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Osszefoglalas

Az egyedi sejtek osztédasanak preciz szabdlyozasa kulcsfontossagu az élSlények
fejlédéséhez és ndvekedési egyensulyanak fenntartasahoz. A sejtek tulszaporodasa rakhoz,
mig az osztdédasok hianya fejl6dési rendellenességekhez vezet. Az eukaridéta sejtek
osztdédasat egy komplex molekularis regulaciés halézat szabalyozza. A f6 szabalyozé
molekuldk és azok kolcsonhatasai nagymértékben konzervaltak. A sejtciklus periodicitdsaért
az ugyancsak evoluciésan konzervalt Ciklin-Fliggé Kindzok aktivitasanak oszcillaciéja felel.
Ezeket a kozponti sejtciklus regulatorokat szabalyzd jeldtviteli utak és az Galtaluk
szabdlyozott molekuldk azonban mar nagyobb diverzitast mutatnak. Munkam folyaman a
kdzponti konzervalt rendszer, valamint az alsébb és felsébb jelatviteli utvonalak dinamikus

viselkedését vizsgaltam matematikai modellekkel.

Tér- és id6beli szimulacidkkal, valamint a nemlinearis dinamika maoddszereivel
vizsgadltam a sejtosztddasi ciklust szabalyozdé hdldzatot és annak kapcsolatat a
sejtnovekedést, valamint a napi ritmust szabalyozé halézatokkal. A munka legnagyobb része
élesztékon megfigyelt kisérleti eredményekre tamaszkodik és modelljeink joslasait is
éleszt6kon teszteltliik, azonban modelljeink szerint a legtébb megadllapitdas magasabb

szervezettségli eukaridtakra is érvényes.

Saccharomyces cerevisiae, sarjadzo éleszté6 modelliinkbél kiindulva megallapitottuk,
hogy a sejtciklus kozponti regulaciés moduljdnak molekuldris kapcsoltsagdban
megfigyelhet6 pozitiv visszacsatolasok felelések a sejtciklusatmenetek pontos sorrendjéért.
Hasadd éleszt6, Schizosaccharomyces pombe sejtekre kidolgoztuk a sejtndvekedés és a
sejtosztddasi ciklus kapcsolatdnak matematikai és hdalézati modelljeit, és azok predikcioit
kisérletesen igazoltuk. A napi ritmus és a sejtciklus kapcsolatanak matematikai modelljei
segitettek minket megérteni és kés6bb kisérletesen vizsgalni ezt a kapcsolatot Neurospora
crassa modell organizmusban. Ezeken kivil szdmos megfigyelést tettiink a molekularis
szabalyozé haldzatok altaldnos dinamikai viselkedésére, és mddszereket fejlesztettiink ki a
modellek rendszerszintl vizsgdlatdra is. Eredményeink hozzajarulnak a sejtosztddas
szabalyozasanak alaposabb megismeréséhez, és ezdltal megteremtik a rak kialakuldsanak és

megfékezésének rendszerszintl vizsgalatanak lehet&ségét.
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Roviditések jegyzéke
CDK: Ciklin-Fligg6 (Dependens) Kinaz
TF: Transzkripcids Faktor
FFL: El6recsatoldsi hurok (Feed Forward Loop)
SIN: Szeptaciét Indukalé Halézat (Network)
OV: Oreg Vég
UV: Uj vég
Glu: Gliikoz
Gal: Galaktoz
Raf: Raffindz

Eth: Etanol
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1. Bevezetés

A sejtek egészséges fejlédéséhez és szaporodasdahoz elengedhetetlen, hogy az
osztédasi ciklusuk pontos ellen6rzés alatt alljon, és a sejtciklus egyes fazisai kotott
sorrendben kovessék egymast. Egy komplex regulacids halozat felelds a sejtciklus pontos
szabdlyozasaért. A sejtciklust szabdlyozd molekuldak kolcsonhatasai bonyolult el6re- és
visszacsatolasi hurkokat hoznak létre a szabalyozdé haldzatban, és ezek altal szabdlyozzdk a
sejtciklus fazisainak atmeneteit. A sejtciklust szabalyozé molekuldk nagy részét ismerjik, és
a kapcsoltsagukrol is rendelkeziink informacidkkal, de sokkal kevésbé értjiik, hogy a komplex
kdlcsonhatasaik hogyan vezetnek a megfigyelt fenotipusos vdlaszokhoz. A szamitdsos
rendszerbiolégia mddszereinek alkalmazasaval vizsgalni tudjuk, hogy a kisérletes alapon
feltételezett reguldcids halézatok milyen dinamikai viselkedéshez vezethetnek, és ezek
mennyire egyeznek mas, flggetlen kisérletes eredményekkel. Matematikai modellekkel
osszefoglalhatjuk eddigi tudasunk, és vizsgalhatjuk, hogy azok mennyire képesek a valésagot
leirni (1. dbra). A modell egyezése a kisérlettel a rendszer megértését segitheti, mig ha a
modell csak részben egyezik a kisérletekkel, akkor predikciok megalkotasaban és a tovabbi

kisérletes munka tervezésében segithet.

Molekularis kolcsonhatasok
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1. dbra: Bioldgiai rendszerek matematikai modellezéses vizsgalatanak Iépései.
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A bioldgiai rendszerek vizsgalatdahoz az ismert molekularis kélcsonhatasok haldzata
alapjan egy egyenletrendszert allitunk fel. Az egyenleteket szimulacidkkal és a dinamikai
rendszerek vizsgdlati modszereivel elemezziik, és ezaltal megprobaljuk megérteni a sejtek
fizioldgiai viselkedését. Az 1. abran bemutatott példaban a hasadé éleszt6 sejtciklus
szabdlyozd haldézata alapjan egy differencidlegyenlet-rendszert Aallitottunk fel, és az
egyenletek megoldasanak id6beni lefutdsat, valamint az egyensulyi dllapotok kozotti
atmeneteket vizsgdltuk. A szimuldciés gorbék alakja és az egyensulyi dllapotok
megfeleltethet6k a sejtek fizioldgiai viselkedésének, igy a mddszer alkalmas arra, hogy
megvizsgdljuk, hogy az ismert tudasanyag alapjan képesek vagyunk-e megfelel6en leirni a

sejtek viselkedését.

Kutatdsaim soran a sejtciklust szabdlyozd kézponti reguldcios hdldzat és az ahhoz
kapcsolt fizioldgiai viselkedésért felel6s jelatviteli Utvonalakat vizsgaltam a fent bemutatott

moddszerekkel. Munkdm soran a kovetkez6 kérdésekre kerestem a valaszt:

- Milyen molekularis interakcidk felel6sek a sejtciklus fazisok kozotti atmenetek
pontos sorrendjéért?

- A sejtciklusszabdlyzds kozponti rendszerének dinamikai viselkedése mennyire
konzervalt eukariotakban?

- A sejtosztodasi és sejtnovekedési ciklus hogyan kapcsolédik egymashoz?

- A napi ritmus hogyan hat a sejtciklus periodicitasara?

Doktori tézisem harom részbdl all: a masodik fejezetben 6sszefoglalom a sejtciklus
kozponti szabalyozé haldzatanak vizsgalatara iranyuld munkankat, a harmadik fejezetben e
kozponti hdlozat és a lokalizalt sejtnovekedés, valamint sejtméret-szabdlyozas kapcsolatat
ismertetem, mig a negyedik fejezetben a sejtciklus és a napi ritmus kapcsoltsagat vizsgald
munkainkat mutatom be. A fejezetek logikai felépitése azonos: irodalmi adatok alapjan
feldllitunk egy, az 1. dbranak megfelel6 modellt, azt kiilonb6z6 matematikai mddszerekkel
vizsgaljuk, majd az eredmények alapjan javaslatokat tesziink a rendszer viselkedésének
kordbban ismeretlen pontjara, és sok esetben ujabb kisérleteket javasolunk a rendszer

pontosabb megértéséhez.
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2. A sejtciklus-szabalyozas matematikai modelljei

A sejtciklus kdzponti szabdlyozé molekulai a Ciklin-Fligg6 Kindzok (CDK). A szubsztrat
felismer6 ciklin molekulak a sejtciklus alatt periodikusan szintetizalédnak, és a CDK-val
komplexet képezve tdbb szaz fehérjét foszforilalnak a sejtciklus kilénb6z6 fazisaiban. A
ciklin  molekuldk specificitdsa és a CDK sajat foszforilaciés allapota, valamint
sztochiometrikus inhibitorok felel6sek a CDK aktivitasanak periodikus szabalyozasaért.
Ugyanakkor a CDK-szabdlyozé molekuldk nagy része a CDK-nak direkt szubsztratja is, igy a
CDK szabalyozza sajat regulatorait is. Mind a ciklinek, a CDK és a visszacsatolasi hurkok
jelenléte is konzervalt eukaridta sejtekben, ezdltal feltételezhetjik, hogy a
visszacsatolasoknak is jelent6s szerepik van a pontos sejtciklus-szabdlyozasban.
Kutatdsainkban azt vizsgdltuk, hogy milyen dinamikai viselkedéshez vezetnek a kisérletesen
megfigyelt kolcsonhatdsok, és hogy a modellek szamitégépes szimulaciéi mennyire
egyeztethet6ek Ossze az egyes mutdns sejtek fenotipusos viselkedésével. Az aldbb
ismertetett eredményeket két 6sszefoglald cikkben is targyaltam korabban (Tyson és mtsai.

2002, Csikasz-Nagy 2009).
2.1.  Célkitlizések
- Az éleszt6 sejtciklusok dinamikajanak a vizsgalata

A legtobb sejtciklus-szabalyozé hdaldzattal foglalkozo kisérletes eredmény sarjadzé és hasadd
élesztén végzett kisérletekbdl szarmazik. ElGszor ezeket az eredményeket hasznaltuk fel

matematikai modelljeink megalkotasara, és a modell paramétereinek beallitasara.
- A sejtciklus konzervalt dinamikai funkcidinak vizsgalata

A szabdlyozdé molekuldk és azok kapcsoltsaganak konzervacidjat felhaszndlva megnéztiik,

hogy az éleszt6n megfigyeltek mennyire terjeszthet6k ki fejlettebb eukaridtakra is.
- Egyedi sejtek viselkedésének szimulacidja

A legujabb kisérletes technoldgidk mar az egyedi sejtek sejtciklusardl is képesek adatot

szolgdltatni. Fenti, atlag sejtet leir6 modelljeinket kiterjesztjik egyedi sejtek vizsgalatara is.
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2.2. Eredmények

Az éleszt6 sejtciklusok dinamikdjanak a vizsgalata

Az eukariéta szervezetek kozil a Saccharomyces cerevisiae sarjadzd éleszt6
sejtciklusat ismerjiuk a legrészletesebben. Ez volt az elsé eukaridta, amelynek genomjat
leszekvenaltdk, és az els6, amelyben teljes genomot atfogd vizsgalatokat végeztek. A
kdzponti sejtciklus-szabalyozé rendszer kapcsoltsagi halojat megalkottuk, és egy atfogd
matematikai modellt készitettiink, amely szimulalja a sejtciklus kezdd (G1-S) és befejezd (M-
G1) atmeneteinek dinamikdjat (Chen és mtsai. 2004). A modell paraméterei ugy lettek
bedllitva, hogy az képes szimuldlni 131 mutans viselkedését (életképesség, sejtméret,
sejtciklus fazisok hosszai). A modell részletes dinamikai elemzése megmutatta, hogy a
sejtciklus két kilonbozd id6skalan mozog, egy lassu, a sejtek ndvekedésétdl fliggd periddust
egy megfutd periddus kdvet. A lassu fazisok megfeleltethet6ek G1 és G2 fazisoknak, mig a
gyors, autokatalitikus fazisok a sejtciklus atmeneteknél figyelhet6ek meg (Lovrics és mtsai.
2006). A modell paramétereinek érzékenységanalizise megmutatta, hogy az egyes
paraméterek elhangolasa altal okozott dinamikai valtozdsok mely mas paraméterek

valtoztatasaval kompenzalhatdak (Lovrics és mtsai. 2008).

A sejtcikluskutatas masodik legismertebb  éleszt6  tesztorganizmusa a
Schizosaccharomyces pombe hasadd éleszté. Kisérletes partnerekkel egytttmiikodve
vizsgaltuk, hogy a sejtek hogyan reagdlnak arra, ha az egyes sejtciklus-szabdlyozé génekbdl
tobb koépiat tartalmaznak. Matematikai modelliink képes volt szimuldlni a korabban leirt
sejtciklus génhidanyos mutdnsok, valamint az Ujonnan megalkotott gén tulkifejezéses

mutansok viselkedését is (Moriya és mtsai. 2011).

A sejtciklus konzervalt dinamikai funkcidinak vizsgalata

A két éleszt6 sejtciklusanak vizsgdlata ravilagitott arra, hogy szdmos hasonlé
szabalyozasbeli, molekularis és dinamikai funkcié konzervalt a két organizmus kozott. Ebbdl
kiindulva egy Osszehasonlitd elemzést végeztliink a két éleszt6, az afrikai karmos béka
Xenopus laevis és egy altaldnos eml6s sejtciklus modell kdzott. Megdllapitottuk, hogy a

kiilonb6z6 élSlények sejtciklus-szabdlyozd rendszere hasonldan kapcsolt, és egy daltaldnos
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modellt is megalkottunk, amely egyedi paraméter készletekkel képes szimuldlni az 6sszes
vizsgdlt organizmus sejtciklusat (Csikdsz-Nagy és mtsai. 2006). Az altaldnos eukaridta
sejtciklus vizsgalataval megallapitottuk, hogy a sejtciklus kdzponti regulaciés moduljanak
molekularis  kapcsoltsagaban megfigyelhet6 pozitiv visszacsatolasok felel6sek a
sejtciklusatmenetek egyiranyusagaért (Novak és mtsai. 2007) (2. abra). Szinén megmutattuk,
hogy a CDK a&ltal szabalyozott transzkripciés — poszttranszlacidés el6recsatolasi hurkok
felelGsek a sejtciklus fazisok pontos sorrendjéért (Csikasz-Nagy és mtsai. 2009). Ezekben az
el6recsatolasi hurkokban a CDK foszforilezéssel szabdlyozza a sejtciklusatmenetek legfGbb
transzkripcids faktorait (TF) és az azok altal indukalt sejtciklusatmenet-indité fehérjéket is (2.
abra). A CDK indukalt foszforilacid és a transzkripicds faktorok is lehetnek pozitiv és negativ
hatdssal is a fehérjék képz6désére és aktivalddasara. Ez a két hatas kiilonbozé idéskalan hat
a fehérjékre, a foszforilacid sokkal gyorsabban valtoztatja meg a fehérjék aktivitdsat, mint
ahogy a transzkripcié valtozasai hatnak a fehérjeszintre. A CDK igy egy lassu és egy gyors
hatdst is kifejthet ugyanarra a fehérjére. Modelljeink azt josoltdk, hogy a kiloénbozd
sejtciklusatmeneteknél ezeknek a hatasoknak az elGjele valtozik. A kilonb6z6 sejtciklus
fazisoknal és azok atmeneteinél a gyors és lassu hatasok elGjelet valthatnak (CDK
foszforilacioval egyes fehérjéket aktival, masokat gatol), és ezaltal a CDK képes egyedil
kontrollalni a sejtciklus Osszes fazisdnak kulcsfehérjéit. Protein-protein interakcids és

transzkripcids regulaciot tartalmazd adatbazisok (http://string.embl.de/ és

http://www.yeastract.com/) segitségével elemeztiik az éleszt6ben el6forduléd CDK regulalt

el6recsatolasi hurkokat. Az eredmények egyértelmlen afelé mutatnak, hogy a sejtciklus
kiilonb6z6 fazisaiban valéban masfajta topoldgiaju elGrecsatoldsi hurkok makoédnek, a G1
fazisban a CDK mindkét agon gatolja a fehérjéket, a G1-S dtmenetnél a CDK transzkripciésan
gatol, mig foszforilacidésan aktival, G2 és korai M fazisban mindkét mdédon aktival, a mitézis
meta-anafazis atmeneténél pedig transzkripcidsan aktival, kdzvetlenil pedig gatol (Csikasz-
Nagy és mtsai. 2009). Bioinformatikai és modellezéses mddszerekkel szintén megmutattuk,
hogy a CDK-aktivitdst, és ezdltal a sejtciklusatmeneteket szabalyozé fehérjék periodikus
transzkripcidja egyedi mintat mutat. Kiilonboz6 élSlényekben az dtmenetek mas és mas
szabdlyozdja irodik at periodikusan, annak fliggvényében, hogy az adott él6lény melyik

sejtciklusatmenetet szabalyozza a legkoriltekint6bben (Romanel és mtsai. 2012). (2. dbra)
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Az 3ltalanos modellekbdl kiindulva kidolgoztunk egy modellt az emlds sejtek
restrikcids pontjanak szabdlyozdsara is, és a modell metabolikus kontroll analizise altal
megallapitottuk, hogy a p27 gatld hatasa a Cdk2-CycE komplexekre a restrikcids pont egyik

f6 kulcsreakcidja (Conradie és mtsai. 2010).

(Novak 2007)
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\\ / " ~\
(Csikasz-Nagy 2009)M ’ I
e ¥ ' @ 1 (Romanel2012)
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mitozis
sejtosztodas
G1 stabilizalasa

2. abra: A sejtciklus kulcslépéseinek szabdlyozasa a CDK - ciklin B komplexek altal pozitiv
és negativ visszacsatolasi és el6recsatolasi (FFL) hurkok altal. Az egyes lépéseket leiré fobb

modelljeink referenciai sziirkével jel6lve. (TF: Transzkripcids Faktor)

Egyedi sejtek viselkedésének szimulacidja

A fent ismertetett differencidlegyenlet-rendszer alapu modellek egy atlagos sejt
viselkedését tudjak leirni. Azonban, hala a legljabb mikroszképias technikdknak, tudjuk,
hogy egy sejtpopulaciéban egymdstdl sokban eltérd viselkedési sejtek is megfigyelhet6ek. A
fent emlitett sarjadzé éleszté modellt (Chen és mtsai. 2004) a Petri Net modellezési médszer
felhasznaldsaval atalakitottuk olyan rendszerré, amelyben az egyedi molekulak fluktuacidit is

le tudjuk irni, és a Gillespie-féle sztochasztikus szimulacids algoritmus segitségével vizsgaltuk
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az egyedi sejtciklusok dinamikdjat. Megdllapitottuk, hogy a sejtciklushossz eloszlasa a
sarjadzo éleszté szamos mutansandl sokkal szélesebb, mint a vad tipusu sejteknél. Ezzel
magyardzatot tudtunk adni arra a megfigyelésre, hogy ezek a torzsek populdcié szinten
életképesek, de sok egyedi sejt képtelen a sejtosztédasra (Mura és Csikdsz-Nagy 2008).
Sztochasztikus szimuldcidkkal megmutattuk, hogy az mRNS-ek tobblépéses képz&dése és
lebomlasa adhat magyarazatot a kisérletesen megfigyelt alacsony molekularis zajszintre
(Csikdsz-Nagy és Mura 2010). Hasonlé moddszerekkel megadllapitottuk, hogy a
sejtciklusatmenetek szabalyozdinak egyed szinten regulalt transzkripcidja szabhatja meg a
sejtciklus egyes szakaszainak hosszat (Romanel és mtsai. 2012). Szintén a sztochasztikus
sejtciklus modellek segitettek abban, hogy megmutassuk, hogy a sejtciklus G2 és M fazisa
kozotti dtmenetet szabdlyozé Cdk-Cdc25-Weel hdlézat mind dinamikajaban, mind
strukturdjaban hasonlit a szamitdstechnikaban, a disztributiv rendszerek szabdlyozasara
egyik leggyakrabban haszndlt algoritmus viselkedéséhez (Cardelli és Csikdasz-Nagy 2012).
Kés6bb azt is megmutattuk, hogy ez a hasonldsag fennall akkor is, ha a sejtciklus kiilénb6z6

komplexitasu modelljeit hasonlitjuk 6ssze egymdssal (Cardelli és mtsai. 2016)
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3. Asejtnovekedés és a sejtciklus 6sszehangolasa

A sejtek osztédasi ciklusa szorosan kapcsolt a novekedési ciklussal. A DNS-allomany
megduplazasa az S-fazis és két U] sejtmagba osztdsa a mitdzis alatt 6ssze van hangolva a
sejtek novekedésével, és a sejtosztdédas csak akkor kévetkezhet be, ha a mitdzis rendben
befejez6dott. A sarjadzd éleszt6ben az S-fazis, mig a hasadd éleszt6ben a mitdzis all
ugynevezett sejtméretkontroll alatt, azaz ezek a sejtciklus szakaszok csak akkor
kezd6dhetnek el, ha a sejtek elértek egy kritikus méretet. Mindkét éleszt6 sejt képes
polarizalt sejtnovekedésre. A sarjadzé éleszt6k a sarj megjelenésekor, a hasadd éleszt6k
egész interfazisuk alatt csak a sejtmembran egy kis lokalizalt teriletén névekednek. Ez a
polarizadlt novekedés a G2-fazisban a sarjadzd éleszténél atvalt a sarj izotropikus
novekedésére, a hasadd éleszté sejtek pedig ekkor aktivalnak egy masodik polarizalt
novekedési zénat. A novekedés és a sejtciklus reguldciéjanak kapcsoltsagara szamos

matematikai modellt készitettlink.
3.1.  Célkitlizések
- Alokalizalt sejtnévekedés sejtciklusos kontrolljanak vizsgalata

A hasadod élesztd sejtek a sejtciklus folyaman tobbszor is valtoztatjdk a lokalis novekedési
zondik helyzetét. Célunk az volt, hogy a kisérleteket helyesen szimulalé tér- és id6beni
matematikai modelleket dolgozzunk ki a rendszer vizsgdlatdra, elemezziik a szabalyozd
molekularis halozatot, és ezek alapjan kisérleteket javasoljunk a rendszer pontosabb

megismerésére.
- A sejtosztédast szabdlyozo regulacids hal6zat matematikai modellezése

A hasadd éleszt6 sejtosztédasa egy komplex molekuldris reguldciés hdlézat altal
szabalyozott. A sejtosztddas inditasaért felel6s molekularis szabalyozd haldzat viselkedését

akartuk megérteni a rendszer tér- és id6beni matematikai modelljeinek vizsgalataval.
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- A sejtméret szabalyozasanak vizsgalata

Homeosztatikus allapotban a legtobb eukaridta sejt egy viszonylag szlk tartomanyban tartja
méretét, és ez a sejtpopulaciéban egy kontrolldlt sejtméreteloszlast eredményez.
Matematikai modellekkel vizsgaltuk a méretkontroll-szabdlyozd rendszert éleszt6kben és

azt, hogy ez hogyan moédosul a kérnyezeti paraméterek megvaltoztatasdaval.

3.2. Eredmények

A lokalizalt sejtnovekedés sejtciklusos kontrolljanak vizsgalata

Szamtalan eukariota sejttipusnal megfigyelhetd az egyes intracellularis és membran
strukturdk polarizalt lokalizaciéja. Neuronok, hamszoveti sejtek, makrofagok és egysejti
organizmusok is képesek a sejtmembran egy adott zondjara lokalizalni bizonyos
molekuldkat. Ezek a molekuldk fontosak lehetnek irdnyitott kommunikacid, mozgas, vagy
polarizalt novekedés szabdlyozasdban. A rud alaku hasadd éleszt6 sejtek a novekedési
zonajukat lokalizaljak a rud végeire, és csak itt nének. Méghozza a sejtciklus G1 fazisaban
csak azon a végen, amelyik mar létezett az el6z8 hasadasos sejtosztddas elétt (un. Oreg Vég
- QV), és a G2 fazis kezdetekor aktivéljak az Uj Véget (UV), és egészen a mitdzisig mindkét
végen nbnek (3. dbra). A novekedésért a lokalizaltan polimerizalt aktin felelés, mig a pontos
lokalizaciéért a mikrotubulusokon szallitott fehérjekomplexek felelnek. Erdemes
megjegyezni, hogy a legfontosabb szabalyozd fehérjék, amelyek felel6sek a lokalizacidért,

konzervaltak az eukariotak kozott.
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3. dbra: Hasado éleszt6 novekedési mintazata (a) és a rendszer matematikai modelljének

szimulacidja (b).

A rendszer vizsgalatara kidolgoztunk egy reakcid-diffuzios matematikai modellt,
amelyben lassan diffundalé autokatalitikusan polimerizalédé, szubsztrat limitalt komplexek
indukaljak a sejtndvekedést (Csikdsz-Nagy és mtsai. 2008). Ez a modell képes szimulalni az
egyiranyu novekedésbdl a kétiranyd ndvekedésre valtast (3. b dbra), és kiillonb6z6 mutansok
fenotipusat is helyesen irja le. A kés6bbiekben kisérletes egylttmiikddé partnereinkkel
kozosen megallapitottuk, hogy a sejtek végén a molekuldk klasztereket képeznek, és ezek
kialakulasaért a modelliinkben feltételezett autokatalitikus asszociacié a felel6s (Dodgson és

mtsai. 2013) (4. abra).

4. abra: Hasado éleszt6 sejt végén lokalizalt fehérjék klaszterezett elrendezédése

kisérletesen (a) és szimulacidnkban (b).

Az eredeti modelliinket tobb |épésben tovabbfejlesztettiik, és a legljabb kisérletes
eredmények alapjan kiegészitettiik a szimpla autokatalitikus aktivatort egyinhibitorral. Ezzel
a publikdlds alatt all6 modellel mar a legujabb kisérleti eredményeket is sikeresen tudjuk

szimulalni.
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Mindezek az eredmények magyarazatot adnak arra, miért kell a sejteknek egy
kritikus méretet elérnitik az Uj vég novekedésének aktivaldsdhoz, de nem ad magyarazatot
arra, miért sziikséges, hogy a sejtek G2 fazisban legyenek ekkor. Hogy molekuldris szinten
ezt megértsiik, a hasadd éleszt6 sejtpolarizacidjaval dsszefliggésbe hozott tébb mint 80
kiilonb6z6 fehérjét és azoknak a leirt kolcsonhatdsait vizsgaltuk a grafelmélet halézati
analizis modszereivel (Vaggi és mtsai. 2012). Kidolgoztunk egy Uj haldzati mérészamot, ami
segit felderiteni, hogy mely molekuldk szolgdlhatnak informacidatvivéként a sejtciklus és a
sejtpolaritas szabdlyoz6 hdldzata kozott. Ezzel a mddszerrel jutottunk el az Sts5 RNS koté
fehérjéhez, mint potencidlis kapcsoléelemhez a sejtciklus és a sejtpolarizacié kozott.
Korabban felderitették, hogy ez a fehérje fontos a masodik novekedési vég aktivalddasdhoz,
és egylittm(ikodd partnereink kisérletei igazoltak, hogy az Sts5 lokalizacidja a sejtciklus altal
szabdlyozott (Vaggi és mtsai. 2012). A haldzati megkdzelitést alkalmazva szamos egyéb
predikcidt tudtunk tenni a sejtpolarizaciot szabdlyozd haldzat kolcsonhatdsaira. Ezek a

joslasok jelenleg kisérletes tesztelés alatt allnak.

Sejtpolarizaciés kutatasi eredményeink alapjan meghivdst kaptam, hogy a
Philosophical Transactions of the Royal Society Biological Sciences folydirat egy
kiildnszdmanak tarsszerkesztSje legyek. Egy szerkeszt6i kézleményben mutattuk be a téma
kiilonb6z6 kutatdsi eredményeit, és foglaltuk dssze a sejtmorfoldgiai kutatasok legnagyobb

sikereit (Csikasz-Nagy és mtsai. 2013).

A sejtosztddast szabalyozd regulacios haldzat matematikai modellezése

Az eukaridta sejtek osztdédasa csak azutdan indulhat meg, hogy a mitdzis befejez6dott.
Molekularis szinten ez ugy szabdlyozddik, hogy a mitdzisos CDK-ciklin B komplexek
inaktivaléddsa szlikséges a sejtosztédas meginduldsdhoz. A hasado éleszts sejtek, mint azt a
neviik sugallja, a sejt kozepén kialakuld szeptum segitségével, hasadassal osztédnak. A
szeptum kialakulasanak (szeptéacid) tobb Iépése van. Mitdzis kbzben egy aktin gy(ird alakul ki
a sejt kozepén, ami a CDK-aktivitas csokkenésének hatasara 6sszehuzddik, és ahogy az aktin
gylird zarédik, a sejtmembran betliremkedik, és Uj sejtfal szintetizalédik, ami elvdlasztja a
két lednysejtet egymastél. A kovetkez6 |épésben a lednysejteket Osszetartd szeptum rész
feloldddik, és a sejtek elvallnak egymastdl. A szeptdaciét indukalod jelatviteli dtvonal (SIN —

Septation Initiation Network) aktivalédddsa inditja a szeptaciét. Egy matematikai modellt
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dolgoztunk ki annak megértésére, hogy a CDK-aktivitas mitdézisos magas, majd azutani
alacsony szintje hogyan szabdlyozza azt, hogy a sejtosztddas a sejtciklus folyaman csak
egyszer torténik meg (Csikdsz-Nagy és mtsai. 2007)(5. dbra). A modell leirja a vadtipusu
sejtek és szamos mutdns viselkedését, és segitett annak megértésében, hogy a CDK egy
el6recsatolasos hurkon keresztiil éri el, hogy a sejtosztddas csak egyszer torténhet meg. Ez a
megfigyelés vezetett a 2. fejezetben targyalt kés6bbi munkahoz, amelyben belattuk, hogy a
CDK ilyen el6recsatolasos hurkokon keresztil képes az 0Osszes sejtciklusatmenetet

szabalyozni (Csikdsz-Nagy és mtsai. 2009).

0.5 1

100 150

0 0 id6 (min)

5. dbra: Hasadod éleszt6 sejtosztédasat szabalyozo haldzat (a), és a halézat matematikai
modelljének szimuldciéja mutatja, hogy a SIN alsé utvonalai csak a CDK-aktivitas

csokkenése utan aktivalédnak (b).

Azt is megfigyelték, hogy a SIN minden komponense az éleszt6k sejtmagjaba
agyazodott centroszémajahoz kotédik, és a mitdzis elején a mindkét leany centroszéman
aktivalédnak a SIN fels6é elemei. Ugyanakkor az alsé elemek aktivalodasukkor a kezdeti
szimmetrikus eloszlasbdl aszimmetrikusra valtanak. Igy a SIN alsé jelatviteli Utja csak az
egyik centroszéman aktivalodik, mikdzben a masikon az egész SIN inaktivalodik. Kordbbi
kisérleti eredmények kimutattak, hogy a SIN aktivalodasa az egész SIN lokalizacidjaért felel6s
Cdc11 molekuldk foszforilezéséhez vezet. Az is ismert volt, hogy a CDK is képes a Cdcl1-et
foszforilezni, mas helyeken. Arra voltunk kivancsiak, hogy ezek a foszforilacids |épések
hogyan hatnak a SIN aszimmetridjanak kialakuldsara. Kilénb6z6 matematikai modelleket
dolgoztunk ki a foszforilacio esetleges hatasainak a vizsgalatara. A modellek kozil sikerilt

kivalasztanunk egyet, amely a SIN komponenseinek id6beni lokalizacids valtozasait helyesen
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irja le (6. abra). A kivdlasztott modell kisérletes tesztelésére javaslatot adtunk, és

egyluttm(ikodés keretein belll igazoltuk is, hogy a SIN aszimmetridjanak kialakitasaért a

Cdcl11 tobblépéses foszforilacidja a felelds (Bajpai és mtsai. 2013).
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6. abra: Hasado élesztd sejtosztoddasat szabdlyozo halézat aszimmetrikus aktivacidja. (a) A
kisérleteket helyesen leiré halézat a két centroszoma (kék alapon szammal jel6lve) és az
azokhoz kapcsolodé Cdcll, SIN és Byr4d molekulak interakcidjara. b) A modell szimulacidja
azt mutatja, hogy cdc16” muténs sejtekben a SIN altal indukalt foszforilaciok gatlasa (zold,
cdc11-S5A mutans) nem, mig a CDK altal indukalt foszforilacidk gatlasa (kék, cdc11-S8A
mutdns) késlelteti az aszimmetria kialakulasat. (c) A cdc11-S5A mutansok valébban nem
képesek késleltetni a szeptaciét cdc16™ hattérben, azonban a cdcl11-S8A mutéansok
képesek erre, és ezaltal el6segitik a cdc16® mutans sejtek thlélését és normalis

szeptacidjat.
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A sejtméret szabdlyozdsanak a vizsgalata

A legtobb eukariota sejttipus egy viszonylag allandé meérettartomanyban tartja
térfogatat azaltal, hogy két sejtosztdédas kozott annyit nének a sejtek, hogy az Ujonnan
megsziletd leanysejtek az anyasejt kezdeti méretéhez hasonléak lesznek. Ez a sejtméret
homeosztazis ugy érhetd el, hogy a sejtek csak akkor kezdik meg a sejtciklus egy kritikus
lépését, ha mar elértek egy bizonyos méretet. Ezt a kapcsoltsdgot a sejt osztédasi és
novekedési ciklusa kozott nevezzilk méretkontrollnak. Tobb sejttipusnal azt is megfigyelték,
hogy a tdpanyagban gazdagabb tdptalajon novesztett sejtek nagyobb, mig a minimalis
tdptalajon novesztett sejtek kisebb méretnél osztéodnak. Egyedi sarjadzd éleszt6 sejtek
mikroszkdépos vizsgalataval megfigyeltiik, hogy egy adott populdciéban is igaz, hogy a
gyorsabban nové sejteknek egy nagyobb kritikus méretet kell elérnitik, hogy dtmenjenek a
sejtciklus START eseményén (az emlGs sejtek restrikcids pontjanak megfeleltetheté dtmenet,
amikor az S-fazist indito transzkripcios faktorok aktivalddnak). Azt is megallapitottuk, hogy
kilonboz6 taptalajokon novesztett egyedi sejtekre is igaz, hogy nem a taptalaj maga, hanem
a sejtek egyedi novekedési sebessége hatdrozza meg kritikus méretiiket (7. a dbra). A mérési
adatok alapjan felallitott modellel egyrészt reprodukalni tudtuk ugyanezt az eloszlast (7. b
abra), masrészt a lednysejtek és a populacid kritikus méreteit (7. c abra), és ezek jé egyezést
mutattak a kisérleti eredményekkel (7. d dbra). A modell segitett annak megértésében, hogy
a kritikus méret kapcsoltsdga a novekedési sebességgel milyen evolicids elényt ad a
populacidnak egy olyanhoz képest, amelyben minden sejt azonos kritikus méretet kell, hogy
elérjen (Ferrezuelo és mtsai. 2013). A kisérleti eredmények megmutattdk, hogy ez a
kapcsoltsag eltlinik tobb START szabalyozé molekula egylittes kititésekor, de akkor is, ha az
egyik sejtciklus szabdlyozdsban is fontos dajkafehérjét (Ydjl, éleszté6 HSP40) kilitjik a
sejtekbdl. Legujabb munkankban azt vizsgaljuk, hogy milyen molekularis mechanizmus all

ennek a kapcsoltsagnak a hatterében.

Komoly tudomanyos vita folyik a méretkontroll szerepérél az emlds sejtek sejtciklus
szabalyzasaban. Kilonboz6 kisérletek egymastdl eltéré eredményt taldltak arrdl, hogy
mennyire fontos a méretkontroll kilonb6z6 emlds sejttenyészetekben. Ennek a
diszkrepancianak a felolddsara a 4. fejezetben részletesen ismertetett napi ritmus és a

sejtciklus kapcsoltsagat vizsgdlod egyik modelliink adott egy javaslatot. A szimuldcidink azt
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sugalltdk, hogy a sejtek novekedési sebessége itt is hatdssal lehet a kritikus méretre, de ez a
hatds elveszik, ha a sejtek a 24 6ras, a napi ritmusnak megfelel6 novekedési sebességgel

nének, mert ekkor a sejtciklus f6 szabalyozéja a napi ritmus (Zamborszky és mtsai. 2007).
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7. abra: A sarjadzo éleszt6 sejtek kritikus mérete (Vs) fligg az egyedi sejtek novekedési
sebességétdl. (a) Kisérleti eredmények egyedi sejteken, (b) egyedi sejtciklusok szimulacids
eredményei. (c) Fels6 abra: egyedi leanysejt-vonal szimulaciéja, alsé dbra: egy anyasejt
Osszes leszarmazottjanak szimuldcidja (fentrdl lefelé, a leanysejtek mindig jobbra jelennek
meg az anyasejtek mellett, az osztoédas id6pillanataban). (d) Aszinkron populacidk kisérleti

és szimulacids (szaggatott vonal a c panel alsé dbrajan) eredményeinek dsszevetése.
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4. A sejtciklus és a napi ritmus kapcsoltsaganak vizsgalata

Szamos fizioldgiai és sejtfunkcid 24 6ras periodicitast mutat, és ez az oszcillald
viselkedés sok esetben allandd koriilmények (fény, h6mérséklet, stb.) kdzott is fennmarad.
Egy, a napi ritmust szabdlyozé molekuldris haldzat képes fenntartani ezeket az oszcillacidkat,
és ezdltal az él6lények és egyedi sejtek is képesek el6re megjdsolni a kornyezet valtozasait,
és ahhoz alkalmazkodni. A napi ritmust szabdlyozé molekularis halézat tébb helyen is
megjelent az evolucié folyaman, igy a szabalyozé molekuldk nem konzervaltak, de az
él6lények legnagyobb része egy transzkripcids — poszttranszlacidés késleltetett negativ
visszacsatolasos hurkon alapuld oszcillatorral kontrollalja napi ritmusat. Sok él6lényben a
sejtosztddasi ciklus is hasonld 24 6rds peridodust mutat. Emiatt feltételezték, hogy a két
periodikus rendszer kapcsolt, igy a sejtciklus kritikus pillanatai (DNS-replikacio, mitdzis)
megfelel6 napszakhoz kothetS. Ezt a kapcsoltsagot kimutattdk emlds sejtekre is, és azt is
megfigyelték, hogy a DNS-karosodas jelatviteli Utvonala képes a napi ritmust is megzavarni,
ezaltal a sejtciklus is vissza tud hatni a napi ritmusra. Ez a kapcsoltsag napi ritmus, sejtciklus
és DNS-karosodas jeldtvitele kozott egészségligyileg is nagyon fontos. Rakos betegek
kronoterapias kezelésekor a DNS-karosité gydgyszereket vagy sugarzast a nap egy adott
szakaszaban adjak, hogy ezzel elkeriljék a 24 6ras periédusu normalis sejtek megzavarasat,
és minimalizadljdk a mellékhatdsokat, mikdzben a gyorsan szaporodd, napi ritmusukat
vesztett rakos sejteket effektiven roncsolja. A rendszer jobb megértéséhez matematikai
modelleket dolgoztunk ki, amelyekben vizsgaltuk a napi ritmus hatdsat a sejtciklus idejére, a
DNS-karosodas hatésat a napi ritmusra, és modelljeink alapjan kifejlesztettlink egy mddszert
e kapcsolatok kisérletes vizsgalatara az egyik kozkedvelt napi ritmus tesztorganizmusban.
Eredményeink jé alapot nydjthatnak a terapias célu DNS-karositd beavatkozasok idealis napi

id6zitésének megjdslasanak kifejlesztésére.
4.1. Célkitlizések
- A napi ritmus sejtciklusra gyakorolt hatasanak matematikai modellezése

Kisérleti eredmények rdmutattak, hogy a sejtciklus G2-M datmenetének egyik
szabalyozofehérjéje a napi ritmus kontrollja alatt all. Meg akartuk érteni, hogy ez a

kapcsoltsag hogyan hat a sejtciklusok periodicitasara.
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- Napi ritmus és sejtciklus kapcsolatanak vizsgalata Neurospora crassa rendszerben

A mas él6lényekben megfigyelt kapcsoltsagot megprdobaltuk atiltetni a napiritmus-kutatas
egyik kedvenc tesztorganizmusara, amelynek azonban még nem volt ismert a sejtciklus
szabdlyozasa. Matematikai modellek és kisérletek kombindciéjaval vizsgaltuk, hogy a napi

ritmus képes lehet-e szinkronizalni a fonalas gomba sejtmagjainak osztodasi ciklusat.

4.2. Eredmények

A napi ritmus sejtciklusra gyakorolt hatdsanak matematikai modellezése

Az emlGs sejtek sejtciklusa gyakran 24 6rds periddussal fut, de szamos mar
organizmus is 0sszekapcsolja a sejtciklusat a napi ritmussal. Fizioldgiai megfigyelések mar
tobb mint 6tven éve leirtak ezt a kapcsoltsagot, de a kapcsolat molekularis hattere csak a
2000-es évek eleje o6ta kezd ismertté valni. A napi ritmus szabdlyozasaért felel6s molekuldk
egy késleltetett negativ visszacsatolasos hurkon (8. a abra) keresztil indukaljdk a
BMAL1/CLOCK transzkripcids faktor komplex 24 6ras periodikus aktivalodasat. Ugyanez a
transzkripcids faktor a sejtciklus G2-M atmenet egyik inhibitoranak, a Weel kindznak az
atirdsat is indukadlja. Ezaltal a napi ritmus képes lehet szinkronizalni egy sejtpopulacidéban a
sejtciklusokat, és azokat a 24 6ras napi ritmushoz kapcsolni. Matematikai modelleket
fejlesztettlink ki a két oszcilldtor kapcsoltsaganak vizsgalatdra(8. a abra). Vizsgaltuk, hogy
milyen feltételekkel tudja a napi ritmus elérni, hogy a sejtciklusok is 24 dras periddussal
fussanak. Megallapitottuk, hogyha a sejtek tomegduplazédasi ideje kozel all a 24 6rdhoz,
akkor a napi ritmus 24 6ras periddusat kovetik a szinkron sejtciklusok, de ha a sejtek
novekedési sebessége ett6l nagyban eltér, akkor a sejttomeg kompenzdldsa miatt egy
sejtpopulacidban a sejtciklusidé tobbcsiucsu elosztast mutat (8. b abra) (Zdmborszky és
mtsai. 2007). Azaz, a populaciéban sejtek rovidebb és hosszabb ciklusidével is el6fordulnak,
igy hosszabb tavon elérve, hogy az egyedi sejtek mérete ne térjen el tulzottan egymastol. Ez
az eredménylink adhat magyarazatot arra, hogy a harmadik fejezetben mar targyalt
méretkontroll mechanizmus koélcsénhatasa a napi ritmussal lehet felel6s az irodalomban

mar megfigyelt kvantalt sejtciklusid6 eloszlasért (8. c abra).
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Szintén vizsgdltuk, hogy a DNS meghibasoddasatél aktivalédd jelatviteli utvonalak
hogyan hatnak a napi ritmusra. Tobb napiritmus-modell 6sszehasonlité vizsgalataval
megallapitottuk, hogy a napi ritmus szabdlyozasi halézatdban egy pozitiv visszacsatolasi
hurok kell, hogy szerepeljen, maskiilonben a modellek nem képesek leirni a kisérletesen
megfigyelt viselkedést (Hong és mtsai. 2009). Az irodalomban megtaldlhato, pusztan negativ
visszacsatolason alapuld napiritmus-modellekhez nem tudtunk olyan paraméterkészletet
taldlni, hogy azok pontosan leirjak az indukalt DNS-meghibasodas utani valaszreakcidkat. A
modellekhez egy pozitiv visszacsatoldst hozzdadva viszont a kisérletekkel j6 egyezést

mutattak.
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8. dbra: A napi ritmus és a sejtciklus kapcsolatanak kovetkezményei. (a) A napi ritmus és a
sejtciklus kapcsolatanak modellje. (b) Egyedi sejtek osztédasi periodus idejének eloszlasa,
amikor a napi ritmus 24h, a novekedési sebesség pedig 16h periddus id6t diktal. (c)
Kisérleti eredmény, napi ritmus szinkronizalt sejtek elsé sejtciklusanak hosszeloszlasa
(Nagoshi és mtsai. 2004 alapjan). (d) Kiilonboz6 kezdeti sejtciklus fazisokbdl elinditott
Neurospora crassa sejtmagok (30 db) G1-es (CLN-1) és G2-es (CLB-1) ciklinjeinek populacié
szint{ szinkronizacidjanak a szimulacidja. (e) A mitdzisban lévé sejtmagok szazalékos

eloszlasa szinkronizalt napi ritmusu Neurospora crassa fonalas gombaban.
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Napi ritmus és sejtciklus kapcsolatanak vizsgalata Neurospora crassa rendszerben

Matematikai modellezéses eredményeinket és azok joslasait Neurospora crassa
fonalas gombak tenyészetében kisérletesen teszteltiik. A Neurospora crassa szélesen
alkalmazott tesztorganizmusa a napiritmus-kutatasnak, de mivel ennek a fonalas gombanak
a sejtmagjai egy kozos citoplazmdaban helyezkednek el, és azok aszinkron osztédnak, igy
sejtciklusardél korabban szinte semmit sem tudtunk. Genetikailag a Neurospora crassa
nagyfokd hasonlésdgot mutat egyéb éleszt6kkel, és mivel teljes genomja leszekvenalt,
fehérjéi jelolhet6ek és géndeléciok nagy hatdsfokkal indukalhatoék, igy megvizsgaltuk, hogy a
sejtciklust szabdlyozd fehérjék hogyan viselkednek a napi ritmus kontrollja alatt.
Matematikai modelliink azt jésolta, hogy a sejtciklusszabdlyzé f6 ciklinek 24 6ras periddust
mutatnak majd populdcié szinten (8. d abra), és ettdl a sejtmagok szinkron tudnak osztédni.
Ha ilyen teljes foku kapcsoltsag nem is, de vilagos 24 6rds periédusu mitdzisos hulldmokat
figyeltiink meg (8. e abra), és a CLN-1 és CLN-2 fehérjék periodicitdsa is megfelelt a modell
altal jésoltaknak (Hong és mtsai. 2014). Eredményeink ramutatnak, hogy a fonalas gomba
sejtciklusa kontrollalhatd, és ezdltal ez az organizmus hasznalhaté a napi ritmus és a
sejtciklus kapcsolatanak vizsgalatara. Az ezdltal kindlkozé kisérletes lehet6ségeket és az

eddigi eredményeket egy 6sszefoglald cikkben mutattuk be (Zdmborszky és mtsai. 2014).
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5. Az Uj tudomanyos eredmények 6sszefoglalasa

Tudomdnyos eredményeim a sejtciklust szabalyozé molekuldris rendszer és az azzal
kolcsonhatd jelatviteli utak dinamikai viselkedésének megértésében tettek jelentés

[épéseket.

Megmutattuk, hogy a sejtciklus fazisai kdzotti atmenetek pontos sorrendjéért a molekularis
szabalyozd haldzatban taldlhaté pozitiv visszacsatoldsi és el6recsatolasi hurkok felel&sek.
Matematikai  modelljeink  szintén  igazoltak, hogy a  sejtciklus  kozponti

szabalyozoérendszerének dinamikai viselkedése konzervalt eukariétakban.

Modelljeink alapjan megjésoltuk, és kisérletesen bizonyitottuk, hogy a kozponti sejtciklust
szabalyzd rendszer milyen molekuldkon keresztll indukal valtozasokat a hasadé élesztd

sejtek polarizalt névekedésében, és hogyan szabalyozza a sejtek osztddasat.

Matematikai modelljeinkkel és kés6bb kisérletesen is megmutattuk, hogy a napi ritmust
szabalyozé molekularis halézat milyen esetekben képes a sejtciklus periodicitasat

befolyasolni.

Ezeket és az ezekhez kapcsolédd egyéb eredményeket az aldbbi pontokban foglalnam 6ssze

(a pontokhoz kapcsolddd két legfontosabb publikacid kiemelésével):

1. A sejtciklus szabalyozasanak rendszerszintl matematikai modelljeivel megmutattuk,
hogy a sejtciklus fazisainak pontos dinamikajaért pozitiv visszacsatoldsi és kilénb6z6

el6recsatolasi hurkok felel6sek.

Csikasz-Nagy A., Kapuy O., Toth A,, Pal C., Jensen L., Uhlmann F., Tyson JJ. & Novak B.
(2009) Cell cycle regulation by feed-forward loops coupling transcription and

phosphorylation. Mol Sys Biol5:236

Csikasz-Nagy A., Battogtokh D., Chen KC., Novak B. & Tyson JJ. (2006) Analysis of a

generic model of eukaryotic cell cycle regulation. Biophys J 90, 4361-4379

25



dc_836_14

dc_836_14

2. Kidolgoztuk a sejtnovekedés és a sejtosztddasi ciklus kapcsolatdnak matematikai és

halézati modelljeit, és azok predikcidit kisérletesen igazoltuk.

Bajpai A., Feoktistova A., Chen JS., McCollum D., Sato M., Carazo-Salas RE., Gould KL.,
Csikasz-Nagy A. (2013) Dynamics of SIN Asymmetry Establishment. PLOS Comp
Biol9(7):e1003147

Vaggi F., Dodgson J., Bajpai A., Chessel A., Jordan F., Sato M., Carazo-Salas RE., Csikasz-
Nagy A. (2012) Linkers of cell polarity and cell cycle regulation in the fission yeast
protein interaction network. PLoS Comp Biol8(10): €1002732

3. A napi ritmus és a sejtciklus kapcsolatdnak matematikai modelljei segitettek minket
megérteni, és kés6bb kisérletesen vizsgalni ezt a kapcsolatot Neurospora crassa

modell organizmusban.

Hong Cl., Zamborszky J., Baek M., Labiscsak L., Ju K., Lee H., Larrondo LF., Goity A., Chong
HS., Belden WIJ., Csikasz-Nagy A. (2014) Circadian Rhythms Synchronize Mitosis in
Neurospora crassa. Proc Natl Acad Sci USA111(4):1397-402

Zamborszky J., Hong Cl. & Csikdsz-Nagy A. (2007) Computational Analysis of Mammalian
Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control. J
Biol Rhythms, 22: 542-53.

Ezek az alapkutatasi eredmények hosszabb tdvon a rakkutatas és a sejtciklus-szabalyozas
egyéb betegségeinek megértését segithetik el6. Modelljeink tovabbfejlesztésével
allatkisérleteket lehet majd kivaltani, kilonb6z6 gydgyszeres beavatkozasok kimenetele
szamitégépesen szimuldlhato, és a sejtek viselkedése ez alapjan joésolhatd lehet. A
kifejlesztett modszereknek és eredményeknek igy messzire hatéd tudomdnyos és

egészségligyben felhaszndlhatd alkalmazasai lehetnek.
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6.3. Tudomanymetriai Adatok
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PhD elnyerése utani folydiratcikkek szdma: 42

Utolsd 10 év tudomanyos folydiratcikkek szama: 39
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Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation
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ABSTRACT We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the
universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms
can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of
these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the
reaction mechanism into a set of governing kinetic equations and provide parameter values (specific to budding yeast, fission
yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using
one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size
homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual
cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter
bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and
particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks

controlling cell growth and division.

INTRODUCTION

The cell cycle is the sequence of events by which a cell rep-
licates its genome and distributes the copies evenly to two
daughter cells. In most cells, the DNA replication-division
cycle is coupled to the duplication of all other components of
the cell (ribosomes, membranes, metabolic machinery, etc.),
so that the interdivision time of the cell is identical to its mass
doubling time (1,2). Usually mass doubling is the slower pro-
cess; hence, temporal gaps (G1 and G2) are inserted in the
cell cycle between S phase (DNA synthesis) and M phase
(mitosis). During G1 and G2 phases, the cell is growing and
““preparing’’ for the next major event of the DNA cycle (3).
‘‘Surveillance mechanisms’” monitor progress through the cell
cycle and stop the cell at crucial ‘‘checkpoints’ so that
events of the DNA and growth cycles do not get out of order
or out of balance (4,5). In particular, in protists (for sure) and
metazoans (to a lesser extent), cells must grow to a critical
size to start S phase and to a larger size to enter mitosis.
These checkpoint requirements assure that the cycle of DNA
synthesis and mitosis will keep pace with the overall growth
of cells (6). Other checkpoint signals monitor DNA damage
and repair, completion of DNA replication, and congression
of replicated chromosomes to the metaphase plate (7).

