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Chapter 1

Preface

Bin Packing is a classical area of Combinatorial Optimization, and First Fit (FF for short) is
among the most famous algorithms. The bulk of the dissertation contains several tightness results
of the author which are connected with different versions of FF . These tight results are found
after forty years of the definition of the algorithm.

These results are as follows. First we consider the FFD algorithm, which is the ordered
version of the FF algorithm. For any OPT value (i.e. the number of the used bins in an optimal
solution) we determine at most how many bins are used by FFD. These tight values were known
only for few OPT values before. By this investigation a long-standing open question is answered.
Then we deal with FF , and we again give a complete characterization of the worst-case behavior
of the algorithm: given the value of the optimum, we determine how large the number of the bins
given by FF can be. This result includes the determination of the absolute approximation ratio of
FF , a question that was open also for forty years. Then we consider the parameterized version of
FF , where the size of each item is bounded above by 1/d, for a given integer d. We make the same
complete characterization of FF , answering an open question after forty years. Then we deal with
FF for cardinality-constrained bin packing, where each bin can contain only a bounded number of
items. For this problem we determine the tight value of the asymptotic approximation ratio of the
FF algorithm, answering again a question that was open for about forty years. In the last chapter
we consider two special models: Batched bin packing and Graph-bin packing. We show that by
application of the FFD algorithm improved results can be obtained.

In almost all cases, we use several kinds of weighting functions. We will come across with such
weighting function that was used previously, but we use it in a new, more effective form. Further
ones have some new feature, composed from several parts, such kinds of weighting functions were
never applied before. By the deeper understanding and more sophisticated usage of these weighting
functions we became able to determine the above mentioned tight results.

Since the total of the complete proofs would be long and technical we rather give only the key
ideas of the proofs. The omitted details are put into the Appendix.

In any of the listed results the author’s contribution was significant; however, some of the
results have been achieved in part with coauthors. At the beginning of each chapter it is made
clear what is the contribution of the present author. The author is grateful for the help obtained
from his coauthors and other colleagues. Special thanks are due to the ”fathers”, who discovered,
introduced and established this nice Combinatorial Optimization area: Bin Packing!
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Chapter 2

Introduction

Given a set of items with sizes p1, p2, . . . , pn (positive rational numbers between 0 and 1), the Bin
Packing problem (BP for short) asks for the minimum number of unit-capacity bins, into which
all items can be packed in such a way that the sum of the sizes of items being packed into each bin
(called level of the bin) is at most 1. The problem belongs to the area of combinatorial optimization
and it is well-known to be NP -hard (see e.g. [14] or [43]). BP was ”born” in the early seventies,
Johnson’s thesis [53] on bin packing together with Graham’s work on scheduling [46, 47] belong
to the early influential works that started and formed the whole area of approximation algorithms.
These kinds of algorithms run in polynomial time, and they find optimal or near-optimal solutions,
in some sense.

Similarly to other problems, generally two main versions of BP are considered, the offline
and the online case. In the offline case all information about the data are known before running
an algorithm, while in the online case (applying the so-called List Model) the items are revealed
one by one, and each item must be packed without any information on the later items. In this
dissertation we consider only the offline case, although algorithm FF (which will be defined soon)
can be seen also as an online algorithm. Thus, we suppose that all items are known before the
algorithm starts to make the packing.

Johnson considered several ”Fit-type” algorithms in his thesis, like First Fit, Best Fit, and
others. We define these algorithms below. (Algorithm First Fit probably appears first in the work
of Ullman in 1971 [74].)

The First Fit (FF for short) algorithm packs the items in a given order. The next item is
always packed into the first bin where it fits, possibly opening a new bin if the item does not fit
into any currently open bin. We call the algorithm First Fit Decreasing (FFD for short) if the
order of the items is decreasing by sizes. In the parameterized version of bin packing (and the
parameterized version of FF ), it holds that pi ≤ 1/d for every i ∈ {1, ..., n} with some integer
d ≥ 1. Moreover, in case of the Cardinality Constrained Bin Packing problem (CCBP for short),
an integer parameter k is also given and the further condition is that each bin can contain at most
k items.

Algorithm Best Fit (BF for short) packs the next item into the most loaded bin (i.e. the bin
with the highest level) where it fits. If no bin can accommodate the new item, it is packed into a
new bin. There are also many other algorithms (see [14] for a review), but we will deal only with
some versions of FF and BF in this dissertation.
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The efficiency of a bin packing algorithm usually is measured by approximation ratio. Its two
main versions are the asymptotic and the absolute approximation ratios. We define them below.
Let L denote the set of the items to be packed. (If the set is ordered, it is often called a list.) Let
OPT denote an optimal offline algorithm, and A an arbitrary packing algorithm. LetOPT (L) and
A(L) denote the number of bins created by them to pack the items of L, respectively. The absolute
and asymptotic approximation ratio of A are defined as

Rabs(A) = sup
L
{A(L)/OPT (L)} ,

and
Ras(A) = lim

n→∞
sup
L
{A(L)/OPT (L) | OPT (L) ≥ n} .

Later on, if it does not make any confusion, we simply omit the letter L. It turns out that the
asymptotic ratio of many algorithms can be determined quite easily, but determining the tight value
of the absolute ratio is much harder.

The proof that the asymptotic approximation ratio of FF bin packing is at most 1.7 was given
by Ullman [74] and the matching lower bound by Garey et al. and Johnson et al. [45, 55]. These
results were among the first results on approximation algorithms. An estimate about the absolute
ratio appeared only in 1994, when Simchi-Levy [73] proved that it is at most 1.75 for both FF
and BF . A detailed description about how these bounds have been improved in time will be given
in Chapter 4. We note here only the final results about these, as we found it in our present papers
[23, 24]: The tight absolute bound for FF is given as FF ≤ 1.7 · OPT . In fact, the truth is the
following: For any input L it holds that

FF ≤ b1.7 ·OPT c,

moreover for any integer m, there is an input L such that OPT (L) = m and BF (L) = FF (L) =
b1.7 · OPT (L)c. (Algorithm BF can be seen as a generalization of FF , as it is explained in [24]
in detail. It follows that any lower bound for FF applies immediately toBF , and any upper bound
for BF applies also for FF .) We emphasize that in this way we give a complete characterization
for the worst-case performance of FF . Such information was previously known only for fewOPT
values. In this way a question is completely answered, which question was open for forty years.

Let us consider FFD now. Johnson in his doctoral thesis [53] proved in 1973 that FFD(L) ≤
11/9 ·OPT (L) + 4 holds for every list L of items. He also showed that the asymptotic coefficient
11/9 is tight. There were some attempts to decrease the additive term, we will see the complete
history about this in the next chapter (Chapter 3). The final value is found as FFD(L) ≤ 11/9 ·
OPT (L)+6/9 in our papers [20, 21]. Considering the absolute bound, it is trivial that ifOPT = 1,
then FFD creates also only one bin, while if OPT = 2, in the worst case FFD creates 3 bins,
so the absolute bound is at least 3/2, and it is easy to see that it is not bigger. Nevertheless, there
are some questions which seem to be quite trivial, but they aren’t. For example, does there exist an
instance L of bin packing for which OPT (L) = 5 and FFD(L) = 7 hold? Not having the tight
upper bound at hand, even this innocent-looking problem was unsolved until our recent work [79];
actually the answer is negative. So, the complete answer regarding the worst-case performance of
FFD also needs to determine the next: for any givenm, ifOPT = m, what is the biggest possible
value of FFD? The answer is the next. On one hand,

FFD(L) ≤ b11/9 ·OPT (L) + 6/9c
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holds, and on the other hand, for any integer m there is an L for which OPT (L) = m and the
above inequality holds with equality. It means that we could make a complete characterization
regarding FFD. This question was open also for forty years. As the complete proof would need
70 pages, some parts of the proof will be put into Appendix A and Appendix B.

In Chapter 5 we deal with the parameterized model where each item has a size bounded from
above pi ≤ 1/d (i = 1, ..., n), for a given integer d. Here we give the complete characterization
of the FF algorithm in the above sense: how large can FF be in the worst case if OPT is given.
This question is answered after about forty years.

In Chapter 6 we deal with bin packing with cardinality constraints (BPCC), there we give a
short introduction to the BPCC model about the existing results. In this model there is an upper
bound k ≥ 2 on the number of items that can be packed into each bin, additionally to the standard
constraint on the total size of items packed into a bin. We study the algorithm FF , that acts on a
list of items, packing each item into the first bin that contains at most k−1 items and has sufficient
space for the item. We present a complete analysis of its asymptotic approximation ratio for all
values of k ≥ 3. Prior to this work, only the tight bound for k = 2 was known. After forty years
that the problem BPCC and the natural algorithm FF for it were introduced, its tight asymptotic
approximation ratio for all values of k is finally found.

Finally in the last chapter (Chapter 7) we consider two related, but more difficult models, where
applying FFD (as a servant algorithm) we can make efficient approximation. Actually, with my
co-authors we have defined and investigated several new models in the recent years.

a, Bin packing with rejection [49, 30], here any item can be rejected (i.e. it is not packed) by
some cost incurred. The total cost is the number of used bins plus the total penalty, given for the
unpacked items, which is to be minimized.

b, A general model of scheduling with machine cost [32].
c, A bin covering model with a general cost function [7].
d, Batch scheduling with nonidentical job sizes [34]. In this model there are jobs with different

sizes (processing times), these jobs can be scheduled in batches on a single machine or on parallel
machines. The makespan is to be minimized. (This model is a common generalization of bin
packing and parallel machine scheduling.) The parallel machine case was never considered before,
and for the single machine case we gave an improved algorithm.

e, Three new versions of the selfish bin packing game [64, 81, 29].
f, Several new reassignment models on two related machines, for example in [80].
g, Black and White bin packing [3, 4, 5]. Here the items have size and color (black or white),

and in any bin, two consecutive items cannot have the same color.
h, Colorful bin packing [28]. This is a generalization of Black and White bin packing for more

colors, with a similar constraint.
i, The Graph-Bin Packing Problem [11], here a graph should be packed into another graph

under several natural constraints. This is a very general model, a generalization of many other
known models.

j, Multiprofessor Scheduling [35]. This is also a general model, a common generalization of
several scheduling models.

In many cases when a new model is defined and investigated for the first time, it is a natural
idea to apply the adaptation of ”classical” algorithms, trying whether they can perform well also
for the new problem. And it often turns out that they are really efficient, we made such experiments
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in case of many of the models listed above. There is not enough space here to describe all the above
models and results, thus we consider only one of them (model i), where we deal with Batched bin
packing and Graph-bin packing. These models will be defined and treated in the last chapter in
details. We will see that an appropriate application of FFD performs quite well; we determine the
tight asymptotic approximation ratio of the adopted algorithm.

To shed light on the ”usefulness” of algorithm FF a bit more, we mention three further results.
(i) In our paper [33] we consider the ”LIB” constrained online bin packing model (this model

is not listed above). The ”LIB” constraint means that in any bin, no item can be packed on the top
of some smaller item. We concentrated only on algorithm FF (since this algorithm was proven
to have the best performance ratio) and we gave a more careful analysis of FF under the LIB
constraint. It is shown that the (absolute) approximation ratio of FF is not worse than 2 + 1/6 ≈
2.1666 for the problem, which improves the previous best upper bound 2.5 of Epstein [37].

(ii) Another interesting case is model d, listed above. Here we revisit the bounded batch
scheduling problem with nonidentical job sizes on single or parallel identical machines, with the
objective of minimizing the makespan. For the single machine case, we present an algorithm which
calls an online algorithm P (chosen arbitrarily) for the one-dimensional bin packing problem as
a sub-procedure, and prove that its worst-case ratio is the same as the absolute worst-case perfor-
mance of P . Our (natural) choice is to apply FF as the servant algorithm. Hence, we gain an
algorithm with worst-case ratio 1.7, which is better than any known upper bound on this problem.
Since this is a combined model and we would not like to expand the length of this dissertation too
much (with defining the basic definitions and results also for scheduling), the whole introduction
of this combined model and the improved result for the single machine case is put into Appendix
E, about Batch Scheduling.

(iii) We mention also our paper [6] in which we determine the tight absolute approximation
ratio for online bin packing. We already know that the tight absolute ratio of FF is 1.7, but one can
detect that FF perform much better in average. So, it is a good idea to change FF, but only very
slightly: When FF would create a new 2-bin with certain properties (not detailed here), sometimes
we instead open a new bin for the next item (that would be packed into a 2-bin by FF, i.e. it would
be packed into a bin as a second item), and keep this bin only for a later large item to be packed
here. This algorithm is the first algorithm which has absolute approximation ratio exactly 5/3,
which is the value of the tight lower bound.

Above, we mentioned only directly relevant previous work for bin packing. Of course, there is
much more work on this topic; in particular, for the offline case there exist asymptotic approxima-
tion schemes for this problem [76, 56] as well as many other (classical or new) algorithms.

In the online case the known best lower bound is 1.5403 by [2], and the actual best upper
bound is 1.58889 due to Seiden [69], see also [86, 68, 77]. We refer to the classical survey [14],
another survey concentrating on online algorithms [16], the recent surveys on several variants of
bin packing [17, 18, 19], or to the recent book [78]. The interested reader can find more details
about FF in [36].

Finally some words about the proofs: We apply case analysis; within this, in many cases we
need the help of weighting functions. Such weighting functions were already used in the proof of
the asymptotic approximation ratio of FF , see [14]. This approach is frequently used for many
different problems and algorithms. We note that even in this dissertation, we need to find and apply
many different kinds of weighting functions; later we will see them in details.
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Chapter 3

The tight bound of algorithm FFD

First Fit Decreasing is a classical bin packing algorithm: the items are ordered by non-increasing
size, and then in this order the next item is always packed into the first bin where it fits. For an
instance L, FFD(L) and OPT (L) denote the number of bins used by algorithm FFD and by an
optimal algorithm, respectively. We are going to show that

FFD(L) ≤ 11/9 ·OPT (L) + 6/9.

This result is best possible, as we described it in the Introduction. The asymptotic coefficient 11/9
was proved already in 1973 by Johnson, but the tight bound of the additive constant was an open
question for four decades.

We apply in this section the results of [20] and [21]. The former paper of Dosa gives the tight
bound as a conjecture, and divides the proof into two main cases. The proof of the first main case
is completely given in [20], and the first steps are also made in the other main case (by making
a possible classification of the items, and a corresponding weighting function). (Paper [20] is an
extended version of a conference talk, and could not contain a long proof.) The complete proof
is then appeared in [21]. This proof is 70 pages long (it is only about 50 pages in the journal, by
decreasing the letter size). Regarding paper [21], the contribution of the author of this dissertation
is approximately 75%. For the first main case [21] gives a new classification (5 classes instead of 6
classes as in [20]), and so the proof of the first main case is shorter. And [21] provides also a new
classification for the second main case, and gives a complete proof also for this second main case.

History. Now, let us see the history of the upper bound of FFD. Johnson in his doctoral thesis
[53] proved in 1973 that

FFD(L) ≤ 11/9 ·OPT (L) + C

holds with C = 4 for every list L of items. He also showed that the asymptotic coefficient 11/9 is
tight; but the value of the additive constantC has quite a different story, the problem of determining
the best possible C remained open for many decades. (Note that Johnson’s thesis did not focus on
the tight value of the additive constant at all, but contained many great results, making the basis of
later investigations.)

It took more than ten years until Baker [9] published a slightly simpler proof of the upper bound
11/9 ·OPT (L)+C and showed that it is valid with C ≤ 3. Then in 1991, Yue [87] proved it with
C = 1; and in 2000 Li and Yue proved in [62] how the bound could be tightened further down to
C = 7/9. In that paper the authors also conjectured that the tight additive constant is 5/9. In [20],
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however, Dosa showed that 6/9 is a lower bound for C in general (and the paper also gives a sketch
of a possible proof that the bound is tight). After all those efforts the long-standing open problem
concerning the least value of the additive constant is answered in [21], giving the first complete
proof of the statement

FFD(L) ≤ 11/9 ·OPT (L) + 6/9, (3.1)

i.e. this is the tight bound. In fact, the paper proves much more.
It is trivial that if OPT = 1, then FFD creates also only one bin. If OPT = 2, in the worst

case FFD creates 3 bins, but never opens more. But what happens ifOPT is bigger? For instance,
does there exist an instance L for which OPT (L) = 5 and FFD(L) = 7 hold? Not having the
tight upper bound at hand, even this innocent-looking problem was unsolved until the recent work
[79]; actually the answer is negative.

We note that from our statement (3.1), for each integer m one can determine the largest k such
that OPT (L) = m and FFD(L) = k hold for some problem instance L. The complete table of
these tight upper bounds is in [20]. In order to obtain a handy formula, let us write OPT (L) in the
form OPT (L) = 9n+ i where n is an integer and, in a somewhat unusual way, i is taken from the
range 2 ≤ i ≤ 10. Then

FFD(L) ≤
{

11n+ i+ 1, 2 ≤ i ≤ 5;
11n+ i+ 2, 6 ≤ i ≤ 10;

(3.2)

or, in equivalent form,

FFD(L) ≤



11/9 ·OPT (L) + 5/9, i = 2;
11/9 ·OPT (L) + 3/9, i = 3;
11/9 ·OPT (L) + 1/9, i = 4;
11/9 ·OPT (L)− 1/9, i = 5;
11/9 ·OPT (L) + 6/9, i = 6;
11/9 ·OPT (L) + 4/9, i = 7;
11/9 ·OPT (L) + 2/9, i = 8;
11/9 ·OPT (L) + 0/9, i = 9;
11/9 ·OPT (L)− 2/9, i = 10;

(3.3)

and the bounds are tight for all values of n and i. Since FFD(L) always is an integer, (3.1) can be
written in the form FFD(L) ≤ b11/9 · OPT (L) + 6/9c, and hence one can easily see that (3.1)
implies (3.2) and (3.3). We emphasize that infinitely many elements of this table were not known
previously. (If one took the usual residue classes from 0 to 8, then the previous table would be a
little more complex, since there is a “jump” regarding the additive constant where i steps from 5
to 6, and also from 1 to 2, but no jump occurs when i changes from 8 to 0.) Only the trivial case of
n = 0 and i = 1 is not covered by the table; then OPT (L) = FFD(L) = 1.

Tightness. For completeness, here we describe instances which prove that b11/9 ·OPT (L) +
6/9c is really a lower bound for all values of OPT . The basic case is OPT ≡ 6 (mod 9), i.e. the
residue class for which the upper bound in (3.1) is an integer. (Our example below is a modification
of the one in [14], Chapter 2, page 16.) Afterwards, we shall describe tight instances for the other
residue classes, too. The case ofOPT ≡ 2 (mod 9), i.e. the other place where the additive constant
jumps, requires special care; the remaining seven cases turn out to be trivial consequences.
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Let ε be chosen to be a sufficiently small positive real number, i.e. let 0 < ε < 1/8.
For the case of OPT ≡ 6 (mod 9), let L be the instance composed from the following 9n + 6

fully packed bins (and the items therein):

• 6n+ 4 bins packed with {1/2 + ε, 1/4 + ε, 1/4− 2ε};

• 3n+ 2 bins packed with {1/4 + 2ε, 1/4 + 2ε, 1/4− 2ε, 1/4− 2ε}.

The table below displays how FFD distributes these items into bins.

# of bins 6n+ 4 2n+ 1 1 3n+ 1 1
items A, B C, C, C C, D, D, D D, D, D, D D

bin level 3/4 + 3ε 3/4 + 3ε 1− 5ε 1− 8ε 1/4− 2ε

ITEM CODE: A: 1/2 + ε; B: 1/4 + 2ε; C: 1/4 + ε; D: 1/4− 2ε

Consequently, FFD(L) = 11n+ 8, whereas OPT (L) = 9n+ 6.
Let us see now the class with i = 2. Here the example given for i = 6 can be modified as

follows. Let L be the instance composed from the items being packed into the following optimal
bins:

• 6n+ 1 bins packed with {1/2 + ε, 1/4 + ε, 1/4− 2ε};

• 3n+ 1 bins packed with {1/4 + 2ε, 1/4 + 2ε, 1/4− 2ε, 1/4− 2ε}.

On the other hand, the following table displays how FFD distributes these items into bins.

# of bins 6n+ 1 1 2n− 1 1 3n 1
items A, B B,C,C C, C, C C, C, D, D D, D, D, D D

bin level 3/4 + 3ε 3/4 + 4ε 3/4 + 3ε 1− 2ε 1− 8ε 1/4− 2ε

ITEM CODE: A: 1/2 + ε; B: 1/4 + 2ε; C: 1/4 + ε; D: 1/4− 2ε

Consequently, FFD(L) = 11n+ 3 = 11/9 ·OPT (L) + 5/9, whereas OPT (L) = 9n+ 2.
The tight examples for 3 ≤ i ≤ 5 are obtained by adding i − 2 items of size 1 to the example

for i = 2, and the examples for 7 ≤ i ≤ 10 are obtained by adding i − 6 items of size 1 to the
example for i = 6.

The rest of this chapter is devoted to the proof of the upper bound. This proof is neither easy
nor short. We do believe that a really short proof does not exist (although it is possible that the
current proof could be shortened a little bit). The problem seems like looking for a needle in a
haystack when the needle is not even there. As an even closer analogue, the presented proof is
similar to the situation where something important but little thing (the suspected counterexample)
is searched for in a big house. Since we do not know where it should be, we must look into every
room, in every room we must look into every cupboard, and in every cupboard into every case (in
fact, there will be many cases). We shall find bigger rooms with many places to consider, and also
smaller rooms, i.e. simpler cases. We can be sure that the searched thing is not in the house only if
we look into every place and find it nowhere.
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3.1 Preliminaries
The goal of this chapter is to prove the following theorem.

Theorem 3.1.1 9FFD(L) ≤ 11OPT (L) + 6.

The proof is split into four sections. In the current one we present some general observations,
whereas the arguments in the other sections will consider classifications of items according to their
sizes.

It is trivial that the assertion of the theorem is equivalent to (3.1). Since FFD(L) andOPT (L)
are integers, it will suffice to show that there does not exist any instance for which

9FFD(L) ≥ 11OPT (L) + 7 (3.4)

holds.
For every set of sizes a1 > a2 > · · · > al, any problem instance can be represented with a

“configuration vector” (n1, n2, . . . , nl) of length l, where ni ≥ 0 is the number of items of size ai
in the instance. Suppose on the contrary that the theorem is false, and let L be a minimal coun-
terexample. L is called minimal, if taking all item-sizes a1 > a2 > · · · > al in L, the configuration
vector of L is lexicographically minimal among all counterexamples that only contain items of
sizes in {a1, a2, . . . , al}.

Definition 3.1.1 Let us say that an item is larger than another item if the former appears before
the latter in the sorted order. Similarly, an item is called smaller than another item if the former
appears after the latter in the sorted order. (Hence these relations are defined also between items
of the same size.)

Observation 3.1.1 OPT (L) ≥ 2 and FFD(L) ≥ 4.

Proof. It is trivial that OPT (L) ≥ 2 must hold. Then (3.4) means 9FFD(L) ≥ 11OPT (L) +
7 ≥ 29, thus FFD(L) ≥ 4 also holds. 2

Let us choose an arbitrary (but fixed) optimal solution, and then denote the optimal bins as B∗i
for i = 1, . . . , OPT (L), and the FFD bins as Bj for j = 1, . . . , FFD(L). The sum of the sizes
of items being packed into a bin will be referred to as the level of the bin in question, and will be
denoted as l (B∗i ) and l (Bj), respectively. For an item U , we shall often denote by bin(U) the bin
into which U is packed by algorithm FFD.

From the minimality of the counterexample it follows that the last FFD bin contains only one
item, and no item arrives after this item, thus the only one item in the last FFD bin is the last (and
smallest) item. This specific item, and also its size, will be denoted as X . Let the items (and their
sizes) be pk for k = 1, . . . , n, where n stands for the number of items. We suppose without loss of
generality that the sizes of the items are non-increasing, i.e. p1 ≥ p2 ≥ · · · ≥ pn = X .

We also introduce the following notation. Let the k-th item of the i-th optimal bin be denoted
as A∗i,k for every i = 1, . . . , OPT (L), and analogously let the k-th item of the j-th FFD bin be
denoted as Aj,k for every j = 1, . . . , FFD(L). (Depending on context, we will sometimes use

9

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



more than one notation for the same item, and in all cases the notation is both for the item and
its size.) We assume without loss of generality that for every i and every k1 < k2 the inequality
A∗i,k1 ≥ A∗i,k2 holds, and A∗i,k1 arrives before A∗i,k2 in the order of the items. Similarly, Aj,k1 ≥ Aj,k2
follows from the FFD rule for every j and every k1 < k2, moreover Aj,k1 arrives before Aj,k2 in
the order of the items. A bin is called a k-bin if it contains exactly k items.

Clearly,
∑n

k=1 pk ≤ OPT (L) holds because all the items fit in the optimal packing into
OPT (L) optimal bins. Note that item X does not fit into any previous FFD bin, thus we get

l (Bi) > 1−X , i = 1, . . . , FFD(L)− 1. (3.5)

Lemma 3.1.1 X > FFD(L)−OPT (L)−1
FFD(L)−2 ≥ 2/11.

Proof. We apply (3.5) to get

OPT (L) ≥
n∑
k=1

pk = (X + l (B1)) +

FFD(L)−1∑
i=2

l (Bi)

> 1 + (1−X) (FFD(L)− 2) ,

from which the first inequality follows, while the second inequality is equivalent to (3.4). 2

Corollary 3.1.1 FFD(L) > OPT (L) + 1.

Proof. This fact follows from (3.4) and Observation 3.1.1, as

FFD(L) ≥ 11

9
OPT (L) + 7/9 =

2

9
OPT (L) +OPT (L) + 7/9

≥ OPT (L) + 4/9 + 7/9 > OPT (L) + 1.

2

From Lemma 3.1.1 we also see that no bin can contain more than five items, since the smallest
item is X > 2/11 > 1/6.

Corollary 3.1.2 X > d11/9·OPT (L)+7/9e−OPT (L)−1
d11/9·OPT (L)+7/9e−2 .

Proof. We apply (3.4), Lemma 3.1.1, and the facts that FFD(L) is an integer and the ratio
FFD(L)−OPT (L)−1

FFD(L)−2 is an increasing function with respect to FFD(L). 2

Definition 3.1.1 We say that an FFD bin Bj dominates an optimal bin B∗i if there exists an injec-
tive (but not necessarily surjective) mapping f : B∗i → Bj such that pk ≤ f(pk) holds for every
element pk ∈ B∗i .

Lemma 3.1.2 (Domination Lemma) There are no bins Bj and B∗i such that Bj dominates B∗i .
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Proof. First we note that the FFD packing always has the following special property: Omitting the
items being packed into a specific FFD bin, and running again FFD for the remaining items, we
get the same packing for them. Suppose that the FFD bin Bj dominates the optimal bin B∗i . Let
every item x ∈ B∗i satisfying x 6= f(x) be swapped in the optimal packing with its image f(x).
Having done this swapping procedure, Bj still dominates the optimal bin B∗i , and all items of B∗i
are packed into Bj in the FFD packing. If there are further items in Bj , let these items be also
(re)packed into the optimal bin B∗i . Then the other optimal bins (the original place of these items)
will have fewer items. Thus, finally the FFD bin Bj and the optimal bin B∗i will have the same
contents. Then omitting just their items, we get a smaller counterexample, what is a contradiction
to our minimality assumption. 2

Lemma 3.1.3 Each optimal bin contains at least three items.

Proof. By Lemma 3.1.2 an optimal bin with a single item cannot occur, since it will be dominated
by the FFD bin which has this item.

Suppose now that the optimal bin B∗i contains only two items, Y and Z, where Y ≥ Z. If Y
and Z are packed into the same bin by FFD, we get a contradiction to the Domination Lemma.
Assume that Y and Z are not packed together by FFD, and Y is packed before Z. If Y is not a first
item of an FFD bin, then its bin contains an item which is not smaller than Z, and we are done.
Otherwise, if Z is packed into a bin of a larger index than the bin of Y , then since Z does not fit
into the bin of Y , it is known that an earlier item joined Y in that bin. Finally, if Z is packed into a
bin of a smaller index than the bin of Y , then the first item of this bin is not smaller than Y . In any
case we got a contradiction to the Domination Lemma. Hence each optimal bin contains at least
three items. 2

Lemma 3.1.4 Each FFD bin but the last one contains at least two items.

Proof. Suppose that an FFD bin Bj contains just one element for some 1 ≤ j ≤ FFD(L) − 1.
Let this item be Y , and suppose that Y is packed into the optimal bin B∗i . There exists another
item, say Z, in this optimal bin. Then Y +Z ≤ 1, implying that Y +X ≤ Y +Z ≤ 1 (since X is
the smallest item), thus the last item X fits into this FFD bin, a contradiction. 2

Lemma 3.1.5 X < 1/4.

Proof. Suppose thatX ≥ 1/4. Then each (optimal or FFD) bin contains either at most three items,
or four items if each of these four items has size exactly 1/4. Let K be the number of optimal bins
containing four items; let us call these bins as special (optimal) bins, and the other optimal bins as
ordinary optimal bins. The items being in some special or ordinary bin will be called as special
and ordinary items, respectively. It holds that the size of any special item is exactly 1/4 (but there
can be ordinary items with size 1/4, as well). Note that in case X > 1/4 there is no special item.
We assume without loss of generality that all special items arrive after all ordinary items (including
ordinary items of size 1/4). This can be assumed by possibly swapping the location of items of
size 1/4 in the optimal solution.
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From Lemma 3.1.3 we get that every ordinary optimal bin contains exactly three items, thus
the number of items is 3(OPT (L)−K)+4K = 3OPT (L)+K. Moreover, the size of each item
is at most 1/2, and the items of the special optimal bins are (among) the smallest items.

Suppose that there are two consecutive FFD bins Bα and Bβ (β = α + 1) where Bα and Bβ

contain three and two items, respectively. If Aα,1 + Aα,2 ≥ Aβ,1 + Aβ,2, then because Aα,3 fits
into the α-th bin and Aα,3 ≥ X , it follows that X fits into the β-th bin, a contradiction. Thus
Aα,1 + Aα,2 < Aβ,1 + Aβ,2 must hold. Since Aα,1 ≥ Aβ,1, it follows that Aα,2 < Aβ,2. Thus Aβ,2
is packed before Aα,2, and it did not fit into the α-th bin, therefore Aα,1 + Aβ,2 > 1 and the bigger
of them exceeds 1/2, a contradiction.

Hence, the FFD bins at the beginning contain two items, the FFD bins after them contain three
items, and then there can be some FFD bins with four items (each item in these latter bins has size
exactly 1/4); and finally the last FFD bin contains only one item. Let ni ≥ 0 be the number of the
FFD i-bins, for i = 2, 3, 4. Then n2 + n3 + n4 + 1 = FFD(L), and the number of the items is
3FFD(L)− n2 + n4 − 2.

Suppose that n2 > 0. Then, since the sum of the sizes of any two items is at most 1, the first 2n2

items (in the non-increasing order) are packed pairwise into the first n2 FFD bins, and therefore

p2n2−1 + p2n2 +X > 1 (3.6)

holds (recall that pk denotes the size of the k-th item). Also recall that an item is said to be larger
than another item if the former appears before the latter in the sorted order.

Now let us consider the largest item, say item Y , which is a second item in some optimal bin,
i.e. consider the largest A∗i,2 item for the optimal bins.

It follows that item Y cannot occur later than the (OPT (L)−K + 1)-th item (since an item
can precede it only if it is a first item in some optimal 3-bin), thus A∗i,2 = pk2 for some k2 ≤
OPT (L)−K + 1. Let A∗i,1 = pk1 and A∗i,3 = pk3 . Then k1 < k2 < k3 must hold for these indices,
since we assume that the items in an optimal bin are sorted. The inequality

pOPT (L)−K + pOPT (L)−K+1 +X ≤ pk2−1 + pk2 +X ≤ pk1 + pk2 + pk3 ≤ 1 (3.7)

holds because of the non-increasing order of the items, and since X is the smallest item. Com-
paring (3.6) and (3.7) we see that in case of n2 > 0 we gain the next upper bound on n2:
OPT (L) ≥ OPT (L)−K ≥ 2n2. Also, the inequalities trivially hold if n2 = 0, thus

OPT (L) ≥ OPT (L)−K ≥ 2n2

hold in both cases. We state that min {K,n4} = 0, i.e. K and n4 cannot be positive at the same
time. Indeed, otherwise there exist both FFD and optimal bins with four items in each, and then
all these items have size exactly 1/4, contradicting the Domination Lemma.

First suppose that K = 0. Then the number of items is

3OPT (L) = 3FFD(L)− n2 + n4 − 2 ≥ 3FFD(L)−OPT (L)/2− 2

≥ 3 (11/9 ·OPT (L) + 7/9)−OPT (L)/2− 2

= 19/6 ·OPT (L) + 1/3 > 3OPT (L),

a contradiction.
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Now suppose that K > 0; then n4 = 0 follows. Recall that there are 4K > 0 special items.
We will need an upper bound on K. For this purpose consider the moment in the FFD packing
when all ordinary items are just packed. Let j be the number of the opened bins at this moment,
and let Z be the first item in the last (i.e. j-th) opened bin. If Z = X then there is no special item,
a contradiction. Thus Z precedes X . If Z = 1/4, then no special item can be packed into the first
j − 1 bins (since Z did not fit there either) and there are at least four special items, thus n4 > 0, a
contradiction. Thus Z > 1/4 follows. Since n4 = 0, only one bin, namely the last FFD bin will be
opened in the future, thus j = FFD(L)−1. There cannot be now two FFD bins each having level
at most a half. It follows that at most one special item fits into any opened bin at this time, with
at most one exception (and at most two special items fit into any opened bin). Thus at most j + 1
special items will be packed in the future into the already opened bins, moreover one special item
(i.e. X) will be packed into a new (i.e. the last FFD) bin, therefore FFD(L) + 1 ≥ 4K follows.
Then we get

3OPT (L) +K = 3FFD(L)− n2 − 2

=
FFD(L) + 1

8
+

23

8
FFD(L)− n2 −

17

8

≥ K/2 +
23

8
(11/9 ·OPT (L) + 7/9)− (OPT (L)−K)/2− 17

8

= (
23

8
· 11
9
− 1

2
)OPT (L) +

23

8
· 7
9
− 17

8
+K

=
217

72
OPT (L) +

1

9
+K > 3OPT (L) +K,

a contradiction completing the proof of the lemma. 2

Remark 3.1.2 This proof would be a little bit easier if we prove only X ≤ 1/4. Moreover it seems
hard to decrease the upper estimate on X further to 1/4− c for some constant c > 0.

At this point we already know thatX must lie in the interval (2/11, 1/4). The following lemma
will be very useful.

Lemma 3.1.6 (i) It holds that OPT (L) ≥ 8.
(ii) If X ≤ 1/5, then OPT (L) = 10, OPT (L) = 14, or OPT (L) ≥ 18.

Proof. Applying Corollary 3.1.2, for 2 ≤ OPT (L) ≤ 17 we get the following tables:

OPT (L) = 2 3 4 5 6 7 8 9 10
11OPT (L) + 7 29 40 51 62 73 84 95 106 117
d(11OPT (L) + 7)/9e 4 5 6 7 9 10 11 12 13
X > 1

2
1
3

1
4

1
5

2
7

2
8

2
9

2
10

2
11

OPT (L) = 11 12 13 14 15 16 17
11OPT (L) + 7 128 139 150 161 172 183 194
d(11OPT (L) + 7)/9e 15 16 17 18 20 21 22
X > 3

13
3
14

3
15

3
16

4
18

4
19

4
20
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In case of OPT (L) ∈ {2, 3, 4, 6, 7}, X > 1/4 would follow, contradicting the previous lemma.
Reference [79] contains the proof that in case of OPT (L) = 5 the value of FFD(L) is at most
6, which contradicts (3.4), but we give a simplified proof for completeness in Appendix A. Thus
OPT (L) ≥ 8 follows. Now assume that X ≤ 1/5 holds. Then, if OPT (L) ≤ 18, according
to the previous table, only the following cases are possible: OPT (L) = 10, OPT (L) = 14, or
OPT (L) ≥ 18. 2

Remark 3.1.3 Let us consider cases OPT (L) = 10 + 4k where k ∈ {0, 1, 2}. From (3.4) it
follows that in these cases FFD(L) ≥ 13+5k holds. If even FFD(L) ≥ 14+5k held, then from
Lemma 3.1.1 we would get X > (14+5k)−(10+4k)−1

(14+5k)−2 = k+3
5k+12

> 1/5. Thus supposing X ≤ 1/5 and
OPT (L) = 10 + 4k for some k ∈ {0, 1, 2}, only FFD(L) = 13 + 5k remains to be considered.
We will show later that this case is impossible.

During the packing process, we say that a bin is an open bin if there is at least one item already
packed into it. (All through the packing process, algorithm FFD keeps open each bin which is
already opened, and all bins will be closed only after packing the last item.) An item which is
packed into the currently last open bin is called a regular item, otherwise the item is called a
fallback item. A bin is denoted as (A,B,C) bin if A, B, and C are items, and exactly these items
are packed into that bin. Analogous notation will be used for bins containing fewer or more than
three items, too.

Lemma 3.1.7 Let B and C be two consecutive items in the (ordered) list L of the items, B preced-
ing C. If C is packed into a (G,C) FFD-bin, where G > 1/2, then the following two properties
hold.
(i) If B and C have the same size, then B is packed into a (H,B) FFD-bin where H and G are
two consecutive items in this order, and H and G have equal size.
(ii) If B is bigger than C, then B > 1−G.

Proof. Suppose that B ≤ 1 − G. Since B arrives before C, this means that B fits into bin(G).
It follows that B is packed into an earlier bin than bin(G). Since G > 1/2, it means that there
are k ≥ 1 consecutive items H1 ≥ H2 ≥ · · · ≥ Hk ≥ G > 1/2, packed one by one into
different, consecutive bins, such that B is packed into bin(H1) (and there may be further bins
before bin(H1)). Let us denote B as B1 in the following. Since H1 +B1 +X ≥ G+C +X > 1,
hence bin(B1) contains exactly two items, i.e. it is a (H1, B1) bin. Consider the moment when
B1 is packed. Since the next item C is packed into bin(G), and Hi + C ≤ H1 + B1 ≤ 1 for
any 2 ≤ i ≤ k, there must be a second item, say Bi, in any bin(Hi) for 2 ≤ i ≤ k at this time,
otherwise C would be packed there. Then Bi ≥ C trivially follows. Later no further item can be
packed into any bin(Hi) (as Hi + Bi +X ≥ G + C +X > 1), thus any bin(Hi) has exactly two
items, i.e. any bin(Hi) is a (Hi, Bi) bin, for 1 ≤ i ≤ k.

We shall use the following terms: the items of the set {B1, B2, . . . , Bk, C} are the considered
items, and their bins are the considered bins; the items being packed into non-considered bins are
ordinary items, the bins with smaller index than (H1, B1) are earlier bins, and the bins with bigger
index than (G,C) are later bins.

Suppose that H1 > G. We claim that decreasing the sizes of items H1, H2, . . . , Hk to the size
of G (referred to as change), exactly the considered items will be packed as second items into the

14

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



considered bins (possibly in another order), no more items will be packed there, and each ordinary
item coming before C will be packed into the same bin as before. Suppose that this claim is not
true, and let A be the first item for which the claim fails.

Case 1, Item A is an ordinary item, coming before C. If before the change A was packed into
an earlier bin, then A is packed into the same bin, as the change of the sizes of H1, H2, . . . , Hk and
the packing of the considered items (before A) cannot violate the packing of A. Otherwise before
the change A is packed into a later bin. Since before the change at the time of packing A there is
only one item, namely G in bin(G), and A was not packed there, G+A > 1 holds. Thus after the
change A is packed again into the same later bin.

Case 2, Item A is a considered item. It cannot be packed into an earlier bin, since the ordinary
items that are before A in the list are already packed there in the same bins as before the change.
On the other hand, since 1 ≥ Hi + Bi ≥ G + Bi, and at this time no ordinary item is packed into
a considered bin, A fits into a considered bin (as exactly k + 1 considered items are to be packed
into the same number of considered bins). As Bi ≥ C and G + C + X > 1, it is clear that any
considered bin remains a 2-bin.

We got a contradiction, thus the claim follows. It means that there exists a smaller counterex-
ample, which is a contradiction. It follows that H1 = H2 = · · · = Hk = G. Then k > 1 is
impossible, since then the largest Bi item (which is the first in the sorted order) must be packed
into the bin of H1 instead of bin(Hi).

Summarizing the results so far, we proved that in case B ≤ 1 − G it follows that B is packed
into an (H,B) FFD bin where H and G are two consecutive items in this order, H and G have
equal size, and (H,B) and (G,C) are two consecutive bins.

Then C < B ≤ 1 − G is impossible, because then decreasing the size of B to the size of C,
B would be packed into the same bin (as C does not fit into any earlier bin), and we would get a
smaller counterexample. It follows that in case C ≤ B ≤ 1−G either B = C or B > 1−G, thus
we proved both (i) and (ii). 2

Corollary 3.1.4 Given a (G,C) FFD bin, where G > 1/2, there are no items of size in (C, 2X].

Proof. From Lemma 3.1.7 (ii) it follows that there is no item in (C, 1−G]. Since in any optimal
bin there are at least three items, it follows that G ≤ 1 − 2X , thus 2X ≤ 1 − G, and we get
(C, 2X] ⊆ (C, 1−G]. 2

Corollary 3.1.5 Let (G,C) denote an FFD bin, and (G,A,B) denote an optimal bin, where G >
1/2, G denotes the same item in the two bins, but A, B and C are different items. Then any item
bigger than C is also bigger than A+B.

Proof. The claim follows directly from Lemma 3.1.7 (ii). 2

The last corollary will often be used in the later sections, since with its help many cases can
be omitted from consideration. We also state here a trivial observation, which will be used several
times.

Observation 3.1.2 Let (B,A1, A2, A3) and (G,A4, A5) denote two optimal bins, whereB > A4+
A5. Then the five items A1, A2, A3, A4, A5 fit into a common bin.
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This part of the work could be done generally to prepare the proof of the main result. Now we
need to introduce classifications on the items.

3.2 Case 1/5 < X < 1/4.
We put the items into some classes according to their sizes. Let Z be the smallest regular item in
interval (1−X

3
, 1
3
], if there exists at least one such item; otherwise let Z = 1/3. (The definition of

Z is a core matter here, by use of Z we can reduce the number of necessary classes from 6 to 5).
The classes are defined only on the basis of the values of X and Z. The classes are called giant,
big, medium, small, and tiny, and their item sets are denoted as G,B,M, S, T , respectively. We
also assign weights to the items being in the classes, as follows.

Name Class Weight
Giant 1

2
< G 23

Big 1−X
2

< B ≤ 1
2

18
Medium 1−Z

2
< M ≤ 1−X

2
15

Small Z ≤ S ≤ 1−Z
2

12
Tiny X ≤ T < Z 9

The classification of the items
in case 1/5 < X < 1/4.

Observation 3.2.1 The classes are well defined. Furthermore, if set S is not empty, then there
exists at least one item in class S with size exactly Z. Moreover, the size of each regular T item is
at most 1−X

3
.

Proof. Class T is well defined, since X < 1−X
3

< Z. Class S is well defined, since Z ≤ 1−Z
2

. The
further classes are also well defined, by 0 < X < Z. Now suppose that there exists at least one
item in class S. If Z = 1/3, then Z = 1−Z

2
, thus any S item has size Z = 1/3. Otherwise there

exists at least one regular item in the interval (1−X
3
, 1
3
], the smallest one has size Z, and it belongs

to class S. Now let A denote a regular T item. Since A is a T item, it follows that A < Z, but Z
is the smallest regular item in (1−X

3
, 1
3
], thus A cannot be in this interval and therefore A ≤ 1−X

3

follows. 2

Observation 3.2.2 For the ranges of X , Z, 1−Z
2

and 1−X
2

(the boundaries of the classes above)
the following inequalities are valid:

1/5 < X < 1/4 < Z ≤ 1/3 ≤ 1− Z
2

< 3/8 <
1−X

2
< 2/5 < 2X.

Especially, 1−X
2

< 2X holds.

Proof. Each inequality can be checked easily. 2

Let δ = (1 − X)/36. In the next lemma we find a relation between the sizes and the weights
of the items.
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Observation 3.2.3 The size of any item is strictly larger than δ times the weight of the item, except
possibly the giant items.

Proof. The size of a tiny item is at least X , while δ times its weight is 9δ = 1−X
4

< X by
Observation 3.2.2. The size of a small item is at least Z > 1−X

3
, while δ times its weight is 12δ =

1−X
3

. The size of a medium item is bigger than 1−Z
2
≥ 1/3, while 15δ = 15

36
(1−X) < 15

36
· 4
5
= 1

3
.

The size of a big item exceeds 1−X
2

, while δ times its weight is just 18δ = 1−X
2

. 2

For nonnegative integers c1, . . . , c5 and real c6 we write c1G + c2B + c3M + c4S + c5T > c6
to express that the inequality holds substituting (the size of) any c1 large, c2 big, c3 medium, c4
small, and c5 tiny items. We only require that the items must be distinct, some (or all) of them may
have the same size. Other kinds of inequalities involving any specific types of items are meant
analogously. For example, 3S > 1 − X holds since no S item is smaller than Z > 1−X

3
, thus

substituting any three S items, the sum of their sizes is bigger than 1−X .

Observation 3.2.4 The inequalities G ≤ 1 − 2X and G +M ≤ 1 hold for any G and M items.
Moreover no item has size in (1− 2X, 1].

Proof. Since each optimal bin contains at least three items, G ≤ 1 − 2X is valid. The second
statement follows from the facts that there is at least 2X room in a bin which contains only aG item
at that time, and M ≤ 1−X

2
< 2X holds for any M item, by Observation 3.2.2. Since G ≤ 1− 2X

holds for any giant item, and G is the biggest class, the size of any item is at most 1− 2X . 2

Let us introduce some further notation. A (C1, C2) bin denotes an FFD bin-type, where C1

and C2 are two different specified classes. For example (G,S) means an FFD bin which contains
exactly two items, a G item and an S item. 3-bins and 4-bins (i.e. bins containing 3 or 4 items)
will be denoted similarly.

We also use the term A-bin, where A is some class, to mean that some of the items in the bin
belongs to A. For example, G-bin (B-bin, M -bin, ...) denotes a bin which contains a G item (at
least one B item, M item, ..., respectively), among other items.

We will often use properties of the FFD packing, similar to the one highlighted in the previous
observation, in order to reduce the number of possible bin-types.

We denote the weight of an item A as w(A), the sum of the weights of all items as w(L), and
the weight of an optimal or FFD bin as w(B∗) or w(B), respectively. We define the reserve of an
optimal bin as r(B∗) = 44− w(B∗). When we define the weights of the classes, we do it in such
a way that no optimal bin will have weight more than 44, i.e. the reserves of all optimal bins are
nonnegative, and almost all of the optimal bins have positive reserve. Define the surplus of an FFD
bin as sur(B) = w(B)−36, if this value is nonnegative. Otherwise, let short(B) = 36−w(B) be
called its shortage. In case if the weight of every FFD bin is at least 36 (i.e. there is no shortage)
and the reserve of all optimal bins is nonnegative, we easily get that

36FFD(L) ≤
FFD(L)∑
k=1

w (Bk) = w(L) =

OPT (L)∑
k=1

w (B∗k) ≤
44

36
· 36OPT (L),

and the proof is done for such instances. Unfortunately, FFD bins with less weight (i.e. with
some shortage) may exist. But we prove that the total shortage can be covered by the reserves of
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the optimal bins plus the surplus of the other FFD bins, plus a required additive constant 27 (see
below). In this section the weight of the smallest class is w(T ) = w(X) = 9. Thus, the shortage
of the last FFD bin, which contains only the last item X , is 36−w(X) = 27, therefore the additive
constant just covers the shortage of the last FFD bin.

Let sur(L) and res(L) be the total value of the surplus and reserve of all FFD and optimal bins,
respectively, let the required additive constant 27 be denoted as rex(L), and finally let short(L)
be the total value of the shortage given by all FFD bins. Then we have

w(L) =

FFD(L)∑
k=1

w (Bk) = 36 · FFD(L) + sur(L)− short(L), (3.8)

w(L) =

OPT (L)∑
k=1

w (B∗k) = 44 ·OPT (L)− res(L). (3.9)

Suppose that

res(L) + sur(L) + rex(L) ≥ short(L) (3.10)

holds. Then applying (3.8) and (3.9), we have

36 · FFD(L) = w(L)− sur(L) + short(L)

≤ w(L) + res(L) + rex(L)

= 44 ·OPT (L) + 27.

Dividing by 36 and considering that 27/36 < 7/9 we get our main result. Thus in the remaining
part of this section our goal is to prove (3.10).

Let us see what kind of bins are possible, in terms of the distribution of the classes. First we list
all possible optimal bins, and then all possible FFD bins. In the last rows r means the reserve of the
optimal bins, while s denotes the value of the surplus or shortage of the FFD bins. If s is positive,
then it means surplus, and if it is negative, then it means shortage. The value of reserve, surplus
or shortage of the bins can easily be computed from the weights of the classes. The weights are as
given above, but we also include the weights here in the left column for the sake of easier checking
of reserve, surplus or shortage of a bin. The very last column for FFD corresponds to the last bin,
and there can be only one such bin. We use the required additive constant to cover the shortage of
the last FFD bin, thus we write 0 there for the remaining shortage.

Lemma 3.2.1 Only the following bin-types are possible.

OPT
23
18
15
12
9

G 1 1
B 1 1 1 1
M 1
S 1 2 1
T 1 2 1 1 2
r 0 3 2 2 5 8

2 1 1 1 1
2 1

1 1 3 2
5 5 8 2 11

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17
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FFD
23
18
15
12
9

G 1 1 1 1
B 1 2 1 1
M 1 1
S 1 1
T 1
s 5 2 −1 −4 0 −3 −6

1 1
1 1 1 1
1

1 2 1
1 2 1 1 2
8 5 6 6 3 0

2 1 1 1 1
2 1

1 1 3 2
3 3 0 6 −3

12
9

S 3 2 2 1 1
T 2 1 3 2 4
s 0 6 −3 3 −6 0

1
0

Proof. First let us check what kind of optimal bins are possible. Each optimal bin contains three
or four items. If the bin contains a giant or big item, then three further items do not fit into it, since
G + 3X > B + 3X > 1−X

2
+ 3X = 1

2
+ 5

2
X > 1. Thus, any optimal G-bin or B-bin contains

exactly two further items.
In aG-bin there cannot occur aB orM item, sinceG+B+X > G+M+X > 1

2
+ 1

3
+X > 1.

Two S items cannot be in a G-bin, since S ≥ Z > 1/4. Then only (G,S, T ) and (G, 2T ) optimal
G-bins are possible. Two B items cannot be in an optimal bin, because 2B + X > 1. Since
B+M+S > 2M+S > 1, if an optimalB-bin contains also anM item, then its third item cannot
be an S item, only a T item.

Let us consider the optimal bins whose largest item is some M item. Using 2M + 2X >
2M +S > 1, if the bin contains two M items, then only one T item can fit into it. Suppose the bin
contains one M item. Using M + S + 2T > 1−Z

2
+ Z + 2X > 1

2
+ 5

2
X > 1, if the bin contains

one M item and also at least one S item, then two further items cannot fit into the bin, thus only
an (M, 3T ) bin is possible if the M -bin is a 4-bin.

If the bin contains items only from the classes S and T , then 3S + X > 1 implies that there
cannot be a 4-bin that contains three S items.

