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CHAPTER 1:  

 

INTRODUCTION 

LASSICAL mechanics is one of the 

oldest fields of natural sciences. 

Motivated by the goal of building man-

made structures and machines, humans tried 

to understand the interaction of solid objects 

via contact forces; to understand 

gravitational effects; to explain how certain 

objects move and why others stay in rest, 

and whether or not they collapse under 

certain loads. 

For long time, our knowledge in the field of 

mechanics was dominated by experimental 

evidence as well as by qualitative models 

and theories. Nevertheless philosophers and 

scientists of the ancient Greek culture were 

already surprisingly successful in creating 

mathematical models of physical 

phenomena. To mention two examples, 

Archimedes set up the laws of flotation, and 

he also combined this with his rich 

knowledge of geometry to determine 

asymmetric equilibria of a rotational 

paraboloid floating in a liquid – a problem 

that appears to our eyes hardly solvable 

without the concept of integrals. Another 

example is how Aristotle proposed a 

plausible semi-quantitative mathematical 

model explaining the rounded shapes of 

pebbles: using the kinematics of rotational 

motion as a basis, he argued that points of a 

pebble being far from its center exhibit 

more intensive impacts, resulting in fast 

erosion and thus round-off of the overall 

shape. 

The birth of modern physics is most often 

associated with Newton’s laws of motion, 

and Newton’s famous theory lead to a quick 

development of rigid body dynamics in the 

18th century, and to the dynamics of 

deformable solids in the 18th-20th centuries. 

Today, the classical theory of rigid bodies 

appears to be completely understood and no 

more subject to intensive research efforts. 

The present thesis addresses the “old-

fashioned” topic of static equilibrium of 

rigid objects. Together with the authors of 

the paper [49] the reader may ask the 

question: “Static equilibria of rigid bodies: 

is there anything new?” Of course, this 

thesis will give an affirmative answer. 

Despite the fact that the laws of equilibrium 

have been established for centuries, 

interesting problems arise, when 

mechanical behavior becomes strongly 

dependent on other mathematical properties 

of a system, or if questions about static 

equilibrium require the analysis of more 

complex physical phenomena, such as the 

dynamics of the system. These two types of 

problems will be the subject of the 

subsequent two chapters. 

In Chapter 2, we investigate examples of the 

interplay between geometry and statics. As 

we will show, the static equilibria of a rigid 

body on a horizontal surface can be found 

easily by examination of the associated 

distance function r, which will be defined 

formally in the sequel. The distance 

function represents the distance of each 

boundary point from the center of mass. We 

will focus on objects made of homogenous 

material, for which the shape of the object 

determines the position of the center of 

mass uniquely. Thus, a naively chosen 

function will typically not correspond to a 

real physical object. The geometric 

constraint outlined above is at the root of the 

questions discussed in Section 2.2-4, and a 

related geometric constraint emerges in Sec. 

2.5. We will ask questions like:  

C 
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 How many equilibria do solids made of 

homogeneous material may have in 

theory?   

 How can we influence the number of 

equilibria by modifying the shape of the 

object or the shape of the underlying 

support surface? 

 Does natural selection prefer some of 

these shapes over others in the case of 

hard-shelled animals?  

The research efforts of the author in this 

field were initiated by [49] who proved a 

nontrivial lower bound of the number of 

equilibria in the case of 2-dimensional 

objects on a horizontal support. Further 

inspiration came from the Russian 

mathematician V. I. Arnold, who asked if an 

analogous lower bound exists in three 

dimensions [50]; and by the Polish 

mathematician S. Ulam (most famous for 

his pivotal role in the development of the 

thermonuclear weapon) who asked 80 years 

ago a puzzling question about objects 

floating on the horizontal surface of a 

liquid: are spheres the only shapes, which 

can float in equilibrium in any orientation? 

In Chapter 2 we answer Arnold’s question 

together with several generalizations and 

some related problems. We investigate the 

equilibria of objects resting on a horizontal 

surface; or inside a hollow sphere, as well 

as of ones floating in a liquid. Among 

others, we also find an affirmative answer 

to Ulam’s question for a specific value of 

the liquid’s density. 

Arnold’s and Ulam’s original questions 

were motivated by mathematicians’ 

curiosity, but the results of the thesis are 

complemented by several applications. The 

answer to Arnold’s question is expanded 

into a classification of object shapes based 

on the number of equilibria, and we explore 

the preferences of natural selection, by 

discussing the morphology of turtle shells 

and their relations to self-righting behavior 

of the animals. Another application in 

geology is also reviewed briefly. Our results 

related to the number of static equilibria of 

objects in a sphere are also discussed from 

the viewpoint of potential applications in 

the field of manufacturing automation. 

The methodology of Chapter 2 remains 

mostly geometric. It does not require the 

understanding of physical laws governing 

the behavior of mechanical systems except 

for the laws of equilibrium. More involved 

physical problems are addressed in Chapter 

3, where we identify intriguing problems 

related to the dynamics of a system in the 

neighborhood of an equilibrium state and/or 

before reaching an equilibrium. The 

primary aim of Chapter 3 is to explore the 

stability and the attractivity of equilibria 

using different definitions and 

methodologies. We ask questions like:  

 How do systems reach an equilibrium 

state? 

 If they rest in equilibrium, how do they 

respond to various types of 

perturbations? 

Both questions are inspired by engineering 

applications.  

Similarly to statics, the laws of motion have 

been established long ago by people like 

Newton and Euler. The actuality of this 

topic is given by the fact that static 

equilibria under gravity require contact, and 

contact-related phenomena such as impacts 

and friction give rise to many open 

questions.  

The emerging difficulties are twofold. The 

first difficulty is the lack of reliable models 

due to the complexity of the underlying 

physical processes: for example an impact 

is a phenomenological description of a 

multi-scale dynamical process including 

shock waves, vibrations and viscoelastic 

material response. This tough situation is 

nicely illustrated by the fact the most 

popular simple impact law (based on 

kinematic coefficients of restitution) was 

developed by Newton, but the failure of his 

model to predict the outcome of any impact 

based on a limited number of 

measurements, and its apparent 
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inconsistency with energy conservation in 

certain situations (oblique impact with 

friction) still inspires researchers to develop 

newer and newer impact models [31] [37]. 

Modeling dry friction also has a rich history 

and it suffers from the same difficulties. 

Basic laws of friction were documentedly 

explored by Leonardo da Vinci; the most 

popular model by Amontons and Coulomb 

was developed in the 18th century, and 

improved friction models are still being 

developed [13] [81]. Even worse than 

unreliability, it has been known since the 

19th century [92] [129]  that the combination 

of rigid body theory with friction models 

tends to generate self-inconsistency or 

indeterminate answers even in simple 

situations [36]. It has become an established 

view that a “breakthrough” in modeling 

friction and impact modeling, i.e. finding a 

simple yet accurate model, or a complete 

and self-consistent theory within the 

framework of rigid body theory are 

hopeless [152]. 

The second difficulty of understanding 

contact-related phenomena is complexity: 

even idealized models of impact and 

friction turn our dynamic models into non-

smooth, hybrid dynamical systems, which 

are subject to intensive research and do not 

have a complete theory at this time [16].  

In the first part of Chapter 3, we study the 

transient behavior of objects before they 

come to rest in equilibrium: we seek to 

predict the probability distribution of the 

final resting aspects of objects after they 

have been dropped onto a horizontal 

surface. This question has been investigated 

mostly because of its role in the 

development of efficient part feeders (i.e. 

those machines which process a flow of 

unordered parts of identical shape and size 

at the entrance of an automated assembly 

line) [26]. In this part of the thesis, the 

difficulties of complexity and physical 

modeling are avoided by using a 

phenomenological model of the motion and 

by arguing that the results derived from the 

model are robust against the applied 

simplifications. Nevertheless, the 

predictions of the phenomenological model 

are verified against computer simulation, 

which requires the modeling of many 

aspects of contact dynamics.  

In the second part of Chapter 3, we 

investigate objects which have already 

reached a static equilibrium. The local 

stability of the equilibria is studied 

according to two distinct definitions. The 

results of the stability analysis fit into and 

extend a large body of work in robotics, 

where numerous notions of stability have 

been developed, see e.g. [89] [131]. As we 

will point out, traditional methods of the 

robotics community often do not comply 

with dynamical systems theory, which gives 

us space for improvement. Our theoretical 

results are motivated by simple applications 

in robotic grasping and locomotion. 

This part of the thesis attempts to overcome 

the difficulties of contact mechanics 

discussed above. The complexity of contact 

motion is addressed by using Lyapunov-

type approaches, which are not sensitive to 

fine details of the dynamics. The limitations 

and paradoxes of the rigid body approach 

are tackled by considering the quasi-rigid 

limit of compliant models. The unreliability 

of friction and impact model remains a 

partially unsolved issue. Nevertheless, we 

make as few assumptions about friction and 

impacts as possible, to maximize the 

significance of the results.  

The research work summarized in this 

thesis was conducted between 2005 and 

2015. Some results have been improved or 

used by others since then. The last parts of 

most sections contain brief summaries of 

ongoing related works by the author (mostly 

unpublished or under review) and by others. 

In order to improve the readability of the 

thesis, some technical details are presented 

in appendices (Chapter 5). 

Some results of the thesis have been 

developed in collaboration with others. 

These include the work reported in Section 
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2.2-3 (with Gábor Domokos) and in Sec. 3.4 

(with David Gontier and Joel W. Burdick). 

The main text is everywhere written in first 

person plural without distinction between 

independent work of the author and joint 

work. Nevertheless, the principal results of 

the thesis at the end of Chapter 4 have been 

stated in singular or plural in accordance 

with the number of contributors. 
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CHAPTER 2:  

 

STATIC EQUILIBRIA OF RIGID BODIES: THE 

INTERPLAY BETWEEN GEOMETRY AND 

MECHANICS

TATIC equilibria of rigid bodies have 

always played a role in the technical 

development of humanity. In particular, 

determining the number of stable equilibria 

of an object on a flat horizontal surface 

becomes important in countless situations. 

Archimedes provided the first rigorous 

method to construct ships with one stable 

equilibrium [123], and the development of 

“monostatic” shapes has become a common 

approach to avoid the unexpected toppling 

of tools in various fields from sailing to 

robotics and astronautics. Throwing dice for 

making decisions as in gambling relies on 

the existence of several, stable equilibria 

with disjoint basins of attraction. While 

classical (cubic) dice have 6 stable 

equilibria, an astonishing diversity of other 

dice exists as well: dice with 2, 3, 4, 6, 8, 

10, 12, 16, 20, 24, 30 and 100 stable 

equilibria appear in various games [190]. 

The invention of the wheel was essentially 

equivalent to the realization that a 

continuum of equilibria can exist. 

Modifying the number and the stability of 

equilibria such as stabilizing unstable 

equilibria is also a classical problem, ever 

since Christopher Columbus balanced his 

famous egg.  

Chapter 2 addresses a family of 

mathematical problems related to the static 

equilibria of rigid bodies, in which the main 

challenges are geometric by nature, and the 

necessary ingredients of physical modeling 

remain very sparse and simple. 

Nevertheless, being mathematical is not the 

equivalent of being purely theoretical, as 

some of these problems have 

straightforward biological and engineering 

applications, also discussed here. 

The first part of the chapter deals with 

methods and possibilities of constructing 

objects with a minimum number of stable 

and/or unstable equilibria. After 

introducing some basic concepts, and a 

classification scheme of objects based on 

the number of equilibria in Sec. 2.1, we 

discuss a mathematical problem coined by 

the recently deceased eminent Russian 

scientist Vladimir I. Arnold about the 

minimum number of equilibria of a convex, 

homogeneous rigid body on a horizontal, 

flat plane. We prove that this number is as 

low as 2, and also point out that shapes with 

only 2 equilibria appear to be extremely rare 

in our physical environment. We are 

inspired primarily by our curiosity to 

uncover how and to what extent the 

difficulty of achieving shapes with low 

number of equilibria is overridden by 

evolutionary selection. To this end, we 

investigate the shell shapes of turtles and 

tortoises. The idealized model of a 

parametric rigid body is fitted to the shells, 

and we show how the equilibrium classes of 

turtle models relate to the lifestyles and self-

righting strategies of real animals.  

We then examine a different approach of 

achieving monostatic behavior: instead of 

varying object shapes, we seek to find a 

geometric environment in which a given 

object becomes monostatic. In particular we 

investigate the number of equilibria of an 

S 
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object enclosed in a frictionless sphere of 

given radius . This problem is a natural 

generalization of the original one, given that 

the  limit of a spherical surface is a flat 

plane. We point out why monostatic 

behavior becomes more common in this 

environment, and outline a potential 

application of our new findings in the field 

of automated manufacturing.  

Chapter 2 is closed by another mathematical 

generalization of our first problem: 

identifying the equilibria of rigid bodies 

floating on the surface of a liquid. Clearly, 

floating is a more complex phenomenon 

than resting on a rigid surface, in which the 

mean density  of the object relative to the 

liquid appears as an extra parameter. 

Nevertheless the two problems become 

identical in the limits of 0 (where the 

object rests on top of the liquid surface 

without dipping into it) and 1 (in which 

the object touches the liquid surface from 

below without rising above it). We address 

a question proposed by the Polish scientist 

Stanislav Ulam, which appears to be the 

exact opposite of Arnold’s problem: are 

there objects other than spheres, for which 

all attitudes correspond to static 

equilibrium? Interestingly, this problem 

remained unsolved for over 70 years, 

despite being published in the Scottish Book 

[106], a widely known collection of 

mathematical problems with a long and 

intriguing history. By investigating the case 

of =1/2, we give an affirmative answer 

with an exact proof for the first time. 

2.1  BASIC CONCEPTS  

2.1.1  Characterizing the state of 
a rigid body 

The behavior of a dynamical system is 

usually characterized by its time-dependent 

state, which contains all necessary 

information about the system. For 

mechanical systems, such as a collection of 

moving rigid bodies, the state consists of the 

positions and velocities the components of 

the system, and it is usually represented by 

a set of (generalized) position coordinates 

and their time derivatives (generalized 

velocities). State space is the space spanned 

by these variables, in which each point 

corresponds to a state of the system. The 

investigation of equilibria is often possible 

without considering generalized velocities 

at all. The subspace of state space spanned 

by generalized coordinates is usually called 

configuration space. Each point of 

configuration space corresponds to a 

configuration of the system, i.e. it 

determines where the individual 

components of the system are located in 

physical space. It may seem plausible that 

the notion of “static equilibria” in the title 

of Chapter 2 refers to configurations 

corresponding to static equilibrium. 

Nevertheless, if one investigates equilibria 

of planar or spatial objects on a horizontal 

support surface (line in 2D or plane in 3D), 

the translational symmetry of the support 

surface implies that configurations of 

equilibrium are not isolated, and thus they 

are never finite in number. It is often 

convenient to treat the continuous sets of 

configurations induced by all translations as 

equivalent, which motivates  

Definition 2.1.1: an orientation of a rigid 

object is the set of configurations generated 

from one single configuration by all 

possible translations.  

In other words, orientation determines the 

attitude of the body, but it does not 

determine the location of its center of mass 

in physical space. In the presence of 

uniform gravity, having a horizontal 
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support plane in 3 dimensions also means 

that the system possesses rotational 

symmetry about a vertical axis, which 

motivates 

Definition 2.1.2 [71]: a pose of a rigid 

object in three dimensions is the set of 

configurations, generated from one single 

configuration by all possible combinations 

rotations about a vertical axis. and of 

translations. 

In simple words, pose determines, which 

side of the object faces down, but it does not 

determine, which side faces north or south. 

Throughout this work, we will represent 

orientations of a planar body or poses of a 

spatial body in 3 different ways. The first 

representation is a unit vector u in 2 or 3 

dimensions with the following meaning: a 

reference configuration of the object is 

considered together with the unit vector u 

(Fig. 1.A). There is a unique 

orientation/pose of the object, which 

includes those transformed images of the 

reference configuration, for which the 

transformed image of u points vertically 

downwards (Fig. 1.B). This particular pose 

is represented by u. As a second alternative, 

we can also represent the same 

pose/orientation of the object by the point 

Pu of a unit sphere (3D) or circle (2D) 

determined by u (Fig. 1.C). For example, 

the ‘South Pole’ of the sphere represents the 

pose of the reference configuration and the 

‘North Pole’ represents the pose, which is 

obtained by turning the reference 

configuration upside down. Fig. 1.D shows 

a standard sinusoidal projection of the 

sphere representation of pose space (a 

popular way to draw maps of the globe) 

with small pictures illustrating the poses of 

an object identified with specific points. 

The last representation of the pose u is by 

the unique point along the boundary of the 

object’s convex hull, which is vertically 

below its center of mass in that pose. An 

example will be shown in Fig. 5 where 

poses of equilibrium are represented this 

way. 

2.1.2  Functions representing 
object shape 

Consider now a convex object with a 

reference frame whose origin is at the center 

of mass G of the object, and an arbitrary unit 

vector u. The following distance function 

r(u) (Fig. 2) determines the shape of the 

object uniquely: 

 

Fig. 1.A: reference configuration of an L-shaped object and a unit vector u. B: an element of the set of 

configurations (i.e. the pose) in which u points downwards; C: the corresponding point of a unit sphere. 

D: sinusoidal projection of the sphere with small figures illustrating poses corresponding to individual 

points. Filled figures indicate stable equilibria on a horizontal surface, which will be discussed in more 

depth in Sec. 2.4.  
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Definition 2.1.3: the distance function r(u) 

is the unique positive scalar such that r(u)u 

belongs to the boundary of the object for all 

u.  

It is also true that each object has a unique 

distance function due to the constraint that 

the distances are measured from the center 

of mass.  

We will also use a second related function 

defined for convex and non-convex objects. 

First, we introduce the concept 

of “tangentiality”: 

Definition 2.1.4: two objects are 

called tangential if their 

boundaries have nonempty 

intersection, but their interiors 

are disjoint 

Importantly, this definition 

allows the objects to be non-

smooth. The concept of 

tangential object is used in 

Definition 2.1.5: the support 

function R(u) is the unique 

positive scalar such that R(u)u belongs to a 

plane tangential to the object and 

perpendicular to u. 

The support function (Fig. 2.B) determines 

the shape of convex objects uniquely 

moreover the support function of a concave 

object and that of its convex hull H are 

identical. The distance and support 

functions associated with the L-shaped 

object of Fig. 1 are depicted in Fig. 3. 

 

Fig. 2.A: example of a concave object (the body of a clamp) B: 

polyhedral approximation of its convex hull with definitions of 

the functions r(u) and R(u). The light grey plane is tangential to 

the surface of the object and it is perpendicular to u.  

 

Fig. 3. Sinusoidal projections of the sphere representing pose space with countour plots of r(u) (top) and 

R(u) (bottom) associate with the L-shaped object of Fig. 1. Light colors indicate high values.  
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The support function is very useful if one 

aims to identify poses of equilibrium over a 

horizontal support. Objects are driven by 

gravity towards local minimum points of 

the potential energy function Ep. If we fix 

the pose u of the object, the lowest value of 

the potential energy corresponds to those 

configurations, in which the object is in 

contact with the support. The corresponding 

value of the potential energy is 

Ep(u)=mgR(u) where m is the mass of the 

object and g is the constant of gravity. Such 

a pose corresponds to equilibrium if Ep has 

a singular (i.e. stationary) point at u. Hence, 

a vanishing gradient of R(u) implies that 

pose u is an equilibrium and vice versa. It 

can be shown using elementary geometry 

that the gradients of r(u) and R(u) vanish at 

the same values of u; furthermore r(u)R(u) 

with equality at equilibrium poses. 

In some parts of the thesis we will use a 

polar angle  or a pair of spherical angles 

(,) instead of u as independent variables 

of the distance function and the support 

function (Fig. 4). With a slight abuse of 

notation, we will use the same letters to 

refer to the two functions in the new 

variable, i.e. R(,), and r(,) in the 3D 

case; R() and r() in the planar case.  

2.1.3  Algebraic approach to 
finding static equilibria 
and equilibrium classes 

A planar, rigid body over a horizontal 

support line has typically isolated points of 

equilibrium in the space of orientations. A 

spatial rigid body has typically isolated 

points of equilibrium in pose space. These 

are what we refer to in Chapter 2 as 

“equilibria”. We have found that the 

equilibria of a rigid body on a horizontal 

line (2D) or plane (3D) can be identified by 

inspection of the distance function or the 

support function associated with the convex 

hull H of the object. Namely, singular points 

of R (or equivalently, those of r) correspond 

to equilibria. For planar objects, there are 

two generic types of singular points: local 

minima and local maxima of R. In spatial 

systems, a third type of equilibrium 

associated with saddle points of R also 

becomes generic. Local minima of R 

correspond to stable equilibria of the object, 

whereas maxima and saddles correspond to 

unstable equilibria. Let s, u, and t denote the 

numbers of equilibria of the three types. 

Then, the Poincaré-Hopf Theorem [3] 

implies that s=u in the planar case, and s-

t+u=2 in the spatial case, i.e. u can be 

determined from s in the planar case and t 

from u, s in the spatial case. This simple 

observation motivates the following 

classification method of rigid bodies based 

on the number of equilibria. 

Definition 2.1.6: In two dimensions, class 

Ei (i=1,2,…) contains all bodies with s=i 

stable and u=i unstable equilibria. 

Definition 2.1.7: In three dimensions, class 

Ei,j (i,j=1,2,…)  contains all bodies for 

which the number of equilibria are s=i, u=j, 

t=i+j-2.  

As simple examples, we mention the 

homogeneous, planar ellipse in class E2 and 

the regular n-gons in class En; the 

homogeneous, spatial ellipsoid with three 

different axes in class E2,2 the regular 

tetrahedron in class E4,4 and the cube in 

class E6,8. 

In many applications, the number of 

unstable equilibria is less relevant than that 

of stable ones. Hence, we also define the 

simplified scheme of stability classes: 

 

Fig. 4. Definition of spherical angles. N and S 

denote the “North Pole” and the “South Pole” 

of the surface.  
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Definition 2.1.8: Stability class Si includes 

objects in 2 or 3 dimensions with s=i stable 

equilibria.  

Among the classes defined above, we will 

pay special attention to the following ones: 

Definition 2.1.9: objects belonging to class 

S1 are called monostatic. 

Definition 2.1.10: 2D objects belonging to 

class E1 and 3D objects in E1,1 are called 

mono-monostatic. 

While in the case of two-dimensional 

bodies, being monostatic implies being 

mono-monostatic (and vice versa), the three 

dimensional case is more complicated: a 

monostatic body could have, in principle, 

any number of unstable equilibria. As 

simple examples we mention the 

inhomogeneous, and mono-monostatic 

weeble toy (Fig. 5.A) and a monostatic (but 

not mono-monostatic) solid cylinder with 

chopped ends in class E1,2 (Fig. 5.B).  

2.1.4  The geometric approach 
to finding equilibria, and 
polygonal objects 

We continue considering the convex hull H 

of an object. Assume that a planar object is 

in contact with a supporting line t. Then the 

line is tangential to H. Let C denote the 

“contact set”, i.e. the intersection of t with 

H. C may be a single point or a line segment. 

There is a unique orientation of the object 

(referred to as u0) in which t is horizontal 

and it lies below the object (Fig. 6.A). 

Resting with this orientation in equilibrium 

requires the existence of unilateral 

(compressive) contact forces balancing the 

weight of the object. This condition is 

satisfied if the vertical projection P of the 

center of mass G to t is an element of C. The 

equilibrium is stable for rolling if the radius 

of curvature κ of the convex hull at P 

exceeds the corresponding value of the 

support function: 

R(u0) = |GP| <  (1) 

[95] [105] [160]. For polygonal objects, the 

convex hull is also a polygon. There are two 

types of equilibrium: resting on a vertex and 

resting on an edge. The first type is always 

unstable (=0), and the second is always 

stable (κ=). The stable equilibria can be 

found by projecting G to each edge of the 

convex hull. If the projection P is an internal 

point of the edge, resting on the edge is a 

stable equilibrium. 

The conditions of existence and stability of 

equilibria in 3 dimensions are analogous to 

the planar case. Remarkable differences 

include the following: 

1. polyhedra have three types of equilibria: 

resting on a facet, on an edge, and on a 

vertex of the convex hull. The first type 

is stable, the second and third are 

unstable. 

2. stable equilibria of a polyhedron can be 

identified by projecting G to each facet 

of the convex hull. A projection inside 

the facet indicates a stable equilibrium. 

 

Fig. 6. Equilibrium of a planar object on a 

horizontal line (A) and in a hollow circle (B).  

 

Fig. 5.A: a toy with one stable and one unstable 

equilibrium (i.e. an inhomogeneous, mono-

monostatic body). B: a convex, homogeneous 

solid body with one stable equilibrium 

(monostatic body). In both plots, S, T, and U 

denote points of the surface which are under the 

center of mass when the body is in a sable (S), a 

saddle type (T) or an unstable (U) equilibrium.  
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2.2  THE MINIMUM NUMBER OF EQUILIBRIA ON A 
HORIZONTAL PLANE: ARNOLD’S PROBLEM 

2.2.1  Problem statement 
In this section, we study the number of static 

equilibrium poses (in short: equilibria) of 

bodies resting on a horizontal surface in the 

presence of uniform gravity. While many 

specific examples of solid bodies with a 

given number of stable equilibria have been 

demonstrated, monostatic and mono-

monostatic bodies seem to be of special 

interest, as motion over a horizontal 

support, under the influence of gravity 

always ends in a particular final pose 

regardless of the intial conditions. We have 

seen that it is easy to construct a mono-

monostatic body with non-uniform density 

distribution (Fig. 5). However, if we look 

for homogeneous, convex ones, the task is 

much more difficult. In fact, in Sec. 2.2.2, 

we will review the result of Domokos, 

Papadopoulos and Ruina [49] stating that  

Theorem 2.2.1: There are no convex, 

homogeneous objects in class E1. 

More recently it was also pointed out in 

[170] that Theorem 2.2.1 is equivalent to 

the famous Four-Vertex theorem [14] in 

differential geometry. The three-

dimensional case poses even more difficult 

questions. Although one can construct a 

homogeneous, convex monostatic body (cf. 

Fig. 5.B), the task is far less trivial if we 

look for a monostatic polyhedron with 

minimal number of facets. Conway and Guy 

[43] constructed such a polyhedron with 19 

faces (similar to the body in Fig. 5.B). It is 

still believed that this is the minimal 

number. It was shown by Heppes [79] that 

no homogeneous, monostatic tetrahedron 

exists. However, Dawson [47] showed that 

homogeneous, monostatic simplices exist in 

d>7 dimensions. More recently, Dawson 

and Finbow [46] showed the existence of 

monostatic tetrahedra, however, with 

inhomogeneous mass density. At first sight 

it is not clear what could be the spatial 

analogue of Theorem 2.2.1: emptiness of 

the classes E1,1  (mono-monostatic), E1,i  

(monostatic) or Ei,1  are all candidate 

statements. As V.I. Arnold pointed out [50], 

the essence of Theorem 2.2.1 is that in two 

dimensions the minimal number of 

equilibria is four. The only three-

dimensional bodies with less than four 

equilibria are the mono-monostatic ones, 

i.e. class E1,1. (For example, the monostatic 

body in Fig. 5.B represents class E1,2  , and 

it has 1 stable, 2 unstable and 1 saddle-type 

equilibrium, four equilibria altogether.) 

Hence the three-dimensional analogy of 

Theorem 2.2.1 would be the emptiness of 

class E1,1 . Arnold hinted that a 3D 

counterexample, with less than 4 equilibria 

(i.e. a mono-monostatic body) may 

nevertheless exist. With our current 

notation this would mean  

Theorem 2.2.2: Class E1,1 contains convex, 

homogeneous objects 

Our primary goal in Sec. 2.2 is to confirm 

Arnold’s initial guess by proving Theorem 

2.2.2. We review the proof of Theorem 

2.2.1 in Sec. 2.2.2, and point out why it is 

not applicable in three dimensions. The 

failure of the proof provides us with a hint 

about how a 3-dimensional mono-

monostatic body could look like. Following 

this trace, we proceed in Section 2.2.3 by 

constructing a two-parameter family of 

smooth, closed surfaces in a spherical 

coordinate system. The bodies representing 

class E1,1  are embedded in this family and 

Section 2.2.3 defines the values of the two 
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parameters associated with them. The 

existence of appropriate values of the 

parameters is demonstrated analytically, 

and several solutions including the 

„Gömböc” shape are determined 

numerically. The proofs of some lemmas 

are presented in Appendix 5.1 to improve 

the readability of the main text. In Section 

2.2.5, we use complete induction (based on 

the idea of the egg of Columbus) to prove a 

natural generalization of Theorem 2.2.2 in 

the form of  

Theorem 2.2.3: there are convex, 

homogeneous objects in class Ei,j  for all 

i,j>0. 

and Sec. 2.2.6 is devoted to a brief summary 

of some recent works motivated by the 

results of the thesis. 

2.2.2  The planar case 
Theorem 2.2.1 can be proven as follows. 

Consider a convex, homogeneous planar 

object B and a polar coordinate system with 

its origin O coinciding with the center of 

gravity G of B. We assume that the distance 

function r associated with B is 

differentiable and we use the angle  in the 

polar coordinate system as independent 

variable of function r. Assume that B is in 

class E1, i.e. r() has only one local 

maximum and one local minimum. In this 

case, there exists exactly one value =0 for 

which r(0)= r(0+), moreover, r()>r(0) 

if >-0>0, and r()<r(0) if -<-0<2 

(see Fig. 7.A). The straight half lines =0 

and =0+ of the polar coordinate system 

passing through O cut B into a “thin” 

(r()<r(0) and a “thick” (r()>r(0) part. 

This implies that O can not coincide with 

the center of gravity, contradicting our 

initial assumption, which completes the 

proof.  

Some elements of this proof are applicable 

to three dimensions. Similarly to the planar 

case, a 3D body in class E1,1  can be cut in a 

unique way to a ‘thin’ and a ‘thick’ half 

along a closed level curve of the distance 

function r. By „halves” we mean two parts 

of the boundary such that the centroid solid 

angles associated with each of the two parts 

is 2. (The concept of a solid angle will be 

used later and its definition is given in 

Appendix 5.5.3.) If this separatrix curve 

happens to be planar, its existence leads to 

contradiction (if, for example it is the 

‘equator’ =0 and >0/<0 are the 

thick/thin halves, the center of gravity 

should be on the upper (>0) side of the 

origin). However in the case of a generic, 

spatial separatrix, the above arguments no 

more apply. In particular, the curve can be 

similar to the ones on the surfaces of tennis 

balls (Fig. 7.B). In this case the ‘upper’ 

thick (‘lower’ thin) part is partially below 

(above) the equator, thus it is possible to 

have the center of gravity at the origin. Our 

construction in the next section will be of 

this type. 

2.2.3  A parametric family of 
candidate shapes 

In this section, we define a suitable two-

parameter family of functions r(,,c,d) in 

the spherical coordinate system of Fig. 4 

where the spherical angles take values in -

/2<</2 and 02. c>0 and 0<d<1 are 

parameters. The solid, homogeneous body 

bounded by r is denoted by B. In Section 

2.2.4 we will identify a range of the two 

 

Fig. 7.A: Example of a convex, homogeneous, 

planar body represented by a distance function 

r() with two local extrema. B: a 3D body 

(dashed line) cut to a ‘thin’ and a ‘thick’ half 

by a tennis ball-like space curve (dotted curve) 

along which r=r0. Continuous line shows a 

sphere of radius r0, which also contains this 

curve. 
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parameters where r is the distance function 

of B, i.e. the center of mass of B is in the 

origin of the polar coordinate system; 

moreover B is convex and mono-

monostatic. 

Conveniently, r can be decomposed in the 

following way:  

 (2) 

where r represents the shape of the 

deviation from the unit sphere. 

‘Thin’/’thick’ parts of the body are 

characterized by negative/positive values of 

r (i.e. the separatrix between the thick and 

thin portions will be given by r=0), while 

the parameter d is a measure of the 

‘lumpyness’ of the surface.  

Our next goal is to define a suitable function 

r. We will have the maximum/minimum 

points of r (r=1) at the North/South 

Pole of the coordinate system (=/2). 

The shapes of the thick and thin portions of 

the body are controlled by the parameter c: 

for c>>1 the separatrix will approach the 

equator, for smaller values of c the 

separatrix will become similar to the curve 

on the tennis ball. 

Consider the following smooth, one-

parameter mapping f(,c): (-/2,/2) →(-

/2,/2): 

. (3) 

For very large values of the parameter 

(c>>1), this mapping is almost the identity, 

however, if c is close to 0, the deviation 

from linearity is large (cf. Fig. 8). 

Based on f, we define the related maps (Fig. 

9) 

, (4) 

. (5) 

These two functions are used to obtain the 

planar sections =0 and =/2 of the object: 

 (6) 

 (7) 

which will become two planes of symmetry 

of the object. A big portion of section (6) of 

B lies in the thin part, while the majority of 

section (7) is in the thick part. The function  ),,(1),,,( crddcr  
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Fig. 10. Sections of the r(,) function at 

constant values of ; c=1/4  

 

Fig. 8. The f() function at some values of c. 

 

Fig. 9. The f1(), f2(), and sin() functions at 

c=1/3 

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



18 

 

 
(8) 

is used to generate values of r between the 

previously specified two sections as a 

‘weighted average’ type function of f1 and 

f2 in the following way (Fig. 10): 

 

(9) 

The choice of the function a ensures on the 

one hand a smooth transition from f1 to f2 if 

 is varied between 0 and /2. On the other 

hand it produces a tennis ball-like separatrix 

between the thick and thin halves of the 

body (as in Fig. 7.B). 

The function r defined by equations (2)-(9) 

is illustrated in Fig. 11 for intermediate 

values of c and d. Before we identify 

suitable ranges of the parameters, where r is 

a valid distance function and the 

corresponding body B is convex and mono-

monostatic, let us briefly comment on the 

effect of c. For c>>1, the constructed 

surface r=1+dr is separated by the =0 

equator into two halves: the upper (>0) 

half is ‘thick’ (r>1) and the lower (<0) half 

is ‘thin’ (r<1) as shown in Fig. 12.A. By 

decreasing c, the line separating the “thick” 

and “thin” portions becomes a space curve, 

thus the thicker portion moves downward 

and the thinner portion upward. As c 

approaches zero, the upper half of the body 

becomes thin and the lower one becomes 

thick (Fig. 12.B). 

