good agreement with that of Sahlin et al. [70] (see Fig. 4.43). As it can be 

seen, pressure peaks become lower as the number of grid points increases. As the difference 

between the pressure distributions assigned to the two finer grids is very small the pressure 

solution with a number of grid points of 801 can be regarded as a grid independent solution. 

At the converging gaps full film lubrication occurs but, at the same time, diverging gaps can 

cause cavitation even in the left half of the solution domain. In the right half of the solution 

domain there is a continuous cavitated zone which results in zero load carrying capacity in 
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this region. Thus the load carrying capacity of the lubricating film is determined by the left 

half of the geometry. 

(a) 

(b) 

Fig. 4.42. (a) Sahlin et al.’s [70] lubrication problem and (b) the pressure distribution and 

location of the full film and the cavitated zones computed by Goda [69] 

 (a) 

 (b) 

Fig. 4.43. (a) Geometries of the bodies involved in the lubrication problem of Sahlin et al. 

[70] and (b) the pressure solution across the domain [70] 
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Fig. 4.44 shows Goda’s [69] numerical results for the fluid flow transport computed at 

different x coordinates. This flow transport, however, cannot be considered as leakage be-

cause leakage is defined as the difference between the fluid transport during outstroke and 

instroke. Fluid transport values presented in Fig. 4.44 belong to the case when the flat surface 

moves from left to right with constant velocity. The computed fluid transport shows some 

oscillation but this oscillation decreases as the number of grid points increases. 

 

Fig. 4.44. Fluid flow transport computed by Goda [69] 

4.5.5. Verification problem: Ideal smooth flat surface in contact with 
parabolic surface 

The second verification problem is taken also from the study of Sahlin et al. [70]. Fig. 

4.45a shows the geometry of the bodies involved. The stationary surface is an ideal smooth 

parabolic slider while the moving one is an ideal smooth flat counterpart. Both the inlet and 

the outlet of the solution domain are flooded i.e. the cavitation index is F=1 and the pressure 

is the atmospheric pressure at these locations. In the numerical simulations, the cavitation 

pressure is assumed to be MPa1.0  that is equal to the ambient or atmospheric pressure. The 

moving surface has a velocity of U=4.57 m/s = 4570 mm/s. 

 

 

(a) (b) 

Fig. 4.45. (a) The geometry of the second verification problem including a parabolic slider 

and (b) the computed pressure distributions if the dynamic viscosity is = 0.039 Pas (D  H-

MNL and Const  denote compressibility models) [70] 
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The lubrication problem seen in Fig. 4.45a was also studied by Goda. Fig. 4.46 shows 

Goda’s result for the grid independent pressure distribution if the dynamic viscosity of the 

lubricant at atmospheric pressure is 0=0.04 Pas and the pressure-viscosity coefficient is 

Pa/11020 9 . The solution domain was divided into equidistant control volumes. Since 

both bodies are considered as ideal smooth their RMS roughness is set to be three orders of 

magnitude smaller than the height of the parabolic slider in the numerical simulation. Pressure 

distribution presented in Fig. 4.46 is in good agreement with the one reported by Sahlin et al. 

[70] (see Fig. 4.45b). At the converging gap full film lubrication occurs while the diverging 

gap can cause cavitation in the right part of the solution domain which yields lubricant film 

with zero load carrying capacity. Thus the load carrying capacity of the lubricating film is 

determined by the left portion of the geometry. 

 

Fig. 4.46. Pressure distribution and location of the full film and the cavitated zone computed 

by Goda 

4.5.6. Verification problem: Ideal smooth flat surface in contact with 
sinusoidal surface 

As a next step the hydrodynamic lubrication problem of a rough solid/ smooth elasto-

mer sliding pair proposed by Kozma [71, 72] is studied. Kozma replaced the roughness of the 

solid body with a sine wave and neglected the effect of cavitation. The main aim of the work 

done by Goda [69] is to study the effect of the cavitation and the pressure dependent viscosity 

on the hydrodynamic lubrication. As it is assumed by Kozma asperities of the solid body can 

contribute to develop hydrodynamic pressure between the sliding surfaces while the elastomer 

penetrates into the valleys of the solid surface due to the applied normal load. Furthermore it 

was assumed that, without normal load, (a) the elastomer surface is flat, (b) at the peaks of 

solid asperities the minimal film thickness is h0=0.1 µm and (c) the maximal film thickness is 

h1 at the bottom of the valleys of the rough solid surface (see Fig. 4.47). Increasing the ap-

plied load the elastomer penetrates into the valleys of the solid surface lowering the maximal 

film thickness h1 and increasing the hydrodynamic load carrying capacity. In other words, the 

contact geometry shown in Fig. 4.48 demonstrates the gap form between a rough, ideal rigid 

surface and a smooth, elastic rubber seal at a given normal load. The sine wave has a wave-

length of 1=100 µm or 2=200 µm and amplitude, which is exactly the half of the h1-h0 val-

ue, 1, 0.75, 0.5, 0.25 or 0.125 µm. During the simulations, it is also assumed that the sliding 

velocity is U=0.1 m/s=100 mm/s, and the total length of the solution domain, in axial direc-

tion (direction x), is L=2 mm in all the cases studied. The gap form between the solid and the 

elastomer surfaces is defined, based on [71, 72], as 
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Fig. 4.47. Smooth elastomer surface penetrating into the valleys of a rigid, rough solid surface 

[71, 72] 

 

Fig. 4.48. Geometry of the lubrication problem for the case of =200 µm, h1-h0=2 µm [69] 

Fig. 4.48 shows the lubrication problem studied for the case of =200 µm, h1-h0=2 µm. In 

Goda’s [69] numerical simulations, the cavitation pressure was assumed to be 0.1 MPa that is 

equal to the ambient pressure. Both the inlet and the outlet of the solution domain were flood-

ed that is the cavitation index was F=1, and the pressure was p=0.1 MPa at these locations. 

Goda’s numerical simulations have been performed under the following conditions: number 

of grid points is 801 which implies that the solution domain was discretized into 800 control 

volumes where the characteristic axial length of a single control volume was 2.5 µm, both the 

flat plate and the sine wave had an ideal smooth surface i.e. their surfaces were regarded as 

ideal smooth at any magnification, dynamic viscosity of the lubricant at atmospheric pressure 

was 0=0.015 Pas and the pressure-viscosity coefficient was = 91020  1/Pa. The variation of 

the lubricant viscosity as a function of pressure is depicted in Fig. 4.49. As it can be seen, 

there is a viscosity increase of 22% as the pressure increases from atmospheric pressure to a 

pressure of 10 MPa. In order to model surfaces as ideal smooth ones their RMS roughness 

was set to be three orders of magnitude smaller than the double of the amplitude of the sine 

wave. 
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Fig. 4.49. Pressure dependency of the lubricant viscosity in Goda’s simulations [69] 

 

Fig. 4.50. Goda’s computed pressure distribution for the case when h1-h0=1 µm [69] 

Fig. 4.50 shows the pressure distributions computed by Goda [69] for the cases when the sine 

wave has a wavelength of =200 µm, =100 µm and an h1-h0 value of 1 µm. Figs. 4.51-4.52 

show Goda’s [69] numerical results for the pressure distribution as a function of axial coordi-

nate at different h1-h0 values for the cases of =100 and 200 µm. As it can be seen, the exten-

sion of the lubricating film having load carrying capacity becomes larger as the amplitude of 

the sine wave decreases at a given wavelength. This implies that the cavitated zones become 

narrower as the amplitude reduces at a given wavelength. Finally, Fig. 4.53 shows Goda’s 

[69] numerical results for the variation of the mean pressure as a function of h1-h0 and in case 

of two different wavelengths. Since the mean pressure can be interpreted as the load carrying 

capacity of the lubricating film we can come to the conclusion that, in the investigated range 

of h1-h0, the load carrying capacity increases as the amplitude of the sine wave decreases 

and/or the wavelength of the sine wave increases. The mean pressure ( p ) is obtained from the 

pressure distributions as follows: 

L

dxxp

p

L


 0

)(

,      (4.30) 

where L denotes the length of the solution domain. The integration in Eq. (4.30) was per-

formed numerically under the assumption that pressure varied linearly between two neighbor-
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ing grid points. The numerical results presented allow us to draw the following conclusions. 

(a) Tendencies of the mean pressure as a function of h1-h0 and wavelength are in good agree-

ment with those of Kozma [71, 72]. (b) Load carrying capacity increases as the amplitude of 

the sine wave decreases and/or the wavelength of the sine wave increases. (c) Location of the 

cavitated zones are physically realistic and are in accordance with the anticipated ones. (d) 

Extension of the cavitated zones at a given wavelength becomes smaller as the h1-h0 value 

reduces. 

  

Fig. 4.51. Goda’s pressure distributions for 

=100 µm (only the first 200 µm segment of 

the solution domain is represented) [69] 

Fig. 4.52. Goda’s pressure distribution for 

=200 µm (only the first 400 µm segment of 

the solution domain is represented) [69] 

 

Fig. 4.53. Mean pressure computed by Goda as a function of wavelength and h1-h0 [69] 

4.5.7. Windscreen wiper application 

In this chapter, the steady-state elastohydrodynamic lubrication problem of wiper 

blade/glass contact is solved using Goda’s mixed friction code. The lubrication problem and 

its solution were reported in Bódai and Goda [10]. Although there are studies dealing with the 

tribology of windscreen wipers in the literature (see studies of Koenen and Sanon [13], 

Deleau et al. [73], and Persson and Scaraggi [63]), only few authors (e.g. Koenen and Sanon 

[13]) made an effort to analyze the effect of real wiper blade geometry on the tribological 

behavior experimentally. Here it must be mentioned that even Koenen at al.’s [13] experi-
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mental study presents only few results on the variation of apparent coefficient of friction as a 

function of sliding velocity, damping ratio of rubber, and the Stribeck parameter. At the same 

time no theoretical study taking into account the real geometry of wiper blade on tribological 

behavior is available in the literature. In order to fill these gaps a commercial wiper blade 

(SWF Duotec+) sliding on smooth glass surface was investigated experimentally and numeri-

cally by Bódai and Goda [10, 64, 75]. It is believed that these studies are able to highlight the 

unique behavior of wiper blade and contribute to the better understanding of tribological be-

havior of wiper lip/glass contact pairs. 

In the windscreen wiper application, a rubber wiper blade slides on smooth glass sur-

face in order to remove the water and/or contaminations from the windshield. From traffic 

safety point of view the windscreen wiper is of great importance because both the too thick 

water film and the presence of contaminants hinder the view of driver. The hyperelastic, time- 

and temperature-dependent material behavior of rubber (see Appendix A), the non-Hertzian 

contact and the presence of water make the tribology of windscreen wipers a challenging re-

search area. Although sliding friction of rubber is an intensively studied research area, up to 

now scientists of the most respected journals in the field of tribology gave considerably less 

attention to the windscreen wiper application. The main objectives of the research efforts are 

to understand wiping action, improve wiping quality, reduce noise generation, and optimize 

tribological behavior of the rubber wiper blade, for instance, by using surface treatments and 

coatings. In one part of the investigations, a small piece of real wiper blade is studied (see e.g. 

Koenen and Sanon’s [13] investigations), while, in the rest, the wiper blade for the sake of 

simplicity is replaced with cylindrical specimen (see e.g. Deleau et al. [73]). The few works 

available in this field of tribology, almost without exception, concentrate on dry and wet spec-

imen-level investigations. At the same time, owing to the combined experimental and theoret-

ical work of Bódai and Goda [64] the first structural-level results have also been appeared in 

the literature. 

In many cases, sliding rubber components (e.g. rubber seals) operate in mixed friction 

state. With the development of tribology and computers, besides experimental investigations, 

different mixed friction models have been appeared in the literature to solve the elastohydro-

dynamic lubrication problem. In order to decrease the complexity of the model, usually it is 

assumed that material behavior of rubber obeys Hooke-law. For simple geometry the defor-

mation of rubber surface is determined analytically, while the application of influence coeffi-

cient matrix is typical in cases when numerical method (e.g. finite element analysis) is used 

for the same purpose. However it must be mentioned that, at present, there is no commonly 

accepted contact theory for handling asperity interactions in mixed friction models. In most 

cases, the Greenwood- Williamson model is used but there are cases when other contact theo-

ry (e.g. Persson’s theory) is preferred (see e.g. Persson and Scaraggi [63]). Unfortunately, the 

prediction of these contact models differs significantly (see Section 4.5.2 and Bódai and Goda 

[64]) especially as the contact pressure increases. It is interesting to mention that while mixed 

friction simulation of seals is extensively studied the adaptation of corresponding numerical 

models for windscreen wipers is considered as a new field of tribology. Besides the works of 

Bódai and Goda [10, 64, 75] only few studies, e.g. the study of Persson and Scaraggi [63] 

where the bended wiper lip is modeled by a rubber cylinder, are available in this field. 

The profile of the wiper blade studied by Bódai and Goda [10] is shown in Fig. 4.54. 

At real windscreen wipers of passenger cars, each point of the wiper blade usually moves on 

circular path whose radius varies typically from r=100…200 mm (inner radius) to 

R=600…800 mm (outer radius). The typical sliding velocity of points close to the inner radius 

is approximately 150 mm/s. However, the sliding velocity at the outer radius is about one or-

der of magnitude higher. 
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Fig. 4.54. Profile of the wiper blade studied (sizes are in [mm]) [17] 

After analyzing operational conditions of real windscreen wipers (five different com-

pact and subcompact passenger automobiles were investigated) it was found that the mean 

normal force per unit length is between 17.5 and 25 N/m. At this point it must be mentioned 

that, in the analyses, it was assumed that the pressure distribution is uniform along the length 

of the wiper blade. However this is an approximation because, in fact, the pressure distribu-

tion is not totally uniform. The investigations on speed of wiping showed that the mean slid-

ing velocity, in the middle of the wiper blade, is about 600 mm/s for slow wiping and 1050 

mm/s for fast wiping. 

According to the work of Allen [74] the average contact angle (the angle at which the 

liquid/vapor interface meets the solid surface) between the clean glass surface and a water 

drop - identified by sessile drop test - is less than 30
o
 thus the water is able to wet the glass 

surface. In other words, the clean glass surface is highly hydrophilic. A contact angle less than 

90° usually indicates that the solid is hydrophilic and the water wets the solid. This good wet-

tability is one of the essential elements of the hydrodynamic effect. As it is well known the 

increased wetting establishes boundary layer lubrication condition that eliminates solid-solid 

contact of the rubber with the glass. 

The small strain viscoelastic behavior of the rubber wiper blade was studied by dy-

namic mechanical analysis (DMA). The DMA test (see Bódai and Goda [10]) was performed 

in compression mode with strain amplitude of 0.01%. The static preload acting on the speci-

men (21.7 x 3.75 x 1.32 mm) was 0.1 N. The temperature-dependent (Tmin= -100°C, Tmax= 

100°C) storage modulus, loss modulus and loss factor of the rubber was measured at frequen-

cies of 1, 10, and 100 Hz. Fig. 4.55 shows the temperature dependent material properties of 

the wiper blade at f=10 Hz. The results indicate that the glass transition temperature is about -

50°C while the highest value of loss factor is 0.6. The hardness of the wiper blade was 45 

Shore A which had been measured by Mitutoyo Hardmatic HH-300. 

wiper lip 
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Fig. 4.55. Temperature dependent storage modulus, loss modulus and loss factor of the rubber 

wiper blade studied by Bódai and Goda (f=10 Hz) [10] 

In the present simulations, the real inhomogeneous (SWF Duotec is made of two dif-

ferent rubbers) wiper blade was modeled as a homogeneous one because the material proper-

ties of the different components were not available. Elastic modulus of the homogeneous wip-

er blade was determined from a fit to the measured force-displacement curve of the wiper 

blade. As reported by Bódai and Goda [10], at a modulus of E=4.5 MPa the simulated force-

displacement curve agrees well with the measured one. The agreement, however, degrades as 

the wiped lip becomes strongly deformed. It must also be mentioned that the numerical simu-

lations of the author do not take into consideration the effect of surface treatments/coatings. 

The only reason why this effect was not involved in the simulations is that no data were avail-

able for the modulus and the thickness of the surface layer on the wiper lip influenced by sur-

face treatment. At the same time this effect could be considered easily in the elaborated nu-

merical models if the data mentioned above were available. 

In the simulations of Bódai and Goda [10, 75], Salant et al.’s [41] approach is adopted 

where the deformation of rubber component is computed through a separate FE model. With 

this approach one can take into consideration the real geometry of wiper blade and it is not 

needed to replace it, for example, with a half cylinder as it is done by Persson and Scaraggi 

[63]. In the mixed lubrication regime, one part of the normal load is carried by the water film, 

while the rest is carried by asperity contacts. Since the length of the wiper blade is much larg-

er than the width of the nominal contact area, the fluid pressure is computed from the one-

dimensional, steady-state Reynolds equation (water being assumed to be Newtonian, isother-

mal and incompressible) with pressure independent viscosity. In other words, the numerical 

value of pressure-viscosity coefficient is close to zero thus the water is considered to be an 

iso-viscous liquid. In each step of the iterative computational procedure the contact pressure 

and the fluid pressure were computed for a given film thickness distribution. The fluid me-

chanics problem (Reynolds equation) was solved numerically by the finite difference method. 

Using this technique the nominal contact area was discretized and the differential (Reynolds) 

equation was substituted by a system of algebraic equations. In Bódai and Goda [10], a one-

dimensional mesh with 71 nodes was used. The sum of the contact and fluid pressure was 

assumed to be known and equal to the static contact pressure computed by FE technique be-

cause the hydrodynamic pressure is negligible in comparison to the static pressure. At the end 

of each iteration step the deformation of the wiper blade induced by the difference between 

the sum of fluid and contact pressure and the FE static contact pressure was computed. As a 

last step the film thickness distribution was updated. This was done iteratively until the film 
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thickness converged i.e. the difference between the sum of fluid and contact pressure and the 

FE contact pressure disappeared. As measurement results of Bódai and Goda [10] show, if the 

sliding speed is close to 100 mm/s, then the apparent coefficient of friction is essentially con-

stant at a normal load per unit length of 37.5 N/m. This indicates that a thin water film sepa-

rates the wiper lip from the glass. Here the FE contact pressure distribution computed at a 

normal load per unit length of 37.5 N/m and an apparent coefficient of friction of =0.16 

(measured at sliding velocity of 150 mm/s by Bódai and Goda [10]) is used for simulation 

purposes. The effect of surface roughness on the fluid flow was taken into consideration 

through flow factors. Additionally, the rubber surface was considered to be rough (isotropic 

Gaussian roughness) while the glass surface was treated as ideally smooth, rigid one. As input 

data the following parameters were used: elastic modulus and Poisson ratio of rubber (E, ν), 

sliding velocity (v), dynamic viscosity of the water (η), asperity radius (R), RMS roughness of 

rubber (σ), and asperity density (  ). The asperity radius can either be measured or estimated. 

