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1. INTRODUCTION AND AIMS OF THE STUDIES 

 

1.1 Introduction1 

 

Prediction is one of the most fundamental functions of the brain. During every moment 

of our waking life, the brain is trying to anticipate future sensations. In order to recognize time -

based patterns and predict subsequent events, storing and recalling of sequences are required 

(Hawkins, George, & Niemasik, 2009). Without these skills, it would be impossible to carry 

out evolutionary adaptive behaviors. Most predictions are based on the implicit learning that 

occurs when information is acquired from an environment of complex stimuli, without 

conscious access either to what was learned or to the fact that learning occurred (Cleeremans, 

Destrebecqz, & Boyer, 1998; Reber, 1993). Despite the growing interest in implicit learning in 

the past decades, there has been relatively little research on the acquisition phase and the offline 

processing of implicitly learned information (i.e., consolidation). In this thesis, I investigate 

factors underlying implicit sequence learning and its consolidation. These factors must be taken 

into consideration before planning and performing brain imaging, psychophysiological, and 

behavioral studies on sequence learning and its consolidation. 

Implicit sequence learning underlies not only motor, but also cognitive and social skills 

(Kaufman et al., 2010; Lieberman, 2000; Nemeth et al., 2011; Romano Bergstrom, Howard, & 

Howard, 2012; Ullman, 2004); it is therefore an important aspect of life from infancy to old 

age. Implicit sequence learning is essential for learning languages, as well as learning to operate 

appliances, computer applications or musical instruments (J. H. Howard, 2004; Romano 

Bergstrom et al., 2012). Social skills appear in compound behaviors (including series of 

perceptions, emotions as well as motor actions) realized in proper sequences and under 

appropriate circumstances. These skills—for example, dialogues, decision making in social 

context, communication of emotions, predicting others’ behavior based on previous verbal and 

nonverbal social communication, and adjusting our own behavior based on these predictions —

are needed for normal social functioning in various sorts of situations: in the workplace, in the 

family, in the neighborhood, during recreation, shopping, or in the context of medical and 

mental care (Heerey & Velani, 2010; Lieberman, 2000; Nemeth & Janacsek, 2011). 

Furthermore, these skills are crucial for effective participation in educational, training, and 

                                                                 
1 Based on Janacsek, K., & Nemeth, D. (2012). Predicting the future: from implicit learning to 

consolidation. International Journal of Psychophysiology, 83(2), 213-221. 
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rehabilitation programs, for instance in relearning how to walk, reach for objects, and speak 

after brain injury (D. V. Howard et al., 2004; Nemeth, Janacsek, Balogh, et al., 2010). 

Most models and empirical studies of skill learning highlight the role of the basal ganglia 

and the cerebellum (Dennis & Cabeza, 2011; Doyon, Bellec, et al., 2009; Okihide Hikosaka et 

al., 1999; O. Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Keele, Ivry, Mayr, Hazeltine, & 

Heuer, 2003; Kincses et al., 2008; A. Rieckmann, Fischer, & Bäckman, 2010; Sefcsik et al., 

2009); in contrast, the role of the hippocampus remains inconclusive (Albouy et al., 2008; 

Schendan, Searl, Melrose, & Stern, 2003). A major approach to this research is through brain 

imaging and neuropsychological studies; in addition to these, experiments investigating the 

effects of pharmacological agents provide an opportunity for the better understanding of the 

biological background of implicit learning (for review see Uddén, Folia, & Petersson, 2010). 

For example, a study by Frank et al. (2006) showed that the benzodiazepine midazolam, which 

inactivates the hippocampus, causes explicit memory deficits in healthy participants, but 

enhances implicit learning. In contrast, a more recent study found impaired implicit learning 

after the exogenous administration of the stress hormone cortisol (Römer, Schulz, Richter, 

Lass-Hennemann, & Schächinger, 2011). The engagement of specific brain structures in these 

phenomena needs to be clarified. 

In experimental settings, implicit learning is defined as the acquisition of co-

occurrence/dependencies between stimuli or trials, and is expressed only through performance 

(Frensch, 1998; D. V. Howard et al., 2004; Anna Rieckmann & Bäckman, 2009). In the past 

decades, several tasks have been developed to tap into implicit learning. These tasks can be 

organized into two main groups based on whether the covariation or the temporal sequence of 

stimuli has predictive information. For example, in artificial grammar learning, participants are 

exposed to strings of letters. They are not informed that the strings follow a set of rules; yet, it 

has been found that they can apply these rules at a later stage of practice (Dienes, Broadbent, 

& Berry, 1991; Reber, 1989). In the weather prediction task, individuals have to decide whether 

a specific combination of cards predicts rainy or sunny weather. They are unaware that each 

combination of cards is probabilistically related to a particular weather outcome. During the 

task, participants learn gradually which of two outcomes will occur, although they have no 

conscious knowledge of the rule (Gluck, Shohamy, & Myers, 2002; Ferenc Kemény & Lukács, 

2009; Kincses, Antal, Nitsche, Bartfai, & Paulus, 2004; Poldrack & Rodriguez, 2004). 

Similarly, in the contextual cueing task, the global configuration of a display cues the location 

of a search target (Chun & Jiang, 1998; J. H. Howard, Jr., Howard, Japikse, & Eden, 2006).  
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In these tasks, the covariation of certain stimuli (e.g., in a letter string/a set of cards) has 

predictive information, in contrast to sequence learning tasks, where participants have to predict 

the onset of a stimulus based on the preceding stimuli (Anna Rieckmann & Bäckman, 2009). 

Evidence suggests that the latter type of task has partly different underlying mechanisms and 

activates partly different brain structures (Greene, Gross, Elsinger, & Rao, 2007; Luis Jiménez 

& Vázquez, 2011; Poldrack et al., 2005); therefore, it is important to differentiate between these 

two types of tasks. In recent years, a growing body of data has emerged regarding the 

acquisition and consolidation of implicit sequence learning, while covariation learning has 

received less attention. In my thesis, I focus on the perceptual–motor learning and consolidat ion 

of sequences.  

 

Measures of implicit sequence learning 

 A widely used sequence learning task is the finger tapping task (Figure 1A). Here, 

participants are instructed to produce a particular sequence of finger movements either on a 

response box or by opposing their fingers to their thumb (Doyon et al., 2002; Avi Karni et al., 

1995). Performance is measured by the number of correctly produced sequences over a certain 

time interval (e.g., 30 sec). Similarly to the previously mentioned tasks, participants’ 

performance becomes better with practice. The main problem with this task is that it can be 

difficult to classify as truly implicit, because participants are aware of the sequence they have 

to generate. However, it is based on the learning of sequences and the learning is expressed 

through performance; therefore, I discuss the results based on this task where it is relevant to 

the question of consolidation. 

In the past decade, the serial reaction time (SRT) task (M. J. Nissen & Bullemer, 1987) 

and its modification, the alternating serial reaction time (ASRT) task (J. H. Howard, Jr. & 

Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010), have become the most popular implic it 

sequence learning tasks. In the original version of the SRT task, a stimulus appears at one of 

four possible locations on the screen, and subjects have to press the button corresponding to 

that location (Figure 1A). They are unaware that the sequence of subsequent locations (and 

correspondingly, the sequence of the responses) follows a predetermined order (Hallgato, 

Győri-Dani, Pekár, Janacsek, & Nemeth, 2013). For example, in classical SRT tasks, the 

structure of the sequence is deterministic, with the stimuli following a simple repeating pattern 

as in the series 213412431423, where the numbers refer to distinct events (Figure 1B). Without 

becoming aware of the sequence, subjects learn the regularity – and as they learn, they produce 

faster and more accurate responses. When the sequence is changed to a random series of stimuli, 
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subjects become slower and less accurate in responding. In this task, sequence learning is 

measured by the reaction time difference between sequence and random blocks.  

The modified version of SRT is the alternating serial reaction time (ASRT) task (J. H. 

Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010). Here, repeating events 

alternate with random ones in an eight-element sequence so that the location of every second 

stimulus in the stream is determined randomly. If, for instance, the sequence is 3214, where the 

numbers represent locations on the screen, the sequence of the stimuli will be 3R2R1R4R, with 

R representing a random element. The sequence is thus better hidden than in the classical SRT 

task. This structure is referred to as a probabilistic second-order dependency (Remillard, 2008). 

The structure is second-order in that for pattern trials, event n-2 predicts event n. It is 

probabilistic in that these pattern trials occur amid randomly determined ones. In addition, 

participants do not generally become aware of the alternating structure of the sequences, even 

after extended practice, and sensitive recognition tests indicate that people do not develop 

explicit knowledge of the event sequences that are more likely to occur (D. V. Howard et al., 

2004; J. H. Howard, Jr. & Howard, 1997; Song, Howard, & Howard, 2007b).  

Because sequence, and random stimuli alternate in the ASRT task, some sequences of 

three events (called “triplets”) occur more frequently than others (Figure 1B). In this task we 

can separate general skill learning from sequence-specific learning, where general skill learning 

refers to increasing speed as the result of practice. In contrast, sequence-specific learning refers 

to the acquisition of sequence-specific knowledge, resulting in relatively faster responses for 

more predictable high-frequency events compared to less predictable low-frequency events. In 

the classical SRT task, sequence learning is measured as the RT difference between sequence 

and random blocks (Figure 1C). However, in this difference score, sequence-specific and 

general skill learning are mixed, because participants also exhibit general skill improvement on 

sequential blocks. Thus, the bigger difference between these two types of blocks could be 

attributed to sequence-specific and general skill learning together, and we cannot determine the 

extent of these two types of learning. ASRT allows these types of learning to be separated. 

Another advantage of the ASRT task compared to the classical SRT task is that in the ASRT, 

it is possible to track sequence-specific learning continuously by comparing responses to the 

random and sequence elements or more and less predictable events in all blocks. In summary, 

recent research favors the ASRT task, because 1) it is more implicit, 2) it can separate sequence -

specific and general skill learning, and 3) it can continuously track these two types of learning 

across all blocks. 
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Figure 1.1. A) Examples of the most commonly used sequence learning paradigms. B) The main distinction in the 

case of sequence type is whether it is deterministic or probabilistic. C) Typical examples of performance measures 

in different sequence learning paradigms. In the finger tapping task, performance is measured by the number of 

correctly produced sequences over a certain time interval (e.g., 30 sec). In the class ical SRT task, sequence learning 

is measured as the RT difference between sequence (S) and random (R) blocks. In the probabilistic sequence 

learning tasks (e.g., the ASRT task), sequence-specific learning is measured by comparing responses to the random 

and sequence elements or more and less predictable events in all blocks. 

 

Consolidation of sequence knowledge 

Sequence learning does not occur only during practice, in the so-called online periods, 

but also between practice periods, during the so-called offline periods. The process that occurs 

during the offline periods is referred to as consolidation, which denotes the stabilization of a 

memory trace after the initial acquisition; this can result increased resistance to interference or 
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even improvement in performance following an offline period (Krakauer & Shadmehr, 2006; 

Nemeth, Janacsek, Londe, et al., 2010; Robertson, 2009; Song, 2009).  

This thesis will focus on factors that can determine 1) the acquisition phase and 2) the 

post-encoding stabilization and enhancement phases of consolidation. The consolidation can 

include the integration of recently acquired information with past experiences (memory 

association), the anatomical reorganization of memory representations (memory translocation), 

reconsolidation of memory representations after recall (memory reconsolidation), and even the 

erasure of memory representations, all of which appear to occur outside of awareness and 

without additional training. These processes can be time dependent or sleep dependent 

(Stickgold, Fosse, & Walker, 2002; Walker, Brakefield, Seidman, et al., 2003; Walker & 

Stickgold, 2004). Hence, it is essential to differentiate between time-dependent and sleep-

dependent consolidation. Time-dependent consolidation reflects the stabilization or even 

improvement of the memory trace after an offline period, irrespective of whether sleep occurred 

in this period or not. Thus, in this type of consolidation, sleep is not an essential component. 

In recent decades, special attention has been given to the role of sleep; for instance 

references are made to sleep-dependent consolidation (Walker & Stickgold, 2004) suggesting 

that performance improves more when the offline period includes sleep than when it does not. 

Several studies have shown the critical role of sleep in skill learning consolidation (S. Fischer, 

Hallschmid, Elsner, & Born, 2002; Maquet et al., 2000; Peigneux et al., 2003; Stickgold et al., 

2002; Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002). Nonetheless, the results 

concerning consolidation of sequence knowledge have been mixed, and recent findings indicate 

that whether or not offline improvements occur at all, and whether they are sleep dependent, 

varies with factors such as awareness, the length of the offline period, the type of information 

to be learned, and the age of the participants (Hallgato et al., 2013; Nemeth & Janacsek, 2011; 

Press, Casement, Pascual-Leone, & Robertson, 2005; Robertson, Pascual-Leone, & Press, 

2004; Song et al., 2007b; Spencer, Gouw, & Ivry, 2007).  

Although a growing body of research and fertile models advance our understanding of 

online learning (e.g., N. J. Cohen & Squire, 1980; Hawkins et al., 2009; Henke, 2010; 

Willingham, 1997), less is known about the offline processes, and there are yet unresolved 

contradictions between some of the related findings. Therefore, it is critical to determine which 

factors can potentially influence the consolidation of sequence learning. In the second part of 

the thesis I will discuss factors that must be taken into account in consolidation research. 

Considering these factors, it is possible to organize the findings that emerge more appropriately 

and build more effective models of consolidation. 
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1.2 Summary of the aims of the studies in the thesis 

 

In the studies presented in this thesis, I explore the entire process of implicit learning from 

memory formation to consolidation, and investigate how these processes are affected by age, 

awareness, executive functions, sleep, and various disorders such as Autism, Obstructive Sleep 

Apnea, and Mild Cognitive Impairment.  

The aim of the first part of the thesis is to investigate the factors that can significantly 

affect implicit probabilistic learning. These factors are summarized in Table 1. More 

specifically, I investigated how childhood development, aging, atypical development and 

various neuropsychological conditions such as alcohol dependency and Mild Cognitive 

Impairment affects the memory formation phase of implicit learning. In addition, I examined 

how awareness, control, executive functions, and working memory are related to implic it 

learning, and how perceptual and motor factors are related to each other.  

 

Table 1.1. Factors that can affect implicit learning and the related research questions of the studies presented in 

the first part of the thesis  

Chapter Factors Goals and questions 

2.1 
Childhood development 

and aging  

Which time is the best to acquire new skills?  

Determine age-related changes across the human lifespan in 

probabilistic sequence learning  

2.2 Age and awareness 
What are the differences in the developmental curves of 

explicit and implicit sequence learning?  

2.3 Control processes 

How can we boost implicit learning?  

Determine the competition between control processes and 

implicit learning 

2.4 Executive functions 

Can weaker executive functions lead to better implicit 

learning?  

Determine the role of executive functions in implicit 

learning 

2.5 Perceptual and motor 

How motor and perceptual factors contribute to implicit 

sequence learning?  

Determine the perceptual and motor factors of learning 

2.6 Secondary task Can a secondary task disturb implicit sequence learning? 

2.7 Working memory What is the role of working memory in implicit learning? 
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2.8 Atypical development 
How atypical development such as autism affect implicit 

learning?  

2.9 
Mild Cognitive 

Impairment 

Can Mild Cognitive Impairment disturb implicit learning? 

What is the role of the hippocampus in implicit learning?  

 

 

The aim of the second part of the thesis is to investigate the factors that significantly 

affects consolidation of implicit probabilistic learning. These factors are summarized in Table 

2. More specifically, I investigated how aging, length of the offline period, and sleep affects the 

consolidation phase of implicit learning. In addition, I examined whether perceptual and motor 

factors of learning are differentially affected by the offline period following learning.  

 

Table 1.2. Factors that can affect implicit learning and the related research questions of the studies presented in 

the second part of the thesis  

Chapter Factors Goals and questions 

3.1 Aging and sleep 

What is the role of sleep in the consolidation of implicit 

learning?  

Does aging affect sleep-dependent consolidation?   

3.2 
Aging and length of the 

offline period 

Which length of the offline period is optimal for consolidation: 

12h, 24h or 1 week?  

Is there any interaction between the effects of aging and length 

of the offline period on consolidation?    

3.3 Sleep disorder 
Can Sleep disorder disrupt the consolidation of implicit 

learning?  

3.4 
Sleep and perceptual-

motor factors 

Does sleep have a critical role in the consolidation of 

perceptual and motor factors of implicit learning?  

Determine the perceptual and motor factors in the 

consolidation of implicit learning 

3.5 
Length of the offline 

period 

Is implicitly learned information retained after one year? 

Is there evidence for resistance to interference after one year?  
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2. DEVELOPMENTAL AND COGNITIVE FACTORS 

UNDERLYING IMPLICIT PROBABILISTIC LEARNING 

 

2.1 Age-related changes in implicit probabilistic learning2 

 

Abstract 

Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills 

through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning 

abilities have not yet been characterized, and, thus, their role in acquiring new knowledge 

efficiently during development is unknown. We investigated such learning across the life span, 

between 4-85 years of age with an implicit probabilistic sequence learning task, and we found 

that the difference in implicitly learning high vs. low probability events - measured by raw 

reaction time (RT) - exhibited a rapid decrement around age of 12. Accuracy and z-transformed 

data showed partially different developmental curves suggesting a re-evaluation of analysis 

methods in developmental research. The decrement in raw RT differences supports an extension 

of the traditional 2-stage lifespan skill acquisition model: in addition to a decline above the age 

60 reported in earlier studies, sensitivity to raw probabilities and, therefore, acquiring new skills 

is significantly more effective until early adolescence than later in life. These results suggest 

that due to developmental changes in early adolescence, implicit skill learning processes 

undergo a marked shift in weighting raw probabilities vs. more complex interpretations of 

events, which, with appropriate timing, prove to be an optimal strategy for human skill learning.  

 

Keywords: skill learning, implicit sequence learning, automaticity, Alternating Serial Reaction 

Time Task (ASRT), development, aging, critical period 

 

It is widely accepted that children should be introduced to sports, music or languages early in 

their life if they are to develop a high proficiency, because late learners seldom become true 

champions or elite musicians or gain command of a second language similar to that of a native 

speaker. These observations contradict traditional measures of the ability of factual learning of 

declarative memories, which showed that humans become increasingly better at many learning 

                                                                 
2 Published in Janacsek, K., Fiser, J., & Nemeth, D. (2012). The best time to acquire new skills: age‐related 

differences in implicit sequence learning across the human lifespan. Developmental science, 15(4), 496-505. 
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tasks up until their late twenties (F. I. Craik & Bialystok, 2006). However, an important 

component of developing new abilities is related to implicit unconscious statistical learning 

processes (O. Hikosaka et al., 2002; Keele et al., 2003) that underlie the acquisition of not only 

motor but also cognitive and social skills (Doyon, Bellec, et al., 2009; O. Hikosaka et al., 2002; 

Lieberman, 2000; Poldrack et al., 2005; Ullman, 2001). Thus, to understand complex skill 

acquisition, the characteristics of both explicit declarative and implicit learning, such as the 

differences in their efficiency across the lifespan, must be clarified. In contrast to declarative 

memory (Tulving & Craik, 2000), the ontogenetic changes in humans’ implicit learning abilit ies 

have not yet been comprehensively characterized, and, thus, their role in acquiring new 

knowledge efficiently during development is unknown. The main goal of our study was to 

examine age differences in implicit learning across the human lifespan using the same task for 

all groups.  

The computational underpinnings and the neural substrates of these different kinds of 

learning mechanisms are also controversial (Henke, 2010). Explicit learning has been linked 

more closely to medial temporal lobes of the cortex (Dennis & Cabeza, 2011; Squire & Zola, 

1996). By contrast, implicit skill learning often requires fine-tuning of the perceptual-motor 

system based on experience; therefore, most models of implicit skill learning emphasize the 

role of the basal ganglia and the cerebellum (D. A. Cohen, Pascual-Leone, Press, & Robertson, 

2005; Dennis & Cabeza, 2011; Doyon, Bellec, et al., 2009; Okihide Hikosaka et al., 1999; O. 

Hikosaka et al., 2002), whereas the role of the hippocampus remains inconclusive (Albouy et 

al., 2008; Schendan et al., 2003). However, these models focused mostly on motor skill-related 

learning with less emphasis on more complex skills that could involve learning abstract 

cognitive dependencies implicitly. The second goal of our study was to relate our behavioral 

results to the various computational models of explicit and implicit learning. 

Two main approaches to implicit learning emerged in developmental neuroscience with 

a different assessment of how learning abilities change with age: 1) the developmenta l 

invariance model and 2) the age-related changes model. Studies supporting the developmenta l 

invariance model of implicit learning failed to find significant age-related differences in 

learning (Meulemans, Van der Linden, & Perruchet, 1998; Vinter & Perruchet, 2000). In 

support of this view, infant studies have shown that adult-like implicit learning mechanisms 

exist even in very early infancy (Clohessy, Posner, & Rothbart, 2001; Saffran, Aslin, & 

Newport, 1996). Developmental invariance models explain this age-independence by linking 

implicit (or procedural) learning to evolutionarily primitive brain regions, such as the basal 
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ganglia and the cerebellum. These regions are characterized as early-maturation regions and are 

relatively resistant to neurological impairments (Reber, 1993).  

By contrast, the age-related changes models posit that considerable developmenta l 

differences can be observed in implicit learning. Several of these studies found that older 

children and young adults showed stronger learning effects compared to very young participants 

(J. Fletcher, Maybery, & Bennett, 2000; Kirkham, Slemmer, Richardson, & Johnson, 2007; 

Maybery, Maybery, Taylor, & O'Brien-Malone, 1995; K. M. Thomas et al., 2004). These 

models accept the fronto-striatal origin of such learning, but they focus on evidence of 

continued development of these regions that form the basis of the behavioral changes with age 

(e.g., K. M. Thomas et al., 2004). We compared our empirical results using a new approach to 

the problem of multiple neural substrates of learning proposed by Daw et al. (2005).  

 

Serial reaction time task and the development of implicit learning 

In our study, we used a modified version of the Serial Reaction Time (SRT) Task, which is one 

of most commonly used methods for measuring implicit skill learning. Serial Reaction Time 

Task is a four-choice reaction time task containing a hidden repeating sequence that the subject 

comes to predict and learn implicitly (M. J. Nissen & Bullemer, 1987; Poldrack et al., 2005). 

In an SRT study, Meulemans et al. (1998) found that 6- and 10-year-old children showed similar 

degrees of learning as young adults. In contrast, Thomas et al. (2004) found that the learning 

performance of young adults was better than 7- to 10-year-old children. Studies investiga t ing 

implicit skill learning at older ages also revealed inconsistent results. For example, several 

studies have demonstrated that, for simple repeating patterns (in the SRT task), the extent of 

implicit sequence learning in elderly adults was comparable to young adults (Frensch & Miner, 

1994; D. V. Howard & Howard, 1989, 1992). Moreover, in a recent study, Gaillard et al. (2009) 

found that young (22-year-old), middle-aged (45-year-old), and elderly (71-year-old) 

participants performed at the same level.  

The studies mentioned above used fixed (deterministic) sequences, which can be easily 

learned, making it less possible to detect age-related differences in learning. Furthermore, they 

cannot purely determine the acquired sequence-specific knowledge because these tasks (finger-

tapping, classical SRT) confound general improvements with sequence-specific learning. Here, 

we used a modified version of the SRT task, the Alternating Serial Reaction Time (ASRT) task 

(J. H. Howard, Jr. & Howard, 1997), which enabled us to measure the “pure” sequence-specific 

learning distinguished from general improvements. In the classical SRT task, the structure of a 

sequence is deterministic with the stimuli following a simple cyclically repeating pattern (e.g., 
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213412134121341213412…, where numbers refer to distinct events within the repeating 21341 

pattern). By contrast, in the ASRT task (J. H. Howard, Jr. & Howard, 1997; Remillard, 2008), 

repeating events alternate with random ones. Thus, the location of every second stimulus on the 

screen was determined randomly. If, for instance, the sequence was 12341234…, where the 

numbers represent locations on the screen, the sequence of stimuli would be 

1R2R3R4R1R2R3R4R… in the ASRT paradigm, with R representing a random element. 

Therefore, the location of every second stimulus on the screen was determined randomly. 

Because fixed, sequence-specific and random stimuli were alternating, some sequences of three 

events (called ‘triplets’) occurred more frequently than others. For example, in the above 

illustration 1x2, 2x3, 3x4 and 4x1 would occur often, whereas 1x3 or 4x2 would occur 

infrequently. Following previous studies, we referred to the former as high-frequency triplets 

and the latter as low-frequency triplets (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 

2007b). Previous studies have shown that as people practice the ASRT task, they respond more 

quickly to the high than low frequency triplets, revealing probabilistic, sequence-specific 

learning (J. H. Howard, Jr. & Howard, 1997; Song et al., 2007b). This learning is statistical in 

nature because it depends on the frequency of the event sequences. Thus, the RT difference 

between the high and low frequency triplets in this ASRT task is a measure of human sensitivity 

to the relative raw probabilities of events observed implicitly in their environment (Perruchet 

& Pacton, 2006). In addition, the participants are not generally aware of the alternating structure 

of the sequences, even after extended practice, or when sensitive recognition tests are used to 

assess explicit knowledge (D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Song 

et al., 2007b). Thus, the ASRT task is more implicit than the classical deterministic sequence 

learning tasks. 

Using the ASRT task, recent studies have shown that, although elderly adults can also 

learn the higher-order structure of these complex sequences, they showed age-related deficits 

(D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et 

al., 2010). Both young and elderly adults were able to learn third-order dependencies 

(1RR2RR3RR1RR2RR3RR…) although the elderly participants performed at a lower level 

than the younger participants (Bennett, Howard, & Howard, 2007). Whereas several studies 

investigated implicit learning in children using the ASRT task (Barnes et al., 2008; Barnes, 

Howard, Howard, Kenealy, & Vaidya, 2010; Nemeth, Janacsek, Balogh, et al., 2010), no child-

adult comparison of implicit skill learning performance has yet been reported. 

In summary, previous studies have addressed the development and aging in implicit skill 

learning, but no studies have examined age-related differences from childhood to old age with 
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identical methods. Furthermore, in contrast to general skill improvements, using a probabilis t ic 

sequence learning task (ASRT) can help us to reveal the age-related differences of the 

underlying mechanisms of complex skill learning by measuring explicitly the sensitivity to raw 

probabilities of high and low frequency events. Therefore, in this study, we compared the 

implicit probabilistic sequence learning across the age range of 4-85 years.  

 

Method 

Participants 

There were 421 participants in the experiment between the ages of 4 and 85 that were clustered 

into nine age groups between 4-6, 7-8, 9-10, 11-12, 14-17, 18-29, 30-44, 45-59 and 60-85 years 

of age (Table 1.1). None of them suffered from any developmental, psychiatric or neurologica l 

disorders. All subjects gave signed informed consent (parental consent was obtained for 

children), and they received no financial compensation for participation. All experimenta l 

procedures were approved by the Ethics Committee of the University of Szeged. 
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Group Age Sex Education 
Mean RT 

(ms) 

Mean 

Accuracy 

(%) 

4-6-year-old 

(n=30) 
5.31 (0.98) 17 M / 13 F - 960.06 (214.67) 90.09 (6.34) 

7-8-year-old 

(n=55) 
7.09 (0.56) 31 M / 24 F 1.18 (0.39) 773.24 (159.29) 90.66 (7.03) 

9-10-year-old 

(n=35) 
9.89 (0.58) 14 M / 21 F 3.2 (0.96) 602.84 (121.03) 93.44 (4.21) 

11-12-year-old 

(n=29) 
11.5 (0.5) 21 M / 8 F 4.66 (0.67) 544.15 (95.00) 92.52 (4.23) 

14-17-year-old 

(n=62) 
14.89 (1.06) 46 M / 15 F 8.23 (1.02) 452.52 (67.06) 95.44 (2.92) 

18-29-year-old 

(n=63) 
23.09 (3.67) 40 M / 23 F 15.45 (2.6) 401.79 (50.85) 95.47 (2.45) 

30-44-year-old 

(n=59) 
35 (4.24) 24 M/ 35 F 16.64 (3.1) 419.85 (58.68) 95.85 (2.98) 

45-59-year-old 

(n=36) 
50.8 (5.07) 12 M / 24 F 14.18 (3.58) 526.7 (112.99) 97.4 (3.45) 

60-85-year-old 

(n=52) 
69.85 (6.16) 16 M / 36 F 13.39 (3.04) 634.37 (126.54) 96.92 (2.38) 

 

Table 1 Demographic data and mean RT and accuracy in the different groups. In all columns, numbers in 

parentheses show standard deviation.  

 

Implicit probabilistic sequence learning task 

We used the ASRT task (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 

2010) where a stimulus (a dog’s head) appeared in one of the four empty circles arranged in a 

line on a computer screen. The participants were instructed to respond to different stimulus 

events by pressing the corresponding response keys (Z, C, B or M) as fast and accurately as 

possible. The ASRT task consisted of 20 blocks with 85 key presses in each block. The first 

five responses of each stimulus block served for practice only, and then the eight-element 

alternating sequence (e.g., 1R2R3R4R) was repeated ten times within a block. Stimuli were 

presented 120 ms after the response to the previous stimulus. Between blocks, the participants 

received feedback on the screen about their overall reaction time (RT) and accuracy. The 

computer program generated a different repeating ASRT sequence of the 4 locations for each 
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participant using a permutation rule such that each of the six unique permutations of the 4 

repeating events occurred with equal probability. 

To determine the amount of explicit knowledge the subjects acquired about the task, a 

short questionnaire was administered after the experimental session (Song et al., 2007b). This 

questionnaire included increasingly specific questions, such as “Have you noticed anything 

special regarding the task?”, “Have you noticed some regularity in the sequence of stimuli?”. 

The experimenter rated subjects’ answers on a 5-point scale where 1 denoted “Nothing noticed” 

and 5 denoted “Total awareness”. None of the participants, young or old, reported noticing the 

hidden repeating sequence. 

 

Statistical properties of the ASRT task 

As mentioned above, the ASRT allows a comparison between responses to high- and low-

probability events. For example, if the eight-element sequence is 1R2R3R4R, 1x2, 2x3, 3x4, 

and 4x1 would occur often (high frequency triplets) because two consecutive stimuli of the 

repeating sequence (e.g., 132 consisting 1R2) as well as two consecutive random elements by 

chance (e.g., the same 132 consisting R3R) could form these triplets. By contrast, 1x3 or 4x2 

would occur less frequently (low frequency triplets) because they could never be obtained 

consisting two consecutive sequence elements. Of the 64 possible triplets, sixteen triplets were 

high frequency triplets, occurring 62.5% of the time, whereas the remaining 48 triplets were 

low frequency triplets, occurring 37.5% of the time. Thus, each low frequency triplet occurred 

in approximately 0.8% of the total number of trials, whereas each high frequency triplet 

occurred about 5 times more often, in approximately 4% of the trials. For each keypress 

response, we defined whether it was in response to a high- or a low frequency element, 

depending on whether the element was more or less predictable based on the previous two items 

in the sequence. 

Following the method of previous studies (D. V. Howard et al., 2004; Song et al., 

2007b), two kinds of low frequency triplets were excluded from our analyses: repetitions (e.g., 

222, 333) and trills (e.g., 212, 343). Repetitions and trills were low frequency for all 

participants, and in previous studies, the participants often showed pre-existing response 

tendencies towards them (D. V. Howard et al., 2004; Soetens, Melis, & Notebaert, 2004). The 

elimination of these special triplets from the analyses ensured that the high versus low 

frequency differences found in the study were not confounded by pre-existing response 

tendencies. After this adjustment, previous studies have found that, following the practice, 

participants responded more quickly to the high than to the low frequency triplets, revealing a 
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sequence learning effect (D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; 

Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b). 

 

Statistical analysis 

We calculated the mean accuracy of all trials and the median reaction time (RT) of correct 

responses separately for high and low frequency triplets. The accuracy and RT measures were 

analyzed by mixed-model ANOVA with TRIPLET TYPE (high vs. low frequency) as the 

within-subject factor, and AGE (9 groups) as the between-subject factor. All significant results 

are reported together with the p
2 effect size and Greenhouse-Geisser ε correction factors where 

applicable. Post-hoc analysis was conducted by Fisher’s LSD pairwise comparisons. 

 

Results 

Overall RT’s significantly differed among the age groups (main effect of AGE: 

F(8,412)=107.11, p<0.001, p
2=0.675; Table 1). The RT decreased significantly between each 

group from 4-6 to 18-29 years of age (all p’s<0.04), they were similar between the age groups 

of 18-29 and 30-44 (p>0.38) and significantly increased after 44 years of age (p’s<0.001) 

(Figure 2.1.1a). The accuracy monotonically increased over the years (main effect of AGE: 

F(8,412)=16.94, p<0.001, p
2=0.25) (Figure 2.1.1b). 

 The comparison of RT to high vs. low probability triplets showed a surprising pattern 

of implicit sequence learning across the age groups. Even though there was a significant 

learning at all ages because the RT’s were faster for high frequency than to low frequency 

triplets (main effect of TRIPLET TYPE: F(1,412)=333.7, p<0.001, p
2=0.45, all p’s <0.03) 

(Figure 2.1.1c), the magnitude of this difference was not uniform. Although the age groups 

differed significantly from each other in sequence learning (TRIPLET TYPE x AGE 

interaction: F(8,412)=6.79, p<0.001, p
2=0.12), the post-hoc test revealed that learning was 

significantly higher in the 4- to 12-year-old groups than in any other group in the 14-85 range 

(p’s<0.02). There was no difference in learning between the 14-59 years of age (p’s>0.37), 

whereas the magnitude of learning decreased significantly in the 60-85-year-old group 

(p’s<0.02). Thus, learning high probability events was uniformly effective until the age of 12 

where it reduced significantly and remained at a lower level of sensitivity until the age of 60 

(Figure 2.1.1c). 
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Figure 2.1.1. Sequence learning in all groups. Reaction time (A) and accuracy (B) for high and low frequency 

triplets are plotted. Learning measures of RT (C) and accuracy (D) represents the RT/ACC difference between 

low- and high-frequency triplets. Error bars indicate SEM. 

 

However, it is a long-standing issue in developmental and aging studies how to compare groups 

with different baseline speeds. A customary approach to this problem is to analyze the data 

using z-transformation. Therefore, we calculated the z-scores within each subject (thus, each 

participant's own mean and SD was used to transform that participant's data (see, for example, 

Mattis, 1988) and conducted an ANOVA based on these z-scores (Figure 2.1.2). ANOVA 

revealed significant sequence-specific learning (main effect of TRIPLET TYPE: 

F(1,412)=320.12, p<0.001, p
2=0.44), but the extent of learning differed across groups 

(TRIPLET TYPE x AGE interaction: F(8,412)=8.91, p<0.001, p
2=0.15). We found that the 

participants from 9 years of age showed similar extent of sequence learning as the adult groups 

to 44 years of age (all p’s>0.25), but the learning in 4-8 years of age was smaller compared to 

these adult groups (all p’s<0.014). At older ages, there was a decline in the sequence learning, 

with both the 45-59 and 60-85-year-old group differing significantly from the groups between 

the 11-44 years of age (all p’s<0.025). 
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Figure 2.1.2. Sequence learning measured the z-transformed RT data in all groups. 

 

The analysis of the response accuracy further enhanced the picture emerging from the results 

with RTs. We found a significantly greater accuracy for high- than low-frequency triplets (main 

effect of TRIPLET TYPE: F(1,412)=217.14, p<0.001, p
2=0.345). Although all age groups 

older than 6 showed significant sequence learning (all p’s<0.011), the age groups differed 

significantly in the strength of the sequence learning (TRIPLET TYPE x AGE interact ion: 

F(8,412)=3.73, p<0.001, p
2=0.07). Whereas groups between 7 and 44 years of age showed 

similar degrees of learning, this was significantly higher than the youngest (4-6) and the two 

oldest (45-59 and 60-85) groups (p’s<0.03) (Figure 2.1.1d).  

 

 

 

Figure 2.1.3. Individual data for sequence learning measured by raw RT (A),accuracy (B), and z-scores (C) in all 

ages. 
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Figure 2.1.3 shows the individual data for sequence learning measured by raw RT, accuracy 

and z-transformed RT data. The pattern of this data is consistent with the ANOVA results: 1) 

children between 4-12 years of age showed greater sequence learning as measured by raw RT, 

whereas 2) in sequence-specific learning as measured by accuracy and z-transformed RTs 

adults exhibited the highest performance.  

 

Discussion 

The goal of the present study was to investigate the differences in implicit skill learning across 

the human life span. This work extends previous studies (Bennett et al., 2007; Gaillard et al., 

2009; J. H. Howard, Jr. & Howard, 1997; Meulemans et al., 1998; K. M. Thomas et al., 2004) 

in two ways: 1) it examined a wide range of ages between 4-85 years, and 2) it used a 

probabilistic task, which enabled us to measure the “pure” sequence-specific learning defined 

by the sensitivity to raw probabilities of high and low frequency events. We found that the 4- 

to 12-year-old age groups showed the strongest learning effect measured by the raw RT 

difference scores. Around the age of 12, we found a striking transition to less pronounced 

sequence-specific learning, as measured by smaller differences between the responses to high 

and low frequency triplets. Confirming earlier results (D. V. Howard et al., 2004; J. H. Howard, 

Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010), we found that this learning 

capacity was significantly reduced in the oldest age group. Thus, in contrast to the 

developmental invariance (Reber, 1993) and the age-related changes approaches (Meulemans 

et al., 1998; Vinter & Perruchet, 2000), our results demonstrate a gradual decline in learning 

across the lifespan. 

Sequence learning scores based on the accuracy and raw reaction time showed different 

curves: the former one is a bell-shaped curve, whereas the latter is a gradually declining curve 

(Figure 2.1.1c-d). Hence, these two types of learning scores can reflect different underlying 

mechanisms and brain systems. The accuracy learning score may be more related to attention, 

mainly voluntary attention, whereas the RT learning score may be related to involuntary 

attention and intuitive processes (Burgess, Gilbert, & Dumontheil, 2007; Prinzmetal, McCool, 

& Park, 2005). The relatively weaker accuracy learning effects in children and older groups 

may be due to the underdeveloped/deteriorating attentional brain circuits connected to the 

frontal lobe.  

 Our study raised a methodological issue which affects the developmental studies in 

general. It is a long-standing issue in the literature how to compare groups with different 
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baseline speeds. It could be argued that the youngest groups in our study have larger raw RT 

learning scores (more difference between high and low frequency triplets)  because they have 

more room to do so, given their longer RTs. However this argument does not seem to hold in 

our study, because the oldest group showed equally long RTs as 9-10 year-olds, yet they had a 

four-fold reduced learning score (Figure 2.1.1). Along a similar line of argument, the accuracy 

measures of the youngest group (4-6 year-olds) and the oldest groups (45-85 year-olds) showed 

a marked difference (~8%) in general accuracy, giving more room for the young group to 

produce larger differences between high and low frequency triplets, yet the actual sequence -

learning (i.e. high- low differences in accuracy) showed no difference. In contrast, the two 

smallest age groups had almost identical general accuracy yet there was a more than two-fold 

increase in sequence learning in the second youngest group (7-8 year-olds). Thus, our data 

suggests no linear relationship between the general magnitude of reaction time/accuracy and 

the learning measures.  

A second customary approach to the problem of comparing groups with different 

baseline speeds is to analyze the data using z-transformation. Z-scores of our results show a 

different picture than raw the RT data analysis: the learning performances from 9 to 44 years 

of age are similar with weaker performance in the younger and older age groups. The z-

transformation is often used to control general processing speed across different age groups in 

developmental studies. However, the main function of z-transformation is not to control the 

processing speed, but to normalize the distribution of responses. Thus, z-transformation has 

mathematical assumptions about the form of distributions and is therefore not theory 

independent (Yap, Balota, Sibley, & Ratcliff, 2012). Z scoring fully adjusts for processing 

speed only if all participants have the same type of distributions. Therefore using z-scores in 

developmental studies might be misleading. Furthermore, it is unclear how general processing 

speed and variability contributes to learning and performance in different ages. In recent years, 

several studies analyzed the variability and noise across a wide age-range (Der & Deary, 2006; 

Hultsch, MacDonald, Hunter, Levy-Bencheton, & Strauss, 2000; Rabbitt, Osman, Moore, & 

Stollery, 2001). For example, Rabbitt et al. (2001) found that people’s fastest RT’s were 

relatively unaffected by age, but the number of unnecessarily slow responses was higher in 

older ages, and, thus, the increase in the mean RT was a result of increasing variability, which 

was an important component of cognitive aging. Moreover, several studies outline that the noise 

and the performance variability enables adaptive plasticity of motor skills (Slifkin & Newell, 

1998, 1999; Turner & Brainard, 2007) and high variability can support effective learning and 

performance (Sanger, 2010). Thus, based on previous studies and on our analyses, we suggest 
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that both the processing speed (mean reaction time) and variability are inherent aspects of 

development and aging. We think that the z-transformation eliminates these inherent aspects of 

learning, making the transformed results difficult to understand and explain. 

Based on the reasoning above, we propose that, the raw RT difference between the high 

and low frequency triplets in the ASRT task is a measure of human sensitivity to the relative 

raw probabilities of events observed implicitly in their environment.  Thus, our results show a 

marked decrease in this sensitivity around the age of 12, which is in contrast to the traditiona l 

view of a steady improvement of cognitive learning abilities until late in adulthood (F. I. Craik 

& Bialystok, 2006). However, this discrepancy might be explained based on a shift in the 

structural development of implicit learning. Although the raw probabilities of the sensory 

environment are important for learning and both infants (Aslin, Saffran, & Newport, 1998; Fiser 

& Aslin, 2002; Saffran et al., 1996; Saffran, Johnson, Aslin, & Newport, 1999) and adults (Fiser 

& Aslin, 2001; Hunt & Aslin, 2001) are highly sensitive to them, there is an ongoing debate on 

how using these simple probabilities can lead to highly complex knowledge of the world, such 

as sensory invariances and development of a language (Gomez & Gerken, 1999; Marcus, 

Vijayan, Rao, & Vishton, 1999). Recent studies proposed that using an internally stored 

structured model of the world that emerges based on past experience together with probabilis t ic 

learning could help to address this issue and also provide evidence that humans might 

implement such a strategy during implicit learning (Bird, Lambon Ralph, Seidenberg, 

McClelland, & Patterson, 2003; Orban, Fiser, Aslin, & Lengyel, 2008). In this framework, as 

the internal model develops with experiences becoming more influential, interna l 

interpretations of events become more elaborate and less directly related to their raw 

probabilities. A recent study argued that from a normative standpoint, existence of mult ip le 

learning mechanisms in the brain (cf. model-free vs. model-based learning) with an 

uncertainty–based arbitration between them would be computationally optimal (Daw et al., 

2005).  Anchoring this hypothesis biologically, the presumed mechanisms related to these two 

types of learning were suggested to be related to the prefrontal areas and temporal lobe of the 

cortex, respectively (Daw et al., 2005). Support for the separated and complementary nature of 

the prefrontal- and medial temporal lobe (MTL)-dependent learning based on internal models 

vs. basal ganglia-dependent model-free learning comes from various studies investiga t ing 

learning under specific conditions. These studies showed that obstructing the PFC and/or MTL 

by a demanding secondary task (Foerde, Knowlton, & Poldrack, 2006) do not adversely affect 

implicit learning. Other studies found that inserting a task between the learning sessions (R. M. 

Brown & Robertson, 2007a, 2007b), performing a working memory and an implicit learning 
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task simultaneously (Matilla-Duenas, Corral-Juan, Volpini, & Sanchez, 2012), or a 

neuropharmacological blockage (M. J. Frank et al., 2006) even had a positive effect on 

performance in implicit learning task. Importantly, it is known that the cortical areas connected 

to the internal models related to model-based learning become truly functional late in the 

development, around age of 12 (Blakemore & Choudhury, 2006; Giedd et al., 1999), which is 

about the age when we found the sudden decrement in sensitivity to the relative raw 

probabilities.  We propose, that this enhanced functionality signals the shift when the system 

adapts efficiently to more complex aspects of the world by relying more on internal model-

based interpretations, while somewhat neglecting the raw probabilities of the sensory input 

(Figure 2.1.4a-b), and therefore, decreasing the ability to develop and stabilize fundamenta l ly 

new basic competences. Thus the seemingly paradoxical result of gradually becoming less 

sensitive to basic statistics, if timed appropriately, could be the optimal strategy for human 

implicit learning in general. 
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Figure 2.1.4. Competition between model-based and model-free neurocognitive subsystems of skill learning  

across lifespan. (A) Before adolescence, underdeveloped internal models (dashed boundary) have little influence 

on interpretations of detected raw statistical probabilities of events in the environment (dashed arrows). Skill 

learning performance is determined by raw probabilities. (B) From adolescence to late adulthood, well-developed  

internal models (solid boundary) strongly modulate the interpretations of observed statistics of the input. This 

helps extracting complex relations but relatively impairs measuring and utilizing raw probabilities in skill learning  

(dotted arrow). (C) In older ages, skill learning performance decreases. This decline could be caused by the 

combination of reduced sensitivity to raw statistical probabilities (dashed boundary), increasingly rigid internal 

models (dashed boundary) and/or weaker connection between these systems (dashed arrows).  

 

Our results did not reveal any differences between the young adults and middle-age groups. 

Salthouse’s (1996) “simultaneity mechanism” theory of cognitive aging predicts the age-related 
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deficits in probabilistic sequence learning (T. Curran, 1997; J. H. Howard, Jr. & Howard, 1997). 

Feeney, Howard & Howard (2002) found age-related deficits in pattern sensitivity in “older” 

(mean age: 49.4) compared with “younger” (mean age: 41.4) middle-aged groups. These 

different results could be related to that Feeney used a smaller sample size, a longer version of 

the ASRT and different method of analysis. 

What are the underlying mechanisms of the decreased performance of the elderly group? 

In a recent fMRI study, Dennis and Cabeza (2011) showed that older adults recruited the MTL 

for implicit learning, and this activation was significantly greater, while striatal activity 

decreased in older people compared with young adults during implicit learning. In a recent 

study, Rieckmann, Fisher & Backman (2010) found similar results: in young adults during the 

learning session, the activation of the striatum increased, but the that of MTL decreased. By 

contrast, in older adults, sequence learning positively related to activation increases in both the 

striatum and MTL. Using multimodal imaging measures, Giorgo et al. (2010) found extensive 

reductions in the gray matter volume in aging, but reductions were detected earlier in the frontal 

cortex. Furthermore, a recent diffusion tensor imaging aging study by Bennett et al. (2011) 

found that the caudate–dorsolateral prefrontal cortex (DLPFC) and hippocampus-DLPFC tract 

integrity were related to ASRT sequence learning. The caudate-DLPFC tract integrity decreased 

in the older ages, mediating age-related differences in sequence learning. Within the 

computational framework proposed by Daw and collegues (2005), these findings can be 

interpreted as a deterioration in three mechanisms that contribute to the age-related decline in 

skill learning: 1) reduced detection of probabilities, 2) rigidity of internal models and/or 3) more 

restricted connections between internal models and probability detection (Figure 2.1.4c). Thus, 

not only the model-free, but also the model-based learning, might be limited in older ages. 

Future studies are needed to systematically examine the underlying neural mechanisms of age-

related differences in skill learning. 

In summary, based on our raw RT results we suggest that acquiring fundamentally new 

skills that cannot be derived from skills already possessed is the most effective before 

adolescence, and it might be largely based on the fronto-striatal circuitry, such as the basal 

ganglia and cerebellum, in agreement with earlier skill learning models (Doyon, Bellec, et al., 

2009; Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002) and computational learning 

models (Daw et al., 2005). Our findings are in good agreement with everyday life experience 

showing that an early (~ before 12 years) start of learning some sports, music instruments, 

second language, etc. often leads to higher level of competence. These results may have 

implications for the development of learning and memory, facilitating new skill training and 
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pedagogic methods (e.g., for teaching languages) and may also contribute to the understand ing 

of neurodevelopmental and age-related disorders (e.g., autism, SLI, dyslexia and dementia) and 

lead to relevant treatment options. 
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2.2 Age-related changes in explicit and implicit probabilistic learning3 

 

Abstract 

It has been reported recently that while general sequence learning across ages conforms to the 

typical inverted-U shape pattern, with best performance in early adulthood, surprisingly, the 

basic ability of picking up in an implicit manner triplets that occur with high vs. low probability 

in the sequence is best before 12 years of age and it significantly weakens afterwards.  Based 

on these findings, it has been hypothesized that the cognitively controlled processes coming 

online at around 12 are useful for more targeted explicit learning at the cost of becoming 

relatively less sensitive to raw probabilities of events.  To test this hypothesis, we collected data 

in a sequence learning task using probabilistic sequences in five age groups from 11 to 39 years 

of age (N=288), replicating the original implicit learning paradigm in an explicit task setting 

where subjects were guided to find repeating sequences. We found that in contrast to the 

implicit results, performance with the high- vs. low-probability triplets was at the same level in 

all age groups when subjects sought patterns in the sequence explicitly. Importantly, 

measurements of explicit knowledge about the identity of the sequences revealed a significant 

increase in ability to explicitly access the true sequences exactly around the age where the 

earlier study found the significant drop in ability to learn implicitly raw probabilities. These 

findings support the conjecture that the gradually increasing involvement of more complex 

internal models optimizes our skill learning abilities by compensating for the performance loss 

due to down-weighting the raw probabilities of the sensory input, while expanding our ability 

to acquire more sophisticated skills.  

 

Keywords: probabilistic sequence learning, associative learning, development, model-based 

vs. model free learning 

 

In order to fully understand the mechanism of complex skill acquisition, the defining 

characteristics of both explicit and implicit learning, such as their efficiency across life span, 

and their interaction must be clarified.  Sequence learning is a prominent component of skill 

learning, which is involved in obtaining not only motor, but also cognitive and social skills.  It 

is ideally suited to investigate, in a controlled way, the interplay between the fundamenta l 

                                                                 
3 Published in Nemeth, D., Janacsek, K., & Fiser, J. (2013). Age-dependent and coordinated shift in performance 

between implicit and explicit skill learning. Frontiers in computational neuroscience, 7, 147.  
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mechanisms defining implicit/automatic as well as explicit learning.  In the present study, we 

used a sequential learning paradigm to explore the developmental interaction between human 

explicit and implicit learning. 

  Although there are various proposals regarding the age-related developmental changes 

in late adulthood based on changes in working memory capacity, response selection demands, 

or the spatial requirement of the task (Bo, Jennett, & Seidler, 2012; Bo & Seidler, 2010; 

Janacsek & Nemeth, 2013, in the development from childhood to adulthood, there are three 

major proposals about the development of sequence learning in humans.  The first posits that 

there is no significant change with age in the ability of learning sequences implicitly, in other 

words sequence-learning is age-invariant (Vinter et al., 2000; Meulemans et al., 1998).  

According to a second proposal, the developmental pattern of sequence learning across ages 

conforms to the typical inverted-U shape pattern, with best performance at the age of mid-20s 

(Fletcher et al., 2000; Maybery et al., 1995; Thomas et al., 2004) corroborating the traditiona l 

view of a steady improvement of general cognitive learning abilities until well into adulthood  

(Craik & Bialystok, 2006). The third proposal is based on the surprising finding that, the basic 

ability of picking up statistical properties of a presented sequence in an implicit manner is best 

before 12 years of age and it significantly weakens afterwards as measured by the raw RT 

difference between the high and low frequency triplets found in a probabilistic sequence 

learning task (Janacsek, Fiser, & Nemeth, 2012).  The results of this study implied a marked 

decrease in this sensitivity around the age of 12, which is in contrast to both earlier proposals. 

It is important to notice that contrary to the studies of the previous two proposals, the last study 

is based not on a deterministic but on a probabilistic sequence learning task, which can measure 

finer, computationally relevant aspects of the learning process.     

 Specifically, the Janacsek et al. (2012) study proposed that this discrepancy with 

classical results might be explained by a shift in the structural development of implicit learning 

based on two lines of evidence. First, although the raw probabilities of the sensory environment 

are important for learning and both infants (Aslin et al., 1998; Fiser & Aslin, 2002; Saffran et 

al., 1996; Saffran et al., 1999) and adults (Fiser & Aslin, 2001; Hunt & Aslin, 2001) are highly 

sensitive to these probabilities, there is an ongoing debate on how using these simple 

probabilities can lead to a highly complex knowledge of the world, such as sensory invariances 

and development of a language (Gomez & Gerken, 1999; Marcus et al., 1999; Nemeth & 

Janacsek, 2011). Recent studies proposed that using an internally stored structured model of the 

world that emerges based on past experience together with probabilistic learning could help to 

address this issue and also provide evidence that humans might implement such a strategy 
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during implicit learning (Orban et al., 2008; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 

In this framework, as the internal model develops, past experiences become more influentia l, 

and therefore, internal interpretations of events become more elaborate and less directly related 

to their raw occurrence probabilities experienced momentarily. There is ample evidence for 

both internal model dependent and independent learning in human and animals (O'Doherty et 

al., 2004; Packard & Knowlton, 2002), and a recent study argued that from a normative 

standpoint, existence of such multiple learning mechanisms in the brain (cf. model-free vs. 

model-based learning) with an uncertainty–based arbitration between them would be 

computationally optimal (Daw et al., 2005). Anchoring this hypothesis biologically, it has been 

suggested that the presumed mechanisms related to model-free and model-based learning were 

related to the basal ganglia vs. the prefrontal areas and temporal lobe of the cortex, respectively 

(Daw et al., 2005).  

 The second line of evidence provides support for the separated, complementary and also 

competitive nature of the prefrontal- and medial temporal lobe (MTL)-dependent learning 

based on internal models vs. basal ganglia-dependent model-free learning. Various studies 

investigating learning under specific conditions showed that obstructing the PFC and/or MTL 

by a demanding secondary task (Foerde et al., 2006) do not adversely affect implicit learning. 

Other studies found that inserting a task between the learning sessions (R. M. Brown & 

Robertson, 2007a, 2007b), performing a working memory and an implicit learning task 

simultaneously (Filoteo, Lauritzen, & Maddox, 2010), or a neuropharmacological blockage 

(Frank et al., 2006) even had a positive effect on performance in an implicit learning task. 

Moreover, a recent study found that hypnosis boosted implicit statistical sequence learning by 

three times, presumably caused by the disconnection of the frontal lobe from other brain areas, 

reducing the competition between brain systems (Nemeth, Janacsek, Polner, & Kovacs, 2013). 

Importantly, it is known that the cortical areas connected to the internal models related to 

model-based learning become truly functional late in the development, around the age of 12 

(Blakemore & Choudhury, 2006; Giedd et al., 1999), which is about the age at which Janacsek 

et al. (2012) found the sudden decrement in sensitivity to the relative raw probabilities.  

 Based on these two lines of evidence, Janacsek et al. (2012) proposed that the emerging 

functionality at around 12 signals the shift when the system adapts efficiently to more complex 

aspects of the world by relying more on internal model-based interpretations, while somewhat 

neglecting the raw probabilities of the sensory input, and therefore, decreasing the ability to 

develop and stabilize fundamentally new basic competences. Thus in fact, the seemingly 
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paradoxical result of gradually becoming less sensitive to basic statistics, if timed appropriately, 

could be the optimal strategy for human skill learning in general. 

The Alternating Serial Reaction Time (ASRT) Task (Howard & Howard, 1997) is a 

unique tool to investigate the computational background of this conjecture, because we can 

measure different processes, which are related more to internal model building or more to 

model-free learning in the same experimental design. In the ASRT task, participants are asked 

to respond to stimuli, which appear according to a probabilistic sequence structure (e.g., 

2r1r3r4r, where numbers represent specific locations on the screen determined by the sequence, 

and r represent randomly selected location). Because of this probabilistic structure, we can 

determine several different or partly different learning measures: triplet learning, statistica l 

learning, higher-order sequence learning, and maximized learning (Howard & Howard, 1997) 

(see method part). From the point of view of model-free and model-based learning the two 

prominent types of learning are 1) Statistical Learning defined as the differentiation between 

high and low frequency elements only in randomly appearing stimuli, which makes it possible 

to measure purely frequency-based learning, and 2) Higher-order sequence learning defined as 

the differentiation between elements appearing in a larger sequential pattern versus appearing 

randomly when the appearance frequencies of these elements are controlled. Thus statistical 

learning does not require previously built-up representation beyond the detection of relative 

frequencies of simple repetitive events leading more easily to a model-free type of learning. In 

contrast, Higher-order sequence learning must be based on a more global and complex 

representation of sequence structure defined by interactions of multiple events one experiences 

across space and time and therefore, it is related more to model-based processes. 