2.2.4  Proof of the main result 
The proof of Theorem 2.2.2 makes use of 3 

lemmas. The first one  

Lemma 2.2.4: the function r, defined in 

equations (2)-(9) of the previous section, 

has two singular points, namely the poles N 

and S  

deals with singular points of r, which 

becomes extremely useful because of the 

tight connection between singular points of 

distance functions and equilibria of convex 

objects. In Appendix 5.1.2, we demonstrate 

the singularity of the degenerate ‘poles’ of 

the spherical coordinate frame (=/2), by 

proving 

for any . 
(10) 

which follows from elementary properties 

of the sin(…) function in (4), (5). At any 

other point, r is singular iff 

 
(11) 

As we show in the appendix, this is never 

satisfied because 0/  r  if 

2/3,,2/,0   , and 0/  r for all 

other values of . The two steps outlined 

above complete the proof of Lemma 2.2.4. 

The second lemma 

Lemma 2.2.5: there exist positive constants 

c1<c2 ,0, and a function F1(d), such that for 

arbitrary d<0, F1(d) is inside the open 

interval (c1,c2) and c=F1(d) implies G≡O.  

identifies a one-dimensional manifold in 

parameter space, along which r is a distance 

function, i.e. the center of gravity G of B 
coincides with the origin O of the reference 

frame.  
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Fig. 11. Plot of B if c=d=1/2 
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Lemma 2.2.5 is demonstrated in Appendix 

5.1.2. The basic idea of the proof is 

illustrated by Fig. 12: if c<<1, then the 

center of mass is below the origin, whereas 

in the limit of c, it is above the center of 

mass. We use continuity arguments to prove 

the existence of the intermediate values 

c=F1(d) where the two points coincide. The 

statement of Lemma 2.2.5 is also illustrated 

in Fig. 13 where we have sketched the 

function F1 within the rectangular box 

determined by the bounds c1<c<c2, and 

0<d<0. 

Finally, the convexity of B is an important 

requirement, and thus we will also prove 

Lemma 2.2.6: there exists a continuous, 

positive function F2(c)>0 for any c>0 such 

that B is convex whenever d< F2(c). 

The idea of the proof is extremely simple: 

in the limit of d0, the shape of B 

approaches a sphere, which is convex. 

Some technical difficulties arise from the 

singularity of the coordinate frame at the 

poles. For full description, see Appendix 

5.1.3. The statement of this lemma is again 

illustrated by Fig. 13 where we sketched the 

function F2(c), which is positive over the 

[c1,c2] interval and thus it lies above a part 

or the whole of the grey box. 

With the 3 lemmas at hand, we are now 

ready to prove Theorem 2.2.2. Since F2(c) 

is a positive, continuous function, it has a 

global minimum d0>0 over the closed 

interval [c1,c2] according to the Extreme 

value theorem [102]. If d<min[0,d0] and 

c=F1(d) then, according to Lemma 2.2.5 

and Lemma 2.2.6, B is convex and its center 

of gravity is at the origin. Due to Lemma 

2.2.4, B has two static equilibria, marked by 

the singular points of r. Thus we conclude 

that homogeneous, convex, mono-

monostatic bodies exist.   

Numerical analysis shows that d must be 

very small (d<510-5) to satisfy convexity 

together with the other restrictions, so the 

object constructed this way is very similar 

to a sphere. (In the admitted range of d the 

other parameter is approximately c0.275.). 

Hence, the physical demonstration of the 

monostatic behavior of these objects might 

be problematic. This topic will be discussed 

further in Sec. 2.2.6. We remark that [49] 

also demonstrates the statement analogous 

to Theorem 2.2.1 for closed, homogeneous, 

planar thin wires. The 3D analogue for 

convex, homogeneous spatial thin shells is 

again false, which can be proven in the same 

way as Theorem 2.2.2. 

2.2.5  The egg of Columbus and 
complete induction 

According to some accounts, Christopher 

Columbus attended a dinner, which a 

Spanish gentleman had given in his honor. 

Columbus asked the gentlemen in 

attendance to make an egg stand on one end. 

After the gentlemen successively tried to 

 

Fig. 12. A: Side view of B if c>>1 (and d1/3). 

Note that, the object is a surface of revolution, 

moreover r>0 if >0, and r<0 if <0. B: 

Spatial view of B if c<<1.  Here, r>0 typically 

for <0 and vice versa. 

 

Fig. 13. Illustration for Lemma 2.2.5 and 

Lemma 2.2.6.  
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and failed, they stated that it was 

impossible. Columbus then placed the egg's 

small end on the table, breaking the shell a 

bit, so that it could stand upright. Columbus 

then stated that it was "the simplest thing in 

the world. Anybody can do it, after he has 

been shown how!" The egg of Columbus 

has become a metaphor for natural 

simplicity. In this section we prove 

Theorem 2.2.3 by induction. Our inductive 

argument is as simple as the egg of 

Columbus – and not just metaphorically.  

Theorem 2.2.2 (proven in the previous 

sections) asserts the non-emptiness of class 

E1,1 . Assume that class Ei,j  is non-empty. If 

we can find a way to add one local 

minimum to the function r while keeping 

the number of maxima constant (and vice 

versa) by small perturbations not violating 

the convexity of the body, then the non-

emptiness of all classes Ei+1,j  and Ei,j+1  

(i,j>0), and thus Theorem 2.2.3 is proven.  

The first, naive interpretation of the 

Columbus story is that he turned an unstable 

equilibrium point (Fig. 14.A) into a stable 

one. However, a closer look at the egg 

reveals that Columbus did something more 

complex. Based on the superficial account, 

we cannot decide which of the following 

scenarios were actually realized (supposing 

that the egg had a perfect rotational 

symmetry): 

(i) If Columbus hit the table with the egg so 

that the symmetry axis of the egg was 

exactly vertical, then by breaking the 

shell at the tip, he produced a small flat 

area on the surface, which corresponds 

to one new stable equilibrium point in 

the middle of a circle of degenerated 

balance points. This scenario is 

illustrated in Fig. 14.B. 

(ii) If the axis was somewhat tilted, then by 

breaking the shell at the unstable 

equilibrium point (maximum) he 

produced a small flat area containing 

one stable equilibrium point (minimum) 

inside the flat part and one saddle and a 

maximum at the borderline. This 

scenario is illustrated in Fig. 14.C. 

Scenario (ii) is exactly what we need to 

produce an additional stable equilibrium 

without creating new maxima. Since the 

Columbus algorithm applies only to 

degenerate local maximum points of r, 

where r has perfect rotational symmetry, we 

will use a slightly different technique to 

produce additional maxima and minima one 

by one in the distance function. 

A  Increasing the number of stable 
equilibria by one 

Consider a stable equilibrium of an object B 

and the corresponding local minimum point 

S0 of the associated distance function (Fig. 

15.A). Our geometric construction will 

assume that the surface of B is smooth and 

strictly convex in a close neighborhood of 

S0. Consider another point S1 on a sphere 

 

Fig. 14. Analysis of the Egg of Columbus. A: Negative gradient flow of the distance function r of the 

original egg near the tip U0. (unstable equilibrium point.) B: Hitting the table with vertical egg axis 

creates a modified flow containing one minimum at U0 and a set  of degenerated equilibria. C: Hitting 

the table with slightly tilted egg axis creates a modified flow containing one minimum (S), one saddle (T) 

and one maximum (U). Grey color indicates the flat part of the egg. 

 

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



21 

 

containing S0 and centered at the center of 

mass G of B, such that the distance between 

S1 and S0 is <<1. The tangent plane of this 

sphere at S1 divides B to two parts, one of 

which is a small cap. We remove the cap. If 

we assume for a minute that the center of 

mass stays at G, then the modified distance 

function r* corresponding to the truncated 

body still has a local minimum at S0 and a 

new local minimum at S1. A new saddle 

point T also emerges, which is a 

straightforward consequence of the 

Poincaré-Hopf theorem. This situation is 

illustrated in Fig. 15.A, the negative 

gradient flows of r and r* are sketched in 

Fig. 16.A and B, respectively. 

The truncation of the body moves the center 

of gravity G of B by O(4). This effect may 

perturb the locations of the stationary points 

of the distance function by O(4) 

nevertheless the structurally stable picture 

of Fig. 16.B does not change qualitatively. 

It is also worth noting that a small 

neighborhood of S0 remains smooth and 

strictly convex. Thus, the step of adding a 

new equilibrium can be repeated several 

times with S0 serving as initial minimum 

point of the distance function. 

B Increasing the number of unstable 
equilibria by one 

Again, consider a stable equilibrium and the 

associated local minimum point S0 of the 

distance function r. Draw a very flat cone of 

revolution (<<1, see Fig. 15.B), with axis 

GS0 and with its peak at S0. The cone again 

cuts B to two parts, and we remove the small 

one. If we now assume that the center of 

mass remains at G, the modified distance 

function r* has a local maximum at S0, it is 

decreasing radially until it reaches a circle  

of non-isolated equilibria and beyond the 

circle, it is increasing radially (Fig. 16.C). 

The effect of the deviation of G on the 

number and type of equilibria can again be 

neglected if is small, with the exception of 

the circle of equilibria , which is 

degenerate and structurally unstable. 

Typically, the new center of mass G’ is off 

the GS0 line. In this case, the new distance 

function r** will have one isolated minimum 

S1 and a saddle point T instead of  (Fig. 

16.D, Fig. 15.B). In the non-typical case 

when G’ happens to be on the line GS0, then 

 is preserved, however it can be broken up 

into a minimum and a saddle point by an 

adequate small perturbation of r**. Finally, 

we have one stable (S1) one saddle (T) and 

one unstable equilibrium (S0) instead of the 

original stable point S0. 

The truncated body is weakly convex in the 

neighborhood of the new local minimum 

point S1. Strong convexity can be restored 

by a further small perturbation of r (details 

omitted). If several new equilibria are 

generated, S1 can be used as the initial local 

minimum point of the distance function at 

the repeated step of adding an equilibrium. 

C Completing the proof of Theorem 2.2.3. 

In the previous two parts we showed how 

convex bodies in class Ei+1,j  or in class Ei,j+1 

 

Fig. 15.A: the figure shows a section of B in the GS0S1 plane with the steps of adding one stable 

equilibrium point. B: a section of B in the GS0G’ plane with the steps of generating one unstable 

equilibrium point. For notation, see main text.  
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can be generated by using a body of 

class Ei,j .Since Theorem 2.2.2 proved 

the non-emptiness of class E1,1, we 

now showed that none of the classes 

Ei,j  , i,j>0 is empty  . 

2.2.6  Discussion 
In this section, we introduced the 

notion of equilibrium classes in two 

and three dimension. We proved that 

all classes contain convex, 

homogeneous objects in 3D. Among 

all classes, the non-emptiness of E1,1 

was the most important results of the 

section. The proofs relied on 

elementary mathematical tools such 

as basic geometry and differential 

geometry. Given this simplicity, one 

may ask, how it is possible that the 

existence of mono-monostatic objects 

was not proved before? And why did 

people not discover elementary 

examples of objects in this class?  

To understand this apparent 

contradiction, we performed some 

research for real-world 

representatives of mono-monostatic 

shapes. There exist objects in Nature 

in abundant numbers, which are very 

close to the mathematical abstraction 

of a convex, homogeneous rigid body: 

pebbles on the coast. We have studied 

the relative frequencies of equilibrium 

classes in a sample of 2000 pebbles from the 

coast of Rhodes, Greece. Interestingly, none 

of the pebbles was monostatic, and of 

course, there was no member of class E1,1 

among them. A semi-quantitative 

explanation of this behavior was given in 

[170], which is not repeated here. The main 

message of this examination was that mono-

monostatic objects – if they exist – must be 

similar to the sphere, and such shapes are 

very sensitive to perturbations. This finding 

appears to be consistent with the result of 

our constructive proof, which provided us 

with mono-monostatic objects very close to 

the sphere. 

Despite these discouraging preliminary 

results, we continued the search for better 

representatives of class E1,1. By following 

the basic idea of Sec. 2.2.3, and by 

combining second-order surfaces (planes, 

ellipsoides, ellyptic cones and cylinders) 

into a convex but non-smooth closed 

surface, we were able to produce a shape 

with 2 planes of symmetry (Fig. 17.A,B), 

which became known as the ‘Gömböc’. We 

also created another similar shape with 3 

planes of symmetry. In both cases, the level 

curves of the distance function follow tennis 

ball-like non-smooth curves (Fig. 17.B). 

The location of the center of gravity of these 

objects was determined numerically. With 

 

Fig. 16.A: Gradient flow of the distance function r of an 

object in the neighborhood of a local minimum point S0. B: 

gradient flow of the modified function r* generated by 

truncation of the object along a plane. A second minimum 

S1 and a saddle point T occur. C: modified function r* if the 

body is truncated along a cone. S0 becomes local maximum 

and a circle  of non-isolated singular points emerges on 

the cone. D: Because of the deviation of the center of 

gravity, the distance function r** of the chopped object is a 

perturbed version of r*. The structurally unstable circle 

typically breaks up to a minimum S1 and a saddle point T. 

Grey color indicates the regions directly affected by the 

truncation. 
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those values at hand we could verify easily 

that they are mono-monostatic.  

Even though the Gömböc shape was never 

developed into a fully analytic answer to 

Arnold’s question, its apparent simplicity 

greatly contributed to the impact of this 

result both in and outside of the scientific 

community. To mention two examples, the 

Gömböc inspired the shapes of aerial robots 

developed recently at the University of 

Pennsylvania [113] and it became the title 

of an award-winning short movie by the 

German director Ulrike Vahl [90]. 

The rarity of mono-monostatic shapes in the 

physical world is our primary motivation to 

investigate the shapes of turtles, which is 

the subject of Sec. 2.3, below. The 

preliminary experiments with pebbles also 

inspired further research activity in the 

group of Gábor Domokos, in which the 

author of this thesis was also involved to 

some extent. This work includes for 

example the geological application of 

equilibrium classes [52] [51] as well as a 

refinement of equilibrium classification, 

which takes into account the topological 

structure of the distance function [48], 

which are beyond the scope of this thesis. 

2.3  EQUILIBRIUM CLASSES AND SELF-RIGHTING 
ANIMALS 

2.3.1  Monostatic shapes in 
Nature 

The ability of self-righting is crucial for 

animals with hard shells [64] [59] [65] 

[164], e.g. beetles and turtles. It is often 

used as a measure of individual fitness 

[66][153][7][33], although it is also 

influenced by the environment e.g. 

temperature [55]. Both righting behavior [6] 

[140] [150] [181] and the evolution of shell 

morphology [41] [114] [144] of turtles have 

been studied recently. An example of their 

interaction is the sexual dimorphism of 

species where males are often overturned 

 

Fig. 17.A: second-order surface components of the Gömböc shape B: the Gömböc shape with surface 

coloring of the surfaces representing distance from the center of gravity. Notice that level curves of the 

distance function r resemble the “tennis ball curve”. 
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during combats [103] [23] [191], and their 

shell has adapted to facilitate righting. The 

aim of this section is to study the 

morphology of the turtle shell, and self-

righting behavior, from a geometric point of 

view. We develop a geometric shell model 

based on field data, to uncover 

systematically the connections between 

righting strategies and stability classes.  

In the perspective of self-righting, the class 

of monostatic objects is of special interest. 

Turtles in S1 can self-right on a horizontal 

surface without any effort. The pebble 

experiment reviewed in Sec. 2.2.6 suggests 

that monostatic bodies are rare in nature. 

Even rarer are mono-monostatic bodies; 

nevertheless, the shapes of some highly 

domed terrestrial tortoises are somewhat 

reminiscent of them (Fig. 13 vs. Fig. 18.D). 

One of the motivations of this work is to 

discover whether monostatic shell shapes 

exist or not. In Sec. 2.3.2, we develop a 

simple geometric model of the shell. Model 

parameters are fitted to real measured 

shapes in Sec. 2.3.3. The stability class of 

the fitted model is numerically determined 

and compared with in vivo experimental 

data about the righting behavior of turtles in 

Sec. 2.3.4.  

2.3.2  A parametric morpho-
logical model of the turtle 
shell 

We construct the shell model in three steps: 

transversal model, longitudinal model and 

3D model. We also describe the technique 

to determine the equilibrium class of the 

final 3D model.  

In the shell model (Fig. 18), a planar curve 

represents the approximate transversal 

contour of the shell (transversal model, see 

Fig. 18.A). This curve has 3 parameters 

(Fig. 19): p, controlling the shape of the 

carapace, h defining the height/width ratio 

of the contour, and k, determining the 

transition between plastron and carapace.  

The transversal model (Fig. 18.A) is 

constructed in a polar coordinate system, 

with its origin at the middle of the contour, 

both horizontally and vertically. The height 

and the width of the cross-section are scaled 

to 2h and 2, respectively. The contour curve 

K(,p,h,k) of the cross-section is achieved 

from the curves of the plastron (P) and of 

the carapace (C). The plastron is 

approximated by a straight line, given in our 

polar coordinate system by the function 
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Fig. 18. Turtle shell model. A: Frontal view of shell 

(Stigmochelys pardalis) and three-parameter 

transversal model K(α,h,p,k) of main cross section. 

The plastron is approximated by straight line P, see 

(12). The carapace is approximated by curve C, see 

(13)-(15). A smooth transition between the plastron 

and the carapace is achieved by a merging function 

(16). B: Carapace shape at various values of 

parameter p. C: Longitudinal model: schematic 

side-and top-view contours are circular arcs 

obtained as averages from measurements. Sizes are 

normalized. D: Visual comparison of digitized shell 

image and model surface.  
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where p0 is a scaling factor to be determined 

later. The shape of the carapace is first 

approximated in an orthogonal u-v 

coordinate system by the curve 

 
(13) 

(Fig. 18.B). This curve is either an ellipse 

(p>0) or a hyperbola (p<0). Next, the curve 

is expressed in the polar coordinate system 

of Fig. 18.A by substituting 

 

(14)

 (15) 

into (13) and by solving the resulting 

equation for C; c0 is again a scaling factor to 

be determined later. The final contour 

K(,h,p,k) is constructed as 

 

(16)

 
where the negative parameter 0>k>-1 

determines the roundedness of the transition 

between the plastron and the carapace. The 

factors c0 and p0 are determined numerically 

from the respective constraints that the 

lowest point of the final contour is at 

distance h and the widest points are at 

distance 1 from the origin of the polar 

coordinate system. Then, the highest point 

of the carapace will be at distance h above 

the origin (since the point (u,v)=(0,0) of the 

curve corresponds to (C,)=(h,), cf. (14), 

(15). At some values of , the curves P (for 

/2< ≤3/2) and C (in an interval around 

=0 if p<0) are not defined. Here, (16) is 

replaced by KC and KP, respectively. 

The longitudinal model, describing side- 

and top-view contours of the shell is given 

by Fig. 18.C. These particular shapes have 

been chosen by using averaged data from 

the above-mentioned 30 individuals. 

Needless to say, the circular and straight 

contours, and the specific parameter values 

of Fig. 18.C do not represent precise fit to 

real animals. However, the mechanical 

behavior of the shell model is much less 

sensitive to these curves than to the shape of 

the transversal model: turtles always roll 

transversally along the perimeter of the 

main cross-section. The only significant 

effect of the longitudinal model is to modify 

the height of the center of gravity. Slightly 

modified longitudinal curves have been 
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Fig. 19. Main cross section at various parameter values. Parameter p determines the shape of the 

carapace, h determines the relative positions of the carapace and plastron (height/width ratio), k 

determines the roundedness at the carapace-plastron transition . 

 

Fig. 20. Model shape at various parameter 

values. From top to bottom: h=0.4, 0.65, 0.9. 

In all cases the remaining two parameters p 

and k are obtained from the regression lines 

p=2.59h-1.51, k=0.90h-1.01. 
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tested and showed identical qualitative 

behavior. 

Finally, the 3D model surface emerges as a 

series of horizontally and vertically scaled 

versions of the main transversal section, 

fitting the longitudinal contours (Fig. 18.D, 

Fig. 20). 

To determine the stability class of the model 

at given values of p, h and k, the center of 

gravity G of the model has to be found 

numerically. Due to the two planes of 

reflection symmetry, only the vertical 

coordinate of G needs to be computed. The 

distance function r corresponding to the 3D 

model, and its stationary points can be 

determined numerically in a straightforward 

way. The stability class Si is identified by 

counting the local minimum points of r. 

Our 3D model leaves the rostral and caudal 

ends of the shell undefined; we assume that 

the turtle has only unstable equilibrium 

points in these domains, in accordance with 

the facts that the real shells are somewhat 

elongated and turtles do not tend to get 

stuck in head- or tail-down positions.  

2.3.3  Parameter fitting of the 
shell model 

Contours (cf. Fig. 21) of 30 turtles 

belonging to 17 species have been digitized 

and the three parameters p, h and k of the 

transversal model were fitted to these 

contours by considering n1000 equidistant 

angles i=2i/n (i=1,2,…,n) in our polar 

coordinate system and by minimizing the 

mean square radial error 

 

 

(17)

 

 

Here, K(i) and Q(i) denote points of the 

model and the measured contour, 

respectively. The results of the parameter-

fitting are summarized in Fig. 22.A,B and in 

Appendix 5.2. Fig. 21 shows a comparison 

of measured contours and optimally fitted 

model contours.  

2.3.4  The equilibrium classes of 
shell shapes 

The previously described procedure 

identifies the fitted shape parameters h, p, k 

corresponding to any shell and thus the 

complete algorithm to determine the 

equilibrium class of any individual turtle (as 

given in Appendix 5.2). In order to analyse 

global trends, we introduce simplified, 

lower dimensional (two- and one-

parameter) models, trading accuracy of 

individual predictions for visual and 

conceptual simplicity. 

As a first step we eliminate parameter k. We 

consider the [h,k] projection of the [h,p,k] 

space (Fig. 22.A). Measured turtles are 

marked by squares. Linear regression to the 

data points (continuous lines) reveals 

�̅�(ℎ) = 0.90ℎ − 1.01. Straight dashed 

lines 𝑘
±
(ℎ) =max(0, �̅�(ℎ)±0.2) mark the 

approximate upper and lower envelope of 

the data points. Fig. 22.B shows the [h,p] 
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Fig. 21. Model fit to real contours. From left to right: Geochelone elegans (number 1 in Appendix 5.2), 

Stigmochelys pardalis (number 11), Chelonoidis nigra (number 20), Cuora amboinensis (number 26), 

Chelonia mydas (number 30). The model fits well to terrestrial species with highly domed cross-

sections (three contours on the left side), but less so to flatter, semi-aquatic and aquatic turtles (two 

contours on the right) where sharp edges appear, improving swimming performance.  
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projection of the [h,p,k] space. In addition 

to marking the measured turtles, we also 

fitted a line to the data points yielding 

�̅�(ℎ) = 2.59ℎ− 1.51 (continuous line) and 

we determined the equilibrium class of each 

[h,p] point by assuming for k each of the 

two extreme values k= k+(h) and k=k–(h). 

Dashed lines depict the boundaries between 

stability classes S1, S2, and S3 for both cases. 

The grey shading between the two sets of 

boundaries shows regions of the [h,p] space 

where the equilibrium class of an individual 

may depend on k. Domain „X” corresponds 

to parameter values not compatible with the 

model. As we can observe in Fig. 22.B, not 

even these extreme changes of k have 

substantial influence on the borders. Few 

marks appear in the ambiguous grey zone 

between the two sets of boundaries; the 

stability class of the majority of individual 

turtles is predicted correctly by a simplified, 

two-parameter (h,p) model, yielding the 

following observations: 

 although class S1 is represented by a 

rather small domain (small ranges both 

for h and p), nevertheless, tall turtles are 

remarkably close to S1, i.e. they tend to 

be monostatic.  

 flat turtles fall into S2, and the majority 

of medium turtles falls into S3.  

 

Fig. 22. A,B: fitted parameter values of measured turtles C: angular positions α of equilibria along the 

main cross-section of the turtle shell as function of h in the one-parameter model. Equilibria in all 

classes marked along main transversal cross section by black (stable) and grey (saddle point) circles. 

Unstable equilibria off the main cross-section (near head and tail) are not indicated. D: fitted h value 

and contour of some measured individuals.  
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Next we further simplify our model to better 

understand global trends. Strong linear 

correlation between the parameters 

(corr<h,p>=0.73; corr<h,k>=0.64) suggests 

that a one-parameter (h) model family is 

sufficient to approximate the geometry. 

From the biological point of view, this 

implies that a single, visually significant 

parameter (the height/with ratio h) basically 

determines the stability class, and, as we 

will see soon, the righting strategy. Fig. 

22.C illustrates the angular locations of 

equilibria along the main cross-section as h 

is varied in the one-parameter model (i.e. in 

the case of 𝑝 = �̅�(ℎ) and 𝑘 = 𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ)). The 

figure reveals three equilibrium classes as 

well as a classical pitchfork bifurcation. The 

reduced model illustrates the transition 

between three different types of turtles: 

  individuals below h=0.57 tend to have 

two stable equilibria, one on the 

plastron and one opposite, on the 

carapace, 

 as h increases, two additional stable 

equilibria emerge on the back and 

their distance is growing 

monotonically, 

 the additional stable equilibria 

vanish at h=0.92, where monostatic 

turtles appear. 

A closer look at an actual shell (Fig. 

18.D) explains why monostatic bodies 

may exist in three dimensions in 

contrast to 2D: the front and the back 

part of the shell are lower than the main 

cross-section, thus the center of gravity 

G of a complete turtle body is closer to 

the plastron than the geometric center of 

its ‘main’ cross-section. Indeed shell 

shapes resemble to some extent the 

shape depicted in Fig. 5.B. While this 

simple qualitative observation is 

intuitively helpful, it certainly does not 

account for the quantitative agreement 

between model parameters of highly 

domed turtle shells and monostatic 

bodies.  

It is also worth pointing out that turtles in S1 

have multiple unstable equilibrium poses, 

i.e. they are not mono-monostatic. One 

unstable pose is represented by a point 

along the main cross-section (cf. Fig. 22.C), 

and due to their elongated shapes, there are 

at least two more unstable poses represented 

by points near each end of the body. 

2.3.5  Ecological consequences 
The energy balance of righting on a 

horizontal surface reveals a close 

relationship between the equilibrium class 

and the righting strategy (for the latter, see 

[6] [140]). Below we describe a qualitative 

model, which yields some insight into this 

relationship.  

Non-monostatic turtles have to overcome a 

primary potential energy barrier (primary 

energy deficit Dp, Fig. 23.A) due to the 

unstable equilibrium at the turtle’s side. 

 

Fig. 23. Energy balance of righting. A: Illustration of 

primary (Dp) and secondary (Ds) energy deficit of rolling 

turtle due to potential energy barrier between stable 

equilibria. Continuous/dashed line denotes potential 

energy U of perfect/imperfect shell normalized by body 

size. B: schematic frontal view of a righting turtle. C: 

Primary (Dp) and secondary (Ds) energy deficit as 

functions of h. D: primary and secondary available 

biomechanical energy as functions of the excess neck 

length N. E: energy balance curves in the [h,N] plane. 
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Additional, secondary deficit (Ds) results 

from shell imperfections (Fig. 23.A). 

Turtles with high energy barriers use 

primarily their necks for righting [140], 

thus the excess neck length N is the 

dominant factor of primary available 

biomechanical energy (Ap). The neck’s 

excess length (Fig. 23.B) is defined as 

N=(Hn- Hmin)/Hmin, i.e. scaled difference 

between the neck’s length (Hn) and the 

distance (Hmin) from the neck’s base to the 

top of the carapace. Additional, secondary 

energy (As) is generated by limb- and 

head-bobbing, ventral orientation of the 

head or feet (to move center of gravity), 

and nearly horizontal pushing with the 

legs (using friction) [6]. The latter often 

results in rotation around a vertical axis 

during righting efforts, helping the feet 

find support.  

Here we make two simple assumptions: 

 Dp(h) is a monotonically decreasing 

function, which vanishes for 

monostatic (S1) turtles (Fig. 23.C); 

  Ap(N) is a monotonically increasing 

function if N>0, and Ap=0 for N≤0 

(Fig. 23.D).  

 Energy balance curves, i.e. solutions of 

Ap(+As)= Dp(+Ds) can be plotted in the 

plane of geometric parameters R and N. 

With the two assumptions listed above, 

the balance curves become similar to the 

sketch of Fig. 23.E. The region enclosed 

by the curves (grey fill) is narrow for flat 

turtles and it becomes wide for high ones. 

In the grey region secondary components 

(Ds, As) determine righting success. To 

the right of the grey region, righting is 

successful even in the presence of 

secondary deficits (shell irregularities). 

To the left, righting is unsuccessful even 

if secondary available energy (from head-

bobbing, etc.) is used. This picture leads 

to the following qualitative conclusions: 

For flat turtles (h under ~0.6, Fig. 24.A,) 

inside S2, the curves form a narrow band, 

indicating that the primary parameters h 

and N dominate righting fitness. The 

 

Fig. 24. Righting strategies. Each strategy is 

characterized by the typical shape of the rolling main 

cross-section (grey contours) as well as the orbit 

(dashed line) of the center of gravity G. Arrows denote 

key elements of righting, dashed arrows apply in 

presence of secondary energy barriers. A: flat turtles 

(h<~0.6 inside Class S2, photo: Hydromedusa 

tectifera): high primary energy barrier between stable 

and unstable equilibria is overcome by primary 

biomechanical energy resulting from vertical push 

with neck. Righting fitness is determined by primary 

geometric parameters (height/width ratio h, excess 

neck length N). B: tall turtles (h>~0.8, inside or close 

to monostatic Class S1, photo: Geochelone elegans): 

small, secondary energy barriers (resulting mainly 

from shell imperfections) are overcome by secondary 

sources of biomechanical energy: head- and foot-

bobbing, push by feet. C: medium turtles (~0.6< h <0.8, 

inside or close to Class S3, photo: Terrapene carolina): 

in the first phase of roll, secondary barriers are 

overcome by dynamic (secondary) energy, in the 

second phase, the primary energy barrier is overcome 

by primary energy (push with neck, feet). Photos by G. 

Domokos. 
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associated righting strategy is based on 

primary energies: righting is accomplished 

via a strong vertical push with the neck, 

lifting the turtle sufficiently to overcome the 

primary energy barrier. Most aquatic and 

semi-aquatic turtles, e.g. side-necked turtles 

(Pleurodira), snapping turtles 

(Chelydridae), mud turtles (Kinosternidae) 

follow this strategy. Shell irregularities are 

unimportant in this case. 

Tall turtles (h above ~0.8, Fig. 24.B,) 

inside or close to the monostatic class S1 

usually have shorter necks than their 

carapace heights, i.e. N<0. Thus their h, N 

values are in the wide grey zone between the 

curves of Fig. 23.E, indicating the 

dominance of secondary effects in righting 

fitness. The associated righting strategy is 

based on secondary energies: Righting 

either starts spontaneously [6] or it is 

accomplished by dynamic motion of the 

limbs, to overcome small shell 

imperfections. Subsequently, when the 

plastron is already close to vertical and the 

legs reach the surface, horizontal pushing 

with the legs (using friction) produces 

additional moments to overcome secondary 

energy barriers. This is the primary strategy 

of highly domed terrestrial tortoises with 

short necks and rounded cross-sections, 

such as Geochelone, Stigmochelys, 

Astrochelys, and some Terrapene and 

testudo species.  

For medium turtles (~0.6 <h<~0.8, Fig. 

24.C) in or close to S3, the energy diagram 

shows regions of both types: the three 

curves initially form a narrow band and 

subsequently diverge. The associated 

righting strategy is composed as a mixture 

of the previous two: if placed on the middle 

of the back, the turtle starts rolling 

spontaneously, assisted by dynamic limb 

and head motion to overcome shell 

irregularities (similar to class S1) until it 

reaches stable equilibrium. From there, the 

successful righting strategy is based on a 

vertical push with the neck (similar to class 

S2), accompanied by pushing with the legs. 

Many tortoises (e.g. Psammobates, many 

Testudo, and Terrapene species) belong to 

this group. 

Due to strong correlation between model 

parameters, by measuring the 

h=height/width ratio one can often correctly 

predict the righting strategy (Fig. 22.B,D). 

Nevertheless a quantitative analysis of the 

individuals’ energy balance would require 

more details about the neck, the shell 

imperfections and other factors.  

2.3.6  Discussion and ongoing 
works 

Using theoretical modeling as a primary 

tool, we made quantitative predictions on 

optimal shell morphology for self-righting 

in a terrestrial environment by identifying a 

narrow monostatic range of the 

height/width ratio. The morphological 

analysis of actual shells revealed that the 

height/width ratio of highly domed species 

(G. Elegans, G. Radiata) is near the 

minimum for monostatic shapes (h0.9), 

indicating an optimal tradeoff between self-

righting ability and other factors penalizing 

increased height (e.g. decreased stability). 

The shape parameter p is also in the optimal 

range for these species (0.8<p<1.1). Thus, 

we may conclude that the advantage of 

being close to monostatic not only 

determines the height/width ratio, but it 

probably influences the exact shape (e.g. 

roundedness).  

Our model also addressed the role of 

irregularities in the shell shape. 

Interestingly bad nourishment often 

produces shell imperfections [84] [189] 

decreasing the chances of successful 

righting, according to the presented theory. 

Our own preliminary experimental 

investigation of righting strategies was in 

agreement with the model predictions 

Recently, these predictions have also been 

confirmed by more detailed experiments, 

which demonstrated the correlation 

between righting success and 
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morphological variations of individuals 

within a single species [73] [72] [154].  