It is important to mention that the pressure was measured relative to the atmospheric pressure. 

Fig. 4.56a shows the numerical results of Bódai and Goda [10] for the contact and flu-

id pressure distributions. The nominal film thickness distribution computed is depicted in Fig. 

4.56b. The gap between the mean surfaces of the contacting bodies first converges (this is 

where the water enters into the gap) then diverges. According to this, cavitation occurs at x 

coordinates above 0.05 mm where the gap is diverging. In the current simulations, the cavi-

tated region of contact area is characterized by zero fluid pressure. The fluid pressure reaches 

its maximum value at x=0.017 mm which is in the middle of converging gap region. Howev-

er, the contact pressure is higher with orders of magnitude than the fluid pressure (the peak 

value of the asperity-type contact pressure is 0.8 MPa while that of the fluid pressure is lower 

with three orders of magnitude) which proves that the sliding velocity is not high enough to 

cause full film lubrication. Therefore it can be concluded that the gap is controlled by the sol-

id-solid contact. 

 
 

(a) (b) 

Fig. 4.56. (a) Contact and fluid pressure distribution, and (b) average film thickness (E=4.5 

MPa, ν=0.49, v=150 mm/s, η=0.001 Pas, R=1 m, σ=1 m,  =10
13

 m
-2

) reported by Bódai 

and Goda [10] 

The simulation results make it probable that a thin water film is responsible for the 

relatively low friction force (thin film lubrication). For the sake of clarity it must be men-

tioned that the film thickness computed (see Fig. 4.56b) represents the gap between the mean 

surfaces of the contacting bodies but not the real, local gap. The thickness of the water film 

reported by Deleau et al. [73] is at least one order of magnitude lower than the film thickness 

computed here. Independently of the fact that the film thickness computed and the actual (lo-

cal) thickness of the thin lubricating film are different, the predictive capability of frequently 
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used contact laws must be studied in depth in the near future because, as reported by Bódai 

and Goda [64], they provide drastically different results for the separation. Based on this it 

seems the present simulation overestimates the mean gap between the contacting surfaces 

(mean film thickness or mean water gap between surfaces). Nevertheless it is believed that the 

mixed friction model presented here will motivate further studies in the simulation of lubrica-

tion state of wiper lips. Further simulation results on mixed friction of windscreen wiper lips 

are not presented here but are available in Bódai and Goda [75]. 

As it is well known, the magnitude of adhesive force that can arise in lubricated con-

tacts is not significant. However, the capillarity introduces additional friction effect (defor-

mation and shearing of capillary bridges) into the sliding friction of windscreen wipers if ca-

pillary bridges appear between the contacting solid surfaces. Capillary forces are of great im-

portance because water has very high surface tension. The magnitude of surface tension de-

pends, among others, on the temperature and the properties of the solid surfaces. In Bódai and 

Goda [10], both the wiper lip and the glass surface were cleaned before each test. However, in 

reality, neither the windscreen nor the wiper lip is clear which may modify surface tension 

significantly. In wet friction, a thin film of adsorbed water is always present on the solid sur-

faces. At low sliding velocities i.e. in the boundary lubrication regime the adsorbed water film 

is very thin (few molecules thick). The density and viscosity of this adsorbed layer are differ-

ent from those of the bulk water at the same temperature and pressure. On the basis of all this, 

it can be concluded that water adsorption plays critical role in the tribological behavior of 

wiper lip. 

Due to the complexity of the elastohydrodynamic lubrication problem of wiper lip a 

number of simplifying assumptions have been introduced in the model presented. The most 

important characteristics of the model are as follows: (a) adhesion and capillary effects are 

neglected, (b) the drastically varying asperity (local) contact pressure is replaced with a local-

ly averaged contact pressure which is related to the local mean gap, (c) the effect of solid-

solid or fluid-solid interaction induced deformation of asperities on the average fluid flow is 

neglected (Patir and Cheng model), (d) the contact of rough surfaces is treated by the Green-

wood-Williamson contact model. 

4.5.8. Sealing application: O-ring 

The work presented in this chapter focuses on the primary sealing interface (nominal 

contact area between the rod and the seal) of reciprocating O-rings and has been reported in 

Goda [12] and Goda and Bódai [78]. By using Goda’s [69] mixed friction code both the pres-

sure distribution within the lubricating film, and the amount of fluid flow transport during 

outstroke and instroke (their difference defines the amount of leakage) have been predicted. 

As it is well known seals can be divided into two categories: (a) seals with a preset, 

fixed clearance, and (b) seals where the face separation is dynamically controlled. In the first 

case, the clearance is bounded by the rigid surfaces and a preset sealing gap is formed. In the 

second case, the seal is designed to reduce the film thickness automatically as sealed pressure 

increases. As explained by Müller and Nau [76] O-rings belong to the category of seals where 

the film thickness is dynamically controlled. In dynamically controlled seals (contact seals) 

the leakage path is completely closed by solid contact between the mating surfaces, at least so 

long as the sealing faces are stationary. When they begin to slide, relative to each other, vari-

ous factors cause the sealing surfaces to separate slightly and an interfacial fluid film to form. 

Such dynamic fluid films usually have thicknesses in the range 0.1 to 1 µm, which is compa-

rable to the roughness and waviness of the sealing surfaces. The film dimension in the sliding 

direction (direction of leakage flow) is much greater than its thickness; it is in mm order of 

magnitude. Since oil and water molecules are no more than about one nanometer across, fluid 

molecules are still very small compared to the thinnest dynamic films. Hence even in such 
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very thin films the laws of fluid continua (conventional hydrodynamic laws) are still valid as 

concluded by Müller and Nau [76]. When the mating surfaces are separated by only a few 

molecule thick layer, boundary interaction has to be taken into account. In the boundary lubri-

cation regime, surface chemistry effects dominate. If the contacting surfaces slide on each 

other, the viscous fluid is drawn along by the moving surface, just as in a hydrodynamic bear-

ing. The results of this is that the fluid pressure increases in regions where the film converges, 

lifting the faces apart. In reciprocating rubber seals, the mating seal faces can be separated by 

a hydrodynamic fluid film maintained in this way. Although the seal faces may be in contact 

when at rest, they can be separated when in motion, due to the hydrodynamic effect. In recip-

rocating applications, the leakage rate is predictable and is governed by the pressure differ-

ence and the relative motion. The leakage flow rate during outstroke (the rod moves from the 

sealed pressure region to the ambient pressure one) does not equal to the real leakage because 

rod seals have an inherent ability for inward pumping (pumped return flow) during instroke. 

Under optimal conditions, such inward pumping can prevent leakage. Net leakage is defined 

as the difference between fluid transports during outstroke and instroke. 

In order to predict the film thickness distribution, the leakage rate and the friction 

force of reciprocating rubber seals, in most cases, the EHL (elastohydrodynamic lubrication) 

theory is used in which full film lubrication and smooth sealing surfaces are assumed. How-

ever experiments did not proved its adequacy. The measured leakage rate and friction force 

did not agree with simulation results and the measurements showed that instead of full film 

lubrication mixed lubrication is present through part of the sealing interface and the seal 

roughness has an effect on the seal behavior. One of the most promising models which try to 

overcome these problems by considering both the mixed lubrication and the effect of surface 

roughness is that of Salant et al. [41]. While simulations made by Salant et al. resulted in 

leakage if the roughness of the seal was above a critical one, the conventional EHL theory 

predicted zero leakage for the same seal. In Salant et al.’s model [41], the surface roughness 

of the rod is neglected, while that of the seal lip is taken into consideration. The authors em-

phasize that this assumption is reasonable because during the run-in period, the rod is polished 

to a very smooth finish; consequently the rod surface roughness is typically one-tenth of that 

of the seal surface. The frictional shear stress arising at the contacting asperities was comput-

ed by using an empirical friction coefficient of µ=0.25. In a recent paper of Wohlers et al. 

[45], a similar mixed friction model is presented for reciprocating O-rings. In order to prove 

the simulation results experimental results were also reported by Wohlers et al. for the case 

where the oil is not pressurized (zero sealed pressure). The resulting friction forces from ex-

periment and computation were compared for the same conditions. In the computation a con-

stant friction coefficient of μ = 0.5 was used for the solid-solid contact related friction com-

ponent which is computed using the hysteresis friction theory of Persson [3]. In order to treat 

the solid/solid contact in the mixed lubrication regime Persson’s contact theory [65] was 

adopted by Wohlers et al. [45]. The experiments presented for hydraulic reciprocating seal 

(U-cup seal made of polyurethane) by Bullock et al. [77] also showed that the measured fric-

tion levels to be at least an order of magnitude greater than predicted by elastohydrodynamic 

theory. This indicates that theoretical models on full film lubrication are inadequate. Bullock 

et al. [77], however, found a reasonable experimental agreement for the outstroke friction 

predicted by the adopted Greenwood-Williamson-average Reynolds simulation whose physi-

cal concept is the same as used by Salant et al. [41] for lip seals. At the same time the high 

friction levels simulated during instroke did not appear in the measurements. Finally, they 

concluded that inclusion of the Greenwood-Williamson (GW) contact model allows friction 

levels in the correct order of magnitude to be predicted. 

Goda’s [69] mixed friction code (see Section 4.5.3) makes it possible to study the 

steady state behavior of different hydraulic seals. It is valid for applications in which the 
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stroke length is significantly larger than the primary sealing interface (nominal contact area 

between the seal and the rod). Typical output are the pressure distribution within the lubricat-

ing film (fluid pressure), the pressure distribution due to asperity contacts (contact pressure), 

the amount of fluid flow transport during outstroke and instroke and the magnitude of the fric-

tion force. Here Goda’s computer code was used to study the hydraulic O-ring of 8 x 1.5 mm. 

As a first step the static contact pressure distribution of the mounted in, pressurized O-ring 

was computed by FE technique. For this purpose an axisymmetric FE model has been devel-

oped in MSC.Marc. Surface roughness of the seal and the thin lubricant film between contact-

ing surfaces are not being considered here but are included in a later phase of the simulation 

process. The sealed pressure is applied to non-contacting elements of the seal while the effect 

of friction force on the contact pressure distribution is neglected. In other words, the contact 

between the seal and the rod is assumed to be frictionless in this FE model. Fig. 4.57 shows 

the O-ring before mounting in and after it under the sealed pressure (psealed=6 bar and it acts 

on the left side of the O-ring) as reported by Goda and Bódai [78]. On the right side of the O-

ring atmospheric pressure (pa=1 bar) is present. The static contact pressure distribution and 

the static film thickness distribution provided by Greenwood-Williamson’s contact law were 

reported by Goda and Bódai [78] and can be seen in Fig. 4.58. The length of the contact area 

was 0.798 mm. All the simulations were performed with the following parameters: RMS 

roughness of the seal is m 4.0 , asperity radius is mR 1 , asperity density is 
213 /110 m , elastic modulus of the O-ring is MPaE 10 , Poisson ratio of the seal is 

48.0 . For the sake of simplicity here it is assumed that the seal obeys Hooke’s law. 

In order to compute the radial deformation of the O-ring under a given pressure distri-

bution the influence coefficient method was used. The influence coefficient method takes into 

consideration the effects of the forces at all nodes of the contact area on the deformation at a 

given node. In the present case, the number of nodes located within the contact area was 41, 

which implies that the distance between two neighboring nodes was 19.966 µm. The elements 

of the influence coefficient matrix (Iik) have been computed by FE technique as described in 

Goda and Bódai [78]. Iik represents the deformation at node i produced by a unit pressure at 

node k. 

  
(a) (b) 

Fig. 4.57. FE model of the O-ring: (a) initial state, (b) after mounting in and under sealed 

pressure [78] 
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Fig. 4.58. Static contact pressure and static film thickness distribution computed by Goda and 

Bódai [78] 

The leakage simulation was performed under the following conditions: (a) sliding 

speed during in- and outstroke is U= 50 mm/s, (b) dynamic viscosity of the fluid at atmos-

pheric pressure is 0= 0.02 Pas, (c) pressure-viscosity coefficient is α= 2010
-9

 1/Pa, (d) both 

the inlet and the outlet of the solution domain are flooded i.e. the cavitation index is F=1 at 

these locations, (e) the cavitation pressure is assumed to be 0.1 MPa that is equal to ambient 

or atmospheric pressure. The comparison of the static film thickness and the film thickness for 

in- and outstroke was reported in Goda [12] and is shown in Fig. 4.59. As it can be seen the 

nominal lubricant film thickness during outstroke is larger than during instroke. The comput-

ed contact and fluid pressure distribution during in- and outstroke were firstly presented by 

Goda [12] and are depicted here in Fig. 4.60. During outstroke there is a cavitated region 

within the nominal contact area where the fluid pressure equals to the atmospheric pressure. 

At x=0.12 mm, the fluid pressure reaches its maximum value of 0.76 MPa. The computed 

fluid flow transport (volumetric flow rate per unit circumferential length) during outstroke 

was 0.0124 mm
2
/s. As the diameter of the rod is 8 mm this fluid flow value corresponds to a 

flow rate of 0.312 mm
3
/s. In case of instroke (see Fig. 4.60), there is no cavitation within the 

nominal contact area and the maximum fluid pressure is equal to the sealed pressure (0.6 

MPa). Furthermore the fluid pressure is lower than or equal to the sealed pressure at every 

point of the nominal contact area. The computed fluid flow transport (volumetric flow rate per 

unit circumferential length) during instroke was 0.0107 mm
2
/s which corresponds to a flow 

rate of 0.269 mm
3
/s. As the leakage is interpreted as the difference between the fluid flow 

transport during out- and instroke the leakage rate has a value of 0.043 mm
3
/s (see Table 4.4). 

All the results show that the O-ring studied here operates in the mixed lubrication regime dur-

ing in- and outstroke. 

As an illustration, Fig. 4.61 shows the film thickness, fluid and contact pressure distri-

butions computed during outstroke for a sliding speed of 100 mm/s. As anticipated, due to the 

hydrodynamic effect the fluid pressure values are higher than at sliding speed of 50 mm/s. At 

this higher sliding speed the fluid flow transport has a value of 0.618 mm
3
/s. Similar to the 

lower speed the cavitation is present, but here the cavitated region is wider. In order to study 

the effect of sliding velocity its magnitude was varied (10, 50, 100, 200 mm/s) during the 

simulations. Dependence of film thickness, contact and fluid pressure on sliding velocity can 

be seen in Fig. 4.62. As expected the film thickness increases as the velocity increases (in-

creased hydrodynamic effect). Contrary the film thickness is practically insensitive to the 

change in sliding velocity at the ambient pressure side of the sealing interface which indicates 
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(in accordance with the fluid pressure distribution) cavitation in this region. In the cavitated 

region, the fluid pressure equals with the ambient pressure. However extension of the cavitat-

ed region decreases with the decreasing sliding velocity. It can also be concluded that the in-

creasing sliding velocity increases the highest value of fluid pressure and shifts it toward the 

ambient pressure side. Furthermore, in the cavitated region, the contact pressure is equal to 

the static contact pressure but as the cavitation disappears the fluid film significantly decreas-

es the dominancy of asperity contact (see Fig. 4.62b). Fig. 4.63 proves that the effect of vis-

cosity is similar to that of sliding velocity. The increased viscosity induces increased fluid 

pressure (hydrodynamic effect) and contributes to the extension of the cavitated region. Natu-

rally, any increase in fluid pressure involves decreasing of the contact pressure. 

 

Fig. 4.59. Comparison of the static film thickness and the film thickness for instroke and out-

stroke as reported by Goda [12] 

  

(a) (b) 

Fig. 4.60. Film thickness, fluid pressure, contact pressure and static contact pressure distribu-

tion during (a) in- and (b) outstroke [12] 

Fluid flow transport 

[mm
3
/s] 

Leakage 

[mm
3
/s] 

Outstroke Instroke 

0.312 0.269 0.043 

Table 4.4. Fluid flow transport (volumetric flow rate) values for outstroke and instroke as 

reported by Goda [12] 
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Fig. 4.61. Film thickness, contact and fluid pressure distributions during outstroke (sliding 

velocity is 100 mm/s) [78] 

  

(a) (b) 

 
(c) 

Fig. 4.62. Effect of sliding velocity on the (a) film thickness, (b) contact pressure and (c) fluid 

pressure during outstroke (dynamic viscosity is 0.02 Pas) [78] 
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(a) (b) 

Fig. 4.63. Effect of dynamic viscosity on the (a) film thickness, and (b) contact/fluid pressure 

during outstroke (U= 50 mm/s) [78] 

5. Numerical modeling of wall (macro-scale) friction in 
hoppers/silos using simple law of friction at the particle- 
(micro-) scale: Discrete modeling approach 

The discrete modeling approach means the application of the Discrete Element Meth-

od (DEM). Unless otherwise specified, here the term Discrete Element Method refers to the 

three-dimensional Distinct Element Method, where the computational domain consists of rig-

id spheres (ball-type model) with compliant contacts. Consequently the interpenetration (over-

lapping) of rigid spheres is allowed („soft” particle model) which can be interpreted as local 

deformation of the contacting spheres. The distinct element method was originally developed 

by Cundall in 1971 for the analysis of rock mechanics problems and then applied to soils by 

Cundall and Strack [79] in 1979. However, it must be mentioned that, in the literature, the 

term discrete element method includes various techniques where not only the geometry 

(spheres, polyhedral, etc.) and the behavior (rigid or deformable) of the elements but also the 

computation of the contact forces may be different. The common characteristics of these 

methods are as follows: the computational domain consists of rigid or deformable elements 

(particles), the contacts between particles are detected continuously, and the forces between 

interacting particles are computed by simple contact laws. 

5.1. Fundamentals of DEM 

In contrast to continuum mechanical models, the discrete element method models the 

material as an assembly of rigid overlapping particles being in interaction with one another. 

