
Convexity and non-Eulidean Geometries

DSC DISSERTATION

Ákos G.Horváth

Department of Geometry

Institute of Mathematis

Budapest University of Tehnology and Eonomis

Budapest

January, 2017

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



Contents

Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

The struture of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Detailed desription of the ontent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Problems on onvexity and volumes in onnetion with non-Eulidean geometries . . . . . . 1

1.1. On the onvex hull of two onvex bodies (ommon work with Zs. Lángi) . . . . . . . . . . . 1

1.2. On the volume of the onvex hull of points insribed in the unit sphere . . . . . . . . . . . . 5

1.3. On the hyperboli onept of volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Investigations in a lassial Minkowski normed spae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1. Bisetors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1. Bisetors and the unit ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2. Dirihlet-Voronoi ells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3. On the shadow boundary of the unit ball in three-spae . . . . . . . . . . . . . . . . . . . . 28

2.1.4. Bisetor and shadow boundary in higher spaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.5. On bounded representation of bisetors (ommon work with H.Martini) . . . . 40

2.2. Adjoint abelian operators and isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1. Charaterization of adjoint abelian operators in Minkowski geometry . . . . . . . 46

2.2.2. Charaterization of isometries in Minkowski geometry . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3. The group of isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3. Conis and roulettes in Minkowski planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1. Conis (Common work with H. Martini). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2. Roulettes (Common work with V. Balestro and H. Martini) . . . . . . . . . . . . . . . . 56

3. From the semi-inde�nite inner produt to the time-spae manifold . . . . . . . . . . . . . . . . . . . . . 69

3.1. Semi-inde�nite inner produt spaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2. Generalized spae-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1. The imaginary unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2. Premanifolds in a generalized spae-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3. The metri spae of norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1. The thinness funtion and other de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2. The onstruted measure and its measure theoreti properties . . . . . . . . . . . . . . 91

3.3.3. Extration the measure to a geometri probability measure . . . . . . . . . . . . . . . . . 95

3.4. Generalized spae-time model with hanging shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1. Deterministi time-spae model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.2. Random time-spae model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A. Relativity theory in time-spae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1. On the formulas of speial relativity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2. General relativity theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.1. Metris embedded into a time-spae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.2. Three-dimensional visualization of a metri in a four-time-spae. . . . . . . . . . . . 119

A.2.3. Einstein's equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

i

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



ii CONTENTS

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Papers of Á. G.Horváth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Other papers mentioned in the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



Introdution

Overview

The dissertation ontains new theorems from fourteen publiations, eah from the area of non-

Eulidean geometries, whih onstitute an essential part of my researh during the period of

1996− 2016 following the defene of my andidate's degree.

Sine János Bolyai, the investigation of non-Eulidean geometries has beome a great tradition

in Hungarian mathematial ulture. This dissertation ontinues this tradition. We deal with

problems that an be onneted to non-Eulidean geometries through the bridge of onvexity.

These investigations are interesting for some researhers in other disiplines, e.g. programmers,

physiists, engineers, geologists, and mathematiians from other areas of mathematis. We

organized our dissertation to an Overview, three Chapters and an Appendix. The Overview

ontains a short omment on the seletion of the papers inluded in the Thesis and a more

detailed desription of the results and the orresponding tools.

The struture of the dissertation. The first hapter ontains problems from Eu-

lidean geometry whih an be solved using non-Eulidean geometri tools, or an analogous non-

Eulidean problem leads to a deep result in it. As an example I mention Theorem 1.1.2 whih

transforms a Eulidean problem into a question in Minkowski geometry (is alled by Minkowski

normed spae, too). If, for an n-dimensional onvex body K, we have that vol(conv((v +K) ∪
(w +K))) has the same value for any touhing pair of translates of K, we say that K satis�es

the translative onstant volume property. Reall that a 2-dimensional o-symmetri onvex urve

is a Radon urve, if, for the onvex hull K of a suitable a�ne image of the urve, it holds

that its polar K◦
is a rotated opy of K by

π
2
(f. [117℄); the onept of Radon urves arose

in onnetion with Birkho� orthogonality in Minkowski normed spaes. With Zsolt Lángi we

proved that for any plane onvex body K the following are equivalent.

(1) K satis�es the translative onstant volume property.

(2) The boundary of

1
2
(K −K) is a Radon urve.

(3) K is a body of onstant width in a Radon norm.

This hapter is based on three papers of the author [12℄, [13℄, [14℄ from whih the paper [13℄

is a joint work with Zsolt Lángi. These results are strongly onneted to three other papers of

the author ([81℄, [82℄ and [84℄).

In the seond hapter we investigate the basi onepts of a normed spae from the onept

of bisetor to the onept of ertain important urves. A harateristi result is Theorem 2.1.7.

Here we onsidered the topologial onnetion between the shadow boundary of the unit ball

of a Minkowski spae in a given diretion and the bisetors of the spae orresponding to

the same diretion. As a good tool we introdue the onept of general parameter spheres

as follows: Let K be the unit ball of the Minkowski spae and x be a �xed diretion of the

spae En
. Denote by Hx the set of those points of the spae whih distane from the origin

is equal to its distane from the point x. Let λ0 := inf{0 < t ∈ R | tK ∩ (tK + x) 6= ∅} be

the smallest value of t for whih tK and tK + x interset. Then a general parameter sphere of

bdK orresponding to the diretion x and to any �xed parameter λ ≥ λ0 is the following set:

γλ(K, x) := 1
λ
(bd(λK) ∩ bd(λK + x)) ⊂ bdK. We proved the following statement: Assume

that the bisetor Hx is a topologial plane of E3
. Then the general parameter spheres γλ(K, x)

for λ > λ0 and the shadow boundary S(K, x) are topologial 1-manifolds (topologial irles).

iii
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iv INTRODUCTION

For λ = λ0 the parameter sphere an form a point, a segment or a onvex disk of dimension 2,
respetively.

This hapter ontains results from seven papers [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄ from these [4℄ and

[6℄ are ommon works with Horst Martini, and the paper [7℄ is a ommon work with Vitor

Balestro and Horst Martini. The paper [85℄, whih is also onneted to the examined problems

through many ideas we omit from the dissertation beause the orresponding investigation was

initiated by my oauthors Zsolt Lángi and Margarita Spirova. This hapter is the bakbone of

the dissertation ontaining several tools for all other proofs, and a lot of new onepts.

The third hapter ontains new onstrutions of manifold-like strutures. First we introdue

a ommon frame for Minkowski normed spaes Minkowski spae-time; that is, we de�ne a

struture that ontains both onepts as speial ases. This onept leads to the idea of gen-

eralized Minkowski spaes whih an be generalized to a model with hanging shape. We all

it generalized Minkowski spae-time model with hanging shape. In this struture the measure

of the spae-like omponent at a �xed moment depends on a norm whih orresponds to the

given moment of time. Sine the loalization in time determines the measure of lengths, we an

assoiate to this model a shape-funtion. This shape-funtion ould be either a deterministi

funtion or a random funtion. Hene we get either a deterministi or a random time-spae

model, respetively. As Theorem 3.4.2 states, from osmologial point of view there is no essen-

tial di�erene between the two models. More preisely, let K0 be the metri spae of entrally

symmetri onvex bodies endowed with Hausdor� metri. In Setion 3.3 we de�ne a probability

measure P on it holding some important geometri properties. Let (Kτ , τ ≥ 0) be a random

funtion de�ned as an element of the Kolmogorov extension

(
ΠK0, P̂

)
of the probability spae

(K0, P ). We say that the generalized spae-time model endowed with the random funtion

K̂τ := n
√

vol(BE)/vol(Kτ )Kτ de�nes a random time-spae model. It is lear that a determin-

isti time-spae model is a speial trajetory of the random time-spae model. Theorem 3.4.2

states the following: For a trajetory L(τ) of the random time-spae model, for a �nite set

0 ≤ τ1 ≤ · · · ≤ τs of moments and for some ε > 0 there is a deterministi time-spae model

de�ned by the (deterministi) funtion K(τ) for whih sup
i
{ρH (L(τi), K(τi))} ≤ ε.

The hapter ontains seleted results from the papers [8℄, [9℄, [10℄, and [11℄.

In the appendix we develop the speial and general relativity theory of our time spae. In a

mathematial dissertation the physial ontent of the appendix annot be onsidered as a main

mathematial result but it is very important to hek the relevane of the oneptualization in

pratie. This is the reason why we add it to the dissertation.

This dissertation (due to length onstraints) does not ontain all the statements and exam-

ples of the mentioned papers. For further information please read the original papers in the

separated literature. The desription of the historial bakground and the preise introdution

of the problem immediately preedes the result in the text. Every theorem has a referene to

the original work from whih it is ited. In the dissertation we also olleted our examples,

de�nitions, theorems and onjetures in an index page titled by "Index". Here we an �nd the

number of the page where the item �rst appeared.

Detailed desription of the ontent.

The �rst hapter. is the least homogeneous hapter, its total length is about 22 pages and

ontains 6 �gures.

The first setion is based on the paper [12℄ whih is a ommon work with Zsolt Lángi. The

problem seems to be a lassial Eulidean one to determine the volume of the onvex hull of

two onvex bodies. It has been in the fous of researh sine the 1950s. One of the �rst results

in this area is due to Fáry and Rédei [55℄, who proved that if one of the bodies is translated on

a line at a onstant veloity, then the volume of their onvex hull is a onvex funtion of time.

This result was reproved by Rogers and Shephard [131℄ in 1958, using a more general theorem

about the so-alled linear parameter systems, and for polytopes by Ahn, Brass and Shin [15℄

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



OVERVIEW v

in 2008. To generalize it we investigated the following quantities. For two onvex bodies K and

L in Rn
, let

c(K,L) = max {vol(conv(K ′ ∪ L′)) : K ′ ∼= K,L′ ∼= L and K ′ ∩ L′ 6= ∅} ,
where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of

Rn
, we set

c(K|S) = 1

vol(K)
max {vol(conv(K ∪K ′)) : K ∩K ′ 6= ∅, K ′ = σ(K) for some σ ∈ S} .

We note that a quantity similar to c(K,L) was de�ned by Rogers and Shephard [131℄, in whih

ongruent opies were replaed by translates. Another related quantity is investigated in [81℄,

where the author examines c(K,K) in the speial ase that K is a regular simplex and the two

ongruent opies have the same entre.

In [131℄, Rogers and Shephard used linear parameter systems to show that the minimum of

c(K|S), taken over the family of onvex bodies in Rn
, is its value for an n-dimensional Eulidean

ball, if S is the set of translations or that of re�etions about a point. Nevertheless, their method,

approahing a Eulidean ball by suitable Steiner symmetrizations and showing that during this

proess the examined quantities do not inrease, does not haraterize the onvex bodies for

whih the minimum is attained; they onjetured that, in both ases, the minimum is attained

only for ellipsoids (f. p. 94 of [131℄). We note that the method of Rogers and Shephard [131℄

was used also in [110℄.

We treated these problems in a more general setting. For this purpose, let ci(K) be the value
of c(K|S), where S is the set of re�etions about the i-�ats of Rn

, and i = 0, 1, . . . , n − 1.
Similarly, let ctr(K) and cco(K) be the value of c(K|S) if S is the set of translations and that

of all the isometries, respetively. We examined the minima of these quantities. In partiu-

lar, in Theorem 1.1.1, we give another proof that the minimum of ctr(K), over the family of

onvex bodies in Rn
, is its value for Eulidean balls, and show also that the minimum is at-

tained if, and only if, K is an ellipsoid. This veri�es the onjeture in [131℄ for translates. In

Theorem 1.1.2, we haraterized the plane onvex bodies for whih ctr(K) is attained for any

touhing pair of translates of K, showing a onnetion of the problem with Radon norms. This

shows that Minkowski geometri investigations an get information on Eulidean problems. In

Theorems 1.1.3 and 1.1.4, we present similar results about the minima of c1(K) and cn−1(K),
respetively. In partiular, we prove that, over the family of onvex bodies, c1(K) is minimal

for ellipsoids, and cn−1(K) is minimal for Eulidean balls. The �rst result proves the onjeture

of Rogers and Shephard for opies re�eted about a point.

We used in the proof a sort of lassial volume inequalities, and ad ho observations from n-
dimensional onvex geometry. We had to use also some information on the orthogonality of a

Minkowski normed plane to get for example the result ited in the preeding subsetion.

The seond setion is based on the paper [13℄. The problem of �nding the maximal volume

polyhedra in R3
with a given number of verties and insribed in the unit sphere, was �rst

mentioned in [57℄ in 1964. A systemati investigation of this question starts with the paper

[25℄ of Berman and Hanes in 1970, who found a neessary ondition for optimal polyhedra, and

determined those with n ≤ 8 verties. The same problem was examined in [127℄, where the

author presented the results of a omputer-aided searh for optimal polyhedra with 4 ≤ n ≤ 30
verties. Nevertheless, aording to our knowledge, this question, whih is listed in both researh

problem books [31℄ and [39℄, is still open for polyhedra with n > 8 verties apart from the

fortunate ase of n = 12 where the solution is the regular iosahedron. In [84℄ the authors

investigated this problem for polytopes in arbitrary dimensions. By generalizing the methods

of [25℄, the authors presented a neessary ondition for the optimality of a polytope. The

authors found the maximum volume polytopes in Rd
, insribed in the unit sphere Sd−1

, with

n = d + 2 verties; for n = d + 3 verties, they found the maximum volume polytope for d
odd, over the family of all polytopes, and for d even, over the family of not yli polytopes,

respetively. Observe that in this investigation spherial trigonometry plays an important role,
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vi INTRODUCTION

whih is the reason why the problem is inluded in this setion. One of the most important

tools in the treatment of the 3-dimensional problem is the result of L. Fejes-Tóth on volume

bounds on polyhedra insribed in the unit sphere (formula (2) on p. 263 in [57℄). For simpliial

polyhedra it an be simpli�ed into another one (see p.264 in [57℄) whih we all iosahedron

inequality. The term is motivated by the fat that this inequality implies the ase of n = 12
points when the unique solution is the iosahedron.

The aim of this setion is to give similar inequalities for ases when ertain (other than the

number of verties) presribed information on the examined lass of polytopes insribed in

the unit sphere need to be taken into onsideration. We generalize the iosahedron inequality

for simpliial bodies whose faes have given lengths of maximal edges (f. Prop. 1.2.2, Prop.

1.2.3, Theorem 1.2.1). Our extrated formula is valid not only for onvex polyhedra but also

for polyhedra that area star-shaped with respet to the origin (f. Theorem 1.2.1). As an

appliation of the generalized inequality we prove a onjeture whih states that the maximal

volume polyhedron spanned by the verties of two regular simplies with ommon entroid

is the ube. This onjeture was raised and proved partially in [81℄ and inspired some other

examinations on the volume of the onvex hull of simplies [82℄. The numerous alulations of

the proof of Theorem 1.2.1 an be found in [83℄.

The third setion ontains a result from the paper [14℄. Our observations on the volume

of hyperboli orthosemes onerns a de�ieny in the two hundred years literature. Using

hyperboli orthogonal oordinates we disovered a formula on the volume of the orthoseme by

its edge lengths. Of ourse, our formula also ontains a non-elementary integral, but it ompletes

the olletion of integrals of Lobahevsky and Bolyai to a omplete triplet. (The integral of

Lobahevsky uses the dihedral angles of the orthoseme and the formulas of Bolyai both the

dihedral angles and the edge lengths of the orthoseme.) In this paper we desribed three types of

oordinate systems in whih the volume of a set an be given by an appropriate integral. These

oordinate systems are based on a parasphere, the hyperboli orthogonal oordinate system

and the spherial oordinate system, respetively. Using these we determined the volume form

with respet to these oordinate systems and also with respet to the half-spae and projetive

model. To determine these formulas we need some information on hyperboli trigonometry and

also some well-known analyti and syntheti results from hyperboli geometry. The formulas

an be get from eah other by (non-trivial) integral transforms and so we had to give only the

�rst one by a syntheti native reasoning. The dissertation ontains only those steps whih are

needed to the dedution of the required formula on orthosheme: Let denote by a, b and c those
edges (and their lengths) of the orthoseme for whih b is orthogonal to a and c is orthogonal
to a and b, respetively. Then for the volume v of the orthoseme we have:

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ.

The seond hapter. presents the basis of the dissertation. In reent times, the geometry

of �nite dimensional, real Banah spaes; see [140℄ beame again an important researh �eld.

Strongly related to Banah spae theory, it is permanently enrihed by new results in applied

disiplines. The most examined onepts of it naturally onnet to physis, funtional analysis,

and non-Eulidean geometries. Our eight publiations studied the geometri struture of a

Minkowski normed spae, espeially the problems of bisetors, onis, roulettes, isometries and

polarities. The total length of this part of the dissertation is about 50 pages with 26 �gures.

The first setion is based on four papers from whih one ([4℄) has a o-author, Horst Mar-

tini. The remaining three artiles ([1, 2, 3℄) ontain the �rst systemati investigations of the bi-

setors in higher-dimensional spaes. On a Minkowski normed plane the onept of bisetor was

intensively studied from the beginning (see the survey [115℄), however, in higher-dimensional

spaes there are only sporadi results. The reason is the ompliated topology of high di-

mensional bisetors. We onsider the following questions: What is the onnetion between the
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OVERVIEW vii

topology of the bisetor and the unit sphere of the Minkowski spae? What is the onnetion

between the bisetor and the shadow boundary in a given diretion of the spae? How an we

represents the bisetor "well" in the unit ball of the spae? We examined in [1℄ the boundary

of the unit ball of the norm and present two theorems similar to the haraterization of the

Eulidean norm investigated by H.Mann, A.C.Woods and P.M.Gruber in [111℄, [147℄, [74℄,

[75℄ and [76℄, respetively. H.Mann proved that a Minkowski normed spae is Eulidean (so

its unit ball is an ellipsoid) if and only if all Leibnizian halfspaes (ontaining those points

of the spae whih are loser to the origin than to another point x) are onvex. A.C.Woods

proved the analogous statement for suh a distane funtion whose unit ball is bounded but is

not neessarily entrally symmetri or onvex. P.M Gruber extended the theorem for distane

funtions whose unit ball is a ray set. P.M. Gruber generalized Woods's theorem in another

way, too. He showed (see Satz.5 in [74℄) that a bounded distane funtion gives a Eulidean

norm if and only if there is a subset T of the (n − 1)-dimensional unit sphere whose relative

interior (with respet to the sphere) is not empty, having the property that for eah pair of

points {0,x}, where x ∈ T , the orresponding Leibnizian halfspae is onvex. From the on-

vexity of the Leibnizian halfspaes follows that the olletion of all points of the spae whose

distanes from two distint points are equal are hyperplanes. We all suh a set the bisetor

of the onsidered points. Thus from Mann's theorem follows a theorem stated �rst expliitly

by M.M.Day in [42℄: All of the bisetors, with respet to the Minkowski norm de�ned by the

body K, are hyperplanes if and only if K is an ellipsoid. In this part my main result is the fat

that the bisetors of a stritly onvex Minkowski normed spae are always homeomorphi to

a hyperplane but the reverse diretion of this statements is not true. We give an example for

a Minkowski spae in whih the bisetors are homeomorphi hyperplanes but the unit ball is

not stritly onvex. The mathematial tools of the proofs are from onvex geometry, and from

basi ombinatorial topology ombined with Eulidean geometri observations.

To answer the seond question we formulated a onjeture (Conjeture 2.1.2) whih states that

the bisetors are topologial (n − 1)-dimensional hyperplanes if and only if the orresponding

shadow boundaries are (n− 2)-dimensional topologial spheres. In [2℄ and (in the third subse-

tion of this setion) we prove this onjeture in the three-dimensional ase. We examined also

the topologial properties of the shadow boundary, and de�ned the so-alled general parameter

spheres for n ≥ 3, as a tool for a prospetive proof of our onjeture. The main mathematial

tool of this setion is the Shoen�ies-Swingle theorem on the ar-wise aessibility of a urve

from a domain. This theorem holds only in a two-dimensional manifold and there is no analo-

gous haraterization in higher spaes so the method of the proof annot be extrated to higher

dimensions. In [3℄ (and in Subsetion 2.1.4) we examined the onjeture in higher than three-

dimensional ases. It requires a deeper investigation of the topologial properties of the general

parameter spheres. We proved that the general parameter spheres are not an absolute neigh-

borhood retrat in general, but still are ompat metri spaes, ontaining (n− 2)-dimensional

losed, onneted subsets separating the boundary of K. Thus we investigated the manifold

ase and proved that the general parameter spheres and the orresponding shadow boundary

are homeomorphi to the (n−2)-dimensional sphere. Furthermore, if it is an (n−1)-dimensional

manifold with boundary then it is homeomorphi to the ylinder S(n−2) × [0, 1]. The proof is

based on geometri topology, on the so-alled ell-like approximation theorem for manifolds.

We also proved on the onnetion of the shadow boundary S(K, x) and the general parameter

spheres the following:

• S(K, x) is an (n−2)-dimensional manifold if all of the non-degenerated general param-

eter spheres γλ(K, x) with λ > λ0 are (n − 2)-dimensional manifolds, and onversely,

if S(K, x) is an (n−2)-dimensional manifold then all of the general parameter spheres

are ANRs.

• S(K, x) is an (n − 1)-dimensional manifold with boundary if and only if there is a λ
for whih the general parameter sphere γλ(K, x) is an (n − 1)-dimensional manifold

with boundary.
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Combining these theorems and using a topologial theorem of M. Brown we get the proof of

the �rst diretion of the onjeture.

By Horst Martini we ontinued the investigation of bisetors in a further point of view in [4℄.

Martini and Wo in [118℄ introdued and investigated the radial projetion of the bisetor. In our

ommon paper with H. Martini we introdued the bounded representation of bisetors, whih

yields a useful ombination of the notions of bisetor, shadow boundary, and radial projetion.

We proved that the topologial properties of the radial projetion (in higher dimensions) do

not determine the topologial properties of the bisetor. More preisely, the manifold property

of the bisetor does not imply the manifold property of the radial projetion. The situation is

di�erent with respet to the bounded representation of the bisetor. Namely, if one of them is

a manifold, then the other one is also. More preisely, if the bisetor is a manifold of dimension

(n− 1), then its bounded representation is homeomorphi to a losed (n− 1)-dimensional ball

(i.e., it is a ell of dimension (n− 1)). And onversely, if the bounded representation is a ell,

then the losed bisetor is also.

The seond setion is based on the new results of the paper [5℄. It ontains investigations

on two types of the important transformations of a Minkowski normed spae. Espeially we

onsidered "adjoint abelian" and isometri transformations of a Minkowski spae. Stamp�i in

[136℄ has de�ned a bounded linear operator A to be adjoint abelian if and only if there is a

duality map ϕ suh that A∗ϕ = ϕA. So evidently, A is adjoint abelian if and only if A = AT , thus
the adjoint abelian operators are in some sense "self-adjoint" ones. Lángi in [101℄ introdued

the onept of the Lipshitz property of a semi inner produt and investigated the diagonalizable

operators of a Minkowski geometry {V, ‖ · ‖}. As a orollary of his main result we have that in

a totally non-Eulidean Minkowski n-spae every diagonalizable adjoint abelian operator is a

salar multiple of an isometry. First we desribed the struture of an adjoint abelian operator

in Theorem 2.2.3 then in Theorem 2.2.4 we proved that in an lp spae every adjoint abelian

operator is diagonalizable.

On isometries we have also two theorems. Theorem 2.2.8 desribes the struture of an isometry

and Theorem 2.2.10 haraterizes the group of isometries as follows: If the unit ball B of (V, ‖·‖)
has no intersetion with a two-plane whih is an ellipse, then the group I(3) of isometries of

(V, ‖ · ‖) is isomorphi to the semi-diret produt of the translation group T (3) of R3
with a

�nite subgroup of the group of linear transformations with determinant ±1.
The third setion ontain results from two further papers whih are important in the setting

up of a omplete image on our works in Minkowski geometry. These are ommon papers with

H. Martini ([6℄) and with V. Balestro and H.Martini ([7℄), respetively. Due to the limitation

on the length of the dissertation in this setion we omit the proofs whih use onvex geometry,

linear algebra and lassial di�erential geometry. The paper [6℄ on onis ontains the possible

metri de�nitions of onis and the basi properties of the urves de�ned in this way. The paper

[7℄ dealing with a possible de�nition of roulettes is based on a new onept of rotations. Though

our rotations are not isometries implying that the motion de�ned by them is not a rigid one,

there is a omplete building up of the kinematis in a Minkowski plane. In this theory the two

Euler-Savary equations are valid.

The third hapter. deals with the problem of oneptualization. The one hundred old on-

ept of "Minkowski spae" is a entral topi of the sienti� ommunity. Note that the phrase

"Minkowski spae" do not distinguish between two theories: the theory of normed linear spaes

and the theory of linear spaes with inde�nite metri. For �nite dimensions both are alled

Minkowski spaes in the literature. It is interesting that these essentially distint theories of

mathematis have similar axiomati foundations. The axiomati examination of the theory of

linear spaes with inde�nite metri omes from H. Minkowski [123℄ and the similar system of

axioms of normed linear spaes was introdued by Lumer in [108℄. The �rst onept widely

used in physis: this is the mathematial struture of relativity theory and thus there is no

doubt about its importane. (The popularity of linear spaes with inde�nite metri is undimin-

ished sine Minkowski's leture "Time and Spae".) The usability of the seond one is based
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on the fat that modern funtional analysis works in general normed spaes, and the Lumer-

Giles theory of semi inner produt gives a possibility to handling it by methods used originally

in Hilbert spaes. Of ourse, in both of these spaes there are a lot of problems that an be

formulated or solved in the language of geometry. The results of this hapter an be found in

four publiations of the author [8, 9, 10, 11℄.

The two publiations [8℄,[9℄ are about the new onept of generalized spae-time model. The

fourth paper [11℄ extend this onept to a onept of generalized Minkowski spae with hanging

shape, distinguishing to eah other the random and deterministi possibilities. For this purpose

we had to de�ne a probability spae on the metri spae of entrally symmetri onvex ompat

bodies. The third paper [10℄ ontains a onstrution in this diretion. In this introdutory

setion I would not like to present a more detailed desription of the ontent of this hapter, I

remark only two things. First of all, the aim of this part of the dissertation is onept rendering,

whih means that the purpose of the theorems is the veri�ation of oneptualization. Seondly,

for this natural reason the used mathematial tools are very dispersed, we had to apply results

from linear algebra, funtional analysis, onvex geometry, probability theory and also lassial

and modern di�erential geometry. The sum of the lengths of the four papers is 103 pages, from

this the dissertation ontains a 50 page long review. As an appliation of this theory we add an

Appendix to the dissertation. It ontains the desription of the relativity theory in our struture

from the speial relativity to the Einstein equation holding in a time-spae manifold.
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CHAPTER 1

Problems on onvexity and volumes in onnetion with

non-Eulidean geometries

1.1. On the onvex hull of two onvex bodies (ommon work with Zs. Lángi)

We investigate the following quantities.

Definition 1.1.1. [12℄ For two onvex bodies K and L in Rn
, let

c(K,L) = max {vol(conv(K ′ ∪ L′)) : K ′ ∼= K,L′ ∼= L and K ′ ∩ L′ 6= ∅} ,
where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of

Rn
, we set

c(K|S) = 1

vol(K)
max {vol(conv(K ∪K ′)) : K ∩K ′ 6= ∅, K ′ = σ(K) for some σ ∈ S} .

We note that a quantity similar to c(K,L) was de�ned by Rogers and Shephard [131℄, in whih

ongruent opies were replaed by translates. Another related quantity is investigated in [81℄,

where the author examines c(K,K) in the speial ase that K is a regular simplex and the two

ongruent opies have the same entre.

In [131℄, Rogers and Shephard used linear parameter systems to show that the minimum of

c(K|S), taken over the family of onvex bodies in Rn
, is its value for an n-dimensional Eulidean

ball, if S is the set of translations or that of re�etions about a point. Nevertheless, their method,

approahing a Eulidean ball by suitable Steiner symmetrizations and showing that during this

proess the examined quantities do not inrease, does not haraterize the onvex bodies for

whih the minimum is attained; they onjetured that, in both ases, the minimum is attained

only for ellipsoids (f. p. 94 of [131℄). We note that the method of Rogers and Shephard [131℄

was used also in [110℄.

We treat these problems in a more general setting. For this purpose, let ci(K) be the value

of c(K|S), where S is the set of re�etions about the i-�ats of Rn
, and i = 0, 1, . . . , n − 1.

Similarly, let ctr(K) and cco(K) be the value of c(K|S) if S is the set of translations and that

of all the isometries, respetively.

During the investigation, Kn denotes the family of n-dimensional onvex bodies. Let Bn be

the n-dimensional unit ball with the origin o of Rn
as its entre, and set Sn−1 = bdBn and

vn = vol(Bn). Finally, we denote 2- and (n − 1)-dimensional Lebesgue measure by area and

voln−1, respetively. For any K ∈ Kn and u ∈ Sn−1
, K|u⊥ denotes the orthogonal projetion

of K into the hyperplane passing through the origin o and perpendiular to u. The polar of a

onvex body K is denoted by K◦
.

Theorem 1.1.1. [12℄ For any K ∈ Kn with n ≥ 2, we have ctr(K) ≥ 1+ 2vn−1

vn
with equality if,

and only if, K is an ellipsoid.

Proof. By ompatness arguments, the minimum of ctr(K) is attained for some onvex body

K, and sine for ellipsoids it is equal to 1 + 2vn−1

vn
, it su�es to show that if ctr(K) is minimal

for K, then K is an ellipsoid.

Let K ∈ Kn be a onvex body suh that ctr(K) is minimal. Then ctr(K) ≤ 1 + 2vn−1

vn
. For any

u ∈ Sn−1
, let dK(u) denote the length of a maximal hord parallel to u. Observe that for any

1
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2 1. PROBLEMS ON CONVEXITY AND VOLUMES

suh u, K and dK(u)u+K touh eah other and

(1)

vol(conv(K ∪ (dK(u)u+K)))

vol(K)
= 1 +

dK(u) voln−1(K|u⊥)
vol(K)

.

Clearly, ctr(K) is the maximum of this quantity over u ∈ Sn−1
.

It is known that for any K and u, dK(u) = d 1
2
(K−K)(u) and the same holds also for the width

funtion of K. Theorem 3.3.5 of [63℄ states that ifK and K ′
have the same width funtion, then

they have the same brightness funtion, de�ned as u 7→ voln−1(K|u⊥), as well. Thus, we have

that for any u ∈ Sn−1
, dK(u) voln−1(K|u⊥) = d 1

2
(K−K)(u) voln−1

(
1
2
(K −K)|u⊥

)
. On the other

hand, the Brunn-Minkowski Inequality yields that vol(K) ≤ vol
(
1
2
(K −K)

)
, with equality if,

and only if, K is entrally symmetri. Substituting these inequalities into (1), we obtain that

ctr(K) ≥ ctr
(
1
2
(K −K)

)
, with equality if, and only if, K is entrally symmetri. Hene, in the

following we may assume that K is o-symmetri.

Let u 7→ rK(u) = dK(u)
2

be the radial funtion of K. From (1) and the inequality ctr(K) ≤
1 + 2vn−1

vn
, we obtain that for any u ∈ Sn−1

(2)

vn−1 vol(K)

vn voln−1(K|u⊥) ≥ rK(u).

Applying this for the polar form of the volume of K, we obtain

vol(K) =
1

n

∫

Sn−1

(rK(u))
n d u ≤ 1

n

vnn−1

vnn
(vol(K))n

∫

Sn−1

1

(voln−1(K|u⊥))n d u,

whih yields

(3)

vnnn

vnn−1 (vol(K))n−1 ≤
∫

Sn−1

1

(voln−1(K|u⊥))n d u

On the other hand, ombining Cauhy's surfae area formula with Petty's projetion inequality,

we obtain that for every p ≥ −n,

v1/nn (vol(K))
n−1
n ≤ vn


 1

nvn

∫

Sn−1

(
voln−1(K|u⊥)

vn−1

)p
d u




1
p

,

with equality only for Eulidean balls if p > −n, and for ellipsoids if p = −n (f. e.g. Theorems

9.3.1 and 9.3.2 in [63℄).

This inequality, with p = −n and after some algebrai transformations, implies that

(4)

∫

Sn−1

1

(voln−1(K|u⊥))n d u ≤ vnnn

vnn−1 (vol(K))n−1

with equality if, and only if K, is an ellipsoid. Combining (3) and (4), we an immediately see

that if ctr(K) is minimal, then K is an ellipsoid, and in this ase ctr(K) = 1 + 2vn−1

vn
. �

We remark that a theorem related to Theorem 1.1.1 an be found in [112℄. More spei�ally,

Theorem 11 of [112℄ states that for any onvex body K ∈ Kn, there is a diretion u ∈ Sn−1

suh that, using the notations of Theorem 1.1.1, dK(u) voln−1(K|u⊥) ≥ 2vn−1

vn
, and if for any

diretion u the two sides are equal, then K is an ellipsoid.

If, for a onvex body K ∈ Kn, we have that vol(conv((v +K) ∪ (w +K))) has the same value

for any touhing pair of translates, let us say that K satis�es the translative onstant volume

property. In this setion we will haraterize the plane onvex bodies with this property. Before

doing this, we reall that a 2-dimensional o-symmetri onvex urve is a Radon urve, if, for the

onvex hull K of a suitable a�ne image of the urve, it holds that K◦
is a rotated opy of K by
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1.1. ON THE CONVEX HULL OF TWO CONVEX BODIES (COMMON WORK WITH ZS. LÁNGI) 3

π
2
(f. [117℄). We note that the onept of Radon urve arose in onnet with the examination

of the Birkho� orthogonality in Minkowski normed spaes.

Theorem 1.1.2. [12℄ For any plane onvex body K ∈ K2 the following are equivalent.

(1) K satis�es the translative onstant volume property.

(2) The boundary of

1
2
(K −K) is a Radon urve.

(3) K is a body of onstant width in a Radon norm.

Proof. Clearly, (2) and (3) are equivalent, and thus, we need only show that (1) and (2) are.

Let K ∈ K2. For any u 6= o, let dK(u) and wK(u) denote the length of a maximal hord and

the width of K in the diretion of u. Then, using the notation u = w− v, for any touhing pair

of translates, we have

area(conv((v +K) ∪ (w +K))) = area(K) + dK(u)wK(u
⊥),

where u⊥ is perpendiular to u.
Sine for any diretion u, we have dK(u) = d 1

2
(K−K)(u) and wK(u) = w 1

2
(K−K)(u),K satis�es the

translative onstant volume property if, and only if, its entral symmetral does. Thus, we may

assume that K is o-symmetri. Now let x ∈ bdK. Then the boundary of conv(K ∪ (2x+K))
onsists of an ar of bdK, its re�etion about x, and two parallel segments, eah ontained

in one of the two ommon supporting lines of K and 2x + K, whih are parallel to x. For
some point y on one of these two segments, set AK(x) = area conv{o, x, y} (f. Figure 1.1).

Clearly, AK(x) is independent of the hoie of y. Then we have for every x ∈ bdK, that

dK(x)wK(x
⊥) = 8AK(x).

Figure 1.1. An illustration for the proof of Theorem 1.1.2

Assume that AK(x) is independent of K. We need to show that in this ase bdK is a Radon

urve. It is known (f. [117℄), that bdK is a Radon urve if, and only if, in the norm of K,

Birkho�-orthogonality is a symmetri relation. Reall that in a normed plane with unit ball K,

a vetor x is alled Birkho�-orthogonal to a vetor y, denoted by x ⊥B y, if x is parallel to a

line supporting ||y|| bdK at y (f. [17℄).

Observe that for any x, y ∈ bdK, x ⊥B y if, and only if, AK(x) = area(conv{o, x, y}), or in
other words, if, area(conv{o, x, y}) is maximal over y ∈ K. Clearly, it su�es to prove the

symmetry of Birkho� orthogonality for x, y ∈ bdK. Consider a sequene x ⊥B y ⊥B z for some

x, y, z ∈ bdK. Then we have AK(x) = area conv{o, x, y} and AK(y) = area(conv{o, y, z}). By
the maximality of area(conv{o, y, z}), we have AK(x) ≤ AK(y) with equality if, and only if,

y ⊥B x. This readily implies that Birkho� orthogonality is symmetri, and thus, that bdK is

a Radon urve. The opposite diretion follows from the de�nition of Radon urves and polar

sets. �

Theorem 1.1.3. [12℄ For any K ∈ Kn with n ≥ 2, c1(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is an ellipsoid.
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4 1. PROBLEMS ON CONVEXITY AND VOLUMES

Proof. If K is entrally symmetri, then c1(K) = ctr(K), and we an apply Theorem 1.1.1.

Consider the ase that K is not entrally symmetri. Let σ : Kn → Kn be a Steiner sym-

metrization about any hyerplane, and observe that σ(−K) = −σ(K). Thus, Lemma 2 of [131℄

yields that c1(K) ≥ c1(σ(K)). On the other hand, Lemma 10 of [112℄ states that, for any not

entrally symmetri onvex body, there is an orthonormal basis suh that subsequent Steiner

symmetrizations, through hyperplanes perpendiular to its vetors, yields a entrally symmetri

onvex body, di�erent from ellipsoids. Combining these statements, we obtain that there is an

o-symmetri onvex body K ′ ∈ Kn that is not an ellipsoid and satis�es c1(K) ≥ c1(K
′). Hene,

the assertion follows immediately from Theorem 1.1.1. �

Our next result shows an inequality for cn−1(K).

Theorem 1.1.4. [12℄ For any K ∈ Kn with n ≥ 2, cn−1(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is a Eulidean ball.

Proof. For a hyperplane σ ⊂ Rn
, let Kσ denote the re�eted opy of K about σ. Furthermore,

if σ is a supporting hyperplane of K, let K−σ be the re�eted opy of K about the other

supporting hyperplane of K parallel to σ. Clearly,

cn−1(K) =
1

vol(K)
max{vol(conv(K ∪Kσ)) : σ is a supporting hyperplane of K}.

For any diretion u ∈ Sn−1
, let HK(u) be the right ylinder irumsribed about K and with

generators parallel to u. Observe that for any u ∈ Sn−1
and supporting hyperplane σ perpen-

diular to u, we have

vol(conv(K ∪Kσ)) + vol(conv(K ∪K−σ) = 2 vol(K) + 2 vol(HK(u)) =

= 2 vol(K) + 2wK(u) voln−1(K|u⊥).
Thus, for any K ∈ Kn,

(5) cn−1(K) ≥ 1 +
max{wK(u) voln−1(K|u⊥) : u ∈ Sn−1}

vol(K)
.

Similarly like in the proof of Theorem 1.1.1, we an observe that the width and the brightness

funtions of K and its entral symmetrals are equal, and thus, the numerator of the fration

on the right-hand side of (5) is the same for K and

1
2
(K −K). On the other hand, the Brunn-

Minkowski Inequality implies that vol(K) ≤ vol
(
1
2
(K −K)

)
, with equality if, and only if, K

is entrally symmetri. Hene any minimizer of cn−1(K) is entrally symmetri.

Assume that K is o-symmetri, and let dK(u) denote the length of a longest hord of K parallel

to u ∈ Sn−1
. Observe that for any u ∈ Sn−1

, dK(u) ≤ wK(u), and thus for any onvex body K,

cn−1(K) ≥ ctr(K).

This readily implies that cn−1(K) ≥ 1 + 2vn−1

vn
, and if here there is equality for some K ∈ Kn,

then K is an ellipsoid. On the other hand, in ase of equality, for any u ∈ Sn−1
we have dK(u) =

wK(u), whih yields that K is a Eulidean ball. This �nishes the proof of the theorem. �

In onnetion with the above results we had some remarks and onjeture. Some of them I quote

here showing that in this theme there are a lot of problem for further interesting researh.

Conjeture 1.1.1. Let n ≥ 2 and 0 < i < n−1. Prove that, for any K ∈ Kn, ci(K) ≥ 1+ 2vn−1

vn
.

Is it true that equality holds only for Eulidean balls?

The maximal values of ctr(K) and c0(K), for K ∈ Kn, and the onvex bodies for whih these

values are attained, are determined in [131℄. Using a suitable simplex as K, it is easy to see

that the set {ci(K) : K ∈ Kn} is not bounded from above for i = 1, . . . , n − 1. This readily
yields the same statement for cco(K) as well. On the other hand, from Theorem 1.1.4 we obtain

the following.
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 5

Remark 1.1.1. For any K ∈ Kn with n ≥ 2, we have cco(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is a Eulidean ball.

In Theorem 1.1.2, we proved that in the plane, a onvex body satis�es the translative equal

volume property if, and only if, it is of onstant width in a Radon plane. It is known (f. [17℄

or [117℄) that for n ≥ 3, if every planar setion of a normed spae is Radon, then the spae is

Eulidean; that is, its unit ball is an ellipsoid. We onjeture the following.

Conjeture 1.1.2. Let n ≥ 3. If some K ∈ Kn satis�es the translative equal volume property,

then K is a onvex body of onstant width in a Eulidean spae.

Furthermore, we remark that the proof of Theorem 1.1.2 an be extended, using the Blashke-

Santaló inequality, to prove Theorems 1.1.1 and 1.1.3 in the plane. Similarly, Theorem 1.1.4 an

be proven by a modi�ation of the proof of Theorem 1.1.1, in whih we estimate the volume

of the polar body using the width funtion of the original one, and apply the Blashke-Santaló

inequality.

Like in [131℄, Theorems 1.1.1 and 1.1.4 yield information about irumsribed ylinders. Note

that the seond orollary is a strenghtened version of Theorem 5 in [131℄.

Corollary 1.1.1. For any onvex body K ∈ Kn, there is a diretion u ∈ Sn−1
suh that the

right ylinder HK(u), irumsribed about K and with generators parallel to u has volume

(6) vol(HK(u)) ≥
(
1 +

2vn−1

vn

)
vol(K).

Furthermore, if K is not a Eulidean ball, then the inequality sign in (6) is a strit inequality.

Corollary 1.1.2. For any onvex body K ∈ Kn, there is a diretion u ∈ Sn−1
suh that any

ylinder HK(u), irumsribed about K and with generators parallel to u, has volume

(7) vol(HK(u)) ≥
(
1 +

2vn−1

vn

)
vol(K).

Furthermore, if K is not an ellipsoid, then the inequality sign in (7) is a strit inequality.

In the paper [12℄ we also introdued variants of these quantities for onvex m-gons in R2
, and

for small values of m, haraterize the polygons for whih these quantities are minimal. It has

been olleted some additional remarks and questions, too.

1.2. On the volume of the onvex hull of points insribed in the unit sphere

We generalize here partially an important inequality of László Fejes-Tóth published in [57℄.

Let a(P ) be the area of a onvex p-gon P lying in the unit sphere, τ(P ) the (spherial) area of

the entral projetion of P upon the unit sphere, and v(P ) the volume of the pyramid of base

P and apex O whih is the entre of the unit sphere. Let denote U(τ(P ), p) the maximum of

v(P ) for a given pair of values p and τ(P ).

Proposition 1.2.1 ([57℄). With the above notation we have the following statements.

(1) For given values of p and τ the volume v attains its maximum U(τ, p) if t is a regular

p-gon.
(2) For general p ≥ 3 we have

(8) U(τ, p) =
p

3
cos2

π

p
tan

2π − τ

2p

(
1− cot2

π

p
tan2 2π − τ

2p

)
,

implying that

(9) U(τ, 3) =
1

4
tan

2π − τ

6

(
1− 1

3
tan2 2π − τ

6

)
,

(3) The funtion U(τ, p) is onave on the domain determined by the inequalities 0 < τ ≤
π, p ≥ 3.
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6 1. PROBLEMS ON CONVEXITY AND VOLUMES

(4) If V denotes the volume, R the irumradius of a onvex polyhedron having f faes, v
verties and e edges, then

(10) V ≤ 2e

3
cos2

πf

2e
cot

πv

2e

(
1− cot2

πf

2e
cot2

πv

2e

)
R3.

Equality holds only for regular polyhedra.

A

B

C

O

m
,

C

Figure 1.2. Faial, retilineal and

spherial simplies, respetively.

A polyhedron with a given number n of verties is

always the limiting �gure of a simpliial polyhedron

with n verties, hene, introduing the notation ωn =
(nπ)/6(n− 2) we have the following inequality

(11) V ≤ 1

6
(n− 2) cotωn(3− cot2 ωn)R

3.

Equality holds in the above inequality only for the

regular tetrahedron, otahedron and iosahedron (n =
4, 6, 12).
If A,B,C are three points on the unit sphere we an

take two triangles with these verties, one of the orre-

sponding spherial triangle and the seond one the re-

tilineal triangle with these verties, respetively. Both

of them are denoted by ABC. The angles of the retilin-
eal triangle are the halves of the angles between those

radii of the irumsribed irle whih onnet the en-

ter K of the retilineal triangle ABC to the verties

A,B,C. Sine K is also the foot of the altitude of the tetrahedron with base ABC and apex O,
hene the angles αA, αB and αC of the retilineal triangle ABC, play an important role in our

investigations, we refer to them as the entral angle of the spherial edges BC, AC and AB,
respetively. We all the tetrahedron ABCO the faial tetrahedron with base ABC and apex

O.

Proposition 1.2.2. [13℄ Let ABC be a triangle insribed in the unit sphere. Then there is an

isoseles triangle A′B′C ′
insribed in the unit sphere with the following properties:

• the greatest entral angles and also the spherial areas of the two triangles are equal to

eah other, respetively;

• the volume of the faial tetrahedron with base A′B′C ′
is greater than or equal to the

volume of the faial tetrahedron with base ABC.

Proof. Assume �rst that the triangle ABC ontains the entre K of its irumsribed irle.

Let us denote by K ′
the entral projetion of K onto the unit sphere. The angles 2αA and

βA are the spherial angles of the triangle K ′BC at K ′
and B (or C), respetively. Then

the area of the triangle KBC is equal to a(KBC) = ∆(αA, βA) = 1
2
sin 2αA sin2K ′OB∠ =

1
2
sin 2αA (1− cot2 αA cot2 βA). On the domain 0 ≤ α ≤ π

2
, 0 ≤ β ≤ π

2
, α + β ≥ π

2
it is a

onave funtion of two variables (see p.267 in [57℄). Hene

a(ABC) = ∆(αA, βA) + ∆(αB , βB) + ∆(αC , βC) ≤ 2∆

(
αA + αB

2
,
βA + βB

2

)
+∆(αC , βC) = a(A′B′C′),

where the value on the right hand side of the inequality above is the area of the isoseles triangle

A′B′C ′
. (We note that the entral projetions upon the sphere of the two triangles have the

same spherial exess a(ABC) = a(A′B′C ′) = 2(βA + βB + βC)− π.)
Compare now the altitudes m and m′

of the pyramids based on the two triangles, respetively.

The spherial area of the �rst triangle is

τ = 2(βA + βB + βC)− π = 2π + (2(βA + βB + βC)− 3π) =

= 2π + 2
(
tan−1

(
tan
(
βA − π

2

))
++ tan−1

(
tan

(
βB − π

2

))
+ tan−1

(
tan

(
βC − π

2

)))
=
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 7

= 2π − 2
(
tan−1 (m tanαA) + tan−1 (m tanαB) + tan−1 (m tanαC)

)
.

Sine we do not exlude the possibility of αC = π/2 (implying that βC = 0) we de�ne

tan−1 tanπ/2 =: π/2. We also use the value tan−1 tan 0 =: 0 determining the used range of

the funtion x 7→ tan−1 x.
By the onvexity (see e.g. p. 229 in [57℄) of tan−1 (m tanαA) we get that

τ ≤ 2π − 2

(
2 tan−1

(
m tan

αA + αB
2

)
+ tan−1 (m tanαC)

)
.

On the other hand for m′
we have τ = 2π − 2

(
2 tan−1

(
m′ tan αA+αB

2

)
+ tan−1 (m′ tanαC)

)

implying that

(
2 tan−1

(
m tan

αA + αB
2

)
+ tan−1 (m tanαC)

)
≤
(
2 tan−1

(
m′ tan

αA + αB
2

)
+ tan−1 (m′ tanαC)

)

from whih it follows that m′ ≥ m.

Seond assume that the angle at C is obtuse. Then αA + αB = αC < π/2 and we have

τ = 2
(
tan−1 (m tan (αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
.

On the other hand a(ABC) = 1−m2

2
(sin 2αA + sin 2αB − sin 2αC) and the volume in question

is v(αA, αB) =
m(1−m2)

6
(sin 2αA + sin 2αB − sin 2(αA + αB)).

We onsider the maximum of v(αA, αB) under the onditions 0 ≤ αA, αB ≤ π/2,

0 = −τ
2
+
(
tan−1 (m tan (αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
,

and 0 = αA+αB − const, with respet to the unknown values αA, αB and m. Using Lagrange's

method we get two equations

µ =
m(1−m2)

6
(cos 2αA − cos 2(αA + αB)) +

λm(1−m2) (tan2 (αA + αB)− tan2 αA)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αA)

µ =
m(1−m2)

6
(cos 2αB − cos 2(αA + αB)) +

λm(1−m2) (tan2 (αA + αB)− tan2 αB)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αB)
whih are equivalent to the equations

µ

m(1−m2)
=

1

3
+

λ (1 + tan2 (αA + αB)) (1 + tan2 αA)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αA)

µ

m(1−m2)
=

1

3
+

λ (1 + tan2 (αA + αB)) (1 + tan2 αB)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αB)
beause of the equality

tan2 (αA + αB)− tan2 αA
(1 + tan2 (αA + αB)) (1 + tan2 αA)

= cos2 αA − cos2(αA + αB) =
cos 2αA − cos 2(αA + αB)

2
.

These onditions turn out to be equivalent to

(1 + tan2 αA)

(1 +m2 tan2 αA)
=

(1 + tan2 αB)

(1 +m2 tan2 αB)

whih annot be satis�ed unless αA = αB. Hene if the triangle is not an isoseles one it is not

a loal extremum of our problem, on the other hand by ompatness it has at least one loal

maximum proving our statement. �

We an ompare the formulas of Proposition 1.2.2

V ≤ m′(1−m′2)

6
(2 sinαC − sin 2(αC)) =

m′(1−m′2)

3
sinαC(1− cosαC)

and

V ≤ m′(1−m′2)

6
(2 sin(π − α̃C) + sin 2(α̃C)) =

m′(1−m′2)

3
sin α̃C(1 + cos α̃C)
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8 1. PROBLEMS ON CONVEXITY AND VOLUMES

on αC and α̃C . In both ases we assumed that αC and α̃C are in the interval [0, π/2], respetively.
Using the equality αC = π − α̃C the above formulas simplify to the following ommon form

(12) V ≤ m′(1−m′2)

3
sinαC(1− cosαC) =: v (m′, αC) where 0 < α < π.

In the ase when AC = BC we saw that τ = 2
(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan αC

2

))
and

τ = 2π − 2
(
2 tan−1

(
m′ tan π−α̃C

2

)
+ tan−1 (m′ tan α̃C)

)
, respetively. (Observe that by the

de�nition tan−1(∞) =: π/2 these formulas are valid for αC = π/2 and lead to the same

equality.) These equalities an be onsidered in the following ommon form

(13) tan
τ

2
= tan

(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan

αC
2

))
,

where 0 < αC < π. In the ase when π/2 < αC we have tan (τ/2) < 0 and τ/2 = π +
tan−1 (tan (τ/2)).

Corollary 1.2.1. The upper bound funtion for �xed τ with the parameters |AB|,αC is

(14) v(|AB|, αC) :=
|AB|2
12

√
sin2 αC − |AB|2

4

1 + cosαC
,

and using the equality |AB| = 2 sin AB
2

it is of the form

(15) v(AB, αC) :=
sin2 AB

2

3

√
sin2 αC − sin2 AB

2

1 + cosαC
.

If AB is given the maximal volume of the possible faial tetrahedra are attained at the isoseles

triangle with parameter value αC = cos−1
(

|AB|2
4

− 1
)
= cos−1

(
− cos2 AB

2

)
. The formula is

v

(
|AB|, cos−1

( |AB|2
4

− 1

))
=

|AB|
6

√(
1− |AB|2

4

)
=

1

6
sinAB.

Proof. Assume that the value of the length of AB is given. Then by Proposition 1.2.2 for

�xed τ the maximal value of the volume V an be attained only for an isoseles triangle and

the upper bound funtion gives this maximal volume. Using the equality

sinαC =
|AB|

2
√
1−m′2

we get that

v (m′, αC) =
m′(1−m′2)

3
sinαC(1− cosαC) =

|AB|2
12

√
sin2 αC − |AB|2

4

1 + cosαC
= v(|AB|, αC),

where the possible values of αC an be get from the equality sin2 αC ≥ |AB|2/4. The derivative
of v(|AB|, αC) = v(y, x) is

v′(y, x) =
y2 sin(x)

√
sin2(x)− y2

4

12(cos(x) + 1)2
+

y2 sin(x) cos(x)

12(cos(x) + 1)
√

sin2(x)− y2

4

hene we have

v′(|AB|, αC) =
|AB|2 sinαC

(
cosαC + 1− |AB|2

4

)

12(1 + cosαC)2
√

sin2 αC − |AB|2
4





< 0 if cosαC + 1 < |AB|2
4

= 0 if cosαC + 1 = |AB|2
4

> 0 if cosαC + 1 > |AB|2
4
.
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 9

Sine cos−1
(

|AB|2
4

− 1
)
≤ π − sin−1(|AB|/2), on the interval

sin−1(|AB|/2) < αC ≤ π/2 ≤ cos−1

( |AB|2
4

− 1

)
≤ π − sin−1(|AB|/2)

the funtion v(αC) attains its maximal value at cos−1 (|AB|2/4− 1) furthermore

v

(
|AB|, cos−1

( |AB|2
4

− 1

))
=

|AB|2
12

√
|AB|2

4

(
1− |AB|2

4

)

|AB|2
4

=
|AB|
6

√(
1− |AB|2

4

)
.

v(|AB|, αC) on the interval sin−1(|AB|/2) < αC ≤ cos−1
(

|AB|2
4

− 1
)
is a stritly inreasing

funtion and on the interval cos−1
(

|AB|2
4

− 1
)
≤ π− sin−1(|AB|/2) it is a dereasing one. This

shows that an optimal triangle with the �xed edge length |AB| (whih orresponding to a faial

tetrahedron with maximal volume) is an isoseles one. �

We also have a formula on the upper bound funtion v (m′, αC) using as a parameter the surfae

area τ (introdued in Proposition 1.2.2).

Proposition 1.2.3. [13℄ Let the spherial area of the spherial triangle ABC be τ . Let αC be

the greatest entral angle of ABC orresponding to AB. Then the volume V of the Eulidean

pyramid with base ABC and apex O holds the inequality

(16) V ≤ 1

3
tan

τ

2

(
2− |AB|2

4

(
1 +

1

(1 + cosαC)

))
.

In terms of τ and c := AB we have

(17) V ≤ v(τ, c) :=
1

6
sin c

cos τ−c
2

− cos τ
2
cos c

2

1− cos c
2
cos τ

2

.

Equality holds if and only if |AC| = |CB|.
Proof. For αC = π/2 the statement is obviously true. In the other ases, by Proposition 2

and by the note before this statement we have to investigate the inequality

V ≤ m′(1−m′2)

3
sinαC(1− cosαC) =: v (m′, αC) where 0 < αC < π, αC 6= π/2

with the ondition

tan
τ

2
= tan

(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan

αC
2

))
=

m′ tanαC − tan
(
2 tan−1

(
m′ tan αC

2

))

1 +m′ tanαC tan
(
2 tan−1

(
m′ tan αC

2

)) =

2m′ tan
αC
2

1−tan2 αC
2

− 2m′ tan
αC
2

1−m′2 tan2 αC
2

1 +
2m′ tan

αC
2

1−tan2 αC
2

2m′ tan
αC
2

1−m′2 tan2 αC
2

=

2m′(1−m′2) tan3 αC

2

(1− tan2 αC

2 )(1−m′2 tan2 αC

2 ) + 4m′2 tan2 αC

2

=
2m′(1−m′2) tan αC

2

(cot αC

2 − tan αC

2 )(cot αC

2 −m′2 tan αC

2 ) + 4m′2
=

m′(1−m′2) sinαC(1− cosαC)

(1 −m′2)
(
cosαC − sin2 αC

)
+ (1 +m′2)

=
3v (m′, αC)

(1 −m′2) cosαC(1 + cosαC) + 2m′2
.

Sine

sinαC =
|AB|

2
√
1−m′2

,

hene

1−m′2 =
|AB|2

4 sin2 αC
implying that

3v (m′, αC) = tan
τ

2

( |AB|2 cosαC(1 + cosαC)

4 sin2 αC
+ 2

(
1− |AB|2

4 sin2 αC

))
=
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10 1. PROBLEMS ON CONVEXITY AND VOLUMES

tan
τ

2

(
2 +

|AB|2
4 sin2 αC

(cosαC(1 + cosαC)− 2)

)
= tan

τ

2

(
2− |AB|2 (2 + cosαC)

4 (1 + cosαC)

)
.