Many other factors have been identified to 

affect the shape of turtles. Flat shells with 

sharp and smooth edges are advantageous, 

respectively, for swimming [41] and for 

digging [191]. On the other hand, increased 

shell height was found to offer better 

protection against the snapping jaws of 

predators [133]; it also protects from 

desiccation and improves thermoregulation 

[35]. Many turtles exhibit sexual 

dimorphism, which is traditionally 

explained by need for the female’s shell to 

enclose the eggs [24], however self-righting 

ability also plays here a role as males often 

tumble during fights [154]. Recently, more 

and more of these works begin to use 

quantitative models of shell morphology 

[24] [39] [141] [142] [151]. For example, 

the shell model described here was also 

used for the determination of the habitat of 

extinct turtles based on the shapes of 

fossilized shells [12]. 

2.4  MONOSTATIC BEHAVIOR IN CAGES, WITH 
APPLICATION IN AUTOMATED MANUFACTURING 

In the previous two sections, we dealt with 

the theoretical analysis of the static 

equilibria of rigid bodies on a flat, 

horizontal surface with emphasis on 

monostatic shapes, and with a biological 

application. The forthcoming section 

contains an application-oriented discussion 

of monostatic behavior of objects inside a 

frictionless circle (2D) or sphere (3D). 

First, we motivate the investigation of this 

question by discussing the role of 

monostatic behavior in the field of 

industrial part feeding (Sec. 2.4.1). The 

specific questions addressed in Sec. 2.4 are 

chosen with an eye on this potential 

application, to which we return several 

times. The first step of the theoretical 

analysis in Sec. 2.4.2 is the generalization 

of the geometric approach to finding static 

equilibria on a horizontal support (Sec. 2.1) 

to a similar approach to equilibria in round 

cages. We also demonstrate the key 

observation that almost all objects become 

monostatic if they are enclosed in a 

sufficiently tight cage. Sec. 2.4.3 is devoted 

to the description of a computational 

algorithm, which determines the range of 

cage sizes corresponding to monostatic 

behavior. In addition, we also describe how 

full orientational ordering can be achieved 

in the 3D case, despite the fact that spherical 

cages can only ensure the uniqueness of a 

stable pose of equilibrium. The theoretical 

results are complemented by the theoretical 

and experimental analysis of an L-shaped 

part in Sec. 2.4.4. Remaining challenges of 

practical application in the field of part 

feeding are discussed in Sec. 2.4.5. 

2.4.1  Part feeding with cages 

A Industrial part feeding 

Parts used in automated assembly lines are 

often available in bulk and are oriented by 

feeders before entering the assembly line. 

Traditionally, the parts are dropped to a 

horizontal surface (e.g. a tray, a vibratory 

bowl or a conveyor belt) and settle in one of 

the equilibrium poses. This process is 

sometimes referred to as ‘pose selection’. 

After coming to rest, they are further 

processed by active manipulators (e.g. 

vibrated trays with depressions [44]; 

grippers [34], [159]; distributed 

manipulators [46], [157], [22], [179]; 

actively tilted trays [56]; throwing devices 

[101]) or passive physical barriers, such as 
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fences [1], [18], [19], [188] traps [17], [69], 

pins [194] or ‘blades’ [70]. Some of these 

devices change the orientations of parts, 

whereas others are designed to sort out 

badly oriented ones for recycling.  

The current level of technological 

development offers many intelligent ways 

for the reorientation of parts (sensors 

combined with flexible manipulators). 

Nevertheless, when massive quantities of 

cheap parts have to be processed, simple 

and durable feeders are preferable. As a 

consequence, most industrial part feeders 

apply simple, sensorless methods, 

exploiting mechanical properties of the 

parts. 

Although the core mechanism of a feeder is 

reused across different parts, the sorting and 

orienting devices require part-specific 

design. Traditional methods of designing an 

efficient feeding line for a new part are slow 

and expensive. Researchers have found two 

directions during the past two decades to 

facilitate feeder design. The first one is 

algorithmic planning and optimization [1] 

[15] [17] [18] [19] [195], to which we will 

return in Chapter 3. The second is 

developing flexible or universal orienting 

devices [22] [44] [157] [179], which require 

little or no part-specific adaptation. The new 

method introduced here aims to be a step 

towards the second solution.  

B Universal feeders in 2 and 3 dimensions 

We follow a long tradition of distinguishing 

between planar and spatial part-feeding 

methods. Despite all real parts being three-

dimensional, feeding methods of planar 

objects are often used for illustrative 

purposes, and they also have direct practical 

applications: we have pointed out that the 

majority of the orienting devices can only 

rotate parts about a vertical axis [147], 

without changing their initial pose. Rotating 

a part about an axis of fixed direction is 

inherently a planar problem, which can be 

solved using insights from a purely planar 

model of part feeding (see point D below for 

a specific example). 

Universal part feeders in 3D do not exist at 

this time, nevertheless planar universal part 

feeders have already been proposed in the 

late 1990’s [22] [156] [157] [161]. Dense 

grids of small manipulators were abstracted 

as programmable, planar force fields. Parts 

were placed on top of the arrays. It was 

demonstrated that certain force fields rotate 

an arbitrarily shaped planar part into one or 

two orientations regardless of its initial 

configuration. These feeders did not 

become popular in the industry, because 

their complexity, and discrepancies 

between their real behavior and the 

idealization of programmable force fields.  

A different approach to planar, universal 

part feeding was proposed by [179]: the 

parts were placed on a rigid, horizontal tray. 

The frictional forces induced by a carefully 

designed small-amplitude periodic motion 

of the tray rotated arbitrarily shaped parts 

into a uniform orientation. This method 

requires a high-precision 6 degree-of-

freedom positioning system. 

C A new paradigm of part feeding 

We have seen that some objects are indeed 

monostatic on a horizontal support. This is 

an ideal situation, in which the task of part 

feeding becomes trivial in 2D. In 3D, 

achieving uniform orientation still poses a 

challenge, nevertheless the task of part 

feeding becomes much easier than for 

general objects (see point D below for more 

details). Nevertheless, feedability is at best 

a secondary demand, thus parts are usually 

not designed to be monostatic. This is how 

one naturally arrives to the approach of 

optimizing the shape of the underlying 

support surface for feedability.  

An important example of this approach is 

the industrial APOS feeder [86] in which 

parts are captured and oriented by an array 

of part-specific, identical depressions 

designed by trial and error. Motivated by 
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the APOS, Moll & Erdmann [110] 

investigated systematically, how 

planar parts can be pushed towards 

monostatic behavior by optimizing 

the shape of the underlying 

support curve. They considered 

the behavior of parts after being 

dropped from a sufficient height. 

For many parts, they could design 

support curves, for which the parts 

came to rest with high probability in a 

unique orientation. Nevertheless they could 

not achieve perfect monostatic behavior via 

this approach.  

Our new method uses a particularly simple 

setup. Individual parts are enclosed in 

round, rigid cages (circles in 2D or spheres 

in 3D). Vibration of the cage is assumed to 

replace dry friction with an appropriate 

velocity-dependent damping such that all 

parts come to rest in stable frictionless 

equilibrium orientations (2D) or poses (3D), 

corresponding to local minima of the 

potential energy function induced by 

gravity. This setup can be applied as a part 

feeder if the object shows monostatic 

behavior in the cage, and as we show in Sec. 

2.4.2, rigid objects have a strong tendency 

to become monostatic in round cages. 

Hence, round cages can be interpreted as a 

perfect theoretical solution to the problem 

raised by Moll & Erdmann. A similar idea 

inspired the planar universal feeder [156] 

[22], which used a force field mimicking a 

tight, compliant circular cage around the 

part.  

The new method does not yield a universal 

feeder, because the radius of the cage has to 

be adapted to the part. Nevertheless the 

simplicity of the part-specific ingredients 

makes the adaptation process to a new part 

particularly easy. 

D Complete orientational ordering in three 
dimensions  

In 2D, a monostatic part rotates 

spontaneously to a uniform orientation, 

whereas in 3D, only uniform pose is 

achieved. An auxiliary step is necessary to 

rotate three-dimensional parts already in 

uniform pose to a uniform orientation. The 

auxiliary step is analogous to a planar part 

feeding task, because if parts are in uniform 

pose, then arriving to uniform orientation 

requires rotations about a vertical axis only. 

Various planar part feeding methods can be 

adapted to this task. The steps of a possible 

realization with a planar cage feeder are 

sketched below  

1. Rotate the parts into uniform pose using 

a 3D cage feeder (Fig. 25.A). 

2. Place the parts to a horizontal plane such 

that their poses remain identical. Their 

new pose may differ from the one in the 

cage, in particular, it should be a stable 

equilibrium on the plane (Fig. 25.B). 

3. Consider a virtual planar part defined as 

the convex hull of the contact points of 

the object. The vertical projection of the 

center of mass G to the plane should be 

used as center of mass of the virtual 

planar part (Fig. 25.C). 

4. Find an appropriate cage size α* for this 

virtual planar part and enclose the 

contact points of the part in a vertical, 

sufficiently short cylinder of radius α* 

as in Fig. 25.D.  

5. Tilt the plane together with the cylinder 

by an angle small enough to avoid 

toppling of the part.  

6. Inside the tilted ring, the potential 

energy function induced by gravity has 

a unique local minimum point. 

2.4.2  Equilibria in round cages 
We begin by discussing the behavior of 

rigid bodies enclosed in tight circles or 

 

Fig. 25. The steps of achieving complete orientational ordering 

with cages. 
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spheres. Then we introduce a generalization 

of the notion of the convex hull, which will 

be used to find conditions of equilibrium 

and stability for objects in a round cage of 

arbitrary radius. Throughout the analysis, 

the planar case is discussed first, and the 

extension to 3D is presented thereafter. 

A Equilibria of an object in a tight cage 

Every bounded, planar object has a unique 

smallest enclosing circle, which has 2 or 3 

contact points with the object typically, but 

more than 3 contacts in degenerate cases 

(Fig. 26). In a cage having the shape and 

size of this circle, the motion of the object 

is restricted to pure rotation about the center 

O of the circle. If the walls of the cage are 

frictionless, gravity acts in the plane of the 

cage, and the center of gravity G of the 

object does not coincide with O, then the 

object has a unique potential energy 

minimum (G vertically below O), 

corresponding to a unique stable 

orientation. Analogously, 3D objects have a 

unique smallest enclosing sphere with 2 to 

4 contact points typically. In a cage of this 

shape, they have a unique stable pose. 

In special cases, including all planar objects 

with symmetries of order 3 or higher (Fig. 

26.C), the center of the cage and the center 

of mass of the object coincide, and the 

potential energy of the object becomes 

invariant under rotation. Such objects do 

not orient themselves spontaneously in a 

tight, round cage. In practical applications, 

such an unwanted coincidence can be 

avoided by changing the mass distribution 

of the object. 

Theoretically, one could create a part feeder 

by placing individual parts into tight cages. 

Nevertheless this approach has several 

disadvantages. Most importantly, fitting a 

part with unknown initial orientation into a 

tight cage is itself a highly nontrivial 

manipulation task. In addition, every part 

requires a unique cage size. Finally, 

elongated planar parts maintain contact 

with the cage at a pair of opposing points of 

the circle (Fig. 26.A). The corresponding 

frictionless contact forces are collinear, i.e. 

they are theoretically insufficient to balance 

the object. In practice, such parts may 

exhibit very large contact forces and non-

negligible friction-related effects. These 

may cause physical damage or the 

emergence of unexpected equilibria. The 

same problem arises for 3D parts with 2 or 

3 contacts with the cage. All problems 

outlined above vanish if the cage used is 

larger than the smallest enclosing circle or 

sphere. This is why we will develop a 

computational algorithm in Sec. 2.4.3 to 

determine the exact range of cage size in 

which the monostatic behavior of polygonal 

(2D) or polyhedral (3D) parts is preserved. 

In preparation to this task, we review an 

important mathematical tool, and develop 

conditions of equilibrium in round cages.  

B Basic properties of α-hulls 

We have seen that equilibria on a horizontal 

surface are identified by analysis of the 

convex hull of an object. The convex hull 

can be defined as the intersection of all half-

planes (2D) or half-spaces (3D) containing 

the object. This definition has a natural 

generalization in which half-spaces are 

replaced by finite-sized balls (i.e. circles in 

2D or spheres in 3D): 

Definition 2.4.1: the α-hull of an object is 

the intersection of all balls of radius α 

enclosing the object. 

 

Fig. 26. The smallest enclosing circle of a 

bounded planar object has typically 2 (A) or 3 

(B) points of contact with the object. In special 

cases (including objects with certain 

symmetries), the number of contacts may be 

higher (C). 
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A slightly different definition of the α-hull 

is extensively used in the context of 

associating object shapes with point clouds 

[54]. The existence of the α-hull requires 

that α exceeds the radius α0 of the smallest 

enclosing ball of the object. For αα0 the 

α-hull becomes identical to the smallest 

enclosing ball, whereas the limit α of 

the -hull is the convex hull.  

The α-hull of a planar polygon is a convex 

set (Fig. 27). with piecewise smooth 

boundary, which consists of arcs of circles 

of radius α (α-edges), joining at vertices. 

The minimum number of vertices and α-

edges is 2.  

The vertices of the -hull form a subset of 

the vertices of the convex hull. The α-edges 

are always smaller than a semi-circle, see 

proof in Appendix 5.3.1. Analogously, the 

α-hull of a spatial polyhedron (Fig. 28) 

typically consists of  

- vertices forming a subset of the vertices 

of the convex hull. 

- α-edges: portions of spindle tori 

obtained by revolving circles of radius α 

around an axis joining 2 vertices of the 

-hull. Despite their names, -edges are 

surfaces rather than 1-dimensional 

manifolds but they shrink to line 

segments in the limit of . 

- α-facets: spherical triangles of radius α 

bounded by 3 vertices and 3 -edges. 

The minimum number of vertices is 2. An 

α-hull with two vertices (Fig. 28.B) has no 

α-facets and its single α-edge is a full 

spindle torus.  

C  Equilibria in round cages of arbitrary 
radius 

For planar objects, an important difference 

between equilibria in a round cage and those 

on a horizontal line is the lack of translation 

symmetry of the round cage, which implies 

isolated configurations of equilibrium 

typically. Apart from this difference, the 

characterization of equilibria in a round 

cage is highly similar to the characterization 

of equilibria on a horizontal support, which 

is described in Sec. 2.1.3. The similarity is 

illustrated by Fig. 6.A and B. If a planar part 

rests in equilibrium under the influence of 

gravity, then there must be contact between 

the object and the cage. Thus the cage 

appears as a circle t of radius α tangential to 

the α-hull H. Let P and C denote the lowest 

point of the cage, and the “contact set”, i.e. 

the intersection of t with H; and let  be the 

radius of curvature of the α-hull at P. The 

geometric conditions of stable equilibrium 

are summarized in 

Lemma 2.4.2: a configuration corresponds 

to equilibrium if (1) G lies on the vertical 

 

Fig. 27. The -hull of a triangle for 2 different 

values of . 

 

Fig. 28. An elongated tetrahedron (A) and its 

-hull at three values of α (B-D). For small α 

(B), the α-hull consists of a single α-edge, with 

the shape of a spindle torus. For intermediate 

values of α (C), the α hull consists of two α-

facets (shaded spherical surfaces), and 3 α-

edges (white toroidal surfaces lifted from the α-

hull). For larger α (D), the α-hull becomes 

similar to the convex hull: it has  has 4 α-facets 

(shaded surfaces) and 6 α-edges (removed 

from the picture)  
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line through P and (2) P belongs to C. 

Moreover, the equilibrium is stable if 

|GP|<min[α,(κ-1-α-1)-1] (18) 

Lemma 2.4.2 is proven in Appendix 5.3.2. 

For polygonal planar objects, C is either a 

vertex or an α-edge of H. Thus, there are two 

types of equilibrium: resting on an -edge 

of the α-hull or on a single vertex of the α-

hull. In the first case, κ= and by (2), the 

equilibrium is stable if |GP|<. In the 

second case, κ=0 implies instability. For a 

given -edge e of the -hull, a 

configuration satisfying the three conditions 

of Lemma 2.4.2 exists if the center of mass 

G of the object is in the circular sector 

OV1V2 determined by the -edge (Fig. 

29.A). 

The characterization of equilibria in a 3-

dimensional spherical cage is analogous to 

the planar case. Remarkable differences 

include the following: 

- there are isolated equilibrium poses 

instead of isolated configurations due to 

rotational symmetry of the cage. 

- polyhedra have three types of 

equilibrium: resting on an -facet, on an 

-edge, or on a vertex of the -hull. 

- Resting on a given -facet f is a stable 

equilibrium if G is in the spherical 

sector determined by f (Fig. 29.B).  

- Resting on a given -edge e is a stable 

equilibrium if G is inside a region 

bounded by planar boundaries of the 

two stable regions associated with the 

adjacent -facets and the toroidal 

surface of e (Fig. 29.C). In the special 

case of an α-edge without adjacent α-

facets (as in Fig. 25.B) the stable region 

is bounded only by e. 

2.4.3  Algorithmic cage size 
selection 

This section is devoted to the description of 

a computational algorithm, which 

determines the range of cage sizes in which 

a polygonal or polyhedral part is 

monostatic. 

A naïve approach in 3D is to test each triple 

of vertices and each pair of vertices one by 

one as contact point candidates. For each set 

of contact point candidates, a range of the 

cage size can be determined such that all 

other vertices of the part are inside the cage, 

and the position of the center of mass 

satisfies the conditions of stable 

equilibrium. Such an algorithm requires 

O(n4) processing time, where n is the 

number of vertices of the object. The 

efficiency of the naïve algorithm can be 

improved by constructing the furthest-point 

Voronoi tessellation of the vertex set 

(complexity: O(n2)), which yields all pairs 

and triples of vertices, which can touch the 

wall of the cage simultaneously. Here we 

describe another algorithm also with O(n2) 

complexity. The algorithm is based on 

tracking the topological evolution of the α-

hull as α is increased gradually. 

 

Fig. 29. Resting on the planar α-edge e (panel A); spatial α-facet f (B); or spatial α-edge e (C) is stable if 

the center of mass of the object is in the corresponding grey area (A) or volume (B,C). Points Vi are the 

vertices spanning the α-edge or α-facet in question. O is the center of e (A) and f (B). In panel C, O1 and 

O2 are centers of the two adjacent α-facets. Invisible lines are printed as dotted. Dashed lines in A and B 

show how the boundaries of the grey area/volume move if α is increased. 
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A Topological changes of the α-hull under 

variations of parameter   

If  is varied, the structure of the -hull, and 

the number of equilibria may change in 

various ways. A complete list of transitions 

is given below. The list is used by our cage 

size selection algorithm.  

To understand the planar case, consider 

again an -edge e connecting two vertices 

(V1, V2) as in Fig. 29.A. We have seen that 

resting on this -edge is a stable 

equilibrium if G is in the sector OV1V2. If  

is increased, then the arc e becomes flatter 

and O moves away from the V1V2 line 

(dashed lines in Fig. 29.A), and thus one of 

the following events may happen: 

- one of the OV1, OV2 line segments 

crosses G such that G enters the grey 

region. In this case, resting on e 

becomes stable. The position of the arc 

e also changes during variation of , 

nevertheless it never crosses G, because 

G remains in the interior of the -hull 

for all α. 

- the -edge e crosses another vertex of 

the object. In this case, the new point 

becomes a vertex of the -hull, dividing 

the edge e to two parts as in Fig. 27.  

The two events described above are the only 

ones that change the structure of the α-hull 

or the number of stable poses. None of these 

events cause the number of stable poses to 

decrease, which proves  

Theorem 2.4.3: the number of stable 

equilibria of a planar object is a 

monotonically increasing function of . 

We have seen in Sec. 2.4.2 that the case of 

3 dimensions is more complex because the 

surface of the α-hull is composed of α-facets 

and α-edges; moreover resting on -facets 

and -edges may both be stable. Resting on 

an -facet f is stable if G is within the region 

bounded by the spherical surface f, three 

triangles OViVj, and three circular caps (c1, 

c2, c3) coplanar with the triangles (Fig. 

29.B) As  is increased, the spherical 

triangle f becomes flatter and O moves away 

from the V1V2V3 plane (dashed lines in Fig. 

29.B). The following events may happen to 

an -facet: 

- One of the triangles OViVj crosses G. 

The direction of crossing depends on the 

shape of triangle V1V2V3: if its interior 

angle opposite the edge ViVj is acute, 

then G may enter the stable region, 

whereas if it is an obtuse angle then G 

may leave the stable region. 

Accordingly, resting on the -facet 

becomes or ceases to be stable. 

- One of the circular caps crosses G. The 

other side of the cap belongs to the 

stable region of an adjacent α-edge, 

hence the number of stable equilibria 

does not change. 

- The surface f may not cross G because 

G remains in the interior of the -hull.  

- A vertex of the object crosses the -

facet. In this case, one new vertex and 3 

-edges are added to the -hull, 

dividing the -facet to three parts (Fig. 

30.A). 

Resting on a three-dimensional -edge e is 

stable if G is within a region bounded by the 

toroidal surface of e, and two circular caps 

 

Fig. 30. Topological changes of the α-hull under variation of . Each sketch shows a part of the boundary 

of a 3D -hull. White and grey areas represent -facets and -edges, respectively.  
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(c1, c2), as in Fig. 29.C. If α is increased, the 

surface of e becomes flatter, while the angle 

between the planes c1 and c2 may increase 

or decrease. Events associated with e are the 

following: 

- G crosses one of the caps, thus resting 

on the -edge becomes or ceases to be 

stable. As we have seen, the opposite 

side of the cap belongs to the stable 

region of an adjacent α-facet, hence the 

number of stable equilibria does not 

vary. The surface e also moves, 

nevertheless G may not cross e as it 

always remains in the interior of the α-

hull. 

- e crosses a vertex of the object, which 

becomes a new vertex of the -hull, 

creating two more -edges and 2 new α-

facets (Fig. 30.B). 

- The angle between planes c1 and c2 

becomes 0 if α equals the radius of the 

sphere fitted to the four vertices of the 

two adjacent -facets. In this case, e 

disappears, while a new α-edge is born 

(Fig. 30.C).  

It is worth noting that one of the events 

associated with α-facets results in the 

elimination of a stable pose as α increases. 

Hence, Theorem 2.4.3 does not generalize 

to three dimensions.  

B Algorithmic selection of cage size 

According to Theorem 2.4.3, every planar 

object is monostatic if and only if the cage 

size is within an interval bounded from 

below by the size of the smallest enclosing 

circle. The interval extends to infinity for 

objects which are monostatic on a 

horizontal supporting surface. The interval 

may shrink to a single point if the critical 

value of  associated with the birth of a new 

equilibrium coincides with 0. Such a 

coincidence is non-generic except for 

objects with certain symmetries. The upper 

endpoint of the interval can be found by 

gradually increasing , and by tracking 

topological changes of the -hull, until the 

emergence of multiple stable equilibria. 

Specifically the steps of the algorithm for 

planar parts are the following. 

1. Construct the smallest enclosing circle. 

The points of contact with the object 

become the vertices of the -hull for 

0 and there are α-edges between 

each pair of adjacent points of contact. 

The processing time of this step is O(n) 

[108]. 

2. For each -edge, find the critical value 

of , at which resting on the -edge 

becomes a stable equilibrium. 

Complexity: O(1). 

3. For each -edge and each vertex of the 

object not included in the vertex set of 

the -hull, find the critical value of , at 

which the -edge crosses the vertex. 

Complexity: O(n). 

4. Find the smallest of the critical values 

identified in the previous steps. 

Complexity: O(n). 

5. If the smallest critical value corresponds 

to the emergence of a stable 

equilibrium, exit the algorithm.  

6. If the smallest critical value belongs to 

an -edge-vertex crossing, then update 

the -hull, calculate the critical values 

associated with the new -edges, and 

return to step 4. Complexity: O(n)  

The construction of the smallest enclosing 

circle is discussed in the literature [108], 

[186]. Steps 2 and 3 require elementary 

algebraic steps (e.g. finding the radius of a 

circle fitted to 3 points). For brevity, the 

equations solved during these steps are not 

presented. Each cycle of the algorithm 

requires at most O(n) processing time, and 

adds one vertex to the -hull. Hence, the 

worst-case complexity of the algorithm is 

O(n2). 

In three dimensions, monostatic behavior 

may extend to multiple intervals of α 

because Theorem 2.4.3 does not hold. The 

first step of the algorithm is finding the 

smallest enclosing sphere, for which 

efficient algorithms exist similarly to the 

planar case. In step 2, only -facets are 

investigated, and critical values of α 
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associated with the emergence or 

disappearance of an equilibrium are 

determined. It has been shown in Sec. 

2.4.3.A, that events associated with an -

edge do not change the number of stable 

poses. In steps 3 and 6, both -edges and -

facets have to be considered. Step 5 is 

optional, because continuing the algorithm 

may uncover multiple intervals of α, where 

the object is monostatic. The worst-case 

complexity of the procedure remains O(n2).  

2.4.4  Analysis of an L-shaped 
part 

The cage size selection algorithm has been 

applied to the L-shaped part depicted in Fig. 

31.A. This part has non-triangular facets, 

and it is perfectly symmetrical. To avoid 

computational difficulties, a random 

number drawn from a uniform distribution 

over the interval (-0.0005 0.0005) is added 

to the coordinates of each vertex. A MatLab 

implementation of the algorithm requires 

roughly 0.2 seconds to detect the critical 

cage size where the second stable pose 

emerges, and 1 second to identify all critical 

values of α.  

The object has 5 stable poses on a horizontal 

plane, two of which are mirror images of 

each other ( Fig. 31.B-E). If it is surrounded 

by its smallest enclosing sphere (α01.146) 

as a cage, a unique stable pose close to the 

one in Fig. 31.B exists. As α is increased, 4 

other stable poses emerge, which are close 

to the ones in Fig. 31.C-E, and none of the 

stable poses disappears. To estimate the 

effect of the initial random perturbation, the 

algorithm has been repeated 10 times with 

independent random numbers each time. 

The mean value and the standard deviation 

of critical cage sizes associated with the 

emergence of new stable poses are also 

given in Fig. 31. The emerging stable poses 

are not perfectly identical to the ones in the 

figure, because as α is varied, existing stable 

poses of the object may change. Our results 

indicate that this object is monostatic for 

1.146<α<1.243.  

To illustrate the second phase of three-

dimensional orientation (discussed in Sec. 

2.4.1.D), assume that the object rests on a 

horizontal surface in the pose of Fig. 31.B. 

The convex hull of the contact points is a 2 

by 1 rectangle, and the projection of G is in 

an asymmetrical position. Due to the simple 

shape, the critical cage sizes can be 

determined without using a computer. The 

smallest enclosing circle is of radius 

51/2/2=1.031, and the virtual planar object is 

monostatic for α<1.064.  

A simple experiment has also been 

performed to illustrate the behavior of this 

part. The setup (Fig. 32) includes a hollow 

plexiglass ball of internal diameter 154 mm, 

attached to an eccentric rotating mass 

(ERM) vibration motor (part of a hand-held 

massager) with vertical axis of rotation. The 

amplitude of the vibration is controlled by a 

compliant connection of adjustable size 

 

Fig. 32. The experimental setup 

 

Fig. 31.A: an L-shaped part. B-E: stable poses 

of this object on a horizontal surface with mean 

and standard deviation of the critical values of 

α, where these stable poses emerge in a 

spherical cage. 
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between the ball and the motor. The L-

shaped part has been manufactured in three 

sizes. The length unit of Fig. 31 corresponds 

to 64 mm, 48 mm, and 40 mm for the three 

sizes. The corresponding dimensionless 

cage sizes () are 1.20, 1.60, and 1.925. 

Hence, theory predicts monostatic behavior 

for the largest object, and four stable poses 

for the other two. 

Each part has been placed 12 times in the 

cage with random initial configuration, and 

the final poses after 8 seconds of vibration 

have been measured. Poses have been 

reconstructed from measurements of 

apparent angles between the vertical and 

edges of the objects in photographs (details 

omitted).  

The results are depicted in Fig. 33. The 

experiment confirmed the prediction that 

the largest part always reaches the same 

pose, whereas multiple stable poses are 

reached by the other two parts1. The 

generation of random initial conditions has 

not been standardized, hence the measured 

probability distributions of final poses are 

not representative. Several theoretically 

stable poses have not been reached at all 

during tests with random initial conditions. 

One of these poses appeared unstable in the 

experiment, which is probably a 

consequence of the relatively large 

vibration amplitude, enabling the part to 

                                                 
1 A video of the experiment is available as 

supplementary material of [172] 

escape from marginally 

stable poses. Other stable 

poses were observable only 

if the object was launched 

with carefully chosen initial 

configuration. For example, 

the pose of Fig. 31.C 

appeared in the 

experiments. 

The experimental results 

are scattered around 

minimum points of the 

potential energy. The 

variability is only partially 

caused by an imperfect pose reconstruction. 

The physical sources of variability are 

discussed in Sec. 2.4.5. There is also a 

visible tendency for the large parts to rest in 

a slightly asymmetrical pose (off the 90° of 

east longitude line of Fig. 33), which is 

caused by the direction of rotation of the 

ERM motor breaking the perfect symmetry 

of the setup.  

2.4.5  Discussion 
In this section we studied the monostatic 

behavior of rigid objects enclosed in round 

cages. We found that almost all objects 

become monostatic if the cage is 

sufficiently tight, and we developed a 

computational algorithm to identify the 

exact limits of monostatic behavior. We 

addressed various questions motivated by 

the potential application of this setting as a 

part feeder. Our investigations are closed by 

the discussion of remaining problems and 

challenges of application. 

Cage feeders are applicable to almost all 

parts, except for those where either the 

center of gravity coincides with the center 

of the smallest enclosing ball or the critical 

cage size associated with the birth of a new 

equilibrium coincides with the radius of the 

smallest enclosing ball. Both types of 

coincidence are non-generic for irregularly 

 

Fig. 33. Sinusoidal projection of a quarter of pose space (see Fig. 1) and 

experimental results with three different cage sizes  
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shaped parts, but they often become generic 

among highly symmetric ones. 

Nevertheless, not all symmetrical parts are 

problematic as illustrated by the example of 

Sec. 2.4.4. In the case of an unwanted 

coincidence, the feedability of the part can 

be improved by drilling holes into the part 

or by using multiple materials to shift the 

center of gravity. 

The practical application of cage feeders 

requires a robust method to enclose the parts 

in the cage (or assemble the cage around the 

part), which is challenging in the 3D case 

because the cage itself is completely closed. 

The development of such a manipulation 

scheme is beyond the scope of the present 

work. 

Our model assumes a perfect elimination of 

dry friction, nevertheless the real effect of 

vibration is more complex. The low-

frequency (50Hz) and relatively high-

amplitude (~1 mm) excitation used in the 

experiments may cause parts to bounce in 

the cage. As a result, the final resting poses 

of the parts (after turning off vibration) will 

show some variability, or they may even 

escape from the proximity of marginally 

stable poses (Sec. 2.4.4). This effect could 

be eliminated by the application of small-

amplitude ultrasonic vibration [97] [155]. 

Even then, friction reduction is usually 

incomplete. Vibration may induce nearly 

frictionless interactions for low sliding 

velocities, but much friction remains for 

fast sliding. In other words, dry friction is 

largely replaced by viscous friction, which 

is beneficial for a cage feeder, because 

viscous forces efficiently stop motion at 

points of frictionless equilibrium. Some 

remaining dry friction at zero sliding 

velocity turns isolated poses of equilibrium 

into small, continuous sets, which is a 

second source of variability of the final 

pose. Vibration may also keep the object in 

steady slow rotation about a vertical axis, 

which has been observed in the 

experiments. More work is needed to 

explore how this complex behavior affects 

the performance of cage feeders. 

There is one more task to be solved if the 

cage size selection algorithm is applied to 

polyhedral approximations of parts with 

curved surfaces. The approximations may 

have small clusters of stable poses instead 

of a single stable pose of the original part. 

In addition, stable poses with very small 

basin of attraction may emerge in a small 

neighborhood of the unstable equilibrium 

poses of the original part [51]. The 

refinement of the polyhedral approximation 

reduces the distances between the 

equilibrium poses in such a cluster, but they 

do not necessarily disappear. An extreme 

example of this artefact occurs for object 

containing a piece of spherical surface 

centered exactly at their center of mass. The 

polyhedral approximation replaces a 

continuous set of neutral equilibria by a 

large but finite set of stable and unstable 

poses. If this phenomenon is not taken into 

account, the algorithm yields a conservative 

rather than an exact result. The efficient 

identification of this type of artefact is 

subject to future work.  

 

2.5  EQUILIBRIA OF FLOATING OBJECTS: ULAM’S 
PROBLEM 

We will next investigate the equilibria of 

objects floating on the surface of a liquid, 

which appears to be another generalization 

of finding the equilibria of objects on 

horizontal ground. In this problem, the 

average density  of the object (defined as 

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



42 

 

total mass / total volume) relative to the 

density of the liquid emerges as a scalar 

parameter, similarly to the cage size 

parameter α in Sec. 2.4. Resting on a solid 

surface is identical to the special cases of 

0 and 1. It is an intriguing question if 

there are monostatic homogeneous, convex 

planar floating objects of density ρ (a 

generalization of Theorem 2.2.1) and if 

there are mono-monostatic, convex, 

homogeneous floating objects of density ρ 

in 3D (generalization of Theorem 2.2.2). 

Indeed both questions are unsolved except 

for special cases: if ρ is sufficiently close to 

0 or 1, mono-monostatic behavior on solid 

ground is preserved, nevertheless if ρ=1/2 

then an invariance property of floating 

[167] implies that monostatic behavior is 

impossible. We skip the detailed discussion 

of these modest results of the author. 

Instead, we investigate a different, but 

closely related question with a long and 

fascinating history. 

2.5.1  Historical background and 
problem statement 

The equilibria of floating objects have 

intriguing properties. The stable equilibria 

of symmetrical objects are often 

asymmetrical [68][57][58][11][124]. 

Alternatively, the set of equilibrium 

configurations may have symmetries 

exceeding the degree of the object’s 

symmetry. An interesting question about 

floating objects – often referred to as 

Floating Body Problem – was proposed 

over seventy years ago by Stanislav Ulam 

[106]: are spheres the only bodies that can 

float (without turning) in any orientation? 

We investigate this question for rigid 

objects affected by gravity and buoyancy 

forces, while capillary effects are neglected. 

