
 

1 

 

 

 

 

Evolution and systems biology 

 

 

 

Csaba Pál  

 

Synthetic and Systems Biology Unit, Biological Research Center 

 

Hungarian Academy of Sciences 

 

 

 

Szeged 

  

dc_1338_16

Powered by TCPDF (www.tcpdf.org)



 

2 

 
 
To the memory of Dr. István Molnár (Monya) 
  

dc_1338_16

Powered by TCPDF (www.tcpdf.org)



 

3 

 
Table of contents  

 

 

 

 

I. INTRODUCTION .......................................................................................... 4 

II. A BRIEF SUMMARY OF RESEARCH ........................................................ 8 

III. EVOLUTION OF GENE DISPENSABILITY ............................................. 10 

IV. COMPENSATORY EVOLUTION ............................................................. 18 

V. EVOLUTIONARY GENOME ENGINEERING ........................................... 25 

VI. ANTIBIOTIC RESISTANCE AND COLLATERAL SENSITIVITY IN 
BACTERIA .................................................................................................... 36 

VII. THE FUTURE OF EVOLUTIONARY SYSTEMS BIOLOGY  ................. 46 

ACKNOWLEDGMENTS ............................................................................... 47 

REFERENCES .............................................................................................. 49 

APPENDIX .................................................................................................... 53 
 

 

 

 

  

 

 

  

dc_1338_16

Powered by TCPDF (www.tcpdf.org)



 

4 

I. Introduction 
 

Integration of Mendelian genetics into evolutionary biology has allowed better 

understanding a wide range of biological problems, and unified several previously 

isolated fields including biogeography, taxonomy, ecology and population genetics. 

In spite of the apparent achievements of the Modern Synthesis, several important 

issues have remained unanswered1: 

 

1) How do genes evolve2,3? Recent advances in genomics catalyzed a move from 

investigating individual genes to characterizing the impact of cellular subsystems. 

These studies demonstrated that protein evolution is influenced not only by protein 

structure and function. Rather, gene expression level, context of biological networks 

also matter. An integrated theory that unites protein evolution with biochemistry and 

functional and structural genomics is still missing. 

 

2) In the early 1920s Ronald Fisher advocated that evolution is a hill-climbing 

process: it proceeds through accumulation of beneficial mutations (Figure 1). By 

contrast, Sewall Wright suggested that accumulation of conditionally harmful 

mutations act as stepping stones by providing access to evolutionary pathways 

which are otherwise inaccessible4. After many decades, theoretical works on the 

subject are overwhelming, but the data (especially on a genomic scale) is scarce5. 
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Figure 1. Adaptive landscape is a conceptual tool to visualize the relationship 

between genotypes and fitness. It assumes that genotypes have well defined 

replication rates in a fixed environment, irrespective of the frequency of other 

genotypes in the population. Fitness is defined as the "height" of the landscape. 

Genotypes next to each other are mutational neighbors. One of the most perplexing 

issues in evolutionary biology relates to the general forms of the landscape, i.e. the 

presence of isolated peaks and the possibility of evolution to proceed through 

suboptimal states (fitness valleys).  

 

 

3) Evolutionary change is often considered to be contingent on initial conditions and 

chance events, and therefore unique on the one hand, and owing to predictable 

adaptive changes, replicable on the other hand. It remains unclear how far evolution 

is predictable at the genomic level1. Is it possible to infer which genes are most likely 

to be subject of adaptive mutations, and how adaptation at the phenotypic level will 

proceed? This goal requires investigating the relative roles of historical contingency, 

neutrality and adaptive changes during evolution. These problems have long been 

investigated at the level of individual proteins, but little is known about the evolution 

of large cellular subsystems1. 
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4) Many steps in protein production are strikingly error-prone, although such errors 

can lead to reduction of fitness and genetic diseases. It has remained an open issue 

how cells achieve robustness to errors during information transmission6,7 .  

 

5) How do evolutionary novelties arise? An influential theory suggests that evolution 

initiates new enzymatic functions by utilizing the weak side activities of preexisting 

enzymes8. However, the extent to which underground reactions provide novelties is 

largely unknown9.  

 

 

Systems biology offers a new angle to study these problems in a consistent 

manner1,10. In a nutshell, it integrates detailed analyses of molecular networks, in 

silico modeling and laboratory evolution with the aim to study central issues in 

evolutionary biology10 (Table 1-2).  

 

 

Table 1. Some major conceptual issues in evolutionary systems biology. Adapted 

from Papp et al. 2011.  
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Table 2. Modeling frameworks for evolutionary systems biology. Our work primarily 

focused on constraint-based models, such as flux balance analysis. Adapted from 

Papp et al. 2011.  

 

 

The logic is as follows. First, I will give a very brief overview of the main works I have 

been involved in. I will continue with focusing on four main topics, all of which 

illustrate the conceptual and methodological links between evolution and systems 

biology. The first chapter relates to the gene knock-out paradox. Why is it that most 

genes appear to be dispensable? These considerations will lead to the problem of 

compensatory evolution, a topic described in detail in chapter 2. The third chapter 

describes recent advances in bacterial genome engineering, and how this discipline 

can be employed to test central issues in evolution. The final chapter is devoted to a 

brief summary on antibiotic resistance and collateral sensitivity in microbes.  
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II. A brief summary of research  
 

Genome evolution 

In 2001, we demonstrated for the first time that highly expressed genes evolve 

slowly11 (Figure 2.). Later, we argued that evolutionary rate of a protein is 

predominantly influenced by its expression level rather than functional importance12. 

Many consider these works as a start of a paradigmatic shift in the field of protein 

evolution2. Eugene Koonin wrote about the four major laws of genome evolution13, 

and suggested that expression level-protein evolutionary rate is one of them. 

 

 

Figure 2. The figure shows the rate of protein evolution in yeast as a function of 

mRNA expression level. Rate of evolution was estimated by nucleotide sequence 

distances at non-synonymous sites. For details, see Pal et al. 2001 and Pal et al. 

2006.  
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Next, we studied molecular mechanisms underlying dosage sensitivity14. In this 

paper, we developed and tested what is now known as the dosage balance 

hypothesis15. The hypothesis offers a synthesis on seemingly unrelated problems 

such as the evolution of dominance, gene duplicability and co-evolution of protein 

complex subunits. Predictions of the hypothesis have been confirmed in many 

eukaryotic organisms, and now it appears to be an important unifying model with 

implications on human genetic diseases16. 

 In 2007, we demonstrated that antagonistic co-evolution with parasites has a 

large impact on the evolution of bacterial mutation rate17. This paper showed for the 

first time how biotic interactions shape mutation rate evolution. 

 Recently, the Pál lab explored the consequences of compensatory adaptation 

on gene content evolution5. It is well known that while core cellular processes are 

generally conserved during evolution, the underlying genes differ somewhat between 

related species. We demonstrated that gene loss initiates adaptive genomic changes 

that rapidly restores fitness, but this process has substantial pleiotropic effects on 

cellular physiology and evolvability upon environmental change5. 

  

 

Network evolution 

We also had a pivotal role in establishing the emerging field of evolutionary systems 

biology1. Our research focused on understanding the extent to which evolution is 

predictable at the molecular level. We realized that genome-scale metabolic network 

modeling combined with experimental tools offers an unprecedented opportunity to 

study some of the most difficult problems in evolution, such as mutational 

robustness18, horizontal gene transfer19, genome reduction20, epistasis21,22, 

promiscuous enzyme reactions9, and complex adaptations23. The approach 

developed by our group is now a major trend, and has been adopted by others24.  
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Antibiotic resistance 

The Pál lab currently studies the problem of antibiotic resistance using tools and 

concepts borrowed from systems biology25-29. By combining laboratory evolution, 

genome sequencing, and functional analyses, we charted the map of evolutionary 

trade-offs between antibiotics. We made the striking discovery that mutations that 

cause multidrug resistance in bacteria, simultaneously enhance sensitivity to many 

other unrelated drugs (collateral sensitivity), and explored the underlying molecular 

mechanisms25. As a result, the concept of collateral sensitivity is emerging as one of 

the leading concepts in antibiotic resistance research 30.  

 

Genome engineering 

Finally, the Pál lab is an advocate of the emerging field of evolutionary genome 

engineering31. These technologies enable the modification of specific genomic 

locations in a directed and combinatorial manner, and allow studying central 

evolutionary issues in which natural genetic variation is limited or biased. However, 

current tools have been optimized for a few laboratory model strains, lead to the 

accumulation of numerous undesired, off-target modifications, and demand extensive 

modification of the host genome prior to large-scale editing. We presented a simple, 

all-in-one solution32,33 . The method is unique as it allows systematic comparison of 

mutational effects and epistasis across a wide range of bacterial species.  

 

III. Evolution of gene dispensability  
 

Key publications: Papp, Pal & Hurst 2004, Pal et al. 2005 (see Appendix) 

 

In most organisms, deletion of a single gene generally has no impact on fitness and 

survival34. Only 20% of the single knock-outs in yeast Saccharomyces cerevisiae are 
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essential for growth, and similarly low figures have been observed in the worm 

Caenorhabditis elegans, Bacillus subtilis, and many other organisms (Table 3).  

 
 

 

Table 3. Distribution of essential genes in model organisms. Adapted from 

reference34. Details and references therein.  

 

These patterns raise many problems: Are these genes truly dispensable to the 

organism? Why is it that a knockout can grow well in the laboratory? Here I briefly 

address advance in our knowledge by paying particular attention to metabolism. 

 If certain genes would be truly dispensable, it would require that a deletion of 

the gene would not be under selection. Unfortunately, current lab assays have 

limitations, for two reasons34. They don’t have the ability to measure fitness at the 

necessary resolution and second, they fail to identify genes that contribute to fitness 

in nature, but not in standard laboratory conditions. 

 Recent works indicate that seemingly dispensable proteins are generally 

under strong selection, i.e. they evolve much slower than expected for non-
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functional, neutrally diverging sequences12,35. Thus, although knowledge on the exact 

physiological or evolutionary roles of these proteins is often patchy, to say the least, 

they apparently do something useful for the organism.  

 

 

A case study on yeast metabolism 

Both computational and empirical studies indicate that dispensability is more 

apparent than real: many genes have important functions in special conditions 

only18,21,36.  In 200418, we addressed this issue first using the genome scale metabolic 

network model of baker’s yeast (Saccharomyces cerevisiae) (Figure 3−4.).  

 

 

 

Figure 3. The essence of computational flux balance analysis. The analysis starts 

with the reconstruction of the metabolic network of a specific organism from genomic 

and detailed biochemical studies. The reaction set contains data on transport 

processes, direction and stoichiometry of reactions, and major metabolic 

components (X,Y,Z) important for the cell. Also the nutrients available in the 

environment (B,E) must be predefined in a way to mimic the experimental nutrient 

conditions. Finally, given the set of constraints – e.g. the reaction set and outer 

nutrients available for the cell – flux balance analysis calculates biomass production 

(a proxy of growth rate) in steady state.  
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Figure 4. The predictions of flux balance analyses are tested on the wild-type and 

mutant yeast strains under a variety of conditions.  

 

 The metabolic network of yeast was reconstructed from a large set of prior 

biochemical studies, and includes 809 metabolites connected by 851 different 

biochemical reactions18. Using this network, we defined a solution where fluxes of all 

metabolic reactions in the network satisfy the relevant constraints, given the nutrients 

available in the environment. Next, we calculated the optimal use of the metabolic 

network to produce major biosynthetic components for growth under a set of 282 

predefined and ecologically relevant nutrient conditions.  
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Figure 5. The figure shows the result of flux balance analysis. At least 20% of the 

‘dispensable’ yeast metabolic genes are essential under some special environmental 

conditions. Adapted from Papp et al. 2004.  

 

 

 The model indicates that most metabolic genes have severe fitness defects 

only under a small fraction of the 282 different growth conditions investigated (Figure 

5). Thus, most genes appear to be important in specific environments only18.  

Several empirical studies supported this claim. First, direct measurement of 

enzymatic fluxes in yeast demonstrated that about half of the apparently dispensable 

genes are inactive under laboratory conditions37,38. Even more importantly, a recent 

high-throughput chemogenomic study indicates that as high as 97% of the 5000 

apparently nonessential genes in yeast make contribution to fitness under at least 

one environment36. Moreover, deleterious phenotypes are generally restricted to a 

small fraction of the tested environments36.  

 The above figures do not exclude the possibility for other mechanisms of 

gene dispensability 39.  
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A       B 

 

Figure 6. Two major mechanisms contributing to robustness to gene deletion in 

metabolic networks. A gene may appear to be dispensable if another copy executes 

the same enzymatic reaction (a form of genetic redundancy). Alternatively, two 

genes may appear on alternative pathways producing the same end-product 

(distributed robustness) (A). As a result, only the genotype with deletion of both A 

and B (A0B0) shows fitness deficit (B).  

 

 

 Gene deletions may be compensated for by a gene duplicate with a 

redundant function, and reorganization of metabolic fluxes across alternative 

pathways may buffer gene loss18,39 (Figure 6). In agreement with expectation, 

duplicated genes in yeast and worm are less likely to be essential than single copy 

genes. We hasten to note however, that this pattern may also reflect that genes 

encoding non-essential functions preferentially undergo gene duplication40. The 

presence of alternative pathways (a form of distributed robustness) is a more 

controversial issue, but clear-cut examples from metabolism nevertheless exist.  
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 To approach which of the two mechanisms – gene duplicates with redundant 

functions versus alternative pathways – are more important, we again turned to yeast 

metabolism18. We focused on essential enzymatic reactions, i.e. the ones predicted 

to stop growth when deleted. Overall, we estimate that duplicates account for 

between 15−28 percent of incidences of gene dispensability, while alternative 

metabolic pathways can only explain 4 to 17 percent of gene dispensability. These 

figures were later confirmed by experimental enzymatic flux measurements in the 

same species (Figure 7). These experiments suggest that, for 207 viable mutants of 

active reactions, network redundancy through duplicate genes is the major (75%), 

and alternative pathways is the minor (25%) molecular mechanism of genetic 

network robustness. These results do not exclude the possibility that distributed 

robustness via alternative pathways is more common in other cellular systems.  

 

 

 

 

Figure 7. Gene dispensability in the metabolic networks of yeast. The classes are: 

(A) enzymatic reactions predicted to have zero flux under nutrient-rich conditions, but 

non-zero flux in at least one other environment (condition specific); (B) single-copy 
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genes predicted to catalyze essential reactions; (C) duplicate genes predicted to 

catalyze essential reactions; (D) single-copy genes predicted to catalyze dispensable 

reactions; and (E) duplicate genes predicted to catalyze dispensable reactions. 

When comparing groups B and C, of the 68 metabolic genes that are predicted to 

catalyze essential reactions, 33 are known to have a duplicated isoenzyme. Only 

about 6% of those that have an isoenzyme are observed to be essential in vivo, 

whereas the proportion of essential genes is roughly 69% among those without an 

isoenzyme. When comparing groups B and D, of the 47 single-copy genes 35 are 

predicted to catalyze essential reactions whereas 12 are predicted to be dispensable.  

 

 

 Next we asked whether the spread and retention of a duplicate was selected 

because it provided backup against mutations18. Prior theoretical works 

demonstrated that under realistic mutation rates and population size settings, most 

organisms are unlikely to evolve backup against mutations. So, why are duplicates in 

the genome? Flux balance analysis of the yeast metabolic network has shown that 

essential reactions are not more likely than nonessential reactions to be catalyzed by 

isoenzymes. Instead, isozymes appear at positions in the network where a high flux 

is needed. This suggests that duplicates were retained to permit a selectively 

advantageous increase in flux rates, a secondary consequence of which can be 

buffering18. 

 

 The situation is similar for robustness provided by network architecture. A 

priori it is difficult to see how biological networks might evolve step-by-step to permit 

distributed robustness. A recent simulation study showed that robust network 

architecture emerged as a side consequence of selection for fast microbial growth 

rather than for enhanced robustness against mutations41. Another way to ask about 

the evolution of distributed robustness in networks is to ask about the evolution of 

dc_1338_16

Powered by TCPDF (www.tcpdf.org)



 

18 

gene pairs that are not sequence related, but can compensate null mutations in each 

other. At least 51 percent of such synthetic lethal interactions are restricted to 

particular environmental conditions 21. These results are compatible with a side effect 

model, where the enzymes are essential under nutrient specific  conditions, not 

because they provide backup.  

  

IV. Compensatory evolution 
 

Relevant publication: Szamecz et al 2014 (Appendix) 

 

 Genetic disorders in human populations are surprisingly frequent42. However, 

individuals carrying the same deleterious mutations often have different or no 

symptoms at all. Moreover, mutations deleterious in human are frequently fixed in 

other closely related species43,44. Why is it so? In this short chapter, we argue that 

evolutionary adaptation is inherently linked to the incorporation of mutations with 

pleiotropic side consequences. Therefore, organisms undergo major changes during 

evolution not simply to adapt to novel environments, but also to compensate for the 

deleterious side-effects of adaptive mutations.  

 

Premise 1. Harmful mutations are commonplace 

All humans carry deleterious mutations in their genome sequence45. A recent 

analysis indicates that an average healthy person has 100 nonfunctionalized alleles, 

20 of which are homozygous but with only mild phenotypic consequences46. In yeast, 

as high as 12% of the coding SNPs are predicted to be slightly deleterious 47.  

 

Premise 2. Mutational effects depend strongly on the genetic context 
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In spite of the prevalence of harmful mutations, mutational effects vary due to 

epistatic interactions with other mutations. The evidences come from many different 

sources: 

 

Human populations. Classic ‘‘monogenic’’ disorders show clear genetic background 

effects. For example, patients carrying the same deleterious allele present a broad 

range of clinical symptoms, most likely due to the action of modifier loci48. Strikingly, 

a recent large-scale study identified 13 adults harboring mutations for severe 

Mendelian conditions, with no clinical manifestation of the indicated disease49. The 

study indicates that penetrance of disease is influenced and potentially buffered by 

other mutations in the genome.  

 

Systematic mutational screens. Studies in yeast, C. elegans, and human cell 

lineages revealed that the severity of phenotypes due to loss-of-function mutations 

differ significantly across genetic backgrounds50. Most notably, Vu and colleagues 

compared loss-of-function phenotypes of 1,400 genes in two C. elegans isolates that 

differ genetically by 1 SNP per 800 bp51. Strikingly, 20% of the genes have different 

loss-of-function phenotypes in two individuals and the differences in mutant 

phenotypes were predictable from expression51.  

 Similarly, recent studies surveyed the set of essential genes in human cancer 

cell lineages52,53. Although they identified a coherent and overlapping set of essential 

genes in two related haploid cell lines, the essentiality of some genes is context-

dependent and affects viability in a cell type-specific manner54. 

 

Laboratory evolution. The best evidence comes from studies on individual proteins. 

They unequivocally demonstrate that mutational effects are context dependent: 

mutations neutral or deleterious in one genetic background can be beneficial in 
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another55. Moreover, such studies indicate that adaptive evolution frequently demand 

prior fixation of other, so called permissive mutations56-58. These mutations do not 

alter the molecular function of the protein, but are necessary to tolerate large-effect 

mutations that cause shift in specificity and are generally destabilizing protein 

structure.  

 

Premise 3. Mutational effects are condition specific 

It has also long been noted that mutational effects very much depend on the 

environment. In most organisms, inactivation of a single gene generally has no major 

effect on survival in a particular condition. Only 20% of the single knock-outs in yeast 

Saccharomyces cerevisiae are essential for growth, and similarly low figures have 

been observed in many other species59. However, gene dispensability is more 

apparent than real. Most genes appear to be important in specific environments only. 

A recent high-throughput chemogenomic study indicates that as high as 97% of the 

5000 apparently nonessential genes in yeast make contribution to fitness under at 

least one condition36. Moreover, deleterious phenotypes are generally restricted to a 

small fraction of the tested environments36. Similarly, in diploid yeast, 

haploproficiency phenotypes (increased growth rate when one copy is deleted) are 

surprisingly frequent, but are restricted to specific environmental contexts only60.   

 

Premise 4. Mutations with antagonistic effects are prevalent 

Traditionally, mutations are divided into three categories: deleterious mutations, 

effectively neutral, and beneficial mutations. The above considerations (premises 2 

and 3) demonstrate that categorization of mutations depends very much on the 

genomic background and the environments considered. Highly deleterious mutations 

can be neutral or even beneficial in other genetic or environmental conditions. Here 

we argue that mutations with such antagonistic effects are very common, and they 

influence evolutionary processes. First, a wealth of comparative and experimental 
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data have confirmed that, when organisms evolve to a given environment, the 

beneficial changes accumulated in one trait are generally linked to detrimental 

changes in other traits61,62.  

 Such negative trade-offs shape the evolution of gene content as well. 

Laboratory evolution studies showed that adaptive loss-of-function mutations have 

an important role in the adaptation to a new environment63. As loss-of-function 

mutations are much more frequent than gain of function mutations, the contribution of 

gene loss to adaptive evolution might be higher than previously anticipated. Probably 

the most convincing study comes from the Zhang lab62. By measuring the fitness 

difference between the wild-type and null alleles of approximately 5,000 nonessential 

genes in yeast, the authors found that in any given environment, yeast expresses 

hundreds of genes that harm rather than benefit the organism.  

 

Premise 5. Mutations, highly deleterious in one species, are fixed in another.  

Recent comparative genomic studies revealed that disease-associated mutations in 

human are present in mouse strains with no apparent phenotypic consequences43,44. 

The best hypothesis to explain these patterns are that the majority of fixations of 

disease mutations in mice are due to compensatory genetic changes, which 

minimize the phenotypic consequences of these mutations.  

 

Premise 6. Defects can readily be mitigated through compensatory mutations 

Recent laboratory studies in bacteria and yeast showed that defects in a broad range 

of molecular processes can readily be compensated during evolution5,64. Notably, 

deletion of 9% of the essential genes can be overcome by evolution of alternative 

pathways, suggesting that gene dispensability can readily evolve in the laboratory65. 

Compensatory evolution appears to be common at different levels of biological 

organization (for references, see 5).  
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A case study: compensatory evolution following gene deletion 

 

In our work5, we addressed one of the most long-standing debates in evolution. Here 

we focused on a special, largely neglected aspect of this problem and asked whether 

deleterious gene loss events promote adaptive genetic changes, and what might be 

the side consequences of such processes5. To achieve such an ambitious goal, we 

integrated approaches of several disciplines, including laboratory experimental 

evolution and genomic analyses, coupled with bioinformatics and detailed molecular 

studies5 (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. An experimental scheme to study compensatory evolution in strains with 

single gene defects. Briefly, we started laboratory evolution with over 180 single 

gene knock-out mutant yeast  (Saccharomyces cerevisiae) strains, all of which 

initially showed low fitness compared to the wild-type control in a standard laboratory 
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medium. Populations were cultivated in parallel, resulting in over 700 independently 

evolving lineages. To control for potential adaptation unrelated to compensatory 

evolution, we also established 22 populations starting from the isogenic wild-type 

(WT) genotype, referred to as evolving wild types. All lineages were subjected to 

high-throughput fitness measurements by measuring growth capacity in liquid 

medium. 

 

The analysis reached several important results:  

 

Compensatory evolution following gene loss is pervasive. At least 68% of the 

deleterious but non-lethal null mutations can be buffered through accumulation of 

adaptive mutations elsewhere in the genome (Figure 9.).  

 

 

 

 

Figure 9. Fraction of initial fitness defects compensated in knock-out mutant yeast 

strains following evolution in the laboratory.  

 

Full restoration of the lost molecular function is rare. The work revealed that the 

evolved lines diverge from each other and reach new fitness peaks. The wild-type 
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physiological state is generally not restored and pleiotropic side effects are prevalent 

(Figure 10).  

Compensatory evolution generates cryptic variation across populations. 

Accordingly, compensatory evolution generates cryptic differences between 

diverging lines  which can be revealed upon environmental change.  

 

 

 

Figure 10. Schematic representation of the impact of compensatory evolution on the 

fitness landscape. Gene loss leads to a fitness valley (from WT to KO), while 

compensatory evolution can drive the population to different adaptive peaks (Ev1 

versus Ev2). The upper fitness landscape shows the environment where 

compensatory evolution took place. The dashed arrow represents the original gene 

deletion event. Yellow lines represent different evolutionary routes. WT, wild type; 

KO, ancestor strain with a gene deletion 
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Based on these results, we proposed that a substantial fraction of the gene content 

variation across species is due to the action of compensatory evolution and may not 

need to reflect changes in environmental conditions and consequent passive loss of 

genes.  

 
 

V. Evolutionary genome engineering 
 

Key publication: Nyerges et al. 2016 (Appendix) 

 

Genome-scale engineering enables editing specific genomic locations in a directed 

and combinatorial manner66. Recent advances in this field offer an unprecedented 

opportunity to design complex molecular circuits with predefined functions67. Most 

studies have either focused on engineering novel pathways that produce specific 

molecules for medicine and industry or attempted to construct genomic chassis that 

are more amenable for further rational design. We recently argued that genome 

engineering offers extremely powerful discovery tools for understanding the evolution 

of natural cellular systems31. While genome engineering had limited impact on 

evolutionary research so far, I predict that it will change in the near future: technical 

advancements in genome engineering have the potential to transform evolutionary 

biology into a more predictive discipline31. 

 Laboratory evolutionary experiment on microbes coupled with whole-genome 

sequence analysis offer powerful tools to investigate evolution in real time31. Current 

works largely focus on complex phenotypes of whole organisms, where genetic basis 

is not understood properly. However, this approach has several limitations: 
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1) Natural genetic variation is limited in the laboratory. Several crucial 

evolutionary innovations lack within population variation, on which selection could 

act.  

2) Evolution in the laboratory is slow. Given the limited timescale of microbial 

laboratory evolution experiments, only relatively few mutations are fixed in most 

laboratory evolved populations. Therefore, comparison of these results to 

macroevolutionary trends is often difficult.  

3) No appropriate control of mutational processes. Studying the evolution of a 

particular cellular subsystem is hindered by the fact that beneficial mutations can 

occur outside the subsystem under investigation.  

 

Genome-scale engineering (i.e. the simultaneous modification of multiple genomic 

loci) provides a novel approach to study evolution in real time, as it can potentially 

handle the above-mentioned problems68. Among others, genome engineering offers 

a) rapid editing and directed evolution of large genomic segments or entire 

chromosomes, b) synthesis and combinatorial shuffling of small DNA segments 

(promoters, coding regions) or complete genomes, c) chemical synthesis and 

integration of large segments or even whole genomes into new host organism. For 

details, see ref 31.  

 

 

Development of a reliable genome engineering protocol for bacteria  

Recently, we addressed some of the most long-standing problems in genome 

engineering32,33. Currently available tools for bacterial genome manipulation suffer 

from three major limitations. They i) have been optimized for a few laboratory model 

strains (such as Escherichia coli MG1655), ii) demand extensive modification of the 

host genome prior to large-scale genome engineering, and iii) lead to the 

accumulation of numerous unwanted, off-target modifications, sometimes 
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outnumbering the desired ones. Clearly, these issues have serious implications on 

wide-spread biotechnological applicability. Moreover, although CRISPR/Cas9 is 

applicable to a range of organisms, there seems to be a technical limit when it comes 

to using CRISPR/Cas9 for simultaneous modification of multiple loci69,70. 

 Building on prior development of multiplex automated genome engineering 71, 

our work addressed these problems and presented a simple, all-in-one solution. 

Briefly, we first characterized a dominant mutation in a key protein of the methyl-

directed mismatch repair (MMR) system and used it to precisely disrupt mismatch-

repair in target cells 33 (Figure 11). 

 

 

 

 

 

A)       B)  

 

Figure 11. pORTMAGE. A) General map of the pORTMAGE plasmid. Expression of 

the mutL E32K gene [along with the three λ Red recombinase enzymes (exo, bet, 

and gam)] is controlled by the cI857 temperature-sensitive λ repressor. B) Mutation 

rate measurement of E. coli K-12 MG1655 (MG) harboring the AhTC inducible 

pZA31tetR-mutLE32K plasmid for MutL(E32K) expression, as well as the 
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MG1655ΔmutS strain for comparison. A rifampicin resistance assay was used to 

calculate mutation rates. Adapted from Nyerges et al. PNAS 2016.  

 

 

With the integration of this advance, we developed a new workflow for genome-scale 

engineering and demonstrated its applicability for high-throughput genome editing by 

efficient modification of multiple loci (Figure 12).  

 

 

 

Figure 12. Representation of a modified Multiplex Automated Genome Engineering 

(MAGE) protocol. Cells are grown and transformed with single stranded 

oligonucleotides carrying the desired mutations. These oligonucleotides are 

incorporated into the target genomes in various combinations. Cyclical repetition of 

MAGE yields highly diverse population of cells. Adapted from Nyerges et al. 2014.  
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Whole genome sequencing revealed that none of the modified strains carried any 

observable off-target mutation, a major advance over prior approaches33. Due to the 

highly conserved nature of the bacterial MMR system, the application of dominant 

mutations in this system provides a unique solution to portability. By placing the 

entire synthetic operon that enables efficient genome engineering into a broad-host 

vector, we successfully adapted MAGE to a wide range of hosts and applied the 

strategy for genome editing in biotechnologically and clinically relevant 

enterobacteria33.  

 To demonstrate the usefulness of our system, we applied pORTMAGE to 

study a set of antibiotic resistance conferring mutations in Salmonella enterica and E. 

coli. Despite over 100 million years of divergence between the two species, 

mutational effects remained generally conserved, a result with implications for future 

systematic studies33 (Table 4). 

 

  

 

Table 4. Minimum inhibitory concentrations (MICs) of Escherichia coli and 

Salmonella enterica strains with a single specific mutation. The measured MIC for 

each strain was compared with the MIC of the wild-type strain, resulting in the 
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relative MIC value. The antibiotic abbreviations are as follows: AMP, ampicillin; CPR, 

ciprofloxacin; ERY, erythromycin; NAL, nalidixic acid; NIT, nitrofurantoin; STR, 

streptomycin. Adapted from Nyerges et al. PNAS 2016.  

 

In sum, with just one transformation, pORTMAGE allows any strain of interest across 

a range of enterobacteria to become an efficient host for genome-scale editing. 

pORTMAGE simultaneously eliminates off-target mutagenesis. Within a year after 

the publication, at least 45 research groups started using pORTMAGE.  