Discrete element modeling intends to follow the motion of all the particles and detection their 

collisions with other particles and with the environment (rigid, moving and non-moving 

walls). In order to calculate the motion of each particle, all the forces acting on a particle are 

summed and the resulting equations of motion are numerically integrated. As reported by 

Candall and Strack [79] if the time step is chosen sufficiently small, it can be assumed that 

during each time step the instantaneous motion of a particle is determined only by its immedi-

ate neighbors it is in contact with. This assumption greatly reduces the computer memory re-

quirement. 

Each particle has two types of motion: translational and rotational. These motions can 

be described by Newton´s second law given by 
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   gmFFvm tn ,    (5.1) 

 M  ,      (5.2) 

where m,  , v  and   are the mass, tensor of mass moment of inertia, velocity vector and 

angular velocity vector of the particle, respectively. The forces considered in Eq. (5.1) are the 

gravitational force vector gm , and the contact force vectors in normal ( nF ) and in tangential 

direction ( tF ). Naturally, additional forces can also be added to them if it is needed. The 

moment vector M , is generated by tangential contact forces and causes the rotation of the 

particle, because the contact forces act at the contact point and not at the particle center. Gen-

erally, each particle is in contact with several other particles or wall elements, therefore all the 

contact forces acting on a particle must be summed. This operation is indicated by index i and 

the summation symbol. The dot in equations (5.1-5.2) denotes the derivative with respect to 

time. The suffixes n and t mean the components corresponding to the normal and the tangen-

tial direction, respectively. 

The particles are permitted to overlap with one another while normal and tangential 

contact forces are developed due to the normal and tangential contact laws (force-overlap or 

force-displacement contact laws). The derivation of a proper law for the tangential contact is 

usually very challenging because the tangential contact force may be normal contact force and 

history dependent. At the same time, the normal contact forces may depend on both amount 

and time rate of change of the overlap (deformation). In order to obtain DE models being rep-

resentative of the reality the parameters of the contact laws used must be determined from a 

fit to calibration tests. 

5.2. Application of the discrete modeling approach in numerical tri-
bology 

Continuum mechanics-based numerical methods are widely used in engineering to 

model contact mechanics problems, analyze flow of lubricant, simulate frictional heat genera-

tion, etc. At the same time, whilst several studies prove that the discrete modelling approach 

is very powerful for studying static and dynamic behavior of granular materials its application 

for contact mechanics is less known. The aim of this subchapter is to give a short overview on 

the application of discrete modelling approach in contact mechanics. 

The contact problem of nano-asperities, in several cases, is studied by Molecular Dy-

namics (MD) simulation which is an extensively used technique of theoretical physics [87]. 

However, in MD simulations, instead of inter-particle forces inter-atomic forces are computed 

and summed up before solving Newton’s second law of motion. In [80], Anciaux and Moli-

nari treat the 3D contact at nano-scale by using molecular dynamics simulation for interac-

tions of nano-asperities (atomic domain) and finite element technique for long range elastic 

interactions (continuum mechanics domain). The multi-scale coupling method developed for 

contact problems was validated on Hertzian and rough surface contacts. In [81], Jerier and 

Molinari apply the discrete element method for studying the normal contact between a rigid 

rough (fractal) surface and an elastic body modeled by spheres. The authors of [81] came to 

the conclusion that the DEM holds some promise to study contact mechanics. Kargulewicz et 

al. [82] found that the DEM is a promising method to study magnetorheological (MR) fluids 

at the microscopic and macroscopic scales as an aid to tribological design. MR fluid is de-

fined in [82] as a suspension composing of microscopic iron particles suspended in a carrier 

fluid and having increasing viscosity due to an external magnetic field. Molecular dynamics 

simulations of Yang and Persson [67] show that numerical results (contact pressure distribu-

tion, real contact area, interfacial separation) for the contact between a rigid solid with a ran-
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domly rough surface and an elastic block with a flat surface are in good agreement with the 

predictions based on continuum contact mechanics. In order to avoid the computationally very 

expensive simulations (very high number of atoms) a multi-scale modeling approach is pro-

posed. Due to limitations of continuum mechanics models, in [83], Fillot et al. developed a 

two-dimensional discrete element model to study the flows of third body (detached) particles 

inside a contact. As the numerical model developed does not allow for particles to leave the 

contact a stable layer of detached particles forms after a certain degradation time. In order to 

add the possibility for the particles to leave the contact Fillot et al. [84] propose a three-

dimensional discrete element model. It is able to model wear through the simulation of de-

tachment of particles, their flow in the contact and their ejection. The authors came to the 

conclusion that the classical wear laws (such as Archard’s law), assuming that no particle 

stays in the contact can be considered as a limit case of their model. Mollon [85] applies the 

concept of Discrete Element Modeling for simulation of friction and wear of rough surfaces. 

In order to illustrate the capability of the numerical framework using Voronoi polyhedrons for 

the prediction of friction force and third-body flow pattern a three-dimensional simulation has 

been performed. Besides emphasizing the importance of proper model calibration the author 

mentions that researchers dealing with numerical tribology make considerable effort to per-

form multi-scale modeling through the coupling of DEM and FEM and to incorporate the 

effect of heat in the discrete models. As it is mentioned by Renouf et al. [130] many variants 

of the discrete element method are used in tribology. They are frequently applied to simulate 

the flow of the interface (third body) separating the bodies in contact. Contrary to continuous 

approaches where conservation principles are used to model the flow of third body, in the 

discrete approach equations of motion and laws for computation of inter-particle forces are 

adopted. In [130], Renouf et al. noted that the numerical particle, in many cases, represents 

elementary volume but not real particle. 

5.3. Implementation of the discrete element method in 3D 

The study of wall friction with the aid of the discrete element (DE) technique cannot 

be imagined without efficient and reliable computer code. The three-dimensional discrete 

element simulations presented in this thesis have been conducted with the aid of a computer 

code implemented by Goda [93] in C++. The computational algorithm implemented is based 

on Cundall and Strack’s [79] time stepping explicit scheme where the modeling of the motion 

and interaction of arbitrarily-sized spherical particles involves the execution of many thou-

sands of time steps. At each step, Newton’s second law is integrated to obtain updated veloci-

ties and new positions from the forces acting on the particles. The contact forces governing 

both the translational and rotational motion of particles are computed from normal and tan-

gential contact laws. In order to develop a simulation tool which is competitive with commer-

cial discrete element software the author of this thesis made his computer code suitable for 

input data processing, numerical model specification, graphical visualization, output data pro-

cessing and graphical/text file creation. The main aim of this chapter is to give insight into the 

implementation process of this general purpose simulation tool. 

Basic assumptions of the computational algorithm implemented are as follows. (a) 

Particles are rigid bodies and are permitted to overlap with one another (soft contact ap-

proach). (b) Contacts occur over a vanishing small area (point contact). (c) The amount of the 

overlap is related to the contact force via the force-overlap (force-deformation) contact law. 

(d) The time step chosen is so small that the forces acting on any particle are determined ex-

clusively by its interaction with the particles and walls it is in contact with. (e) The wall ele-

ments do not interact with one other, they only interact with particles. The most important 

characteristics of walls (wall elements) are as follows. (a) Planar walls with three or four edg-

es are used (see Fig. 5.1). (b) Only one side of the wall is considered to be active. (The unit 
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normal vector n  of the planar wall identifies the active side of the wall which can handle the 

ball\wall interaction.) (c) Walls may be activated and deactivated at any time instant of simu-

lation. (d) The position of the walls is fixed. (Dynamic walls and walls constructed from par-

ticles are not realized yet.) (e) The active side of the wall is defined by the numbering (label-

ing) of vertices (right hand rule). 

  

Fig. 5.1. Planar walls with three and four edges 

The particles and walls interact with one another via the forces arisen at the contacts. 

However the position of the walls is specified by the user i.e. forces acting on a wall do not 

influence its position. The contact force arisen between two particles or a particle and a wall is 

decomposed into normal component acting in the direction of the unit normal vector and 

shear (tangential) component acting in the common contact plane. The contact laws relate 

these two components of contact force to the corresponding components of the relative dis-

placement via the normal and shear stiffness of the contact. 

The current version of the program operates in menu-driven mode on any IBM-

compatible computers running Microsoft Windows operating system. Graphics facilities im-

plemented in the code allow wireframe and solid-rendered plots to be generated at any time 

instant (see Figs. 5.2 and 5.3). The graphical user interface allows the user to view the simula-

tion space or its certain part at any stage of the simulation. The model can be magnified on the 

screen for optimum viewing and all the plotted output can be saved in bitmap files. Addition-

ally, simulation results may be saved in output files for later visualization or processing. The 

smallest possible model that may be analyzed with the program consists of a single particle. 

Most problems, however, are defined by assemblies of hundreds or thousands of particles. If 

two particles are collided, then a point contact forms. Each particle can touch several other 

particles while the number of contacts can change dynamically as the particles move. The user 

can specify the numerical model via a data (input) file. This file is created by the user and 

contains commands, geometrical sizes, parameter values, etc. needed for the definition of dis-

crete element model. The mapping of 3D simulation space onto 2D is realized using both par-

allel and perspective projection. From particles color or grayscale-rendered while from walls 

solid-rendered, wireframe or combined plots can be generated at any stage of the simulation 

(see Fig. 5.3). Techniques and methods of computer graphics used here can be found in 

Szirmay-Kalos’s book [86]. Main advantage of this approach is that it yields a standalone 

computer code where it is not needed to use external software for graphical visualization. 

Normal components of the contact forces are displayed graphically through force lines (see 

Figs. 5.4 and 5.5). The widths of the lines are proportional to the magnitudes of the forces. In 

case of particle-particle contact, the color of force line is blue and their length is equal to the 

sum of the radii of the contacting particles. For particle-wall contact the force lines have red 

color and their length is equal to the distance between the particle center and the contact point. 
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Fig. 5.2. Color-rendered plot of particles and walls. Snapshots from the discrete element soft-

ware developed. 

   

(a) (b) (c) 

Fig. 5.3. (a) Wireframe, (b) solid-rendered and (c) combined plot of walls. Snapshots from the 

discrete element software developed. 

 
(a) 

 
(b) 

Fig. 5.4. Plots of contact forces (a) with and (b) without particles. Snapshots from the discrete 

element software developed. 
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(a) (b) (c) 

Fig. 5.5. (a) Free falling spherical balls approaching a wall element, (b) contact forces arisen 

at time instant 1t , (c) steady-state contact forces. Snapshots from the discrete element soft-

ware developed. 

In order to detect the contacts the simulation space is divided into 3D (cubic) cells (see 

Fig. 5.6). This method is known in the literature as link-cell or grid method. The size of the 

grid cells is equal to or slightly larger than the diameter of the largest particle. If the center 

point of a particle is within a given cell then the particle is assigned to the cell. This approach 

allows us to identify the interacting particles through the investigation of particles assigned to 

the neighboring cells only. 

 

Fig. 5.6. Division of the simulation space into cubic cells. Snapshot from the discrete element 

software developed. One part of cells is visualized only. 

To set up a model and run a simulation it is required to specify the particles (In the 

current version of the program, creation of new particles and/or removing of already existing 

particles may be realized at any time instant of the simulation.), the normal and tangential 

contact law, the material properties and the boundary conditions (wall elements). The re-
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sponse of the assembly is studied by adjusting the parameters at particle and contact level. 

The constitutive behavior is then derived automatically from the contact model and the mate-

rial properties. When the particle interacts with another particle (particle-particle contact) or 

with wall element (particle-wall contact) contact force arises. The contact occurs at a single 

point through which the contact force acts. The role of the contact model is to describe the 

physical behavior occurring at a contact. Although a particle assembly may exhibit complex 

nonlinear constitutive behavior, it is achieved through the use of relatively simple contact 

laws incorporating stiffness properties (normal and shear stiffness). When the shear compo-

nent of the contact force reaches the maximum allowable shear contact force (defined as the 

coefficient of friction of the contacting objects multiplied by the magnitude of the clamping 

force) the objects in contact slide relative to one another (sliding phase). 

In order to integrate the equations of motion governing the translational and the rota-

tional motion of particles the method of central differences (Feynman-Newton method) with a 

fixed time step t is used. Most important advantage of this method is the fastness and the 

great accuracy. The method can be summarized as follows: the position of a particle is com-

puted at the end of a time step by using the velocity in the middle of a t interval. 

t)t
2

1
t(v)t(x)tt(x  ,   (5.3) 

where x(t) is the particle position at time t. In order to find the velocity halfway through the t 

interval, the following equation is used: 

t)t(a)t
2

1
t(v)t

2

1
t(v  ,   (5.4) 

where a is the acceleration of the particle. To start the calculation, the following equation can 

be used: 

2

t
)0(a)0(v)t

2

1
(v


 .    (5.5) 

In order to compute the contact forces simple contact laws are implemented. When two 

particles or a particle and a wall are in contact, the normal component of the contact force is 

given by the Hertz-Kuwabara-Kono equation [87] derived for viscoelastic materials (nonline-

ar spring resulting in repulsive (Hertz) force connected parallel with viscous dissipation re-

sulting in velocity-dependent damping): 

n

2/1

nn

2/3

nnn vkF  ,    (5.6) 

where kn is a stiffness parameter connecting to the material properties, n is the overlap be-

tween the contacting entities, n is a damping parameter characterizing the inelastic behavior 

and vn is the normal component of the relative velocity defined at the contact point. As report-

ed by Schäfer et al. [87] this normal contact law gives velocity dependent collision time and 

decreasing coefficient of normal restitution (ratio of the relative normal post-collisional and 

pre-collisional (initial) velocity) with increasing initial relative normal velocity in agreement 

with experimental results. Since the cohesion is not taken into consideration in the current 

version of the computer code, the normal contact force computed is always repulsive. As the 

reduced mass ( effm ) is not involved in the damping term of Eq. 5.6 the contact model is una-

ble to take into consideration the mass dependence of the coefficient of normal restitution as it 

is concluded by Schäfer et al. [87]. The tangential contact law implemented takes into consid-

eration both the tangential elasticity and the Coulomb friction law. The former allows coeffi-

cient of tangential restitution (ratio of the relative tangential post-collisional and pre-
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collisional velocity) to be not only positive but also negative while the latter limits the magni-

tude of the tangential (friction) force. The negative coefficient of tangential restitution indi-

cates that the direction of the tangential velocity is changed during the collision. The tangen-

tial contact law implemented may be written as ([87]) 

tttt

*

t vkF  ,     (5.7) 

where kt and t are the stiffness and elongation of a “virtual” spring, t is a damping constant 

and vt is the tangential component of the relative velocity defined at the contact point. At this 

point, however, it must be mentioned that the damping constant t  has no clear physical in-

terpretation [87]. In order to obtain a non-zero friction force at rest (when vt=0), a “virtual” 

tangential spring (”Cundall spring” [79]) is located between the contacting entities when two 

particles or a particle and a wall start to touch one another. The total elongation of this spring 

is set to zero at the initiation of the contact and then it is integrated over the entire collision 

time: 

    


 

i

1i

t

t

t1itit dtvtt .    (5.8) 

When contacting entities are no longer in contact with one other the “virtual” spring is 

removed. According to the Coulomb criterion, the maximum possible value of the frictional 

force, however, is proportional to the normal (clamping) force multiplied by the dynamic co-

efficient of friction . Consequently, the tangential contact law may be written as 

)F)vsgn(,Fmin(F nt

*

tt  .    (5.9) 

In the case of sliding, the elongation of the tangential spring is frozen at a value of 

Fn/kt that is in accordance with the Coulomb criterion. As it is pointed out by Schäfer et al. 

[87] the normal and tangential contact laws used here give results being in agreement with the 

experimental results as long as the model parameters are selected with care. [87], among oth-

ers, is concerned in depth with the calibration of model parameters too. The experiments of 

Foerster et al. ([91]) on cellulose acetate spheres with diameter of 6 mm are used for this pur-

pose. According to Schäfer et al. [87] the non-linear normal stiffness connected to the elastic 

properties and to the radii of the spheres through  

effeffn ER
3

4
k  ,     (5.10) 

where    2121eff RR/RRR   is the effective radius and Eeff is related to Young’s modulus 

E and Poisson’s ratio  of contacting spheres through     2

2

21

2

1eff E/1E/1E/1  . For 

Foerster et al.’s cellulose acetate spheres 237 /109 mNkn  . The damping constant n  is 

connected to the radii of the spheres and the two coefficients of bulk viscosity [87]. For Foer-

ster et al.’s cellulose acetate spheres the measured coefficient of normal restitution for initial 

relative normal velocities varying between 0.29 and 1.2 m/s is 87.0ne  which results in 

damping constant of skg/m190 21n . As it is mentioned by Schäfer et al. [87], the ratio 

nt kk /  determines the results of an oblique collision where the numerical value of tk  is nearly 

1000 times smaller than that of nk . Additionally, it is also concluded that tk  has to be set 

such that for one particular impact velocity, the ratio of the duration of the tangential as well 

as the normal collision to be about one ( 1/ nt tt ). In case of non-linear repulsive (Hertz) 

force the velocity-dependent duration of the normal collision is [87] 
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where    2121eff mm/mmm   is the effective mass and nv  is the initial relative normal 

velocity. Using the “Cundall spring” the duration of the tangential collision is [87] 
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where 2

5

2
mRI   is the mass moment of inertia. For Foerster et al.’s cellulose acetate spheres 

mNkt /1045.9 4  if 1/ nt tt  at smvn /1 . With these parameters and a time step of 

100/ntt  , the numerical predictions of Schäfer et al. [87] were in good agreement with 

Foerster et al.’s experimental data. 

5.4. Application of the computer code developed by the author of 
the thesis for wall friction prediction 

In this chapter, the three-dimensional simulation tool of the author of this thesis is ap-

plied for the simulation of wall friction in three-dimensional hoppers/silos. The results pre-

sented here were reported in Goda and Ebert [93]. 

In order to design silos/hoppers properly and to avoid silo collapse the designer has to 

predict accurately, among others, the friction force and the pressure acting on the walls and 

the bottom of the hopper/silo for both filling and discharge. Although the hopper flow is in-

tensively studied in the literature, the former three-dimensional DE simulations had been con-

centrated on cylindrical/conical (axisymmetric) hoppers only. In contrast, Goda and Ebert 

[93] focused on rectangular hoppers and silos and not only the hopper flow and the spatial 

distribution of wall forces/pressures but also the effect of hopper/silo geometry on static and 

dynamic behavior were investigated quantitatively in 3D. Additionally, before 2005, the ma-

jority of DE simulations studied hopper/silo flow in 2D and only a few three-dimensional 

simulations were available in this field. It must also be mentioned that the number of particles 

involved in the preceding analyses was, practically without exception, much smaller than used 

in the work of Goda and Ebert [93]. 