To sum up, it has been hypothesized by Janacsek et al. (2012) that the cognitive ly 

controlled processes coming online at around 12 are useful for more targeted explicit learning 

at the cost of becoming relatively less sensitive to raw probabilities of events. To test this 

hypothesis, we collected data in an ASRT sequence learning task using probabilistic sequences 

in five age groups from 11 to 39 years of age, replicating the original implicit learning paradigm 

in an explicit task setting, where participants were guided to find repeating sequences, and 

compared it to the original implicit learning task. With the help of this experimental design, we 

could draw the developmental differences separately for statistical learning of raw probabilit ies 

and for more complex, higher-order sequence learning. Moreover, by analyzing the course of 

learning across the task in more detail, we were able to characterize the development of model-

based processes across ages and conditions (explicit vs. implicit) more specifically.   
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Methods 

 

Participants 

There were 288 participants in the experiment, between the ages of 11 and 39, that were 

clustered into five age groups between 11-13, 14-15, 16-18, 19-29 and 30-39 years of age (Table 

2.2.1). Half of the participants took part in the explicit condition and half in the implic it 

condition (some results of the latter data were already published in the paper of Janacsek et al., 

2012). None of the participants suffered from any developmental, psychiatric or neurologica l 

disorders. All participants gave signed informed consent (parental consent was obtained for 

children) and received no financial compensation for participation. The study was approved by 

the National Psychological Ethical Committee of Hungary. 

 

Condition Age group Age Sex Education 

Explicit 

11-13-year-old (n=23) 11.35 (0.71) 11 M / 12 F 5.13 (0.34) 

14-15-year-old (n=23) 14.87 (0.34) 12 M / 11 F 7.91 (0.29) 

16-18-year-old (n=38) 17.00 (0.40) 13 M / 25 F 10.63 (0.67) 

19-29-year-old (n=43) 21.30 (2.02) 26 M / 17 F 14.49 (1.74) 

30-39-year-old (n=20) 35.10 (3.21) 11 M/ 9 F 15.55 (2.42) 

Implicit 

11-13-year-old (n=24) 11.58 (0.65) 16 M / 8 F 4.64 (0.73) 

14-15-year-old (n=21) 14.71 (0.46) 13 M / 8 F 7.95 (0.67) 

16-18-year-old (n=24) 17.04 (0.36) 12 M / 12 F 10.45 (0.52) 

19-29-year-old (n=45) 21.71 (3.01) 29 M / 16 F 14.98 (2.42) 

30-39-year-old (n=27) 34.78 (2.21) 14 M/ 13 F 17.44 (3.53) 

 

Table 2.2.1. Demographic data and mean RT in the different groups. In all columns, numbers in parentheses 

show standard deviation. 

 

Task and Procedure 

Learning was measured by the ASRT task (Howard & Howard, 1997). In this task, a 

stimulus (e.g. a dog’s head; Figure 2.2.1A) appeared in one of four empty circles on the screen 

and participants had to press the corresponding button when it occurred. The computer was 

equipped with a special keyboard with four heightened keys (Y, C, B, and M on a Hungarian 

keyboard; equivalent to Z, C, B, M on a US keyboard), each corresponding to the circles in a 

horizontal arrangement. The task was presented in blocks with 85 stimuli: the first five button 
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pressings were random for practice purposes, then an 8-element alternating sequence (e.g., 

2r4r3r1r, where each number represents the one of the four circles on the screen and r represents 

a randomly selected circle) repeated ten times. The response to stimulus interval was 120 ms 

(Nemeth et al., 2010; Song, Howard, & Howard, 2007). 
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Figure 2.2.1. Design and learning measures in the study. A) An implicit and an explicit version of the ASRT 

task were administered in the experiment. In the explicit version of the task (right panel), the regularity was marked  

by using different stimuli for sequence elements (a dog’s head) and for random ones (peng uin).  In the implicit  

condition (left panel), sequence and random elements were not marked differently (a dog’s head was used always).  

B) There was a total of 20 blocks in the study: Block 1-2, 10-11 and 19-20 were called “probe blocks” in which  

all sequence elements were marked with the same picture (a dog’s head), while the underlying structure of the 

sequence was the same as in the remaining blocks, “the experimental blocks” where an explicit marking denoted 

the random (penguin) and pattern elements (dog). C) As the ASRT task contains an alternating sequence structure 

(e.g., 2r4r3r1r, where numbers correspond to the four locations on the screen and the r represents randomly chosen 

locations), some runs of three consecutive elements (called triplets) occur more frequently than others. For 

subsequent analyses, we determined for each stimulus whether it was the last element of a high-frequency triplet  

(black frames) or low-frequency triplet (purple frames). D) We assessed pure statistical learning (see text) by 

comparing the responses for those random elements that were the last elements of a high frequency triplet, opposite 

to those that were the last of a low frequency triplet (right column). In contrast, higher-order sequence learning 

was assessed as a difference between responses for pattern elements (which are always high frequency triplets) vs. 

random-high frequency triplet elements (top row). The additive effect of statistical and higher-order sequence 

learning is called maximized learning in our study (upper left vs. lower right cells). 

 

An implicit and an explicit version of the ASRT task were administered in the 

experiment. In the implicit version of the task, participants were informed that the main aim of 

the study was to find out just how extended practice affected performance on a simple reaction 

time task. Therefore we emphasized performing the task as fast and as accurately as they could. 

They were not given any information about the regularity that was embedded in the task 

(Nemeth et al., 2010). In the explicit version of the task, the regularity was marked by different 

stimuli for sequence and random elements (cued experimental blocks - Song, Howard, & 

Howard, 2007). In order to maintain the attention and motivation of the children we chose 

pictures of animals to indicate sequence (a dog’s head) and random (a penguin) elements 

(Figure 2.2.1A). Participants were informed that penguin targets always had randomly chosen 

locations while dog targets always followed a predetermined pattern. They were instructed to 

find the hidden pattern defined by the dog heads in order to improve their performance, thus to 

be faster and more accurate using this sequence information to predict the sequence elements.  

The ASRT consisted of 20 blocks. As one block took about 1-1.5 minutes, the task took 

approximately 20-30 minutes. In the explicit condition, Blocks 1-2, 10-11 and 19-20 were probe 

blocks (Figure 2.2.1B), where sequence and random elements were not indicated (dog’s head 

was used for all stimuli). In these probe blocks participants were not told that there would be 

any regularity in the sequence, although the same regularity was included as the one in the cued 
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blocks. Although our study focuses on experimental blocks, the main aim of inserting the probe 

blocks was to be able to compare the performance in implicit and explicit conditions more 

directly utilizing the fact that in these blocks neither group was informed about the regularity.  

Explicit knowledge about the sequence was measured after each cued block in the 

explicit condition. Participants were instructed to report any regularity they noticed and the 

experimenter registered their answers. This method allowed us to determine the duration (in 

term of the number of blocks) participants needed to learn the sequence correctly as defined by 

consistently reporting the same sequence from that point on in the remaining blocks. In the 

implicit condition, participants were not asked to report the regularity after each block because 

this instruction would have made them focus on finding the regularity, thus it would eliminate 

the instruction differences between the two conditions.  Rather, to determine the amount of 

explicit knowledge the participants acquired about the task in the implicit condition, a short 

questionnaire was administered after the experimental session (Song et al., 2007). This 

questionnaire included increasingly specific questions, such as “Have you noticed anything 

special regarding the task?”, “Have you noticed some regularity in the sequence of stimuli?”. 

The experimenter rated subjects’ answers on a 5-point scale where 1 denoted “Nothing noticed” 

and 5 denoted “Total awareness”. Importantly, none of the participants in the implicit condition, 

children or adult, reported noticing the hidden repeating sequence.  

For each participant, one of the six unique permutations of the 4 possible ASRT 

sequence stimuli was selected in a pseudo-random manner, so that the six different sequences 

based on a permutation rule were used equally often across participants (Howard & Howard, 

1997; Nemeth et al., 2010). 

 

The stimulus structure in the ASRT task 

 We will discuss two important aspects of the statistical structure defined by our ASRT 

sequences. We define long-range correlations to refer to all statistical dependencies due to 

correlations coming from adjacent and non-adjacent co-occurrences not between the elements 

of three consecutive locations in the sequence, i.e. triplet, but the element of the triplet and some 

preceding other elements. These correlations are strongly related to the predetermined 

sequences of the task. In addition, we define local structures as statistical relations coming from 

all other statistical regularities but not from the predetermined sequence structure.  

 Regarding the local sequence structures, in the alternating sequence structure of our 

ASRT task (e.g., 2r4r3r1r), some triplets (i.e. combinations of three consecutive events) 

occurred more frequently than others. Importantly, there are two different ways how such 
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frequent triplets could occur. For example, in the above illustration, 2_4, 4_3, 3_1 and 1_2 

(where “_” indicates the middle element of the triplet) occurred often, and they did so either by 

the third element (bold numbers) being derived from the sequence or so that it was a random 

element. In contrast, infrequent triplets could occur only in one way. Specifically, 1_3 or 4_1 

triplets occurred less frequently only so that the third element was random (Figure 2.2.1C and 

2.2.1D).  Following previous studies, we refer to the former as high-frequency triplets and the 

latter as low-frequency triplets. Note that due to the higher occurrence probability, the final 

event of high-frequency triplets was more predictable from the initial event of the same triplet 

compared to the low-frequency triplets (also known as non-adjacent second-order dependency 

(Remillard, 2008). To quantitatively assess the effect of these differences in occurrence 

probabilities on learning, for each stimulus/event, we determined whether it was the last 

element of a high- or low-frequency triplet providing one independent factor of the learning 

process (Figure 2.2.1D). 

 The second aspect of the statistical structure of the ASRT sequences is defined by the 

long-range correlations, the dependencies beyond the triplet that are due to the four non-

adjacent elements following a preset sequence.  This effect can be quantified by noticing that 

triplets with the last element being “random” have strong correlations between the middle 

element of the triplet and the elements preceding the triplet. In contrast, triplets with “pattern” 

last element have such correlations only with elements further away from the beginning of the 

triplet. The effect of this difference in distance-dependent correlations on human performance 

is unknown. Nevertheless, the dichotomy between pattern- and random-last triplets provides 

the second independent factor in our design to understand what drives skill learning (columns 

of Figure 2.2.1D). To quantify the effects, first we have calculated the relative probabilities of 

these different triplet types and found that out of the 64 possible triplets in the task (43, 4 stimuli 

combined for three consecutive events), 16 are high frequency triplets, each of them occurring 

in approximately 4% of the trials, about 5 times more often than the low-frequency triplets. 

Thus, approximately 62.5 % of all trials are high-frequency triplets and the remaining 37.5 % 

of trials are low-frequency ones, while out of the 62.5 % of the high-frequency triplets 50% and 

12.5% are pattern-last and random-last triplets, respectively (Figure 2.2.1D). Note, that each 

trial (i.e. presentation of a stimulus) is defined exclusively either as the last element of a high-  

or a low-frequency triplet based on the n-2 trial (Howard & Howard, 1997; Janacsek et al., 

2012). 
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Results 

Learning types in the ASRT task 

 Previous ASRT studies used several methods for analyzing learning in the ASRT task. 

The first option is to measure the overall difference between responses for pattern vs. random 

elements (pattern-random learning; e.g., Howard & Howard, 1997). However, this measure 

neglects the differences in probabilistic structure of the sequence based on 2-lag non-adjacent 

second-order dependencies, i.e. the fact that some triplets are more frequent than others. Since 

it is known that people are sensitive to such probabilistic nature of a sequence by being faster 

on more frequent triplets compared to the less frequent ones, more recent, studies also compared 

responses to high and low frequency triplets separately (triplet learning; e.g., Howard & 

Howard, 1997; Janacsek, et al., 2012). Note however, that this measure still collapses high 

frequency triplets across random-last and pattern-last triplets (compared the two rows of Figure 

2.2.1D). Hence, knowledge about the sequence structure independent of the local statistica l 

features – cannot be extracted from this learning measure alone.  To overcome this problem, in 

some studies an additional learning measure was introduced based on the difference between 

responses for high frequency pattern-last and high-frequency random-last elements as measured 

between the two columns of the first row in Figure 2.2.1D (Howard & Howard, 1997; Song et 

al., 2007).  However, a systematic comparison of these measures and clarification of their 

relation within a single study has not been done before. 

 To dissect the various effects contributing to sequence learning, we used the measures 

above and added new statistical measures to assess the amount of pure statistical learning in the 

ASRT task. We define pure statistical learning as the difference in responses between high-

frequency and low-frequency random-last triplets (right column, Figure 2.2.1D). In this case, 

the sequence properties are the same: both are random-last triplets (finishing with a penguin 

stimulus) the only difference between the two groups being statistical in nature: whether those 

triplets are more or less frequent. Thus, statistical learning is defined as faster responses for 

high frequency random elements compared to low frequency ones. Note, that statistical learning 

measures a different effect than higher-order sequence learning: the first assesses purely the 

benefit of presentation frequency differences of local elements, while the second one measures 

the effect of long-range repetitions due to the predetermined multi-element sequence. This 

means that assuming independence between these two measures, we should see an additive 

effect of these two types of learning when comparing responses for pattern elements vs. random 

low frequency elements (maximized learning, upper right vs. lower left cells in Figure 2.2.1D) 
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with statistical and higher-order sequence learning results.  We tested this hypothesis by 

calculating and comparing all these learning effects.  

In our study, we first report the triplet learning results because this has been the most 

common analysis method in the ASRT studies and thus it gives us the opportunity to directly 

compare our results with those of previous studies. Next, we compare the developmenta l 

trajectory of statistical and higher-order sequence learning across implicit and explic it 

conditions between ages of 11 and 39 years, using the above mentioned measures to obtain a 

more detailed picture about the underlying mechanisms in probabilistic sequence learning tasks.  

 

Triplet learning across age groups and conditions 

To compare triplet learning among age groups and conditions, first we conducted a 

mixed design ANOVA for the experimental blocks (as defined in Figure 2.2.1B) with TRIPLET 

(2: high vs. low frequency) and BLOCK (1-14) as within-subject factors, and AGE GROUP 

(11-13, 14-15, 16-18, 19-29 and 30-39 years of age) and CONDITION (explicit vs. implicit) as 

between-subjects factors (Figure 2.2.2). All significant results are reported together with the 

2
p effect size and Greenhouse Geisser ε correction factors where applicable. Planned 

comparisons and post hoc analyses were conducted by Fisher’s LSD pairwise comparisons.  

The ANOVA revealed significant triplet learning (indicated by the significant main 

effect of TRIPLET: F (1, 278) = 291.55, 2
p  = .51, p < .001) such that RTs were faster on high 

than on low frequency triplets. The conditions differed in the extent of this triplet learning 

(shown by the significant TRIPLET x CONDITION interaction: F (1, 278) = 37.49, 2
p = .12, 

p < .001): the participants in the explicit condition were 27.66 ms faster on high than on low 

frequency triplets, while this difference was only 13.12 ms in the implicit condition. Overall, 

age groups showed similar extent of learning (TRIPLET x AGE GROUP interaction: F (1, 278) 

= 1.10, 2
p  = .02, p = .357); however, there was a trend in the TRIPLET x AGE GROUP x 

CONDITION interaction  (F (1, 278) = 2.00, 2
p  = 0.03, p = .095), suggesting different learning 

performance across age groups in implicit vs. explicit conditions.  

Specifically, in the implicit condition, post hoc tests revealed that the 11-13-year-old 

group exhibited the highest level of triplet learning, differing from all other groups (ps < .069) 

who performed on the same level between 14 and 39 years of age (ps > .408). In contrast, in 

the explicit condition, all age groups reached similar extent of triplet learning (ps > .147). 

Although there was a small advantage in the 14-15-year-old group, this was significantly higher 

only to the 16-18-year-old group’s performance (p = .037).  Comparing the extent of learning 
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in explicit vs. implicit conditions separately for each age group, the post hoc tests revealed 

similar level of triplet learning in the implicit and explicit conditions for the 11-13-year-old 

group (22.53 vs. 25.15, respectively, p = .644). In contrast, other age groups demonstrated 

higher triplet learning in the explicit condition than in the implicit one (ps < .033). 

 

 

Figure 2.2.2. Triplet learning in all age groups separately for explicit (filled squares) and implicit (open 

squares) conditions. Learning score was defined as the difference between RTs for low versus high frequency 

triplets. In the implicit condition, the 11-13-year-old group showed the highest learning differing from all other 

groups, while in the explicit condition all groups performed at the same level. Error bars represent standard error 

of mean (SEM). 

 

A similar ANOVA was conducted for the 6 probe blocks. The ANOVA revealed 

significant triplet learning (indicated by the significant main effect of TRIPLET: F (1, 278) = 

96.958, 2
p = .259, p < .001) such that RTs were faster on high than on low frequency triplets. 

Neither the conditions nor the age groups showed differences in the amount of learning (ps > 

.248). In sum, this measure revealed that, on average explicit learning of sequences has an 

advantage over implicit learning at all ages with the exception of the 11-13-year-old-group. 

 

Explicit knowledge across the age groups and conditions 

 For the explicit condition, we assessed the number of participants in all age groups who 

gained explicit knowledge about the sequence during the task. The 2-test revealed a 

significantly different distribution across age groups (2 (4) = 18.19, p = .001). In the 11-13-

year-old group, only 69.6 % of the participants could report the correct sequence structure 
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during the task while in other age groups, at least 95 % of the participants gained explic it 

knowledge about the sequence (Figure 2.2.3A).  

 To further characterize the age differences in the explicit knowledge, we compared 

when subjects gained their explicit knowledge about the sequence during the experiment.  We 

measured the number of the block where the participants could report the sequence structure 

consistently (i.e., reported the same correct sequence in all consecutive blocks). A univar iate 

ANOVA (excluding those participants who did not succeed to report the correct sequence 

structure in the task at all) revealed significant difference among the age groups (F (4, 130) = 

7.440, 2
p = .186, p < .001) (Figure 2.2.3B). Specifically, the mean of the experimental blocks 

where the 11-13-year-old group reported the sequence consistently was 6.875, significan tly 

differing from all other age groups, typically remaining around 2.83 (ps < .003). All other age 

groups did not differ significantly from each other (ps > .07). For the implicit condition, we did 

not ask participants to report the sequence after any block because it would have drawn their 

attention to the hidden structure of the task eliminating the implicitness of this condition. 

Instead, we collected a verbal report after the subjects finished the entire experiment, and found 

that none of them could report the correct sequence structure. 

 

 

Figure 2.2.3. Results of the verbal reports about the sequence knowledge in the explicit condition. A) Around 

30 percent of the participants in the 11-13-year old group could not report the sequence throughout the whole task 

(black portion of bars) while this percentage was significantly smaller (~ 5%) in all other groups. B) Participants 

in the youngest group who could report the sequence correctly gained this explicit knowledge significantly later 

(around the 6-7th block) than the older groups. Error bars represent standard error of mean (SEM). 
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Statistical and higher-order sequence learning across age groups and conditions 

To further dissect the nature of learning among age groups and conditions, we conducted 

a mixed design ANOVA for experimental blocks with TYPE (3: pattern, random-high 

frequency and random-low frequency elements) and BLOCK (1-14) as within-subject factors, 

and AGE GROUP (11-13, 14-15, 16-18, 19-29 and 30-39 years of age) and CONDITION 

(explicit vs. implicit) as between-subjects factors. This ANOVA allowed us to disentangle a 

number of relevant factors influencing sequence learning. 

First, the analysis revealed a strong evidence for both statistical and higher-order 

sequence learning within the general learning effect of this task reported above (Figure 2.2.4). 

We found a significant main effect of TYPE (F (2, 556) = 122.422, 2
p = .306, p < .001), 

suggesting that participants responded differently to pattern, random-high frequency and 

random-low frequency elements, respectively. Specifically, post hoc test showed that they were 

the fastest on pattern elements (upper left cell Figure 2.2.1C; 461 ms), differing significantly 

both from random-high frequency (upper right cell, Figure 2.2.1C; 465 ms, p = .006) and 

random-low frequency elements (lower right cell, Figure 2.2.1C; 481 ms, p < .001). Thus, the 

RT differences between random-high and pattern-high triplets (higher-order sequence learning) 

as well as between random-low and random-high (statistical learning) were both significant (p 

< .001).  

Second, we also found that the extent of these learning effects was different between the 

implicit and explicit conditions (significant TYPE x CONDITION interaction: F (2, 556) = 

33.511, 2
p = .108, p < .001). In the explicit condition, participants exhibited significant higher-

order sequence learning: responses for pattern elements were 13 ms faster than for random-high 

frequency elements (p < .001). In addition, they were significantly faster on random-high 

elements compared to random low elements, revealing statistical learning (15.81 ms, p < .001). 

The pattern vs. random-low difference was also significant (29 ms, p < .001). Surprisingly, in 

the implicit condition, participants were significantly slower on pattern elements compared to 

random-high elements despite the 4-fold difference in appearance frequency, thus 

demonstrating a reversed higher-order sequence learning (-5.5 ms, p = .005). The statistica l 

learning was to a large extent similar to that in the explicit condition (p = .976), namely 

participants were 15.74 ms faster on random-high compared to random low elements (p < .001). 

Due to the reversed higher-order sequence learning, the pattern vs. random low difference 

(overall learning) in the implicit condition (10 ms, p < .001) was significantly smaller compared 

to the explicit condition (p < .001).  
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Third, investigating the effect of age within the ANOVA design added further detail to  

the emerging picture, as we found a significant TYPE x CONDITION x AGEGROUP 

interaction (F (8, 556) = 2.936, 2
p = .041, p = .003).  Specifically, in the implicit condition, the 

11-13-year-old group exhibited the highest level of statistical learning (Figure 2.2.4A), 

differing significantly from all other groups (ps < .02).  The decline was monotonic and the 

drop was significant from level in the 14-15-year-old group to level in the 18-29-year-old group 

(p = .014). There was a notable lack of such monotonic decrement in learning under the explic it 

condition, where all age groups showed a similar magnitude of statistical learning (ps > .229), 

suggesting age invariance of such learning. 

Comparing the extent of statistical learning in explicit vs. implicit conditions separately 

for each age group, the post hoc tests revealed stronger statistical learning in the implic it 

condition than in the explicit one for the 11-13-year-old group (32.29 vs. 14.47 ms, respectively, 

p = .003) (Figure 2.2.4A). In contrast, the 19-29 and 30-39-year-old groups exhibited an 

opposite pattern by showing higher statistical learning in the explicit (18.05 and 19.90 ms, 

respectively) than in the implicit condition (4.9 and 9.7 ms, respectively). In the older age group, 

however, this difference did not reach significant (p = .003 for the 19-29-year-old group and p 

= .09 for the 30-39-year-old group).  In the adolescent groups, the extent of the statistica l 

learning was similar in both conditions (14-15-year-olds: 13.49 vs. 18.25 for explicit and 

implicit conditions, respectively, p = .438; 16-18-year-olds: 13.14 vs. 13.50, p = .947). Taken 

together, the difference between statistical learning in the explicit and implicit conditions 

reversed across age groups, children showing stronger learning in the implicit condition while 

adults demonstrating stronger learning in the explicit condition.   

In the case of the higher-order sequence learning (Figure 2.2.4B), the effect of learning 

was stronger in the explicit than in the implicit condition (ps < .045 for all age groups). 

Analyzing the conditions separately, in the explicit condition, all age groups showed a 

significant learning effect (ps < .03). The extent of this learning was similar in all age groups, 

except for the 14-15-year-olds who performed slightly but not significantly better than the other 

groups (ps between .056 and .136).  In the implicit condition, the RT difference between pattern 

and random-high elements was not significant between 16 and 39 years of age (ps > .397), 

however, the 11-13-year-olds demonstrated a significant reversed learning, being faster on 

random-high elements compared to the pattern elements (p = .01), and the 14-15-year-old group 

showed a similar albeit non-significant trend (p = .106).  Neither of these two groups differed 

significantly from the older groups in learning (ps > .107).  Thus, summing up the different 

local patterns, we found a) significant and quasi-age-independent advantage of the explic it 
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condition over the implicit one, b) a significant learning effect in the explicit condition across 

the board, and c) a significant interference in the youngest subjects in the implicit condition. 

We also conducted a correlational analysis to examine the relationship between verbal 

reports and RT learning measures. We found a significant correlation between the timing of the 

discovery of the sequence and the extent of higher-order sequence learning (r = -.22, p = .01, 

corrected for age), such that the earlier the participants could report the sequence structure, the 

better their higher-order sequence learning performance was in the explicit condition. In 

contrast, there was no correlation between the verbal reports and the statistical learning measure 

(r < .1), suggesting that this type of learning is not related on explicit knowledge. 

In order to assess the effect of all structures carried by the sequences on learning, one 

needs to compare the difference between the pattern-high and the random-low conditions (upper 

left and lower right cells in Figure 2.2.1C). This analysis provides a clear indication of the 

purely additive effect of statistical and higher-order sequence learning where different parts of 

the two curves (different age groups) are controlled more strongly by different types of learning 

(Figure 2.2.4C).  For example, learning by the 11-13-year-olds is similar in explicit and implic it 

conditions (p = .49) and this similarity is determined mainly by larger statistical learning 

combined with a larger interference in the higher-order learning in the implicit condition 

compared to an average statistical and higher-order sequence learning in the explicit condition 

(Figure 2.2.4A-B). In the other age groups, the overall stronger maximal learning in the explic it 

condition (ps < .019), is driven by the advantage of the explicit condition in both statistical and 

higher-order sequence learning which is not compensated any more (in fact, enhanced) by the 

reduced statistical learning advantage and nonexistent learning in the higher-order learning in 

the implicit condition.  

To round up our analysis, a similar mixed-design ANOVA was conducted for the 6 

probe blocks of the experiment.  This ANOVA revealed a significant main effect of TYPE (F 

(2, 554) = 27.953, 2
p = .092, p < .001) due to the RTs with pattern and random high frequency 

triplets (459.95 ms vs. 458.44 ms, respectively) being significantly faster than that of random 

low frequency triplets (467.75 ms, ps < .001), with no difference between pattern and random 

high triplets (p = .274). Neither the Conditions, nor the Age group x Condition interaction 

reached significance (ps > .207).  
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Figure 2.2.4. Detailed analysis of the learning across age groups and conditions. A) Statistical learning (RT 

difference between random low and random high-frequency triplets) resulted in a gradually declining  

developmental curve in the implicit condition with an age invariant performance in the explicit condition. The 

youngest age group exhibited better statistical learning in the implicit condition compared to the explicit one while 

the opposite pattern was observable between 19 and 39 years of age. B) In the case of higher-order sequence 

learning (RT difference between random high-frequency and patter elements) only groups in the explicit condition 

showed significant learning, with approximately similar extent of learning across ages. C) The additive effect of 

the statistical and higher-order sequence learning is evident by maximized learning (RT difference between 

random low-frequency and pattern elements). The pattern is similar to the triplet learning results (cf. Figure 2.2.2): 

the highest learning of the 11-13-year olds in the implicit condition while mainly similar level of learning  across 

age groups in the explicit condition. Error bars represent standard error of mean (SEM). 

 

Within-block effects on learning across age groups and conditions 

 We further analyzed our data by splitting each block into two halves, to investiga te 

earlier claims that reactive inhibition emerges within blocks, masking the potential learning 

effects (Brawn, Fenn, Nusbaum, & Margoliash, 2010; Rickard, Cai, Rieth, Jones, & Ard, 2008). 

According to these reports, the longer people have to perform a reaction time task arranged in 

blocks of, for example, several seconds or minutes, the slower they become by the end of each 

block, and consequently, their performance is the best at the beginning of each block (Brawn et 

al., 2010; Rickard et al., 2008). Since younger children can be more affected by this kind of 

fatigue/slow-down, it is important to take this effect into account when comparing learning 

performances across a wide range of ages.  Therefore, we conducted a mixed design ANOVA 

on experimental blocks with TRIPLET (high vs. low frequency), BLOCK (1-14) and PART 

(first vs. second half of blocks) as within-subject factors and AGE GROUP (11-13, 14-15, 16-

18, 19-29 and 30-39 years of age) and CONDITION (explicit vs. implicit) as between-subject 

factors  (Figure 2.2.5A-B).   

The ANOVA revealed significant triplet learning overall (main effect of TRIPLET: F 

(1, 278) = 312.945, 2
p = .53, p < .001), with higher learning for the explicit condition compared 
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to the implicit one (29 vs. 14 ms; TRIPLET x CONDITION interaction: F(1, 278) = 35.997, 

2
p = .115, p < .001). Interestingly, taking the PART of the blocks into account, we found a 

significant TRIPLET x CONDITION x PART interaction (F (1, 278) = 7.539, 2
p = .026, p = 

.006): triplet learning was greater in the second part of the blocks compared to the first part for 

the implicit condition (12.5 vs. 16.5 ms, p = .032), while the opposite trend was obtained for 

the explicit condition (30.98 vs. 27.81 ms, p = .086) (Figure 2.2.5).  Although the TRIPLET x 

CONDITION x PART x AGE GROUP interaction did not reach significance (F (4, 278) = .962, 

2
p = .014, p = .429), planned comparisons revealed that in the 11-13-year-old group, the triplet 

learning was greater in the second part of the blocks (27.30 ms) compared to the first part of 

the blocks (15.98 ms) but only in the implicit condition (p = .01). By contrast, in the explic it 

condition the extent of learning was similar in both parts of the block (25.30 vs. 28.66 ms, p = 

.449). The opposite pattern was observed between 19 and 39 years of age: the extent of learning 

in the first and second half of blocks was similar in the implicit condition (ps > .33), while they 

exhibited greater learning in the first half of blocks than in the second half in the explic it 

condition (19-29-year old group: 32.78 vs. 26.36, p = .049; 30-39-year old group: 36.59 vs. 

24.04 ms, p = .009). Between 14 and 18 years of age participants showed similar extent of 

learning in both parts of the blocks in both conditions (ps > .275).  

A similar ANOVA was conducted for the 6 probe blocks. The ANOVA revealed 

significant main effect of TRIPLET (F (1, 278) = 147.602, 2
p = .347, p < .001) such that RTs 

were faster on high than on low frequency triplets. The TRIPLET x PART x AGE GROUP was 

marginally significant (F (4, 278) = 2.377, 2
p = .033, p = .052). Post hoc tests revealed that the 

11-13-year old group exhibited larger triplet learning in the first part of the blocks (21.08 vs. 

12.91 ms, p = .039) collapsed across conditions, while the opposite trend was observable in the 

14-15- and 19-29-year old groups (ps < .09). Other interactions regarding the CONDITION and 

AGE GROUP were not significant (ps > .373). 
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Figure 2.2.5. Triplet learning in the first and second half of the blocks. A) In the implicit condition, the 

youngest group outperformed the other groups in the second half of the blocks, while they exhibited a similar level 

of learning in the first half of the blocks. B) In the explicit condition, participants between 19 and 39 years of age 

showed higher learning in the first half of the blocks compared to the second half while other groups exhibited the 

same level in both parts of blocks. Error bars represent standard error of mean (SEM). 

 

 

 

Discussion 

 There were two main aims of the present study. First, we wanted to obtain a detailed 

and systematic description of probabilistic sequence learning in both explicit and implicit setups 

so that this kind of skill-related learning could be related to other types of purely perceptual 

learning domains such as visual statistical learning (Fiser & Aslin, 2001, 2002, 2005). Second, 

using the insights of the first aim, we wanted to test the hypothesis that there is a coherent shift 

in the interaction between simple raw probability-based and complex, internal-model based 

learning at around the age of 13 (Janacsek et al., 2012). To this end, we investigated the 

differences of explicit and implicit probabilistic sequence learning in different age groups 

between 11 and 39 years of age.  

To fulfill the first aim, we analyzed pure statistical vs. higher-order sequence learning 

separately. In the case of classical triplet analysis used in many previous studies (Howard & 

Howard, 1997; Janacsek, et al., 2012; Nemeth & Janacsek, 2011; Song et al., 2007), the triplet 

frequency information (high vs. low frequency elements) was mixed with sequence information 
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(random vs. pattern elements), making the interpretation difficult and fuzzy. With our new 

analysis methods, we could factorize the problem of triplet learning and clarify the nature of 

the underlying learning mechanisms. We quantified pure statistical learning as the difference 

in reaction time to high and low probability random events (random-low minus random-high 

frequency triplets, Figure 2.2.1D) independent of the long-range sequence information. In 

contrast, we measured higher-order sequence learning by RTs capturing the difference between 

the ability to internalize a triplet on its own vs. the same triplet embedded in a repetitive larger 

structure (random-high minus pattern-high frequency triplets, Figure 2.2.1D) while the simple 

statistical information about the elements within the triplets is equated.  Hence our statistical 

learning is a measure of acquiring knowledge of the local statistical structures (individua l 

appearance probabilities), while higher-order sequence learning is a measure of becoming 

sensitive to long-range relational structures.  Both type of learning is based on the input 

statistics, but they measure independent aspects of the input structure, and while simple local 

structures are presumably easier to learn right away, learning global structures might get a 

serious boost from additional ability to handle more complex memory constructs, which we 

refer to as the internal models utilized in model-based learning. We also propose that our higher-

order sequence learning measure is more closely related to explicit knowledge that is more 

suited for explicit learning. This proposal has been corroborated by our finding of a significant 

correlation between the timing of the discovery of the sequence and the extent of higher-order 

sequence learning in the explicit condition. Notice that no such correlation was detected for 

statistical learning supporting our view that the simple statistical relationships discovered by 

this type of learning are more readily subject of model-free learning. 

Our first important finding is related to the fact that explicit learning seriously boosts 

the ability to learn higher-order structures by directly focusing the subjects’ attention on the 

relevant structures in our task (Figure 2.2.4B). Within this analysis, we also found that in the 

implicit learning setup, learning higher-order structures by younger children is significantly 

interfered with whereas in older subjects the effect of higher-order structures is approximate ly 

zero (Figure 2.2.4B). This provides our first hint that a significant gradual shift occurs in the 

processing of more complex information of the input around the age of 13, which can be 

detected in an implicit task.  

In the case of statistical learning, we found a gradual decline across ages in the implic it 

condition, contrasting the age invariant learning effect we measured in the explicit condition 

(Figure 2.2.4A). However, the performance in the explicit condition was inferior to the implic it 

case around 11-13 year, while it was better beyond the age of 19.  It is important to consider 
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two facts in interpreting these results. First, the flat explicit developmental curve does not mean 

that subjects would perform invariantly in ANY kind of explicit sequential task, only that in the 

present task, the complex interaction between explicit and implicit processes result in a fairly 

constant performance.  Second, since our explicit measure always combines explicit and 

implicit learning (i.e. there is no purely explicit learning), the comparison of the implicit and 

explicit results should always be interpreted in a relative manner, that is how much the explic it 

learning machinery adds or interferes with the basic implicit learning processes. Thus, while 

due to their independence, statistical and higher-order sequence learning results can be 

considered separately and combined additively to obtain the results of maximized learning both 

for implicit and explicit learning separately (see Figure 2.2.4C), the same kind of independent 

treatment cannot be applied between implicit and explicit results of either type of (statistical or 

higher-order sequence) learning.  Specifically, the flat explicit learning performance during 

statistical learning (Figure 2.2.4A) is not an indicator of unchanging ability of extracting 

explicit knowledge-based information at different ages. 

With these two points in mind, our interpretation of the above statistical learning results 

(Figure 2.2.4A) is that despite the steady decrease of implicit performance with age, subjects 

manage to keep the overall performance at older ages - as measured in the explicit task- from 

falling, presumably with the increasing help of learning processes evoke by the explic it 

information.  In other words, young children could pick up raw probability information better 

if no explicit influence interfered with their implicit processes, whereas this implicit learning 

ability deteriorated with age but also received a serious boost from explicit-knowledge-based 

help when the subject was more mature. We propose that the performance in implicit statistica l 

learning is more directly related to the model-free processes mentioned in the introduction, 

while the addition of explicit information leading to interference in young age and boost in 

older age in the explicit learning task is related to the contribution of the model-based learning 

processes that can more effectively extract higher order structures. 

 The analysis of the explicit knowledge about the sequence structure also supports the 

idea that the interaction between model-free and model-based processes can explain the pattern 

of the implicit and explicit learning results: we found that the 11-13 year old group gained 

explicit knowledge of the higher-order structures slower and less effectively compared to later 

ages (Figure 2.2.3). Specifically, these results demonstrate that the relationship between model-

free and model-based processes (also termed sometimes as the implicit and explicit processes) 

is of a competitive nature (Poldrack et al., 2001): the less knowledge acquired explicitly on the 

structure the more implicit learning effect we have. 
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Returning to higher-order sequence learning in the explicit condition, there was a 

strange peak at ages 14 and 15 around the age where the reversed learning effect appeared in 

the implicit condition (Figure 2.2.4B).  We speculate that these effects might be related to the 

gradual shift in dominance between purely local statistical and more global higher-order 

learning suggesting that the underlying computational mechanisms of the two types of learning 

use fundamentally different and somewhat complementary components. Specifically, at 

younger age, even higher-order relations are detected with a superior ability to extract raw 

probability structures, while around the age of 13, the same performance starts to be achieved 

by a very different strategy relying more on the utilization of explicitly treatable information. 

In general, our result and their interpretation provides a very different and more complex 

picture about the development of human sequence learning compared to the earlier 

developmental proposals based on age-invariance (Meulemans et al., 1998; Vinter & Perruchet, 

2000) or the inverted-U shape curve (Fletcher et al., 2000; Maybery et al., 1995; Thomas et al., 

2004). We propose that a) there are multiple learning processes playing parts in sequence 

learning, namely model-free and model-based learning, b) in simple model-free learning tasks 

based on raw probabilities of events, young children are superior compared to adults, c) for 

learning more complex types of patterns, model-based learning develops somewhat later at 

around 13 year of age, d) incorporating model-based features into overall learning interferes, 

by definition, with the superior sensitivity to raw probabilities of model-free learning, and e) 

nevertheless, the overall ability to learn all sorts of tasks in our environment improves with the 

integration of the model-based learning component.       

To understand more thoroughly the developmental curve of sequence acquisition, it is 

worthwhile to consider memory processes such as reactivation and reconsolidation in these 

types of tasks (Rickard et al., 2008; Walker, Brakefield, Seidman, et al., 2003). During the 

acquisition of sequences we are learning, recalling and reactivating the sequence elements 

continuously. Recalling or reactivating a previously consolidated memory makes it fragile and 

susceptible to interference once again, therefore requiring periods of reconsolidation (Walker, 

Brakefield, Seidman, et al., 2003). These repetitions of the recall, reactivation and consolidat ion 

processes allow a continuing refinement and reshaping of previously learned motor or cognitive 

skills in the context of ongoing experience.  In experimental designs (fingertapping or SRT 

tasks) and partly in real-life situations, we are learning sequences arranged in blocks, which are 

separated by shorter or longer time periods. Several recent studies showed that the separate 

analysis of the different parts of the learning blocks is crucial in understanding the consolidat ion 

and reconsolidation of sequence learning (Brawn et al., 2010; Nemeth, Janacsek, Király, et al., 
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2013; Rickard et al., 2008).  In particular, in the beginning of the blocks we have to recall and 

reactivate the sequence structure partly learnt already in the previous blocks. The second part 

of each block might be responsible for the reconsolidation of the sequence structure. In our 

study, we found that this “detection of probabilities - reactivation/recall – reconsolidat ion” 

cycle is different across ages and conditions: while in the implicit condition the learning of the 

second half of the blocks is better than the learning in the first half of the blocks in younger 

ages, in the explicit condition an opposite pattern emerged with better performance in the first 

half of the blocks in older ages (Figure 2.2.5). These results suggest that the memory 

reactivation processes are weaker before early adolescence in the implicit condition, 

presumably because of the weaker model-based processes.  However, when subjects have an 

efficient cue to find the hidden structure in the explicit condition, it can boost the model-based 

processes as reflected in the similar extent of learning in the first and second half of the blocks, 

but only after 16 year of age. In older ages the reactivation of the previously acquired knowledge 

is more effective in the explicit condition, with a weaker performance in the second half of the 

blocks (Figure 2.2.5B). These results can be connected to fatigue effect caused by a more 

attention demanding explicit learning because this effect disappears in the implicit condition 

where cognitively controlled processes are less dominant. 

Although we focused on experimental blocks in this study, we also administered probe 

blocks in order to investigate the transfer of the acquired knowledge from the more controlled 

learning situation to a more automatic one. Our results showed that although all groups 

exhibited learning in these probe blocks, the gain of explicit instructions diminished in most 

cases, suggesting that this amount of learning is not enough to build a deeper representation 

about the sequence structure. In other words, in spite of whether or not the participants were 

able to form some type of internal representation of the sequence structure, this learning was 

not enough to generate an automatic, procedural behavior.  This could be the reason for failing 

to find developmental differences in these probe blocks.   

To sum up, the present study provides additional support for the developmenta l 

framework proposed in Janacsek et al’s (2012) study: there is a shift in early adolescence when 

the system adapts efficiently to more complex aspects of the world by relying more on interna l 

model-based interpretations, while somewhat neglecting the raw probabilities of the sensory 

input. The results also corroborates the findings that the cortical areas implied in storing the 

internal models for model-based learning become truly functional late in the development, 

around early adolescence (12-14 years of age; Blakemore & Choudhury, 2006; Giedd et al., 

1999). In addition, by separating the different components of sequence learning, our results 
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could also demonstrate the competitive interaction between simple model-free and more 

complex model-based memory processes (Logothetis et al., 2012; Nemeth, Janacsek, Polner, et 

al., 2013; Poldrack et al., 2001). Finally, these results build a bridge between the classical 

domain of procedural skill learning and the more perceptual-type statistical learning literature 

raising the possibility that despite obvious differences, these processes share partially the same 

computational bases. 
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2.3 Boosting probabilistic learning4 

 

Abstract 

Human learning and memory depend on multiple cognitive systems related to dissociable brain 

structures. These systems interact not only in cooperative but sometimes competitive ways in 

optimizing performance. Previous studies showed that manipulations reducing the engagement 

of frontal lobe-mediated explicit, attentional processes could lead to improved performance in 

striatum-related procedural learning. In our study, hypnosis was used as a tool to reduce the 

competition between these two systems. We compared learning in hypnosis and in the alert 

state and found that hypnosis boosted striatum-dependent sequence learning. Since frontal lobe-

dependent processes are primarily affected by hypnosis, this finding could be attributed to the 

disruption of the explicit, attentional processes. Our result sheds light not only on the 

competitive nature of brain systems in cognitive processes, but also could have important 

implications for training and rehabilitation programs, especially for developing new methods 

to improve human learning and memory performance. 

 

Keywords: memory systems, hypnosis, sequence learning, functional connectivity, prefrontal 

cortex, striatum 

 

  

                                                                 
4 Published in Nemeth, D., Janacsek, K., Polner, B., & Kovacs, Z. A. (2013). Boosting human learning by 

hypnosis. Cerebral Cortex, 23(4), 801-805. 
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Human learning and memory rely upon multiple cognitive systems related to separable 

brain structures. These systems interact in cooperative and sometimes competitive ways in 

optimizing memory and information processing performance (Brown & Robertson, 2007a; 

Poldrack et al., 2001; Poldrack & Packard, 2003). Support for the competitive nature of memory 

systems comes from studies showing interactions between explicit/hypothesis-testing and 

implicit/procedural systems (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Daw et al., 

2005; Matilla-Duenas et al., 2012; Poldrack & Packard, 2003; Seger & Cincotta, 2005). The 

former is often characterized by voluntary mechanisms relying more on attentional resources, 

and thought to be mediated by frontal and medial temporal lobe (MTL) structures, while the 

latter relies more on automatic, nonconscious processes mediated primarily by striatum. 

Manipulations reducing the engagement of the explicit, hypothesis-testing system, such as a 

demanding secondary task (Foerde et al., 2006; Fu & Anderson, 2008; Matilla-Duenas et al., 

2012), a distractor task inserted between the learning sessions (Brown & Robertson, 2007a), or 

neuropharmacological blockage (Frank et al., 2006) had no effect or even led to performance 

improvements in striatum-dependent learning tasks. In a recent study, Galea, Albert, Ditye and 

Miall (2002) also found improvements in procedural learning after the disruption of the 

dorsolateral prefrontal cortex (PFC) using theta burst stimulation. In contrast, strengthening the 

reliance on explicit, hypothesis-testing processes resulted in impaired procedural learning 

(Fletcher et al., 2005; D. V. Howard & Howard, 2001) with greater PFC activity during the 

acquisition (Fletcher et al., 2005). 

As rapid and reversible changes of cognitive processing are encountered in hypnosis, 

this phenomenon is an excellent tool of research in the cognitive neurosciences (Egner, 

Jamieson, & Gruzelier, 2005; Fischer, Nitschke, Melchert, Erdmann, & Born, 2005). Regarding 

the neural background of hypnosis, studies demonstrated that people (especially with high 

susceptibility) show decreased performance on some frontal lobe-related tasks in hypnosis 

(Kallio et al., 2001; Kaiser et al., 1997; Peigneux et al., 2006). More recent studies suggest 

reduced functional brain connectivity between cortical areas in hypnosis, and this is especially 

typical for frontal areas (Fingelkurts, Kallio, & Revonsuo, 2007; Oakley & Halligan, 2009). 

Hypnosis temporarily disconnects certain frontal areas from the anterior cingular cortex and 

other brain areas, disturbing the frontal attentional control and executive system (Egner et al., 

2005; Gruzelier, 2006; Kaiser, Barker, Haenschel, Baldeweg, & Gruzelier, 1997). 

In our experiment, we used hypnosis as a tool to reduce the competition between frontal 

lobe-related explicit, hypothesis-testing and striatum-related procedural-based systems. In 

order to measure procedural learning in the hypnotic and alert states, we administered a motor 
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sequence acquisition test, which is based on statistical learning mechanisms (J. H. Howard, Jr. 

& Howard, 1997; Perruchet & Pacton, 2006). This fundamental learning mechanism underlies 

not only motor but also cognitive and social skills (Kaufman et al., 2010; Lieberman, 2000; 

Nemeth et al., 2011; Romano Bergstrom et al., 2012; Ullman, 2004); it is therefore an important 

aspect of life from infancy to old age. Sequence learning is essential for learning languages and 

operating appliances, such as, for example computers and musical instruments (D. V. Howard 

et al., 2004; Romano Bergstrom et al., 2012). Social skills appear in compound behaviors 

realized in proper sequences activated under appropriate circumstances. Most models and 

empirical studies of sequence learning highlight the role of the basal ganglia (Dennis & Cabeza, 

2011; Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002; Keele et al., 2003; Kincses et 

al., 2008; Rieckmann et al., 2010).  

The main question of the study was how the disruption of frontal lobe functions by 

hypnosis affects performance in procedural-based sequence learning. Sequence learning was 

measured by the Alternating Serial Reaction Time (ASRT) task (Howard and Howard 1997) 

on highly hypnotizable young adults. Participants performed the ASRT task both in waking 

alert and hypnotic state. In addition, executive functions were assessed by the Wisconsin Card 

Sorting Test (Heaton et al. 1993; Anokhin et al. 2010) and Verbal Fluency Task (Spreen and 

Strauss 1991) in order to investigate the possible interactions between frontal lobe functions 

and the effect of hypnosis on sequence learning.  

 

Methods 

Participants 

Fourteen healthy, right-handed students from the University of Szeged participated in 

the experiment (12 females; mean age: 22.70, SD: 1.70; mean years of education: 15.50, SD: 

1.58). All participants provided signed informed consent. They received no financ ia l 

compensation for participating in the study. The study was approved by the Psychology Ethics 

Committee at the University of Szeged, Institute of Psychology.  

Participants were selected from a pool of pre-tested subjects, on the basis of their 

hypnotic susceptibility. Hypnotizability was measured using the Hungarian version of the 

Harvard Group Scale of Hypnotic Susceptibility: Form A (HGSHS:A, Shor, Orne, & Press, 

1962). Scoring procedure was based on the original English version (scores ranging from 0 to 

12).  Similarly to previous studies (Halsband, 2006; Kallio, Revonsuo, Hämäläinen, Markela, 

& Gruzelier, 2001) we defined high hypnotizability as having 8 or higher score on the 
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HGSHS:A. The mean hypnotizability score of the participants was 9.07 (SD = 0.997; range 

from 8 to 12). 

 

Tasks 

Sequence learning task - The Alternating Serial Reaction Time Task (ASRT) is a widely 

used paradigm measuring implicit sequence learning in cognitive neuroscience (Song et al., 

2007b). In this task, stimuli appear in one of four empty circles on the screen and participants 

are required to press the corresponding key (Y, C, B, M on Hungarian keyboard) as quickly and 

accurately as possible. Participants are told that stimuli appear randomly, but, in fact, stimuli 

delivered in a random order (low predictability) alternate with the same stimulus items which, 

however, follow a regular presentation order (high predictability). Reaction times (RT’s) to the 

high predictability stimuli become shorter than to the low predictability items as participants 

(implicitly) learn the hidden sequence.  

The current ASRT task consisted of one practice block with random stimuli, and 15 

blocks with the alternating pattern described above. The latter blocks consisted of 85 key 

presses - the first five button pressings were random for practice purposes, then an eight-

element alternating sequence (e.g., 2r1r3r4r, where numbers represent specific stimuli and r 

represents a random stimulus) was repeated ten times. The response to stimulus interval (RSI) 

was 120 ms. Participants were given different sequences in the two conditions (see below) in 

order to eliminate inter-session learning effects. 

Fluency task – In this task, participants are instructed to produce as many words 

belonging to the same category (animals, supermarket) as possible in 60 seconds, without 

repetitions, synonyms, or generated forms of the same word (Spreen & Strauss, 1991). The 

average number of correct words was used as the performance score. Higher score reflects 

better frontal lobe functions (Baldo, Schwartz, Wilkins, & Dronkers, 2006). 

 Wisconsin Card Sorting Test (WCST) – This task is one of the most specific tests of 

prefrontal functions (Anokhin, Golosheykin, Grant, & Heath, 2010; Heaton, Chelune, Talley, 

Kay, & Curtiss, 1993). Participants are required to derive a correct card sorting rule based on a 

trial-by-trial feedback. As the rule changes without warning, the participant has to modify the 

previously learned response strategy on the basis of the feedback information. A key indicator 

of cognitive flexibility is the number of perseverative errors that occur when the participant 

persists in using the old strategy despite the negative feedback. A lower number of perseverative 

errors indicate better frontal lobe functions. 
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Design and procedure 

All tests were conducted on an individual basis. Participants performed the ASRT task 

in both the alert waking and the hypnotic state, with the same standard instructions. The order 

of the two conditions was counterbalanced across participants. The delay between the two 

sessions was 30 days. Fluency and WCST task was administered once, in a third session in alert 

state. Two participants did not take part in the third session due to time schedule problems. 

A skilled hypnotist therapist (the author, Z.A.K.), who has extensive experience with 

hypnosis, tape-recorded the induction, instructions, and dehypnotizing phases (similarly to 

Szendi et al.’s study (Szendi et al., 2009)). This recording was played to each participant. The 

type of hypnosis induction, similarly to that of the hypnotizability scale, was essentially 

relaxational.  

The induction took approximately 14 minutes. After the induction, the hypnosis session 

began. When participants had completed half of the ASRT task, we played an approximate ly 

30 s long induction in order to maintain their hypnotic state (in the wake condition, subjects 

had a 30 s rest). In the hypnosis condition, after the task had ended, the dehypnosis instruct ion 

was played. 

 

Statistical analysis 

As there is a fixed sequence in the ASRT with alternating random elements (e.g., 

2r3r1r4r), some triplets or runs of three events occur more frequently than others. For example, 

following the illustration above, triplets such as 2_3, 3_1, 1_4, 4_2 occur more often, because 

the third element (bold numbers) could be both derived from the sequence as well as from a 

random element. In contrast, triplets such as 4_1, 4_4 would occur infrequently, because in this 

case, the third element could only come from the random stimuli. Following previous studies 

(e.g. D. V. Howard et al., 2004; Song et al., 2007b), we refer to the former as high-frequency 

triplets and the latter as low-frequency triplets. Because of this difference in the occurrence 

frequencies of certain triplets, after observing two stimuli, a certain third stimulus can be 

expected with 62,5% of probability (for example, 223 is five times more probable than 221 or 

222 or 224). In our analysis, we determined for each stimulus whether it was a more or a less 

probable continuation for the previous two stimuli. Participants gave faster responses to the 

more probable than to the less probable stimuli, thus revealing sequence learning in the ASRT 

paradigm (D. V. Howard et al., 2004; Song et al., 2007b). In addition, general skill learning can 

be observed in the ASRT task in the overall increase of the response speed, irrespective of the 
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triplet type. Thus, we were able to separately measure sequence-specific and general skill 

learning in the ASRT task. 

Similarly to previous studies (e.g. D. V. Howard et al., 2004; Nemeth, Janacsek, Londe, 

et al., 2010; Song et al., 2007b), two kinds of low-frequency triplets were eliminated; repetitions 

(e.g., 222, 333) and trills (e.g., 212, 343). Repetitions and trills were low frequency for all 

participants, and participants often show pre-existing response tendencies to them (D. V. 

Howard et al., 2004; Soetens et al., 2004). By eliminating these triplets, we could ascertain that 

any high- versus low-frequency differences were due to learning and not to pre-existing 

tendencies.  

Since the participants’ accuracy remained very high throughout the test (as is typical, 

the average was over 92% for both conditions; (J. H. Howard, Jr. & Howard, 1997; Nemeth, 

Janacsek, Londe, et al., 2010), we focused on RT for the analyses reported. We calculated 

medians for correct responses only, separately for high- and low-frequency triplets and for each 

participant and each third of the stimulus blocks (1-5, 6-10 and 11-15). To compare sequence 

learning between hypnosis and alert condition, and between groups with high and low executive 

functions, we conducted repeated measures and mixed design analyses of variance (ANOVAs) 

with LSD post hoc tests. We reported the relevant effect sizes:  p
2 for main effects and 

interactions, and Cohen’s d measures for post hoc tests. 

 

Results and Discussion 

 A repeated measures ANOVA was conducted with TRIPLET (2: high vs. low), 

BLOCK (3: 1-5, 6-10 and 11-15) and CONDITION (2: alert and hypnosis) as within-subjec ts 

factors. In this ANOVA, a significant main effect of TRIPLET reflects sequence-specific 

learning, which can increase with practice (TRIPLET x BLOCK interaction), while a significant 

TRIPLET x CONDITION interaction indicate differences in sequence-specific learning 

between the hypnosis and alert conditions.  

ANOVA revealed significant sequence-specific learning (main effect of TRIPLET: 

F(1,13)=16.21, p=0.001, p
2=0.55), which increased with practice (TRIPLET x BLOCK 

interaction: F(2,26)=9.36, p=0.001, p
2=0.42). The two states differed significantly from each 

other (TRIPLET x CONDITION interaction: F(1,13)=7.08, p=0.02, p
2=0.35): sequence 

learning was 2.5-times higher under hypnosis than in the waking alert state (Figure 2.3.1). 

Independently from sequence learning, general reaction time decreased with practice (main 

effect of BLOCK: F(2,26)=4.93, p=0.034, p
2=0.27). Other main effects and interactions were 
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not significant (all p’s>0.34), thus the general reaction time was similar in the waking alert and 

hypnotic state (main effect of CONDITION: F(1,13)=0.12, p=0.73, p
2=0.009). In addition, the 

rate of sequence learning process was also similar between the two conditions (TRIPLET x 

BLOCK x CONDITION: F(2,26)=0.42, p=0.63, p
2=0.03). Thus, hypnosis affected only 

sequence-specific learning (the difference between RTs for low and high probability events), 

and not the general reaction time. As we used a within-subject design with two learning 

sessions, a further analysis was conducted to test the possible effect of whether hypnosis was 

in the first or in the second session and ANOVA revealed no order effect on sequence learning.  