 

Our findings have broad implications with regards to chassis engineering for the 

production of valuable biomaterials through the rapid optimization of biosynthetic 

pathways across a wide range of bacteria, a process previously requiring tedious 

laboratory optimization. Moreover, based on our proof-of-principle experiments, we 

predict that pORTMAGE will open a new avenue of research in diverse fields, such 

as functional genomics and evolutionary biology. For the first time, pORTMAGE 

allows systematic comparison of mutational effects and epistasis across a wide 

range of bacterial species.  

 

 

Evolution of genome minimization 

Next, we addressed one of the central issues in evolution: why are some bacterial 

genomes highly reduced34,72? According to the prevailing view that has emerged in 

the past 15 years, massive genome shrinkage in bacteria is driven by non-adaptive 

processes, such as genetic drift and mutational bias73,74. However, the recent 

discovery of genome reduction in free-living bacteria with immense population sizes 

challenged this view and led to the alternative hypothesis that simplified genomes 

are the result of selection for efficient use of nutrients75. The issue remains unsettled 

not least because little is known about how genome reduction alters cellular traits. 
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For example, it remains poorly understood whether genome reduction results in 

faster and more efficient cell growth owing to a reduced burden of DNA replication. 

Recently, we employed genome engineering to construct Escherichia coli strains with 

successively reduced genomes76 (Figure 13). 

 

 

 

Figure 13. Comparison of the starting E.coli K-12 genome and the derived multi-

deletion strain 69 (MDS69). Deleted genomic regions are indicated. Adapted from 

Karcagi et al. 2016.  

 

Our strain collection gives a unique opportunity to investigate the evolutionary 

consequences of genome reduction, for three reasons: i) the extent of genome 

reduction was as high as 20%, ii) the resulting 69 strains of the multiple-deletion 

series represent different stages of genome reduction and iii) the deleted segments 

harbor genes that have been repeatedly lost and gained in relatives of E. coli76. Next, 
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we systematically tested the impacts of genomic reduction on several cellular traits, 

including growth rate, metabolic yield, nutrient utilization profile, cell size, and 

transcriptome profile76. Prior knowledge of the impact of genome reduction on these 

traits was very limited.  

 

 Our analysis yielded two major insights76: First, we found no evidence for 

increased cellular efficiency as a result of genome reduction. On the contrary, 

removal of seemingly non-essential genomic segments had widespread and strong 

pleiotropic effects on cellular physiology. This indicates that the energetic benefit 

gained by short genomic deletions is vanishingly small compared to the deleterious 

side effects of these deletions. Thus, bacterial genome reduction is unlikely to be 

solely driven by natural selection for decreased DNA synthesis costs.  

 

Second, our systematic assays revealed that accessory genomic regions, that 

preferentially harbor horizontally transferred genes, have important contributions to 

fitness both in standard laboratory environments (Figure 14) and under stress (Table 

5).  

 

Figure 14. Growth rates of the wild type (E.coli K-12) and multi-deletion strains in 

standard laboratory medium. For details, see Karcagi et al. 2016. 
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Table 5. Summary of growth profiles of the wild-type and land-mark multi-deletion 

strains (MDS42 and MDS69) in 908 environments.  

 

 

These results provide strong support to the notion that accessory genes of the 

bacterial pangenome are under strong selection, and are not just a collection of 

transient neutral DNA segments. Accordingly, our work indicates that bacterial genes 

derived by horizontal transfer are indispensable, and many appear to have important 

functional roles even in stress-free environments76. Finally, we argued that selection 

for eliminating specific gene functions detrimental in particular environments, and not 

a reduced genome per se, could be the driving force behind rapid evolution of 

genome reduction in microbes with large population sizes. 
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The future of evolutionary genome engineering 

Two factors will influence future applications. First, the nascent field of genome 

engineering is expected to integrate concepts and protocols of other evolutionary 

disciplines and computational systems biology1 (Figure 15). Second, novel 

technologies are expected to transform this discipline31,77.  

 

 

 

Figure 15. Tools for evolutionary genome engineering. The analysis should integrate 

screens of genome-scale mutant libraries, computational modeling of cellular 

networks (such as flux balance analysis), and laboratory evolution. These methods 

enable researchers to identify gene sets relevant to the phenotypic trait investigated 

(such as production of a biomaterial). As a next step, directed evolution should focus 

on mutagenesis – selection on the identified loci. 
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We expect major breakthroughs in the following areas:  

 

Reconstruction of ancestral networks, subsystems or genomes  

Ancestral protein sequences can be inferred using phylogenetic methods. 

Reconstruction of these ancestral sequences through gene synthesis and integration 

into native genomes allows functional characterization78,79. Successful examples so 

far include enzymes, highly conserved regulatory proteins or protein complexes80. 

Among others, these studies delivered insight into ecological niches of ancestral 

species and mechanisms underlying evolutionary innovations through gene 

duplication81. The next step will be to use multiplex automated genome engineering 

and related protocols to reconstruct larger subsystems or even the complete 

genomes of ancestral species31.  

 

Laboratory evolution of complex adaptations  

The forces by which complex cellular features – such as linear metabolic pathways 

or multimeric protein complexes – emerge is one of the major problems of 

evolutionary cell biology82,83. Many of such complex adaptations require simultaneous 

acquisition of multiple, very specific and rare mutations in a single lineage. Thus, the 

time for establishment of such adaptations is expected to be very slow in nature. The 

process is also highly dependent on the frequency of appropriate mutations or 

horizontal transfer events. As multiplex automated genetic engineering can generate 

over 4.3 billion combinatorial genomic variants per day at selected loci, it can 

potentially accelerate the laboratory evolution of complex adaptations31,67,71.   
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VI. Antibiotic resistance and collateral sensitivity in 
bacteria 
 

Representative publications: Lazar et al MSB 2013, Lazar et al. Nature 

Communications 2014 (Appendix) 

 

Understanding how evolution of microbial resistance towards a given antibiotic 

enhance (cross-resistance) or decrease (collateral sensitivity) fitness in the presence 

of other drugs is a challenge of profound importance for several fields of basic and 

applied research84. Despite its obvious clinical importance, our knowledge is still 

limited, not least because this problem has been addressed largely by small-scale 

clinical studies. By combining laboratory evolution (Figure 16A), genome sequencing, 

and functional analyses (Figure 16B), recent works charted the maps of cross-

resistance/collateral sensitivity interactions between antibiotics in E. coli85-87, and 

explored the mechanisms driving these evolutionary patterns86.  
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Figure 16A. In prior works85,86, we initiated laboratory evolutionary experiments 

starting with a single clone of E. coli K12. Parallel evolving bacterial populations were 

exposed to gradually increasing concentrations of one of 12 clinically relevant 

antibiotics, leading to up to 328-fold increase in the minimum inhibitory 

concentrations (MICs) relative to the wild-type. In all cases, the resistance levels 

were equal to or above the EUCAST clinical break-points. 52% of the evolved strains 

showed resistance to multiple antibiotics. Adapted from Pal et al. 2015 29.  
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Figure 16B. The laboratory evolved lineages were subjected to in-depth phenotypic 

and genomic analysis with the aim to explore the accompanying changes in drug 

sensitivity and the underlying molecular mechanisms thereof. Adapted from Pal et al. 

201529.  

 

The exceptionally large scale of these works allowed to derive several conceptually 

novel conclusions29. First, antibiotic cross-resistance is frequent and computationally 

predictable by integrating the accumulated knowledge on functional and chemical 

antibiotic properties85. Second, mutations that cause multi-drug resistance 

simultaneously enhance sensitivity to many other drugs86,87. Third, these works 

offered an insight into the mechanisms underlying collateral sensitivity86. In this short 

chapter, we summarize recent advances in this emerging research area. We 

highlight the potential and limitations of current approaches, review the underlying 

molecular mechanisms of these phenomena, and suggest new research directions 
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for future studies. Specifically, we discuss how these advances could be exploited for 

the development of novel antimicrobial strategies. 

 

Multi-drug resistance emerges in response to evolution against a single drug  

To chart the map of cross-resistance, recent works initiated parallel laboratory 

evolutionary experiments to adapt to increasing dosages of one of 12 clinically 

relevant antibiotics (Table 6).  

 

 

Table 6. Antibiotics employed in the study by Lazar and colleagues and the 

corresponding modes of action.  

 

 

Evolved populations reached up to 300-fold increas in the minimum inhibitory 

concentrations relative to the ancestor85-87. As a next step, the corresponding 

changes in susceptibilities of the lab-evolved populations were measured against a 

panel of other antibiotics, allowing us to infer a network of cross-resistance 

interactions (Figure 17). Laboratory-evolved lines were subjected to whole-genome 

sequence analysis and biochemical assays to decipher the underlying molecular 

mechanisms of these interactions. These studies revealed that:  

a) The cross-resistance network is dense, indicating that exposure to a single  
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antibiotic frequently yields multidrug resistance. 

b) The populations frequently evolve asymmetric cross protection, where stress A 

protects against stress B but not vice versa.  

c) The network of cross-resistance is predictable based on antibiotic properties.  

d) Finally, laboratory studies recapitulated major patterns of antibiotic cross-

resistance observed in the clinics. 

 

 

 

 

 

Figure 17. Based on the high-throughput measurement of antibiotic susceptibilities in 

laboratoryevolved bacteria, two networks can be deciphered. An arrow from antibiotic 

A to B indicates that evolution of resistance to A generally increases (collateral 

sensitivity) or decreases (cross-resistance) susceptibility to B. Adapted from Pal et al. 

2015.  

 

These works also identified a strong signature of parallel evolution at the molecular 

level that emerged across populations adapted to different antibiotics, and such 

parallel mutations delivered resistance to multiple antimicrobial agents29,85. The 
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molecular mechanisms underlying antibiotic cross-resistance appeared to be very 

diverse, including mutations in multi drug efflux pumps, metabolic genes, and genes 

involved in bacterial defense against c) oxidative, d) nutritional and e) membrane 

stresses. These works also suggested that genome-wide transcriptional rewiring 

mediated by global transcriptional regulatory genes has an important contribution to 

cross-resistance patterns.  

 Perhaps the most remarkable aspect of these findings is that cross-resistance 

is delivered by mutations with wide pleiotropic effects85,86. Therefore, cross-protection 

may be more general88, and opens the possibility that stressful conditions unrelated 

to antibiotic pressure may, as a byproduct, select for enhanced antibiotic tolerance in 

nature. 

 

Evolution of multi-drug resistance promotes hypersensitivity to certain drugs  

 

The phenomenon 

Prior studies demonstrated that evolution of resistance to a single antibiotic is 

frequently accompanied by increased resistance to multiple other antimicrobial 

agent29. However, very little is known about the occurrence of collateral sensitivity 

(i.e. when evolution of resistance yields enhanced sensitivity to other antibiotics). 

Given the prevalence of resistance conferring mutations with pleiotropic effects, 

researchers speculated that such collateral sensitivity interactions could frequently 

emerge. Large-scale laboratory evolution studies demonstrated that it was indeed so. 

Strikingly, not only cross-resistance, but also collateral sensitivity interactions 

frequently occur during evolution of antibiotic resistance (Figures 17 and 18). 
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 Figure 18.. An example of collateral sensitivity. Dose response curve of the wild-type 

control and a tobramycin (aminoglycoside) resistant bacterial strain (TOB3). TOB3 

shows resistance to tobramycin, but surprisingly, it has elevated susceptibility to a 

drug with unrelated mode of action (gyrase inhibitor, nalidixic acid). Adapted from 

Lazar et al. 2013.  

 

The mechanisms 

Understanding the mechanisms underlying collateral sensitivity interactions is still at 

an embryonic stage. We mention one example here: resistance mechanisms to 

various antibiotics via alteration of membrane potential have been reported in both 

laboratory studies and clinical settings, and such changes underlie the 
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hypersensitivity of bacteria to other antibiotics86. These results indicate the existence 

of antagonistic mechanisms by which bacteria modulate intracellular antibiotic 

concentration through altering membrane polarity86 (Figure 19). 

 

 

 

 

Figure 19. A mechanism underlying collateral sensitivity. Altering the membrane 

potential across the inner bacterial membrane has two opposing effects: it reduces 

the uptake of many aminoglycoside-related antibiotics but simultaneously leads to 

the reduced activity of PMF-dependent efflux pumps. Adapted from Lazar et al. 2013.  

 

 

Development of novel multi-drug therapies 

The experimental map of cross-resistance/collateral sensitivity could serve as a 

unique resource and potentially permit informed decisions in medicin29. For example, 

the choice of optimal antibiotic combinations depends on both the presence of 

physiological drug interactions and the availability of mutations that deliver resistance 
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to both drugs simultaneously. It has been shown that cross-resistance between two 

antibiotics is largely independent of whether they show synergistic effects in 

combination89. Combination of large-scale information on antibiotic synergism and 

cross-resistance could be especially informative for future development of multidrug 

therapies. For example, it remains controversial whether temporal rotation of 

antibiotics could select against the development of resistance30. These works 

strongly indicate that the success of such a strategy depends on the choice of 

antibiotics: treatment with a single antibiotic and then switching to a cross-sensitive 

partner may be a viable strategy. An alternative approach relies on the simultaneous 

administration of two agents in collateral sensitivity interaction to inhibit both the wild-

type and the resistant subpopulations, and thereby prevent the emergence of 

resistance30,89 (Figure 20). 
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Figure 20. Potential applications of collateral sensitivity to eradicate antibiotic 

resistant bacteria. Antibiotic pairs showing collateral sensitivity could be administered 

simultaneously as drug combination (a) or in an alternating fashion (b). Abbreviation: 

WT, wild type. See Pal et al. 2015 for more details.  

 

Testing the long-term efficacy of novel therapeutic agents 

By analyzing the maps of cross-resistance, researchers unveiled some general 

principles governing the evolution of cross-resistance patterns. By integrating 

available data on antibiotic properties, it has been shown that cross-resistance is 

partly predictable85. These results pave the way towards in silico methods to estimate 

the cross-resistance propensity of novel antimicrobial compounds before entry into 

clinical usage. At least five key issues need to be investigated in more depth by 

future studies:  

1) Evolutionary conservation of cross-resistance maps and the underlying 

molecular mechanisms across bacterial species.  

2) Exploiting the fitness costs of plasmid mediated antibiotic resistance 

mechanisms. 

3) Confirmation of laboratory results with in vivo and clinical studies. Indeed, 

comparison of existing large-scale clinical data on multidrug resistance with results of 

laboratory evolution studies has a central importance. 

4) Integrating information from metagenomic approaches that aim to identify 

resistance genes from environmental reservoirs. 

5) Establishing how the evolvability of further resistance is influenced by cross-

resistance and collateral sensitivity interactions. 
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VII. The future of evolutionary systems biology 
 
 
The emerging field of evolutionary systems biology investigates central issues in 

evolutionary biology by focusing on specific cellular subsystems and integrating a 

variety of methodologies1. The goal of computational analyses is at least threefold. 

First, they calculate the impact of genetic mutations on cellular phenotypes that are 

difficult to estimate experimentally on a large-scale or across environments. Second, 

they provide insights into complex evolutionary problems such as the causes of gene 

dispensability or the evolution of minimized genomes. Third, these approaches will 

transform evolutionary biology into a more predictive discipline.  

  Such advances are important for the following reasons. For the first time, it is 

becoming possible to investigate the evolution of metabolic networks and other 

cellular subsystems in exceptional detail across related microbial species. 

Researchers now can ask how robustness to mutations and other emergent 

properties rely on changes in genome architecture and ecology. It also paves the 

way for network archaeology: that is, the reconstruction and analysis of the functional 

properties of ancestral cellular networks1. 

 More practically, systems biology could promote the identification of new drug 

targets shared by pathogens. Indeed, there is an urgent need for new experimental 

technologies to investigate mutational effects and evolution in a high-throughput 

manner. Given the limited timescale of microbial laboratory evolution experiments, 

most existing protocols are inadequate to study long-term evolution of a given 

cellular subsystem1. Novel genome-engineering techniques provide a solution, as 

multiplex automated genome engineering generates huge genetic diversity in very 

specific manner1.  
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 Accordingly, systems biology can greatly benefit from concepts and methods 

of genome engineering31. By constructing rare genomic alterations or specific 

combinations of mutations, genome engineering could facilitate complex changes of 

cellular subsystems. Combination of rational and evolutionary design strategies is 

important both for understanding natural systems and for the construction of genetic 

regulatory circuits for biotechnological purposes. 

 These considerations have important medical implications, including the 

problem of antibiotic resistance. Although there has been much progress in our 

understanding of collateral sensitivity, there are several key questions that remain 

unanswered29. It will be crucial to decipher the long-term impact of collateral 

sensitivity on resistance evolution. The associated costs that render microbes 

vulnerable to certain antibiotic may only be temporary, and that compensatory 

evolution can rapidly restore fitness29.  Future works should elucidate to what extent, 

and how, mutations ameliorating the fitness cost of resistance under drug-free 

conditions re-wire the collateral-sensitivity interactions between antibiotics. 

Alternatively, collateral sensitivity may have a long-lasting effect with a substantial 

impact on reaching clinically significant resistance levels29. 

 I anticipate that these novel experimental techniques, along with 

computational models of specific cellular subsystems, will allow researchers to 

reinvestigate key issues in the fields of network evolution and antibiotic resistance. 
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Under laboratory conditions 80% of yeast genes seem not to be
essential for viability1. This raises the question of what the
mechanistic basis for dispensability is, and whether it is the
result of selection for buffering or an incidental side product.
Here we analyse these issues using an in silico fluxmodel2–5 of the
yeastmetabolic network. Themodel correctly predicts the knock-
out fitness effects in 88% of the genes studied4 and in vivo fluxes.

Dispensable genes might be important, but under conditions not
yet examined in the laboratory. Our model indicates that this is
the dominant explanation for apparent dispensability, account-
ing for 37–68% of dispensable genes, whereas 15–28% of them
are compensated by a duplicate, and only 4–17% are buffered by
metabolic network flux reorganization. For over one-half of those
not important under nutrient-rich conditions, we can predict
conditions when they will be important. As expected, such
condition-specific genes have a more restricted phylogenetic
distribution. Gene duplicates catalysing the same reaction are
not more common for indispensable reactions, suggesting that
the reason for their retention is not to provide compensation.
Instead their presence is better explained by selection for high
enzymatic flux.

Although many single-gene deletions have negligible effects on
growth rates under laboratory conditions1,6, the causes and evolu-
tion of gene dispensability has remained a controversial issue7–9. The
capacity of organisms to compensate mutations partly stems from
gene duplicates8, whereas alternative metabolic pathways might also
have a role7,10–12. The one previous systematic analysis on a eukary-
otic organism13 used a gene’s rate of evolution as a proxy for
dispensability, a supposition now considered questionable14. A
third possibility, and one that has received relatively little attention,
is that genes only seem to be non-essential, and that they have
important roles under environmental conditions yet to be repli-
cated in the laboratory8,15.

To investigate the causes of gene dispensability, the metabolic
capabilities of the Saccharomyces cerevisiae network were calculated
using flux balance analysis (FBA)16. The previously reconstructed
network2,4 consists of 809 metabolites as nodes (including external
metabolites), connected by 851 different biochemical reactions
(including transport processes). The method first defines a solution
space of fluxes of all metabolic reactions in the network that satisfy
the governing constraints (that is, steady state of metabolites, flux
capacity, direction of reactions, nutrients available in the environ-
ments; see Methods). Next, the optimal use of the metabolic
network to produce major biosynthetic components for growth
can be found among all possible solutions using various optimiz-
ation protocols3,4. The FBA and MOMA5 (minimization of meta-
bolic adjustment) protocols enable us to predict the phenotypic
behaviour of nutritional changes and gene deletions, along with the
concomitant changes in flux distributions.

We start by asking how well the mathematical model predicts
experimentally measured fluxes, and the effects of gene deletions.
We then use it to address the relative importance of the suggested
mechanisms for gene dispensability. Finally, we ask whether dis-
pensability is a directly selected feature or a side consequence.

Owing to the availability of systematic knockout studies1 and
some experimentally measured fluxes under four different growth
conditions17, we can directly test the predictive power of the
mathematical protocol. We initiated the model to mimic the growth
conditions used in these experimental studies. The model correctly
predicts: (1) relative differences in flux values; (2) presence or
absence of fluxes in 91–95% of the cases; (3) the fitness effects of
88% of single-gene deletions under nutrient-rich growth con-
ditions4 (see Supplementary Tables S1–S3). Although the model
ignores details of gene regulation, the predicted variations in the
activity of metabolic pathways across environments are consistent
with observations (Supplementary Tables S1 and S2; see also ref. 3).
The method, although robust, is not perfect. Although the fre-
quency of experimentally verified essential genes in the group of
genes with zero predicted flux is low on rich medium, it is not zero
(8.8% for genes with zero flux compared with 28.8% for the rest;
x2 ¼ 18.54, P , 1024, 1 degree of freedom (d.f.)). The few essential
genes in this group probably represent incomplete biochemical
knowledge, missing components from the biomass equation, or
pleiotropic gene functions4.

letters to nature

NATURE | VOL 429 | 10 JUNE 2004 | www.nature.com/nature 661©  2004 Nature  Publishing Group

dc_1338_16

Powered by TCPDF (www.tcpdf.org)



To investigate the possible causes of empirically observed gene
dispensability, we compared the predicted and experimentally
measured effects of enzyme deletions under nutrient-rich con-
ditions (see Methods). Enzymes were classified into five mutually
exclusive groupings on the basis of the presence of isoenzymes,
predicted dispensability and flux distribution: (A) enzymes that are
inactive under nutrient-rich conditions but active under some other
environments; (B) single-copy enzymes that encode essential reac-
tions; (C) duplicated isoenzymes that encode essential reactions;
(D) single-copy enzymes that encode dispensable reactions with
non-zero enzymatic flux; (E) duplicated isoenzymes that encode
dispensable reactions with non-zero enzymatic flux (Fig. 1; see also
Supplementary Table S4).

One possible reason that a gene might be non-essential is that its
function is not required under a given circumstance. Indeed, the
model predicts that a large fraction of experimentally ‘verified’ non-
essential genes should have zero enzymatic flux under nutrient-rich
conditions (68.3%). This result indicates that many enzymes make
no contribution to the production of biomass components under
this condition.

Can we find conditions under which the apparently non-essential
genes with zero predicted flux have an important fitness contri-
bution? As with a previous study3, we set up nine different growth
conditions that might have been representative during the evolution
of this species (Fig. 2), and performed enzyme-based deletion
studies. Under nutrient-rich medium, the fraction of essential
reactions and reactions with non-zero flux are especially low
(Fig. 2). Importantly, more than half of the experimentally verified
non-essential genes that are predicted to have zero flux under
nutrient-rich condition appear to have non-zero flux under some
other conditions (54.5%, 79 out of 145 cases). These we define as
‘conditionally active’ genes. This contrasts with the unconditionally
active (non-zero flux under all conditions examined) genes and
those for which we cannot find conditions under which they are
active. These results suggest that 37–68% of the seemingly dispen-
sable genes are environmentally specific (Supplementary Table S4).

Many of the conditionally active genes (76%) are predicted to
catalyse reactions that are essential under specific conditions. It
remains to be seen whether experiments will actually confirm the
detailed predictions.

If the above classifications are correct, one should expect differ-
ences in the phylogenetic distribution of enzymes with uncondi-
tional and conditional activity, as the latter group can more easily be
lost during evolution if the appropriate environment becomes rare.
We investigated this issue using a database18 of enzymatic reactions
across 133 sequenced genomes. We found that enzymes having non-
zero fluxes under only a few environmental conditions tend to
have a more limited phylogenetic distribution than enzymes with
unconditional activity (Fig. 3).

Why is it that there are dispensable genes associated with non-
zero predicted fluxes under nutrient-rich conditions? To shed light
on the relative importance of the compensation mechanisms
(duplication versus flux reorganization in the network), we first
compared the fraction of experimentally verified essential genes
between single-copy enzymes and duplicated isoenzymes. For the
comparison, only genes that are predicted to encode essential
reactions were considered (Fig. 1, class B and C). The low fraction
of essential enzymes with isoenzymes strongly supports previous
claims that dispensability partially results from redundant gene
duplicates8. The two exceptions (failure of compensation) might be
due to lack of duplicate enzyme activity in the same subcellular
compartment (Supplementary Table S5). Assuming that all or none
of the non-essential genes of class E are due to gene duplication
rather than flux reorganization, we obtained a lower (14.6%) and
upper estimate (27.8%) for the contribution of gene duplication to
dispensability (Supplementary Table S4).

The ability of duplicates to buffer each other’s loss may be
considered a special case of a more general mode of compensation,
in which the metabolic network adjusts the metabolic flux, and, in so
doing, mitigates the loss of individual genes. Compensation occurs
only if the original enzyme has a contribution to biomass production
(non-zero flux), but the underlying reaction is dispensable for
growth19 (class D and E, Fig. 1). To see the effect of flux reorganization
on in vivo gene dispensability independent of duplicate gene copies,
we compared the fraction of experimentally verified essential genes
between class B and D under the assumption that essential and
dispensable reactions should differ in the network’s ability to com-
pensate for their loss. Indeed, this is what we observed (Fig. 1).
However, this mode of compensation can only explain 3.8–17% of
gene dispensability (Fig. 1; see also Supplementary Table S4).

What factors might limit the compensatory capability of the
metabolic network? Our model demonstrates that the extent of flux

Figure 1 Number of experimentally verified essential and non-essential genes in different

categories. The classes are: (A) predicted to have zero flux under nutrient-rich conditions,

but non-zero flux in at least one other environment; (B) single-copy genes predicted to

catalyse essential reactions; (C) duplicate genes predicted to catalyse essential

reactions; (D) single-copy genes predicted to catalyse dispensable reactions; and (E)

duplicate genes predicted to catalyse dispensable reactions. When comparing groups B

and C, of the 68 metabolic genes that are predicted to catalyse essential reactions, 33 are

known to have a duplicated isoenzyme. Only about 6% of those that have an isoenzyme

are observed to be essential in vivo, whereas the proportion of essential genes is roughly

69% among those without an isoenzyme (x2 ¼ 28.1, d.f. ¼ 1, P , 1026). When

comparing groups B and D, of the 47 single-copy genes 35 are predicted to catalyse

essential reactions whereas 12 are predicted to be dispensable. The fraction of essential

genes is indeed higher in the former class (about 69% versus about 33%, x2 ¼ 4.6,

P , 0.05). A plus sign indicates the presence and a minus sign the absence of

isoenzymes/flux compensation.

Figure 2 The proportion of genes predicted to have non-zero flux and to be essential

under different growth conditions. Single-enzyme knockouts were simulated under nine

different growth conditions listed below. The total number of investigated enzymes was

310 for all conditions (isoenzymes were counted only once). Environments were: YPD, rich

glucose, low O2; min1, minimal glucose, low O2; min2, minimal glucose, anaerobic; min3,

minimal ethanol, low O2; min4, minimal acetate, low O2; min5, minimal glucose, carbon

limited; min6, minimal glucose, nitrogen limited; min7, minimal glucose, phosphate

limited; min8, minimal glucose, sulphur limited.
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reorganization positively correlates with the predicted fitness effect
of the compensated knockout (Supplementary Fig. S1), suggesting
that the yeast metabolic network has difficulties in tolerating large
flux reorganization.

Although it is clear that the presence of isoenzymes has a large
effect on gene dispensability, is it likely that dispensability has
evolved to enable such compensation or might it instead be a side
product? In the former case, one would expect gene duplicates to be
preferentially maintained if they specify a crucial function to
provide a shield against intracellular noise20. If it were so, then
one would expect the most important reactions of the network to be
under the control of isoenzymes. In contrast to expectations,
essential reactions are not more likely to be catalysed by isoenzymes
compared to non-essential reactions (Supplementary Table S6).
One possible alternative explanation for the maintenance of iso-
enzymes is that selection favours enhanced dosage of the same
product to provide high enzymatic flux21. We found strong support
for this theory: the average predicted flux of reactions catalysed by
isoenzymes is higher under all conditions than that of reactions
catalysed by single-copy enzymes (Supplementary Table S7).

Although many suggest that the high number of dispensable
genes is evidence for the selection of robustness to perturbation, our
results support a different conclusion. For the most part, knockout
studies performed under nutrient-rich conditions provide a sub-
stantial underestimate of the number of genes that are essential
under some environmental conditions (Fig. 2). Moreover, non-
essential genes may make small but significant contributions to
fitness even under routine growth conditions, but the effects are not
large enough to be detected8,15. Of those that seem to be truly
dispensable (non-zero flux and viable knockout), at least in the case
of gene duplicates, the dispensability is better explained as a side
consequence, rather than the result of selection to favour resilience.
These results, along with previous studies21,22, indicate that the
dosage requirements have an important influence on the evolution-
ary maintenance of gene duplicates in yeast.

Is it likely that environmental specificity explains much of the
apparent dispensability seen in other organisms? Recent systematic
deletion studies1,23–25 suggest that despite the apparent differences in
metabolic complexity and the extent of gene duplication across free-
living bacterial and eukaryotic species, the fraction of essential genes
under a given laboratory condition is generally low, in the range of
7–19%. In contrast to these low figures in free-living species, the
fraction of essential genes is 55–73% in the Mycoplasma genitalium
genome26. This is not simply due to a rarity of gene duplicates. We
suggest that, being a parasite with strict host and tissue specificity,
M. genitalium should have relatively few condition-specific genes.
We can test this hypothesis by comparing the proportion of single-

copy genes that are non-essential in yeast and in Mycoplasma. In
agreement with the theory, in yeast this is at least 62%, whereas this
drops to 24% in Mycoplasma. More direct evidence comes from a
data set on the growth phenotypes of mutant strains in Escherichia
coli27: most genes show severe fitness defects only under a small
fraction (10%) of the 282 conditions investigated (Supplementary
Fig. S2). Moreover, in agreement with the results on yeast metabolic
genes, condition-specific genes of E. coli show limited phylogenetic
distribution (Supplementary Fig. S3).