5.4.1. Literature results 

Containers with a variety of shapes are widely used in industry for storage of granular 

materials. The wall stresses arisen at the end of the initial fill and during the subsequent dis-

charge can be predicted on the basis of both analytical and numerical computations. Recently, 

two numerical methods are widely used to study the mechanical behavior of granular materi-

als in containers: the continuum mechanics-based finite element method (FEM) and the dis-

crete element method (DEM). The applicability of continuum mechanics for hopper flow, 

however, is strongly limited because it is unable to take into consideration the discrete nature 

of granular materials. On the other hand, the DEM is a powerful numerical method, in which 

the motion of each individual particle is determined on the basis of all the forces acting upon 

it (see the study of Cundall and Strack [79]). Contrary to the continuum techniques it simu-

lates effects at particle level. 

Many reports exist on hopper flow, but most of them are concerned with two-

dimensional simulation and use cylindrical particles, as in the studies of Ristow and 

Herrmann [88], Masson and Martinez [89] and Sanad et al. [90], to simplify the mathematical 
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treatment and reduce the computer memory requirements. Additionally, in most cases, the 

numerical investigations are performed by using commercial computer codes. The two-

dimensional DE analyses provide satisfactory results for several problems but there are many 

phenomena and effects (e.g. effect of the real three-dimensional geometry on hopper flow and 

wall forces/pressures) that require three-dimensional approach. In Langston et al.’s paper 

[92], two and three dimensional discrete element simulations have been carried out for filling 

and discharge under gravity from model hoppers as well as studying the granular flow and the 

wall stresses. The granular material was modeled as an assembly of non-cohesive discs (2D) 

and spheres (3D). In 3D, the number of particles was 8000 and only axisymmetric (cylindri-

cal, conical) hoppers were studied. The normal contact laws applied (linear spring-dashpot 

model, Hertz law with linear damping), however, were less realistic. As it has been presented 

by Schäfer et al. [87], the linear spring-dashpot model gives a coefficient of normal restitution 

being independent of the relative initial or pre-collisional normal velocity while the Hertz law 

combined with linear damping results in increasing coefficient of normal restitution with in-

creasing relative pre-collisional normal velocity. At the same time, the measurements cited by 

Schäfer et al. [87], shows clearly that the coefficient of normal restitution usually decreases 

slightly as the relative pre-collisional normal velocity increases. In [92], Langston et al. con-

cluded that the results for discharge rate and wall stress are in good agreement with that of 

corresponding continuum theories and empirical predictions. 

The granular flow in three-dimensional cylindrical hoppers with flat bottom was in-

vestigated in depth by Zhu and Yu [136-138]. In [136], the spatial and statistical distributions 

of interaction forces and their dependence on the geometric and physical properties of hopper 

and particles were analyzed. However, the spatial distribution of wall forces/pressures ob-

tained by DEM was not reported. The relationship between the normal force and the normal 

deformation was described by the Hertz law with linear viscous damping which, contrary to 

the experimental observations, gives a coefficient of normal restitution increasing with the 

relative normal pre-collisional velocity [87]. As in the normal contact law, a linear viscous 

damping appeared also in the tangential contact law. It must be mentioned, however, that the 

parameters of the contact models were not calibrated experimentally. The granular material 

filled in the cylindrical silo was modelled as an assembly of 24000 multi-sized spherical par-

ticles of uniform size distribution in a range of 0.8-1.0d, where d denotes the maximum parti-

cle diameter. The flow investigated is steady-state because the particles discharged were filled 

back to the hopper. It was observed that large forces are experienced by particles at the walls 

around the bottom corner and the distribution of the total force is affected by the geometry 

and physical parameters of the hopper and particles. In [137], the macroscopic properties (ve-

locity, mass density, and stress components) of steady-state hopper flow (discharging particles 

to be filled back) were determined by averaging microscopic data (velocities of particles, in-

teraction forces between particles and particles and walls) obtained from three-dimensional 

discrete element simulation. The hopper (cylindrical hopper with flat bottom), the size and 

number of particles, the contact laws and their parameters were the same as in [136]. It was 

shown that the interaction forces between particles and between particles and walls contribute 

directly to the magnitude of normal and shear stress components. Large vertical and radial 

normal stresses were observed in the region close to the bottom corner while large shear 

stresses appeared in the region adjacent to the vertical wall. It was also pointed out that the 

magnitude of stress components depends on the geometric and physical parameters of the 

hopper and the particles. In [138], the unsteady-state hopper flow (discharging particles not to 

be filled back) was studied by three-dimensional discrete element simulation. The hopper, the 

number and the size of the particles, the normal and tangential contact laws were the same as 

in [136]. Additionally it was assumed that the wall and particle properties, excepting the coef-

ficient of sliding friction, are the same. The numerical results showed that the trends of the 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



92 

stress distribution in unsteady-state hopper flow are similar to those of steady-state hopper 

flow. However, the magnitude of the stress components in different regions had different rates 

of variation. The magnitudes of the vertical and the radial normal stress components (obtained 

by averaging microscopic quantities) varied little with time in the orifice region, but de-

creased in other regions. The magnitude of the shear stresses far from the bottom wall and 

central axis of the hopper decreased also with time. A detailed review on the three-

dimensional DE modelling of hopper flow can be found in the review paper of Zhu et al. 

[139]. 

5.4.2. Discrete element simulations for nonaxisymmetric hop-
pers/silos filled with viscoelastic granular material 

The main aim of this work is (a) to determine how many percentage of the weight of the 

initial material head (static case) is carried by the friction forces arising on the walls, and (b) 

to investigate the behavior of granular material and the wall pressure after the initial fill (static 

state) and during the discharge (dynamic state) of different containers. Here, a system of 

40,000 mono-sized cellulose acetate spheres of diameter d=6mm is considered (total weight 

of the spheres is G=58.546 N) although the program developed allows to investigate also the 

effect of particles with different diameters on the flow behavior. As the diameter of the cellu-

lose acetate spheres is the same as that of Foerster et al.’s acetate spheres it was not needed to 

take into consideration the mass dependence of the coefficient of normal restitution ( ne ). For 

numerical investigations, the following container types have been chosen: a pyramidal 

(wedge-shaped) hopper (Fig. 5.7a), a silo with a hopper bottom (Fig. 5.7b), and a vertical-

sided silo with a flat bottom (Fig. 5.7c). The hopper has an opening angle =20° and a square 

cross section. The silo with a hopper bottom is 72d in height, has a square cross section with a 

size of 30d x 30d and a converging section with a hopper half angle of =35°. The flat-

bottomed silo is 85d in height and has a square cross section with a size of 27d x 27d. In all 

the cases studied, the size of the outlet on the bottom plate is 8d x 8d and it has a square cross 

section. With these sizes, the height of the densely packed configuration of particles at rest is 

approximately the same in each case. The only external force acting on the system is the grav-

itational force (g=9.81 m/s
2
). At the beginning of the simulations, the containers were filled 

by regularly located, non-overlapping particles. While particles had no initial velocity in the 

case of the hopper, a small random initial velocity is assigned to each particle in the other two 

cases. Subsequently, the systems are allowed to settle in order to obtain densely packed con-

figurations before the container opening. At the end of settling, the static packing height of the 

particles is about 0.3m in all the cases studied. The outlets are kept closed during the settling 

process. Based on preliminary computations, a settling time of 1.5s has been specified for 

each simulation. At t=1.5s, the outlets are opened and at the same time the discharge of con-

tainers is started. During the simulation the equations of motion belonging to the translational 

as well as the rotational motions are integrated by using the Feynman-Newton method with a 

fixed time step of st 7105  . 

The material properties of the acetate sphere used in the present study and the parame-

ters of the contact models are listed in Table 5.1. Here it is assumed that the maximum impact 

velocity during the simulations is about vmax=1m/s. On the basis of test calculations, a value 

of 190 kg/m
1/2

s was selected for the normal damping parameter in order to achieve en0.87 

[87]. en is the coefficient of normal restitution. Since the parameter t has no clear physical 

interpretation (see the study of Schäfer et al. [87]), its value is chosen to be equal to zero in 

the present analysis. As a first assumption, the same stiffness and damping parameters are 

used for both the particle/particle and the particle/wall collisions in the simulations. Finally, it 

must be mentioned that proper calibration of a discrete element model can be performed 
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based on experimental observations and measurements only. In this regard, the model pa-

rameters used here can be considered to be calibrated because the experimentally calibrated 

parameters of Schäfer et al. [87] were applied in the simulations. 

 

(a)  (b) 

 (c) 

Fig. 5.7. Geometry details of the containers studied: (a) pyramidal hopper, (b) silo with a 

hopper bottom, and (c) silo with a flat bottom (d is the particle diameter) [93] 

Acetate particle Parameters of the contact models 

Young´s modulus [N/m
2
] 9102.3   kn [N/m

3/2
] 7109   

Poisson´s ratio 0.28 n [kg/m
1/2

s] 190 

Density [kg/m
3
] 1319 kt [N/m] 41045.9   

  t [kg/s] 0 

   0.3 

Table 5.1. Material properties and contact parameters [93] 
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5.4.3. Results for hopper 

Fig. 5.8 shows snapshots of the settling process. Only the half of the particle assembly 

is visualized in order to obtain an insight into the interior of the granular material. The same 

way of presentation is followed for all the cases studied. At the beginning of simulation, the 

particles (balls with the same diameter) with zero initial velocity are located regularly within 

the hopper. Due to the friction and damping forces the motion of particles (caused by the 

gravitational force) decays as the time increases. The total kinetic energy of the system as a 

function of time (Fig. 5.9) represents clearly this process. Although the system has a small 

kinetic energy at the end of the settling process (settling time= 1.5 s) practically the system of 

spheres (balls) can be considered to be at rest at t=1.5 s. 

  (a)   (b) 

Fig. 5.8. Position of particles during settling in the case of hopper: (a) at t=0s (initial configu-

ration), and (b) at t=1.327 s [93] 
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Fig. 5.9. Total kinetic energy (translational and rotational) of the system as a function of time 

in the case of hopper [93] 

At t= 1.5 s, the outlet is opened and the hopper discharge is started. To indicate the 

characteristic motion of the granular material one portion of the particles is shaded by dark 

gray which yields a pattern of bands. Fig. 5.10 shows snapshots of the granular material flow-

ing out of the hopper. The motion of the particles can be followed easily through the move-

ment of the interfaces between the bands. The interfaces deform across the whole cross sec-

tion of the hopper and have a characteristic “V” shape within a section located parallel to the 
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y-z plane. Distributions of the absolute velocity and the absolute angular velocity at t=2.45 s 

are shown in Figs. 5.11-5.12. The gray code of the individual particles indicates the magni-

tude of the depicted quantity. Since all the particles have the same diameter and mass, the 

tendencies of the translational and rotational kinetic energy distributions were similar to Figs. 

5.11-5.12. As anticipated, the most intensive flow appears near and above the outlet. Near the 

walls, the particles move slower than in the center region of the granular material. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.10. Flow patterns at different simulation times in the case of hopper: (a) at t=1.5s (stat-

ic state at the end of the filling process), (b) at t=2.55 s, and (c) at t=4.5 s [93] 

  

Fig. 5.11. Absolute velocity distribution at 

t=2.45 s in the case of hopper (in m/s); 


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Fig. 5.12. Absolute angular velocity distri-

bution at t=2.45 s in the case of hopper (in 

1/s) (the depicted quantity is derived in the 

same manner as in Fig. 5.11) [93] 

In the case of static state (t=1.5s), the distributions of normal wall forces and mean wall 

pressures along the walls as a function of height from the bottom of the hopper are shown in 

Fig. 5.13. The distributions of the normal wall forces are represented on the basis of the nor-

mal component of particle/wall contact forces. In this study, the expression normal wall force 

is used as a synonym for the normal component of particle/wall contact force. The sum of the 

normal forces (resultant normal force) acting on the horizontal wall of Fig. 5.13 is Fbot-

tom=5.17N. For the right and the left wall of Fig. 5.13, these values are as follows: 

Fright=34.17 N, Fleft=33.65 N. In case of granular materials, one part of the weight of the 

initial material head obtained at the end of the filling process is carried by the friction forces 
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arising on the walls. The contribution of friction forces can be determined from the equilibri-

um of forces as 

GFFF
wall

zfric

wall

zNbottom  ,, 44 ,   (5.13) 

where 
wall

zNF ,  and 
wall

zfricF ,  denote the z component of the total normal force and the total friction 

force arising on a single inclined wall ( 


 sin
2

sin,
leftrightwall

N

wall

zN

FF
FF ). The simula-

tion shows that about 12% of the weight of the initial material head is carried by the friction 

forces arising on the walls. Additionally, it can also be concluded that mostly the inclined 

walls carry the weight of the granular material. 

 

Fig. 5.13. Distributions of normal wall forces and mean wall pressures acting on the walls of 

the hopper at the end of the filling process (at t=1.5 s). The expression normal wall force is a 

synonym for the normal component of particle/wall contact force. [93] Contrary to Figs. 5.4 

and 5.5 here not the width but the length of the lines representing contact forces is proportion-

al to the magnitude of the force. 

The wall pressures are averaged on a wall segment of height dz (see Fig. 5.7a). In the 

present study, dz is taken to 2d. For each evaluation the segment boundary is moved by half 

particle diameter in vertical direction (z-direction). In the case of a given wall, the height dz 

belongs to a trapezoid-shaped wall segment. In order to compute the mean wall pressure, as a 

first step, the normal forces acting on the actual wall segment are summed. The mean wall 

pressure (moving average) is defined as the total force acting perpendicular to a wall segment 

divided by the area of the wall segment. Since the mean wall pressure distribution is comput-

ed from the normal component of the particle/wall contact forces, it shows a fluctuation along 

the wall. It must be noted that the fluctuation is strongly affected by the averaging method 

applied to the pressure computation. It can be seen clearly that there is no significant devia-

tion from linear pressure dependence in Fig. 5.13. As it is well known, the wall pressure act-

ing on the walls of a container filled with any fluid decrease linearly with increasing height 

because no shear forces are exerted between the fluid and the solid boundary if the fluid is at 

rest. Contrary to fluids, in the case of real granular material, the static wall pressures reach a 

constant, height-independent value at a sufficiently large depth below the free surface (pres-

sure saturation) because the shear forces transfer one portion of the weight of the granular 

material to the walls. This tendency can hardly be identified in Fig. 5.13. The reason for this is 

that the system modeled is not sufficiently high to show unambiguously this tendency; so, 
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only the linear approximation of the wall pressure distribution valid in the neighborhood of 

the free surface is described. In order to determine the wall pressure distribution during the 

outflow, the pressures are averaged both on a wall segment of height dz and over 1000 time 

steps. In the case of hopper, the mean wall pressure distribution during discharge is shown in 

Fig. 5.14. The results reported here are in accordance with both the two-dimensional ones of 

Ristow and Herrmann [88] and the analytical calculation of Walters [94]. 

 

Fig. 5.14. Mean wall pressure distribution along the walls in the case of hopper outflow (at 

t=1.8 s) [93] 

5.4.4. Results for silo with a hopper bottom 

In this case, a small, randomly distributed velocity is assigned to the particles in order to 

obtain an irregular densely packed configuration before the silo opening. During settling, the 

total kinetic energy vs. time function has a similar tendency as shown in Fig. 5.9. The snap-

shots of the settling process, shown in Fig. 5.15, illustrate clearly the motion of the particles. 

Figs. 5.15b and 5.15c show an enlarged segment of the silo. The static, densely packed con-

figuration of particles together with the banded pattern can be seen in Fig. 5.16a. 

 

Fig. 5.15. Position of particles during settling in the case of silo: (a) at t=0 s (initial configura-

tion), (b) at t=0.1 s, and (c) at t=1 s [93] 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



98 

 

Fig. 5.16. Flow patterns at different time instants in the case of a silo: (a) at t=1.5 s (static 

state at the end of the filling process), (b) at t=2 s, and (c) at t=3.25 s [93] 

At t=1.5 s, the silo is opened to initiate the silo discharge. The motion of particles and 

the deformation of the interfaces between the bands during discharge are shown in Fig. 5.16. 

Similar to the previous case, the interfaces deform across the whole cross section of the silo 

and have a characteristic “V” shape within a section located parallel to the y-z plane. Since the 

absolute velocity distribution has a similar tendency as shown in Fig. 5.11 for the hopper 

flow, the vy velocity component at t=2.48 s is presented here (see Fig. 5.17). The absolute 

angular velocity is represented in Fig. 5.18. The figures make clear that the flow is the most 

intensive near and above the outlet. 

  

Fig. 5.17. The vy velocity component at 

t=2.48 s in the case of silo (in m/s) [93] 

Fig. 5.18. Absolute angular velocity distribu-

tion at t=2.48 s in the case of silo (in 1/s) 

[93] 

In case of the silo, the mean wall pressures are plotted horizontally for both the vertical-

sided and the hopper sections. As Fig. 5.19 shows, at the end of the filling process, the wall 

pressures in the hopper section are slightly above those predicted from the extension of the 

near linear dependence, which was obtained for the vertical-sided section of the silo. The sum 

of the normal forces acting on the horizontal wall of Fig. 5.19 is Fbottom=5.19N. For the walls 

of vertical and hopper sections of the silo located on the right side, the sums of normal forces 

are as follows: Fright vertical=19.49 N, Fright hopper=19.42 N. For the left side of Fig. 5.19 these 

forces are Fleft vertical=19.61 N, Fleft hopper=19.95 N. As it has already been mentioned one 
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part of the weight of the initial material head is carried by the friction forces arising on the 

walls. In this case, the contribution of friction forces can be determined from the equilibrium 

of forces as 

 

GFFFF
wallinclined

zfric

wallvertical

zfric

wallinclined

zNbottom  ,,, 444 ,  (5.14) 

 

where 
wallinclined

zNF ,  and 
wallinclined

zfricF ,  denote the z component of the total normal force and the 

total friction force arising on a single inclined wall while 
wallvertical

zfricF ,  is the z component of the 

total friction force arising on a single vertical wall 

( 


 sin
2

sin,
hopperlefthopperrightwallinclined

N

wallinclined

zN

FF
FF ). The simulation shows that 

about 14% of the weight of the initial material head is carried by the friction forces arising on 

the walls. Additionally, it can also be concluded that mostly the inclined walls carry the 

weight of the granular material. 

