
Convexity and non-Eu
lidean Geometries

DSC DISSERTATION

Ákos G.Horváth

Department of Geometry

Institute of Mathemati
s

Budapest University of Te
hnology and E
onomi
s

Budapest

January, 2017

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



Contents

Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

The stru
ture of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Detailed des
ription of the 
ontent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Problems on 
onvexity and volumes in 
onne
tion with non-Eu
lidean geometries . . . . . . 1

1.1. On the 
onvex hull of two 
onvex bodies (
ommon work with Zs. Lángi) . . . . . . . . . . . 1

1.2. On the volume of the 
onvex hull of points ins
ribed in the unit sphere . . . . . . . . . . . . 5

1.3. On the hyperboli
 
on
ept of volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Investigations in a 
lassi
al Minkowski normed spa
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1. Bise
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1. Bise
tors and the unit ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2. Diri
hlet-Voronoi 
ells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3. On the shadow boundary of the unit ball in three-spa
e . . . . . . . . . . . . . . . . . . . . 28

2.1.4. Bise
tor and shadow boundary in higher spa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.5. On bounded representation of bise
tors (
ommon work with H.Martini) . . . . 40

2.2. Adjoint abelian operators and isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1. Chara
terization of adjoint abelian operators in Minkowski geometry . . . . . . . 46

2.2.2. Chara
terization of isometries in Minkowski geometry . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3. The group of isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3. Coni
s and roulettes in Minkowski planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1. Coni
s (Common work with H. Martini). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2. Roulettes (Common work with V. Balestro and H. Martini) . . . . . . . . . . . . . . . . 56

3. From the semi-inde�nite inner produ
t to the time-spa
e manifold . . . . . . . . . . . . . . . . . . . . . 69

3.1. Semi-inde�nite inner produ
t spa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2. Generalized spa
e-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1. The imaginary unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2. Premanifolds in a generalized spa
e-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3. The metri
 spa
e of norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1. The thinness fun
tion and other de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2. The 
onstru
ted measure and its measure theoreti
 properties . . . . . . . . . . . . . . 91

3.3.3. Extra
tion the measure to a geometri
 probability measure . . . . . . . . . . . . . . . . . 95

3.4. Generalized spa
e-time model with 
hanging shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1. Deterministi
 time-spa
e model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.2. Random time-spa
e model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A. Relativity theory in time-spa
e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1. On the formulas of spe
ial relativity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2. General relativity theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.1. Metri
s embedded into a time-spa
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.2. Three-dimensional visualization of a metri
 in a four-time-spa
e. . . . . . . . . . . . 119

A.2.3. Einstein's equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

i

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



ii CONTENTS

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Papers of Á. G.Horváth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Other papers mentioned in the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



Introdu
tion

Overview

The dissertation 
ontains new theorems from fourteen publi
ations, ea
h from the area of non-

Eu
lidean geometries, whi
h 
onstitute an essential part of my resear
h during the period of

1996− 2016 following the defen
e of my 
andidate's degree.

Sin
e János Bolyai, the investigation of non-Eu
lidean geometries has be
ome a great tradition

in Hungarian mathemati
al 
ulture. This dissertation 
ontinues this tradition. We deal with

problems that 
an be 
onne
ted to non-Eu
lidean geometries through the bridge of 
onvexity.

These investigations are interesting for some resear
hers in other dis
iplines, e.g. programmers,

physi
ists, engineers, geologists, and mathemati
ians from other areas of mathemati
s. We

organized our dissertation to an Overview, three Chapters and an Appendix. The Overview


ontains a short 
omment on the sele
tion of the papers in
luded in the Thesis and a more

detailed des
ription of the results and the 
orresponding tools.

The stru
ture of the dissertation. The first 
hapter 
ontains problems from Eu-


lidean geometry whi
h 
an be solved using non-Eu
lidean geometri
 tools, or an analogous non-

Eu
lidean problem leads to a deep result in it. As an example I mention Theorem 1.1.2 whi
h

transforms a Eu
lidean problem into a question in Minkowski geometry (is 
alled by Minkowski

normed spa
e, too). If, for an n-dimensional 
onvex body K, we have that vol(conv((v +K) ∪
(w +K))) has the same value for any tou
hing pair of translates of K, we say that K satis�es

the translative 
onstant volume property. Re
all that a 2-dimensional o-symmetri
 
onvex 
urve

is a Radon 
urve, if, for the 
onvex hull K of a suitable a�ne image of the 
urve, it holds

that its polar K◦
is a rotated 
opy of K by

π
2
(
f. [117℄); the 
on
ept of Radon 
urves arose

in 
onne
tion with Birkho� orthogonality in Minkowski normed spa
es. With Zsolt Lángi we

proved that for any plane 
onvex body K the following are equivalent.

(1) K satis�es the translative 
onstant volume property.

(2) The boundary of

1
2
(K −K) is a Radon 
urve.

(3) K is a body of 
onstant width in a Radon norm.

This 
hapter is based on three papers of the author [12℄, [13℄, [14℄ from whi
h the paper [13℄

is a joint work with Zsolt Lángi. These results are strongly 
onne
ted to three other papers of

the author ([81℄, [82℄ and [84℄).

In the se
ond 
hapter we investigate the basi
 
on
epts of a normed spa
e from the 
on
ept

of bise
tor to the 
on
ept of 
ertain important 
urves. A 
hara
teristi
 result is Theorem 2.1.7.

Here we 
onsidered the topologi
al 
onne
tion between the shadow boundary of the unit ball

of a Minkowski spa
e in a given dire
tion and the bise
tors of the spa
e 
orresponding to

the same dire
tion. As a good tool we introdu
e the 
on
ept of general parameter spheres

as follows: Let K be the unit ball of the Minkowski spa
e and x be a �xed dire
tion of the

spa
e En
. Denote by Hx the set of those points of the spa
e whi
h distan
e from the origin

is equal to its distan
e from the point x. Let λ0 := inf{0 < t ∈ R | tK ∩ (tK + x) 6= ∅} be

the smallest value of t for whi
h tK and tK + x interse
t. Then a general parameter sphere of

bdK 
orresponding to the dire
tion x and to any �xed parameter λ ≥ λ0 is the following set:

γλ(K, x) := 1
λ
(bd(λK) ∩ bd(λK + x)) ⊂ bdK. We proved the following statement: Assume

that the bise
tor Hx is a topologi
al plane of E3
. Then the general parameter spheres γλ(K, x)

for λ > λ0 and the shadow boundary S(K, x) are topologi
al 1-manifolds (topologi
al 
ir
les).

iii
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iv INTRODUCTION

For λ = λ0 the parameter sphere 
an form a point, a segment or a 
onvex disk of dimension 2,
respe
tively.

This 
hapter 
ontains results from seven papers [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄ from these [4℄ and

[6℄ are 
ommon works with Horst Martini, and the paper [7℄ is a 
ommon work with Vitor

Balestro and Horst Martini. The paper [85℄, whi
h is also 
onne
ted to the examined problems

through many ideas we omit from the dissertation be
ause the 
orresponding investigation was

initiated by my 
oauthors Zsolt Lángi and Margarita Spirova. This 
hapter is the ba
kbone of

the dissertation 
ontaining several tools for all other proofs, and a lot of new 
on
epts.

The third 
hapter 
ontains new 
onstru
tions of manifold-like stru
tures. First we introdu
e

a 
ommon frame for Minkowski normed spa
es Minkowski spa
e-time; that is, we de�ne a

stru
ture that 
ontains both 
on
epts as spe
ial 
ases. This 
on
ept leads to the idea of gen-

eralized Minkowski spa
es whi
h 
an be generalized to a model with 
hanging shape. We 
all

it generalized Minkowski spa
e-time model with 
hanging shape. In this stru
ture the measure

of the spa
e-like 
omponent at a �xed moment depends on a norm whi
h 
orresponds to the

given moment of time. Sin
e the lo
alization in time determines the measure of lengths, we 
an

asso
iate to this model a shape-fun
tion. This shape-fun
tion 
ould be either a deterministi


fun
tion or a random fun
tion. Hen
e we get either a deterministi
 or a random time-spa
e

model, respe
tively. As Theorem 3.4.2 states, from 
osmologi
al point of view there is no essen-

tial di�eren
e between the two models. More pre
isely, let K0 be the metri
 spa
e of 
entrally

symmetri
 
onvex bodies endowed with Hausdor� metri
. In Se
tion 3.3 we de�ne a probability

measure P on it holding some important geometri
 properties. Let (Kτ , τ ≥ 0) be a random

fun
tion de�ned as an element of the Kolmogorov extension

(
ΠK0, P̂

)
of the probability spa
e

(K0, P ). We say that the generalized spa
e-time model endowed with the random fun
tion

K̂τ := n
√

vol(BE)/vol(Kτ )Kτ de�nes a random time-spa
e model. It is 
lear that a determin-

isti
 time-spa
e model is a spe
ial traje
tory of the random time-spa
e model. Theorem 3.4.2

states the following: For a traje
tory L(τ) of the random time-spa
e model, for a �nite set

0 ≤ τ1 ≤ · · · ≤ τs of moments and for some ε > 0 there is a deterministi
 time-spa
e model

de�ned by the (deterministi
) fun
tion K(τ) for whi
h sup
i
{ρH (L(τi), K(τi))} ≤ ε.

The 
hapter 
ontains sele
ted results from the papers [8℄, [9℄, [10℄, and [11℄.

In the appendix we develop the spe
ial and general relativity theory of our time spa
e. In a

mathemati
al dissertation the physi
al 
ontent of the appendix 
annot be 
onsidered as a main

mathemati
al result but it is very important to 
he
k the relevan
e of the 
on
eptualization in

pra
ti
e. This is the reason why we add it to the dissertation.

This dissertation (due to length 
onstraints) does not 
ontain all the statements and exam-

ples of the mentioned papers. For further information please read the original papers in the

separated literature. The des
ription of the histori
al ba
kground and the pre
ise introdu
tion

of the problem immediately pre
edes the result in the text. Every theorem has a referen
e to

the original work from whi
h it is 
ited. In the dissertation we also 
olle
ted our examples,

de�nitions, theorems and 
onje
tures in an index page titled by "Index". Here we 
an �nd the

number of the page where the item �rst appeared.

Detailed des
ription of the 
ontent.

The �rst 
hapter. is the least homogeneous 
hapter, its total length is about 22 pages and


ontains 6 �gures.

The first se
tion is based on the paper [12℄ whi
h is a 
ommon work with Zsolt Lángi. The

problem seems to be a 
lassi
al Eu
lidean one to determine the volume of the 
onvex hull of

two 
onvex bodies. It has been in the fo
us of resear
h sin
e the 1950s. One of the �rst results

in this area is due to Fáry and Rédei [55℄, who proved that if one of the bodies is translated on

a line at a 
onstant velo
ity, then the volume of their 
onvex hull is a 
onvex fun
tion of time.

This result was reproved by Rogers and Shephard [131℄ in 1958, using a more general theorem

about the so-
alled linear parameter systems, and for polytopes by Ahn, Brass and Shin [15℄
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OVERVIEW v

in 2008. To generalize it we investigated the following quantities. For two 
onvex bodies K and

L in Rn
, let

c(K,L) = max {vol(conv(K ′ ∪ L′)) : K ′ ∼= K,L′ ∼= L and K ′ ∩ L′ 6= ∅} ,
where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of

Rn
, we set

c(K|S) = 1

vol(K)
max {vol(conv(K ∪K ′)) : K ∩K ′ 6= ∅, K ′ = σ(K) for some σ ∈ S} .

We note that a quantity similar to c(K,L) was de�ned by Rogers and Shephard [131℄, in whi
h


ongruent 
opies were repla
ed by translates. Another related quantity is investigated in [81℄,

where the author examines c(K,K) in the spe
ial 
ase that K is a regular simplex and the two


ongruent 
opies have the same 
entre.

In [131℄, Rogers and Shephard used linear parameter systems to show that the minimum of

c(K|S), taken over the family of 
onvex bodies in Rn
, is its value for an n-dimensional Eu
lidean

ball, if S is the set of translations or that of re�e
tions about a point. Nevertheless, their method,

approa
hing a Eu
lidean ball by suitable Steiner symmetrizations and showing that during this

pro
ess the examined quantities do not in
rease, does not 
hara
terize the 
onvex bodies for

whi
h the minimum is attained; they 
onje
tured that, in both 
ases, the minimum is attained

only for ellipsoids (
f. p. 94 of [131℄). We note that the method of Rogers and Shephard [131℄

was used also in [110℄.

We treated these problems in a more general setting. For this purpose, let ci(K) be the value
of c(K|S), where S is the set of re�e
tions about the i-�ats of Rn

, and i = 0, 1, . . . , n − 1.
Similarly, let ctr(K) and cco(K) be the value of c(K|S) if S is the set of translations and that

of all the isometries, respe
tively. We examined the minima of these quantities. In parti
u-

lar, in Theorem 1.1.1, we give another proof that the minimum of ctr(K), over the family of


onvex bodies in Rn
, is its value for Eu
lidean balls, and show also that the minimum is at-

tained if, and only if, K is an ellipsoid. This veri�es the 
onje
ture in [131℄ for translates. In

Theorem 1.1.2, we 
hara
terized the plane 
onvex bodies for whi
h ctr(K) is attained for any

tou
hing pair of translates of K, showing a 
onne
tion of the problem with Radon norms. This

shows that Minkowski geometri
 investigations 
an get information on Eu
lidean problems. In

Theorems 1.1.3 and 1.1.4, we present similar results about the minima of c1(K) and cn−1(K),
respe
tively. In parti
ular, we prove that, over the family of 
onvex bodies, c1(K) is minimal

for ellipsoids, and cn−1(K) is minimal for Eu
lidean balls. The �rst result proves the 
onje
ture

of Rogers and Shephard for 
opies re�e
ted about a point.

We used in the proof a sort of 
lassi
al volume inequalities, and ad ho
 observations from n-
dimensional 
onvex geometry. We had to use also some information on the orthogonality of a

Minkowski normed plane to get for example the result 
ited in the pre
eding subse
tion.

The se
ond se
tion is based on the paper [13℄. The problem of �nding the maximal volume

polyhedra in R3
with a given number of verti
es and ins
ribed in the unit sphere, was �rst

mentioned in [57℄ in 1964. A systemati
 investigation of this question starts with the paper

[25℄ of Berman and Hanes in 1970, who found a ne
essary 
ondition for optimal polyhedra, and

determined those with n ≤ 8 verti
es. The same problem was examined in [127℄, where the

author presented the results of a 
omputer-aided sear
h for optimal polyhedra with 4 ≤ n ≤ 30
verti
es. Nevertheless, a

ording to our knowledge, this question, whi
h is listed in both resear
h

problem books [31℄ and [39℄, is still open for polyhedra with n > 8 verti
es apart from the

fortunate 
ase of n = 12 where the solution is the regular i
osahedron. In [84℄ the authors

investigated this problem for polytopes in arbitrary dimensions. By generalizing the methods

of [25℄, the authors presented a ne
essary 
ondition for the optimality of a polytope. The

authors found the maximum volume polytopes in Rd
, ins
ribed in the unit sphere Sd−1

, with

n = d + 2 verti
es; for n = d + 3 verti
es, they found the maximum volume polytope for d
odd, over the family of all polytopes, and for d even, over the family of not 
y
li
 polytopes,

respe
tively. Observe that in this investigation spheri
al trigonometry plays an important role,
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vi INTRODUCTION

whi
h is the reason why the problem is in
luded in this se
tion. One of the most important

tools in the treatment of the 3-dimensional problem is the result of L. Fejes-Tóth on volume

bounds on polyhedra ins
ribed in the unit sphere (formula (2) on p. 263 in [57℄). For simpli
ial

polyhedra it 
an be simpli�ed into another one (see p.264 in [57℄) whi
h we 
all i
osahedron

inequality. The term is motivated by the fa
t that this inequality implies the 
ase of n = 12
points when the unique solution is the i
osahedron.

The aim of this se
tion is to give similar inequalities for 
ases when 
ertain (other than the

number of verti
es) pres
ribed information on the examined 
lass of polytopes ins
ribed in

the unit sphere need to be taken into 
onsideration. We generalize the i
osahedron inequality

for simpli
ial bodies whose fa
es have given lengths of maximal edges (
f. Prop. 1.2.2, Prop.

1.2.3, Theorem 1.2.1). Our extra
ted formula is valid not only for 
onvex polyhedra but also

for polyhedra that area star-shaped with respe
t to the origin (
f. Theorem 1.2.1). As an

appli
ation of the generalized inequality we prove a 
onje
ture whi
h states that the maximal

volume polyhedron spanned by the verti
es of two regular simpli
es with 
ommon 
entroid

is the 
ube. This 
onje
ture was raised and proved partially in [81℄ and inspired some other

examinations on the volume of the 
onvex hull of simpli
es [82℄. The numerous 
al
ulations of

the proof of Theorem 1.2.1 
an be found in [83℄.

The third se
tion 
ontains a result from the paper [14℄. Our observations on the volume

of hyperboli
 orthos
emes 
on
erns a de�
ien
y in the two hundred years literature. Using

hyperboli
 orthogonal 
oordinates we dis
overed a formula on the volume of the orthos
eme by

its edge lengths. Of 
ourse, our formula also 
ontains a non-elementary integral, but it 
ompletes

the 
olle
tion of integrals of Loba
hevsky and Bolyai to a 
omplete triplet. (The integral of

Loba
hevsky uses the dihedral angles of the orthos
eme and the formulas of Bolyai both the

dihedral angles and the edge lengths of the orthos
eme.) In this paper we des
ribed three types of


oordinate systems in whi
h the volume of a set 
an be given by an appropriate integral. These


oordinate systems are based on a parasphere, the hyperboli
 orthogonal 
oordinate system

and the spheri
al 
oordinate system, respe
tively. Using these we determined the volume form

with respe
t to these 
oordinate systems and also with respe
t to the half-spa
e and proje
tive

model. To determine these formulas we need some information on hyperboli
 trigonometry and

also some well-known analyti
 and syntheti
 results from hyperboli
 geometry. The formulas


an be get from ea
h other by (non-trivial) integral transforms and so we had to give only the

�rst one by a syntheti
 native reasoning. The dissertation 
ontains only those steps whi
h are

needed to the dedu
tion of the required formula on orthos
heme: Let denote by a, b and c those
edges (and their lengths) of the orthos
eme for whi
h b is orthogonal to a and c is orthogonal
to a and b, respe
tively. Then for the volume v of the orthos
eme we have:

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ.

The se
ond 
hapter. presents the basis of the dissertation. In re
ent times, the geometry

of �nite dimensional, real Bana
h spa
es; see [140℄ be
ame again an important resear
h �eld.

Strongly related to Bana
h spa
e theory, it is permanently enri
hed by new results in applied

dis
iplines. The most examined 
on
epts of it naturally 
onne
t to physi
s, fun
tional analysis,

and non-Eu
lidean geometries. Our eight publi
ations studied the geometri
 stru
ture of a

Minkowski normed spa
e, espe
ially the problems of bise
tors, 
oni
s, roulettes, isometries and

polarities. The total length of this part of the dissertation is about 50 pages with 26 �gures.

The first se
tion is based on four papers from whi
h one ([4℄) has a 
o-author, Horst Mar-

tini. The remaining three arti
les ([1, 2, 3℄) 
ontain the �rst systemati
 investigations of the bi-

se
tors in higher-dimensional spa
es. On a Minkowski normed plane the 
on
ept of bise
tor was

intensively studied from the beginning (see the survey [115℄), however, in higher-dimensional

spa
es there are only sporadi
 results. The reason is the 
ompli
ated topology of high di-

mensional bise
tors. We 
onsider the following questions: What is the 
onne
tion between the
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topology of the bise
tor and the unit sphere of the Minkowski spa
e? What is the 
onne
tion

between the bise
tor and the shadow boundary in a given dire
tion of the spa
e? How 
an we

represents the bise
tor "well" in the unit ball of the spa
e? We examined in [1℄ the boundary

of the unit ball of the norm and present two theorems similar to the 
hara
terization of the

Eu
lidean norm investigated by H.Mann, A.C.Woods and P.M.Gruber in [111℄, [147℄, [74℄,

[75℄ and [76℄, respe
tively. H.Mann proved that a Minkowski normed spa
e is Eu
lidean (so

its unit ball is an ellipsoid) if and only if all Leibnizian halfspa
es (
ontaining those points

of the spa
e whi
h are 
loser to the origin than to another point x) are 
onvex. A.C.Woods

proved the analogous statement for su
h a distan
e fun
tion whose unit ball is bounded but is

not ne
essarily 
entrally symmetri
 or 
onvex. P.M Gruber extended the theorem for distan
e

fun
tions whose unit ball is a ray set. P.M. Gruber generalized Woods's theorem in another

way, too. He showed (see Satz.5 in [74℄) that a bounded distan
e fun
tion gives a Eu
lidean

norm if and only if there is a subset T of the (n − 1)-dimensional unit sphere whose relative

interior (with respe
t to the sphere) is not empty, having the property that for ea
h pair of

points {0,x}, where x ∈ T , the 
orresponding Leibnizian halfspa
e is 
onvex. From the 
on-

vexity of the Leibnizian halfspa
es follows that the 
olle
tion of all points of the spa
e whose

distan
es from two distin
t points are equal are hyperplanes. We 
all su
h a set the bise
tor

of the 
onsidered points. Thus from Mann's theorem follows a theorem stated �rst expli
itly

by M.M.Day in [42℄: All of the bise
tors, with respe
t to the Minkowski norm de�ned by the

body K, are hyperplanes if and only if K is an ellipsoid. In this part my main result is the fa
t

that the bise
tors of a stri
tly 
onvex Minkowski normed spa
e are always homeomorphi
 to

a hyperplane but the reverse dire
tion of this statements is not true. We give an example for

a Minkowski spa
e in whi
h the bise
tors are homeomorphi
 hyperplanes but the unit ball is

not stri
tly 
onvex. The mathemati
al tools of the proofs are from 
onvex geometry, and from

basi
 
ombinatorial topology 
ombined with Eu
lidean geometri
 observations.

To answer the se
ond question we formulated a 
onje
ture (Conje
ture 2.1.2) whi
h states that

the bise
tors are topologi
al (n − 1)-dimensional hyperplanes if and only if the 
orresponding

shadow boundaries are (n− 2)-dimensional topologi
al spheres. In [2℄ and (in the third subse
-

tion of this se
tion) we prove this 
onje
ture in the three-dimensional 
ase. We examined also

the topologi
al properties of the shadow boundary, and de�ned the so-
alled general parameter

spheres for n ≥ 3, as a tool for a prospe
tive proof of our 
onje
ture. The main mathemati
al

tool of this se
tion is the S
hoen�ies-Swingle theorem on the ar
-wise a

essibility of a 
urve

from a domain. This theorem holds only in a two-dimensional manifold and there is no analo-

gous 
hara
terization in higher spa
es so the method of the proof 
annot be extra
ted to higher

dimensions. In [3℄ (and in Subse
tion 2.1.4) we examined the 
onje
ture in higher than three-

dimensional 
ases. It requires a deeper investigation of the topologi
al properties of the general

parameter spheres. We proved that the general parameter spheres are not an absolute neigh-

borhood retra
t in general, but still are 
ompa
t metri
 spa
es, 
ontaining (n− 2)-dimensional


losed, 
onne
ted subsets separating the boundary of K. Thus we investigated the manifold


ase and proved that the general parameter spheres and the 
orresponding shadow boundary

are homeomorphi
 to the (n−2)-dimensional sphere. Furthermore, if it is an (n−1)-dimensional

manifold with boundary then it is homeomorphi
 to the 
ylinder S(n−2) × [0, 1]. The proof is

based on geometri
 topology, on the so-
alled 
ell-like approximation theorem for manifolds.

We also proved on the 
onne
tion of the shadow boundary S(K, x) and the general parameter

spheres the following:

• S(K, x) is an (n−2)-dimensional manifold if all of the non-degenerated general param-

eter spheres γλ(K, x) with λ > λ0 are (n − 2)-dimensional manifolds, and 
onversely,

if S(K, x) is an (n−2)-dimensional manifold then all of the general parameter spheres

are ANRs.

• S(K, x) is an (n − 1)-dimensional manifold with boundary if and only if there is a λ
for whi
h the general parameter sphere γλ(K, x) is an (n − 1)-dimensional manifold

with boundary.
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Combining these theorems and using a topologi
al theorem of M. Brown we get the proof of

the �rst dire
tion of the 
onje
ture.

By Horst Martini we 
ontinued the investigation of bise
tors in a further point of view in [4℄.

Martini and Wo in [118℄ introdu
ed and investigated the radial proje
tion of the bise
tor. In our


ommon paper with H. Martini we introdu
ed the bounded representation of bise
tors, whi
h

yields a useful 
ombination of the notions of bise
tor, shadow boundary, and radial proje
tion.

We proved that the topologi
al properties of the radial proje
tion (in higher dimensions) do

not determine the topologi
al properties of the bise
tor. More pre
isely, the manifold property

of the bise
tor does not imply the manifold property of the radial proje
tion. The situation is

di�erent with respe
t to the bounded representation of the bise
tor. Namely, if one of them is

a manifold, then the other one is also. More pre
isely, if the bise
tor is a manifold of dimension

(n− 1), then its bounded representation is homeomorphi
 to a 
losed (n− 1)-dimensional ball

(i.e., it is a 
ell of dimension (n− 1)). And 
onversely, if the bounded representation is a 
ell,

then the 
losed bise
tor is also.

The se
ond se
tion is based on the new results of the paper [5℄. It 
ontains investigations

on two types of the important transformations of a Minkowski normed spa
e. Espe
ially we


onsidered "adjoint abelian" and isometri
 transformations of a Minkowski spa
e. Stamp�i in

[136℄ has de�ned a bounded linear operator A to be adjoint abelian if and only if there is a

duality map ϕ su
h that A∗ϕ = ϕA. So evidently, A is adjoint abelian if and only if A = AT , thus
the adjoint abelian operators are in some sense "self-adjoint" ones. Lángi in [101℄ introdu
ed

the 
on
ept of the Lips
hitz property of a semi inner produ
t and investigated the diagonalizable

operators of a Minkowski geometry {V, ‖ · ‖}. As a 
orollary of his main result we have that in

a totally non-Eu
lidean Minkowski n-spa
e every diagonalizable adjoint abelian operator is a

s
alar multiple of an isometry. First we des
ribed the stru
ture of an adjoint abelian operator

in Theorem 2.2.3 then in Theorem 2.2.4 we proved that in an lp spa
e every adjoint abelian

operator is diagonalizable.

On isometries we have also two theorems. Theorem 2.2.8 des
ribes the stru
ture of an isometry

and Theorem 2.2.10 
hara
terizes the group of isometries as follows: If the unit ball B of (V, ‖·‖)
has no interse
tion with a two-plane whi
h is an ellipse, then the group I(3) of isometries of

(V, ‖ · ‖) is isomorphi
 to the semi-dire
t produ
t of the translation group T (3) of R3
with a

�nite subgroup of the group of linear transformations with determinant ±1.
The third se
tion 
ontain results from two further papers whi
h are important in the setting

up of a 
omplete image on our works in Minkowski geometry. These are 
ommon papers with

H. Martini ([6℄) and with V. Balestro and H.Martini ([7℄), respe
tively. Due to the limitation

on the length of the dissertation in this se
tion we omit the proofs whi
h use 
onvex geometry,

linear algebra and 
lassi
al di�erential geometry. The paper [6℄ on 
oni
s 
ontains the possible

metri
 de�nitions of 
oni
s and the basi
 properties of the 
urves de�ned in this way. The paper

[7℄ dealing with a possible de�nition of roulettes is based on a new 
on
ept of rotations. Though

our rotations are not isometries implying that the motion de�ned by them is not a rigid one,

there is a 
omplete building up of the kinemati
s in a Minkowski plane. In this theory the two

Euler-Savary equations are valid.

The third 
hapter. deals with the problem of 
on
eptualization. The one hundred old 
on-


ept of "Minkowski spa
e" is a 
entral topi
 of the s
ienti�
 
ommunity. Note that the phrase

"Minkowski spa
e" do not distinguish between two theories: the theory of normed linear spa
es

and the theory of linear spa
es with inde�nite metri
. For �nite dimensions both are 
alled

Minkowski spa
es in the literature. It is interesting that these essentially distin
t theories of

mathemati
s have similar axiomati
 foundations. The axiomati
 examination of the theory of

linear spa
es with inde�nite metri
 
omes from H. Minkowski [123℄ and the similar system of

axioms of normed linear spa
es was introdu
ed by Lumer in [108℄. The �rst 
on
ept widely

used in physi
s: this is the mathemati
al stru
ture of relativity theory and thus there is no

doubt about its importan
e. (The popularity of linear spa
es with inde�nite metri
 is undimin-

ished sin
e Minkowski's le
ture "Time and Spa
e".) The usability of the se
ond one is based
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on the fa
t that modern fun
tional analysis works in general normed spa
es, and the Lumer-

Giles theory of semi inner produ
t gives a possibility to handling it by methods used originally

in Hilbert spa
es. Of 
ourse, in both of these spa
es there are a lot of problems that 
an be

formulated or solved in the language of geometry. The results of this 
hapter 
an be found in

four publi
ations of the author [8, 9, 10, 11℄.

The two publi
ations [8℄,[9℄ are about the new 
on
ept of generalized spa
e-time model. The

fourth paper [11℄ extend this 
on
ept to a 
on
ept of generalized Minkowski spa
e with 
hanging

shape, distinguishing to ea
h other the random and deterministi
 possibilities. For this purpose

we had to de�ne a probability spa
e on the metri
 spa
e of 
entrally symmetri
 
onvex 
ompa
t

bodies. The third paper [10℄ 
ontains a 
onstru
tion in this dire
tion. In this introdu
tory

se
tion I would not like to present a more detailed des
ription of the 
ontent of this 
hapter, I

remark only two things. First of all, the aim of this part of the dissertation is 
on
ept rendering,

whi
h means that the purpose of the theorems is the veri�
ation of 
on
eptualization. Se
ondly,

for this natural reason the used mathemati
al tools are very dispersed, we had to apply results

from linear algebra, fun
tional analysis, 
onvex geometry, probability theory and also 
lassi
al

and modern di�erential geometry. The sum of the lengths of the four papers is 103 pages, from

this the dissertation 
ontains a 50 page long review. As an appli
ation of this theory we add an

Appendix to the dissertation. It 
ontains the des
ription of the relativity theory in our stru
ture

from the spe
ial relativity to the Einstein equation holding in a time-spa
e manifold.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



dc_1387_17

Powered by TCPDF (www.tcpdf.org)



CHAPTER 1

Problems on 
onvexity and volumes in 
onne
tion with

non-Eu
lidean geometries

1.1. On the 
onvex hull of two 
onvex bodies (
ommon work with Zs. Lángi)

We investigate the following quantities.

Definition 1.1.1. [12℄ For two 
onvex bodies K and L in Rn
, let

c(K,L) = max {vol(conv(K ′ ∪ L′)) : K ′ ∼= K,L′ ∼= L and K ′ ∩ L′ 6= ∅} ,
where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of isometries of

Rn
, we set

c(K|S) = 1

vol(K)
max {vol(conv(K ∪K ′)) : K ∩K ′ 6= ∅, K ′ = σ(K) for some σ ∈ S} .

We note that a quantity similar to c(K,L) was de�ned by Rogers and Shephard [131℄, in whi
h


ongruent 
opies were repla
ed by translates. Another related quantity is investigated in [81℄,

where the author examines c(K,K) in the spe
ial 
ase that K is a regular simplex and the two


ongruent 
opies have the same 
entre.

In [131℄, Rogers and Shephard used linear parameter systems to show that the minimum of

c(K|S), taken over the family of 
onvex bodies in Rn
, is its value for an n-dimensional Eu
lidean

ball, if S is the set of translations or that of re�e
tions about a point. Nevertheless, their method,

approa
hing a Eu
lidean ball by suitable Steiner symmetrizations and showing that during this

pro
ess the examined quantities do not in
rease, does not 
hara
terize the 
onvex bodies for

whi
h the minimum is attained; they 
onje
tured that, in both 
ases, the minimum is attained

only for ellipsoids (
f. p. 94 of [131℄). We note that the method of Rogers and Shephard [131℄

was used also in [110℄.

We treat these problems in a more general setting. For this purpose, let ci(K) be the value

of c(K|S), where S is the set of re�e
tions about the i-�ats of Rn
, and i = 0, 1, . . . , n − 1.

Similarly, let ctr(K) and cco(K) be the value of c(K|S) if S is the set of translations and that

of all the isometries, respe
tively.

During the investigation, Kn denotes the family of n-dimensional 
onvex bodies. Let Bn be

the n-dimensional unit ball with the origin o of Rn
as its 
entre, and set Sn−1 = bdBn and

vn = vol(Bn). Finally, we denote 2- and (n − 1)-dimensional Lebesgue measure by area and

voln−1, respe
tively. For any K ∈ Kn and u ∈ Sn−1
, K|u⊥ denotes the orthogonal proje
tion

of K into the hyperplane passing through the origin o and perpendi
ular to u. The polar of a


onvex body K is denoted by K◦
.

Theorem 1.1.1. [12℄ For any K ∈ Kn with n ≥ 2, we have ctr(K) ≥ 1+ 2vn−1

vn
with equality if,

and only if, K is an ellipsoid.

Proof. By 
ompa
tness arguments, the minimum of ctr(K) is attained for some 
onvex body

K, and sin
e for ellipsoids it is equal to 1 + 2vn−1

vn
, it su�
es to show that if ctr(K) is minimal

for K, then K is an ellipsoid.

Let K ∈ Kn be a 
onvex body su
h that ctr(K) is minimal. Then ctr(K) ≤ 1 + 2vn−1

vn
. For any

u ∈ Sn−1
, let dK(u) denote the length of a maximal 
hord parallel to u. Observe that for any

1

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



2 1. PROBLEMS ON CONVEXITY AND VOLUMES

su
h u, K and dK(u)u+K tou
h ea
h other and

(1)

vol(conv(K ∪ (dK(u)u+K)))

vol(K)
= 1 +

dK(u) voln−1(K|u⊥)
vol(K)

.

Clearly, ctr(K) is the maximum of this quantity over u ∈ Sn−1
.

It is known that for any K and u, dK(u) = d 1
2
(K−K)(u) and the same holds also for the width

fun
tion of K. Theorem 3.3.5 of [63℄ states that ifK and K ′
have the same width fun
tion, then

they have the same brightness fun
tion, de�ned as u 7→ voln−1(K|u⊥), as well. Thus, we have

that for any u ∈ Sn−1
, dK(u) voln−1(K|u⊥) = d 1

2
(K−K)(u) voln−1

(
1
2
(K −K)|u⊥

)
. On the other

hand, the Brunn-Minkowski Inequality yields that vol(K) ≤ vol
(
1
2
(K −K)

)
, with equality if,

and only if, K is 
entrally symmetri
. Substituting these inequalities into (1), we obtain that

ctr(K) ≥ ctr
(
1
2
(K −K)

)
, with equality if, and only if, K is 
entrally symmetri
. Hen
e, in the

following we may assume that K is o-symmetri
.

Let u 7→ rK(u) = dK(u)
2

be the radial fun
tion of K. From (1) and the inequality ctr(K) ≤
1 + 2vn−1

vn
, we obtain that for any u ∈ Sn−1

(2)

vn−1 vol(K)

vn voln−1(K|u⊥) ≥ rK(u).

Applying this for the polar form of the volume of K, we obtain

vol(K) =
1

n

∫

Sn−1

(rK(u))
n d u ≤ 1

n

vnn−1

vnn
(vol(K))n

∫

Sn−1

1

(voln−1(K|u⊥))n d u,

whi
h yields

(3)

vnnn

vnn−1 (vol(K))n−1 ≤
∫

Sn−1

1

(voln−1(K|u⊥))n d u

On the other hand, 
ombining Cau
hy's surfa
e area formula with Petty's proje
tion inequality,

we obtain that for every p ≥ −n,

v1/nn (vol(K))
n−1
n ≤ vn


 1

nvn

∫

Sn−1

(
voln−1(K|u⊥)

vn−1

)p
d u




1
p

,

with equality only for Eu
lidean balls if p > −n, and for ellipsoids if p = −n (
f. e.g. Theorems

9.3.1 and 9.3.2 in [63℄).

