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Introduction

Overview

The dissertation contains new theorems from fourteen publications, each from the area of non-
Euclidean geometries, which constitute an essential part of my research during the period of
1996 — 2016 following the defence of my candidate’s degree.

Since Janos Bolyai, the investigation of non-Euclidean geometries has become a great tradition
in Hungarian mathematical culture. This dissertation continues this tradition. We deal with
problems that can be connected to non-Euclidean geometries through the bridge of convexity.
These investigations are interesting for some researchers in other disciplines, e.g. programmers,
physicists, engineers, geologists, and mathematicians from other areas of mathematics. We
organized our dissertation to an Overview, three Chapters and an Appendix. The Overview
contains a short comment on the selection of the papers included in the Thesis and a more
detailed description of the results and the corresponding tools.

The structure of the dissertation. The first chapter contains problems from Eu-
clidean geometry which can be solved using non-Euclidean geometric tools, or an analogous non-
Euclidean problem leads to a deep result in it. As an example I mention Theorem 1.1.2 which
transforms a Euclidean problem into a question in Minkowski geometry (is called by Minkowski
normed space, too). If, for an n-dimensional convex body K, we have that vol(conv((v + K) U
(w+ K))) has the same value for any touching pair of translates of K, we say that K satisfies
the translative constant volume property. Recall that a 2-dimensional o-symmetric convex curve
is a Radon curve, if, for the convex hull K of a suitable affine image of the curve, it holds
that its polar K° is a rotated copy of K by 7 (cf. [117]); the concept of Radon curves arose
in connection with Birkhoff orthogonality in Minkowski normed spaces. With Zsolt Langi we
proved that for any plane convex body K the following are equivalent.

(1) K satisfies the translative constant volume property.
(2) The boundary of 3(K — K) is a Radon curve.
(3) K is a body of constant width in a Radon norm.

This chapter is based on three papers of the author [12], [13], [14] from which the paper [13]
is a joint work with Zsolt Langi. These results are strongly connected to three other papers of
the author ([81], [82] and [84]).

In the second chapter we investigate the basic concepts of a normed space from the concept
of bisector to the concept of certain important curves. A characteristic result is Theorem 2.1.7.
Here we considered the topological connection between the shadow boundary of the unit ball
of a Minkowski space in a given direction and the bisectors of the space corresponding to
the same direction. As a good tool we introduce the concept of general parameter spheres
as follows: Let K be the unit ball of the Minkowski space and = be a fixed direction of the
space E". Denote by H, the set of those points of the space which distance from the origin
is equal to its distance from the point z. Let A\g := inf{0 < ¢t € R | tK N (tK + z) # (0} be
the smallest value of ¢ for which tK and tK + x intersect. Then a general parameter sphere of
bdK corresponding to the direction x and to any fixed parameter A > \q is the following set:
(K, 2) = + (bd(AK) Nbd(AK + z)) C bd K. We proved the following statement: Assume
that the bisector H, is a topological plane of E3. Then the general parameter spheres v, (K, )
for A > A\ and the shadow boundary S(K,x) are topological 1-manifolds (topological circles).

iii
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For A = Ay the parameter sphere can form a point, a segment or a convex disk of dimension 2,
respectively.

This chapter contains results from seven papers [1], [2], [3], [4], [5], [6], [7] from these [4] and
[6] are common works with Horst Martini, and the paper [7] is a common work with Vitor
Balestro and Horst Martini. The paper [85], which is also connected to the examined problems
through many ideas we omit from the dissertation because the corresponding investigation was
initiated by my coauthors Zsolt Langi and Margarita Spirova. This chapter is the backbone of
the dissertation containing several tools for all other proofs, and a lot of new concepts.

The third chapter contains new constructions of manifold-like structures. First we introduce
a common frame for Minkowski normed spaces Minkowski space-time; that is, we define a
structure that contains both concepts as special cases. This concept leads to the idea of gen-
eralized Minkowski spaces which can be generalized to a model with changing shape. We call
it generalized Minkowski space-time model with changing shape. In this structure the measure
of the space-like component at a fixed moment depends on a norm which corresponds to the
given moment of time. Since the localization in time determines the measure of lengths, we can
associate to this model a shape-function. This shape-function could be either a deterministic
function or a random function. Hence we get either a deterministic or a random time-space
model, respectively. As Theorem 3.4.2 states, from cosmological point of view there is no essen-
tial difference between the two models. More precisely, let Ky be the metric space of centrally
symmetric convex bodies endowed with Hausdorff metric. In Section 3.3 we define a probability
measure P on it holding some important geometric properties. Let (K, , 7 > 0) be a random

function defined as an element of the Kolmogorov extension (HICO, f’) of the probability space

(Ko, P). We say that the generalized space-time model endowed with the random function
K, = {/vol(Bg)/vol(K,)K, defines a random time-space model. 1t is clear that a determin-
istic time-space model is a special trajectory of the random time-space model. Theorem 3.4.2
states the following: For a trajectory L(7) of the random time-space model, for a finite set
0<m <--- <7, of moments and for some ¢ > 0 there is a deterministic time-space model
defined by the (deterministic) function K (7) for which sup{py (L(7;), K(1;))} < e.

7
The chapter contains selected results from the papers [8], [9], [10], and [11].
In the appendix we develop the special and general relativity theory of our time space. In a
mathematical dissertation the physical content of the appendix cannot be considered as a main
mathematical result but it is very important to check the relevance of the conceptualization in
practice. This is the reason why we add it to the dissertation.
This dissertation (due to length constraints) does not contain all the statements and exam-
ples of the mentioned papers. For further information please read the original papers in the
separated literature. The description of the historical background and the precise introduction
of the problem immediately precedes the result in the text. Every theorem has a reference to
the original work from which it is cited. In the dissertation we also collected our examples,
definitions, theorems and conjectures in an index page titled by "Index". Here we can find the
number of the page where the item first appeared.

Detailed description of the content.

The first chapter. is the least homogeneous chapter, its total length is about 22 pages and
contains 6 figures.
The first section is based on the paper [12] which is a common work with Zsolt Langi. The
problem seems to be a classical Euclidean one to determine the volume of the convex hull of
two convex bodies. It has been in the focus of research since the 1950s. One of the first results
in this area is due to Fary and Rédei [55], who proved that if one of the bodies is translated on
a line at a constant velocity, then the volume of their convex hull is a convex function of time.
This result was reproved by Rogers and Shephard [131] in 1958, using a more general theorem
about the so-called linear parameter systems, and for polytopes by Ahn, Brass and Shin [15]
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in 2008. To generalize it we investigated the following quantities. For two convex bodies K and
L in R", let

¢(K, L) = max {vol(conv(K' UL")) : K' 2 K, L' 2 L and K'NL" # 0},

where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of
R", we set

c¢(K|S) = max {vol(conv(K UK")): KNK' # 0, K' = o(K) for some ¢ € S} .

vol(K)
We note that a quantity similar to ¢(K, L) was defined by Rogers and Shephard [131], in which
congruent copies were replaced by translates. Another related quantity is investigated in [81],
where the author examines ¢(K, K) in the special case that K is a regular simplex and the two
congruent, copies have the same centre.

In [131], Rogers and Shephard used linear parameter systems to show that the minimum of
c(K|S), taken over the family of convex bodies in R”, is its value for an n-dimensional Euclidean
ball, if S is the set of translations or that of reflections about a point. Nevertheless, their method,
approaching a Euclidean ball by suitable Steiner symmetrizations and showing that during this
process the examined quantities do not increase, does not characterize the convex bodies for
which the minimum is attained; they conjectured that, in both cases, the minimum is attained
only for ellipsoids (cf. p. 94 of [131]). We note that the method of Rogers and Shephard [131]
was used also in [110].

We treated these problems in a more general setting. For this purpose, let ¢;(K) be the value
of ¢(K|S), where S is the set of reflections about the i-flats of R", and ¢ = 0,1,...,n — 1.
Similarly, let ¢ (K) and ¢®(K) be the value of ¢(K|S) if S is the set of translations and that
of all the isometries, respectively. We examined the minima of these quantities. In particu-
lar, in Theorem 1.1.1, we give another proof that the minimum of ¢'"(K), over the family of
convex bodies in R", is its value for Euclidean balls, and show also that the minimum is at-
tained if, and only if, K is an ellipsoid. This verifies the conjecture in [131] for translates. In
Theorem 1.1.2, we characterized the plane convex bodies for which ¢ (K) is attained for any
touching pair of translates of K, showing a connection of the problem with Radon norms. This
shows that Minkowski geometric investigations can get information on Euclidean problems. In
Theorems 1.1.3 and 1.1.4, we present similar results about the minima of ¢; (K) and ¢,,—1(K),
respectively. In particular, we prove that, over the family of convex bodies, ¢;(K) is minimal
for ellipsoids, and ¢, (K) is minimal for Euclidean balls. The first result proves the conjecture
of Rogers and Shephard for copies reflected about a point.

We used in the proof a sort of classical volume inequalities, and ad hoc observations from n-
dimensional convex geometry. We had to use also some information on the orthogonality of a
Minkowski normed plane to get for example the result cited in the preceding subsection.

The second section is based on the paper [13|. The problem of finding the maximal volume
polyhedra in R? with a given number of vertices and inscribed in the unit sphere, was first
mentioned in [57] in 1964. A systematic investigation of this question starts with the paper
[25] of Berman and Hanes in 1970, who found a necessary condition for optimal polyhedra, and
determined those with n < 8 vertices. The same problem was examined in [127], where the
author presented the results of a computer-aided search for optimal polyhedra with 4 <n < 30
vertices. Nevertheless, according to our knowledge, this question, which is listed in both research
problem books [31] and [39], is still open for polyhedra with n > 8 vertices apart from the
fortunate case of n = 12 where the solution is the regular icosahedron. In [84] the authors
investigated this problem for polytopes in arbitrary dimensions. By generalizing the methods
of [25], the authors presented a necessary condition for the optimality of a polytope. The
authors found the maximum volume polytopes in R?, inscribed in the unit sphere S?!, with
n = d + 2 vertices; for n = d + 3 vertices, they found the maximum volume polytope for d
odd, over the family of all polytopes, and for d even, over the family of not cyclic polytopes,
respectively. Observe that in this investigation spherical trigonometry plays an important role,
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which is the reason why the problem is included in this section. One of the most important
tools in the treatment of the 3-dimensional problem is the result of L. Fejes-To6th on volume
bounds on polyhedra inscribed in the unit sphere (formula (2) on p. 263 in [57]). For simplicial
polyhedra it can be simplified into another one (see p.264 in [57]|) which we call icosahedron
inequality. The term is motivated by the fact that this inequality implies the case of n = 12
points when the unique solution is the icosahedron.

The aim of this section is to give similar inequalities for cases when certain (other than the
number of vertices) prescribed information on the examined class of polytopes inscribed in
the unit sphere need to be taken into consideration. We generalize the icosahedron inequality
for simplicial bodies whose faces have given lengths of maximal edges (cf. Prop. 1.2.2, Prop.
1.2.3, Theorem 1.2.1). Our extracted formula is valid not only for convex polyhedra but also
for polyhedra that area star-shaped with respect to the origin (cf. Theorem 1.2.1). As an
application of the generalized inequality we prove a conjecture which states that the maximal
volume polyhedron spanned by the vertices of two regular simplices with common centroid
is the cube. This conjecture was raised and proved partially in [81] and inspired some other
examinations on the volume of the convex hull of simplices [82|. The numerous calculations of
the proof of Theorem 1.2.1 can be found in [83].

The third section contains a result from the paper [14]. Our observations on the volume
of hyperbolic orthoscemes concerns a deficiency in the two hundred years literature. Using
hyperbolic orthogonal coordinates we discovered a formula on the volume of the orthosceme by
its edge lengths. Of course, our formula also contains a non-elementary integral, but it completes
the collection of integrals of Lobachevsky and Bolyai to a complete triplet. (The integral of
Lobachevsky uses the dihedral angles of the orthosceme and the formulas of Bolyai both the
dihedral angles and the edge lengths of the orthosceme.) In this paper we described three types of
coordinate systems in which the volume of a set can be given by an appropriate integral. These
coordinate systems are based on a parasphere, the hyperbolic orthogonal coordinate system
and the spherical coordinate system, respectively. Using these we determined the volume form
with respect to these coordinate systems and also with respect to the half-space and projective
model. To determine these formulas we need some information on hyperbolic trigonometry and
also some well-known analytic and synthetic results from hyperbolic geometry. The formulas
can be get from each other by (non-trivial) integral transforms and so we had to give only the
first one by a synthetic native reasoning. The dissertation contains only those steps which are
needed to the deduction of the required formula on orthoscheme: Let denote by a, b and ¢ those
edges (and their lengths) of the orthosceme for which b is orthogonal to a and ¢ is orthogonal
to a and b, respectively. Then for the volume v of the orthosceme we have:

b
1 tanh A\ sinh a sinh b + tanh ¢sinh A
= - n(— - d\.
4 / \/ tanh? b cosh? A + sinh? a sinh? \ sinh b — tanh ¢sinh A

The second chapter. presents the basis of the dissertation. In recent times, the geometry
of finite dimensional, real Banach spaces; see [140| became again an important research field.
Strongly related to Banach space theory, it is permanently enriched by new results in applied
disciplines. The most examined concepts of it naturally connect to physics, functional analysis,
and non-Euclidean geometries. Our eight publications studied the geometric structure of a
Minkowski normed space, especially the problems of bisectors, conics, roulettes, isometries and
polarities. The total length of this part of the dissertation is about 50 pages with 26 figures.
The first section is based on four papers from which one ([4]) has a co-author, Horst Mar-
tini. The remaining three articles (|1, 2, 3|) contain the first systematic investigations of the bi-
sectors in higher-dimensional spaces. On a Minkowski normed plane the concept of bisector was
intensively studied from the beginning (see the survey [115]), however, in higher-dimensional
spaces there are only sporadic results. The reason is the complicated topology of high di-
mensional bisectors. We consider the following questions: What is the connection between the
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topology of the bisector and the unit sphere of the Minkowski space? What is the connection
between the bisector and the shadow boundary in a given direction of the space? How can we
represents the bisector "well" in the unit ball of the space? We examined in [1] the boundary
of the unit ball of the norm and present two theorems similar to the characterization of the
Euclidean norm investigated by H.Mann, A.C.Woods and P.M.Gruber in [111], [147], [74],
[75] and [76], respectively. H.Mann proved that a Minkowski normed space is Euclidean (so
its unit ball is an ellipsoid) if and only if all Leibnizian halfspaces (containing those points
of the space which are closer to the origin than to another point x) are convex. A.C.Woods
proved the analogous statement for such a distance function whose unit ball is bounded but is
not necessarily centrally symmetric or convex. P.M Gruber extended the theorem for distance
functions whose unit ball is a ray set. P.M. Gruber generalized Woods’s theorem in another
way, too. He showed (see Satz.5 in [74]) that a bounded distance function gives a Euclidean
norm if and only if there is a subset 7" of the (n — 1)-dimensional unit sphere whose relative
interior (with respect to the sphere) is not empty, having the property that for each pair of
points {0,x}, where x € T, the corresponding Leibnizian halfspace is convex. From the con-
vexity of the Leibnizian halfspaces follows that the collection of all points of the space whose
distances from two distinct points are equal are hyperplanes. We call such a set the bisector
of the considered points. Thus from Mann’s theorem follows a theorem stated first explicitly
by M.M.Day in [42]: All of the bisectors, with respect to the Minkowski norm defined by the
body K, are hyperplanes if and only if K is an ellipsoid. In this part my main result is the fact
that the bisectors of a strictly convex Minkowski normed space are always homeomorphic to
a hyperplane but the reverse direction of this statements is not true. We give an example for
a Minkowski space in which the bisectors are homeomorphic hyperplanes but the unit ball is
not strictly convex. The mathematical tools of the proofs are from convex geometry, and from
basic combinatorial topology combined with Euclidean geometric observations.

To answer the second question we formulated a conjecture (Conjecture 2.1.2) which states that
the bisectors are topological (n — 1)-dimensional hyperplanes if and only if the corresponding
shadow boundaries are (n — 2)-dimensional topological spheres. In [2] and (in the third subsec-
tion of this section) we prove this conjecture in the three-dimensional case. We examined also
the topological properties of the shadow boundary, and defined the so-called general parameter
spheres for n > 3, as a tool for a prospective proof of our conjecture. The main mathematical
tool of this section is the Schoenflies-Swingle theorem on the arc-wise accessibility of a curve
from a domain. This theorem holds only in a two-dimensional manifold and there is no analo-
gous characterization in higher spaces so the method of the proof cannot be extracted to higher
dimensions. In [3] (and in Subsection 2.1.4) we examined the conjecture in higher than three-
dimensional cases. It requires a deeper investigation of the topological properties of the general
parameter spheres. We proved that the general parameter spheres are not an absolute neigh-
borhood retract in general, but still are compact metric spaces, containing (n — 2)-dimensional
closed, connected subsets separating the boundary of K. Thus we investigated the manifold
case and proved that the general parameter spheres and the corresponding shadow boundary
are homeomorphic to the (n—2)-dimensional sphere. Furthermore, if it is an (n—1)-dimensional
manifold with boundary then it is homeomorphic to the cylinder S~ x [0, 1]. The proof is
based on geometric topology, on the so-called cell-like approzimation theorem for manifolds.
We also proved on the connection of the shadow boundary S(K,x) and the general parameter
spheres the following:

e S(K,x)is an (n—2)-dimensional manifold if all of the non-degenerated general param-
eter spheres 7\ (K, x) with A > A\ are (n — 2)-dimensional manifolds, and conversely,
if S(K,x) is an (n — 2)-dimensional manifold then all of the general parameter spheres
are ANRs.

e S(K,x) is an (n — 1)-dimensional manifold with boundary if and only if there is a A
for which the general parameter sphere v,(K,x) is an (n — 1)-dimensional manifold
with boundary.
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Combining these theorems and using a topological theorem of M. Brown we get the proof of
the first direction of the conjecture.

By Horst Martini we continued the investigation of bisectors in a further point of view in [4].
Martini and Wo in [118] introduced and investigated the radial projection of the bisector. In our
common paper with H. Martini we introduced the bounded representation of bisectors, which
yields a useful combination of the notions of bisector, shadow boundary, and radial projection.
We proved that the topological properties of the radial projection (in higher dimensions) do
not determine the topological properties of the bisector. More precisely, the manifold property
of the bisector does not imply the manifold property of the radial projection. The situation is
different with respect to the bounded representation of the bisector. Namely, if one of them is
a manifold, then the other one is also. More precisely, if the bisector is a manifold of dimension
(n — 1), then its bounded representation is homeomorphic to a closed (n — 1)-dimensional ball
(i.e., it is a cell of dimension (n — 1)). And conversely, if the bounded representation is a cell,
then the closed bisector is also.

The second section is based on the new results of the paper [5]. It contains investigations
on two types of the important transformations of a Minkowski normed space. Especially we
considered "adjoint abelian" and isometric transformations of a Minkowski space. Stampfli in
[136] has defined a bounded linear operator A to be adjoint abelian if and only if there is a
duality map ¢ such that A*p = pA. So evidently, A is adjoint abelian if and only if A = AT thus
the adjoint abelian operators are in some sense "self-adjoint" ones. Langi in [101] introduced
the concept of the Lipschitz property of a semi inner product and investigated the diagonalizable
operators of a Minkowski geometry {V, || - ||}. As a corollary of his main result we have that in
a totally non-Euclidean Minkowski n-space every diagonalizable adjoint abelian operator is a
scalar multiple of an isometry. First we described the structure of an adjoint abelian operator
in Theorem 2.2.3 then in Theorem 2.2.4 we proved that in an [, space every adjoint abelian
operator is diagonalizable.

On isometries we have also two theorems. Theorem 2.2.8 describes the structure of an isometry
and Theorem 2.2.10 characterizes the group of isometries as follows: If the unit ball B of (V,||-||)
has no intersection with a two-plane which is an ellipse, then the group Z(3) of isometries of
(V.|| - ||) is isomorphic to the semi-direct product of the translation group 7(3) of R? with a
finite subgroup of the group of linear transformations with determinant +1.

The third section contain results from two further papers which are important in the setting
up of a complete image on our works in Minkowski geometry. These are common papers with
H. Martini (|6]) and with V. Balestro and H.Martini (|7]), respectively. Due to the limitation
on the length of the dissertation in this section we omit the proofs which use convex geometry,
linear algebra and classical differential geometry. The paper [6] on conics contains the possible
metric definitions of conics and the basic properties of the curves defined in this way. The paper
[7] dealing with a possible definition of roulettes is based on a new concept of rotations. Though
our rotations are not isometries implying that the motion defined by them is not a rigid one,
there is a complete building up of the kinematics in a Minkowski plane. In this theory the two
Euler-Savary equations are valid.

The third chapter. deals with the problem of conceptualization. The one hundred old con-
cept of "Minkowski space" is a central topic of the scientific community. Note that the phrase
"Minkowski space" do not distinguish between two theories: the theory of normed linear spaces
and the theory of linear spaces with indefinite metric. For finite dimensions both are called
Minkowski spaces in the literature. It is interesting that these essentially distinct theories of
mathematics have similar axiomatic foundations. The axiomatic examination of the theory of
linear spaces with indefinite metric comes from H. Minkowski [123] and the similar system of
axioms of normed linear spaces was introduced by Lumer in [108|. The first concept widely
used in physics: this is the mathematical structure of relativity theory and thus there is no
doubt about its importance. (The popularity of linear spaces with indefinite metric is undimin-
ished since Minkowski’s lecture "Time and Space".) The usability of the second one is based
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on the fact that modern functional analysis works in general normed spaces, and the Lumer-
Giles theory of semi inner product gives a possibility to handling it by methods used originally
in Hilbert spaces. Of course, in both of these spaces there are a lot of problems that can be
formulated or solved in the language of geometry. The results of this chapter can be found in
four publications of the author |8, 9, 10, 11].

The two publications [8],[9] are about the new concept of generalized space-time model. The
fourth paper [11] extend this concept to a concept of generalized Minkowski space with changing
shape, distinguishing to each other the random and deterministic possibilities. For this purpose
we had to define a probability space on the metric space of centrally symmetric convex compact
bodies. The third paper [10] contains a construction in this direction. In this introductory
section I would not like to present a more detailed description of the content of this chapter, I
remark only two things. First of all, the aim of this part of the dissertation is concept rendering,
which means that the purpose of the theorems is the verification of conceptualization. Secondly,
for this natural reason the used mathematical tools are very dispersed, we had to apply results
from linear algebra, functional analysis, convex geometry, probability theory and also classical
and modern differential geometry. The sum of the lengths of the four papers is 103 pages, from
this the dissertation contains a 50 page long review. As an application of this theory we add an
Appendix to the dissertation. It contains the description of the relativity theory in our structure
from the special relativity to the Einstein equation holding in a time-space manifold.
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CHAPTER 1

Problems on convexity and volumes in connection with
non-Euclidean geometries

1.1. On the convex hull of two convex bodies (common work with Zs. Langi)
We investigate the following quantities.
DEFINITION 1.1.1. [12] For two convex bodies K and L in R", let
¢(K, L) = max {vol(conv(K' UL")) : K' 2 K, L' 2 L and K' "L # 0},

where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of
R", we set

c¢(K|S) = max {vol(conv(K UK")): KNK' # 0, K' = o(K) for some o € S}.

vol(K)
We note that a quantity similar to ¢(K, L) was defined by Rogers and Shephard [131], in which
congruent copies were replaced by translates. Another related quantity is investigated in [81],
where the author examines ¢(K, K) in the special case that K is a regular simplex and the two
congruent, copies have the same centre.

In [131], Rogers and Shephard used linear parameter systems to show that the minimum of
c(K|S), taken over the family of convex bodies in R”, is its value for an n-dimensional Euclidean
ball, if S is the set of translations or that of reflections about a point. Nevertheless, their method,
approaching a Euclidean ball by suitable Steiner symmetrizations and showing that during this
process the examined quantities do not increase, does not characterize the convex bodies for
which the minimum is attained; they conjectured that, in both cases, the minimum is attained
only for ellipsoids (cf. p. 94 of [131]). We note that the method of Rogers and Shephard [131]
was used also in [110].

We treat these problems in a more general setting. For this purpose, let ¢;(K) be the value
of ¢(K|S), where S is the set of reflections about the i-flats of R", and ¢ = 0,1,...,n — 1.
Similarly, let ¢ (K) and ¢®(K) be the value of ¢(K|S) if S is the set of translations and that
of all the isometries, respectively.

During the investigation, K, denotes the family of n-dimensional convex bodies. Let B"™ be
the n-dimensional unit ball with the origin o of R as its centre, and set S*~! = bd B" and
v, = vol(B,). Finally, we denote 2- and (n — 1)-dimensional Lebesgue measure by area and
vol,_1, respectively. For any K € K, and v € S""!, K|u! denotes the orthogonal projection
of K into the hyperplane passing through the origin o and perpendicular to u. The polar of a
convex body K is denoted by K°.

THEOREM 1.1.1. [12] For any K € K,, withn > 2, we have " (K) > 1+ 2”3—;1 with equality if,
and only if, K is an ellipsoid.

PROOF. By compactness arguments, the minimum of ¢ (K) is attained for some convex body
K, and since for ellipsoids it is equal to 1 + 21’;—*1, it suffices to show that if ¢'"(K) is minimal
for K, then K is an ellipsoid. !

Let K € KC,, be a convex body such that ¢ (K) is minimal. Then ¢"(K) < 1+ 2”3—;1 For any

u € S let dg(u) denote the length of a maximal chord parallel to u. Observe that for any
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such u, K and dg(u)u + K touch each other and
(1) vol(conv(K U (dg (u)u + K))) 1 dg (u) vol, 1 (K|ut)

vol(K) vol(K)
Clearly, ¢'"(K) is the maximum of this quantity over v € S"~!.
It is known that for any K and u, dg(u) = d1 (k) (u) and the same holds also for the width
function of K. Theorem 3.3.5 of [63] states that if K" and K’ have the same width function, then
they have the same brightness function, defined as u + vol,_;(K|u'), as well. Thus, we have
that for any u € S" 1, dg(u) vol,_1(K|ut) = d%(KfK)(u) vol,_1 (3(K — K)[u'). On the other
hand, the Brunn-Minkowski Inequality yields that vol(K) < vol (3(K — K)), with equality if,
and only if, K is centrally symmetric. Substituting these inequalities into (1), we obtain that
AT(K) > " (%(K — K)), with equality if, and only if, K is centrally symmetric. Hence, in the
following we may assume that K is o-symmetric.
Let u — rg(u) = dKT(”) be the radial function of K. From (1) and the inequality ¢""(K) <
1+ 2”:—7:1, we obtain that for any v € S*~!

Up—1 VOI( K
2) Lollh)
v, vol, 1 (K|u

Applying this for the polar form of the volume of K, we obtain

) > ri(u).

1 n 1Un_1 n 1
I(K)=— < -—--= (K
wl(K) = 1 [ k() du< S22 l(8))" [

S§n—1 S§n—1

which yields
v'n 1
3 - < —du
@) o ol ()T / (vl 1 (K[uh))
S

On the other hand, combining Cauchy’s surface area formula with Petty’s projection inequality,
we obtain that for every p > —n,

. 1 Loy (KJub)\? . )
U,l/" (VOl(K))TI <, / (VOn L (K u )) du| |

nuy Un—1
Sn—1

with equality only for Euclidean balls if p > —n, and for ellipsoids if p = —n (cf. e.g. Theorems
9.3.1 and 9.3.2 in [63]).

This inequality, with p = —n and after some algebraic transformations, implies that
1 vrn
4 ~du < z
(4) /1 (vol,,_1 (K|ut)) ~ o, (vol(K))"
sn-

with equality if, and only if K, is an ellipsoid. Combining (3) and (4), we can immediately see
that if ¢ (K) is minimal, then K is an ellipsoid, and in this case ¢'"(K) =1 + 2”:—7:1 O

We remark that a theorem related to Theorem 1.1.1 can be found in [112]. More specifically,
Theorem 11 of [112] states that for any convex body K € K,, there is a direction v € S"~!
such that, using the notations of Theorem 1.1.1, dg (u)vol,_;(K|ut) > 2”:—;1, and if for any
direction u the two sides are equal, then K is an ellipsoid.

If, for a convex body K € K,,, we have that vol(conv((v + K) U (w + K))) has the same value
for any touching pair of translates, let us say that K satisfies the translative constant volume
property. In this section we will characterize the plane convex bodies with this property. Before
doing this, we recall that a 2-dimensional o-symmetric convex curve is a Radon curve, if, for the
convex hull K of a suitable affine image of the curve, it holds that K° is a rotated copy of K by
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% (cf. [117]). We note that the concept of Radon curve arose in connect with the examination

of the Birkhoff orthogonality in Minkowski normed spaces.

THEOREM 1.1.2. [12]| For any plane convex body K € Ky the following are equivalent.

(1) K satisfies the translative constant volume property.
(2) The boundary of (K — K) is a Radon curve.
(3) K is a body of constant width in a Radon norm.

PROOF. Clearly, (2) and (3) are equivalent, and thus, we need only show that (1) and (2) are.
Let K € KCy. For any u # o, let dx(u) and wg(u) denote the length of a maximal chord and
the width of K in the direction of u. Then, using the notation u = w — v, for any touching pair
of translates, we have

area(conv((v + K) U (w + K))) = area(K) + dg (v)wg (u'),

where u! is perpendicular to w.

Since for any direction u, we have d (u) = d%(K_K)(u) and wg (u) = w%(K_K)(u), K satisfies the
translative constant volume property if, and only if, its central symmetral does. Thus, we may
assume that K is o-symmetric. Now let € bd K. Then the boundary of conv(K U (2z + K))
consists of an arc of bd K, its reflection about z, and two parallel segments, each contained
in one of the two common supporting lines of K and 2x + K, which are parallel to x. For
some point y on one of these two segments, set Ay (x) = areaconv{o,z,y} (cf. Figure 1.1).
Clearly, Ax(z) is independent of the choice of y. Then we have for every z € bd K, that

FIGURE 1.1. An illustration for the proof of Theorem 1.1.2

Assume that A (z) is independent of K. We need to show that in this case bd K is a Radon
curve. It is known (cf. [117]), that bd K is a Radon curve if, and only if, in the norm of K,
Birkhoff-orthogonality is a symmetric relation. Recall that in a normed plane with unit ball K|
a vector x is called Birkhoff-orthogonal to a vector y, denoted by z Lpg v, if x is parallel to a
line supporting ||y|| bd K at y (cf. [17]).

Observe that for any =,y € bd K, x Lpg y if, and only if, Ax(z) = area(conv{o, z,y}), or in
other words, if, area(conv{o, z,y}) is maximal over y € K. Clearly, it suffices to prove the
symmetry of Birkhoff orthogonality for =,y € bd K. Consider a sequence x L gy L g z for some
x,y,z € bd K. Then we have Ay (z) = areaconv{o, z,y} and Ak (y) = area(conv{o,y, z}). By
the maximality of area(conv{o,y, z}), we have Agx(x) < Ax(y) with equality if, and only if,
y L x. This readily implies that Birkhoff orthogonality is symmetric, and thus, that bd K is
a Radon curve. The opposite direction follows from the definition of Radon curves and polar
sets. U

THEOREM 1.1.3. [12| For any K € K, with n > 2, ¢;(K) > 1+ 2”:—;1, with equality if, and
only if, K s an ellipsoid.
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PROOF. If K is centrally symmetric, then ¢;(K) = ¢"(K), and we can apply Theorem 1.1.1.

Consider the case that K is not centrally symmetric. Let o : I, — K,, be a Steiner sym-
metrization about any hyerplane, and observe that o(—K) = —o(K). Thus, Lemma 2 of [131]
yields that ¢;(K) > ¢;(o(K)). On the other hand, Lemma 10 of [112] states that, for any not
centrally symmetric convex body, there is an orthonormal basis such that subsequent Steiner
symmetrizations, through hyperplanes perpendicular to its vectors, yields a centrally symmetric
convex body, different from ellipsoids. Combining these statements, we obtain that there is an
o-symmetric convex body K’ € K, that is not an ellipsoid and satisfies ¢;(K) > ¢;(K’). Hence,
the assertion follows immediately from Theorem 1.1.1. O

Our next result shows an inequality for ¢, (K).

THEOREM 1.1.4. 12| For any K € K,, withn > 2, ¢, 1(K) > 1+ 2?—”‘1, with equality if, and
only if, K s a Euclidean ball.

PROOF. For a hyperplane o C R", let K, denote the reflected copy of K about o. Furthermore,
if o is a supporting hyperplane of K, let K_, be the reflected copy of K about the other
supporting hyperplane of K parallel to o. Clearly,

1
Cn1(K) = K max{vol(conv(K U K,)) : ¢ is a supporting hyperplane of K}.
VO

For any direction u € S"1, let Hy(u) be the right cylinder circumscribed about K and with
generators parallel to u. Observe that for any u € S"~! and supporting hyperplane o perpen-
dicular to u, we have

vol(conv(K U K,)) + vol(conv(K U K_,) = 2vol(K) + 2vol(Hk (u)) =
= 2vol(K) + 2w (u) vol,,_1 (K |u™).

Thus, for any K € IC,,,
max{wg (u) vol, 1 (K|ut) : u € S*1}

vol(K) '
Similarly like in the proof of Theorem 1.1.1, we can observe that the width and the brightness
functions of K and its central symmetrals are equal, and thus, the numerator of the fraction
on the right-hand side of (5) is the same for K and (K — K). On the other hand, the Brunn-
Minkowski Inequality implies that vol(K) < vol (%(K — K)), with equality if, and only if, K
is centrally symmetric. Hence any minimizer of ¢,,_;(K) is centrally symmetric.

Assume that K is o-symmetric, and let dx (u) denote the length of a longest chord of K parallel
to u € S"~1. Observe that for any u € S"™!, dg(u) < wg(u), and thus for any convex body K,
Cnfl(K> > Ctr(K).

This readily implies that ¢ 1(K) > 1 + 2”5—7:1, and if here there is equality for some K € I,

then K is an ellipsoid. On the other hand, in case of equality, for any u € S we have dg(u) =
wg (u), which yields that K is a Euclidean ball. This finishes the proof of the theorem. O

(5) 1 (K) > 1+

In connection with the above results we had some remarks and conjecture. Some of them I quote
here showing that in this theme there are a lot of problem for further interesting research.

CONJECTURE 1.1.1. Letn > 2 and 0 < i < n—1. Prove that, for any K € K,,, ¢;(K) > 1+2U:—n‘1.
Is it true that equality holds only for Fuclidean balls?

The maximal values of ¢ (K) and ¢y(K), for K € K,,, and the convex bodies for which these
values are attained, are determined in [131]. Using a suitable simplex as K, it is easy to see
that the set {¢;(K) : K € K,} is not bounded from above for i = 1,...,n — 1. This readily
yields the same statement for ¢“°(K’) as well. On the other hand, from Theorem 1.1.4 we obtain
the following.
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REMARK 1.1.1. For any K € K,, with n > 2, we have ¢°(K) > 1+ 2”;;1, with equality if, and
only if, K is a Fuclidean ball.

In Theorem 1.1.2, we proved that in the plane, a convex body satisfies the translative equal
volume property if, and only if, it is of constant width in a Radon plane. It is known (cf. [17]
or [117]) that for n > 3, if every planar section of a normed space is Radon, then the space is
Euclidean; that is, its unit ball is an ellipsoid. We conjecture the following.

CONJECTURE 1.1.2. Letn > 3. If some K € K, satisfies the translative equal volume property,
then K is a convex body of constant width in a Fuclidean space.

Furthermore, we remark that the proof of Theorem 1.1.2 can be extended, using the Blaschke-
Santalo6 inequality, to prove Theorems 1.1.1 and 1.1.3 in the plane. Similarly, Theorem 1.1.4 can
be proven by a modification of the proof of Theorem 1.1.1, in which we estimate the volume
of the polar body using the width function of the original one, and apply the Blaschke-Santalo
inequality.

Like in [131], Theorems 1.1.1 and 1.1.4 yield information about circumscribed cylinders. Note
that the second corollary is a strenghtened version of Theorem 5 in [131].

COROLLARY 1.1.1. For any conver body K € K, there is a direction u € S"~! such that the
right cylinder Hy (u), circumscribed about K and with generators parallel to u has volume

) vol(K).

Furthermore, if K is not a Euclidean ball, then the inequality sign in (6) is a strict inequality.

2vn—1

(6) vol(Hg (u)) > (1 -

Un,

COROLLARY 1.1.2. For any conver body K € K, there is a direction u € S*™! such that any
cylinder Hg (u), circumscribed about K and with generators parallel to u, has volume

(7) vol(H (1)) > (1 + 2“"1) vol(K).

Un,

Furthermore, if K is not an ellipsoid, then the inequality sign in (7) is a strict inequality.

In the paper [12] we also introduced variants of these quantities for convex m-gons in R?, and
for small values of m, characterize the polygons for which these quantities are minimal. It has
been collected some additional remarks and questions, too.

1.2. On the volume of the convex hull of points inscribed in the unit sphere

We generalize here partially an important inequality of Laszlo Fejes-Toth published in [57].
Let a(P) be the area of a convex p-gon P lying in the unit sphere, 7(P) the (spherical) area of
the central projection of P upon the unit sphere, and v(P) the volume of the pyramid of base
P and apex O which is the centre of the unit sphere. Let denote U(7(P),p) the maximum of
v(P) for a given pair of values p and 7(P).

PROPOSITION 1.2.1 ([57]). With the above notation we have the following statements.
(1) For given values of p and T the volume v attains its mazimum U(7,p) if t is a reqular

p-gon.
(2) For general p > 3 we have
P o 27T—T< o T 22#—7)

8 U(t,p) = = cos” —tan 1 — cot* —tan ,
) (mp) =3 p 2p p 2p

implying that

1 27 — 1 2m —

(9) U(T,S):Ztan W6 T (1—§tan2 W6 T),

(3) The function U(T,p) is concave on the domain determined by the inequalities 0 < T <
T, p=> 3.
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(4) If V denotes the volume, R the circumradius of a convex polyhedron having f faces, v
vertices and e edges, then

2
(10) V< 36 cos” g cot 7;_: (1 — cot? g—g cot? 7;_:) R®.

Equality holds only for reqular polyhedra.

A polyhedron with a given number n of vertices is
always the limiting figure of a simplicial polyhedron
with n vertices, hence, introducing the notation w, =
(nm)/6(n — 2) we have the following inequality

1
(11) V< 6(77’ — 2) cot w,(3 — cot? w, ) R?.

Equality holds in the above inequality only for the
regular tetrahedron, octahedron and icosahedron (n =
4,6,12).

If A, B,C are three points on the unit sphere we can
take two triangles with these vertices, one of the corre-
sponding spherical triangle and the second one the rec-
tilineal triangle with these vertices, respectively. Both
of them are denoted by ABC'. The angles of the rectilin-
eal triangle are the halves of the angles between those ) .
radii of the circumscribed circle which connect the cen- FIGU'RE 1,'2' Famal, rectl_hneal and
ter K of the rectilineal triangle ABC to the vertices spherical simplices, respectively.

A, B,C. Since K is also the foot of the altitude of the tetrahedron with base ABC and apex O,
hence the angles a4, ap and ac of the rectilineal triangle ABC, play an important role in our
investigations, we refer to them as the central angle of the spherical edges BC', AC' and AB,
respectively. We call the tetrahedron ABCO the facial tetrahedron with base ABC' and apex
0.

PROPOSITION 1.2.2. [13| Let ABC' be a triangle inscribed in the unit sphere. Then there is an
isosceles triangle A'B'C" inscribed in the unit sphere with the following properties:

e the greatest central angles and also the spherical areas of the two triangles are equal to
each other, respectively;

e the volume of the facial tetrahedron with base A'B'C’ is greater than or equal to the
volume of the facial tetrahedron with base ABC.

PROOF. Assume first that the triangle ABC' contains the centre K of its circumscribed circle.
Let us denote by K’ the central projection of K onto the unit sphere. The angles 2a4 and

fa are the spherical angles of the triangle K’BC at K’ and B (or C), respectively. Then
the area of the triangle KBC is equal to a(KBC) = A(aa, 4) = 3sin2ausin® K'OBZ =
%sinQozA(l —cot? ay cot? B4). On the domain 0 < a < 5, 0<B<3, a+f>7itisa
concave function of two variables (see p.267 in [57]). Hence

as+ap Ba+PBr
2 ’ 2

where the value on the right hand side of the inequality above is the area of the isosceles triangle

A'B'C’. (We note that the central projections upon the sphere of the two triangles have the

same spherical excess a(ABC) = a(A'B'C") = 2(fa + S + fc) — 7.)

Compare now the altitudes m and m’ of the pyramids based on the two triangles, respectively.

The spherical area of the first triangle is

7 =2(8a+ B + o) —m = 2m + (2(Ba+ Bs + Bo) — 37) =

::2n-+-2<tan*1<uﬂ1<ﬁA-—-g>>-+-+tan*1<mn1<53-—-g)>-+tan*1<uM1<5c-—-g)>> -

GMB@AWmM)H%mﬂm+AWQ%MQA< >+A@amgamyax
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=21 — 2 (tan"" (mtanay,) + tan~' (mtanag) + tan~" (mtanac)) .

Since we do not exclude the possibility of ac = 7/2 (implying that S = 0) we define
tan~!tanm/2 =: /2. We also use the value tan~!tan(0 =: 0 determining the used range of
the function x — tan™! .

By the convexity (see e.g. p. 229 in [57]) of tan™! (mtanay) we get that

T <21 —2 (2 tan ! (m tan %2043) + tan~! (m tan ac)) .

On the other hand for m/ we have 7 = 27 — 2 (2tan™! (m/ tan 2452 ) + tan™" (m/ tan ac))
implying that

<2 tan™! (m tan 4 ;L QB> +tan~" (mtan oec)> < (2 tan™* <m’ tan 4 ;r QB) +tan~" (m' tan ac))

from which it follows that m' > m.
Second assume that the angle at C' is obtuse. Then a4 + ap = a¢ < 7/2 and we have

7 =2 (tan"" (mtan (aA +ag)) —tan”! (mtanay) — tan~' (mtanag)).

On the other hand a(ABC) =

is v(aa,ap) = % (sin 2a4 + sin 2ap — sin 2(a4 + ag)).

We consider the maximum of v(a4, ag) under the conditions 0 < a4, ap < 7/2,

2 (sin 2a4 4 sin 2ap — sin 2a) and the volume in question

0= —% + (tan™" (mtan (a4 + ap)) — tan™' (mtanas) — tan™' (mtanag)),

and 0 = a4 + ap — const, with respect to the unknown values a4, ap and m. Using Lagrange’s
method we get two equations

2 m2 2 2
W= 77”(1 5 m’) (cos2ay — cos2(aa + ap)) + 1 +<m2 tan2 ((;injL(j;);L((fi) mzt:;nf;j)
2 m2 2
M= 7m(1 6 o (cos2ap — cos2(aa + ap)) + 1 +(m2 tan2 ((;in+(22))+(?? mgt:;nfj;)
which are equivalent to the equations
,u 1 A (1 +tan? (aa + ap)) (1 + tan? aa)
m(l—m?) 3  (14+m?tan? (a4 + ap)) (1 + m2tan? ay)
1 1 A (1 +tan? (aa + ap)) (1 + tan® ap)
m(l—m?) 3 * (1 +m?2tan® (s + ap)) (1 +m? tan® ap)

because of the equality
tan? (aq + ap) — tan® ay
(1 + tan? (s + ap)) (1 + tan® ay)
These conditions turn out to be equivalent to
(1 + tan®ay) (1 + tan® ap)
(1 +m?2tan?ay) - (1 +m?2tan®ap)
which cannot be satisfied unless a4 = ag. Hence if the triangle is not an isosceles one it is not

a local extremum of our problem, on the other hand by compactness it has at least one local
maximum proving our statement. 0

cos2a s — cos 2(aq + agp)

= cos’ ay — cos?(aq + ap) = 5

We can compare the formulas of Proposition 1.2.2

m'(l _ m/2)

V< (2sinac —sin2(a¢)) = sin oo (1 — cos )

and

(2sin(m — a¢) + sin2(ae)) = sin ae (1 + cos ac)
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on a¢ and ac. In both cases we assumed that ac and a¢ are in the interval [0, 7/2], respectively.
Using the equality ac = m — a¢ the above formulas simplify to the following common form

"1 — 12
(12) V< % sinac(l —cosag) =:v(m',ac) where 0<a <.

In the case when AC' = BC we saw that 7 = 2 (tan™" (m/ tan o) — 2tan™"! (m/tan 2¢)) and
T = 2T —2 (2 tan~! (m tan =< ) + tan™! (m’ tan &E)), respectively. (Observe that by the
definition tan~'(co) =: m/2 these formulas are valid for ac = 7/2 and lead to the same
equality.) These equalities can be considered in the following common form
(13) tan% = tan (tauf1 (m’ tan a¢) — 2tan*! (m'tan a—;)) :
where 0 < a¢ < 7. In the case when 7/2 < a¢ we have tan(7/2) < 0 and 7/2 = 7 +

tan! (tan (7/2)).

COROLLARY 1.2.1. The upper bound function for fized T with the parameters |AB|,a¢ is

\AB|2

|AB|? \/sm ac —
12 1+ cosac

and using the equality |AB| = 2sin AQB it is of the form

(14) v(|AB|, ac) =

sin? ATB \/ sin? e — sin? ATB
3 1+ cosae
If AB is given the maximal volume of the possible facial tetrahedra are attained at the isosceles

(15) v(AB,a¢) =

triangle with parameter value ac = cos™! (% — 1) = cos™! (—cos® 28). The formula is

_, [|ABJ? |AB| |AB|? 1.
AB ! ‘— -1 = — l—— ) ==sinAB.
v (\ |, cos ( 1 )) 5 1 5 sin

PROOF. Assume that the value of the length of AB is given. Then by Proposition 1.2.2 for
fixed 7 the maximal value of the volume V' can be attained only for an isosceles triangle and
the upper bound function gives this maximal volume. Using the equality

[AB|

sin Qg = —F——
T oI-m?
we get that
\AB|2
"1 —m'? AB \/sm Qo —
v(m' ac) = m{1 = m7) sinac(l — cosag) = [AB[” = v(|]AB|, ac),

3 12 14 cosac

where the possible values of a¢ can be get from the equality sin® a¢ > |AB|?/4. The derivative
of v(|AB|,ac) = v(y, ) is

. . 2
oy ) = y?sin(x)4/sin®(z) — & y*sin(z) cos(z)
’ 12(cos(z) 4+ 1)2 42
12(cos(z) + 1)4/sin*(z) — 4
hence we have
. AB|?
|AB|? sin a¢ (Cosozc+1—%> <0 if cosac+1< :AE

U/(|AB|,O[0) =

- =0 if cosac+1="
12(1+cosac)2\/sin2 ac — ‘Af| >0 if cosag+1> \ABI
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Since cos™! (% - 1) < —sin"'(]AB|/2), on the interval

2

sin~'(|AB|/2) < ac < 7/2 < cos™? <@ — 1) <7 —sin"'(|AB|/2)

the function v(a¢) attains its maximal value at cos™! (|AB|?/4 — 1) furthermore

ABJ? AB?VﬁﬁE@_"%ﬁ) AB AB|?
v (|AB|,COS_1 (% —1)) _ Bl _ |45 (1_ !>

12 |[ABJ2 6 4
4

v(|ABJ,ac) on the interval sin™'(|AB|/2) < ac < cos™! (% - 1) is a strictly increasing

1 (|ABJ?
1

function and on the interval cos™ — 1) <7 —sin"'(|AB|/2) it is a decreasing one. This

shows that an optimal triangle with the fixed edge length |AB| (which corresponding to a facial
tetrahedron with maximal volume) is an isosceles one. 0J

We also have a formula on the upper bound function v (m’, ) using as a parameter the surface
area 7 (introduced in Proposition 1.2.2).

PROPOSITION 1.2.3. [13] Let the spherical area of the spherical triangle ABC be 1. Let o be
the greatest central angle of ABC' corresponding to AB. Then the volume V of the FEuclidean
pyramid with base ABC and apex O holds the inequality

1 T |AB|? 1
16 V<-tan- |2——— 1+ ——— .
(16) -3 an2< 4 ( +(1+cosac)))

In terms of T and ¢ := AB we have

r—c¢ __

2

c T
1 — cos 5 COS 7

1 cos

COS 5 COS 5
(17) V <wu(r,c) = 5 sin ¢ 2 2

Equality holds if and only if |AC| = |CB].

PROOF. For ac = /2 the statement is obviously true. In the other cases, by Proposition 2
and by the note before this statement we have to investigate the inequality

m'(l _ m/2)

V< sinac(l —cosac) =:v(m',ac) where 0<ac<m ac#7/2

with the condition
tan g = tan (tanfl (m' tan ac) — 2tan™? (m’ tan 0470)) =

2m/ tan =< 2m’ tan =<

m’ tan ac — tan (2tan! (m’ tan 2¢)) T—tan2 °2 ~ T—m’ tan? °C

— — @ o
1+ m’tanac tan (2tan™! (m/tan 2¢)) 4 4 2mtan o 2m’ tan —F
1—tan? QTC 1—m’2 tan? QTC

2m’ (1 — m/?) tan® &2 B 2m/(1 — m/?) tan 22 B
(1 —tan? 22)(1 — m/2 tan® 22) + 4m/2 tan® 4¢  (cot &% — tan 22)(cot & — m/2 tan 2£) + 4m'?
m/(1 —m'?)sinac(1 — cosac) 3v(m/, ac)
(1 —m’2) (cosac — sin® ac) + (1 +m'?) (1 —m?)cosac(l +cosac) + 2m’2’
Since
. AB|
sinag = ——v—u
2v1 —m?
hence
2
1— m/2 — |AB|
4sin? ae

implying that

AB|? 1 AB|?
T (\ |# cos ac(1 + cos ag) +2(1 |AB| )) _

3v(m, ac) = tan — -
( c) 2 4sin® a¢ 4sin? ae
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T(y_ |AB|? (2 + cos a¢)
2 4(1+ cosag) '

AB|?
tan~ (24 % (cosac(1l+ cosag) —2) | = tan
2 4sin” oo

V< tianl (2 MBE( !
-3 2 4 (1 + cosac)
as we stated.

Since m — a¢ is the angle of the chordal triangle (rectilineal triangle) ABC at C, thus we can
give it as a function of the spherical lengths of the sides of the spherical triangle ABC'. Thus
we have (see eq. (486) in [37])

1+cosAB — 2cos AC —1 4+ cos AB + 4sin? 4¢

cos o = — = —
4 sin? AC 4 sin? AC

So

Using the notation a := BC = AC, ¢ = AB we get, the formula

1 AB AC 1
VS—tabnZ 2 — sin? — — 2sin? — :—tanz<2—sm2£—28m2a>
3 2 2 2 2 2

2 3
Finally use the spherical Heron’s formula proved first by Lhuilier (see p.88 in [37]):
; T \/t a+b+ct —a+b+ct a—b+ct a+b—c
an — = {/tan 1 an 1 an 1 an YR

Since a = b it can be reduced to the form

; T ; c\/t 2a—|—ct 2a — ¢ . c SiHZ%—SiHQE
an — = tan —4/tan an = tan —
4 4 4 4 4 in22 — sin?