Now let us consider the possible FFD bins. Each FFD bin contains at least two, and at most
four items. Considering the 2-bins, any G-bin is possible, except (2G) bins. If there is a (B, T )
bin, the T item must be regular, and therefore its size is at most 1−X

3
by Observation 3.2.1. Then X

would fit into such a bin, since B+ 1−X
3

+X < 1 holds. Thus a (B, T ) FFD bin is impossible, but
any other B-bin (without a G item) is possible among the 2-bins. There cannot be further 2-bins,
since 2M +X ≤ 1. Considering the 3-bins and 4-bins, almost all bin-types are possible which we
have got among the optimal bin-types. We can exclude the (3T ) bin-type from the FFD bins, by
the following reason: If there is such a bin, then each T item in this bin must be regular. Thus all
of them are no larger than 1−X

3
by Observation 3.2.1, and then X would fit into this bin. 2

Observation 3.2.5 If there exists at least one (G, T ) bin, then there are no S ∪M items. If there
exists at least one (G,S) bin, then there are no M items. In any case, if there exists at least one
(G, T ) bin or (G,S) bin, then all (G, T ) bins or all (G,S) bins are identical in terms of the item
sizes in them.

Proof. Suppose that there exists a (G, T ) bin in the FFD packing. It follows from Corollary 3.1.4
that there is no item with size in [Z, 2X]. Since Z ≤ S < M ≤ 1−X

2
< 2X , there are no S ∪M

items. If there exists a (G,S) bin, similarly it follows that there are no M items. The third claim
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follows from Lemma 3.1.7. Suppose for example that there exists a (G, T ) bin; let T0 denote the
smallest T item for which there exists a (G, T ) bin. Then as we have seen, there is no item with
size in (T0, 2X], thus if (G, T1) is another (G, T ) bin, then T0 and T1 have the same size, and then
Lemma 3.1.7 (i) can be applied. 2

Some situations can be eliminated by considering just the class of the largest items in the bins.
For this, we simplify the notation to (A, .) bin, where A is any class, meaning that the bin contains
at least one item from class A, but contains no item from any higher classes. For example, (M, .)
denotes a bin which contains at least one M item, but contains neither a G item nor a B item.

Observation 3.2.6 If there exists at least one (S, .) FFD bin, then the last (S, .) FFD bin contains
an S item with size exactly Z.

Proof. If Z = 1/3, then any S item has size exactly Z, thus the claim follows. Suppose that
Z < 1/3. Observation 3.2.1 implies that there is an S item with size exactly Z. Suppose that all S
items in the last (S, .) bin are greater than Z. Then each item with size Z must be in earlier bins,
thus all of them are fallback items. But this is a contradiction, since Z is defined as the size of a
regular item (if Z < 1/3). 2

Using also the previous observation, we can exclude several combinations of bin-types.

Observation 3.2.7 The following bin-types cannot occur at the same time: Two (B, .) bins, both
having only one B item; or two (M, .) bins, both having only one M item; or two (S, .) bins, both
having only at most two S items. Consequently two (B, .) bins or two (M, .) bins or two (S, .)
bins, both having shortage, cannot occur simultaneously.

Proof. Two B-bins with shortage cannot occur, since these bins can be only of type (B,M) or
(B, S), but two B items fit into a common bin. By the same reason, two (M, .) bins both with only
one M item cannot occur. Suppose that there are two (S, .) bins, both having at most two S items.
Then by Observation 3.2.6, there is an S item with size exactly Z in the last S-bin, and this item
would fit into the first (S, .) bin under consideration, since two S items and a third S item with size
Z fit into a common bin. 2

Now we introduce another notion: We say that {(G,A), (G,B,C)} is a cobin (couple of bins)
if (G,A) is an FFD bin, (G,B,C) is an optimal bin, and G denotes the same item in these two
bins (i.e. (G,A) is the FFD bin of item G, and (G,B,C) is the optimal bin of item G).

Lemma 3.2.2 Suppose that there is no (G, T ) FFD bin, and there is no {(G,S), (G,S, T )} cobin.
Then the inequality (3.10) holds.

Proof. We have seen in Lemma 3.2.1 that only (G,S, T ) or (G, 2T ) optimal G-bins are possible.
Let the G items of the (G,S, T ) and (G, 2T ) optimal bins be denoted as G1 and G2, respectively.
Now we decrease the weights of the G1 items by 2, and increase the weights of the G2 items by 1.

As a result, any optimal bin has at least 2 reserve. Since there are at least eight optimal bins by
Lemma 3.1.6, we have at least 16 reserve in total.

Let us consider now the FFD bins. There is no (G, T ) FFD bin. Moreover since there is no
{(G,S), (G,S, T )} cobin, the G item of any (G,S) FFD bin is of type G2, thus the bin has no
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shortage. Any other G-bin had at least 2 surplus before the change of the weights, thus it follows
that no FFD G-bin has shortage after the change of the weights.

Now let us count the total shortage caused by the other FFD bins.
We get at most 6 shortage by a (B, .) FFD bin, at most 3 shortage by an (M, .) bin, and at

most 6 shortage caused by an (S, .) FFD bin, applying Observation 3.2.7. Thus we have at most
15 shortage altogether, which is covered by the 16 reserve. 2

Lemma 3.2.3 If there exists a (G, T ) FFD bin, then the inequality (3.10) holds.

Proof. Suppose that there exists a (G, T ) FFD bin. Then by Observation 3.2.5 there are neither S
nor M items. Moreover by Observation 3.2.4, no item has size in (1− 2X, 1]. Thus only the bins
shown in the table below are possible in the optimal and FFD packing, respectively. (We increased
the weight of the G items.)

OPT FFD
26
18
9

G 1
B 1
T 2 2 4 3
r 0 8 8 17

G 1 1 1
B 1 2 1
T 1 2 2 4
s 8 −1 0 8 0 0

1
0

Then only the (G, T ) FFD bins cause shortage. From Observation 3.2.5 it follows that the T
items of the (G, T ) FFD bins have equal size, and also the G items of the (G, T ) FFD bins have
equal size. Let us denote the G and T items of the (G, T ) FFD bins as G′ and T ′, respectively.

Now let us increase the weight of the T ′ items by 1, and decrease the weight of the G \ G′
items by 8. As a result, any FFD bin has exactly zero shortage. In order to prove the claim, it is
important that if a (G, 2T ) bin in the optimal packing has a T ′ item (even if just one), then the G
item must belong to G \G′ (as G′ + T ′ +X > 1). Thus no optimal bin has shortage. 2

In the following we suppose that a (G, T ) FFD bin does not exist.

Lemma 3.2.4 If there exists a {(G,S), (G,S, T )} cobin, then inequality (3.10) holds.

Proof. Suppose that there is a {(G,S), (G,S, T )} cobin. From Observation 3.2.5 it follows that
there is no M item, and from Lemma 3.1.7(i) it follows, that the G items of the (G,S) FFD bins
have the same size and also the S items of these bins have the same size. Let us denote these
items as G′ and S ′, respectively. Since there exists a {(G′, S ′), (G′, S, T )} cobin, it follows from
Corollary 3.1.5 that each item bigger than S ′ has size bigger than the sum of sizes of the S and T
items in the cobin. Note that this property holds for any cobin. It follows that each item which is
bigger than S ′, must be also bigger than Z+X . This means that G > B > Z+X > T +X holds
for any G, B and T items. Moreover, there is no (B, 2S) bin, since B + 2S > (Z +X) + 2Z =
3Z +X > 3 · 1−X

3
+X = 1. Thus only the following bins are possible. We increased the weight

of class B by 4.

OPT
23
22
12
9

G 1 1
B 1 1
S 1 1
T 1 2 1 2
r 0 3 1 4

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17
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FFD
23
22
12
9

G 1 1
B 1 2 1
S 1 1
T
s 9 −1 8 −2

1 1
1 1

1 1
1 2 1 2
8 5 7 4

3 2 2 1 1
2 1 3 2 4

0 6 −3 3 −6 0
1
0

Let us decrease now the weight of the G\G′ items by 1 and increase the weight of the S ′ items
by 1. We find the cases for which the resulting weights prove the required inequality.

Since the weight of the G′ items is not decreased, the (G′, S ′) FFD bins have no shortage, and
any other FFD G-bin has positive surplus. Let us see what happened regarding the optimal bins.

If S ′ is packed into some optimal bin which is not a G-bin, the reserve of the bin did not
become negative. If S ′ is packed into some (G,S ′, T ) optimal bin, then the G item of this optimal
bin cannot be a G′ item, since G′ + S ′ +X > 1. Thus the zero reserve of the bin is decreased by
1 and at the same time also increased by 1, thus it remains 0.

Then there can remain at most 8 shortage: a (B, S) FFD bin can cause 2 shortage, and by a
(2S, T ) or (S, 2T ) FFD bin we can have at most 6 further shortage (since these bin-types cannot
occur at the same time by Observation 3.2.7). Therefore, we need not consider bins whose reserve
or surplus is at least 8. Moreover the following FFD bins are also impossible:

(G, 2T ) or (B, 2T ) bin. — Suppose there exists a (G, 2T ) FFD bin. Then there cannot be a
(B, S) FFD bin, since the S item of this bin would be packed into theG-bin before the two T items
because S ≤ 2T . By the same reason neither (2S, T ) nor (S, 2T ) FFD bins can occur, thus there
is no shortage. The same explanation is valid to show that there cannot be a (B, 2T ) bin.

(G,S, T ) bin. — Suppose there exists a (G,S, T ) bin. Then we claim that there is no (B, S)
FFD bin. If there was a (B, S) bin, the S item of this bin would arrive only after the S item of the
(G,S, T ) FFD bin, since any S item fits into a bin containing only a G item. Then the last item X
would fit into the (B, S) bin. Therefore (as there is no (B, S) bin) at most 6 shortage can occur,
and it is covered by the 7 reserve of the (G,S, T ) bin.

(B, S, T ) bin. — If there exists a (B, S, T ) bin, then there is no (B, S) FFD bin by Observation
3.2.7, and the (B, S, T ) bin has 7 surplus, which covers the possible 6 shortage.

(2S, 2T ) or (S, 3T ) bin. — If there exists a (2S, 2T ) bin, it has 6 surplus, and then there are
neither (2S, T ) nor (S, 2T ) FFD bins by Observation 3.2.7, thus the possible 2 shortage of the
(B, S) bin is covered. An (S, 3T ) bin is impossible by the same reason.

Thus only the following bin-types remain. We further increase the weight of B items by 1.

OPT FFD
23
23
12
9

G 1 1
B 1 1
S 1 1
T 1 2 1 2
r 0 3 0 3

3 2 1
2 3

8 2 5

23
23
12
9

G 1
B 1
S 1 1
T
s −1 −1

3 2 1
1 2 4

0 −3 −6 0
1
0

Considering these possible FFD bins, we see that all G items are packed into (G′, S ′) FFD
bins, i.e. set G \ G′ is empty. (Recall that the weight of the G′ items remained 23.) At this point
we revert to the old weight of the S ′ items to be 12 (as it is written in the table above).

We realize that there is at most one B item, packed into a (B, S) FFD bin. If this situation
occurs, let the size of this S item be denoted by S ′′. Then the S ′′ item comes after the S ′ items of
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the (G′, S ′) FFD bins, by Observation 3.2.4 (G+M ≤ 1). Then all S ′ and S ′′ items have the same
size, otherwise the sizes of the S ′ items can be decreased to be S ′′, and we get a contradiction to
our minimality assumption regarding the input.

The total shortage is 3 or 6 (if there exists a (2S, T ) or an (S, 2T ) FFD bin), plus the number
of (G′, S ′) and (B, S ′) FFD bins. As we cover the shortage of the FFD bins by the reserves of
the optimal bins, we define the free reserve of an optimal bin as the reserve of the bin minus the
number of the S ′ items in the bin.

We state that there are at least three {(G′, S ′), (G′, S, T )} cobins. Indeed, suppose that there are
1 ≤ k1 ≤ 2 cobins of type {(G′, S ′), (G′, S, T )} and k2 ≥ 0 cobins of type {(G′, S ′), (G′, 2T )}.
Then the total shortage is at most 6 (caused by a (2S, T ) or an (S, 2T ) FFD bin) plus k1 + k2 by
the cobins plus 1 if there exists a (B, S) FFD bin. Thus the total shortage is at most 7 + k1 + k2.

On the other hand, there are at least 8 optimal bins. Among them, there are k1 G-bins with zero
reserve, and k2 G-bins with 3 reserve each. There can be at most one B-bin with possibly zero
reserve, and every other optimal bin has at least 2 reserve. If k1 + k2 ≤ 7, then we have at least
3k2 + 2(7− k1 − k2) = k1 + k2 − 3k1 + 14 ≥ k1 + k2 + 8 reserve, otherwise if k1 + k2 ≥ 8, then
k2 ≥ 6, and hence we have at least 3k2 = k1 + k2 − k1 + 2k2 ≥ k1 + k2 − 2 + 12 reserve. Thus
all shortage is covered, a contradiction. It follows that there are at least three {(G′, S ′), (G′, S, T )}
cobins.

Recall that any item bigger than S ′ has size bigger than the sum of sizes of the S and T items
in any {(G′, S ′), (G′, S, T )} cobin (see the beginning of the proof of this lemma). Thus denoting
by S1 and S2 the two smallest S items, it follows that G > B > Si +X holds for i = 1, 2.

If there were neither (2S, T ) nor (S, 2T ) FFD bins, then the shortage of the (G′, S ′) and (B, S ′)
FFD bins would be covered by the optimal bins of the S ′ items, thus one of these FFD bins must
exist (the two cannot exist at the same time).

Case 1 There exists an (S, 2T ) FFD bin. Then let the T items being in this bin be denoted as Ti,
i = 1, 2. The S item in this bin is the last regular S item, thus it is the smallest S item, and it has
size Z (this claim follows from Observation 3.2.6). Then T1 + T2 + Z +X > 1 holds. We claim
that no Ti item can be packed into a (B, S, T ) optimal bin. Indeed, suppose that for example T1
is packed into a (B, S, T ) optimal bin. Recall that B > Si + X > T2 + X holds. Thus we get
1 ≥ B +Z + T1 > (T2 +X) +Z + T1 > 1, a contradiction. By the same reason, a Ti item cannot
be packed into a (G,S, T ) optimal bin. Suppose that a Ti item, say T1 is packed into a (2S, 2T )
optimal bin. Since the other T item in the bin is not smaller than the size of X , moreover the total
size of the two S items in the bin is bigger than Z+T2, we got contradiction to T1+T2+Z+X > 1.
Thus no Ti item is packed into a (2S, 2T ) optimal bin.

Since G > B > Si +X ≥ Z +X holds (i = 1, 2), the two Ti items cannot be packed into the
same (G, 2T ) or (B, 2T ) bin (otherwise we would get a contradiction to T1 + T2 + Z +X > 1.)
Finally if both Ti items are packed into an (S, 3T ) optimal bin, then the sum of sizes of the third T
item and the S item is at least Z +X and we got a contradiction again.

After excluding the listed cases (since any Ti item is really packed into some optimal bin),
only the next cases are possible: Each Ti item is packed into some (G, 2T ), (B, 2T ) or (S, 3T )
optimal bin, these two bins are different, and each of these two bins has at least 3 free reserve, thus
they cover the total shortage caused by the (S, 2T ) FFD bin. (The further shortage caused by the
(G′, S ′) and (B, S ′) FFD bins is covered by the optimal bins of the S ′ items.)

23

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



Case 2 There exists a (2S, T ) FFD bin. Then the non-covered shortage is only 3. Thus no optimal
bin can have at least 3 free reserve, and only the following possible bins remain:

OPT FFD
23
23
12
9

G 1
B 1
S 1 1
T 1 1
r 0 0

2
2
2

23
23
12
9

G 1
B 1
S 1 1
T
s −1 −1

3 2
1 4

0 −3 0
1
0

Since S ′ ≤ 2X , and G ≤ 1− 2X (by Observations 3.2.2 and 3.2.4), the first S item is packed
into the first (G′, S ′) FFD bin; in other words, the S ′ items are the largest S items, and the S ′

items are packed one by one into a (G′, S ′) or (B, S ′) FFD bin, and only then come the remaining
(smaller) S items. Consider the (2S, T ) FFD bin, and suppose that the S items in the bin are S1

and S2, the two smallest S items (and recall that G > B > Si+X , i = 1, 2 holds). Then similarly
as in Case 1, T1 can be packed into no optimal bin, a contradiction.

Thus it follows that one of S1 and S2 is a fallback S item. Then it is packed surely into some
(3S) FFD bin, hence there exists a (3S) FFD bin with a fallback S item. We obtain that the first S
item being in the first (3S) bin is bigger than 1/3, therefore S ′ > 1/3. Then two S ′ items cannot
be packed into the same (2S, 2T ) bin, but each S ′ is packed into some (2S, 2T ) optimal bin. Since
there are at least three G items, thus there are at least three S ′ items, and so we have the sufficient
3 free reserve in three (2S, 2T ) optimal bins. 2

Thus we have proved that in the case 1/5 < X < 1/4 the theorem is valid.

3.3 Case 2/11 < X ≤ 1/5, and OPT ≤ 18.
If X ≤ 1/5, the general investigations (apart from one very hard branch) will be significantly
easier under the assumption OPT ≥ 19, by making use of the fact that in most cases a large
number of optimal bins provides us with large total reserve. In this sense, less flexibility makes the
cases with small OPT values harder, despite that they look like “just something finite”. Therefore,
in this section our goal is to prove that if X ≤ 1/5, then OPT ≤ 18 is impossible. We briefly
mention that in this case we again use some classifications and weighting functions. All remained
details are put into Appendix B, to simplify the treatment in this basic part of the dissertation.
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3.4 Case 2/11 < X ≤ 1/5, and OPT ≥ 19

In this case we redefine the classes of the items and their weights as follows: Let Z be the smallest
regular item in (1−X

4
, 1
4
] if there exists such an item, otherwise let Z be 1/4. Then we introduce a

refinement of the classification, with two kinds of big items (denoted byB and C) and two kinds of
medium items (denoted by M and N , hence using the letters next to B and M to the second types
of ‘big’ and ‘medium’, respectively). We give weights to the items as below, somewhat differently
from those in the previous sections.

Name Weight
1
2
< G 23

1−X
2

< B ≤ 1
2

18
1−Z
2
< C ≤ 1−X

2
16

1
3
< M ≤ 1−Z

2
14

1−X
3

< N ≤ 1
3

12
1−Z
3
< S ≤ 1−X

3
10

Z ≤ U ≤ 1−Z
3

9
X ≤ V < Z 8
The classification of the items in case

2/11 < X ≤ 1/5

Observation 3.4.1 The classes are well-defined. Moreover, if there exists a U item, then the small-
est U has size exactly Z. Furthermore the size of each regular V item is at most 1−X

4
.

Proof. The classes are well-defined, by the following inequalities: X ≤ 1−X
4

< Z ≤ 1−Z
3

< 1
3
<

1−Z
2

. Now suppose that there exists at least one item in class U . If Z = 1/4, then Z = 1−Z
3

, thus
any U item has size Z = 1/4. Otherwise there exists a regular item in the interval (1−X

4
, 1
4
], the

smallest one has size Z, and it belongs to class U . Now let A denote a regular V item. Since A
is a V item, it follows that A < Z, but Z is the smallest regular item in interval (1−X

4
, 1
4
], thus A

cannot be in this interval and hence A ≤ 1−X
4

follows. 2

Observation 3.4.2 For the ranges of X , Z, 1−Z
3

, 1−X
3

, 1−Z
2

, and 1−X
2

(i.e., for the boundaries of
the classes) the following inequalities hold:

2/11 < X ≤ 1/5 < Z ≤ 1/4 ≤ 1− Z
3

< 4/15 ≤ 1−X
3

<
1

3
<

3

8
≤ 1− Z

2
<

2

5
≤ 1−X

2
<

9

22
.

Proof. Each inequality can be checked easily. 2

Observation 3.4.3 The inequalities G ≤ 1− 2X and G+N ≤ 1 hold for any G and N items.

Proof. Since each optimal bin contains at least three items, G ≤ 1 − 2X is valid also in this
section. The second inequality follows from the facts that there is at least 2X room in a bin which
contains only a G item at that time, and N ≤ 1/3 < 2X holds for any N item. 2

We define the reserve, surplus or shortage of a bin as before. According to the definition of the
classes, we obtain:

Lemma 3.4.1 Only the next bins are possible.
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OPT
G 1 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1 2
r 0 1 2 3 3 4 5
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 1
M 1 1 1
N 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
r 2 2 3 4 2 4 5 6 6 7 8 8 9 10

1 1

1
2 3
1 2

C 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
r 4 2 4 5 6 4 6 7 8 8 9 10 10 11 12

1 1 1 1

1
2 1

2 1 2 3
2 2 3 4

M 2 2 2 2 1 1 1 1 1 1 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 2
r 4 6 7 8 6 8 9 10 10 11 12 12 13 14

1 1 1 1 1 1 1 1
1 1

1 1
1 1 3 2 1
1 2 1 2 1 2 3
1 2 3 4 3 4 5 6

N 3 2 2 2 1 1 1 1 1 1
S 1 2 1 1
U 1 1 2 1
V 1 1 1 2
r 8 10 11 12 12 13 14 14 15 16

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
2 2 3 4 4 4 5 6 5 6 7 8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 14 15 16 16 17 18

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
6 6 7 8 7 8 9 10

1

4
2

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4
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FFD
G 1 1 1 1 1 1 1
B 1 2 1 1 1
C 1 1
M 1 1
N 1 1
S 1
U 1
V 1
s 5 3 1 −1 −3 −4 −5 0 −2 −4 −6

1 1 1 1 1 1 1

1 1
1 1

1 1 2 1
1 1 1 2

8 7 6 5 5 4 3
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 1
M 1 1 1
N 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
s 6 6 5 4 6 4 3 2 2 1 0 0 −1 −2

1 1

1
2 3
7 6

C 2 1 1 1 1 1 1 1 1 1 1 1 1 1
M 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1
s 4 6 4 3 2 4 2 1 0 0 −1 −2 −2 −3

1 1 1 1

1
2 1

2 1 2 3
6 6 5 4

M 2 2 2 2 1 1 1 1 1 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1
s 4 2 1 0 2 0 −1 −2 −2 −3 −4 −4 −5

1 1 1 1 1 1 1 1
1 1

1 1
1 1 3 2 1
1 2 1 2 1 2 3
7 6 5 4 5 4 3 2

N 3 2 2 2 1 1 1
S 1 2 1
U 1 1 2
V 1
s 0 −2 −3 −4 −4 −5 −6

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
6 6 5 4 4 4 3 2 3 2 1 0

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 2 2 1 0 1 0 −1 −2

1

4
6

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1
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Proof. The statement can be proven according to the definition of the classes. We will investigate
each bin-type, and during this investigation we will apply Observation 3.4.2 several times. First
let us consider the possible optimal bins. Any optimal bin contains at least three and at most five
items. First we find all possible 3-bins, then the possible 4-bins and finally the possible 5-bins. The
bins are listed in the table in lexicographic order. Let us consider now the possible 3-bins.

Since G + M + X > 1, a G-bin cannot contain a B, C or M item. Since G + N + S >
G + 2S > 1

2
+ 2 · 1

4
= 1 holds by Observation 3.4.2, if there is an N or an S item in the G-bin,

then the third item is surely an U or a V item.
Let us see the (B, .)-bins. Such a bin can contain only one B item. If the second item is a C

item, then the third item is a V item, as 2C+U > 1. If there is an M item in the bin, then the third
item is smaller than an N item, since B +M +N > 1−X

2
+ 1

3
+ 1−X

3
= 7

6
− 5

6
X ≥ 1.

Let us consider the possible (C, .) bins. If two C items are in the bin then the third item is a V
item. Suppose that the bin contains one C item. If there is also an M item in the bin, then applying
C + 2M > 3M > 1, the third item is smaller than an M item.

If the 3-bin does not contain a C or bigger item, a (3M) bin is impossible.
Now let us find all possible 4-bins. A G-bin cannot be a 4-bin. If the biggest item is a B item,

then applying S > 1−Z
3
≥ 1/4 we get B + S + 2X > 1−X

2
+ 1

4
+ 2X = 3

2
X + 3

4
> 3

11
+ 3

4
> 1,

and it follows that the second biggest item cannot be an S or bigger item. A (B, 2U, V ) bin is not
possible either.

Suppose that the bin is a (C, .)-bin. Then applying C + N + 2X > 1−Z
2

+ 1−X
3

+ 2X >
3
8
+ 1

3
+ 5

3
X > 3

8
+ 1

3
+ 10

33
= 89

88
, the second biggest item is smaller than an N item. Moreover,

C + S + U + V > 1−Z
2

+ 1−Z
3

+ Z +X = X + 1
6
Z + 5

6
> 1, thus if there is an S item in the bin

then the other two items are V items. Also, C + 3U > 1−Z
2

+ 3Z = 5
2
Z + 1

2
> 1 is valid, thus a

(C, 3U) bin is not possible either.
Let us consider the (M, .)-bins among the 4-bins. We have 2M + 2X > 1, thus the bin can

contain only oneM item. Suppose that the second biggest item is anN item. Then the third biggest
item cannot be an S item, sinceM+N+S+V > M+2S+V > 1

3
+2·1

4
+X > 5

6
+X > 1, moreover

two U items cannot be in the bin, sinceM+N+2U > M+S+2U > 1
3
+ 1−Z

3
+2Z = 5

3
Z+ 2

3
> 1.

If the second biggest item in the bin is not bigger than an S item, then we already have seen
that (M, 2S, V ) or (M,S, 2U) bins are impossible.

Let us consider the remaining 4-bins. Since 3N +X > 1 holds, three N items cannot be in the
bin. Since 3S +U > 1 holds, if there are three N or S items in the bin, then the fourth item is a V
item.

Now let us consider the possible 5-bins. Applying N + 4X > 1−X
3

+ 4X = 11
3
X + 1

3
> 1,

it follows that in a 5-bin there is no N or bigger item. Since S + U + 3X > 1−Z
3

+ Z + 3X =
3X + 2

3
Z + 1

3
> 11

3
X + 1

3
> 1, if there is an S item in the bin, then the other four items are V

items. Finally a (4U, V ) bin is not possible.
Now let us find the possible FFD bins. The differences between the possible optimal and FFD

bins are as follows: On one hand, 2-bins may also occur, but in this case the level of the bin must
be bigger than 1 − X . On the other hand, any optimal bin-type is possible, except the bins that
have level surely at most 1 − X , since such a bin would have enough room to accommodate the
last X item.

Among the FFD 2-bins, any bin is possible which contains one G item. If the 2-bin contains
one B item, the second item cannot be an S or smaller item, as B + S + X ≤ 1

2
+ 1−X

3
+ X =
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2
3
X + 5

6
≤ 2

15
+ 5

6
< 1. Moreover, both items cannot be smaller than a B item, as 2C +X ≤ 1.

Any 5-bin is possible. From the set of 4-bins we can exclude all (4V ) bins. The reason is that
here the V items would be regular as V < Z ≤ 1/4, thus all have sizes at most 1−X

4
, according to

Observation 3.4.1, and then X would fit into the bin.
We can also exclude the next 3-bins:
– (C, 2V ) FFD bin. In such a bin, the V items would be regular, thus both would have sizes at

most 1−X
4

, according to Observation 3.4.1. Since C ≤ 1−X
2

also holds, there would remain at least
X empty room in the bin, and this is a contradiction. By the same reason no (M, 2V ), (N, 2V ),
(S, 2V ), (U, 2V ) bin is possible.

– (N,S, V ) or (N,U, V ) FFD bin. In such a bin, the V item would be regular, thus would have
size at most 1−X

4
. ThenN+U+V +X ≤ N+S+V +X ≤ 1

3
+ 1−X

3
+ 1−X

4
+X = 11

12
+ 5

12
X ≤ 1

would hold, a contradiction.
– Moreover, if all three items are at most S items, then item X naturally fits into the bin, thus

such bins are not possible either. 2

Observation 3.4.4 No optimal bin has shortage, and all optimal non-G bins have at least one
reserve.

Note that now the weight of the smallest item is only 8, thus the additive constant 27 does not
cover the 28 shortage of the last FFD bin, i.e. there remains 1 shortage in the last FFD bin. Thus
in this section we must prove the next inequality:

res(I) + sur(I) + rex(I) ≥ short(I) + 1. (3.11)

Observation 3.4.5 If there exists at least one (G, V ) FFD bin, then there are no U ∪S ∪N items.
If there exists at least one (G,U) FFD bin, then there are no S ∪ N items. If there exists at least
one (G,S) FFD bin, then there are no N items. In any case, if there exists at least one FFD bin
with two items, one of which is a G item and the other one a V ∪ U ∪ S ∪ N item, then all these
bins are identical in terms of the item sizes in them.

Proof. Suppose that there exists a (G, V ) bin in the FFD packing. It follows from Corollary
3.1.4 that there is no item with size in (T, 2X]. Since U < S < N ≤ 1/3 < 2X , there are no
U ∪ S ∪ N items. The next two statements follow similarly. The last claim follows from Lemma
3.1.7. Suppose for example that there exists a (G, V ) bin; let V0 denote the smallest V item for
which there exists a (G, V ) bin. Then there is no item with size in (V0, 2X], thus if (G, V1) is
another (G, V ) bin, then V0 and V1 have the same size, and then Lemma 3.1.7 (i) can be applied.
2

Observation 3.4.6 If at least one U item occurs, then there is a U item with size exactly Z in the
last (U, .) FFD bin (if there exists at least one (U, .) FFD bin).

Proof. The proof is almost the same as the proof of Observation 3.2.6. If Z = 1/4, then any U
item has size exactly Z, thus the claim follows. Suppose that Z < 1/4. Observation 3.4.1 implies
that there is a U item with size exactly Z. Suppose that all U items in the last (U, .) bin are greater
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than Z. Then each item with size Z must be in earlier bins, thus all of them are fallback items. But
this is a contradiction, since Z is defined as the size of a regular item (if Z < 1/4). 2

In the next observation we exclude the possibility of many non-G FFD bins with shortage at
the same time.

Observation 3.4.7 The following pairs of bins cannot occur: Two (B, .) bins, both having only
one B item; or two (C, .) bins, both having only one C item; or two (M, .) bins, both having
only one M item; or two (N, .) bins, both having only at most two N items; or two (S, .) bins,
both having only at most two S items; or two (U, .) bins, both having only at most three U items.
Consequently two (B, .) bins or two (C, .) bins or two (M, .) bins or two (N, .) bins or two (S, .)
bins or two (U, .) bins, both having shortage, cannot occur at the same time.

Proof. The proof is the same as for the corresponding Observation 3.2.7. 2

Observation 3.4.8 If there exists an (N, 3V ) FFD bin, then neither an (S, .) nor a (U, .) FFD bin
can occur.

Proof. Suppose that there exists an (N, 3V ) FFD bin. Then no S or U item is packed into any
later bin than the (N, 3V ) FFD bin, since the S or U item would be packed into the (N, 3V ) bin
before the V items. 2

Theorem 3.4.1 Suppose that there is no (G, V ) FFD bin, and there are no {(G,U), (G, 2U)},
{(G,U), (G,U, V )}, {(G,S), (G,S, U)}, {(G,S), (G,S, V )}, {(G,S), (G, 2U)},
{(G,N), (G,N, V )} cobins, and there is at most one {(G,N), (G,N,U)} cobin. Then (3.11)
holds.

Proof. Let us consider an arbitrary FFD G-bin. If the bin has shortage s, we increase the weight
of the G item of the bin by s; and if the bin has surplus s, we decrease the weight of the G item of
the bin by s.

If there is no {(G,N), (G,N,U)} cobin, then the assumption of the lemma means (before the
modification) that if an FFD G-bin had shortage k, then the optimal bin of the G item had reserve
at least k + 1, and any G item of some (G,N,U) optimal bin is packed into such FFD bin that has
positive surplus. Thus after the modification no FFD G-bin has shortage and each optimal bin has
positive reserve.

If there is one {(G,N), (G,N,U)} cobin, the only exception is that there is exactly one optimal
bin with shortage 1, and any other optimal bin has positive reserve.

Since we have at least 19 optimal bins, we have at least 18− 1 = 17 reserve, and the shortage
caused by all FFD G-bins is already covered. Now let us see how much shortage can be caused by
the FFD non-G-bins.

a, a (B, .) 2-bin can cause at most 6,
b, a (B, .) 3-bin can cause at most 2,
c, a (C, .) bin can cause at most 3,
d, an (M, .) bin can cause at most 5,
e, an (N, .) bin can cause at most 6,
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f, an (S, .) bin can cause at most 2,
g, a (U, .) bin can cause at most 3,
h, and finally there is 1 shortage in the last FFD bin.

Case 1. Suppose that there is a (B,U, V ) or (B, 2V ) FFD bin. Then there cannot be a (B, .) 2-bin
by Observation 3.4.7. FFD bins of type (C, .) cannot occur either, since a C item would fit into the
(B,U, V ) or (B, 2V ) bin before the smaller items. By the same reason an (M, .) bin is impossible.

Thus the total uncovered shortage (as they were listed in bin-types a,–h,) is at most 0+2+0+
0+ 6+ 2+ 3+ 1 = 14, thus it is covered by the 17 reserve of the optimal bins. Thus we conclude
that a (B, .) 3-bin with shortage cannot exist.

Case 2. Suppose that there is a (C, .) bin with shortage, i.e. there is a (C, S, U) or (C, S, V ) or
(C, 2U) or (C,U, V ) FFD bin. Then there cannot be FFD bins of type (M, .) or (N, .), since an M
or N item would fit into any of the previous (C, .) bins in consideration, before the smaller items.
Thus the total uncovered shortage is at most 6 + 0 + 3+ 0+ 0+ 2+ 3+ 1 = 15, and it is covered
by the 17 reserve of the optimal bins. Hence we can suppose in the following that a (C, .) bin with
shortage does not exist.

Case 3. Suppose that there is an (M, .) bin with shortage. Then there cannot be a (B,N) FFD bin,
since an M item would fit there before the N item. Thus the shortage caused by a (B, .) 2-bin is at
most 4.

If the (M, .) bin causing the shortage is of type (M,N,U) or (M,N, V ), then the total shortage
is at most 4 + 0 + 0 + 2 + 6 + 2 + 3 + 1 = 18, and it can be 18 only if there exists an (N, 2U) bin
with shortage 6. But in this case an (S, .)-bin (with shortage) cannot exist, as the S item of such a
bin would fit into the (N, 2U) bin before the U items. Thus the total shortage is in fact smaller, it
is at most 17, thus it is covered.

Otherwise the (M, .) bin that causes the shortage is of type (M, 2S), (M,S, U), (M,S, V ),
(M, 2U) or (M,U, V ). In this case there is no (N, .)-bin (with shortage), since the N item would
fit into the (M, .) bin before the smaller items. Thus the total shortage is at most 4 + 0 + 0 + 5 +
0 + 2 + 3 + 1 = 15, hence it is covered. Thus we suppose in the following that an (M, .) bin with
shortage does not exist.

Case 4. After excluding bins of Cases 1–3, the total uncovered shortage is at most 6+ 0+ 0+ 0+
6 + 2 + 3 + 1 = 18, and it can be really 18 only if there exist both an (N, 2U) bin with shortage
6 and an (S, 3V ) bin with shortage 2. These bins cannot exist at the same time, however, thus the
total shortage is at most 17, and it is again covered by the 17 reserve of the optimal bins.

Our proof is done. 2

Lemma 3.4.2 If (G, V ) FFD bins exist, then (3.11) holds.

Proof. Suppose that there is at least one (G, V ) FFD bin. Then from Observation 3.4.5 it follows
that there is no N , S, U item. The possible optimal and FFD bins that remain are listed in the
following tables; we redefine also the weights of the items:
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OPT (The possible optimal bins are as follows:)
28 G 1
18 B
16 C
16 M
8 V 2

r 0

1 1 1 1
1

1
1 1 3 2
2 2 2 10

2 1 1 1
1

1 1 3 2
4 4 4 12

2 1 1
1 3 2
4 4 12

5 4 3
4 12 20

FFD (The possible FFD bins are as follows:)
28
18
16
16
8

G 1 1 1 1
B 1 2 1 1
C 1 1
M 1 1
V 1
s 10 8 8 0 0 −2 −2

1

2
8

1 1 1
1

1
1 1 2
6 6 −2

1

3
6

2 1
1

1 1
4 4

1

3
4

2
1
4

1
3
4

5
4

1
−1

Since there can be at most one FFD B-bin which contains only one B item, we have only at
most 3 shortage caused by a (B, .) bin and the last FFD bin. Thus there cannot be such a bin with
at least 3 reserve or surplus. Deleting them only the following possible bins remain:

OPT FFD
28 G 1
18 B
16 C
16 M
8 V 2

r 0

1 1 1
1

1
1 1 3
2 2 2

28 G 1
18 B 2 1 1
16 C 1
16 M 1
8 V 1

s 0 0 −2 −2

1

2
−2

1
−1

There can be at most one optimal bin with positive reserve, otherwise the total shortage is
covered. Thus there is at most one optimal B-bin, i.e. there is at most one B item. Let the number
of G items be k; since there are at least 19 optimal bins, it follows that k ≥ 18. Then there are at
least 2k V items in the optimal bins, while there are at most k + 3 V items in the FFD bins, this is
naturally a contradiction as k + 3 < 2k. 2

From this point in the proof we suppose that there is no (G, V ) FFD bin.

Lemma 3.4.3 If a {(G,U), (G, 2U)} or {(G,U), (G,U, V )} cobin exists, then (3.11) holds.

Proof. From Observation 3.4.5 it follows that all G and U items in the (G,U) FFD bins have the
same sizes; let us denote them as G′ and U ′, respectively. From Observation 3.4.5 it follows that
there are neither N nor S items. From the existence of the cobin and Corollary 3.1.5 it follows that
each M item is bigger than Z + X > 1−X

4
+ X = 3

4
X + 1

4
. Then there cannot be (B,M,U) or

(M, 3U) bins, sinceB+M+U > 1−X
2

+ 3
4
X+ 1

4
+ 1−X

4
= 1 andM+3U > 3

4
X+ 1

4
+ 3(1−X)

4
= 1.

Then we increase the weight of some types and we get the following possible bins:
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OPT
26
18
17
17
9
8
r

G 1 1 1
B
C
M
U 2 1
V 1 2
r 0 1 2

1 1 1 1 1
1

1
2 1

1 1 1 2
1 1 8 9 10

1 1

1
2 3
1 2

2 1 1 1 1 1
1 1
1 2 1

1 1 1 2
2 1 2 9 10 11

1 1 1

2 1
1 2 3
1 2 3

17
9
8
r

M 2 2 1 1 1
U 1 2 1
V 1 1 2
r 1 2 9 10 11

1 1 1
2 1
1 2 3
1 2 3

3 2 1
1 2 3

17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
26
18
17
17
9
8

G 1 1 1 1
B 1 2 1 1
C 1 1
M 1 1
U 1
V
s 8 7 7 −1 0 −1 −1

1 1 1

2 1
1 2

8 7 6

1 1 1 1 1
1

1
2 1

1 1 1 2
7 7 0 −1 −2

1 1

1
2 3
7 6

17
17
9
8

C 2 1 1 1 1
M 1 1
U 1 2 1
V 1 1 1
s 6 7 6 −1 −2

1 1 1

2 1
1 2 3
7 6 5

2 2 1 1
1 2 1

1 1
7 6 −1 −2

1 1 1
2 1
1 2 3
7 6 5

9
8

U
V
s

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Now we distinguish between two cases.
Case 1. A {(G,U), (G, 2U)} cobin does not exist, but there exists a {(G,U), (G,U, V )} cobin.
Let us increase the weight of the G′ items by 1. Then there is no shortage by the (G′, U ′) FFD

bins. Since there is no {(G,U), (G, 2U)} cobin, no optimal bin has shortage.
We claim that the total shortage (caused by the FFD bins) is at most 6. We can see it as follows.
There cannot be two FFD bins with only one B item in each by Observation 3.4.7.
If there exists a (B, 2V ) FFD bin, then there cannot be another B-bin with shortage, and there

cannot be a regular C or M or U item after this bin, thus the shortage is at most 2 + 1 (the +1
comes from the last FFD bin). Thus we can have at most 1 shortage caused by some B-bin.

If there is a (C,U, V ) FFD bin, then there cannot be a U item in some later bin, since C+2U ≤
1−X
2

+ 2(1−X)
3

= 7
6
− 7

6
X < 1. Then the total uncovered shortage is at most 1 + 2 + 1, caused

by a B-bin, the (C,U, V ) bin and the last FFD bin. The situation is the same if there exists an
(M,U, V ) FFD bin. Otherwise we can have at most 1 shortage because of a (C, .) or (M, .) FFD
bin, since a (C, 2U) bin and an (M, 2U) bin cannot exist at the same time. Then there can be at
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most 1+ 1+3+1 = 6 shortage by a (B, .) bin, by a (C, .) or (M, .) bin, by a (U, .) bin and by the
last FFD bin.

Deleting each bin that has at least 6 reserve or surplus, only the following bins remain.

OPT
26
18
17
17
9
8
r

G 1 1 1
B
C
M
U 2 1
V 1 2
r 0 1 2

1 1
1

1

1 1
1 1

1 1

1
2 3
1 2

2 1 1
1 1
1

1 1
2 1 2

1 1 1

2 1
1 2 3
1 2 3

2 2
1

1
1 2

1 1 1
2 1
1 2 3
1 2 3

3 2 1
2 3 4 5
1 2 3 4

FFD
26
18
17
17
9
8

G 1
B 2 1 1
C 1
M 1
U 1
V
s −1 0 −1 −1

1 1 1

2 1
1 2

0 −1 −2

1 1

2 1
1

−1 −2

1

3
5

1 1
2 1

1
−1 −2

1

3
5

9
8

U
V
s

4 3 2 1
1 2 3

0 −1 −2 −3

1
4 5
5 4

1
−1

Then all G items are G′ items, and it follows that there is no (G, 2U) optimal bin. Now we
estimate the number of V items from above in the FFD bins. Hence, let us consider the FFD V -
bins. Among them there cannot be two (B, .) or (C, .) or (M, .) FFD bins at the same time, and it
follows that there can be at most three V items in the mentioned bins. There can be at most four V
items in some (U, .) FFD bin, since there can be at most one (U, .) bin with at most three U items
by Observation 3.4.7. There can be at most one (5V ) FFD bin, since otherwise the total shortage
is covered. Thus the number of V items is at most 3 + 4 + 5 + 1 = 13, where the last “+1” stands
for the last item. It follows that there are at least 19 − 13 = 6 optimal bins containing no V item.
Considering them in the table above we can realize that any such bin has at least one reserve, and
the total shortage is covered.

Case 2. There exists a {(G,U), (G, 2U)} cobin. Then we can apply Corollary 3.1.5 in a stronger
way, i.e. since M < C ≤ 1−X

2
≤ 2U holds, neither M nor C items exist, thus any bin containing

an M or C item can be excluded from the possible bins. The following bins remain:

OPT
26
18
9
8
r

G 1 1 1
B
U 2 1
V 1 2
r 0 1 2

1 1 1
2 1

1 2
8 9 10

1 1
1
2 3
1 2

3 2 1
1 2 3

17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4
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FFD
26
18
9
8

G 1 1
B 1 2
U 1
V
s 8 −1 0

1 1 1

2 1
1 2

8 7 6

1 1 1
2 1

1 2
0 −1 −2

1 1
1
2 3
7 6

9
8

U
V
s

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

From the existence of the {(G,U), (G, 2U)} cobin, U ′ > 2Z −X follows.
Now we increase the weight of any U ′ item by 1, and decrease the weight of the G \ G′ items

by 2. After this the (G′, U ′) FFD bins have no shortage. Let us consider the optimal bins. Since
G′ +U ′ +X > 1, an item U ′ is not packed into an optimal G′-bin. Thus if U ′ is packed into some
optimal G-bin, then the bin has no shortage. Suppose that U ′ is packed into an optimal non-G-bin.
Since U ′ + 2U + 2V > (2Z − X) + 2Z + 2X > 1 holds, U ′ cannot be packed into a (3U, 2V )
optimal bin. Any other optimal non-G-bin has at least as large reserve as the number of U items
packed into it. Thus no optimal bin has shortage.

We claim that the total shortage caused by the FFD bins is at most 4. Indeed, if there exists a
(B,U, V ) or a (B, 2V ) FFD bin, then there cannot be a (U, .) bin, sinceB+U+Z ≤ 1

2
+ 1−Z

3
+Z =

2
3
Z + 5

6
≤ 1, applying also Observation 3.4.6. Thus in this case the total shortage is at most 3. On

the other hand, if a (B, .) bin with shortage does not exist, then the total shortage with modified
weights is at most 4.

Let us delete each bin which has at least 4 reserve or surplus (with the modified weights); then
only the following bins remain:

OPT FFD
26
18
9
8
r

G 1 1 1
B
U 2 1
V 1 2
r 0 1 2

1 1
1
2 3
1 2

3 2 1
2 3 4
1 2 3

G 1
B 2
U 1
V
s −1 0

1 1 1
2 1

1 2
0 −1 −2

4 3 2 1
1 2 3 1

0 −1 −2 −3 −1
It turned out that any FFD G-bin is a (G′, U ′) bin, hence each G item is a G′ item. Thus no

U ′ item is packed into an optimal G-bin. Since B + U ′ + 2V > 1−X
2

+ (2Z − X) + 2X > 1,
thus a U ′ item cannot be packed into a (B,U, 2V ) optimal bin, and we have already seen that a U ′

item cannot be packed into a (3U, 2V ) optimal bin. Moreover 2U ′ + 3V > 2 (2Z −X) + 3X =
4Z + X > 1, i.e. two U ′ items cannot be packed into the same (2U, 3V ) optimal bin. It follows
that there is at most one U ′ item in any optimal bin and each optimal bin except the (G, 2U) bins
has positive reserve.

There can be at most three optimal bins with positive reserve, otherwise the total shortage is
covered. Since there are at least 19 optimal bins, it follows that there are at least 19 − 3 = 16
optimal G-bins. Thus there are at least 16 FFD (G′, U ′) bins, and hence the number of U ′ items
is at least 16. These U ′ items are packed one by one into different optimal non-G bins, serving at
least 16 reserve, a contradiction. 2
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Lemma 3.4.4 If there exists a {(G,S), (G,S, U)} cobin, then (3.11) holds.

Proof. Suppose that there exists a {(G,S), (G,S, U)} cobin. Note that S + U > 1−Z
3

+ Z =
1
3
+ 2

3
Z > 1

3
+ 2

3
· 1−X

4
= 1

2
− 1

6
X . Since N < M < C ≤ 1−X

2
< S + U holds, from Corollary

3.1.5 it follows that there are no N , M , C items, and each B item is bigger than 1
3
+ 2

3
Z > 1

2
− X

6
.

Then there cannot be (B,U, 2V ) and (B, 3V ) bins, since B+3V > 1
2
− X

4
+3X = 1

2
+ 11

4
X > 1.

A (B, 2S) bin is not possible either, since B + 2S > 1
3
+ 2

3
Z + 2 · 1−Z

3
= 1. Note further that a

(G,U) FFD bin is not possible, since then by Observation 3.4.5 no S item would exist. Only the
next possible bins remain (with redefined weights):

OPT
25
24
10
9
8

G 1 1 1 1 1
B
S 1 1
U 1 2 1
V 1 1 2
r 0 1 1 2 3

1 1 1 1 1
1 1
1 2 1

1 1 2
1 2 2 3 4

10
9
8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 14 15 16 16 17 18

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
6 6 7 8 7 8 9 10

1

4
2

9
8

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
25
24
10
9
8

G 1 1
B 1 2
S 1
U
V
s 13 −1 12

1 1 1 1 1

1 1
1 2 1

1 1 2
8 7 7 6 5

1 1 1 1 1
1 1
1 2 1

1 1 2
7 6 6 5 4

10
9
8

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 2 2 1 0 1 0 −1 −2

1

4
6

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Then again, we denote the G and S items of the (G,S) FFD-bins as G′ and S ′, respectively;
they have equal sizes by Observation 3.4.5. From the existence of a {(G′, S ′), (G′, S, U)} cobin, it
follows that S ′ > 1−Z

3
+ Z −X holds.

Now we increase the weight of the S ′ items by 1, and decrease the weight of the G \G′ items
by 1.

As a result, no (G′, S ′) FFD-bin has shortage. Let us see the optimal bins. If S ′ is packed into
some optimal G-bin, then this G item is not a G′ item, thus the optimal bin has no shortage. If S ′

is packed into some other optimal bin, the reserve of the bin before the modification of the weight
was at least the number of S items in it. Thus no optimal bin has shorage.
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The total shortage caused by the FFD bins is at most 4. (This statement can be proved similarly
as it was proved in the previous lemma.) Let us delete all bins which have at least 4 reserve or
surplus. Only the following bins remain:

OPT
25
24
10
9
8

G 1 1 1 1 1
B
S 1 1
U 1 2 1
V 1 1 2
r 0 1 1 2 3

1 1 1 1
1 1
1 2 1

1 1
1 2 2 3

3

1
6

1

4
2

3 2 1
2 3 4
1 2 3

FFD
25
24
10
9
8

G 1
B
S 1
U
V
s −1

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
2 2 1 0 1 0 −1 −2

4 3 2 1
1 2 3

0 −1 −2 −3
1
−1

Since no B item remained in the FFD bins, it follows that there is no B item at all. The
following bins remain:

Since each remaining FFD G-bin is a (G′, S ′) bin, it follows that each G item is a G′ item.
Thus each S ′ item is packed into a non-G optimal bin. Since S ′ + 4V > (1−Z

3
+ Z −X) + 4X =

1
3
+ 2

3
Z+3X > 1

3
+ 11

3
X > 1, an S ′ item cannot be packed into an (S, 4V ) optimal bin. Moreover

S ′+2S+V > (1−Z
3

+Z−X)+2 · 1−Z
3

+X = 1 also holds, thus an S ′ item cannot be packed into
a (3S, V ) optimal bin. Thus there is no S ′ item at all (as there is no S ′ item in the optimal bins),
contradicting our assumption that there exists a {(G′, S ′), (G′, S, U)} cobin. 2

From now on we suppose that a {(G,S), (G,S, U)} cobin does not exist.

Lemma 3.4.5 If there exists a {(G,S), (G,S, V )} or {(G,S), (G, 2U)} cobin, then (3.11) holds.

Proof. Suppose that there is at least one {(G,S), (G,S, V )} or {(G,S), (G, 2U)} cobin. Then
S + V ≥ 1

4
+ X , 2U > 1−X

2
, while 1

2
+ 2X > 1 − X , thus 1

4
+ X > 1−X

2
holds. By the

existence of the cobin, applying Corollary 3.1.5 it follows that there are no N , M , C items, since
N < M < C ≤ 1−X

2
< min {S + V, 2U}. There cannot be a (G,U) FFD bin since then there

would be no S item by Observation 3.4.5. Thus the next possible bins remain (we increased the
weight of the G items by 1):

OPT
24
18
10
9
8

G 1 1 1 1 1
B
S 1 1
U 1 2 1
V 1 1 2
r 1 2 2 3 4

1 1 1 1 1 1
2 1 1

1 2 1
1 1 2

6 7 8 8 9 10

1 1

1
2 3
1 2
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10
9
8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 14 15 16 16 17 18

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
6 6 7 8 7 8 9 10

1

4
2

9
8

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
24
18
10
9
8

G 1 1
B 1 2
S 1
U
V
s 6 −2 0

1 1 1 1 1

1 1
1 2 1

1 1 2
7 6 6 5 4

1 1 1 1 1 1
2 1 1

1 2 1
1 1 2

2 1 0 0 −1 −2

1 1

1
2 3
7 6

10
9
8

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 2 2 1 0 1 0 −1 −2

1

4
6

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Now we denote again by G′ and S ′, respectively, the G and S items of the (G,S) FFD bins;
these items have equal sizes. Now we increase the weights of both the G′ and S ′ items by 1, and
decrease the weights of the G \ G′ items by 4. After this modification no (G′, S ′) FFD bin has
shortage. We claim that any optimal bin still has at least 1 reserve. This claim trivially holds for
any non-G optimal bin. The statement also holds if the G-bin does not contain an S item. In case
of a (G,S, V ) optimal bin, both G and S items cannot be of types G′ and S ′, respectively, since
G′+S ′+X > 1. Finally in case of the (G,S, U) optimal bins theG item cannot be aG′ item, since
we already know that there is no {(G,S), (G,S, U)} cobin. Thus we have at least 19 reserve in the
optimal bins. On the other hand, the total shortage in the FFD bins is at most 2+ 2+ 3+ 1 = 8 by
a (B, .) bin, by an (S, .) bin, by a (U, .) bin, and by the last FFD bin, thus it is covered. 2

Lemma 3.4.6 If there exists at most one {(G,N), (G,N,U)} cobin, moreover there exists a cobin
of type {(G,N), (G,N, V )}, then (3.11) holds.