These issues are important, not least because they affect our
ability to test reliably hypotheses concerning the evolution of genes
and genomes. For example, the abundance of environmentally
specific genes in yeast might explain why dispensability under
nutrient-rich conditions only very weakly correlates with the rate
of protein evolution14. A

Methods
Filtered data sets used in this study
To investigate the metabolic network we used a previously compiled list of enzymatic
reactions in yeast2. The metabolic reconstruction gives accurate information on the
stoichiometry and direction of enzymatic reactions and on the presence of isoenzymes.
Cytosolic, mitochondrial and extracellular metabolites are treated separately, and the data
set also includes a list of transport reactions between compartments. Reactions catalysed
by isoenzymes were considered as a single flux, eliminating duplicate reactions. For data
analyses we restricted our attention to unambiguously classified enzymes; that is, those
with complete EC numbers. Sequence similarity between isoenzyme pairs was computed
by a pair-wise BLASTP28 search (we used an E-value of ,0.01 as a cutoff to recognize even
distant duplicated isoenzymes). We checked whether the duplicated isoenzymes act in
protein complexes, using both the compiled list on yeast metabolism and the MIPS
CYGD29 catalogue on known protein complexes, and these pairs (N ¼ 21) were excluded
from further analysis. Classification of the dispensability of genes on glucose-rich medium
(essential versus non-essential) was as provided by the Saccharomyces Genome Deletion
Project (http://www-sequence.stanford.edu/group/yeast_deletion_project/), which
contains information on large-scale knockout studies1. To minimize confounding factors
in designation of dispensability, multienzyme polypeptides, genes participating in protein
complexes (according to the MIPS CYGD catalogue of annotated complexes) and genes
with overlapping reading frames were excluded from all of the analyses. The KEGG
database18 was used to identify the enzymatic reactions of 133 bacterial and eukaryotic
species with complete genome sequences (a filtered set of genomes consisting of only one
genome per genus gives similar results).

Basic metabolic network model
Flux distribution and metabolic network capabilities were investigated by modification of
a previously elaborated genome-scale metabolic flux balance model of S. cerevisiae2–4. The
model starts by specifying the mass balance constraints around intracellular metabolites.
These constraints specify a series of linear equations of individual reaction fluxes that must
be fulfilled to enable steady state of metabolites. Mathematically, this is represented by
Sv ¼ 0, where S is the m £ n stoichiometric matrix, with m as the number of metabolites,
and n as the number of reactions. An Sij element of the stoichiometric matrix represents
the contribution of a jth reaction to metabolite i. The vector v represents the individual
fluxes of the network. Besides mass balance equations, reversibility/irreversibility
constraints are also imposed on individual internal fluxes (vi . 0 for irreversible
reactions). Import flux of external metabolites was constrained to be zero when not
available under the studied environment. The system also includes a biomass reaction
(with rate vgrowth) that represents the relative contribution of metabolites to the cellular
biomass of yeast (see Supplementary equation S1). Linear programming was used to find a
particular flux distribution that maximizes vgrowth under the described constraints and
defined nutrient uptake rates. We used this optimal flux configuration as the wild type
under the given growth conditions. We have investigated nine different environments (see
Fig. 2).

Calculating the fitness effect of gene knockouts
Enzyme deletions were simulated by constraining the flux of the corresponding reactions
to zero and calculating the knockout flux configuration under the assumption that
knockout metabolic fluxes undergo a minimal flux redistribution with respect to the flux
configuration of the wild type (minimization of metabolic adjustment, MOMA
protocol5). Using a different optimization protocol3,4 gives almost exactly the same results
(data not shown). Thus, calculation of knockout vgrowth requires quadratic programming
to find a point in flux space, which is closest to wild type. The software tool Cplex 7.5 was
used to solve these linear and quadratic optimization problems. We scaled fitness relative
to the wild type. Essential enzymes are defined as knockout strains having a growth rate of
at most one-half of the wild type. We observed a clear bimodal distribution of knockout
fitnesses: enzymes predicted to be non-essential have minimal or no effect on growth
(Supplementary Fig. S4). If the optimization problem for a given knockout was infeasible
we treated the enzyme as essential. Flux and knockout phenotype predictions were not
attempted for enzymes located on dead-end pathways or for enzymes with functions not
represented in the biomass equation4 (for example, glycoprotein, haem and chitin
metabolism, transfer RNA synthetases). In the case of reactions catalysed by isoenzymes, the

Figure 3 Relationship between phylogenetic distribution and condition specificity.

Enzymes having non-zero fluxes in most of the simulated environments have wide

phylogenetic distributions (analysis of variance: F ¼ 17.72; d.f. ¼ 3, 281; P , 1029).

Data are means (square symbols) ^ 2 standard errors.
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duplicates were deleted to obtain predictions on the dispensability of the underlying
enzymatic reaction.

Comparison of Mycoplasma and Saccharomyces genomes
We calculated the frequency of non-essential genes in the M. genitalium and the
S. cerevisiae genomes (only single-copy genes were considered). Gene duplicates were
identified using a BLAST protein search, with at least 25% amino acid similarity (using
different thresholds do not affect our results). The list of putative essential Mycoplasma
genes is from ref. 26. We found 1,881 out of 3,003 single-copy yeast genes that are non-
essential. This figure is 83 out of 356 genes for Mycoplasma.

Received 14 January; accepted 30 April 2004; doi:10.1038/nature02636.
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The ability to use environmental stimuli to predict impending
harm is critical for survival. Such predictions should be available
as early as they are reliable. In pavlovian conditioning, chains of
successively earlier predictors are studied in terms of higher-
order relationships, and have inspired computational theories
such as temporal difference learning1. However, there is at
present no adequate neurobiological account of how this learn-
ing occurs. Here, in a functional magnetic resonance imaging
(fMRI) study of higher-order aversive conditioning, we describe a
key computational strategy that humans use to learn predictions
about pain. We show that neural activity in the ventral striatum
and the anterior insula displays a marked correspondence to the
signals for sequential learning predicted by temporal difference
models. This result reveals a flexible aversive learning process
ideally suited to the changing and uncertain nature of real-world
environments. Taken with existing data on reward learning2,
our results suggest a critical role for the ventral striatum in
integrating complex appetitive and aversive predictions to co-
ordinate behaviour.

Substantial evidence in humans and other animals has outlined a
network of brain regions involved in the prediction of painful and
aversive events3–6. Most of this work has concentrated on its simplest
realization, namely first-order pavlovian fear conditioning; how-
ever, the predictions in this paradigm are rudimentary, showing
little of the complexities associated with sequences of predictors that
are critical in psychological investigations of prognostication7.
These latter studies led to a computational account called temporal
difference learning1,8, which has close links with methods for
prediction, and optimal action selection, in engineering9. When
applied to first-order appetitive conditioning, temporal difference
learning provides a compelling account of neurophysiological data,
both with respect to the phasic activity of dopamine neurons in
animal studies, and with blood-oxygenation-level-dependent
(BOLD) activity in human functional neuroimaging studies10–15.
However, beyond this simple paradigm, the utility of temporal
difference models to describe learning remains largely unexplored.
Here we provide a neurobiological investigation based on aversive
and, importantly, sequential conditioning.

We used fMRI to investigate the pattern of brain responses in
humans during a second-order pain learning task. Fourteen healthy
subjects were shown two visual cues in succession, followed by a
high- or low-intensity pain stimulus delivered to the left hand
(Fig. 1a) (see Methods). Subjects were told that they were perform-
ing a study of reaction times and were asked to judge whether the
cues appeared on the left or on the right side of a display monitor.
The second cue in each sequence was fully predictive of the strength
of the subsequently experienced pain; however, the first cue only
allowed a probabilistic prediction. Thus, in a small percentage of
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Adaptive evolution of bacterial metabolic networks by
horizontal gene transfer
Csaba Pál1,2, Balázs Papp2,3 & Martin J Lercher1,4

Numerous studies have considered the emergence of metabolic
pathways1, but the modes of recent evolution of metabolic
networks are poorly understood. Here, we integrate
comparative genomics with flux balance analysis to examine
(i) the contribution of different genetic mechanisms to network
growth in bacteria, (ii) the selective forces driving network
evolution and (iii) the integration of new nodes into the
network. Most changes to the metabolic network of Escherichia
coli in the past 100 million years are due to horizontal gene
transfer, with little contribution from gene duplicates.
Networks grow by acquiring genes involved in the transport
and catalysis of external nutrients, driven by adaptations to
changing environments. Accordingly, horizontally transferred
genes are integrated at the periphery of the network, whereas
central parts remain evolutionarily stable. Genes encoding
physiologically coupled reactions are often transferred
together, frequently in operons. Thus, bacterial metabolic
networks evolve by direct uptake of peripheral reactions
in response to changed environments.

Although horizontal gene transfer shapes bacterial genomes2,3, most
large-scale analyses have ignored its influence on the evolution of
biological networks. Theoretical models1 and systematic analyses4–6 of
the evolution of metabolic networks concentrate on the effects of gene
duplicates. Similarly, the selective forces that influence the growth of
biochemical networks are largely unknown. Here, we analyze these
issues using the previously reconstructed metabolic network7 of
Escherichia coli K-12, composed of 904 proteins and 931 unique

biochemical reactions, including coenzymes and transport processes
of specified external nutrients.

In eukaryotes, gene duplicates are the main source of evolutionary
novelties. Is gene duplication also the dominant genetic mechanism
contributing to growth of bacterial biochemical networks? In sharp
contrast to the eukaryotic yeast Saccharomyces cerevisiae, E. coli K-12
contains few duplicated enzymes in its metabolic network, almost all
of which seem to be ancient (Fig. 1). Detailed phylogenetic analysis
(Supplementary Methods online) indicated that only 1 of 451
investigated duplicated enzymes in E. coli arose since the divergence
from Salmonella B100 million years ago8, despite vast differences in
lifestyle and genome content between those two species9. Moreover,
this one duplicate pair (ornithine carbamoyltransferase 1 and 2)
functions in the same enzymatic reaction. Therefore, gene duplication
had little effect on the topology of the E. coli metabolic network over
the last 100 million years.

An alternative source of network growth is horizontal gene transfer.
To identify transfer events, we first established the phylogeny of 51
proteobacteria species including E. coli K-12 and several of its close
relatives, using 5 additional species to root the phylogenetic tree. The
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(S. cerevisiae), P o 0.001 from Kolmogorov-Smirnov two-sample test).

Received 6 May; accepted 8 September; published online 20 November 2005; doi:10.1038/ng1686

1European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69012 Heidelberg, Germany. 2MTA, Theoretical Biology and Ecology Research Group, Eötvös Loránd
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maximum-likelihood tree reconstructed from 47 concatenated protein
sequences was well-supported by bootstrap analyses (Supplementary
Fig. 1 online), and comparison with four independent phylogenetic
studies confirmed the branching order of all previously investigated
species sets (Supplementary Methods). Following earlier studies10–12,
we then used the presence or absence of proteins among the 51 species
to identify the most parsimonious scenarios for horizontal gene trans-
fers and gene losses across the reconstructed tree. We did this for each
of 2,325 orthologous families with members in E. coli K-12 (numbers
of inferred transfers at each node are listed in Supplementary Table 1
online). Our results rely on the biologically reasonable assumption that
gene losses are approximately twice as likely to occur as are transfer
events10,11 (gain/loss penalty ratio ¼ 2); we obtained very similar
results with other parameter settings (Supplementary Methods).

Consistent with expectations and earlier observations13, a large
fraction (30%) of the most recently transferred genes are annotated14

with virus- or transposon-related functions (Supplementary Fig. 2
online). For recently acquired genes, our results are in good agreement
with those from complementary approaches13 based on irregular GC
content and use of suboptimal codons (Supplementary Table 2
online). We found a gradual decay of both GC and codon usage
irregularities with the age of the transfer event (Supplementary Fig. 3
online), providing support for the previously hypothesized ‘ameliora-
tion’ of compositional biases over evolutionary time13. Under realistic
parameter settings, we estimated that 15–32 genes were transferred

horizontally into the E. coli metabolic network since its divergence
from the Salmonella lineage, vastly outnumbering the one identified
gene duplication over the same period.

Although gene duplication may have been an important source for
network changes during the early evolution of pathways1, the above
analyses suggest that horizontal gene transfer was the dominant
genetic mechanisms in the recent expansion of metabolic networks
in bacteria. Which forces may be responsible for the low contribution
of gene duplication to bacterial network growth? The foremost
difficulty for the expansion of gene families is preserving both copies
until they develop functionally distinct roles2. Moreover, the initial
preservation of duplicated genes probably depends on the effect of
enhanced gene dosage, which will be deleterious except under specific
selection pressures15. Most gene duplicates are quickly removed from
bacterial populations16.

What are the selective pressures driving the acquisition of foreign
genes? In comparisons with a systematic experimental gene knockout
study17, we found that only 7% of the genes horizontally transferred
into the metabolic network of E. coli are essential under nutrient-rich
laboratory conditions, compared with 23% of other genes (N ¼ 761
genes, w2 ¼ 26.53, degrees of freedom (d.f.) ¼ 1, P o 5 � 10�7). This
observation is consistent with at least two hypotheses. First, trans-
ferred genes may provide small but evolutionarily important con-
tributions to fitness, even under the examined routine growth
conditions18. Alternatively, horizontal gene transfers might confer
condition-specific advantages, facilitating adaptation to new environ-
ments. To assess the fitness contribution of all metabolic E. coli K-12
genes under different environments in silico, we carried out flux
balance analyses of the metabolic network19 (very similar results
were obtained with minimization of metabolic adjustment analyses20;
Supplementary Methods and Supplementary Table 2). Assuming a
steady state of metabolite concentrations, we determined the flux
distribution that maximized the production of a physiological com-
bination of major biosynthetic components, the biomass, for a given
set of available nutrients (Supplementary Methods).

Using a previously described protocol19, we investigated system-
atically the effect of gene deletions on fitness in different environ-
ments, approximating fitness by the rate of biomass production. We
examined 136 simulated environments, characterized by their main
carbon source and the availability of oxygen, which had been shown
in silico to support aerobic and/or anaerobic growth21 (Supplemen-
tary Table 3). Those genes that contributed most to the evolution of
metabolic networks (i.e., that were frequently gained or lost during the
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evolution of proteobacteria) were generally environment-specific,
whereas those genes that were invariant among proteobacteria con-
tributed to fitness in most environments (Fig. 2). Previous analyses
showed quantitative agreement between the predictions of the flux
balance model and experimentally measured nutrient uptake, enzy-
matic fluxes and the effects of gene deletions under several conditions
in E. coli19, but detailed predictions under several other conditions
remain to be validated. The above result remained valid when the
analysis was restricted to conditions where growth of E. coli K-12 was
experimentally shown; it was also robust to changes in the method to
identify gene transfers and losses and in the optimization protocols to
calculate the impact of gene deletions19,20 (Supplementary Table 2).
The environment-specificity of horizontally transferred genes might
explain why most of them are not translated into proteins under
laboratory conditions22. We conclude that the evolution of the net-
work is largely driven by adaptation to new environments and not by
optimization in fixed environments.

Having established the genetic mechanisms and the selective forces
that govern network evolution, we next turned to the topological effect
of horizontal gene transfer on the network. The above results suggest
that addition and deletion of reactions might be concentrated on those
network parts that interact with the environment. The number of
independent horizontal transfer events was highly variable across
different enzymatic pathways (Supplementary Table 2), and genes
in the central pathways of the network (e.g., glycolysis) had undergone
few transfer events across the tree. To analyze further the relationship
between network position and gene transfers, we classified proteins
according to their involvement in nutrient uptake, first reactions after
uptake, intermediate steps of metabolism and production of major
biosynthetic components. As predicted, proteins contributing to
peripheral reactions (nutrient uptake and first metabolic step) were
more likely to be transferred, whereas enzymes catalyzing central

reactions (intermediate steps and biomass production) were largely
invariant across species (Fig. 3).

Are genes added or lost from metabolic networks one at a time, or
does network evolution proceed by steps involving whole sets of genes
simultaneously? Modules of physiologically coupled genes might be
the best candidates for simultaneous acquisition or loss during
evolution. We identified physiologically coupled enzyme pairs by
flux-coupling analysis23. Two special cases were considered: fully and
directionally coupled enzyme pairs. In fully coupled enzyme pairs, the
flux catalyzed by one protein is always the same as that catalyzed by
the other except for a constant factor, as in linear pathways. Fully
coupled enzymatic pairs provide a very rigorous and stringent defini-
tion of biochemical modules, as only together can such pairs fulfill
their metabolic function. Directional coupling indicates that removal
of one enzyme shuts down flux through the other but not vice versa.
As predicted, both fully and directionally coupled enzymes were much
more often gained or lost together on the same branch of the
proteobacterial phylogenetic tree than would be expected by chance
(Table 1). This suggests that physiological modules tend to be
conserved during evolution, contrary to previous results based on
more loosely defined modules24.

Moreover, 30% of the fully coupled pairs are encoded in the same
operon in E. coli25, a fraction much higher than would be expected for
randomly chosen pairs (0.5%). The fraction of pairs sharing the same
operon rises to at least 75% when considering only fully coupled pairs
that were gained together during evolution leading to E. coli. These
latter results confirm that the gains of physiologically fully coupled
pairs together most likely occurred in one step, the uptake of at least
part of an operon.

Future studies will aim to characterize the molecular details of the
evolutionary network dynamics, for example, by analyzing how the
enzymatic composition of the network affects its ability to adapt to

Table 1 Physiologically coupled enzyme pairs are frequently transferred or lost together

Interaction Event Individual events Fraction of co-events OR (95% c.i.)

Fully coupled Transfer 59 37% 64.6 (24.2–168.8)

Fully coupled Loss 1,624 53% 50.0 (41.8–59.6)

Directionally coupled Transfer 78 30% 60.3 (24.3–147.2)

Directionally coupled Loss 2,833 21% 9.6 (8.3–11.1)

‘Individual events’ is the total number of individual gene gains (or losses) investigated. ‘Fraction of co-events’ is the fraction of the total gains (or losses) of genes involved in
physiologically coupled pairs that occur together with their coupled partner. Only branches originating from an ancestral node in which both genes are absent (or present) were
considered in the analysis of ‘co-gains’ (or ‘co-losses’). Odds ratios (ORs) quantify how much more likely gain (or loss) of a gene is when its coupled partner gene is gained (or lost)
along the same phylogenetic branch; all odds ratios are highly significant (Fisher’s exact test, P o 10–12). Similar results were obtained with different model settings (Supplementary

Table 2). c.i., confidence interval.

Table 2 Some operons containing horizontally transferred genes with physiologically coupled, environment-specific functions

Operon name Predicted nutrient for which operon is required Literature information Genes in operon and physiological coupling

atoDAE Acetoacetate, butyrate Short fatty acids atoE 2 atoD/atoA*

codBA NA Cytosine codB - codA

cynTSX NA Cyanate cynX 2 cynS - cynT

fucPIKUR Fucose Fucose fucP 2 fucI 2 fucK*

melAB Melibiose Melibiose melB 2 melA

mtlADR Mannitol Mannitol mtlA 2 mtlD*

AraBAD Arabinose Arabinose araA 2 araB 2 araD

The operons listed are required for the uptake or catalysis (mostly the first or second step after uptake) of specific nutrients. Members of these operons are physiologically coupled.
Nutrient conditions where the operons are required are derived from the model and from literature compiled from RegulonDB and Ecocyc14. Genes in the operons are listed as
ordered on the metabolic map. Genes involved in transport processes are underlined. Genes horizontally transferred to E. coli are depicted in bold. Physiological coupling between
genes is denoted by arrows (2, fully coupled; -, directionally coupled). Genes that are not part of the metabolic network are excluded from the analysis. Unless otherwise indicated
(*), evidence for horizontal transfer is consistent under all investigated parameter settings. NA, not analyzed.
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new environments. As a first step, we examined whether the gradual
evolution of metabolic pathways can be understood by analyzing
the details of physiological coupling between enzymes. For example,
one might expect that an enzyme whose function depends on
the presence of another enzyme would have been acquired by the
E. coli genome more recently than its partner. This is indeed observed
in 70% of those directionally coupled gene pairs in which both genes
were acquired on different branches leading to E. coli (N ¼ 386, sign
test P o 10�16). Future studies will also have to examine how the
number of physiological interactions influences the probability of
successful gene transfer26. Furthermore, given that the physiological
adaptation to new environments is accompanied by major flux
reorganizations along the high-flux backbone of the metabolic net-
work27, the role of horizontally transferred genes in these reorganiza-
tions needs to be examined.

In summary, metabolic networks in bacteria evolve in response to
changing environments, not only by changes in enzyme kinetics
through point mutations, but also by the uptake of peripheral
genes and operons through horizontal gene transfers (a list of
examples is given in Table 2). Our results indicate that systems
biology cannot stop at the boundaries of the metabolic network: to
understand network evolution, we need to extend our analysis to the
environment, both inanimate (providing nutrients) and animate
(providing genetic material).

METHODS
Gene gains and losses. Based on gene presence and absence obtained from

STRING28, we reconstructed the most parsimonious scenarios10–12 for gene

loss and horizontal transfer events (gene gains) on the rooted phylogeny using

generalized parsimony as implemented in PAUP* (Supplementary Methods).

All results were obtained using relative penalties for horizontal gene transfer

and deletions of 2:1 (gain/loss penalty ¼ 2)10,11; different settings gave similar

results (Supplementary Table 2).

To analyze CDgains, we started with nodes of the phylogenetic tree in which

the two investigated enzymes (e.g., A and B) were absent. We then constructed a

contingency table by counting the occurrence of the four possible evolutionary

scenarios (gain of A, gain of B, gain of A and B, and no gain) along all branches

starting from these nodes. The odds ratio quantifies how much more likely the

gain of a gene A is if its physiologically coupled partner gene B is gained along

the same phylogenetic branch. We used an analogous procedure for loss events,

analyzing all branches starting from nodes in which both A and B were present.

Gene families with more than one member in E. coli K-12 were excluded from

the analysis.

Metabolic network analysis. We examined the reconstructed metabolic net-

work (iJR904 GSM/GPR) of E. coli K-12. We followed previously established

protocols19,20 to investigate the effect of gene deletions under 136 environ-

mental conditions. Flux balance analysis involves two fundamental steps:

(i) specification of mass balance constraints around intracellular metabolites

and (ii) maximization of the production of biomass components (the list of

environments and biomass components is given in Supplementary Table 3

online). Physiologically coupled reactions and blocked reactions were identified

as described previously23. We found 772 fully coupled reaction pairs and 1,542

directionally coupled reaction pairs.

More methodological details (including ortholog identification, inference of

phylogenetic genome tree and age estimation of gene duplicates) are given in

Supplementary Methods.

Note: Supplementary information is available on the Nature Genetics website.
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Abstract

Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as
deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their
detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive
evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory
mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker’s yeast genome to
compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We
initiated laboratory evolutionary experiments with over 180 haploid baker’s yeast genotypes, all of which initially displayed
slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive:
68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the
genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely
to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally
specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the
majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution
promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not
phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these
results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has
substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies
that gene content variation across species could be partly due to the action of compensatory evolution rather than the
passive loss of genes.
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Introduction

Deleterious, but non-lethal mutations are constantly generated

and can hitchhike with adaptive mutations [1]. Consequently,

such deleterious alleles are widespread in eukaryotic populations

[2,3]. For example, as high as 12% of the coding SNPs in yeast

populations are deleterious [2]. Many of the observed functional

variation in this species yield proteins with compromised or no

activities [2], or lead to complete loss of genes with significant

contribution to fitness (Text S1). Deleterious loss-of-function

variants may occasionally revert to wild type, eventually perish

from the population, or become compensated by mutations

elsewhere in the genome. The third possibility, termed compen-

satory evolution, is the focus of our study. Theoretical works

suggest that mutant subpopulations can cross fitness valleys by the

simultaneous fixation of a compensatory mutation in the

population [4,5]. This process can also work in large populations

and is facilitated by linkage of the two alleles [5].

Compensatory evolution appears to be common at many levels

of molecular interactions. It is involved in the maintenance of

RNA and protein secondary structures, it mitigates the costs of

antibiotic resistance [6,7], and allows rapid fitness recovery in

populations with accumulated deleterious mutation loads [7–9].

Compensatory regulatory mutations also act to stabilize gene

expression levels across species [10,11], and conserve DNA-

encoded nucleosome organization [12]. The most detailed

experimental analyses on compensatory mutations for fixed

deleterious mutations were performed in DNA bacteriophages
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[8,13–15], bacteria [16,17], and Caenorhabditis elegans [7,9].

Three major patterns emerged from these studies. As the target

size for compensatory mutations is typically much larger than that

for reversion, compensation is more likely than reversion of

deleterious mutations [13]. The rate of compensatory evolution

increased with the severity of the deleterious fitness effects, and

was not limited to functionally interacting partners of the mutated

gene [15].

As regards the potential pleiotropic effects of compensatory

evolution, our knowledge is rather limited, not least because it

demands detailed exploration of the underlying molecular

mechanisms of compensation. Compensatory mutations may

enhance fitness either by reducing the need for the gene with

the compromised function, or by restoring the efficiency of the

affected molecular function [18]. For compensation of fitness costs

of antibiotic resistance conferring mutations, restoration of

function was the most common mechanism [18], but in other

systems the relative importance of functional substitution and

restoration is unknown. In the case of functional restoration (e.g.,

by enhanced dosage of a redundant duplicate of the disrupted

gene), one might expect limited pleiotropic fitness effects of

compensatory mutations across environmental conditions.

Compensatory evolution following gene loss is of special interest

[17]. Gene loss may be initiated by genetic drift and/or selection

through antagonistic pleiotropy [17,19]. As reversion to the wild-

type state is less likely, gene loss may promote genetic changes that

drive the populations to new adaptive peaks (Figure 1). It’s

reasonable to assume that compensatory mutations are generally

specific to the gene defect, and multiple molecular mechanisms

can restore fitness. Therefore, independently evolving populations

carrying an inactivated gene are expected to diverge from each

other. Moreover, if compensation mainly proceeds by reducing the

need for the disrupted molecular function then compensatory

evolution could have a large impact on cellular physiology and

survival upon environmental change. Accordingly, the beneficial

effects of compensatory mutations may frequently be conditional,

and subsequent changes to the environment can reveal the hidden

genetic variation across populations (Figure 1). The goal of the

current study was to test this hypothesis by an integrated systems

biology approach. Specifically, we aimed to determine the

potential of the Saccharomyces cerevisiae genome to compensate

for gene loss through compensatory evolution and to explore the

long-term consequences of this process.

Results

Rapid Compensatory Evolution Following Gene Loss Is
Common

We initiated laboratory evolutionary experiments with 187

haploid single gene knock-out mutant strains, all of which initially

showed slow (but non-zero) growth compared to the wild-type

control in a standard laboratory medium (Figure 2A, for selection

criteria, see Materials and Methods). These genes cover a wide

range of molecular processes and functions (Table S1). Populations

were cultivated in parallel (four replicate populations for each null

mutation), resulting in 748 independently evolving lines. 0.5% of

each culture was diluted into fresh medium every 48 hours, and

populations were propagated for approximately 400 generations.

To control for potential adaptation unrelated to compensatory

evolution, we also established 22 populations starting from the

isogenic wild-type genotype, referred to as evolving wild types.

Next, all starting and evolved populations were subjected to high-

throughput fitness measurements by monitoring growth rates in

liquid cultures.

Fitness may increase during the course of laboratory evolution

as a result of general adaptation to the environment and/or

accumulation of compensatory mutations that suppress the

Figure 1. Compensatory evolution on the adaptive landscape.
Schematic representation of the impact of compensatory evolution on
the fitness landscape. The x and y axes on the landscape locate the
network of neighboring genotypic states, while the z axis defines fitness
in a single environment. Gene loss leads to a fitness valley (from WT to
KO), while compensatory evolution can drive the population to
different adaptive peaks (Ev1 versus Ev2). The upper fitness landscape
shows the environment where compensatory evolution took place. The
dashed arrow represents the original gene deletion event. Yellow lines
represent different evolutionary routes. WT, wild type; KO, ancestor
strain with a gene deletion.
doi:10.1371/journal.pbio.1001935.g001

Author Summary

While core cellular processes are generally conserved
during evolution, the constituent genes differ somewhat
between related species with similar lifestyles. Why should
this be so? In this work, we propose that gene loss may
initially be deleterious, but organisms can recover fitness
by the accumulation of compensatory mutations else-
where in the genome. To investigate this process in the
laboratory, we investigated 180 haploid yeast strains, each
of which initially displayed slow growth owing to the
deletion of a single gene. Laboratory evolutionary exper-
iments revealed that defects in a broad range of molecular
processes can readily be compensated during evolution.
Genomic analyses and functional assays demonstrated
that compensatory evolution generates hidden genetic
and physiological variation across parallel evolving lines,
which can be revealed when the environment changes.
Strikingly, despite nearly full recovery of fitness, the wild-
type genomic expression pattern is generally not restored.
Based on these results, we argue that genomes undergo
major changes not simply to adapt to external conditions
but also to compensate for previously accumulated
deleterious mutations.

The Genomic Landscape of Compensatory Evolution
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deleterious effects of gene inactivation. Under the assumption that

compensatory evolution was the dominant force in our experi-

ments, fitness should not increase by the same extent in all

lineages: genotypes that carry deleterious null mutations are

further away from the optimal state and are hence expected to

show large fitness gains (Figure 2A); this was indeed so. On

average, the evolving wild-type control populations showed a

small, but significant 5% fitness improvement. By contrast, the

fitness of populations carrying a deleterious null mutation

improved by 23% on average (Figure 2B), and many of them

approximated wild-type fitness (Figure 2C; Table S1). On the

basis of fitness measurements at multiple time points during

laboratory evolution (see Methods), we also report that individual

fitness trajectories often showed a saturating trend during the

course of laboratory evolution (Figure S1).

The difference in fitness improvement is not due to the

elevated mutation rate of mutant genotypes for two reasons. First,

a previous study conducted a genome-wide screen with the aim to

identify genes in S. cerevisiae that influence the rate of mutations

[20]. While a large number of such genes have been found, only

four of them were present in our gene set (Drad54, Drad52,

Dmre11, and Drad50). Second, fitness improvements of the

corresponding single gene knock-out strains did not differ from

the rest of the dataset (one-tailed Wilcoxon rank sum test,

p = 0.89).