Eukaryotic cell cycle engine

These interdependent processes are choreographed by a com-
plex network of interacting genes and proteins. The main
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components of this network are cyclin-dependent protein
kinases (Cdk’s), which initiate crucial events of the cell cycle
by phosphorylating specific protein targets. Cdk’s are active
only if bound to a cyclin partner. Yeasts have only one es-
sential Cdk, which can induce both S and M phase de-
pending on which type of cyclin it binds. Because Cdk
molecules are always present in excess, it is the availability
of cyclins that determines the number of Cdk/cyclin com-
plexes in a cell (8). Cdk/cyclin complexes can be down-
regulated a), by inhibitory phosphoryation of the Cdk subunit
and b), by binding to a stoichiometric inhibitor (cyclin-
dependent kinase inhibitor (CKI)) (9).

Some years ago Paul Nurse (10) proposed, and since then
many experimental studies have confirmed, that the DNA
replication-division cycle in all eukaryotic cells is controlled
by a common set of proteins interacting with each other by a
common set of rules. Nonetheless, each particular organism
seems to use its own peculiar mix of these proteins and inter-
actions, generating its own idiosyncrasies of cell growth and
division. The ‘generic’’ features of cell cycle control concern
these common genes and proteins and the general dynamical
principles by which they orchestrate the replication and par-
titioning of the genome from mother cell to daughter. The
peculiarities of the cell cycle concern exactly which parts of
the common machinery are functioning in any given cell
type, given the genetic background and developmental stage
of an organism. We formulate the genericity of cell cycle
regulation in terms of an ‘‘underlying’’ set of nonlinear
ordinary differential equations with unspecified kinetic param-
eters, and we attribute the peculiarities of specific organisms
to the precise settings of these parameters. Using bifurcation
diagrams, we show how specific physiological features of

doi: 10.1529/biophys;j.106.081240
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the cell cycle are determined ultimately by levels of gene ex-
pression.

Mathematical modeling of the cell cycle

The dynamic properties of complex regulatory networks
cannot be reliably characterized by intuitive reasoning alone.
Computers can help us to understand and predict the be-
havior of such networks, and differential equations (DEs)
provide a convenient language for expressing the meaning of
a molecular wiring diagram in computer-readable form (11).
Numerical solutions of the DEs can be compared with ex-
perimental results, in an effort to determine the kinetic rate
constants in the model and to confirm the adequacy of the
wiring diagram. Eventually the model, with correct equa-
tions and rate constants, should give accurate simulations of
known experimental results and should be pressed to make
verifiable predictions. This method has been used for many
years to create mathematical models of eukaryotic cell cycle
regulation (12-29). The greatest drawback to DE-based
modeling is that the modeler must estimate all the rate
constants from the available data and still have some
observations ‘‘left over’’ to test the model. In the case of
cell cycle regulation, very few of these rate constants have
been measured directly (30,31) although the available data
provide severe constraints on rate constant values (15,32).
To complement the important but tedious work of parameter
estimation by data fitting, we need analytical tools for

Csikasz-Nagy et al.

characterizing the parameter-dependence of solutions of DEs
and for associating a model’s robust dynamical properties to
the physiological characteristics of living cells.

Bifurcation theory and regulatory networks

Bifurcation theory is a general tool for classifying the at-
tractors of a dynamical system and describing how the quali-
tative properties of these attractors change as a parameter value
changes. Bifurcation theory has been used successfully to un-
derstand transitions in the cell cycle by our group (33-37) and
by others (12,26,38). In this article, we use bifurcation theory
to examine a generic model of eukaryotic cell cycle controls,
bringing out the similarities and differences in the dynamical
regulation of cell cycle events in yeasts, frog eggs, and mam-
malian cells. To understand our approach, the reader must be
familiar with a few elementary bifurcations of nonlinear DEs
and how they are generated by positive and negative feedback
in the underlying molecular network. For more details, the
reader may consult the Appendix to this article and some
recent review articles (36,37).

MATERIALS AND METHODS

In Fig. 1 we propose a general protein interaction network for regulating
cyclin-dependent kinase activities in eukaryotic cells. (Fig. 1 uses ‘‘generic’’
names for each protein; in Table 1 we present the common names of each
component in specific cell types: budding yeast, fission yeast, frog eggs, and

FIGURE 1 Wiring diagram of the
generic cell-cycle regulatory network.
Chemical reactions (solid lines), regu-
latory effects (dashed lines); a protein
sitting on a reaction arrow represents an
enzyme catalyst of the reaction. Regu-
latory modules of the system are dis-
tinguished by shaded backgrounds: (/)

exit of M module, (2) Cdh1 module, (3)
CycB transcription factor, (4) CycB
synthesis/degradation, (5) G2 module,
(6) CycB inhibition by CKI (also
includes the binding of phosphorylated
CycB, if that is present), (7) CKI
transcription factor, (8) CKI synthesis/
degradation, (9) CycE inhibition by
CKI, (10) CycE synthesis/degradation,

(11) CycE/A transcription factor, (/2)
CycA inhibition by CKI, (/3) CycA
synthesis/degradation. Open-mouthed
PacMan represents active form of reg-
ulated protein; gray rectangles behind
cyclins represent their Cdk partners.
We assume that all Cdk subunits are
present in constant, excess amounts.

Biophysical Journal 90(12) 4361-4379
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TABLE 1 Protein name conversion table and modules used for each organism
In Fig. 1 Budding yeast Fission yeast Xenopus embryo  Mammalian cells Function
CycB Cdc28/Clbl,2 Cdc2/Cdc13 Cdc2/CycB Cdc2/CycB Mitotic Cdk/cyclin complex
CycA Cdc28/Clb5,6 Cdc2/Cig2 Cdk1,2/CycA Cdk1,2/CycA S-phase Cdk/cyclin complex
CycE Cdc28/CInl,2 - Cdk2/CycE Cdk2/CycE G1/S transition inducer Cdk/cyclin
CycD Cdc28/CIn3 Cdc2/Pucl Cdk4,6/CycD Cdk4,6/CycD Starter Cdk/cyclin complex
CKI Sicl Rum] Xicl p27 Kirt Cdk/cyclin stoichometric inhibitor
Cdhl Cdhl Ste9 Fzr hCdhl CycB degradation regulator with APC
Weel Swel Weel Xweel hWeel Cdk/CycB inhibitory kinase
Cdc25 Mihl Cdc25 Xcdc25 Cdc25C Cdk/CycB activatory phosphatase
Cdc20 Cdc20 Slpl Fizzy p55 ¢ CycB, CycA degradation regulator with APC
Cdc14 Cdcl14 Clp1/Flp1 Xcdc14 hCdc14 Phosphatase working against the Cdk’s
TFB Mcml1 - - Mcm CycB transcription factor
TFE Swi4/Swi6 Mbp1/Swi6  Cdcl0/Resl XE2F E2F CycE/A transcription factor
(SBF+MBF in budding yeast)

TFI Swis - - - CKI transcription factor
APC APC APC APC APC Anaphase promoting complex
Active 1,2,3,4,6,7,8, 1,2,4,5,6,8, 1,4,5 1,2,3,4,6,8,9, Modules of Fig. 1, used for

modules 10, 11, 12, 13, (5%) 11,12, 13 10, 11, 12, 13, (5%) simulation of organism

*Module 5 is not introduced into the first version of budding yeast and mammalian models.

mammalian cells.) Using basic principles of biochemical kinetics, we trans-
late the generic mechanism into a set of coupled nonlinear ordinary differ-
ential equations (Supplementary Material, Table SI) for the temporal dynamics
of each protein species. Although the structure of the DEs is fixed by the
topology of the network, the forms of the reaction rate laws (mass action,
Michaelis-Menten, etc.) are somewhat arbitrary and would vary from one
modeller to another. We use rate laws consistent as much as possible with
our earlier choices (15,18,25,39—41). In addition, most of the parameter values
for each organism (Supplementary Material, Table SII) were inherited from
earlier models.

For numerical simulations and bifurcation analysis of the DEs, we used
the computer program XPP-AUT (42), with the ‘‘stiff”’ integrator.
Instructions on how to reproduce our simulations and diagrams (including
all necessary .ode and .set files, and an optional SBML version of the model)
can be downloaded from our website (43).

All protein concentrations in the model are expressed in arbitrary units
(au) because, for the most part, we do not know the actual concentrations of
most regulatory proteins in the cell. Hence, all rate constants capture only the
timescales of processes (rate constant units are min~ l). For each mutant, we
use the same equations and parameter values except for those rate constants
that are changed by the mutation (e.g., for gene deletion we set the synthesis
rate of the associated protein to zero).

RESULTS
A generic model of cell cycle regulation

Since the advent of gene-cloning technologies in the 1980s,
molecular cell biologists have been astoundingly successful
in unraveling the complex networks of genes and proteins
that underlie major aspects of cell physiology. These results
have been collected recently in comprehensive molecular
interaction maps (44-48). In the same spirit, but with an eye
toward a computable, dynamic model, we collected the most
important regulatory ‘‘modules’’ of the Cdk network. Our
goal is to describe a generic network (Fig. 1) that applies
equally well to yeasts, frogs, and humans. We do not claim
that Fig. 1 is a complete model of eukaryotic cell-cycle con-

trols, only that it is a starting point for understanding the
basic cell-cycle engine across species.

Regulatory modules

The network, which tracks the three principal cyclin families
(cyclins A, B, and E) and the proteins that regulate them at the
G1-S, G2-M, and M-G1 transitions, can be subdivided into 13
modules. (Other, coarser subdivisions are possible, but these
13 modules are convenient for describing the similarities and
differences of regulatory signals among various organisms.)

Modules 4, 10, and 13: synthesis and degradation of
cyclins B, E, and A. Cyclin E is active primarily at the G1-S
transition, cyclin A is active from S phase to early M phase,
and cyclin B is essential for mitosis.

Modules 1 and 2: regulation of the anaphase promoting
complex (APC). The APC works in conjunction with Cdc20
and Cdhl to ubiquitinylate cyclin B, thereby labeling it for
degradation by proteasomes. The APC must be phosphor-
ylated by the mitotic CycB kinase before it will associate
readily with Cdc20, but not so with Cdh1. On the other hand,
Cdhl can be inactivated by phosphorylation by cyclin-
dependent kinases. Cdc14 is a phosphatase that opposes Cdk
by dephosphorylating and activating Cdhl.

Module 8: synthesis and degradation of CKI (cyclin-
dependent kinase inhibitor). Degradation of CKI is promoted
by phosphorylation by cyclin-dependent kinases and inhib-
ited by Cdc14 phosphatase.

Modules 6, 9, and 12: reversible binding of CKI to cyclin/
Cdk dimers to produce catalytically inactive trimers (stoi-
chiometric inhibition).

Modules 3, 7, and 11: regulation of the transcription
factors that drive expression of cyclins and CKI. TFB is ac-
tivated by cyclin B-dependent kinase. TFE is activated by
some cyclin-dependent kinases and inhibited by others. TFI

Biophysical Journal 90(12) 4361-4379
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is inhibited by cyclin B-dependent kinase and activated by
Cdc14 phosphatase.

Module 5: regulation of cyclin B-dependent kinase by
tyrosine phosphorylation and dephosphorylation (by Weel
kinase and Cdc25 phosphatase, respectively). The tyrosine-
phosphorylated form is less active than the unphosphory-
lated form. Cyclin B-dependent kinase phosphorylates both
Weel (inactivating it) and Cdc25 (activating it), and these
phosphorylations are reversed by Cdc14 phosphatase.

The model is replete with positive feedback loops (CycB
activates TFB, which drives synthesis of CycB; CycB acti-
vates Cdc25, which activates CycB; CKI inhibits CycB, which
promotes degradation of CKI; Cdhl degrades CycB, which
inhibits Cdh1), and negative feedback loops (CycB activates
APC, which activates Cdc20, which degrades CycB; CycB
activates Cdc20, which activates Cdc14, which opposes CycB;
TFE drives synthesis of CycA, which inhibits TFE). These
complex, interwoven feedback loops create the interesting
dynamical properties of the control system, which account for
the characteristic features of cell cycle regulation, as we in-
tend to show.

The model (at present) neglects important pathways that
regulate, e.g., cell proliferation in metazoans (retinoblastoma
protein), mitotic exit in yeasts (the FEAR, MEN, and SIN
pathways), and the ubiquitous DNA-damage and spindle as-
sembly checkpoints. We intend to remedy these deficiencies in
later publications, as we systematically grow the model to in-
clude more and more features of the control system.

Role of cell growth

In yeasts and other lower eukaryotes, a great deal of evidence
shows the dominant role of cell growth in setting the tempo
of cell division (2,49-52). In somatic cells of higher eu-
karyotes there are many reports of size control of cell-cycle
events (e.g., (53-55)), although other authors have cast
doubts on a regulatory role for cell size (e.g., (56,57)). For
embryonic cells and cell extracts, the activation of Cdkl1 is
clearly dependent on the total amount of cyclin B available
(58,59). To create a role for cell size in the regulation of Cdk
activities, we assume, in our models, that the rates of syn-
thesis of cyclins A, B, and E are proportional to cell ‘‘mass’’.
The idea behind this assumption (see also Futcher (60)) is
that cyclins are synthesized in the cytoplasm on ribosomes at
an increasing rate as the cell grows. The cyclins then find a
Cdk partner and move into the nucleus where they perform
their functions. Presumably the effective, intranuclear con-
centrations of the cyclin-dependent kinases increase as the
cell grows because they become more concentrated at their
sites of action. Other regulatory proteins in the network, we
assume, are not compartmentalized in the same way, so their
effective concentrations do not increase as the cell grows.
This basic idea for size control of the cell cycle was tested
experimentally in budding yeast by manipulating the ‘‘nu-
clear localization signals’> on cyclin proteins (8). As pre-
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dicted by the model, cell size is larger in cells that exclude
cyclins from the nucleus and smaller in cells that over-
accumulate cyclins in the nucleus. A recent theoretical study
by Yang et al. (61) may shed light on how cell size couples to
cell division without assuming a direct dependence of cyclin
synthesis rate on mass, but, for this article, we adopt the as-
sumption as a simple and effective way to incorporate size
control into nonlinear DE models for the control of cyclin-
dependent kinase activities.

For simplicity, we assume that cell mass increases ex-
ponentially (with a mass doubling time (MDT) suitable for
the organism under consideration) and that cell mass is
exactly halved at division. Our qualitative results (bifurca-
tion diagrams, etc.) are not dependent on these assumptions.
Cell growth may be linear or logistic, and cell division may
be asymmetric or inexact—it doesn’t really matter to our
models. The important features are that ‘‘mass’’ increases
monotonically as the cell grows (driving the control system
through bifurcations that govern events of the cell cycle) and
that mass decreases abruptly at cell division (resetting the
control system back to a Gl-like state—unreplicated chro-
mosomes and low Cdk activity).

Equations and parameter values

The dynamical properties of the regulatory network in Fig.
1 can be described by a set of ordinary differential equations
(Supplementary Material, Table SI), given a table of pa-
rameter values suitable for specific organisms (Table SII). For
each organism we analyze the effects of physiological and
genetic changes on the transitions between cell cycle phases,
in terms of bifurcations of the vector fields defined by the DEs
(for background on dynamical systems, see the Appendix).

Frog embryos: Xenopus laevis

To validate our equations and tools, we first verified our
earliest studies of bifurcations in the frog-egg model. The
combination of modules 1, 4, and 5 of Fig. 1 was used to
recreate the bifurcation diagram of Borisuk and Tyson (33);
see Supplementary Material, Fig. S1. Our bifurcation pa-
rameter, ‘‘cell mass’’, can be interpreted as the rate constant
for cyclin B synthesis. For small rates of cyclin synthesis, the
control system is arrested in a stable ‘‘interphase’’ state with
low activity of CycB-dependent kinase. For larger rates of
cyclin synthesis, the model exhibits spontaneous limit cycle
oscillations, which begin at a SNIPER bifurcation (long
period, fixed amplitude). Eventually, as the rate of cyclin
synthesis gets large enough, the oscillations are lost at a Hopf
bifurcation (fixed period, vanishing amplitude). Beyond the
Hopf bifurcation, the control system is arrested in a stable
“‘mitotic’’ state with high activity of CycB-dependent kinase.
These types of states of the control system are reminiscent of
the three characteristic states of frog eggs: interphase arrest
(immature oocyte), metaphase arrest (mature oocyte), and
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spontaneous oscillations (fertilized egg). For more details,
see Novak and Tyson (18) and Borisuk and Tyson (33).

Fission yeast: Schizosaccharomyces pombe
Wild-type cell cycle

The fission yeast cell cycle network, composed of modules 1, 2,
4,5,6,8,11,12,and 13, is described in Fig. 2 in terms of a one-
parameter bifurcation diagram (Fig. 2 A) and a simulation (Fig.
2 B). In the simulation, we plot protein levels as a function of
cell mass rather than time, but because mass increases expo-
nentially with time, one may think of the lower abscissa as e".
We present the simulation this way so that we can “‘lift it up”’’
onto the bifurcation diagram: the gray curve in Fig. 2 A is
identical to the solid black curve (actCycB) in Fig. 2 B. In Fig.
2 A, a stable, G1-like, steady state exists at very low level of
actCycB (active Cdk/CycB dimers). This steady state is lostat a
saddle-node bifurcation (SN 1) at cell mass = 0.8 au. Between
SN1 and SN2 (at cell mass = 2.6 au), the control system has a
single, stable, steady-state attractor with an intermediate
activity (~0.1) of cyclin B (an S/G2-like steady state). The
other steady-state branches are unstable and physiologically
unnoticeable. For mass >2.6 au, the only stable attractor is
a stable limit cycle oscillation. This branch of stable limit
cycles is lost by further bifurcations at very large mass (of
little physiological significance for wild-type cells).

The gray trajectory in Fig. 2 A represents the path of a
growing-dividing yeast cell projected onto the bifurcation
diagram. Let us pick up the trajectory of a growing cell at
mass = 2.2 au, where the cell cycle control system has been
captured by the stable S/G2 steady state. As the cell continues
to grow, it leaves the S/G2 state at SN2 and prepares to enter
mitosis. At cell mass >2.6, the only stable attractor is a limit
cycle. This limit cycle, which bifurcates from SN2, has
infinite period at the onset of the bifurcation (hence, the onset
point is commonly called a SNIPER—saddle-node-infinite-
period—bifurcation). Because the limit cycle has a very long
period at first, and the cell enters the limit cycle at the place
where the saddle-node used to be, the cell is stuck in a
semistable transient state (where the gray trajectory ‘‘over-
shoots’” SN2). As the cell grows, it eventually escapes the
semistable state (at cell mass = 3), and then actCycB increases
dramatically (note the log-scale on the ordinate), driving the
cell into mitosis. Because the control system is now captured
by the stable limit cycle, actCycB inevitably decreases and the
cell is driven out of mitosis. We presume that the cell divides
when actCycB falls below 0.1; hence, cell mass is halved
(3.4 — 1.7), and the control system is now attracted to the
S/G2 steady state (the only stable attractor at this cell mass).
The newly divided cell makes its way to the S/G2 attractor by
a circuitous route that looks like a brief G1 state (very low
actCycB) but is not a stable and long-lasting G1 state. This
transient G1 state is characteristic of wild-type fission yeast
cells (62).
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FIGURE 2 One-parameter bifurcation diagram (A) and cell-cycle trajec-
tory (B) of wild-type fission yeast. Both figures share the same abscissa.
Notice that cell mass is just the logarithm of age, because we assume that
cells grow exponentially between birth (age = 0) and division (age = MDT).
The gray curve in panel A (a “‘cell-cycle trajectory’’ for MDT = 120 min) is
identical to the solid black curve in panel B. Key to panel A: solid line, stable
steady state; dashed line, unstable steady state; solid circles, maxima and
minima of stable oscillations; open circles, maxima and minima of unstable
oscillations; SN1 (saddle-node bifurcation that annihilates the G1 steady
state), SN2 (saddle-node bifurcation that annihilates the G2 steady state),
and HB1 (Hopf bifurcation on the S/G2 branch of steady states that gives
rise to endoreplication cycles). SN2 is a SNIPER bifurcation; i.e., it gives
way to stable periodic solutions of infinite period (at the bifurcation point).
The other (unmarked) bifurcation points in this diagram are not pertinent to
cell-cycle regulation.

Overshoot of a SNIPER bifurcation point (as in Fig. 2 A) is
a common feature of our cell cycle models, and recent
experimental evidence (63) confirms this prediction in frog
egg extracts. These authors located the position of the
steady-state SN bifurcation in a nonoscillatory extract and
then showed that during oscillations the Cdk-regulatory
system overshoots the SN point by twofold or more.

The one-parameter bifurcation diagram in Fig. 2 A is a
compact way to display the interplay between the DNA
replication-segregation cycle (regulated by Cdk/CycB activity)
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and the growth-division cycle (represented on the abscissa
by the steady increase of cell mass and its abrupt resetting at
division). The very strong ‘‘cell size control’” in late G2
phase of the fission yeast cell cycle, which has been known
to physiologists for 30 years (52), is here represented by
growing past the SNIPER bifurcation, which eliminates the
stable S/G2 steady state and allows the cell to pass into and
out of mitosis (the stable limit cycle oscillation).

A satisfactory model of fission yeast must account not
only for the phenotype of wild-type cells but also for the un-
usual properties of the classic cdc and wee mutants that
played such important roles in deducing the cell-cycle
control network. Mutations change the values of specific rate
constants, which remodel the one-parameter bifurcation
diagram and thereby change the way a cell progresses
through the DNA replication-division cycle. For example
(Fig. 3 A), for a weel ~ mutant (reduce Weel activity to 10%
of its wild-type value) SN2 moves to the left of SN1 and the
infinite-period limit cycle now bifurcates from SN1. Hence,
the cell cycle in weel ~ cells is now organized by a SNIPER

weel-
100
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bifurcation at the G1/S transition: weel ~ cells are about half
the size of wild-type cells, they have a long G1 phase and
short G2, and slowly growing cells pause in G1 (unreplicated
DNA) rather than in G2 (replicated DNA).

In the Supplementary Material (Fig. S2) we present
bifurcation diagrams for four other fission yeast mutants
(cig2A, cig2A rumlA, weelA cdc25A, weel A rumlA), to
confirm that our ‘‘generic’’ version is indeed consistent with
the known physiology of these mutants. Because they have
been described in detail elsewhere (37), we turn our attention
instead to some novel results.

Endoreplicating mutants

On the wild-type bifurcation diagram (Fig. 2 A) we can notice
a very small oscillatory regime at the beginning of the S/G2
branch of steady states (labeled as HB1, at cell mass = 0.79).
This stable periodic solution is a consequence of a negative
feedback loop whereby Cig2 inhibits its own transcription
factor, Cdcl10, by phosphorylation (64). (In the generic
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FIGURE 3 One-parameter (A) and two-parameter (B)
bifurcation diagrams for mutations at the weel locus in
4 fission yeast. Panel A should be interpreted as in Fig. 2.
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red line, locus of HB1 bifurcation points; black bars,
projections of the cell-cycle trajectories in Figs. 2A and 3 A
onto the two-parameter plane. Within regions of stable
limit cycles, the color code denotes the period of oscilla-
tions. Notice that the period becomes very long as the limit
cycles approach the locus of SNIPER bifurcations. The
limit cycles switch their allegiance from SN2 to SN1
at Weel activity ~0.07 (by a complex sequence of
po codimension-two bifurcations that are not indicated here).
Notice that weel ™ overexpression leads to large cells, size-
controlled at the G2-to-M transition, but weel deletion
leads to small cells (half the size of wild-type), size-
controlled at the G1-to-S transition.
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nomenclature, Cig2 is *“‘CycA’’ and Cdc10 is *“TFE’’.) The
negative feedback loop can generate oscillations if there is
positive feedback in the system as well, which is provided by
the Cdk inhibitor (CKI). As CycA slowly accumulates, it is at
first sequestered in inactive complexes with CKI, but
eventually CycA saturates CKI and active (uninhibited)
Cdk/CycA appears. ActCycA phosphorylates CKI, which
labels CKI for proteolysis (65). As CKI is degraded, actCycA
rises even faster because it is released from the inactive com-
plexes. At this point the negative feedback turns on and CycA
synthesis is blocked. With no synthesis but continued de-
gradation, CycA level drops, which allows CKI to come
back (provided there is no other Cdk activity that can
phosphorylate CKI and keep its level low). CKI comeback
returns the control system to G1. In wild-type cells, the CycA-
TFE-CKI interactions cannot create stable oscillations be-
cause CycB takes over from CycA and keeps CKI low in G2
and M phases. But if CycB is absent (as in cdc/3 A mutants of
fission yeast), then CKI and CycA generate multiple rounds of
DNA replication without intervening mitoses (called ‘‘endor-
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eplication”’), precisely the phenotype of cdc/3A mutants
(66).

In Fig. 4 A we show the bifurcation diagram of cdcl/3A
cells. Over a broad range of cell mass, large amplitude stable
oscillations of Cdk/CycA (from a SNIPER bifurcation at
SN1) drive multiple rounds of DNA synthesis without in-
tervening mitoses. Because this negative feedback loop also
exists in metazoans, it may explain the core mechanism of
developmental endoreplication (67).

Mutant analysis on the genetics-physiology plane

In our view, genetic mutations are connected to cell pheno-
types through bifurcation diagrams. Mutations induce
changes in parameter values, which may change the nature
of the bifurcations experienced by the control system, which
will have observable consequences in the cell’s physiology.
Mutation-induced changes in parameter values may be large
or small: e.g., the rate constant for CycB synthesis = 0 in a
cdcl3A cell, but a weel® (“‘temperature sensitive’’) mutant
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may cause only a minor change in the catalytic activity of
Weel kinase. Whether these changed parameter values
cause a qualitative change in bifurcation points on the one-
parameter diagram (Figs. 2 A and 3 A), or merely a
quantitative shift of their locations, depends on whether the
parameter change crosses a bifurcation point or not. In
principle, we can imagine a sequence of bifurcation diagrams
(and associated phenotypes) connecting the wild-type cell to a
mutant cell as the relevant kinetic parameter changes con-
tinuously (up or down) from its wild-type value. This the-
oretical sequence of morphing phenotypes can be captured on
a two-parameter bifurcation diagram, where cell mass con-
tinues to stand in for the physiology of the cell cycle (growth
and division) and the second parameter is a rate constant that
varies continuously between O (the deletion mutant) and some
large value (the overexpression mutant). Plotted this way, the
two-parameter bifurcation diagram spans the entire range of
molecular biology from genetics to cell physiology! (For
more details on two-parameter bifurcation diagrams, see the
Appendix.)

To illustrate this idea, we first consider weel mutations.
On the two-parameter bifurcation diagram in Fig. 3 B we
follow the loci of bifurcation points (SN1, SN2, and HB1)
from their position in wild-type cells (‘“Weel activity’’ =
0.5) in the direction of overexpression (>0.5) or deleterious
mutation (<0.5). The one-parameter bifurcation diagrams of
wild-type (Fig. 2 A) and weel ~ (Fig. 3 A) cells are cuts of this
plane at the marked levels of Weel activity. For over-
expression mutations, the SNIPER bifurcation moves toward
larger cell mass, and the heavy bar shows where the
simulation of 2 X weel " cells projects onto the genetics-
physiology plane. Clearly, the size of weel°® cells increases
in direct proportion to gene dosage (68). As Weel activity
decreases below 0.5, e.g., in a heterozygote diploid cell
(activity = 0.25) or in weel % mutants, the SNIPER bifur-
cation moves toward smaller cell mass. Eventually, the SN1
and SN2 loci cross, and the infinite-period oscillations switch
from SN2 to SN1 by a short but complicated sequence of
codimension-two bifurcations (not shown on the diagram).
Because SN is not dependent on Weel activity, the critical
cell size at the SNIPER bifurcation drops no further as Weel
activity decreases.

The two-parameter bifurcation diagram for cyclin B
(Cdc13) expression (Fig. 4 B) shows how mitotic cycles
are related to endoreplication cycles. As Cdc13 synthesis rate
decreases from its wild-type value (0.02 min~'), there is a
dramatic increase of the critical cell mass for mitotic
oscillations (the SNIPER bifurcation associated with SN2).
In addition, endoreplication cycles appear at the intersection
of HB1 and SN1 (by a sequence of codimension-two bifu-
rcations, which we are not focusing on here). At first appear-
ance, the endoreplication cycles have a very long period, but
as Cdcl3 synthesis rate decreases further, the period of
endoreplication cycles decreases and the range of these oscil-
lations increases.
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The two-parameter bifurcation diagrams in Figs. 3 and 4
are incomplete: they do not show all loci of codimension-one
bifurcations or any of the characteristic codimension-two
bifurcations. Examples of more complete two-parameter bifu-
rcation diagrams can be found in the Supplementary Material
(Fig. S3) and on our web site (69).

Budding yeast: Saccharomyces cerevisiae

Our generic model of the budding yeast cell cycle is based on
a detailed model published recently by Chen et al. (15). The
generic model bypasses details of the mitotic exit network
(MEN) in Chen’s model, assuming instead that Cdc20
directly activates Cdc14. We had to change some parameters
compared to Chen et al. (15) because of this and other minor
changes in the network. We found these new parameter
values by fitting simulations of wild-type and some mutant
cells (15).

Wild-type cells

One-dimensional bifurcation diagrams of wild-type cells
created by the full model (15) and by our generic model
(Fig. 5, A and B) look very similar. Both figures show a stable
Gl steady state that disappears at a SNIPER bifurcation
(G1-S transition at cell mass = 1.13 au), giving rise to
oscillations that correspond to progression through S/G2/M
phases. There is no attractor representing a stable G2 phase
in wild-type budding yeast cells. The green, red, and blue
curves superimposed on the bifurcation diagram are ‘‘cell
cycle trajectories’’ at mass doubling time of 150, 120, and 90
min, respectively (MDT = In2/u, where u = specific growth
rate). Notice that cells get larger as MDT gets smaller (as u
increases). For simplicity, we are neglecting the asymmetry
of division of budding yeast in these simulations.

Two ways to achieve size homeostasis

Fig. 5 A shows that the relation of the cell cycle trajectory to
the SNIPER bifurcation point depends strongly on MDT. At
slow growth rates (MDT = 150 min), newborn cells are
smaller than the size at the SNIPER bifurcation; hence the
Cdk-control system is attracted to the stable G1 steady state
(seen more clearly in Fig. 5 B than in Fig. 5 A), and the cell is
waiting until it grows large enough to surpass the SNIPER
bifurcation. Only then can the cell commit to the S/G2/M
sequence. This is a mathematical representation of the classic
notion of ‘‘size control’’ to achieve balanced cell growth and
division (49,50,52,70). At faster growth rates, however,
newborn cells are already larger than the critical size at the
SNIPER bifurcation, and they do not linger in a stable G1
state, waiting to grow large enough to start the next chromo-
some replication cycle. How then is cell-size homeostasis
achieved, if the classic ‘‘sizer’” mechanism is inoperative?
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Fig. 6 shows the relationship between limit cycle period
and distance from the SNIPER bifurcation. For mass <1.13,
there is no limit cycle; the stable attractor is the G1 steady
state. For mass slightly >1.13, the limit cycle period is very
long, approaching infinity as mass approaches 1.13 from
above. Depending on MDT, the cell cycle trajectory finds a
location on the cell-mass axis such that the average cell-
cycle-progression time (time spent in G1/S/G2/M) is equal to
the mass doubling time. For MDT = 90 min (botfom curve in
Fig. 6), the cell is born at mass = 2 and divides at mass = 4,
spending its entire lifespan in the oscillatory region, with an
average cell-cycle-progression time of 90 min. As MDT
lengthens to 120 min (second curve from bottom), the cell
cycle trajectory shifts to smaller size, so that the average cell-
cycle-progression time can lengthen to 120 min. Still slower
growth rates (MDT = 150 min) drive the newborn cell into
the “‘sizer’’ domain, where the Cdk-control system can wait
indefinitely at the stable G1 state until the cell grows large
enough to surpass the SNIPER bifurcation. Notice that cell-
size homeostasis is possible in the ‘‘oscillator’” domain
because of the inverse relationship between oscillator period
and cell mass close to a SNIPER bifurcation.

Cell cycles that visit the ‘‘sizer’” domain (top two curves in
Fig. 6) show ‘‘strong’’ size control, i.e., interdivision time is

strongly negatively correlated to birth size, and cell size at the
size-controlled transition point (G1 to S in Fig. 6) shows little or
no dependence on birth size (1,2). Cell cycles thatlive wholly in
the “‘oscillator’” domain (bottom two curves in Fig. 6) show
“‘weak’’ size control, i.e., interdivision time is weakly neg-
atively correlated to birth size and there is no clear ‘‘critical
size’’ for any cell cycle transition. Nonetheless, such cycles still
show balanced growth (interdivision time = mass doubling
time) because the cell cycle trajectory settles on a size interval
for which the average oscillatory period is identical to the cell’s
mass doubling time. Balanced growth and division is a con-
sequence of the steep decline in limit cycle period with
increasing cell size past the SNIPER bifurcation.

As Fig. 6 demonstrates, for cells in the ‘‘oscillator’
domain, our model predicts a positive correlation between
growth rate and average cell size (faster growing cells are
bigger). This correlation is a characteristic and advantageous
feature of yeast cells: rich media favor cell growth, poor
media favor cell division (50,71). Although it is satisfying to
see our model explain this correlation in an ‘‘unforced’” way,
we note that our interpretation of the dependence of cell size
on growth rate is predicated on the assumption that one can
vary mass doubling time without changing any rate constants
in the Cdk-control system (i.e., without changing the location

Biophysical Journal 90(12) 4361-4379
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FIGURE 6 Achieving balanced growth at different growth rates. (Upper
panel) Bifurcation diagram of the budding yeast network (same as Fig. 5 A).
(Lower panel) Period of the oscillatory solutions. Cell cycle trajectories at
different MDT (solid curves) are displayed at the corresponding period
(dashed lines). Background shading shows the ‘‘sizer’” and ‘‘oscillator’’
regimes of cell cycle regulation. Slowly growing cells spend part of their cell
cycle in a stable G1-arrested state, until they grow large enough to surpass
the SNIPER bifurcation and enter S/G2/M; these cells exhibit ‘‘strong’”’ size
control. Rapidly growing cells are large enough to stay always in the
oscillatory regime, maintaining balanced growth and division by finding an
average cell-cycle time = MDT. These cells display ‘‘weak’’ size control.

of the bifurcation points in Fig. 6). Unfortunately, this
assumption is probably incorrect because changes in growth
medium (sugar source, nitrogen source, etc.) likely induce
changes in gene expression that move the SNIPER bifurca-
tion points, with poorer growth medium favoring smaller
size for completion of the cell cycle (see, e.g., (49,50)). We
have yet to sort out all the complications of size regulation in
yeast cells. In the meantime, Fig. 6 provides a useful par-
adigm for understanding ‘‘strong’’ and ‘‘weak’’ size control
in eukaryotes.

Mutants of G1 phase regulation

In this section we present bifurcation diagrams for a few of
the most important and interesting mutants described in great
detail by numerical simulations in Chen et al. (15). We start
with mutants missing the components that stabilize the G1
phase of the cell cycle: either Cdhl (an activator of CycB
degradation) (Fig. 5 C) or Sicl (a cyclin B-dependent kinase
inhibitor) (Fig. 5 D). In both cases the mutant cells are viable
and apparently have a short G1 phase (72-74). On the
bifurcation diagrams, however, a stable G1 steady state
exists only at very small cell size. In both mutants, the cell
cycle trajectory is operating in the ‘‘oscillator’” domain of
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the size-homeostasis diagram, and consequently these mu-
tant cells are expected to exhibit ‘‘weak’’ size control. In
these cases, the G1 phase of the cell cycle is a transient state,
as described above, and the START transition (G1-to-S) is
governed by an oscillator not a sizer. Furthermore, if these
mutant cells are grown from spores (i.e., very small size
initially), they will execute START at a much smaller size than
they do under normal proliferating conditions.

Two-parameter bifurcation diagrams (genetic-physiology
planes) for both SICI and CDHI are presented in the Sup-
plementary Material (Fig. S3). The two types of mutations
have quite a similar effect on cell physiology.

Mutants of mitotic exit regulation

Although both cdc20" and cdc14" mutants block mitotic exit,
cdc20” arrests at the metaphase-anaphase transition (75),
whereas cdcl4"” arrests in telophase (76,77). Hence, exit from
mitosis must be a two-stage process (30), with two different
stable-steady states in which the control system can halt. The
one-parameter bifurcation diagrams (Fig. 5, E and F) reveal
these two stable steady states. For cdc20” the steady state
has very large CycB activity (~60 au), whereas the cdcl4”
mutant arrests in a state of much lower CycB activity (~2 au).
Also, in the second case a damped oscillation is seen on the
simulation curve. These effects all derive from the fact that
if Cdc20 is inoperable, then cyclin degradation is totally
inhibited, whereas if Cdc14 is not working, then Cdc20 can
destroy some CycB—not enough for mitotic exit, but enough
to create a stable steady state of lower CycB activity (30). The
corresponding two-parameter bifurcation diagrams of cdc20”
and cdcl4" mutants (Supplementary Material, Fig. S3, C and
D) are also qualitatively similar.

Lethality that depends on growth rate

To bind effectively to Cdc20, proteins of the core APC need
to be phosphorylated (78). If these phosphorylation sites are
mutated to nonphosphorylable alanine residues (the mutant is
called APC-A), then Cdc20-mediated degradation of CycB is
compromised, although the APC-A cells are still viable. We
assume that APC-A has a constant activity that is 10% of the
maximum activity of the normally phosphorylated form of
APC in conjunction with Cdc20. Furthermore, we assume that
APC-A has full activity in conjunction with Cdhl1, in accord
with the evidence (78). In simulations (Fig. 7 A), APC-A cells
are viable and large. Because these mutant cells are delayed in
exit from mitosis, the period of the limit cycle oscillations
beyond the SNIPER bifurcation is considerably longer than in
wild-type cells. Hence, they cycle in the *‘oscillator’” regime
even at MDT > 150 min.

Double mutant cells, APC-A cdhlA, are lethal at fast
growth rates but partially viable at slow growth rates (30).
Our bifurcation diagram (Fig. 7 B) shows a truncated
oscillatory regime ending at a cyclic fold bifurcation at cell
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mass = 3.6. Simulations show that at MDT = 150 min cells
stay within the small oscillatory regime, but faster growing
cells (MDT = 120 min) grow out of the oscillatory regime
and get stuck in mitosis. Mutations of APC core proteins also
show growth rate-dependent viability, e.g., apcl0-22 is
viable in galactose (slow growth rate) but inviable in glucose
(fast growth rate) (79).

The same dependence of viability on growth conditions
was reported for CLB2dbA cI/bSA mutant cells (CycB
stablized, CycA absent) (30,80), and is illustrated in our
bifurcation diagram (Fig. 7 D). In addition to these mutants,
which are defective in cyclin degradation, Cross (30) found
that the double mutant c/b2A cdhliA also shows growth rate-
dependent viability. In our model these cells are viable at
MDT = 200 min, but lethal at MDT = 120 min (Fig. 7 C).

All of these mutations interfere with the negative feedback
loop of CycB degradation. Weak negative feedback creates
long-period oscillations that are stable attractors only at
relatively small cell mass; at large mass the activity of CycB-
dependent kinase is so strong that the mutant cells arrest in
mitosis. Fast growing cells cannot find a period of oscillation
that balances their MDT, so they overgrow the oscillatory
region and get stuck in mitosis. These results suggest that
other mutants affecting the negative feedback loop should
be reinvestigated to see if viability depends on growth rate
(for example, APC-A sicIA and cdc20” pdsiA).

Cells that show this sensitivity to growth rate are also
likely to be sensitive to random noise in the control system.
Using a model similar to ours, Battogtokh and Tyson (34)
showed that, for control systems operating close to a bi-
furcation to the stable M-like steady state, cells might get
stuck in mitosis after a few cycles if a little noise is added to
the system. This effect would show up as partial viability of a
clone at intermediate growth rates.

. CLB2dbAclb5A
D S/G2M

FIGURE 7 One-parameter bifurcation dia-
grams of budding yeast mutants defective in
cyclin degradation. (A) APC-A ([APCP] = 0.1
au, constant value), (B) APC-A cdhl A ([APCP] =
0.1 au, kanip = kanipp = 0), (C) clb2A cdhiA
(kspp = 0.0015 min~", kgppp = 0.015 min~",
kanip = Kanipp = 0), (D) CLB2dbA cIbSA (kgvpp
= 0.03 min~", kaoppp = ksap = ksapp = O).
Notation as in Fig 2. (A, B, and D) The large-
amplitude, stable limit cycles arise from
g o SNIPER bifurcations; (C) they arise from a

M subcritical Hopf bifurcation followed by a
2 cyclic fold bifurcation (inset). All these muta-
tions compromise one or more of the negative
feedback signals that promote exit from mito-
sis. The latter three show growth rate depen-
dence of viability: slowly growing cells are
viable, but rapidly growing cells become stuck
in M phase.

Incorporation of the morphogenetic checkpoint

In modeling the budding yeast cell cycle so far, we have
assumed that the G2 module of Cdk phosphorylation
(module 5 in Fig. 1) plays no role during normal cell
proliferation (81), but recently this view was challenged by
Kellogg (82). In any event, all agree that the G2 module is
necessary for the ‘‘morphogenesis checkpoint’ in budding
yeast, which arrests a cell in G2 if the cell is unable to pro-
duce a bud (81). It is a simple job to ‘‘turn on’” module 5 in
our generic version of the budding yeast cell cycle and to re-
produce most of the results in Ciliberto et al. (83); see Sup-
plementary Material, Fig. S4.

Mammalian cells

Many groups have modeled various aspects of the molecular
machinery controlling mammalian cell cycles (22,26,84,85),
including us (41). In this article, we insert parameter values
from Novak and Tyson (41) into our generic model to simulate
a ‘‘generic mammalian cell’’ (Fig. 8). As expected the bifur-
cation diagram of the mammalian cell (Fig. 8 B) is very similar
to the budding yeast cell (there is no G2 module in either
model). This yeast-like proliferation is observed in mammalian
cells in early development and in malignant transformation,
when the cell’s main goal is rapid reproduction.

It has been recently discovered that mouse embryos
deleted of all forms of CycD (86), deleted of both forms of
CycE (87), or deleted of both Cdk4 and Cdk6 (88) can
develop until late stages of embryogenesis and die from causes
unrelated to the core cell cycle machinery. Mice lacking Cdk2
are viable (89), and mouse embryo fibroblast from any of these
mutants proliferate normally. Our model is expected to re-
produce these results. Indeed, simulation of CycE-deleted
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dc_836_14

4372 Csikasz-Nagy et al.
10!
3y A wHOHh B RN essasassssssessensy
actCycA 100 4
o Ng.
21 cell mass 5- 1041 4
[ [ 1 ¢ ’
1 - '\.\ '\‘. —] 102 | ..“““"."nnaui.
3 \\_ wetCycl Gl
0 —— e 109 MDT =14h/24h
0 5 10 15 20 25 30 0 1 2 3 4
time (h) cell mass (au.)
eyeDA cyveDA cycEA
2
C D ) _
6 cell mass 10 A N FIGURE 8 Analysis of a mammalian cell
8 Eellmass cycle model. Numerical simulations: (A) nor-
adiCveB / 1 mal cell (without G2 module), (C) cycDA
4 > 61 (CycD® = 0), (D) cycDA cycEA (CycD° = 0,
actCyecA 2] kscp = kscpp = 0), (E) normal cell (with G2
24 CKI weiCyek ) actCycB module). One-parameter bifurcation diagrams
= P 2 Kl for normal cell cycles without (B) and with (F)
0 l"“”. . \ ) 0 Cdhl i o= ] the G2 module.
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (h) time (h)
1
8 10
6 actCycA 100
2 4p1
e 0%
4 Cych &)
2 102
aciCvel cell mass
2 % ‘ ] 10-3 G I
8 L2 e i@ MDT =14h/24h / 48h
0 5 10 15 20 25 30 0 1 2 3 4 5 6
time (h) cell mass (au.)

cells show almost no defect in proliferation with a cell division
mass 1.2 times wild-type cells (Supplementary Material, Fig.
S5 C). The absence of CycD has a greater effect on the system,
creating cycles with a division mass 3.6 times wild-type (Fig.
8 O). If we eliminate both CycD and CycE, we find that cells
leave G1 phase at a mass equal to 5 times wild-type division
mass (Fig. 8 D), which might be lethal for cells. These results
are related to the corresponding experiments in budding yeast,
where cln3~ (CycD) and cinl~ cln2~ (CycE) mutants are
viable but larger than wild-type (90), whereas the combined
mutation is lethal (91).

From Chow et al. (92) we know that, although phospho-
rylation of Cdk?2 (in complexes with CycE or CycA) plays no
major role in unperturbed proliferation of HeLa cells,
phosphorylation of Cdk1/CycB by Weel plays a role in
normal cell cycling. These reactions (module 5 in Fig. 1) are
easily added to the model, as we did in the previous section on
budding yeast. For the parameter values chosen, the bifurca-
tion diagram (Fig. 8 F) exhibits stable G1 and G2 steady
states. The cell cycle trajectories in Fig. 8, E and F, are
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computed for cells proliferating at MDT = 24 h, that operate
in the ‘‘oscillator’” region of the size homeostasis curve
(Fig. 6). More slowly proliferating cells (MDT = 48 h) pause
in the stable G1 state until they grow large enough to surpass
the SNIPER bifurcation at cell mass ~1. At all growth rates,
there is a transient G2 state on the trajectory (the flattened re-
gions of the red and blue curves at [actCycB] ~ 0.01-0.1).

With the G2-regulatory module in place, our model is now
set up for serious consideration of the major checkpoint con-
trols in mammalian cells: 1), restriction point control, by
which cyclin D and retinoblastoma protein regulate the
activity of transcription factor E; 2), the DNA-damage
checkpoint in G1, which upregulates the production of CKI;
3), the unreplicated-DNA checkpoint in G2, which activates
Weel and inhibits Cdc25; and 4), the chromosome mis-
alignment checkpoint in M phase, which silences Cdc20.
Building appropriate modules for these checkpoints and
wiring them into the generic cell cycle engine will be topics
for future publications and will provide a basis for modeling
the hallmarks of cancer (93).
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FIGURE 9 Attractors and their bifurcations. (A—C) Examples of vector fields in a three-dimensional state space. Solid arrows, vector field; dashed arrows,
simulation results; solid circles, stable steady state; open circles, unstable steady state; dotted circle, stable limit cycle. (D) The transitions (bifurcations)
between the vector fields of panels A—C are represented on a one-parameter bifurcation diagram. Solid line, locus of stable steady states; dashed line, locus of
unstable steady states, black dots, maximum and minimum values of response variable on a periodic orbit; SN = saddle-node, HB = Hopf bifurcation. The
light gray curve indicates a simulation of the response of the control system for a slow increase in signal strength. At SN2, the system jumps from the OFF state
to the oN state, and at HB it leaves the steady state and begins to oscillate with increasing amplitude. Within the region of bistability, the control system can
persist in either the OFF state or the ON state, depending on how it was prepared (a phenomenon called ‘‘hysteresis’’).

DISCUSSION

We propose a protein interaction network for eukaryotic cell
cycle regulation that 1), includes most of the important
regulatory proteins found in all eukaryotes, and 2), can be
parameterized to yield accurate models of a variety of specific
organisms (budding yeast, fission yeast, frog eggs, and
mammalian cells). The model is built in modular fashion:
there are four synthesis-and-degradation modules (‘*4, 8, 10,
13”’), three stoichiometric binding-and-inhibition modules
(°‘6,9, 12”°), three transcription factor modules (‘*‘3, 7, 11°),
and three modules with multiple activation-and-inhibition
steps (‘‘1,2,5°”). This modularity assists us to craft models for
specific organisms (where some modules are more important
than others) and to extend models with new modules em-
bodying the signaling pathways that impinge on the under-
lying cell cycle engine.

To describe the differences in regulatory networks in yeasts,
frog eggs, and mammalian cells, we subdivided the generic
wiring diagram (Fig. 1) into 13 small modules. From a different
point of view (36,37) we might lump some of these modules
into larger blocks: bistable switches and negative feedback
oscillators. One bistable switch creates a stable G1 state and
controls the transition from G1 to S phase. It is a redundant
switch, created by interactions between B-type cyclins and

their G1 antagonists: CKIs (stoichiometric inhibitors) and
APC/Cdhl1 (proteolytic machinery). Either CKI or Cdh1 can be
knocked out genetically, and the switch may still be functional
to some extent. A second bistable switch creates a stable G2
state and controls the transitions from G2 to M phase. Itis also a
redundant switch, created by double-negative feedback be-
tween Cdk/CycB and Weel and positive feedback between
Cdk/CycB and Cdc25. A negative feedback loop, set up by the
interactions among Cdk/CycB, APC/Cdc20, and Cdc14 phos-
phatase, controls exit from mitosis. A second negative feed-
back loop, between CycA and its transcription factor, plays a
crucial role in endoreplication. These regulatory loops are
responsible for the characteristic bifurcations that (as our
analysis shows) control cell cycle progression in normal cells
and misprogression in mutant cells.

The many different control loops in the ‘‘generic’’ model
can be mixed and matched to create explicit models of spe-
cific organisms and mutants. In this sense, there is no ‘‘ideal”’
or ‘‘simplest’” model of the cell cycle. Each organism has its
own idiosyncratic properties of cell growth and division, de-
pending on which modules are in operation, which depends
ultimately on the genetic makeup of the organism. Lethal
mutations push the organism into a region of parameter space
where the control system is no longer viable.
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To deepen our understanding of the similarities and
differences in cell cycle regulation in different types of cells,
we analyzed our models of specific organisms and mutants
with bifurcation diagrams. To show how cell growth drives
transitions between cell cycle phases (G1/S/G2/M), we employ
one-parameter bifurcations diagrams, where stable steady
states correspond to available arrest states of the cell cycle (late
Gl, late G2, metaphase) and saddle-node and SNIPER bifur-
cation points identify critical cell sizes for leaving an arrest
state and proceeding to the next phase of the cell cycle. In this
view, cell cycle ‘‘checkpoints’ (also called ‘‘surveillance’
mechanisms) (4,5) respond to potential problems in cell cycle
progression (DNA damage, delayed replication, spindle
defects) by stabilizing an arrest state, i.e., by putting off the
bifurcation to much larger size than normal (18,37,40,84,94).

The most important type of bifurcation, we believe, is a
““‘SNIPER”’ bifurcation, by which a stable steady state (G1 or
G2) gives rise to a limit cycle solution that drives the cell into
mitosis and then back to G1 phase. At the SNIPER bifurcation,
the period of the limit cycle oscillations is initially infinite but
drops rapidly as the cell grows larger. SNIPER bifurcations are
robust properties of nonlinear control systems with both
positive and negative feedback. Not only are they commonly
observed in one-parameter bifurcation diagrams of the Cdk
network, but they persist over large ranges of parameter var-
iations, as is evident from our two-parameter bifurcation

Csikasz-Nagy et al.

diagrams. For example, in Figs. 3 B and 4 B, SNIPER
bifurcations are observed over the entire range of gene ex-
pression for weel and cdcl3 in fission yeast. The same is true
for SICI gene expression in budding yeast (Supplementary
Material, Fig. S3 B), but not so for CDC20 and CDC14 genes
(Fig. S3, C and D). In the latter cases, the SNIPER bifurcation
is lost for low levels of expression of these essential (‘‘cdc’”)
genes, and the mutant cells become arrested in late mitotic
stages, as observed. Although SNIPER bifurcations are often
associated with robust cell cycling in our models, they are not
necessary for balanced growth and division, as is evident in our
simulation of cdhlA mutants of budding yeast (Fig. 5 C and
Supplementary Material, Fig. S3 A), where the stable oscilla-
tions can be traced back to a subcritical Hopf bifurcation.