Proof. Suppose that there exist a {(G,N), (G,N, V )} cobin, and at the same time there exists at
most one {(G,N), (G,N,U)} cobin. By Observation 3.4.5 it follows that there cannot be a (G,U)
or a (G,S) FFD bin (since then there would be no N item). The G and N items of the (G,N) FFD
bins have the same sizes, and we denote them as G′ and N ′. Since N + V > 1−X

3
+X = 1

3
+ 2

3
X ,

furthermore M < C ≤ 1−X
2

< 1
3
+ 2

3
X holds, it follows from Corollary 3.1.5 that there is no M

or C item, and each B (if any) is bigger than 1−X
3

+X . Then there cannot be a (B, 2N) bin, since
B + 2N > 1−X

3
+ X + 2(1−X)

3
= 1. The (B,U, 2V ) or (B, 3V ) bins are impossible, too, since

B + 3V > 1−X
3

+X + 3X = 1
3
+ 11

3
X > 1. The possible bins (with new weight w(B) = 20) are

as follows:
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OPT
23
20
12
10
9
8
r

G 1 1 1 1 1 1 1
B
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1 2
r 0 1 2 3 3 4 5

1 1 1 1 1 1 1 1 1
1 1 1
1 2 1 1

1 1 2 1
1 1 1 2

2 3 4 4 5 6 6 7 8
12
10
9
8
r

N 3 2 2 2 1 1 1 1 1 1
S 1 2 1 1
U 1 1 2 1
V 1 1 1 2
r 8 10 11 12 12 13 14 14 15 16

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
2 2 3 4 4 4 5 6 5 6 7 8

10
9
8
r

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 14 15 16 16 17 18

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
6 6 7 8 7 8 9 10

1

4
2

9
8
r

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
23
20
12
10
9
8
r

G 1 1
B 1 2 1
N 1 1
S
U
V
s 7 −1 4 −4

1 1 1 1 1 1 1

1 1
1 1

1 1 2 1
1 1 1 2

8 7 6 5 5 4 3

1 1 1 1 1 1 1 1 1
1 1 1
1 2 1 1

1 1 2 1
1 1 1 2

6 5 4 4 3 2 2 1 0
12
10
9
8
r

N 3 2 2 2 1 1 1
S 1 2 1
U 1 1 2
V 1
s 0 −2 −3 −4 −4 −5 −6

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
6 6 5 4 4 4 3 2 3 2 1 0

10
9
8
r

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 2 2 1 0 1 0 −1 −2

1

4
6

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Now we decrease the weight of the G \ G′ items by 3, we increase the weight of the N ′ items
by 2/3, and also increase the weight of the G′ items by 1/3. Then the shortage of the (G′, N ′) FFD
bins is covered.

Let us see the optimal bins. In any optimal bin there remains at least 2/3 reserve, except that
there can be at most one (G′, N, U) bin, it has 1/3 shortage. As there are at least 19 optimal bins,
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we have at least −1/3 + 18 · 2/3 = 35/3 reserve in total.
If there is no (B,N) FFD bin, then the total shortage of the FFD bins is at most 6+3+1 = 10

(since an (S, .) and a (U, .) FFD bin, both having shortage cannot exist at the same time), and this
shortage is covered since in the optimal bins we found more reserve in total.

Otherwise there exists a (B,N) FFD bin, let the items of this bin be denoted as (B′′, N ′′).
If there is also a (G,B) FFD bin, it covers the shortage of the (B,N) FFD bin and we are done

again.
Otherwise there is no (G,B) FFD bin. Then the B′′ item is the last B item, and the size of the

N ′′ item is just the same as the size of the N ′ items. Thus it follows that an N ′ item (or the N ′′

item) cannot be packed into an optimal B-bin.
First suppose that there is no {(G,N), (G,N,U)} cobin. Then in the optimal bin of the B′′

item we have at least 2 reserve, in any other optimal bin we have at least 2/3 reserve, thus we have
at least 2 + 18 · 2/3 = 14 reserve in total. This amount of reserve is just enough to cover the
possible shortage of the FFD bins, which is at most 4 + 6 + 3 + 1 = 14; we are done again.

Finally suppose that there is exactly one {(G,N), (G,N,U)} cobin. Then it follows from
Corollary 3.1.5 that the size of each B is bigger than 1−Z

3
+ Z, as N > 1−Z

3
and U ≥ Z. Thus

there is no (B,N, S) bin, since B + N + S > B + 2S > (1−Z
3

+ Z) + 2 · 1−Z
3

= 1. In this
case in the optimal bin of the B′′ item we have at least 3 reserve, there is one optimal bin with 1/3
shortage, and in any other optimal bin we have at least 2/3 reserve, hence we have again at least
3− 1/3+ 17 · 2/3 = 14 reserve in total, which is enough to cover the shortage of the FFD bins. 2

Now we are almost done, only one more lemma remained, but the proof of this last lemma will
be the hardest one. We also need a new definition.

Definition 3.4.1 Let H be an arbitrary nonempty set of items, and A ∈ H an item. We say that
item A is packed into an FFD bin for the i-th attempt (regarding H), if there are exactly i− 1 ≥ 0
H items preceding A in the order of the items that are packed into some later bins than bin(A)
(i.e. bins with bigger index). It means that i− 1 H items are tried to be packed into bin(A) before
A, none of them fits there, but then A fits into the bin. If i = 1, we say that A is packed for the first
attempt.

Lemma 3.4.7 If at least two {(G,N), (G,N,U)} cobins exist, then (3.11) holds.

Proof. Suppose that there exist two {(G,N), (G,N,U)} cobins. Note that from this condition
it follows that there are at least two U items. The G and N items of the (G,N) FFD bins have
equal sizes, they are denoted asG′ andN ′, respectively. Let us denote the items in the optimal bins
of the two {(G,N), (G,N,U)} cobins as N01 and U01, and N02 and U02, respectively. It follows
that N ′ > N0i + U0i − X holds for i = 1, 2. Since there are (G,N) FFD bins, by Observation
3.4.5 it follows that neither (G,S) nor (G,U) FFD bins are possible. Since M < C ≤ 1−X

2
<

1−X
3

+ 1−X
4

< N0i + U0i (for i = 1, 2), it follows from Corollary 3.1.5 that there is no M or C
item, and each B (if any) is bigger than N0i+U0i >

1−X
3

+Z > 7
12
(1−X). There are no (B, 2N),

(B,N, S), (B, 2S) bins, since B + 2S > (1−Z
3

+ Z) + 2 · 1−Z
3

= 1. Further, there can be neither
(B,U, 2V ) nor (B, 3V ) bins, since B + 3V > (1−X

3
+X) + 3X = 1

3
+ 11

3
X > 1.

An N ′ item cannot be packed into a (2N,S, V ) or (N, 2S, V ) optimal bin, since N ′+N +S+
V > N ′ + 2S + V > (N01 + U01 −X) + 2S +X > 3 · 1−Z

3
+ Z = 1.
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Thus the only possible bins are as follows, where we increased the weights of the B items by
5 and the weights of the S items by 1.

OPT
23
23
12
11
9
8

G 1 1 1 1 1 1 1
B
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1 2
r 0 1 1 2 3 4 5

1 1 1 1 1 1 1
1 1

1 1
1 1 2 1

1 1 1 2
0 1 1 2 3 4 5

12
11
9
8

N 3 2 2 2 1 1 1 1 1 1
S 1 2 1 1
U 1 1 2 1
V 1 1 1 2
r 8 9 11 12 10 12 13 14 15 16

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
1 2 3 4 2 3 4 5 5 6 7 8

11
9
8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 11 13 14 15 16 17

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
3 4 5 6 6 7 8 9

1

4
1

9
8

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
23
23
12
11
9
8

G 1 1
B 1 2 1
N 1 1
S
U
V
s 10 −1 10 −1

1 1 1 1 1 1 1

1 1
1 1

1 1 2 1
1 1 1 2

8 7 7 6 5 4 3

1 1 1 1 1 1 1
1 1

1 1
1 1 2 1

1 1 1 2
8 7 7 6 5 4 3

12
11
9
8

N 3 2 2 2 1 1 1
S 1 2 1
U 1 1 2
V 1
s 0 −1 −3 −4 −2 −4 −6

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
7 6 5 4 6 5 4 3 3 2 1 0

11
9
8

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 5 4 3 2 2 1 0 −1

1

4
7

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Let H = N ∪ S. Recalling Definition 3.4.1, and checking the possible FFD bins, also taking
into account that S < N ≤ 1/3 < 2X hold and that the size of any G item is at most 1 − 2X , it
follows that each H item is packed for the first attempt.

41

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



Observation 3.4.9 Consider a certain FFD 3-bin, where there is one N item, or there are two N
items, and the remained item(s) are from some smaller class(es). Then this N item is the smallest
N item, or these two N items are the two smallest N items.

Proof. Any N item in some earlier bin is packed for the first attempt, thus it precedes any N item
in the considered bin. There is no other (N, .) bin with at most two N items, by Observation 3.4.7.
2

Case 1. There are neither (2N ′, 2U) nor (2N ′, U, V ) optimal bins. Suppose there exists a (B,N)
FFD bin (there can be at most one such bin); let the items of this bin be denoted as (B′, N ′′). Then
since any N ′ item is packed for the first attempt, it follows that item N ′′ comes after the N ′ items.
Thus by the minimality assumption on the items it follows that item N ′′ has the same size as the
N ′ items (otherwise the size of the N ′ items could be decreased to the size of N ′′). Thus if there
exists a (B,N) FFD bin, then also N ′′ will be denoted as N ′.

Now we increase the weight of the N ′ items by 1, decrease the weights of the G \ G′ items
by 3, and also decrease the weights of the B \ B′ items by 3. As a result, no FFD G-bin or B-
bin has shortage. Considering the optimal bins, we conclude that any optimal G-bin has positive
reserve, except the (G′, N, U) optimal bins (where the N item cannot be an N ′ item), this bin has
zero reserve. Also, any optimal B-bin has positive reserve, except the (B′, N, U) optimal bin if
any (then the N item of this bin cannot be an N ′ item), and this bin has zero reserve. Since no
N ′ item is packed into a (2N,S, V ) or (N, 2S, V ) optimal bin, moreover there are no (2N ′, 2U)
or (2N ′, U, V ) optimal bins, in any optimal bin there remains positive reserve. Moreover if the
optimal bin contains k ≥ 1 N ′ items, there remains in the bin at least k reserve.

On the other hand, it is easy to check that the total shortage is at most 10 in the FFD bins. To
finish the proof, we distinguish between two subcases, as follows. If there exist at most nine N ′

items, then the total number of G′ and B′ items is also at most nine, therefore the reserve is zero
only in at most nine optimal bins, thus (since OPT ≥ 19) we have totally at least 10 reserve in
the optimal bins, which covers the shortage. Otherwise there are at least ten N ′ items, and then we
again have at least 10 reserve in the optimal bins of the N ′ items, which covers the shortage.

Case 2. There exists a (2N ′, 2U) or a (2N ′, U, V ) optimal bin. First we increase the weight of the
S items to 12, and decrease the weights of the B items to 22. Then the tables of the possible bins
look as follows:

OPT
23
22
12
12
9
8

G 1 1 1 1 1 1 1
B
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1 2
r 0 1 0 1 3 4 5

1 1 1 1 1 1 1
1 1

1 1
1 1 2 1

1 1 1 2
1 2 1 2 4 5 6

12
12
9
8

N 3 2 2 2 1 1 1 1 1 1
S 1 2 1 1
U 1 1 2 1
V 1 1 1 2
r 8 8 11 12 8 11 12 14 15 16

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
0 2 3 4 0 2 3 4 5 6 7 8
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12
9
8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 8 11 12 14 15 16

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
0 2 3 4 5 6 7 8

1

4
0

9
8

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4

FFD
23
22
12
12
9
8

G 1 1
B 1 2 1
N 1 1
S
U
V
s 9 −1 8 −2

1 1 1 1 1 1 1

1 1
1 1

1 1 2 1
1 1 1 2

8 7 8 7 5 4 3

1 1 1 1 1 1 1
1 1

1 1
1 1 2 1

1 1 1 2
7 6 7 6 4 3 2

12
12
9
8

N 3 2 2 2 1 1 1
S 1 2 1
U 1 1 2
V 1
s 0 0 −3 −4 0 −3 −6

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
8 6 5 4 8 6 5 4 3 2 1 0

12
9
8

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 8 6 5 4 3 2 1 0

1

4
8

4 3 2 1
1 2 3

0 −1 −2 −3

3 2 1
2 3 4 5
7 6 5 4

1
−1

Suppose that there exists a (B,N) FFD bin. Since any N is packed for the first attempt, the N
item of this bin comes after the N ′ items, thus N ′ > 1/2−X holds, contradicting the condition of
Case 2. Thus a (B,N) FFD bin is impossible.

Suppose that there exists a (2N, V ) FFD bin. Then theseN items are the two smallestN items,
by Observation 3.4.9. It follows that two N items, a U item and a further U or V item cannot be
packed into one bin, contradicting the assumption of Case 2. Thus there is no (2N, V ) FFD bin.

Now we decrease the weight of the G \G′ items by 1, and increase the weight of the N ′ items
by 1. As a result, no (G′, N ′) FFD bin has shortage, and no optimal bin has shortage (as no N ′

item is packed into a (2N,S, V ) or (N, 2S, V ) bin. Now we cover the shortage caused by some
(N, 2U), (N,S, U) or (2N,U) FFD bin. Clearly there can be at most one of them by Observation
3.4.7. Let the U item (or items) of this bin be called as bad U item(s). Now we increase the weight
of the bad U items by 3, and we show below that the reserve of the optimal bins of the bad U items
do not become negative.

Case of (N,2U) FFD bin. Let the items of the bin be denoted as (N1, U1, U2), where U1 ≥ U2.
Then N1 is the smallest N item by Observation 3.4.9. Thus N1 ≤ 1/2 − Z holds because of the
existence of the {(G,N), (G,N,U)} cobin. We know from Observation 3.4.7 that there is no other
(N, .) bin, except the (3N) bins. If there is an S item in some bin earlier than the (N1, U1, U2) bin
(for example if there exists a (G,S, U) FFD bin), N1 would fit into any such bin before the S item,
a contradiction. It follows that there is no S item in the earlier bins. There is no (S, .) bin either,
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since one S item from such a bin would fit into the (N1, U1, U2) bin before the U items. Thus in
this case there is no S item at all.

Suppose that there exists a (B,N,U1) optimal bin (the case of (B,N,U2) bin is similar). Since
B > N01 + U01 ≥ N1 + X and N > U2 hold, the level of the (B,N,U1) optimal bin would be
bigger than (N1 +X) + U2 + U1 > 1, a contradiction.

Let U ′ denote any of U1 and U2. It follows that U ′ cannot be packed into a (B,N,U) optimal
bin, and similar arguments show that U ′ cannot occur in any (G,N,U), (2N, 2U) or (2N,U, V )
optimal bin. Moreover, since 1 < N1+U1+U2+X ≤ (1/2−Z)+ 1−Z

3
+U2+X = 5

6
− 4

3
Z+U2+X ,

thus U1 ≥ U2 >
4
3
Z+ 1

6
−X holds. Then U ′+U+3V > (4

3
Z+ 1

6
−X)+Z+3X = 2X+ 7

3
Z+ 1

6
>

2X + 7
3
1−X
4

+ 1
6
= 17

12
X + 3

4
> 17

12
2
11
+ 3

4
= 133

132
> 1, thus no U ′ item can be packed into a (3U, 2V )

or (2U, 3V ) optimal bin. Since G > B > N1 + X , neither U1 nor U2 can occur in optimal bins
(G, 2U) and (B, 2U), and they cannot be simultaneously in (N, 3U) or (N, 2U, V ) optimal bins.
Thus, checking one by one the possible optimal bins of the bad U items, we find 3 reserve in the
optimal bin of each bad U , or 6 reserve if they are in a common bin, to cover the increased weights
of the bad items.

Case of (N,S,U) FFD bin. Let the items be denoted as (N1, S1, U1). Similarly as in the case of
the (N, 2U) bin, it follows that N1 is the smallest N item, thus N1 ≤ 1/2 − Z holds as above.
It follows also that S1 is the only one S item. (If there was an S item in some earlier bin, N1

would be packed there instead of the S item; and if there was an S item in some later bin, this
S item would fit into the (N1, S1, U1) bin before the U item.) Now 1 < N1 + S1 + U1 + X ≤
(1/2 − Z) + 1−X

3
+ U1 +X = 2

3
X − Z + U1 +

5
6

holds, thus U1 > Z + 1
6
− 2

3
X is valid. Then

U1 + U + 3V > (Z + 1
6
− 2

3
X) + Z + 3X = 7

3
X + 2Z + 1

6
> 7

3
X + 1−X

2
+ 1

6
= 11

6
X + 2

3
> 1,

thus U1 cannot be in a (3U, 2V ) or (2U, 3V ) optimal bin.
The inequalities G > B > N1 + X > S1 + X hold similarly as in the previous case, thus

U1 cannot be packed into a (G,N,U), (G,S, U), (B,N,U), (B, S, U), (2N, 2U), (2N,U, V ),
(N,S, 2U) or (N,S, U, V ) optimal bin (and there is only one S item, i.e. there is no S-bin with at
least two S items). Thus we find 3 reserve in the optimal bin of U1.

Case of (2N,U) FFD bin. Let the items be denoted as (N1, N2, U1), where N1 ≥ N2. Again it
holds that N1 and N2 are the two smallest N items by Observation 3.4.9. Also, similarly as in
the case of the (N, 2U) FFD bin, there is no S item. Suppose that U1 is packed into a (3U, 2V ) or
(2U, 3V ) optimal bin. ThenN1+N2+U1+X > 1 ≥ U1+Z+3X , i.e.N1+N2 > Z+2X . Since
N ′ > N0i+U0i−X holds for i = 1, 2, and N1 and N2 are the two smallest N items, it follows that
N ′ > N1+Z−X ≥ N2+Z−X . Thus 2N ′+U+V > (N1+Z−X)+(N2+Z−X)+Z+X =
(N1 +N2)+ 3Z −X > 4Z +X > 1, a contradiction. We have obtained that U1 cannot be packed
into a (3U, 2V ) or (2U, 3V ) optimal bin.

Applying again that there exist at least two cobins, G > B > N1+X ≥ N2+X hold. Thus U1

cannot be packed into a (G,N,U), (B,N,U), (2N, 2U) or (2N,U, V ) optimal bin. In any other
optimal bin where U1 can occur we find 3 reserve.

Summarizing the previous results, the shortage caused by the (G′, N ′) FFD bins is covered,
and also the shortage of the FFD bin of the bad U item(s) is covered. Since a (B,N) bin or a
(2N, V ) FFD bin is impossible in Case 2, at most 4 shortage remains, namely at most 3 by the
(U, .) FFD bins and 1 in the last FFD bin.
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Let us delete each bin which has at least 4 surplus or reserve. (We must be careful during the
calculation of the reserve of the optimal bins, as we must take into account the increased weights
of the N ′ and bad U items). The next bins remain:

OPT
23
22
12
12
9
8

G 1 1 1 1 1 1
B
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1
r 0 1 0 1 3 4

1 1 1 1 1 1
1 1

1 1
1 1 2 1

1 1 1
1 2 1 2 4 5

12
12
9
8

N
S
U
V
r

2 2 2 2 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2
0 2 3 4 0 2 3 4 5 6 7

3 2 2 1 1
2 1 3 2

1 1 1
0 2 3 5 6

1

4
0

4 3
1

8 9

3 2 1
2 3 4
1 2 3

FFD
23
22
12
12
9
8

G 1
B
N 1
S
U
V
s −1

1 1

1
1 2
4 3

1 1

1
1 2
3 2

12
12
9
8

N 3 2 2 1 1 1
S 1 2 1
U 1 1 2
V
s 0 0 −3 0 −3 −6

1 1 1 1

3 2 1
1 2 3

3 2 1 0

1 1 1 1
3 2 1

1 2 3
3 2 1 0

4 3 2 1
1 2 3

0 −1 −2 −3
1
−1

Now we can exclude some more FFD bins as follows:
- (N,U, 2V ) or (S, U, 2V ) FFD bins are impossible, since then there is no U item in some later

bin (as it would fit into this bin before the two V items), thus there is no (U, .) bin with shortage,
and the 1 surplus of the (N,U, 2V ) or (S, U, 2V ) bin covers the remaining 1 shortage of the last
FFD bin.

- (G,U, V ), (G, 2V ), (B,U, V ), (B, 2V ) bins are impossible, since an N item always fits into
a bin which contains only a G item; thus if such a bin exists, then there would not be any N item
different from theN ′ items (but suchN must occur in the optimal bin of the cobin). Then noB-bin
remains in the FFD bins, thus there is no B item at all. The following bins remain:
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OPT
23
12
12
9
8

G 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1
r 0 1 0 1 3 4

12
12
9
8

N
S
U
V
r

2 2 2 2 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2
0 2 3 4 0 2 3 4 5 6 7

3 2 2 1 1
2 1 3 2

1 1 1
0 2 3 5 6

1

4
0

4 3
1

8 9

3 2 1
2 3 4
1 2 3

FFD
23
12
12
9
8

G 1
N 1
S
U
V
s −1

3 2 2 1 1 1
1 2 1

1 1 2

0 0 −3 0 −3 −6

1 1 1

3 2
1 3

3 2 0

1 1 1
3 2

1 3
3 2 0

4 3 2 1
1 2 3

0 −1 −2 −3
1
−1

Now we exclude some further bins as follows.
- There cannot be an (N, 3V ) or (S, 3V ) FFD bin. If such a bin exits, then there would be no

U item at all, since there is no U item in the earlier bins, and cannot be in the later bins either (but
there must be at least one U item by the condition of this Case 2).

- Suppose there exists an (N, 2U, V ) FFD bin with surplus 2; let the items be denoted as
(N1, U1, U2, V1). Then N1 is the smallest N item, there is no S item, and there is no bad U item. If
there is no (U, .) FFD bin with shortage, then no shortage remains. Otherwise there exists a (U, .)
bin with shortage. Then the last (and thus smallest) U item does not fit into the (N, 2U, V ) bin
before the V item. It follows that N1 + U1 + U2 + Z > 1 holds.

We state that neither U1 nor U2 can be packed into a (G,N,U) optimal bin. Suppose for
example that U1 is packed into a (G,N,U) optimal bin. Since G > N1 + Z and N > U2, we get
that the level of the (G,N,U) optimal bin is bigger than (N1+Z)+U2+U1 > 1, a contradiction,
thus the claim follows.

Similarly we get that neither U1 nor U2 can be packed into a (2N, 2U) optimal bin, and they
cannot be packed into any optimal S-bin (since there is no S item). Neither U1 nor U2 can be
packed into a (3U, 2V ) optimal bin (indeed, then a U and two V items would also fit here, but N1

and Z do not fit into a bin with U1 and U2, thus then N1+Z > Z+2X , implying 1/3 ≥ N > 2X ,
which is a contradiction). Thus in the optimal bins of U1 and U2 we find at least 2 further total
reserve, therefore the total shortage is covered.

- Similarly it follows that there is no (S, 2U, V ) FFD bin. If such a bin exists, then it contains
the smallest S item, and there is no (N, .) FFD bin with shortage. (If an (N,S, U) FFD bin exists,
then there is no S in the later bins.) Thus there is no bad U item. There must be a (U, .) bin with
shortage, otherwise the total shortage is covered. Then S1+U1+U2+Z > 1 holds with the items,
and we again find at least 2 more reserve in the optimal bins of the U1 and U2 items.
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- Thus no V item remained before the (U, .) FFD bins. We conclude that there are at most four
V items, since from Observation 3.4.7 it follows that there can be at most one (U, .) FFD bin with
at most three U items.

- There can be neither an (S, 4V ) nor a (U, 4V ) optimal bin. Indeed, if such a bin exists, then
there are four V items, these items can be only in a (U, 3V ) FFD bin (here U = Z) and in the last
FFD bin, and then the smallest U and the four V items do not fit into a bin, a contradiction. Thus
only the following bins remain:

OPT
23
12
12
9
8

G 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1
r 0 1 0 1 3 4

12
12
9
8

N
S
U
V
r

2 2 2 2 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2
0 2 3 4 0 2 3 4 5 6 7

3 2 2 1 1
2 1 3 2

1 1 1
0 2 3 5 6

4 3
1

8 9

3 2
2 3
1 2

FFD
23
12
12
9
8

G 1
N 1
S
U
V
s −1

3 2 2 1 1 1
1 2 1

1 1 2

0 0 −3 0 −3 −6

1

3

3

1
3

3

4 3 2 1
1 2 3

0 −1 −2 −3
1
−1

Suppose there exists an (S, 3U) FFD bin, with 3 surplus. Then there must be also a (U, 3V )
FFD bin, otherwise the total shortage is covered. Because of the existence of the (S, 3U) FFD
bin, there is no bad U item. There cannot be an optimal bin with positive reserve, since then the
total shortage would be covered (recall that any G item is a G′ item, thus there is no N ′ item in
an optimal G-bin) therefore only the following optimal bins are possible: (G,N,U), (G,S, U),
(2N,S, V ), (2N, 2U), (N, 2S, V ), and (3S, V ). Since there are four V items, and any remaining
possible optimal V -bin contains exactly one V item, and also contains at least one S item, it follows
that there are at least four S items. On the other hand, since there can be at most one (N, .) FFD
bin with at most two N items, and there is only one (S, 3U) FFD bin, it follows that there can be
at most three S items. This is a contradiction, thus there is no (S, 3U) FFD bin. (The existence of
an (N, 3U) FFD bin could be excluded similarly but we do not need this in the following.)

After excluding the (S, 3U) FFD bin we make the following consideration: If there exists an S
item, then exactly one FFD bin must occur from the bin-types listed below:

a, a (2N,S) bin with the two smallest N items, and the only one S item,
b, an (N, 2S) bin with the smallest N item, and the only two S items,
c, an (N,S, U) bin with the smallest N item, the only one S item and the biggest U item.
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It follows that (2N,S, V ), (N, 2S, V ), (3S, V ) optimal bins are impossible as the items do not
fit into one bin, and there exist at most two S items. By excluding these bins we have the possibility
to increase the weight of the V items to be w(V ) = 9. Then the following possible bins remain:

OPT
23
12
12
9
9

G 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1
r 0 0 0 0 3 3

12
12
9
9

N
S
U
V
r

2 2 2 1 1 1 1 1 1
1 1 1

2 1 2 1 3 2 1
1 2 1 2 1 2

2 2 2 2 2 2 5 5 5

2 2 1 1
2 1 3 2

1 1
2 2 5 5

4 3
1

8 8

3 2
2 3
−1 −1

FFD
23
12
12
9
9

G 1
N 1
S
U
V
s −1

3 2 2 1 1 1
1 2 1

1 1 2

0 0 −3 0 −3 −6

1

3

3

4 3 2 1
1 2 3

0 0 0 0
1
0

Now we have no shortage in the (U, .) FFD bins, there is no shortage in the last FFD bin, all
shortage caused by (G,N) FFD bins is covered by the optimal bins of the N ′ items, and also the
shortage caused by the bad U items is covered. Thus the total shortage is covered, except for the
shortage created now in the possible (3U, 2V ) or (2U, 3V ) optimal bins.

If there is a (U, 3V ) FFD bin, then the smallest U item and the four V items do not fit into
one bin, thus there is no optimal 5-bin, and no shortage remains, therefore a (U, 3V ) FFD bin is
impossible.

Observation 3.4.10 There are at most three V items. Moreover there is exactly one optimal bin
with shortage, a (3U, 2V ) optimal bin or a (2U, 3V ) optimal bin.

Proof. There can be at most three V items, since V items are only in one (U, .) FFD bin, and item
X in the last bin. Since there can be at most three V items, (3U, 2V ) and (2U, 3V ) optimal bins
cannot occur at the same time, and there can be at most one such bin. If there is no such bin, then
the total shortage would be covered. 2

Thus there is only one optimal bin with 1 shortage, i.e. the uncovered shortage is only one.
There cannot be an optimal bin different from (3U, 2V ) and (2U, 3V ) and containing at least two
V items, since then there would be four V items. Thus (2N, 2V ), (N,S, 2V ), (N,U, 2V ) optimal
bins are impossible. Let us delete these bins, furthermore let us delete any bin which has positive
reserve or surplus, since they would cover the possible shortage. The following possible bins
remain:
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OPT
23
12
12
9
9

G 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1
r 0 0 0 0 3 3

2 2

2 1
1

2 2

3 2
2 3
−1 −1

FFD
23
12
12
9
9

G 1
N 1
S
U
V
s −1

3 2 2 1 1 1
1 2 1

1 1 2

0 0 −3 0 −3 −6

4 3 2
1 2

0 0 0
1
0

We conclude that
a, Each N ′ item is packed into a (2N ′, 2U) or (2N ′, U, V ) optimal bin, and both N items are

N ′ items in these bins (otherwise positive reserve would remain in the bin).
b, In any (G, 2U) optimal bin or (G,U, V ) optimal bin there is exactly one bad U item (other-

wise there would be positive reserve) and a bad U item can occur only in such an optimal bin.
Upon the considerations above, we introduce a new notation H for all N items, S items and

bad U items. By the simplified notation we get fewer bin-types, more exactly, several different
bin-types can be handled in a simplified way.

OPT FFD
23
13
12
9
9

G 1 1
N’
H 1 1
U 1
V 1
r 0 0

2 2

2 1
1

0 0

3 2
2 3
−1 −1

G 1
N’ 1
H
U
V
s 0

3

0

4 3 2
1 2

0 0 0
1
0

Let U0 denote the first U item in the bin before the last FFD bin (i.e. the first U item in the
(3U, V ) FFD bin or in the (2U, 2V ) FFD bin).

Claim 3.4.1 There exists a fallback U item after U0.

Proof. Otherwise, since the five smallest items do not fit into one bin, there is no optimal 5-bin,
thus there is no uncovered shortage, a contradiction. 2

Thus there must be fallback U item after U0. (A V item cannot be fallback, since three U items
plus an item with size at most Z always fit into a bin). Such a fallback U item can be packed only
into some (4U) FFD bin.

Now we introduce one more definition. We say that a U item is big if it is bigger than 1/4 and
it is not a bad U item. (Bad U items (if there are any) precede the big U items, thus the bad U items
are also bigger than 1/4.) The U items which are not bigger than 1/4 are called small U items.
Note that a big U item cannot be fallback, thus any fallback U item is surely a small U item, but
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small regular U items can exist. Then it follows that there exists at least one (4U) FFD bin, and
the first item in the first (4U) FFD bin is a big U item (otherwise there would be no fallback item).

It is easy to check that a big U item cannot be packed into a (G,H,U), (3U, 2V ) or (2U, 3V )
optimal bin; the reason for the last two types is 1/4+Z+3X > 1/4+ 1−X

4
+3X = 11

4
X+ 1

2
> 1.

Thus a big U item can be only in a (2N ′, 2U) or (2N ′, U, V ) optimal bin, and only one big U can
be packed into such a bin.

Claim 3.4.2 At the actual state of the FFD packing just after U0 has been packed, each (4U)
FFD bin except the last one contains three or four items. Furthermore at this time all (4U) bins
containing three items are located before the (4U) FFD bins containing four items, and the last
(4U) bin contains U0 only.

Proof. Since the sizes of the items are decreasing, and any three U items fit into a bin, it follows
that the sums of the first three items in the (4U) bins are decreasing. Thus if there are already four
items in some (4U) bin just when U0 comes, this U0 item would fit into any later bin, if there are
only three items there. 2

Let i denote the number of 3-bins among the final (4U) FFD bins just after packing U0. More-
over let the number of big U items be 3k + l, where k ≥ 0 and l ∈ {0, 1, 2}.

Claim 3.4.3 The number of fallback U items is k − 1 or k if l = 0, and it is k or k + 1 if l = 1 or
l = 2.

Proof. Let us consider the FFD packing, how the (4U) bins are packed. First three big U items are
packed into one bin, then the next three big U are packed into the next bin, and so on, and finally
in the (k + 1)-st (4U) bin there are l big U items. Then come the small U items, and four small
U items always fit into a common bin. If l = 0, then there will be k − 1 fallback items in the first
k − 1 (4U) bins, and there can be also one more fallback item in the k-th (4U) bin. If l > 0, then
there will be k fallback items in the first k (4U) bins, and there can be also one more fallback item
in next (4U) bin. 2

Corollary 3.4.2 For the number i of 3-bins defined above in terms of U0 we have 1 ≤ i ≤ k + 1.

To finish the proof of Case 2 of this lemma, we consider two subcases as follows.

Subcase 2.1. There exists a (2U, 3V ) optimal bin. Let the items be denoted as (U1, U2, V1, V2, V3).
Since there are three V items in the bin, there is no other V -bin in the optimal packing. Moreover
there is a (2U, 2V ) FFD bin, since otherwise the number of V items would be only two. The
possible bins in this subcase are:

OPT FFD
23
13
12
9
9

G 1
N’
H 1
U 1
V
r 0

2

2

0

2
3
−1

G
N’
H
U
V
r

1
1

0

3

0

4 2
2

0 0
1
0

Let us consider an arbitrary big U item, denoted as Ub.
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Claim 3.4.4 For any big U item Ub, there are at least three different small U items Ub,1, Ub,2, Ub,3,
such that Ub together with any two further big or small U items and any item from Ub,1, Ub,2, Ub,3
fit into a common bin; furthermore for different choices of Ub the sets of the corresponding three
small U items are mutually disjoint.

Proof. Recall that Ub is surely packed into an optimal bin (2N ′, 2U). Let the items be denoted
in this bin as (N ′, N ′, Ub, Ub,1); here Ub,1 is a small U item. The two N ′ items of this optimal
bin are packed into two (G′, N ′) FFD bins. On the other hand, any G′ item is packed into a
(G′, H, U) optimal bin, where the U item is a small U . Let us denote the optimal bins of the
two G′ items as (G′, A1, Ub,2) and (G′, A2, Ub,3). (We do not use different letters for the two
different G′ items, since they have the same size.) Then A1 and A2 are H items, and both Ub,2
and Ub,3 are small U items. Thus, all the items considered fit into four optimal bins: (G′, A1, Ub,2),
(G′, A2, Ub,3), (N ′, N ′, Ub, Ub,1) and (U1, U2, V1, V2, V3). On the other hand, since G′ +N ′ + V1 >
1 and G′ + N ′ + V2 > 1 hold, furthermore U1 + U2 + Ub,s + Ub,t + V3 > 1 holds with any
two distinct s, t ∈ {1, 2, 3}, it follows that the remaining items fit into one common bin, i.e.
A1 + A2 + Ub + Ub,s ≤ 1 holds with any s ∈ {1, 2, 3}. Then the statement follows from the fact
that both items A1 and A2 are at least as large as a big U item. 2

Let us now consider first the simpler case when i = 1. Let Ub denote the first U item in the first
(4U) FFD bin, which is naturally a big U item. Then Ub,1, Ub,2, or Ub,3 cannot be the second or
third item in this bin, since then the next U item fits into this bin, thus there would be no fallback
item in this bin. After packing three (big or small) U items into the first (4U) bin, no further item
fits here until the arrival of U0, moreover U0 does not fit here either, and only the first (4U) bin
remains a 3-bin after the packing of U0. Recall that U0 is the first item in the bin before the last
FFD bin, and this bin is of type (2U, 2V ) in this subcase. Thus exactly two U items remain after
the packing of U0 (the fallback U item that is packed into the first (4U) bin and the other U item
in the bin of U0). On the other hand all of Ub,1, Ub,2, and Ub,3 remain after U0 (since any of them
fits into the first (4U) bin as the fourth item), a contradiction.

Now suppose that i > 1. Let Ub denote the first U item in the i-th (4U) FFD bin; this item is
surely a big U item. Then, similarly as above, it follows that Ub,1, Ub,2, or Ub,3 cannot be the second
or third item in this bin. Moreover, if Uc denotes any big U item before Ub, we similarly obtain that
Uc,1, Uc,2, or Uc,3 cannot be the second or third item in the i-th (4U) FFD bin (because Uc ≥ Ub).
The Ub,s and Uc,s items (s = 1, 2, 3) cannot be in the first i−1 (4U) FFD bins among the first three
items, because all these items in the first i− 1 (4U) FFD bins are big U items. Moreover any such
item (Ub,s or Uc,s, s = 1, 2, 3) fits into the i-th (4U) FFD bin as the fourth item (using again that
Uc ≥ Ub). Thus it follows that all these items remain after U0. Thus at least 3(3(i−1)+1) = 9i−6
small U items remain after U0; but on the other hand the number of such items is exactly i+1 (the
i fallback U items after U0, and the other U item in the bin of U0), thus i+ 1 ≥ 9i− 6 holds, from
which we get i = 0, a contradiction.

Subcase 2.2. There exists a (3U, 2V ) optimal bin. In this case a similar proof works, just we have
to do it in a little bit more careful way. Suppose that a big U item is packed into a (2N ′, 2U)
optimal bin. Consider the two G′ items which are placed in two FFD bins together with the two
N ′ items. If both of them are packed in (G′, H, U) optimal bins, we call the big U item nice (thus
in Subcase 2.1 each big U item was nice). Otherwise (if a big U item is packed into a (2N ′, U, V )
optimal bin, or a big U item is packed into a (2N ′, 2U) optimal bin but a G′ item from the FFD
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bin of one N ′ item of this optimal bin is packed into a (G′, H, V ) optimal bin), we call the big U
item freaky.

There is at most one freaky big U item, since there is at most one optimal V -bin different from
the (3U, 2V ) optimal bin as the number of V items is at most three. Let the items in the (3U, 2V )
optimal bin be denoted as (U1, U2, U3, V1, V2); here the items Uj (j = 1, 2, 3) are small U items.
Now the possible bins are as follows:

OPT FFD
23
13
12
9
9

G 1 1
N’
H 1 1
U 1
V 1
r 0 0

2 2

2 1
1

0 0

3
2
−1

G 1
N’ 1
H
U
V
s 0

3

0

4 3 2
1 2

0 0 0
1
0

Claim 3.4.5 (a) If a big U item, say Ub is nice, then there exist (at least) six different small U items
Ub,1,Ub,2,Ub,3,U1,U2,U3, such that Ub together with any one of them and with any two further big or
small U items fit into a common bin, moreover the first three small U items Ub,1, Ub,2, and Ub,3 are
different for different nice big U items.
(b) If a big U item, say Uc is freaky, then there exist (at least) five different small U items Uc,1, Uc,2,
U1, U2, U3, such that Uc together with any one of them and with any two further big or small U
items fit into a common bin, moreover the first two small U items Uc,1 and Uc,2 are different from
any small U items Ub,j (j = 1, 2, 3) associated with a nice big U item Ub.

Proof. Let a (nice or freaky) big U item be denoted again as Ub. The optimal bin of Ub can
be a (2N ′, 2U) or a (2N ′, U, V ) optimal bin, thus let the items being in the bin be denoted as
(N ′, N ′, Ub, Ub,1), where Ub,1 is a small U or V item. Consider the optimal bins of the G′ items that
are packed together in the FFD packing with the previous two N ′ items. Let these optimal bins be
denoted as (G′, A1, Ub,2) and (G′, A2, Ub,3) optimal bins, where A1 and A2 are H items, and either
both Ub,2 and Ub,3 are small U items or one of them is a small U item and the other is a V item.
Since there are at most three V items, there is at most one V item among Ub,1,Ub,2 and Ub,3, and
there is no V item among them if Ub is nice. Since G′ + N ′ + V1 > 1 and G′ + N ′ + V2 > 1
hold, furthermore the sum of any five items among U1,U2,U3, and Ub,1,Ub,2,Ub,3 is bigger than 1
(because at most one V item can occur among the six items, and the other items are U items, and
4U + X > 1), it follows that the remaining items fit into one common bin, i.e. both inequalities
A1 + A2 + Ub + Ub,j ≤ 1 and A1 + A2 + Ub + Uj ≤ 1 hold for all j ∈ {1, 2, 3}. 2

Now we are ready to finish the proof of this Subcase 2.2, which also completes the proof of the
theorem.

Suppose first that i > 1. Then the first U item is big in the i-th (4U) FFD bin, and there are
three big U items in each previous (4U) FFD bin. Among these 3(i− 1) + 1 big U items there are
at least 3(i− 1) nice big U items. Let Ub denote any nice big U item among them. Then, since the
sizes of the big U items are decreasing, Ub,1, Ub,2, or Ub,3 cannot be the second or third item in the
i-th (4U) FFD bin, they are not among the first three items in the first i − 1 (4U) FFD bins, and
any of them (Ub,j for any j = 1, 2, 3) fits into the i-th (4U) FFD bin as the fourth item. It follows
that all these items remain after U0. Thus at least 9(i−1) U items remain after U0, but on the other
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hand there are at most i + 2 U items after U0, namely the i fallback U items after U0 plus at most
two further U items in the bin of U0.

It follows that i + 2 ≥ 9i − 9 holds, thus we get i ≤ 1, a contradiction. Thus only the case
i = 1 remains to be considered. In this case there remain at most 3 U items after U0. On the other
hand, the first item in the first (4U) FFD bin is a big U item (nice or freaky), thus even if this big
U item is freaky, there are at least five small U items (in this case we must take into account also
the small U items of the (3U, 2V ) optimal bin), such that any of them must be after U0. This is a
contradiction, as well. 2
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Chapter 4

The tight bound of First Fit Algorithm

The results of this chapter are published in papers [23, 24]. Both papers are written together with
Jiri Sgall, and the contributions of the authors are indivisible (approximately 50%-50%).

In this chapter we give the tight bound of the First Fit algorithm (FF for short). This algorithm
packs each item into the first bin where it fits, possibly opening a new bin if the item does not fit
into any currently open bin. The proof that the asymptotic approximation ratio of FF is 1.7 given
by Ullman [74] and subsequent works by Garey et al. and Johnson et al. [45, 55] were among the
first results on approximation algorithms.

Here we prove that also the absolute approximation ratio for FF is exactly 1.7. This means
that if the optimum needs OPT bins, First Fit always uses at most b1.7 · OPT c bins. Thus we
settle this open problem after about 40 years. Furthermore we show matching lower bounds for
all values of OPT , i.e., we give instances on which FF uses exactly b1.7 · OPT c bins. Such
matching upper and lower bounds were previously known only for finitely many and small values
of OPT . Thus our results not only give the exact worst case for all values of OPT , but actually
even give the first infinite sequence of values of OPT for which the exact worst-case performance
of FF is known.

We note here, that the same (tight) bounds hold also for algorithm Best Fit (BF for short), as
we proved this in our recent work [24], but the proof for BF is much more complicated than that
is for FF , thus we restrict our attention here only for the tight result of FF .

In the previous chapter we have analyzed the FFD algorithm, which behaves like FF but
receives the items on the input sorted from the largest one to the smallest, and proved that while
the asymptotic approximation ratio is equal to 11/9, regarding the absolute bound we need an
additive constant, its tight value is 2/3. That is, 11

9
OPT + 2

3
bins are sufficient for FFD, but this

number of bins is actually also necessary for some instances for infinitely many values of OPT .
Thus for FFD, the asymptotic and absolute approximation ratios are not equal. In light of this
result, it is rather surprising that for FF the asymptotic and absolute approximation ratios are
equal and no additive term is needed.

History and related work. The upper bound on FF was first shown by Ullman in 1971 [74];
he proved that for any instance, FF ≤ 1.7 ·OPT + 3, where FF and OPT denote the number of
bins used by FF and the optimum, respectively. Still in seventies, the additive term was improved
first in [45] to 2 and then in [44] to FF ≤ d1.7 · OPT e; due to integrality of FF and OPT this
is equivalent to FF ≤ 1.7 · OPT + 0.9. Recently the additive term of the asymptotic bound was
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improved to FF ≤ 1.7 ·OPT + 0.7 in [85].
The absolute approximation ratio of FF got some attention recently. A significant step towards

settling the question of the absolute approximation ratio was the upper bound of 1.75 by Simchi-
Levy [73]. This was improved independently by Xia and Tan [85] and Boyar, Dosa and Epstein
[10] to 12/7 ≈ 1.7143 and recently by Németh to 101/59 ≈ 1.7119 [65].

For the lower bound, the early works give examples both for the asymptotic and absolute ratios.
The example for the asymptotic bound gives FF = 1.7 · OPT whenever OPT = 10k + 1, thus
it shows that the asymptotic upper bound of 1.7 is tight, see [74, 45, 55]. For the absolute ratio,
an example is given with FF = 17 and OPT = 10, which shows that the absolute approximation
ratio cannot be better than 1.7 [45, 55]. (Also an example with FF = 34 and OPT = 20 is
claimed, but it seems that this example has never been published.)

From these (recent) improvements, one can distinguish two different possible ways to reach the
tight result. One option is to decrease the absolute ratio, where we do not use any additive constant.
The upper bound of Simchy-Levi is 7/4, this bound is decreased then to 12/7 ≈ 1.7143 by [85]
and [10], and later to 101/59 ≈ 1.7119 by [65]. However, it turns out, that as we go down to
approach to 1.7, more and more counterexamples appear which all must be excluded one by one;
naturally, on this way we cannot arrive at the tight bound.

Another way is to decrease the additive constant. After the seminal work of FF ≤ 1.7 ·OPT+
0.9 given in [44], the tight value of the additive constant (taking into account also the lower bound)
could be only 0.9 or 0.8 or 0.7, ..., or finally 0, due to integrality of FF and OPT . The authors
in [85] could go down to 0.7. What is the smallest possible value of the additive? We show below
how we can go down to 0.1 quite easily. Our key tool is a weighting function. Surprisingly, it is
the same weighting function that was applied in the early seventies, but we use it in a new, more
efficient form.

To obtain the tight value, i.e. excluding the last 0.1, needs a bit more and tricky work, consid-
ering also some combinatorial properties of the packing, if the packing is very close to the worst
scenario.

4.1 Main ideas
Once the asymptotic bound with a small additive constant is shown, a natural approach to improve
absolute upper bounds is to study fixed small values of OPT and to exclude the possibility of a
higher absolute ratio for them. Indeed, solving a few such cases necessarily improves upper bounds
on the absolute ratio—but cannot give a tight result. Of course, this is still far from trivial: Even for
a fixed OPT , each such problem seems to lead to a new and more extensive case analysis. Instead
of joining this race of incremental results, we choose a different approach to attack arbitrarily large
values of OPT directly.

The first important step is a combination of amortization and weight function analysis. To
illustrate our technique, we now present a new short proof of the asymptotic ratio 1.7 for FF . It
uses the same weight function as the traditional analysis of FF . To use amortization, we split the
weight of each item into two parts. (This partition was first applied in [70], for giving a short proof
for the asymptotic performance of BF .) Identifying an item a with its size, the weight of a is its
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scaled size 6
5
a plus the bonus v(a) defined as

v(a) =


0 if a ≤ 1

6
,

3
5
(a− 1

6
) if a ∈

(
1
6
, 1
3

)
,

0.1 if a ∈
[
1
3
, 1
2

]
,

0.4 if a > 1
2
.

Below we give a picture about the weight function as well as about the bonus, focusing on the
range between 0 and 1/2 only.

Note that there is a discontinuity only at a = 1/2. For a set of items B, v(B) =
∑

a∈B v(a)
denotes the total bonus and s(B) =

∑
a∈B a the total size.

It is very easy to observe that the weight of any bin B, i.e., of any set with s(B) ≤ 1, is at most
1.7: The scaled size of B is at most 1.2, so we only need to check that v(B) ≤ 0.5. If B contains
no item larger than 1/2, there are at most 5 items with non-zero v(a) and v(a) ≤ 0.1 for each of
them. Otherwise the large item has bonus 0.4; there are at most two other items with non-zero
bonus and it is easy to check that their total bonus is at most 0.1.

Consider an instance I . The previous bound implies that the weight of the whole instance
6
5
s(I) + v(I) is at most 1.7 · OPT . The key part is to show that, on average, the weight of each
FF bin is at least 1 (with a few exception). For this, the key observation is in the next lemma.

Lemma 4.1.1 Let B,C be two bins in the FF packing such that s(B) ≥ 2/3, C contains at least
two items, and B is opened before C. Then 6

5
s(B) + v(C) ≥ 1.

Proof. Since C is afterB in the FF packing, C contains two items c and c′ that do not fit inB, i.e.,
c, c′ > 1− s(B). If s(B) ≥ 5/6 then the lemma follows trivially without considering v(C). In the
remaining case, let x ∈ (0, 1

6
] be such that s(B) = 5

6
− x. Thus c, c′ > 1

6
+ x and v(c), v(c′) > 3

5
x.

We get 6
5
s(B) + v(c) + v(c′) > 6

5
(5
6
− x) + 3

5
x+ 3

5
x = 1. 2

Consider any FF -bin B with a single item. If s(B) > 1/2, then b(B) = 0.4 and 6
5
s(B) +

v(B) > 1. Furthermore, at most one FF -bin has s(B) ≤ 1/2, by the definition of FF .
Now consider FF -bins with two or more items. Similarly, at most one of them has size less

than 2/3: If we have one such bin, any item in any later bin is larger than 1/3 and thus any later
bin with two items is larger than 2/3. Now we use Lemma 4.1.1 for every FF bin B with two or
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more items and s(B) ≥ 2/3 (except for the last such bin); the bin C is chosen as the next bin with
the same properties.

Summing the bounds for bins with a single item plus the bounds from Lemma 4.1.1 for bins
with two or more items (note that each bin is used at most once as B and at most once as C), we
obtain that 6

5
s(I) + v(I) ≥ FF − 3. The additive constant 3 comes from the fact that we did not

bound the weight of at most three FF -bins: (i) one bin with a single item and s(B) ≤ 1/2, (ii)
one bin with two or more items and s(B) < 2/3, and (iii) the last bin with two or more items.
Combining this with the previous bound on the total weight, we obtain FF − 3 ≤ 6

5
s(I) + v(I) ≤

1.7 ·OPT and the asymptotic bound follows.
By a bit more careful analysis, we can toward decrease the additive constant (after examining

the remaining three bins in the FF packing) but cannot remove it completely. To obtain the
tight bound, we need to analyze different types of bins in the FF packing quite carefully. In the
typical worst case, FF packing starts by bins with five or more items of size around 1/6 (bigger
or smaller), followed by OPT/2 bins with two items slightly larger or smaller than 1/3, and
ends by OPT bins with a single item slightly larger than 1/2. We analyze these three types of
bins separately. To handle various possible situations we slightly modify the weight function (see
Definition 4.2.2) and the amortization lemma (see Lemma 4.2.5).

The most delicate part of the proof analyzes the FF bins containing three or four items—or
rather shows that they cannot play an important role in the worst case; here it is important that
the amortization uses the bonus of only two items and thus the bins with three or four items are
“wasteful”. In the final steps of the proof, the parity of the items of size around 1/3 comes into
play: Typically they come in pairs, as described above, but for odd values of OPT one of them
is missing (or is in a FF bin of 3 or more items), and this allows us to remove the last 0.1 of
the additive term. Our analysis sketched above still leaves a few values of OPT that need to be
analyzed separately. However, with our framework of the general proof, even this is relatively
simple compared to the previous proofs in this area. The upper bound proof is presented in the
next subsection.

Notations. Let us fix an instance I with items a1, . . .an and denote the number of bins in the
FF and optimal solutions by FF and OPT , respectively. We will often identify an item and its
size. For a set of items A, let s(A) =

∑
a∈A a, i.e., the total size of items in A and also for a set

of bins A, let s(A) =
∑

A∈A s(A). Furthermore, let S = s(I) be the total size of all items of I .
Obviously S ≤ OPT .

The bins in the FF packing are ordered by the time they are opened (i.e., the first item is
packed into them). We refer to this order when we say that one bin is before or after another one,
or when we speak about the first or last bin.