From this we get that

a  tan®Zcos? ¢ + tan? sin? €
gin2 % — 1 1 1 1
2 tan® Z 4 tan® <
and thus the inequality
1 T 5 C tan24c 26+tan2251n2§ 1 T c c
V<—-tan—([2—sin“"=-—2 5o = —tan — cos — | cos =+
3 2 2 tan? I T + tan 1 3 2 2 2
tan? i tan? I sin 7 cos 3 sin? 5 sin ¢sin 5 sin § 1 . cos™5¢ —cosFcos s
= = = —gsinc C
2 ¢ 2T _ c T _ c T _ c T
an” 7 + tan® 7 3(1 COSQCOSZ) 6(1 COSZCOSQ) 6 1 —cos 5 cos 3

O

REMARK 1.2.1. In the case when a = b = ¢ the connection between the parameters ¢ and T is

. T . c . 3c . c . e 3—tan2§
an — = tan an —tan - = tan® —4 | ————4
1 A\ Ry 1\ T—3tan’ ¢

To determine the parameter ¢ we introduce the notion x = tan®(c/4) and 6 = tan®(7/4). Now
we get the equation of order three
0=a"—-32"-30v+0=(z—1)° =320+ 1)+ (0 + 1),
and if we set y = x — 1 then the equality
0=y®>—3y(@+1)—2(0+1).
Using Cardano’s formula finally we get that
Y- 2008(%;0—4%).

COS 1

Hence we have .
c 4z T
1—cos—_ e 2005(12+3)+cos4

1+cos§ 4 Cosi
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implying that
c -1 ¢ dcos? (THT) 1
COS 5 = s — i and  sin® = = ( 6+Z
2 2cos ™ 2 4 cos? (TG%)
Substituting these values into the formula (17) we get the inequality of Proposition 1.2.1 showing
that our result in the case of p = 3 generalizes Prop. 1.2.1.

Assume now that the simplicial polyhedron P, starshaped with respect to the origin has f
faces and is inscribed in the unit sphere. Let ¢;,...,cs be the arc-lengths of the edges of the
faces Fi,..., Fy corresponding to their maximal central angles, respectively. Denote by 7; the
spherical area of the spherical triangle corresponding to the face F; for all 7. We note that for
a spherical triangle which has edges a, b, ¢, the inequalities 0 < a < b < ¢ < 7/2 as well as the
inequality 7 < ¢ holds. In fact, for fixed 7 the least value of the maximal edge length is attained
at a regular triangle. If ¢ < 7/2 then we have

T c 3c c c tan 3¢ ;- +tan § c
tan— = | tan-4/tan —tan- | = | tan—-{/1 - —+—4 < tan —,

4 4 4 4 4 tanc 4

and if ¢ = 7/2 then 7 = 87/4 = 7/2 proving our statement.
Observe that the function v(7,¢) is concave in the parameter domain D := {0 < 7 < 7/2,7 <

¢ < min{f(r),2sin"* \/2/3}} with certain concave (in 7) function f() defined by the zeros of
the Hessian; and non-concave in the domain D' = {0 < 7 < w, f(7) < ¢ < 2sin™4/2/3} =
{0 <7 <c<7/2}\ D, where f(w) = 2sin~'/2/3. (The corresponding calculations can be
checked by any symbolic software. The precise value of w is approximately w =~ 0.697715.)

THEOREM 1.2.1. [13| Assume that 0 < 7; < 7/2 holds for alli. Fori=1,..., f" we require the
inequalities 0 < 7; < ¢; < min{f(r;),2sin""\/2/3} and for all j with j > f’ the inequalities
f
0 < f(15) < ¢j < 2sin~ ' /2/3, respectively. Let denote ¢/ =7 Z i, €= fjf, Z ;ﬂ f(r) and
f
= > 7, respectively. Then we have
i=f+1

dm—f'c'—(f—f")c* 2 [ +H(f=f)e
f ' f/cl + (f o fl)c* COS <T> — COS N COS <T>
(18)  w(P) < =sin :

6 / 1 — cos 4f CoS <_f/c/+(2f;f’)c*>

PROOF. The volume of P is bounded above by the quantity

! cos % — cos TZ cos
E (T3, ¢) = E sin ¢; —

- — COS 5 COs
P

Using the concavity of the function v(7,¢) on the domain D and the fact that the function
v(T, ) for fixed 7 is a monotone decreasing function of ¢ on the domain D', we get the following
upper bound for v(P):

fofm—r NP
WP = ( 7 ’)* 6 (f—f” )

Since for i = "+ 1,..., f the points (7;, f(7;)) are in the convex domain D then the point

<fz—'f,, c*) also in D. Applying again the concavity property of the function v(7,c), we get the
inequality

< Lo (5, LU= 1)
m=g (55
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dm—f'c'—(f—f")c* 2 e+ (f=f)e
f . <f10/+(f_f/)c*) COS (T) —COSTCOS (T)
— sSin

0 1 [rey=fe ’
f 1 — cos ﬁ CoSs (T)

as we stated. O

REMARK 1.2.2. When " = f we have the following formula:

2 ) _ 2m 4
~ 6 1—005%00527” ’

where ¢ = % > ¢;. In this case the upper bound is sharp if all face-triangles are obtuse isosceles
i=1
ones with the same area and maximal edge lengths.

The condition of sharpness implies that the unit sphere tiling by the congruent copies of such
isosceles spherical triangles which equal sides are less than or equal to the third one. Observe
that a polyhedron corresponding to such a tiling could not be convex. This motivates the
following problem: Give such values T and c that the isosceles spherical triangle with area T
and unique mazximal edge length ¢ can be generated by a tiling of the unit sphere. We note that
simplicial regular polyhedra satisfy this property.

EXAMPLE 1.2.1. We get a non-trivial example for this question, if we consider a rhombic
dodecahedron with its centroid as the center of the sphere and we project from the center its
vertices to the sphere (see the left figure in Fig.1.3). (Note that there is no circumscribed sphere
about a rhombic dodecahedron hence the projection is necessary.) We get a tiling of the sphere
containing congruent spherical quadrangles. One of these quadrangles has four congruent sides
and two diagonals, respectively. The length of the longer diagonal is ¢ = 7/2.

FIGURE 1.3. The star-shaped polyhedron P (on left), the original rhombic do-
decahedron and the convex convex hull @ of P (on right).

We can dissect these quadrangles at these longer diagonals into two congruent spherical trian-
gles. Denote by P the polyhedron defined by those plane triangles as facets which correspond
to these spherical triangles, respectively. The angles and sides have the respective measures
v =21/3,a = /4,3 = 7/4 and ¢ = 7/2,a = sin"' \/2/3,b = sin~! /2/3. Hence the area
of this triangle 27/3 + 7/2 + 7/2 — © = 7/6 = 47w /24 as follows from the fact, that the 24
congruent copies of it, tile the whole sphere. Observe that P is not convex since the distance
of the opposite vertices of two triangles with common base (in Euclidean measure) (2/v/3) is
less than that of the Euclidean length of the common base (1/2). Since we have only one type
of triangles for which f(m) = f(7/6) =~ f(0,52360) > 7/2 = ¢; we can apply (19) with f = 24,
' = m/2, hence

T o_ sl
\/écos 6 — COS 15

V2 — cos 15

This quantity is an upper bound for the volume of such star-shaped polyhedra which are
inscribed into the unit sphere, have 24 faces with spherical area 7; with the assumption that
f(m) > m/2 and with maximal edge length 7/2. We get such polyhedra if we change a little

v(P) =4
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bit the position of those vertices of P which denoted by white circles on Fig. 1.3 (For 7 (by
Mathematica 10) we got the assumption 7/2 > 7 > tan~' (2v/5 — 3v2) /(10 + TV2) =~ 7 =
0.427922.)

Denote by @ the convex hull of P (see the right figure on Fig. fig:starshaped.). Then ¢; =
2sin~!\/1/3 ~ 1,23096 < /2 < f(r;) and we can apply again (19). Hence we get that

8\/6003 (— —sin™! \/g) — 2003%

3 V3 = cos £V/2 .

() has maximal volume of the class of such polyhedra which can be get from @) by a little change
of the position of the vertices denoted by black circles, respectively.

EXAMPLE 1.2.2. Assume that f' = f = 12 and ¢ = 2sin~*(1/2/3). Then the upper bound is

22\/5005 (%—sin_l( 2/3)) —%CQS% 8
3 1— \/3 cos & 3v3’
which is the volume of the cube inscribed into the unit sphere. Hence we got a new proof for
that case of Theorem 3.3 of [81] when we restrict our examination to those triangulations in
which there is no face-triangle having edge length greater than the edge length of a regular
tetrahedron inscribed in the unit sphere.

v(Q) =

We now apply our inequality to prove the general form of Theorem 3.3 in [81] in which the
additional assumption "the tetrahedra are in dual position" has been omitted.

THEOREM 1.2.2. [13, 81| Consider two regular tetrahedra inscribed in the unit sphere. The
mazximal volume of the convex hull P of the eight vertices is the volume of the cube C' inscribed
in to unit sphere, so

8

3V3

PROOF. We have to consider only that case which is not considered in [81]. Hence we assume
that in the spherical regular triangles of the spherical tiling is corresponding to the first regular
tetrahedron there are 2,1, 1,0 vertices of the second tetrahedron, respectively. The five points
(the three vertices of the first spherical triangle and the two vertices of the second tetrahedron
having in this triangle) having in the first closed spherical triangle form a triangular dissection
of it into five other spherical triangle. Unfortunately, this dissection contains also such triangles
which maximal edge lengths greater than that of the edge length of the regular spherical triangle
containing them. On the other hand these triangles belong to the parameter domain D’ (defined

in Theorem 1.2.1) because f(7/5) = 1.83487 < 2sin* \/g Hence the upper bound function
for fixed 7 is locally a decreasing function of c. So we can assume that all of these triangles have

v(C) =

the same maximal spherical lengths, which is equal to 2sin™! \/g Thus we get the following
upper bound for the volume:

5
v(P)<w <7r, 2sin~! \/%) + 6v (7?/3,25in1 \/;> + ;:1 v (Ti,Qsinl \/;> —_

Zf

— COS

5

where 0 < 7; and > 7; = 7. But with these conditions we have
i=1

— COS

53 sin 3 - < 1.97836 < 2
—~ /3
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implying that

as we stated. O

1.3. On the hyperbolic concept of volume

Our observation on the volume of hyperbolic orthoscemes concerns a deficiency in the two
hundred years literature. Using hyperbolic orthogonal coordinates we discovered a formula
on the volume of the orthosceme by its edge lengths. Of course it also manifests in a non-
elementary integral however completes to a complete triplet of the collection of integrals derived
by Lobachevsky and Bolyai, respectively. (The integral of Lobachevsky based on the dihedral
angles of the orthosceme and the formulas of Bolyai used dihedral angles and edge lengths in a
mixed form.) In this section we refer to the results of the paper [14].

In hyperbolic geometry to get the volume of a polyhedron has only one possibility. We have
to transform the problem to a problem to calculate an appropriate integral. For this purpose
we need methods to allowed the points with coordinates. We now give volume-integrals with
respect to some important system of coordinates. We use that distance parameter k& which
introduced by J.Bolyai to express the curvature K = ;—21 of the hyperbolic space.

Consider in H" a parasphere of dimension n — 1 and its bundle of rays of parallel lines. Let &,
be the last coordinate axis, one of these rays, the origin will be the intersection of this line with
the parasphere. The further (n —1)-"axes" are pairwise orthogonal paracycles. The coordinates
of P in this system are (&1,&s,- - ,én)T, where the last coordinate is the distance of P and
the parasphere, while the further coordinates are the coordinates of the orthogonal projection
T with respect to the Cartesian coordinate system in E"~! given by the above mentioned
parasphere.

We can correspond to P a point p in R” by Cartesian coordinates:

T _tn & _én T
(:L‘17x2a"'7x7L) = (6 ]?glﬂe 1?627”"6 g&n—la&n)

By definition let the volume of a Jordan measurable set D in H" be

v(D) = v, / dzy - -dzy,
D*
where D* in R” is the image of the domain D lying in H" (by the above mapping) and v, is a
constant which we will choose later. Our first volume formula is:

U(D):v"/e " 1)kd€1 dgna
D
depending on the paracycle coordinates of the points of D, in the given system. Let now the
domain D = [0, a;] X - - x [0, a,,_1] be a parasphere sector of parallel segments of length a,, based
on a coordinate brick of the corresponding parasphere. Then we get by successive integration

al an

C(n_1)én kv, C(n-1)en
o) =[] [ 0Rag | g = O [ ]Hal
0 0
kv
— n —(n 1—"
_n—l[l ' Hal
If a,, tends to infinity and a; = 1 for every i =1, - ,(n 1), then the volume is equal to "“’”

Note that J.Bolyai and N.I.Lobachevski used the value v, = 1 only for n = 2,3 so in the1r
calculations the volume is independent of the dimension but depends on the constant k& which
determine the curvature of the space. To follow them we will determine the constant v,, such
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that for every fixed k£ the measure of a thin layer divided by its height tends to the measure of
the limit figure of lower dimension. Now the limit:
n—1

. v(D) kv, . [1—e (%]
Jim, == =77 Jim, 1] o]l
n—1
would be equal to v,_1 [] a; showing that 1 =v; =vy = ... =v, =....

=1
Thus v, = 1 as indicatzed earlier. On the other hand if for a fixed n the number k£ tends to
infinity the volume of a body tends to the Euclidean volume of the corresponding Euclidean
body. In every dimension n we also have a k for which the corresponding hyperbolic n-space
contains a natural body with unit volume, if k equal to n—1 then the volume of the paraspheric
sector based on a unit cube of volume 1 is also 1.

Finally, with respect to paracycle coordinate system our volume function by definition will be

v(D) = / e IR gy - de
D
Give now an orthogonal system 7 of axes associated to the paracycle coordinate system as
follows. Let the new half-axes x1,---,x,_1 be the tangent half-lines of the former paracycles
at their common origin. (We can see the situation in Fig. 1.4) To determine the new coor-
dinates of the point P we project P orthogonally to the hyperplane spanned by the axes
T1,%a, " ,Tp_2,Ty. The projection will be P, ;. Then we project orthogonally P,_; to the
(n — 2)-space is spanned by the axes xy,zy,--- ,%,_3,%,. The new point is P, 5. Now the
(n — 1)™ coordinate is the distance of P and P,_;, the (n — 2)!" coordinate is the distance of
P, and P, 5 and so on .... In the last step we get the n'” coordinate which is the distance
of the point P; from the origin O. Since the connection between the distance 2d of two points
of a paracycle and the length of the connecting paracycle arc 2s is s = ksinh %. Thus the dis-

FIGURE 1.4. Coordinate system based on orthogonal axes

tance z of the respective halving points can be calculated as: z = k In cosh %. Now a non-trivial
but elementary calculation shows (using also the hyperbolic Pythagorean theorem) that the
connection between the coordinates with respect to the two systems of coordinates is:

&n . Tn—1
&1 = ek ksinh 7;{:
&n
_ +lncosh
£n72 = ek k‘
§_
51 — n 4 cosh Z2=L 4 ... 41n cosh £2 k ksmh ~1
i) T
T, = & -+k:1ncosh?+klncosh?.
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From this we get a new connection. Correspond the point (£1,&,---,&,)T € H® to the point
(uy,- -+ ,u,)T € R™ as in our first calculation. The corresponding system of equations is:
T2 Tp-1 ., 11
u; = kcosh—---cosh sinh —
! k k k
.1 Tp—1
Un,—1 = ksinh 2
x Ty
Uy = Ty — klncosh?1 — ... — Kklncosh !

The Jacobian determinant of this transformation is

T To\? Tp_1\" !
h3) (coh ) o (cosh =)
<cos k cos f cos i ,

implying our second formula on the volume:

v(D) = / <COSh x’;{;l)nl e (cosh %)2 <cosh %) dry - - - day,.
D

The orthoscheme is a special tetrahedron. Two edges a and b are orthogonal to each other and
a third one ¢ (skew to a) is orthogonal to the plane of a and b (and intersects b). Let = the
third edge of the triangle with edges a and b, y the third edge of the triangle of b and ¢ and z
the remaining side of the orthosceme. The dihedral angle at a is «, the angle opposite to b of
the triangle with edges a and b is 5 and the angle opposite to the edge ¢ in the triangle with
edges c and z is v, respectively. J.Bolyai gave two formulas on the volume (k = 1) (see in [29],

[143]):
tan usinh u
v 2tan 3 h2 h2 du,
) (=) /e
and
1 h sinh a cos
vzé/ st h(b \/tanh? b+sinh? a cos? d¢
J 2\/tanhzb+sinh2acosz gbln cosh a cos p+4/ tanh® b+sinh” a cos? ¢

cosh a cos ¢p— \/tanh2 b+sinh? a cos? ¢

For the so-called asymptotic orthoscheme for which the ideal vertex is the common endpoint of
the edges a, x and z it gives the formulas:

c «

sin 2« U 1 cos ¢
v = 5 duandv== [ In
4 cosh” u — cos? « 2 V/cos? ¢ — tanh®b
0

0

respectively.

The formula of Lobachevsky can be get as follows. Let the essential (non-rectangular) dihedral
angles of an orthoscheme be «, 5 and . They are admitted to the edges a, z and ¢, respectively.
Introduce the parameter § by the equalities:

tanh ¢ := tanh a tan o = tanh ctan~y,
and the Milnor’s form of the Lobachevsky-function (see in [122])

T

Ax) = —/ln |2 sin &|dE,
0
respectively. Then the volume v of the orthoscheme in the case of k =1 is

% Ma+d)~Ma—d)-A(5-8+8)+A(5-6-0)+
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+A(7+5)—A(7—5)+2A(%—5)].

As an application of our general formulas we determine the volume of the orthosceme as the
function of its edge-lengthes a, b and c¢. We note that the formulas
1. sin(a+9) 1. sin(y+9) 1. sin(§ —B+9)
“= §lnsin(oz—5)7 ‘= §lnsin('y—5)’ T §1nsin(E —B-=90)
2

transform the dihedral angles into the edge-lengthes. This observation gives another possibility
to get our formula from the classical ones but the corresponding calculation seems to be very
uncomfortable.
The following lemma in the three-dimensional case can be proved easily.

LEMMA 1.3.1. [14] We have two k-dimensional hyperbolic subspaces Hy and Hj, respectively
for which they intersection has dimension k — 1. Assume that the points P € Hy, P' € H; and
P" e Hi, N Hj, hold the relations PP' L H; and P'P" 1 H;, N Hy, respectively. Then the angle
_, tanh(PP’)

sinh P’P"’

o = tan

15 independent from the position of P in Hy.

z :X2

FIGURE 1.5. Orthoscheme and orthogonal coordinates

For our purpose we have to determine the integral
a [ o) /Y(zy)

v(D) = /(Cosh 2)%(coshy)dzdydx = / / / (cosh z)?(coshy)dz | dy| d.
D o Lo 0
which is based on hyperbolic orthogonal coordinates (by k& = 1). In this formula the functions
¢(z) and 9 (x,y) can be determined as follows. Consider the orthoscheme in Figure 1.5. In the
rectangular triangle App,p, we know that the tangent of the angle P,OP,/ is:
tanhb  tanh ®(x)

tan PLOP,/ = —
an K0P sinh a sinh x

Hence

B tanh b

h
tanh ®(z) = R sinhz, and 0 <y < ¢(z) = tanh—! (tan b

sinh a

S1n a

sinh x) =: \.
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Consider now the triangle Ap, p,p. The line O(x, y, 0) intersects that point @) for which |P,Q| =
b, and let denote the point of the segment PP, above @ be )'. Thus we get the equality

tanh ¢
tanh ¢ = sinh ¥'.
sinh b
Take into consideration again the equality
tanh
tanh b = — Y sinh a,
sinh «

and apply the hyperbolic Pythagorean theorem. From the triangle Apgg we get

[ sinh (cosh™ (cosh z cosh y))
sinh (cosh_1 (cosh acosht))

tanh ¥ (z,y) = tanh ¢

_ tz‘mh € inh \/Cosh2 zcosh?y — 1 ] _ tz‘mh € inh \/sinh2 y + sinh®  cosh? y _
sinh b \/ cosh? a cosh? ¥/ — 1] sinh b \/ sinh? ¥ + sinh? a cosh? ¥/
_ tz‘mh € nlh ) \/1 + sinh? z coth? _ tz‘mh € i "
sinh b V/1+sinh®acoth?y  sinhb

since
tanh?®’  tanhy

sinh a sinh

tan QO P,/ =
Hence the assumption

tanh ¢

< » < — -1 . _.
0 <z <¥¢(x,y) =tanh (sinhb sinh y) i

holds if we fix the first two variables, but U(z,y) does not depend on z, as it can be expected
in Lemma 1.3.1. Thus the desired volume is:

a A [ a A
1 1 a
v:///(coshz)z(coshy)dzdydx://5 [z+§(sinh2z)} (cosh y)dydz.
0
00 0 0 0

. ”r in 2p . n
For ®(x) and ¥(x,y) we apply the identities tanh p = %ﬁ = EQZJ&, ie.p=1ln %. We

1 sinh b+tanh csinh y 1 sinh a+tanh bsinh x
get M= ln sinh b—tanh csinh y’ and A = ln sinh a—tanh bsinh x Hence

a A

1 1 sinh b + tanh ¢ sinh y hudyt
YTy nsinhb—tabnhcsinhyCOS vy

0 0
A

) sinh b 4 tanh c¢sinh y
* / sinh <1n sinh b — tanh csinh y) coshydy | d

0

To determine the second integral, we apply sinhu = £<=“=. Now

2

A
) sinh b + tanh csinh y
hil hydy =
/ o ( " Sinh b — tanh esinh y) oSy

A
1 / sinh b 4 tanh ¢sinh y sinh b — tanh c¢sinh y hud
_ cOS =
2 sinh b — tanh ¢sinh y ~ sinh b + tanh csinh Y vy
0
h h / inh
sinh y cosh y sinh 2y
=2 / . dy =2 / dy =
sinh b anh ¢ 2 sinh b anh ¢ anh ¢
tanh ¢ tsmhb Slnh 2tanhc - tsinhb cosh 2y + tsinhb
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~ tanhc tanhc  simhb T sinhb
sinh b sinhb  tanhc tanh c sinh b sinh b
= — In {2 — h 2\ In {2 .
tanh c ( tanhc  sinhb * sinhb) - tanhc ( tanh c)
From the above expression of A\ = ®(x) we can calculate cosh 2\ and get:
<sinh a + tanhbsinhx  sinha — tanh bsinh x)

) ) A
_ sinhb {ln (2 sinh b B tanh ¢ ho tanhc)} _

1
cosh 2\ = —
2

Thus the second integral (denoted by II) is:

sinh b tanh? ¢sinh? z

tanhc (1 ~ cosh? b(sinh? @ — tanh? bsinh? x))
The first integral to v can be integrated by parts as follows:

A
/ 1 sinh b + tanh csinh y hudu — 3 11 sinh b + tanh csinhy '\ . b A
"\ sinh b — tanh esinh Y COSHYEY = "\ sinh b — tanh csinh Y Sy 0

sinh @ — tanh bsinh x + sinh @ + tanh b sinh «

II:=—

A
tanh c cosh y[(sinh b — tanh ¢sinh y) + (sinh b + tanh ¢sinh y)]
sinh ydy

0

sinh? b — tanh? csinh?y

A
sinh b + tanh csinh A / 2 tanh csinh b cosh y sinh y }
o,

= ¢ sinh A1
S A Sinh b — tanh csinh A sinh? b — tanh? ¢ cosh? y + tanh? ¢
0
. sinh b + tanh csinh A sinh b .19 9 9 9
= {smh Aln SihD — tanhesinh )\ T tanhe [ln(smh b — tanh” c cosh” y 4 tanh

sinh b + tanh c¢sinh A n sinh b
sinh b — tanh esinh A~ tanhec

= {sinh Aln (In(sinh”b — tanh® esinh® \) — In(sinh® b)) } :

Since
tanh? bsinh? z

sinh? A = — 5 55
sinh” ¢ — tanh” b sinh” «

the first integral is:

B sinh b + tanh ¢sinh A n sinh b ] tanh? ¢ sinh?
sin n n — —
sinhb — tanhcsinh A~ tanhe cosh? b(sinh® @ — tanh® bsinh? z)
_ <inh \ sinh b + tanh c¢sinh A I

sinh b — tanh csinh A
The sum of the two parts is:

sinh b + tanh ¢sinh A

sinh b — tanh c¢sinh A\

A change of integration variable will have some benefits x +— A\, a — b, dz = %d)\. From
A = tanh™" (2220 inh 7)) follows

. .1 (tanh Asinha tanh Asinh a + v/tanh? Asinh? @ + tanh? b
x = sinh —— | =

sinh A\ In

sinh b tanh b

and we get in a straightforward way

tanh A\ sinh a sinh b + tanh ¢sinh A
S In | — : dA
4 J \/ tanh? b cosh? A + sinh? a sinh? \ sinh b — tanh ¢sinh A

proving our main theorem as follows:
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THEOREM 1.3.1. [14] Let the edges of an orthoscheme be a,b,c, respectively, where aLb and
(a,b)Le. If k =1 then its volume is:

b
1 / tanh )\ sinh a 1 (sinh b + tanh c¢sinh )\) )
V== n|( — : )
4 / \/ tanh? b cosh? A + sinh? a sinh? \ sinh b — tanh ¢sinh A

COROLLARY 1.3.1. This formula can be simplified in the case of asymptotic orthoschemes. If

the edge-length a tends to infinity, the function tanh Asinha tends to #h/\ showing
\/tath2 b cosh? A+sinh? a sinh? A cos

that the volume of the orthosceme with one ideal vertex is

b
B 1 1 | sinh b + tanh e¢sinh A QI
YT cosh \ t sinh b — tanh ¢sinh \ ’
0

If the length of the edge ¢ also grows to infinity, then this formula simplifies to:
b
1 1 sinh b + sinh A
= - 1 dA
! 4/cosh)\ n(sinhb—sinh)\) ’
0
which is the volume of an orthosceme with two ideal vertices. If now we reflect this one in the
face containing the edges b and ¢ then we get a tetrahedron with three ideal vertices. If then we

reflect the previous tetrahedron in the face containing the edges b and a we get another one with
four ideal vertices. The volume of the last one is

b
1 sinh b + sinh A
= 1 dA.
! /cosh)\ n(sinhb—sinh)\)
0
This tetrahedron has two edges (a and c¢) which are skew and orthogonal to each other (its
common normal transversal is b). Since the reflection in the line of b is a symmetry of this ideal
tetrahedron, we can see that there are two types of its dihedral angles, two opposite (at the edges

a and c) are equal to each other, ( say A); and the other four ones are also equal to each other
( say B). Then we have A+ 2B = m, and its volume by Milnor’s formula is equal to

' = A(r — 2B) + 2A(B) = A(2B) + 2A(B) = 4A(B) + 2A (B + g) .

(We have exploited that the Lobachevsky function is odd, of period 7, and satisfies the identity
A(2B) = 2A(B) +2A(B + 3).) Then we get the following connection between the two integrals:

B+% B

b
1 inh b + sinh
O:/, 1($Hb+$nA)dx+2/ﬁmpgn@ﬁ+4/ﬁ¢mma@.
0 0

cosh A n sinh b — sinh A

If we substitute into our formula the first-order terms of the Taylor series of the functions in
the integrand, respectively, we get

b
1 tanh A sinh a sinh b + tanh ¢sinh A
V= - n| — : d\ =
4 / \/ tanh? b cosh? A + sinh? a sinh? \ sinh b — tanh ¢sinh A

b
cA ac A2 abe

b
ZE/L—dA:— Z_d = —.
2] Vb2 +a2X2 b 202 | V1 6
0 0

This shows that it gives back the Euclidean volume for infinitesimal values.
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CHAPTER 2

Investigations in a classical Minkowski normed space

2.1. Bisectors

The present dissertation refers to bisectors in (finite dimensional normed or) Minkowski spaces,
i.e., to collections of points which have, in each case, the same distance (with respect to the corre-
sponding norm) to two given points z, y of these spaces. Note that bisectors in Minkowski spaces
play an essential role in Discrete and Computational Geometry, mainly in view of constructing
(generalized) Voronoi diagrams, and also for motion planning with respect to translations; see,
e.g., the surveys [19] and [116].

2.1.1. Bisectors and the unit ball. If K is a O-symmetric, bounded, convex body in
the Euclidean n-space E™ (with a fixed origin O) then it defines a norm whose unit ball is
K itself (see [77] or [132]). Such a space is called Minkowski normed space. In fact, the norm
is a continuous function which is considered (in the geometric terminology as in [77|) gauge
function. The metric (the so-called Minkowski metric), the distance of two points, induced by
this norm, is invariant with respect to the translations of the space.

The unit ball is said to be strictly converx if its boundary contains no line segment. A body is
said to be smooth if each point on its boundary has a unique supporting hyperplane. There are
dual notions with respect to the scalar product of the embedding Euclidean space. The dual
body K* of K is

K* ={y|(x,y) < 1forall x € K}

where (-,-) means the inner product of the embedding Euclidean space. It can be shown (see
[41]) that the (convex) unit ball K is strictly convex if and only if its dual body K* is smooth.
We examined in [1] the boundary of the unit ball of the norm and give two theorems sim-
ilar to the characterization of the Euclidean norm investigated by H.Mann, A.C.Woods and
P.M.Gruber in [111], [147], [74], [75] and [76], respectively. H.Mann proved that a Minkowskian
normed space is Euclidean one (so its unit ball is an ellipsoid) if and only if all Leibnizian halfs-
paces (containing those points of the space which are closer to the origin than to another point
x) are convex. A.C.Woods proved the analogous statement for such a distance function whose
unit ball is bounded but is not necessarily centrally symmetric or convex. P.M Gruber extended
the theorem for distance functions whose unit ball is a ray set. P.M. Gruber generalized the
Woods’ theorem in another way, too. He showed (see Satz.5 in [74]) that a bounded distance
function gives a Euclidean norm if and only if there is a subset 7" of the (n—1)-dimensional unit
sphere whose relative interior (with respect to the sphere) is not empty, having the property:
each of the pairs of points {0,x} where x € T the corresponding Leibnizian halfspace is convex.
From the convexity of the Leibnizian halfspaces follows that the collection of all points of the
space whose distances from two distinct points are equal are hyperplanes. We call such a set
the bisector of the considered points. Thus from Mann’s theorem follows a theorem stated first
explicitly by M.M.Day in [42]:

THEOREM 2.1.1 (|42]). All of the bisectors, with respect to the Minkowski norm defined by the
body K, are hyperplanes if and only if K is an ellipsoid.

Day pointed out that this result is an immediate Corollary of a result of James [92].

We note that Day’s theorem is also a consequence of a third (ellipsoid characterization) theorem
proved by P.M.Gruber ([75] Satz.3) which says that if K is a convex body in E¢ (d > 3), and
the intersection of the boundaries of the bodies K} and K is contained in a hyperplane for all

21
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translates K of Ky with K # K; then K is an ellipsoid. P.R.Goodey gave a little bit more
general form of this theorem in ([67] and [68]), showing that if K5 is another convex body of
the space as K, and the intersection of the boundaries of the bodies K/ and K is contained
in a hyperplane for all translates K} of K, with K} # K, then K; and K, are homothetic
ellipsoids.

The second question concerning Day’s theorem also was posed by H.Mann in [111]. He proved
that if for all lattices of the embedding space the closed Dirichlet-Voronoi cell of a lattice point
(determined by the Minkowski norm) is convex (in the usual Euclidean sense) then the norm
is Euclidean one, too. This theorem was also extended by P.M.Gruber for a distance function
with bounded star-shaped unit ball.

It is possible that the interior (with respect to the Minkowski metric) of a Dirichlet-Voronoi
cell is convex while the closed one is not, thus we have to distinguish the open and the closed
Dirichlet-Voronoi cells from each other. The "walls" such a closed cell may be an n-dimensional
set in the Euclidean n-space. It is also possible that the bisector of {0,z} is an n-dimensional
part of the space. This is the case, e.g., if the unit ball is a square of the plane and the vector
x is parallel to one of the edges of this square.

DEFINITION 2.1.1. The bisector of the segment, corresponding to the position vector x, is

Hy:={yeE" | |yllx=Ily—=lx}
We denote by H,o and H, . the Leibnizian halfspaces to the segments [0, x| and [x,0], respec-

tively, as the set of those points which are closer (with respect to the norm || - ||k ) to the first
end than to the second one.

It is clear that if clxS denotes the closure of the set S with respect to the norm || - || x we have

Ha: = CIKHx,O N CIKnyx.
Now, we prove some properties of the Leibnizian halfspaces and the bisectors.

LEMMA 2.1.1 ([1]). With respect to the Euclidean metric topology of the embedding n-space the
following properties hold:

(1) H, is a closed, connected set which is conver in the direction of the vector z, i.e. if
a line parallel to x intersects H, in two distinct points, then the whole segment with
these endpoints also belongs to H,.

(2) Hyo and H,, are open, connected sets separated by the bisector H,.

PROOF. From the continuity of the norm function it is easy to prove that the sets
Hapo:={y € E"|[lyllx <llz —yllx}

Hyo:={y € E"|lyllx > llz = yllx}

are open with respect to the Euclidean metric topology, too. This means that H, is closed.
Using the triangle inequality (by the convexity of K) it is easy to see that H, ¢ is a star-shaped
set. This means that it is connected, too.
Prove now that H, is convex in the direction of x. Let y and z be two points of H, for which
y — z parallel to = and ||y||x > ||2]|x. Consider the points u =y — 2z, v =y — 2+, 0 and z. If
lyllk < ||z]|x (see Figure 2.1) then we have

lu =yl = llv =yl = llz = zllx = ll2llx > [lyllx =10 = yllx =l = yllx.
Thus w,v are on the boundary of the Minkowski ball with center y and radius ||z||x, while
the points 0 and x are in the interior of this ball. This means that the points u, v, 0,z in their
line must have the order [u, 0, z,v]. It is impossible because v — u = x. From this we get that
lyllx = |||k Let now E, F, E', F" be the ends of the position vectors y, z, y — x and z — z,
respectively.

These points are on the boundary of the K-ball with center 0 and radius ||y||x which means
that the segment conv{E, F, E’, F'} belongs to the boundary of this ball. (At least three of these
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I F E®) F(z)
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u 1% X

FIGURE 2.1. The proof of directional convexity

points are distinct.) So the intersection of the considered line with the bisector H, contains the
segment EF as we stated.

Since the intersection of a line [ parallel to x with a closed K-ball is a compact segment, if we
consider another K-ball K intersecting the line [, the following non-empty set

is also compact. The complement of this set on the line [ contains two open half lines [ and [
satisfying the properties that the points of K separate the points of [_ from the right endpoint
of (K7 + z) Nl and the points of K; + x separate the points of [, from the left endpoint of
K, N, respectively. It is easy to see that the points of [_ belong to H,, and the points of [
belong to H, ., respectively. So by the continuity of the Minkowski norm, every line parallel
to « can be divided into three non-empty parts: a compact segment (may be degenerated to a
point) belongs to H, and two open halflines belong to H, o and H, ,, respectively.

Consider now a hyperplane orthogonal to the vector x and take the orthogonal projection of
H, into this (n — 1)-dimensional Euclidean space. If we assume that H, can be decomposed
into the union of two disjoint closed subsets of it, then the images of these components (by
the convexity in the direction of x and the above trisection of any projection line) are disjoint
closed subsets whose union is this hyperplane. Using now the connectivity of the hyperplane
we get that this decomposition is trivial and in fact H, is connected, too.

The last statement of this lemma is the separating property of the bisector. Consider an ele-
mentary curve -y which connects a point y of H,, with a point z of H, ,. Since H,, and H, ,
are open with respect to the Euclidean topology of the space, the sets H, oM~y and H,, N~
are open in the induced topology of the connected curve . However, these sets are non-empty
and disjoint hence there is (at least one) point of v which lies in the complement of H, o U H, .,
i.e. in H,. So for every pairs of such points y, z and their connecting curve ~ there is a point
of v N H, which separates the endpoints of ~. O

The results of the following two lemmas seem to be new. The first one is an important conse-
quence of the statements of Lemma 2.1.1.

LEMMA 2.1.2 ([1]). The boundary of K does not contain any line segment parallel to x if and
only if for each line | parallel to x the set

H,.Nl

contains exactly one point.

PROOF. Assume indirectly that the boundary of K, denoted by bd K, contains a non-degenerate
segment s parallel to = (see Figure 2.2).For the line [ containing s we have bhd K N[l = s
and (bd K + ) Nl = s + x. This means that for a sufficiently large real number r the set
bd(rK) Nbd(rK) + x contains the non-degenerate segment rs N rs + x. This proves one direc-
tion of the lemma.

Conversely, if H, N[ contains the points y and z then as we saw in the proof of the convexity
part of the proof of Lemma 2.1.1 (to Figure 2.1), the following equalities hold

Iyl = 12l = lly — 2l = [z — 2,
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FIGURE 2.2. Maximal segment s’ in H,.

which means again that the set H, N[ contains at least three distinct points of the boundary of
the K-ball with center 0 and radius ||y||x. This means that the boundary of this ball contains
a segment parallel to z which proves our Lemma 2.1.1. [l

Our last lemma formulates a topological property of the bisector. We shall use the natural
notion of mazimal segment s' belonging to H, parallel to x and the left or right end of s'. (Left
end of s’ is from which any other point of s’ can be get by adding a positive multiples of x.) It
is possible that a left end of a maximal segment belonging to H, is an inner point of the closed
set clgn H,( meaning that there exists an open Euclidean n-ball G around this left end which
does not intersect the other Leibnitzian halfspace H, .. We prove that in this case the bisector
does not a topological hyperplane.

LEMMA 2.1.3 ([1]). Let y € H, be a left end of a mazimal segment s’ belonging to H, parallel
to x and having non-zero length. If there is an n-dimensional open Euclidean ball G with center
y for which H, . N G is empty then H, does not homeomorphic to a hyperplane.

Before the proof of this lemma we recall the definition of topological manifold with relative
boundary points. An (n — 1)-dimensional topological manifold is a separable topological space
having a countable base and holds the property that each of its points has a neighbourhood
homeomorphic either to an open subset of E"~! or to a halfspace Ef_’l. We note that this
definition of topological manifold (see e.g. [128]) in our paper may be applied well. A relative
boundary point of an (n — 1)-manifold, lies on a bounding (n — 2)-manifold of the original one.
We note that the concept of boundary point of such a manifold is a topological invariant and
a set homeomorphic to an (n — 1)-dimensional hyperplane is a topological manifold without
boundary points.

PROOF. (Lemma 2.1.3) Consider the boundary bdgn clgn H, , of closed set clgn H, , (relative
to the topology of £™). (In general this set is a proper subset of bdgr H, ,.) By the assumption
for y we see that this set does not contain y meaning that H, contains an (n — 1)-dimensional
(separation) set bdgn clgn H, , and at least one maximal segment s’ does not belong to this
set. Since the set bdgn clgn H, , is closed there is a maximal non-degenerated subsegment s”
of ¢ (without right endpoint) which disjoint from bdgn clgn H, .. If the point z is in H, N G’
where G’ is a smaller as G closed ball with center y then it has the same property as y, namely
it has also a non-trivial segment in H, \ clgn H, ,. All of the segments parallel to 2 connecting
the points of H, NG’ with a corresponding point of bdgn clgn H, , determine a cylinder C' with
generator segments parallel to x. Of course the point y is an endpoint of a generator of this
cylinder. Assuming now that H, is a topological hyperplane C' is a topological manifold, too.
Thus C' is a topological cylinder of dimension (n — 1). If now G” is a smaller open ball as G’
with center y then G” N H, = G” N C proving that y is a relative boundary point of H,. This
is a contradiction because the relative boundary of a topological hyperplane is empty. U

We have the following theorem:
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THEOREM 2.1.2 ([1]). If the unit ball K of a Minkowski normed space is strictly convez then
all bisectors are homeomorphic to a hyperplane.

PROOF. Since the Minkowski metric is invariant under translations we have to prove that if K
is strictly convex then all sets H, are homeomorphic image of a hyperplane.

Assume that the unit ball K is strictly convex. Let x be an arbitrary point of the space. Since K
does not contain a segment on its boundary, from Lemma 2.1.2 we obtain that the intersections
of H, with every lines parallel to x contain exactly one point. Let now H be the (n — 1)-
dimensional subspace of E™ orthogonal to x and incident to the origin O and F' be a map from
this hyperplane H to H, by xz-projection with the definition:

F:H— H,,y— F(y) = H, N {y + tx|t € R}.

From Lemma 2.1.1 it follows that F' is a bijective mapping from H to H, we have to prove
only that it is continuous one, with respect to the Euclidean metric topology. (The continuity
of the inverse map will be a consequence of the fact that H is locally compact set.) Let now y
be any point of H and € > 0 be arbitrary real number. Let z be a point of H for which the line
z + tz intersects the boundary of the K-ball K; with center 0 and radius ||F(y)||x. We have
two parameters say t; and ¢y for which

Iz + tazll e = [ F(y)lx and [z + tox — 2]k = [[F(y) — 2]k = [[F(y)]|x-

Since K convex compact body, the function from H = R™ Y to R giving those half of the
boundary of K which contains the point F(y) (with respect to an orthonormal base containing a
unit vector parallel to ) is continuous. This means that we can choose a number § > 0 that if the
Euclidean distance of z and y is less than ¢ then the distances of the points 2+t .z, z+tyz, F(y)
are less than e, respectively. Since the points z + ¢,x, z + tax belong to H, and H, , or H, ,
and H, o, respectively, we get that the corresponding segment [z + ¢z, z + tox] contains the
point F'(z). So the Euclidean distance of the image points F'(z) and F(y) is also less than e,
meaning that F'is continuous, so it is a homeomorphism. This proves the theorem. 0]

[lustrating the difficulties of the reversal problem now we consider three important examples.

EXAMPLE 2.1.1. Let the unit ball K be the cylinder defined by
K={(v,y,2) € B} -1<x <1, y*+22<1}.

The Leibnizian halfspaces of the vector (2,0,0) are truncated open convex cones

{(z.y,2) € Bl <1, 2—2>y?+22} and {(z,9,2) € E°lz > 1, x> /y? + 22},

respectively. The topological dimension of H, is three showing that it is not homeomorphic to
a 2-plane. O

EXAMPLE 2.1.2. A more interesting fact that the unit sphere defined by the compact surface
7(t,s) = (2 — s%) cos(t)e; + (1 — s?)sin(t)ey + ses, where —1<s<1, and 0 <t < 27,

contains exactly two (opposite) segments with parameter values s = +1. The bisector H, of
the vector x = 4e; is the union of the plane x = 2 and the angular domains defined by the
inequalities {y = 0, z—4 > 2z >z} and {y =0, —x+4 < z < —z}, respectively. This
means that H, belongs to two orthogonal planes of the space. For the proof that this set is
not homeomorphic to a plane we have to see only that a set which is the union of two open
circular disk with a common diameter can not be embedded topologically into a plane. In this
topological space the separation theorem of Jordan does not hold because a closed Jordan
curve in the plane of the first disk intersecting in two points of the common diameter, does
not separate the all space. Hence this space is not homeomorphic an Euclidean plane as we
stated. O
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From this two examples it can be thought that if all
bisectors are topological hyperplanes then K is strictly
convex. The following example shows that it is not true
in general.

ExXAMPLE 2.1.3. K is an O-symmetric convex body
of the three dimensional space bounded by the com-
pact surface r(u,v) defined by the following manner.
Let 7,(v) be a closed parabolic Bezier spline contain-
ing the parabola segments determined by the points
Pi(u) Pg2(u) and the corresponding tangent lines
Pi(u)Piq(u) and Piq(u)Piis(u), respectively, where
i=0,2,4,6,8,10; Po(u) = Pia(u); Poyi(u) = —P;(u) +
FIGURE 2.3. Six section splines of the [0,0,2sin u]” and the coordinates of the first six P;(u)’s

unit ball K. are
1+ecosu 1+ecosu 1 1 —cosu
Py(u) = 0 Pi(u) = CoS U Py(u) = | cosu | Ps3(u) = cos u
sin u sin u sinu sin u
-1 —1 —¢ccosu —1 —ecosu
Py(u) = | ecosu | Ps(u) = | ecosu- 220U | P(y) = 0 ,
sin u sin u sinu

respectively. In Fig. 2.3 we can see the basic points P;(u) (i = 0,...6) and the corresponding
splines for the parameter values u = 0, % and 7, and € = 0.25, respectively.
Here ¢ is a non-negative constant (less or equal to % )—Z<u< 5 is fixed and the parameter of
~u(v) is v, mapping the interval [0, 6) onto the points of v, (v). (The interval [0, 1] mapped on the
first parabola segment the interval [1, 2] on the second one, etc.) Obviously —v,(v) = v_,(3+v).
The boundary of K is defined by the surface
T T
(u,0) = {1u0)] = 5 S S
K is centrally symmetric convex body! with origin O for every 0 < ¢ < % If £ is positive that
it is smooth and contains precisely two opposite segments at the parameter values u = +7.
From the proof of the previous theorem we see that if the direction of x is not [1,0,0]” then
H, homeomorphic to a hyperplane. If now z = (2 + 2¢,0,0)7 then H, also homeomorphic to
a hyperplane, though it contains two 2-dimensional angular domains of the plane y = 0. To
prove this fact we note that the intersection of the two enlarged copies AK and AK + (2 +
2¢,0,0)7 in the case when X\ > 1+ ¢ is a closed Jordan curve, containing the parallel segments
sp =[N0, )T, (2 + 28 — X0, )], so = [(A,0, =N, (2 + 2¢ — X\, 0,—\)T] and two opposite
(with respect to the center P(0)) curves connecting the point pairs {(\,0, )7, (\,0,—\)T},
{(2+2e =X, 0, )T, (2+2e — A, 0,—\)T} where these curves are in the opposite space quarters
{z >14¢,y >0}, {z < 14¢e,y <0}, respectively and if 1 < A\ < 1+ ¢ holds then this opposite
parallel segments degenerate a point pair of the vertical segment [(1,0,1+¢)T, (1,0, -1 —¢)T].
Mustrating this situation we can figure of the most simple case when the parabola segments
defined by the point pairs P, Py and PsPy substituted by the line segments P, P, and Ps P,
respectively and ¢ = 0 and so the boundary of K is a ruled surface defined by two opposite
closed half-circle). (See in Fig. 2.4) O

,0<v <6}

IThe Gauss representation of the surface can be written concretely. The convexity can be checked from it
using the fact that the support planes of the body does not intersects the interior of the body.
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This example shows that a bisector H, is homeomorphic to a hy-
perplane can contain (n — 1)-dimensional cylinder with generators
parallel to x implying the existence of a precisely n — 2-dimensional
cylinder on the boundary of K. We now formulate this observation in
the following theorem.

THEOREM 2.1.3 ([1]). Let n be greater then two. If each of the bisec-
tors is a topological hyperplane, then there is no (n — 1)-dimensional
cylinder on the boundary of K. Furthermore if H, is a topological
hyperplane and C' is a maximal cylinder with generators parallel to x
lying on bd K then it has dimension (n — 2).

FiIGUrRE 2.4. Two in-
tersection curves in the
case when € = 0.

PRrROOF. The first statement of the theorem can be proved easily from the fact that every
segment on the boundary induce an angular domain in the bisector H, as we saw in the proof
of Lemma 2.1.2. Hence If the boundary of K contains an (n — 1)-dimensional cylinder then H,
contains an n-dimensional one.

We now prove the second statement of the theorem. Let C' be any maximal cylinder of bd K
with generators parallel to . This means that the boundary of K in the direction of x contains
C but there is no cylinder C” with the same direction of generators containing C' and belonging
also to bd K having greater dimension as of C'. Let this dimension be k. C' now induces a (k+1)-
dimensional cylinder C* with generators parallel to x in H, containing maximal segments of H,
with the same direction. In Lemma 2.1.3 we showed that if H, is topological hyperplane then all
left end of every maximal segments of H, containing the closed set bdgn clgn H, ,. Obviously,
the analogous statement is true for a right end of a maximal segment in H,, meaning that it is
in bdgn clgn H, o. Thus we have that in this case

H:I: - den ClEn H$70 - den ClEn H:I:,:I:'

(The left ends and right ends of maximal segments evidently belong to bdgn clgn H, o and
bdgn clgn H, ., respectively, and these two sets are also convex in the direction of z as H,.) Let
G be an n-dimensional ball with the radius . The points of G + C* can be divided into three
sets Sp, S and S, of H, o, H, and H, ., respectively. Since the n-dimensional cylinder G + C*
separated by S the dimension of S is at least (n — 1). Since C* C S we have two possibilities.
In the first one S is a cylinder in H, containing C* and having greater dimension as of C*
while in the second case the two dimension is equal. The first possibility implies a cylinder in
the boundary of K containing C' and having dimension greater then of C. This contradicts to
the assumption gave for C' so the dimension of C* is greater or equal to (n — 1). Thus the
dimension of C' is greater or equal to (n — 2). From the first note of this proof we can preclude
the possibility of that this dimension is (n—1) proving the second statement of the theorem. [

2.1.2. Dirichlet-Voronoi cells. We now turn out the problem of Dirichlet-Voronoi cells
on the base of a K-ball above. First of all consider the following interesting example:

EXAMPLE 2.1.4. Let the unit ball is the square [—1,1]% of the plane and consider the lat-
tice generated by the orthogonal vectors (2,0) and (0,16) (see Fig. 2.5.) The interior (open)
Dirichlet-Voronoi cell of the point (0,0) is the open convex hexagon bounded by the lines
x = £1,y = £ £ 2, respectively. The exterior (closed) Dirichlet-Voronoi cell of the origin is
the closure of the union of the interior Dirichlet-Voronoi cell and two concave pentagon with
vertices {(0,2),(1,1),(8,8),(-8,8),(—1,1)} and {(0,—2), (1,-1), (8, =8), (—8,—=8), (—1,—1),
respectively. The "wall" of this cell is a 2-dimensional subset of the plane. In this terminology
the result of H.Mann says that if for all lattices of the space the exterior Dirichlet-Voronoi cells

with respect to the considered Minkowski norm are convex then the unit ball of the norm is an
ellipsoid. O
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Because it is possible that the exterior Dirichlet-Voronoi cell is the
Euclidean closure of the interior cell and they are not convex, we
introduced the normality of the subdivision of the space generated by
a lattice with respect to the examined Minkowski norm.