The SNIPER bifurcation is very effective in achieving a
balance between progression through the cell cycle (interdivi-
sion time (IDT)) and overall cell growth (mass doubling time
(MDT)). Cell size homeostasis means that IDT = MDT. In Fig.
6 we show that cell size homeostasis is a natural consequence of
the eukaryotic cell cycle regulatory system, and that it can be
achieved in two dramatically different ways: by a ‘‘sizer”’
mechanism (characteristic of slowly growing cells) and an
““‘oscillator’” mechanism (employed by rapidly growing cells).
In the sizer mechanism, slowly growing cells are *‘captured”’
by a stable steady state, either a G1-like steady state (as in
budding yeast) or a G2-like steady state (as in fission yeast).
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FIGURE 10 An illustrative (hypothetical) two-parameter bifurcation diagram with one-parameter cuts (1-6). See Table 2 for the nomenclature of

codimension-one and codimension -two bifurcation points.
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To progress further in the cell cycle, these sizer-controlled
cells must grow large enough to surpass the critical size at the
SNIPER bifurcation. In the oscillator mechanism, rapidly
growing cells persist in the limit cycle regime (with cell mass
always greater than the critical size at the SNIPER bifurcation),
finding a specific combination of average size and average
limit-cycle period such that IDT = MDT. In the oscillator
regime, cells are unable to arrest in G1 or G2 phase because
they are too large. To arrest, they must undergo one or more
divisions, without intervening mass doubling, so that they be-
come small enough to be caught by a stable steady state, or the
SNIPER bifurcation point must be shifted to a larger size (by a
surveillance mechanism), to arrest the cells in G1 or G2.

One-parameter bifurcations diagrams succinctly capture the
dependence of the cell cycle engine (Cdk/CycB activity) on cell
growth and division (cell mass changes). By superimposing cell
cycle trajectories on the one-parameter bifurcation diagram, we
have shown how SNIPER bifurcations orchestrate the balance
between cell growth and progression through the chromosome
replication cycle. In a two-parameter bifurcation diagram, we
suppress the display of Cdk/CycB activity (i.e., the state of the
engine) and use the second dimension to display a genetic
characteristic of the control system (i.e., the level of expression
of a gene, from zero, to normal, to overexpression). On the two-
parameter diagram we see how the orchestrating SNIPER
bifurcations change in response to mutations, and consequently
how the phenotype of the organism (viability/inviability and cell
size) depends on its genotype. The two-parameter bifurcation
diagram can be used not only to obtain an overview of known
phenotypes but also to predict potentially unusual phenotypes
of cells with intermediate levels of gene expression.

Our model is freely available to interested users in three
forms. From the web site (69) one can download .ode and .set
files for use with the free software XPP-AUT. From an .ode file
one can easily generate FORTRAN or C+ + subroutines, or
port the model to Matlab or Mathematica. Secondly, one can
download an SBML version of the model from the same web
site for use with any software that reads this standard format.
Thirdly, we have introduced the model and all the mutant
scenarios discussed in this article into JigCell, our problem-
solving environment for biological network modeling (95-97).
The parameter sets in the JigCell version of budding yeast and
fission yeast are slightly different from the parameter sets
presented in this article. The revised parameter values give
better fits to the phenotypic details of yeast mutants. JigCell is
especially suited to this sort of parameter twiddling to optimize
the fit of a model to experimental details.

APPENDIX: A DYNAMICAL PERSPECTIVE ON
MOLECULAR CELL BIOLOGY

A molecular regulatory network, such as Fig. 1, is a set of chemical and
physical processes taking place within a living cell. The temporal changes
driven by these processes can be described, at least in a first approximation,
by a set of ordinary differential equations derived according to the standard
principles of biophysical chemistry (36). Each differential equation

4375

describes the rate of change of a single time-varying component of the
network (gene, protein, or metabolite—the state variables of the network) in
terms of fundamental processes like transcription, translation, degradation,
phosphorylation, dephosphorylation, binding, and dissociation. The rate
of each step is determined by the current values of the state variables and
by numerical values assigned to rate constants, binding constants, Michaelis
constants, etc. (collectively referred to as parameters).

Given specific values for the parameters and initial conditions (state
variables at time = 0), the differential equations determine how the
regulatory network will evolve in time. The direction and speed of this
change can be represented by a vector field in a multidimensional state space
(Fig. 9 A). A numerical simulation moves through state space always
tangent to the vector field. Steady states are points in state space where the
vector field is zero. If the vector field close to a steady state points back
toward the steady state in all directions (Fig. 9 B), then the steady state is
(locally) stable; if the vector field points away from the steady state in any
direction (near the open circles in Fig. 9, A and C), the steady state is
unstable. If the vector field supports a closed loop (Fig. 9 C), then the system
oscillates on this periodic orbit, also called a limit cycle. The stability of a
limit cycle is defined analogously to steady states. Stable steady states and
stable limit cycles are called attractors of the dynamical system. To every
attractor is associated a domain of attraction, consisting of all points of state
space from which the system will go to that attractor.

As parameters of the system are changed, the number and stability of
steady states and periodic orbits may change, e.g., going from Fig. 9, A to B,
or from Fig. 9, B to C. Parameter values where such changes occur are called
bifurcation points (98,99). At a bifurcation point, the system can gain or lose
a stable attractor, or undergo an exchange of stabilities. In the case of the cell
cycle, we associate different cell cycle phases to different attractors of the
Cdk-regulatory system, and transitions between cell cycle phases to bifurca-
tions of the dynamical system (37).

To visualize bifurcations graphically, one plots on the ordinate a re-
presentative variable of the dynamical system, as an indicator of the system’s
state, and on the abscissa, a particular parameter whose changes can induce
the bifurcation (Fig. 9 D). It is fruitful to think of changes to the parameter as
a signal imposed on the control system, and the stable attractors (steady
states and oscillations) as the response of the network (100). For the cell
cycle control system, the clear choice of dynamic variable is the activity of
Cdk1/CycB (the activity of this complex is small in G1, modest in S/G2, and
large in M phase). As bifurcation parameter, we choose cell mass because
we consider growth to be the primary driving force for progression through
the cell cycle. For each fixed value of cell mass, we compute all steady-state
and oscillatory solutions (stable and unstable) of the Cdk-regulatory net-
work, and we plot these solutions on a one-parameter bifurcation diagram
(Fig. 9 D).

Following standard conventions, we plot steady-state solutions by lines:
solid for stable steady states and dashed for unstable. For limit cycles, we
plot two loci: one for the maximum and one for the minimum value of Cdk1/
CycB activity on the periodic solution, denoting stable limit cycles with
solid circles and unstable with open circles. A locus of steady states can fold
back on itself at a saddle-node (SN) bifurcation point (where a stable steady
state—a node—and an unstable steady state—a saddle—come together and
annihilate one another). Between the two SN bifurcation points in Fig. 9 D,
the control system is bistable (coexistence of two stable steady states, which
we might call oFr and oN). To the left and right of SN2 in Fig. 9 D, the state
space looks like Fig. 9, A and B, respectively. A locus of steady-state
solutions can also lose stability at a Hopf bifurcation (HB) point, from which
there arises a family of small amplitude, stable limit cycle solutions (Fig. 9
D). A Hopf bifurcation converts state space Fig. 9 B into Fig. 9 C. For
experimental verification of these dynamical properties of the cell cycle
control system in frog eggs, see recent articles by Sha et al. (94) and
Pomerening et al. (63,101).

Positive feedback is often associated with bistability of a control system.
For example, if X activates Y and Y activates X, then the system may persist
in a stable ‘‘oFr’’ state (X low and Y low) or in a stable ‘‘ON’’ state (X high
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TABLE 2 Definitions and examples of codimension-one and -two bifurcations

Csikasz-Nagy et al.

Codimension-one bifurcations

Full name Abbreviation From/to To/from 1D example
Saddle-node SN 3 steady states 1 steady state
o —
)
Supercritical Hopf HBsup 1 stable steady state Unstable steady state + small amplitude, stable o®
limit cycle ik
L] -
°. .-
LA
-
_/. ® e
Subcritical Hopf HBsub 1 unstable steady state Stable steady state + small amplitude, unstable
limit cycle &
OO
&
0,
—— . - - o
Cyclic-fold CF No oscillatory solutions 1 stable oscillation + 1 unstable oscillation
essasenes?
Ho0Gotodoh,
- -‘0;3555-;()00
v Ll LT T T
Saddle-node infinite-period SNIPER 3 steady states Unstable steady state + large amplitude
Ll 221l ]
oscillation e .
)
. sescnesnsse
Saddle-loop SL Unstable steady state (saddle) Unstable steady state + large amplitude e ek i e -
oscillation
~ .__-'.
.."‘:.,.‘
N\ %ouq
Codimension-two bifurcations
Full name Abbreviation From/to To/from 1D example 2D example
Saddle-node loop SNL SN + SL SNIPER
Degenerate Hopf dHB HBsup HBsub + CF
HBsup
C*%
Bsub
Takens-Bogdanov TB SN + HB + SL SN
CUSP CUSP Bistability (2 SN) Monostability
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and Y high). Similarly, if X inhibits Y and Y inhibits X (double-negative
feedback), the system may also persist in either of two stable steady states
(X high and Y low, or X low and Y high). Typically, bistability is observed
over a range of parameter values (ksn; < k < ksn2). Negative feedback (X
activates Y, which activates Z, which inhibits X) may lead to sustained
oscillations of X, Y, and Z, for appropriate choices of reaction kinetics and
rate constants. These oscillations typically arise by a Hopf bifurcation, with a
stable steady state for k < kyp giving way to stable oscillations for k > kyp.

In Table 2 we provide a catalog of common codimension-one bifurca-
tions (bifurcations that can be located, in principle, by changing a single
parameter of the system). From a one-parameter bifurcation diagram,
properly interpreted, one can reconstruct the vector field (see lines A, B, and
C in Fig. 9 D), which is the mathematical equivalent of the molecular wiring
diagram. There are only a small number of common codimension-one
bifurcations (see Table 2); hence, there are only a few fundamental signal-
response relationships from which a cell must accomplish all the complex
signal processing it requires. Of special interest to this article is the SNIPER
bifurcation, which is a special type of SN bifurcation point: after annihilation
of the saddle and node, the remaining steady state is unstable and surrounded
by a stable limit cycle of large amplitude. At the SN bifurcation point, the
period of the limit cycle is infinite (SNIPER = saddle-node infinite-period).
As the bifurcation parameter pulls away from the SNIPER point, the period
of the limit cycle decreases precipitously (see, e.g., Fig. 6).

To continue this process of abstraction, we go from a one-parameter
bifurcation diagram to a two-parameter bifurcation diagram (Fig. 10). As the
two parameters change simultaneously, we follow loci of codimension-one
bifurcation points in the two-parameter plane. For example, the one-
parameter diagram in Fig. 9 D corresponds to a value of the second
parameter at level 6 in Fig. 10. As the value of the second parameter
increases, we track SN1 and SN2 along fold lines in the two-parameter
plane. Between these two fold lines the control system is bistable. We also
track the HB point in the two-parameter diagram for increasing values of the
second parameter. We find that, at characteristic points in the two-parameter
plane, marked by heavy ‘‘dots”’ in Fig. 10, there is a change in some qual-
itative feature of the codimension-one bifurcations. Because two parameters
must be adjusted simultaneously to locate these ‘‘dots’’, they are called
codimension-two bifurcation points. In Fig. 10 (and Table 2) we illustrate
the three most common codimension-two bifurcations: degenerate Hopf
(dHB), saddle-node-loop (SNL), and Takens-Bagdanov (TB). From a two-
parameter bifurcation diagram, properly interpreted, one can reconstruct a
sequence of one-parameter bifurcation diagrams (see lines /-6 in Fig. 10),
which are the qualitatively different signal-response characteristics of the
control system. There are only a small number of generic codimension-two
bifurcations; hence, there are limited ways by which one signal-response
curve can morph into another. These constraints place subtle restrictions on
the genetic basis of cell physiology.

In the one-parameter bifurcation diagram, we choose as the primary
bifurcation parameter some physiologically relevant quantity (the ‘‘signal’”)
that is inducing a change in behavior (the ‘‘response’’) of the molecular
regulatory system. In the two-parameter diagram, we propose to use the
second parameter as an indicator of a genetic characteristic of the cell (the
level of expression of a particular gene, above and below the wild-type
value) with bearing on the signal-response curve. In this format, the two-
parameter bifurcation diagram provides a highly condensed summary of the
dynamical links from a controlling gene to its physiological outcome (its
phenotypes). The two-parameter diagram captures the sequence of dynam-
ically distinct changes that must occur in carrying phenotype of a wild-type
cell to the observed phenotypes of deletion mutants (at one extreme) and
overexpression mutants (at the other extreme). In between, there may be
novel, physiologically distinct phenotypes that could not be anticipated by
intuition alone. Examples of this analysis are provided in Figs. 3 and 4, in the
Supplementary Material, and on our website.

For alternative explanations of bifurcation diagrams, one may consult the
appendix to Borisuk and Tyson (33) or the textbooks by Strogatz (99) or
Kaplan and Glass (102).
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An online supplement to this article can be found by visiting
BJ Online at http://www.biophysj.org.
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Abstract  Cell cycle and circadian rhythms are conserved from cyanobacteria to
humans with robust cyclic features. Recently, molecular links between these two
cyclic processes have been discovered. Core clock transcription factors, Bmall and
Clock (Clk), directly regulate Weel kinase, which inhibits entry into the mitosis.
We investigate the effect of this connection on the timing of mammalian cell cycle
processes with computational modeling tools. We connect a minimal model of cir-
cadian rhythms, which consists of transcription—translation feedback loops, with a
modified mammalian cell cycle model from Novak and Tyson (2004). As we vary
the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal quan-
tized cell cycles when the activity of Weel is influenced by clock components. The
quantized cell cycles disappear in the absence of coupling or when the strength of
this link is reduced. More intriguingly, our simulations indicate that the circadian
clock triggers critical size control in the mammalian cell cycle. A periodic brake on
the cell cycle progress via Weel enforces size control when the MDT is quite dif-
ferent from the circadian period. No size control is observed in the absence of cou-
pling. The issue of size control in the mammalian system is debatable, whereas it
is well established in yeast. It is possible that the size control is more readily
observed in cell lines that contain circadian rhythms, since not all cell types have a
circadian clock. This would be analogous to an ultradian clock intertwined with
quantized cell cycles (and possibly cell size control) in yeast. We present the first
coupled model between the mammalian cell cycle and circadian rhythms that
reveals quantized cell cycles and cell size control influenced by the clock.

Key words  cell cycle, circadian clock, size control, quantized cycles, mathematical mod-
eling, mammalian, stochastic, simulation

A fundamental attribute of a cell is its ability to proper cell division. Its oscillatory dynamics are exten-
divide and multiply. The cell cycle executes a precise sively studied from yeasts to mammals (Nurse, 2000).
control mechanism with multiple checkpoints for Although not as essential as cell cycle for viability, the
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existence of a circadian clock can be observed from
cyanobacteria to humans (Dunlap, 1999; Matsuo et al.,
2003; Vanselow et al., 2006). In most cases, conserved
transcription—translation negative feedback loop
(TTFL) is a foundation of robust oscillations in clock
mechanisms (Dunlap, 1999). Both the cell cycle and
circadian clock are robust oscillatory systems (Chen
et al.,, 2004; Forger and Peskin, 2005; Gonze et al., 2002;
Hong et al., 2007; Morohashi et al., 2002). Their prop-
erties, however, are significantly different. The most
distinct differences are temperature and nutrient com-
pensations. The period of the circadian clock is rela-
tively invariant over a physiologically relevant range
in temperature, whereas the cell cycle or mass dou-
bling time is greatly influenced by temperature
and/or nutrient conditions (i.e.,, cell cycle time
decreases as a function of temperature, leading toa Q,,
[rate change with increase of 10 °C of temperature] of
about 3, whereas Q,, of a circadian period is close to 1;
Tsuchiya et al., 2003). On the other hand, all eukaryotic
cell cycles have multiple checkpoints that ensure the
proper progress of the cell cycle, but it is still unknown
whether checkpoints exist for the biological clock. In
any case, the harmonious progress of the cell cycle and
circadian rhythms is necessary for the well-being of
organisms as malfunctions in the cell cycle and/or
clock can lead to tumorigenesis (Fu et al., 2002; Kastan
and Bartek, 2004).

The molecular regulatory mechanisms of the cell
division cycle are fundamentally identical in all
eukaryotes (Nurse, 1990). Although multicellular
organisms proliferate only when permitted by specific
growth factors, the key enzymes of the cell cycle are
functionally conserved across different eukaryotes
(Csikasz-Nagy et al., 2006). The key transitions of the
cell cycle are regulated by Cyclin-dependent kinases
(Cdks) bound to their regulatory Cyclin (Cyc) partners.
Four crucial Cdk/Cyc complexes (Cdc2/CycB, Cdk2/
CycA, Cdk2/CycE, and Cdk4/CycD) and their regu-
lated sequential functions are necessary for proper
mammalian cell cycle progress. Their orders of appear-
ance are meticulously controlled by inhibitors (Rb,
p27Kipl), transcription factors (E2F, Mcm), and degra-
dation factors (p55Cdc/APC, Cdhl/APC; Sherr, 1996).
We would also like to emphasize the fact that in HeLa
cells, the inhibitory kinase Weel plays a crucial role in
regulating Cdc2 activity and the entry into mitosis, as
it does in fission yeast (Chow et al., 2003). Most of this
regulatory network of the cell cycle has been mathe-
matically analyzed by Novak and Tyson (2004).

Yeast cells have to reach a critical size for proper cell
division. This active size control mechanism prevents

yeasts from delayed or premature cell division, result-
ing in imbalanced cell mass population (Rupes, 2002;
Sveiczer et al., 1996). The existence of cell size control is
controversial in mammalian cells (Conlon and Raff,
2003; Grebien et al., 2005; Sveiczer et al., 2004; Wells,
2002). In cultured mouse fibroblasts, smaller newborn
cells take longer to enter the S-phase compared to
larger cells at birth, which indicates a possible cell size
checkpoint as in Saccharomyces cerevisiae (Johnston et al.,
1979; Killander and Zetterberg, 1965). On the other
hand, recent findings from Rat Schwann cells suggest
absence of size control (i.e., small cells took several cell
divisions to reach their typical size; Conlon et al., 2001).
This discrepancy is suggested partly because of differ-
ences in growth rates: linear vs. exponential. Recently,
however, this hypothesis was challenged with results of
different cell types readjusting their size in the next
cycle, even when the “linear mode” was observed
(Dolznig et al., 2004). With our computational model-
ing, we propose that periodic influences of the circadian
clock on cell cycle contribute to the cell size control
mechanism regardless of growth type differences.

In mammalian systems, the central clock is located
in the suprachiasmatic nucleus (SCN) situated in the
hypothalamus. Neurons in the SCN display synchro-
nized endogenous clocks (Yamaguchi et al., 2003),
receive input information (i.e., light, temperature,
etc.), and transmit output signals. The clock is also pre-
sent in peripheral tissues (i.e., fibroblast, liver, bone
marrow, etc.). Peripheral clocks in both mouse and rat-
1 fibroblast cells in culture, however, do not commu-
nicate with each other, resulting in desynchronization
of the clock as a population (Welsh et al.,, 2004).
Nevertheless, identical components are present in
both peripheral tissues and in the SCN neurons. The
details of the mammalian clock are complex, with an
autoregulatory network of TTFLs. Mammalian mPer1
and mPer2 genes are activated by heterodimeric
bHLH-PAS transcription factors Bmall:Clk. The mPers
are translated and form complexes with mCry1 and
mCry2 proteins. The complexes are translocated into
the nucleus and inhibit the activity of the Bmall:Clk
heterodimeric transcription factors. This is a nutshell
of the time-delayed negative feedback mechanism that
generates a robust oscillation of about 24 h. Posttran-
scriptional and translational regulations of mPers,
mCrys, and Bmall:Clk add multiple layers of com-
plexity in the system (Hardin, 2004).

Earlier studies from the late 1950s to the 1980s
indicate that cell divisions in Euglena, Tetrahymena,
and Gonyaulax occur only at particular times of the
circadian cycle (Edmunds, 1974a, 1974b; Sweeney
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and Hastings, 1958). Gated
cell division cycle is also
observed in some cyanobac-

teria, with average doubling

Cdk4
times less than 24 h (Mori \
et al., 1996). These data indi-
cate gating of the cell cycle

by the clock. Although there N (
has been physiological evi- ' N \\\__/v
dence suggesting circadian- S P
gated cell cycle for more N K o S
than 4 decades, the molecu- - A i3
lar link between cell cycle ’
and the clock remained ina | ;

black box wuntil recently.
Matsuo and his colleagues

showed that a cell cycle reg- R RECEEEEEE PR

CIRCADIAN RHYTHM

- i PER-CRY/ |
CELL CYCLE =7 |
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ulator, weel, is directly regu-

lated by clock components
via weel’s E-box elements in
mammalian cells (Matsuo
et al., 2003). Weel phospho-
rylates Cdc2/CyclinB (Cdk1/
CycB) complex and inhibits the entry into mitosis
from G2. This regulation is reflected in partial hepa-
tectomy (PH) experiments showing that PH per-
formed at different zeitgeber times (ZTO vs. ZT8)
resulted in similar timing of entry into the S-phases
but showed an 8-h delay in the entry of M-phase
from the ZT0 PH liver (Matsuo et al., 2003). Weel and
its kinase activity peaked during the dark phase (~
ZT 16-20) after the PH, and weel mRNA peaked at
ZT 8. A high level of Weel activity determines the
duration of the G2-phase, and it has to drop before
cells enter into the M-phase. Intrigued by these
results, we present the first coupled mathematical
model of mammalian cell cycle and circadian clock
with Weel as a coupling factor.

Our model results in (1) quantized cell cycles and
(2) cell size control when the mass doubling time
(MDT) deviates from 24 h in our stochastic simula-
tions. Quantized cell cycles in mammalian cell lines
were first reported by Robert R. Klevecz in 1976
(Klevecz, 1976). In the 1980s, David Lloyd and his
colleagues identified quantized cell cycles in lower
eukaryotes and demonstrated with mathematical
modeling that ultradian pulses created quantized cell
cycles (Lloyd and Kippert, 1987; Lloyd and Volkov,
1990). Although quantized cell cycles were shown
both in yeast and mammals (Klevecz, 1976; Sveiczer
et al., 1999), a clock-regulated quantized mammalian
cell cycle with a known molecular link has never

Figure 1. Interaction map of the mammalian cell cycle and circadian clock networks. The cell
cycle module is coupled with a simplified circadian clock module via Weel (bold dashed arrow).
Lines with arrowheads indicate activations (or association of clock protein complex [CP,]), and
lines with - mean inhibitions.

been addressed. More interestingly, our simulations
show that the clock-influenced cell cycle via Weel
triggers cell size control. The cell size control
becomes apparent when the clock enforces circadian
regulation on Weel when the MDT differs greatly
from 24 h.

MODELING METHODS

Our purpose is not to address a comprehensive mam-
malian circadian rhythm model. For simplicity’s sake,
we want to have a minimal but robust oscillator that
generates an endogenous cycle enforcing a periodic
influence on the cell cycle. Hence, we built a simplified
version of a 4-variable mammalian circadian clock
model (Fig. 1) that consists of transcription factors (TF:
Bmall and Clk), clock message (M: mPer or mCry
mRNA), clock protein (CP: mPer or mCry), and a dimer
complex of clock proteins (CP,; see Appendix A). For the
simplicity of the model, we assume that mPer and mCry
are the same species. Therefore, CP, represents combi-
nations of mPer/mPer, mPer/mCry, and mCry/mCry
dimers. This assumption will be relaxed in our future
work when we study a more comprehensive model of
circadian clock. We also assume that the CP, are more
stable than the CP, which introduces an autocatalytic
positive feedback in the system (Tyson et al., 1999). The
CP is activated by the TF, and the TF is inhibited by the
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CP,, which closes the negative feedback loop. Our sim-
plified clock model shows robust endogenous oscilla-
tions with a period of 24 h (top panel of Fig. 2).

For our cell cycle model, we adapted Novak and
Tyson’s mammalian model (2004), which focuses on
restriction point control. They simulated “transient
inhibition of growth” in mammalian cells upon
cycloheximide treatment and its removal (Zetterberg
and Larsson, 1995), with in-depth descriptions of cell
growth and the Cdk regulatory system. This model,
however, did not focus on Weel and G2 /M transition
because of an already complicated molecular net-
work with 4 different Cdk/Cyclin complexes. We
introduce a Weel and Cdc25 regulatory module
emphasizing the G2/M transition into the Novak
and Tyson (2004) mammalian model. The Weel and
Cdc25 module regulates the activity of Cdc2/CycB
for proper progress of the cell cycle into mitosis. In
addition to the basal transcriptional activity of Weel,
we introduce another level of transcriptional activity
of Weel that is directly regulated by clock compo-
nents, Bmall:Clk (Fig. 1). This connection creates a
link between the cell cycle and circadian clock in
which periodic regulation of Weel is modulated by
the clock (Appendix B). The cell cycle model shows
robust oscillations with an MDT determined by dif-
ferent growth rates in the absence of a connection
with the clock module (i.e., coupling factor [k,;"] = 0).
Multiple runs of stochastic simulations with different
combinations of coupling strength (Appendix C) at
different mass doubling times of the cell cycle are
executed. For stochastic simulations, we introduce
noise into the cell cycle regulatory equations by
rewriting the cell cycle model as Langevin-type equa-
tions with multiplicative noise (Steuer, 2004; van
Kampen, 1981):

Ly —fl.. 1+ w®V2Dx

where f[ ...] means the original deterministic equa-
tion, w,(t) is Gaussian white noise with 0 mean and unit
variance, and D, is the noise amplitude. For simplicity,
we kept the noise amplitude constant (0.005) for all
variables. This number was set by matching the coeffi-
cient of variation (CV) of simulated uncoupled cell
cycle length (at MDT = 24 h) to experimentally
observed CV =10% (Tyson, 1985). We do not introduce
stochasticity in the circadian clock module because its
sensitivity to noise may not reflect a truly robust clock
mechanism, being an overly simplified version of a
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Figure 2. Simulation of the coupled mammalian and circadian
clock modules with the mass doubling time (MDT) =24 h. (A, B)
Simulations start at 0 h at the minima of active transcription
factor (TF; upper panel). Strong circadian coupling induces high
peaks of Weel (A), while weak circadian influence creates minor
changes in Weel (B). The zero coupling resembles the results of
weak coupling (not shown). Variables are color coded in the y-
axis of the graph. (C) Gated cell division timing by the circadian
clock. Simulations are initiated from different cell cycle stages
(4-h intervals), while the circadian clock is always initiated from
0 h at the trough of active TF (~ ZT12). After several cycles, cell
divisions are synchronized to late night/early morning (high
total amount of clock proteins, or CP, ) independent of initial
conditions of the cell cycle.

tot’

clock model. In this article, we only concentrate on the
unidirectional effect of the clock on cell cycle. We dis-
cuss the possibility of cross-talk between the cell cycle

Downloaded from http://jbr.sagepub.com at Biblioteca di Ateneo - Trento on December 6, 2007
© 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.



dc_836_14

546 JOURNAL OF BIOLOGICAL RHYTHMS / December 2007

and circadian rhythms below. We also keep the cell
growth equation deterministic because we cannot take
into account the fluctuations in the complex process of
cell growth in the current model. Differential equations
are solved and analyzed with the software tool
XPP-AUT (Ermentrout, 2002). Readers can find our
XPPAUT readable ODE files and the description of rate
constants of our model on our Web site (http://www
cellcycle.bme.hu/).

We run multiple stochastic simulations for the cell
cycle time distribution histograms and related
figures (Fig. 4-7). For each simulation, we calculate
50 consecutive cell cycles. We assume that interac-
tions between individual cells are weak and single
cells behave independently. In such a case, the inves-
tigation of multiple cycles of an individual cell is
equivalent to the analysis of a cell population at a
given time. This is supported in cell culture systems
(i.e., NIH3T3) in which cells do not communicate
with each other in terms of the clock.

RESULTS

Circadian requlation of Weel results in quantized cell
cycles. For initial simulations, it seems natural to start
with the MDT of 24 h. The cell cycle synchronizes
with the circadian clock regardless of its initial con-
ditions, with an MDT at 24 h (Fig. 2C). A stronger
coupling (large k") ensures tighter G2 regulation by
inducing high levels of Weel (Fig. 2A). As a result,
cell division locks into a particular phase of the circa-
dian rhythm (Fig. 2C). Our result is in agreement
with the findings that cell divisions frequently occur
right after the circadian night (in which mPer and
mCry are still high; Hardin, 2004) in different mam-
malian cell types (Bjarnason et al., 2001).

The MDT of mammalian cell culture varies greatly
depending on cell types and growth conditions (i.e.,
temperature, nutrients, etc.). Hence, we changed the
MDT from 16 to 28 h in our simulations and observed
the cell cycle time profile over multiple runs of cell
division cycles with different coupling strengths. A
strong coupling (k,;” = 2 h™) results in uneven distri-
bution of cell cycle time (Fig. 3). A periodic influence
on weel transcription imposes a delay in G2, depend-
ing on the timing of Bmall:Clk and Weel oscillations.
Differences in endogenous periods between the 24-h
clock and the MDT generate some cycles to entrain
close to 24 h and other cycles to be either shorter or
longer than 24 h, depending on the MDT (Fig. 3). For

example, when the MDT is 20 h, the circadian clock
entrains the cell cycle close to 24 h until the birth mass
gets too large, which forces a cell to divide with a
shorter cycle time even before the rise of Bmall:Clk
and Weel (Fig. 3B). This pattern repeats itself every 6
cell cycles at MDT = 20 h or 28 h and every third at
MDT = 16 h (Fig. 3A-C). Similar repetitions cannot be
observed with weak coupling in our stochastic simu-
lations (k" = 0.25 h™; Fig. 3D-F). In the absence of
any coupling factor (k ;" = 0 h™), the two oscillators
run with their endogenous periods independently of
each other (not shown). The observed pattern with
strong coupling is dictated by the least common mul-
tiple of the 24-h period and the MDT (Fig. 5C, 5D). This
“mode-locking” behavior of two oscillators results in
quantized cell cycle times at different MDTs with
strong coupling. Figure 4A—C represents histograms
with multiple peaks of cell cycle time at MDT = 16, 20,
and 28 h, with strong coupling. These multimodal cell
cycle distributions show a resemblance to previous
experimental results (Klevecz, 1976; Nagoshi et al.,
2004). Quantitative comparisons, however, cannot be
achieved, because of lack of experimental details. We
wish to pursue this in our future work. Weak cou-
pling results in normal distributions of cell cycle times
(Fig. 4D-F). Further stochastic simulations are per-
formed with randomly chosen MDTs to investigate
cell cycle time across MDTs. This simulation allows us
to visualize the distribution patterns of cell cycle time
with both strong and weak couplings across a large
range of MDTs. Similarly, as shown in Figure 4, the
strong coupling results in quantized cycles, whereas
the weak coupling reflects normal distribution cycle
times from the stochastic modeling (Fig. 5A, 5B).
As the MDT deviates from 24 h, the clock-enforced
cell cycle goes through repeated cycles of “mode-
locking,” which create large deviations in cell cycle
time. Analysis of the variations in cell cycle time and
cell mass agree with experimental data.

The quantized cell cycles with compensatory
shorter or longer cell cycle times create smaller or
larger cell mass influenced by the circadian clock.
Periodic influence of the clock reduces the effect of
noise and synchronizes the cell cycle when the MDT is
close to 24 h. As the MDT deviates from 24 h, the clock-
enforced cell cycle goes through repeated cycles of
“mode-locking,” which create large deviations of cell
cycle time to compensate for differences in cell mass.
To measure these deviations, the coefficients of varia-
tion (CV = [standard deviation/mean] x 100 [%]) of cell
cycle time and cell mass are calculated from 50 cell

Downloaded from http://jbr.sagepub.com at Biblioteca di Ateneo - Trento on December 6, 2007
© 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.



dc_836_14

Zamborszky et al. / CELL DIVISION GATED BY CIRCADIAN CLOCK 547

MDT=16h MDT=20h MDT=28h
B C
5 VTPV AT T Y pﬁsuh‘tﬁu A
o 2 i IV 2 \J“UH]‘\“‘“‘ 2 "w“‘{\;Hu\\\\“\“
S I T A
- IV ""\ ,\J‘ W [/ \ AT \“ L WAL W
c PO CIVRTRNTEY) ey
0 A 0 | o I I |
. 24 2 2
©
$ QAW WY AW
[V PN 0
0w 4 4 4
n D E F
T 3 3 3
IS
f— 2 2
o ,4\‘, " i WA 0BG L 7 /
O “ “ \‘ H H\' “ H I H ‘ ! ‘f UA \“ \‘/‘\W“‘A“ N \“ ‘U‘A ‘
O”‘/ [ O‘H‘uw‘ul‘.‘lu ol Lt 1 11141
012345678910 012345678910 012345678910

Days Days Days
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(C) represent cell cycle simulations with strong coupling rate (k,,” =2 h™) and the mass doubling
time (MDT) at 16 h, 20 h, and 28 h, respectively. Clock-regulated Weel (blue) results in variations
in sizes and cell cycle times at different MDTs. The black line represents cell mass, which grows
exponentially and divides by a factor of 2. Such large deviations are not observed with weak cou-
pling (k,;” = 0.25 h™) at MDTs 16 h, 20 h, and 28 h (D-F). The middle panels show a robust 24-h
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Strong coupling results in multimodal distribution of cell cycle times (A-C), while weak coupling
results in normal distribution (D-F) at indicated MDTs (16 h, 20 h, and 28 h). Five thousand cell
cycles are analyzed for each plot, which is calculated from 100 simulation runs with 50 consecu-
tive cell cycles.
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cycle simulations each, with
randomly generated MDTs
(Fig. 6). With strong coupling,
our simulations show that
populations of cells reflect a
unique relationship between
2 CVs: the CV of cycle time is
roughly twice the CV of cell
mass at division, which is in
agreement with experimental
results (Tyson, 1985; Fig. 6).

The circadian clock contributes
to the regulation of cell size con-
trol. Cell size control is appar-
ent when smaller or larger
cells at birth undergo differ-
ent durations of growth to
reach the critical size for
proper cell cycle progression.
In other words, it would take
less time for large cells at
birth to reach the critical cell
mass than smaller cells.
Experimentally, this phenom-
enon is reflected by negative
correlation (slope of about -1)
of net growth throughout
the cycle (mass, = mass at
division-birth mass) and
birth mass (mass, Sveiczer
et al., 1996). To investigate the
existence of size control in
our model, we studied the
relationship between mass,
as a function of mass, from
our stochastic simulations of
50 cell cycles each at different
MDTs (Fig. 7A, 7B).! Cell mass
varies greatly depending on
different MDTs, as is experi-
mentally shown in yeast (i.e.,

1. We acknowledge that in mam-
malian system, it is difficult to
measure mass, as a function of
mass, because of technical limi-
tations, as it was done in fission
yeast. With computational simu-
lations, however, this can be
easily measured. This is one of
the advantages of computational
modeling.
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Figure 5. Mode-locked distribution of cell cycle time as a function of mass doubling time (MDT).
(A) A cluster of quantized cell cycle populations is observed with a strong coupling in a large
range of MDTs. (B) Weak coupling results in normal distribution of cell cycle time (CT) in various
MDTs, with the average CT = MDT. About 250 simulation runs are performed in various MDTs,
and each simulation calculated 50 cell cycles. (C, D) Deterministic simulations of both strong (C)
and weak (D) coupling cause mode-locking. The pattern of cell cycle time repeats with the least
common multiple (noted on panel D) of the circadian-imposed 24 h and the MDT. The degree of
separation between different cell cycle lengths, however, is very different from strong vs. weak
couplings. The weak coupling results in normal distribution of cell cycle time even with mode-
locking behavior. The abscissa of each histogram is vertically shifted to the MDT value that is
used for the given simulation. Histograms describe distributions of cell cycle lengths depending
on periodic repeat sequences. In the deterministic case with zero coupling, we get a simple peak

critical cell mass of a cell
depends on growth condi-
tions leading to larger cells
with rich nutrients [Johnston
et al., 1979]). Hence, we cate-
gorize our results according to
the MDTs. To our surprise, we
observe negative correlations
with a strong coupling factor
in distinct populations of
cells when the data are
sorted according to the MDTs
(Fig. 7A).

The slopes of regression
lines (from the previous cal-
culations) as a function of
MDT provide relationships
between cell size control and
different coupling factors
(Fig. 7C, 7D). Our stochastic
simulations show that weak
coupling of the clock with
the cell cycle results in no
clear correlation between the
mass, and the mass, (Fig.
7D). Our simulations with
zero coupling are identical to
those of weak coupling (not

at each MDT at a cycle time = MDT (not shown).
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Figure 6. Coefficients of variation of cell cycle time and cell mass
as a function of mass doubling time (MDT) at different coupling
strengths. Coefficients of variation (CV) of cell cycle length (A, B)
and cell mass at division (C, D) are calculated. The CV for cell cycle
length is small at a MDT close to 24 h but is large at other MDTs
because of the strong influence of the circadian clock (A) compared
to the weakly coupled (B) case. The CV for division mass is higher
in the strong coupling case (C) than the weak coupling case (D).
The CV of cycle time is roughly twice the CV of cell mass at divi-
sion, which is in agreement with experimental results (Tyson,
1985). Results from zero coupling are identical to the weak
coupling data (not shown).

shown). However, we see a

general trend of decrease
in the slope of regression lines with increasing MDTs
because of the innate properties of the cell cycle mod-
ule as proposed in previous work (Csikasz-Nagy et al.,
2006). On the other hand, the strong coupling results in
both positive and negative slopes of regression lines,
depending on the MDT (Fig. 7C). With strong cou-
pling, cell size control is apparent (slope about —1)
when the MDT is either significantly shorter or longer
than 24 h. This is because of compensatory cycles in
which very large or very small cells undergo short or
long cell cycles, as seen in Figure 3 (therefore resulting
in quantized cell cycles). The compensatory cycles
(hence, resulting cell size control) become apparent
when cells experience significant changes in their cell
cycle regulatory dynamics by the clock. In other words,
the periodic influence of the clock on Weel expression
perturbs cell cycle dynamics, resulting in cells that are
either too large or too small when the MDTs are signif-
icantly different from the clock period length. This, in
turn, triggers cell size control. Positive slopes of regres-
sion lines are observed when the MDTs are close to 24
h, because of “rare” compensatory cycles resulting in
loss or gain of cell mass depending on the MDT. For
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Figure 7. Analysis of critical mass control. (A, B) Growth from cell birth to division (mass,) is plot-
ted as a function of birth mass (mass)) for multiple simulations at different mass doubling times
(MDTs). Data points are color coded and clustered according to particular MDTs. Cell size control
is reflected when there is a negative correlation (slope of about -1) between mass, and mass,.
Strong coupling results in strict size control when cell masses are either large or small but no
apparent correlation at intermediate cell masses (A). Weak coupling (B) shows no clear size con-
trol. About 250 simulation runs are calculated at different MDTs. For clear representation, not all
data points are displayed on panels (A) and (B), and the legends for both panels are inserted on
panel (B). (C, D) Slopes of linear regression lines from (A, B) are plotted as a function of the MDT.
Strong coupling results in strict mass control (slope about —1) when the MDTs are either much
shorter or longer than 24 h, but size control is not observed when the MDT is close to 24 h (C).
Weak coupling shows no apparent mass control (D). (E, F) Similar results are shown with linear
growth rate. For these simulations, we change the equation of cell growth by eliminating the mass
from the right-hand side of dCycB/dt. Unique slope of regression lines of mass, vs. mass, plots are
observed with strong coupling as a function of MDT (E), as seen with exponential growth rate (C).

and Weel protein cycle with
a period of about 24 h,
(2) both Weel protein and its
relative  kinase  activity
showed about 24-h cycles
with a delay of 8 h in their
peak levels and kinase activi-
ties of the PH samples at
ZT0 compared to the PH
samples at ZT8, and (3) the
weel gene contains E-boxes in
the 5" flanking region, where
Bmall:Clk directly regulates
weel transcription (Matsuo
et al.,, 2003). We acknowledge
that there may be other cou-
pling factors in addition to
Weel at different checkpoints
in the progress of the cell
cycle. Furthermore, recent
research indicates that this
connection may be bidirec-
tional rather than unidirec-
tional. The cell cycle kinase
Chk2 phosphorylates a core

The MDT is calculated from the average cell cycle time of 50 cycles.

example, at MDT = 23.8 h, the circadian rhythm syn-
chronizes cell cycles to 24 h. This extra 0.2 h of growth
results in a larger mass of individual cells with each
additional cell cycle because of exponential growth,
until cells undergo compensatory cycles resulting in
smaller cells. MDTs of about 20 h and 28 h result in no
apparent size control as a consequence of cells con-
stantly losing and gaining cell mass as a population,
which balances the slope to zero. Similar results are
shown with linear growth rate (Fig. 7E, 7F).

DISCUSSION

Since the early discoveries of circadian clock-gated
cell cycles in lower eukaryotes (Edmunds, 1974a,
1974b; Sweeney and Hastings, 1958), numerous molec-
ular findings that connect the cell cycle and circadian
clock are now being addressed (Fu et al., 2002; Matsuo
et al., 2003). Preliminary screening has shown that
there are multiple cell cycle components that oscillate
with a period of about 24 h in mouse liver (i.e., CycBl,
p55<¥, Cde2, CycD], etc.; Fu et al., 2002; Matsuo et al.,
2003). Among many candidates, Weel stood out as a
strong link based on several facts: (1) both weel mRNA

clock component (i.e., FRQ in

Neurospora crassa and mPerl

in mice), resulting in DNA
damage-dependent reset of the clock (Gery et al., 2006;
Pregueiro et al., 2006). The detail of this pathway is still
unknown. What we present here, however, is an initia-
tive of computational analysis with a unidirectional
link from the circadian clock to the cell cycle via Weel.
In our future computational analysis, we plan to
address the following issues: (1) simulations of multi-
ple coupling factors in various checkpoints in cell
cycles, (2) use of a comprehensive model of mam-
malian clock model, (3) effects of cell cycle inhibitors
and changes in growth factor levels in the presence of
the circadian clock, aimed at better “chronotherapy”
(Gardner, 2002; Mormont and Levi, 2003), and (4) cross
talk between the cell cycle and circadian clock. At the
present moment, we introduce the first coupled mam-
malian cell cycle and circadian clock model with mole-
cular profiles of both components (Fig. 2-3).

Based on our computational analysis, we report
quantized cell cycles when weel transcription is
strongly influenced by the circadian clock. This occurs
from a “mode-lock” phenomenon that creates various
periodic repetitions of cell division cycles with differ-
ent MDTs. Recently, the mode-lock behavior of cell
cycles via periodic external influences (circadian clock
in our case) was also studied with a deterministic yeast
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cell cycle model (Cross and Siggia, 2005). The authors
found that periodically induced CIn2 or CIn3 tran-
scription led to the “mode-locking” of cell division
cycles. Based on recent discoveries of a genomewide
ultradian respiratory cycle in yeast (Klevecz et al.,
2004), it would be interesting to study possible players
in this respiratory cycle that may affect the cell division
cycle and whether those components influence the cell
cycle via CIn2 or CIn3. This in turn may result in quan-
tized cell cycles in yeast. Our results can be tested in
both yeast and mammalian cell culture systems. For
example, one can compare cell cycle distributions as a
function of MDT (our Fig. 5) in the presence and
absence of coupling factors (i.e., knock-down of weel in
mammalian system) or clock (i.e., knock-out of ultra-
dian clock in yeast [Klevecz et al., 2004] or circadian
clock in mammals [Okamura, 2004]).

It is important to note that in 2000, Sveiczer and
colleagues mathematically modeled quantized cell
cycles in fission yeast double mutant (weel“cdc25A)
without assuming ultradian influences (Sveiczer
et al., 2000). This double mutant’s molecular pheno-
type (low Weel and no Cdc25) abrogates the positive
feedback of Cdc2/Cdcl3 via Cdc25. In the absence of
positive feedback, the system loses bistability and is
pushed into a stable oscillatory region with a period
much shorter than the MDT (Csikasz-Nagy et al,,
2006). In other words, there is a collision of 2 different
periods: the MDT and the period set by a stable oscil-
lator. This results in variations in the timing of mitosis
entry, which creates quantized cell cycles. This model
is significantly different from our model and others
(Lloyd and Kippert, 1987) because no external influ-
ence (ie., ultradian cycle) is required to generate
quantized cell cycles for the weel®cdc25A double
mutant. It will be important to investigate different
profiles of quantized cell cycles in both the presence
and absence of ultradian cyclic influences in this dou-
ble mutant. This will enlighten us as to whether an
ultradian clock in fission yeast plays a role in cell
cycle regulation of the weel”cdc25A double mutant.

In yeast, cell size checkpoints seem to occur at var-
ious points along the cell cycle progression. S. cere-
visige inspects its size at the G1/S transition, and
Schizosaccharomyces pombe requires a critical cell size
before entry into mitosis (Rupes, 2002). In mammals,
however, different results arise from different cell
types (Conlon and Raff, 2003; Grebien et al., 2005;
Sveiczer et al., 2004; Wells, 2002). For more than 40
years, the existence of cell size control in mammalian
cells has been a controversial topic. Here, we report
that in mathematical simulations, strong circadian

clock regulation on weel transcription triggers cell size
control at different MDTs. Cell size control is observed
during specific ranges of MDTs when the circadian
clock induces periodic perturbations that force the cell
cycle out of homeostasis from its dictated MDTs. There
is no evidence of mass control with either weak or zero
coupling strengths. Qualitatively similar behaviors are
observed with both exponential and linear growth
types (Fig. 7). In our model, circadian influences on
Weel introduce cell size control at the G2/M transi-
tion. It is possible that there may be additional cell size
control at the G1/S transition in the mammalian sys-
tem as in budding yeast (Rupes, 2002). Interestingly,
mammalian cell types that demonstrate cell size con-
trol also feature circadian rhythms (i.e., mouse fibrob-
last [Nagoshi et al., 2004; Tsuchiya et al., 2003] and
bone marrow containing erythroid [Chen et al., 2000]),
whereas there is no precedent for a functional circa-
dian clock in Rat Schwann cells (where no critical size
control has been reported; Conlon et al., 2001) to our
knowledge. We acknowledge that the cell size control
mechanism may be a complex network within cell
cycle regulation. Our simulations suggest that the
clock may play an important role in cell size control
via Weel, depending on the MDT. We propose to test
quantized cell cycles and cell size control in several
ways: (1) observe cell size distribution at different
MDTs in mouse fibroblasts that pertain to clock in
absence and presence of coupling factors (i.e., Weel)
and (2) if it is feasible, create an inducible system in
Rat Schwann cells that creates circadian pulsatile
induction of Weel and observe the distribution of cell
size as a function of the MDT.

APPENDIX A
DIFFERENTIAL EQUATIONS OF THE
SIMPLIFIED CIRCADIAN RHYTHM
MODULE FOR MAMMALIAN CELLS

Messenger RNA of the clock proteins and Weel:

iM = kms L - kmdM (1)
dt J'+TF"
Monomer clock proteins (mPer or mCry):

d

—CP=k M-k dCP—ZkCP2+
dt cps cp a
cp @)
2k,CP, -k
M v cp,,

Dimer form of clock proteins (mPer/mPer, mPer/mCry, or
mCry/mCry):
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dﬂ CP, = k,CP’ - k,CP, ~ k,,,CP, + k,,IC -
t
cp, 3)
k.CP,-TF -k
ica 2 P2 ]p + CPW

Transcription factor (Bmall:Clk) of the clock proteins’
mRNA:

Ei TF = k,,,,IC + k, ,IC — k,,TF - CP, +

c 4
k,s
]p +CP,,

Inactive complex of clock dimers and transcription factor:

IC=TF,, - TF (5)

tot

Total amount of clock proteins:

CP,, = CP +2CP, + 2IC

tot

Rate constants (h™):
k.=1,k =01,k

ms 7 md

k

cp2d

= 0.5, k= 0525, k,= 100, k,= 0.01,
= 0.0525, k,,= 0.01, k,,= 20, k,, = 10, k,,= 0.1

ica Pl 7 Rpo

Dimensionless constants:
TF,,=0.5, Jp=0.05,] =03, n=2

tot

APPENDIX B
DIFFERENTIAL EQUATIONS FOR
THE EXTENSION OF THE NOVAK

AND TYSON MODEL (2004)

Extensions to the equation of Cdk1/CycB:

k- (CycB/]T)Z)
—— | - mass —
1+ (CycB/],)?

V2 : CyCB + (kchZS/ + k[‘dEZ5” ) CdCZSIZ) : (6)
CycBP — (k" + kyyot” - Weel) - CycB

weel

d
—CycB=eps- | k,"+
it Y P (1

Phosphorylated form of Cdk1/CycB:
ditCycBP = (ko ™ Kooy "Weel) - CycB — (k5" +
k405" - Cdc25a) - CycBP — (7)
V2. CycBP
Active form of Weel kinase:

L Weel = (k. +k,." - M) -
at

(k,," +k,,” - CycB) - Weel

+
Jp + Weel (8)

WeelP

-k .- Weel

w6

kwl
J.1 + WeelP

Inactive form of Weel:

divveezp =(k, +k," CycB) - Weel
t

I, + Weel 9)

WeelP

ky = —k,, - WeelP
Jo1 + WeelP

Active form of Cdc25:

% Cdc25a = (k' +k," - CycB) - (1 - Cdc25a)
t _

J s+ (1 —Cdc25a)
(10)
k- Cdc25a

J o+ Cdc25a

The cell divides (mass is halved) when CycB crosses 0.2
from the above.

Rate constants (h™):
k.5 =005, k,,.~” =10, k; =01, k,” =1, k,= 04,
k, =04k, =008k, =10k, =02k,”=2k,=1,

k.,=1, (k, and k,” in Appendix C)

w!

Dimensionless constants:
J,=0.05,],=0.05,],=02,],,=02

The rest of the parameters are same as in the Novak-Tyson
model (Novak and Tyson, 2004).

APPENDIX C
THE VALUES OF THE COUPLING
PARAMETERS?
ko5 () kos” (7))
“Zero” coupling 1.00 0.00
“Weak” coupling 1.00 0.25
“Strong” coupling 0.25 2.00

a. To keep the average cell size similar, we assume the cell cycle has
stronger influence on Weel when it is weakly dependent on the
circadian clock. Weel levels have large influence on cell size, and
we want to simulate normal distribution of cell size.
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Abstract

Because of its regular shape, fission yeast is becoming an increasingly important
organism in the study of cellular morphogenesis. Genetic experiments with mutants
and drug treatment studies with wild-type cells have revealed the importance
of microtubules in controlling new growth zone formation. It is believed that
microtubules exert this role by delivering to cell ends a ‘dynamic landmark’ protein,
tealp, which promotes actin polymerization and growth zone formation. Here we
present a simple model for fission yeast morphogenesis that describes the interplay
between these two cytoskeletal elements. An essential assumption of the model is
that actin polymerization is a self-reinforcing process: filamentous actin promotes
its own formation from globular actin subunits via regulatory molecules. In our
model, microtubules stimulate actin polymerization by delivering a component of the
autocatalytic actin-assembly feedback loop (not by delivering a de novo inducer of
actin polymerization). We show that the model captures all the characteristic features
of polarized growth in fission yeast during normal mitotic cycles. We categorize the
types of growth patterns that can exist in the model and show that they correspond
to the major classes of morphogenetic mutants (monopolar, orb, banana and tea).
Based on these results, we propose that fission yeast cells have specific size ranges in
which they can exhibit two or more different stable patterns of growth. Copyright ©
2007 John Wiley & Sons, Ltd.
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Introduction

A fundamental goal of present-day molecular cell
biology is to understand how asymmetry (polarity)
is generated at the cellular level. One well-defined
example of cellular asymmetry is polarized growth.
Fission yeast, Schizosaccharomyces pombe, proved
to be an excellent model organism for the study
of cellular morphogenesis because of its regular
cylindrical shape (Chang, 2001; Hayles and Nurse,
2001). Growth of wild-type fission yeast cells is

Copyright © 2007 John Wiley & Sons, Ltd.

always polarized, but it changes in a characteristic
way during the cell cycle (Mitchison and Nurse,
1985). A newly born wild-type cell initiates polar-
ized growth at one end only (monopolar growth),
which is always the ‘old end’ (not the end pro-
duced by the latest cell division). Later, in phase
G, of the cell cycle, cells switch to bipolar growth
by activating cell growth at their ‘new end’ [new
end take-off (NETO); Mitchison and Nurse, 1985].
Finally, at mitosis, growth ceases at both ends and
the cell makes a septum at its midline.



dc_836_14

60

All instances of polarized cell growth are asso-
ciated with localized actin polymerization (Marks
and Hyams, 1985). Just as in budding yeast, F-
actin forms two types of structures — cables and
patches. In budding yeast, the site of polarized
actin formation, which results in bud formation,
is independent of microtubules (Irazoqui and Lew,
2004). In contrast, in fission yeast, many genetic
experiments and drug treatment studies suggest
that localization of actin polymerization and polar-
ized growth is controlled by interphase micro-
tubules (Mata and Nurse, 1997; Sawin and Nurse,
1998; Verde et al., 1995). During most of the cell
cycle, microtubules form an antiparallel array along
the long axis of the cell, having their plus ends
at cell tips. This arrangement of microtubules is
explained by their localized catastrophes at cell tips
(Brunner and Nurse, 2000). Microtubular motors
(such as tea2p) deliver proteins along microtubules,
which are abruptly released when the microtubules
undergo catastrophe at cell tips (Browning et al.,
2000). As a consequence of this microtubular trans-
port (convection), these cargo molecules become
concentrated around the plus ends of the micro-
tubules, i.e. at the cell tips. Tealp, the first protein
discovered with this property (Behrens and Nurse,
2002; Mata and Nurse, 1997), is a cell end marker
for fission yeast, because it appears at both cell ends
early in the cycle (even at the new end, before it
starts to grow).