A bin is called a k-bin or k+-bin, if it contains exactly k items or at least k items, respectively,
for an integer k. An item is called k-item if FF packs it into a k-bin.

We classify the the FF bins into three groups. If a 2+-bin B satisfies s(B) ≥ 5/6, it is a big
bin; B denotes the set of all big bins and β their number. Any other 2+-bin C is a common bin; C
denotes the set of all common bins and γ their number. Finally, any 1-bin D is a dedicated bin; D
denotes the set of all dedicated bins and δ their number. The items in big, common, and dedicated
bins are called B-items, C-items, and D-items, respectively. Finally, let C2-items be the items in
common 2-bins. The common and dedicated bins are typically denoted by C and D, and C-items
and D-items by c and d (with indices and other decorations). We use B for generic bins (typically
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big or common) and b for items that may be in big or common bins. If there exists a D-item with
size at most 1/2, denote it d0; otherwise d0 is undefined. We shall see in Lemma 4.2.1(i) that there
is at most one such item.

4.2 The upper bound proof for FF
First we state a few basic properties of FF packings. Assumption 4.2.1 as well as all parts of
Lemma 4.2.1 are known and easy facts used explicitly or implicitly in previous works on FF
including [73, 85, 10].

Assumption 4.2.1 We assume, without loss of generality, that no two items ai and aj are packed
into the same bin both in FF and OPT solutions.

This is w.l.o.g., since any two such items may be replaced by a single item of size ai + aj that
arrives at the time of arrival of the first of the original items. It is easy to see that both FF and
OPT solutions are unchanged (except for this replacement).

Lemma 4.2.1 In the FF packing the following holds:
(i) The sum of sizes of any two FF -bins is greater than 1. The total size of any k ≥ 2 FF -bins is
greater than k/2.
(ii) The D-items are packed into different optimal bins. Thus δ ≤ OPT .
(iii) There is at most one common bin C0 with s(C0) ≤ 2/3. Furthermore, if s(C0) = 2/3− 2x for
x ≥ 0 then for any other 2+-bin (i.e., any other common or big bin) B we have s(B) > 2/3 + x;
in addition, if B is opened after C0, then s(B) > 2/3 + 4x.
(iv) If k ≥ 3, then the total size of k arbitrary 2+-bins is greater than 2

3
k.

(v) Suppose that k ≥ 1, we have k + 1 FF -bins B1, B2, . . . , Bk, B, in this order, and such that B
is a k+-bin. Then the sum of the sizes of these k + 1 bins is greater than k.

Proof. (i): The first item in any FF -bin does not fit in any previous bin, thus the sum of their
sizes is greater than 1 already at the time when the second bin is opened. For k bins, order the bins
cyclically and sum the inequalities s(Bi) + s(Bj) > 1 for pairs of adjacent bins.

(ii): Follows from (i), as the size of each D-item equals the size of its dedicated FF -bin.
(iii): IfB is after C0, then it contains only items of size larger than 1−s(C0) = 1/3+2x; since

it contains two items, s(B) > 2/3 + 4x follows. If B is before C0, then notice that C0 contains
an item of size at most s(C0)/2 = 1/3 − x; This item was not packed into B, thus it follows that
s(B) > 2/3 + x.

(iv): Follows immediately from (iii).
(v): Let x be the minimum of s(Bi), i = 1, . . . , k. Then by the FF -rule, any item in bin B

is larger than 1 − x. Since there are at least k items in bin B, we have s(B) +
∑k

i=1 s(Bi) >
k(1− x) + kx = k. 2

Now we assume that the instance violates the absolute ratio 1.7 and derive some easy conse-
quences that exclude some degenerate cases. The first claim, OPT ≥ 7, follows from [10, 85];
we include its proof for completeness. Note that the values of 1.7 · OPT are multiples of 0.1 and
FF is an integer, thus FF > 1.7 · OPT implies FF ≥ 1.7 · OPT + 0.1. Typically we derive a
contradiction with the fact S ≤ OPT stated above.
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Lemma 4.2.2 If FF > 1.7 ·OPT then the following holds:
(i) OPT ≥ 7.
(ii) No common bin C has size s(C) ≤ 1/2.
(iii) The number of dedicated bins is bounded by δ ≥ 3.
(iv) The number of common bins is bounded by γ ≥ OPT/2 + 1 > 4. If FF ≥ 1.7 ·OPT + τ/10
for some integer τ ≥ 1 then γ > (OPT + τ)/2.

Proof. (i): If OPT ∈ {3, 4, 5, 6} and FF > 1.7 · OPT then we can verify that both FF ≥
2 · OPT − 1 and FF ≥ OPT + 3. Using Lemma 4.2.1(ii), the number of 2+-bins is β + γ =
FF − δ ≥ FF −OPT ≥ 3. Thus we can use Lemma 4.2.1(iv) and obtain a contradiction:

S >
2

3
(β + γ) +

1

2
δ =

1

6
(β + γ) +

1

2
FF ≥ 1

6
· 3 + 1

2
(2 ·OPT − 1) = OPT .

Above we supposed that δ 6= 1. If eventually δ = 1, then β + γ ≥ 4 trivially holds. In this case
we count a 2+-bin into the set of dedicated bins; thus δ grows by one, and β + γ decreases by one.
After the modification δ = 2 and β + γ ≥ 3, thus the above calculation works. We possibly apply
this calculation also in later parts (ii) and (iii) if needed.

If OPT = 2 and FF > 1.7 ·OPT then FF ≥ 4, and by Lemma 4.2.1(i) we have S > 4 · 1
2
=

OPT , a contradiction. For OPT = 1, FF is trivially optimal.
(ii): Suppose that s(C0) ≤ 1/2 for a contradiction. Lemma 4.2.1(iii) implies that any big or

common bin C before C0 has s(C) ≥ 3/4. Furthermore, any bin after C0 is a D-bin (as it can
contain only items larger than 1/2) and by Lemma 4.2.1(i), the total size of C0 and all D-bins is
at least (δ + 1)/2. Thus we can obtain a contradiction by using OPT ≥ 7 from (i) and δ ≤ OPT
from Lemma 4.2.1(ii) as follows:

S >
3

4
(β + γ − 1) +

1

2
(δ + 1) =

3

4
FF − 1

4
(δ + 1)

≥ 3

4

(
17

10
OPT +

1

10

)
− 1

4
(OPT + 1) =

41

40
OPT − 7

40
≥ OPT .

(iii): Suppose for a contradiction that δ ≤ 2. Then each FF -bin contains at least two items,
except for at most two dedicated FF -bins. Since OPT ≥ 7 from (i), we can apply Lemma
4.2.1(iv) for the FF − 2 ≥ 3 of 2+-bins and Lemma 4.2.1(i) for the remaining two bins, and thus
we obtain a contradiction as follows:

S >
2

3
(FF − 2) + 1 ≥ 2

3

(
17

10
OPT +

1

10
− 2

)
+ 1 =

17

15
OPT − 4

15
> OPT .

(iv): To obtain the first bound from the second one, use τ = 1 and the integrality of OPT . Now
suppose for a contradiction that γ ≤ (OPT + τ)/2. If γ ≥ 3, then we use Lemma 4.2.1(iv) for the
common bins, Lemma 4.2.1(i) for the dedicated bins, and the fact that the remaining bins are big,
and we obtain

S >
5

6
(FF − γ − δ) + 2

3
γ +

1

2
δ =

5

6
FF − 1

6
γ − 1

3
δ

≥ 5

6

(
17

10
OPT +

τ

10

)
− OPT + τ

12
− 1

3
OPT = OPT ,
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a contradiction. If γ ≤ 2 then

S >
5

6
(FF − δ − 2) +

1

2
(δ + 2) =

5

6
FF − 1

3
(δ + 2)

≥ 5

6

(
17

10
OPT +

τ

10

)
− 1

3
OPT − 2

3
≥ 13

12
OPT − 7

12
≥ OPT ,

using τ ≥ 1 and (i) in the last step, and we obtain a contradiction as well. 2

The weight function and the main lemma. Now we introduce the main ingredients of our
analysis: the modified weight function and the main lemma that is used for the amortized analysis
of the weight of FF bins. As in the simple proof in the introduction and previous bin packing
literature, our ultimate goal is to prove that each OPT -bin has weight at most 1.7 and each FF -
bin has an amortized (average) weight at least 1.

It is convenient to describe the weight of each item a in two parts. The first part, r(a), is called
the regular (part of the) weight, and it is proportional to the size of a; it is the same as in the simple
proof. The other part, v(a) is called the bonus and it is modified so that it depends both on the size
of a and the type of FF -bin where a is packed. B-items have no bonus. C-items have bonus equal
to 0 for items of size at most 1/6, equal to 0.1 for items of size at least 1/3, and linearly interpolated
between these values. D-items have bonus 0.4 if they have size at least 1/2 and slightly smaller if
they have smaller size (this concerns only the single item d0).

Compared to the simple proof and the previous literature, we make several modifications to the
weight function. These are mostly a matter of convenience and simplification of the case analysis
in the proof. First, we move the bonus from the items larger than 1/2 to the D-items. Mostly these
are actually the same items, except for d0. As we shall see later, in the tight cases, each OPT -bin
contains a D-item and this change allows a more uniform analysis. Second, we decrease some
of the weights that we do not use in the proof, namely we do not put any bonus on B-items and
decrease the bonus on d0 (this is necessary to guarantee that its OPT -bin has weight at most 1.7;
however, in tight cases d0 is very close to 1/2).

The third change is essential in our last step of the proof where we remove the remaining
additive constant of 0.1. We define a set of at most two exceptional C-items whose bonus is
decreased to 0. Since they are in different 3+-bins in the FF packing, this does not change the
analysis of the FF packing significantly. On the other hand, the exceptional items are chosen
so that one OPT -bin is guaranteed to have weight at most 1.6, which is exactly the necessary
improvement. Formally we define the exceptional items as follows:

Definition 4.2.1 If OPT ≡ 7(mod 10) and there exists an OPT -bin E that contains no C2-item,
then fix any such bin E for the rest of the proof. Otherwise E is undefined. If E contains at most
two C-items with size larger than 1/6, denote the set of these items E ′. Otherwise (if there are
three or more C-items in E or no E exists) put E ′ = ∅. Let us call E the exceptional bin and the
items in E ′ the exceptional items.

Note that there is at most one exceptional item in each FF -bin by Assumption 4.2.1. Later we
shall show that in a potential counterexample with FF = 1.7 ·OPT + 0.1 the bin E exists.
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Definition 4.2.2 The weight function is defined as follows:
For a B-item b we define v(b) = 0.

For a C-item c we define v(c) =


0 if c ≤ 1

6
or c ∈ E ′ ,

3
5
(c− 1

6
) if c ∈

[
1
6
, 1
3

]
and c 6∈ E ′ ,

0.1 if c ≥ 1
3

and c 6∈ E ′ .

For a D-item d we define v(d) =

{
0.4 if d ≥ 1

2
,

0.4− 3
5
(1
2
− d) if d < 1

2
.

For every item a we define r(a) = 6
5
a and w(a) = r(a) + v(a).

For a set of items A and a set of binsA, let w(A) and w(A) denote the total weight of all items
in A or A; similarly for r and v. Furthermore, let W = w(I) be the total weight of I .

In Definition 4.2.2 the function v is continuous on the boundary of the cases. Furthermore, if
we have a set A of k C-items with size in [1

6
, 1
3
] (and no of them is exceptional item), then the

definition implies that its bonus is exactly v(A) = 3
5

(
s(A)− k

6

)
. More generally, if A contains k

items, each of size at least 1/6 and no D-item, then we get an upper bound v(A) ≤ 3
5

(
s(A)− k

6

)
.

First we analyze the weight of the OPT -bins.

Lemma 4.2.3 For every optimal bin A its weight w(A) can be bounded as follows:
(i) w(A) ≤ 1.7.
(ii) If E is the exceptional OPT -bin then w(E) ≤ 1.6.
(iii) If A contains no D-item, then w(A) ≤ 1.5.

Proof. In all cases r(A) ≤ 1.2, thus it remains to bound v(A). We distinguish three cases:
Case 1: A contains noD-item. Either it contains at least 4 items with non-zero bonus, in which

case their total bonus is at most v(A) ≤ 3
5
(s(A) − 4

6
) ≤ 3

5
· 2
6
= 0.2. Or else it contains at most 3

items with non-zero bonus and v(A) ≤ 0.3. In both subcases (iii) follows and thus (ii) also holds
if E = A.

Case 2: A contains a D-item larger than 1/2. The bonus of the D-item is 0.4. In addition,
A contains at most 2 items larger than 1/6 of total size y at most y < 1/2; they may be B-items
or C-items. If E = A then they have no bonus and both (i) and (ii) hold. Otherwise we have
v(A) ≤ 0.4 + 3

5
(y − 2

6
) < 0.4 + 3

5
· 1
6
= 0.5 and (i) follows.

Case 3: A contains d0. Let the size of d0 be 1
2
− x for x ≥ 0. We have v(d0) = 0.4− 3

5
x. We

distinguish two subcases.
Case 3.1: A contains at most two items other than d0 and larger than 1/6. Then their total size

is at most 1
2
+ x. If E = A then they have no bonus and both (i) and (ii) hold. Otherwise their

bonus is at most 0.1 + 3
5
x and (i) holds.

Case 3.2: If A contains at least three items other than d0 and larger than 1/6. Then their total
bonus is at most 3

5
x, thus v(A) ≤ 0.4 and both (i) and (ii) hold. (This subcase may also happen if

E = A, but there is no need to distinguish this in the proof.) 2

Next we analyze the weight of FF -bins. The case of big and dedicated bins is easy:
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Lemma 4.2.4 (i) The total weight of the big bins is w(B) ≥ β.
(ii) The total weight of the dedicated bins is w(D) > δ.

Proof. (i): For every big bin B, w(B) = r(B) = 6
5
s(B) ≥ 6

5
· 5
6
= 1.

(ii): If d0 is undefined then for every dedicated bin D, w(D) = 6
5
s(D) + 0.4 > 6

5
· 1
2
+ 0.4 = 1

and the claim follows. If d0 exists and has size 1
2
− x for x ≥ 0, then every other D-item has size

strictly larger than 1
2
+ x. We also have δ ≥ 3 by Lemma 4.2.2(iii). Thus

w(D) > (δ−1)
(
6

5

(
1

2
+ x

)
+ 0.4

)
+
6

5

(
1

2
− x
)
+0.4−3

5
x = δ+

(
(δ − 1)

6

5
− 6

5
− 3

5

)
x ≥ δ.

2

Now we focus on the common FF -bins. The next lemma gives the key insight for the amor-
tized analysis. It shows that for most common bins, the regular weight of the bin plus the bonus of
the next common bin is at least 1. A similar method was used for the analysis of BF in [70]. For
the rest of the upper bound proof, number the common bins as C1, . . . , Cγ , in the order of their
opening. The bins C2, . . . , Cγ−1 are called inner common bins. Note that there are some inner
common bins, as γ ≥ 5 by Lemma 4.2.2(iv).

Lemma 4.2.5 Let i = 2, . . . , γ be such that s(Ci−1) ≥ 2/3. Then there exist two items c, c′ ∈
Ci \ E ′ and for any such items

r(Ci−1) + v(c) + v(c′) ≥ 1 .

Thus we have r(Ci−1) + v(Ci) ≥ 1.

Proof. If Ci is a 2-bin, then it contains no exceptional item. If Ci is a 3+-bin, then it contains
at most one exceptional item by Assumption 4.2.1. In both cases c and c′ exist. Since Ci−1 is
common, the size of this bin is smaller than 5/6 and it is at least 2/3 by the assumption of the
lemma. Let x ∈ (0, 1

6
] be such that s(Ci−1) = 5

6
− x. Thus c, c′ > 1

6
+ x and v(c), v(c′) > 3

5
x. We

get r(Ci−1) + v(c) + v(c′) > 6
5
(5
6
− x) + 3

5
x+ 3

5
x = 1. 2

The outline of the rest of the proof is this: We will prove that the common FF -bins have total
weight at least γ − 0.2 (note that this follows almost immediately from Lemma 4.2.5 if there is
no common bin smaller than 2/3). Since the total weight of the dedicated bins is strictly greater
than δ, this implies W > FF − 0.2. Together with W ≤ 1.7 · OPT now FF ≤ 1.7 · OPT + 0.1
follows. However, FF = 1.7 · OPT + 0.1 can hold only if OPT ≡ 7(mod 10). Then we show
that the exceptional bin is defined, thus W ≤ 1.7 ·OPT − 0.1 and we save the last 0.1.

The analysis is considerably harder in case when the last common bin is smaller than 2/3, thus
we will distinguish between these two main cases later: the last common bin is big or small.

Lemma 4.2.6 Suppose w(C) ≥ γ − 0.2. Then
(i) FF ≤ 1.7 ·OPT + 0.1, and
(ii) if the exceptional bin E is defined, then FF ≤ 1.7 ·OPT .
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Proof. By Lemma 4.2.4 and the assumption we have W > β + (γ − 0.2) + δ = FF − 0.2.
By Lemma 4.2.3(i) we have W ≤ 1.7 · OPT . Thus FF − 0.2 < W ≤ 1.7 · OPT . Since
FF and OPT are integers, (i) follows. If E is defined then by Lemma 4.2.3(i) and (ii) we have
W ≤ 1.7 ·OPT − 0.1. Thus FF − 0.2 < W ≤ 1.7 ·OPT − 0.1 and (ii) follows. 2

To decrease the bound by the last one tenth, we only need to show that the exceptional OPT -
bin is defined. First yet another auxiliary lemma:

Lemma 4.2.7 Suppose that every OPT -bin contains a D-item. Then no OPT bin contains two
2-items c1 and c2.

Proof. For contradiction, assume we have such c1 and c2 and number them so that the FF -bin
of c1 is before the FF -bin of c2. (Note that by Assumption 4.2.1, c1 and c2 are not in the same
FF -bin.) Let c3 be the other item in the FF -bin of c1. Since c2 was not packed into this bin, which
contains only c1 and c3, we have c1 + c2 + c3 > 1. This implies that c3 cannot be in the OPT -bin
of c1 and c2. Every OPT -bin contains a D-item by the assumption; let d1 be the D-item in the
OPT -bin of c1 and c2 and d3 the D-item in the OPT -bin of c3. By Lemma 4.2.1(i), d1 + d3 > 1
and thus c1+ c2+ c3+d1+d3 > 2. As all these items are in two OPT -bins, this is a contradiction.
2

Proposition 4.2.1 Suppose that w(C) ≥ γ − 0.2. Then FF ≤ 1.7 ·OPT .

Proof. By Lemma 4.2.6 (i) we have FF ≤ 1.7 · OPT + 0.1. If OPT 6≡ 7mod(10) then by
checking all the other residue classes we can verify that 1.7 · OPT + 0.1 is non-integral. Thus
FF ≤ 1.7 · OPT + 0.1 implies FF ≤ 1.7 · OPT and we are done. It remains to handle the
case when OPT ≡ 7mod(10) and FF = 1.7 · OPT + 0.1. First we claim that every OPT -bin
contains a D-item and thus δ = OPT . If some OPT -bin does not contain a D-item, its weight
is at most 1.5 by Lemma 4.2.3(iii). Thus W ≤ 1.7 · OPT − 0.2. Since FF > W − 0.2, we
obtain FF ≤ 1.7 · OPT , a contradiction. Lemma 4.2.7 now implies that no OPT -bin contains
two C2-items. Note that OPT is odd, as OPT ≡ 7mod(10). On the other hand, the number of
C2-items is even (in any FF -bin there are either zero or two C2-items). Thus some OPT -bin
contains no C2-item. This bin satisfies all the conditions of Definition 4.2.1 of the exceptional bin.
Thus E is defined and by Lemma 4.2.6(ii) the proposition follows. 2

4.2.1 The last common bin is large
Now we prove that if the last common bin is large, then the total weight of the common bins is
w(C) ≥ γ − 0.2. By this, our proof is complete in this case.

Lemma 4.2.8 If s(Cγ) ≥ 2/3, then the total weight of the common bins is w(C) ≥ γ − 0.2.

Proof. First consider the case when every common bin has size at least 2/3. We apply Lemma 4.2.5
for every i = 2, . . . , γ. The regular weight of the last bin is at least r(Cγ) ≥ 6

5
· 2
3
= 0.8. Summing

all of these inequalities we obtain

w(C) =
γ∑
i=1

w(Ci) ≥ r(Cγ) +

γ∑
i=2

(r(Ci−1) + v(Ci)) ≥ 0.8 + (γ − 1) = γ − 0.2.
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Now suppose that s(Ck) = 2/3−x for x > 0 and 1 ≤ k < γ. Using Lemma 4.2.1(iii), eachCj , j >
k, contains (exactly) two items larger than 1/3 + x. Thus v(Cj) = 0.2 and also s(Cj) > 2/3 + 2x
which implies

∑γ
i=k s(Ci) > (γ + 1− k)2

3
. Combining these we have r(Ck) +

∑γ
j=k+1w(Cj) ≥

(γ + 1 − k) − 0.2. Adding the last inequality and the inequalities r(Ci−1) + v(Ci) ≥ 1 from
Lemma 4.2.5 for i = 2, . . . , k, the lemma follows also in this case. 2

We gained the next Theorem:

Theorem 4.2.1 For any instance of bin packing, in the last common bin is large, then FF ≤
1.7 ·OPT .

4.2.2 The last common bin is small
Suppose the last common bin is small, i.e. s(Cγ) < 2/3. The analysis of this case goes along the
line of the case when the last common bin is large. This investigation is a bit more technical, so it
is put into Appendix C.

4.3 Tight lower bound
What do we know at this point? From one hand, it turned out that FF ≤ b1.7 · OPT c, by the
integrality of FF , see Theorem 4.2.1. On the other hand, from works [74, 45, 55] we know such
inputs for which FF = 1.7 ·OPT whenever OPT = 10k + 1. In fact, there is some gap between
the bounds. What can we do to close the gap? We made two different efforts in papers [23, 24], as
we describe it below.

The first effort. In [23] we realized that by a small modification of the instance from [45, 55],
we almost can close the gap. The case is as follows: The original construction is quite intri-
cate. Fortunately—and perhaps also surprisingly—it is sufficient to carefully analyze the high-
level structure of the instance, add to it a few new jobs, and carefully position them in the input
instance. In the original construction we have an input instance L with three regions of items. In
the first region there are items of size close to 1/6, in the second region come items close to 1/3,
and in the third region there are items with the equal size 1/2 + δ, for a small δ > 0. We did
not modify the items in this list, only add some new items before or after L, and also in between
the three regions of L. In this way we needed to review the properties of L with the focus on
the resulting FF packing in each region; the details within each region are somewhat delicate but
fortunately we can use that part as a black box. After adding the new items to the original list L,
we gain the instance I with the next properties:

Theorem 4.3.1 For all integers k ≥ 1 and 0 ≤ i ≤ 9, there exists an instance I such that
OPT = 10k+ i and the lower bound in the top row of the next table holds. The bottom row of the
table gives the upper bounds for a comparison.

i = 0 1 2 3 4 5 6 7 8 9
FF ≥ 17k+ −1 1 3 4 6 8 10 11 13 15

FF ≤ b17k + 1.7ic = 17k+ 0 1 3 5 6 8 10 11 13 15

Furthermore, for i = 1, . . . , 9 there exist instances with OPT = i and FF = b1.7 · ic.
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The proof shows how the new items should be chosen and added to the original list L. The
proof of the theorem is omitted here, as below we show a better way, to close the gap completely.
But note, that we already got the tight bounds for 8 residue classes out of 10. The exceptions are
where i = 0 and i = 3. Fortunately we can get the tight result also in these cases, see below.

The second, and last effort. In [24] we found a brand new construction. This construction
is much simpler than the original one, and makes possible to get the tight result for each residue
class. (Note that the purpose of the original construction was not to get the tight absolute bound, it
wanted to only consider the asymptotic performance.)

The high level scheme of the lower bound forOPT = 10k is this: For a tiny ε > 0, the instance
consists of OPT items of size approximately 1/6, followed by OPT items of size approximately
1/3, followed by OPT items of size 1/2 + ε. The optimum packs in each bin one item from each
group. FF packs the items of size about 1/6 into 2k bins with 5 items, with the exception of the
first and last of these bins that will have 6 and 4 items, respectively. The items of size about 1/3
are packed in pairs. To guarantee this packing, the sizes of items differ from 1/6 and 1/3 in both
directions by a small amount δi which is exponentially decreasing, but greater than ε for all i. This
guarantees that only the item with the largest δi in a bin is relevant for its final size and this in turn
enables us to order the items so that no additional later item fits into these bins.

Theorem 4.3.2 For all values of OPT , there exists an instance I with FF = BF = b1.7 ·OPT c.

Proof. We prove the theorem for OPT = 10k and OPT = 10k + 3, k ≥ 1. For the other values,
the theorem follows from the results of [23] where we used another construction.

Let δ > 0 be sufficiently small (δ = 1/50 will be sufficient). Let δj = δ/4j and ε < δ10k+4.
The instance I contains the following items, reordered as described later: Items b+j = 1/6 + δj

and c−j = 1/3 − δj − ε for j = 1, . . . , bOPT/2c, items b−j = 1/6 − δj and c+j = 1/3 + δj − ε
for j = 0, . . . , dOPT/2e − 1, and OPT items of size 1/2 + ε. Note the shifted indices in the two
subsets of items; this is important for the construction.

The optimal packing uses bins {b+j , c−j , 1/2+ ε}, j = 1, . . . , bOPT/2c, and {b−j , c+j , 1/2+ ε},
j = 0, . . . , dOPT/2e − 1. All these bins have size exactly 1 and their number is OPT .

Now we describe the sequence of FF -bins for the case of OPT = 10k. The items are then
issued in the order of FF -bins they are packed into, thus the BF and FF packings coincide.
The first 2k bins B1, . . . , B2k contain all the b+j and b−j items. Bin B1 contains the 6 smallest
items b−0 , b

−
1 , . . . , b

−
5 , bin B2k contains the 4 largest items b+1 , b

+
2 , b

+
3 , b

+
4 . Each remaining bin Bi,

i = 2, . . . , 2k−1 contains items b+i+3 and b−i+4 (i.e., the largest and the smallest among the remaining
ones of size about 1/6) and some other three items chosen arbitrarily from the remaining items b+j
and b−j . We need to verify that the first fit packing indeed behaves this way. Since δ is sufficiently
small, the size of B1 is close to 1 and no other item fits there. For i = 2, . . . , 2k − 1, it is crucial
that all items of size at most 1/6− δi+3 are packed into previous bins Bi′ , i

′ < i. First, this implies
that s(Bi) ≥ b+i+3+ b−i+4+3b−i+5 > 5/6+ δi+3/2. Second, this in turn implies that all items packed
in later bins Bi′ , i′ > i have size at least 1/6− δi+5 > 1− (5/6 + δi+3/2) > 1− s(Bi) and indeed
they cannot be packed in Bi. The following part of FF packing contains 5k bins C1, . . . , C5k and
Ci contains items c+i−1 and c−i . First note that no c+j or c−j item fits into Bi, i < 2k, as s(Bi) > 5/6.
Also, s(B2k) > 2/3 + δ1 + δ2, thus no c+j or c−j item fits into B2k. Similarly as in the previous
segment the fast decreasing δi and small ε yield s(Ci) > 2/3 + 2δi, which guarantees that no later
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item c+j−1 or c−j , j > i, fits there. Finally, the last segment of FF packing contains 10k bins with
a single item 1/2 + ε; all the bins have size more than 1/2 so these items are packed separately.
Altogether the FF packing contains 2k + 5k + 10k = 17k bins as needed.

It remains to describe the modification of the construction for OPT = 10k+ 3. The items and
OPT packing are already described; they are the same as in the instance for OPT = 10k plus
the new items b+5k+1, c

−
5k+1, b

−
5k, b

−
5k+1, c

+
5k, c

+
5k+1 and three items 1/2 + ε. We pack items from the

instance for OPT = 10k as above, with the exception of b+2k+3 which we replace by new b−5k. This
creates no problems, as b+2k+3 is among the arbitrarily assigned items for OPT = 10k, i.e., it is not
the largest item in any Bi and its size is not relevant in any calculations. We pack the remaining
items as follows: We create a bin B̂ = {b+2k+3, b

+
5k+1, b

−
5k+1, c

+
5k+1} and insert it between B2k−1 and

B2k. None of these items fit in the previous bins, as the smallest one of them has size 1/6− δ5k+1

and s(B2k−1) > 5/6+δ2k+2/2. Furthermore, s(B̂) > 5/6, thus no item fromB2k and later bins fits
into B̂. Next we addC5k+1 = {c+5k, c

−
5k+1} afterC5k, following the pattern of binsCi, and three bins

with single items of size 1/2+ε. Thus FF = 17k+5 and b1.7·OPT c = b1.7(10k+3)c = 17k+5
and we are done. 2

Remark 4.3.1 While we have only shown how to obtain an instance for OPT = 10k+3 from the
one for OPT = 10k, analogous construction can be used to modify the instance for any OPT to
one for OPT +3 with additional 5 FF -bins. Thus we can get instances for any OPT in a uniform
way as follows: For any k ≥ 1 and i = 0, . . . 9 use the instance for OPT = 10k and repeat the
transformation to construct an instance forOPT = 10k+3i with FF = 17k+15i = b1.7·OPT c.
(The equality is easy to check for all residues.) Since the instances for k ≤ 2 can be constructed
trivially, we can get the lower bound instances also for the remaining small values of OPT .
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Chapter 5

The tight absolute bound of First Fit in the
parameterized case

The results of this chapter are from [25]. The contribution of this chapter is reached by the author
of the dissertation.

In this chapter we consider the parameterized case, i.e. we suppose that the size of any item
is at most pi ≤ 1/d, where d ≥ 1 is some fixed integer. (In case d = 1 we get back the original
problem.)

The tight asymptotic approximation ratio of First Fit was known from the early seventies, also
in the parameterized case. Then the tight absolute bound of FF was found recently for d = 1 (as
it is described in the previous chapter). In this chapter we give the tight absolute approximation
ratio of First Fit for any d ≥ 2. In fact, we again do more. For any value of OPT (the number of
bins in an optimum solution) we determine that exactly how large FF (the number of bins created
by First Fit) can be in the worst case.

For the asymptotic bound of FF , it was already known in [53] and [55] (see also [14] about
this), that

Ras(FF ) =
d+ 1

d
, if d > 1.

We do not know about further results, regarding the absolute bound of FF in the parameterized
case. Thus the tight absolute bound is found about after forty years.

We note that the proof for the tight bound of FF in the general case (d = 1, previous chapter
and [23, 24]) is a bit difficult, it needs a tricky handle of the old weighing function, which is used
previously to prove the asymptotic bound. Now, the proof for d > 1 is simple: We apply a lower
bound construction in the parameterized case, which is very similar to that which was used in the
general case (i.e. for d = 1, the construction is in the proof of Theorem 4.3.2). On the other hand,
the upper bound is straightforward and we do not need any tricky technique for it.

Below we give the tight absolute bound in a more detailed form. Let d > 1 and OPT ≥ 1 be
arbitrary integers. Then let OPT = k ·d+ r, where both k and r are integers, and 1 ≤ r ≤ d. This
condition that r is between 1 and d seems a bit unnatural, but this treatment will be convenient for
us to give the tight bound, as follows.
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Theorem 5.0.3 (i), If OPT = k · d+ 1, then the maximum number of possible FF bins is exactly

FFd ≤
⌊
d+ 1

d
OPT

⌋
= OPT + k, (5.1)

(ii), Otherwise, if OPT = k · d + r, where 2 ≤ r ≤ d, the maximum number of possible FF bins
is exactly

FFd ≤
⌈
d+ 1

d
OPT

⌉
= OPT + k + 1. (5.2)

Note that the same lower bounds hold for algorithm BF , as well. But the tightness of these
bounds for BF remain open now.

Notation. Let us fix a list L with items p1, . . . , pn and denote the number of bins in the FF and
optimal solutions by FF and OPT , respectively. We will identify the items with their sizes. Let
P be the total size of all items of L. Obviously P ≤ OPT .

A bin is called a k+-bin, if it contains at least k items (after packing all items of the list). The
bins in the FF packing are ordered by the time they are opened (i.e., when the first item is packed
into them). Expressions like “earlier”, “later”, refer to this ordering.

First we prove several properties of the FF packing which will be used in later calculations.

Claim 5.0.1 In the FF packing, the total size of any d+ 1 d+-bins is strictly bigger than d.

Proof. Let the minimum level among the first d bins in consideration be x, for some 0 < x ≤ 1.
If x = 1, then the statement holds (since the last bin also has at least one item with positive size).
Otherwise x < 1. Let bin B denote the last d+-bin. Then by the FF rule, any item in B, is bigger
than 1 − x. Since there are at least d items in B, the sum of levels of the considered d + 1 bins is
bigger than d · x+ d(1− x) = d. 2

Corollary 5.0.1 In the FF packing, the total size of any j d+-bins is strictly bigger than j · d
d+1

, if
j ≥ d+ 1.

Proof. The statement is valid for any chosen d+ 1 bins among the j bins. Thus the claim follows
by average argument. 2

Claim 5.0.2 Any bin except the last FF bin is a d+-bin.

Proof. Consider one such bin, say B. Any item has size at most 1/d, thus at least d items fit into
B, no matter how big or small these items are. Since there is also (at least one) item in the last bin
which does not fit into B, it follows that there are at least d items in B. 2

Claim 5.0.3 The total level of any two FF bins is bigger than 1.

Proof. Immediately follows from the FF rule. 2
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Claim 5.0.4 Let us consider a packing for which it holds that considering any two bins Bi and Bj ,
i < j, no item being in Bj fits into Bi. Then this packing is the outcome of an FF packing.

Proof. FF creates this packing, if the items are taken in the next list: First we put into the list the
items of the first bin, in any order. Then we continue the list with the items of the second bin, in
any order, and so on. 2

5.1 The proof of the bound
First we make some pretreatment to clear such cases whenOPT is small, i.e. when 1 ≤ OPT ≤ 3.
The first three paragraphs give upper bounds, then we show the tightness, and finally we show that
the bounds we get for small OPT values are the same that are in Theorem 5.0.3.

5.1.1 Small cases
If OPT = 1, we get FF = 1, for any d ≥ 2.

If OPT = 2, FF ≥ 4 contradicts to Claim 5.0.3, applying it for any two pairs of bins. Thus
FF ≤ 3.

If OPT = 3, we state FF ≤ 4. For the sake of contradiction suppose FF ≥ 5. If d = 2,
applying Claim 5.0.1 and Claim 5.0.2, the total level of the first three bins is bigger than 2, and
applying Claim 5.0.3 for the last two bins, their total level is bigger than 1, thus the total level of
all bins is bigger than 3, a contradiction. Similarly, if d = 3, the total level of the first four bins
bins is bigger than 3, we got contradiction again. Finally if d ≥ 4, there is an item in the last bin
with size at most 1/4, thus the level of any previous bin is bigger than 3/4, and thus the total level
is again bigger than 4 · 3/4 = 3, a contradiction. Thus we conclude that FF ≤ 4.

Now we show that the above upper bounds for the number of FF bins are tight. This claim is
trivially true if OPT = 1. If 2 ≤ OPT ≤ 3, we construct the next input. Any optimal bin will
contain d + 1 items, with almost the same sizes, and any optimal bin is completely full. In any
optimal bin the first d− 1 items (called big items) will have slightly bigger sizes, and the two last
items (called small items) will have slightly smaller sizes. Moreover the total size of two small
items is bigger than the size of a big item. Then in the list the items are ordered by non-increasing
sizes. Then d big items are packed into the first bin by FF , and there remains a small room, which
is not enough to accommodate a small item, so this small room remains unused. From this fact it
follows that FF cannot create an optimal packing, and it uses an extra bin (but no more).

The exact sizes are the next: Each small item has size 1
d+3/2

(which is slightly smaller than 1
d+1

).
Thus the big items share 1− 2

d+3/2
= 2d−1

2d+3
total size, i.e. the size of any big item is 2d−1

(2d+3)(d−1) <
1
d
.

The last inequality holds since 2d2−d < (2d+3)(d−1) = 2d2+d−3. Also holds that the size of
a big item is slightly bigger than 1

d+1
. The total size of two small items is strictly bigger than one

big item, since 2
d+3/2

− 2d−1
(2d+3)(d−1) = 2d−3

(2d+3)(d−1) > 0. From the above calculations we conclude
the next:

a, d big items will be packed into the first FF bin, and there remains a small unused room in
this bin, where no more item fits.
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b, If OPT = 2, then d − 2 big items will be packed into the second FF bin, and so all big
items are packed. There remained four small items, three of them fit into the second FF bin (since
d− 1 big items and 2 small items fit together into a bin, it follows that d− 2 big items and 3 small
items fit together into a bin), and the last small item opens a third bin.

c, Suppose OPT = 3. If d ≥ 3, then d big items will be packed also into the second FF bin,
and no more item fits here. There remained 3(d − 1) − 2d = d − 3 big items, these are packed
into the third FF bin. At least four (but not all) small items fit here, and the further small items
fit into the fourth bin. Finally if d = 2, then there are altogether three big items, and one big item
is packed into the second FF bin. Then two small items are packed into this bin, and they fill
the second FF bin. There remain four small items, they do not fit into the third FF bin (since
all items do not fit into three bins as there remained a small unused room in the first FF bin), but
three small items fit into the third FF bin, and the last small item opens a new bin.

Finally, we show that these upper bounds are the same as given in Theorem 5.0.3. Thus let
OPT = k · d+ r, where 1 ≤ r ≤ d. Note that d ≥ 2. First let OPT = 2. No matter how large is
d, only the next case is possible: d ≥ 2, k = 0 and r = 2. Thus we need to substitute into (5.2),
and we get FFd ≤ OPT + k + 1 = 2 + 0 + 1 = 3. Now let OPT = 3. If d = 2, we get k = 1
and r = 1. Substituting into (5.1), we get FFd ≤ OPT + k = 3 + 1 = 4. Otherwise d ≥ 3, then
k = 0 and r = 3. Substituting into (5.2) we get FFd ≤ OPT + k + 1 = 3 + 0 + 1 = 4.

In all cases we got the same bounds as stated in Theorem 5.0.3.
After considering the small cases, in the subsequent part of the paper it suffices only to consider

when OPT ≥ 4.

5.1.2 The lower bound construction
We assume that OPT ≥ 4, as the small cases are already treated.

In the lower bound construction we have three different item types. In each of the i-thOPT -bin
(1 ≤ i ≤ OPT ), there are d+ 1 items, as

• d− 1 copies from A = 1/(d+ 1) + δ,

• Bi = 1/(d+ 1)− (d− 1)δ − εi, and

• Ci = 1/(d+ 1) + εi,

where εi = (1
d
)i · ε, ε = 1

5(d+1)
, and δ = εOPT .

We will see that all items in the input are smaller than 1/d. Let us realize that the sequence
of εi (quickly) decreases, the biggest one is ε1 = ε/d, and the smallest one is the last one among
them, i.e. εOPT = δ. Furthermore any A and C items are bigger than 1/(d + 1), and any B items
are smaller than 1/(d+1), moreover the sizes of theBi items are increasing, and the sizes of the Ci
items are decreasing, as i grows. Note also that the smallestCi item isCOPT = 1/(d+1)+εOPT =
1/(d+ 1) + δ = A, i.e. the A items and COPT are the smallest items except the Bi items.

Claim 5.1.1 The biggest item is still smaller than 1/d.
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Proof. Recall that ε < 1/(d+ 1). The biggest item is C1 = 1/(d+ 1) + ε1 = 1/(d+ 1) + ε/d <
1
d+1

+ 1
d(d+1)

= 1/d. 2

Claim 5.1.2 The next inequalities are valid.
(a), (d− 1)A+B1 +B2 ≤ 1,
(b), (d− 1)A+B1 +B2 +B3 > 1,
(c), (d− 2)A+Bk+1 + Ck−1 +Bk+2 > 1, for any 2 ≤ k ≤ OPT − 2,
(d), (d− 2)A+BOPT + COPT−2 + A > 1.

Proof. In all cases we use the definition of ε, and δ = εOPT ≤ εi (1 ≤ i ≤ OPT ).
a, We get

(d− 1)A+B1 +B2

= (d− 1)(
1

d+ 1
+ δ) + (

1

d+ 1
− (d− 1)δ − ε1) + (

1

d+ 1
− (d− 1)δ − ε2)

= 1− (d− 1)δ − (ε1 + ε2) < 1.

b, Using dε3 = ε2 we get

(d− 1)A+B1 +B2 +B3

= (d− 1)(
1

d+ 1
+ δ) +

3∑
i=1

(
1

d+ 1
− (d− 1)δ − εi)

=
d+ 2

d+ 1
− 2(d− 1)δ − (ε1 + ε2 + ε3)

>
d+ 2

d+ 1
− 2dε3 − (ε1 + ε2 + ε3) =

d+ 2

d+ 1
− (ε1 + 3ε2 + ε3)

>
d+ 2

d+ 1
− 5ε1 = 1 +

1

d+ 1
− 5

d
ε = 1 +

1

d+ 1
− 1

d(d+ 1)
> 1.

c, Using dδ ≤ εk+1 we get

(d− 2)A+Bk+1 + Ck−1 +Bk+2

= (d− 2)(
1

d+ 1
+ δ) +

2∑
i=1

(
1

d+ 1
− (d− 1)δ − εk+i) + (

1

d+ 1
+ εk−1)

= 1 + εk−1 − εk+1 − εk+2 − dδ > 1 + εk−1 − 3εk+1 = 1 + εk−1(1−
3

d2
) > 1.

d, We simply get

(d− 2)A+BOPT + COPT−2 + A

= (d− 1)(
1

d+ 1
+ δ) + (

1

d+ 1
− (d− 1)δ − εOPT ) + (

1

d+ 1
+ εOPT−2)

= 1 + εOPT−2 − εOPT > 1.
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2

After this pretreatment, we are ready to get the lower bound for the FF packing.
On one hand, it is trivial, that the items of the construction, completely fill OPT bins. Now we

create the FF bins one by one (according to Claim 5.0.4).
In the first FF bin there are (d− 1) copies from the A items, moreover B1 and B2 (i.e. the two

smallest B items). These items fit into one bin according to Claim 5.1.2(a). On the other hand, no
more item fits into the bin by Claim 5.1.2(b), since at this point B3 is the smallest unpacked item,
and this item does not fit into the bin.

In the second FF bin there are (d − 2) copies from the A items, moreover B3 and C1. In the
third FF bin there are (d−2) copies from the A items, moreoverB4 and C2. Generally, in the k-th
FF bin, there are (d−2) copies from theA items, moreoverBk+1 andCk−1, for 2 ≤ k ≤ OPT−1.

Consider any such bin (the k-th bin in the FF packing, with 2 ≤ k ≤ OPT − 1). We prove
that no more item (which is not packed yet) fits into the bin. First let us consider the case where
2 ≤ k ≤ OPT − 2. Then Bk+2 is the smallest unpacked item, and this item does not fit into the
bin, by Claim 5.1.2(c). Now let k = OPT − 1. Then all Bi items are already packed, thus the
smallest unpacked item is COPT = A, and this item does not fit into the bin, by Claim 5.1.2(d).

Up to this point, we have created OPT − 1 bins, and all B items are packed. Moreover, all C
items are already packed, except the last two C items. The number of already packed A items is
(d− 1)+ (d− 2)(OPT − 2) = (d− 2)OPT − (d− 3). Hence, the number of not packed A items
is exactly (d− 1)OPT − (d− 2)OPT + (d− 3) = OPT + (d− 3). Together with the not packed
two C items, we have altogether OPT − 1+ d items, all are slightly bigger than 1/(d+1), and all
are smaller than 1/d by Claim 5.1.1, and none of them fits into any previous bin.

With these items we fill
⌈
OPT−1+d

d

⌉
bins, more exactly the last bin can contain less than d items

(but at least one item), and all previous bins will contain exactly d items.
Thus the number of FF bins is exactly

(OPT − 1) +

⌈
OPT − 1 + d

d

⌉
= OPT +

⌈
OPT − 1

d

⌉
.

Now, distinguishing the residual classes, we get the following.
If OPT = k · d+ 1, then the number of FF bins is exactly

FFd = OPT + k,

otherwise, if OPT = k · d+ r, where 2 ≤ r ≤ d, the number of FF bins is exactly

FFd = OPT +

⌈
k · d+ r − 1

d

⌉
= OPT + k +

⌈
r − 1

d

⌉
= OPT + k + 1.
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5.1.3 The tight upper bound
Now we determine the tight upper bound. Recall that OPT ≥ 4, as the smaller cases are already
treated.

Case 1, OPT = k · d + 1. If k = 0, then OPT = 1, a contradiction. Thus k ≥ 1. We
claim FFd ≤ OPT + k = k(d + 1) + 1. Suppose for the sake of contradiction, that there exists
a list L, for which FFd ≥ k(d + 1) + 2. We apply Corollary 5.0.1 and Claim 5.0.2 for the first
k(d+ 1) ≥ d+ 1 bins. The total level of these bins is bigger than k(d+ 1) · d

d+1
= kd. Moreover

the total level of the last two bins is bigger than 1, by Claim 5.0.3. Thus the total size of the items
P > kd+ 1 = OPT , a contradiction.

Case 2, OPT = k ·d+ r, where 2 ≤ r ≤ d, and k ≥ 1. We claim that FFd ≤ OPT +k+1 =
(k · d+ r) + k+1 = k(d+1)+ r+1. Suppose for contradiction, that there exists a list for which
FFd ≥ k(d+1)+ r+2. We apply Corollary 5.0.1 for the first k(d+1)+ r ≥ d+1 bins, all these
bins are d+-bins by Claim 5.0.2. Thus their total level is bigger than (k(d+1)+r)· d

d+1
= kd+ dr

d+1
.

Moreover the total level of the last two bins is bigger than 1, by Claim 5.0.3. Thus the total size of
the items is

P > kd+
dr

d+ 1
+ 1 = kd+

dr + d+ 1

d+ 1
> kd+

dr + r

d+ 1
= kd+ r = OPT ,

a contradiction.
Case 3, OPT = k · d + r, where 2 ≤ r ≤ d, and k = 0. In other words, 2 ≤ r = OPT ≤ d.

We claim that FFd ≤ r+ 1 = OPT + 1. Suppose to the contrary, that there exists a list for which
FFd ≥ OPT + 2. We complete the input with d · (d − OPT + 1) items with equally 1/d sizes,
and these items will be put to the end of the list L. The new list is denoted by L′. We denote
the new values of the optimum and the FF packing by OPT ′ and FF ′d, respectively. Naturally,
OPT ′ = OPT + (d−OPT + 1) = d+ 1.

Now let us consider the FF ′d packing. Let the last bin in the FFd packing be denoted by B.
Since there is an item in B (with size at most 1/d), it follows that the level of any previous bin is
bigger than 1− 1/d. Now, when the new items come, none of them fits into any previously opened
bin, except B. Since the new items completely fill (d− OPT + 1) bins, and B is not empty, they
do not fit into B, and at most (d−OPT ) newly opened bins.

Thus exactly (d−OPT+1) new bins will be opened, and thus FF ′d = FFd+(d−OPT+1) ≥
OPT + 2 + (d−OPT + 1) = d+ 3. This contradicts to what we have proved in Case 1.
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Chapter 6

The tight asymptotic bound of First Fit with
cardinality constraints

The results of this chapter are from [26]. All results of [26] are contained (together with further
results) in [27]. The contribution of the author of this dissertation regarding the results of this
chapter is approximately 75%.

In bin packing with cardinality constraints (BPCC), there is a global parameter k ≥ 2, which
is an upper bound (called the cardinality constraint) on the number of items that can be packed
into each bin, additionally to the standard constraint on the total size of items packed into a bin.
In this chapter the items are denoted by 1, 2, . . . , n, where item i has a size si > 0 associated
with it. In many applications of bin packing, the assumption that a bin can contain any number of
items is not realistic, and bounding the number of items as well as their total size provides a more
accurate modeling of the problem. BPCC was studied both in the offline and online environments
[58, 59, 57, 13, 1, 38, 40, 42].

Here we study the algorithm First Fit (FF ). This algorithm processes the input items one by
one. Each item is packed into the a bin of the smallest index where it can be packed. An item i can
be packed into bin B if the packing is possible both with respect to the total size of items already
packed into that bin and with respect to the number of packed items, i.e., the bin contains items of
total size at most 1− si and it contains at most k − 1 items. We present a complete analysis of its
asymptotic approximation ratio for all values of k ≥ 3. Prior to this work, only the tight bound
for k = 2 was known. After almost forty years after the problem BPCC and the natural algorithm
First Fit for it were introduced, its tight asymptotic competitive ratio is for all values of k is finally
found.

Approximation algorithms were designed for the offline version of BPCC (which is strongly
NP-hard for k ≥ 3) [58, 57, 13, 40], and the problem has an asymptotic fully polynomial approxi-
mation scheme (AFPTAS) [13, 40]. Using elementary bounds, it was shown by Krause, Shen, and
Schwetman [58] that FF has an asymptotic approximation ratio of at most 2.7− 2.4

k
. For k →∞,

it can be deduced that the asymptotic approximation ratio is 2.7 also since this is a special case of
vector bin packing (with two dimensions) [44]. The case k = 2 is solvable using matching tech-
niques in the offline scenario, but it is not completely resolved in the online scenario, and the best
possible asymptotic approximation ratio is in [1.42764, 1.44721] [61, 1, 42]. For larger k, there is
an approximation algorithm of approximation ratio at most 2 [1], and improved algorithms (that
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have smaller asymptotic approximation ratios than min{2, 2.7− 2.4
k
}) are known for k = 3, 4, 5, 6

[38].
For comparison we note that tight asymptotic approximation ratio of the cardinality constrained

variant of the Harmonic algorithm [60] (that partitions items into k classes and packs each class
independently, such that the classes are I` = ( 1

`+1
, 1
`
] for 1 ≤ ` ≤ k − 1 and Ik = (0, 1

k
], and for

any 1 ≤ ` ≤ k, each bin of I`, possibly except for the last such bin, receives exactly ` items) is the
same as for FF for 2 ≤ k ≤ 4, and slightly smaller for any k ≥ 5, see [38]. Known lower bounds
on the competitive ratio do not exceed those known for standard bin packing [86, 77, 2, 42]. A
related problem is called class constrained bin packing [39, 71, 72, 84]. In that problem each item
has a color, and a bin cannot contain items of more than k colors (for a fixed parameter k). BPCC
is the special case of that problem where all items have distinct colors.

Value of k FF prev. UB for FF best known UB
2 1.5 [58] 1.5 [58] 1.44721 [1]
3 1.8333 1.9 [58] 1.75 [38]
4 2 2.1 [58] 1.86842 [38]
5 2.1333 2.22 [58] 1.93719 [38]
6 2.2222 2.3 [58] 1.99306 [38]
7 2.2857 2.35714 [58] 2 [1]
8 2.3333 2.4 [58] 2 [1]
9 2.3704 2.43333 [58] 2 [1]
10 2.4 2.46 [58] 2 [1]
11 2.4273 2.481818 [58] 2 [1]
12 2.45 2.5 [58] 2 [1]

Table 6.1: Bounds for 2 ≤ k ≤ 12. The second column contains the tight asymptotic approxima-
tion ratio of FF, the third column contains the previous upper bound on FF’s asymptotic approxi-
mation ratio, and the last column contains the asymptotic approximation ratio of the current best
algorithm. Entries without a citation are those proved here.

Below we provide a complete analysis of the famous and natural algorithm FF with respect
to the asymptotic approximation ratio. We find that the asymptotic approximation ratio of FF is
2.5− 2

k
for k = 3, 4, 8(k−1)

3k
= 8

3
− 8

3k
for 4 ≤ k ≤ 10, and 2.7− 3

k
for k ≥ 10 (recall that the values

k = 4 and k = 10 are included in two cases each). Interestingly, introducing cardinality constraints
(with sufficiently large values of k) results in an increase of many approximation ratios by 1 [58,
55, 60, 38]. In particular, the asymptotic approximation ratio of the cardinality constrained FF has
an approximation ratio that is larger by 1 than its approximation ratios for standard bin packing.
(Harmonic has a slightly smaller approximation ratio of 2.69103.) Moreover, it can be verified that
the worst-case examples of Harmonic are valid (but not tight) for FF .