So

V ≤ 1

3
tan

τ

2

(
2− |AB|2

4

(
1 +

1

(1 + cosαC)

))

as we stated.

Sine π − αC is the angle of the hordal triangle (retilineal triangle) ABC at C, thus we an
give it as a funtion of the spherial lengths of the sides of the spherial triangle ABC. Thus
we have (see eq. (486) in [37℄)

cosαC = −1 + cosAB − 2 cosAC

4 sin2 AC
2

= −−1 + cosAB + 4 sin2 AC
2

4 sin2 AC
2

.

Using the notation a := BC = AC, c = AB we get the formula

V ≤ 1

3
tan

τ

2

(
2− sin2 AB

2
− 2 sin2 AC

2

)
=

1

3
tan

τ

2

(
2− sin2 c

2
− 2 sin2 a

2

)
.

Finally use the spherial Heron's formula proved �rst by Lhuilier (see p.88 in [37℄):

tan
τ

4
=

√
tan

a+ b+ c

4
tan

−a + b+ c

4
tan

a− b+ c

4
tan

a+ b− c

4
.

Sine a = b it an be redued to the form

tan
τ

4
= tan

c

4

√
tan

2a + c

4
tan

2a− c

4
= tan

c

4

√
sin2 a

2
− sin2 c

4

1− sin2 a
2
− sin2 c

4

.

From this we get that

sin2 a

2
=

tan2 τ
4
cos2 c

4
+ tan2 c

4
sin2 c

4

tan2 τ
4
+ tan2 c

4

and thus the inequality

V ≤ 1

3
tan

τ

2

(
2− sin2 c

2
− 2

tan2 τ
4
cos2 c

4
+ tan2 c

4
sin2 c

4

tan2 τ
4
+ tan2 c

4

)
=

1

3
tan

τ

2
cos

c

2

(
cos

c

2
+

+
tan2 c

4
− tan2 τ

4

tan2 c
4
+ tan2 τ

4

)
=

sin τ
2
cos c

2
sin2 c

2

3
(
1− cos c

2
cos τ

2

) =
sin c sin τ

2
sin c

2

6
(
1− cos c

2
cos τ

2

) =
1

6
sin c

cos τ−c
2

− cos τ
2
cos c

2

1− cos c
2
cos τ

2

.

�

Remark 1.2.1. In the ase when a = b = c the onnetion between the parameters c and τ is

tan
τ

4
= tan

c

4

√
tan

3c

4
tan

c

4
= tan2 c

4

√
3− tan2 c

4

1− 3 tan2 c
4

.

To determine the parameter c we introdue the notion x = tan2(c/4) and θ = tan2(τ/4). Now
we get the equation of order three

0 = x3 − 3x2 − 3θx+ θ = (x− 1)3 − 3x(θ + 1) + (θ + 1),

and if we set y = x− 1 then the equality

0 = y3 − 3y(θ + 1)− 2(θ + 1).

Using Cardano's formula �nally we get that

y =
2 cos

(
τ
12

+ 4π
3

)

cos τ
4

.

Hene we have

1− cos c
2

1 + cos c
2

= tan2 c

4
= x =

2 cos
(
τ
12

+ 4π
3

)
+ cos τ

4

cos τ
4
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 11

implying that

cos
c

2
=

−1

2 cos τ+4π
6

and sin2 c

2
=

4 cos2
(
τ+4π

6

)
− 1

4 cos2
(
τ+4π

6

) .

Substituting these values into the formula (17) we get the inequality of Proposition 1.2.1 showing

that our result in the ase of p = 3 generalizes Prop. 1.2.1.

Assume now that the simpliial polyhedron P , starshaped with respet to the origin has f
faes and is insribed in the unit sphere. Let c1, . . . , cf be the ar-lengths of the edges of the

faes F1, . . . , Ff orresponding to their maximal entral angles, respetively. Denote by τi the
spherial area of the spherial triangle orresponding to the fae Fi for all i. We note that for

a spherial triangle whih has edges a, b, c, the inequalities 0 < a ≤ b ≤ c < π/2 as well as the

inequality τ ≤ c holds. In fat, for �xed τ the least value of the maximal edge length is attained

at a regular triangle. If c < π/2 then we have

tan
τ

4
=

(
tan

c

4

√
tan

3c

4
tan

c

4

)
=


tan

c

4

√

1− tan 3c
4
+ tan c

4

tan c


 < tan

c

4
,

and if c = π/2 then τ = 8π/4 = π/2 proving our statement.

Observe that the funtion v(τ, c) is onave in the parameter domain D := {0 < τ < π/2, τ ≤
c < min{f(τ), 2 sin−1

√
2/3}} with ertain onave (in τ) funtion f(τ) de�ned by the zeros of

the Hessian; and non-onave in the domain D′ = {0 < τ ≤ ω, f(τ) ≤ c ≤ 2 sin−1
√

2/3} =

{0 < τ ≤ c ≤ π/2} \ D, where f(ω) = 2 sin−1
√
2/3. (The orresponding alulations an be

heked by any symboli software. The preise value of ω is approximately ω ≈ 0.697715.)

Theorem 1.2.1. [13℄ Assume that 0 < τi < π/2 holds for all i. For i = 1, . . . , f ′
we require the

inequalities 0 < τi ≤ ci ≤ min{f(τi), 2 sin−1
√
2/3} and for all j with j ≥ f ′

the inequalities

0 < f(τj) ≤ cj ≤ 2 sin−1
√

2/3, respetively. Let denote c′ := 1
f ′

f ′∑
i=1

ci, c
⋆ := 1

f−f ′
f∑

i=f ′+1

f(τi) and

τ ′ :=
f∑

i=f ′+1

τi, respetively. Then we have

(18) v(P ) ≤ f

6
sin

(
f ′c′ + (f − f ′)c⋆

f

) cos
(

4π−f ′c′−(f−f ′)c⋆
2f

)
− cos 2π

f
cos
(
f ′c′+(f−f ′)c⋆

2f

)

1− cos 4π
2f

cos
(
f ′c′+(f−f ′)c⋆

2f

) .

Proof. The volume of P is bounded above by the quantity

v(P ) ≤
f∑

i=1

v(τi, ci) :=
1

6

f∑

i=1

sin ci
cos τi−ci

2
− cos τi

2
cos ci

2

1− cos ci
2
cos τi

2

.

Using the onavity of the funtion v(τ, c) on the domain D and the fat that the funtion

v(τ, ·) for �xed τ is a monotone dereasing funtion of c on the domain D′
, we get the following

upper bound for v(P ):

v(P ) ≤ f ′

6
v

(
4π − τ ′

f ′ , c′
)
+
f − f ′

6
v

(
τ ′

f − f ′ , c
⋆

)
.

Sine for i = f ′ + 1, . . . , f the points (τi, f(τi)) are in the onvex domain D then the point(
τ ′

f−f ′ , c
⋆
)
also in D. Applying again the onavity property of the funtion v(τ, c), we get the

inequality

v(P ) ≤ f

6
v

(
4π

f
,
f ′c′ + (f − f ′)c⋆

f

)
=
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12 1. PROBLEMS ON CONVEXITY AND VOLUMES

f

6
sin

(
f ′c′ + (f − f ′)c⋆

f

) cos
(

4π−f ′c′−(f−f ′)c⋆
2f

)
− cos 2π

f
cos
(
f ′c′+(f−f ′)c⋆

2f

)

1− cos 4π
2f

cos
(
f ′c′+(f−f ′)c⋆

2f

) ,

as we stated. �

Remark 1.2.2. When f ′ = f we have the following formula:

(19) v(P ) ≤ f

6
sin c′

cos
(

2π
f
− c′

2

)
− cos 2π

f
cos c

′

2

1− cos c
′

2
cos 2π

f

,

where c′ = 1
f

f∑
i=1

ci. In this ase the upper bound is sharp if all fae-triangles are obtuse isoseles

ones with the same area and maximal edge lengths.

The ondition of sharpness implies that the unit sphere tiling by the ongruent opies of suh

isoseles spherial triangles whih equal sides are less than or equal to the third one. Observe

that a polyhedron orresponding to suh a tiling ould not be onvex. This motivates the

following problem: Give suh values τ and c that the isoseles spherial triangle with area τ
and unique maximal edge length c an be generated by a tiling of the unit sphere. We note that

simpliial regular polyhedra satisfy this property.

Example 1.2.1. We get a non-trivial example for this question, if we onsider a rhombi

dodeahedron with its entroid as the enter of the sphere and we projet from the enter its

verties to the sphere (see the left �gure in Fig.1.3). (Note that there is no irumsribed sphere

about a rhombi dodeahedron hene the projetion is neessary.) We get a tiling of the sphere

ontaining ongruent spherial quadrangles. One of these quadrangles has four ongruent sides

and two diagonals, respetively. The length of the longer diagonal is c = π/2.

Figure 1.3. The star-shaped polyhedron P (on left), the original rhombi do-

deahedron and the onvex onvex hull Q of P (on right).

We an disset these quadrangles at these longer diagonals into two ongruent spherial trian-

gles. Denote by P the polyhedron de�ned by those plane triangles as faets whih orrespond

to these spherial triangles, respetively. The angles and sides have the respetive measures

γ = 2π/3, α = π/4, β = π/4 and c = π/2, a = sin−1
√

2/3, b = sin−1
√
2/3. Hene the area

of this triangle 2π/3 + π/2 + π/2 − π = π/6 = 4π/24 as follows from the fat, that the 24
ongruent opies of it, tile the whole sphere. Observe that P is not onvex sine the distane

of the opposite verties of two triangles with ommon base (in Eulidean measure) (2/
√
3) is

less than that of the Eulidean length of the ommon base (

√
2). Sine we have only one type

of triangles for whih f(τ1) = f(π/6) ≈ f(0, 52360) ≥ π/2 = c1 we an apply (19) with f = 24,
c′ = π/2, hene

v(P) = 4

√
2 cos π

6
− cos π

12√
2− cos π

12

.

This quantity is an upper bound for the volume of suh star-shaped polyhedra whih are

insribed into the unit sphere, have 24 faes with spherial area τi with the assumption that

f(τi) ≥ π/2 and with maximal edge length π/2. We get suh polyhedra if we hange a little
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 13

bit the position of those verties of P whih denoted by white irles on Fig. 1.3 (For τ (by

Mathematia 10) we got the assumption π/2 ≥ τ ≥ tan−1
(
2
√
5− 3

√
2
)
/(10 + 7

√
2) ≈ τ =

0.427922.)
Denote by Q the onvex hull of P (see the right �gure on Fig. �g:starshaped.). Then c1 =

2 sin−1
√
1/3 ≈ 1, 23096 < π/2 < f(τ1) and we an apply again (19). Hene we get that

v(Q) =
8

3

√
6 cos

(
π
12

− sin−1
√

1
3

)
− 2 cos π

12√
3− cos π

12

√
2

.

Q has maximal volume of the lass of suh polyhedra whih an be get from Q by a little hange

of the position of the verties denoted by blak irles, respetively.

Example 1.2.2. Assume that f ′ = f = 12 and c = 2 sin−1(
√
2/3). Then the upper bound is

2
2
√
2

3

cos
(
π
6
− sin−1(

√
2/3)

)
− 1√

3
cos π

6

1− 1√
3
cos π

6

=
8

3
√
3
,

whih is the volume of the ube insribed into the unit sphere. Hene we got a new proof for

that ase of Theorem 3.3 of [81℄ when we restrit our examination to those triangulations in

whih there is no fae-triangle having edge length greater than the edge length of a regular

tetrahedron insribed in the unit sphere.

We now apply our inequality to prove the general form of Theorem 3.3 in [81℄ in whih the

additional assumption "the tetrahedra are in dual position" has been omitted.

Theorem 1.2.2. [13, 81℄ Consider two regular tetrahedra insribed in the unit sphere. The

maximal volume of the onvex hull P of the eight verties is the volume of the ube C insribed

in to unit sphere, so

v(P ) ≤ v(C) =
8

3
√
3
.

Proof. We have to onsider only that ase whih is not onsidered in [81℄. Hene we assume

that in the spherial regular triangles of the spherial tiling is orresponding to the �rst regular

tetrahedron there are 2, 1, 1, 0 verties of the seond tetrahedron, respetively. The �ve points

(the three verties of the �rst spherial triangle and the two verties of the seond tetrahedron

having in this triangle) having in the �rst losed spherial triangle form a triangular dissetion

of it into �ve other spherial triangle. Unfortunately, this dissetion ontains also suh triangles

whih maximal edge lengths greater than that of the edge length of the regular spherial triangle

ontaining them. On the other hand these triangles belong to the parameter domain D′
(de�ned

in Theorem 1.2.1) beause f(π/5) = 1.83487 < 2 sin−1
√

2
3
. Hene the upper bound funtion

for �xed τ is loally a dereasing funtion of c. So we an assume that all of these triangles have

the same maximal spherial lengths, whih is equal to 2 sin−1
√

2
3
. Thus we get the following

upper bound for the volume:

v(P ) ≤ v

(
π, 2 sin−1

√
2

3

)
+ 6v

(
π/3, 2 sin−1

√
2

3

)
+

5∑

i=1

v

(
τi, 2 sin

−1

√
2

3

)
=

1

9
+

4

3
√
3
+

2

9

5∑

i=1

sin τi
2√

3− cos τi
2

where 0 ≤ τi and
5∑
i=1

τi = π. But with these onditions we have

5∑

i=1

sin τi
2√

3− cos τi
2

≤ 1.97836 < 2
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14 1. PROBLEMS ON CONVEXITY AND VOLUMES

implying that

v(P ) <

1√
3
+ 4 + 4√

3

3
√
3

<
8

3
√
3
= v(C)

as we stated. �

1.3. On the hyperboli onept of volume

Our observation on the volume of hyperboli orthosemes onerns a de�ieny in the two

hundred years literature. Using hyperboli orthogonal oordinates we disovered a formula

on the volume of the orthoseme by its edge lengths. Of ourse it also manifests in a non-

elementary integral however ompletes to a omplete triplet of the olletion of integrals derived

by Lobahevsky and Bolyai, respetively. (The integral of Lobahevsky based on the dihedral

angles of the orthoseme and the formulas of Bolyai used dihedral angles and edge lengths in a

mixed form.) In this setion we refer to the results of the paper [14℄.

In hyperboli geometry to get the volume of a polyhedron has only one possibility. We have

to transform the problem to a problem to alulate an appropriate integral. For this purpose

we need methods to allowed the points with oordinates. We now give volume-integrals with

respet to some important system of oordinates. We use that distane parameter k whih

introdued by J.Bolyai to express the urvature K = −1
k2

of the hyperboli spae.

Consider in Hn
a parasphere of dimension n− 1 and its bundle of rays of parallel lines. Let ξn

be the last oordinate axis, one of these rays, the origin will be the intersetion of this line with

the parasphere. The further (n−1)-"axes" are pairwise orthogonal parayles. The oordinates

of P in this system are (ξ1, ξ2, · · · , ξn)T , where the last oordinate is the distane of P and

the parasphere, while the further oordinates are the oordinates of the orthogonal projetion

T with respet to the Cartesian oordinate system in En−1
given by the above mentioned

parasphere.

We an orrespond to P a point p in Rn
by Cartesian oordinates:

(x1, x2, · · · , xn)T =
(
e−

ξn
k ξ1, e

− ξn
k ξ2, · · · , e−

ξn
k ξn−1, ξn

)T
.

By de�nition let the volume of a Jordan measurable set D in Hn
be

v(D) := vn

∫

D⋆

dx1 · · ·dxn,

where D⋆
in Rn

is the image of the domain D lying in Hn
(by the above mapping) and vn is a

onstant whih we will hoose later. Our �rst volume formula is:

v(D) = vn

∫

D

e−(n−1) ξn
k dξ1 · · ·dξn,

depending on the parayle oordinates of the points of D, in the given system. Let now the

domainD = [0, a1]×· · ·×[0, an−1] be a parasphere setor of parallel segments of length an based
on a oordinate brik of the orresponding parasphere. Then we get by suessive integration

v(D) = vn

a1∫

0

· · ·




an∫

0

e−(n−1) ξn
k dξn


 · · ·dξ1 =

kvn
n− 1

[
−e−(n−1)an

k + e0
] n−1∏

i=1

ai =

=
kvn
n− 1

[1− e−(n−1)an
k ]

n−1∏

i=1

ai.

If an tends to in�nity and ai = 1 for every i = 1, · · · , (n− 1), then the volume is equal to

kvn
n−1

.

Note that J.Bolyai and N.I.Lobahevski used the value vn = 1 only for n = 2, 3 so in their

alulations the volume is independent of the dimension but depends on the onstant k whih

determine the urvature of the spae. To follow them we will determine the onstant vn suh
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 15

that for every �xed k the measure of a thin layer divided by its height tends to the measure of

the limit �gure of lower dimension. Now the limit:

lim
an→0

v(D)

an
=

kvn
n− 1

lim
n→∞

[1− e−(n−1)an
k ]

an

n−1∏

i=1

ai = vn

n−1∏

i=1

ai,

would be equal to vn−1

n−1∏
i=1

ai showing that 1 = v1 = v2 = . . . = vn = . . ..

Thus vn = 1 as indiated earlier. On the other hand if for a �xed n the number k tends to

in�nity the volume of a body tends to the Eulidean volume of the orresponding Eulidean

body. In every dimension n we also have a k for whih the orresponding hyperboli n-spae
ontains a natural body with unit volume, if k equal to n−1 then the volume of the paraspheri

setor based on a unit ube of volume 1 is also 1.
Finally, with respet to parayle oordinate system our volume funtion by de�nition will be

v(D) =

∫

D

e−(n−1) ξn
k dξ1 · · ·dξn.

Give now an orthogonal system H of axes assoiated to the parayle oordinate system as

follows. Let the new half-axes x1, · · · , xn−1 be the tangent half-lines of the former parayles

at their ommon origin. (We an see the situation in Fig. 1.4) To determine the new oor-

dinates of the point P we projet P orthogonally to the hyperplane spanned by the axes

x1, x2, · · · , xn−2, xn. The projetion will be Pn−1. Then we projet orthogonally Pn−1 to the

(n − 2)-spae is spanned by the axes x1, x2, · · · , xn−3, xn. The new point is Pn−2. Now the

(n− 1)th oordinate is the distane of P and Pn−1, the (n− 2)th oordinate is the distane of

Pn−1 and Pn−2 and so on . . .. In the last step we get the nth oordinate whih is the distane

of the point P1 from the origin O. Sine the onnetion between the distane 2d of two points

of a parayle and the length of the onneting parayle ar 2s is s = k sinh d
k
. Thus the dis-

P

Pn-1

x

x

x

n-2

n-1

n

xn-1

d

s=sh

z

e z
= ch

d
dk
k

x
n

Figure 1.4. Coordinate system based on orthogonal axes

tane z of the respetive halving points an be alulated as: z = k ln cosh d
k
. Now a non-trivial

but elementary alulation shows (using also the hyperboli Pythagorean theorem) that the

onnetion between the oordinates with respet to the two systems of oordinates is:

ξn−1 = e
ξn
k k sinh

xn−1

k

ξn−2 = e
ξn
k
+ln cosh

xn−1
k k sinh

xn−2

k
.

.

.

ξ1 = e
ξn
k
+ln cosh

xn−1
k

+···+ln cosh
x2
k k sinh

x1
k

xn = ξn + k ln cosh
xn−1

k
+ · · ·+ k ln cosh

x2
k

+ k ln cosh
x1
k
.
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16 1. PROBLEMS ON CONVEXITY AND VOLUMES

From this we get a new onnetion. Correspond the point (ξ1, ξ2, · · · , ξn)T ∈ Hn
to the point

(u1, · · · , un)T ∈ Rn
as in our �rst alulation. The orresponding system of equations is:

u1 = k cosh
x2
k

· · · cosh xn−1

k
sinh

x1
k

.

.

.

un−1 = k sinh
xn−1

k

un = xn − k ln cosh
x1
k

− · · · − k ln cosh
xn−1

k
The Jaobian determinant of this transformation is(

cosh
x1
k

)(
cosh

x2
k

)2
· · ·
(
cosh

xn−1

k

)n−1

,

implying our seond formula on the volume:

v(D) =

∫

D

(
cosh

xn−1

k

)n−1

· · ·
(
cosh

x2
k

)2 (
cosh

x1
k

)
dx1 · · ·dxn.

The orthosheme is a speial tetrahedron. Two edges a and b are orthogonal to eah other and

a third one c (skew to a) is orthogonal to the plane of a and b (and intersets b). Let x the

third edge of the triangle with edges a and b, y the third edge of the triangle of b and c and z
the remaining side of the orthoseme. The dihedral angle at a is α, the angle opposite to b of
the triangle with edges a and b is β and the angle opposite to the edge c in the triangle with

edges c and z is γ, respetively. J.Bolyai gave two formulas on the volume (k = 1) (see in [29℄,

[143℄):

v =
tan γ

2 tanβ

c∫

0

u sinhu(
cosh2 u
cos2 α

− 1
)√

cosh2 u
cos2 γ

− 1
du,

and

v =
1

2

α∫

0


−a + sinh a cosφ

2
√

tanh2 b+ sinh2 a cos2 φ ln
cosh a cosφ+

√
tanh2 b+sinh2 a cos2 φ

cosh a cosφ−
√

tanh2 b+sinh2 a cos2 φ


dφ

For the so-alled asymptoti orthosheme for whih the ideal vertex is the ommon endpoint of

the edges a, x and z it gives the formulas:

v =
sin 2α

4

c∫

0

u

cosh2 u− cos2 α
du and v =

1

2

α∫

0

ln
cosφ√

cos2 φ− tanh2 b
dφ,

respetively.

The formula of Lobahevsky an be get as follows. Let the essential (non-retangular) dihedral

angles of an orthosheme be α, β and γ. They are admitted to the edges a, z and c, respetively.
Introdue the parameter δ by the equalities:

tanh δ := tanh a tanα = tanh c tan γ,

and the Milnor's form of the Lobahevsky-funtion (see in [122℄)

Λ(x) = −
x∫

0

ln |2 sin ξ|dξ,

respetively. Then the volume v of the orthosheme in the ase of k = 1 is

1

4

[
Λ(α+ δ)− Λ(α− δ)− Λ

(π
2
− β + δ

)
+ Λ

(π
2
− β − δ

)
+
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 17

+Λ(γ + δ)− Λ(γ − δ) + 2Λ
(π
2
− δ
)]
.

As an appliation of our general formulas we determine the volume of the orthoseme as the

funtion of its edge-lengthes a, b and c. We note that the formulas

a =
1

2
ln

sin(α + δ)

sin(α− δ)
, c =

1

2
ln

sin(γ + δ)

sin(γ − δ)
, z =

1

2
ln

sin(π
2
− β + δ)

sin(π
2
− β − δ)

.

transform the dihedral angles into the edge-lengthes. This observation gives another possibility

to get our formula from the lassial ones but the orresponding alulation seems to be very

unomfortable.

The following lemma in the three-dimensional ase an be proved easily.

Lemma 1.3.1. [14℄ We have two k-dimensional hyperboli subspaes Hk and H ′
k, respetively

for whih they intersetion has dimension k − 1. Assume that the points P ∈ Hk, P
′ ∈ H ′

k and

P ′′ ∈ Hk ∩H ′
k hold the relations PP ′⊥H ′

k and P ′P ′′⊥Hk ∩H ′
k, respetively. Then the angle

α = tan−1 tanh(PP
′)

sinhP ′P ′′ ,

is independent from the position of P in Hk.

a

b

c

x=x

y=x

z=x

O
Q

Q
,

P

P2

P
1

1

2

b
,

c
,

( )x,y

3

y f( )x

Figure 1.5. Orthosheme and orthogonal oordinates

For our purpose we have to determine the integral

v(D) =

∫

D

(cosh z)2(cosh y)dzdydx =

a∫

0



φ(x)∫

0




ψ(x,y)∫

0

(cosh z)2(cosh y)dz


 dy


dx.

whih is based on hyperboli orthogonal oordinates (by k = 1). In this formula the funtions

φ(x) and ψ(x, y) an be determined as follows. Consider the orthosheme in Figure 1.5. In the

retangular triangle △OP2P1 we know that the tangent of the angle P2OP1∠ is:

tanP2OP1∠ =
tanh b

sinh a
=

tanhΦ(x)

sinh x
.

Hene

tanhΦ(x) =
tanh b

sinh a
sinh x, and 0 ≤ y ≤ φ(x) = tanh−1

(
tanh b

sinh a
sinh x

)
=: λ.
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18 1. PROBLEMS ON CONVEXITY AND VOLUMES

Consider now the triangle△P1P2P . The line O(x, y, 0) intersets that point Q for whih |P1Q| =
b′, and let denote the point of the segment PP1 above Q be Q′

. Thus we get the equality

tanh c′ =
tanh c

sinh b
sinh b′.

Take into onsideration again the equality

tanh b′ =
tanh y

sinh x
sinh a,

and apply the hyperboli Pythagorean theorem. From the triangle △OQQ′
we get

tanhΨ(x, y) = tanh c′

[
sinh

(
cosh−1(cosh x cosh y)

)

sinh
(
cosh−1(cosh a cosh b′)

)
]
=

=
tanh c

sinh b
sinh b′

[√
cosh2 x cosh2 y − 1√
cosh2 a cosh2 b′ − 1

]
=

tanh c

sinh b
sinh b′

[√
sinh2 y + sinh2 x cosh2 y√
sinh2 b′ + sinh2 a cosh2 b′

]
=

=
tanh c

sinh b
sinh y

√
1 + sinh2 x coth2 y√
1 + sinh2 a coth2 b′

=
tanh c

sinh b
sinh y,

sine

tanQOP2∠ =
tanh b′

sinh a
=

tanh y

sinh x
.

Hene the assumption

0 ≤ z ≤ ψ(x, y) = tanh−1

(
tanh c

sinh b
sinh y

)
=: µ

holds if we �x the �rst two variables, but Ψ(x, y) does not depend on x, as it an be expeted

in Lemma 1.3.1. Thus the desired volume is:

v =

a∫

0

λ∫

0

µ∫

0

(cosh z)2(cosh y)dzdydx =

a∫

0

λ∫

0

1

2

[
z +

1

2
(sinh 2z)

]µ

0

(cosh y)dydx.

For Φ(x) and Ψ(x, y) we apply the identities tanh ρ = sinh ρ
cosh ρ

= e2ρ−1
e2ρ+1

, i.e. ρ = 1
2
ln 1+tanh ρ

1−tanh ρ
. We

get µ = 1
2
ln sinh b+tanh c sinh y

sinh b−tanh c sinh y
, and λ = 1

2
ln sinh a+tanh b sinhx

sinh a−tanh b sinhx
. Hene

v =
1

4





a∫

0




λ∫

0

ln
sinh b+ tanh c sinh y

sinh b− tanh c sinh y
cosh ydy+

+

λ∫

0

sinh

(
ln

sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy


dx



 .

To determine the seond integral, we apply sinh u = eu−e−u

2
. Now

λ∫

0

sinh

(
ln

sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy =

=
1

2

λ∫

0

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y
− sinh b− tanh c sinh y

sinh b+ tanh c sinh y

)
cosh ydy =

= 2

λ∫

0

sinh y cosh y
sinh b
tanh c

− tanh c
sinh b

sinh2 y
dy = 2

λ∫

0

sinh 2y

2 sinh b
tanh c

− tanh c
sinh b

cosh 2y + tanh c
sinh b

dy =
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 19

= − sinh b

tanh c

[
ln

(
2
sinh b

tanh c
− tanh c

sinh b
cosh 2y +

tanh c

sinh b

)]λ

0

=

= − sinh b

tanh c
ln

(
2
sinh b

tanh c
− tanh c

sinh b
cosh 2λ+

tanh c

sinh b

)
+

sinh b

tanh c
ln

(
2
sinh b

tanh c

)
.

From the above expression of λ = Φ(x) we an alulate cosh 2λ and get:

cosh 2λ =
1

2

(
sinh a+ tanh b sinh x

sinh a− tanh b sinh x
+

sinh a− tanh b sinh x

sinh a+ tanh b sinh x

)
.

Thus the seond integral (denoted by II) is:

II := − sinh b

tanh c
ln

(
1− tanh2 c sinh2 x

cosh2 b(sinh2 a− tanh2 b sinh2 x)

)
.

The �rst integral to v an be integrated by parts as follows:

λ∫

0

ln

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy =

{[
ln

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
sinh y

]λ

0

−

−
λ∫

0

tanh c cosh y[(sinh b− tanh c sinh y) + (sinh b+ tanh c sinh y)]

sinh2 b− tanh2 c sinh2 y
sinh ydy



 =

=



sinh λ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
−

λ∫

0

2 tanh c sinh b cosh y sinh y

sinh2 b− tanh2 c cosh2 y + tanh2 c
dy



 =

=

{
sinhλ ln

sinh b+ tanh c sinh λ

sinh b− tanh c sinhλ
+

sinh b

tanh c

[
ln(sinh2 b− tanh2 c cosh2 y + tanh2 c)

]λ
0

}
=

=

{
sinh λ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
+

sinh b

tanh c

(
ln(sinh2 b− tanh2 c sinh2 λ)− ln(sinh2 b)

)}
.

Sine

sinh2 λ =
tanh2 b sinh2 x

sinh2 a− tanh2 b sinh2 x
,

the �rst integral is:

{
sinhλ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
+

sinh b

tanh c
ln

(
1− tanh2 c sinh2 x

cosh2 b(sinh2 a− tanh2 b sinh2 x)

)}
=

= sinhλ ln
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
− II.

The sum of the two parts is:

sinh λ ln
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
.

A hange of integration variable will have some bene�ts x 7→ λ, a 7→ b, dx = dx
dλ
dλ. From

λ = tanh−1
(
tanh b
sinha

sinh x
)
follows

x = sinh−1

(
tanhλ sinh a

sinh b

)
= ln

tanhλ sinh a+
√

tanh2 λ sinh2 a + tanh2 b

tanh b

and we get in a straightforward way

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ,

proving our main theorem as follows:
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20 1. PROBLEMS ON CONVEXITY AND VOLUMES

Theorem 1.3.1. [14℄ Let the edges of an orthosheme be a, b, c, respetively, where a⊥b and
(a, b)⊥c. If k = 1 then its volume is:

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ.

Corollary 1.3.1. This formula an be simpli�ed in the ase of asymptoti orthoshemes. If

the edge-length a tends to in�nity, the funtion

tanh λ sinha√
tanh2 b cosh2 λ+sinh2 a sinh2 λ

tends to

1
coshλ

showing

that the volume of the orthoseme with one ideal vertex is

v =
1

4

b∫

0

1

coshλ
ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinh λ

)
dλ.

If the length of the edge c also grows to in�nity, then this formula simpli�es to:

v =
1

4

b∫

0

1

coshλ
ln

(
sinh b+ sinh λ

sinh b− sinhλ

)
dλ,

whih is the volume of an orthoseme with two ideal verties. If now we re�et this one in the

fae ontaining the edges b and c then we get a tetrahedron with three ideal verties. If then we

re�et the previous tetrahedron in the fae ontaining the edges b and a we get another one with
four ideal verties. The volume of the last one is

v =

b∫

0

1

cosh λ
ln

(
sinh b+ sinh λ

sinh b− sinh λ

)
dλ.

This tetrahedron has two edges (a and c) whih are skew and orthogonal to eah other (its

ommon normal transversal is b). Sine the re�etion in the line of b is a symmetry of this ideal

tetrahedron, we an see that there are two types of its dihedral angles, two opposite (at the edges

a and c) are equal to eah other, ( say A); and the other four ones are also equal to eah other

( say B). Then we have A+ 2B = π, and its volume by Milnor's formula is equal to

v′ = Λ(π − 2B) + 2Λ(B) = Λ(2B) + 2Λ(B) = 4Λ(B) + 2Λ
(
B +

π

2

)
.

(We have exploited that the Lobahevsky funtion is odd, of period π, and satis�es the identity

Λ(2B) = 2Λ(B) + 2Λ(B + π
2
).) Then we get the following onnetion between the two integrals:

0 =

b∫

0

1

coshλ
ln

(
sinh b+ sinhλ

sinh b− sinhλ

)
dλ+ 2

B+π
2∫

0

ln |2 sin ξ|dξ + 4

B∫

0

ln |2 sin ξ|dξ.

If we substitute into our formula the �rst-order terms of the Taylor series of the funtions in

the integrand, respetively, we get

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ =

=
1

2

b∫

0

λa√
b2 + a2λ2

cλ

b
dλ =

ac

2b2

b∫

0

λ2√
1
dλ =

abc

6
.

This shows that it gives bak the Eulidean volume for in�nitesimal values.
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CHAPTER 2

Investigations in a lassial Minkowski normed spae

2.1. Bisetors

The present dissertation refers to bisetors in (�nite dimensional normed or) Minkowski spaes,

i.e., to olletions of points whih have, in eah ase, the same distane (with respet to the orre-

sponding norm) to two given points x, y of these spaes. Note that bisetors in Minkowski spaes

play an essential role in Disrete and Computational Geometry, mainly in view of onstruting

(generalized) Voronoi diagrams, and also for motion planning with respet to translations; see,

e.g., the surveys [19℄ and [116℄.

2.1.1. Bisetors and the unit ball. If K is a 0-symmetri, bounded, onvex body in

the Eulidean n-spae En
(with a �xed origin O) then it de�nes a norm whose unit ball is

K itself (see [77℄ or [132℄). Suh a spae is alled Minkowski normed spae. In fat, the norm

is a ontinuous funtion whih is onsidered (in the geometri terminology as in [77℄) gauge

funtion. The metri (the so-alled Minkowski metri), the distane of two points, indued by

this norm, is invariant with respet to the translations of the spae.

The unit ball is said to be stritly onvex if its boundary ontains no line segment. A body is

said to be smooth if eah point on its boundary has a unique supporting hyperplane. There are

dual notions with respet to the salar produt of the embedding Eulidean spae. The dual

body K∗
of K is

K∗ = {y|〈x, y〉 ≤ 1 for all x ∈ K}
where 〈·, ·〉 means the inner produt of the embedding Eulidean spae. It an be shown (see

[41℄) that the (onvex) unit ball K is stritly onvex if and only if its dual body K∗
is smooth.

We examined in [1℄ the boundary of the unit ball of the norm and give two theorems sim-

ilar to the haraterization of the Eulidean norm investigated by H.Mann, A.C.Woods and

P.M.Gruber in [111℄, [147℄, [74℄, [75℄ and [76℄, respetively. H.Mann proved that a Minkowskian

normed spae is Eulidean one (so its unit ball is an ellipsoid) if and only if all Leibnizian halfs-

paes (ontaining those points of the spae whih are loser to the origin than to another point

x) are onvex. A.C.Woods proved the analogous statement for suh a distane funtion whose

unit ball is bounded but is not neessarily entrally symmetri or onvex. P.M Gruber extended

the theorem for distane funtions whose unit ball is a ray set. P.M. Gruber generalized the

Woods' theorem in another way, too. He showed (see Satz.5 in [74℄) that a bounded distane

funtion gives a Eulidean norm if and only if there is a subset T of the (n−1)-dimensional unit

sphere whose relative interior (with respet to the sphere) is not empty, having the property:

eah of the pairs of points {0,x} where x ∈ T the orresponding Leibnizian halfspae is onvex.

From the onvexity of the Leibnizian halfspaes follows that the olletion of all points of the

spae whose distanes from two distint points are equal are hyperplanes. We all suh a set

the bisetor of the onsidered points. Thus from Mann's theorem follows a theorem stated �rst

expliitly by M.M.Day in [42℄:

Theorem 2.1.1 ([42℄). All of the bisetors, with respet to the Minkowski norm de�ned by the

body K, are hyperplanes if and only if K is an ellipsoid.

Day pointed out that this result is an immediate Corollary of a result of James [92℄.

We note that Day's theorem is also a onsequene of a third (ellipsoid haraterization) theorem

proved by P.M.Gruber ([75℄ Satz.3) whih says that if K1 is a onvex body in Ed
(d ≥ 3), and

the intersetion of the boundaries of the bodies K ′
2 and K1 is ontained in a hyperplane for all

21
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22 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

translates K ′
2 of K1 with K ′

2 6= K1 then K1 is an ellipsoid. P.R.Goodey gave a little bit more

general form of this theorem in ([67℄ and [68℄), showing that if K2 is another onvex body of

the spae as K1, and the intersetion of the boundaries of the bodies K ′
2 and K1 is ontained

in a hyperplane for all translates K ′
2 of K2 with K ′

2 6= K1, then K1 and K2 are homotheti

ellipsoids.

The seond question onerning Day's theorem also was posed by H.Mann in [111℄. He proved

that if for all latties of the embedding spae the losed Dirihlet-Voronoi ell of a lattie point

(determined by the Minkowski norm) is onvex (in the usual Eulidean sense) then the norm

is Eulidean one, too. This theorem was also extended by P.M.Gruber for a distane funtion

with bounded star-shaped unit ball.

It is possible that the interior (with respet to the Minkowski metri) of a Dirihlet-Voronoi

ell is onvex while the losed one is not, thus we have to distinguish the open and the losed

Dirihlet-Voronoi ells from eah other. The "walls" suh a losed ell may be an n-dimensional

set in the Eulidean n-spae. It is also possible that the bisetor of {0, x} is an n-dimensional

part of the spae. This is the ase, e.g., if the unit ball is a square of the plane and the vetor

x is parallel to one of the edges of this square.

Definition 2.1.1. The bisetor of the segment, orresponding to the position vetor x, is

Hx := {y ∈ En | ‖y‖K = ‖y − x‖K}.
We denote by Hx,0 and Hx,x the Leibnizian halfspaes to the segments [0, x] and [x, 0], respe-
tively, as the set of those points whih are loser (with respet to the norm ‖ · ‖K) to the �rst

end than to the seond one.

It is lear that if lKS denotes the losure of the set S with respet to the norm ‖ · ‖K we have

Hx = lKHx,0 ∩ lKHx,x.

Now, we prove some properties of the Leibnizian halfspaes and the bisetors.

Lemma 2.1.1 ([1℄). With respet to the Eulidean metri topology of the embedding n-spae the
following properties hold:

(1) Hx is a losed, onneted set whih is onvex in the diretion of the vetor x, i.e. if

a line parallel to x intersets Hx in two distint points, then the whole segment with

these endpoints also belongs to Hx.

(2) Hx,0 and Hx,x are open, onneted sets separated by the bisetor Hx.

Proof. From the ontinuity of the norm funtion it is easy to prove that the sets

Hx,0 := {y ∈ En|‖y‖K < ‖x− y‖K}
Hx,x := {y ∈ En|‖y‖K > ‖x− y‖K}

are open with respet to the Eulidean metri topology, too. This means that Hx is losed.

Using the triangle inequality (by the onvexity of K) it is easy to see that Hx,0 is a star-shaped

set. This means that it is onneted, too.

Prove now that Hx is onvex in the diretion of x. Let y and z be two points of Hx for whih

y − z parallel to x and ‖y‖K ≥ ‖z‖K . Consider the points u = y− z, v = y − z + x, 0 and x. If
‖y‖K < ‖z‖K (see Figure 2.1) then we have

‖u− y‖K = ‖v − y‖K = ‖z − x‖K = ‖z‖K > ‖y‖K = ‖0− y‖K = ‖x− y‖K.
Thus u, v are on the boundary of the Minkowski ball with enter y and radius ‖z‖K , while
the points 0 and x are in the interior of this ball. This means that the points u, v, 0, x in their

line must have the order [u, 0, x, v]. It is impossible beause v − u = x. From this we get that

‖y‖K = ‖z‖K . Let now E, F , E ′
, F ′

be the ends of the position vetors y, z, y − x and z − x,
respetively.

These points are on the boundary of the K-ball with enter 0 and radius ‖y‖K whih means

that the segment conv{E, F,E ′, F ′} belongs to the boundary of this ball. (At least three of these
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2.1. BISECTORS 23

u v x

E’ F’ E(y) F(z)

Figure 2.1. The proof of diretional onvexity

points are distint.) So the intersetion of the onsidered line with the bisetor Hx ontains the

segment EF as we stated.

Sine the intersetion of a line l parallel to x with a losed K-ball is a ompat segment, if we

onsider another K-ball K1 interseting the line l, the following non-empty set

(K1 ∪ (K1 + x)) ∩ l
is also ompat. The omplement of this set on the line l ontains two open half lines l− and l+
satisfying the properties that the points of K1 separate the points of l− from the right endpoint

of (K1 + x) ∩ l and the points of K1 + x separate the points of l+ from the left endpoint of

K1 ∩ l, respetively. It is easy to see that the points of l− belong to Hx,0 and the points of l+
belong to Hx,x, respetively. So by the ontinuity of the Minkowski norm, every line parallel

to x an be divided into three non-empty parts: a ompat segment (may be degenerated to a

point) belongs to Hx and two open hal�ines belong to Hx,0 and Hx,x, respetively.

Consider now a hyperplane orthogonal to the vetor x and take the orthogonal projetion of

Hx into this (n − 1)-dimensional Eulidean spae. If we assume that Hx an be deomposed

into the union of two disjoint losed subsets of it, then the images of these omponents (by

the onvexity in the diretion of x and the above trisetion of any projetion line) are disjoint

losed subsets whose union is this hyperplane. Using now the onnetivity of the hyperplane

we get that this deomposition is trivial and in fat Hx is onneted, too.

The last statement of this lemma is the separating property of the bisetor. Consider an ele-

mentary urve γ whih onnets a point y of Hx,0 with a point z of Hx,x. Sine Hx,0 and Hx,x

are open with respet to the Eulidean topology of the spae, the sets Hx,0 ∩ γ and Hx,x ∩ γ
are open in the indued topology of the onneted urve γ. However, these sets are non-empty

and disjoint hene there is (at least one) point of γ whih lies in the omplement of Hx,0∪Hx,x,

i.e. in Hx. So for every pairs of suh points y, z and their onneting urve γ there is a point

of γ ∩Hx whih separates the endpoints of γ. �

The results of the following two lemmas seem to be new. The �rst one is an important onse-

quene of the statements of Lemma 2.1.1.

Lemma 2.1.2 ([1℄). The boundary of K does not ontain any line segment parallel to x if and

only if for eah line l parallel to x the set

Hx ∩ l
ontains exatly one point.

Proof. Assume indiretly that the boundary ofK, denoted by bdK, ontains a non-degenerate

segment s parallel to x (see Figure 2.2).For the line l ontaining s we have bdK ∩ l = s
and (bdK + x) ∩ l = s + x. This means that for a su�iently large real number r the set

bd(rK)∩ bd(rK) + x ontains the non-degenerate segment rs∩ rs+ x. This proves one dire-
tion of the lemma.

Conversely, if Hx ∩ l ontains the points y and z then as we saw in the proof of the onvexity

part of the proof of Lemma 2.1.1 (to Figure 2.1), the following equalities hold

‖y‖K = ‖z‖K = ‖y − x‖K = ‖z − x‖K ,
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o x

s

s’

H

H H

x

x,xx,0

l

G y
z

Figure 2.2. Maximal segment s′ in Hx.

whih means again that the set Hx∩ l ontains at least three distint points of the boundary of

the K-ball with enter 0 and radius ‖y‖K. This means that the boundary of this ball ontains

a segment parallel to x whih proves our Lemma 2.1.1. �

Our last lemma formulates a topologial property of the bisetor. We shall use the natural

notion of maximal segment s′ belonging to Hx parallel to x and the left or right end of s′. (Left
end of s′ is from whih any other point of s′ an be get by adding a positive multiples of x.) It
is possible that a left end of a maximal segment belonging to Hx is an inner point of the losed

set clEn Hx,0 meaning that there exists an open Eulidean n-ball G around this left end whih

does not interset the other Leibnitzian halfspae Hx,x. We prove that in this ase the bisetor

does not a topologial hyperplane.

Lemma 2.1.3 ([1℄). Let y ∈ Hx be a left end of a maximal segment s′ belonging to Hx parallel

to x and having non-zero length. If there is an n-dimensional open Eulidean ball G with enter

y for whih Hx,x ∩G is empty then Hx does not homeomorphi to a hyperplane.

Before the proof of this lemma we reall the de�nition of topologial manifold with relative

boundary points. An (n− 1)-dimensional topologial manifold is a separable topologial spae

having a ountable base and holds the property that eah of its points has a neighbourhood

homeomorphi either to an open subset of En−1
or to a halfspae En−1

+ . We note that this

de�nition of topologial manifold (see e.g. [128℄) in our paper may be applied well. A relative

boundary point of an (n− 1)-manifold, lies on a bounding (n− 2)-manifold of the original one.

We note that the onept of boundary point of suh a manifold is a topologial invariant and

a set homeomorphi to an (n − 1)-dimensional hyperplane is a topologial manifold without

boundary points.

Proof. (Lemma 2.1.3) Consider the boundary bdEn clEn Hx,x of losed set clEn Hx,x (relative

to the topology of En
). (In general this set is a proper subset of bdEn Hx,x.) By the assumption

for y we see that this set does not ontain y meaning that Hx ontains an (n− 1)-dimensional

(separation) set bdEn clEn Hx,x and at least one maximal segment s′ does not belong to this

set. Sine the set bdEn clEn Hx,x is losed there is a maximal non-degenerated subsegment s′′

of s′ (without right endpoint) whih disjoint from bdEn clEn Hx,x. If the point z is in Hx ∩ G′

where G′
is a smaller as G losed ball with enter y then it has the same property as y, namely

it has also a non-trivial segment in Hx \ clEn Hx,x. All of the segments parallel to x onneting

the points of Hx∩G′
with a orresponding point of bdEn clEn Hx,x determine a ylinder C with

generator segments parallel to x. Of ourse the point y is an endpoint of a generator of this

ylinder. Assuming now that Hx is a topologial hyperplane C is a topologial manifold, too.

Thus C is a topologial ylinder of dimension (n − 1). If now G′′
is a smaller open ball as G′

with enter y then G′′ ∩Hx = G′′ ∩ C proving that y is a relative boundary point of Hx. This

is a ontradition beause the relative boundary of a topologial hyperplane is empty. �

We have the following theorem:
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Theorem 2.1.2 ([1℄). If the unit ball K of a Minkowski normed spae is stritly onvex then

all bisetors are homeomorphi to a hyperplane.

Proof. Sine the Minkowski metri is invariant under translations we have to prove that if K
is stritly onvex then all sets Hx are homeomorphi image of a hyperplane.

Assume that the unit ballK is stritly onvex. Let x be an arbitrary point of the spae. Sine K
does not ontain a segment on its boundary, from Lemma 2.1.2 we obtain that the intersetions

of Hx with every lines parallel to x ontain exatly one point. Let now H be the (n − 1)-
dimensional subspae of En

orthogonal to x and inident to the origin O and F be a map from

this hyperplane H to Hx by x-projetion with the de�nition:

F : H −→ Hx, y −→ F (y) = Hx ∩ {y + tx|t ∈ R}.
From Lemma 2.1.1 it follows that F is a bijetive mapping from H to Hx we have to prove

only that it is ontinuous one, with respet to the Eulidean metri topology. (The ontinuity

of the inverse map will be a onsequene of the fat that H is loally ompat set.) Let now y
be any point of H and ǫ > 0 be arbitrary real number. Let z be a point of H for whih the line

z + tx intersets the boundary of the K-ball K1 with enter 0 and radius ‖F (y)‖K. We have

two parameters say t1 and t2 for whih

‖z + t1x‖K = ‖F (y)‖K and ‖z + t2x− x‖K = ‖F (y)− x‖K = ‖F (y)‖K.
Sine K onvex ompat body, the funtion from H = R(n−1)

to R giving those half of the

boundary ofK whih ontains the point F (y) (with respet to an orthonormal base ontaining a

unit vetor parallel to x) is ontinuous. This means that we an hoose a number δ > 0 that if the
Eulidean distane of z and y is less than δ then the distanes of the points z+t1x, z+t2x, F (y)
are less than ǫ, respetively. Sine the points z + t1x, z + t2x belong to Hx,0 and Hx,x or Hx,x

and Hx,0, respetively, we get that the orresponding segment [z + t1x, z + t2x] ontains the
point F (z). So the Eulidean distane of the image points F (z) and F (y) is also less than ǫ,
meaning that F is ontinuous, so it is a homeomorphism. This proves the theorem. �

Illustrating the di�ulties of the reversal problem now we onsider three important examples.

Example 2.1.1. Let the unit ball K be the ylinder de�ned by

K = {(x, y, z) ∈ E3| − 1 ≤ x ≤ 1, y2 + z2 ≤ 1}.
The Leibnizian halfspaes of the vetor (2, 0, 0) are trunated open onvex ones

{(x, y, z) ∈ E3|x < 1, 2− x >
√
y2 + z2} and {(x, y, z) ∈ E3|x > 1, x >

√
y2 + z2},

respetively. The topologial dimension of Hx is three showing that it is not homeomorphi to

a 2-plane. �

Example 2.1.2. A more interesting fat that the unit sphere de�ned by the ompat surfae

r(t, s) := (2− s2) cos(t)e1 + (1− s2) sin(t)e2 + se3, where − 1 ≤ s ≤ 1, and 0 ≤ t < 2π,

ontains exatly two (opposite) segments with parameter values s = ±1. The bisetor Hx of

the vetor x = 4e1 is the union of the plane x = 2 and the angular domains de�ned by the

inequalities {y = 0, x − 4 ≥ z ≥ x} and {y = 0, −x + 4 ≤ z ≤ −x}, respetively. This
means that Hx belongs to two orthogonal planes of the spae. For the proof that this set is

not homeomorphi to a plane we have to see only that a set whih is the union of two open

irular disk with a ommon diameter an not be embedded topologially into a plane. In this

topologial spae the separation theorem of Jordan does not hold beause a losed Jordan

urve in the plane of the �rst disk interseting in two points of the ommon diameter, does

not separate the all spae. Hene this spae is not homeomorphi an Eulidean plane as we

stated. �
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Figure 2.3. Six setion splines of the

unit ball K.

From this two examples it an be thought that if all

bisetors are topologial hyperplanes then K is stritly

onvex. The following example shows that it is not true

in general.

Example 2.1.3. K is an O-symmetri onvex body

of the three dimensional spae bounded by the om-

pat surfae r(u, v) de�ned by the following manner.

Let γu(v) be a losed paraboli Bezier spline ontain-

ing the parabola segments determined by the points

Pi(u) Pi+2(u) and the orresponding tangent lines

Pi(u)Pi+1(u) and Pi+1(u)Pi+2(u), respetively, where

i = 0, 2, 4, 6, 8, 10; P0(u) = P12(u); P6+i(u) = −Pi(u) +
[0, 0, 2 sinu]T and the oordinates of the �rst six Pi(u)'s
are

P0(u) =




1 + ε cosu
0

sin u


P1(u) =




1 + ε cosu
cos u
sin u


P2(u) =




1
cosu
sin u


P3(u) =




1− cosu
cos u
sin u




P4(u) =




−1
ε cosu
sin u


P5(u) =




−1− ε cosu

ε cosu · 2−(2−ε) cos u
2−cos u

sin u


P6(u) =




−1− ε cosu
0

sin u


 ,

respetively. In Fig. 2.3 we an see the basi points Pi(u) (i = 0, . . . 6) and the orresponding

splines for the parameter values u = 0, π
3
and

π
2
, and ε = 0.25, respetively.

Here ε is a non-negative onstant (less or equal to 1
2
) −π

2
≤ u ≤ π

2
is �xed and the parameter of

γu(v) is v, mapping the interval [0, 6) onto the points of γu(v). (The interval [0, 1]mapped on the

�rst parabola segment the interval [1, 2] on the seond one, et.) Obviously −γu(v) = γ−u(3+v).
The boundary of K is de�ned by the surfae

r(u, v) := {γu(v)| −
π

2
≤ u ≤ π

2
, 0 ≤ v < 6}.

K is entrally symmetri onvex body

1

with origin O for every 0 ≤ ε ≤ 1
2
. If ε is positive that

it is smooth and ontains preisely two opposite segments at the parameter values u = ±π
2
.

From the proof of the previous theorem we see that if the diretion of x is not [1, 0, 0]T then

Hx homeomorphi to a hyperplane. If now x = (2 + 2ε, 0, 0)T then Hx also homeomorphi to

a hyperplane, though it ontains two 2-dimensional angular domains of the plane y = 0. To
prove this fat we note that the intersetion of the two enlarged opies λK and λK + (2 +
2ε, 0, 0)T in the ase when λ ≥ 1 + ε is a losed Jordan urve, ontaining the parallel segments

s1 = [(λ, 0, λ)T , (2 + 2ε − λ, 0, λ)T ], s2 = [(λ, 0,−λ)T , (2 + 2ε − λ, 0,−λ)T ] and two opposite

(with respet to the enter P0(0)) urves onneting the point pairs {(λ, 0, λ)T , (λ, 0,−λ)T},
{(2 + 2ε− λ, 0, λ)T , (2 + 2ε− λ, 0,−λ)T} where these urves are in the opposite spae quarters

{x ≥ 1+ε, y ≥ 0}, {x ≤ 1+ε, y ≤ 0}, respetively and if 1 ≤ λ ≤ 1+ε holds then this opposite

parallel segments degenerate a point pair of the vertial segment [(1, 0, 1+ ε)T , (1, 0,−1− ε)T ].
Illustrating this situation we an �gure of the most simple ase when the parabola segments

de�ned by the point pairs P2P4 and P8P10 substituted by the line segments P2P4 and P8P10,

respetively and ε = 0 and so the boundary of K is a ruled surfae de�ned by two opposite

losed half-irle). (See in Fig. 2.4) �

1

The Gauss representation of the surfae an be written onretely. The onvexity an be heked from it

using the fat that the support planes of the body does not intersets the interior of the body.
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Figure 2.4. Two in-

tersetion urves in the

ase when ε = 0.

This example shows that a bisetor Hx is homeomorphi to a hy-

perplane an ontain (n − 1)-dimensional ylinder with generators

parallel to x implying the existene of a preisely n − 2-dimensional

ylinder on the boundary of K. We now formulate this observation in

the following theorem.

Theorem 2.1.3 ([1℄). Let n be greater then two. If eah of the bise-

tors is a topologial hyperplane, then there is no (n− 1)-dimensional

ylinder on the boundary of K. Furthermore if Hx is a topologial

hyperplane and C is a maximal ylinder with generators parallel to x
lying on bdK then it has dimension (n− 2).

Proof. The �rst statement of the theorem an be proved easily from the fat that every

segment on the boundary indue an angular domain in the bisetor Hx as we saw in the proof

of Lemma 2.1.2. Hene If the boundary of K ontains an (n− 1)-dimensional ylinder then Hx

ontains an n-dimensional one.

We now prove the seond statement of the theorem. Let C be any maximal ylinder of bdK
with generators parallel to x. This means that the boundary of K in the diretion of x ontains

C but there is no ylinder C ′
with the same diretion of generators ontaining C and belonging

also to bdK having greater dimension as of C. Let this dimension be k. C now indues a (k+1)-
dimensional ylinder C∗

with generators parallel to x in Hx ontaining maximal segments of Hx

with the same diretion. In Lemma 2.1.3 we showed that if Hx is topologial hyperplane then all

left end of every maximal segments of Hx ontaining the losed set bdEn clEn Hx,x. Obviously,

the analogous statement is true for a right end of a maximal segment in Hx, meaning that it is

in bdEn clEn Hx,0. Thus we have that in this ase

Hx = bdEn clEn Hx,0 = bdEn clEn Hx,x.

(The left ends and right ends of maximal segments evidently belong to bdEn clEn Hx,0 and

bdEn clEn Hx,x, respetively, and these two sets are also onvex in the diretion of x as Hx.) Let

G be an n-dimensional ball with the radius ε. The points of G + C∗
an be divided into three

sets S0, S and Sx of Hx,0, Hx and Hx,x, respetively. Sine the n-dimensional ylinder G+ C∗

separated by S the dimension of S is at least (n− 1). Sine C∗ ⊂ S we have two possibilities.