 

 

Figure 2.3.1. Sequence learning across blocks is plotted for waking alert (A) and hypnotic state (B), separately.  

Sequence learning performance (measured by the reaction time differences between high - and low-predictability  

events) was higher in the hypnotic state compared to the waking alert condition (C). Error bars represent standard 

error of mean. 

 

To calculate a composite score for executive function, first we transformed measures of 

fluency task and WCST into z-scores. Then, we averaged these two transformed data into a 

composite score. Based on the median of this composite measure, we assigned half of the 

participants to the higher and other half to the lower executive function group. To compare 

sequence learning between the high- and the low-executive-function groups, in the alert and the 

hypnosis conditions (see Figure 2.3.2), a mixed design ANOVA was conducted with TRIPLET 

(2: high vs. low), BLOCK (3: 1-5, 6-10 and 11-15) and CONDITION (2: alert and hypnosis) 

as within-subjects factors and GROUP (2: high vs. low executive function) as a between-subject 

factor. 

The general reaction time was similar in the two groups (main effect of GROUP: 

F(1,10)=1.5, p=0.25, p
2=0.13), and it was not affected differently by the two conditions 
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(CONDITION x GROUP interaction: F(1,10)=0.71, p=0.42, p
2=0.07). The TRIPLET x 

CONDITION interaction almost reached the significance (F(1,10)=4.5, p=0.06, p
2=0.31) 

replicating that participants exhibited greater sequence learning under the hypnosis condition 

compared to the waking alert condition. The overall sequence learning was similar in the high 

and low executive function groups (TRIPLET x GROUP: F(1,10)=3.07, p=0.11, p
2=0.24). 

Although the TRIPLET x CONDITION x GROUP interaction did not reach significance 

(F(1,10)=1.72, p=0.219, p
2=0.15), the LSD post hoc tests revealed that participants with higher 

executive functions showed smaller sequence learning in the waking alert state compared to the 

hypnotic condition (Figure 2.3.2C; p=0.03, d=0.94), while participants with lower executive 

functions showed similar extent of sequence learning (Figure 2.3.2E; p=0.58, d=0.25). In 

addition, the learning performance of the high executive function group was significantly 

smaller compared to the low executive function group in the waking alert state (p=0.04, 

d=1.31), while it was similar in the hypnotic state (p=0.51, d=0.396). 

 

 

Figure 2.3.2. Relationship between high vs. low executive functions and the effect of hypnosis on sequence 

learning. Sequence learning across blocks for the high executive function group in waking alert (A) and hypnotic 

state (B), as well as sequence learning across blocks for the low executive function group in waking alert (D) and 

hypnotic state (E) is plotted. Participants with high executive functions showed smaller sequence-specific learning 
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(measured by reaction time differences between high and low probability events) in the alert state compared to the 

hypnosis condition (C), while participants with lower executive functions showed similar extent of sequence 

learning in the waking alert and hypnotic state (F). Error bars represent standard error of mean. 

 

Taken together, we found enhanced sequence learning performance in hypnosis. Our 

results provide support for the idea that learning and memory processes may not only involve 

the engagement of specific neuroplastic mechanisms, but may also rely upon the disengagement 

of interacting systems (Brown & Robertson, 2007a, p. 149). Our finding is in line with previous 

studies demonstrating that manipulations reducing the reliance on frontal lobe-dependent 

processes improved procedural-based learning performance (e.g., Matilla-Duenas et al., 2012; 

Seidler et al., 2002). 

The improved sequence learning in hypnosis could be attributed to the disruption of 

attentional control and executive system (Kaiser et al., 1997; Kallio et al., 2001; Peigneux et 

al., 2006) by weakening the engagement of the frontal lobe and/or the interconnectivity between 

related brain areas (Egner et al., 2005; Fingelkurts et al., 2007; Gruzelier, 2006; Oakley & 

Halligan, 2009). This could diminish the competition between two fundamentally incompatib le 

modes of learning: 1) PFC/MTL-mediated hypothesis-testing, attention-dependent processes 

vs. 2) basal ganglia-dependent procedural learning (Henke, 2010; Matilla-Duenas et al., 2012; 

Poldrack et al., 2001). Reducing the reliance on executive, hypothesis-testing processes could 

have improved sequence learning capacity by heightening the sensitivity to statistica l 

probabilities, which is essential for automatic, procedural mechanisms (Daw et al., 2005). This 

interpretation is consistent with the result that participants with better executive functions 

showed decreased sequence learning in the waking alert condition compared to the participants 

with lower executive functions, suggesting that in the alert state relying more on attentiona l 

processes prevented the learning of statistical contingencies to a greater extent (P. C. Fletcher 

et al., 2005). In the hypnotic state, participants with higher executive functions shifted from 

relying on frontal lobe-related attentional processes to automatic, procedural-based 

mechanisms, resulting in enhanced sequence learning. However, future neuroimaging studies 

need to corroborate these results providing direct evidence for the underlying brain systems.  

In sum, we found that hypnosis substantially boosted procedural-based sequence 

learning. This result sheds light not only on the competitive nature of brain systems in cognitive 

processes, but also could have important implications for training and rehabilitation programs, 

especially for developing new methods to improve human skill learning.  
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2.4 Neuropsychological investigation of the relationship between frontal 

lobe functions and probabilistic sequence learning5 

 

Abstract 

Implicit sequence learning is a fundamental mechanism that underlies the acquisition of motor, 

cognitive and social skills. The relationship between implicit learning and executive functions 

are still debated due to the overlapping fronto-striatal networks. According to the framework of 

competitive neurocognitive networks, disrupting specific frontal lobe functions, such as 

executive functions, increases performance on implicit learning tasks. The aim of our study was 

to explore the nature of such a relationship by investigating the effect of long term regular 

alcohol intake on implicit sequence learning. Since alcohol dependency impairs executive 

functions, we expected intact or even better implicit learning in patient group compared to the 

healthy controls based on the competitive relationship between these neurocognitive networks. 

To our knowledge, this is the first study to examine the long-term effects of alcohol dependency 

both on implicit learning and executive functions requiring different but partly overlapping 

neurocognitive networks. Here we show weaker executive functions but intact implicit learning 

in the alcohol dependent group compared to the controls. Moreover, we found negative 

correlation between these functions in both groups. Our results confirm the competitive 

relationship between the fronto-striatal networks underlying implicit sequence learning and 

executive functions and suggest that the functional integrity of this relationship is unaltered in 

the alcohol dependent group despite of the weaker frontal lobe functions.  

Keywords: implicit learning, procedural memory, frontostriatal network, competitive brain 

networks, executive functions 

                                                                 
5 Published in Virag, M., Janacsek, K., Horvath, A., Bujdoso, Z., Fabo, D., & Nemeth, D. (2015). Competition 

between frontal lobe functions and implicit sequence learning: evidence from the long -term effects of alcohol. 

Experimental brain research, 233(7), 2081-2089. 
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Introduction 

As the number of patients with alcohol problems have been continuously growing over 

the past years, it is important to discover both its short and long-term effects. Studies have 

shown that almost half of the patients have residual deficits measured by explic it 

neuropsychological tests even after the third abstinent week furthermore 15% of the patients 

experience these deficits even after a whole year (Zinn, Stein, & Swartzwelder, 2004). 

However, the exact impact of alcohol on implicit cognition is still vaguely known. Implicit non-

conscious learning and memory processes are crucial in several aspects of daily life such as 

everyday routine behaviors, motor, cognitive and social skills. Therefore the present paper 

focuses on how alcohol dependency affects implicit learning processes. 

Deeper insight into how alcohol directly affects certain brain structures might reveal a 

great deal of its long-term effects. Functional imaging has showed that subjects with alcohol 

dependency had decreased prefrontal cortical grey and white matter volumes compared to 

control subjects (Bellis et al., 2005; Pfefferbaum, Sullivan, Mathalon, & Lim, 1997). Right, left, 

and total thalamic, brainstem, right and left cerebellar hemispheric, total cerebellar, and 

cerebellar vermis volumes did not differ between groups. These findings suggest that a smaller 

prefrontal cortex is associated with early-onset drinking problems. Similar findings have also 

shown the vulnerability of these areas (Medina et al., 2008), thus it seems that the prefrontal 

region is highly affected by long-term alcohol consumption and it is the most pronounced region 

in the brain to do so. Such declines in the prefrontal area can cause the greatly explored deficits 

in executive processes for alcohol dependent patients (Goldstein et al., 2004). 

Working memory refers to the mechanism during which one can online modulate 

information available within a certain amount of time and capacity. The original working 

memory (WM) model by Baddeley and Hitch (A. D. Baddeley & Hitch, 1974) proposed two 

main parts: the phonological loop and the visuospatial sketchpad. Some years later the central 

executive was also added as a new component responsible for information manipula t ion 

mechanisms such as updating, inhibition and shifting (A. D. Baddeley, 1996). Measuring the 

decline in the central executive part of WM is a good measure of prefrontal deterioration, as it 

is a process which is critically involved in a number of more complex cognitive behaviors (N 

Cowan, 1999). A number of experiments have shown that the acute use of alcohol has an impact 

on the functioning of WM in a way that reduces the available capacity for information to be 

processed within a certain time-frame (Curtin, Patrick, Lang, Cacioppo, & Birbaumer, 2001). 

In line with such results and further elaborating them, Finn and colleagues have come to the 

conclusion that alcohol intake reduced performance on a backward digit span, but only for 
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participants with a high baseline working memory capacity. Interestingly in a later experiment 

(Finn & Hall, 2004) based on the forward digit span task, high-span individuals were able to 

perform just as well while being under the effect of alcohol, as without the intoxication. It is 

possible that high span individuals have more storage capacity, which is not sensitive to a more 

robust task such as the forward digit span task, but backward digit span performance does not 

stay intact due to its complexity. Both the alpha-span task and the Tower of London task 

resulted in similar performances under similar circumstances, such that the more complex the 

task gets, the worse the alcohol dependent group responds (Noël et al., 2001). To sum up this 

line of thought, the more complex a WM task gets the more the central executive part of the 

model (A. D. Baddeley, 1994) is involved.  

In line with previous results Saults and colleagues found that the task complexity 

mediates how alcohol impacts WM performance (Saults, Cowan, Sher, & Moreno, 2007). In a 

relatively simple set of span tasks, acute alcohol intoxication had little or no effect on any 

general WM holding mechanism used to retain multiple concurrent items. On the other hand it 

had a more pronounced effect on mnemonic strategies that are needed to maintain task items 

(attention demanding, consciously mediated verbal rehearsal (A. D. Baddeley, Lewis, Eldridge, 

& Thomson, 1984). To sum up, alcohol affected tasks requiring only concentrated attention 

(consciously sustained process) compared to less consciously mediated processes. 

Both short-term alcohol intake and long-term alcohol dependency have a significant 

impact on the performance on tasks that require frontal, parietal, temporal or mixed functions. 

When it comes to memory, both short- and long-term alcohol usage tends to have a temporally 

stable, but selective effect on implicit and explicit memory processes respectively (Duka, 

Weissenborn, & Dienes, 2001; Lister, Gorenstein, Risher-Flowers, Weingartner, & Eckardt, 

1991). Depending on the type of assessment, participants who were under the influence of a 

moderate dose of alcohol, performed worse on an explicit stem completion task, while if the 

same information was acquired implicitly, their performance remained intact. The above 

mentioned examples all deal with the effects of acute alcohol intake, which can be thought of 

as an online measurement. Our study therefore focuses on long-term alcohol dependency to see 

if performance on such cognitive measurements changes over the course of constant alcohol 

intake.  

 One of the most widely used task type in measuring implicit cognitive processes is 

implicit sequence learning (Reber, 1989). Implicit sequence learning underlies the formation of 

cognitive, social and motor skills and has been mostly related to the basal ganglia (Sefcsik et 

al., 2009), with an additional governing role of the frontal lobe (Doyon et al., 1997). These areas 
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together form the fronto-striatal-cerebellar circuit, which has been in the focus of experiments 

aiming to reveal the network which governs implicit sequence learning (Doyon, Bellec, et al., 

2009; Henke, 2010; Klivenyi et al., 2012). The way in which implicit sequence learning is 

related to the mechanisms of the central executive working memory processes is still a topic 

that is currently being debated due to the possibility of shared capacities (Janacsek & Nemeth, 

2015). As our brain has a predetermined capacity with which it can operate with at a certain 

point in time, some processes can work in parallel by cooperating, while others are competing 

for the same resources (Albouy et al., 2008; Poldrack et al., 2001). A robust line of research 

claim that the weaker frontal lobe related functions can lead to an enhanced implicit, procedural 

learning (Filoteo et al., 2010; Nemeth, Janacsek, Polner, et al., 2013) based on the competition 

idea (Poldrack et al., 2001).  

In sum, long term alcohol usage affects frontal lobe functions such as working memory 

and executive functions. The effects of long term alcohol usage can give us a better insight into 

how fronto-striatal based implicit learning and DLPFC based WM/executive functions are 

related in alcohol dependent patients compared to healthy controls. To our knowledge this is 

the first study to explore the effects of alcohol-dependency on implicit learning. On one hand 

the possible outcome of long term alcohol usage might result in weaker implicit learning 

performance if implicit learning is positively related to working memory and executive 

functions by sharing the same neural networks (for the debate see (Janacsek & Nemeth, 2015; 

Nemeth, Janacsek, Polner, et al., 2013)). On the other hand based on the previously mentioned 

competition idea, namely that weaker frontal lobe functions can lead to better implicit learning 

(Janacsek & Nemeth, 2015; Poldrack et al., 2001) we predict that long-term alcohol usage has 

no effect or can even enhance implicit learning performance.  

 

Materials and methods 

 

Participants 

Fourteen alcoholic patients (11 male/3 female) and 16 controls (11 male/5 female) 

participated in the experiment. The alcohol dependent and the control group were matched on 

age, gender and years of education (Table 2.4.1). The patient group was recruited from the 

Rehabilitation unit of the Béla Gálfi Kht Hospital. The inclusion criterion for the alcohol-

dependent group was to be completely sober at least three weeks prior to the experiment. Past 

history of alcohol dependency was diverse, still, according to the number of relapses all 

participants have had at least one relapse (the mean of total relapses were 1.43, SD: 0.51). 
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Controls were individuals who did not have active neurological or psychiatric conditions, had 

no cognitive complaints, demonstrated a normal neurological behavior, and were not taking any 

psychoactive medications. All participants provided signed informed consent agreements and 

received no financial compensation for their participation. 

 Control  Alcohol-dependent       

 
Mean SD Mean SD            

p-value     

Age 49.56 10.68 48.50 10.68 .788     

Education 2.12 .72 2.07 .83 
.851     

Digit Span Task             6.27 .90 5.86 1.03 
.301     

Listening Span Task 3.86 .83 3.11 .69 .021     

Counting Span Task 4.15 .94 3.44 .98 
.080     

Letter Fluency Task 20.82 5.29 14.78 4.76 .006     

 

Table 2.4.1. Means and standard deviations (SD) of age, education (the number refers to the level of education 

one has: 1-elementary school, 2-high school, 3-college) and performance on Digit Span, Listening Span, Counting 

Span, and Letter Fluency Tasks for the control and alcohol-dependent group. 

 

Tasks 

The alternating serial reaction time (ASRT) task 

Implicit sequence learning was measured by the “Catch the dog” version (Nemeth et al. 

2010) of the ASRT task (Howard and Howard 1997). In this task, a stimulus (a dog's head) 

appears in one of four empty circles on the screen and participants have to press the 

corresponding button as fast and accurately as they can. The computer is equipped with a special 

keyboard which only contains four heightened keys (Y, C, B, and M on a Hungarian keyboard; 

equivalent to Z, C, B, M on a US keyboard) which are necessary for responding. These keys 

correspond to the target circles in a horizontal arrangement. 

The appearance of stimuli follows a predetermined order, which stays unknown for the 

participants throughout the experiment. Stimuli are presented in blocks of 85 stimuli, from 

which the first five button pressings are random for practice purposes. These are followed by 
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an 8-element alternating sequence (e.g., 2r3r1r4r, where numbers represents the four circles on 

the screen and ‘r’ represents random elements), which is repeated ten times in a block.  Due to 

the structure of the sequences in the ASRT task, some triplets or runs of three consecutive 

events occur more frequently (high frequency triplets) than others (low frequency triplets). For 

example, in the above illustration, 1_4, 2_3, 3_1, and 4_2 (where “_” indicates the middle 

element of the triplet) would occur often because the third element (bold numbers) could be 

derived from the sequence or could also be a random element. In contrast, 1_3 or 4_1 would 

occur less frequently because in this case the third element could only be random. Note that the 

final event of high-frequency triplets is therefore more predictable from the initial event when 

compared to the low-frequency triplets [also known as non-adjacent second-order dependency 

(Remillard 2008)]. Therefore, before analyzing the data we determined whether each item was 

the last element of a high- or low-frequency triplet. 

Overall, there are 64 possible versions of triplets (43, 4 stimuli combined for three 

consecutive events) through the task, from which 16 are high frequency triplets (62.5%), each 

of them occurring on approximately 4% of the trials, occurring five times more often than the 

low-frequency triplets. The remaining 37.5% of the remaining trials are low-frequency triplets. 

Similar to previous studies (Howard and Howard 1997; Song et al. 2007; Nemeth et al. 

2010) two kinds of low-frequency triplets were eliminated; repetitions (e.g., 222, 333) and trills 

(e.g., 212, 343). Repetitions and trills were low frequency for all participants, and participants 

often show preexisting response tendencies to them (; D. V. Howard et al., 2004; Soetens et al., 

2004). By eliminating these triplets, we could ascertain that any high- versus low-frequency 

differences were due to learning and not to preexisting tendencies. 

Previous studies have shown that as people go further in practicing the ASRT task, they 

respond more quickly to the high- compared to the low-frequency triplets, revealing sequence-

specific learning (Howard and Howard 1997; Howard et al. 2004; Song et al. 2007). In addition, 

general skill learning – general speed-up in the task, irrespective of the triplet types – can also 

be measured in the ASRT task.   

Finally, it is important to note that the task remained implicit for the participants 

throughout the experiment. According to previous experiments with the ASRT task, even after 

an extended practice of 10 days, participants are not able to recognize the hidden sequence 

(Howard et al. 2004). 
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Digit Span 

The Digit Span Task (Isaacs & Vargha-Khadem, 1989; Racsmány, Lukács, Németh, & 

Pléh, 2005) is a measure of phonological WM capacity. In this task, participants listen to an 

experimenter reading lists of series of numbers. The lists consist of increasingly longer series 

of digits which one has to repeat after the experimenter. Participants had to listen to each of 

these series and repeat them in order to the experimenter. Starting with three-item series a 

maximum of four trials was presented at each length. If the first three trials at a particular 

sequence length were correctly recalled, the series length was increased by one. The maximum 

number of digits (i.e., series length) recalled correctly three times provided the measure of the 

digit span (a simple number, e.g., 6).  

 

Listening Span 

The Listening Span task ( (Daneman & Blennerhassett, 1984); for Hungarian version 

see Janacsek et al. 2009) is a widely used complex working memory measurement. In this task 

the experimenter reads aloud increasingly longer lists of sentences to the participants who have 

to judge whether the sentence is semantically correct or not, and recall the last words of the 

sentences. Participant’s working memory capacity was defined as the longest list length at 

which they were able to recall all the final words. 

 

Counting Span 

The Counting Span task (Case, Kurland, & Goldberg, 1982; A. R. Conway et al., 2005; 

Engle, Tuholski, Laughlin, & Conway, 1999) is a complex working memory task lacking a 

strong verbal component. Each trial included three to nine blue circles as targets, one to nine 

blue squares and one to five yellow circles as distractors on a grey background. Participants 

counted aloud the number of blue circles in each trial, and when finished with the count, they 

repeated the total number. When presented with a recall cue, participants recalled each total 

from the preceding set, in the order in which they appeared. The number of presented trials in 

a set ranged from two to six. A participant’s counting span capacity is calculated as the highest 

set size at which he or she was able to recall the totals in the correct serial order. 

 

Letter Fluency task 

The Letter Fluency task is a widely-used task to measure executive functions, moreover 

the central executive component of the working memory model (A. D. Baddeley, 2006). In this 

task, participants are instructed to produce as many letters beginning with the same letter (‘k’ 
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or ‘t’) as possible in 60 seconds, without repetitions, synonyms, or generated forms of the same 

word (Spreen & Strauss, 1991) for Hungarian version see (Tanczos, Janacsek, & Nemeth, 

2013a, 2013b) the average number of correct words was used as the performance score. Higher 

score reflects better frontal lobe functions (Baldo et al., 2006). 

 

Procedure 

The ASRT task was administered in one session. Participants were informed that the 

main aim of the study was to find out just how extended practice affected performance on a 

simple reaction time task. Therefore, we emphasized participants to perform the task as fast and 

as accurately as they could. Participants were not given any explicit or implicit information 

about the regularity of the sequence that was embedded in the task. 

The ASRT consisted of 25 blocks, which took approximately 30–40 minutes. Between 

blocks, participants received feedback on the screen about their overall reaction time and 

accuracy, which was followed by a rest of 10 between 20 seconds before starting a new block. 

The computer program selected a different ASRT sequence for each participant based on a 

permutation rule, such that each of the six unique permutations of the four possible stimuli 

occurred. Consequently, six different sequences were used across participants (Howard and 

Howard 1997; Nemeth et al. 2010). 

The digit span task, the listening span task, the counting span task and letter fluency 

tasks were administered in a second experimental sitting in order to avoid possible confound ing 

effects of the WM/executive function tasks and the implicit sequence learning task.  

 

Statistical analyses 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1–5, the second blocks 6–10, etc. (Barnes et al., 2008; 

Bennett et al., 2007). As participants' accuracy remained very high throughout the test simila r ly 

to previous studies (Howard and Howard 1997; Nemeth et al. 2010), we focused on reaction 

time (RT) for the analyses reported. For RTs, we calculated medians for correct responses only, 

separately for high and low frequency triplets and for each participant and each epoch. 

Additionally, to the RTs, we calculated a learning index, which is the difference between the 

RTs for high and low frequency triplets.  

To calculate a composite score for executive function, we first transformed measures of 

Listening Span, Counting Span and Letter Fluency tasks into z-scores. Then, we averaged these 

3 transformed data into a composite score. Based on the median of this composite measure, we 
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assigned half of the participants to the higher and other half to the lower executive function 

group. Data of executive functions were not available for five participants in the control group. 

Therefore all participants were included in the first analysis focusing on sequence learning in 

the ASRT task but the following analyses including the executive functions were run on the 

restricted sample (control group: n = 11, alcohol-dependent group: n = 14). 

 

Results 

Implicit sequence learning 

To compare sequence learning between the groups, RTs were analyzed by a mixed 

design analysis of variance (ANOVA) with TRIPLET (2: high vs. low) and EPOCH (1–5) as 

within-subjects factors and PATIENT GROUP (alcohol dependent vs. control) as a between-

subjects factor.  First of all, the main effect of TRIPLET was significant (F (1, 28) = 7.366, ηp
2 

= 0.208, p = 0.01), such that participants responded faster to high-frequency than low-frequency 

triplets, revealing successful sequence-specific learning. The TRIPLET x PATIENT GROUP 

interaction did not reach significance (F (1, 28) = 0.137, ηp
2 = 0.005, p = 0.714), indicating that 

there was no difference between the alcohol dependent and the control group in sequence 

specific learning. The main effect of PATIENT GROUP alone did not reach significance either 

(F (1, 28) = 2.482, ηp
2 = 0.005, p = 0.126), indicating that the overall RTs of the patient and 

healthy controls did not differ significantly (Figure 2.4.1). 

The main effect of EPOCH was also significant, indicating that participants showed 

general skill learning (i.e., they became generally faster) as the epochs went on (F (4, 25) = 

39.235, ηp
2 = 0.584, p< 0.001). The EPOCH x PATIENT GROUP (F (4, 25) = 0.322, ηp

2 = 

0.011, p = 0.863) interaction was not significant, which indicates that the two groups were not 

differing in general skill learning.  
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Figure 2.4.1. Reaction times (RTs) in the ASRT Task for the control (A) and the alcohol-dependent group 

(B). There was no difference between the two groups either in sequence-specific learning (RT difference between 

high- and low-frequency triplets) or in general skill learning (overall RT improvement across time). Error bars 

indicate Standard Error of Mean (SEM). 

 

In a following ANOVA we also included EXECUTIVE GROUP (low vs. high) as a 

between-subjects factor. Here, the TRIPLET x EXECUTIVE GROUP interaction showed a 

strong trend towards significance (F (1, 21) = 3.988, ηp
2 = 0.160, p = 0.059), indicating that 

executive functions had an effect on sequence-specific learning in the ASRT task. Participants 

with lower executive functions showed higher sequence-specific learning compared to the 

participants with higher executive functions (9.77 vs. 1.87 ms, respectively). Interactions 

involving both PATIENT GROUP and EXECUTIVE GROUP did not reach significance, 

suggesting that the level of executive functioning did not have a differential effect in the alcohol 

dependent and control groups. 

 

Correlations between sequence learning and executive functions 

To further explore the relationship between sequence-specific learning and executive 

functions, we ran correlation analyses for all participants, as well as for the control and alcohol-

dependent group separately. We calculated sequence-specific learning measures for the whole 

session as an RT difference between responses for high and low-frequency triplets for each 

epoch separately and then averaging these difference scores across epochs. This overall 

sequence-specific learning score showed a moderate, negative correlation with the executive 

function scores (r(25) = -0.420, p = 0.037) when the alcohol dependent and the control group 

was analyzed together (Figure 2.4.2A). Within-group correlations showed similarly moderate, 
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negative correlation in the control group (r(11) = -0.499, p = 0.118; Figure 2.4.2B), and a 

relatively strong negative correlation in the alcohol dependent group (r(14) = -0.635, p = 0.015; 

Figure 2.4.2C). In addition, we ran further correlation analyses controlling for phonologica l 

working memory (measured by the Digit Span task), and found a strong, negative correlation 

between sequence-specific learning and executive functions in both groups (controls: (r(11) = 

-0.624, p = 0.054), alcohol dependent group: r(14) = -0.630, p = 0.021). Importantly by 

comparing the two correlations measured on independent groups of subjects, the difference of 

correlations for the patient group and the healthy controls did not reach significance (Z = -

0.492, p = 0.622). Thus, these correlation analyses further strengthen the results found in the 

ANOVA, in that participants with lower executive functions tend to exhibit higher sequence-

specific learning. 

 

 

Figure 2.4.2. Relationship between sequence-specific learning and executive functions. There was a moderate  

to strong negative correlation between these measures for all participants (A), as well as in the control (B) and 

alcohol-dependent group (C) separately. Thus, weaker executive functions correlated with better sequence-specific 

learning performance. 

 

Discussion 

Our main goal was to investigate how relatively long term alcohol usage might impact 

implicit sequence learning, and whether executive functions can modulate it. We found that the 

alcohol dependent and the control groups did not differ in sequence specific learning and 

general skill learning performance. Moreover we found an inverse relationship between 

sequence specific learning and executive functions - such that participants with lower executive 

functions showed higher learning performance in both alcohol dependent and control groups.  

Since the long-term effects of alcohol usage on implicit sequence learning are unknown 

to date, we compared our results to studies manipulating with acute alcohol intake only. In line 

with previous results on how alcohol impacts implicit processes (Duka et al., 2001; Kirchner & 
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Sayette, 2003), one explanation for the intact implicit sequence learning can be such that the 

learning process does not rely on the same frontal circuits as executive functions do, and 

therefore it is not affected by alcohol consumption. Kirchner and colleagues (2003) 

differentiated between the automatically and conceptually driven aspects of an implicit task. 

Their main finding showed a dissociation between these two aspects in a way that alcohol intake 

had a significant effect on the conceptually driven aspect while it had no impact on any of the 

automatically driven processes. Thus, acute alcohol intake has a more clear impact on 

explicit/more executive like processes, while its effects on implicit processes are either not 

present or are still unknown (Duka et al. 2001). The above mentioned literature is also in line 

with researchers proving that implicit learning processes are spared during Korsakoff syndrome 

(Fama, Pfefferbaum, & Sullivan, 2006; Oudman, Van der Stigchel, Wester, Kessels, & Postma, 

2011), which is a chronic disorder often caused by long term alcohol dependency, affecting 

mainly the hippocampus and frontal areas of the brain.  

Further interpretations involve that alcohol not only leaves frontal areas intact that are 

crucial for implicit sequence learning, but the related fronto-striatal-cerebellar network as well. 

Until now, no experiments have yet proven that alcohol has a significant effect on implic it 

processes related to the striatum. According to our results, alcohol not only leaves implic it 

learning intact, but has a definite effect on frontal/executive functions showing a  dissociation 

between processes that mainly rely on frontal capacities (executive functions) compared to 

processes rely on the striatum (implicit sequence learning). Importantly, further studies need to 

explore the role of these functional brain networks with neuroimaging methods more 

accurately. Here we showed a negative relationship between implicit sequence learning and 

executive functions. The background of such a relationship can be explained by the competition 

between two learning mechanisms, namely the PFC/MTL-mediated hypothesis-tes t ing 

attention-dependent processes versus the striatum-dependent less attention-dependent, 

procedural learning (Filoteo et al., 2010; Henke, 2010; Poldrack et al., 2001). In line with our 

results studies showed that weakening the interconnectivity between frontal lobe and other brain 

structures, moreover disruption of the frontal lobe engagement can improve sequence learning 

(Filoteo et al. 2010). For example a recent finding of Nemeth and others (2013) is in line with 

this idea demonstrating that manipulations reducing the reliance on specific frontal lobe-

dependent processes can improve procedural based learning performance (Filoteo et al., 2010; 

Galea, Albert, Ditye, & Miall, 2010). One such manipulation can be hypnosis, a tool which 

temporarily disconnects certain frontal areas from the anterior cingular cortex and other brain 

areas, disturbing the frontal attentional control and executive system (Egner et al., 2005; 
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Gruzelier, 2006; Kaiser et al., 1997). This temporal disconnection might be a key factor in the 

improvement in implicit sequence learning (Nemeth et al. 2013), as it is possible that it 

eliminates certain frontal areas that would compete for the same capacity. Such a process results 

in heightened sensitivity to statistical probabilities, which is essential for automatic procedural 

mechanisms (Janacsek et al. 2012). This interpretation is consistent with the result that 

participants with better executive functions showed decreased sequence learning in the waking 

alert condition, due to a possible competition for the same frontal capacities (Nemeth et al. 

2013). However if this disruption is present for a longer period of time – which is the case with 

alcohol dependency – and the brain gets irreversibly degraded, implicit learning processes can 

also become impaired due to the damage to fronto-striatal networks. 

The above mentioned literature shows that the question of how implicit processes and 

working memory/executive functions are related is still under debate (Janacsek & Nemeth, 

2013, 2015). One way to resolve this problem is by noting that not all working memory and 

executive functions can be localized to only frontal regions (Carpenter, Just, & Reichle, 2000), 

furthermore that it is possible that the striatum plays a role in WM/executive functions by 

modulating the inhibition of the PFC (Ashby, Turner, & Horvitz, 2010). Therefore, if alcohol 

blocks mainly frontal capacities, it is also possible that it does not have such a pronounced 

effect on all WM processes. This could also be a reason for intact implicit processes, or even 

implicit performance increases due to the blocking of certain frontal areas by TMS (Galea et al. 

2010) or by other tools (Frank et al. 2006; Nemeth et al. 2013). We believe that our results are 

not due to the storage component of the working memory but more related to the executive 

functions because after controlling for storage capacity, the negative relationship between 

implicit sequence learning and complex WM index even became stronger.  

The rehabilitation of patients with alcohol problems is a very challenging process as 

these people have to cope with a number of cognitive deficits, such as problems with memory, 

attention and so on. Determining the impaired brain networks involved in cognitive   processing 

is extremely helpful in predicting the progress of cognitive decline, as well as for later 

recommendations for learning strategies and trainings. If we know which functions stay intact 

while others show a decrement due to the dependency, we can also determine the functions 

upon which therapies and compensating strategies can be built on. Since implicit learning is 

involved in acquiring new skills, and it is a cognitive process which seemingly stays intact even 

after long-term alcohol usage, it can be one of these foundation stones. Also, implicit learning 

strategies are also involved in the process of habit change, which is essential for changing one’s 

drinking habits. 
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To our knowledge, the present study is the first to investigate whether long term alcohol 

usage affects implicit sequence learning, and how these indices correlate with performance on 

executive functions. We found weaker executive functions, but intact implicit learning in the 

alcohol dependent group. Thus in spite of the common expectation that alcohol disrupts most 

cognitive functions we showed that at least one function specifically implicit sequence learning 

is intact. Our results shed light on the different or partly overlapping fronto-striatal networks 

that have a different role in implicit processes and executive functions moreover showing a 

competitive relationship among them.  

 

Acknowledgements 

This work was supported by Hungarian Science Foundation KTIA NAP 13-2-2015-0002 

(Dezso Nemeth), KTIA_NAP_13-1-2013-0001 (IV/5. Dr. Daniel Fabo) and Janos Bolyai 

Research Fellowship of the Hungarian Academy of Sciences (to K. J.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



77 
 

2.5 Perceptual and motor factors of implicit probabilistic learning learning 6 

 

Abstract 

Implicit skill learning underlies not only motor but also cognitive and social skills, and 

represents an important aspect of life from infancy to old age. Earlier research examining this 

fundamental form of learning has demonstrated that learning relies on motor and perceptual 

skills, along with the possible role of oculomotor learning. The goals of the present study were 

to determine whether motor or perceptual cues provide better prompts to sequence learning and 

to remove the possibility of oculomotor learning during the task. We used a modified version 

of the probabilistic ASRT task, which allowed the separation of motor and perceptual factors. 

Our results demonstrated that motor and perceptual factors influenced skill learning to a similar 

extent.  

 

Keywords: implicit skill learning; motor learning; perceptual learning; ASRT; oculomotor 

learning 

 

Introduction 

Implicit skill learning occurs when information is acquired from an environment of 

complex stimuli without conscious access either to what was learned or to the fact that learning 

had occurred (Reber, 1993). In everyday life, this learning mechanism is crucial for adapting to 

the environment and to evaluate events. The most important models of skill learning in 

cognitive neuroscience and neuropsychological studies emphasize the role of the basal ganglia 

and the cerebellum (Doyon, Bellec, et al., 2009; Okihide Hikosaka et al., 1999; O. Hikosaka et 

al., 2002), while the role of the hippocampus remains inconclusive (Albouy et al., 2008; 

Schendan et al., 2003). Skill learning can be differentiated into phases (an initial rapid phase 

and a subsequent slower phase), into types (motor, visuo-motor or perceptual such as visual, 

auditory, etc.), and into consciousness types (implicit and explicit) (Doyon, Bellec, et al., 2009). 

Implicit motor skill learning tasks have been used for decades, but there is no agreement about 

how these tasks reflect motor versus perceptual learning, and what their proportions are. 

The most widely used task to measure skill learning is the SRT (Serial Reaction Time) 

task (M. J. Nissen & Bullemer, 1987). In this task, the stimulus appears in one of four possible 

                                                                 
6 Published in Nemeth, D., Hallgato, E., Janacsek, K., Sándor, T., & Londe, Z. (2009). Perceptual and motor 

factors of implicit skill learning. Neuroreport, 20(18), 1654-1658. 
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positions on the screen and the subject has to press the appropriate response key as fast as 

possible. The stimuli follow a predefined sequence, and although the research subjects are not 

aware of this, they perform better on these trials than in corresponding random trials. In most 

SRT tasks, the location of the stimulus corresponds with the location of the response key. 

Therefore, learning can be influenced by the sequence of stimuli locations on the screen 

(perceptual learning), by the correct answer button sequence in the egocentric space (answer -

based learning) or by the finger movement patterns (effector-based learning) (Remillard, 2003).  

Another disadvantage of these paradigms (classical SRT and finger-tapping tasks) is 

that after a short training session, the subjects often recognize the stimulus pattern, which causes 

significant limitations in studying implicit learning (J. H. Howard, Jr. & Howard, 1997). In 

contrast, using the Alternating Serial Reaction Time (ASRT) Task (J. H. Howard, Jr. & Howard, 

1997) allows researchers to overcome this aforementioned problem by employing an eight -

element sequence, whereby random elements alternate with sequence elements (e.g.: 2-R-3-R-

1-R-4-R, where R refers to random).  

In these research paradigms, it is difficult to isolate perceptual learning. Specifica lly, 

motor learning cannot be eliminated in both observation- and transfer-based studies because it 

is the motor response reaction time that gives the informative measurements (Dennis, Howard, 

& Howard, 2006). Perceptual learning in these paradigms can be observed only if it can be 

demonstrated in addition to implicit skill learning. For example, Robertson and Pascual-Leone 

(2001) showed that if perceptual and motor sequences are combined (e.g., color and location) 

it leads to a greater level of learning than either one of the sequences alone. 

In the case of first-order probability sequences, motor learning is not necessary to learn 

patterns. However, in second-order probability sequences (e.g., ASRT), perceptual learning is, 

at best, minimal (Remillard, 2003). Nevertheless, previous studies have been able to isolate 

perceptual learning based on second- or higher-order probability sequences (Deroost, Coomans, 

& Soetens, 2009). For example, Dennis and colleagues (2006) found that young adults showed 

implicit skill learning in higher-order sequences even without motor learning. Moreover, if no 

motor response was requested, deterministic sequence learning (e.g., SRT) led to explic it 

learning by simply observing the stimuli, whereby subjects revealed the hidden sequence 

explicitly (J. H. Howard, Jr. & Howard, 1997; Willingham, Nissen, & Bullemer, 1989). In the 

case of second-order sequences, explicit knowledge has been shown to be minimal or totally 

eliminated (J. H. Howard, Jr. & Howard, 1997). Song et al. (2008) demonstrated perceptual 

learning using similar task and found that learning took place even without a motor response to 

the observed stimuli. After the observation, subjects were able to transfer the sequence 
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knowledge to the testing (motor) condition. The concern with this study was that the stimuli 

appeared on four different areas of the screen. Hence, skill learning could have reflected 

oculomotor learning as well (e.g. Song et al., 2008). The question remains whether learning is 

purely perceptual when it is accompanied with eye movements. Remillard (2003) found that 

perceptual learning was not influenced by the distance between the stimuli (i.e., the amplitude 

of the eye-movement). On the other hand, Willingham and colleagues (1989) were not able to 

show perceptual learning without eye movements.  

Willingham, Wells, Farrel and Stemwedel (2000) changed the conditions of the SRT 

task after the learning phase in one of the two following ways: either the stimulus sequence 

(perceptual information) remained the same as in the learning phase while the sequence of the 

answers (motor information) was changed, or the motor response sequence remained the same 

and the response locations changed (subjects had to answer crossing their hands during the 

testing phase). Subjects were able to transfer their knowledge only if the sequence of response 

locations was maintained, not the sequence of finger movements (Willingham et al., 2000). 

These findings suggest that the sequence of response locations must have been retained in order 

for implicit knowledge to transfer, whereas the contribution of motor and perceptual 

information was less considerable. It is important to note that Willingham and colleagues 

(Willingham et al., 2000) did not eliminate the possibility of oculomotor learning since the 

sequence occurred perceptually in the locations of the stimuli. 

The goal of the present study was to investigate the role of perceptual learning in 

implicit sequence learning through a modified ASRT task. In this modified paradigm, the 

sequence followed a second-order regularity that eliminated the possibility of oculomotor 

learning because the stimuli always appeared in the same, central position. Similar to the 

Willlingham et al. (2000) study in the learning phase, the sequence of stimuli and their 

responses were different. In the second phase (testing or transfer phase), the sequence of stimuli 

(perceptual information) remained the same and the response sequence (motor information) 

changed or vice versa. 

Our hypothesis was that, unlike Willingham et al. (2000), we would be able to show 

perceptual learning or perceptual transfer with a task that eliminated oculomotor learning. In 

addition, our goal was to create a task that would distinguish between perceptual and motor 

factors of implicit sequence learning.   
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Methods 

Participants – Thirty-four healthy right-handed subjects took part in the experiment. Half of 

the subjects were randomly assigned to the Perceptual condition (mean age=21.76 years, 

SD=2.02; 7 male/10 female), and the other half were assigned to the Motor condition (mean 

age=21.76 years, SD=1.64; 8 male/9 female). Subjects did not suffer from any developmenta l, 

psychiatric or neurological disorders. All subjects provided signed informed consent 

agreements and received no financial compensation for their participation. 

 

Task - We used a modified version of the ASRT task (J. H. Howard, Jr. & Howard, 1997), the 

so-called AS-RT-Race. We created a story about a car race for the task. The stimuli were the 

left, right, up and down arrows (5 cm long and 3 cm wide), which appeared in the center of the 

screen. When the stimulus appeared on the screen, it represented the car’s direction. For 

example, when the subjects saw an up arrow, they had to press the up button on the keyboard 

to move the car forward, the left button to turn left, and so on. All subjects pressed the keys 

with their dominant hand.  

After the starting block of 85 random presses, they were told that there was a car crash 

and the steering wheel failed (see Figure 2.5.1A). The car now kept going to the left if they 

wanted to go straight, but by turning the steering wheel right they could correct this 

malfunction, and could continue to go straight. Thus subjects had to mentally rotate the arrows 

(the steering wheel) by 90 degrees to the right, and press the button corresponding to this rotated 

arrow. 

 

 

 

A) Design of the experiment 

 

 

B) Sequences used in the task 
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Figure 2.5.1. A) Schematic diagram of the experiment. B) In the Perceptual condition, the perceptual sequence 

was the same and the motor sequence (button presses) changed compared to the sequences in the learning phase. 

In the Motor condition, key presses followed the learned sequence and the perceptual informa tion changed. 

 

In the learning phase, 5 practice blocks were presented (these were excluded from the 

analysis), followed by 20 learning blocks with 85 key presses in each block. These 85 key 

presses included an initial 5 random presses (warm-up; excluded from the analysis), then an 

eight-element sequence alternated 10 times (2–R–3–R–1–R–4-R, where R represents random 

trials). The stimulus remained on the screen until the subject pressed the correct button. The 

next stimulus appeared after a 120 ms delay (response to stimulus interval, RSI) after the 

subject’s correct response (following the parameters of the original task by J. H. Howard Jr. & 

Howard, 1997). During this delay, a fixation cross was displayed on the screen. Subjects were 

told to respond as fast and as accurately as they could.  

After the learning phase (and a 3 minute long break), the subjects were told that the car 

had been taken to a service station and the steering wheel had been fixed. They were told to use 

the answer keys corresponding to the arrows that appeared on the screen (up button for up 

arrow, left button for left arrow, etc.). In the testing phase, half of the subjects were assigned to 

the Perceptual condition and the other half to the Motor condition (see Figure 2.5.1A). In the 

Perceptual condition, subjects responded to the sequence seen during the learning phase (e.g., 

2–R–3–R–1–R–4–R, see Figure 2.5.1B), and the appropriate key presses represented a new 

sequence (also 2–R–3–R–1–R–4–R), which they had not practiced before. In contrast, subjects 

in the Motor condition had to respond by key presses practiced before (for example 3–R–4–R–

2–R–1–R, see Figure 2.5.2) but the corresponding stimuli on the screen followed another 

sequence (also 3–R–4–R–2–R–1–R), which they had not seen before. Thus, in the Perceptual 

condition, the perceptual sequence was the same but the motor sequence (key presses) changed 

compared to the previously practiced sequence. However, in the Motor condition, key presses 

followed the previously learned sequence and the perceptual information (the sequence of the 

stimuli displayed on the screen) changed. By comparing the subject’s performance between the 

two conditions, we could determine whether the perceptual and the motor component had the 

same or different effects on learning. The possible oculomotor aspect of learning was excluded 

by displaying all the stimuli in the same place (in the center) of the screen. 
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To explore how much explicit knowledge the subject acquired about the task, we used 

a short questionnaire after the testing phase. None of the participants reported noticing the 

sequences in the tasks. 

 

Statistical analysis - We followed the procedures of the original ASRT task (Bennett et al., 

2007; Song et al., 2007b) in our analysis because the core structure of the tasks was the same. 

Given that there was a fixed sequence in the AS-RT–Race task (and in the ASRT task as well), 

which included alternating random elements (e.g., 2–R–3–R–1–R–4–R), some triplets or runs 

of three events occurred more frequently than others. For example, in the above illustrat ion, 

triplets like 2_3, 3_1, 1_4, 4_2 could occur more frequently because the third element could be 

derived from the sequence or could also be a random element. In contrast, triplets such as 4_1, 

4_4 would occur less frequently because in this case, the third element could only be random. 

In other words, pattern trials were always high frequency, whereas one-fourth of random trials 

were high frequency by chance. Previous studies have shown that as participants practice, they 

come to respond more quickly to the high-frequency compared to the low-frequency triplets, 

thereby revealing sequence-specific learning (triplet type effect; (D. V. Howard et al., 2004; J. 

H. Howard, Jr. & Howard, 1997; Song, Howard, & Howard, 2007a)). In addition, general motor 

skill learning was revealed by the overall speed with which participants responded, irrespective 

of the triplet types. Thus, we obtained measures of both sequence-specific and general motor 

skill learning in the AS-RT-Race task. 

The blocks of the AS-RT-Race task were organized into groups of five to facilitate data 

processing. A group of five blocks was referred to as an epoch (a term given by the ASRT 

authors). The first epoch contained blocks 1-5, the second epoch contained blocks 6-10, etc. 

Our analysis focused only on reaction time data because subjects’ accuracy remained very high 

during the entire test (the average was 97% for both conditions in both the learning and testing 

phases). Median reaction times (RT) were calculated for each subject and in each epoch both 

for the high and low frequency triplets. 

 

Results 

Learning phase – The 2 (TRIPLET: high and low) x 4 (EPOCH: 1-4) Repeated Measures 

ANOVA with CONDITION (perceptual vs. motor) as the between-subject factor revealed 

sequence-specific learning (indicated by a significant main effect of the TRIPLET: 

F(1,23)=124, MSE=56.65, p<0.001, p
2=0.63), as well as general motor skill learning (shown 

by the significant main effect of the EPOCH: F(4,20)=8.85, MSE=32.53, p<0.001, p
2=0.72), 
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thereby suggesting that the more the subjects practiced, the faster their responses became (see 

Figure 2.5.2A-B). The two groups (perceptual and motor conditions) did not differ either in 

sequence-specific or in general motor skill learning (p values>0.31).  

 

 

 

Figure 2.5.2. Results of the Learning Phase (Epoch 1-4) and Testing Phase (Epoch 5) for Perceptual (A) and Motor 

(B) conditions. Filled squares represent low frequency triplets; open squares represent high frequency triplets. 

Comparing the sequence-specific knowledge (the RT differences between high and low frequency triplets) of 

perceptual and motor conditions (C). Error bars indicate standard error of mean (SEM).  

 

Testing phase - To compare the perceptual and motor conditions in the testing phase, a 2 

(TRIPLET: high and low) x 2 (EPOCH: 4-5) Repeated Measures ANOVA was conducted with 

CONDITION (perceptual vs. motor) as the between-subject factor. The main effect of the 

TRIPLET was significant (F(1,32)=69.72, MSE=139.36, p<0.001, p
2=0.69) such that 

participants responded faster for high-frequency than for low frequency triplets (see Figure 

2.5.2C). The main effect of the EPOCH was also significant (F(1,32)=115.4, MSE=1448.27, 

p<0.001, p
2=0.78), whereby subjects were faster in the testing phase (455 ms) than in the 

learning phase (525 ms). Interestingly, the TRIPLET x EPOCH interaction was also significant 

(F(1,32)=5.75, MSE=117.79, p=0.02, p
2=0.15), thereby suggesting that the sequence-specific 

knowledge decreased between the learning and the testing phases (the RT difference between 

the high- and low-frequency triplets was 21 ms in Epoch 4 and 12 ms in Epoch 5). However, 

despite this decrease, subjects still showed a significant triplet type effect in Epoch 5 (indicated 

by a one-sample t-test: t(33) =4.52, p<0.001). In addition, there was no difference between the 

conditions either in sequence-specific (p=0.38) or in general motor skill (p=0.10).  
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Discussion 

Our research investigated the role of perceptual and motor learning in implicit skill 

learning. We addressed the possibility of demonstrating perceptual transfer beyond motor 

learning in a testing situation where, after the learning phase, the task continues either with 

motor sequence or with perceptual sequence while eliminating oculomotor learning. We were 

able to show learning after the learning phase both in the perceptual and motor conditions. We 

focused on the perceptual sequence transfer under the former condition, and the motor sequence 

in the latter. Our results demonstrated that under this research paradigm, both motor and 

perceptual transfer was significant. These results support the different methods of Song et al. 

(2008), which demonstrated perceptual learning with probabilistic sequence learning tasks. On 

the other hand, our results partly differ from that of Willingham et al.(2000), which did not find 

perceptual learning to be an important element of learning. However, their research design did 

not eliminate the possibility of oculomotor learning, whereas the present study did. 

Furthermore, our findings also indicated that there was motor transfer, thereby supporting the 

results of Willingham et al. (2000) and their implicit motor sequence learning model. 

Our findings well complement motor skill learning models (Doyon, Bellec, et al., 2009; 

Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002), as well as the neuropsychological and 

neuroimaging studies that suggest the basal ganglia and the primary and secondary motor 

cortices play a role in implicit skill learning (Doyon, Bellec, et al., 2009; Grafton, Hazeltine, & 

Ivry, 1995; Robertson, Press, & Pascual-Leone, 2005; Willingham & Koroshetz, 1993). The 

task developed in the present study separated motor and perceptual learning, thereby allowing 

researchers to conduct more detailed studies in cognitive neuroscience for various pathologies 

affecting implicit skill learning and the underlying mechanisms of motor and perceptual 

learning.  

 

Conclusion 

In our study, we constructed a novel task (AS-RT-Race) to separate the perceptual and 

motor factors of implicit skill learning. We found that these components underlie the 

mechanisms behind skill learning to nearly the same extent. Our results draw attention to the 

fact that skill learning is not a single process. Instead, there are multiple mechanisms in this 

fundamental learning process. The novel task we developed was demonstrated to be an 

appropriate method to investigate the components of skill learning in different 

neuropsychological pathologies (e.g., basal ganglia disorders, Alzheimer’s disease, etc.), and 
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for examining the effects of development, aging and sleep on the motor and perceptual factors 

contributing to skill learning. 
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2.6 The effect of secondary task on implicit probabilistic learning7 

 

Abstract 

During sentence processing we decode the sequential combination of words, phrases or 

sentences according to previously learned rules. The computational mechanisms and neural 

correlates of these rules are still much debated. Other key issue is whether sentence processing 

solely relies on language-specific mechanisms or is it also governed by domain-genera l 

principles. In the present study, we investigated the relationship between sentence processing 

and implicit sequence learning in a dual-task paradigm in which the primary task was a non-

linguistic task (Alternating Serial Reaction Time Task for measuring probabilistic implic it 

sequence learning), while the secondary task were a sentence comprehension task relying on 

syntactic processing. We used two control conditions: a non-linguistic one (math condition) 

and a linguistic task (word processing task). Here we show that the sentence processing 

interfered with the probabilistic implicit sequence learning task, while the other two tasks did 

not produce a similar effect. Our findings suggest that operations during sentence processing 

utilize resources underlying non-domain-specific probabilistic procedural learning. 

Furthermore, it provides a bridge between two competitive frameworks of language processing. 

It appears that procedural and statistical models of language are not mutually exclusive, 

particularly for sentence processing. These results show that the implicit procedural system is 

engaged in sentence processing, but on a mechanism level, language might still be based on 

statistical computations. 

 

Keywords: sentence processing, statistical learning, implicit/procedural learning, dual task, 

mental grammar  

 

                                                                 
7 Published in Nemeth, D., Janacsek, K., Csifcsak, G., Szvoboda, G., Howard Jr, J. H., & Howard, D. V. (2011). 

Interference between sentence processing and probabilistic implicit sequence learning. PLoS One, 6(3), e17577. 
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Introduction 

Sentence processing works in a fast, automatic and unconscious way. It is widely 

accepted that during syntactic processing we decode the sequential and hierarchica l 

combination of words, phrases or sentences according to previously learned and well-

established rules. These rules, even if they exist, are represented in the mental grammar, the 

computational mechanisms and neural correlates of which are still much debated in the 

literature (McClelland & Patterson, 2002; Pinker & Ullman, 2002). Other key issue in 

neurolinguistic research is whether sentence processing solely relies on language-spec if ic 

structures and mechanisms or is it also governed by domain-general computational princip les 

(Christiansen, Kelly, Shillcock, & Greenfield, 2010; Hauser, Chomsky, & Fitch, 2002; 

Jackendoff & Pinker, 2005). We are trying to build a bridge between frameworks of sentence 

processing in order to find the ‘secret ingredient’ of this fundamental human skill.  

 There are two competing theoretical frameworks regarding the neural underpinnings of 

language capacities in the human brain. “Dual-system” theories attribute distinct, specialized 

and innate cognitive and neural components to the mental grammar and the mental lexicon 

respectively (Chomsky, 1965, 1995; Damasio & Damasio, 1992; Fodor, 1983; Frazier, 1987; 

Pinker, 1994). According to one such dualistic model, the mental lexicon relies on the 

declarative memory system, while the mental grammar is subserved by structures involved in 

procedural memory (Ullman, 2001). The procedural memory system is responsible for gradual, 

implicit (non-conscious) learning and controlling motor and cognitive ‘skills’ and ‘habits’, 

especially those involving rules or sequences, such as riding a bicycle or using tools and other 

manipulated objects (Poldrack & Packard, 2003; Squire & Knowlton, 2000; Willingham, 1998). 

This system is rooted in frontal lobe/basal-ganglia circuits, in particular premotor regions, 

Broca's area and the caudate nucleus. It also encompasses other structures, including portions 

of superior temporal cortex and the cerebellum (Ullman, 2001). 

In contrast, “single-system” theories posit that words and grammatical rules are learned 

and utilized by a single non-language-specific system with a broad anatomical distribution 

(Bates & MacWhinney, 1989; Elman et al., 1996; Rumelhart & McClelland, 1986; Seidenberg, 

1997). According to this view, grammatical rules are only descriptive entities; during actual 

language acquisition we learn the entire statistical structure of the language. Modern 

connectionist theories argue that learning, representation, and processing of grammatical rules 

and lexical items are the product of a network, which consists of a large number of simple inter -

connected processing units, the connections of which are continuously adjusted on the basis of 

statistical contingencies in the environment (Elman et al., 1996; Rumelhart & McClelland, 
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1986; Seidenberg, 1997). In a recent paper, Conway and colleagues (C. Conway, 

Bauernschmidt, Huang, & Pisoni, 2010) provided evidence that speech perception is related to 

statistical learning. The statistical learning theory of language has been used to explain 

mechanisms of constructive grammar (Tomasello, 2003), language development (McMurray, 

Aslin, & Toscano, 2009; Saffran et al., 1996) and is also supported by studies of artific ia l 

language learning (Dienes, Altman, Kwan, & Goode, 1995; Gomez & Gerken, 1999; Misyak, 

Christiansen, & Tomblin, 2010).  

Thus, whereas dual-system theories link syntactic processing primarily to frontal brain 

regions and procedural memory, single-system theories suggest that grammar appears as the 

result of general statistical computations within a widespread neural network in the brain. 

Although implicit/procedural and statistical learning models offer apparently different 

interpretations for mental processes, a recent theoretical paper highlighted the similarit ies 

between the two principles and suggested that they are closely related (Perruchet & Pacton, 

2006). The goal of the experiment reported here was to test whether sentence processing relies 

on general (non-linguistic) statistical computations supporting procedural learning. 