While FF is a frequently studied natural algorithm, its exact asymptotic approximation ratio
as a function of k was unknown. While it is not difficult to show an upper bound of 2.7 for all
values of k [58, 44], providing such a tight analysis as a function of k turns out to be quite difficult.
Intuitively, it initially seems that the asymptotic approximation ratio should simply increase by k−3

k
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compared to the approximation ratio of FF for standard bin packing. The reason for this is that in
the well-known worst-case example of [55], it is possible to define an optimal packing that packs
three items into each bin, leaving space for k−3 very small items that can still be packed into each
bin of the optimal solution, while these items can arrive first, in which case FF will pack them
into their own bins (such that k items will be packed into each bin). As it turns out, this input can
be used for k ≥ 10, but for k ≤ 9 there are worse inputs. Our first attempt was to adapt the weight
function that was used to prove an upper bound on the asymptotic approximation ratio of FF for
standard bin packing [55]. Such an adaptation is quite tricky for the cases where 10 ≤ k ≤ 19,
and in particular, items of sizes in [0.2, 0.3) require a special treatment. Additionally, bins of an
optimal solution that contain two items that FF does not pack into bins containing k items also
require a special treatment, which is very different from the known analysis. While the cases
where k ∈ {2, 3, 4, 5} are sufficiently straightforward to deal with, in the cases k ∈ {6, 7, 8, 9},
a completely new weight function was needed. Intuitively, some of the difficulty is caused by the
fact that in these cases the worst-case examples contain two very different types of bins packed
by optimal solutions. In particular, in the case k = 9, it turned out that items whose sizes are
approximately 0.2 or 0.3 are most difficult to treat, and therefore one of the weight functions is
partitioned into seven cases. Similar cases are also used here in a weight function defined for the
cases 10 ≤ k ≤ 19. In summary, while the approach seems similar to that of other work, it is in
fact quite different and challenging.

Notation. Below we see a bin as a set of items, and for a bin B, we let s(B) =
∑

i∈B si be its
level.

6.1 Upper bounds
In this section we prove upper bounds on the the asymptotic approximation ratio. In the analysis,
a bin of FF that has j items for j ≤ k is called a j-bin, and a bin whose number of items is in
[j, k − 1] for some 1 ≤ j < k is called a j+-bin. For a bin packed by FF , a later bin is a bin that
was opened after the current bin was opened (it appears later in the ordering of FF ) and an earlier
bin is a bin that was opened before the current one (it appears earlier in the ordering of FF ). When
we discuss an item packed into some bin and the “further items” of a bin, we mean all the other
items packed into the same the bin, where the list of items of a bin is not ordered according to the
times that they were considered by FF .

Given a function f defined on items or on item sizes and a subset of items X , f(X) is defined
as the sum of images of the items in X under f . We start with several lemmas that will assist in
the upper bounds proofs.

Lemma 6.1.1 Let 1 ≤ j ≤ k − 1. Every j+-bin B except for at most one bin has level above j
j+1

.

Proof. Assume that there exists a j+-bin B whose level is at most j
j+1

. All later j+-bins only
have items of sizes above 1

j+1
(as they could not be packed into B), and each such bin has at least

j items, so their levels are above j
j+1

. 2

In what follows, we often use the following partition of item sizes into classes. Items of sizes
at most 1

6
are called tiny. Items of sizes in (1

6
, 1
4
] are called small, items of sizes in (1

4
, 1
3
] are called
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medium, items of sizes in (1
3
, 1
2
] are called big, and other items (of sizes above 1

2
) are called huge.

We will use weights for the analysis of FF, and huge items will always have weight 1, and in most
cases this will not be stated in the definitions of weights (i.e., we will define weights only for items
that are not huge).

Lemma 6.1.2 Let k ≥ 3. Except for at most one bin, any 1-bin has a huge item. Consider 2-bins
that do not have huge items. Except for at most two bins, any such 2-bin has a big item, and its
other item is big or medium.

Proof. By Lemma 6.1.1, any bin except for at most one bin has a level above 1
2
, and all such 1-bins

have huge items. Moreover, by the same lemma, all 2-bins except for at most one bin have levels
above 2

3
. Consider 2-bins with levels above 2

3
and no huge items. Any such bin must have an item

of size above 1
3
. Moreover, since it has no huge item, it must have a big item. Assume that there is

such a bin whose smaller item is no larger than 1
4

and consider the first such bin B. Its level does
not exceed 3

4
, and thus any later bin cannot have an item of size at most 1

4
, as such an item could

be packed into B. Thus, later 2-bins without huge items only have medium and big items. We find
that all 2-bins without huge items, except possibly for a bin with load no larger than 2

3
, and one

additional bin, have the described contents. 2

Lemma 6.1.3 Let k ≥ 4. Except for at most one bin, any 3+-bin that has a level of at most 5
6

has
no tiny items.

Proof. If all 3+-bins have levels above 5
6
, we are done. Otherwise, consider the first 3+-bin B

of level at most 5
6
. Any later bin cannot have an item of size at most 1

6
, as such an item could be

packed into B. 2

Lemma 6.1.4 Let k ≥ 4. Except for at most one bin, any 3-bin has at least one item of size above
1
4
. Except for at most two bins, any 3-bin without a huge item has one of the following structures.

• The bin has no tiny items, and at least one of its items is medium or big.

• The bin has level above 5
6
, it has exactly one tiny item, and at least one big item.

Proof. By Lemma 6.1.1, all 3-bins except for at most one bin have levels above 3
4
, so at least one

item has size above 1
4
. By Lemma 6.1.3, for all 3-bins except for at most one bin, if the bin has at

least one tiny item, its level is above 5
6
. Thus it can contain at most one tiny item, and if it has a

tiny item, then it must contain at least one big item, given its level. 2

Lemma 6.1.5 Let k ≥ 5. Except for at most one bin, any 4-bin without huge items has one of the
following structures.

• The bin has no tiny items.

• The bin has level above 5
6
, and it has at least one big item.
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• The bin has level above 5
6
, and it has exactly one tiny item.

• The bin has level above 5
6
, and it has two tiny items, a medium item, and another item that is

small or medium.

Proof. By Lemma 6.1.3, it is sufficient to consider a bin of level above 5
6
. If the bin has no big

items, it can have at most two tiny items, and if it has exactly two tiny items, the remaining items
cannot be both small. 2

6.1.1 The cases k = 3, 4, 5

We use the following weight function for k = 3, 4. The variable a denotes the size of an item.

w(a) =

{
1
k

if 0 < a ≤ 1
4
, (tiny or small)

1
2

if 1
4
< a ≤ 1

2
, (medium or big)

We analyze the total weight of a bin of an optimal solution OPT , and of a bin packed by FF .

Lemma 6.1.6 For k = 3, 4, any bin of OPT has weight of at most 3
2
+ k−2

k
= 5

2
− 2

k
.

Proof. If the bin has no huge item, then the total weight is at most k
2
≤ 5

2
− 2

k
for k = 3, 4. If

the bin has a huge item, then it can have at most one item of weight 1
2
, and the other items have

weights of 1
k
. 2

Lemma 6.1.7 For k = 3, 4, except for at most k bins, any bin of FF has weight of at least 1.

Proof. As the weight of any item is at least 1
k
, any k-bin has a weight of at least 1. Any bin

containing a huge item also has a weight of at least 1. Thus, by Lemma 6.1.2, at most one 1-bin
has weight below 1. Consider the 2+-bins that do not contain huge items. By Lemma 6.1.2, except
for at most two bins, any 2-bin without a huge item has two medium or big items, and the total
weight of such a bin is 1. In the case k = 4, by Lemma 6.1.4, except for at most one 3-bin, any
3-bin has at least one item of size above 1

4
. Thus, such a bin has at least one item of weight at least

1
2
, and two other items whose total weight is at least 1

2
. 2

We showed that for any input I , W (I) ≤ (5
2
− 2

k
)OPT (I) and W (I) ≥ FF (I) − k, thus

FF (I) ≤ (5
2
− 2

k
)− k for k = 3, 4.

Next, we define a weight function for k = 5, as a function of the item sizes.

w(a) =


3/15 if a ≤ 1/6, (tiny)
4/15 if 1/6 < a ≤ 1/4, (small)
7/15 if 1/4 < a ≤ 1/3, (medium)
8/15 if 1/3 < a ≤ 1/2, (big)

We will show that the weight of any bin of OPT is at most 32/15, while the weight of any bin
of FF is at least 1, except for a constant number of special bins.
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Lemma 6.1.8 For every bin B of OPT , w(B) ≤ 32
15

holds.

Proof. Bin B can contain at most one huge item. First, assume first that B contains a huge item.
If it also contains a big item, then every remaining item is tiny and has weight 3

15
. The total weight

is therefore at most 1 + 8
15

+ 3 · 3
15

= 32
15

. If B does not contain a big item (in addition to the huge
item), then it can have at most two items that are medium or small, out of which at most one can
be medium, and the remaining items have weights of 3

15
. In this case the total weight is at most

1 + 7
15

+ 4
15

+ 2 · 3
15

= 32
15

.
If B does not contain a huge item, then it can contain at most three items of sizes above 1

4
, out

of which at most two can have sizes above 1
3
, and the remaining items have weights of at most 4

15
.

The total weight is at most 2 · 8
15

+ 7
15

+ 2 · 4
15

= 31
15

. 2

Now we consider the bins created by FF .

Lemma 6.1.9 For k = 5, except for at most 6 bins, any bin of FF has weight of at least 1.

Proof. As the weight of any item is at least 1
5
, any 5-bin has weight of at least 1. Any bin

containing a huge item also has a weight of at least 1. Thus, by Lemma 6.1.2, at most one 1-bin
has weight below 1. Consider the 2+-bins that do not contain huge items. By Lemma 6.1.2, except
for at most two bins, any 2-bin without a huge item has a big item and another item that is medium
or big, and the total weight of such a bin is 1 or 16

15
. By Lemma 6.1.4, except for at most two bins,

any 3-bin has one of two forms. In the first form, all three items have weights of at least 4
15

, and
at least one item has a weight of at least 7

15
, giving a total of at least 1. In the second form, one

item has weight 3
15

, one item has weight 8
15

, and the third item has a weight of at least 4
15

, giving
a total of at least 1 again. By Lemma 6.1.5, except for at most one bin, any 4-bin has one of four
forms. In the first form, all four items have weights of at least 4

15
, giving a total above 1. In the

second form, one item has weight 8
15

, and each remaining item has weight of at least 3
15

, giving a
total above 1 again. In the third form, one item has weight 3

15
, and each remaining item has weight

of at least 4
15

, giving a total of at least 1. In the fourth form, two items have weights of 3
15

, one item
has weight 7

15
, and one item of weight at least 4

15
, giving a total above 1 again. 2

We showed that for any input I , W (I) ≤ 32
15
OPT (I) and W (I) ≥ FF (I)− 7, thus FF (I) ≤

32
15
OPT (I)− 6, for k = 5.

Theorem 6.1.1 The asymptotic approximation ratios of FF for k = 3, 4, 5 are at most 11
6

, 2, and
32
15

, respectively.

6.1.2 The cases k = 6, 7, 8

In this case the classification into item types items remain the same, but the weights of such items
are defined differently. We define the weights of items with sizes at most 1/2. The weight w(a) of
any item of size a ≤ 1

2
consists of three parts. The first part is the ground weight, the second part

is the scaled size, and the third part is the bonus. Each part is non-negative. The ground weight
of any item is 1

k
, and we let g(a) = 1/k. This ensures that the weight of any item (no matter how

small it is) is at least 1/k. The scaled size of an item of size a ≤ 1
2
, is defined by s(a) = 2(2k−11)

3k
a.
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The bonus of an item of size a, denoted by b(a) is defined as follows.

b(a) =


0 if a ≤ 1/6
2(2k−11)

3k
(a− 1

6
) + 10−k

9k
= 2(2k−11)

3k
a+ 7−k

3k
if 1/6 < a ≤ 1/4

2(2k−11)
3k

(a− 1
4
) + 3

2k
= 2(2k−11)

3k
a+ 10−k

3k
if 1/4 < a ≤ 1/3

2
k

if 1/3 < a ≤ 1/2

where we call the items in the classes after each other as tiny, small, medium and big, respectively.
As k ≥ 6, we have 2(2k−11)

3k
> 0, and therefore the function s(a) is monotonically increasing.

The bonus of a medium item is at least 3
2k

and at most
2
3
(2k−11)
3k

+ 10−k
3k

= k+8
9k

< 2
k
, and the bonus of

a small item is at least 10−k
9k

and at most
2
4
(2k−11)
3k

+ 7−k
3k

= 1
2k
< 3

2k
. The value of the bonus is zero if

a ≤ 1/6, and the bonus is a constant value ( 2
k
) for a ∈ (1/3, 1/2]. We get that b(a) (and therefore

also w(a)) is a piecewise linear function that is monotonically non-decreasing for a ∈ (0, 1/2].
The weight of an item of size a ≤ 1/2, is w(a) = g(a) + s(a) + b(a). The weight function has the
discontinuity points, 1/6, 1/4, 1/3, and 1/2 (this is not the same set of discontinuity points as in
the weight function of FF for standard bin packing [55]).

Now we first find some properties of the weighting, and then we are able to establish the
asymptotic bound.

Lemma 6.1.10 For every bin B of OPT , w(B) ≤ 8(k−1)
3k

holds.

Proof. Case 1: B contains no huge item. The bin can contain at most k items, thus the total
ground weight is at most 1. Similarly, the total scaled size is at most 2(2k−11)

3k
. Thus, it remains

to bound b(B), it suffices to show that the total bonus of the items in the bin is at most b(A) ≤
8k−8
3k
− 1− 2(2k−11)

3k
= k+14

3k
.

If B has two big items in the bin, then there can be at most one further item with a positive
bonus, and b(A) ≤ 3 · 2

k
≤ k+14

3k
, for k ≥ 4. If there is only one big item in the bin, there can be at

most three further items having positive bonuses. Then b(A) ≤ 2
k
+ 3 · k+8

9k
= k+14

3k
. Now suppose

that any item of B has size at most 1/3. There can be at most five items in the bin having positive
bonuses, and there can be at most three medium items among them. Thus the total bonus is at most
b(A) ≤ 3 · k+8

9k
+ 2 · 1

2k
= k+11

3k
.

Case 2: B contains a huge item. Recall that the weight of the huge item is 1, and its size is
bigger than 1

2
. There can be at most k − 1 further items in the bin, their total ground weight is

at most k−1
k

, and their total scaled size is at most 2(2k−11)
3k

· 1
2
. Thus, it suffices to show that the

total bonus of the further items in the bin is at most 8k−8
3k
− 1 − k−1

k
− 2k−11

3k
= 2

k
. The total size

of remaining items is below 1
2
, thus the bin can contain at most two items with positive bonuses.

Moreover, if B contains only one item with a positive bonus, then this bonus is at most 2
k
, and we

are done. Otherwise, if it contains two items of positive bonuses, none of them can be big, and at
least one of them is small. If both are small, then their total bonus is at most 1

k
. We are left with

the case that B contains items of sizes a1 and a2 where 1
6
< a1 ≤ 1

4
< a2 ≤ 1

3
. Then applying

a1 + a2 <
1
2
, we get that the total bonus is

2 (2k − 11)

3k
a1 +

7− k
3k

+
2 (2k − 11)

3k
a2 +

10− k
3k

≤ 2 (2k − 11)

3k
· 1
2
+

17− 2k

3k
=

2

k
.

80

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



2

Now, we find a lower bound on the total weight of the bins created by FF for an input L and
a given k ∈ {6, 7, 8}. The total weight of 1-bins is at least their number minus 1, as all 1-bins
except for possibly one bin have huge items. The total weight of k-bins is at least their number.
We will show that for each one of the four sets: 2-bins, 3-bins, 4-bins, and 5+-bins, the total weight
of items packed into bins of this set is at least the number of such bins minus 2 (for 5+-bins it is at
least their number minus 1). This will show that W ≥ FF (L)− 8. Since the weight of every bin
that contains a huge item is at least 1, we can restrict the analysis to bins that do not contain such
items, and for 2 ≤ j ≤ k − 1 we will only consider j-bins that have no huge items.

Claim 6.1.1 Every 5+-bin of level above 5
6

has weight of at least 1, and the total weight of 5+-bins
is at least their number minus 1.

Proof. Consider a j-bin A where 5 ≤ j ≤ k − 1. The ground weight of its items is j
k
, and

their scaled size is at least 5
6
· 2(2k−11)

3k
. If j = 5, then at least one item has a positive bonus

(otherwise the total size is at most 5
6
), and the weight of the bin is w(A) = g(A) + s(A) + b(A) ≥

5
k
+ 5

6
· 2(2k−11)

3k
+ 10−k

9k
= 1, since the value of any positive bonus is at least 10−k

9k
. Otherwise, k ≥ 6,

so the ground weight is at least 6
k
, and we are done since 1

k
≥ 10−k

9k
.

By Lemma 6.1.1, all 5+-bins, except for at most one bin, have levels above 5
6
. Since there is

at most one 5+-bin whose level is at most 5
6
, and all 5+-bins with level above 5

6
have weights of at

least 1, we find that the total weight of 5+-bins is at least their number minus 1. 2

It remain to consider only the 2-bins, 3-bins, and 4-bins. For all of these cases we consider two
subcases. We will show that if the level of a bin is sufficiently large (above 3

4
for 2-bins, and above

5
6

otherwise), then the total weight of the bin is at least 1. Then, we will consider j-bins of smaller
levels for for j = 2, 3, 4.

Lemma 6.1.11 The weight of any 2-bin B of level above 3
4

is at least 1.

Proof. As B has no huge item, it must have a big item and another item that is either medium or
big. The ground weight is 2

k
, and the scaled size is at least 2(2k−11)

3k
· 3
4
. The total bonus is at least

2
k
+ 3

2k
= 7

2k
. The total weight is therefore at least 2

k
+ 2k−11

2k
+ 7

2k
= 4+2k−11+7

2k
= 1. 2

Lemma 6.1.12 Let j ∈ {3, 4}. The weight of any j-bin B of level above 5
6

is at least 1.

Proof. The scaled size of the bin is at least 2(2k−11)
3k

· 5
6
= 10k−55

9k
= 1 + k−55

9k
. For j = 3, the

bin has ground weight 3
k
, and for j = 4, the bin has ground weight 4

k
. If the bin has at least two

items of sizes above 1
4
, then their combined bonuses are at least 3

k
, and the total weight is at least

3
k
+1+ k−55

9k
+ 3

k
= 1+ k−1

9k
> 1. Similarly, if a bin has a big item and at least one other item with

a positive bonus, their combined bonuses are at least 2
k
+ 10−k

9k
= 28−k

9k
, and the total weight is at

least 3
k
+1+ k−55

9k
+ 28−k

9k
= 1. The remaining cases are considered separately for j = 3 and j = 4.

Let j = 3. A bin that has a big item and two tiny items has level of at most 5
6
. A bin that has

a medium item and two items that are no larger than 1
4

also has level of at most 5
6
. Thus for j = 3

there are no additional cases and we are done. Let j = 4. A bin that has a big item has weight of at
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least 1, as 4
k
+1+ k−55

9k
+ 2

k
> 1. We are left with the case where j = 4, the bin has no big items, and

it has at most one medium item. If the bin has one medium item, then (since the size of a medium
item and three tiny items is at most 5

6
), it must have also one small item and their total bonus is at

least 3
2k
+ 10−k

9k
= 47−2k

18k
, and the bin has weight of at least 4

k
+1+ k−55

9k
+ 47−2k

18k
= 1+ 1

2k
> 1. Finally,

if it has no medium items, then it must have at least three small items. If there are four small items,
then their total size is above 5

6
. If there is a tiny item, then the total size of the remaining items is

at least 2
3
. Thus, the total bonus of the small items is at least 2(2k−11)

3k
· 2
3
+ 3(7−k)

3k
= 19−k

9k
. In this

case the weight of the bin is at least 4
k
+ 1 + k−55

9k
+ 19−k

9k
= 1. 2

Lemma 6.1.13 The total weight of the 2-bins of levels in (2
3
, 3
4
] is at least their number minus 1.

Proof. Consider two consecutive 2-bins of levels in (2
3
, 3
4
], Bi and Bj (these bins become consec-

utive if we remove all other kinds of bins from the list of bins). We prove that g(Bi) + s(Bi) +
b(Bj) ≥ 1. Let the level of Bi be 2/3 + x with some 0 < x ≤ 1/12. There are two items packed
into Bj , their sizes are above 1/3 − x ≥ 1

4
(since they were not packed into Bi), and moreover

one of them must be big (and the other one is either medium or big). As the bonus function is
monotonically non-decreasing, the bonus of the smaller item is at least the bonus of an item of size
1/3− x, and their total bonus is at least 2

k
+ 2(2k−11)

3k
· (1/3− x) + 10−k

3k
= 26+k−6x(2k−11)

9k
. We get

g(Bi) + s(Bi) + b(Bj) =
2

k
+

2 (2k − 11)

3k
· (2/3 + x) +

26 + k

9k
− 2x(2k − 11)

3k
= 1.

The number of pairs i, j that are considered is the number of considered bins minus 1 and the claim
follows. 2

Since there is at most one 2-bin whose level is at most 2
3
, and all 2-bins with level above 3

4
have

weights of at least 1, we find that the total weight of 2-bins is at least their number minus 2.

Lemma 6.1.14 The total weight of the 3-bins of levels in (3
4
, 5
6
] is at least their number minus 1.

Proof. Suppose that Bi and Bj are two consecutive 3-bins. We prove that g(Bi) + s(Bi) +
b(Bj) ≥ 1. Let the level of Bi be 3/4 + x with some 0 < x ≤ 1/12. Then there are three
items in Bj , of sizes a1 ≥ a2 ≥ a3, such that all are bigger than 1/4 − x, and in particular, all
are bigger than 1/6. At least one of them must be also bigger than 1/4, otherwise the level of
the bin is at most 3/4. We have g(Bi) + s(Bi) = 3

k
+ 2(2k−11)

3k
· (3

4
+ x) = 2k−5

2k
+ 2x(2k−11)

3k
.

Thus, it is sufficient to show b(Bj) ≥ 5
2k
− 2x(2k−11)

3k
. This holds if a2 > 1

4
, as the bonus of a

medium or big item is at least 3
2k

. If none of the items is big, using a1 + a2 + a3 ≥ 3
4

we have
b(Bj) ≥ 2(2k−11)

3k
(a1 + a2 + a3) + 2 · 7−k

3k
+ 10−k

3k
≥ 2(2k−11)

3k
· 3
4
+ 24−3k

3k
= 5

2k
.

We are left with the case that a1 > 1
3
, and 1

4
− x < a3 ≤ a2 ≤ 1

4
. The bonus of each small item

is at least 2(1/4−x)(2k−11)
3k

+ 7−k
3k

, and b(Bj) ≥ 2
k
+ 2(2(2k−11)

3k
(1
4
− x) + 7−k

3k
) = 3

k
− 22x(2k−11)

3k
=

5
2k
− 2x(2k−11)

3k
+ 1

2k
− 2x(2k−11)

3k
, and by using x ≤ 1

12
, we get 1

2k
− 2x(2k−11)

3k
≥ 1

2k
− 2k−11

18k
= 20−2k

18k
≥ 0.

2

Since there is at most one 3-bin whose level is at most 3
4
, and all 3-bins with level above 5

6
have

weights of at least 1, we find that the total weight of 3-bins is at least their number minus 2.
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Lemma 6.1.15 The total weight of the 4-bins of levels in (4
5
, 5
6
] is at least their number minus 1.

Proof. Suppose that Bi and Bj are two consecutive such 4-bins. We prove that g(Bi) + s(Bi) +
b(Bj) ≥ 1. Let the size of Bi be 5/6 − x with some 0 ≤ x < 1/30. Then there are four items in
Bj , of sizes a1 ≥ a2 ≥ a3 ≥ a4, all are bigger than 1/6+x. If any of them is also bigger than 1/4,
we have

g(Bi) + s(Bi) + b(Bj) ≥
4

k
+

2 (2k − 11)

3k
· 4
5
+

3

2k
=

32k − 11

30k
≥ 1,

since k ≥ 6 and we are done. Otherwise all four items are small, and we get

g(Bi) + s(Bi) + b(Bj) ≥
4

k
+

4 (2k − 11)

3k
· 4
5
+ 4 · (7− k)

3k
=

60 + 32k − 176 + 140− 20k

15k

=
12k + 24

15k
=

4

5
+

8

5k
≥ 1 .

using the property that the levels of Bi and Bj are both above 4
5

(which gives a lower bound on the
total size of these items) and k ≤ 8.

2

Since there is at most one 4-bin whose level is at most 4
5
, and all 4-bins with level above 5

6
have

weights of at least 1, we find that the total weight of 4-bins is at least their number minus 2.
We proved FF (L)− 8 ≤ W ≤ (8/3− 8/(3k))OPT (L).

Theorem 6.1.2 The asymptotic approximation ratio of FF for any 6 ≤ k ≤ 8 is at most 8/3 −
8/(3k).

6.1.3 The case k = 9

We analyzed the cases 3 ≤ k ≤ 8, and it remains to analyze the asymptotic approximation ratio
for the cases k ≥ 9, which are more complicated. We consider the case k = 9 separately, as the
proofs for other values of k fail in this case. We combine methods from all other proofs here.
The weighting function is similar to that is used in the previous section, in the sense that it has
discontinuity points at 1/6 and 1/3. It is also similar to the weighting function used in the next
section as the intervals for small and medium sizes are divided to two parts in the same way. Items
that are packed in k-bins in the packing of FF will be treated separately. These items are called
α-items, and the weight of every such item will be equal to 1

k
in all remaining cases. Items that

are not α-items will be called additional items. We will distinguish the bins of OPT according to
the number of additional items packed into them, and define weights based on this. Since α-items
always have weights of 1

k
, bins (of OPT and of FF) that contain k such items will have weights

of exactly 1. Thus, in the analysis we focus on bins of OPT having at least one additional item.
We have different weights for the cases of a small number of additional items (one or two), and
a larger number of additional items (at least three). As we will see later, the worst-case examples
consist of optimal solutions where every bin has two or three additional items. This separation in
the definition of weights is needed due to the case that a bin of OPT has two additional items,
where one of them is huge, and it also has k − 2 α-items. In this case, the smaller additional item
has a special role. This item cannot have a very large weight even if its size is almost 1

2
. Instead of
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splitting the item classes further (which would result in many additional cases in the proofs), we
distinguish such items from other items of similar sizes. We now define the weights.
Case a. Consider bins of OPT containing one or two additional items (and the remaining items
are α-items). Such bins are called γ-bins, and the additional items packed into such bins (in OPT )
are called γ-items. Huge γ items (called γ1-items) have weights of 1, and other γ items (called
γ2-items) have weights of 16

27
. Obviously, a bin that has two γ-items cannot have two γ1-items, but

it may have two γ2-items.
Case b. Consider the other bins of OPT (each containing at least three additional items). Each
such bin has at most six α-items, we call it a φ-bin, and its additional items are called φ-items.
The weighting function of the φ-items is more complicated. The weight of any huge φ-item is 1 as
usual. The weight of a φ-item of size a ≤ 1/2 is w(a) = s(a) + b(a), where s(a) = 32

27
a is called

the scaled size, and b(a) is the bonus of the item. Note that there is no ground weight in this case.
Below we give the bonus function of the φ-items of sizes no larger than 1/2. The functions b(a)
and w(a) are piecewise linear, and the breakpoints where it is continuous are 1/5 and 3/10. The
small items and medium items are split into two classes.

b(a) =



0 if a ≤ 1/6
32
27
(a− 1

6
) + 1

81
= 32

27
a− 5

27
if 1/6 < a ≤ 1/5

−28
27
(a− 1

5
) + 7

135
= −28

27
a+ 7

27
if 1/5 < a ≤ 1/4

−28
27
(a− 1

4
) + 1

9
= −28

27
a+ 10

27
if 1/4 < a ≤ 3/10

32
27
(a− 3

10
) + 8

135
= 32

27
a− 8

27
if 3/10 < a ≤ 1/3

1
9

if 1/3 < a ≤ 1/2

where we call the items in the classes after each other as tiny, very small, larger small, smaller
medium, larger medium and big, respectively.

The value of the bonus is zero if a ≤ 1/6 and it is constant (1
9
) between 1/3 and 1/2. The

bonus function is not continuous at the points 1/6, 1/4, and 1/3, it is monotonically increasing
in (1/6, 1/5) and in (3/10, 1/3), and it is monotonically decreasing in (1/5, 3/10) (which is less
typical for weight functions). Nevertheless, the weight function remains monotonically increasing
for the whole interval 0 < a ≤ 1/2, and the value of the bonus is nonnegative for the whole
interval.

We state several additional properties of the bonus function. For small items (very small and
larger small items, i.e., items of sizes in (1/6, 1/4]), the maximum value of the bonus is given for
a = 1/5, and the bonus at this point is 7/135. The bonus of very small items is at least 1

81
, and the

smallest bonus of larger small items is zero. For smaller medium items, the bonus decreases from
1
9

to 8
135

, and for larger medium items, the bonus increases from 8
135

to 8
81

. The weight of a big
φ-item is at least 41/81, the weight of a φ-item with size more than 1/4 is at least 11/27, and for
any φ-item with size 0 < a ≤ 1, and for any γ2-item, the next inequality holds: w(a) ≥ 32

27
a > 7

6
a.

This is true since bonuses of φ-items are non-negative, and since the size of any γ2-item is at most
1
2
, while its weight is 16

27
.

Properties of the weighting and the asymptotic bound

Lemma 6.1.16 For every bin B of OPT , w(B) ≤ 8/3− 8/27 = 2 + 10
27

= 64
27

holds.
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Proof. Consider the case that B is a γ-bin. In this case B has one item that is a γ1-item or a
γ2-item, that is, its weight is 1 or 16

27
, possibly also a γ2-item of weight 16

27
, and each remaining item

is an α-item and has weight 1
9
. Thus, the total weight is at most 1 + 16

27
+ 7

9
= 64

27
. It remains to

consider the case that B is a φ-bin. It contains at most six α-items, of total weight at most 6/9.
Thus it suffices to show that the total weight of the φ-items is at most 64

27
− 6

9
= 46

27
(no matter how

many φ-items there are), or that it is at most 64
27

minus 1
9

times the number of α-items.
First, assume that B contains no huge item. The total scaled size of the φ-items is at most

32/27. It suffices to show that the total bonus of φ-items the bin is at most 46/27−32/27 = 14/27.
Since the bonus is zero if the size of the item is at most 1/6, it follows that at most five items can
have positive bonuses. Moreover at most three items can have sizes above 1/4, and the bonus of
each such item is at most 1

9
, while the bonus of any other item is at most 7/135. Thus the total

bonus of the bin is at most 3 · 1
9
+ 2 · 7

135
= 59/135 < 14/27.

Next, assume that B contains a huge item. The weight of a huge item is exactly 1. We will
show that if there are six α-items, then the total weight of the further additional items of B is at
most 19/27, and consider also the case that the number of α items is smaller. Since the total size
of remaining additional items is below 1

2
, their scaled size is at most 16

27
, and it suffices to show that

their total bonus is at most 19/27 − 16/27 = 1/9. Since only items of size above 1
6

have positive
bonuses, there can be at most two further items in the bin having positive bonuses. If there is only
one further item having positive bonus, we are done, since no bonus is above 1

9
. If there are two

items with bonuses, but there are at most five α-items, then the total weight of α-items is at most
5
9
, and we are done as well. Thus, it is left to consider the case where there are two further φ-items

in the bin both having positive bonuses, and there are no other φ-items packed into B except for
the huge item and these two items. Let their sizes be denoted as a1 and a2, where 1/6 < a1 ≤ a2,
and thus a2 < 1/3 as a1 + a2 < 1/2. The claim holds if a2 ≤ 1/4, since then the total bonus is at
most 2 · 7/135 = 14

135
< 1

9
. Thus the only remaining case is where the item of size a1 is small and

the item of size a2 is a medium item. We will show w(a1) + w(a2) ≤ 19
27

. There are three cases,
as a1 > 1

5
and a2 > 0.3 cannot hold simultaneously. In all cases s(a1) + s(a2) =

32
27
(a1 + a2) and

a1 + a2 <
1
2
.

If a1 ≤ 1
5

and a2 ≤ 3
10

, w(a1)+w(a2) = 32
27
(a1+a2)+

32
27
a1− 28

27
a2+

5
27

= 64
27
a1+

4
27
a2+

5
27
≤

64
27
a1 +

4
27
(1
2
− a1) + 5

27
= 60

27
a1 +

7
27
≤ 19

27
. If a1 > 1

5
and a2 ≤ 3

10
, w(a1) + w(a2) = 32

27
(a1 +

a2) − 28
27
(a1 + a2) +

17
27

= 4
27
(a1 + a2) +

17
27
≤ 19

27
. If a1 ≤ 1

5
and a2 > 3

10
, w(a1) + w(a2) =

32
27
(a1 + a2) +

32
27
(a1 + a2)− 13

27
= 64

27
(a1 + a2)− 13

27
≤ 19

27
. 2

Now, we will analyze the total weight of the bins of FF . Once again, we split the analysis
according to the number of items in these bins. The 9-bins have weight of 1, and any bin with a
huge item (a φ-item or a γ1-item) has a weights of at least 1. Thus, we neglect all bins containing
items of size above 1

2
from the analysis. At most one 1-bin is left, and we neglect that bin (if it

exists) as well. In what follows we analyze 2+-bins of FF that contain items of sizes in (0, 1
2
].

These bins only contain φ-items and γ2-items.

Lemma 6.1.17 The weight of any bin with level above 6
7

is at least 1. There is at most one 6+-bin
whose weight is below 1.

Proof. For any φ-item and for any γ2-item, the weight of the item is at least 32
27

times the size of
the item. Since except for at most one bin, the level of 6+-bin is above 6

7
(by Lemma 6.1.1), the

weights of these bins, except for at most one bin, are no smaller than 1 as 32
27
· 6
7
> 1. 2
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In the following we concentrate on the 2-bins, 3-bins, 4-bins, and 5-bins. We start with analyz-
ing bins containing a γ2-item.

Lemma 6.1.18 Except for at most four bins, the weight of any bin whose number of items is in
[2, 5], and that has a γ2-item, is at least 1.

Proof. A bin that has two γ2-items has weight at least 2 · 16
27
> 1, and thus we consider bins that

contain one γ2-item and the remaining (at least one and at most four) items are φ-items. Assume
by contradiction that there are at least five bins with γ2-items having weights strictly below 1.

Any bin that has a γ2-item and a φ-item of size above 1
4

has total weight of at least 1, since any
φ-item of size above 1

4
has weight at least 11

27
, and each γ2-item has weight 16

27
. Moreover, since the

weight of any item is at least 32
27

times its size, if the level of a bin is at least 27
32

, then its total weight
is at least 1. By Lemma 6.1.2, except for at most two 2-bins, every 2-bin has only items of sizes
above 1

4
, and therefore they have weights of at least 1. We find that there exist three bins with 3, 4,

or 5 items each, levels below 27
32

, and weights below 1. Let such three bins be denoted by Bi, Bj ,
and Br (where the bins appear in this order in the sequence of bins of FF). Any item of Bj and Br

has size above 5
32

, as these item could not be packed into Bi. Such an item has weight of at least
5
27

, so a bin with a γ2-item and weight below 1 can have at most two such items. Thus, Bj and Br

are 3-bins.
We split the analysis to the cases where Bj has a level above 5

6
, and the case that it does not.

If it has a level above 5
6
, then the total size of its φ-items is above 1

3
(as the γ2-item has size of

at most 1
2
), and at least one of them has size above 1

6
. If at least one of the two φ-items has

size above 1
5
, then their total size is above 5

32
+ 1

5
= 57

160
, and the weight of all items is at least

16
27
+ 32

27
· 57
160

> 1. Otherwise, there is an item that has a bonus of at least 1
81

, and the total weight is
at least 16

27
+ 32

27
· 1
3
+ 1

81
= 1. Therefore, we find thatBj has a level of at most 5

6
. However, in this case

the two φ-items of Br have sizes above 1
6
. The weight of such an item is at least 32

27
· 1
6
+ 1

81
= 17

81
,

and the total weight of Br is at least 16
27

+ 2 · 17
81
> 1, a contradiction again. 2

It is left to analyze with bins containing only φ-items of sizes at most 1
2
, that are 2-bins, 3-bins,

4-bins, and 5-bins. Before analyzing their total weights we discuss some properties of φ-items.

Lemma 6.1.19 Consider two φ-items of sizes a1 ≤ a2 ≤ 1/2. If 1 ≥ a1 + a2 > 1− a1 holds, then
the total weight of the two items is at least 1.

Proof. We have a1 > 1−a2
2
≥ 1

4
. If a1 > 1

3
, then both items are big, and since the weight of any big

item is at least 41
81
> 1/2, the claim holds in this case. Next, we consider the case 1/4 < a1 ≤ 1/3,

where a2 > 1− 2a1 ≥ 1/3, thus the item of size a2 is big.
If a1 is smaller medium, then let a1 = 1/4+x for some 0 < x ≤ 1/20, and a1+a2 > 1−a1 =

3
4
− x. The total weight of the items is

32

27
(a1 + a2) + b(a1) + b(a2) ≥

32

27
(3/4− x)− 28

27
x+

1

9
+

1

9
=

10

9
− 20

9
x ≥ 1.

If a1 is larger medium, then let a1 = 3/10+x for some 0 < x ≤ 1/30, and a1+a2 > 1−a1 =
7
10
− x. We get

32

27
(a1 + a2) + b(a1) + b(a2) ≥

32

27
(7/10− x) + 32

27
x+

8

135
+

1

9
= 1.
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2

Lemma 6.1.20 Consider three φ-items of sizes a1 ≤ a2 ≤ a3 ≤ 1/2. If 1 ≥ a1+ a2+ a3 > 1− a1
holds, then the total weight of the three items is at least 1.

Proof. We have 3
2
(a1 + a2) ≥ 2a1 + a2 > 1− a3 ≥ 1

2
, thus a1 + a2 >

1
3
.

If a1 > 1
4
, then the claim holds since the weight of an item with size above 1/4 is at least

11/27 (so the total weight is at least 11
9

). In what follows we assume that a1 ≤ 1/4, and thus
a1 + a2 + a3 > 1 − a1 ≥ 3

4
. If the largest item is big, then its bonus is 1

9
, and the total weight of

the three items is at least 32
27
(a1 + a2 + a3) +

1
9
≥ 32

27
· 3
4
+ 1

9
= 1. If the largest item is not big, i.e.,

a3 ≤ 1
3
, then using 2

3
≥ 2a3 ≥ a2 + a3 > 1− 2a1 ≥ 1

2
we get a1 > 1

6
and a3 > 1

4
, thus the smallest

item is small, and the largest item is medium. If there are two medium items, then the bonus of
each one of them is at least 8

135
, and the total weight is at least 32

27
· 3
4
+ 16

135
= 136

135
> 1. We are left

with the case where the smallest two items are small and the largest item is medium. We find that
2a1 > 1− a2 − a3 ≥ 1− 1

4
− 1

3
= 5

12
, thus the smallest item is larger small, and so is the item of

size a2.
If the largest item is smaller medium, we have a total weight of 32

27
(a1+a2+a3)− 28

27
(a1+a2+

a3)+
24
27
≥ 4

27
· 3
4
+ 24

27
= 1. If the largest item is larger medium, we will use a1+a2 > 2

3
(1−a3). The

total weight is at least 32
27
(a1+a2+a3)− 28

27
(a1+a2)+

14
27
+ 32

27
a3− 8

27
= 4

27
(a1+a2)+

64
27
a3+

2
9
≥

4
27
· 2
3
(1− a3) + 64

27
a3 +

2
9
= 184

81
a3 +

26
81
≥ 184

81
· 3
10

+ 26
81

= 406
405

> 1. 2

Lemma 6.1.21 Consider four φ-items of sizes a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1/2. If 1 ≥ a1+a2+a3+a4 >
1− a1 holds, then the total weight of the four items is at least 1.

Proof. First, consider the case a1 ≤ 1
6
. In this case a1 + a2 + a3 + a4 > 1 − a1 ≥ 5

6
, and if

at least one item is very small, medium, or big, then there is at least one item with a bonus of at
least 1

81
, and the total weight is at least 32

27
· 5
6
+ 1

81
= 1. Otherwise, all items are larger small and

tiny. At least three items must be larger small as 2a1 + a2 + a3 + a4 > 1, which is impossible in
the case where a2 ≤ 1

6
and a4 ≤ 1

4
. The total weight if all four items are larger small is at least

4
27
·(a1+a2+a3+a4)+ 28

27
> 1. Otherwise, the total weight is at least 32

27
a1+

4
27
·(a2+a3+a4)+ 21

27
>

32
27
a1+

4
27
·(1−2a1)+ 21

27
= 8

9
a1+

25
27

. Since the three largest items are larger small, a2+a3+a4 ≤ 3
4
,

and 2a1 > 1− (a2 + a3 + a4) ≥ 1
4
, so a1 > 1

8
. We find that the total weight is at least 28

27
> 1.

Next, consider the case a1 > 1/6. It follows that the total weight of the three smallest items is
at least 32

27
· 3
6
= 16

27
. If the biggest item is bigger than 1/4, the total weight is at least 16

27
+ 11

27
= 1.

It is left to consider only the case where 1/6 < a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1/4, i.e., all items are small.
Note that the weight of a larger small item is at least 32

27
· 1
5
+ 7

135
= 13

45
. If all four items are

larger small, then their total weight is above 1. Otherwise, the smallest item is very small. The
total size of the items is above 1 − a1, and the bonus of the smallest item is 32

27
a1 − 5

27
. The total

weight of the four items is at least 32
27
(1− a1) + 32

27
a1 − 5

27
= 1. 2

Lemma 6.1.22 Consider five φ-items of sizes a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ 1/2. If 1 ≥ a1 + a2 +
a3 + a4 + a5 > 1− a1 holds, then the total weight of the five items is at least 1.
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Proof. If a1 ≤ 1
6
, then a1+a2+a3+a4+a5 > 1−a1 ≥ 5

6
holds. Otherwise, a1+a2+a3+a4+a5 ≥

5a1 >
5
6

holds too. If at least one item is not larger small, then its bonus is at least 1
81

and the total
weight is at least 32

27
· 5
6
+ 1

81
= 1. If all items are larger small, then their total size is above 1,

contradicting the assumption. 2

Lemma 6.1.23 The total weight of the 2-bins, 3-bins, 4-bins, and 5-bins, containing φ-bins is at
least their number minus 1.

Proof. Consider the bins of FF whose numbers of items is in [2, 5], that contain only φ-items,
and their weights are below 1. Obviously these bins have no huge items. If the level of a given
bin is bigger than 1 minus the size of the smallest item in the bin, then the weight of the bin is at
least 1 by the previous lemmas. Thus, we only consider bins that do not satisfy this property. If
there is at most one bin to consider, then we are done. Otherwise, in the list of remaining bins,
consider two consecutive bins Bi and Bj (such that Bj appears after Bi in the ordering of FF). Let
i1 denote the smallest item of Bi and j1 the smallest item of Bj (breaking ties in favor of items of
smaller indices). Let S = s(Bi). Consider the set X consisting of j1 and the items of Bi excluding
i1. We will show w(X) ≥ 1. Applying this property to every such consecutive pair of bins will
show that the total weight is at least the number of bins in the list of remaining bins minus 1. If
S − si1 + sj1 > 1, then their total weight is above 32

27
> 1. Otherwise, we have the following

properties. First, sj1 > 1 − S since j1 was not packed into Bi. Additionally, by assumption,
S ≤ 1− si1 . Therefore sj1 > si1 . Let s′ be the size of the smallest item in X . We have s′ ≥ si1 as
no item of Bi is smaller than si1 and sj1 > si1 . We find, s(X) = (S−si1 +sj1)+s′ ≥ S+sj1 > 1.
Thus, the set X satisfies the condition of one of Lemmas 6.1.19, 6.1.20, 6.1.21, 6.1.22 (the lemma
where the considered number of items is equal to that of this set - which is equal to the number of
items of Bi and therefore it is in {2, 3, 4, 5}), and the total weight of this set is at least 1. 2

We proved FF (L)− 7 ≤ W ≤ (64/27)OPT (L).

Theorem 6.1.3 The asymptotic approximation ratio of FF for k = 9 is at most 64/27.

6.1.4 The cases k ≥ 10

The cases where k ≥ 10 are studied similarly to previous cases, thus, to shorten the length of
the dissertation, this last part of the investigation is put into Appendix D. The main result of this
omitted part is summarized in the next theorem:

Theorem 6.1.4 The asymptotic approximation ratio of FF for any k ≥ 10 is at most 2.7− 3/k.
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6.2 The tight lower bounds for FF
Here we complete the analysis and provide examples showing that the asymptotic approximation
ratios cannot be smaller that the bounds proved in the previous section. For completeness we
include a lower bound for k = 2 as well. In the statement of the theorem the cases k = 4, 10 are
included in two cases.

Theorem 6.2.1 The asymptotic approximation ratio of FF satisfies the following properties.

• It is at least 2.5− 2
k

for k = 2, 3, 4.

• It is at least 8(k−1)
3k

= 8
3
− 8

3k
for 4 ≤ k ≤ 10.

• It is at least 2.7− 3
k

for k ≥ 10.

Proof. The cases 2 ≤ k ≤ 4.
Let ` ≥ 0 be a large integer, and let 0 < ε < 1

9k
. Consider an input consisting of 2k(k − 2)`

items of size ε each (smallest items), 2k` items of size 1
2
− kε > 1

3
each (medium size items),

and 2k` items of size 1
2
+ ε each (largest items). The items are presented in this order. FF creates

2(k − 2)` bins containing k smallest items each. Then, as further items are larger than 1
3
, FF

creates k` bins containing pairs of medium size items, and as the remaining items are larger than
1
2
, the largest items are packed into 2k` dedicated bins. For this input L`, OPT (L`) = 2k`, since

it is possible to pack a largest item, a medium size item, and k − 2 smallest items into a bin as
1
2
+ ε+ 1

2
− kε+ (k − 2)ε < 1, while FF (L`) = 2(k − 2)`+ k`+ 2k` = 5k`− 4`. This shows

that the asymptotic approximation ratio of FF is at least 2.5 − 2
k
, that is, at least 11

6
for k = 3 and

at least 2 for k = 4. The example is valid for k = 2 too, giving the value 1.5 (in this case there are
no smallest items).

The cases 5 ≤ k ≤ 10.
Let ` be a positive integer divisible by k, let 0 < ε < 1

120
and δ < ε

3`+4 be small positive values,
and consider the following input. There are 3` items of size 1

2
+ δ, ` items of size 1

2
− 10δ, ` items

of size 1
4
+20δ, ` items of size 1

4
− 30δ, (3k− 8)` items of size δ, and for 1 ≤ p ≤ ` there is a pair

of items of sizes 1
4
+ ε

3p
and 1

4
− ε

3p
− 10δ. Since δ < ε < 1

120
, all sizes are strictly positive. An

optimal solution has three types of bins. There are ` bins with an item of size 1
2
+ δ, an item of size

1
2
− 10δ, and k− 2 ≤ 8 items of size δ each. There are ` bins with an item of size 1

2
+ δ, an item of

size 1
4
+ 20δ, an item of size 1

4
− 30δ and k − 3 ≤ 7 items of size δ each. Finally, there are ` bins,

where the pth bin has an item of size 1
2
+ δ, the pair of items of sizes 1

4
+ ε

3p
and 1

4
− ε

3p
− 10δ, and

k − 3 ≤ 7 items of size δ each. Remove the items of sizes 1
4
+ ε

3`
and 1

4
− 10δ − ε

3
, and one item

of size 1
4
− 30δ from the input. Obviously, an optimal solution still requires at most 3` bins. For

1 ≤ p ≤ `− 1, the items of sizes 1
4
+ ε

3p
and 1

4
− 10δ − ε

3p+1 are called a modified pair of index p.
The items are presented to FF in the following order. First, all items of size δ are presented

and packed into (3k − 8) `
k

bins that cannot be used again. Next, for 1 ≤ p ≤ ` − 1, the modified
pair of items of index p is presented, followed by an item of size 1

4
− 30δ. The total size of these

three items is 1
4
+ ε

3p
+ 1

4
− 10δ − ε

3p+1 + 1
4
− 30δ = 3

4
− 40δ + 2ε

3p+1 > 3
4
− 40ε

3`+4 + 2ε
3p+1 ≥

3
4
− 40ε

3p+5 + 2ε
3p+1 >

3
4
+ ε

2·3p , while further items have sizes of 1
2
+ δ > 1

2
− 10δ > 1

4
+ 20δ > 1

4
,

1
4
+ ε

3p′
> 1

4
, 1
4
− 30δ > 1

4
− 10δ− 20ε

3`+4 ≥ 1
4
− 10δ− ε

3`+1 >
1
4
− 10δ− ε

3p′+1 , and 1
4
− 10δ− ε

3p′+1 ,
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where p′ ≥ p + 1 (there are additional modified pairs arriving later only if p < ` − 1). We have
3
4
+ ε

2·3p + 1
4
− ε

3p′+1 − 10δ ≥ 1 + ε
2·3p −

ε
3p+2 − 10ε

3p+5 = 1 + ε(35/2−33−10)
3p+5 > 1. This proves that

after a bin of a modified pair and an item of size 1
4
− 30δ is created, no other items can be packed

into that bin. When no modified pairs remain, pairs of items of sizes 1
2
− 10δ and 1

4
+ 20δ are

presented (there are ` such pairs). Each bin receives such a pair, whose total size is 3
4
+ 10δ. Since

all remaining items have sizes above 1
4
, each created bin will not be used for other items. Finally,

all remaining items (of sizes 1
2
+ δ) are packed into dedicated bins. The total number of bins is

(3k − 8) `
k
+ ` − 1 + ` + 3` = 8k−8

k
` − 1. Since an optimal solution has at most 3` bins, we find

that the asymptotic approximation ratio is at least 8(k−1)
3k

.
The cases k ≥ 10.
After having got the tight lower bound construction for standard bin packing, given in Theorem

4.3.2 (in the chapter that deals with algorithm FF for standard bin packing), we can now apply
this construction for the cardinality constrained model. In that place of the dissertation there is an
input for any OPT = 10m, for which FF = 17m. (We changed the letter k to m in the claim,
since in that chapter k is ”only” an integer, but in this chapter k has a special meaning.)

We adapt this lower bound example of FF by adding a large number of tiny items. The original
construction is such that every bin of OPT has a big item whose size is 1

2
+ ε, and it holds that

every optimal bin contains exactly 3 items. We replace the big items with slightly smaller big
items of sizes 1

2
+ ε/2. Then, any optimal bin receives also k − 3 tiny items of sizes ε

2k
. Naturally,

this modification is possible both with respect to size and to the number of packed items. The tiny
items are presented to FF before other items, so they are packed into bins containing k items each,
that cannot be used for other items.

The items of sizes 1
2
+ ε/2 are presented last and must be packed into dedicated bins, as any

previous bin either has k items or total size above 1
2
. Thus, the modified construction gives a lower

bound of 1.7 + k−3
k

= 2.7− 3
k

on the asymptotic approximation ratio of FF . 2

90

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



Chapter 7

Batched Bin Packing and Graph-Bin
Packing

The results of this chapter are from [22], thus the contribution of this chapter is reached by the
author of the dissertation. In this last chapter we revisit the Batched Bin Packing problem (abbre-
viated as BBP ). In this model items come in K consecutive batches, and the items of the earlier
batches must be packed without any knowledge of later batches. The model is introduced in [48].
Let L be the set of items where L = B1 ∪ ... ∪ BK , where Bi ∩ Bj = ∅ if i 6= j. Note that for
any i, Bi may be empty. We say that Bi is the i-th batch of the input. It is assumed that for any
1 ≤ i < j ≤ K, the i-th batch is revealed before the j-th batch. As soon as a batch is revealed, the
items in the batch must be irrevocably packed, this part of the packing procedure being called the
i-th phase. If K = 1, we get back to the offline packing problem. If every batch contains only one
item, we get the online packing problem (with the only difference being that the number of items
is known). Thus the batched bin packing problem is in some sense a common generalization of the
offline and online bin packing problem. It seems that no other paper has considered this model so
far, except [22], the work of the present author.