As previously [16], we defined compensatory evolution as a

fitness increase that is disproportionally large relative to that in the

evolving wild-type lines. Using this definition, 68% of the

genotypes showed evidence of compensatory evolution (i.e., at

least one of the four independently evolving populations fulfilled

Figure 2. Compensation of fitness loss during laboratory evolution. (A) Experimental scheme to estimate evolutionary compensation of
gene defects. See text for details. (B) Distribution of relative fitness improvement (RFI) of the knock-out mutant strains and the evolving control
lineages (Table S1), where RFI = (evolved fitness/initial fitness)21. (C) Relative compensation (RC) of the compensated knock-out mutant strains (Table
S1), where RC is the fraction of the initial fitness defect that was compensated for during laboratory evolution (see Materials and Methods). (D)
Compensation does not depend on pleiotropy (Table S1). The bars indicate mean 6 standard error, Wilcoxon rank sum test p-values for the three
comparisons are: 0.71, 0.44, and 0.36, respectively. (E) Genotypes with lower initial fitness were more likely to be compensated for during laboratory
evolution (Table S1). Lines were divided into groups by initial fitness, the fraction of compensated lines among all the lines in the group is shown as
bars (chi-squared test for trend in proportions, p,10213, number of lines in the groups from left to right: 38, 56, 201, 337).
doi:10.1371/journal.pbio.1001935.g002

The Genomic Landscape of Compensatory Evolution
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the above criteria). The corresponding genes cover a wide range of

molecular and cellular processes (Table S1).

Impact of Gene Pleiotropy and Dispensability on the
Propensity for Compensation

Next, we compared the fitness improvements between evolved

lines founded from the same gene deletion genotype versus those

founded from different genotypes. This analysis revealed that not

all genes were equally likely to be compensated as fitness gain

differed significantly across genotypes (ANOVA, F(186) = 3.9, p,

10214) (see also Figure S2). It has been previously suggested that as

mutations with especially large fitness effects tend to disrupt a

broader range of molecular processes [21], such mutations may

influence the number of mutational targets where compensatory

evolution can occur [13]. We compiled three datasets that estimate

different aspects of gene pleiotropy [22], including fitness under

diverse environmental conditions (environmental pleiotropy), the

number of protein-protein interactions (network pleiotropy), and

the number of biological processes associated with a gene

(multifunctionality). The extent of evolutionary compensation

did not depend on any of the above mentioned features

(Figure 2D). However, consistent with results of prior small-scale

bacterial and viral evolutionary studies [13,16], null mutations

with more severe defects were more likely to be compensated

(Figure 2E). This pattern probably reflects that the availability of

compensatory mutations across the genome strongly depends on

the fitness effect of the deleted gene. We provide a simple

explanation of this phenomenon in the Discussion.

Compensatory Evolution Promotes Genomic
Diversification

To investigate the genomic changes underlying compensatory

evolution, we re-sequenced the complete genomes of 41 indepen-

dently evolved lines and the 14 corresponding ancestors, all of which

showed large fitness improvements (Table S1). We focused on de
novo mutations that accumulated during the course of laboratory

evolution. Large-scale duplications (including segmental or whole

chromosome duplication) were observed in 22% of the laboratory

evolved lines. On average, six point mutations and 0.5 small

insertions or deletions per clone were detected (Figure 3A; Table

S2). The ratio of non-synonymous to synonymous mutations was

significantly higher than expected by chance (p = 0.003, see

Materials and Methods), indicating that the accumulation of these

mutations was driven by adaptive evolution. On average, pairs of

evolutionary lines founded from the same genotype shared 5.3% of

their mutated genes, while the same figure was 0.1% for lines

founded from different genotypes (Table S2). This result is in

contrast to results of a prior bacterial study [23], where a strong

signature of parallel evolution emerged at the gene level across

parallel evolving laboratory populations. Despite the rarity of

parallel evolution at the molecular level, a major unifying trend

emerged: evolution preferentially affected genes that are function-

ally related to that of the disrupted gene (Figure 3B). Moreover,

when the null mutation affected a protein complex subunit, another

subunit of the same complex was mutated 10 times more often than

expected by chance (Figure 3B). Taken together, these results

indicate that deletion of any single gene drives adaptive genetic

changes specific to the functional defect incurred.

Pre-Existing Genetic Redundancy Has No Major Impact
on Compensatory Evolution

Although duplicated genes with partially overlapping function

are frequent in the yeast genome, we found no evidence that

genetic changes affecting a duplicate of the disrupted gene provide

a general mechanism of compensation in our evolved lines. First,

our dataset contains 128 genes showing evidence for compensa-

tion, and only 25% of these genes have a duplicate in the yeast

genome (i.e., at least 30% amino acid similarity between the two

copies). This figure is a gross overestimate, as it includes very

distant duplicates that most likely diverged functionally (Materials

and Methods). Second, the subset of genes with a gene duplicate

were not more likely to be compensated during laboratory

evolution than the rest of the dataset (Chi-squared test, p = 0.54).

Third, genome sequence analysis of the evolved lines revealed only

one clear example where evolution proceeded through increasing

the dosage of a gene duplicate with redundant function of the

deleted gene (Figure 3C). All three studied evolved lines of Drpl6b
showed an increased copy number of the left arm of Chromosome

XIII (Figure 3C). RPL6B is a non-essential gene and encodes a

ribosomal 60S subunit protein L6B. The duplicated genomic

regions of Drpl6b evolved lines carry RPL6A, a duplicate copy of

RPL6B. The two genes share 94% amino acid identity, have

highly overlapping functions, and deletion of both genes confer a

synthetic lethal phenotype [24]. On the basis of these observations,

we propose that doubling the copy number of RPL6A through

segmental duplication could be partly responsible for the improved

fitness in the evolved lines carrying the RPL6B deletion. The

hypothesis was tested by increasing the copy number of RPL6A in

wild-type and Drpl6b genetic backgrounds, respectively. As

expected, an enhanced copy number of RPL6A substantially

improved the fitness of Drpl6b, but not that of the wild type

(Figure 3D).

Compensatory Evolution Does Not Restore Wild-Type
Genomic Expression State

Compensatory evolution may restore wild-type physiology or

generate novel alterations with respect to prior physiological states

[25]. To investigate the relative contribution of these processes,

eight genotypes carrying a deleterious gene deletion and one

corresponding evolved line were selected for transcriptome

analysis (see Materials and Methods for selection criteria). Using

DNA microarrays, the global gene expression states were

compared between the wild-type, the ancestral line, and the

evolved lines carrying the same gene deletion (Figure 4A and 4B).

As expected from prior studies [26], inactivation of genes with

high fitness contribution altered the expression of a large number

of genes across the genome (ranging between 81 to 588) (see Table

S3). Next, the transcriptomic profiles were compared by calculat-

ing all pairwise combinations of Euclidean distances. The wild-

type, the ancestral line, and the corresponding evolved lines

generally showed substantial differences in their transcriptome

profiles (Figure 4B), indicating that compensatory evolution drives

the cell towards novel genomic expression states. Importantly,

transcriptome profile distances between different genotypes was

always higher than distances between replicate measurements of

the same genotype (Figure 4B), implying that the substantial

differences observed between evolved lines and wild-type cannot

be attributed to measurement noise. As a further support, typically

only 10%–30% of the genes with altered expression in the

ancestral lines showed significant shift towards the wild-type

expression level in the corresponding evolved lines (Figure 4C).

Hence, despite substantial fitness improvements (.75% for all

cases investigated), the majority of the gene expression changes

due to gene deletion remained unrestored during evolution.

These patterns were not attributable to growth rate regulated

gene expression or copy number variation in the evolved lines

(Figure S3).
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Compensatory Evolution Generates Diverse Growth
Phenotypes across Environments

Taken together, compensatory evolution following gene loss did

not restore wild-type genomic expression and promoted genomic

divergence across populations. Are these evolutionary outcomes

phenotypically completely equivalent? This problem was first

addressed by monitoring the fitness of 237 evolved populations in

14 environmental settings, including previously tested nutrients

and stress factors [27]. Prior to evolution, genotypes carrying a

gene deletion generally displayed slow growth in most environ-

ments (Table S1). The situation was far more complex following

laboratory evolution. Considering all possible pairs of population-

environment combinations, fitness improved in 52%, and declined

in 8% of the cases (Figure 5A). Moreover, independently evolved

populations carrying the same disrupted gene showed more fitness

variation across the 14 tested conditions than in the environment

they had been exposed to during laboratory evolution (Figure 5B,

p,1027), while evolved wild-type populations did not show such a

Figure 3. Genomic analyses of evolutionary compensation. (A) Distribution of different mutational events (Table S2). The inlet shows the
color coding and the average value of total mutational events per genotype. (B) The originally deleted gene and the gene with identified de novo
mutation participated more often in the same protein complex, were more often assigned to the same functional category and showed significantly
more similar genetic interaction and expression profile than expected by random shuffling of the knock-out gene–mutated gene network. Dashed
line represents no enrichment; */**/*** indicates p-value,0.05/0.01/0.001, respectively. The x axis is logarithmically scaled. (C) Drpl6b evolved lines
showed duplication of the chromosomal region (or the complete chromosome) carrying a duplicate with redundant function (RPL6A). The gene
positions are marked by arrows below the corresponding chromosome, copy numbers are shown by color codes. (D) Dosage compensation of
Drpl6b by increased copy number of RPL6A (Table S5). Copy number of RPL6A was increased by transforming the RPL6A bearing plasmid of the MoBY
ORF Library. As the vector carries a selectable marker and a yeast centromere, the plasmid is present in one to three copies per cell. As a control,
strains were transformed with the empty centromeric plasmid. Relative fitness was measured as colony sizes on agar plates, values were normalized
to the wild-type control with a single genomic copy of RPL6A. All strains were grown on synthetic complete medium without uracil to select for the
plasmids. Error bars show standard error.
doi:10.1371/journal.pbio.1001935.g003
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difference (p = 0.93, coefficient of variations compared by Z-test).

Furthermore, the degree of fitness variation across conditions was

especially high for gene deletions that showed large fitness gains

during compensatory evolution (Spearman rho = 0.36, p = 1024)

(Figure 5C). These results indicate that the level of discernible

heterogeneity in fitness was relatively low in the evolved

populations founded from the same genotype, but the variation

can be uncovered upon environmental change.

Finally, our analysis revealed a few instances where the

laboratory evolved lines displayed significantly higher than wild-

type fitness in specific environments (Table S1). Most notably, the

evolved Drpl6b and Datp11 lines displayed 24%–26% fitness

increase compared to that of the wild type in a medium containing

sodium chloride (Table S1), a result that was confirmed by

additional independent colony size assays with high replicate

number (n = 20, Wilcoxon rank-sum test p,1024 in all cases).

Figure 4. Comparisons of the transcriptome profiles of wild-type, ancestor, and evolved lines. (A) Heatmaps of transcriptome profiles of
deletion mutants Drpl43a, Dpop2, Dmdm34, Drsc2, Difm1, Drpb9, and Dbud20 and their corresponding evolved lines. For each deletion mutant, the
fold-changes (FC) are shown for the ancestor strain versus the wild type, the evolved strain versus the wild type and the evolved strain versus the
ancestor strain (Table S3). Color scales as indicated. Individual transcripts are depicted if they change significantly (FC.1.7, p,0.05) at least once in
one of these comparisons. (B) The Euclidean distances of microarray profiles of the evolved evolutionary line from its ancestor and from wild type
(WT) were calculated and normalized to the ancestor–wild type distance for each genotype. The distances of the points in the figure are proportional
to the calculated profile distances. For each genotype triplet, distances were calculated on the basis of those genes that are differentially expressed in
at least one of the pairwise comparisons. For each deletion strain, the edges of the triangle represent Euclidean distances of log2 mRNA expression
fold-changes between the wild-type (WT), ancestor (anc), and evolved (evo) lines. To calculate these distances we used the average of four replicate
expression measurements (two biological and two technical replicates). Circles around average values represent the Euclidean distance between the
two biological replicates (calculated as the average based on the two technical replicates). For each genotype triplet, distances were calculated on
the basis of those genes that are differentially expressed (FC.1.7, p,0.05) in at least one of the pairwise comparisons (Table S6). (C) Within the
subset of genes that showed expression change upon gene deletion, the barplot shows the fraction of these genes that changed expression during
evolution in the opposite direction (i.e., evolution towards restoration of wild-type expression level; see inset). With one major exception (lines
disrupted in mdm34), only a small fraction of the expression changes were restored in the evolved lines (Table S6). The threshold for expression
change was 1.7-fold-change and p,0.05, as in [62].
doi:10.1371/journal.pbio.1001935.g004
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Moreover, the fitnesses of these lines in this medium surpassed all

that of the 22 evolved wild-type controls. These results are all the

more remarkable, as the corresponding ancestral Drpl6b and

Datp11 strains showed fitness values significantly lower than wild

type under all environmental conditions considered. These

preliminary results indicate that gene loss can promote adaptive

evolution towards novel environments, a possibility that will be

explored further in a future work.

A Case Study Reveals the Fitness Cost and Condition
Dependence of Compensatory Evolution

Next, we conducted an in-depth genetic analysis with the

MDM34 deletion with the aim of deciphering the molecular

mechanisms and/or potential fitness costs of compensatory

mutations (Text S1). This gene codes for a component of the

ERMES protein complex, and is involved in the exchange of

phospholipids between mitochondria and the endoplasmatic

reticulum (Figure 6A). Disruption of this gene yields impaired

cardiolipin synthesis [28], as an insufficient amount of unsaturated

fatty acids reaches the mitochondria (Figure 6A). Laboratory-

evolved lines carrying deletion in this gene substantially improved

fitness in the medium of selection (Table S1), but the putative

cellular mechanisms of compensation were remarkably different

across populations (Figures 6A and S4). The native copy of

MDM34 was reinserted into the ancestral line and four evolved

lines carrying the same deletion (Dmdm34). The analysis revealed

Figure 5. Large-scale phenotypic screen of evolved lines. (A) Fitness trade-offs in evolved lines carrying a deletion across 14 environments
(Table S1). Lines are ranked according to the number of environments in which they display improved fitness (brown). Grey and black dots indicate
conditions where the fitness of the line is statistically equal or lower, respectively, than that of the corresponding ancestor. (B) Fitness variation in
independently evolving lines carrying the same gene deletion. The figure shows the coefficient of variation in the in the medium of selection (YPD)
versus all other media (Table S1). The difference is highly significant (Wilcoxon rank sum test p-value,1027). The bars indicate mean of the
coefficients of variations 6 standard error. (C) Gene deletions showing larger fitness gains have higher variance of fitness between replicate lines
across other environments (Spearman rank correlation, rho = 0.36, p = 0.0001). Each point represents a gene deletion genotype. The x-axis shows the
mean of the fitness gains of the parallel evolving replicates of a given gene deletion, while the y-axis shows the mean of the coefficient of variations
measured in each alternative media between the parallel evolving replicates after 104 days of lab evolution (Table S1). The gray line indicates fit by
linear regression.
doi:10.1371/journal.pbio.1001935.g005
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that the net effect of mutations in three evolved lines were

deleterious in the presence of MDM34 (Figure 6B). Next, we

concentrated on a specific mutation observed in MGA2, a gene

involved in the regulation of unsaturated fatty acid biosynthesis

(Figure 6A; Text S1). Inserting the observed mutations (mga2-1)

into wild type and Dmdm34 resulted in very similar conclusions.

mga2-1 and Dmdm34 showed strong sign-epistasis [29]: they

were independently deleterious but significantly less so when

they occurred together (Figure 6C). Moreover, the capacity of

mga2-1 to compensate the loss of MDM34 was restricted to non-

acidic conditions (Figure 6C), probably because of the misregu-

lation of the corresponding stress-induced pathway under low

pH (Text S1).

Evolutionary Compensation by Loss-of-Function
Mutation

Our dataset contains 21 independent point mutations that

occurred during laboratory evolution and generated in-frame stop

codons. Most notably, a mutation in WHI2 emerged in an

evolving Drpb9 line, which shortened the coding region from 480

to 133 codons, and hence most likely resulted in a non-functional

protein.

To test the impact of loss of WHI2 function on fitness and

compensation, Dwhi2 was introduced into Drpb9 cells using

synthetic genetic array methodology (Figure 7A and 7B) [30]. In

agreement with expectation, deletion of WHI2 partly suppressed

the harmful effect of the RPB9 deletion (Figure 7B). RPB9 is an

RNA polymerase II subunit, and its deletion leads to elevated

transcriptional error rate [31] and in turn, to proteotoxic stress

[32], which can result in cell cycle arrest [33]. WHI2 is known to

be required for general stress response [34] and cell cycle arrest

[35]. We speculate that less stringent cell cycle control due to

WHI2 deletion is favorable in Drpb9 (see also [36]).

Next, the fitness impact of WHI2 deletion was evaluated across

14 environments. The fitnesses of the Drpb9 Dwhi2 strain varied

strongly across conditions, and showed correlation with that of the

evolved Drpb9 line, which carried the WHI2 non-sense mutations

(Spearman rho = 0.77, p,0.005) (see Figure 7C). Most notably,

the compensation of Drpb9 by Dwhi2 was completely abolished in

the presence of cycloheximide (Figure 7B). We conclude that the

compensatory effect of WHI2 deletion is plastic across environ-

ments.

Discussion

Our work addresses one of the most long-standing debates in

evolution. Since the early 1920s, Ronald Fisher pioneered the view

that adaptation is by and large a hill climbing process: it proceeds

through progressive accumulation of beneficial mutations [37,38].

However, as slightly deleterious mutations are far more abundant,

they have a significant contribution to genetic variation in natural

populations [2]. In the long run, the wealth of such detrimental

mutations is expected to promote fixation of compensatory

Figure 6. Compensation of the MDM34 gene deletion. (A) The cardiolipin synthesis pathway with an emphasis on the ERMES complex. The
complex tethers the endoplasmatic reticulum to the mitochondria, and is central for the transfer of phospholipids between the two compartments.
De novo mutations in the independent evolutionary lines affected different, but related cellular subsystems, including upregulation of the
unsaturated fatty acid synthesis (MGA2), another step of the cardiolipin synthesis pathway downstream of the ERMES complex (MDM35), and another
mitochondrial transport process (CRC1), which most likely affects respiration by modulating the interaction between carnitine and cardiolipin. For
further details on the underlying mechanisms see Text S1. The green arrow represents transcriptional upregulation; the dashed arrow indicates
indirect positive effect. The mutations in MGA2, MDM35, and CRC1 genes were found in Dmdm34 evolved lines 1, 3, and 4, respectively. (B) The
cumulative fitness effects of the compensatory mutations in Dmdm34 and ‘‘wild type’’ (Dmdm34+MDM34 reintroduced) backgrounds (Table S7). (C)
Epistatic interactions between mutations in two environments (Table S7). The bars in (B) and (C) indicate means 6 standard error. Arrows indicate
fitness costs and the extent of compensation.
doi:10.1371/journal.pbio.1001935.g006
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mutations elsewhere in the genome. This work focused on a

specific aspect of this problem, and asked whether deleterious gene

loss events promote adaptive genetic changes and what the side

consequences of such a process might be. To systematically study

compensatory evolution following gene loss, we initiated labora-

tory evolutionary experiments with over 180 haploid yeast

genotypes, all of which initially displayed slow growth owing to

the deletion of a single gene, and investigated the genomic and

phenotypic capacities of the evolved lines in detail. Thanks to the

exceptionally large-scale analysis of our study, the following major

conclusions can be drawn.

First, compensatory evolution following gene loss was pervasive:

68% of the deleterious, but non-lethal gene disruptions were

compensated through the accumulation of adaptive mutations

elsewhere in the genome (Figure 2B). Furthermore, in agreement

with prior bacterial studies [16,17], the process was strikingly

rapid. As the set of disrupted genes are functionally very diverse

(Table S1), it appears that defects in a broad range of molecular

processes can readily be compensated during evolution.However,

we and others [17] also found that not all genotypes are equally

likely to be recovered during laboratory evolution. Therefore,

future works should clarify the exact molecular, functional, and

systems level gene properties that influence compensability.

Second, our large-scale study indicates that the extent of fitness

loss due to gene disruption is one if not the strongest predictor of

compensatory evolution (Figure 2E). Although this relationship

has been observed previously in small-scale studies [16], the

reasons remained largely unknown. One may argue that the

spread of compensatory mutations with mild beneficial effects

would have taken many more than 400 generations to reach

fixation [16]. Although this explanation cannot be excluded, there

is another intriguing possibility [13]. Consistent with Fisher’s

geometric model [37,38], fitness improvement in populations close

to an optimal state can only be achieved by relatively rare

mutations with small effects. However, when a population with a

gene defect is further away from a fitness peak, compensatory

evolution may proceed through a wider range of mutations,

including ones that have deleterious side effects. Two lines of

evidence are consistent with this scenario. Compensatory evolu-

tion has associated pleiotropic effects (Figures 5 and 6C).

Moreover, the theory predicts that compensatory mutations

should be especially frequent in the case of strongly deleterious

null mutations. An analysis based on data of a prior genome-wide

genetic interaction study [21] suggests that it may indeed be so

(Figure 8).

Figure 7. Environment-dependent compensation by a loss-of-
function mutation. (A) Drpb9 and Dwhi2 mutations were crossed by
SGA using haploid parental strains as shown. To compare the double
mutant Drpb9 Dwhi2 with the wild-type control and corresponding
single mutants, the resistance cassettes required by the SGA method
were introduced into wild-type and single mutants by crossing them
with parental strains where the corresponding resistance cassettes
reside at a non-functional locus (Dhis3::KanMX4 and Dho::NatMX4). (B)
Relative fitness was measured as colony sizes on YPD and YPD
supplemented with cycloheximide (CYC), values were normalized to
WT. The arrow shows the extent of compensation of Drpb9 by Dwhi2 on
glucose medium (Wilcoxon rank sum test p = 0.005, error bars show
standard error) (Table S8). (C) Relative fitness of Drpb9 replicate
evolving line 2 and Drpb9 Dwhi2 double mutant were measured as
colony sizes grown on different media. Genotypes are indicated on the
left, the growth media are indicated above the heat map. For media
composition and abbreviations, see Table S4. Values are normalized to
Drpb9 ancestor. Log2 values are shown according to the color coding
(Table S8).
doi:10.1371/journal.pbio.1001935.g007

Figure 8. Strongly deleterious gene deletions can be sup-
pressed by a large number of other null mutations according
to a genome-wide genetic interaction study. The plot shows the
relationship between the fitness of a given single-gene deletion strain
and the fraction of other genes across the genome whose deletion
suppresses the fitness effect of this mutation (Table S9). Boxplots
present the median and first and third quartiles, with whiskers showing
either the maximum (minimum) value or 1.5 times the interquartile
range of the data. Spearman correlation on raw data: rho = 20.69, p,
10216, n = 3880. We note that using the fraction of suppressive
interactions among all genetic interactions displayed by a given gene
yields a very similar result (rho = 20.69, p,10216), indicating that the
relationship is not simply due to the fact that slow-growing strains
generally display especially large numbers of both positive and
negative interactions [21]. Information on suppression genetic interac-
tions and single-deletion fitness comes from a global genetic
interaction map of yeast [21]. Suppression interactions were defined
as in previously [70]. In brief, deletion of gene B suppresses deletion of
gene A if their fitness values obey the following rules: FA,FB and FAB.

FA+sA (where FA, FB, and FAB are the fitness measures of single deletants
A, B, and the double deletant AB, respectively, and sA is the standard
deviation of FA). One important caveat is that as this simple analysis
considers null mutations only, the results should be considered
preliminary.
doi:10.1371/journal.pbio.1001935.g008
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Third, genomic analysis of the evolved lines revealed that

deletion of any single gene drives adaptive genetic changes specific

to the functional defect incurred (Figure 3B), and consequently

convergent evolution at the molecular level was extremely rare. In

agreement with a prior bacterial evolutionary study [17], we found

that gene duplication has only a minor role during compensatory

evolution following gene loss. A more general issue is the extent to

which mutations that affect gene expression could alone recover

fitness [17,39]. Although genetic changes in putative promoter

regions were not overrepresented in our dataset (Binomial test,

p = 0.87), 21 observed point mutations generated in-frame stop

codons, most likely yielding proteins with compromised or no

activities (see also Figure 7). These results indicate that fitness

recovery following gene loss can partly be achieved purely through

inactivation of other genes.

Fourth, compensatory evolution promoted divergence of

genomic diversification, and shifted the evolved population

towards novel genomic expression states (Figure 4B). Despite

substantial fitness improvements, the majority of the gene

expression changes due to gene deletion remained unrestored

during evolution. This finding is consistent with prior works

arguing that no clear relationship exists between the change in

mRNA expression of a gene and its requirement for growth in the

same condition [40].

Fifth, independently evolved populations showed substantial

fitness variation across environments that they had not been

exposed to during laboratory evolution (Figure 5). These results

suggest that accumulation of adaptive mutations during compen-

satory evolution generated substantial genetic differences between

populations, and this variation can be uncovered upon environ-

mental change.

Taken together, several lines of evidence indicate that fitness

gains in the evolved lines reflect accumulation of gene specific

compensatory mutations rather than a global adaptation: (i)

evolving wild-type control populations showed only minor changes

in fitness, (ii) the rate of adaptation was genotype specific, (ii)

convergence at the molecular across genotypes was extremely rare,

(iv) evolution preferentially affected genes that are functionally

related to that of the disrupted gene, and (v) compensatory

mutations had no beneficial impact in a wild-type genetic

background.

The above results encouraged us to distinguish between two

evolutionary scenarios. Organisms may attempt to restore the

disrupted molecular function through mutations in genes with

redundant functions (functional restoration). Alternatively, they

may aim to minimize the cellular damage incurred by gene

disruption (functional replacement). While the possibility of full

functional restoration cannot be excluded, the rarity of compen-

sation through mutations in gene duplicates and the plasticity of

compensatory mutational effects across environments are consis-

tent with the second scenario. Indeed, our work demonstrates that

gene loss promotes genetic changes that have a large impact on

evolutionary diversification, genomic expression, and viability

upon environmental change. An important implication of our

study is that the beneficial effects of compensatory mutations

should frequently be conditional, and subsequent changes to the

environment can reveal the hidden fitness effects (beneficial and

detrimental alike). Lack of restoration of fitness across environ-

ments is broadly consistent with the emerging view that epistatic

interactions are plastic across conditions [41,42].

The perspective offered in this work leads to the re-formulation

of several fundamental questions. First, it sheds light on an

evolutionary paradox: while core cellular processes are generally

conserved during evolution [43], the constituent genes are partly

different across related species with similar lifestyles. We propose

that gene content variation across species is partly due to the

action of compensatory evolution and may not need to reflect

changes in environmental conditions and the consequent passive

loss of genes. Although the exact population genetic conditions

facilitating this process remain to be elucidated, several observa-

tions are consistent with this view. Most notably, the phylogenetic

conservation of indispensable genes depends on how easily the

gene can be functionally replaced through enhanced expression of

other genes [44]. Second, it has been suggested that deleterious

mutations may act as stepping stones in adaptive evolution by

providing access to fitness peaks that are not otherwise accessible

[45,46]. Indeed, our analysis revealed a few instances where the

laboratory evolved lines displayed significantly higher than wild-

type fitness in specific environments. Finally, given the prevalence

of gene loss events during tumorigenesis, future work should

elucidate whether similar processes drive the somatic evolution of

cancer [47].

Materials and Methods

Yeast Strains and Media
All strains used in this study were derived from the BY4741 S.

cerevisiae parental strain. Non-essential single-gene deletion strains

from the haploid yeast deletion collection [40] (MATa; his3D 1;

leu2D 0; met15D 0; ura3D 0; xxx::KanMX4) were used to

systematically identify all gene disruptions with a significant

growth defect. Slow-growing mutants were identified in two steps.

An earlier study identified 671 gene deletants in diploid

background, which showed a significant fitness defect on both

rich and synthetic media [48]. We thus measured fitness of the

corresponding MATa haploid strains by recording their growth

curves in liquid media. We identified 187 deletants showing at

least 10% growth rate defect, which constituted the set of ancestral

strains subjected to laboratory evolution (for details of growth

measurements see below).

The slow-growing yeast deletants used in this study are listed in

Table S1. The evolutionary experiment was conducted using rich

liquid medium (YPD, 1% yeast extract, 2% peptone, 2% glucose).

Solid media were prepared using 2% agar, which were found to be

optimal for reproducible colony size measurement. Details on the

media used in the phenotypic profiling experiment can be found in

Table S4. Oleic acid and stearic acid was dissolved in DMSO as a

100 mM stock and added to the medium after autoclaving to a

final concentration of 0.1 mM.

Laboratory Evolution
Compensatory adaptation refers to fitness gains in a gene

deletion strain that are greater than fitness gains occurring in an

isogenic wild-type strain. We conducted a series of laboratory

evolutionary experiments using four independent populations of

each of the 187 slow-growing deletants along with 22 independent

lineages of an isogenic wild-type strain (referred to as evolving wild

types). The YOR202W deletion strain was used as evolving wild-

type control because the fitness of this strain is indistinguishable

from the BY4741 parental wild-type strain [19]. Moreover, this

strain carries the KanMX4 cassette in the nonfunctional his3D1
allele, thus it was possible to control for the reported mutation-

generating effect of the KanMX4 cassette [36]. All strains were

inoculated into randomly selected positions of 96-well plates. Four

wells in different positions were not inoculated by cells to help

plate identification and orientation. Cells were grown in standard

laboratory rich media to minimize selection pressure originating

from nutrient limitation. The presence of the KanXM4 cassette
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was not selected for during the evolutionary experiment, since

G418 was omitted from the medium for two reasons. First, using

G418 at 200 mg/l concentration decreases the growth rate of the

unevolved wild-type control strain (unpublished data) and might

lead to selection for increased resistance. Second, the usage of the

drug at a growth-limiting concentration may induce mutagenesis

through environmental stress response. To provide optimal growth

conditions, plates were covered with sandwich cover (Enzyscreeen

BV), shaken at 350 rpm, and incubated at 30uC. Using a handheld

replicator, ,105 cells (,0.5 ml sample volume) were transferred

every second day to 100 ml of fresh medium in 96-well plates

resulting in ,7.6 generations between transfers. The experiment

was run for 104 days (,400 generations total) and samples from

days 0, 26, 52, 78, and 104 were frozen in 15% glycerol and kept

at 280uC until fitness measurement. Cross-contamination events

were regularly checked by PCR and visual inspection of empty

wells (unpublished data).

High-Throughput Fitness Measurements
We used established protocols specifically designed to measure

fitness in yeast populations [49]. Growth was assayed by

monitoring the optical density (OD600) of liquid cultures of each

strain using 384-well microtiter plates containing YPD medium (as

during the evolutionary experiments). We used relative growth

rate as a proxy for relative fitness (see below). Compared to

laborious competition based fitness assays, this protocol allows

estimating growth rate on a relatively large scale in an

environment that is nearly identical to the one used in the

evolutionary experiments.