During the past decade, new experimental paradigms emerged which successfully 

address both procedural and statistical motor learning. The Alternating Serial Reaction Time 

(ASRT) task (J. H. Howard, Jr. & Howard, 1997; Song et al., 2007b) was developed within the 

context of classical procedural-learning tests, the finger-tapping task and the Serial Reaction 

Time (SRT) task. Finger-tapping and SRT tasks involve both general skill and 

sequence-specific learning and they test basal ganglia and cerebellar functions (Doyon, Bellec, 

et al., 2009; O. Hikosaka et al., 2002; Kincses et al., 2008). The advantage of the ASRT task is 

that it enables separate parallel assessment of sequence-specific and general skill learning. In 

the classical SRT task, the structure of a sequence is deterministic with the stimuli following a 

simple cyclically repeating pattern (e.g. 213412134121341213412…, where numbers refer to 

distinct events within the repeating 21341 pattern). In contrast, repeating events alternate with 

random elements in the ASRT task. This means that the location of every second stimulus on 

the screen is determined randomly. If, for instance, the sequence is 1234, where the numbers 

represent locations on the screen, in the ASRT task the sequence of stimuli will be 1R2R3R4R, 

with ‘R’ representing a random element. Because fixed, sequence-specific and random stimuli 

are alternating, some sequences of three events (called ‘triplets’) occur more frequently than 

others. For example, in the above illustration 1x2, 2x3, 3x4 and 4x1 would occur often, whereas 

1x3 or 4x2 would occur infrequently. Following previous studies, we refer to the former as 

high-frequency triplets and the latter as low-frequency triplets (Nemeth, Janacsek, Londe, et al., 
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2010; Song et al., 2007b) . In a typical ASRT task, participants are instructed to respond to 

different stimulus events (e.g., the same image appearing in one of four possible locations on 

the screen) by pressing different response keys (e.g., a separate letter on a keyboard assigned to 

each of the four image locations) as fast and accurately as they can. Earlier results have shown 

that as people practice the ASRT task, they respond more quickly to the high- than low-

frequency triplets revealing probabilistic, sequence-specific learning (J. H. Howard, Jr. & 

Howard, 1997; Song et al., 2007b). This learning is statistical in nature, because it depends on 

the frequency of the event sequences. In addition, the process is entirely implicit, as participants 

do not recognize the alternating structure of the sequences even after extended practice or when 

sensitive recognition tests are used to assess explicit knowledge (J. H. Howard, Jr. & Howard, 

1997; Song et al., 2007b). 

In the present study, we investigated the relationship between sentence processing and 

implicit sequence learning in a dual-task paradigm in which one task was a non-linguistic task 

(ASRT for measuring probabilistic implicit sequence learning), while others were a sentence 

comprehension task relying on syntactic processing and two control conditions. The majority 

of previous works on the relationship between language functions and the 

declarative/procedural system were based on manipulating regular and irregular forms of words 

(Ullman, 2001). Given that these tasks are not sensitive to other linguistic rules, such as word 

order, embedded structures etc., we used the comprehension of complex sentences, which we 

considered a more sensitive marker of grammatical processing. We selected two control 

conditions: a non-linguistic one (math condition) and a linguistic task (word processing task) 

where grammatical computations were not required, only the utilization of the mental lexicon. 

Since the ASRT task relies both on the procedural system and on statistical computations, we 

hypothesized that implicit sequence-specific learning would be attenuated by simultaneous 

sentence comprehension if the two tasks engage the same neurocognitive system(s). Finding 

interference would serve as direct evidence that operations for sentence processing depend on 

statistical computations of non-linguistic nature. 

 

Methods 

Ethics Statement 

Ethics approval was obtained by Psychology Ethics Committee at University of Szeged, 

Institute of Psychology. All subjects provided signed informed consent agreements and 

received no financial compensation for their participation. 
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Participants 

Twenty-six students between 21 and 25 years (average age: 22.54, SD: 1.17; 4 male/22 

female) from the University of Szeged participated in the study. Subjects did not suffer from 

any developmental, psychiatric or neurological disorders. 

 

Procedure 

A dual-task paradigm (A. Baddeley, Della Sala, Papagno, & Spinnler, 1997; D'Esposito 

et al., 1995; Foerde et al., 2006; Poldrack et al., 2005) was designed during which our subjects 

were instructed to perform the ASRT and a parallel task simultaneously (DT condition). Three 

types of parallel tasks were used: (1) sentence comprehension, (2) word recognition and (3) 

mathematical addition. Investigating the interference between sentence comprehension and 

procedural learning was the primary goal of the study, whereas the other two parallel tasks 

served as linguistic (word recognition) and non-linguistic (mathematical addition) control tasks. 

While both the sentence comprehension and word recognition tasks require access to the mental 

lexicon, mental grammar is only utilized by sentence comprehension. We used a within subject 

design with every subject performing all three parallel tasks, but with a different order. The 

subjects had a 5-10 minute- long rest between the different sessions. During these breaks, we 

collected demographic data (age, years of education, etc.). In order to objectively compare the 

degree of implicit learning in the three dual task sessions, we inserted three single task (ST) 

probe blocks (blocks 1, 8 and 15) during which the ASRT was the only task to perform (Figure 

2.6.1).  
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Figure 2.6.1: Schematic design of the experiment. The presentation order of the conditions was counterbalanced 

between subjects. In the ASRT task blocks 1, 8 and 15 were single task (ST) blocks without parallel task, whereas 

in other blocks (2-7; 9-14) our subjects had to perform one of the three parallel tasks as well (DT condition) 

 

Tasks 

Alternating Serial Reaction Time (ASRT) Task 

We used a modification of the original ASRT task (Nemeth, Janacsek, Londe, et al., 

2010) in which a visual stimulus (a dog’s head) appeared in one of the four empty circles on 

the screen and subjects had to press a key that corresponded to the actual spatial location (see 

Figure 2.6.1). 

E-prime 1.2 was used for stimulus presentation and data collection. The computer was 

equipped with a special keyboard with four heightened keys (Y, C, B and M in the standard 

Hungarian IBM PC keyboard; the letter Y corresponds to the letter Z on standard English 

keyboards), each corresponding to one of the circles in left to right order. Before beginning the 

experiment, detailed instructions appeared on the screen. We emphasized that the aim was to 

try to respond as quickly and as correctly as possible.  

The ASRT consisted of 15 blocks, with 85 key presses in each block: the first five 

stimuli were random events for practice purposes, after which an eight-element alternating 
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sequence (e.g. 1R2R3R4R) repeated ten times. In order to objectively assess the degree of 

sequence-specific and general skill learning during the sessions, we inserted three probe blocks 

(blocks 1, 8 and 15), where no parallel task was present. Following Howard and Howard (1997), 

stimuli were presented 120 ms after the previous motor response. As one block took about 1.5 

minutes, each session with different DT conditions lasted approximately 30-35 minutes. 

Between stimulus blocks, the participants received feedback on the screen about their overall 

reaction time and accuracy. They could then rest for maximum 20 seconds before starting a 

new block.  

For each subject, three different ASRT sequences (A: 1r3r2r4r; B: 4r3r1r2r; C:2r3r4r1r)  

were used for every session, and the occurrence of the different sequences was balanced across 

subjects and parallel tasks as well. Consequently, every sequence was used in all three DT 

conditions, but for different subjects.  

To explore how much explicit knowledge subjects acquired about the sequence learning 

task, we administered a short questionnaire (Song et al., 2007b) after the experimental session. 

This questionnaire included specific questions such as “Have you noticed anything special 

regarding the task?” or “Have you noticed some regularity in the sequence of stimuli?”. The 

experimenter rated subjects’ answers on a 5-item scale, where 1 corresponded to “Nothing 

noticed” and 5 to “Total awareness”. None of the subjects reported noticing the sequence in the 

ASRT task. 

 

Parallel tasks 

Every parallel task was presented in the auditory modality during the execution of the 

ASRT task in such a way that the parallel task items were read out loud by the experimenters 

and the subjects had to give a yes/no answer to each one. Participants were told to answer aloud 

as fast and accurately as possible after the actual task (word list, addition or sentence) was 

presented. The experimenter registered the answers and monitored continuously if participants 

followed the instructions. 

Sentence processing (Sentence condition) - The subjects were instructed to listen to 

sentences and to decide after each one whether they were correct or not. Five to nine sentences 

were presented per ASRT block. Every sentence contained 6 words with half of the sentences 

being incorrect containing one of the following three error types: semantic, pragmatic or 

syntactic. Although we chose an error detection task to keep our subjects’ attention focused on 

the task, the main emphasis was on overall sentence processing and not on error detection per 

se. 
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Word recognition (Word condition) - In the word processing condition the subject 

had to recognize words in lists containing 6 items. In order to control attention, the subjects had 

to decide if the list contained a non-word item that occurred at each position within a list with 

equal probability. Five to nine word lists were presented per ASRT block. Half of the lists 

contained a non-word, half of them did not.  

Mathematical addition (Math condition) - The subject were presented with an 

addition of five items and the possible result (e.g. 4+9+2+1+3=19) after which they had to 

decide whether the result was correct or not. Similarly to the other two conditions, five to nine 

additions were presented per ASRT block. Half of the additions were correct, half were not.  

Each list contained 6 items (words in the sentence comprehension or word recognit ion 

tasks and numbers in the math condition) in order to avoid varying working memory loads. In 

addition, we asked all subjects to name the most difficult parallel task at the end of the 

experiment. 

 

Statistical analysis 

Both sequence-specific and general skill learning were evaluated by parameters 

obtained in the single task probe blocks of the ASRT. Sequence-specific learning was calculated 

by comparing RTs obtained for high- and low-frequency triplets, whereas general skill learning 

was determined by comparing RTs between the three probe blocks, regardless of triplet 

frequency. As expected (Nemeth, Janacsek, Londe, et al., 2010), participants’ accuracy was 

very high in the probe blocks (mean value > 97% for all groups), so we focused on reaction 

time (RT) analysis. All significant results are reported together with the Greenhouse-Geisser ε 

correction factors, where applicable. 

 

Results 

RT data were entered into a repeated-measures ANOVA, with TRIPLETS (high vs. low 

frequency), PROBE BLOCKS (blocks 1, 8 and 15) and CONDITIONS (sentence, word and 

math) as within-subject factors. The main question of the study was answered by the presence 

or absence of interaction between the CONDITION factor and one or both of general and 

sequence-specific skill learning. 

Repeated-measures ANOVA revealed sequence-specific learning (indicated by a 

significant main effect of TRIPLET: F(1,25)=11.59, MSE=224.21, p=0.002, p
2=0.32), and 

general skill  learning as well (indicated by a significant main effect of PROBE BLOCK: 

F(2,24)=14.87, MSE=639.95, p<0.001, p
2=0.55). The CONDITION x TRIPLET interaction 
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was also significant (F(2,24)=3.56, MSE=190.01, p=0.044, p
2=0.23), suggesting that 

sequence-specific learning differed between the three dual task conditions (see Figure 2.6.2A). 

General skill learning was not affected by the dual task conditions (CONDITION x BLOCK 

interaction: F(4,100)=1.61, MSE=1035.65, p=0.18, p
2=0.06). Other interactions regarding the 

probe block data were not significant, nor was the main effect of CONDITION, suggesting that 

the overall RTs did not differ across conditions. Subsequent ANOVAs conducted separately for 

all dual task conditions revealed significant sequence-specific learning in both the word and 

math conditions (main effect of TRIPLET: F(1,25)=13.85, MSE=158.66, p=0.001, p
2=0.36; 

F(1,25)=5.86, MSE=247.67, p=0.02, p
2=0.19, respectively), whereas it was not significant in 

the sentence condition (F(1,25)=0.06, MSE=197.90, p=0.82, p
2=0.002).  

 

Figure 2.6.2: A) Mean RTs of sequence-specific learning (difference between high and low frequency triplets) in 

probe blocks of the ASRT task for all dual task conditions. There was significant sequence-specific learning in the 

Word and Math condition, but no learning in the Sentence condition. B) Error rates in parallel task during dual 

task. There were significantly more errors in the Math condition than in the other two conditions. C) Mean RTs in 

dual task blocks of the ASRT for all dual task conditions. The Math cond ition was the most difficult: the RTs 

differed significantly from the Word and Sentence conditions, while the latter two did not differ significantly from 

each other. D) Mean accuracy (ACC) in dual task blocks of the ASRT for all dual task conditions. The Math 

condition was the most difficult: participants were less accurate in the Math condition than in the Sentence 
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condition, while the Word-Math and Word-Sentence conditions did not differ significantly from each other. Error 

bars indicate standard errors of the mean (SEM). 

 

Error rates of the parallel task (Figure 2.6.2B) measured during the dual task conditions 

were significantly higher in the math condition (Mean: 10, SD=5.95) than in the sentence 

comprehension (Mean=6.08, SD=3.84; p=0.001) and word processing condition (Mean=3.04, 

SD=1.99; p<0.001), and word and sentence conditions differed from each other as well 

(p=0.01). Mean overall RTs during the dual task blocks of the ASRT (Figure 2.6.2C) were 

significantly longer in the math condition (Mean=447.22, SD=55.54) than in the sentence 

comprehension (Mean=421.71, SD=39; p=0.01) and word processing tasks (Mean=414.71, 

SD=49.41; p=0.03), while we found no differences between the sentence and word conditions 

(p=0.34). Moreover, mean accuracy during the dual task blocks of the ASRT (Figure 2.6.2D) 

was significantly lower in the math condition (Mean=95.8, SD=4.05) than in the sentence 

condition (Mean=96.8, SD=2.45; p=0.04), while we found no differences between sentence -

word (p=0.35), and word-math conditions (p=0.14). Finally, subjects’ reports unanimous ly 

confirmed that the math condition was the most difficult. These results indicate that the 

modulation of sequence-specific learning was primarily affected by the nature of the parallel 

task and its underlying neural structures, and not by the difficulty of the parallel task itself. 

 

Discussion  

In our study we found both general skill and sequence specific learning across tasks, 

however, we also found a clear dissociation - the sentence processing task diminished 

probabilistic implicit sequence learning, while the other two tasks did not produce a similar 

effect. This interference was not due to the complexity or relative difficulty of the parallel tasks, 

because (1) error rates of the parallel tasks were significantly higher in the math condition than 

for the linguistic tasks, (2) participants were significantly slower and less accurate in this math 

condition and (3) subjective reports confirmed that the math task was the most difficult.  

The ASRT task is classically considered as an implicit motor learning task that depends 

on the procedural memory system (Song et al., 2007b). The interference between the ASRT 

task and sentence processing but not word recognition partly supports the 

declarative/procedural model of language functions, according to which the mental grammar 

but not the lexicon engages the procedural system (Sahin, Pinker, Cash, Schomer, & Halgren, 

2009; Ullman, 2001). The most important aspect of this study however, is that it goes beyond 

the classification of sentence processing as a procedural process. Sequence-specific learning in 
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the ASRT task is based on unconscious detection of the conditional probabilities within the 

stimulus sequence as reflected in the high- and low-frequency triplets (Howard Jr, Howard, 

Dennis, & Kelly, 2008).  

Several theories emphasized the highly probabilistic nature of language, which might 

indeed be linked to domain-general processes, such as statistical learning (Christiansen et al., 

2010; Misyak et al., 2010; Saffran et al., 1996). Artificial language learning is perhaps the most 

popular paradigm in this field, but to our knowledge, this is the first study demonstrating a link 

between language processing and a clearly non-linguistic probabilistic learning task (i.e. the 

ASRT task). Since the ASRT task shares features with both procedural and statistical learning, 

its interference with sentence processing might explain why syntactic processing has been 

previously associated with both types of learning. However more investigations with more 

language control conditions are needed to find out exactly which aspect of sentence processing 

interferes with probabilistic sequence learning.  

Another interesting aspect of our results is that implicit sequence learning in the ASRT 

task is related to the motor system (Doyon, Bellec, et al., 2009; O. Hikosaka et al., 2002; 

Kincses et al., 2008), which supports the motor theory of language  (M. H. Fischer & Zwaan, 

2008) and might contribute to the evolutionary interpretations of language development  

(Jackendoff & Pinker, 2005). 

In summary, we found that operations for sentence processing utilize resources 

underlying non-domain-specific probabilistic procedural learning in the human brain. Our study 

provides a bridge between two competitive frameworks of language processing. It appears that 

procedural/statistical models of language processing are not mutually exclusive, particularly for 

sentence processing. The implicit procedural system is crucial for sentence processing, but on 

a mechanism level, language might still be based on statistical computations. 
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2.7 The role of working memory in implicit probabilistic learning8 

 

Abstract 

The relationship between implicit/incidental sequence learning and working memory motivated 

a series of research because it is plausible that higher working memory capacity opens a “larger 

window” to a sequence, allowing thereby the sequence learning process to be easier. Although 

the majority of studies found no relationship between implicit sequence learning and working 

memory capacity, in the past few years several studies have tried to demonstrate the shared or 

partly shared brain networks underlying these two systems. In order to help the interpretat ion 

of these and future results, in this mini-review we suggest the following factors to be taken into 

consideration before testing the relationship between sequence learning and working memory:  

1) the explicitness of the sequence; 2) the method of measuring working memory capacity; 3) 

online and offline stages of sequence learning; and 4) general skill- and sequence-specific 

learning.  

 

Keywords: skill learning, sequence learning, implicit vs. explicit learning, working memory, 

dorsolateral prefrontal cortex 

 

 

  

                                                                 
8 Published in Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: correlated 

or complicated? Cortex, 49(8), 2001-2006. 
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Although implicit sequence learning is a subconscious process which is believed to be 

independent from general cognitive resources such as working memory, in the past few years 

several studies have set out to demonstrate the shared or partly shared brain networks 

underlying these two systems. For example, disrupting the dorsolateral prefrontal cortex 

(DLPFC), a structure involved in working memory, with transcranial magnetic stimula t ion 

(TMS) impairs implicit sequence learning (Pascual-Leone, Wassermann, Grafman, & Hallett, 

1996; Robertson et al., 2001). However, the role of PFC in implicit sequence learning is 

controversial: while some studies found activation of the DLPFC in implicit sequence learning 

(Pascual-Leone et al., 1996; Robertson et al., 2001; Schwarb & Schumacher, 2009), others 

failed to find such a relationship (Bo, Peltier, Noll, & Seidler, 2011; P. C. Fletcher et al., 2005; 

A. Rieckmann et al., 2010). Moreover, several studies showed that manipulations reducing the 

dominance of the PFC and/or the medial temporal lobe (MTL), such as a demanding secondary 

task (Foerde et al., 2006), a distractor task inserted between the learning sessions (Brown and 

Robertson, 2007), hypnosis during learning (Nemeth, Janacsek, Polner, and Kovacs, 2012) or 

neuropharmacological blockage (Frank, O'Reilly, and Curran, 2006), had no effect or even led 

to performance improvements in sequence learning tasks. These latter findings support the 

competitive nature of the PFC- and MTL-dependent and basal ganglia-dependent memory 

systems (Poldrack et al., 2001).  

To refine the interpretation of these and future results, we outline several factors in this 

mini-review to be taken into consideration before planning brain imaging, psychophysiology, 

and behavioral studies on the relationship between sequence learning and working memory. 

 

Evidence for independence between implicit sequence learning and working memory   

The relationship between implicit sequence learning and working memory motivated a 

series of research because it is plausible to suggest that higher working memory capacity opens 

a “larger window” to a sequence, allowing thereby the sequence learning process to be easier 

(Frensch and Miner, 1994; Howard and Howard, 1997). However, the majority of studies (see 

Table 2.7.1) found no relationship between implicit sequence learning and working memory 

capacity. For instance, Feldman et al. (1995) demonstrated that there is no significant 

correlation between sequence learning scores (performance on a random block minus 

performance on a sequence block) on a 10-element deterministic implicit serial reaction time 

(SRT) task and span tasks (Digit and Backward Digit Span Tasks; and Wisconsin Card Sorting 

Test). Unsworth and Engle (2005) found that high and low working memory capacity 

individuals (measured by Operation Span Task) did not differ in performance on implic it 
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sequence learning; moreover, the implicit sequence learning was independent from general 

fluid intelligence. Kaufman et al. (2010) found similar results using a probabilistic implic it 

sequence learning task and demonstrated with structural equation modeling that working 

memory is independent from implicit learning. Frensch and Miner (1994) also failed to find  a 

significant correlation between implicit/incidental sequence learning in the single- task 

condition and performance on span tasks. Bo et al. (2011; Bo et al., 2012) did not find a 

correlation between classical learning score on the SRT task and working memory measures 

either.  

Neuropsychological investigations also suggest the independence of implicit sequence 

learning and working memory. For example, a recent study found working memory deficits, 

but intact implicit sequence learning abilities in individuals with Obstructive Sleep Apnea 

(Nemeth, Csábi, Janacsek, Varszegi, & Mari, 2012). In addition, several studies showed intact 

implicit sequence learning in groups with intellectual disabilities, for example in Autist ic 

Spectrum Disorder (Barnes et al., 2008; J. Brown, Aczel, Jimenez, Kaufman, & Grant, 2010; 

Nemeth, Janacsek, Balogh, et al., 2010) or Down-Syndrome (Vicari, Vicari, Verucci, & 

Carlesimo, 2007). As working memory is highly correlated with general intellectual abilit ies 

while implicit learning is independent of IQ, (e.g., Kaufman et al., 2010), we can interpret these 

results as indirect evidence for independence between implicit sequence learning and working 

memory. In sum, despite partly overlapping brain networks (Pascual-Leone et al., 1996; Sefcsik 

et al., 2009), these two systems seem to be separate from each other on the functional level. 

 

Factors influencing effects of working memory on sequence learning 

Explicitness of the sequence  - If the sequence learning is explicit/intentional, working 

memory differences emerge in the sequence learning tasks (Unsworth & Engle, 2005). Frensch 

and Miner (1994, Experiment 1), as well as Bo and colleagues (Bo, Borza, & Seidler, 2009; Bo 

et al., 2012), found significant correlation between working memory and some measures of 

explicit sequence learning. These studies suggest that working memory is engaged in explic it 

learning to guide the focus of attention and cognitive control (Nelson Cowan, 1998; Jimenez, 

2003; Kaufman et al., 2010). This idea is also supported by the more attention demanding dual-

task experiments (Frensch and Miner, 1994, Experiment 2) in which sequence learning 

performance under dual-task conditions correlated with Digit Span and Location Span Tasks. 

In line with this argument, functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) studies of sequence learning found greater activity in prefrontal 

cortical areas during explicit sequence learning compared to the implicit condition (Destrebecqz 
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et al., 2005; P. C. Fletcher et al., 2005; Honda et al., 1998). Prefrontal cortical areas are thought 

to be engaged in working memory performance as well (Champod & Petrides, 2010; Smith & 

Jonides, 1999). 

Measures of working memory – As the above mentioned studies have shown, different 

methods could lead to different working memory effects on sequence learning. Performance on 

short-term and working memory span tasks (e.g., Forward and Backward Digit Span, Operation 

Span, Reading Span, and Listening Span Tasks) shows no correlation with implicit/incidenta l 

sequence learning, while dual-task methods (Frensch and Miner, 1994) and change detection 

working memory tasks (Bo et al., 2011) can demonstrate working memory effects on implic it 

sequence learning. In contrast, most studies have found working memory effects on explic it 

sequence learning using any type of WM measure (e.g., Unswoth and Engle, 2005; Bo et al., 

2009; Weitz et al., 2011). In addition, we also have to consider the difference between verbal 

and visuospatial working memory depending on whether verbal (e.g., letters, digits, words) or 

visuospatial material (e.g., shapes, colors, locations) needs to be remembered. These two types 

of working memory can relate to sequence learning in different ways, suggesting some extent 

of domain-specificity. One can assume that the performance in a sequence learning task, where 

the sequence is defined as a stimulus-series of different locations (e.g., classical SRT task, 

Nissen and Bullemer, 1987), might correlate stronger with visuospatial than with verbal 

working memory capacity. For example, in the study of French and Miner (1994, Experiment 

1), visuospatial sequence learning correlated with Location Span but not with Digit Span. 

Similarly, Bo et al. (2009) found a relationship between sequence learning, measured by the 

chunk length of a visuospatial sequence learned by the participants, and visuospatial working 

memory capacity. In contrast, verbal working memory might play a greater role in sequence 

learning of verbal material (e.g. Dennis et al., 2006; Weitz, O'Shea, Zook, & Needham, 2011). 

For example, a recent study by Weitz et al. (2011) showed correlation between the learning of 

a verbal sequence (Hebb digits task) and verbal working memory capacity. Note, however, that 

all of these latter findings regarding domain-specificity were related to explicit and not to 

implicit sequence learning. 

Stages of sequence learning - The differentiation between online and offline phases of 

learning also needs to be considered, as significant changes in the acquisition do not occur only 

during practice (online periods) but also between practice (offline) periods. The process that 

occurs during the offline periods is referred to as consolidation, which means stabilization of a 

memory trace after the initial acquisition; it can result in increased resistance to interference or 

even improvement in performance following an offline period (Krakauer & Shadmehr, 2006; 
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Nemeth, Janacsek, Londe, et al., 2010; Robertson, 2009; Song, 2009). The previously discussed 

studies measured sequence learning by one learning session without an offline period and barely 

showed working memory’s effect on sequence learning. On the other hand, if we adminis ter 

multiple learning sessions with, for example, 24-hour delay periods, we are able to examine the 

effect of consolidation processes on the relationship between sequence learning and working 

memory capacity. For example, Howard and Howard (1997) as well as Schwartz et al. (2003) 

administered more learning sessions distributed throughout several days and found significant 

working memory effects on a sequence learning task. However, they did not analyze the effect 

of consolidation specifically (the performance from all learning sessions were collapse d). 

Future studies need to test the relationship between sequence knowledge after a consolidat ion 

period and working memory capacity. 

General skill vs. sequence-specific learning – There seem to be a number of 

misunderstandings regarding the sequence learning indices used in the studies focusing on the 

association between sequence learning and working memory. Recent studies highlight that at 

least two aspects of learning have to be differentiated in the sequence learning experiments. 

The RT performance improvement as a result of practice can be attributed both to general 

familiarization with the task (termed as general skill learning, or general practice effects) and 

to learning the sequential structure/regularity of the task specifically (termed as sequence-

specific learning) (Janacsek and Nemeth, 2012; Song, Howard, and Howard, 2007). In the 

classical SRT task (Nissen & Bullemer, 1987), the more the participants practice, the faster they 

are on blocks containing the repeated sequential structure. When this sequence is changed to a 

random series of stimuli at the end of practice, participants’ response rate becomes slower. In 

this task, sequence learning can be measured in different ways: 1) by the reaction time (RT) 

decrease in sequential blocks (i.e., participants are generally faster in the last sequence block 

compared to the first sequence block; e.g., Bo, Jennett, et al., 2011); 2) by the RT difference 

between the last sequence block and the subsequent random block. The latter measure is more 

widely accepted in sequence learning literature (e.g., Keele et al., 2003; Robertson, 2007) for 

critical view see (Reed & Johnson, 1994). For example, using these indices, Bo et al. (2011) 

found a positive correlation between working memory capacity and the rate of RT decrease 

(thus, the RT change in sequential blocks), but not between working memory and RT difference 

in the last sequence and the following random block (which is supposed to reflect sequence-

specific learning better). In a more recent study, Bo, Jennett and Seidler (2012) replicated these 

results in elderly participants. One potential concern regarding these results is whether it is 

possible to separate the above mentioned general skill and sequence-specific learning 
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components in the classical SRT task. Namely, the RT decrease in the sequential blocks can 

reflect both general skill and sequence-specific learning. The contribution of these two factors 

to performance improvement cannot be precisely determined. As Bo et al. (2011, 2012) found 

correlation only with the RT decrease in sequence blocks, not with the sequence/random 

difference score, we can suggest that working memory might be more related to general skill 

learning than to the sequence-specific learning. Therefore, further studies and different analysis 

methods are needed to clarify the relationship between working memory and general skill 

learning or sequence-specific learning. For example, as Verwey (1996) proposed, participants 

respond to individual sequence elements one by one at the beginning of the sequence learning, 

but consecutive elements can be formed into a single representation  (“chunk”) once the 

sequence is learned. Thus, it is possible to determine the mean chunk length in the SRT task 

with higher length (larger window into the sequence structure) reflecting better sequence-

specific learning. Using this analysis method, Bo et al. (2009) found a relationship between 

working memory capacity and mean chunk length in explicit sequence learning. This raises the 

question of whether such a relationship is present between the mean chunk length in implicit  

sequence learning and working memory. 

Another possible approach for future studies can be the use of probabilistic sequences 

instead of deterministic ones (as in the SRT task), since probabilistic second- or higher-order 

sequence regularities give us the opportunity to analyze sequence-specific and general skill 

learning separately and more precisely. For example, in the alternating SRT (Howard and 

Howard, 1997) task, repeating stimuli alternate with random ones, thus every second element 

in the stream is determined randomly. Hence, it is possible to track sequence-specific learning 

continuously by comparing responses to the random and sequence elements in all blocks. This 

could help to investigate the relationship between sequence-specific learning and working 

memory more precisely.  

 

Neurocognitive background of the relationship between working memory and sequence 

learning 

A growing body of evidence suggests that the fronto-striatal circuit, including the 

caudate nucleus and lateral PFC, plays a critical role in working memory performance. In this 

circuit, PFC is thought to be responsible for the coordination of encoding, maintenance, and 

manipulation of information, by, for example, biasing the processing in posterior sensory-and 

multimodal association areas (Bar, 2003; Desimone & Duncan, 1995; Miller & Cohen, 2001; 
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Nobre, 2001). The striatum, on the other hand, modulates the working memory performance by 

increasing or decreasing the inhibition of the PFC (Ashby et al., 2010). Recent studies highlight 

that the striatum is primarily involved in the manipulation processes, for example filtering out 

the irrelevant information (McNab & Klingberg, 2007), conflict monitoring (Beste et al., 2012), 

and sequencing (Riley, Moore, Cramer, & Lin, 2011). 

In this fronto-striatal circuit, the last two decades of implicit sequence learning research 

showed the involvement of striatum in the acquisition of sequence knowledge (Keele et al., 

2003; Rieckmann et al., 2010), while the role of PFC remained inconclusive. Determining the 

specific conditions where working memory capacity and sequence learning correlate can help 

us to unravel the complex role of PFC in cognition and specifically in sequence learning. In 

most studies finding correlation between these two measures, participants were aware of the 

sequence and had the intention to improve their performance utilizing this sequence knowledge. 

In these cases a higher extent of PFC-dependent coordination and cognitive control is 

implemented to perform the task. Supporting this argument, fMRI studies found greater PFC 

activation in this explicit/intentional version of sequence learning compared to the 

implicit/incidental one (e.g., Fletcher et al., 2005). Thus, the relationship between working 

memory capacity and sequence learning in these cases might be based on the mutual PFC-

dependent coordination component of the performance. 

However, in some cases implicit sequence learning was also correlated with working 

memory capacity. In most of these studies working memory capacity was measured by a 

complex task where the manipulation of the information, not only the maintenance, was 

relevant for a high task performance. Based on these results we can suggest that this observed 

correlation is primarily attributable to the greater involvement of the striatum in these working 

memory tasks. The recent studies showing the specific role of striatum in information 

manipulation are in line with this assumption (Beste et al., 2012; Riley et al., 2011). The other 

plausible explanation could be that most of the studies finding a relationship administered more 

sessions to measure sequence learning (Howard & Howard, 1997; Schwartz et al., 2003), 

allowing a better consolidation of the acquired information. One might assume that processes 

engaged in this offline phase of sequence learning share more similarity with working memory 

than the online sequence processing (e.g., maintaining the acquired information in an active 

state for a longer period can help stabilize the memory traces). However, these studies did not 

contrast the online and offline performance directly and did not involve brain imaging; therefore 

future research needs to clarify this issue. 
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Summary 

In our review, we briefly touched on some relevant issues regarding the possible 

relationship between implicit sequence learning and working memory: 1) the explicitness of 

the sequence; 2) measures of working memory capacity; 3) online and offline stages of 

sequence learning; and 4) general skill- and sequence-specific learning. With these factors we 

can better interpret the results of studies on the relationship between sequence learning and 

working memory. However, note that because of the length limitation of the mini-review we 

could not critically investigate the question of whether the implicit sequence learning and 

working memory tasks discussed in this mini-review are the most adequate measures for 

tapping the constructs they were designed to tap (Kane, Conway, Miura, & Colflesh, 2007; 

Moisello et al., 2009; Unsworth & Engle, 2006). 

 Based on the studies included in this mini-review (Table 2.7.1), we suggest a 

relationship between working memory and 1) explicit rather than implicit sequence learning, 2) 

potentially to a higher extent with general skill learning than with sequence-specific learning, 

3) with some specificity to verbal or visuospatial domains (i.e., higher correlation between 

visuospatial working memory and learning of visuospatial sequences than learning verbal 

ones). In the reviewed literature only two studies have administered multiple sessions to 

measure sequence learning. However, they analyzed the relationship between working memory 

and sequence learning by collapsing the online and offline components. Therefore, the effect of 

consolidation on this relationship remains an open question needing to be addressed in further 

research. In addition, future studies also would benefit from taking into account which measures 

are used for determining the working memory capacity (i.e., span or change detection tasks) as 

well as sequence learning (i.e., general RT improvements, RT difference between sequence and 

random elements, chunk length of the sequence, etc.). 

Considering the factors discussed in this mini-review will aid in the design of future 

experiments, in the interpretation of results, and a deeper appreciation of the relationship 

between sequence learning and working memory and underlying brain structures. 
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Table 2.7.1. Studies investigating the relationship between sequence learning and working memory (WM). 

“Mixed” indicates when general skill and sequence-specific learning cannot be separated in the analysis method 

that the study used. 

Study 
Explicit 

/Implicit 
WM measure 

Online 

/offline 

General skill 

/sequence- 

specific 

WM effect 

Frensch and Miner 

(1994), Exp. 1 

Explicit 

Span task Online Sequence-specific 

Yes 

Implicit No 

Frensch and Miner 

(1994), Exp. 2 
Implicit 

Span task, dual 

task condition 
Online Sequence-specific Yes 

Feldman et al. (1995) Implicit Span task Online Sequence-specific No 

Howard and Howard 

(1997) 
Implicit Span task 

Online 

(Session 1) 

Sequence-specific 

Not analyzed 

separately 

Online + Offline 

(Session 1-6) 
Yes 

Schwartz et al. (2003) Implicit Span task 

Online 

(Session 1) 

Sequence-specific 

No 

Online + Offline 

(Session 1-6) 
Yes 

Unsworth and Engle 

(2005) 

Explicit Span task Online 

Sequence-specific Yes 

Mixed Yes 

Implicit Span task Online 

Sequence-specific No 

Mixed No 

Bo et al. (2009) Explicit Change detection Online Sequence-specific Yes 

Kaufman et al. (2010) Implicit Span task Online Sequence-specific No 

Bo et al. (2011) Implicit 

Span task 

Online 

Mixed No 

Sequence-specific No 

Change  detection Mixed Yes 
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Sequence-specific No 

Weitz et al. (2011) 

Explicit 

Span task Online Sequence-specific 

Yes 

Implicit No 

Bo et al. (2012) Explicit Change detection Online 

Sequence-specific No 

Mixed Yes 
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2.8 Implicit learning in Autism9 

 

Abstract 

Background: Although autistic people have shown impairments in various learning and 

memory tasks, recent studies have reported mixed findings concerning implicit learning in 

ASD. Implicit skill learning, with its unconscious and statistical properties, underlies not only 

motor but also cognitive and social skills, and it therefore plays an important role from infancy 

to old age.  

Methodology/Principal findings: We investigated probabilistic implicit sequence learning and 

its consolidation in Autism Spectrum Disorder (ASD). Three groups of children participated : 

thirteen with high-functioning ASD, 14 age-matched controls, and 13 IQ-matched controls. All 

were tested on the Alternating Serial Reaction Time Task (ASRT), making it possible to 

separate general skill learning from sequence-specific learning. The ASRT task was repeated 

after 16 hours. We found that control and ASD children showed similar sequence-specific and 

general skill learning in the learning phase. Consolidation of skill learning and sequence -

specific learning were also intact in the ASD compared to the control groups.  

Conclusions/Significance: These results suggest that autistic children can use the effects/results 

of implicit learning not only for a short period, but also for a longer stretch of time. Using these 

findings, therapists can design more effective educational and rehabilitation programs. 

 

                                                                 
9 Published in Nemeth, D., Janacsek, K., Balogh, V., Londe, Z., Mingesz, R., Fazekas, M., ... & Vetro, A. 

(2010). Learning in autism: implicitly superb. PloS one, 5(7), e11731. 
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Introduction 

Implicit learning is defined as the acquisition of information or motor skill without 

conscious access to what was learned or even to the fact that learning occurred (Perruchet & 

Pacton, 2006; Reber, 1967). Autism Spectrum Disorder (ASD) is characterized by social, 

communicative and motor impairments (APA, 1994). The semantic and episodic memories of 

people with autism have often been studied, but neurocognitive studies of procedural learning 

and implicit cognition have received less attention. The extent of learning abilities of ASD 

individuals is debated (Dawson, Mottron, & Gernsbacher, 2008). In the present study, we 

examined implicit motor skill learning in ASD to probe the functional integrity of this type of 

fundamental learning mechanism. 

Most models of motor skill learning (Doyon, Bellec, et al., 2009; Okihide Hikosaka et 

al., 1999; O. Hikosaka et al., 2002; Kincses et al., 2008; Robertson, 2009) emphasize the role 

of the basal ganglia and the cerebellum, while the role of the hippocampus in this process 

remains inconclusive (Albouy et al., 2008; Schendan et al., 2003). Neuropsychological studies 

have shown that sequence learning is impaired in people with Huntington’s and Parkinson’s 

diseases (Willingham, 1997), demonstrating the impact of striatal dysfunction on this type of 

perceptual-motor learning. Functional brain imaging studies also show the involvement of the 

cerebellum, striatum and motor cortices in implicit sequence learning tasks including the Serial 

Reaction Time (SRT) and the Alternating Serial Reaction Time (ASRT) tasks (Fletcher et al., 

2005; Rauch et al., 1997; Willingham, Salidis, & Gabrieli, 2002). In addition, Muller et al. 

(2004) reported that autistic individuals showed abnormal fMRI activity patterns in premotor 

cortex as well as greater individual variability in the activation maps. 

 Previous studies showed mixed results regarding implicit sequence learning of autistic 

people. Mostofsky and colleagues (Mostofsky, Goldberg, Landa, & Denckla, 2000) found 

impaired sequence learning when testing autistic children. They used the SRT task, developed 

by Nissen and Bullemer (1987), in which participants were instructed to respond as quickly and 

as accurately as possible to the location of a stimulus that was presented at one of four possible 

locations on the monitor in a series of trials. Unknown to the participants, the locations of 

stimuli follow a predefined sequence, and participants typically become faster at responding to 

the locations predicted by the sequence compared to random trials. Mostofsky et al. (2000) 

tested a 10-trial fixed sequence repeated 8 times in a block, across a total of 5 blocks using a 

longer 1500 ms interval, instead of the customary 120-300 ms response-to-stimulus interva l 

used in SRT tasks (eg. J. H. Howard, Jr. & Howard, 1997; M. J. Nissen & Bullemer, 1987). 

Gordon and Stark (2007) tested sequence learning in autistic participants in two tasks, one with 
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an 8-element, and the other a 4-element fixed sequence. Their results revealed marginal learning 

with the 8-element fixed sequence task and significant learning with the 4-element task. As in 

Mostofsky et al. (2000), this study used an unusually long response to stimulus interval (RSI) 

of 500 ms. 

Four issues arise with the two studies above: 1) With a fixed-sequence series the 

possibility of an explicit strategy arises, because it is easier to become aware of the sequence, 

since the same sequence is presented repeatedly. 2) Both in the 10- and 8-element sequences 

the frequency of the elements was not balanced. Some elements could have occurred more 

frequently than others, which could increase the possibility of pattern recognition of the 

sequence, making the learning process explicit rather than implicit. In addition, it is possible 

that the learning observed was due at least partly to learning the relative frequencies of 

individual events rather than of sequences of events.  3) The long RSI values in the above 

studies could also contribute to developing an explicit strategy. Research has suggested that the 

longer the RSI, the more probable that explicit strategies are used (Destrebecqz & Cleeremans, 

2001; Destrebecqz & Cleeremans, 2003; Jimenez, Mendez, & Cleeremans, 1996). 4) In the 

various neuropsychological and neurodevelopmental disorders in which IQ is involved, it has 

been found that explicit learning is correlated with IQ, while implicit learning is relative ly 

independent of IQ level (J. Brown et al., 2010; Gebauer & Mackintosh, 2007; Reber, 

Walkenfeld, & Hernstadt, 1991). Explicit processes, therefore, suffer more under circumstances 

with IQ impairment. If learning relies on explicit strategies, then autistic individuals could be 

learning less than controls due to impairments in explicit rather than implicit learning. 

Barnes and colleagues (2008) overcame the above limitations by using a 3-element 

version of the ASRT task (J. H. Howard, Jr. & Howard, 1997), which is a modified version of 

the SRT task. In classical SRT tasks the structure of a sequence is deterministic with the stimuli 

following a simple repeating pattern as in the series 213412431423, where numbers refer to 

distinct events. In contrast, in the ASRT task (J. H. Howard, Jr. & Howard, 1997; Remillard, 

2008) repeating events alternate with random elements. This means that the location of every 

second stimulus on the screen is determined randomly. If, for instance, the sequence is 123, 

where the numbers represent locations on the screen, in ASRT the sequence of stimuli will be 

1R2R3R1R2R3R…, with R representing a random element. The sequence is thus better hidden 

than in the classical SRT task and it is also possible to track sequence-specific learning 

continuously by comparing responses to the random and sequence elements within each testing 

block. This structure is called a probabilistic second-order (lag-2) dependency (J. H. Howard, 

Jr. & Howard, 1997; Remillard, 2008), because to predict element ’n’ we need to know element 
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n-2. Barnes et al. (2008) used a 120ms RSI, and they found intact learning in Autism compared 

to a control group matched for age and IQ. The authors suggest that the fronto-striatal-cerebe llar 

functions are spared in autism.  

It is possible that Barnes et al. (2008) found intact implicit learning because participants 

were mostly children with Asperger’s syndrome, who have better cognitive abilities than 

children with simple autism. It is also possible that this group found intact implicit learning 

because they used the ASRT with 3 elements (i.e., 3 possible locations corresponding to 3 

possible responses), which could be too easy to detect deficits. However, in a recent study 

Brown et al. (2010) also observed intact implicit sequence learning in a probabilistic SRT task 

introduced by Schvaneveldt & Gomez (1998). In this task the RSI was 0 ms to reduce the 

possibility of creating an explicit strategy (Brown et al., 2010; Destrebecqz & Cleeremans, 

2001; Destrebecqz & Cleeremans, 2003).  

To our knowledge, consolidation of implicit or procedural learning has not been studied 

in autism, although some research has investigated consolidation of episodic and semantic long-

term memories (Ben Shalom, 2003; Minshew & Goldstein, 2001; Toichi & Kamio, 2003). 

Because some aspects of these domains show impairments in autism, it is important to 

investigate the implicit consolidation processes as well. When examining consolidation it is 

essential to know that skill learning occurs not only during practice in the so-called online 

period, but also between-practice during the so- called offline phase. The process that occurs 

during the offline period is referred to as consolidation, which means stabilization of a memory 

trace after the initial acquisition or even improvement in performance following an offline 

period (Krakauer & Shadmehr, 2006). Such consolidation is important in considering the long-

term acquisition of skills; even if implicit learning is intact, it is possible that autistic individua ls 

are impaired in consolidation, thus forgetting the skills over the longer term. This might explain 

the apparent contradiction of intact implicit learning in autistic people even though they are 

known to be weaker in communicative and social skills (APA, 1994).  

  In our study we used the ASRT task to investigate implicit learning and consolidat ion 

in autism. The ASRT task allows separation of general skill learning and sequence specific 

learning during both online and offline periods. General skill learning is reflected in the overall 

reaction time, whereas sequence-specific learning is reflected in the difference between the 

reaction time to predictable, sequence events as opposed to less predictable random ones. We 

also examined the effect of a 16-hour delay on learning performance, to test whether 

consolidation is intact. The present study goes beyond previous studies (Barnes et al., 2008; J. 

Brown et al., 2010; Gordon & Stark, 2007; Mostofsky et al., 2000) in two ways: 1) we used a 
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more difficult 4-element ASRT task with 4 possible locations and 4 corresponding responses, 

instead of the 3-element version used by Barnes et al. (2008), and 2) we investigated the 

consolidation of implicit learning over a 16-hour period.  

 

Materials and methods 

Participants 

Thirteen children with ASD, 13 IQ-matched, and 14 age-matched children participated 

in the experiment. Their characteristics are described in Table 2.8.1. The IQ-matched control 

group differed significantly from the other two groups in mean age (IQ control and ASD: 

t(24)=2.25; p=0.034; IQ and AGE control: t(25)=-2.05, p=0.51), whereas the mean IQ in the 

AGE-matched control group was significantly higher than in the ASD (t(25)=-2.12, p=0.044) 

and IQ-matched control group (t(25)=-2.12, p=0.044).  

The children’s IQ was measured by the Wechsler Intelligence Scale for Children 

(WISC, 3rd ed.). All children with ASD were diagnosed using the criteria in the DSM-IV (APA, 

1994), and had received clinical evaluations both according to the Autism Diagnostic Interview 

(ADI) and the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 2000; Lord, 

Rutter, & Le Couteur, 1994). The mean score of the ADOS was 3.00 (SD=1.58) for 

Communication and 5.67 (SD=1.87) for Reciprocal Social Interaction domains. The mean score 

of ADI-R was 10.75 (SD=4.65) for Reciprocal Social Interaction, 11.25 (SD=6.15) for 

Communication and 4.87 (SD=1.25) for Repetitive Behavior domains. Four of the ASD group 

members had a diagnosis of Asperger’s syndrome. Children with neurological or psychiatr ic 

disorders, or IQ of less than 70 were excluded from the experiment. Control groups did not 

suffer from any developmental, psychiatric or neurological disorders, and did not have sleeping 

disorders. Parents reported that all children had 7-8 hours of sleep a day. Informed written 

parental consent and verbal assent of the children were provided, and participants did not 

receive financial compensation for their participation. Ethics approval was obtained by 

Psychology Ethics Committee at University of Szeged, Institute of Psychology.  
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Table 2.8.1. General data of participants  

 Age IQ 
Sex 

ASRT 

learning Mean (SD) Range Mean (SD) Range 

ASD (n=13) 11.77 (3.14) 7-17 93.15 (20.67) 70-146 11 M / 2 F 10/13 

IQ-matched 

control (n=13) 
9.23* (2.59) 8-17 96.54 (17.65) 74-139 13 M 12/13 

AGE-matched 

control (n=14) 
11.57 (3.27) 7-17 109.07* (12.83) 90-138 12 M / 2 F 12/14 

 

Procedure 

There were two sessions in the experiment (see Figure 2.8.1): a learning phase (Session 1) and 

a testing phase (Session 2) separated by a 16-hour interval (±2 hours). The first session was in 

the afternoon (between 2 – 4 PM), and took approximately 30-35 minutes; the second session 

was in the morning (between 7 – 9 AM) and lasted 5-10 minutes.  

 

 

Figure 2.8.1.  Experiment design. 

 

 

Alternating Serial Reaction Time (ASRT) Task  

We used a modified version of the original ASRT task (J. H. Howard, Jr. & Howard, 1997), in 

which a stimulus (a dog’s head) appeared in one of the four empty circles on the screen and the 

subject had to press a corresponding key (Y, C, B and M on Hungarian keyboard) when it 

occurred (Nemeth, Janacsek, Londe, et al., 2010).  

Session 1 (the learning phase) consisted of 20 blocks of the ASRT, with 85 key presses 

in each block - the first five trials were random (for practice and to make it more difficult to 

discover the pattern explicitly), then the 8-element sequence (i.e., 4 pattern events alternating 

with 4 randomly determined ones) repeated 10 times. Following Howard et al. (1997) each 

stimulus was presented 120 ms following the previous response (response-to-stimulus interva l, 
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RSI). Between blocks, the subjects received feedback about their overall reaction time and 

accuracy, and then they were given a 10 - 20 second rest before starting a new block. Session 2 

(the testing phase) consisted of 5 blocks of the ASRT, because we only focused on offline 

changes of previously acquired knowledge (as presented by Nemeth, Janacsek, Londe, et al., 

2010; Song et al., 2007b). The number of key presses per block and the RSI were the same as 

Session 1. 

There are 6 possible sequences in which each of the four positions occurs once and only 

once (i.e., 1r2r3r4r, 1r2r4r3r, 1r3r4r2r, 1r3r2r4r, 1r4r2r3r, 1r4r3r2r), and each of these was used 

approximately equally often across subjects within a group, but the sequence for a given subject 

was identical during Session 1 and Session 2. 

To explore how much explicit knowledge subjects acquired about the task, we 

administered a short questionnaire (similar to Song et al., 2007b) after the second session. This 

questionnaire included increasingly specific questions such as “Have you noticed anything 

special regarding the task? Have you noticed some regularity in the sequence of the stimuli?” 

The experimenter rated subjects’ answers on a 1-5 scale, where 1 was “Nothing noticed” and 5 

represented “Total awareness.” None of the subjects reported noticing the sequence either in 

the ASD, the IQ- or AGE-matched control groups. 

 

Statistical analysis 

As there is a fixed sequence in the ASRT with random elements inserted (e.g. 1 R 2 R 

3 R 4 R, when R represents random trials) some triplets or runs of three events occur more 

frequently than others. For example, for the above example sequence 1x2, 2x3, 3x4, and 4x1 

would occur often whereas 1x3 or 4x2 would occur infrequently. Following previous studies, 

we refer to the former as high-frequency triplets and the latter as low-frequency triplets. Pattern 

trials are always high-frequency, whereas one-fourth of the random trials are high-frequency 

by chance. Thus, high-frequency triplets occur 62.5% of the time and low-frequency triplets 

occur 25% of the time (excluding repetitions, e.g. 333, and trills, e.g. 313). As is typical, we 

have excluded repetitions and trills from analyses because they usually reveal preexisting 

response biases and because they are always low frequency for all subjects and hence (unlike 

the remaining triplets) are not counterbalanced (D. V. Howard et al., 2004).  Earlier results have 

shown that as people practice the ASRT task, they come to respond more quickly to the high-  

than low-frequency triplets, revealing sequence-specific learning (D. V. Howard et al., 2004; J. 

H. Howard, Jr. & Howard, 1997; Song et al., 2007b), and participants remain unaware of such 

learning. In addition, general motor skill learning is revealed in the ASRT task with a decrease 
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in average response speed, irrespective of the triplet types. Thus, we are able to obtain measures 

of both sequence-specific and general motor skill learning in the ASRT task. 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contained blocks 1-5, the second epoch blocks 6-10, etc. (Barnes et al., 

2008; Song et al., 2007b). The analyses were performed as in Song et al’s (2007b) and Nemeth 

et al. (2010) We report both the reaction times (RT) and accuracy data; however, our focus is 

primarily on RT. For RT we calculated means for correct responses only (eliminating trills and 

repetitions and RTs that fell more than 3 standard deviations from the mean RT for that subject), 

separately for trials ending high versus low frequency triplets and for each subject and each 

epoch. For accuracy, we used the mean percentages of the correct responses.  

 

Results 

Online learning during session 1 

Reaction time 

To investigate learning during Session 1 (learning phase) a mixed design ANOVA was 

conducted on the first 4 epochs of the RT data shown in Figure 2.8.2A-C, with (TRIPLET: high 

vs. low) and (EPOCH: 1-4) as within-subjects factors, and GROUP (ASD, IQ- and Age-

matched control groups) as a between-subjects factor. Thus, sequence-specific learning would 

be revealed by main effects and/or interactions with TRIPLET.  

There was significant sequence-specific learning (indicated by the significant main 

effect of TRIPLET: F(1,37)=37.55, MSE=747.57, p<0.000001, p
2=0.50) such that RT was 

faster on the high than low frequency triplets. There was also general motor skill learning 

(shown by the significant main effect of EPOCH: F(3,111)=14.27, MSE=15368.84, 

p<0.000001, p
2=0.28), such that RT decreased across epochs. There were no group differences 

in learning (no interactions with group were significant; all p’s > 0.40). The only significant 

effect regarding Group was the main effect (F(2,37)=4.58, MSE=256569.47, p=0.02, 

p
2=0.20), reflecting that the Age-matched control group responded faster than both the ASD 

and IQ-matched control groups (p’s <0.04). The ANOVA conducted on transformed data (using 

the same method as Barnes et al, 2008: low minus high differences in epochs / RT of low 

frequency triplets) revealed the same results. 

 Subsequent TRIPLET x EPOCH ANOVAs on the RTs, conducted separately for each 

group confirmed that each group showed both general skill learning and sequence-specific 

learning. For the ASD group there was a significant main effect of TRIPLET, F(1,12)=22.21, 
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MSE=683.68, p=0.001, p
2=0.65 and the main effect of EPOCH was F(3,36)=2.14, 

MSE=28145.74, p=0.11, p
2=0.15. The EPOCH x TRIPLET interaction was not significant, 

F(3,36)=0.15, MSE=987.34, p=0.93, p
2=0.05. For the IQ-matched control group there were 

significant main effects of TRIPLET, F(1,12)=7.29, MSE=1166.34, p=0.02, p
2=0.38 and of 

EPOCH, F(3,36)=8.40, MSE=9873.67, p<0.0001, p
2=0.41. The TRIPLET x EPOCH 

interaction was not significant (F(3,36)=0.53, MSE=815.31, p=0.67, p
2=0.04). For the Age-

matched control group the main effects of TRIPLET and EPOCH were also significant 

(F(1,13)=13.03, MSE=420.00, p=0.003, p
2=0.44; F(3,39)=10.37, MSE=8647.24, p<0.0001, 

p
2=0.50; respectively). The TRIPLET x EPOCH interaction did not reach significance 

(F(3,39)=2.21, p=0.10, p
2=0.15). 

 

Accuracy 

The same analyses were conducted on accuracy measures. The ANOVA revealed significant 

sequence-specific learning (indicated by the significant main effect of TRIPLET: 

F(1,37)=17.35, MSE=0.001, p<0.0001, p
2=0.32), such that the accuracy was greater on high 

than low frequency triplets. The main effect of EPOCH was also significant (F(3,111)=3.13, 

MSE=0.002, p=0.029, p
2=0.08), such that accuracy decreased across epochs (which reflects 

falling accuracy for low frequency triplets). There were no group differences in learning (no 

interactions with group were significant; all p values > 0.61). The main effect of Group was not 

significant (F(2,37)=1.14, MSE=0.015, p=0.33, p
2=0.06), reflecting that all groups responded 

with similar accuracy rates (ASD group 94 %, IQ-matched control 92 %, Age-matched control 

94 %). 

 Subsequent TRIPLET x EPOCH ANOVAs were conducted separately for each group 

to confirm the results. For the ASD group there was a significant main effect of TRIPLET, 

(F(1,12)=5.37, MSE=0.001, p=0.039, p
2=0.31), whereras of the main effect of EPOCH did not 

reach significance (F(3,36)=2.21, MSE=0.002, p=0.10, p
2=0.15). For the IQ-matched control 

group there was only a marginally significant main effect of TRIPLET, (F(1,12)=4.05, 

MSE=0.001, p=0.067, p
2=0.25), whereas the main effect of EPOCH was not significant, 

(F(3,36)=0.48, MSE=0.004, p=0.70, p
2=0.04). For the AGE-matched control group the main 

effect of TRIPLET was significant (F(1,13)=8.36, MSE=0.001, p=0.013, p
2=0.39), and the 

main effect of EPOCH was marginally significant (F(3,39)=2.83, MSE=0.001, p=0.051, 

p
2=0.18). The TRIPLET x EPOCH interaction was not significant in any group (all p’s > 0.36).  
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Figure 2.8.2. Results of the experiment. RTs of Session 1 (epoch 1-4) and Session 2 (epoch 5) for ASD (A), IQ-

matched (B) and AGE-mathed (C) control groups. The RT differences between the high (open squares) and low 

frequency (filled squares) triplets indicate sequence-specific learning, whereas the decrease of reaction time 

(regardless of triplet type) indicates general skill learning. In Session 1 all groups showed significant sequence-

specific and general skill learning. D) Offline changes of sequence-specific knowledge for all groups. The 

sequence learning effect (SLE) is the RT on low frequency minus RT on high frequency trials; this  effect on the 

last epoch of Session 1 (Epoch 4) does not differ significantly from that of the first epoch of Session 2 (Epoch 5). 