Tealp can be found at cell ends in a large com-
plex (called a polarisome) with one of the fis-
sion yeast actin-nucleator formins (for3p), together
with teadp (tealp — for3p linker), bud6p and sla2p
(actin-binding proteins) and possibly some other
polarization regulator molecules, such as modSp,
pomlp, tea3p (Arellano et al., 2002; Bahler and
Pringle, 1998; Castagnetti et al., 2005; Feierbach
and Chang, 2001; Glynn et al., 2001; Martin et al.,
2005; Niccoli et al., 2003; Snaith et al., 2005;
Snaith and Sawin, 2003). Even more, the local-
ization of most (if not all) of these molecules is
tealp-dependent, and some of these molecules are
responsible for the formation of actin cables, which
are thought to drive localized cell growth. This
suggests that tealp is the molecule that ‘couples’
microtubules to the actin cytoskeleton and new
growth zone formation.

However, neither microtubules nor tealp are
required for the establishment and maintenance of
polarized growth. feal A mutants show polarized

Copyright © 2007 John Wiley & Sons, Ltd.
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growth (Mata and Nurse, 1997), but they have only
one growth zone (NETO defect), which in a few
cells is perpendicular to the long axis (forming
T-shaped, branched cells). The fact that tealp is
not required for polarized growth, but seems to
be associated with normal localization of polar-
ized growth, has been explained by assuming that
tealp is a dynamically distributed landmark pro-
tein (Hayles and Nurse, 2001). Landmark pro-
teins, whether dynamic or historic, determine the
site of polarized growth but are not required for
the growth process itself. Historic landmarks, as
in budding yeast, are laid down at specific posi-
tions during one cell cycle to determine sites of
polarized growth in the next cell cycle (Irazo-
qui and Lew, 2004). Historic landmarks are not
repositioned over time. What are called dynamic
landmarks, on the other hand, are laid down by
dynamic processes of convection and diffusion, and
can be repositioned in response to changing condi-
tions.

Our aim in this article is to provide a conceptual
framework for understanding how the interaction
between microtubules and actin filaments deter-
mines features of polarized growth in fission yeast
cells. We present a simple mathematical model that
takes into account tealp transport to cell tips and
autocatalysis in actin polymerization. The model
can simulate growth pattern changes for drug treat-
ments that interfere with microtubules and actin
polymerization. The model predicts the coexistence
of different growth patterns at particular cell sizes,
and this coexistence can be revealed by perturba-
tion of stable growth zones.

Materials and methods

Our system of partial differential equations can
be solved numerically by dividing the cell into
small compartments (i = 1,2,...,n) of length A.
We found that 40 compartments gave a sufficiently
fine resolution for our simulations. The length of a
newborn cell is 8 um, so initially # = 0.2 pm (for
n = 40). Total cell length is simply L = n - h, and
we assume that the rate of increase of cell length is
exponential and new cell wall material is produced
in each compartment:

dh _ I )
a M

Yeast 2008; 25: 59-69.
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We chose & = 0.004621 min~! in order to have a
mass doubling time of 150 min.

There are other ways to handle the discretization
of growth in a reaction—diffusion system (Crampin
et al., 2002; Murray, 2003) but, because the length
change in our simulations is not extreme and the
cell wall material incorporated at the cell tips is
produced everywhere inside the cell, our treatment
by uniform compartmentalization is adequate.

Let y; be the concentration of component Y in
the ith compartment; then the diffusion term is
approximated by the standard central difference
scheme:

%yi . Yiy1—2-yi+yia
ax> h?

2

At the ends of the cell, we set yo = y; and y, 4+ =
yn in order to model no-flux boundary conditions.
Convection of U is approximated by the standard
upstream difference scheme:

ou; . u —u;

Vg E T 3)
In interphase cells, the microtubules are arranged so
that j =i — 1 for the right half of the cell, and j =
i + 1 for the left half. A more detailed explanation
of the equations and simulations can be found
on our webpage (http://www.cellcycle.bme.hu/
morphopaper/).

The range of stability of computed growth pat-
terns was determined as follows: a simulation was
initiated from a particular stable pattern and cell
length was continuously and slowly increased (or
decreased) until the recorded stable growth pattern
disappeared.

Results

Microtubule-created convection field provides
a dynamic landmark

If polarized growth is initiated by polarized land-
mark molecules, then how do the landmarks
became asymmetrically distributed in a cell? In the
case of a dynamic landmark, such as tealp, the
answer to this question requires an understanding
of how microtubule plus ends get concentrated at
cell tips. We do not want to deal here with this
problem. Instead, we assume that microtubules find

Copyright © 2007 John Wiley & Sons, Ltd.

cell ends and, as a consequence, set up a convec-
tion field for molecules such as tealp. For dynamic
landmark protein U (‘unspecified’; perhaps tealp)
that is freely diffusing in the cytoplasm (diffusion
constant D,) and also transported along micro-
tubules (with velocity v, ), the concentration u (x, t)
changes in space and time according to a reac-
tion—diffusion—convection equation:

ou * ktt) + D 82u+ ou uodh

. = u — Kdull U 5 Vu — — T

ar e x> ax h ot
4

In words, the time rate of change of concentration
= chemical reaction rates + diffusion 4 convec-
tion — dilution. Because fission yeast cells have a
regular cylindrical shape, we can reduce the prob-
lem to one spatial dimension. We will discretize
total cell length L into n small boxes of length
h. The last term in equation 4 represents dilution
of chemical concentrations as the cell grows. We
assume that the rate of synthesis of U is constant
(ks,) and degradation follows first-order kinetics.

Spontaneous symmetry breaking

Since a growth zone can be formed even with-
out microtubules or tealp, fission yeast cells must
have an underlying mechanism to initiate polar-
ized growth. Two extreme possibilities can be fore-
seen. In the absence of tealp or microtubules,
cells may use historical landmarks (as do bud-
ding yeast cells) or they may rely on spontaneous
symmetry-breaking mechanisms (as do budding
yeast mutants, when the genes encoding histor-
ical landmark proteins are deleted) (Chant and
Herskowitz, 1991). Whatever the mechanism of
this tealp- and microtubule-independent polarized
growth, it must provide an explanation for the
low penetrance of these phenotypes (most of the
cells have normal shape and only few of them are
branched). The historical landmark hypothesis can-
not explain the existence of branched cells, because
the middle of the cell has no previous growth his-
tory. Therefore, to address these issues, we con-
sider the possibility that a spontaneous symmetry-
breaking mechanism is operating in feal A mutants.

In budding yeast there is strong experimental
evidence for such a mechanism, which results in
random bud-site selection (Chant and Herskowitz,
1991; Wedlich-Soldner et al., 2003). According to

Yeast 2008; 25: 59—-69.
DOI: 10.1002/yea
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theoretical studies on pattern formation, positive
feedback is a necessary requirement for spon-
taneous symmetry breaking in reaction—diffusion
systems (Meinhardt and Gierer, 2000). Experi-
ments with budding yeast suggest that more than
one such a positive feedback mechanism may
be operating (Wedlich-Soldner ef al., 2003). One
mechanism works upstream of actin polymeriza-
tion, on Cdc42 activation, and it requires the Bem1
scaffold protein (Irazoqui and Lew, 2004). The
other positive feedback involves actin cable forma-
tion and an increase in Cdc42 level at the site of
polarization (Wedlich-Soldner et al., 2003). A sec-
ond necessary requirement for spontaneous sym-
metry breaking is that the positive feedback pro-
duces a fast-diffusing inhibitor (activator—inhibitor
model) or consumes a fast-diffusing substrate
(substrate-depletion model) (Meinhardt, 1995).

Although the polarity-determining molecules are
conserved between the two yeasts, the exact mech-
anisms for generating polarity are not certain in
either of them (Chang and Peter, 2003; Sohrmann
and Peter, 2003). We use two generic equations to
describe this pattern formation system. We assume
that a rapidly diffusing substrate (G) is converted
into a slowly diffusing polymer (¥) by an autocat-
alytic reaction (positive feedback). We assume that
the concentrations, G (x, t) and F(x, t), change in
an infinitesimal volume of the cell according to the
following reaction—diffusion equations:

G
57:%—@G—@4@W%G+MD
D G G oh )
Gax2 h 0t
oF / "2
5=((k3 +k3"F*) -G — k4F — k4F)
D 3°F  F dh ©
F8x2 h ot

We are purposefully vague about the identities of
G and F, but perfectly reasonable candidates are
G-actin monomers and F-actin filaments. In equa-
tions 5 and 6, k3’ represents the rate of de novo
polymerization, and k3" is the rate constant for the
autocatalytic step, which we assume to be quadrat-
ically dependent on F (more-than-linear rate of
autocatalysis is a third requirement for spontaneous
symmetry breaking in reaction—diffusion models of
this sort).

Copyright © 2007 John Wiley & Sons, Ltd.
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Although the transport coefficients of G actin
and tealp can be estimated from experiments (see
Table 1), the rate constants in our model have not
been directly measured. We have chosen reasonable
values for these constants that are consistent with
observed behaviour of growth zones (e.g. NETO
characteristics) of wild-type cells. The phenotypes
of mutant cells were not used to fit the rate
constants.

The effect of landmark on spontaneous pattern
formation

Equations 5 and 6 can induce spatial inhomogene-
ity from an initial homogenous state if the rates
of chemical reactions and diffusion satisfy certain
conditions (see Meinhardt, 1982; Murray, 2003)
and the cell is large enough. However, the exact
position of an excitation zone (polarized area) will
be dependent on parameter values (diffusion con-
stants and reaction rates).

As mentioned earlier, microtubules in fission
yeast deliver a dynamic landmark protein (tealp)
to the end of the cell, where it promotes growth
zone formation. The role of tealp at cell tips is
to localize components of the polarisome (bud6p,
for3p, sla2p, teadp) there, with some help from
mod5p, tea3p and pomlp (Martin and Chang,
2003). Because of the current lack of comprehen-
sive knowledge of polarisome formation (Feier-
bach et al., 2004; Sheu et al., 1998), we do not
want to go into details of these interactions. We
assume that tealp can regulate actin polymerization
(through neglected intermediates). This means that
our u variable of equation 4 follows the behaviour
of the microtubule-transported protein, tealp, but
also participates in actin polymerization, as for3p
(Feierbach and Chang, 2001; Mata and Nurse,
1997).

With this simplification we can easily couple the
microtubule-transported effectors with actin poly-
merization if we introduce u as an activator of poly-
merization in equations 5 and 6. The first obvious
question is: how does the landmark protein influ-
ence the actin polymerization mechanism? Two
possibilities arise. The joint landmark—polarisome
molecule (U) either provides an initial bias by
increasing the rate of de novo polymerization (k3'),
or it increases the rate of autocatalytic polymeriza-
tion of F (k3”).

The case of an initial bias to the pattern for-
mation mechanism is considered in Figure 3A.

Yeast 2008; 25: 59—-69.
DOI: 10.1002/yea
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Figure |. Two possible ways in which a landmark molecule can help F polymerization. (A) The microtubule-transported
landmark (U) acts linearly on F polymerization as an initiator of polymerization. F concentration is shown as the length of
the cell increases in time. A small perturbation of F at one end initiates polymerization there, but the zone moves away
from the tip as the cell grows. (B) As in (A), except that U acts in the positive feedback loop. This assumption gives the
correct pattern for fission yeast growth (first at one, later at two ends)

Initially, when the cell is small, we start the
simulation with a polymerization zone at only
one end of the cell (the ‘old’ end). As the
cell grows, the polymerization zone moves into
the middle of the simulated cell and later splits
into two internal polymerization zones (simulation
details in methods). This phenomenon is typical
of substrate-depletion-type reaction—diffusion sys-
tems with growth (Crampin et al., 2002; Maini,
1999). The reason for this behaviour is that after
polarization has been induced by localized u, the
autocatalytic polymerization takes over. The auto-
catalytic term drives much faster polymerization
than the de novo term, and so the system adopts
the pattern favoured by the autocatalytic reaction.
The excitation zone settles in the middle of the cell,
where it can most easily collect the uniformly syn-
thesized substrate. As the cell grows, it eventually
becomes long enough to accommodate two excita-
tion zones, which divide up the available territory
(Figure 1A). Similar patterns are seen in activa-
tor—inhibitor models with saturation (Meinhardt,
1995).

If the landmark amplifies the positive feedback
(Figure 1B), then the polymerization zone stays
at the end of the cell, and as the cell grows a
new polymerization zone turns on at the other
end, as observed in fission yeast cells. In this
case the autocatalytic reactions depend on the U
molecules localized at the cell ends. From these
results we propose that tealp-localized polarisome

Copyright © 2007 John Wiley & Sons, Ltd.
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Figure 2. The actin polymerization network in fission yeast.
Presumptive landmark proteins T bind to microtubules and
are transported to the ends of the cell, where they are
released and activate the polarisome (P). P promotes the
autocatalytic feedback loop for polymerization, from G to F.
In the model, T and P are lumped together as ‘unspecified’
(V). Both U and G-actin are synthesized from amino acids
and degraded into amino acids (not shown)

molecules act inside the positive feedback loop that
is responsible for actin polymerization, instead of
just promoting de novo polymerization of actin.

Figure 2 shows the final model we propose.
Microtubules transport tealp (T) to cell tips, where
tealp recruits other members of the polarisome (P),
which acts inside the positive feedback loop that
induces actin polymerization. For simplicity, as we
described above, T and P are lumped together as
u(x,t) in the equations.
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Possible growth patterns with landmark
transport

After concluding that the microtubule landmark
(tealp) must recruit proteins that amplify the pos-
itive feedback loop, we investigated the possible
patterns that our model predicts at different cell
lengths. By using bidirectional transport of the
landmark protein and the above introduced pattern
formation mechanism, we could test the possible
stable growth patterns of the system (for details,
see Materials and methods).

Under normal circumstances, the landmark
molecule does not distinguish between the two cell
ends: it can be found at both ends at equal concen-
trations. In this case, only two patterns are evident:

1. F polymer is formed at one end only (monopolar
growth).
2. F is formed at both ends (bipolar growth).

There is a region, at very small cell size, where
no obvious pattern can be formed. This cell size is
too small for symmetry breaking and possibly too
small for viability.

We have found that only these two patterns form
for a large range of parameter values with the
following general rules: (1) the monopolar pattern
(F at one end only) is always observable at smaller
cell length than the bipolar pattern (F at both ends);
(2) the upper length limit of monopolar growth
is always larger than the lower limit of bipolar
growth. Consequently, the two possible growth
patterns always overlap. Parameter values do not
change the qualitative picture; they only influence
the upper and lower limits of growth patterns.

Small cells have F at one end only because
that end collects most of the G molecules in
the cell by diffusion, depleting the other end for
substrate and thereby preventing F polymerization
at the other end. This inhibition is reduced as the
cell grows. When G finally reaches a threshold
concentration at the new end, F can be formed
there as well. Newborn wild-type fission yeast
cells start to grow in a monopolar fashion and
become bipolar later in the cycle (at NETO). The
reaction—diffusion—convection model provides a
simple explanation for the critical size requirement
of NETO (Mitchison and Nurse, 1985). Once the
monopolar cell reaches a critical cell length, the
monopolar growth pattern disappears.

Copyright © 2007 John Wiley & Sons, Ltd.

However, control of the monopolar-to-bipolar
transition (NETO) is actually more complicated
because it is influenced by cell cycle stage as well
as by cell length (Mitchison and Nurse, 1985). If
fission yeast cells are blocked in G; or S phase,
they grow at one end only, suggesting a cell cycle
control over NETO. Remember that the upper and
lower limits for growth patterns are dependent on
parameter values. Hence, even though G;-blocked
cells have a stable monopolar growth pattern at
large cell size, the bipolar growth pattern may still
be present in G; phase (Figure 3A is still valid
qualitatively).

Possible growth patterns without the landmark

According to the consensus picture, tealp provides
the link between microtubules and actin polymer-
ization in controlling fission yeast morphogenesis
(Mata and Nurse, 1997). In wild-type cells during
interphase, the microtubule plus ends are located
at both ends of the cell, and tealp accumulates at
both ends. Consequently, the cell grows at either
one or both ends, as discussed above. What hap-
pens if the link between microtubules and actin
polymerization is broken, as in fealA mutants?
Remember that in the model we do not distin-
guish between tealp and the molecules which are
recruited by tealp (other components of the polar-
isome); hence, deletion of tealp can be identified
with a lack of U convection (v, = 0). Accordingly
we assume that lack of tealp has a similar effect on
polarized growth regulation as disruption of micro-
tubules. This leads to an unpolarized distribution of
U in our model, which means equally distributed
polarisome concentration in the cell. Without tealp,
the polarisome can still form and help autocat-
alytic F polarization, but this action is no longer
properly localized by the microtubule. Therefore,
our model suggests that growth zone formation in
teal A cells is driven by a spontaneous symmetry-
breaking mechanism only.

We simulate both tealA and microtubule-
defective cells by removing the convection of U
from the model, in which case the repertoire of
possible patterns increases (Figure 3B, C). Besides
monopolar and bipolar F localization, F could be
concentrated in the middle of a cell, with either
non-growing or growing ends. It is important to
mention that the growth zone, which is formed by a

Yeast 2008; 25: 59-69.
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Figure 3. Possible growth patterns. (A) In the presence of microtubules and tealp (v, = 2 um/ min) and (B) in the absence
of microtubules or in teal A mutants (v, = 0 um/ min). (C) shows examples of the corresponding F polymer distributions
to the names used in A and B and also presents the proposed shapes of cells with the given growth pattern. Light grey,
black and dark grey curves show the time evolution of growth zones in curled cells

symmetry-breaking mechanism, moves to the mid-
dle of the cell very quickly, because the subunit
(G) supply is symmetrical from both directions. If
F accumulates in the middle of the cell and initiates
growth, then a new growth axis is formed and the
cell will branch. Observe that small, newborn cells
without a landmark can choose between monopo-
lar and T-shaped growth patterns. We conclude that
the spontaneous symmetry-breaking hypothesis can
explain the coexistence of the two different types of
morphologies (straight and branched cells) found in
teal A cultures. Of course, we cannot exclude the
possibility that a historical landmark is operating
in fission yeast cells, but this assumption is not
required to explain polarity establishment in feal A
mutants.

Another type of pattern is when the growth zone
slowly moves away from cell tips, most possibly
leading to curled cell shape formation. As before,
the possible regions of existence of these patterns
overlap. Notice that the monopolar growth pattern
stays stable for much larger cell size, consistent

Copyright © 2007 John Wiley & Sons, Ltd.

with the fact that teal A cells fail to undergo NETO
(Verde et al., 1995).

Experimental proofs for pattern coexistence

Is there any evidence that cells in the same phase
of the division cycle are able to grow in either
a monopolar or bipolar manner? The experiment
of Rupes et al. (1999) supports the coexistence of
growth patterns in G cells. These authors dis-
rupted the monopolar actin network by treatment
with latranculin A (LatA) in cdc10" mutant cells
blocked at the restrictive temperature in G; phase
of the cell cycle. After removing the drug, actin
repolymerized at both ends of the cell, supporting
the notion of coexisting monopolar and bipolar pat-
terns (Figure 3A). The same treatment by LatA on
teal A cells does not induce NETO (Rupes et al.,
1999), as is also the case in the model simula-
tions at the same cell size as before but without
convection of u (cf. Figures 3A, B). According to
the model, LatA-treated teal A cells are able to

Yeast 2008; 25: 59-69.
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find another stable growth pattern, as they relo-
calize the growth zone to the middle of the cell
and form T-shaped cells (Figure 3B). This hap-
pens in 80% of Gj-blocked cells after latranculin B
(LatB) treatment (Sawin and Snaith, 2004). Under
normal conditions (no LatA treatment), only a few
percent of feal A cells form branches, which sug-
gests that most cells choose the monopolar growth
pattern (Mata and Nurse, 1997). The curled cells
proposed by the model can be related to long G,-
blocked cells that start to curl at their tips, or
possibly to banana-shaped cells, which are mutated
in proteins with unknown microtubule regulatory
functions (Verde et al., 1995). Tripolar cells are
formed if microtubules are disrupted in long G-
blocked cells (Castagnetti et al., 2007); thus, the
model system moves from Figure 3A to Figure 3B
at large cell mass, and some cells pick up the
tripolar growth pattern. These experimental results
support the model’s prediction of coexistence of
growth patterns. Alternative growth patterns switch
only if cell length reaches a critical value when sta-
bility of a pattern disappears (i.e. at NETO), or if
the actin distribution system is perturbed. Without
these effects, a stable pattern can persist throughout
the cell cycle. Which pattern is adopted depends
on the history of the cell. This can be seen in
most NETO mutants, where the daughter with the
old (previously growing) end initiates growth at
this place, but the daughter without the previously
growing end polarizes to the new end or mislo-
calizes and forms T-shaped cells and keeps this
growth pattern for the whole cycle (Niccoli et al.,
2003).

Parameter sensitivity, finding correlation
with polarisome mutants

We have tested the model for sensitivity in param-
eter values over a 100-fold range, as well as set-
ting each parameter in turn to O (Table 1). Most
interestingly, if we increase the rate of U syn-
thesis (kg,) two-fold, the cell cycle position of
NETO is advanced (Figure 4), resembling tealp-
for3p fusion protein overexpression, which also
leads to advanced NETO (Martin et al., 2005). A
10-fold increase of U synthesis creates cells with
instantaneous bipolar growth, which might happen
in a large percentage of these tealp-for3p fusion
protein-containing cells (Martin et al., 2005). On
the other hand, two-fold reduction of U synthesis

Copyright © 2007 John Wiley & Sons, Ltd.
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Figure 4. Growth patterns depend on the expression of
U. The dependence of growth patterns on cell length as the
synthesis rate of U is varied (ks is multiplied by the number
stated on the left). Birth and division lengths of wild-type
cells are noted, the proposed phenotype in this size regime
is given on the right

delays NETO and 10-fold reduction permits only
monopolar growth, as in feal A, tea4A or for3A
cells (Feierbach and Chang, 2001; Martin et al.,
2005; Mata and Nurse, 1997). If we turn off U syn-
thesis totally, the cell cannot form polarized growth
zones and grows spherically (the Orb phenotype).
The orb phenotype is observed in triple mutant
teal A bud6 A for3 A cells (‘polarisome defective’)
(Feierbach et al., 2004). These results further sup-
port the proposed identification of U with the polar-
isome.

Most other parameter changes lead to shifts in
NETO position, but some perturbations result in
total loss of polarity (Table 1). The majority of
two-fold parameter alterations lead to mild shifts
in the cell-cycle position of NETO, and all 10-
fold changes retain polarized growth, showing the
polarity-establishing system to be quite robust.

Discussion

We have proposed a mechanism for fission yeast
morphogenesis based on pattern-forming reactions
that combine the ideas of local self-enhancement/
long-range inhibition (Gierer and Meinhardt, 1972)
and gradient-sensing positional information
(Wolpert, 1996). In our model, subunits (G) are
condensed into a polymer (F) by a reaction that is
quadratically autocatalytic in F (G might possibly
be G-actin and F be filamentous actin, but we need
not be specific in this identification at the present

Yeast 2008; 25: 59—-69.
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stage of modelling). Quite naturally, the subunits
are assumed to diffuse more readily than the poly-
mer, and so the system satisfies the conditions to
create Turing patterns (Segel and Jackson, 1972;
Turing, 1952). However, we propose that the acti-
vated zones created by Turing instabilities are posi-
tioned by ‘landmark’ molecules (U) transported on
microtubules.

We present numerical simulations of the partial
differential equations describing reaction, diffusion
and convection of G, F and U. Our calculations
suggest that the landmark component acts inside
the autocatalytic polymerization loop (if, alterna-
tively, U were to promote de novo polymerization
of F, then the growth zones do not properly local-
ize to cell tips). With the landmark acting inside the
positive feedback loop, we find that monopolar and
bipolar growth patterns coexist over a wide range
of cell sizes in wild-type cells. If correct localiza-
tion of the landmark is disturbed (fealA mutant
or microtubule disruption), then the model admits
additional growth patterns, some with growth zones
in the middle of the cell. Several of these growth
patterns co-exist over a range of cell sizes, show-
ing that the system is multi-stable. Cells can be
switched from one growth pattern to another by
short perturbations (actin disruption) of the sys-
tem. We have correlated our simulation results with
experimental observations.

With this simple model we can account for many
details of polarized growth in wild-type, drug-
treated and mutant fission yeast cells. Because the
mechanism of localized growth and actin polymer-
ization is not a special phenomenon of fission yeast
cells, and because many genes that regulate growth
zones are well conserved in evolution (Irazoqui
and Lew, 2004; Johnson, 1999; Verde et al., 1998),
we believe that our model can help to understand
the regulation of polarized cell growth in higher
eukaryotes as well.
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ABSTRACT

This paper presents the definition, solution and validation of a stochastic model of the budding yeast
cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a
stochastic version of a well-established deterministic model. We describe the procedure followed in
defining the SPN model from the deterministic ODE model, a procedure that can be largely automated.
The validation of the SPN model is conducted with respect to both the results provided by the
deterministic one and the experimental results available from literature. The SPN model catches the
behavior of the wild type budding yeast cells and a variety of mutants. We show that the stochastic
model matches some characteristics of budding yeast cells that cannot be found with the deterministic
model. The SPN model fine-tunes the simulation results, enriching the breadth and the quality of its

Model comparison outcome.

Mathematical modeling
Simulation

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Cell cycle is the collective name for a complex network of
coordinated biochemical phenomena that control the reproduc-
tion of the basic living unit, the cell. Cells reproduce by dividing
themselves into daughter cells, each one endowed with the
biochemical machinery that allows them growing and repeating
the process (Morgan, 2006). Before committing themselves to
reproduction, cells must grow to an appropriate size (Rupes,
2002; Sveiczer et al., 2004). Then, they have to duplicate DNA and
segregate the two copies so that each sibling receives one
complete copy of it. These tasks are the most delicate ones in
the cell cycle, and require the creation of complex structures that
ensure the two copies of the cell genome are properly pulled
apart.

The cell cycle of an eukaryotic cell can be split into a sequence
of phases, namely G1, S, G2, M, where G1 and G2 are two
gap phases, S is DNA synthesis phase and M is mitosis. By
sensing the environmental conditions, and after reaching
an adequate mass, a cell can commit itself to start the S phase,
a cell cycle transition called Start. Once started, the synthesis
phase goes irreversibly to completion (Novak et al., 2007).
In gap phase G2 the cell ensures the duplication of DNA has
completed and checks that the environment is favorable to
proceed to the M phase. The mitosis phase is divided in various
subphases, which encompass the condensation of chromatin into

* Corresponding author. Tel.: +39 0461882825; fax: +390461882814.
E-mail addresses: mura@cosbi.eu (1. Mura), csikasz@cosbi.eu (A. Csikasz-Nagy).

0022-5193/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jtbi.2008.07.019

chromosomes (prophase), formation of the mitotic spindle and
alignment of the duplicated chromosomes (prometaphase
and metaphase), their separation and movement toward opposite
sides of the cell (anaphase), partitioning of the two nuclei
(telophase).

In each phase, specific tasks are accomplished through the
activity of biochemical species, among which cyclin dependent
kinases (Cdks) play a major role. When bound to a cyclin partner,
Cdks are activated and able to make cells to progress along their
cycle. Various Cdks and cyclins exist in eukaryotic cells, and each
Cdk/cyclin dimer has specific activity. Changes in the concentra-
tion of active Cdk/cyclin dimers are responsible for causing the
transition from one phase to the subsequent one in the cell cycle.
By sensing the internal and environmental conditions through
signaling networks, an eukaryotic cell controls the expression of
the genes responsible for activation of Cdks, proceeding to the
next phase in the cycle only when the current one has been
successfully completed (Morgan, 2006).

Higher organisms have a variety of Cdks and cyclins that
control the progress of their cell cycle. In the model organism
budding yeast Saccharomyces cerevisiae only one Cdk is present
(called Cdk1 or Cdc28), which can complex with a limited number
of cyclins (CIn1-3 and Clb1-6) (Futcher, 1996). Though, the
dynamics of the biochemical network controlling the cell cycle
of budding yeast follow the same outline as in more complex
eukaryotes (Csikasz-Nagy et al., 2006). Cell cycle of buddying
yeast has been subject to extensive experimental study and
computational models have been developed for its regulation
(Sible and Tyson, 2007). In particular, the work on deterministic
modeling of budding yeast cell cycle conducted by a research
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team headed by John Tyson has led to the formu-
lation of comprehensive models, based on ODEs (Chen et al.,
2000, 2004).

In recent years, a number of stochastic modeling techniques
started to be applied to model biological phenomena (Wilkinson,
2006). We focus in this study on Stochastic Petri Nets (SPNs,
hereafter), for which various applications to biology exist in the
literature, see for instance (Goss and Peccoud, 1998; Srivastava
et al., 2001; Tsavachidou and Liebman, 2002; Nutsch et al., 2005;
Peleg et al., 2005). The SPN formalism is based on a discrete state-
space modeling approach, hence it has the expressive power to
capture the discrete molecular dynamics of the system at a lower
level of abstraction than deterministic models. As the number of
molecules grows, abstracting discrete number of molecules into
continuous concentration levels and representing evolution of
dynamics through a system of coupled ODEs provides very
accurate representations and also has the advantage of not
suffering from the state-space explosion problem that plagues
stochastic modeling tools. Moreover, stochastic models are mostly
solved via simulation, which may require performing a substantial
number of simulation runs to compute statistically relevant
results.

There is not yet a precise and agreed upon characterization
of modeling problems that are best handled with deterministic
or that best suite the stochastic approach. In the literature
we find a few stochastic cell cycle models built with stochastic
ODE Langevine type equations (Steuer, 2004; Zamborszky
et al., 2007), with the Gillespie method (Sabouri-Ghomi et al.,
2007) and with stochasticity on transitions (Alt and Tyson, 1987;
Sveiczer et al.,, 2001; Zhang et al.,, 2006). The main objective
and contribution of this paper is to demonstrate that stochastic
extensions of deterministic models can be built very easily
with exploiting the modeling capabilities of SPNs. We show
through a practical case study that the two modeling methods
can provide results at different levels of detail. Therefore, the
choice on which to use should be guided by the objectives
of the modeling and traded against the cost of model solution.
We define in the paper a stochastic version, based on SPNs,
of an existing deterministic textbook model of budding yeast
cell cycle. The deterministic model selected is one produced by
Novak and Tyson (2002). The stochastic model is built with a
constructive approach that can be largely automated. We
present in the paper the comparative evaluation of the results
provided by the models built with the two different approaches,
and we compare them with experimental data on wild
type and mutant budding yeast cells. We show that the stochastic
model provides results that support the outcome of the
deterministic one, and also can be used to probe into more
precise analysis of various characteristics of the biological
phenomena under consideration. Such analysis, which is based
on the probabilistic nature of the SPN model, cannot obviously
be performed with the deterministic model, and is found to
better describe some experimental results away from the average
behavior.

The rest of this paper is organized as follows. In Section 2
we describe the cell cycle of budding yeast, provide some
details about the biochemical network that controls its
progress through the various phases and present the determi-
nistic model that is used as a basis for the stochastic modeling.
Then, in Section 3.1 we introduce the class of SPNs that are
used to build the stochastic model of the system. This stochastic
model is defined in Section 3.2, and Section 4 is devoted to its
validation, through the comparison of its results with those
provided by the deterministic model and experimental data.
Finally, conclusions and directions for future work are given in
Section 5.

2. The cell cycle regulation of Saccharomyces cerevisiae

The budding yeast is a well-studied and understood example of
how the cell cycle can be controlled with only one Cdk and a few
cyclins (Alberts et al., 2002). We shall focus hereafter on the
biochemical machinery that controls Cdks activity in budding
yeast, as described in Novak and Tyson (2002).

2.1. Narrative description

In budding yeast Saccharomyces cerevisiae, during the G1
phase, the activity of Cdk1 is low because the cyclin transcription
is mostly inhibited. Moreover, the produced cyclin proteins are
rapidly degraded by the proteasome after ubiquitination by the
anaphase-promoting complex (APC). The activity of the APC is
regulated by two auxiliary proteins, Cdc20 and Cdh1. When active,
these two latter proteins mediate the presentation of various
targets (including B-type cyclins) to the APC for ubiquitination
(Zachariae and Nasmyth, 1999). In G1 phase, there is abundance of
active Cdh1. Furthermore, during G1 the remaining Cdk1/cyclinB
dimers are sequestered by Sicl, a stoichiometric Cdk inhibitor,
which forms an inactive heterotrimer with Cdk1/cyclin dimers
(Schwob et al., 1994).

If the environmental conditions are favorable, as the cell
progresses in the G1 phase the mass of cell grows, and this leads
to an increased production of CIn3, a cyclin that is resistant to
Cdh1 and Sic1. CIn3 can activate the transcription factors SBF/MBF
that induce the production of Clnl, CIn2 and CIb5, Clb6. The
complexes of Cdkl and G1 cyclins (CIn1,2,3) together are called
starter kinases. They are insensitive to Cdh1 and Sic1 and have the
effect of mediating the inactivation of both Cdh1 and Sic1, which
allows the other cyclins (Clb1,2,...,6) to start accumulating in
the cell. CIn1 and CIn2 induce budding and Clb5 and Clb6 induce
DNA replication. The key regulator of entry into M phase is
Cdk1/CIb2. Cyclin synthesis is induced and cyclin degradation
inhibited throughout the rest of the cell cycle, hence Clb2
concentration increases throughout S, G2 and M phases. High
concentration of active Cdk1/Clb2 also has the effect of causing
the inactivation of the transcription factors SBF/MBF for the
starter kinases, which have already accomplished their role in the
cell cycle (Nasmyth, 1996). Moreover, Cdk1/Clb2 also induces
the synthesis of the Cdc20 protein (Spellman et. al., 1998).

At the metaphase/anaphase transition, Cdc20 molecules bind
to the APC and Cdk1/Clb2 activates them through a signal
generated by the mitotic process itself, supposedly through some
intermediate enzymes. The active Cdc20 induces the separation of
sister chromatides, the degradation of the Clb’s and activates the
other APC regulation protein, Cdh1. As the Cdk1 activity reverts to
low levels, the telophase completes and the cell divides. The
synthesis of the APC regulation protein Cdc20 stops as the activity
of Cdk1 is lost. The newborn cells are back in G1 phase with low
cyclin levels and the process starts again.

2.2. Deterministic mathematical model of budding yeast cell cycle

We present in this section the deterministic model proposed
in Novak and Tyson (2002) for capturing the biochemical
dynamics of the cell cycle in budding yeast. The picture in Fig. 1
shows a pictorial representation of the synthesis/degradation and
activation/deactivation processes of the various chemical species
described in the previous section. In Fig. 1, the budding yeast Cdk1
is called Cdk and the stoichiometric inhibitor Sic1 is represented
by CKI. Cdk/CycB represents the active dimers of Cdk1/Clb’s and
CKI/Cdk/CycB the inactive trimer Sic1/Cdk1/Clb’s. The transcrip-
tion factors SBF/MBF are collectively represented by species TF,
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Cdc20_A

Cdc20

Fig. 1. Graphical representation of cell cycle engine, a slightly revised and more detailed one from that shown in Novak and Tyson (2002, p. 270). It shows the biochemical
species involved in the cell cycle, and depicts the main reactions. Solid lines represent link reactants and reaction products, dashed lines represent the mediation effect that
some species have on reactions. Notation @ — represents a synthesis process, — @ represents a degradation process.

the starter kinases (Cdk1/Cln’s dimers) are represented by species

d / v
SK, and finally the intermediate enzymes that mediate APC a (1Al = (ks + k5[Cde204])

activation are represented by species IE. It is worthwhile x(1 = [Cdh14) /(5 + 1 — [Cdh1,4))
observing that the synthesis and degradation processes of Cdk — (kym[CycB] + k,[SK])
are not included in the model, as its concentration is assumed to x[Cdh1a1)/(J4 + [Cdh14]) (3)

be constant throughout the cell cycle and in excess with respect
to the available cyclin partners. Also, it is assumed that the
concentration of Cdk1/Clb’s is always in equilibrium with the CIb’s d / " nsqn n
—[Cdc207] = | K CycB CycB

and Cdk1 concentration, and the same is assumed for Sic1/Cdk/ ¢ (€de20r] = ks -+ ks(miCycB])" /(5 + (mICycB)™)
Clb’s trimers. — ks[Cdc207] (4)

Novak and Tyson (2002) model the above system with 8 ODEs
in their book chapter. Also, an additional ordinary differential d
equation models cellular growth, as several terms in the other a[CdCZOA] = (k7[IEP]([Cdc2071] — [Cdc204)))/(J; + [Cdc207]
equations depend on the cell mass. They also provide rules for cell _ _
division, which is triggered when the activity of Cdk/CycB, [Cd€204]) — ks[CAC204]/( s + [Cdc204D

expressed by the product m - [Cdk/CycB] falls below an assigned — k[Cdc20y] ()
threshold (0.1, in this model) during telophase. In their model,
which we report below, cells are assumed to divide equally at the d
end of mitosis, a simplification of the asymmetric division of  gq;/EF1= kom[CycB](1 — [IEP]) — kiolIEP] (6)
budding yeast cells.

d / 4 ua
%m = um(1 — m/m*) (1) gl = kan — (K + Kqo[SK] + ki m{CycB][CKIy] (7)
d / /! i d / v
a[CycBT] = k1 — (k5 + ky[Cdh14] + k5 [Cdc204])[CycBr] (2) a[SK] = ki3 + Ki5[TF] — k14[SK] (8)
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d / 7
E[TF] = (kysm + kis[SKD(1 = [TF) /(15 + 1 = [TF])
— (ki + KigmICycBDITFD)/(J16 + [TF]) (9)

The variable [CycB] in the equations above expresses the
concentration of the active dimer Cdk/CycB. Because it is assumed
that the concentration of the dimer is always in equilibrium with
that of CycB; and CKIr, [CycB] is algebraically expressed as follows:

2[CycByJICKIr]
X+ /22 — 4[CycByIICKIT]

[CycB] = [CycBr] -

where X = [CycBT]+[CKIT]+K;q1. The ODE model is completed
with a set of values for the rate constants and the other numerical
parameters (see Novak and Tyson, 2002, p. 273), not reported here
for the sake of brevity.

It is important to notice the different levels of abstraction
(elementary and non-elementary reactions) included in the
deterministic model above. From zero order up to Michaelis—
Menten and high order Hill functions, many different type of
terms can be found in the right hand sides of the differential
equations. This variable level of abstraction has important
implications on the selection of the modeling formalism that
can be applied to define a stochastic extension of this same model.
Indeed, such an extension requires the support of a stochastic
modeling formalism that allows representing rates of non-
elementary reactions, a task that can be easily accomplished by
using SPN models.

3. Stochastic modeling of Saccharomyces cerevisiae cell cycle
3.1. The SPN modeling formalism

Stochastic Petri Nets (SPNs) is a modeling formalism that
accounts for randomness of event occurrence times. Competition
for resources, simultaneous progress of independent processes
and synchronization of multiple flows make them suitable
for representing networks of biochemical transformations
(Wilkinson, 2006).

Being an abstract modeling formalism, SPNs by themselves do
not refer to any specific aspect of the biological domain, but rather
a meaning has to be associated by the modeler to places, tokens
and transitions. In the context of biological phenomena, the
classical interpretation of Petri net elements is the following one:

e Places represent chemical species or more complex biological
entities as well, such as ribosomes, receptors, genes.

e Tokens inside a place (the marking of the place) model the
number of molecules of the species or of the entities
represented by the place. Tokens are anonymous entities that
do not carry any qualifying information, and thus the molecule
or the biological entity they represent changes as they move
from a place to another. Tokens are not always graphically
depicted, apart from those cases in which there are a few
of them.

e Transitions represent biochemical reactions. The rate of a
transition represents the speed at which a reaction occurs. If
the number of tokens in the input places allows for multiple
reactions to proceed concurrently, the rate of the transition is
multiplied by the number of the reactions, which is indeed
quite a simple way of modeling chemical reactions obeying the
mass-action law.

Arcs (arrows linking places to transitions and transitions to

places) represent the flow of biochemical transformations,

from reactants to reactions and from reactions to products.

The cardinality of an arc is an integer number that represents

the number of tokens that flow through it, which has a direct
biological interpretation in terms of reaction stoichiometry.

A number of syntactical extensions have been proposed for
including higher levels constructs into SPNs, so to model complex
systems in a compact way. Marking-dependent enabling condi-
tions (also called guards) on transitions and marking-dependent
cardinality arcs and firing rates are all unambiguous shorthand
notations for representing in the SPN formalism behaviors that
would otherwise require additional graphical elements. We shall
make use of such extended notation for the purposes of our
modeling. Various families of SPNs exist that match the features
of the modeling formalism we will be using in the following, e.g.
Stochastic Activity Networks (Peccoud et al., 2007) and Stochastic
Reward Nets (Ciardo et al., 1989).

3.2. The SPN model

In this section, we explain the constructive approach through
which we build the SPN model of budding yeast cell cycle, which
is shown in Fig. 3. The rationale behind our approach is to use the
same abstractions as the ones adopted in the deterministic model
to define an easy to understand mapping process from ODEs into
SPN elements.

Let us consider for instance the ordinary differential equation
(3), which we write below in a slightly expanded form for the sake
of clarity:

%[thl al
=k3(1 — [Cdh14))/(J3 + 1 — [Cdh14)) (10)
+ K5[Cdc204](1 — [Cdh14))/(J5 + 1 — [Cdh1,4]) (11)
— kam[CycB][Cdh14]/(J4 + [Cdh1,4]) (12)
— K,4[SK1/(J4 + [Cdh14)) (13)

This equation is describing the time-dependent evolution of the
concentration of active molecules of species Cdh1l (which we
denoted as Cdh1,). Differential equation (3) is describing four
possible reactions; the first 2, which correspond to terms (10) and
(11), transform inactive molecules into active ones, and the other
2, which correspond to terms. (12) and (13), model the opposite
transformation. Notice that 1 — [Cdh1,] is equivalent to [Cdh1/]
because there is neither creation nor degradation of Cdh1l
molecules, and their total concentration is 1.

The SPN model for this part of the biochemical network is
shown in Fig. 2. It includes one place, named Cdh1,, containing
tokens that represent the active molecules of Cdh1, and one place
named Cdhl; containing tokens that represent the inactive
molecules of Cdh1. In fact, because the two forms of the Cdh1
biochemical species behave differently in the cell cycle regulation,
we consider them as two distinct species. To model the
four reactions, the SPN model includes four transitions that
move tokens between places Cdhl, and Cdh1;, which for the
sake of an easy correspondence we named t5,t5,t4 and t; to
match the corresponding rate constants kj, k3,ks and kj; in the
ODE terms (10)-(13).

The first term (10) is a Michaelis-Menten type of enzymatic
reaction occurring at a rate kj(1 —[Cdhl14])/(J5 + 1 — [Cdh14)),
which can also be rewritten as kj[Cdh1,]/(J5 + [Cdh1/]). Because
in the continuous deterministic model the reaction rate is an
algebraic function of the concentration of inactive Cdh1, in the
discrete stochastic model built with the SPNs the firing rate
of transition t5 will be defined as a function of the number
of molecules of inactive Cdh1, that is the number of tokens in
place Cdh1,.
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Let #X denote the marking of place X, which represents in the
SPN model the number of molecules of chemical species X, and let
o be the scalar constant defined as o« = (N4107°V)~!, where N, is
Avogadro’s number and V is the average volume of budding yeast
Saccharomyces cerevisiae cell nucleus. Constant o is a scaling factor
that accounts for mapping a concentration (expressed in M) into
an equivalent number of molecules in the fixed volume of cell
nucleus, assumed to be equal to 2% of 42 fL, the average wild type
budding yeast cell volume, as per Jorgensen et al. (2002). The
conversion factor o1 accounts for about 505 molecules in the cell
per WM. This value may be low for some species, for instance
cyclins, as shown in Cross et al. (2002). However, for the sake of

ty

Fig. 2. SPN model corresponding to differential equation (3). SPN notation is as
follows: O denotes a place, H denotes a timed transition whose firing times are

exponentially distributed. Tokens contained into places are not graphically shown.

~ [t
b ty”
Ll t2” —
f CveBr 1 Cdh1
|
Lty
U
g,
n h2'
M t2”
th CKly Mty

simplicity, we consistently use this same value of ="' to scale the
concentration of all biochemical species in the definition of the
SPN model, same as in Gonze et al. (2002), to keep the same
ratios among concentrations as in the deterministic model,
leaving to a future modeling work the goal of a more accurate
representation of the abundance of species. Hence, the firing rate
of transition t5, which we denote by f[%(#thll), is as follows:
fr,(#Cdh1)) = k5#Cdh1,/(J5 + a#Cdh1)).

Let us now consider the term (11), which can be equivalently
rewritten as k3[Cdc204][Cdh1,]/(J5 + [Cdh1)]). This expression tells
that a reaction of activation exists for Cdh1, which is enzymati-
cally driven by the active molecules of species Cdc20. Transition t5
in Fig. 3 represents this reaction in the SPN model. Its firing
rate is a function of the marking of the model, in particular
of the number of active molecules of Cdc20 and of the number
of inactive molecules of Cdhl, and is defined as follows:
ftg (#Cdc20p,#Cdh1)) = K5a#Cdc20,#Cdh1,/(J5 + o#Cdh1)).

Similarly, we can model all the reactions that are described by
the system of differential equations in Novak and Tyson (2002),
thus obtaining the SPN model shown in Fig. 3. It is important to
remark that, although the net graphically appears composed by
disjoint subnets, the mediation effect that species have on reactions
is properly accounted for in the transition rates of the model. It is
exactly this feature of SPNs that makes possible such a simple one-
to-one translation, from the terms of the differential equations
(reactions in the deterministic model) into the transitions of the
stochastic model. The possibility of defining general rate functions
of transitions allows building a stochastic model at an analogous
level of abstraction as the one adopted in the deterministic one.

The specification of the SPN model is to be completed with the
rate functions of transitions and the guards associated to them.
Guards are boolean conditions that, when not satisfied, prevent
transitions from firing. In the model in Fig. 3, the guards are used
to disable the firing of transitions when their firing rate becomes
null. This information is provided in Table 1. The species Cdk/CycB

t6a M
- Cdc20,
t;‘ M
_ t
Cdh1, Cdc20, 6b
ts" tg LI
tis’
tis”
ts i
tig 1
SK TF
| ,
- i te TFa
b3 -
Ll te”

Fig. 3. SPN model of budding yeast cell cycle. The model has one place for each of the biochemical species, considering both the active (places with index A) and inactive

forms (places with index I), and one transition for each possible reaction.
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Table 1 #Mass/2
Mapping between terms of the deterministic model and the SPN transitions /
/
Eq. Term Transition  Rate function Guard
@) ky t kyor! - growth division
—Kk5[CycBr] t) Kk, #CycB; - #Mass
—k5[Cdh14][CycBy] t Kk #Cdh1,#CycBro. #Cdh1,>0 / o
—K5'[Cdc204][CycBr] ty K5 #Cdc20,#CycBroe ~ #Cdc20,>0 / ~
(3) Ky(1 — [Cdh14]) ty Ky#Cdh1, -
(5 + 1) — [Cdh1,] J5 + #Cdh1o
K3[Cdc204](1 — [Cdh14]) ty K3#Cdc20,#Cdh1joc ~ #Cdc20, >0
(J5 + 1) —[Cdh1,] J5 + #Cdh1,0
_ kam[CycB][Cdh14] ty kamCycB#Cdh1,4 CycB>0
Ja +1[Cdh14] J4 + #Cdh1 0
__ ky[SK] ty K, #SK #SK >0 low
TJa + [Cdh1g] Ja + #Cdh1 0
(4) ks t5 Ko =
» (m[CycB)" tg ,  (m[CycB])" CycB>0 threshold
°J5 + (m[CycB))" °J5 + (m[CycB)"
—ks[Cdc207] toa ke#Cdc20; -
Fig. 4. SPN subnet modeling mass growth a cell division. SPN additional notation
(5) k7 [IEP)([Cdc207] — [Cdc20,])  t7 ks #IE#Cdc20;0. #IE4 >0 . o . L L .
T, + [Cdc20;] — [Cdc20,] T, + #Cdc20,0 is as follows: is an instantaneous transition firing in 0 time, arcs cut by a small
__kg[Cdc20a] ts __ ke#Cdc20a - mark have variable cardinality.
Js +[Cdc204] Js + #Cdc20,0
—ks[Cdc20,] top ke#Cdc20, -
Table 2
(6) kom[CycB](1 — [IEP)) ty komCycB#IE; CycB>0 Specification of transition attributes of the SPN subnet modeling mass growth and
—k1o[IEP] tio —k1o#IEa = cell division
) i tn fenpa! _ Transition Rate function Guard
—K},[CKIr] thy K, #CKIr =
K., [SK][CKIr] £ K., #SK#CKIy ot #SK >0 (Gt g#m(l — #m/m*) -
—K{,m[CycBJ[CKIr] th kimCycB#CKIr CycB>0 Threshold ) #MassCycB>0.2
Division ) #MassCycB<0.1
(®) ki3 t3 Kizo! -
ki3[TF] t13 K3 #TF4 #TF>0
—ky4[SK] Tas k14 #SK - 0 = 0.005. The firing rate of growth is itself dependent of the
marking of place Mass, thus reproducing the exponential growth
(9) K;sm(1 — [TF]) tis K, s m#TF; - described by Eq. (1).
Jis +1 —[TF] p s+ # T k=0 The subnet in Fig. 4 also checks the condition for which the cell
% 15 W%FF;‘ ~ divides. First of all, the marking dependent guard m - CycB>0.2 is
- 1 . . . e .
TP " e HTE, _ assigned to the immediate transition threshold, which when
“Jis +[TF] “Jre + #TF0 satisfied causes the transition to fire immediately (zero delay).
_kigmI[CycBI[TF] tis _kigmCycB#TF, CycB>0 This firing removes the token initially assigned to place low and
Ji6 +[TF] J16 + #TFp0t

is not explicitly represented in the SPN model; same as in Novak
and Tyson (2002) it is assumed that the concentration of the
dimer is always in equilibrium with that of CycB; and CKlr.
Therefore, CycB is algebraically expressed in the SPN model as
follows:

202#CycB#CKIr
S 4 /52 — 402 CycB #CKIy

CycB = a#CycBr —

where X = a#CycBr + a#CKIr + K, .

Translating the ordinary differential equation (1) provided for
cell mass growth in Novak and Tyson (2002) into the stochastic
model requires a different process. Indeed, that equation does not
have a counterpart in terms of a discrete number of molecules.
Therefore, an SPN subnet in which the mass is represented by a
continuous number of tokens' is included in the SPN model. This
subnet is shown in Fig. 4. Each firing of transition growth causes
an increase in the marking of place Mass of a fixed quantity

! Places containing continuous number of tokens are a specific feature of the
Mobius tool (Peccoud et al., 2007).

puts one token in place high, representing the fact that the activity
of Cdks has reached a level that allows the cell to leave the
interphase and enter mitosis. The exit from mitosis is modeled
through the marking-dependent guard m - CycB<0.1 assigned to
transition division. When the condition is satisfied, division fires
immediately (zero delay). The two conditions assigned to
transition threshold and division check whether Cdk/CycB activity
first reached a critical high activity and later dropped to a critical
low activity, which is the condition for proper cell division
(Csikasz-Nagy et al., 2007). The firing of division removes the
tokens contained in place Mass (through a marking-dependent
weight on the connecting arc) and puts half of them back into
Mass (through another marking-dependent arc). This halving of
the marking of place Mass models the cell division. The firing of
transition division also removes the token contained in place high
and inserts one token back into place low, to reset the subnet for
another cell cycle. The firing rates and guards assigned to the
transitions of the subnet in Fig. 4 are provided in Table 2.