Growth Curve Recording
Starter cultures were inoculated from frozen samples using 96-

well plates. The starter plates were grown for 48 hours under

identical conditions to the evolutionary experiment. 384-well

plates filled with 60 ml rich medium per well were inoculated for

growth curve recording from the starter plates using pintool with

1.58 mm floating pins. The pintool was moved by a Microlab

Starlet liquid handling workstation (Hamilton Bonaduz AG) to

provide uniform inoculum across all samples. The median blank

corrected initial OD600 of the wells was 0.027. Each 384-well plate

were inoculated with four different starter plates: one plate having

the unevolved wild-type control as a reference strain in all wells in

order to estimate various within-plate measurement biases, and

three plates containing the same set of mutants from three of the

five time points of the evolutionary experiment. The 384-well

plates were incubated at 30uC in an STX44 (LiCONiC AG)

automated incubator with alternating shaking speed every minute

between 1,000 rpm and 1,200 rpm. Plates were transferred by a

Microlab Swap 420 robotic arm (Hamilton Bonaduz AG) to

Powerwave XS2 plate readers (BioTek Instruments Inc) every

20 minutes and cell growth was followed by recording the optical

density at 600 nm. Six technical replicate measurements were

executed on all strains sampled from each time-point of the

evolutionary experiment. Measurements with growth curve

irregularities were automatically removed. Only those strains were

further analyzed where at least four technical replicate measure-

ments remained after this quality control step.

Growth Curve Analysis
Growth rate was calculated from the obtained growth curves

following an established procedure [49,50]. To eliminate potential

within-plate effects that might cause measurement bias, growth

rates were normalized by the growth rate of neighboring reference

wells that contained the wild-type controls. For each strain and

each evolutionary time point, relative fitness was calculated as the

median of the normalized growth rates of the technical replicates

divided by the median growth rate of the wild-type controls. At

day 0, the technical replicate measurements of the isogenic

independently evolving lines were combined to calculate median

ancestral fitness since by that time these populations had no

independent evolutionary history. Stringent criteria were used to

define the set of ancestor strains with substantial growth rate

defect: a minimum of 10% fitness drop was required compared to

the wild-type controls; significance was determined by one-tailed

Wilcoxon rank sum test, p-value was corrected with a false

discovery rate of 0.05.

Identifying Lines Showing a Significant Compensatory
Adaptation

To determine whether the fitness defect of a given knock-out

strain became compensated during the evolutionary experiment

two criteria must have been met: First, the growth rate

improvement had to be significant (one-tailed Wilcoxon rank

sum test, p-value corrected with a false discovery rate of 0.05).

Second, the growth rate increment of the knock-out strain had to

be disproportionally larger than that of the evolving wild-type

control strains. To test whether fitness gain in a knockout is higher

than those occurring in the evolving control lines, we first fitted a

normal distribution to the fitness improvement values of the

evolving control lines. Next, we defined a fitness improvement

cutoff, so that the probability that an evolving control line would

show an improvement at least that high is less than 0.05.

To evaluate the extent of evolutionary compensation, a relative

compensation index was calculated according to the following

formula:

Dend{Dstart

WTend{Dstart

where WT and D means median normalized growth rate of the

evolving wild-type control and the knock-out strain, respectively,

measured before (start) and after (end) the evolutionary experi-

ment. Thus, a relative compensation of 1 indicates that the knock-

out strain reached the same fitness after evolution as the evolving

wild-type control strains. See Table S1 for the whole dataset.

Phenotypic Profiling across Environmental Conditions
To study the pleiotropic effects of compensatory adaptation, we

measured the fitnesses of 237 evolved lines carrying a single gene

deletion, all evolved wild-type control lines along with the

corresponding ancestors across various environmental conditions.

As this experiment demands high-throughput analyses (over 14,000

data points), fitness was estimated by colony size on solid agar

media. Moreover, it allowed direct comparison of the reliability of

our measurements to results of a previous study (Figure S5).

We prepared solid agar media of 14 different compositions to

expose the strains to fundamentally diverse environments and to

obtain sufficient throughput. Our list of 14 growth media was

primarily based on a previous study [27] and included various

carbon sources and stress conditions (Table S4). A robotized

replicating system was set up for colony size based fitness

measurement. The system consists of a Microlab Starlet liquid

handling workstation (Hamilton Bonaduz AG) equipped with a

pintool with 768 pins (S&P Robotics Inc) and a custom-made

pintool sterilization station. Several aspects of the replication

procedure had been experimentally customized to achieve

uniform, reproducible inoculation of yeast cells.
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Fitness of the ancestor (day 0) and evolved strains (day 104) was

approximated by measuring colony sizes of ordered arrays of

strains at 768 density. First, four different 96-well plates of the

evolutionary experiment were scaled up to arrays of 384 colonies:

one having the unevolved wild-type control in all positions, and

three different plates of the mutant set from the same time point.

Then pairs of 384 arrays with corresponding strains from day 0

and 104 were combined to reach 768 density. With this set up, all

evolving replicate lines derived from the same ancestral genotype

from both day 0 and day 104 were grown on the same 768 plate to

exclude potential plate-to-plate variations when comparing colony

growth of ancestor and evolved lines. Four technical replicates of

these 768 arrays were transferred into each of the 14 different

media.

After acclimatization to the media at 30uC for 48 hours the

plates were replicated again onto the same type of media and

photographed after 48 hours of incubation at 30uC. Digital images

were processed to calculate colony sizes, and potential systematic

biases in colony growth were eliminated (Text S1). For each

growth environment, fitness of each original knock-out genotype at

day zero and each independently evolving line at day 104 was

determined as the median of the size of replicate colonies. The

reliability of our experimental setup and data processing was

confirmed by comparing the fitness measurements of ancestral

knock-out strains with the published data of Dudley and colleagues

(Figure S5) [27].

To determine whether an ancestor genotype shows a signifi-

cantly altered fitness compared to the wild-type control in a given

environment, we used a Wilcoxon rank sum test (with p-value

corrected for each condition with a false discovery rate of 0.05).

The same statistical test was used to determine whether the fitness

of an evolved line is different from that of its ancestor in a given

environment. See result in Table S1.

Genome Sequencing
To reveal the underlying molecular mechanisms of compensa-

tion, we subjected 41 strains to whole-genome re-sequencing. Our

list of sequenced strains primarily included genotypes with large

initial fitness defect, substantial fitness improvement and gradual

fitness increase over the course of evolution. To be able to detect

parallel evolution at the molecular level, we selected two to four

independently evolving lines of each ancestor genotype for

sequencing. Overall, 41 evolved lines from 14 deletion strains

were chosen along with their corresponding ancestor strains.

Candidates were re-streaked and single clones were isolated and

their fitness increase was confirmed by growth curve recording.

Genomic DNA was prepared using a glass bead lysis protocol:

clones were inoculated into 5 ml YPD+G418 (200 mg/l) and

grown to saturation at 30uC. Cells were pelleted and resuspended

in 500 ml of lyis buffer (1% SDS, 50 mM EDTA, 100 mM Tris

[pH 8]). Cells were mechanically disrupted by vortexing for

3 minutes at high speed with 500 ml glass bead (500 mm, acid

washed). After adding 275 ml 7 M ammonium acetate, samples

were incubated at 65uC for 5 minutes, followed by a second

incubation on ice for 5 minutes. The samples were extracted with

chloroform:isoamyl alcohol (24:1) and centrifuged for 10 minutes.

The aqueous layer was transferred into a new tube and

precipitated with 1 ml isopropanol, pelleted and washed with

70% ethanol, and resuspended in 500 ml RNaseA solution (50 ng/

ml). After 30 minutes RNaseA treatment at room temperature,

samples were chloroform:isoamyl alcohol (24:1) extracted, precip-

itated with 50 ml sodium acetate (3 M [pH 5.2]) and 1,250 ml

ethanol, pelleted and washed with 70% ethanol. Finally, the

genomic DNA was dissolved in water. The steps of re-sequencing

was done by the UD-GenoMed Medical Genomic Technologies

Ltd: amplified genomic shotgun libraries were run on the Illumina

HighScan SC with 16100 bp single read module resulting in an

average coverage of about 806. Reads were aligned to the S.
cerevisiae EF4 genome assembly using the BWA software package

[51] having the genomic repeats masked using RepeatMasking

[52]. Variant calling was performed using the GATK software

package [53]. Genomic single-nucleotide polymorphisms with less

than 200 phred-scaled quality score or lower than 0.3 mutant/

reference ratio were ignored. Duplications of large chromosomal

segments or whole chromosomes were identified as increased read

coverage of certain regions. Elevated read coverage of regions with

a minimum of 25 kb length were accepted as duplications if both

the Control-FREEC [54] (Wilcoxon rank-sum test, p,0.01) and

the CNV-seq [55] (p,0.0001) software predicted significant

alteration from the read coverage of the reference genome.

Our primary aim was to analyze de novo mutational events. De
novo mutations were identified as alterations from the reference

genome specifically found in the evolved lines but not present in

the ancestral strains. Mutations, which occurred before our

evolutionary experiment but after the gene knock-out, are referred

to as secondary ancestor mutations. These mutations were

identified in the ancestral strains as SNPs and indels present only

in the corresponding ancestor strain, not in any other ancestral

strains. The rationale behind this consideration is not to classify

mutations accumulated in the parental strain of the mutant library

prior to the generation of the knock-out strain as a secondary

ancestor mutation. The list of identified mutations can be found in

Table S2.

Ratio of Non-Synonymous to Synonymous SNPs
Whole-genome re-sequencing revealed that 86% of SNPs in the

coding regions were non-synonymous. To statistically test whether

the ratio of non-synonymous to synonymous SNPs was higher

than expected based on a neutral model of evolution, we employed

the method of Barrick and colleagues [56]. Briefly, we took all

different point mutations observed in protein coding regions and

calculated the probability that 86% or more substitutions would

result in a non-synonymous substitution if it occurred in a random

coding position. The excess of non-synonymous substitution

observed in the evolved genomes was significant (p = 0.003).

Datasets Used for Bioinformatic Analysis
To test whether the extent of evolutionary compensation is

influenced by the disrupted gene’s pleiotropy, we used three

complementary measures of gene pleiotropy. Environmental

pleiotropy of a non-essential gene was defined as the number of

unique conditions in which the removal of the gene resulted in a

fitness defect according to Dudley and colleagues [27]. Network

pleiotropy was measured as the total number of protein-protein

interactions reported in the BioGRID database [57]. Finally,

multifunctionality of a gene was calculated on the basis of a set of

GO terms considered to be specific by yeast geneticists, as

previously described [58].

To investigate whether mutations accumulated during com-

pensatory evolution preferentially affected genes that are func-

tionally related to the disrupted gene, we used different measures

of functional relatedness: co-membership within stable protein

complexes, shared functional category, genetic interaction profile

similarity, co-expression, and paralogy. For protein complexes we

used the manually curated dataset based on tandem affinity

purification/mass spectrometry studies (YHTP2008) from the

Wodak lab [59]. For functional categories, the MIPS Functional

Catalogue Database was downloaded [60]. Genetic interaction
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profile similarities were obtained from a large-scale genetic

interaction screen study [21]. The authors calculated the genetic

interaction profile for a given gene deletion genotype as the list of

genetic interaction scores detected across all other genes in their

dataset. The genetic interaction profile similarity between two

genes was defined as the Pearson correlation value of the two

genetic interaction profiles [21]. For calculating co-expression

data, 247 normalized microarray datasets from the M3D database

[61] were used to create an expression profile for each gene. In

case of multiple replicates per experiment, the average normalized

values were calculated, and employed further. For each gene pair,

co-expression value was calculated as the Pearson correlation

coefficient between the two expression profiles.

Paralog gene pairs were identified by performing all-against-all

BLASTP similarity searches of yeast open reading frames. We

defined two genes as paralogs if (i) the BLAST score had an

expected value E,1028, (ii) alignment length exceeded 100

residues, (iii) sequence similarity was .30%, and (iv) they were not

parts of transposons.

Gene Expression Analysis
Eight evolved lines were selected for microarray analysis, all of

them showing high fitness following evolution (at least 20% initial

fitness defect compared to the wild-type control and at least 20%

fitness improvement as a result of the evolutionary process). The

corresponding ancestral strains and the wild-type control were also

subjected to gene expression profiling. Table S3 contains the list of

strains. Candidates were re-streaked and single clones were

isolated and their fitness increase was confirmed by growth curve

recording.

Two independent colonies of the wild-type control, evolved, and

corresponding ancestor knock-out strains were inoculated into

15 ml YPD and grown overnight at 30uC. The saturated

populations were diluted to an OD600 of 0.15 in 60 ml YPD

and grown to early mid-log phase (OD600 0.660.05) in 250 ml

Erlenmeyer flasks with 220 rpm shaking at 30uC. Cells were

harvested by centrifugation (4,000 rpm, 3 min, 30uC) and

immediately frozen in liquid nitrogen after removal of superna-

tant. Total RNA was prepared by hot acidic phenol extraction and

cleaned up using the QIAGEN’s RNAeasy kit.

All steps after RNA isolation were automated using robotic

liquid handlers as described previously [62]. Dual-channel 70-mer

oligonucleotide arrays were used with a common reference pool of

wild-type RNA. Quality control, normalization, and dye-bias

correction was performed as described earlier [62]. The reported

fold change is the average of the four replicate mutant profiles

versus the average of all wild-type controls. A total of 58 transcripts

showed stochastic changes in wild-type profiles and were excluded

from the analyses. Differentially expressed genes were defined as

those showing a 1.7-fold abundance change and a p-value,0.05

when comparing two strains. The raw dataset is available online at

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/, accession

number E-MTAB-2352).

Robustness of Results of the Transcriptome Analysis to
Growth Rate Related Genes and Copy Number Variations

All transcriptome comparisons of the wild-type, knockout, and

evolved strains were repeated on a dataset where CNVs, genes

showing expression response to aneuploidy, and growth rate

related genes were excluded. CNVs were identified on the basis of

the read coverage of the genome sequence data (Table S2) with

the exception of one strain (Drpl43a), which was not sequenced. In

the case of Drpl43a, whole chromosome duplication was predicted

on the basis of visual inspection of expression profiles. The position

of partial chromosome duplication was predicted by the Charm

algorithm [63]. In evolved strains carrying aneuploid chromo-

somes, genes showing expression response to that particular

aneuploidy were excluded from the transcriptome comparisons

(data on the transcriptome effects of aneuploidy were obtained

from [64]). Genes showing significant expression response to

changes in growth rate were also excluded, as defined previously

[65] on the basis of the growth rate measurements of Brauer and

colleagues [66].

Strain Modifications to Investigate the Fitness Costs and
Epistatic Effects of Compensatory Mutations

The evolved lines of Dmdm34 were chosen for in-depth genetic

analysis. The fitness cost of the set of compensatory mutations

accumulated in the evolved Dmdm34 lineages was measured in

wild-type genetic background. To this end, the MDM34 gene was

re-introduced into the ancestor and evolved Dmdm34 lineages

according to the delitto perfetto method [67]. First, the KanMX4

cassette in the ancestor and evolved Dmdm34 lineages was

swapped with the CORE-UH cassette, containing the KlURA3
and hyg markers. Then the MDM34 open reading frame with

longer than 0.3 kb flanking regions on both sides was amplified

from the unevolved wild-type control strain and transformed into

the cells to replace the CORE-UH cassette. The replacement of

the KlURA3 marker was counter-selected using 5-FOA containing

medium. The loss of hygr was confirmed, the site and orientation

of gene replacement was verified by PCR and the sequence of the

MDM34 gene was determined by capillary sequencing.

In a second analysis, a point mutation identified in the MGA2
gene in one of the evolved Dmdm34 lineages was reinserted into

both the wild-type and ancestor Dmdm34 background. This

specific point mutation changes the 750th codon of MGA2 from

GAT to TAT resulting in the incorporation of tyrosine instead of

aspartic acid. We refer to the mutant allele as mga2-1. Using the

delitto perfetto method [67], we introduced this point mutation

into the unevolved wild-type control strain. First, the CORE-UH

cassette was inserted into the genome at the desired position of the

SNP. Then, two complementary oligonucleotides of 81 bp length

with the sequence of the region of interest and the SNP in the 41st

position were transformed. The replacement of the KlURA3
marker with the missense SNP was counter-selected using 5-FOA

containing medium, loss of hygr was confirmed, and the result of

the site-directed mutagenesis was verified by capillary sequencing.

Attempts to introduce the mga2-1 mutation into the ancestor

Dmdm34 strain in this way were not successful, presumably due to

the severe slow growth of the intermediate strain that lacks both

MDM34 and MGA2 gene in a functional form. To complement

this, a helper plasmid with MDM34 gene (MoBY ORF Library

[68]) was transformed into the cells prior to the site directed

mutagenesis [69]. Because of the presence of the URA3 marker on

the helper plasmid, the CORE-Hp53 cassette was used in this

experiment. The steps of mutagenesis were similar as without the

helper plasmid, which was removed by passaging cells through 5-

FOA afterwards.

qPCR Method
Yeast samples were grown in 20 ml YPD medium to mid-log

phase (0.8 OD600 value). RNA was extracted from 107 yeast cells

by acidic phenol method using TRI Reagent Protocol (Sigma-

Aldrich Co). The RNA samples were concentrated by the

NucleoSpin RNA Plant Kit (Macherey-Nagel), according to the

manufacturer’s instructions. A total of 500 ng RNA was used as a

template to prepare cDNA using the Maxima First Strand cDNA

Synthesis kit (Thermo Scientific). Reactions without template were
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set up to detect contaminations of the reagents used in the cDNA

synthesis. qPCR reactions were set up in 20 ml volume, using the

following templates: no template control, 10 ng non-transcribed

RNA and cDNA transcribed from 10 ng RNA. The qPCR

reactions were run in a Bioer LineK Gene device, using 26
Maxima SYBR Green qPCR Master Mix (Thermo Scientific). All

samples had three technical replicates. Gene expression was

determined in arbitrary units using a standard curve fitted on

triplicates of a four-step 10-fold dilution series. OLE1 expression

level was determined relative to TUB1 expression level as an

internal control. All control reactions, not treated with reverse

transcriptase or not having template, gave Ct values at least 10

cycles higher than the corresponding samples.

Supporting Information

Figure S1 Fitness trajectories often show a saturating
trend by day 104 of the evolution experiment. Fitness was

measured at five time points during laboratory evolution (at day 0,

26, 52, 78, and 104), and fitness improvements were tested for

each line and time interval (Wilcoxon rank-sum test, with a p-value

cut-off of 0.05, see Methods and Table S10). (A) focuses on lines

that showed one significant fitness improvement during the four

26-day time intervals. There is a strong (5-fold) depletion of lines

that showed a fitness improvement in the last time step of the

evolutionary experiment (eight out 159 cases, 40 expected, Chi-

square test, p,1028), indicating saturating compensatory evolu-

tion. (B) Representative examples of fitness trajectories showing a

saturating trend (replicate lines of six genotypes are depicted).

(TIF)

Figure S2 The extent of compensatory evolution in
knock-outs is genotype-specific. Here, we tested whether

there are inherent differences in the propensity for compensation

across genotypes (i.e., lines carrying different gene deletions). We

defined compensatory evolution as a fitness increase that is

disproportionally large relative to that in the evolving wild-type

lines (Table S1). Accordingly, genotypes can be classified into

three major categories on the basis of the fraction of corresponding

lines fulfilling the above criteria (none, mixed, all). To assess the

degree of departure from random expectation a randomization

protocol was used. It generated a distribution of the above three

categories under the assumption that all genotypes are equally

likely to gain high fitness during the course of laboratory evolution.

Specifically, the matrix of lines was shuffled one thousand times

(gray bars) and the above categories were recalculated. The

analysis revealed a strong enrichment of genotypes where all lines

were compensated (‘‘all’’) and genotypes where none of the lines

were compensated (‘‘none’’), while the ‘‘mixed’’ category was

relatively rare (a). This result is not simply due to the fact that null

mutations with more severe defects are especially likely to be

compensated for. When only genotypes with similar initial fitness

defects were considered, the trend remained (b,c,d). The four plots

show the observed and randomly expected distributions a, for the

whole dataset; b, c, d, for initial fitness ranges ,0.7, 0.7–0.8, .0.8,

respectively. Genotypes where either all or none of the

evolutionary lines showed compensation are significantly enriched

in all four cases, the corresponding Chi-square test p-values for a,

b, c, and d are ,10220, 0.013, 761026 and 1028, respectively.

(TIF)

Figure S3 Global transcriptome changes following com-
pensatory evolution. (A and B) were prepared by reproducing

the main results of Figure 4, after excluding genes from the

transcriptome profiles that (i) show copy number changes in the

evolved lines, (ii) change expression level in aneuploid lines [13], or

(iii) whose expression level depends on cellular growth rate (for

details see Materials and Method). (A) The Euclidean distances of

microarray profiles of the evolved evolutionary line from its

ancestor and from wild type (WT) were calculated and normalized

to the ancestor–wild type distance for each genotype (Table S11).

The distances of the points on the figure are proportional to the

calculated profile distances. For each genotype triplet, distances

were calculated on the basis of those genes that are differentially

expressed in at least one of the pairwise comparisons. (B) The

figure focuses on the subset of genes that showed expression

change upon gene deletion, and shows the fraction of these genes

that changed expression during evolution in the opposite direction

(i.e., evolution towards restoration of wild-type expression level;

see inset). With one major exception (Dmdm34), only a small

fraction of the expression changes were restored in the evolved

lines (Table S11). The threshold for expression change was 1.7-

fold-change and p,0.05, as previously described [14].

(TIF)

Figure S4 Pleiotropic effects and mechanism of com-
pensation of Dmdm34. (A) Diversity of pleiotropic effects in

independently evolved lines. Relative fitness across environments

of isolated clones of independently evolving lines founded from the

same Dmdm34 genotype were measured as colony sizes grown on

different media (Table S12). Genotypes are indicated on the left,

the growth media are indicated above the heat map. For media

composition and abbreviations, see Table S4. Values were

normalized to that of the ancestral Dmdm34 strain in the

corresponding environment. In (A) and (D) log2 values are shown

according to the color coding. (B) Quantitative PCR confirmation

of upregulation of OLE1 in both the evolved line carrying the

mga2-1 mutation and in the Dmdm34 mga2-1 double mutant

strain (Table S12). OLE1 expression was measured relative to

TUB1 as an internal control and expression values were

normalized to Dmdm34 ancestor. Error bars show standard error.

(C) Addition of oleic acid to the medium suppresses the fitness

defect of Dmdm34, but does not affect the fitness of the evolved

line carrying the mga2-1 mutation or the strain carrying both

Dmdm34 and mga2-1 mutations. Fitness was measured as colony

sizes relative to unevolved wild-type control on rich media

supplemented with DMSO as solvent control (non-treated),

0.1 mM oleic acid and 0.1 mM stearic acid (Table S12). For

each genotype relative fitness change compared to the corre-

sponding non-treated strain is shown. Error bars show standard

error. (D) A specific point mutation in MGA2 recapitulates the

pleiotropic effects of compensatory evolution observed in evolved

line 1. Relative fitnesses of Dmdm34 evolving line 1, and Dmdm34
mga2-1 double mutant were measured as colony sizes grown on

different media (Table S12). Genotypes are indicated on the left,

the growth media are indicated above the heat map. For media

composition and abbreviations, see Table S4. Values were

normalized to that of the ancestral Dmdm34 strain in the

corresponding environment.

(TIF)

Figure S5 Validation of the phenotypic profiling exper-
iment. We compared our colony size measurements (Table S1) of

the ancestral knockout strains to a published fitness profiling of the

yeast deletion collection [4]. In the environments that match the

published study, we find a good agreement between our data and

the classification of Dudley and colleagues [4]. In each

environment, knockouts present in our dataset were labeled as

‘‘no defect’’ versus ‘‘no/slow growth’’ based on Dudley and

colleague’s data. A significant difference was found between the
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two groups in our continuous fitness measurement (y-axis) in each

of the environments (one-tailed Wilcoxon rank-sum test; */**/***

indicates p-value,0.05/0.01/0.001, respectively).

(TIF)

Table S1 Fitness of strains in various environments.
The table includes fitness values of ancestor and evolved strains as

measured in liquid YPD and in different agar media. Pleiotropy

measures and GO process terms of the deleted genes are also

presented.

(XLSX)

Table S2 Mutations identified by Illumina next gener-
ation sequencing. The table contains all the identified de novo

and ancestral mutations in the sequenced genomes.

(XLS)

Table S3 Microarray analysis results. The table contains

microarray data on all ancestral and evolved lines subjected to

microarray analysis.

(XLS)

Table S4 Composition of media used for phenotypic
profiling. Each media contained 1% yeast extract, 2% pepton,

2% agar, and different carbon sources. Some media also contained

growth inhibitors as indicated. Concentration of drug inhibitors

were set to have a minor but detectable growth inhibitory effect on

the evolving wild-type control (unpublished data). The list of 14

growth media was primarily based on a previous study [4].

(XLSX)

Table S5 Data supporting Figure 3D. The table contains

fitness measurements supporting dosage compensation of Drpl6b

by increased copy number of RPL6A.

(XLSX)

Table S6 Data supporting Figure 4B and 4C. (4B)

Euclidean distances between pairs of wild-type evolved and

ancestor knock-out strains, and also between the corresponding

biological replicates. (4C) Categories of expression changes for

each gene in the eight evolved knockout strains. Genes, which

show initial expression change in the knockout can be categorized

as restored, if expression during evolution goes in the opposite

direction or unrestored if not. The category ‘‘other’’ includes genes

not showing initial expression change.

(XLSX)

Table S7 Data supporting Figure 6. The table contains

fitness (colony size) data employed for epistasis analysis between

the mdm34 gene deletion and the mutations accumulated in the

evolving strains (Figure 6B) and between the mdm34 gene deletion

and one particular compensatory mutation (‘‘mga2-1’’) (Fig-

ure 6C) in both YPD and acetic acid, respectively.

(XLSX)

Table S8 Data supporting Figure 7. The table contains

colony size measurement data on the environment-dependent

compensation of the deletion of rpb9 by a loss-of-function

mutation of whi2.

(XLSX)

Table S9 Data supporting Figure 8. Table includes single-

gene knockout fitness and relative frequency of suppressing

mutations for 3880 non-essential yeast genes.

(XLSX)

Table S10 Data supporting Figure S1. The table contains

data on the fitness trajectories of the evolving strains. Fitness was

measured at day 0, 26, 52, 78, and 104. The columns ‘‘improved

day x-y’’ show whether there is a statistically significant fitness

improvement between day x and y, as assessed by one-sided

Wilcoxon tests (with false discovery rate correction, p,0.05 cutoff).

(XLSX)

Table S11 Data supporting Figure S3. (S3A) Euclidean

distances between pairs of wild-type, evolved, and ancestor knock-

outs, after excluding genes from the transcriptome profiles that (i)

show copy number changes in the evolved lines, (ii) change

expression level in aneuploid lines, or (iii) whose expression level

depends on cellular growth rate. (S3B) Table includes categories of

expression changes for each gene in the eight evolved knockout

strains, excluding genes from the transcriptome profiles that (i)

show copy number changes in the evolved lines, (ii) change

expression level in aneuploid lines, or (iii) whose expression level

depends on cellular growth rate. Genes displaying an initial

expression change in the knockout can be categorized as restored,

if its expression level changes in the opposite direction during

evolution, or unrestored. The category ‘‘other’’ includes genes that

did not display an initial expression change.

(XLSX)

Table S12 Data supporting Figure S4. The table contains

data on the pleiotropic effects and mechanism of compensation of

the deletion strain Dmdm34.

(XLSX)

Text S1 Additional analyses supporting the prevalence
of and mechanisms underlying compensatory evolution
following gene loss. The text includes a bioinformatic analyses

of deleterious loss-of-function variants in natural yeast populations,

a case study on compensatory mutations, and a brief description of

image analysis used for measuring the extent of compensatory

evolution.

(DOC)
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The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance
to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency
and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic
stress yields enhanced sensitivity to other antibiotics. Using large-scale laboratory evolutionary
experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently
during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides
have an especially low fitness in the presence of several other antibiotics. Whole-genome
sequencing of laboratory-evolved strains revealed multiple mechanisms underlying aminoglyco-
side resistance, including a reduction in the proton-motive force (PMF) across the inner membrane.
We propose that as a side effect, these mutations diminish the activity of PMF-dependent major
efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other
antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution
of negative trade-offs under antibiotic selection.
Molecular Systems Biology 9: 700; published online 29 October 2013; doi:10.1038/msb.2013.57
Subject Categories: microbiology & pathogens
Keywords: antibiotic resistance; collateral sensitivity network; evolutionary experiment; trade off

Introduction

Evolutionary adaptation to an environment may be
accompanied by a decline or an increase in fitness in other
environments. Although such trade-offs are frequently
observed in nature, the governing rules and the corresponding
molecular mechanisms are generally unclear. The evolution
of antibiotic resistance offers an ideal model system to
systematically investigate this issue. Enhanced level of
resistance can be achieved by mutations in the genome or by
acquisition of resistance-conferring genes through horizontal
gene transfer. The relative contribution of these mechanisms
depends both on the antibiotic employed and on the bacterial
species considered (Alekshun and Levy, 2007). It has been
suggested that the progressive accumulation of mutations can
simultaneously change an organism’s sensitivity to many
different antimicrobial agents and can serve as the first step in
the evolution of clinically significant resistance by more
specific and effective mechanisms (Baquero, 2001; Goldstein,
2007; Gullberg et al, 2011). A recent review argued that the
evolution of multidrug resistance and hypersensitivity are
among the central issues of the field (Palmer and Kishony,
2013). Better understanding of these phenomena is important
as they could potentially inform future therapeutic strategies to
mitigate resistance evolution. For example, the choice of

optimal antibiotic combinations depends on both the presence
of physiological drug interactions and the frequency of
mutations with pleiotropic fitness effects (Chait et al, 2007;
Palmer and Kishony, 2013; Pena-Miller et al, 2013).
Specifically, it remains unclear how frequently genetic

adaptation to a single antibiotic increases the sensitivity to
others and what the underlying molecular mechanisms of
hypersensitivity are. No large-scale, systematic laboratory
evolution study has been devoted to investigate this problem
under controlled environmental settings. To our best knowl-
edge, the only prior work with similar aims was published 60
years ago and was limited to phenomenological descriptions
(Szybalski and Bryson, 1952).
Here, for the first time, we apply an integrated approach to

decipher collateral-sensitivity interactions between antibio-
tics.We initiated the laboratory evolution of E. coli populations
in the presence of one of the several different antimicrobial
agents. These antibiotics are well characterized, widely
employed in the clinic, and have diverse modes of actions
(Table I). Our list also includes antibiotics that are typically
used against Gram-positive bacteria. Consistent with previous
studies (Curtiss et al, 1965; Vuorio and Vaara, 1992; Elkins and
Nikaido, 2002), we found that these antibiotics inhibited
the growth of wild-type E. coli at high concentrations and
that resistance readily evolved against these compounds
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(see below). Next, we charted the network of collateral-
sensitivity interactions by measuring the susceptibility of each
evolved line against all the other antibiotics. Our analysis
revealed a strikingly dense network of collateral-sensitivity
interactions. Many of these interactions involved aminoglyco-
sides. Finally, laboratory-evolved lines were subjected to
whole-genome sequence analysis and biochemical assays to
decipher the underlying molecular mechanisms of these
interactions.