 

Fig. 5.19. Distributions of normal wall forces and mean wall pressures acting on the walls of 

the silo at the end of the filling process (at t=1.5 s) [93] Contrary to Figs. 5.4 and 5.5 here not 

the width but the length of the lines representing contact forces is proportional to the magni-

tude of the force. 

As it can be seen from Fig. 5.20, the hopper bottom has a strong effect on the wall pres-

sures that develop during discharge. The mean wall pressure increases with increasing depth 

measured from the free surface of the granular material. At the transition from the vertical-

sided section to the hopper bottom, a pressure peak occurs, which is a consequence of the 

sudden change in wall slope. For similar reason, the pressures are greater below the transition 

than above it. The peak value in the hopper section is about two times greater than the one in 

the vertical-sided section. The pressure distributions obtained here are in accordance qualita-

tively with both Walters’s analytical [94] and Yang and Hsiau’s two-dimensional numerical 

[95] results. 
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Fig. 5.20. Mean wall pressure distribution along the walls in the case of silo outflow (at t=1.8 

s) [93] 

5.4.5. Results for flat-bottomed silo 

Similar to the previous case, the regularly generated particles (Fig. 5.21a) have a small, 

random initial velocity at the beginning of simulation. The transition from a regularly, loosely 

packed configuration to an irregular, densely packed one is illustrated in Fig. 5.21. The snap-

shots of the settling process show the position of particles at different time steps. In Figs. 

5.21b-d, the lower part of the flat-bottomed silo is enlarged. The static, densely packed con-

figuration has a height of 0.3 m. 

 

Fig. 5.21. Position of particles during settling in the case of flat-bottomed silo: (a) at t=0 s 

(initial configuration), (b) at t=0.15 s, (c) at t=0.2 s, and (d) at t=1 s [93] 

Comparison of Fig. 5.22 with Figs. 5.10 and 5.16 shows that the flow pattern is more 

concentrated than in the other two cases. The flow is most intensive near and above the outlet 

and the deformation of interfaces between the bands is strongly localized. From the velocity 

distributions, shown in Figs. 5.23 and 5.24, similar conclusions can be drawn. 

In the case of static state, the mean wall pressure distribution as a function of height is 

represented in Fig. 5.25. There is no significant deviation from linear pressure dependence 

due to the small size of the model measured in vertical direction (z-direction). The sum of the 

normal forces acting on the horizontal wall of Fig. 5.25 is Fbottom=48.88 N. For the right and 

the left wall of Fig. 5.25, these values are as follows: Fright=37.82 N, Fleft=37.55 N. The 

part of the weight of the initial material head that is carried by the friction forces arising on 

the walls can be determined from the equilibrium of forces as 
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GFF
wall

zfricbottom  ,4 ,    (5.15) 

where 
wall

zfricF ,  denotes the z component of the total friction force arising on a single ver-

tical wall. The simulation shows that about 16.5% of the weight of the initial material head is 

carried by the friction forces arising on the vertical walls. 

 

Fig. 5.22. Flow patterns at different simulation times in the case of flat-bottomed silo: (a) at 

t=1.5 s (static state at the end of the filling process), (b) at t=2 s, and (c) at t=3.25 s [93] 

  

Fig. 5.23. Absolute velocity distribution at 

t=4.47 s in the case of flat-bottomed silo (in 

m/s) [93] 

Fig. 5.24. Absolute angular velocity distribu-

tion at t=4.47 s in the case of flat-bottomed 

silo (in 1/s) [93] 

As it was anticipated, in the case of flat-bottomed silo, mostly the horizontal wall carries the 

weight of the granular material if the system is at rest. Fig. 5.26 shows the wall pressures de-

veloped during discharge as a function of height. The greatest pressures appear in the region 

located near the bottom of the silo. The averaging method is the same as in the former two 

cases. The results agree qualitatively with the wall pressure distributions of Sanad et al. [90] 

obtained by two-dimensional DE analysis. In order to make the pressure saturation visible the 

simulation was repeated with a silo being half as large in width as the former one. The num-

ber of the particles was 20.000, which leads to an about two times higher closed packed con-

figuration at rest than obtained previously. The contact parameters are naturally the same. 

Figs. 5.27 and 5.28 show the wall pressure distributions obtained at rest. In Fig. 5.27, the 
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height of the wall segment, on which the wall pressures are averaged is 2d similar to Fig. 

5.25. For Fig. 5.28, this height is 4d. 

 

Fig. 5.25. Distributions of normal wall forces and mean wall pressures acting on the walls of 

the flat-bottomed silo at the end of the filling process (at t=1.5 s) [93] Contrary to Figs. 5.4 

and 5.5 here not the width but the length of the lines representing contact forces is proportion-

al to the magnitude of the force. 

 

Fig. 5.26. Mean wall pressure distribution along the walls in the case of outflow from the flat-

bottomed silo (at t=1.8 s) [93] 

  
Fig. 5.27. Wall pressure distribution for a 

flat-bottomed silo (wall pressures were aver-

aged on a wall segment of height of 2d, 

=0.3) [93] 

Fig. 5.28. Wall pressure distribution for a 

flat-bottomed silo (wall pressures were aver-

aged on a wall segment of height of 4d, 

=0.3) [93] 
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5.4.6. Discussion of the flow behavior 

Comparing the motion of particles in the hoppers and silos studied, the following con-

clusions may be drawn on the basis of simulation results. In the cases of hopper and silo with 

a hopper bottom, all the materials are in flowing condition during the discharging process. 

According to this, the flow type for these cases is mass flow. The vertical velocity of particles 

in the central part of the material is larger than at the sidewalls. Immediately above the outlet, 

the particles are in free fall. In the case of silo, the uppermost layer of dark particles at t=3.25 

s is not deformed, which means that the particles located within this region move with the 

same vertical velocity. 

In the case of flat-bottomed silo, the funnel flow phenomenon can be recognized on the 

basis of the flow patterns. At the beginning of the discharging process, similar to the previous 

cases, five layers of dark colored particles can be distinguished (see Fig. 5.22a). As it can be 

seen in Fig. 5.22c, at t=3.25 s, all of these layers are recognizable near the sidewalls. It fol-

lows from this that in the bottom part of the silo, near the silo walls; the particles flow very 

slowly or are stagnant during the discharging process. The regions where the velocities of the 

particles are nearly equal to zero are the so-called stagnation or dead zones. In spite of the fact 

that the friction coefficient used in the present study is rather low, the stagnation zones have 

been appeared unambiguously during discharging. Appearance of stagnant zones reduces the 

flow performance and makes it difficult to unload the silo. In contrast to funnel flow, the mass 

flow is an ideal flowing type for the unloading of a silo. In the upper section of the silo, the 

magnitudes of vertical velocities are small and almost constant across its whole cross section 

at t=3.25 s. The uppermost layer of dark particles is not deformed, which confirms the state-

ment for the constant velocity profile. In the middle part of the silo, the magnitudes of veloci-

ties near the sidewalls are smaller than those in the central region. 

The static wall pressure distributions obtained for the silos show no significant devia-

tion from linear pressure dependence. The reason for this is that the systems modeled are not 

sufficiently high to show the asymptotic behavior of wall pressures. It must be noted that an 

additional simulation for a slender flat-bottomed silo, which is double as large in height and 

half as large in width than the one used here, has showed already the asymptotic behavior as 

expected, for example, by the Janssen formula. 

As it has been proved here, the DEM is able to capture the container flow dynamics to a 

large extent. At the same time, it must be noted that the flow behavior of real granular materi-

als is strongly affected, for example, by the interparticle cohesion and the particle shape. In 

order to take into account these factors, the simulation program of the author of this thesis 

should be extended. 
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6. Summary 

The first part of the thesis deals with the finite element modeling of the surface rough-

ness generated (micro-scale) viscoelastic component of the friction force. The 2D and 3D 

finite element models developed employ different modeling approaches to take into consider-

ation the surface roughness (asperity-scale approach using smooth/rough asperity, multi-scale 

approach using sine wave as well as superposition of sine waves, direct modeling approach 

using the measured surface micro-topography). The second part of the thesis, as the end of the 

research activity dealing with the apparently smooth surface generated viscoelastic friction, 

focuses on the experimental investigation of the phenomenon. In order to close the research 

activities related to the apparently smooth surface generated viscoelastic friction the second 

part of the thesis focuses on the experimental investigation of the viscoelastic component of 

the friction force using measurement results taken from the literature. When studying the sur-

face roughness generated viscoelastic component of friction numerically and experimentally 

in EPDM and NBR rubber it has been pointed out that the micro-hysteresis friction compo-

nent exists even for apparently smooth lubricated surfaces but its value cannot be as high as 

stated by Mofidi at al. in [44] because neither the FE simulations, nor the measurement re-

sults discussed in this thesis prove quantitatively the results of [44]. 

Hydraulic rod seals applied in the mechanical engineering practice in great numbers 

operate frequently in the mixed lubrication regime. In case of mixed lubrication, the lubricat-

ing film induced by the hydrodynamic effect is not able to separate completely the contacting 

surfaces hence solid contacts are formed among the asperities. Because of the importance of 

Greenwood and Williamson’s as well as Persson’s contact theory for the definition how the 

distance between the mean planes of apparently smooth surfaces is related to the nominal con-

tact pressure, the thesis analyzes the two theories in depth then compares their predictions 

quantitatively. Using Greenwood and Williamson’s [27] as well as Persson’s [3, 63, 65] con-

tact theory for an elastomer plate in contact with a rigid flat it has been shown that the differ-

ence in the predicted values of the distance between the mean plane of the rough surface and 

the ideally smooth surface varies between one and four orders of magnitude for RMS rough-

ness of 1 m and nominal contact pressure between 0.1 and 1 MPa but becomes smaller and 

smaller as the nominal contact pressure decreases. As a next step, a computational algorithm 

employing Salant and his coworkers’ [Salant R., Maser N., Yang B. Numerical model of a 

reciprocating hydraulic rod seal. Journal of Tribology, Vol. 129, pp. 91-97 (2007)] numerical 

scheme and developed for the simulation of mixed friction of reciprocating rod seals/sliding 

components is presented in depth. The steady-state model is able to take into consideration the 

effect of the surface roughness, the cavitation, the elastic deformation and the pressure de-

pendent viscosity simultaneously. Among the results of the computational algorithm not only 

the nominal film thickness, the fluid pressure and the contact pressure but the leak rate and the 

friction force expected can also be found. The part of the thesis that is related to the modeling 

of mixed friction is closed with the numerical modeling of the lubrication performance for an 

O-ring and the wiper lip of a commercial windscreen wiper. Applying Salant et al.’s [41] 

steady-state, one-dimensional mixed friction model to an O-ring it has been pointed out that 

the nominal lubricant film thickness during outstroke is larger than during instroke, during 

outstroke a cavitated region appears within the nominal contact area while the peak value of 

the fluid pressure within the non-cavitated region does not exceed 0.76 MPa and during in-

stroke there is no cavitated region and the fluid pressure does not exceed the sealed pressure. 

Furthermore, applying Salant et al.’s [41] mixed friction model to the wiper lip of a commer-

cial windscreen wiper it has been pointed out that the gap between the mean surfaces of the 

contacting bodies first converges then diverges as moving away from the point where the wa-
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ter enters into the gap, a cavitated region appears within the nominal contact area where the 

gap diverges, the asperity-type contact pressure reaches a peak value of 0.8 MPa and, finally, 

the peak value of the fluid pressure is lower with three orders of magnitude than that of the 

asperity-type contact pressure. 

The last part of the thesis deals with the prediction of the structural level forces (nor-

mal force and friction force) acting on the walls of silos/hoppers used to store viscoelastic 

granular material by modeling the interactions among the grains. After discussing the theoret-

ical background and the applicability of the discrete element method as a representative of the 

discrete modeling approach the computer program of the author of this thesis is presented in 

depth. The program is able to follow the motion of each particle separately while the contacts 

of particles with other particles or walls are also detected continuously. In contrast to continu-

um mechanics-based methods this technique gains the behavior of the material modeled from 

the interactions of the particles. The discrete element models developed for the simulation of 

the friction force arising on the walls of non-axisymmetric hoppers and silos as well as for the 

filling and the unsteady-state outflow process have been constructed and solved using the 

computer program of the author of this thesis. The objective of the simulations is to determine 

quantitatively the forces acting on the walls at the end of the filling process (static case) and at 

the beginning of the discharge (dynamic case) as well as the pressure distributions induced. In 

order to achieve the objective normal contact law considering the viscoelastic material behav-

ior and tangential contact law with capability to model the static friction as well as model pa-

rameters calibrated experimentally are incorporated in the numerical models. Using the com-

puter program of the author of this thesis developed on the basis of Cundall and Strack’s [79] 

three-dimensional discrete element method it has been shown that the total friction force aris-

ing on the inclined and vertical walls of hoppers and silos with different bottom and square 

cross section at the end of the filling process is equal to 12…16% of the weight of the stored 

material in case of local particle-particle and particle-wall coefficient of friction of =0.3 

and experimentally calibrated contact law. 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)



106 

7. New scientific results 

 

Thesis 1. 

When studying the surface roughness generated viscoelastic component of friction (mi-

cro hysteresis caused friction) numerically and experimentally in EPDM and NBR rubber 

it has been pointed out that the micro-hysteresis friction component exists even for ap-

parently smooth lubricated surfaces but its value cannot be as high as stated by Mofidi 

at al. in [44] (In [44], apparent coefficients of friction of 66.0...48.0  are reported for 

highly polished steel surface having RMS roughness of about m1.0  and sliding on oil lubri-

cated NBR rubber and it is stated that they can be explained by the dominancy of micro hyste-

resis.) because neither the FE simulations, nor the measurement results discussed in this 

thesis prove quantitatively the results of [44]. 
 

Closely related papers: [131, 60, 35, 32]. Additional papers in this topic: [38, 113, 11, 

28, 29]. 

 

 

Thesis 2. 

Using Greenwood and Williamson’s [27] as well as Persson’s [3, 63, 65] contact theory 

for an elastomer plate in contact with a rigid flat it has been shown that the difference in 

the predicted values of the distance between the mean plane of the rough surface and the 

ideally smooth surface varies between one and four orders of magnitude for RMS 

roughness of 1 m and nominal contact pressure between 0.1 and 1 MPa but becomes 

smaller and smaller as the nominal contact pressure decreases. 

 

Closely related papers: [64]. 

 

 

Thesis 3. 

Applying Salant et al.’s [41] steady-state, one-dimensional mixed friction model (origi-

nally developed for reciprocating hydraulic rod seals and with capability to take into consid-

eration the effect of cavitation, elastic deformation, surface roughness and pressure dependent 

viscosity simultaneously) to an O-ring (8 x 1.5 mm (rod diameter x ring thickness), RMS 

roughness = m4.0 , elastic modulus = 10 MPa, sealed pressure = 0.6 MPa, sliding speed 

during in- and outstroke = 50 mm/s) it has been pointed out that the nominal lubricant 

film thickness during outstroke is larger than during instroke, during outstroke a cavi-

tated region appears within the nominal contact area while the peak value of the fluid 

pressure within the non-cavitated region does not exceed 0.76 MPa and during instroke 

there is no cavitated region and the fluid pressure does not exceed the sealed pressure. 
 

Closely related papers: [12, 78]. Additional papers in this topic: [69]. 
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Thesis 4. 

Applying Salant et al.’s [41] mixed friction model to the wiper lip of a commercial wind-

screen wiper (elastic modulus = 4.5 MPa, RMS roughness = m1 , sliding speed = 150 

mm/s) it has been pointed out that the gap between the mean surfaces of the contacting 

bodies first converges then diverges as moving away from the point where the water en-

ters into the gap, a cavitated region appears within the nominal contact area where the 

gap diverges, the asperity-type contact pressure reaches a peak value of 0.8 MPa and, 

finally, the peak value of the fluid pressure is lower with three orders of magnitude than 

that of the asperity-type contact pressure. 
 

Closely related papers: [10]. Additional papers in this topic: [75]. 

 

 

Thesis 5. 

Using the computer program of the author of this thesis developed on the basis of 

Cundall and Strack’s [79] three-dimensional discrete element method employing ideally 

rigid spheres where their interpenetration (overlapping) in the vicinity of the contact point is 

allowed it has been shown that the total friction force arising on the inclined and vertical 

walls of hoppers and silos with different bottom and square cross section (filled with 

granular material being composed of 40000 mono-sized viscoelastic spherical cellulose ace-

tate particles up to about the same height) at the end of the filling process is equal to 

12…16% of the weight of the stored material in case of local particle-particle and parti-

cle-wall coefficient of friction of 0.3μ   and experimentally calibrated contact law. 

 

Closely related papers: [93]. Additional papers in this topic: [132]. 
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Összefoglalás 

Az értekezés első része a súrlódási erő felületi érdesség által generált (mikroszintű) 

viszkoelasztikus összetevőjének végeselemes modellezésével foglalkozik. A kidolgozott 2D-s 

és 3D-s végeselemes modellek a felületi érdesség figyelembevételére különböző modellezési 

megközelítéseket alkalmaznak (érdességcsúcsszintű, sima/érdes érdességcsúcsra épülő meg-

közelítés; szinuszhullámra, illetve szinuszhullámok összegére épülő többszintű megközelítés; 

mért felületi mikrotopográfia közvetlen felhasználására épülő megközelítés). A látszólag sima 

felületek által generált viszkoelasztikus súrlódással kapcsolatos kutatások lezárásaként, az 

értekezés második része a súrlódási erő viszkoelasztikus összetevőjének szakirodalomból vett 

mérési eredményekre épülő kísérleti vizsgálatára koncentrál. A súrlódási erő felületi érdesség 

által EPDM és NBR gumiban generált viszkoelasztikus összetevőjének numerikus és kísérleti 

vizsgálata során kimutattam, hogy mikro-hiszterézis eredetű súrlódási erő látszólag sima, 

kent felületek esetén is fellép, de ennek nagysága nem lehet olyan nagy, mint ahogy Mofidi és 

szerzőtársai [44] állítják, mert sem a végeselemes szimulációk, sem az értekezésben bemuta-

tott mérési eredmények nem igazolják mennyiségileg [44] eredményeit. 