DEFINITION 2.1.2 ([1]). The Dirichlet- Voronoi cell system of a lattice
L gives a normal subdivision of the embedding Fuclidean space if the
boundary of the cells does not contain n-balls.

The following theorem gives a necessary and sufficient condition that
all of the subdivisions being normal in the space.

THEOREM 2.1.4 ([1]). The Dirichlet-Voronoi cell system of an arbi-
trary lattice L gives a normal subdivision of the embedding Fuclidean
space if and only if all bisectors are topological hyperplanes. Espe-
cially if the unit ball of the Minkowski norm is strictly convexr then
a lattice-like Dirichlet-Voronoi K -subdivision of any point lattice is
normal.

FIGURE 2.5. Open
and closed Dirichlet-
Voronoi cells of a
lattice

PROOF. If in the space there is a lattice which Dirichlet-Voronoi cell does not give a normal
subdivision then there is n-dimensional ball belonging to the boundary of a cell. This means
that there is a bisector which contains an n-dimensional ball.

Conversely, if all lattice-like Dirichlet-Voronoi cell subdivision are normal then all bisector is
a topological hyperplane. In fact, if H, is bisector GG is an arbitrary open Euclidean ball with
radius r and center %az, there is a lattice L for which the common wall of the Dirichlet-Voronoi
cells of the origin and = (which are lattice points) contains the set H, N G. (It is enough to
choose a brick lattice generated by x and certain large vectors from its orthogonal complement.)
Using normality and the fact that the exterior Dirichlet-Voronoi cell is a topological ball we
get that this part of H, is an elementary hypersurface. If now the radius r tends to infinity the
statement is given.

Now the theorem follows from Theorem 2.1.3. O

2.1.3. On the shadow boundary of the unit ball in three-space. We examined in
[2] the connections between the shadow boundaries of the unit ball K and the bisectors of the
Minkowski space. Our conjecture is

CONJECTURE 2.1.1 (|2]). The bisectors are topological hyperplanes if and only if the corre-
sponding shadow boundaries are (n — 2)-dimensional topological spheres.

In [2] we proved this conjecture in the three-dimensional case. We examined also the topological
properties of the shadow boundary, and defined the so-called general parameter spheres for
n > 3, as a tool for a prospective proof of our conjecture.

DEFINITION 2.1.3. Let K be a compact convex body in n-dimensional Fuclidean space E™ and
let S"~1 denote the (n — 1)-dimensional unit sphere in E™. For x € S"~1 the shadow boundary
S(K,x) of K in direction x consists of all points P in bd K such that the line {P+ Az : A\ € R}
supports K, i.e. it meets K but not the interior of K. The shadow boundary S(K,x) is sharp
if any above supporting line of K intersects K exactly in the point P. If S(K, x) is not sharp,
in general, it may have sharp point for that the above uniqueness holds.

It is clear that the shadow boundary decomposes the boundary of K into three disjoint sets.
These are S(K, x) itself, moreover
(20) K* = {y€bdK] thereis 7 > 0 such that y — 7 - x € int(K)},

K~ = {y € bdK] there is 7 > 0 such that y + 7 -z € int(K)},

respectively. We call the congruent (thus homeomorphic) sets K and K~ the positive and
negative part of bd K, respectively.
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In general, the shadow boundary of a central symmetric convex body is not a nice set from
topological point of view. There exists a central symmetric convex body K and a direction z of
the space E? such that every supporting line of K parallel to « contains a point of K having no
relative neighborhood in S(K, z) homeomorphic to an open segment. This means that S(K, z)
is not a 1-dimensional manifold.

EXAMPLE 2.1.5. Consider a unit circle C' in E? and the diadic rational points of it with
respect to the usual parametrization (see in Fig. 2.6). More precisely, take the parameter values

FIGURE 2.6. Shadow boundary which is not a topological manifold.

lij = 2%27?, where 0 < i is integer and 1 < j < 2% is odd number. The diadic rational points
of the circle are the points S;; = (cos(t; ), sin(t;;)) of the subspace E? with respect to an
orthonormed basis. Let now s; ; be a segment orthogonal to the subspace E? whose midpoint
is S; ; and its length is equal to 2%2 if 1 > 2 and is equal to 2 if « = 0, 1. The point sets

C*:=CU(U;;{si;}) and K := conv C*

are central symmetric. This body is also closed, see it in Fig. 2.6. If [ is a supporting line of
K orthogonal to the plane E? then it does not intersect the relative interior of the disc in
E? bounded by the circle C, so it intersects the circle C. If I N C' is a point of form S;; then
INK =1NC* = s;j, while if [ N C'is another point of C' then [N K =[N C. We conclude to
S(K,z) = C* being not a 1-manifold, as we claimed. O

In order to describe the connection between the bisectors and the shadow boundaries of the
unit ball we introduce some parameterized sets on the boundary of K, corresponding to a given
direction of the space. These tend to the shadow boundary of K of the same direction if the
parameter tends to infinity. As we shall see in the case of a nice unit ball these sets give a
parametrization of the closed "positive part" of bdK. In this way we can define the general
parameter spheres according to this direction.

DEFINITION 2.1.4 (|2]). Let K be the Minkowski unit ball above and x is a fized direction of
the space E™. Let

Ao :=inf{0 <t eR | tKN (K +z) # 0}
be the smallest value t for which tK and tK + x intersect. Then a general parameter sphere of
bdK corresponding to the direction x and to any fized parameter X > Xy is the following set:

(K x) = % (bd(AK) N bd(AK + 1)) C bd K.

In general, the above set is not a topological sphere of dimension (n — 2), and they are not
homeomorphic to each other for different \’s. For example the dimension of v,,(K,z) may
be 0, 1 -+ (n — 1) while the dimension of v,(K,z) for A > \g is at least (n — 2) because it
dissects the boundary of K. We also remark that the two parts of bd K \ 7\ (K, z) for A > Ay
are also homeomorphic to each other by the projection from %x (since AK N AK + x is central
symmetric in 3z for any A > Ag).



dc_1387_17

30 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

AK O (WK+x)

FIGURE 2.7. The shadow boundary could be sharp or not sharp in y

LEMMA 2.1.4 ([2]). Let II(z,y) be a 2-plane parallel to the vectors x and y € S(K, x), through
the origin. Then we have two possibilities for II(z,y) Ny (K, x):

o [f the shadow boundary S(K,x) is sharp for the point y € S(K,z) then Il(x,y) N
(K, x) contains two opposite points with respect to sxx (Fig.2.7 (left))

e There is a uniquely defined parameter value A(y) that for every A > A(y) the intersec-
tion Il(z,y) Ny\(K,z) is the union of a pair of segments parallel to x, opposite with
respect to 5. (Fig.2.7 (right))

In the second case the segments of the parameter spheres v (K, x) belong to the shadow boundary
S(K,x).

PROOF. Let A > )\g be an arbitrary real number and consider the generalized parameter sphere
(K, z). Then 1 (K,z) = $S(AK N (AK + z),z). In fact, y € (K, z) if and only if Ay €
bd(AK) Nbd(AK + ) C bd(AK N (AK + z)). Let the line I(7) be of the form Ay + 72 where 7
runs through real numbers.

There is no 75 # 0 for which e.g. 70 < 0 holds and Ay + 7oz € int(AK N (AK + z)). Indirectly,
Ay+T1ox € int(AK) and A\y+71pz € int(AK +2)) = int(AK )+ hold. The second relation implies
Ay + (10 — 1)z € int(AK), while Ay € bd(AK) and Ay € bd(AK + z) involve A\y — 2 € bd(A\K).
This means that the points Ay, \y — z, Ay + 70z, Ay + (79 — 1)z are on the line [, ordered as

Ay —z, Ay + (10 — 1)x, \y + 1oz, Ay

by the convexity of K. This would imply 75 = 0, a contradiction.

Since the shadow boundary of the convex bodies Ky = $(AK N (AK + z)) to x are on the
boundary of K, it can contain a segment parallel to x if and only if this segment belongs to
the shadow boundary of K, too. An interesting phenomenon that — though Il(z,y) N S(K, x)
is a pair of opposite segments (by central symmetry in 0) — for a starting A\ (which gives the
positive end of II(x,y) N S(K,x)), II(z,y) Nv,\(K, z) is a pair of points. So we are done.  [J

An important consequence of Lemma 2.1.4 is the following

COROLLARY 2.1.1. The general parameter spheres for A > \q provide a natural parametrization
of the surface K\ ), (K, x). In this parametrization any point of K\ v, (K, x) is determined
by a point of a Euclidean unit sphere of dimension (n — 2), orthogonal to x in 0, and by a
parameter A > \g.

Of course, it is possible that the above surface Kt \ 7, (K, ) is empty, as in the case of a
cube (=K) when four of its edges is parallel to 2. However, in significant cases it is a useful
parametrization. For example, if K is strictly convex, then it has only one singular point
Yo (K, ) on the positive half.

To prove this corollary, we observe the fact that the common points of two distinct parameter
spheres belong to the shadow boundary of K, hence the generalized parameter spheres give a
one-fold covering of Kt \ 7y, (K, ).



dc_1387_17

2.1. BISECTORS 31

We recall the concept of Hausdorff distance py of two point sets S; and S,, expressed by the
Euclidean distance pg:

pr (51, 52) = max{ sup {pp(s1, S2)}, sup {pe(ss2, S1)}}-
51€851 52€52
(Here e.g. pr(s1,S2) = infg,cs,{pr(s1,s2)}.)
Our main result on general parameter spheres is the following:

THEOREM 2.1.5 ([2]). The shadow boundary S(K,x) is the limit of the general parameter
spheres v\ (K, x), with respect to the Hausdorff metric, when \ tends to infinity.

PROOF. According to the previous lemma we have two cases. In the first one the 2-plane
[(x,y), with y € S(K, x), intersects both S(K, z) and v, (K, z) in two point pairs, respectively
(Fig. 2.7 (left)); while in the second case the intersection Il(x,y) N S(K, x) is a 0-opposite pair
of segments, and the intersection Il(x,y) N v\ (K, x), if A > A(y) > Ao, is an opposite pair of
segments with respect to s-x (Fig.2.7 (right)). We will mention the necessary intersections as
a point or a segment, shortly. Let S” be the set of sharp points of S(K,z) and S” be the set of
the remaining points of S(K, z), decomposed to (disjoint) segments parallel to x. We say that
the points y € S(K, x) and z € 7,(K, x) correspond to each other, if y, z € TI(z, y) and the line
of direction x through the origin does not separate them in II(z,y). If y € S’ then there exists
one corresponding point z € v, (K, x) (See Lemma 2.1.4). Denote this simply by z. If y € S”
then either it has only one corresponding point in v, (K, z) (see Lemma 2.1.4, A\g < A < A(y))
or the corresponding points form a segment belonging to S” (Lemma 2.1.4, A > A(y)). We focus
on the negative end of the segment of S”, containing y denoted by y~, and the negative end of
the corresponding segment of v, (K, z) denoted by z~. Let S” be the set of those points z of
(K, z) which correspond to a point of S’, and S”” be the collection of the remaining points
of A(K,z). Now the claimed convergence follows from the inequalities below:

){pE(ym(Kw))}, sup ){pE(S(K,SC),Z)}}:

zEv\(K,z
sup {pE(S(K,z),2)}} <
Ze 1"

pr(S(K,2), (K, r)) = max{ Sl(lp
K,

yeS(K,x

= max{ sup {pE(y,’y,\(K, SC))}, sup {pE(y,’)/)\(K, SC))}, sup {pE(S(Kv SC), Z)}v
yeS’ yeS"” zeS"
< maX{Sup{pE(yvz)}v sup {PE(y_,’YA(Kv SC))}, sup {pE(y_;Z_)}7 sup {pE(S(Kv JE),Z)}} <
yeS/ y—ES// Z—ES/// ZeS////

<max{sup{pr(y,2)}, sup {pe(y—,2"}, sup  {pr(S(K,x),2)}} <
yeSs’ y—eS” z€S""\S(K,x)

Smax{;gg{pE(y,Z)}, swp feely™,20)}  swp o AeslyTs2)H-

Yy z€8"\S(K,x)
In fact, each of these three Euclidean distances tend to zero, if A tends to infinity, since K and
its two dimensional intersections are convex and compact, respectively. 0

On the rest of this section we restrict the investigation to the case of dimension 3. A point
set H C E3 is said to be a topological plane if and only if there is a homeomorphism of E3
onto itself, sending H onto a usual 2-plane. We recall a theorem of two-dimensional topology,
characterizing the topological circles on a two-sphere. (See for example [145].) A point a is
called arcwise accessible from a point set B if b € B implies the existence of an arc T with end
points a and b such that 7'\ a C B. If A is a point set whose every point is arcwise accessible
from some point set B, then we call A arcwise accessible from B. We use the Schoenflies-Swingle
theorem:

THEOREM 2.1.6 (Schoenflies, Swingle see in [134] and [137]). A necessary and sufficient con-
dition that a subset M of S? should be an S* is that it be a common boundary of two disjoint
domains Dy and D, from which M is arcwise accessible.

Now our first statement is a technical lemma.

LEMMA 2.1.5 ([2]). Assume that the shadow boundary S(K,x) contains a segment s parallel to
x having the property that it is a subset of accumulation points of S(K,x)\ s. Then the bisector
H, can not be a topological plane.
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PROOF. Let y be a relative inner point of the segment s of accumulation points of S(K, z).
There exists such a A (large enough) and also an € (small enough) for which the segment with
negative end y and positive end y* of s lies in vy (K, z) where A — e < X' < A+ ¢ and the
accumulation points of the sets vy (K, x) \ s contain also the segment [y, y™]. This means, there
is a domain — namely the union of segments Uy {\N'[y, y"]|]A —e < X < A+ &} — in the bisector
H, which lies in the set of accumulation points of the complementary set with respect to H,.
Drawing in this domain a little circle we get a closed curve which relative interior points are
also boundary points of its complementary sets. Thus the Jordan Curve Theorem (as a special
case of the Schoenflies-Swingle theorem) does not hold on H,, consequently H, could not be a
topological plane. O

THEOREM 2.1.7 ([2]). Assume that the bisector H, is a topological plane of E3. Then the
general parameter spheres y\(K, x) for A > Ao and the shadow boundary S(K, ) are topological
1-manifolds (topological circles). For X\ = \g the parameter sphere can form a point, a segment
or a convex disk of dimension 2, respectively.

PROOF. Firstly, we deal with general parameter spheres. The statement on 7, (K, z) follows
from the convexity and central symmetry of the compact body K ( and K + x as well).
For A > \g we prove that \(7,\(K,z)) C H, is arcwise accessible from the negative sets

H, = Uy {N (0 (K, 2)) Ao < N < A} € H, C H,

If v is a point of A(7,(K,x)) then there is an arc, parameterized by X\ in the intersection
H, N1l(z,v) which connect the point v with the point %x, with the property that their points,
different from v, lie in H{. Since also Ay, (K, z) is the common boundary of H] and its comple-
mentary set in H,, by the Schoenflies-Swingle theorem, we get that Ay, (K, z)) is a topological
circle, i.e. by the projection from 0, v,(K,x)) is a topological circle, too, which is arcwise
accessible also from the open disk component of int(K ™ \ 7,(K, z) by Theorem 2.1.6.

Now let’s turn to the case of the shadow boundary: We assume that H, is a topological plane.
We check that the conditions of Schoenflies-Swingle theorem hold for S(K, z), too. It is enough
to prove that S(K,x) is arcwise accessible from K. Let y an arbitrary point of S(K, ).

If S(K,x) is sharp at this point then, by Lemma 2.1.4 | the set

U{II(z, y) N (K, z)|]A = Ao} Uy

is a good arc which connects the interior of KT and y. (Since K is arcwise connected y is
accessible from points Kt by arcs.)

If y is not a sharp point of S(K,z) then (by Lemma 2.1.4) we have the segment s of S(K,x)
through y as a union of the monotone increasing sequence of segments I1(z,y) N Y\ (K, x),
parallel to x where A > A(y), and the negative end y~ of s (Fig. 2.8).

Observe that all of this segments are arcwise accessible from KT, so is their union, too. To
prove this, let s’ denote one of the segments I1(z, y) N\ (K, z) for fixed A > A(y). Observe that
the points of K* belong to one of the following three sets:

Hy = Uy {vw(K,z2) | A> N> XNKT (K, 2)N K" and K1\ (7.(K,z) U Hy).

From the points of the first set (by the first part of this proof) there are arcs connecting a
point 3" of the considered segment with the required property. We can connect the points of
the second set with a point of H; by such an arc whose points belong to K, and this latter
point can be connected again with a required arc, showing that from these points there also
exist arcs to y'. Finally, a point v of the third set lies in a plane II(z,v) intersecting S(K,x)
in a sharp point. The arc from v to a point of H; in the intersection II(x,v) N bd K can be
extended to a required arc with ends at /.

It remains to examine of the negative end point y~ of s (see Fig.2.8). Since y~ is a boundary
point of the segment s whose other points belong to the boundary of K, then it is a boundary
point of K. Consider now a sequence (z;) of points of K that tends to y~. First we introduce
a parametrization of S(K,z)U K. Let (¢, 1) denote the coordinates of any point z € bd K.



dc_1387_17

2.1. BISECTORS 33

FIGURE 2.8. The negative end is accessible by arc.

Here ¢ is the angle of the planes II(z, 2) and II(z,y~) —7 < ¢ < 7 with respect to a fixed
orientation, and 1 the angle of the vectors x and z, 0 < v < 7. Then we have (2;) = ((a, 5;)7)
and y~ = (0,3)%, T means transposed. We can assume, without loss of generality, that the
sequence (a;) is monotone decreasing. Now we connect the points z; and z;,1 by an arc ~; lying
in K. We define ¢ for later arcs, near enough S(K,z), by

1
YF = inf{1| there exists o; > ¢ > ;1 for which (p, )" € S(K,z)} — 5

From now on the notation x € [a,b] (x € (a,b)) means that either a < x < b (a < x < b) or
a>x>b(a>x>b) hold. Then the arc v; connecting z; and z;,; is the following:

7 = {(ay,¥)T with parameter ¢ € [B;, ¢/} U {(¢,¥])" with ¢ € (a;, ;1)U
U{(viy1, )" with ¢ € [Bip1, ¢]}-

Of course, the simple union of these arcs is considered only one curve for which one of its
accumulation points is y~ = (0, 3)7. However, the following set v := cl(U;y; \ Ui(7: Nyi11)) (in
which we do not take multiple points) is an appropriate arc if and only if v\ U;7; = {y~ }. Since
the set of accumulation points of v is a subset of v U s, thus the indirect assumption implies
a subsegment s’ of s with non-zero length. This is also a subset of accumulation points of
S(K,x) \ s and applying the Lemma 2.1.5 we get that the bisector would not be a topological
plane. Thus the conditions of the Schoenflies-Swingle theorem are fulfilled so S(K,z) is a
topological circle as we claimed. 0

LEMMA 2.1.6 (|2]). Assume that the shadow boundary of K in the direction x is a topological
circle. Then the general parameter spheres are also topological circles for A > Ag.

The proof is an easy consequence of Theorem 2.1.6 and of the arguments before it. The main
result of this section is:

THEOREM 2.1.8 ([2]). Let K be a central symmetric compact convex body in E3. All of the
bisectors H, of the corresponding Minkowski normed space are topological planes if and only if
all of the shadow boundaries S(K, ) are topological circles (1-spheres).

PROOF. The necessity is a consequence of Theorem 2.1.7.

We prove that if the shadow boundary is a topological circle then the corresponding bisector H,
is a topological plane. By the assumption and Lemma 2.1.6, v,(K, =) is a topological circle for
any fixed A > \g, and 7,, (K, x) is a topological closed ball of dimension 0,1 or 2, respectively.
Consider now S(K, z).

First we note that, for a fixed A\, on 7,(K, z) there are only finitely many segments parallel to
x. In the contrary case there would be infinitely many corresponding segments on S(K, x), too,
but S(K,x) is compact and homeomorphic to a circle, this would easily lead to a contradiction
with Theorem 2.1.6. Then the set of lengthes of these segments of S(K, z) has a positive lower
bound. Thus there are only finitely many parameter values \; with the property that v, (K, z)
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(A; > Ag) contains such a positive end of a segment s; of the shadow boundary parallel to x,
which is not lying on a v, (K, x) for A" < \;.

If ;" is a positive end of s; then \;y;" is an apex of a corner domain belonging to the intersection
of H, and a plane through the origin and s;. Partition now H, into non-overlapping rings by
the consecutive topological circles Ayyy, (K, z) i > 1. A ring between the circles A\;v,, (K, ) and
Ai+1Ys, (I, @) can be partitioned by straight-line boundaries of the corresponding corners to
finitely many non-overlapping domains D, ; where D, ; N D; ;11 (for every j with respect to a
cyclic order, is a segment connecting a point of A\;yy, (K, x) to a point of Ai11vy,,, (K, x). These
closed domains (each homeomorphic to a closed disc for i > 1) join only finitely many others,
thus we can define a sequence of homeomorphisms ®; ; on D; ; by induction in the following
way.

First, we partition the unit disc B (with center O) into non-overlapping pieces having the same
combinatorial structure as the subdivision of H, = Aoy, (K, ) U;; D; ;. We have three cases:
XY, (K, ) is a closed disc, a closed segment or a point.

In the first case we consider the concentric circles C, with respective radii ), = 1 — 2’\—)?2 for

i > 1 and define the image of X\g7), (K, z) as the disk with origin O and radius 3.

In the second case we consider concentric ellipses which converges to a O-symmetric segment
of length 1, and the third case the ring structure giving by concentric circles, too, with corre-
sponding radii 7y, =1 — % for: > 1.

We map now the shadow boundary S(K,z) onto the boundary of B. A corner domain of H,
corresponds to a segment s of S(K, x) thus also to a closed arc o of the unit circle. On the other
hand the apex a, of this corner corresponds to a A;. If ¢ > 0 let a) a point of C), Nconv{O, c}.
For i = 0, in the first case, we may choose @/ in the same way; in the second case we have
only two possibilities for a, (the ends of Aoy, (K, x)); thus let a be one of the ends of the
corresponding segment C,. (In this case we choose the corresponding arc 7 intersecting the
line of C),. Finally in the latter case there is no such apex. Now we subdivide the rings by
the sectors conv{a,, o}. Obviously, the domains @); ; in this process can be corresponded to the
domains D, ; in a unique way. This means that we decomposed B to closed domains @); ; with
the property: ND; ; is homeomorphic to NQ; ; for indices 1, j.

Second, by induction (with respect to the lexicographic order of the pairs (4, 7)) it is not to hard
to give a family {®,; : D; ; — Q;;} of homeomorphisms compatible to each other, requiring
that if D; ; N Dy # 0 then @, ;(v) = @4, (v) for each point v of D; ; N Dy;. (Denote by @ the
first homeomorphism sending Aoy, (K, z) onto the corresponding (not-indicated) subset of B.)
Now the mapping ® : H, — int B (see Fig 2.9), sending a point v € D, ; to the point ®; ;(v),
is evidently a homeomorphism of H, onto the interior of the disc B as we stated. U

2.1.4. Bisector and shadow boundary in higher spaces. The examination of Conjec-
ture 2.1.1 in higher dimension require a deeper investigation of the topological properties of the
general parameter spheres. The corresponding results of the author can be found in the paper
[3]. We proved that, the general parameter spheres are not an absolute neighborhood retract
(ANR) in general, but still are compact metric spaces, containing (n — 2)-dimensional closed,
connected subsets separating the boundary of K. Thus we investigated the manifold case and
we proved that the general parameter spheres and the corresponding shadow boundary are
homeomorphic to the (n — 2)-dimensional sphere. The base of the proof is the so-called cell-like
approzimation theorem for manifolds. The long history of it can be found for example in [124].

THEOREM 2.1.9 (Cell-like Approximation Theorem for manifolds). Let n # 3 be a positive
integer. For every cell-like map f : M — N between topological n-manifolds, and every e > 0,
there is a homeomorphism h : M — N such that d(f,h) < € in the sup-norm metric on the
space of all continuous maps (so f is a so-called near homeomorphism ).
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We use again the notation:
K* := {y€bdK]| there is 7 > 0 such that y — 7 -z € int(K)},
K~ = {y € bd K] there is 7 > 0 such that y + 7 -2 € int(K)}.

We call the congruent (thus homeomorphic)
sets K™ and K~ the positive and negative
part of bd K, respectively. The line passing
through the origin and parallel to the vector
x intersects the boundary of K at the points
Pt € Kt and P~ € K~ showing that the
positive and negative part of bd K are not
empty, respectively. We call the points P*
and P~ the positive and negative pole of K,
respectively. The intersection of bd(K) by a
2-plane containing the poles is called a [ongi-
tudinal parameter curve of K.

STATEMENT 2.1.1 ([3]). The shadow bound-
ary decomposes the boundary of K into three
disjoint sets: S(K,z), Kt and K. S(K, z)
is an at least (n — 2)-dimensional closed (so
compact) set in bd K which is connected for
n > 3, the sets Kt and K~ are homeomor-
phic copies of R™Y giving two arcwise con-
nected components of their union.

FIGURE 2.9. The homeomorphism ¢

PROOF. The first statement is obvious. Let

p. be the orthogonal projection of the embed-
ding space R" onto a hyperplane orthogonal to the vector z. Since the orthogonal projection
is a contraction then it is continuous mapping of the space. p,(K) is a convex body of the
image hyperplane. The interior of p,(K) is the image of the sets K™ and K, respectively and
its boundary is the image of S(K,x). Since p, restricting for K is a bijection, there exists
a homeomorphism on K+ to R®™~Y. Using the same argument for K~ we proved the validity
of the first part of the statement on K™ and K. Of course their union is open therefore the
shadow boundary is closed.
Since R™Y is arcwise connected the second part of the statement on K+ follows from the
fact that an arc connecting two points of K+ and K~ should be decomposed into two relative
open sets by KT and K, which is a contradiction. Thus the shadow boundary separates
the boundary of K. By a theorem of Alexandrov (Th. 5.12 in vol.I of [16]), we get, that the
topological dimension of S(K, z) is at least (n — 2), as we stated.
We now prove that (for n > 3) the set S(K,x) is connected. Assume that K; and Ky are two
closed disjoint subsets of the shadow boundary for which K7 U Ky = S(K, ). First we observe
that each of the metric segments lying on a longitudinal parameter curve and parallel to x is
a connected subset of S(K,x), thus its points (by the "basic lemma of connectivity" see vol.I
p.13 in [16]) belong either to the set K7 or to the set K. Let C; and Cy the sets defined by the
union of those longitudinal parameter curves which intersect the sets K; and K,. In this case
C1UCy; =bd K and C; N Cy = {P*, P~} hold. The sets C; are closed in bd K, meaning that
the sets C; \ {P*, P~} give a decomposition of bd K\ {P*, P~} into disjoint relative closed
subsets, too. Since the latter set is connected it follows that either K or K5 is empty. O

In general the dimension of S(K,z) is (n — 2) or (n — 1). We prove that there is an (n — 2)-
dimensional closed, connected subset of S(K, x) separating bd K, too.

LEMMA 2.1.7 ([3]). The boundary of the closure of the set K (denoted by bd(cl(K™))) is a
closed, connected (n — 2) dimensional subset of S(K,x) separating the boundary of K.
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PROOF. By its definition it is closed. Since cl(KT) D K* and cl(K*) N K~ = ) we have
Kt Ccl(KT)C KTUS(K,x). On the other hand bd(cl(K*))N K™ = (K is an open subset
of cI(K™)), thus we get that bd(cl(K*)) C S(K,x).

The separating property follows from the fact that the union of the pairwise disjoint sets
bd K\ cl(K™"), int(cl(K 1)), bd(cl(K™)) fills the boundary of K and the first two sets are open.
Now the separating property implies (again by the Alexandrov’s theorem above) the inequality
dim(bd(cl(K™))) > (n —2). On the other hand a closed connected set of dimension (n — 1) on
bd K contains an interior point relative to bd K (see p.174 in vol 1. of [16] ) which contradicts
to the definition of bd(cl(K™)). O

Now we can prove one of the main theorems of this dissertation.

THEOREM 2.1.10 ([3]). If the shadow boundary S(K,z) is a topological manifold of dimension
(n — 2) then it is homeomorphic to the (n — 2)-sphere S"=2). If it is an (n — 1)-dimensional
manifold with boundary then it is homeomorphic to the cylinder S x [0,1].

PROOF. Consider first the projection p, (which was defined in the proof of Statement 2.1.1),
and restrict it to the shadow boundary of K parallel to x. It is a cell-like map because of the
inverse images are points or segments, respectively. In this way for n # 5 by the approximation
theorem (Theorem 2.1.9) above we have that this restricted map is a near homeomorphism
on S(K,z) to a homeomorphic copy S 2 of =2 implying that they are homeomorphic to
each other. On the other hand this map is also cellular, since the metric segments and points of
S(K,z) are cellular sets in S(K,z). To prove this, let s = p_!(v) be a segment in S(K, z) for
some v € S2_ If now @ € s is a point, consider a metric ball B.(Q) C bd(K) with center Q
and radius e > 0 for which [(B.(Q))NS(K,z) is homeomorphic to R~ Such an € > 0 surely
exists. In fact, Q has a neighborhood Ng in S(K, z) homeomorphic to R™=2). If for every e we
can choose a point P, € B.(Q)NS(K,x) which does not belong to N then we have a sequence
of points (P,) having the same property and tending to (). Since Ny is open in S(K, x), this is
impossible. Thus there is an ¢ > 0 for which B.(Q) N S(K,z) = B(Q) N Ng. It implies that
int(B.(Q)) N S(K,x) is an open subset of Ng relative to the topology of S(K,z). Of course, €
depends on @), but s is a compact set, thus there is a finite number of points ¢); and positive
real numbers ¢;, such that for the minimal value €* of ¢;’s we have Uint(B.(Q;)) D s. Here
Uint(Be(Q;)) is the interior of the closed cell U(B.(Q);)). Since B(Q)NS(K, z) = B.(Q) N Ng
also holds for every ¢ which is less or equal to €, we have an infinite sequence of sets of form
U(Be+(Q;)) with the property needed to prove the cellularity of s.

Observe now that if S(K,x) is an (n — 1)-manifold with boundary then its boundary has two
connected components which are equal to bd(cl(K™)) and bd(cl(K ™)), respectively.

First we can see that bd(cl(K™)) is the set of the common boundary points of cl(K™) and
S(K,z) yielding bd(cl(K™)) C bd(S(K,z)). (We have bd(cl(K~)) C bd(S(K,x)), too.)
Secondly we note that there is no point of int(cl(K™)) belonging to S(K, z). Indirectly assume
that the point P is in int(cl(K ")) N S(K, z). Then

e cither one can find a neighborhood U of P in S(K,z) which is homeomorphic to the
(n — 1)-dimensional half-space and therefore P is a boundary point of cI(K™) (in U
there exists a point @ with a neighborhood V' C S(K, z) homeomorphic to R~ such
that @ € V C U. It means that @ is a point of the complement of cl(K ™)),

e or there is a neighborhood U homeomorphic to the space R~V for which P € U C
S(K,x). In this case P is in the interior of S(K,x) contradicting the assumption that
it is a point of int(cl(K™)).

In this way int(cl(K™)) = Kt and then bd(cl(K™")) = bd(K™) is the common boundary of K
and S(K,z). Applying Lemma 2.1.7 we obtain that bd(cl(K™)) is a connected closed subset of
the boundary of S(K, z).
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Using the fact that bd(cl(K 7)) is the image of bd(cl(K™)) by a central projection, we have a
similar result for bd(cl(K ™)), too. (It is the common boundary of K~ and S(K,xz).) We will
prove that the boundary of S(K, x) is the disjoint union of these two sets.

The relation bd(S(K,x)) C bd(cl(K~)) U bd(cl(K™)) is obvious. Consider a point P from
the intersection bd(cl(K ™)) N bd(cl(K™")). Let U be a neighborhood of P in S(K,z). (It is
homeomorphic to a half-space of R™~Y ) Let B be a metric (n — 1)-ball around P with such a
sufficiently small radius € > 0, that the sets BNU and B\ (BNU) serve as topological images
of a closed and the complementary open half-spaces of R™~1), respectively. (Similarly as the
proof of the cellularity property of a segment goes one can show that such an ¢ > 0 and ball B
exist.) Since B contains points from each of the sets K™ and K~ we have a contradiction by
the separating property of S(K, x). (There is no point of S(K, z) in the complementary domain
B\ (BNU).)

This implies that the boundary of S(K, x) has two connected components which are the common
boundaries of S(K,z) and K*, S(K,z) and K, respectively. Of course, these sets are also
(n — 2)-manifolds connected with straight line segments through all of their points. So we have
that S(K,z) = bd(cl(K ™)) x [0, 1] holds. We still have to prove that in this case bd(cl(K™)) is
homeomorphic to S™~2 too. Since p, on bd(cl(K™)) into 2 is also a cell-like (and cellular)
mapping, bd(cl(K ™)) is an (n — 2)-dimensional manifold and this restricted map is one to one,
the last statement of the Theorem follows from Theorem 2.1.9, too. OJ

THEOREM 2.1.11 ([3]). Let denote by S(K,z) the shadow boundary of K in the direction x.

[ S(K,z) is an (n — 2)-dimensional manifold if all of the non-degenerated general pa-
rameter spheres y\(K, x) with X > X\g are (n — 2)-dimensional manifolds, conversely if
S(K,z) is an (n — 2)-dimensional manifold then all of the general parameter spheres
are ANRs.

IT S(K,z) is an (n — 1)-dimensional manifold with boundary if and only if there is a A
for which the general parameter sphere v\(K,x) is an (n — 1)-dimensional manifold
with boundary.

To prove this theorem we used a theorem of M.Brown on the projective limit of compact
metric spaces and corresponding near homeomorphisms (see [33] ). The concept of the near
homeomorphism of topological manifolds can be adapted to the case of compact metric spaces,
too. A map from X to Y between compact metric spaces is a near homeomorphism if it is in
the closure of the set of all homeomorphisms from X onto Y, with respect to the sup-norm
metric on the space C(X,Y) of all maps from X to Y. Now the mentioned theorem is:

THEOREM 2.1.12 (M.Brown). Let (X,,) be an inverse sequence of compact metric spaces with
limit Xo. If all bonding maps X, — X,, are near homeomorphisms, then so are the limit
projections X — Xo.

Before the proof let us give an example showing that we should distinguish the above two cases.

EXAMPLE 2.1.6. Consider the union of the six connecting rectangles £{(r, 1,¢)|—1 < r,t < 1},
H(rs,t)r+s=21<r<2-1<t<1}, H{(r,s,t))r—s=2,1<r<2,-1<t<1}and
the segments £{(r,0,2)] —2 <r < 2}. The convex hull K of this set is a convex polyhedron. If
now the vector z is the position vector directed into the point (4,0,0) we have three important
values for the parameters of the generalized parameter spheres. For \; = 1 the degenerated
sphere 7, (K, z) is a segment. For 1 < XA < 2 the general parameter spheres v7,\(K,z) are
homeomorphic to S'. In the range % < A < % the general parameter sphere v, (K, x) is a
simplicial complex containing one or two-dimensional simplices, respectively. (This space is
an ANR but is not a topological manifold.) Finally, in the last parameter domain A > % the
set yA(K, ) is homeomorphic to the cylinder S' x [0,1]. Since S(K,z) is the union of six

quadrangles, parallel to the xz-axis it is also a cylinder. O

We think that true the following conjecture:
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CONJECTURE 2.1.2. If S(K, z) is an (n — 2)-dimensional manifold than all of the non-degene-
rated parameter spheres are also (n — 2)-dimensional manifolds.

Unfortunately we could not prove it.

PROOF. First we note that — for every Ay < X < oo — S(K, z) can be considered as the inverse
limit space X, of the metric spaces X := 7,(K,x) for ' < A\. In fact, by Lemma 2.1.4 if for
A > )\g the intersection of v, (K, x) by a longitudinal parameter curve, say r is a segment then
r N, (K, x) with g > X is also a segment containing the segment r N v, (X, z). So in this case
the union of the sets r N ~,(K, ) is the segment r N S(K, ). On the other hand we have two
possibilities for » N v, (K, x) being a point. First » N S(K, z) is a point, too, meaning that for
all 4 > A r N\ (K, x) is also a point. If now r N S(K,z) is a segment then we have a value
A" > X with the property that if ;1 > X then r N ~,(K, z) is a segment, too. In this latter case
rNS(K,x) = Uysn{rNv,(K,x)}. Define now the left end of a segment parallel to z as the end
having the smaller parameter in the usual parametrization with respect to x (meaning that a
general point of a line parallel to z is written in the form P + 72 where P is a point of this
line). Let us define the bonding map p, , for v, (K, x) to 7\ (K, z) (1 > A) in the following way:
For a point P of v, (K, x)

rNya(K, x) if r N\ (K, z) is a point
mu(P)=< P if r N, (K, z) is a segment and P € r N, (K, z)
the left end of r N\ (K, z) if Pernqy, (K, z)\rNy(K, )

The continuity of this function (with respect to the relative metric) is obvious and the inverse
(projective) limit space X, can be identified with S(K,z) by the limit mappings p, (defined
in an analogous way from S(K,z) to v,(K, ) as the above functions p, ,(P)). (Of course, we
have the sufficient equality p,/ ,» o p,y = pu» for p” > pi'.)

Using Theorems 2.1.9 and 2.1.12 above, the proof of the first direction of the first statement
is an easy consequence. In fact, if for A > A\ the space v,\(K,z) is an (n — 2)-manifold then
using Theorem 2.1.9 we know that the bonding maps p, ,» : v (K, z) — v,,(K, x) are near
homeomorphisms. By Theorem 2.1.12 we obtain that the limit projections p, are also near
homeomorphisms. This implies that the space S(K, x) is also an (n — 2) manifold.
Conversely, if now S(K, x) is an (n — 2)-dimensional manifold then it is locally contractible. By
Lemma 2.1.4 this also implies that all of the general parameter spheres are locally contractible
manifolds, too. On the other hand the general parameter spheres can be considered as the
compact subsets of R™~Y meaning that they are ANRs. (See Theorem 8 p.117 in [43].)

The proof of both parts of the second statement uses Theorem 2.1.10. If first we have a general
parameter sphere v, (K, x) which is an (n — 1)-dimensional manifold with boundary then by
Theorem 2.1.10 it is a cylinder with boundaries homeomorphic to S™~2. In this case the
shadow boundary contains this general parameter sphere showing that all point-inverses with
respect to p, are segments (with non-zero lengthes). On the other hand, the sets bd K N
S(K,z) and bd K™ N ~,(K, x) coincide, showing that S(K,x) is a cylinder based on an (n —
2) manifold homeomorphic to S™~ 2. Since bd K~ N S(K,z) is homeomorphic to S™~2 (by
central symmetry) and these two sets are disjoint we close to that S(K,x) is homeomorphic to
S(=2) % [0, 1], as we stated.

Conversely, if S(K,x) is an (n — 1)-manifold with boundary, then it is (by Theorem 2.1.10)
homeomorphic to S™~2 x[0, 1]. Since this cylinder is compact there is a positive value ¢ less than
or equal to the length of any segment intersected from the shadow boundary by a longitudinal
parameter curve. This fact implies that there does exist a A < oo such that v, (K, z) C S(K, x).
The intersection v, (K, z) N K™ is the same as the intersection S(K,z) N K™ which is one of the
two components of the boundary of S(K,x) homeomorphic to S™~2). For this A it is possible
to find a trivial point-inverse with respect to the map p, as we saw it in the example of this
section, but for every A’ > \ the general parameter sphere v, (K, ) is a cylinder. Using now the
fact that it is also the shadow boundary of a centrally symmetric convex body whose positive
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part is the set KT, we have proved that it is also a manifold with boundary homeomorphic to
S=2) [0, 1]. O

A consequence of this result (if the bisector is a homeomorphic copy of R("~Y then the shadow
boundary is a topological (n —2)-sphere) yields the proof of the first direction of the Conjecture
2.1.1. We have two more questions left concerning the same conjecture: Is the converse statement
true or not? Is it possible that in the manifold case the embedding of the bisector and the shadow
boundary are not standard ones? We prove here that the embedding of the examined sets (in
the manifold case) are always standard ones, but the first question remains still open. The last
step in the proof of the first direction of Conjecture 2.1.1 is the following theorem:

THEOREM 2.1.13 ([3]). H, is an (n—1)-dimensional manifold if and only if the non-degenerated
general parameter spheres y\(K,x) are manifolds of dimension (n — 2).

Since the neighborhoods of the point %az (with respect to H,) can not be homeomorphic to
either R™ or a half space, this is the only manifold case for H,.

PROOF. First we prove that if the non-degenerated general parameter spheres v,(K,x) are
manifolds of dimension (n — 2) then H, is an (n — 1)-dimensional manifold. From Theorem
2.1.10 we know that the general parameter spheres are homeomorphic copies of S~2). Let us
construct now the bisector H, as the disjoint union of the sets Ay, (K, z) for A > A\g. The set
H, = { (K, z)|p > X > Ao} is obviously homeomorphic to v, (K, z) U K" meaning that it
is a homeomorphic copy of the closed (n — 1)-dimensional ball. Thus int H, , is homeomorphic
to R"~! for each p > \g. Applying now a theorem of M.Brown on chain of cells (see in [141] or
[32]) saying that if a topological space is the union of an increasing sequence of open subsets,
are homeomorphic to R~ resp. then it is also homeomorphic to R™1), we get the required
result.

Conversely, if H, is homeomorphic to R~1 then the projection p, : H, — R" 1 is a cellular
map between two manifolds of the same dimension. Thus it is a near homeomorphism yielding
that its restriction to the compact metric space Ay, (K, x) is a near homeomorphism, too. But
its image is the boundary of a convex compact (n — 1)-dimensional body so we get at once that
it is a homeomorphic copy of S™~2. Hence the general parameter spheres 7,(K, z) for A > Xg
are manifolds of dimension (n — 2), as we stated. O

COROLLARY 2.1.2. The proof of the first direction of the conjecture follows from the previous
three theorems. In fact, if H, is a topological hyperplane then each of the non-degenerated general
parameter spheres is a homeomorphic copy of S™2 by Theorem 2.1.10 and Theorem 2.1.13.
So by Theorem 2.1.11 we get that the shadow boundary is also a homeomorphic copy of S™~2)
which is the statement of the mentioned direction of our conjecture.

On the other hand we could only prove in Theorem 2.1.11 that if S(K, x) is a homeomorphic
copy of S~2) then the non-degenerated general parameter spheres are ANRs, thus the manifold
property for the bisector does not follow immediately from our theorems. Furthermore, in the
manifold case we prove only that the bisector is a homeomorphic copy of R~V which is
a weaker property as the required one. Consequently we have to investigate the question of
embedding. In fact, all of the examples in geometric topology aiming a non-standard (wild)
embedding of a set into R™ are based on the observation that the connectivity properties of
the complement (with respect to R™) of the set can change if we apply a homeomorphism to
it. In our case, for example, the complement of the bisector (which is now a homeomorphic
copy of R™~1) is the disjoint union of homeomorphic copies of R™. It gives the chance to the
existence of a homeomorphism on R™ to itself sending the bisector to a hyperplane. It is a
well-known fact that a manifold homeomorphic to S™~ in S" is unknotted if and only if the
closures of the components its complement are homeomorphic copies of the closed n-cell B™.
This implies that in the manifold case the embedding of the shadow boundary and the general
parameter spheres are always standard. From this it follows the existence of a homeomorphism
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of the boundary of K into itself sending these sets into a standard (n — 1)-dimensional sphere
of bd K. Considering bisectors we have to carry out the proof in a bit more sophisticated way.
Let ¢ be a homeomorphism sending H, into R®™~Y (which is now a hyperplane H of R"). We
consider the compactification of the embedding space by an element denoted by co. Extend
first the map ¢ to the compact space H, U {oco} by the condition ¢(0c0) = co. Of course, this
extended map gives a homeomorphism between the sets H, U {oco} and H U {oo}. Since the
closure of the components of the complement of H, U {oo} in R™ U {oo} are closed n-cells the
homeomorphism ¢ can be extended to a homeomorphism ¢ : R" U {0} — R™ U {o0}. Since
by our method we have: ®(c0) = ¢(00) = oo and ®(H,) = H we get that the bisector is a
topological hyperplane as we stated. Thus the following statement has been proved:

THEOREM 2.1.14 ([3]). In the manifold case the embedding of H,, S(K,x) and v\(K,x) are
standard, respectively. This means that if the bisector is homeomorphic to RV then it is a
topological hyperplane.

2.1.5. On bounded representation of bisectors (common work with H.Martini).
Independently, H. Martini and S. Wu [118| introduced and investigated the concept of radial
projection of bisectors. Strongly using the central symmetry of Minkowskian balls, they proved
some interesting results on radial projections of bisectors.

Theorem 2.6 in [118] says that the shadow boundary is a subset of the closure of such a radial
projection, and Theorem 2.9 there refers to the converse statement. If for a point z from the
boundary of the unit ball there exists a point z, unique except for the sign, such that x is
orthogonal to z in the sense of Birkhoff, then z is a point of the radial projection of the bisector
corresponding to x and —zx.

In a common paper with H. Martini [4] we introduced the concept of bounded representation
of bisectors, which yields a useful combination of the notions of bisector, shadow boundary, and
radial projection. We proved that the topological properties of the radial projection (in higher
dimensions) do not determine the topological properties of the bisector. More precisely, the
manifold property of the bisector does not imply the manifold property of the radial projection.
The situation is different with respect to the bounded representation of the bisector. Namely,
if one of them is a manifold, then the other is also. More precisely, if the bisector is a manifold
of dimension (n — 1), then its bounded representation is homeomorphic to a closed (n — 1)-
dimensional ball B"~! (i.e., it is a cell of dimension (n — 1)). And conversely, if the bounded
representation is a cell, then the closed bisector is also.

We will also presented new approaches to higher dimensional analogues of several theorems
given in [118]. By our new terminology, we rewrote and reproved Theorems 2.6, 2.9, and 2.10
from that paper.

It is well known that there are different types of orthogonality in Minkowski spaces. In par-
ticular, for z,y € M™ we say that x is Birkhoff orthogonal to y if ||z + ty|| > ||z|| for all
t € R, denoted by zL gy (see [26]); and x is isosceles orthogonal to y if |z + y|| = ||l — y||,
denoted by x Ly (cf. [92]). The shadow boundary S(K,xz) of K with respect to the direc-
tion x is the intersection of S and all supporting lines of K having direction z. Evidently,
S(K,z)={yeS:ylpzx}.

Given a point x € S, the bisector of —x and z, denoted by B(—z,z), consists of all those
vectors y which are isosceles orthogonal to x with respect to the Minkowski norm generated by
K. The radial projection P(x) of this bisector consists of those points y of S for which there is
a positive real value ¢t such that ty € B(—z,z). In this subsection we denote by y the points of
the unit sphere S.

We remark that, in the relative topology of S, P(x) can either be closed or open; this can
be easily seen in the cases of the Euclidean and of the maximum norm. Thus, for topological
investigations in higher dimensions we suggest the extension of the definition of B(—=x,z) to
ideal points by a limit property.
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DEFINITION 2.1.5 ([4]). Consider the compactification of R™ to a closed ball B™ by the set of the
common ideal points To, (—Too # Too) of the parallel half-lines. We say that the point Yoo := 00-y
is in the extracted bisector B(—x,x) if there is a non-constant sequence (t;y;) € B(—x,z) for
which llm y; = y. We call the points of the original bisector ordinary points and the points

added m thzs way ideal points, respectively.
With this extended definition of B(—z,x), P(x) is closed. Let P(z)! be the collection of those

points y of S for which ||ty +z|| < ||ty — || holds, for all real ¢ > 0. Let P(z)" denote the image
of P(z)" under reflection at the origin.

(1-)(y-x) (1-t)y 7, 2x oz

o (1-0x

FIGURE 2.10. Vectors used in the proof of Proposition 2.1.1

PROPOSITION 2.1.1 ([4]). In the described way, S is decomposed into three disjoint sets: P(z),
P(x)!, and P(z)". P(x) is an at least (n — 2)-dimensional closed (and therefore compact) set in
S which is connected for n > 3, the sets P(x)" and P(z)" are arc-wise connected components
of their union.

PROOF. By Theorem 5.1 of [118], P(x) is connected for n > 3. We prove that it is also closed
with respect to the relative topology of the boundary of the unit ball. To see this, consider a
convergent sequence (y;) in P(z) having the limit y. For any 1 there is a new sequence of points
(y]) such that for every pair {i,;} there are t; € R* and 2/ € B(—x, x) such that (ty/) = /.
(For an ordinary point the mentioned sequence can be regarded as a constant one.) It is clear
that for the diagonal sequence (y!) we have lgn y! = y, implying that y is also in P(z). The
continuity property of the norm function impzlieoso that all points of S belong to precisely one of
the three mentioned sets. Thus the first statement is clear, and the union of P(z)! and P(x)"
is open with respect to the topology of S. Observe once more that P(z)! and P(z)" are images
of each other regarding reflection at the origin. Furthermore, they are arc-wise connected sets.
To prove this, consider the following inequality for an element y of P(x)":

Iy =ty =) —all = A =Dy — 2 <@ =Dy + =l = [[(y =ty — x)) + 2 — 2tx]],
where 0 < ¢ < 1is an arbitrary parameter. The point z; :== (y—t(y—x))+x = (1—t)y+ (1+t)z
is on the right half-line, starting with the point (1 —t)(y + ) = 2z — 2tz and being parallel
to the vector x, meaning that its norm is larger than the norm of the point z; — 2tz (see Fig.
2.10). Thus |[z]] > |2 — 2tz], and so ||(y — £y — 2)) — o] < ||(y — tly — ) + 2]

A consequence of this inequality is that the arc of S connecting the respective endpoints of the
vectors y and x belongs to the set P(x)". Thus every two points of P(x)" can be connected
by an arc, as we stated. Now, with respect to the topology of their union, they are connected
components. This means that both of them are also open with respect to the topology of S.
Thus P(x) separates S. By Aleksandrov’s theorem (Theorem 5.12 in vol. I of [16]) we get that
the topological dimension of P(x) is at least (n — 2). O

The definition of the bounded representation of the bisector is:

DEFINITION 2.1.6 ([4]). Let z be a point of B(—x,x). If it is an ordinary point, then there is a
unique value 1 < t, < oo for which z € (t,S+xz)N(t,S—x). Let & : B(—z,2) — K denote the
mapping which sends z into ®(z) = iz We extend ® to the ideal points by the following rule:
The image of an ideal point is its radial projection. Denote the image set of ® (with respect to
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this extended mapping) by ®(B(—x,x)). We will call this set the bounded representation of the
bisector.