The overall SPN model is composed by the subnets in Figs. 3
and 4 plus the transition specification reported in Tables 1 and 2.
This model has been implemented into the Mdbius tool (Peccoud
et al., 2007), which supports the adopted modeling formalism and
allows for graphical model definition and for solution via
simulation. The initial state of the model, i.e. the number of
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Fig. 5. Stochastic model results for wild type budding yeast cells. (A) single run of SPN simulation results, started with the same initial state as the one applied to the ODE
system of equations in Novak and Tyson (2002). Simulation runs with different seeds of the pseudo-random number generator only show minor stochastic fluctuation in
cell cycle duration. Comparison of average cycle time duration (B) and average cell mass at division (C) statistics from the deterministic and the SPN model. A simulation
experiment consisting of 1000 runs, each using a disjoint sequence of pseudo-random numbers, was used to evaluate the average cycle time duration and the average mass

at cell division time.

tokens in each place, has been selected to match the concentra-
tions of the species and the mass size of the yeast cell
used in Novak and Tyson (2002). The Mdbius produced docu-
mentation of the model as well as an export of the SPN model,
which can be imported into the tool for reproducing the results
presented in this paper, can be found in the on-line supplemental
material.

It is important to observe that the SPN model defined as
explained above is not completely specifying the dynamics of the
system in terms of elementary biochemical reactions, as it would
be required for instance for a Gillespie stochastic simulation
(Gillespie, 1977). In fact, the same abstractions used in the
deterministic model, i.e., Hill functions, Michaelis-Menten enzy-
matic reactions, which account for a high-level mathematical
representation of biochemical sub-networks (possibly not known
at the lowest level of detail), are incorporated in the form of rate-
dependent functions in the SPN model. The rate dependent
functions define the reaction propensities of the stochastic model.
We assume in our work that the fundamental hypothesis of
Gillespie, i.e. each reaction time is a random variable following a
negative exponential distribution with rate equal to the value of
the propensity function (Gillespie, 1977), is verified for the
biological system we are modeling. If this hypothesis is valid, a
stochastic characterization of the reaction times as negatively
distributed random variables is an accurate modeling choice, as
proved by Gillespie (1977). When, as in our case, a model includes
non-elementary biological transformations for which details of
the elementary kinetics are not known, approximations may
be introduced. In some modeling studies, even though non-
elementary Michaelis—-Menten type of reactions (Rao and Arkin,
2003) and gene transcription reactions (Goutsias, 2005) were
considered, the applicability of the fundamental hypothesis was
mathematically assessed, and in some others dealing with the
circadian rhythm this same hypothesis was experimentally
verified in silico (Gonze et al., 2002). In our case, because the
SPN model we are proposing is including many non-elementary
reactions, a careful validation is required to check the effects of
the approximations introduced, a fundamental task to which we
will devote most of the rest of this paper.

4. Validation of the stochastic model

In this section we compare the results of SPN model solution
with the results provided by the deterministic model and with
those obtained via real experiments, with the purpose of
validating the stochastic version. To do this, we solved the SPN
model and the system of ODEs for the wild type budding yeast

and for a set of mutants that can be easily modeled with simple
changes in the two models. A vast repertoire of budding yeast
mutant strains have been generated by deletion of genes or
specific sequence regions and overexpression of proteins that are
involved in the cell cycle. It is worthwhile to remark that using the
deterministic model results to validate the average behavior of
the SPN model is indeed a correct procedure. In fact, even
though the two models are built using the same amount of
biological information, their dynamics are quite different from
each other.

4.1. Wild type budding yeast cells

The results obtained from the simulation of the SPN model are
shown in Fig. 5. We used the arbitrary unit concentrations defined
by Novak and Tyson (2002) as micromolar units. For visual
purposes the protein numbers have been rescaled to concentra-
tions for all plots, by using the equivalence [X] = « - #X where [X]
and #X are the concentration and the number of molecules of
species X, respectively. The simulated time-courses in Fig. 5A
match those obtained with the ODE solution, shown in Novak and
Tyson (2002).

We compare the results obtained with the stochastic model
against the values obtained from the deterministic model in
Fig. 5B, C. The SPN model provides an average duration of the cell
cycle of about 148.08 (min) with a standard deviation of 10.67,
which gives a coefficient of variation (defined as the ratio between
standard deviation and average value) of 7.28%, and an average
cell size at division time of about 0.819 (arbitrary units) with a
standard deviation of 0.01455, which gives a coefficient of
variation of 1.78%. These results indicate that the variability in
cycle time duration is larger than the one in cell size, as reported
from experimental observations in Tyson (1985). For the results
computed through the simulation of the SPN model, Fig. 5 also
shows the confidence interval computed from the observations.
The confidence intervals were computed at the 95% level of
confidence. For both results, the relative width of the confidence
interval is less than 1%. As it can be observed, there is a close
match between the results of the two models, and the ODE
results falls within the confidence interval obtained via stochastic
simulations.

Mobius (version 2.1.2) simulations of the SPN model were run
on a standard WinXP desktop machine equipped with 2GB of
RAM. Simulation of 1000 min of the wild type yeast cell cycle
requires approximately 50s per run. Simulating the models of
yeast mutants described in the following sections is slightly
quicker, as the considered mutations turn out in a reduction of the
number of reactions.
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Fig. 6. Stochastic model results for the cln14, cin24, cIn34 mutant. Example time courses (A) as obtained from a single simulation run of the stochastic model. Stochastic

model results for the cln14,cIn24, cIn34, sic14 mutant (B).

4.2. Removal of the starter kinases

Let us now consider the mutant of budding yeast obtained by
deleting all the starter kinases cin1, cln2, cln3, collectively modeled
by species SK in both the deterministic and stochastic models.
Because in the models SK is responsible for starting the series of
biochemical processes that drive the cell from G1 to S phase, the
cln14,cln24,cIn34 triple mutant cells are not able to start DNA
replication and block in G1 phase (Richardson et al., 1989).

Allowing for such a mutation in the ODE and SPN models is
straightforwardly accomplished by simply setting parameters ki
and k75 to 0. In the ODE simulation results (Novak and Tyson,
2002), cells are able to complete mitosis once, because the initial
condition sets the state of the system past the S phase, when the
ClIn’s (SK in the models) have already accomplished their role and
thus are not necessary anymore. However, in the subsequent cell
cycle, the lack of SK blocks the mutant in G1, as nothing can
induce the destruction of the Cdk/CycB stoichiometric inhibitor
Sic1 (CKI in the models) and the activity of Cdh1. Consequently,
the total concentration of CycB stays very low and what is
available in the cell is bound with CKI and thus inactive, the
typical condition of the G1 phase.

We show in Fig. 6A the stochastic model simulation results.
The match with the result provided by the deterministic model is
very accurate. The first mitosis is completed and then the cell
blocks in G1 (in 100% of the 1000 simulation runs executed).

4.3. Rescue of the lethal phenotype of triple cln™ deletion

Because one of the main consequences of SK activity is to cause
the degradation of the Cdk/CycB stoichiometric inhibitor CKI, it is
interesting to look at a double mutant in which both SK and CKI
are deleted. Indeed, in a mutant cin14, cIn24, cin3 4, sic14 it is not
obvious whether the cell would stop in G1 phase, or the active
CycB cyclin may raise to a level that overrides the activity of Cdh1
thus making the cell able to enter S phase.

The ODE model (Novak and Tyson, 2002) matches the
experimental observation that deletion of Sicl can rescue the
triple cln™ mutant phenotype (Tyers, 1996). Fig. 6B shows
the results obtained with one simulation run of the SPN model.
The results of the stochastic model also suggest the viability of
this double mutant, with an appreciable increase in the variability
of the cell cycle duration. It also shows that some cycles are
delayed in M phase with high CycB activity, which might correlate
with the sick phenotype of this strain (Tyers, 1996).

4.4. Removal of the Cdk stoichiometric inhibitor

We further investigate this sick behavior in the SPN simula-
tions by looking at the sic14 mutant cells. We show in Fig. 7A the

results provided by the deterministic model of the mutant, where
we set parameter ki; =0 to simulate sicl4. The ODE results
indicate the viability of the mutant, which fits the experimental
observations (Schneider et al., 1996). Cdh1 alone is enough to
stabilize the G1 phase in those cells.

The simulation output of the SPN model somewhat resembles
the results of the deterministic one, as it can be seen from Fig. 7B.
Though, it can be observed from the simulated time course that
the cell cycle in this mutant shows relevant irregularities, with
high variability in its length. Moreover, the mutant appears to
have problems in degrading CycB, which leads to a prolonged M
phase. On the other hand, some other cycles show a very regular
pattern of oscillations, matching the one returned by the
deterministic model in Fig. 7A. So we can conclude that removal
of Sic1 causes problems in simulation with noise. It is important
to mention that delayed cell cycles have been experimentally
observed for this mutant, as the sic14 strain shows ‘“sick”
phenotype cells (Nugroho and Mendenhall, 1994).

We conducted a simulation experiments to compute a few
statistics for the cell cycle of sic14 cells. We computed first of all
the average values of cell cycle duration and of the cell mass in a
population of asynchronous cells (by sampling this measure
randomly along the cell cycle), and compared them against the
deterministic results provided by the ODEs, as shown in Fig. 7C, D.
As it can be observed, the results provided by the two methods are
in agreement at this level.

Then, we also looked at the spread of the observation for the
cell mass. The estimated average values of the cell mass is of about
0.59 for the wild type with a standard deviation 0.0167,
corresponding to a coefficient of variation of 2.83%. However, for
Sic14 mutant cells the average value is around 0.47 and the
standard deviation 0.0543, which gives a coefficient of variation of
about 11.55%, thus showing the spread of the cell mass
distribution is quite different in the two modeled organisms.
Indeed, as it can be seen from Fig. 7E, the distribution of the mass
of the mutant exhibits a much higher variability, in agreement
with the experimental observations (compare Nugroho and
Mendenhall, 1994, Fig. 6). Thus, the stochastic model reveals the
“sick” non robust phenotype of sicl14 cells, which could not be
revealed by the deterministic model.

4.5. A mutant with nutritional level sensitive viability

Experimental results show that the Clb2dbA, clb54 mutant is
viable, but only under those circumstances that slow down its
growth rate (Cross, 2003). These two cyclins are collectively
modeled by species CycB in the models considered in this study.
We can represent these two mutations as follows:

o the deletion of cyclin Clb2 destruction box is modeled by
removing the ability of active Cdc20 to degrade CycB, by
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setting parameter k; = 0, and by reducing the degradation rate The deterministic model results for this mutant are shown
of CycB by active Cdh1, by setting parameter k' = 0.2 (residual in Fig. 8A, and correctly indicate its viability in poor growth
Cdh1 activity remains because of the KEN box on Clb2) (Wasch conditions, i.e. growth rate i = 0.004 (here and in the following
and Cross, 2002); the time unit of the growth rate is min™'). Fig. 8B shows the
e the deletion of cyclin CIb5 is modeled by reducing the results obtained from the SPN model of the mutant with
production rate of CycB, by setting parameter k; = 0.03. the same growth rate u=0.004. As it can be observed,
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the time courses returned by the two models match very
well.

It is interesting to observe that the deterministic model is also
able to fit the lethality of the mutation in glucose (growth rate
1 =0.005). Actually, the transition from dead to viable for the
ODE model is at p ~ 0.0041, and the model cannot predict any
intermediate situation. For instance, Fig. 8C shows the solution of
the deterministic model for a growth rate u = 0.0043, which
indicates lethality of the mutation. However, it is reasonable to
expect a continuous transition as the growth rate varies in the
interval [0.004, 0.005], with some mutant cells having a limited
survivability for values of the growth rate inside the interval. If in
a population of mutant cells each of them is able to complete a
sufficient number of cells cycles before dying, a small colony may
develop, even if its overall growth would be slow. Such small
colonies have been experimentally observed for various other
mutants as well (Cross, 2003). We show in Fig. 8D the results
provided by the stochastic model for a run using the growth rate
value u = 0.0043, in which the cell was able to complete some
cycles before reaching a state that does not allow it to survive
further.

We conducted an in-silico experiment to evaluate the prob-
ability that the progeny of a single mutant cell would be able to
divide at least 10 times before dying (forming a small colony),
with varying the growth rate within the interval [0.0041, 0.005].
For each value of the growth rate, mutant cells were simulated
over a time window [0-2000] min. The metric of interest was
estimated as the ratio between the number of runs in which cells
completed at least 10 cycles and the total number of runs, 1000 in
these experiments. The results of the simulation are shown in the
chart in Fig. 8E, together with their confidence intervals. Also, that
same probability is shown for the result provided by the ODE
model, obviously jumping from one to zero as yu is increased over
the critical value 0.0041.

The results in Fig. 8E clearly show that colonies of the mutant
may exist for values of the growth rate higher than the threshold
value 0.0041, which sets the upper limit for the viability of the
mutant in the ODE model. Thus we present that stochastic
simulations can be important to check the “partial” viability of
some mutants that are at the border between life and death.
Similar nutrition sensitive mutants (Cross, 2003) were simulated
in a much more complex model (Csikasz-Nagy et al., 2006). It
would be interesting to see their behavior in a more detailed SPN
model.

5. Conclusions and future work

This paper presents the results of a stochastic modeling of the
cell cycle of budding yeast cells. A well-established deterministic
model, based on ODEs (Novak and Tyson, 2002), has been taken as
the starting point for constructing a Stochastic Petri Net (SPN)
model of the cell cycle biochemical machinery. The SPN model
was built with adopting the same abstractions captured by the
deterministic model. A simple and largely automatable procedure
for mapping ODEs into SPN constructs has been presented
through its application to the model definition process.

The resulting SPN model has been described, and then its
validation conducted, with a comparison of the results obtained
via simulation against the results provided by the deterministic
model as well as with reference to experimental results. The
validation encompassed the wild type and various mutants of
budding yeast.

The validation showed a general agreement between the
results of the two methods. We demonstrated how the stochastic
version of the model can, however provide deeper insights about

the cell cycle of the modeled organisms, as it allows a statistic
characterization of cell cycle parameters such as duration
and average cellular mass. In some circumstances, for instance
when cells may die after completing a few cell cycles, the SPN
model better reproduces the experimentally observed cell
phenotype of small colony formation. Hence, with SPNs we can
simulate cell behaviors beyond the average one. This could have
been done by Langevine equations as well, but that would not
allow dealing correctly with the small number of molecules in
some phases the cell cycle. Indeed, when the abundance of
molecules is low, an added Wiener noise may result in negative
numbers which need to be scaled to meaningful values, thus
changing in an artificial way the stochastic properties of the
fluctuation process.

It is important to notice that a gap exists between the
variability in the outcome of the SPN model and the one observed
experimentally. For instance, the coefficient of variation computed
from the SPN results for wild type yeast cells is 7.28% for cell cycle
duration, 1.78% for cell mass at division and 2.83% for average cell
mass in an asynchronous population, whereas the typical values
found in experiments are about 10% for cell cycle length and 5%
for mass, see for instance Tyson (1985). The reason for such
reduced variation has to be explained taking into consideration
the approximations introduced in defining the model. First of all,
as we already pointed out, the model is still using various
abstractions of biochemical elementary reactions that are repre-
sented by the Michaelis-Menten and Hill functions rendered via
deterministic marking-dependent rate functions. We may expect
such abstractions to result in a lower variability with respect to
the one that would be obtained with a model fully capturing the
elementary biochemical reactions that compose the cell cycle
network. On the other hand, the limited amount of molecules
accounted for by our choice of the scaling factor o'
(505 molecules in the cell per pM) compared to a few thousands
(Cross et al., 2002) may yield to a larger molecular noise, thus
contributing to increase the variability of the species concentra-
tions and ultimately that of the measures of interest. Moreover, it
must be considered that the SPN model considers a precise and
even division between mother and daughter cells, thus lacking the
noise on the asymmetric division of Saccharomyces cerevisiae yeast
cells. This modeling assumption limits the variability in both cell
cycle duration and cell mass.

Therefore, we intend in our future research to alleviate such
limitations of the work presented in this paper, by considering,
besides the effects of intrinsic noise of molecular fluctuation,
sources of extrinsic noise such as randomness in cell division and
non-symmetrical division of budding yeast cells. Moreover, we
also intend to watch in more detail at the measured molecule
numbers of cell cycle regulatory proteins (Cross et al., 2002) and
at precise measurements of budding yeast Saccharomyces cerevi-
siae cell nucleus size (Jorgensen et al., 2007).

Finally, more detailed deterministic models of the cell cycle in
budding yeast are available in the literature, which include
molecules other than the ones we considered in this paper. In
our future work we also plan to extend the stochastic modeling by
looking at the information contained in these models (Chen et al.,
2000, 2004; Barberis et al., 2007; Toth et al., 2007). Furthermore,
we can enrich the model with the explicit representation of the
various checkpoints (Hartwell and Weinert, 1989; Ciliberto et al.,
2003). These checkpoints are controlled by a number of signaling
pathways that ensure the completion of various step of the cell
cycle, such as DNA replication, bud formation, complete formation
of the mitotic spindle, alignment of chromosomes. Hence, the
explicit modeling of checkpoints provides the interface point in
the cell cycle to include detailed models of those pathways, an
activity that we shall tackle in our future work.
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The eukaryotic cell cycle requires precise temporal coordination of the activities of hundreds of
‘executor’ proteins (EPs) involved in cell growth and division. Cyclin-dependent protein kinases
(Cdks) play central roles in regulating the production, activation, inactivation and destruction of
these EPs. From genome-scale data sets of budding yeast, we identify 126 EPs that are regulated by
Cdkl both through direct phosphorylation of the EP and through phosphorylation of the
transcription factors that control expression of the EP, so that each of these EPs is regulated by a
feed-forward loop (FFL) from Cdkl. By mathematical modelling, we show that such FFLs can
activate EPs at different phases of the cell cycle depending of the effective signs (+ or —) of the
regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly
as our models predict. The signal-transduction properties of FFLs allow one (or a few) Cdk signal(s)
to drive a host of cell cycle responses in correct temporal sequence.
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Introduction

A eukaryotic cell’s progression through G1, S, G2 and M phases
of the cell replication division cycle is orchestrated by large-
amplitude fluctuations in Cyclin-dependent protein kinase
(Cdk) activities that are generated by a series of coupled
positive and negative feedback loops (Novak et al, 2007; Holt
et al, 2008; Skotheim et al, 2008; Tyson and Novak, 2008). Cdk
signals are transduced into appropriate cell cycle responses by
specific executor proteins (EPs) (Sutani et al, 1999; Tanaka et al,
2007a) (Box 1). For example, cell division is controlled by Cdk1
phosphorylation of components of a signalling pathway called
the ‘mitotic exit network’ in budding yeast and the ‘septation
initiation network’ in fission yeast (Bardin and Amon, 2001).
Recently, we showed (Csikasz-Nagy et al, 2007) that the

© 2009 EMBO and Macmillan Publishers Limited

septation initiation network has the characteristic topology of
a feed-forward loop (FFL): the high level of Cdkl-cyclin B in
mitosis activates proteins that function early in the network
(sensors) and inactivates proteins that function late in the
network (executors). High Cdk1 activity primes the septation
initiation network, but the network cannot ‘fire’ until Cdk1
activity falls and releases the inhibitory arm. A similar FFL
controls the onset of DNA synthesis, according to the ‘licensing
factor’ hypothesis (Blow, 1993). Recognizing the roles of FFLs in
executing DNA synthesis and cell division, we hypothesized
that FFLs might be common motifs in transmitting signals from
Cdk1-cyclin master regulatory complexes to target proteins that
execute cell cycle events.

Cdk1 substrates are potential EPs, as are proteins that are
periodically expressed during the cell cycle (Spellman et al,
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Box 1 Cdk signal transduction by feed-forward loops

,M TF ’\' 1 Cell Cycle
Cell Cycle

M EP
response
Signal
generator

Transducer
Feed-forward loops, involving a Cdk substrate executor protein (EP) and its
transcription factor (TF), are proposed to function as transducers between
cell cycle regulatory signals (periodic fluctuations in Cdk activity) and cell
cycle responses, such as initiation of DNA synthesis or cell division.

/

1998; Jensen et al, 2006). Intriguingly, proteins that are
periodically expressed during the cell cycle are often
Cdk substrates (Ubersax et al, 2003; Jensen et al, 2006).
Furthermore, the transcription factors (TFs) that drive
cell cycle-dependent gene expression must be cell
cycle-regulated themselves, and it is reasonable to suspect
that at least some of them are phosphorylated by Cdks.
Wherever this is the case, the Cdk-TF-EP trio are involved
in an FFL (Box 1). Owing to large-scale experimental
screens in budding yeast (Saccharomyces cerevisiae) for
targets of Cdkl (Ubersax et al, 2003; Loog and Morgan,
2005), as well as for cell cycle TFs (Lee et al, 2002),
it is possible to systematically test this hypothesis at the
genome-wide scale.

Results and discussion

To this end, we classified all the 4691 verified protein-coding
genes of the budding yeast genome into 6 non-overlapping
network topologies (Figure 1A) based on whether or not the
encoded protein has been reported to be a Cdkl substrate,
whether or not TFs of the gene are known and whether or not
at least one TF is a Cdkl target. We identified 126 genes
involved in an FFL, that is the encoded protein is a Cdk1 target
and at least one TF is a Cdkl target. Of these 126 genes
involved in FFLs, 68 (54%) are found to be periodically
expressed during the cell cycle, whereas only 13 would be
expected by chance (P<1072%). None of the other regulatory
motifs shows a comparably high ratio of periodically
expressed genes (Figure 1A; Supplementary Table S1). Thus,
it is clear that a strong predictor of cell cycle periodicity is the
involvement of a gene in an FFL regulatory motif. This
observation suggests that the 68 periodically transcribed, FFL-
regulated proteins (Supplementary Table S2) may indeed be
key cell cycle EPs.

To provide further support for this assertion, we show that
cell cycle-related functions are significantly over-represented
among the proteins involved in FFLs. We checked the
distribution of proteins with cell cycle (and related) MIPS
functional category annotations (Ruepp et al, 2004; Guldener
et al, 2005) among the proteins of the different regulatory
topologies established on Figure 1A. We found that FFL-
regulated proteins are significantly over-represented among
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most gene classes with cell cycle functions (Figure 1B;
Supplementary Table S3). The converse statement is also true:
cell cycle functions are over-represented among the terms
associated with FFL-regulated proteins (Supplementary Table
S4). Thus, we conclude that FFLs are indeed important
transducers of Cdk ‘signals’ to cell cycle ‘responses’ (Box 1).
The other regulatory topology with high over-representation of
cell cycle-related functions is the small group of ‘only Cdk’-
regulated genes. If our conclusion is correct, then, once the TFs
for these genes are discovered, most of these EPs will fall
disproportionately into the FFL-regulated group.

If cell cycle EPs are indeed significantly associated with
FFL-regulatory topologies, then we must ask what possible
function(s) these signal-transduction pathways play in orches-
trating progression through the cell cycle. The function of an
FFL depends on the signs of the three links of the motif
(+ £/4+).The first sign (+ for activation or — for inhibition)
indicates the effect of Cdk-mediated phosphorylation on the
activity of TF, and the second sign indicates whether the active
form of TF upregulates or downregulates gene expression. The
product of these two signs indicates the net effect (activation or
inhibition) of the ‘long arm’ of the FFL on EP activity. The third
sign indicates whether direct phosphorylation of EP by Cdk
activates the protein or inhibits it. The eight possible sign
combinations can be divided into two classes (Mangan and
Alon, 2003): coherent FFLs, (+ +/+) and (F * /—) with the
same effective signs on the long and short arms and incoherent
FFLs, (£ £/-) and (F +/+) with opposite signs. Coherent
FFLs have noise-filtering properties (Mangan et al, 2003):
(£ £/-+) EPs would be active only when Cdk activity is
sustained at a high level (in S + G2 + M phase), and (F +/—)
EPs would be active only when Cdk1 activity is absent for a
prolonged period of time (in G1 phase). Incoherent FFLs have
rich signal response capabilities (Tyson et al, 2003; Csikasz-
Nagy and Soyer, 2008; Kaplan et al, 2008). Of particular
relevance here, they may respond only to sufficiently strong
bursts of a signal: a (F £ /+) EP is activated transiently when
Cdk activity rises after a prolonged period of low Cdk activity
(at the G1/S transition), and a (* £/—) EP is activated
transiently when Cdk activity falls after a prolonged period of
high Cdk1 activity (at the M/G1 transition). We propose that
many of the FFL-regulated proteins identified by our bioinfor-
matics survey of the yeast genome/proteome play exactly
these roles in the yeast cell cycle.

To see how FFLs might regulate cell cycle events, we first
study their dynamics from a theoretical perspective. We model
the eight FFL motifs using ordinary differential equations for
phosphorylation reactions and delay differential equations for
changes in EP concentrations (Figure 2A; Supplementary Table
S5). To implement a single transient activation of EPs per cell
cycle, the direct arm of the FFL is expected to have a lower
phosphorylation threshold and operate on a faster timescale
than the indirect arm. These timescale differences arise
naturally in a phosphorylation-transcription FFL: direct
phosphorylation of an EP by Cdk happens within seconds,
but phosphorylation of its TF has a delayed effect on
production of the EP (timescale ~minutes) (Adelman et al,
2002).

Simulation results of the model are shown in Figure 2B.
In this figure, we plot (in black) a typical trajectory of
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Figure 1

FFL-regulated proteins are over-represented among both periodically transcribed genes and cell cycle-related genes. (A) All verified ORFs of the budding

yeast genome were distributed into groups by the topology of their regulation by Cdk (Cdk1) and transcription factors. For each group, we report the number of
periodically transcribed/total proteins. For details, see Supplementary Table S1. (B) Odds ratios (observed/expected) of finding a gene with a certain type of regulation
(as explained on (A)) to be found with an MIPS functional category term given by the colour code in the legend. For detailed statistics, see Supplementary Table S3.
On all six panels, a single star denotes those cases where the probability of random appearance (according to a binomial distribution) is less than 1072, and two stars
denotes a probability less than 10~6. The dashed line indicates an expected odds ratio of 1.

Cdk1-cyclin B during the budding yeast cell cycle. We think of
this trajectory as the ‘signal generator’ and the FFLs as ‘signal
transducers’ (Box 1). Cdkl-cyclin B activity begins to rise at
the G1/S transition, peaks in mitosis and falls rapidly as cells
exit mitosis and return to G1 phase. As expected, the coherent
FFLs, (— +/—) and (+ +/+), drive sustained EP activity in
G1 phase (yellow curve) and in S + G2 + M phase (red curve),
respectively. The incoherent FFLs drive bursts of EP activity at
the G1/S transition (blue curve: (— +/+) FFL) and at the M/
G1 transition (green curve: (+ +/—) FFL). Coherent FFLs
ensure the proper temporal appearance of G1-specific and of
(S+ G2 + M)-specific proteins. Incoherent FFLs convert the
periodic rise and fall of Cdk activity into a strict alternation of
S-phase entry and M-phase exit, the two transitions that must
occur once and only once during each cell cycle to ensure

© 2009 EMBO and Macmillan Publishers Limited

proper duplication and separation of the cell’s genetic
material.

Next, we use diverse evidences to predict, in some cases, the
signs of the regulatory effects in our FFL motifs (Supplemen-
tary Table S6). From these predictions, we could identify 59
FFLs involving 46 EPs for which the signs of all three links may
be proposed (Supplementary Table S7). We found examples of
all eight types of FFLs, including some important regulators
whose times of appearance in the cell cycle match the
predictions of our theory (Figure 2B). In Figure 3, we show
examples of an (— 4 /—) FFL controlling a G1 protein, Sicl
(Knapp et al, 1996), an (+ +/+) FFL controlling a mitotic
protein, Cdc5 (Zhu et al, 2000), an (+ + /—) FFL controlling a
cell division protein, Dbf2 (Visintin and Amon, 2001) and an
(— +/+) FFL controlling an S-phase initiator, Sld2 (Tanaka
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et al, 2007a). In the case of SId2, our database search revealed
‘only Cdk’ regulation (with periodic gene expression). How-
ever, Ashl has been proposed (Teixeira et al, 2006) as a
potential TF for Sld2. If our theory of signal transduction is
correct, then, as Sld2 is an S-phase initiator, the FFL should be
(= +/+) and Ashl is predicted to be an activator of SLD2
expression. This prediction fits recent experimental results on
the role and regulation of Sld2 at S-phase initiation (Tanaka
et al, 2007b; Zegerman and Diffley, 2007) as well its protein
fluctuation profile (not shown) (Masumoto et al, 2002).

The eight basic FFLs that we have described theoretically are
clearly oversimplifications of the signal-transduction schemes
operating in real cells. For example, the case of Sld2
(Figure 3C) illustrates that FFLs may be overlapping and even
contradictory. Sld2 contains PEST sequences (Supplementary
Table S6), which suggests that, after Sld2 is activated by Cdk1
(Zegerman and Diffley, 2007; Tanaka et al, 2007b), it is
phosphorylated by Cdkl on a different site that induces its
degradation, giving two overlapping, contradictory FFLs.
Similar overlapping FFLs might operate for other initiators of
DNA replication, such as MCM proteins and Cdc6. (Our
methods may be insufficient to identify an early, transient
activation of these proteins by Cdk1 before they are degraded.)
The case of CIn3 (Figure 3E) suggests that interlocked FFLs
may be employed to achieve more complex regulatory effects.
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Figure 2 Four feed-forward loops can regulate the cell cycle. We limit our
attention here to the case of upregulation of transcription by TF; for the case of
downregulation, see the Supplementary information. (A) Four different types of
FFL, for the case where TF upregulates synthesis of EP. Arrows with + or —
represent activation or inhibition, respectively. (B) Computer simulations of
equations (Supplementary Table S5) describing the interactions diagrammed
above. Black line: Cdk activity; coloured lines: EP activities for FFL motifs of same
colour in (A). Proposed borders of cell cycle phases are also indicated.
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Sicl (Figure 3D) presents an example where an FFL is
composed with a double-negative feedback loop, because Sicl
is a well-known inhibitor of Cdkl-Clb in budding yeast
(Schwob et al, 1994). The double-negative (=positive) feed-
back loop functions as a switch, flipping on (Cdk1-CIb activity
high) at start and off (Cdk1-Clb activity low) at mitotic exit
(Chen et al, 2004). By embedding the double-negative feed-
back loop within a coherent FFL, the switch is made more
robust. This feature has been demonstrated recently by
removing all Cdk phosphorylation sites from Sicl (Cross
et al, 2007), i.e. by removing one leg of the FFL, which made
the two transitions less robust. In passing, we note that Sicl is
not an inhibitor of Cdk1-Cln, so the Cln-dependent kinases do
indeed control Sicl by a simple coherent FFL.

Cdc5 (Figure 3A) presents a similar example because of its
multiple downstream targets, including proteins such as
Cdc25, Weel and cyclin B involved in activating Cdk1 at the
transition into mitosis (Barr et al, 2004). Activation of Cdk1 by
Cdc5 turns the coherent FFL into a pair of interlocked positive
feedback loops, which may be important in stabilizing M
phase. However, it is not clear that this feedback loop is
operational in budding yeast, where the functional homo-
logues of Cdc25 and Weel do not play such a strong role in
mitotic entry.
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Figure 3 Examples of FFLs coupling transcriptional and post-translational
controls. Interaction signs (£) are predicted by the rules presented in
Supplementary Table S6. (A) Both the mitotic polo kinase (Cdc5) and its
transcriptional activator (Fkh2) are phosphorylated and presumably activated by
Cdk1 (bound to B-type cyclins). (B) The mitotic exit initiator Dbf2 shares the
same transcription factor (Fkh2) with Cdc5, but Dbf2 appears to be inhibited by
Cdk1. Dbf2 has a PEST sequence (Rechsteiner and Rogers, 1996) and its
phosphoprotein cannot be detected (Chi et al, 2007), suggesting that Cdk1
phosphorylation of Dbf2 induces its degradation. (C) The DNA replication inducer
Sld2 is phosphorylated and activated by Cdk1 (Tanaka et al, 2007b; Zegerman
et al, 2007). Although there is no documented TF associated with Sld2, Ash1 has
been proposed to regulate SLD2 expression (Teixeira et al, 2006). Our model
predicts that Ash1 upregulates production of SId2. (D) The G1 stabilizer, Sict, is
inhibited by Cdk directly and through its TF, Swi5 (Knapp et al, 1996). (E) An
example of a complex embedding of FFLs. Further details and other examples in
Supplementary Table S7.
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We have associated coherent FFLs with EPs that are continually
expressed either in G1 phase (when Cdk activity is low) or in
S+ G2+ M phase (when Cdk activity is high). Consulting
Figure 1A, we might conclude that ‘only Cdk’ and ‘chain’
topologies can serve these purposes equally well. But theory
suggests that coherent FFLs are more robust signal transducers
than the single-arm topologies (Mangan and Alon, 2003).

In the case of incoherent FFLs, robustness is not the only
advantage: the two regulatory arms are needed to achieve
transient activation of the EP. Incoherent FFLs are activated
only for a short period of the cell cycle to induce downstream
events (DNA replication, budding and cell division) in the
correct order. Our analysis revealed that most known FFLs in
budding yeast cells are playing roles in these events
(Figure 1B) and indeed most examples we predict are
incoherent FFLs (Supplementary Table S7). Furthermore, we
found examples of DNA replication initiators and cell division
inducers that are under direct control of incoherent FFLs
(Figure 3B and C).

Altogether, these examples suggest that the eight basic FFLs
play important roles in converting periodic Cdk oscillations
into a correct temporal sequence of events in the cell cycle, but
that these FFLs are often involved in more complex network
topologies.

Conclusion

In all eukaryotic organisms that have been studied in detail,
there appear to be two or more Cdk-cyclin pairs that play
crucial roles in coordinating cell cycle events. Each one may
have its own suite of EPs, probably activated by FFLs.
Nonetheless, in fission yeast, a single periodic Cdk-cyclin
activity is sufficient to drive all events of the mitotic cell cycle
in a viable temporal sequence (Fisher and Nurse, 1996). Our
simulation (Figure 2B) shows, in principle, how one Cdk-
cyclin pair, utilizing the four basic FFL motifs, can drive
G1- and G2-specific proteins and can trigger S-phase entry and
M-phase exit in an alternating manner. We imagine that the
last common ancestor of present-day eukaryotic cells relied on
a single Cdk-cyclin control signal, and that FFLs played a
crucial role in converting this single oscillatory signal into
coordinated events of a eukaryotic-style cell cycle.

We conclude that the idealized view (Box 1) of FFLs as
transducers of periodic Cdk signals provides a reasonable
scenario for the evolution of cell cycle controls in early
eukaryotes and has merit even now as a ‘first approximation’
of the temporal organization of cell cycle events. In present day
organisms, FFLs may be involved in more complex regulatory
topologies that exploit and modify their intrinsic dynamical
potentials. Nonetheless, incoherent FFLs are still intimately
involved in the initiation of DNA synthesis and cell division at
the G1/S and M/GI transitions of budding yeast.

Materials and methods

Bioinformatics analysis

Cdk1 substrates were obtained from two large-scale screens (Ubersax
et al, 2003; Loog and Morgan, 2005). TFs and their targets were
downloaded from the YEASTRACT database (Teixeira et al, 2006). As
many TFs act in complexes, we say that a TF complex is a Cdkl
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substrate if at least one of its components is phosphorylated by Cdk1.
In total, 600 periodic proteins were identified by de Lichtenberg et al
(2005). MIPS FunCat annotations of genes were downloaded from the
CYGD database (Guldener et al, 2005). In the Supplementary
information, more details are given on determining the signs of
TF-EP connections and of the effect of Cdkl-mediated protein
phosphorylations.

Model construction

We wrote differential equations (Supplementary Table S4) for the rates
of change of concentrations of the active forms of TFs and EPs. If Cdk1
directly activates the EP, then we plot the active form of EP only. For
cases where Cdk1 inactivates the EP, we assume that phosphorylation
induces degradation, thus phosphorylated EP is rapidly degraded, and
we plot the total amount of EP as it represents the total active form.
Parameters were chosen to get unique EP peaks at different phases of
the cell cycle. The Cdk1 time course was generated from a minimal
model of the Cdk regulatory system, comparable to (Tyson and Novak,
2001).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Abstract

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however,
behave distinctively in terms of their periods and phases in response to external influences such as light, temperature,
nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the
circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to
undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of
the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian
clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be
regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of
the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or
FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase
advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to
simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is
known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe
unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1)
existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the
clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK.
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Introduction

Circadian rhythms are periodic physiological events that recur
about every 24 hours. The importance of circadian rhythms is well
recognized in many different organisms’ survival as well as in
human physiology. Misregulations in circadian rhythms may lead
to different conditions such as depression, familial advanced sleep
phase syndrome (FASPS), delayed sleep phase syndrome (DSPS),
or insomnia, which largely impact our society [1,2]. Recent studies
indicate higher incidents of cancer in clock defective individuals
[3,4] and chronic jet-lag is associated with higher mortality rate in
aged mice as well as faster growth of tumor [5,6]

The molecular mechanism of circadian rhythms began to
become clear beginning with the discovery of the period (per) gene in
Drosophila melanogaster in 1971 [7], and the frequency (frq) gene in
Neurospora crassa in 1973 [8]. Through analysis of the genetic
variants of these genes, picces of the clock’s mechanism could be
described. The consensus idea is that it involves interlocked
feedback loops largely based on a transcription-translation related
time-delayed negative feedback loop [9]. Most of the genes
encoding proteins involved in the mechanism of circadian rhythms
have been found simply by screens aimed at cataloging the

@ PLoS Computational Biology | www.ploscompbiol.org

components or by analysis of the regulation of the components.
Several studies of mathematical modeling and systems approaches
helped further understanding of circadian rhythms in various
organisms [10-14].

One of the defining properties of circadian rhythms is the ability
to phase shift upon a stimulus from external cues. This property
allows organisms to adapt efficiently to the external environ-
ment. For example, a person traveling east to Europe from the
U.S. will experience a jet-lag in the process to adapt advanced
phase. Even a brief pulse of light may cause phase advances or
delays depending on the timing and influence of the pulse [15].
It is intuitive to assume that a phase shifting agent will create
both phase advances and delays depending on the timing and
strength of the pulse by uniformly affecting molecular pathways
in the circadian system [16]. It has been observed that 2 h
treatments of Rat-1 fibroblasts with dexamethasone (Dex) result
in large advances and delays (Type O resetting of the phase),
possibly by inducing transcription of both rPer! and 7Per2
[17,18]. This Dex-dependent PRC is also observed in the
NIH3T3-Bmall-Luc-1 cells [19]. If the Dex-dependent induc-
tion of Per transcripts causes both phase advances and delays, we
would also predict that DNA damage-dependent phosphoryla-
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Author Summary

Molecular components and mechanisms that connect cell
cycle and circadian rhythms are important for the well-
being of an organism. Cell cycle machinery regulates the
progress of cell growth and division while the circadian
rhythm network generates an ~24 h time-keeping
mechanism that regulates the daily processes of an
organism (i.e. metabolism, bowel movements, body
temperature, etc.). It is observed that cell divisions
usually occur during a certain time window of a day,
which indicated that there are circadian-gated cell
divisions. Moreover, it's been shown that mice are more
prone to develop cancer when certain clock genes are
mutated resulting in an arrhythmic clock. Recently, a cell
cycle checkpoint regulator, Chk2, was identified as a
component that influences a core clock component and
creates mostly phase advances (i.e., jet lags due to
traveling east) in circadian rhythms upon DNA damage.
This phase response with minimum delays is an
unexpected result, and the molecular mechanism behind
this phenomenon remains unknown. Our computational
analyses of a mathematical model reveal two molecular
criteria that account for the experimentally observed
phase responses of the circadian clock upon DNA
damage. These results demonstrate how circadian clock
regulation by cell cycle checkpoint controllers provides
another layer of complexity for efficient DNA damage
responses.

tion and degradation of PERs by Chk2 [20,21] would result in
similar PRCs. Recent findings indicate that this prediction is
wrong [18,21]. Upon experiencing DNA damage, the cell cycle
machinery influences the circadian clock in such a way that
creates predominantly phase advances in Rat-1 fibroblasts and
mice [18], as well as in Neurospora crassa [21]. These data strongly
suggest that there is a conserved pathway across different species
that affects the phase of the clock after DNA damage, and
involves physical interactions of ATM and/or Chk2 with a core
clock component (i.e. PER1 or FRQ) [18,20,21]. This interac-
tion leads to phosphorylation of PER1 and FRQ [21,22]. The
molecular mechanism for this unique phenomenon, however,
remains unexplained.

In this paper, we explore the minimum criteria in the molecular
network of circadian rhythms that simulate the above PRCs with
tools of computational modeling. Theoretically, a time-delayed
negative feedback is sufficient to create robust oscillations. Both
cell cycle and circadian rhythms, however, contain both negative
and positive feedbacks in their wiring networks. Positive feedback
mechanisms are essential for proper eukaryotic cell divisions [23]
whereas their roles in circadian rhythms remain elusive. Recently,
Tsai and colleagues indicated that a general function of positive
feedbacks in different networks is to create tunable robustness in
the system [24]. In our study, we address two questions 1) what is a
molecular mechanism that accounts for Chk2-dependent PRC in
circadian rhythms?, and 2) is the positive feedback mechanism
necessary for the observed PRC? In the conditions that we have
tested, we discovered that we can only simulate the Chk2-
dependent PRC with predominantly phase advances when Chk2
only affects PERs that are not bound to BMAL1/CLK in the
presence of an autocatalytic positive feedback mechanism. Both
conditions are required for proper simulations. Our study is the
only in silico experiment to indicate the necessity of an
autocatalytic positive feedback mechanism in simulating specific
phenotype in the circadian system.

@ PLoS Computational Biology | www.ploscompbiol.org
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Results

Chk2-dependent differential degradation of PER creates
predominantly phase advances upon DNA damage

We explored our simple mammalian circadian clock model
(Fig. 1) from our previous work [25] to investigate whether we can
simulate different PRCs Dex and IR treatment
experiments [17,18]. Note that an autocatalytic positive feedback
mechanism is already embedded in our model [12,26]. Based on
the experimental data, we added the following in our previous
model: 1) Dex increases the transcripts of Per but not Bmall [18],
and 2) Chk2 phosphorylates PERs and facilitates their degradation
upon DNA damage [20,21]. Our simulations show that the Dex-
dependent increase of Per messages creates both Type 0 (as shown
in the experiment, strong resetting of the phase) and Type 1 PRCs
(weak resetting of the phase) depending on the strength
(concentration) of the Dex treatments (Fig. 2A). It is, however,
not trivial to simulate a PRC with mostly phase advances
reproducing the phenotype from the IR treatment experiments
[18]. We observe a PRC with large advances and delays if we
follow the simplest possible assumption that DNA damage induces
Chk2-dependent phosphorylation and degradation of all forms of
PER (monomer, dimer, and complex with BMALI1/CLK) (Fig 1
and Fig 2B). Through in silico experiments, however, we observe
minimum phase delays as seen in experiments [18,21] only when
Chk2 does not affect the PER that is in a complex with BMALIL/
CLK (i.e. due to conformational changes of PER upon complex
formation) (Fig. 2B). In other words, Chk2 prematurely degrades
PERSs that are not bound to BMALI/CLK to advance the clock,
while allowing continued repression of BMALI/CLK by not
degrading the PERs that are in complex with BMALI/CLK

from the
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Figure 1. Molecular wiring diagram of the simple circadian
clock network. For simplicity of the model, we only deal with PER
protein, and treat PER1, PER2, and PER3 as same proteins. We assume
that PERs exist in monomers, dimers, and complex with the BMAL1/CLK.
We also assume that the BMAL1/CLK is inactive when bound to PER
forming a negative feedback loop. A pulse of Dex activates the
transcription of Per in addition to the BMAL1/CLK. Chk2 does not affect
the PERs that are bound to the BMAL1/CLK, which accounts for the
unique phase response upon DNA damage.
doi:10.1371/journal.pcbi.1000384.g001
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Figure 2. In silico Dex and IR treated experiments. (A) Strong
pulses of Dex generate Type 0 PRC (filled circles; strong resetting of the
circadian clock to the new phase which does not depend on the old
phase) whereas weak pulses of Dex generates Type 1 PRC (blank circles;
weak resetting of the phase where the new phase changes as a
function of the old phase). (B) Large advances and delays are observed
when Chk2 is assumed to affect all forms of PERs including the complex
with BMAL1/CLK (orange squares). Chk2-dependent phase advances
and minimum delays of the circadian clock are observed only if Chk2
does not affect the PERs that are in complex with BMAL1/CLK (red
circles). (C) DNA damage-induced Chk2 activation causes phase
advances of circadian clock. Solid lines represent endogenous profiles
of PER and BMAL1/CLK. Dashed lines indicate PER (red - CPyyq) and
BMAL1/CLK (blue - TF) in response to a 2 h IR treatment at simulation
hour 4 and dots represent the results after the same 2 hr treatment at
hour 16 (hour 0 corresponds to the peak of PER monomers (CP)).
doi:10.1371/journal.pcbi.1000384.9002
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(Fig. 2C). This prolonged repression on BMAL1/CLK creates
small delays when Chk2 affects PERs around their minima as
observed in experiments [18,21].

It is interesting to note that an inhibition of CKle, another
kinase that is known to phosphorylate PER, generates a PRC with
only delays [27]. This PRC is qualitatively different than the PRC
after DNA damage as there are no advances. We can simulate a
mirror image of the PRC with mostly advances, which creates
mostly delays, by reducing the rates for Chk2-dependent
phosphorylations (not shown). Our data, however, is qualitatively
different as we do see small advances whereas Badura and
colleagues did not observe any advances [27]. This difference are
possibly due to the following reasons: 1) Badura et al. administered
a CKle inhibitor not as a pulse (there was no removal of the drug
after administration), and 2) it is possible that Chk2 and CKle
results in different types of phosphorylations which can lead to
different consequences. We plan to further investigate this with an
extended version of circadian clock module.

An autocatalytic positive feedback mechanism is
required for the observed PRC

Our simple model is adapted from Tyson and colleagues’ earlier
paper where both negative and positive feedbacks play essential
roles in creating a robust oscillator [12,26]. The autocatalytic
positive feedback mechanism in the model arises from different
stabilities between PER monomers vs. PER complexes. Based on
molecular data from Drosophila system [28-31], we assume that
PER monomers are more susceptible to degradation than PER in
(i.e. PER/PER, PER/CRY, etc.). This creates
autocatalytic PER dynamics as PER stabilizes itself by forming
complexes. To date, this is the only circadian rhythm model that
employs an essential positive feedback mechanism that is necessary
to maintain a robust oscillator [32]. Hence, we wondered whether
the incorporated essential positive feedback is required (or
disposable) in simulating the unique PRCs upon DNA damage.

In order to test our hypothesis, we removed the autocatalysis in
the model by assuming no stability differences between PER
monomers and complexes. Then, we re-parameterized the system
to rescue oscillations (see materials and methods). Note that we
had to use a Hill-coefficient =4 for highly cooperative negative
feedback in order to rescue oscillations in our four-variable model
in the absence of the autocatalytic positive feedback mechanism.
To our surprise, we were not able to generate the unique PRC
with predominantly phase advances upon DNA damage even by
assuming differential phosphorylation and degradation of PER
monomers vs. PER complexes with BMALI/CLK (lane 2,
Table 1).

We wondered whether above conclusions from our simple
model can be generalized to a more comprehensive model with
distinct wiring network. Hence, we tested Leloup and Goldbeter’s
mammalian model [33,34]. They used four sets of parameters in
order to investigate possible functions of multiple feedback loops in
the circadian system. For our purposes, we concentrated in
parameter sets 1 and 3. In the parameter set 1, robust oscillations
of their model can arise from two different time-delayed negative
feedback loops: PER-driven and PER/CRY-independent
BMALIL/CLK-driven negative feedback loops. For this parameter
set, they can generate an oscillator based on BMAL1/CLK-driven
negative feedback loop in the absence of the PER-driven negative
feedback loop. In the parameter set 3, they disabled the BMAL1/
CLK-driven negative feedback loop making the system a PER/
CRY-dependent single negative feedback oscillator. We did not
explore parameter sets 2 and 4 because PER is not required for
oscillations in parameter sets 2 and 4. The wiring network of

complexes
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Leloup and Goldbeter’s model is significantly different from our
model which consists of an intertwined dynamics between an
essential autocatalytic positive feedback and time-delayed negative
feedback [12,32].

We incorporated Chk2-induced degradation of PER molecules
that are not bound to BMALLI/CLK in the Leloup and
Goldbeter’s model. Then, we tested Chk-2-dependent differential
degradation of PER as in our simple model. Our simulations
indicate that we see both TYPE 1 and TYPE 0 PRC depending on
the strength of Chk2, but we do not observe asymmetric PRCs
with mostly advances (lane 3 and 4, Table 1). These results show
that the differential effect of Chk2-dependent degradation of PER
complexes is not enough to create the observed DNA-damage
induced PRCs with the innate wiring of the Leloup and
Goldbeter’s model.

Our next step was to introduce an autocatalytic positive
feedback mechanism in the Leloup and Goldbeter’s model and
investigate its role in reproducing the asymmetric PRC upon
DNA-damage. First, we added an autocatalytic positive feedback
in the parameter set 1 of Leloup and Goldbeter’s model in a
similar way as in our simple model. PER complexes are assumed
to be more stable than PER monomers. To our surprise, we were
not able to generate the PRCs with predominantly phase advances
with differential degradations of PER complexes by Chk2 even
with an added autocatalytic positive feedback mechanism (lane 5,
Table 1). We wondered whether this was due to the PER-
independent BMALL/CLK-driven negative feedback loop which
is built in the parameter set 1. Hence, we tested the parameter set
3 which consists of the PER-driven single negative feedback.
Interestingly, we were able to simulate the observed asymmetric
PRC with predominantly phase advances as we have observed in
our simple model only when both the autocatalytic positive
feedback and the differential effect of Chk2 on PERs were
implemented in the absence of BMALI/CLK-driven negative
feedback loop (lane 6, Table 1). This suggests that there exists an
important dynamical relationship between negative feedback loops
and an autocatalytic positive feedback mechanism.

Discussion

What are the implications of DNA damage-induced phase
responses of the circadian clock to the cell cycle? We hypothesize
that cells utilize various pathways for different timing events in
response to DNA damage. The Chk2 kinase directly inhibits the
progress of the cell cycle by phosphorylating and removing
Cdc25C (a phosphatase that is antagonistic to Weel which

@ PLoS Computational Biology | www.ploscompbiol.org

Table 1. Theoretical requirements for the experimentally observed DNA damage-induced PRCs with small delays in circadian clock
models.

Model Positive feedback Ratio of maximum advance and maximum delay
Simple model Yes 3.54

Simple model, positive feedback removed No 0.77

Leloup and Goldbeter set 1 No 0.57

Leloup and Goldbeter set 3 No 1.11

Leloup and Goldbeter set 1 with positive feedback Yes 0.71

Leloup and Goldbeter set 3 with positive feedback Yes 247

We removed the autocatalytic positive feedback from our simple model and added positive feedback into the Leloup and Goldbeter’s model as discussed in the text. In
all cases, we checked the maxima and minima from PRCs after the Chk2-dependent degradations of PER. In the last column, we report the ratio of these values (larger
value indicates most advance with least delay). See text for analysis and Table S1 for detailed results. In all cases we assume that Chk2 acts only on the free forms of PER.
doi:10.1371/journal.pcbi.1000384.t001

activates cell proliferation) from the nucleus [35]. Moreover, the
cell cycle machinery also employs Chk2 in order to provide an
additional mechanism that helps to delay the cell cycle progress for
extended time by indirectly increasing the level of Weel via the
circadian network. We believe that the above sequential roles of
Chk2 maximize the efficiency of DNA damage-induced delay.
With our model, we show that premature degradation of PER,
resulting in phase advances, causes early activation of BMALI
(Fig 2C). This creates an early transcriptional activation of the
Weel (G2 inhibitor of the cell cycle) during the upcoming
circadian cycle, which delays the cell cycle in the G2 phase. If the
DNA damage-response induces large phase delays, it will generate
a short-lived, transient increase of BMALIL, but a long delay in the
activation of Weel by BMALIL/CLK for the upcoming circadian
cycle. This late activation of Weel is probably not a desired result
for an efficient DNA damage response.