In the �rst one S is a ylinder in Hx ontaining C∗
and having greater dimension as of C∗

while in the seond ase the two dimension is equal. The �rst possibility implies a ylinder in

the boundary of K ontaining C and having dimension greater then of C. This ontradits to
the assumption gave for C so the dimension of C∗

is greater or equal to (n − 1). Thus the

dimension of C is greater or equal to (n− 2). From the �rst note of this proof we an prelude

the possibility of that this dimension is (n−1) proving the seond statement of the theorem. �

2.1.2. Dirihlet-Voronoi ells. We now turn out the problem of Dirihlet-Voronoi ells

on the base of a K-ball above. First of all onsider the following interesting example:

Example 2.1.4. Let the unit ball is the square [−1, 1]2 of the plane and onsider the lat-

tie generated by the orthogonal vetors (2, 0) and (0, 16) (see Fig. 2.5.) The interior (open)

Dirihlet-Voronoi ell of the point (0, 0) is the open onvex hexagon bounded by the lines

x = ±1, y = ±x ± 2, respetively. The exterior (losed) Dirihlet-Voronoi ell of the origin is

the losure of the union of the interior Dirihlet-Voronoi ell and two onave pentagon with

verties {(0, 2), (1, 1), (8, 8), (−8, 8), (−1, 1)} and {(0,−2), (1,−1), (8,−8), (−8,−8), (−1,−1),
respetively. The "wall" of this ell is a 2-dimensional subset of the plane. In this terminology

the result of H.Mann says that if for all latties of the spae the exterior Dirihlet-Voronoi ells

with respet to the onsidered Minkowski norm are onvex then the unit ball of the norm is an

ellipsoid. �
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Figure 2.5. Open

and losed Dirihlet-

Voronoi ells of a

lattie

Beause it is possible that the exterior Dirihlet-Voronoi ell is the

Eulidean losure of the interior ell and they are not onvex, we

introdued the normality of the subdivision of the spae generated by

a lattie with respet to the examined Minkowski norm.

Definition 2.1.2 ([1℄). The Dirihlet-Voronoi ell system of a lattie

L gives a normal subdivision of the embedding Eulidean spae if the

boundary of the ells does not ontain n-balls.

The following theorem gives a neessary and su�ient ondition that

all of the subdivisions being normal in the spae.

Theorem 2.1.4 ([1℄). The Dirihlet-Voronoi ell system of an arbi-

trary lattie L gives a normal subdivision of the embedding Eulidean

spae if and only if all bisetors are topologial hyperplanes. Espe-

ially if the unit ball of the Minkowski norm is stritly onvex then

a lattie-like Dirihlet-Voronoi K-subdivision of any point lattie is

normal.

Proof. If in the spae there is a lattie whih Dirihlet-Voronoi ell does not give a normal

subdivision then there is n-dimensional ball belonging to the boundary of a ell. This means

that there is a bisetor whih ontains an n-dimensional ball.

Conversely, if all lattie-like Dirihlet-Voronoi ell subdivision are normal then all bisetor is

a topologial hyperplane. In fat, if Hx is bisetor G is an arbitrary open Eulidean ball with

radius r and enter

1
2
x, there is a lattie L for whih the ommon wall of the Dirihlet-Voronoi

ells of the origin and x (whih are lattie points) ontains the set Hx ∩ G. (It is enough to

hoose a brik lattie generated by x and ertain large vetors from its orthogonal omplement.)

Using normality and the fat that the exterior Dirihlet-Voronoi ell is a topologial ball we

get that this part of Hx is an elementary hypersurfae. If now the radius r tends to in�nity the

statement is given.

Now the theorem follows from Theorem 2.1.3. �

2.1.3. On the shadow boundary of the unit ball in three-spae. We examined in

[2℄ the onnetions between the shadow boundaries of the unit ball K and the bisetors of the

Minkowski spae. Our onjeture is

Conjeture 2.1.1 ([2℄). The bisetors are topologial hyperplanes if and only if the orre-

sponding shadow boundaries are (n− 2)-dimensional topologial spheres.

In [2℄ we proved this onjeture in the three-dimensional ase. We examined also the topologial

properties of the shadow boundary, and de�ned the so-alled general parameter spheres for

n ≥ 3, as a tool for a prospetive proof of our onjeture.

Definition 2.1.3. Let K be a ompat onvex body in n-dimensional Eulidean spae En
and

let Sn−1
denote the (n− 1)-dimensional unit sphere in En

. For x ∈ Sn−1
the shadow boundary

S(K, x) of K in diretion x onsists of all points P in bdK suh that the line {P +λx : λ ∈ R}
supports K, i.e. it meets K but not the interior of K. The shadow boundary S(K, x) is sharp

if any above supporting line of K intersets K exatly in the point P . If S(K, x) is not sharp,
in general, it may have sharp point for that the above uniqueness holds.

It is lear that the shadow boundary deomposes the boundary of K into three disjoint sets.

These are S(K, x) itself, moreover

K+ := {y ∈ bdK| there is τ > 0 suh that y − τ · x ∈ int(K)},(20)

K− := {y ∈ bdK| there is τ > 0 suh that y + τ · x ∈ int(K)},
respetively. We all the ongruent (thus homeomorphi) sets K+

and K−
the positive and

negative part of bdK, respetively.
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In general, the shadow boundary of a entral symmetri onvex body is not a nie set from

topologial point of view. There exists a entral symmetri onvex body K and a diretion x of

the spae E3
suh that every supporting line of K parallel to x ontains a point of K having no

relative neighborhood in S(K, x) homeomorphi to an open segment. This means that S(K, x)
is not a 1-dimensional manifold.

Example 2.1.5. Consider a unit irle C in E2
and the diadi rational points of it with

respet to the usual parametrization (see in Fig. 2.6). More preisely, take the parameter values

Figure 2.6. Shadow boundary whih is not a topologial manifold.

ti,j =
j
2i
2π, where 0 ≤ i is integer and 1 ≤ j ≤ 2i is odd number. The diadi rational points

of the irle are the points Si,j = (cos(ti,j), sin(ti,j)) of the subspae E2
with respet to an

orthonormed basis. Let now si,j be a segment orthogonal to the subspae E2
whose midpoint

is Si,j and its length is equal to

1
2i−2 if i ≥ 2 and is equal to 2 if i = 0, 1. The point sets

C∗ := C ∪ (∪i,j{si,j}) and K := convC∗

are entral symmetri. This body is also losed, see it in Fig. 2.6. If l is a supporting line of

K orthogonal to the plane E2
then it does not interset the relative interior of the dis in

E2
bounded by the irle C, so it intersets the irle C. If l ∩ C is a point of form Si,j then

l ∩K = l ∩ C∗ = si,j, while if l ∩ C is another point of C then l ∩K = l ∩ C. We onlude to

S(K, x) = C∗
being not a 1-manifold, as we laimed. �

In order to desribe the onnetion between the bisetors and the shadow boundaries of the

unit ball we introdue some parameterized sets on the boundary of K, orresponding to a given

diretion of the spae. These tend to the shadow boundary of K of the same diretion if the

parameter tends to in�nity. As we shall see in the ase of a nie unit ball these sets give a

parametrization of the losed "positive part" of bdK. In this way we an de�ne the general

parameter spheres aording to this diretion.

Definition 2.1.4 ([2℄). Let K be the Minkowski unit ball above and x is a �xed diretion of

the spae En
. Let

λ0 := inf{0 < t ∈ R | tK ∩ (tK + x) 6= ∅}
be the smallest value t for whih tK and tK + x interset. Then a general parameter sphere of

bdK orresponding to the diretion x and to any �xed parameter λ ≥ λ0 is the following set:

γλ(K, x) :=
1

λ
(bd(λK) ∩ bd(λK + x)) ⊂ bdK.

In general, the above set is not a topologial sphere of dimension (n − 2), and they are not

homeomorphi to eah other for di�erent λ's. For example the dimension of γλ0(K, x) may

be 0, 1 · · · (n − 1) while the dimension of γλ(K, x) for λ > λ0 is at least (n − 2) beause it

dissets the boundary of K. We also remark that the two parts of bdK \ γλ(K, x) for λ > λ0
are also homeomorphi to eah other by the projetion from

1
2λ
x (sine λK ∩ λK + x is entral

symmetri in

1
2
x for any λ ≥ λ0).
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Figure 2.7. The shadow boundary ould be sharp or not sharp in y

Lemma 2.1.4 ([2℄). Let Π(x, y) be a 2-plane parallel to the vetors x and y ∈ S(K, x), through
the origin. Then we have two possibilities for Π(x, y) ∩ γλ(K, x):

• If the shadow boundary S(K, x) is sharp for the point y ∈ S(K, x) then Π(x, y) ∩
γλ(K, x) ontains two opposite points with respet to

1
2λ
x (Fig.2.7 (left))

• There is a uniquely de�ned parameter value λ(y) that for every λ > λ(y) the interse-
tion Π(x, y) ∩ γλ(K, x) is the union of a pair of segments parallel to x, opposite with

respet to

1
2λ
x. (Fig.2.7 (right))

In the seond ase the segments of the parameter spheres γλ(K, x) belong to the shadow boundary

S(K, x).

Proof. Let λ > λ0 be an arbitrary real number and onsider the generalized parameter sphere

γλ(K, x). Then γλ(K, x) = 1
λ
S(λK ∩ (λK + x), x). In fat, y ∈ γλ(K, x) if and only if λy ∈

bd(λK) ∩ bd(λK + x) ⊂ bd(λK ∩ (λK + x)). Let the line l(τ) be of the form λy + τx where τ
runs through real numbers.

There is no τ0 6= 0 for whih e.g. τ0 < 0 holds and λy + τ0x ∈ int(λK ∩ (λK + x)). Indiretly,
λy+τ0x ∈ int(λK) and λy+τ0x ∈ int(λK+x)) = int(λK)+x hold. The seond relation implies

λy + (τ0 − 1)x ∈ int(λK), while λy ∈ bd(λK) and λy ∈ bd(λK + x) involve λy − x ∈ bd(λK).
This means that the points λy, λy − x, λy + τ0x, λy + (τ0 − 1)x are on the line l, ordered as

λy − x, λy + (τ0 − 1)x, λy + τ0x, λy

by the onvexity of K. This would imply τ0 = 0, a ontradition.

Sine the shadow boundary of the onvex bodies Kλ = 1
λ
(λK ∩ (λK + x)) to x are on the

boundary of K, it an ontain a segment parallel to x if and only if this segment belongs to

the shadow boundary of K, too. An interesting phenomenon that � though Π(x, y) ∩ S(K, x)
is a pair of opposite segments (by entral symmetry in 0) � for a starting λ (whih gives the

positive end of Π(x, y) ∩ S(K, x)), Π(x, y) ∩ γλ(K, x) is a pair of points. So we are done. �

An important onsequene of Lemma 2.1.4 is the following

Corollary 2.1.1. The general parameter spheres for λ > λ0 provide a natural parametrization

of the surfae K+ \γλ0(K, x). In this parametrization any point of K+ \γλ0(K, x) is determined

by a point of a Eulidean unit sphere of dimension (n − 2), orthogonal to x in 0, and by a

parameter λ > λ0.

Of ourse, it is possible that the above surfae K+ \ γλ0(K, x) is empty, as in the ase of a

ube (=K) when four of its edges is parallel to x. However, in signi�ant ases it is a useful

parametrization. For example, if K is stritly onvex, then it has only one singular point

γλ0(K, x) on the positive half.

To prove this orollary, we observe the fat that the ommon points of two distint parameter

spheres belong to the shadow boundary of K, hene the generalized parameter spheres give a

one-fold overing of K+ \ γλ0(K, x).
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We reall the onept of Hausdor� distane ρH of two point sets S1 and S2, expressed by the

Eulidean distane ρE :

ρH(S1, S2) = max{ sup
s1∈S1

{ρE(s1, S2)}, sup
s2∈S2

{ρE(s2, S1)}}.

(Here e.g. ρE(s1, S2) = infs2∈S2{ρE(s1, s2)}.)
Our main result on general parameter spheres is the following:

Theorem 2.1.5 ([2℄). The shadow boundary S(K, x) is the limit of the general parameter

spheres γλ(K, x), with respet to the Hausdor� metri, when λ tends to in�nity.

Proof. Aording to the previous lemma we have two ases. In the �rst one the 2-plane

Π(x, y), with y ∈ S(K, x), intersets both S(K, x) and γλ(K, x) in two point pairs, respetively

(Fig. 2.7 (left)); while in the seond ase the intersetion Π(x, y)∩ S(K, x) is a 0-opposite pair
of segments, and the intersetion Π(x, y) ∩ γλ(K, x), if λ > λ(y) ≥ λ0, is an opposite pair of

segments with respet to

1
2λ
x (Fig.2.7 (right)). We will mention the neessary intersetions as

a point or a segment, shortly. Let S ′
be the set of sharp points of S(K, x) and S ′′

be the set of

the remaining points of S(K, x), deomposed to (disjoint) segments parallel to x. We say that

the points y ∈ S(K, x) and z ∈ γλ(K, x) orrespond to eah other, if y, z ∈ Π(x, y) and the line

of diretion x through the origin does not separate them in Π(x, y). If y ∈ S ′
then there exists

one orresponding point z ∈ γλ(K, x) (See Lemma 2.1.4). Denote this simply by z. If y ∈ S ′′

then either it has only one orresponding point in γλ(K, x) (see Lemma 2.1.4, λ0 < λ ≤ λ(y))
or the orresponding points form a segment belonging to S ′′

(Lemma 2.1.4, λ > λ(y)). We fous

on the negative end of the segment of S ′′
, ontaining y denoted by y−, and the negative end of

the orresponding segment of γλ(K, x) denoted by z−. Let S ′′′
be the set of those points z of

γλ(K, x) whih orrespond to a point of S ′
, and S ′′′′

be the olletion of the remaining points

of γλ(K, x). Now the laimed onvergene follows from the inequalities below:

ρH(S(K,x), γλ(K,x)) = max{ sup
y∈S(K,x)

{ρE(y, γλ(K,x))}, sup
z∈γλ(K,x)

{ρE(S(K,x), z)}} =

= max{ sup
y∈S′

{ρE(y, γλ(K,x))}, sup
y∈S′′

{ρE(y, γλ(K,x))}, sup
z∈S′′′

{ρE(S(K,x), z)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, γλ(K,x))}, sup
z−∈S′′′

{ρE(y−, z−)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, z−}, sup
z∈S′′′′\S(K,x)

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, z−)}, sup
z∈S′′′′\S(K,x)

{ρE(y−, z)}}.

In fat, eah of these three Eulidean distanes tend to zero, if λ tends to in�nity, sine K and

its two dimensional intersetions are onvex and ompat, respetively. �

On the rest of this setion we restrit the investigation to the ase of dimension 3. A point

set H ⊂ E3
is said to be a topologial plane if and only if there is a homeomorphism of E3

onto itself, sending H onto a usual 2-plane. We reall a theorem of two-dimensional topology,

haraterizing the topologial irles on a two-sphere. (See for example [145℄.) A point a is

alled arwise aessible from a point set B if b ∈ B implies the existene of an ar T with end

points a and b suh that T \ a ⊂ B. If A is a point set whose every point is arwise aessible

from some point set B, then we all A arwise aessible from B. We use the Shoen�ies-Swingle

theorem:

Theorem 2.1.6 (Shoen�ies, Swingle see in [134℄ and [137℄). A neessary and su�ient on-

dition that a subset M of S2
should be an S1

is that it be a ommon boundary of two disjoint

domains D1 and D2, from whih M is arwise aessible.

Now our �rst statement is a tehnial lemma.

Lemma 2.1.5 ([2℄). Assume that the shadow boundary S(K, x) ontains a segment s parallel to
x having the property that it is a subset of aumulation points of S(K, x)\s. Then the bisetor

Hx an not be a topologial plane.
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Proof. Let y be a relative inner point of the segment s of aumulation points of S(K, x).
There exists suh a λ (large enough) and also an ε (small enough) for whih the segment with

negative end y and positive end y+ of s lies in γλ′(K, x) where λ − ε < λ′ < λ + ε and the

aumulation points of the sets γλ′(K, x)\ s ontain also the segment [y, y+]. This means, there

is a domain � namely the union of segments ∪λ′{λ′[y, y+]|λ− ε < λ′ < λ+ ε} � in the bisetor

Hx whih lies in the set of aumulation points of the omplementary set with respet to Hx.

Drawing in this domain a little irle we get a losed urve whih relative interior points are

also boundary points of its omplementary sets. Thus the Jordan Curve Theorem (as a speial

ase of the Shoen�ies-Swingle theorem) does not hold on Hx, onsequently Hx ould not be a

topologial plane. �

Theorem 2.1.7 ([2℄). Assume that the bisetor Hx is a topologial plane of E3
. Then the

general parameter spheres γλ(K, x) for λ > λ0 and the shadow boundary S(K, x) are topologial
1-manifolds (topologial irles). For λ = λ0 the parameter sphere an form a point, a segment

or a onvex disk of dimension 2, respetively.

Proof. Firstly, we deal with general parameter spheres. The statement on γλ0(K, x) follows
from the onvexity and entral symmetry of the ompat body K ( and K + x as well).

For λ > λ0 we prove that λ(γλ(K, x)) ⊂ Hx is arwise aessible from the negative sets

H ′
1 = ∪λ′{λ′(γλ′(K, x))|λ0 ≤ λ′ < λ} ⊂ Hx ⊂ H−

x ,

If v is a point of λ(γλ(K, x)) then there is an ar, parameterized by λ′ in the intersetion

Hx ∩Π(x, v) whih onnet the point v with the point

1
2
x, with the property that their points,

di�erent from v, lie in H ′
1. Sine also λγλ(K, x) is the ommon boundary of H ′

1 and its omple-

mentary set in Hx, by the Shoen�ies-Swingle theorem, we get that λγλ(K, x)) is a topologial

irle, i.e. by the projetion from 0, γλ(K, x)) is a topologial irle, too, whih is arwise

aessible also from the open disk omponent of int(K+ \ γλ(K, x) by Theorem 2.1.6.

Now let's turn to the ase of the shadow boundary: We assume that Hx is a topologial plane.

We hek that the onditions of Shoen�ies-Swingle theorem hold for S(K, x), too. It is enough
to prove that S(K, x) is arwise aessible from K+

. Let y an arbitrary point of S(K, x).
If S(K, x) is sharp at this point then, by Lemma 2.1.4 , the set

∪λ{Π(x, y) ∩ γλ(K, x)|λ ≥ λ0} ∪ y
is a good ar whih onnets the interior of K+

and y. (Sine K+
is arwise onneted y is

aessible from points K+
by ars.)

If y is not a sharp point of S(K, x) then (by Lemma 2.1.4) we have the segment s of S(K, x)
through y as a union of the monotone inreasing sequene of segments Π(x, y) ∩ γλ(K, x),
parallel to x where λ > λ(y), and the negative end y− of s (Fig. 2.8).
Observe that all of this segments are arwise aessible from K+

, so is their union, too. To

prove this, let s′ denote one of the segments Π(x, y)∩γλ(K, x) for �xed λ > λ(y). Observe that
the points of K+

belong to one of the following three sets:

H1 = ∪λ′{γλ′(K, x) | λ > λ′ ≥ λ0} ∩K+, γλ(K, x) ∩K+
and K+ \ (γλ(K, x) ∪H1).

From the points of the �rst set (by the �rst part of this proof) there are ars onneting a

point y′ of the onsidered segment with the required property. We an onnet the points of

the seond set with a point of H1 by suh an ar whose points belong to K+
, and this latter

point an be onneted again with a required ar, showing that from these points there also

exist ars to y′. Finally, a point v of the third set lies in a plane Π(x, v) interseting S(K, x)
in a sharp point. The ar from v to a point of H1 in the intersetion Π(x, v) ∩ bdK an be

extended to a required ar with ends at y′.
It remains to examine of the negative end point y− of s (see Fig.2.8). Sine y− is a boundary

point of the segment s whose other points belong to the boundary of K+
, then it is a boundary

point of K+
. Consider now a sequene (zi) of points of K

+
that tends to y−. First we introdue

a parametrization of S(K, x) ∪K+
. Let (ϕ, ψ) denote the oordinates of any point z ∈ bdK.
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Figure 2.8. The negative end is aessible by ar.

Here ϕ is the angle of the planes Π(x, z) and Π(x, y−) −π < ϕ ≤ π with respet to a �xed

orientation, and ψ the angle of the vetors x and z, 0 < ψ < π. Then we have (zi) = ((αi, βi)
T )

and y− = (0, β)T , T means transposed. We an assume, without loss of generality, that the

sequene (αi) is monotone dereasing. Now we onnet the points zi and zi+1 by an ar γi lying
in K+

. We de�ne ψ∗
i for later ars, near enough S(K, x), by

ψ∗
i := inf{ψ| there exists αi ≥ ϕ ≥ αi+1 for whih (ϕ, ψ)T ∈ S(K, x)} − 1

2i
.

From now on the notation x ∈ [a, b] (x ∈ (a, b)) means that either a ≤ x ≤ b (a < x < b) or
a ≥ x ≥ b (a > x > b) hold. Then the ar γi onneting zi and zi+1 is the following:

γi := {(αi, ψ)T with parameter ψ ∈ [βi, ψ
∗
i ]} ∪ {(ϕ, ψ∗

i )
T
with ϕ ∈ (αi, αi+1)}∪

∪{(αi+1, ψ)
T
with ψ ∈ [βi+1, ψ

∗
i ]}.

Of ourse, the simple union of these ars is onsidered only one urve for whih one of its

aumulation points is y− = (0, β)T . However, the following set γ := cl(∪iγi \ ∪i(γi ∩ γi+1)) (in
whih we do not take multiple points) is an appropriate ar if and only if γ \∪iγi = {y−}. Sine
the set of aumulation points of γ is a subset of γ ∪ s, thus the indiret assumption implies

a subsegment s′ of s with non-zero length. This is also a subset of aumulation points of

S(K, x) \ s and applying the Lemma 2.1.5 we get that the bisetor would not be a topologial

plane. Thus the onditions of the Shoen�ies-Swingle theorem are ful�lled so S(K, x) is a

topologial irle as we laimed. �

Lemma 2.1.6 ([2℄). Assume that the shadow boundary of K in the diretion x is a topologial

irle. Then the general parameter spheres are also topologial irles for λ > λ0.

The proof is an easy onsequene of Theorem 2.1.6 and of the arguments before it. The main

result of this setion is:

Theorem 2.1.8 ([2℄). Let K be a entral symmetri ompat onvex body in E3
. All of the

bisetors Hx of the orresponding Minkowski normed spae are topologial planes if and only if

all of the shadow boundaries S(K, x) are topologial irles (1-spheres).

Proof. The neessity is a onsequene of Theorem 2.1.7.

We prove that if the shadow boundary is a topologial irle then the orresponding bisetor Hx

is a topologial plane. By the assumption and Lemma 2.1.6, γλ(K, x) is a topologial irle for

any �xed λ > λ0, and γλ0(K, x) is a topologial losed ball of dimension 0,1 or 2, respetively.

Consider now S(K, x).
First we note that, for a �xed λ, on γλ(K, x) there are only �nitely many segments parallel to

x. In the ontrary ase there would be in�nitely many orresponding segments on S(K, x), too,
but S(K, x) is ompat and homeomorphi to a irle, this would easily lead to a ontradition

with Theorem 2.1.6. Then the set of lengthes of these segments of S(K, x) has a positive lower

bound. Thus there are only �nitely many parameter values λi with the property that γλi(K, x)
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(λi > λ0) ontains suh a positive end of a segment si of the shadow boundary parallel to x,
whih is not lying on a γλ′(K, x) for λ

′ < λi.
If y+i is a positive end of si then λiy

+
i is an apex of a orner domain belonging to the intersetion

of Hx and a plane through the origin and si. Partition now Hx into non-overlapping rings by

the onseutive topologial irles λiγλi(K, x) i ≥ 1. A ring between the irles λiγλi(K, x) and
λi+1γλi+1

(K, x) an be partitioned by straight-line boundaries of the orresponding orners to

�nitely many non-overlapping domains Di,j where Di,j ∩Di,j+1 (for every j with respet to a

yli order, is a segment onneting a point of λiγλi(K, x) to a point of λi+1γλi+1
(K, x). These

losed domains (eah homeomorphi to a losed dis for i ≥ 1) join only �nitely many others,

thus we an de�ne a sequene of homeomorphisms Φi,j on Di,j by indution in the following

way.

First, we partition the unit dis B (with enter O) into non-overlapping piees having the same

ombinatorial struture as the subdivision of Hx = λ0γλ0(K, x) ∪i,j Di,j. We have three ases:

λ0γλ0(K, x) is a losed dis, a losed segment or a point.

In the �rst ase we onsider the onentri irles Cλi with respetive radii rλi = 1 − λ0
2λi

for

i ≥ 1 and de�ne the image of λ0γλ0(K, x) as the disk with origin O and radius

1
2
.

In the seond ase we onsider onentri ellipses whih onverges to a O-symmetri segment

of length 1, and the third ase the ring struture giving by onentri irles, too, with orre-

sponding radii rλi = 1− λ0
λi

for i ≥ 1.

We map now the shadow boundary S(K, x) onto the boundary of B. A orner domain of Hx

orresponds to a segment s of S(K, x) thus also to a losed ar σ of the unit irle. On the other

hand the apex aσ of this orner orresponds to a λi. If i > 0 let a′σ a point of Cλi ∩ conv{O, σ}.
For i = 0, in the �rst ase, we may hoose a′σ in the same way; in the seond ase we have

only two possibilities for aσ (the ends of λ0γλ0(K, x)); thus let a′σ be one of the ends of the

orresponding segment Cλ0 . (In this ase we hoose the orresponding ar γ0 interseting the

line of Cλ0 . Finally in the latter ase there is no suh apex. Now we subdivide the rings by

the setors conv{a′σ, σ}. Obviously, the domains Qi,j in this proess an be orresponded to the

domains Di,j in a unique way. This means that we deomposed B to losed domains Qi,j with

the property: ∩Di,j is homeomorphi to ∩Qi,j for indies i, j.
Seond, by indution (with respet to the lexiographi order of the pairs (i, j)) it is not to hard
to give a family {Φi,j : Di,j −→ Qi,j} of homeomorphisms ompatible to eah other, requiring

that if Di,j ∩Dk,l 6= ∅ then Φi,j(v) = Φk,l(v) for eah point v of Di,j ∩Dk,l. (Denote by Φ0,0 the

�rst homeomorphism sending λ0γλ0(K, x) onto the orresponding (not-indiated) subset of B.)
Now the mapping Φ : Hx −→ intB (see Fig 2.9), sending a point v ∈ Di,j to the point Φi,j(v),
is evidently a homeomorphism of Hx onto the interior of the dis B as we stated. �

2.1.4. Bisetor and shadow boundary in higher spaes. The examination of Conje-

ture 2.1.1 in higher dimension require a deeper investigation of the topologial properties of the

general parameter spheres. The orresponding results of the author an be found in the paper

[3℄. We proved that, the general parameter spheres are not an absolute neighborhood retrat

(ANR) in general, but still are ompat metri spaes, ontaining (n − 2)-dimensional losed,

onneted subsets separating the boundary of K. Thus we investigated the manifold ase and

we proved that the general parameter spheres and the orresponding shadow boundary are

homeomorphi to the (n−2)-dimensional sphere. The base of the proof is the so-alled ell-like

approximation theorem for manifolds. The long history of it an be found for example in [124℄.

Theorem 2.1.9 (Cell-like Approximation Theorem for manifolds). Let n 6= 3 be a positive

integer. For every ell-like map f :M −→ N between topologial n-manifolds, and every ε > 0,
there is a homeomorphism h : M −→ N suh that d(f, h) < ε in the sup-norm metri on the

spae of all ontinuous maps (so f is a so-alled near homeomorphism).
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We use again the notation:

K+ := {y ∈ bdK| there is τ > 0 suh that y − τ · x ∈ int(K)},
K− := {y ∈ bdK| there is τ > 0 suh that y + τ · x ∈ int(K)}.

Figure 2.9. The homeomorphism Φ

We all the ongruent (thus homeomorphi)

sets K+
and K−

the positive and negative

part of bdK, respetively. The line passing

through the origin and parallel to the vetor

x intersets the boundary of K at the points

P+ ∈ K+
and P− ∈ K−

showing that the

positive and negative part of bdK are not

empty, respetively. We all the points P+

and P−
the positive and negative pole of K,

respetively. The intersetion of bd(K) by a

2-plane ontaining the poles is alled a longi-

tudinal parameter urve of K.

Statement 2.1.1 ([3℄). The shadow bound-

ary deomposes the boundary of K into three

disjoint sets: S(K, x), K+
and K−

. S(K, x)
is an at least (n − 2)-dimensional losed (so

ompat) set in bdK whih is onneted for

n ≥ 3, the sets K+
and K−

are homeomor-

phi opies of R(n−1)
giving two arwise on-

neted omponents of their union.

Proof. The �rst statement is obvious. Let

px be the orthogonal projetion of the embed-

ding spae Rn
onto a hyperplane orthogonal to the vetor x. Sine the orthogonal projetion

is a ontration then it is ontinuous mapping of the spae. px(K) is a onvex body of the

image hyperplane. The interior of px(K) is the image of the sets K+
and K−

, respetively and

its boundary is the image of S(K, x). Sine px restriting for K+
is a bijetion, there exists

a homeomorphism on K+
to R(n−1)

. Using the same argument for K−
we proved the validity

of the �rst part of the statement on K+
and K−

. Of ourse their union is open therefore the

shadow boundary is losed.

Sine R(n−1)
is arwise onneted the seond part of the statement on K+

follows from the

fat that an ar onneting two points of K+
and K−

should be deomposed into two relative

open sets by K+
and K−

, whih is a ontradition. Thus the shadow boundary separates

the boundary of K. By a theorem of Alexandrov (Th. 5.12 in vol.I of [16℄), we get, that the

topologial dimension of S(K, x) is at least (n− 2), as we stated.
We now prove that (for n ≥ 3) the set S(K, x) is onneted. Assume that K1 and K2 are two

losed disjoint subsets of the shadow boundary for whih K1 ∪K2 = S(K, x). First we observe
that eah of the metri segments lying on a longitudinal parameter urve and parallel to x is

a onneted subset of S(K, x), thus its points (by the "basi lemma of onnetivity" see vol.I

p.13 in [16℄) belong either to the set K1 or to the set K2. Let C1 and C2 the sets de�ned by the

union of those longitudinal parameter urves whih interset the sets K1 and K2. In this ase

C1 ∪ C2 = bdK and C1 ∩ C2 = {P+, P−} hold. The sets Ci are losed in bdK, meaning that

the sets Ci \ {P+, P−} give a deomposition of bdK \ {P+, P−} into disjoint relative losed

subsets, too. Sine the latter set is onneted it follows that either K1 or K2 is empty. �

In general the dimension of S(K, x) is (n − 2) or (n − 1). We prove that there is an (n − 2)-
dimensional losed, onneted subset of S(K, x) separating bdK, too.

Lemma 2.1.7 ([3℄). The boundary of the losure of the set K+
(denoted by bd(cl(K+))) is a

losed, onneted (n− 2) dimensional subset of S(K, x) separating the boundary of K.
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Proof. By its de�nition it is losed. Sine cl(K+) ⊃ K+
and cl(K+) ∩ K− = ∅ we have

K+ ⊂ cl(K+) ⊂ K+∪S(K, x). On the other hand bd(cl(K+))∩K+ = ∅ (K+
is an open subset

of cl(K+)), thus we get that bd(cl(K+)) ⊂ S(K, x).
The separating property follows from the fat that the union of the pairwise disjoint sets

bdK \ cl(K+), int(cl(K+)), bd(cl(K+)) �lls the boundary of K and the �rst two sets are open.

Now the separating property implies (again by the Alexandrov's theorem above) the inequality

dim(bd(cl(K+))) ≥ (n− 2). On the other hand a losed onneted set of dimension (n− 1) on
bdK ontains an interior point relative to bdK (see p.174 in vol I. of [16℄ ) whih ontradits

to the de�nition of bd(cl(K+)). �

Now we an prove one of the main theorems of this dissertation.

Theorem 2.1.10 ([3℄). If the shadow boundary S(K, x) is a topologial manifold of dimension

(n − 2) then it is homeomorphi to the (n − 2)-sphere S(n−2)
. If it is an (n − 1)-dimensional

manifold with boundary then it is homeomorphi to the ylinder S(n−2) × [0, 1].

Proof. Consider �rst the projetion px (whih was de�ned in the proof of Statement 2.1.1),

and restrit it to the shadow boundary of K parallel to x. It is a ell-like map beause of the

inverse images are points or segments, respetively. In this way for n 6= 5 by the approximation

theorem (Theorem 2.1.9) above we have that this restrited map is a near homeomorphism

on S(K, x) to a homeomorphi opy S̃(n−2)
of S(n−2)

implying that they are homeomorphi to

eah other. On the other hand this map is also ellular, sine the metri segments and points of

S(K, x) are ellular sets in S(K, x). To prove this, let s = p−1
x (v) be a segment in S(K, x) for

some v ∈ S̃(n−2)
. If now Q ∈ s is a point, onsider a metri ball Bǫ(Q) ⊂ bd(K) with enter Q

and radius ǫ > 0 for whih
∫
(Bǫ(Q))∩S(K, x) is homeomorphi to R(n−2)

. Suh an ǫ > 0 surely

exists. In fat, Q has a neighborhood NQ in S(K, x) homeomorphi to R(n−2)
. If for every ǫ we

an hoose a point Pǫ ∈ Bǫ(Q)∩S(K, x) whih does not belong to NQ then we have a sequene

of points (Pǫ) having the same property and tending to Q. Sine NQ is open in S(K, x), this is
impossible. Thus there is an ǫ > 0 for whih Bǫ(Q) ∩ S(K, x) = Bǫ(Q) ∩ NQ. It implies that

int(Bǫ(Q)) ∩ S(K, x) is an open subset of NQ relative to the topology of S(K, x). Of ourse, ǫ
depends on Q, but s is a ompat set, thus there is a �nite number of points Qi and positive

real numbers ǫi, suh that for the minimal value ǫ∗ of ǫi's we have ∪ int(Bǫ∗(Qi)) ⊃ s. Here
∪ int(Bǫ∗(Qi)) is the interior of the losed ell ∪(Bǫ∗(Qi)). Sine Bǫ(Q)∩S(K, x) = Bǫ(Q)∩NQ

also holds for every ǫ′ whih is less or equal to ǫ, we have an in�nite sequene of sets of form

∪(Bǫ∗(Qi)) with the property needed to prove the ellularity of s.
Observe now that if S(K, x) is an (n− 1)-manifold with boundary then its boundary has two

onneted omponents whih are equal to bd(cl(K+)) and bd(cl(K−)), respetively.
First we an see that bd(cl(K+)) is the set of the ommon boundary points of cl(K+) and

S(K, x) yielding bd(cl(K+)) ⊂ bd(S(K, x)). (We have bd(cl(K−)) ⊂ bd(S(K, x)), too.)
Seondly we note that there is no point of int(cl(K+)) belonging to S(K, x). Indiretly assume

that the point P is in int(cl(K+)) ∩ S(K, x). Then
• either one an �nd a neighborhood U of P in S(K, x) whih is homeomorphi to the

(n − 1)-dimensional half-spae and therefore P is a boundary point of cl(K+) (in U
there exists a point Q with a neighborhood V ⊂ S(K, x) homeomorphi to R(n−1)

suh

that Q ∈ V ⊂ U . It means that Q is a point of the omplement of cl(K+)),
• or there is a neighborhood U homeomorphi to the spae R(n−1)

for whih P ∈ U ⊂
S(K, x). In this ase P is in the interior of S(K, x) ontraditing the assumption that

it is a point of int(cl(K+)).

In this way int(cl(K+)) = K+
and then bd(cl(K+)) = bd(K+) is the ommon boundary of K+

and S(K, x). Applying Lemma 2.1.7 we obtain that bd(cl(K+)) is a onneted losed subset of

the boundary of S(K, x).
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Using the fat that bd(cl(K−)) is the image of bd(cl(K+)) by a entral projetion, we have a

similar result for bd(cl(K−)), too. (It is the ommon boundary of K−
and S(K, x).) We will

prove that the boundary of S(K, x) is the disjoint union of these two sets.

The relation bd(S(K, x)) ⊂ bd(cl(K−)) ∪ bd(cl(K+)) is obvious. Consider a point P from

the intersetion bd(cl(K−)) ∩ bd(cl(K+)). Let U be a neighborhood of P in S(K, x). (It is

homeomorphi to a half-spae of R(n−1)
.) Let B be a metri (n− 1)-ball around P with suh a

su�iently small radius ǫ > 0, that the sets B ∩U and B \ (B ∩U) serve as topologial images

of a losed and the omplementary open half-spaes of R(n−1)
, respetively. (Similarly as the

proof of the ellularity property of a segment goes one an show that suh an ǫ > 0 and ball B
exist.) Sine B ontains points from eah of the sets K+

and K−
we have a ontradition by

the separating property of S(K, x). (There is no point of S(K, x) in the omplementary domain

B \ (B ∩ U).)
This implies that the boundary of S(K, x) has two onneted omponents whih are the ommon

boundaries of S(K, x) and K+
, S(K, x) and K−

, respetively. Of ourse, these sets are also

(n− 2)-manifolds onneted with straight line segments through all of their points. So we have

that S(K, x) = bd(cl(K+))× [0, 1] holds. We still have to prove that in this ase bd(cl(K+)) is
homeomorphi to S(n−2)

, too. Sine px on bd(cl(K+)) into S(n−2)
is also a ell-like (and ellular)

mapping, bd(cl(K+)) is an (n− 2)-dimensional manifold and this restrited map is one to one,

the last statement of the Theorem follows from Theorem 2.1.9, too. �

Theorem 2.1.11 ([3℄). Let denote by S(K, x) the shadow boundary of K in the diretion x.

I S(K, x) is an (n − 2)-dimensional manifold if all of the non-degenerated general pa-

rameter spheres γλ(K, x) with λ > λ0 are (n− 2)-dimensional manifolds, onversely if

S(K, x) is an (n − 2)-dimensional manifold then all of the general parameter spheres

are ANRs.

II S(K, x) is an (n − 1)-dimensional manifold with boundary if and only if there is a λ
for whih the general parameter sphere γλ(K, x) is an (n − 1)-dimensional manifold

with boundary.

To prove this theorem we used a theorem of M.Brown on the projetive limit of ompat

metri spaes and orresponding near homeomorphisms (see [33℄ ). The onept of the near

homeomorphism of topologial manifolds an be adapted to the ase of ompat metri spaes,

too. A map from X to Y between ompat metri spaes is a near homeomorphism if it is in

the losure of the set of all homeomorphisms from X onto Y , with respet to the sup-norm

metri on the spae C(X, Y ) of all maps from X to Y . Now the mentioned theorem is:

Theorem 2.1.12 (M.Brown). Let (Xn) be an inverse sequene of ompat metri spaes with

limit X∞. If all bonding maps Xk −→ Xn are near homeomorphisms, then so are the limit

projetions Xk −→ X∞.

Before the proof let us give an example showing that we should distinguish the above two ases.

Example 2.1.6. Consider the union of the six onneting retangles ±{(r, 1, t)|−1 ≤ r, t ≤ 1},
±{(r, s, t)|r + s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1}, ±{(r, s, t)|r − s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1} and

the segments ±{(r, 0, 2)|− 3
2
≤ r ≤ 3

2
}. The onvex hull K of this set is a onvex polyhedron. If

now the vetor x is the position vetor direted into the point (4, 0, 0) we have three important

values for the parameters of the generalized parameter spheres. For λ0 = 1 the degenerated

sphere γλ0(K, x) is a segment. For 1 < λ ≤ 5
4
the general parameter spheres γλ(K, x) are

homeomorphi to S1
. In the range

5
4
< λ ≤ 3

2
the general parameter sphere γλ(K, x) is a

simpliial omplex ontaining one or two-dimensional simplies, respetively. (This spae is

an ANR but is not a topologial manifold.) Finally, in the last parameter domain λ > 3
2
the

set γλ(K, x) is homeomorphi to the ylinder S1 × [0, 1]. Sine S(K, x) is the union of six

quadrangles, parallel to the x-axis it is also a ylinder. �

We think that true the following onjeture:
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Conjeture 2.1.2. If S(K, x) is an (n− 2)-dimensional manifold than all of the non-degene-

rated parameter spheres are also (n− 2)-dimensional manifolds.

Unfortunately we ould not prove it.

Proof. First we note that � for every λ0 < λ′ <∞ � S(K, x) an be onsidered as the inverse

limit spae X∞ of the metri spaes Xλ := γλ(K, x) for λ
′ < λ. In fat, by Lemma 2.1.4 if for

λ > λ0 the intersetion of γλ(K, x) by a longitudinal parameter urve, say r is a segment then

r ∩ γµ(K, x) with µ > λ is also a segment ontaining the segment r ∩ γλ(K, x). So in this ase

the union of the sets r ∩ γµ(K, x) is the segment r ∩ S(K, x). On the other hand we have two

possibilities for r ∩ γλ(K, x) being a point. First r ∩ S(K, x) is a point, too, meaning that for

all µ > λ r ∩ γλ(K, x) is also a point. If now r ∩ S(K, x) is a segment then we have a value

λ′ > λ with the property that if µ > λ′ then r ∩ γµ(K, x) is a segment, too. In this latter ase

r∩S(K, x) = ∪µ≥λ′{r∩γµ(K, x)}. De�ne now the left end of a segment parallel to x as the end

having the smaller parameter in the usual parametrization with respet to x (meaning that a

general point of a line parallel to x is written in the form P + τx where P is a point of this

line). Let us de�ne the bonding map pλ,µ for γµ(K, x) to γλ(K, x) (µ > λ) in the following way:

For a point P of γµ(K, x)

pλ,µ(P ) =





r ∩ γλ(K, x) if r ∩ γλ(K, x) is a point

P if r ∩ γλ(K, x) is a segment and P ∈ r ∩ γλ(K, x)
the left end of r ∩ γλ(K, x) if P ∈ r ∩ γµ(K, x) \ r ∩ γλ(K, x)

.

The ontinuity of this funtion (with respet to the relative metri) is obvious and the inverse

(projetive) limit spae X∞ an be identi�ed with S(K, x) by the limit mappings pµ (de�ned

in an analogous way from S(K, x) to γµ(K, x) as the above funtions pλ,µ(P )). (Of ourse, we
have the su�ient equality pµ′,µ′′ ◦ pµ′ = pµ′′ for µ

′′ > µ′
.)

Using Theorems 2.1.9 and 2.1.12 above, the proof of the �rst diretion of the �rst statement

is an easy onsequene. In fat, if for λ > λ0 the spae γλ(K, x) is an (n − 2)-manifold then

using Theorem 2.1.9 we know that the bonding maps pµ′,µ′′ : γµ′′(K, x) −→ γµ′(K, x) are near
homeomorphisms. By Theorem 2.1.12 we obtain that the limit projetions pλ are also near

homeomorphisms. This implies that the spae S(K, x) is also an (n− 2) manifold.

Conversely, if now S(K, x) is an (n−2)-dimensional manifold then it is loally ontratible. By

Lemma 2.1.4 this also implies that all of the general parameter spheres are loally ontratible

manifolds, too. On the other hand the general parameter spheres an be onsidered as the

ompat subsets of R(n−1)
meaning that they are ANRs. (See Theorem 8 p.117 in [43℄.)

The proof of both parts of the seond statement uses Theorem 2.1.10. If �rst we have a general

parameter sphere γλ(K, x) whih is an (n − 1)-dimensional manifold with boundary then by

Theorem 2.1.10 it is a ylinder with boundaries homeomorphi to S(n−2)
. In this ase the

shadow boundary ontains this general parameter sphere showing that all point-inverses with

respet to px are segments (with non-zero lengthes). On the other hand, the sets bdK+ ∩
S(K, x) and bdK+ ∩ γλ(K, x) oinide, showing that S(K, x) is a ylinder based on an (n −
2) manifold homeomorphi to S(n−2)

. Sine bdK− ∩ S(K, x) is homeomorphi to S(n−2)
(by

entral symmetry) and these two sets are disjoint we lose to that S(K, x) is homeomorphi to

S(n−2) × [0, 1], as we stated.
Conversely, if S(K, x) is an (n − 1)-manifold with boundary, then it is (by Theorem 2.1.10)

homeomorphi to S(n−2)×[0, 1]. Sine this ylinder is ompat there is a positive value ε less than
or equal to the length of any segment interseted from the shadow boundary by a longitudinal

parameter urve. This fat implies that there does exist a λ <∞ suh that γλ(K, x) ⊂ S(K, x).
The intersetion γλ(K, x)∩K+

is the same as the intersetion S(K, x)∩K+
whih is one of the

two omponents of the boundary of S(K, x) homeomorphi to S(n−2)
. For this λ it is possible

to �nd a trivial point-inverse with respet to the map px as we saw it in the example of this

setion, but for every λ′ > λ the general parameter sphere γλ′(K, x) is a ylinder. Using now the

fat that it is also the shadow boundary of a entrally symmetri onvex body whose positive

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



2.1. BISECTORS 39

part is the set K+
, we have proved that it is also a manifold with boundary homeomorphi to

S(n−2) × [0, 1]. �

A onsequene of this result (if the bisetor is a homeomorphi opy of R(n−1)
then the shadow

boundary is a topologial (n−2)-sphere) yields the proof of the �rst diretion of the Conjeture

2.1.1. We have two more questions left onerning the same onjeture: Is the onverse statement

true or not? Is it possible that in the manifold ase the embedding of the bisetor and the shadow

boundary are not standard ones? We prove here that the embedding of the examined sets (in

the manifold ase) are always standard ones, but the �rst question remains still open. The last

step in the proof of the �rst diretion of Conjeture 2.1.1 is the following theorem:

Theorem 2.1.13 ([3℄). Hx is an (n−1)-dimensional manifold if and only if the non-degenerated

general parameter spheres γλ(K, x) are manifolds of dimension (n− 2).

Sine the neighborhoods of the point

1
2
x (with respet to Hx) an not be homeomorphi to

either Rn
or a half spae, this is the only manifold ase for Hx.

Proof. First we prove that if the non-degenerated general parameter spheres γλ(K, x) are

manifolds of dimension (n − 2) then Hx is an (n − 1)-dimensional manifold. From Theorem

2.1.10 we know that the general parameter spheres are homeomorphi opies of S(n−2)
. Let us

onstrut now the bisetor Hx as the disjoint union of the sets λγλ(K, x) for λ ≥ λ0. The set

Hx,µ = {λγλ(K, x)|µ ≥ λ ≥ λ0} is obviously homeomorphi to γλ(K, x) ∪K+
meaning that it

is a homeomorphi opy of the losed (n− 1)-dimensional ball. Thus intHx,µ is homeomorphi

to Rn−1
for eah µ ≥ λ0. Applying now a theorem of M.Brown on hain of ells (see in [141℄ or

[32℄) saying that if a topologial spae is the union of an inreasing sequene of open subsets,

are homeomorphi to R(n−1)
, resp. then it is also homeomorphi to R(n−1)

, we get the required

result.

Conversely, if Hx is homeomorphi to R(n−1)
then the projetion px : Hx −→ R(n−1)

is a ellular

map between two manifolds of the same dimension. Thus it is a near homeomorphism yielding

that its restrition to the ompat metri spae λγλ(K, x) is a near homeomorphism, too. But

its image is the boundary of a onvex ompat (n−1)-dimensional body so we get at one that

it is a homeomorphi opy of S(n−2)
. Hene the general parameter spheres γλ(K, x) for λ > λ0

are manifolds of dimension (n− 2), as we stated. �

Corollary 2.1.2. The proof of the �rst diretion of the onjeture follows from the previous

three theorems. In fat, if Hx is a topologial hyperplane then eah of the non-degenerated general

parameter spheres is a homeomorphi opy of S(n−2)
by Theorem 2.1.10 and Theorem 2.1.13.

So by Theorem 2.1.11 we get that the shadow boundary is also a homeomorphi opy of S(n−2)

whih is the statement of the mentioned diretion of our onjeture.

On the other hand we ould only prove in Theorem 2.1.11 that if S(K, x) is a homeomorphi

opy of S(n−2)
then the non-degenerated general parameter spheres are ANRs, thus the manifold

property for the bisetor does not follow immediately from our theorems. Furthermore, in the

manifold ase we prove only that the bisetor is a homeomorphi opy of R(n−1)
whih is

a weaker property as the required one. Consequently we have to investigate the question of

embedding. In fat, all of the examples in geometri topology aiming a non-standard (wild)

embedding of a set into Rn
are based on the observation that the onnetivity properties of

the omplement (with respet to Rn
) of the set an hange if we apply a homeomorphism to

it. In our ase, for example, the omplement of the bisetor (whih is now a homeomorphi

opy of R(n−1)
) is the disjoint union of homeomorphi opies of Rn

. It gives the hane to the

existene of a homeomorphism on Rn
to itself sending the bisetor to a hyperplane. It is a

well-known fat that a manifold homeomorphi to S(n−1)
in Sn is unknotted if and only if the

losures of the omponents its omplement are homeomorphi opies of the losed n-ell Bn.
This implies that in the manifold ase the embedding of the shadow boundary and the general

parameter spheres are always standard. From this it follows the existene of a homeomorphism
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40 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

of the boundary of K into itself sending these sets into a standard (n− 1)-dimensional sphere

of bdK. Considering bisetors we have to arry out the proof in a bit more sophistiated way.

Let ϕ be a homeomorphism sending Hx into R(n−1)
(whih is now a hyperplane H of Rn

). We

onsider the ompati�ation of the embedding spae by an element denoted by ∞. Extend

�rst the map ϕ to the ompat spae Hx ∪ {∞} by the ondition ϕ(∞) = ∞. Of ourse, this

extended map gives a homeomorphism between the sets Hx ∪ {∞} and H ∪ {∞}. Sine the

losure of the omponents of the omplement of Hx ∪ {∞} in Rn ∪ {∞} are losed n-ells the
homeomorphism ϕ an be extended to a homeomorphism Φ : Rn ∪ {∞} −→ Rn ∪ {∞}. Sine
by our method we have: Φ(∞) = ϕ(∞) = ∞ and Φ(Hx) = H we get that the bisetor is a

topologial hyperplane as we stated. Thus the following statement has been proved:

Theorem 2.1.14 ([3℄). In the manifold ase the embedding of Hx, S(K, x) and γλ(K, x) are
standard, respetively. This means that if the bisetor is homeomorphi to R(n−1)

then it is a

topologial hyperplane.

2.1.5. On bounded representation of bisetors (ommon work with H.Martini).

Independently, H. Martini and S. Wu [118℄ introdued and investigated the onept of radial

projetion of bisetors. Strongly using the entral symmetry of Minkowskian balls, they proved

some interesting results on radial projetions of bisetors.

Theorem 2.6 in [118℄ says that the shadow boundary is a subset of the losure of suh a radial

projetion, and Theorem 2.9 there refers to the onverse statement. If for a point x from the

boundary of the unit ball there exists a point z, unique exept for the sign, suh that x is

orthogonal to z in the sense of Birkho�, then z is a point of the radial projetion of the bisetor

orresponding to x and −x.
In a ommon paper with H. Martini [4℄ we introdued the onept of bounded representation

of bisetors, whih yields a useful ombination of the notions of bisetor, shadow boundary, and

radial projetion. We proved that the topologial properties of the radial projetion (in higher

dimensions) do not determine the topologial properties of the bisetor. More preisely, the

manifold property of the bisetor does not imply the manifold property of the radial projetion.

The situation is di�erent with respet to the bounded representation of the bisetor. Namely,

if one of them is a manifold, then the other is also. More preisely, if the bisetor is a manifold

of dimension (n − 1), then its bounded representation is homeomorphi to a losed (n − 1)-
dimensional ball Bn−1

(i.e., it is a ell of dimension (n − 1)). And onversely, if the bounded

representation is a ell, then the losed bisetor is also.

We will also presented new approahes to higher dimensional analogues of several theorems

given in [118℄. By our new terminology, we rewrote and reproved Theorems 2.6, 2.9, and 2.10

from that paper.

It is well known that there are di�erent types of orthogonality in Minkowski spaes. In par-

tiular, for x, y ∈ Mn
we say that x is Birkho� orthogonal to y if ‖x + ty‖ ≥ ‖x‖ for all

t ∈ R, denoted by x⊥By (see [26℄); and x is isoseles orthogonal to y if ‖x + y‖ = ‖x − y‖,
denoted by x⊥Iy (f. [92℄). The shadow boundary S(K, x) of K with respet to the dire-

tion x is the intersetion of S and all supporting lines of K having diretion x. Evidently,
S(K, x) = {y ∈ S : y⊥Bx}.
Given a point x ∈ S, the bisetor of −x and x, denoted by B(−x, x), onsists of all those

vetors y whih are isoseles orthogonal to x with respet to the Minkowski norm generated by

K. The radial projetion P (x) of this bisetor onsists of those points y of S for whih there is

a positive real value t suh that ty ∈ B(−x, x). In this subsetion we denote by y the points of

the unit sphere S.
We remark that, in the relative topology of S, P (x) an either be losed or open; this an

be easily seen in the ases of the Eulidean and of the maximum norm. Thus, for topologial

investigations in higher dimensions we suggest the extension of the de�nition of B(−x, x) to
ideal points by a limit property.
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Definition 2.1.5 ([4℄). Consider the ompati�ation of Rn
to a losed ball Bn

by the set of the

ommon ideal points x∞ (−x∞ 6= x∞) of the parallel half-lines. We say that the point y∞ := ∞·y
is in the extrated bisetor B(−x, x) if there is a non-onstant sequene (tiyi) ∈ B(−x, x) for
whih lim

i→∞
yi = y. We all the points of the original bisetor ordinary points and the points

added in this way ideal points, respetively.

With this extended de�nition of B(−x, x), P (x) is losed. Let P (x)l be the olletion of those

points y of S for whih ‖ty+x‖ < ‖ty−x‖ holds, for all real t ≥ 0. Let P (x)r denote the image

of P (x)l under re�etion at the origin.

O (1-t)x

(1-t)y(1-t)(y-x) z
t -2tx z

t

Figure 2.10. Vetors used in the proof of Proposition 2.1.1

Proposition 2.1.1 ([4℄). In the desribed way, S is deomposed into three disjoint sets: P (x),
P (x)l, and P (x)r. P (x) is an at least (n−2)-dimensional losed (and therefore ompat) set in

S whih is onneted for n ≥ 3, the sets P (x)l and P (x)r are ar-wise onneted omponents

of their union.

Proof. By Theorem 5.1 of [118℄, P (x) is onneted for n ≥ 3. We prove that it is also losed

with respet to the relative topology of the boundary of the unit ball. To see this, onsider a

onvergent sequene (yi) in P (x) having the limit y. For any i there is a new sequene of points

(yji ) suh that for every pair {i, j} there are tj ∈ R+
and xji ∈ B(−x, x) suh that (tjiy

j
i ) = xji .

(For an ordinary point the mentioned sequene an be regarded as a onstant one.) It is lear

that for the diagonal sequene (yii) we have lim
i→∞

yii = y, implying that y is also in P (x). The

ontinuity property of the norm funtion implies that all points of S belong to preisely one of

the three mentioned sets. Thus the �rst statement is lear, and the union of P (x)l and P (x)r

is open with respet to the topology of S. Observe one more that P (x)l and P (x)r are images

of eah other regarding re�etion at the origin. Furthermore, they are ar-wise onneted sets.

To prove this, onsider the following inequality for an element y of P (x)r:

‖(y − t(y − x)− x‖ = (1− t)‖y − x‖ < (1− t)‖y + x‖ = ‖(y − t(y − x)) + x− 2tx‖,
where 0 ≤ t ≤ 1 is an arbitrary parameter. The point zt := (y−t(y−x))+x = (1−t)y+(1+t)x
is on the right half-line, starting with the point (1 − t)(y + x) = zt − 2tx and being parallel

to the vetor x, meaning that its norm is larger than the norm of the point zt − 2tx (see Fig.

2.10). Thus ‖zt‖ ≥ ‖zt − 2tx‖, and so ‖(y − t(y − x))− x‖ < ‖(y − t(y − x)) + x‖.
A onsequene of this inequality is that the ar of S onneting the respetive endpoints of the

vetors y and x belongs to the set P (x)r. Thus every two points of P (x)r an be onneted

by an ar, as we stated. Now, with respet to the topology of their union, they are onneted

omponents. This means that both of them are also open with respet to the topology of S.
Thus P (x) separates S. By Aleksandrov's theorem (Theorem 5.12 in vol. I of [16℄) we get that

the topologial dimension of P (x) is at least (n− 2). �

The de�nition of the bounded representation of the bisetor is:

Definition 2.1.6 ([4℄). Let z be a point of B(−x, x). If it is an ordinary point, then there is a

unique value 1 ≤ tz <∞ for whih z ∈ (tzS+x)∩(tzS−x). Let Φ : B(−x, x) −→ K denote the

mapping whih sends z into Φ(z) = 1
tz
z. We extend Φ to the ideal points by the following rule:

The image of an ideal point is its radial projetion. Denote the image set of Φ (with respet to
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this extended mapping) by Φ(B(−x, x)). We will all this set the bounded representation of the

bisetor.

x
-x

S+x

S-x

2,5 +xS

2,5 -xS

Figure 2.11. Bounded representation of the

bisetor

Geometrially the bounded representation of

the bisetor is well-handing as we an see from

the following proposition:

Proposition 2.1.2 ([4℄). The bounded rep-

resentation of the bisetor is the union of the

shadow boundary of K and the lous of the

midpoints of the hords of K parallel to x.