Ulam’s problem was proposed while he was 

with the Mathematics Department of the 

University of Lwów (then part of Poland, 

today in Ukraine) chaired by the eminent 

mathematician Stefan Banach. During the 

1930’s, a place called “Scottish Café” was 

an important scene of social life for the 

members of the department and their 

visitors, where they often posed, discussed, 

and solved mathematical problems of all 

types and difficulties. Interesting problems 

were collected in a hand-written notebook, 

bearing the title Księga Szkocka or Scottish 

Book. New problems were recorded in the 

book even during the first period of Worl 

War II, when Lwóv was under Soviet 

occupation and several Russian 

mathematicians visited the city. The 

German occupation brought an immediate 

and tragic end to the flourishing 

mathematical life in Lwóv, a city with a 

Jewish population of over 200.000 people. 

Nevertheless, the Scottish Book survived. 

After the war, it was translated into English 

in the United States by Ulam and became 

known in mathematical circles. Some 

problems became quite famous. For 

example, the prize of a live goose 

(something of quite high value shortly after 

Great Depression of economy) was 

documentedly offered for problem 153. The 

problem was eventually solved and the 

prize was collected in 1972 by the Swedish 

mathematician Per Enflo.  

The Floating Body Problem appears as 

number 19 in the book, and only a few 

special cases have been tackled until 

recently. A simpler two-dimensional 

version of this problem, also credited to 

Ulam, concerns the existence of non-

circular planar objects (i.e. logs with 

horizontal axis), which can float in every 

orientation. There are simple nontrivial 

solutions in the form of disconnected bodies 

in two dimensions as well as of shapes 

containing holes in 3 dimensions [7]. To 

exclude such strange solutions, both 

questions are commonly restricted either to 

convex bodies or to star-shaped bodies (the 

latter being a property related to but less 

restrictive than convexity). In the current 

work, we restrict our attention to -simple 

objects where 0<<1 is a scalar parameter 

representing the density of the object 

relative to the liquid. 
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Definition 2.5.1: a 3D body is -simple if 

the intersection of the body with any plane 

dividing its volume into two parts of volume 

ratio :1- forms a simply connected set. 

The class of -simple objects also includes 

all convex objects. Convex solutions of the 

planar problem were found long ago for 

density = ½ relative to the liquid [8], and 

much more recently for other densities 

[185] [182], see also [167] for some closely 

related questions. In both cases, many 

nontrivial neutrally floating objects have 

been identified. In three dimensions, there 

are no solutions in the limit of resting on a 

solid surface (i.e. 0 or 1) [112]; and no 

solutions among star-shaped objects with 

central symmetry (other than the sphere) for 

density =½ [145] [60]. Nevertheless, the 

German physicist F. Wegner has proposed 

a perturbation expansion scheme of the 

sphere for objects with central symmetry 

and ½ [183], as well as for bodies with 

arbitrary shape and = ½ [184]. His 

calculations point towards the existence of 

many nontrivial solutions in these wider 

classes of shapes, even though the proofs 

are incomplete in that the convergence of 

the perturbation series has not been 

examined. Furthermore, no attempt to 

construct actual solutions of the problem 

has been reported. 

We will take a different approach to 

construct three-dimensional, neutrally 

floating objects of density =1/2 with 

cylindrical symmetry. Our method is an 

adaptation of [8] to the three-dimensional 

problem. After reviewing the geometric 

conditions of neutral floating in Section 

2.5.2, these are transformed into a non-

standard integro-differential equation with 

given initial conditions (ie. an initial value 

problem) for the generating curve of the 

object (Section 2.5.3-4) using fractional 

order derivatives. It is shown in Section 

2.5.5 that sufficiently small perturbations of 

the sphere yields physically meaningful 

nontrivial solutions of the problem and 

several examples are constructed by 

integrating the equations numerically in 

Sec. 2.5.6. This section is closed by a short 

discussion of related problems. 

2.5.2  Geometric criteria of 
neutral floating 

By the principle of Archimedes, a body of 

density  floats in a liquid of density 1 in 

such way that a fraction  of the object’s 

volume is immersed in the liquid. A 

configuration satisfying Archimedes’ 

principle is an equilibrium iff the centroid 

of the object (G) is exactly above the 

centroid of the immersed portion. The 

equilibrium is neutral, if after small 

rotations (with the preservation of 

Archimedes’ principle), the centroid of the 

immersed part remains on a sphere centered 

at G, yielding constant potential energy. 

Our goal is to design objects, for which 

every configuration of the object satisfying 

Archimedes’ principle is a neutral 

equilibrium, i.e. for which the centroids of 

the immersed parts for every possible pose 

form a sphere of arbitrary radius s centered 

at G. 

Any plane that divides the object’s volume 

in ratio :1- is called a water plane (W) 

and the intersection of the object with any 

water plane W a water section or W*. We 

consider two water planes infinitesimally 

close to each other. The transformation 

mapping one (W1) to the other (W2) is a 

rotation by an infinitesimal angle 12 about 

a line l12. The water planes and sections 

have two remarkable properties described 

below. For a more detailed description, the 

reader is advised to consult [68] [183] [184] 

or references therein. 

P1: The conservation of the immersed 

volume implies that l12 goes through the 

centroid of W1
*. It follows from this 

property that every water plane is a 

tangent plane of the closed surface E 

formed by the centroids of water 

sections. We will refer to E as ‘water 

envelope’. Indeed, E is not necessarily a 
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smooth surface, but it is a ‘wavefront’, 

which may contain singularities. 

Nevertheless, it has a well-defined 

tangent everywhere. 

P2: If W1 corresponds to a neutral 

equilibrium, then the distance between 

the centroids of the immersed volumes 

(G1 and G2) corresponding to the two 

water planes is |𝐺1𝐺2| = 𝑠𝛼12 where s 

is the radius defined in the previous 

paragraph. The same distance can also 

be expressed as |𝐺1𝐺2| = 𝛼12𝐼12(𝜌𝑉)
−1 

where V is the volume of the object and 

I12 is the area moment of inertia of W1
* 

about the axis l12. Thus, neutrally 

floating bodies are characterized by the 

additional property that the moment of 

inertia of any water section, about any 

axis through its centroid is constant (I).  

Property P2 is necessary but not sufficient 

for a neutral equilibrium. It implies that the 

centroids of immersed volumes form a 

sphere of radius s, but it is not necessarily 

centered at G. However, for objects of 

density ½, G is exactly halfway between the 

centroid of the submerged part (G1) and 

centroid of the rest of the object (G1
’) 

Furthermore, G1 and G1
’ are opposite points 

of the above mentioned sphere. Hence, the 

sphere is centered at G, i.e. properties P1-P2 

are necessary and sufficient. 

2.5.3  Integral equations of 
neutral floating 

After introducing some new notation, we 

develop integral equations corresponding to 

P1 and P2. We restrict our attention to 

objects, which are invariant to arbitrary 

rotation about axis y of a Cartesian 

coordinate system x-y-z (Fig. 34). Due to 

their rotational symmetry, it is enough to 

consider water planes and sections parallel 

to the z axis. Let W*() denote one such 

water section, which is at angle 0/2 to 

the x-z plane (marked by grey hatching in 

the left panel and by a solid line section in 

the right panel of Fig. 34). According to 

property P1 of Section 2.5.2, the centroid of 

W*() belongs to the contour of the 

rotation-symmetric water envelope E 

(dashed line in the right panel of Fig. 34). 

The x and y coordinates of this point are 

A() and B(). The intersection of W*() 

with the x-y plane is a line section (solid line 

in right panel of Fig. 34). Let 1() and 

2() denote the y coordinates of its 

 

Fig. 34. Projections of a shape of revolution to the x-y plane (right panel) and half of its projection to the 

y-z plane (left panel). Thick solid lines denote its contour, y is the axis of revolution. The dashed curve in 

the right panel is the contour of the water envelope. W*() and W*() are two water sections, whose planes 

are parallel to the z axis. W*() is also shown in the left panel by hatching. For further notation, see the 

main text.  
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endpoints (where 2 is usually negative). 

The functions A, B, 1 and 2 together 

determine the object’s shape uniquely. 

Let 0. We will consider a second 

water section W*() The intersection of 

W*() with the plane y=j() is a line 

section parallel to the z axis. The x 

coordinate of all points along this line 

section is denoted by ))(,( 
j

 , which 

can be expressed as 

   cot)()()())(,( BA
jj



 

(19) 

The half-length of the same line section is 

by Pythagoras’ theorem:   

))(,())(,(...

...))(,,(

22

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jj

j





 (20) 

We introduce new variables =sin, 

=sin and express the previously defined 

functions in the new variables as 

a()=A(); b()=B(); Yj()=j(); 

X(,Yj())=j(,j()).The new notations 

will lead to more convenient equations later. 

Then, (19), (20) become 
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where 

  2/1
2

1)()(
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def

 
(23) 

Now we are ready to transform criteria P1 

and P2 into integral equations: 

  0)(')()())(,,()1(:1

0

2

1

 




 dYbYYZP
jjj

j

j

 (24) 

  3

0

2
2

1

1
)(')()())(,,()1(:2 



IdYbYYZP
jjj

j

j
 





 (25) 

where prime (’) means derivative, and 

property P2 has been applied to an axis 

parallel to z. Notice that the left side of (25) 

is the moment of inertia of a projection of 

the water section W*(arcsin) to the y-z 

plane rather than that of the water section 

itself. This is compensated by the 3 term on 

the right side. 

An arbitrary infinitesimal rotation can be 

composed from two rotations, where the 

first axis of rotation is parallel to z and the 

second is perpendicular. For the first type of 

rotation, eq. (25) is the exact condition of 

neutrality, whereas the rotational symmetry 

of the object implies that the second type 

rotation preserves neutrality. Hence, if the 

water envelope is given, then (24),(25) are 

necessary and sufficient conditions of 

neutral floating. 

2.5.4  Formulation as an initial 
value problem 

Analogously to the solution of the planar 

problem by [8] we first choose a water 

envelope (see Section 2.5.5 for more 

details). Once the functions a and b have 

been specified, the integral equations 

(24),(25) depend on values of the functions 

Yj() over the interval (0,). This 

observation suggests a transformation of the 

equations into an initial value problem. (24) 

and (25) can be written in the general form 
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where fi are scalar functions and gi are scalar 

functionals; i =1 for the first equation and 2 

for the second. Differentiating (26) with 

respect to  yields 
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which is a system of 2 linear algebraic 

equations in the unknowns )(' 
j

Y (j=1,2) if 

the values of the integrals are known. If the 

two-by-two matrix composed of the 

elements gi(,,Yj()) is nonsingular, then 

Yj’() can be expressed explicitly from the 

equations, yielding a first-order initial value 

problem for Yj(). Nevertheless it might 

happen that all elements of the matrix are 

zero. In this case, the second derivative of 

(26) becomes 
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(28)      

which is again a candidate for an initial 

value problem. If the gi()/ terms also 

happen to be zero, additional derivation of 

the equations might be necessary. 

Unfortunately, this method fails for the 

specific function gi of the problem of 

neutral floating, because gi(,,Yj()) is 

identically zero whereas the first derivative 

gi/ does not exists; specifically 








))(,,(
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ji Yg

 

(29) 

The diverging limit indicates that 

differentiating (26) twice is “too much”, 

whereas differentiating only once is not 

enough. This special property of gi is a 

consequence of the square-root type 

singularity of the function Z in (22) at =, 

inherited by gi. The specific form of Z 

implies that the fractional derivative of 

order 3/2 of gi is finite and nonzero at =; 

thus the 3/2th derivative of (26) leads to an 

initial value problem. 

Fractional derivatives are defined as integer 

order derivatives of a fractional integral of 

order less than 1 [109]. Thus, the first step 

towards the 3/2th derivative is to take the 

semi-integral of (26) using the definition of 

Riemann–Liouville differintegrals: 
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(30) 

Before proceeding with the differentiation, 

the order of integration is changed on the 

left side of the equation and the new 

functions Gi and Fi are introduced in order 

to shorten the expression: 
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We differentiate both sides with respect to , using the Leibniz integral rule: 
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(32) 

The term Gi(,,Yj()) is by definition (see 

(31)) a definite integral of a function with 

an integrable singularity over an interval of 

zero length, hence it equals zero for any 

value of . For a more detailed explanation, 

see eq. (170) of Appendix 5.4.1. Thus we 

have
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(33) 

Differentiating both sides once more yields 
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(34) 

The functions Fi”() can be expressed in 

closed form, specifically F1”()=0 and 

F2”()=8I3/2. Thus, the unknowns Yj’() 

can be expressed explicitly from (34) as 
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where Y and Y’ are column vectors 

composed of the functions Yj and Yj
’; A and 

C are 2 by 2 matrices with elements 
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(36) 
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 (37) 

In the sequel, the matrices A and C will be 

examined thoroughly in order to uncover 

important properties of the solutions of the 

initial value problem (35). 

2.5.5  Solutions of the integro-
differential equation 

A The existence and uniqueness of 
solutions  

Solid spheres of any radius S are neutrally 

floating objects. They correspond to 

Yj()=S(-1)j+1. We deduce implicitly that 
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this function satisfies the initial value 

problem (35) for a()=b()0 with initial 

conditions Yj(0)=b(0). We refer to the 

corresponding equations and solutions as 

well as elements of these equations as trivial 

equations, solutions, etc. In this section, we 

want to examine nontrivial solutions 

obtained by minor perturbations of the 

functions a()=0 and b()=0. 

There are some technical issues arising 

from singularities of the equations at =0. 

Every solution (including the family of 

trivial solutions) satisfies 

Yj(0)=0 (38) 

i.e. (38) does not provide us with a well-

defined initial condition. Indeed, if 0+, 

all elements A, C, and F in (24), (25) go to 

zero, which is inherited by (35). Hence, (35) 

becomes identity. This means that an initial 

condition must also include Yj
’(0). For 

example, the trivial solutions have 

Y’(0)=S[1 -1]T. To avoid difficulties 

arising from the singularity of our variables 

at =0, we narrow our focus to those 

solutions, which coincide with the trivial 

solution (a()=b()=0 and Yj()=S(-1)j+1) 

if <α1 for some positive scalar 1. It is 

demonstrated below that the problem has a 

unique solution under this restriction.  

It should also be noticed that differentiating 

an equation may introduce fake solutions. 

Specifically (35) has been obtained by 

taking the 3/2th derivative of an equation of 

the form u(,Y(),...)=0. After 

differentiation, the new equation admits 

fake solutions for which 

u(,Y(),...)=constant3/2 rather than 0. 

Nevertheless, the set of fake solutions 

correspond to water sections with moment 

of inertia I+constant-3/2, which contradicts 

any initial condition of the form 

Yj’(0)=constant. Hence all solutions of our 

initial value problem will be true solutions 

of the original equations (24), (25). 

We start the formal proof by introducing 

Lemma 2.5.2, which states that any solution 

of the perturbed equations must be close to 

the trivial solution, without examining if 

such solutions exist or not. The questions of 

existence and uniqueness are answered by 

the subsequent Lemma 2.5.3. The two 

lemmas are summarized in Theorem 2.5.4, 

which is the main result of Sec. 2.5. 

Lemma 2.5.2: for any given scalar 0<1, 

there exist positive scalars k and 0, such 

that if  

(i) a()=0, b()=0 and Yj()=(-1)j+1 for 

all 0≤≤1; and 

(ii) the absolute values of �̃�(𝛼), b(), and of 

their derivatives up to third order exist and 

are <<0 for any 11 

then any solution of equations (35) over the 

interval 1<≤1 satisfies 




kj
j ekY

1
)1()('

 
(39) 

Proof of Lemma 2.5.2:  

We arrive to (39) via proof by contradiction. 

The initial section 0<1 of Yj() satisfies 

(39) for any k by point (i) of Lemma 2.5.2. 

Let us assume now that (39) is violated no 

matter how large k is. Then there must exist 

a unique scalar 1<(k)<1 for any k such 

that (39) holds for (k) and there is 

equality in (39) for =(k) and j=1 or 2. The 

inequality condition implies the following 

bound on Yj(): 

  )(1)1()(')1()(
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kifeedkedYY

kkkj

j

j

j
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








 

(40) 

which will be used in the sequel. From this 

point, the argument k of  is dropped for 

brevity.  

If  is small enough, then (39) and (40) 

imply that  
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1) each entry of A(,Y()) is within a 

neighborhood of radius *ek of their 

trivial values, and the trivial values are 

bounded (the latter is proven in 

Appendix 5.4.1); * represents some 

finite positive scalar, which is 

independent of k. Furthermore, A() is 

non-singular, i.e. |detA| has a positive 

lower bound (see Appendix 5.4.2). The 

two results imply that A-1(,Y()) is 

also within a neighborhood of radius 

*ek of its bounded trivial value. 

2) if k>1, then the second derivative of Gi 

is within distance *ek of its bounded 

trivial value, i.e. 
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see Appendix 5.4.3 for proof. By plugging 

(39) and (41) into (37) one obtains  
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 (42) 

Hence, we conclude that each entry of 

C(,,Y(),Y’()) is within a neighborhood of 

radius *kek of its bounded trivial value. 

Eq. (35) together with the bounds of A-1 and 

C found above, imply that (39) holds if = 

with the left hand side strictly smaller than 

the right-hand side, provided that k exceeds 

some threshold that we denote by k0. This 

result contradicts the assumption that we 

have equality in (39) if =. Hence, (39) is 

true for all  if k>k0. Details of the last piece 

of calculation are omitted, but we point out 

that C is inside an integral in (35). 

Integrating its maximum deviation 

*kexp(k) from the trivial value yields 

*exp(k) maximum deviation in Y’  

Lemma 2.5.3: there exists a positive scalar 

0 such that (35) has a unique solution if (i) 

and (ii) of Lemma 2.5.2 are satisfied. 

Proof of Lemma 2.5.3: ODE’s with 

Lipschitz-continuous right-hand sides and 

given initial condition have unique 

solutions according to the Picard-Lindelöf 

theorem [42]. We present an adaptation of 

the standard proof of this result to the initial 

value problem (35).  

By introducing the function ()=Y’(), (35)-

(37) can be rewritten as 
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Assume that the solution  of (43) is known 

for 0 and satisfies (39): 
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kj
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(46) 

We aim to prove that there is a unique 

solution over an additional finite interval 

0<1. Splitting the integrals in (43) at 0 

yields 
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(47) 

The right-hand side of (47) defines a self-

map K over the space 0 of vector valued 

continuous functions () over the interval 

(0,1). 0 and the metric d induced by 

the norm 

)(max)(
,




j
j
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(48) 

form a Banach space. Let  denote the 

closed subset of 0 determined by (46). The 

arguments used in the proof of Lemma 2.5.2 

imply that for  small enough and k>k0, K 

maps  into itself. The contraction principle 

implies that if K is a contraction then it has 

a unique fixed point, corresponding to a 

unique solution of (47). Repeated 

application of the above argument yields 

global existence and uniqueness for 

11. Integrating the solution  leads to 

a unique solution Y of the original problem. 

The only remaining gap in the proof is the 

contractivity of K. A is Lipschitz in its 

second variable (cf. (173)). As A is 

nonsingular (Appendix 5.4.2), its inverse is 

also Lipschitz with some Lipschitz constant 

LinvA. Similarly, (45) and some examination 

of (176) yield that C is Lipschitz-

continuous functional of (), (0,1) 

with a Lipschitz constant LC (details 

omitted).  

Next, we consider two arbitrary elements 

(1) and (2) of the set . Then, 
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and  
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(50) 

These inequalities and the boundedness of 

all terms in the formula of K imply that 

d(K((1)),K((2)))L(-0)d((1),(2)) with 

some constant L. Hence, if -0<L-1 then K 

is contractive.  
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The statements of the two lemmas can be 

summarized as 

Theorem 2.5.4: for any given scalars 0<1 

<1 and >0, there exists a positive scalar 0 

such that (35) has a unique solution Y() if 

(i) and (ii) of Lemma 2.5.2 are satisfied. 

Furthermore, the solution satisfies Yj()=(-

1)j+1 for 0≤≤1 and |Yj()-(-1)j+1|< for 

1<1. Y() is also a valid solution of 

(24), (25). 

What follows in the next subsection is the 

demonstration that the solution whose 

existence has just been proven generates a 

ρ-simple object. 

B Characterization of acceptable solutions 

The water envelopes a() and b() together 

with a pair of function Yj() over the interval 

0≤≤1 determine the ‘upper’ (j=1) and the 

’lower’ (j=2) half of a unique curve in the x-

y plane. The coordinates (x,y,z) of a point 

Pj() of the curve are x=(-1)j+1X(,Yj()); 

y=Yj(); z=0. Rotation of this curve about 

the y axis generates a unique object with 

cylindrical symmetry. Below we state a 

sufficient condition under which the object 

is ρ-simple. This condition is satisfied by 

the nontrivial solutions predicted by 

Theorem 2.5.4.  

Lemma 2.5.5 If 10  anyfor  
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(52) 

then the object is a ρ-simple topological 

ball.  

Proof of Lemma 2.5.5:  

The condition of the lemma implies that one 

can draw a square of size 22 about the 

origin of the x-y plane such that the water 

envelope is inside the square while the 

contour curve is outside (Fig. 35). Outside 

the square, the upper-right quarter of the x-

y plane is covered with the non-intersecting 

tangent lines L() of E, each containing a 

point P1() of the generating curve. The 

lower-right quarter contains the points P2() 

each one lying on the mirror images of lines 

L() about the y axis. Thus, all points Pj() 

for <1 are in the right half-plane, separated 

from the y axis. Furthermore, two points of 

the contour curve corresponding to different 

values of  or different values of j, lie on 

different lines, hence they may not coincide. 

Altogether we have found that the contour 

curve does not touch the y axis (except at 

the endpoints: =1), and it is not self-

intersecting (or self-touching). Rotating 

such curves generates topological balls. 

Due to the cylindrical symmetry of the 

object, being ρ-simple is equivalent of 

requiring that the intersection of L() with 

the object (from here on: L*()) is a 

connected line segment for every  (rather 

than the union of multiple segments). L*(0) 

is connected, hence, the object is ρ-simple 

iff by varying , the topology of L*() does 

not change. A topological change of L* 

occurs at  if the contour curve touches L() 

at P1() or the mirror image of L() at P2() 

without crossing the line. Nevertheless this 

situation is impossible because, as already 

 

 

Fig. 35. Illustration of Lemma 2.5.5: if the 

water envelope is inside the grey square, and 

the contour curve is outside, then the object is 

a ρ-simple topological ball. 
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mentioned, the points Pj() lie on the lines 

L() and their mirror images, which are free 

of intersections outside the square. 

2.5.6  Numerical examples 
A convenient way to find a suitable water 

envelope is to pick a C1 function () with 

a bounded but possibly discontinuous 

second derivative representing the signed 

radius of curvature of the water envelope at 

tangent angle . Then, 

A
cdA  



2/

cos)()(



  
(53)  

 









2/

sin)()( BcdB

 

(54)  

The symmetry of the problem dictates some 

constraints 

A: A(/2)=0, hence cA=0;  

B: variations of cB result in translated 

copies of the same envelope, i.e. we 

can choose cB=0. 

C: A(0)=0, which means that (53) 

provides a constraint for () 

D: () is -periodic and even; 

E: (-/2) is odd, implying (/2)=0.  

In the variables  and , (53) and (54) 

become 



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1
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(55)  
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(56)  

The arcsin function has a square-root 

singularity at =1. According to 

observation E, (arcsin)constant(/2-

)1/2 near =1. This singularity is cancelled 

by a (/2-)-1/2 term in (56), thus b()  

becomes C2 with a bounded third 

derivative. At the same time, 

a()constant(1-2)3/2 near =1, which 

means that a() is singular at =1, but the 

related function )(
~

a  (see (23)) has a 

bounded third derivative. The smoothness 

of b and a
~

mean that any function () 

multiplied by a sufficiently small constant 

meets condition (ii) of Lemma 2.5.2. 

Next we present two examples fulfilling the 

above requirements: 

  ...3,2,1)12(cos)(  nnc  
(57)  
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Fig. 36. Numerically determined contour curves and water envelopes of some neutrally floating shapes 

with cylindrical symmetry. A: water envelope (58) with c=0.5; B-D: water envelope (57) with n=1,2,3 

and c=0.5; 0.5;0.4. In all cases, Y1’(0)=-Y2’(0)=1. 
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where c is an arbitrary constant; the number 

85/84 is determined by Observation C. The 

second example obeys condition (i) of the 

lemma, hence this envelope generates a 

nontrivial solution by Theorem 2.5.4 if its 

unspecified constant is small enough, see 

also Fig. 36.A. 

The first example does not meet condition 

(i) nevertheless the solution appears to exist 

and to be unique in this case, too (Fig. 36.B-

D, Fig. 37). Indeed, condition (i) is probably 

unnecessary for Lemma 2.5.2, but it 

simplifies the proof outlined in Appendix 

5.4.3. Additionally, condition (i) has a 

central role in the proof of Lemma 2.5.2. 

Nevertheless, existence (and uniqueness) of 

the solution might be provable with a 

different approach without condition (i). 

2.5.7  Related works 
In Sec. 2.5, we presented a proof of 

existence of neutrally floating, simple 

objects of density 1/2 (other than the sphere) 

in three dimensions. We also constructed 

examples among bodies with cylindrical 

symmetry. Our study leaves many open 

questions, including the necessity of 

condition (i) in Theorem 2.5.4, or the 

existence of solutions for densities other 

than 1/2. 

The present discussion of the Floating Body 

Problem concentrates on gravitational (and 

buoyancy) forces, and excludes any other 

forces acting on the object. A different 

approach has been taken by R. Finn and 

coworkers [63] [62], see also [77] [134], 

who studied particles floating in gravity-

free environment under the effect of 

capillary forces. In this approach, the 

contact angle of the object and the liquid is 

a free parameter analogous to density in the 

presence of gravity. The two-dimensional 

capillary floating problem admits nontrivial 

solutions similarly to the Archimedean 

version, see [76] for more background. In 

three dimensions, only a special 

nonexistence result has been published: 

spheres are the only objects, which can float 

in any orientation in such a way that the 

capillary forces generate a perfectly flat 

liquid surface around the object. In most 

cases, a macroscopically flat liquid surface 

typically becomes distorted in a small 

neighborhood of a floating object to 

minimize the surface energy of the solid 

liquid and air-liquid interfaces. This more 

general situation seems to be unexplored. 

While gravity-free floating may appear as 

an unusual setting at first sight, it is 

physically as relevant as the Archimedean 

approach. Physical systems under terrestrial 

conditions are inevitably subject to both 

gravity and capillary forces. The relative 

strengths of the two forces are determined 

by the dimensionless Eötvös- (or Bond-) 

number of the system. Small-scale objects 

have low Eötvös numbers (indicating the 

dominance of capillary effects), whereas 

upscaling an object increases the Eötvös 

number. For example, the Eötvös number of 

a ball of density ½ and radius r floating in 

water is approximately (r/4mm)2. Thus, the 

dominance of each of the two effects can be 

realized in a physical experiment. 

Additionally, there exists a generalized – 

 

Fig. 37. Three-dimensional models of the neutrally 

floating object depicted in Fig. 36.A-B 
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and completely unexplored – version of 

Ulam’s problem, which seeks neutrally 

floating objects under combined influence 

of gravity and surface tension for given 

density, contact angle and Eötvös number. 

There are many other intriguing problems 

related to the equilibria of floating objects, 

some of which are discussed in paper [167] 

of the author. These include for example the 

existence of monostatic and neutral 

behavior for objects, which are floating 

while pinned at their center of gravity; and 

the balance points of hollows shapes on 

horizontal ground partially filled with a 

liquid. Indeed all problems tackled in 

Chapter 2 belong to a rich group of 

geometric problems, in which one seeks to 

find shapes such that an associated function 

has as few extremal points as possible (see 

for example the Four vertex theorem or the 

Tennis ball theorem) or such that an 

associate function becomes constant (as in 

the case of curves with constant width and 

surfaces of constant curvature). Many of 

these problems can be found for example in 

[130]. 
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CHAPTER 3:  

 

THE STABILITY OF EQUILIBRIA AND THE 

DYNAMICS INDUCED BY IMPACTS AND 

FRICTION

N the previous chapter, we have looked 

at various problems related to the number 

of equilibria of a rigid body. Most of 

these problems required a geometric 

approach. Now we move on to studying the 

motion of bodies near a stable equilibrium, 

motivated by various engineering 

applications, including part feeding, as well 

as robotic grasping and locomotion. The 

aim of Chapter 3 is twofold: 

 to study the stability of equilibria 

against small perturbations  

 to estimate the degree of attractivity of 

stable equilibria, i.e. the likelihood that 

the motion of an object with an 

uncertain initial state terminates in a 

given equilibrium.  

Both questions require the investigation of 

the dynamics of these systems. In Sec. 3.1, 

we review basic concepts of rigid body 

dynamics with unilateral contacts. This is 

followed by the analysis of pose statistics, 

i.e. the probability distribution of final 

resting poses of an object dropped onto the 

ground with random initial conditions. 

Similarly to Chapter 2, the support surface 

is assumed to be flat, and thus many notions 

of Chapter 2 (including equilibrium poses) 

remain in use. The method of the analysis 

remains largely geometric as we develop 

geometrically inspired phenomenological 

models of the falling motion. Nevertheless, 

the results of the analysis are benchmarked 

against predictions of a custom-made 

numerical simulation tool, which considers 

the full hybrid dynamics, including impacts.  

In Sec. 3.3, we study the static stability of 

equilibria, i.e. stability against small 

perturbing forces. These perturbations do 

not induce separation of active contacts, nor 

slippage of sticking contacts. Due to the 

simplicity of the objects’ response to the 

perturbation, we are able to assess the 

stability of multibody systems with 

arbitrary number of components and point 

contacts. The external supports of the 

system may have an arbitrary geometric 

arrangement. The lack of translational and 

rotational symmetry of the environment 

explains why we consider the stability of a 

configuration of equilibrium (rather than a 

pose or an orientation of equilibrium as in 

Chapter 2). In this setting, dry friction 

becomes a crucial ingredient, which is taken 

into account by the analysis. The basic tools 

of the analysis include  

 contact regularization: we replace rigid 

contacts with viscoelastic ones and 

consider the behavior of the system as 

the stiffness of contacts goes to infinity.  

 energetic analysis: we seek a local 

minimum of a potential energy function, 

as a sufficient condition of stability.  

In Sec. 3.4, we study the Lyapunov stability 

of equilibria, i.e. stability against arbitrary 

small state perturbations. Even though 

Lyapunov stability is a standard concept in 

dynamical systems theory, its application to 

rigid mechanical systems with contacts is 

difficult, because even an infinitesimally 

small perturbation initiates complex, 

nonlinear, and hybrid motion. The richness 

of the dynamics makes this problem similar 

I 
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to the famous n-body problems in celestial 

mechanics. The motion of two point masses 

under gravity has been understood since the 

times of Kepler and Newton. Nevertheless 

for 3 or more bodies, the system's motion 

becomes extremely complex, and it is 

subject of active research. The simplest 

example of complex behavior is the 

circular, restricted 3-body problem (the 

planar motion of a small mass in the 

gravitational field of two big masses 

orbiting along circular paths around each 

other), which is considered today an 

important model problem of celestial 

mechanics. In the field of Lyapunov 

stability analysis in the presence of 

unilateral frictional contacts, the simplest 

case is that of a single, planar, rigid body 

resting on a slope with a single contact point 

(1 body - 1 contact, or 1B1C problem). In 

response to small perturbations, this 

systems undergoes simple bouncing and 

rocking motion, which enables one to easily 

determine the condition of stability [36]. At 

the same time, the behavior of systems with 

multiple contact points is complex and 

poorly understood. The present work deals 

with the next simplest scenario: a single 

planar body with 2 supports on a flat slope 

(restricted 1B2C problem). Our results are 

based on constructing a Lyapunov-like 

function, which usually decreases during 

the motion, despite the possibility of 

temporary increase.  

3.1  NEW CONCEPTS 

3.1.1  Friction 
In Sec. 3.2, we investigate objects on a flat, 

horizontal terrain, and assume interactions 

to be frictionless for the sake of simplicity. 

Nevertheless, equilibrium on a terrain, 

which is not horizontal usually requires dry 

friction, and indeed friction is inevitably 

present in most engineering problems. 

Therefore, in Sec. 3.3 we use a general 

model of sticking friction for isolated point 

contacts. As long as a rigid contact is in 

stick state, the contact force f is determined 

from the requirement of no relative motion 

between the interacting objects, and for 

compliant contacts (see Sec. 3.1.5), f is 

determined by a contact model. The heart of 

the friction model is a continuous scalar-

valued indicator function S(f) associated 

with each contact point. S is used to 

determine if the state of the contact stays in 

stick state or not. Specifically, an active 

contact is in sticking state as long as S(f) >0 

and slips or separates if S(f) =0.  

In Sec. 3.4, we restrict our attention to 

planar systems and Coulomb friction. In the 

case of stick, the Coulomb model is 

implemented by the indicator function S(f) 

=ifz-|fx|. where fz and fx are the normal and 

tangential components of f and i is a scalar 

friction coefficient. In the case of slip, the 

Coulomb model predicts fx.=ifz such that 

the direction of the tangential component 

opposes the direction of sliding. For the 

sake of simplicity, we will assume that the 

static and dynamic coefficients of friction 

are identical. 

3.1.2  Impacts 
Impacts are inevitable parts of rigid body 

dynamics with unilateral contacts. Simple 

models of impact were developed by 

Newton and others long time ago. 

Nevertheless, a ‘rigid impact’ is a 

simplified representation of complicated 

interaction between Newtonian dynamics, 

shock-waves, viscoelastic material response 

and friction. The outcome of even a single 

impact is often very sensitive to model 
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details, and predicting it is notoriously 

difficult. This difficulty explains the variety 

of impact models used by the scientific 

community, and the failure of simple 

models to reliably predict the outcome of an 

impact [37] [152]. 

In Sec. 3.2, we focus on a 

phenomenological model of the motion, 

which does not require an impact model. 