We give the first approximation algorithm for the case K = 2, with tight asymptotic approxi-
mation ratio 1.5833, while the known lower bound of the model is 1.378.

Let us consider some possible applications: An office moves from one building to another one.
There are two rooms in the office, an inner and an outer room. It is possible to carry out the
furniture from the inner room only through the outer room. It is very important that the documents
of the staff of one room should not be mixed up with the documents of the other room, thus the
staff make the decision that first all the furniture (and documents therein) from the outer room are
carried out and packed into several trucks, and only after this can the remaining furniture from the
inner room be handled in the same way. Here the furniture of the two rooms form the batches, and
the trucks play the role of the bins.

Another situation that may occur is: A factory moves from one country to another country.
First the machines (i.e. items) are transported by train to a transfer point, then the machines are
unpacked from the wagons, and they are packed into trucks, because the target point is among the
hills and there is no railway to the destination. Since the factory is large, the items of the factory
are transported by several trains, hence it is possible that a part of the input arrives at the transfer
point on Monday, the next batch arrives on Tuesday, and so on. Then it is natural to start to pack
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the first batch on Monday. Then on Tuesday, the next batch is packed. At any time when a truck is
full, the items are transported.

Note that in the above-mentioned applications, two versions of the batched bin packing can be
distinguished. In the first application (moving) the bins of the first batch cannot be used to pack
the items of the next batch, but in the next application (transporting items of a factory) they are
allowed to be used. We call these two versions the augmenting model (the bins that are used in the
i-th phase can also be used in the j-th phase, for any i < j, to pack other items if they fit), while in
the disjunctive model the bins that are used in some phase cannot be used in any later phase. (At
this point the latter model does not seem to be very interesting or attractive, but we will need this
model later on.) Thus in the augmenting model the algorithms can choose to combine items from
different batches, while in the disjunctive model they cannot.

The algorithms which are applied in the two different models are called augmenting and dis-
junctive algorithms, respectively. Note that a disjunctive algorithm simply packs the batches in-
dependently. The asymptotic approximation ratio of an (augmenting or disjunctive) algorithm A
is defined in an appropriate way. The number of the bins used by algorithm A is compared with
the solution of an offline optimal algorithm OPT . Note that OPT is allowed to pack together the
items from different batches.

For the BBP problem, in [48] the authors just investigate the augmenting model in the special
case when K = 2. The authors prove that Ras(A) ≥ r ≈ 1.3871 is a lower bound for the
problem, where r is a solution of equation r/(r − 1) − 3 = ln r/(2r − 2), thus the asymptotic
approximation ratio of any algorithm A is at least this value. We approach the problem from the
opposite side: We give the first algorithm for the same special case, when K = 2. The tight
asymptotic approximation ratio of the algorithm is 19/12 ≈ 1.5833, thus it remains below the
asymptotic approximation ratio of the best-known BP algorithm (i.e. the algorithm SH of Seiden
which has asymptotic approximation ratio of 1.58889, see [69]). Comparing to SH , our algorithm
is very simple. We define it for the disjunctive model, but it can be also applied for the augmenting
model in a natural way.

Another model and connection: an improved result. The bin packing with conflicts (BPC
for short) is another generalization of the BP problem: several pairs of items are in conflict, which
means that the two items are not allowed to be packed into the same bin; see e.g. [52] or [41].
A more general version called the graph-bin packing problem (abbreviated by GBP ) is defined
in [11], and (the simplified version of this problem) is as follows. Given a graph, with lower and
upper bounds on the edges and weights on the points, the weight of a point is called the size. The
points of the graph, also called items, are to be packed into unit capacity bins. The total size of the
items in any bin can be at most 1, as usual. But some additional constraints must also be satisfied.
Namely, given any two points, say a and b, if they are connected in the graph by an edge, and the
lower and upper bounds of this edge are l and u, respectively, and a and b are packed into some
bins Bi and Bj , respectively, then the indices of the bins must satisfy l ≤ |i− j| ≤ u. Note that
for the BPC problem, u =∞ and l ∈ {0, 1} for any edge.

In the case of the GBP problem [11], among several results, an approximation algorithm is
given with absolute approximation ratio 3, for the special case where there are only lower bounds
on the edges (i.e. u = ∞ for any edge), and the graph has chromatic number 2, i.e. it is bipartite.
Surprisingly, with the application of our algorithm (which we defined for the BBP problem), we
are able to get an improved algorithm for the graph-bin packing problem for this special case. We
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improve the previous 3 upper bound to 2.5833, not just in the asymptotic, but also in the absolute
sense.

Notation Recall that a bin is called a k-bin if it contains exactly k items. The level of a bin,
denoted by l(B), is the sum of the sizes of the items in the bin. In this chapter the total size of all
the items will be denoted by P .

7.1 An upper bound for Batched Bin Packing for K = 2

Now we will introduce an approximation algorithm for the batched bin packing problem, for the
special case where K = 2. In fact, we apply algorithm FFD for the two batches separately;
i.e. we pack the items in batch B1 by FFD, and we also apply FFD for the second batch B2,
independently of the first batch (thus we consider the disjunctive model; i.e. we do not use the bins
of the first batch to pack the items of the second batch).

This natural adaptation of FFD will be denoted by FFD(B1, B2). The two independent
packings will be denoted by FFD(B1) and FFD(B2), respectively. Then FFD(B1, B2) =
FFD(B1)+FFD(B2). Let the optimum value of the relaxed offline problem (where the items of
set B1 ∪ B2 can be packed freely together) be denoted by OPT . We will call the solution of this
relaxed problem the optimal solution. Then when we measure the quality of our packing, we will
compare FFD(B1, B2) with OPT . Note that OPT ≥ P trivially holds. Next, we will show that

FFD(B1, B2) ≤
19

12
OPT + 2, (7.1)

and the approximation ratio 19/12 is tight for the algorithm. We group the items into classes.
Now let a denote an arbitrary item. Then a is called tiny, small, medium or grand, if a ≤ 1/4,
1/4 < a ≤ 1/3, 1/3 < a ≤ 1/2, or 1/2 < a, respectively. The classes, and the items therein are
denoted by T , S, M and N , respectively (letter G will be used for another meaning, which is why
we use the letter N for graNd items). If a medium item and a grand item share a bin (possibly with
some further items), we call them a pair.

The next lemma and the corollary provide some insight into the way the FFD algorithm works.
Both are folklore results, but we present them and their proofs for completeness.

Lemma 7.1.1 Consider an arbitrary list of items L in the BP problem, and let N and M denote
the set of the grand and medium-sized items, respectively. Let p = p(L) be the maximum number
of (n,m) pairs, where n ∈ N and m ∈ M and no item appears in more than one pair. Then
algorithm FFD creates exactly p pairs.

Proof. Suppose that the statement is not true, and let L be a minimal counterexample, i.e. a list
when FFD makes r pairs, where r < p. It follows that L does not have any item smaller than
a medium item, since after deleting these items FFD makes the same number of pairs, and p(L)
does not change. Now consider all feasible packings of L, where there are exactly p pairs. Let us
suppose that there are t such feasible packings. For the k-th packing among these, denote the pairs
by (n1k,m1k), ..., (npk,mpk), where the pairs are listed in lexicographically decreasing order, i.e.
if nik > njk for some 1 ≤ i, j ≤ p, then (nik,mik) precedes (njk,mjk), and also, if nik = njk
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and mik > mjk. Note that there can be some other items in the list. There may be several grand
items that are single items in their bins, and there may be also some other bins containing one or
two medium-sized items. Now we choose all the packings among the t packings, for which n1k

has the largest possible size, say, and we have t1 ≤ t such packings. Then among the t1 packings,
we choose all the packings for which m1k has the largest possible size, and let us fix one such
packing, and let k simply denote again the index of the chosen packing, and we will refer to this
packing below as the chosen packing. We claim that there are no n0 ∈ N and m0 ∈ M , a grand
and a medium-sized item, respectively, such that n0 > n1k, and n0 and m0 fit into a common bin.
Suppose for the sake of contradiction that such an (n0,m0) pair exists. It follows that n0 is a single
item in its bin. If m0 is different from any mik, 1 ≤ i ≤ p, this would contradict the fact that p is
the maximum number of pairs, as we found p+1 pairs. Otherwise m0 = mik, for some 1 ≤ i ≤ p.
Then, in the chosen packing we take off mik from its actual bin, and pack it into the bin of n0

(thus replace the pair (nik,mik) by a new pair (n0,mik)), and leave unchanged the bin of any other
item. This packing has p pairs but differs from any packings in the t possible packings, which is
a contradiction. Thus our claim is proved. Now let us see how FFD works. First FFD packs
the grand items in order of decreasing size. Consider the first bin with a grand item of size n1k

(k is the index of the chosen packing). Because of the above claim, FFD cannot pack a medium
item into some earlier bin, but it will find that a medium item of size m1k fits into this bin. (It also
holds that no medium-sized item with size bigger than m1k will fit into this bin.) Thus FFD will
pack n1k and m1k together. (More exactly, FFD packs a certain grand item n, and a medium item
m into a common bin, where the sizes of n and n1k, and the sizes of m and m1k are equal. For
the sake of simplicity we will assume that n = n1k and m = m1k; if this is not the case, we can
swap n and n1k, and also m and m1k in the packing.) We claim that by deleting n1k and m1k from
the input, we get a smaller counterexample. Indeed, FFD will create the same packing for the
remaining items in the sense that any non-deleted item will be packed together with the same item
as before; or alone, if the item was alone in the previous packing. It follows that in the smaller list
FFD creates exactly r − 1 pairs. However, in the modified list at least p− 1 pairs can be created.
Thus we conclude that our list was not minimal, which is a contradiction. 2

Corollary 7.1.1 For any list of items L in the BP problem, if the smallest item in L is still larger
than 1/3, then algorithm FFD makes an optimal packing.

Proof. Note that no bin can contain more than two items, no two grand items fit into a common bin,
and any two medium items fit into a common bin. Now let us consider a list L, and all possible
packings of L, where p = p(L) means the maximum number of pairs in the packings. We can
easily see that if we make an arbitrary packing with the only restrictions that the number of pairs
is chosen to be p, and there are no two bins with some single medium items, then the packing is
optimal. Since FFD creates p pairs by Lemma 7.1.1, and FFD never creates two bins with single
medium items, it follows that FFD makes an optimal packing. 2

Now we prove our main result.

Theorem 7.1.1 FFD(B1, B2) ≤ 19
12
·OPT+2, and the asymptotic bound is tight for the algorithm.

Proof. First we note that the additive term is necessary here, as the statement is not valid without
any additive term. Its smallest value may be smaller than 2, but if we use 2, this is just enough
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to apply this theorem in the next section. In the calculation of the proof of Theorem 7.2.1, the
2 additive term will just disappear, and this makes it possible to get an absolute bound there.
Thus using a bigger additive term in the present theorem would not be sufficient later, but using
a smaller additive term would make the proof harder. Suppose that the statement is not true; then
let us choose a minimal counterexample (in the sense of the number of items in B1 ∪ B2). It then
follows that in the last FFD(B1) bin there is only one item, denoted by X , and also in the last
FFD(B2) bin there is only one item, denoted by Y . We also know that each of them (i.e. X and
Y ) is the last item in the sorted list of FFD in its batch. The reason is that if there were some
items after X in batch B1, or there were some items after Y in batch B2, these final items could be
removed from the input; the numbers of FFD bins for the batches remain the same, while OPT
does not increase. LetBi

1 andBj
2 denote the bins in the two independent FFD packings of batches

B1 and B2, respectively. Then 1 ≤ i ≤ FFD(B1) and 1 ≤ j ≤ FFD(B2). Moreover, let B∗k
denote the optimal bins where 1 ≤ k ≤ OPT . We assign weights for the items. The weight of any
bin, denoted by w(Bi

1) or w(Bj
2) or w(B∗k), is the sum of weights of the items being packed into

the bin. The total weight of the items will be denoted by W . The following analysis is similar to
that in [21]. If the weight of any optimal bin is larger than 19

12
, we call the difference between the

weight of the bin and 19
12

a shortfall. If the weight of an FFD bin is smaller than 1, we say that
there is a shortage in the bin. The value of the shortage is defined as 1 minus the weight of the bin.
Otherwise, if the weight of an FFD bin is larger than 1, we say that there is surplus in this bin, it
being defined as the weight of the bin minus 1. Next, let f , h and u denote the total shortfall, total
shortage and total surplus, respectively. Note that all these values are nonnegative. Then we get

FFD(B1) + FFD(B2)

=
∑
i

w(Bi
1) +

∑
j

w(Bj
2) + h− u

= W + h− u =
∑
k

w(B∗k) + h− u

≤ 19

12
·OPT + h− u+ f.

Hence, if
h− u+ f ≤ 2 (7.2)

holds, then the statement of the lemma follows. In most cases it turns out that f = 0, so we just
need to verify that h ≤ 2. Before considering the cases one by one, we note that the level of each
bin of the first batch is above 1 − X , except possibly for the last such bin. Similarly, all bins of
the second batch, except possibly for the last such bin, have levels above 1 − Y . Moreover, all
item sizes for the first batch are at least X , and for the second batch they are at least Y (given the
properties stated in the second paragraph of the proof of this theorem). Now let us examine the
different cases.

Case 1. X ≤ 1/3 and Y ≤ 1/3. In any FFD bin the level is larger than 2/3, except of
course the last bins. Let Bα

1 and Bβ
2 denote any FFD bin in the two packings, where 1 ≤ α ≤

FFD(B1)− 1 and 1 ≤ β ≤ FFD(B2)− 1, respectively. Then the following statement (without
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using the weights) is true:

FFD(B1) + FFD(B2)

≤ 3

2

(∑
α

l(Bα
1 ) +

∑
β

l(Bβ
2 )

)
+ 2

≤ 3

2
P + 2 ≤ 3

2
OPT + 2.

Case 2. X > 1/3 and Y > 1/3. Here we use the following simple weights: Let the weights
of any grand item and any medium item be 1 and 1/2, respectively. Then in the optimum packing
of the relaxed problem each bin contains at most two items, and two grand items do not fit into
the same bin, so the weight of any optimal bin is at most 3/2, it follows that f = 0. However, in
the FFD(B1) and FFD(B2) packings, if a bin does not contain a grand item, then the bin must
contain two medium items, except the two last bins, hence the weight of any FFD bin is at least
1, except for the two last FFD bins. Thus there are two FFD bins (the last FFD bins of the two
batches) with a shortage, h ≤ 2 holds, and we are done.

Case 3. X > 1/3 and Y ≤ 1/3. Then we use different weights for sets B1 and B2. For set
B1, we again use w(N) = 1 and w(M) = 1/2, for any grand or medium item. Note that set B1

does not have any smaller item. Then in the FFD(B1) packing the weight of any bin is at least 1,
except for the last bin, and in the last bin a shortage of at most 1/2 is created. The weights of the
B2 items will be defined differently in the next subcases.

Subcase 3.1. 1/4 < Y ≤ 1/3. In this case in set B2 all items are larger than 1/4, thus any item
in set B1 ∪ B2 is also larger than 1/4. It follows that if a grand item is packed into a bin, then no
two other items can be packed into that bin. Now we define the weights of the B2 items as follows:
Let any B2 item, say v, be denoted as a Z item, if in the optimal packing, v is packed together with
a grand B1 item. The weight of a Z item is 7/12. Note that a Z item is surely smaller than 1/2.
Let any other v ∈ B2�Z item be called a regular item, and let w(v) = 19

12
v. First we show that

the weight of any optimal bin is at most 19/12. If the bin contains a grand B1 item, then the bin
can contain at most one other item. It is a medium B1 item with weight 1/2, or it is a Z-item, with
weight 7/12, and the weight of the bin is at most 19/12. Now consider an optimal bin which does
not contain a grand B1 item. If the bin contains one or two medium B1 items, then the remaining
room in the bin is not larger than 2/3 or 1/3, respectively, so the total weight of the bin is at most
1/2 + 19/12 · 2/3 < 19/12 or 1 + 19/12 · 1/3 < 19/12, respectively. Lastly, if the optimal bin
does not contain any B1 item, then the weight of the bin is at most 19/12, since the total weight is
at most 19/12-times the total size of the items in the bin. It follows that f = 0. Now we will show
that the weight of any FFD(B2) bin is at least 1, with at most two exceptions. One exceptional
bin is the last FFD(B2) bin, where the shortage is smaller than 1. The level of any other bin is
larger than 1 − Y ≥ 2/3. If there is no Z-item in the bin, then the weight of the bin is at least
2/3 · 19/12 > 1. If the bin contains two Z items, the weight of the bin is at least 7/6. Hence
suppose that the bin contains exactly one Z-item, this item being smaller than 1/2. Since the level
of this bin is larger than 2/3, the bin must contain at least one other item v, which has a size at least
Y > 1/4. Note that the weight of any regular item is at least 19/12 · 1/4. If there are two regular
items in the bin, the weight is greater than 1. If there is one regular item in the bin, the weight is
at least 7/12 + 19/12 · 1/4 = 47/48, i.e. the shortage is at most 1/48. We claim that two bins,

96

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



denoted by (z1, v1), (z2, v2), cannot occur, where both have a shortage, and z1, z2 are Z items and
v1, v2 are regular items. Suppose there are two such bins. If any of v1, v2 is larger than 1/3, then
the weight of its bin is larger than 7/12 + 19/12 · 1/3 > 1, which is a contradiction. Thus both v1,
v2 have sizes of at most 1/3. If any of z1, z2 had a size of at most 1/3, then its bin would have a
level of at most 2/3, which is a contradiction. Thus both z1, z2 have sizes above 1/3 (and at most
1/2). It follows that z1 would end up together with an item of at least the size of z2, which is a
contradiction. Thus the claim follows. We have proved that the total shortage is at most 1 + 1/48
in the FFD(B2) bins. Then from f = 0 and h ≤ 1/2 + 1 + 1/48, (7.2) follows.

Subcase 3.2. 1/6 < Y ≤ 1/4. Then any items in B1 ∪ B2 are larger than 1/6, thus no three
items can share a bin with a grand item. Moreover a bin containing a grand item and a medium
item does not contain any other item. We will define the weights of the B2 items as follows. Let
a B2 item, say v, be called irregular if v is packed into some optimal bin together with a grand B1

item. We further divide the set of irregular items. If v is the only one B2 item in the optimal bin
(besides the grand B1 item), v is denoted as a Z-item. Otherwise, if there are two irregular items
in the optimal bin of the grand B1 item, these two items will be denoted as a U item and a V item,
respectively, where the U item is not smaller than the V item. Note that any Z item is smaller than
1/2, any U item is smaller than 1/3, and any V item is smaller than 1/4. Their weights are 7/12,
1/3, and 1/4, respectively. Each remaining item v ∈ B2� (Z ∪ U ∪ V ) is called a regular B2

item, and is denoted as an R item. For any R item, w(v) = 19
12
v. Since the size of any item is larger

than 1/6, the weight of any R item is larger than 19/72 > 1/4. It follows that the weight of any
(regular or irregular) B2 item is at least 1/4. We will introduce a notation for the FFD(B2) bins.
For example, if the bin contains one Z-item and one U -item, we will denote this bin as a (Z,U)-
bin. If the bin contains one U -item, one V -item and an R-item, the bin is denoted as (U, V,R). A
similar notation is used for any kind of the FFD(B2) bins, according to the classes of the items
in the bin. First, we will show that the weight of any optimal bin is at most 19/12. Suppose the
bin contains a grand B1 item. If the bin just contains this item, the claim holds. If the bin contains
a grand B1 item and a medium-sized B1 item, then no further item can fit into the bin, and the
weight is only 1.5. Otherwise the optimal bin contains a grand B1 item, and one or two B2 items.
If it contains only one B2 item, it is a Z item with weight 7/12. Otherwise it contains a U and a V
item with total weight 1/3 + 1/4 = 7/12. In each case the claim holds. Now suppose that the bin
does not contain a grand B1 item. It means that the bin contains two, one or zero medium-sized
B1 items, and several regular items. In this case we find in the same way as in Subcase 3.1 that the
weight of the bin is at most 19/12. Since no optimal bin has a shortage, we have shown that f = 0.
Now we will show that the weight of any FFD(B2) bin is at least 1, except for a finite number of
exceptional bins, and in the exceptional bins the total shortage is at most 1.5. Recall that for the
FFD(B2) packing, except the last bin (which is one of the exceptional bins), the level of any bin
is strictly larger than 1−Y ≥ 3/4. If there are only regular B2-items in the bin, then the weight of
the bin is at least 3/4 · 19/12 = 19

16
> 1. If the FFD(B2) bin contains at least four items, then the

weight of the bin is again at least 1. If the bin contains only one item (and this is not the last bin),
this item is surely a grand item; then it follows that this item is a regular B2 item, and this case has
already been considered. So it just remains to consider the cases where an FFD(B2) bin contains
two or three items, and not just regular items. First, consider the 2-bins among the FFD(B2) bins.
Since there is at least one irregular item in the bin, only the following bin types can occur, which
are listed in the table below.
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Z 2 1 1 1
U 1 2 1 1
V 1 1 2 1
R 1 1 1

The (Z, V ), (2U), (U, V ), (2V ) bin types are impossible, since the level of the bin would be
at most 3/4. With a (2Z) bin, the weight of the bin is 7/6. For the (V,R) bins, the size of the R
item is at least 1/2; otherwise the level of the bin remains below 3/4, and the weight of the bin
is at least 1

4
+ 1/2 · 19

12
= 25

24
> 1. There remains the following: (Z,U), (Z,R) and (U,R). We

will show that there can be at most one bin from each type with a shortage. - (Z,U) type. The
weight of such a bin is 7

12
+ 1

3
= 11

12
; i.e. each such bin has a shortage of 1

12
. Since U < 1/3, the

Z item must be larger than 1/3; otherwise the level of the bin remains below 3/4. Recall that a Z
item has a size of at most 1/2. Suppose there are two such bins, denoted by (z1, u1) and (z2, u2).
Then FFD would not open a new bin for z2, which is a contradiction. - (Z,R) type. If the size of
the R item is at least 1/3, then the weight of the bin is is at least 7/12 + 1/3 · 19/12 = 10

9
> 1.

Otherwise R is smaller. The Z item must be larger than 1/3 (but at most 1/2); otherwise the level
of the bin cannot be above 3/4. It follows that there cannot be two (Z,R) bins with R < 1/3
(since FFD would not open a new bin for the second Z item). Thus there can be at most one
(Z,R) bin with a shortage. The size of the R item is bigger than 1/4; otherwise the level of the
bin cannot be above 3/4. So the weight of such a bin is at least 7/12 + 1/4 · 19/12 = 47/48.
Moreover, from such a bin type we can have a shortage of at most 1/48. - (U,R) type. Since the
size of the U item is at most 1/3, and the level of the bin is above 3/4, the size of the R item is
above 3/4 − 1/3 = 5/12. Thus the weight of the bin is at least 1/3 + 5/12 · 19/12 = 143/144.
We have seen that the R item is the larger item in the bin. If the R item has a size of at least 1/2,
the weight of the bin is at least 1

3
+ 1

2
· 19/12 = 9

8
> 1. It follows that two (U,R) bins, both having

a shortage, cannot occur since FFD would not open a new bin for the later R item. It follows that
the shortage is at most 1/144 from this type. Summarizing the results, there can be a shortage of at
most 1/12+1/48+1/144 = 1/9 created by the 2-bins. Now let us consider the 3-bins, containing
at least one irregular item. If the bin contains a Z-item and two other items, then the weight is at
least 7/12 + 2 · 1/4 > 1. In the remaining cases the (one or two) irregular items in the bin are at
most small items. If there is a regular item in the bin with size at least 1/3, the weight of the bin is
at least 2 ·1/4+1/3 ·19/12 = 37/36 > 1. It follows that all three items in the bin are at most small
items. If there are three small items in the bin, it means that the bin is of type (2U,R), or (U, 2R)
(since V is tiny, and there is at least one irregular item in the bin). In these cases the weight is at
least 2/3 + 1/4 · 19/12 = 17/16 > 1, or 1/3 + 2/4 · 19/12 = 9/8 > 1. The case that all three
items are tiny is impossible, since then the level of the bin is at most 3/4. We conclude that any
remaining bin contains at least one small item, but at most two small items, and the other items are
tiny. But there can be at most one such bin, since three small items always fit into one bin, hence
the third small item among them cannot open a new bin. The weight of such a bin is still at least
3/4, since the smallest weight is at least 1/4. Thus with some 3-bin we can have a shortage of at
most 1/4. Thus the total shortage is at most the following: 1/2 caused by the last FFD(B1) bin;
moreover at most 3/4 caused by the last FFD(B2) bin (since this bin contains a tiny item); and a
further shortage of at most 1/9 + 1/4 is caused by some other FFD(B2) bins (some 2-bins and
a 3-bin). This is altogether a total shortage of at most h ≤ 1/2 + 3/4 + 1/9 + 1/4 < 2, so (7.2)
follows.
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Subcase 3.3. 1/7 < Y ≤ 1/6. For the B2 items we introduce the following weighting. (We
call the items of the appropriate classes as C,D, ..., J items). As regards the B2 items, we say that
an item a is in some higher class than item b, if they are in different classes and a > b. We will use
the notation H + C > 5/14 + 1/7, which means that the total size of any item from class H and
any item from class C is larger than the right hand side. The statement trivially follows from the
definition of the classes. Similar notations are also used for the other classes.

Class Weight ratio of w(a)/a
2/3 < J ≤ 1 1 w(a)/a < 3/2
1/2 < I ≤ 2/3 10/12 w(a)/a < 5/3
5/14 < H ≤ 1/2 7/12 w(a)/a < 5/3
1/3 < G ≤ 5/14 5/12 w(a)/a < 5/4
1/4 < F ≤ 1/3 4/12 w(a)/a < 4/3
4/21 < E ≤ 1/4 3/12 w(a)/a < 4/3
1/6 < D ≤ 4/21 2.5/12 w(a)/a < 5/4
1/7 < C ≤ 1/6 2/12 w(a)/a < 7/6

First, we will show that the weight of any optimal bin is at most 19/12, except for the (N,M,C)
optimal bins. We will analyze them according to the largest item of B2.

case a, Suppose the bin contains a grand B1 item and no other B1 item. If the bin contains a H
item, then no more items fit into the bin since H + C > 5/14 + 1/7 = 1/2. If the bin contains a
G item, then only one C item fits into the bin as another item. In both these cases the total weight
is at most 19/12. If the bin contains an F item, then only one other item can be in the bin; and as
this item is not larger than an E item, the total weight is at most 19/12. If the bin contains an E
item (and no item from some higher class), then at most two other items can be in the bin. If there
are two such items, both must be C items, since C +D + E > 1/7 + 1/6 + 4/21 = 1/2, and the
total weight is again at most 19/12. Lastly, there are at most three other items in the bin, and not
all three items can be D items. Thus the total weight is at most 1 + 2 · 5/24 + 2/12 = 19/12.

case b, The bin contains two medium-sized B1 items. If the bin does not contain more items,
its weight is just 1. Otherwise it can contain at most two other items which are B2 items. If the
bin contains an F item, or an E item, no other item fits into the bin, since 2/3 + 4/21 + 1/7 = 1.
In these cases we are done. Otherwise the bin has at most two other items, and the total weight is
smaller than 19/12.

case c, The bin contains one medium-sized B1 item, and no more B1 items. If the bin contains
an I item, then only one C item fits as another item in the bin, and the total weight is at most
1/2 + 10/12 + 2/12 = 18/12. If the bin contains a H item, and one other item, this one is at most
an F item, and the total weight is at most 1/2+ 7/12+ 4/12 = 17/12. Suppose the bin contains a
H item and two other items. Then both other items must be C items, since otherwise the total size
is more than 1/3 + 5/14 + 1/6 + 1/7 = 1. Thus the total weight is 1/2 + 7/12 + 4/12 = 17/12.
Otherwise the bin contains a medium-sized B1 item, and all other items are B2 items, and none of
them comes from classes H or above. For these classes w(a)/a < 4/3 holds, and the total size
of the B2 items in the bin is at most 2/3, so we find that the total weight of the bin is at most
1/2 + 2/3 · 4/3 = 25/18 < 19/12.

case d, The optimal bin contains only several B2 items. If the bin contains a J or a I item, its
size is more than 1/2, and its weight is at most 1, and the calculation is similar to case a, replacing
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the J or I item by a grand B1 item. If the bin contains two H items, then at most one other item
fits into the bin which is at most an F item, and the total weight is at most 2 ·7/12+4/12 < 19/12.
Suppose the bin contains one H item. The total weight is at most 7/12 + 9/14 · 4/3 = 121/84 <
19/12, since the total size of the other B2 items in the bin is at most 9/14, and the w(a)/a ratio for
these items is at most 4/3. The calculation is similar if all the items are from smaller classes.

case e, The weight of an (N,M) bin is (only) 1.5.
case f, The optimal bin contains a grand B1 item and also a medium-sized B1 item, and some

other item. The latter can be only a C item, since no other item fits into the bin. Now let us
consider an (N,M,C) optimal bin. The weight of the bin is 3/2 + 2/12 = 20/12, which means
that the bin has a shortfall of 1/12.

We have investigated all the cases and it turned out that any (N,M,C) optimal bin has a
shortfall of exactly 1/12, and no other bin has a shortfall. Next, we consider the FFD bins. The
FFD(B1) bins have a shortage of at most 1

2
in total. Now will we show that any FFD(B2) bin

has a weight of at least 1, apart from at most five bins. Note that the level of any FFD(B2) bin
(except for the last one) is larger than 1− Y ≥ 5/6. In this last FFD(B2) bin we have a shortage
of 5/6, since the Y item is a C item. Now we will consider the other FFD(B2) bins. If there is a
J item in the bin, the weight is at least 1. Otherwise, if there is an I item in the bin, it cannot be
the only one item in the bin since the level of the bin is above 5/6. Since the smallest weight is
2/12, the weight of the bin is at least 1. In the following, we will suppose that any item in the bin
is at most a H item. For this we will need the following claim:

Claim. If (i) there are two H or G items in the bin, or (ii) there are three F items in the bin, or
(iii) there are four E items in the bin, or (iv) there are five D items in the bin, or (v) there are six C
items in the bin; the weight of the bin is at least 1.

Proof of the claim: The claim trivially holds in all cases except (i). Hence, let us consider case
(i). If at least one of the two items in question is a H item, the total weight is at least 1. Otherwise
both items are G items. Their total size is at most 5/7 < 5/6, so there must be another item in the
bin, with weight at least 2/12, and the claim also holds in this case. �

Now we will return to the remaining cases. Since any item in the bin is from classes C to
H , it only remains to consider that (a) there is exactly one H or G item in the bin (and other
items from smaller classes), or (b) there are at most two F items in the bin (and some other items
from smaller classes), or (c) there are at most three E items in the bin (and some other items from
smaller classes), or (d) there are at most fourD items in the bin (and some other items from smaller
classes), or (e) there are at most five C items in the bin. Case (e) is not possible, since the level of
the bin would be too small. Our main consideration here is that there can be at most one bin from
any other type (a)-(d). This is true, since two H or G items always fit into a common bin, three
F items always fit into a common bin, and so on. It follows that there is at most one bin with a
shortage from any type (a)-(d). Note that w(a) ≥ a holds for each class. Since the levels of these
bins are larger than 5/6, the shortage in any such bin is at most 1/6. Thus the total shortage of the
FFD(B2) packing is at most 4/6 from the types (a)-(d), and there is an additional shortage of 5/6
in the last FFD(B2) bin, which means altogether a shortage of at most 9/6 = 3/2. We claim that
f ≤ u holds. We have a shortfall only in the (N,M,C) optimal bins. But for any such optimal
bin there exists an (N,M) bin with weight 1.5 in the FFD(B1) packing, according to Lemma
7.1.1. We can show this as follows. Let the number of the (N,M,C) optimal bins be q. Then the
maximum number of (N,M) pairs in the list is p ≥ q. Then in the FFD(B1) packing exactly
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p pairs, i.e. (N,M) bins will be created. It follows that if there are l ≥ 0 optimal bins of type
(N,M,C), having a shortage of l/12 in total, then there exists l bins in the FFD(B1) packing,
providing a surplus of l/2 in total. For the value of h we get h ≤ 1/2 + 3/2 = 2, where 1/2
stands for the last FFD(B1) bin, and 3/2 stands for the FFD(B2) bins. Thus we conclude that
h− u+ f ≤ 2, i.e. (7.2) holds.

Subcase 3.4. Y ≤ 1/7. Let each item v ∈ B2 has a weight w(v) = 7
6
· v. Now consider the

optimal bins. If the bin does not contain anyB1 item, the weight of the bin is at most 7/6 < 19/12.
If the bin does not contain a grandB1 item, but contains one or two medium-sized items, the weight
is at most 1/2 + 2/3 · 7/6 = 23/18 or 1 + 1/3 · 7/6 = 25/18 < 3/2 < 19/12, respectively. If
the bin contains a grand B1 item and does not contain any medium-sized B1 item, its weight is at
most 1+1/2 · 7/6 = 19/12. Lastly suppose that the bin contains a grand B1 item, a medium-sized
B1 item, and possibly some other B2 items. The weight of an optimal bin like this is at most
1 + 1/2 + 7

6
· 1

6
= 61/36, which means that any such bin can have a shortfall of at most 1/9.

But for any such optimal bin there exists a (N,M) bin with weight 1.5 in the FFD(B1) packing,
according to Lemma 7.1.1. In a similar way as at the end of Subcase 3.3., we find that the total
shortfall of the optimal bins is covered by the total surplus of the FFD(B1) bins. The weight of
any other optimal bin is at most 19/12; and, moreover, any other FFD(B1) bin has weight at least
1, except the last bin, which can have a shortage of 1

2
. The weight of any FFD(B2) bin, except

the last one, is at least 1. As we saw earlier, f ≤ u holds. For the value of h we get h ≤ 1
2
+ 1,

where 1/2 and 1 stand for the last FFD(B1) bin and last FFD(B2) bin, respectively. Thus we
conclude that (7.2) holds.

Case 4. X ≤ 1/3 and Y > 1/3. This case can be treated in exactly the same way as Case 3.
Finally we will prove that the (asymptotic) bound is tight for the algorithm. Let B1 consist

of 12n items of size 1/4 + ε, and 12n items of size 1/4 − 2ε (with an appropriate choice of a
small ε), and let B2 consist of 12n grand items of size 1/2 + ε. Then OPT (B1, B2) = 12n, while
FFD(B1) = 4n + 3n, FFD(B2) = 12n; hence FFD(B1, B2) = 19n, so the statement follows.
Moreover, it is easy to see that applying the same construction, but with OPT = 12n + 9, we get
the following. FFD(B1) = (4n+ 3) + (3n+ 3), FFD(B2) = 12n+ 9, and so FFD(B1, B2) =
19n+15 = 19

12
(12n+9)+3/4, hence the additive term in the theorem cannot be smaller than 3/4.

2

Now let us discuss the connection between the augmenting and the disjunctive models ofBBP .
We restrict our investigations here to just considering the behavior of the FFD algorithm in the two
models. If we apply the FFD algorithm in the augmenting model in the way that we are allowed,
but we do not use the bins of the first batch, this algorithm is an 19/12-approximation algorithm.
Do we get a better algorithm in the sense of the asymptotic bound, if applying the FFD algorithm,
we also use the bins of the first batch, since it is allowed? The answer is no, since this lower bound
construction we just have seen in the end of proof of Theorem 7.1.1 also works for the augmenting
model (i.e. FFD is allowed to use any bins of the first batch, but it cannot). Let Ra(FFD) and
Rd(FFD) denote the (asymptotic) approximation ratios of the appropriate versions of FFD in
the two models in question, respectively (considering only K = 2). We proved in Theorem 7.1.1
that Rd(FFD) = 19/12, and from the previous note we have Ra(FFD) ≥ Rd(FFD). Now we
show that the opposite inequality also holds.

Lemma 7.1.2 Ra(FFD) ≤ Rd(FFD), if K = 2.
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Proof. Let FFD′ denote FFD for the augmenting model (for the disjoint model, call it simply
FFD). Now consider an output of FFD′ for a list L′. Let L be the list of items we get from
L′, deleting the items of the second batch that FFD′ placed into bins of the first batch. We have
FFD′(L′) = FFD(L), while OPT (L) ≤ OPT (L′), since L ⊆ L′. We know that FFD(L) ≤
Rd(FFD)·OPT (L)+C (for an additive constantC ≥ 0), and therefore FFD′(L′) ≤ Rd(FFD)·
OPT (L′) + C. This proves that Ra(FFD) ≤ Rd(FFD). 2

Corollary 7.1.2 Ra(FFD) = Rd(FFD), if K = 2.

The statement of the corollary, is the reason why we proved the asymptotic approximation
bound 19/12 in the disjunctive model. As we cannot get any gain to construct the proof in the
augmenting model, only the proof would require more effort. Proposing and investigating some
other algorithm than FFD for the BBP problem is also an interesting direction for further study.

Remark 7.1.1 (i) The precise connection between the BP problem and the BBP problem is not
completely understood. For the BBP problem with K = 2, we presented the first approximation
algorithm, with asymptotic approximation ratio 19/12 ≈ 1.5833, which is strictly smaller than the
best known asymptotic approximation ratio for online BP ; i.e. 1.5888 ([77]). For K = 2 there
still remains a gap between the lower and upper bounds. It would be nice to tighten this gap.
(ii) It does not help in this sense, if we apply algorithm FFD for K = 3 in the disjunctive model.
It is obvious that its asymptotic approximation ratio is at least 5/3, so this algorithm is not too
efficient. Let n be the number of optimal bins, and let the following items be in any optimal bin:
1/2+ε, 1/3+ε, 1/6−2ε. Then let the batches contain the tiny items, the medium items and grand
items, in this order. It is easy to see that FFD(B1, B2, B3)/OPT = 1/6+1/2+1 = 5/3. Or, if the
first half of the first batch contains n items of sizes 1/12+ ε, while the second half of the first batch
contains n items with sizes 1/12− 3ε, we get the slightly better ratio FFD(B1, B2, B3)/OPT =
1/11 + 1/12 + 1/2 + 1 = 221

132
≈ 1.6742. And what happens if K → ∞, and we apply the FFD

algorithm for each batch in the disjunctive model? As each batch can consist of a single item, we
can apply the lower bound construction of the FF algorithm, and we get a tight (asymptotic and
also absolute) approximation ratio 1.7; for details, see [23, 24].
(iii) Further, applying any algorithm in the disjunctive model, as the number of batches grows,
it can be shown that the approximation ratio must be at least that of the harmonic algorithm,
namely 1.69103. We can see this as follows. In the tight worst case example of the Harmonic(K)
algorithm, each optimal bin contains an item of size 1/2 + ε, an item of size 1/3 + ε, an item of
size 1/7 + ε, an item of size 1/43 + ε, and so on. (After defining the initial couple of items, the
remaining room in the bin, not considering the small epsilons, is just 1/k for some k. Then the
next item type is 1/(k + 1) + ε). This sequence of items contains K item types. Then in the BBP
problem, choosing the same K, we let the i-th smallest items be in the i-th batch. Since these items
have the same size, no algorithm can pack them better than the Harmonic(K) algorithm, and the
statement follows.
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7.2 An improved result for the GBP problem
In [11], a general packing algorithm is given for the GBP problem, with absolute approximation
ratio 3, in the case where the graph which is to be packed is bipartite. Now we will present an
improved algorithm with absolute approximation ratio 19/12 + 1 = 31/12 ≈ 2.5833, for this
restricted case.

Let G(A,B,E) be the bipartite graph in question, where V = A ∪ B is the set of points (also
called items) of the bipartite graph, and E is the set of edges. Any point v ∈ V has a size, denoted
by 0 < s(v) ≤ 1. Moreover for any e(a, b) edge (a ∈ A, b ∈ B) an integer lower bound will be
denoted by d(a, b) ≥ 0. In this special case of the GBP problem, the goal is as follows: Let us
pack the items into as small a number of bins as possible, in such a way that for any two items
a ∈ A, b ∈ B, if they are packed into bins Bi and Bj , respectively, the indices of their bins must
satisfy |i− j| ≥ d(a, b), and the total size of items in any bin cannot exceed 1. Let d denote the
maximum of the prescribed lower bounds, i.e. let d = max {d(a, b) | e(a, b) ∈ E }. (We suppose
that d ≥ 1, otherwise there is no lower bound restriction.) In this section, let OPT be the number
of bins in an optimum packing. Then it naturally follows that OPT ≥ LB1 = d+ 1.

Let OPTR denote the optimum value of the relaxed problem, where the lower bounds on the
edges are neglected; i.e. we simply consider the packing problem of itemsA∪B. It trivially follows
that OPT ≥ OPTR. Moreover if we apply our BPP algorithm for the two sets of nodes after
each other, Theorem 7.1.1 holds, hence FFD(A,B) ≤ 19

12
· OPTR + 2. Now we will introduce a

very simple algorithm called Master with the absolute approximation ratio of 31/12. The number
of bins created will also be denoted by Master.

Algorithm Master
1. Pack items of A by bin packing algorithm FFD. The packing (and also the number of

the bins used) will be be denoted by FFD(A). Now we pack items of B into new bins
(independently of the packing of set A); let the packing of set B; and let the number of bins
used be denoted by FFD(B). In this step, the lower bound constraints are totally neglected.

2. We leave d− 1 empty bins between the two packings; end.

Note that we are quite liberal when performing this Step 2. However, by applying Step 2,
the packing of Master naturally will be feasible, so we do not need to deal with the lower bound
restrictions. Roughly saying, Step 2 increases the absolute approximation ratio by 1, as is shown
in the following theorem.

Theorem 7.2.1 The absolute approximation ratio of the Master algorithm is at most 31/12.

Proof. For any input, it follows that

Master = FFD(A) + FFD(B) + d− 1

= FFD(A,B) + d− 1

≤ 19/12 ·OPTR + 2 + (d− 1)

= 19/12 ·OPTR + LB1 ≤ 31/12 ·OPT.

2
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Chapter 8

Appendix

8.1 Appendix A
Here we give a simplified, short proof of the following result proved originally in [79].

Theorem 8.1.1 If OPT = 5 then FFD ≤ 6.

Proof. Suppose for a contradiction that L is a minimal counterexample such that OPT = 5,
and FFD = 7. From Lemmas 3.1.1 and 3.1.5 it follows that the last item, X is between the next
bounds: 1/5 < X < 1/4. Since all items fit in the optimal packing into five optimal bins, it follows
that

∑n
k=1 pk ≤ 5. Moreover X does not fit into any previous FFD bin, thus we get

l (Bi) > 1−X, i = 1, . . . , 6. (A.1)

2

Recall that each optimal bin contains at least three items, thus the total number of items is at
least 15. Moreover each FFD bin but the last one contains at least two items. Since X > 1/5
holds for the smallest item, no (optimal or FFD) bin contains more than four items.

Lemma 8.1.1 The level of each FFD bin is strictly less than 4X , thus each FFD bin contains at
most three items.

Proof. Suppose that the level of Bj is at least 4X . Applying (A.1), it follows that

5 ≥
n∑
k=1

pk = X + l (Bj) +
∑

i 6=j, i6=7

l (Bi) > X + 4X + 5 (1−X) = 5,

which is a contradiction. 2

In the following we use Aik to represent the k-th item in the i-th FFD bin and A∗ik to represent
the k-th item in the i-th optimal bin.

Lemma 8.1.2 Suppose that Bi and Bj contains two and three elements, respectively. Then i < j.
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Proof. Suppose to the contrary that Bi and Bj are two consecutive bins (i.e. j = i + 1), and Bi

contains three elements, whileBj contains only two. Suppose thatAi1+Ai2 ≥ Aj1+Aj2. Because
Ai3 fits into the i-th bin, and Ai3 ≥ X , it follows that X fits into the j-th bin, a contradiction. Thus
Ai1 + Ai2 < Aj1 + Aj2. Moreover, from Ai1 ≥ Aj1 it follows that Ai2 < Aj2. Thus Aj2 is packed
before Ai2, and it did not fit into the i-th bin, thus Ai1+Aj2 > 1 while Ai1+Ai2+Ai3 ≤ 1. Hence
Aj1 ≥ Aj2 > Ai2 + Ai3 ≥ 2X , and then Aj1 + Aj2 ≥ 4X , contradicting Lemma 8.1.1. 2

By Lemma 8.1.2, the FFD bins at the beginning contain two items, the following ones contain
three items, and the last one contains only one, namely the last item. Then the 6-th FFD bin must
contain three items (otherwise the number of items is at most 6 · 2 + 1 = 13).

Lemma 8.1.3 Each item coming after A6,1 is regular.

Proof. For the sake of simplicity, let A6,1 be denoted as U . Suppose that Z comes later than U
(but not necessarily right after U ), and is packed into some previous bin. Since B6 contains three
items, it follows that l (B6) ≥ U + 2X . On the other hand the level of the bin where Z is packed,
is more than 1− U + Z ≥ 1− U +X . Using (A.1), we get

5 ≥
n∑
k=1

pk > X + (1− U +X) + (U + 2X) + 4 (1−X) = 5,

a contradiction. 2

It follows that the three items of the 6-th FFD bin are three consecutive items, and the next
item is the last item X , which is packed into the last FFD bin. We get the next

Corollary 8.1.1 The four smallest items cannot fit into one bin, and thus each optimal bin contains
exactly three items.

Now we are ready to prove Theorem 8.1.1. Since each optimal bin contains exactly three items,
and each FFD bin contains two or three items except the last FFD bin, the number of items is
exactly n = 15, and the FFD bins contain 2-2-2-2-3-3-1 items.

Consider the fourth FFD bin (it is a 2-bin). We know thatA41+A42+X > 1. ItemA41 cannot
be earlier than p4, thus A41 ≤ p4, and A42 comes after A41, thus A42 ≤ p5, therefore p4+p5+X >
1. Suppose that items A∗i1, i = 1, . . . , 5 are not the five biggest items. Then there exists some j,
for which A∗j2 comes not later than the fifth item, i.e. A∗j2 ≥ p5. It follows that A∗j1 ≥ p4, but then
1 < p4+p5+X ≤ A∗j1+A

∗
j2+A

∗
j3 ≤ 1, a contradiction. Thus items A∗i1, i = 1, . . . , 5 are the first

five items; we can suppose without loss of generality thatA∗i1 = pi for i = 1, . . . , 5. ThenA∗j2 = p6
for some j, and it follows that p5+p6+X ≤ A∗j1+A

∗
j2+A

∗
j3 ≤ 1. Thus the first item in the fourth

FFD bin cannot be p5 or some later item (because then A41 +A42 +X ≤ p5 + p6 +X ≤ 1). We
have seen that A41 cannot be earlier than p4, hence A41 = p4, i.e. the first four items are packed
into different FFD bins. Thus from the FFD rule it follows that p1 ≥ p2 ≥ p3 > 1/2. Then the
sum of the sizes of the other four items being in the optimal bins of p1 and p2 is less than 1, thus the
four smallest items fit together in one bin, contradicting Corollary 8.1.1 and completing the proof.
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8.2 Appendix B
Here we give the omitted case (Case 2/11 < X ≤ 1/5, and OPT ≤ 18) from the proof of the
FFD algorithm.

If X ≤ 1/5, the general investigations (apart from one very hard branch) will be significantly
easier under the assumption OPT ≥ 19, by making use of the fact that in most cases a large
number of optimal bins provides us with large total reserve. In this sense, less flexibility makes the
cases with small OPT values harder, despite that they look like “just something finite”.

Therefore, in this section our goal is to prove that if X ≤ 1/5, then OPT ≤ 18 is impossible.
Due to our previous calculations (given in Remark 3.1.3) only the following cases remain to con-
sider: OPT = 10 + 4k, while FFD = 13 + 5k, for some k ∈ {0, 1, 2}, thus these equalities are
assumed in this section. First we find some properties that must hold in this case. Since all items
fit in the optimal packing into 10+4k optimal bins, it follows that

∑n
k=1 pk ≤ 10+4k. Recall that

item X does not fit into any previous FFD bin, thus we get

l (Bi) > 1−X, i = 1, . . . , 12 + 5k. (8.1)

Lemma 8.2.1 For 1 ≤ j ≤ 3, the sum of the levels of any j bins among the first 12+5k FFD bins
is strictly less than (j − 1) (1−X) + 5X .

Proof. Suppose that there are j bins among the first 12 + 5k FFD bins with total level at least
(j − 1) (1−X) + 5X . The level of any other FFD bin, except the last one, is bigger than 1−X ,
thus we get

10 + 4k ≥
n∑
k=1

pk > (j − 1) (1−X) + 5X + (12 + 5k − j)(1−X) +X

= 10 + 4k + (k + 1) (1− 5X) ≥ 10 + 4k,

which is a contradiction. 2

Corollary 8.2.1 (a) Let Bi be an arbitrary FFD bin. Then l (Bi) < 5X , thus each FFD bin
contains at most four items.
(b) Let Bi and Bj be two arbitrary FFD bins. Then l (Bi) + l (Bj) < 1 + 4X ≤ 2−X .
(c) Let Bi, Bj and Bk be three arbitrary FFD bins. Then l (Bi) + l (Bj) + l (Bk) < 2 + 3X .

Proof. We apply the previous lemma with j = 1, j = 2, or j = 3, and the fact X ≤ 1/5 (and that
the level of the last FFD bin is only X). 2

Lemma 8.2.2 Let Bi and Bj with 1 ≤ i ≤ 12 + 5k and j = i+ 1 be two consecutive FFD bins at
any time of executing the algorithm before X has arrived. Let the next item be U . If Bi contains
more items than Bj , then U fits into Bj .

Proof. If Bj contains zero or one item, the statement follows. From Corollary 8.2.1 (a) we already
know that no FFD bin contains five or more items. Thus, it follows that Bj contains two or three
items.
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Case 1. Bi contains four items. Because Ai,2 + Ai,3 + Ai,4 ≥ 3X > 1/2 ≥ Aj,2, it follows that
Aj,2 would fit into the previous bin if Bi contained only Ai,1 at this moment. Thus Ai,2 comes
before Aj,2 and therefore Ai,2 ≥ Aj,2. Suppose first that Bj contains two items. Then U fits
into the j-th bin since U ≤ Ai,3. Now suppose that Bj contains three items right before the
arrival of U . If Aj,3 > Ai,3 then Aj,3 comes before Ai,3 and does not fit into the i-th bin, thus
Aj,3 > Ai,3+Ai,4 ≥ 2X . Then the level of the j-th bin is at least Aj,1+Aj,2+Aj,3 ≥ 3Aj,3 ≥ 6X ,
a contradiction. Thus Aj,3 ≤ Ai,3. Because U ≤ Ai,4, the item U fits into the j-th bin.

Case 2. Bi contains three items; then Bj contains two items. If Ai,1 + Ai,2 ≥ Aj,1 + Aj,2, then
because Ai,3 fits into the i-th bin, and Ai,3 ≥ U , it follows that U fits into the j-th bin. Now assume
that Ai,1 + Ai,2 < Aj,1 + Aj,2. Because Ai,1 ≥ Aj,1, also Ai,2 < Aj,2 follows. Thus Aj,2 is packed
before Ai,2, and it did not fit into the i-th bin, thus Ai,1 + Aj,2 > 1 and Aj,1 ≥ Aj,2 > 1 − Ai,1.
If Ai,1 ≥ 3X , then the level of the i-th bin is at least Ai,1 + 2X ≥ 5X , this contradicts Corollary
8.2.1 (a). Thus let Ai,1 = 3X − α with some α > 0. Then

l (Bi) + l (Bj) > 3X − α + 2X + 2 (1− 3X + α) = 2−X + α > 2−X

contradicting Corollary 8.2.1 (b). 2

Corollary 8.2.2 Let Bi and Bj be two consecutive FFD bins with j = i + 1 < 13 + 5k. Then
having executed the algorithm, Bi cannot contain more items than Bj .