This inequality, with p = −n and after some algebrai
 transformations, implies that

(4)

∫

Sn−1

1

(voln−1(K|u⊥))n d u ≤ vnnn

vnn−1 (vol(K))n−1

with equality if, and only if K, is an ellipsoid. Combining (3) and (4), we 
an immediately see

that if ctr(K) is minimal, then K is an ellipsoid, and in this 
ase ctr(K) = 1 + 2vn−1

vn
. �

We remark that a theorem related to Theorem 1.1.1 
an be found in [112℄. More spe
i�
ally,

Theorem 11 of [112℄ states that for any 
onvex body K ∈ Kn, there is a dire
tion u ∈ Sn−1

su
h that, using the notations of Theorem 1.1.1, dK(u) voln−1(K|u⊥) ≥ 2vn−1

vn
, and if for any

dire
tion u the two sides are equal, then K is an ellipsoid.

If, for a 
onvex body K ∈ Kn, we have that vol(conv((v +K) ∪ (w +K))) has the same value

for any tou
hing pair of translates, let us say that K satis�es the translative 
onstant volume

property. In this se
tion we will 
hara
terize the plane 
onvex bodies with this property. Before

doing this, we re
all that a 2-dimensional o-symmetri
 
onvex 
urve is a Radon 
urve, if, for the


onvex hull K of a suitable a�ne image of the 
urve, it holds that K◦
is a rotated 
opy of K by
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1.1. ON THE CONVEX HULL OF TWO CONVEX BODIES (COMMON WORK WITH ZS. LÁNGI) 3

π
2
(
f. [117℄). We note that the 
on
ept of Radon 
urve arose in 
onne
t with the examination

of the Birkho� orthogonality in Minkowski normed spa
es.

Theorem 1.1.2. [12℄ For any plane 
onvex body K ∈ K2 the following are equivalent.

(1) K satis�es the translative 
onstant volume property.

(2) The boundary of

1
2
(K −K) is a Radon 
urve.

(3) K is a body of 
onstant width in a Radon norm.

Proof. Clearly, (2) and (3) are equivalent, and thus, we need only show that (1) and (2) are.

Let K ∈ K2. For any u 6= o, let dK(u) and wK(u) denote the length of a maximal 
hord and

the width of K in the dire
tion of u. Then, using the notation u = w− v, for any tou
hing pair

of translates, we have

area(conv((v +K) ∪ (w +K))) = area(K) + dK(u)wK(u
⊥),

where u⊥ is perpendi
ular to u.
Sin
e for any dire
tion u, we have dK(u) = d 1

2
(K−K)(u) and wK(u) = w 1

2
(K−K)(u),K satis�es the

translative 
onstant volume property if, and only if, its 
entral symmetral does. Thus, we may

assume that K is o-symmetri
. Now let x ∈ bdK. Then the boundary of conv(K ∪ (2x+K))

onsists of an ar
 of bdK, its re�e
tion about x, and two parallel segments, ea
h 
ontained

in one of the two 
ommon supporting lines of K and 2x + K, whi
h are parallel to x. For
some point y on one of these two segments, set AK(x) = area conv{o, x, y} (
f. Figure 1.1).

Clearly, AK(x) is independent of the 
hoi
e of y. Then we have for every x ∈ bdK, that

dK(x)wK(x
⊥) = 8AK(x).

Figure 1.1. An illustration for the proof of Theorem 1.1.2

Assume that AK(x) is independent of K. We need to show that in this 
ase bdK is a Radon


urve. It is known (
f. [117℄), that bdK is a Radon 
urve if, and only if, in the norm of K,

Birkho�-orthogonality is a symmetri
 relation. Re
all that in a normed plane with unit ball K,

a ve
tor x is 
alled Birkho�-orthogonal to a ve
tor y, denoted by x ⊥B y, if x is parallel to a

line supporting ||y|| bdK at y (
f. [17℄).

Observe that for any x, y ∈ bdK, x ⊥B y if, and only if, AK(x) = area(conv{o, x, y}), or in
other words, if, area(conv{o, x, y}) is maximal over y ∈ K. Clearly, it su�
es to prove the

symmetry of Birkho� orthogonality for x, y ∈ bdK. Consider a sequen
e x ⊥B y ⊥B z for some

x, y, z ∈ bdK. Then we have AK(x) = area conv{o, x, y} and AK(y) = area(conv{o, y, z}). By
the maximality of area(conv{o, y, z}), we have AK(x) ≤ AK(y) with equality if, and only if,

y ⊥B x. This readily implies that Birkho� orthogonality is symmetri
, and thus, that bdK is

a Radon 
urve. The opposite dire
tion follows from the de�nition of Radon 
urves and polar

sets. �

Theorem 1.1.3. [12℄ For any K ∈ Kn with n ≥ 2, c1(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is an ellipsoid.
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4 1. PROBLEMS ON CONVEXITY AND VOLUMES

Proof. If K is 
entrally symmetri
, then c1(K) = ctr(K), and we 
an apply Theorem 1.1.1.

Consider the 
ase that K is not 
entrally symmetri
. Let σ : Kn → Kn be a Steiner sym-

metrization about any hyerplane, and observe that σ(−K) = −σ(K). Thus, Lemma 2 of [131℄

yields that c1(K) ≥ c1(σ(K)). On the other hand, Lemma 10 of [112℄ states that, for any not


entrally symmetri
 
onvex body, there is an orthonormal basis su
h that subsequent Steiner

symmetrizations, through hyperplanes perpendi
ular to its ve
tors, yields a 
entrally symmetri



onvex body, di�erent from ellipsoids. Combining these statements, we obtain that there is an

o-symmetri
 
onvex body K ′ ∈ Kn that is not an ellipsoid and satis�es c1(K) ≥ c1(K
′). Hen
e,

the assertion follows immediately from Theorem 1.1.1. �

Our next result shows an inequality for cn−1(K).

Theorem 1.1.4. [12℄ For any K ∈ Kn with n ≥ 2, cn−1(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is a Eu
lidean ball.

Proof. For a hyperplane σ ⊂ Rn
, let Kσ denote the re�e
ted 
opy of K about σ. Furthermore,

if σ is a supporting hyperplane of K, let K−σ be the re�e
ted 
opy of K about the other

supporting hyperplane of K parallel to σ. Clearly,

cn−1(K) =
1

vol(K)
max{vol(conv(K ∪Kσ)) : σ is a supporting hyperplane of K}.

For any dire
tion u ∈ Sn−1
, let HK(u) be the right 
ylinder 
ir
ums
ribed about K and with

generators parallel to u. Observe that for any u ∈ Sn−1
and supporting hyperplane σ perpen-

di
ular to u, we have

vol(conv(K ∪Kσ)) + vol(conv(K ∪K−σ) = 2 vol(K) + 2 vol(HK(u)) =

= 2 vol(K) + 2wK(u) voln−1(K|u⊥).
Thus, for any K ∈ Kn,

(5) cn−1(K) ≥ 1 +
max{wK(u) voln−1(K|u⊥) : u ∈ Sn−1}

vol(K)
.

Similarly like in the proof of Theorem 1.1.1, we 
an observe that the width and the brightness

fun
tions of K and its 
entral symmetrals are equal, and thus, the numerator of the fra
tion

on the right-hand side of (5) is the same for K and

1
2
(K −K). On the other hand, the Brunn-

Minkowski Inequality implies that vol(K) ≤ vol
(
1
2
(K −K)

)
, with equality if, and only if, K

is 
entrally symmetri
. Hen
e any minimizer of cn−1(K) is 
entrally symmetri
.

Assume that K is o-symmetri
, and let dK(u) denote the length of a longest 
hord of K parallel

to u ∈ Sn−1
. Observe that for any u ∈ Sn−1

, dK(u) ≤ wK(u), and thus for any 
onvex body K,

cn−1(K) ≥ ctr(K).

This readily implies that cn−1(K) ≥ 1 + 2vn−1

vn
, and if here there is equality for some K ∈ Kn,

then K is an ellipsoid. On the other hand, in 
ase of equality, for any u ∈ Sn−1
we have dK(u) =

wK(u), whi
h yields that K is a Eu
lidean ball. This �nishes the proof of the theorem. �

In 
onne
tion with the above results we had some remarks and 
onje
ture. Some of them I quote

here showing that in this theme there are a lot of problem for further interesting resear
h.

Conje
ture 1.1.1. Let n ≥ 2 and 0 < i < n−1. Prove that, for any K ∈ Kn, ci(K) ≥ 1+ 2vn−1

vn
.

Is it true that equality holds only for Eu
lidean balls?

The maximal values of ctr(K) and c0(K), for K ∈ Kn, and the 
onvex bodies for whi
h these

values are attained, are determined in [131℄. Using a suitable simplex as K, it is easy to see

that the set {ci(K) : K ∈ Kn} is not bounded from above for i = 1, . . . , n − 1. This readily
yields the same statement for cco(K) as well. On the other hand, from Theorem 1.1.4 we obtain

the following.
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 5

Remark 1.1.1. For any K ∈ Kn with n ≥ 2, we have cco(K) ≥ 1 + 2vn−1

vn
, with equality if, and

only if, K is a Eu
lidean ball.

In Theorem 1.1.2, we proved that in the plane, a 
onvex body satis�es the translative equal

volume property if, and only if, it is of 
onstant width in a Radon plane. It is known (
f. [17℄

or [117℄) that for n ≥ 3, if every planar se
tion of a normed spa
e is Radon, then the spa
e is

Eu
lidean; that is, its unit ball is an ellipsoid. We 
onje
ture the following.

Conje
ture 1.1.2. Let n ≥ 3. If some K ∈ Kn satis�es the translative equal volume property,

then K is a 
onvex body of 
onstant width in a Eu
lidean spa
e.

Furthermore, we remark that the proof of Theorem 1.1.2 
an be extended, using the Blas
hke-

Santaló inequality, to prove Theorems 1.1.1 and 1.1.3 in the plane. Similarly, Theorem 1.1.4 
an

be proven by a modi�
ation of the proof of Theorem 1.1.1, in whi
h we estimate the volume

of the polar body using the width fun
tion of the original one, and apply the Blas
hke-Santaló

inequality.

Like in [131℄, Theorems 1.1.1 and 1.1.4 yield information about 
ir
ums
ribed 
ylinders. Note

that the se
ond 
orollary is a strenghtened version of Theorem 5 in [131℄.

Corollary 1.1.1. For any 
onvex body K ∈ Kn, there is a dire
tion u ∈ Sn−1
su
h that the

right 
ylinder HK(u), 
ir
ums
ribed about K and with generators parallel to u has volume

(6) vol(HK(u)) ≥
(
1 +

2vn−1

vn

)
vol(K).

Furthermore, if K is not a Eu
lidean ball, then the inequality sign in (6) is a stri
t inequality.

Corollary 1.1.2. For any 
onvex body K ∈ Kn, there is a dire
tion u ∈ Sn−1
su
h that any


ylinder HK(u), 
ir
ums
ribed about K and with generators parallel to u, has volume

(7) vol(HK(u)) ≥
(
1 +

2vn−1

vn

)
vol(K).

Furthermore, if K is not an ellipsoid, then the inequality sign in (7) is a stri
t inequality.

In the paper [12℄ we also introdu
ed variants of these quantities for 
onvex m-gons in R2
, and

for small values of m, 
hara
terize the polygons for whi
h these quantities are minimal. It has

been 
olle
ted some additional remarks and questions, too.

1.2. On the volume of the 
onvex hull of points ins
ribed in the unit sphere

We generalize here partially an important inequality of László Fejes-Tóth published in [57℄.

Let a(P ) be the area of a 
onvex p-gon P lying in the unit sphere, τ(P ) the (spheri
al) area of

the 
entral proje
tion of P upon the unit sphere, and v(P ) the volume of the pyramid of base

P and apex O whi
h is the 
entre of the unit sphere. Let denote U(τ(P ), p) the maximum of

v(P ) for a given pair of values p and τ(P ).

Proposition 1.2.1 ([57℄). With the above notation we have the following statements.

(1) For given values of p and τ the volume v attains its maximum U(τ, p) if t is a regular

p-gon.
(2) For general p ≥ 3 we have

(8) U(τ, p) =
p

3
cos2

π

p
tan

2π − τ

2p

(
1− cot2

π

p
tan2 2π − τ

2p

)
,

implying that

(9) U(τ, 3) =
1

4
tan

2π − τ

6

(
1− 1

3
tan2 2π − τ

6

)
,

(3) The fun
tion U(τ, p) is 
on
ave on the domain determined by the inequalities 0 < τ ≤
π, p ≥ 3.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



6 1. PROBLEMS ON CONVEXITY AND VOLUMES

(4) If V denotes the volume, R the 
ir
umradius of a 
onvex polyhedron having f fa
es, v
verti
es and e edges, then

(10) V ≤ 2e

3
cos2

πf

2e
cot

πv

2e

(
1− cot2

πf

2e
cot2

πv

2e

)
R3.

Equality holds only for regular polyhedra.

A

B

C

O

m
,

C

Figure 1.2. Fa
ial, re
tilineal and

spheri
al simpli
es, respe
tively.

A polyhedron with a given number n of verti
es is

always the limiting �gure of a simpli
ial polyhedron

with n verti
es, hen
e, introdu
ing the notation ωn =
(nπ)/6(n− 2) we have the following inequality

(11) V ≤ 1

6
(n− 2) cotωn(3− cot2 ωn)R

3.

Equality holds in the above inequality only for the

regular tetrahedron, o
tahedron and i
osahedron (n =
4, 6, 12).
If A,B,C are three points on the unit sphere we 
an

take two triangles with these verti
es, one of the 
orre-

sponding spheri
al triangle and the se
ond one the re
-

tilineal triangle with these verti
es, respe
tively. Both

of them are denoted by ABC. The angles of the re
tilin-
eal triangle are the halves of the angles between those

radii of the 
ir
ums
ribed 
ir
le whi
h 
onne
t the 
en-

ter K of the re
tilineal triangle ABC to the verti
es

A,B,C. Sin
e K is also the foot of the altitude of the tetrahedron with base ABC and apex O,
hen
e the angles αA, αB and αC of the re
tilineal triangle ABC, play an important role in our

investigations, we refer to them as the 
entral angle of the spheri
al edges BC, AC and AB,
respe
tively. We 
all the tetrahedron ABCO the fa
ial tetrahedron with base ABC and apex

O.

Proposition 1.2.2. [13℄ Let ABC be a triangle ins
ribed in the unit sphere. Then there is an

isos
eles triangle A′B′C ′
ins
ribed in the unit sphere with the following properties:

• the greatest 
entral angles and also the spheri
al areas of the two triangles are equal to

ea
h other, respe
tively;

• the volume of the fa
ial tetrahedron with base A′B′C ′
is greater than or equal to the

volume of the fa
ial tetrahedron with base ABC.

Proof. Assume �rst that the triangle ABC 
ontains the 
entre K of its 
ir
ums
ribed 
ir
le.

Let us denote by K ′
the 
entral proje
tion of K onto the unit sphere. The angles 2αA and

βA are the spheri
al angles of the triangle K ′BC at K ′
and B (or C), respe
tively. Then

the area of the triangle KBC is equal to a(KBC) = ∆(αA, βA) = 1
2
sin 2αA sin2K ′OB∠ =

1
2
sin 2αA (1− cot2 αA cot2 βA). On the domain 0 ≤ α ≤ π

2
, 0 ≤ β ≤ π

2
, α + β ≥ π

2
it is a


on
ave fun
tion of two variables (see p.267 in [57℄). Hen
e

a(ABC) = ∆(αA, βA) + ∆(αB , βB) + ∆(αC , βC) ≤ 2∆

(
αA + αB

2
,
βA + βB

2

)
+∆(αC , βC) = a(A′B′C′),

where the value on the right hand side of the inequality above is the area of the isos
eles triangle

A′B′C ′
. (We note that the 
entral proje
tions upon the sphere of the two triangles have the

same spheri
al ex
ess a(ABC) = a(A′B′C ′) = 2(βA + βB + βC)− π.)
Compare now the altitudes m and m′

of the pyramids based on the two triangles, respe
tively.

The spheri
al area of the �rst triangle is

τ = 2(βA + βB + βC)− π = 2π + (2(βA + βB + βC)− 3π) =

= 2π + 2
(
tan−1

(
tan
(
βA − π

2

))
++ tan−1

(
tan

(
βB − π

2

))
+ tan−1

(
tan

(
βC − π

2

)))
=
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 7

= 2π − 2
(
tan−1 (m tanαA) + tan−1 (m tanαB) + tan−1 (m tanαC)

)
.

Sin
e we do not ex
lude the possibility of αC = π/2 (implying that βC = 0) we de�ne

tan−1 tanπ/2 =: π/2. We also use the value tan−1 tan 0 =: 0 determining the used range of

the fun
tion x 7→ tan−1 x.
By the 
onvexity (see e.g. p. 229 in [57℄) of tan−1 (m tanαA) we get that

τ ≤ 2π − 2

(
2 tan−1

(
m tan

αA + αB
2

)
+ tan−1 (m tanαC)

)
.

On the other hand for m′
we have τ = 2π − 2

(
2 tan−1

(
m′ tan αA+αB

2

)
+ tan−1 (m′ tanαC)

)

implying that

(
2 tan−1

(
m tan

αA + αB
2

)
+ tan−1 (m tanαC)

)
≤
(
2 tan−1

(
m′ tan

αA + αB
2

)
+ tan−1 (m′ tanαC)

)

from whi
h it follows that m′ ≥ m.

Se
ond assume that the angle at C is obtuse. Then αA + αB = αC < π/2 and we have

τ = 2
(
tan−1 (m tan (αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
.

On the other hand a(ABC) = 1−m2

2
(sin 2αA + sin 2αB − sin 2αC) and the volume in question

is v(αA, αB) =
m(1−m2)

6
(sin 2αA + sin 2αB − sin 2(αA + αB)).

We 
onsider the maximum of v(αA, αB) under the 
onditions 0 ≤ αA, αB ≤ π/2,

0 = −τ
2
+
(
tan−1 (m tan (αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
,

and 0 = αA+αB − const, with respe
t to the unknown values αA, αB and m. Using Lagrange's

method we get two equations

µ =
m(1−m2)

6
(cos 2αA − cos 2(αA + αB)) +

λm(1−m2) (tan2 (αA + αB)− tan2 αA)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αA)

µ =
m(1−m2)

6
(cos 2αB − cos 2(αA + αB)) +

λm(1−m2) (tan2 (αA + αB)− tan2 αB)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αB)
whi
h are equivalent to the equations

µ

m(1−m2)
=

1

3
+

λ (1 + tan2 (αA + αB)) (1 + tan2 αA)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αA)

µ

m(1−m2)
=

1

3
+

λ (1 + tan2 (αA + αB)) (1 + tan2 αB)

(1 +m2 tan2 (αA + αB)) (1 +m2 tan2 αB)
be
ause of the equality

tan2 (αA + αB)− tan2 αA
(1 + tan2 (αA + αB)) (1 + tan2 αA)

= cos2 αA − cos2(αA + αB) =
cos 2αA − cos 2(αA + αB)

2
.

These 
onditions turn out to be equivalent to

(1 + tan2 αA)

(1 +m2 tan2 αA)
=

(1 + tan2 αB)

(1 +m2 tan2 αB)

whi
h 
annot be satis�ed unless αA = αB. Hen
e if the triangle is not an isos
eles one it is not

a lo
al extremum of our problem, on the other hand by 
ompa
tness it has at least one lo
al

maximum proving our statement. �

We 
an 
ompare the formulas of Proposition 1.2.2

V ≤ m′(1−m′2)

6
(2 sinαC − sin 2(αC)) =

m′(1−m′2)

3
sinαC(1− cosαC)

and

V ≤ m′(1−m′2)

6
(2 sin(π − α̃C) + sin 2(α̃C)) =

m′(1−m′2)

3
sin α̃C(1 + cos α̃C)
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8 1. PROBLEMS ON CONVEXITY AND VOLUMES

on αC and α̃C . In both 
ases we assumed that αC and α̃C are in the interval [0, π/2], respe
tively.
Using the equality αC = π − α̃C the above formulas simplify to the following 
ommon form

(12) V ≤ m′(1−m′2)

3
sinαC(1− cosαC) =: v (m′, αC) where 0 < α < π.

In the 
ase when AC = BC we saw that τ = 2
(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan αC

2

))
and

τ = 2π − 2
(
2 tan−1

(
m′ tan π−α̃C

2

)
+ tan−1 (m′ tan α̃C)

)
, respe
tively. (Observe that by the

de�nition tan−1(∞) =: π/2 these formulas are valid for αC = π/2 and lead to the same

equality.) These equalities 
an be 
onsidered in the following 
ommon form

(13) tan
τ

2
= tan

(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan

αC
2

))
,

where 0 < αC < π. In the 
ase when π/2 < αC we have tan (τ/2) < 0 and τ/2 = π +
tan−1 (tan (τ/2)).

Corollary 1.2.1. The upper bound fun
tion for �xed τ with the parameters |AB|,αC is

(14) v(|AB|, αC) :=
|AB|2
12

√
sin2 αC − |AB|2

4

1 + cosαC
,

and using the equality |AB| = 2 sin AB
2

it is of the form

(15) v(AB, αC) :=
sin2 AB

2

3

√
sin2 αC − sin2 AB

2

1 + cosαC
.

If AB is given the maximal volume of the possible fa
ial tetrahedra are attained at the isos
eles

triangle with parameter value αC = cos−1
(

|AB|2
4

− 1
)
= cos−1

(
− cos2 AB

2

)
. The formula is

v

(
|AB|, cos−1

( |AB|2
4

− 1

))
=

|AB|
6

√(
1− |AB|2

4

)
=

1

6
sinAB.

Proof. Assume that the value of the length of AB is given. Then by Proposition 1.2.2 for

�xed τ the maximal value of the volume V 
an be attained only for an isos
eles triangle and

the upper bound fun
tion gives this maximal volume. Using the equality

sinαC =
|AB|

2
√
1−m′2

we get that

v (m′, αC) =
m′(1−m′2)

3
sinαC(1− cosαC) =

|AB|2
12

√
sin2 αC − |AB|2

4

1 + cosαC
= v(|AB|, αC),

where the possible values of αC 
an be get from the equality sin2 αC ≥ |AB|2/4. The derivative
of v(|AB|, αC) = v(y, x) is

v′(y, x) =
y2 sin(x)

√
sin2(x)− y2

4

12(cos(x) + 1)2
+

y2 sin(x) cos(x)

12(cos(x) + 1)
√

sin2(x)− y2

4

hen
e we have

v′(|AB|, αC) =
|AB|2 sinαC

(
cosαC + 1− |AB|2

4

)

12(1 + cosαC)2
√

sin2 αC − |AB|2
4





< 0 if cosαC + 1 < |AB|2
4

= 0 if cosαC + 1 = |AB|2
4

> 0 if cosαC + 1 > |AB|2
4
.
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 9

Sin
e cos−1
(

|AB|2
4

− 1
)
≤ π − sin−1(|AB|/2), on the interval

sin−1(|AB|/2) < αC ≤ π/2 ≤ cos−1

( |AB|2
4

− 1

)
≤ π − sin−1(|AB|/2)

the fun
tion v(αC) attains its maximal value at cos−1 (|AB|2/4− 1) furthermore

v

(
|AB|, cos−1

( |AB|2
4

− 1

))
=

|AB|2
12

√
|AB|2

4

(
1− |AB|2

4

)

|AB|2
4

=
|AB|
6

√(
1− |AB|2

4

)
.

v(|AB|, αC) on the interval sin−1(|AB|/2) < αC ≤ cos−1
(

|AB|2
4

− 1
)
is a stri
tly in
reasing

fun
tion and on the interval cos−1
(

|AB|2
4

− 1
)
≤ π− sin−1(|AB|/2) it is a de
reasing one. This

shows that an optimal triangle with the �xed edge length |AB| (whi
h 
orresponding to a fa
ial

tetrahedron with maximal volume) is an isos
eles one. �

We also have a formula on the upper bound fun
tion v (m′, αC) using as a parameter the surfa
e

area τ (introdu
ed in Proposition 1.2.2).

Proposition 1.2.3. [13℄ Let the spheri
al area of the spheri
al triangle ABC be τ . Let αC be

the greatest 
entral angle of ABC 
orresponding to AB. Then the volume V of the Eu
lidean

pyramid with base ABC and apex O holds the inequality

(16) V ≤ 1

3
tan

τ

2

(
2− |AB|2

4

(
1 +

1

(1 + cosαC)

))
.

In terms of τ and c := AB we have

(17) V ≤ v(τ, c) :=
1

6
sin c

cos τ−c
2

− cos τ
2
cos c

2

1− cos c
2
cos τ

2

.

Equality holds if and only if |AC| = |CB|.
Proof. For αC = π/2 the statement is obviously true. In the other 
ases, by Proposition 2

and by the note before this statement we have to investigate the inequality

V ≤ m′(1−m′2)

3
sinαC(1− cosαC) =: v (m′, αC) where 0 < αC < π, αC 6= π/2

with the 
ondition

tan
τ

2
= tan

(
tan−1 (m′ tanαC)− 2 tan−1

(
m′ tan

αC
2

))
=

m′ tanαC − tan
(
2 tan−1

(
m′ tan αC

2

))

1 +m′ tanαC tan
(
2 tan−1

(
m′ tan αC

2

)) =

2m′ tan
αC
2

1−tan2 αC
2

− 2m′ tan
αC
2

1−m′2 tan2 αC
2

1 +
2m′ tan

αC
2

1−tan2 αC
2

2m′ tan
αC
2

1−m′2 tan2 αC
2

=

2m′(1−m′2) tan3 αC

2

(1− tan2 αC

2 )(1−m′2 tan2 αC

2 ) + 4m′2 tan2 αC

2

=
2m′(1−m′2) tan αC

2

(cot αC

2 − tan αC

2 )(cot αC

2 −m′2 tan αC

2 ) + 4m′2
=

m′(1−m′2) sinαC(1− cosαC)

(1 −m′2)
(
cosαC − sin2 αC

)
+ (1 +m′2)

=
3v (m′, αC)

(1 −m′2) cosαC(1 + cosαC) + 2m′2
.

Sin
e

sinαC =
|AB|

2
√
1−m′2

,

hen
e

1−m′2 =
|AB|2

4 sin2 αC
implying that

3v (m′, αC) = tan
τ

2

( |AB|2 cosαC(1 + cosαC)

4 sin2 αC
+ 2

(
1− |AB|2

4 sin2 αC

))
=
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10 1. PROBLEMS ON CONVEXITY AND VOLUMES

tan
τ

2

(
2 +

|AB|2
4 sin2 αC

(cosαC(1 + cosαC)− 2)

)
= tan

τ

2

(
2− |AB|2 (2 + cosαC)

4 (1 + cosαC)

)
.

So

V ≤ 1

3
tan

τ

2

(
2− |AB|2

4

(
1 +

1

(1 + cosαC)

))

as we stated.

Sin
e π − αC is the angle of the 
hordal triangle (re
tilineal triangle) ABC at C, thus we 
an
give it as a fun
tion of the spheri
al lengths of the sides of the spheri
al triangle ABC. Thus
we have (see eq. (486) in [37℄)

cosαC = −1 + cosAB − 2 cosAC

4 sin2 AC
2

= −−1 + cosAB + 4 sin2 AC
2

4 sin2 AC
2

.

Using the notation a := BC = AC, c = AB we get the formula

V ≤ 1

3
tan

τ

2

(
2− sin2 AB

2
− 2 sin2 AC

2

)
=

1

3
tan

τ

2

(
2− sin2 c

2
− 2 sin2 a

2

)
.

Finally use the spheri
al Heron's formula proved �rst by Lhuilier (see p.88 in [37℄):

tan
τ

4
=

√
tan

a+ b+ c

4
tan

−a + b+ c

4
tan

a− b+ c

4
tan

a+ b− c

4
.

Sin
e a = b it 
an be redu
ed to the form

tan
τ

4
= tan

c

4

√
tan

2a + c

4
tan

2a− c

4
= tan

c

4

√
sin2 a

2
− sin2 c

4

1− sin2 a
2
− sin2 c

4

.

From this we get that

sin2 a

2
=

tan2 τ
4
cos2 c

4
+ tan2 c

4
sin2 c

4

tan2 τ
4
+ tan2 c

4

and thus the inequality

V ≤ 1

3
tan

τ

2

(
2− sin2 c

2
− 2

tan2 τ
4
cos2 c

4
+ tan2 c

4
sin2 c

4

tan2 τ
4
+ tan2 c

4

)
=

1

3
tan

τ

2
cos

c

2

(
cos

c

2
+

+
tan2 c

4
− tan2 τ

4

tan2 c
4
+ tan2 τ

4

)
=

sin τ
2
cos c

2
sin2 c

2

3
(
1− cos c

2
cos τ

2

) =
sin c sin τ

2
sin c

2

6
(
1− cos c

2
cos τ

2

) =
1

6
sin c

cos τ−c
2

− cos τ
2
cos c

2

1− cos c
2
cos τ

2

.

�

Remark 1.2.1. In the 
ase when a = b = c the 
onne
tion between the parameters c and τ is

tan
τ

4
= tan

c

4

√
tan

3c

4
tan

c

4
= tan2 c

4

√
3− tan2 c

4

1− 3 tan2 c
4

.

To determine the parameter c we introdu
e the notion x = tan2(c/4) and θ = tan2(τ/4). Now
we get the equation of order three

0 = x3 − 3x2 − 3θx+ θ = (x− 1)3 − 3x(θ + 1) + (θ + 1),

and if we set y = x− 1 then the equality

0 = y3 − 3y(θ + 1)− 2(θ + 1).

Using Cardano's formula �nally we get that

y =
2 cos

(
τ
12

+ 4π
3

)

cos τ
4

.

Hen
e we have

1− cos c
2

1 + cos c
2

= tan2 c

4
= x =

2 cos
(
τ
12

+ 4π
3

)
+ cos τ

4

cos τ
4
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 11

implying that

cos
c

2
=

−1

2 cos τ+4π
6

and sin2 c

2
=

4 cos2
(
τ+4π

6

)
− 1

4 cos2
(
τ+4π

6

) .

Substituting these values into the formula (17) we get the inequality of Proposition 1.2.1 showing

that our result in the 
ase of p = 3 generalizes Prop. 1.2.1.

Assume now that the simpli
ial polyhedron P , starshaped with respe
t to the origin has f
fa
es and is ins
ribed in the unit sphere. Let c1, . . . , cf be the ar
-lengths of the edges of the

fa
es F1, . . . , Ff 
orresponding to their maximal 
entral angles, respe
tively. Denote by τi the
spheri
al area of the spheri
al triangle 
orresponding to the fa
e Fi for all i. We note that for

a spheri
al triangle whi
h has edges a, b, c, the inequalities 0 < a ≤ b ≤ c < π/2 as well as the

inequality τ ≤ c holds. In fa
t, for �xed τ the least value of the maximal edge length is attained

at a regular triangle. If c < π/2 then we have

tan
τ

4
=

(
tan

c

4

√
tan

3c

4
tan

c

4

)
=


tan

c

4

√

1− tan 3c
4
+ tan c

4

tan c


 < tan

c

4
,

and if c = π/2 then τ = 8π/4 = π/2 proving our statement.

Observe that the fun
tion v(τ, c) is 
on
ave in the parameter domain D := {0 < τ < π/2, τ ≤
c < min{f(τ), 2 sin−1

√
2/3}} with 
ertain 
on
ave (in τ) fun
tion f(τ) de�ned by the zeros of

the Hessian; and non-
on
ave in the domain D′ = {0 < τ ≤ ω, f(τ) ≤ c ≤ 2 sin−1
√

2/3} =

{0 < τ ≤ c ≤ π/2} \ D, where f(ω) = 2 sin−1
√
2/3. (The 
orresponding 
al
ulations 
an be


he
ked by any symboli
 software. The pre
ise value of ω is approximately ω ≈ 0.697715.)

Theorem 1.2.1. [13℄ Assume that 0 < τi < π/2 holds for all i. For i = 1, . . . , f ′
we require the

inequalities 0 < τi ≤ ci ≤ min{f(τi), 2 sin−1
√
2/3} and for all j with j ≥ f ′

the inequalities

0 < f(τj) ≤ cj ≤ 2 sin−1
√

2/3, respe
tively. Let denote c′ := 1
f ′

f ′∑
i=1

ci, c
⋆ := 1

f−f ′
f∑

i=f ′+1

f(τi) and

τ ′ :=
f∑

i=f ′+1

τi, respe
tively. Then we have

(18) v(P ) ≤ f

6
sin

(
f ′c′ + (f − f ′)c⋆

f

) cos
(

4π−f ′c′−(f−f ′)c⋆
2f

)
− cos 2π

f
cos
(
f ′c′+(f−f ′)c⋆

2f

)

1− cos 4π
2f

cos
(
f ′c′+(f−f ′)c⋆

2f

) .

Proof. The volume of P is bounded above by the quantity

v(P ) ≤
f∑

i=1

v(τi, ci) :=
1

6

f∑

i=1

sin ci
cos τi−ci

2
− cos τi

2
cos ci

2

1− cos ci
2
cos τi

2

.

Using the 
on
avity of the fun
tion v(τ, c) on the domain D and the fa
t that the fun
tion

v(τ, ·) for �xed τ is a monotone de
reasing fun
tion of c on the domain D′
, we get the following

upper bound for v(P ):

v(P ) ≤ f ′

6
v

(
4π − τ ′

f ′ , c′
)
+
f − f ′

6
v

(
τ ′

f − f ′ , c
⋆

)
.

Sin
e for i = f ′ + 1, . . . , f the points (τi, f(τi)) are in the 
onvex domain D then the point(
τ ′

f−f ′ , c
⋆
)
also in D. Applying again the 
on
avity property of the fun
tion v(τ, c), we get the

inequality

v(P ) ≤ f

6
v

(
4π

f
,
f ′c′ + (f − f ′)c⋆

f

)
=
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12 1. PROBLEMS ON CONVEXITY AND VOLUMES

f

6
sin

(
f ′c′ + (f − f ′)c⋆

f

) cos
(

4π−f ′c′−(f−f ′)c⋆
2f

)
− cos 2π

f
cos
(
f ′c′+(f−f ′)c⋆

2f

)

1− cos 4π
2f

cos
(
f ′c′+(f−f ′)c⋆

2f

) ,

as we stated. �

Remark 1.2.2. When f ′ = f we have the following formula:

(19) v(P ) ≤ f

6
sin c′

cos
(

2π
f
− c′

2

)
− cos 2π

f
cos c

′

2

1− cos c
′

2
cos 2π

f

,

where c′ = 1
f

f∑
i=1

ci. In this 
ase the upper bound is sharp if all fa
e-triangles are obtuse isos
eles

ones with the same area and maximal edge lengths.

The 
ondition of sharpness implies that the unit sphere tiling by the 
ongruent 
opies of su
h

isos
eles spheri
al triangles whi
h equal sides are less than or equal to the third one. Observe

that a polyhedron 
orresponding to su
h a tiling 
ould not be 
onvex. This motivates the

following problem: Give su
h values τ and c that the isos
eles spheri
al triangle with area τ
and unique maximal edge length c 
an be generated by a tiling of the unit sphere. We note that

simpli
ial regular polyhedra satisfy this property.

Example 1.2.1. We get a non-trivial example for this question, if we 
onsider a rhombi


dode
ahedron with its 
entroid as the 
enter of the sphere and we proje
t from the 
enter its

verti
es to the sphere (see the left �gure in Fig.1.3). (Note that there is no 
ir
ums
ribed sphere

about a rhombi
 dode
ahedron hen
e the proje
tion is ne
essary.) We get a tiling of the sphere


ontaining 
ongruent spheri
al quadrangles. One of these quadrangles has four 
ongruent sides

and two diagonals, respe
tively. The length of the longer diagonal is c = π/2.

Figure 1.3. The star-shaped polyhedron P (on left), the original rhombi
 do-

de
ahedron and the 
onvex 
onvex hull Q of P (on right).

We 
an disse
t these quadrangles at these longer diagonals into two 
ongruent spheri
al trian-

gles. Denote by P the polyhedron de�ned by those plane triangles as fa
ets whi
h 
orrespond

to these spheri
al triangles, respe
tively. The angles and sides have the respe
tive measures

γ = 2π/3, α = π/4, β = π/4 and c = π/2, a = sin−1
√

2/3, b = sin−1
√
2/3. Hen
e the area

of this triangle 2π/3 + π/2 + π/2 − π = π/6 = 4π/24 as follows from the fa
t, that the 24

ongruent 
opies of it, tile the whole sphere. Observe that P is not 
onvex sin
e the distan
e

of the opposite verti
es of two triangles with 
ommon base (in Eu
lidean measure) (2/
√
3) is

less than that of the Eu
lidean length of the 
ommon base (

√
2). Sin
e we have only one type

of triangles for whi
h f(τ1) = f(π/6) ≈ f(0, 52360) ≥ π/2 = c1 we 
an apply (19) with f = 24,
c′ = π/2, hen
e

v(P) = 4

√
2 cos π

6
− cos π

12√
2− cos π

12

.