A gépészmérnöki gyakorlatban igen nagy számban előforduló hidraulikus dugattyúrúd 

tömítések gyakran vegyes súrlódási állapotban üzemelnek. Vegyes súrlódási állapot esetén a 

hidrodinamikus hatás következtében felépülő kenőfilm nem képes teljesen elválasztani a felü-

leteket egymástól, így az érdességcsúcsok között szilárdtest érintkezés alakul ki. A 

Greenwood-Williamson- és a Persson-féle, egymással érintkező, érdes sík felületek középsík-

jai közötti távolság és a névleges érintkezési nyomás kapcsolatát megadó érintkezési elméle-

tek jelentősége miatt, az értekezés részletesen elemzi a két modellt, majd mennyiségi szem-

pontból összehasonlítja a modellek által szolgáltatott eredményeket. A Greenwood-

Williamson- [27] és a Persson-féle [3, 63, 65] érintkezési elméletet merev síkkal érintkező 

elasztomerre alkalmazva kimutattam, hogy az érdes felület középsíkjának a tökéletesen sima 

felülettől mért távolságának elméleti értékei közötti különbség, 1 m-es RMS érdesség, vala-

mint 0,1 és 1 MPa közötti névleges érintkezési nyomás esetén, egy és négy nagyságrend között 

változik, de a különbség a névleges érintkezési nyomás csökkenésével folyamatosan csökken. 

Ezt követően, részletesen bemutatásra kerül egy hidraulikus dugattyúrúd tömítések vegyes 

súrlódási állapotának modellezésére kidolgozott számítási algoritmus, amely Salant és szerző-

társai [Salant R., Maser N., Yang B. Numerical model of a reciprocating hydraulic rod seal. 

Journal of Tribology, Vol. 129, pp. 91-97 (2007)] numerikus modelljét alkalmazza. Az 

állandosúlt állapotbeli modell képes a felületi érdesség, a kavitáció, a rugalmas alakváltozás 

és a nyomásfüggő viszkozitás hatásának egyidejű figyelembe vételére. A számítási algoritmus 

által szolgáltatott eredmények között a névleges kenőfilm vastagság, a kenőfilmben kialakuló 

nyomás, a szilárd test-szerű érintkezés következtében kialakuló érintkezési nyomás mellett a 

szivárgás és a súrlódási erő várható nagysága is megtalálható. Az értekezés vegyes súrlódási 

állapot modellezéséhez kapcsolódó része egy O-gyűrű és egy kereskedelmi forgalomban kap-

ható ablaktörlő lapát törlőél kenési állapotának numerikus modellezésével zárul. Salant és 

szerzőtársai [41] állandósult állapotbeli, 1D-s, vegyes súrlódási állapotot leíró modelljének 

O-gyűrűre történő alkalmazásán keresztül kimutattam, hogy kitolás esetén a névleges kenő-

film vastagság nagyobb, mint behúzás esetén; a névleges érintkezési tartományon belül a kito-

lás során kavitáció alakul ki, miközben a kenőfilmben kialakuló nyomás csúcsértéke a 

kavitáció mentes tartományon belül nem haladja meg a 0,76 MPa-t; és a behúzás során nem 

lép fel kavitáció és a kenőfilmben kialakuló nyomás nem haladja meg a tömített nyomás érté-

két. Továbbá, Salant és szerzőtársai [41] vegyes súrlódási állapotot leíró modelljének keres-

kedelmi forgalomban kapható ablaktörlő lapát törlőélére történő alkalmazásán keresztül ki-

mutattam, hogy az érintkező testek középfelületei közötti rés a víz belépési pontjától távolodva 
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először szűkül, majd tágul; a névleges érintkezési tartomány táguló réshez tartozó részén 

kavitáció alakul ki; az érdességcsúcs-típusú érintkezés következtében fellépő érintkezési nyo-

más legnagyobb értéke eléri a 0,8 MPa-t; és a kenőfilmben kialakuló nyomás csúcsértéke 

három nagyságrenddel kisebb, mint az érdességcsúcs érintkezés következtében fellépő legna-

gyobb érintkezési nyomás. 

Az értekezés utolsó fejezete viszkoelasztikus szemcsékből álló anyag tárolására hasz-

nált silók/tölcsérek falaira ható szerkezetszintű erők (normális erő és súrlódási erő) szemcse-

szintű kölcsönhatások modellezésére épülő becslésével foglalkozik. A diszkrét modellezési 

megközelítést képviselő diszkrét elem módszer elméleti hátterének és alkalmazhatóságának 

áttekintését követően részletesen bemutatásra kerül a dolgozat szerzője által kifejlesztett szi-

mulációs program. A program minden egyes szemcse mozgását külön-külön vizsgálja, mi-

közben a szemcsék más szemcsékkel és környezeti elemekkel való érintkezéseit is folyamato-

san nyomon követi. A kontinuum mechanikán alapuló módszerekkel szemben, ez a technika a 

modellezett közeg viselkedését a szemcsék közötti kölcsönhatásokból származtatja. Az érte-

kezésben bemutatott nem tengelyszimmetrikus tölcsérek, illetve silók falain fellépő súrlódási 

erő becslésével, valamint a töltési és a nem állandósult állapotbeli ürítési folyamat szimuláció-

jával foglalkozó diszkrét elemes modellek mindegyike a szerző saját fejlesztésű számítógépes 

programjával készült, illetve annak segítségével került megoldásra. A számítások célja a tölté-

si folyamat végén (statikus eset) és az ürítési folyamat kezdetén (dinamikus eset) fellépő fa-

lakra ható erők, és az abból származó nyomáseloszlások mennyiségi meghatározása. A kitű-

zött cél elérése érdekében a numerikus modellek viszkoelasztikus anyagi viselkedést figye-

lembe vevő normális és statikus surlódás modellezésére is alkalmas tangenciális érintkezési 

modelleket, valamint kísérletek alapján meghatározott modell paramétereket használnak. 

Cundall és Strack [79] háromdimenziós diszkrét elem módszere alapján általam kidolgozott 

számítógépes program alkalmazásával kimutattam, hogy négyzet keresztmetszetű tölcsér, il-

letve alsó kialakításban eltérő silók esetén a ferde és függőleges falakon a töltési folyamat 

végén fellépő súrlódási erő nagysága =0,3 lokális, szemcse-szemcse és szemcse-fal súrlódá-

si tényező és kísérletileg kalibrált érintkezési modell alkalmazása mellett a töltet súlyának 

12…16%-a. 
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Appendix A 

A.1. Modeling of time independent, nonlinear (perfectly) elastic re-
sponse of rubbers and rubberlike materials 

The modeling of rubberlike materials is described, among others, by Dorfmann [96]. 

According to Dorfmann [96] the stress response of a hyperelastic material is given by the de-

rivative of the scalar-valued strain energy function, being defined per unit volume (strain en-

ergy density function) in the reference configuration and representing the work done on the 

unit volume at a typical material particle (identified by a position vector) in changing the de-

formation gradient tensor from I (the identity tensor) to F. A brief overview of different strain 

energy functions for both incompressible and compressible hyperelastic materials (such as 

incompressible and compressible Mooney-Rivlin energy formulation, neo-Hookean, Blatz-

Ko, Ogden, Gent, Arruda-Boyce or eight chain model) can also be found in the study of 

Dorfmann [96]. For additional details on rubber elasticity one can consults with works of Tre-

loar [97], Achenbach and Streit [98] and Bódai [17]. 

A.2. Finite element modeling of small strain linear viscoelastic be-
havior of rubbers and rubberlike materials 

The viscoelastic material behavior is modelled here by a spring-dashpot model. Such a 

phenomenological modeling approach does not take into consideration the real molecular 

structure of the material but it may be able to model accurately the macroscopic material re-

sponse. 

Considering the material behavior of rubber and rubber-like materials the generalized 

Maxwell-model (several Maxwell-models connected in parallel) connected parallel to a spring 

can be a reasonable choice as a material model because it is a widely accepted constitutive 

law and available in the most, commercial FE software packages. At the same time, it must be 

mentioned that its applicability depends strongly on the number of Maxwell elements. Even in 

case of 15-term Maxwell-model, there is a strong fluctuation in the loss factor-frequency 

curve that may cause inaccurate modeling results, especially when the excitation frequency 

varies in a broad frequency range. According to the experience of the author of this thesis a 

40-term Maxwell model is able to describe with high accuracy the time dependent material 

behavior of viscoelastic materials in a wide frequency range. 

Description of linear viscoelasticity can be found, among others, in the books of Ferry 

[99], Christensen [100], Findley et al. [101], and Aklonis and MacKnight [102]. Linear visco-

elastic deformation is commonly described using the Boltzmann integral representation (con-

volution integral) in its relaxation form (stress relaxation) as [99]: 

 
 

 

t

dt
dt

td
ttE

0

'
'

'
'


 ,    (A.1) 

where   and   denote the stress and the strain, respectively. The information concerning 

time-dependent material behavior is involved in the tensile relaxation modulus (E(t)). In other 

words, E(t) is the relaxation modulus at time t. This equation can be rewritten as 

   
 
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where e(t) is the normalized relaxation modulus, defined as     0/ EtEte  . Here 

 00  tEE  is the instantaneous (or glassy) modulus. The normalized relaxation modulus is 

defined (approximated with desirable accuracy) as a Prony series (sum of exponentials) and 

can be formulated as 

  
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Similarly, the relaxation modulus is defined as 
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where 0EeE ii   is the i-th modulus and  is the i-th relaxation time. Here the Poisson's 

ratio is assumed to remain unchanged over time. Consequently, it does not appear in the stress 

relaxation formulation. The physical interpretation of time independent Poisson’s ratio is that 

relaxation processes in mutually orthogonal directions proceed in the same manner. Although, 

in many cases, this assumption is a good approximation it must be mentioned that, in real pol-

ymers, the Poisson’s ratio usually exhibits time- and temperature dependent behavior as re-

ported by Tschoegl et al. [103] and Pandini and Pegoretti [104]. 

This representation of the relaxation modulus emphasizes that the relaxation occurs 

not at a single time, but at many, different time instants (spectrum of relaxation times). The 

specification of the linear viscoelastic model by a Prony series is extremely useful for the FE 

prediction of hysteresis friction because, in most finite element software packages, this speci-

fication is used. The above equation of stress relaxation (reduction of stress under constant 

strain) can be represented graphically by using a generalized Maxwell-model connected paral-

lel to a spring. Such a model is depicted in Fig. A1. 

 

Fig. A1. Schematic representation of a generalized Maxwell-model connected parallel to a 

spring [106] 

It is worth noting that there is no consensus in the literature regarding the precise name 

of the viscoelastic model. In FE software packages, research papers dealing with FE model-

ling and many papers investigating the viscoelastic response of polymers or elastomers (for 

example in the paper of Bardenhagen et al. [105]) the material model seen in Fig. A1 is 

termed generalized Maxwell-model. In this thesis, the term generalized Maxwell-model indi-

cates several Maxwell-models (a linear spring and dashpot in series) connected parallel. One 

of the possibilities available in MSC.Marc to model linear viscoelasticity is to use the general-

ized Maxwell-model connected parallel to a spring. As dictated by its graphical representation 
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the stress in such a viscoelastic model is the sum of stresses in the Maxwell-elements and in 

the spring E . The model consists of linear springs and dashpots. In case of linear spring, the 

modulus is constant while the stress-strain relationship is linear. Contrary to this, in case of 

linear dashpot, the stress-strain rate relationship is linear while their ratio, the viscosity, is 

constant (stress or strain rate independent viscosity). 

Denoting the modulus of the separate spring by E  (relaxed modulus) the interrelation 

among the normalized moduli can be written as 

,1
1






N

i

iee       (A.5) 

where 0/ EEe    and N is the number of the Maxwell branches. Consequently, the relation 

between the moduli is formulated as 

.
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iEEE      (A.6) 

The i-th relaxation time of the generalized Maxwell model ( i ) is defined as 
i

i
i

E


  , where 

i  is the dynamic viscosity of the i-th dashpot. 

As the viscoelastic model connected parallel to a spring is used for hysteresis friction 

prediction (prediction of friction force due to the hysteresis) in this thesis the dynamic modu-

lus of rubber has primary importance. If a linear viscoelastic material is subjected to a sinus-

oidally varying strain having an amplitude 0  and angular frequency ω then the steady-state 

response (stress) will also be sinusoidal with the same frequency (ω) but some time delay. 

This time delay or phase shift is represented by the so-called phase angle δ. In case of elastic 

material 0 , while in case of totally viscous material  90 . For rubbers the phase angle 

is greater than 0° but smaller than 90° (  900  ) as reported by Bodor and Vas [107]. The 

stress response can be written as 

           tttt  cossinsincossin 000  ,  (A.7) 

where 0  is the stress amplitude. According to the latter expression the stress response can be 

divided into two parts. One part of the stress (      tt  sin'sincos 00  ) is in phase with 

the strain (elastic stress) while its other part (      tt  cos"cossin 00  ) is out of phase 

with a phase angle of 90  (viscous stress). Considering the stress as a complex quantity ( * ) 

having a norm of 0 it can be written that 

   20

2

00

* "'   ,    (A.8) 

where '0  denotes the real part of stress (being in phase with the strain) and "0  denotes the 

imaginary part of stress (being out of phase with a phase angle of 90  compared with the 

strain). The strain energy associated with the in-phase stress and strain is the energy stored in 

the material (reversible strain energy). Contrary the strain energy associated with the out of 

phase stress and strain is the energy converted into heat (irreversible strain energy) [107]. The 

complex dynamic modulus *E  is defined as the stress amplitude divided by the strain ampli-

tude i.e. 
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, (A.9) 

where 'E  is the storage (elastic) modulus (real part of the complex dynamic modulus) and "E  

is the loss (viscous) modulus (imaginary part of the complex dynamic modulus). As reported 

by Roylance [108] the storage modulus represents the energy stored (elastic portion) and the 

loss modulus represents the energy dissipated as heat (viscous portion). 

As it was mentioned the N-term generalized Maxwell-model consists of N Maxwell 

models in parallel. With regard to the serial connection of the linear spring and the linear 

dashpot of a Maxwell-model the resultant deformation of the model is given as the sum of 

deformations of the spring and the dashpot. This can be written in mathematical form as 




 

E


 ,      (A.10) 

where   denotes the resultant strain rate, E denotes the modulus of the linear spring, and  

denotes the dynamic viscosity of the dashpot. Based on this equation both the frequency de-

pendent storage and loss moduli of the Maxwell-model can be derived as presented by Pahl et 

al. [109]. 

 
22

22

1
'







 EE ,     (A.11) 

 
221

"






 EE ,     (A.12) 

where E/   is the relaxation time and   denotes the angular frequency of the excitation. 

The loss factor (tan(δ)) is defined as the ratio of the loss and storage modulus thus it can be 

formulated as 

 
 
  




1

'

"
tan 

E

E
.    (A.13) 

Now, consider a generalized Maxwell element in which finite number of Maxwell-

models are connected in parallel as done by Wiechert [110]. In the case of generalized Max-

well element, the relationship for storage and loss modulus can be written as the sum of sepa-

rate Maxwell models (elements) i.e. 

  
 


N

i i

i
ieEE

1
22

22

0
1

'



 ,    (A.14) 

  
 


N

i i

i
ieEE

1
220

1
"




 ,    (A.15) 

where N denotes the number of Maxwell elements and i  denotes the relaxation time of the i-

th Maxwell element. 

Finally, consider the viscoelastic model where a finite number of Maxwell elements 

and a separate linear spring ( E ) are connected in parallel (see Fig. A1). The linear spring 

E  is responsible for the time-independent elastic part of the deformation while the finite 

number of Maxwell elements represents the time-dependent elastic (viscoelastic) part of the 

deformation. Derivation of the frequency dependent complex dynamic modulus of the viscoe-

lastic model can be found, among others, in studies of Kaliske and Rothert [111], Achenbach 
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and Frank [22], and Achenbach and Streit [98]. Using these results the storage and loss modu-

lus can be written as 

   
  








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i i
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i
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i

i eEEeEeEE
1 1

220022

22
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1

0
1

1

1
1'
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
 ,  (A.16) 
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 
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i
ieEE
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1
"




 .    (A.17) 

In other words, the relationships between storage (  'E ) and loss modulus (  "E ) and a 

continuous relaxation spectrum can be approximated with any desirable accuracy as the above 

expressions show. Contribution of the different Maxwell elements to the cumulative (result-

ant) frequency-dependent material behavior of the viscoelastic model is shown in Fig. A2. In 

many cases, components of the dynamic modulus are expressed in function of the cyclic fre-

quency f. As f 2  the cyclic frequency dependence of the storage modulus can be writ-

ten as 

 
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  (A.18) 

The above shows that the time dependence of relaxation modulus and frequency dependence 

of storage and loss modulus can be captured by a spring-dashpot model with a sufficient 

number of elastic and viscous elements [99]. 

 

Fig. A2. Contribution of Maxwell elements to the cumulative (resultant) normalized storage 
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 ) of a 14-term generalized Maxwell model connected 

parallel to a separate spring [111] 

Experimental data from either creep or relaxation tests can be used to identify the 

model parameters with the software’s built-in algorithm. In other words, more sophisticated 
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commercial FE software packages are able to compute the model parameters ( iie , ) automat-

ically from experimental data. However, most of the software packages have limited capabil-

ity for “calibrating” n-term Maxwell model. In most cases, the number of terms is limited 

anywhere between ten and fifteen. As an example MSC.Marc is able to identify automatically 

the model parameters from a fit to creep or stress relaxation tests but cannot to do this if 

DMTA data are available only. Additionally, the number of terms in the fitted viscoelastic 

model is limited to ten. Finally, it is worth to mention that in case when model parameters are 

specified using the graphical user interface of the software the number of Maxwell-terms is 

limited to fifteen. As it is pointed out in Appendix C the models calibrated by without over 

passing the capability of the applied, commercial FE software have strongly limited accuracy 

when they are used for hysteresis friction prediction. 

A.3. Finite element modeling of large strain (finite) linear viscoelas-
tic behavior of rubbers and rubber-like materials 

In this subchapter, the large strain viscoelastic model available in MSC.Marc and used 

in the prediction of the viscoelastic friction component is presented briefly. As it is well 

known, the mechanical behavior of rubber-like materials is principally characterized by a non-

linear stress-strain curve and time and temperature dependency [97, 99, 100]. The short-time 

(instantaneous or glassy) behavior of the generalized Maxwell-model connected parallel to a 

nonlinear spring can be specified, among others, by a strain energy density function ( 0W ). In 

the hysteresis friction computations reported in this thesis the isotropic, incompressible two-

term Mooney-Rivlin strain energy formulation is used. According to Dorfmann [96] a strain 

energy function may be formulated in terms of the invariants 1I , 2I  and 3I  by expanding the 

energy function in the Taylor series. It must be mentioned that for an incompressible material 

13 I . The Mooney-Rivlin energy formulation is the linear expansion of the strain energy 

function thus it has the form 

   33 201110  ICICW ,    (A.19) 

where 1I  and 2I  are the first and second invariants of the right or left Cauchy-Green defor-

mation tensor, while 10C  and 01C  are material constants to be determined experimentally. 