Geometrically the bounded representation of
the bisector is well-handing as we can see from
the following proposition:

PROPOSITION 2.1.2 (|4]). The bounded rep-
resentation of the bisector is the union of the
shadow boundary of K and the locus of the
midpoints of the chords of K parallel to x.

PROOF. For an ordinary point z of the bisec-

tor we have 1 < t, < oo, and thus the norm

of iz = %(i(z—x)jti(z—i—x)) is less or

2,58+x
equal to 1. If it is equal to 1, then the point
—z is a point of a horizontal segment (paral-
lel to x) of the boundary and thus a point of
the shadow boundary, and the set of all points
corresponding to the value ¢, yields a horizon-
tal segment of S. If now ¢ > t,, the points of
the bounded representation corresponding to
this value t form another segment containing
the segment of £,. Thus the directions deter-
mined by the points of the segment of £, are
ideal points of the bisector, proving that the
points of the shadow boundary are images of
certain ideal points.

In the other case the obtained point is the
midpoint of that chord whose endpoints are

2,58-x

FIGURE 2.11. Bounded representation of the
bisector

(2 —12) € Sand (2 + ) € S, respectively.
NOW by the deﬁnltlon of ideal points, the continuity of the mapping is clear. In fact, we have
to check that the image of a point of the bisector with large norm is close to the boundary S
of K. Since, by definition, ¢, is equal to ||z — ||, we have the two inequalities

1 I 1 1
1> ||z = =

R PR R o

showing that for z with large norm its bounded representation is close to S. To visualize the
proof, we show in Fig. 2.11 the bisector and its bounded representation in a two-dimensional
space. ]

James in [93] proved that a Minkowski space is Euclidean if and only if all of the bisectors con-
tained in an (n — 1)-dimensional subspace. Proposition 2.1.2 implies immediately the following

COROLLARY 2.1.3 ([4]). The bounded representation of the bisector B(x, —x) with respect to
any point x from the unit sphere of a Minkowski space is contained in an (n — 1)-subspace if
and only if the Minkowski space is Euclidean.

Finally we prove the following theorem:

THEOREM 2.1.15 ([4]). If the bisector is a manifold of dimension (n—1) with boundary, then its
bounded representation is homeomorphic to the (n—1)-dimensional closed ball B*'. Conversely,
if the bounded representation is a topological ball of dimension (n—1), then the extracted bisector
is of the same type. Furthermore, its relative interior (which is the set of its ordinary points)
is a topological hyperplane of dimension (n — 1).
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PROOF. Assume that the bisector is a manifold of dimension (n — 1) with boundary. Then an
ordinary point has a relatively open (n — 1)-dimensional neighborhood in the bisector, and thus
there are interior points. On the other hand, there is no ideal point which could be in the relative
interior of the bisector implying that the set of ordinary points of the bisector is a manifold
of dimension (n — 1). Hence our assumption implies that the shadow boundary S(K,z) is a
manifold of dimension (n — 2). In fact, from Theorem 2.1.13 and Theorem 2.1.11 we get that
the shadow boundary is also a topological manifold of dimension n — 2. Theorem 2.1.10 says
that it is homeomorphic to S" 2. On the other hand, the set C of midpoints of correspondingly
directed chords containing interior points of K is always homeomorphic to the positive part
St of the boundary S of K, determined by the shadow boundary. Thus it is homeomorphic
to R". Finally we observe that the boundary of the latter set C is the shadow boundary
itself, showing that the bounded representation of the bisector is homeomorphic to B"~!, as we
stated.

We remark that the converse statement is true if and only if the manifold property of the
bounded representation can be extended to the bisector. This is clear for the points mapping to
the interior of K, but it is not evident for other points of the bisector. The problem is that the
pre-images of a point of the shadow boundary could form a point or a half-line, respectively.
Thus @ is not an injective (but, of course, a surjective) continuous mapping. Clearly, both of the
two sets (the bisector and its bounded representation) are continua, i.e., compact, connected
Hausdorff (75) spaces. Moreover, the points and half-lines are cell-like sets; thus @ is a cell-like
mapping. Restricting ® to the ideal point of the bisector, we get a bijective mapping onto
the shadow boundary. We prove that the set of ideal points is compact in the bisector. It is a
proper part I of S"! bounding the topological ball B". Hence this point set can be regarded
as a subset of an (n — 1)-dimensional Euclidean space R"~1. (We can consider ., as the center
of a stereographic projection.) Its clear that I is bounded. It is also closed by its definition,
and so it is compact by the Heine-Borel theorem on compact sets in R”~!. On the other hand,
the shadow boundary can also be regarded as an (n — 2)-sphere embedded into a Euclidean
(n—1)-space, because x is not a point of it. A continuous and bijective mapping from a compact
set of R" ! into R"~! is a homeomorphism (see again [96]). Thus the ideal points of the bisector
give a topological (n — 2)-dimensional sphere.

Now we prove that the ordinary points of the bisector are, with respect to its relative topology,
interior points of it. We remark that it is trivial for a point z € B(—z, z) if ®(z) is an interior
point of K, because ® (by its definition) is a homeomorphism on the collection of such points
onto the interior of the bounded representation of the bisector. Thus it is also relatively open
with respect to the bisector, and this part of the bisector is a topological manifold, homeomor-
phic to R*~1.

Let now ®(z) belong to the shadow boundary. Since it is a topological sphere of dimension
n — 2, there is a cell of dimension n — 2 (a homeomorphic copy of a closed ball of dimension
n—2), namely Z, containing ®(z) in its interior. The pre-image ®~!(int B) of the interior int B
of B is (by the continuity of ®) open with respect to the topology of the bisector and contains
z. Thus it has also an interior point with respect to the topology of the bisector.

Finally we observe that from the compactness of B the existence of an ¢ follows for which the
set {v:|z]] —e < |jv|| < ||zl —&,v € ®H(B)} is a closed cone (truncated by two parallel
surfaces) containing z in its interior. Since the interior of this body is homeomorphic to R" !,
we get that the set of ordinary points is a manifold of dimension (n — 1). In the proof of
Theorem 2.1.13 it is shown that if the ordinary points of the bisector yield an (n — 1)-manifold,
then it is homeomorphic to R"~!, and Theorem 2.1.14 there establishes that it is a topological
hyperplane. Thus we proved that the closed bisector is a cell of dimension (n—1) whose interior
can be embedded in the n-dimensional Euclidean space in a standard (unknotted) way, as we
stated. O
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2.2. Adjoint abelian operators and isometries

A generalization of the inner product and the inner product spaces (briefly i.p spaces) was
raised by G. Lumer in [108|.

DEFINITION 2.2.1 ([108]). The semi inner-product (s.i.p) on a complex vector space V' is a
complex function [z,y] : V x V. — C with the following properties:

sl: [z 4y, 2] = [z, 2] + [y, 2],

s2: : [A\x,y] = Mz, y] for every X\ € C,

$3: :[z,z] >0 when z #0,

sd: ¢ |[z,y]]* < [z, ][y, y],
A wector space V with a s.i.p. is an s.i.p. space.

G. Lumer proved that an s.i.p space is a normed vector space with norm ||z|| = \/[z, ] and, on
the other hand, that every normed vector space can be represented as an s.i.p. space. In [64]
J. R. Giles showed that the following homogeneity property holds:

s5: : [z, \y] = Az, ] for all complex .
This can be imposed, and all normed vector spaces can be represented as s.i.p. spaces with this
property. Giles also introduced the concept of continuous s.i.p. space as an s.i.p. space having
the additional property

s6: : For any unit vectors z,y € S, Re{[y,z + A\y|} — Re{[y, z]} for all real A — 0.
The space is uniformly continuous if the above limit is reached uniformly for all points x, y of the

unit sphere S. A characterization of the continuous s.i.p. space is based on the differentiability
property of the space.

DEFINITION 2.2.2 (|64]). A normed space is Gateauz differentiable if for all elements x,y of
its unit sphere and real values X\, the limit

Nl Ayl — [l

m

,l\lao A

exists. A normed vector space is uniformly Frechet differentiable if this limit is reached uniformly
for the pair x,y of points from the unit sphere.

Giles proved in [64] that an s.i.p. space is a continuous (uniformly continuous) s.i.p. space if
and only if the norm is Gateaux (uniformly Fréchet) differentiable. In the second part of this
dissertation we need a stronger condition on differentiability of the s.i.p. space. Therefore we
define the differentiable s.i.p. as follows:

DEFINITION 2.2.3 ([8]). A differentiable s.i.p. space is an continuous s.i.p. space where the
s.i.p. has the additional property:
s6’: For every three vectors x,y,z and real \
R Az} — R
o () ety Bl A2]) — Re((r o))
A—0 A

does exist. We say that the s.i.p. space is continuously differentiable, if the above limit, as a
function of y, is continuous.

First we note that the equality Im{[x,y]} = Re{[—iz,y|} together with the above property
guarantees the existence and continuity of the complex limit: limy_.¢ leytrz—fa] Analogously to
the theorem of Giles (see Theorem 3 in [64]) we combine this definition with the differentiability

properties of the norm function generated by the s.i.p..

THEOREM 2.2.1 ([8], [9]). An s.i.p. space is a (continuously) differentiable s.i.p. space if and
only if the norm is two times (continuously) Gateauz differentiable. The connection between the
derivatives s

Re[z, y|Re[z, y] '

Iyl 1152 () = [, 12 (y) — e




dc_1387 17

2.2. ADJOINT ABELIAN OPERATORS AND ISOMETRIES 45

We need the following useful lemma going back, with different notation, to McShane [119] or
Lumer [109].

LEMMA 2.2.1 ([109]). If E is any s.i.p. space with x,y € E, then

Iy I1CE- 11 ()™ < Re{[z, y]} < llyll(l - 117 (y)"

holds, where (|| - ||>.(v))~ and (|| - ||.(y))" denotes the left hand and right hand derivatives with
respect to the real variable \. In particular, if the norm is differentiable, then

[yl = Nyl 12 @)) + [ 1 ()}

Now we prove Theorem 2.2.1.

PROOF. To determine the derivative of the s.i.p., assume that the norm is twice differentiable.
Then, by Lemma 2.2.1 above, we have

Re{[z,y + Az} — Ref{[z.y]} _ [ly + A=l(I]- 2 (y + A=) — [yl - 15 (%) _

A A
_ lyllly + A2l (4 A=) = Iyl e @) o 1y + Az gl e @y + A2) = Tyl 112 ()
Allyll B Ayl ’
where we have assumed that the sign of M is positive. Since the derivative of the norm

is continuous, this follows from the assumption that M is positive. Considering the latter

condition, we get
Re{[z,y + A2]} — Re{[z, ]}
A
On the other hand,

ly + A=l llz (v + A2)) — lylldll- Nz (@) lly+ Az| (1 2y + A2)) — [y, y + A2J[(] - [12(v))

l(y +A2) = (I - lo(y) | Relz.y]
Alyll [yl

|-
> lyll* 5@y + Az).

A AMly + Az|]
ly + X220 - 1%y +22)) = (] - 1% () (- I%()

= = = + ARe[z,y + \z| ——E=,
Ay + Az 2,y ]/\||y+>\z||

Analogously, if W is negative, then both of the above inequalities are reversed, and we get
that the limit lim Bellzvtrzll=Relleal} ovigts and equals to

A0 A
Re[z, y|Re[z, y]
Iyl 117 () + SR
Iy
Here we note that also in the case M = 0 there exists a neighborhood in which the sign of
[l (y+A2)

the function
consider the fraction

is constant. Thus we, need not investigate this case by itself. Conversely,

- o+ 22) = (1 - [(w))
Iy . .

We assume now that the s.i.p. is differentiable, implying that it is continuous, too. The norm is
differentiable by the theorem of Giles. Using again Lemma 2.2.1 and assuming that w > 0,
we have
HMM-M@+A@—(WHﬂw):Rdny+A4MH—R%umm+Aﬂ::
A AMly + Az]]
_ Refr,y + AZ]|lyll* = Refe, yllly + Az[lllyll _ Refe,y + Az]lly[l* = Relz, yllly + Az yll _
Mlylllly + Azl B Mlylllly + Azl
_ Re{lz,y + Az]} —Reflz,yl} |yl Relz,y|Relz,y]

A ly+ Azl lyllly + Azl
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On the other hand, using the continuity of the s.i.p. and our assumption Relew] similarly

)

as above, we also get an inequality:

N'M@+A@—%WHMQ)>Rdhw+kdk—&ﬂLM}_Rd%y+X$%kw+A4
A B A ly + Az|? '

If we reverse the assumption of signs, then the direction of the inequalities will also change.
Again a limit argument shows that the first differential function is differentiable, and the con-
nection between the two derivatives is

Iyl 17, () = [, [2(y) =

ly]

Re[z, y|Re|z, y]
y|? '

4

2.2.1. Characterization of adjoint abelian operators in Minkowski geometry.
Stampfli in [136] has defined a bounded linear operator A to be adjoint abelian if and only if
there is a duality map ¢ such that A*p = pA. So evidently, A is adjoint abelian if and only
if A = A" thus the adjoint abelian operators are in some sense "self-adjoint" ones. Langi in
[101] introduced the concept of the Lipschitz property of a semi inner product and investigated
the diagonalizable operators of a Minkowski geometry {V, || - ||}. He said that the semi inner
product [-, -] has the Lipschitz property if for every x from the unit ball there is a real number
r such that for every y and z from the unit ball holds |[z,y] — [z, z2]| < k|y — z||. We note
that from the differentiability property for the semi inner product (defined first in [8|) follows
the Lipschitz property of the product, too. Let A be a diagonalizable linear operator of V', and
let \y > Ao > ... Az > 0 be the absolute values of the eigenvalues of A. If )\; is an eigenvalue
of A, then E; denotes the eigenspace of A belonging to )\;, and if ); is not an eigenvalue, set
E; = {0}. E; defined similarly with —); in place of );. The main result in [101] is the following.

THEOREM 2.2.2 ([101]). Let V' be a smooth finite-dimensional real Banach space such that the
induced semi inner product [-,-] satisfies the Lipschitz condition, and let A :' V. — V be a
diagonalizable linear operator. Then A is adjoint abelian with respect to [-, -] if, and only if, the
following hold.
(1) [-,-] is the direct sum of its restrictions to E; =1in{E; UE_;}, i =1,...,k;
(2) for every value of i, the subspaces E; and E_; are both transversal and normal (meaning
that they are mutually orthogonal in the sense of Birkhoff orthogonality);
(3) for every value of i, the restriction of A to Ej; is the product of \; and an isometry of
E;.

Using an observation from [8] and Corollary 3 from [101], we get that — by the assumption
of the theorem — if no section of the unit sphere with a plane is an ellipse with the origin as
its centre, then every diagonalizable adjoint abelian operator of X is a scalar multiple of an
isometry of V. This motivates the following definition:

DEFINITION 2.2.4 ([5]). A Minkowski n-space is totally non-Euclidean if it has no 2-dimensi-
onal Euclidean subspace.

Now the corollary above says:

COROLLARY 2.2.1. In a totally non-Fuclidean Minkowski n-space every diagonalizable adjoint
abelian operator is a scalar multiple of an isometry.

The following theorem describe the structure of a real adjoint abelian operator.

THEOREM 2.2.3 ([5]). Let V' be a smooth finite-dimensional real Banach space with the induced
semi inner product [-,-]. If A is adjoint abelian with respect to [-,-] then V' can be decomposed
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to the direct sum of A-invariant subspaces of dimension at most two. Restricting A to a 2-
dimensional component it i1s a generalized dilatation defined by the matrix

- cose singp i
[Altin{as b} ] (asbe} = || ( _sing cosyp ) where |\ € RT and 0 < ¢ < 27

and the basis {as, bs} holds the equalities [as, as] = [bs, bs] = 1, [as, bs] = [bs, as] = 0.

PROOF. First we prove that if A is an adjoint abelian operator and U is an A-invariant subspace
then the orthogonal complement U+ := {v € V' | [v,u] =0 for all u € U} is also A invariant,.
In fact, for a v € Ut we have [A(v),u] = [v, A(u)] = 0 for all u € U proving this statement.
From this it follows a decomposition of the space V to the direct sum of minimal invariant
subspaces V; with the property VX D V; for all j > i. From the fundamental theorem of algebra
it also follows that the dimension of V; is at most 2.

Assume that Z is a 2-dimensional minimal invariant subspace of A ;g V' —r V implying that
it does not contain real eigenvector of A. Hence for every vector z € Z the pair of vectors z and
A(z) form a basis in Z. Thus the equality A?(z) = vz + dA(z) also holds. Since this equation
also valid if we substitute into A(z) in the variable vector z we get that the polynomial equation
A% = 4T 4+ 6A holds on Z. Set § = 2a then we get the equation (A — al)* = (a? 4 §)1. Since
there is no real eigenvalue of A on Z we get that (a? + §) < 0 say —(2. Thus we have a
polynomial equation of second order of form (A — a[)2 = —f32] is valid on Z.

Let ¢Z be the two dimensional complex vector space on the vectors of the additive commutative
group Z, defined by the set of linear combinations

{&fi+Cfe {f1, fo} is a basis of gZ and §,( € C}

We can decompose the minimal polynomial (z — a)2 + (% to linear terms by the identity
(x—a)’ + 2 = (x —a— i) (x —a+ Bi). Hence we can correspond two complex eigenval-
ues A = a + Bi and X = a — Bi of the extracted complex linear operator A ‘c 4 —¢ 2.
(Note that with respect to the basis {fi, fo} the complex operator A has the same (and real)
coefficients as of the real linear operator A.) In ¢Z for the eigenvalues A and A have distinct
eigenspaces of dimension 1. These complex lines generated by the complex vectors

u=E§f1+Cfa=(oq + Bii) fi + (o + B2i) f1 = (arfi + aafa) + (Bifi + Bafe) i =: a+ bi,

and its conjugate u = a — bi, respectively. (Here a,b €g Z.) We say in this case that \ is a
complex eigenvalue of the real linear operator A with complex eigenvector u. We identify the
one-dimensional complex eigenspace of u with the two dimensional real subspace generated by
a and b with the mapping F :c< u >—g £

E((x +yi)(a+bi)) :=R((x +yi)(a+bi)) + I((z + yi)(a+ b)) = (x + y)a+ (x — y)b.
We note that F is a bijective mapping. In fact, if z4+y =2’ +¢ and x —y = 2’ —y/ then z = 2/
and y = ¢’ and there is an unique solution of the equation system r = x +y and s =z — y
itisz = (r+s)/2, y = (r — s)/2. From this follows that we can assume that a and b gives
an Auerbach basis? of Z meaning in the rest part of this proof that [a,a] = [b,b] = 1 and
la,b] = [b,a] = 0.
Let now a complex eigenvalue of A is A. Denote by E the complex eigenspace (of dimension d)
corresponding to A\. Then ) is an eigenvalue with the eigenspace F, where E = {u u € E}.
If {uy,...,uq} is a complex basis of E then {uy,..., %} is a basis of E. Assuming that u, =
as + byi and A = o + 34, we get that T, = a, — byi and A\ = o — [34. Since

Alas) + A(bs)i = A(ug) = Mg = (as — Bbs) + (Bas + abs) i,

A is invariant on the real subspace E = lin{as,bs s = 1,2,...d} which we call the real
invariant subspace associated to A. Its clear that for the eigenspace E we can associate the

same invariant subspace. Since the vectors u, = a5 + bt s = 1,...,d form a basis of the

2See the precise definition before Theorem 3.1.2.
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complex subspace E, the vectors {as,bs s = 1,...,d} form a real generator system of E
implying that the dimension is at most 2d. Consider a pair of real vectors ag, bs. If by = Aa,
then

as(ov — AB) + as(B + aN)i = (asa — by ) + (asf + aby) i = A(as + bsi) = (1 +iX)A(as) =
= (14 iNas(a — A\B) = as(a — \B) + idas(a — \S),
implying that
B+ a\ = la — \B.
Since A # 0 it follows that § = 0 which contradict by the fact that A\ is not a real number.
This shows that every pairs {as, bs} are independent vectors. Thus the complex eigenspace of
dimension d is isomorphic to that real space of dimension 2d which is the direct product of its
two dimensional subspaces generated by a, and b,.
Hence the adjoint abelian operator A invariant on the real plane lin{a, b} and with respect
to the basis {as, bs} it has the matrix representation:

A= o By oy s s ) s,
—Br . —sing cosy v

where | - | means the absolute value of a complex number and ¢ is the argument of \. U

We note that F, is also an adjoint abelian operator on that plane, we call it generalized rotation
with respect to the basis {as, bs}. In fact, |[A\| # 0 because A is not real. Thus we have

1

1
Uuﬁmzﬁﬂﬂﬁ@whjﬂMMWMHIM&@ﬂ

EXAMPLE 2.2.1. To get a generalized rotation consider an inner product plane defined by the
unit circle (3)2 + (%)2 = 1. The product is [v, 2] = [z1e + Y1 f, 22e + Yo f] = ©5* + 442, and a
required basis is {ae, bf }. The generalized rotation is in the Euclidean orthonormal basis {e, f}

is
0 cosp sing a 0 cosp  Lsing
Fo = i —sin 0 b )\ —og f '
, © cosp ;sing  cosp

It is an isometry because it sends the unit disk into itself, however it is not adjoint abelian
operator because of [F,(e), f] = —% sing # L sing = [e, F,,(f)]. O

|

e

We suspect the following:

CONJECTURE 2.2.1 ([5]). From Theorem 2.2.2 (or Theorem 1 (and Corollary 2) in [101]|) we
can omit the assumption "diagonalizable”. More precisely every adjoint-abelian operator of a
smooth Minkowski space is diagonalizable.

In the case of [, spaces this conjecture is true:

THEOREM 2.2.4 ([5]). Let 1 < p < oo be a real number. In a finite-dimensional real l,, space
every adjoint abelian operator is diagonalizable.

PROOF. Observe that for an [, space the statement is true because of the semi inner product is
an inner product. Consider the Euclidean plane with the [, norm 1 < p < co. The corresponding
semi inner product (see in [64]) can be defined by the equality

1
[z, 0] = [z1a5 + y1bs, T2as + y2bs| = W/ s1|soP tsgn(sy)dp =
21|lp X

1
- = (1|2 sgn(z2) + yilye [ sgn(y2)) |
(lz2f? + |yalP) 7
where {as, bs} is an orthonormal basis in the Euclidean sense and Auerbach basis with respect
to the [, norm associated to the above product. Now we have the formulas
[Fp(2),0] = - ((cos iy +singys s sgn(za) + (cos pys — sin gy |yal"sen(ye) .
(Jz2]? + |y2|) 7
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and

(2 ()] = (z1| €08 T + sin @Yo [P~ tsgn(cos o + sin pys) + y1| cos pys — sin s [P~ tsgn(cos pys — sin gpxg))
L - p=2 :
(| cos pxa + sin pya|P + | cos pys — sin paa|P) »

For ¢ = m/2 we get that

[Fo(2), 0] = : = (yilw2 P sgn(2) + (—a1) |yl sgn(ys)) = — [z, Fy (v)]
(2P + |yal?)
holds for all z and v. Since [F,(z),v] = [z, F,,(v)] also holds for all z and v, we get that Fi,(z) =0
for all z giving a contradiction. Thus ¢ # /2 for an adjoint abelian generalized rotation.
If ¢ = then F,(v) = —v and it is diagonalizable for all p.

Finally if ¢ = 37/2 then

1 - B
[Fp(2),v] = — (y1]@a]""sgn(xa) + 1[yo|” 'sgn(ys))

(P + |y2[P) 7

and
1

2, Fyp(v)] = =) (y1|2]?"sgn(z2) — z1|y2|'sgn(ys))
(lz2 P + |yaf?) 7
providing the strict inequality [F,(z2),v] > [z, F,,(v)] for z and v with positive z; and y,. This
is a contradiction, too.
For general (and fixed) ¢ we get the equality

—2
(| cos pxa + sin pya|? + | cos py2 — sin gaz2|p)p7 ((cos gz + sin yr) |22|P~ 'sgn(z2)+

p—2

+(cos py1 — sin 1) |y2[P sgn(y2)) = (|22 + [y2[P) 7 (21| cos paa + sin pys [P sgn (cos g + sin pyo) +
+y1| cos pys — sin pxa P~ sgn(cos pyo — sin prs)) |
which holds for all z and v.
First we substitute xo = 12 and y; = 0 into this equality and we get:

|22|%P73 (| cos ¢ + sin ¢|? 4 | cos p — sin cp|p)p772 x1sgn(xe)(cos p — sin p) =

= |25|*P 73| cos ¢ + sin [P~ 2 sgn(2;)sgn(cos ¢ + sin @),

implying the other equality

(| cos ¢ + sin p|P + | cos p — sin g0|p)% (cos ¢ — sin ) = | cos ¢ + sin [P~ 'sgn(cos ¢ + sin ).
From this immediately follows that either cos ¢ £ sin¢ > 0 or cos ¢ +sinp < 0.
We can also substitute the equalities yo = 0 and x; = y; into the original equality. This leads
to the equality:

(|cospl? 4+ | —sin g0|p)% (cos ¢ +sin ) = | cos ¢|P~tsgn(cos ) + | — sin [P~ tsgn(— sin ).
Now from the assumption cosp £ sinp > 0 it follows that sgn(cosy) = 1 and we have two
possibilities. If sgn(—sin ) = —1 then we get

(1+ (tamgo)p)%2 (14 tanp) = 1 — (tan )P .

p—

Let f(p) := (1 + (tan go)p)72 (1+tan ) —1+ (tanp)?~! be a function of p for a fixed admissible
@. It is clear that lim, .. f(p) = tany and a short calculation shows that for p > 2 it is a
non-increasing function which at p = 2 is 2tan ¢ hence for p > 2 we get that f(p) > 0. The
function f(p) on the interval 1 < p < 2 is concave showing that f(p) > min{f(1), f(2)} > 0.
Thus there is no p and ¢ for which this equality can be hold.

If sgn(—sin ) = 1 then we get the equality

(14 |tang?)’5 (1— [tang|) = 1+ |tanp|’~",
and the function

p—
P

J() = 1+ [tangP " — (L+ [ tan o) (1= [ tang]) > 1+ | tanpP ™" — 1 — | tan p]?
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is a positive one for 1 < p < oo, since |tan | < 1.

Thus remains only one possibility which could give a non-trivial adjoint abelian generalized
rotation in an [, space (for certain p) when we assume that cos¢ £ sinp < 0. In this case
sgn(cos ) = —1 and | cos | > | sin¢|. However in this case the substitution y, = 0 and x; = y;
leads to the same equalities as in the previous one leading to the same contradictions. Thus
there is no non-diagonalizable adjoint abelian generalized rotation in an real [, space of finite
dimension, as we stated. O

We note that in the case of a Minkowski geometry we got a new proof for the known fact that
every adjoint abelian operator on L, (1 < p < oo, p # 2) is a multiply of an isometry (see in
[61]).

2.2.2. Characterization of isometries in Minkowski geometry. A Banach space
isometry is a linear mapping which preserves the norm of the vectors. As it can be seen easily,
the following theorem holds.

THEOREM 2.2.5 (|97]). A mapping in a smooth Banach space is an isometry if and only if it
preserves the (unique) s.i.p..

Thus, if the norm is at least smooth, then the two types of linear isometry coincide. On the
basis of the results of Stampfli [136] we have two corollaries:

COROLLARY 2.2.2 (|97]). In any smooth uniformly conver Banach space, U is an invertible
isometry if and only if U= = UT. As a result if in addition U~' = U then U is scalar.

Stampfli has defined an operator U to be iso-abelian if and only if there is a duality map ¢
such that ¢U = (U*) 1.

COROLLARY 2.2.3 (|97]). In a smooth Banach space U is iso-abelian if and only if it is an
invertible isometry.

The above statement was extended to include the non-smooth case in [98]. Precisely:

THEOREM 2.2.6 ([98]). Let V' be a normed linear space (real or complex) and U be an operator
mapping V into itself. Then U is an isometry if and only if there is a semi inner product [-, -],

such that [U(z),U(y)] = [x,y] for all x and y.

As a corollary of this theorem was proven the following:

COROLLARY 2.2.4 (|98|). U is iso-abelian if and only if it is an invertible isometry.
For our characterization important the following result:

THEOREM 2.2.7 (|98]). A finite dimensional eigenspace of an isometry has a complement in-
variant under the isometry.

For the construction can be seen that this complement is orthogonal to the given eigenspace
of the isometry with respect to that semi inner product which preserved by the isometry.
Since every linear mapping there is at least one (complex) eigenvalue hence a complex finite-
dimensional Banach space is an orthogonal direct sum of eigenspaces of a given isometry (See
Corollary 4 in [98].) For the real case we get analogously the following statement:

THEOREM 2.2.8 ([5]). Let V' be a finite dimensional real Banach space, U : V. — V be an
isometry on V', and [-,-] is a semi inner product preserved by the isometry U. Then there is a
decomposition of the space of form V=V & .. . V,a V1 &... &V, @&V B ... B Vi, where
Vi 1 <@ <1 are U-invariant mutually orthogonal eigenspaces of dimension 1 if 1 <1 < s the
corresponding eigenvalue is 1 and for s <i <[ the common eigenvalue is —1; moreover (n —1)
is even and the subspaces Vi1, ...,V are 2-dimensional U-invariant subspaces all of them
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are orthogonal to the 1-dimensional ones. Restricting U to a 2-dimensional component it is a
generalized rotation with respect to an Auerbach basis {as,bs} defined by the matriz

Al | [ cosp sing
lln{as 7b8} {as,bs} o - Sln SO cos (’0

PROOF. Since V is an orthogonal direct sum of the eigenspaces of U we have n mutually
orthogonal eigenvectors of U, say uq, ..., u,. Since X is a finite dimensional real Banach space
the eigenvalues Ay, ..., \; corresponding to uy, ..., u; are real numbers and the rest eigenvalues
Al41, - - - Ap are complex ones.

First examine the eigenvalues Ay, ..., \;. Since U is an isometry we have only two possibilities
for its values, these are 1 and —1. We can assume that \; = --- = A; =1and \;;; =--- =
A, = —1. In the subspace generated by the first s eigenvectors every vectors are eigenvectors
with eigenvalue 1 thus we can choose uy, ..., us as the elements of an Auerbach basis (hence
there are mutually orthogonal vectors). We choose the basis {usy1, ..., u;} analogously from the
eigenspace of eigenvalue —1. Since two eigenvectors corresponding to distinct eigenvalues are
mutually orthogonal to each other, we get the orthogonality property of the statement about
the first [ eigenspaces.

Assume now that A\jyo,—1) = Ay holds for » = 1,...,(n — 1)/2. Consider again the vec-
tors uj(2r—1) = Qy2r—1) + bip@r—1)i and scalars A (2,—1) = Qi(2r—1) + Bir@r—1)t such that
Ui 2r—1y) = Nig2r—1)W+(2r—1)- (See the analogous construction in the proof of Theorem
2.2.3 on adjoint abelian operators.) The real subspaces lin{aH(Qr,l),bH(Qr,l)} are invariant
with respect to U and have dimension 2. Since A2, = qqyor—1) — Bir@r—1i and upo, =
Qryor + bigart = Ay (2r—1) — biy(2r—1)% We also have that lin{a;; o, bor } = lin{aiy 2r—1), i 2r—1) }-
Hence Vi or—1) = Vigor = lin{ais2r—1), biy2r—1)} is an eigenspace of dimension at most 2. The
case, when by (o,—1) = @aq(2,—1) With real o implies that a1y is a real eigenvector with
complex eigenvalue ); is impossible thus we get the decomposition of the statement. Since the
equality [ajy(2r—1) + bip2r—1)%, u,| = 0 implies the respective equalities [a;4(2,—1),u,] = 0 and
(b4 (2r—1), ur] = 0, the last statement on orthogonality is also true. Finally from the U-invariant
property it follows that U restricted to a 2-dimensional invariant subspace is a generalized di-
latation (see Theorem 2.2.3). On the other hand U is an isometry thus |\ (o—1)| = 1 for all r
hence it is a general rotation as we stated. U

) where 0 < p <27

REMARK 2.2.1. We note that there are non-diagonalizable general rotations which are also
isometries. In an l, space of dimension 2 for the general rotation Fy» we get Fw/g(xlaﬁylbs) =
(thas — x1bs) and Frjo(x2as + y2bs) = (Y2as — x2bs) showing that

1 _ _
[Fr 22, Frpav] = — (n1lyal?sgn(ys) — 21| — 2of? sgn(—x,)) =

(ly2lP + | = 2fP) 7

1 _ _
= — (n1lyal?sgn(ys) + 21|22 P 'sgn(z,)) = [z, v].

(P + |yalP) 7

2.2.3. The group of isometries. In geometric algebra, one studies the properties of cer-
tain algebraic entities that can be directly linked with geometric objects, and analyses how their
(algebraic) properties relate to geometric properties of the underlying geometry under investi-
gation. This approach will be applied here to the study of "strictly convex" Minkowski spaces.
It is particulary interesting to characterize their group of isometries or related transformation
groups. Although the lines of strictly convex non-Euclidean Minkowski planes are just their
affine lines, the group of their isometries is small. Namely, it is the semi-direct product of the
translation group by a finite group of even order which either consists of Euclidean rotations
or is the dihedral group. This nice fact was proven by several authors (see in [62],[140| and
[114]).

THEOREM 2.2.9 (]62],[140],[114]). If (V| - ||) is a Minkowski plane that is non-Euclidean,
then the group Z(2) of isometries of (V.|| - ||) is isomorphic to the semi-direct product of the
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translation group T (2) of R* with a finite group of even order that is either a cyclic group of
rotations or a dihedral group.

In higher dimension it is possible for the group of linear isometries to be infinite without the
space being Euclidean (e.g. if the unit ball is a elliptic cylinder in R?). The proof can be found
in [140] uses the concept of Lowner-John’s ellipsoids. John’s (Léwner) ellipsoid of the unit ball
C'is the unique ellipsoid with maximal (minimal) volume contained (circumscribed) in (about)
it. It is clear that every isometries which leave invariant the unit ball is also send these ellipsoids
into themselves, respectively. A nice consequence of this fact (proved first by Auerbach in [18])
is the following:

COROLLARY 2.2.5 (|140],[18|). If the isometry group of a Minkowski space is transitive on the
unit ball of the space then the unit ball is ellipsoid and a space is Euclidean.

On the other hand Gruber in [73] shows that for "most" cases the group of isometries is finite.
It follows from the fact, that in "most" cases a Minkowski unit ball meets the boundary of the
Lowner ellipsoid in d(d+ 1)/2 pairs of symmetric points. (See in [73].) Using again the concept
of John’s ellipsoid we can prove a similar result which is also a generalization of Theorem 2.2.9.

THEOREM 2.2.10 ([5]). If the unit ball B of (V.|| - ||) has no intersection with a two-plane
which is an ellipse, then the group Z(3) of isometries of (V.| - ||) is isomorphic to the semi-
direct product of the translation group T (3) of R with a finite subgroup of the group of linear
transformations with determinant £1.

PROOF. Since at any point of V' there exists a point reflection that is an isometry of (V.| - ||),
the group Z(n) contains the semi-direct product of 7 (n) with a point reflection. Since Z(n)
is a closed subgroup of the Lie group of the affinities, the translation group 7 (n) is a normal
subgroup of Z(n) and Z(n) is a semi-direct product of 7 (n) with the stabilizer Z(n), of the
point 0 in Z(n) leaving the unit ball B invariant. On the other hand every isometry of V' is also
an affine isometry thus the elements of Z(n), are in the special linear group of order n, too (see
[62]).

For n = 3 from Theorem 2.2.8 we get that an isometry has at least one eigenvector and we
have two possibilities, either it is diagonalizable operator or it is not. In the second case it
has a minimal invariant subspace of dimension 2. Let Z, be the subgroup of Z(3), containing
those isometries which fixed the 1-dimensional subspace of x. Then the 2-dimensional subspace
orthogonal to x is also invariant with respect to the elements of Z, (see Theorem 2.2.8). By
Theorem 2.2.9 the group Z, is a finite of even order that is a cyclic group or a dihedral group.
Consider now the John’s ellipsoid E ([140]) of the unit ball B. The concept of John’s ellipsoid
is affine invariant hence without loss of generality we can assume that E is an Euclidean ball
inscribed into the suitable affine copy of B (which for simplicity we also denote by B). (Now
the investigated isometries are elements of O(3).) Consider the group G of elements of Z(3)
belonging to SO(3). Taking into consideration that the "determinant" map det : Z(3)o — {£1}
is a surjective group homomorphism whose kernel G has index 2 in Z(3)o, so that, G is finite if
and only if Z(3), is so. Let a point x is a common point of the boundary S of B and the boundary
of E. (Of course such a point is exist.) Let denote by St the closed half sphere containing =
and bounded by the hyperplane orthogonal to x through the origin. If the group G is infinite
then the orbit of x is also contains infinitely many distinct points of form T;(z) € bd ENS™
where T; € Z(3)p. Since bd E N ST is compact for every k& € N there is two indices i # j
such that ||T;(x) — T;(«)|| < 1/k implying that ||} 'T;(z) — x| < 1/k. Consider the isometry

Tj_lTi € SO(3). Hence Tj_lTi is rotation about an axis say x,. Thus the points (Tj_lTi)l (x)
for [ € N are on a two dimensional intersection of bd E, so they are also on a circle Ej. This
circle through the point x contains a set of points of S with successive distance at most 1/k
forming an 1/k-net on it. Let denote by y; the unit normal vector of the plane of Ej directed
by S*. The set Y := {yx k € N} is infinite and hence it has a convergent subsequence (yy,)
with limit y. Consider now the circle E(x,y) defined by the intersection of E with the plane
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through z and orthogonal to y. It has the property that if 2 € E(z,y) that for every € > 0
there is a point u of bd E NS such that ||z — u|| < e. This implies that F(z,y) C bdENS
giving a contradiction with our assumption. Thus the group Z(n), is finite and the statement
is true. U

REMARK 2.2.2. We note that we proved the finiteness of the point group from a stronger as-
sumption that of the "totally non-FEuclidean” property. A method using Lowner-John ellipsoids
can not be applied to prove a more general statements on this direction because of there are
Minkowski spaces which are totally non-Euclidean but the intersection of the John’s ellipsoid of
its unit sphere contains ellipse. For a simple example, consider an FEuclidean unit ball B and
one of its great circle S. Let H(2n,e) be a regular polygon circumscribed to (1 4 £)S with 2n
vertices. Now define the unit ball B(n,e) := conv{BU H(2n,¢)}. It is clear that the Minkowski
space with unit ball B(n,e) is totally non-Euclidean however for small € and for large n the
John’s ellipsoid of B(n,e) is B, hence bd C(n,e) N'bd B contains circle.

This motivates the following problem:

PROBLEM 2.2.1. Is it true or not that if for n > 3 the Minkowski n-space is totally non-
Euclidean one (see Definition 2.2.4) then its isometry group Z(n) is a semi-direct product of
the translation group T (n) with a finite subgroup of SL(n)?

2.3. Conics and roulettes in Minkowski planes

The following section contains investigations on two types of constructive curves in Minkowski
plane. The two subsections contains the results of two papers the first one in common with H.
Martini ([6]) and the second one is common with V. Balestro and H. Martini (|7]).

2.3.1. Conics (Common work with H. Mar-
tini). Now we turn out to conics in a Minkowski
normed space. With H. Martini we presented in 6] a /
systematic investigation of possible definitions of conics
extended to normed (or Minkowski) planes. In the Eu-
clidean situation the metric definitions of conics and the
analytic one, namely defining them as family of curves ™S
of second order, clearly yield the same type of curves;
so we have various different definitions of the same class
of curves. In normed planes neither the metric defini-
tions nor the analytic one yield the same type of curves. /
Furthermore, it is not clear what the notions "curve of
second order”, "cone of second order” or "sections of
a cone” mean. We considered the usual metric defini- \

</

a:c=2

a=c

tions of conics in the Euclidean plane, adopt them for
normed planes and list various properties of the result-
ing classes of curves. In normed planes we have three Figure 2.12. Conics on the [, plane
different possibilities to define ellipses metrically. Be-

fore 6], only the first one was investigated (see [146]). So the following definitions refer to an
"ellipse” in a normed plane X.

DEFINITION 2.3.1 (based on foci, [6], [146|). Let z,y € X, © # y, and 2a > 2¢ = ||z —y||. The
set

a:c=1:2

E(r,y,a) ={z € X : [z — || + ||z — y|| = 24}
15 called the ellipse defined by its foci x and y.

DEFINITION 2.3.2 (based on a leading circle and one focus, [6]). Let L := (2a)-K be a homothetic
copy of the unit disk K, and x € L be an arbitrary point from it. The locus of points z € X for
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which there is a positive € such that z 4+ e K touches L and contains x on its boundary is called
the ellipse defined by its leading circle and its focus .

DEFINITION 2.3.3 (based on a leading line and a focus, [6]). Let [ be a straight line, x a point,
and v = % a ratio larger than 1. The locus of points z € X, for which there is a positive € such
that the boundary of the disk z + ¢ K contains x and the disk z + v(cK) touches the line 1, is

called the ellipse defined by its leading line and its focus x.

The equivalence of these definitions for the Fuclidean subcase is well known. We will prove
that, while the first two definitions are equivalent also in normed planes, the third one yields a
basically different class of curves.

PROPOSITION 2.3.1 ([6]). In any normed plane the following holds: an ellipse, defined by its
foci, is always an ellipse defined by its leading circle and a focus, and the converse statement is
also true. On the other hand, an ellipse defined by its leading line and a focus is not necessarily
an ellipse defined by its foci, and again the converse is true.

In Fig. 2.12 we can see that there is an ellipse
following the third definition which is not cen-
trally symmetric. By Theorem 2 of [146] it
is not an ellipse by the first definition. Con-
versely, consider the ellipse E(—z,x,2) de-
fined by its foci and shown in Fig. 2.13. First
we can see that if it is also an ellipse defined by
its leading line, then the leading line [ and the
new focus 2’ have to be in "symmetric posi-
tion” with respect to the line joining the orig-
inal foci. "Symmetric” means that this line is
parallel to a diagonal of the unit square. In
fact, if this is not the case, we get a figure as
shown on the left side of Fig. 2.13. The squares
Sozy Sy, 5., S_, with centers 2z, v, z, —v, re-
spectively, touch [. The focus has to lie in the
shaded rectangle, as the common point of the boundaries of homothetic copies 2z + (¢/a)Ss,,
v+ (c¢/a)S, and z + (¢/a)S, of such squares (with a homothety ratio smaller than 1). On the
other hand, the boundary of the square —v + (¢/a)S_, intersects the shaded rectangle in a
segment parallel to that one in which it is intersected by z+ (¢/a)S.. So it is impossible to give
a good position for the focus 2.

We now assume that [ and 2’ have symmetric position (see the right side of Fig. 2.13). If
this holds and the Euclidean distance of [ and 2x is s, and that of 2’ and z is r, then, using
the fact that the points 2x, —2z and v have to lie on the new ellipse, we have the equalities
r/s=4—-r)/(4+s) =(2—7)/(1+s), implying that s = 1 and r = 2/3 and showing that
a/c/ = 2/3. Thus the leading line and the focus are both determined. On the other hand, the
point —z is not, on the obtained ellipse, since the required ratio for it is (12 — /2)/12 # 2/3.
The examination of the ellipse defined by its leading line and its focus is new thus the following
theorem is fundamental.

2X

FIGURE 2.13. A metric ellipse which has no
leading line

THEOREM 2.3.1 ([6]). In a normed plane, an ellipse defined by its leading line and its focus is
a conver curve, which is strictly convex if and only if this normed plane is strictly convex.

A Euclidean hyperbola satisfies the same metric relations as a Euclidean ellipse, only that now
the ratio ¢ is smaller than 1. The asymptotes of the hyperbola have directions VCQG"#, and the
leading line intersects the asymptotes in points of the great circle. We also have three possible

metric definitions. These are
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DEFINITION 2.3.4 ([6]). Given two points z, y in a normed plane and a distance denoted by
2a > 0. Then H(z,y,a) ={z € X : |||z —z|| — |ly — 2||| = 2a} denotes the hyperbola defined
by its foci x and y. If y = —x, then we use the notation H(x,a) for it.

DEFINITION 2.3.5 (based on leading circle and focus, [6]). Let L := (2a) - K be a homothetic
copy of the unit disk K, and x € X be an arbitrary point exterior to L. The locus of points
z € X for which there is a positive € such that z+cK touches L and contains x on its boundary
will be called the hyperbola defined by its leading circle and its focus x.

DEFINITION 2.3.6 (based on leading line and focus, [6]). Let [ be a straight line, x be a point,
and v = 2 a ratio less than 1. The locus of points z € X, for which there is a positive € such
that the boundary of the disk z + K contains x and the disk z + (e K) touches the line 1, will

be called the hyperbola defined by its leading line and its focus x.
The analogue of Theorem 1 from [146] is given by our

THEOREM 2.3.2 (|6]). Let x € S be a point of the unit circle. Then we have:

(i) H(x,0) is the bisector corresponding to the vector ,

(i) if there is a neighborhood of x on S in which S is strictly convez, then H(x,2) is the union
of the two half-lines [x,00) and [—x, —oc0). If x is a point of a piecewise linear part of S, then
it 1s the union of two closed cones.

The first statement is obviously true by the definition of the bisector given in the introduction.
The second one follows from the concept and properties of d-segments in a Minkowski plane
and from our definition of hyperbola; see [117], [116], and [28|.

From the above theorem it can be seen that a connected part of H(x,a) is, in general, not the

boundary of a convex domain, because this property does not hold for a bisector; see [1] and
[2].

THEOREM 2.3.3 ([6]). The following two statements are equivalent to each other:

(i) K is strictly convet.

(i) For every x € S and for each value a € RY the set H(x,a) is the union of two simple
curves, each of which intersects any line parallel to [—x, x| in precisely two points.

REMARK 2.3.1. From the proof of this theorem we can conclude that the topological properties
of hyperbolas do not depend on the parameter a and only on the position of their foci. Thus (i)
s equivalent to

(i17) For every x € S there is a value a € R U {0} such that the set H(z,a) is the union of
two simple curves, intersected by any line parallel to [—x, z] in precisely two points.

As in the case of ellipse we also have a proposition

PROPOSITION 2.3.2 (|6]). In normed planes, a hyperbola defined by its foci is always a hyperbola
defined by its leading circle and a focus. The converse statement is also true. In general, the
third definition yields a different class of curves.

On the base of this proposition the new curve the hyperbola defined by its leading line and we
have a theorem on it, too.

THEOREM 2.3.4 ([6]). The hyperbola defined by its leading line is the union of two simple
curves. If the normed plane is strictly convex, then these curves cannot contain segments.

For the case of parabolas, the first two definitions have no analogue, and so we had only the
third case.

DEFINITION 2.3.7 ([6]). In a normed plane, let | be a straight line, and x be a point. The locus
of the points z € S for which there is a positive € such that the boundary of the disk z + ¢ K
contains x and touches the line [, will be called the parabola defined by its leading line and its
focus z.



dc_1387_17

56 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

We also investigated the metric parabola and proved the theorem:

THEOREM 2.3.5 ([6]). In a normed plane, the metric parabola is a simple curve which does not
contain segments if and only if the normed plane under consideration is strictly conver.

2.3.2. Roulettes (Common work with V. Balestro and H. Martini). We considered
another important type of constructive curves in Minkowski plane, the so-called roulettes. In
this part of the section we write capital letters like A, B, ... for points with respective position
vectors a,b,...; by a,b, ..., g(A, B) we denote lines, in the latter case spanned by A and B, and

by AB the segment with endpoints A and B is meant. We use ﬁ for the vector from A to B,
or for the half-line starting at A and passing through B; sometimes we use also a, b, ... 7y, ry for
half-lines (the respective meaning will be clear by the context). Further on, we write ||a||, ||a| &
for the general Minkowskian and the Fuclidean norm of a, respectively, and a° stands for the
Minkowskian unit vector parallel to a;[a,b] is the semi inner product corresponding to the
Minkowskian norm || - ||. Referring to the Minkowskian arc-length s, we denote by r(s) the
radial function of the Minkowskian unit circle, and by 7(s) a planar curve, both parametrized
by s; x,(s) is the Busemann curvature function of v(s). The Busemann sigma function of the
r-dimensional affine subspace V. is o(V,), and (a, b)Z denotes the angle determined by the lines
a,b.
2.3.2.1. Angle measures and general rotations. The question how to measure angles is old

and interesting. A good review of the history can be found in [20].
In [34], Busemann discussed the "axiom" for angle measures in the case of plane curves belong-
ing to a class § of open Jordan curves, holding the additional property that any two distinct
points lie on exactly one curve of S. He defined the concepts of ray r, angle D with legs r1 and
ro, and angle measure |D| on the set of angles having the following properties:

(1) |D| > 0 (positivity),

(2) |D| = m if and only if D is straight,

(3) if Dy and D, are two angles with a common leg but with no other common ray, then

| D1 U Dy| = |Dy| + |Ds| (additivity),

(4) if D, — D, then |D,| — D (continuity).
He showed that these assumptions are sufficient to obtain many of the usual relationships
between angle measure and curvature. We note that Busemann collected the essential properties
of an angle measure that we have to require in every structure, where a natural concept of angle
exists.
Lippmann [104] considered the classical Minkowski space defined on the n-dimensional Eu-
clidean space by a "metrische Grundfunction" F, which is a positive, convex functional on the
space being homogeneous of first degree. In our terminology, F' is the norm-square function (a
generalization of this concept can be found in this dissertation and in [8]. To have convexity (fol-
lowing Minkowski’s definition), Lippmann required continuity of the second partial derivative,
and positivity of the second derivative of F'. Hence the unit ball of the corresponding space is al-
ways smooth. He used the arcus cosine of the bivariate function (z,y) := (> xZ%F(y))/F(x)
to measure the angle between x and y. This yields a concept of transversality, namely: x is
transversal to y if (x,y) = 0. A wide variety of angle measures referring to metric properties
can be found in the literature. E.g., Lippmann’s papers [105, 106] contain typically metric
definitions of angle measures. For the situation in (normed or) Minkowski planes see, in addi-
tion to the papers already mentioned, Graham, Witsenhausen and Zassenhaus [69|. This paper
refers to a useful metrical classification of angles by their measures, and a good review on this
topic can be found in the book of Thompson [140].
In the last few decades some authors rediscovered this interesting problem in connection with
the problem of orthogonality. We have to mention P. Brass who in [30] redefined the concept
of angle measure as follows.
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DEFINITION 2.3.8. By an angle measure we mean a measure i, on the unit circle 0B with center
O which is extended in the usual translation-invariant way to measure angles elsewhere, and
which has the following properties:

(1) 1(oB) = 2r,

(2) for any Borel set S C OB we have pu(S) = p(—=95), and

(3) for each p € 0B we have p({p}) = 0.