Nevertheless, impacts are explicitly 

modelled in the numerical simulations. We 

assume frictionless impacts with a 

prescribed kinematic coefficient of 

restitution 0<e<1 In Sec. 3.3, we consider 

stability against perturbations, which do not 

cause impacts, hence no impact model is 

needed here. In Sec. 3.4 we investigate the 

effect of state perturbations, which do cause 

impacts. An impact model of single-point 

impacts by Chatterjee and Ruina is used, 

which has two restitution parameters: a 

normal coefficient of restitution e and a 

tangential coefficient of restitution et. 

Details of the model are given in Sec. 3.4. 

Simultaneous impacts are also crucial 

ingredients of rigid body dynamics. For 

example if an object slips or sticks at one 

point, while another point hits the ground, 

then simultaneous impacts occurs at the two 

points. The post-impact state is often a 

discontinuous function of the pre-impact 

state. The infinite sensitivity of 

simultaneous impacts poses a great 

challenge to modelling. In the numerical 

simulations of Sec. 3.2, an a priori modeling 

assumption is used to replace a 

simultaneous impact by a sequence of 

single-point impacts (see Appendix 5.5.2). 

The investigations of Sec. 3.4 avoid the 

need to model simultaneous impacts. All we 

need is the plausible assumption that every 

simultaneous impact absorbs some of the 

system’s kinetic energy.  

3.1.3  Contact modes 
A rigid, frictional point contact is in one of 

the states of separation (F), stick (S), and 

slip, each of which is characterized by 

different equations. In two dimensions, we 

can also distinguish between the positive 

and the negative directions of slip (P and N). 

In three dimensions, a continuous set of 

sliding directions exist, which can be 

characterized by a single discontinuous 

equation. 

In order to decide, which contact mode is 

followed by a system, one has to follow a 3-

step procedure. First, kinematically 

admissible candidates are identified using 

kinematic constraints. Then, the 

accelerations of the system are determined 

in each contact mode using additional 

equality constraints. Finally, consistency 

conditions have to be checked to decide, 

which mode yields a consistent solution. 

For example, the kinematic admissibility 

constraints of the F mode are  

 00

0





ii

i

zandzor

zeither


 (59) 

where z is the distance between the two 

interacting surfaces. The equality 

constraints are  

0
,,


zixi
ff  (60) 

where fi,x and fi,z are components of the 

contact force and the consistency condition 

is 

0then0 
iii

zzzif   (61) 

For more details, see [36]. 

3.1.4  Hybrid dynamics 
The motion of a rigid system consists of 

contact mode transitions (a source of non-

smoothness of the continuous dynamics) 

and impacts (discrete state transitions). The 

event-driven numerical simulation scheme 

of Sec. 3.2 detects all of these events and 

switches to the relevant set of equations or 

discrete mappings every time. There exist 

other methods (the so-called time-stepping 
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schemes), which do not require event 

detection [152]. 

A peculiar property of rigid contact 

dynamics is that infinitely many impact 

events may occur in a finite time window. 

Indeed forward-time accumulation points of 

impacts of exponentially decreasing 

intensity [126] [193] (sometimes referred to 

as Zeno point or complete chattering 

sequence) represent the only generic 

mechanism by which a contact switches 

from F mode to sustained contact. The 

simplest example of chattering is the motion 

of a partially elastic bouncing ball. Naïve, 

event-driven simulation schemes get stuck 

forever while approaching a Zeno point [2] 

unless they detect this situation. Our 

simulation scheme includes a detection 

algorithm (see Appendix 5.5.2 for details).  

Impacts may also accumulate backward in 

time [122], which is one of the generic 

mechanisms of transitioning to F mode 

from a sustained contact. ‘Reverse 

chattering’ is one of the two primary 

sources of instability in the sense of 

Lyapunov. (The second mechanism is 

ambiguity, which is explained in Sec. 3.1.7, 

below.) The stability conditions developed 

in Sec. 3.4 can be interpreted as sufficient 

conditions of not having reverse chattering 

dynamics. 

3.1.5  Contact regularization 
The concept of a rigid body is an 

abstraction, since every real solid undergoes 

small deformations under the effect of 

external loads. Some aspects of the 

dynamics of quasi-rigid bodies depend 

sensitively on these small deformations. For 

example, the contact forces of statically 

indeterminate structural systems may 

depend on microscopic deformations. 

Modeling dynamic phenomena associated 

with contacts such as break squeal and 

friction induced vibrations also require the 

consideration of deformations in the contact 

areas [80] [87]. The consistent contact 

modes predicted by rigid body theory may 

also be unstable, which cannot be 

uncovered without modelling contact 

dynamics [98]. Finally, and most 

importantly for us, the stability analysis of 

an equilibrium may also require the 

modelling of compliance, as we explain in 

Sec. 3.1.8. 

The deformations of a stiff body are often 

concentrated around contact points. This 

fact inspires the following modeling 

approach:  

 the bodies are assumed perfectly rigid 

 they are allowed to overlap in small 

regions around contact points 

 there are contact forces between 

overlapping bodies. The forces 

represent repulsion and friction and are 

determined by a contact law. A general 

class of contact laws will be described 

and used in Sec. 3.3.  

 the contact law has a positive 

compliance parameter ε. Larger values 

of ε correspond to a softer contact. The 

limit ε0 corresponds to a quasi-rigid 

system hence it is of special interest.  

3.1.6  Painlevé’s paradox 
In Sec. 3.1.3, we briefly reviewed the 

identification of the instantaneous contact 

mode of a system using inequality and 

equality constraints. Such an implicit 

formulation of the governing equations may 

suffer from non-existence and non-

uniqueness. It can be proven using linear 

complementarity theory that there is always 

a unique consistent contact mode in the case 

of frictionless interactions, nevertheless this 

is not the case in the presence of dry 

friction. It was discovered in the late 19th 

century that several contact modes may be 

consistent simultaneously, or there may be 

no consistent mode at all [131] [129] [127]. 

These phenomena, which became known as 

Painlevé’s paradoxes represent a major 

restriction of rigid models. Identifying 

systems prone to the paradoxes and 

predicting their behavior are subject to 

ongoing research today [36]. Non-existence 
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is resolvable in simple systems by 

considering grazing impacts i.e. impacts 

where the pre-impact normal velocity of the 

contact point is 0. Nevertheless, non-

uniqueness has no resolution within the 

framework of rigid body mechanics. 

The Painlevé paradoxes are present in the 

problem investigated in Sec. 3.4. One of the 

strengths of our approach is its robustness in 

the presence of Painlevé paradoxes: our 

Lyapunov-like function shows a desired 

from of behavior along all possible solution 

trajectories, hence it is not necessary to 

make a choice between solution 

alternatives. 

3.1.7  Ambiguous equilibria 
’Ambiguous equilibria’ are important 

examples of solution indeterminacy. In this 

case, the static equilibrium is a consistent 

solution of the equations of motion, but it 

coexists with consistent accelerating motion 

departing from the same immobile initial 

state (Fig. 38). [131] [152] [104] [10] [75]. 

Ambiguity is an important phenomenon in 

robotics, because it often occurs if an object 

is grasped or if a robot moves over a 

complex terrain in the presence of friction 

[75]. The presence of ambiguity is generally 

considered an indicator of instability [131].  

In Sec. 3.3 we perform a stability analysis 

of equilibria. One of the main results of the 

analysis is that even ambiguous ones may 

be stable in a certain sense, defined in Sec. 

3.1.8. These results suggest that ambiguous 

equilibria may be acceptable in some 

applications, among which we discuss 

robotic grasping in more depth. 

Nevertheless, we will also see in Sec. 3.4 

that ambiguity implies instability in the 

sense of Lyapunov [128] (for definition, see 

Sec. 3.1.8). Practically, this result means 

that ambiguous equilibria do not resist 

significant vibrations and similar dynamic 

perturbations.  

3.1.8  Criteria of stable 
equilibrium 

Rigid multi-body systems with unilateral 

point contacts are used as models in various 

fields of mechanical engineering and 

robotics including for example object 

manipulation, grasping, fixturing, and 

locomotion. The question of stability is a 

central issue in most applications. Various 

criteria are used in the engineering 

community to evaluate static configurations 

of mechanical systems. A large body of 

work has been devoted to clarifying the 

relation of these properties to each other and 

 

Fig. 38. Four examples of ambiguous 

equilibrium. A: a block between two planes; B: 

a two-element open kinematic chain between 

two planes; C: a rigid body resembling a person 

with a heavy backpack resting on a step-shaped 

terrain [137]. D: a 2-wheeled planar robot on a 

slope with one wheel freely rotating and the 

other one blocked.  The objects are subject to 

their own weights and contact forces, both 

denoted by solid arrows. The non-static 

solutions (arrows and dotted lines representing 

forces and displacements, respectively) are 

shown on the left side, and the static equilibria 

are illustrated on the right side. A is force-

closed, however the other 3 are not. B and D are 

statically determinate, whereas A and C are 

indeterminate. 
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to standard notions of stability in dynamical 

systems theory. 

Most conditions of ’safety’ or ’stability’ can 

be classified into one of the following three 

groups: 

- conditions, which are easy to check but 

do not have a clear implication with 

respect to the dynamic behavior of the 

system. 

- conditions which are difficult to check, 

but they ensure a well-defined dynamic 

behavior. 

- conditions, which are easy to check and 

have clear implications, but they are 

very restrictive. 

To start with the first group, the traditional 

method of engineers is to look for frictional 

equilibria, for which given external forces 

can be balanced by contact forces consistent 

with the contact and friction laws [78] [32]. 

The interpretation of this concept as a 

stability condition is supported by the 

nature of dry friction. If an object with 2 

contacts in 2D or 3 not collinear contacts 

in 3D is balanced by non-zero contact forces 

and frictional forces in the interior the 

friction cone (i.e. with strictly positive 

indicator function S), then infinitesimally 

small perturbing external forces can always 

be balanced by the adaptation of the contact 

forces. While this approach works perfectly 

in some simple cases (such as robotic 

walking on a horizontal terrain), it does not 

account for ambiguous equilibria, for which 

rigid body theory fails to give a well-

defined prediction. This observation 

inspired the authors of [131] to propose 

unambiguity, also called strong stability 

(STRS) as a criterion of safe equilibria (Fig. 

38). Unfortunately, they have not explored 

the implications of unambiguity from the 

point of view of dynamical systems theory. 

Force closure and wrench resistance [125] 

[119] are also popular criteria in the context 

of grasps. These are satisfied, if arbitrary 

external wrench (force and torque) can be 

balanced by appropriately chosen contact 

forces (within the bounds of the friction 

model). Even though it may sound very 

restrictive, its relation to other notions is not 

completely understood. For example Fig. 

38.A shows a system possessing force 

closure without STRS.  

For criteria introduced so far, it is unclear, 

which set of perturbation they are stable 

against (if any), and how they respond to 

these perturbation. These important 

questions are addressed by standard notions 

of dynamical systems theory such as 

asymptotic stability (AS) and Lyapunov 

stability (LS) [3]. Frictional equilibria 

rarely posses AS because they have 

continuous sets of equilibrium, and they 

tend to move to a nearby point within the set 

when responding to perturbations. 

Nevertheless LS is an important tool. Let 

|…| denote an arbitrary vector norm and let 

q(t) be the state vector of a dynamical 

system. In the case of a mechanical system, 

q consists of generalized coordinates and 

velocities. Then, 

Definition 3.1.1 An invariant point q0 of the 

dynamical system exhibits Lyapunov 

stability (LS) if for any >0 there exists >0 

such that |q(0)-q0|< implies |q(t)-q0|< 

for all t>0. 

LS implies STRS [128] because a small 

perturbation of an ambiguous equilibrium 

may result in divergent motion in that non-

static contact mode, which is consistent 

together with equilibrium. Nevertheless, LS 

is more restrictive than STRS because an 

infinitesimal perturbation in state space 

may also induce loss of stability via reverse 

chattering in the presence of STRS. A 

slightly modified version of LS (called 

finite time Lyapunov stability, and defined 

as LS plus the additional requirement that 

perturbed trajectories converge to nearby 

equilibria) has been proposed [135] [128] 

[126] as a stability criterion for quasi-static 

robots.  

The major drawback of LS in the context of 

equilibria of rigid bodies with unilateral 

contacts is the difficulty of assessment due 

to their complex dynamic behavior when an 
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equilibrium state is perturbed and contacts 

separate [152] [128] [126] [122] [171]. The 

work [126] was the first to investigate the 

model problem of a planar rigid body with 

2 point contacts and those authors 

developed sufficient stability conditions. 

Our work in Sec. 3.4 will also address this 

model problem. Jen et al. [93] examined the 

Lyapunov stability of grasps, however they 

assume idealized finger control, which 

always prevents contact separation. Leine 

and van de Wouw [100] studied dynamic 

stability of continuous equilibrium sets, 

which is fundamentally different from the 

stability analysis of individual points within 

a set. The Lyapunov stability analysis of 

limit cycles [88] also requires different (and 

usually simpler) tools.  

The third group of criteria in the robotics 

literature, includes frictionless equilibrium, 

which ensures LS in the presence of some 

friction [135]. Form closure [121],[20] 

(also called first-order immobility) and 

second-order immobility [162],[138], imply 

immobility solely by kinematic constraints 

[136]. The weakness of this third group of 

criteria is their limited applicability. For 

example, they are never satisfied by an 

object resting on a slope, as in the problem 

of Sec. 3.4  

A different strategy of avoiding the 

difficulties associated with non-smooth and 

hybrid systems to take into account 

deformations of the components for 

example via contact regularization. 

Compliant systems exhibit smoother 

behavior, and they can be investigated by 

using the theory of smooth dynamical 

systems. In the context of grasping, it is 

common practice to treat local minimum 

points of a potential energy function as safe 

[120]. We choose this approach in Sec. 3.2 

by investigating stability according to 

Definition 3.1.2: a rigid equilibrium 

configuration possesses static stability 

(STAS) if it is the 0 limit of a local 

minimum point of the potential energy 

function where  is the compliance 

parameter of the regularized contact model.  

This property has well-defined dynamic 

consequences, similarly to the AS and LS. 

The significance of static stability from the 

point of view of dynamical systems theory 

is briefly discussed in Appendix 5.6, where 

we show that systems with static stability 

stay in a close neighborhood of their initial 

configuration in response to small 

variations of the external loads.

3.2  PHENOMENOLOGICAL MODELING OF MOTION AND 
POSE STATISTICS 

In Sec. 2.4, we have reviewed common 

methods of industrial part feeding. It has 

been pointed out that the first step of part 

feeding is to drop objects onto a horizontal 

surface where they settle in one of their 

stable poses. The initial “pose selection” is 

followed by further steps of manipulation to 

achieve complete orientational ordering. 

The majority of the orienting devices can 

only rotate parts about a vertical axis [147], 

but they cannot change their initial poses. 

Those parts, which are initially in a wrong 

pose, must be filtered out. Hence, the 

efficiency and the throughput of a feeder 

depends heavily on the probability of 

coming to rest in the pose preferred by the 

feeder.  

This fact motivates investigations of the 

problem of ‘pose statistics’: given an object 
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with multiple stable poses, find the 

probabilities of coming to rest in each of the 

poses after being dropped from a 

considerable height with uncertain initial 

conditions. In Sec. 3.2, we address this 

problem in the following steps: in Sec. 

3.2.1, we review and compare possibile 

methods to investigate pose statistics, and 

introduce the approach used in this work. In 

Sec. 3.2.2, we review existing estimators of 

pose statistics and propose several new 

ones. The estimators are evaluated and the 

most accurate ones are identified. In Sec. 

3.2.3, we investigate the robustness of pose 

statistics against modelling assumptions, 

which is a crucial hypothesis when simple 

estimators are to be applied. Finally, open 

questions are discussed in Sec. 3.2.4. 

3.2.1  Background 

A Methods of obtaining part pose statistics 

There are two straightforward approaches 

to obtain the pose statistics of an individual 

object: repeated physical experiments 

[158], and direct computer simulations [15] 

[157], [148], [163]. Experiments require the 

part to be manufactured as well as costly or 

tedious data processing. Computer 

simulation is much simpler, but generating 

a statistically reliable amount of pose 

statistics data by simulation is too slow for 

certain applications. Fast methods can be 

applied in computer-aided design software 

to provide the user with real-time feedback 

about the list of stable poses and the 

associated resting probabilities, while a part 

is being designed; they also facilitate the 

automated optimization of part shape 

through a large number of iterative steps. 

This demand inspired the development of 

simple estimators [25], [71], [187], [26], 

[116], [117], [40], [99], which provide 

approximate pose statistics with low 

computational cost.  

The downside of the estimators is their 

unknown reliability. Several studies have 

compared their predictions with 

experiments or simulations [25], [26], [71], 

[118], [162] and relatively low error rates 

have been reported. However, none of them 

has been benchmarked against more than a 

few specific objects or a restrictive class of 

shapes (e.g. square prisms). We attempt to 

fill this gap by  

1. producing a benchmark dataset of pose 

statistics via the numerical simulation of 

random polyhedral objects (see points 

B,C below),  

2. testing five existing estimators against 

data, and  

3. proposing 3 new estimators. 

Next, we discuss the challenge of obtaining 

a high-quality benchmark dataset.  

B Benchmarking the estimators 

Comparing and evaluating estimators 

requires a benchmark dataset. Both 

simulated and experimental datasets should 

be treated with caution because the 

difficulty of modeling impacts and friction 

[148]. The trajectory of an object falling 

onto a surface includes many impacts and 

the outcome of every single one depends on 

object shapes, sizes, materials, surface 

types, and initial conditions in a highly 

nontrivial way (see Sec. 3.1). Ideally, an 

experimental benchmark dataset should 

cover all possible combinations of these 

factors. At the same time, all these details 

should be known about the system for 

which the estimation is made. Similarly, the 

impact and friction models embedded in a 

simulation code should reflect all these 

factors. These requirements are unrealistic, 

i.e. from the point of view of accuracy, 

neither experiments nor simulations are 

satisfying.  

Despite the sensitivity of an object’s 

trajectory to the outcome of individual 

impacts, several researchers suggest that 

pose statistics are relatively robust against 

the variation of such factors. The deviation 

of simulated statistics from experiments for 

a small set of objects is below 3% [71]; the 

effect of the quality of the support surface is 
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also moderate (see [25], [26], [118] and Fig. 

39). An attempt to rigorously prove the 

robustness of pose statistics is beyond the 

scope of this work, but more evidence for 

this observation will be presented in Sec. 

3.2.3. 

Motivated by the possibility to examine a 

large variety of object shapes, we use a 

simulated dataset as reference.  

C The simulated dataset 

The simulated objects are convex, 

traingular polyhedra. This is acceptable 

because the surface of any object can be 

approximated by a polyhedron; a concave 

object shows the same behavior as its 

convex hull (see Sec. 2.1); and a non-

triangular face can be divided to triangles. 

1057 random polyhedra have been 

generated with N=6665 stable poses 

altogether. The approximate values of the 

probabilities associated with each pose have 

been determined by simulating n=100 drop 

tests for each object (hence each probability 

is an integer multiple of 1/100). This 

procedure has been repeated three times, 

with three distinct values (0.2; 0.5; and 0.8) 

of the normal coefficient of restitution. The 

probabilities are collected in three vectors: 

s0.2=[s1,0.2, s2,0.2, …, sN,0.2], s0.5=[s1,0.5, s2,0.5, 

…, sN,0.5] and s0.8=[s1,0.8, s2,0.8, …, sN,0.8], 

whereas the vector of all 3N probabilities is 

denoted by s. The comparison of s0.2 and s0.8 

sheds light on the effect of parameter  on 

pose statistics, and the whole dataset s is 

used to evaluate and to fit the estimators of 

pose statistics. 

For the sake of simplicity, 

interactions between the 

objects and the underlying 

surface are modeled as 

perfectly frictionless. This 

simplification is supported 

by the above discussed 

robustness of pose statistics.  

More detailed descriptions 

of the object generation and 

of the numerical solver are 

presented in Appendix 

5.5.1. 

D Measuring the 
quality of an estimator  

To evaluate the estimators, 

the set s of simulated 

probabilities is compared 

with the predictions 

e=[e1,e2,…e3N] of an 

estimator and with the 

unknown exact probabilities 

p=[p1,p2,…p3N]. The 

distinction between p and s 

is necessary because of the 

relatively low number 

(n=100) drop tests 

performed with each 

 

Fig. 39. Comparison of various predictions and measurements of the 

pose statistics of square prisms. The four sides of the prisms are 

treated as identical, similarly to the two bases. The diagrams show the 

probabilities of landing on the sides. Continuous curves show the 

predictions of various estimators. Diamonds with error bars are 

simulation results with the model of this paper and their 95% 

confidence intervals. Squares and circles indicate experimental 

results of  [26] and [118]. Each point is based on 500 or more trials.  

See Sec. 3.2.3 for details 
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specimen. Mathematically speaking, the 

elements of s are random numbers drawn 

from binomial distributions with n trials and 

probability parameters p1, p2,…p3N. 

Let σ denote the root mean square deviation 

of two datasets (α, b) of equal size N: 

 





N

j

jj

def

N

1

212
),(  βα  (62) 

The deviation of e and s is caused partly by 

the finiteness of n and partly by the 

imperfectness of the estimator. The two 

components can be partitioned as 
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where ),( pe  measures the error of the 

estimator; ),( sp  represents noise in the 

simulation results due to the finiteness of n, 

and the last term C is the covariance of the 

two errors.  

The value of ),( sp  can be estimated using 

the formula of the variance of binomially 

distributed random variables: 

  





N

j

jj
ppnN

3

1

112
)1(3),( sp  (64) 

The equality marked by ‘≈’ is approximate 

due to the finiteness of N (though the error 

terms are neglected as N is much larger than 

n). As a further approximation, the 

unknown values pj in (64) are replaced by 

the known values sj, yielding 

0327.0),(
2

sp .  

The term C in (63) is much smaller than 

),(
2

sp  unless the estimator is overfitted 

to the noisy observations. Extreme 

overfitting, i.e. ej=sj would yield 

),(2=C
2

sp . Some estimators 

examined in this work are based on physical 

intuition rather than on curve fitting; others 

have a small set of parameters fitted to a 

relatively large set of data. Hence, 

overfitting can be excluded, and C is 

negligible. Thus the error of the estimator 

can be approximated by  

 
2/122

0327.0),(),(  sepe   (65) 

This quantity is used to compare and to 

evaluate the estimators.  

If p was known, a graphical illustration of 

the partitioned noise term ),( sp could be 

obtained by drawing random numbers r1, 

r2,…r3N from binomial distributions with 

n=100 trials and probability parameters p1, 

p2,…p3N; and by plotting them against the 

probability parameters. Unfortunately, p is 

unknown, but one can use the 

approximations s as input instead. The (ri, 

si) points are off-diagonal (Fig. 40) due to 

the finiteness of n. Later, several plots of 

estimated vs. simulated results will be 

shown (Fig. 41). The points in these plots 

are even more off-diagonal due to estimator 

errors. Fig. 40 can be interpreted as the plot 

 

Fig. 40. Illustration of the noise caused by the 

finiteness of n (see main text for explanation)  
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of a ‘perfect estimator’, which predicts p 

without any error. 

3.2.2  Estimators of pose 
statistics  

Now we proceed with an overview of 

existing estimators, and with the 

development of three new ones. Every 

estimator is evaluated against the 

benchmark dataset. We also discuss outlier 

cases, i.e. situations where simple 

estimators show a bad performance. 

A Existing estimators 

In one of the first papers on pose statistics, 

Boothroyd [25] proposed an estimator 

based on the extension and the depth of the 

potential energy valleys associated with the 

stable poses of an object (energy barrier 

method). The definition of the ‘energy 

barrier’ was given originally only for 

cylinders and square prisms. As it is not  

clear how to extend it to an arbitrary shape, 

this concept is not examined here.  

Another early work on the topic [26] 

hypothesized that the probability of resting 

on a facet of the polyhedron is roughly 

proportional to the centroid solid angle i 

of the facet from the center of mass. This is 

motivated by the fact that in a uniformly 

distributed random pose, the probability 

that the centroid is above facet i would be 

i/4.  

The solid angle of a surface embedded in 

3D space from a point O is the area of the 

central projection of the surface to a unit 

sphere SO centered at O. There are closed 

formulas for the solid angle of a spatial 

triangle [165], which can be used to find the 

centroid solid angles of a facet of the 

polyhedron. 

As we have seen in Chapter 2 resting on a 

facet is not necessarily an equilibrium, 

nevertheless this estimator assigns positive 

probability to every facet. This can be 

corrected by assuming that the probabilities 

 

Fig. 41. Comparison of pose statistics estimators. Each plot corresponds to an estimator discussed in the thesis. Each 

individual dot in the plots shows the probability of coming to rest in a specific stable pose of a random polyhedron based 

on 100 simulations (vertical coordinate) vs. the prediction of the same probability provided by the estimator (horizontal 

coordinate). Points close to the main diagonal are indicators of a better estimator. Nevertheless, deviations from the 

main diagonal are caused partly by other factors (Fig. 40, Sec. 3.2.1.D). The solid curve in panel C is a parametric 

function fitted to the data points, which is used in Sec. 3.2.2.B 
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associated with non-equilibrium facets are 

0, and those of stable facets are proportional 

to their centroid solid angles: 

 

facetsstable

jii
e /  

(66) 

This is referred to as centroid solid angle 

estimator or CSAE. A diagram of the CSAE 

analogous to Fig. 40 is plotted in Fig. 41.A. 

The latter point-cloud occupies a wide 

region around the main diagonal, which 

indicates a significant estimator error. The 

error of the CSAE calculated by (65) is 

0.085. The surface areas of facets can also 

be used as part pose estimator in a similar 

manner [116]. This estimator yields similar  

results to the CSAE with higher error 

(0.112). 

References [116], [117], and other works of 

the same authors investigate the hypothesis 

that the probability of landing on a stable 

facet is proportional to the ratio i/di where 

di is the distance of the facet from the center 

of mass (angle-distance ratio estimator or 

ADRE). The estimated probabilities are 

obtained by a formula analogous to (66). 

The error of the ADRE is 0.078, i.e. it is 

slightly better than the CSAE (Fig. 41.B)  

In [187], the CSAE is complemented by a 

physically inspired algorithm to distribute 

the probabilities associated with unstable 

facets among stable ones. The CSAE is used 

in [187] to estimate the initial probability of 

landing on a given facet as the object is 

dropped. If resting on the initial facet is not 

an equilibrium pose, the object is assumed 

to topple over one of its three edges to an 

adjacent facet quasi-statically. The toppling 

continues until a stable facet is reached. A 

simple physically inspired rule is chosen to 

determine, which way the polyhedron 

topples. This model of toppling motion can 

be represented by an acyclic directed 

‘toppling graph’ (its vertices correspond to 

facets of the polyhedron, and its edges 

indicate the directions of toppling), on 

which the state of the object evolves. The 

initial probability distribution predicted by 

the CSAE is propagated along the graph 

towards stable states to obtain the quasi-

static estimator (QSE, Fig. 41.C), which has 

a lower error (0.070) than the CSAE.  

By examining the experimental pose 

statistics of a few objects, several authors 

have noticed that the previously described 

estimators tend to underestimate the 

probabilities associated with large facets 

and overestimate the likelihood of landing 

on smaller ones. This tendency – also 

reflected by the nonlinear trends of the point 

clouds in Fig. 41.A-C – was attributed by 

[71] to the fact that an object resting on a 

small facet is much more sensitive to 

perturbations than one resting on a large 

facet. To address this issue, the QSE was 

modified in the following way [71]: the 

initial probabilities (coming from CSAE) 

were redistributed between each pair of 

adjacent facets according to a simple 

phenomenological rule that increased the 

initial probability associated with large 

facets. The modified initial probabilities 

were propagated down the toppling graph 

(as in the case of the QSE) to obtain the 

predictions of the perturbed quasi-static 

estimator (PQSE). The PQSE was tested 

against experiments and simulations with 

three specific objects. It was found to 

outperform the QSE, indeed its 

performance was comparable to that of 

direct numerical simulations. When applied 

to our set of random objects, this estimator 

assigns negative initial probabilities to 

some small facets, which is meaningless. In 

such situations, we reduce the amount of 

redistribution to keep the initial 

probabilities nonnegative. The predictions 

of the PQSE (Fig. 41.D) lack the nonlinear 

trend of the CSAE however the estimator 

error remains roughly the same (0.072). 

B Improving the performance of estimators 
by nonlinear fitting 

Inspired by the initial observations of [71], 

we examine a purely mathematical method 

to avoid the overestimation of probabilities 
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associated with small faces. The results ej of 

the QSE estimator are used as basis. The 

parametric nonlinear function  

 3
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210
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xcxcxccxxx

xf




 (67) 

is fitted to the points of Fig. 41.C to 

minimize the variance )),((
2

sef . The 

fitted values are c0=-0.874; c1=8.03; c2=-

16.3; c3=7.70. It is hypothesized that the 

probabilities of landing on various faces of 

a polyhedron are proportional to f(ej), 

leading to a formula similar to (66). The 

error of the new ‘nonlinear quasi-static 

estimator’ (NQSE) is significantly lower 

(0.062) than any of the previous ones (Fig. 

41.E).  

C EAE: a new estimator  

The philosophy behind the QSE estimator 

and its variants was to get rid of complex 

dynamics by considering a highly damped, 

quasi-static model of the moving object, 

and to derive estimations from the ‘tamed’ 

model. The new estimator presented here 

attempts to capture the statistical properties 

of the complex dynamics instead of 

neglecting it. The main idea of the estimator 

is illustrated by Fig. 42. 

Let E(t)=U(t)+K(t) denote the total 

mechanical energy, the potential energy, 

and the kinetic energy of the object as 

functions of time. The reference level of the 

potential energy is the supporting surface. 

The object may not penetrate into the 

surface, yielding U(t)mgR(u(t)) where u is 

a unit vector representing a pose and R is the 

support function (as defined in Sec. 2.1). At 

the same time, K(t) is nonnegative. These 

inequalities imply  

R(u(t)) E(t) / (mg) (68) 

i.e. those poses for which R(u) exceeds a 

certain threshold, are not reachable by the 

object. The initial mechanical energy of the 

object is enough to make every pose 

reachable. However its motion is 

accompanied by energy absorption, which 

is assumed to happen either continuously or 

through small steps. The set of reachable 

poses shrinks gradually (Fig. 43). The 

topological changes of the reachable set 

have been investigated thoroughly in [94]. 

The next paragraph gives a brief description 

of these results. The function R has s local 

minima corresponding to the stable poses. 

Accordingly, there are s-1 energy levels at 

which the number of disconnected 

components of the reachable set increases 

by one. The splitting events occur at saddle 

points of the function R(u) (but not 

necessarily all saddles are involved in 

splitting events, see top panels of Fig. 43. 

The fragmentation of the reachable set can 

be described by a ‘splitting graph’ (Fig. 

42.C) in which rectangular nodes represent 
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Fig. 42.A: front (left) and rear (right) view of one 

of the polyhedra used in the simulation. Resting on 

any of the 5 enumerated faces corresponds to a 

stable pose. B: the stable poses of the polyhedron 

C: the splitting graph of the polyhedron with 

transition probabilities. There are four critical 

energy levels, at which the reachable set splits. 

According to (68), the critical energy levels are 

those at which a saddle point of the function R(u) 

leaves the reachable set. Circles represent the 

potential energy levels at which a component of the 

reachable set disappears.  
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connected components of the reachable set 

at various energy levels. Each node is 

labelled by the list of stable poses contained 

by that component. Pairs of edges represent 

splitting events, and their positions show 

the corresponding energy levels. Those 

energy levels, at which a component 

disappears, are marked by circle-shaped 

nodes at the bottom of the graph; however 

these values are not used by the estimator.  

The mechanical energy and the actual pose 

of the object together determine a node of 

the splitting graph. This node is referred to 

as the discrete state of the object. During its 

motion, the discrete state of the object 

changes from time to time. The Energy 

absorption estimator (EAE) is based on a 

phenomenological description of this 

process. A Markov chain is considered on 

the graph. The transition probabilities are 

assumed to depend on geometric properties 

of the examined object. Specifically, if a 

component Γi of the reachable set splits to 

two parts (Γia, Γib) at some energy level E*, 

the transition probabilities πia, πib are 

assumed to be proportional to the centroid 

solid angle of the two components at energy 

level E*: 
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An algorithm to identify the connected 

components of the reachable set at the 

energy levels corresponding to saddles of 

R(u) is outlined in [94]. The complexity of 

this algorithm is linear in the number of 

vertices of the polyhedron. In the current 

work, I use a different algorithm, which is 

described in Appendix 5.5.2 and in [168]. 

The centroid solid angles 
ia

 , 
ib

  can be 

determined in a straightforward way due to 

the facts that level curves of R are composed 

of circular arcs (Fig. 43) and that there are 

closed formulas for the solid angles of a 

triangle [165] and of a circular sector with 

center C, provided that the plane of the 

sector is perpendicular to OC [107].  

Initially, the object’s discrete state 

corresponds to the node at the top of the 

graph with probability 1. Eq. (69) is used to 

calculate the likelihood of reaching each 

other discrete state. Among these, the 

probabilities associated with the absorbing 

states at the bottom of the tree (each 

corresponding to one stable pose) are the 

predictions of the EAE estimator.  

The error of the estimator is 0.068. In 

comparison with previous results, this error 

level is not very impressive. Nevertheless, 

much better results are obtained if the 

support function R is replaced by the 

distance function r (Sec. 2.1) in (68). Even 

though the author has no physical argument 

why such a modification should be 

beneficial, the error of the Modified energy 

absorption estimator (MEAE) is only 0.040 

(Fig. 41.F).  

 

Fig. 43. Front (left) and rear (right) views of the sphere 

representing the space of poses, with level curves of the 

R(u) function. The shaded areas are the set of reachable 

poses at three energy levels (dashed lines in panel C). E1 

is not critical because the reachable set remains 

connected, but E2 and E3 are critical.  
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The run time of a MATLAB-based 

implementation of the MEAE estimator is 

between 0.1 and 1.5 second depending on 

the complexity of the polyhedron. The run 

time of the EAE estimator is slightly higher. 

The code has not been optimized for speed. 