Combination of hyperelastic model and generalized Maxwell-model results in a large-

strain viscoelastic model showing both the time dependency and the nonlinear behavior of 

rubber. The instantaneous strain energy density is distributed among the branches of the 

spring-dashpot model by assuming that the instantaneous strain energy in the i-th Maxwell 

element can be computed as  

0WeW ii  ,     (A.20) 

where 0W  is the instantaneous strain energy defined by the Mooney-Rivlin model. It must be 

mentioned that the two parameter Mooney-Rivlin material law cannot describe stress-strain 

curves having inflexion point at very large strain (stiffening of rubber at large tensile strains). 

Consequently, if the strain exceeds the value belonging to the inflexion point then the 

Mooney-Rivlin formulation should be replaced with a multi-parameter ( see for example the 

Signiorini hyperelastic material model). In the Signiorini hyperelastic material model [36, 

112] the strain energy density function is formulated as 

2

120201110 )3()3()3(  ICICICW ,  (A.21) 

where 10C , 01C , and 20C  are material constants to be determined experimentally. 
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As it is known from continuum mechanics stresses can be computed by differentiation 

of the strain energy density function with respect to the Green-Lagrange strains. For instance, 

the second Piola-Kirchhoff stress response of the model for instantaneous deformations is 

obtained by differentiation. A detailed review of the large strain viscoelastic model used can 

be found in the study of Bódai and Goda [113]. For more detail on the model see the works of 

Holzapfel [114] and Kaliske and Rothert [111]. As it was concluded by Kaliske and Rothert 

[111] combination of such a material model with the finite element method provides an effi-

cient numerical tool for large scale computations of time- and frequency-dependent materials. 

Finally, it must be mentioned that whilst at small strains the linear viscoelastic theory 

describes accurately the behavior of elastomers however at large strains - especially in pres-

ence of filler particles such as carbon black or silica particles – they exhibit strongly nonlinear 

viscoelastic behavior. In the latter case, the accuracy of numerical models using Prony series 

fitting for the description of viscoelasticity can suffer to some extent from the nonlinearity of 

rubber rheology [25]. In case of nonlinear viscoelasticity, the time dependent response of the 

material depends on the magnitude of stress or strain. 

A.4. Parameter identification based on the time (frequency)-
temperature correspondence principle 

In general, the spectrum of relaxation times of polymers includes both the very fast 

(dynamic load) and the quite slow (static load) relaxation processes [115]. The dynamic spec-

trum ranging from 610  to 10 s can be determined from dynamic data while the static spec-

trum ranging from 1 to 810  s can be determined from long lasting tests (e.g. creep or relaxa-

tion tests). The transition from the dynamic to the static spectrum has already been proved 

experimentally [115]. In order to study the viscoelastic response at low strains, among others, 

the dynamic mechanical (thermal) analysis (DM(T)A) is used, where the specimen undergoes 

repeated small-amplitude strains at different temperatures and excitation frequencies. The 

DMTA test provides frequency dependent dynamic properties (storage modulus   'E , loss 

modulus   ''E , and loss factor or loss tangent   tan ) at different temperatures. If 

DMA data are available the parameters of the viscoelastic material model may be determined 

from a fit to the so called master curve. The construction of master curve or generalized curve 

is described in depth, among others, Ferry [99], Felhős et al. [11], Herdy [33], Bódai and Go-

da [116] and Urzsumcev and Makszimov [115]. Due to this, here a brief description is pre-

sented only. 

If the material behaves thermorheologically simple, then its deformation is governed 

by a single relaxation mechanism. This relaxation mechanism manifests itself as a spectrum 

of relaxation times and is accelerated by the temperature through specific shift function as 

     TaTT Trii  ,     (A.22) 

where  TaT  denotes the shift factor along the time axis at temperature T,  ri T  is the i-th 

relaxation time at the reference temperature, while  Ti  is the corresponding relaxation time 

at temperature T. In other words, in order to determine the material behavior at a temperature 

other than the reference one we need to specify the relaxation times (  Ti ) according to the 

above expression. This principle, known in the literature as time-temperature correspondence 

principle or time-temperature superposition principle, emphasizes the equivalence of time and 

temperature. In general, the time-temperature correspondence principle may be written as 

     TaTttTt Tr  ,    (A.23) 
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where   tTt   is the time at temperature T, and  rTt  is the time at the reference temperature 

or as 

    
  








 r

T

rr T
Ta

t
ETTtETtE ,,, ,   (A.24) 

where  TtE ,  denotes the modulus at time t and temperature T. The latter may be written in 

an alternative form as 

       TTaTtETTtE Trrr ,,  .   (A.25) 

By introducing the excitation (cyclic) frequency f  which is a reciprocal time quantity 

the time-temperature correspondence principle may be written, in general, as [115] 

    rT TTafETfE ,, **  ,    (A.26) 

or as 

  
 
  








 T

Ta

Tf
ETTfE

T

r
rr ,, **

,   (A.27) 

where f is the cyclic frequency at temperature T,  rTf  is the cyclic frequency at the refer-

ence temperature,  TaT  is the shift factor along the frequency axis and *E  is the complex 

dynamic modulus. The shift along the abscissa (horizontal shift) is typical at amorf thermo-

plastic polymers however, at resins, partially crystalline polymers and elastomers a shift along 

the ordinate (vertical shift) may also be necessary during the master curve construction [115]. 

In the latter case, the time-temperature correspondence principle has the following form 

      rTT TTafETbTfE ,, **  ,   (A.28) 

where  TbT  denotes the vertical shift factor. At the reference temperature, naturally, there is 

no need for shifting thus     1 rTrT TbTa . In case of unfilled rubber, 1Tb  (no vertical 

shift is needed) and the temperature dependency of Ta  is (approximately) given (as in most 

cases) by the Williams-Landel-Ferry (WLF) equation [117]. The WLF equation can be formu-

lated (see [118]) as 

 
 r

r
T

TTC

TTC
a






2

1log ,    (A.29) 

where Ta  is the shift factor, rT  is the reference temperature (usually the glass transition tem-

perature), while 1C  and 2C  are the WLF parameters at the reference temperature rT . For 

many amorf thermoplastic polymers 4.171 C , CC  6.512  (universal WLF parameters). 

Strictly speaking, however, the WLF equation is valid in the range of 100 gg TTT , 

where gT  denotes the glass transition temperature of the polymer and the temperature is 

measured in °C. In [119], Stan et al. found that the agreement with the measurement can be 

improved if two different sets of WLF parameters are used above and below the glass transi-

tion temperature. If the reference temperature differs from the glass transition temperature 

( gT ) of the material then the WLF parameters at any reference temperature rT  ( 1C  and 2C ) 

may be easily related with those at gT  ( gC1  and gC2 ) [99] by 
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 
,
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1
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


      (A.30) 

and 

 .22 grg TTCC       (A.31) 

At the same time it must be mentioned that below gT  the temperature dependency 

(shift of the relaxation times along the time or frequency axis) can be described more accu-

rately by the so called Arrhenius equation [115]. According to this the application of WLF 

equation in this temperature range is usually an approximation (see Fig. A3). 

 

Fig. A3. Temperature dependency of shift factor (EPDM 75° IRH rubber, DMTA test, 

f=1…100 Hz, T=-90…150°C, T=10°C) [120] 

According to the time-temperature correspondence principle one can transform the 

storage modulus isotherms measured to a continuous storage modulus master curve belonging 

to a reference temperature. As Fig. A4 shows the DMA isotherms are shifted horizontally 

along the frequency axis with respect to the reference isotherm. Naturally, the isotherm be-

longing to the reference temperature is not shifted i.e. remains its original position. In Fig. A4, 

no vertical shifting is performed. The master curve predicts the behavior over a very wide 

frequency range from isotherms measured in a narrow frequency domain. In order to obtain 

material model parameters ( 0,, Ee ii  , N) the model chosen has to be fitted, for example, to 

the storage modulus master curve. In case of n-term generalized Maxwell model, this means 

that the storage modulus function (see Eq. (A.16)) has to be fitted to the experimentally de-

termined storage modulus master curve. However if the fitting is performed in respect of a 

single function only, then it cannot be guaranteed that the material model will describe the 

real (E’) and imaginary (E”) part of the complex modulus with the same accuracy. 

In general, if DMTA data are available the viscoelastic model parameters ( 0,, Ee ii  , 

N) may be determined by fitting the storage modulus function (  'E ) to measured storage 

modulus master curve (see the works of Achenbach and Frank [22], Herdy [33], and Nguyen 

et al. [26]), the loss modulus function (  "E ) to measured loss modulus master curve (see 

the work of Kaliske and Rothert [111]) or the (norm of the) complex modulus function 

(  *E ) to (norm of the) measured complex modulus master curve (see Scaraggi and 
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Persson’s study [25]) based on an optimization method. The latter is used to minimize the 

residual (or the error) between the modulus function fitted and the measured master curve 

with respect to the model’s parameters. As an example, in the method of least squares, sum of 

square error is minimized. For the sake of simplicity, in [111], the model parameters have 

been chosen on the basis of the measured loss modulus. As it can be seen in Fig. A2, in such a 

case, discrepancies between experiment and model curve may be found for the storage modu-

lus. As an alternative the deviation of measured data and mathematical approximation could 

be distributed to both the real (storage modulus) and the imaginary (loss modulus) part when 

model parameters are identified from a fit to the complex modulus using a refined identifica-

tion algorithm. Additionally, the viscoelastic model parameters may also be identified e.g. 

from standard tensile tests performed at wide temperature range as reported by Bódai and 

Goda [121]. 

(a) 

(b) 

Fig. A4. (a) Construction of storage modulus master curve (prismatic specimen having a 

length of 21.7 mm, width of 3.75 mm, thickness of 1.32 mm and cutting from a SWF Duotec+ 

commercial windscreen wiper blade; static preload=0.1 N; sinusoidally varying strain excita-

tion with 1% amplitude; temperature step= 5°C). For the sake of simplicity only one part of 

measured isotherms are depicted. [116] (b) Values of TaLog  at a reference temperature of 

20°C [121] 

The time independent hyperelastic behavior being defined by 10C  and 01C  can be in-

vestigated experimentally by using quasistatic stress-strain tests in tensile, simple shear, etc. 

mode. (However when identifying model parameters by curve fitting we have to work care-

fully because, as mentioned by Yeoh [123] the Mooney-Rivlin model obtained by fitting ten-
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sile data is quite inadequate in other modes of deformation, especially compression.) As none 

of them was available the Mooney-Rivlin parameters ( 10C , 01C ) were identified as follows. 

Among others, Gent [122] pointed out that, in case of simple shear, the Mooney-Rivlin model 

obeys Hooke’s law i.e.  

  01102 CCG  ,    (A.32) 

where   denotes the shear stress,   is the shear strain, and G is the shear modulus. Using the 

relationship between the shear modulus and Young’s modulus (E) valid for homogeneous and 

isotropic materials and a Poisson ratio () of 0.5 the Mooney-Rivlin hyperelastic model re-

sults in a Young’s modulus of 

 011063 CCGE  .    (A.33) 

The glassy Mooney-Rivlin parameters used in the prediction of the viscoelastic friction com-

ponent are computed from the compressive glassy modulus ( 0E ) provided by DMTA test as 

 01100 6 CCE  ,     (A.34) 

and 

4

1

10

01 
C

C
.     (A.35) 

The latter is a reasonable assumption if only the Young’s modulus is available and not the full 

uniaxial stress-strain curve [36]. 

The large strain linear viscoelastic model used in this thesis requires the following pa-

rameters to be known from fits to experiments:  NieECC ii ...1,,,, 00110  , and N. In order 

to obtain a good fit, the smallest number of Prony series terms should equal the number of 

time decades spanned in the test/master curve as concluded by Urzsumcev and Makszimov 

[115]. 

A.5. Extension of the material model over the viscoplastic material 
behavior 

As the hysteresis may be explained by both viscous and plastic deformation it is worth 

to extend the material model to viscoplasticity. Soós and Goda [106] extended the spring-

dashpot model introduced above over the viscoplastic material behavior by replacing the line-

ar spring with an „elastic-plastic” spring as proposed by Bardenhagen et al. [105] (see Fig. 

A5). The key characteristic of this approach is the addition of stresses corresponding to visco-

elastic and elastic-plastic constitutive model components. Similar to the former parts of the 

Appendix the phenomenological modeling approach used does not take into consideration the 

real molecular structure of the material but it may be able to model accurately the macroscop-

ic material response. For the sake of simplicity the “elastic-plastic spring” consists of only 

two linear elastic springs and a “slider element”. The “elastic-plastic spring” behaves linearly 

(with a modulus of ES) until the element stress does not reach the yield strength (y) because 

the “slider element” behaves as an ideally rigid element in this range. When the element stress 

becomes greater than or equal to the yield strength the “slider element” slides and the spring 

with modulus ET starts to work. In other words, the plastic deformation is only active when a 

yield criterion is met. At and above the yield strength the “elastic-plastic spring” behaves as a 

linear spring with modulus 

   TSTS EEEEE  / ,    (A.36) 
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because the two springs (ES and ET) are connected in series. As the modulus ET does not de-

pend on the plastic strain the instantaneous modulus E of the “elastic-plastic spring” is plastic 

strain independent. If one needs a plastic strain dependent “elastic-plastic spring” then the 

linear spring with modulus ET has to be replaced by a non-linear spring. In our case, the “elas-

tic-plastic spring” has three parameter (ES, ET, y) but, in fact, only two parameters must be 

determined from additional experiments, because ES is known from the storage modulus mas-

ter curve (ES=E). Strictly speaking the original viscoelastic model is modified by taking into 

consideration the rate independent plasticity. 

n. Maxwell-term"elastic-plastic
spring"

 

Fig. A5. Schematic representation of the viscoplastic material model (E-relaxed modulus, Ei- 

modulus of the ith spring, i-viscosity of the ith dashpot, n- number of Maxwell terms, Es, ET- 

moduli of “elastic-plastic spring”, y-yield strength, εy-yield strain). The mechanical behavior 

of the “elastic-plastic spring” is shown in the stress-strain diagram. (From [106].) 

The viscoplastic material model, which is not used directly in this thesis, has been in-

corporated into axisymmetric FE models of short glass fiber reinforced polyamide tubes by 

Soós and Goda [106]. The material model was built in the FE models through the overlay 

method. The basic concept of the overlay model is that the material behavior can be divided 

into a number of parallel fractions with simple constitutive models and adequate material pa-

rameters. The translation of the overlay model in a FE scheme is based on generating a model 

with several identical overlaid meshes sharing the same nodes. As each FE mesh may have 

different material behavior it is possible to model even the very complex material responses. 

In the viscoplastic FE simulations reported by Soós and Goda [106] the Von Mises yield crite-

rion and the isotropic work hardening rule were used. According to the Von Mises yield crite-

rion if the Mises-type equivalent stress reaches the yield strength (y) of “elastic-plastic” 

spring then plastic strain appears. 
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Appendix B 

B.1. Surface roughness spectral density 

Surface roughness spectral density function or spectrum depicts the components of 

surface height profile of rough surfaces as a function of inverse of wavelength (spatial fre-

quency). Surface height profile of a rough surface can be considered as a signal which de-

scribes the variation of a random process in the space. As it is well known the spectral analy-

sis is a frequently used method of signal processing. 

Conventionally, statistical parameters are used for characterizing surface roughness. 

However it is well known that these parameters depend on the resolution (sampling interval) 

and scan length (sampling length) of the surface roughness measurement. Using surface 

roughness spectral analysis of rough surfaces these problems can be avoided. Although many 

experts urge the application of 3D surface topography characterization instead of 2D tradi-

tionally and in accordance with international standards, the micro-geometry of operating sur-

faces, in the most cases, is characterized in two dimensions. Beside the application of statisti-

cal parameters obtained from 2D and 3D parameter-based technique, nowadays, two domi-

nant research trends can be observed. Either of them puts the focus on the local features of 

topographies through the identification of asperities and scratches. The other concentrates on 

the “global” surface characterization and uses complex mathematical methods. For instance, 

in the theory of Persson [3] developed for the prediction of fractal surface generated viscoe-

lastic friction the surface roughness spectrum is used to characterize multi-scale nature of 

rough surfaces (asperities at multiple scales). Proper characterization of surface roughness is 

of primary importance because output of the friction models depends strongly on the reliabil-

ity of the surface roughness model applied as input data. In [60], Czifra et al. compares the 

capability and results of three different surface characterization techniques (parameter based 

technique, slicing method for identification of asperities/scratches and surface roughness 

spectral analysis) through the analysis of brake plungers manufactured by three different sur-

face finishing techniques (cork-wheel, sand paper, rolling). Rough surfaces obtained by using 

line-scan instrument can be seen in Fig.B1. 

One of the main objectives of this section is to describe briefly the way of surface 

roughness spectral analysis in 3D. Surface roughness spectral density can be obtained from 

the measured 3D topography (height profile) using Fourier transformation. Fourier transfor-

mation of 3D engineering topography (see [124]) can be written as 

dxdyeyxzqpF qypxi


 )(2

, ),()( 
.    (B.1) 

Its discrete form, i.e. the discrete Fourier transformation (DFT) is given as 


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,   (B.2) 

where pk is the k
th

 spatial frequency in direction x, ql is the l
th

 spatial frequency in direction y, 

z(xc,yd) is the height coordinate located at xc, yd, M is the number of points in profile, N is the 

number of profiles, Δx, Δy are sampling distances, e is the basis of the natural logarithm, 

whilst i is the imaginary unit. As it can be seen DFT gives complex result. 