This concept was used in the papers of Diivelmeyer [48|, Martini and Swanepoel [117], and
Fankhénel [53, 54].

Another direction of research is to give immediate metric definitions of the angle of two vectors.
In this direction we can find also papers of P. M. Mili¢i¢ [121], C. R. Diminnie, E. Z. Andalafte,
R. W. Freese [47| or H. Gunawan, J. Lindiarni and O. Neswan [79]. Further related papers on
angle measures are [44], [45], [46], and [103].

As Busemann observed, the problem to find a natural definition of angular measure arises from
the fact that the group of Minkowski rotations is very small. In a general normed space there
are no such rotations which are also isometries of the space (see [62], [140], [113], and [114]).
On the other hand, there are so-called left reflections (right-reflections) based on the notion
of Birkhoff orthogonality (see [113| and [114]). These are not isometries, but they have some
important properties of isometries; e.g., they are affine mappings of the plane sending lines
into lines; the product of three left reflections in parallel lines in a strictly convex Minkowski
plane is a left reflection in another line belonging to the same pencil of parallel lines; and
the product of two left reflections in Birkhoff orthogonal lines is a symmetry of the plane.
Unfortunately, if in a strictly convex and smooth Minkowski plane for left reflections the main
lemma on three reflections with concurrent axes holds, then the plane is already Euclidean.
Hence there is no chance to define an angle measure and also rotations by left reflections in the
way that "a rotation is the product of two left reflections in non-parallel lines". This motivates
our new definition of generalized angle measure and also the new concept of general Minkowski
rotations, respectively.

In order to define a concept of rotation for a Minkowski plane, we start with extending the
definition of Brass by considering Borel measures in a larger class of curves, not only in the
unit circle, and we will derive angle measures for normed planes from it.

DEFINITION 2.3.9 ([7]). Let v C X be a closed Jordan curve which is starlike with respect to a
point p of the interior of the region bounded by ~y. Let j1, be a (normalized) Borel measure on
~ for which the following properties hold:

(a) 11,(7) = 2

(b) for any q € v we have 11,({q}) = 0; and

(¢) any non-degenerate arc of v has positive measure.

An angle measure defined in this way provides a translation invariant measure of angles in
the plane, which we define to be the convex hulls of two rays with the same starting point, or
the half-plane given by two opposite rays. Given an angle (ry,12)Z with aper a, we define its
generalized angle measure ji.,,(r1,72) to be the measure i, of the arc determined on ~ by the
image of (r1,72)Z via the translation x — x — a + p.

Using this notion of generalized angle measure we define now the generalized rotations in
Minkowski planes.

DEFINITION 2.3.10 ([7]). Let (X, ||-]]) be a Minkowski plane and let v be a closed Jordan curve
which is starlike with respect to a point p of the interior of the region bounded by ~y. Let i,
be a generalized angle measure as in the previous definition. A general rotation (with respect to
fhyp) @5 @ transform rot,  : X — X for which the following three properties hold:

(a) The transform rot, , leaves invariant the pencil R(p) of rays with origin in p. In other
words, if r C X is a ray wzth origin p, then rot,_  (r) is also a ray with origin p.

(b) For each o > 0, rot,,  leaves invariant the homothetzc CUrve Yo,p = p+ a(y —p), i.e., for
such a curve we have rotuw (Yap) € Yap-
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(c) The function r € R(p) — fiyp (rotwp (r),r) is constant. Intuitively, rot, , "rotates every
ray of R(p) by a same angle".

Notice that a general rotation can be considered as acting in the space of directions of X.
Indeed, the set R(p) can be seen as this space. Later this viewpoint will be useful.

We emphasize that any general rotation relies on a fixed closed Jordan curve v, an inner point
p with respect to which v is starlike, and a generalized angle measure fi,,. On the other hand,
these three informations yield a certain class of general rotations, which we denote by R (7, i, p).
We head now to describe an element of such a class in terms of the angle of rotation. For any
0 € [0,27) we set roty : X — X as follows: if ¢; € 7, then ¢; is mapped to the (unique) point
¢ € 7y taken counterclockwise, say, for which the rays 1 = [p,¢1) and r9 = [p, ¢2) are such that
p(r1,r2) = 0. Now, any point ¢ € X \ v can be written in the form ¢ = p+« (rad, ,([p, q)) — p)
for some o > 0, where rad,, : R(p) — 7 is the radial function which associates each ray
starting at p to its intersection with . We just set

rotg(q) = p + «a (roty (rad,, ([p. q))) — p) -

It is clear that R(v, 1, p) = {rotg}sejo,2x). This description indicates that a class R(7, i, p) has
a group structure under composition, as in the standard Euclidean case. This is summarized in
the following lemma.

LEMMA 2.3.1. For a class R(7, j, p) we have the following properties:

(a) Regarding composition, R(v, i, p) is an abelian group. More precisely, we have rotg, oroty, =
rotg, @e,, where @ is the sum modulo 2.

(b) For any q € v, the application | — roty(q) is a bijection from [0,27) to .

We highlight an interesting fact: The standard Eu-
clidean rotation group can be obtained in any
Minkowski plane. We just have to consider the group
R(7, 1, 0) where 7 is the Lowner ellipse, which is de-
fined as the ellipse of maximal volume contained in B,
and p is the measure given by twice the area of its
sectors.

Next we give two examples of general rotations in the
Euclidean plane. The first one relies on an area-based
measure for an ellipse, which is clearly well defined.

FIGURE 2.14. Area-based rotation EXAMPLE 2.3.1. Consider the Euclidean plane and the
system of ellipses with common focus at the origin O
and with major axis on the z-axis of the coordinate system, such that the positive half-line
of x contains the closest point of the ellipse (see Fig. 2.14). In that polar coordinate system
(which is called the heliocentric coordinate system for the ellipse), for which the ray ¢ = 0 is
the positive half axis =, we can write the radial function r(p) of the ellipse G by the formula
r(¢) = p/(1+ & cosg), where p is the semi-latus rectum of the ellipse and ¢ is the eccentricity
of it, respectively. Let pu((¢',¢”)Z) be the area of the sector enclosed by ¢', ¢, and G be the
arc between these lines. Hence

1

1 2
/ Z i Z 1 )
(( ’ ) ) 2/(1+€COS§D)

o
With respect to p and G from above, for every real number 0 < t < 27 there is a generalized
rotation of the Euclidean plane about O with this angle ¢. By Kepler’s second law about
planetary motions, the angle ¢t of a generalized rotation is proportional to the time of the
motion of the planet. Hence the generalized rotation with angle ¢ maps the current position P’
of the planet to that point P” of the orbit where the planet arrives after time ¢. O
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The principle of measuring the angle proportional to the area of the sector intersected by the
angle domain from the basic disk (G UintGG) works in all Minkowski planes and for all basic
curves GG. Note that in the Euclidean plane with the unit circle as basic curve, this choice of
1 gives the usual angle measure, and that we get the usual rotations as generalized rotations
by choosing P to be the origin O. An advantage of this choice is affine invariance, but there is
also a big disadvantage. Namely, the length of the arc G containing the domain of the angle
cannot be calculated easily from this angle measure. (As a known example, we note that the
calculation of the arc-length of an ellipse leads to a complete elliptic integral of second kind,
which has no closed-form solution in terms of elementary functions.) In this paper we have to
create tools for the so-called rolling process, which is a type of motion that combines rotation
and translation of an object with respect to a given curve. More precisely, we combine two
curves such that they are in contact with each other without sliding (no friction). Hence we
have to compare the angle of rotations of the two curves by the fact that the swept arc-lengths
do agree in the time of the moving. This requires a nice connection between the angle of the
generalized rotation and the corresponding arc-length of the basic curve G.

The standard angle in the Euclidean plane can be obtained by considering arc-lengths in the
unit circle, and hence the angle theory can be given in terms of the Euclidean norm. Of course,
this can be carried over to Minkowski planes, and the general rotations given by the arc-length
measure are possibly the most natural rotations in normed planes. We head now to take a better
look at this particular case. We denote by [ the Minkowski arc-length of a curve defined in the
usual way: as the supremum of the sums of the lengths of the polygonal approximations of ~.
Let v € (X, || ||) be a closed rectifiable Jordan curve starlike with respect to an inner point
p, and denote by p; the normalized Minkowski arc-length measure in . Formally, if ¢, ¢ € 7,
then

l(arc, (g1, g2)) '

()

Of course, y; is a generalized measure in the sense of Definition 2.3.9. Since the measure ; is
induced by the geometry of the plane rather than being inherent to 7, one may wonder how
the group R(7, u, p) does rely on the initial v and p that we have chosen. For example, in
the Euclidean plane we can obtain the standard angle measure by considering the arc-length
measure in any homothet of the unit circle and doing the usual normalization. Our next lemma
shows that this is also true for arbitrary Minkowski planes.

m(arcy(ql, q@2)) =27

LEMMA 2.3.2. Let v € X be a closed rectifiable Jordan curve starlike with respect to an inner
point p, and let y; be the (normalized) Minkowskian arc-length measure. Given o > 0, denote
bY Yap the curve p + a(y — p) homothetical to v. Then R(7, i, p) = R(Vap, ti, P)-

Despite having the good property shown above, the arc-length

rotations are not at all linear transformations. For this reason we A
may face some difficulties when trying to derive closed formulas
for them. But we have some exceptions. Next we give an example v3 w v
for the Minkowski arc-length rotation which coincides with an
usual Euclidean rotation. v

y

ExXAMPLE 2.3.2. Consider the norm || - ||, defined in R? to be
(2, y)|loo = max{[z[,|y|}. The general rotation rotz : X — X
given by the Minkowski arc-length measure in the unit circle,
and with respect to the origin, coincides with the usual Fuclidean
rotation of angle Z. Indeed, the unit circle B of (R?, || - ||o) is the
square with vertices {(£1,41)} which, for the sake of simplicity Figurr 2.15. rot=(v) = w
of the used notation, we may denote in the counterclockwise way ’

by v1,v9,v3, and vy. If v € [v1,v9], then rotz clearly maps v to the point w of the segment
[vg, v3] for which ||w — v3|| = ||v — va|| (see Figure 2.15). O

Vg V1
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Translations are a simple kind of motion in Minkowski planes, and they are clearly isometries.
The general rotations can also be seen as motions in the Minkowski plane, which are not neces-
sarily isometries. Thus, we may consider the composition of translations and general rotations
to obtain a larger class of motions in the Minkowski plane.

DEFINITION 2.3.11 (|7]). Let R(, i, p) be a fized group of general rotations, and for any v, w €
X let ty, : X — X denote the translation which maps v to w, i.e., ty,(x) = — v+ w. We
define the motion group generated by R(7, u,p) to be the group of applications of the form
tpgorotot,, : X — X, where ¢ € X and rot € R(v, p,p). When there is no possibility of
confusion on the group of general rotations considered here, we will denote the motion group by

M,.

REMARK 2.3.2. Notice that the motion group associated to R(OB, i, 0), where py is, as usual,
the Minkowski arc-length measure, contains all direction-preserving isometries of the plane.

2.3.2.2. Motions of rigid systems in the FEuclidean plane. Consider a plane X' which is
moving on the fixed plane . The two simplest possibilities for such movements are given by
translation and rotation. In Euclidean geometry we can substitute the planes with cartesian
coordinate frames Oxy and O'uv. When we would like to describe the motion of a point P
of the moving plane, we need the coordinates u,v of the point P in the moving frame, the
coordinates p, ¢ of O’ in the fixed coordinate system, and the angle ¢ of the positive half of the
X-axis of the fixed frame with the positive half of the x-axis of the moving frame. We get the
coordinates x, y of the point P in the fixed system by

rT=p+ucosy—vsing, Yy =q+ usiny+ v cosp.

Here p,q, ¢ are functions of a quantity ¢ which determines the motion. (For example, ¢ can
denote the time, or any other metric parameter.) Assume that ¢(t) is not zero on an interval of
t. Then it can be inverted, and p, ¢ can also be considered as a function of . (This assumption
says that our motion cannot contain translations in that domain. We call such a motion non-
translative planar motion.) The derivative of the coordinate functions with respect to ¢ gives
the coordinates of the velocity vector of the point P. It is more convenient to use vector equality,
and hence we introduce some further notion. Let

o - (522 o)

sing  cosp

denote the rotation about the origin with signed angle ¢. Then the first equation array has the
form z = p+ R(p)u. If Q = R(7/2) denotes the rotation with 7/2, we have the following rules:

Q2:_E7 Q?’:Qil:Q:_Qa Q4:E7

where E is the unit matrix. We denote by "-" the derivative with respect to ¢, which means in this
section the Euclidean arc-length parameter. It is clear that R = QR and thus (R-1) = —QR™.
For every value of ¢ there is precisely one point uy of the moving plane for which the velocity
vector vanishes. This is

Uy = QRilp.
This point ug of the moving plane is a so-called instantaneous center (or instantaneous pole)
of the motion, and the set of these points is the moving polode (centroid), or curve ~' of
instantaneous poles, of the moving plane. The points of the moving polode can also be obtained
as rest in the frame. These points x( are described by

o =p+Rug=p+Qp.
They form the so-called fized polode (centroid), or curve v of instantaneous centers, in the fixed
plane. We examine the motion with respect to the point . If x is arbitrary, then x — xy =
Ru—¢gp, and using the equality £ = p+ QRu, we have Qx = Qp+ QRu. Since x —xg = Ru—Qp,
we get that
T = Q(x — z9).
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Hence the velocity vector of the motion at the point x is orthogonal to the position vector from
2o to x. This implies that the moving system in the given moment is a rotation about the center
2. Observe that the velocity vectors of the two polodes at their common point agree; in fact,

iy =QR'p=R7"p+ QR'j = iy.

Hence the arc-length elements of the two curves agree, and we get that in every moment the
two curves are touching. Also we see that their arc-lengths calculated from a point g to the
point ¢ have the same value. Hence the moving polode ~ rolls without slipping (or without
friction) on the fixed polode ~, and this is the only rolling process which corresponds to the
given motion of the planes. Hence we see the fact that every non-translatory planar motion
of a rigid mechanical system in the plane can be considered as the rolling process of a curve
rigidly connected with the system on a fized curve in the plane. This motivates the so-called
main theorem of planar kinematics, namely

THEOREM 2.3.6 (|65]). At every moment, any constrained non-translatory planar motion can
be approzimated (up to the first derivative) by an instantaneous rotation. The center of this
rotation is called the instantaneous pole. Thus, for each position of the moving plane, we gen-
erally have exactly one point with velocity zero (as a result of that, the instantaneous pole is
also called velocity center).

This theorem leads to an interesting class of curves in the Euclidean plane.

DEFINITION 2.3.12 ([65]). Given a curve ' associated with a plane X' which is moving so
that the curve rolls, without friction, along a given curve ~ associated with a fized plane X
and occupying the same space. Then a point P attached to X' describes a curve in X called a
roulette.

Based on this rolling process we can rewrite the definition of the motion of rigid systems.
Observe that every planar motion implies the motion of all points of the moving plane with
respect to the fixed one. These orbits are said to be roulettes. Thus, for the studied motion we
consider two curves, also called polodes, and a suitable rolling process to determine the motion
of a singular point. For this purpose a method is needed to determine the fixed position of the
point P with respect to the moving polode. A usual method is to give a line through the point
P which intersects the moving polode in the point ) and fixes the distance of P and () and
the angle of the line P() with the tangent line ¢ of the moving polode at (). Hence the choice
of @ on the moving polode is arbitrary. Fix () = w(0) and P = x(0). The points of the roulette
w(s) of @ can be obtained by the composition of the following transformations: translate the
point 7/(s) into the origin, rotate the image of the point of «(0) about the origin by the angle
o(s) = (¥(s), 7’(3)) Z, and translate the obtained point by 7(s). Hence the roulette of @) in the
fixed system is given by

w(s) = R(p(s)(=7'(5) +7(s) = 7(5) = R(p(5))(7'(5))-
Since the roulette z(s) of the point P can be described by the formula z(s) = w(s) + R(¢(s))p,
we get

(21) z(s) =7(s) + Rlg(s)) (p =7 (s)).

This means that if we have two touching arcs v(s) and +/(s) of a plane ¥, and we associate to
the second arc a moving plane ¥ in which its position is fixed, then the rolling process of v/(s)
on v(s) (locally) determines an orbit of every point of ¥’ in a unique way. In the Euclidean
plane, (21) shows that in every moment with respect to varying p we have an isometry. Hence
the rolling process of the arcs determines a rigid motion of the plane . This representation is
locally unique, since a rigid motion uniquely determines its polodes. Hence we have

THEOREM 2.3.7 ([7]). If 7,7 : [0, 8] = R? are two simple Jordan arcs with common touching
point v(0) = +'(0) such that s is the arc-length parameter of both of them (considered from the
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points ¥(0),~'(0) to the points v(s), 7'(s), respectively), then for every s € [0, 3] we have an
isometry O, sending the original position vector p into the instantaneously position ®s(p). If v
and ~' have, for all s € [0, 8], unique tangents at their points v(s) and '(s), respectively, then,
for all s € )0, (], @y is uniquely determined and can be described by the vector equation

®s(p) = 7(s) + R((4(5),7(5)) £) (0 = 7'(5)) -

Here #(s) and v'(s) denote the unit tangent vectors at v(s) and +'(s), respectively, and R(6) is
the rotation with the angle 6. For fized p, the graph of the function ®.y(p) : [0, 5] — ¥ is said
to be the roulette of the point P = p € X for the rigid motion given by the system of isometries

{®s: s€[0,0]}.

2.3.2.3. Flexible motions of a Minkowski plane. Our purpose now is to extend Theorem
2.3.7 to Minkowski planes. For this purpose we defined already the motion group M, of the
Minkowski plane, which is a good analogue of a motion group of the Euclidean plane. Clearly,
we have to omit the condition that a motion is an isometry, due to the smallness of the ac-
tual isometry group in a Minkowski plane. Of course, any motion group M, contains all the
translations. On the other hand, it is possible that the image of a metrical segment under a
general rotation is not a metrical segment. Hence the concept of Euclidean rigid motions has
to be redefined. This is not a strange project because of in practice there is no rigid motion. To
a plausible example consider the rolling process of a wheel of a car. Since the tyre continuously
change its shape to a good modelling of this motion we should omit the requirement that the
motion is rigid. (See Fig 2.16.)

2k=m
a=k-arcsin(x)+x

FIGURE 2.16. Motion of a wheel. The arc-lengths between the points labelled
with circles are changing, continuously.

We concentrate on Theorem 2.3.7 for the Euclidean planar motions, and we will consider from
now on that the motion group M, is the motion group associated with the group of general
rotations R(0B, p, 0). In other words, we will consider the rotations by arc-length of the unit
circle with respect to the origin.

DEFINITION 2.3.13. The rectifiable Jordan curve +'(s) rolls without slipping on the rectifiable
Jordan curve ~y(s) if in every moment s € [0,5] the two curves touch each other, and the
respective arc-lengths calculated from their common point v(0) = ~'(0) to the other one y(s) =
~'(s) are equal to each other and also to the common parameter s.

Having the rolling procedure and the motion group M,, we can define the continuous (but
not rigid) motions of a Minkowski plane. Assume that in this section any considered curve is
a rectifiable Jordan curve, with unique tangent at all of its points, respectively. We denote the
unit tangent vector of 7 at its point v(s) by 4(s). (Since s means the arc-length parameter, this
notation corresponds to the usual Euclidean notation based on the arc-length derivative of the
position vector.)

DEFINITION 2.3.14. If the rectifiable Jordan curve ~'(s) rolls, without slipping, on the rectifiable
Jordan curve y(s), then we define the flexible motion corresponding to the rolling curves v and
~" as the following set of mappings:

{®s(p) =(s) + Rlps) (p —7'(s)) : s €0, AT},
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where R(ps) € R(IB, u,0) denotes the general rotation which maps the (oriented) direction
A(s) to the (also oriented) direction ¥'(s). A curve given by the graph of a fized point p = P is
called the roulette of P.

The vector apgff) (r) = lim._g

This means that Bg—g")(x) is Birkhoff normal to the vector R(¢)(z). (For relations between

semi inner products and Birkhoff orthogonality, see, e.g., [8] or [9].) Denote by Q that mapping
which sends the vectors to their Birkhoff normals with the same norm, and by Q! the mapping
which sends the vectors to their Birkhoff transversals with the same lengths. (Note that Birkhoff
orthogonality is not a symmetric relation; see, e.g., [115] or [119]. So, in general, if z is Birkhoff
normal to y, then y not to x. However, we have a possibility to "reverse” the formulation "x is
Birkhoff normal to y". We say in this case that y is transversal to z.) Since the tangent vector
of the roulette of P at the point with parameter s is

s(p) = 4(s) + QR(#(s) (P — 7 (5))¢(5) = Rlps)'(s) = QR(2() (p — 7 (5))¢(s),

we get that |®,(p), Ps(p) — v(s)| = 0. Hence we obtain

R(“E)(Ig*R(“’)(x) is the tangent vector of |x|0B at the point x.

STATEMENT 2.3.1 ([7]). The velocity vector of the flexible motion of a point ®4(p) of the roulette
in a moment s is Birkhoff normal to that vector ®4(p) —~y(s) which shows from the point to the
instantaneous pole of the motion.

From Statement 2.3.1 we can see that our definition yields the same kinematics in the Minkowski
plane as given by usual motions of rigid systems in the Euclidean plane.

2.3.2.4. Curvature and the Fuler-Savary equations. We proved the so-called Fuler-Savary
equations (see [129]) for normed planes. In space-time this was investigated by several authors
(e.g. Tkawa [91], [51], [52]). Ikawa defined roulettes and proved the Euler-Savary equations for
normed planes, with respect to this semi-Riemannian geometry of constant curvature. Because
of the rich isometry group of this plane, the validity of these results is not so surprising as in
our case.
In this section we have to assume second order differentiability of the unit circle, and we have to
introduce the concepts of curvature and curvature radius of a curve, respectively. Fortunately,
in Minkowski planes several such concepts are known. Curvatures for curves in Finsler spaces
were introduced for dimension n = 2 by Underhill [142] and Landsberg [100]. For general n
they were introduced by Finsler [59, 60]. The definitions coincide for n = 2. The underlying
idea of these definitions is this: If v(s) is a curve with tangent ¢ at a given point ¢, then the line
parallel to this tangent through the origin intersects the unit circle in a point ¢’ (in fact, in a
pair of points, but it will not matter which point is chosen). There is exactly one ellipsoid with
the origin as center through ¢ which has at ¢’ the same second differential as the unit circle.
This ellipsoid determines a Euclidean metric E(q). Finsler defines the curvatures of v(s) at ¢
as the curvatures at ¢ of v(s) as a curve in E(q). Obviously, F(q) exists only if the unit circle
has a second differential at ¢’ and the indicatrix is a non-degenerate ellipse. Actually, this idea
is significant only if C is of class C? and has positive Gauss curvature. Thus v(s) may not even
have a curvature when it is analytic.
There exists another definition of curvature for curves in general spaces which is due to Menger
[120] (for modifications of this concept see [87]). Haantjes’ curvature coincides with that of
Finsler. Hence Haantjes’ main result in [87] means that, in Minkowski spaces, Menger’s defini-
tion coincides with Finsler’s definition.
In [36], Busemann gave another concept of curvature®.

3There is a nice connection between the concepts of curvature given by Finsler and Busemann. In a
Minkowski plane, the Finsler curvature x/ and the curvature x of Busemann of a curve 7(s) at a point P,
with position vector p, are related by
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In n-dimensional Minkowski space let v(s) be a curve which is, in the Euclidean sense, of class
C" and parametrized by the Minkowskian arc-length s. Let v(s;),i = 0,1,...,n, be n+1 points
on 7(s). Let T, denote the r-dimensional Minkowski volume of the r-dimensional simplex that
is spanned by the points v(s;), ¢ = 0,1...7. Then we define the (r — 1)-th curvature x,_; of
the curve v in its point y(s) by the limit
( ) r? 1 1 T, T, 5
Xr—1{S) = 1m
r—Tams [lv(se) = y(so) | 1Ty
(see [36]), where T)* ;| denotes the volume of the (r — 1)-dimensional simplex spanned by the
points y(s;), i = 1,...7. Let D, be the following quantity:
- T,
D,(s) =7r!| ] lim : :
H sios [T 17v(si) = ()

1<j

Then for D,_5(s) # 0 we get the following form of the curvature function:
D, (s)D,_5(s)
D7 (s)
This formula can be rewritten by the concept of the general sine function of two flats of the

n-dimensional Minkowski space, but we need only the case of dimension 2. Hence, using that
Dy(s) =1, the curvature is

_ Da(s) _ o smlg(v(s0),7(51)). 9(v(s1), 1(52)))
Di(s)  sosisas [[7(s2) = ~(s0)l

where g(x,y) denotes the line through x and y.

A curve 7y(s) having curvature in Euclidean sense has also curvature in the sense of Busemann.
These two curvatures can be compared. For this purpose we have to use the o-function in-
troduced by Busemann. Let V, be an r-flat of a Minkowski space of dimension n. If U(V}) is
the set in which the r-flat, parallel to V, and passing through the origin, intersects the solid
Minkowskian unit sphere, then we define o(V}.) as the ratio of the r-dimensional volume of the
r-dimensional unit ball and the Euclidean volume of U(V}.). Observe that if (s) is a C! curve
with tangent line ¢p and velocity vector 4(s) at the point P = ~(s), then by the definition of
Minkowski length we have ||¥(s)|| = o(tp)||¥(s)||r, where || - ||z means the Euclidean norm.
Busemann [36] proved that if xg(P) denotes the Euclidean curvature of v(s) at the point P,

tp is written for the tangent line of v(s) at P, and T'p is the osculating plane of the curve at
P, then

Xr—1 (5) -

X+(s) = xa(s)

9

o(Tr) g
We use these formulas to establish a close analogue to the Euler-Savary theorem on rigid motions
in the Euclidean plane. First of all, we consider two curves v and +/. Hence we have to use a
suitable lower subscript for the curvature function. We also have the concept of curvature radius
r, which is, as well-known, the reciprocal value of the curvature at the given point K = ~(s).
With these notions we are able to formulate

THEOREM 2.3.8 (Second Euler-Savary equation). If the unit circle of the Minkowski plane is
two times continuously differentiable, then the following equality holds:

1 1 o(Tk) 1
(22) Xy = Xy = T Ty o 0’2(75[() ax :
Here 1. is the curvature radius of the fized polode at its point K = s, vy is the curvature radius
of the moving polode at its point K = ., and ak is the length of the common velocity vector of
the fived and moving polodes at the moment s and at the instantaneous pole K = ~(s) = 7/(s).

where x7(p) is the curvature of the isoperimetrix (see [35]) at a point p (the tangent of the isoperimetrix has
to be parallel to the tangent of v(s) at p).
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To prove an analogue of the first Euler-Savary equation, we need
a deeper investigation of the Busemann curvature. Let tx be
the common tangent of the polodes at their common point K,
which is the z-axis of a Euclidean orthogonal coordinate system
(x,y). We denote by O, 0" the curvature centers of the curves
v(s) and +/(s), respectively. Then O and O’ coincide with the
line y and x”(K) = 1/||KO|| g, x}(K) = 1/[|KO'|| 5. Denote
by P any point of the moving plane corresponding to the curve

~" with the vector p = KP. As we saw in Statement 2.3.1, the
line np of the points K, P contains the Minkowskian curvature
center of the roulette of P, since it is Birkhoff normal to the
tangent tp at P. Denote this point by P’. We have at v(0) =
7' (0) = K that R(¢(0)) = id, and 4(0) = vk, where vk is the

common (Minkowskian) velocity vector at K. Hence we have 0
the equality vp = 2500 = Q(R(p()(p — V())(s)], = "
Q(ﬁ)gbo. Thus, the acceleration vector ap is FIGURE 2.17. The point L
ap = 3;_: ~ lim QR(p(9)(p — () (e) ; QR(¢(0)(p = 7'(0))2(0) QEP)3(0) =
0
— 5(0) <§1j% QR(p())) (P — 7’£6)) — Q@ —7"9) | lim Qlp—'(e)) ; Qlp — 7’(0))> + QEP)3(0).

Observe that if Q would be an additive function and we could change it with the limit process,

then the first term in the bracket could be simplified to the quantity QQ(ﬁ)gb(O) and the
second one is nothing else than the velocity vector of the moving polode at zero. (In our case
it is also the velocity vector of the fixed polode.) In general this is not so, since the additivity
of the operation Q implies that the space is Euclidean with a standard inner product. Thus,
for further investigations we need a quantity which measures the difference between the given
limits and the optimal values (attended by the case of inner product planes). This motivates
the following lemma.

LEMMA 2.3.3. [7] Assume that v(s) is a curve of C' type parametrized by its arc-length. If
a,b,c € y(s) and t. denotes the tangent of the curve v(s) at its point ¢, then we have

a,b—c ||b—(l|| n O'(tc)

By Lemma 2.3.3 we get an expression for the acceleration vector above, namely
1 1 v
a:-zo(_nﬁ%_ (K))+ KP)3(0),
where v means the common velocity vector of the curves v(s), 7/(s) at K =~(0) =~/(0).
We now introduce a point L (see Figure 2.17) such that

- _ 1 2 _ 1 UK
2=~ (@ TP - 59 (5))
hence the acceleration may be written as ap = @(O)Q(ﬁ) — @2(0)ﬁ. Observe that Q(ﬁ) is

normal to the vector ﬁ, and that it has no component parallel to ﬁ The vector —p?(0)L
lies along ¢g(L, P) and is directed toward L, so its projection contributes to both components
(one of them parallel to g(K, P), and the other one normal to it) of the acceleration vector.

Hence a unique situation exists if L_}>’ is normal to ﬁ In this case, the acceleration vector has
no component parallel to g(K, P) implying that the radius of curvature of its path is infinite.

DEFINITION 2.3.15. [7] The locus of all points P for which ﬁ is normal to ﬁ is the inflection
curve of the motion. The point L is the inflection pole of the motion.
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The inflection curve is the "Thales circle" of the segment K L with respect to Birkhoff orthog-
onality. We have to prove the following properties of it:

STATEMENT 2.3.2. [7| The inflection curve v is a closed curve. It is starlike with respect to the
point K if the unit circle is smooth. However, in general it does not bound a convexr domain.
Finally, if it is a Minkowski circle for all segments (at least one segment) of the normed plane,
then the plane is Euclidean.

To prove the starlike property, consider the notation of Fig. 2.18.
By the physical meaning of the acceleration vector, the
absolute value of the normal component of this vec-

tor is ¢2(0) | K B||>x(P) = #(0)LELL  where x(P) and
P

||P—)Op|| are the curvature and the curvature radius Rp
of the roulette at P, respectively. Along the path, the
direction is always normal. If this normal is oriented
from K to P, then the magnitude and orientation of
the normal component of the acceleration vector may
be defined in terms of real numbers, and it will be posi-
tive if POp is positive, i.e., if it has the same orientation
as K P. If POp has orientation opposite to that of K P,
it will be negative.

On the other hand, it can also be obtained from the length of the orthogonal projection of

@2(0)ﬁ to the path normal line g(P, K). Hence we have

FIGURE 2.18. The curve of inflection

o MEPIE L [ 1 s 1 vk .
PO oot =40 @ FP) - s (5 ) P

with (lﬁ)0 as unit vector. Denote the second intersection point of the line g(K, P) with the
inflection curve by Ip. Then

_ Hﬁ”z 0 _ 1 2 1 VK 0 0
PR = o0 = | @ - e (5 ) Py @y

and so we have the equality

_ TP,
102 et

Hence we get the following geometric form of the first Euler-Savary theorem.

THEOREM 2.3.9. [7| The instantaneous center K and the curvature center Op of the roulette
at its point P # K satisfy the equality
[P

105D = s

where the second intersection point of the path normal line at P with the inflection curve is the
point Ip.

By the law of sine introduced earlier, Op P and IpP are always marked off in the same orienta-
tion along the line K P. Thus, when Ip has been established, the orientation of IpP gives the
orientation of OpP. Hence equality above has an equivalent form for directed segments (with
Minkowski lengths):
1 1 1
KP KOp KIp

From this equality we can see immediately that the curvature radius of the point of the inflection
curve is infinite. Similarly, the centers of path curvature of all points at infinity are on the return




dc_1387_17

2.3. CONICS AND ROULETTES IN MINKOWSKI PLANES 67

curve obtained as the image of the inflection curve under reflection at the point K. To see a
connection between the two Euler-Savary equations, we give a connection between KIp and
ag which is the length of the common velocity vector of the fixed and moving polodes at K.
Before discussing it, we define Busemann’s sine function sm : £ x £ — R from the pairs of lines
to the field of reals. If a,b € £ and s,, s, are two segments on these lines, respectively, then we
can define the parallelogram 7(s,, ;) that is spanned by s, and s,. If we write area(m(sq, Sp))
for the Busemann area of m(s,, s;) and take into consideration the Minkowski lengths |s,|, ||
of s, and sy, then the Minkowski sine function of Busemann can be defined as follows:

area(m(Sq, Sp))
[I5alll[ sl

From the definitions of Minkowski length and Minkowski area it follows that sm(a,b) is not
depending on the segments s, and s,. Thus, it depends only on the lines a, b. For the sine
function sm(gy, g2) of Busemann the theorem of sines holds, and it is compatible with the
normality concept of Birkhoff. Hence we have

(23) sm(a, b) :=

o(Tk)

|KTpl _ smg(K, L), g(L Ip)) _ $n(o( L), 9(L I0)) stamyotatimny _ o o(9(K, P))
IKL|  sm(K, Ip),9(L,Ip))  sin(g(K, Ip),g(L,Ip)) o(Tx) o(g(K, L))’

o(g(K,Ip))o(9(Ip,L))
where WU is the Euclidean angle between the tangent line t5 at K and the line g(K, P). From
this we get the common form of the first and second Euler-Savary equations. By

e P) (1 LYy SO ]

1 1
(?F‘f«b)“M“Kﬂﬂjm o (Tx) “\&kP KOp o(g(K,P)) KL’

and using that the velocity vector vk of the instantaneous pole at K is equal to Vi =

5(0) M‘o = agv), we get that the acceleration vector is ax = 5(0)v% + agnf. This

Os
implies that its normal component is [n%, ax]n% = axnl. On the other hand, from the defini-
tion of the point L and the continuity property of the examined curves we get that if P tends

to K, then ﬁ tends to
— 1 VK
IR = Q(, )
o(tx) ~\$(0)

—
So we have ||LK|| = akx/ (o(tk)p(0)), and if we assume that the length of the directed segment
KL is positive, then we get

RIS T olt)r(gUK P) _ 1 _ oltr)9l0) _ oltac)p(0)o%(tx)

(%P~ oy ) ot Lt S T T oT)

This yields the combined formula of the two Euler-Savary equations, namely
1 1 (9K, P) _

(&7 ~ 05 ot P ) s = 90000 = x) = S

where we assume that o(Tx) = areaB = 1.

(Xy — Xxv) -
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CHAPTER 3

From the semi-indefinite inner product to the time-space manifold

The phrase "Minkowski space" do not distinguish between two theories: the theory of normed
linear spaces and the theory of linear spaces with indefinite metric. For finite dimensions both
are called Minkowski spaces in the literature. It is interesting that these essentially distinct
theories of mathematics have similar axiomatic foundations. The axiomatic examination of the
theory of linear spaces with indefinite metric comes from H. Minkowski [123] and the similar
system of axioms of normed linear spaces was introduced by Lumer in [108]. The first concept
widely used in physics: this is the mathematical structure of relativity theory and thus there is
no doubt about its importance. The usability of the second one is based on the fact that modern
functional analysis works in general normed spaces, and the Lumer-Giles theory of semi inner
product gives a possibility to handling it by methods used originally in Hilbert spaces. We saw
the basic properties of the latter in Section 2.2. The other concept is based on the following
system of axioms. (See, e.g., [66].)

DEFINITION 3.0.16 ([66]). The indefinite inner product (i.i.p.) on a complex vector space V is
a complex function [z,y] : V x V. — C with the following properties:

il: - [z 4y, 2| =[x, 2] + [y, 2],

i2: : [Az,y] = Mz, y| for every X € C,

i3: : [x,y] = [y, ] for every z,y €V,

id: : [x,y] =0 for every y €V then x = 0.
A wvector space V' with an i.i.p. is called an i.i.p. space.

The standard mathematical model of space-time is a four dimensional i.i.p. space with signa-
ture (+,+,+, —), also called Minkowski space in the literature. Thus we have a well known
homonymism with the notion of Minkowski space!

Now we collect the common properties of the semi- and indefinite-inner-products and define
the semi-indefinite inner product as well as the corresponding semi-indefinite inner product
space. We also give a generalized concept of Minkowski space embedded in a semi-indefinite
inner product space. In generalized Minkowski space and generalized space-time model with
changing shape we investigate some important hypersurfaces giving a generalization either for n-
dimensional hyperbolic space or the n-dimensional de Sitter space. Following our investigations
in the Appendix we introduce the so-called time-space manifold, which is an analogous of the
Lorentzian manifold in a generalized space-time model with changing shape and we give a
version of general relativity theory valid in this structure.

3.1. Semi-indefinite inner product spaces

Let s1, s2, s3, s4, and sb be the five defining properties of an s.i.p. with the homogeneity
property (see in Section 2.2). (As to the names: sl is the additivity property of the first
argument, s2 is the homogeneity property of the first argument, s3 means the positivity of
the function, s4 is the Cauchy-Schwartz inequality and s5 is the homogeneity property of the
second argument.)

On the other hand, clearly i1—s1, i2—s2, and the properties i3 and i4 are the antisymmetry
property and the nondegeneracy property of the indefinite inner product, respectively. It is easy
to see that s1, s2, s3, s5 imply i4, and if N is a positive (negative) subspace of an i.i.p. space,
then s4 holds on N. In the following definition we combine the concepts of s.i.p. and i.i.p..

69
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DEFINITION 3.1.1 ([8]). The semi-indefinite inner product (s.i.i.p.) on a complex vector space
V' is a complex function [z,y] : V x V. — C with the following properties:
1: [z +vy, 2] = [z, 2] + [y, 2| (additivity in the first argument),
2: [Az,y] = Az,y] for every X € C (homogeneity in the first argument),
3: [z, \y] = Nx,y] for every X € C (homogeneity in the second argument),
4: [z, x] €R for every x €V (the corresponding quadratic form is real-valued),
5: if either [x,y] =0 for every y €V orly,x] =0 for ally € V, then x = 0 (nonde-
generacy),
6: |[z,y]|> < [z, 2]y, y] holds on non-positive and non-negative subspaces of V, respec-
tively. (the Cauchy-Schwartz inequality is valid on positive and negative subspaces,
respectively).

A wector space V' with a s.i.i.p. is called an s.i.i.p. space.

The interest in s.i.i.p. spaces depends largely on the example spaces given by the s.i.i.p. space
structure.

ExXAMPLE 3.1.1. We conclude that an s.i.i.p. space is a homogeneous s.i.p. space if and only
if the property s3 holds, too. An s.i.i.p. space is an i.i.p. space if and only if the s.i.i.p. is
an antisymmetric product. In this latter case [z,2] = [z,z] implies 4, and the function is
also Hermitian linear in its second argument. In fact, we have: [x, \y + pz| = [A\y + pz,z] =
My, z] + fi[z, ©] = Nz, y] + fi[z, 2]. It is clear that both of the classical "Minkowski spaces" can
be represented either by an s.i.p or by an i.i.p., so automatically they can also be represented
as an s.i.i.p. space.

EXAMPLE 3.1.2. In an arbitrary complex normed linear space V' we can define an s.i.i.p. which
is a generalization of a representing s.i.p. of the norm function. Let now C' be the unit sphere of
the space V. By the Hahn-Banach theorem there exists at least one continuous linear functional,
and we choose exactly one such that ||0*]] = 1 and v*(v) = 1. Consider a sign function &([v])
with value £1 on C/ ~, where C'// ~ means the factorization of C' by the equivalence relation

"x ~ 1y <& x = Ay with a nonzero \”.

If now ¢([v]) = 1 let it be denoted by v* = v*, and ¢([v]) = —1 defines v* = —v*. Finally, extend
it homogeneously to V by the equality (Av)* = Av*. Of course, for an arbitrary vector v of V'
the corresponding linear functional satisfies the equalities v*(v) := ([v])||v[|* and ||v]| = [Jv*|.
Now the function

[u, v] = v*(u)
satisfies 1-5. If U is a non-negative subspace, then it is positive and we have for all nonzero

u,v € U that X

o1l = Pl = Sl < ol = ol
proving 6.
To define the generalized Minkowski space we need a lemma:
LEMMA 3.1.1 ([8]). Let (S, [,-]s) and (T, —[,-|r) be two s.i.p. spaces. Then the function [-, ] :
(S+T)x (S+T)— C defined by

[s1+ t1, 80+ ta] ™ = [s1,82] — [t1, 2]

s an s.i.p. on the vector space S + T
PROOF. The function [-, -]~ is non-negative, as we can easily see from its definition. First we

prove the linearity in the first argument. We have
[)\/(SI + t/) + )\”(S” + t”),s + t]i _ [)\IS/ + )\1/8”,8]5 o [)\Itl + )\/Itl/,t]T _
= N[s',s]ls + N'[s",s]s = N[t',t]r = N'[t" t]r = N[ +t,s+t]” + N'[¢" +", s +1]".
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The homogeneity in the second argument is trivial. In fact, we have
[+t A(s+1)] =[s,As]ls — [t', M]p = A[s' + 1, s +1].
Finally we check the Cauchy-Schwartz inequality. We have
[[s14t1, satt2] 7|7 = [s14+t1, So+ta] 7 [s1 + t1, 82 + o] ™ = ([s1, S2ls—[t1, ta]7) ([51, S2]s—[t1, ta]T) =

2
= [s1, S2]s[51, 82]s + [t1, ta]r[tr, ta]r + [51, S2)s(=[t1, ta]r) + (=[t1. ta)7)[51, S2]s <
< [s1, s1]s[52, S2]s + [t1, ta]r[te, ta]r + 2Re{[s1, so]s(—[t1, ta]7) } <
< [s1, s1]s[52, 52]s + [t1, ta)r[te, to]r + 2|[s1, s2] 5| [t1, ta] 7| <
< [51, 51]5[52, Sals + [t1, t1)7[t2, ta)r + 2/ [51, 51]5[52, Sls[t1, ] r[ta, tal T,
and by the inequality between the arithmetic and geometric means we get that
[s1, 51]s[82, S2]s + [tr, ] [ta, ta]r + 24/ [51, s1]s[s2, sals[tr, ti]r[ta, to]r <
< [s1, s1]s[s2, 82]s + [t1, ta]r[te, ta]r + [s1, s1)s(—[ta, to]r + (=[t1, t1]7)[52, S2)s =
= ([s1,51]s = [ti. t1]r)([s2, 825 — [ta, to]r) = [s1 + L1, 51 4+ t1] " [s2 + L2, 50 + Lo] .

O

It is possible that the s.i.i.p. space V is a direct sum of its two subspaces where one of them
is positive and the other one is negative. Then we have two more structures on V', an s.i.p.
structure (by Lemma 3.1.1) and a natural third one, which we will call Minkowskian structure.
More precisely, we have

DEFINITION 3.1.2 ([8]). Let (V,[-,-]) be an s.i.i.p. space. Let S, T <V be positive and negative
subspaces, where T is a direct complement of S with respect to V. Define a product on V by
the equality [u,v]*t = [s1 + t1, So + to] T = [s1, 82| + [t1, t2], where s; € S and t; € T, respectively.
Then we say that the pair (V,[-,-]T) is a generalized Minkowski space with Minkowski product
[-,-]*. We also say that V is a real generalized Minkowski space if it is a real vector space and
the s.i.i.p. is a real valued function.

The Minkowski product defined by the above equality satisfies properties 1-5 of the s.i.i.p.. But
in general, property 6 does not hold. To see this, define an s.i.i.p. space in the following way:

A

e\

2
max{[x|,ly[}*-1/ay =1
FIGURE 3.1. The unit sphere of a positive subspace of the Example

Consider a 2-dimensional L space S of the embedding three dimensional Euclidean space E3.
Choose an orthonormed basis {ey, e, e3} of E3 for which e, e, € S, and give an s.i.p. associated

to the L norm as follows:

1 . 1
»=3 T T2Y2 plgglo — -

(e ()) (e ())"

(161 + Toes + T3e3, Y101 + Yoea + Yses|” = [Tie + Taea, Y161 + Yoeals + T3ys

(161 + T2€9, Y161 + Y2€2]s = x1y1 lim
p—00

By Lemma 3.1.1 the function
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is an s.i.p. on E? associated to the norm

\/[xlel + moey + we3, rreq + xoey + xzes]T = \/max{\:cﬂ, | 29| }2 + 3.

By the method of Example 3.1.2 consider such a sign function for which (v) is equal to 1 if v
is in SN C, and is equal to —1 if v = e3 holds. (C' denotes the unit sphere, as in the previous
examples.) This sign function determines an s.i.i.p. [-, -] and thus generates a Minkowski product
[-,-]T, for which the corresponding square root function is

fv):= \/[1’161 + moey + wzes, x1eq + xoey + xzes]t = \/max{\xl\, |zo|}2 — 22,

As it can be easily seen, the plane x3 = ax, for 0 < a < 1 is a positive subspace with respect
to the Minkowski product, but its unit ball is not convex (see Fig. 3.1).

But f(v) is homogeneous, correspondingly it is not subadditive. Since the Cauchy-Scwartz
inequality implies subadditivity, this inequality remains false in this positive subspace.

FIGURE 3.2. The case of the norm L.

Giles in [64] gave an associated s.i.p. for L, spaces. Using the method of our Example 3.1.2, we
can define s.i.i.p. spaces based on the L, structure. Let (S, [-,-]s) be the s.i.p. space, where S is
the real Banach space L, (X, S, 1) and T is the real Banach space L, (Y,S’, v), respectively. If
1 < p1,p2 < 00, then these spaces can be readily expressed, as a uniform s.i.p. space with s.i.p.

defined by

[s1,$2]s = M#/Xsﬂsﬂpl_lsgn (s2)dp
and

b, tolr = W /Y blta]P* s (t2)dv,

respectively. Consider the real vector space S + T with the s.i.p.
[, v]” 1= [s1, Sa]s + [t1, La] T
This is also a uniform s.i.p. space, since in Lemma 3.1.1 we proved that it is an s.i.p. space and
[z, 2] = [z, 9]l = [([s3, 51]s — [s3, 52]5) + ([ts, talr — [t3, T2]r)| <

< |[ss, s1]s = [s2, suls| + [[ts, talr — [t2, ta] 7| < 2(p1 = 1)l[s1 = s2llpy + 2(p2 = 2)[[t1 = t2]lpa

implying that the space is uniformly continuous. It has been established that such spaces are
uniformly convex (see [38], p. 403). We could define an s.i.i.p space on S + 7" such that the
subspace S is positive and T is a negative one, and a Minkowski space by the Minkowski
product [u,v]" := [s1,82]s — [t1,ta]r, respectively. (In Fig. 3.2 one can see the case when
dim S = dim 7T + 1 = 2 and the norm of S is L..)

We define the orthogonality of such a space by a definition analogous to the definition of the
orthogonality of an i.i.p. or s.i.p. space.
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DEFINITION 3.1.3 ([8]). The vector v is orthogonal to the vector w if [v,u] = 0. If U is a subspace
of V, define the orthogonal companion of U in'V by U+ = {v € V|[v,u] =0 for allu € U}. A

vector v is neutral vector if [v,v] = 0.
We note that, as in the i.i.p. case, the orthogonal companion is always a subspace of V.

THEOREM 3.1.1. [8] Let V' be an n-dimensional s.i.i.p. space. Then the orthogonal companion
of a non-neutral vector u is a subspace having a direct complement of the linear hull of u in V.
The orthogonal companion of a neutral vector v is a degenerate subspace of dimension n — 1
containing v.

We omit the easy proof.

REMARK 3.1.1. The proof of Theorem 3.1.1 does not use the property 6 of the s.i.i.p.. So
this statement is true for any concepts of product satisfying properties 1-5. As we saw, the
Minkowski product is also such a product. It can be proved also that in a generalized Minkowski
space, the positive and negative components S and T are Pythagorean orthogonal to each other.
In fact, for every pair of vectors s € S and t € T, by definition we have [s — t,s — t]T =
s, 8] + [—t, —t] = [s,s]T + [t, ¢]".

The following theorem will be a common generalization of the theorem on diameters conjugated
to each other in a real, finite dimensional normed linear space, and a theorem on the existence of
an orthogonal system in an i.i.p. space. A set of n diameters of the unit ball of an n-dimensional
real normed space is considered to be a set of conjugate diameters if their normalized vectors
have the following property: Choosing one of them, each vector in the linear span of the re-
maining direction vectors is orthogonal to it. An Awuerbach basis of a normed space is a set of
direction vectors having this property. Any real normed linear space has at least two Auerbach
bases. One is induced by a cross-polytope inscribed in the unit ball of maximal volume (see
[139]), and the other one by the midpoints of the facets of a circumscribed parallelotope of
minimum volume (see [40]). These two ways of finding Auerbach bases are dual in the sense
that if an Auerbach basis is induced by an inscribed cross-polytope of maximum volume, then
any dual basis is induced by a circumscribed parallelotope of minimum volume, and vice versa
(cf. [95]). If any minimum volume basis and maximum volume basis coincide, then by a result
of Lenz (see [102]) we have that the space is a real i.p. space of finite dimension.

For generalized Minkowski spaces we have an analogous theorem which straightforward proof
we omit here.

THEOREM 3.1.2. [8] In a finite dimensional, real, generalized Minkowski space there is a basis
with the Auerbach property. In other words, its vectors are orthogonal to the (n—1)-dimensional
subspace spanned by the remaining ones. For this basis there is a natural number k, less or
equal to m, for which {ey,...,ex} C S and {exi1,...,e,} CT. Finally, this basis has also the
Auerbach property in the s.i.p. space (V,[-,-]7).

3.2. Generalized space-time model

It is easy to see that by this method, starting with arbitrary two normed spaces S and T,
one can mix a generalized Minkowski space. Of course its smoothness property is basically
determined by the analogous properties of S and T'.

DEFINITION 3.2.1 ([8]). Let V' be a generalized Minkowski space. Then we call a vector space-
like, light-like, or time-like if its scalar square is positive, zero, or negative, respectively. Let S, L
and T denote the sets of the space-like, light-like, and time-like vectors, respectively. In a finite
dimensional, real generalized Minkowski space with dimT = 1 is called generalized space-time
model.

In the case of generalized space-time model we can geometrically characterize these sets of
vectors. At this time 7 is a union of its two parts, namely 7 = 7" U T ~, where

Tt={s+teT|wheret=\e, for \ >0} and T~ = {s+t € T| where t = Xe, for A < 0}.
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THEOREM 3.2.1 ([8]). Let V' be a generalized space-time model. Then T is an open double cone
with boundary L, and the positive part T+ (resp. negative part T~ ) of T is convex.