For most polyhedral objects, the 

computational complexities of the 

estimation algorithms are O(v) where v is 

the number of vertices (Appendix 5.5.2 , 

[168]). This is lower than the O(vlogv) 

complexity of finding the convex hull.  

D Combining several estimators 

The NQSE and the MEAE estimators 

capture different aspect of the dynamics. It 

is likely that improved results can be 

obtained by combining them. Specifically, 

parameter c of the convex combination 

NQSEMEAEcombined
cc eee )1(   (70) 

has been tuned to minimize ),(
2

se
combined

 . 

The error of the combined estimator with 

c=0.75 shows further reduction (0.036). 

Linear and nonlinear combinations of more 

than 2 estimators have also been examined, 

however they did not yield significantly 

better results. This is probably caused by the 

strong correlation of the 

predictions of different 

estimators.  

E Outlier cases 

Estimators produce 

exceptionally large 

errors in some cases. 

The maximum 

deviations of various 

estimators from results 

obtained by simulation 

are summarized in 

Table 3.2.1. The best 

performance is that of 

the new combined 

estimator. We also examined the 3 largest 

observed deviations of the combined 

estimator: 32.0%; 31.9%, and 29.5%. The 

finiteness of n is partly responsible for these 

outlier cases. To separate this effect, 1000 

drop tests (instead of 100) were simulated 

with those 3 particular objects that produced 

the outlier cases. The errors of the estimator 

were reduced to 20.8%, 22.5%, and 17.6%. 

This result suggests that the combined 

estimator never or extremely rarely 

produces errors significantly exceeding 

20%.  

3.2.3  Verification of the results 
It is a crucial assumption that pose statistics 

are robust against modelling errors. The 

detailed discussion of this question is 

beyond the scope of this thesis, but the 

plausibility of the assumption is illustrated 

by a systematic examination of the 

coefficient of restitution ρ and by a 

comparison of simulated results with 

experiments under various conditions. 

A Sensitivity to the coefficient of restitution 

The deviation of the simulated datasets 

obtained with ρ=0.2 and ρ=0.8 is 

0.0728.),(
8.02.0

ss  This can be partitioned 

similarly to the techniques described in Sec. 

3.2.1 D. The Biennaymé formula for the 

Table 3.2.1: comparison of the estimators 

                    name                              average error 

largest observed 

deviation from 

simulation 

existing 

estimators 

CSAE 8.5% 43.5% 

ADRE 7.8% 40.9% 

QSE 7.0% 45.8% 

PQSE 7.2% 42.5% 

new 

estimators 

NQSE 6.2% 44.9% 

EAE 6.8% 58.0% 

MEAE 4.0% 32.7% 

combined 3.6% 32.0% 
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variance of sums of random variables; the 

connection between the raw moments and 

the central moments of a probability 

distribution; and the formula of the variance 

of a binomially distributed random variable 

yield 





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(71) 

The unknown values pj, in (71) are replaced 

by the known values sj,, which lets one 

estimate the deviation of the unknown 

‘exact’ datasets as  

  0.05630332.00321.00.0728

)1()1(),(),(

2/1222

2/1

1 1
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 (72) 

Hence, the effect of the coefficient of 

restitution on pose statistics is moderate (on 

average: 5.6%) despite the fact that the 

trajectory of an individual falling object can 

fundamentally change its character in 

response to variations of. This result 

confirms the robustness of pose statistics 

against modeling errors. 

B Comparison with experiments 

The pose statistics of square prisms of 

various length-to-width ratio have been 

investigated experimentally among others 

by [26] and by [118]. Both works report on 

drop tests with hard and soft support 

surfaces. In [118], the surface is vibrated. 

The results of these experiments are 

summarized in Fig. 39. The predictions of 

various estimators and simulation results 

are also shown. 

As already noted by [26], the quality of the 

support surface has significant influence on 

the experimental results. Depending on the 

length/width ratio, the effect of the surface 

type on the results is between 0 and 15%. 

This is comparable to the effect of the 

coefficient of restitution found in Sec. 3.2.3 

A. 

The simulation results agree well with 

experiments obtained with a hard surface, 

but they deviate significantly from the soft 

surface results. This observation suggests 

that our results do not apply very well to 

objects dropped onto soft surfaces, and 

further work using a different benchmark 

dataset is desirable in that case. 

Finally, comparison of the estimators 

reveals a somewhat surprising result. The 

combined estimator shows the best fit to the 

benchmark dataset, but it has relatively 

large errors (up to 17% for some 

length/width ratios and surface types) in the 

case of square prisms. The ADRE and the 

EAE perform significantly better for this 

particular class of objects.  

3.2.4  Conclusions 
We have performed a systematic 

comparison and evaluation of existing 

estimators of pose statistics. It was found 

that the average errors of these estimators 

are between 7 and 11% (Table 3.2.1). Such 

an error level can be tolerated in some 

situations, but estimations based on direct 

numeric simulation are significantly more 

accurate (though not perfectly accurate as 

discussed in Sec. 3.2.1 B). The increasing 
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availability of cheap computation makes 

simple estimators less attractive, 

nevertheless there are applications for 

which dynamic simulation is too slow. For 

this reason, estimators with low error rates 

are of practical interest. In the current work, 

a new estimators has been proposed with 

average error 3.6% and maximum error near 

20% (based on a large, random dataset).  

To measure the performance of the 

estimator, simulations with a frictionless 

model have been used as reference. The 

effect of modeling errors and the influence 

of experimental conditions on pose 

statistics have been tested in several ways. 

Large variations of the coefficient of 

restitution change the probabilities by 5.6% 

on average. According to earlier 

experiments with square prisms, the quality 

of the support surface has an effect of 

similar magnitude. On the one hand, these 

observations indicate that further significant 

reduction in estimator error is not possible 

without treating the coefficient of 

restitution and other parameters (e.g. 

friction coefficient) as known. We do not 

examine such extensions, because these 

parameters are often unknown in real-life 

situations. On the other hand, understanding 

the parameter-dependence of pose statistics 

requires further effort (e.g. the systematic 

variation of physical parameters in physical 

experiments or in simulations with a more 

detailed model). 

3.3  COMPLIANT CONTACTS AND STATIC STABILITY OF 
EQUILIBRIA 

We now turn our attention towards the 

stability analysis of equilibria. The first 

notion to be investigated is static stability, 

which was defined in Sec. 3.1. It has been 

pointed out that static stability is a 

relatively weak form of stability, 

nevertheless it has practical relevance for 

systems, which operate in an environment 

free of significant vibrations and other 

dynamic perturbations. Robotic grasping 

is one of the natural fields of application, 

as we explain in Sec. 3.3.1, below. The 

basic assumptions and some new notation 

are introduced in Sec. 3.3.2. A model of 

nonlinear, viscoelastic, spatial or planar, 

frictional or frictionless contacts is 

presented in Sec. 3.3.3. Our main 

contribution is proving static stability for 

a wide class of systems by investigation of 

the Taylor expansion of the potential 

energy (Sec. 3.3.4). An application of the 

new theorem in the field of quasi-static 

locomotion is outlined in Sec. 3.3.5, which 

is followed by a brief summary and 

discussion of other fields of application 

(Sec. 3.3.6). 

3.3.1  Background 
For long time, research in robotic grasping 

was focusing on the problem of a single 

rigid body held by a gripper. The static 

stability of a rigid body with stiff, linear 

elastic contacts was analyzed by [120] [111] 

[89]. They found that the stability of many 

but not all grasps is influenced by the 

curvatures of the object and the gripper at 

the contact points. However, Theorem 4 of 

[89] is a sufficient condition of stability 

relying only on first-order kinematics, i.e. 

no curvature effects. What they show is that 

every object grasped by rigid fingers is 

stable if the arrangement of fingers ensures 

that any infinitesimal motion of the object 

would cause either penetration into a finger, 

or contact slip or contact separation. The 

present work generalizes this result to 

multi-body systems and kinematic chains 

(rigid bodies connected by hinges). At the 
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same time, the contact interactions are 

allowed to be nonlinear elastic or even 

visco-elastic. These extensions are 

motivated primarily by the growing interest 

in grasping non-rigid objects [38] [74] [192] 

and by the complex nature of real contact 

interactions [21],[146]. The stability 

condition presented in this thesis was the 

first one for complex objects (consisting of 

multiple rigid components), which does not 

require knowing the curvatures at the 

contact points. 

In order to apply the notion of static 

stability, the system under investigation 

must have a continuous potential energy 

functions associated with the contact forces 

and the external loads. Contact interactions 

between ideally rigid objects are 

characterized by discontinuous potentials 

therefore we consider small deformations of 

the system. In addition, only conservative 

loads and elastic contact interactions induce 

potential energy functions, which is quite 

restrictive. Nevertheless, it is possible and 

physically reasonable to use our definition 

of static stability in the case of forces, which 

can be decomposed into the sum of 

conservative components (forces with a 

potential) and dissipative components (i.e. 

forces which do not increase the total 

energy of the system). In order to cover a 

wide range of physical phenomena (most 

notably viscoelastic material response), 

contact forces and loads are allowed to have 

dissipative components. For the same 

reason, elastic contact forces may be 

nonlinear. The resulting contact model is 

more realistic than the linear spring models 

often used elsewhere.  

3.3.2  Problem statement and 
main results 

Let q denote the vector of generalized 

coordinates of a system. We will prove the 

following sufficient condition of static 

stability:  

Theorem 3.3.1: a static equilibrium 

configuration q=q0. of a rigid multibody 

system with well-defined contact normals 

possesses static stability if the following 

criteria are met: 

(i) none of the frictional contact forces is 

exactly at the verge of slipping in the 

static equilibrium state; and none of the 

frictionless ones is exactly at the verge 

of detachment (i.e. S>0 for all contacts) 

(ii) the constraints of the system restrain its 

motion in such a way that any 

infinitesimal displacement of the system 

would cause penetration or separation 

at some contact; or contact slip at a 

frictional contact.  

(iii)the external loads are conservative or 

dissipative in the following sense: there 

exists a potential energy function 

P(ext)(q) such that if the system moves 

from configuration q1 to q2, the work of 

the external forces is not bigger than 

P(ext)(q1)- P
(ext)(q2). 

If condition (i) is not satisfied, the slightest 

perturbation may cause slipping or 

detachment, beyond which our model fails 

to describe the motion of the system. 

Condition (iii) is important because a 

system subject to non-dissipative loads may 

gain energy by the work of external loads, 

which may sustain and magnify internal 

vibrations and destabilize the equilibrium. 

Condition (ii) can be visualized in the 

following way: if frictional contacts are 

replaced by hinges (to prevent slipping and 

separation) and frictionless ones by bilateral 

sliders (to prevent separation), then the 

system must become rigid (instead of being 

GG

 

Fig. 44. An unstable (left) and a stable (right) 

system violating condition (ii). Their stabilities 

are determined by the curvatures at the contact 

point. G is the center of gravity. 
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a mechanism). Due to the physical duality 

of forces and displacements, this is also 

equivalent to having a full-rank wrench 

matrix of constraining forces [89]. If 

condition (ii) is not satisfied, the stability of 

the system depends on the curvatures at the 

contacts as demonstrated by [89] for a 

single rigid body, see also Fig. 44. 

3.3.3  Compliant contact model 
and rescaled time 

We have introduced friction models and 

conditions of stick in Sec. 3.1. Now, the 

compliant contact law for stick interaction 

in three dimensions is presented in detail. 

The two objects involved in a contact 

interaction are marked by lower indices 1 

and 2. When they establish contact, the first 

points of overlap on their respective 

boundaries (P1 and P2) are marked as 

reference points. As the contact deforms, 

the two reference points (attached to the two 

objects) move away from each other, while 

the direction of the contact normal n may 

also change. It is not specified here how the 

contact normal of a compliant contact (with 

some overlap between the interacting rigid 

objects) should be defined. There are 

several appropriate definitions provided 

that the contact normal of the original rigid 

system is well-defined (condition (ii)). 

Let Δr=[Δn ΔtT]T denote the contact 

deformation where the scalar Δn is the 

normal component of the vector pointing 

from P1 to P2;  Δt is a 2-vector of tangential 

components. The contact force f exerted by 

object number 2 on number 1 also consists 

of normal and tangential components: f=[ fn  

ft
T]T where ft is a 2-vector. f is assumed to 

be the sum of an elastic (conservative), and 

a viscous (dissipative) term: 

  )
~

,
~

(
~~

grad rrfrf 
dis

U  (73) 

where  is the contact 

deformation scaled by the compliance 

parameter 0<<<1 (  and  are 

functions of the generalized coordinates q); 

’ means derivative with respect to scaled 

time . The scaling factors reflect 

the fact that the deformations of a quasi-

rigid contact are O(ε) and the internal 

vibrations of a quasi-rigid contact in stick 

state have O(ε1/2) natural time scale. The 

scaling enables one to characterize a quasi-

rigid contact by regular functions  and 

fdis, which are independent of .  xU
~

is the 

scaled elastic energy function of the contact, 

which is assumed to be smooth in the range 

of interest. Because of the scaling factor, the 

elastic internal energy of the deformed 

contact region is .  can 

implement any nonlinear elastic response. 

Elastic contacts have positive stiffness, 

which means that the corresponding  is 

strictly convex, with a positive definite 

Hessian. fdis is a smooth dissipative term 

(i.e. a force which never does positive work 

on the object). fdis is a function of the scaled 

contact deformation and its scaled rate of 

change; it is required that fdis=0 if , 

hence only the elastic force components are 

active in immobile states of the system. The 

limits of stick interactions are determined 

by the indicator function S introduced in 

Sec. 3.1. 

Two-dimensional frictional contacts are 

modelled in the same way, but in this case 

Δt and ft are scalars rather than 2-vectors.  

Frictionless contacts can also be modeled in 

an analogous way. In this case, the contact 

deformation Δr(q) should consist only of 

the scalar Δn(q) as the tangential relative 

motion of the two interacting objects is 

irrelevant; fdis and f also become scalars as 

they do not have tangential components. In 

the frictionless case, an indicator function S 

can be defined such that S=0 indicates 

contact separation. A good choice for S in 

the case of a frictionless contact is S(f) = f 

(recall that f is now a scalar).  
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3.3.4  Potential energy of the 
compliant system 

The contacts are enumerated by trailing 

upper indices in parentheses. The contact 

deformation vector (frictional contact) or 

scalar (frictionless contact) of contact (i) is 

expanded into Taylor series in q at q=q0: 








1

0

)()(
)(

k

i

k

i
R qqr  (74) 

where denotes an arbitrary k-th 

order homogeneous vector-valued 

(frictional contact) or scalar-valued 

(frictionless contact) multivariate 

polynomial. This expansion lacks the 

constant term since q=q0 is an equilibrium 

configuration of the rigid system, hence the 

corresponding contact deformations are 0. 

The first order polynomial can be 

expressed in the form where  is 

the Jacobian matrix of the contact 

deformation function  at q=q0: 


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Notice that condition (ii) of Theorem 3.3.1 

is equivalent to the following property: 
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where n is the number of contacts and m is 

the degrees of freedom of the system.  

If the contacts are stiff but compliant, the 

balancing contact forces induce O() 

contact deformations. Hence, q=q0 ceases 

to be equilibrium. Instead, the equilibrium 

configuration  becomes 

)()(
2

1
 O eqe

0  (77) 

The rescaled variables  and  have 

already been introduced in Sec. 3.3.2. Now 

we also define the rescaled generalized 

coordinates 

)(
~

0

1
qqq 


  (78)  

The rescaled generalized coordinates of the 

equilibrium configuration are 

. 

Now, q and )( i
r  in (75) are replaced by 

and )(~ i
r and first- and higher order terms 

in  are neglected: 
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We can now express the elastic energy of 

contact (i) in terms of : 
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Similarly, the potential energy of the 

external loads is expanded into Taylor 

series; q is replaced by ; and higher-order 

terms in  are discarded: 
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(81) 

For brevity, the zeroth-order polynomial 

term P0(…) has been replaced by the scalar 

p0 and P1(x) is expressed as p1
Tx  where p1 

is the gradient of )(
)(

q
ext

P  at q=q0. 

The total potential energy P of the system is 

the sum of P(ext) and U(i) for all i. We 

introduce the scaled potential energy 

function PP
1~ 

   to account for the fact 

that the energy stored in stiff elastic contacts 

is O(). P
~

is expressed in terms of q~ : 
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We aim to study the local shape of the 

potential landscape P
~

 around the 

equilibrium configuration , where the 

argument of  in (80) is close to . 

The Taylor expansion of the function  at 

this point, up to second order is: 
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where 
)(

0

i
u = ; 

)( i

1
u and 

(i)

2
U  are 

the gradient and the Hessian of  at 

. Combining (82) with (83) yields 
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Ordering the right-hand side by powers of 

 and eliminating constant terms, 

which have no physical significance, lead to 
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The linear term vanishes because  

corresponds to equilibrium. The n summed 

quadratic forms are nonnegative for every i 

because the Hessian matrix  is positive 

definite as pointed out in Sec. 3.3.3. 

Furthermore, condition (ii) of Theorem 

3.3.1 implies that for any  there is 

an i for which . The 

corresponding quadratic term in (84) is 

strictly positive. Hence, we conclude that 

the potential energy has a non-degenerate 

quadratic local minimum at , which 

proves Theorem 3.3.1.  

The local minimum (i.e. convexity) stems 

from the convexity of the   functions. 

For deformable systems (finite ε), the local 

minimum can be reshaped by geometric 

nonlinearity (i.e. the nonlinear terms in 

(79)). However this factor is negligible in 

the quasi-rigid limit. Simple examples of 

the destabilizing effect of geometric 

nonlinearity include  

 the ‘coin-snap problem’ [44]: a grasp on 

a rigid object may become unstable if 

the object is pressed too hard and the 

fingers are compliant   

 buckling [83]: the straight configuration 

of a column built of stone blocks under 

a compressive force is unstable if the 

building blocks are not perfectly rigid, 

the column is slender and it is under 

strong compression (resulting in strong 

geometric nonlinearity).  

This section is finished by the numerical 

analysis of a simple problem illustrating the 

stability of systems in the quasi-rigid limit. 

A model of a planar biped standing on a 

stair (Fig. 45.A) is investigated. The system 

consists of two legs connected by a hinge. 

The legs of the robot are allowed to cross 

the support surface. For simplicity, it is 

assumed that the hinge has unit weight and 

the weights of the legs are negligible. The 

only external forces acting at the robot are 

its weight and the support reactions. It is 

assumed that the contacts are elastic with a 

quadratic potential -1|Δr(i)|2/2 where Δr(i) 
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is the contact deformation vector of contact 

(i) introduced in Sec. 3.3.3. The initial 

configuration of the robot with zero contact 

deformations is plotted in solid line in Fig. 

45.A. The shape of the robot is parametrized 

by the leg lengths l1, l2 and the angles10, 

20 of the legs in the initial configuration. 

We also introduce a Cartesian coordinate 

system with its origin at the hinge of the 

robot in the initial configuration. 

If  is nonzero, the initial configuration 

corresponds to vanishing contact forces, 

since contact forces are induced by the 

penetration of the legs of the robot into the 

support surface. Other configurations of the 

moving robot (dashed line in Fig. 45.A) are 

represented by four generalized 

coordinates: x, z (position coordinates of the 

internal hinge) and 1, 2 (the angles of the 

two legs). The potential energy of the 

system with the contacts in stick state is z+-

1|Δr(1)|2/2+-1|Δr(2)|2/2. The normal and 

tangential components of Δr(i) can be 

expressed in terms of the parameters and the 

generalized coordinates as 

We allow arbitrarily large tangential contact 

forces (infinitely large friction coefficient) 

but adhesive contact forces are not allowed. 

With a finite friction coefficient, a subset of 

our equilibrium solutions would be 

preserved. 

Stationary points of the potential energy 

(corresponding to equilibrium) have been 

found numerically for various values of  

(details omitted). The stability of the 

equilibria has also been determined by 

numerical investigation of the Hessian of 

the potential energy. The results are 

depicted in Fig. 45.B,C for two different 

combinations of the parameters. The one 

shown in Fig. 45.C exhibits two quasi-rigid 

equilibrium configurations, one of which 

happens to be ambiguous. In accordance 

with our main result, the segments of the 

equilibrium paths adjacent to the quasi-rigid 
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Fig. 45.A: Initial configuration (solid line) and a general configuration (dashed line) of a model of a 

planar biped standing on a stair. The weight of the body is 1, and the legs are weightless. B,C: x and z 

values corresponding to equilibria of the model system with l1=4.03, l2=2.06, 10=-1.70, 20=-1.33 (B) and 

with l1=2.34, l2=0.94, 10=-2.27, 20=-1.01 (C). The corresponding values of 1, 2 and  are not shown. 

Circles and continuous curves represent stable and unstable equilibria, respectively. Dashed curves 

represent non-physical solutions (negative  or tensile contact forces). The shapes of the robot in the 

quasi-rigid equilibrium configurations (the initial configuration in both panels and together with a 

second one in panel C) are shown in thin line. 
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equilibrium configurations are always 

stable.  

3.3.5  Application: static indete-
rminacy, and optimal 
contact forces  

The application of Theorem 3.3.1 to a 

specific system requires knowledge of the 

contact forces because of condition (i) of the 

theorem. This is usually easy if the number 

of independent constraints equals the 

degrees of freedom of the system (statically 

determinate systems, as in the case of Fig. 

38.B,D). For example, the object in Fig. 

38.D consists of one rigid element, i.e. the 

DOF is 3. One freely rotating wheel and one 

blocked wheel provide 1+2=3 reaction 

forces, which are determined uniquely by 3 

independent equilibrium equations. Finding 

contact forces is problematic if the number 

of constraints is higher than the DOF (static 

indeterminacy) [125] [139] as in the 

examples of Fig. 38.A,C. In this case, 

modeling the elastic deformations of the 

objects (or the contacts) is necessary for the 

determination of the contact forces. 

Robotic systems (grippers, vehicles or 

legged robots) often operate with (fully or 

partially) controlled contact forces. In this 

case, stabilizing a system reduces to the 

problem of optimizing contact forces in 

order to avoid contact slipping and contact 

separation. To illustrate this scenario, the 

example of a planar biped is revisited. This 

time, the contacts are quasi-rigid. The leg 

lengths (l1, l2) and an internal torque 

between the two rigid parts (T) are 

controlled by ideal actuators (Fig. 45.A). 

Our goal is to identify the region of the 

plane, in which the hinge can move around 

(by adjustment of the leg lengths) without 

losing static stability.  

The contact normals are well-defined as 

contacts are vertex-edge type. Condition 

(iii) is also satisfied because gravity is 

conservative. To examine condition (ii), we 

express the Jacobians of the contact 

deformations with the aid of (85) as 

 

Fig. 46.A: the stability properties of the biped of Fig. 45 depend on the location of the center of mass 

relative to the support points. For the detailed description of labels 1, 2, 3, and 4, see text. B: Forces 

acting on the biped. For the specific configuration plotted in the figure, and T=0, the equilibrium 

equations dictate tensile support reaction at the right leg (dashed arrows). Hence the robot topples. 

However for appropriately chosen T and large enough friction coefficient, the toppling solution coexists 

with a static equilibrium. The corresponding support reactions are shown by solid arrows. 
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 
TTT )2(

1

)1(

1
RR  is square matrix and its 

determinant is l1l2sin(2-1). Eq. (76) is 

satisfied unless α1-α2 is an integer multiple 

of π, i.e. unless the center of mass lies on the 

line through the two supports (dotted line in 

Fig. 46.A).To examine condition (i), the 

support reactions have to be determined 

using the equations of equilibrium of the 

system (details omitted). If T=0, the 

equations dictate the following support 

reactions: with sufficient friction, the robot 

is in equilibrium if the hinge is in a range 

marked by ‘1’ or ‘4’ in Fig. 46.B. 

Nevertheless the robot may also topple if 

the hinge is in range ‘4’, hence such 

configurations are ambiguous equilibria. In 

ranges ‘2’ or ‘3’, the robot must topple as 

the equilibrium equations dictate tensile 

support reactions, which is impossible. By 

applying an appropriate torque in the hinge, 

these configurations can be turned into 

equilibria, provided that there is sufficient 

friction at the support point (Fig. 46.B). 

Assuming Coulomb friction, the minimum 

of the friction coefficient necessary to 

balance the object depends on the position 

of the hinge and the applied internal torque. 

For every configuration, there is an 

‘optimal’ torque, minimizing the required 

friction coefficient. These torques and the 

corresponding thresholds of the friction 

coefficient are shown in Fig. 47. 

Specifically, the minimum of the friction 

coefficient is 0 in ranges ‘1’ and ‘2’. 

However a friction coefficient above 0.5 is 

necessary to move the robot into ranges ‘3’ 

and ‘4’. The maximum overhang of the 

center of mass is limited by the actual value 

of the friction coefficient. 

 

Fig. 47. Filled contour plot of the minimum of the friction coefficient (left) and the corresponding applied 

torque (right) for various positions of the center of mass. The support points are represented by black 

circles. Both functions are discontinuous at the vertical lines through the support points. 
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3.3.6  Conclusions 
Using a general class of deformable contact 

models, it has been demonstrated that the 

frictional equilibria of a wide class of 

systems of rigid bodies are local minima of 

their potential energy. This result applies to 

regular as well as to ambiguous equilibria. 

From the definition of static stability it is 

not immediately obvious how relevant it is 

in a dynamical systems perspective. 

Clearly, static stability is weaker than 

Lyapunov-stability, i.e. it allows divergence 

from the equilibrium in response to small 

impacts and initial displacements. With 

other words, dynamic vibrations in the 

environment are not allowed as 

perturbations. Nevertheless, many robotic 

systems operate in environments, which are 

practically vibration-free, this is why static 

stability has been successfully applied in the 

context of grasping, and it is useful in quasi-

static locomotion. What it does guarantee is 

that the system remains stable in response to 

small variations of the external loads (see 

Appendix 5.6 for more details). 

Rigid systems are infinitely sensitive to 

positioning errors, and because of this, the 

Theorem 3.3.1 should be interpreted 

carefully. If one moves a system into an 

equilibrium configuration, it will not 

necessarily stay immobile. For example, the 

brick of Fig. 38.A may either stay, or it may 

immediately lose contact and fall off. The 

fate of the block depends on the initial 

microscopic state of the contacts 

(microscopic contact deformations), which 

is invisible to an external observer. 

Specifically, it does not stay immobile 

unless it is squeezed between the walls 

appropriately. At the same time, Theorem 

3.3.1 does predict that a system, which has 

been in the equilibrium state for some time, 

will stay there even if its external loads are 

slightly varied.  

In addition to possible applications in 

robotics and manufacturing, the result of 

this work offer new insights on the 

mechanics of masonry structures. The 

safety of these structures is often analyzed 

with the aid of the safe theorem of plastic 

limit analysis [29],[82]. Nevertheless, since 

masonry structures are collections of 

discrete, quasi-rigid elements rather than 

plastic continua, this approach leads to 

controversial results [9] [45]. The main 

result of this section can be interpreted as a 

new safe theorem, which captures the 

discrete nature of masonry structures. 

3.4  INFINITESIMAL MOTION AND THE LYAPUNOV 
STABILITY OF EQUILIBRIA 

This section is concerned with the stability 

analysis of a rigid body with two point 

contacts in two dimensions. In particular we 

develop Lyapunov-stability conditions on a 

sloped terrain subject to arbitrary 

autonomous external forces. 

3.4.1  Background and problem 
statement 

Motion planning of legged robots is a 

complex, high level task, in which the 

identification of acceptable configurations 

in a given environment is a key component 

[85] [96] [78] [27]. The same issue occurs 

in many other tasks including other forms of 

robotic motion [115] [30], object 

manipulation [28], and robotic grasping 
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[119][136]. Some of these applications 

were already introduced in Sec. 3.3. A rigid 

body with two point contacts, is not only the 

simplest system exhibiting complex 

dynamic behavior induced by impacts, but 

also a simple mechanical model of a quasi-

static planar bipedal robot. In this section, 

we focus on this model problem, and the 

object will often be referred to as a ’biped’. 

We have seen in Sec. 3.1 that LS offers a 

high level of safety for the engineer without 

being very restrictive. Unfortunately, 

testing a configuration for LS is an open 

problem in contrast to most other criteria 

mentioned in Sec. 3.1. It is known that 

STRS is necessary for LS [128], and a 

sufficient frictional stability condition for 

biped planar robots based on a special 

impact model has been published by Or & 

Rimon [126]. Additionally, the author of 

this thesis and his coworkers have proposed 

a model-independent simple active control 

scheme to ensure LS [166]. The core of the 

last two results is a transition graph of 

contact modes in which every directed path 

leads to the node representing static 

equilibrium.  

Our present goal is to make an additional 

step towards the understanding of LS of 

walking robots. Our main result is a new 

sufficient condition of LS by using an 

approach different from previous works: we 

introduce an energetic Lyapunov-type 

function U, which is bounded from below 

and minimized by configurations belonging 

to the equilibrium set of the object. We 

prove that U decreases in proportion to the 

distance travelled from the initial 

configuration. This function allows to 

restrict the set of configurations reachable 

by the perturbed object to an infinitesimal 

neighborhood of the initial point. By 

following this strategy, we completely 

avoid the difficulties of transition-graph 

based analysis in the case of Painlevé’s 

paradox. 

Similarly to previous authors, we linearize 

the kinematic equations around the initial 

equilibrium such that the accelerations 

become constant in each contact mode. The 

simplified system is examined throughout 

Sec. 3.4. It can be proven using simple 

continuity arguments that te results are 

applicable to the original nonlinear system, 

nevertheless a formal proof is beyond the 

scope of this thesis. 

While LS is clearly more restrictive than 

STRS, we are not aware of any example 

illustrating this difference. Therefore the 

main result is complemented by a simple 

example of an STRS equilibrium without 

LS in Sec. 3.4.4. To stress that stability 

against vibrations cannot be reached simply 

by the application of absorbers, our example 

is designed with perfectly plastic impacts. 

We also perform numerical simulations and 

a comparison of existing sufficient 

conditions of stability (Section 3.4.5).  

3.4.2  Notation and pre- 
liminaries 

This section establishes our basic notation 

and develops the linearized set of dynamical 

equations under general conditions. 

Without loss of generality, we consider a 

planar rigid object of unit mass and radius 

of inertia over a horizontal or sloped flat 

 

Fig. 48. Unperturbed (gray) and perturbed 

(black) configuration of the rigid body. The 

perturbation has been magnified to a 

macroscopic level for visibility. The external 

loads are plotted in dashed lines.  
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terrain (Fig. 48). The locations of two point 

contacts relative to the center of mass are 

parametrized by the scalars h, l1 and l2. Our 

notation is somewhat different of the one 

used in Sec. 3.3. The model system 

considered here is also different because it 

is a single rigid body without an internal 

hinge. The coordinates of the center of mass 

(CM) are (x,z) in a coordinate system 

spanned by the unit vectors ux (parallel to 

the terrain) and uz (perpendicular to the 

terrain), with its origin at one of the point 

contacts. The rotation angle of the object 

relative to its initial configuration is denoted 

by Initially, x=-l1; z=h; =0, which 

corresponds to resting on the ground. The 

object is subject to a constant unit force 

uα=[-sinα cosα]T (with T denoting 

transpose) and a torque T. The loads 

represent the resultant of an arbitrary 

system of external forces. For example, uα 

can represent gravitational effects when the 

object lies on a slope with angle . The 

object has two frictional point contacts 

marked as P
1
 and P

2
. The initial coordinates 

of P
i
 (i=1,2) are x

i
=l

i
-l1 and 0

i
z . 

A Contact forces in static equilibrium 

If the object rests in two-contact 

equilibrium, the normal components of the 

reaction forces fi must be nonnegative. 

These can be determined from the 

equilibrium of moments about points P
i
 

yielding the bounds 

  0)(sincos
1

122



llThl   (87) 

  0)(sincos
1
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
llThl 

 
(88) 

The tangential forces are not uniquely 

determined by the equilibrium equations. 

Any pair of forces with  

sin)(
21

 ffu
T

x  (89) 

ensures equilibrium. 

B Kinematics of infinitesimal motion 

After a dynamic perturbation, the object 

starts off, and the coordinates of the legs 

become  
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where the formula after the  sign is a 

lowest order approximation valid for low 

velocities and configurations close to the 

unperturbed configuration. The velocity (vi) 

and the acceleration (ai) of P
i
 are  
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C Newtonian description of infinitesimal 
motion 

It is assumed that forces and impulses at the 

contact point affect the motion of the 

objects according to rigid body theory. By 

using Newton or Lagrange equation, a local 

mass matrix Mij can be associated with any 

ordered pair of contact points Pi, Pj (with 

possibly i=j). Mij is defined by  

 


iiijj
vvMp  (93) 

where pj is an impulse acting at P
j
; vi

- and 

vi
+ are pre- and postimpact velocities of P

i
. 

This implies 
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This matrix can be used to determine the 

acceleration of point P
i
 in the presence of 

external forces and torques plus contact 

forces:  
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The accelerations ai and the forces fi can be 

determined by testing each contact mode in 

three steps as explained in Sec. 3.1.3. For 

example, if both contacts are in separated 

state (FF mode), then f1=f2=0 and  
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D Modeling impacts 

Throughout this work we use the 2-

parameter planar impact model of 

Chatterjee & Ruina [37]. This model 

provides a closed form reset map for the 

contact point velocity in the case of a single 

point impact at a point P
i
. The model is 

briefly summarized below. For details, the 

reader should consult the original work 

[37].  

The kinematic coefficient of normal 

restitution e sets the post-impact normal 

velocity of the contact point by  




ii
zez   (97) 

where the indices + and  again refer to pre- 

and postimpact states.  

The second parameter e
t
 determines to what 

extent the tangential velocity of the contact 

point is reversed. 

The model predicts a ’sticking impact’ with 

impulse  
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whenever st
p  obeys Coulomb’s law. In the 

formula, 
I

p  is the impulse associated with 

a frictionless, perfectly plastic collision, (
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I
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corresponds to a perfectly sticking, plastic 

impact ( 0
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If st
p  is inconsistent with Coulomb’s law, a 

’sliding impact’ sl
p  occurs. This is 

characterized by eq. (97) and by  
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E Energetic description of infinitesimal 
motion 

At certain points, we consider the kinetic 

(E
k
) and the potential (E

p
) energy of the 

object. The latter is calculated as  





Tlx

hzE
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 (103) 
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F State variables and vector norm for 
Lyapunov stability 

The definition of Lyapunov stability in Sec. 