E) Offline changes of general skill for all groups; there was no difference in overall RT between Epoch 4 and 5 

for any group. Error bars indicate SEM. 

 

 

Offline changes of sequence-specific knowledge 

To define the index for offline sequence-specific learning, we calculated the Sequence Learning 

Effect (SLE) which is the RT/accuracy difference for the low versus high frequency triplets for 

the last epoch of Session 1 (Epoch 4). This index shows the magnitude of sequence-specific 

learning at the end of the first session (Barnes et al., 2008). Similarly, we calculated this 

Sequence Learning Effect for the first epoch of Session 2 (Epoch 5). These SLE scores (shown 
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in Figure 2.8.2D) were submitted to a mixed design ANOVA with EPOCH (Epoch 4 and 5) as 

a within-subjects factor and GROUP (ASD, IQ- and Age-matched control groups) as a between-

subjects factor. Thus, any offline changes in sequence-specific learning would be revealed by 

main effects and/or interactions with EPOCH. In the ANOVA on RT difference scores, neither 

the main effect of EPOCH, nor the EPOCH x GROUP interaction reached significance 

(F(1,37)=0.72, MSE=1157.37, p=0.40, p
2=0.02; F(2,37)=0.30, MSE=1157.37, p=0.74, 

p
2=0.02; respectively). The subsequent paired t-tests conducted separately for each group 

confirmed these results (all p’s > 0.20). Thus, there was no evidence of offline changes 

(improvement or deterioration) of sequence-specific knowledge regardless of group.  

In the same analysis conducted on the accuracy Sequence Learning Effects (Accuracy 

on High Frequency minus that on Low Frequency) neither the main effect of EPOCH 

(F(1,37)=0.13, MSE=0.001, p=0.72, p
2=0.004), nor the EPOCH x GROUP interaction  was 

significant (F(2,37)=2.24, MSE=0.001, p=0.12, p
2=0.11). 

  

Offline changes of general skills 

To examine offline general skill learning we calculated the overall RT/accuracy (combined 

across triplet types) for the last epoch of Session 1 and the first epoch of Session 2; the greater 

the RT decrease from Session 1 to Session 2, the larger the offline general skill improvement 

was. Further, a lack of increase in RT between the two sessions (with a 16-hour time delay 

between sessions) would signal that the participant’s retention of general skill was intact. These 

overall RTs were used in a mixed design ANOVA with EPOCH (Epoch 4 and 5) as a within-

subjects factor and GROUP (ASD, IQ- and Age-matched control groups) as a between subject 

factor. The ANOVA revealed offline improvement of general skill (shown in Figure 2.8.2E) in 

that the main effect of EPOCH was significant, (F(1,37)=15.06, MSE=3012.21, p<0.001, 

p
2=0.29), reflecting the faster overall RTs for the first epoch in Session 2 compared to those 

at the end of Session 1. The EPOCH x GROUP interaction was not significant, F(2,37)=0.28, 

MSE=3012.21, p=0.76, p
2=0.015.  

This evidence for offline consolidation of general skill relies on comparing RT on epoch 

5 to that on epoch 4, so it is possible that the faster RT on epoch 5 is simply due to learning that 

occurred during epoch 5 (Nemeth, Janacsek, Londe, et al., 2010). To rule out this possibility, 

we conducted the same analysis for Epoch 3 and 4 (within Session 1). Neither the main effect 

of EPOCH, nor the EPOCH x GROUP interaction was significant (F(1,37)=0.01, 
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MSE=7287.32, p=0.97, p
2<0.001; F(2,37)=0.47, MSE=7287.32, p=0.63, p

2=0.025). This 

suggests that the offline effects we observed were not simply due to continued learning. 

The results of accuracy analysis also confirmed these findings. When comparing the 

Epoch 4 and Epoch 5 (across sessions), ANOVA revealed a significant main effect of EPOCH 

(F(1,37)=13.82, MSE=0.001, p=0.001, p
2=0.27), reflecting an offline increase in overall 

accuracy (from 92.5 % to 95.4 %). There was no significant difference among the groups 

(EPOCH x GROUP interaction: F(2,37)=1.13, MSE=0.001, p=0.33, p
2=0.06). The ANOVA 

conducted for Epoch 3 and 4 (within Session 1) revealed a trend for a main effect of EPOCH 

(F(1,37)=3.01, MSE=0.001, p=0.09, p
2=0.075), but with a reverse pattern: they were less 

accurate in the Epoch 4 compared to the Epoch 3 (93.5 % versus 92.5 %). The EPOCH x 

GROUP interaction was not significant (F(2,37)=0.92, MSE=0.001, p=0.41, p
2=0.05). 

 

Discussion 

Our goal was to investigate whether implicit sequence learning and consolidation are impaired 

in children with ASD. We used a task that allowed us to differentiate between general skill and 

sequence-specific learning. We found that ASD children showed general skill learning and 

implicit learning of probabilistic sequences similar to that of two groups of controls, one 

matched in IQ and the other in age. In addition, the groups did not differ in consolidation; over 

a 16-hour period between sessions, we observed no forgetting of sequence-specific learning, as 

well as offline improvements in general skill, with no significant differences among groups. 

We believe our study to be the first to investigate implicit learning consolidation in autism. 

 The findings of the online learning (Session 1) are similar to those of Barnes et al. (2008) 

and Brown et al. (2010), who also found probabilistic implicit learning to be intact in samples 

of autistic children. Our results build on these earlier studies in that we show intact learning of 

a more difficult regularity, in that we used a 4-element ASRT task, instead of the 3-element 

version in Barnes et al. (2008). Nonetheless, accepting the null hypothesis requires caution. 

Small sample size and great variability in responses could reduce our ability to detect group 

differences in learning, however, previous studies with similar findings and similar sample sizes 

support our conclusions.  

Why has the current study and several others found intact implicit sequence learning in 

this population (e.g. Barnes et al., 2008; Brown et al., 2010) while others did not (e.g. Mostofsky 

et al., 2000)?  Brown et al. (2010) has suggested that explicit strategies could affect the 

differences in these findings: they reason that such strategies could help in learning 
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deterministic sequences (but not probabilistic ones, since they are more difficult to discover 

explicitly). This research group also argues that high RSI values could contribute to strategy 

building: Gordon & Stark (2007) and Mostofsky et al. (2000) used 500-1500 ms whereas 

Barnes et al. (2008) and Brown et al. (2010) used 120 and 0 ms, respectively. Higher RSIs can 

lead to more explicit strategies and learning (Destrebecqz & Cleeremans, 2003). Thus, 

according to Brown’s  hypothesis performance is influenced by the use of explicit strategies (J. 

Brown et al., 2010).  Using explicit strategies/explicit processes is highly correlated with IQ 

levels, whereas implicit processes are not (J. Brown et al., 2010; Gebauer & Mackintosh, 2007; 

Reber et al., 1991).  Brown et al. (2010)  also reason that ASD individuals are prone to solving 

tasks explicitly, as shown in several studies (e.g., Theory of Mind performance is mediated 

explicitly in ASD (Happé, 1995; Hill, Berthoz, & Frith, 2004)). Thus, their impairments may 

be reflecting impaired explicit, not implicit learning. When there is no chance to use explic it 

strategies, as in our study, or in Barnes’ (2008) and Brown’s (2010) the autistic participants are 

able to reveal their intact implicit learning.   

A different hypothesis explaining the contradictory research results can be drawn from 

Happé & Frith (2006) who suggest that ASDs have attentional preference for local over the 

global context. It is possible that longer RSIs make it even more difficult for ASD participants 

to engage in global-context processing because the increased time between events makes it  

difficult to group them.  Thus, longer RSIs would put ASD participants at a disadvantage in 

sequence learning compared to controls. Testing these hypotheses will require more research. 

 The results of the present study concerning consolidation are similar to those of Song et 

al. (2007b) and Nemeth et al. (2010).  Like the healthy young and older adults in these earlier 

studies, our ASD and control groups remembered the sequence between sessions as shown by 

a lack of decline in Sequence Learning Effect over the 16 hours between sessions.  In addition, 

as had been the case for the adults in these earlier studies, all three groups of children showed 

offline enhancement of general skill in that they started their second session at a faster response 

rate than the end of the first session. However, neither study (Nemeth, Janacsek, Londe, et al., 

2010; Song et al., 2007b) found a sleep effect in the general skill learning or in the sequence-

specific learning. This is important because ASD has been highly associated with sleep 

difficulties (APA, 1994). Thus, whether consolidation is intact or defective in autism it is most 

likely not the result of sleep disturbance. The fact that our ASD children did not show defic its 

in consolidation, is also consistent with evidence suggesting that sleep may not play a critical 

role in consolidation of implicit sequence learning (Nemeth, Janacsek, Londe, et al., 2010; 

Robertson, Pascual-Leone, & Press, 2004; Song, 2009; Song et al., 2007b). 
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Moreover, our findings draw attention to the fact that children acquire the hidden 

sequences very fast, as they are sensitive to statistical probabilities already in the first epoch of 

learning. This early sensitivity may reflect greater neural plasticity and is less typical among 

adults (D. V. Howard et al., 2004; Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b). 

In summary, this study found that implicit sequence-specific and general skill learning 

are unimpaired in participants with ASD, and that consolidation of the learning is intact as well. 

This suggests that autistic children can use the effects/results of implicit learning not only for a 

short period, but also for a longer stretch of time. Learning seems to get embedded into the 

cognitive system, which could play an important role in therapy. Learning in general relies on 

implicit and explicit processes at the same time. If implicit sequence learning is spared relative 

to explicit learning in ASD (Dawson et al., 2008), then emphasizing implicit processes could 

improve real-life learning in ASD. Using these results, therapists can design more effective 

educational and rehabilitation programs. Our findings suggest that learning mechanisms 

associated with frontal-striatal-cerebellar anatomy are partly intact in ASD.   
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2.9 Implicit probabilistic learning in Mild Cognitive Impairment10 

 

Abstract 

Mild Cognitive Impairment (MCI) causes slight but noticeable disruption in cognitive systems, 

primarily executive and memory functions. However, it is not clear if the development of 

sequence learning is affected by an impaired cognitive system and, if so, how. The goal of our 

study was to investigate the development of probabilistic sequence learning, from the init ia l 

acquisition to consolidation, in MCI and healthy elderly control groups. We used the 

Alternating Serial Reaction Time task (ASRT) to measure probabilistic sequence learning. 

Individuals with MCI showed weaker learning performance than the healthy elderly group. 

However, using the reaction times only from the second half of each learning block – after the 

reactivation phase - we found intact learning in MCI. Based on the assumption that the first part 

of each learning block is related to reactivation/recall processes, we suggest that these processes 

are affected in MCI. The 24-hour offline period showed no effect on sequence-specific learning 

in either group but did on general skill learning: the healthy elderly group showed offline 

improvement in general reaction times while individuals with MCI did not. Our findings deepen 

our understanding regarding the underlying mechanisms and time course of sequence 

acquisition and consolidation. 

 

Keywords:  Mild Cognitive Impairment, offline learning, statistical learning, implicit learning, 

skill learning, consolidation, automaticity 

  

                                                                 
10 Published in Nemeth D, Janacsek K, Király K, Londe Z, Németh K, Fazekas K, Csányi A. Probabilistic 

sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience. 2013;7:318. 
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Introduction 

Mild cognitive impairment (MCI) is a transition stage between normal age-related 

cognitive decline and the more serious symptoms of dementia caused by, for example, 

Alzheimer’s disease. According to the American College of Physicians, MCI affects about 20% 

of the population over 70 years of age. Many who develop MCI eventually develop Alzheimer’s 

disease, although some will remain stable or might even return to normal (Roberts et al., 2008). 

Of those with MCI, 12-15% will develop the signs of dementia within a year and about 50% 

will progress to dementia within five years (Gauthier et al., 2006). The characteristic symptoms 

of MCI are impaired memory functions during learning or recall, impaired attention and 

information processing evidenced by the speed with which these functions are executed, flawed 

executive functions, and perceptual motor-skill and language-expression disturbances (e.g., 

word finding). MCI is diagnosed if at least two of these symptoms are present for at least two 

weeks (Grundman et al., 2004; Petersen et al., 1999; Portet et al., 2006; Tariska, Kiss, Mészáros, 

& Knolmayer, 1990). MCI produces greater than age appropriate memory impairment but in 

all other aspects the individual functions well. Most often, learning skills and the ability to recall 

new information are affected to the highest extent. Brain imaging research shows dysfunction 

in the medial temporal lobe (MTL), including the hippocampal formation in MCI (Dickerson 

& Sperling, 2008; Jack et al., 1997) but other areas might also be affected (Rombouts et al., 

2009). Memory tests have established that certain forms of explicit memory and learning, such 

as delayed recall and list learning, decline in MCI (Grundman et al., 2004; Leube et al., 2008; 

Petersen et al., 1999). However, the question of how implicit learning is affected by MCI has 

received less attention (Nagy et al., 2007; Negash et al., 2007). Properties of implicit learning 

and its consolidation could be useful in the dissociation of MCI from healthy age-related 

changes and also could contribute to a better understanding of the formation and consolidat ion 

of sequence acquisition, specifically the role of the MTL and hippocampus in these processes.  

 Explicit or declarative memory is accessible to conscious recollection, including facts 

and episodes (for example remembering events explicitly). It is defined by voluntary 

mechanisms which rely more on attentional resources. Non-declarative memory relies more on 

automatic, non-conscious/implicit processes including habituation, conditioning, motor and 

perceptual skills (for example playing piano). According to Squire and his colleagues, explic it 

or declarative memory can be linked to the brain’s medial-temporal area, while the implicit or 

non-declarative processes fall outside these areas (Squire, 1998; Squire & Zola, 1996). 

Nevertheless, others showed that areas in the MTL  including hippocampus also play a role in 

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



 123 

implicit learning (Albouy et al., 2008; Chun & Phelps, 1999; for critics, see Manns & Squire, 

2001; Poldrack & Rodriguez, 2003).  

 The focus in our study is primarily on implicit sequence learning which underlies the 

acquisition of not only motor but also cognitive and social skills (Lieberman, 2000; Nemeth et 

al., 2011; Romano-Bergstrom, Howard, & Howard, 2012). Most models of sequence learning 

(Doyon, Bellec, et al., 2009; Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002) emphasize 

the role of the frontal-striatal-cerebellar system, while the role of the MTL and related structures 

(e.g., hippocampus) remains inconclusive (Albouy et al., 2008; Schendan et al., 2003) Simon, 

Vaidya, Howard, & Howard, 2012). Negash and his colleagues (Negash et al., 2007) have 

conducted the first and only research to address this topic so far, in which they investigated the 

effect of MCI on implicit learning. They used two implicit learning paradigms: the Serial 

Reaction Time (SRT; M. J. Nissen & Bullemer, 1987) to measure sequence learning, and the 

Contextual Cueing Task (Chun & Jiang, 1998) to measure visuospatial configuration learning. 

Despite the similarity in implicitness of these tasks, they call on two different neural systems; 

previous studies showed greater involvement of MTL in the Contextual Cueing (Chun & Jiang, 

1998; Manns & Squire, 2001) compared to the SRT task, which is primarily mediated by the 

previously mentioned frontal-striatal-cerebellar system (Curran, 1998; Gomez-Beldarra in, 

Grafman, Pascual-Leone, & Garcia-Monco, 1999; Honda et al., 1998; Willingham et al., 2002). 

Negash, Petersen et al.’s results revealed that individuals with MCI, although generally slower, 

showed similar sequence learning to the controls; however, learning was impaired in the 

Contextual Cueing task. These findings implicate that the MTL system, including the 

hippocampal formation is involved in MCI, while the frontal-striatal-cerebellar system is 

involved to a lesser extent (Negash, Petersen, et al., 2007). 

 While Negash et al. (2007) used a deterministic 8-element sequence, we take the task 

one step further. Here we use a modified version of the SRT task, the Alternating Serial 

Reaction Time (ASRT) task (J. H. Howard, Jr. & Howard, 1997), which enables us to separate 

general skill learning and sequence specific learning. General skill learning refers to the 

increase in speed as the result of practice and it is relatively independent from sequence 

structure, while sequence-specific learning refers to the acquisition of sequence-specific 

knowledge, which results in relatively faster responses for events that can be predicted from the 

sequence structure versus those that cannot. Most research, including the Negash et al.’s (2007) 

study cited above, has not distinguished these because the tasks used make it difficult to do so. 

In classical SRT tasks used also by Negash et al. (2007), the structure of a sequence is 

deterministic, with the stimuli following a simple repeating pattern as in the series 
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213412431423, where numbers refer to distinct events. In contrast, in the ASRT task (J. H. 

Howard, Jr. & Howard, 1997; Remillard, 2008), repeating events alternate with random 

elements. This means that the location of every second stimulus on the screen is determined 

randomly. If, for instance, the sequence is 1234, where the numbers represent locations on the 

screen, in ASRT the sequence of stimuli will be 1r2r3r4r, with r representing a random element. 

The sequence is thus ’better hidden’ than in the deterministic SRT task and it is also possible 

to track sequence-specific learning continuously by comparing responses to the random and 

sequence elements. This structure is called probabilistic second-order dependency (Remillard, 

2008) because to predict element ’n’ we need only to know element n-2, regardless of element 

n-1. In this way, the representations of the probabilistic sequences are more abstract and the 

acquisition of the sequences is also a statistical learning process. One of the outstanding 

questions in the literature of implicit learning is if there are functional differences in how 

implicit learning develops in motor versus cognitive tasks (Ashby, Turner, & Horvitz, 2010; 

Foerde et al., 2008). The fact that probabilistic sequences with their statistical properties are 

more ambiguous due to certain transitions being dictated by a context defined by remote events 

(Remillard, 2008) suggests that learning these sequences might result in more abstract 

representations than in deterministic sequence learning tasks (for another view see Keele, Ivry, 

Mayr, Hazeltine, & Heuer, 2003). Moreover, several studies showed that probabilistic sequence 

learning is related not only to motor, but also to perceptual processes (Song, Howard, & 

Howard, 2008; Nemeth, Hallgato, Janacsek, Sandor, & Londe, 2009; Hallgato, Gyori-Dani, 

Pekar, Janacsek, & Nemeth, 2013). Based on these considerations, probabilistic sequence -

specific learning is presumed to be related relatively more to cognitive skills, while general skill 

learning is presumed to be related relatively more to motor skills in this specific design. It is a 

particularly interesting issue how MCI affects the performance on these two aspects of learning.  

 In the development and stabilization of memory representation for sequences, the 

processes of consolidation and reconsolidation, are particularly important (Rickard, Cai, Rieth, 

Jones, & Ard, 2008; Tucker, McKinley & Stickgold, 2011; Walker, Brakefield, Hobson, & 

Stickgold, 2003). During the acquisition of sequences we are learning and recalling and 

reactivating the sequence elements continuously. Recalling or reactivating a previously 

consolidated memory makes it once again fragile and susceptible to interference, therefore 

requiring periods of reconsolidation (Walker, et al., 2003). These circle processes make possible 

the continued refinement and reshaping of previously learned motor or cognitive skills in the 

context of ongoing experience. In experimental designs (fingertapping or SRT tasks) and partly 

in real-life situations, we are learning sequences arranged in blocks which are separated by 
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shorter or longer time periods. In the beginning of the blocks we reactivate the already 

consolidated memory traces. Rickard et al. (2008) and Brawn et al. (2010) showed that the 

separate analysis of the different parts of the learning blocks is crucial in understanding the 

consolidation of sequence learning. For example, if we analyze only the first part of each of the 

learning blocks, we can find greater sequence learning effects by controlling the reactive 

inhibition (i.e., the inhibiting effect of fatigue on learning (Rickard, et al., 2008). These effects 

can be particularly relevant in a cognitive impaired population such as MCI.  It is important to 

highlight, however, that Rickard et al. (2008) and Brawn et al. (2010) used explicit and not 

implicit sequence learning. Thus the question can be raised whether the pattern of results is the 

same for implicit learning. We hypothesize dissociation between explicit and implicit sequence 

learning because several factors, such as fatigue and attentional resources, affect the two types 

of learning differently (Squire & Zola-Morgan, 1996; Nissen & Bullemer, 1987; Janacsek & 

Nemeth, 2013). 

It is also a relevant issue that sequence learning does not occur only during practice - 

online periods - but also between practice periods – during offline periods. The process that 

occurs during the offline periods is referred to as consolidation and is typically revealed either 

by increased resistance to interference and/or by improvement in performance, following an 

offline period (Krakauer & Shadmehr, 2006). The nucleus caudate and ventricle putamen, 

which are part of the fronto-striato-cerebellar network, play important roles in sequence 

consolidation (Albouy et al., 2008; Debarnot et al., 2009; Doyon, Bellec, et al., 2009; Doyon & 

Benali, 2005; Lehericy et al., 2005). More recent studies also emphasize the role of the 

hippocampus in the consolidation of sequence knowledge: for example, Albouy and colleagues 

(2008) found hippocampus activity using a 24-hour delay interval between the learning and 

testing session. MCI is an ideal avenue to solve the puzzle of sequence consolidation because 

of the above mentioned neurocognitive background of this cognitive impairment. Although 

there are several studies focusing on the consolidation of explicit processes in MCI (Westerberg 

et al., 2012), to our knowledge no study has investigated the effect of a 24-hour offline period 

on implicit sequence learning in this population so far.  

 In this study, we investigated sequence-specific and general skill learning in individua ls 

with MCI. In this way we could indirectly investigate the role of the hippocampus and related 

MTL structures in this learning mechanism. A probabilistic sequence learning task was set up 

in a prolonged way in order to map the development and consolidation of memories for 

sequences. We had two main questions here: 1) to which extent can the individuals with MCI 

learn raw probabilities implicitly, 2) how within-block effects contribute to sequence learning 
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performance. For the second question we hypothesized that the beginning of the learning blocks 

reflects the processes in which we are picking up high and low frequency triplets and 

reactivating/recalling the sequence information learned in the previous blocks. As 

reactivation/recall processes are shown to be related to the hippocampus and related structures 

(Gelbard-Sagiv, Mukamel, Harel, Malach, & Fried, 2008; Xue et al., 2010), we expected 

weaker learning performance in MCI based on the first half of the blocks compared to the 

second half of the blocks. 

 

Materials and methods 

 

Participants  

Seventeen MCI patients and 17 healthy elderly controls participated in the experiment. 

Diagnoses of MCI were established via a consensus meeting of at least two clinical neurologis ts 

and a neuropsychologist using various examinations and tests (e.g., basic laboratory tests, brain 

MRI, clinical evaluation, Mini Mental State Examination - MMSE). Controls were individua ls 

who: (1) were independently functioning community dwellers, (2) did not have active 

neurological or psychiatric conditions, (3) had no cognitive complaints, (4) demonstrated a 

normal neurological behavior, (5) were not taking any psychoactive medications (Negash, 

Petersen, et al., 2007).  

The MCI and the control group were matched on age (MMCI = 61.82, SDMCI = 7.70; 

Mcontrol = 57.82, SDcontrol = 8.47), years of education (MMCI = 13.35, SDMCI = 2.21; Mcontrol = 

14.18, SDcontrol = 2.38) and gender (14 and 15 females, respectively). The groups differed in 

performance on the MMSE (t(32) = -6.31, p < 0.001): the mean score was 26.91 (SD = 1.69, 

range 25-28) for the MCI group and 29.69 (SD = 0.48, range 29-30) for the controls. All 

participants provided signed informed consent agreements and received no financ ia l 

compensation for their participation. The examinations were conducted at the neuropsychiatr ic 

office of the Aladár Petz County Research Hospital. 

 

Procedure 

The ASRT task was administered in two sessions separated by a 24-hour interva l. 

Participants were informed that the main aim of the study was to find out just how extended 

practice affected performance on a simple reaction time task. Therefore we emphasized 

performing the task as fast and as accurate as they could. They were not given any information 

about the regularity that was embedded in the task.  
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In the first session the ASRT consisted of 20 blocks. As one block took about 1.5-2 

minutes, the first session took approximately 30-40 minutes. Between blocks, participants 

received feedback on the screen about their overall reaction time and accuracy, then had a rest 

of between 10 and 20 sec before starting a new block. Session 2 lasted approximately 22-30 

minutes, as the ASRT consisted of 15 blocks.  

The computer program selected a different ASRT sequence for each participant based 

on a permutation rule, such that each of the six unique permutations of the 4 possible stimuli 

occurred. Consequently, six different sequences were used across participants while the 

sequence within participants was identical during Session 1 and Session 2 (J. H. Howard, Jr. & 

Howard, 1997; Nemeth et al., 2010). 

 

The Alternating Serial Reaction Time (ASRT) Task 

Sequence learning was measured by the “Catch the dog” version (Nemeth, et al., 2010) 

of the ASRT task (J. H. Howard, Jr. & Howard, 1997). In this ASRT task, a stimulus (a dog’s 

head) appears in one of four empty circles on the screen and participants have to press the 

corresponding button when it occurs. The computer is equipped with a special keyboard with 

four heightened keys (Y, C, B, and M on a Hungarian keyboard; equivalent to Z, C, B, M on a 

US keyboard), each corresponding to the circles in a horizontal arrangement.  

Unbeknownst to participants, the appearance of stimuli follows a predetermined order. 

As stimuli are presented in blocks of 85 stimuli, the first five button pressings are random for 

practice purposes, then an 8-element alternating sequence (e.g., 2r3r1r4r, where numbers 

represents the four circles on the screen and r represents random elements) repeats ten times. 

Because of this structure, some triplets or runs of three consecutive events occur more 

frequently than others. For example, in the above illustration, 1_4, 2_3, 3_1, and 4_2 (where 

“_” indicates the middle element of the triplet) would occur often because the third element 

(bold numbers) could be derived from the sequence or could also be a random element. In 

contrast, 1_3 or 4_1 would occur less frequently because in this case the third element could 

only be random. Following previous studies, we refer to the former as high-frequency triplets 

and the latter as low-frequency triplets. Note that the final event of high-frequency triplets is 

therefore more predictable from the initial event when compared to the low-frequency triplets 

(also known as non-adjacent second-order dependency (Remillard, 2008). Therefore, for each 

stimulus we determined whether it was the last element of a high- or low-frequency triplet. 

There are 64 possible triplets (43, 4 stimuli combined for three consecutive events) in 

the task. Out of these triplets, 16 are high frequency triplets, each of them occurring on 
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approximately 4% of the trials, about 5 times more often than the low-frequency triplets. Thus, 

approximately 64 % of all trials are high-frequency triplets and the remaining 36 % of trials are 

low-frequency ones.  

Previous studies have shown that as people practice the ASRT task, they come to 

respond more quickly to the high- than low-frequency triplets, revealing sequence-specific 

learning (D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Song, Howard, & 

Howard, 2007). In addition, general skill learning is revealed in the ASRT task in the overall 

speed with which people respond, regardless of the triplet types. Thus, we are able to obtain 

measures of both sequence-specific and general skill learning in the ASRT task. 

 

Statistical analyses 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1-5, the second blocks 6-10, etc. (Barnes et al., 2008; 

Bennett, Howard, & Howard, 2007). As participants’ accuracy remained very high (98.1 % for 

the MCI and 99.2 % for the control group) throughout the test (similarly to previous studies, 

e.g., J. H. Howard, Jr. & Howard, 1997; Nemeth, et al., 2010), we focused on reaction time 

(RT) for the analyses reported. For RTs, we calculated medians for correct responses only, 

separately for high and low frequency triplets and for each participant and each epoch.  

To compare the overall learning between the groups, RTs were analyzed by a mixed 

design ANOVA on the 7 epochs of Session 1 and 2 with TRIPLET (2: high vs. low) and EPOCH 

(1-7) as within-subjects factors and GROUP (MCI vs. control) as a between-subjects factor. 

For exploration of offline changes in the 24-hour delay period, a similar ANOVA was 

conducted including only the last epoch of Session 1 and the first epoch of Session 2. All 

significant results are reported together with the 2
p effect size and Greenhouse Geisser ε 

correction factors where applicable. Planned comparisons and post hoc analyses were 

conducted by Fisher’s LSD pairwise comparisons. 

 

Results 

 

Do the MCI and the control group differ in overall sequence learning? 

The ANOVA revealed significant sequence-specific learning (indicated by the 

significant main effect of TRIPLET: F(1, 32) = 18.50, 2
p = .37, p < .001) such that RTs were 

faster on high than on low frequency triplets (Figure 2.9.1A). The groups differed in the extent 

of this sequence-specific learning (shown by the significant TRIPLET x GROUP interact ion: 
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F(1, 32) = 8.31, 2
p = .21, p = .007): the MCI group was 2.80 ms faster on high than on low 

frequency triplets (p = .32) while this difference was 14.20 ms for the controls (p = .001). Thus, 

only the controls acquired the sequence-specific knowledge overall. 

The ANOVA also revealed general skill learning (shown by the significant main effect 

of EPOCH: F(6, 192) = 42.70, 2
p  = .57, p < .001), such that RTs decreased across epochs, 

irrespective of the triplet type. This decrease was slightly different for the groups (EPOCH x 

GROUP interaction: F(6, 192) = 2.33, 2
p = .07, p = .078): RTs decreased steeper in the MCI 

group (153 ms from the first epoch to the last epoch) than in the controls (95 ms). This 

difference was mainly caused by the MCI group’s relatively slower RTs in the first epoch 

compared to that of the controls (790 vs. 692 ms, p = .07). This difference diminished for the 

last epoch (647 vs. 607 ms, p = .41). Other interactions were not significant (ps > .17).  

Although the MCI and the control group performed with similar RTs (main effect of 

GROUP: F(1, 32) = 1.99, p = .17), we re-ran our analyses using z-transformed RTs to confirm 

our findings. The ANOVA revealed sequence-specific learning (significant main effect of 

TRIPLET: F(1, 32) = 43.77, p < .001) with significantly smaller learning for the MCI than for 

the control group (TRIPLET x GROUP interaction: F(1, 32) = 4.01, p = .05). After the z-

transformation, the EPOCH x GROUP interaction was not significant (F(6, 192) = 1.26, p = 

.31), suggesting a similar level of general skill learning in the two groups. 
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Figure 2.9.1. A) Sequence learning across 7 epochs (35 blocks) for the MCI and control group. Circles represent 

RTs for high-frequency triplets and squares represent RTs for low-frequency triplets. B) Learning curves for the 

first part of each block and C) the second part of each block. D) Sequence-specific learning (measured by the RTs 

for the low- minus high-frequency triplets) for the MCI and control group is plotted for the overall, first block-part  

and second block-part learning measures. Overall, the MCI group did not  show significant sequence-specific 

learning, which was caused mainly by the learning performance in the first part of the blocks. The learning  

performance in the second part of the blocks was similar in the groups. E) General reaction times are plotted for 

the first and second parts of the blocks for the MCI and control group, separately. The MCI group was slower in 

the second parts of the blocks compared to the first parts of the blocks, but only in Session 1. The control group 

showed a similar pattern, but in Session 2.  F) Offline general skill changes (measured as the RT difference between 

Epoch 4 and Epoch 5, irrespectively of the triplet types) over the 24-hour delay are plotted for the MCI and the 

control group with significant offline improvement for the controls only. Error bars represent standard error of 

mean. ns – nonsignificant, * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Is there any within-block effect on learning? Are these effects different in the MCI and the 

control group? 

A fine-grained analysis of the data can give us a deeper insight into the mechanisms of 

the development of sequence representation; therefore, it can also help to better understand the 
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above reported sequence-learning deficit in MCI compared to controls. Analyzing the learning 

data by splitting each block into two halves is an excellent approach for exploring these 

questions. Therefore we conducted a mixed design ANOVA on the data shown in Figure 

2.9.1B-C with TRIPLET (2: high vs. low frequency), EPOCH (7: 1-7) and PART (2: first vs. 

second half of blocks) as within-subject factors and GROUP (2: MCI vs. control) as a between-

subject factor.   

The ANOVA revealed significant sequence-specific learning overall (main effect of 

TRIPLET: F(1, 32) = 18.27, 2
p = .36, p < .001) with smaller learning for the MCI group 

compared to controls (4 vs. 14 ms; TRIPLET x GROUP interaction: F(1, 32) = 5.62, 2
p = .15, 

p = .02; Figure 2.9.1D). Interestingly, taking the PART of the blocks into account, we found a 

significant TRIPLET x PART interaction (F(1, 32) = 4.43, 2
p = .12, p = .04): the sequence-

specific learning was greater in the second part of the blocks compared to the first part (6 vs. 

12 ms).  Although the TRIPLET x PART x GROUP interaction did not reach significance (F(1, 

32) = 2.62, 2
p = .08, p = .12), planned comparisons revealed that the controls showed a similar 

extent of sequence-specific learning in the first and the second part of the blocks (13 and 14.5 

ms, p = .73). In contrast, the MCI group showed higher sequence-specific learning in the second 

part of blocks than in the first part (1.7 vs. 9.6 ms, p = .01). All of these learning measures were 

significant (ps < .004), except for the first part of the blocks in the MCI group (p = .68). Thus, 

the group difference in sequence learning that we found in the previous analysis was driven 

mainly by the first part of the blocks (Figure 2.9.2), where the extent of sequence-specific 

learning was different between groups (p = .01), while they were similar in the second part of 

the blocks (p = .22).  
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Figure 2.9.2. Sequence-specific learning (measured by the RTs for the low- minus high-frequency triplets) in the 

first and second parts of the blocks, collapsed into epochs, is plotted for the MCI and control group. Error bars 

indicate standard error of mean.  

 

The ANOVA computed on z-transformed data confirmed our findings, as the TRIPLET 

x PART x GROUP interaction was significant (F(1, 32) = 5.93, p = .02). The MCI group 

showed significant sequence-specific learning only in the second halves of the blocks (p < .001) 

but not in the first halves (p = .29). In contrast, the controls exhibited significant sequence-

specific learning both in the first and second parts of the blocks (ps < .001). 

In the case of general skills, the ANOVA showed a significant improvement across 

epochs (main effect of EPOCH: F(6, 192) = 42.42, 2
p = .57, p < .001), with a trend toward 

group differences (EPOCH x GROUP interaction: F(6, 192) = 2.46, 2
p = .07, p = .06). This 

latter effect is similar to the results of the previous analysis finding that RTs decreased steeper 

in the MCI group (149 ms from the first epoch to the last epoch) than in the controls (87 ms). 

This difference, however, diminished when analyzing z-transformed data: EPOCH x GROUP 

interaction: F(6, 192) = 1.23, p = .32).  

There was also a trend for different degrees of general skill improvement in the first and 

second part of the blocks (EPOCH x PART interaction: F(6, 192) = 1.91, 2
p = .06, p = .08): 

the speed-up from the first to the last epoch was 123 ms when analyzing only the first parts of 

the blocks, while it was slightly smaller in the case of the second parts of the blocks (106 ms). 
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This was caused mainly by being faster in the second half of the blocks at the beginning of the 

task (737 vs. 746 ms in the first epoch), with a reverse pattern for the end of the task (631 vs. 

624 ms in the last epoch). This effect remained and even became stronger after z-transforming 

the RTs (EPOCH x PART interaction: F(6, 192) = 6.80, p < .001). 

Groups further detailed this picture (significant EPOCH x PART x GROUP interact ion: 

F(6, 192) = 2.22, 2
p = .07, p = .04; Figure 2.9.1E) as the MCI group was 12 ms faster in the 

first parts of the blocks compared to the second parts  in Session 1 (p = .004) but showed similar 

RTs in Session 2 (1 ms difference between the RTs of the first and second parts of the blocks, 

p = .73). In contrast, the control group performed the task with similar RTs in Session 1 (2.6 

ms difference, p = .51) but was 8.6 ms faster at the beginning of the blocks compared to the 

second parts in Session 2 (p = .01). This difference, however, disappeared when using z-

transformed data (EPOCH x PART x GROUP interaction: F(6, 192) = .02, p = .33). No other 

main effects of interactions were significant (ps > .21).  

 

Is there any change in learning in the 24-hour delay? 

For the exploration of the offline changes in the 24-hour delay period, ANOVA was 

conducted with TRIPLET (2: high vs. low frequency) and EPOCH (2: the last epoch of Session 

1 and the first epoch of Session 2) as within-subject factors and GROUP (2: MCI vs. control) 

as a between-subject factor.  

The ANOVA revealed sequence-specific learning (indicated by the significant main 

effect of TRIPLET: F(1, 32) = 19.68, 2
p  = .38, p < .001) which was retained across the sessions 

(TRIPLET x EPOCH interaction: F(1, 32) = 0.51, 2
p = .02, p = .48). The groups did not differ 

either in overall sequence-specific knowledge (TRIPLET x GROUP interaction: F(1, 32) = .19, 

2
p = .01, p = .67) or in the offline change of this knowledge between the sessions (TRIPLET x 

EPOCH x GROUP: F(1, 32) = 1.63, 2
p = .05, p = .21). 

In contrast, there was an offline improvement in general skills (main effect of EPOCH: 

F(1, 32) = 5.32, 2
p = .14, p = .028), with faster RTs in the first epoch of Session 2 compared 

to the last epoch of Session 1 (Figure 2.9.1F). This change was slightly different between groups 

(EPOCH x GROUP interaction: F(1, 32) = 3.69, 2
p = .10, p = .064): the MCI group showed 

no between-session speed-up (3 ms, p = .79) while the controls did (34.7 ms, p = .005). The 

ANOVA on z-transformed RTs confirmed this result, showing a weaker consolidation of 

general skills for the MCI than for the control group (marginally significant EPOCH x GROUP 
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interaction: F(1, 32) = 3.85, p = .06). Other interactions involving the GROUP were not 

significant (ps > .71). 

We also conducted a consolidation analysis taking the first and second parts of the 

blocks into account and found similar results, with significant group differences in offline 

general skill changes (EPOCH x GROUP interaction: F(1, 32) = 4.30, 2
p = .12, p = .046). The 

offline change in general skills was significant for the control group (35.8 ms faster at the 

beginning of Session 2 compared to the end of Session 1, p = .004) but not significant for the 

MCI group (1.65 ms difference, p = .89).  

 

Discussion 

 

 Our goal was to investigate the acquisition of sequence knowledge in Mild Cognitive 

Impairment. We used a task that allows differentiating between sequence-specific and general 

skill learning. At first, based on the standard ASRT analysis we found that individuals with 

MCI showed weaker implicit probabilistic sequence learning than the healthy aged group. 

However, once we dug deeper and considered only the second half of each learning block, we 

found similar learning performances in the MCI as in the healthy aged group. Thus, the overall 

sequence-specific learning in MCI depends on which part of each learning block is considered. 

In the case of general reaction time, the MCI group was faster in the first part of the blocks 

compared to the second part in Session 1. The healthy aged group showed a similar pattern, 

except in Session 2. We were able to demonstrate that general skill consolidation over a 24-

hour delay period was different in MCI and in the healthy aged group. The latter group showed 

offline improvement in general reaction time while the MCI group did not show this speed-up 

effect. We believe our study to be the first one that uses an implicit sequence learning task with 

second-order dependency in individuals with MCI. 

Our results partly contradict but partly support the findings of Negash and his colleagues 

(2007), who showed learning with a deterministic SRT task in MCI but not in the Contextual 

Cueing task (Chun & Jiang, 1998). The impaired sequence learning that we found in MCI could 

be due to the more difficult and more complex sequence structure in our task, compared to the 

one used by Negash et al. (2007). Another possibility is that deterministic and probabilis t ic 

sequence learning tasks are qualitatively different: the latter with their statistical properties are 

more ambiguous due to higher order associations in which a current event is predicted not by 

the preceding event but by the context of more remote events (Cohen et al., 1990; Keele et al., 

2003). Thus, our result of impaired sequence learning in MCI is more similar to the results of 
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the Contextual Cueing task in Negash et al.’s study. The Contextual Cueing task relies on visual 

search (e.g. find a horizontal T on the screen), which is generated within a background of some 

repeated distractor configuration (unknown to participants) providing a contextual cue to the 

location of the target. As a result of practice, the participants detect the target-stimulus in 

repeated configurations faster than in random configurations, even though they are not aware 

of the repeated distractors. This task calls on different neural systems than the SRT task (MTL-

hippocampus vs. the frontal-striatal-cerebellar system; Chun & Jiang, 1999; Curran, 1998; 

Gomez-Beldarrain, et al., 1999; Honda, et al., 1998; Manns & Squire, 2001; Willingham, et al., 

2002). Despite these differences in the involvement of different neural systems, our results 

suggest that the MTL and the hippocampal formation are also somehow involved in 

probabilistic sequence learning measured by the ASRT task. The within-block analysis can help 

us specify the nature of this involvement.  

The result that the overall sequence-specific learning depends on whether we consider 

the first part or the second part of each learning block supports the suggestion of Rickard et al. 

(2008), who stressed the importance of the within-block position effect. However, we did not 

find a fatigue effect within the block in either group. Moreover, in the MCI group we showed 

significant overall sequence-specific learning when only taking the second part of the learning 

blocks into account, suggesting a warm-up or priming effect (cf. Figure 2.9.2). The fact that the 

MCI group exhibited significant sequence-specific learning in the second part of the blocks but 

not in the first part, suggests that the processes are qualitatively different between the first and 

the second part of the learning blocks. In the beginning of the blocks we have to recall and 

reactivate the sequence structure partly learned already in the previous blocks. The second part 

of each block might be responsible for the utilization and/or proceduralization of the sequence 

knowledge. Based on these assumptions, we claim that the detection of probabilities in the 

reactivation/recall phase is somehow impaired in MCI. In addition, as MTL structures, 

including the hippocampus are primarily affected in MCI  (Dickerson & Sperling, 2008; Jack, 

et al., 1997) and we found impaired sequence learning in the first part of learning blocks, the 

reactivation/recall of the sequence knowledge in the beginning of the blocks might be more 

MTL-dependent than in the second part. However, more studies are needed to confirm this 

suggestion.  

These within-block effects also open a window to the similarities and dissimilarit ies 

between learning performance on the ASRT and the Contextual Cueing task. Although several 

neuropsychological studies have showed dissociation on the performance of these tasks, 

showing evidence of the different neurocognitive background (Barnes, Howard, Howard, 
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Kenealy, & Vaidya, 2010; Howard, Howard, Japiske, & Eden 2006; Negash, Boeve, et al., 

2007; Simon et al., 2011), our results suggest that these two tasks somehow involve similar 

processes but only in the first part of the ASRT blocks. In this part of the blocks the 

reactivation/recall of the previously learned regularities is prominent. Moreover, in order to 

recover the previously acquired sequence memories, picking up the context information of the 

items at the beginning of each block is essential. As previous studies showed, these processes 

are linked to the hippocampus and related MTL structures (Gelbard-Sagiv et al., 2008; Wood, 

Dudchenko, Robitsek, & Eichenbaum, 2000; Xue et al., 2010). In sum, learning performance 

in specific parts of the ASRT seems to rely on the involvement of the hippocampus and related 

MTL structures.  

Regarding general reaction times, we found that in Session 1 the MCI group was faster 

in the first part of the learning blocks compared to the second part, while this pattern was present 

for the control group in Session 2. Generally, slower RTs at the end of learning blocks than at 

the beginning suggest a build-up of fatigue within each block. This fatigue effect emerges later 

for the controls than for the MCI group. These results partly support the findings of Rickard 

and his colleagues (2008), who showed this fatigue effect masking some aspects of learning 

performance in a fingertapping task. Since the MCI group showed significant sequence-specific 

learning in the second half of the blocks, in spite of the fact that they were generally slower due 

to fatigue, we can claim that the impaired sequence-specific learning in the MCI group is not 

caused by this fatigue effect in our study.  

 Previous studies argue that the caudo-ventral putamen (Debarnot et al., 2009; Doyon 

& Benali, 2005) and the hippocampus (Albouy, et al., 2008) can both play a role in the 

consolidation of sequence learning. Since MTL structures, including the hippocampus, are 

mostly affected by MCI (Dickerson & Sperling, 2008), our results that the MCI group did not 

forget the sequence in the 24-hour delay period might suggest that these structures are not 

essential for the consolidation of sequence-specific knowledge, though they might affect the 

consolidation of general skill learning. This latter finding is in line with previous studies using 

fingertapping tasks (e.g., Walker et al., 2003), suggesting that general skill learning in our 

design might share similar neurocognitive background with motor learning. However, future 

studies need to clarify these similarities. 

 In sum, our findings that the detection of probabilities in the reactivation/recall phases 

of the learning is impaired in MCI draw attention to the importance of the hippocampus and the 

related MTL structures in the development of sequence memory representation. Our results add 

detail to the picture regarding background processes of sequence acquisition and consolidat ion 
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and refine Negash et al.’s (2007) final conclusion that adapting to environment is preserved in 

MCI. Based on our findings, we believe that the reactivation phase of the detection of 

probabilities is impaired in MCI. If further studies with different methods, including functiona l 

brain mapping, confirm this view, it could lead to the development of more focused and more 

effective prevention and rehabilitation programs for minor and major cognitive disorders. 
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2.10 Implicit probabilistic learning in Obstructive Sleep Apnea11 

 

Abstract 

Obstructive sleep apnea (OSA) belongs to the sleep-related breathing disorders and is 

associated with cognitive impairments in learning and memory functions. The impairments in 

attention demanding cognitive functions such as working memory and executive functions are 

well-established in OSA; however it remains unknown if less attention demanding implic it 

sequence learning is affected. In the present study, we examined implicit sequence learning in 

OSA to probe the functional integrity of this fundamental learning mechanism. We used 

Listening Span to measure complex working memory capacity and the Alternating Serial 

Reaction Time (ASRT) task which enables us to measure general skill learning and sequence -

specific learning separately. Twenty OSA patients and 20 healthy controls participated in this 

study. Our data show dissociation between working memory and implicit sequence learning in 

OSA. Surprisingly, OSA patients showed preserved general skill and sequence-specific 

learning in spite of the possible hypoxia and sleep restriction. In contrast, working memory 

performance measured by listening span task was impaired in the OSA group. This finding 

suggests selective susceptibility of more attention demanding cognitive functions in this patient 

population, while implicit learning remains intact. Our findings draw attention the fact that 

disordered sleep may have less impact on the integrity of structures connected to implic it 

sequence learning. 

 

Keywords: Obstructive Sleep Apnea, sequence learning, implicit learning, sleep, memory 

 

                                                                 
11 Published in Nemeth, D., Csabi, E., Janacsek, K., Varszegi, M., & Mari, Z. (2012). Intact implicit probabilistic 

sequence learning in obstructive sleep apnea. Journal of sleep research, 21(4), 396-401. 
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1. Introduction 

 

Implicit sequence learning occurs when information is acquired from an environment of 

complex stimuli without conscious access either to what was learned or to the fact that learning 

occurred (D. V. Howard et al., 2004). Implicit sequence learning underlies not only motor but 

cognitive and social skills as well (Lieberman, 2000; Nemeth et al., 2011; Romano Bergstrom 

et al., 2012); it is therefore an important aspect of life from infancy to old age. Implicit sequence 

learning is essential for learning languages, for learning to operate computer applications and 

musical instruments (D. V. Howard et al., 2004). Most models and empirical studies of 

sequence learning highlight the role of the basal ganglia (Daselaar, Rombouts, Veltman, 

Raaijmakers, & Jonker, 2003; Okihide Hikosaka et al., 1999; Kincses et al., 2008; A. 

Rieckmann et al., 2010; Sefcsik et al., 2009), while the role of hippocampus, frontal and parietal 

areas remains inconclusive (Albouy et al., 2008; Gheysen, Van Opstal, Roggeman, Van 

Waelvelde, & Fias, 2010; Pascual-Leone et al., 1996; Schendan et al., 2003). The role of sleep 

on the ability to implicitly learn novel material has not been comprehensively characterized so 

far. Obstructive sleep apnea (OSA) is an ideal field to investigate the interaction between slee p 

and implicit learning because OSA is characterized by repeated episodes of upper airway 

obstruction during sleep, resulting hypoxia which leads to repetitive arousals from sleep, thus 

disturbing the normal sleep pattern (Banno & Kryger, 2007). In OSA only a few studies 

examined cognitive functions related to sub-cortical structures. Therefore, in the present study, 

we examined implicit sequence learning in OSA to probe the functional integrity of this type 

of fundamental learning mechanism. 

Some studies have examined implicit learning in patients with OSA (Naegele et al., 

2006), however only a few studies used sequence learning (e.g. Finger-Tapping, Serial Reaction 

Time Task) to measure implicit motor learning. Lojander, Kajaste, Maasilte & Partinen (1999) 

demonstrated poor performance on Finger-Tapping task in apnea patients. By contrast, other 

studies (Archbold, Borghesani, Mahurin, Kapur, & Landis, 2009; Wilde et al., 2007) found 

intact performance on this task but impaired word recall and working memory performance. 

In our study we used the Alternating Serial Reaction Time (ASRT) task to investigate 

implicit sequence learning in OSA. This task enables us to separate general skill learning and 

sequence-specific learning. In the ASRT task, recurring elements alternated with random ones 

in an eight-element sequence so that the location of every second stimulus in the stream is 

determined randomly (e.g. 1R2R3R4R, where the numbers represent the recurring elements, 
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and R represents random stimuli). This sequence structure has been termed probabilistic 

second-order dependency (Remillard, 2008). The repeating sequence in the ASRT task is more 

complex and better hidden than in the classical SRT tasks or Finger-Tapping Tasks, so that the 

task relies more on implicit mechanisms of learning (Song et al., 2007b). To our knowledge 

this kind of complex implicit sequence learning has not been studied yet in OSA. We also 

examined the working memory performance of OSA patients to investigate whether the less 

attention demanding implicit sequence learning and the more attention demanding working 

memory show differences. Prior reports in healthy participants found no relationship between 

the two systems (for opposite findings see Bo, Jennett, et al., 2011; Feldman et al., 1995; 

Frensch & Miner, 1994; Kaufman et al., 2010; McGeorge, Crawford, & Kelly, 1997; Unsworth 

& Engle, 2005). The frontal lobe-related attentional processes are the mostly influenced by the 

disrupted sleep architecture (Hobson, 2009; Muzur, Pace-Schott, & Hobson, 2002). Therefore 

we can predict that the working memory is more affected compared to less attention demanding 

implicit sequence learning in OSA. 

 

 

2. Methods and Materials 

 

2.1. Participants 

Twenty untreated participants were included in the OSA group (average age: 52.70, SD: 

9.60; average education: 11.95, SD: 2.62, 3 female/17 male). OSA was diagnosed by a board-

certified sleep-physician based on a full night of clinical polysomnography. The mean Apnea-

Hypopnea Index (AHI) was 50.76 event/hour, SD: 22.20 (Range: 21.10-117.30). Pathologica l 

level of AHI defined as 15 or more per hour (Banno & Kryger, 2007). The mean of Respiratory 

Disturbance Index (RDI) in total sleep time was 60.97 event/hour, SD: 16.76 (Range: 33.10-

86.80). Respiratory Disturbance Index was calculated as the number of respiratory events 

(respiratory effort-related arousal (RERA) + apneas + hypopneas) per hour of sleep. 

Pathological level of RDI defined as 10 or more per hour (Peker, Hedner, Kraiczi, & Loth, 

2000). The mean of the daytime sleepiness measured by the Epworth Sleepiness Scale was 

10.00, SD: 4.44 (Range: 2-18). Aside from OSA, participants did not suffer from any 

developmental, psychiatric or neurological disorder as established in a full neurological exam 

by a board certified neurologist. 

The control group consisted of twenty healthy subjects and were matched by age, 

education, and sex (average age: 52.40, SD: 15.04, average education: 12.65, SD: 3.56, 5 
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female/15 male). The control participants did not suffer from any developmental, psychiatr ic 

or neurological disorders and did not have sleeping disorders. All subjects provided signed 

inform consent agreements and received no financial compensation for their participat ion. 

Ethics approval was obtained by Psychology Ethics Committee at University of Szeged, 

Institute of Psychology. 

 

 

2.2. Tasks 

Alternating Serial Reaction Time (ASRT) Task  

We used the ASRT task in which a stimulus (a dog’s head) appeared in one of the four 

empty circles on the screen and the participants had to press the corresponding button (Nemeth, 

Janacsek, Londe, et al., 2010). The computer was equipped with a special keyboard with four 

marked keys (Y, C, B and M on a Hungarian keyboard), each corresponding to the circles. 

Before beginning the task, detailed instructions were read to participants. We emphasized that 

the aim was to try to respond as quickly and as correctly as possible.  

The ASRT consisted of 20 blocks, with 85 key presses in each block - the first five stimuli 

were random for practice purposes, then the eight-element alternating sequence (e.g., 2r1r4r3r) 

was repeated ten times. Following Nemeth et al. (2010) stimuli were presented 120-ms 

following the previous response. As one block took about 1.5 minutes, the session took 

approximately 25-30 minutes. Between blocks, the participants received feedback about their 

overall reaction time and accuracy on the screen, and then they had a rest of between 10 and 20 

sec before starting a new block.  

A different ASRT sequence was selected for each participant based on a permutation rule 

such that each of the six unique permutations of the 4 repeating events occurred. Consequently, 

six different sequences were used across participants. 

As there is a fixed sequence in the ASRT alternating with random stimuli (for instance 

2r1r4r3r, where numbers represent the four places on the screen, and r represents an event 

randomly selected from the four possible places), some triplets or runs of three stimuli occur 

more frequently than others. For example, in the above illustration 2_1, 1_4, 4_3, and 3_2 

would occur often, because the third element (bold numbers) could be derived from the 

sequence, or could also be a random element. In contrast, 1_2 or 4_1 would occur infrequently, 

because in this case the third element could only be random. Following previous studies 

(Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), we refer to the former as high-

frequency triplets and the latter as low-frequency triplets. Of the 64 possible triplets, each 16 
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high frequency triplets occur on approximately 4% of the trials, about 5 times more often than 

the low-frequency triplets. Note that the final event of high-frequency triplets is therefore more 

predictable from the initial event compared to the low-frequency triplets (also known as non-

adjacent second-order dependency, see Remillard, 2008) (Figure 2.10.1).  

Previous studies have shown that as people practice the ASRT task, they come to respond 

more quickly to the high- than low-frequency triplets revealing sequence-specific learning (D. 

V. Howard et al., 2004; Song et al., 2007b). In addition, general skill learning is revealed in the 

ASRT task in the overall speed with which people respond, irrespective of the triplet types. 

Thus, we are able to measure both sequence-specific and general skill learning in the ASRT 

task. 

To explore how much explicit knowledge participants acquired about the task, we 

administered a short questionnaire (the same as Song et al., 2007b) after the task. This 

questionnaire included increasingly specific questions such as “Have you noticed anything 

special regarding the task? Have you noticed some regularity in the sequence of stimuli?” The 

experimenter rated subjects’ answers on a 5-item scale, where 1 was “Nothing noticed” and 5 

was “Total awareness”. None of the subjects in either the apnea or control group reported 

noticing the sequence in the task.  

 

 

 

 

Figure 2.10.1. In a typical ASRT sequence, there are more frequent (high frequency) triplets and less frequent 

(low frequency) triplets. In other words, if we know what were the last two elements of the sequence (in this case 
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2-3-?), there is a 67.5% probability of a certain element as continuation, and only 12.5% probability of all of the 

other elements. 

 

Listening Span Task 

The working memory performance was measured by the Listening Span Task (Daneman 

& Blennerhassett, 1984). In this test, subjects are required to listen to increasingly longer 

sequences of sentences and to recall the final word of all the sentences in each sequence in seria l 

order. A subject's working memory capacity is defined as the longest sequence length at which 

they are able to recall the final words.  