PROOF. The conic property immediately follows from the equality [\v, ]t = A\[v,v]* =
|A]?[v, v]*. Consider now the affine subspace of dimension (n—1) which is of the form U = S+,
where t € T is arbitrary, but non zero. Then, for an element of 7 (U, we have 0 > [s+t, s+t]T =
[s,s] + [t, t], and therefore [s, s] < —[t,t]. This implies that the above intersection is a convex
body in the (n — 1)-dimensional real vector space S. The s.i.i.p. in S induces a norm whose
unit ball is a centrally symmetric convex body. So T is a double cone and its positive (resp.
negative) part is convex, as we stated. For the vectors of its boundary equality holds, and so
these are light-like vectors. Since those vectors of the space, for which the inequality does not
hold, are space-time vectors, we also get the remaining statement of the theorem. [l

In the rest of the paper [8] we considered a special subset, the imaginary unit sphere of a finite
dimensional, real, generalized Minkowski space. (Some steps of our investigation are also valid
in a complex generalized Minkowski space. If we do not use the attribute "real", then we think
about a complex Minkowski space.) We give a metric on it, and thus we will get a structure
similar to the hyperboloid model of the hyperbolic space embedded in a space-time model.
We note that if dim 7 > 1 or the space is complex, then the set of time-like vectors cannot be
divided into two convex components. So we have to consider that our space is a generalized
space-time model.

3.2.1. The imaginary unit sphere. It is known that in a Lorentzian space the imaginary
unit sphere can be identified with the n — 1-dimensional hyperbolic space. Hence the imaginary
unit sphere of a generalized space-time model can be considered as a generalization of the
hyperbolic space. We begin with a definition:

DEFINITION 3.2.2 ([9]). The set
H :={v e Vlv,v]" = -1},
1s called the imaginary unit sphere.

With respect to the embedding real normed linear space (V,[-,+]7) (see Lemma 3.1.1) H is, as
we saw, a generalized two sheets hyperboloid corresponding to the two pieces of T, respectively.
Usually we deal only with one sheet of the hyperboloid, or identify the two sheets projectively. In
this case the space-time component s € S of v determines uniquely the time-like one, namely
t € T. Let v € H be arbitrary. Let T}, denote the set v + v+, where v is the orthogonal
complement of v with respect to the s.i.i.p., thus a subspace.

THEOREM 3.2.2 ([8]). The set T, corresponding to the point v = s+t € H is a positive,
(n — 1)-dimensional affine subspace of the generalized space-time model (V,[-,-]1).

PROOF. By the definition of H the component ¢ of v is non-zero. As we saw in Theorem 3.1.1,
if [v,v] # 0, then v+ is an (n — 1)-dimensional subspace of V. Let now w € T, — v be an
arbitrary vector. We have to prove that if [v,v] = —1 and w is orthogonal to v, then [w, w] > 0.
Let now w = s’ + ¢/ and assume that [t', '] = 0. Then, by the definition of 7', ' = 0 and thus
[w,w] = [s,s] > 0 holds. In this case, we may assume that [t',#'] # 0, and so ¢’ = At. On the
other hand, we have 0 = [w,v]" = [¢, s] + [t/,¢]. We can use the Cauchy-Schwartz inequality
for the space-time components, and we have

[575][5/’ Sl] > |[S,>5]|2 = I - [tlatHQ = I)‘|2| - [tatHQ = |)‘|2[t>t]2'
Since [s, s][t', '] = A\[s, s][t, ] = |M|?[s, s][t, t], we get the inequality

5, sl ] = [s, s)([5' ] + [, 1) > NP(E 12 + s, s][6, ).
By the definition of H we also have —1 = [v,v|" = [s, s] + [t, t] and

[87 S][wu w]Jr > |)\|2<[t7 t]2 + <_1 - [ta t])[ta t]) = _|)\|2[t7 t] > 0.
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Consequently, if s is nonzero then [w,w] > 0, as we stated. If now [s,s] = 0 then [t,¢] = —1,
and 0 = [s' +t',t] = [¢,t] + [/, t] = [t/,t] implies that ¢ = 0 and w € S. Thus we proved the
statement. U

Each of the affine spaces T}, of H can be considered as a semi-metric space, where the semi-metric
arises from the Minkowski product restricted to this positive subspace of V. We recall that the
Minkowski product does not satisfy the Cauchy-Schwartz inequality. Thus the corresponding
distance function does not satisfy the triangle inequality. Such a distance function is called in
the literature semi-metric (see [138]). Thus, if the set H is sufficiently smooth, then a metric
can be adopted for it, which arises from the restriction of the Minkowski product to the tangent
spaces of H. Let us discuss this more precisely.

The directional derivatives of a function f : .S —— R with respect to a unit vector e of S can
be defined in the usual way, by the existence of the limits for real A: f/(s) = }\E% w

Let now the generalized Minkowski space be a generalized space-time model, and consider a
mapping f on S to R and a basis {ey,...,e,}. The set of points F':= {(s + f(s)e,) € V for
s € S} is aso-called hypersurface of this space. Tangent vectors of a hypersurface F' in a point p
are the vectors associated to the directional derivatives of the coordinate functions in the usual
way. So u is a tangent vector of the hypersurface F' in its point v = (s + f(s)e,), if it is of the
form u = a(e+ fl(s)e,) for real a and unit vector e € S. The linear hull of the tangent vectors
translated into the point s is the tangent space of F' in s. If the tangent space has dimension
(n — 1) we call it tangent hyperplane. It can be seen easily, that the explicit form of H arises

from the function
fisr— /14 s, s].

Since its directional derivatives can be concretely determined, we can give a connection between
the differentiability properties and the orthogonality one.

LEMMA 3.2.1 ([8]). Let V' be a generalized Minkowski space and assume that the s.i.p. [-,||s
is continuous. (So the property s6 holds) Then the directional derivatives of the real valued

unction s+ +/1+[s,s] are f!(s) = _Rele;s]
f f \/7 f \/1+[SS]

PROOF.
The considered derivative is

f(s+Xe) = f(s) \/1+[s+/\e,s+)\e]—\/1+[s,s] B \/1+[s+)\e,s+)\e]\/1+[s,s]—(1+[s,s])
A N A B M/ 1+ [s, 5] .
Since s + Ae,s € S, and S is a positive subspace, we have

OS(\/[3+)\6,3+)\6]—\/[s,s])2:[s+)\e,s+)\e]—2\/[s+)\e,s+)\e]\/[s,s]+[s,s],

and so [s + Ae, s + Ae] + [s,8] > 24/[s + Ae, s+ Ae]\/[s, s] > 2|[s + Ae, s]|, yielding also [s +
Ae, s + Xe| + [s, s] > 2|[s, s + Ae]|. Using these inequalities, we get that

f(s+Xe) — f(s) \/1+2|5+)\e 5]|—|—|[8+)\e s||? — (1+[S,s]):
A B A/ 1+ s, 8]
L+ [s+ Xe,s]| —1—s, 9] - Re{]s, s] + Ale, s]} — [s, $] _ Rele, s]
A/ 1+ s, 5] N A/ 1+ s, 9] V14 s, 8]
But also
fls+xe) = f(s)  (1+[s+Xe,;s+Ae]) — /1 +[s,8]/(1+ [s+ Ae, s+)\e])<
A a A¢1+5+Aas+Ad -
<(1+[s+)\e,s+)\e])—1—|[s,s+)\e]|:Re{[s+)\e,s+)\e]}—|[s,s+)\e]|:
- M/1+[s4 Ae, s + Ae] M/1+[s4 de, s + Ae]

~ Re{[s,s + Xe] + Ale, s + Ae]} — [[s, 5+ Ae]]
M1+ [s+ Ae, s + Ae

<
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- |[s, 5 + Xe]| + Re{Ale,s + Ae]} — [[s,s +Ae]]  Re{le,s + Ae]}
B M/1+[s+ Ae, s + Ae V14 s+ Xe, s+ Ae]
Now the continuity property s6 implies that the examined limit exists, and that the differential

Rele,s]
S p——— e e’ N
V 1+ [s,9]

The following theorem is a consequence of this result.

, as we stated. [l

THEOREM 3.2.3 (|9]). Let assume that the s.i.p. [-,-] of S is differentiable. (So the property s6’
holds.) Then for every two vectors x and z in S we have:
R _
) = 2ol ] = [, and |- |1 r) = T
’ T

If we also assume that the s.i.p. is continuously differentiable (so the norm is a C* function),

then we also have
Relz, yJ?
(2, () = [, ] and thus || - |, (y) = [l2]|* - %

PROOF. Since
1 1 1
3 ([t + Az, o+ A2] — [z, 2]) = 3 ([, z + Az] — [z, 2]) + X[Az,x + Az],

if A tends to zero then the right hand side tends to [z, -] (z) + [z, ]. The left hand side is equal
to

<\/1+[x+)\z,:c+)\z] —\/1+[x,:c]) <\/1—|—[:c+)\z,:c+)\z]+\/1+[:1:,:c])
A

thus by Lemma 3.2.1 it tends to

Relza] T
1+ [z, x]
This implies the first equality [z,:].(z) = 2Re[z, 2] — [z, ]. Using Theorem 2.2.1 we also get
that [|z||(|| - ||7.(z)) = [z, -].(z) — W, proving the second statement, too.
If we assume that the norm is a C? function of its argument then the first derivative of the
second argument of the product is a continuous function of its arguments. So the function

A(y) : S — R defined by the formula
.1
—0 \
continuous in y = 0. On the other hand for non-zero t € R we use the notation t\’ = A and we
get that
1 .t ,
Afty) = i ([, ty + 3] = [z,]) = lim — (o, + Xa] — [2,9]) = A(y).
From this we can see immediately that [z,-].(y) = A(y) = A(0) = [x,z] holds for every y.
Applying again the formula connected the derivative of the product and the norm we get the
last statement of the theorem, too. [l

Now we apply our investigation in a generalized space-time model to H. We can give a connec-
tion between the differentiability properties and the orthogonality one.

LEMMA 3.2.2 ([8|). Let H be the imaginary unit sphere of a generalized space-time model. Then

the tangent vectors of the hypersurface H in its point v = s+ /1 + [s, sle, form the orthogonal
complement v of v.
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PROOF. A tangent vector of this space is of the form u = a(e+ f!(s)e,), where by the previous

lemma f!(s) = \;{f[f;]s] = \/i‘is] Thus we have
+
[a (e + 1[6_’_’71,8]6,1> ,s+t| =ale, s+« 1[(178&’8]6”, 14 [s,slen| = a(le,s] — e, s]) = 0.

So the tangent vectors are orthogonal to the vector v. Conversely, if for a vector u = s +

t' = s 4+ Xe, we have 0 = [u,v] = [¢,s] + [t/,t] then [, s] = —[Xe,, t] = A\\/1+ [s, s], since
—[t,t] = 1+ [s, s] by the definition of H. Introducing the notion e = ﬁ we get that
! A
e, s] = 87,3 = ——=/1+]s,s],
[8/, 8/] [S', S']

implying that \ »
e,s

\/[3’,5’] B \/1+[8 5

=/, ¢] A en | =ale+ fl(s)e,).

This last equality shows that a Vector of the orthogonal complement is a tangent vector, as we
stated. OJ

In this way

We defined the Finsler space type structure for a hypersurface of a generalized space-time
model.

DEFINITION 3.2.3 ([8]). Let F' be a hypersurface of a generalized space-time model for which
the following properties hold:

iz In every pointv of F, there is a (unique) tangent hyperplane T, for which the restriction
of the Minkowski product [-,-|F is positive, and
iz the function ds? := [-,-]F : F x T, x T, — RY ds? : (v,u1,us) — [ug, us) varies
differentiable with the vectors v € F' and uy,us € T,.
Then we say that the pair (F,ds?) is a Minkowski-Finsler space with semi-metric ds*> embedding

into the generalized space-time model V.

Naturally "varies differentiable with the vectors v, u, us" means that for every v € T and pairs
of vectors uy, us € T, the function [u, us], is a differentiable function on F.

Assume now that the s.i.i.p. restricted into S is continuously differentiable. In a connected
Finsler space any point has a distance from any other point of the space (see e.g. [138]). By
our terminology the distance can be computed in the following analogous way.

DEFINITION 3.2.4 ([8]). Denote by p,q a pair of points in HY and consider the set T, of
equally oriented piecewise differentiable curves c¢(t) a < t < b of H' emanating from p and
terminating at q. Then the Minkowskian-Finsler distance of these points is

b
q) = inf /,/[c'(x), c‘(:p)]j(x)dx forcely,, o,

where ¢(x) means the tangent vector of the curve ¢ at its point c(x).

We would like to examine the influence of a linear isometry to the Minkowski-Finsler distance.
It is easy to see that this distance satisfies the triangle inequality; thus it is a metric on H™
(see [138]).

DEFINITION 3.2.5 ([8]). A topological isometry f : H — H of H is a homeomorphism of H
which preserves the Minkowski-Finsler distance between each pair of points of H.
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We note that in this definition a linear mapping F' restricted to .S gives an isometry between S
and its image F'(S) implying that this image is a normed space with respect to those s.i.p. which
raised from the s.i.p. of S. This isometry is stronger than the usual one, in which we need only
the equality of the norm of the corresponding vectors. As we can see earlier (Theorem 2.2.5)
Koehler theorem says that a mapping in a smooth Banach space is an isometry if and only if it
preserves the (unique) s.i.p.. Thus, if the norm is at least smooth, then the two types of linear
isometry coincide. Koehler also proved [97| that if the generalized Riesz-Fischer representation
theorem is valid in a normed space, then every bounded linear operator A has a generalized
adjoint AT defined by the equality [A(x),y] = [z, AT (y)] for all z,y € V. This mapping is the
usual Hilbert space adjoint if the space is an i.p. space. In this more general setting this map is
not usually linear but it still has some interesting properties. The assumption for the s.i.p. in
Koehler paper [97] is that the space should be a smooth and uniformly convex Banach space. It
is well known that uniform convexity implies strict convexity. On the other hand, we now take
also into consideration (see [144] p. 111) that every, strictly convex, finite-dimensional normed
vector space is uniformly convex. So for the rest of the section we shall assume that the normed
space S with respect to its s.i.p. is strictly convex and smooth. It is convenient to characterize
strict convexity of the norm in terms of s.i.p. properties. E. Berkson [24]| states, what can be
simply proved, namely

LEMMA 3.2.3 ([24]). An s.i.p. space is strictly convez if and only if [x,y] = ||z||||y|| with x,y # 0
implies y = Ax for some real A > 0.

The following theorem is true for the imaginary unit sphere.

THEOREM 3.2.4 ([8]). Let V' be a generalized space-time model.
o If S is a continuously differentiable s.i.p. space, then (H',ds?) is a Minkowski-Finsler

space.
e [f we assume that the subspace S is a strictly convez, smooth normed space with respect
to the norm associated to the s.i.i.p. then the s.i.p. space {V,[-,-|"} is also smooth and

strictly convex. Let FT be the generalized adjoint of the linear mapping F with respect
to the s.i.p. space {V,[-,]7}, and define the involutory linear mapping J : V. — V
by the equalities J|S = id|S, J|T = —id|p. The map F|ly = f: H — H is a linear
isometry of the upper sheet H™ of H if and only if it is invertible, satisfies the equality:
F=t = JFTJ, and, moreover, takes e, into a point of H*.

o A linear isometry of H™ is also a topological isometry on it.

e Assume that also that the group of linear isometries of H' acts transitively on H™.
Denote the Minkowski-Finsler distance of H' by d(-,-). Then the following statement
is true: [a,b]T = —ch(d(a, b)) for a,b € H*.

PROOF. If the s.i.p. of S'is a continuously differentiable one, then the norm is twice differentiable
(see Theorem 2.2.1). This also implies the continuity of the s.i.p., and so we know by Lemma
3.2.1 that there is a unique tangent hyperplane at each point of H. By Theorem 3.2.2 we get that
the Minkowski product restricted to a tangent hyperplane is positive. So the first assumption
of the definition is valid.

To prove the second condition, consider the product [uy, us];", where v is a point of H and wq,us
are two vectors on its tangent hyperplane. Then, by Lemma 3.2.1, we have:

U = si+Men for:=1,2.
1+ 54,5

Here the vectors sy, S9, s, are in S and v = s, + /1 + [s,, Sy]€,. Thus the examined product is

[31’ 32](1 + [SU,SU]) - [517511][527511]
(14 [50,50))

[U1,U2];r = (10
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Since the function [s,,s,] = ([v,€,]7)? — 1 is a continuously differentiable function of v, and
[s1, 82] is (by our assumption) also a continuously differentiable function of its arguments, we
have to prove, that the map sending u; to s; also has this property. But this latter fact is a
consequence of the observation that the map u +— s is a projection, and so it is linear.

To prove the statements of the second item firstly we notes that the embedding normed space
{V,]-,-]7} is also smooth and strictly convex. The equality 1 = [s + ¢, s+ t]” = [s, 8] — [t,t] =
s, 5] + ||]|? shows that the unit balls of the two norms are smooth at the same time. To prove
strict convexity, consider [s +¢,s" + /|7 = ||s + t||7||s' + || . Since dimT" = 1, we can assume
that ¢/ = At for some real A\. Thus we get the equality

[s,5][s',s'] = [s,8']* + [t,1)([s, s'] — 2\[s, 8'] + A?[s, s]).
By the Cauchy-Schwartz inequality we have

[s, 8] — 2\[s, 8'] + A?[s, 5] > <\/[)\3, As] — /[, s’])2 >0,

and so
0<[s,s <[s,s|[s,s] = [s,8)* + [t,t]([s', 5] — 2\[s, 8'] + N?[s, s]) < [s, 5],

implying that [t,]([s',s] — 2A[s, s'] + A?[s,s]) = 0. If [t,¢] = 0, then ¢t = ¢’ = 0, and from
the strict convexity of S we get that there is a real p > 0 with s’ = ps. For this y we have
also s’ +t = p(s +t). So we can assume that [t,¢] # 0, and thus both [s, s][s',s'] = [s, s']?
and ([s',s'] — 2\[s,s'] + A?[s,s]) = 0 hold. But S is a strictly convex space. Therefore, again
for a nonzero s there is a real y > 0 with s’ = ps. But this also implies 0 = (u — \)?[s, s],
showing that p = A and s + ¢ = u(s + t). Using Lemma 3.2.3, we get the strict convexity of
the embedding normed space.

Let now F' be a linear isometry of H. It is clear that the linear operator .J transforms the
Minkowski product into the s.i.p. of the embedding space. Precisely we have [v, w]|* = [v, Jw] .
Now using the existence of the adjoint operator, the calculation

[v, Jw]” = [v,w]" = [Fv, Fw]" = [Fv, JFw]™ = [v, FTJFw]~

holds for each pair of vectors v and w. But the embedding space is a non-degenerate one; thus
we get the equality J = FTJF, or equivalently F'~! = JFTJ. By its definition the last condition
on F' also holds.

Conversely, if F'is a linear mapping satisfying the condition of the theorem, then it preserves
the Minkowski product. In fact,

[Fv, Fw|" = [Fv, JFw]” = [v, FLJFw]” = [v, Jw]™ = [v,w]".

It takes the hyperboloid H homeomorphically onto itself, implying that it takes a sheet onto
a sheet. Our last condition guarantees that F(H*) = H and F is a linear isometry of H' as
we stated.

We also reformulates the length of a path as follows. The Minkowski-Finsler semi-metric on
H™ is the function ds? which assigns at each point v € H+ the Minkowski product which is the
restriction of the Minkowski product to the tangent space T,,. This positive Minkowski product
varies differentiably with v. Let U < V be a subspace and consider a map f : U — V. If it
is a totally differentiable map (with respect to the norm of the embedding n-space in the sense
of Frechet) then f(T,) = Ty, for the tangent spaces at v and f(v), respectively and one can
define the pullback semi-metric f*(ds?) at the point v by the following formula:

1(ds%)u(un, us) = dshi, (D f (wr), Df (uz)) = [Df(w), Df(us)]f,-

The square root ds of the semi-metric function defined by \/ds?(u,u) is the so called length
element and the length of a path is the integral of the pullback length element by the differ-
entiable map ¢ : R — V. This implies that if a linear isometry leaves the Minkowski-Finsler
semi-metric invariant by the pullback, then it preserves the integrand, and thus preserves the
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integral as well. Let now F be a linear isomorphism, and its restriction to H* be f. Compute
the pullback metric as follows:

F(ds®)u(ur, uz) = dsi (D f (wr), Df(uz)) = [Df(wr), D f(u2)]F,) =
= [DF(u1), DF (u2)] () = [F(u1), F(u2)] 5,
because F'is linear. But it preserves the Minkowski product, and therefore we conclude that
[F(wr), F(u2)]5, = [ur, usly = (ds?)y(ur, us).

This proves that a linear isometry of H™ is also a topological and Finsler isometry on it.
Finally, in a Finsler space a function preserving the distance transforms geodesics to geodesics
(see in [21]). In our case this is also true, since it is basically determined by the definition of the
distance and the smoothness properties which are the same in both cases. Since our space is
homogeneous and linear isometry preserves the distance by the above argument, we can assume
that a = e,. Let now b # a and consider the 2-plane (a,b) spanned by the vectors a and b.
The restriction of the s.i.i.p. to the plane (a,b) is an i.i.p.; thus the restricted Finsler function
is a Riemannian one. So the intersection H N (a,b) is a hyperbola in the embedding Euclidean
2-space. Thus we can parameterize the points of a path from a to b by ¢(t) = sh(r)e + ch(t)e,
for t € [0,1] with ¢(0) = a and ¢(1) = b. The length of an arc from 0 to x is

T

/ Vch?(1) — sh2(t)dr = z,

0
showing that the points of this arc satisfy the triangle inequality with equality. Consequently
it is a geodesic on H and therefore its arc-length is the distance of the points a and ¢(z). On
the other hand, we also have

[a,b]" = [en, sh(l)e + ch(1)e,]" = [en, ch(1)e,] = —ch(1) = —ch(d(a, c(1)) = —ch(d(a,D)).
U

As it can be seen from the formula in this theorem, the generalized adjoint of a linear isom-
etry is a linear transformation. We also note that Theorem 3.2.4 in the i.p. case gives the
characterization of the isometries of the hyperbolic space of dimension (n — 1).

3.2.2. Premanifolds in a generalized space-time model. There is no and we did not
give a formal definition of an object calling in our work [9]| by premanifold. We use this word for
a set if it has a manifold-like structure with high freedom in the choosing of the distance function
of its tangent hyperplanes. For example we get premanifolds if we investigate the hypersurfaces
of a generalized space-time model. The most important types of manifolds as Riemannian,
Finslerian or semi-Riemannian can be investigated in this way. The structure of our embedding
space was introduced in [8] and in the next paper [9] we continued our investigations by the
building up of differential geometry of hypersurfaces. We gave the pre-version of the usual semi-
Riemannian or Finslerian spaces, the hyperbolic space, the de Sitter sphere, the light cone and
the unit sphere of the rounding semi inner product space, respectively. In the case, when the
space-like component of the generalized space-time model is a continuously differentiable semi
inner product space then we get back the known and usable geometrical information on the
corresponding hypersurfaces of a pseudo-Euclidean space, e.g. we showed that a pre-hyperbolic
space has constant negative curvature.

Let F' be a hypersurface defined by the function f : S — V. Here f(s) = s+ f(s)e, denotes
the point of . The curve ¢ : R — S define a curve on F. We assume that c is a C*-curve.

DEFINITION 3.2.6 ([126]). We say that a hypersurface is convex if it lies on one side of its
each tangent hyperplanes. It is strictly convex if it is convex and its tangent hyperplanes contain
precisely one points of the hypersurface, respectively.
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If we have a map f : S — V then it can be decomposed to a sum of its space-like and
time-like components. We have f = fs+ fr where fg: S — S and fr: S — T, respectively.
With respect to the embedding s.i.p space we can compute its Frechet derlvatlve by Df =

[Dfs, Df7]" implying that Df(s) = Dfs(s) + Dfr(s). For brevity introduce the following
notation

1)) T Doy (Fa(e(t)) = ([(fl)s(c(t))’ Tbi( 2500t (F2)s(e()) = (f1)r(c(®)((f2)r 0 C)’(t)) :

Now we state:

LEMMA 3.2.4 (|9]). If fi,f2: S — V are two C* maps and ¢ : R — S is an arbitrary C?
curve then

([(froe)®), (fao )NIT) = [D(fro o)1), (f2 0 )ONIT + [(fr o)), 1" D poeyie (f2 0 €) (1))

PROOF. By definition

([fieoe, szC)F) ¢ = lim = ([fl( (t+ ), fale(t + )] = [fale(t), fac(®))]") =
= lim ([(fl) (e(t +A)), (f2)s(e(t + A)] = [(f)s(e(t)), (f2)s(c(®))]) +

A—=0 )\

+ lim + ([(fl) (e(t +A), (f2)r (et + X)) = [(f)z(e(D), (f2)r(c())]) -

We prove that the ﬁrst part is
lim ~ ([(fl) (c(t + ) = (f1)s(c(t)), (f2)s(c(t + X)) + [(f1)s(c(?)), (f2)s(c(t + A))]—

A—

—[(f1)s(c ( ), (f2)s(c(E)]) = [D((f1)s @ e, (f2)s(e(®))] + [(F1)s(()s In(( f2) 500yt (F2) 5 (e(1)))-

To this take a coordinate system {ej,---,e,_1} in S and consider the coordinate-wise repre-
n—1
sentation (fa)soc = > ((f2)s o c);e;. Using Taylor’s theorem for the coordinate functions we

i=1
have that there are real parameters ¢; € (¢, + \), for which
n—1
1
(f2)s 0 &) (t+2) = ((fa)s 0 €) (1) + AD((f2)s 0 €)(£) + 5A" > ((fa)s 0 o) (t:)es.
i=1
Thus we can get

[(f1)s(e(t), (f2)s(et + A)] = [(f)s(et)), (f2)s(e(t))] =
= [(f1)s(c(1)), (fz)s(C(t))+D((f2)soC)(t)M%AQ S((fz)soC)é’(ti)ei]—[(fl)s(C(t)), (f2)s(c(t))] =
= ([(f1)s(e(t), (f2)s(c(t) + D((f2)s OZ:)I(t) Al = 1(f)s(e()), (f2)s(e())]) +
H(f)s(e)), (f2)s(c(t)) + D((f2)s 0 ) (A + 5 Az nz:l((fz)s o c)j (ti)ei]—

i=1
—[(f1)s(c?)), (f2)s(c(t)) + D((fz)s o c)(t)A].
In the second argument of this product, the Lipschwitz condition holds with a real constant
K for enough small \’s, so we have that the absolute value of the substraction of the last two
terms is less or equal to

n—1

K | (£)s(e(®). 52 S (s 0 ) (tes|

i=1
Applying now the limit procedure at A — 0 we get the required equality.
In the second part (f1)r and (f2)7 are real-real functions, respectively so

11m ([(fl) (c(t+A), (fo)r(c(t + M) = [(f1)r(c®)), (f2)r(c®)]) =



dc_1387_17

82 3. FROM THE S.I.I.LP TO THE TIME-SPACE MANIFOLD

= —((f)r o ) ) (f2)r(c(t)) = (f)r(c®)((f2)r 0 ¢)'(t).

([(froa)®), (f2oe)(O)]T) =

= [D((f1)s © o)1), ((f2)s 0 )(0))] + [(f1)s(c(t)); Tp((gaysoerey (f2)s 0 )(1) =
—((fO)r 0 ) () (f2)r(c(t)) = (f)r(c(®)((f2)r o) (t) =

= [D(fi 0 0)(®), Lol ([(F1)s(c(t)); (215000 (F2)s(ct)) = (f)z(c(®))(fo)r 0 €)' (1))

and the statement is proved. [l

Hence we have

In an Euclidean space the first fundamental form is a positive definite quadratic form induced
by the inner product of the tangent space. In generalized space-time model the first fundamental
form is giving by the scalar square of the tangent vectors with respect to the Minkowski product
restricted to the tangent hyperplane.

DEFINITION 3.2.7 (|9]). The first fundamental form in a point (f(c(t)) of the hypersurface F

18 the product
Lpey := [D(f o c)(t), D(f o) ()]

The variable of it is a tangent vector, a tangent vector of a variable curve ¢ lying on F' through
the point (f(c(t)). We can see that the first fundamental form is homogeneous of the second
order but (in general) it has no a bilinear representation.

In fact, by the definition of f, (if {¢; : 4 =1---n — 1} is a basis in S) the computation

I(ewy = [6(t) + (o o) (H)en, é(t) + (Fo o) (en] ™ = [(t), &()] — [(Fo o) (1)]* = [e(1), (1)) -

= > &t (O, (D), (c(t) = [e(t), e(t)] — é(t)j‘[f;i(C(t))féj(C(t))]i_j1 &(t)
i,j=1 ks

shows that it is not a quadratic form. It would be a quadratic form if and only if the quantity

n—1
6(0), e(t)] — e(t)"elt) = [e(e), ()] — S (1)

i=1

vanishes. Thus if the Minkowski product is an i.p. than we can assume that the basis {e;} in

S is orthonormal and we have that the mentioned difference is vanishing, furthermore ¢;(t) =

(e;,c(t))y = (c(t),e;) and ¢(t) = gc’i(t)ei. So
R R [ACO A0 !

and we get back the classical local quadratic representation of the first fundamental form. Now
if ¢;(t) =0 for i > 3 then det /] =1 — (2, (c(t)))* — (f.,(c(¢)))>.

We now extend the definition of the second fundamental form take into consideration that the
product has neither symmetry nor bilinearity properties. If v is a tangent vector and n is a
normal vector of the hypersurface at its point f(c(t)) then we have 0 = [v,n|t = [D(foc)(t), (fo
¢)(t)]. Using Lemma 3.2.4 and the notation follows it, we get 0 = ([D(foc)(t), (noc)(t)]T) =
[D(f 0 &), nle(E)]* + [D(f 0 €) (1), I ppnoeye (n(e1))):

We introduced the unit normal vector fields n° by the definition

o n(c(t)) if n is a light-like vector
n°(c(t)) = n(c(t)) otherwise.
VIn(e®)n(e@)] ]

DEFINITION 3.2.8 (|9]). The second fundamental form at the point f(c(t)) defined by one of
the equivalent formulas:

I:= [D*(f 0 €)(t), (n” © ) ()] {juyy = ~[D(f 0 )(B): I piasoeyy (0" 0 €)(1))-
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By the structure of the generalized space-time model assuming that n(s) = s + n(s)e,, we get
that

11:[Iﬂ(fOCﬁ@%(HOOCﬂ@ﬂ{ﬁ@@>=:llxé@)+-leOC)@ﬁ%%

[+ ()7 [12,0 0] 8) + [1,

[DU)leawét), (e )] = (0T |12, b | 60)) (n(e()
V), (O] = (a(e(D))]

B st [ éeﬁcu)(C@)) ]
VIO = (a(e(D))]

We now can adopt a determinant of this fundamental form. It is the determinant of its quadratic

form:
[ &eﬁca)(CU)) ]
VIe(), e(t)] = (n(e(1)))?]
If we consider a two-plane in the tangent hyperplane then it has a two dimensional pre-image

in S by the regular linear mapping D f. The getting plane is a normed one and we can consider
an Auerbach basis {ej, es} in it.

n—1

&(t)

ij=1

n—1

det IT := det

ij=1

DEFINITION 3.2.9 (|9]). The sectional principal curvature of a 2-section of the tangent hyper-
plane in the direction of the 2-plane spanned by {u = D f(e1) andv = D f(e3)} are the extremal
values of the function

Uoc(r)

)

DT o)) 1= 1

of the variable D(foc). We denote them by p(u, v)max and p(u, v)min, respectively. The sectional
(Gauss) curvature x(u,v) (at the examined point c¢(t)) is the product

k(u,v) == [n(c(t)), n"(e(t)]" (U, V) maxp (10, V) min-

In the case of a symmetric and bilinear product, both of the fundamental forms are quadratic
and the sectional principal curvatures attained in orthogonal directions. They are the eigenval-
ues of the pair of quadratic forms o) and Ipee). This implies that p(u, v)max and p(u, v)min
are the solutions of the equality:

0 = det (IIfoc )\Ifoc ) = det (Ifoc(t)) det ((Ifoc(t))ilﬂfoc(t) — )\Id) ,
showing that
r(u,v) = [n°(c(t)), n° ()] p(u, )maxp (U, ©)min =
1

— [no(c(t)),n (c(t)) + det (I Foelt) ch,c(t)> [n (C(t))’n(c(t))ﬁ%ﬁlﬁ) _

0 0 n (f/ell,61|6(t)f/e,2,62|c(t) - (f,ell,eg‘c(t))2> <n<c<t>>)2
= ) e G ) — (o (e)?) T, 0] — (el
But we can choose for the function n

n(c(t)) = fe, (c(t))er + e, (c(t))e2 + en
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with n(c(t)) = 1 and for a 2-plane of the tangent hyperplane which contains only space-like
vectors and has time-like normal vector with absolute value

M@@Mﬂ@@ﬂ+=Vh—(a&ﬁDP—(g@@DQ

getting the well-known formula

2
_flell,el |C(t) flel2,62 |C(t) + (flell,62 |C(t))

(1= (2, (c(8)))? = (52, (e(1)))?)

k(u,v) = 5
(see in [49] p.95.).

The Ricci curvature of a Riemannian hypersurface at a point p = (f o ¢)(¢) in the direction of
the tangent vector v = D(f o ¢) is the sum of the sectional curvatures in the directions of the
planes spanned by the tangent vectors v and u;, where u; are the vectors of an orthonormal basis
of the orthogonal complement of v. This value is independent from the choosing of the basis.
Choose random (by uniform distribution) the orthonormal basis! The corresponding sectional
curvatures s(u;,v) will be random variables with the same expected values. The sum of them
is again a random variable which expected value corresponding to the Ricci curvature at p
with respect to v. Hence it is equal to n — 2-times the expected value of the random sectional
curvature determined by all of the two planes through v. Similarly the scalar curvature of the
hypersurface at a point is the sum of the sectional curvatures defined by any two vectors of an
orthonormal basis of the tangent space, it is also can be considered as an expected value. This
motivates the following definition:

DEFINITION 3.2.10 (|9]). The Ricci curvature Ric(v) in the direction of the tangent vector v
at the point f(c(t)) is

RiC(’U)f(c(t)) = (TL - 2) : E(/{f(c(t))(u, ’U))
where kg (u,v) is the random variable of the sectional curvatures of the two planes spanned
by v and a random u of the tangent hyperplane holding the equality [u,v]t = 0. We also say
that the scalar curvature of the hypersurface f at its point f(c(t)) is

n—1
Lrtetwy = ( 5 ) Bk g (1, 0))-

In [9] we investigated four special hypersurfaces as premanifold the pre-versions of the hyper-
bolic space, the de Sitter sphere, the light cone and the unit sphere of the rounding semi inner
product space, respectively.

We examined the imaginary unit sphere as the set H™.

The set G is the collection of those points of a generalized space-time model which has scalar
square equal to one. In a pseudo-Euclidean space this set was called the de Sitter sphere. The
tangent hyperplanes of the de Sitter sphere are pseudo-Euclidean spaces. G is not a hypersurface
but we can restrict our investigation to the positive part of GG defined by

Gt ={s+teG:t=\e, where A > 0}.

We remark that the local geometries of G and G topologically identical. G is a hypersurface
defined by the function g(s) = s + g(s)en, where g(s) = \/—1 + [s, s] for [s, s] > 1.

Let L™ be the positive part of the double cone determined by the function: I(s) = s+ +/[s, s|e,.
Finally the set K collects the points of the unit sphere of the embedding s.i.p. space. In a
pseudo-Euclidean space it is the unit sphere of the embedding Euclidean space. Its tangent
hyperplanes are pseudo-Euclidean spaces. K is not a hypersurface but we can also restrict our
investigation to its positive part defined by K+ = {s+t € K : t = Xe,, where A > 0}. It can
be defined by the function: k(s) = s + €(s)e,, where £(s) = /1 — [s, 5] for [s, s] < 1.

The differential geometric properties of these four premanifolds are:

THEOREM 3.2.5 (|9]). Let H*, G, L™ and K" denote the imaginary unit sphere, the de Sitter
sphere, the light cone and the unit sphere of the embedding s.i.p. space, respectively.
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(1) H* is always convex. It is strictly convez if and only if the s.i.p. space S is a strictly
conver space.

(2) If S is a continuously differentiable s.i.p. space then H™ has constant negative curva-
ture.

(3) G and its tangent hyperplanes are intersecting, consequently there is no point at which
G would be convez.

(4) The de Sitter sphere G has constant positive curvature if S is a continuously differen-
tiable s.i.p space.

(5) The light cone Lt has zero curvatures if S is a continuously differentiable s.i.p space.

(6) Kt is conver. If S is a strictly conver space, then KV is also strictly convex.

(7) The fundamental forms of K are

(@@ e®) Yy )’ 0 e)e)?

—I=led - TEEEORG)) —Md‘fmmm
o ) S e ) _ !
= FH%@MH(Ewﬁ@H*ﬂMWW) \AHWMWL

The principal, sectional, Ricci and scalar curvatures at a point k(c(t)) are

1
~ Pmax(U, V) = Pmin(U, V) = — = e
Prmax (U, V) = Prin (U, v) |—12[e(t),c(t)]]

= K(u, ) = [n°(c(t)), n"(c(t)]* p(u, V)maxp (U, V)min = —apEem)
= Ric(v)k(ew) = (0 = 2) - By (4,0) = —atiem)

n—

= Tiey = ("3") - BB ey (w,v)) = :I;%ﬁiﬁ%xajaTesp@ct?v@ly-
(8) At the points of K having the equality 2[c(t),c(t)] = 1, all of the curvatures can be
defined as in the case of the light cone and can be regarded as zero.

PrROOF. We prove these statements step by step.
(1) Let w = ¢’ +t' be a point of H* and consider the product

"= —s,s|+ [t —t,t] =[5 8] —[s,8] = (N = XNA=[s",s] = NA+1,
where ¢/ = Ne,, t = Xe, and ', s € S with positive X’ and A, respectively. Since

V1+[s,s]=Nand /1+[s,s] =\

[w—wv,v

thus
[w—v, 0]t =[s,s]—/1+[s,s|\/1+[s,5]+1 < /][5, ][5, s] /1 + [¢, s'|\/1 + [s,5] +1 < 0,

because of the relation [, '|[s, s]+2+/[5, §'][s, s] +1 < [¢, §'][s, ]+ ([s', '] + s, s]) + 1. Remark
that equality holds if and only if the norms of s’ and s are equal to each other and thus
N = )\, too. So we have [¢/,s] — [s,s] = 0, or equivalently [s',s] = +/[¢,s'][s, s]. From the
characterization of the strict convexity of an s.i.p. space we get H™ contains only the point v
of the tangent space T, if and only if the s.i.p. space S is strictly convex.

(2) To determine the first fundamental form consider the map h = s+ h(s)e,, giving the points

of H*. (Here h(s) = /1 + [s, s] is a real valued function.) Then we get that
I=[e(t) + (hoc) (ten, c(t) + (hoc) (en]™ = [(t), é(t)] — [(h o) (1)),

where ¢(t) means the tangent vector of the curve ¢ of S at its point ¢(¢). Using Lemma 3.2.1
and Theorem 3.2.3 we have

(0. O + 0 T 1)) e, o)
0+ 60, @) T+ [e0), O]

From this formula, by the Cauchy-Schwartz inequality, we can get a new proof for the fact that
this form is positive. The second fundamental form of H* is

IT:= [E(t) + (b o )" (E)en, c(t) + (b 0 ) ()en] oy = [E(E), ()] = (b0 )" (B)b(c(t)),

[=[¢¢ — = [¢, ]
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since noc=hoc=c(t)+ (hoc)(t)e,. First we compute the derivative of (hoc)'(t): R — R
at its point t. We use again the formulas of Lemma 3.2.1 and Lemma 3.2.4 getting

0w N o) e e)]
(0) T+ [c), 0] L+ [e®),e(®)])

(hoco)'(t)=((hoe)) (t) = (
and so

(hoc)"()h(c(t)) = [é(t), c(t)) —

L4 [e(0), e(0)]
Thus the second fundamental form is
. (1), ()]
I = —[6(t), T (c(t)) + —L):
[C( ) ]c(t)(c( )) 1+ [c(t),c( )]
or using the formula
Re[z, y]Rel[z, y]
we get an equivalent form:
[¢(t), c(t)]?
= —[lec@I - & eelt) = :
O @2+ [le()]I?)
If we also assume that the norm is a C? function of its argument then we can use Theorem
3.2.3 and we get
: 2
1= —[e(t), () + Oy

L+ [e(t) c(t)]
By the positivity of the first fundamental form on H*, we get that the second fundamental
form is negative definite and

(U, V) max = P(U, V) min = —1.

This implies that the sectional curvatures are equal to —1, the Ricci and scalar curvatures in
any direction at any point is —(n — 2) and —(";1), respectively.

(3) At an arbitrary point of G there are two sets lying on G and having in distinct halfspaces
with respect to the corresponding tangent hyperplane. The first set is the intersection of the
2-plane spanned by e, and s+t € M; and the other one is an arbitrary curve of the (n — 2)-
hypersurface defined by the intersection of G and the hyperplane S + (s +¢). In fact, a normal
vector of the tangent hyperplane at s + t is itself s + ¢, because we have

e.s] )
e—i—Len,st —1+[3,3]en] = 0.

V=14 s, s]

we have

Thus with o >

1
Vs8]

[(as +v-1+ [ozs,ozs]en) - (3 +/ =1+ s, s]en> s+ v/ —1+ s, s]en]+ =

= (a—1)[s,s] + (/=14 [s,8] = /=1 + [as,as])\/—1+[s,5] =
= —1 + a[s, s] — /(=1 + [as, as]) (=1 + [s, 5]) =
=als,s] = 1= /1~ (1+a?)[s, s] +a?[s, s]* > 2(als, s] — 1) > 2(||s|| = 1) > 0.
On the other hand if ¢ + t 6 M arbitrary, then ||s'|| = ||s|| thus [¢' — s+ (t —¢),s + t]T =

[¢, 5] < /15, 8]\/[s, 8] — [s, s] = 0, with equality if and only if s = +s.

(4) Usmg the funct10n g, the ﬁrst fundamental form has the form
I=[e(t) + (g oc) (ten, c(t) + (goc) (tea]t = [e(t), c(t)] — [(g 0 o) (1)]*.
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Using Lemma 3.2.1 and Theorem 3.2.3 we get

(16(6). (] + e(t). T (e(0)) (), (0
=1+ [e0), ] 1+ o), @]

Furthermore we also have that noc = goc=c(t) + (g oc)(t)e, thus we get:
IT:= [E(t) + (g0 )" (H)en, c(t) + (g © ) (E)en] ooy oy = [E(1), c(B)] = (@0 )" (D)a(c(t)).

The derivative of the real function (goc¢)'(t) = D(goc)(t) : R — R at its point ¢ is:

[=[¢ ¢ — = ¢, ¢] —

W (et e(t)]
(goc)(t) = [e(t), c(t)] B Fle(),e()]

VL4 [e(t), e(t)] (=1 [e(t), c()])

so by Lemma 3.2.4
(goc)'(t)alc(t) = [e(t), c(t)] —

Thus we have

[é(t). e _
-1+ [c t), c(t)]

II:—M@%%@@@”+-jﬁ?ggﬁ@ﬂ

If we assume again that the norm is a C? function of its argument then we can use again
Theorem 3.2.3 and we get

REORO)

—1 4 [e(t), e(t)]
as in the case of H*. The principal curvatures are equal to —1. But the scalar squares of the
normal vectors is positive at all points of G* implying that the sectional curvatures are equal
to 1. The Ricci curvatures in any directions and at any points are equal to (n — 2), moreover
the scalar curvatures at any points are equal to ("_1).

2
(5) If S is a uniformly continuous s.i.p. space, then the tangent vectors at s are of the form:

wu=ale+ |- [.(s)en) = a <e CT) en> .

[s, 5]

=1,

Thus all tangents orthogonal to I(s) which is also a tangent vector. (Choose e = s and o = ||s]|!)
But the orthogonal companion of a neutral vector in a s.i.i.p space is an (n — 1)-dimensional
degenerated subspace containing it (Theorem 3.1.1), tangent hyperplanes are exist at every
points of LT and it is an (n — 1)-dimensional degenerated subspace of V. This also a support
hyperplane of L. In fact, by v = s+t and w = s’ +t' we get

(w—v,0]" = [, s] + [, t] =[5, s] = X'\
where ¢ = Xen, t = Xe, and ¢, s E S With positive X and )\, respectively. Since (/[s', s

and +/[s, s] = A thus [w — v, v]" — /]9, 8']\/[s, s] <0 holds. We remark that equahty
holds if and only if &' = as meamng that there is only one line of L' in the tangent space T,.
Thus the light cone is convex and thus the second fundamental form is semi-definite quadratic
form. It also follows that any other vectors of the tangent hyperplane are space-like ones and
there are two types of tangent 2-planes; one of them space-like plane and the other one contains
space-like vectors and a doubled line of light-like vectors. In the first case, the corresponding
principal and sectional curvatures is well defined and have negative values, respectively. To
determine it we compute the fundamental forms.

In the case when S is continuously differentiable, the first fundamental form is

(16(0). e(0)] + [e(t). T (el0))) (), ()]

[=¢d— Ale(t), c(t)] =l6d- [e(t), e(t)]”
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and the second one is
(), (1)) ORI

11 = —[e(t), Jiy () + Ty = ~1e® e + T =

Thus the principal curvatures are —1 as in the cases of the unit spheres. However our definition
gives at such a point zero sectional curvature for it, because of the zero lengths of the normal
vectors. The above computation can be used in the second case, too. Agreed that we calculate
the fundamental forms only non-light-like directions, so on the plane of the second type the
principal curvatures are also —1 and the sectional curvatures are zero, too. This implies that
the Ricci and scalar curvatures are also zero, respectively.
(6) The directional derivatives of the function ¢ : s —— /1 —[s,s] for [s,s] < 1 gives the
corresponding tangent vectors of form u = a(e + €,(s)e,). Since by the function § : s —
1+ [s, s], we have the equality f*(s) + €*(s) = 2 the derivative in the direction of the unit

[e,s]2 _ 91—[s,s]—[e,s]?
(17[3,3})> = T sy

vector e € S is €(s) = —% meaning that [u,u]" = o? (1 -

From this we can see immediately that

[u,u] >0 if 1 —[s,s] > [e, s]?
[u,u]* =0 if 1 —[s,s] = le, s]?

[u,u]" <0 if 1 —[s,s] < [e,s]%

It follows that the vector s’ of the (n — 2)-subspace of S orthogonal to s gives a space-like
tangent vector and the vector corresponding to as is a time-like one. Let w = s’ +t' be a point
of K* and consider the product

(w—v,n,|t = —s,8"+[t' —t,t"]=[s,5"] —[5,8"] = (N = X))\,
where t” = N'e,, t' = Ne,, t = Xe, and s”,s',s € S with positive \”, X and )\, respectively.
Since /1 — [¢/, '] = N and /1 — [s,s] = X and n, = s — /1 — [s, s|e,, thus
[w—v,n,)" =[5, s]4+/1 = [¢, s]\V/1 — [s,5]—1 < \/[5, §][s, s]++/1 — [¢', '] \/1 — [s,5]—1 < 0,
because 2./[s, '|[s, s] < [, ']+ [s, s]). We remark that equality holds in the inequalities if and
only if the norms of s’ and s are equal to each other. So we have the equality [¢', s] —[s,s] = 0,
or equivalently [¢, s] = /[, '][s, s]. We also get that v is the only point of K lying on the

tangent space T, if and only if the s.i.p. space S is strictly convex.
(7) Using the function k we get

L= [e(t), ct)] — [(Eo o) (1)),
Using Lemma 3.2.1 and Theorem 3.2.3 we have
(1e0). e(0)] + [e(t). T (el0)))
=)

and assuming that 2[c(t), c(t)] # 1 we get

) c(t)—(éoc)(t)en] _
VTR O] gy VT T 2e0), D]

Lemma 3.2.4 implies that
(o)’ (t)e(c(t)) = —[é(t), c(t)] +

thus we have

[=[¢d -

= |&(t) + (b0 ) (t)e




dc_1387_17

3.3. THE METRIC SPACE OF NORMS 89

Assuming that S is continuously differentiable and using Theorem 3.2.3 we get

) i R R A |
he ¢|—1+2[c<t>,c<t>u< 0,601+ =) N ST rOR O

The principal curvatures at a point k(c(t)) are

1
Y/ e EORZ0)

pmax(ua U) - pmin(ua U) -
giving the sectional curvatures

(u, v) o= [n°(c(t)), " (c(t)] p(u, V) maxp (10, V) min = 1

=1+ 2[e(t), c(t)]

The Ricci curvatures in any directions at the point k(c(t)) are equal to

Ric(0)r(ewy) = (n = 2) - E(kr (e (u, v) =

n—2
— 14 2[e(t), c(t)]
and the scalar curvature of the hypersurface K at its point k(c(t)) is
n—1 (nfl)
Tiiciny = AT , = 2 .
k(e(t)) ( 5 ) (e (u,v)) T 20t 0]

(8) Finally we remark that at the points of K having the equality 2[c(¢), c(t)] = 1 all of the
curvatures can be defined as in the case of the light cone and can be regarded to zero. O

As we saw H*t which is the generalization of the hyperbolic space can be considered as a pre-
manifold it is the pre-hyperbolic space in our terminology. We can tell about GG as a premanifold
of constant positive curvature and we may say that it is a pre-sphere L is a premanifold with zero
sectional, Ricci and scalar curvatures, respectively. We may also say that it is a pre-FEuclidean
space. KT is an example to a premanifold with non-constant curvatures.