Results

Parallel evolution of antibiotic susceptibility
patterns in the laboratory

We followed established protocols withminormodifications to
evolve bacterial populations under controlled laboratory
conditions (Hegreness et al, 2008). Starting from a single
ancestral clone, populations were propagated in batch culture
(minimal glucose medium containing a single antibiotic),
whereby 1% of each culture was diluted into fresh medium on
a daily basis.
Microbes frequently encounter low or varying antibiotic

concentrations (Baquero, 2001). For example, the limited

accessibility of antibiotics to certain tissues or incomplete
treatment can lead to the formation of concentration gradients
within the body (Kohanski et al, 2010a). Similarly, antibiotic-
polluted natural environments generally form such gradients
radiating from the source. To mimic these natural conditions,
we employed two selection regimes. In the first set of
experiments, a fixed sublethal antibiotic concentration (i.e.,
sufficient to reduce the growth of the starting population by
50%) was employed. Using this set-up, we propagated 10
independent populations in the presence of each antibiotic for
B140 generations, resulting in 240 parallel-evolved lines. As
selection pressure and resistance-conferring mutations can
differ substantially between low and high antibiotic concen-
trations, we also employed a complementary laboratory
evolutionary protocol. For an overlapping set of 12 selected
antibiotics (Table I), populations were allowed to evolve to
successively higher antibiotic concentrations (96 replicate
populations per antibiotic). Starting with subinhibitory anti-
biotic concentrations, the antibiotic concentration was
increased every 4 days over a period of 240–384 generations.
Despite the short evolutionary timescale, many of the evolved
populations reached very high resistance levels (20- to 328-
fold increases in the minimum inhibitory concentrations
(MICs); Supplementary Table S1). For each antibiotic, we
selected 10 independently evolved resistant populations for
further analysis (Materials and methods). In addition, to
control for potential adaptive changes that are not specific to
the employed antibiotics, we also established 10 parallel
populations that were grown in an environment devoid of
antibiotics, referred to as adapted control lines.
Next, we measured the corresponding changes in the

sensitivities of all laboratory-evolved populations to other
antibiotics. Fitness was measured by monitoring the optical
density of liquid cultures of all evolved and control lines in the
presence and absence of sublethal concentrations of anti-
biotics. Our protocol was highly sensitive and could efficiently
detect both weak negative and positive trade-offs, which may
be overlooked in other assays (Materials and methods;
Supplementary Text S1). Furthermore, by measuring fitness
in antibiotic-free medium, we could distinguish between
general growth defects and genuine collateral-sensitivity
interactions. Specifically, we employed a rigorous statistical
procedure to identify those collateral-sensitivity interactions
that are not expected based on the generally weak growth
defect observed in the absence of antibiotics (see
Supplementary Text S2 and Supplementary Figure S3). The
reliability of the method was confirmed by comparing its
results with sensitivity estimates based on the colony size
(Supplementary Text S2; Supplementary Figure S1).
We noticed that parallel-evolving populations exposed to

the same antibiotic displayed very similar antibiotic suscept-
ibility patterns (Supplementary Figure S2). Thus, we devel-
oped a data analysis pipeline to infer evolutionary interactions
at the level of antibiotic pairs based on the growth patterns of
the antibiotic-adapted and control populations. The analysis
ultimately led to a map of evolutionary interactions between
antibiotics (Figures 1A and B; Supplementary Table S2). In this
study, we concentrated on antibiotic pairs showing collateral
sensitivity; cross-resistance interactions will be described
elsewhere.

Table I Employed antibiotics and their modes of actions

Antibiotic name Abbreviation
Mode of
action

Bactericidal or
Bacteriostatic

Ampicillin AMP* Cell wall Bactericidal
Pipericallin PIP Cell wall Bactericidal
Cefoxitin FOX* Cell wall Bactericidal
Fosfomycin FOS Cell wall Bactericidal
Lomefloxacin LOM Gyrase Bactericidal
Ciprofloxacin CPR* Gyrase Bactericidal
Nalidixic acid NAL* Gyrase Bactericidal
Fosmidomycin FSM Lipid Bactericidal
Nitrofurantoin NIT* Multiple

mechanisms
Bactericidal

Amikacin AMK Aminoglycoside Bactericidal
Gentamicin GEN Aminoglycoside Bactericidal
Kanamycin KAN* Aminoglycoside Bactericidal
Tobramycin TOB* Aminoglycoside Bactericidal
Streptomycin STR Aminoglycoside Bactericidal
Tetracycline TET* Protein

synthesis, 30S
Bacteriostatic

Doxycycline DOX* Protein
synthesis, 30S

Bacteriostatic

Chloramphenicol CHL* Protein
synthesis, 50S

Bacteriostatic

Erythromycin ERY* Protein
synthesis, 50S

Bacteriostatic

Fusidic acid FUS Protein
synthesis, 50S

Bacteriostatic

Sulfamonomethoxine SLF Folic acid
biosynthesis

Bacteriostatic

Trimethoprim TRM* Folic acid
biosynthesis

Bacteriostatic

Muporicin MUP Gram positive NA
Cycloserine CYC Gram positive NA
Vancomycin VAN Gram positive NA

The functional classification is based on previous studies (Girgis et al, 2009; Yeh
et al, 2006). For an overlapping set of 12 selected antibiotics (indicated by stars),
populations were allowed to evolve in the presence of successively increased
antibiotic concentrations.
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Uneven distribution of collateral sensitivity across
antibiotic classes

The maps based on the evolutionary experiments performed
with constant and gradually increasing antibiotic concentra-

tions were similar. In all, 85% of the interactions between

antibiotics overlapped (Po10� 5, randomization test). Three

main patterns emerge from our map. First, these interactions

occurred frequently: at least 35% of all investigated antibiotic

pairs showed collateral sensitivity in at least one direction.

Second, the mode of antibiotic action has a strong influence on

the distribution of interactions. Collateral sensitivity never

occurred between antibiotic pairs that target the same cellular

subsystem (Fisher’s exact test, P¼ 0.013). Thanks to systema-

tic chemogenomic studies, the mode of antibiotic action can be

defined and compared in a more quantitative manner.

Specifically, a previous study exposed a nearly complete

mutagenized E. coli library to several antibiotics and

determined the fitness contribution of individual genes

(Girgis et al, 2009). Using this data set, we calculated the
sets of genes that influence susceptibility for each antibiotic
used in our study (chemogenomic profile). Collateral sensi-
tivity was depleted between antibiotic pairs with substantial
overlap in their chemogenomic profiles (Figure 1C). Third,
most antibiotic classes displayed collateral sensitivity
with relatively few other classes (Figure 1D). There was one
major exception: 44% of the collateral-sensitivity interactions
involved aminoglycosides. Genetic adaptation to aminoglyco-
sides increased the sensitivity to many other classes of
antibiotics, including inhibitors of DNA synthesis, cell-wall
synthesis, and other classes of protein synthesis inhibitors.
The observed interactions generally represented 2- to 10-fold
decreases in the MICs (Figure 2; Supplementary Table S3),
a result that is consistent with an earlier report on
antibiotic hypersensitivity (Szybalski and Bryson, 1952). This
rate is also rather similar to the 2- to 8-fold increases in MIC
typically observed in different efflux pump mutants (Piddock,
2006).

Figure 1 Networks of collateral-sensitivity interactions. Collateral-sensitivity interaction networks inferred from the adaptation to (A) low antibiotic concentrations and
(B) increasing concentrations of antibiotics. Antibiotics are grouped according to their mode of action. An arrow from antibiotic A to antibiotic B indicates that adaptation to
A increased the sensitivity to B. Aminoglycosides dominate the collateral-sensitivity network, with numerous links to other classes of antibiotics (red arrows).
(C) Collateral-sensitivity antibiotic pairs show relatively low overlap in their chemogenomic profiles (N¼ 120, Mann–Whitney U-test Po10� 5). Chemogenomic distance
was calculated as pairwise Jaccard distance between sets of genes that influence antibiotic susceptibility (Girgis et al, 2009). Error bars indicate 95% confidence
intervals. (D) Collateral-sensitivity interaction degrees of antibiotic classes (i.e., average number of antibiotic classes against which a population evolves hypersensitivity
if exposed to the antibiotic class shown on the vertical axis. Degrees are weighted by the number of antibiotics representing each class).
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Multiple mechanisms underlying aminoglycoside
resistance

Three major mechanisms of aminoglycoside resistance have
been recognized: inactivation of the drugs by aminoglycoside

modifying enzymes, modification of ribosome, and decreased

membrane permeability (partly through changes in a mem-

brane potential). To gain insight into the molecular mechan-

isms underlying aminoglycoside resistance and collateral

sensitivity in our laboratory-evolved strains, we selected 14

clones evolved in the presence of a single aminoglycoside

(kanamycin, tobramycin, or streptomycin) for whole-genome

resequencing. All of these clones exhibited hypersensitivity to

other classes of antibiotics (Supplementary Tables S2 and S3).

The genomes of these independently evolved clones were

resequenced using the Applied Biosystems SOLiD platform,

and the identified single-nucleotide polymorphisms (SNPs)

were confirmed using capillary sequencing.
In total, we identified 100 mutations (SNPs and indels)

affecting 44 protein-coding genes. On average, we observed

eight mutations per clone in lines adapted to increasing
concentrations and two mutations in those adapted to a fixed
sublethal concentration (Supplementary Table S4). Three lines
of evidence indicated that these substitutions were driven by
adaptive evolution. First, 89% of the mutations were in
protein-coding regions and were non-synonymous. Second,
convergent evolution was prevalent at multiple levels, as a
total of 6.7% of the mutations at the single nucleotide level
were shared by two or more clones (Supplementary Table S4).
Evolutionary convergencewas evenmore apparent at the level
of genes and functional units, as a total of 29.5%of the affected
44 genes were mutated repeatedly (Supplementary Tables S4
and S5). Third, comparison with the results of available
chemogenomic screens revealed that 36% of the mutated
genes influence aminoglycoside susceptibility when inacti-
vated (Supplementary Table S4, P¼ 0.013, Fisher’s exact test).
Aminoglycosides directly target the ribosome. Mistransla-

tion and the consequent misfolding of membrane proteins
have an important role in aminoglycoside-induced oxidative
stress and cell death (Kohanski et al, 2010b). Aminoglycosides

Figure 2 Dose–response curve of selected aminoglycoside-adapted lineages exhibiting collateral sensitivity. Error bars indicate 95% confidence intervals.
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generally require respiration for uptake (Taber et al, 1987) and
enter the cell in a membrane potential-dependent manner.
This process relies on cytochromes and the maintenance of the
proton-motive force (PMF) through the quinone pool
(Kohanski et al, 2010b).
Pathway enrichment analyses (Carbon et al, 2009) revealed

the overrepresentation of several biological processes in the
set of accumulated mutations (Supplementary Table S6). In
agreement with our expectations, one major target of selection
was the translational machinery, including several ribosomal
proteins, elongation factors (fusA, rpsL), and tRNA synthe-
tases. Second, several genes involved in membrane transport,
phospholipid synthesis, and cell envelope homeostasis were
mutated. Remarkably, this list included an oligopeptide
transporter (OppF) with a key role in the recycling of cell-
wall peptides and the two-component stress-response sensor
CpxA (Kohanski et al, 2008; Supplementary Table S4). The
biosynthesis of polyamines (including putrescine and spermi-
dine) was also affected. These molecules reduce the intracel-
lular production of reactive oxygen species during
aminoglycoside stress (Tkachenko et al, 2012) and thereby
diminish the levels of protein and DNA damage (Kohanski
et al, 2010b). Third, we identified a broad class of genes
expected to influence the membrane electrochemical potential
(Supplementary Tables S4 and S5; Figure 2B). These genes are
involved in oxidative phosphorylation, proton-potassium
symport (trkH), oxygen-binding heme biosynthesis (hemA),
while others are members of the cytochrome terminal oxidase
complex (cyoB, cyoC). They also frequently affect the quinone
pool, which serve as electron carriers in the respiratory
electron transport chain (IspA and the Nuo protein complex).
This third class most likely has a central contribution to the
collateral-sensitivity patterns observed, not least because all
sequenced clones had at least one mutation in this subsystem
(Supplementary Table S4).

Evidence for antagonistic mutational effects on
membrane permeability

Why should membrane potential affecting mutations alter the
susceptibility to multiple different antibiotics? These genes are
expected to influence aminoglycoside-induced oxidative stress
and/or aminoglycoside uptake. Indeed, aminoglycosides
uniquely require the PMF for active cellular uptake (Taber
et al, 1987; Allison et al, 2011). In sharp contrast, the efflux of
many other antibiotics depends on PMF-dependent pumps
(Paulsen et al, 1996). On the basis of these observations, we
propose a model in which low-level aminoglycoside resistance
is achieved by altering themembrane potential across the inner
bacterial membrane (Figure 3). As a secondary consequence,
these mutations diminish the activity of PMF-dependent major
efflux pumps. Indeed, it has been previously shown that CCCP,
a chemical inhibitor of oxidative phosphorylation, decreases
the intracellular accumulation of aminoglycosides (Allison
et al, 2011), but most likely increases the intracellular
accumulation of several other antibiotics (Coldham et al, 2010).
Along with the observed mutations, biochemical assays

provided further support for this model. First, we investigated
changes in the membrane potential in aminoglycoside-

resistant strains. The membrane potential was monitored
using the carbocyanine dye diethyloxacarbocyanine (DiOC2)
(3) (Novo et al, 2000). In agreement with our expectations, the
membrane potential was reduced in aminoglycoside-adapted
populations (Figure 4A; Supplementary Figure S4;

Figure 3 A putative mechanism underlying collateral sensitivity. (A) The
theory. Altering the membrane potential across the inner bacterial membrane has
two opposing effects: it reduces the uptake of many aminoglycoside-related
antibiotics but simultaneously may lead to the reduced activity of PMF-dependent
efflux pumps. For more details, see the main text. (B) Mutations supporting the
theory. Whole-genome sequencing revealed that adaptation to aminoglycosides
frequently proceeds through mutations that most likely diminish the generation of
the PMF. Mutations are indicated by red, bolded protein names (TrkH, CyoB,
HemA, IspA). The observed mutations in TrkH most likely increase the proton
influx, whereas the mutations in CyoB and HemA (resulting in the inhibition of
proton translocation and heme biosynthesis, respectively) interfere with the
proper functioning of the cytochrome terminal oxidase complex. Furthermore,
decreased IspA activity reduces the levels of membrane-bound quinones and
therefore the level of oxidative phosphorylation. Altogether, these mutations likely
reduce the PMF and thus aminoglycoside uptake. Simultaneously, the activity of
the PMF-dependent efflux system is expected to decrease, resulting in greater
sensitivity to antibiotics transported by these pumps. AG, aminoglycoside; OM,
outer membrane; IM, inner membrane; NUO, NADH-Ubiquinone-oxidoreduc-
tase; PMF, proton-motive force.
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Supplementary Table S5). Simultaneously, these populations
showed elevated intracellular levels of the fluorescent probe
Hoechst 33342 (Figure 4B; Supplementary Figure S5), indicat-
ing either increased porin activity or diminished efflux pump
activity (Coldham et al, 2010). This result contrasts with the
results for populations adapted to other antibiotic classes, as
these populations frequently exhibited reduced intracellular
levels of Hoechst 33342 (Figure 4B; Supplementary Figure S5).
The most direct evidence for antagonistic mutational effects

comes from a gene involved in Kþ uptake (trkH). Mutations in
trkH were observed in 64% of the sequenced aminoglycoside-
adapted populations. The amino-acid residue affected by one
of the observed mutations (T350L) is close to the ion channel
and therefore was chosen for further analysis. This mutation
was inserted into wild-type E. coli, and the inserted mutation
conferred mild resistance to aminoglycosides and, simulta-
neously, increased the susceptibility to other classes of
antibiotics, as expected (Figure 5A). Consistent with a causal
role of the PMF in this negative trade-off, this mutation
resulted in a diminished membrane potential and enhanced
the accumulation of Hoechst dye (Figures 5B and C). In further
support of the involvement of the PMF, a related regulator of
Kþ uptake has been shown to control both the membrane
potential and the multidrug susceptibility (Castaneda-Garcia
et al, 2011).
There are further examples supporting the scenario. The list

of mutated genes entails four genes (cyoB, ispA, nuoF, and
nuoE) with the following remarkable combination of proper-
ties (Supplementary Table S4). First, functional connection to
electron transport can be established based on the literature
data, strongly suggesting that these genes influence PMF.
Second, 57% of the observed mutations in these genes
generate frame-shift or in frame stop-codons, and hence most
likely yield proteins with compromised or no activities. Third,
null mutations in these genes reduce the aminoglycoside
susceptibility but enhance the sensitivity to other antibiotics.

Collateral sensitivity is partly linked to the AcrAB
efflux system

Recent studies systematically investigated the substrate
specificities of all major drug transporters through deletion
and overexpression over a wide range of drugs (Nishino and
Yamaguchi, 2001; Girgis et al, 2009; Liu et al, 2010; Nichols
et al, 2011). Comparison of results of chemogenomic screens
and our study revealed that as high as 75% of the antibiotics
showing collateral sensitivity with aminoglycosides are also
substrates of the AcrAB efflux pump system. This system is
member of the resistance nodulation family, and a major
multidrug resistance mechanism in E. coli. Overexpression of
this system confers resistance to a wide range of drugs and
detergents, but not to aminoglycosides (Okusu et al, 1996;
Nishino and Yamaguchi, 2001; Alekshun and Levy, 2007).
A proton electrochemical potential gradient across cell
membranes is the driving force for drug efflux by this system.
On the basis of these facts, we suggest that the AcrAB efflux

system has a key role in the collateral-sensitivity patterns
observed. More specifically, activity of this system is assumed
to be impaired in aminoglycoside-resistant lines due to the
presence ofmutations diminishing themembrane potential. To
test this hypothesis, we examined drug resistance phenotypes
conferred by the AcrAB efflux system in the presence/absence
of mutations in trkH and cyoB. As shown above, mutations in
these genes were frequently observed in aminoglycoside-
resistant lines, and we could confirm that the corresponding
strains have diminished the membrane potential (Figures 4
and 5). We took advantage of the availability of a multicopy
plasmid that encodes the AcrAB transporter genes of E. coli
with the corresponding native promoters. Following protocols
of a prior study (Nishino and Yamaguchi, 2001), the plasmid
was transformed into wild-type and aminoglycoside-resistant
mutants. We tested the corresponding changes in susceptibil-
ities to four representative antibiotics (all of which are known

Figure 4 Membrane permeability (Hoechst dye) and membrane potential changes in evolved lines. (A) Membrane potential changes in antibiotic-adapted populations.
Changes in the membrane potential were monitored using the carbocyanine dye DiOC2(3). The red/green fluorescence values for a representative set of
aminoglycoside- and non-aminoglycoside-adapted populations were determined relative to the average of those of three wild-type controls. The membrane potential was
significantly reduced in aminoglycoside-resistant populations (Wilcoxon rank-sum test P¼ 0.002). Boxplots present the median and first and third quartiles, with whiskers
showing either the maximum (minimum) value or 1.5 times the interquartile range of the data. The data are based on 10 and 22 measurements for aminoglycoside- and
non-aminoglycoside-adapted populations, respectively. (B) Substantial differences in the accumulation of the fluorescent probe Hoechst 33342 across populations
adapted to different classes of antibiotics (10 evolved populations each) relative to wild-type controls. Boxplots present the median and first and third quartiles, with
whiskers showing either the maximum (minimum) value or 1.5 times the interquartile range of the data, whichever is smaller (higher). The above figures are based on the
results for lineages evolved in the presence of constant sublethal antibiotic concentrations. For further results, see Supplementary Figures S4 and S5.
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substrates of the AcrAB efflux pump). First, strains with
deficient AcrAB efflux system were sensitive to all four
antibiotics, regardless of the presence of mutations affecting
the membrane electrochemical potential (Figure 6). Second,
the AcrAB overexpression plasmid conferred a significant
resistance to all four antibiotics in genotypes with wild-type
membrane potential. Third, and most strikingly, the same
plasmid conferred substantially weaker resistance when
introduced into the mutant lines (Figure 6). Taken together,
these results confirm that mutations conferring aminoglyco-
side resistance via diminishing the membrane potential
increase the sensitivity to other agents by interfering with
the AcrAB efflux system.

Discussion

By combining experimental evolution, whole-genome sequen-
cing of laboratory-evolved bacteria and biochemical assays,
this work charted a map of collateral-sensitivity interactions

between antibiotics in E. coli, and aimed to understand these
negative evolutionary trade-offs. We demonstrated that
collateral-sensitivity interactions occurred at high rates.
Strikingly, laboratory evolution to different aminoglycoside
antibiotics frequently enhanced the sensitivity to many other
antimicrobial agents (2–10 fold MIC change). Whole-genome
sequencing of laboratory-evolved strains revealed multiple
mechanisms underlying aminoglycoside resistance. As
expected, the major targets of selection were the translational
machinery, membrane transport, phospholipid synthesis, and
cell envelope homeostasis. Strikingly, we also identified a
broad class of mutated genes involved in maintenance of the
membrane electrochemical potential. Notably, similar sets of
mutations have been observed in clinical and experimental
settings (Supplementary Table S4).
Aminoglycoside resistance can be achieved through reduc-

tion in the PMFacross the innermembrane (Proctor et al, 2006;
Pranting and Andersson, 2010). In this paper, we demonstrated
that these changes underlie the hypersensitivity of aminogly-
coside-resistant bacteria to several other antimicrobial agents,

Figure 5 Pleiotropic effects of a single mutation in trkH Individual antibiotic dose–response curves for growth inhibition were constructed for a trkH mutant strain. The
red line denotes the trkH mutant strain and the blue line indicates the corresponding wild-type control. Error bars indicate the standard errors based on four technical
replicates. A mutation in the trkH gene originally identified in a streptomycin-adapted population reduced the susceptibility to aminoglycosides but inhibited growth in the
presence of several non-aminoglycoside antibiotic stresses. For more details on minimum inhibitory changes, see Supplementary Table S7. This mutation also (B)
reduced the membrane potential (Wilcoxon rank-sum test P¼ 0.02, based on four replicate measurements) and (C) the enhanced accumulation of Hoechst dye
(Wilcoxon rank-sum test P¼ 0.0005, based on eight replicate measurements). Control populations treated with a chemical inhibitor of the PMF (CCCP) showed similar
patterns.
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partly through diminishing the activity of PMF-dependent
major efflux pumps. Taken together, these results indicate the
existence of an antagonistic mechanism by which bacteria
modulate intracellular antibiotic concentrations. Evolutionary
experiments performed with constant and gradually increas-
ing antibiotic concentrations yielded similar broad-scale
collateral-sensitivity patterns (see Figures 1A and B), and
one of the membrane potential affecting genes (trkH) was
repeatedly mutated in response to both treatments
(Supplementary Table S4). On the basis of these findings, we
speculate that the membrane potential affecting mutations
may arise at an early stage of resistance evolution.
Overexpression of a major multidrug transport (AcrAB)

conferred only a relatively low level of resistance in associa-
tion with PMF-affecting mutations. This result could have a

broad significance. PMF-dependent efflux pumps are fre-
quently delivered by horizontal gene transfer, and have crucial
contribution to the evolution of multidrug resistance patterns
in a broad range of bacterial species (Paulsen et al, 1996;
Mine et al, 1999; Norman et al, 2008). Thus, resistance to one
antibiotic may not only confer changed sensitivity to another
antimicrobial agent, but also affect its further evolution (see
also Palmer and Kishony, 2013).
We emphasize that we do not consider our explanation

exclusive. However, we failed to find evidence for other
mechanisms playing a role in the observed collateral-
sensitivity patterns of aminoglycoside-resistant populations.
Existing chemogenomic, literature, and experimental data are
fully consistent with our scenario (see Results). There is at
least one potentially interesting case that should be explored in

Figure 6 Link between the copy number of the major drug efflux system AcrAB and the extent of collateral-sensitivity interactions. The AcrAB efflux system confers
resistance to a variety of drugs, but not to aminoglycosides. Two aminoglycoside-resistant strains (trkH* and TOB3) and a wild-type strain (control) were modified either
by deleting the acrB gene (DacrB) or by harbouring a multicopy plasmid carrying the acrAB genes (pUCacrAB). Change of MIC in modified strains was measured using
E-test stripes containing one of four antibiotics (A) Chloramphenicol, (B) Ciprofloxacin, (C) Doxycycline, (D) Trimethoprim, representing different classes of modes of
action (Table I). The plasmid conferred a significant resistance to all four antibiotics in control strain, but resistance levels were substantially reduced when the same
plasmid was associated with membrane potential affecting mutations in either trkH (trkH*) or both trkH and cyoB genes (TOB3).
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a future work. The elongation factor fusA was regularly
associated with aminoglycoside resistance in our experiments.
Previous works suggest that resistance conferred by fusA
mutations in Salmonella caused enhanced sensitivity to other
classes of antimicrobial agents (Macvanin and Hughes, 2005).
Strikingly, these mutations also caused low levels of heme
biosynthesis and reduced respiratory activity.
More generally, it will be important to determine how

conserved these networks of collateral-sensitivity interactions
are between bacterial species. Due to the similarities in the
cellular uptake mechanisms of aminoglycosides and cationic
antimicrobial peptides (Moore and Hancock, 1986), our results
may be more general. At least three mutated proteins (ArnC,
SbmA, and TrK) in our experiments influence resistance to
antimicrobial peptides (Supplementary Table S4), and more
generally, mutations in the heme biosynthesis pathway in
Salmonella provide resistance to several small peptides and
aminoglycosides and simultaneously increase the susceptibility
to other antibiotics (Pranting and Andersson, 2010).
Last, we need to emphasize the limitations of our work.

First, a substantial fraction of the collateral-sensitivity inter-
actions unrelated to aminoglycosides require mechanistic
explanation (Figure 1). Second, we neglected the evolution
of resistance through the acquisition of genes by horizontal
transfer. Third, due to the lack of systematic studies, the
frequency of PMF-altering mutations in clinical isolates is
largely unknown. Therefore, discussing the direct therapeutic
implications of our collateral-sensitivity network is beyond the
scope of this paper. It remains controversial whether the
temporal rotation or simultaneous use of two antibiotics can
select against the development of resistance (Bonhoeffer et al,
1997; Chait et al, 2007). The success of such strategies may
depend on the choice of antibiotics, as treatment with a single
antibiotic followed by a switch to a cross-sensitive partner
may represent a viable strategy. More generally, our work
established the prevalence of antagonistic pleiotropy during
the evolution of antibiotic resistance.

Materials and methods

Laboratory evolutionary experiments

We followed established protocols with minor modifications to evolve
resistant bacteria by propagating them in batch cultures in the
presence of antibiotics (Orlen and Hughes, 2006; Hegreness et al,
2008). Populations of Escherichia coli K12 (BW25113) were grown in
autoclaved MS-minimal medium supplemented with 0.2% glucose
and 0.1% casamino acids. Antibiotic solutions were prepared from
powder stocks and filter sterilized before use and diluted in the growth
media. Fresh antibiotic stocks were used on a weekly basis. Parallel
cultures were propagated in 96-well microtiter plates, continuously
shaken at B320 r.p.m. (301C). Plates were covered with special
sandwich covers (Enzyscreen) to ensure an optimal oxygen exchange
rate and limit evaporation. Every 24h, bacterial cells were transferred
by inoculating B1–1.2ml of stationary phase culture to 100ml fresh
medium using a 96-pin replicator (VP407) to give a daily dilution of
B100 or about 6–7 doublings. The evolved and control strains were
preserved at � 801C in 20% (v/v) glycerol solution.

Constant, sublethal antibiotic dosage

Using sublethal antibiotic concentrations (approximately half max-
imal inhibitory concentrations, IC50), we propagated 10 independent

populations in the presence of each of the 24 antibiotics for B140
generations (Table I), resulting in 240 parallel-evolved lines. In
addition, to control for potential adaptive changes that are not specific
to the employed antibiotics, we also established 10 parallel popula-
tions growing in an environment devoid of antibiotics for B140
generations, referred to as adapted control lines. As expected, these
lines showed no major changes in antibiotic susceptibility. Plates
contained 36 bacteria-free wells to monitor potential contamination
events: all remained uncontaminated during the entire course of the
experiment. On average, the employed antibiotic had a mere 7%
inhibitory effect on the growth of laboratory-adapted populations.

Gradually increasing antibiotic dosage

In this experimental setting, populations were allowed to evolve to
successively higher antibiotic concentrations. Starting with a subinhi-
bitory (IC50) antibiotic concentration, antibiotic dosage was increased
gradually (1.5 times the previous dosage) at every fourth transfer. The
optical density at 600nm (OD600) of each well was measured in a
Biotek Synergy plate reader before each transfer. As expected, during
the course of laboratory evolution, populations grew to different
densities, reflecting independent evolutionary trajectories. Population
extinction was defined as the failure to obtain growth (OD600o0.05).
The experiments ended once only 10 populations had showed growth
or antibiotic concentration had reached its upper solubility limit.