Our model is simple and intuitive, and yet predicts a molecular
mechanism that is responsible for the observed PRC. Our in silico
experiments elucidate a molecular mechanism that accounts for
Chk2-dependent phase advances and minimum delays of the
circadian clock upon DNA damage. It seems counterintuitive to
assume that Chk2 does not affect the PER that is in a complex
with BMAL1/CLK. This may appear to prolong the repression on
BMALI, which will delay the activation of Weel. However, due to
the cyclic nature of the circadian clock, our simulations suggest
that these unique Chk2-dependent phase responses are the best
strategy for inducing large and prolonged induction of Weel by
BMALI1/CLK, allowing extended time for the cell cycle to repair
problems upon DNA damage. We propose that the cell cycle
network is ingeniously wired with the circadian clock for an
optimal response upon DNA damage. Previously, experimentalists
showed that the functional circadian clock is important for
optimum response to the chemotherapeutic agent cyclophospha-
mide or y radiation [4,36]. For example, reduced apoptosis is
observed in mPer2 deficient mice compared to wild-type mice
upon 7 radiation, which resulted in tumorigenesis [4]. Based on
these works, it can be assumed that DNA damage response is more
efficient when the circadian clock is intact. We do not know,
however, how the efficiency of DNA damage response is affected
by the circadian clock. Hence, we suggest testing the efficiency of
DNA damage response in the presence and absence of the
circadian clock in both in cell culture (i.e. wild-type vs. ery™) as well
as in vivo.

Another intriguing finding is the importance of the autocatalytic
positive feedback mechanism in simulating the observed PRC
upon DNA damage. Our simple model is adapted from Tyson and
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colleagues which implemented both negative and positive
feedback mechanisms [12,32]. DNA damage-induced PRCs with
predominantly advances are lost upon removal of the positive
feedback even with the differential degradation of PERs by Chk2.
This observation is extended to the Leloup and Goldbeter’s model
[33,34]. We tested four different combinations of positive and
negative feedback loops with two different sets of parameters
(Table 1). Our findings confirm that the autocatalytic positive
feedback mechanism is required to simulate DNA damage-
induced PRCs. Our results elucidate three important points: (1)
the role of the autocatalytic positive mechanism in the circadian
system, (2) the wiring of different negative feedback loops, and (3)
the interplay between positive and negative feedbacks in response
to DNA damage. We acknowledge that there are multiple
feedback loops in the circadian system [9]. Therefore, it is
essential to develop a more comprehensive model accounting
detailed dynamics of different negative feedback loops in the clock
network. Furthermore, it is important to experimentally verify
autocatalytic positive feedback mechanisms in the context of
circadian rhythms, the nonlinearity of negative feedback loops,
and the possible interplay between the positive and negative
feedback loops in the circadian clock.

Materials and Methods

Circadian rhythm model

Our objective is to create a simple mammalian circadian clock
model that accounts for different phase response curves (PRCis)
observed from various experiments [17,18,21]. For simplicity of
the model, we only deal with PER protein and treat PER1, PER2,
and PER3 as same proteins. CRY proteins (CRY1 and CRY2) are
also part of core clock components that negatively regulate
BMAL1/CLK. We do not consider, however, CRY proteins in
this model for two reasons: (1) simplicity of the model, and (2) it is
not yet known whether Chk2 phosphorylates and triggers
degradation of CRY proteins as mPER1. We will include the
function of CRY proteins in our future work. We assume that
PERs exist in monomers (Clock Protein, CP), dimers (Clock
Protein, CPy), and complex with the BMALL/CLK (Transcription
Factor, TTF). We imagine that the BMALI1/CLK is inactive when
bound to PER (Inactive Complex, IC) creating a negative
feedback. We treat CLK as a parameter in the system since it
does not cycle [37]. We also assume that the CP, is more stable
than the CP, which introduces a positive feedback in the system
[12]. Dex induces the transcription of Per message (Message, M)
[18], and DNA damage-activated Chk2 promotes phosphorylation
and degradation of PERs [20,21]. We use same equations and
parameter values from our previous publication [25] other than
the newly added effects of Dex or Chk2.

Differential equations of the simplified circadian rhythm
model for mammalian cells
Messenger RNA of the clock proteins (Per mRNA):

d TF"
— M = Dex + kg

dt Jir g M (1)

Monomer clock proteins (PER):

% CP=kepsM —kpa CP—2k,CP?
2kyCPy —ky ————— — Chk2-CP
+2Kk4CP> pljp+CPm[
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Dimer form of clock proteins (PER/PER):

d
—CP, =kaCP2 —k,CP, —kcngjcpz +kicalC

dt
» 3)

P — Chk2-CP,

— kigyCPy TF —kpy———2
catt2 7]+ CPry

Transcription factor (BMAL1/CLK):

% TF =kep2alC +kicqIC = kit TF-CPy
kyp ————— 4+ Chk2c IC
+ szp+CPtot+ c

Inactive complex of clock dimers and transcription factor:

IC=TF,,—TF (5)

Total amount of clock proteins (PER on Fig. 2):

CPyy;=CP+2CPy+2IC (6)
Rate constants (h™'):
kms=1, kmd = 01; k(p.v = 05, kLpd =0.525,

k=100, kg=0.01, kepyg =0.0525, kieq=0.01,
Kica =20, k1 =10, kpp=0.1, Dex=0, Chk2=0, Chk2, =0

Dimensionless constants:

TF,,=0.5,J,=0.05J=03,n=2

All protein concentrations in the model are expressed in
arbitrary units (au) because, for the most part, we do not know the
actual concentrations of most circadian proteins in the cell. All rate
constants capture only the timescales of processes (rate constant
units are in h™ ")

Simulation of Dex and IR treatments

(1) Strong resetting (type 0 PRC) of circadian period by Dex
treatment (2 h pulse):

Dex=9, Chk2 = Chk2,=0

(2) Weak resetting (type 1 PRC) of circadian period by Dex
treatment (2 h pulse):

Dex=0.05, Chk2=Chk2.=0

(3) Chk2 affects degradation of all forms of PER, including
inactive complex (IC) of transcription factor BMALL/CLK
(TF) and PER dimers (2 h treatment).

Dex=0, Chk2=0.2, Chk2.=0.05

(4) Chk2 only affects degradation of PER monomers and dimers
(2 h treatment).
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Dex=0, Chk2=0.2, Chk2.=0

Removal of the positive feedback mechanism from
Zamborszky et al. [25]

Various parameters of the model of Zamborszky et al. [25] have
been changed in order to remove the originally existing positive
feedback from the system. The equations are the same as
presented above. Many parameters were changed to create a
robust circadian rhythm with approx 24 h period. Changed
parameters: Rate constants (h-1): £,,=0.5, £,,=0.045, £,,= 10,
kypa=0.0001, k,=100, k;=0.001, ky5,=0.0001, #k;,=0.001,
kia=4, k1 =197, k,2=1.97. Dimensionless constants: TF,=1,
Jp=0.05,7=0.4, n=4.

Simulation of IR treatments in the Leloup and
Goldbeter's model [33,34]

The Chk2 induces degradation of PER monomers and PER-
CRY dimers but not PER proteins that are in complex with
BMALIL/CLK. To achieve this we replaced the original V), term
by (VynostVenrz) in the original Leloup and Goldbeter models
[33,34]. In simulations we used Ve =1 to simulate the effect of
IR pulse treatment.

Addition of a positive feedback mechanism to the Leloup
and Goldbeter's model [33,34]

We increased the nonspecific degradation rate constant for
destruction of nonphosphorylated PER monomers in the cytosol
from 0.01 to 0.3, while keeping the background degradation rates
of PER/PER dimers and PER/CRY complexes at the original
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Computer simulations

We used XPP-AUT computer program [38] of G. Bard
Ermentrout (freely available at http://www.math.pitt.edu/bard/
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Abstract

DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A
universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through
two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other
transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational
positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we
analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find
that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional
regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in
cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the
activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional
control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the
biological relevance of such differences.
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Introduction

The cell division cycle is controlled by a complex regulatory
network that ensures the proper order and timing of DNA
replication, mitosis and division of cells [1]. The core regulators
are cyclin dependent kinases (Cdks) that periodically get activated
by cyclins. These cyclins and many other cell cycle regulators are
under periodic transcriptional regulation [2], and it has been
recently shown that these transcriptional waves continue even if
cyclins are perturbed [3]. Still, the critical cell cycle transitions of
G1/S, G2/M and M/G]1 are all controlled by significant changes
in Cdk activity and only one Cdk/cyclin complex is enough to
drive the cell cycle [4]. It was proposed that cell cycle transitions
are controlled by positive feedback loops [5,6] making the
transitions work as irreversible switches [7,8]. The G2/M
transition has been extensively studied in frog eggs and in fission
yeast cells and a picture emerged, in which Cdk activity is
inhibited by Weel and activated by Cdc25 [9]. It has been shown
that Cdk can post-translationally activate its activator, Cdc25 and
inhibit its inhibitor, Weel [10]. Both of these effects create positive
feedback loops that can lead to bistability - when the system can be
in either one of two distinct steady states. Such bistability has been
observed experimentally by showing a higher critical cyclin level to
activate Cdk than the cyclin level needed to keep Cdk active,
proving the system is bistable between the two critical cyclin levels
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[11,12]. Furthermore, importance of the positive feedback for
proper cell cycle regulation has also been proven in frog egg
extracts [13]. Additional results in other organisms underlined the
important role of the two positive feedback loops in the G2/M cell
cycle transition [10,14-16]. Mathematical and computational
modeling further facilitated cell cycle research [17-19] and
theoretical investigations of the feedback loops concluded that
the joint effect of the two positive feedback loops can make the
transitions even more robust [20]. Furthermore, it has been shown
that the effects of the two loops (pure positive and double negative)
are not totally equivalent [21,22].

Already in 1990, Paul Nurse proposed that the control of G2/M
transition is universal among eukaryotes [9]. Recent results
support this idea [10,15,16] and extend it to the other cell cycle
transitions [5,6]. Indeed, further studies found that the G1/S
transition is also controlled by positive feedback loop in budding
yeast [23-25] and similar importance of positive feedbacks on the
M/G]1 transition were also discovered [26,27]. Here we expand
the universality concept and study a generic cell cycle transition
regulatory system. Through computational modeling we investi-
gate the dynamical differences between models with different
transcriptional and post-translational control modes. Specifically,
we analyze the transition dynamics in systems with periodic
transcription of the activator or inhibitor, with single or double
positive feedbacks and with cell cycle checkpoints acting on
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activators or inhibitors. We find that the effect of periodic
transcriptional regulation on the activator or the inhibitor has the
major impact on the dynamics.

Results

Paul Nurse proposed that the control mechanism of G2/M
transition is universal [9], here we investigate if the same picture
holds true for all cell cycle transition regulatory modules. The
unified cell cycle transition control system consists of an activator
and an inhibitor, which control the activity of a transition
regulator protein (TR on Fig. 1). The active form of the transition
regulator (TR*) can activate its activator and/or inhibit its
inhibitor — closing one or two positive feedback loops (PFB). All
three components of this network could be transcriptionally
regulated during the cell cycle, by various transcription factors
(TFs on Fig. 1). A third layer of control on the system could come
from checkpoints of the cell cycle (ChP), which ensure that a
transition occurs only after an earlier cell cycle event has properly
finished [1,28]. These checkpoint signals stop the cell cycle
transitions either by inhibiting the activator or activating the
inhibitor [29], thus making it harder for the active transition
regulator to turn on its positive feedback loops (Fig. 1). This wiring
diagram consists of all possible transcriptional and post-transla-
tional regulatory interactions proposed for the cell cycle transition
modules. Thus, Figure 1 presents all the well understood
regulatory mechanisms that affect the dynamics of cell cycle
transitions. For the detailed molecular mechanism of the proposed
activation-inhibition steps, consult File S1.

Literature data on regulation of cell cycle transitions
The universal G2/M control proposed by Nurse [9], fits this
picture with Cdk/cyclins as transition regulators and Cdc25-Weel
as the activator-inhibitor pair. Similar models have been proposed
for the regulation of G1/S and M/GI transitions, with the
common pattern of the existence of one or more positive feedback
loops [6]. Another common feature between transitions is that the
activator-inhibitor pair often acts post-translationally, controlling
the phosphorylation state of the transition regulator. In Table 1,

PFB, 1 cnP
E TF} i@ @1/ i
! — | 4
T—FT&T.R : N inhibitor > TR
oc‘/ : . 'F \°'
oo i ® o\ b
L.PPBa_1 chp,

Figure 1. Regulation of a generic cell cycle transition regulator
(TR) protein. TR, its activator and inhibitor all can be transcriptionally
regulated (by TFrr, TFA and TF, respectively) as well as both the
activator and inhibitor can be controlled by checkpoints (ChP, and ChP,
respectively). Active form of the transition regulator (TR¥) might activate
its activator and/or inhibit its inhibitor, forming two positive feedback
loops (PFBA and PFB)). (Note that inhibiting an inhibitor is a positive
effect leading to a double-negative = positive feedback loop). Solid lines
represent reactions, dashed lines show regulatory effects. Positive
feedbacks work on the post-translational level and catalyzed reactions
have a non-catalyzed background rate, details for each individual
reaction can be found in File S1.
doi:10.1371/journal.pone.0029716.9g001
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we collected cell cycle transition regulators and their activators and
inhibitors that are wired — fully or partially — in the generic way,
presented in figure 1. Note that we do not investigate slower time
scale regulations where a transition regulator is controlled by an
activator or inhibitor which acts on its synthesis or degradation
rate. We rather focus on cell cycle transitions where positive
feedback works on the post-translational level. As table 1 shows, in
fission and budding yeast and in humans all three cell cycle
transitions have post-translational positive feedback loop control.
Other crucial cell cycle events are also regulated by positive
feedback loops [30,31], but here we focus only on the mentioned
three major cell cycle transitions.

Our literature survey of Table 1 shows that two positive
feedback loops were discovered in most organisms for G2/M
transition regulations, but for some other transitions we find
evidence for the existence of only one feedback loop. In these
cases, we do not see a clear preference for positive feedback either
through the activator or the inhibitor. Similar observations can be
made on the effects of checkpoints on transitions: the most
investigated G2/M transition has evidence for checkpoint signals
affecting both inhibitors and activators, while in many other cases
only one of the controllers is regulated by checkpoint signals —
again without a clear preference towards activators or inhibitors.
Based on theoretical analysis [20], one would think that the safest
way to regulate cell cycle transitions is to use two feedback loops
and have checkpoints which affect both regulators. Below we
investigate if the lack of experimental evidence for the existence of
an arrow on Figure 1 could have any biological importance.

It is important to notice in Table 1 that in all cases only one of
the controllers (inhibitor or activator) of TR 1is expressed
periodically during the cell cycle (noted with bold letters in
Table 1). Again, we do not see a preference of transcriptional
regulation of the activator or inhibitor in a database of high-
throughput studies in numerous organisms [2]. The lack of
evidence for a regulatory effect is not equal to evidence of the lack
of such regulation; we might have incomplete knowledge of the
systems, but it may also be that such variation in regulation is real
and leads to biologically important dynamical differences.

Comparing regulatory modes by computational
modeling

To reveal if variation in the regulation can cause difference in
the dynamics of cell-cycle transitions, we created a computational
model of the generic network shown in Figure 1. We investigate i
silico how the dynamic properties of the system are changing if one
of the feedback loops is removed, how checkpoints can delay
transitions and how the transcriptional control of the activator and
inhibitor influences the dynamics. Furthermore, we test how
reliably these transitions together with a negative feedback loop
can give periodic oscillations — as expected from a robust cell cycle
control system [13,18].

We converted the regulatory network of Figure 1 into a
computational model, using the BlenX programming language,
which provides a framework that combines modular modeling and
stochastic simulation capabilities [32]. Specifically, we created 24
models representing all combinations of: positive feedback on
activator, inhibitor or both; transcription factor on activator or
inhibitor; and checkpoint not induced, acting on activator or on
inhibitor or on both. We assumed nonlinear enzymatic interac-
tions (as do others [33]) between inhibitor/activator and their
substrates. Although, the dynamics of the system would not change
even if we were to use multisite phosphorylation to enhance
nonlinearity of the feedback loops [21,22].
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Two transcriptional control modes of cell cycle
transitions

The major finding as shown in Table 1 is that periodic
transcription affects only one of the regulators. We do not see a
general trend in which one of them is controlled transcriptionally.
If a periodically induced inhibitor fails to be transcribed, but the
activator is constantly present, the cell can proceed through the
transition without a delay (Fig. 2 lower panels). Transcriptional
control of the inhibitor is needed to stop/delay the transition and
the default (periodic transcription independent) state of the system
is to GO through the transition. This is what we see for the
budding yeast G2/M, fission yeast G1/S and for various M/G1
transitions (see table 1 — note that for inhibitors of transitions
(italic) the meaning should be reversed, since a GO for a transition
inhibitor means STOP for the transition). These transitions are
examples that cannot be fully stopped by a cell cycle checkpoint,
eventually the cells “adapt” and proceed through the transitions,
even though the checkpoint signal is still active [34-36]. In the
simulations, we see that TR can be activated without a delay if the
inhibitor is present in a low amount, as is in this case where the TR
turns on its positive feedback loop(s) and keeps the inhibitor in its
inactive form (Fig. 2)

If the activator is periodically expressed and the inhibitor is
static, a failure in the periodic transcriptional program will inhibit
the transition and without a high transcription of the activator it
never happens (Fig. 2 upper panels). In this case, the positive
feedback loop(s) of TR cannot fire, since the inhibitor is fully
active. Without any activator, the TR cannot overcome this
inhibition. Thus, the default message is to STOP the cell cycle if
the periodic transcription is perturbed. Examples for this type of
regulation include the G2/M control of fission yeast and the G1/S
control of budding yeast cells (Table 1) in which transitions are
blocked when the activators are missing [37,38]. Note that in the
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Table 1. Cell cycle transition regulation in various organisms.
Transition Organism TR Inhibitor Activator ChP PFB
G2/M Fission yeast Cdc2/Cdc13 Weel Cdc25 B B
Budding yeast Cdc28/Clb2 Swel Mih1 |
Fly Cdk1/CyclinB Wee1l, Myt1 String B 1
Frog Cdc2/CyclinB Weel, Myt1 Cdc25 B
Human Cdc2/CcnB1,2 Weelhu hCdc25¢ B
Myt1
M/G1 Budding yeast Cdh1, Sic1 Cdc28/Clb2 Cdc14 A I
Pds7™ Cdc14% Cdc28/CIb2* / /
Fission yeast Wee1, (Cdc25 inactivation) Cdc2/Cdc13 Clp1 A 1
Human Wee1hu, (hCdc25c inactivation) Cdc2/CcnB1,2 Cdc14A or PP2A A B
Cdh1 Cdc2/CcnB1,2 Cdc14A A |
G1/S Budding yeast Whis"™" Cdc28/CIn1,2,3 Cdc14 / /
Fission yeast Cdc2/Cig2 Mik1 Pyp3 I A
Human Cdk2/CycE,A Weelhu hCdc25a A A
Rb1'"P Cdk6/CycD Cdk2/CycE PP1 / /
Cell cycle transition regulatory modules that resemble (in part or whole) the structure of Figure 1 were collected, together with the known information about periodic
transcription, the existence of checkpoint and positive feedback regulation. Checkpoint regulation (ChP) and positive feedback loop (PFB) notation: A- acting through
activator, I - through inhibitor, B- through both of them. Bold letters note genes that are periodically expressed during the cell cycle [2]. Note that all regulations are by
phosphorylation - dephosphorylation reactions, with activators being phosphatases and inhibitors being kinases, except two reverse systems, noted by .
Inh superscript and italic letters for the whole row means the TR is an inhibitor of the cell cycle transition, thus all effects on it are acting with reverse sign to the
transition, furthermore an inhibitor of such a transition inhibitor is an indirect activator of the transition. (Detailed discussion and references for all of these findings can
be found in File S1).
doi:10.1371/journal.pone.0029716.t001

case of the budding yeast G1/S control Whi5 is a TR that inhibits
the transition and its inhibitor is periodically expressed, which
leads to the STOP transcriptional control of the transition.

The above findings suggest that the most important transitions
of the cell cycle are regulated by STOP transcriptional control of
an activator that can be easily delayed in case of failure. In human
cell cycle regulation, we explored the controls of the various forms
of Cdc25: direct experiments showed that the level of the mitotic
Cdc25c¢ is constant, whereas the other forms are periodic [39]. In
the view of the proposed GO and STOP regulations, this would
suggest that human G1/8 is the major control point with a STOP
control and G2/M is less important with a GO control. The
regulation of the restriction point transition inhibitor Rbl also
supports the idea that in human cells the G1/S transition is more
carefully controlled by transcriptional regulation than the G2/M
or M/G1 transitions.

The M/GI1 transition is best characterized in budding yeast.
The activation of Cdc20 induces a cascade of events that lead to
Cdcl4 activation [40,41], which serves as the major activator of
the irreversible exit of mitosis. The role of positive feedbacks in
Sicl, Cdhl and Pdsl regulation were established in recent years
[26,42,43] and the importance of some of these proteins in the
irreversibility of the transition was also proved [27]. Cdc14 inhibits
the transition inhibitor Pds] and activates the transition activators
Sicl and Cdhl and periodically appearing Cdc28/Clb2 acts as an
inhibitor of the transition — leading to a GO transcriptional
control. Cdc28/Clb2 also affects Cdcl4 activity directly [44], the
introduction of such crosstalk do not influence our simulation
results (not shown), still such feed-forward regulation could help
the irreversibility of the transition [45,46].

As we found that most TRs are also periodically expressed
during the cell cycle (table 1), we wanted to test how problems in
transcriptional waves might influence the systems with the
proposed two transcriptional regulatory modes. Stochastic simu-
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Figure 2. Transcriptional control modes of cell cycle transitions. Computational simulations of the system presented in figure 1 with
transcription factor (TF) acting on the activator (upper panels) or on the inhibitor (lower panels) of TR, while the other regulator is assumed to be
present in a constant total amount. At time =0 we turned on the transcription of TR and of the activator or inhibitor with a highly active (left column)
or a reduced (10%) activity (right column) of TF or TF,. Plotted are the molecule numbers of the active forms of: activator - green, inhibitor - red, TR* -
black. At high TF level the two system behave similarly hitting the presumed TR* threshold (grey dashed line) at the same time, but at reduced
transcriptional level they show totally different behavior. (Both positive feedbacks were working during these simulations, removal of one of them
does not change the qualitative picture — see File S1). One can notice the elevated noise the transcriptional regulation causes in the activator and

inhibitor levels.
doi:10.1371/journal.pone.0029716.9002

lations were initiated from the time point when TR transcription
started, and we tested how the timing of the cell cycle transition
(time for TR* to hit a critical value) depends on the time when the
periodic regulator (activator or inhibitor) transcription is initiated.
A delay (positive values on x-scale of Iig. 3) or advance (negative
values) in the transcription of the activator compared to
transcription of TR, causes less divergence. On the other hand,
a bit of a delay in the inhibitor transcriptional induction (GO
control) can cause a large advance in the timing of cell cycle
transitions (Fig. 3). This difference between the two systems is the
result of positive feedback loops which lock the transition
controllers in either one of two stable states. In one state, the
nhibitor 1s active, TR is inactive and the activator is inactive. In
the other state, TR can turn its loop with the active activator ON
causing the inactivation of the inhibitor. In which of the two steady
states the system locks depend on the initial state and on the
activator and inhibitor levels.

To better see the significance of the positive feedback loops, we
characterize the bistability of cell cycle transitions [11,12,24] in the
various models with different regulations. Figure 4 shows that the
transcriptional STOP and GO controls do not show great
differences in bistability - measured by the averages (£ standard
deviation) of stochastic simulations with slowly increasing or
decreasing TR synthesis rate [47]. A small reduction in the
bistable regime (thus the robustness of the switch) for GO
controlled model however could be observed. Still, we conclude
that transcriptional regulation has a minor role in the bistability of
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cell cycle transitions. Plots shown in figure 4 were created from
both positive feedback loops present in the system. In File S1, we
show that one positive feedback is enough to create bistability and
the bistable regions are quite similar in GO and STOP controlled
systems. Still with one positive feedback the bistability is reduced
compared to the two loops system [20].

Since our model uses arbitrary parameter values that were
selected in order to get a sharp threshold for TR activation (at the
same TR synthesis rate — see Fig. 4), we were interested in how
robustly these sharp cell cycle transitions are preserved for
parameter variations. We find (Fig. 5) that similarly to the results
presented above, the model with transcriptional regulation of the
activator (STOP control) leads to lower noise for parameter
variations compared to systems with transcriptional regulation of
the inhibitor (GO control). We see this trend both in the increased
spread on the timing of successful transitions and in the decreased
percentage of successful transitions as parameter variation
increases (dots and solid line respectively on Fig. 5). As the
bistability test also suggested above, the presence of both positive
feedback loops give a model with the best parameter robustness,
but its advantage compared to a single positive feedback system is
minimal (File S1). Thus, we conclude that robustness of cell cycle
transitions depend most on the modes of transcriptional control as
long as at least one strong positive feedback is present in the
system.

Next, we test how reliably the various model versions provide a
cell cycle transition that can support robust cell cycle oscillations.
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Figure 3. Effects of advance or delay in timing of transcrip-
tional induction of activator or inhibitor. Time for the active form
(TR*) to reach a threshold is registered versus the time difference
between transcriptional initiation of the activator (green) or inhibitor
(red). Rectangles show averages, shaded backgrounds show * standard
deviations from 1000 simulations at a given transcriptional advance
(negative values on x-axis) or delay (positive values) compared to TR
transcription.

doi:10.1371/journal.pone.0029716.g003

We connected the cell cycle transition models to a minimal
negative feedback loop model [48], where a high level of TR*
induces its own degradation. Such combination of positive and
negative feedback loops is expected to give a robust minimal cell
cycle oscillator [13,18,49]. We observe that in the presence of both
positive feedback loops, the two transcriptional regulations do not
show relevant differences in oscillation robustness, but the
combination of transcriptional regulation and positive feedback
both acting on the inhibitor cannot provide reliable oscillations
(File S1). Thus, we conclude that in the case of absence of positive
feedback on the activator, the STOP controlled (TF on activator)
cell cycle transitions more reliably provide a robust control in
oscillating cell cycles.

As Figure 1 and Table 1 show, checkpoints of the cell cycle can
act either by up-regulating the inhibitors or down-regulating the
activators or both. We computationally check how the three types
of checkpoint signaling can delay the transitions in the various
versions of the model. In Figure 6, we plot how long different
strength checkpoints can delay cell cycle transitions. In most cases,
the STOP control gives a tighter checkpoint block than a GO
control, especially in the case when the checkpoint acts only on the
inhibitor. Even a strong checkpoint signal on the inhibitor is
unable to block the transition in a GO control model (Fig. 6B),
while in a STOP control model the same checkpoint strength
could be enough to block the transition indefinitely (Fig. 6A). We
conclude that systems with checkpoints acting only on the
inhibitor and transcriptional control also affecting the inhibitor,
cannot give a reliable cell cycle block. This is the case for the
budding yeast G2/M control system (Table 1), which can adapt
and leak through the morphogenesis checkpoint [36]. If only one
of the positive feedbacks is present then the trends are similar:
transcription and checkpoint both on inhibitor are ineffective in
stopping the transition (File S1), thus major differences by the loss
of one feedback cannot be noticed. We conclude that in the case of
transcriptional regulation on the inhibitor, the checkpoint should
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Figure 4. Bistability in cell cycle transitions under various
transcriptional control modes. Similarly to experimental investiga-
tions of bistability of cell cycle transitions [11,12], here we plot the in
silico calculated average steady state molecular levels of the active form
TR* when its synthesis rate was moved from lower to higher values
(filled rectangles) or when it was moved from high to low values (empty
rectangles). Error bars show * standard deviation of 100 simulations at
each input values. (A) TF4 is active and inhibitor level is constant (STOP
control), (B) the other way around (GO control). Grey dashed lines show
an idealized threshold value, above this level TR* induces the cell cycle
transition. When TR synthesis is increasing both models show a sharp
ON transition when TR synthesis crosses ~0.0013 (we set the flexible
parameters of the models to get this value approximately equal in all
cases).

doi:10.1371/journal.pone.0029716.g004

act on the activator or on both regulators in order to give a solid
cell cycle block. Cell cycle transitions with transcriptional control
of the activator can be better stopped by the checkpoint acting
either on the activator or inhibitor.

Discussion

The key regulatory components of the cell cycle were discovered
more than 30 years ago [50] and the universal picture that positive
feedback loops regulate mitotic entry has gradually emerged
[9,18,19,51]. Here we investigated how far this universality holds
for all cell cycle transitions in some of the most well studied
organisms. Our computational modeling results suggest that there
are crucial differences in transition dynamics if periodic transcrip-
tion acts on the activator or inhibitor of the transition. The exact
details of checkpoint and positive feedback regulation are not that
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Figure 5. Parameter robustness test of the models. We tested
how extrinsic parameter variations in the regulation of the transcrip-
tionally controlled proteins influence the timing of cell cycle transitions.
The parameters that control synthesis and degradation of the activator
(A) or inhibitor (B) were randomly sampled (1000 parameter sets)
between one tenth and ten times the basal values and the variations in
the timing of the transitions are reported versus a measure of
parameter variation distance as earlier defined [68]. Each colored dot
represents the average of 100 parallel stochastic simulations at a
randomly drawn parameter set, orange dots stand for parameter
combinations where not all 100 simulations gave successful transitions
(TR* hitting the critical value). Connected blue dots give the average
percentage of successful transitions, with black lines giving *+ standard
deviation (corresponding values on the right y-axis).
doi:10.1371/journal.pone.0029716.g005

crucial for proper cell cycle transitions, still co-existence of the two
feedback loops makes the transitions more robust and checkpoints
acting on both regulators are more capable of stopping the
transitions. Our literature survey shows that there is no evidence
for the existence for such double regulations in all investigated
organisms at various cell cycle transitions.

The major differences between cell cycle transitions are in the
transcriptional regulation of the activator and inhibitor of the
transition regulators. In all investigated cases only one is regulated
periodically during the cell cycle (Table 1). The computational
analysis shows that the transcriptional regulation of the inhibitor
leads to a systems that is less robust for transcriptional delays or
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Figure 6. Checkpoint efficiency on various versions of cell cycle
transition control models. ChP, of figure 1 is inhibiting the activator
of the TR, while ChP; moves the inhibitor into a form that is more active
in inhibiting TR* [69] and ChPg labels results when both checkpoints are
effective with similar strength (see File S1 for more details). We plot the
average times of cell cycle transitions (and with error bars the =*
standard deviation) of 1000 stochastic simulations for each model
version. Where the columns exceed the plot height, transitions did not
occur in >90% of the simulations, so here the checkpoints hold tightly.
doi:10.1371/journal.pone.0029716.g006

parameter variations and less responsive for checkpoint controls;
furthermore, it is less effective to serve as the regulator of a single
transition in a cell cycle oscillator. Thus, we termed this as “GO
control”, as it is effective in passing through the transition even in
the case of a failure. By contrast, “STOP control” is achieved by
transcriptional regulation of the activator. This module does not
allow the transition to happen in case of a failure and gives a
higher robustness of the transition in all investigated tests. Thus,
our computational analysis predicts that the most important cell
cycle transitions need to be regulated by STOP control. Indeed the
G2/M control of fission yeast cells and G1/S control of budding
yeast and human cells are under STOP control (Table 1 - also
note that a GO control of a transition inhibitor is a STOP signal
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for the transition). These are the most crucial control points of the
cell cycle of these organisms [1]. On the other hand, some cell
cycle transitions are much less carefully controlled by a GO
control as we see in some cases (Table 1). Various checkpoints in
yeasts and higher eukaryotes can adapt and allow the cells to
proceed even in the case of a failure and leave the repair for later
times [34,35]. Our analysis suggests that in these cases, a GO
transcriptional control works together with a checkpoint working
only on the inhibitor. Indeed in the budding yeast G2/M
transition and morphogenesis checkpoint is controlled by a
checkpoint that acts only on the inhibitor and has a GO
transcriptional control [2,36,52].

On the other hand, the most reliable transitions we observe are
when both positive feedbacks are working and when checkpoints
act on both regulators. One would expect to see this setup for all of
the important transitions and indeed for the most investigated G2/
M transitions we found all the needed pieces of evidence [20,21].
Maybe we just lack the key experiments from other organisms, but
it also could be that evolution found these double regulations too
expensive and solved it with a cheaper - although a bit less reliable
- system. Our analysis suggests that the most reliable, although
more economical solution is the use of the positive feedback
through the inhibitor, the checkpoint on the activator together
with a STOP transcriptional control on the activator. Some recent
evidence supports these findings as the positive feedback loop
through the inhibition of the inhibitor was suggested to be the
most important for the robustness of the transitions [14,22,53,54]
and the activator, Cdc25 was suggested as the major target of the
mitotic checkpoint [39,55]. It is also worth noticing that in most
cases phosphatases are the activators of TR, which itself is often a
kinase, in particular a cyclin-dependent kinase. Importance of
phosphatases for M/Gl1 transition has been already discussed [56],
our analysis suggests that they might be generally important for
cell cycle transitions.

We collected data in Table 1 from experiments that were indeed
performed in the given cell type. During our literature review, we
noticed that many papers use results from experiments on other
organisms to build their further investigations on different cell
types; e.g. considering the effect of frog PP2a on Cdk targets [57]
as a starting point of investigations of human cells [58]. Such
merging of experimental results from different organisms could
lead to a universal picture, but until all experiments are performed
on a given organism we cannot be sure if the lack of a link
compared to the universal network of figure 1 is a consequence of
lack of knowledge or a result of special dynamical or economical
constraints.

Following the observation that we did not find a single case in
which both regulators are periodically expressed, we further
speculate that the periodic transcription of crucial regulators might
have been a subject of selection. If either the activator or inhibitor
is more often needed in the life cycle of the cell, then this protein
might be selected for constant transcription, while proteins with
lower demand might keep periodic transcriptional regulation
[59-61]. Such thinking suggests that cell cycle transitions that are
usually passed quickly are selected for GO transcriptional control
while transitions that are halted for longer times are under STOP
control. The two yeast systems perfectly fit this picture with
budding yeast having GO control in G2/M and STOP at G1/S
and fission yeast having it the opposite way, but having its critical
transition at G2/M compared to budding yeast with an essential
G1/S control.

Following our findings on lack of evidence to support a universal
view of all cell cycle transitions, we propose to investigate more
carefully if a cell cycle transition regulatory effect is conserved
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between organisms. We present a unified picture of all possible
transcriptional and post-translational controls on cell cycle
transition regulators (Fig. 1), but parts of this interaction network
might be missing from some of the transition regulatory networks
in various organisms. Depending on which part of the system is
missing, it can have different effect on transition dynamics. This
could be an explanation for the observed differences in the cell
cycle regulation of different organism. Indeed, recent results in
plants show that the regulatory network interactions greatly differ
from the yeast or metazoan systems [62] and even in the yeast
there are some opposing ideas about the importance of some of the
interactions [63,64]. Such uncertainty in the presence or absence
of some regulations might cause a problem in understanding cell
cycle regulation. For instance, variations in transcriptional
regulation could have a major impact on differentiated mamma-
lian cells, where different cell types in the same organism have
different transcriptional profiles [65]. Our results suggest that such
transcriptional alterations of cell cycle transition regulators can
cause a major change in the dynamics of these transitions.

Methods

In this section, we give a high-level explanation of the methods
we used. A more detailed description can be found in File S1.

Model development

We built models of cell cycle transition regulations representing
different combinations of three regulatory effects such as
transcription, post-translational positive feedback and checkpoint.
Transcription factors can act on the activator or on the inhibitor (2
sub-model types); positive feedback can work through the
activator, through the inhibitor or both (3 sub-model types) and
checkpoints can be absent or act on activator or inhibitor or on
both (4 sub-model types). All combinations of these lead to 24
models. In the main text, we mainly discuss the models where both
positive feedbacks are active while the models with only one
positive feedback are mainly discussed in File S1. Also in File S1,
we discuss the extension of the basic 6 models (no checkpoints) by
a negative feedback loop.

Model implementation

All the models have been created using the BlenX programming
language [32] and simulated by means of the Beta Workbench
[66]. BlenX is a language based on process calculi and rule-based
paradigms. It is a stochastic language in the sense that the
probability and speed of the interactions are specified in the
program. In this respect, we solve the models by a stochastic
simulator based on an efficient variant of the Gillespie algorithm
[67]. In File S1, we provide detailed description of the simulation
methods of results presented in the figures 2, 3, 4, 5, 6.

Supporting Information

File S1 Supplementary text containing and extended
version of Table 1 with references, details on model
development and implementation. Here we also describe
simulation methods and details on the main figures of the paper
with 7 figures and 7 tables.

(PDF)
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regulation, as its highly polarized growth pattern is tightly
correlated with cell cycle progression [7,11]. After cytokinesis,
newborn S. pombe cells resume growth in Gl in a monopolar
fashion from their ‘old end’ - the cell end that existed prior to
division - and later in early G2 activate growth at their ‘new end’
derived from the site of septation, an event termed new-end take-
off or NETO [12]. Bipolar growth then continues through G2
until cells reach a critical size, after which cells enter M phase
again. At that point cells stop growing [13], mitosis takes place and
cach cell divides by growing a septum in its middle. Daughter cells
resume their cyclic pattern of growth at the ends and division at
the middle, a pattern that relies on the cytoskeleton of actin and
microtubules and on diverse polarity-regulating proteins (‘polarity
factors’). Cytokinesis, polarity, and the cell cycle have been
extensively studied in fission yeast —using both experiments and
mathematical modelling [14-18]. The insights gained from studies
in fission yeast often carry over to higher eukaryotes, as the
molecular machinery controlling those processes has been highly
conserved throughout evolution [1,19,20].

Several proteins have been identified that play important roles
connecting these processes in fission yeast. For example, the
polarized growth-regulating DYRK  kinase Poml [21] was

Introduction

The eukaryotic cell cycle is one of the most important and
evolutionary conserved processes of cells [1,2]. The cell cycle
integrates signals from multiple pathways to control tissue growth
and homeostasis in multicellular organisms, as well as reproduc-
tion and proliferation in single cell organisms [3]. To ensure cell
integrity, the cell cycle regulates and is regulated by other key
processes such as DNA replication, cytokinesis and cell growth [4—
9]. Disruption of the regulation between the cell cycle and other
cellular processes can cause a myriad of cellular pathologies
including defects in cell shape, abnormal cell growth and
ancuploidy, potentially leading to cancer [10].

With the accumulation of data from high-throughput biology as
well as the generalisation of manually curated online databases, we
now can mine existing biological networks to make experimentally
verifiable predictions about system-wide properties of genes and
gene products. In this work, we present a new method to search for
proteins that serve as linkers between distinct functional sub-
networks. Because of the well-characterized interactions between
the cell cycle and other processes in the fission yeast Schizosacchar-
omyces pombe, we focus our analysis on this organism, where these

processes have not yet been investigated yet by protein interaction
network analysis methods.

The fission yeast - a rod-shaped unicellular eukaryote - is ideally
suited to study the relationship between cell cycle and cell polarity

PLOS Computational Biology | www.ploscompbiol.org

recently shown to form a spatial gradient that is used by the cell
cycle machinery to sense the length of the cell [17,22,23]. Another
link was observed between the morphogenesis-related NDR kinase
network (MOR) and the septation initiation network (SIN) [24].
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Author Summary

Analysis of protein interaction networks has been of use as
a means to grapple with the complexity of the interactome
of biological organisms. So far, network based approaches
have only been used in a limited number of organisms due
to the lack of high-throughput experiments. In this study,
we investigate by graph theoretical network analysis
approaches the protein-protein interaction network of
fission yeast, and present a new network measure,
linkerity, that predicts the ability of certain proteins to
function as bridges between diverse cellular processes. We
apply this linkerity measure to a highly conserved and
coupled subset of the fission yeast network, consisting of
the proteins that regulate cell cycle, polarized cell growth,
and cell division. In depth literature analysis confirms that
several proteins identified as linkers of cell polarity
regulation are indeed also associated with cell cycle and/
or cell division control. Similarly, experimental testing
confirms that a mostly uncharacterized polarity regulator
identified by the method as an important linker is
regulated by the cell cycle, as predicted.

MOR is important for the localization of actin patches to sites of
polarized growth, while SIN is responsible for triggering cytoki-
nesis. It was discovered that SIN inhibits the MOR pathway,
through inhibition of the Orb6 activator Nakl. MOR itself also
interferes with SIN, and this antagonism is required for proper
progression through the cell cycle [25,26]. Furthermore, a similar
antagonism between the MOR and SIN pathways has also been
observed in higher eukaryotes [27,28]. The NETO transition from
monopolar to bipolar growth and the switch from polarized
growth to actin ring-mediated cell septation are also controlled by
the cell cycle [13], thus the cell cycle machinery enforces a major
control on both polarized growth and cytokinesis. Although many
polarity or cytokinesis regulators contain potential phosphoryla-
tion sites for the cell cycle-regulating Cyclin-Dependent Kinases
[29] (CDK), the molecular details of these couplings are not well
known. In the other direction, if either polarized cell growth or
cytokinesis is inhibited, both can send signals to stop the cell cycle
[30,31], further underlining that these three functional modules
are highly interlinked.

To tackle the interplay between different cellular processes, we
utilized a network theory approach. Hitherto, network based
approaches have only been used in a limited number of organisms,
due to the paucity of genome-wide interaction data available for
most species. Recently, however, improvements in automatic
experimental annotation, literature mining [32], machine learning
[33] and orthology annotations [34], are allowing the use of
network approaches in a wider range of organisms. For example,
‘meta databases’ such as STRING [35,36], benchmark informa-
tion from multiple sources and provide for each possible
interaction a confidence score that reflects the likelihood of a set
of proteins of actually interacting. Here, we take advantage of such
developments and build on the efforts of the fission yeast
community in annotating protein functions [37-39], to establish
a new method to identify proteins linking diverse cellular
processes, based on integrating Gene Ontology (GO) [40,41]
and Protein-Protein Interaction (PPI) data together with network
theory based measures. Network-based approaches in biology
have been used in the past to identify community structures, study
lethality, identify specific regulatory circuits and study hierarchical
organization [42]. In particular, the nature of large scale protein-
protein interaction networks has recently been under considerable
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Linkers of the Fission Yeast Protein Network

debate with different groups disagreeing about the modularity of
networks, as well as the properties of the nodes responsible for
bringing together different modules [43-46]. In this work, we
sidestep the difficult problem of identifying hierarchical modules in
a large, genome-wide network and focus instead on a method to
identify proteins that link different cellular processes. To do this,
we use the highly characterized sub-genomic network consisting of
proteins regulating the cell cycle, cytokinesis, and polarized cell
growth in fission yeast. We propose a new network measure,
termed ‘linkerity’, and use it to predict a novel role for a number of
proteins as key bridges between these biological processes.

Results

Constructing and validating the fission yeast protein
interaction network

We constructed the fission yeast protein-interaction network
using data from STRING [35,36] and BioGRID [47]. By applying
a cutoff on the confidence score from STRING, we can reject
interaction pairs for which there is a limited amount of evidence
(see Materials and Methods for details on data in STRING) and
use the remaining edges to construct a non-directed and non-
weighted network.

We then examined the effects of increasing the cutoff in
STRING confidence scores in both the genome-wide interaction
dataset of fission yeast and that of the better characterized budding
yeast Saccharomyces cerevisiae on the network topology. Increasing the
cutoff’ decreased the amount of nodes (Figure 1A) and the edge
density (Figure 1B) in the largest component (the connected
component in the network containing the highest number of edges
and nodes) of both the fission and budding yeast networks (Tables
S1, S2). This decrease was less sharp in budding yeast compared to
fission yeast due to the extensive amount of genome-wide
interaction experiments carried out in the former, increasing the
amount of high-confidence interactions. Interestingly, in the ‘core’
sub-network consisting of proteins involved in cell cycle regulation,
polarity and cytokinesis (Figure 2 for fission yeast and Figure S1 for
budding yeast), the drop off in the number of nodes and edges was
far less significant in both yeasts, suggesting that interaction data
for the core fission yeast network tends to be more reliable than
interaction data for the rest of the network (Figure 1, red stars
versus red dots, also Tables S1, S2, S3, S4). As a more stringent
test, we constructed networks for both organisms using only data
from BioGRID [47]. BioGRID is a database that only contains
data from manually annotated experiments (distinguishing be-
tween experiments that show direct physical interaction and
genetic interactions). Networks built using the BioGRID physical
interaction data also show that the core networks of fission yeast
and budding yeast are relatively dense, while the fission yeast
organism-wide network is rather sparse (Figure 1). Even with the
relatively high coverage of the core (regulation of cell cycle,
cytokinesis, polarity) network in fission yeast, it is important to note
that fission yeast lacks any genome-wide protein-protein interac-
tion experiments, and as such, several of the interactions predicted
by STRING are based on indirect evidence such as genetic
interactions, inference from homology, or literature mining
[35,36].

As no analysis of the fission yeast network has been previously
published, we performed a few checks to verify that our network
construction procedure was giving sensible results, and that the
data for fission yeast available in STRING was of sufficiently high
quality. As a first check, we sought to replicate a number of
analyses previously performed with budding yeast (Table 1). At a
cutoff of 0.7 (defined by STRING as a ‘high confidence’
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Figure 1. Dependence of network measures on protein-protein interaction data quality. As we increase the minimal accepted confidence
(cutoff) for the PPI data of the STRING database, the number of nodes in the largest connected component (A) and the network density (B) both
decrease for all networks. This decrease is faster in fission yeast compared to budding yeast, and faster in the full organism network compared to the
core network. Triangles overlaid on each curve show the same network measures for the PPl network based on the BioGRID database, the position on
the x-axis of BioGRID data is calculated using linear interpolation to estimate the corresponding cutoff in STRING which would give a similarly-sized
network, thus the overlay of the BioGRID data gives an indication how this relates to different cutoff STRING data. As can be seen from the figure
panels the fission yeast core network is quite robust to cutoff changes and behaves similarly to the core network of budding yeast cells. This is also
true for the core networks based on BioGRID data.

doi:10.1371/journal.pcbi.1002732.g001

threshold), the genome-wide fission yeast network has 2770 nodes
with at least one connection and 20432 edges compared to 5477
nodes and 105429 edges found in budding yeast, although they
have approximately similar number of proteins. We calculated the
degree distribution for the nodes in the network, and observed

that, as previously described for numerous other complex networks
[48], the fission yeast PPI network has a scale-free distribution
(Figure S2). We also repeated analyses done in numerous other
studies examining the relationship between network measures and
gene deletion lethality [43-45]. As reported for budding yeast, we

Cytokinesis

Polarity

Cell cycle:
Cytokinesis:

Polarity: {

Figure 2. The cell cycle + cytokinesis + polarity = core interaction network of fission yeast proteins. (A) Venn diagram showing the
overlap among the different Gene Ontology functional groups for the proteins belonging to the core network. Proteins with multiple functional
annotations have colours that are the sum of the colours of the individual functional annotations; proteins belonging to all three functional groups
are in white. (B) Protein-protein interactions inside the fission yeast core network (from the STRING database at cutoff 0.7). Node colours are the same
as in panel A. Node size is proportional to the degree of each protein, and node order within a category (clockwise) is also determined by degree. 165
black edges link proteins that do not share functional annotations, while 1869 grey edges link proteins that have at least one common GO annotation
(thus white nodes have only grey links). White nodes (nodes belonging to all categories) are shown in the inner circle in the middle of the network.
doi:10.1371/journal.pcbi.1002732.9002

- GO:0051726 : regulation of cell cycle
GO:0000910 : cytokinesis

- GO:0007163 : establishment or maintenance of cell polarity

- GO:0000902 : cell morphogenesis
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observed that degree (the number of interactions with other
proteins) is the best predictor network measure of gene deletion-
induced lethality in fission yeast, and that ratio of these essential
genes among hubs (the top 20% of proteins by degree) is even
higher in fission yeast than in budding yeast (see Text S1).

Since there is no high-throughput genome-wide interaction data
available for fission yeast, we tested the possibility that highly
investigated proteins might have more interactions. To check this,
we tested to see whether the number of abstracts in PubMed
discussing a particular protein was correlated with the degree of
that protein in the network. The Pearson correlation between the
number of PubMed abstracts citing a protein and its degree in the
network was 0.13 for budding yeast (p-value<<10~'%) and 0.14 for
fission yeast (p-value<<10~'?) (details in Tables S1, S2), suggesting
there is no fission yeast-specific bias for proteins with large
amounts of publications in STRING networks. However, a large
amount of evidence for the fission yeast interactions in STRING is
obtained from homology, and specifically from interactions of
homologues proteins in budding yeast. As essential genes are more
likely to be conserved [49,50] and STRING is more likely to
identify homology between highly conserved genes, it is possible
that this might introduce a subtle bias making essential genes
appear to be more highly connected in virtue of their higher
conservation. This is consistent with the observation that a very
high percentage of hubs in fission yeast appear to be essential (Text

S1).

The core network of regulators of the cell cycle, cell
polarity and cytokinesis

The sub-network of all proteins regulating cell cycle, cytokinesis
and polarized growth, henceforth, the ‘core’ network (see
Materials and Methods for definitions of exact GO terms used)
in fission yeast contains 550 proteins: 384 of those are associated
with regulation of cell cycle, 155 with cytokinesis and 139 with
polarity. Using a cutoff of 0.7 in STRING, 429 of the total 550
proteins are connected to the largest connected component of the
core network. Most of the proteins not in the network have no
known interactions, and the second largest connected component
contains only 4 proteins, thus we focus only on the interaction
network of the largest connected component. There are a high
number of proteins with multiple functions in the network
(Figure 2A), 16 of them (Alp4, Cdcl5, Gsk3, Lskl, Mor2, Orb6,
Pabl, Pmo25, Poml, Ppbl, Rasl, Scdl, Shkl, Sid2, Teal, Wspl)
are important for all three cellular processes and 77 have dual
functions. The ratio of multifunctional proteins is quite similar to
the ratio in the analogous core budding yeast network (Figure S1).
Interestingly the budding yeast core network contains less nodes
than the fission yeast core network (although it is more densely
connected), this could be a consequence of the extensive studies of

Linkers of the Fission Yeast Protein Network

cytokinesis [19], cell cycle [51] and cell polarity [13] and their
careful annotation in fission yeast [37-39], but it also reflects the
loss of some of the conserved eukaryotic cell cycle genes from
budding yeast [29,52].

The core interaction network contains several interactions
between proteins that do not share a GO annotation; however the
majority of links (91%) are between proteins which share at least
one functional annotation among those under consideration
(regulation of cell cycle, cytokinesis, and polarity) (Figure 2B).
To probe this, we examined the relationship between the
functional annotation of a node and that of its interaction
partners. In fission yeast, any protein with a given functional
annotation was 11 times (1.9 would be expected randomly, see
Figure S3A) more likely to interact with another protein with the
same functional annotation than with another protein with
different functional annotations (for the budding yeast core
network, this ratio was 4.5 vs. 1.06 expected, see Figure S3B).
Since fission yeast has more proteins that belong to all three
categories (16 in fission yeast versus 6 in budding yeast), we tested
to see whether this observed functional modularity was due to their
presence. We removed all proteins belonging to all three categories
from both networks and repeated the analysis. This did not
significantly alter the results as the ratios remained after the
removal (10.38 times more likely for fission yeast and 4.16 for
budding yeast) suggesting that the functional modularity observed
in fission yeast is not caused by the presence of highly connected
proteins with multiple annotations, but rather that the fission yeast
network is characterized by strong connections between local
communities that share functional annotations. It is however
important to note that the GO categories ‘regulation of cell cycle’
and ‘cytokinesis’ are partially overlapping. In particular ‘regulation
of cell cycle cytokinesis’ is a child term of both ‘regulation of cell
cycle’ and ‘cytokinesis’. Even when taking this overlap into
account in the analysis, we still observe a high degree of functional
modularity in the core networks of both fission and budding yeast
(not shown).