Proof. For an ordinary point z of the bise-
tor we have 1 ≤ tz < ∞, and thus the norm

of

1
tz
z = 1

2

(
1
tz
(z − x) + 1

tz
(z + x)

)
is less or

equal to 1. If it is equal to 1, then the point

1
tz
z is a point of a horizontal segment (paral-

lel to x) of the boundary and thus a point of

the shadow boundary, and the set of all points

orresponding to the value tz yields a horizon-
tal segment of S. If now t ≥ tz, the points of
the bounded representation orresponding to

this value t form another segment ontaining

the segment of tz. Thus the diretions deter-

mined by the points of the segment of tz are
ideal points of the bisetor, proving that the

points of the shadow boundary are images of

ertain ideal points.

In the other ase the obtained point is the

midpoint of that hord whose endpoints are

1
tz
(z − x) ∈ S and

1
tz
(z + x) ∈ S, respetively.

Now, by the de�nition of ideal points, the ontinuity of the mapping is lear. In fat, we have

to hek that the image of a point of the bisetor with large norm is lose to the boundary S
of K. Sine, by de�nition, tz is equal to ‖z − x‖, we have the two inequalities

1 ≥ ‖ 1
tz
z‖ =

‖z‖
‖z − x‖ =

1

‖ z
‖z‖ − x

‖z‖‖
≥ 1

1 + ‖x‖
‖z‖

,

showing that for z with large norm its bounded representation is lose to S. To visualize the

proof, we show in Fig. 2.11 the bisetor and its bounded representation in a two-dimensional

spae. �

James in [93℄ proved that a Minkowski spae is Eulidean if and only if all of the bisetors on-

tained in an (n− 1)-dimensional subspae. Proposition 2.1.2 implies immediately the following

Corollary 2.1.3 ([4℄). The bounded representation of the bisetor B(x,−x) with respet to

any point x from the unit sphere of a Minkowski spae is ontained in an (n − 1)-subspae if

and only if the Minkowski spae is Eulidean.

Finally we prove the following theorem:

Theorem 2.1.15 ([4℄). If the bisetor is a manifold of dimension (n−1) with boundary, then its

bounded representation is homeomorphi to the (n−1)-dimensional losed ball Bn−1
. Conversely,

if the bounded representation is a topologial ball of dimension (n−1), then the extrated bisetor

is of the same type. Furthermore, its relative interior (whih is the set of its ordinary points)

is a topologial hyperplane of dimension (n− 1).
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Proof. Assume that the bisetor is a manifold of dimension (n− 1) with boundary. Then an

ordinary point has a relatively open (n−1)-dimensional neighborhood in the bisetor, and thus

there are interior points. On the other hand, there is no ideal point whih ould be in the relative

interior of the bisetor implying that the set of ordinary points of the bisetor is a manifold

of dimension (n − 1). Hene our assumption implies that the shadow boundary S(K, x) is a

manifold of dimension (n − 2). In fat, from Theorem 2.1.13 and Theorem 2.1.11 we get that

the shadow boundary is also a topologial manifold of dimension n − 2. Theorem 2.1.10 says

that it is homeomorphi to Sn−2
. On the other hand, the set C of midpoints of orrespondingly

direted hords ontaining interior points of K is always homeomorphi to the positive part

S+
of the boundary S of K, determined by the shadow boundary. Thus it is homeomorphi

to Rn−1
. Finally we observe that the boundary of the latter set C is the shadow boundary

itself, showing that the bounded representation of the bisetor is homeomorphi to Bn−1
, as we

stated.

We remark that the onverse statement is true if and only if the manifold property of the

bounded representation an be extended to the bisetor. This is lear for the points mapping to

the interior of K, but it is not evident for other points of the bisetor. The problem is that the

pre-images of a point of the shadow boundary ould form a point or a half-line, respetively.

Thus Φ is not an injetive (but, of ourse, a surjetive) ontinuous mapping. Clearly, both of the

two sets (the bisetor and its bounded representation) are ontinua, i.e., ompat, onneted

Hausdor� (T2) spaes. Moreover, the points and half-lines are ell-like sets; thus Φ is a ell-like

mapping. Restriting Φ to the ideal point of the bisetor, we get a bijetive mapping onto

the shadow boundary. We prove that the set of ideal points is ompat in the bisetor. It is a

proper part I of Sn−1
bounding the topologial ball Bn. Hene this point set an be regarded

as a subset of an (n− 1)-dimensional Eulidean spae Rn−1
. (We an onsider x∞ as the enter

of a stereographi projetion.) Its lear that I is bounded. It is also losed by its de�nition,

and so it is ompat by the Heine-Borel theorem on ompat sets in Rn−1
. On the other hand,

the shadow boundary an also be regarded as an (n − 2)-sphere embedded into a Eulidean

(n−1)-spae, beause x is not a point of it. A ontinuous and bijetive mapping from a ompat

set of Rn−1
into Rn−1

is a homeomorphism (see again [96℄). Thus the ideal points of the bisetor

give a topologial (n− 2)-dimensional sphere.

Now we prove that the ordinary points of the bisetor are, with respet to its relative topology,

interior points of it. We remark that it is trivial for a point z ∈ B(−x, x) if Φ(z) is an interior

point of K, beause Φ (by its de�nition) is a homeomorphism on the olletion of suh points

onto the interior of the bounded representation of the bisetor. Thus it is also relatively open

with respet to the bisetor, and this part of the bisetor is a topologial manifold, homeomor-

phi to Rn−1
.

Let now Φ(z) belong to the shadow boundary. Sine it is a topologial sphere of dimension

n − 2, there is a ell of dimension n − 2 (a homeomorphi opy of a losed ball of dimension

n−2), namely Z, ontaining Φ(z) in its interior. The pre-image Φ−1(intB) of the interior intB
of B is (by the ontinuity of Φ) open with respet to the topology of the bisetor and ontains

z. Thus it has also an interior point with respet to the topology of the bisetor.

Finally we observe that from the ompatness of B the existene of an ε follows for whih the

set {v : ‖z‖ − ε ≤ ‖v‖ ≤ ‖z‖ − ε, v ∈ Φ−1(B)} is a losed one (trunated by two parallel

surfaes) ontaining z in its interior. Sine the interior of this body is homeomorphi to Rn−1
,

we get that the set of ordinary points is a manifold of dimension (n − 1). In the proof of

Theorem 2.1.13 it is shown that if the ordinary points of the bisetor yield an (n−1)-manifold,

then it is homeomorphi to Rn−1
, and Theorem 2.1.14 there establishes that it is a topologial

hyperplane. Thus we proved that the losed bisetor is a ell of dimension (n−1) whose interior
an be embedded in the n-dimensional Eulidean spae in a standard (unknotted) way, as we

stated. �
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2.2. Adjoint abelian operators and isometries

A generalization of the inner produt and the inner produt spaes (brie�y i.p spaes) was

raised by G. Lumer in [108℄.

Definition 2.2.1 ([108℄). The semi inner-produt (s.i.p) on a omplex vetor spae V is a

omplex funtion [x, y] : V × V −→ C with the following properties:

s1: : [x+ y, z] = [x, z] + [y, z],
s2: : [λx, y] = λ[x, y] for every λ ∈ C,

s3: : [x, x] > 0 when x 6= 0,
s4: : |[x, y]|2 ≤ [x, x][y, y],

A vetor spae V with a s.i.p. is an s.i.p. spae.

G. Lumer proved that an s.i.p spae is a normed vetor spae with norm ‖x‖ =
√

[x, x] and, on
the other hand, that every normed vetor spae an be represented as an s.i.p. spae. In [64℄

J. R. Giles showed that the following homogeneity property holds:

s5: : [x, λy] = λ̄[x, y] for all omplex λ.

This an be imposed, and all normed vetor spaes an be represented as s.i.p. spaes with this

property. Giles also introdued the onept of ontinuous s.i.p. spae as an s.i.p. spae having

the additional property

s6: : For any unit vetors x, y ∈ S, Re{[y, x+ λy]} → Re{[y, x]} for all real λ→ 0.

The spae is uniformly ontinuous if the above limit is reahed uniformly for all points x, y of the
unit sphere S. A haraterization of the ontinuous s.i.p. spae is based on the di�erentiability

property of the spae.

Definition 2.2.2 ([64℄). A normed spae is Gâteaux di�erentiable if for all elements x, y of

its unit sphere and real values λ, the limit

lim
λ→0

‖x+ λy‖ − ‖x‖
λ

exists. A normed vetor spae is uniformly Frèhet di�erentiable if this limit is reahed uniformly

for the pair x, y of points from the unit sphere.

Giles proved in [64℄ that an s.i.p. spae is a ontinuous (uniformly ontinuous) s.i.p. spae if

and only if the norm is Gâteaux (uniformly Frèhet) di�erentiable. In the seond part of this

dissertation we need a stronger ondition on di�erentiability of the s.i.p. spae. Therefore we

de�ne the di�erentiable s.i.p. as follows:

Definition 2.2.3 ([8℄). A di�erentiable s.i.p. spae is an ontinuous s.i.p. spae where the

s.i.p. has the additional property:

s6': For every three vetors x,y,z and real λ

[x, ·]′z(y) := lim
λ→0

Re{[x, y + λz]} − Re{[x, y]}
λ

does exist. We say that the s.i.p. spae is ontinuously di�erentiable, if the above limit, as a

funtion of y, is ontinuous.

First we note that the equality Im{[x, y]} = Re{[−ix, y]} together with the above property

guarantees the existene and ontinuity of the omplex limit: limλ→0
[x,y+λz]−[x,y]

λ
. Analogously to

the theorem of Giles (see Theorem 3 in [64℄) we ombine this de�nition with the di�erentiability

properties of the norm funtion generated by the s.i.p..

Theorem 2.2.1 ([8℄, [9℄). An s.i.p. spae is a (ontinuously) di�erentiable s.i.p. spae if and

only if the norm is two times (ontinuously) Gâteaux di�erentiable. The onnetion between the

derivatives is

‖y‖(‖ · ‖′′x,z(y)) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 .
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We need the following useful lemma going bak, with di�erent notation, to MShane [119℄ or

Lumer [109℄.

Lemma 2.2.1 ([109℄). If E is any s.i.p. spae with x, y ∈ E, then

‖y‖(‖ · ‖′x(y))− ≤ Re{[x, y]} ≤ ‖y‖(‖ · ‖′x(y))+

holds, where (‖ · ‖′x(y))− and (‖ · ‖′x(y))+ denotes the left hand and right hand derivatives with

respet to the real variable λ. In partiular, if the norm is di�erentiable, then

[x, y] = ‖y‖{(‖ · ‖′x(y)) + ‖ · ‖′−ix(y)}.
Now we prove Theorem 2.2.1.

Proof. To determine the derivative of the s.i.p., assume that the norm is twie di�erentiable.

Then, by Lemma 2.2.1 above, we have

Re{[x, y + λz]} − Re{[x, y]}
λ

=
‖y + λz‖(‖ · ‖′x(y + λz))− ‖y‖(‖ · ‖′x(y))

λ
=

=
‖y‖‖y+ λz‖(‖ · ‖′x(y + λz))− ‖y‖2(‖ · ‖′x(y))

λ‖y‖ ≥ |[y + λz, y]|(‖ · ‖′x(y + λz))− ‖y‖2(‖ · ‖′x(y))
λ‖y‖ ,

where we have assumed that the sign of

‖·‖′x(y+λz)
λ

is positive. Sine the derivative of the norm

is ontinuous, this follows from the assumption that

‖·‖′x(y)
λ

is positive. Considering the latter

ondition, we get

Re{[x, y + λz]} − Re{[x, y]}
λ

≥ ‖y‖2‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ‖y‖ +
Re[z, y]

‖y‖ ‖ · ‖′x(y + λz).

On the other hand,

‖y + λz‖(‖ · ‖′x(y + λz))− ‖y‖(‖ · ‖′x(y))
λ

≤ ‖y + λz‖2(‖ · ‖′x(y + λz))− |[y, y + λz]|(‖ · ‖′x(y))
λ‖y + λz‖ =

=
‖y + λz‖2(‖ · ‖′x(y + λz))− (‖ · ‖′x(y))

λ‖y + λz‖ + λRe[z, y + λz]
(‖ · ‖′x(y))
λ‖y + λz‖ .

Analogously, if

‖·‖′x(y)
λ

is negative, then both of the above inequalities are reversed, and we get

that the limit lim
λ7→0

Re{[x,y+λz]}−Re{[x,y]}
λ

exists, and equals to

‖y‖(‖ · ‖′′x,z(y)) +
Re[x, y]Re[z, y]

‖y‖2 .

Here we note that also in the ase

‖·‖′x(y)
λ

= 0 there exists a neighborhood in whih the sign of

the funtion

‖·‖′x(y+λz)
λ

is onstant. Thus we, need not investigate this ase by itself. Conversely,

onsider the fration

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
.

We assume now that the s.i.p. is di�erentiable, implying that it is ontinuous, too. The norm is

di�erentiable by the theorem of Giles. Using again Lemma 2.2.1 and assuming that

Re[x,y]
λ

> 0,
we have

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
=

Re[x, y + λz]‖y‖ − Re[x, y]‖y + λz‖
λ‖y + λz‖ =

=
Re[x, y + λz]‖y‖2 − Re[x, y]‖y + λz‖‖y‖

λ‖y‖‖y + λz‖ ≤ Re[x, y + λz]‖y‖2 − Re[x, y]|[y + λz, y]|
λ‖y‖‖y + λz‖ =

=
Re{[x, y + λz]} − Re{[x, y]}

λ

‖y‖
‖y + λz‖ − Re[x, y]Re[z, y]

‖y‖‖y + λz‖ .
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On the other hand, using the ontinuity of the s.i.p. and our assumption

Re[x,y]
λ

> 0 similarly

as above, we also get an inequality:

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
≥ Re{[x, y + λz]} − Re{[x, y]}

λ
− Re[x, y + λz]Re[z, y + λz]

‖y + λz‖2 .

If we reverse the assumption of signs, then the diretion of the inequalities will also hange.

Again a limit argument shows that the �rst di�erential funtion is di�erentiable, and the on-

netion between the two derivatives is

‖y‖(‖ · ‖′′x,z(y)) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 .

�

2.2.1. Charaterization of adjoint abelian operators in Minkowski geometry.

Stamp�i in [136℄ has de�ned a bounded linear operator A to be adjoint abelian if and only if

there is a duality map ϕ suh that A∗ϕ = ϕA. So evidently, A is adjoint abelian if and only

if A = AT , thus the adjoint abelian operators are in some sense "self-adjoint" ones. Lángi in

[101℄ introdued the onept of the Lipshitz property of a semi inner produt and investigated

the diagonalizable operators of a Minkowski geometry {V, ‖ · ‖}. He said that the semi inner

produt [·, ·] has the Lipshitz property if for every x from the unit ball there is a real number

κ suh that for every y and z from the unit ball holds |[x, y] − [x, z]| ≤ κ‖y − z‖. We note

that from the di�erentiability property for the semi inner produt (de�ned �rst in [8℄) follows

the Lipshitz property of the produt, too. Let A be a diagonalizable linear operator of V , and
let λ1 > λ2 > . . . λk ≥ 0 be the absolute values of the eigenvalues of A. If λi is an eigenvalue

of A, then Ei denotes the eigenspae of A belonging to λi, and if λi is not an eigenvalue, set

Ei = {0}. Ei de�ned similarly with −λi in plae of λi. The main result in [101℄ is the following.

Theorem 2.2.2 ([101℄). Let V be a smooth �nite-dimensional real Banah spae suh that the

indued semi inner produt [·, ·] satis�es the Lipshitz ondition, and let A : V −→ V be a

diagonalizable linear operator. Then A is adjoint abelian with respet to [·, ·] if, and only if, the

following hold.

(1) [·, ·] is the diret sum of its restritions to Ei = lin{Ei ∪ E−i}, i = 1, . . . , k;
(2) for every value of i, the subspaes Ei and E−i are both transversal and normal (meaning

that they are mutually orthogonal in the sense of Birkho� orthogonality);

(3) for every value of i, the restrition of A to Ei is the produt of λi and an isometry of

Ei.

Using an observation from [8℄ and Corollary 3 from [101℄, we get that � by the assumption

of the theorem � if no setion of the unit sphere with a plane is an ellipse with the origin as

its entre, then every diagonalizable adjoint abelian operator of X is a salar multiple of an

isometry of V . This motivates the following de�nition:

Definition 2.2.4 ([5℄). A Minkowski n-spae is totally non-Eulidean if it has no 2-dimensi-

onal Eulidean subspae.

Now the orollary above says:

Corollary 2.2.1. In a totally non-Eulidean Minkowski n-spae every diagonalizable adjoint

abelian operator is a salar multiple of an isometry.

The following theorem desribe the struture of a real adjoint abelian operator.

Theorem 2.2.3 ([5℄). Let V be a smooth �nite-dimensional real Banah spae with the indued

semi inner produt [·, ·]. If A is adjoint abelian with respet to [·, ·] then V an be deomposed
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to the diret sum of A-invariant subspaes of dimension at most two. Restriting A to a 2-
dimensional omponent it is a generalized dilatation de�ned by the matrix

[
A|lin{as ,bs}

]
{as,bs} = |λ|

(
cosϕ sinϕ
− sinϕ cosϕ

)
where |λ| ∈ R

+
and 0 < ϕ ≤ 2π

and the basis {as, bs} holds the equalities [as, as] = [bs, bs] = 1, [as, bs] = [bs, as] = 0.

Proof. First we prove that if A is an adjoint abelian operator and U is an A-invariant subspae
then the orthogonal omplement U⊥ := {v ∈ V | [v, u] = 0 for all u ∈ U} is also A invariant.

In fat, for a v ∈ U⊥
we have [A(v), u] = [v, A(u)] = 0 for all u ∈ U proving this statement.

From this it follows a deomposition of the spae V to the diret sum of minimal invariant

subspaes Vi with the property V ⊥
i ⊃ Vj for all j > i. From the fundamental theorem of algebra

it also follows that the dimension of Vi is at most 2.
Assume that Z is a 2-dimensional minimal invariant subspae of A :R V −→R V implying that

it does not ontain real eigenvetor of A. Hene for every vetor z ∈ Z the pair of vetors z and
A(z) form a basis in Z. Thus the equality A2(z) = γz + δA(z) also holds. Sine this equation

also valid if we substitute into A(z) in the variable vetor z we get that the polynomial equation

A2 = γI + δA holds on Z. Set δ = 2α then we get the equation (A− αI)2 = (α2 + δ)I. Sine
there is no real eigenvalue of A on Z we get that (α2 + δ) < 0 say −β2

. Thus we have a

polynomial equation of seond order of form (A− αI)2 = −β2I is valid on Z.
Let CZ be the two dimensional omplex vetor spae on the vetors of the additive ommutative

group Z, de�ned by the set of linear ombinations

{ξf1 + ζf2 {f1, f2} is a basis of RZ and ξ, ζ ∈ C}
We an deompose the minimal polynomial (x− α)2 + β2

to linear terms by the identity

(x− α)2 + β2 = (x− α− βi) (x− α+ βi). Hene we an orrespond two omplex eigenval-

ues λ = α + βi and λ = α − βi of the extrated omplex linear operator Ã :C Z −→C Z.

(Note that with respet to the basis {f1, f2} the omplex operator Ã has the same (and real)

oe�ients as of the real linear operator A.) In CZ for the eigenvalues λ and λ have distint

eigenspaes of dimension 1. These omplex lines generated by the omplex vetors

u = ξf1 + ζf2 = (α1 + β1i)f1 + (α2 + β2i)f1 = (α1f1 + α2f2) + (β1f1 + β2f2) i =: a+ bi,

and its onjugate u = a − bi, respetively. (Here a, b ∈R Z.) We say in this ase that λ is a

omplex eigenvalue of the real linear operator A with omplex eigenvetor u. We identify the

one-dimensional omplex eigenspae of u with the two dimensional real subspae generated by

a and b with the mapping E :C< u >−→R Z

E((x+ yi)(a+ bi)) := R((x+ yi)(a+ bi)) + I((x+ yi)(a+ bi)) = (x+ y)a+ (x− y)b.

We note that E is a bijetive mapping. In fat, if x+y = x′+y′ and x−y = x′−y′ then x = x′

and y = y′ and there is an unique solution of the equation system r = x + y and s = x − y
it is x = (r + s)/2, y = (r − s)/2. From this follows that we an assume that a and b gives
an Auerbah basis

2

of Z meaning in the rest part of this proof that [a, a] = [b, b] = 1 and

[a, b] = [b, a] = 0.
Let now a omplex eigenvalue of A is λ. Denote by E the omplex eigenspae (of dimension d)
orresponding to λ. Then λ is an eigenvalue with the eigenspae E, where E = {u u ∈ E}.
If {u1, . . . , ud} is a omplex basis of E then {u1, . . . , ud} is a basis of E. Assuming that us =
as + bsi and λ = α + βi, we get that us = as − bsi and λ = α− βi. Sine

A(as) + A(bs)i = A(us) = λus = (αas − βbs) + (βas + αbs) i,

A is invariant on the real subspae Ẽ := lin{as, bs s = 1, 2, . . . d} whih we all the real

invariant subspae assoiated to λ. Its lear that for the eigenspae E we an assoiate the

same invariant subspae. Sine the vetors us = as + bsi s = 1, . . . , d form a basis of the

2

See the preise de�nition before Theorem 3.1.2.
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omplex subspae E, the vetors {as, bs s = 1, . . . , d} form a real generator system of Ẽ
implying that the dimension is at most 2d. Consider a pair of real vetors as, bs. If bs = λas
then

as(α− λβ) + as(β + αλ)i = (asα− bsβ) + (asβ + αbs) i = A(as + bsi) = (1 + iλ)A(as) =

= (1 + iλ)as(α− λβ) = as(α− λβ) + iλas(α− λβ),

implying that

β + αλ = λα− λ2β.

Sine λ 6= 0 it follows that β = 0 whih ontradit by the fat that λ is not a real number.

This shows that every pairs {as, bs} are independent vetors. Thus the omplex eigenspae of

dimension d is isomorphi to that real spae of dimension 2d whih is the diret produt of its

two dimensional subspaes generated by as and bs.
Hene the adjoint abelian operator A invariant on the real plane lin{as, bs} and with respet

to the basis {as, bs} it has the matrix representation:

A =

(
αr βr
−βr αr

)
= |λ|

(
cosϕ sinϕ
− sinϕ cosϕ

)
=: |λ|Fϕ.

where | · | means the absolute value of a omplex number and ϕ is the argument of λ. �

We note that Fϕ is also an adjoint abelian operator on that plane, we all it generalized rotation

with respet to the basis {as, bs}. In fat, |λ| 6= 0 beause λ is not real. Thus we have

[Fϕ(x), y] =
1

|λ| [|λ|Fϕ(x), y] =
1

|λ| [x, |λ|Fϕ(y)] = [x, Fϕ(y)] .

Example 2.2.1. To get a generalized rotation onsider an inner produt plane de�ned by the

unit irle

(
x
a

)2
+
(
y
b

)2
= 1. The produt is [v, z] = [x1e + y1f, x2e + y2f ] =

x1x2
a2

+ y1y2
b2

, and a

required basis is {ae, bf}. The generalized rotation is in the Eulidean orthonormal basis {e, f}
is

Fϕ =

(
1
a

0
0 1

b

)(
cosϕ sinϕ
− sinϕ cosϕ

)(
a 0
0 b

)
=

(
cosϕ b

a
sinϕ

−a
b
sinϕ cosϕ

)
.

It is an isometry beause it sends the unit disk into itself, however it is not adjoint abelian

operator beause of [Fϕ(e), f ] = − a
b3
sinϕ 6= b

a3
sinϕ = [e, Fϕ(f)]. �

We suspet the following:

Conjeture 2.2.1 ([5℄). From Theorem 2.2.2 (or Theorem 1 (and Corollary 2) in [101℄) we

an omit the assumption "diagonalizable". More preisely every adjoint-abelian operator of a

smooth Minkowski spae is diagonalizable.

In the ase of lp spaes this onjeture is true:

Theorem 2.2.4 ([5℄). Let 1 < p < ∞ be a real number. In a �nite-dimensional real lp spae

every adjoint abelian operator is diagonalizable.

Proof. Observe that for an l2 spae the statement is true beause of the semi inner produt is

an inner produt. Consider the Eulidean plane with the lp norm 1 < p <∞. The orresponding

semi inner produt (see in [64℄) an be de�ned by the equality

[z, v] = [x1as + y1bs, x2as + y2bs] =
1

‖s2‖p−2
p

∫

X

s1|s2|p−1sgn(s2)dµ =

=
1

(|x2|p + |y2|p)
p−2
p

(
x1|x2|p−1sgn(x2) + y1|y2|p−1sgn(y2)

)
,

where {as, bs} is an orthonormal basis in the Eulidean sense and Auerbah basis with respet

to the lp norm assoiated to the above produt. Now we have the formulas

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
(cosϕx1 + sinϕy1)|x2|p−1sgn(x2) + (cosϕy1 − sinϕx1)|y2|p−1sgn(y2)

)
,
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and

[z, Fϕ(v)] =

(
x1| cosϕx2 + sinϕy2|p−1sgn(cosϕx2 + sinϕy2) + y1| cosϕy2 − sinϕx2|p−1sgn(cosϕy2 − sinϕx2)

)

(| cosϕx2 + sinϕy2|p + | cosϕy2 − sinϕx2|p)
p−2
p

.

For ϕ = π/2 we get that

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2) + (−x1)|y2|p−1sgn(y2)

)
= −[z, Fϕ(v)]

holds for all z and v. Sine [Fϕ(z), v] = [z, Fϕ(v)] also holds for all z and v, we get that Fϕ(z) = 0
for all z giving a ontradition. Thus ϕ 6= π/2 for an adjoint abelian generalized rotation.

If ϕ = π then Fϕ(v) = −v and it is diagonalizable for all p.
Finally if ϕ = 3π/2 then

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2) + x1|y2|p−1sgn(y2)

)

and

[z, Fϕ(v)] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2)− x1|y2|p−1sgn(y2)

)

providing the strit inequality [Fϕ(z), v] > [z, Fϕ(v)] for z and v with positive x1 and y2. This
is a ontradition, too.

For general (and �xed) ϕ we get the equality

(| cosϕx2 + sinϕy2|p + | cosϕy2 − sinϕx2|p)
p−2
p
(
(cosϕx1 + sinϕy1) |x2|p−1sgn(x2)+

+(cosϕy1 − sinϕx1)|y2|p−1sgn(y2)
)
= (|x2|p + |y2|p)

p−2
p
(
x1| cosϕx2 + sinϕy2|p−1sgn (cosϕx2 + sinϕy2)+

+y1| cosϕy2 − sinϕx2|p−1sgn(cosϕy2 − sinϕx2)
)
,

whih holds for all z and v.
First we substitute x2 = y2 and y1 = 0 into this equality and we get:

|x2|2p−3 (| cosϕ+ sinϕ|p + | cosϕ− sinϕ|p)
p−2
p x1sgn(x2)(cosϕ− sinϕ) =

= |x2|2p−3| cosϕ+ sinϕ|p−1x1sgn(x2)sgn(cosϕ+ sinϕ),

implying the other equality

(| cosϕ+ sinϕ|p + | cosϕ− sinϕ|p)
p−2
p (cosϕ− sinϕ) = | cosϕ+ sinϕ|p−1sgn(cosϕ+ sinϕ).

From this immediately follows that either cosϕ± sinϕ > 0 or cosϕ± sinϕ < 0.
We an also substitute the equalities y2 = 0 and x1 = y1 into the original equality. This leads

to the equality:

(| cosϕ|p + | − sinϕ|p)
p−2
p (cosϕ+ sinϕ) = | cosϕ|p−1sgn(cosϕ) + | − sinϕ|p−1sgn(− sinϕ).

Now from the assumption cosϕ ± sinϕ > 0 it follows that sgn(cosϕ) = 1 and we have two

possibilities. If sgn(− sinϕ) = −1 then we get

(1 + (tanϕ)p)
p−2
p (1 + tanϕ) = 1− (tanϕ)p−1.

Let f(p) := (1 + (tanϕ)p)
p−2
p (1+tanϕ)−1+(tanϕ)p−1

be a funtion of p for a �xed admissible

ϕ. It is lear that limp→∞ f(p) = tanϕ and a short alulation shows that for p > 2 it is a

non-inreasing funtion whih at p = 2 is 2 tanϕ hene for p ≥ 2 we get that f(p) > 0. The
funtion f(p) on the interval 1 < p < 2 is onave showing that f(p) ≥ min{f(1), f(2)} > 0.
Thus there is no p and ϕ for whih this equality an be hold.

If sgn(− sinϕ) = 1 then we get the equality

(1 + | tanϕ|p)
p−2
p (1− | tanϕ|) = 1 + | tanϕ|p−1,

and the funtion

f(p) := 1 + | tanϕ|p−1 − (1 + | tanϕ|p)
p−2
p (1− | tanϕ|) > 1 + | tanϕ|p−1 − 1− | tanϕ|p
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is a positive one for 1 < p <∞, sine | tanϕ| < 1.
Thus remains only one possibility whih ould give a non-trivial adjoint abelian generalized

rotation in an lp spae (for ertain p) when we assume that cosϕ ± sinϕ < 0. In this ase

sgn(cosϕ) = −1 and | cosϕ| > | sinϕ|. However in this ase the substitution y2 = 0 and x1 = y1
leads to the same equalities as in the previous one leading to the same ontraditions. Thus

there is no non-diagonalizable adjoint abelian generalized rotation in an real lp spae of �nite

dimension, as we stated. �

We note that in the ase of a Minkowski geometry we got a new proof for the known fat that

every adjoint abelian operator on Lp (1 < p <∞, p 6= 2 ) is a multiply of an isometry (see in

[61℄).

2.2.2. Charaterization of isometries in Minkowski geometry. A Banah spae

isometry is a linear mapping whih preserves the norm of the vetors. As it an be seen easily,

the following theorem holds.

Theorem 2.2.5 ([97℄). A mapping in a smooth Banah spae is an isometry if and only if it

preserves the (unique) s.i.p..

Thus, if the norm is at least smooth, then the two types of linear isometry oinide. On the

basis of the results of Stamp�i [136℄ we have two orollaries:

Corollary 2.2.2 ([97℄). In any smooth uniformly onvex Banah spae, U is an invertible

isometry if and only if U−1 = UT
. As a result if in addition U−1 = U then U is salar.

Stamp�i has de�ned an operator U to be iso-abelian if and only if there is a duality map φ
suh that φU = (U∗)−1ϕ.

Corollary 2.2.3 ([97℄). In a smooth Banah spae U is iso-abelian if and only if it is an

invertible isometry.

The above statement was extended to inlude the non-smooth ase in [98℄. Preisely:

Theorem 2.2.6 ([98℄). Let V be a normed linear spae (real or omplex) and U be an operator

mapping V into itself. Then U is an isometry if and only if there is a semi inner produt [·, ·],
suh that [U(x), U(y)] = [x, y] for all x and y.

As a orollary of this theorem was proven the following:

Corollary 2.2.4 ([98℄). U is iso-abelian if and only if it is an invertible isometry.

For our haraterization important the following result:

Theorem 2.2.7 ([98℄). A �nite dimensional eigenspae of an isometry has a omplement in-

variant under the isometry.

For the onstrution an be seen that this omplement is orthogonal to the given eigenspae

of the isometry with respet to that semi inner produt whih preserved by the isometry.

Sine every linear mapping there is at least one (omplex) eigenvalue hene a omplex �nite-

dimensional Banah spae is an orthogonal diret sum of eigenspaes of a given isometry (See

Corollary 4 in [98℄.) For the real ase we get analogously the following statement:

Theorem 2.2.8 ([5℄). Let V be a �nite dimensional real Banah spae, U : V −→ V be an

isometry on V , and [·, ·] is a semi inner produt preserved by the isometry U . Then there is a

deomposition of the spae of form V = V1 ⊕ . . . Vs ⊕ Vs+1 ⊕ . . .⊕ Vl ⊕ Vl+1 ⊕ . . .⊕ Vl+k, where
Vi 1 ≤ i ≤ l are U-invariant mutually orthogonal eigenspaes of dimension 1 if 1 ≤ i ≤ s the

orresponding eigenvalue is 1 and for s ≤ i ≤ l the ommon eigenvalue is −1; moreover (n− l)
is even and the subspaes Vl+1, . . . , Vl+k are 2-dimensional U-invariant subspaes all of them
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2.2. ADJOINT ABELIAN OPERATORS AND ISOMETRIES 51

are orthogonal to the 1-dimensional ones. Restriting U to a 2-dimensional omponent it is a

generalized rotation with respet to an Auerbah basis {as, bs} de�ned by the matrix

[
A|lin{as ,bs}

]
{as,bs} =

(
cosϕ sinϕ
− sinϕ cosϕ

)
where 0 < ϕ ≤ 2π

Proof. Sine V is an orthogonal diret sum of the eigenspaes of U we have n mutually

orthogonal eigenvetors of U , say u1, . . . , un. Sine X is a �nite dimensional real Banah spae

the eigenvalues λ1, . . . , λl orresponding to u1, . . . , ul are real numbers and the rest eigenvalues

λl+1, . . . , λn are omplex ones.

First examine the eigenvalues λ1, . . . , λl. Sine U is an isometry we have only two possibilities

for its values, these are 1 and −1. We an assume that λ1 = · · · = λs = 1 and λs+1 = · · · =
λl = −1. In the subspae generated by the �rst s eigenvetors every vetors are eigenvetors

with eigenvalue 1 thus we an hoose u1, . . . , us as the elements of an Auerbah basis (hene

there are mutually orthogonal vetors). We hoose the basis {us+1, . . . , ul} analogously from the

eigenspae of eigenvalue −1. Sine two eigenvetors orresponding to distint eigenvalues are

mutually orthogonal to eah other, we get the orthogonality property of the statement about

the �rst l eigenspaes.
Assume now that λl+(2r−1) = λl+2r holds for r = 1, . . . , (n − l)/2. Consider again the ve-

tors ul+(2r−1) = al+(2r−1) + bl+(2r−1)i and salars λl+(2r−1) = αl+(2r−1) + βl+(2r−1)i suh that

U(ul+(2r−1)) = λl+(2r−1)ul+(2r−1). (See the analogous onstrution in the proof of Theorem

2.2.3 on adjoint abelian operators.) The real subspaes lin{al+(2r−1), bl+(2r−1)} are invariant

with respet to U and have dimension 2. Sine λl+2r = αl+(2r−1) − βl+(2r−1)i and ul+2r =
al+2r+ bl+2ri = al+(2r−1)− bl+(2r−1)i we also have that lin{al+2r, bl+2r} = lin{al+(2r−1), bl+(2r−1)}.
Hene Vl+(2r−1) = Vl+2r = lin{al+(2r−1), bl+(2r−1)} is an eigenspae of dimension at most 2. The
ase, when bl+(2r−1) = αal+(2r−1) with real α implies that al+(2r−1) is a real eigenvetor with

omplex eigenvalue λi is impossible thus we get the deomposition of the statement. Sine the

equality [al+(2r−1) + bl+(2r−1)i, ur] = 0 implies the respetive equalities [al+(2r−1), ur] = 0 and

[bl+(2r−1), ur] = 0, the last statement on orthogonality is also true. Finally from the U-invariant
property it follows that U restrited to a 2-dimensional invariant subspae is a generalized di-

latation (see Theorem 2.2.3). On the other hand U is an isometry thus |λl+(2r−1)| = 1 for all r
hene it is a general rotation as we stated. �

Remark 2.2.1. We note that there are non-diagonalizable general rotations whih are also

isometries. In an lp spae of dimension 2 for the general rotation Fπ/2 we get Fπ/2(x1as+y1bs) =
(y1as − x1bs) and Fπ/2(x2as + y2bs) = (y2as − x2bs) showing that

[Fπ/2z, Fπ/2v] =
1

(|y2|p + | − x2|p)
p−2
p

(
y1|y2|p−1sgn(y2)− x1| − x2|p−1sgn(−x2)

)
=

=
1

(|x2|p + |y2|p)
p−2
p

(
y1|y2|p−1sgn(y2) + x1|x2|p−1sgn(x2)

)
= [z, v].

2.2.3. The group of isometries. In geometri algebra, one studies the properties of er-

tain algebrai entities that an be diretly linked with geometri objets, and analyses how their

(algebrai) properties relate to geometri properties of the underlying geometry under investi-

gation. This approah will be applied here to the study of "stritly onvex" Minkowski spaes.

It is partiulary interesting to haraterize their group of isometries or related transformation

groups. Although the lines of stritly onvex non-Eulidean Minkowski planes are just their

a�ne lines, the group of their isometries is small. Namely, it is the semi-diret produt of the

translation group by a �nite group of even order whih either onsists of Eulidean rotations

or is the dihedral group. This nie fat was proven by several authors (see in [62℄,[140℄ and

[114℄).

Theorem 2.2.9 ([62℄,[140℄,[114℄). If (V, ‖ · ‖) is a Minkowski plane that is non-Eulidean,

then the group I(2) of isometries of (V, ‖ · ‖) is isomorphi to the semi-diret produt of the
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translation group T (2) of R2
with a �nite group of even order that is either a yli group of

rotations or a dihedral group.

In higher dimension it is possible for the group of linear isometries to be in�nite without the

spae being Eulidean (e.g. if the unit ball is a ellipti ylinder in R3
). The proof an be found

in [140℄ uses the onept of Löwner-John's ellipsoids. John's (Löwner) ellipsoid of the unit ball

C is the unique ellipsoid with maximal (minimal) volume ontained (irumsribed) in (about)

it. It is lear that every isometries whih leave invariant the unit ball is also send these ellipsoids

into themselves, respetively. A nie onsequene of this fat (proved �rst by Auerbah in [18℄)

is the following:

Corollary 2.2.5 ([140℄,[18℄). If the isometry group of a Minkowski spae is transitive on the

unit ball of the spae then the unit ball is ellipsoid and a spae is Eulidean.

On the other hand Gruber in [73℄ shows that for "most" ases the group of isometries is �nite.

It follows from the fat, that in "most" ases a Minkowski unit ball meets the boundary of the

Löwner ellipsoid in d(d+1)/2 pairs of symmetri points. (See in [73℄.) Using again the onept

of John's ellipsoid we an prove a similar result whih is also a generalization of Theorem 2.2.9.

Theorem 2.2.10 ([5℄). If the unit ball B of (V, ‖ · ‖) has no intersetion with a two-plane

whih is an ellipse, then the group I(3) of isometries of (V, ‖ · ‖) is isomorphi to the semi-

diret produt of the translation group T (3) of R3
with a �nite subgroup of the group of linear

transformations with determinant ±1.

Proof. Sine at any point of V there exists a point re�etion that is an isometry of (V, ‖ · ‖),
the group I(n) ontains the semi-diret produt of T (n) with a point re�etion. Sine I(n)
is a losed subgroup of the Lie group of the a�nities, the translation group T (n) is a normal

subgroup of I(n) and I(n) is a semi-diret produt of T (n) with the stabilizer I(n)0 of the

point 0 in I(n) leaving the unit ball B invariant. On the other hand every isometry of V is also

an a�ne isometry thus the elements of I(n)0 are in the speial linear group of order n, too (see
[62℄).

For n = 3 from Theorem 2.2.8 we get that an isometry has at least one eigenvetor and we

have two possibilities, either it is diagonalizable operator or it is not. In the seond ase it

has a minimal invariant subspae of dimension 2. Let Ix be the subgroup of I(3)0 ontaining

those isometries whih �xed the 1-dimensional subspae of x. Then the 2-dimensional subspae

orthogonal to x is also invariant with respet to the elements of Ix (see Theorem 2.2.8). By

Theorem 2.2.9 the group Ix is a �nite of even order that is a yli group or a dihedral group.

Consider now the John's ellipsoid E ([140℄) of the unit ball B. The onept of John's ellipsoid
is a�ne invariant hene without loss of generality we an assume that E is an Eulidean ball

insribed into the suitable a�ne opy of B (whih for simpliity we also denote by B). (Now
the investigated isometries are elements of O(3).) Consider the group G of elements of I(3)0
belonging to SO(3). Taking into onsideration that the "determinant" map det : I(3)0 → {±1}
is a surjetive group homomorphism whose kernel G has index 2 in I(3)0, so that, G is �nite if

and only if I(3)0 is so. Let a point x is a ommon point of the boundary S of B and the boundary

of E. (Of ourse suh a point is exist.) Let denote by S+
the losed half sphere ontaining x

and bounded by the hyperplane orthogonal to x through the origin. If the group G is in�nite

then the orbit of x is also ontains in�nitely many distint points of form Ti(x) ∈ bdE ∩ S+

where Ti ∈ I(3)0. Sine bdE ∩ S+
is ompat for every k ∈ N there is two indies i 6= j

suh that ‖Ti(x) − Tj(x)‖ ≤ 1/k implying that ‖T−1
j Ti(x) − x‖ ≤ 1/k. Consider the isometry

T−1
j Ti ∈ SO(3). Hene T−1

j Ti is rotation about an axis say xk. Thus the points

(
T−1
j Ti

)l
(x)

for l ∈ N are on a two dimensional intersetion of bdE, so they are also on a irle Ek. This
irle through the point x ontains a set of points of S with suessive distane at most 1/k
forming an 1/k-net on it. Let denote by yk the unit normal vetor of the plane of Ek direted

by S+
. The set Y := {yk k ∈ N} is in�nite and hene it has a onvergent subsequene (yki)

with limit y. Consider now the irle E(x, y) de�ned by the intersetion of E with the plane
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through x and orthogonal to y. It has the property that if z ∈ E(x, y) that for every ε > 0
there is a point u of bdE ∩ S suh that ‖z − u‖ ≤ ε. This implies that E(x, y) ⊂ bdE ∩ S
giving a ontradition with our assumption. Thus the group I(n)0 is �nite and the statement

is true. �

Remark 2.2.2. We note that we proved the �niteness of the point group from a stronger as-

sumption that of the "totally non-Eulidean" property. A method using Löwner-John ellipsoids

an not be applied to prove a more general statements on this diretion beause of there are

Minkowski spaes whih are totally non-Eulidean but the intersetion of the John's ellipsoid of

its unit sphere ontains ellipse. For a simple example, onsider an Eulidean unit ball B and

one of its great irle S. Let H(2n, ε) be a regular polygon irumsribed to (1 + ε)S with 2n
verties. Now de�ne the unit ball B(n, ε) := conv{B ∪H(2n, ε)}. It is lear that the Minkowski

spae with unit ball B(n, ε) is totally non-Eulidean however for small ε and for large n the

John's ellipsoid of B(n, ε) is B, hene bdC(n, ε) ∩ bdB ontains irle.

This motivates the following problem:

Problem 2.2.1. Is it true or not that if for n ≥ 3 the Minkowski n-spae is totally non-

Eulidean one (see De�nition 2.2.4) then its isometry group I(n) is a semi-diret produt of

the translation group T (n) with a �nite subgroup of SL(n)?

2.3. Conis and roulettes in Minkowski planes

The following setion ontains investigations on two types of onstrutive urves in Minkowski

plane. The two subsetions ontains the results of two papers the �rst one in ommon with H.

Martini ([6℄) and the seond one is ommon with V. Balestro and H. Martini ([7℄).

a:c=2

a=c

a:c=1:2

l

x

Figure 2.12. Conis on the l∞ plane

2.3.1. Conis (Common work with H. Mar-

tini). Now we turn out to onis in a Minkowski

normed spae. With H. Martini we presented in [6℄ a

systemati investigation of possible de�nitions of onis

extended to normed (or Minkowski) planes. In the Eu-

lidean situation the metri de�nitions of onis and the

analyti one, namely de�ning them as family of urves

of seond order, learly yield the same type of urves;

so we have various di�erent de�nitions of the same lass

of urves. In normed planes neither the metri de�ni-

tions nor the analyti one yield the same type of urves.

Furthermore, it is not lear what the notions "urve of

seond order�, "one of seond order� or "setions of

a one� mean. We onsidered the usual metri de�ni-

tions of onis in the Eulidean plane, adopt them for

normed planes and list various properties of the result-

ing lasses of urves. In normed planes we have three

di�erent possibilities to de�ne ellipses metrially. Be-

fore [6℄, only the �rst one was investigated (see [146℄). So the following de�nitions refer to an

"ellipse� in a normed plane X .

Definition 2.3.1 (based on foi, [6℄, [146℄). Let x, y ∈ X, x 6= y, and 2a ≥ 2c = ‖x− y‖. The
set

E(x, y, a) = {z ∈ X : ||z − x||+ ||z − y|| = 2a}
is alled the ellipse de�ned by its foi x and y.

Definition 2.3.2 (based on a leading irle and one fous, [6℄). Let L := (2a)·K be a homotheti

opy of the unit disk K, and x ∈ L be an arbitrary point from it. The lous of points z ∈ X for
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whih there is a positive ε suh that z + εK touhes L and ontains x on its boundary is alled

the ellipse de�ned by its leading irle and its fous x.

Definition 2.3.3 (based on a leading line and a fous, [6℄). Let l be a straight line, x a point,

and γ = a
c
a ratio larger than 1. The lous of points z ∈ X, for whih there is a positive ε suh

that the boundary of the disk z + εK ontains x and the disk z + γ(εK) touhes the line l, is
alled the ellipse de�ned by its leading line and its fous x.

The equivalene of these de�nitions for the Eulidean subase is well known. We will prove

that, while the �rst two de�nitions are equivalent also in normed planes, the third one yields a

basially di�erent lass of urves.

Proposition 2.3.1 ([6℄). In any normed plane the following holds: an ellipse, de�ned by its

foi, is always an ellipse de�ned by its leading irle and a fous, and the onverse statement is

also true. On the other hand, an ellipse de�ned by its leading line and a fous is not neessarily

an ellipse de�ned by its foi, and again the onverse is true.

x
x

z z

v v2x
2x

-z

-v-2x

s

r

-v

Figure 2.13. A metri ellipse whih has no

leading line

In Fig. 2.12 we an see that there is an ellipse

following the third de�nition whih is not en-

trally symmetri. By Theorem 2 of [146℄ it

is not an ellipse by the �rst de�nition. Con-

versely, onsider the ellipse E(−x, x, 2) de-

�ned by its foi and shown in Fig. 2.13. First

we an see that if it is also an ellipse de�ned by

its leading line, then the leading line l and the

new fous x′ have to be in "symmetri posi-

tion� with respet to the line joining the orig-

inal foi. "Symmetri� means that this line is

parallel to a diagonal of the unit square. In

fat, if this is not the ase, we get a �gure as

shown on the left side of Fig. 2.13. The squares

S2x, Sv, Sz, S−v with enters 2x, v, z, −v, re-
spetively, touh l. The fous has to lie in the

shaded retangle, as the ommon point of the boundaries of homotheti opies 2x + (c/a)S2x,

v + (c/a)Sv and z + (c/a)Sz of suh squares (with a homothety ratio smaller than 1). On the

other hand, the boundary of the square −v + (c/a)S−v intersets the shaded retangle in a

segment parallel to that one in whih it is interseted by z+(c/a)Sz. So it is impossible to give

a good position for the fous x′.
We now assume that l and x′ have symmetri position (see the right side of Fig. 2.13). If

this holds and the Eulidean distane of l and 2x is s, and that of x′ and x is r, then, using
the fat that the points 2x, −2x and v have to lie on the new ellipse, we have the equalities

r/s = (4− r)/(4 + s) = (2− r)/(1 + s), implying that s = 1 and r = 2/3 and showing that

a/c/ = 2/3. Thus the leading line and the fous are both determined. On the other hand, the

point −z is not on the obtained ellipse, sine the required ratio for it is (12−
√
2)/12 6= 2/3.

The examination of the ellipse de�ned by its leading line and its fous is new thus the following

theorem is fundamental.

Theorem 2.3.1 ([6℄). In a normed plane, an ellipse de�ned by its leading line and its fous is

a onvex urve, whih is stritly onvex if and only if this normed plane is stritly onvex.

A Eulidean hyperbola satis�es the same metri relations as a Eulidean ellipse, only that now

the ratio

a
c
is smaller than 1. The asymptotes of the hyperbola have diretions

√
c2−a2
a

, and the

leading line intersets the asymptotes in points of the great irle. We also have three possible

metri de�nitions. These are
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Definition 2.3.4 ([6℄). Given two points x, y in a normed plane and a distane denoted by

2a > 0. Then H(x, y, a) = {z ∈ X : |‖z − x‖ − ‖y − z‖| = 2a} denotes the hyperbola de�ned

by its foi x and y. If y = −x, then we use the notation H(x, a) for it.

Definition 2.3.5 (based on leading irle and fous, [6℄). Let L := (2a) ·K be a homotheti

opy of the unit disk K, and x ∈ X be an arbitrary point exterior to L. The lous of points

z ∈ X for whih there is a positive ε suh that z+εK touhes L and ontains x on its boundary

will be alled the hyperbola de�ned by its leading irle and its fous x.

Definition 2.3.6 (based on leading line and fous, [6℄). Let l be a straight line, x be a point,

and γ = a
c
a ratio less than 1. The lous of points z ∈ X, for whih there is a positive ε suh

that the boundary of the disk z + εK ontains x and the disk z + γ(εK) touhes the line l, will
be alled the hyperbola de�ned by its leading line and its fous x.

The analogue of Theorem 1 from [146℄ is given by our

Theorem 2.3.2 ([6℄). Let x ∈ S be a point of the unit irle. Then we have:

(i) H(x, 0) is the bisetor orresponding to the vetor x,
(ii) if there is a neighborhood of x on S in whih S is stritly onvex, then H(x, 2) is the union
of the two half-lines [x,∞) and [−x,−∞). If x is a point of a pieewise linear part of S, then
it is the union of two losed ones.

The �rst statement is obviously true by the de�nition of the bisetor given in the introdution.

The seond one follows from the onept and properties of d-segments in a Minkowski plane

and from our de�nition of hyperbola; see [117℄, [116℄, and [28℄.

From the above theorem it an be seen that a onneted part of H(x, a) is, in general, not the

boundary of a onvex domain, beause this property does not hold for a bisetor; see [1℄ and

[2℄.

Theorem 2.3.3 ([6℄). The following two statements are equivalent to eah other:

(i) K is stritly onvex.

(ii) For every x ∈ S and for eah value a ∈ R+
the set H(x, a) is the union of two simple

urves, eah of whih intersets any line parallel to [−x, x] in preisely two points.

Remark 2.3.1. From the proof of this theorem we an onlude that the topologial properties

of hyperbolas do not depend on the parameter a and only on the position of their foi. Thus (ii)
is equivalent to

(iii) For every x ∈ S there is a value a ∈ R+ ∪ {0} suh that the set H(x, a) is the union of

two simple urves, interseted by any line parallel to [−x, x] in preisely two points.

As in the ase of ellipse we also have a proposition

Proposition 2.3.2 ([6℄). In normed planes, a hyperbola de�ned by its foi is always a hyperbola

de�ned by its leading irle and a fous. The onverse statement is also true. In general, the

third de�nition yields a di�erent lass of urves.

On the base of this proposition the new urve the hyperbola de�ned by its leading line and we

have a theorem on it, too.

Theorem 2.3.4 ([6℄). The hyperbola de�ned by its leading line is the union of two simple

urves. If the normed plane is stritly onvex, then these urves annot ontain segments.

For the ase of parabolas, the �rst two de�nitions have no analogue, and so we had only the

third ase.

Definition 2.3.7 ([6℄). In a normed plane, let l be a straight line, and x be a point. The lous

of the points z ∈ S for whih there is a positive ε suh that the boundary of the disk z + εK
ontains x and touhes the line l, will be alled the parabola de�ned by its leading line and its

fous x.
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We also investigated the metri parabola and proved the theorem:

Theorem 2.3.5 ([6℄). In a normed plane, the metri parabola is a simple urve whih does not

ontain segments if and only if the normed plane under onsideration is stritly onvex.

2.3.2. Roulettes (Common work with V. Balestro and H. Martini). We onsidered

another important type of onstrutive urves in Minkowski plane, the so-alled roulettes. In

this part of the setion we write apital letters like A,B, . . . for points with respetive position

vetors a, b, . . . ; by a, b, . . . , g(A,B) we denote lines, in the latter ase spanned by A and B, and

by AB the segment with endpoints A and B is meant. We use

−→
AB for the vetor from A to B,

or for the half-line starting at A and passing through B; sometimes we use also a, b, . . . r1, r2 for
half-lines (the respetive meaning will be lear by the ontext). Further on, we write ‖a‖, ‖a‖E
for the general Minkowskian and the Eulidean norm of a, respetively, and ao stands for the
Minkowskian unit vetor parallel to a; [a, b] is the semi inner produt orresponding to the

Minkowskian norm ‖ · ‖. Referring to the Minkowskian ar-length s, we denote by r(s) the

radial funtion of the Minkowskian unit irle, and by γ(s) a planar urve, both parametrized

by s; χγ(s) is the Busemann urvature funtion of γ(s). The Busemann sigma funtion of the

r-dimensional a�ne subspae Vr is σ(Vr), and (a, b)∠ denotes the angle determined by the lines

a, b.
2.3.2.1. Angle measures and general rotations. The question how to measure angles is old

and interesting. A good review of the history an be found in [20℄.

In [34℄, Busemann disussed the "axiom" for angle measures in the ase of plane urves belong-

ing to a lass S of open Jordan urves, holding the additional property that any two distint

points lie on exatly one urve of S. He de�ned the onepts of ray r, angle D with legs r1 and
r2, and angle measure |D| on the set of angles having the following properties:

(1) |D| ≥ 0 (positivity),

(2) |D| = π if and only if D is straight,

(3) if D1 and D2 are two angles with a ommon leg but with no other ommon ray, then

|D1 ∪D2| = |D1|+ |D2| (additivity),
(4) if Dν → D, then |Dν | → D (ontinuity).

He showed that these assumptions are su�ient to obtain many of the usual relationships

between angle measure and urvature. We note that Busemann olleted the essential properties

of an angle measure that we have to require in every struture, where a natural onept of angle

exists.

Lippmann [104℄ onsidered the lassial Minkowski spae de�ned on the n-dimensional Eu-

lidean spae by a "metrishe Grundfuntion" F , whih is a positive, onvex funtional on the

spae being homogeneous of �rst degree. In our terminology, F is the norm-square funtion (a

generalization of this onept an be found in this dissertation and in [8℄. To have onvexity (fol-

lowing Minkowski's de�nition), Lippmann required ontinuity of the seond partial derivative,

and positivity of the seond derivative of F . Hene the unit ball of the orresponding spae is al-
ways smooth. He used the arus osine of the bivariate funtion (x, y) := (

∑
xi

∂
∂xi
F (y))/F (x)

to measure the angle between x and y. This yields a onept of transversality, namely: x is

transversal to y if (x, y) = 0. A wide variety of angle measures referring to metri properties

an be found in the literature. E.g., Lippmann's papers [105, 106℄ ontain typially metri

de�nitions of angle measures. For the situation in (normed or) Minkowski planes see, in addi-

tion to the papers already mentioned, Graham, Witsenhausen and Zassenhaus [69℄. This paper

refers to a useful metrial lassi�ation of angles by their measures, and a good review on this

topi an be found in the book of Thompson [140℄.

In the last few deades some authors redisovered this interesting problem in onnetion with

the problem of orthogonality. We have to mention P. Brass who in [30℄ rede�ned the onept

of angle measure as follows.
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Definition 2.3.8. By an angle measure we mean a measure µ on the unit irle ∂B with enter

O whih is extended in the usual translation-invariant way to measure angles elsewhere, and

whih has the following properties:

(1) µ(∂B) = 2π,
(2) for any Borel set S ⊂ ∂B we have µ(S) = µ(−S), and
(3) for eah p ∈ ∂B we have µ({p}) = 0.

This onept was used in the papers of Düvelmeyer [48℄, Martini and Swanepoel [117℄, and

Fankhänel [53, 54℄.

Another diretion of researh is to give immediate metri de�nitions of the angle of two vetors.

In this diretion we an �nd also papers of P. M. Mili£i£ [121℄, C. R. Diminnie, E. Z. Andalafte,

R. W. Freese [47℄ or H. Gunawan, J. Lindiarni and O. Neswan [79℄. Further related papers on

angle measures are [44℄, [45℄, [46℄, and [103℄.

As Busemann observed, the problem to �nd a natural de�nition of angular measure arises from

the fat that the group of Minkowski rotations is very small. In a general normed spae there

are no suh rotations whih are also isometries of the spae (see [62℄, [140℄, [113℄, and [114℄).

On the other hand, there are so-alled left re�etions (right-re�etions) based on the notion

of Birkho� orthogonality (see [113℄ and [114℄). These are not isometries, but they have some

important properties of isometries; e.g., they are a�ne mappings of the plane sending lines

into lines; the produt of three left re�etions in parallel lines in a stritly onvex Minkowski

plane is a left re�etion in another line belonging to the same penil of parallel lines; and

the produt of two left re�etions in Birkho� orthogonal lines is a symmetry of the plane.

Unfortunately, if in a stritly onvex and smooth Minkowski plane for left re�etions the main

lemma on three re�etions with onurrent axes holds, then the plane is already Eulidean.