 

2.3. Procedure 

We administered the Listening Span Task and ASRT task in one session between 6 and 

9 PM both in OSA and control groups. The order of the tasks was counterbalanced.  

 

2.4. Statistical analysis 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1-5, the second epoch contains blocks 6-10, etc. 

Subjects’ accuracy remained very high throughout the test (average over 96% for both groups), 

and so we focus on RT for the analyses reported. For reaction time (RT), we calculated medians 

for correct responses only, separately for high and low frequency triplets and for each subject 

and each epoch.  Note that for each response (n), we defined whether it was a high- or a low 

frequency triplet considering that it is more or less predictable from the event n-2. For the 

analyses reported below, as in previous research (Nemeth, Janacsek, Londe, et al., 2010; Song 

et al., 2007b) two kinds of low frequency triplets were eliminated; repetitions (e.g., 222, 333) 

and trills (e.g., 212, 343). Repetitions and trills are low frequency for all participants, and people 

often show pre-existing response tendencies to them (D. V. Howard et al., 2004). So by 

eliminating them, we can assure that any high versus low frequency differences are due to 

learning and not to pre-existing tendencies. 

 

3. Results 

3.1. ASRT analysis 

A mixed design ANOVA was conducted on the 4 epochs of the data shown in Figure 

2.10.2 with (TRIPLET: high vs. low) and (EPOCH: 1-4) as within-subjects factors, and 

GROUP (OSA vs. control) as between-subjects factors. 
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There was significant sequence-specific learning (indicated by the significant main effect 

of TRIPLET: F(1,38)=11.18, p=0.23, p=0.002) such that RT was faster on high than low 

frequency triplets. OSA and control groups showed no differences in sequence-specific learning 

(TRIPLET x GROUP interaction: F(1,38)=1.21, p=0.03, p=0.28). 

There was also general skill learning (shown by the significant main effect of EPOCH: 

F(3,114)=31.07, p=0.45, p<0.001), such that RT decreased across epochs. OSA and control 

groups performed at the same level (EPOCH x GROUP interaction: F(3,114)=0.05, p=0.001, 

p=0.98). 

 The TRIPLET x EPOCH and TRIPLET x EPOCH x GROUP interactions were not 

significant (F(3,114)=1.60, p=0.04, p=0.19; F(3,114)=0.78, p=0.02, p=0.50; respective ly), 

indicating that the pattern of learning was similar in the groups. In the general reaction time the 

OSA group did not differ significantly from the control group, we found only a weak trend 

(main effect of GROUP: F(1,38)=2.97, p=0.07, p=0.093). Because of this slight difference in 

general reaction time, we reanalyzed the data using z-scores and found the same results as in 

the original analysis with no differences between the groups regarding sequence-specific and 

general skill learning (TRIPLET x GROUP interaction: F(1,38)=0.09, p=0.77; EPOCH x 

GROUP interaction: F(3,114)=0.20, p=0.89; TRIPLET x EPOCH x GROUP interact ion: 

F(3,114)=0.92, p=0.92).  
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Figure 2.10.2. Implicit sequence learning in control and sleep apnea group. Both groups showed general skill 

learning as well as sequence-specific learning. There were no group differences. Error bars indicate standard error 

of mean. 

 

3.2. Listening Span Task  

The performance in the Listening span task was analyzed by independent samples t-test. 

The working memory span of the OSA group was significantly lower (2.55 vs. 3.31) compared 

to the control group (t(38)=-4.05, p<0.001; Figure 2.10.3). 
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Figure 2.10.3. Working memory performance in control and sleep apnea group. The working memory span of the 

sleep apnea group was significantly lower compared to the control group. Error bars indicate standard error of 

mean. 

 

4. Discussion 

Our goal was to investigate whether implicit sequence learning is impaired in OSA. We 

used the ASRT task that allowed us to differentiate between general skill and sequence-specific 

learning. We found that OSA patients showed general skill learning and implicit learning of 

probabilistic sequences similar to that of controls. In contrast, working memory performance 

measured by listening span task was impaired in OSA group consistent with previously reported 

data. We believe our study to be the first to investigate implicit probabilistic sequence learning 

in OSA. 

Our results on working memory performance are similar to those of earlier studies (e.g. 

Archbold et al., 2009; Cosentino et al., 2008; Naegele et al., 2006) in showing impaired working 

memory in OSA group. The cause of this low working memory performance can be linked to 

the dysfunction of the frontal lobe (e.g., Cosentino et al., 2008). Thomas et al. (2005) also found 

absence of dorsolateral prefrontal activation during working memory task in patients with OSA. 

The intact sequence learning found in this study is similar to several earlier Finger -

Tapping studies (Archbold et al., 2009; Wilde et al., 2007). In contrast to our results, Lojander 

et al. (1999) found impaired learning on a sequence learning task. The nature of the task is 

critical in the interpretation of the results. To our knowledge, ASRT has never been tested in 

this patient population. We believe ASRT allows the highest degree of specificity, among 

available sequence learning tasks, to selectively study sub-cortical learning functions, with the 

least cortical influence (Fletcher et al., 2005). ASRT task uses more complex sequence structure 

then Finger-Tapping Tasks (probabilistic vs. deterministic). On neuroanatomical level ASRT 

is associated even more to basal ganglia rather than motor cortex in contrast to the Finger -

Tapping Task where motor cortex plays a critical role in learning performance (Walker, 

Stickgold, Alsop, Gaab, & Schlaug, 2005).  

Our results are in line with sleep deprivation studies. For example, Yoo et al. (2007) 

found that full night sleep deprivation disrupted formation of new explicit memories. Disruption 

of slow-wave activity (SWA) led to similar results in explicit memory, whereas it did not affect 

performance on SRT task (Van Der Werf, Altena, Vis, Koene, & Van Someren, 2011). This 

latter result is consistent with Genzel et al. (2009) who found that disturbed SWS and REM 

phases did not impair sequential Finger-Tapping performance. 
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According to the studies on the relationship between cognitive functions and normal and 

disrupted sleep (Naegele et al., 2006; Robertson, Pascual-Leone, & Press, 2004; Song et al., 

2007b; Stickgold et al., 2002) we can suggest that the sleep has impact on the structures related 

to the more attention demanding processes still more than structures involved in less attention 

demanding, implicit processes. Our findings support this claim in showing impaired working 

memory functions versus intact probabilistic sequence learning in OSA. These result are 

consistent with studies claiming no relationship between these two functions (Feldman et al., 

1995; Kaufman et al., 2010; McGeorge et al., 1997; Unsworth & Engle, 2005) and also with 

Bo et al. (2011) who highlight the association between sequence learning and visuospatia l 

working memory compared to verbal working memory examined in our study. 

Nevertheless, it is worth mentioning that this study cannot rule out the possible effect 

of collateral factors such as increasing blood pressure, hormonal changes, weight gain and an 

increase in diabetes risk which are often present in OSA patients (Banno & Kryger, 2007). 

Further investigations are needed to clarify this question.  

Taken together, this study found dissociation between working memory and implic it 

sequence learning in OSA patients. The working memory showed impairment while the implic it 

sequence learning was preserved in spite of the possible hypoxia and sleep restriction in OSA. 

These results can help us in develop more sophisticated diagnostic tools and more effective 

rehabilitation programs. Beyond the OSA our findings well complement sleep-dependent 

memory consolidation models (Doyon, Korman, et al., 2009; Robertson, 2009; Stickgold & 

Walker, 2007), and draw attention the fact that the sleep might have less influence on the 

structures  related to implicit processes. 
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3. FACTORS UNDERLYING THE CONSOLIDATION OF 

PROBABILISTIC LEARNING 

  

3.1 The role of sleep in the consolidation of implicit probabilistic learning12 

 

Abstract 

The influence of sleep on motor skill consolidation has been a research topic of increasing 

interest. In this study we distinguished general skill learning from sequence-specific learning 

in a probabilistic implicit sequence learning task (Alternating Serial Reaction Time) in young 

and old adults before and after a 12-hour offline interval which did or did not contain sleep 

(pm-am and am-pm groups respectively). The results showed that general skill learning, as 

assessed via overall RT, improved offline in both the young and older groups, with the young 

group improving more than the old. However, the improvement was not sleep-dependent, in 

that there was no difference between the am-pm and pm-am groups. We did not find sequence-

specific offline improvement in either age group for either the am-pm or pm-am groups, 

suggesting that consolidation of this kind of implicit motor sequence learning may not be 

influenced by sleep. 

 

Keywords: implicit sequence learning, Alternating Serial Reaction Time Task, aging, sleep, 

memory consolidation.  

 

                                                                 
12 Published in Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, D. V., & Howard Jr, J. H. (2010). 

Sleep has no critical role in implicit motor sequence learning in young and old adults. Experimental Brain 

Research, 201(2), 351-358. 
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 Most models of motor skill learning (Doyon, Bellec, et al., 2009; Okihide Hikosaka et 

al., 1999; O. Hikosaka et al., 2002) emphasize the role of the basal ganglia and the cerebellum, 

while the role of hippocampus remains inconclusive (Albouy et al., 2008; Schendan et al., 

2003). Motor skill learning can be differentiated into phases (first rapid phase, second slower 

phase), into modalities (motor, visual, visuo-motor, auditory, etc.) and into consciousness types 

(implicit and explicit) (Doyon, Bellec, et al., 2009).  

Skill learning does not occur only during practice, in the so-called online periods, but 

also between practice periods, during the so-called offline periods. The process that occurs 

during the offline periods is referred to as consolidation, and is typically revealed either by 

increased resistance to interference, and/or by improvement in performance, following an 

offline period (Krakauer & Shadmehr, 2006). Special attention has been given to the role of 

sleep; for instance references are made to sleep-dependent consolidation (Walker & Stickgold, 

2004) suggesting that performance improves more when the offline period includes sleep than 

when it does not. Several studies showed the critical role of sleep in skill learning consolidat ion 

(S. Fischer et al., 2002; Stickgold, James, & Hobson, 2000; Walker et al., 2002). 

Nonetheless, the results concerning offline improvements have been mixed, and recent 

reviews (Doyon, Korman, et al., 2009; Robertson, Pascual-Leone, & Press, 2004; Siengsukon 

& Boyd, 2008; Song, 2009; Song et al., 2007b) indicate that whether or not offline 

improvements occur at all, and whether they are sleep-dependent, varies with factors such as 

phase of learning, awareness, the formation of contextual associations and type of information 

to be learned, as well as the age of the participants. For example, a recent study by Doyon et al. 

(Doyon, Korman, et al., 2009) found offline sleep-dependent consolidation for a finger tapping 

sequence-learning task, but no sleep-dependent consolidation for a visuomotor adaptation task 

in young people. In another study which used a sequence learning task, Spencer et al. (Spencer 

et al., 2007) showed that while young adults revealed sleep-dependent offline improvements, 

healthy older adults did not. 

The present study focuses on another distinction that has received little attention in the 

literature on offline learning, i.e., on separating general skill learning from sequence-specific 

learning. General skill learning refers to increasing speed as the result of practice with the task, 

while sequence-specific learning refers to acquisition of sequence-specific knowledge, which 

results in relatively faster responses for events that can be predicted from the sequence structure 

versus those that cannot. Most research, including the Doyon and Spencer studies cited above, 

has not distinguished these, because the tasks used make it difficult to do so.  
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Here we use a modified version of the Serial Response Time (SRT) task, the Alternat ing 

Serial Reaction Time (ASRT) task (Howard and Howard 1997) which enables us to separate 

general skill learning and sequence specific learning. General skill learning is reflected in the 

overall reaction time, whereas sequence-specific learning is reflected in the difference between 

the reaction time of unpredictable, random and predictable, sequence events. In classical SRT 

tasks the structure of a sequence is deterministic with the stimuli following a simple repeating 

pattern as in the series 213412431423, where numbers refer to distinct events. In contrast, in 

the ASRT task (Howard and Howard 1997; Remillard 2008) repeating events alternate with 

random elements. This means that the location of every second stimulus on the screen is 

determined randomly. If, for instance, the sequence is 1234, where the numbers represent 

locations on the screen, in the ASRT the sequence of stimuli will be 1R2R3R4R, with R 

representing a random element. The sequence is thus better hidden than in the classical SRT 

task and it is also possible to track sequence-specific learning continuously by comparing 

responses to the random and sequence elements. This structure is referred to as a probabilis t ic 

second-order dependency (Remillard 2008). The structure is second-order in that for pattern 

trials, event n-2 predicts event n. It is probabilistic in that these pattern trials occur amidst 

randomly determined ones. In addition, participants do not generally become aware of the 

alternating structure of the sequences even after extended practice, and sensitive recognit ion 

tests indicate that people do not develop explicit knowledge of which event-sequences are more 

likely to occur (Howard & Howard 1997; Howard et al. 2004; Song et al. 2007). Thus, even the 

predictable alternate events appear unpredictable to the participants. 

In a previous study using a different version of the ASRT, Song et al. (2007) studied 

offline learning in young adults. People were tested on three sessions with an equivalent period 

of wake or sleep between sessions. Results showed evidence of offline improvement of general 

skill learning after a period of wakefulness, but no evidence of improvement following sleep. 

In contrast, there was no evidence of offline improvement in sequence-specific learning 

following either a period of sleep or wake.  

Few studies have examined skill consolidation in older adults. Several studies have 

shown that old adults show implicit sequence-specific learning comparable to young adults for 

simple repeating patterns in the SRT task (Howard and Howard 1989; Howard and Howard 

1992; Frensch and Miner 1994). However, more recent studies have reported that although 

older adults can learn higher-order sequence structure, they show age-related deficits in doing 

so (Curran 1997; Howard and Howard 1997; Howard et al. 2004). It was interesting to find that 

in one study using a version of the ASRT task, old persons were able to learn even third-order 
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dependencies (1RR2RR3 where R refers to random), although they learned less than the young 

control group (Bennett et al. 2007). The few studies that have investigated offline learning in 

old persons (Spencer et al. 2007; Siengsukon and Boyd 2009a; Siengsukon and Boyd 2009b) 

did not find offline improvement. Spencer et al. (2007) used an implicit deterministic SRT in 

order to examine the effect of sleep specifically. Neither offline improvement, nor a sleep effect 

was shown in elder subjects. However, neither Siensukon et al. (Siengsukon and Boyd 2009b) 

nor Spencer et al. (Spencer et al. 2007) distinguished general skill learning from sequence-

specific learning in their tasks. The ASRT task has been shown to yield offline general skill 

learning, but not offline sequence-specific learning in young adults (Song et al. 2007), and so 

it is important to distinguish between these two aspects of skill learning in older adults. 

The aim of the current study is to compare offline learning and the role of sleep in young 

and old adults 1) in implicit sequence-specific learning and 2) in general skill learning 

separately.  

 

Materials and methods 

 

Participants  

The young group consisted of 25 right-handed subjects (between 19-24 years of age, average 

age: 21, SD: 1.2; 9 male/16 female) randomly assigned to the DAY group (n = 11) or the 

NIGHT group (n = 14). The aged group consisted of 24 older right-handed subjects (between 

60-80 years, average age: 69.75, SD: 7.25; 8 male/16 female) randomly assigned to the DAY 

group (n = 13) or the NIGHT group (n = 11). Subjects did not suffer from any developmenta l, 

psychiatric or neurological disorders, did not have sleeping disorders, and all reported having 

7-8 hours of sleep a day. All subjects provided signed informed consent agreements and 

received no financial compensation for their participation. 

All participants completed a short sleep questionnaire which was adapted from the one 

used in Song et al, 2007. It consisted of 4 questions regarding sleep quantity and quality (“How 

many hours did you sleep?”, “How would you rate your sleep quality?”, “How long does it take 

you to fall asleep?” and “How often do you wake up in the middle of the night or early 

morning?”), and each question was asked separately for sleep in general, and for the previous 

night’s sleep. Each question could be scored between 0-3 (the larger the score, the worse the 

sleep characteristic). A sleep score was calculated for general sleep and for previous night’s 

sleep for each subject by summing across the 4 questions (so the sum scores could vary between 

0-12). Across all participants, the overall mean sleep score for general characteristics was 3.49 
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(SD=1.28), and that for previous night’s characteristics was 2.38 (SD=1.09). There were no 

significant differences among the groups (DAY and NIGHT, YOUNG and AGED; all 

p’s>0.48).  

 

Procedure 

All groups completed two sessions: a learning phase (Session 1) and a testing phase (Session 

2). These sessions were separated by a 12-hour interval. For the DAY group the first session 

was in the morning (between 7 – 8 am) and the second session was in the evening (between 7 

– 8 pm), with the opposite for the NIGHT group (see Fig 1A).  

 

 

 

 

Figure 3.1.1. A) Design of the experiment: The DAY group stayed awake between the two sessions, whereas the 

12 hours delay included sleep in the NIGHT group. B) Example of stimulus displayed on the screen (top), and the 

corresponding keys (below). 

 

 

Alternating Serial Reaction Time (ASRT) Task  

We used a modification of the original ASRT task (Howard and Howard 1997) in which a 

stimulus (a dog head) appeared in one of the four empty circles on the screen and the subject 

had to press the corresponding key when it occurred (see Fig 1B). The computer was equipped 

with a special keyboard with four heightened keys (Y, C, B and M), each corresponding to the 

circles. Before beginning people were read detailed instructions as they followed along on the 

screen. We emphasized that the aim was to try to respond as quickly and as correctly as possible.  

During the first session (learning phase) the ASRT consisted of 25 blocks, with 85 key 

presses in each block - the first five button pressings were random for practice purposes, then 

the eight-element alternating sequence (e.g., 1r2r3r4r) was repeated ten times. Following 

A) 

 

B) 
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Howard et al (1997) stimuli were presented 120-ms following the previous response. As one 

block took about 1.5 minutes, the first session took approximately 30-35 minutes. Between 

blocks, the subjects received feedback about their overall reaction time and accuracy on the 

screen, and then they had a rest of between 10 and 20 sec before starting a new block. The 

second session (testing phase) lasted approximately 10 minutes as the ASRT consisted only of 

5 blocks to examine the offline changes of previously acquired knowledge. The number of key 

presses per block and the event timing were the same as Session 1. 

The computer program selected a different ASRT series for each subject based on a 

permutation rule such that each of the six unique permutations of the 4 repeating events 

occurred. Consequently, six different sequences were used across subjects, but the sequence for 

a given subject was identical during Session 1 and Session 2. 

To explore how much explicit knowledge subjects acquired about the task, we 

administered a short questionnaire (the same as Song et al., 2007) after the second session. This 

questionnaire included increasingly specific questions such as “Have you noticed anything 

special regarding the task? Have you noticed some regularity in the sequence of stimuli?” The 

experimenter rated subjects’ answers on a 5-item scale, where 1 was “Nothing noticed” and 5 

was “Total awareness”. None of the subjects in either the young or older groups reported 

noticing the sequence in the task.  

 

Statistical analysis 

As there is a fixed sequence in the ASRT with alternating random elements (for instance 

1r2r3r4r), some triplets or runs of three events occur more frequently than others. For example, 

in the above illustration 1x2, 2x3, 3x4, and 4x1 would occur often whereas 1x3 or 4x2 would 

occur infrequently. Following previous studies, we refer to the former as high-frequency triplets 

and the latter as low-frequency triplets. For the analyses reported below, as in previous research 

(e.g., J. H. Howard et al. 2004; Song et al. 2007) two kinds of low frequency triplets were 

eliminated; repetitions (e.g., 222, 333) and trills (e.g., 212, 343). Repetitions and trills are low 

frequency for all subjects, and people often show pre-existing response tendencies to them (D. 

V. Howard et al. 2004; Soetens et al. 2004), so eliminating them ensures that any high versus 

low frequency differences are due to learning and not to pre-existing tendencies. Thus, pattern 

trials are always high frequency, whereas one-fourth of random trials are high frequency by 

chance. Of the 64 possible triplets, the 16 high frequency triplets occurred 62.5% of the time 

and the 48 low frequency triplets occurred 37.5% of the time. Thus, each low-frequency triplet 

occurs on approximately 0.8% of the trials whereas each high-frequency triplet occurs on 
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approximately 4% of the trials, about 5 times more often than the low-frequency triplets. Note 

that the final event of high-frequency triplets is therefore more predictable from the initial event 

compared to the low-frequency triplets.  

Earlier results have shown that as people practice the ASRT task, they come to respond 

more quickly to the high- than low-frequency triplets revealing sequence-specific learning 

(Howard and Howard 1997; Howard et al. 2004; Song et al. 2007). In addition, general skill 

learning is revealed in the ASRT task in the overall speed with which people respond, 

irrespective of the triplet types. Thus, we are able to obtain measures of both sequence-specific 

and general skill learning in the ASRT task. 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1-5, the second epoch blocks 6-10, etc. (Bennett et al. 

2007; Barnes et al. 2008).  

Subjects’ accuracy remained very high throughout the test (average over 97% for all 

groups), as is typical (e.g. Howard and Howard, 1997), and so we focus on RT for the analyses 

reported. For reaction time (RT), we calculated medians for correct responses only, separate ly 

for high and low frequency triplets and for each subject and each epoch.  

 

Results 

Online learning during session 1 

To investigate learning during the first session (learning phase) a mixed design ANOVA was 

conducted on the first 5 epochs of the data shown in Figure 3.1.2A, 2B with (TRIPLET: high 

vs. low) and (EPOCH: 1-5) as within-subjects factors, and AGE GROUP (young vs. old) and 

DAY GROUP (day vs. night) as between-subjects factors. There was significant sequence-

specific learning (indicated by the significant main effect of TRIPLET: F(1,45)=93.08, 

MSE=89.57, p<0.0001) such that RT was faster on high than low frequency triplets (Bennett et 

al. 2007). There was also general skill learning (shown by the significant main effect of 

EPOCH: F(4,180)=42.49, MSE=1928.87, p<0.0001), such that RT decreased across epochs. 

 The only significant effect involving DAY GROUP was an interaction with AGE 

GROUP: F(1,45)=5.89, MSE=24677.52, p=0.02. Subsequent t-tests revealed that the young 

group who had been tested first in the AM had overall faster RTs than those tested first in the 

PM (389 vs 414 ms): t(23)=2.09, p=0.048, whereas the older groups showed the reverse pattern, 

even though the difference was not significant for the older groups (614 vs 574 ms), t(22)=1.59, 

p=0.12. It is not clear why these differences occurred, but they are not important for interpret ing 
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the offline results in that they do not involve learning. Importantly, no other effects involving 

DAY GROUP approached significance (all p’s > 0.26). 

The ANOVA also revealed three significant age differences, all consistent with previous 

findings. First, young people responded faster overall than older (shown by the main effect of 

AGE GROUP: F(1,45)=192.87, MSE=24677.52, p<0.0001). Second, young people revealed 

greater sequence-specific learning than older (shown by the TRIPLET x AGE GROUP 

interaction: F(1,45)=7.68, MSE=89.57, p=0.008). Third, old people showed more general skill 

learning than young people (shown by the EPOCH x AGE GROUP interact ion: 

F(4,180)=16.41, MSE=1,928.87, p<0.0001). Older adults’ RT decreased from 675 ms in Epoch 

1 to 550 ms in Epoch 5, while young subjects’ decreased from 420 ms to 380 ms. Subsequent 

TRIPLET x EPOCH x DAY GROUP mixed design ANOVAs, conducted separately for each 

age group confirmed that when examined alone, each age group showed both general skill 

learning and sequence-specific learning. For the young group there was a main effect of 

EPOCH, F(4,92)=6.54, MSE=32.53, p<0.0001, and of TRIPLET, F(1,23)=124.00, 

MSE=56.65, p<0.0001, and an EPOCH x TRIPLET interaction, F(4,92)=6.54, MSE=32.54, 

p<0.0001. For the old group there were main effects of EPOCH, F(4,88)=28.21, MSE=3749.98, 

p<0.0001, and of TRIPLET, F(1,22)=16.80, MSE=123.99, p=0.0005. 
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Figure 3.1.2. A-B: Results of Session 1 (epoch 1-5) and Session 2 (epoch 6) for young (A) and old (B) subjects. 

The differences between the high (open and filled triangles) and low frequency (open and filled squares) triplets 

indicate sequence-specific learning, whereas the decrease of reaction time (regardless of triplet types) indicates 

general motor skill learning. In Session 1 all groups showed significant sequence-specific and general motor skill 

learning, but the extent of sequence-specific learning was smaller for old subjects than for young ones. C-D: 

Results of offline sequence-specific learning for young (C) and old adults (D). The learning index of the last epochs 

of Session 1 does not differ significantly from that of the first epochs of Session 2 neither in young (C) nor in old 

groups (D), suggesting that there is no offline sequence-specific improvement (n.s. – non-significant). There were 

no differences between day and night groups (no sleep effect). E-F: Results of offline general motor skill learning  

for young (E) and old groups (F). Offline general motor skill learning (calculated by the difference between the 

last epoch of Session 1 and the first epoch of Session 2, regardless of triplet types) appeared both in young (E) and 

 

 

┌ n.s.┐ ┌ n.s.┐ 
┌ n.s.┐ 

┌ n.s.┐ 

┌ * ┐ ┌ * ┐ ┌ * ┐ 

┌ * ┐ 
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old (F) groups (stars mark the significant differences). There were no differences between day and night groups 

(no sleep effect). Error bars indicate SEM. 

 

Offline sequence-specific learning 

To define the index for offline sequence-specific learning, we calculated the RT difference for 

the low minus high frequency triplets for the last epoch of Session 1. This index shows the 

magnitude of learning at the end of the first session. Then, similarly, we calculated the RT 

difference for the low minus high frequency triplets for the first epoch of Session 2. These 

difference scores (shown in Figure 3.1.2C, 2D) were submitted to a mixed design ANOVA with 

SESSION (1-2) as a within-subject factor and AGE GROUP (young vs. old) and DAY GROUP 

(day or night) as between-subject factors. Thus, any off-line consolidation of sequence-specific 

learning would be revealed by main effects and/or interactions with SESSION. However, the 

only significant effect obtained was a main effect of AGE GROUP, F(1.45)=14.57, 

MSE=166.27, p=0.0004, reflecting the smaller magnitude of sequence-specific learning in both 

sessions in the old group compared to the young. No other main effects or interact ions 

approached significance (all p’s > 0.15). Thus, there was no evidence of offline changes 

(improvement or decrease) of sequence-specific knowledge regardless of age or day group. 

  

Offline general skill learning 

To examine offline general skill learning we calculated the overall RT (combined across triplet 

types) for the last epoch of Session 1 and the first epoch of Session 2; the greater the decrease 

from Session 1 to Session2, the larger the offline general skill learning was. These RTs (shown 

in Figure 3.1.2E, 2F) were submitted to a mixed design ANOVA with SESSION (1-2) as a 

within-subjects factor and AGE GROUP (young vs. old) and DAY GROUP (day or night) as 

between subject factors. Thus, any offline consolidation of general skill would be revealed by 

main effects and/or interactions with SESSION. This ANOVA revealed a main effect of AGE 

GROUP, reflecting the overall longer RTs for the old than the young group, F(1,45)=257.64, 

MSE=2933.77, p<0.0001, and an AGE GROUP x DAY GROUP interaction, F(1,45)=4.32, 

MSE=2933.77, p=0.043. This interaction again reflects the finding from Session 1 that the 

young AM group has overall faster RT than the young PM group, t(48)=2.02, p=.048, whereas 

the old groups show the reverse pattern (though the AM/PM difference is only margina l ly 

significant for the older groups) t(46) = 1.80, p=0.08. The fact that this effect does not interact 

with SESSION (p>0.65) suggests that we happened to assign slightly faster young people to 

the AM group; if this were a true time of day effect then we would not expect it to occur for the 
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young AM group for both of their testing sessions. Further, Song et al (2007) included diurnal 

control groups in their study, and were able to rule out time of day effects as explanations for 

offline changes in the ASRT.  

More important for present purposes, this ANOVA revealed evidence of offline 

improvement of general skill in that the main effect of SESSION was significant, 

F(1,45)=96.76, MSE=228.62, p<0.0001, reflecting the faster overall RTs for Session 2 

compared to those at the end of Session 1. The SESSION x AGE GROUP interaction was also 

significant, F(1,45)=4.20, MSE=228.62, p=0.046, indicating that the young group (mean 

improvement of 36 ms) showed more offline improvement than the old (mean improvement of 

24 ms). Importantly, there was no evidence that offline consolidation depended upon sleep, in 

that no interactions involving session and day group approached significance (p’s > 0.45). It is 

also possible that the improvement in RT reflects a release from fatigue rather than 

consolidation per se. However, studies that have included a fatigue control group (Walker et al. 

2002; Spencer et al. 2006) suggest that this interpretation is unlikely. 

Subsequent SESSION x DAY GROUP mixed design ANOVAs, conducted separately 

for each age group confirmed that when examined alone, each age group showed consolidat ion 

of general skill learning, in that both groups yielded significant main effects of SESSION: for 

the young group, F(1, 23)=105.23, MSE=156.03, p<0.0001, and for the old group 

F(1,22)=22.40, MSE=304.50, p<0.0001. Thus, although the overall ANOVA had revealed that 

the young group showed more offline improvement of general skill than the old, the old group 

did show significant consolidation of general skill as well. 

This evidence for offline consolidation of general skill relies on comparing RT on epoch 

6 to that on epoch 5, so it is possible that the faster RT on epoch 6 is simply due to learning that 

occurred during epoch 6. To rule out this possibility, we compared the difference in overall RT 

between the last two epochs within Session 1 (epoch 4 minus 5) versus the change across 

sessions (epoch 5 minus 6). This difference was significantly greater across sessions than within 

sessions for both age groups, t(23) = 6.665, p <.0001 for old, and t(24) = 13.164, p<.0001 for 

young. This suggests that the offline effects we observed were not simply due to continued 

learning.  

 

Discussion 

The novelty of the present research compared to previous studies of consolidation in 

older adults (Siengsukon & Boyd, 2009b; Spencer et al., 2007) is that 1) it used probabilis t ic 

second-order sequences, and 2) it dealt separately with general skill learning and sequence -

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



 159 

specific learning. In our study, we focused on the offline changes and the role of sleep in implic it 

sequence learning in young and elder adults. In the case of general skill learning we found 

significant offline improvement for both the young and older groups, although the effect was 

significantly smaller in the old than in the young. We found no evidence that this improvement 

was sleep-dependent in that there were no differences between the day (am-pm) and the night 

(pm-am) groups in the offline consolidation of general skill. In the case of sequence-specific 

learning, we found no offline improvement, in that the RT difference between low and high 

frequency triplets (i.e., the triplet type effect) did not increase between sessions for any group. 

This occurred despite the fact that there was significant sequence-specific learning for all 

groups in Session 1. In addition, the fact that the triplet type effect did not decrease significantly 

between sessions for any of the groups, suggests that sequence-specific knowledge was well-

consolidated for all groups. However, circadian effects could still have different effects on the 

consolidation processes. 

The results of the young group in the current study largely confirm the results of Song 

et al. (2007) in finding no evidence of any offline improvement of sequence-specific skill, and 

extend them to older adults. However, Song et al. (2007) found general skill improvement only 

in the no-sleep condition, whereas we found it in both conditions. The reason for this difference 

in findings is unclear. The most notable difference between our and Song’s study is that we 

used less training in the learning phase (5 vs 9 epochs). The resulting greater skill learning in 

Song et al in the first session may have left less room overall for participants to show offline 

improvement.  

Our results are similar to those of Spencer et al. (2007) and Siengsukon and Boyd (2009) 

in showing no sleep dependent consolidation in older adults. However, unlike these studies, 

which had detected no offline improvement at all in older adults, the current study shows clear 

evidence of significant offline improvement of general skill learning in older adults over periods 

of both sleep and wake. These previous studies differed from the present study in many ways, 

so it is difficult to identify the source of the different findings. For example, they used 

deterministic rather than probabilistic sequences and gave less training. Our results do suggest 

that offline improvement is reduced in old compared to young adults, and this may have made 

it difficult for the previous studies to detect any offline improvements in the older group.  

The differences between our findings and those of earlier studies underscore that the 

role of sleep in offline consolidation is likely task dependent. This is consistent with the 

conclusions of Doyon et al. (2009), who found sleep benefits in a finger tapping sequence 

learning task, but not in a visuomotor adaptation task with young adults. Future studies should 
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investigate which of the many task differences influence offline learning and sleep effects . 

Beyond that, the present findings demonstrate that it will also be important to distinguish 

general skill from sequence-specific learning. For example, it is possible that the offline 

improvements reported by Doyon et al (2009) in the finger tapping task reflect consolidation of 

general motor rather than sequence-specific skill. Given that these components are typically 

inseparable in finger tapping tasks, offline improvements in such studies might be falsely 

attributed to sequence learning. The present results from both young and old adults join Song 

et al’s findings from young adults in suggesting that, at least in the version of the ASRT task 

used here, general skill, but not sequence-specific learning undergoes offline improvement. 

Given the likely importance of task factors mentioned above, future research must investigate 

whether this conclusion holds under other conditions, such as different amounts of init ia l 

training and other levels of sequence structure. It will also be useful to include diurnal control 

groups to ensure that circadian effects are not influencing consolidation in ways we could not 

detect.   

Our findings well complement motor skill learning models (Hikosaka et al. 1999; 

Hikosaka et al. 2002; Doyon et al. 2009), and draw attention to the importance of separating 

general skill and sequence-specific learning during consolidation, and to the question of 

whether these two factors may be differently influenced by nervous system modificat ions 

caused by aging. 
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3.2 Consolidation of implicit probabilistic learning in Obstructive Sleep 

Apnea13 

 

Abstract 

Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder characterized 

by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on 

memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent 

component of skill learning. However, the formation and consolidation of this fundamenta l 

learning mechanism remains poorly understood in OSA. In the present study we examined the 

consolidation of different aspects of implicit sequence learning in patients with OSA. We used 

the Alternating Serial Reaction Time task to measure general skill learning and sequence-

specific learning. There were two sessions: a learning phase and a testing phase, separated by 

a 10-hour offline period with sleep. Our data showed differences in offline changes of general 

skill learning between the OSA and control group. The control group demonstrated offline 

improvement from evening to morning, while the OSA group did not. In contrast, we did not 

observe differences between the groups in offline changes in sequence-specific learning. Our 

findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the 

consolidation of sequence learning. 

 

Keywords: sleep disruption, memory consolidation, general skill learning, sequence-specific 

learning, obstructive sleep apnea, implicit learning 

 

  

                                                                 
13 Published in Csabi, E., Varszegi-Schulz, M., Janacsek, K., Malecek, N., & Nemeth, D. (2014). The 

consolidation of implicit sequence memory in obstructive sleep apnea. PloS one, 9(10), e109010. 
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Introduction 

Currently, there is a growing interest within cognitive neuroscience and neuropsycho logy 

to understand the underlying mechanisms of memory consolidation; namely, how newly 

acquired and initially labile memory representations become stabile and resistant to interference 

and forgetting (Krakauer & Shadmehr, 2006). Consolidation can be observed as no 

deterioration of the previously acquired knowledge over the offline period, nevertheless in some 

cases even offline enhancement can occur. Many studies indicate that sleep contributes to the 

consolidation of memory traces by enhancing neuronal plasticity (Axmacher, Draguhn, Elger, 

& Fell, 2009; Diekelmann & Born, 2010; Diekelmann, Wilhelm, & Born, 2009; Ficca & 

Salzarulo, 2004; S. Fischer et al., 2005). Sleep-related enhancement in declarative memory is 

clearly demonstrated (Steffen Gais et al., 2007; S. Gais & Born, 2004; Steffen Gais, Lucas, & 

Born, 2006), but the beneficial effect of sleep on the consolidation of non-declarative (i.e. 

procedural) knowledge is still controversial. Previous studies that focused on healthy 

populations found greater improvement in a procedural sequence learning task after a period of 

sleep than after an equivalent time of wakefulness (S. Fischer et al., 2002; Walker et al., 2002). 

By contrast, several recent studies failed to find sleep-related improvement in sequence learning 

(Nemeth, Janacsek, Londe, et al., 2010; Rickard et al., 2008; Song et al., 2007b; Urbain et al., 

2013). The controversial results might be explained by task complexity, for example varying in 

sequence length and structure. Moreover, some sequence learning tasks used in these studies 

were unable to separate two aspects of sequence learning, namely general practice-dependent 

speed-up (so called general skill learning) and sequence-specific learning (Djonlagic, Saboisky, 

Carusona, Stickgold, & Malhotra, 2012; S. Fischer et al., 2002; Walker et al., 2002). In the 

present study, we used the Alternating Serial Reaction Time (ASRT) task (J. H. Howard, Jr. & 

Howard, 1997) to extend previous research by separating and measuring both general skill 

learning and sequence-specific learning. In this task some runs of three consecutive stimuli 

(triplets) are more frequent than others. With practice people become faster in responding to 

these high frequency triplets compared to the low frequency ones, revealing sequence-specific 

aspects of learning. In contrast, a general speed-up irrespectively of the triplet frequencies is 

considered to be a result of the general skill aspect of learning in this task (Nemeth, Janacsek, 

Londe, et al., 2010; Song et al., 2007b).  

Previous studies suggest that sleep disorders (e.g., insomnia) lead to weaker consolidat ion 

both of declarative and non-declarative memory (Backhaus et al., 2006; C. Nissen et al., 2006). 

One of the most frequent sleep disorders is obstructive sleep apnea (OSA) which is 

characterized by repeated episodes of upper airway obstruction during sleep, resulting in 
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hypoxia, which leads to repetitive arousals from sleep disturbing normal sleep patterns (Banno 

& Kryger, 2007). Deficits in working memory (Archbold et al., 2009; Nemeth et al., 2012), 

attention, executive functions (Bedard, Montplaisir, Richer, Rouleau, & Malo, 1991; Engleman, 

Kingshott, Martin, & Douglas, 2000; Naegele et al., 1995; Orth et al., 2005), short and long-

term verbal and visual memory have been demonstrated in OSA (Cosentino et al., 2008; 

Naegele et al., 1995; Pierobon, Giardini, Fanfulla, Callegari, & Majani, 2008) indicat ing 

structural changes in brain circuits crucial for memory (Macey et al., 2008). Nevertheless, 

sequence learning has not been extensively characterized in OSA. Lojander, Kajaste, Maasilta 

& Partinen (1999) have found poor performance in sequence learning in patients with apnea. 

In contrast, other studies showed intact performance on a less complex, deterministic sequence 

learning task (Wilde et al., 2007) and also on a more complex, probabilistic sequence learning 

task (Nemeth et al., 2012), but they found weaker word recall and working memory 

performance, respectively. 

The aforementioned studies investigated on the effect of sleep disorders on learning and 

memory functions in general but not on the overnight consolidation of the acquired knowledge. 

Focusing on consolidation, Kloepfer and colleagues (Kloepfer et al., 2009) examined the 

memory performance before and after sleep in moderate OSA. They revealed that OSA patients 

showed reduced declarative (verbal) and non-declarative memory performance after sleep 

compared to healthy control participants. It is important to note that this study measured non-

declarative memory by a motor adaptation task and not by a sequence learning task. To our 

knowledge, only one study focused on the consolidation of sequence learning in OSA and 

demonstrated that OSA can negatively affect memory consolidation on a relatively simple 

motor sequence learning task (Djonlagic et al., 2012). Nevertheless, this study used an explic it 

sequence learning task (fingertapping) with deterministic sequence structures. The aim of the 

present study was to go beyond previous research in three ways:  

1) investigating the consolidation processes in OSA by a more complex sequence learning 

task, namely the sequence structure is not deterministic but probabilistic; 

2) we use an implicit sequence learning task and not explicit (for example (Djonlagic et 

al., 2012)), 

3) the task used here enables us to separately analyze the consolidation of two aspects of 

sequence learning, namely general skill and sequence-specific learning.  

Based on the previous sleep studies that used implicit probabilistic sequence learning 

tasks (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), our hypothesis is that OSA 
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participants will not show deterioration in sequence-specific and general skill learning over the 

offline period. 

 

Methods 

 Participants 

Seventeen newly diagnosed, untreated patients with OSA participated in the experiment 

(average age: 52.41 years, SD: 9.67; average education: 12.65 years, SD: 2.18; 2 females/15 

males). OSA was diagnosed by a board-certified sleep-physician based on a full night of clinica l 

polysomnography. The mean Apnea-Hypopnea Index (AHI) was 53.05 events/hour (SD: 23.26 

(Range: 21.1-117.3). Pathological level of AHI was defined as 15 or more per hour [20]. The 

mean total sleep time (TST) was 330.52 mins (SD: 48.65). Aside from OSA, participants did 

not suffer from any developmental, psychiatric or neurological disorders as established in a full 

neurological exam by a board-certified neurologist. 

The control group consisted of seventeen healthy participants and was matched by age 

(average age: 54.24 years, SD: 7.29) and by working memory performance. Working memory 

capacity was assessed by two widely-used neuropsychological tests: the Backward Digit Span 

Task (BDST) [33,34] and Listening Span Task (LST) (Daneman & Blennerhassett, 1984; 

Janacsek, Tanczos, Meszáros, & Nemeth, 2009). There were no significant differences between 

the two groups in these tasks (BDST: t(32) = 1.116, p = 0.27, LST: t(32) = 0.170, p = 0.87). 

These criteria were included to eliminate the effect of working memory, as previous studies in 

healthy participants revealed a relationship between working memory and implicit sequence 

learning (Bo, Jennett, et al., 2011; Frensch & Miner, 1994). However there is also evidence that 

the two systems are independent of each other (Kaufman et al., 2010; McGeorge et al., 1997; 

Unsworth & Engle, 2005) (for review see Janacsek & Nemeth (2013)). Control participants did 

not suffer from any developmental, psychiatric or neurological disorders and did not have 

sleeping disorders. All participants provided signed informed consent and received no financ ia l 

compensation for their participation. Ethics approval was obtained by the Psychology Ethical 

Committee at the University of Szeged, Institute of Psychology. 

 

Procedure 

There were two sessions in the experiment: a Learning Phase (Session 1) and a Testing 

Phase (Session 2) for both the OSA and the healthy control group. The sequence learning 

performance was assessed between 7 and 8 PM prior to sleep (Learning Phase) and between 7 

and 8 AM after sleep (Testing Phase), thus the average interval between the Learning and 
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Testing Phase was 12 hours. Between the two sessions AHI was measured in a full night of  

polysomnography in SomnoCenter’s sleep lab (Szeged, Hungary). During the data collection, 

subjects’ caffeine and nicotine intake was restricted.  

 

Alternating Serial Reaction Time (ASRT) Task 

We used the modified version of the ASRT task in which a stimulus (a picture of a dog’s 

head) appeared in one of four empty circles on the screen (Nemeth, Janacsek, Londe, et al., 

2010). Before beginning the task, detailed instructions were read to participants. They were 

instructed to press the button corresponding to the stimulus location as quickly and as accurately 

as possible (Nemeth, Janacsek, Londe, et al., 2010). The computer was equipped with a special 

keyboard with four marked keys (Y, C, B and M on a QWERTZ keyboard; thus, compared to 

the English keyboard layout, the location of the buttons Z and Y were switched), each 

corresponding to one of the horizontally aligned circles. Session 1 (Learning Phase) consisted 

of 25 blocks, with 85 key presses in each block – the first five stimuli were random for practice 

purposes, then an eight-element alternating sequence (e.g., 2r1r4r3r, where numbers represent 

the four places on the screen, and r represents an event randomly selected from the four possible 

places) repeated ten times. Similarly to earlier studies (Nemeth, Janacsek, Londe, et al., 2010), 

stimuli were presented 120-ms after the previous response (response-to-stimulus interval, RSI). 

Each block required about 1.5 minutes and the entire session took approximately 30-40 minutes. 

Between blocks, participants received feedback about their overall reaction time and accuracy 

on the screen and then rested 10 to 20 seconds before starting a new block. Session 2 (Testing 

Phase) consisted of 5 blocks; the number of key presses and the RSI were the same as in Session 

1 and this Testing Phase took approximately 5-10 minutes to complete. 

A different ASRT sequence was selected for each participant based on a permutation rule 

such that each of the six unique permutations of the 4 repeating events occurred. Consequently, 

six different sequences were used across participants (Nemeth, Janacsek, Londe, et al., 2010).  

As there is a fixed sequence in the ASRT alternating with random stimuli (e.g., 2r1r4r3r), 

some triplets or runs of three consecutive stimuli occur more frequently than others. For 

example, 2_1, 1_4, 4_3, and 3_2 occur more often because the third element (bold numbers) 

can be derived from the sequence or can also be a random element (if the sequence is 2r1r4r3r). 

In contrast, 1_2 or 4_1 occur less often because the third element can only be random. 

Following previous studies (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), we refer 

to the former as high-frequency triplets and the latter as low-frequency triplets. Out of the 64 

possible triplets, each 16 high frequency triplets occur on approximately 4% of the trials, about 
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5 times more often than the low-frequency triplets. Note that the final event of high-frequency 

triplets is therefore more predictable from the initial event compared to the low-frequency 

triplets (also known as non-adjacent second-order dependency, see in Remillard (2008)). 

Previous studies have shown that as people practice the ASRT task, they come to respond 

more quickly to the high-frequency triplets than low-frequency triplets, revealing sequence-

specific learning (D. V. Howard et al., 2004; Song et al., 2007b). In addition, general skill 

learning is revealed by the overall speed-up during the practice, irrespectively of the triplet 

types. Thus, we are able to measure both sequence-specific and general skill learning in the 

ASRT task. 

To explore how much explicit knowledge participants acquired about the task, we 

administered a short questionnaire (previously used in Song and colleagues (2007b), Nemeth 

and colleagues (2010)) after the task. This questionnaire included increasingly specific 

questions such as “Have you noticed anything special regarding the task? Have you noticed 

some regularity in the sequence of stimuli?” The experimenter rated subjects’ answers on a 5-

item scale, where 1 was “Nothing noticed” and 5 was “Total awareness”. None of the 

participants in either the OSA or control group reported noticing the sequence in the task.  

 

Statistical analysis 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1-5, the second epoch contains blocks 6-10, etc. 

Participants’ accuracy remained very high throughout the test (average > 96% for both groups), 

therefore we focused on reaction time (RT) for the analyses reported. We calculated RT 

medians for correct responses only (following the standard protocol, see in [12,14,17,44]), 

separately for high- and low-frequency triplets and for each participant and each epoch. Note 

that for each response (n), we defined whether it was a high- or a low-frequency triplet by 

considering whether it is more or less predictable from the event n-2. For the analyses reported 

below, as in previous research (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), two 

kinds of low-frequency triplets were eliminated: repetitions (e.g., 222, 333) and trills (e.g., 212, 

343). Repetitions and trills were low frequency for all participants and people often show pre-

existing response tendencies to them (D. V. Howard et al., 2004). So by eliminating them we 

attempted to ensure that any high- versus low-frequency differences were due to learning and 

not to pre-existing tendencies. 
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Results 

Online learning during Session 1 (Learning Phase)  

To investigate learning during Session 1, a mixed design ANOVA was conducted on 

the first 5 epochs of the data shown in Figure 3.2.1A, with TRIPLET (2: high- vs. low-

frequency) and EPOCH (5: 1-5) as within-subject factors, and GROUP (OSA vs. control) as a 

between-subject factor. All significant results are reported together with the 2
p effect size and 

Greenhouse Geisser ε correction factors where applicable. Post hoc analyses were conducted 

by Fisher’s LSD pairwise comparisons. 

There was significant sequence-specific learning (indicated by the significant main effect 

of TRIPLET: F(1,32) = 15.58, p
2 = 0.32, p < .001), such that RTs were faster on high- than on 

low-frequency triplets. OSA and control groups showed no differences in sequence-specific 

learning (TRIPLET x GROUP interaction: F(1,32) = 1.61, p
2 = 0.04, p = 0.21). 

There was also significant general skill learning (shown by the significant main effect of 

EPOCH: F(4,128) = 28.62, p
2 = 0.47, p < 0.001), such that RTs decreased across epochs. OSA 

and control groups performed at the same level (EPOCH x GROUP interaction: F(4,128) = 

2.21, p
2 = 0.06, p = 0.12). 

 The TRIPLET x EPOCH and TRIPLET x EPOCH x GROUP interactions were not 

significant (F(4,128) = 0.94, p
2 = 0.03 p = 0.42; F(4,128) = 0.48, p

2 = 0.01, p = 0.69; 

respectively), indicating that the pattern of learning was similar in the groups. In the overall 

RT, the OSA group differed significantly from the control group, with slower RTs for the OSA 

group (main effect of GROUP: F(1,32) = 4.95, p
2 = 0.13, p = 0.03). To ensure that this 

difference in overall RTs did not influence learning measures, we also ran an ANOVA on 

normalized data (for each participant, the median RTs for high- and low-frequency triplets in 

each epoch were divided by the overall RT of the first epoch) and found the same results.  

 

Consolidation of sequence-specific and general skill learning  

To investigate the offline changes of sequence-specific and general skill learning we 

compared the RTs from the last epoch of Session 1 (Epoch 5) and the epoch of Session 2 (Epoch 

6) in both groups (for similar analyses see [12, 14]). These variables were submitted to a mixed 

design ANOVA with TRIPLET (2: high- vs. low-frequency) and EPOCH (2: last epoch of 

Session 1 and epoch of Session 2) as within-subject factors, and GROUP (OSA vs. control) as 

a between-subject factor. 
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 The main effect of TRIPLET was significant (F(1,32) = 32.34, p
2 = 0.5, p < 0 .001), 

thus RTs were faster on high- than low-frequency triplets. It was similar in the OSA and control 

groups (indicated by the non-significant TRIPLET x GROUP interaction: F(1,32) = 1.07, p
2 = 

0.03, p = 0.31). 

The main effect of EPOCH did not reach significance (F(1,32) = 2.34, p
2 = 0.07, p=0.13) 

but the EPOCH x GROUP interaction was significant (F(1,32) = 9.32, p
2 = 0.22, p = 0.005), 

suggesting that the OSA and control groups showed significant differences in the offline 

changes of general skills. The LSD post hoc test revealed that the OSA group showed no offline 

general skill improvement (p = 0.29), while the control group showed better performance (faster 

RTs) at the beginning of Session 2 compared to the end of Session 1 (p = 0.003). 

The sequence-specific knowledge did not change significantly during the offline period 

(TRIPLET x EPOCH interaction: F(1,32) = 2.75, p
2 = 0.08, p = 0.11). The OSA and control 

groups performed on a similar level (TRIPLET x EPOCH x GROUP interaction: F(1,32) = 

0.29, p
2 = 0.009, p = 0.59). The offline changes of sequence-specific and general skill 

knowledge are shown on Figure 3.2.1B-C, respectively. 

There were significant differences in the general RTs between the OSA and control 

groups, with slower RTs for the OSA group (main effect of GROUP: F(1,32) = 6.27, p
2 = 0.16, 

p = 0.02). ANOVA on normalized data revealed the same results, confirming that the significant 

difference in offline changes of general skills between the OSA and the control group was not 

due to general RT differences (EPOCH x GROUP interaction: F(1,32) = 11.17, p
2 = 0.25, p = 

0.002). 

To further confirm the ANOVA results we also analyzed individual differences of 

sequence-specific and general skill consolidation. In the case of offline sequence-specific 

changes, we counted the number of participants who exhibited higher sequence-specific 

learning in Epoch 6 than in Epoch 5 (thus, sequence-specific knowledge in Epoch 6 minus 

Epoch 5 was above zero, irrespectively of significance testing). A similar number of OSA and 

control participants (7/17 and 6/17, respectively) showed higher than zero difference in 

sequence-specific knowledge between Epoch 6 and Epoch 5. Consequently, the number of 

participants showing the opposite pattern (lower than zero difference between Epoch 6 and 

Epoch 5) was also similar in the two groups (10/17 and 11/17, respectively). Thus, there was 

no group difference in sequence-specific consolidation based on this analysis (chi-square(1) = 

0.125, p=0.724) which supports the ANOVA result. In contrast, in the case of general skill 

consolidation, more controls (14 out of 17) than OSA patients (8 out of 17) showed higher than 
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zero difference in general RTs between Epoch 6 and Epoch 5, thus they were generally faster 

in Epoch 6 compared to Epoch 5. This group difference in general skill consolidation was 

significant (chi-square(1)=4.636, p= 0.031) similarly to the ANOVA result. 

 

 

Figure 3.2.1. A) Results of sequence-specific and general skill learning in OSA and control group in Session 1 

and Session 2: Although the OSA group was generally slower in Session 1, both groups showed significant 

sequence-specific and general skill learning. There were no differences in learning between the groups; the pattern 

of learning was similar in the OSA and control groups. B) Results of offline changes in sequence-specific learning 

in OSA and control group: The differences between the low and high frequency triplets indicate sequence-specific 

learning. There was a decrease in sequence-specific knowledge, such that the learning index of the first epochs of 

Session 2 was significantly smaller compared to the last epochs of Session 1. There were no significant differences 

between the OSA and control groups. C) The results of offline changes in general skill learning: the differences in 

overall reaction time between the last epoch of Session 1 and the first epoch of Session 2 regardless of triplet type 

show general skill learning. There was a trend of improvement in general skill learning. The OSA group showed 

no offline general skill learning, while the control group showed better performance (smaller RTs) at the beginning 

of Session 2 compared to the end of Session 1. Error bars indicate SEM. 
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Discussion 

Our goal was to investigate the consolidation of non-declarative learning in OSA. We 

used a relatively complex sequence learning task that allowed us to differentiate between two 

components of learning: general skill learning and sequence-specific learning. We found 

differences in offline changes of general skills between OSA patients and controls. The control 

group showed offline improvement from evening (Learning Phase) to morning (Testing phase), 

thus, they became faster in the morning after the offline period, while the OSA group did not. 

In contrast, we failed to find differences in the offline changes of sequence-specific knowledge 

between the groups. We believe our study to be the first to investigate the consolidation of these 

two aspects of implicit learning by using a task with complex sequence structures in patients 

with OSA. 

In the Learning Phase the OSA and control group showed similar learning patterns in 

general skill and sequence-specific learning; however the OSA group demonstrated slower RTs 

in general. These intact learning curves are in line with previous studies investigating non-

declarative learning in this patient population (Lojander et al., 1999; Nemeth et al., 2012; Wilde 

et al., 2007). For example, Nemeth and colleagues (2012) and Csabi, Benedek, Janacsek, 

Katona & Nemeth (Csábi, Benedek, Janacsek, Katona, & Nemeth, 2013) using the ASRT task 

also showed intact sequence learning both in children and elderly adult population with sleep-

disordered breathing and OSA. In another type of non-declarative memory, Rouleau, Décary, 

Chicoine & Montplaisir (2002) found preserved learning measured by a sensorimotor 

adaptation task in OSA patients, although a subgroup of them demonstrated deficits in init ia l 

learning performance. This subgroup also had difficulties on other neuropsychological tests (e. 

g. executive functions). Naegelé et al (1995) using the same task also found significant but 

weaker learning in OSA than in the control group. The authors suggest that patients with OSA 

have difficulties creating new sensorimotor coordination. In sum, these studies suggest that 

sensorimotor adaptation might be weaker while the less sensorimotor coordination-demand ing 

sequence learning is intact in OSA. 

In the overnight consolidation of non-declarative memory we revealed weaker 

performance on general skill learning in OSA patients compared to the controls who 

demonstrated offline general skill improvement after the 12-hour delay period. Kloepfer et al 

(Kloepfer et al., 2009) found similar results: at the encoding, prior to sleep OSA patients showed 

similar non-declarative sensorimotor adaptation as the healthy control participants, but they 
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revealed reduced overnight improvement on average RT performance. A recent sequence 

learning study by Djonlagic et al (2012) also demonstrated that OSA patients and controls 

displayed almost identical performance during the initial learning in the evening, but the control 

group exhibited significantly more overnight improvement. The authors concluded that this 

weaker offline performance was caused by sleep fragmentation in OSA.  