We further analyzed this effect using a community detection
algorithm, which identifies local communities in a network and
allows their overlap — as we have nodes with multiple annotations.
We applied the k-clique propagation algorithm [53,54] and
examined the communities generated by the method with k=4.
While the communities generated by the algorithm do not exactly
match the functional annotations, we find that the cliques
generated by the algorithm are primarily formed by proteins that
share functional annotations (Figure 3A,B). Upon closer exami-
nation, the few proteins that do not share a functional annotation
with the other members of a clique seem to have related roles: for
example, in the 5 clique on Figure 3B, the lone ‘non-polarity’
protein is Rgf3, which was shown to play an important cell-wall

Table 1. Network statistics and gene essentiality comparison between the two yeasts.

budding yeast fission yeast references
Degree Distribution: Scale Free Scale Free [105]
BC Distribution: Scale Free Scale Free [106]
Network measure most predictive of lethality: Degree Degree [45,107]
% of essential genes in hubs 39 56 [45]
% of essential genes in bottlenecks 31 47 [45]

doi:10.1371/journal.pcbi.1002732.t001

PLOS Computational Biology | www.ploscompbiol.org

Quality check of the fission yeast PPl network in comparison to earlier published data on the budding yeast PPl network. Hubs are the top 20% of nodes in the network
according to degree. Bottlenecks are the top 20% of nodes in the network according to betweenness centrality (BC).
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remodeling role downstream of Rhol, one of the key regulators of
polarity [55,56] (consult Table S5 for all clique members).

Identification of ‘linker’ proteins by network analysis

To systematically study proteins linking different cellular
processes, we next used a network-based approach aiming to
identify proteins that function as ‘linkers’ between different
functional categories (Figure 4A). To do so, we constructed
protein-protein interaction networks consisting only of proteins
with one of the investigated functional annotations (cell cycle,
cytokinesis or polarity regulation). We then calculated the
betweenness centrality score for every node in each of these
networks and in the merged core network. Betweenness Centrality
(BC) measures how often a node is found in the shortest path
between pairs of other nodes in the network; intuitively, it can be
thought of as a measure of how central a node is in a network. If a
node has a low centrality score it is localized at the fringe of a
network, while if it has a high score it is localized near the centre.
Next we ranked the proteins based on their BC score (in case of a
tie, these proteins got their average rank). To ensure that this
ranking method is robust even in the presence of imperfect

Cell cycle Cytokinesig

Polarity

Figure 3. Segregation of functional communities in the core
network. A clique propagation algorithm was used to identify locally
highly connected communities of the core network. The ten cliques
generated by the algorithm segregate in the interaction network if laid
out by a force-based algorithm that brings closer together the stronger
interacting groups (A). Node colour determined by the functional
annotation (same as Figure 2, inset on panel B here). Proteins belonging
to the same clique share the same border colour. Proteins belonging to
the same clique largely share functional annotations. Pie charts show
the functional distribution of proteins found in each clique (B).
Numbers report the number of proteins with the annotations
corresponding to the given colour coded annotation (see inset for
colours).

doi:10.1371/journal.pcbi.1002732.9g003
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interaction data certainly missing important links, we randomly
added 10% extra edges to all the networks 1000 times, and
recalculated the ranking of all proteins at each iteration (Figures
S4). While the exact ranking of proteins is not very robust to
addition of extra edges, if we examine all the proteins in the top
20%, we can observe that most fluctuate out of the top 20% only
very rarely, and that we nearly never observe a protein in the top
10% drop out of the top 20%. It is also reassuring that the top of
the rankings starts with expected key regulators of each function:
the polarity landmark Teal [57-59], the actin-regulating Rho
GTPase Cdc42 [60,61] and actin (Actl) all came on the top of the
polarity list. At the same time Cdc2, Weel and Cdc25 [62] are on
the top of the cell cycle list (and also on the top of the core list) and
the SIN scaffold Cdcll [63] and the CDK counteracting, SIN
activator phosphatase Clpl [64,65] are leading the cytokinesis
ranking (Figure S4 and Table S3).

In the next step we compared the betweenness centrality rank of
every protein in a sub-network to its relative rank in the core
network. Only proteins that were originally in the sub-network
were considered during this ranking based on scores they got for
their position in the core network. We then calculated the ratio of
the relative rank in the core network and the rank in the sub-
network. We termed this calculated value ‘linkerity’, as this value is
high for proteins that are found at the fringe of the network of
proteins controlling a given cellular process, but central when
considered in the context of a bigger network (Figure 4A):

Ranesup —netvork

linkerity = Rank
core

(1)
Proteins with high linkerity, we hypothesized, are likely to play a
crucial role to function as linkers between different cellular
processes. Specifically, we focused on the relationship of the
polarity network to the rest of the core network to clarify how the
cell cycle and the cytokinesis machinery control the temporal
changes in the localization of polarized growth zones (top of
Table 2, consult Table S3 for the rest of the list). Here, we show
the top 10 proteins with the highest linkerity scores. These proteins
became far more central when the polarity sub-network was
embedded into the core network. Most of these proteins have GO
annotations for multiple processes (among the annotations under
consideration), thus their linking capacity is not that surprising.
Novel linkers of polarity regulation could be those that were not
associated with cytokinesis or cell cycle control but gained a high
linkerity score in our analysis. The formin For3 [66], the AMP-
activated, Snfl-like protein kinase Ssp2 [67,68], the RINB-like
protein Sts5 [69] and the MRG family protein Alpl3 [70] are
examples of proteins that match this. For3 is a well-characterized
regulator of Teal to Cdc4?2 signalling [71,72], the other three are
less well characterized. The Rho GTPase Rho4 [73] might be also
an interesting linker candidate as it has established roles in polarity
and cytokinesis regulation, but its exact function is not well
characterized and it has no association to cell cycle regulation.
Despite this, Rho4 has a central position in the core network that
contains 75% cell cycle proteins (Figure 2A), furthermore its
expression is cell cycle regulated [74]. The highest linkerity
proteins from the cytokinesis and cell cycle regulation networks
also contain a number of proteins which are also associated with
polarity regulation (Table 2). Scdl, Pom1 and Teal are on the top
of the cell cycle linkerity list and Pmk1 [75], Shkl and Teal lead
the cytokinesis list after Bgsl, which is essential for cell wall
synthesis [76], but has no polarity related GO annotation. These
are on the edge of the cell cycle regulation or cytokinesis network
but became central when they are merged with the polarity
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Figure 4. Concepts of ‘linker’ protein detection and robustness of the method. (A) ‘Linker’ proteins are found at the edge of a sub-network,
but are central in the context of a larger network. Such proteins have low betweenness centrality (BC) score when considered in the context of their
sub-network, but have a high BC score in the core network even though they do not have a functional annotation to the other category making up
the core network. Black edges indicate edges between proteins that do not share functional annotations, while the other edges are gray. Table on
right gives ranks and linkerity measures for all nodes in network ‘A’ in the same style as Table 2 does. (B) Analysis of the robustness of linkerity scores
for the polarity network of fission yeast cells. We added 10% extra edges randomly to the network, and computed the linkerity score of all proteins
after each iteration. Bars show mean ranking with standard deviation. Blue dashed line indicates cutoff for top 10% and red line marks the top 20%
(results of other type of network perturbations are reported in Figure S5).

doi:10.1371/journal.pcbi.1002732.g004

network, thus these can be also considered as linkers. As above for
BC scores, we analysed the robustness of linkerity in the presence
of imperfect network interaction data: we added or removed 10%
of the edges from the core network at random or following a
preferential attachment model and calculated linkerity scores for
all proteins. Figure 4B reports the average and standard deviation
from 500 random networks with 10% extra edge (other cases in
Figure S5) for the top linkerity polarity proteins. Importantly the
top 10 of the unperturbed list (Table 2) can be found in the top 16
of the list after 10% possible missing links were considered
(Figure 4B).

As discussed above, in both fission yeast and budding yeast, we
observe a high degree of functional modularity, i.e. proteins tend
to interact with proteins that share their functional role. Since
linker proteins play a special role in bringing together different
cellular processes, we examined whether proteins with high
linkerity interacted with proteins with different functional roles
at a higher rate than low linkerity proteins. For all the proteins of
the core network we calculated the number of its interactors
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(network neighbours) with cell cycle, cytokinesis and polarity
annotations (Table S3). Then for every protein in each functional
category (Figure 2) we calculated the ratio of the number of its
interactions with proteins with the two other functional annota-
tions to the number of its interactions with proteins with the same
functional annotation. We observed that high linkerity is
significantly correlated with having a high ratio of heterogeneously
annotated neighbours across all functional categories in both
yeasts, suggesting that linker proteins do play an important role in
bridging proteins from different functional groups (see Text S2 for
details).

Sts5 is a novel linker protein bridging cell polarity to cell
cycle

Among predicted linker proteins we focused on Stsb, which is
known to genetically interact with Ssp2 [69], which itself is likely to
be linked with the cell cycle machinery as ssp24 cells cannot start
mitosis when nutrient-starved [77]. Stsd is an orthologue of
budding yeast SSD1 [78] and therefore a candidate translational
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Table 2. Top ten proteins with highest Linkerity measures
from the three sub-networks.

Protein Name GO terms Ranks,, Rankcere Linkerity
Polarity proteins

Rho4 Pol, Cyt 735 8 9.19

For3 Pol 35 5 7

Ssp2 Pol 735 19 3.87

Skb1 Pol, CC 38 13 292

Sts5 Pol 25 9 2.78

Cdr1 Pol, CC 735 29 253

Act1 Pol, Cyt 5 2 25

Cdc15 Pol, Cyt, CC 57 23 248

Alp13 Pol 54 22 245

Ppb1 Pol, Cyt, CC 27 12 225
Cytokinesis proteins

Bgs1 Cyt, CC 12 3 4

Pmk1 Pol, Cyt 64 16 4

Shk1 Pol, Cyt, CC 15 4 3.75

Teal Pol, Cyt, CC 32 9 3.55

Rho4 Pol, Cyt 17 7 243

Pab1 Pol, Cyt, CC 67 29 231

Cdc7 Cyt, CC 29 13 223

Plo1 Cyt, CC 24 m 2.18

Klp5 Cyt 30 14 2.14

Fin1 Cyt, CC 97 46 211

Cell cycle proteins

Scd1 Pol, Cyt, CC 288 39 738

Pom1 Pol, Cyt, CC 184 26 7.08

Teal Pol, Cyt, CC 143 25 572

Bgs' Cyt, CC 30 8 3.75

Cdc10 CcC 67 18 3.72

Cdc15 Pol, Cyt, CC 179 63 2.84

Cdc13 CcC 15 6 25

Its3 Cyt, CC 234 94 249

Mal3 Pol, CC 123 50 246

Pmh1 Pol, Cyt, CC 76 34 223

Proteins were ranked according to BC in the polarity/cytokinesis/cell cycle
regulation sub-networks (Ranksy, column) as well as in the core network
(Rankcore column). Proteins with the same BC score were given the same
ranking. In the core network, we considered proteins that also belonged to the
investigated sub-network and skipped all other proteins (thus we had three
different core network rankings). The cell cycle network gives higher linkerity
scores, since it contains more nodes, thus higher ranking jumps are possible.
Consult Table S3 for the rest of the lists. Table S4 contains the same data for
budding yeast cells. The second column gives the GO annotations of each
protein among polarity (Pol), cytokinesis (Cyt) and cell cycle (CC) related GO
terms as defined on Figure 2.

doi:10.1371/journal.pcbi.1002732.t002

repressor. It is reported to control actin localisation in interphase
and sts54 was shown to be compensated by mutations in Ssp2.
Furthermore, Sts5 mRNA levels were shown to oscillate [74,79].
To examine the interplay between Stsd and the cell cycle, we
tagged the endogenous protein with a triple GFP tag and
visualized its localization together with that of mCh-Atb2 (Alpha
tubulin 2), which labels microtubules and hence served as a cell
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cycle stage marker. In interphase cells, Sts5 had a mostly diffuse
cytoplasmic localization, however during mitosis it appeared to
localize in dotted, cytoplasmic bodies (Figure 5A). The number of
Sts5 dots increased throughout mitosis and peaked coinciding with
the assembly of the Post Anaphase Array (PPA) of microtubules
(Figure 5B). Time-lapse movies of mitotic cells also confirmed that
the number of cytoplasmic dots increased until the formation of
the PAA and sharply dropped to zero as cells entered interphase
(Figure S6). Previous studies of Sts5 [69] showed that it was
required for correct cell growth and actin patch localization during
interphase. Taken together with our results, this suggests that the
cell cycle controls Stsd activity by gradually sequestering it in
cytoplasmic bodies during mitosis.

Discussion

In this work, we have carried out the first network analysis
based, large-scale identification of proteins linking various cellular
processes in the fission yeast protein-protein interaction network.
Although data for fission yeast mostly comes from manually
annotated experiments, literature mining and computational
inference, the network displays features comparable to those
observed in other organisms. We have shown that the relationship
between lethality and different network measures holds in fission
yeast, and that network based approaches can give meaningful and
interesting results even in organisms lacking high-throughput
interaction experiments.

Our analysis of the core network of all proteins regulating cell
cycle, cytokinesis, and polarized growth revealed a striking degree
of functional modularity, which we have found to be highly robust
to the deletion of key nodes in the network. This functional
modularity was also observed when examining the communities
detected by a clique propagation algorithm. Detected communities
had very low heterogeneity between the functional annotations of
member proteins. We investigated this modularity further by using
a network approach to identify linker proteins bridging different
functional categories. We propose a new network measure,
linkerity, which is the ratio of the ranking by betweennness
centrality measures of all the nodes belonging to a given sub-
network considered in the sub-network alone and considered in
the context of a larger network (Figure 4A). This new network
measure does not appear to show strong correlation with other
existing network measures (Text S3). Due to the non-linear
distribution of betweenness centrality measures in real systems
[48], it might be necessary to normalize this linkerity measure in
case linkers between large sub-networks are investigated.

We tested this concept on the connections of the polarized cell
growth regulatory network to the cytokinesis and cell cycle
networks of fission yeast cells. These are highly characterized and
strongly interacting networks and the connection between these
processes is of high importance in other organisms [7,13,80-82].
We confirmed that many of the highest linkerity scoring proteins
in the polarity network were already known to play important
roles in multiple processes. Among these the F-BAR protein
Cdcl5 provide good validation as it was already shown to play a
role in switching from polarized growth to cytokinetic-actin ring
formation in mitosis [83]. Similarly Skbl [84] and Cdrl [17,23]
were shown to serve as links between cell cycle and cell polarity.
All these proteins shifted from a low ranking in the polarity
network to a high rank in the core network (Table 2), and thus
their role in polarity regulation might come from the pleotropic
behavior of these proteins or from their active role in connecting
polarized growth regulation to cell cycle and cytokinesis. We also
discovered that the proteins with high linkerity tend to interact
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Figure 5. Localization in cells of Sts5 during the cell cycle. (A) Imaging of fission yeast cells co-expressing Sts5-3GFP and mCh-atb2 (labelling
the different microtubule structures seen through the cell cycle, and hence acting as cell cycle stage indicators). Interphase cells (I) have diffuse Sts5
localization (with a few cytoplasmic speckles) while cells in mitosis (either in anaphase (A) or during the time of the post anaphase array (PAA)) have
several Sts5 cytoplasmic dots. Scalebar: 5 um. (B) Population based analysis of cycling cells revealed that at metaphase the number of Sts5 speckles
greatly increases and sharply drops during septum formation. Average and standard deviation of number of dots were automatically detected in

multiple cells (see Materials and Methods for details).
doi:10.1371/journal.pcbi.1002732.9005

with a more diverse set of proteins than those with low linkerity.
This suggests that high linkerity proteins might play a pleiotropic
role by linking together different functional processes [85,86].
Sts5 had the second highest ranking in the polarity network
among the top ten linkerity proteins (after actin, Actl that is also
essential for cytokinesis). Sts) is known to play an important role in
controlling the localization of the actin machinery to cell ends
during interphase, although Sts5 is localized in the cytoplasm [69].
We have shown that Sts5 is localized in cytoplasmic dots during
mitosis, but diffuse during interphase, implying that its localization
is cell cycle regulated. Growing tip localized polarity proteins
change their localization when cells enter mitosis [13,87], but it is
not expected from a cytoplasmic protein to localize into clusters in
a cell cycle dependent manner. The overall level of Sts5 protein
slightly increases upon entry to mitosis (Figure S6), but its activity
reaches its lowest level as its accumulation into cytoplasmic dots
reaches a peak. This suggests that the cell cycle controls polarity by
sequestering Stsd in and out of cytoplasmic bodies, and the
triggered release and sequestration function as switches between
polarized cell growth and cytokinesis. The exact nature of those
cytoplasmic bodies is still unclear, however the budding yeast Sts5
homologue SSD1 was shown to localize to P-bodies [88], the
cytoplasmic centers of mRINA degradation. Interestingly, like Sts5,
Ssp2 and the stress pathway kinase Wis4 are also localized into
cytoplasmic dots [89] and it was proposed that the stress pathway
and Sts5 might act in opposing manner on cell polarity [68]. It will
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be important in the future to investigate if these proteins co-
localize in the observed cytoplasmic dots and how these are exactly
controlled by the cell cycle.

Sts5 was previously shown to genetically interact with members
of the stress pathway [69]. A number of other kinases associated
with stress response (such as Styl, Skb1l, Orb6, Pmk1, Mkh1) have
been shown to have defects in NETO [84,89] and many of these
appear highly ranked in our linkerity lists (T'able 2). Furthermore,
the cell end-localized polarity factor Tea4 was also shown to
interact with the stress pathway [90]. These make the stress
pathway a particularly intriguing target for further analysis in the
search for proteins linking cell cycle and polarity, as it may play a
special role as a pleiotropy integrator of both internal and external
cellular signals in response to different stimuli in fission yeast and
also in higher cukaryotes [91,92]. The linkerity analysis of
cytokinesis and cell cycle regulatory proteins (bottom parts of
Table 2) also give some interesting predictions. For instance the
high linkerity of the transcription factor Cdcl0 [93] in the cell
cycle network suggests its role controlling the transcription of
important polarity and cytokinesis genes, especially with key
regulators, such as Cdcld, Scd2, Sts5, Rho4 and Sid2 having
periodic transcriptional profile [74,79].

While we believe that the method presented here can be applied
to other organisms and cellular processes to find linker proteins,
different model organisms offer unique advantages and challenges.
In this study, we took advantage of the extensive annotation of
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proteins by the fission yeast community to define discrete sub-
networks, bypassing the very difficult problems involved in
defining meaningful ‘communities’ using purely network based
approaches [46,54,94]. While this approach has its advantages, it
is important to be aware of any partial overlaps between the used
GO terms due to the presence of common child terms. The
amount of overlap between child terms is also not consistent across
multiple organisms, requiring special care when doing compari-
sons that involve multiple organisms (for example, the “regulation
of cell cycle cytokinesis™ is a child term of both “regulation of cell
cycle” and “cytokinesis” and it contains 47 proteins in fission
yeast, and only 4 proteins in budding yeast). Furthermore, while
we have shown that the ranking of proteins within the
communities is robust to noise, the actual communities detected
by various algorithms as well as the structure of the network are
strongly influenced by the granularity and quality of the
interaction data used (Text S4 and [95]). In fission yeast, where
interaction data is relatively sparse but there is extensive functional
annotation, it makes sense to use GO annotations to define
functional sub-networks [38]. Very recent network predictions
based on machine-learning methods [33] will enable us to perform
more careful analysis in this organism as well. Other organisms
with larger gene sets will often have a lower annotation coverage
[96]; in these cases functional groups in the PPI network need to
be identified by community detection algorithms or predefined by
the authors [80]. Once such functional groups are established, the
described method provides a good means to identify proteins likely
to have a role in connecting functional regulatory networks in any
organism. Likewise, the defined linkerity measure can be used to
identify key linker nodes of sub-networks in any complex network
[54,97-99].

Materials and Methods

Bioinformatics data compilation

To obtain a list of proteins associated with specific cellular
processes, we used the Gene Ontology (http://www.
geneontology.org/) and downloaded all gene products associated
with a given term. It is important to note that while ‘cytokinesis’
(GO:0000910) and ‘cell cycle regulation’ (GO:0051726) have
specific terms that cover all proteins commonly associated with
those processes, for polarity S. pombe proteins are split between
‘establishment or maintenance of cell polarity’ (GO:0007163) and
‘cell morphogenesis’ (GO:0000902). In the analysis, we thus used
the umbrella term ‘polarity’ to include proteins in both of these
categories. Data in STRING (http://string-db.org/) is present at
different confidence scores. Confidence scores in STRING
represent the likelihood of the two proteins actually interacting,
and depend on the reliability of the source of the interaction. For
example, an interaction that is reported in a single experiment
will have a far higher confidence score than an interaction that is
inferred through text mining or homology alone. We studied the
effect of a cutoff in this confidence score on network size defined
as the fraction of all proteins connected with at least one other
protein; the main component size defined as the fraction of all
proteins connected to the largest component in the network; and
the edge fraction defined as the fraction of all edges found,
compared to the theoretical maximum. To download the number
of PubMed abstracts mentioning the name of a protein in the
network, we relied on the Entrez module of the Biopython
package (http://biopython.org/wiki/Biopython). Statistical anal-
ysis, including calculation of correlations, was carried out using
the Statistics module of the SciPy package (http://www.scipy.
org/). All network measures were calculated using pre-existing
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algorithms implemented in NetworkX (http://networkx.lanl.gov/
). For community structure detection we used the k-clique
propagation algorithm originally described in [53], and imple-
mented in NetworkX [100]. Packages were packaged in the
Enthought Python Distribution courtesy of Enthought (http://
www.enthought.com/).

Network analysis workflow
The pipeline used to create the networks was:

1. We connected to the MySQL Gene Ontology database using
custom python scripts, and downloaded all proteins associated
with a given biological process.

2. We took all proteins downloaded and used them to query
STRING, downloading all the information about protein-
protein interactions in PSI-MI-TAB format. It is important to
note that STRING and Gene Ontology sometimes identify the
same gene by a different name, therefore special care was taken
to use consistent nomenclature.

3. We parsed the PSI-MI-TAB file and transformed it into a
NetworkX' graph, which we could then study using both
algorithms built into NetworkX as well as custom scripts.

We repeated the analysis described in the main text using
networks obtained from BioGRID. In that case, instead of using
STRING in step 2 we parsed the full network of a given organism
from a PSI-MI-TAB file available for download on the BioGRID
website, then extracted the sub-graph containing the nodes
obtained in step 1 and edges of physical interactions stored in
the database. The results presented are based on the state of all
databases on 13 March 2012. The calculated network measures,
PubMed citations and all presented numerical results are detailed
in the Excel files of Tables S1, S2, S3, S4.

All Python scripts used to download data from databases as well
as for analysis are available upon request.

Strains and strain construction

The S. pombe strain used in this study was MH123 (k- sts5-3GFP-
L-nat Z2-mCh-ath2-hph leul ura4 ade6-MZ216 his7). Conventional
PCR-based gene targeting methods for S. pombe were used for gene
tagging [101-103].

Live microscopy cell imaging

Prior to imaging, S. pombe strains were grown at 32°C in yeast
extract with supplements (YES) (9) to exponential growth. Aliquots
of 300 ml cells were mounted onto 1.5 coverslip glass-bottomed
plastic dishes (MatTek; P35G-1.5-14-C) pre-coated with 10 ml
1 mg/ml lectin (Sigma; L1395 and Patricell Ltd; 1-1301-25) that
had been allowed to air dry. After a 30-minute incubation, cells
unbound to the lectin-coated glass were removed by washing with
minimal medium (EMM) [101-103] and the bound cells were kept
in a final suspension of 1 ml EMM.

Imaging was performed with both: an OMX microscope
(Applied Precision) in conventional resolution mode, with an
Olympus UPlanSapo %100 oil immersion lens (NA1.4) and 1.512
RI immersion oil (Applied Precision); and a DeltaVision micro-
scope (Applied Precision), comprising an Olympus 1 x71 widefield
microscope, an Olympus UPlanSapo %100 oil immersion lens
(NA1.4) and an Photometrics CoolSNAP HQ? camera. For
analysis of Sts5-3GFP speckle number, stacks were taken at
0.4 um apart for 16 focal planes on the Deltavision microscope.
Time lapses were taken for single focal planes at ten-minute
intervals on the DeltaVision microscope.
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Automated analysis of Sts5-3GFP speckle number

Cells within microscopy image fields were automatically
segmented from the transmitted light channel using an algorithm
developed in-house and coded in Matlab. For each cell, the cell-
cycle stage was determined manually by looking at the mCh-Atb2
channel.Sts5-GFP speckles were detected using the spot detection
module of the ICY software (http://icy.bioimageanalysis.org/;
[104]

Supporting Information

Figure S1 The cell cycle + cytokinesis + polarity = core
interaction network of budding yeast proteins. (A) Venn
diagram showing the overlap among the different Gene Ontology
functional groups in the proteins present in the core network of
budding yeast. Proteins with multiple functional annotations have
colours that are the sum of the colours of the individual functional
annotations, proteins belonging to all three functional groups are
in white. (B) Protein-protein interaction in the budding yeast core
network (from the STRING database at cutoff 0.7). Node colour
same as in panel A. Node size is proportional to degree of the
protein, and node order within a category (clockwise) is also
determined by degree. 469 Black edges link proteins that do not
share functional annotations, while 2146 grey edges link proteins
that have at least one common GO annotation (thus white nodes
have only grey links). White nodes (nodes belonging to all
categories) are shown in the inner circle in the middle of the
network.

(PDI)

Figure S2 Scale free distribution of networks. We
calculated the degree of every node in the largest connected
component of the genomwide network for both fission yeast (A)
and budding yeast (B). We then calculated a histogram for
frequency of degree (with number of bins equal to the maximum
degree observed in the network) and plotted log(frequency) vs
log(degree). Best fits to log(P(k))~log (ck ") were calculated using a
least square minimization algorithm from scipy (http://www.
scipy.org/).

(PDI)

Figure S3 Functional modularity in the core networks.
To calculate how much the functional modularity (the ratio of
interactions between nodes with a shared GO category versus
interactions between nodes with no GO category in common)
observed for the core network of budding and fission yeast
deviated from a random network, we kept all the category labels
for all the nodes, but rewired the network either completely at
random (A, C), or using a method that preserves degree-
distribution (B, D) [108]. To rewire the networks at random, we
removed every edge from the network then added an edge
between any two nodes chosen at random until the total amount of
edges in the network was equal to the original amount. To
preserve degree distribution of the networks, we performed a
double edge swap across the network. We picked two existing
edges at random between nodes (u,v) and (x,y). We then added an
edge between (u,x) and (y,v) and removed the original edge. Red
arrows indicate the observed ratio for the core network, the
distributions represent 1000 different random networks and their
functional modularity.

(PDF)

Figure S4 Robustness analysis for the betweenness
centrality ranking for polarity, cytokinesis and cell cycle
networks in fission yeast. We analysed the robustness of
ranking proteins by BC centrality in the presence of imperfect
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network interaction data. We added 10% extra edges at random to
the network, calculated BC for every node after adding the edges,
and ranked all the proteins. We calculated the mean and standard
deviation for the rank of every protein in the network after
repeating the procedure 1000 times. We normalized the rank of all
proteins (Rank/number of nodes) and plotted the top 20% of
nodes and their mean and standard deviation. The blue dotted
line represents the cutoff for top 10% nodes, and the red dotted
line represents the cutoff for top 20% of nodes. A, B, C are the top
20% proteins of regulation of cell cycle, cytokinesis and polarity of
fission yeast.

(PDF)

Figure S5 Robustness analysis of linkerity of proteins in
the fission yeast polarity network. We systematically
analysed the robustness of linkerity in the presence of imperfect
network interaction data. We added 10% edges preferentially to
nodes with high degree (A) or removed 10% edges at random (B)
to the core network. In the preferential attachment model, the
probability P that a given node N had of gaining an edge was
directly proportional to its degree P(N)~Degree(N). In the random
model P(N)~kwhere kis a constant. Probabilities were normalized
to increase or decrease the total edges of the network by 10%. We
calculated the mean and standard deviation for the betweenness
centrality of every protein belonging to the polarity sub-network
after repeating the procedure 1000 times. We plotted the top 20%
of nodes and their mean and standard deviation. The blue dotted
line represents the cutoff for top 10% nodes, and the red dotted
line represents the cutoff for top 20% of nodes.

(PDF)

Figure S6 Time-lapse analysis of Sts5 localization in
fission yeast cells. Microtubules are visualized using mCherry
labeled tubulin (Ath2) to identify cell cycle stage (A and B right
column and Sts5-3GFP is visualized on the left). As the cell cycle
progresses, Stsd starts to accumulate into cytoplasmic dots, which
then rapidly disappear upon septum formation. G is an automatic
quantification of the amount of cytoplasmic dots in cells at
different stages of the cell cycle.

(PDF)

Table S1 Analysis of the genome-wide fission yeast
network. See detailed description under Table S2.
(XLS)

Table S2 Analysis of the genome-wide budding yeast
network. Tabulated file (in xIs format) containing network
measures for all protein in the largest connected component of the
genome-wide network of fission (S1) and budding (S2) yeast.
Columns include: Common name: Common name. System-
atic name: Systematic name (for fission yeast), GO database ID
(for budding yeast) Description: Brief description of known
protein activity. PubMed count: Number of abstracts discussing
that particular protein in fission yeast available in PubMed.
Lethality: E (Essential) If deletion of the gene causes lethality, V
(Viable) otherwise. Scores: Betweenness Centrality and Degree
scores for the protein in the network using either STRING
interaction data (at increasing cutoffs, 0.4, 0.7, 0.9) or data from
BioGRID (only the physical protein-protein interaction data).
Genes with no entry at a given cutoff have no other interactions
with any proteins in the network.

(XLS)

Table S3 Analysis of the core fission yeast network. Sce
detailed description under Table S4.
(XLS)
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Table S4 Analysis of the core budding yeast network.
Tabulated file (in .xIs format) containing network measures for all
protein in the core network of fission (S3) and budding (S4) yeast.
Columns include: Gommon name: Common name. System-
atic name: Systematic name (for fission yeast), GO database ID
(for budding yeast) Description: Brief description of known
protein activity. PubMed count: Number of abstracts discussing
that particular protein in fission yeast available in PubMed.
Lethality: E (Essential) If deletion of the gene causes lethality, V
(Viable) otherwise. GO Categories: Which of the three
categories (Cytokinesis (CY), Polarity (P), Cell Cycle (CC)) does
the protein belong too? Scores: Betweenness Centrality and
Degree scores and ranks for all the sub-networks the protein
belongs to, as well as the core network. In the sub-network,
betweenness rank (Rankup nenoor) 1s calculated by ranking all the
proteins from highest to lowest according to their betweenness. In
the core network, the betweenness rank (Rank,,,,) is calculated only
between proteins that are found in the original sub-network. To
avoid artifacts due to the presence of multiple proteins with 0
betweenness, we assign consecutive proteins with the exact same
score have the same rank, which is simply defined as the average of
their ranking [109]. For example: in a network of 6 proteins [A, B,
C, D, E, F|, with BC values of [10, 10, 7, 5, 5, 5], the ranking
would be: [(A, 1.5), B, 1.5), (G, 3), D, 5), (E, 5), (F, 5)] Linkerity:
Linkerity calculated for all the categories as given in Equation 1.
Note that the linkerity for a protein that doesn’t shift in rank is 1 by
definition.

(XLS)

Table S5 All members of the cliques identified on
Figure 3B. List of all proteins belonging to the cliques described
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Abstract

Timing of cell division is coordinated by the Septation Initiation Network (SIN) in fission yeast. SIN activation is initiated at
the two spindle pole bodies (SPB) of the cell in metaphase, but only one of these SPBs contains an active SIN in anaphase,
while SIN is inactivated in the other by the Cdc16-Byr4 GAP complex. Most of the factors that are needed for such
asymmetry establishment have been already characterized, but we lack the molecular details that drive such quick
asymmetric distribution of molecules at the two SPBs. Here we investigate the problem by computational modeling and,
after establishing a minimal system with two antagonists that can drive reliable asymmetry establishment, we incorporate
the current knowledge on the basic SIN regulators into an extended model with molecular details of the key regulators. The
model can capture several peculiar earlier experimental findings and also predicts the behavior of double and triple SIN
mutants. We experimentally tested one prediction, that phosphorylation of the scaffold protein Cdc11 by a SIN kinase and
the core cell cycle regulatory Cyclin dependent kinase (Cdk) can compensate for mutations in the SIN inhibitor Cdc16 with
different efficiencies. One aspect of the prediction failed, highlighting a potential hole in our current knowledge. Further
experimental tests revealed that SIN induced Cdc11 phosphorylation might have two separate effects. We conclude that SIN
asymmetry is established by the antagonistic interactions between SIN and its inhibitor Cdc16-Byr4, partially through the
regulation of Cdc11 phosphorylation states.
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SPB (that was existing already in the mother cell [15]). At the same
time Cdc7 level rises at the new SPB with Spgl remaining in GTP
bound form and without the presence of Cdcl6-Byr4 [16-18].
Such asymmetric segregation of the active SIN (Spgl-GTP and
Cdc7), and its inhibitory complex (Cdcl6-Byr4) is essential for
proper activation and eventual inactivation of the SIN [19].

The role of this asymmetry was investigated recently and it was
found that phosphorylation-dephosphorylation events on the
scaffold protein Cdcll by the downstream SIN kinase Sid2 and

Introduction

Cell division is a fundamental and conserved process in all
cukaryotes. The fission yeast Schizosaccharomyces pombe has already
proved to be a very simple yet interesting model system to study
and analyze eukaryotic cell division [1-3]. The onset of cytokinesis
must be tightly coupled to the completion of mitosis for proper
segregation of chromosomes into two daughter cells. In fission
yeast, the initiation of cell division is controlled by a conserved

signaling pathway known as the Septation Initiation Network or
SIN [4-9]. Regulation of the SIN happens at the spindle pole
bodies (SPBs) of fission yeast cells, where the scaffold proteins
Cdcl1 and Sid4 localize the rest of the molecules in the network
[10,11]. At the top of the pathway sits the GTPase Spgl, which
controls a protein kinase pathway that triggers actomyosin ring
contraction and positively regulates septum formation [12]. The
Cdc16-Byr4 GAP complex negatively regulates SIN by inactivat-
ing Spgl [13]. During interphase Cdc16-Byr4 keeps Spgl inactive,
but in metaphase the GAP complex is removed from SPBs,
allowing the accumulation of the Cdc7 kinase to both SPBs [14].
As cells enter into anaphase Spgl-GTP gets hydrolyzed by the
appearing Cdc16-Byr4 complex and Cdc7 disappears from the old

PLOS Computational Biology | www.ploscompbiol.org

the SIN Inhibitory Phosphatase complex (SIP) play important
roles in the establishment of SIN asymmetry between SPBs
[20,21]. Stll the detailed molecular mechanisms that ensure
efficient and fast asymmetry establishment and turning off of SIN
activity after cell division is not well understood [19]. Here we
develop mathematical models of increasing complexity to under-
stand what basic features such an asymmetry generating system
might contain and what known interactions of SIN and its
regulators might be important for such features.

Mathematical modeling was already successfully used to capture
dynamical features of the timing of SIN activation [4] and the
orthologous pathway in budding yeast was also investigated this
way [22]. Future experimental and modeling work will be needed
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Author Summary

Rod shaped fission yeast cells, as the name suggests,
divide by medial fission. The proper timing of this
cytokinesis and septation event is controlled by a signaling
pathway called the Septum Initiation Network, or SIN. The
SIN is activated only after chromosomes start to separate
in anaphase. At this stage, the two daughter spindle pole
bodies (SPBs - the yeast analog of centrosomes) have
separated and are on their way to the distant tips of the
cell. SIN components are localized to SPBs, but the SIN is
active only at one SPB, while the Cdc16-Byr4 complex
keeps the SIN inactive at the other SPB. This asymmetric
activation of the SIN is important for proper cell division as
perturbation of this can lead to appearance of multiple
septa or total lack of septation. The molecular mechanisms
that are important for asymmetry establishment are
emerging, but we lack a complete picture. Here we
develop computational models to capture the dynamical
features of asymmetry establishment and to determine the
key components and interactions that are needed for
proper asymmetric SIN activation. Our predictions and
their experimental tests reveal some basic features of the
system and highlight missing points in our knowledge.

to merge all knowledge on the spatio-temporal regulation of the
SIN into a detailed model that could capture all molecular
regulatory interactions in a quantitative way. Here we make the
first steps on this line by focusing on the dynamics and regulation
of SIN asymmetry establishment in a qualitative fashion.

Results

A minimal model of asymmetry establishment between
two SPBs

The minimal mechanism whereby asymmetry could be
established between the two SPBs needs to contain some type of
positive feedback loop, which involves a non-linear step [23,24].
These are the minimal requirements to reach bistability, where
one SPB ends up in a steady state with active SIN, while the other
settles in an inactive SIN steady state. The two SPBs communicate
through releasing and anchoring molecules from the cytoplasmic
pool, thus these binding-unbinding steps could be the ideal ones to
be controlled by the interacting molecules. Pure autocatalytic
positive feedbacks could enforce collection of most of these
autocatalytic molecules at one SPB, but that would not ensure that
the other molecule type ends up at the other SPB (not shown).
Thus the simplest way of implementing a positive feedback loop
that can bring the two molecule types to the opposite SPBs should
be based on a double-negative type positive feedback loop [25]. In
such a minimal model molecule X removes molecule 1" from the
SPBs, while molecule 1" induces the unbinding of molecule X
(Fig. 1A). In this way both components remove their own inhibitor
and with this they positively influence their own binding to the
SPB. If X has a little bias at one of the SPBs it will remove all of 1"
from this place and help its own recruitment to this SPB. At the
same time 1 can pile up at the other SPB, since its inhibitor X was
moved to the other SPB. Indeed 1" speeds up the removal of X
from this place and by this, speeds up the establishment of
asymmetry. Computational simulation of such a minimal model
shows that with a little noise in the initial amounts of X and 1" at
SPBs or a minimal (0.1%) bias in the binding rate to the old SPB is
enough to induce asymmetry from a symmetric initial condition
(Fig. 1B). The molecular interactions of Fig. 1A were translated
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into the computational model with a non-linear enzymatic
reaction step for the action of X on 1" unbinding (see Materials
and Methods for details). Thus a model with antagonistic
interactions of two molecule types, with (in biology often observed)
non-linear kinetics can serve as a minimal model of asymmetry
establishment between two SPBs.

Minimal molecular network to drive asymmetry
establishment

Next we investigated if we have any evidence for the existence of
such an antagonistic, double-negative feedback loop among
regulators of cytokinesis timing in fission yeast cells. The SIN
can be considered as a linear pathway from Spgl through Cdc7
and Sidl activation, leading eventually to the recruitment and
activation of Sid2 [6,7]. The Cdcl6-Byr4 complex inhibits Spgl
and as a result Cdc7 binding to the SPB, thus it is a negative
regulator of SIN. It was also shown that Byr4 can bind to an SPB
only if Cdcll is fully dephosphorylated [26] and Sid2 is
responsible for part of the phosphorylation on Cdcll [20].
Cdcl1 is known to be (at least partially) dephosphorylated by the
SIN Inhibitory Phosphatase Complex SIP [21], which we also
consider as a regulator of the proposed minimal system. In
summary Cdc16-Byr4 inhibits SIN and SIN inhibits Cdc16-Byr4
localization to SPB, giving an antagonistic double-negative
feedback loop (Fig. 1C). We can update the wiring diagram of
Fig. 1A with the basics of the molecular details of this antagonistic
interaction by joining the SIN members in a single variable and
representing the Cdcl6-Byr4 complex by its limiting component
Byr4. The wiring has to be further extended as SIN is not directly
inhibiting Byr4, but through phosphorylating Cidc11, which form
cannot support Byr4 recruitment to SPB. Thus, instead of direct
activation of Byr4 removal (as it is on Fig. 1A), SIN inhibits the
facilitator of Byr4 binding (Fig. 1D). This adds an extra step in the
system, but does not change the signs of the interactions proposed
above.

This system can be also turned into a computational model and
in this case we can move the non-linearity to the Cdcll multistep
phosphorylation-dephosphorylation reactions (captured by an
appropriate non-linear function [24,27,28]). Simulation of this
model shows that asymmetry of SIN can be established from an
initial metaphase state (high SIN, low Byr4 at both SPBs). After
the transition, the active SIN is localized together with phosphor-
ylated Cdcll to the new SPB, while Byr4 is at the old SPB with
dephosphorylated Cdcl1 (Fig. 2A). Cdcll is not moving between
the two SPBs, it just changes its phosphorylation state depending
on the presence of regulators at a given SPB. To reach this
asymmetry all we had to assume is that Byr4 has a 0.1% higher
affinity to bind to the old SPB than to the new SPB. This (or a
much higher) initial bias could come from inherited phosphory-
lated proteins that are specifically present at the old SPB [15].

It is known that proper cytokinesis greatly depends on the total
amount of SIN components and its regulators [29,30]. Overex-
pression of Spgl, the uppermost member of SIN leads to
hyperactivation of SIN and to a multiseptated phenotype when
cells periodically lay down septa without cleaving them [12]. A
similar phenotype is observed when Cdc16, Byr4 or to some extent
SIP function is lost [21,31,32]. On the other hand mutations in
SIN components and Byr4 overexpression lead to SIN inactivation
and to a multinucleate phenotype when septum formation and cell
division 1is totally abolished [12,14,32]. We observe similar
behavior in the simulations of the model if the total cellular levels
of SIN and Byr4 are perturbed (Fig. 2B-E). SIN level can be
changed only in a very narrow window, even very small changes
lead to delays in asymmetry establishment and doubling or halving
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Figure 1. A minimal model for SIN asymmetry establishment. (A) Direct antagonistic interactions between molecule X and Y at the two SPBs.
Both molecules induce the removal of the other from the SPB they are both bound. Solid lines are transitions, dashed arrows show catalytic effects.
(B) A less than 0.1% difference in the SPB binding rates or in initial conditions (not shown) can induce quick asymmetry establishment. Solid lines for
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doi:10.1371/journal.pcbi.1003147.g001

of the original amount already shows the experimentally observed
terminal phenotypes (Fig. 2B). Byr4 cannot be increased either,
small reductions do not lead to major delays in asymmetry but
below a certain threshold the observed phenotype reveals (Fig. 2C).
The simulated high sensitivity to Cdcll levels (Fig. 2D) is
contradicting the literature data as overexpression should not lead
to a phenotype [10], while mutations in Cdcl] function should
lead to multinucleate phenotype [33]. This latter problem comes
from the fact that we initiate the model in late mitosis with high
SIN levels, which cannot be reached in Cdcll mutants as SIN
binding to SPB requires Cdcll function. Furthermore Cdcll is
also needed for the activity of downstream SIN components (Sid1,
Sid2) [10]. A major extension of the model with the whole mitotic
regulation of SIN could resolve this issue, here we keep our focus
on asymmetry establishment after anaphase onset.
Opverexpression of Cscl, a member of the SIP complex leads to
multinucleate cells and some SIP mutant cells (csc/4) show
multiple septa [21]. Although it is not clear if overexpression of
one of the components of the SIP complex is enough to induce
higher SIP phosphatase activity or if it has a dominant negative
effect, the simulated high sensitivity to SIP levels (Fig. 2E)
resembles experimental observations [21]. In summary the
minimal molecular model of SIN asymmetry regulation properly
simulates most experimental observations. The major failure of the
model is on the high sensitivity to Cdcl1 levels. The experimen-
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tally observed low sensitivity to Cdcll overexpression [34] might
be explained by a limiting effect of Sid4, which helps Cdcll to
recruit SIN members to SPB [35], but we can also investigate
Cdcl1 in more detail if we consider its different phosphorylation
sites.

Revealing the importance of the phosphorylation states
of Cdc11

Cdcll is known to be phosphorylated on multiple sites by SIN
(specifically shown for Sid2 in [20]) but Cdcl1 also contains Cdk
phosphorylation sites [20,35]. SIP was discovered as a SIN
Inhibitory PP2A  Phosphatase Complex as it can remove
phosphate groups from Cdcll [21]. PP2A complexes often
counteract Cdk phosphorylations [36], so it could be that SIP is
working on the Cdk phosphorylation sites of Cdcl1 and either SIP
or another phosphatase removes the phosphates from SIN sites.
Furthermore, it was observed that removal of SIN phosphoryla-
tion sites from Cdcll (mutating five serine to alanine) leads to
advanced asymmetry establishment [20], which could not be
captured by the minimal model. To overcome these issues we
extended the model with Cdk phosphorylation of Cdcl1 (Fig. 3A).
Cdcll can exist in at least four different forms: Cdk phosphor-
ylated (Cdc11-CP), SIN phosphorylated (Cdcl1-SP), phosphory-
lated by both (Cdcl1-PP) and non-phosphorylated (Cdcll) and
only this latest form can support Byr4 binding to SPBs. As we have

July 2013 | Volume 9 | Issue 7 | €1003147
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establish asymmetry from an initial condition corresponding to metaphase-anaphase transition. Solid lines for molecules at old SPB, dashed lines for
molecules at new SPB, time in arbitrary units. (B-E) Timing of transition (reaching the inflection point in the SINyew curve) greatly depends on total
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doi:10.1371/journal.pcbi.1003147.9002

no information on the target sites of SIP or other phosphatases
acting on Cdcll we investigate the effects of both dephosphor-
ylation steps separately. We assume a hypothetical phosphatase
ppC to remove phosphates from Cdk site, while another
phosphatase ppS works on SIN sites (Fig. 3A). Similarly to the
simple model above, SIN and Byr4 dynamics at the two SPBs
follows the experimentally observed trend (Fig. 3B). The various
forms of Cdcll are converted into each other as cytokinesis
proceeds, with ~75% Cdcll becoming dephosphorylated and
25% remaining Cdk phosphorylated at the old SPB (solid black
line of Fig. 3C) and most of Cdcll at the new SPB is
phosphorylated mostly by SIN (dashed green on Fig. 3C).

This model is sensitive to changes in SIN and Byr4 levels (Fig.
S1IA,B) as the minimal model was (Fig. 2B,C), but now the

PLOS Computational Biology | www.ploscompbiol.org

sensitivity of Cidcl1 overexpression and the simulated multinucle-
ate phenotype of the minimal model (Fig. 2D) is lost, since Cdk can
phosphorylate even high levels of Cdcll and by this inhibit Byr4
binding to the Cdcll, which is present in excess (Fig. S1C). With
these we fixed the simulations of the major phenotypes. Literature
data suggest that the timing of asymmetry establishment is highly
sensitive to the Cdcll phosphorylation state [20]. Fig. 4 shows
how perturbations in the SIN and Cdk phosphorylation efficien-
cies and in the phosphatase efficiencies of ppC and ppS affect the
timing of asymmetry establishment in the detailed model. Small
decreases in SIN efficiency advance asymmetry, while severely
reduced SIN phosphorylation on Cdcll leads to a multinucleate
phenotype. Advances were observed for the Sid2 phosphorylation
site removed cdel1-S54 mutant [20], which is matched with an

July 2013 | Volume 9 | Issue 7 | €1003147
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approximate halving of SIN efficiency on Cdcll (arrow on
Fig. 4A). Since the phosphorylation of SIN on Cdc11 in the model
captures all negative effects of SIN on Byr4 activation and the
experimentally observed effect of SIN sites removal from Cdcll
can be captured by a partial reduction of this effect, suggesting that
SIN has to phosphorylate other targets which are regulating Byr4
activity/localization (see details on this in the discussion). On the
other hand, total reduction in Cidk phosphorylation efficiency has
no effect on asymmetry timing, while an increase in the Cdk site
phosphorylation, similar to high SIN efficiency led to serious
delays and eventually to a multinucleate phenotype (Fig. 4A).
Thus, Cdk mostly serves as an initiator of the Cdcl1 phosphor-
ylation state and it is not directly involved in asymmetry timing,
but if Cdk (or SIN) phosphorylation on Cdcll is constantly high
then Byr4 cannot bind to SPBs and this leads to multinucleate
phenotype.

Serious reduction in either hypothetic phosphatase activity
leads to multinucleate phenotype, while milder reduction causes a
delay. Interestingly increase in ppC efficiency (overexpression of
the hypothetical phosphatase) does not cause any phenotype in

PLOS Computational Biology | www.ploscompbiol.org

the model, while ppS overexpression leads to multinucleate
phenotype (Fig. 4B). If we assume that the overexpression of the
SIP component, Cscl, induces higher SIP activity (if this is the
only limiting factor in the complex) leading to the observed
multinucleate phenotype [21], then the model predicts that SIP
should have roles in removing phosphates catalyzed by Sid2 to
Cdcll (at least when it is overexpressed). Since other mitotic
phosphatases, like the Cdc14 phosphatase, Clpl/Flpl [37,38] or
the PP2A phosphatases Parl and Pabl [39,40] have been
associated with SIN function and recent results suggests a role for
Clpl in Cdcll dephosphorylation [41], we cannot conclude on
the exact role of SIP only by simulating single perturbations on
Cdcl1 phosphorylation.

Predictions and experimental tests on double and triple
mutants

In our first double perturbation test we investigated the
interactions between perturbations in SIN and Cdk efficiency on
Cdcll phosphorylation versus mutations in the Byr4 effector
Cdcl6 efficiency on SIN inactivation (Fig. 5A). Cdcl6 mediates
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the GAP-activity that induces Spgl inactivation and it is localized
by Byr4 [13], thus mutations in Cdcl6 can be simulated in our

model by changing the efficiency of Byr4 on SIN inactivation (kg

in Supplementary Text S1). The temperature sensitive ¢dcl6-1 16
mutant can proliferate at 25°C while at higher temperatures the
activity of this mutant protein is gradually reduced and eventually
the cells are unable to inactivate SIN leading to a multiseptated
phenotype at 36°C [31]. Simulation of this mutant by setting Byr4
efficiency on SIN to 20% of the wild type value shows a strong
delay in asymmetry establishment (Fig. 5A). The model predicts
that this delay can be compensated for mildly by removal of Cdk
phosphorylation sites from Cdcl1 but very efficiently by the cdc11-
$54 mutants of SIN phosphorylation on Cdcll (Fig. 5A). To test
this prediction first we used a Cdk site mutant version of Cdcl1
[35] that substitutes the eight Cdk phosphorylation sites from
Cdcll [20] and tested its effects on cell viability. As reported
previously [35], removal of Cdk phosphorylation sites from Cdcl1
has no major effect on cell viability, matching the simulation
results (Fig. 4A). The c¢del1-S84 mutant could indeed mildly
compensate for the defects of ¢dc16-116 (Fig. 5B), while the SIN
(Sid2) sites removed ¢dc1-S54 mutation instead of rescuing the

phenotype rather exacerbated it (Fig. 5B).
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It was shown that SIP phosphatase complex removes phosphate
groups from Cdcl1 and that mutations in SIP components give an
additive effect to ¢de/6 mutations [21]. To investigate the
discrepancy between model and experiment further, we tested if
cde11-S54 and ¢del1-S84 mutants can compensate this additive
effect of SIP and c¢dc/6 mutations. First we simulated the cdcl6
mutation by reducing the effect of Byr4 on SIN to the half of the
original value and the ¢sc/4 SIP mutation by setting both ppC and
ppS to 75% of the wild type values. The simulations indeed match
the additive effects of these mutations (Fig. 5C). Greater decreases
lead to even greater delays in asymmetry establishment and
eventually to a multiseptate phenotype (not shown). The
simulations of cdcll phosphosite mutants predict that major
SIN sites removal (¢dc! 1-S54) can compensate the additive effect of
SIP and Cdcl6 quite well, while Cdk site removal has only minor
compensatory effects (Fig. 5C). Experimental tests show that the
double mutants of ¢dcl6-116 and cscl4 is mildly compensated by
Cdk phosphorylation sites removal from Cdcll, matching the
prediction (Fig. 5D). At the same time the double mutant
phenotype becomes more severe after Sid2 phosphorylation site
removal (Fig. 5D). Phenotypic analysis of these cells show that the
number of multiseptated and cut cells increased in the cdc16-116
esc14 edel 1-S54 triple mutants (Fig. 5E), suggesting that SIN might
come too early and stays active longer in some of these cells.