This quantity is an upper bound for the volume of su
h star-shaped polyhedra whi
h are

ins
ribed into the unit sphere, have 24 fa
es with spheri
al area τi with the assumption that

f(τi) ≥ π/2 and with maximal edge length π/2. We get su
h polyhedra if we 
hange a little
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1.2. ON THE VOLUME OF THE CONVEX HULL OF POINTS INSCRIBED IN THE UNIT SPHERE 13

bit the position of those verti
es of P whi
h denoted by white 
ir
les on Fig. 1.3 (For τ (by

Mathemati
a 10) we got the assumption π/2 ≥ τ ≥ tan−1
(
2
√
5− 3

√
2
)
/(10 + 7

√
2) ≈ τ =

0.427922.)
Denote by Q the 
onvex hull of P (see the right �gure on Fig. �g:starshaped.). Then c1 =

2 sin−1
√
1/3 ≈ 1, 23096 < π/2 < f(τ1) and we 
an apply again (19). Hen
e we get that

v(Q) =
8

3

√
6 cos

(
π
12

− sin−1
√

1
3

)
− 2 cos π

12√
3− cos π

12

√
2

.

Q has maximal volume of the 
lass of su
h polyhedra whi
h 
an be get from Q by a little 
hange

of the position of the verti
es denoted by bla
k 
ir
les, respe
tively.

Example 1.2.2. Assume that f ′ = f = 12 and c = 2 sin−1(
√
2/3). Then the upper bound is

2
2
√
2

3

cos
(
π
6
− sin−1(

√
2/3)

)
− 1√

3
cos π

6

1− 1√
3
cos π

6

=
8

3
√
3
,

whi
h is the volume of the 
ube ins
ribed into the unit sphere. Hen
e we got a new proof for

that 
ase of Theorem 3.3 of [81℄ when we restri
t our examination to those triangulations in

whi
h there is no fa
e-triangle having edge length greater than the edge length of a regular

tetrahedron ins
ribed in the unit sphere.

We now apply our inequality to prove the general form of Theorem 3.3 in [81℄ in whi
h the

additional assumption "the tetrahedra are in dual position" has been omitted.

Theorem 1.2.2. [13, 81℄ Consider two regular tetrahedra ins
ribed in the unit sphere. The

maximal volume of the 
onvex hull P of the eight verti
es is the volume of the 
ube C ins
ribed

in to unit sphere, so

v(P ) ≤ v(C) =
8

3
√
3
.

Proof. We have to 
onsider only that 
ase whi
h is not 
onsidered in [81℄. Hen
e we assume

that in the spheri
al regular triangles of the spheri
al tiling is 
orresponding to the �rst regular

tetrahedron there are 2, 1, 1, 0 verti
es of the se
ond tetrahedron, respe
tively. The �ve points

(the three verti
es of the �rst spheri
al triangle and the two verti
es of the se
ond tetrahedron

having in this triangle) having in the �rst 
losed spheri
al triangle form a triangular disse
tion

of it into �ve other spheri
al triangle. Unfortunately, this disse
tion 
ontains also su
h triangles

whi
h maximal edge lengths greater than that of the edge length of the regular spheri
al triangle


ontaining them. On the other hand these triangles belong to the parameter domain D′
(de�ned

in Theorem 1.2.1) be
ause f(π/5) = 1.83487 < 2 sin−1
√

2
3
. Hen
e the upper bound fun
tion

for �xed τ is lo
ally a de
reasing fun
tion of c. So we 
an assume that all of these triangles have

the same maximal spheri
al lengths, whi
h is equal to 2 sin−1
√

2
3
. Thus we get the following

upper bound for the volume:

v(P ) ≤ v

(
π, 2 sin−1

√
2

3

)
+ 6v

(
π/3, 2 sin−1

√
2

3

)
+

5∑

i=1

v

(
τi, 2 sin

−1

√
2

3

)
=

1

9
+

4

3
√
3
+

2

9

5∑

i=1

sin τi
2√

3− cos τi
2

where 0 ≤ τi and
5∑
i=1

τi = π. But with these 
onditions we have

5∑

i=1

sin τi
2√

3− cos τi
2

≤ 1.97836 < 2
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14 1. PROBLEMS ON CONVEXITY AND VOLUMES

implying that

v(P ) <

1√
3
+ 4 + 4√

3

3
√
3

<
8

3
√
3
= v(C)

as we stated. �

1.3. On the hyperboli
 
on
ept of volume

Our observation on the volume of hyperboli
 orthos
emes 
on
erns a de�
ien
y in the two

hundred years literature. Using hyperboli
 orthogonal 
oordinates we dis
overed a formula

on the volume of the orthos
eme by its edge lengths. Of 
ourse it also manifests in a non-

elementary integral however 
ompletes to a 
omplete triplet of the 
olle
tion of integrals derived

by Loba
hevsky and Bolyai, respe
tively. (The integral of Loba
hevsky based on the dihedral

angles of the orthos
eme and the formulas of Bolyai used dihedral angles and edge lengths in a

mixed form.) In this se
tion we refer to the results of the paper [14℄.

In hyperboli
 geometry to get the volume of a polyhedron has only one possibility. We have

to transform the problem to a problem to 
al
ulate an appropriate integral. For this purpose

we need methods to allowed the points with 
oordinates. We now give volume-integrals with

respe
t to some important system of 
oordinates. We use that distan
e parameter k whi
h

introdu
ed by J.Bolyai to express the 
urvature K = −1
k2

of the hyperboli
 spa
e.

Consider in Hn
a parasphere of dimension n− 1 and its bundle of rays of parallel lines. Let ξn

be the last 
oordinate axis, one of these rays, the origin will be the interse
tion of this line with

the parasphere. The further (n−1)-"axes" are pairwise orthogonal para
y
les. The 
oordinates

of P in this system are (ξ1, ξ2, · · · , ξn)T , where the last 
oordinate is the distan
e of P and

the parasphere, while the further 
oordinates are the 
oordinates of the orthogonal proje
tion

T with respe
t to the Cartesian 
oordinate system in En−1
given by the above mentioned

parasphere.

We 
an 
orrespond to P a point p in Rn
by Cartesian 
oordinates:

(x1, x2, · · · , xn)T =
(
e−

ξn
k ξ1, e

− ξn
k ξ2, · · · , e−

ξn
k ξn−1, ξn

)T
.

By de�nition let the volume of a Jordan measurable set D in Hn
be

v(D) := vn

∫

D⋆

dx1 · · ·dxn,

where D⋆
in Rn

is the image of the domain D lying in Hn
(by the above mapping) and vn is a


onstant whi
h we will 
hoose later. Our �rst volume formula is:

v(D) = vn

∫

D

e−(n−1) ξn
k dξ1 · · ·dξn,

depending on the para
y
le 
oordinates of the points of D, in the given system. Let now the

domainD = [0, a1]×· · ·×[0, an−1] be a parasphere se
tor of parallel segments of length an based
on a 
oordinate bri
k of the 
orresponding parasphere. Then we get by su

essive integration

v(D) = vn

a1∫

0

· · ·




an∫

0

e−(n−1) ξn
k dξn


 · · ·dξ1 =

kvn
n− 1

[
−e−(n−1)an

k + e0
] n−1∏

i=1

ai =

=
kvn
n− 1

[1− e−(n−1)an
k ]

n−1∏

i=1

ai.

If an tends to in�nity and ai = 1 for every i = 1, · · · , (n− 1), then the volume is equal to

kvn
n−1

.

Note that J.Bolyai and N.I.Loba
hevski used the value vn = 1 only for n = 2, 3 so in their


al
ulations the volume is independent of the dimension but depends on the 
onstant k whi
h

determine the 
urvature of the spa
e. To follow them we will determine the 
onstant vn su
h
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 15

that for every �xed k the measure of a thin layer divided by its height tends to the measure of

the limit �gure of lower dimension. Now the limit:

lim
an→0

v(D)

an
=

kvn
n− 1

lim
n→∞

[1− e−(n−1)an
k ]

an

n−1∏

i=1

ai = vn

n−1∏

i=1

ai,

would be equal to vn−1

n−1∏
i=1

ai showing that 1 = v1 = v2 = . . . = vn = . . ..

Thus vn = 1 as indi
ated earlier. On the other hand if for a �xed n the number k tends to

in�nity the volume of a body tends to the Eu
lidean volume of the 
orresponding Eu
lidean

body. In every dimension n we also have a k for whi
h the 
orresponding hyperboli
 n-spa
e

ontains a natural body with unit volume, if k equal to n−1 then the volume of the paraspheri


se
tor based on a unit 
ube of volume 1 is also 1.
Finally, with respe
t to para
y
le 
oordinate system our volume fun
tion by de�nition will be

v(D) =

∫

D

e−(n−1) ξn
k dξ1 · · ·dξn.

Give now an orthogonal system H of axes asso
iated to the para
y
le 
oordinate system as

follows. Let the new half-axes x1, · · · , xn−1 be the tangent half-lines of the former para
y
les

at their 
ommon origin. (We 
an see the situation in Fig. 1.4) To determine the new 
oor-

dinates of the point P we proje
t P orthogonally to the hyperplane spanned by the axes

x1, x2, · · · , xn−2, xn. The proje
tion will be Pn−1. Then we proje
t orthogonally Pn−1 to the

(n − 2)-spa
e is spanned by the axes x1, x2, · · · , xn−3, xn. The new point is Pn−2. Now the

(n− 1)th 
oordinate is the distan
e of P and Pn−1, the (n− 2)th 
oordinate is the distan
e of

Pn−1 and Pn−2 and so on . . .. In the last step we get the nth 
oordinate whi
h is the distan
e

of the point P1 from the origin O. Sin
e the 
onne
tion between the distan
e 2d of two points

of a para
y
le and the length of the 
onne
ting para
y
le ar
 2s is s = k sinh d
k
. Thus the dis-

P

Pn-1

x

x

x

n-2

n-1

n

xn-1

d

s=sh

z

e z
= ch

d
dk
k

x
n

Figure 1.4. Coordinate system based on orthogonal axes

tan
e z of the respe
tive halving points 
an be 
al
ulated as: z = k ln cosh d
k
. Now a non-trivial

but elementary 
al
ulation shows (using also the hyperboli
 Pythagorean theorem) that the


onne
tion between the 
oordinates with respe
t to the two systems of 
oordinates is:

ξn−1 = e
ξn
k k sinh

xn−1

k

ξn−2 = e
ξn
k
+ln cosh

xn−1
k k sinh

xn−2

k
.

.

.

ξ1 = e
ξn
k
+ln cosh

xn−1
k

+···+ln cosh
x2
k k sinh

x1
k

xn = ξn + k ln cosh
xn−1

k
+ · · ·+ k ln cosh

x2
k

+ k ln cosh
x1
k
.
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16 1. PROBLEMS ON CONVEXITY AND VOLUMES

From this we get a new 
onne
tion. Correspond the point (ξ1, ξ2, · · · , ξn)T ∈ Hn
to the point

(u1, · · · , un)T ∈ Rn
as in our �rst 
al
ulation. The 
orresponding system of equations is:

u1 = k cosh
x2
k

· · · cosh xn−1

k
sinh

x1
k

.

.

.

un−1 = k sinh
xn−1

k

un = xn − k ln cosh
x1
k

− · · · − k ln cosh
xn−1

k
The Ja
obian determinant of this transformation is(

cosh
x1
k

)(
cosh

x2
k

)2
· · ·
(
cosh

xn−1

k

)n−1

,

implying our se
ond formula on the volume:

v(D) =

∫

D

(
cosh

xn−1

k

)n−1

· · ·
(
cosh

x2
k

)2 (
cosh

x1
k

)
dx1 · · ·dxn.

The orthos
heme is a spe
ial tetrahedron. Two edges a and b are orthogonal to ea
h other and

a third one c (skew to a) is orthogonal to the plane of a and b (and interse
ts b). Let x the

third edge of the triangle with edges a and b, y the third edge of the triangle of b and c and z
the remaining side of the orthos
eme. The dihedral angle at a is α, the angle opposite to b of
the triangle with edges a and b is β and the angle opposite to the edge c in the triangle with

edges c and z is γ, respe
tively. J.Bolyai gave two formulas on the volume (k = 1) (see in [29℄,

[143℄):

v =
tan γ

2 tanβ

c∫

0

u sinhu(
cosh2 u
cos2 α

− 1
)√

cosh2 u
cos2 γ

− 1
du,

and

v =
1

2

α∫

0


−a + sinh a cosφ

2
√

tanh2 b+ sinh2 a cos2 φ ln
cosh a cosφ+

√
tanh2 b+sinh2 a cos2 φ

cosh a cosφ−
√

tanh2 b+sinh2 a cos2 φ


dφ

For the so-
alled asymptoti
 orthos
heme for whi
h the ideal vertex is the 
ommon endpoint of

the edges a, x and z it gives the formulas:

v =
sin 2α

4

c∫

0

u

cosh2 u− cos2 α
du and v =

1

2

α∫

0

ln
cosφ√

cos2 φ− tanh2 b
dφ,

respe
tively.

The formula of Loba
hevsky 
an be get as follows. Let the essential (non-re
tangular) dihedral

angles of an orthos
heme be α, β and γ. They are admitted to the edges a, z and c, respe
tively.
Introdu
e the parameter δ by the equalities:

tanh δ := tanh a tanα = tanh c tan γ,

and the Milnor's form of the Loba
hevsky-fun
tion (see in [122℄)

Λ(x) = −
x∫

0

ln |2 sin ξ|dξ,

respe
tively. Then the volume v of the orthos
heme in the 
ase of k = 1 is

1

4

[
Λ(α+ δ)− Λ(α− δ)− Λ

(π
2
− β + δ

)
+ Λ

(π
2
− β − δ

)
+
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 17

+Λ(γ + δ)− Λ(γ − δ) + 2Λ
(π
2
− δ
)]
.

As an appli
ation of our general formulas we determine the volume of the orthos
eme as the

fun
tion of its edge-lengthes a, b and c. We note that the formulas

a =
1

2
ln

sin(α + δ)

sin(α− δ)
, c =

1

2
ln

sin(γ + δ)

sin(γ − δ)
, z =

1

2
ln

sin(π
2
− β + δ)

sin(π
2
− β − δ)

.

transform the dihedral angles into the edge-lengthes. This observation gives another possibility

to get our formula from the 
lassi
al ones but the 
orresponding 
al
ulation seems to be very

un
omfortable.

The following lemma in the three-dimensional 
ase 
an be proved easily.

Lemma 1.3.1. [14℄ We have two k-dimensional hyperboli
 subspa
es Hk and H ′
k, respe
tively

for whi
h they interse
tion has dimension k − 1. Assume that the points P ∈ Hk, P
′ ∈ H ′

k and

P ′′ ∈ Hk ∩H ′
k hold the relations PP ′⊥H ′

k and P ′P ′′⊥Hk ∩H ′
k, respe
tively. Then the angle

α = tan−1 tanh(PP
′)

sinhP ′P ′′ ,

is independent from the position of P in Hk.

a

b

c

x=x

y=x

z=x

O
Q

Q
,

P

P2

P
1

1

2

b
,

c
,

( )x,y

3

y f( )x

Figure 1.5. Orthos
heme and orthogonal 
oordinates

For our purpose we have to determine the integral

v(D) =

∫

D

(cosh z)2(cosh y)dzdydx =

a∫

0



φ(x)∫

0




ψ(x,y)∫

0

(cosh z)2(cosh y)dz


 dy


dx.

whi
h is based on hyperboli
 orthogonal 
oordinates (by k = 1). In this formula the fun
tions

φ(x) and ψ(x, y) 
an be determined as follows. Consider the orthos
heme in Figure 1.5. In the

re
tangular triangle △OP2P1 we know that the tangent of the angle P2OP1∠ is:

tanP2OP1∠ =
tanh b

sinh a
=

tanhΦ(x)

sinh x
.

Hen
e

tanhΦ(x) =
tanh b

sinh a
sinh x, and 0 ≤ y ≤ φ(x) = tanh−1

(
tanh b

sinh a
sinh x

)
=: λ.
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18 1. PROBLEMS ON CONVEXITY AND VOLUMES

Consider now the triangle△P1P2P . The line O(x, y, 0) interse
ts that point Q for whi
h |P1Q| =
b′, and let denote the point of the segment PP1 above Q be Q′

. Thus we get the equality

tanh c′ =
tanh c

sinh b
sinh b′.

Take into 
onsideration again the equality

tanh b′ =
tanh y

sinh x
sinh a,

and apply the hyperboli
 Pythagorean theorem. From the triangle △OQQ′
we get

tanhΨ(x, y) = tanh c′

[
sinh

(
cosh−1(cosh x cosh y)

)

sinh
(
cosh−1(cosh a cosh b′)

)
]
=

=
tanh c

sinh b
sinh b′

[√
cosh2 x cosh2 y − 1√
cosh2 a cosh2 b′ − 1

]
=

tanh c

sinh b
sinh b′

[√
sinh2 y + sinh2 x cosh2 y√
sinh2 b′ + sinh2 a cosh2 b′

]
=

=
tanh c

sinh b
sinh y

√
1 + sinh2 x coth2 y√
1 + sinh2 a coth2 b′

=
tanh c

sinh b
sinh y,

sin
e

tanQOP2∠ =
tanh b′

sinh a
=

tanh y

sinh x
.

Hen
e the assumption

0 ≤ z ≤ ψ(x, y) = tanh−1

(
tanh c

sinh b
sinh y

)
=: µ

holds if we �x the �rst two variables, but Ψ(x, y) does not depend on x, as it 
an be expe
ted

in Lemma 1.3.1. Thus the desired volume is:

v =

a∫

0

λ∫

0

µ∫

0

(cosh z)2(cosh y)dzdydx =

a∫

0

λ∫

0

1

2

[
z +

1

2
(sinh 2z)

]µ

0

(cosh y)dydx.

For Φ(x) and Ψ(x, y) we apply the identities tanh ρ = sinh ρ
cosh ρ

= e2ρ−1
e2ρ+1

, i.e. ρ = 1
2
ln 1+tanh ρ

1−tanh ρ
. We

get µ = 1
2
ln sinh b+tanh c sinh y

sinh b−tanh c sinh y
, and λ = 1

2
ln sinh a+tanh b sinhx

sinh a−tanh b sinhx
. Hen
e

v =
1

4





a∫

0




λ∫

0

ln
sinh b+ tanh c sinh y

sinh b− tanh c sinh y
cosh ydy+

+

λ∫

0

sinh

(
ln

sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy


dx



 .

To determine the se
ond integral, we apply sinh u = eu−e−u

2
. Now

λ∫

0

sinh

(
ln

sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy =

=
1

2

λ∫

0

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y
− sinh b− tanh c sinh y

sinh b+ tanh c sinh y

)
cosh ydy =

= 2

λ∫

0

sinh y cosh y
sinh b
tanh c

− tanh c
sinh b

sinh2 y
dy = 2

λ∫

0

sinh 2y

2 sinh b
tanh c

− tanh c
sinh b

cosh 2y + tanh c
sinh b

dy =
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1.3. ON THE HYPERBOLIC CONCEPT OF VOLUME 19

= − sinh b

tanh c

[
ln

(
2
sinh b

tanh c
− tanh c

sinh b
cosh 2y +

tanh c

sinh b

)]λ

0

=

= − sinh b

tanh c
ln

(
2
sinh b

tanh c
− tanh c

sinh b
cosh 2λ+

tanh c

sinh b

)
+

sinh b

tanh c
ln

(
2
sinh b

tanh c

)
.

From the above expression of λ = Φ(x) we 
an 
al
ulate cosh 2λ and get:

cosh 2λ =
1

2

(
sinh a+ tanh b sinh x

sinh a− tanh b sinh x
+

sinh a− tanh b sinh x

sinh a+ tanh b sinh x

)
.

Thus the se
ond integral (denoted by II) is:

II := − sinh b

tanh c
ln

(
1− tanh2 c sinh2 x

cosh2 b(sinh2 a− tanh2 b sinh2 x)

)
.

The �rst integral to v 
an be integrated by parts as follows:

λ∫

0

ln

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
cosh ydy =

{[
ln

(
sinh b+ tanh c sinh y

sinh b− tanh c sinh y

)
sinh y

]λ

0

−

−
λ∫

0

tanh c cosh y[(sinh b− tanh c sinh y) + (sinh b+ tanh c sinh y)]

sinh2 b− tanh2 c sinh2 y
sinh ydy



 =

=



sinh λ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
−

λ∫

0

2 tanh c sinh b cosh y sinh y

sinh2 b− tanh2 c cosh2 y + tanh2 c
dy



 =

=

{
sinhλ ln

sinh b+ tanh c sinh λ

sinh b− tanh c sinhλ
+

sinh b

tanh c

[
ln(sinh2 b− tanh2 c cosh2 y + tanh2 c)

]λ
0

}
=

=

{
sinh λ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
+

sinh b

tanh c

(
ln(sinh2 b− tanh2 c sinh2 λ)− ln(sinh2 b)

)}
.

Sin
e

sinh2 λ =
tanh2 b sinh2 x

sinh2 a− tanh2 b sinh2 x
,

the �rst integral is:

{
sinhλ ln

sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
+

sinh b

tanh c
ln

(
1− tanh2 c sinh2 x

cosh2 b(sinh2 a− tanh2 b sinh2 x)

)}
=

= sinhλ ln
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
− II.

The sum of the two parts is:

sinh λ ln
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ
.

A 
hange of integration variable will have some bene�ts x 7→ λ, a 7→ b, dx = dx
dλ
dλ. From

λ = tanh−1
(
tanh b
sinha

sinh x
)
follows

x = sinh−1

(
tanhλ sinh a

sinh b

)
= ln

tanhλ sinh a+
√

tanh2 λ sinh2 a + tanh2 b

tanh b

and we get in a straightforward way

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ,

proving our main theorem as follows:
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20 1. PROBLEMS ON CONVEXITY AND VOLUMES

Theorem 1.3.1. [14℄ Let the edges of an orthos
heme be a, b, c, respe
tively, where a⊥b and
(a, b)⊥c. If k = 1 then its volume is:

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ.

Corollary 1.3.1. This formula 
an be simpli�ed in the 
ase of asymptoti
 orthos
hemes. If

the edge-length a tends to in�nity, the fun
tion

tanh λ sinha√
tanh2 b cosh2 λ+sinh2 a sinh2 λ

tends to

1
coshλ

showing

that the volume of the orthos
eme with one ideal vertex is

v =
1

4

b∫

0

1

coshλ
ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinh λ

)
dλ.

If the length of the edge c also grows to in�nity, then this formula simpli�es to:

v =
1

4

b∫

0

1

coshλ
ln

(
sinh b+ sinh λ

sinh b− sinhλ

)
dλ,

whi
h is the volume of an orthos
eme with two ideal verti
es. If now we re�e
t this one in the

fa
e 
ontaining the edges b and c then we get a tetrahedron with three ideal verti
es. If then we

re�e
t the previous tetrahedron in the fa
e 
ontaining the edges b and a we get another one with
four ideal verti
es. The volume of the last one is

v =

b∫

0

1

cosh λ
ln

(
sinh b+ sinh λ

sinh b− sinh λ

)
dλ.

This tetrahedron has two edges (a and c) whi
h are skew and orthogonal to ea
h other (its


ommon normal transversal is b). Sin
e the re�e
tion in the line of b is a symmetry of this ideal

tetrahedron, we 
an see that there are two types of its dihedral angles, two opposite (at the edges

a and c) are equal to ea
h other, ( say A); and the other four ones are also equal to ea
h other

( say B). Then we have A+ 2B = π, and its volume by Milnor's formula is equal to

v′ = Λ(π − 2B) + 2Λ(B) = Λ(2B) + 2Λ(B) = 4Λ(B) + 2Λ
(
B +

π

2

)
.

(We have exploited that the Loba
hevsky fun
tion is odd, of period π, and satis�es the identity

Λ(2B) = 2Λ(B) + 2Λ(B + π
2
).) Then we get the following 
onne
tion between the two integrals:

0 =

b∫

0

1

coshλ
ln

(
sinh b+ sinhλ

sinh b− sinhλ

)
dλ+ 2

B+π
2∫

0

ln |2 sin ξ|dξ + 4

B∫

0

ln |2 sin ξ|dξ.

If we substitute into our formula the �rst-order terms of the Taylor series of the fun
tions in

the integrand, respe
tively, we get

v =
1

4

b∫

0

tanhλ sinh a√
tanh2 b cosh2 λ+ sinh2 a sinh2 λ

ln

(
sinh b+ tanh c sinhλ

sinh b− tanh c sinhλ

)
dλ =

=
1

2

b∫

0

λa√
b2 + a2λ2

cλ

b
dλ =

ac

2b2

b∫

0

λ2√
1
dλ =

abc

6
.

This shows that it gives ba
k the Eu
lidean volume for in�nitesimal values.
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CHAPTER 2

Investigations in a 
lassi
al Minkowski normed spa
e

2.1. Bise
tors

The present dissertation refers to bise
tors in (�nite dimensional normed or) Minkowski spa
es,

i.e., to 
olle
tions of points whi
h have, in ea
h 
ase, the same distan
e (with respe
t to the 
orre-

sponding norm) to two given points x, y of these spa
es. Note that bise
tors in Minkowski spa
es

play an essential role in Dis
rete and Computational Geometry, mainly in view of 
onstru
ting

(generalized) Voronoi diagrams, and also for motion planning with respe
t to translations; see,

e.g., the surveys [19℄ and [116℄.

2.1.1. Bise
tors and the unit ball. If K is a 0-symmetri
, bounded, 
onvex body in

the Eu
lidean n-spa
e En
(with a �xed origin O) then it de�nes a norm whose unit ball is

K itself (see [77℄ or [132℄). Su
h a spa
e is 
alled Minkowski normed spa
e. In fa
t, the norm

is a 
ontinuous fun
tion whi
h is 
onsidered (in the geometri
 terminology as in [77℄) gauge

fun
tion. The metri
 (the so-
alled Minkowski metri
), the distan
e of two points, indu
ed by

this norm, is invariant with respe
t to the translations of the spa
e.

The unit ball is said to be stri
tly 
onvex if its boundary 
ontains no line segment. A body is

said to be smooth if ea
h point on its boundary has a unique supporting hyperplane. There are

dual notions with respe
t to the s
alar produ
t of the embedding Eu
lidean spa
e. The dual

body K∗
of K is

K∗ = {y|〈x, y〉 ≤ 1 for all x ∈ K}
where 〈·, ·〉 means the inner produ
t of the embedding Eu
lidean spa
e. It 
an be shown (see

[41℄) that the (
onvex) unit ball K is stri
tly 
onvex if and only if its dual body K∗
is smooth.

We examined in [1℄ the boundary of the unit ball of the norm and give two theorems sim-

ilar to the 
hara
terization of the Eu
lidean norm investigated by H.Mann, A.C.Woods and

P.M.Gruber in [111℄, [147℄, [74℄, [75℄ and [76℄, respe
tively. H.Mann proved that a Minkowskian

normed spa
e is Eu
lidean one (so its unit ball is an ellipsoid) if and only if all Leibnizian halfs-

pa
es (
ontaining those points of the spa
e whi
h are 
loser to the origin than to another point

x) are 
onvex. A.C.Woods proved the analogous statement for su
h a distan
e fun
tion whose

unit ball is bounded but is not ne
essarily 
entrally symmetri
 or 
onvex. P.M Gruber extended

the theorem for distan
e fun
tions whose unit ball is a ray set. P.M. Gruber generalized the

Woods' theorem in another way, too. He showed (see Satz.5 in [74℄) that a bounded distan
e

fun
tion gives a Eu
lidean norm if and only if there is a subset T of the (n−1)-dimensional unit

sphere whose relative interior (with respe
t to the sphere) is not empty, having the property:

ea
h of the pairs of points {0,x} where x ∈ T the 
orresponding Leibnizian halfspa
e is 
onvex.

From the 
onvexity of the Leibnizian halfspa
es follows that the 
olle
tion of all points of the

spa
e whose distan
es from two distin
t points are equal are hyperplanes. We 
all su
h a set

the bise
tor of the 
onsidered points. Thus from Mann's theorem follows a theorem stated �rst

expli
itly by M.M.Day in [42℄:

Theorem 2.1.1 ([42℄). All of the bise
tors, with respe
t to the Minkowski norm de�ned by the

body K, are hyperplanes if and only if K is an ellipsoid.

Day pointed out that this result is an immediate Corollary of a result of James [92℄.

We note that Day's theorem is also a 
onsequen
e of a third (ellipsoid 
hara
terization) theorem

proved by P.M.Gruber ([75℄ Satz.3) whi
h says that if K1 is a 
onvex body in Ed
(d ≥ 3), and

the interse
tion of the boundaries of the bodies K ′
2 and K1 is 
ontained in a hyperplane for all

21
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22 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

translates K ′
2 of K1 with K ′

2 6= K1 then K1 is an ellipsoid. P.R.Goodey gave a little bit more

general form of this theorem in ([67℄ and [68℄), showing that if K2 is another 
onvex body of

the spa
e as K1, and the interse
tion of the boundaries of the bodies K ′
2 and K1 is 
ontained

in a hyperplane for all translates K ′
2 of K2 with K ′

2 6= K1, then K1 and K2 are homotheti


ellipsoids.

The se
ond question 
on
erning Day's theorem also was posed by H.Mann in [111℄. He proved

that if for all latti
es of the embedding spa
e the 
losed Diri
hlet-Voronoi 
ell of a latti
e point

(determined by the Minkowski norm) is 
onvex (in the usual Eu
lidean sense) then the norm

is Eu
lidean one, too. This theorem was also extended by P.M.Gruber for a distan
e fun
tion

with bounded star-shaped unit ball.

It is possible that the interior (with respe
t to the Minkowski metri
) of a Diri
hlet-Voronoi


ell is 
onvex while the 
losed one is not, thus we have to distinguish the open and the 
losed

Diri
hlet-Voronoi 
ells from ea
h other. The "walls" su
h a 
losed 
ell may be an n-dimensional

set in the Eu
lidean n-spa
e. It is also possible that the bise
tor of {0, x} is an n-dimensional

part of the spa
e. This is the 
ase, e.g., if the unit ball is a square of the plane and the ve
tor

x is parallel to one of the edges of this square.

Definition 2.1.1. The bise
tor of the segment, 
orresponding to the position ve
tor x, is

Hx := {y ∈ En | ‖y‖K = ‖y − x‖K}.
We denote by Hx,0 and Hx,x the Leibnizian halfspa
es to the segments [0, x] and [x, 0], respe
-
tively, as the set of those points whi
h are 
loser (with respe
t to the norm ‖ · ‖K) to the �rst

end than to the se
ond one.

It is 
lear that if 
lKS denotes the 
losure of the set S with respe
t to the norm ‖ · ‖K we have

Hx = 
lKHx,0 ∩ 
lKHx,x.

Now, we prove some properties of the Leibnizian halfspa
es and the bise
tors.

Lemma 2.1.1 ([1℄). With respe
t to the Eu
lidean metri
 topology of the embedding n-spa
e the
following properties hold:

(1) Hx is a 
losed, 
onne
ted set whi
h is 
onvex in the dire
tion of the ve
tor x, i.e. if

a line parallel to x interse
ts Hx in two distin
t points, then the whole segment with

these endpoints also belongs to Hx.

(2) Hx,0 and Hx,x are open, 
onne
ted sets separated by the bise
tor Hx.

Proof. From the 
ontinuity of the norm fun
tion it is easy to prove that the sets

Hx,0 := {y ∈ En|‖y‖K < ‖x− y‖K}
Hx,x := {y ∈ En|‖y‖K > ‖x− y‖K}

are open with respe
t to the Eu
lidean metri
 topology, too. This means that Hx is 
losed.

Using the triangle inequality (by the 
onvexity of K) it is easy to see that Hx,0 is a star-shaped

set. This means that it is 
onne
ted, too.

Prove now that Hx is 
onvex in the dire
tion of x. Let y and z be two points of Hx for whi
h

y − z parallel to x and ‖y‖K ≥ ‖z‖K . Consider the points u = y− z, v = y − z + x, 0 and x. If
‖y‖K < ‖z‖K (see Figure 2.1) then we have

‖u− y‖K = ‖v − y‖K = ‖z − x‖K = ‖z‖K > ‖y‖K = ‖0− y‖K = ‖x− y‖K.
Thus u, v are on the boundary of the Minkowski ball with 
enter y and radius ‖z‖K , while
the points 0 and x are in the interior of this ball. This means that the points u, v, 0, x in their

line must have the order [u, 0, x, v]. It is impossible be
ause v − u = x. From this we get that

‖y‖K = ‖z‖K . Let now E, F , E ′
, F ′

be the ends of the position ve
tors y, z, y − x and z − x,
respe
tively.

These points are on the boundary of the K-ball with 
enter 0 and radius ‖y‖K whi
h means

that the segment conv{E, F,E ′, F ′} belongs to the boundary of this ball. (At least three of these
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u v x

E’ F’ E(y) F(z)

Figure 2.1. The proof of dire
tional 
onvexity

points are distin
t.) So the interse
tion of the 
onsidered line with the bise
tor Hx 
ontains the

segment EF as we stated.

Sin
e the interse
tion of a line l parallel to x with a 
losed K-ball is a 
ompa
t segment, if we


onsider another K-ball K1 interse
ting the line l, the following non-empty set

(K1 ∪ (K1 + x)) ∩ l
is also 
ompa
t. The 
omplement of this set on the line l 
ontains two open half lines l− and l+
satisfying the properties that the points of K1 separate the points of l− from the right endpoint

of (K1 + x) ∩ l and the points of K1 + x separate the points of l+ from the left endpoint of

K1 ∩ l, respe
tively. It is easy to see that the points of l− belong to Hx,0 and the points of l+
belong to Hx,x, respe
tively. So by the 
ontinuity of the Minkowski norm, every line parallel

to x 
an be divided into three non-empty parts: a 
ompa
t segment (may be degenerated to a

point) belongs to Hx and two open hal�ines belong to Hx,0 and Hx,x, respe
tively.

Consider now a hyperplane orthogonal to the ve
tor x and take the orthogonal proje
tion of

Hx into this (n − 1)-dimensional Eu
lidean spa
e. If we assume that Hx 
an be de
omposed

into the union of two disjoint 
losed subsets of it, then the images of these 
omponents (by

the 
onvexity in the dire
tion of x and the above trise
tion of any proje
tion line) are disjoint


losed subsets whose union is this hyperplane. Using now the 
onne
tivity of the hyperplane

we get that this de
omposition is trivial and in fa
t Hx is 
onne
ted, too.

The last statement of this lemma is the separating property of the bise
tor. Consider an ele-

mentary 
urve γ whi
h 
onne
ts a point y of Hx,0 with a point z of Hx,x. Sin
e Hx,0 and Hx,x

are open with respe
t to the Eu
lidean topology of the spa
e, the sets Hx,0 ∩ γ and Hx,x ∩ γ
are open in the indu
ed topology of the 
onne
ted 
urve γ. However, these sets are non-empty

and disjoint hen
e there is (at least one) point of γ whi
h lies in the 
omplement of Hx,0∪Hx,x,

i.e. in Hx. So for every pairs of su
h points y, z and their 
onne
ting 
urve γ there is a point

of γ ∩Hx whi
h separates the endpoints of γ. �

The results of the following two lemmas seem to be new. The �rst one is an important 
onse-

quen
e of the statements of Lemma 2.1.1.

Lemma 2.1.2 ([1℄). The boundary of K does not 
ontain any line segment parallel to x if and

only if for ea
h line l parallel to x the set

Hx ∩ l

ontains exa
tly one point.

Proof. Assume indire
tly that the boundary ofK, denoted by bdK, 
ontains a non-degenerate

segment s parallel to x (see Figure 2.2).For the line l 
ontaining s we have bdK ∩ l = s
and (bdK + x) ∩ l = s + x. This means that for a su�
iently large real number r the set

bd(rK)∩ bd(rK) + x 
ontains the non-degenerate segment rs∩ rs+ x. This proves one dire
-
tion of the lemma.

Conversely, if Hx ∩ l 
ontains the points y and z then as we saw in the proof of the 
onvexity

part of the proof of Lemma 2.1.1 (to Figure 2.1), the following equalities hold

‖y‖K = ‖z‖K = ‖y − x‖K = ‖z − x‖K ,
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o x

s
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x

x,xx,0

l

G y
z

Figure 2.2. Maximal segment s′ in Hx.

whi
h means again that the set Hx∩ l 
ontains at least three distin
t points of the boundary of

the K-ball with 
enter 0 and radius ‖y‖K. This means that the boundary of this ball 
ontains

a segment parallel to x whi
h proves our Lemma 2.1.1. �

Our last lemma formulates a topologi
al property of the bise
tor. We shall use the natural

notion of maximal segment s′ belonging to Hx parallel to x and the left or right end of s′. (Left
end of s′ is from whi
h any other point of s′ 
an be get by adding a positive multiples of x.) It
is possible that a left end of a maximal segment belonging to Hx is an inner point of the 
losed

set clEn Hx,0 meaning that there exists an open Eu
lidean n-ball G around this left end whi
h

does not interse
t the other Leibnitzian halfspa
e Hx,x. We prove that in this 
ase the bise
tor

does not a topologi
al hyperplane.