Hene there is no hane to de�ne an angle measure and also rotations by left re�etions in the

way that "a rotation is the produt of two left re�etions in non-parallel lines". This motivates

our new de�nition of generalized angle measure and also the new onept of general Minkowski

rotations, respetively.

In order to de�ne a onept of rotation for a Minkowski plane, we start with extending the

de�nition of Brass by onsidering Borel measures in a larger lass of urves, not only in the

unit irle, and we will derive angle measures for normed planes from it.

Definition 2.3.9 ([7℄). Let γ ⊆ X be a losed Jordan urve whih is starlike with respet to a

point p of the interior of the region bounded by γ. Let µγ be a (normalized) Borel measure on

γ for whih the following properties hold:

(a) µγ(γ) = 2π;
(b) for any q ∈ γ we have µγ({q}) = 0; and
() any non-degenerate ar of γ has positive measure.

An angle measure de�ned in this way provides a translation invariant measure of angles in

the plane, whih we de�ne to be the onvex hulls of two rays with the same starting point, or

the half-plane given by two opposite rays. Given an angle (r1, r2)∠ with apex a, we de�ne its

generalized angle measure µγ,p(r1, r2) to be the measure µγ of the ar determined on γ by the

image of (r1, r2)∠ via the translation x 7→ x− a + p.

Using this notion of generalized angle measure we de�ne now the generalized rotations in

Minkowski planes.

Definition 2.3.10 ([7℄). Let (X, || · ||) be a Minkowski plane and let γ be a losed Jordan urve

whih is starlike with respet to a point p of the interior of the region bounded by γ. Let µγ,p
be a generalized angle measure as in the previous de�nition. A general rotation (with respet to

µγ,p) is a transform rotµγ,p : X → X for whih the following three properties hold:

(a) The transform rotµγ,p leaves invariant the penil R(p) of rays with origin in p. In other

words, if r ⊆ X is a ray with origin p, then rotµγ,p(r) is also a ray with origin p.
(b) For eah α > 0, rotµγ,p leaves invariant the homotheti urve γα,p := p+ α(γ − p), i.e., for
suh a urve we have rotµγ,p (γα,p) ⊆ γα,p.
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() The funtion r ∈ R(p) 7→ µγ,p
(
rotµγ,p(r), r

)
is onstant. Intuitively, rotµγ,p "rotates every

ray of R(p) by a same angle".

Notie that a general rotation an be onsidered as ating in the spae of diretions of X .

Indeed, the set R(p) an be seen as this spae. Later this viewpoint will be useful.

We emphasize that any general rotation relies on a �xed losed Jordan urve γ, an inner point

p with respet to whih γ is starlike, and a generalized angle measure µγ,p. On the other hand,

these three informations yield a ertain lass of general rotations, whih we denote byR(γ, µ, p).
We head now to desribe an element of suh a lass in terms of the angle of rotation. For any

θ ∈ [0, 2π) we set rotθ : X → X as follows: if q1 ∈ γ, then q1 is mapped to the (unique) point

q2 ∈ γ taken ounterlokwise, say, for whih the rays r1 = [p, q1〉 and r2 = [p, q2〉 are suh that

µ(r1, r2) = θ. Now, any point q ∈ X \ γ an be written in the form q = p+α (radγ,p( [p, q〉)− p)
for some α ≥ 0, where radγ,p : R(p) → γ is the radial funtion whih assoiates eah ray

starting at p to its intersetion with γ. We just set

rotθ(q) = p+ α (rotθ (radγ,p ( [p, q〉))− p) .

It is lear that R(γ, µ, p) = {rotθ}θ∈[0,2π). This desription indiates that a lass R(γ, µ, p) has
a group struture under omposition, as in the standard Eulidean ase. This is summarized in

the following lemma.

Lemma 2.3.1. For a lass R(γ, µ, p) we have the following properties:

(a) Regarding omposition,R(γ, µ, p) is an abelian group. More preisely, we have rotθ1◦rotθ2 =
rotθ1⊕θ2, where ⊕ is the sum modulo 2π.
(b) For any q ∈ γ, the appliation l 7→ rotθ(q) is a bijetion from [0, 2π) to γ.

O
j

p P

P’
P’’ t

Figure 2.14. Area-based rotation

We highlight an interesting fat: The standard Eu-

lidean rotation group an be obtained in any

Minkowski plane. We just have to onsider the group

R(γ, µ, o) where γ is the Löwner ellipse, whih is de-

�ned as the ellipse of maximal volume ontained in B,
and µ is the measure given by twie the area of its

setors.

Next we give two examples of general rotations in the

Eulidean plane. The �rst one relies on an area-based

measure for an ellipse, whih is learly well de�ned.

Example 2.3.1. Consider the Eulidean plane and the

system of ellipses with ommon fous at the origin O
and with major axis on the x-axis of the oordinate system, suh that the positive half-line

of x ontains the losest point of the ellipse (see Fig. 2.14). In that polar oordinate system

(whih is alled the helioentri oordinate system for the ellipse), for whih the ray ϕ = 0 is

the positive half axis x, we an write the radial funtion r(ϕ) of the ellipse G by the formula

r(ϕ) = p/(1 + ε cosϕ), where p is the semi-latus retum of the ellipse and ε is the eentriity
of it, respetively. Let µ((ϕ′, ϕ′′)∠) be the area of the setor enlosed by ϕ′

, ϕ′′
, and G be the

ar between these lines. Hene

µ((ϕ′, ϕ′′)∠) =
1

2

ϕ′′∫

ϕ′

(
p

1 + ε cosϕ

)2

dϕ.

With respet to µ and G from above, for every real number 0 ≤ t ≤ 2π there is a generalized

rotation of the Eulidean plane about O with this angle t. By Kepler's seond law about

planetary motions, the angle t of a generalized rotation is proportional to the time of the

motion of the planet. Hene the generalized rotation with angle t maps the urrent position P ′

of the planet to that point P ′′
of the orbit where the planet arrives after time t. �
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The priniple of measuring the angle proportional to the area of the setor interseted by the

angle domain from the basi disk (G ∪ intG) works in all Minkowski planes and for all basi

urves G. Note that in the Eulidean plane with the unit irle as basi urve, this hoie of

µ gives the usual angle measure, and that we get the usual rotations as generalized rotations

by hoosing P to be the origin O. An advantage of this hoie is a�ne invariane, but there is

also a big disadvantage. Namely, the length of the ar G ontaining the domain of the angle

annot be alulated easily from this angle measure. (As a known example, we note that the

alulation of the ar-length of an ellipse leads to a omplete ellipti integral of seond kind,

whih has no losed-form solution in terms of elementary funtions.) In this paper we have to

reate tools for the so-alled rolling proess, whih is a type of motion that ombines rotation

and translation of an objet with respet to a given urve. More preisely, we ombine two

urves suh that they are in ontat with eah other without sliding (no frition). Hene we

have to ompare the angle of rotations of the two urves by the fat that the swept ar-lengths

do agree in the time of the moving. This requires a nie onnetion between the angle of the

generalized rotation and the orresponding ar-length of the basi urve G.
The standard angle in the Eulidean plane an be obtained by onsidering ar-lengths in the

unit irle, and hene the angle theory an be given in terms of the Eulidean norm. Of ourse,

this an be arried over to Minkowski planes, and the general rotations given by the ar-length

measure are possibly the most natural rotations in normed planes. We head now to take a better

look at this partiular ase. We denote by l the Minkowski ar-length of a urve de�ned in the

usual way: as the supremum of the sums of the lengths of the polygonal approximations of γ.
Let γ ∈ (X, || · ||) be a losed reti�able Jordan urve starlike with respet to an inner point

p, and denote by µl the normalized Minkowski ar-length measure in γ. Formally, if q1, q2 ∈ γ,
then

µl(arcγ(q1, q2)) = 2π
l(arcγ(q1, q2))

l(γ)
.

Of ourse, µl is a generalized measure in the sense of De�nition 2.3.9. Sine the measure µl is
indued by the geometry of the plane rather than being inherent to γ, one may wonder how

the group R(γ, µl, p) does rely on the initial γ and p that we have hosen. For example, in

the Eulidean plane we an obtain the standard angle measure by onsidering the ar-length

measure in any homothet of the unit irle and doing the usual normalization. Our next lemma

shows that this is also true for arbitrary Minkowski planes.

Lemma 2.3.2. Let γ ∈ X be a losed reti�able Jordan urve starlike with respet to an inner

point p, and let µl be the (normalized) Minkowskian ar-length measure. Given α > 0, denote
by γα,p the urve p+ α(γ − p) homothetial to γ. Then R(γ, µl, p) = R(γα,p, µl, p).

Figure 2.15. rotπ
2
(v) = w

Despite having the good property shown above, the ar-length

rotations are not at all linear transformations. For this reason we

may fae some di�ulties when trying to derive losed formulas

for them. But we have some exeptions. Next we give an example

for the Minkowski ar-length rotation whih oinides with an

usual Eulidean rotation.

Example 2.3.2. Consider the norm || · ||∞ de�ned in R2
to be

||(x, y)||∞ = max{|x|, |y|}. The general rotation rotπ
2
: X → X

given by the Minkowski ar-length measure in the unit irle,

and with respet to the origin, oinides with the usual Eulidean

rotation of angle

π
2
. Indeed, the unit irle B of (R2, || · ||∞) is the

square with verties {(±1,±1)} whih, for the sake of simpliity

of the used notation, we may denote in the ounterlokwise way

by v1, v2, v3, and v4. If v ∈ [v1, v2], then rotπ
2
learly maps v to the point w of the segment

[v2, v3] for whih ||w − v3|| = ||v − v2|| (see Figure 2.15). �
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Translations are a simple kind of motion in Minkowski planes, and they are learly isometries.

The general rotations an also be seen as motions in the Minkowski plane, whih are not nees-

sarily isometries. Thus, we may onsider the omposition of translations and general rotations

to obtain a larger lass of motions in the Minkowski plane.

Definition 2.3.11 ([7℄). Let R(γ, µ, p) be a �xed group of general rotations, and for any v, w ∈
X let tvw : X → X denote the translation whih maps v to w, i.e., tvw(x) = x − v + w. We

de�ne the motion group generated by R(γ, µ, p) to be the group of appliations of the form

tpq ◦ rot ◦ tqp : X → X, where q ∈ X and rot ∈ R(γ, µ, p). When there is no possibility of

onfusion on the group of general rotations onsidered here, we will denote the motion group by

Mr.

Remark 2.3.2. Notie that the motion group assoiated to R(∂B, µl, o), where µl is, as usual,
the Minkowski ar-length measure, ontains all diretion-preserving isometries of the plane.

2.3.2.2. Motions of rigid systems in the Eulidean plane. Consider a plane Σ′
whih is

moving on the �xed plane Σ. The two simplest possibilities for suh movements are given by

translation and rotation. In Eulidean geometry we an substitute the planes with artesian

oordinate frames Oxy and O′uv. When we would like to desribe the motion of a point P
of the moving plane, we need the oordinates u, v of the point P in the moving frame, the

oordinates p, q of O′
in the �xed oordinate system, and the angle ϕ of the positive half of the

X-axis of the �xed frame with the positive half of the x-axis of the moving frame. We get the

oordinates x, y of the point P in the �xed system by

x = p+ u cosϕ− v sinϕ , y = q + u sinϕ+ v cosϕ.

Here p, q, ϕ are funtions of a quantity t whih determines the motion. (For example, t an
denote the time, or any other metri parameter.) Assume that ϕ(t) is not zero on an interval of

t. Then it an be inverted, and p, q an also be onsidered as a funtion of ϕ. (This assumption

says that our motion annot ontain translations in that domain. We all suh a motion non-

translative planar motion.) The derivative of the oordinate funtions with respet to ϕ gives

the oordinates of the veloity vetor of the point P . It is more onvenient to use vetor equality,

and hene we introdue some further notion. Let

R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)

denote the rotation about the origin with signed angle ϕ. Then the �rst equation array has the

form x = p+R(ϕ)u. If Q = R(π/2) denotes the rotation with π/2, we have the following rules:

Q2 = −E, Q3 = Q−1 = Q = −Q, Q4 = E,

where E is the unit matrix. We denote by "·" the derivative with respet to ϕ, whih means in this

setion the Eulidean ar-length parameter. It is lear that Ṙ = QR and thus

˙(R−1) = −QR−1
.

For every value of ϕ there is preisely one point u0 of the moving plane for whih the veloity

vetor vanishes. This is

u0 = QR−1ṗ.

This point u0 of the moving plane is a so-alled instantaneous enter (or instantaneous pole)

of the motion, and the set of these points is the moving polode (entroid), or urve γ′ of
instantaneous poles, of the moving plane. The points of the moving polode an also be obtained

as rest in the frame. These points x0 are desribed by

x0 = p+ Ru0 = p+Qṗ .

They form the so-alled �xed polode (entroid), or urve γ of instantaneous enters, in the �xed

plane. We examine the motion with respet to the point x0. If x is arbitrary, then x − x0 =
Ru−qṗ, and using the equality ẋ = ṗ+QRu, we have Qẋ = Qṗ+QRu. Sine x−x0 = Ru−Qṗ,
we get that

ẋ = Q(x− x0).
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Hene the veloity vetor of the motion at the point x is orthogonal to the position vetor from

x0 to x. This implies that the moving system in the given moment is a rotation about the enter

x0. Observe that the veloity vetors of the two polodes at their ommon point agree; in fat,

u̇0 =
˙QR−1ṗ = R−1ṗ+QR−1p̈ = ẋ0.

Hene the ar-length elements of the two urves agree, and we get that in every moment the

two urves are touhing. Also we see that their ar-lengths alulated from a point ϕ0 to the

point ϕ have the same value. Hene the moving polode γ′ rolls without slipping (or without

frition) on the �xed polode γ, and this is the only rolling proess whih orresponds to the

given motion of the planes. Hene we see the fat that every non-translatory planar motion

of a rigid mehanial system in the plane an be onsidered as the rolling proess of a urve

rigidly onneted with the system on a �xed urve in the plane. This motivates the so-alled

main theorem of planar kinematis, namely

Theorem 2.3.6 ([65℄). At every moment, any onstrained non-translatory planar motion an

be approximated (up to the �rst derivative) by an instantaneous rotation. The enter of this

rotation is alled the instantaneous pole. Thus, for eah position of the moving plane, we gen-

erally have exatly one point with veloity zero (as a result of that, the instantaneous pole is

also alled veloity enter).

This theorem leads to an interesting lass of urves in the Eulidean plane.

Definition 2.3.12 ([65℄). Given a urve γ′ assoiated with a plane Σ′
whih is moving so

that the urve rolls, without frition, along a given urve γ assoiated with a �xed plane Σ
and oupying the same spae. Then a point P attahed to Σ′

desribes a urve in Σ alled a

roulette.

Based on this rolling proess we an rewrite the de�nition of the motion of rigid systems.

Observe that every planar motion implies the motion of all points of the moving plane with

respet to the �xed one. These orbits are said to be roulettes. Thus, for the studied motion we

onsider two urves, also alled polodes, and a suitable rolling proess to determine the motion

of a singular point. For this purpose a method is needed to determine the �xed position of the

point P with respet to the moving polode. A usual method is to give a line through the point

P whih intersets the moving polode in the point Q and �xes the distane of P and Q and

the angle of the line PQ with the tangent line tQ of the moving polode at Q. Hene the hoie
of Q on the moving polode is arbitrary. Fix Q = w(0) and P = x(0). The points of the roulette
w(s) of Q an be obtained by the omposition of the following transformations: translate the

point γ′(s) into the origin, rotate the image of the point of γ(0) about the origin by the angle

ϕ(s) =
(
γ̇(s), γ̇′(s)

)
∠, and translate the obtained point by γ(s). Hene the roulette of Q in the

�xed system is given by

w(s) = R(ϕ(s))(−γ′(s)) + γ(s) = γ(s)− R(ϕ(s))(γ′(s)).

Sine the roulette x(s) of the point P an be desribed by the formula x(s) = w(s)+R(ϕ(s))p,
we get

(21) x(s) = γ(s) + R(ϕ(s)) (p− γ′(s)) .

This means that if we have two touhing ars γ(s) and γ′(s) of a plane Σ, and we assoiate to

the seond ar a moving plane Σ′
in whih its position is �xed, then the rolling proess of γ′(s)

on γ(s) (loally) determines an orbit of every point of Σ′
in a unique way. In the Eulidean

plane, (21) shows that in every moment with respet to varying p we have an isometry. Hene

the rolling proess of the ars determines a rigid motion of the plane Σ′
. This representation is

loally unique, sine a rigid motion uniquely determines its polodes. Hene we have

Theorem 2.3.7 ([7℄). If γ, γ′ : [0, β] → R2
are two simple Jordan ars with ommon touhing

point γ(0) = γ′(0) suh that s is the ar-length parameter of both of them (onsidered from the
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points γ(0), γ′(0) to the points γ(s), γ′(s), respetively), then for every s ∈ [0, β] we have an

isometry Φs sending the original position vetor p into the instantaneously position Φs(p). If γ
and γ′ have, for all s ∈ [0, β], unique tangents at their points γ(s) and γ′(s), respetively, then,
for all s ∈ [0, β], Φs is uniquely determined and an be desribed by the vetor equation

Φs(p) = γ(s) + R(
(
γ̇(s), γ̇′(s)

)
∠) (p− γ′(s)) .

Here γ̇(s) and γ̇′(s) denote the unit tangent vetors at γ(s) and γ′(s), respetively, and R(θ) is
the rotation with the angle θ. For �xed p, the graph of the funtion Φ(·)(p) : [0, β] → Σ is said

to be the roulette of the point P = p ∈ Σ for the rigid motion given by the system of isometries

{Φs : s ∈ [0, β]}.
2.3.2.3. Flexible motions of a Minkowski plane. Our purpose now is to extend Theorem

2.3.7 to Minkowski planes. For this purpose we de�ned already the motion group Mr of the

Minkowski plane, whih is a good analogue of a motion group of the Eulidean plane. Clearly,

we have to omit the ondition that a motion is an isometry, due to the smallness of the a-

tual isometry group in a Minkowski plane. Of ourse, any motion group Mr ontains all the

translations. On the other hand, it is possible that the image of a metrial segment under a

general rotation is not a metrial segment. Hene the onept of Eulidean rigid motions has

to be rede�ned. This is not a strange projet beause of in pratie there is no rigid motion. To

a plausible example onsider the rolling proess of a wheel of a ar. Sine the tyre ontinuously

hange its shape to a good modelling of this motion we should omit the requirement that the

motion is rigid. (See Fig 2.16.)

a=k- x +xarcsin( )

2k=p

Figure 2.16. Motion of a wheel. The ar-lengths between the points labelled

with irles are hanging, ontinuously.

We onentrate on Theorem 2.3.7 for the Eulidean planar motions, and we will onsider from

now on that the motion group Mr is the motion group assoiated with the group of general

rotations R(∂B, µl, o). In other words, we will onsider the rotations by ar-length of the unit

irle with respet to the origin.

Definition 2.3.13. The reti�able Jordan urve γ′(s) rolls without slipping on the reti�able

Jordan urve γ(s) if in every moment s ∈ [0, β] the two urves touh eah other, and the

respetive ar-lengths alulated from their ommon point γ(0) = γ′(0) to the other one γ(s) =
γ′(s) are equal to eah other and also to the ommon parameter s.

Having the rolling proedure and the motion group Mr, we an de�ne the ontinuous (but

not rigid) motions of a Minkowski plane. Assume that in this setion any onsidered urve is

a reti�able Jordan urve, with unique tangent at all of its points, respetively. We denote the

unit tangent vetor of γ at its point γ(s) by γ̇(s). (Sine s means the ar-length parameter, this

notation orresponds to the usual Eulidean notation based on the ar-length derivative of the

position vetor.)

Definition 2.3.14. If the reti�able Jordan urve γ′(s) rolls, without slipping, on the reti�able

Jordan urve γ(s), then we de�ne the �exible motion orresponding to the rolling urves γ and

γ′ as the following set of mappings:

{Φs(p) = γ(s) + R(ϕs) (p− γ′(s)) : s ∈ [0, β]},
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where R(ϕs) ∈ R(∂B, µl, o) denotes the general rotation whih maps the (oriented) diretion

γ̇(s) to the (also oriented) diretion γ̇′(s). A urve given by the graph of a �xed point p = P is

alled the roulette of P .

The vetor

∂R(ϕ)
∂ϕ

(x) = limε→0
R(ϕ+ε)(x)−R(ϕ)(x)

ε
is the tangent vetor of |x|∂B at the point x.

This means that

∂R(ϕ)
∂ϕ

(x) is Birkho� normal to the vetor R(ϕ)(x). (For relations between

semi inner produts and Birkho� orthogonality, see, e.g., [8℄ or [9℄.) Denote by Q that mapping

whih sends the vetors to their Birkho� normals with the same norm, and by Q−1
the mapping

whih sends the vetors to their Birkho� transversals with the same lengths. (Note that Birkho�

orthogonality is not a symmetri relation; see, e.g., [115℄ or [119℄. So, in general, if x is Birkho�

normal to y, then y not to x. However, we have a possibility to "reverse� the formulation "x is

Birkho� normal to y". We say in this ase that y is transversal to x.) Sine the tangent vetor
of the roulette of P at the point with parameter s is

Φ̇s(p) = γ̇(s) + Q(R(ϕ(s))(p− γ′(s))ϕ̇(s)− R(ϕs)γ̇
′(s) = Q(R(ϕ(s))(p− γ′(s))ϕ̇(s),

we get that

[
Φ̇s(p),Φs(p)− γ(s)

]
= 0. Hene we obtain

Statement 2.3.1 ([7℄). The veloity vetor of the �exible motion of a point Φs(p) of the roulette
in a moment s is Birkho� normal to that vetor Φs(p)−γ(s) whih shows from the point to the

instantaneous pole of the motion.

From Statement 2.3.1 we an see that our de�nition yields the same kinematis in the Minkowski

plane as given by usual motions of rigid systems in the Eulidean plane.

2.3.2.4. Curvature and the Euler-Savary equations. We proved the so-alled Euler-Savary

equations (see [129℄) for normed planes. In spae-time this was investigated by several authors

(e.g. Ikawa [91℄, [51℄, [52℄). Ikawa de�ned roulettes and proved the Euler-Savary equations for

normed planes, with respet to this semi-Riemannian geometry of onstant urvature. Beause

of the rih isometry group of this plane, the validity of these results is not so surprising as in

our ase.

In this setion we have to assume seond order di�erentiability of the unit irle, and we have to

introdue the onepts of urvature and urvature radius of a urve, respetively. Fortunately,

in Minkowski planes several suh onepts are known. Curvatures for urves in Finsler spaes

were introdued for dimension n = 2 by Underhill [142℄ and Landsberg [100℄. For general n
they were introdued by Finsler [59, 60℄. The de�nitions oinide for n = 2. The underlying

idea of these de�nitions is this: If γ(s) is a urve with tangent t at a given point q, then the line

parallel to this tangent through the origin intersets the unit irle in a point q′ (in fat, in a

pair of points, but it will not matter whih point is hosen). There is exatly one ellipsoid with

the origin as enter through q′ whih has at q′ the same seond di�erential as the unit irle.

This ellipsoid determines a Eulidean metri E(q). Finsler de�nes the urvatures of γ(s) at q
as the urvatures at q of γ(s) as a urve in E(q). Obviously, E(q) exists only if the unit irle

has a seond di�erential at q′ and the indiatrix is a non-degenerate ellipse. Atually, this idea

is signi�ant only if C is of lass C2
and has positive Gauss urvature. Thus γ(s) may not even

have a urvature when it is analyti.

There exists another de�nition of urvature for urves in general spaes whih is due to Menger

[120℄ (for modi�ations of this onept see [87℄). Haantjes' urvature oinides with that of

Finsler. Hene Haantjes' main result in [87℄ means that, in Minkowski spaes, Menger's de�ni-

tion oinides with Finsler's de�nition.

In [36℄, Busemann gave another onept of urvature

3

.

3

There is a nie onnetion between the onepts of urvature given by Finsler and Busemann. In a

Minkowski plane, the Finsler urvature χf and the urvature χ of Busemann of a urve γ(s) at a point P ,
with position vetor p, are related by

(χf (P ))2 =
χ2(P )

χT (p)
,
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In n-dimensional Minkowski spae let γ(s) be a urve whih is, in the Eulidean sense, of lass

Cr
and parametrized by the Minkowskian ar-length s. Let γ(si), i = 0, 1, . . . , n, be n+1 points

on γ(s). Let Tr denote the r-dimensional Minkowski volume of the r-dimensional simplex that

is spanned by the points γ(si), i = 0, 1 . . . r. Then we de�ne the (r − 1)-th urvature χr−1 of

the urve γ in its point γ(s) by the limit

χr−1(s) =
r2

r − 1
lim
si→s

1

‖γ(sr)− γ(s0)‖
TrTr−2

Tr−1T ⋆r−1

(see [36℄), where T ⋆r−1 denotes the volume of the (r − 1)-dimensional simplex spanned by the

points γ(si), i = 1, . . . r. Let Dr be the following quantity:

Dr(s) = r!

r∏

i=1

i! lim
si→s

Tr∏
i<j

‖γ(si)− γ(sj)‖
.

Then for Dr−2(s) 6= 0 we get the following form of the urvature funtion:

χr−1(s) =
Dr(s)Dr−2(s)

D2
r−1(s)

.

This formula an be rewritten by the onept of the general sine funtion of two �ats of the

n-dimensional Minkowski spae, but we need only the ase of dimension 2. Hene, using that

D0(s) = 1, the urvature is

χγ(s) := χ1(s) =
D2(s)

D2
1(s)

= 2 lim
s0,s1,s2→s

sm(g(γ(s0), γ(s1)), g(γ(s1), γ(s2)))

‖γ(s2)− γ(s0)‖
,

where g(x, y) denotes the line through x and y.
A urve γ(s) having urvature in Eulidean sense has also urvature in the sense of Busemann.

These two urvatures an be ompared. For this purpose we have to use the σ-funtion in-

trodued by Busemann. Let Vr be an r-�at of a Minkowski spae of dimension n. If U(Vr) is
the set in whih the r-�at, parallel to Vr and passing through the origin, intersets the solid

Minkowskian unit sphere, then we de�ne σ(Vr) as the ratio of the r-dimensional volume of the

r-dimensional unit ball and the Eulidean volume of U(Vr). Observe that if γ(s) is a C
1
urve

with tangent line tP and veloity vetor γ̇(s) at the point P = γ(s), then by the de�nition of

Minkowski length we have ‖γ̇(s)‖ = σ(tP )‖γ̇(s)‖E, where ‖ · ‖E means the Eulidean norm.

Busemann [36℄ proved that if χE(P ) denotes the Eulidean urvature of γ(s) at the point P ,
tP is written for the tangent line of γ(s) at P , and TP is the osulating plane of the urve at

P , then

χ(P ) =
σ(TP )

σ3(tP )
χE(P ).

We use these formulas to establish a lose analogue to the Euler-Savary theorem on rigid motions

in the Eulidean plane. First of all, we onsider two urves γ and γ′. Hene we have to use a

suitable lower subsript for the urvature funtion. We also have the onept of urvature radius

rγ whih is, as well-known, the reiproal value of the urvature at the given point K = γ(s).
With these notions we are able to formulate

Theorem 2.3.8 (Seond Euler-Savary equation). If the unit irle of the Minkowski plane is

two times ontinuously di�erentiable, then the following equality holds:

(22) χγ − χγ′ =
1

rγ
− 1

rγ′
=
σ(TK)

σ2(tK)

1

αK
.

Here rγ is the urvature radius of the �xed polode at its point K = γs, rγ′ is the urvature radius
of the moving polode at its point K = γ′s, and αK is the length of the ommon veloity vetor of

the �xed and moving polodes at the moment s and at the instantaneous pole K = γ(s) = γ′(s).

where χT (p) is the urvature of the isoperimetrix (see [35℄) at a point p (the tangent of the isoperimetrix has

to be parallel to the tangent of γ(s) at p).
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Figure 2.17. The point L

To prove an analogue of the �rst Euler-Savary equation, we need

a deeper investigation of the Busemann urvature. Let tK be

the ommon tangent of the polodes at their ommon point K,

whih is the x-axis of a Eulidean orthogonal oordinate system

(x, y). We denote by O,O′
the urvature enters of the urves

γ(s) and γ′(s), respetively. Then O and O′
oinide with the

line y and χEγ (K) = 1/‖KO‖E, χEγ′(K) = 1/‖KO′‖E . Denote
by P any point of the moving plane orresponding to the urve

γ′ with the vetor p =
−−→
KP . As we saw in Statement 2.3.1, the

line nP of the points K,P ontains the Minkowskian urvature

enter of the roulette of P , sine it is Birkho� normal to the

tangent tP at P . Denote this point by P ′
. We have at γ(0) =

γ′(0) = K that R(ϕ(0)) = id, and γ̇(0) = vK , where vK is the

ommon (Minkowskian) veloity vetor at K. Hene we have

the equality vP := ∂(Φs(p))
∂s

∣∣∣
0
= Q(R(ϕ(s))(p− γ′(s)))ϕ̇(s)|0 =

Q(
−−→
KP )ϕ̇0. Thus, the aeleration vetor aP is

aP =
∂vP
∂s

∣∣∣∣
0

= lim
ε→0

Q(R(ϕ(ǫ)))(p − γ′(ǫ))ϕ̇(ǫ)−Q(R(ϕ(0))(p− γ′(0)))ϕ̇(0)

ε
+Q(

−−→
KP )ϕ̈(0) =

= ϕ̇(0)

(
lim
ε→0

Q(R(ϕ(ǫ)))(p − γ′(ǫ))−Q(p− γ′(ǫ))

ε
+ lim
ε→0

Q(p− γ′(ǫ))−Q(p− γ′(0))

ε

)
+ Q(

−−→
KP )ϕ̈(0).

Observe that if Q would be an additive funtion and we ould hange it with the limit proess,

then the �rst term in the braket ould be simpli�ed to the quantity QQ(
−−→
KP )ϕ̇(0) and the

seond one is nothing else than the veloity vetor of the moving polode at zero. (In our ase

it is also the veloity vetor of the �xed polode.) In general this is not so, sine the additivity

of the operation Q implies that the spae is Eulidean with a standard inner produt. Thus,

for further investigations we need a quantity whih measures the di�erene between the given

limits and the optimal values (attended by the ase of inner produt planes). This motivates

the following lemma.

Lemma 2.3.3. [7℄ Assume that γ(s) is a urve of C1
type parametrized by its ar-length. If

a, b, c ∈ γ(s) and tc denotes the tangent of the urve γ(s) at its point c, then we have

lim
a,b→c

Q(b)−Q(a)

‖b− a‖ =
1

σ(tc)
Q2(c).

By Lemma 2.3.3 we get an expression for the aeleration vetor above, namely

aP = ϕ̇2(0)

(
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

))
+Q(

−−→
KP )ϕ̈(0),

where vK means the ommon veloity vetor of the urves γ(s), γ′(s) at K = γ(0) = γ′(0).
We now introdue a point L (see Figure 2.17) suh that

−→
LP = −

(
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

))
,

hene the aeleration may be written as aP = ϕ̈(0)Q(
−−→
KP )− ϕ̇2(0)

−→
LP . Observe that Q(

−−→
KP ) is

normal to the vetor

−−→
KP , and that it has no omponent parallel to

−−→
KP . The vetor −ϕ̇2(0)

−→
LP

lies along g(L, P ) and is direted toward L, so its projetion ontributes to both omponents

(one of them parallel to g(K,P ), and the other one normal to it) of the aeleration vetor.

Hene a unique situation exists if

−→
LP is normal to

−−→
KP . In this ase, the aeleration vetor has

no omponent parallel to g(K,P ) implying that the radius of urvature of its path is in�nite.

Definition 2.3.15. [7℄ The lous of all points P for whih

−→
LP is normal to

−−→
KP is the in�etion

urve of the motion. The point L is the in�etion pole of the motion.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



66 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

The in�etion urve is the "Thales irle" of the segment KL with respet to Birkho� orthog-

onality. We have to prove the following properties of it:

Statement 2.3.2. [7℄ The in�etion urve ι is a losed urve. It is starlike with respet to the

point K if the unit irle is smooth. However, in general it does not bound a onvex domain.

Finally, if it is a Minkowski irle for all segments (at least one segment) of the normed plane,

then the plane is Eulidean.

To prove the starlike property, onsider the notation of Fig. 2.18.

K

L

Figure 2.18. The urve of in�etion

By the physial meaning of the aeleration vetor, the

absolute value of the normal omponent of this ve-

tor is ϕ̇2(0)‖−−→KP‖2χ(P ) = ϕ̇2(0) ‖
−−→
KP‖2

‖−−−→POP ‖
, where χ(P ) and

‖−−→POP‖ are the urvature and the urvature radius RP

of the roulette at P , respetively. Along the path, the

diretion is always normal. If this normal is oriented

from K to P , then the magnitude and orientation of

the normal omponent of the aeleration vetor may

be de�ned in terms of real numbers, and it will be posi-

tive if POP is positive, i.e., if it has the same orientation

as KP . If POP has orientation opposite to that of KP ,
it will be negative.

On the other hand, it an also be obtained from the length of the orthogonal projetion of

ϕ̇2(0)
−→
PL to the path normal line g(P,K). Hene we have

ϕ̇2(0)
‖−−→KP‖2

‖−−→POP‖
= ϕ̇2(0)

[
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

)
, (
−−→
KP )0

]
,

with (
−−→
KP )0 as unit vetor. Denote the seond intersetion point of the line g(K,P ) with the

in�etion urve by IP . Then

−−→
PIP =

‖−−→KP‖2

‖−−→POP‖
(
−−→
KP )0 =

[
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

)
, (
−−→
KP )0

]
(
−−→
KP )0 ,

and so we have the equality

‖−−→KP‖2

‖−−→OPP‖
= ‖−−→IPP‖.

Hene we get the following geometri form of the �rst Euler-Savary theorem.

Theorem 2.3.9. [7℄ The instantaneous enter K and the urvature enter OP of the roulette

at its point P 6= K satisfy the equality

‖−−→OPP‖ =
‖−−→KP‖2

‖−−→IPP‖
,

where the seond intersetion point of the path normal line at P with the in�etion urve is the

point IP .

By the law of sine introdued earlier, OPP and IPP are always marked o� in the same orienta-

tion along the line KP . Thus, when IP has been established, the orientation of IPP gives the

orientation of OPP . Hene equality above has an equivalent form for direted segments (with

Minkowski lengths):

1

KP
− 1

KOP
=

1

KIP
.

From this equality we an see immediately that the urvature radius of the point of the in�etion

urve is in�nite. Similarly, the enters of path urvature of all points at in�nity are on the return
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urve obtained as the image of the in�etion urve under re�etion at the point K. To see a

onnetion between the two Euler-Savary equations, we give a onnetion between KIP and

αK whih is the length of the ommon veloity vetor of the �xed and moving polodes at K.

Before disussing it, we de�ne Busemann's sine funtion sm : L×L → R from the pairs of lines

to the �eld of reals. If a, b ∈ L and sa, sb are two segments on these lines, respetively, then we

an de�ne the parallelogram π(sa, sb) that is spanned by sa and sb. If we write area(π(sa, sb))
for the Busemann area of π(sa, sb) and take into onsideration the Minkowski lengths |sa|, |sb|
of sa and sb, then the Minkowski sine funtion of Busemann an be de�ned as follows:

(23) sm(a, b) :=
area(π(sa, sb))

‖sa‖‖sb‖
.

From the de�nitions of Minkowski length and Minkowski area it follows that sm(a, b) is not

depending on the segments sa and sb. Thus, it depends only on the lines a, b. For the sine

funtion sm(g1, g2) of Busemann the theorem of sines holds, and it is ompatible with the

normality onept of Birkho�. Hene we have

‖−−→KIP ‖
‖−−→KL‖

=
sm(g(K,L), g(L, IP ))

sm(g(K, IP ), g(L, IP ))
=

sin(g(K,L), g(L, IP ))
σ(TK)

σ(g(K,L))σ(g(IP ,L))

sin(g(K, IP ), g(L, IP ))
σ(TK)

σ(g(K,IP ))σ(g(IP ,L))

= sinΨ
σ(g(K,P ))

σ(g(K,L))
,

where Ψ is the Eulidean angle between the tangent line tK at K and the line g(K,P ). From
this we get the ommon form of the �rst and seond Euler-Savary equations. By(

1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ(tK)σ(g(K,P ))

σ(TK)
=

(
1

KP
− 1

KOP

)
sin Ψ =

σ(g(K,L))

σ(g(K,P ))

1

KL
,

and using that the veloity vetor vK of the instantaneous pole at K is equal to VK =

ṡ(0) ∂γ(s(ω))
∂s

∣∣∣
0
= αKv

0
K , we get that the aeleration vetor is aK = s̈(0)v0K + αKn

0
K . This

implies that its normal omponent is [n0
K , aK ]n

0
K = αKn

0
K . On the other hand, from the de�ni-

tion of the point L and the ontinuity property of the examined urves we get that if P tends

to K, then

−→
LP tends to

−−→
LK =

1

σ(tK)
Q

(
vK
ϕ̇(0)

)
.

So we have ‖−−→LK‖ = αK/ (σ(tK)ϕ̇(0)), and if we assume that the length of the direted segment

KL is positive, then we get

(
1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ(tK)σ2(g(K,P ))

σ(TK)σ(g(K,L))
=

1

‖−−→KL‖
=
σ(tK)ϕ̇(0)

αK
=
σ(tK)ϕ̇(0)σ2(tK)

σ(TK)
(χγ − χγ′) .

This yields the ombined formula of the two Euler-Savary equations, namely(
1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ2(g(K,P ))

σ2(tK)σ(g(K,L))
= ϕ̇(0) (χγ − χγ′) =

ϕ̇(0)

σ2(tK)

1

αK
,

where we assume that σ(TK) = areaB = 1.
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CHAPTER 3

From the semi-inde�nite inner produt to the time-spae manifold

The phrase "Minkowski spae" do not distinguish between two theories: the theory of normed

linear spaes and the theory of linear spaes with inde�nite metri. For �nite dimensions both

are alled Minkowski spaes in the literature. It is interesting that these essentially distint

theories of mathematis have similar axiomati foundations. The axiomati examination of the

theory of linear spaes with inde�nite metri omes from H. Minkowski [123℄ and the similar

system of axioms of normed linear spaes was introdued by Lumer in [108℄. The �rst onept

widely used in physis: this is the mathematial struture of relativity theory and thus there is

no doubt about its importane. The usability of the seond one is based on the fat that modern

funtional analysis works in general normed spaes, and the Lumer-Giles theory of semi inner

produt gives a possibility to handling it by methods used originally in Hilbert spaes. We saw

the basi properties of the latter in Setion 2.2. The other onept is based on the following

system of axioms. (See, e.g., [66℄.)

Definition 3.0.16 ([66℄). The inde�nite inner produt (i.i.p.) on a omplex vetor spae V is

a omplex funtion [x, y] : V × V −→ C with the following properties:

i1: : [x+ y, z] = [x, z] + [y, z],
i2: : [λx, y] = λ[x, y] for every λ ∈ C,

i3: : [x, y] = [y, x] for every x, y ∈ V ,
i4: : [x, y] = 0 for every y ∈ V then x = 0.

A vetor spae V with an i.i.p. is alled an i.i.p. spae.

The standard mathematial model of spae-time is a four dimensional i.i.p. spae with signa-

ture (+,+,+,−), also alled Minkowski spae in the literature. Thus we have a well known

homonymism with the notion of Minkowski spae!

Now we ollet the ommon properties of the semi- and inde�nite-inner-produts and de�ne

the semi-inde�nite inner produt as well as the orresponding semi-inde�nite inner produt

spae. We also give a generalized onept of Minkowski spae embedded in a semi-inde�nite

inner produt spae. In generalized Minkowski spae and generalized spae-time model with

hanging shape we investigate some important hypersurfaes giving a generalization either for n-
dimensional hyperboli spae or the n-dimensional de Sitter spae. Following our investigations

in the Appendix we introdue the so-alled time-spae manifold, whih is an analogous of the

Lorentzian manifold in a generalized spae-time model with hanging shape and we give a

version of general relativity theory valid in this struture.

3.1. Semi-inde�nite inner produt spaes

Let s1, s2, s3, s4, and s5 be the �ve de�ning properties of an s.i.p. with the homogeneity

property (see in Setion 2.2). (As to the names: s1 is the additivity property of the �rst

argument, s2 is the homogeneity property of the �rst argument, s3 means the positivity of

the funtion, s4 is the Cauhy-Shwartz inequality and s5 is the homogeneity property of the

seond argument.)

On the other hand, learly i1=s1, i2=s2, and the properties i3 and i4 are the antisymmetry

property and the nondegeneray property of the inde�nite inner produt, respetively. It is easy

to see that s1, s2, s3, s5 imply i4, and if N is a positive (negative) subspae of an i.i.p. spae,

then s4 holds on N . In the following de�nition we ombine the onepts of s.i.p. and i.i.p..

69
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70 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

Definition 3.1.1 ([8℄). The semi-inde�nite inner produt (s.i.i.p.) on a omplex vetor spae

V is a omplex funtion [x, y] : V × V −→ C with the following properties:

1: [x+ y, z] = [x, z] + [y, z] (additivity in the �rst argument),

2: [λx, y] = λ[x, y] for every λ ∈ C (homogeneity in the �rst argument),

3: [x, λy] = λ[x, y] for every λ ∈ C (homogeneity in the seond argument),

4: [x, x] ∈ R for every x ∈ V (the orresponding quadrati form is real-valued),

5: if either [x, y] = 0 for every y ∈ V or [y, x] = 0 for all y ∈ V , then x = 0 (nonde-

generay),

6: |[x, y]|2 ≤ [x, x][y, y] holds on non-positive and non-negative subspaes of V, respe-

tively. (the Cauhy-Shwartz inequality is valid on positive and negative subspaes,

respetively).

A vetor spae V with a s.i.i.p. is alled an s.i.i.p. spae.

The interest in s.i.i.p. spaes depends largely on the example spaes given by the s.i.i.p. spae

struture.

Example 3.1.1. We onlude that an s.i.i.p. spae is a homogeneous s.i.p. spae if and only

if the property s3 holds, too. An s.i.i.p. spae is an i.i.p. spae if and only if the s.i.i.p. is

an antisymmetri produt. In this latter ase [x, x] = [x, x] implies 4, and the funtion is

also Hermitian linear in its seond argument. In fat, we have: [x, λy + µz] = [λy + µz, x] =

λ[y, x] + µ[z, x] = λ[x, y] + µ[x, z]. It is lear that both of the lassial "Minkowski spaes" an

be represented either by an s.i.p or by an i.i.p., so automatially they an also be represented

as an s.i.i.p. spae.

Example 3.1.2. In an arbitrary omplex normed linear spae V we an de�ne an s.i.i.p. whih

is a generalization of a representing s.i.p. of the norm funtion. Let now C be the unit sphere of

the spae V . By the Hahn-Banah theorem there exists at least one ontinuous linear funtional,

and we hoose exatly one suh that ‖ṽ⋆‖ = 1 and ṽ⋆(v) = 1. Consider a sign funtion ε([v])
with value ±1 on C/ ∼, where C/ ∼ means the fatorization of C by the equivalene relation

”x ∼ y ⇔ x = λy with a nonzero λ”.

If now ε([v]) = 1 let it be denoted by v⋆ = ṽ⋆, and ε([v]) = −1 de�nes v⋆ = −ṽ⋆. Finally, extend
it homogeneously to V by the equality (λv)⋆ = λv⋆. Of ourse, for an arbitrary vetor v of V
the orresponding linear funtional satis�es the equalities v⋆(v) := ε([v])‖v‖2 and ‖v‖ = ‖v⋆‖.
Now the funtion

[u, v] = v⋆(u)

satis�es 1-5. If U is a non-negative subspae, then it is positive and we have for all nonzero

u, v ∈ U that

|[u, v]| = |v⋆(u)| = |v⋆(u)|
‖u‖ ‖u‖ ≤ ‖v⋆‖‖u‖ = ‖v‖‖u‖,

proving 6.

To de�ne the generalized Minkowski spae we need a lemma:

Lemma 3.1.1 ([8℄). Let (S, [·, ·]S) and (T,−[·, ·]T ) be two s.i.p. spaes. Then the funtion [·, ·]− :
(S + T )× (S + T ) −→ C de�ned by

[s1 + t1, s2 + t2]
− := [s1, s2]− [t1, t2]

is an s.i.p. on the vetor spae S + T .

Proof. The funtion [·, ·]− is non-negative, as we an easily see from its de�nition. First we

prove the linearity in the �rst argument. We have

[λ′(s′ + t′) + λ′′(s′′ + t′′), s+ t]− = [λ′s′ + λ′′s′′, s]S − [λ′t′ + λ′′t′′, t]T =

= λ′[s′, s]S + λ′′[s′′, s]S − λ′[t′, t]T − λ′′[t′′, t]T = λ′[s′ + t′, s+ t]− + λ′′[s′′ + t′′, s+ t]−.
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3.1. SEMI-INDEFINITE INNER PRODUCT SPACES 71

The homogeneity in the seond argument is trivial. In fat, we have

[s′ + t′, λ(s+ t)]− = [s′, λs]S − [t′, λt]T = λ[s′ + t′, s+ t]−.

Finally we hek the Cauhy-Shwartz inequality. We have

|[s1+t1, s2+t2]−|2 = [s1+t1, s2+t2]
−[s1 + t1, s2 + t2]− = ([s1, s2]S−[t1, t2]T )([s1, s2]S−[t1, t2]T ) =

= [s1, s2]S[s1, s2]S + [t1, t2]T [t1, t2]T + [s1, s2]S(−[t1, t2]T ) + (−[t1, t2]T )[s1, s2]S ≤
≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2Re{[s1, s2]S(−[t1, t2]T )} ≤

≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2|[s1, s2]S||[t1, t2]T | ≤
≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2

√
[s1, s1]S[s2, s2]S[t1, t1]T [t2, t2]T ,

and by the inequality between the arithmeti and geometri means we get that

[s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2
√
[s1, s1]S[s2, s2]S[t1, t1]T [t2, t2]T ≤

≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + [s1, s1]S(−[t2, t2]T + (−[t1, t1]T )[s2, s2]S =

= ([s1, s1]S − [t1, t1]T )([s2, s2]S − [t2, t2]T ) = [s1 + t1, s1 + t1]
−[s2 + t2, s2 + t2]

−.

�

It is possible that the s.i.i.p. spae V is a diret sum of its two subspaes where one of them

is positive and the other one is negative. Then we have two more strutures on V , an s.i.p.

struture (by Lemma 3.1.1) and a natural third one, whih we will all Minkowskian struture.

More preisely, we have

Definition 3.1.2 ([8℄). Let (V, [·, ·]) be an s.i.i.p. spae. Let S, T ≤ V be positive and negative

subspaes, where T is a diret omplement of S with respet to V . De�ne a produt on V by

the equality [u, v]+ = [s1 + t1, s2 + t2]
+ = [s1, s2] + [t1, t2], where si ∈ S and ti ∈ T , respetively.

Then we say that the pair (V, [·, ·]+) is a generalized Minkowski spae with Minkowski produt

[·, ·]+. We also say that V is a real generalized Minkowski spae if it is a real vetor spae and

the s.i.i.p. is a real valued funtion.

The Minkowski produt de�ned by the above equality satis�es properties 1-5 of the s.i.i.p.. But

in general, property 6 does not hold. To see this, de�ne an s.i.i.p. spae in the following way:

x

y

z

z=1/2y

max{|x|,|y|}
2
-1/4y

2
=1

Figure 3.1. The unit sphere of a positive subspae of the Example

Consider a 2-dimensional L∞
spae S of the embedding three dimensional Eulidean spae E3

.

Choose an orthonormed basis {e1, e2, e3} of E3
for whih e1, e2 ∈ S, and give an s.i.p. assoiated

to the L∞
norm as follows:

[x1e1 + x2e2, y1e1 + y2e2]S := x1y1 lim
p→∞

1
(
1 +

(
y2
y1

)p)p−2
p

+ x2y2 lim
p→∞

1
(
1 +

(
y1
y2

)p) p−2
p

.

By Lemma 3.1.1 the funtion

[x1e1 + x2e2 + x3e3, y1e1 + y2e2 + y3e3]
− := [x1e1 + x2e2, y1e1 + y2e2]S + x3y3
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72 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

is an s.i.p. on E3
assoiated to the norm

√
[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]− :=

√
max{|x1|, |x2|}2 + x23.

By the method of Example 3.1.2 onsider suh a sign funtion for whih ε(v) is equal to 1 if v
is in S ∩ C, and is equal to −1 if v = e3 holds. (C denotes the unit sphere, as in the previous

examples.) This sign funtion determines an s.i.i.p. [·, ·] and thus generates a Minkowski produt

[·, ·]+, for whih the orresponding square root funtion is

f(v) :=
√

[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]+ =
√
max{|x1|, |x2|}2 − x23.

As it an be easily seen, the plane x3 = αx2 for 0 < α < 1 is a positive subspae with respet

to the Minkowski produt, but its unit ball is not onvex (see Fig. 3.1).

But f(v) is homogeneous, orrespondingly it is not subadditive. Sine the Cauhy-Swartz

inequality implies subadditivity, this inequality remains false in this positive subspae.

S

T

Figure 3.2. The ase of the norm L∞.

Giles in [64℄ gave an assoiated s.i.p. for Lp spaes. Using the method of our Example 3.1.2, we

an de�ne s.i.i.p. spaes based on the Lp struture. Let (S, [·, ·]S) be the s.i.p. spae, where S is

the real Banah spae Lp1(X,S, µ) and T is the real Banah spae Lp2(Y,S ′, ν), respetively. If
1 < p1, p2 ≤ ∞, then these spaes an be readily expressed, as a uniform s.i.p. spae with s.i.p.

de�ned by

[s1, s2]S =
1

‖s2‖p1−2
p1

∫

X

s1|s2|p1−1
sgn (s2)dµ

and

[t1, t2]T =
1

‖t2‖p2−2
p2

∫

Y

t1|t2|p2−1
sgn (t2)dν,

respetively. Consider the real vetor spae S + T with the s.i.p.

[u, v]− := [s1, s2]S + [t1, t2]T .

This is also a uniform s.i.p. spae, sine in Lemma 3.1.1 we proved that it is an s.i.p. spae and

|[z, x]− [z, y]| = |([s3, s1]S − [s3, s2]S) + ([t3, t1]T − [t3, t2]T )| ≤
≤ |[s3, s1]S − [s2, s1]S|+ |[t3, t1]T − [t2, t1]T | ≤ 2(p1 − 1)‖s1 − s2‖p1 + 2(p2 − 2)‖t1 − t2‖p2,

implying that the spae is uniformly ontinuous. It has been established that suh spaes are

uniformly onvex (see [38℄, p. 403). We ould de�ne an s.i.i.p spae on S + T suh that the

subspae S is positive and T is a negative one, and a Minkowski spae by the Minkowski

produt [u, v]+ := [s1, s2]S − [t1, t2]T , respetively. (In Fig. 3.2 one an see the ase when

dimS = dim T + 1 = 2 and the norm of S is L∞.)

We de�ne the orthogonality of suh a spae by a de�nition analogous to the de�nition of the

orthogonality of an i.i.p. or s.i.p. spae.
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3.2. GENERALIZED SPACE-TIME MODEL 73

Definition 3.1.3 ([8℄). The vetor v is orthogonal to the vetor u if [v, u] = 0. If U is a subspae

of V , de�ne the orthogonal ompanion of U in V by U⊥ = {v ∈ V |[v, u] = 0 for all u ∈ U}. A
vetor v is neutral vetor if [v, v] = 0.

We note that, as in the i.i.p. ase, the orthogonal ompanion is always a subspae of V .

Theorem 3.1.1. [8℄ Let V be an n-dimensional s.i.i.p. spae. Then the orthogonal ompanion

of a non-neutral vetor u is a subspae having a diret omplement of the linear hull of u in V .
The orthogonal ompanion of a neutral vetor v is a degenerate subspae of dimension n − 1
ontaining v.

We omit the easy proof.

Remark 3.1.1. The proof of Theorem 3.1.1 does not use the property 6 of the s.i.i.p.. So

this statement is true for any onepts of produt satisfying properties 1-5. As we saw, the

Minkowski produt is also suh a produt. It an be proved also that in a generalized Minkowski

spae, the positive and negative omponents S and T are Pythagorean orthogonal to eah other.

In fat, for every pair of vetors s ∈ S and t ∈ T , by de�nition we have [s − t, s − t]+ =
[s, s] + [−t,−t] = [s, s]+ + [t, t]+.

The following theorem will be a ommon generalization of the theorem on diameters onjugated

to eah other in a real, �nite dimensional normed linear spae, and a theorem on the existene of

an orthogonal system in an i.i.p. spae. A set of n diameters of the unit ball of an n-dimensional

real normed spae is onsidered to be a set of onjugate diameters if their normalized vetors

have the following property: Choosing one of them, eah vetor in the linear span of the re-

maining diretion vetors is orthogonal to it. An Auerbah basis of a normed spae is a set of

diretion vetors having this property. Any real normed linear spae has at least two Auerbah

bases. One is indued by a ross-polytope insribed in the unit ball of maximal volume (see

[139℄), and the other one by the midpoints of the faets of a irumsribed parallelotope of

minimum volume (see [40℄). These two ways of �nding Auerbah bases are dual in the sense

that if an Auerbah basis is indued by an insribed ross-polytope of maximum volume, then

any dual basis is indued by a irumsribed parallelotope of minimum volume, and vie versa

(f. [95℄). If any minimum volume basis and maximum volume basis oinide, then by a result

of Lenz (see [102℄) we have that the spae is a real i.p. spae of �nite dimension.

For generalized Minkowski spaes we have an analogous theorem whih straightforward proof

we omit here.

Theorem 3.1.2. [8℄ In a �nite dimensional, real, generalized Minkowski spae there is a basis

with the Auerbah property. In other words, its vetors are orthogonal to the (n−1)-dimensional

subspae spanned by the remaining ones. For this basis there is a natural number k, less or

equal to n, for whih {e1, . . . , ek} ⊂ S and {ek+1, . . . , en} ⊂ T . Finally, this basis has also the

Auerbah property in the s.i.p. spae (V, [·, ·]−).

3.2. Generalized spae-time model

It is easy to see that by this method, starting with arbitrary two normed spaes S and T ,
one an mix a generalized Minkowski spae. Of ourse its smoothness property is basially

determined by the analogous properties of S and T .

Definition 3.2.1 ([8℄). Let V be a generalized Minkowski spae. Then we all a vetor spae-

like, light-like, or time-like if its salar square is positive, zero, or negative, respetively. Let S,L
and T denote the sets of the spae-like, light-like, and time-like vetors, respetively. In a �nite

dimensional, real generalized Minkowski spae with dimT = 1 is alled generalized spae-time

model.

In the ase of generalized spae-time model we an geometrially haraterize these sets of

vetors. At this time T is a union of its two parts, namely T = T + ∪ T −, where

T + = {s+ t ∈ T | where t = λen for λ ≥ 0} and T − = {s+ t ∈ T | where t = λen for λ ≤ 0}.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)
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Theorem 3.2.1 ([8℄). Let V be a generalized spae-time model. Then T is an open double one

with boundary L, and the positive part T +
(resp. negative part T −

) of T is onvex.

Proof. The oni property immediately follows from the equality [λv, λv]+ = λλ[v, v]+ =
|λ|2[v, v]+. Consider now the a�ne subspae of dimension (n−1) whih is of the form U = S+t,
where t ∈ T is arbitrary, but non zero. Then, for an element of T ⋂U , we have 0 ≥ [s+t, s+t]+ =
[s, s] + [t, t], and therefore [s, s] ≤ −[t, t]. This implies that the above intersetion is a onvex

body in the (n − 1)-dimensional real vetor spae S. The s.i.i.p. in S indues a norm whose

unit ball is a entrally symmetri onvex body. So T is a double one and its positive (resp.

negative) part is onvex, as we stated. For the vetors of its boundary equality holds, and so

these are light-like vetors. Sine those vetors of the spae, for whih the inequality does not

hold, are spae-time vetors, we also get the remaining statement of the theorem. �

In the rest of the paper [8℄ we onsidered a speial subset, the imaginary unit sphere of a �nite

dimensional, real, generalized Minkowski spae. (Some steps of our investigation are also valid

in a omplex generalized Minkowski spae. If we do not use the attribute "real", then we think

about a omplex Minkowski spae.) We give a metri on it, and thus we will get a struture

similar to the hyperboloid model of the hyperboli spae embedded in a spae-time model.

We note that if dimT > 1 or the spae is omplex, then the set of time-like vetors annot be

divided into two onvex omponents. So we have to onsider that our spae is a generalized

spae-time model.