As this laboratory evolutionary protocol frequently leads to
extinction of bacterial populations, 96 independent parallel popula-
tions were propagated in the presence of each antibiotic. Due to the
large number of replicate lineages required, we concentrated on 12
selected antibiotics out of the 24 listed in Table I. This set still covers
diverse modes of actions, but includes only 1–2 members of each
major antibiotic class.

Most surviving bacterial populations from the final day of the
experiments reached a very high resistance level, comparable to that
found in clinical isolates (Supplementary Table S1). Depending on the
antibiotics employed (and the corresponding extinction dynamics of
parallel evolving populations), the experiments lasted for B240–384
generations (Supplementary Table S1). For each antibiotic, 10 popula-
tionswith the highest cell densitieswere selected for further analysis.We
also established 10 parallel populations growing in an environment
devoid of antibiotics for the same number of transfers, referred to as
adapted control lines. Subsequently, we determined the antibiotic
susceptibilities of these selected populations against all other antibiotics.

Systematic measurement of antibiotic
susceptibilities

Given two panels of laboratory-evolved strains, our next goal was to
detect changes in their sensitivities towards other antimicrobial
agents. To this end, we developed a high-throughput screening
and robust statistical analysis methodology to systematically detect
collateral-sensitivity interactions in E. coli.

Growth measurement

Bacterial growthwasmonitored bymeasuring optical density (OD600)
of the liquid cultures at a single time point. Preliminary experiments
showed that a single reading of optical density after 14 h of incubation
shows very strong linear correlation (R240.99)with the area under the
growth curve, a descriptor of overall inhibitory effect that covers the
entire growth period (Supplementary Figure S6). We used a robotic
liquid handling system (Hamilton Star Workstation) to improve
reproducibility and thereby allowing us to perform hundreds of
growth measurements in parallel on 384-well microtiter plates. Slight
variations in temperature or humidity within the plate during
incubation may lead to local trends of altered growth (within-plate
effects). To overcome any measurement bias caused by the inhomo-
geneous environment and to convert raw OD values into relative
fitness values that are comparable across plates, we employed a
normalization procedure as described in Supplementary Text S1.
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Estimating collateral sensitivity

We tested the sensitivity of each evolved line against the entire set of
antibiotics by measuring the growth in liquid cultures of all antibiotic-
adapted lines and adapted control lines at sublethal doses of antibiotics
(i.e., at around half-maximal effective concentration) in four technical
replicates (i.e., strains were cultivated in quadruplicate on the same
384-well plate). In addition, we also measured the growth of evolved
lines in a medium devoid of antibiotics to discern condition-specific
fitness defects from general costs of resistance.
Because growth media with half-maximal effective concentrations

of antibiotics are difficult to prepare in a reproducible manner, we
conducted four independent experimental runs for each combination
of strains and antibiotic conditions. Next, to filter out unreliable
measurements and those where the antibiotic dosage was too high to
detect collateral-sensitivity interactions, we excluded cases where
(i) cross-contamination might have occurred on the plate during
susceptibility measurements (based on the growth in non-inoculated
wells), (ii) the control wells devoid of antibiotics showed large
variations (coefficient of variation was above 20%), (iii) the applied
antibiotic dosage was too high which strongly inhibited the growth of
the adapted control populations (490% effective concentration). This
quality control procedure resulted in 2–3 replicates for each combina-
tion of strains and antibiotics.
To identify statistically significant collateral-sensitivity interactions,

we compared normalized growth values of evolved lines with that of
adapted control lines under the same treatment condition. Specifically,
using growth data on evolved lines in each antibiotic condition, we
tested whether growth of the 10 evolved lines, as a group, showed at
least 10% difference from that of the 10 adapted control lines, as a
group, under the same treatment condition. Statistical significancewas
assessed using a non-parametric bootstrap method (Efron and
Tibshirani, 1994) and growth of each line was represented by the
median value of the four technical replicates. The P-values resulting
from independent experimental runs were combined using Fisher’s
combined probability test (data can be found in ‘P_values1’ sheets of
Supplementary Tables S8 and S9). As a final step, we set up a rigorous
statistical procedure to ensure that the collateral-sensitive interactions
detected above are not due to general fitness costs of resistance (see
Supplementary Text S2, data can be found in ‘RF_values’ and
‘P_values2’ sheets of Supplementary Tables S8 and S9). This yielded
a matrix of evolutionary interactions between antibiotics
(Supplementary Table S2). For more details on the accuracy of high-
throughput interaction measurements and control for potential
confounding factors, see Supplementary Text S2.

Whole-genome resequencing

Fourteen independently evolved clones were subjected to next-
generation sequencing to identify mutations responsible for the
resistant phenotype. All of them showed hypersensitivity towards
other classes of antibiotics, and two of them had evolved to constant,
sublethal antibiotic dosage. Briefly, genomic DNA (gDNA) was
extracted from selected E. coli isolates (SIGMA GenElute Bacterial
Genomic DNA kit, standard procedures), fragmented, and SOLiD
sequencing adaptors were ligated. Subsequently, sequencing beads
were prepared and sequenced on the SOLiD System. As a result,
millions of short reads (50 or 75 bp) were generated along with data
indicating the sequencing quality of each nucleotide. Finally, variants,
such as SNP or multi-nucleotide polymorphism (MNP), insertions and
deletions (InDels), were identified compared with the reference E. coli
genome using standard bioinformatics analysis.
Preparation of the libraries and sequencings were performed by

cycled ligation sequencing on a SOLiD 5500xl System (Life Technol-
ogies; LT) using reagents and protocols provided by LT. Briefly, 3 mg of
purified bacterial gDNA was fragmented by the Covaris S2 System to
150–350bp. The fragmented DNAwas end-repaired and ligated to P1
(50-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT-30) and
P2 (50CTGCCCCGGGTTCCTCATTCTCTGTGTAAGAGGCTGCTGACGGC
CAAGGCG-30) adapters, which provide the primary sequences for both
amplification and sequencing of the sample library fragments. The P2
adapter contains a 10-bp barcode sequence which provided the basis

for multiplex sequencing. The templates were clonally amplified by
emulsion PCR (ePCR) with P1 primer covalently attached to the bead
surface. Emulsions were broken with butanol, and ePCR beads
enriched for template-positive beads by hybridization with P2-coated
capture beads. Template-enriched beads were extended at the 30 end in
the presence of terminal transferase and 30 bead linker. Beads with
clonally amplified DNA were then deposited onto a SOLiD Flowchip
(Ondov et al, 2010). About 250 million beads with clonally amplified
DNAwere deposited onto one lane of the flowchip. The slide was then
loaded onto a SOLiD 5500xl instrument and the 50-base sequences
were obtained according to the manufacturer’s protocol.

Further analysis of genome sequences

The obtained sequences were aligned to the E. coli str. K-12 substr.
MG1655chromosome (Accession NC_000913; Version NC_000913.2
GI: 49175990). Alignment was performed using Genomics Workbench
(Floratos et al, 2010) 4.9 and theOmixonGapped SOLiDAlignment 1.3.2
plugin, provided by CLC Bio and Omixon, respectively. A minimum
average coverage of 50-fold was accomplished for each strain. The
maximum gap and mismatch count within a single read was set to 2
with a minimum of 4 reads to call a potential variation before further
analysis. Selected putative variants (SNPs and indels) detected by
whole-genome resequencing were verified by PCR followed by Sanger
sequencing on a 3500 Series Genetic Analyzer (LT). The primers were
designed using Genomics Workbench and are available on request.

Hoechst dye (H33342 bisbenzimide) accumulation
assay

To estimate changes in cellular permeability, we implemented a
recently developed and scalable fluorescence assay (Coldham et al,
2010). The method is based on accumulation of the fluorescent probe
Hoechst (H) 33342 (bisbenzimide). All laboratory-evolved popula-
tions were cultured overnight in MS-minimal medium supplemented
with 0.2% glucose and 0.1% casamino acid. Optical densities of
evolved bacterial populations were adjusted to OD600¼ 0.3. In all,
180ml aliquots of bacterial cultures were transferred to 96-well
microtiter plates (8 technical replicates per evolved line). Plates were
incubated in a Synergy 2microplate reader at 301C, and 25mMHoechst
dye (SIGMA) was added to each well using an auto-injection device
(BioTek dispenser box). The OD and fluorescence curves were
measured for 1 h with 75-s delays between readings. The first 15 data
points were excluded from further analysis due to the high standard
deviation between replicates. Blank normalized OD values were
calibrated as described in Supplementary Text S1. Data curves were
smoothed and fluorescence per OD ratio curves were calculated. Next,
areas under these ratio curves were determined. Finally, we calculated
changes inHoechst dye accumulations relative to the appropriatewild-
type controls derived from the same experiment.

Measurement of bacterial membrane potential

Two adapted strains per each antibiotic selection regime were selected
randomly, and were subjected to membrane potential measurement.
The BacLight BacterialMembrane Potential Kit (B34950, Invitrogen)
was used to assess changes in PMF in the evolved strains. Briefly,
DiOC2 exhibits green fluorescence in all bacterial cells, but the
fluorescence shifts towards red emission in cells maintaining
high membrane potential. The ratio of red to green fluorescence
provides a measure of membrane potential that is largely independent
of cell size.
Overnight bacterial cultures were diluted toB106 cells/ml in filtered

buffer (PBS). Aliquots of 200 ml bacterial suspension were added to
96-well microtiter plates for staining treatments. The DiOC2 dye was
added to each sample in a 0.03-mM concentration (no antibiotic was
added to the medium). After 30min of incubation, samples were
diluted 10-fold, andwere analysed by a GUAVA EasyCyte 8HTCapillary
Flow Cytometer. The instrument settings were adjusted according to
the BacLight kit manual. In all, 15000 events were recorded and gated
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out by visual inspection using the forward versus side scatter before
data acquisition. The red/green fluorescence values for a representa-
tive set of aminoglycoside and non-aminoglycoside evolved popula-
tions were calculated relative to the average of three control wild-type
populations.

MIC and dose–response curve measurements

MICswere determined using a standard linear broth dilution technique
(Wiegand et al, 2008). In order to maximize reproducibility and
accuracy, we used a robotic liquid handling system (Hamilton Star
Workstation) to prepare 12 linear dilution steps automatically in
96-well microtiter plates. Approximately 106 bacteria/ml were inocu-
lated into each well with a 96-pin replicator, and were propagated at
301C shaken at 300 r.p.m. (4 replicates per strain/antibiotic concentra-
tion). After 24 h of incubation, raw OD values were measured in a
Biotek Synergy 2 microplate reader. MIC was defined by a cutoff OD
value (i.e., meanþ 2 standard deviations of OD values of bacteria-free
wells containing only growth medium).

Allele replacements

Allele replacement in trkHwas constructed by a suicide plasmid-based
method in amarkerless allele replacement, which can be distinguished
by sequencing of the given chromosomal region. For details on
primer sequences, see Feher et al (2008). Standard steps and plasmids
(pST76-A, pSTKST) of the procedure have been described (Feher et al,
2008). In brief, an B800-bp long targeting DNA fragment carrying
the desired point mutation in the middle was synthesized by PCR,
then cloned into a thermosensitive suicide plasmid. The plasmid
construct was then transformed into the cell, where it was able to
integrate into the chromosome via a single crossover between the
mutant allele and the corresponding chromosomal region. The desired
cointegrates were selected by the antibiotic resistance carried on
the plasmid at a non-permissive temperature for plasmid replication.
Next, the pSTKST helper plasmid was transformed, then induced
within the cells, resulting in the expression of the I-SceI meganuclease
enzyme, which cleaves the chromosome at the 18-bp recognition site
present on the integrated plasmid. The resulting chromosomal gap is
repaired by way of RecA-mediated intramolecular recombination
between the homologous segments in the vicinity of the broken ends.

AcrAB efflux system and collateral sensitivity

To investigate the drug resistance phenotype conferred by the AcrAB
efflux system, three different strains were modified either by deleting
the acrB gene or by transforming a multicopy plasmid carrying the
AcrAB efflux pump (pUCacrAB) into various strains. The three
selected strains were the following: (i) the ancestral BW25113 strain
(control), (ii) an aminoglycoside-evolved line carrying mutations
in the trkH and cyoB genes (TOB3, see Supplementary Table S4), and
(iii) the ancestral strain carrying a mutation in trkH (T350L; the
corresponding strain will be referred to as trkH*). The appropriate
acrB deletion strains (DacrB/control, DacrB/trkH*, DacrB/TOB3)
were constructed using standard protocols by P1 transduction (Baba
et al, 2006; Miller, 1972).
To increase the copy number of the efflux pump, the plasmid

pUCacrAB with the corresponding native promoters was transformed
into the appropriate strains (pUCacrAB/control, pUCacrAB/trkH*,
pUCacrAB/TOB3) following the protocols of a prior study (Nishino
and Yamaguchi, 2001). The pUCacrAB plasmid was constructed and
provided us by Kunihiko Nishino and Akihito Yamaguchi (Osaka
University, Osaka, Japan).
Changes in susceptibility towards four representative antimicrobial

agents (chloramphenicol, ciprofloxacin, trimethoprim, and doxycy-
cline) were tested applying E-test stripes (bioMerieux). E-test
inoculum preparation and plating, strip application, and subsequent
MIC determinations were carried out in accordance with the
manufacturer’s instructions. The applied antibiotics represent differ-
ent classes of mode of action; however, the AcrAB efflux system is
known to cause resistance towards all of them.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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is a challenge of profound importance. By combining experimental evolution and genome

sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions

between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here,

we show that (1) convergent molecular evolution is prevalent across antibiotic treatments,

(2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs

and (3) 27% of the accumulated mutations generate proteins with compromised activities,

suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By

using knowledge on antibiotic properties, we examined the determinants of cross-resistance

and identified chemogenomic profile similarity between antibiotics as the strongest predictor.

In contrast, cross-resistance between two antibiotics is independent of whether they

show synergistic effects in combination. These results have important implications on the

development of novel antimicrobial strategies.
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E
volutionary adaptation to a specific environment may result
in correlated fitness changes in other environments1,2.
While such evolutionary interactions are widespread in

nature, the general principles and underlying molecular
mechanisms remain poorly understood3. Antibiotic resistance
in bacteria offers a platform to systematically investigate
evolutionary adaptations. The evolution of antibiotic resistance
is frequently mediated by the accumulation of mutations across
the genome during therapy4. The accumulation of such mutations
can potentially change the sensitivity to many antibiotics
simultaneously5. Despite their clinical relevance, the altered
sensitivity profiles of antibiotic resistant strains have not been
investigated systematically, except for a pioneering but largely
phenomenological study published 60 years ago6. Recent works7,8

investigated the frequency and mechanisms underlying collateral
sensitivity (that is, when genetic adaptation under antibiotic
stress yields enhanced sensitivity to other antibiotics). The aim of
the current paper is to provide insights into the general principles
driving cross-resistance interactions. Here, we (i) chart the
network of such evolutionary cross-resistance interactions,
(ii) explore the underlying molecular mechanisms and
(iii) investigate the extent to which cross-resistance is
predictable based on the knowledge of antibiotic properties and
the set of accumulated mutations.

To accomplish these goals, we initiated parallel laboratory
evolutionary experiments with Escherichia coli to adapt to
increasing dosages of one of 12 antibiotics, and inferred a
network of cross-resistance interactions. Laboratory-evolved lines
were subjected to whole-genome sequence analysis and biochem-
ical assays to decipher the underlying molecular mechanisms of
these interactions.

The following main conclusions were reached. First, the cross-
resistance network was dense, indicating that exposure to a single
antibiotic frequently yields multidrug resistance. Cross-resistance
between two antibiotics is largely independent of whether they
show synergistic effects in combination. Second, evolution of
resistance is partly achieved through the accumulation of
genomic rearrangements and loss-of-function mutations. Third,
as parallel evolution at the molecular level is prevalent, cross-
resistance patterns are predicable based on the set of accumulated
mutations and chemogenomic profile similarities between

antibiotics. Taken together, resistance evolution is governed by
mutations with highly pleiotropic, but predictable side-effects.

Results
High-throughput laboratory evolutionary experiments. In a
previous work7, we initiated high-throughput laboratory
evolutionary experiments starting with E. coli K12. Parallel
evolving bacterial populations were exposed to 1 of 12 antibiotics
(Table 1). Starting from a single ancestral clone, populations were
allowed to evolve to successively higher antibiotic concentrations.
Evolved populations reached up to 328-fold increases in the
minimum inhibitory concentrations relative to the ancestor
(Supplementary Table 1). For each antibiotic, 10 independently
evolved, resistant populations were subjected to further analysis.

Using an established high-throughput and highly sensitive
protocol7, we previously measured the corresponding changes in
susceptibilities of the 120 laboratory-evolved populations to all
other 11 antibiotics (Supplementary Data 1). The reliability of the
detected cross-resistance interactions was confirmed by
measuring changes in minimum inhibitory concentrations using
standard E-tests (Fig. 1b): the rates of false positives and negatives
were around 5 and 16%, respectively (Supplementary Data 2).
This allowed us to calculate the frequency of cross-resistance
(FCR) interactions for each antibiotic pair (see Methods) and
ultimately chart a map of cross-resistance between antibiotics
(Fig. 1a).

Properties of the cross-resistance network. Three main patterns
emerged from our map (Fig. 1a). First, the evolution of multidrug
resistance was frequent under a single antibiotic pressure: on
average, 52% of all investigated antibiotic pairs showed cross-
resistance in at least one direction. However, the strength of
cross-resistance interactions in the data set was highly variable
and caused 2 to 128-fold increases in minimum inhibitory con-
centrations (Fig. 1b). Antibiotic pairs belonging to different
functional classes also showed evidence of cross-resistance
(Supplementary Data 2). For example, lines adapted to the gyrase
inhibitor ciprofloxacin displayed 48 to 68-fold enhancements in
resistance to a cell wall inhibitor (cefoxitin).

Table 1 | Antibiotics employed and their modes of actions.

Bactericidal or Bacteriostatic

Ampicillin AMP Cell wall Bactericidal 

Cefoxitin FOX Cell wall Bactericidal 

Ciprofloxacin CPR Gyrase Bactericidal 

Nalidixic Acid NAL Gyrase Bactericidal 

Nitrofurantoin NIT Multiple mechanisms Bactericidal 

Kanamycin KAN Protein synthesis, 30S, Aminoglycosides Bactericidal 

Tobramycin TOB Protein synthesis, 30S, Aminoglycosides Bactericidal 

Tetracycline TET Protein synthesis, 30S Bacteriostatic

Doxycycline DOX Protein synthesis, 30S Bacteriostatic

Chloramphenicol CHL Protein synthesis, 50S Bacteriostatic

Erythromycin ERY Protein synthesis, 50S Bacteriostatic

Trimethoprim TRM Folic acid biosynthesis Bacteriostatic

Mode of ActionAbbreviationAntibiotic name

Functional classification is based on refs 12,20. These antibiotics are widely deployed in the clinic, well characterized, cover a wide range of modes of actions and were subjects of chemogenomic studies
in this species20.
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Second, antibiotics differed in their numbers of cross-resistance
interactions (Fig. 1c). For instance, adaptation to doxycycline or
fluoroquinolones generally led to multidrug resistance. As
expected, the corresponding evolved lines frequently accumulated
mutations in putative multidrug resistance genes (see below). In
sharp contrast, lines adapted to aminoglycosides had few if any
cross-resistance interactions, reflecting unusual resistance
mechanisms and a unique pathway for cellular uptake9. Next,
we investigated the other side of the coin: the extent to which
resistance to a given antibiotic was achieved by selection to other
antibiotics. For each antibiotic, we calculated the number of
different antibiotic treatments that select for increased resistance
against a given antibiotic (see in-degree on Fig. 1c). In this case,
nitrofurantoin was an interesting outlier: nitrofurantoin
resistance was reached in only 3% of the populations adapted
to other antibiotics (Supplementary Data 1).

Third, prior works indicated that concurrent application of two
antibiotics could be used to counter resistance evolution10. The
efficiency of such combination treatment is determined by at least

two factors. It depends on whether the two antibiotics show a
synergistic or antagonistic effect on bacterial growth when used in
combination (that is, their combined effect is above or below the
sum of their individual effects)11. Furthermore, it depends on the
availability of mutations that confer resistance to both antibiotics.
Therefore, it is important to establish whether the antibiotic cross-
resistance map overlaps with results of a previous antibiotic
combination screen12. Aminoglycosides displayed an especially
large number of synergistic interactions on growth when used in
combination with other antibiotics and, as noted above, were also
depleted of cross-resistance with other antibiotic classes (P¼ 0.008,
N¼ 55, Kruskal–Wallis test). After excluding this antibiotic class,
neither synergistic nor antagonistic antibiotic pairs were enriched
in cross-resistance interactions (P¼ 0.35, N¼ 45, Kruskal–Wallis
test; Fig. 1d). Thus, networks based on evolutionary and
physiological antibiotic interactions show little overlap.

Adaptive mutations dominate in the laboratory-evolved lines.
To gain insights into the underlying molecular mechanisms, we
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populations. (b) Distribution of the strength of cross-resistance interactions, as estimated by E-tests. (c) Cross-resistance interaction degrees of antibiotics.
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selected 63 independently evolved lines from the final day of
experiments (5–6 lines per antibiotic). These lines were subjected
to whole-genome sequencing using the Applied Biosystems
SOLiD platform. We implemented an established computational
pipeline to identify mutations relative to the ancestral genome
(see Methods). To ensure that our pipeline correctly identified
true mutations, a set of randomly chosen structural variants, such
as point mutations, deletions, inversions and duplications, were
validated by independent methods, that is, Sanger sequencing and
qPCR. Altogether 16 validations were performed and the results
are in complete agreement with the whole-genome sequencing
data (Supplementary Table 2). Mutator bacterial populations
have frequently been associated with decreased antibiotic sus-
ceptibility in clinics13,14 and laboratory evolution15. In agreement
with this general trend, two evolved lines exerted elevated
genomic mutation rates due to mutations in methyl-directed
mismatch repair and in the DNA proof-reading subunit of DNA
polymerase III (Supplementary Fig. 1). As a consequence, these
lines accumulated exceptionally large numbers of mutations
(synonymous and non-synonymous alike), many of which were
unlikely to be functionally relevant (Fig. 2a and Supplementary
Data 3). Therefore, these lines were excluded from all further
analyses.

For the remaining 61 lines, we identified 402 independent
mutational events (SNPs, insertions, small and large genomic
rearrangements). On average, we detected 4.2 point mutations,
1.2 deletions, 0.26 insertions and 0.07 duplications per clone
(Fig. 2a,b). Deletions were generally short (1–100 bp), with 19
major exceptions that span over 0.3–58 kb and eliminated 1–61
genes (Fig. 2c and Supplementary Data 3). Insertion sequences
(IS) initiated large-scale genomic rearrangements (inversion,
transposition or duplication) and were observed in 59% of the
laboratory-evolved lines (Supplementary Data 3).

Several lines of evidence indicate that the accumulation of the
mutations in protein-coding regions was largely driven by
selection towards increased resistance. First, 87% of point
mutations were non-synonymous. Second, at least 19% of the
mutated genes showed significant sequence similarity to known
antibiotic resistance genes16 (Fig. 2d and Supplementary Data 4),
and several observed substitutions were previously found in
natural or clinical isolates (Supplementary Data 5).

Consistent with prior studies17, antibiotic resistance generally
conferred a measurable fitness cost: at least 41% of the laboratory-
evolved lines showed a significantly reduced growth in antibiotic-
free medium compared to the wild-type. As expected, lines with
especially low fitness values in antibiotic-free medium have
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mutations among point mutations, insertions and small deletions is 27% (b). (d) Observed mutations and known antibiotic resistance genes.

Genes mutated in evolved lines are more likely to show significant sequence similarity to known antibiotic resistance genes16 than non-mutated ones

(28 out of 143 versus 120 out of 4,358, Po10� 14, Fisher’s exact test). Furthermore, genes showing sequence similarity to known resistance genes

are enriched among genes mutated in multiple lines compared with those mutated in a single line (17 out of 47 versus 11 out of 96, Po0.005, Fisher’s exact

test). We identified genes showing significant sequence similarity to a set of genes curated in the Comprehensive Antibiotic Resistance

Database16 using BLASTP search. In brief, we used the standalone NCBI BLASTPþ tool to identify E. coli genes that show highly significant similarity to

any of the curated resistance or target genes (a conservative E-value cutoff of 10� 30 was applied).
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accumulated large numbers of mutations, including deletions of
large genomic segments (Supplementary Fig. 2).

Loss-of-function mutations are prevalent. Over 27% of the
observed point mutations, small deletions and insertions gener-
ated in-frame stop codons, frameshifts or disruption of the start
codon. These mutations were most likely to yield proteins with
compromised or no activities (Fig. 2b and Supplementary
Data 3). This figure is significantly higher than that observed in
a previous large-scale laboratory evolutionary experiment towards
high temperature18 (90 out of 329 versus 145 out of 1,030,
Fisher’s exact test, P¼ 1.017� 10� 7). Furthermore, the
frequency of nonsense mutations among point mutations is
three-fold higher than expected, based on the spontaneous
mutation rate inferred from whole-genome sequencing of
mutation-accumulation lines19 (26 out of 258 versus 8 out
of 233, Fisher’s exact test, Po0.005). This result indicates
widespread positive selection on inactivating mutations in our
data set. Comparison with chemogenomic data20 indicated that
inactivation of the corresponding genes tends to reduce antibiotic
susceptibility compared with that of all other genes in the E. coli
genome (14 out of 43 versus 321 out of 3,933, Fisher’s exact test,
Po10� 5). In many cases, the null mutations enhanced resistance
to multiple drugs (Supplementary Data 6). For example, loss-of-
function mutations occurred repeatedly in transcriptional
repressors of antibiotic stress response (for example, acrR,
marR and mprA). Similarly, IS-related inversions and
transpositions frequently disrupted genes with known influence
on antibiotic susceptibility. For instance, loss-of-function
mutations in the NADPH nitroreductase genes (nfsA and nfsB)
cause resistance to nitrofurantoin and related agents21. These
genes were disrupted four times independently in nitrofurantoin-
evolved lines (for other examples, see Supplementary Data 3).

Evidence for parallel evolution. A strong pattern of parallel
evolution emerged at the level of amino-acid sites, genes and
functional modules. Eight per cent of the point mutations were
shared by at least two lines, and some were shared extensively
(Supplementary Data 3). For example, a specific mutation
(Val1127Gly) in a subunit (acrB) of the AcrAB/TolC efflux sys-
tem was shared by four lines adapted to three different antibiotics
(CHL, AMP and FOX). A total 35% of the affected genes were
mutated repeatedly (Fig. 3a and Supplementary Table 3). These
repeatedly mutated genes were especially likely to show sig-
nificant sequence similarity to known antibiotic resistance
genes16 (Fig. 2d and Supplementary Data 4), and some were
frequently found in clinical multidrug-resistant strains22–28.
Similarly, 2% of the observed small deletion events (1–82 bp)
and 75% of the large deletion events (0.3–58 kbp) were at
identical or nearly identical positions in two or more lines
(Supplementary Data 3). These large deletions were generally
flanked by homologous IS elements, suggesting that these
deletions were mediated by recombination events between IS
elements (Supplementary Data 3).

The above figures are all the more surprising as 66% of all
parallel mutated genes occurred in lines adapted to different
antibiotics. These results indicate that despite substantial
differences in antibiotic treatments, the ultimate targets of
antibiotic selection are overlapping functional modules. To
investigate this issue further, we grouped 88% of the mutations
into several major resistance mechanisms based on literature data
(Table 2). The following major conclusions can be drawn.

First, mutations in the subsystem targeted by the antibiotic were
only found in 49% of the laboratory-evolved lines. The absence of
target mutations in the remaining lines may reflect unusually high

associated fitness costs5, rarity of appropriate mutations and/or
the efficiency of alternative resistance mechanisms (such as
modification of efflux mechanisms, see Table 2). Mutations
putatively affecting enzymatic modification of the antibiotic were
observed in nitrofurantoin-adapted lines only (Table 2).

Second, genes involved in membrane transport, porin
biosynthesis and membrane permeability were repeatedly
mutated (Table 2), especially in lines adapted to protein synthesis
inhibitors and quinolones. In sharp contrast, such mutations were
conspicuously absent in aminoglycoside-resistant populations
(Table 2, see also ref. 7).

Third, transcriptional regulatory genes were highly enriched in
the set of accumulated mutations (Table 2). Many of them belong
to specific two-component regulatory systems, and mediate
general cellular defence against stressful conditions. These
conditions include osmotic (OmpR/EnvZ, AcrR), acidic (PhoQ),
metal (ComR), membrane (CpxR), antibiotic and oxidative
stresses (MarA/SoxS/Rob regulon). Consistent with their roles
in antibiotic tolerance29, global transcriptional regulatory proteins
(RpoC, Crp and Fis) were also occasionally mutated.

Fourth and more generally, nutrient and oxidative stress
response pathways were mutated in response to several different
antibiotic stresses (Table 2). Consistent with prior studies on
antibiotic tolerance30,31, central components of the stringent
response (SpoT and SspA) were occasional targets of selection.
Antioxidant stress response (SoxR and AhpF)32 and production
of antioxidant molecules33, such as putrescine and spermidine,
were also selected under antibiotic selection (Supplementary
Data 3). In response to DNA-damaging antibiotic stress,
populations mutated members of the SOS regulon (dinB, yafO
and yafP) and cryptic prophages (cryptic prophage CP4-44).
Indeed, prophages provide enhanced survival of the bacterial host
in times of antibiotic stress34.

Cross-resistance and parallel molecular evolution are linked.
Despite differences in antibiotic selection pressure, parallel evo-
lution was prevalent at multiple levels. This pattern is very
unlikely to reflect adaptation unrelated to antibiotic treatment, as
such parallel mutations generally incurred a fitness cost in anti-
biotic-free medium (see below). We hypothesized that parallel
evolving mutations have an important contribution to the
observed cross-resistance interactions. To investigate this issue,
we calculated the average fraction of mutated genes shared by two
strains for each pair of antibiotics (Fig. 3b).