Lemma 2.1.3 ([1℄). Let y ∈ Hx be a left end of a maximal segment s′ belonging to Hx parallel

to x and having non-zero length. If there is an n-dimensional open Eu
lidean ball G with 
enter

y for whi
h Hx,x ∩G is empty then Hx does not homeomorphi
 to a hyperplane.

Before the proof of this lemma we re
all the de�nition of topologi
al manifold with relative

boundary points. An (n− 1)-dimensional topologi
al manifold is a separable topologi
al spa
e

having a 
ountable base and holds the property that ea
h of its points has a neighbourhood

homeomorphi
 either to an open subset of En−1
or to a halfspa
e En−1

+ . We note that this

de�nition of topologi
al manifold (see e.g. [128℄) in our paper may be applied well. A relative

boundary point of an (n− 1)-manifold, lies on a bounding (n− 2)-manifold of the original one.

We note that the 
on
ept of boundary point of su
h a manifold is a topologi
al invariant and

a set homeomorphi
 to an (n − 1)-dimensional hyperplane is a topologi
al manifold without

boundary points.

Proof. (Lemma 2.1.3) Consider the boundary bdEn clEn Hx,x of 
losed set clEn Hx,x (relative

to the topology of En
). (In general this set is a proper subset of bdEn Hx,x.) By the assumption

for y we see that this set does not 
ontain y meaning that Hx 
ontains an (n− 1)-dimensional

(separation) set bdEn clEn Hx,x and at least one maximal segment s′ does not belong to this

set. Sin
e the set bdEn clEn Hx,x is 
losed there is a maximal non-degenerated subsegment s′′

of s′ (without right endpoint) whi
h disjoint from bdEn clEn Hx,x. If the point z is in Hx ∩ G′

where G′
is a smaller as G 
losed ball with 
enter y then it has the same property as y, namely

it has also a non-trivial segment in Hx \ clEn Hx,x. All of the segments parallel to x 
onne
ting

the points of Hx∩G′
with a 
orresponding point of bdEn clEn Hx,x determine a 
ylinder C with

generator segments parallel to x. Of 
ourse the point y is an endpoint of a generator of this


ylinder. Assuming now that Hx is a topologi
al hyperplane C is a topologi
al manifold, too.

Thus C is a topologi
al 
ylinder of dimension (n − 1). If now G′′
is a smaller open ball as G′

with 
enter y then G′′ ∩Hx = G′′ ∩ C proving that y is a relative boundary point of Hx. This

is a 
ontradi
tion be
ause the relative boundary of a topologi
al hyperplane is empty. �

We have the following theorem:
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Theorem 2.1.2 ([1℄). If the unit ball K of a Minkowski normed spa
e is stri
tly 
onvex then

all bise
tors are homeomorphi
 to a hyperplane.

Proof. Sin
e the Minkowski metri
 is invariant under translations we have to prove that if K
is stri
tly 
onvex then all sets Hx are homeomorphi
 image of a hyperplane.

Assume that the unit ballK is stri
tly 
onvex. Let x be an arbitrary point of the spa
e. Sin
e K
does not 
ontain a segment on its boundary, from Lemma 2.1.2 we obtain that the interse
tions

of Hx with every lines parallel to x 
ontain exa
tly one point. Let now H be the (n − 1)-
dimensional subspa
e of En

orthogonal to x and in
ident to the origin O and F be a map from

this hyperplane H to Hx by x-proje
tion with the de�nition:

F : H −→ Hx, y −→ F (y) = Hx ∩ {y + tx|t ∈ R}.
From Lemma 2.1.1 it follows that F is a bije
tive mapping from H to Hx we have to prove

only that it is 
ontinuous one, with respe
t to the Eu
lidean metri
 topology. (The 
ontinuity

of the inverse map will be a 
onsequen
e of the fa
t that H is lo
ally 
ompa
t set.) Let now y
be any point of H and ǫ > 0 be arbitrary real number. Let z be a point of H for whi
h the line

z + tx interse
ts the boundary of the K-ball K1 with 
enter 0 and radius ‖F (y)‖K. We have

two parameters say t1 and t2 for whi
h

‖z + t1x‖K = ‖F (y)‖K and ‖z + t2x− x‖K = ‖F (y)− x‖K = ‖F (y)‖K.
Sin
e K 
onvex 
ompa
t body, the fun
tion from H = R(n−1)

to R giving those half of the

boundary ofK whi
h 
ontains the point F (y) (with respe
t to an orthonormal base 
ontaining a

unit ve
tor parallel to x) is 
ontinuous. This means that we 
an 
hoose a number δ > 0 that if the
Eu
lidean distan
e of z and y is less than δ then the distan
es of the points z+t1x, z+t2x, F (y)
are less than ǫ, respe
tively. Sin
e the points z + t1x, z + t2x belong to Hx,0 and Hx,x or Hx,x

and Hx,0, respe
tively, we get that the 
orresponding segment [z + t1x, z + t2x] 
ontains the
point F (z). So the Eu
lidean distan
e of the image points F (z) and F (y) is also less than ǫ,
meaning that F is 
ontinuous, so it is a homeomorphism. This proves the theorem. �

Illustrating the di�
ulties of the reversal problem now we 
onsider three important examples.

Example 2.1.1. Let the unit ball K be the 
ylinder de�ned by

K = {(x, y, z) ∈ E3| − 1 ≤ x ≤ 1, y2 + z2 ≤ 1}.
The Leibnizian halfspa
es of the ve
tor (2, 0, 0) are trun
ated open 
onvex 
ones

{(x, y, z) ∈ E3|x < 1, 2− x >
√
y2 + z2} and {(x, y, z) ∈ E3|x > 1, x >

√
y2 + z2},

respe
tively. The topologi
al dimension of Hx is three showing that it is not homeomorphi
 to

a 2-plane. �

Example 2.1.2. A more interesting fa
t that the unit sphere de�ned by the 
ompa
t surfa
e

r(t, s) := (2− s2) cos(t)e1 + (1− s2) sin(t)e2 + se3, where − 1 ≤ s ≤ 1, and 0 ≤ t < 2π,


ontains exa
tly two (opposite) segments with parameter values s = ±1. The bise
tor Hx of

the ve
tor x = 4e1 is the union of the plane x = 2 and the angular domains de�ned by the

inequalities {y = 0, x − 4 ≥ z ≥ x} and {y = 0, −x + 4 ≤ z ≤ −x}, respe
tively. This
means that Hx belongs to two orthogonal planes of the spa
e. For the proof that this set is

not homeomorphi
 to a plane we have to see only that a set whi
h is the union of two open


ir
ular disk with a 
ommon diameter 
an not be embedded topologi
ally into a plane. In this

topologi
al spa
e the separation theorem of Jordan does not hold be
ause a 
losed Jordan


urve in the plane of the �rst disk interse
ting in two points of the 
ommon diameter, does

not separate the all spa
e. Hen
e this spa
e is not homeomorphi
 an Eu
lidean plane as we

stated. �
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Figure 2.3. Six se
tion splines of the

unit ball K.

From this two examples it 
an be thought that if all

bise
tors are topologi
al hyperplanes then K is stri
tly


onvex. The following example shows that it is not true

in general.

Example 2.1.3. K is an O-symmetri
 
onvex body

of the three dimensional spa
e bounded by the 
om-

pa
t surfa
e r(u, v) de�ned by the following manner.

Let γu(v) be a 
losed paraboli
 Bezier spline 
ontain-

ing the parabola segments determined by the points

Pi(u) Pi+2(u) and the 
orresponding tangent lines

Pi(u)Pi+1(u) and Pi+1(u)Pi+2(u), respe
tively, where

i = 0, 2, 4, 6, 8, 10; P0(u) = P12(u); P6+i(u) = −Pi(u) +
[0, 0, 2 sinu]T and the 
oordinates of the �rst six Pi(u)'s
are

P0(u) =




1 + ε cosu
0

sin u


P1(u) =




1 + ε cosu
cos u
sin u


P2(u) =




1
cosu
sin u


P3(u) =




1− cosu
cos u
sin u




P4(u) =




−1
ε cosu
sin u


P5(u) =




−1− ε cosu

ε cosu · 2−(2−ε) cos u
2−cos u

sin u


P6(u) =




−1− ε cosu
0

sin u


 ,

respe
tively. In Fig. 2.3 we 
an see the basi
 points Pi(u) (i = 0, . . . 6) and the 
orresponding

splines for the parameter values u = 0, π
3
and

π
2
, and ε = 0.25, respe
tively.

Here ε is a non-negative 
onstant (less or equal to 1
2
) −π

2
≤ u ≤ π

2
is �xed and the parameter of

γu(v) is v, mapping the interval [0, 6) onto the points of γu(v). (The interval [0, 1]mapped on the

�rst parabola segment the interval [1, 2] on the se
ond one, et
.) Obviously −γu(v) = γ−u(3+v).
The boundary of K is de�ned by the surfa
e

r(u, v) := {γu(v)| −
π

2
≤ u ≤ π

2
, 0 ≤ v < 6}.

K is 
entrally symmetri
 
onvex body

1

with origin O for every 0 ≤ ε ≤ 1
2
. If ε is positive that

it is smooth and 
ontains pre
isely two opposite segments at the parameter values u = ±π
2
.

From the proof of the previous theorem we see that if the dire
tion of x is not [1, 0, 0]T then

Hx homeomorphi
 to a hyperplane. If now x = (2 + 2ε, 0, 0)T then Hx also homeomorphi
 to

a hyperplane, though it 
ontains two 2-dimensional angular domains of the plane y = 0. To
prove this fa
t we note that the interse
tion of the two enlarged 
opies λK and λK + (2 +
2ε, 0, 0)T in the 
ase when λ ≥ 1 + ε is a 
losed Jordan 
urve, 
ontaining the parallel segments

s1 = [(λ, 0, λ)T , (2 + 2ε − λ, 0, λ)T ], s2 = [(λ, 0,−λ)T , (2 + 2ε − λ, 0,−λ)T ] and two opposite

(with respe
t to the 
enter P0(0)) 
urves 
onne
ting the point pairs {(λ, 0, λ)T , (λ, 0,−λ)T},
{(2 + 2ε− λ, 0, λ)T , (2 + 2ε− λ, 0,−λ)T} where these 
urves are in the opposite spa
e quarters

{x ≥ 1+ε, y ≥ 0}, {x ≤ 1+ε, y ≤ 0}, respe
tively and if 1 ≤ λ ≤ 1+ε holds then this opposite

parallel segments degenerate a point pair of the verti
al segment [(1, 0, 1+ ε)T , (1, 0,−1− ε)T ].
Illustrating this situation we 
an �gure of the most simple 
ase when the parabola segments

de�ned by the point pairs P2P4 and P8P10 substituted by the line segments P2P4 and P8P10,

respe
tively and ε = 0 and so the boundary of K is a ruled surfa
e de�ned by two opposite


losed half-
ir
le). (See in Fig. 2.4) �

1

The Gauss representation of the surfa
e 
an be written 
on
retely. The 
onvexity 
an be 
he
ked from it

using the fa
t that the support planes of the body does not interse
ts the interior of the body.
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Figure 2.4. Two in-

terse
tion 
urves in the


ase when ε = 0.

This example shows that a bise
tor Hx is homeomorphi
 to a hy-

perplane 
an 
ontain (n − 1)-dimensional 
ylinder with generators

parallel to x implying the existen
e of a pre
isely n − 2-dimensional


ylinder on the boundary of K. We now formulate this observation in

the following theorem.

Theorem 2.1.3 ([1℄). Let n be greater then two. If ea
h of the bise
-

tors is a topologi
al hyperplane, then there is no (n− 1)-dimensional


ylinder on the boundary of K. Furthermore if Hx is a topologi
al

hyperplane and C is a maximal 
ylinder with generators parallel to x
lying on bdK then it has dimension (n− 2).

Proof. The �rst statement of the theorem 
an be proved easily from the fa
t that every

segment on the boundary indu
e an angular domain in the bise
tor Hx as we saw in the proof

of Lemma 2.1.2. Hen
e If the boundary of K 
ontains an (n− 1)-dimensional 
ylinder then Hx


ontains an n-dimensional one.

We now prove the se
ond statement of the theorem. Let C be any maximal 
ylinder of bdK
with generators parallel to x. This means that the boundary of K in the dire
tion of x 
ontains

C but there is no 
ylinder C ′
with the same dire
tion of generators 
ontaining C and belonging

also to bdK having greater dimension as of C. Let this dimension be k. C now indu
es a (k+1)-
dimensional 
ylinder C∗

with generators parallel to x in Hx 
ontaining maximal segments of Hx

with the same dire
tion. In Lemma 2.1.3 we showed that if Hx is topologi
al hyperplane then all

left end of every maximal segments of Hx 
ontaining the 
losed set bdEn clEn Hx,x. Obviously,

the analogous statement is true for a right end of a maximal segment in Hx, meaning that it is

in bdEn clEn Hx,0. Thus we have that in this 
ase

Hx = bdEn clEn Hx,0 = bdEn clEn Hx,x.

(The left ends and right ends of maximal segments evidently belong to bdEn clEn Hx,0 and

bdEn clEn Hx,x, respe
tively, and these two sets are also 
onvex in the dire
tion of x as Hx.) Let

G be an n-dimensional ball with the radius ε. The points of G + C∗

an be divided into three

sets S0, S and Sx of Hx,0, Hx and Hx,x, respe
tively. Sin
e the n-dimensional 
ylinder G+ C∗

separated by S the dimension of S is at least (n− 1). Sin
e C∗ ⊂ S we have two possibilities.

In the �rst one S is a 
ylinder in Hx 
ontaining C∗
and having greater dimension as of C∗

while in the se
ond 
ase the two dimension is equal. The �rst possibility implies a 
ylinder in

the boundary of K 
ontaining C and having dimension greater then of C. This 
ontradi
ts to
the assumption gave for C so the dimension of C∗

is greater or equal to (n − 1). Thus the

dimension of C is greater or equal to (n− 2). From the �rst note of this proof we 
an pre
lude

the possibility of that this dimension is (n−1) proving the se
ond statement of the theorem. �

2.1.2. Diri
hlet-Voronoi 
ells. We now turn out the problem of Diri
hlet-Voronoi 
ells

on the base of a K-ball above. First of all 
onsider the following interesting example:

Example 2.1.4. Let the unit ball is the square [−1, 1]2 of the plane and 
onsider the lat-

ti
e generated by the orthogonal ve
tors (2, 0) and (0, 16) (see Fig. 2.5.) The interior (open)

Diri
hlet-Voronoi 
ell of the point (0, 0) is the open 
onvex hexagon bounded by the lines

x = ±1, y = ±x ± 2, respe
tively. The exterior (
losed) Diri
hlet-Voronoi 
ell of the origin is

the 
losure of the union of the interior Diri
hlet-Voronoi 
ell and two 
on
ave pentagon with

verti
es {(0, 2), (1, 1), (8, 8), (−8, 8), (−1, 1)} and {(0,−2), (1,−1), (8,−8), (−8,−8), (−1,−1),
respe
tively. The "wall" of this 
ell is a 2-dimensional subset of the plane. In this terminology

the result of H.Mann says that if for all latti
es of the spa
e the exterior Diri
hlet-Voronoi 
ells

with respe
t to the 
onsidered Minkowski norm are 
onvex then the unit ball of the norm is an

ellipsoid. �
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Figure 2.5. Open

and 
losed Diri
hlet-

Voronoi 
ells of a

latti
e

Be
ause it is possible that the exterior Diri
hlet-Voronoi 
ell is the

Eu
lidean 
losure of the interior 
ell and they are not 
onvex, we

introdu
ed the normality of the subdivision of the spa
e generated by

a latti
e with respe
t to the examined Minkowski norm.

Definition 2.1.2 ([1℄). The Diri
hlet-Voronoi 
ell system of a latti
e

L gives a normal subdivision of the embedding Eu
lidean spa
e if the

boundary of the 
ells does not 
ontain n-balls.

The following theorem gives a ne
essary and su�
ient 
ondition that

all of the subdivisions being normal in the spa
e.

Theorem 2.1.4 ([1℄). The Diri
hlet-Voronoi 
ell system of an arbi-

trary latti
e L gives a normal subdivision of the embedding Eu
lidean

spa
e if and only if all bise
tors are topologi
al hyperplanes. Espe-


ially if the unit ball of the Minkowski norm is stri
tly 
onvex then

a latti
e-like Diri
hlet-Voronoi K-subdivision of any point latti
e is

normal.

Proof. If in the spa
e there is a latti
e whi
h Diri
hlet-Voronoi 
ell does not give a normal

subdivision then there is n-dimensional ball belonging to the boundary of a 
ell. This means

that there is a bise
tor whi
h 
ontains an n-dimensional ball.

Conversely, if all latti
e-like Diri
hlet-Voronoi 
ell subdivision are normal then all bise
tor is

a topologi
al hyperplane. In fa
t, if Hx is bise
tor G is an arbitrary open Eu
lidean ball with

radius r and 
enter

1
2
x, there is a latti
e L for whi
h the 
ommon wall of the Diri
hlet-Voronoi


ells of the origin and x (whi
h are latti
e points) 
ontains the set Hx ∩ G. (It is enough to


hoose a bri
k latti
e generated by x and 
ertain large ve
tors from its orthogonal 
omplement.)

Using normality and the fa
t that the exterior Diri
hlet-Voronoi 
ell is a topologi
al ball we

get that this part of Hx is an elementary hypersurfa
e. If now the radius r tends to in�nity the

statement is given.

Now the theorem follows from Theorem 2.1.3. �

2.1.3. On the shadow boundary of the unit ball in three-spa
e. We examined in

[2℄ the 
onne
tions between the shadow boundaries of the unit ball K and the bise
tors of the

Minkowski spa
e. Our 
onje
ture is

Conje
ture 2.1.1 ([2℄). The bise
tors are topologi
al hyperplanes if and only if the 
orre-

sponding shadow boundaries are (n− 2)-dimensional topologi
al spheres.

In [2℄ we proved this 
onje
ture in the three-dimensional 
ase. We examined also the topologi
al

properties of the shadow boundary, and de�ned the so-
alled general parameter spheres for

n ≥ 3, as a tool for a prospe
tive proof of our 
onje
ture.

Definition 2.1.3. Let K be a 
ompa
t 
onvex body in n-dimensional Eu
lidean spa
e En
and

let Sn−1
denote the (n− 1)-dimensional unit sphere in En

. For x ∈ Sn−1
the shadow boundary

S(K, x) of K in dire
tion x 
onsists of all points P in bdK su
h that the line {P +λx : λ ∈ R}
supports K, i.e. it meets K but not the interior of K. The shadow boundary S(K, x) is sharp

if any above supporting line of K interse
ts K exa
tly in the point P . If S(K, x) is not sharp,
in general, it may have sharp point for that the above uniqueness holds.

It is 
lear that the shadow boundary de
omposes the boundary of K into three disjoint sets.

These are S(K, x) itself, moreover

K+ := {y ∈ bdK| there is τ > 0 su
h that y − τ · x ∈ int(K)},(20)

K− := {y ∈ bdK| there is τ > 0 su
h that y + τ · x ∈ int(K)},
respe
tively. We 
all the 
ongruent (thus homeomorphi
) sets K+

and K−
the positive and

negative part of bdK, respe
tively.
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In general, the shadow boundary of a 
entral symmetri
 
onvex body is not a ni
e set from

topologi
al point of view. There exists a 
entral symmetri
 
onvex body K and a dire
tion x of

the spa
e E3
su
h that every supporting line of K parallel to x 
ontains a point of K having no

relative neighborhood in S(K, x) homeomorphi
 to an open segment. This means that S(K, x)
is not a 1-dimensional manifold.

Example 2.1.5. Consider a unit 
ir
le C in E2
and the diadi
 rational points of it with

respe
t to the usual parametrization (see in Fig. 2.6). More pre
isely, take the parameter values

Figure 2.6. Shadow boundary whi
h is not a topologi
al manifold.

ti,j =
j
2i
2π, where 0 ≤ i is integer and 1 ≤ j ≤ 2i is odd number. The diadi
 rational points

of the 
ir
le are the points Si,j = (cos(ti,j), sin(ti,j)) of the subspa
e E2
with respe
t to an

orthonormed basis. Let now si,j be a segment orthogonal to the subspa
e E2
whose midpoint

is Si,j and its length is equal to

1
2i−2 if i ≥ 2 and is equal to 2 if i = 0, 1. The point sets

C∗ := C ∪ (∪i,j{si,j}) and K := convC∗

are 
entral symmetri
. This body is also 
losed, see it in Fig. 2.6. If l is a supporting line of

K orthogonal to the plane E2
then it does not interse
t the relative interior of the dis
 in

E2
bounded by the 
ir
le C, so it interse
ts the 
ir
le C. If l ∩ C is a point of form Si,j then

l ∩K = l ∩ C∗ = si,j, while if l ∩ C is another point of C then l ∩K = l ∩ C. We 
on
lude to

S(K, x) = C∗
being not a 1-manifold, as we 
laimed. �

In order to des
ribe the 
onne
tion between the bise
tors and the shadow boundaries of the

unit ball we introdu
e some parameterized sets on the boundary of K, 
orresponding to a given

dire
tion of the spa
e. These tend to the shadow boundary of K of the same dire
tion if the

parameter tends to in�nity. As we shall see in the 
ase of a ni
e unit ball these sets give a

parametrization of the 
losed "positive part" of bdK. In this way we 
an de�ne the general

parameter spheres a

ording to this dire
tion.

Definition 2.1.4 ([2℄). Let K be the Minkowski unit ball above and x is a �xed dire
tion of

the spa
e En
. Let

λ0 := inf{0 < t ∈ R | tK ∩ (tK + x) 6= ∅}
be the smallest value t for whi
h tK and tK + x interse
t. Then a general parameter sphere of

bdK 
orresponding to the dire
tion x and to any �xed parameter λ ≥ λ0 is the following set:

γλ(K, x) :=
1

λ
(bd(λK) ∩ bd(λK + x)) ⊂ bdK.

In general, the above set is not a topologi
al sphere of dimension (n − 2), and they are not

homeomorphi
 to ea
h other for di�erent λ's. For example the dimension of γλ0(K, x) may

be 0, 1 · · · (n − 1) while the dimension of γλ(K, x) for λ > λ0 is at least (n − 2) be
ause it

disse
ts the boundary of K. We also remark that the two parts of bdK \ γλ(K, x) for λ > λ0
are also homeomorphi
 to ea
h other by the proje
tion from

1
2λ
x (sin
e λK ∩ λK + x is 
entral

symmetri
 in

1
2
x for any λ ≥ λ0).
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Figure 2.7. The shadow boundary 
ould be sharp or not sharp in y

Lemma 2.1.4 ([2℄). Let Π(x, y) be a 2-plane parallel to the ve
tors x and y ∈ S(K, x), through
the origin. Then we have two possibilities for Π(x, y) ∩ γλ(K, x):

• If the shadow boundary S(K, x) is sharp for the point y ∈ S(K, x) then Π(x, y) ∩
γλ(K, x) 
ontains two opposite points with respe
t to

1
2λ
x (Fig.2.7 (left))

• There is a uniquely de�ned parameter value λ(y) that for every λ > λ(y) the interse
-
tion Π(x, y) ∩ γλ(K, x) is the union of a pair of segments parallel to x, opposite with

respe
t to

1
2λ
x. (Fig.2.7 (right))

In the se
ond 
ase the segments of the parameter spheres γλ(K, x) belong to the shadow boundary

S(K, x).

Proof. Let λ > λ0 be an arbitrary real number and 
onsider the generalized parameter sphere

γλ(K, x). Then γλ(K, x) = 1
λ
S(λK ∩ (λK + x), x). In fa
t, y ∈ γλ(K, x) if and only if λy ∈

bd(λK) ∩ bd(λK + x) ⊂ bd(λK ∩ (λK + x)). Let the line l(τ) be of the form λy + τx where τ
runs through real numbers.

There is no τ0 6= 0 for whi
h e.g. τ0 < 0 holds and λy + τ0x ∈ int(λK ∩ (λK + x)). Indire
tly,
λy+τ0x ∈ int(λK) and λy+τ0x ∈ int(λK+x)) = int(λK)+x hold. The se
ond relation implies

λy + (τ0 − 1)x ∈ int(λK), while λy ∈ bd(λK) and λy ∈ bd(λK + x) involve λy − x ∈ bd(λK).
This means that the points λy, λy − x, λy + τ0x, λy + (τ0 − 1)x are on the line l, ordered as

λy − x, λy + (τ0 − 1)x, λy + τ0x, λy

by the 
onvexity of K. This would imply τ0 = 0, a 
ontradi
tion.

Sin
e the shadow boundary of the 
onvex bodies Kλ = 1
λ
(λK ∩ (λK + x)) to x are on the

boundary of K, it 
an 
ontain a segment parallel to x if and only if this segment belongs to

the shadow boundary of K, too. An interesting phenomenon that � though Π(x, y) ∩ S(K, x)
is a pair of opposite segments (by 
entral symmetry in 0) � for a starting λ (whi
h gives the

positive end of Π(x, y) ∩ S(K, x)), Π(x, y) ∩ γλ(K, x) is a pair of points. So we are done. �

An important 
onsequen
e of Lemma 2.1.4 is the following

Corollary 2.1.1. The general parameter spheres for λ > λ0 provide a natural parametrization

of the surfa
e K+ \γλ0(K, x). In this parametrization any point of K+ \γλ0(K, x) is determined

by a point of a Eu
lidean unit sphere of dimension (n − 2), orthogonal to x in 0, and by a

parameter λ > λ0.

Of 
ourse, it is possible that the above surfa
e K+ \ γλ0(K, x) is empty, as in the 
ase of a


ube (=K) when four of its edges is parallel to x. However, in signi�
ant 
ases it is a useful

parametrization. For example, if K is stri
tly 
onvex, then it has only one singular point

γλ0(K, x) on the positive half.

To prove this 
orollary, we observe the fa
t that the 
ommon points of two distin
t parameter

spheres belong to the shadow boundary of K, hen
e the generalized parameter spheres give a

one-fold 
overing of K+ \ γλ0(K, x).

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



2.1. BISECTORS 31

We re
all the 
on
ept of Hausdor� distan
e ρH of two point sets S1 and S2, expressed by the

Eu
lidean distan
e ρE :

ρH(S1, S2) = max{ sup
s1∈S1

{ρE(s1, S2)}, sup
s2∈S2

{ρE(s2, S1)}}.

(Here e.g. ρE(s1, S2) = infs2∈S2{ρE(s1, s2)}.)
Our main result on general parameter spheres is the following:

Theorem 2.1.5 ([2℄). The shadow boundary S(K, x) is the limit of the general parameter

spheres γλ(K, x), with respe
t to the Hausdor� metri
, when λ tends to in�nity.

Proof. A

ording to the previous lemma we have two 
ases. In the �rst one the 2-plane

Π(x, y), with y ∈ S(K, x), interse
ts both S(K, x) and γλ(K, x) in two point pairs, respe
tively

(Fig. 2.7 (left)); while in the se
ond 
ase the interse
tion Π(x, y)∩ S(K, x) is a 0-opposite pair
of segments, and the interse
tion Π(x, y) ∩ γλ(K, x), if λ > λ(y) ≥ λ0, is an opposite pair of

segments with respe
t to

1
2λ
x (Fig.2.7 (right)). We will mention the ne
essary interse
tions as

a point or a segment, shortly. Let S ′
be the set of sharp points of S(K, x) and S ′′

be the set of

the remaining points of S(K, x), de
omposed to (disjoint) segments parallel to x. We say that

the points y ∈ S(K, x) and z ∈ γλ(K, x) 
orrespond to ea
h other, if y, z ∈ Π(x, y) and the line

of dire
tion x through the origin does not separate them in Π(x, y). If y ∈ S ′
then there exists

one 
orresponding point z ∈ γλ(K, x) (See Lemma 2.1.4). Denote this simply by z. If y ∈ S ′′

then either it has only one 
orresponding point in γλ(K, x) (see Lemma 2.1.4, λ0 < λ ≤ λ(y))
or the 
orresponding points form a segment belonging to S ′′

(Lemma 2.1.4, λ > λ(y)). We fo
us

on the negative end of the segment of S ′′
, 
ontaining y denoted by y−, and the negative end of

the 
orresponding segment of γλ(K, x) denoted by z−. Let S ′′′
be the set of those points z of

γλ(K, x) whi
h 
orrespond to a point of S ′
, and S ′′′′

be the 
olle
tion of the remaining points

of γλ(K, x). Now the 
laimed 
onvergen
e follows from the inequalities below:

ρH(S(K,x), γλ(K,x)) = max{ sup
y∈S(K,x)

{ρE(y, γλ(K,x))}, sup
z∈γλ(K,x)

{ρE(S(K,x), z)}} =

= max{ sup
y∈S′

{ρE(y, γλ(K,x))}, sup
y∈S′′

{ρE(y, γλ(K,x))}, sup
z∈S′′′

{ρE(S(K,x), z)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, γλ(K,x))}, sup
z−∈S′′′

{ρE(y−, z−)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, z−}, sup
z∈S′′′′\S(K,x)

{ρE(S(K,x), z)}} ≤

≤ max{ sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, z−)}, sup
z∈S′′′′\S(K,x)

{ρE(y−, z)}}.

In fa
t, ea
h of these three Eu
lidean distan
es tend to zero, if λ tends to in�nity, sin
e K and

its two dimensional interse
tions are 
onvex and 
ompa
t, respe
tively. �

On the rest of this se
tion we restri
t the investigation to the 
ase of dimension 3. A point

set H ⊂ E3
is said to be a topologi
al plane if and only if there is a homeomorphism of E3

onto itself, sending H onto a usual 2-plane. We re
all a theorem of two-dimensional topology,


hara
terizing the topologi
al 
ir
les on a two-sphere. (See for example [145℄.) A point a is


alled ar
wise a

essible from a point set B if b ∈ B implies the existen
e of an ar
 T with end

points a and b su
h that T \ a ⊂ B. If A is a point set whose every point is ar
wise a

essible

from some point set B, then we 
all A ar
wise a

essible from B. We use the S
hoen�ies-Swingle

theorem:

Theorem 2.1.6 (S
hoen�ies, Swingle see in [134℄ and [137℄). A ne
essary and su�
ient 
on-

dition that a subset M of S2
should be an S1

is that it be a 
ommon boundary of two disjoint

domains D1 and D2, from whi
h M is ar
wise a

essible.

Now our �rst statement is a te
hni
al lemma.

Lemma 2.1.5 ([2℄). Assume that the shadow boundary S(K, x) 
ontains a segment s parallel to
x having the property that it is a subset of a

umulation points of S(K, x)\s. Then the bise
tor

Hx 
an not be a topologi
al plane.
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Proof. Let y be a relative inner point of the segment s of a

umulation points of S(K, x).
There exists su
h a λ (large enough) and also an ε (small enough) for whi
h the segment with

negative end y and positive end y+ of s lies in γλ′(K, x) where λ − ε < λ′ < λ + ε and the

a

umulation points of the sets γλ′(K, x)\ s 
ontain also the segment [y, y+]. This means, there

is a domain � namely the union of segments ∪λ′{λ′[y, y+]|λ− ε < λ′ < λ+ ε} � in the bise
tor

Hx whi
h lies in the set of a

umulation points of the 
omplementary set with respe
t to Hx.

Drawing in this domain a little 
ir
le we get a 
losed 
urve whi
h relative interior points are

also boundary points of its 
omplementary sets. Thus the Jordan Curve Theorem (as a spe
ial


ase of the S
hoen�ies-Swingle theorem) does not hold on Hx, 
onsequently Hx 
ould not be a

topologi
al plane. �

Theorem 2.1.7 ([2℄). Assume that the bise
tor Hx is a topologi
al plane of E3
. Then the

general parameter spheres γλ(K, x) for λ > λ0 and the shadow boundary S(K, x) are topologi
al
1-manifolds (topologi
al 
ir
les). For λ = λ0 the parameter sphere 
an form a point, a segment

or a 
onvex disk of dimension 2, respe
tively.

Proof. Firstly, we deal with general parameter spheres. The statement on γλ0(K, x) follows
from the 
onvexity and 
entral symmetry of the 
ompa
t body K ( and K + x as well).

For λ > λ0 we prove that λ(γλ(K, x)) ⊂ Hx is ar
wise a

essible from the negative sets

H ′
1 = ∪λ′{λ′(γλ′(K, x))|λ0 ≤ λ′ < λ} ⊂ Hx ⊂ H−

x ,

If v is a point of λ(γλ(K, x)) then there is an ar
, parameterized by λ′ in the interse
tion

Hx ∩Π(x, v) whi
h 
onne
t the point v with the point

1
2
x, with the property that their points,

di�erent from v, lie in H ′
1. Sin
e also λγλ(K, x) is the 
ommon boundary of H ′

1 and its 
omple-

mentary set in Hx, by the S
hoen�ies-Swingle theorem, we get that λγλ(K, x)) is a topologi
al


ir
le, i.e. by the proje
tion from 0, γλ(K, x)) is a topologi
al 
ir
le, too, whi
h is ar
wise

a

essible also from the open disk 
omponent of int(K+ \ γλ(K, x) by Theorem 2.1.6.

Now let's turn to the 
ase of the shadow boundary: We assume that Hx is a topologi
al plane.

We 
he
k that the 
onditions of S
hoen�ies-Swingle theorem hold for S(K, x), too. It is enough
to prove that S(K, x) is ar
wise a

essible from K+

. Let y an arbitrary point of S(K, x).
If S(K, x) is sharp at this point then, by Lemma 2.1.4 , the set

∪λ{Π(x, y) ∩ γλ(K, x)|λ ≥ λ0} ∪ y
is a good ar
 whi
h 
onne
ts the interior of K+

and y. (Sin
e K+
is ar
wise 
onne
ted y is

a

essible from points K+
by ar
s.)

If y is not a sharp point of S(K, x) then (by Lemma 2.1.4) we have the segment s of S(K, x)
through y as a union of the monotone in
reasing sequen
e of segments Π(x, y) ∩ γλ(K, x),
parallel to x where λ > λ(y), and the negative end y− of s (Fig. 2.8).
Observe that all of this segments are ar
wise a

essible from K+

, so is their union, too. To

prove this, let s′ denote one of the segments Π(x, y)∩γλ(K, x) for �xed λ > λ(y). Observe that
the points of K+

belong to one of the following three sets:

H1 = ∪λ′{γλ′(K, x) | λ > λ′ ≥ λ0} ∩K+, γλ(K, x) ∩K+
and K+ \ (γλ(K, x) ∪H1).

From the points of the �rst set (by the �rst part of this proof) there are ar
s 
onne
ting a

point y′ of the 
onsidered segment with the required property. We 
an 
onne
t the points of

the se
ond set with a point of H1 by su
h an ar
 whose points belong to K+
, and this latter

point 
an be 
onne
ted again with a required ar
, showing that from these points there also

exist ar
s to y′. Finally, a point v of the third set lies in a plane Π(x, v) interse
ting S(K, x)
in a sharp point. The ar
 from v to a point of H1 in the interse
tion Π(x, v) ∩ bdK 
an be

extended to a required ar
 with ends at y′.
It remains to examine of the negative end point y− of s (see Fig.2.8). Sin
e y− is a boundary

point of the segment s whose other points belong to the boundary of K+
, then it is a boundary

point of K+
. Consider now a sequen
e (zi) of points of K

+
that tends to y−. First we introdu
e

a parametrization of S(K, x) ∪K+
. Let (ϕ, ψ) denote the 
oordinates of any point z ∈ bdK.
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Figure 2.8. The negative end is a

essible by ar
.

Here ϕ is the angle of the planes Π(x, z) and Π(x, y−) −π < ϕ ≤ π with respe
t to a �xed

orientation, and ψ the angle of the ve
tors x and z, 0 < ψ < π. Then we have (zi) = ((αi, βi)
T )

and y− = (0, β)T , T means transposed. We 
an assume, without loss of generality, that the

sequen
e (αi) is monotone de
reasing. Now we 
onne
t the points zi and zi+1 by an ar
 γi lying
in K+

. We de�ne ψ∗
i for later ar
s, near enough S(K, x), by

ψ∗
i := inf{ψ| there exists αi ≥ ϕ ≥ αi+1 for whi
h (ϕ, ψ)T ∈ S(K, x)} − 1

2i
.