Lemma 8.2.3 Suppose that some bin, say Bi, contains four items after the execution of algorithm
FFD. Let U = Ai,1 be the first item in this bin. Then there is no fallback item after U .

Proof. Suppose that Z comes later than U (not necessarily right after U ), and is packed into some
previous bin. Because Bi contains four items, it follows that l (Bi) ≥ U + 3X . On the other hand
it holds that the level of bin(Z) exceeds 1− U + Z ≥ 1− U +X . We get

l (Bi) + l(bin(Z)) > (1− U +X) + (U + 3X) = 1 + 4X ,

contradicting Corollary 8.2.1 (b). 2

It follows that, in a bin Bi with four items, the items are four consecutive ones, i.e. they are in
the order right after each other, and are packed into this bin. Since no five items can be packed into
the same FFD bin, the next item, say U1, is packed into the next bin. If this next FFD bin is not
the last FFD bin, then this bin also will contain four items according to Corollary 8.2.2, thus U1

and the next three items are packed into one bin, and so on.

Definition 8.2.1 A fallback item Z is called Y -fallback if Z comes later than Y (not necessarily
right after Y ), Y is a first item in some FFD bin, and Z is packed into an earlier bin than bin(Y ).

Lemma 8.2.4 If Y ≤ 2X , then there can be at most one Y -fallback item.

Proof. Suppose Z is a Y -fallback item. By definition, Y is the first item in its bin. Then, since
Y ≤ 2X , and since no item of size bigger than 1− 2X exists, it follows that the bin where Z will
be packed contains at this moment at least two items. It cannot contain at this moment three items,
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since then we get a contradiction to Lemma 8.2.3. Thus bin(Z) already contains exactly two items
just when Z is packed there, let these items be A and B; and Z is the last item in this bin.

Suppose that there is another Y -fallback item, say U . Then bin(Z) and bin(U) are different
bins, since U and Z are both third items in their bins, moreover both bin(Z) and bin(U) are earlier
bins than bin(Y ). At the moment when U is packed, bin(U) already contains exactly two items,
let they be C and D; and U is the last item in this bin.

From Corollary 8.2.2 and Lemma 8.2.3 it follows that after the entire running also bin(Y )
contains exactly three items; let the other two items in this bin be S and T . We assume, without
loss of generality, that S precedes T and that bin(Z) is a bin earlier than bin(U).

Case 1. U comes before Z. Then since U is not packed into bin(Z), it follows that U did not
fit into bin(Z), thus l (bin(Z)) > 1 − U + Z ≥ 1 − U + X . Also it follows that l (bin(U)) >
1− Y + U ≥ 1− 2X + U , thus we get

l (bin(Z)) + l (bin(U)) > (1− U +X) + (1− 2X + U) = 2−X ,

which contradicts Corollary 8.2.1 (b).
Thus in the following we suppose that Z comes before U .

Case 2. Z comes after S (where S is the second item in bin(Y )). Then U comes also after S, since
Z precedes U . Then A+ B + Y > 1, and C +D + S > 1, since Y did not fit into bin(Z), and S
did not fit into bin(U). Thus we get

l (bin(Z)) + l (bin(U)) + l (bin(Y ))

= (A+B + Z) + (C +D + U) + (Y + S + T )

= (A+B + Y ) + (C +D + S) + (Z + U + T )

> 1 + 1 + 3X ,

contradicting Corollary 8.2.1 (c).

Case 3. Z comes before S and T . Then it follows that U must precede both S and T (since when
the first item among U , S and T comes, bin(Z) contains three items, and bin(U) contains only two
items, thus the just arriving item fits into bin(U) by Lemma 8.2.2). Then since D is not packed
into bin(Z) (no matter whether B is already packed here or not), it follows that A + B +D > 1,
furthermore C ≥ Y , and min{Z,U} ≥ max{S, T}, moreover Y + S + T > 1−X , hence we get

l (bin(Z)) + l (bin(U)) = (A+B + Z) + (C +D + U)

= (A+B +D) + (C + Z + U)

> 1 + (Y + S + T )

> 1 + 1−X = 2−X ,

contradicting Corollary 8.2.1 (b). 2

Corollary 8.2.3 Suppose that Y ≤ 2X and Z is a Y -fallback item. Then both bin(Z) and bin(Y )
are 3-bins.
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After this treatment, let Y denote in this section the first item in the bin before the last FFD
bin, i.e. Y = A12+5k,1. We already know that Y > 1/5, otherwise there would be five items in
bin(Y ), contradicting Corollary 8.2.1 (a).

Lemma 8.2.5 The size of Y is at most 1/3.

Proof. Suppose to the contrary that Y > 1/3. Let g denote the number of items bigger than a
half (which are called giant items). Let l be the number of large items, where an A is defined to
be large if 1/3 < A ≤ 1/2. Since the g giant items are packed into different FFD bins, it follows
that there are at least 2 (11 + 5k − g) + 1 large items in the next FFD bins (and some more can
also occur in the bins of the giant items). In an optimal packing a giant and a large item cannot be
packed into a common bin (since there are at least three items in each optimal bin, and too small
room remains for the third item), the giant items are packed into different bins, and at most two
large items can be packed into an optimal bin. It follows that OPT ≥ 12 + 5k, i.e. even the giant
and large items cannot fit into 10 + 4k optimal bins, a contradiction. 2

Remark 8.2.2 The stronger claimA11+4k,1 ≤ 1/3 similarly holds but we will not use this property.

Lemma 8.2.6 The five smallest items do not fit into one bin, thus each (FFD or optimal) bin
contains at most four items.

Proof. Consider bin(Y ), i.e. the (12 + 5k)-th FFD bin.
By Y ≤ 1/3 and Corollary 8.2.1 (a), bin(Y ) contains three or four items.
If bin(Y ) is a 4-bin, then these four items plus item X in the last FFD bin are the last five

items, according to Lemma 8.2.3. It follows that the five smallest items do not fit into one bin.
Suppose that bin(Y ) is a 3-bin. We have seen in Lemma 8.2.5 that Y ≤ 1/3 ≤ 2X . Then by

Lemma 8.2.4 there can be at most one fallback item after Y , thus the three items in bin(Y ), plus
the possible fallback item after Y , plus the last item X are the four or five smallest items, and they
cannot fit into one bin, and the statement follows. 2

Now let Q be the set of items which come after Y . There are at most four items in Q. Thus
essentially it remains to show in the next two subsections that the following situation is impossible:
OPT = 10 + 4k, FFD = 13 + 5k, and there are at most four items with sizes at most 1/5. We
mainly will follow the lines of the third section (where all items were bigger than 1/5).

Subcase Y > 1/4.

Recall that Y is the first item in the bin before the last FFD bin. We have seen in Lemma 8.2.5
that Y ≤ 1/3. The bin of Y cannot contain five items, by Corollary 8.2.1 (a). Then it follows that
bin(Y ) contains three or four items. So the following cases are possible:

Case a, bin(Y ) is a 4-bin. Then there is no fallback item after Y . Since Y > 1/4, it follows that
bin(Y ) is the only one 4-bin in the FFD packing. (The previous bin contains fewer than four
items.)

Case b, bin(Y ) is a 3-bin, and there is no fallback item after Y . In this case the four smallest items
do not fit into a common bin, thus there is no 4-bin at all.
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Case c, bin(Y ) is a 3-bin, and there exists exactly one fallback item after Y .
Note that in cases b, and c, Y > 1−X

3
> 1/4 holds, otherwise after three items X still fits into

bin(Y ). We use the next classification on the items of L\Q. (Note that Y is the smallest item in
the set L\Q.) The Q items will get weight 9.

Name Class Weight
Big 1−X

2
< B 18

Medium 1−Y
2

< M ≤ 1−X
2

15
Small Y ≤ S ≤ 1−Y

2
12

Classification on items L\Q.

Lemma 8.2.7 Only the optimal bin-types listed below are possible. Moreover, no 4-bin exists in
Case b, and neither an (M,S, 2Q) nor a (3S,Q) optimal bin is possible in Case c. Furthermore
there is at least 8 reserve in the optimal bins.

OPT
18
15
12
9

B 1
M 1
S 2 2 3
Q
r 2 5 8

1 1 1
1 2 1 1

1 1 2 1
1 1 2 1 1 2 1 2 3
2 5 8 5 8 11 11 14 17

1
1 1
1 3 2 1

3 2 3 1 2 3 4
−1 −1 2 −1 2 5 8

Proof. Each optimal bin contains three or four items, and it can contain four items only if it
contains also (one or more) Q items. If the bin does not contain Q items, then it cannot contain
two or more M or B items, thus in this case only (B, 2S), (M, 2S) or (3S) bins are possible. Now
let us consider the Q-bins. Among the 3-bins a (2B,Q) bin is impossible. Now let us consider the
4-bins. (Every 4-bin must contain a Q-item since Y > 1/4.)

From B + S + 2Q > 1−X
2

+ Y + 2X > 3
4
+ 3

2
X > 1 it follows that if the 4-bin contains a

B item, then only a (B, 3Q) bin is possible. A 4-bin cannot contain two or more M items since
the remaining room in the bin is smaller than Y < 2X . If the bin contains one M item, then an
(M, 2S,Q) bin is impossible since M + 2S +Q > 1−Y

2
+ 2Y +X = 1

2
+ 3

2
Y +X > 1.

Regarding Case c, we know that Y > 1−X
3

holds, hence a (3S,Q) bin is impossible; and an
(M,S, 2Q) bin is also impossible, since M + S + 2Q > 1−Y

2
+ Y + 2X = 1

2
+ 1

2
Y + 2X >

1
2
+ 1−X

6
+ 2X = 2

3
+ 11

6
X > 1.

Considering the possible optimal bins, only some 4-bins can have shortage, and only if there
is at least one Q item in the bin. Every other bin has at least 2 reserve. Since there are at least ten
optimal bins, the total reserve is at least 6 · 2− 4 = 8. 2

Let b be the number of (B,M) and (B, S) FFD bins. We say that a B item is a big B if it is
bigger than a half.

Observation 8.2.1 We have b ≤ 5, and there is at least 5 reserve in the optimal bin of each big B
item.

Proof. In the first b−1 bins among the (B,M) and (B, S) FFD bins theB items are bigB items,
otherwise the two last B items in consideration fit into a common bin. Each big B item is packed
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into a 3-bin in the optimal packing, and there must be at least one Q item in the bin as Y > 1/4.
Since there are only at most four Q items, b ≤ 5 follows. Regarding the second statement, a big B
item cannot be packed into a (B,M,Q) bin either, thus a bigB can be packed only into a (B, S,Q)
or (B, 2Q) optimal bin, thus the assertion follows. 2

Now we consider the three possible cases after each other:
Case a. bin(Y ) is a 4-bin. We list the possible FFD bins below. The Q items are only in the last
two FFD bins, and bin(Y ) is a (S, 3Q) bin. An FFD 2-bin must contain some B item, since
2M +X ≤ 1. Thus only the following FFD bins are possible:

18
15
12
9

B 2 1 1 1
M 1 1
S 1 2 2 3 1
Q 3 1
s 0 −3 −6 6 3 0 3 0

Here bin(Y ) has 3 surplus. Only (B,M) and (B, S) FFD bins have shortage.
If b ≤ 1, then the total shortage is at most 6− 3 = 3 because of the FFD bins, and we have at

least 8 reserve in the optimal bins, thus the shortage is covered.
Otherwise 1 < b ≤ 5. The total shortage is at most 6b − 3 in the FFD bins, while in the

optimum packing there are at least b− 1 bins containing at least one Q item together with a big B
item, and having at least 5 reserve in each, there are at most 5− b other Q-bins with shortage 1 in
each, and there are at least six further optimal bins with at least 2 reserve in each. Thus the total
reserve is at least 5(b− 1)− (5− b) + 6 · 2 = 6b+ 2, hence we are done.

Case b. bin(Y ) is a 3-bin, and there is no fallback item after Y . Then there is no (optimal or
FFD) 4-bin at all, since no four items fit into one bin. The possible FFD bins are the same as in
case a, except bin(Y ).

18
15
12
9

B 2 1 1 1
M 1 1
S 1 2 2 3 1
Q 2 1
s 0 −3 −6 6 3 0 −6 0

Now the three Q items are in the last FFD bin and in the previous bin. Since there is no 4-bin
in the optimal packing each optimal bin has at least 2 reserve, thus we have in total at least 20
reserve from the optimal bins. Only (B,M) and (B, S) FFD bins, and the (S, 2Q) FFD bin
have shortage, thus if b ≤ 2 then the total shortage is at most 18, and thus it is covered. Hence
suppose that b > 2. Then there are at least two FFD bins of type (B,M) or (B, S); let these bins
and the items in them be denoted as (B1, A1) and (B2, A2), where B1 and B2 are B items, while
A1 and A2 are M or S items. Then B1 + B2 > 1, otherwise they would be packed into the same
bin. Let us consider the optimal bins of B1 and B2; these are some 3-bins, let they be denoted as
(B1, C1, C2) and (B2, C3, C4), whereC1, C2, C3 andC4 are some items. Then from the inequalities
B1 + C1 + C2 ≤ 1, B2 + C3 + C4 ≤ 1 and B1 +B2 > 1, it follows that C1 + C2 + C3 + C4 ≤ 1,
which is a contradiction since no four items fit into a common bin.

Case c. bin(Y ) is a 3-bin, and there exists one fallback item after Y . Let this fallback item be
denoted as Z. There are four Q items, namely the Y -fallback item Z, the item X , and two more
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Q-items in bin(Y ), let these latter two be denoted as Q1 and Q2. From Corollary 8.2.3 it follows
that bin(Z) is a 3-bin. This bin can be only a (B,M,Q), (B, S,Q), (2M,Q) or (M,S,Q) bin,
since 2B +X > 1 and 2S + Y ≤ 1. Since Y +Q1 +Q2 +X > 1 and these are the four smallest
items in L \ {Z}, no four items of L \ {Z} fit into one bin. Since X ≤ Z, it also holds that no four
items of L \ {X} fit into one bin. Thus there can be at most one optimal 4-bin, and then both Z
and X are packed into this bin. The possible FFD bins are as follows:

18
15
12
9

B 2 1 1 1 1 1
M 1 1 2 1 1
S 1 1 1 2 2 3 1
Q 1 1 1 1 2 1
s 0 −3 −6 6 3 3 0 6 3 0 −6 0

Recall that in this case neither (M,S, 2Q) nor (3S,Q) optimal bins exist, only a (B, 3Q) opti-
mal bin can have shortage, and naturally there can be at most one such bin. In any other optimal
bin there is at least 2 reserve, thus in the optimal bins we have in total at least 9 ·2−1 = 17 reserve.
If b ≤ 1, then the total shortage is covered.

Suppose b ≥ 2. Then we apply similar calculation as in case b. There are at least two FFD bins
of type (B,M) or (B, S); let these bins and the items in them be denoted as (B1, A1) and (B2, A2),
where B1 and B2 are B items, while A1 and A2 are M or S items. Then B1 + B2 > 1 holds. Let
the optimal bins of B1 and B2 be denoted as (B1, C1, C2) and (B2, C3, C4), where C1, C2, C3 and
C4 are some items. Then it follows that C1 + C2 + C3 + C4 ≤ 1. (If bin(B1) or bin(B2) in the
optimal packing would be a 4-bin, then similarly we get at least five items that fit into one bin, a
contradiction.) Thus Z and X are among C1, C2, C3 and C4, and these Q items are packed into the
optimal 3-bins of B1 and B2. Since there are only four Q items, it follows that there is no (B, 3Q)
optimal bin. Then there is at least 10 · 2 = 20 reserve in the optimal bins, thus all shortage is
covered if b = 2.

Thus 3 ≤ b ≤ 5 follows. Then similarly to the previous calculations we get that there are at
least three FFD bins of type (B,M) or (B, S), let the B items be denoted as Bi for i = 1, 2, 3. The
sum of any two among them is bigger than 1. EachBi is packed into a 3-bin in the optimal packing,
let these optimal bins be denoted as (B1, C1, C2), (B2, C3, C4), and (B3, C5, C6). Then the next
inequalities hold: C1+C2+C3+C4 ≤ 1, C1+C2+C5+C6 ≤ 1 and C3+C4+C5+C6 ≤ 1. Then
Z (and X) must be in each of the sets {C1, C2, C3, C4}, {C1, C2, C5, C6}, and {C3, C4, C5, C6}.
This is a contradiction.

Subcase 1/5 < Y ≤ 1/4

In this subcase we use the same classification for items L\Q which was already used for the whole
item-set in Section 3 (where X was supposed to be between 1/5 and 1/4), but now Y has the role
that X had in Section 3. The items which come after Y are denoted by Q. Note that Y > 1/5,
and the last item X (which is a Q item) is surely smaller than 1/5, but some Q items coming after
Y and before X can be smaller or bigger than 1/5 (but we do not make further investigations or
assumptions regarding the sizes of these items).

Since Y ≤ 1/4, bin(Y ) is definitely a 4-bin, and there is no fallback item after Y . There are
exactly four Q items (taking also X into account).
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Let now Z be the smallest regular item in the interval (1−Y
3
, 1
3
], if there exists at least one such

item; otherwise let Z = 1/3.
The same optimal bins as in Section 3 are again possible, and in any optimal bin Q can stand

in the place of a T item. Some further optimal bin-types are also possible if a bin contains one or
more Q items, and there can be at most 4 new bins at the same time, since there are only 4 new
items.

By our minimality assumption on the items, it holds that in each optimal bin there is at least
one item from L\Q (otherwise by deleting the Q items we could get a smaller counterexample
with OPT ′ ≤ 9 + 4k and FFD′ = 12 + 5k).

We apply the proof of the previous section, by some modifications where needed.

Name Class Weight
Giant 1

2
< G 23

Big 1−Y
2

< B ≤ 1
2

18
Medium 1−Z

2
< M ≤ 1−Y

2
15

Small Z ≤ S ≤ 1−Z
2

12
Tiny Y ≤ T < Z 9

Lemma 8.2.8 Only the following bin-types are possible.

OPT1, optimal bins without a Q item
23
18
15
12
9

G 1 1
B 1 1 1 1
M 1
S 1 2 1
T 1 2 1 1 2
r 0 3 2 2 5 8

2 1 1 1 1
2 1

1 1 3 2
5 5 8 2 11

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17

OPT2, optimal 3-bins containing at least one Q item
23
18
15
12
9
9

G 1 1 1
B 2 1 1 1 1
M 1 2 1 1 1
S 1 1 1 2 1 1
T 1 1 1 1 2 1
Q 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 2
r 0 3 3 −1 2 5 8 8 5 8 11 11 11 14 14 17 17

OPT3, optimal 4-bins containing at least one Q item
18
15
12
9
9

B 1 1 1 1
M 1 1 1 1
S 1 1 1 2 1 3 2 1
T 1 1 1 1 2 2 2 1 2 3
Q 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1
r −1 2 5 8 −4 −1 −1 2 2 5 8 −1 2 −1 2 5 8
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FFD
23
18
15
12
9

G 1 1 1 1
B 1 2 1 1
M 1 1
S 1 1
T 1
s 5 2 −1 −4 0 −3 −6

1 1
1 1 1 1
1

1 2 1
1 2 1 1 2
8 5 6 6 3 0

2 1 1 1 1
2 1

1 1 3 2
3 3 0 6 −3

12
9
9

S 3 2 2 1 1
T 2 1 3 2 4 1
Q 3
s 0 6 −3 3 −6 0 0

1
0

Proof. In the first table OPT1, we list all (and the same) bin-types as in the previous section. In
the second table OPT2, we list the new possible optimal 3-bins, if the bin contains one or more Q
items. Since M > 1−Z

2
≥ 1/3, the (G,B,Q) and (G,M,Q) bins are impossible. If the 3-bin does

not contain a G item and contains at least one Q item, excluding (3Q) any bin-type is possible
which is later in the lexicographical order than (2B,Q), and this bin is also possible, since 2B+Q
can be smaller than 1.

The possible optimal 4-bins are listed in Table OPT3. A 4-bin cannot contain aG item. A 4-bin
cannot contain only (the four) Q items. If a 4-bin contains three Q items, the fourth item cannot
be a G item. Suppose that the bin contains two Q items. Since M > 1/3, the further items cannot
be B or M items. Finally suppose that the 4-bin contains only one Q item. Then (B, S, T,Q) or
(M,S, T,Q) bins are impossible, sinceM+S+T +Q > 1−Z

2
+Z+Y +X = 1

2
+ 1

2
Z+Y +X >

1
2
+ 1−Y

6
+ Y +X = X + 5

6
Y + 2

3
> X + 5/6 > 1. Thus if the bin contains a B or an M item,

the remaining two items must be T items. If the bin does not contain a B or M item, then any
remaining case is possible.

Regarding the possible FFD bins, the same bin-types are possible as in the previous section,
except that there is a bin just before the last FFD bin with one Y and three Q items. 2

We emphasize again that we do not state that all such bin-types occur, we simply listed all bin-
types which we could not exclude from the consideration. Now, since the possible bin-types are
almost the same as in the previous section (where X > 1/5 was assumed), we can almost repeat
the proof that we have done there. Since now some further bin-types are also possible, we must
make a more careful analysis, but on the other hand we have the advantage that now more types of
optimal bins occur, and this makes the investigation easier. We need the next observation which is
very similar to what we have stated in the previous section.

Observation 8.2.2 If at least one S item occurs, then there is an S item with size exactly Z in the
last (S, .) FFD bin (if there exists an (S, .) FFD bin). Moreover two (B, .) bins or two (M, .) bins
or two (S, .) bins, both having shortage, cannot occur at the same time.

Proof. The proof is the same as the proof of Observations 3.2.6 and 3.2.7. 2

Lemma 8.2.9 Suppose that there is no (G, T ) FFD bin, there is no {(G,S), (G,S, T )} cobin, and
there is no {(G,S), (G,S,Q)} cobin. Then all shortage is covered.
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Proof. Let us denote the G and S items of the (G,S) FFD bins as G′ and S ′, respectively. Let us
increase the weight of the G′ items by 1 and decrease the weight of the G \G′ items by 2.

By the assumption of the lemma any G′ item is packed into a (G, 2T ) or (G, T,Q) or (G, 2Q)
optimal bin. Each such bin still has (after the modification) at least 2 reserve.

Now consider a (G,S, T ) or (G,S,Q) optimal bin. Since the G item of this bin cannot be a G′

item (again by the assumption of this lemma), thus (after the modification of the weights of the G
and G \G′ items) the bin has 2 reserve.

It follows that the (G,S) FFD bins do not have shortage, and each optimal non-Q bin has at
least 2 reserve. Let the optimal bins having at least 2 reserve be called good bins, the other optimal
bins be called bad bins. Then there are at most four bad bins, since there are four Q items.

We state that we have at least 8 reserve in total. Indeed, using that OPT ≥ 10, if there is no
bad bin, then we have at least 10 · 2 = 20 reserve. If there is only one bad bin (in the worst case it
has 4 shortage) we have at least 9 · 2− 4 = 14 reserve. If there are two bad bins, we have at least
8 · 2− 2 · 4 = 8 reserve. If there are three bad bins, then only one of them can be a (B, S, 2Q) bin
with 4 shortage, since there are only four Q items, and the shortage of any other bad bin is only 1,
thus we have at least 7 · 2 − (4 + 1 + 1) = 8 reserve. Finally, if there are four bad bins, then the
shortage of any bad bin is 1, and we have at least 6 · 2− 4 = 8 reserve.

Now we are going to calculate how much shortage can be caused by the FFD bins. A (B,M)
and a (B, S) FFD bin cannot occur at the same time, furthermore if there exists an (M, 2T ) FFD
bin (there can be only one) then there cannot be any (S, .) FFD bin (with shortage). Thus, applying
Observation 8.2.2, if there exists a (B, S) and also a (2S, T ) FFD bin then there can be at most 12
shortage in the worst case.

Case a. Suppose there exists an (M, 2T ) FFD bin. Then there cannot be a (B, S) FFD bin (since
an M item fits into the bin of the B item, before the S item), and there can be neither a (2S, T ) nor
an (S, 2T ) bin, since the first S item of such a bin would be packed into the (M, 2T ) bin after the
M item before the two T items. Thus if there exists an (M, 2T ) FFD bin, the total shortage is at
most 6, thus it is covered by the total reserve.

We suppose in the following that an (M, 2T ) FFD bin does not exist.
If there are neither (B,M) nor (B, S) FFD bins, then the uncovered shortage is at most 6,

hence it would be covered by the reserve. Thus a (B,M) or a (B, S) FFD bin must exist. Let these
items be denoted asB′ and S ′, orB′ andM ′, respectively. ThenB′ is the last regularB item (since
any two B items fit into a common bin), any (2B) FFD bin may appear before it, and any B item
from such a bin precedes B′. We state that B′ is either the smallest or the second smallest B item.
Indeed, any B item smaller than B′ can be packed only into some (G,B) FFD bin, and there can
be at most one such bin, otherwise the shortage is covered. Thus 2B > 1 −X , and consequently
a (2B,Q) optimal bin is impossible; it follows that there is not bad 3-bin. A (B, 3Q) optimal bin
(with 1 shortage) is not possible either, since then there can be at most one other bad bin with one
Q item (and 1 shortage), thus we have at least 8 · 2− 2 = 14 reserve, and it would cover the total
shortage.
Case b. Suppose that a (3S,Q) bad bin does not exist. We state that there can be at most one
bad 4-bin. Indeed, each remaining possible bad bin can be only of type (B, S, 2Q), (B, T, 2Q),
(M,S, 2Q) or (B, 2T,Q). Suppose there are two such bins, both containing B items, thus the
two bins are, say, (B1, A1, A2, A3) and (B2, A4, A5, A6). Then using that no five items fit into
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a common bin, it follows that any three of the eight items fit into a bin, thus for example 1 ≥
B1 +B2 +A1 > 1, a contradiction. If (at least) one of the two bins is (M,S, 2Q), then the biggest
item among the eight items is a B or M item, the second biggest is an M item, and there is also an
S item among the eight items, hence using 2M + S > 1 we get again a contradiction. Thus there
can be at most one bad bin among the optimal bins, and so we get at least 9 · 2− 4 = 14 reserve in
the optimal bins (as we have seen before), thus the total shortage is covered.

We suppose in the following that there exists a (3S,Q) optimal bad bin.
Case c. Suppose there exists an (S, 2T ) FFD bin. By the definition of Z, the S item in this bin has
size Z, thus it is an S item with smallest size; and any T item is smaller than any S item; hence we
get 3S +X > 1. It follows that a (3S,Q) optimal bin is impossible, a contradiction.

Thus there is no (S, 2T ) FFD bin.
If there is no (2S, T ) FFD bin either, then the total shortage is at most 6 and it is covered, thus

there must be a (2S, T ) FFD bin; it follows that this is the last (S, .) bin, by Observation 8.2.2. Let
the items of this bin be denoted as (S1, S2, T1), where S1 precedes S2. There also exists a (B, S)
FFD bin, otherwise the total shortage is covered.

Suppose that S1 ≤ 2X . Then according to Lemma 8.2.4 (and also taking into account that any
bin later than the (S1, S2, T1) bin is a 4-bin or the last FFD bin) there is at most one fallback item
after S1. If there is a fallback S item after S1, say S3, then S1, S2 and S3 are the three smallest
S items, and they together are not smaller than S1 + S2 + T1 > 1 − X , thus a (3S,Q) optimal
bin is impossible, a contradiction. If there is a fallback T item after S1, or no fallback item occurs
after S1, then S1 and S2 are the two smallest S items, and again it follows that there is no (3S,Q)
optimal bin, which is a contradiction. Thus S1 > 2X follows.

The uncovered shortage is only 9, on the other hand the total reserve is at least 8, hence there
cannot occur any FFD bin with positive surplus. Because a (B, S) bin exists, a (B, 2T ) FFD bin
does not exist. Furthermore there is no M item in bins later than the (B, S) bin. Only the next
FFD bins remain possible:

FFD
23
18
15
12
9
9

G 1 1
B 2 1
M 1
S 1 1
T
Q
s 2 −1 0 −6

3 2
1 4 1

3
0 −3 0 0

1
0

Consider a (3S) FFD bin. Since any two S items fit into the same bin, it follows that the first
two items in the (3S) bin are not smaller than S1, which is bigger than 2X . Thus the sum of the
three S items in this bin is bigger than 2X + 2X +X = 5X , contradicting Corollary 8.2.1 (a). It
follows that a (3S) FFD bin does not exist. We state that an S item in some (G,S) or (B, S) FFD
bin cannot be smaller than S1. This can be seen as follows. If a G item is packed with a Q item,
the reserve increases (as there are fewer bad bins) and we are done. Otherwise, G ≤ 1 − 2Y and
S ≤ 2Y , so already the first S item can be packed with a G item. It follows that the two S items in
the (2S, T ) FFD bin are the two smallest S items, and then it follows again that a (3S,Q) optimal
bin cannot occur, a contradiction. 2
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Lemma 8.2.10 If there exists a (G, T ) FFD bin, then all shortage is covered.

Proof. Suppose that there exists a (G, T ) FFD bin. Then by Lemma 3.1.7, the G items from
the (G, T ) bins have the same size, and also the T items; let us denote them again by G′ and T ′,
respectively. From Corollary 3.1.4 it follows that the T ′ items are the biggest T items, since any
item bigger than T ′ is also bigger than 2X , but T < 2X; furthermore if there exists an S item, then
S > 2X must hold. From this fact it follows that an S item cannot be in a G-bin (the total size of
the items in the bin would be more than 1/2 + 2X +X > 1) thus the optimal bin of a G′ item can
be only a (G, 2T ), a (G, T,Q) or a (G, 2Q) bin.

Case a. There exists a {(G, T ), (G, 2T )} cobin. Let the two T items of the optimal bin of one such
cobin be denoted as T1 and T2. Then by Corollary 3.1.5, since 1−Y

2
< 2Y ≤ 2T , there are neither S

nor M items, and each B item is bigger than T1 + T2 ≥ 2Y . Suppose there exists an optimal 4-bin
which contains a B item. Note that items T1 and T2 are packed into another optimal bin, since
they are packed together into a 3-bin, namely together with a G′ item. Then from Observation
3.1.2 it follows that five items fit into a common bin, a contradiction. Thus there is no optimal
4-bin which contains a B item. We state that a (2B,Q) bin is not possible either. Indeed, if there
exists a (2B,Q) optimal bin, then using B > 2Y , the inequality 4Y + X ≤ 1 follows. But then
the five smallest items, Y and the four Q items would fit into one bin. Thus only the next bins are
possible (we changed the original weights of the classes):

OPT
26
18
9
9

G 1
B 1
T 2 2
Q
r 0 8

4 3

8 17

1 1
1 1

1 1 2 1
1 2 1 2 1 2
0 0 8 8 17 17

1 2 3
3 2 1
8 8 8

FFD
26
18
9
9

G 1 1
B 1 2
T 1
Q
s 8 −1 0

1
1

2 2

8 0

4 1
3

0 0
1
0

Now we increase the weight of the T ′ items by 1 and reduce the weight of the G \ G′ items
by 2. Then no FFD bin has shortage. Let us consider the optimal bins. Before the modification of
the weights no optimal bin had shortage. Since there are at most four T items in any optimal bin,
no shortage is caused if the bin had at least 4 reserve or if the bin does not contain a T item. Thus
shortage could be created only in (G, 2T ) or (G, T,Q) optimal bins if at least one T item in the
bin is a T ′ item. But then the G item of this bin cannot be a G′ item (since G′ + T ′ +X > 1), thus
the reserve of the optimal bin is decreased by at most 2, and at the same time it is also increased
by 2. Thus there is no shortage.

Case b. There is no {(G, T ), (G, 2T )} cobin, but there exists a {(G, T ), (G, T,Q)} cobin. Let the
items of the optimal bin of this cobin be denoted as G1, T1 and Q1. According to Corollary 3.1.5,
every item of size above T ′ is also above X + Y . Then, since 2X +2Y +Z > 2X +2Y + 1−Y

3
=

2X + 5
3
Y + 1

3
> 2X + 2

3
> 1 holds, it follows that S ≤ 1−Z

2
< X + Y , thus there is no S item,
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and each M or B item is bigger than T1 +Q1. Then from Observation 3.1.2 it follows that there is
no optimal 4-bin which contains a B or M item, since substituting this B or M item with T1 and
Q1 (which are in another optimal bin) five items would be packed into one bin. Only the next bins
are possible (we changed the original weights of the G items):

OPT
24
18
15
9
9

G 1
B 1 1
M 1
T 2 1 2
Q
r 2 2 8

2 1
1 2

5 11

4 3

8 17

1 1
2 1 1 1

1 2 1 1
1 1 1 2 1
1 2 1 1 1 2 1 1 2 1 2
2 2 −1 2 8 8 5 11 11 17 17

1 2 3
3 2 1
8 8 8

FFD
24
18
15
9
9

G 1 1 1
B 1 2 1
M 1 1
T 1
Q
s 6 3 −3 0 −3

1
1 1
1

2 1 2

6 6 0

2 1 1
1 3 2

3 6 −3

4 1
3

0 0
1
0

Suppose there is only one (G, T ) FFD bin. If there is no (B,M) FFD bin, then the total
shortage is at most 6 caused by the (G, T ) bin and an (M, 2T ) bin. On the other hand there are at
least ten optimal bins, and there are among them at most four (2B,Q) bins (since there are only
four Q items), thus there is at least 6 · 2 − 4 reserve, hence the shortage is covered. If there exist
both (B,M) and (G,B) FFD bins, then there is 3 further shortage, and also 6 surplus; we are done
again. Finally if there is a (B,M) FFD bin but there is no (G,B) FFD bin, the B item of the
(B,M) FFD bin is the smallest B item. Then a (2B,Q) optimal bin is impossible. In this case
the total shortage is at most 9, and on the other hand we have at least 10 · 2 reserve, the shortage is
again covered.

Now suppose that there are at least two (G, T ) FFD bins. Let the optimal bin of the G item of
the second (G, T ) FFD bin denoted as a (G2, A, C) bin, then from Corollary 3.1.5 it follows that
any B item is bigger than A+ C.

Now suppose that there exists a (2B,Q) optimal bin; let the items of this bin be denoted as B1,
B2 and Q2. Then the (G1, T1, Q1), (G2, A, C) and (B1, B2, Q2) bins are three different optimal
bins, where B1 > T1 +Q1 and B2 > A + C. Thus we obtain the contradiction that the five items
A,C, T1, Q1, Q2 fit into one bin. It follows that there is no (2B,Q) optimal bin.

Since there is no {(G, T ), (G, 2T )} cobin, the optimal bin of any G′ item contains a Q item,
thus there are at most four (G, T ) FFD bins. Then the total shortage is at most 4 · 3 + 3 + 3 = 18
(by the (G, T ) bins, and possibly by a (B,M) and by an (M, 2T ) bin), and on the other hand we
have at least 20 reserve by the optimal bins; we are done.

Case c. There is neither a {(G, T ), (G, 2T )} nor a {(G, T ), (G, T,Q)} cobin. Since we have seen
in the beginning of the proof of this lemma that (G,S, T ) and (G,S,Q) bins are impossible, the
condition of this Case c means that there is one or there are two {(G, T ), (G, 2Q)} cobins, and
there is no further (G, T ) bin.
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Each S, M , or B is bigger than 2X (since any S, M or B is bigger than the sum of the sizes of
the two Q items being in one (G, 2Q) bin, by Corollary 3.1.5).

Thus there cannot be a G-bin containing also an S item. Since 6X > 1, the following (optimal
or FFD) bins are impossible: (B, 2S), (M, 2S), (3S), (2S, 2T ), (B, S, 2Q), (M,S, 2Q), (2S, 2Q),
(3S,Q), (2S, T,Q). There is no optimal bin containing three Q items, since there are four Q items
and at least two of them are in a (G, 2Q) optimal bin.

Now we increase the weight of the S items to be 15. The following bins remain possible:
OPT1
23
18
15
15
9

G 1
B 1 1 1
M 1
S 1
T 2 1 1 2
r 3 2 2 8

2 1 1 1
1

1 1 3 2
5 5 2 11

2 1 1
1 3 2 4 3
5 2 11 8 17

OPT2
23
18
15
15
9
9

G 1 1
B 2 1 1 1 1
M 1 2 1 1 1
S 1 1 2 1 1
T 1 1 1 1 2 1
Q 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 2
r 3 3 −1 2 2 8 8 5 5 11 11 5 11 11 17 17

OPT3
18
15
15
9
9

B
M
S
T
Q
r

1 1
1 1

1 1
1 1 1 2 2 2 2 3
2 2 2 2 1 1 1 1
−1 2 2 8 −1 2 2 8

FFD
23
18
15
15
9
9

G 1 1 1 1
B 1 2 1 1
M 1 1
S 1 1
T 1
Q
s 5 2 2 −4 0 −3 −3

1
1 1 1
1

1
2 1 1 2

5 6 6 0

2 1 1 1
1

1 1 3 2

3 3 6 −3

2 1 1
1 3 2 4 1

3
3 6 −3 0 0

1
0

Then the shortage is at most 14 in the FFD bins. Indeed, there can be at most two (G, T ) FFD
bins, since the optimal bin of such a G item is surely a (G, 2Q) bin. Moreover (B,M) and (B, S)
FFD bins cannot occur at the same time, and there can be only one such bin, furthermore (M, 2T )
and (S, 2T ) bins cannot occur at the same time, and there can be only one of them. Thus we have
at most 2 · 4 + 3 + 3 = 14 shortage in total in the FFD bins.

In each optimal bin there is at least 2 reserve, except in the (2B,Q), (B, T, 2Q) and (B, 2T,Q)
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optimal bins. If such a bin occurs, there can be at most two of them (since at least two Q items are
in a (G, 2Q) optimal bin, and only two furtherQ items remain). Thus we have at least 8·2−2 = 14
reserve, and it is enough to cover the total shortage.

In the following we suppose that a (G, T ) FFD bin does not exist. 2

Lemma 8.2.11 If there exists a {(G,S), (G,S, T )} cobin, then all shortage is covered.

Proof. Suppose that there exists a {(G,S), (G,S, T )} cobin; let the S and T item of the op-
timal bin of this cobin be denoted as S1 and T1, respectively. Consider the (G,S) FFD bins.
From Lemma 3.1.7(i) we know that all of their G items have equal size, and all of their S items
also have equal size. Let us denote these items as G′ and S ′, respectively. Since there exists a
{(G′, S ′), (G′, S1, T1)} cobin, it follows (Corollary 3.1.5) that each item bigger than S ′ has size
bigger than S1 + T1 ≥ Z + Y . Then there cannot be an M item, since M ≤ 1−Y

2
< 2Y < Z + Y .

Also it follows by the same reason that B > S1 + T1 ≥ Z + Y holds for each B item. Hence there
is no (B, 2S) bin, since a B item is bigger than Z + Y , and each S item is at least Z, thus a B and
two S items have total size bigger than 3Z + Y > 3 · 1−Y

3
+ Y = 1.

There cannot be a 4-bin which contains a B item (otherwise replacing this B with S1 and T1
five items would fit into a bin, contradicting Observation 3.1.2).

Bin-type (2B,Q) is impossible since 2B +Q ≥ 2(Z + Y ) +X ≥ 4Y +X > 1.
Thus only the next bins are possible (we increased the weight of class B to 23):

OPT1
23
23
12
9

G 1 1
B 1 1
S 1 1
T 1 2 1 2
r 0 3 0 3

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17

OPT2
23
23
12
9
9

G
B
S
T
Q
r

1 1 1
1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 2 1 1 2 1 2
0 3 3 0 3 3 11 14 14 17 17

OPT3
12
9
9

S
T
Q
r

1 2 1 3 2 1
1 1 2 1 2 3

3 3 2 2 2 1 1 1 1
5 8 2 5 8 −1 2 5 8

126

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



FFD
23
23
12
9
9

G 1 1
B 1 2 1
S 1 1
T
Q
s 10 −1 10 −1

1 1
1 1

1 1
1 2 1 2

8 5 8 5

3 2 2 1 1
2 1 3 2 4 1

3
0 6 −3 3 −6 0 0

1
0

Since there exists a {(G′, S ′), (G′, S, T )} cobin, S ′ > Z + Y −X follows.
If there exists a (B, S) FFD bin, let for a moment the size of this S item be denoted by S ′′. Then

the S ′′ item comes after the S ′ items. (Indeed, an S item always fits into a bin which contains only
a G′ item at that moment, since G′ ≤ 1− 2Y because of the existence of the {(G′, S ′), (G′, S, T )}
cobin, and S ≤ 2Y holds.) Then it can be supposed that all these S items (the S ′ items and the
S ′′ item) have the same size, namely S ′, otherwise the size of S ′ items can be decreased to be S ′′,
contradicting our minimality assumption. Thus, if there exists a (B, S) FFD bin (there can be only
one), let the items of this bin be denoted as B′ and S ′, respectively.

No optimal bin has shortage, except the (3S,Q) bins.
Now we increase the weight of the S ′ items by one, and decrease the weight of the G \ {G′}

items by 1, and also decrease the weight of the B \ {B′} items by 1.
After this modification the (G′, S ′) FFD bins have no shortage, and if there exists a (B′, S ′)

FFD bin, it has no shortage either. Let us see the possible optimal bins of the S ′ items.
If an S ′ is packed into some (G,S, T ) or (G,S,Q) optimal bin, then the G item of this optimal

bin cannot be a G′ item since G′ + S ′ + X > 1, thus the bin does not have shortage. If an S ′

is packed into a (B, S, T ) or (B, S,Q) optimal bin, then the B item of this optimal bin cannot
be a B′ item, thus the bin does not have shortage. Suppose that an S ′ is packed into some other
optimal bin, say B∗i , where B∗i contains k of the S or S ′ items in total. Each such optimal bin has
at least k surplus in the table (i.e. before the modification of the weights), thus the bin does not
have shortage.

It follows that the total shortage caused by the S ′ items is covered in this way. There could be
problem only with the (3S,Q) bins, since they do not have reserve to cover the shortage of the S ′

item if an S ′ is packed into such a bin. But an S ′ cannot be in a (3S,Q) bin, since S ′ + 2S +Q >
(Z + Y −X) + 2Z +X = Y + 3Z > 1.

Then the total uncovered shortage can be at most 7. Indeed, if there is no (3S,Q) optimal bin,
then there can be 3 or 6 shortage by a (2S, V ) or (S, 2V ) FFD bin (since these bin-types cannot
occur at the same time). If there exists a (3S,Q) optimal bin, then a (S, 2T ) FFD bin cannot occur,
so there can be at most 3 shortage by a (2S, T ) FFD bin, and at most 4 by the (3S,Q) optimal bins,
since there are only four Q items.

Then we can delete from consideration each bin which has at least 7 reserve or surplus. The
following FFD bins are also impossible:

A (G, 2T ) or (B, 2T ) bin, because then there cannot be an S item in some later bin (since
S ≤ 2T ) thus (2S, V ) and (S, 2V ) FFD bins do not exist, and the possible 4 shortage caused by
the (3S,Q) bins is covered by the surplus of the (G, 2T ) or (B, 2T ) FFD bin.

There cannot be a (2S, 2T ) FFD bin, it has only 6 surplus, but if there is such a bin, then there
is no (S, .) FFD bin with shortage by Observation 8.2.2, and the 6 surplus covers the at most 4
shortage caused by the (3S,Q) optimal bins. Thus only the following possible bin-types remain:
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OPT
23
23
12
9
9

G 1 1
B 1 1
S 1 1
T 1 2 1 2
Q
r 0 3 0 3

3 2 1
2 3

8 2 5

1 1 1
1 1 1

1 1
1 1

1 1 2 1 1 2
0 3 3 0 3 3

1 2 1 3 2 1
1 1 2

3 2 2 1 1 1
5 2 5 −1 2 5

FFD
23
23
12
9
9

G 1
B 1
S 1 1
T
Q
s −1 −1

3 2 1 1
1 3 2 4 1

3
0 −3 3 −6 0 0

1
0

Let us have a look at the remaining possible FFD bins. Each G item is packed into (G′, S ′)
FFD bins, thus everyG item is aG′ item, with equal size. Since there exists a {(G′, S ′), (G′, S, T )}
cobin, it follows that G′ + Z + Y ≤ 1.

Since every G item is a G′ item, all shortage caused by the (G′, S ′) FFD bins are covered by
the optimal bins of the S ′ items. If there exists a (B′, S ′) bin, then the shortage of this bin is also
covered by the optimal bin of the S ′ item of this bin. Moreover if there exists a B item, then there
is only one B item, packed into a (B′, S ′) FFD bin.

Suppose there exists an (S, 2T ) FFD bin. Let the items being in this bin be denoted as (S2, T2, T3),
where T2 precedes T3. Then S2 is the last regular S item, hence it is the smallest S item, thus it
has size Z. Then 3S +X > T2 + T3 + Z +X > 1 holds. Thus there is no (3S,Q) optimal bin.
Further, a (2S, T ) FFD bin is not possible either, thus the uncovered shortage is 6.

We state that neither T2 nor T3 can be packed into a (G,S, T ) optimal bin. Indeed, suppose
that for example T2 is packed into a (G,S, T ) optimal bin. We have seen in the beginning of the
proof that G > B > Z + Y holds for any G or B items. Thus the sum of the sizes of the items in
the (G,S, T ) bin is bigger than (Z + Y ) + Z + T2 > (T3 +X) + Z + T2 > 1, a contradiction.

By the same reason, neither T2 nor T3 can be packed into a (B, S, T ), (2S, 2T ) or (2S, T,Q)
optimal bin, moreover they cannot be packed into the same (G, 2T ), (B, 2T ), (S, 3T ) or (S, 2T,Q)
optimal bin.

Thus T2 and T3 are packed into two different (G, 2T ), (B, 2T ), (S, 3T ), (G, T,Q), (B, T,Q),
(S, T, 2Q), or (S, 2T,Q) optimal bins. Each of these bins has at least 3 reserve, therefore they
cover the total shortage caused by the (S, 2T ) FFD bin. Since we have got a contradiction, we
suppose in the following that an (S, 2T ) FFD bin does not exists.

Now we show that a (2S, T ) FFD bin and a (3S,Q) optimal bin cannot exist at the same time.
Thus suppose that there exists a (2S, T ) FFD bin; let its items be denoted as (S2, S3,T2). If S2 and
S3 are the two smallest S items, then there cannot be a (3S,Q) optimal bin. If S2 ≤ 2X , then
there can be at most one fallback item after S2. If there is no fallback item after S2, or the fallback
item is a T item, then again S2 and S3 are the two smallest S items. If there is a fallback S item
after S2, then this fallback S item with S2 and S3 are the three smallest S items, thus a (3S,Q)
bin is impossible. Finally, suppose that S2 > 2X . Any (3S) FFD bin precedes the (2S, T ) bin by
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Observation 8.2.2, and the first two S items in a (3S) FFD bin precede S2, thus the level of any
(3S) bin would be bigger than 5X , a contradiction to Corollary 8.2.1 (a). Thus there is no (3S)
FFD bin. We have already seen in the beginning of the proof of this lemma that the S ′ items are the
largest S items, thus none of them can be smaller than S2. Thus it follows again that (if an (S, 2T )
FFD bin exists, then) S2 and S3 are the two smallest S items, consequently there is no (3S,Q)
optimal bin.

It follows that the uncovered shortage is at most 4 (and it can be 4 only if there are four (3S,Q)
optimal bins). Thus there cannot be any optimal bin which has at least 4 reserve. (While calculating
the reserve, we must take into account that the shortage of the S ′ items are covered by the optimal
bins of the S ′ items.) The optimal bins having 3 reserve and containing at least one Q item are also
impossible, because then there can be at most three (3S,Q) optimal bins, or a (2S, T ) FFD bin.
Thus only the next possible bins remain:

OPT
23
23
12
9
9

G 1 1
B 1 1
S 1 1
T 1 2 1 2
Q
r 0 3 0 3

2
2

2

1
1

1 1

1 1
0 0

2 3 2
1

2 1 1
2 −1 2

FFD
23
23
12
9
9

G 1
B 1
S 1 1
T
Q
s −1 −1

3 2 1
1 3 4 1

3
0 −3 3 0 0

1
0

Since we have seen that an S ′ cannot be packed into a (3S,Q) optimal bin, nor can it be
packed into a G-bin or B-bin, it follows that an S ′ item can occur only in a (2S, 2T ), (2S, 2Q), or
(2S, T,Q) optimal bin.

Subcase S ′ > 1/3. Then using S ′ + S + 2T > 1/3 +Z + 2Y > 1/3 + 1−Y
3

+ 2Y = 5
3
Y + 2

3
> 1,

we obtain that S ′ cannot be in a (2S, 2T ) bin. Thus S ′ can occur only in a (2S, 2Q) or (2S, T,Q)
bin, and only one S ′ can be in such a bin. If there are at least three S ′ items, then their shortage
is covered by the optimal bins of these S ′ items; further we have at least 3 more reserve, and there
are at least three Q items in these optimal bins. Thus there can be at most one (3S,Q) optimal
bin or a (2S, T ) FFD bin, the total shortage is covered, and we are done. Suppose next that the
number of S ′ items is 1 ≤ k ≤ 2. (There must be at least one S ′ item because of the existence of
the cobin.) Then the S ′ items are packed into k ≤ 2 different optimal bins. Moreover there are
altogether k ≤ 2 further optimal bins containing a G or a B item. Also, there are at most 4−k ≤ 3
(3S,Q) optimal bins. Thus at least 10− 7 = 3 further optimal bins remain, each having 2 reserve,
thus the total shortage is covered and we are done.

Subcase S ′ ≤ 1/3. Then there is no fallback item in the (3S) FFD bins, i.e. these S items have
non-increasing sizes. Suppose that there are neither (2S, T ) nor (S, 3T ) FFD bins. Then there is
no shortage in the FFD bins. On the other hand there cannot be any (3S,Q) optimal bin either,
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since an S ′ item cannot be in a (3S,Q) optimal bin, moreover all S \ S ′ items are in (3S) FFD
bins, and the three smallest S items are in the last (3S) FFD bin where X does not fit.

It follows that there exists a (2S, T ) or an (S, 3T ) FFD bin. Suppose there exists an (S, 3T )
FFD bin. Then there is no (2S, T ) FFD bin, and there can be at most one (3S,Q) optimal bin.
(Indeed, if there are two (3S,Q) optimal bins, then the sum of the sizes of the S items in one
(3S,Q) bin is not smaller than the sum of the sizes of the S items of the last (3S) FFD bin.)

Thus it follows that there is a (2S, T ) FFD bin; let its items be denoted as (S2, S3, T2). Then
S2, and S3 are the two smallest S items.

We have seen that there is no (3S,Q) optimal bin, since a (2S, T ) FFD bin and a (3S,Q)
optimal bin cannot occur at the same time.

It means that the uncovered shortage is only 3. Thus no optimal bin can have reserve at least 3.
(Let us recall that the shortage of the S ′ items are covered by the optimal bins of the S ′ items.)
Thus only the next possible bins remain:

OPT FFD
23
23
12
9
9

G 1
B 1
S 1 1
T 1 1
Q
r 0 0

2
2

2

1
1

1 1

1 1
0 0

2 2
1

2 1
2 2

G 1
B 1
S 1 1
T
Q
s −1 −1

3 2
1 4 1

3
0 −3 0 0

1
0

Suppose there is only one (G′, S ′) FFD bin. Then there are at most two S ′ items. Calculating
the total shortage using the original weights of the S ′ items, we have at most 2+ 3 = 5 shortage in
the FFD bins. On the other hand there are at least ten optimal bins, there are only at most two G-,
or B-bins among them, and any other optimal bin has 2 reserve which covers the shortage. Thus
there are at least two (G′, S ′) FFD bins. Since any G′ is packed into a (G,S, T ) or a (G,S,Q)
optimal bin, there are at least two cobins where the optimal bin of the cobin is a (G,S, T ) or a
(G,S,Q) bin.

It follows from Corollary 3.1.5, that G > B > S2 +X , and G > B > S3 +X , as S2 and S3

are the two smallest S items. Then similarly as before, T2 can be packed into no optimal bin, a
contradiction. 2

Lemma 8.2.12 If there is no {(G,S), (G,S, T )} cobin but there exists a {(G,S), (G,S,Q)} cobin,
then all shortage is covered.