3.2.1. The imaginary unit sphere. It is known that in a Lorentzian spae the imaginary

unit sphere an be identi�ed with the n−1-dimensional hyperboli spae. Hene the imaginary

unit sphere of a generalized spae-time model an be onsidered as a generalization of the

hyperboli spae. We begin with a de�nition:

Definition 3.2.2 ([9℄). The set

H := {v ∈ V |[v, v]+ = −1},
is alled the imaginary unit sphere.

With respet to the embedding real normed linear spae (V, [·, ·]−) (see Lemma 3.1.1) H is, as

we saw, a generalized two sheets hyperboloid orresponding to the two piees of T , respetively.

Usually we deal only with one sheet of the hyperboloid, or identify the two sheets projetively. In

this ase the spae-time omponent s ∈ S of v determines uniquely the time-like one, namely

t ∈ T . Let v ∈ H be arbitrary. Let Tv denote the set v + v⊥, where v⊥ is the orthogonal

omplement of v with respet to the s.i.i.p., thus a subspae.

Theorem 3.2.2 ([8℄). The set Tv orresponding to the point v = s + t ∈ H is a positive,

(n− 1)-dimensional a�ne subspae of the generalized spae-time model (V, [·, ·]+).
Proof. By the de�nition of H the omponent t of v is non-zero. As we saw in Theorem 3.1.1,

if [v, v] 6= 0, then v⊥ is an (n − 1)-dimensional subspae of V . Let now w ∈ Tv − v be an

arbitrary vetor. We have to prove that if [v, v] = −1 and w is orthogonal to v, then [w,w] > 0.
Let now w = s′ + t′ and assume that [t′, t′] = 0. Then, by the de�nition of T , t′ = 0 and thus

[w,w] = [s, s] > 0 holds. In this ase, we may assume that [t′, t′] 6= 0, and so t′ = λt. On the

other hand, we have 0 = [w, v]+ = [s′, s] + [t′, t]. We an use the Cauhy-Shwartz inequality

for the spae-time omponents, and we have

[s, s][s′, s′] ≥ |[s′, s]|2 = | − [t′, t]|2 = |λ|2| − [t, t]|2 = |λ|2[t, t]2.
Sine [s, s][t′, t′] = λλ[s, s][t, t] = |λ|2[s, s][t, t], we get the inequality

[s, s][w,w]+ = [s, s]([s′, s′] + [t′, t′]) ≥ |λ|2([t, t]2 + [s, s][t, t]).

By the de�nition of H we also have −1 = [v, v]+ = [s, s] + [t, t] and

[s, s][w,w]+ ≥ |λ|2([t, t]2 + (−1− [t, t])[t, t]) = −|λ|2[t, t] > 0.
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Consequently, if s is nonzero then [w,w] > 0, as we stated. If now [s, s] = 0 then [t, t] = −1,
and 0 = [s′ + t′, t] = [s′, t] + [t′, t] = [t′, t] implies that t′ = 0 and w ∈ S. Thus we proved the

statement. �

Eah of the a�ne spaes Tv ofH an be onsidered as a semi-metri spae, where the semi-metri

arises from the Minkowski produt restrited to this positive subspae of V . We reall that the

Minkowski produt does not satisfy the Cauhy-Shwartz inequality. Thus the orresponding

distane funtion does not satisfy the triangle inequality. Suh a distane funtion is alled in

the literature semi-metri (see [138℄). Thus, if the set H is su�iently smooth, then a metri

an be adopted for it, whih arises from the restrition of the Minkowski produt to the tangent

spaes of H . Let us disuss this more preisely.

The diretional derivatives of a funtion f : S 7−→ R with respet to a unit vetor e of S an

be de�ned in the usual way, by the existene of the limits for real λ: f ′
e(s) = lim

λ7→0

f(s+λe)−f(s)
λ

.

Let now the generalized Minkowski spae be a generalized spae-time model, and onsider a

mapping f on S to R and a basis {e1, . . . , en}. The set of points F := {(s + f(s)en) ∈ V for

s ∈ S} is a so-alled hypersurfae of this spae. Tangent vetors of a hypersurfae F in a point p
are the vetors assoiated to the diretional derivatives of the oordinate funtions in the usual

way. So u is a tangent vetor of the hypersurfae F in its point v = (s+ f(s)en), if it is of the
form u = α(e+ f ′

e(s)en) for real α and unit vetor e ∈ S. The linear hull of the tangent vetors
translated into the point s is the tangent spae of F in s. If the tangent spae has dimension

(n − 1) we all it tangent hyperplane. It an be seen easily, that the expliit form of H arises

from the funtion

f : s 7−→
√

1 + [s, s].

Sine its diretional derivatives an be onretely determined, we an give a onnetion between

the di�erentiability properties and the orthogonality one.

Lemma 3.2.1 ([8℄). Let V be a generalized Minkowski spae and assume that the s.i.p. [·, ·]|S
is ontinuous. (So the property s6 holds.) Then the diretional derivatives of the real valued

funtion f : s 7−→
√

1 + [s, s] are f ′
e(s) =

Re[e,s]√
1+[s,s]

.

Proof.

The onsidered derivative is

f(s+ λe)− f(s)

λ
=

√
1 + [s+ λe, s+ λe]−

√
1 + [s, s]

λ
=

√
1 + [s+ λe, s+ λe]

√
1 + [s, s]− (1 + [s, s])

λ
√

1 + [s, s]
.

Sine s + λe, s ∈ S, and S is a positive subspae, we have

0 ≤ (
√

[s+ λe, s+ λe]−
√
[s, s])2 = [s+ λe, s+ λe]− 2

√
[s+ λe, s+ λe]

√
[s, s] + [s, s],

and so [s + λe, s + λe] + [s, s] ≥ 2
√
[s+ λe, s+ λe]

√
[s, s] ≥ 2|[s + λe, s]|, yielding also [s +

λe, s+ λe] + [s, s] ≥ 2|[s, s+ λe]|. Using these inequalities, we get that

f(s+ λe)− f(s)

λ
≥
√
1 + 2|[s+ λe, s]|+ |[s+ λe, s]|2 − (1 + [s, s])

λ
√

1 + [s, s]
=

1 + |[s+ λe, s]| − 1− [s, s]

λ
√

1 + [s, s]
≥ Re{[s, s] + λ[e, s]} − [s, s]

λ
√

1 + [s, s]
=

Re[e, s]√
1 + [s, s]

.

But also

f(s+ λe)− f(s)

λ
=

(1 + [s+ λe, s+ λe])−
√

1 + [s, s]
√

(1 + [s+ λe, s+ λe])

λ
√

1 + [s+ λe, s+ λe]
≤

≤ (1 + [s+ λe, s+ λe])− 1− |[s, s+ λe]|
λ
√
1 + [s+ λe, s+ λe]

=
Re{[s+ λe, s+ λe]} − |[s, s+ λe]|

λ
√
1 + [s+ λe, s+ λe]

=

=
Re{[s, s+ λe] + λ[e, s+ λe]} − |[s, s+ λe]|

λ
√
1 + [s + λe, s+ λe]

≤
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≤ |[s, s+ λe]|+ Re{λ[e, s+ λe]} − |[s, s+ λe]|
λ
√

1 + [s+ λe, s+ λe]
=

Re{[e, s+ λe]}√
1 + [s+ λe, s+ λe]

.

Now the ontinuity property s6 implies that the examined limit exists, and that the di�erential

is

Re[e,s]√
1+[s,s]

, as we stated. �

The following theorem is a onsequene of this result.

Theorem 3.2.3 ([9℄). Let assume that the s.i.p. [·, ·] of S is di�erentiable. (So the property s6'

holds.) Then for every two vetors x and z in S we have:

[x, ·]′z(x) = 2Re[z, x]− [z, x], and ‖ · ‖′′x,z(x) =
Re[z, x]− [z, x]

‖x‖ .

If we also assume that the s.i.p. is ontinuously di�erentiable (so the norm is a C2
funtion),

then we also have

[x, ·]′x(y) = [x, x] and thus ‖ · ‖′′x,x(y) = ‖x‖2 − Re[x, y]2

‖y‖2 .

Proof. Sine

1

λ
([x+ λz, x+ λz]− [x, x]) =

1

λ
([x, x+ λz]− [x, x]) +

1

λ
[λz, x+ λz],

if λ tends to zero then the right hand side tends to [x, ·]′z(x)+ [z, x]. The left hand side is equal

to (√
1 + [x+ λz, x+ λz]−

√
1 + [x, x]

)(√
1 + [x+ λz, x+ λz] +

√
1 + [x, x]

)

λ
thus by Lemma 3.2.1 it tends to

Re[z, x]√
1 + [x, x]

2
√
1 + [x, x].

This implies the �rst equality [x, ·]′z(x) = 2Re[z, x] − [z, x]. Using Theorem 2.2.1 we also get

that ‖x‖(‖ · ‖′′x,z(x)) = [x, ·]′z(x)− Re[x,x]Re[z,x]
‖x‖2 , proving the seond statement, too.

If we assume that the norm is a C2
funtion of its argument then the �rst derivative of the

seond argument of the produt is a ontinuous funtion of its arguments. So the funtion

A(y) : S −→ R de�ned by the formula

A(y) = [x, ·]′x(y) = lim
λ7→0

1

λ
([x, y + λx]− [x, y])

ontinuous in y = 0. On the other hand for non-zero t ∈ R we use the notation tλ′ = λ and we

get that

A(ty) = lim
λ7→0

1

λ
([x, ty + λx]− [x, y]) = lim

λ′ 7→0

t

tλ′
([x, y + λ′x]− [x, y]) = A(y).

From this we an see immediately that [x, ·]′x(y) = A(y) = A(0) = [x, x] holds for every y.
Applying again the formula onneted the derivative of the produt and the norm we get the

last statement of the theorem, too. �

Now we apply our investigation in a generalized spae-time model to H . We an give a onne-

tion between the di�erentiability properties and the orthogonality one.

Lemma 3.2.2 ([8℄). Let H be the imaginary unit sphere of a generalized spae-time model. Then

the tangent vetors of the hypersurfae H in its point v = s+
√
1 + [s, s]en form the orthogonal

omplement v⊥ of v.
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Proof. A tangent vetor of this spae is of the form u = α(e+f ′
e(s)en), where by the previous

lemma f ′
e(s) =

Re[e,s]√
1+[s,s]

= [e,s]√
1+[s,s]

. Thus we have

[
α

(
e+

[e, s]√
1 + [s, s]

en

)
, s+ t

]+
= α[e, s] + α

[
[e, s]√
1 + [s, s]

en,
√
1 + [s, s]en

]
= α([e, s]− [e, s]) = 0.

So the tangent vetors are orthogonal to the vetor v. Conversely, if for a vetor u = s′ +
t′ = s′ + λen we have 0 = [u, v] = [s′, s] + [t′, t] then [s′, s] = −[λen, t] = λ

√
1 + [s, s], sine

−[t, t] = 1 + [s, s] by the de�nition of H . Introduing the notion e = s′√
[s′,s′]

, we get that

[e, s] =

[
s′√
[s′, s′]

, s

]
=

λ√
[s′, s′]

√
1 + [s, s],

implying that

λ√
[s′, s′]

=
[e, s]√
1 + [s, s]

= f ′
e(s).

In this way

u =
√

[s′, s′]

(
s′√
[s′, s′]

+
λ√
[s′, s′]

en

)
= α(e+ f ′

e(s)en).

This last equality shows that a vetor of the orthogonal omplement is a tangent vetor, as we

stated. �

We de�ned the Finsler spae type struture for a hypersurfae of a generalized spae-time

model.

Definition 3.2.3 ([8℄). Let F be a hypersurfae of a generalized spae-time model for whih

the following properties hold:

i: In every point v of F , there is a (unique) tangent hyperplane Tv for whih the restrition
of the Minkowski produt [·, ·]+v is positive, and

ii: the funtion ds2v := [·, ·]+v : F × Tv × Tv −→ R+ ds2v : (v, u1, u2) 7−→ [u1, u2]
+
v varies

di�erentiable with the vetors v ∈ F and u1, u2 ∈ Tv.

Then we say that the pair (F, ds2) is a Minkowski-Finsler spae with semi-metri ds2 embedding

into the generalized spae-time model V .

Naturally "varies di�erentiable with the vetors v, u1, u2" means that for every v ∈ T and pairs

of vetors u1, u2 ∈ Tv the funtion [u1, u2]v is a di�erentiable funtion on F .
Assume now that the s.i.i.p. restrited into S is ontinuously di�erentiable. In a onneted

Finsler spae any point has a distane from any other point of the spae (see e.g. [138℄). By

our terminology the distane an be omputed in the following analogous way.

Definition 3.2.4 ([8℄). Denote by p, q a pair of points in H+
and onsider the set Γp,q of

equally oriented pieewise di�erentiable urves c(t) a ≤ t ≤ b of H+
emanating from p and

terminating at q. Then the Minkowskian-Finsler distane of these points is

ρ(p, q) = inf





b∫

a

√
[ċ(x), ċ(x)]+c(x)dx for c ∈ Γp,q



 ,

where ċ(x) means the tangent vetor of the urve c at its point c(x).

We would like to examine the in�uene of a linear isometry to the Minkowski-Finsler distane.

It is easy to see that this distane satis�es the triangle inequality; thus it is a metri on H+

(see [138℄).

Definition 3.2.5 ([8℄). A topologial isometry f : H −→ H of H is a homeomorphism of H
whih preserves the Minkowski-Finsler distane between eah pair of points of H.
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We note that in this de�nition a linear mapping F restrited to S gives an isometry between S
and its image F (S) implying that this image is a normed spae with respet to those s.i.p. whih

raised from the s.i.p. of S. This isometry is stronger than the usual one, in whih we need only

the equality of the norm of the orresponding vetors. As we an see earlier (Theorem 2.2.5)

Koehler theorem says that a mapping in a smooth Banah spae is an isometry if and only if it

preserves the (unique) s.i.p.. Thus, if the norm is at least smooth, then the two types of linear

isometry oinide. Koehler also proved [97℄ that if the generalized Riesz-Fisher representation

theorem is valid in a normed spae, then every bounded linear operator A has a generalized

adjoint AT de�ned by the equality [A(x), y] = [x,AT (y)] for all x, y ∈ V . This mapping is the

usual Hilbert spae adjoint if the spae is an i.p. spae. In this more general setting this map is

not usually linear but it still has some interesting properties. The assumption for the s.i.p. in

Koehler paper [97℄ is that the spae should be a smooth and uniformly onvex Banah spae. It

is well known that uniform onvexity implies strit onvexity. On the other hand, we now take

also into onsideration (see [144℄ p. 111) that every, stritly onvex, �nite-dimensional normed

vetor spae is uniformly onvex. So for the rest of the setion we shall assume that the normed

spae S with respet to its s.i.p. is stritly onvex and smooth. It is onvenient to haraterize

strit onvexity of the norm in terms of s.i.p. properties. E. Berkson [24℄ states, what an be

simply proved, namely

Lemma 3.2.3 ([24℄). An s.i.p. spae is stritly onvex if and only if [x, y] = ‖x‖‖y‖ with x, y 6= 0
implies y = λx for some real λ > 0.

The following theorem is true for the imaginary unit sphere.

Theorem 3.2.4 ([8℄). Let V be a generalized spae-time model.

• If S is a ontinuously di�erentiable s.i.p. spae, then (H+, ds2) is a Minkowski-Finsler

spae.

• If we assume that the subspae S is a stritly onvex, smooth normed spae with respet

to the norm assoiated to the s.i.i.p. then the s.i.p. spae {V, [·, ·]−} is also smooth and

stritly onvex. Let F T
be the generalized adjoint of the linear mapping F with respet

to the s.i.p. spae {V, [·, ·]−}, and de�ne the involutory linear mapping J : V −→ V
by the equalities J |S = id|S, J |T = −id|T . The map F |H = f : H −→ H is a linear

isometry of the upper sheet H+
of H if and only if it is invertible, satis�es the equality:

F−1 = JF TJ, and, moreover, takes en into a point of H+
.

• A linear isometry of H+
is also a topologial isometry on it.

• Assume that also that the group of linear isometries of H+
ats transitively on H+

.

Denote the Minkowski-Finsler distane of H+
by d(·, ·). Then the following statement

is true: [a, b]+ = −ch(d(a, b)) for a, b ∈ H+
.

Proof. If the s.i.p. of S is a ontinuously di�erentiable one, then the norm is twie di�erentiable

(see Theorem 2.2.1). This also implies the ontinuity of the s.i.p., and so we know by Lemma

3.2.1 that there is a unique tangent hyperplane at eah point ofH . By Theorem 3.2.2 we get that

the Minkowski produt restrited to a tangent hyperplane is positive. So the �rst assumption

of the de�nition is valid.

To prove the seond ondition, onsider the produt [u1, u2]
+
v , where v is a point of H and u1,u2

are two vetors on its tangent hyperplane. Then, by Lemma 3.2.1, we have:

ui = αi

(
si +

[si, sv]√
1 + [sv, sv]

en

)
for i = 1, 2.

Here the vetors s1, s2, sv are in S and v = sv +
√

1 + [sv, sv]en. Thus the examined produt is

[u1, u2]
+
v = α1α2

[s1, s2](1 + [sv, sv])− [s1, sv][s2, sv]

(1 + [sv, sv])
.
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Sine the funtion [sv, sv] = ([v, en]
+)2 − 1 is a ontinuously di�erentiable funtion of v, and

[s1, s2] is (by our assumption) also a ontinuously di�erentiable funtion of its arguments, we

have to prove, that the map sending ui to si also has this property. But this latter fat is a

onsequene of the observation that the map u 7→ s is a projetion, and so it is linear.

To prove the statements of the seond item �rstly we notes that the embedding normed spae

{V, [·, ·]−} is also smooth and stritly onvex. The equality 1 = [s + t, s + t]− = [s, s]− [t, t] =
[s, s] + ‖t‖2 shows that the unit balls of the two norms are smooth at the same time. To prove

strit onvexity, onsider [s+ t, s′ + t′]− = ‖s+ t‖−‖s′ + t′‖−. Sine dimT = 1, we an assume

that t′ = λt for some real λ. Thus we get the equality

[s, s][s′, s′] = [s, s′]2 + [t, t]([s′, s′]− 2λ[s, s′] + λ2[s, s]).

By the Cauhy-Shwartz inequality we have

[s′, s′]− 2λ[s, s′] + λ2[s, s] ≥
(√

[λs, λs]−
√

[s′, s′]
)2

≥ 0,

and so

0 ≤ [s, s′]2 ≤ [s, s][s′, s′] = [s, s′]2 + [t, t]([s′, s′]− 2λ[s, s′] + λ2[s, s]) ≤ [s, s′]2,

implying that [t, t]([s′, s′] − 2λ[s, s′] + λ2[s, s]) = 0. If [t, t] = 0, then t = t′ = 0, and from

the strit onvexity of S we get that there is a real µ > 0 with s′ = µs. For this µ we have

also s′ + t′ = µ(s + t). So we an assume that [t, t] 6= 0, and thus both [s, s][s′, s′] = [s, s′]2

and ([s′, s′] − 2λ[s, s′] + λ2[s, s]) = 0 hold. But S is a stritly onvex spae. Therefore, again

for a nonzero s there is a real µ > 0 with s′ = µs. But this also implies 0 = (µ − λ)2[s, s],
showing that µ = λ and s′ + t′ = µ(s + t). Using Lemma 3.2.3, we get the strit onvexity of

the embedding normed spae.

Let now F be a linear isometry of H . It is lear that the linear operator J transforms the

Minkowski produt into the s.i.p. of the embedding spae. Preisely we have [v, w]+ = [v, Jw]−.
Now using the existene of the adjoint operator, the alulation

[v, Jw]− = [v, w]+ = [Fv, Fw]+ = [Fv, JFw]− = [v, F TJFw]−

holds for eah pair of vetors v and w. But the embedding spae is a non-degenerate one; thus

we get the equality J = F TJF, or equivalently F−1 = JF TJ . By its de�nition the last ondition
on F also holds.

Conversely, if F is a linear mapping satisfying the ondition of the theorem, then it preserves

the Minkowski produt. In fat,

[Fv, Fw]+ = [Fv, JFw]− = [v, F TJFw]− = [v, Jw]− = [v, w]+.

It takes the hyperboloid H homeomorphially onto itself, implying that it takes a sheet onto

a sheet. Our last ondition guarantees that F (H+) = H+
and F is a linear isometry of H+

as

we stated.

We also reformulates the length of a path as follows. The Minkowski-Finsler semi-metri on

H+
is the funtion ds2 whih assigns at eah point v ∈ H+

the Minkowski produt whih is the

restrition of the Minkowski produt to the tangent spae Tv. This positive Minkowski produt

varies di�erentiably with v. Let U ≤ V be a subspae and onsider a map f : U −→ V . If it
is a totally di�erentiable map (with respet to the norm of the embedding n-spae in the sense

of Frehet) then f(Tv) = Tf(v) for the tangent spaes at v and f(v), respetively and one an

de�ne the pullbak semi-metri f ⋆(ds2) at the point v by the following formula:

f ⋆(ds2)v(u1, u2) = ds2f(v)(Df(u1), Df(u2)) = [Df(u1), Df(u2)]
+
f(v).

The square root ds of the semi-metri funtion de�ned by

√
ds2v(u, u) is the so alled length

element and the length of a path is the integral of the pullbak length element by the di�er-

entiable map c : R −→ V . This implies that if a linear isometry leaves the Minkowski-Finsler

semi-metri invariant by the pullbak, then it preserves the integrand, and thus preserves the
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integral as well. Let now F be a linear isomorphism, and its restrition to H+
be f . Compute

the pullbak metri as follows:

f ⋆(ds2)v(u1, u2) = ds2f(v)(Df(u1), Df(u2)) = [Df(u1), Df(u2)]
+
f(v) =

= [DF (u1), DF (u2)]
+
F (v) = [F (u1), F (u2)]

+
F (v)

beause F is linear. But it preserves the Minkowski produt, and therefore we onlude that

[F (u1), F (u2)]
+
F (v) = [u1, u2]

+
v = (ds2)v(u1, u2).

This proves that a linear isometry of H+
is also a topologial and Finsler isometry on it.

Finally, in a Finsler spae a funtion preserving the distane transforms geodesis to geodesis

(see in [21℄). In our ase this is also true, sine it is basially determined by the de�nition of the

distane and the smoothness properties whih are the same in both ases. Sine our spae is

homogeneous and linear isometry preserves the distane by the above argument, we an assume

that a = en. Let now b 6= a and onsider the 2-plane 〈a, b〉 spanned by the vetors a and b.
The restrition of the s.i.i.p. to the plane 〈a, b〉 is an i.i.p.; thus the restrited Finsler funtion

is a Riemannian one. So the intersetion H ∩ 〈a, b〉 is a hyperbola in the embedding Eulidean

2-spae. Thus we an parameterize the points of a path from a to b by c(t) = sh(τ)e+ ch(t)en
for t ∈ [0, 1] with c(0) = a and c(1) = b. The length of an ar from 0 to x is

x∫

0

√
ch2(τ)− sh2(τ)dτ = x,

showing that the points of this ar satisfy the triangle inequality with equality. Consequently

it is a geodesi on H+
and therefore its ar-length is the distane of the points a and c(x). On

the other hand, we also have

[a, b]+ = [en, sh(1)e+ ch(1)en]
+ = [en, ch(1)en] = −ch(1) = −ch(d(a, c(1)) = −ch(d(a, b)).

�

As it an be seen from the formula in this theorem, the generalized adjoint of a linear isom-

etry is a linear transformation. We also note that Theorem 3.2.4 in the i.p. ase gives the

haraterization of the isometries of the hyperboli spae of dimension (n− 1).

3.2.2. Premanifolds in a generalized spae-time model. There is no and we did not

give a formal de�nition of an objet alling in our work [9℄ by premanifold. We use this word for

a set if it has a manifold-like struture with high freedom in the hoosing of the distane funtion

of its tangent hyperplanes. For example we get premanifolds if we investigate the hypersurfaes

of a generalized spae-time model. The most important types of manifolds as Riemannian,

Finslerian or semi-Riemannian an be investigated in this way. The struture of our embedding

spae was introdued in [8℄ and in the next paper [9℄ we ontinued our investigations by the

building up of di�erential geometry of hypersurfaes. We gave the pre-version of the usual semi-

Riemannian or Finslerian spaes, the hyperboli spae, the de Sitter sphere, the light one and

the unit sphere of the rounding semi inner produt spae, respetively. In the ase, when the

spae-like omponent of the generalized spae-time model is a ontinuously di�erentiable semi

inner produt spae then we get bak the known and usable geometrial information on the

orresponding hypersurfaes of a pseudo-Eulidean spae, e.g. we showed that a pre-hyperboli

spae has onstant negative urvature.

Let F be a hypersurfae de�ned by the funtion f : S −→ V . Here f(s) = s + f(s)en denotes

the point of F . The urve c : R −→ S de�ne a urve on F . We assume that c is a C2
-urve.

Definition 3.2.6 ([126℄). We say that a hypersurfae is onvex if it lies on one side of its

eah tangent hyperplanes. It is stritly onvex if it is onvex and its tangent hyperplanes ontain

preisely one points of the hypersurfae, respetively.
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If we have a map f : S −→ V then it an be deomposed to a sum of its spae-like and

time-like omponents. We have f = fS + fT where fS : S −→ S and fT : S −→ T , respetively.
With respet to the embedding s.i.p spae we an ompute its Frehet derivative by Df =
[DfS, DfT ]

T
implying that Df(s) = DfS(s) + DfT (s). For brevity introdue the following

notation

[f1(c(t)), ·]+′

D(f2◦c)(t)
(f2(c(t))) :=

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))) − (f1)T (c(t))((f2)T ◦ c)′(t)

)
.

Now we state:

Lemma 3.2.4 ([9℄). If f1, f2 : S −→ V are two C2
maps and c : R −→ S is an arbitrary C2

urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ = [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+′
D(f2◦c)(t)((f2 ◦ c)(t)).

Proof. By de�nition

([f1 ◦ c, f2 ◦ c)]+)′|t := lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+ − [f1(c(t)), f2(c(t))]

+
)
=

= lim
λ→0

1

λ
([(f1)S(c(t+ λ)), (f2)S(c(t+ λ))]− [(f1)S(c(t)), (f2)S(c(t))])+

+ lim
λ→0

1

λ
([(f1)T (c(t + λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) .

We prove that the �rst part is

lim
λ→0

1

λ
([(f1)S(c(t+ λ))− (f1)S(c(t)), (f2)S(c(t+ λ))] + [(f1)S(c(t)), (f2)S(c(t+ λ))]−

−[(f1)S(c(t)), (f2)S(c(t))]) = [D((f1)S ◦ c)|t, (f2)S(c(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))).

To this take a oordinate system {e1, · · · , en−1} in S and onsider the oordinate-wise repre-

sentation (f2)S ◦ c =
n−1∑
i=1

((f2)S ◦ c)iei. Using Taylor's theorem for the oordinate funtions we

have that there are real parameters ti ∈ (t, t+ λ), for whih

((f2)S ◦ c)(t + λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we an get

[(f1)S(c(t)), (f2)S(c(t + λ))]− [(f1)S(c(t)), (f2)S(c(t))] =

= [(f1)S(c(t)), (f2)S(c(t))+D((f2)S◦c)(t)λ+
1

2
λ2

n−1∑

i=1

((f2)S◦c)′′i (ti)ei]−[(f1)S(c(t)), (f2)S(c(t))] =

= ([(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ]− [(f1)S(c(t)), (f2)S(c(t))]) +

+[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei]−

−[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ].
In the seond argument of this produt, the Lipshwitz ondition holds with a real onstant

K for enough small λ's, so we have that the absolute value of the substration of the last two

terms is less or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
]
.

Applying now the limit proedure at λ→ 0 we get the required equality.

In the seond part (f1)T and (f2)T are real-real funtions, respetively so

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =
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= −((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t).
Hene we have

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ =
= [D((f1)S ◦ c)(t), ((f2)S ◦ c)(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)(((f2)S ◦ c)(t)))−

−((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t) =
= [D(f1 ◦ c)(t), f2(c(t))]+

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)

)
,

and the statement is proved. �

In an Eulidean spae the �rst fundamental form is a positive de�nite quadrati form indued

by the inner produt of the tangent spae. In generalized spae-time model the �rst fundamental

form is giving by the salar square of the tangent vetors with respet to the Minkowski produt

restrited to the tangent hyperplane.

Definition 3.2.7 ([9℄). The �rst fundamental form in a point (f(c(t)) of the hypersurfae F
is the produt

If(c(t) := [D(f ◦ c)(t), D(f ◦ c)(t)]+.
The variable of it is a tangent vetor, a tangent vetor of a variable urve c lying on F through

the point (f(c(t)). We an see that the �rst fundamental form is homogeneous of the seond

order but (in general) it has no a bilinear representation.

In fat, by the de�nition of f , (if {ei : i = 1 · · ·n− 1} is a basis in S) the omputation

If(c(t)) = [ċ(t) + (f ◦ c)′(t)en, ċ(t) + (f ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(f ◦ c)′(t)]2 = [ċ(t), ċ(t)]−

−
n−1∑

i,j=1

ċi(t)ċj(t)f
′
ei
(c(t))f′ej(c(t)) = [ċ(t), ċ(t)]− ċ(t)T

[
f′ei(c(t))f

′
ej
(c(t))

]n−1

i,j=1
ċ(t)

shows that it is not a quadrati form. It would be a quadrati form if and only if the quantity

[ċ(t), ċ(t)]− ċ(t)T ċ(t) = [ċ(t), ċ(t)]−
n−1∑

i=1

ċ2i (t)

vanishes. Thus if the Minkowski produt is an i.p. than we an assume that the basis {ei} in

S is orthonormal and we have that the mentioned di�erene is vanishing, furthermore ci(t) =

〈ei, c(t)〉 = 〈c(t), ei〉 and ċ(t) =
n−1∑
i=1

ċi(t)ei. So

If(c(t)) = ċ(t)T
(
Id−

[
f′ei(c(t))f

′
ej
(c(t))

]n−1

i,j=1

)
ċ(t),

and we get bak the lassial loal quadrati representation of the �rst fundamental form. Now

if ci(t) = 0 for i ≥ 3 then det I = 1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2
.

We now extend the de�nition of the seond fundamental form take into onsideration that the

produt has neither symmetry nor bilinearity properties. If v is a tangent vetor and n is a

normal vetor of the hypersurfae at its point f(c(t)) then we have 0 = [v, n]+ = [D(f ◦c)(t), (f ◦
c)(t)]+. Using Lemma 3.2.4 and the notation follows it, we get 0 = ([D(f ◦ c)(t), (n ◦ c)(t)]+)′ =
[D2(f ◦ c), n(c(t))]+ + [D(f ◦ c)(t), ·]+′

D(n◦c)(t)(n(c(t))).

We introdued the unit normal vetor �elds n0
by the de�nition

n0(c(t)) :=

{
n(c(t)) if n is a light-like vetor

n(c(t))√
|[n(c(t)),n(c(t))]+|

otherwise.

Definition 3.2.8 ([9℄). The seond fundamental form at the point f(c(t)) de�ned by one of

the equivalent formulas:

II := [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) = −[D(f ◦ c)(t), ·]+′
D(n0◦c)(t)((n

0 ◦ c)(t)).
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By the struture of the generalized spae-time model assuming that n(s) = s + n(s)en we get

that

II = [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) =
[
D(ċ(t) +D(f ◦ c)(t)en),

c(t) + (n ◦ c)(t)en√
|[c(t), c(t)]− (n(c(t)))2|

]+
=

=

[
c̈(t) +

(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t) +

[
f′ei|c(t)

]
c̈(t)
)
en, c(t) + n(c(t))en

]+

√
|[c(t), c(t)]− (n(c(t)))2|

=

=

[
c̈(t) + [f′ei|c(t)]c̈(t)en, (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))

√
|[c(t), c(t)]− (n(c(t)))2|

=

=

[
D(f)|c(t)c̈(t), (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))

√
|[c(t), c(t)]− (n(c(t)))2|

=

= −


ċ(t)T

[
f′′ei,ej |c(t)n(c(t))√

|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1

ċ(t)


 .

We now an adopt a determinant of this fundamental form. It is the determinant of its quadrati

form:

det II := det



[

f′′ei,ej |c(t)n(c(t))√
|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1


 .

If we onsider a two-plane in the tangent hyperplane then it has a two dimensional pre-image

in S by the regular linear mapping Df . The getting plane is a normed one and we an onsider

an Auerbah basis {e1, e2} in it.

Definition 3.2.9 ([9℄). The setional prinipal urvature of a 2-setion of the tangent hyper-

plane in the diretion of the 2-plane spanned by {u = Df(e1) and v = Df(e2)} are the extremal

values of the funtion

ρ(D(f ◦ c)) := IIf◦c(t)
If◦c(t)

,

of the variable D(f ◦c). We denote them by ρ(u, v)max and ρ(u, v)min, respetively. The setional

(Gauss) urvature κ(u, v) (at the examined point c(t)) is the produt

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min.

In the ase of a symmetri and bilinear produt, both of the fundamental forms are quadrati

and the setional prinipal urvatures attained in orthogonal diretions. They are the eigenval-

ues of the pair of quadrati forms IIf◦c(t) and If◦c(t). This implies that ρ(u, v)max and ρ(u, v)min

are the solutions of the equality:

0 = det
(
IIf◦c(t) − λIf◦c(t)

)
= det

(
If◦c(t)

)
det
(
(If◦c(t))

−1IIf◦c(t) − λId
)
,

showing that

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =

= [n0(c(t)), n0(c(t))]+ det
(
I−1
f◦c(t)IIf◦c(t)

)
= [n(c(t)), n(c(t))]+

det IIf◦c(t)
det If◦c(t)

=

= [n0(c(t)), n0(c(t))]+

(
f′′e1,e1|c(t)f′′e2,e2|c(t) −

(
f′′e1,e2|c(t)

)2)
(n(c(t)))2

(
1− (f′e1(c(t)))

2 − (f′e2(c(t)))
2
)
|[c(t), c(t)]− (n(c(t)))2| .

But we an hoose for the funtion n

n(c(t)) := f′e1(c(t))e1 + f′e2(c(t))e2 + en
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with n(c(t)) = 1 and for a 2-plane of the tangent hyperplane whih ontains only spae-like

vetors and has time-like normal vetor with absolute value

[n(c(t)), n(c(t))]+ =
√

1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2

getting the well-known formula

κ(u, v) =
−f′′e1,e1|c(t)f′′e2,e2|c(t) +

(
f′′e1,e2|c(t)

)2
(
1− (f′e1(c(t)))

2 − (f′e2(c(t)))
2
)2

(see in [49℄ p.95.).

The Rii urvature of a Riemannian hypersurfae at a point p = (f ◦ c)(t) in the diretion of

the tangent vetor v = D(f ◦ c) is the sum of the setional urvatures in the diretions of the

planes spanned by the tangent vetors v and ui, where ui are the vetors of an orthonormal basis

of the orthogonal omplement of v. This value is independent from the hoosing of the basis.

Choose random (by uniform distribution) the orthonormal basis! The orresponding setional

urvatures κ(ui, v) will be random variables with the same expeted values. The sum of them

is again a random variable whih expeted value orresponding to the Rii urvature at p
with respet to v. Hene it is equal to n− 2-times the expeted value of the random setional

urvature determined by all of the two planes through v. Similarly the salar urvature of the

hypersurfae at a point is the sum of the setional urvatures de�ned by any two vetors of an

orthonormal basis of the tangent spae, it is also an be onsidered as an expeted value. This

motivates the following de�nition:

Definition 3.2.10 ([9℄). The Rii urvature Ric(v) in the diretion of the tangent vetor v
at the point f(c(t)) is

Ric(v)f(c(t)) := (n− 2) · E(κf(c(t))(u, v))
where κf(c(t))(u, v) is the random variable of the setional urvatures of the two planes spanned

by v and a random u of the tangent hyperplane holding the equality [u, v]+ = 0. We also say

that the salar urvature of the hypersurfae f at its point f(c(t)) is

Γf(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)).

In [9℄ we investigated four speial hypersurfaes as premanifold the pre-versions of the hyper-

boli spae, the de Sitter sphere, the light one and the unit sphere of the rounding semi inner

produt spae, respetively.

We examined the imaginary unit sphere as the set H+
.

The set G is the olletion of those points of a generalized spae-time model whih has salar

square equal to one. In a pseudo-Eulidean spae this set was alled the de Sitter sphere. The

tangent hyperplanes of the de Sitter sphere are pseudo-Eulidean spaes. G is not a hypersurfae

but we an restrit our investigation to the positive part of G de�ned by

G+ = {s+ t ∈ G : t = λen where λ > 0}.
We remark that the loal geometries of G+

and G topologially idential. G+
is a hypersurfae

de�ned by the funtion g(s) = s+ g(s)en, where g(s) =
√
−1 + [s, s] for [s, s] > 1.

Let L+
be the positive part of the double one determined by the funtion: l(s) = s+

√
[s, s]en.

Finally the set K ollets the points of the unit sphere of the embedding s.i.p. spae. In a

pseudo-Eulidean spae it is the unit sphere of the embedding Eulidean spae. Its tangent

hyperplanes are pseudo-Eulidean spaes. K is not a hypersurfae but we an also restrit our

investigation to its positive part de�ned by K+ = {s + t ∈ K : t = λen where λ > 0}. It an
be de�ned by the funtion: k(s) = s+ k(s)en, where k(s) =

√
1− [s, s] for [s, s] < 1.

The di�erential geometri properties of these four premanifolds are:

Theorem 3.2.5 ([9℄). Let H+
, G+

, L+
and K+

denote the imaginary unit sphere, the de Sitter

sphere, the light one and the unit sphere of the embedding s.i.p. spae, respetively.
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(1) H+
is always onvex. It is stritly onvex if and only if the s.i.p. spae S is a stritly

onvex spae.

(2) If S is a ontinuously di�erentiable s.i.p. spae then H+
has onstant negative urva-

ture.

(3) G+
and its tangent hyperplanes are interseting, onsequently there is no point at whih

G would be onvex.

(4) The de Sitter sphere G has onstant positive urvature if S is a ontinuously di�eren-

tiable s.i.p spae.

(5) The light one L+
has zero urvatures if S is a ontinuously di�erentiable s.i.p spae.

(6) K+
is onvex. If S is a stritly onvex spae, then K+

is also stritly onvex.

(7) The fundamental forms of K are

� I = [ċ, ċ]− ([ċ(t),c(t)]+[c(t),·]′
ċ(t)

(c(t)))
2

4(1−[c(t),c(t)])
= [ċ, ċ]− [ċ(t),c(t)]2

1−[c(t),c(t)]
,

� II = 1√
|−1+2[c(t),c(t)]|

(
−[ċ(t), ċ(t)] + [ċ(t),c(t)]2

−1+[c(t),c(t)]

)
= − 1√

|−1+2[c(t),c(t)]|
I.

The prinipal, setional, Rii and salar urvatures at a point k(c(t)) are
� ρmax(u, v) = ρmin(u, v) = − 1√

|−1+2[c(t),c(t)]|
,

� κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1+2[c(t),c(t)]
,

� Ric(v)k(c(t)) := (n− 2) · E(κk(c(t))(u, v)) = n−2
−1+2[c(t),c(t)]

,

� Γk(c(t)) :=
(
n−1
2

)
· E(κf(c(t))(u, v)) = (n−1

2 )
−1+2[c(t),c(t)]

, respectively.

(8) At the points of K+
having the equality 2[c(t), c(t)] = 1, all of the urvatures an be

de�ned as in the ase of the light one and an be regarded as zero.

Proof. We prove these statements step by step.

(1) Let w = s′ + t′ be a point of H+
and onsider the produt

[w − v, v]+ = [s′ − s, s] + [t′ − t, t] = [s′, s]− [s, s]− (λ′ − λ)λ = [s′, s]− λ′λ+ 1,

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respetively. Sine
√

1 + [s′, s′] = λ′ and
√
1 + [s, s] = λ

thus

[w−v, v]+ = [s′, s]−
√

1 + [s′, s′]
√
1 + [s, s]+1 ≤

√
[s′, s′][s, s]−

√
1 + [s′, s′]

√
1 + [s, s]+1 ≤ 0,

beause of the relation [s′, s′][s, s]+2
√

[s′, s′][s, s]+1 ≤ [s′, s′][s, s]+([s′, s′]+[s, s])+1. Remark

that equality holds if and only if the norms of s′ and s are equal to eah other and thus

λ′ = λ, too. So we have [s′, s] − [s, s] = 0, or equivalently [s′, s] =
√

[s′, s′][s, s]. From the

haraterization of the strit onvexity of an s.i.p. spae we get H+
ontains only the point v

of the tangent spae Tv if and only if the s.i.p. spae S is stritly onvex.

(2) To determine the �rst fundamental form onsider the map h = s+ h(s)en giving the points

of H+
. (Here h(s) =

√
1 + [s, s] is a real valued funtion.) Then we get that

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(h ◦ c)′(t)]2,
where ċ(t) means the tangent vetor of the urve c of S at its point c(t). Using Lemma 3.2.1

and Theorem 3.2.3 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(1 + [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

From this formula, by the Cauhy-Shwartz inequality, we an get a new proof for the fat that

this form is positive. The seond fundamental form of H+
is

II := [c̈(t) + (h ◦ c)′′(t)en, c(t) + (h ◦ c)(t)en]+(h◦c)(t) = [c̈(t), c(t)]− (h ◦ c)′′(t)h(c(t)),
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sine n ◦ c = h ◦ c = c(t) + (h ◦ c)(t)en. First we ompute the derivative of (h ◦ c)′(t) : R −→ R

at its point t. We use again the formulas of Lemma 3.2.1 and Lemma 3.2.4 getting

(h ◦ c)′′(t) = ((h ◦ c)′)′ (t) =
(

[ċ(t), c(t)]√
1 + [c(t), c(t)]

)′

=
[ċ(t), c(t)]′√
1 + [c(t), c(t)]

−
[ċ(t),c(t)]√
1+[c(t),c(t)]

[ċ(t), c(t)]

(1 + [c(t), c(t)])

and so

(h◦c)′′(t)h(c(t)) = [ċ(t), c(t)]′− [ċ(t), c(t)]2

1 + [c(t), c(t)]
=
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

Thus the seond fundamental form is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
,

or using the formula

‖y‖‖ · ‖′′x,z(y) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 ,

we get an equivalent form:

II = −‖c(t)‖‖ · ‖′′ċ(t),ċ(t)c(t)−
[ċ(t), c(t)]2

‖c(t)‖2(1 + ‖c(t)‖2) .

If we also assume that the norm is a C2
funtion of its argument then we an use Theorem

3.2.3 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
= −I.

By the positivity of the �rst fundamental form on H+
, we get that the seond fundamental

form is negative de�nite and

ρ(u, v)max = ρ(u, v)min = −1.

This implies that the setional urvatures are equal to −1, the Rii and salar urvatures in

any diretion at any point is −(n− 2) and −
(
n−1
2

)
, respetively.

(3) At an arbitrary point of G+
there are two sets lying on G+

and having in distint halfspaes

with respet to the orresponding tangent hyperplane. The �rst set is the intersetion of the

2-plane spanned by en and s + t ∈ M ; and the other one is an arbitrary urve of the (n − 2)-
hypersurfae de�ned by the intersetion of G and the hyperplane S + (s+ t). In fat, a normal

vetor of the tangent hyperplane at s+ t is itself s+ t, beause we have
[
e +

[e, s]√
−1 + [s, s]

en, s+
√

−1 + [s, s]en

]+
= 0.

Thus with α > 1√
[s,s]

we have

[(
αs+

√
−1 + [αs, αs]en

)
−
(
s+

√
−1 + [s, s]en

)
, s+

√
−1 + [s, s]en

]+
=

= (α− 1)[s, s] + (
√

−1 + [s, s]−
√
−1 + [αs, αs])

√
−1 + [s, s] =

= −1 + α[s, s]−
√
(−1 + [αs, αs])(−1 + [s, s]) =

= α[s, s]− 1−
√

1− (1 + α2)[s, s] + α2[s, s]2 ≥ 2(α[s, s]− 1) > 2(‖s‖ − 1) ≥ 0.

On the other hand if s′ + t ∈ M arbitrary, then ‖s′‖ = ‖s‖ thus [s′ − s + (t − t), s + t]+ =

[s′, s]− [s, s] ≤
√
[s′, s′]

√
[s, s]− [s, s] = 0, with equality if and only if s′ = ±s.

(4) Using the funtion g, the �rst fundamental form has the form

I = [ċ(t) + (g ◦ c)′(t)en, ċ(t) + (g ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(g ◦ c)′(t)]2.
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Using Lemma 3.2.1 and Theorem 3.2.3 we get

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(−1 + [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Furthermore we also have that n ◦ c = g ◦ c = c(t) + (g ◦ c)(t)en thus we get:

II := [c̈(t) + (g ◦ c)′′(t)en, c(t) + (g ◦ c)(t)en]+(g◦c)(t) = [c̈(t), c(t)]− (g ◦ c)′′(t)g(c(t)).
The derivative of the real funtion (g ◦ c)′(t) = D(g ◦ c)(t) : R −→ R at its point t is:

(g ◦ c)′′(t) = [ċ(t), c(t)]′√
−1 + [c(t), c(t)]

−
[ċ(t),c(t)]√
−1+[c(t),c(t)]

[ċ(t), c(t)]

(−1 + [c(t), c(t)])

so by Lemma 3.2.4

(g ◦ c)′′(t)g(c(t)) = [ċ(t), c(t)]′ − [ċ(t), c(t)]2

−1 + [c(t), c(t)]
=
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Thus we have

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

If we assume again that the norm is a C2
funtion of its argument then we an use again

Theorem 3.2.3 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
= −I,

as in the ase of H+
. The prinipal urvatures are equal to −1. But the salar squares of the

normal vetors is positive at all points of G+
implying that the setional urvatures are equal

to 1. The Rii urvatures in any diretions and at any points are equal to (n − 2), moreover

the salar urvatures at any points are equal to

(
n−1
2

)
.

(5) If S is a uniformly ontinuous s.i.p. spae, then the tangent vetors at s are of the form:

u = α (e + ‖ · ‖′e(s)en) = α

(
e +

[e, s]√
[s, s]

en

)
.

Thus all tangents orthogonal to l(s) whih is also a tangent vetor. (Choose e = s0 and α = ‖s‖!)
But the orthogonal ompanion of a neutral vetor in a s.i.i.p spae is an (n − 1)-dimensional

degenerated subspae ontaining it (Theorem 3.1.1), tangent hyperplanes are exist at every

points of L+
and it is an (n − 1)-dimensional degenerated subspae of V . This also a support

hyperplane of L. In fat, by v = s+ t and w = s′ + t′ we get

[w − v, v]+ = [s′, s] + [t′, t] = [s′, s]− λ′λ

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respetively. Sine
√
[s′, s′] = λ′

and

√
[s, s] = λ thus [w − v, v]+ = [s′, s]−

√
[s′, s′]

√
[s, s] ≤ 0 holds. We remark that equality

holds if and only if s′ = αs meaning that there is only one line of L+
in the tangent spae Tv.

Thus the light one is onvex and thus the seond fundamental form is semi-de�nite quadrati

form. It also follows that any other vetors of the tangent hyperplane are spae-like ones and

there are two types of tangent 2-planes; one of them spae-like plane and the other one ontains

spae-like vetors and a doubled line of light-like vetors. In the �rst ase, the orresponding

prinipal and setional urvatures is well de�ned and have negative values, respetively. To

determine it we ompute the fundamental forms.

In the ase when S is ontinuously di�erentiable, the �rst fundamental form is

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4[c(t), c(t)]
= [ċ, ċ]− [ċ(t), c(t)]2

[c(t), c(t)]
,
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and the seond one is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

[c(t), c(t)]
= −[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

[c(t), c(t)]
= −I.

Thus the prinipal urvatures are −1 as in the ases of the unit spheres. However our de�nition

gives at suh a point zero setional urvature for it, beause of the zero lengths of the normal

vetors. The above omputation an be used in the seond ase, too. Agreed that we alulate

the fundamental forms only non-light-like diretions, so on the plane of the seond type the

prinipal urvatures are also −1 and the setional urvatures are zero, too. This implies that

the Rii and salar urvatures are also zero, respetively.

(6) The diretional derivatives of the funtion k : s 7−→
√

1− [s, s] for [s, s] < 1 gives the

orresponding tangent vetors of form u = α(e + k′e(s)en). Sine by the funtion f : s 7−→√
1 + [s, s], we have the equality f2(s) + k2(s) = 2 the derivative in the diretion of the unit

vetor e ∈ S is k′e(s) = − [e,s]√
1−[s,s]

meaning that [u, u]+ = α2
(
1− [e,s]2

(1−[s,s])

)
= α2 1−[s,s]−[e,s]2

1−[s,s]
.

From this we an see immediately that

[u, u]+ > 0 if 1− [s, s] > [e, s]2

[u, u]+ = 0 if 1− [s, s] = [e, s]2

[u, u]+ < 0 if 1− [s, s] < [e, s]2.

It follows that the vetor s′ of the (n − 2)-subspae of S orthogonal to s gives a spae-like

tangent vetor and the vetor orresponding to αs is a time-like one. Let w = s′ + t′ be a point

of K+
and onsider the produt

[w − v, nv]
+ = [s′ − s, s′′] + [t′ − t, t′′] = [s′, s′′]− [s, s′′]− (λ′ − λ)λ′′,

where t′′ = λ′′en, t
′ = λ′en, t = λen and s′′, s′, s ∈ S with positive λ′′, λ′ and λ, respetively.

Sine

√
1− [s′, s′] = λ′ and

√
1− [s, s] = λ and nv = s−

√
1− [s, s]en thus

[w−v, nv]+ = [s′, s]+
√

1− [s′, s′]
√
1− [s, s]−1 ≤

√
[s′, s′][s, s]+

√
1− [s′, s′]

√
1− [s, s]−1 ≤ 0,

beause 2
√
[s′, s′][s, s] ≤ [s′, s′]+ [s, s]). We remark that equality holds in the inequalities if and

only if the norms of s′ and s are equal to eah other. So we have the equality [s′, s]− [s, s] = 0,

or equivalently [s′, s] =
√
[s′, s′][s, s]. We also get that v is the only point of K+

lying on the

tangent spae Tv if and only if the s.i.p. spae S is stritly onvex.

(7) Using the funtion k we get

I = [ċ(t), ċ(t)]− [(k ◦ c)′(t)]2.
Using Lemma 3.2.1 and Theorem 3.2.3 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(1− [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

1− [c(t), c(t)]
,

and assuming that 2[c(t), c(t)] 6= 1 we get

II =

[
c̈(t) + (k ◦ c)′′(t)en,

c(t)− (k ◦ c)(t)en√
| − 1 + 2[c(t), c(t)]|

]+

(k◦c)(t)

=
1√

| − 1 + 2[c(t), c(t)]|
([c̈(t), c(t)] + (k ◦ c)′′(t)k(c(t))) .

Lemma 3.2.4 implies that

(k ◦ c)′′(t)k(c(t)) = −[ċ(t), c(t)]′ +
[ċ(t), c(t)]2

1− [c(t), c(t)]
= −

(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
+

[ċ(t), c(t)]2

1− [c(t), c(t)]
.

thus we have

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ·]′ċ(t)(c(t)) +

[ċ(t), c(t)]2

1− [c(t), c(t)]

)
.
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Assuming that S is ontinuously di�erentiable and using Theorem 3.2.3 we get

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

−1 + [c(t), c(t)]

)
= − 1√

| − 1 + 2[c(t), c(t)]|
I.

The prinipal urvatures at a point k(c(t)) are

ρmax(u, v) = ρmin(u, v) = − 1√
| − 1 + 2[c(t), c(t)]|

giving the setional urvatures

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1 + 2[c(t), c(t)]
.

The Rii urvatures in any diretions at the point k(c(t)) are equal to

Ric(v)k(c(t)) := (n− 2) ·E(κk(c(t))(u, v)) =
n− 2

−1 + 2[c(t), c(t)]

and the salar urvature of the hypersurfae K+
at its point k(c(t)) is

Γk(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)) =

(
n−1
2

)

−1 + 2[c(t), c(t)]
.

(8) Finally we remark that at the points of K+
having the equality 2[c(t), c(t)] = 1 all of the

urvatures an be de�ned as in the ase of the light one and an be regarded to zero. �

As we saw H+
whih is the generalization of the hyperboli spae an be onsidered as a pre-

manifold it is the pre-hyperboli spae in our terminology. We an tell about G as a premanifold

of onstant positive urvature and we may say that it is a pre-sphere L is a premanifold with zero

setional, Rii and salar urvatures, respetively. We may also say that it is a pre-Eulidean

spae. K+
is an example to a premanifold with non-onstant urvatures.

3.3. The metri spae of norms

The investigations of the author on the generalized spae-time models of hanging shape pro-

posed that de�ne "Gaussian" (or other type) probability measure on the metri spae of en-

trally symmetri onvex, ompat bodies. This leads to a very important part of onvex geom-

etry to the investigation of the Spae of Convex Bodies. A good survey on the long history an

be found in Setion 13 of the book [71℄ of P. Gruber. We shall investigate the probability spae

of norms de�ned on a real, n-dimensional Eulidean spae V . A norm funtion on V de�ned

by its unit ball K, whih is a entrally symmetri in O onvex body. Suh bodies give a losed

proper subset K0 of the spae of onvex bodies K of (V, 〈·, ·〉)1. It is known that the Hausdor�

distane δh is a metri on K and with this metri (K, δh) is a loally ompat spae. (See in

[71℄,[72℄.) Thus there should be many measures available on these spae. Unfortunately this

is not so. Bandt and Baraki in [22℄ proved answering to a problem of MMullen [135℄ that

there is no positive σ-�nite Borel measure on it whih is invariant with respet to all isome-

tries of (K, δh) into itself. This result exlude the possibility of the existene of a volume-type

measure. It was a natural question that an whether be found suh a σ-�nite Borel measure

on K whih holds the property that it is non-zero for any open set of K and invariant under

rigid motions of the embedding vetor spae. This long standing question was answered in the

last lose by Ho�mann in [90℄. His result an be summarized as follows. Eah σ-�nite rotation
and translation invariant Borel measure on (K, δh) is the vague limit of suh measures and that

eah σ-�nite Borel measure on (K, δh) is the vague limit of measures of the form

∑∞
i=1 αnδKn,

1

We rather denote in this paper the spae of O-symmetri onvex bodies by K0 as the spae of onvex

bodies with entroid O.
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where {Kn , n ∈ N} is a ountable, dense subset of (K, δh), (αn) is a sequene of positive real

numbers for whih

∞∑
i=1

αn <∞ and δKn denote the Dira measure onentrated at Kn.

Ho�mann also observed that a result of Bárány [23℄ "suggest that it might not be possible to

de�ne a "uniform" probability measure on the set of all polytopes whih have rational verties

and are ontained in the unit ball". The known onept of Gaussian random onvex bodies

[125℄ gives a poor lass of Gaussian measures beause of a random onvex body is Gaussian

if and only if there exists a deterministi body and a Gaussian random vetor suh that the

random body is the sum of the deterministi one and the random vetor almost surely. He asked

"whether there exists an alternative approah to "Gaussian" random onvex bodies whih yields

a riher lass of "Gaussian" measures on (K, δh).
Our observation is that on ertain large probability spae the uniformity or normality properties

ould be only "relative" one and thus we an require these properties in their impats through

a given funtion of the spae. More preisely, we require the normality or uniformity on a

pushforward measure by a given geometri funtion of the elements of the spae (here on the

spae of onvex bodies). To this purpose we use the thinness funtion α0(K) of K de�ned by

the help of the onepts of diameter diamK and width w(K) of a onvex body K.

3.3.1. The thinness funtion and other de�nitions. We reall some neessary de�ni-

tions. Deeper understanding of the subjet on onvex geometry and geometri measure theory

I suggest to read the books [71℄, [94℄ and [133℄ where all properties of the following onepts

an be found. Let K be the set of onvex bodies of an Eulidean vetor spae of dimension

n. It is endowed with the topology indued by the Hausdor� metri δh, whih was de�ned in

subsetion 2.1.4. If we onsider a topology on K or on a subspae of it, suh as the spae of

O-symmetri onvex bodies K0, it is always assumed that it is the topology indued by δh.
From geometri measure theory we will use the onepts of Borel, Dira, Haar and Lebesgue-

measure. All of these onepts an be found in [56℄ or [86℄. We also use some basi tools of

probability theory, e.g. the onepts of trunated Gaussian and uniform distributions, and the

onept of the pushforward and pullbak of a measure. The reader an read on these onept

on the internet or in basi works on probability theory e.g. in [58℄ or [88℄.

Let denote by w(K) the in�mum of the distanes between parallel support hyperplanes of the

onvex body K. This is the width of K. The diameter of K (diamK) is the supremum of the

distanes between two points of K. It an be regarded also as the supremum of the distanes

between parallel support hyperplanes of K. By these two quantities we de�ned a new one.

Definition 3.3.1 ([10℄). Let denote by α0(K) the number

α0(K) =
diamK

w(K) + diamK
.