From now on the notation x ∈ [a, b] (x ∈ (a, b)) means that either a ≤ x ≤ b (a < x < b) or
a ≥ x ≥ b (a > x > b) hold. Then the ar
 γi 
onne
ting zi and zi+1 is the following:

γi := {(αi, ψ)T with parameter ψ ∈ [βi, ψ
∗
i ]} ∪ {(ϕ, ψ∗

i )
T
with ϕ ∈ (αi, αi+1)}∪

∪{(αi+1, ψ)
T
with ψ ∈ [βi+1, ψ

∗
i ]}.

Of 
ourse, the simple union of these ar
s is 
onsidered only one 
urve for whi
h one of its

a

umulation points is y− = (0, β)T . However, the following set γ := cl(∪iγi \ ∪i(γi ∩ γi+1)) (in
whi
h we do not take multiple points) is an appropriate ar
 if and only if γ \∪iγi = {y−}. Sin
e
the set of a

umulation points of γ is a subset of γ ∪ s, thus the indire
t assumption implies

a subsegment s′ of s with non-zero length. This is also a subset of a

umulation points of

S(K, x) \ s and applying the Lemma 2.1.5 we get that the bise
tor would not be a topologi
al

plane. Thus the 
onditions of the S
hoen�ies-Swingle theorem are ful�lled so S(K, x) is a

topologi
al 
ir
le as we 
laimed. �

Lemma 2.1.6 ([2℄). Assume that the shadow boundary of K in the dire
tion x is a topologi
al


ir
le. Then the general parameter spheres are also topologi
al 
ir
les for λ > λ0.

The proof is an easy 
onsequen
e of Theorem 2.1.6 and of the arguments before it. The main

result of this se
tion is:

Theorem 2.1.8 ([2℄). Let K be a 
entral symmetri
 
ompa
t 
onvex body in E3
. All of the

bise
tors Hx of the 
orresponding Minkowski normed spa
e are topologi
al planes if and only if

all of the shadow boundaries S(K, x) are topologi
al 
ir
les (1-spheres).

Proof. The ne
essity is a 
onsequen
e of Theorem 2.1.7.

We prove that if the shadow boundary is a topologi
al 
ir
le then the 
orresponding bise
tor Hx

is a topologi
al plane. By the assumption and Lemma 2.1.6, γλ(K, x) is a topologi
al 
ir
le for

any �xed λ > λ0, and γλ0(K, x) is a topologi
al 
losed ball of dimension 0,1 or 2, respe
tively.

Consider now S(K, x).
First we note that, for a �xed λ, on γλ(K, x) there are only �nitely many segments parallel to

x. In the 
ontrary 
ase there would be in�nitely many 
orresponding segments on S(K, x), too,
but S(K, x) is 
ompa
t and homeomorphi
 to a 
ir
le, this would easily lead to a 
ontradi
tion

with Theorem 2.1.6. Then the set of lengthes of these segments of S(K, x) has a positive lower

bound. Thus there are only �nitely many parameter values λi with the property that γλi(K, x)
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(λi > λ0) 
ontains su
h a positive end of a segment si of the shadow boundary parallel to x,
whi
h is not lying on a γλ′(K, x) for λ

′ < λi.
If y+i is a positive end of si then λiy

+
i is an apex of a 
orner domain belonging to the interse
tion

of Hx and a plane through the origin and si. Partition now Hx into non-overlapping rings by

the 
onse
utive topologi
al 
ir
les λiγλi(K, x) i ≥ 1. A ring between the 
ir
les λiγλi(K, x) and
λi+1γλi+1

(K, x) 
an be partitioned by straight-line boundaries of the 
orresponding 
orners to

�nitely many non-overlapping domains Di,j where Di,j ∩Di,j+1 (for every j with respe
t to a


y
li
 order, is a segment 
onne
ting a point of λiγλi(K, x) to a point of λi+1γλi+1
(K, x). These


losed domains (ea
h homeomorphi
 to a 
losed dis
 for i ≥ 1) join only �nitely many others,

thus we 
an de�ne a sequen
e of homeomorphisms Φi,j on Di,j by indu
tion in the following

way.

First, we partition the unit dis
 B (with 
enter O) into non-overlapping pie
es having the same


ombinatorial stru
ture as the subdivision of Hx = λ0γλ0(K, x) ∪i,j Di,j. We have three 
ases:

λ0γλ0(K, x) is a 
losed dis
, a 
losed segment or a point.

In the �rst 
ase we 
onsider the 
on
entri
 
ir
les Cλi with respe
tive radii rλi = 1 − λ0
2λi

for

i ≥ 1 and de�ne the image of λ0γλ0(K, x) as the disk with origin O and radius

1
2
.

In the se
ond 
ase we 
onsider 
on
entri
 ellipses whi
h 
onverges to a O-symmetri
 segment

of length 1, and the third 
ase the ring stru
ture giving by 
on
entri
 
ir
les, too, with 
orre-

sponding radii rλi = 1− λ0
λi

for i ≥ 1.

We map now the shadow boundary S(K, x) onto the boundary of B. A 
orner domain of Hx


orresponds to a segment s of S(K, x) thus also to a 
losed ar
 σ of the unit 
ir
le. On the other

hand the apex aσ of this 
orner 
orresponds to a λi. If i > 0 let a′σ a point of Cλi ∩ conv{O, σ}.
For i = 0, in the �rst 
ase, we may 
hoose a′σ in the same way; in the se
ond 
ase we have

only two possibilities for aσ (the ends of λ0γλ0(K, x)); thus let a′σ be one of the ends of the


orresponding segment Cλ0 . (In this 
ase we 
hoose the 
orresponding ar
 γ0 interse
ting the

line of Cλ0 . Finally in the latter 
ase there is no su
h apex. Now we subdivide the rings by

the se
tors conv{a′σ, σ}. Obviously, the domains Qi,j in this pro
ess 
an be 
orresponded to the

domains Di,j in a unique way. This means that we de
omposed B to 
losed domains Qi,j with

the property: ∩Di,j is homeomorphi
 to ∩Qi,j for indi
es i, j.
Se
ond, by indu
tion (with respe
t to the lexi
ographi
 order of the pairs (i, j)) it is not to hard
to give a family {Φi,j : Di,j −→ Qi,j} of homeomorphisms 
ompatible to ea
h other, requiring

that if Di,j ∩Dk,l 6= ∅ then Φi,j(v) = Φk,l(v) for ea
h point v of Di,j ∩Dk,l. (Denote by Φ0,0 the

�rst homeomorphism sending λ0γλ0(K, x) onto the 
orresponding (not-indi
ated) subset of B.)
Now the mapping Φ : Hx −→ intB (see Fig 2.9), sending a point v ∈ Di,j to the point Φi,j(v),
is evidently a homeomorphism of Hx onto the interior of the dis
 B as we stated. �

2.1.4. Bise
tor and shadow boundary in higher spa
es. The examination of Conje
-

ture 2.1.1 in higher dimension require a deeper investigation of the topologi
al properties of the

general parameter spheres. The 
orresponding results of the author 
an be found in the paper

[3℄. We proved that, the general parameter spheres are not an absolute neighborhood retra
t

(ANR) in general, but still are 
ompa
t metri
 spa
es, 
ontaining (n − 2)-dimensional 
losed,


onne
ted subsets separating the boundary of K. Thus we investigated the manifold 
ase and

we proved that the general parameter spheres and the 
orresponding shadow boundary are

homeomorphi
 to the (n−2)-dimensional sphere. The base of the proof is the so-
alled 
ell-like

approximation theorem for manifolds. The long history of it 
an be found for example in [124℄.

Theorem 2.1.9 (Cell-like Approximation Theorem for manifolds). Let n 6= 3 be a positive

integer. For every 
ell-like map f :M −→ N between topologi
al n-manifolds, and every ε > 0,
there is a homeomorphism h : M −→ N su
h that d(f, h) < ε in the sup-norm metri
 on the

spa
e of all 
ontinuous maps (so f is a so-
alled near homeomorphism).
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We use again the notation:

K+ := {y ∈ bdK| there is τ > 0 su
h that y − τ · x ∈ int(K)},
K− := {y ∈ bdK| there is τ > 0 su
h that y + τ · x ∈ int(K)}.

Figure 2.9. The homeomorphism Φ

We 
all the 
ongruent (thus homeomorphi
)

sets K+
and K−

the positive and negative

part of bdK, respe
tively. The line passing

through the origin and parallel to the ve
tor

x interse
ts the boundary of K at the points

P+ ∈ K+
and P− ∈ K−

showing that the

positive and negative part of bdK are not

empty, respe
tively. We 
all the points P+

and P−
the positive and negative pole of K,

respe
tively. The interse
tion of bd(K) by a

2-plane 
ontaining the poles is 
alled a longi-

tudinal parameter 
urve of K.

Statement 2.1.1 ([3℄). The shadow bound-

ary de
omposes the boundary of K into three

disjoint sets: S(K, x), K+
and K−

. S(K, x)
is an at least (n − 2)-dimensional 
losed (so


ompa
t) set in bdK whi
h is 
onne
ted for

n ≥ 3, the sets K+
and K−

are homeomor-

phi
 
opies of R(n−1)
giving two ar
wise 
on-

ne
ted 
omponents of their union.

Proof. The �rst statement is obvious. Let

px be the orthogonal proje
tion of the embed-

ding spa
e Rn
onto a hyperplane orthogonal to the ve
tor x. Sin
e the orthogonal proje
tion

is a 
ontra
tion then it is 
ontinuous mapping of the spa
e. px(K) is a 
onvex body of the

image hyperplane. The interior of px(K) is the image of the sets K+
and K−

, respe
tively and

its boundary is the image of S(K, x). Sin
e px restri
ting for K+
is a bije
tion, there exists

a homeomorphism on K+
to R(n−1)

. Using the same argument for K−
we proved the validity

of the �rst part of the statement on K+
and K−

. Of 
ourse their union is open therefore the

shadow boundary is 
losed.

Sin
e R(n−1)
is ar
wise 
onne
ted the se
ond part of the statement on K+

follows from the

fa
t that an ar
 
onne
ting two points of K+
and K−

should be de
omposed into two relative

open sets by K+
and K−

, whi
h is a 
ontradi
tion. Thus the shadow boundary separates

the boundary of K. By a theorem of Alexandrov (Th. 5.12 in vol.I of [16℄), we get, that the

topologi
al dimension of S(K, x) is at least (n− 2), as we stated.
We now prove that (for n ≥ 3) the set S(K, x) is 
onne
ted. Assume that K1 and K2 are two


losed disjoint subsets of the shadow boundary for whi
h K1 ∪K2 = S(K, x). First we observe
that ea
h of the metri
 segments lying on a longitudinal parameter 
urve and parallel to x is

a 
onne
ted subset of S(K, x), thus its points (by the "basi
 lemma of 
onne
tivity" see vol.I

p.13 in [16℄) belong either to the set K1 or to the set K2. Let C1 and C2 the sets de�ned by the

union of those longitudinal parameter 
urves whi
h interse
t the sets K1 and K2. In this 
ase

C1 ∪ C2 = bdK and C1 ∩ C2 = {P+, P−} hold. The sets Ci are 
losed in bdK, meaning that

the sets Ci \ {P+, P−} give a de
omposition of bdK \ {P+, P−} into disjoint relative 
losed

subsets, too. Sin
e the latter set is 
onne
ted it follows that either K1 or K2 is empty. �

In general the dimension of S(K, x) is (n − 2) or (n − 1). We prove that there is an (n − 2)-
dimensional 
losed, 
onne
ted subset of S(K, x) separating bdK, too.

Lemma 2.1.7 ([3℄). The boundary of the 
losure of the set K+
(denoted by bd(cl(K+))) is a


losed, 
onne
ted (n− 2) dimensional subset of S(K, x) separating the boundary of K.
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Proof. By its de�nition it is 
losed. Sin
e cl(K+) ⊃ K+
and cl(K+) ∩ K− = ∅ we have

K+ ⊂ cl(K+) ⊂ K+∪S(K, x). On the other hand bd(cl(K+))∩K+ = ∅ (K+
is an open subset

of cl(K+)), thus we get that bd(cl(K+)) ⊂ S(K, x).
The separating property follows from the fa
t that the union of the pairwise disjoint sets

bdK \ cl(K+), int(cl(K+)), bd(cl(K+)) �lls the boundary of K and the �rst two sets are open.

Now the separating property implies (again by the Alexandrov's theorem above) the inequality

dim(bd(cl(K+))) ≥ (n− 2). On the other hand a 
losed 
onne
ted set of dimension (n− 1) on
bdK 
ontains an interior point relative to bdK (see p.174 in vol I. of [16℄ ) whi
h 
ontradi
ts

to the de�nition of bd(cl(K+)). �

Now we 
an prove one of the main theorems of this dissertation.

Theorem 2.1.10 ([3℄). If the shadow boundary S(K, x) is a topologi
al manifold of dimension

(n − 2) then it is homeomorphi
 to the (n − 2)-sphere S(n−2)
. If it is an (n − 1)-dimensional

manifold with boundary then it is homeomorphi
 to the 
ylinder S(n−2) × [0, 1].

Proof. Consider �rst the proje
tion px (whi
h was de�ned in the proof of Statement 2.1.1),

and restri
t it to the shadow boundary of K parallel to x. It is a 
ell-like map be
ause of the

inverse images are points or segments, respe
tively. In this way for n 6= 5 by the approximation

theorem (Theorem 2.1.9) above we have that this restri
ted map is a near homeomorphism

on S(K, x) to a homeomorphi
 
opy S̃(n−2)
of S(n−2)

implying that they are homeomorphi
 to

ea
h other. On the other hand this map is also 
ellular, sin
e the metri
 segments and points of

S(K, x) are 
ellular sets in S(K, x). To prove this, let s = p−1
x (v) be a segment in S(K, x) for

some v ∈ S̃(n−2)
. If now Q ∈ s is a point, 
onsider a metri
 ball Bǫ(Q) ⊂ bd(K) with 
enter Q

and radius ǫ > 0 for whi
h
∫
(Bǫ(Q))∩S(K, x) is homeomorphi
 to R(n−2)

. Su
h an ǫ > 0 surely

exists. In fa
t, Q has a neighborhood NQ in S(K, x) homeomorphi
 to R(n−2)
. If for every ǫ we


an 
hoose a point Pǫ ∈ Bǫ(Q)∩S(K, x) whi
h does not belong to NQ then we have a sequen
e

of points (Pǫ) having the same property and tending to Q. Sin
e NQ is open in S(K, x), this is
impossible. Thus there is an ǫ > 0 for whi
h Bǫ(Q) ∩ S(K, x) = Bǫ(Q) ∩ NQ. It implies that

int(Bǫ(Q)) ∩ S(K, x) is an open subset of NQ relative to the topology of S(K, x). Of 
ourse, ǫ
depends on Q, but s is a 
ompa
t set, thus there is a �nite number of points Qi and positive

real numbers ǫi, su
h that for the minimal value ǫ∗ of ǫi's we have ∪ int(Bǫ∗(Qi)) ⊃ s. Here
∪ int(Bǫ∗(Qi)) is the interior of the 
losed 
ell ∪(Bǫ∗(Qi)). Sin
e Bǫ(Q)∩S(K, x) = Bǫ(Q)∩NQ

also holds for every ǫ′ whi
h is less or equal to ǫ, we have an in�nite sequen
e of sets of form

∪(Bǫ∗(Qi)) with the property needed to prove the 
ellularity of s.
Observe now that if S(K, x) is an (n− 1)-manifold with boundary then its boundary has two


onne
ted 
omponents whi
h are equal to bd(cl(K+)) and bd(cl(K−)), respe
tively.
First we 
an see that bd(cl(K+)) is the set of the 
ommon boundary points of cl(K+) and

S(K, x) yielding bd(cl(K+)) ⊂ bd(S(K, x)). (We have bd(cl(K−)) ⊂ bd(S(K, x)), too.)
Se
ondly we note that there is no point of int(cl(K+)) belonging to S(K, x). Indire
tly assume

that the point P is in int(cl(K+)) ∩ S(K, x). Then
• either one 
an �nd a neighborhood U of P in S(K, x) whi
h is homeomorphi
 to the

(n − 1)-dimensional half-spa
e and therefore P is a boundary point of cl(K+) (in U
there exists a point Q with a neighborhood V ⊂ S(K, x) homeomorphi
 to R(n−1)

su
h

that Q ∈ V ⊂ U . It means that Q is a point of the 
omplement of cl(K+)),
• or there is a neighborhood U homeomorphi
 to the spa
e R(n−1)

for whi
h P ∈ U ⊂
S(K, x). In this 
ase P is in the interior of S(K, x) 
ontradi
ting the assumption that

it is a point of int(cl(K+)).

In this way int(cl(K+)) = K+
and then bd(cl(K+)) = bd(K+) is the 
ommon boundary of K+

and S(K, x). Applying Lemma 2.1.7 we obtain that bd(cl(K+)) is a 
onne
ted 
losed subset of

the boundary of S(K, x).
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Using the fa
t that bd(cl(K−)) is the image of bd(cl(K+)) by a 
entral proje
tion, we have a

similar result for bd(cl(K−)), too. (It is the 
ommon boundary of K−
and S(K, x).) We will

prove that the boundary of S(K, x) is the disjoint union of these two sets.

The relation bd(S(K, x)) ⊂ bd(cl(K−)) ∪ bd(cl(K+)) is obvious. Consider a point P from

the interse
tion bd(cl(K−)) ∩ bd(cl(K+)). Let U be a neighborhood of P in S(K, x). (It is

homeomorphi
 to a half-spa
e of R(n−1)
.) Let B be a metri
 (n− 1)-ball around P with su
h a

su�
iently small radius ǫ > 0, that the sets B ∩U and B \ (B ∩U) serve as topologi
al images

of a 
losed and the 
omplementary open half-spa
es of R(n−1)
, respe
tively. (Similarly as the

proof of the 
ellularity property of a segment goes one 
an show that su
h an ǫ > 0 and ball B
exist.) Sin
e B 
ontains points from ea
h of the sets K+

and K−
we have a 
ontradi
tion by

the separating property of S(K, x). (There is no point of S(K, x) in the 
omplementary domain

B \ (B ∩ U).)
This implies that the boundary of S(K, x) has two 
onne
ted 
omponents whi
h are the 
ommon

boundaries of S(K, x) and K+
, S(K, x) and K−

, respe
tively. Of 
ourse, these sets are also

(n− 2)-manifolds 
onne
ted with straight line segments through all of their points. So we have

that S(K, x) = bd(cl(K+))× [0, 1] holds. We still have to prove that in this 
ase bd(cl(K+)) is
homeomorphi
 to S(n−2)

, too. Sin
e px on bd(cl(K+)) into S(n−2)
is also a 
ell-like (and 
ellular)

mapping, bd(cl(K+)) is an (n− 2)-dimensional manifold and this restri
ted map is one to one,

the last statement of the Theorem follows from Theorem 2.1.9, too. �

Theorem 2.1.11 ([3℄). Let denote by S(K, x) the shadow boundary of K in the dire
tion x.

I S(K, x) is an (n − 2)-dimensional manifold if all of the non-degenerated general pa-

rameter spheres γλ(K, x) with λ > λ0 are (n− 2)-dimensional manifolds, 
onversely if

S(K, x) is an (n − 2)-dimensional manifold then all of the general parameter spheres

are ANRs.

II S(K, x) is an (n − 1)-dimensional manifold with boundary if and only if there is a λ
for whi
h the general parameter sphere γλ(K, x) is an (n − 1)-dimensional manifold

with boundary.

To prove this theorem we used a theorem of M.Brown on the proje
tive limit of 
ompa
t

metri
 spa
es and 
orresponding near homeomorphisms (see [33℄ ). The 
on
ept of the near

homeomorphism of topologi
al manifolds 
an be adapted to the 
ase of 
ompa
t metri
 spa
es,

too. A map from X to Y between 
ompa
t metri
 spa
es is a near homeomorphism if it is in

the 
losure of the set of all homeomorphisms from X onto Y , with respe
t to the sup-norm

metri
 on the spa
e C(X, Y ) of all maps from X to Y . Now the mentioned theorem is:

Theorem 2.1.12 (M.Brown). Let (Xn) be an inverse sequen
e of 
ompa
t metri
 spa
es with

limit X∞. If all bonding maps Xk −→ Xn are near homeomorphisms, then so are the limit

proje
tions Xk −→ X∞.

Before the proof let us give an example showing that we should distinguish the above two 
ases.

Example 2.1.6. Consider the union of the six 
onne
ting re
tangles ±{(r, 1, t)|−1 ≤ r, t ≤ 1},
±{(r, s, t)|r + s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1}, ±{(r, s, t)|r − s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1} and

the segments ±{(r, 0, 2)|− 3
2
≤ r ≤ 3

2
}. The 
onvex hull K of this set is a 
onvex polyhedron. If

now the ve
tor x is the position ve
tor dire
ted into the point (4, 0, 0) we have three important

values for the parameters of the generalized parameter spheres. For λ0 = 1 the degenerated

sphere γλ0(K, x) is a segment. For 1 < λ ≤ 5
4
the general parameter spheres γλ(K, x) are

homeomorphi
 to S1
. In the range

5
4
< λ ≤ 3

2
the general parameter sphere γλ(K, x) is a

simpli
ial 
omplex 
ontaining one or two-dimensional simpli
es, respe
tively. (This spa
e is

an ANR but is not a topologi
al manifold.) Finally, in the last parameter domain λ > 3
2
the

set γλ(K, x) is homeomorphi
 to the 
ylinder S1 × [0, 1]. Sin
e S(K, x) is the union of six

quadrangles, parallel to the x-axis it is also a 
ylinder. �

We think that true the following 
onje
ture:
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Conje
ture 2.1.2. If S(K, x) is an (n− 2)-dimensional manifold than all of the non-degene-

rated parameter spheres are also (n− 2)-dimensional manifolds.

Unfortunately we 
ould not prove it.

Proof. First we note that � for every λ0 < λ′ <∞ � S(K, x) 
an be 
onsidered as the inverse

limit spa
e X∞ of the metri
 spa
es Xλ := γλ(K, x) for λ
′ < λ. In fa
t, by Lemma 2.1.4 if for

λ > λ0 the interse
tion of γλ(K, x) by a longitudinal parameter 
urve, say r is a segment then

r ∩ γµ(K, x) with µ > λ is also a segment 
ontaining the segment r ∩ γλ(K, x). So in this 
ase

the union of the sets r ∩ γµ(K, x) is the segment r ∩ S(K, x). On the other hand we have two

possibilities for r ∩ γλ(K, x) being a point. First r ∩ S(K, x) is a point, too, meaning that for

all µ > λ r ∩ γλ(K, x) is also a point. If now r ∩ S(K, x) is a segment then we have a value

λ′ > λ with the property that if µ > λ′ then r ∩ γµ(K, x) is a segment, too. In this latter 
ase

r∩S(K, x) = ∪µ≥λ′{r∩γµ(K, x)}. De�ne now the left end of a segment parallel to x as the end

having the smaller parameter in the usual parametrization with respe
t to x (meaning that a

general point of a line parallel to x is written in the form P + τx where P is a point of this

line). Let us de�ne the bonding map pλ,µ for γµ(K, x) to γλ(K, x) (µ > λ) in the following way:

For a point P of γµ(K, x)

pλ,µ(P ) =





r ∩ γλ(K, x) if r ∩ γλ(K, x) is a point

P if r ∩ γλ(K, x) is a segment and P ∈ r ∩ γλ(K, x)
the left end of r ∩ γλ(K, x) if P ∈ r ∩ γµ(K, x) \ r ∩ γλ(K, x)

.

The 
ontinuity of this fun
tion (with respe
t to the relative metri
) is obvious and the inverse

(proje
tive) limit spa
e X∞ 
an be identi�ed with S(K, x) by the limit mappings pµ (de�ned

in an analogous way from S(K, x) to γµ(K, x) as the above fun
tions pλ,µ(P )). (Of 
ourse, we
have the su�
ient equality pµ′,µ′′ ◦ pµ′ = pµ′′ for µ

′′ > µ′
.)

Using Theorems 2.1.9 and 2.1.12 above, the proof of the �rst dire
tion of the �rst statement

is an easy 
onsequen
e. In fa
t, if for λ > λ0 the spa
e γλ(K, x) is an (n − 2)-manifold then

using Theorem 2.1.9 we know that the bonding maps pµ′,µ′′ : γµ′′(K, x) −→ γµ′(K, x) are near
homeomorphisms. By Theorem 2.1.12 we obtain that the limit proje
tions pλ are also near

homeomorphisms. This implies that the spa
e S(K, x) is also an (n− 2) manifold.

Conversely, if now S(K, x) is an (n−2)-dimensional manifold then it is lo
ally 
ontra
tible. By

Lemma 2.1.4 this also implies that all of the general parameter spheres are lo
ally 
ontra
tible

manifolds, too. On the other hand the general parameter spheres 
an be 
onsidered as the


ompa
t subsets of R(n−1)
meaning that they are ANRs. (See Theorem 8 p.117 in [43℄.)

The proof of both parts of the se
ond statement uses Theorem 2.1.10. If �rst we have a general

parameter sphere γλ(K, x) whi
h is an (n − 1)-dimensional manifold with boundary then by

Theorem 2.1.10 it is a 
ylinder with boundaries homeomorphi
 to S(n−2)
. In this 
ase the

shadow boundary 
ontains this general parameter sphere showing that all point-inverses with

respe
t to px are segments (with non-zero lengthes). On the other hand, the sets bdK+ ∩
S(K, x) and bdK+ ∩ γλ(K, x) 
oin
ide, showing that S(K, x) is a 
ylinder based on an (n −
2) manifold homeomorphi
 to S(n−2)

. Sin
e bdK− ∩ S(K, x) is homeomorphi
 to S(n−2)
(by


entral symmetry) and these two sets are disjoint we 
lose to that S(K, x) is homeomorphi
 to

S(n−2) × [0, 1], as we stated.
Conversely, if S(K, x) is an (n − 1)-manifold with boundary, then it is (by Theorem 2.1.10)

homeomorphi
 to S(n−2)×[0, 1]. Sin
e this 
ylinder is 
ompa
t there is a positive value ε less than
or equal to the length of any segment interse
ted from the shadow boundary by a longitudinal

parameter 
urve. This fa
t implies that there does exist a λ <∞ su
h that γλ(K, x) ⊂ S(K, x).
The interse
tion γλ(K, x)∩K+

is the same as the interse
tion S(K, x)∩K+
whi
h is one of the

two 
omponents of the boundary of S(K, x) homeomorphi
 to S(n−2)
. For this λ it is possible

to �nd a trivial point-inverse with respe
t to the map px as we saw it in the example of this

se
tion, but for every λ′ > λ the general parameter sphere γλ′(K, x) is a 
ylinder. Using now the

fa
t that it is also the shadow boundary of a 
entrally symmetri
 
onvex body whose positive
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part is the set K+
, we have proved that it is also a manifold with boundary homeomorphi
 to

S(n−2) × [0, 1]. �

A 
onsequen
e of this result (if the bise
tor is a homeomorphi
 
opy of R(n−1)
then the shadow

boundary is a topologi
al (n−2)-sphere) yields the proof of the �rst dire
tion of the Conje
ture

2.1.1. We have two more questions left 
on
erning the same 
onje
ture: Is the 
onverse statement

true or not? Is it possible that in the manifold 
ase the embedding of the bise
tor and the shadow

boundary are not standard ones? We prove here that the embedding of the examined sets (in

the manifold 
ase) are always standard ones, but the �rst question remains still open. The last

step in the proof of the �rst dire
tion of Conje
ture 2.1.1 is the following theorem:

Theorem 2.1.13 ([3℄). Hx is an (n−1)-dimensional manifold if and only if the non-degenerated

general parameter spheres γλ(K, x) are manifolds of dimension (n− 2).

Sin
e the neighborhoods of the point

1
2
x (with respe
t to Hx) 
an not be homeomorphi
 to

either Rn
or a half spa
e, this is the only manifold 
ase for Hx.

Proof. First we prove that if the non-degenerated general parameter spheres γλ(K, x) are

manifolds of dimension (n − 2) then Hx is an (n − 1)-dimensional manifold. From Theorem

2.1.10 we know that the general parameter spheres are homeomorphi
 
opies of S(n−2)
. Let us


onstru
t now the bise
tor Hx as the disjoint union of the sets λγλ(K, x) for λ ≥ λ0. The set

Hx,µ = {λγλ(K, x)|µ ≥ λ ≥ λ0} is obviously homeomorphi
 to γλ(K, x) ∪K+
meaning that it

is a homeomorphi
 
opy of the 
losed (n− 1)-dimensional ball. Thus intHx,µ is homeomorphi


to Rn−1
for ea
h µ ≥ λ0. Applying now a theorem of M.Brown on 
hain of 
ells (see in [141℄ or

[32℄) saying that if a topologi
al spa
e is the union of an in
reasing sequen
e of open subsets,

are homeomorphi
 to R(n−1)
, resp. then it is also homeomorphi
 to R(n−1)

, we get the required

result.

Conversely, if Hx is homeomorphi
 to R(n−1)
then the proje
tion px : Hx −→ R(n−1)

is a 
ellular

map between two manifolds of the same dimension. Thus it is a near homeomorphism yielding

that its restri
tion to the 
ompa
t metri
 spa
e λγλ(K, x) is a near homeomorphism, too. But

its image is the boundary of a 
onvex 
ompa
t (n−1)-dimensional body so we get at on
e that

it is a homeomorphi
 
opy of S(n−2)
. Hen
e the general parameter spheres γλ(K, x) for λ > λ0

are manifolds of dimension (n− 2), as we stated. �

Corollary 2.1.2. The proof of the �rst dire
tion of the 
onje
ture follows from the previous

three theorems. In fa
t, if Hx is a topologi
al hyperplane then ea
h of the non-degenerated general

parameter spheres is a homeomorphi
 
opy of S(n−2)
by Theorem 2.1.10 and Theorem 2.1.13.

So by Theorem 2.1.11 we get that the shadow boundary is also a homeomorphi
 
opy of S(n−2)

whi
h is the statement of the mentioned dire
tion of our 
onje
ture.

On the other hand we 
ould only prove in Theorem 2.1.11 that if S(K, x) is a homeomorphi



opy of S(n−2)
then the non-degenerated general parameter spheres are ANRs, thus the manifold

property for the bise
tor does not follow immediately from our theorems. Furthermore, in the

manifold 
ase we prove only that the bise
tor is a homeomorphi
 
opy of R(n−1)
whi
h is

a weaker property as the required one. Consequently we have to investigate the question of

embedding. In fa
t, all of the examples in geometri
 topology aiming a non-standard (wild)

embedding of a set into Rn
are based on the observation that the 
onne
tivity properties of

the 
omplement (with respe
t to Rn
) of the set 
an 
hange if we apply a homeomorphism to

it. In our 
ase, for example, the 
omplement of the bise
tor (whi
h is now a homeomorphi



opy of R(n−1)
) is the disjoint union of homeomorphi
 
opies of Rn

. It gives the 
han
e to the

existen
e of a homeomorphism on Rn
to itself sending the bise
tor to a hyperplane. It is a

well-known fa
t that a manifold homeomorphi
 to S(n−1)
in Sn is unknotted if and only if the


losures of the 
omponents its 
omplement are homeomorphi
 
opies of the 
losed n-
ell Bn.
This implies that in the manifold 
ase the embedding of the shadow boundary and the general

parameter spheres are always standard. From this it follows the existen
e of a homeomorphism
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of the boundary of K into itself sending these sets into a standard (n− 1)-dimensional sphere

of bdK. Considering bise
tors we have to 
arry out the proof in a bit more sophisti
ated way.

Let ϕ be a homeomorphism sending Hx into R(n−1)
(whi
h is now a hyperplane H of Rn

). We


onsider the 
ompa
ti�
ation of the embedding spa
e by an element denoted by ∞. Extend

�rst the map ϕ to the 
ompa
t spa
e Hx ∪ {∞} by the 
ondition ϕ(∞) = ∞. Of 
ourse, this

extended map gives a homeomorphism between the sets Hx ∪ {∞} and H ∪ {∞}. Sin
e the


losure of the 
omponents of the 
omplement of Hx ∪ {∞} in Rn ∪ {∞} are 
losed n-
ells the
homeomorphism ϕ 
an be extended to a homeomorphism Φ : Rn ∪ {∞} −→ Rn ∪ {∞}. Sin
e
by our method we have: Φ(∞) = ϕ(∞) = ∞ and Φ(Hx) = H we get that the bise
tor is a

topologi
al hyperplane as we stated. Thus the following statement has been proved:

Theorem 2.1.14 ([3℄). In the manifold 
ase the embedding of Hx, S(K, x) and γλ(K, x) are
standard, respe
tively. This means that if the bise
tor is homeomorphi
 to R(n−1)

then it is a

topologi
al hyperplane.

2.1.5. On bounded representation of bise
tors (
ommon work with H.Martini).

Independently, H. Martini and S. Wu [118℄ introdu
ed and investigated the 
on
ept of radial

proje
tion of bise
tors. Strongly using the 
entral symmetry of Minkowskian balls, they proved

some interesting results on radial proje
tions of bise
tors.

Theorem 2.6 in [118℄ says that the shadow boundary is a subset of the 
losure of su
h a radial

proje
tion, and Theorem 2.9 there refers to the 
onverse statement. If for a point x from the

boundary of the unit ball there exists a point z, unique ex
ept for the sign, su
h that x is

orthogonal to z in the sense of Birkho�, then z is a point of the radial proje
tion of the bise
tor


orresponding to x and −x.
In a 
ommon paper with H. Martini [4℄ we introdu
ed the 
on
ept of bounded representation

of bise
tors, whi
h yields a useful 
ombination of the notions of bise
tor, shadow boundary, and

radial proje
tion. We proved that the topologi
al properties of the radial proje
tion (in higher

dimensions) do not determine the topologi
al properties of the bise
tor. More pre
isely, the

manifold property of the bise
tor does not imply the manifold property of the radial proje
tion.

The situation is di�erent with respe
t to the bounded representation of the bise
tor. Namely,

if one of them is a manifold, then the other is also. More pre
isely, if the bise
tor is a manifold

of dimension (n − 1), then its bounded representation is homeomorphi
 to a 
losed (n − 1)-
dimensional ball Bn−1

(i.e., it is a 
ell of dimension (n − 1)). And 
onversely, if the bounded

representation is a 
ell, then the 
losed bise
tor is also.

We will also presented new approa
hes to higher dimensional analogues of several theorems

given in [118℄. By our new terminology, we rewrote and reproved Theorems 2.6, 2.9, and 2.10

from that paper.

It is well known that there are di�erent types of orthogonality in Minkowski spa
es. In par-

ti
ular, for x, y ∈ Mn
we say that x is Birkho� orthogonal to y if ‖x + ty‖ ≥ ‖x‖ for all

t ∈ R, denoted by x⊥By (see [26℄); and x is isos
eles orthogonal to y if ‖x + y‖ = ‖x − y‖,
denoted by x⊥Iy (
f. [92℄). The shadow boundary S(K, x) of K with respe
t to the dire
-

tion x is the interse
tion of S and all supporting lines of K having dire
tion x. Evidently,
S(K, x) = {y ∈ S : y⊥Bx}.
Given a point x ∈ S, the bise
tor of −x and x, denoted by B(−x, x), 
onsists of all those

ve
tors y whi
h are isos
eles orthogonal to x with respe
t to the Minkowski norm generated by

K. The radial proje
tion P (x) of this bise
tor 
onsists of those points y of S for whi
h there is

a positive real value t su
h that ty ∈ B(−x, x). In this subse
tion we denote by y the points of

the unit sphere S.
We remark that, in the relative topology of S, P (x) 
an either be 
losed or open; this 
an

be easily seen in the 
ases of the Eu
lidean and of the maximum norm. Thus, for topologi
al

investigations in higher dimensions we suggest the extension of the de�nition of B(−x, x) to
ideal points by a limit property.
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Definition 2.1.5 ([4℄). Consider the 
ompa
ti�
ation of Rn
to a 
losed ball Bn

by the set of the


ommon ideal points x∞ (−x∞ 6= x∞) of the parallel half-lines. We say that the point y∞ := ∞·y
is in the extra
ted bise
tor B(−x, x) if there is a non-
onstant sequen
e (tiyi) ∈ B(−x, x) for
whi
h lim

i→∞
yi = y. We 
all the points of the original bise
tor ordinary points and the points

added in this way ideal points, respe
tively.

With this extended de�nition of B(−x, x), P (x) is 
losed. Let P (x)l be the 
olle
tion of those

points y of S for whi
h ‖ty+x‖ < ‖ty−x‖ holds, for all real t ≥ 0. Let P (x)r denote the image

of P (x)l under re�e
tion at the origin.