The discrepancies between simulations and experimental results
show that blocking Sid2 phosphorylation of Cdcll has conse-
quences other than allowing enhanced Byr4 binding to SPBs [26],
furthermore, perturbation in the SIP phosphatase complex (cs¢14)
does not change the severe phenotype of ¢del6-116 cdcl1-S5A4
mutants. These, and other earlier findings [20,21,41] suggest that
Sid2 phosphorylation might prime Cdcl1 for dephosphorylation
at other sites and Byr4 binding, making SIN an indirect activator
of Byr4. Recent results suggest that such dephosphorylation events
might be catalyzed by the Cdcl4-like Clpl/Flpl phosphatase,
even in the absence of SIP activity [41]. Removal of both SIN and
Cdk phosphorylation sites from Cdcll (cdc11-S154) does not have
a major effect on cell viability, furthermore SIP activity still has an
effect on the phosphorylation state of Cdcll in ¢del1-S134 cells
[41], indicating that SIP dephosphorylates Cdcl1 at sites modified
by other kinases. Thus our findings, together with recent literature
data, indicate that our understanding of Cdcll regulation by
phosphorylation-dephosphorylation events is incomplete.

Simulations of peculiar observations on SIN activation/
inactivation dynamics

We have shown above that the model can capture the basic
behavior of SIN mutants in asymmetry establishment and can
accurately predict the behavior of some mutant combinations.
There are a few, so far, unresolved experimental findings that ask
for computational models to help understand them. Magidson et
al. [42] found that if in anaphase, when SIN asymmetry is already
established, the new SPB containing active SIN was ablated with a
laser, then the SIN starts to get activated at the old SPB. To
simulate this experiment we stopped the simulations when
asymmetry was reached and uncoupled the new SPB from the
rest of the cell. Fig. 6A shows that if some SIN from the ablated
new SPB can fall back to the cytoplasm (or constantly produced
there — not shown) then it can move to the old SPB and remove
Byr4 activity there. This happens because the free cytoplasmic
SIN now can start to bind to the only existing old SPB. Although
this is slow at the beginning, as SIN starts to phosphorylate Cdc11,
Byr4 cannot be as efficiently recruited anymore. As this positive
feedback of SIN activation (through inhibiting the binding of its
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activity was simulated by the indicated reduction in Byr4 efficiency on SIN inactivation. Mutations in SIP was captured by 25% reduction in both ppC
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doi:10.1371/journal.pcbi.1003147.9005

inhibitor) speeds up, more and more SIN gets to the only existing
SPB and at the same time Byr4 is getting removed.

In another interesting experiment, by cleverly creating dikarions
Garcia-Cortes and McCollum [43] investigated cells with four
SPBs present at the time of mitosis. They found that when two
SPBs with active SIN go to one daughter cell and two with inactive
SPBs to the other, then cells separate properly and SIN gets
inactivated right after division. In contrast, when both daughters
inherit one active and one inactive SPB then the SIN could not
turn off properly. We simulated these two scenarios by removing
(separated) or maintaining (non-separated) the communication
between the inactive, old SPB and the cytoplasm of the new SPB
and followed the speed of SIN inactivation at the new SPB
(Fig. 6B). To mimic the unknown factors that induce SIN
inactivation after cell separation we started to increase the
cytoplasmic Byr4 level in the cells. We followed this approach as
in our small model Byr4 acts as the only inhibitor of SIN, but any
other abrupt change in the SIN/Byr4 ratio as a result of
cytokinesis would have a similar effect in the model. Although
the exact mode of SIN inactivation after completion of cytokinesis
is not clear, the simulation results show that the same inactivation
strength lead to a much faster SIN inactivation when the two SPBs

PLOS Computational Biology | www.ploscompbiol.org

were separated (Fig. 6B). This happens, because in the separated
case all inhibitors of SIN can start to work on the SPB with the
active SIN, while in the non-separated case the newly produced
inhibitors are still recruited to the already inactive SPB, thus they
cannot reach the active SIN on the other SPB. A mechanical
metaphor explains both situations on Fig. 6C. The antagonistic,
double-negative feedback loop leads to situations when on one
SPB SIN can always win against Byr4. If two or more SPBs are in
the same cytoplasm then this antagonism leads to asymmetry
establishment and strong maintenance of this state. These results
suggest that cells are sensitive to SIN/Byr4 ratio before
establishing the asymmetry, but once they established SIN
asymmetry the strong antagonism can compensate small changes
in the SIN/Byr4 balance. After communication between the
daughter nuclei is halted by the septum, the balance is important
again and the SIN-Byr4 antagonism can help the fast inactivation
of SIN.

Discussion

Asymmetric activation of the SIN on one of the two SPBs is a
necessary feature of proper cell division timing in fission yeast cells
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doi:10.1371/journal.pcbi.1003147.9006

[18,19]. Similar asymmetry is established between the SPBs of the
budding yeast Saccharomyces cerevisiae [44,45]. In the case of such
asymmetrically dividing organisms, the asymmetry establishment
is better characterized [46] and mathematical modeling has
already facilitated discoveries of the detailed mechanism [22].
Here we establish a minimal model to understand the major
driving forces of symmetry breaking in SIN activity at the two
SPBs in fission yeast. This minimal model is based on the
antagonistic interaction of two molecules that are inhibiting each
other’s localization to the SPB (Fig. 1A). This system resembles the
basic models of Notch-Delta antagonism that is used to model
lateral inhibition [47]. Indeed the underlying dynamics in both
cases leads to a pitchfork bifurcation ([23] and Fig. S2). The
model behaves as an efficient switch [48], which brings one
molecule type to one SPB and its antagonist to the other, with
some remaining in the cytoplasm. In the case of SIN asymmetry
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establishment the clear candidates for such antagonistic
interactions are the members of the SIN and its inhibitory
complex Byr4-Cdcl6. Byr4-Cdcl6 inhibits SIN activity [13],
while there is also some evidence that SIN indirectly inhibits
Byr4 localization [20,26]. Such antagonism is a special case of a
positive feedback loop, where the two components cannot
coexist, either one of them is winning and inhibiting the other
[25]. In the case of SIN asymmetry establishment, the two
antagonists are winning at different SPBs. Indeed when the new
SPB is starting to get enriched in SIN, it means SIN has to drop
a bit on the other SPB, which enables Byr4 to win on the old
SPB. In this way SIN activation at one SPB helps Byr4
activation on the other SPB explaining some controversial
observations which suggest that SIN components and mitotic
phosphatases seem to activate both SIN and Byr4 [19]. Thus
any signal that leads to the induction of asymmetry establish-
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ment basically activates SIN (at the new SPB) as well as Byr4 (at
the old SPB). The major initiating step is the drop in Cdk
activity in anaphase in parallel with spindle elongation that
moves the SPBs far apart. Our simulations are initiated exactly
at this step. Possible spatial extensions of the model might reveal
some role for SPB positioning, although the quick turnover of
active Sid2 [20] might rule out any major effect of space in SIN
asymmetry establishment.

A crucial point here is that such a system with an antagonistic
switch works properly only if the total amounts of the two
antagonists are present in a given ratio (1 in our case, but this
value is determined by the exact rate constants), any perturbation of
this balance can lead to a situation where either SIN or Byr4 wins on
both SPBs. Indeed fission yeast cells are very sensitive to the
overexpression of either Byr4 or the SIN limiting factor Spgl, but
the joint overexpression of these two can be greatly tolerated by the
cells [30] suggesting that indeed their ratio is important for proper
asymmetry establishment. The model suggests that once the
asymmetry is established this balance is not that crucial anymore,
but later the same antagonism can help the fast inactivation of SIN
after septation. At this stage only the new SPB inheriting daughter
has active SIN signaling, but this is turned off for an unknown signal
that most probably flips the SIN/Byr4 balance.

The extended minimal model (Fig. 3A) is still a simplification of
the whole system of SIN regulation as here we concentrated only
on the interactions that are important for the asymmetry
establishment in SIN activity (see [4] for a model on SIN
activation timing). Still this simple model was able to capture
qualitatively multiple experimental results on single molecule
perturbations (Fig. 2B-E and Fig. Sl), explain results of
experiments when the number of SPBs were perturbed in the
cells (Fig. 6) and predict the behavior of some double and triple
mutants (Fig. 5). The prediction on the compensatory effects of
Cdk sites removal from Cdcll in a ¢dcl6 and ¢dc16-116 ¢sc1A
mutants were verified experimentally (Fig. 5A,B), the additive
effects of SIP and Cdcl6 mutants were also properly simulated,
but the predictions on the double and triple mutants with cde/1-
$54 failed (Fig. 5C-E). The c¢del1-S54 mutation amplified the
phenotype of ¢del6 and ¢dc16-116 ¢scIA mutants instead of
compensating them. This does not mean that the model is totally
wrong; it rather means that there is a hole in our knowledge about
the backup mechanisms that regulate SIN activity when some of
the major players are perturbed. Cdc11 is likely phosphorylated by
other kinases (perhaps Cdc7 [26]) and proteomics screens found
Clpl/FIpl as a phosphatase acting on Cdk sites on Cdcll [41],
adding extra layers to the interaction system. Another possibility is
that the Cdcl1 phosphomutants may not recapitulate the result of
asymmetric loss of phosphorylation in which only one SPB is
affected and/or the investigated mutant combinations show a
phenotype that is a result of other functions of Cdcl6 [49].
Furthermore, it was ecarlier proposed that Clpl might form
another positive feedback loop with the SIN [19,50], which could
also play a role in the robustness of SIN asymmetry establishment.
The proposed core mechanism of antagonistic interactions
between activators and inhibitors of SIN should hold in all cases,
just the main players might change as kinases and phosphatases as
well as their target molecules might be perturbed in various
mutants. There could be several other layers, where SIN and Byr4
antagonistically interact, as many other SIN regulators are targets
of Cdk, SIN and Polo kinase dependent phosphorylation events
[19]. A related prediction of the model is that SIN components
have to act on other Byr4 regulator targets than Cdcll, as we
could match the SIN phosphorylation sites removed c¢del -S54
phenotype only with a reduced efficiency of SIN, not with the total
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abolishment of this effect (Fig. 4A). The simplest possible solution
would be if one of the SIN components could directly
phosphorylate and by this mechanism inactivate Byr4. Since
Byr4 has several candidate phosphorylation sites [29,51] we
cannot rule out this possibility.

The modeling results also predicted and the experiments verified
that Cdk phosphorylation on Cdcll is not a major factor in
asymmetry establishment (Fig. 5A), it might rather play a role in
setting up the initial state in early mitosis, when the top components
of the SIN pathway are bound to both SPBs and Byr4 is removed
from there. Interestingly, all of our simulation results show that in
the initial mitotic state Byr4 is not totally absent from SPBs. This
assumption on the initial conditions we needed to take to be able to
achieve a fast asymmetry establishment. If Byr4 is completely absent
from both SPBs in mitosis then it would be difficult for Byr4 to
appear at one SPB in sufficient amounts (as it is sent away by active
SIN) to turn on the positive feedback loop and establish asymmetry.
Since Byr4 is a low abundance protein, it is hard to visualize [29],
but the model suggests that even in mitosis some Byr4 might be
localized at both SPBs.

It is still unknown what signal(s) turns off SIN activity in the
daughter inheriting the new SPB after the completion of cytokinesis.
The model of SIN and Byr4 antagonistic interactions successfully
simulated the experimental results, which have shown that SIN
activity can take over Byr4 at the old SPB if the new SPB was laser
ablated before cell division ([42] and Fig. 6A) and it could also
explain why SIN has a harder time to turn off when the two spindle
pole bodies remain in the same cell after cell division ([43] and
Fig. 6B). As we do not have information on the molecular details of
the trigger that induces SIN inactivation in the daughter cell that
inherited the SPB with active SIN, we needed to make a simple
assumption that Byr4 production speeds up at this point,
alternatively Byr4 degradation slows down when the daughters
get separated [29]. Inactivation of SIN might happen even with a
minor increase in Byr4 level, since once the old SPB is not in the
same cytoplasm anymore it cannot serve as a sink for Byr4, thus
Byr4 can pile up at the daughter with the active SIN and eventually
turn SIN off. The prerequisite for this mechanism to work is a very
fast turnover of Byr4, which has been suggested [29]. This and
many other questions on the detailed regulation of SIN signaling still
need to be addressed and as we have shown here, the system level
view and computational modeling of the network can help our
understanding and guide experimental discoveries. Here we could
reach predictions on a semi-quantitative fashion (e.g.: what happens
carlier/later in various mutants), measurements on molecular levels
of the regulators and kinetic contacts of the reactions will enable the
development of quantitative models that contain all molecular
details of SIN activity regulation.

Materials and Methods

Model development

The wiring diagrams of Fig. 1A, 1D, 3A were converted into
systems of ordinary differential equations (ODEs). Parameters of
the models were identified by fitting their qualitative behavior to
experimental observations. Molecular concentrations defined in
arbitrary units. Future measurements of molecular levels could be
used to convert the inferred parameter values to real biologically
meaningful reaction rates. We assume fast diffusion between SPBs
until cell separation cuts communication between SPBs. Param-
cter values, initial conditions and equations can be found in the
Supplementary Text S1. Equations were numerically solved and
simulated by the freely available software WINPP (http://www.
math.pitt.edu/ ~bard/xpp/xpponw95.html).
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Experimental procedures

S. pombe strains were grown in yeast extract (YE) medium. Strain
construction was accomplished through standard methods. The
relevant genotypes and strain numbers used in this study were
¢cdc16-116  ¢del 1-S5A-GFP:kanR (KGY1411), ¢dc16-116 cdel -
GFP::kanR  (KGY3342),  ¢dc16-116  c¢dcl1-S8A-GFP::kanR
(KGY8684), ¢dc16-116 cdel1-GFP:kanR csel:ura4” (KGY12982),
cdc16-116  ¢del 1-S5A-GFP:kanR  cscl:ura4t  (KGY12982), and
cdc16-116 ¢del 1-S8A-GFP::kanR cscl:ura4 (KGY12984).

Supporting Information

Figure S1 Dependence of timing of asymmetry estab-
lishment on total protein levels in the extended minimal
model of Figure 3A. Similar figures as figure 2B-D for the more
complex model. SIN dependence looks the same as in the minimal
model just here the wild type behavior is not at the minimal time
to reach asymmetry (A). Byr4 is similarly sensitive for reduction
and for small increases as before (Fig. 2C), just here at higher
values the time to asymmetry is advanced and eventually at a rate
~2.5 times wild type the initial early mitotic state contains higher
amount of Byr4 than SIN, thus these cells might not be able to
perform the earliest steps of SIN activation (B). Cdcll is now
insensitive for overexpression, while its removal causes again a
perturbed initial mitotic state, which cannot support high SIN
activity in early mitosis (C).

(PDF)
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Figure 82 Symmetric steady state solutions for SIN
levels at the two SPBs in the minimal model of SIN
asymmetry establishment show that asymmetry emerg-
es through a pitchfork bifurcation. Stable (solid lines) and
unstable (dashed) steady states of SIN activity at the old or new
SPB. The two solutions totally overlap as the system is fully
symmetrical. The calculations were performed with kbias=0 to
keep the system symmetric. Steady state solutions were calculated
by Oscill8 (http://sourceforge.net/projects/oscill8/).
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The cell cycle and the circadian clock communicate with each other,
resulting in circadian-gated cell division cycles. Alterations in this
network may lead to diseases such as cancer. Therefore, it is
critical to identify molecular components that connect these two
oscillators. However, molecular mechanisms between the clock
and the cell cycle remain largely unknown. A model filamentous
fungus, Neurospora crassa, is a multinucleate system used to elu-
cidate molecular mechanisms of circadian rhythms, but not used to
investigate the molecular coupling between these two oscillators.
In this report, we show that a conserved coupling between the
circadian clock and the cell cycle exists via serine/threonine protein
kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1
kinase. Based on this finding, we established a mathematical
model that predicts circadian oscillations of cell cycle components
and circadian clock-dependent synchronized nuclear divisions. We
experimentally demonstrate that G1 and G2 cyclins, CLN-1 and
CLB-1, respectively, oscillate in a circadian manner with biolumi-
nescence reporters. The oscillations of c/b-1 and stk-29 gene ex-
pression are abolished in a circadian arrhythmic frg*® mutant.
Additionally, we show the light-induced phase shifts of a core
circadian component, frq, as well as the gene expression of the
cell cycle components c/b-1 and stk-29, which may alter the timing
of divisions. We then used a histone hH1-GFP reporter to observe
nuclear divisions over time, and show that a large number of nu-
clear divisions occur in the evening. Our findings demonstrate the
circadian clock-dependent molecular dynamics of cell cycle compo-
nents that result in synchronized nuclear divisions in Neurospora.

Molecular mechanisms of circadian rhythms provide tem-
poral information to other cellular processes, such as
metabolism, to optimize their outcomes (1-3). For instance,
circadian oscillations of rate-limiting genes in glucose metabo-
lism suggest time-of-day specific regulatory mechanisms that
maintain glucose homeostasis in mammals (3). Circadian clock-
gated cell division cycles have been observed in various organ-
isms, including mammals, indicating that cell divisions prefer-
entially occur at specific times of the day (4-7). In the mouse
liver, expression of the cell cycle kinase-encoding gene, weel, is
directly activated by a heterodimeric circadian transcription
factor, CLOCK-BMALI, providing a molecular link between the
cell cycle and circadian rhythms (5). This suggests that circadian
clock-regulated WEE1 promotes periodic inhibition of mitotic
cycles between G2 and M phase by phosphorylating and inacti-
vating the mitotic cyclin-dependent kinase (CDK) (8). On the
other hand, circadian-independent cell divisions have been re-
ported in rat-1 fibroblasts despite the fact that these cells
maintain robust circadian rhythms (9). These data suggest that
not all cells with circadian rhythms may display circadian-gated
cell division cycles.

The multinucleate fungus Neurospora crassa has played a piv-
otal role in elucidating the molecular mechanism of circadian
rhythms (10, 11). Briefly, circadian rhythms in N. crassa are
regulated by positive and negative elements that create a time-

www.pnas.org/cgi/doi/10.1073/pnas.1319399111

delayed negative feedback loop (12). A heterodimeric tran-
scription factor, White Collar Complex (WCC, which consists of
WC-1 and WC-2), activates transcription of the frequency (frq)
gene. Its product, FRQ protein, interacts with an RNA helicase,
FRH (13), and inactivates the WCC by indirectly phosphory-
lating and removing WCC from the nucleus (14-16). FRQ is
phosphorylated progressively over time, which makes it more
susceptible to ubiquitination and degradation triggered by its
conformational changes (17-19). The degradation of FRQ re-
sults in a new cycle of transcriptional activations by the WCC.

Previous studies in Neurospora showed asynchronous mitotic
divisions, with no report of circadian-gated division cycles, de-
spite the presence of robust circadian rhythms (20-22). On the
other hand, although synchronous nuclear divisions are observed
in other fungi, such as Aspergillus nidulans, it is unknown whether
circadian rhythms play a role in the synchrony of their divisions
(23). Recent use of GFP labeling has facilitated detailed obser-
vations of mitosis in germinating conidia, supporting models for
asynchronous mitotic nuclear divisions (21, 24). These experi-
ments, however, did not take into account the potential influence
of circadian rhythms in mitotic division cycles. In Neurospora,
robust circadian oscillations are observed in constant darkness
(DD) or under entrainment regimens (e.g., light-dark cycles),
but not in constant light (LL) conditions. There are no reports of
experiments that address functional roles of circadian rhythms in
mitotic divisions in the syncytium system.

Significance

Circadian rhythms provide temporal information to other cel-
lular processes, such as metabolism. We investigate the cou-
pling between the cell cycle and the circadian clock using
mathematical modeling and experimentally validate model-
driven predictions with a model filamentous fungus, Neuros-
pora crassa. We demonstrate a conserved coupling mechanism
between the cell cycle and the circadian clock in Neurospora as
in mammals, which results in circadian clock-gated mitotic cycles.
Furthermore, we observe circadian clock-dependent phase
shifts of G1 and G2 cyclins, which may alter the timing of
divisions. Our work has large implications for the general
understanding of the connection between the cell cycle and
the circadian clock.

Author contributions: C.I.H. and A.C.-N. designed research; J.Z., M.B., L.L,, K.J,, H.L., L.F.L.,
A.G., HS.C,, and W.J.B. performed research; J.Z. performed mathematical modeling; C.I.H.,
J.Z., and A.C.-N. analyzed data; and C.ILH., J.Z,, LF.L, W.J.B., and A.C.-N. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

"To whom correspondence should be addressed. E-mail: christian.nong@uc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1319399111/-/DCSupplemental.

PNAS | January 28,2014 | vol. 111 | no.4 | 1397-1402

CELL BIOLOGY




The cell cycle regulation of Neurospora has yet to be inves-
tigated thoroughly because of some technical limitations, such as
adequate methods to synchronize, image, and measure doubling
times of nuclear divisions in growing mycelia. We explored the
Neurospora genome (25) to find the homologs of key cell cycle
regulators and found that Neurospora has a low number of
predicted cyclins and CDKs. Neurospora has a single Cdk! ho-
molog (cdc-2, NCU09778), one Gl cyclin that resembles the
sequence of the G1/S regulating budding yeast Cins (cln-1,
NCUO02114), and two B-type cyclins (clb-1, NCU02758, and clb-3,
NCUO01242) (26). There also exists a homolog of the CDK1 in-
hibitor WEEL1 kinase (stk-29, NCU04326), which is regulated in
a circadian manner in the mouse liver (5). Interactions between the
above homologous proteins in budding and fission yeast have been
well characterized, and their conservation among eukaryotes (27,
28) suggests they may be wired in a similar fashion in N. crassa.

Here, we investigate the molecular connection between the
cell cycle and the circadian clock and functional consequences of
this coupling in N. crassa. First, we show that there is a conserved
connection between the cell cycle and the circadian clock in
Neurospora as in mammals via STK-29, which is the Neurospora
homolog of WEEI. Based on this finding and on the hypothesis
of conserved cell cycle regulatory interactions, we use mathe-
matical modeling to investigate molecular profiles of both cell
cycle and circadian clock components. Our computational sim-
ulations predict circadian oscillations of cell cycle components,
such as CLN-1 and CLB-1. We experimentally validate this
prediction with luciferase bioluminescence reporters to track
both cell cycle and circadian clock components in real time in
vivo. Moreover, we demonstrate circadian clock-induced phase
shifts of cell cycle components, which may alter the timing of
divisions. The circadian oscillations of key cell cycle components
suggest circadian clock-gated synchronized nuclear divisions. By
observing nuclear morphology over time at 25 °C in DD, we
indicate that most divisions occur in the evening. We propose
that there is a significant coupling between the cell cycle and the
circadian clock, which might result in immediate changes in
the dynamics of cell cycle regulation upon alterations in cir-
cadian rhythms.

Results

There Is a Conserved Coupling Between the Cell Cycle and the
Circadian Clock in N. crassa as in Mus musculus. A heterodimeric
circadian transcription factor, WCC, recognizes light-responsive
elements (LREs) to activate target genes (13, 29, 30). We found
four putative LREs (GAGATCC, CCGATCC, CCGATCG, and
TCGATCT) within 1.75 kb of the stk-29 gene 5’ upstream region
(Fig. 14). To test WCC-dependent activation of stk-29, we per-
formed a light induction experiment. WC-1 is also a photoreceptor
that undergoes a light induction response, which is described by
a sharp increase in its expression followed by a decrease to its
basal level of expression when Neurospora is transferred from
dark to light conditions (Fig. 1B). Light-induced WC-1 activates
many downstream target genes by recognizing LREs (31). We
observe light response from stk-29 mRNA in the wild type, which
is abolished in the we-1%° (Fig. 1 C and D). In contrast, we do not
observe a light response of c/n-1 mRNA in wild-type strains (Fig.
1E). The WC-1-dependent light response of stk-29 indicates that
stk-29 is activated by WCC and that it is a potential target for
circadian regulation. To verify direct binding of WCC to the
promoter of stk-29, we performed a WC-2 ChIP experiment and
show that the WC-2 binds to the region close to LRE1 (Fig. 1F).
Based on the finding that stk-29 is activated by WCC, we tested
a mathematical model of the Neurospora circadian clock and cell
cycle as a coupled oscillator and explored coupled dynamics
(Figs. S1-S4 and Tables S1-S5).
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Fig. 1. stk-29 mRNA shows WC-1-dependent light response, and WC-2 di-
rectly binds to the stk-29 promoter. (A) There are four LREs within 1.75 kb of
the stk-29 gene 5’ upstream region. The first LRE, GAGATCG, is located ~1.75 kb
upstream (LRE1); the second LRE, CCGATCC, is located ~1.2 kb upstream
(LRE2); the third LRE, CCGATCG, is located ~0.8 kb upstream (LRE3); and the
fourth LRE, TCGATCT, is located ~0.25 kb upstream (LRE4) of the stk-29
gene. (B) wc-1 mRNA undergoes light response when Neurospora is moved
from dark to light conditions. (C and D) stk-29 mRNA shows light response in
the wild type (C), which is abolished in we-1%° (D). (E) cIn-1 mRNA does not
show light response in the wild type. The above data are relative units (R.U.)
normalized with actin mRNA. The average + SD is shown. The above data
are representative of two or more independent experiments. (F) WC-2 di-
rectly binds to the promoter of stk-29. ChIP assay was performed on a wild-
type strain (FGSC2489), with samples grown in the dark (0’) or in response to
a 15-min light pulse (15) using a polyclonal antibody that recognizes WC-2
protein and oligos specific for a region of the stk-29 promoter. A nonspecific
IgG and a strain lacking the wc-2 gene (Awc-2) were used as controls. The
results are an average of five experiments, and the error bars represent the
SDs. The asterisks indicate a P value <0.001.

cln-1 and clb-1 Gene Expression and Protein Abundance Show Circadian
Clock-Dependent Oscillations. Our mathematical model predicts
circadian oscillations of cell cycle components such as CLN-1
and CLB-1 proteins if intermediate to strong coupling exists
between the circadian clock and the cell cycle (Figs. S1-S4).
To validate circadian-dependent oscillations of cell cycle factors,
we constructed bioluminescence reporters to track in vivo gene
expression of cln-1 (NCUO02114), clb-1 (NCUO02758), stk-29
(NCU04326), and cdc-2 (NCU09778) in real time. Bioluminescence
reporters were constructed by fusing the fully codon-optimized
luciferase from firefly with a promoter of interest (32). Our data
indicate that expression of cln-1, clb-1, and stk-29 from pop-
ulations of Neurospora nuclei show circadian oscillations (Fig.
24). We also observe circadian oscillations of c/n-1 and clb-1
mRNA expressions (Fig. S5). Expression of cdc-2, however, does
not follow circadian regulation (Fig. 24). This is in accord with
the cell cycle model that we adapted (33), which assumes con-
stitutive expression of cdc-2. We then constructed translational
bioluminescence reporters of CLN-1"¢, CLB-1"*, and CDC-2'"°
by fusing luciferase to genes of interest as previously described
for FRQ™® (34), and followed protein abundances of CLN-1,
CLB-1, and CDC-2. The abundance of both CLN-1 and CLB-1

Hong et al.



dc_836_14

EERRNAS - PNAS _ PNAS

A —cin-1 —clb-1 — frq — stk-29 — cdc2-luc B —CLN-1 —CLB-1 — CDC-2 C — CLN-1 — cib-1 — stk-29 in frg*° background

é‘ 32
= = S =
2 ! 8 1.
@ J
2 3 g g%
) 2 @ @
@ 1 8 g |
£ = 5 2 ,
= E & £ 244
2 2 @ 5
O o° e = /
@ bl E 2 |

=

[} é"’_

r T r T o 2 T
1 33 55 77 99 121 11 33 55 77 99 121

Hours in DD Hours in DD Hours in DD

Fig. 2. cIn-1, clb-1, and stk-29 demonstrate circadian oscillations. (A) cIn-1, clb-1, stk-29, and cdc-2 promoters are fused to the codon-optimized firefly lu-
ciferase (32) for real-time analyses of their gene expressions in vivo. A strain carrying frq-luciferase reporter, an established core circadian component, is used
as a positive control. (B) cIn-1, clb-1, and cdc-2 genes are fused with the codon-optimized firefly luciferase for real-time observation of CLN-1, CLB-1, and CDC-2
protein abundances. (C) A strain housing c/b-T-luciferase or stk-29-luciferase reporter is crossed with frg® mutant resulting in c/b-1-luciferase and stk-29-
luciferase reporters in frgk° background that show loss of circadian oscillations of c/b-1 and stk-29 gene expression. Similarly, the CLN-1'" translational re-

porter is crossed with frgk° mutant, resulting in a CLN-1" reporter strain in frgk° background, which shows an arrhythmic phenotype. The above data are
representative of three or more independent experiments. Arbitrary units (AU) are shown.

shows circadian oscillations with phase information similar to
that of their gene expression profiles (Fig. 2B). The observed
phase relationship between CLN-1 and CLB-1 is expected based
on their cell cycle functions in G1 and G2/M phases, respectively.
In contrast, the abundance of CDC-2 increases continuously over
time, corresponding to the growth in mass of Neurospora, and
does not exhibit circadian oscillations (Fig. 2B). The data suggest
that CDC-2 is stable with a constant rate of expression, consis-
tent with findings in budding yeast (35). Importantly, circadian
oscillations of CLN-1 protein and c/b-1 and stk-29 gene expres-
sion are lost in the frg*° strain, an arrhythmic mutant in which the
circadian clock is nonfunctional (Fig. 2C). This indicates that the
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synchronized oscillations of cell cycle elements are under the
influence of circadian rhythms.

Based on the above data, we hypothesized that the expression
of cell cycle genes such as c/b-1 might be altered in a circadian
manner. We performed light-pulse experiments to phase-shift
circadian rhythms and investigated the circadian-dependent phase
shifts of cell cycle components. We tracked bioluminescence of
frq, clb-1, and stk-29 gene expression after a 90-min light pulse at
specific time points in DD. We observed ~3-5-h phase advances
and delays in the expression of frq, clb-1, and stk-29 when light
pulses were given at DD32 [circadian time 23 (CT23)] and DD48
(CT16), respectively (Fig. 3). This demonstrates that the phases
of clb-1 and stk-29 gene expression are influenced by phase
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clb-1 and stk-29 gene expressions indicate circadian clock-dependent phase shifts. (A-C) A 90-min light pulse is given at either DD32 (dashed black) or

DD48 (solid black), and the phases of peak expressions of frq, clb-1, and stk-29 genes are compared with unperturbed data (frg, orange; c/b-1, blue; stk-29,
maroon) at the fourth peak of unperturbed data (dashed straight line). Corresponding peaks are labeled in each figure. The data shown represent three
independent experiments. (D) A 90-min light stimulus at DD32 and DD48 creates ~3-5-h phase advances and delays, respectively. The data are from three
independent experiments (Fig. S6), and the average + SD is shown. Arbitrary units (AU) are shown.
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changes of the circadian clock that are similar in degree and
direction, which may alter the timing of nuclear divisions in
N. crassa.

Circadian Clock-Dependent Synchronized Nuclear Divisions Occur in
the Middle of the Night. The lack of circadian oscillations of c/b-1
gene expression in fig“° does not necessarily indicate altered
mitosis (Fig. 2C). Rather, it suggests asynchronous mitotic divi-
sions uncoupled from circadian rhythms. To verify this, we in-
vestigated circadian clock-dependent synchronized nuclear divisions.
In Neurospora, nuclei are visualized readily by using an hH1-sgfp
strain in which histone H1 is fused to GFP (21, 24). By using this
strain, the stages of the cell cycle can be visualized and catego-
rized. We performed a time-course experiment under circadian
conditions (i.e., DD at 25 °C) and classified the populations of
nuclei into two categories: interphase and mitotic phase (Fig. 44).
At CT4, or during the subjective day, most nuclei are in in-
terphase, as shown by round nuclear morphology (Fig. 4B). In
contrast, many nuclei undergo mitosis at around CT17, which
corresponds to late subjective evening (Fig. 4C). Although there
is variability in mitotic stage, around 60% of nuclei are actively
dividing in the evening (Fig. 4D). These data clearly demonstrate
circadian oscillations in Neurospora mitotic divisions. The syn-
chronized nuclear divisions are not observed in the frg*° strain
(Fig. 4F), which indicates that circadian rhythms are necessary
for this daily synchronization of cell cycles. These observations
are in accord with the arrhythmic c¢/b-1 and stk-29 gene expres-
sion in frg® (Fig. 2C). We also used an established mitosis
marker, phospho-histone H3 (pH3) antibody, as an independent
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Fig. 4. Circadian clock-gated synchronized nuclear divisions are observed in
Neurospora. (A) Different stages of mitotic cycles can be visualized with the
hH1-sgfp strain and categorized based on the morphology of nuclei. (B and
C) Microscopy data showing strands of hyphae at two different time points:
CT4 and CT17. CT denotes circadian time in a free-running period in DD, in
which subjective day begins at CTO and subjective night begins at CT12. (D)
Percentages of nuclei in mitosis are calculated as a time course with 2-h
resolution. The average + SD is shown. DD27 is statistically different from
DD37 (*P = 0.021). The values are obtained from a time-course experiment
with four to six samples from each time point. (E) Percentages of nuclei in
mitosis are calculated and compared between the wild type (black) and frg*®
(gray) at four different time points (CT15, CT17, CT23, and CT4). The av-
erage + SEM is shown. The data are from three or more independent
experiments. Two-way ANOVA indicates there is a significant difference
between DD27 and DD37 in the wild type (*P = 0.012) but not in the fqu°
strain (**P = 0.33). There is a significant difference between the wild type
and the frg*® at DD27 (***P = 0.005) but not at DD37 (****P = 0.609).
Similar data are shown from live cell imaging (Fig. S8 and Movies S1-54).
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measurement of mitosis (36, 37). We observed more pH3-positive
nuclei at DD25 (CT15) than at DD35 (CT2) (Fig. S7 A and B).

The above experiments are performed by harvesting Neuros-
pora from liquid culture media in DD and counting the number
of nuclei present in fixed cells. It is important to note that we
observe similar results via live cell imaging from Neurospora
grown in defined solid agar media, in which we observe a second
cycle of increased and decreased mitosis at DD47 and DDS57,
respectively (Fig. S8 and Movies S1-5S4).

Discussion

In silico, we investigated various scenarios of coupled dynamics
between the circadian clock and the cell cycle, which demon-
strated circadian oscillations of cell cycle components if signifi-
cant coupling exists between the two oscillators (Figs. S2-S4).
We have demonstrated experimentally that elements of the cell
cycle (e.g., cIn-1 and clb-1) undergo circadian oscillations, which
manifest a circadian clock-dependent synchronized mitotic di-
vision in Neurospora. We also show that both clb-1 and stk-29
gene expression undergo light-dependent phase shifts in a length
and direction similar to those of frqg gene expression. This suggests
circadian clock-dependent phase shifts of cell cycle components,
which might be used to alter the timing of mitotic divisions.

The fundamental molecular regulatory architecture of circa-
dian rhythms that highlight the time-delayed negative feedback
mechanism is conserved from N. crassa to M. musculus (38).
Coupling between circadian rhythms and the DNA damage re-
sponse pathway is also conserved between Neurospora and
mammals. Checkpoint kinase 2 (CHK?2) is activated upon DNA
damage and phosphorylates one of the core clock components
(i.e., PER1 in mammals and FRQ in Neurospora), resulting in
a subsequent degradation of PER1 or FRQ that leads to pre-
dominantly phase advances in circadian rhythms (3943). We dem-
onstrate that WC-2 binds to the promoter of stk-29 (NCU04326) and
that stk-29 undergoes WC-1-dependent light-response and circadian
oscillations, which shows conserved coupling between the cell cycle
and circadian rhythms. The binding of WC-2 to the stk-29 promoter
was not reported in the recent WC-2 ChIP-sequencing data (44).
This is probably a result of the low expression of stk-29 and the less
dramatic light response of stk-29 compared with other targets. Fur-
ther investigations are needed to understand the detailed dynamics
of these connections as well as other possible coupling factors. We
have shown circadian oscillations in a few cell cycle regulators.
However, it is unclear whether these cycling components are genuine
coupling components or mere reflections of the circadian-gated cell
cycle determined by the currently known coupling factor STK-29.
Recently, microarray data have suggested that several genes in cell
cycle control show oscillatory behavior in Neurospora (45). Identi-
fication of other factors that couple the cell cycle and circadian
rhythms will elucidate distinct points of interactions in which the
circadian clock influences the cell cycle.

Identified conserved coupling components (i.e., CHK2 and
WEE1) among the circadian clock, DNA damage response, and
cell cycle mechanisms pose Neurospora as an ideal model or-
ganism to investigate the fundamental wiring of this network.
However, one of the main disadvantages of Neurospora is that it
is technically difficult to assess the doubling time of mitotic
cycles in Neurospora mycelium grown on solid agar media.
Previous measurements in liquid culture media showed a range
in doubling time from 72 to 239 min, depending on growth
conditions from young germinating conidia (46), which is in good
agreement with our measurements in noncircadian conditions
(e.g., LL) (Fig. S9). However, the doubling time in mature my-
celium in circadian conditions (i.e., DD) might be different be-
cause of the presence of the circadian clock. Therefore, measuring
the doubling time of nuclear divisions in DD for an extended
period will be critical for future experiments. Real-time fluores-
cence and bioluminescence reporters, in addition to the use of
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microfluidic devices for single-nucleus imaging, may facilitate
measurement of doubling times for Neurospora growing in both
liquid culture and solid agar media.

In this report, we demonstrate that many nuclear divisions
occur during a specific window of circadian time. However, our
experimental data also show that synchronized divisions are
spread out over 6 h, with less frequent nuclear divisions also
occurring at other times of the day (Fig. 4D). This does not imply
that a single nucleus spends 6 h in the mitotic state; rather, our
data suggest an increase in mitosis as a population within that 6-h
window. It is also possible to hypothesize that a weak coupling
might exist that enables the circadian clock to modulate the total
abundance of CLB-1, which might allow more divisions during
the evening in a threshold-dependent manner while keeping the
cell cycle time short (Figs. S2B and S3B). Another hypothesis
that might result in the observed phenotype is context-dependent
(e.g., aging, nutrient conditions) weak to strong coupling. Our
modeling work and other mathematical models predict quasi-
periodic multimodal doubling times depending on the strength
of the coupling and the frequency of the two oscillators (8, 47).
In our future work, we plan to assess the strength of the coupling
and the doubling time by using both computational simulations
and experiments observing both cell cycle and circadian com-
ponents with bioluminescence assays. Our discovery of circadian
clock-dependent synchronized mitotic cycles in Neurospora will
serve as a stepping-stone for further investigations to uncover
conserved principles of coupled mechanisms between the cell
cycle and circadian rhythms.

Materials and Methods

Strains. Strains used for the experiments are a clock wild-type ras-1°%a (328-4)
and three arrhythmic mutants from the laboratories of Drs. J. Dunlap and
J. Loros (Dartmouth Medical School, Hanover, NH) [ras-1°7; frq*°;a (358-6),
ras-1°%wc-1%° (538), and ras-1°%wc-2° (Awc-2)]. Wild-type strain FGSC#2489
(Mat A) was used for the ChIP experiment. Strain hH1-sgfp (FGSC#9518) was
obtained from the Fungal Genetics Stock Center (FGSC, University of Mis-
souri-Kansas City) (48). c/n-1-luc, clb-1-luc, and cdc-2-luc strains were made
by integrating these reporter constructs into the csr-1 locus as previously
described (49). CLN-1'", CLB-1'"", and CDC-2"* translational fusion strains
were made by knock-in strategies as previously described (50). The strain c/b-
1—Iuc,'fqu° is a progeny from a cross between clb-1-lucras-1°9:A and 358-6
(ras-1°9; frg*°; a). The strain stk-29-luc;frg*° is a progeny from a cross be-
tween stk-29-lucras-1°%A and 358-6 (ras-1°7; frg*%a). The strain CLN-1'“
frg*° is a progeny from a cross between CLN-1"<ras-1°%;A and 358-6 (ras-
159 frg*°;a). The strain hH1-sgfp;frg*° is a cross-progeny between hH1-sgfp
(FGSC#9518) and 358-6 (ras-1°% fqu°;a).

Quantitative RT-PCR. Neurospora was grown in liquid culture media con-
taining Vogel's medium (pH 5.8) with 2% (wt/vol) glucose, 0.5% arginine, and 50
ng/mL biotin, and harvested as previously described (31). Total RNA was
isolated using Tri Reagent (Molecular Research Center, Inc.), and quantita-
tive RT-PCR (qRT-PCR) was performed as previously described (31). The actin
mMRNA is used to normalize real-time gRT-PCR data.

ChIP. ChIP was performed in a manner similar to methods previously de-
scribed, with slight modifications (51, 52). One hundred-milliliter cultures of
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Neurospora mycelia were cross-linked with 1% formaldehyde for 15 min and
then quenched with 0.1 M glycine for an additional 15 min. The Neurospora
was harvested by filtration and ground with a mortar and pestle, and the
tissue was added to 10 mL FA lysis buffer (0.05 M Hepes, pH 7.4/0.15 M NaCl/
0.001 M EDTA/1% Triton TX-100/0.1% SDS) containing protease inhibitors
(0.002 mg/mL leupeptin, 0.002 mg/mL pepstatin A, 0.001 M PMSF). To im-
prove cell disruptions, the tissue was subjected to a single sonication at 50%
power and the cellular debris was removed by centrifugation at 2500 x g for
10 min. A chromatin-enriched fraction then was obtained by a high-speed
spin at 60,000 x g for 30 min. The pellet was suspended in the lysis buffer
plus protease inhibitors and sonicated to an average size of 500 bp. Equal
amounts of sheared chromatin were incubated with WC-2 antibody (53) plus
protein A Dynabeads overnight at 4 °C with constant mixing. The beads
were washed with the lysis buffer and eluted two times with 50 mL 0.1 M
sodium bicarbonate and 1.0% SDS. The cross-links were reversed by in-
cubating for 4 h at 65 °C in the presence of 0.1 M NaCl. The DNA was re-
covered by treatment with proteinase K for 1 h followed by a phenol/
chloroform extraction, then suspended in 10 mM Tris, pH 7.5/1.0 mM EDTA.
Two milliliters of the purified DNA was used in a quantitative PCR with
primers specific to the stk-29 promoter.

Bioluminescence Assay. In all experiments, Neurospora was grown at 25 °Cin
constant white fluorescent light (LL) overnight before being transferred into
constant darkness (DD) for time-course experiments. For bioluminescence
assays, we used standard race tubes containing Vogel's medium (pH 5.8)
with 0.1% glucose, 0.17% arginine, 50 ng/mL biotin, 1.5% (wt/vol) agar, and
12.5 pM luciferin (Fig. 2). In vivo luciferase activity was collected for 10 min
every hour with a PIXIS CCD camera from Princeton Instruments controlled
by WinView/32 software from Roper Scientific. A 90-min pulse of white
fluorescent light (80 pmol photons-m~2s~') was given at indicated time
points for phase-shift experiments, and in vivo luciferase activity was col-
lected for 10 min every 2 h.

Microscopy. For microscopy experiments, Neurospora conidia suspensions
were grown in 500-mL baffled flasks in liquid culture media containing
Vogel's medium (pH 5.8) with 2% (wt/vol) glucose, 0.5% arginine, and 50
ng/mL biotin. Neurospora was grown at 25 °C in constant white fluorescent
light (LL) overnight before being transferred into constant dark (DD) for
time-course experiments. Samples were grown on a shaker at 125 rpm.
Random samples of mycelia were collected and fixed in 2% (wt/vol) para-
formaldehyde/PBS at indicated time points and observed under a confocal
fluorescence microscope (Zeiss LSM710). Two to three slides were prepared
from each time point, and four to six images of mycelia were captured from
each slide. Nuclei from each image were analyzed to calculate the average
number of nuclei undergoing mitosis.

ACKNOWLEDGMENTS. We thank P. Stambrook, M. Montrose, N. Horsemen,
K. Lee, and C. H. Chen for discussions. We thank S. Yoo, S. Moon, D. Ruter,
and S. Kim for technical assistance. We thank C. Closson at the Live
Microscopy Core for his help with confocal microscopy, and the Fungal
Genetics Stock Center for providing the hH1-sgfp strain (FGSC#9518) (48).
We are pleased to acknowledge use of materials generated by Grant P01
GMO0668087, “Functional Analysis of a Model Filamentous Fungus” (54). C.1.H.
was supported by Department of Interior Grant D12AP00005 and startup
funds from the Department of Molecular and Cellular Physiology, University
of Cincinnati. L.F.L. was supported by Fondo Nacional de Desarrollo Cientifico
y Tecnologico 1090513. W.J.B. is supported by National Institutes of Health
Grant RO1 GM101378 and is a member of the National Institute on Environ-
mental Health Sciences Center for Environmental Exposure and Disease
(P30 ES005022).

9. Yeom M, Pendergast JS, Ohmiya Y, Yamazaki S (2010) Circadian-independent cell
mitosis in immortalized fibroblasts. Proc Nat/ Acad Sci USA 107(21):9665-9670.

10. Dunlap JC, et al. (2007) A circadian clock in Neurospora: How genes and proteins
cooperate to produce a sustained, entrainable, and compensated biological oscillator
with a period of about a day. Cold Spring Harb Symp Quant Biol 72:57-68.

11. Liu Y, Bell-Pedersen D (2006) Circadian rhythms in Neurospora crassa and other fila-
mentous fungi. Eukaryot Cell 5(8):1184-1193.

12. Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a
circadian clock: Autoregulation of the clock gene frequency. Science 263(5153):
1578-1584.

13. Cheng P, He Q, He Q, Wang L, Liu Y (2005) Regulation of the Neurospora circadian
clock by an RNA helicase. Genes Dev 19(2):234-241.

14. Cha J, Chang SS, Huang G, Cheng P, Liu Y (2008) Control of WHITE COLLAR locali-
zation by phosphorylation is a critical step in the circadian negative feedback process.
EMBO J 27(24):3246-3255.

PNAS | January 28,2014 | vol. 111 | no.4 | 1401

CELL BIOLOGY



dc_836_14

BEEERRNAS - PNAS _DNAS

20.

2

22.

23.

24.

25.

26.

27.

28.

29.

30.

3

32.

33.

34.

. Hong ClI, Ruoff P, Loros JJ, Dunlap JC (2008) Closing the circadian negative feedback

loop: FRQ-dependent clearance of WC-1 from the nucleus. Genes Dev 22(22):
3196-3204.

. Schafmeier T, et al. (2008) Circadian activity and abundance rhythms of the Neuros-

pora clock transcription factor WCC associated with rapid nucleo-cytoplasmic shut-
tling. Genes Dev 22(24):3397-3402.

. Baker CL, Kettenbach AN, Loros JJ, Gerber SA, Dunlap JC (2009) Quantitative pro-

teomics reveals a dynamic interactome and phase-specific phosphorylation in the
Neurospora circadian clock. Mol Cell 34(3):354-363.

. Querfurth C, et al. (2011) Circadian conformational change of the Neurospora clock

protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain.
Mol Cell 43(5):713-722.

. Tang CT, et al. (2009) Setting the pace of the Neurospora circadian clock by multiple

independent FRQ phosphorylation events. Proc Nat/ Acad Sci USA 106(26):
10722-10727.

Gladfelter AS (2006) Nuclear anarchy: Asynchronous mitosis in multinucleated fungal
hyphae. Curr Opin Microbiol 9(6):547-552.

. Roca MG, Kuo HC, Lichius A, Freitag M, Read ND (2010) Nuclear dynamics, mitosis, and

the cytoskeleton during the early stages of colony initiation in Neurospora crassa.
Eukaryot Cell 9(8):1171-1183.

Serna L, Stadler D (1978) Nuclear division cycle in germinating conidia of Neurospora
crassa. J Bacteriol 136(1):341-351.

Rosenberger RF, Kessel M (1967) Synchrony of nuclear replication in individual hy-
phae of Aspergillus nidulans. J Bacteriol 94(5):1464-1469.

Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the
organization, dynamics and function of nuclei and microtubules in Neurospora crassa.
Fungal Genet Biol 41(10):897-910.

Galagan JE, et al. (2003) The genome sequence of the filamentous fungus Neurospora
crassa. Nature 422(6934):859-868.

Borkovich KA, et al. (2004) Lessons from the genome sequence of Neurospora crassa:
Tracing the path from genomic blueprint to multicellular organism. Microbiol Mol
Biol Rev 68(1):1-108.

Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature
344(6266):503-508.

Csikasz-Nagy A, Battogtokh D, Chen KC, Novak B, Tyson JJ (2006) Analysis of a generic
model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361-4379.

Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light
photoreceptor, binding to the frequency promoter. Science 297(5582):815-819.

He Q, et al. (2002) White collar-1, a DNA binding transcription factor and a light
sensor. Science 297(5582):840-843.

. Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of

light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J
28(8):1029-1042.

Gooch VD, et al. (2008) Fully codon-optimized luciferase uncovers novel temperature
characteristics of the Neurospora clock. Eukaryot Cell 7(1):28-37.

Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: Molecular antago-
nism, hysteresis, and irreversible transitions. J Theor Biol 210(2):249-263.

Larrondo LF, Loros JJ, Dunlap JC (2012) High-resolution spatiotemporal analysis of
gene expression in real time: In vivo analysis of circadian rhythms in Neurospora
crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 49(9):
681-683.

1402 | www.pnas.org/cgi/doi/10.1073/pnas.1319399111

35.

36.

37.

38.

39.

40.

41.

=

42.

43.

44.

45,

46.

47.

48.

49.

50.

5

=

52.

53.

54.

Spellman PT, et al. (1998) Comprehensive identification of cell cycle-regulated genes
of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):
3273-3297.

Hendzel MJ, et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates
primarily within pericentromeric heterochromatin during G2 and spreads in an or-
dered fashion coincident with mitotic chromosome condensation. Chromosoma
106(6):348-360.

Plikus MV, et al. (2013) Local circadian clock gates cell cycle progression of transient
amplifying cells during regenerative hair cycling. Proc Natl Acad Sci USA 110(23):
E2106-E2115.

Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96(2):271-290.

Gamsby JJ, Loros JJ, Dunlap JC (2009) A phylogenetically conserved DNA damage
response resets the circadian clock. J Biol Rhythms 24(3):193-202.

Gery S, et al. (2006) The circadian gene per1 plays an important role in cell growth
and DNA damage control in human cancer cells. Mol Cell 22(3):375-382.

Hong Cl, Zamborszky J, Csikasz-Nagy A (2009) Minimum criteria for DNA damage-
induced phase advances in circadian rhythms. PLOS Comput Biol 5(5):e1000384.
Oklejewicz M, et al. (2008) Phase resetting of the mammalian circadian clock by DNA
damage. Curr Biol 18(4):286-291.

Pregueiro AM, Liu Q, Baker CL, Dunlap JC, Loros JJ (2006) The Neurospora checkpoint
kinase 2: A regulatory link between the circadian and cell cycles. Science 313(5787):
644-649.

Smith KM, et al. (2010) Transcription factors in light and circadian clock signaling
networks revealed by genomewide mapping of direct targets for neurospora white
collar complex. Eukaryot Cell 9(10):1549-1556.

Dong W, et al. (2008) Systems biology of the clock in Neurospora crassa. PLoS One
3(8):e3105.

Martegani E, Levi M, Trezzi F, Alberghina L (1980) Nuclear division cycle in Neuros-
pora crassa hyphae under different growth conditions. J Bacteriol 142(1):268-275.
Gérard C, Goldbeter A (2012) Entrainment of the mammalian cell cycle by the circa-
dian clock: Modeling two coupled cellular rhythms. PLOS Comput Biol 8(5):e1002516.
McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: A re-
pository for 50 years of fungal genetics research. J Biosci 35(1):119-126.

Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction
between VIVID and white collar complex regulates photoadaptation in Neurospora.
Proc Natl Acad Sci USA 107(38):16715-16720.

Larrondo LF, Colot HV, Baker CL, Loros JJ, Dunlap JC (2009) Fungal functional ge-
nomics: Tunable knockout-knock-in expression and tagging strategies. Eukaryot Cell
8(5):800-804.

. Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC (2011) CHD1 remodels chromatin

and influences transient DNA methylation at the clock gene frequency. PLoS Genet
7(7):¢1002166.

Belden WJ, Loros JJ, Dunlap JC (2007) Execution of the circadian negative feedback
loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme
CLOCKSWITCH. Mol Cell 25(4):587-600.

Denault DL, Loros JJ, Dunlap JC (2001) WC-2 mediates WC-1-FRQ interaction within
the PAS protein-linked circadian feedback loop of Neurospora. EMBO J 20(1-2):
109-117.

Colot HV, et al. (2006) A high-throughput gene knockout procedure for Neurospora
reveals functions for multiple transcription factors. Proc Nat/ Acad Sci USA 103(27):
10352-10357.

Hong et al.