3.1.8 makes use of ’an arbitrary vector 

norm’. This means that the particular choice 

of norm does not make any difference. In 

this section, we will use the state vector 

 
T

zzxzzx
211211
q such that the 

initial equilibrium corresponds to q0=0. 

Furthermore, we use the pseudo-norm: 

 2

2

2

1

2

1211
,,|,||,||,|max zzxzzx 

q
 (104) 

3.4.3  A sufficient stability 
condition  

Sliding friction and impacts absorb the 

kinetic energy of an object in motion; 

nevertheless it also gains kinetic energy via 

the work done by the external force and 

torque, e.g., by the action of gravity while 

the object operates on a slope. Now we 

prove a sufficient conditions under which 

the average rate of absorption exceeds 

energy gain (while kinetic energy is 

allowed to increase temporarily). 

First, notice that STRS always implies LS if 

=0 [135] because energy gain by downhill 

motion becomes impossible. Thus, without 

loss of generality, we may assume 

0<</2. 

Our stability condition is 

Theorem 3.4.1: A STRS frictional 

equilibrium of a planar biped is LS if  
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furthermore one of the following two sets of 

inequalities is satisfied: 
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(109) 

 

(110) 

(111) 

both for i=1 and for i=2 with 

|)|,max(
T

ee   

Before presenting the formal proof of 

Theorem 3.4.1, we review its main ideas 

and state some lemmas. 

The set of states reachable for the object is 

bounded by the non-penetration constraints  

2,10  iz
i  (112) 

and by a trivial upper bound 

)0()0()(
kpp

EEtE   of the object’s 

potential energy. Here, t=0 is the time of the 

perturbation and )0(
k

E  is the biped’s 

initial kinetic energy after the perturbation 

at t=0. The bound (111) can easily be 

reformulated as |)0(|constant)( qtE
p  

|)0(|constant)( qtE
p  (113) 

due to the choice of norm (104). The 

(locally) linear constraints (112) and (113) 

correspond to three half-spaces, with an 

unbounded intersection in the three 

dimensional configuration space. For 

example, they allow unbounded downhill 

motion. Our basic tool of proving Lyapunov 

stability is to develop an additional 

inequality constraint such that the four 

constraints together have a bounded 
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intersection. We will use the Lyapunov-like 

function  

sin)()()()(
1

txtEtEtU
kp

  (114) 

which can be expressed in terms of E
k
, x

1
 

and zi using (90), (103), (114). U is 

constructed in such a way that the x1 

dependent terms cancel. Specifically, we 

obtain 

)(...

)(
sincos

...

)(
sincos

)(

2

12

1

1

12

2

tE

tz
ll

Thl

tz
ll

Thl
tU

k


















 (115) 

All components of the right-hand side are 

nonnegative by (87), (88) and by (112). 

Thus, U is non-negative:  

0)( tU  (116) 

with equality if and only if the object is in 

two-contact equilibrium (E
k
=z

i
=0) 

anywhere on the slope. 

In addition to its non-negativity, we will 

also prove that U exhibits a decreasing trend 

if the object is in motion, which will 

eventually lead us to the missing constraint 

in the form of an upper bound of x1(t). The 

exact meaning of the ’decreasing trend’ of 

U depends on the sign of )(

1

FF
x (see (96)), 

which explains the presence of the two sets 

of inequalities (106)-(111) in the statement 

of Theorem 3.4.1. These two cases will be 

addressed by two slightly different lemmas 

below.  

Lemma 3.4.2 if (106) is true, then the 

conditions of Theorem 3.4.1 imply the 

existence of a positive constant c such that 

)()0(
0

))0()((
max

:

11 








 



fin

fin

fin

tUU
xtxc

t 

 

(117) 

where  is the set of times after the initial 

perturbation when at least one point of the 

object undergoes an impact or it has 

sustained contact with the ground.  

The + superscript in Lemma 3.4.2 mean that 

we consider post-impact state at time fin
t  if 

the velocity of the object is discontinuous 

due to an impact. In contrast, the next 

lemma includes – superscripts 

corresponding to pre-impact states 

Lemma 3.4.3 if (109) is true, the conditions 

of Theorem 3.4.1 imply the existence of a 

positive constant c such that

)()(
0

))()((
max

:0,,

11 








 



fininit

initfin

initfinfininit

tUtU
txtxc

tttt 

  

 (118) 

The lemma will also be used with tinit=0. In 

this special situation, 0+ and 0- refer to pre- 

and post-impact states if the initial 

perturbation triggers an immediate impact. 

Nevertheless, both symbols refer to states 

after the perturbation. 

Proof of Lemma 3.4.2:  has continuous 

(corresponding to rolling or sliding motion), 

and discrete countable (bouncing motion) 

subsets. Accordingly, the trajectory of the 

object between the initial state immediately 

after the perturbation and tfin can be divided 

to elementary pieces, all belonging to one of 

3 types. We demonstrate that an analogue of 

(117) is true for each type of piece as 

explained below: 

1. if t
k
 is an isolated elements of and 

has no elements in the open interval 

(tk-1,tk) furthermore x
i
(t

k
)>x

i
(t

k1
) (free 

flight to the right followed by an impact) 

then (105)-(108) imply 

 

)()(...

)()(

1

111











kk

kk

tUtU

txtxc
 (119) 
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The detailed proof is divided into three 

subcases dealing with sticking, right-

sliding and left-sliding impacts 

(Appendix 5.7.1.A-C). In the proof, we 

exploit that the growth of U during an 

episode of free flight is proportional to 

x
1
(t

k
)x

1
(t

k1
). Nevertheless free flight 

with a big jump in x
1
(t) is necessarily 

followed by an impact with high contact 

point velocities ( ||,
ii

zx  ) and high 

energy absorption ensuring negative net 

change of U.  

2. Along trajectories with continuous 

contact and 0
1
x  (sliding to the right 

on one or 2 legs), (105), (106), (108) 

imply  

c
dx

dU


1

 (120) 

see Appendix 5.7.1.D-E for proofs in the 

respective cases of sliding at one and at 

two points. The main idea of the proof is 

that the the growth rate of the x
1
(t)sin 

term in U and the decay rate of E
p
+E

k
 are 

both proportional to the sliding velocity 

of the object with negative net balance.  

3. U is non-increasing during impacts, 

during rolling motion, during being in 

static equilibrium and during sliding 

motion to the left ( 0
1
x ). Furthermore, 

the net change of U during free flight to 

the left with )()(
111 


kk

txtx  is also 

negative, i.e. 0)()(
1




 kk
tUtU . All 

these properties follow from the fact 

that x
1
 and the total energy E

p
+E

k
 are 

both non-increasing during these 

episodes of motion.  

The three results explained above and 

proven in the appendices complete the proof 

of Lemma 3.4.2.  

The proof of Lemma 3.4.3 is very similar to 

that of Lemma 3.4.2. There are only a few 

minor differences, which are highlighted in 

Appendix 5.7.2. These are responsible for 

the difference between the sets of 

conditions (106)-(108) and (109)-(111). 

The previous two lemmas provide us with 

enough information about almost all parts 

of the motion except for some missing 

bounds on contact-free motion: 

Lemma 3.4.4 if the object undergoes 

contact-free motion between times t* and t** 

then there exists a constant C such that 

)()(
*** 

 tCUtU  

)()()(
**

1

**

1


 tCUtxtx  

(121) 

(122) 

The proof is presented in [174], Lemma 1. 

It is not repeated here. 

Now we are ready for the  

Proof of Theorem 3.4.1: If 0
)(

1


FF
x  then 

(116) and Lemma 3.4.2 together yield  

)0()0()(
1

11


 Ucxtx

fin  (123) 

for all tfin . In the case of 0
)(

1


FF
x , (116) 

and Lemma 3.4.3 imply 

)()()(
1

11




initinitfin
tUctxtx  (124) 

where tinit, tfin . If the set  includes 0 (i.e. 

motion starts with an impact or sustained 

contact), then we may choose tinit=0, by 

which the bound (124) becomes essentially 

identical to (123). In the opposite case (i.e. 

if the motion starts with free flight),  has a 

smallest positive element min and we assign 

this value to tinit in (124). Furthermore, 

Lemma 3.4.4 implies the bounds 

)0()  (
-

min


 CUU   

)0()0() (
1min1


 CUxx   

(125) 

(126) 

Altogether, (124)-(126) imply 
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)0()0()0()(
1

11


 CUcCUxtx

fin

 
(127) 

So far we have established the upper bound 

(123) or (127) for x1 whenever there is an 

active contact (tfin ). Both bounds can be 

written in the general form 

)0(constant)(
1

q
fin

tx  (128) 

This bound can be extended to episodes of 

contact-free motion, i.e. for t , by 

combining (128) with (122) of Lemma 

3.4.4:  

max,1

11

)0(constant

)0()0(constant

)()()(

x

CU

tCUtxtx

def

finfin



 









q

q

 (129) 

Now we have four bounds represented by 

the inequalities (112), (113), and (129). As 

we prove in Appendix 5.7.3, the inequalities 

determine a bounded region in 

configuration space as long as the 

equilibrium conditions (87), (88) hold. If 

the norm of the initial perturbation was 0, 

then the bounds were not satisfied but by an 

isolated point in state space (namely q=0). 

If the original perturbation is not zero but 

infinitesimally small, then the size of this 

region is linearly proportional to |q|, 

implying LS. 

If impacts are plastic (e=0 in the impact 

model) and (105) holds for i=1 and 2, then 

the contactless free accelerations of the legs 

point towards the ground, and thus impacts 

cannot be followed by free flight. Hence the 

set  does not have isolated elements. 

Consequently, the corresponding conditions 

can be omitted and only the condition 

ensuring decreasing trend of U during 

sustained contact is needed instead. This 

leads to the stronger statement  

Theorem 3.4.5: a STRS frictional 

equilibrium of a planar biped with plastic 

impacts (e=0) is LS if (105) and (111) hold 

for i=1 and 2.  

3.4.4  An example of instability 
The goal of the upcoming section is to 

illustrate the difference between STRS and 

LS through an example. We consider 

perfectly plastic impacts (the restitution 

parameters of the impact model are e=e
t
=0) 

and T=0 (an object resting on a slope in a 

gravitational environment). We assume that 


2
>>1 (though this unrealistic assumption is 

not necessary ingredient) while 
1
 will be 

varied.  

Let 0<l
1
<htan<l

2
. This assumption 

implies positivity of the normal contact 

forces (87), (88) and there exist consistent 

tangential forces for any value of 
1
 by (89). 

Hence this configuration is a frictional 

equilibrium for any 
1
. According to 

Theorem 3.4.5, the object possesses LS 

 

Fig. 49. Stability of the object with T=0, =20°, 

h=1, 
2
>>1, and plastic impacts (e=e

t
=0). The leg 

positions are l
i
=htan+(1)

i
l; l and 

1
 are 

varied. The label ’STRS without LS’ refers to 

parameter values at which the divergent motion 

described in Section 3.4.4 occurs. The exact 

boundary of this region has been determined 

numerically.  
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above a threshold value of 
1
. This 

threshold is shown in Fig. 49 for =20°. 

Nevertheless the behavior of the object 

changes at lower 
1
: the equilibrium is 

ambiguous if 
1
<l

1
/h (Fig. 49), which 

means that the object can undergo 

accelerating motion starting from the 

equilibrium configuration. Specifically, 

sliding to the right on P
1
 with P

2
 lifting off 

the ground is consistent solution as shown 

by the following three considerations:  

• Positive contact force at P
1
: if 0

2
f  

and )(
11 zx

f uuf   , where f is an 

unknown scalar, then f can be 

determined from 0
i

z  using (95):  

0
1

cos
1












 i

ii

T

zii
fTlz


 Mu  

 
(130) 

yielding  

11

2

1
1

cos

hll
f






  (131) 

f is positive if 
1
<l

1
/h.  

• Increasing sliding velocity at P
1
: 

According to the previous point, 

f<cos, hence 
1
f<l

1
/hcos<sin, 

which implies acceleration of the 

centroid to the right: ẍ>0. The contact 

force causes counterclockwise torque 

about the centroid if 
1
l

1
/h, i.e. 0 . 

These observations imply 0
1
x  by  

(92).  

• Increasing separation at P
2
: we have 

0  as pointed out above. According 

to (92),  )(
1212
llzz  , hence 0

1
z

implies 0
2
z   

If 
1
 is slightly greater than l

1
/h, 

2
z changes 

sign, hence the sliding-separated motion 

starting from the equilibrium configuration 

becomes inconsistent. Other non-static 

modes are not consistent either (calculation 

omitted), i.e. the equilibrium becomes 

unambiguous. A velocity-perturbation of 

the equilibrium at t=0 with 
z

uv 


)0(
2

(where  is a positive constant small enough 

to allow the application of linearized 

dynamical equations) and 0)0(
1




v  

initiates microscopic motion with the 

following subsequent phases (see Fig. 50):  

1. Uniformly accelerating sliding motion 

of P
1
 to the right until the contact at P

2
 

hits the ground after a long time t
1
 due 

to 
2

z  being slightly below 0. At this 

time, 
zx

t uuv 


)(
12

 with >> ( 

standing for left limit as usually).  

2. A plastic impact at P
2
 with the above 

found pre-impact velocity. This impact 

is sticking if 
2
>>1 because the impulse 

corresponding to a sticking impact 

(determined from (98)) has a positive 

normal component and a finite 

 

Fig. 50. Divergent motion of an object with STRS in response to an infinitesimal perturbation. Note that 

the slope terrain is rotated by angle  for simplicity. Continuous, dashed and dotted lines denote the 

respective trajectories of P
1
, P

2
, and the centroid.  
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tangential to normal ratio (calculation 

omitted) even for an almost tangential 

pre-impact velocity. Thus, 0)(
12




tv . 

On the other hand, the tangential to 

normal ratio of the impulse exceeds l
2
/h 

if />l
2
/h, i.e. the impulse has a 

clockwise torque about the centroid 

thereby increasing the magnitude of the 

(negative) angular velocity  . 

According to (91), 

 )(
1212
llzz  , implying 

|)()(||)()(|
11121112


 tztztztz  . 

Since 0)()(
1211




tztz   and 

)(

12
tz

, we conclude that 


)(
11
tz . 

3. Rolling motion about P
2
: it can be 

shown that the contact at P
2
 does not 

slide, and 0
1
z . This phase lasts until 

the contact at P
1
 recovers at time t

2
. At 

this time, 


)()(
1121
tztz  .  

4. A plastic impact at P
1
 with zero 

tangential pre-impact velocity: 

0)(
21




tx . According to (98), this 

impact is again sticking with a 

tangential to normal impulse ratio 

below l
1
/h. It can be shown similarly to 

point 2. that 

)()(

2122
tztz  . 

After the second impact, the same cycle is 

repeated with an initial velocity 
2

z . 

Thus, the object undergoes exponentially 

growing cycles and diverges unboundedly 

from the unperturbed configuration. Hence 

the original configuration is not LS. The 

exact range of 
1
 leading to this kind of 

instability has been determined numerically 

(Fig. 49).  

3.4.5  Comparison with previous 
results and simulations 

The sufficient stability condition presented 

here is fundamentally different from the one 

in [126]. Our result tends to predict stability 

when the distance of the legs (l
2
l

1
) is 

relatively small and the friction coefficients 

are high; whereas the other condition 

suggests the opposite. This is illustrated by 

an example in Fig. 51, where the positions 

of contact points are l
i
=htan+(1)il. The 

distance l and the friction coefficients at 

the legs (
1
=

2
) are varied. Other parameter 

values are given in the figure caption. With 

these data, the object is in STRS frictional 

equilibrium if 
i
>tan. The Lyapunov 

stability regions associated with the 

sufficient conditions appear in opposite 

corners of the parameter plane. This 

difference might partly be attributed to the 

different impact models: [126] assumes 

frictionless impacts equivalent of the case 

e
t
=1 of the Chatterjee-Ruina model 

whereas we used e
t
=0. Our choice is more 

realistic, moreover Theorem 3.4.1 does not 

predict stability at all if e
t
=1. Nevertheless 

we think that the primary reason for the 

different predictions is that both sufficient 

conditions are far from being sharp. The 

conservativeness of our result comes from 

the main idea of the proof: the motion of the 

object is divided to small episodes and it is 

required that the net change of U is negative 

during every single episode. A numerical 

simulation of this kind of behavior is shown 

in Fig. 52.A. Notice that U decreases 

 

Fig. 51. Stability regions predicted by 

Theorem 3.4.1 (with e=0.1 and et=0) and by 

[126] for an object with h=1 on a slope of 

angle α=20° subject to gravity (T = 0). 
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continuously during sliding motion (top 

panel of figure); it increases continuously 

during episodes of free flight, but this is 

always followed by an instantaneous jump 

to a lower level due to an impact. As a 

result, U decays rapidly to its minimum 

value and the object stops in agreement with 

our theoretical results. 

We also performed numerical simulations 

with parameter values for which the 

sufficient conditions do not predict stability. 

Interestingly, divergent motion occurred in 

very few cases, which seems to confirm the 

conservativeness of the stability conditions. 

Fig. 52.B shows one of the exceptions: a 

steep slope (=45°) combined with high 

coefficient of restitution (e=0.7) and an 

appropriate initial perturbation leads to 

divergent ’reverse chattering’ motion, in 

which the two legs hit the ground in 

alternating order. Nevertheless, the same 

setting with a slightly different initial 

perturbation initiates different motion and 

recovering equilibrium (Fig. 52.C). This 

last simulation shows the characteristics of 

a typical run: while the net change of U is 

positive during some episodes of the motion 

(one of these is highlighted in the figure by 

a dashed circle), U decreases on average, 

and converges to its minimum value 

corresponding to a new equilibrium.  

3.4.6  Summary and ongoing 
work 

We developed a sufficient condition of LS 

for planar objects with two contacts over a 

 

Fig. 52. Diagram of U vs. x
1
 (top) and trajectories in z

1
-z

2
-x

1
 space (bottom) obtained by numerical 

simulations of the linearized equations of a biped, starting from a perturbed equilibrium. A: mild slope 

and low coefficient of restitution (=15°; e=0.3, e
t
=0.1; 

1
=

2
=1.2; h=0.6; l

1
=l

2
=1.2; the initial 

perturbation is z1=0.04; z2=0; 18.0
1
x  0

1
z ; 06.0

2
z ). In this case, Thm. 3.4.1 predicts stability; 

accordingly, U decays rapidly to its minimum value (thin line in top panel) corresponding to two-contact 

equilibrium. B: steeper slope and high coefficient of restitution (=45°, e=0.7, all other data are the same 

as in A). Thm. 3.4.1 does not predict stability; indeed the object undergoes divergent downhill motion 

with U growing. C: the same as B, but with different perturbation (z1=0.024, other data as in B). The 

object stops in this case. In the top panel, an episode of free flight (U increasing gradually) and a 

subsequent impact (sudden drop of U) are highlighted by an ellipse. The net change of U during this 

episode is positive, which explains why Thm. 3.4.1 does not predict stability in this situation.   
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flat or sloped terrain. Comparison to 

previous sufficient stability conditions as 

well as our numerical simulations suggest 

that the available results are far from sharp, 

especially if impacts are not perfectly 

plastic. Indeed, finding divergent motion in 

a numerical simulation by trial and error is 

rarely successful. At the same time, our 

analytical example of instability and 

experimental reproduction of divergent 

motion (unpublished result) indicate that 

the lack of stability against dynamic 

perturbation is a definitely existing 

phenomenon. 

The problem discussed here naturally 

connects to the stability analysis of various 

gaits of dynamic locomotion, represented 

by a periodic orbit in state space rather than 

a fixed point as in our case [180] [67] [88]. 

However our problem is more involved as it 

is not tractable by the standard methods of 

linear stability analysis. On the other hand, 

the results of the present work are just initial 

steps towards the general understanding of 

Lyapunov stability in rigid multibody 

systems. Among others, the LS analysis of 

three dimensional rigid bodies with 

frictional supports appears to be completely 

unexplored despite its practical importance. 

The existing results also suffer from being 

model-dependent. Rigid body impact 

models are simple phenomenological 

descriptions of a complex mechanical 

process involving elastic vibrations, 

plastification, and viscous damping, so it is 

not surprising that their quantitative 

predictive power is very limited [152]. In 

the context of the current problem, the lack 

of a perfect impact model prevents one from 

finding exact stability boundaries. 

Nevertheless we believe that model-

dependent theoretical investigations are 

useful for the understanding of the 

qualitative stability properties of the 

systems in question. At the same time, 

active control schemes [166] might yield 

more reliable stabilization in situations 

where high accuracy is needed. 

Recently, a much sharper stability condition 

has been developed for systems with 

inelastic impacts, by the author of this thesis 

and by his co-author Yizhar Or [174]. Those 

results are not presented in this thesis. 

A more general computational approach to 

proving LS has been published very 

recently by Posa & Tedrake [132]. Those 

authors introduced an efficient 

computational algorithm that utilizes 

convex optimization for constructing sum-

of-squares Lyapunov functions for planar 

mechanical systems with unilateral 

frictional contacts under inelastic impacts. 

This algorithm enables determination of 

Lyapunov stability for equilibrium states, 

and even computation of conservative 

bounds on regions of attraction. The 

efficiency of this method in the case of the 

planar biped and related problems will be 

tested in the future.  

  

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



91 

 

CHAPTER 4: SUMMARY  

4.1  CLOSING REMARKS

N this thesis, I presented a part of the 

research, which I conducted during the 

past decade. I discussed in detail those 

segments of my work, which focus on the 

abundance and various properties of static 

equilibria. Some of these problems were 

geometric by nature whereas others were 

inherently linked to the dynamics of 

mechanical systems. 

Due to length limitations, other aspects of 

the my research efforts have been skipped. 

These include the stabilization of equilibria 

by feedback control [166]; the analysis of 

non-static contact modes and a deeper 

investigation of Painlevé’s paradox in 

contact mechanics [36] [177], which are all 

tightly linked to the content of Chapter 3. I 

also skipped newer and stronger theoretical 

results about the Lyapunov stability of a 

planar rigid body, as well as experimental 

investigations, which were unpublished 

when the structure of this thesis was worked 

out [174]. Finally, a large body of applied 

research in geomorphology emanating from 

the development of equilibrium classes was 

only briefly mentioned, see for example 

[178]. 

I believe that the mechanics of rigid bodies 

and multibody systems is a very rich topics, 

and the narrowed scope that I have chosen, 

includes enough intriguing questions to be 

investigated. If nothing else, the vast 

number of questions, which are left open by 

the dissertatioon, demonstrates how much 

work there is to be done. We have seen that 

there are many seemingly simple unsolved 

theoretical questions about the number of 

equilibria, such as whether monostatic 

floating bodies exist; and the question of 

neutral floating under capillary forces etc. 

On the side of dynamics, verifying 

Lyapunov stability of equilibria in a 

systematic way appears to be a fundamental 

theoretical goal, for which we have no 

efficient tools at this time, and thus even the 

simplest model systems may pose severe 

difficulties. 

Taking an engineer’s viewpoint, we have 

also seen that there is a wide range of 

practical applications of problems related to 

static equilibrium. Dealing with uncertainty 

in a simple, efficient and reliable way is an 

evergreen dilemma of the engineer, when 

artificial systems interact with the physical 

world. For example, the pose statistics 

estimation method of Sec. 3.2 and the 

proposal of developing universal part 

feeders using round cages (Sec. 2.3) aim to 

be small steps towards eliminating one form 

of uncertainty in the process of automated 

industrial assembly. Stability analysis can 

also be interpreted as a way of dealing with 

unpredictable perturbing effects. A better 

understanding of stability properties is 

highly desired in the field of robotics, where 

the primary challenge of grasping, object 

manipulation and robotic locomotion is to 

ensure safe (stable) operation in situations 

where the environments and the physical 

models are complex and often uncertain. 

 

I 
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4.2  SUMMARY OF MAIN 
RESULTS 

The new results of Chapter 2 and 3 are 

summarized by five statements 

Principal result 1 (joint work with G. 

Domokos). We investigated the equilibria 

of rigid bodies resting on a flat, horizontal 

surface, and  

a) we proved the existence of convex, 

homogeneous objects, which are mono-

monostatic on a horizontal surface and 

constructed examples of these shapes 

b) we developed a parametric model of 

turtle shells and fitted the model 

parameters to the typical shapes of 

various turtle species. We showed that 

the shell shapes of some species are 

monostatic or almost monostatic, which 

allows self-righting with minimal effort 

on horizontal terrain. 

Principal result 2. By investigating the 

equilibria of rigid bodies resting in a round 

cage in the absence of dry friction, 

a) I proved that planar objects are typically 

either monostatic if and only if the 

radius of the cage is below a critical 

value, or they are monostatic for any 

cage size. 

b) I developed a computational algorithm, 

which determines the range(s) of cage 

sizes, for which a planar, polygonal 

objects or a spatial, polyhedral object is 

monostatic. 

c) I pointed out that the application of 

spherical cages in industrial part feeders 

offers a step towards the development of 

universal feeders in three dimensions. 

Principal result 3: I proved the existence of 

rigid bodies of density ½ other than the 

sphere, for which floating in a liquid of 

density 1 in every pose corresponds to static 

equilibrium. 

Principal result 4: With the aid of a 

phenomenological Markov chain model of 

the motion of 3-dimensional objects 

dropped onto a horizontal surface, I 

developed new simple estimators of pose 

statistics. By using simulations of motion 

over a frictionless surface as a reference, I 

also demonstrated that one of the new 

estimators outperforms previously 

proposed ones found in the literature. 

Principal result 5: I have examined the 

stability properties of the equilibria of rigid 

bodies and multibody systems in the 

presence of unilateral contacts and dry 

friction, and  

a) by considering the infinite-stiffness 

limit of a compliant contact model, I 

demonstrated that they possess static 

stability provided that (i) none of the 

contact forces is at the boundary of the 

associated friction cone, and (ii) if all 

contact are constrained to stay in stick 

state, then the system possesses first-

order rigidity. 

b) (joint work with Joel W. Burdick and 

David Gontier) we approximated the 

dynamics of a planar rigid body with 2 

point contacts on a slope, near an 

equilibrium state by a piecewise linear, 

hybrid dynamical system, and 

developed a necessary condition of 

Lyapunov stability of the equilibrium. 

c) I showed that an equilibrium may lose 

its Lyapunov stability via the 

emergence of an infinite sequence of 

impacts even if impacts are perfectly 

inelastic. 

These results have been published in [53], 

[168], [169], [170], [171], [172], [173], 

[175], and [176].  
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CHAPTER 5:  

 

APPENDIX

5.1  MONO-MONOSTATIC BODIES 

Here we prove Lemma 2.2.4, Lemma 2.2.5, 

and Lemma 2.2.6. 

5.1.1  Proof of Lemma 2.2.4 
The poles are singular points because of the 

reflection-symmetry of r to the planes Θ=0 

and Θ=π/2 (cf. equation (8)). 

At other points, the partial derivatives of r 

are determined based on equations (2) and 

(9). The first one is: 

 
21

ff
a

d
r












. 

(132) 

This partial derivative is zero if either  

0
12
 ff  (133) 

 (which holds for the poles only), or 

0






a
, 

(134) 

which holds if and only if =k/2. At these 

lines 

2mod1)(1),( kifdr
i

   (135) 

(cf. equations (6) and (7)). Now, all we have 

to show is that the partial derivative with 

respect to is non-zero along these lines. 

This derivative is given by 

2mod1,
)(

ki
d

df
d

r
i











 (136) 

which is non-zero except at the poles. Thus, 

there are no other singular points.  

5.1.2  Proof of Lemma 2.2.5 
The reflection symmetry of the body with 

respect to the =0 and =/2 planes implies 

that G is on the vertical line =/2 passing 

through the origin O. The signed vertical 

distance h between O and G can be 

expressed as a function of the parameters c 

and d:  

),(
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(137) 

where V(c,d) denotes the volume of the 

body, and G≡O iff h(c,d)=0. 

Equation (137) can be transformed to. 
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which shows that h(c,d)=0 is equivalent to 

the condition 

  



 





2

0

2/

2/

43

4

1322

2

3*
0sincos)(),( ddrdrdrdrdch  (139) 

if d>0, moreover 

   ),(sign),(sign
*

dchdch   (140) 

We remark that h*(c,d) is continuous in c 

and d, for c>0 and arbitrary d (d might be 0 

as well). 

Observe that  

 




 





2

0

2/

2/

*
sincos)0,( ddrch  

(141) 

is positive if c approaches infinity, because 

)sin(),,(lim  


cr
c

. (142) 

and the product rcossin is nonnegative 

(see also Fig. 12.A). 

At the same time if c→0, we have 
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 (143) 

and the product rcossin is almost 

everywhere negative yielding h*(c,0)<0 (cf. 

Fig. 12.B). 

Since h*(c,0) is continuous in c, there exist 

positive constants c1<c2 such that  

h*(c1,0)<0<h*(c2,0) Again, because of the 

continuity of h*(c,d), there exists a constant 

0 for which 0<d<0 implies 

h*(c1,d)<0<h*(c2,d) (Fig. 13). So, if 0<d<0, 

then there is a function F1(d) satisfying 

c1<F1(d)<c2 for which h*(F1(d),d)=0 and 

thus c=F1(d) implies G≡O . 

5.1.3  Proof of Lemma 2.2.6 
We prepare the proof of Lemma 2.2.6 in 

four parts.  

In part A, a sufficient condition of local 

convexity is determined, based on the 

Hessian of the surface in a local orthogonal 

coordinate system. This condition can be 

applied everywhere, except at the poles. In 

part B, some functions related to r are 

extended to a closed domain and their 

boundedness is stated in Proposition 5.1.1. 

Based on these results, in part C, we prove 

Proposition 5.1.2, stating convexity at 

regular points (we determine a function 

F2(c) and show, that the surface is convex at 

such points if d< F2(c)). Finally, it is 

verified in part D that the convexity 

requirement is fulfilled at the poles, too. 

This is the statement of Proposition 5.1.3. 

The three propositions together imply 

Lemma 2.2.6, which completes the proof. 
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A A sufficient condition for local convexity 
at an arbitrary point 

At any surface point P with spherical 

coordinates 0,0. r can be expressed as 

z(x,y) in an x-y-z local orthogonal 

coordinate system, axis z passes through the 

origin O (see Fig. 53). A sufficient 

condition of local convexity is that the 

Hessian  












),(),(

),(),(

dczdcz

dczdcz

yyyx

xyxx

H  
(144) 

of z(x,y) exists and it is positive definite. 

Since zxy=zyx, this condition is equivalent of 









0),(),(),(

0),(

2
dczdczdcz

dcz

xyyyxx

xx  (145) 

The elements of the Hessian can be 

expressed as functions of  and . The 

following results were computed 

analytically for a general function of the 

form (2), using Maple 7. The computational 

details are omitted here. Lower indices in 

the following equations denote partial 

derivatives with respect to the variables in 

the indices.   
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The three formulae above, substituted in 

equations (145) and (146) yield a sufficient 

condition of local convexity of the surface. 

It can be used anywhere but at the two 

poles, where the surface is not twice 

differentiable. 

B Boundedness of some functions related 
to r 

Here we show 

Proposition 5.1.1: There exists a positive 

continuous function M(c) satisfying the 

following two conditions: 

  Mr  2/,2/ 


. (149) 

2/if
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,
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22
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



M

rr
r

rr
 (150) 

We can trivially satisfy (149), but there is 

no such guarantee for the boundedness of 

left side of (150), since these are continuous 

functions on open domains; observe also 

that the denominators cos of (150) 

 

Fig. 53. Local coordinate system at point P of 

the surface. 
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converge to zero at the borders of the 

domains. 

Proof of Proposition 5.1.1: 

Let us define ext() for a given function 

(,) with 2/  , as the same function 

on an extended, closed domain : 
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trivially exist and are continuous in  and   

if 2/  . Simultaneously, for 2/  , 

one can determine the functions in (152) 

analytically, based on the definition (151) to 

verify the same statement.  

According to our analytical computations 

(made with Maple 7), the corresponding 

limit values exist and they are continuous in 

, which imply the continuity of the 

extended functions (152). The results are 

quite lengthy, that is why only one of them 

is presented here: 
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The denominator is never zero because it 

equals 
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therefore function (153) exists and it is 

continuous in . 

According to the Extreme Value Theorem 

[22], continuous functions on compact, 

closed manifolds are always bounded. 

Thus, the maximum M(c) of all the 

functions in (152) exists. M(c) satisfies the 

conditions (149) and (150) and it is 

continuous in c. 

C The function F2(c)  

Here we construct the function F2(c) such 

that whenever d<F2(c), r is convex at all 

regular points. In point D, we will extend 

this result to the poles. 

Proposition 5.1.2: If  
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(where M(c) is defined in Proposition 5.1.1) 

then r is convex at all regular points. 

Proof of Proposition 5.1.2: 

By using Proposition 5.1.1, equation (155) 

and the fact that (155) implies 1/2<r<3/2, 

we develop the following bounds of the 

elements of the Hessian (146)-(148):  

dM
R

rd

r
z

xx
4

3

2
0

1

2





  
(156) 

 

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



97 

 

dMdMdM

r

rd

r

rd

r
z

yy

8
3

2
sin44

3

2

cos

sin
0

cos

1

222





















 

(157) 

 

22

22

23

2

222

168

cos16sin44

cos

2

cos

sin

cos

MddM

MddMdM

r

rrd

r

rd

r

rd
z

xy
























 

(158) 

From inequalities (155)-(158) we conclude 

by: 

0
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(159) 

 

and by 

ie. the conditions of convexity (145) are 

satisfied. The function F2(c) that we have 

found is continuous in c.  

D Convexity at the poles.  

In this part, we prove 

Proposition 5.1.3: the object is locally 

convex at the two poles if d< F2(c).  