O (1-t)x

(1-t)y(1-t)(y-x) z
t -2tx z

t

Figure 2.10. Ve
tors used in the proof of Proposition 2.1.1

Proposition 2.1.1 ([4℄). In the des
ribed way, S is de
omposed into three disjoint sets: P (x),
P (x)l, and P (x)r. P (x) is an at least (n−2)-dimensional 
losed (and therefore 
ompa
t) set in

S whi
h is 
onne
ted for n ≥ 3, the sets P (x)l and P (x)r are ar
-wise 
onne
ted 
omponents

of their union.

Proof. By Theorem 5.1 of [118℄, P (x) is 
onne
ted for n ≥ 3. We prove that it is also 
losed

with respe
t to the relative topology of the boundary of the unit ball. To see this, 
onsider a


onvergent sequen
e (yi) in P (x) having the limit y. For any i there is a new sequen
e of points

(yji ) su
h that for every pair {i, j} there are tj ∈ R+
and xji ∈ B(−x, x) su
h that (tjiy

j
i ) = xji .

(For an ordinary point the mentioned sequen
e 
an be regarded as a 
onstant one.) It is 
lear

that for the diagonal sequen
e (yii) we have lim
i→∞

yii = y, implying that y is also in P (x). The


ontinuity property of the norm fun
tion implies that all points of S belong to pre
isely one of

the three mentioned sets. Thus the �rst statement is 
lear, and the union of P (x)l and P (x)r

is open with respe
t to the topology of S. Observe on
e more that P (x)l and P (x)r are images

of ea
h other regarding re�e
tion at the origin. Furthermore, they are ar
-wise 
onne
ted sets.

To prove this, 
onsider the following inequality for an element y of P (x)r:

‖(y − t(y − x)− x‖ = (1− t)‖y − x‖ < (1− t)‖y + x‖ = ‖(y − t(y − x)) + x− 2tx‖,
where 0 ≤ t ≤ 1 is an arbitrary parameter. The point zt := (y−t(y−x))+x = (1−t)y+(1+t)x
is on the right half-line, starting with the point (1 − t)(y + x) = zt − 2tx and being parallel

to the ve
tor x, meaning that its norm is larger than the norm of the point zt − 2tx (see Fig.

2.10). Thus ‖zt‖ ≥ ‖zt − 2tx‖, and so ‖(y − t(y − x))− x‖ < ‖(y − t(y − x)) + x‖.
A 
onsequen
e of this inequality is that the ar
 of S 
onne
ting the respe
tive endpoints of the

ve
tors y and x belongs to the set P (x)r. Thus every two points of P (x)r 
an be 
onne
ted

by an ar
, as we stated. Now, with respe
t to the topology of their union, they are 
onne
ted


omponents. This means that both of them are also open with respe
t to the topology of S.
Thus P (x) separates S. By Aleksandrov's theorem (Theorem 5.12 in vol. I of [16℄) we get that

the topologi
al dimension of P (x) is at least (n− 2). �

The de�nition of the bounded representation of the bise
tor is:

Definition 2.1.6 ([4℄). Let z be a point of B(−x, x). If it is an ordinary point, then there is a

unique value 1 ≤ tz <∞ for whi
h z ∈ (tzS+x)∩(tzS−x). Let Φ : B(−x, x) −→ K denote the

mapping whi
h sends z into Φ(z) = 1
tz
z. We extend Φ to the ideal points by the following rule:

The image of an ideal point is its radial proje
tion. Denote the image set of Φ (with respe
t to
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42 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

this extended mapping) by Φ(B(−x, x)). We will 
all this set the bounded representation of the

bise
tor.

x
-x

S+x

S-x

2,5 +xS

2,5 -xS

Figure 2.11. Bounded representation of the

bise
tor

Geometri
ally the bounded representation of

the bise
tor is well-handing as we 
an see from

the following proposition:

Proposition 2.1.2 ([4℄). The bounded rep-

resentation of the bise
tor is the union of the

shadow boundary of K and the lo
us of the

midpoints of the 
hords of K parallel to x.

Proof. For an ordinary point z of the bise
-
tor we have 1 ≤ tz < ∞, and thus the norm

of

1
tz
z = 1

2

(
1
tz
(z − x) + 1

tz
(z + x)

)
is less or

equal to 1. If it is equal to 1, then the point

1
tz
z is a point of a horizontal segment (paral-

lel to x) of the boundary and thus a point of

the shadow boundary, and the set of all points


orresponding to the value tz yields a horizon-
tal segment of S. If now t ≥ tz, the points of
the bounded representation 
orresponding to

this value t form another segment 
ontaining

the segment of tz. Thus the dire
tions deter-

mined by the points of the segment of tz are
ideal points of the bise
tor, proving that the

points of the shadow boundary are images of


ertain ideal points.

In the other 
ase the obtained point is the

midpoint of that 
hord whose endpoints are

1
tz
(z − x) ∈ S and

1
tz
(z + x) ∈ S, respe
tively.

Now, by the de�nition of ideal points, the 
ontinuity of the mapping is 
lear. In fa
t, we have

to 
he
k that the image of a point of the bise
tor with large norm is 
lose to the boundary S
of K. Sin
e, by de�nition, tz is equal to ‖z − x‖, we have the two inequalities

1 ≥ ‖ 1
tz
z‖ =

‖z‖
‖z − x‖ =

1

‖ z
‖z‖ − x

‖z‖‖
≥ 1

1 + ‖x‖
‖z‖

,

showing that for z with large norm its bounded representation is 
lose to S. To visualize the

proof, we show in Fig. 2.11 the bise
tor and its bounded representation in a two-dimensional

spa
e. �

James in [93℄ proved that a Minkowski spa
e is Eu
lidean if and only if all of the bise
tors 
on-

tained in an (n− 1)-dimensional subspa
e. Proposition 2.1.2 implies immediately the following

Corollary 2.1.3 ([4℄). The bounded representation of the bise
tor B(x,−x) with respe
t to

any point x from the unit sphere of a Minkowski spa
e is 
ontained in an (n − 1)-subspa
e if

and only if the Minkowski spa
e is Eu
lidean.

Finally we prove the following theorem:

Theorem 2.1.15 ([4℄). If the bise
tor is a manifold of dimension (n−1) with boundary, then its

bounded representation is homeomorphi
 to the (n−1)-dimensional 
losed ball Bn−1
. Conversely,

if the bounded representation is a topologi
al ball of dimension (n−1), then the extra
ted bise
tor

is of the same type. Furthermore, its relative interior (whi
h is the set of its ordinary points)

is a topologi
al hyperplane of dimension (n− 1).
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Proof. Assume that the bise
tor is a manifold of dimension (n− 1) with boundary. Then an

ordinary point has a relatively open (n−1)-dimensional neighborhood in the bise
tor, and thus

there are interior points. On the other hand, there is no ideal point whi
h 
ould be in the relative

interior of the bise
tor implying that the set of ordinary points of the bise
tor is a manifold

of dimension (n − 1). Hen
e our assumption implies that the shadow boundary S(K, x) is a

manifold of dimension (n − 2). In fa
t, from Theorem 2.1.13 and Theorem 2.1.11 we get that

the shadow boundary is also a topologi
al manifold of dimension n − 2. Theorem 2.1.10 says

that it is homeomorphi
 to Sn−2
. On the other hand, the set C of midpoints of 
orrespondingly

dire
ted 
hords 
ontaining interior points of K is always homeomorphi
 to the positive part

S+
of the boundary S of K, determined by the shadow boundary. Thus it is homeomorphi


to Rn−1
. Finally we observe that the boundary of the latter set C is the shadow boundary

itself, showing that the bounded representation of the bise
tor is homeomorphi
 to Bn−1
, as we

stated.

We remark that the 
onverse statement is true if and only if the manifold property of the

bounded representation 
an be extended to the bise
tor. This is 
lear for the points mapping to

the interior of K, but it is not evident for other points of the bise
tor. The problem is that the

pre-images of a point of the shadow boundary 
ould form a point or a half-line, respe
tively.

Thus Φ is not an inje
tive (but, of 
ourse, a surje
tive) 
ontinuous mapping. Clearly, both of the

two sets (the bise
tor and its bounded representation) are 
ontinua, i.e., 
ompa
t, 
onne
ted

Hausdor� (T2) spa
es. Moreover, the points and half-lines are 
ell-like sets; thus Φ is a 
ell-like

mapping. Restri
ting Φ to the ideal point of the bise
tor, we get a bije
tive mapping onto

the shadow boundary. We prove that the set of ideal points is 
ompa
t in the bise
tor. It is a

proper part I of Sn−1
bounding the topologi
al ball Bn. Hen
e this point set 
an be regarded

as a subset of an (n− 1)-dimensional Eu
lidean spa
e Rn−1
. (We 
an 
onsider x∞ as the 
enter

of a stereographi
 proje
tion.) Its 
lear that I is bounded. It is also 
losed by its de�nition,

and so it is 
ompa
t by the Heine-Borel theorem on 
ompa
t sets in Rn−1
. On the other hand,

the shadow boundary 
an also be regarded as an (n − 2)-sphere embedded into a Eu
lidean

(n−1)-spa
e, be
ause x is not a point of it. A 
ontinuous and bije
tive mapping from a 
ompa
t

set of Rn−1
into Rn−1

is a homeomorphism (see again [96℄). Thus the ideal points of the bise
tor

give a topologi
al (n− 2)-dimensional sphere.

Now we prove that the ordinary points of the bise
tor are, with respe
t to its relative topology,

interior points of it. We remark that it is trivial for a point z ∈ B(−x, x) if Φ(z) is an interior

point of K, be
ause Φ (by its de�nition) is a homeomorphism on the 
olle
tion of su
h points

onto the interior of the bounded representation of the bise
tor. Thus it is also relatively open

with respe
t to the bise
tor, and this part of the bise
tor is a topologi
al manifold, homeomor-

phi
 to Rn−1
.

Let now Φ(z) belong to the shadow boundary. Sin
e it is a topologi
al sphere of dimension

n − 2, there is a 
ell of dimension n − 2 (a homeomorphi
 
opy of a 
losed ball of dimension

n−2), namely Z, 
ontaining Φ(z) in its interior. The pre-image Φ−1(intB) of the interior intB
of B is (by the 
ontinuity of Φ) open with respe
t to the topology of the bise
tor and 
ontains

z. Thus it has also an interior point with respe
t to the topology of the bise
tor.

Finally we observe that from the 
ompa
tness of B the existen
e of an ε follows for whi
h the

set {v : ‖z‖ − ε ≤ ‖v‖ ≤ ‖z‖ − ε, v ∈ Φ−1(B)} is a 
losed 
one (trun
ated by two parallel

surfa
es) 
ontaining z in its interior. Sin
e the interior of this body is homeomorphi
 to Rn−1
,

we get that the set of ordinary points is a manifold of dimension (n − 1). In the proof of

Theorem 2.1.13 it is shown that if the ordinary points of the bise
tor yield an (n−1)-manifold,

then it is homeomorphi
 to Rn−1
, and Theorem 2.1.14 there establishes that it is a topologi
al

hyperplane. Thus we proved that the 
losed bise
tor is a 
ell of dimension (n−1) whose interior

an be embedded in the n-dimensional Eu
lidean spa
e in a standard (unknotted) way, as we

stated. �
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2.2. Adjoint abelian operators and isometries

A generalization of the inner produ
t and the inner produ
t spa
es (brie�y i.p spa
es) was

raised by G. Lumer in [108℄.

Definition 2.2.1 ([108℄). The semi inner-produ
t (s.i.p) on a 
omplex ve
tor spa
e V is a


omplex fun
tion [x, y] : V × V −→ C with the following properties:

s1: : [x+ y, z] = [x, z] + [y, z],
s2: : [λx, y] = λ[x, y] for every λ ∈ C,

s3: : [x, x] > 0 when x 6= 0,
s4: : |[x, y]|2 ≤ [x, x][y, y],

A ve
tor spa
e V with a s.i.p. is an s.i.p. spa
e.

G. Lumer proved that an s.i.p spa
e is a normed ve
tor spa
e with norm ‖x‖ =
√

[x, x] and, on
the other hand, that every normed ve
tor spa
e 
an be represented as an s.i.p. spa
e. In [64℄

J. R. Giles showed that the following homogeneity property holds:

s5: : [x, λy] = λ̄[x, y] for all 
omplex λ.

This 
an be imposed, and all normed ve
tor spa
es 
an be represented as s.i.p. spa
es with this

property. Giles also introdu
ed the 
on
ept of 
ontinuous s.i.p. spa
e as an s.i.p. spa
e having

the additional property

s6: : For any unit ve
tors x, y ∈ S, Re{[y, x+ λy]} → Re{[y, x]} for all real λ→ 0.

The spa
e is uniformly 
ontinuous if the above limit is rea
hed uniformly for all points x, y of the
unit sphere S. A 
hara
terization of the 
ontinuous s.i.p. spa
e is based on the di�erentiability

property of the spa
e.

Definition 2.2.2 ([64℄). A normed spa
e is Gâteaux di�erentiable if for all elements x, y of

its unit sphere and real values λ, the limit

lim
λ→0

‖x+ λy‖ − ‖x‖
λ

exists. A normed ve
tor spa
e is uniformly Frè
het di�erentiable if this limit is rea
hed uniformly

for the pair x, y of points from the unit sphere.

Giles proved in [64℄ that an s.i.p. spa
e is a 
ontinuous (uniformly 
ontinuous) s.i.p. spa
e if

and only if the norm is Gâteaux (uniformly Frè
het) di�erentiable. In the se
ond part of this

dissertation we need a stronger 
ondition on di�erentiability of the s.i.p. spa
e. Therefore we

de�ne the di�erentiable s.i.p. as follows:

Definition 2.2.3 ([8℄). A di�erentiable s.i.p. spa
e is an 
ontinuous s.i.p. spa
e where the

s.i.p. has the additional property:

s6': For every three ve
tors x,y,z and real λ

[x, ·]′z(y) := lim
λ→0

Re{[x, y + λz]} − Re{[x, y]}
λ

does exist. We say that the s.i.p. spa
e is 
ontinuously di�erentiable, if the above limit, as a

fun
tion of y, is 
ontinuous.

First we note that the equality Im{[x, y]} = Re{[−ix, y]} together with the above property

guarantees the existen
e and 
ontinuity of the 
omplex limit: limλ→0
[x,y+λz]−[x,y]

λ
. Analogously to

the theorem of Giles (see Theorem 3 in [64℄) we 
ombine this de�nition with the di�erentiability

properties of the norm fun
tion generated by the s.i.p..

Theorem 2.2.1 ([8℄, [9℄). An s.i.p. spa
e is a (
ontinuously) di�erentiable s.i.p. spa
e if and

only if the norm is two times (
ontinuously) Gâteaux di�erentiable. The 
onne
tion between the

derivatives is

‖y‖(‖ · ‖′′x,z(y)) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 .
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We need the following useful lemma going ba
k, with di�erent notation, to M
Shane [119℄ or

Lumer [109℄.

Lemma 2.2.1 ([109℄). If E is any s.i.p. spa
e with x, y ∈ E, then

‖y‖(‖ · ‖′x(y))− ≤ Re{[x, y]} ≤ ‖y‖(‖ · ‖′x(y))+

holds, where (‖ · ‖′x(y))− and (‖ · ‖′x(y))+ denotes the left hand and right hand derivatives with

respe
t to the real variable λ. In parti
ular, if the norm is di�erentiable, then

[x, y] = ‖y‖{(‖ · ‖′x(y)) + ‖ · ‖′−ix(y)}.
Now we prove Theorem 2.2.1.

Proof. To determine the derivative of the s.i.p., assume that the norm is twi
e di�erentiable.

Then, by Lemma 2.2.1 above, we have

Re{[x, y + λz]} − Re{[x, y]}
λ

=
‖y + λz‖(‖ · ‖′x(y + λz))− ‖y‖(‖ · ‖′x(y))

λ
=

=
‖y‖‖y+ λz‖(‖ · ‖′x(y + λz))− ‖y‖2(‖ · ‖′x(y))

λ‖y‖ ≥ |[y + λz, y]|(‖ · ‖′x(y + λz))− ‖y‖2(‖ · ‖′x(y))
λ‖y‖ ,

where we have assumed that the sign of

‖·‖′x(y+λz)
λ

is positive. Sin
e the derivative of the norm

is 
ontinuous, this follows from the assumption that

‖·‖′x(y)
λ

is positive. Considering the latter


ondition, we get

Re{[x, y + λz]} − Re{[x, y]}
λ

≥ ‖y‖2‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ‖y‖ +
Re[z, y]

‖y‖ ‖ · ‖′x(y + λz).

On the other hand,

‖y + λz‖(‖ · ‖′x(y + λz))− ‖y‖(‖ · ‖′x(y))
λ

≤ ‖y + λz‖2(‖ · ‖′x(y + λz))− |[y, y + λz]|(‖ · ‖′x(y))
λ‖y + λz‖ =

=
‖y + λz‖2(‖ · ‖′x(y + λz))− (‖ · ‖′x(y))

λ‖y + λz‖ + λRe[z, y + λz]
(‖ · ‖′x(y))
λ‖y + λz‖ .

Analogously, if

‖·‖′x(y)
λ

is negative, then both of the above inequalities are reversed, and we get

that the limit lim
λ7→0

Re{[x,y+λz]}−Re{[x,y]}
λ

exists, and equals to

‖y‖(‖ · ‖′′x,z(y)) +
Re[x, y]Re[z, y]

‖y‖2 .

Here we note that also in the 
ase

‖·‖′x(y)
λ

= 0 there exists a neighborhood in whi
h the sign of

the fun
tion

‖·‖′x(y+λz)
λ

is 
onstant. Thus we, need not investigate this 
ase by itself. Conversely,


onsider the fra
tion

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
.

We assume now that the s.i.p. is di�erentiable, implying that it is 
ontinuous, too. The norm is

di�erentiable by the theorem of Giles. Using again Lemma 2.2.1 and assuming that

Re[x,y]
λ

> 0,
we have

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
=

Re[x, y + λz]‖y‖ − Re[x, y]‖y + λz‖
λ‖y + λz‖ =

=
Re[x, y + λz]‖y‖2 − Re[x, y]‖y + λz‖‖y‖

λ‖y‖‖y + λz‖ ≤ Re[x, y + λz]‖y‖2 − Re[x, y]|[y + λz, y]|
λ‖y‖‖y + λz‖ =

=
Re{[x, y + λz]} − Re{[x, y]}

λ

‖y‖
‖y + λz‖ − Re[x, y]Re[z, y]

‖y‖‖y + λz‖ .
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On the other hand, using the 
ontinuity of the s.i.p. and our assumption

Re[x,y]
λ

> 0 similarly

as above, we also get an inequality:

‖y‖‖ · ‖
′
x(y + λz)− (‖ · ‖′x(y))

λ
≥ Re{[x, y + λz]} − Re{[x, y]}

λ
− Re[x, y + λz]Re[z, y + λz]

‖y + λz‖2 .

If we reverse the assumption of signs, then the dire
tion of the inequalities will also 
hange.

Again a limit argument shows that the �rst di�erential fun
tion is di�erentiable, and the 
on-

ne
tion between the two derivatives is

‖y‖(‖ · ‖′′x,z(y)) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 .

�

2.2.1. Chara
terization of adjoint abelian operators in Minkowski geometry.

Stamp�i in [136℄ has de�ned a bounded linear operator A to be adjoint abelian if and only if

there is a duality map ϕ su
h that A∗ϕ = ϕA. So evidently, A is adjoint abelian if and only

if A = AT , thus the adjoint abelian operators are in some sense "self-adjoint" ones. Lángi in

[101℄ introdu
ed the 
on
ept of the Lips
hitz property of a semi inner produ
t and investigated

the diagonalizable operators of a Minkowski geometry {V, ‖ · ‖}. He said that the semi inner

produ
t [·, ·] has the Lips
hitz property if for every x from the unit ball there is a real number

κ su
h that for every y and z from the unit ball holds |[x, y] − [x, z]| ≤ κ‖y − z‖. We note

that from the di�erentiability property for the semi inner produ
t (de�ned �rst in [8℄) follows

the Lips
hitz property of the produ
t, too. Let A be a diagonalizable linear operator of V , and
let λ1 > λ2 > . . . λk ≥ 0 be the absolute values of the eigenvalues of A. If λi is an eigenvalue

of A, then Ei denotes the eigenspa
e of A belonging to λi, and if λi is not an eigenvalue, set

Ei = {0}. Ei de�ned similarly with −λi in pla
e of λi. The main result in [101℄ is the following.

Theorem 2.2.2 ([101℄). Let V be a smooth �nite-dimensional real Bana
h spa
e su
h that the

indu
ed semi inner produ
t [·, ·] satis�es the Lips
hitz 
ondition, and let A : V −→ V be a

diagonalizable linear operator. Then A is adjoint abelian with respe
t to [·, ·] if, and only if, the

following hold.

(1) [·, ·] is the dire
t sum of its restri
tions to Ei = lin{Ei ∪ E−i}, i = 1, . . . , k;
(2) for every value of i, the subspa
es Ei and E−i are both transversal and normal (meaning

that they are mutually orthogonal in the sense of Birkho� orthogonality);

(3) for every value of i, the restri
tion of A to Ei is the produ
t of λi and an isometry of

Ei.

Using an observation from [8℄ and Corollary 3 from [101℄, we get that � by the assumption

of the theorem � if no se
tion of the unit sphere with a plane is an ellipse with the origin as

its 
entre, then every diagonalizable adjoint abelian operator of X is a s
alar multiple of an

isometry of V . This motivates the following de�nition:

Definition 2.2.4 ([5℄). A Minkowski n-spa
e is totally non-Eu
lidean if it has no 2-dimensi-

onal Eu
lidean subspa
e.

Now the 
orollary above says:

Corollary 2.2.1. In a totally non-Eu
lidean Minkowski n-spa
e every diagonalizable adjoint

abelian operator is a s
alar multiple of an isometry.

The following theorem des
ribe the stru
ture of a real adjoint abelian operator.

Theorem 2.2.3 ([5℄). Let V be a smooth �nite-dimensional real Bana
h spa
e with the indu
ed

semi inner produ
t [·, ·]. If A is adjoint abelian with respe
t to [·, ·] then V 
an be de
omposed
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to the dire
t sum of A-invariant subspa
es of dimension at most two. Restri
ting A to a 2-
dimensional 
omponent it is a generalized dilatation de�ned by the matrix

[
A|lin{as ,bs}

]
{as,bs} = |λ|

(
cosϕ sinϕ
− sinϕ cosϕ

)
where |λ| ∈ R

+
and 0 < ϕ ≤ 2π

and the basis {as, bs} holds the equalities [as, as] = [bs, bs] = 1, [as, bs] = [bs, as] = 0.

Proof. First we prove that if A is an adjoint abelian operator and U is an A-invariant subspa
e
then the orthogonal 
omplement U⊥ := {v ∈ V | [v, u] = 0 for all u ∈ U} is also A invariant.

In fa
t, for a v ∈ U⊥
we have [A(v), u] = [v, A(u)] = 0 for all u ∈ U proving this statement.

From this it follows a de
omposition of the spa
e V to the dire
t sum of minimal invariant

subspa
es Vi with the property V ⊥
i ⊃ Vj for all j > i. From the fundamental theorem of algebra

it also follows that the dimension of Vi is at most 2.
Assume that Z is a 2-dimensional minimal invariant subspa
e of A :R V −→R V implying that

it does not 
ontain real eigenve
tor of A. Hen
e for every ve
tor z ∈ Z the pair of ve
tors z and
A(z) form a basis in Z. Thus the equality A2(z) = γz + δA(z) also holds. Sin
e this equation

also valid if we substitute into A(z) in the variable ve
tor z we get that the polynomial equation

A2 = γI + δA holds on Z. Set δ = 2α then we get the equation (A− αI)2 = (α2 + δ)I. Sin
e
there is no real eigenvalue of A on Z we get that (α2 + δ) < 0 say −β2

. Thus we have a

polynomial equation of se
ond order of form (A− αI)2 = −β2I is valid on Z.
Let CZ be the two dimensional 
omplex ve
tor spa
e on the ve
tors of the additive 
ommutative

group Z, de�ned by the set of linear 
ombinations

{ξf1 + ζf2 {f1, f2} is a basis of RZ and ξ, ζ ∈ C}
We 
an de
ompose the minimal polynomial (x− α)2 + β2

to linear terms by the identity

(x− α)2 + β2 = (x− α− βi) (x− α+ βi). Hen
e we 
an 
orrespond two 
omplex eigenval-

ues λ = α + βi and λ = α − βi of the extra
ted 
omplex linear operator Ã :C Z −→C Z.

(Note that with respe
t to the basis {f1, f2} the 
omplex operator Ã has the same (and real)


oe�
ients as of the real linear operator A.) In CZ for the eigenvalues λ and λ have distin
t

eigenspa
es of dimension 1. These 
omplex lines generated by the 
omplex ve
tors

u = ξf1 + ζf2 = (α1 + β1i)f1 + (α2 + β2i)f1 = (α1f1 + α2f2) + (β1f1 + β2f2) i =: a+ bi,

and its 
onjugate u = a − bi, respe
tively. (Here a, b ∈R Z.) We say in this 
ase that λ is a


omplex eigenvalue of the real linear operator A with 
omplex eigenve
tor u. We identify the

one-dimensional 
omplex eigenspa
e of u with the two dimensional real subspa
e generated by

a and b with the mapping E :C< u >−→R Z

E((x+ yi)(a+ bi)) := R((x+ yi)(a+ bi)) + I((x+ yi)(a+ bi)) = (x+ y)a+ (x− y)b.

We note that E is a bije
tive mapping. In fa
t, if x+y = x′+y′ and x−y = x′−y′ then x = x′

and y = y′ and there is an unique solution of the equation system r = x + y and s = x − y
it is x = (r + s)/2, y = (r − s)/2. From this follows that we 
an assume that a and b gives
an Auerba
h basis

2

of Z meaning in the rest part of this proof that [a, a] = [b, b] = 1 and

[a, b] = [b, a] = 0.
Let now a 
omplex eigenvalue of A is λ. Denote by E the 
omplex eigenspa
e (of dimension d)

orresponding to λ. Then λ is an eigenvalue with the eigenspa
e E, where E = {u u ∈ E}.
If {u1, . . . , ud} is a 
omplex basis of E then {u1, . . . , ud} is a basis of E. Assuming that us =
as + bsi and λ = α + βi, we get that us = as − bsi and λ = α− βi. Sin
e

A(as) + A(bs)i = A(us) = λus = (αas − βbs) + (βas + αbs) i,

A is invariant on the real subspa
e Ẽ := lin{as, bs s = 1, 2, . . . d} whi
h we 
all the real

invariant subspa
e asso
iated to λ. Its 
lear that for the eigenspa
e E we 
an asso
iate the

same invariant subspa
e. Sin
e the ve
tors us = as + bsi s = 1, . . . , d form a basis of the

2

See the pre
ise de�nition before Theorem 3.1.2.
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omplex subspa
e E, the ve
tors {as, bs s = 1, . . . , d} form a real generator system of Ẽ
implying that the dimension is at most 2d. Consider a pair of real ve
tors as, bs. If bs = λas
then

as(α− λβ) + as(β + αλ)i = (asα− bsβ) + (asβ + αbs) i = A(as + bsi) = (1 + iλ)A(as) =

= (1 + iλ)as(α− λβ) = as(α− λβ) + iλas(α− λβ),

implying that

β + αλ = λα− λ2β.

Sin
e λ 6= 0 it follows that β = 0 whi
h 
ontradi
t by the fa
t that λ is not a real number.

This shows that every pairs {as, bs} are independent ve
tors. Thus the 
omplex eigenspa
e of

dimension d is isomorphi
 to that real spa
e of dimension 2d whi
h is the dire
t produ
t of its

two dimensional subspa
es generated by as and bs.
Hen
e the adjoint abelian operator A invariant on the real plane lin{as, bs} and with respe
t

to the basis {as, bs} it has the matrix representation:

A =

(
αr βr
−βr αr

)
= |λ|

(
cosϕ sinϕ
− sinϕ cosϕ

)
=: |λ|Fϕ.

where | · | means the absolute value of a 
omplex number and ϕ is the argument of λ. �

We note that Fϕ is also an adjoint abelian operator on that plane, we 
all it generalized rotation

with respe
t to the basis {as, bs}. In fa
t, |λ| 6= 0 be
ause λ is not real. Thus we have

[Fϕ(x), y] =
1

|λ| [|λ|Fϕ(x), y] =
1

|λ| [x, |λ|Fϕ(y)] = [x, Fϕ(y)] .

Example 2.2.1. To get a generalized rotation 
onsider an inner produ
t plane de�ned by the

unit 
ir
le

(
x
a

)2
+
(
y
b

)2
= 1. The produ
t is [v, z] = [x1e + y1f, x2e + y2f ] =

x1x2
a2

+ y1y2
b2

, and a

required basis is {ae, bf}. The generalized rotation is in the Eu
lidean orthonormal basis {e, f}
is

Fϕ =

(
1
a

0
0 1

b

)(
cosϕ sinϕ
− sinϕ cosϕ

)(
a 0
0 b

)
=

(
cosϕ b

a
sinϕ

−a
b
sinϕ cosϕ

)
.

It is an isometry be
ause it sends the unit disk into itself, however it is not adjoint abelian

operator be
ause of [Fϕ(e), f ] = − a
b3
sinϕ 6= b

a3
sinϕ = [e, Fϕ(f)]. �

We suspe
t the following:

Conje
ture 2.2.1 ([5℄). From Theorem 2.2.2 (or Theorem 1 (and Corollary 2) in [101℄) we


an omit the assumption "diagonalizable". More pre
isely every adjoint-abelian operator of a

smooth Minkowski spa
e is diagonalizable.

In the 
ase of lp spa
es this 
onje
ture is true:

Theorem 2.2.4 ([5℄). Let 1 < p < ∞ be a real number. In a �nite-dimensional real lp spa
e

every adjoint abelian operator is diagonalizable.

Proof. Observe that for an l2 spa
e the statement is true be
ause of the semi inner produ
t is

an inner produ
t. Consider the Eu
lidean plane with the lp norm 1 < p <∞. The 
orresponding

semi inner produ
t (see in [64℄) 
an be de�ned by the equality

[z, v] = [x1as + y1bs, x2as + y2bs] =
1

‖s2‖p−2
p

∫

X

s1|s2|p−1sgn(s2)dµ =

=
1

(|x2|p + |y2|p)
p−2
p

(
x1|x2|p−1sgn(x2) + y1|y2|p−1sgn(y2)

)
,

where {as, bs} is an orthonormal basis in the Eu
lidean sense and Auerba
h basis with respe
t

to the lp norm asso
iated to the above produ
t. Now we have the formulas

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
(cosϕx1 + sinϕy1)|x2|p−1sgn(x2) + (cosϕy1 − sinϕx1)|y2|p−1sgn(y2)

)
,
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and

[z, Fϕ(v)] =

(
x1| cosϕx2 + sinϕy2|p−1sgn(cosϕx2 + sinϕy2) + y1| cosϕy2 − sinϕx2|p−1sgn(cosϕy2 − sinϕx2)

)

(| cosϕx2 + sinϕy2|p + | cosϕy2 − sinϕx2|p)
p−2
p

.

For ϕ = π/2 we get that

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2) + (−x1)|y2|p−1sgn(y2)

)
= −[z, Fϕ(v)]

holds for all z and v. Sin
e [Fϕ(z), v] = [z, Fϕ(v)] also holds for all z and v, we get that Fϕ(z) = 0
for all z giving a 
ontradi
tion. Thus ϕ 6= π/2 for an adjoint abelian generalized rotation.

If ϕ = π then Fϕ(v) = −v and it is diagonalizable for all p.
Finally if ϕ = 3π/2 then

[Fϕ(z), v] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2) + x1|y2|p−1sgn(y2)

)

and

[z, Fϕ(v)] =
1

(|x2|p + |y2|p)
p−2
p

(
y1|x2|p−1sgn(x2)− x1|y2|p−1sgn(y2)

)

providing the stri
t inequality [Fϕ(z), v] > [z, Fϕ(v)] for z and v with positive x1 and y2. This
is a 
ontradi
tion, too.

For general (and �xed) ϕ we get the equality

(| cosϕx2 + sinϕy2|p + | cosϕy2 − sinϕx2|p)
p−2
p
(
(cosϕx1 + sinϕy1) |x2|p−1sgn(x2)+

+(cosϕy1 − sinϕx1)|y2|p−1sgn(y2)
)
= (|x2|p + |y2|p)

p−2
p
(
x1| cosϕx2 + sinϕy2|p−1sgn (cosϕx2 + sinϕy2)+

+y1| cosϕy2 − sinϕx2|p−1sgn(cosϕy2 − sinϕx2)
)
,

whi
h holds for all z and v.
First we substitute x2 = y2 and y1 = 0 into this equality and we get:

|x2|2p−3 (| cosϕ+ sinϕ|p + | cosϕ− sinϕ|p)
p−2
p x1sgn(x2)(cosϕ− sinϕ) =

= |x2|2p−3| cosϕ+ sinϕ|p−1x1sgn(x2)sgn(cosϕ+ sinϕ),

implying the other equality

(| cosϕ+ sinϕ|p + | cosϕ− sinϕ|p)
p−2
p (cosϕ− sinϕ) = | cosϕ+ sinϕ|p−1sgn(cosϕ+ sinϕ).

From this immediately follows that either cosϕ± sinϕ > 0 or cosϕ± sinϕ < 0.
We 
an also substitute the equalities y2 = 0 and x1 = y1 into the original equality. This leads

to the equality:

(| cosϕ|p + | − sinϕ|p)
p−2
p (cosϕ+ sinϕ) = | cosϕ|p−1sgn(cosϕ) + | − sinϕ|p−1sgn(− sinϕ).

Now from the assumption cosϕ ± sinϕ > 0 it follows that sgn(cosϕ) = 1 and we have two

possibilities. If sgn(− sinϕ) = −1 then we get

(1 + (tanϕ)p)
p−2
p (1 + tanϕ) = 1− (tanϕ)p−1.

Let f(p) := (1 + (tanϕ)p)
p−2
p (1+tanϕ)−1+(tanϕ)p−1

be a fun
tion of p for a �xed admissible

ϕ. It is 
lear that limp→∞ f(p) = tanϕ and a short 
al
ulation shows that for p > 2 it is a

non-in
reasing fun
tion whi
h at p = 2 is 2 tanϕ hen
e for p ≥ 2 we get that f(p) > 0. The
fun
tion f(p) on the interval 1 < p < 2 is 
on
ave showing that f(p) ≥ min{f(1), f(2)} > 0.
Thus there is no p and ϕ for whi
h this equality 
an be hold.

If sgn(− sinϕ) = 1 then we get the equality

(1 + | tanϕ|p)
p−2
p (1− | tanϕ|) = 1 + | tanϕ|p−1,

and the fun
tion

f(p) := 1 + | tanϕ|p−1 − (1 + | tanϕ|p)
p−2
p (1− | tanϕ|) > 1 + | tanϕ|p−1 − 1− | tanϕ|p
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is a positive one for 1 < p <∞, sin
e | tanϕ| < 1.
Thus remains only one possibility whi
h 
ould give a non-trivial adjoint abelian generalized

rotation in an lp spa
e (for 
ertain p) when we assume that cosϕ ± sinϕ < 0. In this 
ase

sgn(cosϕ) = −1 and | cosϕ| > | sinϕ|. However in this 
ase the substitution y2 = 0 and x1 = y1
leads to the same equalities as in the previous one leading to the same 
ontradi
tions. Thus

there is no non-diagonalizable adjoint abelian generalized rotation in an real lp spa
e of �nite

dimension, as we stated. �

We note that in the 
ase of a Minkowski geometry we got a new proof for the known fa
t that

every adjoint abelian operator on Lp (1 < p <∞, p 6= 2 ) is a multiply of an isometry (see in

[61℄).

2.2.2. Chara
terization of isometries in Minkowski geometry. A Bana
h spa
e

isometry is a linear mapping whi
h preserves the norm of the ve
tors. As it 
an be seen easily,

the following theorem holds.

Theorem 2.2.5 ([97℄). A mapping in a smooth Bana
h spa
e is an isometry if and only if it

preserves the (unique) s.i.p..

Thus, if the norm is at least smooth, then the two types of linear isometry 
oin
ide. On the

basis of the results of Stamp�i [136℄ we have two 
orollaries:

Corollary 2.2.2 ([97℄). In any smooth uniformly 
onvex Bana
h spa
e, U is an invertible

isometry if and only if U−1 = UT
. As a result if in addition U−1 = U then U is s
alar.

Stamp�i has de�ned an operator U to be iso-abelian if and only if there is a duality map φ
su
h that φU = (U∗)−1ϕ.