3.3. The metric space of norms

The investigations of the author on the generalized space-time models of changing shape pro-
posed that define "Gaussian" (or other type) probability measure on the metric space of cen-
trally symmetric convex, compact bodies. This leads to a very important part of convex geom-
etry to the investigation of the Space of Convex Bodies. A good survey on the long history can
be found in Section 13 of the book [71] of P. Gruber. We shall investigate the probability space
of norms defined on a real, n-dimensional Euclidean space V. A norm function on V' defined
by its unit ball K, which is a centrally symmetric in O convex body. Such bodies give a closed
proper subset Ky of the space of convex bodies K of (V, (-,-))™ Tt is known that the Hausdorff
distance §" is a metric on K and with this metric (K, 6") is a locally compact space. (See in
[71],[72].) Thus there should be many measures available on these space. Unfortunately this
is not so. Bandt and Baraki in [22]| proved answering to a problem of McMullen [135] that
there is no positive o-finite Borel measure on it which is invariant with respect to all isome-
tries of (KC,0") into itself. This result exclude the possibility of the existence of a volume-type
measure. It was a natural question that can whether be found such a o-finite Borel measure
on K which holds the property that it is non-zero for any open set of K and invariant under
rigid motions of the embedding vector space. This long standing question was answered in the
last close by Hoffmann in [90|. His result can be summarized as follows. Each o-finite rotation
and translation invariant Borel measure on (K, 6") is the vague limit of such measures and that
each o-finite Borel measure on (K, ") is the vague limit of measures of the form > >°, ,dx,,

'We rather denote in this paper the space of O-symmetric convex bodies by Ko as the space of convex
bodies with centroid O.
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where {K,, , n € N} is a countable, dense subset of (K, "), () is a sequence of positive real
[ee]

numbers for which > «,, < 0o and Jg, denote the Dirac measure concentrated at K.

i=1
Hoffmann also observed that a result of Barany [23| "suggest that it might not be possible to
define a "uniform" probability measure on the set of all polytopes which have rational vertices
and are contained in the unit ball". The known concept of Gaussian random convex bodies
[125] gives a poor class of Gaussian measures because of a random convex body is Gaussian
if and only if there exists a deterministic body and a Gaussian random vector such that the
random body is the sum of the deterministic one and the random vector almost surely. He asked
"whether there exists an alternative approach to "Gaussian" random convex bodies which yields
a richer class of "Gaussian" measures on (K, §").
Our observation is that on certain large probability space the uniformity or normality properties
could be only "relative" one and thus we can require these properties in their impacts through
a given function of the space. More precisely, we require the normality or uniformity on a
pushforward measure by a given geometric function of the elements of the space (here on the
space of convex bodies). To this purpose we use the thinness function ay(K) of K defined by
the help of the concepts of diameter diamK and width w(K) of a convex body K.

3.3.1. The thinness function and other definitions. We recall some necessary defini-

tions. Deeper understanding of the subject on convex geometry and geometric measure theory
I suggest to read the books [71], [94]| and [133] where all properties of the following concepts
can be found. Let K be the set of convex bodies of an Euclidean vector space of dimension
n. It is endowed with the topology induced by the Hausdorff metric 6", which was defined in
subsection 2.1.4. If we consider a topology on K or on a subspace of it, such as the space of
O-symmetric convex bodies K, it is always assumed that it is the topology induced by d&".
From geometric measure theory we will use the concepts of Borel, Dirac, Haar and Lebesgue-
measure. All of these concepts can be found in [56] or [86]. We also use some basic tools of
probability theory, e.g. the concepts of truncated Gaussian and uniform distributions, and the
concept, of the pushforward and pullback of a measure. The reader can read on these concept
on the internet or in basic works on probability theory e.g. in [58] or [88].
Let denote by w(K) the infimum of the distances between parallel support hyperplanes of the
convex body K. This is the width of K. The diameter of K (diamK) is the supremum of the
distances between two points of K. It can be regarded also as the supremum of the distances
between parallel support hyperplanes of K. By these two quantities we defined a new one.

DEFINITION 3.3.1 ([10]). Let denote by ao(K) the number
diam K
w(K) + diamK

We call it the thinness of the convex body K.

O[Q(K) =

The thinness is % in the case of the Euclidean ball only and it is equal to 1 if K has of dimension
less or equal to (n — 1).

Let now Bpg be the unit ball of the embedding Euclidean space and let define the unit sphere
of Koy around Bg by the equality: K} := {K € Ky | $"(K, Bg) = 1}.

The following lemma shows the usable of the thinness function in our investigation.

LEMMA 3.3.1 ([10]). If K € K} and ag := ap(K) is the thinness of K then we have
200 — 1 if ag < «
h _ 0=
5(M“B@—{2a+1—g% i 0<a<ap

PROOF. Assume that §"(K, Bg) is the distance of the points # € bd By and y € bd K. Then
lylle = |lz]lg + 1 = 2 and 0, z,y are collinear. (We note that the norm of the point y is also
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the half of the diameter diamK of K with respect to the Euclidean metric.) This implies that
for a > 1 the points éx and y give a segment with length 5" (K, éBE) and thus

(in)- |
o E

1
=lylls — =llzllp =2 - —
Q@ o
holds. If @ < 1 then the situation is a little bit more complicated. In this case there is a real
number «q € [%, 1) such that if oy < o < 1 then again

M(Kl%):
o E

but for ag > o > 0 we have a new pair of points ¥ € bd K and 2’ € bd B where the distance
attained. The point 3’ is a point of bd K with minimal norm and we have the equality

1 , 1
——Jyl=2-—.
(%)) (7))

1
y— —x
a

1 1
= llylle = —llellp =2 -

1
y——x
o)

Thus the norm of ' is equal to 2(0%0 —1). In this case
1 1 1 1 2
:——2(—~4):2+———<
E (% (7)) « (7))

1
« «
We thus have the equality
1 200 — 1 if ag < «
h __sh 4 _ 0=
5@KB@—Q5(KQ&O—{2a+LJ% if 0<a<a.

The constant oy depends only on the body K and it has the following geometric meaning.
V|| e = O%O — 2 is the half of the width w(K) of the centrally symmetric body K, because it is
a point on bdK with minimal norm. So we can see that

1 - 2 diam K <1
— on = =
2= " le+2  w(K)+diamK
as we stated. O

3.3.2. The constructed measure and its measure theoretic properties. We now
construct a measure on Kj which pushforward by the thinness function has uniform distribution.
To this (following Hoffmann’s paper) we introduced the orbits of a body K about the special
orthogonal group SO(n) by [K]. These are compact subsets of K}, and if we consider an open
subset of K} then the union of the corresponding orbits is also open. Hence there exists a
measurable mapping s : K} — K} such that s(K) = s(K’) if and only if K and K’ are on the

same orbit. Let K} := {K € K} , s(K) = K} which is measurable subset of K}. We equip it

with the induced topology of K}. Finally let ® : K} x SO(n) — K} is the mapping defined
by the equality: @3, (K,0) = ©K. Our notation is analogous with the notation of [90]. Tt
was proved in [90] (Lemma 2) that a non-trivial o-finite measure py on Ky is invariant under
rotations (meaning that for © € SO(n) we have 1o(A) = u(©.A) for all Borel sets A of Ky) if

and only if there exists a o-finite measure 19 on Ky such that py = Pou(fp ® v,), where v, is
the Haar measure on SO(n). It is obvious that in the case of K} there is a similar result by our
mapping @3, (K, O) which is the restriction of Hoffmann’s map @, (K, ©) onto the set £J.

First we chose a countable system of bodies K, to define a probability measure on K}. Without
loss of generality we may assume that each of the bodies of X} has a common diameter of length
4 denoted by d, which lies on the n'* axe of coordinates (hence it is the convex hull of the points
{2e,,, —2e,}). Consider the set of diadic rational numbers in (0, 2]. We can write them as follows:

k
{m(n, k) = on where n = 0,--- 00 and for a fixed n, 0 < k < 2"“}.
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Define the body K, ) as the convex hull of the union of the segment d and the ball around
the origin with radius m(n, k). For each n we have 2"*! such bodies, thus the definition

2n+1

1. 13
Ho =l > SO
k=1

define a probability measure on /?5.

LEMMA 3.3.2 ([10]). The pushforward measure w(K)™'(ul) has uniform distribution on the
interval (0, 4].

PROOF. Let B’ = (0, z] be a level set of (0,4]. By definition

1 ~ o=t : 1
W)Y =i ({K e kb lwm) e B} ) = lm > o=
Km(n,k)eW(K)_l(B/)
O<k<2nt!
1 1 R
- ,}E{}o Z on+l ,}E{}o Z on+l ,}E{}o Z on+l 4
2m(n,k)eB’ 2m(n,k)<x k=1
showing that w(K )_1(/,;1)) is the uniform distribution of the interval (0, 4]. O

The Gaussian measure v of the n?-dimensional matrix space R™ " defined by the density
function G(X)
—%TI‘(XTX)d)\H2’

G(X)dNY =

PRy
(v2r)
where d\*” is the n2-dimensional Lebesgue measure. The Haar measure v, of R™*" is the
pushforward measure of the Gaussian measure by the mapping M defined by the Gram-Schmidt
process (see in [107]). We stated the following:

THEOREM 3.3.1 ([10]). Let define the measure 1/0 by density function dVO = i4)2 d/j(l]. Then

ao(K)™! (@%a (1/6 ® I/n)>

is a probability measure with uniform distribution on [%, 1).

PROOF. We are stating that the pushforward measure ag(K)™ <<I>§a <<u~5 ® yn)>> has uni-

form distribution on [3,1) if and only if the pushforward measure w(K)™ ;:é has uniform

distribution on (0,4]. To prove this consider a Borel set B of [, 1) and its image B’ under the
bijective transformation 7 : ¢ — 7(t) := 3 — 4. Of course B’ is a Borel set of the interval (0, 4]
which is the image of [1, 1) with respect to 7. We now have that

[ ooy (o4 (o)) = an() ! (@}, (v @ m)) (B) =

~ _ - _ 1 _
= 0, (v @) (oK) (B)) = v ((2h)," ((ao(B) 7 (3))) ) va ((24,), " (a0(K) 1 (B))))
where (®3);" and (®},)," means the components of the set-valued inverse of the function ®}
respectively. Since (®1,)," (ao(K)~ (B))) is the group O(n) we have that

[dautsy (@4, (o)) =i (@4, @)= [ ai

B (25,), (a5'(®)

2a
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On the other hand
_ ~ . 4
o) (g (B) ={ K e K} |ap(K)= —=——€ By =
(%20), " (0 "(5)) o | colK) w(K) +4

:{I?EI/CE|W(I?)EB':%—4}

implying that

~ 4 ~
dy} = ——duf
Yy / (w+4)2 Hos
(21,); (a0 '(®)) {Rexw(K)en }
and it is equal to
4
———d7 = dt
/ @+ /
TeB’ teB

if and only if w(K)™ (/Ié) has uniform distribution on (0, 4] as we stated.

Since Lemma 3.3.2 says that w(K)™! </I(1)) has uniform distribution on the interval [0, 4] we
also proved the theorem. O

Let denote by v/} the measure @, <1/~5 ® yn). The following step gives such a probability measure

on (Ko, ") which pushforward measure by the function ag(K) has truncated normal distribution
on the range interval [%, 1). We identified Ky with K} x [0, 00), and introduced @, as the mapping
d, : (K,a) = aK. Finally we can identify Ky with K} x [0,00). To this end let ®, be the
mapping ¢, : (K, a) — aK.

LEMMA 3.3.3. [10]| From the image K' = ®4(K) we can determine uniquely the body K and
the constant «.

PROOF. K’ = oK implies that ag(K) = ag(K') = #ﬁ&m and thus ag(K) is uniquely
determined. We also know the value of o’ := §"(a K, Bg). We are considering two cases. In the

first case we assume that o > « and hence by Lemma 3.3.1 we get that o/ = 2a—1 or a = %

b
. li
and in the second one we assume 0 < o < o then we have o/ = 2o+ 1 — 20%0 or o = 2"_&1 =

@Q

QQ‘ES‘O:I)). From these we get that the first case implies ay < % so o > 2ap — 1 and in the
second one we have oy > O;(Z((j)l__ll)) > 0. Hence we get 2ag — 1 > o/ > 0. So first we determine o’
and the value
2y — 1 = 2diam K i diamK — W(K).
w(K) + diamK diamK + w(K)
Then using the above equalities we can calculate a which is uniquely determined. Now K is
equal to éK " O

Denote by ®;'(K') := ((®;"), (K'), (®;"), (K')) the pair (K,a) determined by the method
of Lemma 3.3.3. If we have a o-finite measure 1/} on K} then we also have a o-finite measure
vy on Ko by the definition

v = Pu(1y ®v),
where v is a o-finite measure on (0, o).
Define the set function p(.A) as follows. If A C Ky 1y is a measurable set let be

2
1 <6h<BE’@§q8232KJ))
p(A) = e 202 .
V2ro?

The main result of [10] is:
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THEOREM 3.3.2 ([10]). If v} is such a probability measure on K} for which aog(K)™ (1)) has
uniform distribution, vy = ®4(vy ® v) where v is a probability measure on (0,00) and @ is the
probability function of the standard normal distribution then
4p(A 4 (e 0 K))2
Py (K)o
O p— L . :

(@ (2) - 2(0)  (@(L) - 2(0) WKL ¢ dvg

is a probability measure on Ky. Moreover ag(K)™1(P) has truncated normal distribution on the
interval [3,1), (with mean § and variance (%)2), S0

ao(K)~1(P) ({% <t < c}) =P{H{KeKy| a(K)<c})= qip((‘f) —(0)
PROOF.

1 (0" (50

Norw / e 257 dvdy
Ke(®)) (A) ac(@r'),(A)

however ay(K") = ag(K) so it is equal to

p(A) =

1 ao<f<2>’2d d
Varo? S K
), (A \ee(@r1),(4)

ag(K)
1 / / _ RagU)—1)2 / _(2“0(““ 2o (K)) L
R — e 202 dv + e 2052 dv | dyy =
V2mo? 0
-1 aKeA aKeA
a>ao(K) 0<a<ap(K)
1 <a<>)2 v(ae (®7h), (A (2ag () ~1)2
= / / e S dv dl/O = ( ( 4 )2( )) / e : 0;;2 - du&.
V2mro? Voro?
Ke(@7) (A \ae(2rh),(A) Ke(o7) (A

For A = Ky we have that it is equal to

v(0,00) [ -2(F) o
029D 105 d g1 ) 0).

1
2
Since v is a probability measure on (0, 00) and ao(K) (1) has uniform distribution on [1,1)
so we have that

1 o 1 e o
p(ICO):Q\/;_ﬂ%% / eiﬁ(?) dt_/ 675( g ) dt :q)(l)4 (I)(O)’

where the function

1 (,7
O(r) = — e
w-—=/
is the standard normal distribution function.
Analogously, for the set ICo(c) := {K’ € ICo | ap(K') = ap(K) < ¢} we have

v((0,00)) [ —1(=2) o (22 — a(0)
poca(e) =292 ) d om0 - 5 21

2
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thus the measure 4
P(A) = =5z P(A)
5 (1) — 000
is such a probability measure on Ky which pushforward by the function ag(K’) has normal
distribution. O

3.3.3. Extraction the measure to a geometric probability measure. The existence
of a measure with similar properties on the space K of convex bodies follows easily. In fact,
let denote by m(K) := 2(K + (—K)) where the addition means the Minkowski sum of convex
bodies. The mapping m : K — K is a continuous function on K and thus it defines a pullback
measure 4 on K by the rule u(H) = P(m(H)) where H = m~*(H') for a Borel set H' € K,.
Observe that m has the following properties:

(1) surjective

(2) for any set S C K and a vector t € R™ we have m(S + t) = m(S)

(3) for any K € K holds that diamK = diam(m(K)), w(K) = w(m(K) implying that

ao(K) = ap(m(K)).

This implies that the function ag is well-defined on K and for any Borel set B € [%, 1)
1 (ag'(B)) = P(m(ag ' (B))) = P(ag'|x,(B)) showing that the pushforward of the measure
i has truncated normal distribution on the interval [%, 1).
Note that this measure is a geometric measure in the sense that invariant under rigid motions.
The basic questions on such a measure are: "Do the convex polytopes have measure zero, do the
smooth bodies have positive measure, or does a neighborhood always have positive measure?"
The previous construction we can modify such that the improved one solves positively the above
questions.

LEMMA 3.3.4 ([10]). Denote by Py the set of O-symmetric convex polytopes. Then we have
P (Py) = 0.

PROOF. Introduce the sets P} and 501 as we did in the case of the O-symmetric bodies Ky. By
definition we have 1} (IC(l] \ 73&) = 1 showing that u} (73&) = 0. Thus

v 73 dvi / 1
0 0 / o w+4 Ko

vy (P) = @4, (Ph @) (P, SO(m)) =
Finally, we have vy (Py) = @4 (1§ ® v) (P§,[0,00)) = 0 implying p(Py) = P (Po) = 0 as we
stated. O

0,

and so

We define the new system in two steps.

e Change the body K, k) to a smooth body Kfn(mk) defined by the convex hull of the
ball around the origin with radius m(n, k) and the two balls of radius &, = 5rm(n, k)
with centers (2 — g/)e,,.

e Substitute each elements of the system of the bodies Kfn(n,k) with a new countable
system of bodies. Consider a dense, countable and centrally symmetric point system
{Py,—Py, Py,—P,---} in the closed ball of radius 2 with the additional property that
there is no two distances between the pairs of points which are equals to each other.
(Such a point system is exist.) We assume that the first point P, is the endpoint of
2e, and denote by S; a similarity of " which sends P, into P; and the ball of radius
2 at the origin into the ball of radius OP; centered at the origin O, too. Consider the

countable set of bodies S( mn, k)) = {SZ- (Kfn(nvk)) ,i1=1,2,.. } and define the

elements of the new set an(n,k) by induction as follows:



dc_1387_17

96 3. FROM THE S.I.I.LP TO THE TIME-SPACE MANIFOLD

— The first element is itself the set Kfn(nyk) =9 (Kfn(nyk))

— In the second step consider such pairs from the list S (Kfn(n k) one of which
has diameter 4 and construct their convex hulls. Add these bodies also to the set

H!

m(n,k)"
— In the third step construct the convex hull of the triplet from which one has
diameter 4. Add these bodies to ’an(n k> 100.

— ... and so on.
Hence we have a countable system of centrally symmetric convex bodies with diameter 4. The

getting set ’Hm(n k) has a partition into countable subsets. So we have:

Hinnk :Km(nk)U{COHV{S ( (nk)) Sj (Kl (nk))} for ¢ J}U

U {conv {S; ( m(n, k)) S (Km(n,k)) Sk( m(n, k))} for i,j,k}U-
where all of the elements are smooth bodies having diameter 4. The followmg technical lemma

is important.
LEMMA 3.3.5 ([10]). The bodies of
_ [yl
9= {Hhpr mnkleN}
are pairwise non-congruent. For an arbitrary polytope () € Py and for a given number ¢ we can

choose an element R € $) for which hold that 5" (Q, R) < «.

PROOF. The first statement follows from the fact that each of the bodies of £ contains a
maximal flat part which is the convex hulls of the points P;. By the choice of the point system
{P;} these parts are pairwise non-congruent. The proof of the second statement based on the

fact that for large [, m(n, k) with a small k the bodies S (Kfn(n k)) essentially are O-symmetric
segments and thus their convex hull is close to a polytope with respect to the Hausdorff distance.
We here omit the straightforward argument. O
We are distributing among the elements of ”Hin (k) that part of the measure /I(l) which originally

concentrated on Kfn(n’k).

For a fixed » € N consider a sequence (o

") of positive numbers which holds the property

)

S~ al = 1. Let LI(l) be the i"* element of the r-th subset of the above partition of ’an(n k-
i=1 ,

Thus it is a convex hull of exactly r copies of bodies from S <K fn(n k)>. We give it the weight
ar )2,
DEFINITION 3.3.2 ([10]). Choose a sequence of positive numbers [; with again the property

> By = 1. Define a measure /;é by the equality:
=1

2"l o o oo
B

nh—>nc}o Z Z Z Z on+1+r Orr HOE

k=1 [=1 r=1 i=1

We prove the following theorem:

THEOREM 3.3.3 ([10]). On the space of norms there is a probability measure P with the following
properties:

The neighborhoods has positive measure.

The set of polytopes has zero measure.

The set of smooth bodies has measure 1.

The pushforward ag(K)™Y(P) of P has truncated normal distribution on the interval

5.
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PROOF. Consider the measure ;:(1] without the measure ;:(1] and expand it for Ky on the way

as we did it with p§. The final measure P by Lemma 3.3.4 on the set of polytopes has zero
value. By the remark before the definition of the new system we know that the set of smooth
bodies of Ky has measure 1 since the elements of § are smooth. The required property on the
approximation of polytopes follows from Lemma 3.3.5 since for each polytope we can find a

body from ’an(n py close to them. The definition of ,J(l) guarantees that the distribution of ;;é

and /,L(l] are agree proving our last statement. 0]

3.4. Generalized space-time model with changing shape

Our investigation on space-time originated from Minkowski, Lorentz, Einstein and Riemann.
Minkowski observed (see [123]) that the mathematical structure of special relativity requires
a special kind of geometry the geometry of space-time. In space-time we have a homogeneous
system of points in each point we can measure the distance at the same manner. Locally we
have only three types of points which are agree one of the space-like, time-like and light-like
properties, respectively. Global relativity rewrote this concept, the existence of gravity changes
the geometric structure of the space hence we cannot consider our world such a manifold which
has the same local metric geometry in its points independently from the position of the points
and the date of the event. In such a model the metric of the geometry changes by point to
point. The description in its full generalization require the Riemann geometric approach in
which the leading role of the time is loose. To approach global relativity theory we should use
the mathematical background of a Lorentzian manifold in which the points of the world don’t
ordered by the time. Though this generalization is necessary for a complete handing of this
problem there are many important situation in which the ordering role of the time natural and
indisputable. Our goal is to create an immediate structure between space-time and Lorentzian
manifold suitable to describe those phenomenon in which the time has an important role. For
this purpose we give in [11] a mathematical model called by time-space in two versions (one of
them deterministic and the other one is random) and prove that substantially all of them can
be considered relevant. The knowledge of the author either this model and the corresponding
investigations are new. On the other hand there is fully developed theory which can be followed
in this situation. Hence the results in this paper can be valued differently. We concentrate in
this thesis only such things which fully understandable for a pure mathematics.

3.4.1. Deterministic time-space model. We assume that there is an absolute coordi-
nate system of dimension n in which we are modeling the universe by a time-space model. The
origin is a generalized space-time model in which the time axis plays the role of the absolute
time. In a fixed moment (with respect to this absolute time) the collection of the points of
the space can be regarded as an open punctured ball of the embedding normed space which
is centered at the origin that does not contain the origin. The omitted point is the origin of
a coordinate system giving the space-like coordinates of the world-points with respect to our
time-space system. Since the points of the axis of the absolute-time are not in our universe
there is no reference system in our modeled world which determines the absolute time.?

In our deterministic model (based on a generalized space-time model) the absolute coordinates
of points are calculated by a fixed basis of the embedding vector space. The vector s(7) means
the collection of the space-components with respect to the absolute time 7, the quantity 7 has
to be measured on a line 7" which orthogonal to the linear subspace S of the vectors s(7).
(The orthogonality was considered as the Pythagorean orthogonality of the embedding normed
space.) Consider a fixed Euclidean vector space with unit ball B on S and use its usual

’In mathematical point of view there is no importance that the absolute time-axis can be found (is "exists")
or cannot be found (is not "exists"). In our calculations assume that the shape of the universe in a moment is
an open centrally symmetric convex body. Its center is also unknown and we can visualize it as a point of the
axis of absolute-time.
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I >
[——
[ —

F1GURE 3.3. The shape of the universe.

functions e.g. volume, diameter, width, thinness and Hausdorff distance. With respect to the
moment 7 of the absolute time we have a unit ball K(7) in the corresponding normed space
{S,]|-||"}. The modeled universe at 7 is the ball 7K (7) C {S, || - ||”}. The shape of the model at
the moment 7 depends on the shape of the centrally symmetric convex body K (7). The center
of the model is on the axis of the absolute time, it cannot be determined. For calculations on
time-space we need further smoothness properties on K (7). These are

e K(7) is a centrally symmetric, convex, compact, C? body of volume vol(Bg).
e For each pairs of points §',s” the function K : R U {0} — Ky, 7 — K(7) holds the
property that [, s"]” : 7+ [s/, s"]” is a C''-function.

DEFINITION 3.4.1. [11] We say that a generalized space-time model endowed with a function
K (1) holding the above properties is a deterministic time-space model.

The main subset of a deterministic time-space model contains the points of negative norm-
square. This is the set of time-like points and the upper connected sheet of the time-like points
is the modeled universe. The points of the universe have positive time-components. We denote
this model by (M, K(7)).

We remark that in the two-dimensional case for each 7, K(7) is a segment with length two, thus
our model is the 2-dimensional space-time. On the other hand, with n greater than or equal
to 3, the two-dimensional space-time sections of our general space-time bounded by general
(non-convex) curves symmetric about the time-axis (see on Fig. 3.3).

We can give a product similar to the Minkowski product of a generalized space-time model. In
a two-dimensional plane the role of the light-cone play the curve [af(7)e, ac(T)e]” + [1, 7] = 0.
For a fixed direction x, we consider the curves t5. : 7 — [fa®(T)e + Te, through the point
x = Ba(t)e + Te,. Note that = is a time-like point if |3| < 1. The role of the imaginary unit
sphere is played by the set of points

U{{s+7’ where [S,S]T+1:T} ,721}.

In the direction of e it is a curve defined by the implicit equation 4/[s,s]” +1 =7, 7 > 1. The
intersection of this curve with ¢5 . is a point satisfying the equality [Ba®(7*)e, Ba®(7*)e]” +1 =
(7*)?, with parameter 7%, and hence we get 52 (7%)° + 1 = (7*)%, or equivalently (7*)* = ﬁ
Assuming that our examination is on the positive part of the set of time-like points we have
TF=—"—or = 7\/(7*)72—1

In the space-time model the tangent of the imaginary unit curve is orthogonal to the position
vector of the common point. This requires that in the case of generalized space-time model, the

product
[e + (\/ s, 8]7 + 1) (Bat(T7)e) ey, Bal (T7) e + T e,

/!
e
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will be equal to zero. Another claim that the product is equal to the corresponding norm-
square in the case when its arguments contains the same vectors. We will need a lemma on the
directional derivative of the function which defines the imaginary unit sphere.

LEMMA 3.4.1 ([11]). The directional derivative of the real valued function h(s) = +/[s, s]") 41

18
O[s,s]” -1 (s)
B (5) = (l S <b<s>>(s)) . . e, 51,

) 1+ [s, ] L+ s, 2n(s) — 252 (n(s))

or equivalently 1
o(s) = bs)
el bh(s) — ||s||h(8)3|(|;TIIT (h(s)) e, s,

PROOF. The considered derivative is

1
L(s) = s, 8P
0 (5) = 5l ),
It can be seen easily (or use the calculation of Theorem 3.4.1 with the substitutions c(t + \) =
s+ Ae, (fi)s = (f2)s = id|s and (fi)r = (f2)r = b) that the directional derivative is equal to

00) = 5 (7 (P + 25000 0100 =
o L&sﬂm)@kﬁwg+8%§%wﬁy®¥@0'
Thus we get ’ .
o (s) (1— 506D Yl
: 2Vt 50 ) Lt s

or equivalently the required formulas

el (s B e, s
bL(s) = (1 -2 (b(s)) ) e, 3] _ - LG

L+ [s, 5] L[5, sP® - h(s) — [|s" 25 (b (s))

O

DEFINITION 3.4.2 ([11]). For two vectors si + 71 and sy + 75 of the deterministic time-space
model define their product with the equality

[

[s1+ 71,82+ 7o = [s1, 82| + [11, 2] = [s1, 82) — T1Ta.

Here [s1, $5]™ means the s.i.p defined by the norm || - ||™. This product is not a Minkowski
product, as there is no homogeneity property in the second variable. On the other hand the
additivity and homogeneity properties of the first variable, the properties on non-degeneracy of
the product are again hold, and the continuity and differentiability properties of this product
also remain the same as of a Minkowski product. The calculations in a generalized space-time
model basically depend on a rule on the differentiability of the second variable of the Minkowski
product. Using the notation

F1e(t))s 1F D paocy o) (F2(e())) = ([(fl)s(C(t)), TD((f) 500y (f2)s(e()) = () () ((f2)T © C)’(t)) :

in Lemma 3.2.4 we stated that if fi, f, : S — V =S+ T are two C? maps and ¢ : R — S'is
an arbitrary C? curve then

([(froe)(t), (f20 ) (EN]T) = [D(fr o)), (f20 )ONT + [(f1 0 )1), T psuyn (f2 0 )(2)).

Regarding to the importance of this rule we reproduce it in a time-space model. Let denote by
fs and fr the component functions of f with respect to the subspaces S and T, respectively.
By definition, let us denote

([fl (C(t))’ ‘]—l—,T)'D(fro)(t) (fZ(C(t))) =
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= ([(f1)s(c(t)), JPIreOy Di(fyseeys (f2)s(c(®)) = (fO)r(c(®)((f2) 0 ) (H)+

82 2 C s \J2 c(t
(o) LIS ) () (D s o )0, (o)) 7).
We now generalize the formula of Lemma 3.2.4.

THEOREM 3.4.1 ([11]). If f1,fo: S — V = S+ T are two C? maps and ¢ : R — S is an
arbitrary C? curve then

([(F1 0 (D). (20 YD) = [D(fy 0 )0), FolelDI + (alelt)s 1)y gy (el +

IO 1) 1)) - (S 0 1)

+

PROOF. By definition

(froe fao o)) ™) := lim — ([fa( (¢4 X)), folelt = T = [fa(e(®)), fa(e@)]TT) =

= lim ~ ([(fl) (c (t+)‘)) (f2)s(c(t + X)) — [(f)g(c(t)), (f2)s(c(t))] D)) 4

+£1n}) \ ([(fo)r(ct +N)), (fa)r(c(t + )] = [(f)r(e®)), (f2)r(c(t))]) -

The first part can be written in the form

lim ([(f1) (c(t+ X)) — (fl) (c ()) (f2)s(c(t + )|t 4

A—0 )\

H()s(e), Fodslet + AT — [(f)5(elr), (£2)s(cB)] )

We prove that it is equal to

/

[D((f1)s © €)le, (f2)s(c(®)] PO+ ([(F1)s(e(@)), TP oo ((F2)s(e(t))+

ARSI, (efay) - (( oo e 1),

In this latter equation the first term comes from the value of the first bracket of the earlier

one. We calculate now the remaining substraction. For this, take the fixed (absolute) coordinate
n—1

system {eq, -, e, 1} of S and consider the coordinate-wise representation (f2)soc = > ((f2)so
i=1

¢);e;. Using Taylor’s theorem for the coordinate functions we have that there are real parameters

t; € (t,t + \), for which

n—1

(UﬁsO®@+A):«ﬁkWCX®+AD«ﬁﬁO@@%+%VEZGﬁﬁOQthr

i=1
Thus we get that

[F)s(e®)), (o)ste(t + M [(f)s(elt), (Fo)s(e(t) e =
] (f2)7 (e(t+A))

==kﬁﬁ@@»%ﬁ%@@)+D«ﬁ%O@®A+—V§:«ﬁ%O@ﬂm%

~ [A)s(e(t), (o) s(elt) 2 =
= (IA)s(e®): (2)s(elt) + D((f2)s @ YO — [(f)s(e(t)), (fs(e()) 7)) +

i=1

et (f2)r (e(t+))
%([UUs@@D7ﬁﬁs@@DFD«ﬁﬁsO®@)\+;A2§:«ﬁ9506?@0%1 -

—[(f1)s(c(t)), (f2)s(c(t)) + D((f2)s © c)(t))\](f2)T(C(t))> .
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Dividing by A and applying the limit procedure when A tends to zero we get from the first

bracket the value:
/

([(f1)s(c(t)), .](f2>T(c(t>))D((fQ)SOC)(t) (((f2)s 0 c)(t))).

We also determine the value of the second bracket. By Definition 3.4.2 the second term in this
bracket is

[(F1)s(e(0), (f2)s(e(t)) + D((f2)s 0 )(OON D = [(f1)s(e(8), (f2)s(e(t)) + D((f2)s 0 )(t)A] /) —
_Altf)s(e(), (fa)s(e(t)) + D((f2)s 0 ) (N )
or
where (f2)r(c(t + X)) = (f2)r(c(t)) + A and }/120 O(;,') =0.
Since (fo)rc(t +A) = (fo)re(t) + X ((fa)r o ¢)' (t) + 01(N), we have that N = X ((f2)poc) (t) +
01(A). By the Lipschitz condition (which also holds in the second variable of the product) there

is a real constant K with which we have that the absolute value of the substraction
] (f2)r (c(t+X))

N —o()\),

[(fl)S(C(t))’ (R)s(eld)) + DU(F)s 0 )OA+ 322 Y ()5 0 Ot )e
—[(f1)s(c(t)), (f2)s(c(t)) + D((f2)s © C)(t))\](ﬁ)T(C(tJr)\))

is less than or equal to

= (f2)z (c(t+A))
K [(fl)S(C(t)), 5N Z((ﬁ)s 0 C);'(ti)ei]

Dividing by A and applying the limit procedure as A — 0, this quantity tends to zero. Dividing
also by A, for the remaining parts we have

19[(f1)s(c(t), (f2)s(c(t) + D((fa)s o c) (A7)
A or

c S s(c g oc (f2)r(c(t)) ) o1
N ( ((fa)roe) (@) + ol<A>)> (2l o 0 40100
A((fo)r o) (8) +o1(N) A ’
and if A tends to zero then it is equal to

Al(f)s(e(t), ()s(c()]” :
SO () (el®) - () 0 ) (1)

Thus, we proved our statement on the space-like component. On the other hand (fi)r, (f2)7,
are real-real functions, respectively. This implies that

lim ~ ([(F) (et + A), (el + A)] — [(F)e(e()), (fo)r(e(t)]) =

A—0 \

= —((f)r o) () (f2)r(c(t)) — (f)r(c(O)((f2)r o) (1)

showing the assertion of the theorem. O

N +o\N) =

In a deterministic time-space model we should investigate such n — 1-dimensional subsets which
cannot, be considered globally as a hypersurface but locally holds this property.
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3.4.1.1. Imaginary unit sphere of a deterministic time-space model. The points of H+7 can
be defined by the union U {{s + 7 where \/[s,s]” +1 = 7'} , T > 1}. Our assumption on K (1)

cannot guaranties that for every s € S there is a 7 which holds the equality /[s,s|” +1 = 7.
On the other hand if we assume that py (K (7), Bg) < 1 the ball 2K (7) contains the Euclidean
ball By for every 7. Hence [s,s]” < 4||s||% so for all 7 with 72 > 4]|s||% + 1, the inequality
[s,s]” +1 < 72 holds. Since for a non-zero vector s we have also that [s,s|! + 1 > 1, the
statement follows by continuity. Clearly, H 7 generally cannot be considered as a hypersurface
of the time-space implying that its differential geometry can be considered only on the base of
its implicit definition. On the other hand we can consider the function $ : V' — R defined by

(s + 7€) == +/[s, 8]+ 1 — 7. If g = so + Toe, is a point on H T then we have $(vo) = 0.
By our definition $) is continuously differentiable at the point vy. Assume that
99 w . A([s0, 50]")

E(vo) = m(vo) — 120, or equivalently T(7—0) + 24/ [s0, 50]™ + 1.

Then by the implicit function theorem there is a neighborhood U of vy and a function b : S — R

such that 7 = b(s) hold for the points v = s + 7e,, of H™T. Thus we have in U (as in Lemma

3.4.1) that bh(s) = +/[s, s]"®) + 1. If the vector s comes from a point of a curve ¢(¢) C S by the

definition (£ + \) : A — s+ e, we get the equality: (hoc)(t) = \/[(c(t), c(t)]P®) + 1 and also
(

[e(0), e O (h(e() - (ho o)'(1)
V14 [e(t), c(t)]ple®) 21/1+ [c(t), c(t)]PC®)

(hoc)(t) =

or equivalently,

mwwwzﬁ—

" 2p(e(t) — 2 (g (c(1))
We note that the additional value
dlc(t), c(t)]”

R UI(E0))

of the formula depend on the position ¢(¢ 4+ 0) = s and do not depend on the direction vector
e. Thus the first fundamental form is:

L= [e(t) + (hoe) (Dew, é(t) + (h o o) (tea] T = [e(t), é(8)] Y — [(h o o) (¢)]* =

2e(t),e(1)]1(c(®)) ' . )
’ J[e(t),c o
20(e(t)) — PG (b(e(1)))

To calculate the second fundamental form we have to determine the unit normal vector field.
A tangent vector is

. . PO (b e(t) D), e
oc)(t)e, = ¢ — or €n-
A+ (hoe)tlen <w+02¢H¢MJ®WMJ VIH D), cOpeo "

We can see that

o) + 20e(t). e 2(c(t))
2h(c(t)) — 2O ((c(t))) " 2 (e(t)) — L (e (1))
showing the equality

dﬂ+b@@k4 =0

2h(c(t))

noc= - . c(t) + (hoc)(t)en.




dc_1387 17

3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 103

The second fundamental form of Ht7T is
4T

() + (b o c)(t)en] -

(hoc)(t)

2h(c(t))
20(c(t)) — 2O (¢ (1)))

_ 2h(c(t)) S). (D100 _ (h o o) .
2h(c(t)) — W(h(c(t)))[ (8), e(?)] (h o) (t)h(c(t)).

In fact we can use here Theorem 3.4.1. Thus we get first that

L 2[¢(t), c(t)]"“ ~
(hoo)(t) = <2h(c(t)) — A (o c W) o

é(t) + (b 0 )" (t)en,

where

~—
~—
~—

2[c'<t>,c<t>]h<c<t>>W<b<c<t>>>>
2h(c(t)) — AW (y(c(t

and
—20e(0), (1))

' (
- 32 @wﬂﬂﬁ—————y—w@mo_
(2b(c(t))—f 9ﬂ135519l1(b(c(t)))) ( 2 (o)

Olé(t). (1)) _ 2 soa L 18elt), )]
————5;———w«xﬂ»)-—2b@@» T (o) («boc>u» (1—-5—————3——«h@@»{)—

<hoc><>———5;iilmh««w»).

Since in time-space model we have ([¢(t), ") (c(t)) = [¢(t), ¢(t)] D) we get that the

¢(t)
second fundamental form is:

_ 2h(c(t)) S8 (D) _ (o eV (DR (e(t)) =
1 o)~ 20 oy E A0 = (00 0 (el
2h(c(t)) ‘ .
= 2h(c(t)) — a[c(tg:(t)r(b(c(t))) [—[C(t),c(t)](h NONE
2 (1 = 1870, @) [é(t), e())”
((hoc)(t)) (1 3 (87’)2 (b(c(t)))) —2(hoc)(t) e (b(c()]
where
(b o C)I<t)) Q[C(t), c(t)]h(c(t))

20(c(t)) — 245 (B (ce(1)))
Observe, that if the norm is a constant function of the time, these formulas simplify to the
formulas of the generalized space-time model. We now give three examples to illustrate that
these important formulas can be calculated, concretely.

EXAMPLE 3.4.1. [11]

(1) For a 3-dimensional example we take the function K(7) : 7 — G, where G, is the ellipse
of area m with half-axes Te; and %62. Here {e1,e2} is an orthonormed basis of the embedding
Euclidean plane. The connection between the norms of the vector s = xe;+yes and its Euclidean
coordinates is [s, s|” = 722 + f—; The implicite equation for the corresponding imaginary unit

sphere is 7 = /1 + 7222 + 3—2, if we assume that 2722 — 2% 7& 27, or equ1valently > —1#4% v
2 7é 1.

For a vector s = (z,y)? we exclude the moment 7 holding the equality 74 =
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(Thus if 2 = 1 there is no 7, which we should exclude from the investigation.) Solving the
implicit equation we get that

2:1iVQ+41—ﬁ)
2(1 — a?)

and in the case when 22 = 1 7 has to be co for every y. This formula shows that we can get

real values for 7 if and only if 22 < 1 + ﬁ. Thus the domain of the imaginary unit sphere is

the union of three domains bounded by the curves z = +1 and z = £+, /1 + ﬁ drawing on the
figure Fig 3.4.

2
Vit a2 £1,

T

x=-1

FIGURE 3.4. The domain of the imaginary unit sphere in the example.

Since 72 > 0 we also have that if |z| < 1 then we have to consider the equality with positive
sign

, 14 /IO
2(1 —2?) ’
and for the other two connected components we have to choose the equality with negative sign:
PRV e ()
2(1 — 2?)

T

The first fundamental form is

2[e(t),e()]1(c(®) ‘ e ,
I=[¢ ¢ 2(c(t)— AELEOI (g c(ey)) ( 2[6@)8’[;(5)?3”?7( ) )
20(e(t)) — ZGHE(b(e(1)))

Since )
S8 e(ED) — p (o)) 2 ()2 y(t)y(t)
[e(t), c(t)] h(c(t)) z(t) @)%7b(c@)P’
le(t), ()] e 2
5 (blett)) = 20(et)e(t) —
we have that (0)?
_ o V(N2 ((3:(£))2 — Y
h L= (b0 e () ()" ~ 1) + 2 S
) — gy (D) E@(0) + D)
h et @)(hﬁitﬁ4(1-($(0)2)+*@Kt»2
wit
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We also get that

2h(c(t))
2h(c(t)) — LA (p(c(t)))
(9(2))”

R Tios ((hoc)(t) <1 - —8—T<h<c<t)))) +

= - [((hoe)(t)*(@(t)*+

J(0)y(t) (45(1))?
Q*«MW@A'

For concreteness let
c(t) = (z(t),y(t)) = (tcosa, V2 +tsina), and ty = 0.
Then we have that (h(c(ty)))* = 2 because in the formula

14 /1 +4(1 —2(t)?2)y(t)?

2(1 —x(t)?)
we have to calculate with positive sign. Since
2 1
ooy = Va2 Lo

we get that

1.5 9 sin® 1.y

[ = —sin“a(cos”"a —1) + +—5— =9 — —sin" a > 0.
9 s sin” « 9

9
Similarly the second fundamental form is

2 (1 3 242
II:—g (gsinza(cos2a—l+§) +9+Tfsin2a> =

2 1 2v2 1
=3 <<6+—\?>/_> sin2a—§sin4oz+9> =

1442 2,

= sin? a+2—78m o — 6.

9
The extremal values of the non-positive function
14+4V2 ;2
II:2—751na 5 sin“a—6
I 9 — Llsinta

9
attained at the directions « for which either cos & = 0 or sin @ = 0 with the respective negative

values —%5 and —%. Since the normal vector at this point is

noc= 2hiel) ommwF%@%@F

2h(c(t)) — 2B (h(c(t)))
af( )
3
2(5 -

we have that the norm-square of it is = —1 <0 and hence the Gaussian curvature

is negative at this point.
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(2) For a further example choose an ellipse G, as in the previous example with a fixed parameter
a, where 1 < a < 2. Let K(7) be the rotated copy of this ellipse about the time axis with the
angle 7. Then

(—sinTz + cosTy)®

[s,5]" = [xey + yes, wey + yes]” = a®(cos Tx + sinTy)? + " =

y? x? 1
— (a%z + —2) cos® T + (a2y2 + —2) sin? 7 + 2 cos Tsin T (a2 — —2) —
a o o

2 1 1
= (azxg + y—2) + (oz2 — —2) (y2 —ZL‘Q) sin? 7 4+ 2cosTsin T <a2 — —) =
o o
2
(.22, Y s 1 2 2y 1
_(ozx +?>+(a _E) (y —x)a_
Loy

1 1 1
- 5(04 + ?)(12 +y?) + (a2 — ?) (sin 21 — 3 (y* — 2%) cos 27')

The implicite equation of the imaginary unit sphere is

141 4—1 1
T = \/1+a il (:L’2+y2)+a 5 (Sin27—5<y2—x2)C0827’).
o)

20¢?

Here there is no explicit form for 7 however in a concrete point the fundamental forms and
curvatures can be determined. We remark that the Hausdorff distances of the unit ball K(7)
from Bpg is less or equal to 1, thus the domain is the whole plane. Since the norm induced by
an inner product in every moments, the corresponding time-space is a semi-Riemann manifold.
(3) We can get premanifolds if the square of the examined norms can not be represented as the
scalar square of an inner product. A three-dimensional example can be get from the function
K (1) which sends 7 for 7 > 1 to the unit ball of the [, space with Euclidean area 7. In this

case
l’T ' (1+ 1)?2
[s,s]" = olln) ¢ |z|” + |y|™, where v(l,) = ull
s

I(1+2)
is the volume of the unit ball of the standard [, norm of the plane. Here for 7 we have the
implicite equality

v(ly)
TZVL%()VWV+MT

s
As in the previous example the domain is also the plane S. U

3.4.1.2. The de Sitter sphere in time-space. The points of the de Sitter sphere G+7 can
be defined by the union U {{s + Te, where \/[s,s]T — 1= T}, [s,5]" > 1}. G* is not a hy-
persurface. It can be handled by the implicit function 7 = /—1 + [s, s]7 for [s, s]” > 1, using

a((s.5]") ;
the assumption 42 (vy) = ﬁ(vo) — 10, or equivalently % [S0, S0 — 1

Using the equality h2(s) + g2(s) = [s, s]"®) + [s, s]9), the derivative of g in the direction of the
unit vector e € S can be calculated from the equality

20 (s)b.(s) + 2a(5)g.(s) = ([s, 5] + [s, 5°¢)) =
]h(S) 0[3, 8]9(8)

:(%@W+@%}4ﬂw$0+(%@M+—3;4ﬂaw0.
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Thus

2[e, s]9()
gl(s) = 5]

29(s) — 225 (g(s))
The first and second fundamental forms have analogous forms as in the case of the imaginary
unit sphere HH7.

3.4.1.3. The shape function. To use our new model in relativity theory we can clarify the
following question: How we define the so-called "inertial frame" in our model? If we insist
on "a Descartes-system of the space which moving with a constant velocity" then we have to
interpret two things; the concepts of Descartes system and the concept of velocity, respectively.
In a deterministic time-space we have a function K(7), and we have more possibilities to
define orthogonality in a concrete moment 7. We shall fixe a concept of orthogonality and
we will consider it in every normed space. The most natural choice is the concept of Birkhoff
orthogonality. Using it, in every normed space we can consider an Auerbach basis (see Theorem
3.1.2) which can play the role of a basic coordinate frame. We can determine the coordinates of
the point with respect to this basis. We say that a frame is at rest with respect to the absolute
time if its origin (as a particle) is at rest with respect to the absolute time 7 and the unit
vectors of its axes are at rest with respect to a fixed Euclidean orthogonal basis of S. In this
case the world line of the origin in the model is a vertical line (parallel to T'); it is the collection
of those points of the model which absolute space-coordinates do not changes by the change of
the absolute time. Unfortunately, practically we do not know an absolute coordinate system,
and we can not check the immobility of the axes of such a frame. This motivates our definition
on inertial frame and inertial frame "at rest", respectively. We denote by (S, || - ||7) the normed
space with unit ball K (7). In S we fix an Euclidean orthonormal basis and give the coordinates
of a point (vector) of S with respect to this basis. We get curves in S parameterized by the
time 7. In our concept the particle is a random function z : I, — S holding two conditions:

e the set I, C T is an interval

o [x(7),z(T)]” <0if 7 € [,.
The particle lives on the interval I, is born at the moment inf I, and dies at the moment sup I.
Since all time-sections of a time-space model is a normed space of dimension n the Borel sets of
the time-sections are independent from the time. This means that we can consider the physical
specifies of a particle as a trajectory of a stochastic process. A particle "realistic" if it holds
the "known laws of physic" and "idealistic" otherwise. This is only a terminology for own use,
the mathematical contain of the expression "known laws of physics" is indeterminable. Since
the norm (and thus the metric) in a time-space model changes by the time, the formulas of the
density function of a fixed distribution also changes by the time. For example, if we say that
both of the functions f(x(m)) and f(z(72)) have normal distribution on its domain 7 K (1) and
7oK (12) we have to use distinct formulas on their density functions, respectively. The uniform
distribution is the only distribution which density function is independent from the time. First
we introduce an inner metric dx(-) on the space at the moment 7.3 These thread motivates the
following definition:

DEFINITION 3.4.3 ([11]). Let X (7) : T — 7K(7) be a continuously differentiable (by the time)
tragectory of the random function (x(7) , T € 1,). We say that the particle x(T) is realistic in
its position if for every T € I, the random variable 0k (- (X(7),z(7)) has normal distribution

3We have two possibilities, either we can consider this space with its original metric Orc(ry(u,v) == |lu—v[7,
(arise from the norm) — at this time the space bounded and all distances are less then 27 — or as another
possibility we can define a distance which derives from the ball 7K (7) indirectly. For example let u,v € 7K (1)
be two points and denote by (uv)s and (uv)_o the intersection points of the line (uv) and the boundary of the
ball 7K (1), respectively. (Here the point v separates the points u and (uv).) Let (u, v, (uv)so, (uv) - o) denote
the cross ratio of the four points and let ;) (u,v) := In (u, v, (U)o, (V) o) be the inner metric of the space
7K (7). We note that if the norm is Euclidean it is the usual distance of a modeled hyperbolic space (which is
unbounded with respect to this metric).
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on TK(7). In other words the stochastic process (O () (X(7),2(7)) , 7 € I,) has stationary
Gaussian process with respect to a given continuously differentiable function X (7). We call the
function X (1) the world-line of the particle x(7).

We note that the two metrics defined in footnote 2 are essentially agree for small distances, thus
the concept of "realistic in its position" independent from the choice of 0 (). As a refinement of
this concept we define another one, which can be considered as a generalization of the principle
on the maximality of the speed of the light.

DEFINITION 3.4.4 ([11]). We say that a particle realistic in its speed if it is realistic in its
position and the derivatives of its world-line X (1) are time-like vectors.

Since the shape of the sets of the time-like points in a time-space is not a cone, it is possible that
u is a time-like vector but awu is not with certain a. On the other hand in a random time-space
model the speed of those particles which realistic in its speed with a great probability are less
than to the speed of the light. Note that our theory does not exclude the possibility of the
existence of a particle with speed is greater to the speed of the light at a moment neither in the
case of generalized space-time model or in the case of a particle which is realistic in its speed.
For such two particles 2/, 2” which are realistic in their position we can define a instantaneously
distance by the equality:

o(a'(r),a"(r) = | X' (1) = X"(1)||” = V[X'(r) = X"(r), X'(7) = X"()]*T.

We can say that two particles 2’ and z” are agree if the expected value of their distances is
equal to zero. Let I = I, N I,» be the common part of their domains. The required equality is:

B0k (@'(r),2"(7))) = / Oxcr (@' (7), 2" (7))dr = / 1X'(r) = X"(7)||"dr = 0.

We also define the concept of a frame as follows:
DEFINITION 3.4.5 ([11]). The system {fi(7), fo(7), f3(7),0(T)} < (S,|| - [|T7) x 7K(7) is a
frame, if the following assumptions hold:

e o(7) is a particle realistic in its speed, with such a world-line O(t) : T — 7K (1) which
does not intersect the absolute time axis T,
e the functions f;(7) : T — U{(S,| - ||") , 7 € T} are continuously differentiable, for all

fized T,
o the system {fi1(7), fo(7), f3(7)} is an Auerbach basis with origin O(T) in the normed
space (S, ]| - [I7).