In the case of sequence-specific learning, we found similar performance between the 

OSA and control groups not only in online sequence-specific learning but also in the 

consolidation of sequence-specific knowledge. This result is in line with previous studies that 

failed to find sleep-related changes in the consolidation of sequence-specific learning in healthy 

participants (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b). It suggests that sleep 

might have less influence on this specific aspect of non-declarative learning. This conclusion is 

also supported by two recent reports. Song & Cohen (Song & Cohen, 2014) propose that 

practice and sleep form different aspects of skill. Their results suggest transition learning (as in 

the ASRT) to be an implicit component of skills that lacks sleep-dependence. In the other recent 

consolidation study, Meier and Cock (Beat Meier & Cock, 2014) found neither deterioration, 

nor further improvement in sequence-specific learning over the offline period, however, they 

found offline improvement in general skill learning. 

In conclusion, we demonstrated that the offline changes of two components of implic it 

sequence learning are differentially affected in OSA: in contrast to the preserved consolidat ion 

of sequence-specific knowledge, the consolidation of general skills was weaker compared to 

the controls. Thus, we suggest that long-term sleep disturbances present in OSA play 

differential role in these two aspects of consolidation in the case of more complex, probabilis t ic 

sequences. Nevertheless, a daytime control condition is needed to investigate whether weaker 

consolidation of general skills is specific to the actual overnight sleep disturbances or to long-

term deficits related to sleep disruption. Our findings underscore the importance of examining 

more specific and focal cognitive functions in OSA. Creating more sophisticated 

neuropsychological profiles about the cognitive dysfunctions could not only provide clues 

about which brain networks may be affected in OSA but also can help develop more effective 

methods of rehabilitation and treatment.  
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3.3 The dynamics of implicit skill consolidation in young and elderly 

adults14 

 

Abstract 

Implicit skill learning underlies not only motor but cognitive and social skills, it is therefore an 

important aspect of life from infancy to old age. We studied aging effects on the time course of 

implicit skill consolidation. Young and elderly adults performed a probabilistic implic it 

sequence-learning task before and after a 12-hour, a 24-hour and a 1-week offline interval. The 

task enabled us to separate the components of skill learning: 1) general skill and 2) sequence -

specific learning. We found improvement of general skill for the young adults. The elderly 

adults also showed offline enhancement after the 12-hour offline period, revealing brain 

plasticity similar to young adults. This improvement disappeared in the 24-hour and the 1-week 

delay conditions. Regarding sequence-specific learning, no offline improvement was found in 

either age group and at either consolidation interval. In contrast, sequences-specific knowledge 

decreased in the elderly group independently of the delay. These results draw attention to the 

fact that consolidation is not a single process, rather there are multiple mechanisms in offline 

learning and they are differentially affected by time course and by aging. 

 

Keywords: skill learning, implicit sequence learning, ASRT, aging, memory consolidation.  

 

                                                                 
14 Published in Nemeth, D., & Janacsek, K. (2011). The dynamics of implicit skill consolidation in young and 

elderly adults. Journal of Gerontology Psychological Science, 66(1), 15-22. 
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Introduction 

Skill learning can be differentiated by phases (rapid and slower), modalities, and 

whether or not it is conscious (implicit and explicit) (Doyon, Bellec, et al., 2009). Implicit skill 

learning occurs when information is acquired from an environment of complex stimuli without 

conscious access either to what was learned or to the fact that learning occurred (Reber, 1993). 

In everyday life, this learning mechanism is crucial for adapting to the environment and 

evaluating events. Implicit skill learning underlies not only motor but cognitive and social skills 

as well, it is therefore an important aspect of life from infancy to old age. Implicit skills remain 

essential to healthy functioning with the advancement of age in various contexts, such as social 

interactions, everyday habits or reading skills. Most models of motor skill learning (Doyon, 

Bellec, et al., 2009; Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002; Keele et al., 2003; 

Kincses et al., 2008) emphasize the role of the basal ganglia and the cerebellum. Skill learning 

does not occur only during practice, in the so-called online periods, but also between practice 

periods, during the so-called offline periods. The process that occurs during the offline periods 

is referred to as consolidation which means stabilization of a memory trace after the init ia l 

acquisition; it can result increased resistance to interference or even improvement in 

performance following an offline period (Krakauer & Shadmehr, 2006; Nemeth, Janacsek, 

Londe, et al., 2010; Robertson, 2009; Song, 2009). Understanding the time course of skill 

consolidation can help us reveal the nature of aging memory and age-related changes in brain 

plasticity. 

Recent reviews conclude that offline changes vary with factors such as the phase and 

awareness of learning, the formation of contextual associations, the type of information to be 

learned, as well as the age of the participants (Brashers-Krug, Shadmehr, & Bizzi, 1996; N 

Deroost & E Soetens, 2006; Doyon, Korman, et al., 2009; L Jiménez, Vaquero, & Lupiá ez, 

2006; Keele et al., 2003; Robertson, Pascual-Leone, & Press, 2004; Siengsukon & Boyd, 2008; 

Song, 2009; Song et al., 2007b). Studies on the time course of skill consolidation indicate that 

there is a “critical period” after the learning phase, which is necessary for the stabilization of 

memory traces. This time period depends on the task demand, and it varies from 1-2 hours 

(Robertson et al., 2005), to 5 hours (Shadmehr & Brashers-Krug, 1997; Shadmehr & Holcomb, 

1997), or 6 hours (Walker, Brakefield, Hobson, & Stickgold, 2003). Using the Serial Reaction 

Time (SRT) task, which is a widely known sequence-learning paradigm, one study found that 

the offline enhancement increased with the length of delay (Press et al., 2005). In this SRT 

study no enhancement was found 1 hour after the learning phase, but significant enhancement 

was observed after 4 hours, which further increased after 12 hours. These results suggest that 
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offline learning may be a dynamic process. However, this study examined only a shorter stretch 

of time, so the question can be raised, what happens in skill consolidation after more than 12 

hours.  

The modified version of SRT is the Alternating Serial Reaction Time (ASRT) task (J. 

H. Howard, Jr. & Howard, 1997), which enables us to separate general skill learning and 

sequence-specific learning. The sequence is better hidden than in the classical SRT task (eg. 

Press et al., 2005), thus improving the implicitness of the design (J. H. Howard, Jr. & Howard, 

1997; Song et al., 2007b). Why are the properties of the ASRT interesting in everyday-life in 

aging? The key factor is the implicit nature of the task. In everyday-life we use explic it, 

conscious and implicit, non-conscious processes at the same time to do a task (e.g. typing on 

the computer, or learning a foreign language). These processes interact in cooperative and 

sometimes competitive ways (R. M. Brown & Robertson, 2007b; Poldrack & Packard, 2003; 

Song, Marks, Howard, & Howard, 2009) in order to optimize the memory performance 

(Ullman, 2004). It has long been known that there is age-related decline in explicit memory and 

executive functions (N Cowan, Naveh-Benjamin, Kilb, & Saults, 2006; F. Craik & Salthouse, 

2000; F. I. Craik & Bialystok, 2006; Einstein & McDaniel, 1990). It is therefore possible that 

aged people can not acquire new skills on the same level as young adults, because of these 

weaker explicit processes, and not because of the impairment of pure implicit  skill learning. In 

the ASRT task explicit memory processes and conscious awareness on sequence learning is 

almost totally eliminated. That’s why it can model implicit learning better than other tasks. So, 

in the case of intact learning in the ASRT task we can claim that everyday difficulties regarding 

skill learning are mainly due to weak explicit processes.  

Several studies using the ASRT task demonstrated that older adults show age-related 

deficits in online skill learning (T. Curran, 1997; D. V. Howard et al., 2004; J. H. Howard, Jr. 

& Howard, 1997). However, little is known about the effects of aging on skill consolidat ion 

and its time course (Siengsukon & Boyd, 2009b; Spencer et al., 2007).  

Previous studies using the ASRT task focused primarily on whether sleep affects skill 

consolidation and have concluded that these processes are not influenced by sleep (Nemeth, 

Janacsek, Londe, et al., 2010; Song et al., 2007b). For example, in a recent ASRT study, Nemeth 

et al. (2010) investigated implicit skill learning after 12-hour offline period. The novelty of this 

research compared to previous studies of consolidation in older adults (Siengsukon & Boyd, 

2009b; Spencer et al., 2007) was that 1) it used probabilistic second-order sequences, and 2) it 

dealt separately with general skill and sequence-specific learning. They showed that general 

skill learning, as assessed via overall RT, improved offline in both the young and older groups, 
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with the young group improving more than the old group. However, the improvement was not 

sleep-dependent, in that it was not relevant whether the 12-hour offline period included sleep 

or not. They did not find sequence-specific offline improvement in either age group, and 

similarly to general skill learning it was not influenced by sleep. However, this study did not 

examine the consolidation of skills after more than 12 hours in healthy aging. 

The current experiment was designed to study the effects of aging on the offline time 

course of implicit skill learning. The present study goes beyond Nemeth et al (2010) and other 

previous studies (Press et al., 2005; Siengsukon & Boyd, 2009b; Spencer et al., 2007) by 

comparing the performance after 12-, 24-hour and 1 week delays from the initial learning 

session. We focused on the consolidation of implicit sequence-specific learning and, separately, 

general skill learning between young and elderly adults. Despite the results of previous studies 

which found greater improvement after longer offline periods (more after 12 hours compared 

to 4 hours, see Press et al. (2005) et al), it is less plausible that this is true for 12-, 24-hour and 

1-week delays as well. Therefore we aim to determine a time point in a longer stretch of time 

at which improvement can still be observed in skill consolidation, and analyze its possible age-

related differences. 

 

Methods 

Participants 

Seventy-one young and 58 elderly right-handed adults participated in the experiment (for 

detailed data see Table 3.3.1). They were randomly assigned to the 12-hour, 24-hour or 1-week 

delay group (seventy percent of the 12-hour groups were also presented in the study of Nemeth 

et al. (2010)). Participants did not suffer from any developmental, psychiatric or neurologica l 

disorders, did not have sleeping disorders, and all reported having 7-8 hours of sleep a day. 

They gave informed written consent after the aims and procedures of the experiment were 

explained to them, and received no financial compensation for participation. 

 

Table 3.3.1: Mean age, education and sex of young and elderly groups. 

Group Age (years) 
Education 

(years) 
Sex 

Young 12 hrs (n=23) 20.83 (1.11) 13.48 (1.27) 8 male / 15 female 

 24 hrs (n=31) 21.74 (4.15) 14.77 (2.13) 12 male / 19 female 

 1 week (n=17) 19.88 (1.27) 13.65 (1.32) 3 male / 14 female 

Elderly 12 hrs (n=23) 66.43 (6.18) 12.90 (3.26) 7 male / 14 female 

 24 hrs (n=22) 67.36 (5.30) 13.84 (2.44) 5 male / 17 female 
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 1 week (n=13) 65.15 (4.14) 14.23 (2.00) 6 male / 7 female 

 

 

Procedure 

There were two sessions in the experiment to examine the offline changes of implicit skill 

learning: a learning phase (Session 1) and a testing phase (Session 2) separated by a 12-, 24-

hour or 1-week interval offline period (see Figure 3.3.1). Previous studies with similar tasks 

and experimental designs showed no time of day effect either on general reaction times or on 

learning measures (Nemeth, Janacsek, Londe, et al., 2010; Press et al., 2005; Robertson, 

Pascual-Leone, & Press, 2004; Song et al., 2007b), the time of testing was however 

counterbalanced across participants. 

TESTING PHASE
(Session 2)

LEARNING PHASE
(Session 1)

12 hrs delay

group

24 hrs delay

group

ASRT
(25 blocks)

ASRT
(5 blocks)

ASRT
(5 blocks)

ASRT
(25 blocks)

12 hrs offline period

24 hrs offline period

1 week delay

group
ASRT

(5 blocks)

ASRT
(25 blocks)

1 week offline period

 

Figure 3.3.1: The design of the experiment 

 

Alternating Serial Reaction Time (ASRT) Task 

We used a modification of the original ASRT task (J. H. Howard, Jr. & Howard, 1997) in which 

a stimulus (a dog head) appeared in one of the four empty circles shown all the time on the 

screen (Nemeth, Janacsek, Londe, et al., 2010). Participants were instructed to press one of four 

possible response keys on an IBM PC keyboard as fast as they could. Each response key (Y, C, 

B or M on Hungarian keyboard) was assigned to one of the four stimulus locations on the 

screen.  

In the ASRT task, repeating events alternate with random ones in an eight-element 

sequence so that the location of every second stimulus in the stream is determined randomly 

(e.g. 1R2R3R4R, where the numbers represent the repeating events, and R represents random 
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stimulus events). This sequence structure has been termed probabilistic second-order 

dependency (Remillard, 2008), because to predict stimulus ’n’ we need only to remember 

stimulus n-2 in the sequence, regardless of stimulus n-1. The repeating sequence in the ASRT 

task is thus ’better hidden’ than in the classical SRT task, which uses deterministic sequences 

(D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Song et al., 2007b).  

During Session 1 (learning phase), the ASRT task consisted of 25 blocks, with 85 stimuli 

in each block. For practice purposes, the locations of the first five stimuli of each stimulus block 

were always random. These were followed by the eight-element sequence (e.g. 1R2R3R4R) 

repeating ten times. Following Howard and Howard’s design (1997), stimuli were presented 

120-ms after the response to the previous stimulus. Between stimulus blocks, the subjects 

received feedback about their overall reaction time and accuracy presented on the screen, and 

then they had a rest period of between 10 and 20 s before starting the next stimulus block. 

Session 2 (testing phase) consisted of only 5 stimulus blocks of the same type as in Session 1. 

The computer program selected a different ASRT sequence for each subject based on a 

permutation rule such that each of the six unique permutations of the 4 repeating events 

occurred with equal probability (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, 

et al., 2010). The repeating sequence was identical between Session 1 and Session 2 for each 

participant. 

To explore how much explicit knowledge subjects acquired about the task, we 

administered a short questionnaire (the same as Song et al. (2007b) and Nemeth et al. (2010)) 

after the second session. This questionnaire included increasingly specific questions such as 

“Have you noticed anything special regarding the task? Have you noticed some regularity in 

the sequence of stimuli?” The experimenter rated the participants’ answers on a 5-point scale, 

where 1 meant “Nothing noticed” and 5 meant “Total awareness”. None of the participants 

reported noticing the repeating sequence of the stimulus locations.  

 

Statistical analysis 

Because in ASRT a repeating sequence alternates with random events, some runs of three 

consecutive events (termed triplets) occur more frequently than others. For example, with the 

1R2R3R4R sequence, 1x2, 2x3, 3x4, and 4x1 (where “x” denotes any location) would occur 

more often than e.g., 1x3 or 4x2. We refer to the former as high-frequency triplets and the latter 

as low-frequency triplets. The triplets including two consecutive repeating-sequence stimuli 

were always of high frequency triplets, whereas one-fourth of the triplets that included two 

consecutive random stimulus events were high-frequency by chance, the rest being low 
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frequency. Of the 64 possible triplets, the 16 high frequency triplets occurred 62.5% of the time 

and the 48 low frequency triplets occurred 37.5% of the time. Note that the final event of high-

frequency triplets is therefore more predictable from the initial event compared to the low-

frequency triplets. Previous results showed that as participants practice the ASRT task, they 

come to respond more quickly to the high- than to low-frequency triplets, thus revealing 

sequence-specific learning (D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Song 

et al., 2007b). Therefore, sequence-specific learning (SSL) is reflected in the reaction time (RT) 

difference between low- and high-frequency triplets (Song et al., 2007b, 2008). The larger this 

SSL score, the greater the sequence-specific learning is. In addition, general skill learning is 

revealed in the ASRT task in the improving overall response speed, irrespective of the triplet 

types. To facilitate data processing, stimulus blocks were organized into larger clusters (called 

epochs); where the first epoch contained blocks 1-5, the second epoch blocks 6-10, etc. (Barnes 

et al., 2008; Bennett et al., 2007). Consequently, Session 1 consisted of 5 epochs, whereas 

Session 2 consisted of 1 epoch. 

The accuracy of responses remained very high throughout the test (average over 97% 

for all groups), as is typical (e.g. Howard and Howard (1997) and Nemeth et al. (2010)). 

Therefore, we analyzed the median reaction time (RT) for correct responses only, calculated 

separately for high- and low-frequency triplets and for each epoch. 

 

Results 

Online learning – Session 1 

To be able to investigate the offline changes, the learning in Session 1 must be similar 

in the groups. From this point of view the end of Session 1 is crucial (Nemeth, Janacsek, Londe, 

et al., 2010; Press et al., 2005; Song et al., 2007b). Therefore, sequence-specific learning (SSL) 

score was computed by reaction times on low minus high frequency triplets in Epoch 5 (Song 

et al., 2007b, 2008). The larger this difference, the greater the sequence-specific learning was. 

This score was submitted to a Univariate ANOVA with AGE GROUP (young vs. older) and 

DELAY (12, 24 hours or 1 week) as between-subject factors. The ANOVA revealed significant 

sequence-specific learning (F(1,123)=136.69, MSE=157.95, p
2=0.53, p<0.00001). Neither the 

main effects of AGE GROUP and DELAY, nor the AGE GROUP x DELAY interaction was 

significant (p’s>0.19), thus there were no differences in sequence-specific learning among  age 

groups or delays at the end of Session 1(see Figure 3.3.2ab).  

Regarding the general skill, a Univariate ANOVA was conducted on overall RT’s of 

Epoch 5 (collapsed across triplet types) with AGE GROUP (young vs. older) and DELAY (12, 
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24 hours or 1 week) as between-subject factors. The only significant effect was the main effect 

of AGE GROUP (F(1,123)=409.89, MSE=1784.08, p
2=0.77, p<0.001), reflecting longer RT’s 

for the elderly group (537 ms) compared with the younger participants (381 ms). The main 

effect of DELAY and AGE GROUP x DELAY interaction did not approach significance (all 

p’s>0.41). Thus, participants responded with similar overall reaction times in all delay 

conditions (see Figure 3.3.2c,d).  

 

 

Figure 3.3.2: Sequence-specific learning (RT on Low- minus High-frequency triplets) at the end of Session 1 and 

at the beginning of Session 2 for young (A) and elderly groups  (B). All groups showed significant sequence-
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specific learning by the end of Session 1. Overall RT’s are also plotted at the end of Session 1 and at the beginning 

of Session 2 for young (C) and elderly groups (D). Young participants were generally faster than the old ones. 

Regarding the offline sequence-specific learning (measured by the difference of sequence-specific learning (SSL) 

score at the end of Session 1 and the beginning of Session 2), young groups retained the previously acquired 

sequence-specific skill, while the elderly groups showed decrement in this skill compared to the young group. 

There were no differences across the 12, 24 hours and 1 week conditions (E). Offline general skill learning  

(measured by the overall RT changes between the end of Session 1 and the beginning of Session 2) we re obtained 

in all young groups and decreased gradually across delay conditions. Older adults showed offline improvement 

only after a 12-hours interval (F). These groups responded significantly faster at the beginning of Session 2 

compared to the end of Session 1, whereas elderly participants did not speed up after 24 hours or 1 week delay. 

Error bars indicate standard errors of mean (SEM).  

 

 

Offline sequence-specific learning 

To define the index of offline sequence-specific learning, we calculated the SSL 

learning score at the first epoch of Session 2 similarly to the learning score in Session 1 (Epoch 

5). The greater this score at the beginning of the Session 2 compared to the end of Session 1, 

the larger the offline sequence-specific learning was. These two SSL learning scores were 

submitted to a Mixed-design ANOVA with SESSION (end of Session 1 vs. beginning of 

Session 2) as within-subject factor, and AGE GROUP (young vs. elder) and DELAY (12, 24 

hours or 1 week) as between-subject factors. Thus, any offline change of sequence-specific 

learning would be revealed by main effects and/or interactions with SESSION.  

The main effect of SESSION was not significant F(1,123)=2.28, MSE=178.4, p
2=0.02, 

p=0.13). However, the ANOVA revealed significant main effect of AGE GROUP 

F(1,123)=15.01, MSE=194.89, p
2=0.11, p<0.001) and significant SESSION x AGE GROUP 

interaction (F(1,123)=5.35, MSE=178.4, p
2=0.04, p=0.02), reflecting that age groups differed 

in offline sequence-specific learning. Sequence-specific knowledge decreased in the elderly 

groups (-6 ms) compared to the young, who retained the previously acquired skill (1 ms). There 

was no offline improvement of sequence-specific knowledge in either group.  

Regarding the time course, there were no differences among delay conditions (neither 

the main effect, nor the interactions with DELAY was significant, p’s >0.38), thus the 

consolidation of sequence-specific knowledge was not affected by the elapsed time between the 

learning and the testing session (see Figure 3.3.2e). 

 

Offline general skill learning 
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Offline general skill learning was tested by comparing the overall RT’s (collapsed 

across triplet types) between the last epoch of Session 1 and the first epoch of Session 2 (see 

Figure 3.3.2f). The greater the decrease from Session 1 to Session 2, the larger the offline 

general skill learning was. These two variables were submitted to a Mixed-design ANOVA 

with SESSION (end of Session 1 vs. beginning of Session 2) as within-subject factor, and AGE 

GROUP (young vs. older) and DELAY (12, 24 hours or 1 week) as between-subject factors. 

Similarly to previous analysis, any offline change of general skill would be revealed by main 

effects and/or interactions with SESSION. 

This ANOVA revealed significant offline general skill improvement (indicated by the 

main effect of SESSION: F(1,123)=27.88, MSE=399.98, p
2=0.19, p<0.00001), participants 

responding faster at the beginning of Session 2 than at the end of Session 1. This offline 

improvement was larger for the young group than for the elderly participants (shown by the 

SESSION x AGE GROUP interaction: F(1,123)=11.45, MSE=399.98, p
2=0.09, p=0.001). In 

addition, the elapsed time between the two sessions influenced the improvement of general skill 

improvements as well (indicated by the SESSION x DELAY interaction: F(2,123)=5.29, 

MSE=399.98, p
2=0.08, p=0.006). Thus, participants’ response speed improved more after the 

12-hour than after the 24-hour (LSD post hoc test: p=0.007) or 1-week delay (p=0.006), 

whereas there was no difference between the 24-hour and 1-week delay conditions (p=0.64).  

The subsequent paired-samples t-tests conducted separately for all age and delay groups 

revealed that the offline improvement of general skill was significant in all young groups (all 

p’s<0.047), while in the elderly groups only the 12-hour delay led to offline enhancement 

(p=0.032). We also compared the performance of young and elderly groups in all conditions 

separately. Young adults showed larger offline improvement than the elderly participants in the 

12-hour (t(44)=2.46, p=0.019) as well as in the 24-hour delay period (t(51)=2.96, p=0.006), 

while there was no significant difference between groups in the 1-week condition (t(28)=0.71, 

p=0.44). 

 

Discussion 

We studied the time course of implicit skill consolidation in young and elderly adults 

with probabilistic second-order regularity sequences (the ASRT task), which enabled us to 

separate general skill and sequence-specific learning. In the young adults, we found offline 

improvement of the general skill (overall RT) after the 12-, 24-hour and 1-week delay as well, 

with gradual decline among delays. The elderly adults showed offline improvement of general 
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skill only after the 12-hour offline period and this improvement was weaker than that in the 

young group. Although the pattern in age groups is similar, these results suggest that the offline 

course of general skill learning may be affected by aging, since we did not find improvement 

either after 24-hour or 1-week delay in the elderly group. No offline improvement was found 

in sequence-specific learning in either age group with either the 12-, 24-hour or 1-week 

consolidation interval. Sequence-specific learning did not decrease significantly between 

sessions for young participants suggesting that sequence-specific knowledge was well 

consolidated in this group, whereas the older group showed weaker consolidation in all delay 

conditions compared to the young. So, according our results offline general skill learning is 

influenced both by the time course and aging, while the offline sequence learning is affected 

only by aging.   

The significant offline general skill improvement after the 12-hour delay period is 

compatible with the results of Song et al. (2007b) and Nemeth et al. (2010). It is also possible 

that the improvement in overall RTs after the delay period reflects a release from fatigue rather 

than consolidation per se. However, studies that have included a fatigue control group (Spencer, 

Sunm, & Ivry, 2006; Walker et al., 2002) make this interpretation unlikely. The current results 

confirm those of Song et al. (Song et al., 2007b) and Nemeth et al. (2010) in finding no evidence 

of any offline improvement of sequence-specific performance and extend them to the 24-hour 

and 1 week consolidation period.   

The offline general skill improvement after 12 hours in the elderly adults contrasts the 

findings of both Spencer et al. (2007) and Siengsukon et al. (2009b) who obtained no offline 

improvement in elderly adults. Due to the different paradigms used in the current and the two 

previous studies, it is difficult to identify the source of differences. We refer to the point that 

these previous studies did not distinguish between general skill and sequence-specific learning, 

and therefore the signal-to-noise ratio might be reduced making it difficult to detect the offline 

improvements for elderly participants.  

The differences among the 12-, 24-hour and 1-week offline intervals suggest that the 

consolidation of general skill learning is time-dependent. In addition, older participants are 

more sensitive for this offline time course in that they showed no offline improvement even 

after 24-hour delay. These results are congruent with recent theories of motor skill consolidat ion 

(Press et al., 2005; Robertson et al., 2005; Shadmehr & Brashers-Krug, 1997; Walker, 

Brakefield, Hobson, et al., 2003) that claim that memory stabilization occurs during the first 5-

6 hours after learning. The observed strong offline improvement after 12 hours may reflect this  

first stabilization process of memory traces, including the previously mentioned critical time 
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period. The differences among 12-, 24-hour and 1-week consolidation intervals suggest that 

during new skill acquisition it could be important to place the training sessions closer to each 

other for optimal performance, with shorter intervals for elderly participants.   

The current results as well as previous findings (Doyon, Korman, et al., 2009; 

Robertson, Pascual-Leone, & Press, 2004) are compatible with the notion that skill 

consolidation processes may be different and they could be profoundly dependent on the nature 

of task demand, such as on the relative proportion of general skill and sequence-specific 

learning requirements of the task. Given that these different components of learning are usually 

not separated in classical sequence learning tasks, offline improvements in such studies could 

be falsely attributed to sequence-specific learning itself. Nevertheless, in the current study 

consolidation of sequence-specific information was similar in the 12-, 24-hour and 1-week 

offline periods, with a decline for elderly compared to the young, independently of time course. 

These results suggest that  stabilization of sequence-specific memory is a faster process, 

whereas offline changes of general skill are  more influenced by a longer stretch of  time. 

On the functional level there are at least three mechanisms which may underlie the age-

related decline in the consolidation of skill learning: 1) cognitive slowing may hinder elderly 

adults from having multiple representations simultaneously activated (see Salthouse’s  (1996) 

simultaneity theory); 2) associative  binding  deficits  may cause impairment in making  

associations  between  multiple  stimuli  or  stimulus features and binding these  associations  

into long-term memory traces (Bennett et al., 2007; Harrison, Duggins, & Friston, 2006); 3) 

increased sensitivity to interference also can result weaker stabilization of representations (Park, 

Smith, Dudley, & Lafronza, 1989). On the neuronal level age-related decrement was observed 

both structurally and functionally in the basal ganglia (Chen et al., 2005; Erixon-Lindroth et al., 

2005; Raz et al., 2005), that is involved in skill learning. Future studies are still needed to 

systematically examine the background mechanisms of age-related differences in skill 

consolidation. 

Our findings are compatible with motor skill learning and consolidation models (D. A. 

Cohen et al., 2005; Doyon, Bellec, et al., 2009; Okihide Hikosaka et al., 1999; O. Hikosaka et 

al., 2002; Song, 2009; Walker, Brakefield, Hobson, et al., 2003), and draw attention to the fact 

that the consolidation is not a single process; instead there are multiple mechanisms in offline 

learning (general skill, sequence-specific processes), which are differently influenced by time 

course and by aging.  

 

 

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



184 
 

Acknowledgements 

Thanks to our mentors: Darlene V. Howard, James H. Howard, Jr. and Michael Ullman from 

Georgetown University. This research was supported by Bolyai Scholarship Program and 

OTKA K 82068. Thanks to Maria Tarnai, Ildikó Vízi, Krisztina Turay and Anna Rácz for their 

valuable assistance during data collection, and Gábor Csifcsák for his help. István Winkler and 

Agnes Szokolszky helped us in the final version of the manuscript. 

 

  

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



185 
 

3.4 The differential consolidation of perceptual and motor learning in skill 

acquisition15 

 

Abstract 

Implicit skill learning is an unconscious way of learning which underlies not only motor but 

also cognitive and social skills. This form of learning is based on both motor and perceptual 

information. Although many researches have investigated the perceptual and motor components 

of “online” skill learning, the effect of consolidation on perceptual and motor characteristics of 

skill learning has not been studied to our knowledge. In our research we used a sequence 

learning task to determine if consolidation had the same or different effect on the perceptual 

and the motor components of skill acquisition. We introduced a 12-hour (including or not 

including sleep) and a 24-hour (diurnal control) delay between the learning and the testing phase 

with AM-PM, PM-AM, AM-AM and PM-PM groups, in order to examine whether the offline 

period  had differential effects on perceptual and motor learning. Although both perceptual and 

motor learning were significant in the testing phase, results showed that motor knowled ge 

transfers more effectively than perceptual knowledge during the offline period, irrespective of 

whether sleep occurred or not and whether there was a 12- or 24-hour delay period between the 

learning and the testing phase. These results have important implications for the debate 

concerning perceptual/motor learning and the role of sleep in skill acquisition. 

 

Keywords: consolidation, implicit skill learning, offline learning, perceptual-motor learning, 

sleep 

  

                                                                 
15 Published in Hallgato, E., Győri-Dani, D., Pekár, J., Janacsek, K., & Nemeth, D. (2013). The differential 

consolidation of perceptual and motor learning in skill acquisition.Cortex, 49(4), 1073-1081. 
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1. Introduction 

 

Implicit skill learning occurs when information is acquired from an environment of 

complex stimuli without conscious access either to what was learned or to the fact that learning 

occurred (Reber, 1993). In everyday life, this learning mechanism is crucial for adapting to the 

environment and evaluating events. Implicit skill learning underlies not only motor but 

cognitive and social skills as well, it is therefore an important aspect of life from infancy to old 

age. Skill learning does not occur only during practice, in the so-called online periods, but also 

between practice periods, during the so-called offline periods. The process that occurs during 

the offline periods is referred to as consolidation which means stabilization of a memory trace 

after the initial acquisition. This process can result in increased resistance to interference or 

even improvement in performance following an offline period (Krakauer & Shadmehr, 2006; 

Nemeth, Janacsek, Londe, et al., 2010; Robertson, 2009; Song, 2009).  

Most models of skill learning (Dennis & Cabeza, 2011; Doyon, Bellec, et al., 2009; 

Okihide Hikosaka et al., 1999; O. Hikosaka et al., 2002; Keele et al., 2003; Kincses et al., 2008) 

highlight the role of the basal ganglia and the cerebellum. One of the main debates in the field 

f skill learning is whether we rely on “our hands” or on “our eyes” (Deroost & E. Soetens, 2006; 

Keele et al., 2003; Mayr, 1996; Nemeth, Hallgato, Janacsek, Sandor, & Londe, 2009; Song et 

al., 2008; Ziessler & Nattkemper, 2001)? The goal of the present study is to determine if an 

offline period modifies the contribution of motor and perceptual components to implic it 

sequence learning. This issue is of particular interest because it deals with the question of 

whether sequence learning and consolidation are mediated by perceptual or by motor brain 

networks primarily (N. Deroost & E. Soetens, 2006; Goschke, 1998). 

One of the most popular implicit learning tasks is the Serial Reaction Time (SRT) Task 

(M. J. Nissen & Bullemer, 1987) and its modification, the Alternating Serial Reaction Time 

(ASRT) Task (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010). In 

the original version a stimulus appears at one of four possible locations on the screen, and 

subjects have to press the button corresponding to that location. Unbeknownst to them, the 

sequence of subsequent locations (and correspondingly, the sequence of the responses) follows 

a predetermined order. Without becoming aware of the sequence, subjects learn the regular ity 

– and as they learn, they produce faster and more accurate responses. When the sequence is 

changed to a random series of stimuli, subjects become slower and less accurate in responding. 

In this paradigm, however, it is not clear what exactly the subjects learn: they might learn the 

sequence of the stimuli (perceptual learning), the sequence of their own eye movements 
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(oculomotor learning), the sequence of response locations (response-based learning) or the 

sequence of given fingers’ movements (effector-based learning) (Cohen, Ivry, & Keele, 1990; 

Remillard, 2003; Willingham, 1999). 

In a SRT study Willingham (1999) used two conditions to examine the perceptual and 

the motor factors of learning. In one condition the stimulus–response mapping was changed in 

the transfer (test) phase that followed the learning phase, so that half of the subjects had to press 

the same sequence of keys as in the learning phase but saw new stimuli, whereas the other half 

had to press a different sequence of keys as in the learning phase but saw the same stimuli as 

before. Willingham (1999) found that transfer was shown only when the motor sequence was 

kept constant, but not when the perceptual sequence was constant. In a previous study, Nemeth 

et al. (Nemeth et al., 2009) compared the magnitude of perceptual and motor implicit sequence 

learning using a modification of the ASRT-task in a similar design. This task (ASRT-Race) 

contains second-order probabilistic sequences compared to classical SRT tasks that use 

deterministic sequences. ASRT-Race allows measuring “pure” sequence learning separate from 

general skill improvements, where sequence learning is reflected in the difference between the 

reaction times to more predictable events as opposed to less predictable ones. In addition, this 

task eliminates the possibility of oculomotor learning as stimuli always appear in the same 

central position on the screen. In contrast to Willingham’s findings, Nemeth et al. (2009) 

demonstrated that not only motor, but perceptual learning of second-order probabilis t ic 

sequences is possible. Furthermore, Nemeth et al. (2009) showed that the two types of learning 

do not differ significantly in magnitude. The weakness of the above mentioned perceptual-

motor studies (Deroost & E. Soetens, 2006; Mayr, 1996; Nemeth et al., 2009; Remillard, 2003, 

2009; Song et al., 2008; Willingham, 1999) is that experiments were conducted in one session. 

Using only one session for measuring skill learning relates to short-term performance changes 

in behavior and not to more permanent changes associated with learning. Consequently, it is 

important to address the question of the role of offline periods in perceptual and motor skill 

learning.  

Recent reviews indicate that whether offline improvements occur at all, and whether 

they are sleep-dependent, varies with factors such as awareness, the formation of contextua l 

associations and type of information to be learned (Debas et al., 2010; Doyon, Korman, et al., 

2009; Nemeth, Janacsek, Londe, et al., 2010; Robertson, 2009; Robertson, Pascual-Leone, & 

Press, 2004; Siengsukon & Boyd, 2008; Song, 2009; Song et al., 2007b). For example, 

Robertson (2009) argues that the consolidation of explicit (goal-directed) and implic it 

(movement-based) learning is differentially affected by sleep and wakefulness. In implic it 
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learning when there is no declarative knowledge about the task, consolidation may occur during 

both wakefulness and sleep. In line with the predictions of this theory, recent SRT studies found 

similar consolidation of implicit skills during both sleep and wakefulness (Nemeth, Janacsek, 

Londe, et al., 2010; Robertson, Pascual-Leone, & Press, 2004; Song et al., 2007b). 

Although many researches have investigated the perceptual and motor components of 

“online skill learning”, to our knowledge, the effect of consolidation on perceptual and motor 

characteristics of skill acquisition has not been investigated so far (Deroost & E. Soetens, 2006; 

Mayr, 1996; Nemeth et al., 2009; Remillard, 2003, 2009; Song et al., 2008). In our study we 

used the ASRT-Race task (Nemeth et al., 2009) to examine the possible difference in the 

magnitude of motor and perceptual learning after a 12-hour and a 24-hour retention period. In 

addition, we also aimed at exploring the role of sleep in offline consolidation of these two 

factors of skill learning. Therefore a 12-hour delay was administered between the Learning 

Phase and Transfer Phase of the experiment, during which participants either had a sleep (night 

group) or they were awake (day group). If both groups acquire the same level of skill in the 

Learning Phase, any difference between them in the Transfer Phase will answer the question 

whether the perceptual or the motor component stabilizes more effectively during the offline 

period. In order to avoid time-of-day effect we also administered a 24-hour delay condition.  

 

2. Methods 

 

2.1. Participants 

There were 102 individuals (students attending the University of Szeged) in the 

experiment (mean age= 22.34, SD= 3.82; 44 males, 58 females). None of them suffered from 

any developmental, psychiatric or neurological disorders. Participants were randomly assigned 

to the perceptual group or to the motor group. The perceptual and motor groups were further 

divided by the length of delay (12- or 24-hour delay) and by the daytime (morning first, AM-

PM/AM-AM and evening first, PM-AM/PM-PM) (see Table 3.4.1). The eight experimenta l 

groups did not differ in their sleep quality (F(7,89)=0,98, p=0.45) measured by the Pittsburgh 

Sleep Quality Index (Due to data collection scheduling problems 5 out of 102 participants failed 

to administer this test). All individuals provided signed informed consent, and received no 

financial compensation for their participation. 
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Table 3.4.1. General data of participants  

 

Condition Delay Daytime Mean Age (SD) N (Male/Female) 

Perceptual 

12-hour 
Morning first (AM-PM) 20.82 (1.60) 11 (4/7) 

Evening first (PM-AM) 22.75 (3.74) 11 (7/4) 

24-hour 
Morning first (AM-AM) 23.72 (5.66) 14 (4/10) 

Evening first (PM-PM) 21.63 (2.16) 14 (6/8) 

Motor 

12-hour 
Morning first (AM-PM) 22.62 (3.98) 12 (8/4) 

Evening first (PM-AM) 22.00 (1.84) 11 (4/7) 

24-hour 
Morning first (AM-AM) 20.40 (2.01) 12  (3/9) 

Evening first (PM-PM) 23.93 (5.48) 17 (8/9) 

 

2.2. Procedure 

All participants completed two sessions: a Learning Phase (Session 1) and a Transfer 

Phase (Session 2), separated by a 12-hour or a 24-hour delay (Figure 3.4.1). For the night 

groups, Session 1 was in the evening (between 7 and 9 pm), and Session 2 was in the morning 

(between 7 and 9 am), with the opposite arrangement for the day groups. Thus, the offline 

period of the night group contained sleep, while the day group was awake during the offline 

period (Figure 3.4.1). Although previous studies with similar tasks and experimental designs 

showed no time of day effect either on general reaction times or on learning measures (Nemeth, 

Janacsek, Londe, et al., 2010; Press et al., 2005; Robertson, Pascual-Leone, & Press, 2004; 

Song et al., 2007b), we administered a 24-hour delay condition. For the morning diurnal groups, 

both Session 1 and Session 2 were in the morning (between 7 and 9 am) and for the evening 

diurnal groups, both Session 1 and Session 2 took place in the evening (between 7 and 9 pm). 
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Figure 3.4.1. Design of the experiment. (a) All participants completed the ASRT-Race sequence learning task in 

two sessions. There were 20 learning blocks in Session 1 and 5 tes ting blocks in Session 2. (b) The two sessions 

were separated by either a 12-hour delay (in which participants had or had not slept) or a 24-hour delay. (c) In 

Session 2, half of the subjects were administered a new sequence which they had not seen before, but whose motor 

information corresponded to that of they had practiced in Session 1 (motor condition), while the other half of 

subjects were administered to the same perceptual information as in Session 1, but the pattern of motor responses 

changed due to the lack of mental rotation (perceptual condition). 

 

2.3. Task 

A modified version of the original ASRT (Howard and Howard, 1997) was used, the 

so-called ASRT-Race (Nemeth et al., 2009) in which the participants were instructed to drive 

an imaginary car on the road, as fast and as accurately as they can. The stimuli were the left, 

right, up and down arrows (5 cm long and 3 cm wide) appearing in the center of the screen, and 

representing the direction the car had to be steered. For example, when the subjects saw the 

right arrow, they had to press the right button on the keyboard to make a right turn with the car. 

All participants pressed the keys with their right hand. 

Session 1 consisted of 22 blocks, starting with a block containing 85 random presses 

(excluded from data analysis), after which the individuals were told that there was a car crash 

and the steering wheel failed. Due to the defective steering wheel they had to mentally rotate 

the arrows appearing on the screen by 90º, and press the keyboard button designated to the 

rotated arrow, in order to maneuver the car in the right direction (Figure 3.4.1a). For instance, 

if they saw the up arrow on the screen they had to press the right arrow on the keyboard, if they 
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saw the right arrow they had to press the down arrow button, and so on (Figure 3.4.1c). After 

the change in the instruction, there were 21 blocks, starting with 1 random block, in which 

participants could practice the new rules regarding the mental rotation, followed by 20 learning 

blocks (Learning phase). Each of the 20 learning blocks contained 85 key presses. The initial 5 

stimuli were random (warm-up; excluded from data analysis), then an eight-element sequence 

alternated 10 times. Since the ASRT task is based on a non-adjacent sequence, random and 

sequence elements alternate one after the other. For example 2–R–3–R–1–R–4-R, where R 

represents random trials and the numbers represent the sequence-specific elements, implica t ing 

the arrows’ direction (1-up, 2-right, 3-down, 4-left). The stimulus remained on the screen until 

the participant pressed the correct button. The next arrow appeared following a 120-ms delay 

(response to stimulus interval) after the subject’s correct response. These parameters are 

consistent with the original task presented by Howard and Howard (1997). During this delay, a 

fixation cross was displayed on the screen. Participants were told to respond as fast and as 

accurately as they could. 

Session 2 (Transfer Phase) took place either after a 12-hour or a 24-hour delay. The 

Transfer Phase consisted of 5 blocks. In this session participants were told that the car had been 

taken to a mechanic, and the steering wheel had been fixed, so they could use the answer keys 

corresponding to the arrows appearing on the screen (right button for right arrow, down button 

for down arrow, etc.). Half of the subjects participated in the motor condition, while the other 

half was assigned to the perceptual condition. Subjects in the motor condition were 

administered a new sequence which they had not seen before, but whose motor information 

corresponded to that of they had practiced in Session 1, while subjects in the perceptual 

condition were administered to the same perceptual information as in Session 1, but the pattern 

of motor responses changed due to the lack of mental rotation (Figure 3.4.1c). Thus, while in 

Session 1 all subjects performed the same task, in Session 2 they were divided into two groups 

(perceptual vs. motor). The difference between the two groups allowed us to separate the moto r 

and the perceptual information of the sequence previously learnt by the subjects so this way we 

could determine whether the perceptual and the motor component had the same or different 

effects on learning. All the stimuli were displayed in the center of the screen in order to exclude 

the possible oculomotor aspect of learning. After Session 2, we administered a short 

questionnaire regarding the participants’ possible explicit knowledge about the task (Song et 

al., 2007). In keeping with other probabilistic SRT studies (L Jiménez et al., 2006; Nemeth, 

Janacsek, Londe, et al., 2010; Song et al., 2007b), none of them reported noticing the sequences.  
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2.4. Data analysis 

Since the core structure of the tasks was the same as in the original ASRT, we followed 

the same procedures in our analysis (Howard and Howard, 1997; Nemeth et al., 2010b). As 

there is a fixed sequence in the ASRT-Race with alternating random elements (also known as 

non-adjacent sequence) (Remillard, 2008), for example 2–R–3–R–1–R–4-R, some triplets or 

runs of three events occur more frequently than others. For instance, following the illustra t ion 

above, triplets such as 2_3, 3_1, 1_4, 4_2 (where “_” indicates the middle element of the triplet) 

can occur more often, because the third element (bold numbers) could be derived from the 

sequence, or could also be a random element. In contrast, triplets such as 4_1, 4_4 would occur 

infrequently, because in this case the third element could only be random. Following previous 

studies, we refer to the former as high-frequency triplets and the latter as low-frequency triplets. 

Because of this difference in frequencies of certain triplets, after observing two stimuli, a certain 

third stimulus can be expected with 62,5% of probability (for example, 223 is five times more 

probable than 221 or 222 or 224). In our analysis, we determined for every stimulus if it was 

the more probable or the less probable continuation for the previous trials (see Figure 3.4.2). 

Participants are faster at the probable stimuli than at the less probable ones, revealing sequence 

learning in the ASRT paradigm (Howard et al., 2004; Song et al., 2007). 

 

 

Figure 3.4.2. In a typical ASRT sequence, there are more frequent (high frequency) triplets and less frequent (low 

frequency) triplets. In other words, if we know what were the last two elements of the sequence (in this case 2-3-

?), there is a 62.5% probability of a certain element as continuation, and only 12.5% probability of all of the other 

elements. 
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Similar to prior investigations, two kinds of low-frequency triplets were excluded from 

the analysis; trills (e.g. 121, 434) and repetitions (e.g. 111, 222). These triplets are low 

frequency for all individuals, and people often show pre-existing response tendencies to them. 

By eliminating these triplets, we can assure that any high versus low frequency differences are 

due to learning, and not pre-existing tendencies (D. V. Howard et al., 2004; Nemeth et al., 2009; 

Nemeth, Janacsek, Londe, et al., 2010).  

Since the accuracy of the participants was very high (average over 94.92% in all groups, 

in all phases), our analysis focused on RT data. For statistical analysis, median RTs were 

calculated for correct responses only, for each subject for every five blocks, both for the low-

frequency and high-frequency elements.  

To define the index for Sequence Learning Effect (SLE) (Nemeth & Janacsek, 2011; 

Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b; Song et al., 2009), we calculated the 

RT difference between the low and high frequency triplets separately in the Learning Phase 

(Session 1) and in the Transfer Phase (Session 2) for every five blocks. As we subtracted RT-s 

of high frequency triplets from those of low frequency triplets, SLE was a positive number only 

if sequence learning occurred, a larger value indicating a stronger effect.  

 

3. Results 

3.1. Learning in Session 1  

To be able to investigate the effect of transfer after 12- and 24-hour delay, learning in 

Session 1 must be similar in the groups. From this point of view, the end of Session 1 is crucial 

(Nemeth & Janacsek, 2011; Nemeth, Janacsek, Londe, et al., 2010; Press et al., 2005; Song et 

al., 2007b). Therefore, we analyzed the SLE of the last five blocks of the Learning Phase for 

every group. Univariate ANOVA was conducted with CONDITION (perceptual vs. motor), 

DAYTIME (morning first vs. evening first groups) and DELAY (12- and 24-hour) as between-

subject factors. ANOVA revealed significant sequence learning (F(1,94)=32.31, p<0.001) 

which is inferred from the test whether the overall mean is different from zero (Mean 

SLE=11.16 ms). There were no other significant main effects or interactions involving 

CONDITION, DAYTIME and DELAY (all p’s>0.32), thus these between-subject factors had 

no significant effect on sequence learning. 

 

3.2. Transfer of Sequence Learning Effect from Session 1 to Session 2 

To determine whether the performance in Session 2 declined, improved, or was constant 

in relationship to the end of Session 1, we subtracted the SLE score of the last five blocks of 
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the Learning Phase from the SLE score of the Transfer Phase (Transfer-SLE). As the groups 

were similar in SLE at the end of Session 1 (Learning Phase), any difference among groups in 

Transfer-SLE could be attributed to the differential effects of consolidation. We conducted a 

univariate ANOVA for this Transfer-SLE score with CONDITION (perceptual vs. motor), 

DAYTIME (morning first vs. evening first groups) and DELAY (12- and 24-hour) as between-

subject factors. ANOVA revealed a main effect of CONDITION (F(1,94)=4.92, p=0.029), the 

motor group showing larger SLE than the perceptual group (Figure 3.4.3). ANOVA showed no 

significant main effect or interaction with DAYTIME (all p’s>0.45), suggesting that the AM-

PM, PM-AM, AM-AM and PM-PM groups did not differ in their SLE. In addition, main effect 

and interactions with DELAY were not significant either (all p’s>0.25), suggesting that 12- and 

24-hour delay groups performed at a similar level. 

Thus, the only significant effect in the ANOVA was the main effect of CONDITION, 

suggesting differential consolidation of perceptual and motor groups with better consolidat ion 

for motor group, irrespectively of the delay or daytime. Despite this difference in consolidat ion, 

SLE in Session 2 was significantly different from zero for both the perceptual and motor groups 

(one-sample t-tests for SLE scores: t(49)=5.25, p<0.001 and t(51)=8.72, p<0.001 respective ly). 

Thus, in spite of the weaker consolidation in the perceptual group, they still showed significant 

SLE in the Transfer Phase (Session 2). For detailed descriptive statistics see Appendix 1. 
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Figure 3.4.3. A) SLE score (Sequence Learning Effect) of each experimental group in the last 5 blocks of the 

Learning Phase. B) SLE score of each experimental group in the Transfer Phase (Session 2). C) Difference between 

SLE scores of the 5 blocks of Transfer phase and the last 5 blocks of Learning phase (Transfer SLE score). The 

perceptual groups showed weaker transfer effect than the motor groups both after 12 and 24 hours. Error bars 

indicate Standard Error of Mean. 

 

3.3. Transfer or new motor learning in Perceptual Group? 

In order to find out whether the significant learning effect in Transfer Phase (Session 2) 

is due to new motor learning in the perceptual condition we investigated the learning effect at 

the beginning of the Learning Phase (Session 1 – the first two sequence blocks) and in the 

Transfer Phase (Session 2 – Block 1-2) separately. We calculated SLE scores for the first 2 

blocks of Session 1 and Session 2. We submitted these scores to a one-sample t-test separately 

for Session 1 and Session 2. If we can show a significant learning effect in Session 1 – Block 

1-2, the learning is very fast; and the results in Session 2 can be due to new motor learning. 

However, we found no significant learning effect in Session 1 – Block 1-2 in the perceptual 

group (one-sample t-test for SLE-score: t(49)=-1.069, p=0.291, Mean SLE=-9.27). In contrast 

we found a significant learning effect in Session 2 – Block 1-2 (one-sample t-test for SLE-

score: t(49)=3.523, p=0.001, Mean SLE=8.33). Hence it is likely that the learning effect in 
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Session 2 (Transfer Phase) is attributable to preserved perceptual learning rather than a new 

motor learning. We found the same pattern in the motor condition (one-sample t-test for SLE-

score in Session 1 – Block 1-2: t(51)=0.3, p=0.765, Mean SLE=3.89; Session 2 – Block 1-2: 

t(51)=5.087, p<0.001, Mean SLE=14.77 ). For detailed descriptive statistics see Appendix 2. 

 

4. Discussion 

Our study investigated the role of 12-hour and 24-hour delay on perceptual and motor 

components of implicit skill learning, while eliminating oculomotor learning. In this way we 

connect two debates together: 1) one on the relative importance of perceptual and motor 

learning 2) the other on the effect of sleep on skill acquisition. We used the same method as 

Nemeth et al.’s study (2009), except that in our research there was a 12-hour (during which 

participants either had sleep or they were awake) or a 24-hour (diurnal) offline period between 

the Learning and the Transfer Phase. We found significant sequence learning in the Learning 

Phase. After the 12-hour and the 24-hour offline period we found significant learning effect in 

both the perceptual and the motor conditions, however transfer in the motor condition was more 

effective compared to the perceptual condition. We did not find any sleep-effect on sequence 

learning in either condition. 

The weaker consolidation of perceptual learning is in agreement with the results of 

Deroost and Soetens (2006) and Willingham (1999), who found no evidence of perceptual 

learning, only under specific conditions. According to previous studies, perceptual learning 

only takes place when the structure of the sequence is simple, but in case of determinis t ic 

sequences with second-order dependencies and probabilistic sequences with first-order 

dependencies perceptual learning is not or only weakly present (N. Deroost & E. Soetens, 2006; 

Mayr, 1996; Remillard, 2003). Also, previous studies found perceptual learning in explic it 

conditions (Russeler & Rosler, 2000), and when a motor sequence was learnt concurrently 

(Mayr, 1996). In our study participants had no conscious awareness at all of the structure of the 

sequence, as the ASRT task uses probabilistic sequences with second-order dependencies. The 

only condition that met Deroost’s (2006) criteria is that in the Learning Phase participants learnt 

the perceptual and motor components concurrently. Compared to Nemeth et al. (2009) who 

found similar magnitudes of perceptual and motor learning immediately after the Learning 

Phase, we found a weaker perceptual learning effect in the Transfer phase both after a 12-hour 

and a 24-hour delay. As the only difference was the 12-hour or the 24-hour delay, we can 

suppose that the differences between the results of the two studies can be related to the 

consolidation period. Thus, this one criterion (i.e. participants in the Learning Phase learnt the 
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perceptual and motor components concurrently) can be enough for finding significant 

perceptual learning immediately after the Learning Phase (B. Meier & Cock, 2010; Nemeth et 

al., 2009; Weiermann, Cock, & Meier, 2010), however, it might result in weaker consolidat ion 

after the delay period. To put the puzzle together, based on the present study we can propose 

that the consolidation period has a differential effect on motor and perceptual components of 

learning, so that in the Transfer Phase the motor learning effect is larger than the perceptual 

one.  

Song et al. (2008), Nemeth et al. (2009) and the present study are similar in the nature 

of the sequence structure and the implicitness of the task. Furthermore, the present study and 

the study of Nemeth et al. (2009) also eliminated the possibility of oculomotor learning. As we 

focused only on the perceptual and motor learning while controlling the oculomotor learning, 

the role of response-based learning and effector-based learning remained unclear (A. Cohen et 

al., 1990; Remillard, 2003; Willingham, 1999). This way, the exact nature of the underlying 

mechanism still needs to be investigated. 

In addition to the question of perceptual and motor components of learning, our study 

has relevance for the sleep debate in skill consolidation (Debas et al., 2010; Doyon, Korman, et 

al., 2009; Gerván & Kovács, 2007; A Karni, 1994; Robertson, 2009; Song, 2009; Stickgold & 

Walker, 2005; Walker et al., 2002). As pointed out by Robertson (2009) and supported by Song 

et al. (2007b) and Nemeth et al. (2010), we found that sleep does not support sequence learning. 

In addition, sleep has no different role in the consolidation of motor and perceptual factors of 

implicit sequence learning. A plausible explanation can be that in the probabilistic sequence 

learning task used in this study, besides primary sensory and motor brain regions, sub-cortical 

structures and cerebellum are more involved (Doyon, 2008; Okihide Hikosaka et al., 1999; O. 

Hikosaka et al., 2002), opposed to the more basic finger tapping tasks where sleep-dependent 

improvement was usually found (Walker et al., 2002).  

To conclude, in spite of the 12-hour or the 24-hour offline period we found a significant 

perceptual and motor learning effect in the Transfer Phase, however the transfer of the motor 

knowledge was more robust, irrespective of whether sleep occurred in the consolidation period 

or not. These results have important implications for the perceptual/motor and also for the sleep 

debate in skill learning in the following ways: 1) previous experiments in this field included 

only one session which can reveal short-term performance changes in behavior. Consequently, 

it is important to use more sessions with many hours (even a day) delay between sessions for 

measuring permanent changes in neural plasticity. 2) Sleep has no contribution to this type of 

learning. However, further investigations need to explore more deeply conditions (includ ing 
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nature of sequence, awareness, perceptual/motor learning) in which sleep has a significant role 

in skill learning. 3) The retention period itself (regardless of sleep) has a modifying effect on 

the consolidation of perceptual/motor knowledge and the underlying brain networks. 

 

 

Appendices 

 

Appendix 1. Means and standard deviations (SD) for sequence learning effects (SLE) at the end of the 

Learning Phase, at the beginning of the Transfer Phase. SLE-change indicates the difference in sequence 

learning effects between the two sessions. 