Proof. Suppose that there is no {(G,S), (G,S, T )} cobin, but there is a {(G,S), (G,S,Q)} cobin.
Let the S and Q item of the optimal bin of this cobin be denoted as S1 and Q1, respectively. In
the (G,S) FFD bins all of the G items have equal size and all of the S items also have equal
size, by Lemma 3.1.7(i). Denote these items again as G′ and S ′, respectively. Since there exists a
{(G′, S ′), (G′, S,Q)} cobin (applying Corollary 3.1.5) it follows that each item bigger than S ′ has
size bigger than S1+Q1 ≥ Z+X . This means that there cannot be an M item, since M ≤ 1−Y

2
<

Z +X . (The inequality holds because 2Z + 2X + Y > 21−Y
3

+ 2X + Y = 2X + 1
3
Y + 2

3
> 1.)

Also it follows by the same reason that G > B > S1 + Q1 ≥ Z + X holds for each G and B
item. Since no five items fit into a bin, applying Observation 3.1.2, there cannot be a 4-bin which
contains a B item. Thus only the next bins are possible:
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OPT1
23
18
12
9

G 1 1
B 1 1 1
S 1 2 1
T 1 2 1 2
r 0 3 2 5 8

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17

OPT2
23
18
12
9
9

G
B
S
T
Q
r

1 1 1
2 1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 1 2 1 1 2 1 2
0 3 3 −1 5 8 8 11 14 14 17 17

OPT3
12
9
9

S
T
Q
r

1 2 1 3 2 1
1 1 2 1 2 3

3 3 2 2 2 1 1 1 1
5 8 2 5 8 −1 2 5 8

FFD
23
18
12
9
9

G 1 1
B 1 2 1
S 1 1
T
Q
s 5 −1 0 −6

1 1
1 1 1

1 2 1
1 2 1 2

8 5 6 3 0

3 2 2 1 1
2 1 3 2 4 1

3
0 6 −3 3 −6 0 0

1
0

Now we increase the weight of the G′ items by 1, and decrease the weight of the G \G′ items
by 2. As a result, the FFD G-bins do not have shortage. In any optimal G-bin there remains 2
reserve, with just one exception: If a G′ item is packed into some (G,S,Q) optimal bin, then 1
shortage is created in this optimal bin, but this bin uses one Q item. (If there exists a (G,S, T )
optimal bin, the G item in this bin cannot be a G′ item since there is no {(G,S), (G,S, T )} cobin.)
Thus if there is shortage in some optimal bin, then it is only 1, and each such bin contains a Q
item; if there is no shortage in the optimal bin, then it has at least 2 reserve, thus there are at least
6 optimal bins with at least 2 reserve in each, and so we have at least 6 · 2− 4 = 8 reserve.

If there is no (B, S) FFD bin, then there is at most 6 shortage in the FFD bins, and we are
done. Thus there exists a (B, S) FFD bin; naturally there can be only one such bin. We state
that the size of the S item of the (B, S) FFD bin is S ′. Indeed, because of the existence of a
{(G′, S ′), (G′, S,Q)} cobin, G′ + Z +X ≤ 1 holds for the size of the G′ items, and on the other
hand any S item is smaller than Z + X since S ≤ 1−Z

2
< Z + X follows from 3Z + 2X >

3 · 1−Y
3

+ 2X = 1 − Y + 2X > 1. Thus the S item of the (B, S) FFD bin comes after the S
item of the (G′, S ′) FFD bins, as any S item would fit into the bin where there is only a G′ item.
Consequently the size of the S item of the (B, S) FFD bin must be exactly S ′ because of our
minimality assumption on the items.
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Since there exists a (B, S ′) FFD bin, S ′ > 1/2−X holds.
The FFD bins can cause at most 12 shortage in total. There cannot be any FFD bin with surplus

at least 4 because we already covered the shortage of the (G′, S ′) FFD bins and the optimal bins
have 8 further reserve, thus 4 further surplus would be enough to cover the shortage.

Furthermore a (B, 2S), (B, S, T ), (B, 2T ) FFD bin cannot occur, because of the existence of
the (B, S) FFD bin.

There is no (S, 3T ) FFD bin, because then there would not be any (S, .) FFD bin with shortage.
By the same reason a (G, 2T ) FFD bin is not possible either, since S ≤ 2Y holds, thus if there
is such bin then there cannot be any (S, .) FFD bin (with shortage.) Only the following FFD bins
remain:

FFD
23
18
12
9
9

G 1 1
B 1 2 1
S 1 1
T
Q
s 5 −1 0 −6

3 2 1
1 2 4 1

3
0 −3 −6 0 0

1
0

Then there must be a (2S, T ) or (S, 2T ) FFD bin, otherwise the total shortage is covered. We
claim that 3S + X > 1 holds. Indeed, if there exists an (S, 2T ) FFD bin, then its S item is the
smallest S, and thus 3S + X > 1. Suppose that there exists a (2S, T ) FFD bin; let its items
be denoted as (S2, S3, T1). If these are the two smallest S items, the statement follows similarly.
Otherwise there is a fallback S item, smaller than S2 in another bin. Such an S item can occur
only in a (3S) FFD bin, thus such a bin exists. If S2 > 2X , then the level of the (3S) bin is at
least 2S2 + X > 5X , since the first two S items in the (3S) bin precede S2. This would be a
contradiction, thus S2 ≤ 2X holds. Then by Lemma 8.2.4 there is at most one (i.e. now there is
exactly one) fallback item after S2, thus the fallback S item and the two S items in the (2S, T ) bin
are the three smallest S items; and then 3S +X > S2 + S3 + T1 > 1 follows.

Then it follows that a (3S,Q) optimal bin is impossible. A (B, 2S) optimal bin cannot occur
either, since a B item is bigger than S1+Q1 (where this S1 item is packed into some other optimal
bin), but three S items and a Q item cannot fit into a bin.

There can be at most one (G,B) FFD bin, since one such bin has 3 surplus, and two such bins
would cover the 4 shortage that remained. Since any B item in some (2B) FFD bin precedes the
B item of the (B, S) FFD bin, it follows that there can be at most one B item smaller than the
B item of the (B, S) FFD bin, namely the B item of the (G,B) FFD bin. Thus a (2B,Q) bin is
impossible. It follows that in each remaining optimal B-bin there is at least 5 reserve.

Regarding the optimal bins it still holds that there can be at most four bins with 1 shortage in
each, and there is at least 2 reserve in any other optimal bin. We have seen before that there exists
a (B, S) FFD bin, thus there is at least one B item. In the optimal bin of this B item there is at
least 5 reserve, thus we have at least 11 reserve in total in the optimal bins (and we have exactly 12
shortage in the FFD bins).

We draw the following conclusions: There must be an (S, 2T ) FFD bin with 6 shortage. There
is only one B item, namely the B item of the (B, S) FFD bin. There are exactly four optimal
bins with shortage, it can be only of type (G,S,Q), it means that there are exactly four (G,S,Q)
optimal bins. Thus all Q items are in (G,S,Q) optimal bins, i.e. there is no other optimal Q-bin.
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There is one optimal B-bin, and any optimal bin has exactly 2 reserve except the B-bin and the
Q-bins.

Since each G item is packed into (G′, S ′) FFD bins (all other FFD G-bin types are excluded),
any G item is a G′ item; recall that w(G′) = 24. Then a (G,S, T ) optimal bin is impossible since
there is no {(G,S), (G,S, T )} cobin. Hence only the following bin-types remain:

OPT FFD
24
18
12
9
9

G′ 1
B 1
S 1
T 2 1
Q
r 2 5

2
2

2

1

1

1
-1

G′

B
S
T
Q
r

1
1

1 1

0 −6

3 1
2 4 1

3
0 −6 0 0

1
0

Recall that any G item is a G′ item. By the four (G,S,Q) optimal bins there are at least four
(G,S) FFD bins. There is also a (B, S) FFD bin, thus there are at least five S ′ items.

An S ′ item cannot be in a (B, S, T ) optimal bin (since B + S ′ +X > 1), thus an S ′ item can
be only in a (2S, 2T ) optimal bin. We have seen that S ′ > 1/2 −X holds, thus there can be only
one S ′ item in some (2S, 2T ) optimal bin. Thus there are at least five (2S, 2T ) optimal bins, and
there is exactly one (B, S, T ) optimal bin. There is no further optimal bin, for otherwise the total
shortage would be covered. It means that there are exactly four (G,S,Q), one (B, S, T ) and five
(2S, 2T ) optimal bins.

Then considering any T item of the (S, 2T ) FFD bin, this item cannot be packed into the
(B, S, T ) optimal bin (since B > S1 + Q1, and S1 is bigger than the other T item in the (S, 2T )
FFD bin), and it cannot be packed into a (2S, 2T ) optimal bin either, thus it can be packed into no
optimal bin, a final contradiction completing the proof for 2/11 < X ≤ 1/5 and OPT ≤ 18. 2
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8.3 Appendix C, the omitted part of proof of FF’s tight bound
Here we provide the remained part of the complete proof for the tight ratio of FF . We will use the
results of Chapter 4, so we continue here with the analysis of the case when the last common bin
is small.

Suppose that the size of the last common bin is smaller than 2/3. For the rest of the upper
bound proof, fix x > 0 so that s(Cγ) = 2

3
− 2x. Lemma 4.2.2(ii) implies s(Cγ) > 1/2 and thus

x < 1/12.
Since now the regular weight of the last bin is smaller than 0.8, we need to compensate for this.

This is indeed possible due to the fact that now Lemma 4.2.1(iii) implies that the inner common
bins are larger than 2/3+x and this allows us to improve the bounds of Lemma 4.2.5 by an amount
proportional to x.

Note that Ci, i > 1, cannot be a 5+-bin: Since s(C1) < 5/6, all items in Ci have size larger
than 1/6 and five of them would add up to more than 5/6, contradicting the assumption that Ci is
a common bin.

Lemma 8.3.1 For i = 2, . . . , γ − 1 we have the following bounds: If Ci is a 2-bin or a 3-bin, then
r(Ci−1) + v(Ci) ≥ 1 + 3

5
x. If Ci is a 4-bin, then r(Ci−1) + v(Ci) ≥ 1 + 3

10
x.

Proof. Let y be such that s(Ci−1) = 5
6
− y. Since Ci−1 is a common bin, y > 0. On the other

hand, by Lemma 4.2.1(iii) the size of Ci−1 is greater than 2
3
+x and thus also y < 1

6
−x. Note that

r(Ci−1) =
6
5
(5
6
− y) = 1− 6

5
y and that every item c ∈ Ci satisfies c > 1

6
+ y.

Case 1: Ci is a 2-bin. Then Ci contains at least one item c of size larger than 1/3 as otherwise
s(Ci−1) ≤ 2/3 contradicting Lemma 4.2.1(iii) together with the assumption that S(Cγ) < 2/3.
The other item c′ in Ci satisfies c′ > 1

6
+ y. Thus

r(Ci−1) + v(Ci) ≥ 1− 6

5
y +

3

5
y + 0.1 = 1.1− 3

5
y ≥ 1.1− 3

5

(
1

6
− x
)

= 1 +
3

5
x .

Case 2: Ci is a 3-bin. Suppose that Ci contains an item c > 1/3. Then the remaining two items in
Ci have size at least 1

6
+ y and we obtain

r(Ci−1) + v(Ci) ≥ 1− 6

5
y +

3

5
(y + y) + 0.1 = 1.1 ≥ 1 +

3

5
x

since x < 1/12. Otherwise all three items in Ci have size at most 1/3. We claim that one of them
has size at least 1

6
+x, as otherwise, using x < 1/12, we have s(Ci) < 3(1

6
+x) = 1

2
+3x < 2

3
+x,

contradicting Lemma 4.2.1(iii). Now we get

r(Ci−1) + v(Ci) ≥ 1− 6

5
y +

3

5
(y + y + x) = 1 +

3

5
x .

Case 3: Suppose Ci is a 4-bin. All items in Ci are small (i.e. have sizes between 1/6 and 1/3),
as otherwise s(Ci) ≥ 1

3
+ 3 · 1

6
= 5

6
, contradicting the assumption that Ci is a common bin. As

s(Ci) >
2
3
+ x by Lemma 4.2.1(iii), there must be two items with total size at least 1

3
+ x

2
and their

total bonus is at least 3
5
· x
2
. Thus

r(Ci−1) + v(Ci) ≥ 1− 6

5
y +

3

5

(
y + y +

x

2

)
= 1 +

3

10
x .

134

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



2

Let γk denote the number of k-bins that do not contain an exceptional item among the inner
common bins, i.e., among C2, . . . , Cγ−1. Let α = 2(γ2 + γ3) + γ4.

Lemma 8.3.2 Suppose that s(Cγ) < 2/3. The following holds:
(i) If α ≥ 8 then the total weight of the common bins is at least w(C) ≥ γ − 0.2.
(ii) If α ≥ 4 then the total weight of the common bins is at least w(C) ≥ γ − 0.3.

Proof. We apply Lemma 8.3.1 for any i = 1, . . . , γ − 2 such that Ci+1 does not contain an
exceptional item. Otherwise, i.e., if Ci+1 contains an exceptional item and also for i = γ − 1 we
apply Lemma 4.2.5. Summing all the resulting bounds on r(Ci)+ v(Ci+1) and r(Cγ) = 0.8− 12

5
x

we obtain that the total weight of the common bins is

s(C) ≥ γ − 1 + (γ2 + γ3)
3

5
x+ γ4

3

10
x+ (0.8− 12

5
x) = γ − 0.2 +

(3α− 24)x

10
.

For α ≥ 8 we have 3α ≥ 24 and (i) follows. For α ≥ 4 we use x < 1/12, which gives (3α−24)x ≥
−12x ≥ −1 and (ii) follows. 2

Theorem 8.3.1 For any instance of bin packing, FF ≤ 1.7 ·OPT .

Proof. If s(Cγ) ≥ 2/3 then the theorem follows by Theorem 4.2.1. Thus assume s(Cγ) < 2
3

and
FF ≥ 1.7 · OPT + 0.1. We distinguish several cases and in each we derive a contradiction or
prove the theorem statement FF ≤ 1.7 ·OPT , leading to an indirect proof as well.

Case 1: OPT ≥ 21. By Lemma 4.2.2(iv) we have γ ≥ 12. Thus there are at least 10 inner
common bins and at most 2 of them have an exceptional item. Thus α ≥ γ2 + γ3 + γ4 ≥ 8 and
w(C) ≥ γ − 0.2 by Lemma 8.3.2(i). Now Lemma 4.2.6 and Proposition 4.2.1 imply the theorem.

Case 2: OPT ≥ 8,OPT 6≡ 4(mod 10), andOPT 6≡ 7(mod 10). Then FF ≥ 1.7·OPT+0.3,
thus we can use Lemma 4.2.2(iv) with τ = 3 and we obtain γ ≥ 6. There are no exceptional items,
since OPT 6≡ 7(mod 10), and thus α ≥ 4. Lemma 8.3.2(ii) implies W > β + (γ − 0.3) + δ =
FF − 0.3 ≥ 1.7 ·OPT , a contradiction.

Case 3: OPT = 14. Then FF = 24. Lemma 4.2.2(iv) with τ = 2 implies γ ≥ 9. There are
no exceptional items, thus γ2 + γ3 + γ4 ≥ 7. If γ2 + γ3 ≥ 1 then α ≥ 8 and the theorem follows
by Lemma 8.3.2(i). In the remaining case γ4 ≥ 7, thus there are seven 4-bins among the common
bins. Using Lemma 4.2.1(v) for five of these common 4-bins, Lemma 4.2.1(iv) for some four of
the remaining γ− 5 ≥ 4 common bins and Lemma 4.2.1(i) for the remaining 24− 9 = 15 bins we
get

S > 4 + 4 · 2
3
+ 15 · 1

2
> 14 = OPT ,

a contradiction.
Case 4: OPT = 17. Then FF = 29. Lemma 4.2.2(iv) gives γ ≥ 10. Thus γ2 + γ3 +

γ4 ≥ 6. If γ4 ≤ 4 then α ≥ 2(6 − γ4) + γ4 ≥ 8 and the theorem follows by Lemma 8.3.2(i).
Otherwise there are five 4-bins among the common bins. Using Lemma 4.2.1(v) for these five 4-
bins, Lemma 4.2.1(iv) for some five of the remaining γ− 5 ≥ 5 common bins and Lemma 4.2.1(i)
for the remaining 29− 10 = 19 bins we get

S > 4 + 5 · 2
3
+ 19 · 1

2
> 17 = OPT ,
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a contradiction.
Case 5: OPT = 7. Then FF = 12. First we claim that δ = 7. Otherwise S > 6 · 2

3
+ 6 · 1

2
=

7, a contradiction. It follows that there are at most three 2-bins in the FF packing, since by
Lemma 4.2.7 no OPT -bin can contain two 2-items. Next we claim that no two FF -bins have total
size greater than or equal to 3/2. Otherwise there remain at least three 2+-bins in the FF packing
and S > 3

2
+3 · 2

3
+7 · 1

2
= 7, a contradiction. Since there are five 2+-bins and at most three 2-bins,

there have to be at least two 3+-bins. Let C be the last 3+-bin and B some bin before it. Then
C contains three items of size larger than 1 − s(B) and s(B) + s(C) ≥ s(B) + 3(1 − s(B)) =
3− 2 · s(B). Since no two bins have total size 3/2 or more, this implies s(B) ≥ 3/4. Furthermore,
this implies that there is a single bin before C, as otherwise there would again be two bins with
total size at least 3/2. I.e., B is the first bin, C is the second bin and there are exactly three 2-bins.
C has at least three items and they are packed into different OPT -bins by Assumption 4.2.1. We
claim that one of these three bins contains both a 2-item c and a D-item d with size d > 1/2: Each
OPT -bin contains a D-item and there is at most one D item of size at most 1/2; furthermore, there
is at most one OPT -bin not containing a 2-item, as there are six 2-items in the three 2-bins. Thus
the condition excludes at most two OPT -bins. Fix c′ to be an item from C packed with such a c
and d in the same OPT -bin. Note that c and d are in later FF -bins than C, as B and C are the first
bins and they are 3+-bins. We have c′ + c < 1/2 as they are packed with d > 1/2 in an OPT -bin.
On the other hand we claim that s(C)− c′ < 1/2: otherwise we note that c′ > 1− s(B), as c′ was
not packed in B and thus s(B) + s(C) > s(B) + c′ + 1/2 > s(B) + (1 − s(B)) + 1/2 = 3/2,
contradicting the first claim in the proof. Thus s(C)+ c = (s(C)− c′)+ (c′+ c) < 1/2+1/2 = 1
and FF should have packed c into C, which is the final contradiction. 2

We note that the last case ofOPT = 7 is also covered in the manuscript [65], we have included
it for completeness.
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8.4 Appendix D, the omitted part of FF’s tightness proof in the
CCBP model

Here we provide the omitted part of the complete investigation of the tight bound of FF for the
cardinality constrained model. We have divided the investigation to parts regarding the global
constant k. For k = 2 the tight bound of the asymptotic ratio was known in advance, so this
investigation is not given in this dissertation. For the cases of 3 ≤ k ≤ 5, we used simple weight
function, it is a piece-wise constant function. For 6 ≤ k ≤ 8, a more difficult weight function was
useful. The hardest part of the investigation is for case k = 9. And we provide here the omitted
cases, that is, the cases for k ≥ 10.

The cases where k ≥ 10 are studied similarly to previous cases. In this case we also distinguish
the definitions of weights based on the bins of OPT according to the number of additional items
packed into these bins. The weight of an α-item remains 1

k
.

Case a. Consider bins ofOPT containing one or two additional items (and the remaining items are
α-items). Such bins are called γ-bins again, and the additional items in the bin are called γ-items.
Huge γ-items are called γ1-items and they have weights of 1. Other γ-items are called γ2-items
again. If 10 ≤ k ≤ 19, then the weight of the γ2-item is 7

10
− 1

k
, and otherwise (if k ≥ 20), then its

weight is 13
20

= 0.65. The smallest weight of a γ2-item is 0.6, and its size is at most 1
2
, therefore the

ratio between the weight of such an item and its size is at least 1.2.
Case b. Consider the remaining bins of OPT (containing at least three additional items). Each
such bin has at most k− 3 α-items, and we call it a φ-bin. The additional items packed into φ-bins
are called φ-items. The weighting function of the φ-items is again more complicated. The weight
of any huge φ-item is 1 again. The weight of a φ-item of size a ≤ 1/2 is w(a) = s(a) + b(a),
where s(a) = 6

5
a is the scaled size, and b(a) is the bonus of the item. Below we give the bonus

function of the φ-items of sizes no larger than 1/2.
For k ≥ 20, the classical weighting function of FF [55] is appropriate, in this case the bonus

function is defined as follows.

b(a) =


0 if a ≤ 1/6
3
5
(a− 1

6
) = 0.6a− 0.1 if 1/6 < a ≤ 1/3

0.1 if 1/3 < a ≤ 1/2

where we items are called in the classes as tiny, small or medium, and big, respectively.
The weight function in this case is continuous in the interval (0, 1

2
). The bonus is piecewise

linear (and so is the weight function). In the interval (1
6
, 1
3
), the bonus increases from 0 to 0.1.

For 10 ≤ k ≤ 19, we use additional modifications to the classic weight function. In some
of the cases the bonus function is still equal to the one in the classic analysis. More specifically,
these are the cases where the size is in (1/6, 1/5] and (3/10, 1/3]. In these intervals the slope of
the weight function is 1.8, i.e, the slope of the bonus function is 0.6. The bonus function and the
weight function are piecewise linear, and continuous in (0, 1

4
) and (1

4
, 1
2
). The partition into types

is as in the case k = 9.
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b(a) =



0 if a ≤ 1/6
3
5
(a− 1

6
) = 0.6a− 0.1 if 1/6 < a ≤ 1/5

(1.6− 20
k
)(a− 1

5
) + 0.02 = (1.6− 20

k
)a− 0.3 + 4

k
if 1/5 < a ≤ 1/4

(1.6− 20
k
)(a− 1

4
) + 1

k
= (1.6− 20

k
)a− 0.4 + 6

k
if 1/4 < a ≤ 3/10

3
5
(a− 3

10
) + 0.08 = 0.6a− 0.1 if 3/10 < a ≤ 1/3

0.1 if 1/3 < a ≤ 1/2

where we call the items in the classes after each other as tiny, very small, larger small, smaller
medium, larger medium and big, respectively.

This bonus function is monotonically non-decreasing for k ≥ 13, but not in the cases k =
10, 11, 12; whereas the resulting weight function is monotonically increasing for 10 ≤ k ≤ 19.
The value of the bonus is zero for a ≤ 1/6 and it is 0.1 between 1/3 and 1/2. We have b(1

5
) = 0.02

(and w(1
5
) = 0.26), b(1

4
) = 0.1 − 1

k
, thus for a ∈ (1

5
, 1
4
] the bonus is in [0.1 − 1

k
, 0.02) for

k = 10, 11, 12 and in (0.02, 0.1− 1
k
] for 13 ≤ k ≤ 19. For a ∈ (1

4
, 0.3] the bonus is in [0.08, 1

k
) for

k = 10, 11, 12 and in ( 1
k
, 0.08] for 13 ≤ k ≤ 19 (we have w(0.3) = 0.44). The bonus of an item of

size above 1
4

is always above 0.05.
For k ≥ 10, since the bonus function is non-negative, for any φ-item of size 0 < a ≤ 1

2
,

w(a) ≥ 6
5
a holds. The bonus of every item of size in (0, 1

2
] is in [0, 0.1]. The weight of a big item

is at least 0.5. The weight of a medium item is at least 0.3 + 1
k
> 0.35 for k ≤ 19 and at least 0.35

for k ≥ 20.
Now we find properties of the weighting and then we give the asymptotic bound.

Lemma 8.4.1 For every bin B of OPT , w(B) ≤ 2.7− 3/k holds.

Proof. The claim holds for bins having only α-items. For a γ-bin, if there is just one γ-item, then
the total weight is at most k−1

k
+ 1 < 2. Otherwise, if k ≤ 19, then the total weight is at most

k−2
k

+ 1 + 0.7 − 1
k
= 2.7 − 3

k
, and if k ≥ 20, then the total weight is at most k−2

k
+ 1 + 0.65 =

2.65− 2
k
≤ 2.7− 3

k
.

Next, consider φ-bins. For k ≥ 20, the proof follows from the standard analysis [55], and
we include it for completeness. There are at most k − 3 α-items, and their total weight never
exceeds k−3

k
. If a bin does not contain a huge φ-item, then it has at most five φ-items of positive

bonuses (each bonus is at most 0.1), and their scaled size is at most 1.2. This gives a total weight
of at most 1 − 3

k
+ 1.2 + 0.5 = 2.7 − 3

k
. Note that this total weight cannot be achieved as

both situations where there are k − 3 α-items and five φ-items cannot occur simultaneously. If a
bin contains a huge item, then there are at most two (other) φ-items with positive bonuses. The
scaled size of all φ-items except for the huge item is at most 0.6, and the total weight excluding
the bonuses of φ-items is at most 1 + k−3

k
+ 0.6 = 2.6 − 3

k
. If there is only one φ-item with a

positive bonus, then the total weight is at most 2.7 − 3
k

again. Assume that there are two items
with positive bonuses. None of these items can be larger than 1

3
, as their total size is below 1

2
.

If both items have bonuses of 0.6 times their sizes minus 0.1, then their total bonus is at most
0.6 · 1

2
− 0.2 = 0.1. In the cases where k ≥ 20, this is the only remaining option (as each of

these items is small or medium), and we are left with the cases where k ≤ 19, and moreover, in
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the remaining case there are two items with positive bonuses, and these bonuses are not both equal
to the sizes times 0.6 minus 0.1. Let a1 ≤ a2 be the sizes of the items. We have a2 ∈ (0.2, 0.3]
(otherwise either both items are very small, or the larger item is larger medium and the smaller one
is very small, and both items have bonuses of the form 0.6 times the size minus 0.1, a case that
was analyzed earlier). Thus, the larger item of the two is either larger small or smaller medium.
We will bound the total weight of the two items and show that it does not exceed 0.7. Since the
weight function is monotonically non-decreasing, we analyze w(a2) + w(1

2
− a2). If 1

5
< a2 ≤ 1

4
,

then w(a2) +w(1
2
− a2) = (2.8− 20/k)1

2
− 0.7 + 10

k
= 1.4− 10/k− 0.7 + 10/k = 0.7. The case

1
4
< a2 ≤ 0.3 is symmetric. 2

Now, we bound the total weight of the bins of FF . Once again we split the analysis into several
cases according to the number of items packed into the bins. In this case we can also neglect k-
bins and 1-bins, as the total weight of a k bin is 1, and all items of size above 1

2
have weights of 1.

Moreover, any bin that contains a huge item is removed from the analysis. Thus, we are left with
2+-bins that do not contain such items. Additionally, the weight of any bin with level at least 5/6
is at least 1, as the weight of any φ-item and of a γ2-item is at least 6/5-times the size of the item.
Since there can be at most one 5+-bin whose level is below 5/6, the weight of any 5+-bin (except
for at most one bin) is at least 1. In the following we concentrate on the 2-bins, 3-bins and 4-bins.

Lemma 8.4.2 The weight of any 2-bin containing a γ2-item is at least 1, except for at most one
bin. The weight of any 3-bin or 4-bin, containing a γ2-item, is at least 1, except for at most one
bin.

Proof. Assume that at least two bins have γ2-items, and each one has weight below 1. Denote
them by Bi and Bj such that Bj appears after Bi in the ordering of FF. Each of them can have at
most one γ2-item, as the total weight of two γ2 items is above 1. None of them has a level of at
least 5

6
, as in such a case the weight is at least 1.

Assume that both these bins are 2-bins. The total weight of a γ2-item and a φ-item of size
above 1

4
is at least 0.35 + 0.65 = 1 for k ≥ 20, and at least 0.3 + 1

k
+ 0.7 − 1

k
= 1 for k ≤ 19.

Thus, each of these 2-bins has a φ-item of size at most 1
4

(as there is only one γ2-item packed into
each of the two bins). We find s(Bi) ≤ 3

4
, as the size of the γ2-item is at most 1

2
, and therefore Bj

cannot have any item of size at most 1
4
, a contradiction.

Next, assume that Bi and Bj contain 3 or 4 items each and have weights below 1, such that
each of them contains one γ2-item, and the other items are φ-items. Similarly to the proof for
2-bins, none of them has a φ-item of size above 1

4
. If all the φ-items of Bj have sizes of at least

1/6, then their total size is at least 1
3
, and their total weight is at least 6

5
· 1
3
= 0.4, and we reach a

contradiction, since the γ2-item of that bin has weight of at least 0.6. Otherwise, since Bj has an
item of size below 1

6
, the level of Bi is above 5/6, a contradiction. 2

We are left with bins containing only φ-items that are not huge.

Lemma 8.4.3 Consider two φ-items of sizes a1 ≤ a2 ≤ 1/2. If 1 ≥ a1 + a2 > 1− a1 holds, then
the total weight of the two items is at least 1.

Proof. We have a1 > (1− a2)/2 ≥ 1
4
. If both items have sizes at least 1/3, since w(1/3) = 1/2,

the claim holds, since w is monotonically non-decreasing. Thus it suffices to consider the case
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1/4 < a1 ≤ 1/3. In this case a2 > 1−2a1 ≥ 1
3
. If k ≥ 20, then the total weight of the two items is

1.2(a1+a2)+ (0.6a1−0.1)+0.1 = 1.8a1+1.2a2 = 0.9(2a1+a2)+0.3a2 > 0.9 ·1+0.3 · 1
3
= 1.

If k ≤ 19, we consider two cases. If a1 > 0.3, then the calculation is the same as for k ≥ 20.
Otherwise, the total weight of the two items is 1.2(a1 + a2) + ((1.6− 20/k)a1− 0.4 + 6

k
) + 0.1 =

(2.8− 20/k)a1+1.2a2− 0.3+ 6
k
> (2.8− 20/k)a1+1.2(1− 2a1)− 0.3+ 6

k
= (0.4− 20/k)a1+

0.9 + 6/k ≥ (0.4− 20/k) · 0.3 + 0.9 + 6
k
= 1.02 > 1, since 0.4− 20/k < 0 and a1 ≤ 0.3. 2

Lemma 8.4.4 Consider three φ-items of sizes a1 ≤ a2 ≤ a3 ≤ 1/2. If 1 ≥ a1 + a2 + a3 > 1− a1
holds, then the total weight of the three items is at least 1.

Proof. We have 4a3 ≥ 2a1 + a2 + a3 > 1, so a3 > 1
4
. If a1 > 1

4
, then the claim holds since the

weight of an item with size above 1/4 is at least 0.35. If a1 ≤ 1
6
, then a1 + a2 + a3 >

5
6
, and the

total weight is at least 1. Thus, we are left with the case 1
6
< a1 ≤ 1

4
, and thus a1 + a2 + a3 >

3
4
. If

a3 >
1
3
, then its bonus is 0.1, and the total weight of the three items is at least 6

5
· 3
4
+0.1 = 1. We are

left with the case 1
6
< a1 ≤ a2 ≤ a3 ≤ 1

3
. We find that in the case k ≥ 20, as all three items have

sizes in (1
6
, 1
3
], the total weight of the items is 1.8(a1 + a2 + a3)− 0.3 > 1.8 · 3

4
− 0.3 = 1.05 > 1.

We are left with the case k ≤ 19. If a2 > 1
4
, then since the bonus of any item of size above

1
4

is above 1
20

, the total weight of the items is at least 1.2 · 3
4
+ 2 · 0.05 = 1. If a1 ≤ 1

5
, then

a1 + a2 + a3 >
4
5
, and since the bonus of the largest item is above 1

20
, we get a total weight of at

least 1.2 · 4
5
+ 0.05 = 1.01 > 1. We are therefore left with the case 1

5
≤ a1 ≤ a2 ≤ 1

4
. If a3 ≤ 0.3,

then the total weight is at least (2.8− 20/k)3
4
+ 2(−0.3 + 4/k) + (−0.4 + 6/k) = 1.1− 1/k ≥ 1.

If a3 > 0.3, then the total weight is (2.8 − 20/k)(a1 + a2) + 1.8a3 + 2(−0.3 + 4/k) − 0.1 >
(2.8− 20/k)a1 + 1.8a3 − 0.7 + 8/k + (2.8− 20/k)(1− 2a1 − a3) = (20/k − 2.8)a1 + (20/k −
1)a3 + 2.1 − 12/k ≥ (20/k − 2.8)/4 + (20/k − 1) · 0.3 + 2.1 − 12/k = 1.1 − 1/k ≥ 1 since
k ≥ 10, a1 ≤ 1

4
, and a3 ≥ 0.3. 2

Lemma 8.4.5 Consider four φ-items of sizes a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1/2. If 1 ≥ a1+a2+a3+a4 >
1− a1 holds, then the total weight of the four items is at least 1.

Proof. We have 5a4 ≥ 2a1 + a2 + a3 + a4 > 1, so a4 > 1
5
. If a1 ≤ 1

6
, then a1 + a2 + a3 + a4 >

5
6
,

and the total weight is at least 1. Otherwise we find a1 + a2 + a3 + a4 ≥ max{1− a1, 4a1} ≥ 4
5
.

If a4 > 1
4
, then its bonus is above 1

20
, and the total weight is at least 1.2 · 4

5
+ 0.05 > 1. Thus,

1
5
< a4 ≤ 1

4
. If k ≥ 20, as the sizes of all items are in (1

6
, 1
4
], the total weight of all four

items is 1.8(a1 + a2 + a3 + a4) − 0.4 ≥ 1.04 > 1. We are left with the case k ≤ 19. If
a1 > 1

5
, then the total weight of all four items is (2.8 − 20/k)(a1 + a2 + a3 + a4) − 1.2 +

16/k ≥ (2.8 − 20/k) · 0.8 − 1.2 + 16/k = 1.04 > 1. Otherwise, 1
6
< a1 ≤ 1

5
< a4 ≤ 1

4
.

If a2 > 1
5
, then the total weight is 1.8a1 − 0.1 + (2.8 − 20/k)(a2 + a3 + a4) − 0.9 + 12/k >

1.8a1 + (2.8 − 20/k)(1 − 2a1) − 1 + 12/k = a1(40/k − 3.8) + 1.8 − 8/k. If 40/k − 3.8 is
non-negative, then using 8/k ≤ 0.8 we find a total weight of at least 1. Otherwise, using a1 ≤ 1

5
,

we find a total weight of at least (40/k − 3.8) · 1
5
+ 1.8 − 8/k = 1.04 > 1. If a2 ≤ 1

5
, then the

scaled size is 1.2(a1 + a2 + a3 + a4) > 1.2(1 − a1). Thus the bonus of the two smallest items is
0.6(a1 + a2)− 0.2 ≥ 1.2a1 − 0.2. Thus, the total weight is at least 1. 2

Lemma 8.4.6 The total weight of the 2-bins, 3-bins and 4-bins of FF that contain only φ-items is
at least their number minus 1.
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Proof. The proof is the same as for Lemma 6.1.23 (the only difference is that 5-bins are not
considered). 2

We proved FF (L)− 5 ≤ W ≤ (2.7− 3/k)OPT (L), thus we proved the next theorem.

Theorem 8.4.1 The asymptotic approximation ratio of FF for any k ≥ 10 is at most 2.7− 3/k.
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8.5 Appendix E, about Batch Scheduling
Here we consider the bounded batch scheduling problem with nonidentical job sizes on a single
machine, with the objective of minimizing the makespan. We present an algorithm which calls
an online algorithm P (chosen arbitrarily) for the one-dimensional bin-packing problem as a sub-
procedure, and prove that its worst-case ratio is the same as the absolute worst-case performance
of P . Hence, there exists an algorithm with worst-case ratio 17

10
, which is better than any known

upper bound on this problem. The content of this Appendix E is from [34].
The problem is defined in [75]. We are given a non-empty set of jobs J = {J1, J2, . . . , Jn}.

For j = 1, . . . , n the processing time and size of Jj is pj and sj , respectively. There are m ≥ 1
machines M1,M2, . . . ,Mm with the same capacity B. Each machine can simultaneously process
a number of jobs as a batch as long as the total size of jobs in the batch is no greater than B. The
processing time of a batch, which is also called the length, is the maximum of the processing times
of jobs contained in the batch.

Without loss of the generality, we will assume that B = 1 and sj ≤ 1 for all j. All jobs are
available at time 0 and no preemption is allowed. Here, the objective is to minimize the makespan,
i.e. the maximum completion time of all jobs. Now denote by CA(J ) and C∗(J ) the makespan of
the schedule produced by algorithmA and of the optimal schedule, respectively. For measuring the
performance of an algorithm, traditional terminology in scheduling is ”worst-case ratio” while that
in bin packing is (asymptotic or absolute) ”approximation ratio”. Now, as we consider a combined
model, we will use the term (asymptotic or absolute) performance ratio, and this term will be used
also for the packing or scheduling models. Thus, the absolute performance ratio of A is then
defined as

inf{r | C
A(J )

C∗(J )
≤ r for all J },

while the asymptotic performance ratio for algorithm P is defined as

lim
N→∞

inf{r | C
P(I)

C∗(I)
≤ r for all I with C∗(I) ≥ N}.

The definitions are standard, and can be found for instance in [14].

8.5.1 Related work
The class of problems considered here contains many fundamental combinatorial optimization
problems as special cases. If the size of each job is 1, then the batch scheduling problem on parallel
identical machines simplifies to the classical scheduling problem on parallel identical machines
with the objective to minimize the makespan. The latter problem is NP -hard even if the number
m of machines is just 2 [43]. Graham proposed algorithms called List Scheduling (LS) and Longest
Processing Time first (LPT ) in his seminal works [46, 47]. Assuming that an order of the jobs has
been chosen, algorithm LS assigns the first unprocessed job in the sequence to the machine which
can complete it as early as possible, where ties are broken arbitrarily. Algorithm LPT first sorts all
jobs in descending order of their processing times, and then assigns the jobs by the LS algorithm.
The absolute performance ratios of LS and LPT are 2− 1

m
and 4

3
− 1

3m
, respectively. The problem

also admits a Fully Polynomial Time Approximation Scheme (FPTAS) when m is a fixed number
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and a Polynomial Time Approximation Scheme (PTAS) when m is part of the input [67, 50]. If all
jobs have the same processing time p, then the length of each batch in any schedule is p. Thus
the batch scheduling problem on a single machine reduces to the one-dimensional bin-packing
problem. Now let P denote a bin-packing algorithm. We will use CP(I) to denote the number of
bins employed when P is applied to item set I, and C∗(I) to denote the number of bins employed
for an optimal packing of I.

An interesting feature of the bin-packing problem is that the asymptotic performance ratio and
the absolute performance ratio of an algorithm may be different. Concerning the variants of batch
scheduling studied here, currently we cannot prove or disprove that the best possible asymptotic
and absolute performance ratios are equal.

In the online version of the bin-packing problem [14], items arrive according to some unknown
list (even the length of the list is unknown until the very end), and the next item must be packed into
a bin promptly when it arrives, without any information about the remaining items. Algorithms
which can solve the online version are called online algorithms. Clearly, FF can be interpreted as
an online algorithm (it applies no look-ahead), but FFD does not have this feature. There exist
online algorithms with asymptotic performance ratios better than that of FF , such as Refined FF
[86] and Harmonic [60].

The online algorithm proposed by Seiden [69] with an asymptotic ratio of at most 1.58889
is the best one known so far. An online problem has an asymptotic (absolute) lower bound ρ
if no online algorithm has an asymptotic (absolute) performance ratio smaller than ρ. The first
asymptotic lower bound 3

2
for the one-dimensional bin-packing problem was given by Yao [86],

and the current best asymptotic lower bound is 1.54037 [2]. To the best of our knowledge, no
result on an absolute lower bound has been reported before the publication of our article [34]
which contains the results of this section, i.e. before 2014. (Then, in 2015 we published our paper
[6] which deals with this question, and gives an algorithm with the tight 5/3 bound. In fact, this
algorithm is a modification of algorithm FF .)

Research on batch scheduling problems is motivated by burn-in operations in semi-conductor
manufacturing, and dates back to the 1980’s [51]. Several variants of batch scheduling have been
proposed, and most of them can be classified into three types: unbounded batch model, where the
capacity of a batch is infinity; bounded batch model with identical job sizes; and bounded batch
model with nonidentical job sizes. Clearly, problems in the last category are the most difficult
ones. Below, we will briefly survey some results on the classical batch scheduling problems with
the objective of minimizing the makespan. More results on other objectives and more complex
paradigms such as nonidentical release times and online batching models can be found in [12, 66],
and references therein.

If the batch has an unbounded capacity, combining all the jobs into a single batch is an optimal
choice for both the single and parallel machine cases. For a bounded batch with identical job sizes,
the problem is still polynomially solvable for the single machine case. If there is more than one
machine, the problem becomes NP -hard, but it still admits a PTAS, see Li et al. [63].

The bounded batch problem with nonidentical job sizes on a single machine contains the one-
dimensional bin-packing problem as a special case. Hence, there is no polynomial-time (offline)
algorithm with absolute performance ratio smaller than 3

2
unless P = NP . Uzsoy [75] proposed

four algorithms for this problem. One of them is called LPT–FF , as this algorithm can be viewed
as a combination of LPT and FF (performing them one after the other, see details later in a more
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general setting).
Zhang et al. [83] proved that among the four algorithms, LPT–FF is the only one that has

a finite absolute performance ratio, and that its absolute performance ratio is at most 2. In the
same paper, Zhang et al. proposed another algorithm called MLPT–FF , which has an absolute
performance ratio of 7

4
. As far as we know, no algorithm was proved to have an absolute perfor-

mance ratio better than 7
4

before the present study (and there are no results at all on approximation
algorithms for the parallel machine case).

Below, we revisit the bounded batch scheduling problem with nonidentical job sizes. For the
single machine case, we use a novel technique to learn the relationship between the performance of
batch scheduling algorithms and bin-packing algorithms; in this way we can improve the absolute
performance ratio of LPT–FF to 17

10
with a very concise proof (Corollary 8.5.1). It has long been

believed that the asymptotic performance ratio is better for measuring the performance of a bin-
packing algorithm [17]. Our approach shows that the absolute performance ratio can be of help
as well. For completeness, we will also give a short proof that 5

3
is an absolute lower bound for

one-dimensional online bin-packing (Theorem 8.5.2). In this Appendix E we deal only with the
single machine case, the investigation of the parallel machines case can be found in [34].

8.5.2 The single machine case
Next, we will generalize the idea of LPT–FF to get better upper bounds for batch scheduling
on a single machine. For an instance of batch scheduling with job set J = {J1, J2, . . . , Jn}, we
introduce the induced instance of the bin-packing problem with the item set IJ = {I1, I2, . . . , In}
and bin capacity 1, where item Ij corresponds to job Jj . For any j, 1 ≤ j ≤ n, the size of Ij is
just sj , i.e. the size of Jj . Clearly, items whose corresponding jobs are assigned to a batch in any
schedule of J can be packed into a bin; and also conversely, any subset of items fitting in a bin
may form a batch.

Now we introduce the algorithm LPT–P which calls an online bin-packing algorithm P as a
sub-procedure. This point may actually come as a surprise: we have complete information about
the (offline) problem instance, but after some preprocessing we intentionally restrict ourselves and
solve a seemingly harder problem, as if it was online. Eventually the upper bound derived from this
approach turns out to be better than the one given by any previously known purely offline method.

Algorithm LPT–P

• Step 1. Sort the jobs in the non-increasing order of their processing times, i.e. p1 ≥ p2 ≥
. . . ≥ pn.

• Step 2. Given bin size B = 1, apply the bin-packing algorithm P to pack the induced item
list IJ (where the j-th item has size sj). Jobs whose corresponding items are packed into
the same bin form a batch.

• Step 3. Schedule the batches without idle time on the machine in any order.

Theorem 8.5.1 If P is an online algorithm for the bin-packing problem, then the absolute perfor-
mance ratio of the algorithm LPT–P for batch scheduling with nonidentical job sizes on a single
machine is the same as the absolute performance ratio of P .
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Proof. Let J = {J1, J2, . . . , Jn} be any instance of single machine batch scheduling, and let
IJ = {I1, I2, . . . , In} be the corresponding induced instance of bin-packing. We denote by NJ
the number of different processing times of jobs in J . If NJ = 1, i.e. all jobs have the same
processing time, say p, then all batches have the same length p; and those restricted instances of
batch scheduling are in one-to-one correspondence with the instances of bin-packing. Hence both
the optimum for J and the value of CLPT−P(J ) are exactly p times the optimum for IJ and the
value of CP(IJ ), respectively. This implies that the absolute performance ratio of LPT–P cannot
be better than the absolute performance ratio of P . We still have to prove that it is not larger. The
above observations verify this, for all instances J with NJ = 1.

Let the absolute performance ratio of P be r. Suppose, for a contradiction, that there exists
some instance J of single machine batch scheduling with

CLPT−P(J ) > rC∗(J ). (8.2)

We certainly must have NJ ≥ 2. From all possible choices of J we select one {J1, J2, . . . , Jn}
with the smallest NJ . We will modify J to an instance J ′ which has NJ ′ = NJ − 1 and still
satisfies the inequality CLPT−P(J ′) > rC∗(J ′). This contradiction in the choice of J completes
the proof of the theorem.

Let the largest and second largest processing times of jobs be x and y, respectively, and let Jx
and nx denote the set and the number of jobs having processing time x. Since NJ > 1, both x and
y are well-defined and we have nx < n. To create J ′, our strategy is to decrease the processing
time of the jobs in Jx from x to y, while keeping their sizes unchanged. In this way the induced
instance of bin-packing remains exactly the same, and consequently LPT–P creates the same
batch partition for J and J ′ because P only takes the item sizes into account.

Denote by bx the number of batches of length x in the schedule generated by LPT–P for J ,
and let b∗x be the number of batches of length x in a schedule that has been chosen arbitrarily from
the optimal ones. Let us run LPT–P on the restricted instance Jx, which is a starting segment of
J in the list of items for P after Step 1. Then we obtain

bx = CP(IJx) ≤ rC∗(IJx) ≤ rb∗x (8.3)

because P is an online algorithm, NJx = 1 < NJ , and there is enough room for the nx items
inside b∗x bins.

Since the modification from J to J ′ keeps the batch partition the same, the makespan obtained
from LPT–P is decreased by exactly (x− y)bx. This means

CLPT−P(J ′) = CLPT−P(J )− (x− y)bx. (8.4)

Indeed, the length of batches containing at least one longest item decreases from x to y, while the
lengths of the other batches remain unchanged.

However, we get a feasible schedule of J ′ by keeping the assignment of jobs to batches in the
same way as that in the chosen optimal schedule of J . Then the length of b∗x batches which contain
jobs of Jx decreases from x to y, while the length of all the other batches remains unchanged.
Hence

C∗(J ′) ≤ C∗(J )− (x− y)b∗x. (8.5)

145

dc_1295_16

Powered by TCPDF (www.tcpdf.org)



Combining the above points, we find that

CLPT−P(J ′)
C∗(J ′)

≥ CLPT−P(J )− (x− y)bx
C∗(J )− (x− y)b∗x

>
rC∗(J )− (x− y)rb∗x
C∗(J )− (x− y)b∗x

= r,

where (8.4) and (8.5) are applied in the first inequality, and (8.2) and (8.3) are applied in the
second inequality. With the choice of J , however, the leftmost side should be at most r because
NJ ′ < NJ . This contradiction completes the proof of the theorem. 2

Since the tight absolute performance ratio of FF is 17
10

[23], from Theorem 8.5.1 we get the
following.

Corollary 8.5.1 The tight absolute performance ratio of LPT–FF is 17
10

. As a consequence,
batch scheduling with nonidentical job sizes on a single machine admits a polynomial-time 17

10
-

approximation.

This result improves the estimate in [83]. Moreover, this upper bound was the current cham-
pion before the publication of our newer work [6]. To improve LPT–FF further, the simplest idea
seems to be to use an online bin-packing algorithm with better absolute performance ratio. Inter-
estingly enough, however, although there were several known online algorithms whose asymptotic
performance ratio is smaller than that of FF , none of them has a smaller absolute performance ra-
tio. In fact, we have the following general lower bound, namely 5/3, on the absolute performance
ratio of any online algorithm. After the submission of this paper, Zhang [82] kindly informed us
that he proved the same result about two decades ago but he never published it. The instances used
in the proof below bear some similarity with the instance used in [55] to show that the absolute
performance ratio of FF is no smaller than 5/3.

Theorem 8.5.2 There is no online bin-packing algorithm with absolute performance ratio smaller
than 5

3
.

Proof. To prove the statement we construct a list S ∪M ∪ L of small, medium-sized, and large
items. It will be decided online whether the input is just S, or S ∪M , or the entire S ∪M ∪L. To
prove the statement we construct the following adversary list. Let the list begin with 6 small items
of size 1

6
− 2ε each (where ε is a very small positive value). If an online algorithm P uses at least

two bins, then the list is terminated, and CP (I)
C∗(I) ≥ 2 > 5

3
. Otherwise, the list is continued with 6

medium-sized items of size 1
3
+ ε. In the optimal packing, two medium-sized items and two small

items can be packed into the same bin, thus C∗(I) = 3. (But in the current situation, the empty
space 12ε is too small for a medium-sized item.) Therefore, to avoid the absolute performance
ratio of P becoming no smaller than 5

3
, P must pack all medium-sized items into 3 bins. Then

the list is completed with 6 big items of size 1
2
+ ε. Algorithm P must pack each of them into a

new bin. Hence, CP(I) = 10. In the optimal packing, however, each bin contains a small item, a
medium-sized item and a big item. Thus, C∗(I) = 6 and CP (I)

C∗(I) = 5
3
. 2

Although the lower bound given in Theorem 8.5.2 is smaller than the absolute performance ra-
tio of FF , we conjectured that this lower bound of 5/3 for online bin-packing cannot be improved
further. And soon it turned out that the conjecture is true, as in our paper [6] we gave an online bin
packing algorithm with absolute approximation ratio 5/3. The name of the algorithm is FT (as
”five third”). Thus the next corollary also holds:
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Corollary 8.5.2 The tight absolute performance ratio of LPT–FT is 5
3
. As a consequence,

batch scheduling with nonidentical job sizes on a single machine admits a polynomial-time 5
3
-

approximation.

But it is still not the limit of approximability for batch scheduling with nonidentical job sizes
on a single machine when some polynomial-time algorithms other than LPT–P are considered.
In such cases we know only the smaller lower bound 3

2
unless P = NP (see e.g. [14]), since the

problem is a generalization of the one-dimensional bin-packing problem.

Some remarks. Above we reviewed the bounded batch scheduling problem with nonidentical
job sizes on a single machine. We applied a one-dimensional bin-packing algorithm P as a sub-
procedure. We proved that if P is an online bin-packing algorithm, then the absolute performance
ratio of LPT–P is equal to the absolute performance ratio of P . Based on the fact that FF has a
performance ratio of 17

10
, (or based on the fact taht FT has a performance ratio of 5

3
), we derived the

same improved absolute performance ratio for the batch scheduling problem on a single machine.
A remarkable aspect of this approach is that it creates an offline batch scheduling algorithm from
an online bin-packing algorithm, by combining it with some preprocessing.

There are many interesting problems which deserve further study. The main one is to im-
prove the performance of algorithms for the single machine case or to prove that the constant 5

3

is tight. From the conclusions above a more effective algorithm would require that some new
ideas concerning the assignment of jobs to batches be introduced. Next, is it possible to general-
ize the approaches presented here to other variants of batch scheduling? Is some analogue of the
above-mentioned relation between the performance of P and LPT–P valid for other variants of
the problem?

Our paper [34] also proposes some new and interesting tasks on bin-packing problems. Al-
though studies on the absolute performance ratio of bin-packing algorithms were almost neglected
earlier, it can be seen from the results drawn here that various results on it are indeed useful. For
instance, knowing that the FF algorithm has a smaller absolute performance ratio when dealing
with items of size smaller than 1

2
, we can also state for batch scheduling on a single machine that

the algorithm performs better in the setting where all the jobs are of size smaller than 1
2
.
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