We all it the thinness of the onvex body K.

The thinness is

1
2
in the ase of the Eulidean ball only and it is equal to 1 if K has of dimension

less or equal to (n− 1).
Let now BE be the unit ball of the embedding Eulidean spae and let de�ne the unit sphere

of K0 around BE by the equality: K1
0 := {K ∈ K0 | δh(K,BE) = 1}.

The following lemma shows the usable of the thinness funtion in our investigation.

Lemma 3.3.1 ([10℄). If K ∈ K1
0 and α0 := α0(K) is the thinness of K then we have

δh(αK,BE) =

{
2α− 1 if α0 ≤ α
2α + 1− 2 α

α0
if 0 ≤ α < α0.

Proof. Assume that δh(K,BE) is the distane of the points x ∈ bdBE and y ∈ bdK. Then

‖y‖E = ‖x‖E + 1 = 2 and 0, x, y are ollinear. (We note that the norm of the point y is also
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the half of the diameter diamK of K with respet to the Eulidean metri.) This implies that

for α > 1 the points

1
α
x and y give a segment with length δh

(
K, 1

α
BE

)
and thus

δh
(
K,

1

α
BE

)
=

∥∥∥∥y −
1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2− 1

α

holds. If α < 1 then the situation is a little bit more ompliated. In this ase there is a real

number α0 ∈
[
1
2
, 1
)
suh that if α0 ≤ α < 1 then again

δh
(
K,

1

α
BE

)
=

∥∥∥∥y −
1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2− 1

α

but for α0 ≥ α > 0 we have a new pair of points y′ ∈ bdK and x′ ∈ bdBE where the distane

attained. The point y′ is a point of bdK with minimal norm and we have the equality

1

α0
− ‖y′‖ = 2− 1

α0
.

Thus the norm of y′ is equal to 2( 1
α0

− 1). In this ase

δh
(
K,

1

α
BE

)
=

∥∥∥∥−y′ +
1

α
x′
∥∥∥∥
E

=
1

α
− 2

(
1

α0

− 1

)
= 2 +

1

α
− 2

α0

.

We thus have the equality

δh(αK,BE) = αδh
(
K,

1

α
BE

)
=

{
2α− 1 if α0 ≤ α
2α + 1− 2 α

α0
if 0 ≤ α < α0.

The onstant α0 depends only on the body K and it has the following geometri meaning.

‖y′‖E = 2
α0

− 2 is the half of the width w(K) of the entrally symmetri body K, beause it is

a point on bdK with minimal norm. So we an see that

1

2
≤ α0 =

2

‖y′‖E + 2
=

diamK

w(K) + diamK
< 1

as we stated. �

3.3.2. The onstruted measure and its measure theoreti properties. We now

onstrut a measure on K1
0 whih pushforward by the thinness funtion has uniform distribution.

To this (following Ho�mann's paper) we introdued the orbits of a body K about the speial

orthogonal group SO(n) by [K]. These are ompat subsets of K1
0, and if we onsider an open

subset of K1
0 then the union of the orresponding orbits is also open. Hene there exists a

measurable mapping s : K1
0 −→ K1

0 suh that s(K) = s(K ′) if and only if K and K ′
are on the

same orbit. Let K̃1
0 := {K ∈ K1

0 , s(K) = K} whih is measurable subset of K1
0. We equip it

with the indued topology of K1
0. Finally let Φ1

2a : K̃1
0 × SO(n) −→ K1

0 is the mapping de�ned

by the equality: Φ1
2a(K,Θ) = ΘK. Our notation is analogous with the notation of [90℄. It

was proved in [90℄ (Lemma 2) that a non-trivial σ-�nite measure µ0 on K0 is invariant under

rotations (meaning that for Θ ∈ SO(n) we have µ0(A) = µ(ΘA) for all Borel sets A of K0) if

and only if there exists a σ-�nite measure µ̃0 on K̃0 suh that µ0 = Φ2a(µ̃0 ⊗ νn), where νn is

the Haar measure on SO(n). It is obvious that in the ase of K1
0 there is a similar result by our

mapping Φ1
2a(K,Θ) whih is the restrition of Ho�mann's map Φ2a(K,Θ) onto the set K1

0.

First we hose a ountable system of bodies Km to de�ne a probability measure on K̃1
0. Without

loss of generality we may assume that eah of the bodies of K̃1
0 has a ommon diameter of length

4 denoted by d, whih lies on the nth axe of oordinates (hene it is the onvex hull of the points

{2en,−2en}). Consider the set of diadi rational numbers in (0, 2]. We an write them as follows:

{
m(n, k) :=

k

2n
where n = 0, · · ·∞ and for a �xed n, 0 < k ≤ 2n+1

}
.
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92 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

De�ne the body Km(n,k) as the onvex hull of the union of the segment d and the ball around

the origin with radius m(n, k). For eah n we have 2n+1
suh bodies, thus the de�nition

µ̃1
0 := lim

n→∞

2n+1∑

k=1

1

2n+1
δKm(n,k)

de�ne a probability measure on K̃1
0.

Lemma 3.3.2 ([10℄). The pushforward measure w(K)−1(µ̃1
0) has uniform distribution on the

interval (0, 4].

Proof. Let B′ = (0, x] be a level set of (0, 4]. By de�nition

w(K)−1(µ̃1
0)(B

′) = µ̃1
0

({
K ∈ K̃1

0 | w(K) ∈ B′
})

= lim
n→∞

∑

Km(n,k)∈w(K)−1(B′)

0<k≤2n+1

1

2n+1
=

= lim
n→∞

∑

2m(n,k)∈B′

1

2n+1
= lim

n→∞

∑

2m(n,k)<x

1

2n+1
= lim

n→∞

2n−1x∑

k=1

1

2n+1
=
x

4

showing that w(K)−1(µ̃1
0) is the uniform distribution of the interval (0, 4]. �

The Gaussian measure γ of the n2
-dimensional matrix spae Rn×n

de�ned by the density

funtion G(X)

G(X)dλn
2

:=
1

(√
2π
)n2 e

− 1
2
Tr(XTX)dλn

2

,

where dλn
2
is the n2

-dimensional Lebesgue measure. The Haar measure νn of Rn×n
is the

pushforward measure of the Gaussian measure by the mappingM de�ned by the Gram-Shmidt

proess (see in [107℄). We stated the following:

Theorem 3.3.1 ([10℄). Let de�ne the measure ν̃10 by density funtion dν̃10 = 4
(w+4)2

dµ̃1
0. Then

α0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))

is a probability measure with uniform distribution on [1
2
, 1).

Proof. We are stating that the pushforward measure α0(K)−1
(
Φ1

2a

((
ν̃10 ⊗ νn

)))
has uni-

form distribution on [1
2
, 1) if and only if the pushforward measure w(K)−1

(
µ̃1
0

)
has uniform

distribution on (0, 4]. To prove this onsider a Borel set B of [1
2
, 1) and its image B′

under the

bijetive transformation τ : t 7→ τ(t) := 4
t
− 4. Of ourse B′

is a Borel set of the interval (0, 4]

whih is the image of [1
2
, 1) with respet to τ . We now have that

∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))
= α0(K)−1

(
Φ1

2a

(
ν̃10 ⊗ νn

))
(B) =

= Φ1
2a

(
ν̃10 ⊗ νn

)
(α0(K)−1(B)) = ν̃10

((
Φ1

2a

)−1

1

(
(α0(K)−1(B))

))
νn

((
Φ1

2a

)−1

2

(
α0(K)−1(B))

))

where (Φ1
2a)

−1
1 and (Φ1

2a)
−1
2 means the omponents of the set-valued inverse of the funtion Φ1

2a,

respetively. Sine (Φ1
2a)

−1
2 (α0(K)−1(B))) is the group O(n) we have that

∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))
= ν̃10

((
Φ1

2a

)−1

1

(
α0(K)−1(B)

))
=

∫

(Φ1
2a)

−1

1
(α−1

0 (B))

dν̃10 .
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3.3. THE METRIC SPACE OF NORMS 93

On the other hand

(
Φ1

2a

)−1

1

(
α−1
0 (B)

)
=

{
K̃ ∈ K̃1

0 | α0(K̃) =
4

w(K̃) + 4
∈ B

}
=

=

{
K̃ ∈ K̃1

0 | w(K̃) ∈ B′ =
4

B
− 4

}

implying that ∫

(Φ1
2a)

−1

1
(α−1

0 (B))

dν̃10 =

∫

{
K̃∈K̃1

0|w(K̃)∈B′
}

4

(w + 4)2
dµ̃1

0,

and it is equal to ∫

τ∈B′

4

(4 + τ)2
dτ =

∫

t∈B

dt

if and only if w(K)−1
(
µ̃1
0

)
has uniform distribution on (0, 4] as we stated.

Sine Lemma 3.3.2 says that w(K)−1
(
µ̃1
0

)
has uniform distribution on the interval [0, 4] we

also proved the theorem. �

Let denote by ν10 the measure Φ1
2a

(
ν̃10 ⊗ νn

)
. The following step gives suh a probability measure

on (K0, δ
h) whih pushforward measure by the funtion α0(K) has trunated normal distribution

on the range interval [1
2
, 1). We identi�ed K0 with K1

0×[0,∞), and introdued Φ4 as the mapping

Φ4 : (K,α) 7→ αK. Finally we an identify K0 with K1
0 × [0,∞). To this end let Φ4 be the

mapping Φ4 : (K,α) 7→ αK.

Lemma 3.3.3. [10℄ From the image K ′ = Φ4(K) we an determine uniquely the body K and

the onstant α.

Proof. K ′ = αK implies that α0(K) = α0(K
′) = d(K ′)

w(K ′)+d(K ′)
and thus α0(K) is uniquely

determined. We also know the value of α′ := δh(αK,BE). We are onsidering two ases. In the

�rst ase we assume that α ≥ α0 and hene by Lemma 3.3.1 we get that α′ = 2α−1 or α = α′+1
2

,

and in the seond one we assume 0 ≤ α ≤ α0 then we have α′ = 2α + 1 − 2 α
α0

or α = α′−1
2− 2

α0

=

α0(α′−1)
2(α0−1)

. From these we get that the �rst ase implies α0 ≤ α′+1
2

so α′ ≥ 2α0 − 1 and in the

seond one we have α0 ≥ α0(α′−1)
2(α0−1)

≥ 0. Hene we get 2α0 − 1 ≥ α′ ≥ 0. So �rst we determine α′

and the value

2α0 − 1 =
2diamK

w(K) + diamK
− 1 =

diamK − w(K)

diamK + w(K)
.

Then using the above equalities we an alulate α whih is uniquely determined. Now K is

equal to

1
α
K ′

. �

Denote by Φ−1
4 (K ′) :=

((
Φ−1

4

)
1
(K ′),

(
Φ−1

4

)
2
(K ′)

)
the pair (K,α) determined by the method

of Lemma 3.3.3. If we have a σ-�nite measure ν10 on K1
0 then we also have a σ-�nite measure

ν0 on K0 by the de�nition

ν0 = Φ4(ν
1
0 ⊗ ν),

where ν is a σ-�nite measure on (0,∞).
De�ne the set funtion p(A) as follows. If A ⊂ K0 ν0 is a measurable set let be

p(A) :=
1√
2πσ2

∫

K ′∈A

e−



δh



BE,
α0(K

′)

Φ−1
4 (K′)2

K′








2

2σ2 dν0.

The main result of [10℄ is:
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94 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

Theorem 3.3.2 ([10℄). If ν10 is suh a probability measure on K1
0 for whih α0(K)−1(ν10) has

uniform distribution, ν0 = Φ4(ν
1
0 ⊗ ν) where ν is a probability measure on (0,∞) and Φ is the

probability funtion of the standard normal distribution then

P (A) :=
4p(A)(

Φ
(
1
σ

)
− Φ(0)

) =
4(

Φ
(
1
σ

)
− Φ(0)

)√
2πσ2

∫

K ′∈A

e−



δh



BE,
α0(K

′)

Φ−1
4 (K′)2

K′








2

2σ2 dν0

is a probability measure on K0. Moreover α0(K)−1(P ) has trunated normal distribution on the

interval [1
2
, 1), (with mean

1
2
and variane

(
σ
2

)2
), so

α0(K)−1(P )

({
1

2
≤ t ≤ c

})
= P ({K ∈ K0 | α0(K) ≤ c}) =

Φ
(
c− 1

2
σ
2

)
− Φ(0)

Φ
(
1
σ

)
− Φ(0)

.

Proof.

p(A) =
1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)

∫

α∈(Φ−1
4 )

2
(A)

e−

(
δh

(
BE,

α0(K
′)

α αK

))2

2σ2 dνdν10

however α0(K
′) = α0(K) so it is equal to

1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)




∫

α∈(Φ−1
4 )

2
(A)

e−
α0(K)′2

2σ2 dν


 dν10 =

=
1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)




∫

αK∈A
α≥α0(K)

e−
(2α0(K)−1)2

2σ2 dν +

∫

αK∈A
0≤α≤α0(K)

e−

(
2α0(K)+1−2

α0(K)
α0(K)

)2

2σ2 dν


dν10 =

=
1√
2πσ2

∫

K∈(Φ−1
4 )(A)1




∫

α∈(Φ−1
4 )

2
(A)

e−
(2α0(K)−1)2

2σ2 dν


 dν10 =

ν
(
α ∈

(
Φ−1

4

)
2
(A)
)

√
2πσ2

∫

K∈(Φ−1
4 )(A)1

e−
(2α0(K)−1)2

2σ2 dν10 .

For A = K0 we have that it is equal to

ν((0,∞))√
2πσ2

1∫

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν10)(t)

)
.

Sine ν is a probability measure on (0,∞) and α0(K)−1(ν10) has uniform distribution on [1
2
, 1)

so we have that

p(K0) =
1

2
√
2π σ

2

1

2




1∫

−∞

e
− 1

2

(
t−1

2
σ
2

)2

dt−

1
2∫

−∞

e
− 1

2

(
t−1

2
σ
2

)2

dt


 =

Φ
(
1
σ

)
− Φ(0)

4
,

where the funtion

Φ(x) =
1√
2π

∫ x

∞
e

(
−u2

2

)

du

is the standard normal distribution funtion.

Analogously, for the set K0(c) := {K ′ ∈ K0 | α0(K
′) = α0(K) ≤ c} we have

p(K0(c)) =
ν((0,∞))√

2πσ2

c∫

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν10)(t)

)
=

Φ
(
c− 1

2
σ
2

)
− Φ(0)

4

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



3.3. THE METRIC SPACE OF NORMS 95

thus the measure

P (A) :=
4

Φ
(
1
σ

)
− Φ(0)

p(A)

is suh a probability measure on K0 whih pushforward by the funtion α0(K) has normal

distribution. �

3.3.3. Extration the measure to a geometri probability measure. The existene

of a measure with similar properties on the spae K of onvex bodies follows easily. In fat,

let denote by m(K) := 1
2
(K + (−K)) where the addition means the Minkowski sum of onvex

bodies. The mapping m : K −→ K0 is a ontinuous funtion on K and thus it de�nes a pullbak

measure µ on K by the rule µ(H) = P (m(H)) where H = m−1(H ′) for a Borel set H ′ ∈ K0.

Observe that m has the following properties:

(1) surjetive

(2) for any set S ⊂ K and a vetor t ∈ Rn
we have m(S + t) = m(S)

(3) for any K ∈ K holds that diamK = diam(m(K)), w(K) = w(m(K) implying that

α0(K) = α0(m(K)).

This implies that the funtion α0 is well-de�ned on K and for any Borel set B ∈
[
1
2
, 1
)

µ
(
α−1
0 (B)

)
= P (m

(
α−1
0 (B)

)
) = P (α−1

0 |K0(B)) showing that the pushforward of the measure

µ has trunated normal distribution on the interval

[
1
2
, 1
)
.

Note that this measure is a geometri measure in the sense that invariant under rigid motions.

The basi questions on suh a measure are: "Do the onvex polytopes have measure zero, do the

smooth bodies have positive measure, or does a neighborhood always have positive measure?"

The previous onstrution we an modify suh that the improved one solves positively the above

questions.

Lemma 3.3.4 ([10℄). Denote by P0 the set of O-symmetri onvex polytopes. Then we have

P (P0) = 0.

Proof. Introdue the sets P1
0 and P̃1

0 as we did in the ase of the O-symmetri bodies K0. By

de�nition we have µ̃1
0

(
K̃1

0 \ P̃1
0

)
= 1 showing that µ̃1

0

(
P̃1

0

)
= 0. Thus

ν̃10

(
P̃1

0

)
=

∫

P̃1
0

dν̃10 =

∫

P̃1
0

4

(w + 4)2
dµ̃1

0 = 0,

and so

ν10
(
P1

0

)
= Φ1

2a

(
P̃1

0 ⊗ νn

)(
P̃1

0 , SO(n)
)
= 0.

Finally, we have ν0 (P0) = Φ4 (ν
1
0 ⊗ ν) (P1

0 , [0,∞)) = 0 implying p (P0) = P (P0) = 0 as we

stated. �

We de�ne the new system in two steps.

• Change the body Km(n,k) to a smooth body K l
m(n,k) de�ned by the onvex hull of the

ball around the origin with radius m(n, k) and the two balls of radius εl =
1
2l
m(n, k)

with enters ±(2− εl)en.
• Substitute eah elements of the system of the bodies K l

m(n,k) with a new ountable

system of bodies. Consider a dense, ountable and entrally symmetri point system

{P1,−P1, P2,−P2 · · · } in the losed ball of radius 2 with the additional property that

there is no two distanes between the pairs of points whih are equals to eah other.

(Suh a point system is exist.) We assume that the �rst point P1 is the endpoint of

2en and denote by Si a similarity of En
whih sends P1 into Pi and the ball of radius

2 at the origin into the ball of radius OPi entered at the origin O, too. Consider the

ountable set of bodies S
(
K l
m(n,k)

)
:=
{
Si

(
K l
m(n,k)

)
, i = 1, 2, . . .

}
and de�ne the

elements of the new set Hl
m(n,k) by indution as follows:
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96 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

� The �rst element is itself the set K l
m(n,k) := S1

(
K l
m(n,k)

)
.

� In the seond step onsider suh pairs from the list S
(
K l
m(n,k)

)
one of whih

has diameter 4 and onstrut their onvex hulls. Add these bodies also to the set

Hl
m(n,k).

� In the third step onstrut the onvex hull of the triplet from whih one has

diameter 4. Add these bodies to Hl
m(n,k), too.

� ... and so on.

Hene we have a ountable system of entrally symmetri onvex bodies with diameter 4. The
getting set Hl

m(n,k) has a partition into ountable subsets. So we have:

Hl
m(n,k) = K l

m(n,k)∪̇
{
conv

{
Si
(
K l
m(n,k)

)
, Sj
(
K l
m(n,k)

)}
for i, j

}
∪̇

∪̇
{
conv

{
Si
(
K l
m(n,k)

)
, Sj
(
K l
m(n,k)

)
, Sk

(
K l
m(n,k)

)}
for i, j, k

}
∪̇ · · · ,

where all of the elements are smooth bodies having diameter 4. The following tehnial lemma

is important.

Lemma 3.3.5 ([10℄). The bodies of

H =
{
Hl
m(n,k) m,n, k, l ∈ N

}

are pairwise non-ongruent. For an arbitrary polytope Q ∈ P0 and for a given number ε we an
hoose an element R ∈ H for whih hold that δh (Q,R) < ε.

Proof. The �rst statement follows from the fat that eah of the bodies of H ontains a

maximal �at part whih is the onvex hulls of the points Pi. By the hoie of the point system

{Pi} these parts are pairwise non-ongruent. The proof of the seond statement based on the

fat that for large l, m(n, k) with a small k the bodies S
(
K l
m(n,k)

)
essentially are O-symmetri

segments and thus their onvex hull is lose to a polytope with respet to the Hausdor� distane.

We here omit the straightforward argument. �

We are distributing among the elements of Hl
m(n,k) that part of the measure µ̃1

0 whih originally

onentrated on K l
m(n,k).

For a �xed r ∈ N onsider a sequene (αri ) of positive numbers whih holds the property

∞∑
i=1

αri = 1. Let Lri (l) be the ith element of the r-th subset of the above partition of Hl
m(n,k).

Thus it is a onvex hull of exatly r opies of bodies from S
(
K l
m(n,k)

)
. We give it the weight

αri /2
r
.

Definition 3.3.2 ([10℄). Choose a sequene of positive numbers βl with again the property

∞∑
l=1

βl = 1. De�ne a measure

˜̃
µ1
0 by the equality:

˜̃
µ1
0 := lim

n→∞

2n+1∑

k=1

∞∑

l=1

∞∑

r=1

∞∑

i=1

βlα
r
i

2n+1+r
δLr

i (l)
.

We prove the following theorem:

Theorem 3.3.3 ([10℄). On the spae of norms there is a probability measure P with the following

properties:

• The neighborhoods has positive measure.

• The set of polytopes has zero measure.

• The set of smooth bodies has measure 1.
• The pushforward α0(K)−1(P ) of P has trunated normal distribution on the interval

[1
2
, 1).
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Proof. Consider the measure

˜̃
µ1
0 without the measure µ̃1

0 and expand it for K0 on the way

as we did it with µ̃1
0. The �nal measure P by Lemma 3.3.4 on the set of polytopes has zero

value. By the remark before the de�nition of the new system we know that the set of smooth

bodies of K0 has measure 1 sine the elements of H are smooth. The required property on the

approximation of polytopes follows from Lemma 3.3.5 sine for eah polytope we an �nd a

body from Hl
m(n,k) lose to them. The de�nition of

˜̃
µ1
0 guarantees that the distribution of

˜̃
µ1
0

and µ̃1
0 are agree proving our last statement. �

3.4. Generalized spae-time model with hanging shape

Our investigation on spae-time originated from Minkowski, Lorentz, Einstein and Riemann.

Minkowski observed (see [123℄) that the mathematial struture of speial relativity requires

a speial kind of geometry the geometry of spae-time. In spae-time we have a homogeneous

system of points in eah point we an measure the distane at the same manner. Loally we

have only three types of points whih are agree one of the spae-like, time-like and light-like

properties, respetively. Global relativity rewrote this onept, the existene of gravity hanges

the geometri struture of the spae hene we annot onsider our world suh a manifold whih

has the same loal metri geometry in its points independently from the position of the points

and the date of the event. In suh a model the metri of the geometry hanges by point to

point. The desription in its full generalization require the Riemann geometri approah in

whih the leading role of the time is loose. To approah global relativity theory we should use

the mathematial bakground of a Lorentzian manifold in whih the points of the world don't

ordered by the time. Though this generalization is neessary for a omplete handing of this

problem there are many important situation in whih the ordering role of the time natural and

indisputable. Our goal is to reate an immediate struture between spae-time and Lorentzian

manifold suitable to desribe those phenomenon in whih the time has an important role. For

this purpose we give in [11℄ a mathematial model alled by time-spae in two versions (one of

them deterministi and the other one is random) and prove that substantially all of them an

be onsidered relevant. The knowledge of the author either this model and the orresponding

investigations are new. On the other hand there is fully developed theory whih an be followed

in this situation. Hene the results in this paper an be valued di�erently. We onentrate in

this thesis only suh things whih fully understandable for a pure mathematis.

3.4.1. Deterministi time-spae model. We assume that there is an absolute oordi-

nate system of dimension n in whih we are modeling the universe by a time-spae model. The

origin is a generalized spae-time model in whih the time axis plays the role of the absolute

time. In a �xed moment (with respet to this absolute time) the olletion of the points of

the spae an be regarded as an open puntured ball of the embedding normed spae whih

is entered at the origin that does not ontain the origin. The omitted point is the origin of

a oordinate system giving the spae-like oordinates of the world-points with respet to our

time-spae system. Sine the points of the axis of the absolute-time are not in our universe

there is no referene system in our modeled world whih determines the absolute time.

2

In our deterministi model (based on a generalized spae-time model) the absolute oordinates

of points are alulated by a �xed basis of the embedding vetor spae. The vetor s(τ) means

the olletion of the spae-omponents with respet to the absolute time τ , the quantity τ has

to be measured on a line T whih orthogonal to the linear subspae S of the vetors s(τ).
(The orthogonality was onsidered as the Pythagorean orthogonality of the embedding normed

spae.) Consider a �xed Eulidean vetor spae with unit ball BE on S and use its usual

2

In mathematial point of view there is no importane that the absolute time-axis an be found (is "exists")

or annot be found (is not "exists"). In our alulations assume that the shape of the universe in a moment is

an open entrally symmetri onvex body. Its enter is also unknown and we an visualize it as a point of the

axis of absolute-time.
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98 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

Figure 3.3. The shape of the universe.

funtions e.g. volume, diameter, width, thinness and Hausdor� distane. With respet to the

moment τ of the absolute time we have a unit ball K(τ) in the orresponding normed spae

{S, ‖ · ‖τ}. The modeled universe at τ is the ball τK(τ) ⊂ {S, ‖ · ‖τ}. The shape of the model at

the moment τ depends on the shape of the entrally symmetri onvex body K(τ). The enter
of the model is on the axis of the absolute time, it annot be determined. For alulations on

time-spae we need further smoothness properties on K(τ). These are

• K(τ) is a entrally symmetri, onvex, ompat, C2
body of volume vol(BE).

• For eah pairs of points s′, s′′ the funtion K : R+ ∪ {0} → K0, τ 7→ K(τ) holds the
property that [s′, s′′]τ : τ 7→ [s′, s′′]τ is a C1

-funtion.

Definition 3.4.1. [11℄ We say that a generalized spae-time model endowed with a funtion

K(τ) holding the above properties is a deterministi time-spae model.

The main subset of a deterministi time-spae model ontains the points of negative norm-

square. This is the set of time-like points and the upper onneted sheet of the time-like points

is the modeled universe. The points of the universe have positive time-omponents. We denote

this model by (M,K(τ)).
We remark that in the two-dimensional ase for eah τ , K(τ) is a segment with length two, thus

our model is the 2-dimensional spae-time. On the other hand, with n greater than or equal

to 3, the two-dimensional spae-time setions of our general spae-time bounded by general

(non-onvex) urves symmetri about the time-axis (see on Fig. 3.3).

We an give a produt similar to the Minkowski produt of a generalized spae-time model. In

a two-dimensional plane the role of the light-one play the urve [αe(τ)e, αe(τ)e]τ + [τ, τ ] = 0.
For a �xed diretion x, we onsider the urves tβ,e : τ 7→ βαe(τ)e + τen through the point

x = βαe(τ)e + τen. Note that x is a time-like point if |β| < 1. The role of the imaginary unit

sphere is played by the set of points

∪
{{

s+ τ where

√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
.

In the diretion of e it is a urve de�ned by the impliit equation

√
[s, s]τ + 1 = τ , τ ≥ 1. The

intersetion of this urve with tβ,e is a point satisfying the equality [βαe(τ ⋆)e, βαe(τ ⋆)e]τ
⋆

+1 =

(τ ⋆)2, with parameter τ ⋆, and hene we get β2 (τ ⋆)2 + 1 = (τ ⋆)2, or equivalently (τ ⋆)2 = 1
1−β2 .

Assuming that our examination is on the positive part of the set of time-like points we have

τ ⋆ = 1√
1−β2

or β =

√
(τ⋆)2−1

τ⋆
.

In the spae-time model the tangent of the imaginary unit urve is orthogonal to the position

vetor of the ommon point. This requires that in the ase of generalized spae-time model, the

produt [
e+

(√
[s, s]τ + 1

)′
e
(βαe(τ ⋆)e) en, βα

e (τ ⋆) e+ τ ⋆en

]
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 99

will be equal to zero. Another laim that the produt is equal to the orresponding norm-

square in the ase when its arguments ontains the same vetors. We will need a lemma on the

diretional derivative of the funtion whih de�nes the imaginary unit sphere.

Lemma 3.4.1 ([11℄). The diretional derivative of the real valued funtion h(s) =
√
[s, s]h(s) + 1

is

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=
2

2h(s)− ∂[s,s]τ

∂τ
(h(s))

[e, s]h(s),

or equivalently

h′e(s) =
1

h(s)− ‖s‖h(s) ∂‖s‖τ
∂τ

(h(s))
[e, s]h(s).

Proof. The onsidered derivative is

h′e(s) =
1

2
√
1 + [s, s]h(s)

([s, s]h(s))′e.

It an be seen easily (or use the alulation of Theorem 3.4.1 with the substitutions c(t+ λ) =
s+ λe, (f1)S = (f2)S = id|S and (f1)T = (f2)T = h) that the diretional derivative is equal to

h′e(s) =
1

2
√

1 + [s, s]h(s)

(
[e, s]h(s) +

(
[s, ·]h(s)

)′
e
(s) +

∂[s, s]τ

∂τ
(h(s)) · (h)′e(s)

)
=

=
1

2
√

1 + [s, s]h(s)

(
2[e, s]h(s) +

∂[s, s]τ

∂τ
(h(s)) · (h)′e(s)

)
.

Thus we get

h′e(s)

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√

1 + [s, s]h(s)

)
=

[e, s]h(s)√
1 + [s, s]h(s)

,

or equivalently the required formulas

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=
1

h(s)− ‖s‖h(s) ∂‖s‖τ
∂τ

(h(s))
[e, s]h(s).

�

Definition 3.4.2 ([11℄). For two vetors s1 + τ1 and s2 + τ2 of the deterministi time-spae

model de�ne their produt with the equality

[s1 + τ1, s2 + τ2]
+,T := [s1, s2]

τ2 + [τ1, τ2] = [s1, s2]
τ2 − τ1τ2.

Here [s1, s2]
τ2

means the s.i.p de�ned by the norm ‖ · ‖τ2 . This produt is not a Minkowski

produt, as there is no homogeneity property in the seond variable. On the other hand the

additivity and homogeneity properties of the �rst variable, the properties on non-degeneray of

the produt are again hold, and the ontinuity and di�erentiability properties of this produt

also remain the same as of a Minkowski produt. The alulations in a generalized spae-time

model basially depend on a rule on the di�erentiability of the seond variable of the Minkowski

produt. Using the notation

[f1(c(t)), ·]+′

D(f2◦c)(t)
(f2(c(t))) :=

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))) − (f1)T (c(t))((f2)T ◦ c)′(t)

)
,

in Lemma 3.2.4 we stated that if f1, f2 : S −→ V = S + T are two C2
maps and c : R −→ S is

an arbitrary C2
urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ = [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+′
D(f2◦c)(t)((f2 ◦ c)(t)).

Regarding to the importane of this rule we reprodue it in a time-spae model. Let denote by

fS and fT the omponent funtions of f with respet to the subspaes S and T , respetively.
By de�nition, let us denote

(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t))) :=

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



100 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

=
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)+

+(f1)T (c(t))
∂2[(f2)S(c(t)), (f2)S(c(t))]

τ

(∂τ)2
((f2)T (c(t))) [D((f2)S ◦ c)(t), (f2)S(c(t))](f2)T (c(t)) .

We now generalize the formula of Lemma 3.2.4.

Theorem 3.4.1 ([11℄). If f1, f2 : S −→ V = S + T are two C2
maps and c : R −→ S is an

arbitrary C2
urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+,T )′ = [D(f1 ◦ c)(t), f2(c(t))]+,T +
(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t)

Proof. By de�nition

([f1 ◦ c, f2 ◦ c)]+,T )′|t := lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+,T − [f1(c(t)), f2(c(t))]

+,T
)
=

= lim
λ→0

1

λ

(
[(f1)S(c(t+ λ)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]

(f2)T (c(t))
)
+

+ lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) .

The �rst part an be written in the form

lim
λ→0

1

λ

(
[(f1)S(c(t+ λ))− (f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ))+

+[(f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t))

)
.

We prove that it is equal to

[D((f1)S ◦ c)|t, (f2)S(c(t))](f2)T (c(t)) +
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

In this latter equation the �rst term omes from the value of the �rst braket of the earlier

one. We alulate now the remaining substration. For this, take the �xed (absolute) oordinate

system {e1, · · · , en−1} of S and onsider the oordinate-wise representation (f2)S◦c =
n−1∑
i=1

((f2)S◦
c)iei. Using Taylor's theorem for the oordinate funtions we have that there are real parameters

ti ∈ (t, t + λ), for whih

((f2)S ◦ c)(t+ λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we get that

[(f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t)) =

=

[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t)) =

=
(
[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) − [(f1)S(c(t)), (f2)S(c(t))]

(f2)T (c(t))
)
+

+



[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))
)
.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 101

Dividing by λ and applying the limit proedure when λ tends to zero we get from the �rst

braket the value:

(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

(((f2)S ◦ c)(t))).
We also determine the value of the seond braket. By De�nition 3.4.2 the seond term in this

braket is

[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) = [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ)) −

−∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ − o(λ′),

where (f2)T (c(t+ λ)) = (f2)T (c(t)) + λ′ and lim
λ′ 7→0

o(λ′)
λ′

= 0.

Sine (f2)T c(t+ λ) = (f2)T c(t) + λ ((f2)T ◦ c)′ (t) + o1(λ), we have that λ
′ = λ ((f2)T ◦ c)′ (t) +

o1(λ). By the Lipshitz ondition (whih also holds in the seond variable of the produt) there

is a real onstant K with whih we have that the absolute value of the substration

[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ))

is less than or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

.

Dividing by λ and applying the limit proedure as λ→ 0, this quantity tends to zero. Dividing

also by λ, for the remaining parts we have

1

λ

∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ + o(λ′) =

=
∂[(f1)S(c(t)), (f2)S(c(t)) + λD((f2)S ◦ c)(t)](f2)T (c(t))

∂τ

(
((f2)T ◦ c)′ (t) + o1(λ)

λ

)
+

+

(
o
(
λ ((f2)T ◦ c)′ (t) + o1(λ)

)

λ ((f2)T ◦ c)′ (t) + o1(λ)

)(
λ ((f2)T ◦ c)′ (t) + o1(λ)

λ

)
,

and if λ tends to zero then it is equal to

∂[(f1)S(c(t)), (f2)S(c(t))]
τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

Thus, we proved our statement on the spae-like omponent. On the other hand (f1)T , (f2)T ,
are real-real funtions, respetively. This implies that

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =

= −((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t)
showing the assertion of the theorem. �

In a deterministi time-spae model we should investigate suh n−1-dimensional subsets whih

annot be onsidered globally as a hypersurfae but loally holds this property.
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3.4.1.1. Imaginary unit sphere of a deterministi time-spae model. The points of H+,T
an

be de�ned by the union ∪
{{

s+ τ where

√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
. Our assumption onK(τ)

annot guaranties that for every s ∈ S there is a τ whih holds the equality

√
[s, s]τ + 1 = τ .

On the other hand if we assume that ρH(K(τ), BE) ≤ 1 the ball 2K(τ) ontains the Eulidean
ball BE for every τ . Hene [s, s]τ ≤ 4‖s‖2E so for all τ with τ 2 > 4‖s‖2E + 1, the inequality

[s, s]τ + 1 < τ 2 holds. Sine for a non-zero vetor s we have also that [s, s]1 + 1 > 1, the
statement follows by ontinuity. Clearly, H+,T

generally annot be onsidered as a hypersurfae

of the time-spae implying that its di�erential geometry an be onsidered only on the base of

its impliit de�nition. On the other hand we an onsider the funtion H : V → R de�ned by

H(s + τen) :=
√

[s, s]τ + 1 − τ . If v0 = s0 + τ0en is a point on H+,T
then we have H(v0) = 0.

By our de�nition H is ontinuously di�erentiable at the point v0. Assume that

∂H

∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√
[s, s]τ + 1

(v0)− 1 6= 0, or equivalently
∂([s0, s0]

τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 + 1.

Then by the impliit funtion theorem there is a neighborhood U of v0 and a funtion h : S → R

suh that τ = h(s) hold for the points v = s+ τen of H+,T
. Thus we have in U (as in Lemma

3.4.1) that h(s) =
√
[s, s]h(s) + 1. If the vetor s omes from a point of a urve c(t) ⊂ S by the

de�nition c(t+ λ) : λ→ s+ λe, we get the equality: (h ◦ c)(t) =
√

[(c(t), c(t)]h(c(t)) + 1 and also

(h ◦ c)′(t) = [ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

+
∂[c(t),c(t)]τ

∂τ
(h(c(t))) · (h ◦ c)′(t)

2
√

1 + [c(t), c(t)]h(c(t))

or equivalently,

(h ◦ c)′(t) =
(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√

1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

=

=
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[ċ(t), c(t)]h(c(t)).

We note that the additional value

∂[c(t), c(t)]τ

∂τ
(h(c(t)))

of the formula depend on the position c(t + 0) = s and do not depend on the diretion vetor

e. Thus the �rst fundamental form is:

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+,T = [ċ(t), ċ(t)](h◦c)
′(t) − [(h ◦ c)′(t)]2 =

= [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

To alulate the seond fundamental form we have to determine the unit normal vetor �eld.

A tangent vetor is

ċ(t) + (h ◦ c)′(t)en = ċ(t) +

(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√
1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

en.

We an see that[
ċ(t) +

2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

en,
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + h(c(t))en

]+,T
= 0

showing the equality

n ◦ c = 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 103

The seond fundamental form of H+,T
is

II :=

[
c̈(t) + (h ◦ c)′′(t)en,

2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en
]+,T

(h◦c)(t)

=

=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)](h◦c)(t) − (h ◦ c)′′(t)h(c(t)).

In fat we an use here Theorem 3.4.1. Thus we get �rst that

(h ◦ c)′′(t) =
(

2 [ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)′

= A+ B

where

A =
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

(
[c̈(t), c(t)]h(c(t)) +

(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t))+

+
2[ċ(t), c(t)]h(c(t)) ∂[ċ(t),c(t)]

τ

∂τ
(h(c(t)))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)

and

B =
−2[ċ(t), c(t)]h(c(t))

(
2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2 2
(
(h ◦ c)′(t)

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

)
=

−2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

(
((h ◦ c)′(t))2

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

)
.

Sine in time-spae model we have

(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t)) = [ċ(t), ċ(t)](h◦c)
′(t))

we get that the

seond fundamental form is:

II =
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)]h(c(t)) − (h ◦ c)′′(t)h(c(t)) =

=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
−[ċ(t), ċ(t)](h◦c)

′(t)+

+ ((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)2
(h(c(t)))

)
− 2(h ◦ c)′(t)∂[ċ(t), c(t)]

τ

∂τ
(h(c(t)))

]
,

where

(h ◦ c)′(t)) = 2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

.

Observe, that if the norm is a onstant funtion of the time, these formulas simplify to the

formulas of the generalized spae-time model. We now give three examples to illustrate that

these important formulas an be alulated, onretely.

Example 3.4.1. [11℄

(1) For a 3-dimensional example we take the funtion K(τ) : τ 7→ Gτ , where Gτ is the ellipse

of area π with half-axes τe1 and

1
τ
e2. Here {e1, e2} is an orthonormed basis of the embedding

Eulidean plane. The onnetion between the norms of the vetor s = xe1+ye2 and its Eulidean

oordinates is [s, s]τ = τ 2x2 + y2

τ2
. The impliite equation for the orresponding imaginary unit

sphere is τ =
√
1 + τ 2x2 + y2

τ2
, if we assume that 2τx2 − 2y2

τ3
6= 2τ , or equivalently x2 − 1 6= y2

τ4
.

For a vetor s = (x, y)T we exlude the moment τ holding the equality τ 4 = y2

x2−1
where x2 6= 1.
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104 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

(Thus if x2 = 1 there is no τ , whih we should exlude from the investigation.) Solving the

impliit equation we get that

τ 2 =
1±

√
1 + 4(1− x2)y2

2(1− x2)
if x2 6= 1,

and in the ase when x2 = 1 τ has to be ∞ for every y. This formula shows that we an get

real values for τ if and only if x2 ≤ 1 + 1
4y2

. Thus the domain of the imaginary unit sphere is

the union of three domains bounded by the urves x = ±1 and x = ±
√

1 + 1
4y2

drawing on the

�gure Fig 3.4.

x=1x= -1 x
2
= 1+

1

4 y 2

x

y

Figure 3.4. The domain of the imaginary unit sphere in the example.

Sine τ 2 > 0 we also have that if |x| < 1 then we have to onsider the equality with positive

sign

τ 2 =
1 +

√
1 + 4(1− x2)y2

2(1− x2)
,

and for the other two onneted omponents we have to hoose the equality with negative sign:

τ 2 =
1−

√
1 + 4(1− x2)y2

2(1− x2)
.

The �rst fundamental form is

I = [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

Sine

[ċ(t), c(t)]h(c(t)) = h(c(t))2 ˙x(t)x(t) +
˙y(t)y(t)

h(c(t))2
,

∂[c(t), c(t)]τ

∂τ
(h(c(t))) = 2h(c(t))x(t)2 − 2y(t)2

h(c(t))3
,

we have that

I = ((h ◦ c)′(t))2
(
(ẋ(t))2 − 1

)
+

(ẏ(t))2

((h ◦ c)′(t))2 ,
where

(h ◦ c)′(t) = h(c(t)
(h(c(t))4 ẋ(t)x(t) + ẏ(t)y(t)

(h(c(t))4 (1− (x(t))2) + (y(t))2

with

(h(c(t)))2 =
1±

√
1 + 4(1− (x(t))2)(y(t))2

2(1− (x(t))2)
.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 105

We also get that

II = − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2(ẋ(t))2+

+
(ẏ(t))2

((h ◦ c)′(t))2 − ((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

∂τ
(h(c(t)))

)
+

+ 2(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

]
=

= − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2

(
(ẋ(t))2 − 1 + (x(t))2 +

3(y(t))2

(h(c(t)))4

)
+

+4(h ◦ c)′(t)
(
h(c(t))ẋ(t)x(t)− ẏ(t)y(t)

(h(c(t)))3

)
+

(ẏ(t))2

((h ◦ c)′(t))2

]
.

For onreteness let

c(t) = (x(t), y(t)) = (t cosα,
√
2 + t sinα), and t0 = 0.

Then we have that (h(c(t0)))
2 = 2 beause in the formula

1±
√

1 + 4(1− x(t)2)y(t)2

2(1− x(t)2)

we have to alulate with positive sign. Sine

(h ◦ c)′(t0) =
√
2

√
2 sinα

4 + 2
=

1

3
sinα,

we get that

I =
1

9
sin2 α(cos2 α− 1) +

sin2 α
1
9
sin2 α

= 9− 1

9
sin4 α > 0.

Similarly the seond fundamental form is

II = −2

3

(
1

9
sin2 α

(
cos2 α− 1 +

3

2

)
+ 9 +

2
√
2

3
sin2 α

)
=

= −2

3

((
1

6
+

2
√
2

3

)
sin2 α− 1

9
sin4 α + 9

)
=

= −1 + 4
√
2

9
sin2 α+

2

27
sin4 α− 6.

The extremal values of the non-positive funtion

II

I
=

2
27
sin4 α− 1+4

√
2

9
sin2 α− 6

9− 1
9
sin4 α

attained at the diretions α for whih either cosα = 0 or sinα = 0 with the respetive negative

values −157+12
√
2

240
and −2

3
. Sine the normal vetor at this point is

n ◦ c = 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)e3 =
2

3
(0,

√
2)T +

√
2e3 =

=
√
2

((
0,

2

3

)T
+ e3

)
,

we have that the norm-square of it is 2
(
2
9
− 1
)
= −14

9
< 0 and hene the Gaussian urvature

is negative at this point.
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106 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

(2) For a further example hoose an ellipseGα as in the previous example with a �xed parameter

α, where 1 ≤ α ≤ 2. Let K(τ) be the rotated opy of this ellipse about the time axis with the

angle τ . Then

[s, s]τ = [xe1 + ye2, xe1 + ye2]
τ = α2(cos τx+ sin τy)2 +

(− sin τx+ cos τy)2

α2
=

=

(
α2x2 +

y2

α2

)
cos2 τ +

(
α2y2 +

x2

α2

)
sin2 τ + 2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

)
sin2 τ + 2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

) 1
2
−

−1

2

(
α2 − 1

α2

)(
y2 − x2

)
cos 2τ + sin 2τ

(
α2 − 1

α2

)
=

=
1

2
(α2 +

1

α2
)(x2 + y2) +

(
α2 − 1

α2

)(
sin 2τ − 1

2

(
y2 − x2

)
cos 2τ

)

The impliite equation of the imaginary unit sphere is

τ =

√
1 +

α4 + 1

2α2
(x2 + y2) +

α4 − 1

α2

(
sin 2τ − 1

2
(y2 − x2) cos 2τ

)
.

Here there is no expliit form for τ however in a onrete point the fundamental forms and

urvatures an be determined. We remark that the Hausdor� distanes of the unit ball K(τ)
from BE is less or equal to 1, thus the domain is the whole plane. Sine the norm indued by

an inner produt in every moments, the orresponding time-spae is a semi-Riemann manifold.

(3) We an get premanifolds if the square of the examined norms an not be represented as the

salar square of an inner produt. A three-dimensional example an be get from the funtion

K(τ) whih sends τ for τ > 1 to the unit ball of the lτ spae with Eulidean area π. In this

ase

[s, s]τ =
v(lτ )

π
τ
√

|x|τ + |y|τ , where v(lτ ) =
Γ
(
1 + 1

τ

)2

Γ
(
1 + 2

τ

) 4

is the volume of the unit ball of the standard lτ norm of the plane. Here for τ we have the

impliite equality

τ =

√
1 +

v(lτ )

π
τ
√

|x|τ + |y|τ .
As in the previous example the domain is also the plane S. �

3.4.1.2. The de Sitter sphere in time-spae. The points of the de Sitter sphere G+,T
an

be de�ned by the union ∪
{{

s+ τen where

√
[s, s]τ − 1 = τ

}
, [s, s]τ ≥ 1

}
. G+

is not a hy-

persurfae. It an be handled by the impliit funtion τ =
√

−1 + [s, s]τ for [s, s]τ > 1, using

the assumption

∂G
∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√

[s,s]τ−1
(v0)− 1 6= 0, or equivalently ∂([s0,s0]τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 − 1.

Using the equality h2(s) + g2(s) = [s, s]h(s) + [s, s]g(s), the derivative of g in the diretion of the

unit vetor e ∈ S an be alulated from the equality

2h(s)h′e(s) + 2g(s)g′e(s) =
(
[s, s]h(s) + [s, s]g(s)

)′
=

=

(
2[e, s]h(s) +

∂[s, s]h(s)

∂τ
(τ) · h′e(s)

)
+

(
2[e, s]g(s) +

∂[s, s]g(s)

∂τ
(τ) · g′e(s)

)
.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 107

Thus

g′e(s) =
2[e, s]g(s)

2g(s)− ∂[s,s]g(s)

∂τ
(g(s))

.

The �rst and seond fundamental forms have analogous forms as in the ase of the imaginary

unit sphere H+,T
.

3.4.1.3. The shape funtion. To use our new model in relativity theory we an larify the

following question: How we de�ne the so-alled "inertial frame" in our model? If we insist

on "a Desartes-system of the spae whih moving with a onstant veloity" then we have to

interpret two things; the onepts of Desartes system and the onept of veloity, respetively.

In a deterministi time-spae we have a funtion K(τ), and we have more possibilities to

de�ne orthogonality in a onrete moment τ . We shall �xe a onept of orthogonality and

we will onsider it in every normed spae. The most natural hoie is the onept of Birkho�

orthogonality. Using it, in every normed spae we an onsider an Auerbah basis (see Theorem

3.1.2) whih an play the role of a basi oordinate frame. We an determine the oordinates of

the point with respet to this basis. We say that a frame is at rest with respet to the absolute

time if its origin (as a partile) is at rest with respet to the absolute time τ and the unit

vetors of its axes are at rest with respet to a �xed Eulidean orthogonal basis of S. In this

ase the world line of the origin in the model is a vertial line (parallel to T ); it is the olletion
of those points of the model whih absolute spae-oordinates do not hanges by the hange of

the absolute time. Unfortunately, pratially we do not know an absolute oordinate system,

and we an not hek the immobility of the axes of suh a frame. This motivates our de�nition

on inertial frame and inertial frame "at rest", respetively. We denote by (S, ‖ · ‖τ ) the normed

spae with unit ball K(τ). In S we �x an Eulidean orthonormal basis and give the oordinates

of a point (vetor) of S with respet to this basis. We get urves in S parameterized by the

time τ . In our onept the partile is a random funtion x : Ix → S holding two onditions:

• the set Ix ⊂ T+
is an interval

• [x(τ), x(τ)]τ < 0 if τ ∈ Ix.

The partile lives on the interval Ix, is born at the moment inf Ix and dies at the moment sup Ix.
Sine all time-setions of a time-spae model is a normed spae of dimension n the Borel sets of

the time-setions are independent from the time. This means that we an onsider the physial

spei�es of a partile as a trajetory of a stohasti proess. A partile "realisti" if it holds

the "known laws of physi" and "idealisti" otherwise. This is only a terminology for own use,

the mathematial ontain of the expression "known laws of physis" is indeterminable. Sine

the norm (and thus the metri) in a time-spae model hanges by the time, the formulas of the

density funtion of a �xed distribution also hanges by the time. For example, if we say that

both of the funtions f(x(τ1)) and f(x(τ2)) have normal distribution on its domain τ1K(τ1) and
τ2K(τ2) we have to use distint formulas on their density funtions, respetively. The uniform

distribution is the only distribution whih density funtion is independent from the time. First

we introdue an inner metri δK(τ) on the spae at the moment τ .3 These thread motivates the

following de�nition:

Definition 3.4.3 ([11℄). Let X(τ) : T → τK(τ) be a ontinuously di�erentiable (by the time)

trajetory of the random funtion (x(τ) , τ ∈ Ix). We say that the partile x(τ) is realisti in

its position if for every τ ∈ Ix the random variable δK(τ) (X(τ), x(τ)) has normal distribution

3

We have two possibilities, either we an onsider this spae with its original metri δK(τ)(u, v) := ‖u−v‖τ ,
(arise from the norm) � at this time the spae bounded and all distanes are less then 2τ � or as another

possibility we an de�ne a distane whih derives from the ball τK(τ) indiretly. For example let u, v ∈ τK(τ)
be two points and denote by (uv)∞ and (uv)−∞ the intersetion points of the line (uv) and the boundary of the

ball τK(τ), respetively. (Here the point v separates the points u and (uv)∞.) Let (u, v, (uv)∞, (uv)−∞) denote
the ross ratio of the four points and let δK(τ)(u, v) := ln (u, v, (uv)∞, (uv)−∞) be the inner metri of the spae

τK(τ). We note that if the norm is Eulidean it is the usual distane of a modeled hyperboli spae (whih is

unbounded with respet to this metri).
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108 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

on τK(τ). In other words the stohasti proess

(
δK(τ) (X(τ), x(τ)) , τ ∈ Ix

)
has stationary

Gaussian proess with respet to a given ontinuously di�erentiable funtion X(τ). We all the

funtion X(τ) the world-line of the partile x(τ).

We note that the two metris de�ned in footnote 2 are essentially agree for small distanes, thus

the onept of "realisti in its position" independent from the hoie of δK(τ). As a re�nement of

this onept we de�ne another one, whih an be onsidered as a generalization of the priniple

on the maximality of the speed of the light.

Definition 3.4.4 ([11℄). We say that a partile realisti in its speed if it is realisti in its

position and the derivatives of its world-line X(τ) are time-like vetors.

Sine the shape of the sets of the time-like points in a time-spae is not a one, it is possible that

u is a time-like vetor but αu is not with ertain α. On the other hand in a random time-spae

model the speed of those partiles whih realisti in its speed with a great probability are less

than to the speed of the light. Note that our theory does not exlude the possibility of the

existene of a partile with speed is greater to the speed of the light at a moment neither in the

ase of generalized spae-time model or in the ase of a partile whih is realisti in its speed.

For suh two partiles x′, x′′ whih are realisti in their position we an de�ne a instantaneously

distane by the equality:

δ(x′(τ), x′′(τ)) = ‖X ′(τ)−X ′′(τ)‖τ =
√
[X ′(τ)−X ′′(τ), X ′(τ)−X ′′(τ)]+,T .

We an say that two partiles x′ and x′′ are agree if the expeted value of their distanes is

equal to zero. Let I = Ix′ ∩ Ix′′ be the ommon part of their domains. The required equality is:

E(δK(τ)(x
′(τ), x′′(τ))) =

∫

I

δK(τ)(x
′(τ), x′′(τ))dτ =

∫

I

‖X ′(τ)−X ′′(τ)‖τdτ = 0.

We also de�ne the onept of a frame as follows:

Definition 3.4.5 ([11℄). The system {f1(τ), f2(τ), f3(τ), o(τ)} ⊂ (S, ‖ · ‖+τ ) × τK(τ) is a

frame, if the following assumptions hold:

• o(τ) is a partile realisti in its speed, with suh a world-line O(τ) : T → τK(τ) whih
does not interset the absolute time axis T ,

• the funtions fi(τ) : T → ∪{(S, ‖ · ‖τ) , τ ∈ T} are ontinuously di�erentiable, for all

�xed τ ,
• the system {f1(τ), f2(τ), f3(τ)} is an Auerbah basis with origin O(τ) in the normed

spae (S, ‖ · ‖τ ).
We remark that a ondition stating that the frame building up from elements of an Auerbah

basis is very strong. In the most ases the Auerbah basis is unique. In an inner produt spae

a set of pairwise onjugate diameters of element n of the unit ellipsoid gives an Auerbah basis.

It is easy to see that every two Auerbah basis are isometri to eah other, there is a linear

isometry of the spae sending the �rst into the seond. Thus the set of the Auerbah bases an

be get using the elements of the symmetry group of the spae from a �xed one. The following

lemma is obviously and we leave its proof to the reader.

Lemma 3.4.2 ([11℄). For every ε > 0 and a pair {K ′,A′} where K ′ ∈ K0 is a unit ball of

C2
-lass and A′

is an Auerbah basis of the normed spae (S, ‖ · ‖K ′) there is a δ > 0 suh that

if for K ′′
holds δH(K

′, K ′′) < δ then it an be found an Auerbah basis A′′ ∈ (S, ‖ · ‖K ′′) for
whih δH(A′,A′′) < ε holds.

Note, that in a good model we have to guarantee that Einstein's onvention on the equivalene

of the inertial frames an be remained for us. However at this time we have no possibility to

give the onepts of "frame at rest" and the onept of "frame whih moves onstant veloity

with respet to another one". The reason is that when we hanged the norm of the spae by the

funtion K(τ) we onentrated only the hange of the shape of the unit ball and did not use any
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 109

orrespondene between the points of the two unit balls. Obviously, in a onrete omputation

we should proeed vie versa, �rst we should give a orrespondene between the points of the

old unit ball and the new one and this implies the hange of the norm. To this purpose we may

de�ne a homotopi mapping K whih desribes the deformation of the norm. From Lemma

3.4.2 above it follows that we an de�ne a shape funtion as follows

Definition 3.4.6. [11℄ The homotopi mapping K (x, τ) : (S, ‖ · ‖E)× T → (S, ‖ · ‖E) is alled
by the shape funtion of the time-spae if it holds the following assumptions:

• K (x, τ) is homogeneous in its �rst variable and ontinuously di�erentiable in its seond

one,

• K ({e1, e2, e3}, τ) is an Auerbah basis of (S, ‖ · ‖τ ) for every τ ,
• K (BE , τ) = K(τ).

The shape funtion determines the hanges at all levels in a time spae, for example a frame

is "at rest" if its hange arises only from this globally determined hange, and "moves with

onstant veloity" if its origin has this property and the diretions of its axes are "at rest".

Preisely, we say, that

Definition 3.4.7 ([11℄). The frame {f1(τ), f2(τ), f3(τ), o(τ)} moves with onstant veloity

with respet to the time-spae if for every pairs τ , τ ′ in T+
we have

fi(τ) = K (fi(τ
′), τ) for all i with 1 ≤ i ≤ 3

and there are two vetors O = o1e1 + o2e2 + o3e3 ∈ S and v = v1e1 + v2e2 + v3e3 ∈ S that

for all values of τ we have O(τ) = K(O, τ) + τK(v, τ). A frame is at rest with respet to the

time-spae if the vetor v is the zero vetor of S.

Consider the derivative of the above equality by τ . We get that Ȯ(τ) = ∂K(O,τ)
∂τ

+ K(v, τ) +

τ ∂K(v,τ)
∂τ

, showing that for suh a homotopi mapping, whih is onstant in the time, the orbit

of O(τ) is a line with diretion vetor v through the origin of the time spae. Similarly in the

ase when v is the zero vetor it is a vertial (parallel to T ) line-segment through O.