Here, local convexity is demonstrated by 

showing a plane, which  

 contains the examined pole (N or S), 

 all nearby points of the surface are on 

the same side of the plane, 

 the interior of the object is also on the 

same side of the plane 

Proof of Proposition 5.1.3: 

Consider the orthogonal coordinate system 

of Fig. 53 

 with 0=-/2 and 0=0. The plane z=(1+d) 

contains the north pole of the surface and all 

other points are on the z<1+d side of this 

plane, because  

dr

rz





1),(

sin),(),(



 . (161) 

The origin O is at z=0 also on the z<1+d 

side. Thus, the surface is convex at the north 

pole for any value of d. 

Similarly, the plane z=-1+d contains the 

south pole and the origin O is at z=0 on the 

z>-1+d side. In order to prove local 

convexity, we need to show 

drz  1sin),(),(   (162) 

for any  if 0<+/2<<1 and d< F2(c). The 

bound (162) needs a deeper investigation 

than (161) because r has a local minimum 

point at the south pole. 

We start the proof of inequality (162) with 

the following simple identity, which is true 

for arbitrary positive M (see also (155)): 
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This relation is modified in three steps, 

which are commented below: 
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The first step was obvious. In the second 

step we used that  

 

 
2

2

2/
2

1
1...

sin2/
3

1
1
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



 (165) 

if 0<(+/2)<<1, which is simple to derive 

from the Taylor expansion of sin() at =-

/2 up to the third-order term. The third step 

is a consequence of the following bound (cf. 

Fig. 10 and Eq. (149)): 
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M
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 (166) 

which again holds for 0<(+/2)<<1. 

Eq. (164) can be rearranged as  

 sin1)sin1(  rd  (167) 

Via substituting (2) into (167), we arrive to 

(162). Thus, the surface is convex at the 

south pole, too. 

5.2  TURTLE SHELL MODEL  

Measured individuals are in decreasing 

order based on their height/width ratio. In 

the last column, a second class is shown in 

parenthesis for individuals with parameter 

values very close to the boundary of two 

stability classes. We also measured turtles 

where the shell’s shape has adapted to 

special habits (e.g. Geochelone sulcata, 

digging itself into the sand, Malacochersus 

tornieri, squeezing the shell between rocks). 

Although the model could still be fitted to 

the shell’s contour with reasonable error 

(e<0.08, see (17)), these data have been 

excluded from the statistics in the [R,p] and 

[R,k] parameter planes.  

 

SERI

AL # 
INPUT DATA FROM MEASUREMENT 

FITTED MODEL 

PARAMETERS 
ERROR CLASS 

 

species 

contour of 

main cross 

section 

h=height/ 

width ratio 
k p h 

e  

cf. eq. (6) 
 

1 
Geochelone 

elegans 
 

0.99 -0.19 0.65 1.00 0.0006 S3 (S1) 

2 
Geochelone 

elegans 

 

0.90 -0.00 1.04 0.88 0.0013 S1 

dc_1313_16

Powered by TCPDF (www.tcpdf.org)



99 

 

3 
Stigmochelys 

pardalis 
 

0.87 -0.11 0.83 0.89 0.0009 S3 (S1) 

4 
Stigmochelys 

pardalis 
 

0.85 -0.27 0.63 0.85 0.0008 S3 

5 
Stigmochelys 

pardalis 
 

0.85 -0.14 0.63 0.85 0.0025 S3 

6 
Stigmochelys 

pardalis 
 

0.85 -0.32 0.49 0.85 0.0015 S3 

7 
Geochelone 

elegans 
 

0.85 -0.06 1.07 0.84 0.0012 S2 (S1) 

8 

Astrochelys 

radiata 

  

0.84 -0.00 0.84 0.85 0.0012 S3 (S1) 

9 
Stigmochelys 

pardalis 
 

0.83 -0.39 0.48 0.83 0.0012 S3 

10 
Stigmochelys 

pardalis 
 

0.82 -0.31 0.93 0.81 0.0007 S2 

11 
Stigmochelys 

pardalis 

 

0.81 -0.38 0.55 0.80 0.0014 S3 

12 
Stigmochelys 

pardalis 
 

0.79 -0.39 0.51 0.79 0.0007 S3 

13 
Stigmochelys 

pardalis 

 

0.79 -0.27 0.49 0.81 0.0010 S3 

14 
Psammobates 

tentorius 

 

0.79 -0.42 0.34 0.79 0.0013 S3 

15 
Stigmochelys 

pardalis 

 

0.79 -0.42 0.34 0.79 0.0013 S3 
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16 
Terrapene carolina 

triungis 
 

0.78 -0.47 0.21 0.78 0.0028 S3 

17 
Stigmochelys 

pardalis 

 

0.78 -0.38 0.23 0.78 0.0009 S3 

18 
Chelonoidis 

carbonaria 

 

0.78 -0.29 0.50 0.79 0.0022 S3 

19 
Testudo graeca 

anamurensis 

 

0.72 -0.33 0.84 0.73 0.0013 S2 

20 Chelonoidis nigra 

 

0.72 -0.19 0.95 0.72 0.0013 S2 

21 
Chelonoidis 

carbonaria 

 

0.68 -0.12 0.96 0.70 0.0023 S2 

22 
Eurotestudo 

hermanni 
 

0.67 -0.31 0.59 0.66 0.0009 S3 (S2) 

23 
Eurotestudo 

hermanni 

 

0.65 -0.34 0.34 0.65 0.0011 S3 (S2) 

24 
Terrapene carolina 

bauri 

 

0.64 -0.57 -0.06 0.65 0.0013 S3 (S2) 

25 
Trachemys scripta 

elegans 

 

0.63 -0.73 -0.06 0.67 0.0032 S3 (S2) 

26 
Cuora 

amboinensis 
 

0.58 -0.58 -0.29 0.63 0.0071 S3 (S2) 

27 
Rhinoclemmys 

pulcherrima manni 
 

0.56 -0.55 -0.36 0.58 0.0020 S3 (S2) 

28 Phrynops hilarii 

 

0.45 -0.73 0.13 0.47 0.0028 S2 
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29 
Carettochelys 

insculpta 
 

0.43 -0.61 -0.18 0.46 0.0051 S2 

30 Chelonia mydas 

 

0.41 -0.33 -1.02 0.43 0.0050 S3 (S2) 

5.3  PART FEEDERS 

5.3.1  Planar α-edges are not 
bigger than a semi-circle  

Assume that a circle segment e with 

endpoints V1 and V2, contains a semi-circle 

s with endpoints S1 and S2 (Fig. 54) and it is 

an α-edge of a planar object . e  does not 

intersect  but at its endpoints (which are 

vertices of the α-hull), thus s does not 

intersect . Let d>0 denote the smallest 

distance between points of  and of s. By 

the definition of the α-hull, the full circle c 

fitted to e encloses . We shift c by distance 

d/2 in a direction perpendicular to S1S2 such 

that it ceases to cover the area filled by grey 

color in Fig. 54. Nevertheless the distance 

of any point of the grey area from the closest 

point of s is ≤d/2, i.e.  remains covered by 

the shifted circle. Hence the grey area of 

Fig. 54 is not part of the α-hull, 

contradicting the initial assumption that e is 

an α-edge. 

5.3.2  Proof of Lemma 2.4.2 
Consider a planar object resting in a circular 

cage. All frictionless support reactions point 

towards the center O of the cage. Hence the 

equilibrium of moments about O is satisfied 

if and only if condition (i) of Lemma 2.4.2 

is true. 

The vector sum of the support reaction(s) is 

vertical and points upwards. Thus, there 

exists a force with upward pointing vertical 

component among the support reaction(s). 

Similarly, there exists a force with non-

positive, and one with non-negative 

horizontal component. Such forces act at the 

lower, the left and the right halves of the 

cage, respectively. Thus the contact set 

must contain point(s) belonging to each of 

these three parts. At the same time, the 

contact set is either a single point or an α-

edge not bigger than a semi-circle 

(Appendix A). These properties of the α-

edge imply that condition (ii) is necessary. 

To show that condition (ii) is also sufficient, 

note that (1) the endpoints of the contact set 

are vertices of the α-hull, which are actual 

contact points between the object and the 

cage; and (2) the endpoints of a contact set 

containing P are in the lower left and lower 

right quarters of the cage, respectively. 

Observations (1), (2) imply that the weight 

of the object can be balanced by frictionless 

contact forces at the endpoints of the contact 

set, or by a single one if the contact set is a 

single point. Hence the object is in 

 

Fig. 54. Illustration of Appendix 5.3.1. 
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equilibrium. Finally, the condition (iii) of 

stability is proved in [160] §586. 

5.4  FLOATING OBJECTS .  

This section contains some technical details 

of the proof of Lemma 2.5.2. 5.4.1  Deviation of aij from its 
trivial value 

aij is given by (36) as a partial derivative of 

Gi, which is defined by an improper integral 

in(31). We define a new function  


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(168)  

 

where 

  means a left limit of β. Eq. 

(168) will prove useful later, see Appendix 

5.4.3. This definition is motivated by the 

square-root type singularity of Z at =, 

which implies that Q is bounded and strictly 

positive. With the new function and 

equations (24)-(26),(31) we obtain 
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(169) 

The variable  of integration is changed to =(-)1/2(-)-1/2: 
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(170) 

This form of Gi is a proper integral, and 

also free of terms diverging to infinity at 

=. aij can now be calculated from (36) 

and (170) by using the Leibniz rule, then by 

plugging =, and finally by evaluating a 

simple integral: 
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 The formula above contains Q(,,Yj()), 

which can be expressed as a function of X(): 
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We plug this equation into (171) and use 

(21)  to express aij explicitly as a function of 

Yj: 
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Eq. (40) and point (ii) of Lemma 2.5.2 can 

be expressed as: Yj()(-1)j+1exp(k) 

and )(
~

a ,b(), )('
~

a , b’()exp(k). 

Plugging these into (173) together with the 

inequality ≥1; replacing higher order 

terms in  by a small constant time ; and 

noting that the term under the square-root 

sign has a strictly positive lower bound lead 

to the final expression 
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with some positive constant k1 not specified 

for brevity. This is the result we had to 

prove.  

5.4.2  A lower bound of detA 
An approximation of aij with *exp(k) 

uncertainty has been given by  (174). This 

formula yields 

)exp(*

...det

22

21122211
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A

 

(175)  

 

Since >1, we have found a positive lower 

bound of detA.  

5.4.3  The second derivative of Gi 

This section is devoted to the proof of 

equation (41). The second derivative of Gi 

is calculated from (170) by successive 

applications of the Leibniz rule. The result 

(calculated by Maple software and not 

shown) can be written in the form 
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where Wlk are functions of i,j,,,,Yj(), 

a() and b(). Specifically, they include 

constants and eight non-constant terms 

listed below: 
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As we show below, each term has a 

bounded absolute value, and its deviation 

from its trivial value is at most 

constantexp(k). 

Term 1 is not bigger than -1/2, hence it is 

bounded from above by the constant 1
-1/2; 

this term is not affected by perturbations of 
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the water envelope, since it does not depend 

on any of the functions Yj a or b. 

Term 2 takes the form 

 
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Term 3 and 4 are 



k

e00  

Term 5 and 6: it is enough to show that 

Q(...) itself has an absolute value bounded 

from above and below by positive bounds, 

and that it is affected by at most a constant 

times exp(k) by the perturbation. By 

using (21), (22) and (168), expanding the 

nominator and ordering its terms into pairs 

(marked by square brackets), Q can be 

expressed as  
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Only a few terms of the nominator are 

shown. Each square bracket in the 

nominator can be expressed as *(-) in 

order to cancel the denominator. This step 

is straightforward in some cases, but less so 

in others. For example, in the case of the 

first two square brackets, we use that 

     '
~

,
~

aa ; at the third one, we 

exploit that Yj()=(-1)j+1 if ≤1 and that 

(40) holds and -2--221
-3(-) if >1.  

This calculation boils down to 

Q(,,Yj())1+/ *exp(k).  (177) 

Term 7: The trivial value of Q is given by 

(177). This is used to determine the trivial 

value of term 7, which is bounded because  
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(178) 

 

The deviation of term 7 from its trivial value 

can be obtained analogously to the 

calculations of term 5 and 6 by exploiting 

that the first and second derivatives of a
~

 

and b are . These are not shown for 

brevity. 

Term 8: the trivial value can be 

investigated using a formula similar to 

(178):  
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As before, explicit bounds of the nontrivial 

value are not shown. They can be obtained 

by exploiting that the derivatives of a~  and 

b up to third order are 0. 

Both of these properties are inherited by the 

second derivative of Gi according to eq. 

(176). This final step leads us to (41).  

5.5  POSE STATISTICS  

5.5.1  Dynamic simulation 
The estimators of Sec. 3.2 were tested 

against a dataset on pose statistics generated 

by numerical simulation. n=100 drop tests 

have been simulated with each of 1057 

random polyhedra (see point A, below). 

Frictionless impacts were assumed with the 

restitution coefficient first set to ρ=0.2. 

Then, the tests were repeated with ρ=0.5 

and 0.8. The simulations yield 3 datasets 

each consisting of N simulated 

probabilities, where N=6665 is the total 

number of stable poses summed for the 

1057 objects. The polyhedra of the dataset 

had 2 to 21 stable poses and the associated 

probabilities are in the range 0-0.75. There 

were no monostatic objects in the dataset.  

The details of the object generation and the 

dynamic simulation are given below. The 

algorithm has been implemented under 

MATLAB R2010b. The run time of a single 

drop test on a PC (CPU: Intel Core2 2.5 

GHz; OS: Microsoft Windows 7) is in the 

range of 0.2-5 sec. The execution time is 

low if the coefficient of restitution for 

impacts is low or if the stable facets are 

large.  

A Random shapes  

Convex, random polyhedra are generated 

by the following algorithm:  

-  Random points are generated in 3-space. 

Each coordinate of each point is drawn 

from a normal distribution with mean 0 

and variance 1; the number of points is 

4+, where  is a random number from a 

geometric distribution with parameter 

0.1.  

- The convex hull of the points (found by 

any standard method) provides the 

surface of the object. This is a convex 

polyhedron with triangular faces. In the 

actual dataset the number of vertices is in 

the range 4-23; the number of faces is 

between 4 and 42. The mass, the location 

of the center of mass, and the moment of 

inertia tensor of the object are calculated 

by assuming constant unit mass-density 

inside the polyhedron. 

- The object is resized to set the maximum 

of the distance function r(u) to 1.  

- To include objects representing 

inhomogeneous and/or concave parts, 

the center of mass is shifted by random 

numbers di (i=1,2,3) along the 

eigenvectors of the moment of inertia 

tensor. The variables di are drawn from 

uniform distributions over the intervals 

(-qi,qi) where qi are the corresponding 

radii of gyration of the object (i.e. qi
2 are 

the eigenvalues of the moment of inertia 

tensor divided by the mass of the object).  
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B State variables of the objects and initial 
conditions 

The motion of the objects is described in a 

Cartesian reference frame with axes x-y-z. 

The z axis points vertically upwards. The 

support surface is the z=0 horizontal plane. 

The dynamic state of a rigid body is 

determined by the vertical coordinate zO(t) 

of its center of mass and its time derivative 

O
z (t); a 3 by 3 rotation matrix R 

representing its orientation; and its 3 by 1 

angular velocity vector . The horizontal 

dynamics of O is trivial because all external 

forces acting on the object are vertical. 

Initially (t=0), the object is high above the 

surface relative to its size (zO(0)=20). The 

initial orientation is chosen randomly with 

uniform distribution using an algorithm 

from [5]; the initial velocity and angular 

velocity are zero. 

C Continuous dynamics 

The moving polyhedron is in one of the 

following contact modes: free fall, sliding 

on a vertex, sliding on an edge (i.e. 2 

vertices), and sliding or resting on a face 

(i.e. 3 vertices). Accordingly, it is assumed 

that the ground exerts nonnegative, vertical 

contact forces to k=0, 1, 2, or 3 vertices of 

the object, which are in contact with the 

ground. More than 3 contact points are also 

possible if an object has coplanar triangular 

faces, but this scenario does not occur for 

shapes obtained by taking the convex hull 

of generic random points. The Newton-

Euler equations and k contact constraints 

are used to determine the k contact forces 

together with the resulting acceleration and 

angular acceleration of the object. This way, 

the continuous motion of the object is 

determined by integrating a system of first 

order, ordinary differential equation in the 

variables zO and 
OO

vz  , R,  , see point D 

below for details. 

The integration of the ODE is interrupted 

whenever an impact between the object and 

the surface is detected (see point E below), 

or whenever one of the contact forces 

becomes negative.  

D Equations of motion 

The ODE describing the continuous motion 

of the object consists of the following parts:  

Newton’s law: 





k

j

jO
Nmgv

1

1  (179) 

Euler’s equations of motion: 














 





k

j

zjj
N

1

1
urIωIω  

(180) 

 

kinematic identity: 
OO

vz   (181) 

kinematic identity: RΩR   
(182) 

 

where g is the constant of gravity; m is the 

mass of the object and I denotes its moment 

of inertia tensor in local coordinates; Nj are 

the contact forces, k is the number of sliding 

contacts, and rj stand for the position 

vectors of the corresponding vertices in 

local coordinates; uz is an upward pointing 

vertical unit vector.  is the matrix 

corresponding to the  cross product 

operation (i.e. x=x for any x);  

contains 0’s and the elements of . 

The contact forces Nj are determined from 

the non-penetration constraints 

zO+uz
TRrj=0. Substitution of (181), (182) 

into the second time derivative of this 

constraint yields  

  0
j

T

zO
v rΩΩΩRu   (183) 

Substituting (179), (180) into (183) yields a 

system of linear algebraic equations for the 

contact forces. 

E Modeling impacts  

Single-vertex impacts are assumed to be 

frictionless (i.e. impact momenta are 
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vertical) with Newtonian coefficient of 

restitution . The impact impulse and the 

post-impact velocity of the object are 

determined uniquely by the linear and 

angular momentum laws and the coefficient 

of restitution. Simultaneous impacts at 

several vertices are not determined uniquely 

by these laws. We treat them as sequences 

of single-vertex impacts. In each step, the 

vertex with the highest velocity pointing 

towards the underlying surface is assumed 

to undergo an impact. The impact sequence 

ends if none of the vertices moves towards 

the underlying surface or if a Zeno point is 

detected (see point F below). 

The modelling of simultaneous impacts is 

not possible without ad hoc rules such as the 

one described above [143]. As we have 

explained earlier, it is one of the basic 

assumptions of this work that pose statistics 

are not sensitive to this type of modelling 

error.  

F Detecting Zeno points 

An approaching Zeno point is indicated by 

an impact event, at which the pre-impact 

vertical velocities of all vertices that are 

very close to the ground (the threshold 10-9 

is used in the simulation), are either positive 

(moving upwards) or very close to zero 

(threshold: -10-5) and the set of ‘slowly 

moving vertices’ with velocity very close to 

zero is nonempty. If this situation is 

detected, we apply appropriately chosen 

instantaneous, vertical impulses at the set of 

slowly moving vertices, in order to change 

their vertical velocities to 0. The necessary 

impulses are determined uniquely by the 

linear and angular momentum laws. This 

impulse is an approximate replacement for 

the infinitely many small impacts leading to 

the Zeno point. After the impulse, the 

contact mode of the object switches to 

sliding on these vertices. 

G Termination 

The simulation is completed if a face of 

the object establishes contact with the 

surface. The object conserves its 0 initial 

angular momentum about the z axis, hence 

face-contact implies immobility. 

5.5.2  Algorithm of the MEAE 
estimator 

The MEAE estimator works in the 

following steps: 

1: the stable faces are found by testing every 

face one by one. For specific formulas, see 

[94] [168]. Those nodes of the splitting 

graph, which are labelled by a single stable 

pose are drawn.   

2: the saddle points of r are found by testing 

every edge one by one. The edges with 

saddle points are l1,l2,…,lH and the critical 

values of r are r1r2,… rH.  

3: The distance of every edge (including 

those without saddle points) from the center 

of mass is determined. 

4: The following steps are repeated for 

every critical value ri, i=1,2,…,H. 

4A: a connectivity graph of faces is 

generated by testing every edge one by one. 

Two faces are connected if they share an 

edge, which is closer to the center of mass 

than ri. 

4B: the connected components of the 

connectivity graph are found using a 

breadth-first traverse. 

4C: if the two faces adjacent to edge li are in 

different components (Γia  and Γib) of the 

connectivity graph, then a splitting event of 

the reachable set occurs at the examined 

saddle point. Accordingly, two edges and a 

node are added to the splitting graph. If not, 

then the steps 4D-E are skipped.  

4D: for each facet in the components Γia  

and Γib, the centroid solid angles of the areas 

over which r(u)<ri, are determined. The 

centroid solid angles are summed within 
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each component to obtain (Γia) and 

(Γib). 

4E: The transition probabilities associated 

with the splitting event are determined 

using (69). 

5: the probabilities found in step 4F are 

propagated down the complete splitting 

graph to obtain the estimation. 

A polyhedron with v vertices has O(v) 

edges and facets. Hence, the computational 

complexity of all steps is at most O(v). For 

almost all shapes, the number of stable 

poses and saddle points are only O(1), i.e. 

step 4 is repeated O(1) times. In sum, the 

complexity of the estimator is O(v).  

5.6  LOCAL DYNAMICS AND STATIC STABILITY 

This appendix shows that the local 

minimum of the potential energy implies 

stability against small variations of the 

loads, as long as the external loads and the 

contact dynamics are conservative or 

dissipative. This an extension of the 

classical LeJeune Dirichlet theorem [91]. 

Perturbations are small in the following 

sense: 

Definition 5.6.1: the norm of a system of 

conservative or dissipative external forces 

(in the sense of condition (iii) of Sec. 3.3.2) 

is the supremum of  where P(q) 

is the corresponding potential over the 

configuration space. 

The exact statement and its proof are given 

below.  

Theorem 5.6.2: if a system of rigid bodies 

is in equilibrium and conditions (i)-(iii) of 

Theorem 3.3.1 are satisfied, then for any 

scalar  there is another scalar φ such that 

after any instantaneous variation of the 

external loads of norm not exceeding φ, the 

configuration q(t) of the system satisfies 

||q(t)-q0||< for all t. 

Before presenting the proof, the following 

notations are introduced: let Ek and 

kk
EE

1~ 
  denote the unscaled and scaled 

kinetic energies of the system; let the scalar 

M denote a ‘characteristic mass’ of the 

system such that the kinetic energy of the 

system is 2
||),( qqq  ME  for any q and 

. Then, 
2

||
~

q  ME  where ’ denotes 

derivative with respect to rescaled time 

  

Proof of Theorem 5.6.2: the contact 

functions S(i) are assumed to be continuous 

in their input variables f(i), which are 

themselves smooth functions of their own 

input variables q
~ , q 

~ . Furthermore, all 

contact functions take strictly positive 

values in the initial equilibrium state by 

assumption (i) of Sec. 3.3.2. Together these 

statements imply that there exists a small 

scalar  such that if   

 eq
~~

 (184) 

and 

q
~

 (185) 

then all contact functions remain positive. 

The system can move anywhere inside this 

region of the state space without contact slip 

or separation. 

It has been shown in Sec. 3.3.4 that  

has a minimum at eq
~~

  and the minimum 

value of the function is 0. Minima of smooth 

functions are surrounded by a foliation of 

level sets, forming topological balls. Hence, 

given an arbitrary positive scalar , there 

)(grad qP

q

tt
2/1~ 

 

)
~

(
~

qP
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exists a small, positive scalar 1 such that 

the level set =1 in the configuration 

space is a topological ball enclosing eq
~~

 , 

furthermore  all points of the enclosing ball 

satisfy  eq
~~

. This ball is denoted by . 

Within this ball, (184) is satisfied. We use 

 as a cage bounding those configurations, 

which are reachable by the system after the 

perturbation. 

A perturbation of the external loads 

corresponds to a small perturbation of  

in (84). If the norm of the perturbation is 

smaller than 1/, then by definition, 

 /ˆ
11

p , implying 
11

~ˆ qp
T  

 for all  eq
~~

. Hence,  

remains positive everywhere on , i.e. the 

ball  is an unreachable energy barrier for 

the perturbed system (as long as the contacts 

remain in stick state). If the norm of the 

perturbation is also smaller than m1
2/, 

then the lowest value of  within  is not 

less than -m1
2, i.e. the rescaled kinetic 

energy  of the system moving inside  

may not exceed m1
2; and thus (185) is 

satisfied. 

In summary, we have found, that for 

perturbations of norm smaller than  

min[ 1/, m1
2/] , the system stays within 

distance  to its initial configuration, and all 

contacts remain in stick mode.  

The threshold found above is independent 

of , i.e. the sensitivity of the system to 

perturbations does not blow up in the limit 

0. In contrast, stability against dynamic 

perturbations does vanish in the quasi-rigid 

limit. Dynamic perturbations may increase 

the total energy of the system by a small 

amount (by adding some initial velocity or 

displacement). At the same time a given 

variation of the unscaled energy 

corresponds to increasingly large variation 

of the rescaled potential energy  as  goes 

to zero. Hence, static stability does not 

imply LS. 

5.7  LYAPUNOV STABILITY 

5.7.1  Details of the proof of 
Lemma 3.4.2 

A Free-flight followed by a sticking impact 

Recall that we restrict our attention to the 

case )()(
111 


kk

txtx and 0
)(

1


FF
x  

(see(106)). During free flight, the total 

energy is constant, hence  

 )()(sin...

)()(

111

1













kk

kk

txtx

tUtU


 (186) 

Furthermore, the acceleration i
z  of leg i is 

constant as given by (95), thus the duration 

of the free flight phase is  

i

ki

kk
Tl

tz
tt







cos

|)(|2
1


 (187) 

The right-hand side is positive by (105). 

The bound (187) is sharp iff leg i lifts off 

from the ground at time tk-1. The positive 

horizontal acceleration of P
i
 ( 0

1
x ) yields  

)0(
)()(

)(

1

1 









kk

kk

ki
tt

txtx
tx  (188) 

P
~

1
p̂

1
p

11

~ˆ qp
T

P
~

P
~

E
~

P
~
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During impacts, x
1
 and E

p
 do not change 

thus U is affected solely by the absorption 

of kinetic energy. The latter equals the 

variation of the so-called contact energy 

iii

T

ii
E vMv

2

1
  associated with the 

impacting point P
i
. For details see [102]. 

Furthermore, it can be shown for sticking 

impacts that changing both restitution 

parameters e and e
t
 to |)|,max(

T
ee  

yields a lower bound of the energy 

absorption (proof omitted for brevity). In 

this case, the velocity vector of the contact 

point changes by a factor  during the 

impact yielding  

 

|)()(|...

...
1

)1)(1()1(

)()(
2

1
)1(

...)()(

22

222

2



















kiki

i

ii

kiiik

T

i

kk

tztx

lh

hllh

tt

tUtU





 vMv

 

(189) 

where we have used (94), the identity 

a2+b22|ab|, as well as 0)( 


ki
tz  and 

0)( 


ki
tx  (by (188)). 

By expressing ||
i

z  from (187) and by using 

(188), we can transform inequality (189) 

into  

 

 

2

cos
...

...
1

)1)(1()1(
...

...)()()()(

22

222

1

i

i
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kkkk

Tl

lh

hllh

txtxtUtU



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













 

(190) 

Altogether, by adding the inequalities (186) 

and (190), we obtain (118) with  

 

2

cos
...

...
1

)1)(1()1(
...

sin

22

222

i

i

ii

Tl

lh

hllh
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
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
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










 

(191) 

where c>0 iff (107) is satisfied.  

B Free-flight followed by a right sliding 

(=1) impact 

Similarly to the previous point, the variation 

of U during the impact is calculated as the 

variation of the contact energy. Using (93) 

we obtain  

pMppv
1

2

1
)(

...)()(









ii

T

k

T

i

kk

t

tUtU

 (192) 

The impact momentum p is determined 

from (94) and (102):  










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

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

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

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

1
|)(|

11
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i

ki
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i
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ki

tz

lhl

tze











p

 (193) 

if 01
2


iii

hll   then  is negative, 

which is unphysical. In this case, a sliding 

impact is impossible, and further 

investigation of this case is unnecessary. In 

the opposite case, (192) and (193) yield  

 
)(

|)(|
...

...|)(|)()()(










ki

ki

tx

tz

i

kikikk
tztxtUtU








 (194) 

with 

  )(1)l-(h1-  
2

i

2

ii2



  (195) 

 may be positive or negative. These two 

cases are investigated separately, below.  

If 0, then we have  
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because 0)( 


ki
tx  by (188). The bound 

(196) is used analogously to (189) in the 

case of a sticking impact to arrive to (118) 

with  

 

 
iii

ii

hll

eTl
c











2
12

)1(cos
sin

 (197) 

where c>0 under the condition (108). 

If <0, then we have 0)()( 


kk
tUtU  

for high values of
)(

)|(|





ki

ki

tx

tz



 , which would 

mean energy gain during impact. Thus, in 

reality, the impact must become sticking 

above a certain threshold of 
)(

)|(|





ki

ki

tx

tz



 . As the 

transition point to sticking impact 

corresponds to the worst case scenario, i.e. 

minimal energy absorption, one can use the 

bound developed for sticking impacts and 

conclude in the same way as in that case. 

C Free-flight followed by a left sliding (=1) 
impact 

While a left-sliding impact is rare if 

0)( 


ki
tx , it is possible for certain 

geometrical settings and low friction. Thus, 

this case also needs to be considered. 

Through steps analogous to the previous 

point, one arrives to the expression (194) 

with the quantity 
i
 replaced by 

i
. In 

particular the right-hand side contains 

)(

|)(|






ki

ki

tx

tz

i 


 . If ≤0, this term is always 

negative, i.e. the formula predicts energy 

gain, indicating that a left-sliding impact is 

not possible. For >0, we have energy 

absorption for high values of 
)(

)|(|





ki

ki

tx

tz





, and 

left-sliding impacts might only occur above 

a certain threshold. The worst case scenario 

(minimum energy absorption) again 

corresponds to the transition point to 

sticking impact, and the reasoning of that 

case is again applicable. 

D Sliding in the positive direction on one leg 

If the object slides to the right on leg i (i.e. 

z
i
=0, 0

i
x ), while the other one is 

separated from the ground, then the contact 

force at leg i is is  



























1

11

cos

2

i
def

i

iii

i

i

f

hll

Tl








f

 
(198) 

 see the explanation of the analogous 

equation (131). f is negative if 

01
2


iii

hll  , implying that this case is 

unphysical and need not be investigated. 

Otherwise, we take the time derivative of 

(114)  

sin)(
ikp

xEEtU    (199) 

kp
EE    can be calculated as the (negative) 

power of the friction force, i.e. i
xf 

1
 . 

Thus,  

i

iii

i

i
x

hll

Tl
U 

























2
1

cos
sin  (200) 

This formula is rearranged to obtain (118) 

with  

iii

i

i
hll

Tl
c











2
1

cos
sin  (201) 

The positiveness of c is equivalent of the 

condition 

   
iiiii

Tlhll   cos1sin
2

 
(202) 
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which follows from the more restrictive 

condition (108). 

E Sliding in the positive direction on two 
legs 

The friction coefficients are high enough to 

keep the object balanced before the initial 

perturbation; hence if sliding motion of the 

same object is possible, then it is 

deccelerating. Furthermore, the variation of 

E
p
 and the work of the frictional forces are 

both proportional to the displacement of the 

object; thus the same proportionality 

applies to the variation of E
k
. In summary, 

E
k
/x

1
=c where c is a positive constant. If 

both legs are in contact with the ground, 

then by (114), UE
k
=constant, implying 

(119). 

5.7.2  Differences between the 
proof of Lemma 3.4.3 and 
that of Lemma 3.4.2.  

As we have seen, the proof of Lemma 3.4.2 

consists of three parts (with several 

subcases) 

1. the net change of U during an 

episode of free flight to the right and 

during the impact immediately after 

this episode is negative and 

proportional to the distance 

travelled to the right 

2. U decreases continuously during 

sustained sliding motion to the right 

in proportion to the distance 

travelled 

3. U does not increase during motion 

to the left 

The arguments used to demonstrate points 2 

and 3 remain valid in the case of Lemma 

3.4.3. Point 1 has to be changed because 

(188) is no more true. Instead, (109) implies 

1

1

1

)()(
)(











kk

kk

ki
tt

txtx
tx  (203) 

in this case. By using the new inequality, 

one can demonstrate that the the net change 

of U during an episode of free flight to the 

right and during the impact immediately 

before this episode (rather than after this 

episode) is negative. This difference is 

responsible for the upper indices – instead of 
+ in the statement of Lemma 3.4.3. The steps 

of the proof are the same as in the case of 

Lemma 3.4.3, but we arrive to the condition 

(110) instead of (107) and to the condition 

 
e

e
Tlhll i

iiii
2

)1(
)(cos1sin

2 





 

(204) 

instead of (108). (204) is less restrictive 

then the condition (202) necessary for 

decreasing U during sustained sliding 

motion, hence a copy of (202) emerges in 

the statement of Theorem 3.4.1 as condition 

(111).  

5.7.3  Boundedness of the 
feasible region of 
inequalities (112), (113), 
(129) 

(113) can be expressed in terms of z
i
 and x

1
 

using (90), (103) as  

|(0)|constantsin...

...
sincos

...

...
sincos

1

2

12

1

1

12

2

q


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






x

z
ll

Thl

z
ll

Thl







 
(205) 

The coefficients of z
i
 are positive by the 

equilibrium conditions (87) and (88). Hence 

(205) takes the form C
1
z

1
+C

2
z

2
C

3
x

1
C

0
 

with C1,C2,C3>0. By adding max,13
xC  to the 

left side (where max,1
x is defined by (129)) 

we obtain  
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  |(0)|constant
1max,132211

q xxCzCzC

 

 According to (112) and (129), this is 

equivalent of  

|(0)|constant

1max,132211

q

 xxCzCzC
 (206) 

i.e. the feasible region in 3D configuration 

space is bounded and its size is proportional 

to |q(0)|. The feasible region in the six-

dimensional state space is also bounded an 

proportional in size to |q(0)|, which can be 

shown easily by using the trivial energy 

bound )()0()0()( tEEEtE
pkpk

 .  
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