F(pk,ql)=Re(F(pk,ql))+i·Im(F(pk,ql)).    (B.3) 

The surface roughness spectral density (surface roughness spectrum) is defined as 
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The surface roughness spectrum is usually represented in log-log scale. For rough surfaces 

with isotropic statistical properties (isotropic surface roughness) the surface roughness spec-

trum appears as a truncated conical surface. In this case, the surface roughness spectral densi-

ty may be given by the A(q)=C(q) function (spectral density curve) where  

22

lk qpq  .      (B.5) 

The dimension of surface roughness spectral density A(q) is also [m
4
], relating that results 

come from 3D surface roughness spectral analysis. The slope of the straight line fitted to the 

spectral density curve has correlation with fractal dimension of surface topography defined as  

HD f  3 ,      (B.6) 

where H i.e. the Hurst exponent. With this the slope of the spectral density curve is 

 12  HSlope .     (B.7) 

In order to accelerate the computation of surface roughness spectrum a computer code has 

been developed and implemented in C++ by the author of this thesis. Spectrum analysis re-

ported by Czifra et al. [60] has been performed using this code. Fig. B2 shows clearly that, in 

case of three-dimensional surface topography, the surface roughness spectrum will appear as a 

surface (PSD surface). In many cases, the input data for surface roughness spectrum, howev-

er, is not a complete three-dimensional topography but a single profile as in the study of 

Schargott and Popov [125]. In this case, the spectrum appears as a curve rather than a surface. 

Many studies deal with the computation of micro hysteresis friction but the full surface 

roughness spectrum (PSD surface) of the rough surface is presented in none of these. Only 

averaged or non-averaged surface roughness spectral density curves can be found in these 

works. For surfaces with anisotropic surface roughness the surface roughness spectrum is de-

pendent on both the location and direction of line scans. Consequently, the curve-based repre-

sentation of the spectrum, strictly speaking, may be used for surface roughness with transla-

tional and rotational invariant (i.e. isotropic) statistical properties where the spectrum is inde-

pendent of the location and direction of line scans. 

Visualization of surface roughness spectrum needs adequate frequency distribution. Partitions 

of frequencies in the interesting frequency range are automatically generated using a loga-

rithmic division. The lowest frequency is the inverse of sampling length: qmin=1/(M*x), 

while the highest is the inverse of double of the sampling distance (resolution): 

qmax=1/(2*x). Discrete values of frequencies are computed according to the following equa-

tions, where n is the number of frequencies and i=1…n. 

)1-/(1

min

max
=

n

q q

q
q ,     (B.8) 

  qii qqq 1 .      (B.9) 

If the frequency sampling is uniform in range of qmin…qmax, as it is the case in Persson et al.’s 

study [126], then the spectral density curve becomes dense at higher frequencies, so the fea-

tures having small wavelength are enhanced, that greatly influence the slope of the fitted line. 

As these values carry the majority of measuring errors, inaccuracy of measurements may 

greatly influence the results. If uniform wavelength sampling is used, the low-frequency range 

becomes dense, and low-spacing topographic elements are not taken into consideration 

properly. 
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Although surface roughness spectrum-based representation of rough surfaces is able to 

capture the multi-scale (asperities are covered by smaller and smaller asperities) nature of real 

engineering surfaces it does not represent the real asperity geometry properly. As it is men-

tioned by Nguyen et al. [26] the real asperity geometry is likely not described accurately with 

the surface roughness spectrum in current rubber friction theories. In [26], an order-of-

magnitude agreement is obtained between experimental and theoretical results for a very sim-

ple micro-topography (smooth silica lenses having RMS roughness of 0.3 nm covered with 

nano-spheres having average diameter of 77 nm) which shows that the viscoelastic dissipation 

computed is very sensitive to the details of the micro-topography (asperity slope and height 

distribution). Furthermore, as it is known, Persson’s theory has been developed for fractal 

surfaces, however, real engineering surfaces are not true fractal surfaces. In [68], arbitrary 

machined metal sample is studied and it is concluded that fractal parameters are sensitive to 

the range of length-scales considered because the surface is not true fractal. In most cases, the 

fractal characterization can be considered as an approximation of the real surface topography. 

Majority of surface roughness spectra available in the literature is for road surfaces 

because Persson’s rubber friction theory is extensively used for tires. However the theory may 

also be used for apparently smooth engineering surfaces (sealing applications). At the same 

time, only few surface roughness spectrums are available in the literature for apparently 

smooth engineering surfaces. The work of Czifra et al. [60] can be considered as an exception 

because it focuses on surface roughness spectral analysis of real apparently smooth surfaces. 

Finally, as the slope of asperities has great effect on the viscoelastic friction it is worth 

to investigate one of the most important parameters of fractal surfaces, namely the fractal di-

mension, in depth. In [44], viscoelastic component of rubber friction is studied for highly pol-

ished steel surface with RMS roughness of about 0.1 m  using Persson’s theory developed 

for fractal surfaces. The fractal dimension extracted from the spectrum of the surface rough-

ness was, however, quite large ( 66.2fD ). As it is mentioned by Mofidi et al. [44] the large 

fractal dimension implies that the ratio between the amplitude and the wavelength of a given 

component of surface roughness strongly increases as the wavelength decreases (the larger the 

fractal dimension, the faster the ratio of amplitude and wavelength will increase as the wave-

length decreases), and it is why the contribution of short-wavelength roughness to viscoelastic 

friction is more important than the one of long-wavelength roughness. Analyzing surface 

roughness spectrum of apparently smooth metal surfaces (plungers of real brake cylinder) 

finished by different techniques (cork wheel, sand paper, rolling) Czifra et al. [60] pointed out 

that the fractal dimension obtained from micro-scale roughness (measured by diamond stylus 

profilometer) ranges from fD 2.2 to 2.5. Larger fractal dimension values are characteristic 

of surfaces finished by cork wheel. In case of sand paper and rolling, the fractal dimension 

obtained from micro-scale roughness is much smaller and is very far from 66.2fD  reported 

by Mofidi et al. [44]. Furthermore, it is worth to mention that, in case of rolling, the fractal 

dimension extracted from nano-scale roughness (measured by Atomic Force Microscope) is 

close to 2.5 which is significantly larger than that from micro-scale roughness but still smaller 

than 2.66. 
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Fig. B1. Rough surfaces measured (a. A1 topography: cork wheel; b. B1 topography: cork 

wheel; c. C2 topography: sand paper) [60] 
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Fig. B2. (a-b) Spectral density surfaces and (c) spectral density curve of C2 topogra-

phy [60] 
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Appendix C 

C.1. Modeling of viscoelastic material behavior of EPDM 75 IRHD 

Majority of numerical friction predictions presented in this thesis has been performed using 

carbon black filled ethylene-propylene-diene-monomer (EPDM) rubber plates denoted as 

EPDM 75 IRHD (International Rubber Hardness Degree). It is the material of reciprocating 

seals built, among others, in hydraulic brake cylinders of TRW Automotive (Pamplona, 

Spain). In order to characterize its material behavior DMA tests with compressive static load 

of 100 N, sinusoidally varying dynamic load of 50 N and excitation frequency of 1, 10 and 

100 Hz have been performed on rubber samples (10.8 x 11 x 6.33 mm, length x width x 

height) at the Institute for Composite Materials of University Kaiserslautern. Their results are 

storage ( 'E ) and loss ( "E ) modulus vs. frequency isotherms (in our case from T= -90 °C to 

T= +150 °C with a temperature increment of 10 °C) which make the construction of master 

curves possible. The master curve describes the material behavior in a broad frequency range 

and at a given reference temperature. According to the time-temperature correspondence or 

superposition principle (expressing equivalence of time and temperature) master curves have 

been constructed by shifting horizontally the measured isotherms. Naturally, the isotherm 

belonging to the reference temperature remains unchanged and only the rest of the isotherms 

are shifted horizontally. As a next step 15- and 40-term generalized Maxwell-models (viscoe-

lastic solids characterized by 15 and 40 relaxation times) have been constructed by the author 

of this thesis for modeling purposes. Parameters of the generalized Maxwell-models have 

been identified by fitting the material model to the storage modulus master curve. Here the 

software ViscoData [33] has been used for this purpose. At this point, it must be noted that 

most of the commercial FE software packages have limited capability for “calibrating” n-term 

generalized Maxwell-model. In most cases, the number of terms is limited anywhere between 

ten and fifteen and calibration algorithms for creep and stress relaxation tests are available 

only. In respect of MSC.Marc [36], the 40-term model is far beyond the calibration capability 

of the software. Furthermore MSC.Marc is able to handle high-order generalized Maxwell-

models in the computations but its graphical user interface for model parameter specification 

is limited to 15-term model. However this limitation can be bypassed by specifying model 

parameters directly in the data file of MSC. Marc. In order to analyze the effect of tempera-

ture on the material behavior master curves have been constructed at three different tempera-

tures (T= -50, 25 and 150°C) by the author of this thesis. The calibration of viscoelastic mate-

rial model is performed at each temperature separately. 

Fig. C1 and C2 show the measured and fitted storage modulus vs. frequency curves, 

while Fig. C3 and C4 show the loss factor vs. frequency curves in case of the 15- and 40-term 

viscoelastic models (generalized Maxwell-model connected parallel to a spring) fitted to the 

storage modulus master curve, at three different temperatures. In case of 15-term model, it can 

be observed that there is a good agreement between the measurement and the fitted models 

with regard to storage modulus, but the loss factor exhibits large oscillations. By increasing 

the number of Maxwell elements up to 40, the fluctuation becomes smaller; however, even in 

this case, the model strongly underestimates the value of the loss factor within a broad fre-

quency range. This implies that the 15-term model cannot describe, with adequate accuracy, 

either the nature of the loss factor or its numerical value. The 40-term model fitted to the stor-

age modulus master curve already properly represents the loss factor vs. frequency curve de-

termined from the measurement in terms of quality – and also in terms of quantity at most 

frequencies – but it still cannot provide acceptable accuracy in case of certain frequencies. 

However no reliable energy dissipation can be computed numerically unless the material 

model can properly represent both the storage modulus and loss factor master curve. As it can 

be seen material models fitted to the storage modulus master curves cannot describe the stor-
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age modulus and the loss factor master curves with the same accuracy within the entire fre-

quency range, therefore care must be taken when they are used. This is particularly important 

because engineering surfaces have multi-scale nature thus the material model must be able to 

describe material behavior in a sufficiently wide frequency range (interesting frequency 

range). Additionally, any variation in temperature shifts the frequency dependent material 

behavior towards higher or lower frequencies that results in situations where different parts of 

the material model curves fall into the interesting frequency range. 

  

Fig. C1. Comparison of the measured (solid 

line) and fitted (line with markers) storage 

modulus vs. frequency curves in case of 15-

term generalized Maxwell-model connected 

parallel to a spring and fitted to the storage 

modulus master curve (strain amplitude = 

0.01%) [38] 

Fig. C2. Comparison of the measured (solid 

line) and fitted (line with markers) storage 

modulus vs. frequency curves in case of 40-

term generalized Maxwell-model connected 

parallel to a spring and fitted to the storage 

modulus master curve (strain amplitude = 

0.01%) [38] 

  

Fig. C3. Comparison of the measured (solid 

line) and fitted (line with markers) loss factor 

vs. frequency curves in case of 15-term gen-

eralized Maxwell-model connected parallel to 

a spring and fitted to the storage modulus 

master curve [38] 

Fig. C4. Comparison of the measured (solid 

line) and fitted (line with markers) loss fac-

tor vs. frequency curves in case of 40-term 

generalized Maxwell-model connected par-

allel to a spring and fitted to the storage 

modulus master curve [38] 

The figures show clearly that the application of more terms reduces the oscillation of the fitted 

loss factor curve but practically has no effect on the agreement between measurement and 

fitting. Consequently, even the 40-term model provides much smaller loss factor (tan(δ)) val-

ues than the measurement for a broad frequency range. This implies that FE predictions using 

this material model will underestimate the hysteresis friction force within this frequency 

range. Modification of model parameters provided by ViscoData offers a natural way to de-

crease the discrepancy between measured and fitted loss factor curve or to fit the model to the 
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measured storage and loss modulus curve simultaneously. Since ViscoData is able to fit to the 

measured storage modulus master curve only the modification has been realized manually by 

the author of this thesis using a trial-and-error technique. The aim of this modification is to 

obtain parameters with which the loss factor master curves can be described more accurately 

in the interesting frequency range i.e. close to the characteristic excitation frequencies. Natu-

rally, such a manual modification of model parameters has an effect not only on the tan(δ) but 

also the E’ curve of the material model. In viscoelastic material models used for friction pre-

diction, the multi-term generalized Maxwell-model is combined with two-parameter Mooney-

Rivlin model as described in Appendix A. Its parameters belonging to the glassy state are as 

follows: MPaC 33.28910  , MPaC 33.7201   when fitting to the storage modulus master 

curve, and MPaC 66.40610  , MPaC 66.10101   when fitting to the loss factor master curve. 

As it can be seen the Mooney-Rivlin parameters change due to the manual modification of 

parameters obtained by ViscoData. The normalized moduli ( ie ) and relaxation times ( i ) of 

the modified generalized Maxwell-model are obtained by manual modification from those of 

the Maxwell-model fitted to the storage modulus master curve. If one used the same glassy 

Mooney parameters in both cases, an accurate relaxed modulus for the Maxwell-model fitted 

to E’ would be obtained while, for the Maxwell-model fitted to tan(δ), the relaxed modulus 

would be considerably underestimated in the interesting frequency range. To minimize this 

underestimation i.e. to approach E’ to the measured values, the glassy Mooney parameters 

have been changed. Thus one obtains higher glassy modulus than the measured one but the 

agreement, within the interesting frequency range, between the modeled and measured E’ 

values will be better than in the case of same Mooney parameters. 

For the sake of simplicity rubber is often considered to be linear viscoelastic. In many cases, 

this gives fair agreement with real rubber behavior but there are cases when this assumption 

causes significant errors. For small strains, the viscoelastic behavior, in most cases, is linear. 

For larger strains, however, the nonlinear viscoelastic theory is usually yields more accurate 

results. While, in this thesis, constant coefficients are used for the springs and dashpots of the 

material model, in case of nonlinear viscoelasticity, variable coefficients (material model pa-

rameters) would be required. As mentioned by Urzsumcev and Makszimov [115], in several 

cases, the difference between rheological parameters of loading and unloading increases with 

increasing load. In order to model this behavior, different coefficients would be required in 

the loading and unloading phase. In the viscoelastic models used here a generalized Maxwell-

model (parallel connection of several Maxwell-models or Maxwell elements) is connected 

parallel to a nonlinear spring and the coefficients for the springs and dashpots are constant. As 

it has already been mentioned dashpots with Newtonian viscosity are used in the viscoelastic 

model. In this case, the viscosity is independent of strain or shear rate. However when the 

viscosity is dependent on the shear rate the material exhibits shear thinning or shear thicken-

ing. In case of shear thinning, the material can be deformed relatively easier (with lower force 

than in case of shear rate independent viscosity) at higher shear rates. Consequently, in case of 

shear thickening, higher force is needed to deform the material at higher shear rates than in 

case of shear rate independent viscosity. Figs. C5 and C6 show frequency-dependent E’ and 

tan(δ) curves of 40-term viscoelastic models fitted to the loss factor master curve in compari-

son with measured curves at three different temperatures. In case of fitting to the loss factor at 

25 and 150°C, the storage modulus is underestimated below a certain frequency while it is 

overestimated above that. At -50°C, the interesting frequency range falls right from the max-

imum of the tan(δ) curve therefore the Maxwell-parameters differ from the ones applied at 25 

and 150°C in case of fitting to the measured loss factor curve. Due to this, at -50°C, the stor-

age modulus curves of the two types of fitting run together up to 10000 Hz, while it becomes 

overestimated above this frequency. As regards the loss factor curves of Fig. C6, it can be 
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concluded that there is a good agreement between the simulated and the measured loss factor 

curves at T=25°C and 150°C. 

  

Fig. C5. Comparison of the measured and 

simulated storage modulus vs. frequency 

curves in case of 40-term generalized Max-

well-model connected parallel to a spring and 

fitted to the loss factor master curve (strain 

amplitude = 0.01%) 

Fig. C6. Comparison of the measured and 

simulated loss factor vs. frequency curves 

in case of 40-term generalized Maxwell-

model connected parallel to a spring and 

fitted to the loss factor master curve (strain 

amplitude = 0.01%) 

At small frequencies where relaxation processes with long relaxation times dominate the time 

dependent behavior the loss tangent (loss factor) of EPDM rubber filled with carbon black is 

close to 0.2. (In [40], Persson came to similar conclusion for styrene-butadiene rubber filled 

with carbon black.) In this frequency range, the viscoelastic friction (frictional resistance 

caused by energy dissipation in rubber) cannot be predicted accurately if the 40-term viscoe-

lastic model fitted to storage modulus master curve (conventional approach for curve fitting) 

is used. At this point it must be mentioned that only few FEM-based viscoelastic friction pre-

dictions were available in the literature before our first studies ([11, 29, 32, 37, 38]). Their 

common characteristic was that the rubber behavior is described by few relaxation times only 

(unrealistic rubber behavior). As real rubber behavior cannot be characterized by few relaxa-

tion times they were suitable for qualitative analysis only. Nowadays the importance of using 

proper number of relaxation times in numerical viscoelastic friction predictions is widely ac-

cepted. For instance, Scaraggi and Persson in their very recent numerical study on rolling fric-

tion [25] use viscoelastic material models characterized by 34 relaxation times. The viscoelas-

tic model parameters are determined from a fit to measured master curve where number of 

frequency decades was between 20 and 25. In the paper of Carbone and Putignano [127], 34-

term viscoelastic model having relaxation times in geometric progression ( eii   /1  where e 

denotes the Euler’s number) is fitted to master curve spanning 12 decades of frequencies. In a 

very recent study of Lorenz et al. [128], Persson has revised his former opinion on the re-

quested number of relaxation times (he stated in [40] that it is usually enough to include 

15n  relaxation times if ii  101  ) and concluded that it is usually enough to use 100 (or 

less) relaxation times and ii  31  . Furthermore the viscoelastic model was fitted to the vis-

coelastic (complex) modulus master curve in order to increase the accuracy. Besides quantita-

tive analyses qualitative analyses can also be found in the literature of numerical viscoelastic 

friction prediction. For instance, in studies of Wriggers and Reinelt [34] and De Lorenzis and 

Wriggers [129], viscoelastic friction predictions for road surfaces are performed using viscoe-

lastic solid characterized by 6 relaxation times only. However, it must be mentioned that, in 

the improved version of the multi-scale modelling approach (see the work of Wagner et al. 

[135]) originally proposed for FE prediction of viscoelastic friction by De Lorenzis and Wrig-

gers [129] no less than 24 relaxation times are used for characterizing viscoelastic solids. 

dc_1263_16

Powered by TCPDF (www.tcpdf.org)