Adaptation to certain antibiotics proceeds through diverse
combinations of mutations (for example, on average, pairs of
nitrofurantoin-adapted strains show 16.5% overlap in their sets of
mutated genes), while the number of evolutionary trajectories
appear to be more limited in other cases (for example, the same
figure for chloramphenicol is 38%). Antibiotic pairs that have an
especially low overlap in the corresponding sets of their mutated
genes rarely displayed cross-resistance (Fig. 3c; Po10� 10,
N¼ 66, Wilcoxon rank-sum test when pairs with a mutation
profile similarity of o0.01 were compared with the rest). This
pattern can be largely, but not exclusively, attributed to
aminoglycosides: the sets of genes mutated under aminoglycoside
selection pressure displayed practically no overlap with those
detected in other laboratory-evolved lines (Fig. 3b), and cross-
resistance was also absent. However, the association between low
mutational overlap and scarcity of cross-resistance remains even
when aminoglycosides are excluded from the analysis (Po0.005,
N¼ 45, Wilcoxon rank-sum test).

To investigate the role of parallel evolving mutations in cross-
resistance further, we selected seven genes for further character-
ization, all of which were mutated in multiple laboratory-evolved

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5352 ARTICLE

NATURE COMMUNICATIONS | 5:4352 | DOI: 10.1038/ncomms5352 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

dc_1338_16

Powered by TCPDF (www.tcpdf.org)

http://www.nature.com/naturecommunications


AMP

FOX

CPR

NAL

NIT

KAN

TOB

TET

DOX

CHL

ERY

TRM

Mutation profile similarity Mutation profile similarity

C
ro

ss
–r

es
is

ta
nc

e 
fr

eq
ue

nc
y

0.0

0.2

0.4

0.6

0.8

0.00 0.10 0.15 0.20 0.25 0.300.05
0 0.08 0.15 0.23 0.3 0.38

A
M

P

F
O

X

C
P

R

N
A

L

N
IT

K
A

N

TO
B

T
E

T

D
O

X

T
R

M

E
R

Y

C
H

L

AMP

FOX

CPR

NAL

NIT

CHL

ERY

DOX

TET

TRM

TOB

KAN

ac
rR

ac
rB

m
ar

R
m

pr
A

m
df

A

em
rB rp
h

en
vZ

om
pC

m
la

D
om

pF
om

pR
n
m

p
C

p
h
o
Q

m
ip

A
o
p
g
H

p
g
sA

d
in

G
cp

xA
ss

p
A

so
xR

p
o
tA

a
h
p
F

p
la

P
n
fs

A
n
fs

B
tr

kH
cy

o
A

cy
o
B

nu
o
C

a
tp

A
a
tp

D

a
tp

G
nu

o
F

nu
o

E
nu

o
L

cy
o
C

fu
sA

g
yr

A
rp

sL ft
sl

fo
lA

p
a
rC

g
yr

B
rh

lB
rp

o
C

rp
o

D
rp

o
B

ra
p

A
ya

b
Z

a
rp

Bfisro
b

LKJIHGFEDCBA

L

K

J

Transcriptional rewiring

Modification of the cellular subsystem targeted by the drug

I

H

G

F

E

D

C

B

A

Modification of respiration and/or membrane potential

Enzymatic modification of the drug

Defence against oxidative stress

Defence against nutritional stress

Defence against membrane stress

Defence against DNA stress

Changes of membrane permeability

Changes in metabolism

Alteration or overexpression of efflux pump

0 1 2 3 4 5 6

Number of evolved lines

Unknown

Figure 3 | Parallel evolution and cross-resistance. (a) Mutational profiles of the 12 antibiotic selection regimes. Only those genes are shown that

mutated in two or more of the 61 sequenced non-mutator laboratory-evolved lines. Mutations in promoters of multi-genic operons were associated with all

genes encoded by the operon. The colour code indicates the number of cases when the same gene was independently mutated in different lines

evolved under the same antibiotic pressure. (b) Heatmap of the average mutation profile similarity of two strains adapted to different (off-diagonal

elements) and identical (diagonal elements) antibiotics. Mutation profile similarity between each pair of evolved lines was estimated by the Jaccard’s

coefficient between their sets of mutated genes. Note that the map is symmetric. (c) Very-low average mutation profile similarities between strains

adapted to different antibiotics are associated with low cross-resistance frequencies between antibiotic pairs. Mutation profile similarity was calculated

as in b. Antibiotic pairs with mutation profile similarities o0.01 show significantly lower cross-resistance frequencies than the rest of the pairs

(Po10� 10, N¼66, Wilcoxon rank-sum test), even when aminoglycosides are excluded (Po0.005, N¼45). Dashed red curve indicates a smooth curve

fitted by Loess regression56 (using the local polynomial regression fitting function of R).
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lines and cover a wide range of molecular functions. The selected
mutations were inserted individually into wild-type E. coli. The
mutations generally conferred mild, but significant declines in
susceptibilities to several antibiotics (Table 3). For example, a

mutation in PhoQ, a member of the two-component regulatory
system involved in acid and low Mg2þ stress tolerance35,
increased resistance both to cell wall inhibitors and to the folic
acid inhibitor trimethoprim. Beyond their beneficial effects, the

Table 3 | Selected individual mutations and their sensitivity profiles across antibiotics.

Gene Amino acid.
change 

Relative fitness in 
antibiotic free 
medium (± s.e.)

Relative MIC change

Cell wall Gyrase Multipl e 50s 30s Folic 
acid Aminoglycoside

AMP FOX CPR NAL NIT CHL ERY DOX TET TRM TOB KAN

mprA Arg110Leu 0.99±0.016 1.0 1.0 0.8 3.1 1.4 1.0 1.5 0.9 1.0 1.0 0.8

marR Val84Glu 0.95±0.008* 2.0 3.3 1.9 2.1 1.0 2.2 2.0 1.9 1.8 1.3 1.0 1.0

envZ Ala396Thr 0.90±0.007* 1.7 2.7 2.2 1.0 0.9 1.0 1.2 0.8 1.3 0.8 0.7

envZ Val241Gly 0.87±0.030* 2.6 2.7 2.6 0.8 1.0 1.5 1.6 0.5 1.0 0.8 0.7

soxR Leu139* 0.72±0.023* 1.2 1.0 1.3 2.2 0.6 1.1 4.7 0.6 1.1 1.8 1.9

phoQ Gly384Cys 0.94±0.032* 2.0 1.7 1.3 0.7 1.0 1.1 1.4 1.0 1.3 2.3 1.4

trkH Thr350Lys 0.57±0.011* 0.5 0.8 0.6 0.3 0.8 0.6 0.9 0.5 0.5 0.6 3.4

gyrA Ser83Leu 1.02±0.025 1.0 1.0 7.7 30.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

gyrA Asp87Gly 1.04±0.006 1.8 1.3 7.7 30.1 0.9 1.0 1.0 0.8 1.0 1.0 1.4

0.9

0.6

0.6

3.6

1.4

2.1

1.9

TrkH antibiotic sensitivity data was partly based on results of a previous paper7. Relative fitness values are presented with the corresponding s.e. values.
*stands for cases of significance (Po0.05, N¼ 14, t-test).

Table 2 | Map of repeatedly mutating functional units across antibiotic treatments.

Functional category Cell wall Gyrase Multiple 50s 30s
Folic 
acid

Aminoglycoside

AMP FOX CPR NAL NIT CHL ERY DOX TET TRM TOB KAN

6 10 6 9 9 16 5 7 7 4 1 3

Changes in metabolism

Alteration or overexpression of
efflux pump

3 2 3 3 5 1 0 1 1 0 2 6

Changes of membrane 
permeability

6 12 6 0 13 1 3 0 1 3 6 4

Defence against DNA stress 0 1 1 2 0 0 0 0 0 1 0 0

Defence against Membrane 
stress

0 0 0 0 1 0 0 0 0 0 1 1

Defence against Nutritional stress

Defence against Oxidative stress

0 0 2 0 1 0 0 0 0 0 0 0

0 0 3 1 2 0 2 0 0 2 7 3

Enzymatic modification of the 
drug

1 0 0 0 8 0 0 0 0 0 0 0

Modification of respiration 
and/or membrane potential 2 1 0 1 3 0 1 1 0 0 32 15

Modification of the cellular 
subsystem targeted by the drug

1 4 7 14 0 0 0 2 0 5 14 10

Prophage activation 0 0 1 1 0 1 0 0 0 0 1 1

Transcriptional rewiring 1 1 3 1 1 1 3 0 1 1 3 5

The numbers indicate the total sum of independent mutational events found in lines adapted to a given antibiotic.
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selected mutations frequently had significant fitness costs in
antibiotic-free medium (ref. 17) and enhanced sensitivity to
certain antimicrobial agents (Table 3). The cross-resistance
patterns conferred by individual mutations and the
corresponding laboratory-evolved lines showed 62% overlap
(45% would be expected by chance, randomization test,
P¼ 0.002, N¼ 144 and Supplementary Data 7).

Antibiotic features and cross-resistance patterns. By compiling
a data set on the chemical and functional properties of antibiotics,
we next examined the extent to which similarities in individual
antibiotic properties shape the distribution of cross-resistance
interactions in the network. One might argue that cross-resistance
occurs mainly between antibiotics that target the same cellular
subsystems. However, target mutations were present in less than
half of the evolved lines and 88% of the cross-resistance inter-
actions occurred between antibiotics with different cellular
targets.

Relatedness of chemical structures (as captured by chemical
fingerprint similarities as measured by the Tanimoto coeffi-
cient36) emerges as a weak predictor of antibiotic cross-resistance
(Spearman’s r¼ 0.4, Po10� 3, N¼ 66, Fig. 4a). Furthermore,
this marginal effect is entirely attributable to aminoglycosides,
which have low chemical similarity with other antibiotics
and rarely show cross-resistance interactions with them
(Spearman’s r¼ 0.21, P¼ 0.17, N¼ 45 when excluding
aminoglycosides).

Last, the intrinsic resistome (that is, the set of genes that
influence antibiotic sensitivity) provides an unbiased description
of antibiotic action37. We, therefore, asked how the overlap in the
intrinsic resistome shapes the distribution of cross-resistance
interactions. Our molecular and phenotypic results were
integrated with data from a previous chemogenomic screen20.
That study exposed a nearly complete mutagenized E. coli library
to each of 17 antibiotics and determined the fitness contribution
of individual genes. Using this data set, we calculated the sets of
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Figure 4 | Antibiotic properties and cross-resistance. (a) Weak association between chemical structural similarity between antibiotic pairs and cross-

resistance frequency (Spearman’s r¼0.40, Po10� 3, N¼66), which disappears when aminoglycosides are excluded (r¼0.21, P¼0.18, N¼45).

Structural similarity between antibiotics was estimated by the Tanimoto similarity of their molecular fingerprints. (b) Correlation between chemogenomic

profile similarity and overlap in the set of accumulated mutations during laboratory evolution (Spearman’s r¼0.67, Po10� 5, N¼ 36). (c) Antibiotic pairs

that frequently display cross-resistance interactions show relatively high overlap in their chemogenomic profiles (Spearman’s r¼0.77, Po10� 7, N¼ 36).

Dashed red curves on scatterplots A–C indicate smooth curves fitted by Loess regression56. (d) Predicting antibiotic resistance phenotypes from genome

sequences. Prediction performance for each antibiotic based on the set of accumulated mutations was measured by the area under the receiver operating

characteristic (ROC) curve (AUC). This gives an overall measure of accuracy by taking into account both true positive and false positive rates

across all possible cutoffs of the prediction score. Random prediction gives an AUC of 0.5. Variation in resistance among evolved strains can be

predicted with 55–88% (76% average) accuracy, depending on the antibiotic studied. Special care was taken to avoid circularity in the

predictions.
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genes that influence susceptibility for each antibiotic used in our
study (chemogenomic profile). Strikingly, antibiotic pairs that
showed substantial overlap in their chemogenomic profiles also
accumulated similar sets of mutations during the course of
laboratory evolution (Spearman’s r¼ 0.67, Po10� 5, N¼ 36;
Fig. 4b), and frequently displayed cross-resistance interactions
(Spearman’s r¼ 0.78, Po10� 7, N¼ 36; Fig. 4c). Importantly,
these results remained when excluding antibiotic pairs targeting
the same subsystem (Spearman’s r¼ 0.59, Po10� 3, N¼ 33 and
Spearman’s r¼ 0.73, Po10� 5, N¼ 33, respectively) or those
involving aminoglycosides (Spearman’s r¼ 0.57, Po0.005,
N¼ 28 and Spearman’s r¼ 0.75, Po10� 5, N¼ 28, respectively).

Mutational analysis captures antibiotic resistance profile. Our
data indicate that the molecular mechanisms of antibiotic resis-
tance evolve in a repeatable manner. This raises the question
whether it is possible to predict antibiotic resistance phenotypes
from the genome sequences of the laboratory-evolved lines. We
employed a simple procedure that uses gene sets derived from
our sequenced evolved lines to predict differences in resistance
phenotypes among individual strains. Briefly, for each antibiotic,
we compiled the complete list of genes that were mutated
at least once in lines evolved under the given antibiotic selection
pressure. This gene–antibiotic association set was compared with
the set of genes mutated in each strain with known antibiotic
resistance profile, resulting in a set of 12 scores measuring the
likelihood of resistance of the evolved line against the complete
panel of 12 antibiotics. The above procedure was repeated for
each of our 61 sequenced evolved lines in turn. To quantify
the agreement between this simple prediction score against
experimentally determined resistance profiles (that is, increased
resistance compared with wild-type), we used a combined
measure of sensitivity (true positive rate) and specificity (true
negative rate)38. In particular, we measured how accurately our
prediction procedure separates resistance and sensitivity to a
given antibiotic when averaged across all 61 evolved lines. The
analyses demonstrated that variation in antibiotic resistance
among evolved strains can be predicted with an average 76%
accuracy, while only 50% would be expected by chance (Fig. 4d
and Supplementary Fig. 3). For example, the method is able to
discriminate doxycycline-resistant and sensitive strains with 84%
accuracy. We emphasize that our attempt to predict resistance
profiles is preliminary and future works should investigate
whether incorporation of more antibiotics, a greater diversity of
genomes or usage of more refined prediction algorithms could
improve prediction success.

Discussion
By combining experimental evolution, genome sequencing and
functional analyses, this work charted a map of cross-resistance
interactions between antibiotics in E. coli, and explored, on a
genome-wide scale, the mechanisms driving these evolutionary
patterns. The following general conclusions can be drawn from
our study.

First, our work indicates that the progressive accumulation of
spontaneous mutations under antibiotic selection simultaneously
changes the organism’s sensitivity to many other antimicrobial
agents (Fig. 1a). It also revealed differences in the efficacy by
which different antibiotics can inhibit growth of resistant
bacterial populations or select for the emergence of multidrug-
resistant strains (Fig. 1c). Cross-resistance between two anti-
biotics was largely independent of whether they show synergistic
effects in combination12,39. Thus, the networks based on
evolutionary and physiological antibiotic interactions are
generally governed by distinct mechanisms. As both synergism

and cross-resistance interactions between antibiotic pairs can
potentially influence long-term evolutionary pathways4,
combination of these two maps could be especially informative
for future development of novel antimicrobial strategies.

Second, a strong signature of parallel evolution emerged across
populations adapted to different antibiotics (Table 2), although
the molecular mechanisms underlying antibiotic resistance and
cross-resistance were diverse. Our work identified several genes
where the observed mutations delivered resistance to multiple
antimicrobial agents (Supplementary Table 3). In several
instances (phoQ, envZ, soxR and trkH), the potential roles of
these genes in multidrug resistance are yet to be investigated in
the clinic. Unexpectedly, even a mutation in the molecular target
of the antibiotic can alter sensitivity to multiple, unrelated
antibiotics. Laboratory-evolved fluoroquinolone resistant lines
frequently exhibited a specific mutation in the target topoisome-
rase gene (gyrA: A87G). This single mutation influenced
sensitivity to several non-quinolone drugs (Table 3), probably
through altering patterns of supercoiling and hence global
expression of stress response pathways40. Strikingly, in several
instances, individual mutations simultaneously enhanced
sensitivity to other drugs (Table 3), indicating that negative
trade-offs (collateral sensitivity interactions) are prevalent during
antibiotic selection6–8,41–43. More generally, the presence of
parallel mutations allowed us to predict the resistance profiles of
evolved lines from their genome sequence based on catalogues of
genes mutated under different antibiotic selection pressures.

Third, as high as 27% of the observed mutations generated
proteins with compromised or no activities (Fig. 2b). While
potential roles of loss-of-function mutations during antibiotic
evolution have been suggested22,44,45, our work provides the first
estimate on the relative importance of this mutational class.
Given their high rates and potential beneficial effects, loss-of-
function mutations could play an important role during the early
stage of resistance evolution (see also ref. 46).

Fourth, chemogenomic profile similarity between antibiotics
emerges as the most significant determinant of cross-resistance
(Fig. 4c). Thus, beyond their pivotal role in elucidating the
mechanisms of drug actions47, systematic chemogenomic studies
could also be used in the future to infer general trends of
resistance evolution.

Taken together, our analyses indicate that resistance evolution
is governed by highly pleiotropic mutations in a relatively limited
set of functional modules. The prevalence of mutations with
pleiotropic effects indicates that the phenomenon of cross-
protection may be more general and extend to other stressful
conditions unrelated to antibiotic pressure48. Indeed, genes
mutated in our study were enriched in the set of E. coli genes
that influence sensitivity to toxic metal (for example, copper and
nickel) and detergent exposure (Supplementary Table 4). Given
the documented associations between levels of metal
contamination and specific patterns of antibiotic tolerance in
nature49, future evolutionary studies should investigate how
frequently metal and antibiotic resistance are co-selected in the
laboratory. It will also be important to establish to what extent
cross-resistance interactions remain conserved across
(pathogenic) species or depend on the introduction of novel
genes by horizontal transfer. As most laboratory-evolved lines
displayed relatively low fitness in antibiotic-free medium, it will
also be important to establish the extent to which adaptation
through compensatory mutations can mitigate the costs of
resistance.

More generally, understanding the fitness consequences of
genetic adaptations to different environments remains an
important challenge for evolutionary biology1. Thanks to the
recent availability of the necessary computational tools and
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experimental techniques, it has become possible to predict certain
aspects of genomic evolution50. Integrating experimental
evolution, systems biology and genomics in a framework
similar to that presented in this paper could result in the
inference of general rules underlying the evolutionary trade-offs
observed in nature.

Methods
Laboratory evolutionary experiment. Details of the laboratory evolution
experiments have been described elsewhere7. Briefly, populations of E. coli K12
were grown in MS-minimal medium supplemented with glucose, casamino acids
and 1 of 12 possible antibiotics. Parallel cultures were propagated in 96-well
microtiter plates. Bacterial cells were transferred every 24 h by inoculating B1% of
the culture to 100 ml fresh medium. Starting with a subinhibitory (IC50) antibiotic
concentration, antibiotic dosage was increased gradually (1.5 times the previous
dosage) at every fourth transfer. We propagated 96 independent populations in the
presence of each antibiotic up to B336 generations. As expected, population sizes
differed significantly across treatments and antibiotic dosages, reflecting
independent evolutionary trajectories. For each antibiotic, the experiment halted at
the last antibiotic dosage that permitted growth of at least 10 out of 96 parallel
evolving populations (criteria was defined as the failure to obtain growth OD
600o0.05) or when the antibiotic concentration had reached its upper solubility
limit (Supplementary Table 5). For each antibiotic, 10 populations with the highest
final cell densities were selected for further analysis, resulting in 120 parallel
evolved lines. We also established 10 parallel populations growing in an
environment devoid of antibiotics for the same number of transfers, referred to as
adapted control lines.

Measurement of antibiotic susceptibilities. Given a panel of resistant strains,
our next goal was to detect changes in their sensitivity towards other antimicrobial
agents. We developed a highly sensitive high-throughput screening and a robust
statistical methodology7. Briefly, we tested the susceptibility of each evolved and
control lines against the entire set of antibiotics by measuring their growth in liquid
cultures at sublethal doses of antibiotics. Bacterial growth was monitored by
measuring optical density (OD 600) of the liquid cultures at a single time point
after 14 h of growth7. Prior experiments demonstrated that a single reading of
optical density shows very strong linear correlation with the area under the growth
curve7.

To identify statistically significant cross-resistance interactions, we tested
whether each evolved line showed a significant growth difference from the set of 10
control lines. To do this, for each evolved line, we calculated the median value of
the four technical replicates and compared it with the distribution of the median
growth values of the four technical replicates of the 10 control lines using a Z-test.
This yielded a matrix of evolutionary interactions between evolved strains and
antibiotics (Supplementary Data 1). Where multiple independent experimental
runs were available, we used Fisher’s method to aggregate P-values. All statistical
analyses were carried out in Matlab. The results were confirmed by E-test assays,
using standard protocols. Finally we calculated the the frequency of cross-resistance
(FCR) for each antibiotic pair as follows: FCR¼ (NA-BþNB-A)/(NAþNB),
where NA-B and NB-A are the number of populations adapted to antibiotic A
showing enhanced resistance to B, and vice versa. NA and NB are the total number
of populations adapted to antibiotic A and B, respectively.

Chemical and chemogenomic profile similarities. Chemical similarities of
antibiotics were computed using an R implementation of the cheminformatics
library CDK (Chemistry Development Kit)51. Chemical relatedness was captured
by chemical fingerprint similarity as measured by the standard Tanimoto
coefficient52. Chemogenomic similarity was calculated as pair-wise Jaccard
similarity coefficient between sets of genes that influence antibiotic susceptibility
based on a published chemogenomic screen20. This chemogenomic screen covered
9 of the 12 antibiotics employed in our study, and as it relied on a highly sensitive
competition assay, it was particularly useful to identify genes whose inactivation
increased antibiotic tolerance. MIC and dose response curve measurements were
performed as described previously7.

Whole-genome sequencing. The ancestral and 63 selected evolved strains were
subjected to next-generation sequencing to identify mutations. Genomic DNA
(gDNA) was extracted from selected E. coli strains (SIGMA GenElute Bacterial
Genomic DNA kit) and the subsequent library preparation was performed using
the 5500 SOLiD Fragment Library Core Kit (Life Technologies; LT). Briefly, 3 mg of
purified bacterial gDNA was fragmented by Covaris S2 System to 100–250 bp. The
fragmented DNA was end-repaired and ligated to P1 and P2 adaptors, which
provide the primary sequences for both amplification and sequencing of the sample
library fragments; the P2 adaptor contains a 10-bp barcode sequence that provided
the basis for multiplex sequencing (5500 SOLiD Fragment Library Barcode
Adaptors; LT). The templates were size-selected using Agencourt AMPure XP
system (Beckman Coulter), nick-translated using Platinum PCR Amplification Mix

and the template library was quantified by qPCR using SOLiD Library TaqMan
Quantitation Kit (LT). The templates were clonally amplified by emulsion PCR
(ePCR) with P1 primer covalently attached to the bead surface. Emulsions were
broken with butanol and ePCR beads enriched for template-positive beads by
hybridization with P2-coated capture beads. Template-enriched beads were
extended at the 30 end in the presence of terminal transferase and 3’ bead linker.
Beads with clonally amplified DNA were then deposited onto a SOLiD Flowchip
and the slide was loaded into a SOLiD 5500xl System (LT) and the 50-base
sequences were obtained according to the manufacturer’s protocol.

Bioinformatic analysis of genome sequences. The obtained sequences from each
strain were first trimmed in order to filter out low-quality reads that were shorter
than 50 bp. The remaining high quality sequences from each strain were then
aligned to the E. coli K-12 substr. MG1655 chromosome (GenBank Accession No.
NC000913; Version NC_000913.2 GI:49175990) in colour space using Genomics
Workbench 6.5 (CLC Bio). Within a single read, the maximum gap and mismatch
count was set to two and the similarity fraction was set to 0.8. Two mappings were
performed for each strain which differed in setting the length fraction to 0.5 for
relaxed or 0.6 for stringent analysis. Minimum coverage of Z51-fold and Z44-fold
was accomplished for each strain when using relaxed or stringent parameters,
respectively. A minimum of six reads were required to call a point mutation or
short indel (o15 bp) upon relaxed analysis; in contrast, 20 reads were required to
call a structural variation (SV; for example, inversion, duplication, replacement,
translocation) upon stringent analysis.

For quality-based variant detection we used an approach based on the
Neighbourhood Quality Standard algorithm that is implemented in Genomics
Workbench. Relaxed alignment was used to identify point mutations or short
indels; the minimum variant frequency was set to 50%. Variants identified in the
ancestral genome were excluded from further analyses. All remaining potential
variants were manually checked with a visual output in order to exclude false
variant calls due to insufficient mapping accuracy.

The soft-clipped, unaligned ends of the sequence reads were used to map SVs
and long indels. For this, stringent alignment was used and the resulting self-
mapped, cross-mapped, multiple, close and paired breakpoints (for details see
http://www.clcsupport.com/clcgenomicsworkbench/current/) were identified and
manually checked; indels and SVs identified in the ancestral genome were again
excluded. All identified breakpoints were validated by re-mapping: consensus
sequence resulting from large indel or SV was extracted, re-mapping was
performed using stringent setup and the breakpoint considered valid if perfectly
matching sequence tags overlapped the breakpoint.

Validation of whole-genome sequencing data. Several structural variants were
randomly chosen and validated by either PCR followed by Sanger sequencing (for
example, point mutations, deletions and inversions) or by quantitative PCR (for
example, duplications). For this latter, DNA levels were determined using StepOne
Plus Real-Time PCR system (LT). Reactions were performed by using Power
SybrGreen Master Mix (LT); the primer sequences are available on request. All of
the measurements were performed in duplicates; the ratio of each amplicon relative
to the normalizing control was calculated using the 2�DDCT method.

Allele replacements. Allele replacements were constructed by a suicide plasmid-
based method. Standard steps and plasmids (pST76-A, pSTKST) of the procedure
were described previously53. In brief, an B800-bp long targeting DNA fragment
carrying the desired point mutation in the middle was synthesized by PCR, then
cloned into a thermosensitive suicide plasmid. The plasmid construct was then
transformed into the cell, where it was able to integrate into the chromosome by
way of a single crossover between the mutant allele and the corresponding
chromosomal region. The desired cointegrates were selected by the antibiotic
resistence carried on the plasmid at a nonpermissive temperature for plasmid
replication. Next, the pSTKST helper plasmid was transformed, then induced
within the cells, resulting in the expression of the I-SceI meganuclease enzyme,
which cleaves the chromosome at the 18-bp recognition site present on the
integrated plasmid. The resulting chromosomal gap is repaired by way of RecA-
mediated intramolecular recombination between the homologous segments in the
vicinity of the broken ends. The recombinational repair results in either a reversion
to the wild-type chromosome, or in a markerless allele replacement, which can be
distinguished by sequencing of the given chromosomal region. For all primers, see
Supplementary Table 6.

As other methods failed, the oligonucleotide-mediated l Red recombination
was used to generate the gyrA variant S83-L and D87-G in E. coli BW25113.
The applied wild-type strain contained the pBADabg l Red expression plasmid for
inducible l Red recombinase production. Oligonucleotides for allelic replacement
were designed according to standard guidelines54. Briefly, oligos applied for allelic
replacement have complementary sequences to the replicating lagging strand and
have minimized secondary structure (less than � 12 kcal mol� 1). Additionally,
each oligo contained two subsequent phosphorothioate linkages at both 50 and 30

termini for endogenous nuclease evasion. Oligos were ordered with standard
purification and desalting from Integrated DNA Technologies (IDT). To perform
allelic replacement, cells were grown in 10 ml Luria Bertani (LB) broth,
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supplemented with 100mg ml� 1 ampicillin, from overnight starter culture at 37 �C,
250 r.p.m. to OD550 0.5–0.7. Expression of l Red proteins were induced by the
addition of L-Arabinose at 0.2% concentration for 30 min. For recombination, cells
were pelleted (3,800 r.p.m. for 7 min) and washed twice in ice-cold dH2O,
resuspended in 160 ml dH2O. 40ml cell suspension was electroporated with oligo
GyrAS83L or GyrAD87G at 2.5 mM final concentration. Electroporated cells were
allowed to recover in 10 ml LB at 37 �C overnight. Cells were plated on LB agar
plates supplemented with 100 ng ml� 1 ciprofloxacin. Clones with desired mutation
were identified by sequencing target site in gyrA using GyrA2F and GyrA2R
primers.

Mutation rate measurements. Mutation rates of two laboratory-evolved lines
(AMP6, CPR6) were measured by using rifampicin (Rifs to Rifr) forward fluctua-
tion test. The rifampicin minimum inhibitory concentration (MIC) for the two
evolved lines does not differ from that of the control line. Overnight cultures
(grown in LB broth, on 30 �C) were diluted to 104 cells per ml and six parallel
cultures per each line were started in glass tubes. After 24 h incubation at 30 �C,
appropriate dilutions were plated to LB agar plates for CFU determination, and to
LB agar plates containing 100 mg ml� 1 rifampicin for detection of rifampicin
resistant mutants. Colonies were counted after 24 and 48 h, respectively. Mutation
rates were calculated by using the MSS maximum-likelihood method55.

Predicting antibiotic resistance phenotypes from genomic data. To predict
antibiotic resistance phenotypes from genome sequences of the evolved lines, we
employed a procedure that uses gene sets derived from our sequenced evolved lines
to predict differences in resistance phenotypes among individual genomes. First,
for each antibiotic, we compiled the list of genes that were mutated in at least one
of our lines evolved under the given antibiotic selection pressure (for example,
genes mutated in ampicillin-evolved lines for ampicillin). To avoid circularity in
the predictions, these gene–antibiotic association lists were defined by leaving out
the genome (Gx) for which resistance prediction was attempted (that is, yielding
slightly different association lists for each Gx). Next, for each antibiotic, we counted
the number of protein-coding genes that are both mutated in Gx and present in the
gene–antibiotic association list of the given antibiotic. This procedure results in a
set of 12 scores measuring the likelihood of resistance of evolved line Gx against our
panel of 12 antibiotics. Finally, the above procedure was repeated for each of our 61
sequenced evolved lines in turn. To quantify the agreement between this simple
prediction score against experimentally determined resistance profiles (that is,
increased resistance compared to wild-type), we used a combined measure of
sensitivity (true positive rate) and specificity (true negative rate)38. In particular, we
measured how accurately our prediction procedure separates resistance and
sensitivity to a given antibiotic when averaged across all 61 evolved lines. We note
that not all gene–antibiotic association lists were equally informative in the
prediction process as mutations occurring in aminoglycoside-evolved lines were
especially relevant to discriminate between the presence and absence of resistance
to a number of antibiotics (Supplementary Table 7). This is unsurprising given the
distinct mutational profiles and resistance mechanisms of aminoglycoside-adapted
lines.
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