Corollary 2.2.3 ([97℄). In a smooth Bana
h spa
e U is iso-abelian if and only if it is an

invertible isometry.

The above statement was extended to in
lude the non-smooth 
ase in [98℄. Pre
isely:

Theorem 2.2.6 ([98℄). Let V be a normed linear spa
e (real or 
omplex) and U be an operator

mapping V into itself. Then U is an isometry if and only if there is a semi inner produ
t [·, ·],
su
h that [U(x), U(y)] = [x, y] for all x and y.

As a 
orollary of this theorem was proven the following:

Corollary 2.2.4 ([98℄). U is iso-abelian if and only if it is an invertible isometry.

For our 
hara
terization important the following result:

Theorem 2.2.7 ([98℄). A �nite dimensional eigenspa
e of an isometry has a 
omplement in-

variant under the isometry.

For the 
onstru
tion 
an be seen that this 
omplement is orthogonal to the given eigenspa
e

of the isometry with respe
t to that semi inner produ
t whi
h preserved by the isometry.

Sin
e every linear mapping there is at least one (
omplex) eigenvalue hen
e a 
omplex �nite-

dimensional Bana
h spa
e is an orthogonal dire
t sum of eigenspa
es of a given isometry (See

Corollary 4 in [98℄.) For the real 
ase we get analogously the following statement:

Theorem 2.2.8 ([5℄). Let V be a �nite dimensional real Bana
h spa
e, U : V −→ V be an

isometry on V , and [·, ·] is a semi inner produ
t preserved by the isometry U . Then there is a

de
omposition of the spa
e of form V = V1 ⊕ . . . Vs ⊕ Vs+1 ⊕ . . .⊕ Vl ⊕ Vl+1 ⊕ . . .⊕ Vl+k, where
Vi 1 ≤ i ≤ l are U-invariant mutually orthogonal eigenspa
es of dimension 1 if 1 ≤ i ≤ s the


orresponding eigenvalue is 1 and for s ≤ i ≤ l the 
ommon eigenvalue is −1; moreover (n− l)
is even and the subspa
es Vl+1, . . . , Vl+k are 2-dimensional U-invariant subspa
es all of them
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are orthogonal to the 1-dimensional ones. Restri
ting U to a 2-dimensional 
omponent it is a

generalized rotation with respe
t to an Auerba
h basis {as, bs} de�ned by the matrix

[
A|lin{as ,bs}

]
{as,bs} =

(
cosϕ sinϕ
− sinϕ cosϕ

)
where 0 < ϕ ≤ 2π

Proof. Sin
e V is an orthogonal dire
t sum of the eigenspa
es of U we have n mutually

orthogonal eigenve
tors of U , say u1, . . . , un. Sin
e X is a �nite dimensional real Bana
h spa
e

the eigenvalues λ1, . . . , λl 
orresponding to u1, . . . , ul are real numbers and the rest eigenvalues

λl+1, . . . , λn are 
omplex ones.

First examine the eigenvalues λ1, . . . , λl. Sin
e U is an isometry we have only two possibilities

for its values, these are 1 and −1. We 
an assume that λ1 = · · · = λs = 1 and λs+1 = · · · =
λl = −1. In the subspa
e generated by the �rst s eigenve
tors every ve
tors are eigenve
tors

with eigenvalue 1 thus we 
an 
hoose u1, . . . , us as the elements of an Auerba
h basis (hen
e

there are mutually orthogonal ve
tors). We 
hoose the basis {us+1, . . . , ul} analogously from the

eigenspa
e of eigenvalue −1. Sin
e two eigenve
tors 
orresponding to distin
t eigenvalues are

mutually orthogonal to ea
h other, we get the orthogonality property of the statement about

the �rst l eigenspa
es.
Assume now that λl+(2r−1) = λl+2r holds for r = 1, . . . , (n − l)/2. Consider again the ve
-

tors ul+(2r−1) = al+(2r−1) + bl+(2r−1)i and s
alars λl+(2r−1) = αl+(2r−1) + βl+(2r−1)i su
h that

U(ul+(2r−1)) = λl+(2r−1)ul+(2r−1). (See the analogous 
onstru
tion in the proof of Theorem

2.2.3 on adjoint abelian operators.) The real subspa
es lin{al+(2r−1), bl+(2r−1)} are invariant

with respe
t to U and have dimension 2. Sin
e λl+2r = αl+(2r−1) − βl+(2r−1)i and ul+2r =
al+2r+ bl+2ri = al+(2r−1)− bl+(2r−1)i we also have that lin{al+2r, bl+2r} = lin{al+(2r−1), bl+(2r−1)}.
Hen
e Vl+(2r−1) = Vl+2r = lin{al+(2r−1), bl+(2r−1)} is an eigenspa
e of dimension at most 2. The

ase, when bl+(2r−1) = αal+(2r−1) with real α implies that al+(2r−1) is a real eigenve
tor with


omplex eigenvalue λi is impossible thus we get the de
omposition of the statement. Sin
e the

equality [al+(2r−1) + bl+(2r−1)i, ur] = 0 implies the respe
tive equalities [al+(2r−1), ur] = 0 and

[bl+(2r−1), ur] = 0, the last statement on orthogonality is also true. Finally from the U-invariant
property it follows that U restri
ted to a 2-dimensional invariant subspa
e is a generalized di-

latation (see Theorem 2.2.3). On the other hand U is an isometry thus |λl+(2r−1)| = 1 for all r
hen
e it is a general rotation as we stated. �

Remark 2.2.1. We note that there are non-diagonalizable general rotations whi
h are also

isometries. In an lp spa
e of dimension 2 for the general rotation Fπ/2 we get Fπ/2(x1as+y1bs) =
(y1as − x1bs) and Fπ/2(x2as + y2bs) = (y2as − x2bs) showing that

[Fπ/2z, Fπ/2v] =
1

(|y2|p + | − x2|p)
p−2
p

(
y1|y2|p−1sgn(y2)− x1| − x2|p−1sgn(−x2)

)
=

=
1

(|x2|p + |y2|p)
p−2
p

(
y1|y2|p−1sgn(y2) + x1|x2|p−1sgn(x2)

)
= [z, v].

2.2.3. The group of isometries. In geometri
 algebra, one studies the properties of 
er-

tain algebrai
 entities that 
an be dire
tly linked with geometri
 obje
ts, and analyses how their

(algebrai
) properties relate to geometri
 properties of the underlying geometry under investi-

gation. This approa
h will be applied here to the study of "stri
tly 
onvex" Minkowski spa
es.

It is parti
ulary interesting to 
hara
terize their group of isometries or related transformation

groups. Although the lines of stri
tly 
onvex non-Eu
lidean Minkowski planes are just their

a�ne lines, the group of their isometries is small. Namely, it is the semi-dire
t produ
t of the

translation group by a �nite group of even order whi
h either 
onsists of Eu
lidean rotations

or is the dihedral group. This ni
e fa
t was proven by several authors (see in [62℄,[140℄ and

[114℄).

Theorem 2.2.9 ([62℄,[140℄,[114℄). If (V, ‖ · ‖) is a Minkowski plane that is non-Eu
lidean,

then the group I(2) of isometries of (V, ‖ · ‖) is isomorphi
 to the semi-dire
t produ
t of the
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translation group T (2) of R2
with a �nite group of even order that is either a 
y
li
 group of

rotations or a dihedral group.

In higher dimension it is possible for the group of linear isometries to be in�nite without the

spa
e being Eu
lidean (e.g. if the unit ball is a ellipti
 
ylinder in R3
). The proof 
an be found

in [140℄ uses the 
on
ept of Löwner-John's ellipsoids. John's (Löwner) ellipsoid of the unit ball

C is the unique ellipsoid with maximal (minimal) volume 
ontained (
ir
ums
ribed) in (about)

it. It is 
lear that every isometries whi
h leave invariant the unit ball is also send these ellipsoids

into themselves, respe
tively. A ni
e 
onsequen
e of this fa
t (proved �rst by Auerba
h in [18℄)

is the following:

Corollary 2.2.5 ([140℄,[18℄). If the isometry group of a Minkowski spa
e is transitive on the

unit ball of the spa
e then the unit ball is ellipsoid and a spa
e is Eu
lidean.

On the other hand Gruber in [73℄ shows that for "most" 
ases the group of isometries is �nite.

It follows from the fa
t, that in "most" 
ases a Minkowski unit ball meets the boundary of the

Löwner ellipsoid in d(d+1)/2 pairs of symmetri
 points. (See in [73℄.) Using again the 
on
ept

of John's ellipsoid we 
an prove a similar result whi
h is also a generalization of Theorem 2.2.9.

Theorem 2.2.10 ([5℄). If the unit ball B of (V, ‖ · ‖) has no interse
tion with a two-plane

whi
h is an ellipse, then the group I(3) of isometries of (V, ‖ · ‖) is isomorphi
 to the semi-

dire
t produ
t of the translation group T (3) of R3
with a �nite subgroup of the group of linear

transformations with determinant ±1.

Proof. Sin
e at any point of V there exists a point re�e
tion that is an isometry of (V, ‖ · ‖),
the group I(n) 
ontains the semi-dire
t produ
t of T (n) with a point re�e
tion. Sin
e I(n)
is a 
losed subgroup of the Lie group of the a�nities, the translation group T (n) is a normal

subgroup of I(n) and I(n) is a semi-dire
t produ
t of T (n) with the stabilizer I(n)0 of the

point 0 in I(n) leaving the unit ball B invariant. On the other hand every isometry of V is also

an a�ne isometry thus the elements of I(n)0 are in the spe
ial linear group of order n, too (see
[62℄).

For n = 3 from Theorem 2.2.8 we get that an isometry has at least one eigenve
tor and we

have two possibilities, either it is diagonalizable operator or it is not. In the se
ond 
ase it

has a minimal invariant subspa
e of dimension 2. Let Ix be the subgroup of I(3)0 
ontaining

those isometries whi
h �xed the 1-dimensional subspa
e of x. Then the 2-dimensional subspa
e

orthogonal to x is also invariant with respe
t to the elements of Ix (see Theorem 2.2.8). By

Theorem 2.2.9 the group Ix is a �nite of even order that is a 
y
li
 group or a dihedral group.

Consider now the John's ellipsoid E ([140℄) of the unit ball B. The 
on
ept of John's ellipsoid
is a�ne invariant hen
e without loss of generality we 
an assume that E is an Eu
lidean ball

ins
ribed into the suitable a�ne 
opy of B (whi
h for simpli
ity we also denote by B). (Now
the investigated isometries are elements of O(3).) Consider the group G of elements of I(3)0
belonging to SO(3). Taking into 
onsideration that the "determinant" map det : I(3)0 → {±1}
is a surje
tive group homomorphism whose kernel G has index 2 in I(3)0, so that, G is �nite if

and only if I(3)0 is so. Let a point x is a 
ommon point of the boundary S of B and the boundary

of E. (Of 
ourse su
h a point is exist.) Let denote by S+
the 
losed half sphere 
ontaining x

and bounded by the hyperplane orthogonal to x through the origin. If the group G is in�nite

then the orbit of x is also 
ontains in�nitely many distin
t points of form Ti(x) ∈ bdE ∩ S+

where Ti ∈ I(3)0. Sin
e bdE ∩ S+
is 
ompa
t for every k ∈ N there is two indi
es i 6= j

su
h that ‖Ti(x) − Tj(x)‖ ≤ 1/k implying that ‖T−1
j Ti(x) − x‖ ≤ 1/k. Consider the isometry

T−1
j Ti ∈ SO(3). Hen
e T−1

j Ti is rotation about an axis say xk. Thus the points

(
T−1
j Ti

)l
(x)

for l ∈ N are on a two dimensional interse
tion of bdE, so they are also on a 
ir
le Ek. This

ir
le through the point x 
ontains a set of points of S with su

essive distan
e at most 1/k
forming an 1/k-net on it. Let denote by yk the unit normal ve
tor of the plane of Ek dire
ted

by S+
. The set Y := {yk k ∈ N} is in�nite and hen
e it has a 
onvergent subsequen
e (yki)

with limit y. Consider now the 
ir
le E(x, y) de�ned by the interse
tion of E with the plane
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through x and orthogonal to y. It has the property that if z ∈ E(x, y) that for every ε > 0
there is a point u of bdE ∩ S su
h that ‖z − u‖ ≤ ε. This implies that E(x, y) ⊂ bdE ∩ S
giving a 
ontradi
tion with our assumption. Thus the group I(n)0 is �nite and the statement

is true. �

Remark 2.2.2. We note that we proved the �niteness of the point group from a stronger as-

sumption that of the "totally non-Eu
lidean" property. A method using Löwner-John ellipsoids


an not be applied to prove a more general statements on this dire
tion be
ause of there are

Minkowski spa
es whi
h are totally non-Eu
lidean but the interse
tion of the John's ellipsoid of

its unit sphere 
ontains ellipse. For a simple example, 
onsider an Eu
lidean unit ball B and

one of its great 
ir
le S. Let H(2n, ε) be a regular polygon 
ir
ums
ribed to (1 + ε)S with 2n
verti
es. Now de�ne the unit ball B(n, ε) := conv{B ∪H(2n, ε)}. It is 
lear that the Minkowski

spa
e with unit ball B(n, ε) is totally non-Eu
lidean however for small ε and for large n the

John's ellipsoid of B(n, ε) is B, hen
e bdC(n, ε) ∩ bdB 
ontains 
ir
le.

This motivates the following problem:

Problem 2.2.1. Is it true or not that if for n ≥ 3 the Minkowski n-spa
e is totally non-

Eu
lidean one (see De�nition 2.2.4) then its isometry group I(n) is a semi-dire
t produ
t of

the translation group T (n) with a �nite subgroup of SL(n)?

2.3. Coni
s and roulettes in Minkowski planes

The following se
tion 
ontains investigations on two types of 
onstru
tive 
urves in Minkowski

plane. The two subse
tions 
ontains the results of two papers the �rst one in 
ommon with H.

Martini ([6℄) and the se
ond one is 
ommon with V. Balestro and H. Martini ([7℄).

a:c=2

a=c

a:c=1:2

l

x

Figure 2.12. Coni
s on the l∞ plane

2.3.1. Coni
s (Common work with H. Mar-

tini). Now we turn out to 
oni
s in a Minkowski

normed spa
e. With H. Martini we presented in [6℄ a

systemati
 investigation of possible de�nitions of 
oni
s

extended to normed (or Minkowski) planes. In the Eu-


lidean situation the metri
 de�nitions of 
oni
s and the

analyti
 one, namely de�ning them as family of 
urves

of se
ond order, 
learly yield the same type of 
urves;

so we have various di�erent de�nitions of the same 
lass

of 
urves. In normed planes neither the metri
 de�ni-

tions nor the analyti
 one yield the same type of 
urves.

Furthermore, it is not 
lear what the notions "
urve of

se
ond order�, "
one of se
ond order� or "se
tions of

a 
one� mean. We 
onsidered the usual metri
 de�ni-

tions of 
oni
s in the Eu
lidean plane, adopt them for

normed planes and list various properties of the result-

ing 
lasses of 
urves. In normed planes we have three

di�erent possibilities to de�ne ellipses metri
ally. Be-

fore [6℄, only the �rst one was investigated (see [146℄). So the following de�nitions refer to an

"ellipse� in a normed plane X .

Definition 2.3.1 (based on fo
i, [6℄, [146℄). Let x, y ∈ X, x 6= y, and 2a ≥ 2c = ‖x− y‖. The
set

E(x, y, a) = {z ∈ X : ||z − x||+ ||z − y|| = 2a}
is 
alled the ellipse de�ned by its fo
i x and y.

Definition 2.3.2 (based on a leading 
ir
le and one fo
us, [6℄). Let L := (2a)·K be a homotheti



opy of the unit disk K, and x ∈ L be an arbitrary point from it. The lo
us of points z ∈ X for
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whi
h there is a positive ε su
h that z + εK tou
hes L and 
ontains x on its boundary is 
alled

the ellipse de�ned by its leading 
ir
le and its fo
us x.

Definition 2.3.3 (based on a leading line and a fo
us, [6℄). Let l be a straight line, x a point,

and γ = a
c
a ratio larger than 1. The lo
us of points z ∈ X, for whi
h there is a positive ε su
h

that the boundary of the disk z + εK 
ontains x and the disk z + γ(εK) tou
hes the line l, is

alled the ellipse de�ned by its leading line and its fo
us x.

The equivalen
e of these de�nitions for the Eu
lidean sub
ase is well known. We will prove

that, while the �rst two de�nitions are equivalent also in normed planes, the third one yields a

basi
ally di�erent 
lass of 
urves.

Proposition 2.3.1 ([6℄). In any normed plane the following holds: an ellipse, de�ned by its

fo
i, is always an ellipse de�ned by its leading 
ir
le and a fo
us, and the 
onverse statement is

also true. On the other hand, an ellipse de�ned by its leading line and a fo
us is not ne
essarily

an ellipse de�ned by its fo
i, and again the 
onverse is true.

x
x

z z

v v2x
2x

-z

-v-2x

s

r

-v

Figure 2.13. A metri
 ellipse whi
h has no

leading line

In Fig. 2.12 we 
an see that there is an ellipse

following the third de�nition whi
h is not 
en-

trally symmetri
. By Theorem 2 of [146℄ it

is not an ellipse by the �rst de�nition. Con-

versely, 
onsider the ellipse E(−x, x, 2) de-

�ned by its fo
i and shown in Fig. 2.13. First

we 
an see that if it is also an ellipse de�ned by

its leading line, then the leading line l and the

new fo
us x′ have to be in "symmetri
 posi-

tion� with respe
t to the line joining the orig-

inal fo
i. "Symmetri
� means that this line is

parallel to a diagonal of the unit square. In

fa
t, if this is not the 
ase, we get a �gure as

shown on the left side of Fig. 2.13. The squares

S2x, Sv, Sz, S−v with 
enters 2x, v, z, −v, re-
spe
tively, tou
h l. The fo
us has to lie in the

shaded re
tangle, as the 
ommon point of the boundaries of homotheti
 
opies 2x + (c/a)S2x,

v + (c/a)Sv and z + (c/a)Sz of su
h squares (with a homothety ratio smaller than 1). On the

other hand, the boundary of the square −v + (c/a)S−v interse
ts the shaded re
tangle in a

segment parallel to that one in whi
h it is interse
ted by z+(c/a)Sz. So it is impossible to give

a good position for the fo
us x′.
We now assume that l and x′ have symmetri
 position (see the right side of Fig. 2.13). If

this holds and the Eu
lidean distan
e of l and 2x is s, and that of x′ and x is r, then, using
the fa
t that the points 2x, −2x and v have to lie on the new ellipse, we have the equalities

r/s = (4− r)/(4 + s) = (2− r)/(1 + s), implying that s = 1 and r = 2/3 and showing that

a/c/ = 2/3. Thus the leading line and the fo
us are both determined. On the other hand, the

point −z is not on the obtained ellipse, sin
e the required ratio for it is (12−
√
2)/12 6= 2/3.

The examination of the ellipse de�ned by its leading line and its fo
us is new thus the following

theorem is fundamental.

Theorem 2.3.1 ([6℄). In a normed plane, an ellipse de�ned by its leading line and its fo
us is

a 
onvex 
urve, whi
h is stri
tly 
onvex if and only if this normed plane is stri
tly 
onvex.

A Eu
lidean hyperbola satis�es the same metri
 relations as a Eu
lidean ellipse, only that now

the ratio

a
c
is smaller than 1. The asymptotes of the hyperbola have dire
tions

√
c2−a2
a

, and the

leading line interse
ts the asymptotes in points of the great 
ir
le. We also have three possible

metri
 de�nitions. These are
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Definition 2.3.4 ([6℄). Given two points x, y in a normed plane and a distan
e denoted by

2a > 0. Then H(x, y, a) = {z ∈ X : |‖z − x‖ − ‖y − z‖| = 2a} denotes the hyperbola de�ned

by its fo
i x and y. If y = −x, then we use the notation H(x, a) for it.

Definition 2.3.5 (based on leading 
ir
le and fo
us, [6℄). Let L := (2a) ·K be a homotheti



opy of the unit disk K, and x ∈ X be an arbitrary point exterior to L. The lo
us of points

z ∈ X for whi
h there is a positive ε su
h that z+εK tou
hes L and 
ontains x on its boundary

will be 
alled the hyperbola de�ned by its leading 
ir
le and its fo
us x.

Definition 2.3.6 (based on leading line and fo
us, [6℄). Let l be a straight line, x be a point,

and γ = a
c
a ratio less than 1. The lo
us of points z ∈ X, for whi
h there is a positive ε su
h

that the boundary of the disk z + εK 
ontains x and the disk z + γ(εK) tou
hes the line l, will
be 
alled the hyperbola de�ned by its leading line and its fo
us x.

The analogue of Theorem 1 from [146℄ is given by our

Theorem 2.3.2 ([6℄). Let x ∈ S be a point of the unit 
ir
le. Then we have:

(i) H(x, 0) is the bise
tor 
orresponding to the ve
tor x,
(ii) if there is a neighborhood of x on S in whi
h S is stri
tly 
onvex, then H(x, 2) is the union
of the two half-lines [x,∞) and [−x,−∞). If x is a point of a pie
ewise linear part of S, then
it is the union of two 
losed 
ones.

The �rst statement is obviously true by the de�nition of the bise
tor given in the introdu
tion.

The se
ond one follows from the 
on
ept and properties of d-segments in a Minkowski plane

and from our de�nition of hyperbola; see [117℄, [116℄, and [28℄.

From the above theorem it 
an be seen that a 
onne
ted part of H(x, a) is, in general, not the

boundary of a 
onvex domain, be
ause this property does not hold for a bise
tor; see [1℄ and

[2℄.

Theorem 2.3.3 ([6℄). The following two statements are equivalent to ea
h other:

(i) K is stri
tly 
onvex.

(ii) For every x ∈ S and for ea
h value a ∈ R+
the set H(x, a) is the union of two simple


urves, ea
h of whi
h interse
ts any line parallel to [−x, x] in pre
isely two points.

Remark 2.3.1. From the proof of this theorem we 
an 
on
lude that the topologi
al properties

of hyperbolas do not depend on the parameter a and only on the position of their fo
i. Thus (ii)
is equivalent to

(iii) For every x ∈ S there is a value a ∈ R+ ∪ {0} su
h that the set H(x, a) is the union of

two simple 
urves, interse
ted by any line parallel to [−x, x] in pre
isely two points.

As in the 
ase of ellipse we also have a proposition

Proposition 2.3.2 ([6℄). In normed planes, a hyperbola de�ned by its fo
i is always a hyperbola

de�ned by its leading 
ir
le and a fo
us. The 
onverse statement is also true. In general, the

third de�nition yields a di�erent 
lass of 
urves.

On the base of this proposition the new 
urve the hyperbola de�ned by its leading line and we

have a theorem on it, too.

Theorem 2.3.4 ([6℄). The hyperbola de�ned by its leading line is the union of two simple


urves. If the normed plane is stri
tly 
onvex, then these 
urves 
annot 
ontain segments.

For the 
ase of parabolas, the �rst two de�nitions have no analogue, and so we had only the

third 
ase.

Definition 2.3.7 ([6℄). In a normed plane, let l be a straight line, and x be a point. The lo
us

of the points z ∈ S for whi
h there is a positive ε su
h that the boundary of the disk z + εK

ontains x and tou
hes the line l, will be 
alled the parabola de�ned by its leading line and its

fo
us x.
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We also investigated the metri
 parabola and proved the theorem:

Theorem 2.3.5 ([6℄). In a normed plane, the metri
 parabola is a simple 
urve whi
h does not


ontain segments if and only if the normed plane under 
onsideration is stri
tly 
onvex.

2.3.2. Roulettes (Common work with V. Balestro and H. Martini). We 
onsidered

another important type of 
onstru
tive 
urves in Minkowski plane, the so-
alled roulettes. In

this part of the se
tion we write 
apital letters like A,B, . . . for points with respe
tive position

ve
tors a, b, . . . ; by a, b, . . . , g(A,B) we denote lines, in the latter 
ase spanned by A and B, and

by AB the segment with endpoints A and B is meant. We use

−→
AB for the ve
tor from A to B,

or for the half-line starting at A and passing through B; sometimes we use also a, b, . . . r1, r2 for
half-lines (the respe
tive meaning will be 
lear by the 
ontext). Further on, we write ‖a‖, ‖a‖E
for the general Minkowskian and the Eu
lidean norm of a, respe
tively, and ao stands for the
Minkowskian unit ve
tor parallel to a; [a, b] is the semi inner produ
t 
orresponding to the

Minkowskian norm ‖ · ‖. Referring to the Minkowskian ar
-length s, we denote by r(s) the

radial fun
tion of the Minkowskian unit 
ir
le, and by γ(s) a planar 
urve, both parametrized

by s; χγ(s) is the Busemann 
urvature fun
tion of γ(s). The Busemann sigma fun
tion of the

r-dimensional a�ne subspa
e Vr is σ(Vr), and (a, b)∠ denotes the angle determined by the lines

a, b.
2.3.2.1. Angle measures and general rotations. The question how to measure angles is old

and interesting. A good review of the history 
an be found in [20℄.

In [34℄, Busemann dis
ussed the "axiom" for angle measures in the 
ase of plane 
urves belong-

ing to a 
lass S of open Jordan 
urves, holding the additional property that any two distin
t

points lie on exa
tly one 
urve of S. He de�ned the 
on
epts of ray r, angle D with legs r1 and
r2, and angle measure |D| on the set of angles having the following properties:

(1) |D| ≥ 0 (positivity),

(2) |D| = π if and only if D is straight,

(3) if D1 and D2 are two angles with a 
ommon leg but with no other 
ommon ray, then

|D1 ∪D2| = |D1|+ |D2| (additivity),
(4) if Dν → D, then |Dν | → D (
ontinuity).

He showed that these assumptions are su�
ient to obtain many of the usual relationships

between angle measure and 
urvature. We note that Busemann 
olle
ted the essential properties

of an angle measure that we have to require in every stru
ture, where a natural 
on
ept of angle

exists.

Lippmann [104℄ 
onsidered the 
lassi
al Minkowski spa
e de�ned on the n-dimensional Eu-


lidean spa
e by a "metris
he Grundfun
tion" F , whi
h is a positive, 
onvex fun
tional on the

spa
e being homogeneous of �rst degree. In our terminology, F is the norm-square fun
tion (a

generalization of this 
on
ept 
an be found in this dissertation and in [8℄. To have 
onvexity (fol-

lowing Minkowski's de�nition), Lippmann required 
ontinuity of the se
ond partial derivative,

and positivity of the se
ond derivative of F . Hen
e the unit ball of the 
orresponding spa
e is al-
ways smooth. He used the ar
us 
osine of the bivariate fun
tion (x, y) := (

∑
xi

∂
∂xi
F (y))/F (x)

to measure the angle between x and y. This yields a 
on
ept of transversality, namely: x is

transversal to y if (x, y) = 0. A wide variety of angle measures referring to metri
 properties


an be found in the literature. E.g., Lippmann's papers [105, 106℄ 
ontain typi
ally metri


de�nitions of angle measures. For the situation in (normed or) Minkowski planes see, in addi-

tion to the papers already mentioned, Graham, Witsenhausen and Zassenhaus [69℄. This paper

refers to a useful metri
al 
lassi�
ation of angles by their measures, and a good review on this

topi
 
an be found in the book of Thompson [140℄.

In the last few de
ades some authors redis
overed this interesting problem in 
onne
tion with

the problem of orthogonality. We have to mention P. Brass who in [30℄ rede�ned the 
on
ept

of angle measure as follows.
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Definition 2.3.8. By an angle measure we mean a measure µ on the unit 
ir
le ∂B with 
enter

O whi
h is extended in the usual translation-invariant way to measure angles elsewhere, and

whi
h has the following properties:

(1) µ(∂B) = 2π,
(2) for any Borel set S ⊂ ∂B we have µ(S) = µ(−S), and
(3) for ea
h p ∈ ∂B we have µ({p}) = 0.

This 
on
ept was used in the papers of Düvelmeyer [48℄, Martini and Swanepoel [117℄, and

Fankhänel [53, 54℄.

Another dire
tion of resear
h is to give immediate metri
 de�nitions of the angle of two ve
tors.

In this dire
tion we 
an �nd also papers of P. M. Mili£i£ [121℄, C. R. Diminnie, E. Z. Andalafte,

R. W. Freese [47℄ or H. Gunawan, J. Lindiarni and O. Neswan [79℄. Further related papers on

angle measures are [44℄, [45℄, [46℄, and [103℄.

As Busemann observed, the problem to �nd a natural de�nition of angular measure arises from

the fa
t that the group of Minkowski rotations is very small. In a general normed spa
e there

are no su
h rotations whi
h are also isometries of the spa
e (see [62℄, [140℄, [113℄, and [114℄).

On the other hand, there are so-
alled left re�e
tions (right-re�e
tions) based on the notion

of Birkho� orthogonality (see [113℄ and [114℄). These are not isometries, but they have some

important properties of isometries; e.g., they are a�ne mappings of the plane sending lines

into lines; the produ
t of three left re�e
tions in parallel lines in a stri
tly 
onvex Minkowski

plane is a left re�e
tion in another line belonging to the same pen
il of parallel lines; and

the produ
t of two left re�e
tions in Birkho� orthogonal lines is a symmetry of the plane.

Unfortunately, if in a stri
tly 
onvex and smooth Minkowski plane for left re�e
tions the main

lemma on three re�e
tions with 
on
urrent axes holds, then the plane is already Eu
lidean.

Hen
e there is no 
han
e to de�ne an angle measure and also rotations by left re�e
tions in the

way that "a rotation is the produ
t of two left re�e
tions in non-parallel lines". This motivates

our new de�nition of generalized angle measure and also the new 
on
ept of general Minkowski

rotations, respe
tively.

In order to de�ne a 
on
ept of rotation for a Minkowski plane, we start with extending the

de�nition of Brass by 
onsidering Borel measures in a larger 
lass of 
urves, not only in the

unit 
ir
le, and we will derive angle measures for normed planes from it.

Definition 2.3.9 ([7℄). Let γ ⊆ X be a 
losed Jordan 
urve whi
h is starlike with respe
t to a

point p of the interior of the region bounded by γ. Let µγ be a (normalized) Borel measure on

γ for whi
h the following properties hold:

(a) µγ(γ) = 2π;
(b) for any q ∈ γ we have µγ({q}) = 0; and
(
) any non-degenerate ar
 of γ has positive measure.

An angle measure de�ned in this way provides a translation invariant measure of angles in

the plane, whi
h we de�ne to be the 
onvex hulls of two rays with the same starting point, or

the half-plane given by two opposite rays. Given an angle (r1, r2)∠ with apex a, we de�ne its

generalized angle measure µγ,p(r1, r2) to be the measure µγ of the ar
 determined on γ by the

image of (r1, r2)∠ via the translation x 7→ x− a + p.

Using this notion of generalized angle measure we de�ne now the generalized rotations in

Minkowski planes.

Definition 2.3.10 ([7℄). Let (X, || · ||) be a Minkowski plane and let γ be a 
losed Jordan 
urve

whi
h is starlike with respe
t to a point p of the interior of the region bounded by γ. Let µγ,p
be a generalized angle measure as in the previous de�nition. A general rotation (with respe
t to

µγ,p) is a transform rotµγ,p : X → X for whi
h the following three properties hold:

(a) The transform rotµγ,p leaves invariant the pen
il R(p) of rays with origin in p. In other

words, if r ⊆ X is a ray with origin p, then rotµγ,p(r) is also a ray with origin p.
(b) For ea
h α > 0, rotµγ,p leaves invariant the homotheti
 
urve γα,p := p+ α(γ − p), i.e., for
su
h a 
urve we have rotµγ,p (γα,p) ⊆ γα,p.
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(
) The fun
tion r ∈ R(p) 7→ µγ,p
(
rotµγ,p(r), r

)
is 
onstant. Intuitively, rotµγ,p "rotates every

ray of R(p) by a same angle".

Noti
e that a general rotation 
an be 
onsidered as a
ting in the spa
e of dire
tions of X .

Indeed, the set R(p) 
an be seen as this spa
e. Later this viewpoint will be useful.

We emphasize that any general rotation relies on a �xed 
losed Jordan 
urve γ, an inner point

p with respe
t to whi
h γ is starlike, and a generalized angle measure µγ,p. On the other hand,

these three informations yield a 
ertain 
lass of general rotations, whi
h we denote byR(γ, µ, p).
We head now to des
ribe an element of su
h a 
lass in terms of the angle of rotation. For any

θ ∈ [0, 2π) we set rotθ : X → X as follows: if q1 ∈ γ, then q1 is mapped to the (unique) point

q2 ∈ γ taken 
ounter
lo
kwise, say, for whi
h the rays r1 = [p, q1〉 and r2 = [p, q2〉 are su
h that

µ(r1, r2) = θ. Now, any point q ∈ X \ γ 
an be written in the form q = p+α (radγ,p( [p, q〉)− p)
for some α ≥ 0, where radγ,p : R(p) → γ is the radial fun
tion whi
h asso
iates ea
h ray

starting at p to its interse
tion with γ. We just set

rotθ(q) = p+ α (rotθ (radγ,p ( [p, q〉))− p) .

It is 
lear that R(γ, µ, p) = {rotθ}θ∈[0,2π). This des
ription indi
ates that a 
lass R(γ, µ, p) has
a group stru
ture under 
omposition, as in the standard Eu
lidean 
ase. This is summarized in

the following lemma.

Lemma 2.3.1. For a 
lass R(γ, µ, p) we have the following properties:

(a) Regarding 
omposition,R(γ, µ, p) is an abelian group. More pre
isely, we have rotθ1◦rotθ2 =
rotθ1⊕θ2, where ⊕ is the sum modulo 2π.
(b) For any q ∈ γ, the appli
ation l 7→ rotθ(q) is a bije
tion from [0, 2π) to γ.

O
j

p P

P’
P’’ t

Figure 2.14. Area-based rotation

We highlight an interesting fa
t: The standard Eu-


lidean rotation group 
an be obtained in any

Minkowski plane. We just have to 
onsider the group

R(γ, µ, o) where γ is the Löwner ellipse, whi
h is de-

�ned as the ellipse of maximal volume 
ontained in B,
and µ is the measure given by twi
e the area of its

se
tors.

Next we give two examples of general rotations in the

Eu
lidean plane. The �rst one relies on an area-based

measure for an ellipse, whi
h is 
learly well de�ned.

Example 2.3.1. Consider the Eu
lidean plane and the

system of ellipses with 
ommon fo
us at the origin O
and with major axis on the x-axis of the 
oordinate system, su
h that the positive half-line

of x 
ontains the 
losest point of the ellipse (see Fig. 2.14). In that polar 
oordinate system

(whi
h is 
alled the helio
entri
 
oordinate system for the ellipse), for whi
h the ray ϕ = 0 is

the positive half axis x, we 
an write the radial fun
tion r(ϕ) of the ellipse G by the formula

r(ϕ) = p/(1 + ε cosϕ), where p is the semi-latus re
tum of the ellipse and ε is the e

entri
ity
of it, respe
tively. Let µ((ϕ′, ϕ′′)∠) be the area of the se
tor en
losed by ϕ′

, ϕ′′
, and G be the

ar
 between these lines. Hen
e

µ((ϕ′, ϕ′′)∠) =
1

2

ϕ′′∫

ϕ′

(
p

1 + ε cosϕ

)2

dϕ.