 

Condition Delay Daytime N 

SLE (Learning 

Phase) 

SLE (Transfer 

Phase) 

SLE-change 

(Transfer – 

Learning) 

Mean  SD Mean  SD Mean  SD 

Perceptual 

12-hour 
Morning-first 11 8.59  12.57 6.09 12.06 -2.50 17.45 

Evening-first 11 9.68 13.27 9.14 15.68 -0.55 18.47 

24-hour 
Morning-first 14 14.82 19.39 12.11 8.70 -2.71 16.75 

Evening-first 14 18.64 25.42 8.86 13.64 -9.79 28.29 

Total  50 13.39 18.87 9.22 12.41 -4.17 20.78 

Motor 

12-hour 
Morning-first 12 8.13 22.51 16.29 15.20 8.17 19.14 

Evening-first 11 10.73 27.96 18.36 9.03 7.64 27.58 

24-hour 
Morning-first 12 11.63 18.27 16.67 12.18 5.04 24.64 

Evening-first 17 6.68 11.63 7.56 6.79 0.88 12.63 

Total  52 9.01 19.53 13.96 11.54 4.95 20.46 

Total   102 11.16 19.24 11.41 14.45 0.48 21.02 

 

 

Appendix 2. Means and standard deviations (SDs) for the first two sequence blocks of the Learning and 

Transfer Phase for perceptual and motor condition. 

 

 

Condition Phase Mean SD 

Perceptual (N= 50) 
Learning -9.27 61.34 

Transfer 8.33 16.72 

Motor (N=52) 
Learning 3.89 93.46 

Transfer 14.77 20.94 
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3.5 Evidence for one-year consolidation of implicit probabilistic learning16 

 

Abstract 

Statistical learning is a robust mechanism of the brain that enables the extraction of 

environmental patterns, which is crucial in perceptual and cognitive domains. However, the 

dynamical change of processes underlying long-term statistical memory formation has not been 

tested in an appropriately controlled design. Here we show that a memory trace acquired by 

statistical learning is resistant to inference as well as to forgetting after one year. Participants 

performed a statistical learning task and were retested one year later without further practice. 

The acquired statistical knowledge was resistant to interference, since after one year, 

participants showed similar memory performance on the previously practiced statistica l 

structure after being tested with a new statistical structure. At the same time, the underlying 

learning processes became less flexible, since participants could not learn the new statistica l 

structure per se. These results could be key to understand the computational underpinnings of 

long-term memory. 

 

Keywords: implicit learning, interference, long-term memory, predictive processing, 

statistical learning  

 

  

                                                                 
16 Published in Kóbor A., Takács, Á., Janacsek, K., & Nemeth, D. (under review). Stable but less flexible 

representation of statistical regularities: Evidence for resistance to interference after one year Scientific Reports 
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Introduction 

Statistical learning is a fundamental mechanism of the brain which extracts and represents 

regularities of our environment. It is crucial in perception (Fiser & Aslin, 2002; Orban et al., 

2008; Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 2009; Winkler, Denham, & Nelken, 

2009; Yang & Purves, 2003), associative learning (Turk-Browne, Scholl, Johnson, & Chun, 

2010), predictive processing (Bar, 2007; Turk-Browne et al., 2010; Winkler et al., 2009), and 

acquisition of perceptual, motor, cognitive, and social skills; thus, statistical learning underlies 

many day-to-day activities during the entire lifespan (Kaufman et al., 2010; Saffran et al., 1996; 

Ullman, 2004). Moreover, statistical learning could be considered as the basis of language 

acquisition (M. C. Frank, Tenenbaum, & Gibson, 2013; Saffran et al., 1996). Despite the 

extensive research on this field, the strong implicit assumption that statistical learning leads to 

persistent memory has not yet been empirically tested in a carefully controlled experimenta l 

design, and the dynamics of those mechanisms underlying consolidation have remained 

unclear. Here we show direct evidence for one-year retention and resistance to interference of 

a memory trace that was acquired by statistical learning in humans.  

An important challenge of neuroscience is to unravel how brain plasticity leads to 

memory formation, what are the temporal dynamics of memory formation, and how long- term 

memory traces are retained. Learning-related plastic changes in the brain take place not only 

during sessions of practice, in the so-called “online” periods, but also between sessions of 

practice, during the so-called “offline” periods (Lisa Genzel & Robertson, 2015). Offline 

processing of learnt information is referred to as consolidation, which pertains to the 

stabilization of memory traces after their initial acquisition (Krakauer & Shadmehr, 2006; Beat 

Meier & Cock, 2014; Nemeth & Janacsek, 2011; Robertson, 2009; Robertson, Pascual-Leone, 

& Miall, 2004; Song et al., 2007b).  

Although some previous studies investigated the long-term retention of different 

perceptual-motor skills in humans using various tasks (Ammons et al., 1958; Fleishman & 

Parker, 1962; O Hikosaka et al., 2002; Willingham & Dumas, 1997), only the study of Romano, 

Howard, and Howard (2010) examined the long-term stability of statistical learning, but even 

these findings were limited in validity. Although the retention of statistical memory was found 

after one year in a small sample of perceptual-motor skill experts and older non-experts, the 

authors did not investigate whether statistical memory was resistant to new, interfer ing 

information. In fact, the general effect of interference on statistical learning has not been 

investigated within an extended time period. In this way, only the retention of memory traces 

could have been measured rather than their consolidation, which could not unravel the core 
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processes underlying long-term memory formation. Therefore, the aim of the current study is 

twofold as follows. First, we explore the nature of those dynamic processes that underpin the 

long-term consolidation of statistical regularities by introducing interfering sequences in the 

course of learning. Second, we provide a valid replication of the study conducted by Romano 

et al. (2010) on a larger, homogeneous sample and show clear empirical evidence that statistica l 

learning leads to persistent and immutable memory traces that are resistant to forgetting over a 

longer stretch of time. This combined approach enables to examine the flexibility of learning 

processes and the robustness of representations related to statistical regularities, since the 

change in performance measured on the previously practiced and the new, interfering sequence 

could be quantified.  

In the current study, healthy young adults performed a statistical learning task and they 

were retested one year later without further practice between the two tests. Statistical learning 

was induced by a perceptual-motor four-choice reaction time task that, unknown to the 

participant, included a temporal/serial regularity between non-adjacent trials. By reason of this 

structure, the task can mimic the complexity of an incoming stream of information from the 

environment. During the testing phases, this task, along with its original version, was also 

administered with a different underlying structure to test the susceptibility of the acquired 

statistical knowledge to interference. 

 

Material and methods 

Participants 

Forty-six healthy young adults participated in the three-session- long study. Retention of the 

acquired statistical knowledge (i.e., statistical memory) over the one-year period can only be 

assessed for those participants who exhibited significant statistical memory before the one-year 

delay. By including these participants, we exclude the possibility of learning the statistica l 

regularities only after the one-year delay. Twenty-nine of the 46 participants met this criterion; 

therefore, one-year retention was assessed in the final sample of 29 adults (mean age = 19.93 

years, SD = 1.98 years; mean years of education = 13.36, SD = 1.72 years; 28 females). The 

criterion for showing significant statistical memory is specified in the Statistical Analys is 

section. 

All participants in the final sample as well as in the original sample had normal or 

corrected-to-normal vision and none of them reported a history of any neurological and/or 

psychiatric condition. Prior to their inclusion in the study, participants provided informed 

consent to the procedure as approved by the research ethics committee of Eötvös Loránd 
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University, Budapest, Hungary. The study was conducted in accordance with the Declaration 

of Helsinki and participants received course credits for taking part in the experiment. 

 

Task 

The Alternating Serial Reaction Time (ASRT) task was used to induce statistical learning (Song 

et al., 2007b). In this task, a stimulus (a dog’s head) appeared in one of four horizonta l ly 

arranged empty circles on the screen (Nemeth, Janacsek, & Fiser, 2013). Participants were 

instructed to press a corresponding key (Y, C, B, or M on the Hungarian keyboard) as quickly 

and accurately as possible when the stimulus occurred. Unbeknownst to the participants, the 

presentation of stimuli followed an eight-element sequence, within which predetermined (P) 

and random (r) elements alternated with each other (e.g., 2 – r – 1 – r – 3 – r – 4 – r; where 

numbers denote the four locations on the screen from left to right, and r’s denote randomly 

chosen locations out of the four possible ones; see Fig. 3.5.1A).  

The alternating sequence in the ASRT task makes some patterns of three consecutive 

elements (henceforth referred to as triplets) more frequent than others. In the example above, 

2X1, 1X3, 3X4, and 4X2 (X indicates the middle element of the triplet) occurred often since 

the third elements could have either been a predefined or a random element (see Fig. 3.5.1B). 

At the same time, 1X2 and 4X3 occurred less frequently since the third element could have 

only been random. The former triplet types were labeled as “high-probability” triplets while the 

latter types were labeled as “low-probability” triplets (Nemeth, Janacsek, Polner, et al., 2013). 

The third element of a high-probability triplet was more predictable from the first element of 

the triplet than in the case of low-probability triplets. For instance, in the example shown on 

Fig. 3.5.1B, Position 3 as the first element of a triplet is more likely (62.5%) to be followed by 

Position 4 as the third element, than either Position 1, 2, or 3 (12.5%, each). In accordance with 

this principle, each item was categorized as either the third element of a high- or a low-

probability triplet, and the accuracy and reaction time (RT) of the response to this item were 

compared between the two categories. 

This task overcomes a common challenge of the field in that it allows us to separate pure 

statistical learning from general skill improvements. Statistical learning is defined as faster and 

more accurate responses to high conditional probability events compared to that to low 

conditional probability ones (Fig. 3.5.1B) (Song et al., 2007b). In contrast, general skill 

improvements refer to the speed-up and changes in accuracy, which are independent of the 

conditional probabilities of the events. These improvements reflect more efficient visuomotor 

and motor-motor coordination due to practice(Hallgato et al., 2013).  
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In our study, participants were unaware of the underlying conditional probability 

structure of the stimulus sequence, and they did not even know that they were in a learning 

situation. Thus an implicit, non-conscious form of learning was tested (Cleeremans & Dienes, 

2008; Reber, 1989). This has also been confirmed using a short questionnaire and the Inclusion-

Exclusion Task (see section Testing the implicitness of the acquired statistical knowledge in 

the Supplementary Material). 

 

 

Figure 3.5.1. Design of the experiment. (A) In the Alternating Serial Reaction Time (ASRT) task, a stimulus 

appeared in one of four horizontally arranged empty circles on the screen. The presentation of stimuli followed an 

eight-element sequence, within which predetermined (P) and random (r) elements alternated with each other. (B) 

The alternating sequence in the ASRT task makes some patterns of three consecutive elements (triplets) more 

frequent than others. (C) The ASRT task was administered in three sessions. During the Learning Phase, the ASRT 

task included 9 epochs. Both the Testing and the Retesting Phase included only 3 epochs with identical structure. 

The middle epoch of both of these sessions (Epoch 11 and 14) served as interference with the repeating sequence 

being different from the one appearing in all other epochs.  

 

Procedure 
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The ASRT task was administered in three sessions. During the Learning Phase, the ASRT task 

included nine epochs, each containing five blocks (45 blocks in total), with 85 trials (stimuli ) 

in each block. In each block, the eight-element sequence repeated 10 times after five warm-up 

trials consisting only of random stimuli. Both the Testing and the Retesting Phase included only 

three epochs (i.e., a total of 15 blocks of stimuli, each). The middle epoch (5 blocks) of both of 

these sessions (Epoch 11 and 14) served as interference with the repeating sequence being 

different from the one appearing in all other epochs. Thus the two tests had identical structure 

(Fig. 3.5.1C). Participants were not told about the change in the underlying sequence during 

interference blocks. In addition, they were unaware of the fact that they were going to practice 

the same task with the same interfering sequence one year later.  

 

Statistical Analyses 

To increase statistical power, we analyzed epochs of five blocks instead of single blocks. 

Therefore, the Learning Phase consisted of nine epochs, while the Testing and Retesting Phases 

consisted of three epochs. Epochs are labeled consecutively (1, 2,…, 15) in the remainder of 

paper (see Fig. 3.5.1C). Mean accuracy (ratio of correct responses) and median RT only for 

correct responses were determined for each participant and epoch, separately for high- and low-

probability triplets. Learning scores in the Learning Phase and memory scores in the Testing 

and Retesting Phases were then calculated as the difference between triplet types in RT (RT for 

low-probability triplets minus RT for high-probability triplets) and accuracy (accuracy for high-

probability triplets minus accuracy for low-probability triplets). Greater score in both measures 

indicates larger statistical learning/memory. To evaluate statistical learning and retention of the 

acquired statistical knowledge, we conducted repeated measures analyses of variance 

(ANOVAs) and paired-samples t-tests. Greenhouse-Geisser epsilon (ε) correction was used 

when necessary. Original df values and corrected p values (if applicable) are reported together 

with partial eta-squared (ηp
2) as the measure of effect size. Analyses and results concerning 

accuracy are only reported in the Analysis of accuracy data section of the Supplementary 

Material; here we focus on RT measures. 

In a special case, to increase the sensitivity of our measures to temporal changes, median 

RT were determined for blocks instead of epochs. Namely, only those participants were 

included in the final sample, who showed significant statistical memory in the Testing Phase. 

This was evaluated blockwise in the following way. (1) We considered only those 10 blocks of 

the Testing Phase in which we presented the same repeating sequence to participants as in the 

Learning Phase. These blocks are henceforth referred to as non-interference blocks or epochs 
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(the cluster of five blocks; Fig. 3.5.1C). (2) In the Testing Phase, median RT for correct 

responses was calculated for each participant, block, and triplet type. (3) We calculated the 

statistical memory score (difference in RTs for low- vs. high-probability triplets) for each block 

in the Testing Phase. (4) One-sample t-tests against zero were run on these scores for each 

participant to confirm whether they showed any significant statistical memory. A deviation 

from zero was regarded as significant if the p-value was less the .050. Twenty-nine participants 

met this criterion (mean score = 18.68 ms, SD = 7.96 ms).  

As the focus of the current study is on the retention of statistical memory, we performed 

Bayesian paired-samples t-tests and calculated the Bayes Factor (BF) for the relevant 

comparisons (see the Results section below). The BF is a statistical technique that helps 

conclude whether the collected data favors the null-hypothesis (H0) or the alternative hypothesis 

(H1); thus, the BF could be considered as a weight of evidence provided by the data 

(Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). It is an effective mathematica l 

approach in consolidation studies where it is expected that the acquired evidence supports H0 

rather than H1 (Dienes, 2011, 2014; Wagenmakers, 2007). In this case, H0 is the lack of 

difference between the two means, and H1 states that the two means of memory scores differ. 

BFs were calculated using the JASP (version 0.6, see Love et al.; Rouder, Speckman, Sun, 

Morey, & Iverson, 2009). Here we report BF01 values. According to Wagenmakers et al. (2011), 

BF01 values between 1 and 3 indicate anecdotal evidence for H0, while values between 3 and 

10 indicate substantial evidence for H0. Conversely, while values between 1/3 and 1 indicate 

anecdotal evidence for H1, values between 1/10 and 1/3 indicate substantial evidence for H1. If 

the BF is below 1/10, 1/30, or 1/100, it indicates strong, very strong, or extreme evidence for 

H1, respectively. Values around one do not support either H0 or H1. 

 

Results 

The prerequisite of memory consolidation 

Before memory consolidation can be assessed, significant statistical learning needs to occur 

preceding the long delay period (i.e., during the Learning and Testing Phases). Statistica l 

learning during the Learning Phase was tested with a two-way repeated measures ANOVA for 

RT with TRIPLET (high- vs. low-probability) and EPOCH (1–9) as within-subjects factors. 

The ANOVA revealed significant statistical learning and general skill improvements 

(significant main effects of TRIPLET, F(1, 28) = 96.71, p < .001, ηp
2 = .774, and EPOCH, F(8, 

224) = 72.08, ε = .303, p < .001, ηp
2 = .720). Participants were increasingly faster on high- than 
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on low-probability triplets as the task progressed (TRIPLET*EPOCH interaction, F(8, 224) = 

7.51, ε = .617, p < .001, ηp
2 = .212; see Fig. 3.5.2). 

Thus, there was evidence for both statistical learning and general skill improvements 

during the Learning Phase. Significant statistical learning and general skill improvement before 

the one-year delay also took place during the Testing Phase, as this was the criterion for 

participants to be included in the final sample. 

 

Resistance to forgetting 

To test the one-year retention of the learned statistical contingencies, we first checked whether 

there is any change in statistical memory performance between the non-interference epochs of 

the Testing and Retesting Phases (i.e., resistance to forgetting; see Fig. 3.5.1C). An ANOVA 

was conducted for RT with SESSION (Testing vs. Retesting), TRIPLET (high- vs. low-

probability), and EPOCH (10, 12 vs. 13, 15) as within-subjects factors. We found substantia l 

evidence for retained statistical memory after one-year delay (non-significant 

SESSION*TRIPLET interaction, F(1, 28) = 0.08, p = .774, ηp
2 = .003; BF01 = 4.873) with 

similar memory scores during Testing and Retesting Phases (see Fig. 3.5.3).  

Irrespective of the retention of statistical memory, the same ANOVA revealed partially 

decreased general skills over the one-year delay. Participants were significantly slower in the 

Retesting Phase compared to the Testing Phase (significant main effect of SESSION: F(1, 28) 

= 24.32, p < .001, ηp
2 = .465; BF01 = 0.001). These results suggest that while statistical learning 

leads to persistent memory representations over the one-year delay, some aspects of general 

skills undergo forgetting over this period. 

 

 

The effect of the interference sequence 

 

Testing Phase. The effect of interference sequence on statistical memory was evaluated in three 

steps. First, if statistical memory about the initial sequence was still flexible during the Testing 

Phase, there should be significant statistical learning on the interference epoch, as well, in which 

the underlying sequence is unfamiliar to participants. Second, if statistical learning occurred in 

the previously practiced, non-interference epochs, then weaker performance in the interference 

epoch compared to the non-interference epochs (Epoch 11 vs. Epochs 10 and 12 in the Testing 

Phase) should be expected. Third, if statistical memory acquired during previous practice was 

robust against interference, performance on the non-interference epoch (Epoch 12) following 
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the interference epoch (Epoch 11) should be the same or even better than that on the non-

interference epoch (Epoch 10) preceding the interference epoch. 

First, we found statistical learning on the interference epoch as the statistical memory 

score for RT significantly differed from zero (M = 4.40 ms, t(28) = 3.00, p = .006, BF01 = 

0.133). Second, a TRIPLET (high- vs. low-probability) by EPOCH (10, 11, and 12) two-way 

repeated measures ANOVA on the RT measure was conducted to test statistical learning 

throughout all epochs of the Testing Phase. The ANOVA revealed significant 

TRIPLET*EPOCH interaction (see Fig. 3.5.2) indicating smaller statistical learning in the 

interference epoch than in non-interference epochs (Minterference = 4.40 ms vs. Mnon-interference = 

18.58 ms; t(28) = 7.60, p < .001, BF01 = 2.030*10-6). Third, we compared statistical memory 

performance in the two non-interference epochs of the Testing Phase, and found resistance to 

interference since there was no significant difference between Epoch 12 and Epoch 10 (MEpoch12 

= 19.72 ms vs. MEpoch10 = 17.43 ms; t(28) = -1.16, p = .257, BF01 = 2.764).   

In summary, the significant statistical learning during interference is evidence that 

participants were still able to acquire new statistical information in the Testing Phase. In 

addition, we found weaker performance in the interference epoch compared to non-interference 

epochs, and efficient resistance to interference.  

 

Retesting Phase. To examine the effect of interference after one year has elapsed, we followed 

those three analysis steps described above in relation to the Testing Phase. First, we did not find 

statistical learning on the interference epoch as the statistical memory score for RT did not 

significantly differ from zero (M = 1.24 ms, t(28) = 0.76, p = .454, BF01 = 3.888). Second, we 

conducted a TRIPLET (high- vs. low-probability) by EPOCH (13, 14, and 15) two-way 

repeated measures ANOVA for RT in the Retesting Phase, similarly to the analysis in the 

Testing Phase. Statistical learning was smaller in the interference epoch than in non-

interference epochs (Fig. 3.5.2; Minterference = 1.24 ms vs. Mnon-interference = 18.09 ms; t(28) = 7.69, 

p < .001, BF01 = 1.661*10-6). Third, we compared statistical memory performance in the two 

non-interference epochs of the Retesting Phase, and found resistance to interference since there 

was no significant difference between Epoch 15 and Epoch 13 (MEpoch15 = 20.12 ms vs. MEpoch13 

= 16.09 ms; t(28) = -1.57, p = .127, BF01 = 1.687). 

In summary, the lack of substantial evidence for statistical learning during interference 

suggests that participants did not acquire new statistical information in the Retesting Phase, 

after one year had elapsed. At the same time, they showed weaker performance in the 
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interference epoch than in non-interference ones, as well as efficient resistance to interference 

in the Retesting Phase. 

 

 

Figure 3.5.2. Temporal dynamics of statistical learning across epochs and sessions. Group-average (N = 29) RT 

values for correct responses as a function of the epoch (1–15) and trial type (high- vs. low-probability triplets) are 

presented. Error bars denote standard error of mean. 

 

Comparing the effect of interference sequence across Testing and Retesting Phases. In two 

steps, we examined whether the acquired statistical knowledge was resistant to interference 

across the Testing and Retesting Phases in a similar level. First, we assessed whether the 

difference in memory scores between the non-interference and interference epochs in the 

Retesting Phase (Epoch 13 and 15 vs. Epoch 14) was at a similar level as that in the Testing 

Phase (Epoch 10 and 12 vs. Epoch 11). We found similar level of interference in the Testing 

and Retesting Phases (MTesting Phase = 14.18 ms vs. MRetesting Phase = 16.85 ms, t(28) = -1.17, p = 

.251; BF01 = 2.72) (see Fig. 3.5.3). 

Second, we tested whether the difference in statistical memory scores between Epoch 

12 and 10 vs. the difference in statistical memory scores between Epoch 15 and 13 were similar. 

We found substantial evidence for the same level of resistance to interference in the Testing 

and Retesting Phases (MEpoch12-10 = 2.29 ms vs. MEpoch15-13 = 4.05 ms; t(28) = -0.55, p = .589, 

BF01 = 4.414). Thus, the interference epoch did not deteriorate performance in the in the 

following non-interference epoch in either of the phases. 
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In sum, the level of interference on statistical memory and the level of its resistance to 

interference were similar in the Testing and Retesting Phases. 

 

 

Fig. 3.5.3. Retention of the acquired statistical knowledge. Group-average of memory scores measured by RT for 

the non-interference (Epoch 10,12 and Epoch 13,15) and interference epochs (Epoch 11 and Epoch 14) o f the 

Testing and the Retesting Phase, respectively. While significant statistical learning was found on the interference 

epoch in the Testing Phase, there was no significant learning on the interference epoch in the Retesting Phase. 

Error bars denote standard error of mean. 

 

Testing relearning the statistical regularities after one-year delay 

To rule out the possibility that the one-year retention of statistical memory is due to relearning 

in the Retesting Phase, additional ANOVAs were run with the SESSION (Learning vs. 

Retesting Phase), TRIPLET (high- vs. low-probability), and EPOCH (1 and 2 vs. 13 and 15) as 

within-subject factors (Fig. 3.5.1C). The significant SESSION*TRIPLET interaction (F(1, 28) 

= 25.34, p < .001, ηp
2 = .475) showed larger statistical memory after the one-year delay than at 

the beginning of the Learning Phase (M13,15 = 18.10 ms vs. M1,2 = 7.26; BF01 = 0.001). In sum, 

the learning measure confirms that participants did not relearn the task after the one-year delay, 

which provides further evidence for the one-year retention of statistical memory. 

 

 

dc_1293_16

Powered by TCPDF (www.tcpdf.org)



211 
 

Discussion 

In this study we have shown clear evidence for the long-term consolidation of statistica l 

memory in a carefully controlled experimental design, which involved interference 

manipulation. Moreover, we have highlighted how the flexibility of learning processes 

underlying statistical memory changed over a longer stretch of time. Statistical memory scores 

were similar after 24 hours and one year, irrespective of the type of learning measure (i.e., 

accuracy or RT, see Supplementary Material). Participants successfully acquired and stabilized 

the previously learned material, and after 24 hours, their neurocognitive system underlying 

learning remained flexible to learn new, interfering information to which they were only briefly 

exposed. After one year has elapsed, although it seems that knowledge about the primarily 

learnt statistical structure remained stable, the system underlying learning became more rigid 

during the long delay, since after a brief exposure, participants could not learn the new statistica l 

structure that was also presented to them a year before. The addition of this new statistica l 

structure affected statistical learning performance on the primarily practiced sequence in a 

comparable degree after 24 hours and one year, which indicates that the acquired statistica l 

knowledge remained persistent over time (Robertson, Pascual-Leone, & Miall, 2004).  

Previous studies have shown that some aspects of skill acquisition are based on 

probabilistic perception and probabilistic learning (Fiser & Aslin, 2001; Fiser, Berkes, Orbán, 

& Lengyel, 2010; Orban et al., 2008; Saffran et al., 1996). However, it has not been proven that 

statistical learning alone can lead to long-lasting representations, because in other studies and 

observations, several confounding factors were present: For instance, practice after the init ia l 

acquisition of statistical regularities together with the intervention of higher-order cognitive 

processes (as a result of the person intending to learn the given skill) could lead to reactivation, 

reconsolidation, and substantial alteration of the original memory traces. Therefore, our study 

took five possible confounds of consolidation into account. First, we controlled for short-term 

(i.e., 24-hour) consolidation of the acquired knowledge of conditional probabilities by inserting 

a Testing Phase and analyzing one-year retention only in those participants who showed stable 

statistical memory in it. Second, we used identical design in the Testing and the Retesting Phase 

by inserting an interference epoch in both sessions in order to test both resistance to forgetting 

and resistance to interference after one year. Third, we ruled out the possibility of relearning by 

showing better performance after the one-year period than at the very beginning of the Learning 

Phase. Fourth, there was no intervening practice during the one-year period, minimizing the 

possibility of reactivation of the acquired statistical memory during this time window. Fifth, 

learning was implicit because participants were unaware of the learning situation, the statistica l 
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structure of the stimulus stream, as well as of the fact that they will be tested one year later, 

controlling for any confounding effects of explicit strategy use during memory encoding and 

consolidation. Moreover, our results are supported by Bayesian statistics besides general linear 

models (cf. Materials and Methods). Therefore, in regard to the applied rigorous methodology, 

results of the present study further extend the findings of Romano et al. (2010) about the long-

term retention of statistical regularities. 

The retention of statistical knowledge after the long delay extends the findings of 

(Nemeth & Janacsek, 2011) and Beat Meier and Cock (2014), who found comparable retention 

of sequential memory across 12-hr, 24-hr, and one-week delay intervals. It is conceivable that 

those processes related specifically to the retention of statistical knowledge do not change 

already after 12-hour delay (see also Nemeth, Janacsek, Londe, et al., 2010; Press et al., 2005), 

which is also in line with our finding that the acquired statistical knowledge was equally robust 

to interference both after 24 hours and one year. 

In our design general skill improvements refer to general speed-up, independent of the 

statistical structure of the task, reflecting more general learning mechanisms. Previous studies 

(Beat Meier & Cock, 2014; Nemeth & Janacsek, 2011) found improved general skills both after 

24 hours and one week compared to the end of the training session, but the degree of 

improvement did not differ between the two delay intervals. Moreover, retained general skills 

were also found after one year (Romano et al., 2010). In the present study, general skills were 

retained over the one-year period measured by accuracy (see section Resistance to forgetting in 

the Supplementary Material) but were decreased measured by RT (i.e., slower overall RT). It 

is possible that the lack of practice on the ASRT task might have affected only the speed and 

not the precision of visoumotor coordination, which resulted in slower RTs after the one-year 

delay. This finding suggests that some aspects of general skills undergo forgetting over one-

year if no further practice is intervened. However, overall accuracy and RT were decreased 

after one year as compared to the beginning of the first session, suggesting that the general skill 

was retained at least in some degree (cf. Romano et al., 2010). The latter evidence also 

corroborates our previous statement about the implausibility of relearning the ASRT task after 

the offline period. Nevertheless, future studies need to disentangle how these aspects of general 

skills consolidate over a longer stretch of time (cf. O Hikosaka et al., 2002). In the neuroscience 

of skill learning, a long-standing issue is that general skill learning mechanisms are heavily 

intertwined with statistical or sequence-specific learning, which hinders the possibility to draw 

conclusions about statistical learning itself. The strength of our study is that it could separate 
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pure statistical learning from these mechanisms and could directly investigate the one-year 

retention of pure statistical learning.  

Our results suggesting that the representation of the original statistical structure is 

immune to interference and the underlying system is only flexible to learn a new statistica l 

structure within a limited time interval extend the study of Gebhart, Aslin, and Newport (2009). 

In an auditory statistical learning task where two different statistical structures (artific ia l 

languages) determined the presented stimuli, Gebhart et al. (2009) showed that participants 

could learn only the first structure of speech streams if no explicit information was given about 

the change in structure during the task or the second structure was not presented for a longer 

duration. Accordingly, it is conceivable that more blocks of the interference sequence in our 

design could have increased the chance to relearn the interference sequence after one year 

elapsed, and the primacy effect (see also e.g., Billig & Carlyon, 2016; da Estrela & Byers-

Heinlein, 2015; Junge, Scholl, & Chun, 2007; Yu & Zhao, 2015) of the first statistical pattern 

could be disrupted. However, as the Gebhart et al. (2009) study showed, learning a new 

structure did not attenuate performance on the original structure, which was also the case in our 

study after the 24-hour delay (i.e., resistance to interference). Nevertheless, it still remains 

unclear whether far more practice on the interference sequence could cause performance 

deterioration on the non-interference sequence, or the different representations of the two 

statistical structures could be maintained and the same time and individuals could flexib ly 

switch between them. An advantage of having a more stable or elaborated primary structure is 

that the underlying cognitive/perceptual mechanisms remain sensitive to this structure later, 

even if the organism has to learn other statistical regularities in the meantime (Gebhart et al., 

2009). The long-term impact of the primarily acquired statistical structure and its predictive 

power have also been demonstrated in the perception of the auditory environment (Mullens et 

al., 2014; Todd, Provost, & Cooper, 2011) and in processing native and non-native phonetic 

features of word stress (Honbolygó & Csépe, 2013) as indicated by event-related brain 

potentials (e.g., the mismatch negativity). 

Importantly, we found that statistical knowledge was somewhat rigid or inflexible as 

learning did not occur on the interference epoch after one year, which supports that the 

mechanism of statistical learning is related to habit formation (e.g., Dolan & Dayan, 2013; Neal, 

Wood, Labrecque, & Lally, 2012). Usually, habits are complex sequential behaviors that are 

present is most activities performed repeatedly in an automatized manner during daily life 

(Cleeremans et al., 1998; Montague, Dolan, Friston, & Dayan, 2012). Although habits ease 

everyday activities by enabling them to be performed without effort, potentially destructive 
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habits (smoking, alcohol use, gambling) could also develop. Therefore, the present findings 

might contribute to better understand the difficulty of changing maladaptive routines and 

behaviors, which also exist in clinical syndromes (Everitt & Robbins, 2005). 

Results of the present study are also compatible with the strong impression coming from 

daily experience that skills, such as speaking a language or playing tennis, once acquired, are 

persistent throughout life. Our findings, therefore, provide new possibilities for the study of 

language (Saffran et al., 1996), visual (Orban et al., 2008) and sensorimotor (Kording & 

Wolpert, 2004) skill acquisition by showing that statistical learning mechanisms are suffic ient 

to explain the formation of persistent memory representations, thus provide a basis of long- term 

memory. Moreover, by giving insight to the dynamic change of underlying learning processes, 

we could provide an experimentally well-controlled design and a possible explanatory 

framework for other studies investigating the long-term retention of statistical structures 

embedded in other perceptual/cognitive domains under more natural circumstances. For 

instance, on a small sample of participants, M. C. Frank et al. (2013) found retention of large-

scale artificial languages even after three years, although participants were only exposed to 

these languages for 10 days without directly paying attention to the presented chunks of 

languages. The authors claimed this was an evidence that statistical learning skills related to 

speech segmentation could be applied to the lexicons of natural languages. A simple paradigm 

such as the ASRT task might be used over an even longer time period to test the upper bound 

of the retention of statistical knowledge, and to obtain a clearer insight to the characteristics of 

processes determining consolidation in such a large-scale as language acquisition (see also 

Morgan-Short, Finger, Grey, & Ullman, 2012).  

Taken together, the present study shows that probabilistic mechanisms are not only 

present in perception and learning but also that their results remain stable over longer periods 

of time. Specifically, we demonstrated that statistical knowledge was resistant to interference 

and also to forgetting after one year. Our experimental design enabled to test how the flexibi lity 

of neurocognitive processes underlying learning changed over this time period: We showed that 

although the statistical knowledge remained stable, processes mediating statistical learning lost 

some of their flexibility of acquiring similar but essentially new regularity between the elements 

of the incoming stream of information. In the long run, these results can help to build a better 

computational framework (Fiser et al., 2010) of systems-level brain mechanisms that underlie 

learning and memory. 
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4. DISCUSSION17 

 

The aim of the thesis was to explore the learning and consolidation phase of implicitly learned 

sequences. In the learning phase, we discovered important factors that can influence this 

fundamental learning mechanism (see Table 4.1). 

 

Table 4.1. Summary table of the results from the implicit learning studies  

Chapter Factors Goals and questions Results 

2.1 

Childhood 

development and 

aging  

Which time is the best to 

acquire new skills?  

Determine age-related changes 

across the human lifespan in 

probabilistic sequence learning  

Before 12 years of age, the learning 

performance is better than in later ages. 

Performance gradual declines with age.  

The question of z-score in 

developmental studies.  

2.2 Age and awareness 

What are the differences in the 

developmental curves of 

explicit and implicit sequence 

learning?  

Explicit cues can prevent the decline in 

learning performance after 12-13 years 

of age.  

Different learning processes and 

different learning scores have been 

invented, discovered. 

2.3 Control processes 

How can we boost implicit 

learning?  

Determine the competition 

between control processes and 

implicit learning 

Hypnosis can boost implicit learning 

via inducing less reliance on control 

processes. 

2.4 
Executive 

functions 

Can weaker executive functions 

lead to better implicit learning?  

Determine the role of executive 

functions in implicit learning 

Weaker executive functions lead to 

better implicit learning performance.  

 

2.5 
Perceptual and 

motor 

How motor and perceptual 

factors contribute to implicit 

sequence learning?  

Determine the perceptual and 

motor factors of learning 

Perceptual and motor factors are 

comparably relevant in learning.  

                                                                 
17 Based on Janacsek, K., & Nemeth, D. (2012). Predicting the future: from implicit learning to 

consolidation. International Journal of Psychophysiology, 83(2), 213-221. 
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2.6 Secondary task 
Can a secondary task disturb 

implicit sequence learning? 

In a dual-task situation, the secondary 

task cannot disrupt implicit learning 

only in the case of sentence processing.  

2.7 Working memory 
What is the role of working 

memory in implicit learning? 

Implicit sequence learning seems to be 

independent of working memory 

measured by classical working memory 

span tasks. 

2.8 
Atypical 

development 

How atypical development such 

as autism affect implicit 

learning?  

We found intact implicit learning in 

autism.  

Implicit learning seems to be a very 

robust learning mechanism.  

2.9 
Mild Cognitive 

Impairment 

Can Mild Cognitive 

Impairment disturb implicit 

learning? 

What is the role of the 

hippocampus in implicit 

learning?  

We invented a new method to measure 

different processes underlying implicit 

sequence learning. We found impaired 

learning in MCI, with weaker 

performance in the first part of the 

learning blocks (hippocampus-

dependent processes).  

 

The “competition” framework can explain several results presented in this thesis,  

specifically those of the two developmental studies (Chapter 2.1 and 2.2; Janacsek et al., 2012; 

Nemeth et al. 2013), as well as those of the hypnosis study (Chapter 2.3; Nemeth et al., 2013) 

and the negative correlations found in the alcohol study (Chapter 2.4; Virag et al., 2015). These 

findings indicate that the weaker the frontal lobe functions and/or the weaker the connectivity 

of the frontal lobe with other brain regions, the better the implicit and statistical learning 

performance is.   

These results and the suggested framework are in line with previous studies that showed 

a negative or competitive relationship between frontal functions and implicit learning processes 

(Filoteo et al., 2010, Poldrack et al., 2001). Several developmental studies can also be explained 

by the ‘competition’ framework. Munakata and colleagues (2012, 2014) further added to this 

question by presenting the developmental aspects of frontal lobe functions and executive 

functions, and showing that as one matures, the two functions become more and more 

dependent on the same cognitive resources. These results are in line with the results of Janacsek 

et al. (2012) in that they also showed a similar pattern: maturation of the frontal lobe (and 

cognitive control) negatively affects the implicit learning performance.  

A better insight of the competition between frontal lobe-related executive functions and 

fronto-striatal networks linked to implicit learning can contribute to the understanding of the 
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development of implicit learning mechanisms, which could easily become a valid tool for 

therapies and cognitive rehabilitation programs. 

 

Factors influencing consolidation 

The second aim of the thesis was to investigate the factors that can significantly affect the 

consolidation of implicit learned sequences (Table 4.2). 

 

Table 4.2. Summary table of the results from the consolidation studies  

Chapter Factors Goals and questions Result 

3.1 Aging and sleep 

What is the role of sleep in the 

consolidation of implicit learning?  

Does aging affect sleep-dependent 

consolidation?   

Sleep has no effect on the 

consolidation of implicitly learned 

sequences, neither in young nor in 

older adults. 

3.2 

Aging and length 

of the offline 

period 

Which length of the offline period is 

optimal for consolidation: 12h, 24h 

or 1 week?  

Is there any interaction between the 

effects of aging and length of the 

offline period on consolidation?    

Regarding sequence-specific 

learning, no offline improvement 

was found at either consolidation 

interval. Regarding aging, 

sequences-specific knowledge 

decreased in the elderly group 

independently of the delay. 

3.3 Sleep disorder 
Can Sleep disorder disrupt the 

consolidation of implicit learning?  

We found intact sequence-specific 

consolidation in patients with sleep 

disorder. In contrast, consolidation 

of general skills was weaker in the 

patient group compared to the 

controls.   

3.4 

Sleep and 

perceptual-motor 

factors 

Does sleep have a critical role in the 

consolidation of perceptual and 

motor factors of implicit learning?  

Determine the perceptual and motor 

factors in the consolidation of 

implicit learning 

We found no sleep effect in implicit 

sequence learning, irrespectively of 

the condition (perceptual or motor). 

3.5 
Length of the 

offline period 

Is implicitly learned information 

retained after one year? 

Is there evidence for resistance to 

interference after one year?  

We found no forgetting in implicit 

sequence learning after a one-year 

delay period, suggesting robust 

consolidation processes.  
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Length of the offline period 

Previous consolidation studies examined only a shorter stretch of time, so the question remained 

of what happens in consolidation after 12 or more than 12 hours. The second part of the thesis 

focused on these issues.  

In the study of Chapter 3.2 we investigated the time course of implicit sequence learning 

by comparing the performance after 12-, 24-hour, and 1-week delays from the initial learning 

session (Nemeth & Janacsek, 2011). We focused on the consolidation of implicit sequence-

specific learning, and separately, general skill learning between young and elderly adults. The 

aim of the study was to determine a time point in a longer stretch of time at which improvement 

can still be observed in consolidation, and analyze its possible age-related differences. In the 

young adults, the researchers found offline improvement of the general skill after all three delay 

periods, with a gradual decline among delays. Although no offline improvement was found in 

sequence-specific learning with any of the consolidation intervals, it did not decrease 

significantly between sessions for young participants, suggesting that sequence-specific 

knowledge consolidated well. Thus, according to these results, offline general skill learning is 

influenced by the time course. In contrast, offline sequence-specific learning is not affected by 

the length of the offline period, since the consolidation of sequential knowledge had already 

occurred after a 12-hour delay, and did not differ from the 24-hour and 1-week delay conditions.  

These results are congruent with recent theories of consolidation (Press et al., 2005; 

Robertson et al., 2005; Shadmehr & Brashers-Krug, 1997; Shadmehr & Holcomb, 1997; 

Walker, Brakefield, Hobson, et al., 2003), which claim that memory stabilization occurs during 

the first 5-6 hours after learning. The strong offline improvement of general skill that was 

observed after 12 hours may reflect this first stabilization process of memory traces, includ ing 

the previously mentioned critical time period (Nemeth & Janacsek, 2011). In addition, 

consolidation of sequence-specific information was similar in the 12-, 24-hour, and 1-week 

offline periods, independently of time course. These results suggest that the stabilization of 

sequence-specific memory is a faster process because it had already occurred after 12 hours and 

did not differ from the other delay conditions. In contrast, in the case of general skill learning, 

further changes were observed after longer time intervals (e.g., 24-hour and 1-week delays) 

compared to the 12-hour delay condition (Nemeth & Janacsek, 2011). In recent studies (Kobor, 

Janacsek, Takacs, & Nemeth, submitted; Romano Bergstrom et al., 2012)(Chapter 3.5), 
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retention of the sequence-specific knowledge was found after a full year, suggesting that 

sequence knowledge without further practice is stable even after much longer periods. 

 

Perceptual and motor factors of sequence learning 

Another major debate in the field of sequence learning is whether we rely on “our hands” or on 

“our eyes” during learning (Keele et al., 2003; F. Kemény & Lukács, 2011; Mayr, 1996; 

Nemeth et al., 2009; Song et al., 2008; Ziessler & Nattkemper, 2001) (see Chapter 2.5 and 3.4). 

In the classical sequence learning paradigms, such as the SRT and ASRT tasks, exactly what 

the participants learn is not clear: They might learn the sequence of the stimuli (perceptual 

learning), the sequence of their own eye movements (oculomotor learning), the sequence of 

response locations (response-based learning), or the sequence of given finger movements 

(effector-based learning) (A. Cohen et al., 1990; Remillard, 2003; Willingham, 1999). These 

factors determine not only the online learning process but also the consolidation of sequence 

knowledge. 

In an SRT study, Willingham (1999) used two conditions to examine the perceptual and 

the motor factors of learning. In one condition, the stimulus–response mapping was changed in 

the transfer (test) phase that followed the learning phase, so that half of the participants had to 

press the same sequence of keys as in the learning phase but saw new stimuli (motor condition), 

whereas the other half had to press a different sequence of keys as in the learning phase but saw 

the same stimuli as before (perceptual condition). Willingham (1999) found that transfer was 

shown only when the motor sequence was kept constant, and not when the perceptual sequence 

was constant. In Chapter 2.5, Nemeth et al. (2009) compared the magnitude of perceptual and 

motor components of implicit sequence learning using a modification of the ASRT-task in a 

similar design.  

In the ASRT-Race task, the stimuli were the left, right, up, and down arrows, which 

appeared in the center of the screen (minimizing oculomotor movements). In the learning phase, 

participants had to mentally rotate the arrows by 90 degrees to the right, and press the button 

corresponding to this rotated arrow. In the transfer phase, the stimulus-response mapping 

changed and participants no longer had to rotate the arrows (rather, they had to press the left 

button when seeing the left arrow). Half of the participants were assigned to the perceptual and 

the other half to the motor condition. In the perceptual condition, the perceptual sequence was 

the same, but the motor sequence (key presses) changed compared to the previously practiced 

sequence. Conversely, key presses followed the previously learned sequence and the perceptual 

information (the sequence of the stimuli displayed on the screen) changed in the motor 
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condition. The goal of comparing the participants’ performance between these two conditions 

was to determine whether the contribution of perceptual and motor component was the same as 

or different from the learning (for more details see Chapter 2.5, Nemeth et al., 2009). This task 

involves second-order probabilistic sequences, whereas classical SRT tasks use determinis t ic 

sequences. ASRT-Race also allows “pure” sequence learning to be measured separately from 

general skill improvements, where sequence learning is reflected in the difference between the 

reaction times to more as opposed to less predictable events. In addition, this task elimina tes 

the possibility of oculomotor learning, as stimuli always appear in the same central position on 

the screen. In contrast to Willingham’s findings, Nemeth et al. (2009) demonstrated that not 

only motor but also perceptual learning of second-order probabilistic sequences is possible. 

Furthermore, Nemeth et al. (2009) showed that the two types of learning do not differ 

significantly in magnitude.  

Although several studies have investigated the perceptual and motor components of 

online sequence learning (N. Deroost & E. Soetens, 2006; Mayr, 1996; Nemeth et al., 2009; 

Remillard, 2003, 2009; Song et al., 2008), to our knowledge, the effect of consolidation on the 

perceptual and motor characteristics of learning has received less empirical attention. The goal 

of the study in Chapter 3.4 (Hallgato et al., 2013) was to fill this gap by investigating how the 

offline period modifies motor and perceptual components of implicit sequence learning. This 

issue is of particular interest because it deals with the question of whether sequence learning 

and consolidation are mediated primarily by perceptual or by motor brain networks (N. Deroost 

& E. Soetens, 2006; Goschke, 1998). Hallgato et al.’s study investigated the role of 12-hour 

and 24-hour delay on the perceptual and motor components of implicit sequence learning using 

the ASRT-Race task while eliminating oculomotor learning. In addition, they aimed to explore 

the role of sleep in offline consolidation of these two factors of learning. Therefore, a 12-hour 

delay was administered between the learning phase and the transfer phase of the experiment, 

during which participants either slept (night group) or stayed awake (day group). They found 

significant sequence learning in the learning phase. Moreover, after the 12-hour and the 24-

hour offline period, they found a significant learning effect in both the perceptual and the motor 

conditions; however, the transfer in the motor condition was more effective compared to the 

perceptual condition. They did not find any sleep effect on sequence learning in either 

condition. 

The weaker consolidation of the perceptual component of sequence learning is in 

agreement with the results of Deroost and Soetens (2006) and Willingham (1999), who found 

evidence of perceptual learning only under specific conditions. According to several studies, 
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perceptual learning only takes place when the structure of the sequence is simple, but in the 

case of deterministic sequences with second-order dependencies and probabilistic sequences 

with first-order dependencies, perceptual learning is absent or only weakly present (N. Deroost 

& E. Soetens, 2006; Mayr, 1996; Remillard, 2003). In addition, previous studies found 

perceptual learning in explicit conditions (Russeler & Rosler, 2000) and when a motor sequence 

was learned concurrently (Mayr, 1996). In Chapter 3.4’s study (Hallgato et al., 2013), 

participants had no conscious awareness at all of the structure of the sequence. The only 

condition that met Deroost’s (2006) criteria is that in the learning phase, participants learned 

the perceptual and motor components concurrently. Compared to Nemeth et al. (2009), who 

found similar magnitudes of perceptual and motor learning immediately after the learning 

phase, in Chapter 3.4 (Hallgato et al., 2013) we found a weaker perceptual learning effect in 

the transfer phase both after a 12-hour and a 24-hour delay. As the only difference was the 12-

hour or the 24-hour delay, Hallgato et al. supposed that the differences between the results of 

the two studies can be related to the consolidation period only. Thus, this criterion, where in the 

Learning Phase, participants learned the perceptual and motor components concurrently, can 

be enough to infer that significant perceptual learning occurs immediately after the learning 

phase (B. Meier & Cock, 2010; Nemeth et al., 2009; Weiermann et al., 2010). However, it 

might also result in weaker consolidation after the delay period. One potential explanation for 

this is that brain structures underlying the perceptual and motor components of sequence 

learning are disconnected in the offline periods, and the perceptual component might be more 

sensitive to interference effects. To put the puzzle together, we propose that the consolidat ion 

period has a differential effect on the motor and perceptual components of sequence learning, 

so that in the transfer phase, the motor component is larger than the perceptual one. However, 

more investigations are needed to determine the potential background mechanisms of this 

phenomenon. 

Beyond the question of the perceptual and motor components of learning, Hallgató et 

al.’s study (Chapter 3.4) has relevance for the sleep debate in consolidation as well (Debas et 

al., 2010; Doyon, Korman, et al., 2009; Gerván & Kovács, 2007; Karni, 1994; Robertson, 2009; 

Song, 2009; Stickgold & Walker, 2005; Walker et al., 2002). In this study we also found that 

sleep does not benefit sequence learning. In addition, the role of sleep in the consolidation of 

motor and perceptual factors of implicit sequence learning exhibits no difference. Another 

plausible explanation is that in the probabilistic sequence learning task used in this study, in 

addition to the primary sensory and motor brain regions, the subcortical structures and 

cerebellum are more involved (Doyon, 2008; Okihide Hikosaka et al., 1999; O. Hikosaka et al., 
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2002). This contrasts with the more basic finger tapping tasks, where sleep-dependent 

improvement has usually been found (Walker et al., 2002) (see also Chapter 3.1 and 3.3) 

 

The effect of aging on consolidation 

As implicit sequence learning is highly dependent on the integrity of the striatal network, and 

age-related structural and biochemical losses are pronounced in the striatal complex and 

connected prefrontal areas (Dennis & Cabeza, 2011; Raz et al., 2005; Anna Rieckmann & 

Bäckman, 2009), how online and offline sequence learning is affected by aging is an important 

question. 

Several studies have shown that older adults exhibit online implicit sequence-specific 

learning comparable to young adults for simple repeating patterns in the SRT task (Brown, 

Robertson, & Press, 2009; Fraser, Li, & Penhune, 2009; Frensch & Miner, 1994; D. V. Howard 

& Howard, 1989, 1992). However, more recent studies have reported that although older adults 

can learn higher-order sequence structure, they show age-related deficits in doing so (Curran, 

1997; D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Nemeth & Janacsek, 2011; 

Nemeth, Janacsek, Londe, et al., 2010). For example, using a version of the ASRT task, Bennett 

et al. (2007) found that old persons were able to learn even third-order dependencies (1RR2RR3 

where R is a random element), although they learned less than the young control group.  

Only a few studies have investigated the consolidation of implicit knowledge in older 

persons (Brown et al., 2009; Fraser et al., 2009; Nemeth & Janacsek, 2011; Nemeth, Janacsek, 

Londe, et al., 2010; Siengsukon & Boyd, 2009a, 2009b; Spencer et al., 2007) (see Chapter 3.1 

and 3.2). Spencer et al. (2007), for example, used an implicit contextual version of the SRT task 

in order to specifically examine the effect of sleep. In a previous study, they found sleep-related 

offline improvement in this version of the task among young adults (probably because it’s 

contextual component; Spencer et al., 2006). In older subjects, however, neither offline 

improvement nor a sleep effect was shown (Spencer et al., 2007). Compared to young adults, 

elderly participants showed deficits in consolidation. Similarly, Brown et al. (2009) found age-

related consolidation deficits using the classical version of the SRT task. Nevertheless, neither 

Spencer et al. (2007) nor Brown et al. (2009) could distinguish general skill learning from 

sequence-specific learning in their tasks. As the ASRT task has been shown to yield offline 

general skill learning, but not offline sequence-specific learning in young adults (Song et al., 

2007b), it is important to differentially analyze these two aspects of implicit sequence learning 

in older adults as well. 
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In Chapter 3.1 we investigated implicit sequence learning after a 12-hour offline period 

(Nemeth et al., 2010). The novelty of this research in comparison to previous studies of 

consolidation in older adults (Brown et al., 2009; Siengsukon & Boyd, 2009a; Spencer et al., 

2007) was that 1) it used probabilistic second-order sequences, and 2) it dealt separately with 

general skill and sequence-specific learning. The researchers showed that general skill learning 

improved offline in both the young and older groups, with the young group improving more 

than the old group. However, the improvement was not sleep-dependent, in that it was not 

relevant whether the 12-hour offline period included sleep or not. In the case of sequence-

specific learning, they found no offline improvement in either group.  

In Chapter 3.2, we investigated the consolidation of implicit sequence learning by 

comparing the performance after 12-, 24-hour, and 1-week delays from the initial learning 

session in young and elderly adults (Nemeth & Janacsek, 2011). In the young adults, the 

researchers found offline improvement of the general skill after all delays, with a gradual 

decline among them. The elderly adults showed offline improvement of the general skill only 

after the 12-hour offline period, and this improvement was weaker than that in the young group. 

Although the pattern in age groups is similar, these results suggest that the offline course of 

general skill learning may be affected by aging, since we did not find improvement either after 

a 24-hour or 1-week delay in the elderly group. No offline improvement was found in sequence-

specific learning in either age group with any of the consolidation intervals. Sequence-specific 

learning did not decrease significantly between sessions for young participants, suggesting that 

sequence-specific knowledge was well consolidated in this group, whereas the older group 

showed weaker consolidation in all delay conditions compared to the younger group. Thus, 

according to these results, offline general skill learning is influenced both by the time course 

and aging, while the offline sequence learning is affected only by aging.   

The differences between the young and old groups suggest that older participants are 

more sensitive to the time course in general skill learning, in that they showed no offline 

improvement even after the 24-hour delay. Regarding the practical consequences, the 

differences among the 12-, 24-hour, and 1-week consolidation intervals suggest that during new 

skill acquisition, it could be important to hold the training sessions closer together for optimal 

performance, with shorter intervals for elderly participants (Nemeth & Janacsek, 2011). 

In the case of sequence-specific learning, older people show deficits both in online 

learning when the sequence structure is more complex and in the consolidation of sequence 

knowledge. A recent neuroimaging study (Dennis & Cabeza, 2011) found that elderly 

participants recruited medial temporal lobe structures in implicit sequence learning tasks, 
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suggesting that compensation mechanisms are present to perform to an optimal level in these 

tasks. However, further studies are needed to precisely determine these compensation 

mechanisms and their potential role in age-related dementia and rehabilitation programs.  

 

Conclusion and remaining questions 

Taken together, we can conclude that consolidation is not a single process; instead, there are 

multiple mechanisms in the offline period (e.g. general skill, sequence-specific processes), 

which are differently influenced by the task demand, awareness of the sequence, the length of 

the delay period, perceptual and motor factors, and the age of the participant. Contradictions in 

this field can occur due to low or absent control of these factors of sequence learning. For 

example, sleep does not benefit sequence learning performance in the case of probabilis t ic 

sequences (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), because such sequences 

are more complex and implicit compared to simple and explic it sequence structures such as 

those used in finger tapping tasks. Consequently, the awareness of the sequence structure can 

modify the role of sleep in the consolidation process (Robertson, 2009; Robertson, Pascual-

Leone, & Press, 2004; Song, 2009).  

The length of the delay period between the learning and testing phase is also an 

important factor that differentially modifies general skill and sequence-specific learning. In the 

case of general skill learning, the length of the delay is critical: The highest offline improvement 

is observed after shorter delay periods (Nemeth & Janacsek, 2011). In contrast, the delay period 

has less effect on sequence-specific learning: Retention of the previously acquired knowledge 

has been observed after one week (Nemeth & Janacsek, 2011) and even one year (Romano et 

al., 2010), but without additional offline improvement. Separating the perceptual and motor 

factors of learning can further elucidate this issue in that consolidation of motor sequence 

learning is more robust than perceptual factor of sequence learning. Nevertheless, more 

investigations are needed to replicate this finding and further detail its potential background 

mechanisms. Finally, one of the most important factors that must be taken into consideration is 

the age of participants, since several studies found significant age-related deficits in the 

consolidation of both sequence-specific and general skill learning in elderly adults (Brown et 

al., 2009; Nemeth & Janacsek, 2011). 

Further studies of sequence consolidation should take these factors into consideration 

and investigate the following issues: 1) How consolidation affects implicit sequence learning 

in childhood in the separate cases of general skill learning and sequence-specific learning; 2) 
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whether there is differential consolidation of the perceptual and motor factors of sequence 

learning in older ages; 3) how the length of delay modifies the consolidation of explic it 

sequence knowledge in the case of general skill and sequence-specific learning; and finally 4) 

whether the length of delay has a differential effect on perceptual and motor consolidation in 

the case of explicit sequence learning. 

Ultimately, we know a lot about the biological background of online implicit sequence 

learning (Albouy et al., 2008; Dennis & Cabeza, 2011; Doyon, Bellec, et al., 2009; Keele et al., 

2003; Kincses et al., 2008; Poldrack et al., 2005; Rieckmann et al., 2010; Sefcsik et al., 2009). 

However, there is a huge gap in our knowledge related to brain plasticity during consolidat ion. 

Future neuroscientific investigations should address this question, while controlling for the 

above-mentioned factors, especially the differentiation between general skill and sequence-

specific learning. These distinctions can contribute to developing a more sophisticated picture 

of brain-consolidation-behavior interactions.  
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