We remark that a condition stating that the frame building up from elements of an Auerbach
basis is very strong. In the most cases the Auerbach basis is unique. In an inner product space
a set of pairwise conjugate diameters of element n of the unit ellipsoid gives an Auerbach basis.
It is easy to see that every two Auerbach basis are isometric to each other, there is a linear
isometry of the space sending the first into the second. Thus the set of the Auerbach bases can
be get using the elements of the symmetry group of the space from a fixed one. The following
lemma is obviously and we leave its proof to the reader.

LEMMA 3.4.2 ([11]). For every € > 0 and a pair {K', A’} where K' € Ky is a unit ball of
C?-class and A’ is an Auerbach basis of the normed space (S, || - || k') there is a § > 0 such that
if for K" holds 6y (K', K") < & then it can be found an Auerbach basis A" € (S, |- || k) for
which 0 (A', A") < e holds.

Note, that in a good model we have to guarantee that Finstein’s convention on the equivalence
of the inertial frames can be remained for us. However at this time we have no possibility to
give the concepts of "frame at rest" and the concept of "frame which moves constant velocity
with respect to another one'". The reason is that when we changed the norm of the space by the
function K (7) we concentrated only the change of the shape of the unit ball and did not use any
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correspondence between the points of the two unit balls. Obviously, in a concrete computation
we should proceed vice versa, first we should give a correspondence between the points of the
old unit ball and the new one and this implies the change of the norm. To this purpose we may
define a homotopic mapping K which describes the deformation of the norm. From Lemma
3.4.2 above it follows that we can define a shape function as follows

DEFINITION 3.4.6. [11| The homotopic mapping K (z,7) : (S, |- ||g) x T — (S, || - ||) is called
by the shape function of the time-space if it holds the following assumptions:
e K (z,7) is homogeneous in its first variable and continuously differentiable in its second
one,

o K ({e1,e9,e3},7) is an Auerbach basis of (S, || -||7) for every T,
e K(Bg,7)=K(1).

The shape function determines the changes at all levels in a time space, for example a frame
is "at rest" if its change arises only from this globally determined change, and "moves with
constant velocity" if its origin has this property and the directions of its axes are "at rest'.
Precisely, we say, that

DEFINITION 3.4.7 (|11]). The frame {fi(7), fo(7), f3(7),0(T)} moves with constant velocity
with respect to the time-space if for every pairs T, 7" in T+ we have

fi(r) =K (fi(r"),7) for alli with 1 <1i <3
and there are two vectors O = oj1e1 + 09e3 + 033 € S and v = vie; + veey + v3e3 € S that

for all values of T we have O(1) = K(O,7) +7K(v, 7). A frame is at rest with respect to the
time-space if the vector v is the zero vector of S.

Consider the derivative of the above equality by 7. We get that O(7) = % + K(v, 1) +
T%, showing that for such a homotopic mapping, which is constant in the time, the orbit

of O(7) is a line with direction vector v through the origin of the time space. Similarly in the
case when v is the zero vector it is a vertical (parallel to T") line-segment through O.

EXAMPLE 3.4.2. [11] Consider the second example of Example 3.4.1. The shape function can
be get as follows: K ((x, y)7T, 7') = (ozx COST — iy sin 7, ax sin T + iy cos T)T. Then we have

cosT sinT
—sinT cosT

K (Bg,7) = G, furthermore we get also that K (e;,7) = (acos T, asin T)T,

. T . . . .
K (ez,7) = (—é sin T, i coS 7') gives an Auerbach basis for the corresponding norm. The unit
acosT LsinT

vectors of a frame at rest can be get if we use the affinity ( .
—asinT  ~cosT

) for the vectors

(cos 3, sin B)T, (—sin 3, cos B)T, respectively. (Here [ is a given parameter.) With respect to
the absolute coordinate-system the world-line of the origin is a helical

1 , 1 T
T | Q01 COST + —028INT, —(¥O1 SINT + —02 COST
o Q

through a given point O = (0, 02)? of the plane S. O
The concept of shape function gives a chance to define the so-called time-axes.

DEFINITION 3.4.8 ([11]). A time-axis of the time-space model is a world-line O(T) of such a
particle which moves with constant velocity with respect to the time-space and starts from the
origin. More precisely, for the world-line (O(7), ) we have K(O,T) = 0 and hence with a given
vector v € S, O(1) = 7K(v, 7).

EXAMPLE 3.4.3. Let the function K is defined (as in the previous example) with the equality:

1 1 g
K ((x, )7, 7') = (ozx COST — —ysin 7, axr sin T + —y cos 7') ,
Q Q
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then the time-axis defined by the vector v = (v, v,)7 is the curve

1 , 1 T
T|avicosT — —vgsinT | ,7 | avysinT 4+ —vycosT |, 7| . O
(0% (0%

In a space-time model a time-axis is a line through the origin. Moreover the time-axes intersect
the imaginary unit sphere orthogonally. In time-space this is not true generally.

PROPOSITION 3.4.1. [11] A time-azis intersects orthogonally of the imaginary sphere of param-
eter ¢ at the point (s, 7*) if and only if for all directions e of S with the function c(t+ \) : A —
s+ Ae holds the equality:

1

1 OK(v, ) 1 VeIl
=l or \ e -l

L T /02—||UH2
— e VI (1) E
’ 2c2 _ 3[0(25),0(15)}7( 1 ) '
NEEE or el
Before the proof we observe that if the shape function does not depend on the time that the
required equality holds.

[é(t), c(t) +

1

PROOF. The time-axis and the imaginary sphere of parameter ¢ intersect in the point at the
parameter value 7*. Thus we have (7*)? ([K(v, ™), K(v, ™) — c2> = —1 or reordering it the

other one: [K (v, 7),K(v, )] = (02 — ﬁ) . We note that for an arbitrary pair v and 7 we

have the equality [K(v,7), K(v,7)]” = ||[v]|% [K(°, 7), K(v°,7)]" = ||[v||%, where v° is the unit

vector in the direction of v. Hence ||v[|% = (¢?

— ﬁ or equivalently (7%)% = m Now we
determine the angle of the imaginary unit sphere and the time-axis defined above. The velocity
vector of the time-axis at the examined point is
2 8K(U7 T)
or

If we recalculate the tangent vector of the unit sphere of parameter ¢ at its point s + 7e4 using
also the opportunity c(t + \) = s + Ae, we get that it is

2[c(t), c()]

t s €4
( ) 2e27 — 3[6(%7:('5)] (1)

7K (v, 7%) + (7%) (T%) + T7ey.

The product of the two vectors is

- « " e OKw, ), 7, 2ret), et
{c(t)m K(v, 7%) + (77) _éT ) (7 )] —c — _[ g[c)(t)’c((tz}]T = =
or

*

— [é@j,f*fc(v,f*)4(T*)2§§§§ELZZ(Tj)]T B I%t) 227 c(t) (T*)]

or T oke2 W

Since we have 7°K(v, 7*) = s = ¢(t) this formula can be simplified into the form

*
*

. 0K, 1), 7 [ 202" ]T
), c(t) + ()" —5—= ()| — [e), e -
{ or ] 92 _ Ol ()877( )] ()




dc_1387 17

3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 111

A non-trivial situation in which the above orthogonality holds if for the unknown function o(7*)
the following equation system can be solved:

oK(v,7) , x
T () = a(r)ett
.
2¢°T*
14+ (9)2a(r) = P
( ) ( ) 9rxe2 _ 8[0(%,:(15)] (7_*)

In fact, if we eliminate a(7*) we get the following equation:

(7_*)2 (27_*02 o 8 [C<tg;-c(t)]7(7_*)) 8K(§:]-7 T) (7_*) _ 87—

EXAMPLE 3.4.4. In this example we show that there is non-trivial shape function for which
the above equality on orthogonality holds. Let define the shape function by the non-zero scalar
valued function K(v,7) = «(v,7)v. Then we get that aKa(:’T) = aagf)v and K(c(t),7) =
a(c(t), 7)e(t), implying the equality o?(c(t),7) [c(t), c(t)]” = ||c(t)]|%. Since a(v,T) # 0, from
[c(t),c(t)]” = LI e get that

a?(c(t),T)
0 [c(t), c(®)]" 2l|c(ll dalc(t), )

or B a3(c(t), 7) or
The orthogonality condition for a general 7 means the equality
2|l dalc(t), ) dalc(t),T) 2||e(®)|IE do(c(t), )
2 (9,2 E _ E
’ ( e a3(c(t), ) or or a3(c(t), ) or et)

and again if the function «(v,7) is a constant we have a solution. In the other case, we can
simplify it with its derivative and get that

2lle(®)]|% \ Oa(c(t 2||c(t)]|3
oyt (et 5 2Dl | atelrr) 2Ol
a?(c(t), 7) or a?(c(t), 7)
We also know the connection between c¢(t) and v, because at the point 7 we have c(t) =
7 K(v,7) = 7*a(v, 7°)v. This simplifies the above equality to equality among scalar functions:

ﬁy@TQ ﬂMm%)8MW%ﬂ_ 2161 ey oo 0.

ot a3(c(t), 1) or a3 (c(t), )

which can be written in the form
da(c(t),r)
- 7_362 — or
2+ 7malc(t), ™)  a3(c(t), )
Solving this separable differential equation, we get the following solution
(T)2a(c(t), ™) vl
(72 = mra(e(t), 7) In(72 + T a(c(t), 7)) + (7%)2P(c(t), 7)[|vl[EC
To get the identity at the point 7% we substitute it and we can determine the constant C.
() ([vllg — ) + r*a(e(t), 7) In((7%)? + T a(c(t), 7))
(m)2a(c(t), 7)ol % '
With this constant the required equality on «a(c(t),7) is
()% (c(t), ™)[lvll%

T2 ace(t), ™ ’
72 = () = olls) — ra(e(t), ) In (et )

a*(e(t), 7) =

C:

a*(e(t), ) =

The function a(c(t), ) is well-defined real valued function if the right hand side is greater or
equal to zero. From this assumption we get the inequality

78—t ale(t), ™) In (7 + Tralc(t), 7)) =
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> (1 — M) (7)? — Tralc(t), 7) In ((7’*)2 + 7 a(c(t), 7'*)) )

2
Since the left hand side is a monotone increasing function of its variable 7 > 0, we have to pick
up a value in which the equality holds to determine a range interval where this equality also
holds. It is easy to calculate that at the value

2
- G_m@ﬁﬁ
C

the equality holds thus a?(c(t),7) can be defined well if 7 > <1 - ”1;—|2|2E)T*.

Using the assumption that the point ¢(t) is on the imaginary sphere of parameter ¢ we get that
ale(t), ) = 22 — 1,

and thus

042(6(75),7') _ (T*) (C T — 1)”””]5

2.2 _ x2 (2 2y *\/W 72475y [e2(7%)2 -1 .
72— 2 (2 = |ol[}) — 7 /E(T) 1m<wmww%m4

g

3.4.2. Random time-space model. Of course, we can choose the function K (1) "ran-
domly". To this purpose we use Kolmogorov’s extension theorem (or theorem on consistency,
see in [99]). This says that a suitably "consistent" collection of finite-dimensional distributions
will define a probability measure on the product space. The sample space here is Ky with
the Hausdorff distance. It is a locally compact, separable (second-countable) metric space. By
Blaschke’s selection theorem (see in [78]) K is a boundedly compact space so it is also complete.
It is easy to check that Iy is also a complete metric space if we assume that the non-proper
bodies (centrally symmetric convex compact sets with empty interior) also belong to it. Let
P be such a probability measure which defined in Subsection 3.3.2. In every moment we con-
sider the same probability space (Ko, P) and also consider in each of the finite collections of
moments the corresponding product spaces ((Ky)", P") . The consistency assumption of Kol-
mogorov’s theorem now automatically holds. By the extension theorem we have a probability
measure P on the measure space of the functions on T to Ko with the o-algebra generated by
the cylinder sets of the space. The distribution of the projection of P to the probability space
of a fix moment is the distribution of P.

DEFINITION 3.4.9 ([11]). Let (K, , 7 > 0) be a random function defined as an element of the

Kolmogorov’s extension (HICO, f’) of the probability space (Ko, P). We say that the generalized
space-time model with the random function

S n VOl(BE)
T vol(K) T
is a random time-space model. Here ay(K;) is a random variable with truncated normal distri-

bution and thus (ao(K;) , 7 > 0) is a stationary Gaussian process. We call it the shape process
of the random time-space model.

It is clear that a deterministic time-space model is a special trajectory of the random time-space
model. The following theorem is essential.

THEOREM 3.4.2 ([11]). For a trajectory L(T) of the random time-space model, for a finite set
0< 7 <--- <75 of moments and for a € > 0 there is a deterministic time-space model defined
by the function K(7) for which

Slz}p{PH (L(7:), K(7:))} < e.
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PROOF. Since the set of centrally symmetric convex bodies with C*°-boundary is dense in
the set of centrally symmetric convex bodies (see [135]), we can choose, for every 7;, a body
K(7;) € Ko with C? boundary with the required volume for which py (L(7;), K(7;)) < € holds.
We prove that these bodies can be connected with such a trajectory of the random time-space
model for which the function K holds the properties of the defining function of a deterministic
time-space model. The impact of the K function on a fixed vector s € S can be checked
on the vary of its norm. Using the Minkowski functional, we can get the norm of a vector
s as the length of a fixed segment relative to the length of the diameter of the unit ball
intersected by the half-line containing the segment [O, P]. This means that we can determine
the change of the length of a diameter of a fixed direction if we change the shape of the
body by the time. Consider a representation of the body by polar coordinates with respect to
its center O. Since the boundary of the body is of class C?, all of their coordinate functions
have the analogous property. This function depends also on the time 7, the change of the
unit ball implies the change of its coordinate functions. We say that the trajectory K(7) is
a continuously differentiable function if for a fixed coordinate representation its coordinate
functions are continuously differentiable functions of the time. This is equivalent to the property
that the support function h(g () is continuously differentiable as the function of the time 7.
The differentiability property of the trajectory implies the analogous differentiability property
of the change of the norm of a fix vector since the points of the boundary of the unit ball has
an equation of the form ™ = (r(p1,- -+, pn-1)) . We can conclude that if the trajectory K(7)
is a continuously differentiable function, this holds also for the function 7 — 4/[s,s]”. In a
space S with an inner product the polarity equation implies the required assumption. If S is
(only) a smooth normed space with a semi inner product, we need further comments. Since for
a differentiable norm function McShane’s equality holds, we have

[, 1™ =yl (Il 17 () = Nyl (I 11 ()"

On the other hand, the function (|| - ||%(y))” is also continuously differentiable function of y,
thus the thread using on the norm function above is applicable for it, too. This means that the
differentiability property of the trajectory implies the analogous differentiability property of the
function 7 — (|| - ||;.(y))”. Using the rule of the product function we also have that 7 — [z, y]”
is continuously differentiable if the trajectory 7 — K(7) holds this property.

We now define a differentiable trajectory through the points (7, K(7;)). If 7,7/ € [, Tit1]
denote by Kpe.ier(7) the formal Bezier spline of second order through the points (7;, K (7;)) and
(Tix1, K(7i41)) with "tangents" through the point (77, L(7/)). Thus we have by definition

Koo () 1= (1—747)2K<Ti>+2 (1- ) = L<Ti>+(ﬂ)2K<Ti+l>,

Tiv1 — Ti Tiv1 — Ti) Tiv1 — T Tiv1 — Tq

where the addition is the Minkowski addition and the product is the respective homothetic
mapping. If we assume that for all values of i (1 < i < s) the body K(7;) is a Minkowski
convex combination of the bodies L(7]) and L(7/_,) the function Kpge-(7) is valid on the
whole interval [, 7,]. Since for positive constants «, 3 we have

harrprn () = ahg () + B (z),
we also get that Kpe.i-(7) is a continuously differentiable trajectory in its whole domain. We
have to prove yet that for a fixed 7, the set Kpe.;er(7) is a centrally symmetric convex compact
body with C?-class boundary but these statements follow immediately from the concept of
Minkowski linear combination.

Finally we normalize this trajectory under the volume function and extract it to the whole
T. The function K(7) determines a required deterministic time-space model if we define it as
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follows:
\ %K&zm(%) if <7
K(r) = %K&zm(ﬂ if 7 <7<7
\ %K&zm(ﬁ) if r<m.

t

An important consequence of this theorem that without loss of generality we can assume, that
the time-space model is deterministic.
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APPENDIX A
Relativity theory in time-space

Our model — described in the previous section — can be considered also as a model of the universe'. The
deterministic variant obviously contains as a special case the model of Minkowski space-time. On the other
hand it can be extended to a generalization of the Robertson-Walker space-time, too. The advantage of our
model that S can be considered also as a general normed space (without inner product).

The time-space can be defined in a more convenient way, using a shape function. It regulates the methods of
calculations in time-space and gives the possibility to rewrite the equality of special and global relativity.

A.1. On the formulas of special relativity theory

Consider the upper part of the imaginary sphere of parameter ¢ in a four-dimensional deterministic time-space
model. Without the imaginary unit sphere we consider the imaginary unit sphere H. of parameter ¢ with the
corresponding product [2/,2"]|t7T := [¢/,s"]” + ¢ [r/,7"]. Practically the constant ¢ can be considered as the
speed of the light in vacuum. Assume that the shape-function is a two-times continuously differentiable function.
We need two axioms to interpret in time-space of the usual axioms of special relativity theory. First we assume
that:

Axtom A.1.1. The laws of physics are invariant under transformations between frames. The laws of physics
will be the same whether you are testing them in frame "at rest”, or a frame moving with a constant velocity
relative to the "rest" frame.

Axtom A.1.2. The speed of light in a vacuum is measured to be the same by all observers in frames.

These two axioms can be transformed into the language of the time-space by the method of Minkowski [123]. To
this we use H, introduced and the group G, as the set of those isometries of the space which leave invariant H..
Such an isometry can be interpreted as a coordinate transformation of the time-space which sends the axis of the
absolute time into another time-axis ¢’, and also maps the intersection point of the absolute time-axis with the
imaginary sphere H, into the intersection point of the new time-axis and H.. An isometry of the time-space is
also a homeomorphism thus it maps the subspace S into a topological hyperplane S’ of the embedding normed
space. S’ is orthogonal to the new time-axis in the sense that its tangent hyperplane at the origin is orthogonal
to t' with respect to the product of the space. Of course the new space-axes are continuously differentiable curves
in S” which tangents at the origin are orthogonal to each other. Since the absolute time-axis is orthogonal to
the imaginary sphere H. the new time-axis ¢’ must holds this property, too. Thus the investigations in the
previous section are essential from this point of view. Assuming that the definition of the time-space implies
this property we can get some formulas similar to of special relativity. We note that the function K(v, 7) holds
the orthogonality property of vectors of S and by the equality [K(v,7),K(v,7)]” = ||v||% we can see also that
the formulas on time-dilatation and length-contraction are valid, too. This implies that using the well-known

notations 5 = W, v = ﬁ we get, that the connection between the time 79 and 7 of an event measuring by

two observers one of at rest and the other moves with an constant velocity ||v||g with respect to the time-space
is 7 = vy19. Consider now a moving rod which points move constant velocity with respect to the time-space such
that it is always parallel to the velocity vector K(v, 7). Then we have ||v||p = £¢ where T is the time calculated
from the length Ly and the velocity vector v by such an observer which moves with the rod. Another observer
can calculate the length L from the measured time Ty and the velocity v by the formula ||v|| g = TLU Using the

above formula of dilatation we get the known Fitzgerald contraction of the rod: L = Lgy/1 — 32 = %
Lorentz transformation in time space also based on the usual experiment in which we send a ray of light to a
mirror in direction of the unit vector e with distance d from me.

If we at rest we can determine in time space the points A, C and B of departure, turn and arrival of the ray of
light, respectively. A and B are on the absolute time-axis at heights 74, and 753, respectively. The position of

Cis

(e — Ta)K(ce,7c — Ta) + Tceq =

B —TA B —TA B+ TA
o (s 5 241,

2 2 2

In this appendix we check the usability our concept in practice. Despite the content of this appendix belongs
to the area of theoretical physics it is strongly connected to the useless of my mathematical investigations.

115
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since we know that the light take the road back and forth over the same time. We observe that the norm of the
space-like component s¢ is [|s¢||™ = c™25™ as in the usual case of space-time.

The moving observer synchronized its clock with the observer at rest in the origin, and moves in the direc-
tion v with velocity ||v||p. We assume that the moving observer also sees the experiment thus its time-axis
corresponding to the vector v meats the world-line of the light in two points A" and B’ positioning on the
respective curves AC' and C'B. This implies that the respective space-like components of the world-line of
the light and the world-line of the axis are parallels to each other in every minutes. By formula we have:
lvl| XK (e, 7) = K(v, 7). From this we get the equality 74 K (v, 7a/) + 7areq = (Tar — 7a)K(ce, Tar — Ta) + Tarey.

.. . 2 .
This implies that 74/2||v|| " — ¢®>74/? = (Tar — 74)?c? — 274:% and thus 74 = ﬁn‘. The proper time (74/)o

is (ta)o = /1 — ﬂQWT =TAy/ 15 +5 . Similarly we also get that (7p/)o = T4/ a 1+5, and we determine the
new time coordinate of the point C w1th respect to the new coordinate system:

(re)o = Tk + T < \/1:t - B\/iZl )

Since we have that the norm of the space-like component is ||s¢|| g = ¢TE5T4, we get that 74 = 7¢ —

2
T8 =TC0 + —”SiHE and thus

1 llscl +8 (., lscl ro — Blscle
<Tc>o§<<7 CE> ETH CE>/ ) el

HSCCHE and

_ Iolslells K(sc.re).K(vre)]'®
2 2
1 — e I

On the other hand we also have that the space-like component ((Sc)o) s of the transformed space-like vector

(sc)o arise also from a vector parallel to e thus it is of the form K(((sc)o)s,7) = |[((sc)o)s||eXK(e, 7). For the

+7 (Tp)o=(7ar)o + T — lselle—llvlleTe :
I 2 oll = - If we consider
B

2

norm of (s¢)p we know that ||(s¢)o =c , hence ||(sc

the vector (s¢)o = v (K(sc,7¢) — K(v,7¢)7¢) € S, we get a norm-preserving, bijective mapping L from the
world-line of the light into S with the definition

L:K((s¢)o, (tc)o) — v (K(sc, 7¢) — K(v, 7¢)7¢) -
The connection between the space-like coordinates of the point with respect to the two frames now has a more
familiar form. Henceforth the Lorentz transformation means for us the correspondence:

s = K(s,7) = (K(s,7) - K(v,7)7)
[K(sm,K(v,ﬂr)

T o= T=q(17- 5
C

and the inverse Lorentz transformation the another one
K(s', 1) = K(s.7) =7 K, ) +Kv,7)r)
K(s',7), K(w’)]T’>

7 o= T= Y <TI + 5
c

First note that we can determine the components of (s¢)o with respect to the absolute coordinate system, too.

Since (s¢)o and 7K (v, 7) + Te4 are orthogonal to each other we get that

[K(((sc)o)s, 7c), K(v,70)]™ = c*((sc)o)T

)o) = II((Sc)o)CSZHEHUIIE

implying that ((s¢)o . Thus we get the equality

Wle\2\ [ lisells - lvllsre
I(se)o)slz (1 (— - 2
c i vl

implying that

C

SC v TC
I(selosle = 122NE—IlETe _ 2o~ ofpre)
(1-4)
and )
_ Wtscislistvlls _ Ilelicle ot
((SC)O)T_ 2 - ||2

— v
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We get that

v
(scho = (Isclz = vllere) (Keere) + e, ) -

— 7 (K(sey 7o) - K(vrere) + (1= ) (lselle — lelerc)en

We can determine also the length of this vector in the new coordinate system, too. Since

2 sc||™ = ||v||eTe)? sc,sc|™ = 2|scl| vl e + (|v]|zTc)?
[(SC)Oa(SC)O]-hT: (||(SC)O||+7T) _ (” CH H ||E C) o [ C C] H CH H ||E C (H ||E C)

1 - e 1 - Llk
and T T 2
. (te)? - 27 ||UHE||20H 4 (HU||EH54C|| <)
((TC)O) = < 2 < )
I
c2
hence the equality [(sc)o, (sc)o]™T — ¢ ((7¢)o)” = [sc, sc]™ — ¢ (7¢)® shows that under the action of the

Lorentz transformation the "norm-squares" of the vectors of the time-space are invariant as in the case of the
usual space-time.

Finally we determine those points of the space which new time-coordinates are zero and thus we get a mapping
from the subspace S into the time-space. Let s € S arbitrary and consider the corresponding point K(s, 7)+7eq
and assume that 0 = 79 = 7 — WHZ#HK(S,T)HT, hence 7 = M Then we get the mapping of the
coordinate subspace S under the action of the isometry corresponding to that Lorentz transformation which
sends the absolute time-axis into the time-axis 7K (v, 7) + Te4 in question. This is the set

o= {nc (s ebelsle) | Dl e ).
C C

For a boost in an arbitrary direction with velocity v, it is convenient to decompose the spatial vector s into
components perpendicular and parallel to v: s = s1 + s2 so that [K(s,7),K(v,7)]” = [K(s1,7),K(v,7)]” +
[K(s2,7),K(v,7)]” = [K(s2,7),K(v,7)]”. Then, only time and the component K(s2,7) in the direction of
K(v,7);

(- K

K(s',7) = K(s1,7)+7(K(s2,7) — K(v,7)7)

are "distorted" by the Lorentz factor +. The second equality can be written also in the form:

s =K(s,7) + (71’”21 K(s,7),K(v,7)]” — ’YT) K(v, 7).
E

REMARK A.1.1. If we have two time-azes TK(v',7) + Teq and TK(v",T) + Te4 then there are two subgroups of
the corresponding Lorentz transformations mapping the absolute time-axis onto another time-azxes, respectively.
These two subgroups are also subgroups of G.. Their elements can be paired on the base of their action on S.
The pairs of these isometries define a new isometry of the space (and its inverse) on a natural way, with the
composition one of them and the inverse of the other. Omitting the absolute time-azxis from the space (as we
suggest earlier) the invariance of the product on the remaining space and also the physical axioms of special
relativity can remain in effect.

If K(u,7) and K(v,7’) are two velocity vectors then using the formula for inverse Lorentz transformation of

the corresponding differentials we get that dr = <d7/ + [K(d;’,dfr’géK(v;r’)]" > and K(ds, dr) — K(dsA’,dT’) n

(“—V[K(d;@dﬂ), K(v, 7] + ’ydT’) K(v,7'). Thus

vll%

N K(ds,dr) K(ds, dr') + (ﬁ[K(d?,dr'),K(v,r’)r/ +vdf’) K(v,7)
e T y (dr 4 UL KT !

(K(U,T’) + %K(%’,d#) + % {%@,K(’U,T’)} K(U,T')>

+/

o dr’
KL Ko7

o
(K(U,T') + %K(u’,dr') + %[K(ul,dﬂ'/),K(’U,TI)]T/K(U,7‘/))

[K(u’,d'r’),zK(v,'r’)]",

02

1+
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Our following starting point is the velocity vector (or four-velocity). The absolute time coordinate is 7, this

defines a world line of form S(7) = K(s(7),7) + Te4. Its proper time is 7o = £ = 7¢/1 — ”Z—IQPE, where v is the
velocity vector of the moving frame. By definition

Vi o= 450 _ (07 ),

drg dr
If the shape-function is a linear mapping then W = K($(7),1) := K(v(r),1) and we also have
V (), V(O)™T = 42 (K(v(r),1), K(v(r),1)]' —c?) = —c*. The acceleration is defined as the change in
four-velocity over the particle’s proper time. Hence now the velocity of the particle is also a function of 7 as
without v we have the function (7). The definition is:

=y =y L)

where with notation a(7) = v'(7)

d(K(s(r), 7))

A(r) : I

+ (1) (7)ea,

()Y (1)

~d =
T),

— SI/(
! ! v\T 1
| ) ( | [40GED K (o(r), 1)

V1 - KDDL (;(1,[wamniqvuxnr)%

v(r) =

T

C

2
dr
= B} '73 (1),

In the case of linear shape-function it has the form A(7) = v2(7)K(a(7),0)+~(7)y' (1)K (v(7), 1)) +v(7)7'(7)ea.
Since in this case [V (1), V(7)]"T = —c?, we have

MU%WﬂF*ZW%ﬂOK@UMmK@U%DV+

[0 K (o), 1))

[K(a(r),0). KOO U y12 — 42(r) (K (a(r), 0), K(w(r), 1>11> _

+9%(7) ;

3 1= lv()lE 1
=7 (T) [K(G(T)a 0)’ K(U(T)’ 1)] G ETIYENTER [K(G(T)a 0)’ K(U(T)’ 1)] =0.
¢ =Ml
By Theorem 2 on the derivative of the product (corresponding to smooth and strictly convex norms) we also
get, this result, in fact we have

dV(n), V(OI=" _
dr

Also in the case of linear shape-function the momentum is P = moV = ymg (K(v(7),7) + e4) where my

is the invariant mass. We also have that [P, P]™T = 42m2(||lv]|% — ¢®) = (moc)?. Similarly the force is

F= ?1_1: = moy?(1)K(a(7),7) + (7)Y (1)K (v(7), 7)) + v(7)¥'(7)es, and thus holds [F, V]HT = 0.

0= (1)-0 = Z[A(r), V()]

or 5

FV }*T+awuyvuw' 2

A.2. General relativity theory

In time-space there is a way to describe and visualize certain spaces which are solutions of Einstein’s equation.
The first method is when we embed into an at least four-dimensional time-space as an four-dimensional manifold
which inner metric is a solution of the Einstein equation. Our basic references here are the books [50] and [70].

A.2.1. Metrics embedded into a time-space.
A.2.1.1. The Minkowski-Lorentz metric. The simplest example of a Lorentz manifold is the flat-space metric

which can be given as R* with coordinates (¢, z,y, z) and the metric function: ds? = —c2dt? +da? +dy?+dz2. In
—c 0 0 0
. . . 0O 1 0 O . .
the above coordinates, the matrix representation is = o 010 | In spherical coordinates (¢,r, 6, ¢),
0 0 0 1

the flat space metric takes the form ds? = —c?dt? + dr? + r2dQ2.

It can be considered also in a 5-dimensional time-space with shape-function K (v,7) = v as the metric of a
4-dimensional subspace through the absolute time-axis. By the equivalence of time axes in a usually space-time
it also can be considered as arbitrary subspace distinct to the 4-dimensional subspace of space-like vectors, too.
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A.2.1.2. The de Sitter and the anti-de Sitter metrics. The de Sitter space is the space defined on the de Sitter

sphere of a Minkowski space of one higher dimension. Usually the metric can be considered as the restriction of
the Minkowski metric ds® = —c?dt? 4+ da? + da3 + do} + da? to the sphere —af + 2% + 23 + 23 + 27 = o? = 3,
where A is the cosmological constant (see e.g. in [70]). Using also our constant ¢ this latter equation can be
rewrite as —ct? + (2])% 4 (24)* + (24)? + («})? = 1 where 29 = ¢, L = c and @} = 1z;. This shows that in the
5-dimensional time space with shape-function K (v,7) = v it is the hyperboloid with one sheet with circular
symmetry about the absolute time-axis.
The anti-de Sitter space is the hyperbolic analogue of the elliptic de Sitter space. The Minkowski space of one
higher dimension can be restricted to the so called anti-de Sitter sphere (also called by in our terminology as
imaginary sphere) defined by the equality —x3 +z%+23+2% = —a?. The shape function again is K (v, 7) = v and
the corresponding 4-submanifold is the hyperboloid of two sheets with hyperplane symmetry as the 4-subspace
S of space-time vectors.

A.2.1.3. The Friedmann-Lemaitre-Robertson- Walker metrics. A standard metric forms of the Friedmann-
Lemaitre-Robertson-Walker metrics (F-L-R-W) family of space-times can be obtained by using suitable coor-
dinate parameterizations of the 3-spaces of constant curvature. One of its forms is

R2(t)
14 1k(22 +y2 +22)
where k € {—1,0,1} is fixed. By the parametrization 7 = ¢ this metric is the metric of a time-space with
shape-function K (v, 7). Observe that ||v]|% = [K (v,7),K (v,7)]” = %HK (v,7) ||%. Note that we can
choose the constant k also as a function of the absolute time 7 giving S detgrministic time-space with more

Vit3k(@)lvl% v

generality. Hence the shape-function is K (v, 7) = e

ds® = —dt* + (dz® + dy® + d2?) ,

A.2.2. Three-dimensional visualization of a metric in a four-time-space. The second method is
when we consider a four-dimensional time-space and a three-dimensional sub-manifold in it with the property
that the metric of the time-space at the points of the sub-manifold can be corresponded to the given one. This
method gives a good visualization of the solution in a case when the examined metric has some speciality e.g.
there is no dependence on time or (and) the metric has a spherical symmetry. The examples of this section are
also semi-Riemannian manifolds. We consider now such solutions which have the form:

ds? = —(1 — f(r))c?dt* + #dﬁ + 72(d6? + sin? d¢?)
1= f(r)
where dQ? := d6? + sin® fd¢? is the standard metric on the 2-sphere. Thus we have to search a shape function
K (v, 7) of the embedding space and a sub-manifold of it on which the Minkowski-metric gives the required one.
If the metric isotropic we have a chance to give it by isotropic coordinates. To this we substitute the parameter
r by the function r = g(r*), and solve the differential equation:

oty =1 (LY
girr)) ==\ ——~—
g(r*)

for the unknown function g(r*). Then we get the metric in the isotropic form

* I k 2 2( %

ds? = — (ZIUDN g 9707) (ar +7*(a6? + sin 9g?))

g(r*) r

For isotropic rectangular coordinates x = r* sinf cos ¢, y = r*sinfsin¢ and z = r* cos§ the metric becomes
* * 2 2( %
2 _ rg'(r*) 20, 9°(r7) 2 2 2
ds ——(W codt” + s (d:z: +dy” +dz ),

where 7 = /22 + 32 + 22. From this substituting ds? = 0 and rearranging the equality, we get that the velocity
of the light is

da? dy?  d22 g (r)

Az T dee Az T g2(r)
independent from its direction and varies with only the radial distance r* (from the point mass at the origin of
the coordinates). In the points of the hypersurface ¢t = r* = /22 4+ y? + 22 the metric can be parameterized by
the time: ) 5 ,

ds? = — (%) Adt? + gt_gt) (dgc2 +dy? + dz2) ,
and from the equation
tg'(t)

dt =dr
g(t)
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we can give a re-scale of the time by the parametrization

_ [0 M
/}“ﬂat1@@) /1@@mt

From this equation we determine the inverse function g for which ¢ = (7). Since §(7) =t = r* = /2% + y2 + 22
we also have that the examined set of points of the space-time is a hypersurface defined by the equality:

r= (1o — [ wtatonar) VT EE R

This implies a new form of the metric at the points of this hypersurface:

ds? = —%dr? + 79 *@(0) (dz +dy? + dz )

g(r)”
—c? 0 0 0
9 (9(7')) 0 0
a(r)?
The corresponding inner product has the matrix form: 0 0 g2(5(1) 0 and hence the
()
9%(3(1))
0 0 0 4(7)?

Euclidean lengthes of the vectors of the space depend only on the absolute moment 7 in which we would
like to measure it. Thus We can visualize the examined metric as a metric at the points of the hypersurface
7 = (tln(g(t)) — [In(g(?))dt) ||[v]|& of certain time-space. We note that this is not the inner metric of the
examined surface of dimension 3 which can be considered as metric of a three-dimensional space-time. To

determine the shape-function observe that [[v||% = [K (v,7),K (v,7)]" = %HK (v,7) ||% from which we

get that K (v,7) = g(gg((?))v. It is clear that the flat space metric can be considered in this way. Here f(r) = 0,

g =1id and 7 = t implying that K (v,7) = v and the hypersurface is the light-cone defined by 7 = ||v|| .
We now give some further examples.

A.2.2.1. The Schwarzschild metric. Besides the flat space metric the most important metric in general
relativity is the Schwarzschild metric which can be given in the set of local polar-coordinates (t,r,p,0) by

ds? = — (1— 2GM) Adt? + (1 - 26021;/1)*1 dr? + r?dQ? where, again, dQ? is the standard metric on the 2-

sphere. Here G is the gravitation constant and M is a constant with the dimensions of mass. The function f is
* ! * 2

f(r) = Qgﬂ/f ;= = with constant r, = QCC;QM The differential equation on g is g(’“:*) =1- (Tg%(f) )) with the

2
solution g(r*) = Zecyr* (1 + Cl%) , and if we choose = for the parameter ¢; we get the known (see in [50])
solution g(r*) = r*(1+ 4%)2. For isotropic rectangular coordinates the metric becomes

(1-3%)°

ds® = —
1+ 7%)?

4
Adi? + ( ) (dz? + dy? + d2?).

4r*

The equation between 7 and ¢ is

1-%) 4t 1 Ts rs
= [ —Hdt = dt =t —2r dt =t— =1 (t —) C.
4 /(1+g;) /4t+7“5 /4t+rs y Uit )t

Of course we can choose C' = 0. Similarly to the known tortoise-coordinates there is no explicite inverse function
of this parametrization which we denote by §(7) = t. The shape-function of the corresponding time-space is

(G N RN U
K1) =260 (1 * 4g<7>) |

A.2.2.2. The Reissner-Nordstrom metric. In spherical coordinates (t,r,0,¢), the line element for the
2
Reissner-Nordstrom metric is ds? = — (1 - =g :—‘3) Adt? + —L— dr + 72 dh?% + 12 sin® d¢?, here again
)
t is the time coordinate (measured by a stationary clock at inﬁmty) 'r is the radial coordinate, rg = 2GM/c?

is the Schwarzschild radius of the body, and rg is a characteristic length scale given by ré = -2C Here

4dmwegct "

2
— :—Q. The differential equation on g is

1/4meq is the Coulomb force constant. The function f is f(r ) = L
2 1wy 2 2
ﬁfﬁ 1- (ng(T(f))) with the solution g(r*) = \/ 5 — 1§ Sr (1+61T*) *\/ﬁ* g + 5, if we
choose ¢, := —2— we get a more simple form:
2
T
2
- é r r T -t T
*\ ok 4 S 2 ’s * 1 'Q s
gy = 1+ =55 VI ety Er M e Ty



dc_1387_17

A.2. GENERAL RELATIVITY THEORY 121

For the isotropic rectangular coordinates we have:
2 2 2

ﬁ_T 2 .,
(1—T£) (1+ W)ﬁ
ds? = — R Adt? + (dz? + dy? + d2?).
s _p r*
* (1 + —QT*ZQ) + 5
Our process now leads to the new time parameter

o (T o) (ry2) o Ta m(t+2+29) 40
ret= (o F)m () ) et T ) w0

which in the case of C = rg = 0 gives back the parametrization of Schwarzschild solution. The shape-function
of the searched time-space can be determined by the corresponding inverse ¢ = §(7), it is

9(7) 9(7)
K(v,7)= gA v= T v.
D e (14 ) + %

Analogously can be computed the time-space visualization of the Schwarzschild-de Sitter solution which we now
omit.

A.2.2.3. The Bertotti-Robinson metric. The Bertotti-Robinson space-time is the only conformally flat so-
lution of the Einstein-Maxwell equalities for a non-null source-free electromagnetic field. The metric is: ds? =
& (—dt? + da? + dy? + dz?), and on the light-cone ¢ = r it has the form ds? = dt2 (dx +dy? + dz?).
By the new time coordinate 7 = QInt or t = @ using orthogonal space coordlnates we get the form ds? =
(d:z: +dy? +dz ) Thus it can be visualize on the hypersurface 7 = elnr of the time-space with

ok

€

shape—functlon: K (v, 7) = 5v.

9

A.2.3. Einstein’s equation. As we saw in the previous section the direct embedding of a solution of
Einstein’s equation into a time-space requires non-linear and very complicated shape-functions. It can be seen
also that there are such solutions which there are no natural embedding into a time-space. This motivates the
investigations of the present section. Our building up follows the paper of Prof. Alan Heavens [89].

A.2.3.1. Homogeneous time-space-manifolds and the Equivalence Principle. We consider now such manifolds
which tangent spaces are four-dimensional time-spaces with given shape-functions. More precisely:

DEFINITION A.2.1. Let S be the set of linear mappings K(v,7) : E3 x R — E3 holding the properties of a
linear shape-function given in Definition 3.4.6. Giving for it the natural topology we say that S is the space of
shape-functions. If we have a pair of a four-dimensional topological manifold M and a smooth (C>°) mapping
K : M — S with the property that at the point P € M the tangent space is the time-space defined by
K(P) = KP(s,7) € S we say that it is a time-space-manifold. The time-space manifold is homogeneous if the
mapping K is a constant function.

Note that a Lorentzian manifold is such a homogeneous time-space manifold which shape-function is independent
from the time and it is the identity mapping on its space-like components, namely K (s, 7) = s for all P and

10 0 0
for all 7. Its matrix-form (using the column representation of vectors in time-space)is: [ 0 1 0 0 | Our
0 010
purpose to build up the theory of global relativity in a homogeneous time-space-manifolds. We accept, the

so-called Strong Equivalence Principle of Einstein in the following form:

Axiom A.2.1. (Equivalence Principle) At any point in a homogeneous time-space manifold it is possible to choose
a locally-inertial frame in which the laws of physics are the same as the special relativity of the corresponding
time-space.

According to this principle, there is a coordinate-system in which a freely-moving particle moves with constant
velocity with respect to the time-space K(P) = KP(s,7) = K(s,7). It is convenient to write the world line
S(7) = K(s(1), 7)+ Teq4 parametrically, as a function of the proper time 7 =

e
the velocity using the time-space parameter 7:V (1) = (1) (d(K( sn.1) 4 64) (v(7),1) + e4). Taking

into consideration again that the shape-function is linear, the acceleration is:
K(a(7),0),K(v(r),1)]"
A) = (K a(r),0) + 5 (r) A HOD pe 7 4) 4 540

giving the differential equation A(7) = 0 for such particle which moves linearly with respect to this frame.

[K(a(7),0), K(v(7), D]

D) €4,

C
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A.2.3.2. Affine connection and the metric on a homogeneous time-space manifold. Consider any other co-
ordinate system in which the particle coordinates are S’(79). Using the chain rule, the defining equation
dV(To) o d2S(T0)

=A
0 (70) = dry dT02

becomes
_d (dSdS () _ EdQS'(TO) d (dS\ dS' (o) _ ﬁdQSl(To) d2S  dS'(mo) dS' (1)
as’ dr, ) a8 dare A \dS') dr,  dS' dr2 ' dSdS dm  dm

means the total derivatives of the mapping of the time-space sending the path S’(7) into the specific

o dTO

ds
ds’

path S(79), and the trilinear function % is the second total derivatives of the same mapping. (If there is a
general smooth transformation between the coordinate-frames, the corresponding derivatives are exist.) From
this equality we get the tensor form of the so called geodesic equation of homogeneous time-space manifold, it
is:

where

dS’ (o) dS’(70)
dTO dTO

+I(9,S)

dQSI(To) (dSl dQS ) dSl(To) dSI(To) o dQSI(To) —0.

ds ds’ds’ d7o dTO - ar?
Here we denote the inverse of the total derlvatlves dS’ by dS The name of I'(S’, S) is the affine connection.
For the uniform labelling we denote by z* the identity functlon Since the shape function is a linear mapping we
can represent it as the multiplication on left by the 3 x 4 matrix K = [k;;] = k%;. In the rest of this paragraph
we apply all conventions of general relativity. The Greek alphabet is used for space and time components,
where indices take values 1,2,3,4 (frequently used letters are u, v, ---) and the Latin alphabet is used for spatial
components only, where indices take values 1,2,3 (frequently used letters are 4,7, ...) and according to the
Einstein’s convention, when an index variable appears twice in a single term it implies summation of that term
over all the values of the index. The upper indices are indices of coordinates, coefficients or bams vectors.
The mapping S : §'(19) — S(70) sends K (', 2, 2/, 2/")T+a'" 4 into the vector K (21, 2, 23, 2*)T +ae4. De-
By ks ks kY

2 2 2 2
kgl k32 k33 k34 then we get S : I?(z’l,z’Q,z’g,x’4)T
k*1 k%2 k%3 Koy

0 0 0 1
I~((x1 2%, 23 x )T If the shape-function K restricted to the subspace S is a regular linear mapping than we

2
dr;

note by K the 4 x 4 matrix with coefficients:

also have K 'SK (/" 2%, 2%, #'MT = (21,22, 2%, #*)T and we have that
dz>]  dK"'SK ds dS  ~[dz*] -
= = K 1_K = K 71'
{8x”‘} s’ ag ¥ and 5o g [8x”{
Hence .
ds’  ~[0x%7 " ~ ~ [02'M] ~ d2s 1% ~[ 0%~ ~
Rk K=K K'and |——| =K |—— | K!
s [axﬂi} [axa] an {dSRiSJ [81¢“8z”}
implying that the affine connection is:
oz 922 - ~ ~ — (A =
0, S, =KE— 22 _R-1_RKrM,K'=K K™t
(5", ) Oz dx'Hox” a pv

Since S'(19) = K(:c’l, 2?2, :c’4)T thus we also get three equalities, the first one is:

’ /1 12 /3 AN\ T e I e raN T e
dS’ (1) _ 7 dz’* d2’* d2’” dzx (i dz 2 dz i3 dx o dx _ [ dx
dTO dTO ’ dTo ’ dTO ’ dTo « dTO ’ « dTo ’ o dTo ’ « * '

The second equality is:

T
dS’(m) dS'(m0) _ 1 dz'' dz’? d2’ da* do't da’? A2 do't\ ~p ~ [da/* da” o
dTO ’ dTo ’ dTO ’ dTo ’

dTO dTo dTO ’ dTo ’ dTO ’ dTo

and the third one is:

T
d25' (7o) ~<d%ﬂ1<ﬁzﬂ d?ﬂ3<FzA> [kA<Pzﬂ}.

drg drg 7 drg 7 drg 7 drg
The geodesic equation now:

0= it A2zt @22 @22 a2t
N Tdrg 7 drg 7 drg

. d/#d/V -
) + KT, K~ 1K{ —— ]KT,

drg dry dmo
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or equivalently

T
0— A2t A22? dZ® a2t y [da" dx’” 7T
N dTg ’ dTg ’ dT02 ’ dT02 " dry dro ’
implying that

dz2 1A
0="2
dry

Since for the proper time we have the equality

1 0 ds T as
—cdrg = ds” ( 0 e ) ds = (d—S/dS’) nd—S,dS’ =dsS'Tgds’

\ daz'* , d.CC/C
n dTO ¢ dTO ’

+T

hence
ds ds

T
/ —
g(S5S)<dS/> nds/'

Let denote by [;k] the transpose of the matrix [k’;] and K*; the elements of the inverse of K. Then since

~ N\T [ O0x™ RS o S ~
- () 2] e 2]

thus - 5P
game Wk 5
This matrix is the metric tensor of the homogeneous time-space manifold in question. If K is the unit matrix,
then p = ¢, v =1, @ = § and § = ¢ implying the known formula
ox™ 0xP
G = G v Nab:

g(8",8)pp = 'K Ky

Also note that if K is an orthogonal transformation then we get a more simple form of the metric:
T
~ [ 02! 0z' ] ~
/ _ or T
g(8',9) =K [0:1:”} n {ax’i K*.
To determine the connection between the metric and the affine connection we determine the partial derivative
of the metric.

! _ T 2, .a T . - 51 . T a1l _ . 2.0 -
WED (&) [Sos| ouk [ 5] e (R0) " [55| Rk |S 5| &

81'/)\ 856’“(9:6’)‘ ox'" ox'H (9:0/1/81'/)\
and since
821.(1 oxr® ~ _
oz o' - 830”’K 1F(S/’S)pMK
we have 5905 5)
W =T(5",5)7ox9(S",8) pp + 9(S",5) oI (S", 9)" ry

as in the classical case. Denote by ¢(S, S")¥? the inverse of the metric tensor then we get the connection:

1 99(5",5) 99(S",S)xp  99(S", )
/ o _ - N\vo ) M,V ’ Vo ’ M,
F(S aS) Ap = 29(57 S ) { 9z + o't ox'Y :
Covariant derivative, parallel transport and the curvature tensor. Since we determined the affine connection
we can define the covariant derivative of a vectors fields on the way:

v ove .~
=t L(S,8) 5,V = P KTH s K1V°.

:L./
In fact, it converts vectors into tensor on the basis of the following calculation:

. 1 P . . 1 P . v . .
7 |:8£L' ] [8z :|K1VV;pK [&v ] [8z ]Kl <8V +KFVP5K1V5> _

VHEA

oxv | | o' oxv | | gz OxP
~[oz"] [0z ] ~ ovy oz’ 9%z ~
=K |=— K™ K K7V =
5| 5| K (5 + Ko e
ovir  ~9x't 92z ~ 15 ov't ~ 1.6 i
= e 957 DP9 V' = Fm + KTH\s K™V =V
Note that the covariant derivative of a co-vector is
aV,
Via = B F(S’,S)”,\pr,

oz
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and the covariant derivative of a tensor has the rule, each upper index adds a I' term and each lower index
subtracts one. For this reason the covariant derivative of the metric tensor (by our calculation above) vanishes.
Again from the definition of the covariant derivative we get that the equation of parallel transport is now:

avH da’
T =TS9, S)"x\ o
From this it follows that the parallel-transport along a side dz’ # of a small closed parallelogram is
SV = —T%, (8", $)V"d"”
and thus the total change around a small closed parallelogram with sides da*, §b” is
SV = (T%up(S, S)VY + T, (S, S)VY,p — T%5(S, S)VY =T, (S, S)V" ) 6a” 5b°
implying that sV = R(S’,8)%,,5V?0a’5b°. Here R(S’, S)%y,5 is the Riemann curvature tensor defined by
R(S",8)%pp :=T(5",8)"80p = T(S",9)% 5 + T(S", 9)5, T'(S", 8)g = T(S, S)3,L(S", 5)5,-
The Ricci Tensor and the scalar curvature defined by
R(S',8) 55 := R(S",5)%sap and R(S',S) := R(5',8)7,,

V.

respectively.

A.2.3.3. Einstein’s equation. As we can saw in the previous paragraph all of the notion of global relativity
can be defined in a time-space-manifold thus all of the equations between them is a well-defined equation. On
the other hand Einstein’s equation take into consideration the facts of physic; hence contains parameters which
can not be changed. Fortunately we noted earlier that the covariant derivative of our metric tensor vanishes,
too. Thus also vanishes the covariant derivative its inverse and hence we can write the Einstein’s equation
with cosmological constant A, too. The equation is formally the same that the original one, but contains a new
(undetermined) parameter which is the matrix K of the shape-function. It is:

1 8rG
R(S', )" = 59(S', ) R(S', S) = Ag(S', S = === 1",

where the parameter G can be adjusted so that the active and gravitational masses are equal and TH" is the
energy-momentum tensor.
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