Example 3.4.2. [11℄ Consider the seond example of Example 3.4.1. The shape funtion an

be get as follows: K
(
(x, y)T , τ

)
=
(
αx cos τ − 1

α
y sin τ, αx sin τ + 1

α
y cos τ

)T
. Then we have

K (BE , τ) =

(
cos τ sin τ
− sin τ cos τ

)
Gα furthermore we get also that K (e1, τ) = (α cos τ, α sin τ)T ,

K (e2, τ) =
(
− 1
α
sin τ, 1

α
cos τ

)T
gives an Auerbah basis for the orresponding norm. The unit

vetors of a frame at rest an be get if we use the a�nity

(
α cos τ 1

α
sin τ

−α sin τ 1
α
cos τ

)
for the vetors

(cos β, sin β)T , (− sin β, cosβ)T , respetively. (Here β is a given parameter.) With respet to

the absolute oordinate-system the world-line of the origin is a helial

τ 7→
(
αo1 cos τ +

1

α
o2 sin τ,−αo1 sin τ +

1

α
o2 cos τ

)T

through a given point O = (o1, o2)
T
of the plane S. �

The onept of shape funtion gives a hane to de�ne the so-alled time-axes.

Definition 3.4.8 ([11℄). A time-axis of the time-spae model is a world-line O(τ) of suh a

partile whih moves with onstant veloity with respet to the time-spae and starts from the

origin. More preisely, for the world-line (O(τ), τ) we have K(O, τ) = 0 and hene with a given

vetor v ∈ S, O(τ) = τK(v, τ).

Example 3.4.3. Let the funtion K is de�ned (as in the previous example) with the equality:

K
(
(x, y)T , τ

)
=

(
αx cos τ − 1

α
y sin τ, αx sin τ +

1

α
y cos τ

)T
,
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then the time-axis de�ned by the vetor v = (v1, v2)
T
is the urve

(
τ

(
αv1 cos τ −

1

α
v2 sin τ

)
, τ

(
αv1 sin τ +

1

α
v2 cos τ

)
, τ

)T
. �

In a spae-time model a time-axis is a line through the origin. Moreover the time-axes interset

the imaginary unit sphere orthogonally. In time-spae this is not true generally.

Proposition 3.4.1. [11℄ A time-axis intersets orthogonally of the imaginary sphere of param-

eter c at the point (s, τ ⋆) if and only if for all diretions e of S with the funtion c(t+ λ) : λ→
s+ λe holds the equality:

[
ċ(t), c(t) +

1

c2 − ‖v‖2E
∂K(v, τ)

∂τ

(
1√

c2 − ‖v‖2E

)] 1√
c2−‖v‖2

E

=

=


ċ(t),

2c2√
c2−‖v‖2E

2c2√
c2−‖v‖2E

− ∂[c(t),c(t)]τ

∂τ
( 1√

c2−‖v‖2E
)
c(t)




1√
c2−‖v‖2

E

.

Before the proof we observe that if the shape funtion does not depend on the time that the

required equality holds.

Proof. The time-axis and the imaginary sphere of parameter c interset in the point at the

parameter value τ ⋆. Thus we have (τ ⋆)2
(
[K(v, τ ⋆),K(v, τ ⋆)]τ

⋆ − c2
)
= −1 or reordering it the

other one: [K(v, τ ⋆),K(v, τ ⋆)]τ
⋆

=
(
c2 − 1

(τ⋆)2

)
. We note that for an arbitrary pair v and τ we

have the equality [K(v, τ),K(v, τ)]τ = ‖v‖2E [K(v0, τ),K(v0, τ)]
τ
= ‖v‖2E, where v0 is the unit

vetor in the diretion of v. Hene ‖v‖2E =
(
c2 − 1

(τ⋆)2

)
or equivalently (τ ⋆)2 = 1

c2−‖v‖2E
. Now we

determine the angle of the imaginary unit sphere and the time-axis de�ned above. The veloity

vetor of the time-axis at the examined point is

τ ⋆K(v, τ ⋆) + (τ ⋆)2
∂K(v, τ)

∂τ
(τ ⋆) + τ ⋆e4.

If we realulate the tangent vetor of the unit sphere of parameter c at its point s+ τe4 using
also the opportunity c(t+ λ) = s+ λe, we get that it is

ċ(t) +
2 [ċ(t), c(t)]τ

2c2τ − ∂[c(t),c(t)]τ

∂τ
(τ)

e4

The produt of the two vetors is

[
ċ(t), τ ⋆K(v, τ ⋆) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
− c2

2τ ⋆ [ċ(t), c(t)]τ
⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

=

=

[
ċ(t), τ ⋆K(v, τ ⋆) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
−
[
ċ(t),

2c2τ ⋆c(t)

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

]τ⋆
.

Sine we have τ ⋆K(v, τ ⋆) = s = c(t) this formula an be simpli�ed into the form

[
ċ(t), c(t) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
−
[
ċ(t),

2c2τ ⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

c(t)

]τ⋆
.

�
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A non-trivial situation in whih the above orthogonality holds if for the unknown funtion α(τ ⋆)
the following equation system an be solved:

∂K(v, τ)

∂τ
(τ ⋆) = α(τ ⋆)c(t)

1 + (τ ⋆)2α(τ ⋆) =
2c2τ ⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

.

In fat, if we eliminate α(τ ⋆) we get the following equation:

(τ ⋆)2
(
2τ ⋆c2 − ∂ [c(t), c(t)]τ

∂τ
(τ ⋆)

)
∂K(v, τ)

∂τ
(τ ⋆) =

∂ [c(t), c(t)]τ

∂τ
(τ ⋆)c(t).

Example 3.4.4. In this example we show that there is non-trivial shape funtion for whih

the above equality on orthogonality holds. Let de�ne the shape funtion by the non-zero salar

valued funtion K(v, τ) = α(v, τ)v. Then we get that

∂K(v,τ)
∂τ

= ∂α(v,τ)
∂τ

v and K(c(t), τ) =
α(c(t), τ)c(t), implying the equality α2(c(t), τ) [c(t), c(t)]τ = ‖c(t)‖2E. Sine α(v, τ) 6= 0, from

[c(t), c(t)]τ =
‖c(t)‖2E
α2(c(t),τ)

we get that

∂ [c(t), c(t)]τ

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
.

The orthogonality ondition for a general τ means the equality

τ 2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

∂α(c(t), τ)

∂τ

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
c(t)

and again if the funtion α(v, τ) is a onstant we have a solution. In the other ase, we an

simplify it with its derivative and get that

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)
c(t).

We also know the onnetion between c(t) and v, beause at the point τ ⋆ we have c(t) =
τ ⋆K(v, τ ⋆) = τ ⋆α(v, τ ⋆)v. This simpli�es the above equality to equality among salar funtions:

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)
τ ⋆α(c(t), τ ⋆),

whih an be written in the form

− τ 3c2

τ 2 + τ ⋆α(c(t), τ ⋆)
=

∂α(c(t),τ)
∂τ

α3(c(t), τ)
.

Solving this separable di�erential equation, we get the following solution

α2(c(t), τ) =
(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E

c2 (τ 2 − τ ⋆α(c(t), τ ⋆) ln(τ 2 + τ ⋆α(c(t), τ ⋆))) + (τ ⋆)2α2(c(t), τ ⋆)‖v‖2EC
.

To get the identity at the point τ ⋆ we substitute it and we an determine the onstant C.

C =
(τ ⋆)2 (‖v‖2E − c2) + c2τ ⋆α(c(t), τ ⋆) ln((τ ⋆)2 + τ ⋆α(c(t), τ ⋆))

(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E
.

With this onstant the required equality on α(c(t), τ) is

α2(c(t), τ) =
(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E

c2τ 2 − (τ ⋆)2 (c2 − ‖v‖2E)− c2τ ⋆α(c(t), τ ⋆) ln
(

τ2+τ⋆α(c(t),τ⋆)
(τ⋆)2+τ⋆α(c(t),τ⋆)

) .

The funtion α(c(t), τ) is well-de�ned real valued funtion if the right hand side is greater or

equal to zero. From this assumption we get the inequality

τ 2 − τ ⋆α(c(t), τ ⋆) ln
(
τ 2 + τ ⋆α(c(t), τ ⋆)

)
≥

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



112 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

≥
(
1− ‖v‖2E

c2

)
(τ ⋆)2 − τ ⋆α(c(t), τ ⋆) ln

(
(τ ⋆)2 + τ ⋆α(c(t), τ ⋆)

)
.

Sine the left hand side is a monotone inreasing funtion of its variable τ ≥ 0, we have to pik
up a value in whih the equality holds to determine a range interval where this equality also

holds. It is easy to alulate that at the value

τ =

√(
1− ‖v‖2E

c2

)
τ ⋆

the equality holds thus α2(c(t), τ) an be de�ned well if τ ≥
√(

1− ‖v‖2E
c2

)
τ ⋆.

Using the assumption that the point c(t) is on the imaginary sphere of parameter c we get that

α(c(t), τ ⋆)2 = c2τ ⋆2 − 1,

and thus

α2(c(t), τ) =
(τ ⋆)2(c2τ ⋆2 − 1)‖v‖2E

c2τ 2 − τ ⋆2 (c2 − ‖v‖2E)− τ ⋆
√
c2(τ ⋆)2 − 1 ln

(
τ2+τ⋆

√
c2(τ⋆)2−1

(τ⋆)2+τ⋆
√
c2(τ⋆)2−1

) .

�

3.4.2. Random time-spae model. Of ourse, we an hoose the funtion K(τ) "ran-
domly". To this purpose we use Kolmogorov's extension theorem (or theorem on onsisteny,

see in [99℄). This says that a suitably "onsistent" olletion of �nite-dimensional distributions

will de�ne a probability measure on the produt spae. The sample spae here is K0 with

the Hausdor� distane. It is a loally ompat, separable (seond-ountable) metri spae. By

Blashke's seletion theorem (see in [78℄) K is a boundedly ompat spae so it is also omplete.

It is easy to hek that K0 is also a omplete metri spae if we assume that the non-proper

bodies (entrally symmetri onvex ompat sets with empty interior) also belong to it. Let

P be suh a probability measure whih de�ned in Subsetion 3.3.2. In every moment we on-

sider the same probability spae (K0, P ) and also onsider in eah of the �nite olletions of

moments the orresponding produt spaes ((K0)
r, P r) . The onsisteny assumption of Kol-

mogorov's theorem now automatially holds. By the extension theorem we have a probability

measure P̂ on the measure spae of the funtions on T to K0 with the σ-algebra generated by

the ylinder sets of the spae. The distribution of the projetion of P̂ to the probability spae

of a �x moment is the distribution of P .

Definition 3.4.9 ([11℄). Let (Kτ , τ ≥ 0) be a random funtion de�ned as an element of the

Kolmogorov's extension

(
ΠK0, P̂

)
of the probability spae (K0, P ). We say that the generalized

spae-time model with the random funtion

K̂τ :=
n

√
vol(BE)

vol(Kτ )
Kτ

is a random time-spae model. Here α0(Kτ ) is a random variable with trunated normal distri-

bution and thus (α0(Kτ ) , τ ≥ 0) is a stationary Gaussian proess. We all it the shape proess

of the random time-spae model.

It is lear that a deterministi time-spae model is a speial trajetory of the random time-spae

model. The following theorem is essential.

Theorem 3.4.2 ([11℄). For a trajetory L(τ) of the random time-spae model, for a �nite set

0 ≤ τ1 ≤ · · · ≤ τs of moments and for a ε > 0 there is a deterministi time-spae model de�ned

by the funtion K(τ) for whih

sup
i
{ρH (L(τi), K(τi))} ≤ ε.
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Proof. Sine the set of entrally symmetri onvex bodies with C∞
-boundary is dense in

the set of entrally symmetri onvex bodies (see [135℄), we an hoose, for every τi, a body

K(τi) ∈ K0 with C
2
boundary with the required volume for whih ρH (L(τi), K(τi)) ≤ ε holds.

We prove that these bodies an be onneted with suh a trajetory of the random time-spae

model for whih the funtion K holds the properties of the de�ning funtion of a deterministi

time-spae model. The impat of the K funtion on a �xed vetor s ∈ S an be heked

on the vary of its norm. Using the Minkowski funtional, we an get the norm of a vetor

s as the length of a �xed segment relative to the length of the diameter of the unit ball

interseted by the half-line ontaining the segment [O,P ]. This means that we an determine

the hange of the length of a diameter of a �xed diretion if we hange the shape of the

body by the time. Consider a representation of the body by polar oordinates with respet to

its enter O. Sine the boundary of the body is of lass C2
, all of their oordinate funtions

have the analogous property. This funtion depends also on the time τ , the hange of the

unit ball implies the hange of its oordinate funtions. We say that the trajetory K(τ) is

a ontinuously di�erentiable funtion if for a �xed oordinate representation its oordinate

funtions are ontinuously di�erentiable funtions of the time. This is equivalent to the property

that the support funtion h(K(τ)) is ontinuously di�erentiable as the funtion of the time τ .
The di�erentiability property of the trajetory implies the analogous di�erentiability property

of the hange of the norm of a �x vetor sine the points of the boundary of the unit ball has

an equation of the form rτ = (r(ϕ1, · · · , ϕn−1))
τ
. We an onlude that if the trajetory K(τ)

is a ontinuously di�erentiable funtion, this holds also for the funtion τ →
√
[s, s]τ . In a

spae S with an inner produt the polarity equation implies the required assumption. If S is

(only) a smooth normed spae with a semi inner produt, we need further omments. Sine for

a di�erentiable norm funtion MShane's equality holds, we have

[x, y]τ = ‖y‖τ((‖ · ‖τ )′x (y)) = ‖y‖τ(‖ · ‖′x(y))τ .
On the other hand, the funtion (‖ · ‖′x(y))τ is also ontinuously di�erentiable funtion of y,
thus the thread using on the norm funtion above is appliable for it, too. This means that the

di�erentiability property of the trajetory implies the analogous di�erentiability property of the

funtion τ → (‖ · ‖′x(y))τ . Using the rule of the produt funtion we also have that τ → [x, y]τ

is ontinuously di�erentiable if the trajetory τ → K(τ) holds this property.
We now de�ne a di�erentiable trajetory through the points (τi, K(τi)). If τ, τ

′
i ∈ [τi, τi+1]

denote by KBezier(τ) the formal Bezier spline of seond order through the points (τi, K(τi)) and
(τi+1, K(τi+1)) with "tangents" through the point (τ ′i , L(τ

′
i)). Thus we have by de�nition

KBezier(τ) :=

(
1− τ − τi

τi+1 − τi

)2

K(τi)+2

(
1− τ − τi

τi+1 − τi

)
τ − τi
τi+1 − τi

L(τi)+

(
τ − τi
τi+1 − τi

)2

K(τi+1),

where the addition is the Minkowski addition and the produt is the respetive homotheti

mapping. If we assume that for all values of i (1 < i < s) the body K(τi) is a Minkowski

onvex ombination of the bodies L(τ ′i) and L(τ ′i+1) the funtion KBezier(τ) is valid on the

whole interval [τ1, τs]. Sine for positive onstants α, β we have

hαK ′+βK ′′(x) = αhK ′(x) + βhK ′′(x),

we also get that KBezier(τ) is a ontinuously di�erentiable trajetory in its whole domain. We

have to prove yet that for a �xed τ , the set KBezier(τ) is a entrally symmetri onvex ompat

body with C2
-lass boundary but these statements follow immediately from the onept of

Minkowski linear ombination.

Finally we normalize this trajetory under the volume funtion and extrat it to the whole

T . The funtion K(τ) determines a required deterministi time-spae model if we de�ne it as
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follows:

K(τ) =





n

√
vol(BE)

vol(KBezier(τs))
KBezier(τs) if τs < τ

n

√
vol(BE)

vol(KBezier(τ))
KBezier(τ) if τ1 ≤ τ ≤ τs

n

√
vol(BE)

vol(KBezier(τ1))
KBezier(τ1) if τ < τ1 .

�

An important onsequene of this theorem that without loss of generality we an assume, that

the time-spae model is deterministi.
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APPENDIX A

Relativity theory in time-spae

Our model � desribed in the previous setion � an be onsidered also as a model of the universe

1

. The

deterministi variant obviously ontains as a speial ase the model of Minkowski spae-time. On the other

hand it an be extended to a generalization of the Robertson-Walker spae-time, too. The advantage of our

model that S an be onsidered also as a general normed spae (without inner produt).

The time-spae an be de�ned in a more onvenient way, using a shape funtion. It regulates the methods of

alulations in time-spae and gives the possibility to rewrite the equality of speial and global relativity.

A.1. On the formulas of speial relativity theory

Consider the upper part of the imaginary sphere of parameter c in a four-dimensional deterministi time-spae

model. Without the imaginary unit sphere we onsider the imaginary unit sphere Hc of parameter c with the

orresponding produt [x′, x′′]+,T := [s′, s′′]τ
′′

+ c2 [τ ′, τ ′′]. Pratially the onstant c an be onsidered as the

speed of the light in vauum. Assume that the shape-funtion is a two-times ontinuously di�erentiable funtion.

We need two axioms to interpret in time-spae of the usual axioms of speial relativity theory. First we assume

that:

Axiom A.1.1. The laws of physis are invariant under transformations between frames. The laws of physis

will be the same whether you are testing them in frame "at rest", or a frame moving with a onstant veloity

relative to the "rest" frame.

Axiom A.1.2. The speed of light in a vauum is measured to be the same by all observers in frames.

These two axioms an be transformed into the language of the time-spae by the method of Minkowski [123℄. To

this we use Hc introdued and the group Gc as the set of those isometries of the spae whih leave invariant Hc.

Suh an isometry an be interpreted as a oordinate transformation of the time-spae whih sends the axis of the

absolute time into another time-axis t′, and also maps the intersetion point of the absolute time-axis with the

imaginary sphere Hc into the intersetion point of the new time-axis and Hc. An isometry of the time-spae is

also a homeomorphism thus it maps the subspae S into a topologial hyperplane S′
of the embedding normed

spae. S′
is orthogonal to the new time-axis in the sense that its tangent hyperplane at the origin is orthogonal

to t′ with respet to the produt of the spae. Of ourse the new spae-axes are ontinuously di�erentiable urves

in S′
whih tangents at the origin are orthogonal to eah other. Sine the absolute time-axis is orthogonal to

the imaginary sphere Hc the new time-axis t′ must holds this property, too. Thus the investigations in the

previous setion are essential from this point of view. Assuming that the de�nition of the time-spae implies

this property we an get some formulas similar to of speial relativity. We note that the funtion K(v, τ) holds
the orthogonality property of vetors of S and by the equality [K(v, τ),K(v, τ)]τ = ‖v‖2E we an see also that

the formulas on time-dilatation and length-ontration are valid, too. This implies that using the well-known

notations β = ‖v‖E

c
, γ = 1√

1−β2
we get that the onnetion between the time τ0 and τ of an event measuring by

two observers one of at rest and the other moves with an onstant veloity ‖v‖E with respet to the time-spae

is τ = γτ0. Consider now a moving rod whih points move onstant veloity with respet to the time-spae suh

that it is always parallel to the veloity vetor K(v, τ). Then we have ‖v‖E = L0

T
where T is the time alulated

from the length L0 and the veloity vetor v by suh an observer whih moves with the rod. Another observer

an alulate the length L from the measured time T0 and the veloity v by the formula ‖v‖E = L
T0
. Using the

above formula of dilatation we get the known Fitzgerald ontration of the rod: L = L0

√
1− β2 = L0

γ
.

Lorentz transformation in time spae also based on the usual experiment in whih we send a ray of light to a

mirror in diretion of the unit vetor e with distane d from me.

If we at rest we an determine in time spae the points A, C and B of departure, turn and arrival of the ray of

light, respetively. A and B are on the absolute time-axis at heights τA, and τB, respetively. The position of

C is

(τC − τA)K(ce, τC − τA) + τCe4 =
τB − τA

2
K

(
ce,

τB − τA
2

)
+
τB + τA

2
e4,

1

In this appendix we hek the usability our onept in pratie. Despite the ontent of this appendix belongs

to the area of theoretial physis it is strongly onneted to the useless of my mathematial investigations.
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116 A. RELATIVITY THEORY IN TIME-SPACE

sine we know that the light take the road bak and forth over the same time. We observe that the norm of the

spae-like omponent sC is ‖sC‖τC = c τB−τA
2 as in the usual ase of spae-time.

The moving observer synhronized its lok with the observer at rest in the origin, and moves in the dire-

tion v with veloity ‖v‖E. We assume that the moving observer also sees the experiment thus its time-axis

orresponding to the vetor v meats the world-line of the light in two points A′
and B′

positioning on the

respetive urves AC and CB. This implies that the respetive spae-like omponents of the world-line of

the light and the world-line of the axis are parallels to eah other in every minutes. By formula we have:

‖v‖EK(e, τ) = K(v, τ). From this we get the equality τA′K(v, τA′) + τA′e4 = (τA′ − τA)K(ce, τA′ − τA) + τA′e4.

This implies that τA′
2‖v‖E2− c2τA′

2 = (τA′ − τA)2c2− c2τA′
2
and thus τA′ = c

c−‖v‖E
τA. The proper time (τA′)0

is (τA′)0 =
√
1− β2 c

c−‖v‖E
τA = τA

√
1+β
1−β . Similarly we also get that (τB′)0 = τB

√
1−β
1+β , and we determine the

new time oordinate of the point C with respet to the new oordinate system:

(τC)0 =
(τA′)0 + (τB′ )0

2
=

1

2

(
τA

√
1 + β

1− β
+ τB

√
1− β

1 + β

)
.

Sine we have that the norm of the spae-like omponent is ‖sC‖E = c τB−τA
2 , we get that τA = τC − ‖sC‖E

c
and

τB = τC + ‖sC‖E

c
and thus

(τC)0 =
1

2

((
τC − ‖sC‖E

c

)√
1 + β

1− β
+

(
τC +

‖sC‖E
c

)√
1− β

1 + β

)
=
τC − β‖sC‖E

c√
1− β2

=

=
τC − ‖v‖E‖sC‖E

c2√
1− ‖v‖2

E

c2

=
τC − [K(sC ,τC),K(v,τC)]τC

c2√
1− ‖v‖2

E

c2

.

On the other hand we also have that the spae-like omponent ((sC)0)S of the transformed spae-like vetor

(sC)0 arise also from a vetor parallel to e thus it is of the form K(((sC)0)S , τ) = ‖((sC)0)S‖EK(e, τ). For the

norm of (sC)0 we know that ‖(sC)0‖+,T = c (τB′)0−(τA′)0
2 , hene ‖(sC)0‖+,T = ‖sC‖E−‖v‖EτC√

1−
‖v‖2

E

c2

. If we onsider

the vetor (̂sC)0 = γ (K(sC , τC)−K(v, τC)τC) ∈ S, we get a norm-preserving, bijetive mapping L̂ from the

world-line of the light into S with the de�nition

L̂ : K((sC)0, (τC)0) 7→ γ (K(sC , τC)−K(v, τC)τC) .

The onnetion between the spae-like oordinates of the point with respet to the two frames now has a more

familiar form. Heneforth the Lorentz transformation means for us the orrespondene:

s 7→ K̂(s′, τ ′) = γ (K(s, τ)−K(v, τ)τ)

τ 7→ τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)
,

and the inverse Lorentz transformation the another one

K̂(s′, τ ′) 7→ K(s, τ) = γ (K(s′, τ ′) +K(v, τ ′)τ ′)

τ ′ 7→ τ = γ

(
τ ′ +

[K(s′, τ ′),K(v, τ ′)]τ
′

c2

)
.

First note that we an determine the omponents of (sC)0 with respet to the absolute oordinate system, too.

Sine (sC)0 and τK(v, τ) + τe4 are orthogonal to eah other we get that

[K(((sC)0)S , τC),K(v, τC)]
τC = c2((sC)0)T ,

implying that ((sC)0)T = ‖((sC)0)S‖E‖v‖E

c2
. Thus we get the equality

‖((sC)0)S‖2E

(
1− c2

(‖v‖E
c2

)2
)

=


‖sC‖E − ‖v‖EτC√

1− ‖v‖2
E

c2




2

,

implying that

‖((sC)0)S‖E =
‖sC‖E − ‖v‖EτC(

1− ‖v‖2
E

c2

) = γ2 (‖sC‖E − ‖v‖EτC)

and

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
=

‖v‖E‖sC‖E − ‖v‖2EτC
c2 − ‖v‖2E

.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



A.1. ON THE FORMULAS OF SPECIAL RELATIVITY THEORY 117

We get that

(sC)0 = γ2 (‖sC‖E − ‖v‖EτC)
(
K(e, τC) +

‖v‖E
c2

e4

)
=

= γ2 (K(sC , τC)−K(v, τC)τC) +

(
γ

1− γ

)2

(‖sC‖E − ‖v‖EτC) e4.

We an determine also the length of this vetor in the new oordinate system, too. Sine

[(sC)0, (sC)0]
+,T =

(
‖(sC)0‖+,T

)2
=

(‖sC‖τC − ‖v‖EτC)2

1− ‖v‖2
E

c2

=
[sC , sC ]

τC − 2‖sC‖τC‖v‖EτC + (‖v‖EτC)2

1− ‖v‖2
E

c2

and

((τC)0)
2
=

(τC)
2 − 2τC

‖v‖E‖sC‖τC

c2
+ (‖v‖E‖sC‖τC )2

c4

1− ‖v‖2
E

c2

,

hene the equality [(sC)0, (sC)0]
+,T − c2 ((τC)0)

2 = [sC , sC ]
τC − c2 (τC)

2
shows that under the ation of the

Lorentz transformation the "norm-squares" of the vetors of the time-spae are invariant as in the ase of the

usual spae-time.

Finally we determine those points of the spae whih new time-oordinates are zero and thus we get a mapping

from the subspae S into the time-spae. Let s ∈ S arbitrary and onsider the orresponding point K(s, τ)+τe4
and assume that 0 = τ0 = γτ − γ ‖v‖E

c2
‖K(s, τ)‖τ , hene τ = ‖v‖E‖s‖E

c2
. Then we get the mapping of the

oordinate subspae S under the ation of the isometry orresponding to that Lorentz transformation whih

sends the absolute time-axis into the time-axis τK(v, τ) + τe4 in question. This is the set

S0 =

{
K

(
s,

‖v‖E‖s‖E
c2

)
+

‖v‖E‖s‖E
c2

e4 | s ∈ S

}
.

For a boost in an arbitrary diretion with veloity v, it is onvenient to deompose the spatial vetor s into

omponents perpendiular and parallel to v: s = s1 + s2 so that [K(s, τ),K(v, τ)]τ = [K(s1, τ),K(v, τ)]τ +
[K(s2, τ),K(v, τ)]τ = [K(s2, τ),K(v, τ)]τ . Then, only time and the omponent K(s2, τ) in the diretion of

K(v, τ);

τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)

K̂(s′, τ ′) = K(s1, τ) + γ(K(s2, τ) −K(v, τ)τ)

are "distorted" by the Lorentz fator γ. The seond equality an be written also in the form:

ŝ′ = K(s, τ) +

(
γ − 1

‖v‖2E
[K(s, τ),K(v, τ)]τ − γτ

)
K(v, τ).

Remark A.1.1. If we have two time-axes τK(v′, τ) + τe4 and τK(v′′, τ) + τe4 then there are two subgroups of

the orresponding Lorentz transformations mapping the absolute time-axis onto another time-axes, respetively.

These two subgroups are also subgroups of Gc. Their elements an be paired on the base of their ation on S.
The pairs of these isometries de�ne a new isometry of the spae (and its inverse) on a natural way, with the

omposition one of them and the inverse of the other. Omitting the absolute time-axis from the spae (as we

suggest earlier) the invariane of the produt on the remaining spae and also the physial axioms of speial

relativity an remain in e�et.

If K(u, τ) and K(v, τ ′) are two veloity vetors then using the formula for inverse Lorentz transformation of

the orresponding di�erentials we get that dτ = γ

(
dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ

′

c2

)
and K(ds, dτ) = K(dŝ′, dτ ′) +

(
1−γ
‖v‖2

E

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

+ γdτ ′
)
K(v, τ ′). Thus

K(u, τ) =
K(ds, dτ)

dτ
=

K(dŝ′, dτ ′) +
(

1−γ
‖v‖2

E

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

+ γdτ ′
)
K(v, τ ′)

γ
(
dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ′

c2

) =

=

(
K(v, τ ′) + 1

γ

K(dŝ′,dτ ′)
dτ ′ + 1+γ

γc2

[
K(dŝ′,dτ ′)

dτ ′ ,K(v, τ ′)
]τ ′

K(v, τ ′)

)

1 +

[
K(dŝ′,dτ′)

dτ′ ,K(v,τ ′)

]τ′

c2

=

(
K(v, τ ′) + 1

γ
K(u′, dτ ′) + 1+γ

γc2
[K(u′, dτ ′),K(v, τ ′)]τ

′

K(v, τ ′)
)

1 + [K(u′,dτ ′),K(v,τ ′)]τ′

c2

.
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118 A. RELATIVITY THEORY IN TIME-SPACE

Our following starting point is the veloity vetor (or four-veloity). The absolute time oordinate is τ , this

de�nes a world line of form S(τ) = K(s(τ), τ) + τe4. Its proper time is τ0 = τ
γ
= τ

√
1− ‖v‖2

E

c2
, where v is the

veloity vetor of the moving frame. By de�nition

V (τ) :=
dS(τ)

dτ0
= γ

(
d(K(s(τ), τ))

dτ
+ e4

)
.

If the shape-funtion is a linear mapping then

d(K(s(τ),τ))
dτ = K(ṡ(τ), 1) := K(v(τ), 1) and we also have

[V (τ), V (τ)]+,T = γ2
(
[K(v(τ), 1),K(v(τ), 1)]1 − c2

)
= −c2. The aeleration is de�ned as the hange in

four-veloity over the partile's proper time. Hene now the veloity of the partile is also a funtion of τ as

without γ we have the funtion γ(τ). The de�nition is:

A(τ) :=
dV

dτ0
= γ(τ)

dV

dτ
= γ2(τ)

d2K(s(τ), τ)

dτ2
+ γ(τ)γ′(τ)

d(K(s(τ), τ))

dτ
+ γ(τ)γ′(τ)e4,

where with notation a(τ) = v′(τ) = s′′(τ),

γ′(τ) =


 1√

1− ‖v(τ)‖2
E

c2




′

=


 1√

1− [K(v(τ),1),K(v(τ),1)]1

c2




′

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
(
1− [K(v(τ),1),K(v(τ),1)]1

c2

) 3
2

=

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
γ3(τ),

In the ase of linear shape-funtion it has the form A(τ) = γ2(τ)K(a(τ), 0)+γ(τ)γ′(τ)K(v(τ), 1))+γ(τ)γ′(τ)e4.
Sine in this ase [V (τ), V (τ)]+,T = −c2, we have

[A(τ), V (τ)]T,+ = γ3(τ)
(
[K(a(τ), 0),K(v(τ), 1)]

1
+

+γ2(τ)
[K(a(τ), 0),K(v(τ), 1)]

1

c2
‖v(τ)‖2E − γ2(τ) [K(a(τ), 0),K(v(τ), 1)]

1

)
=

= γ3(τ)

(
[K(a(τ), 0),K(v(τ), 1)]

1 − c2 − ‖v(τ)‖2E
c2 − ‖v(τ)‖2E

[K(a(τ), 0),K(v(τ), 1)]
1

)
= 0.

By Theorem 2 on the derivative of the produt (orresponding to smooth and stritly onvex norms) we also

get this result, in fat we have

0 =
d[V (τ), V (τ)]+,T

dτ
= 2

[
dV

dτ
, V

]+,T
+
∂[V (τ), V (τ)]τ

∂τ
(1) · 0 =

2

γ
[A(τ), V (τ)]+,T .

Also in the ase of linear shape-funtion the momentum is P = m0V = γm0 (K(v(τ), τ) + e4) where m0

is the invariant mass. We also have that [P, P ]+,T = γ2m2
0(‖v‖2E − c2) = (m0c)

2
. Similarly the fore is

F = dP
dτ = m0γ

2(τ)K(a(τ), τ) + γ(τ)γ′(τ)K(v(τ), τ)) + γ(τ)γ′(τ)e4, and thus holds [F, V ]+,T = 0.

A.2. General relativity theory

In time-spae there is a way to desribe and visualize ertain spaes whih are solutions of Einstein's equation.

The �rst method is when we embed into an at least four-dimensional time-spae as an four-dimensional manifold

whih inner metri is a solution of the Einstein equation. Our basi referenes here are the books [50℄ and [70℄.

A.2.1. Metris embedded into a time-spae.

A.2.1.1. The Minkowski-Lorentz metri. The simplest example of a Lorentz manifold is the �at-spae metri

whih an be given as R4
with oordinates (t, x, y, z) and the metri funtion: ds2 = −c2dt2+dx2+dy2+dz2. In

the above oordinates, the matrix representation is η =




−c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . In spherial oordinates (t, r, θ, φ),

the �at spae metri takes the form ds2 = −c2dt2 + dr2 + r2dΩ2
.

It an be onsidered also in a 5-dimensional time-spae with shape-funtion K (v, τ) = v as the metri of a

4-dimensional subspae through the absolute time-axis. By the equivalene of time axes in a usually spae-time

it also an be onsidered as arbitrary subspae distint to the 4-dimensional subspae of spae-like vetors, too.
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A.2. GENERAL RELATIVITY THEORY 119

A.2.1.2. The de Sitter and the anti-de Sitter metris. The de Sitter spae is the spae de�ned on the de Sitter

sphere of a Minkowski spae of one higher dimension. Usually the metri an be onsidered as the restrition of

the Minkowski metri ds2 = −c2dt2 +dx21 +dx22 +dx23 + dx24 to the sphere −x20 + x21 + x22 + x23 + x24 = α2 = 3
Λ ,

where Λ is the osmologial onstant (see e.g. in [70℄). Using also our onstant c this latter equation an be

rewrite as −ct2 + (x′1)
2 + (x′2)

2 + (x′3)
2 + (x′4)

2 = 1 where x0 = t , 1
α
= c and x′i =

1
α
xi. This shows that in the

5-dimensional time spae with shape-funtion K (v, τ) = v it is the hyperboloid with one sheet with irular

symmetry about the absolute time-axis.

The anti-de Sitter spae is the hyperboli analogue of the ellipti de Sitter spae. The Minkowski spae of one

higher dimension an be restrited to the so alled anti-de Sitter sphere (also alled by in our terminology as

imaginary sphere) de�ned by the equality −x20+x21+x22+x23 = −α2
. The shape funtion again isK (v, τ) = v and

the orresponding 4-submanifold is the hyperboloid of two sheets with hyperplane symmetry as the 4-subspae
S of spae-time vetors.

A.2.1.3. The Friedmann-Lemaître-Robertson-Walker metris. A standard metri forms of the Friedmann-

Lemaître-Robertson-Walker metris (F-L-R-W) family of spae-times an be obtained by using suitable oor-

dinate parameterizations of the 3-spaes of onstant urvature. One of its forms is

ds2 = −dt2 +
R2(t)

1 + 1
4k(x

2 + y2 + z2)

(
dx2 + dy2 + dz2

)
,

where k ∈ {−1, 0, 1} is �xed. By the parametrization τ = t this metri is the metri of a time-spae with

shape-funtion K (v, τ). Observe that ‖v‖2E = [K (v, τ) ,K (v, τ)]
τ
= R2(τ)

1+ 1
4k‖v‖

2
E

‖K (v, τ) ‖2E. Note that we an

hoose the onstant k also as a funtion of the absolute time τ giving a deterministi time-spae with more

generality. Hene the shape-funtion is K (v, τ) =

√
1+ 1

4 k(τ)‖v‖
2
E

R(τ) v.

A.2.2. Three-dimensional visualization of a metri in a four-time-spae. The seond method is

when we onsider a four-dimensional time-spae and a three-dimensional sub-manifold in it with the property

that the metri of the time-spae at the points of the sub-manifold an be orresponded to the given one. This

method gives a good visualization of the solution in a ase when the examined metri has some speiality e.g.

there is no dependene on time or (and) the metri has a spherial symmetry. The examples of this setion are

also semi-Riemannian manifolds. We onsider now suh solutions whih have the form:

ds2 = −(1− f(r))c2dt2 +
1

1− f(r)
dr2 + r2(dθ2 + sin2 θdφ2)

where dΩ2 := dθ2 + sin2 θdφ2 is the standard metri on the 2-sphere. Thus we have to searh a shape funtion

K (v, τ) of the embedding spae and a sub-manifold of it on whih the Minkowski-metri gives the required one.

If the metri isotropi we have a hane to give it by isotropi oordinates. To this we substitute the parameter

r by the funtion r = g(r⋆), and solve the di�erential equation:

f(g(r⋆)) = 1−
(
r⋆g′(r⋆)

g(r⋆)

)2

for the unknown funtion g(r⋆). Then we get the metri in the isotropi form

ds2 = −
(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2

(
dr⋆2 + r⋆2(dθ2 + sin2 θdφ2)

)
.

For isotropi retangular oordinates x = r⋆ sin θ cosφ, y = r⋆ sin θ sinφ and z = r⋆ cos θ the metri beomes

ds2 = −
(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2
(
dx2 + dy2 + dz2

)
,

where r⋆ =
√
x2 + y2 + z2. From this substituting ds2 = 0 and rearranging the equality, we get that the veloity

of the light is √
dx2

dt2
+

dy2

dt2
+

dz2

dt2
=
r⋆2g′(r⋆)

g2(r⋆)
c,

independent from its diretion and varies with only the radial distane r⋆ (from the point mass at the origin of

the oordinates). In the points of the hypersurfae t = r⋆ =
√
x2 + y2 + z2 the metri an be parameterized by

the time:

ds2 = −
(
tg′(t)

g(t)

)2

c2dt2 +
g2(t)

t2
(
dx2 + dy2 + dz2

)
,

and from the equation

tg′(t)

g(t)
dt = dτ
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we an give a re-sale of the time by the parametrization

τ :=

∫
t
g′(t)

g(t)
dt = t ln(g(t))−

∫
ln(g(t))dt.

From this equation we determine the inverse funtion ĝ for whih t = ĝ(τ). Sine ĝ(τ) = t = r⋆ =
√
x2 + y2 + z2

we also have that the examined set of points of the spae-time is a hypersurfae de�ned by the equality:

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)√
x2 + y2 + z2.

This implies a new form of the metri at the points of this hypersurfae:

ds2 = −c2dτ2 + g2(ĝ(τ))

ĝ(τ)
2

(
dx2 + dy2 + dz2

)
.

The orresponding inner produt has the matrix form:




−c2 0 0 0

0 g2(ĝ(τ))

ĝ(τ)2
0 0

0 0 g2(ĝ(τ))

ĝ(τ)2
0

0 0 0 g2(ĝ(τ))

ĝ(τ)2




and hene the

Eulidean lengthes of the vetors of the spae depend only on the absolute moment τ in whih we would

like to measure it. Thus we an visualize the examined metri as a metri at the points of the hypersurfae

τ =
(
t ln(g(t))−

∫
ln(g(t))dt

)
‖v‖E of ertain time-spae. We note that this is not the inner metri of the

examined surfae of dimension 3 whih an be onsidered as metri of a three-dimensional spae-time. To

determine the shape-funtion observe that ‖v‖2E = [K (v, τ) ,K (v, τ)]
τ
= g2(ĝ(τ))

ĝ(τ)2
‖K (v, τ) ‖2E from whih we

get that K (v, τ) = ĝ(τ)
g(ĝ(τ))v. It is lear that the �at spae metri an be onsidered in this way. Here f(r) ≡ 0,

g = id and τ = t implying that K (v, τ) = v and the hypersurfae is the light-one de�ned by τ = ‖v‖E.
We now give some further examples.

A.2.2.1. The Shwarzshild metri. Besides the �at spae metri the most important metri in general

relativity is the Shwarzshild metri whih an be given in the set of loal polar-oordinates (t, r, ϕ, θ) by

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2dΩ2

where, again, dΩ2
is the standard metri on the 2-

sphere. Here G is the gravitation onstant and M is a onstant with the dimensions of mass. The funtion f is

f(r) = 2GM
c2r

:= rs
r
with onstant rs =

2GM
c2

. The di�erential equation on g is

rs
g(r⋆) = 1 −

(
r⋆g′(r⋆)
g(r⋆)

)2
with the

solution g(r⋆) = rs
4 c1r

⋆
(
1 + 1

c1r⋆

)2
, and if we hoose

4
rs

for the parameter c1 we get the known (see in [50℄)

solution g(r⋆) = r⋆
(
1 + rs

4r⋆

)2
. For isotropi retangular oordinates the metri beomes

ds2 = − (1− rs
4r⋆ )

2

(1 + rs
4r⋆ )

2
c2dt2 +

(
1 +

rs
4r⋆

)4
(dx2 + dy2 + dz2).

The equation between τ and t is

τ =

∫
(1− rs

4t )

(1 + rs
4t )

dt =

∫
4t− rs
4t+ rs

dt = t− 2rs

∫
1

4t+ rs
dt = t− rs

2
ln
(
t+

rs
4

)
+ C.

Of ourse we an hoose C = 0. Similarly to the known tortoise-oordinates there is no expliite inverse funtion

of this parametrization whih we denote by ĝ(τ) = t. The shape-funtion of the orresponding time-spae is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

(
1 +

rs
4ĝ(τ)

)−2

v.

A.2.2.2. The Reissner-Nordström metri. In spherial oordinates (t, r, θ, φ), the line element for the

Reissner-Nordström metri is ds2 = −
(
1− rS

r
+

r2Q
r2

)
c2 dt2 + 1

1−
rS
r
+

r2
Q

r2

dr2 + r2 dθ2 + r2 sin2 θdφ2, here again

t is the time oordinate (measured by a stationary lok at in�nity), r is the radial oordinate, rS = 2GM/c2

is the Shwarzshild radius of the body, and rQ is a harateristi length sale given by r2Q = Q2G
4πε0c4

. Here

1/4πε0 is the Coulomb fore onstant. The funtion f is f(r) = rs
r
− r2Q

r2
. The di�erential equation on g is

rs
g(r⋆) −

r2Q
g2(r⋆) = 1 −

(
r⋆g′(r⋆)
g(r⋆)

)2
with the solution g(r⋆) =

√
r2s
4 − r2Q

c1
2 r

⋆
(
1 + 1

c1r⋆

)2
−
√

r2s
4 − r2Q + rs

2 , if we

hoose c1 := 2√
r2s
4 −r2

Q

we get a more simple form:

g(r⋆) = r⋆


1 +

√
r2s
4 − r2Q

2r⋆




2

−
√
r2s
4

− r2Q +
rs
2

= r⋆


1 +

r2s
4 − r2Q
4r⋆2


+

rs
2
.
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For the isotropi retangular oordinates we have:

ds2 = −




r⋆
(
1−

r2s
4 −r2Q
4r⋆2

)

r⋆
(
1 +

r2s
4 −r2

Q

4r⋆2

)
+ rs

2




2

c2dt2 +



r⋆
(
1 +

r2s
4 −r2Q
4r⋆2

)
+ rs

2

r⋆




2

(dx2 + dy2 + dz2).

Our proess now leads to the new time parameter

τ = t−
(rs
4

− rQ
2

)
ln

((
t+

rs
4

)2
−
r2Q
4

)
− rQ ln

(
t+

rs
4

+
rQ
2

)
+ C,

whih in the ase of C = rQ = 0 gives bak the parametrization of Shwarzshild solution. The shape-funtion

of the searhed time-spae an be determined by the orresponding inverse t = ĝ(τ), it is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

ĝ(τ)

ĝ(τ)

(
1 +

r2s
4 −r2

Q

4ĝ(τ)2

)
+ rs

2

v.

Analogously an be omputed the time-spae visualization of the Shwarzshild-de Sitter solution whih we now

omit.

A.2.2.3. The Bertotti-Robinson metri. The Bertotti-Robinson spae-time is the only onformally �at so-

lution of the Einstein-Maxwell equalities for a non-null soure-free eletromagneti �eld. The metri is: ds2 =
Q2

r2

(
−dt2 + dx2 + dy2 + dz2

)
, and on the light-one t = r it has the form ds2 = −Q2

t2
dt2+ e2

t2

(
dx2 + dy2 + dz2

)
.

By the new time oordinate τ = Q ln t or t = e
τ
Q

using orthogonal spae oordinates we get the form ds2 =

−dτ2 + Q2

e
2τ
Q

(
dx2 + dy2 + dz2

)
. Thus it an be visualize on the hypersurfae τ = e ln r of the time-spae with

shape-funtion: K (v, τ) := e
τ
Q

Q
v.

A.2.3. Einstein's equation. As we saw in the previous setion the diret embedding of a solution of

Einstein's equation into a time-spae requires non-linear and very ompliated shape-funtions. It an be seen

also that there are suh solutions whih there are no natural embedding into a time-spae. This motivates the

investigations of the present setion. Our building up follows the paper of Prof. Alan Heavens [89℄.

A.2.3.1. Homogeneous time-spae-manifolds and the Equivalene Priniple. We onsider now suh manifolds

whih tangent spaes are four-dimensional time-spaes with given shape-funtions. More preisely:

Definition A.2.1. Let S be the set of linear mappings K(v, τ) : E3 × R −→ E3
holding the properties of a

linear shape-funtion given in De�nition 3.4.6. Giving for it the natural topology we say that S is the spae of

shape-funtions. If we have a pair of a four-dimensional topologial manifold M and a smooth (C∞
) mapping

K : M −→ S with the property that at the point P ∈ M the tangent spae is the time-spae de�ned by

K(P ) = K
P (s, τ) ∈ S we say that it is a time-spae-manifold. The time-spae manifold is homogeneous if the

mapping K is a onstant funtion.

Note that a Lorentzian manifold is suh a homogeneous time-spae manifold whih shape-funtion is independent

from the time and it is the identity mapping on its spae-like omponents, namely K
P (s, τ) = s for all P and

for all τ . Its matrix-form (using the olumn representation of vetors in time-spae) is:




1 0 0 0
0 1 0 0
0 0 1 0




Our

purpose to build up the theory of global relativity in a homogeneous time-spae-manifolds. We aept the

so-alled Strong Equivalene Priniple of Einstein in the following form:

Axiom A.2.1. (Equivalene Priniple) At any point in a homogeneous time-spae manifold it is possible to hoose

a loally-inertial frame in whih the laws of physis are the same as the speial relativity of the orresponding

time-spae.

Aording to this priniple, there is a oordinate-system in whih a freely-moving partile moves with onstant

veloity with respet to the time-spae K(P ) = K
P (s, τ) = K(s, τ). It is onvenient to write the world line

S(τ) = K(s(τ), τ)+τe4 parametrially, as a funtion of the proper time τ0 = τ
γ(τ) . In Setion A.1 we determined

the veloity using the time-spae parameter τ :V (τ) = γ(τ)
(

d(K(s(τ),τ))
dτ + e4

)
= γ(τ) (K(v(τ), 1) + e4). Taking

into onsideration again that the shape-funtion is linear, the aeleration is:

A(τ) = γ2(τ)K(a(τ), 0) + γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]

τ

c2
K(v(τ), 1) + γ4(τ)

[K(a(τ), 0),K(v(τ), 1)]
τ

c2
e4,

giving the di�erential equation A(τ) = 0 for suh partile whih moves linearly with respet to this frame.
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A.2.3.2. A�ne onnetion and the metri on a homogeneous time-spae manifold. Consider any other o-

ordinate system in whih the partile oordinates are S′(τ0). Using the hain rule, the de�ning equation

0 = A(τ0) =
dV (τ0)

dτ0
=

d2S(τ0)

dτ20
beomes

0 =
d

dτ0

(
dS

dS′

dS′(τ0)

dτ0

)
=

dS

dS′

d2S′(τ0)

dτ20
+

d

dτ0

(
dS

dS′

)
dS′(τ0)

dτ0
=

dS

dS′

d2S′(τ0)

dτ20
+

d2S

dS′dS′

dS′(τ0)

dτ0

dS′(τ0)

dτ0
,

where

dS
dS′ means the total derivatives of the mapping of the time-spae sending the path S′(τ0) into the spei�

path S(τ0), and the trilinear funtion

d2S
dS′dS′ is the seond total derivatives of the same mapping. (If there is a

general smooth transformation between the oordinate-frames, the orresponding derivatives are exist.) From

this equality we get the tensor form of the so alled geodesi equation of homogeneous time-spae manifold, it

is:

d2S′(τ0)

dτ20
+

(
dS′

dS

d2S

dS′dS′

)
dS′(τ0)

dτ0

dS′(τ0)

dτ0
=

d2S′(τ0)

dτ20
+ Γ(S′, S)

dS′(τ0)

dτ0

dS′(τ0)

dτ0
= 0.

Here we denote the inverse of the total derivatives

dS
dS′ by

dS′

dS . The name of Γ(S′, S) is the a�ne onnetion.

For the uniform labelling we denote by x4 the identity funtion. Sine the shape funtion is a linear mapping we

an represent it as the multipliation on left by the 3× 4 matrix K = [kij ] = kij . In the rest of this paragraph

we apply all onventions of general relativity. The Greek alphabet is used for spae and time omponents,

where indies take values 1,2,3,4 (frequently used letters are µ, ν, · · · ) and the Latin alphabet is used for spatial

omponents only, where indies take values 1,2,3 (frequently used letters are i, j, ...) and aording to the

Einstein's onvention, when an index variable appears twie in a single term it implies summation of that term

over all the values of the index. The upper indies are indies of oordinates, oe�ients or basis vetors.

The mapping S : S′(τ0) −→ S(τ0) sendsK(x′
1
, x′

2
, x′

3
, x′

4
)T+x′

4
e4 into the vetorK(x1, x2, x3, x4)T+x4e4. De-

note by K̃ the 4× 4 matrix with oe�ients:




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
0 0 0 1


 then we get S : K̃(x′

1
, x′

2
, x′

3
, x′

4
)T 7→

K̃(x1, x2, x3, x4)T . If the shape-funtion K restrited to the subspae S is a regular linear mapping than we

also have K̃−1SK̃(x′
1
, x′

2
, x′

3
, x′

4
)T = (x1, x2, x3, x4)T and we have that

[
∂xα

∂x′µ

]
=

dK̃−1SK̃
dS′

= K̃−1 dS
dS′

K̃ and so

dS
dS′

= K̃

[
∂xα

∂x′µ

]
K̃−1.

Hene

dS′

dS
= K̃

[
∂xα

∂x′µ

]−1

K̃−1 = K̃

[
∂x′

µ

∂xα

]
K̃−1

and

[
d2S

dS′dS′

]α
= K̃

[
∂2xα

∂x′µ∂x′ν

]
K̃−1

implying that the a�ne onnetion is:

Γ(S′, S)λµν = K̃
∂x′

λ

∂xα
∂2xα

∂x′µ∂x′ν
K̃−1 = K̃ΓλµνK̃

−1 = K̃

{
λ
µν

}
K̃−1.

Sine S′(τ0) = K̃(x′
1
, x′

2
, x′

3
, x′

4
)T thus we also get three equalities, the �rst one is:

dS′(τ0)

dτ0
= K̃

(
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)T
=

(
k1α

dx′
α

dτ0
, k2α

dx′
α

dτ0
, k3α

dx′
α

dτ0
, k4α

dx′
α

dτ0

)T
=

[
kλα

dx′
α

dτ0

]
.

The seond equality is:

dS′(τ0)

dτ0

dS′(τ0)

dτ0
= K̃

(
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)T (
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)
K̃T = K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

and the third one is:

d2S′(τ0)

dτ20
= K̃

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
=

[
kλα

d2x′
α

dτ20

]
.

The geodesi equation now:

0 = K̃

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
+ K̃ΓλµνK̃

−1K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,
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or equivalently

0 =

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
+ Γλµν

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

implying that

0 =
d2x′

λ

dτ20
+ Γλµν

dx′
µ

dτ0
kνζ

dx′
ζ

dτ0
.

Sine for the proper time we have the equality

−c2dτ20 = dST
(

1 0
0 −c2

)
dS =

(
dS

dS′
dS′

)T
η
dS

dS′
dS′ = dS′T gdS′

hene

g(S′, S) =

(
dS

dS′

)T
η
dS

dS′
.

Let denote by [j
ik] the transpose of the matrix [kij ] and K

i
j the elements of the inverse of K̃. Then sine

g(S′, S) =
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃TηK̃

[
∂xα

∂x′µ

]
K̃−1

thus

g(S′, S)ϕψ = ϕ
µK

∂xα

∂x′µ
α
δkηδ,εk

ε
β

∂xβ

∂x′ν
Kν

ψ.

This matrix is the metri tensor of the homogeneous time-spae manifold in question. If K̃ is the unit matrix,

then µ = ϕ, ν = ψ, α = δ and β = ε implying the known formula

gµν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ .

Also note that if K̃ is an orthogonal transformation then we get a more simple form of the metri:

g(S′, S) = K̃

[
∂xl

∂x′i

]T
η

[
∂xl

∂x′i

]
K̃T .

To determine the onnetion between the metri and the a�ne onnetion we determine the partial derivative

of the metri.

∂g(S′, S)

∂x′λ
=
(
K̃−1

)T [ ∂2xα

∂x′µ∂x′λ

]T
K̃T ηK̃

[
∂xβ

∂x′ν

]
K̃−1 +

(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃T ηK̃

[
∂2xβ

∂x′ν∂x′λ

]
K̃−1,

and sine

∂2xα

∂x′µ∂x′λ
=
∂xα

∂x′ρ
K̃−1Γ(S′, S)ρµλK̃

we have

∂g(S′, S)ϕψ

∂x′λ
= Γ(S′, S)ρϕλg(S

′, S)ρψ + g(S′, S)ϕρΓ(S
′, S)ρλψ

as in the lassial ase. Denote by g(S, S′)ϕρ the inverse of the metri tensor then we get the onnetion:

Γ(S′, S)σλµ =
1

2
g(S, S′)νσ

{
∂g(S′, S)µ,ν

∂x′λ
+
∂g(S′, S)λ,ν

∂x′µ
− ∂g(S′, S)µ,λ

∂x′ν

}
.

Covariant derivative, parallel transport and the urvature tensor. Sine we determined the a�ne onnetion

we an de�ne the ovariant derivative of a vetors �elds on the way:

V µ;λ =
∂V µ

∂x′λ
+ Γ(S′, S)µλρV

ρ =
∂V µ

∂x′λ
+ K̃ΓµλδK̃

−1V δ.

In fat, it onverts vetors into tensor on the basis of the following alulation:

K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1V ν ;ρ = K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃ΓνρδK̃

−1V δ
)

=

= K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃

∂x′
ν

∂xα
∂2xα

∂x′ρ∂x′δ
K̃−1V δ

)
=

=
∂V ′µ

∂x′λ
+ K̃

∂x′
µ

∂xα
∂2xα

∂x′λ∂x′δ
K̃−1V ′δ =

∂V ′µ

∂x′λ
+ K̃ΓµλδK̃

−1V ′δ = V ′µ
;λ.

Note that the ovariant derivative of a o-vetor is

Vµ;λ =
∂Vµ

∂x′λ
− Γ(S′, S)µλρV

ρ,
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and the ovariant derivative of a tensor has the rule, eah upper index adds a Γ term and eah lower index

subtrats one. For this reason the ovariant derivative of the metri tensor (by our alulation above) vanishes.

Again from the de�nition of the ovariant derivative we get that the equation of parallel transport is now:

dV µ

dτ0
= −Γ(S′, S)µλν

dx′
λ

dτ0
V ν .

From this it follows that the parallel-transport along a side δx′
β
of a small losed parallelogram is

δV α = −Γαβν(S
′, S)V νδx′

β

and thus the total hange around a small losed parallelogram with sides δaµ, δbν is

δV α = (Γαβν;ρ(S
′, S)V ν + Γαβν(S

′, S)V ν ;ρ − Γαρν;β(S
′, S)V ν − Γαρν(S

′, S)V ν ;β) δa
βδbρ

implying that δV α = R(S′, S)ασρβV
σδaβδbρ. Here R(S′, S)ασρβ is the Riemann urvature tensor de�ned by

R(S′, S)ασρβ := Γ(S′, S)αβσ;ρ − Γ(S′, S)αρσ;β + Γ(S′, S)αρνΓ(S
′, S)νσβ − Γ(S′, S)αβνΓ(S

′, S)νσρ.

The Rii Tensor and the salar urvature de�ned by

R(S′, S)σβ := R(S′, S)ασαβ and R(S′, S) := R(S′, S)σσ,

respetively.

A.2.3.3. Einstein's equation. As we an saw in the previous paragraph all of the notion of global relativity

an be de�ned in a time-spae-manifold thus all of the equations between them is a well-de�ned equation. On

the other hand Einstein's equation take into onsideration the fats of physi; hene ontains parameters whih

an not be hanged. Fortunately we noted earlier that the ovariant derivative of our metri tensor vanishes,

too. Thus also vanishes the ovariant derivative its inverse and hene we an write the Einstein's equation

with osmologial onstant Λ, too. The equation is formally the same that the original one, but ontains a new

(undetermined) parameter whih is the matrix K̃ of the shape-funtion. It is:

R(S′, S)µν − 1

2
g(S′, S)µνR(S′, S)− Λg(S′, S)µν =

8πG

c4
T µν,

where the parameter G an be adjusted so that the ative and gravitational masses are equal and T µν is the

energy-momentum tensor.
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