With respe
t to µ and G from above, for every real number 0 ≤ t ≤ 2π there is a generalized

rotation of the Eu
lidean plane about O with this angle t. By Kepler's se
ond law about

planetary motions, the angle t of a generalized rotation is proportional to the time of the

motion of the planet. Hen
e the generalized rotation with angle t maps the 
urrent position P ′

of the planet to that point P ′′
of the orbit where the planet arrives after time t. �
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The prin
iple of measuring the angle proportional to the area of the se
tor interse
ted by the

angle domain from the basi
 disk (G ∪ intG) works in all Minkowski planes and for all basi



urves G. Note that in the Eu
lidean plane with the unit 
ir
le as basi
 
urve, this 
hoi
e of

µ gives the usual angle measure, and that we get the usual rotations as generalized rotations

by 
hoosing P to be the origin O. An advantage of this 
hoi
e is a�ne invarian
e, but there is

also a big disadvantage. Namely, the length of the ar
 G 
ontaining the domain of the angle


annot be 
al
ulated easily from this angle measure. (As a known example, we note that the


al
ulation of the ar
-length of an ellipse leads to a 
omplete ellipti
 integral of se
ond kind,

whi
h has no 
losed-form solution in terms of elementary fun
tions.) In this paper we have to


reate tools for the so-
alled rolling pro
ess, whi
h is a type of motion that 
ombines rotation

and translation of an obje
t with respe
t to a given 
urve. More pre
isely, we 
ombine two


urves su
h that they are in 
onta
t with ea
h other without sliding (no fri
tion). Hen
e we

have to 
ompare the angle of rotations of the two 
urves by the fa
t that the swept ar
-lengths

do agree in the time of the moving. This requires a ni
e 
onne
tion between the angle of the

generalized rotation and the 
orresponding ar
-length of the basi
 
urve G.
The standard angle in the Eu
lidean plane 
an be obtained by 
onsidering ar
-lengths in the

unit 
ir
le, and hen
e the angle theory 
an be given in terms of the Eu
lidean norm. Of 
ourse,

this 
an be 
arried over to Minkowski planes, and the general rotations given by the ar
-length

measure are possibly the most natural rotations in normed planes. We head now to take a better

look at this parti
ular 
ase. We denote by l the Minkowski ar
-length of a 
urve de�ned in the

usual way: as the supremum of the sums of the lengths of the polygonal approximations of γ.
Let γ ∈ (X, || · ||) be a 
losed re
ti�able Jordan 
urve starlike with respe
t to an inner point

p, and denote by µl the normalized Minkowski ar
-length measure in γ. Formally, if q1, q2 ∈ γ,
then

µl(arcγ(q1, q2)) = 2π
l(arcγ(q1, q2))

l(γ)
.

Of 
ourse, µl is a generalized measure in the sense of De�nition 2.3.9. Sin
e the measure µl is
indu
ed by the geometry of the plane rather than being inherent to γ, one may wonder how

the group R(γ, µl, p) does rely on the initial γ and p that we have 
hosen. For example, in

the Eu
lidean plane we 
an obtain the standard angle measure by 
onsidering the ar
-length

measure in any homothet of the unit 
ir
le and doing the usual normalization. Our next lemma

shows that this is also true for arbitrary Minkowski planes.

Lemma 2.3.2. Let γ ∈ X be a 
losed re
ti�able Jordan 
urve starlike with respe
t to an inner

point p, and let µl be the (normalized) Minkowskian ar
-length measure. Given α > 0, denote
by γα,p the 
urve p+ α(γ − p) homotheti
al to γ. Then R(γ, µl, p) = R(γα,p, µl, p).

Figure 2.15. rotπ
2
(v) = w

Despite having the good property shown above, the ar
-length

rotations are not at all linear transformations. For this reason we

may fa
e some di�
ulties when trying to derive 
losed formulas

for them. But we have some ex
eptions. Next we give an example

for the Minkowski ar
-length rotation whi
h 
oin
ides with an

usual Eu
lidean rotation.

Example 2.3.2. Consider the norm || · ||∞ de�ned in R2
to be

||(x, y)||∞ = max{|x|, |y|}. The general rotation rotπ
2
: X → X

given by the Minkowski ar
-length measure in the unit 
ir
le,

and with respe
t to the origin, 
oin
ides with the usual Eu
lidean

rotation of angle

π
2
. Indeed, the unit 
ir
le B of (R2, || · ||∞) is the

square with verti
es {(±1,±1)} whi
h, for the sake of simpli
ity

of the used notation, we may denote in the 
ounter
lo
kwise way

by v1, v2, v3, and v4. If v ∈ [v1, v2], then rotπ
2

learly maps v to the point w of the segment

[v2, v3] for whi
h ||w − v3|| = ||v − v2|| (see Figure 2.15). �
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Translations are a simple kind of motion in Minkowski planes, and they are 
learly isometries.

The general rotations 
an also be seen as motions in the Minkowski plane, whi
h are not ne
es-

sarily isometries. Thus, we may 
onsider the 
omposition of translations and general rotations

to obtain a larger 
lass of motions in the Minkowski plane.

Definition 2.3.11 ([7℄). Let R(γ, µ, p) be a �xed group of general rotations, and for any v, w ∈
X let tvw : X → X denote the translation whi
h maps v to w, i.e., tvw(x) = x − v + w. We

de�ne the motion group generated by R(γ, µ, p) to be the group of appli
ations of the form

tpq ◦ rot ◦ tqp : X → X, where q ∈ X and rot ∈ R(γ, µ, p). When there is no possibility of


onfusion on the group of general rotations 
onsidered here, we will denote the motion group by

Mr.

Remark 2.3.2. Noti
e that the motion group asso
iated to R(∂B, µl, o), where µl is, as usual,
the Minkowski ar
-length measure, 
ontains all dire
tion-preserving isometries of the plane.

2.3.2.2. Motions of rigid systems in the Eu
lidean plane. Consider a plane Σ′
whi
h is

moving on the �xed plane Σ. The two simplest possibilities for su
h movements are given by

translation and rotation. In Eu
lidean geometry we 
an substitute the planes with 
artesian


oordinate frames Oxy and O′uv. When we would like to des
ribe the motion of a point P
of the moving plane, we need the 
oordinates u, v of the point P in the moving frame, the


oordinates p, q of O′
in the �xed 
oordinate system, and the angle ϕ of the positive half of the

X-axis of the �xed frame with the positive half of the x-axis of the moving frame. We get the


oordinates x, y of the point P in the �xed system by

x = p+ u cosϕ− v sinϕ , y = q + u sinϕ+ v cosϕ.

Here p, q, ϕ are fun
tions of a quantity t whi
h determines the motion. (For example, t 
an
denote the time, or any other metri
 parameter.) Assume that ϕ(t) is not zero on an interval of

t. Then it 
an be inverted, and p, q 
an also be 
onsidered as a fun
tion of ϕ. (This assumption

says that our motion 
annot 
ontain translations in that domain. We 
all su
h a motion non-

translative planar motion.) The derivative of the 
oordinate fun
tions with respe
t to ϕ gives

the 
oordinates of the velo
ity ve
tor of the point P . It is more 
onvenient to use ve
tor equality,

and hen
e we introdu
e some further notion. Let

R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)

denote the rotation about the origin with signed angle ϕ. Then the �rst equation array has the

form x = p+R(ϕ)u. If Q = R(π/2) denotes the rotation with π/2, we have the following rules:

Q2 = −E, Q3 = Q−1 = Q = −Q, Q4 = E,

where E is the unit matrix. We denote by "·" the derivative with respe
t to ϕ, whi
h means in this

se
tion the Eu
lidean ar
-length parameter. It is 
lear that Ṙ = QR and thus

˙(R−1) = −QR−1
.

For every value of ϕ there is pre
isely one point u0 of the moving plane for whi
h the velo
ity

ve
tor vanishes. This is

u0 = QR−1ṗ.

This point u0 of the moving plane is a so-
alled instantaneous 
enter (or instantaneous pole)

of the motion, and the set of these points is the moving polode (
entroid), or 
urve γ′ of
instantaneous poles, of the moving plane. The points of the moving polode 
an also be obtained

as rest in the frame. These points x0 are des
ribed by

x0 = p+ Ru0 = p+Qṗ .

They form the so-
alled �xed polode (
entroid), or 
urve γ of instantaneous 
enters, in the �xed

plane. We examine the motion with respe
t to the point x0. If x is arbitrary, then x − x0 =
Ru−qṗ, and using the equality ẋ = ṗ+QRu, we have Qẋ = Qṗ+QRu. Sin
e x−x0 = Ru−Qṗ,
we get that

ẋ = Q(x− x0).
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Hen
e the velo
ity ve
tor of the motion at the point x is orthogonal to the position ve
tor from

x0 to x. This implies that the moving system in the given moment is a rotation about the 
enter

x0. Observe that the velo
ity ve
tors of the two polodes at their 
ommon point agree; in fa
t,

u̇0 =
˙QR−1ṗ = R−1ṗ+QR−1p̈ = ẋ0.

Hen
e the ar
-length elements of the two 
urves agree, and we get that in every moment the

two 
urves are tou
hing. Also we see that their ar
-lengths 
al
ulated from a point ϕ0 to the

point ϕ have the same value. Hen
e the moving polode γ′ rolls without slipping (or without

fri
tion) on the �xed polode γ, and this is the only rolling pro
ess whi
h 
orresponds to the

given motion of the planes. Hen
e we see the fa
t that every non-translatory planar motion

of a rigid me
hani
al system in the plane 
an be 
onsidered as the rolling pro
ess of a 
urve

rigidly 
onne
ted with the system on a �xed 
urve in the plane. This motivates the so-
alled

main theorem of planar kinemati
s, namely

Theorem 2.3.6 ([65℄). At every moment, any 
onstrained non-translatory planar motion 
an

be approximated (up to the �rst derivative) by an instantaneous rotation. The 
enter of this

rotation is 
alled the instantaneous pole. Thus, for ea
h position of the moving plane, we gen-

erally have exa
tly one point with velo
ity zero (as a result of that, the instantaneous pole is

also 
alled velo
ity 
enter).

This theorem leads to an interesting 
lass of 
urves in the Eu
lidean plane.

Definition 2.3.12 ([65℄). Given a 
urve γ′ asso
iated with a plane Σ′
whi
h is moving so

that the 
urve rolls, without fri
tion, along a given 
urve γ asso
iated with a �xed plane Σ
and o

upying the same spa
e. Then a point P atta
hed to Σ′

des
ribes a 
urve in Σ 
alled a

roulette.

Based on this rolling pro
ess we 
an rewrite the de�nition of the motion of rigid systems.

Observe that every planar motion implies the motion of all points of the moving plane with

respe
t to the �xed one. These orbits are said to be roulettes. Thus, for the studied motion we


onsider two 
urves, also 
alled polodes, and a suitable rolling pro
ess to determine the motion

of a singular point. For this purpose a method is needed to determine the �xed position of the

point P with respe
t to the moving polode. A usual method is to give a line through the point

P whi
h interse
ts the moving polode in the point Q and �xes the distan
e of P and Q and

the angle of the line PQ with the tangent line tQ of the moving polode at Q. Hen
e the 
hoi
e
of Q on the moving polode is arbitrary. Fix Q = w(0) and P = x(0). The points of the roulette
w(s) of Q 
an be obtained by the 
omposition of the following transformations: translate the

point γ′(s) into the origin, rotate the image of the point of γ(0) about the origin by the angle

ϕ(s) =
(
γ̇(s), γ̇′(s)

)
∠, and translate the obtained point by γ(s). Hen
e the roulette of Q in the

�xed system is given by

w(s) = R(ϕ(s))(−γ′(s)) + γ(s) = γ(s)− R(ϕ(s))(γ′(s)).

Sin
e the roulette x(s) of the point P 
an be des
ribed by the formula x(s) = w(s)+R(ϕ(s))p,
we get

(21) x(s) = γ(s) + R(ϕ(s)) (p− γ′(s)) .

This means that if we have two tou
hing ar
s γ(s) and γ′(s) of a plane Σ, and we asso
iate to

the se
ond ar
 a moving plane Σ′
in whi
h its position is �xed, then the rolling pro
ess of γ′(s)

on γ(s) (lo
ally) determines an orbit of every point of Σ′
in a unique way. In the Eu
lidean

plane, (21) shows that in every moment with respe
t to varying p we have an isometry. Hen
e

the rolling pro
ess of the ar
s determines a rigid motion of the plane Σ′
. This representation is

lo
ally unique, sin
e a rigid motion uniquely determines its polodes. Hen
e we have

Theorem 2.3.7 ([7℄). If γ, γ′ : [0, β] → R2
are two simple Jordan ar
s with 
ommon tou
hing

point γ(0) = γ′(0) su
h that s is the ar
-length parameter of both of them (
onsidered from the
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points γ(0), γ′(0) to the points γ(s), γ′(s), respe
tively), then for every s ∈ [0, β] we have an

isometry Φs sending the original position ve
tor p into the instantaneously position Φs(p). If γ
and γ′ have, for all s ∈ [0, β], unique tangents at their points γ(s) and γ′(s), respe
tively, then,
for all s ∈ [0, β], Φs is uniquely determined and 
an be des
ribed by the ve
tor equation

Φs(p) = γ(s) + R(
(
γ̇(s), γ̇′(s)

)
∠) (p− γ′(s)) .

Here γ̇(s) and γ̇′(s) denote the unit tangent ve
tors at γ(s) and γ′(s), respe
tively, and R(θ) is
the rotation with the angle θ. For �xed p, the graph of the fun
tion Φ(·)(p) : [0, β] → Σ is said

to be the roulette of the point P = p ∈ Σ for the rigid motion given by the system of isometries

{Φs : s ∈ [0, β]}.
2.3.2.3. Flexible motions of a Minkowski plane. Our purpose now is to extend Theorem

2.3.7 to Minkowski planes. For this purpose we de�ned already the motion group Mr of the

Minkowski plane, whi
h is a good analogue of a motion group of the Eu
lidean plane. Clearly,

we have to omit the 
ondition that a motion is an isometry, due to the smallness of the a
-

tual isometry group in a Minkowski plane. Of 
ourse, any motion group Mr 
ontains all the

translations. On the other hand, it is possible that the image of a metri
al segment under a

general rotation is not a metri
al segment. Hen
e the 
on
ept of Eu
lidean rigid motions has

to be rede�ned. This is not a strange proje
t be
ause of in pra
ti
e there is no rigid motion. To

a plausible example 
onsider the rolling pro
ess of a wheel of a 
ar. Sin
e the tyre 
ontinuously


hange its shape to a good modelling of this motion we should omit the requirement that the

motion is rigid. (See Fig 2.16.)

a=k- x +xarcsin( )

2k=p

Figure 2.16. Motion of a wheel. The ar
-lengths between the points labelled

with 
ir
les are 
hanging, 
ontinuously.

We 
on
entrate on Theorem 2.3.7 for the Eu
lidean planar motions, and we will 
onsider from

now on that the motion group Mr is the motion group asso
iated with the group of general

rotations R(∂B, µl, o). In other words, we will 
onsider the rotations by ar
-length of the unit


ir
le with respe
t to the origin.

Definition 2.3.13. The re
ti�able Jordan 
urve γ′(s) rolls without slipping on the re
ti�able

Jordan 
urve γ(s) if in every moment s ∈ [0, β] the two 
urves tou
h ea
h other, and the

respe
tive ar
-lengths 
al
ulated from their 
ommon point γ(0) = γ′(0) to the other one γ(s) =
γ′(s) are equal to ea
h other and also to the 
ommon parameter s.

Having the rolling pro
edure and the motion group Mr, we 
an de�ne the 
ontinuous (but

not rigid) motions of a Minkowski plane. Assume that in this se
tion any 
onsidered 
urve is

a re
ti�able Jordan 
urve, with unique tangent at all of its points, respe
tively. We denote the

unit tangent ve
tor of γ at its point γ(s) by γ̇(s). (Sin
e s means the ar
-length parameter, this

notation 
orresponds to the usual Eu
lidean notation based on the ar
-length derivative of the

position ve
tor.)

Definition 2.3.14. If the re
ti�able Jordan 
urve γ′(s) rolls, without slipping, on the re
ti�able

Jordan 
urve γ(s), then we de�ne the �exible motion 
orresponding to the rolling 
urves γ and

γ′ as the following set of mappings:

{Φs(p) = γ(s) + R(ϕs) (p− γ′(s)) : s ∈ [0, β]},
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where R(ϕs) ∈ R(∂B, µl, o) denotes the general rotation whi
h maps the (oriented) dire
tion

γ̇(s) to the (also oriented) dire
tion γ̇′(s). A 
urve given by the graph of a �xed point p = P is


alled the roulette of P .

The ve
tor

∂R(ϕ)
∂ϕ

(x) = limε→0
R(ϕ+ε)(x)−R(ϕ)(x)

ε
is the tangent ve
tor of |x|∂B at the point x.

This means that

∂R(ϕ)
∂ϕ

(x) is Birkho� normal to the ve
tor R(ϕ)(x). (For relations between

semi inner produ
ts and Birkho� orthogonality, see, e.g., [8℄ or [9℄.) Denote by Q that mapping

whi
h sends the ve
tors to their Birkho� normals with the same norm, and by Q−1
the mapping

whi
h sends the ve
tors to their Birkho� transversals with the same lengths. (Note that Birkho�

orthogonality is not a symmetri
 relation; see, e.g., [115℄ or [119℄. So, in general, if x is Birkho�

normal to y, then y not to x. However, we have a possibility to "reverse� the formulation "x is

Birkho� normal to y". We say in this 
ase that y is transversal to x.) Sin
e the tangent ve
tor
of the roulette of P at the point with parameter s is

Φ̇s(p) = γ̇(s) + Q(R(ϕ(s))(p− γ′(s))ϕ̇(s)− R(ϕs)γ̇
′(s) = Q(R(ϕ(s))(p− γ′(s))ϕ̇(s),

we get that

[
Φ̇s(p),Φs(p)− γ(s)

]
= 0. Hen
e we obtain

Statement 2.3.1 ([7℄). The velo
ity ve
tor of the �exible motion of a point Φs(p) of the roulette
in a moment s is Birkho� normal to that ve
tor Φs(p)−γ(s) whi
h shows from the point to the

instantaneous pole of the motion.

From Statement 2.3.1 we 
an see that our de�nition yields the same kinemati
s in the Minkowski

plane as given by usual motions of rigid systems in the Eu
lidean plane.

2.3.2.4. Curvature and the Euler-Savary equations. We proved the so-
alled Euler-Savary

equations (see [129℄) for normed planes. In spa
e-time this was investigated by several authors

(e.g. Ikawa [91℄, [51℄, [52℄). Ikawa de�ned roulettes and proved the Euler-Savary equations for

normed planes, with respe
t to this semi-Riemannian geometry of 
onstant 
urvature. Be
ause

of the ri
h isometry group of this plane, the validity of these results is not so surprising as in

our 
ase.

In this se
tion we have to assume se
ond order di�erentiability of the unit 
ir
le, and we have to

introdu
e the 
on
epts of 
urvature and 
urvature radius of a 
urve, respe
tively. Fortunately,

in Minkowski planes several su
h 
on
epts are known. Curvatures for 
urves in Finsler spa
es

were introdu
ed for dimension n = 2 by Underhill [142℄ and Landsberg [100℄. For general n
they were introdu
ed by Finsler [59, 60℄. The de�nitions 
oin
ide for n = 2. The underlying

idea of these de�nitions is this: If γ(s) is a 
urve with tangent t at a given point q, then the line

parallel to this tangent through the origin interse
ts the unit 
ir
le in a point q′ (in fa
t, in a

pair of points, but it will not matter whi
h point is 
hosen). There is exa
tly one ellipsoid with

the origin as 
enter through q′ whi
h has at q′ the same se
ond di�erential as the unit 
ir
le.

This ellipsoid determines a Eu
lidean metri
 E(q). Finsler de�nes the 
urvatures of γ(s) at q
as the 
urvatures at q of γ(s) as a 
urve in E(q). Obviously, E(q) exists only if the unit 
ir
le

has a se
ond di�erential at q′ and the indi
atrix is a non-degenerate ellipse. A
tually, this idea

is signi�
ant only if C is of 
lass C2
and has positive Gauss 
urvature. Thus γ(s) may not even

have a 
urvature when it is analyti
.

There exists another de�nition of 
urvature for 
urves in general spa
es whi
h is due to Menger

[120℄ (for modi�
ations of this 
on
ept see [87℄). Haantjes' 
urvature 
oin
ides with that of

Finsler. Hen
e Haantjes' main result in [87℄ means that, in Minkowski spa
es, Menger's de�ni-

tion 
oin
ides with Finsler's de�nition.

In [36℄, Busemann gave another 
on
ept of 
urvature

3

.

3

There is a ni
e 
onne
tion between the 
on
epts of 
urvature given by Finsler and Busemann. In a

Minkowski plane, the Finsler 
urvature χf and the 
urvature χ of Busemann of a 
urve γ(s) at a point P ,
with position ve
tor p, are related by

(χf (P ))2 =
χ2(P )

χT (p)
,

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



64 2. INVESTIGATIONS IN A CLASSICAL MINKOWSKI NORMED SPACE

In n-dimensional Minkowski spa
e let γ(s) be a 
urve whi
h is, in the Eu
lidean sense, of 
lass

Cr
and parametrized by the Minkowskian ar
-length s. Let γ(si), i = 0, 1, . . . , n, be n+1 points

on γ(s). Let Tr denote the r-dimensional Minkowski volume of the r-dimensional simplex that

is spanned by the points γ(si), i = 0, 1 . . . r. Then we de�ne the (r − 1)-th 
urvature χr−1 of

the 
urve γ in its point γ(s) by the limit

χr−1(s) =
r2

r − 1
lim
si→s

1

‖γ(sr)− γ(s0)‖
TrTr−2

Tr−1T ⋆r−1

(see [36℄), where T ⋆r−1 denotes the volume of the (r − 1)-dimensional simplex spanned by the

points γ(si), i = 1, . . . r. Let Dr be the following quantity:

Dr(s) = r!

r∏

i=1

i! lim
si→s

Tr∏
i<j

‖γ(si)− γ(sj)‖
.

Then for Dr−2(s) 6= 0 we get the following form of the 
urvature fun
tion:

χr−1(s) =
Dr(s)Dr−2(s)

D2
r−1(s)

.

This formula 
an be rewritten by the 
on
ept of the general sine fun
tion of two �ats of the

n-dimensional Minkowski spa
e, but we need only the 
ase of dimension 2. Hen
e, using that

D0(s) = 1, the 
urvature is

χγ(s) := χ1(s) =
D2(s)

D2
1(s)

= 2 lim
s0,s1,s2→s

sm(g(γ(s0), γ(s1)), g(γ(s1), γ(s2)))

‖γ(s2)− γ(s0)‖
,

where g(x, y) denotes the line through x and y.
A 
urve γ(s) having 
urvature in Eu
lidean sense has also 
urvature in the sense of Busemann.

These two 
urvatures 
an be 
ompared. For this purpose we have to use the σ-fun
tion in-

trodu
ed by Busemann. Let Vr be an r-�at of a Minkowski spa
e of dimension n. If U(Vr) is
the set in whi
h the r-�at, parallel to Vr and passing through the origin, interse
ts the solid

Minkowskian unit sphere, then we de�ne σ(Vr) as the ratio of the r-dimensional volume of the

r-dimensional unit ball and the Eu
lidean volume of U(Vr). Observe that if γ(s) is a C
1

urve

with tangent line tP and velo
ity ve
tor γ̇(s) at the point P = γ(s), then by the de�nition of

Minkowski length we have ‖γ̇(s)‖ = σ(tP )‖γ̇(s)‖E, where ‖ · ‖E means the Eu
lidean norm.

Busemann [36℄ proved that if χE(P ) denotes the Eu
lidean 
urvature of γ(s) at the point P ,
tP is written for the tangent line of γ(s) at P , and TP is the os
ulating plane of the 
urve at

P , then

χ(P ) =
σ(TP )

σ3(tP )
χE(P ).

We use these formulas to establish a 
lose analogue to the Euler-Savary theorem on rigid motions

in the Eu
lidean plane. First of all, we 
onsider two 
urves γ and γ′. Hen
e we have to use a

suitable lower subs
ript for the 
urvature fun
tion. We also have the 
on
ept of 
urvature radius

rγ whi
h is, as well-known, the re
ipro
al value of the 
urvature at the given point K = γ(s).
With these notions we are able to formulate

Theorem 2.3.8 (Se
ond Euler-Savary equation). If the unit 
ir
le of the Minkowski plane is

two times 
ontinuously di�erentiable, then the following equality holds:

(22) χγ − χγ′ =
1

rγ
− 1

rγ′
=
σ(TK)

σ2(tK)

1

αK
.

Here rγ is the 
urvature radius of the �xed polode at its point K = γs, rγ′ is the 
urvature radius
of the moving polode at its point K = γ′s, and αK is the length of the 
ommon velo
ity ve
tor of

the �xed and moving polodes at the moment s and at the instantaneous pole K = γ(s) = γ′(s).

where χT (p) is the 
urvature of the isoperimetrix (see [35℄) at a point p (the tangent of the isoperimetrix has

to be parallel to the tangent of γ(s) at p).
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Figure 2.17. The point L

To prove an analogue of the �rst Euler-Savary equation, we need

a deeper investigation of the Busemann 
urvature. Let tK be

the 
ommon tangent of the polodes at their 
ommon point K,

whi
h is the x-axis of a Eu
lidean orthogonal 
oordinate system

(x, y). We denote by O,O′
the 
urvature 
enters of the 
urves

γ(s) and γ′(s), respe
tively. Then O and O′

oin
ide with the

line y and χEγ (K) = 1/‖KO‖E, χEγ′(K) = 1/‖KO′‖E . Denote
by P any point of the moving plane 
orresponding to the 
urve

γ′ with the ve
tor p =
−−→
KP . As we saw in Statement 2.3.1, the

line nP of the points K,P 
ontains the Minkowskian 
urvature


enter of the roulette of P , sin
e it is Birkho� normal to the

tangent tP at P . Denote this point by P ′
. We have at γ(0) =

γ′(0) = K that R(ϕ(0)) = id, and γ̇(0) = vK , where vK is the


ommon (Minkowskian) velo
ity ve
tor at K. Hen
e we have

the equality vP := ∂(Φs(p))
∂s

∣∣∣
0
= Q(R(ϕ(s))(p− γ′(s)))ϕ̇(s)|0 =

Q(
−−→
KP )ϕ̇0. Thus, the a

eleration ve
tor aP is

aP =
∂vP
∂s

∣∣∣∣
0

= lim
ε→0

Q(R(ϕ(ǫ)))(p − γ′(ǫ))ϕ̇(ǫ)−Q(R(ϕ(0))(p− γ′(0)))ϕ̇(0)

ε
+Q(

−−→
KP )ϕ̈(0) =

= ϕ̇(0)

(
lim
ε→0

Q(R(ϕ(ǫ)))(p − γ′(ǫ))−Q(p− γ′(ǫ))

ε
+ lim
ε→0

Q(p− γ′(ǫ))−Q(p− γ′(0))

ε

)
+ Q(

−−→
KP )ϕ̈(0).

Observe that if Q would be an additive fun
tion and we 
ould 
hange it with the limit pro
ess,

then the �rst term in the bra
ket 
ould be simpli�ed to the quantity QQ(
−−→
KP )ϕ̇(0) and the

se
ond one is nothing else than the velo
ity ve
tor of the moving polode at zero. (In our 
ase

it is also the velo
ity ve
tor of the �xed polode.) In general this is not so, sin
e the additivity

of the operation Q implies that the spa
e is Eu
lidean with a standard inner produ
t. Thus,

for further investigations we need a quantity whi
h measures the di�eren
e between the given

limits and the optimal values (attended by the 
ase of inner produ
t planes). This motivates

the following lemma.

Lemma 2.3.3. [7℄ Assume that γ(s) is a 
urve of C1
type parametrized by its ar
-length. If

a, b, c ∈ γ(s) and tc denotes the tangent of the 
urve γ(s) at its point c, then we have

lim
a,b→c

Q(b)−Q(a)

‖b− a‖ =
1

σ(tc)
Q2(c).

By Lemma 2.3.3 we get an expression for the a

eleration ve
tor above, namely

aP = ϕ̇2(0)

(
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

))
+Q(

−−→
KP )ϕ̈(0),

where vK means the 
ommon velo
ity ve
tor of the 
urves γ(s), γ′(s) at K = γ(0) = γ′(0).
We now introdu
e a point L (see Figure 2.17) su
h that

−→
LP = −

(
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

))
,

hen
e the a

eleration may be written as aP = ϕ̈(0)Q(
−−→
KP )− ϕ̇2(0)

−→
LP . Observe that Q(

−−→
KP ) is

normal to the ve
tor

−−→
KP , and that it has no 
omponent parallel to

−−→
KP . The ve
tor −ϕ̇2(0)

−→
LP

lies along g(L, P ) and is dire
ted toward L, so its proje
tion 
ontributes to both 
omponents

(one of them parallel to g(K,P ), and the other one normal to it) of the a

eleration ve
tor.

Hen
e a unique situation exists if

−→
LP is normal to

−−→
KP . In this 
ase, the a

eleration ve
tor has

no 
omponent parallel to g(K,P ) implying that the radius of 
urvature of its path is in�nite.

Definition 2.3.15. [7℄ The lo
us of all points P for whi
h

−→
LP is normal to

−−→
KP is the in�e
tion


urve of the motion. The point L is the in�e
tion pole of the motion.
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The in�e
tion 
urve is the "Thales 
ir
le" of the segment KL with respe
t to Birkho� orthog-

onality. We have to prove the following properties of it:

Statement 2.3.2. [7℄ The in�e
tion 
urve ι is a 
losed 
urve. It is starlike with respe
t to the

point K if the unit 
ir
le is smooth. However, in general it does not bound a 
onvex domain.

Finally, if it is a Minkowski 
ir
le for all segments (at least one segment) of the normed plane,

then the plane is Eu
lidean.

To prove the starlike property, 
onsider the notation of Fig. 2.18.

K

L

Figure 2.18. The 
urve of in�e
tion

By the physi
al meaning of the a

eleration ve
tor, the

absolute value of the normal 
omponent of this ve
-

tor is ϕ̇2(0)‖−−→KP‖2χ(P ) = ϕ̇2(0) ‖
−−→
KP‖2

‖−−−→POP ‖
, where χ(P ) and

‖−−→POP‖ are the 
urvature and the 
urvature radius RP

of the roulette at P , respe
tively. Along the path, the

dire
tion is always normal. If this normal is oriented

from K to P , then the magnitude and orientation of

the normal 
omponent of the a

eleration ve
tor may

be de�ned in terms of real numbers, and it will be posi-

tive if POP is positive, i.e., if it has the same orientation

as KP . If POP has orientation opposite to that of KP ,
it will be negative.

On the other hand, it 
an also be obtained from the length of the orthogonal proje
tion of

ϕ̇2(0)
−→
PL to the path normal line g(P,K). Hen
e we have

ϕ̇2(0)
‖−−→KP‖2

‖−−→POP‖
= ϕ̇2(0)

[
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

)
, (
−−→
KP )0

]
,

with (
−−→
KP )0 as unit ve
tor. Denote the se
ond interse
tion point of the line g(K,P ) with the

in�e
tion 
urve by IP . Then

−−→
PIP =

‖−−→KP‖2

‖−−→POP‖
(
−−→
KP )0 =

[
1

σ(tP )
Q2(

−−→
KP )− 1

σ(tK)
Q

(
vK
ϕ̇(0)

)
, (
−−→
KP )0

]
(
−−→
KP )0 ,

and so we have the equality

‖−−→KP‖2

‖−−→OPP‖
= ‖−−→IPP‖.

Hen
e we get the following geometri
 form of the �rst Euler-Savary theorem.

Theorem 2.3.9. [7℄ The instantaneous 
enter K and the 
urvature 
enter OP of the roulette

at its point P 6= K satisfy the equality

‖−−→OPP‖ =
‖−−→KP‖2

‖−−→IPP‖
,

where the se
ond interse
tion point of the path normal line at P with the in�e
tion 
urve is the

point IP .

By the law of sine introdu
ed earlier, OPP and IPP are always marked o� in the same orienta-

tion along the line KP . Thus, when IP has been established, the orientation of IPP gives the

orientation of OPP . Hen
e equality above has an equivalent form for dire
ted segments (with

Minkowski lengths):

1

KP
− 1

KOP
=

1

KIP
.

From this equality we 
an see immediately that the 
urvature radius of the point of the in�e
tion


urve is in�nite. Similarly, the 
enters of path 
urvature of all points at in�nity are on the return
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urve obtained as the image of the in�e
tion 
urve under re�e
tion at the point K. To see a


onne
tion between the two Euler-Savary equations, we give a 
onne
tion between KIP and

αK whi
h is the length of the 
ommon velo
ity ve
tor of the �xed and moving polodes at K.

Before dis
ussing it, we de�ne Busemann's sine fun
tion sm : L×L → R from the pairs of lines

to the �eld of reals. If a, b ∈ L and sa, sb are two segments on these lines, respe
tively, then we


an de�ne the parallelogram π(sa, sb) that is spanned by sa and sb. If we write area(π(sa, sb))
for the Busemann area of π(sa, sb) and take into 
onsideration the Minkowski lengths |sa|, |sb|
of sa and sb, then the Minkowski sine fun
tion of Busemann 
an be de�ned as follows:

(23) sm(a, b) :=
area(π(sa, sb))

‖sa‖‖sb‖
.

From the de�nitions of Minkowski length and Minkowski area it follows that sm(a, b) is not

depending on the segments sa and sb. Thus, it depends only on the lines a, b. For the sine

fun
tion sm(g1, g2) of Busemann the theorem of sines holds, and it is 
ompatible with the

normality 
on
ept of Birkho�. Hen
e we have

‖−−→KIP ‖
‖−−→KL‖

=
sm(g(K,L), g(L, IP ))

sm(g(K, IP ), g(L, IP ))
=

sin(g(K,L), g(L, IP ))
σ(TK)

σ(g(K,L))σ(g(IP ,L))

sin(g(K, IP ), g(L, IP ))
σ(TK)

σ(g(K,IP ))σ(g(IP ,L))

= sinΨ
σ(g(K,P ))

σ(g(K,L))
,

where Ψ is the Eu
lidean angle between the tangent line tK at K and the line g(K,P ). From
this we get the 
ommon form of the �rst and se
ond Euler-Savary equations. By(

1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ(tK)σ(g(K,P ))

σ(TK)
=

(
1

KP
− 1

KOP

)
sin Ψ =

σ(g(K,L))

σ(g(K,P ))

1

KL
,

and using that the velo
ity ve
tor vK of the instantaneous pole at K is equal to VK =

ṡ(0) ∂γ(s(ω))
∂s

∣∣∣
0
= αKv

0
K , we get that the a

eleration ve
tor is aK = s̈(0)v0K + αKn

0
K . This

implies that its normal 
omponent is [n0
K , aK ]n

0
K = αKn

0
K . On the other hand, from the de�ni-

tion of the point L and the 
ontinuity property of the examined 
urves we get that if P tends

to K, then

−→
LP tends to

−−→
LK =

1

σ(tK)
Q

(
vK
ϕ̇(0)

)
.

So we have ‖−−→LK‖ = αK/ (σ(tK)ϕ̇(0)), and if we assume that the length of the dire
ted segment

KL is positive, then we get

(
1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ(tK)σ2(g(K,P ))

σ(TK)σ(g(K,L))
=

1

‖−−→KL‖
=
σ(tK)ϕ̇(0)

αK
=
σ(tK)ϕ̇(0)σ2(tK)

σ(TK)
(χγ − χγ′) .

This yields the 
ombined formula of the two Euler-Savary equations, namely(
1

KP
− 1

KOP

)
sm(g(K,P ), tK)

σ2(g(K,P ))

σ2(tK)σ(g(K,L))
= ϕ̇(0) (χγ − χγ′) =

ϕ̇(0)

σ2(tK)

1

αK
,

where we assume that σ(TK) = areaB = 1.
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CHAPTER 3

From the semi-inde�nite inner produ
t to the time-spa
e manifold

The phrase "Minkowski spa
e" do not distinguish between two theories: the theory of normed

linear spa
es and the theory of linear spa
es with inde�nite metri
. For �nite dimensions both

are 
alled Minkowski spa
es in the literature. It is interesting that these essentially distin
t

theories of mathemati
s have similar axiomati
 foundations. The axiomati
 examination of the

theory of linear spa
es with inde�nite metri
 
omes from H. Minkowski [123℄ and the similar

system of axioms of normed linear spa
es was introdu
ed by Lumer in [108℄. The �rst 
on
ept

widely used in physi
s: this is the mathemati
al stru
ture of relativity theory and thus there is

no doubt about its importan
e. The usability of the se
ond one is based on the fa
t that modern

fun
tional analysis works in general normed spa
es, and the Lumer-Giles theory of semi inner

produ
t gives a possibility to handling it by methods used originally in Hilbert spa
es. We saw

the basi
 properties of the latter in Se
tion 2.2. The other 
on
ept is based on the following

system of axioms. (See, e.g., [66℄.)

Definition 3.0.16 ([66℄). The inde�nite inner produ
t (i.i.p.) on a 
omplex ve
tor spa
e V is

a 
omplex fun
tion [x, y] : V × V −→ C with the following properties:

i1: : [x+ y, z] = [x, z] + [y, z],
i2: : [λx, y] = λ[x, y] for every λ ∈ C,

i3: : [x, y] = [y, x] for every x, y ∈ V ,
i4: : [x, y] = 0 for every y ∈ V then x = 0.

A ve
tor spa
e V with an i.i.p. is 
alled an i.i.p. spa
e.

The standard mathemati
al model of spa
e-time is a four dimensional i.i.p. spa
e with signa-

ture (+,+,+,−), also 
alled Minkowski spa
e in the literature. Thus we have a well known

homonymism with the notion of Minkowski spa
e!

Now we 
olle
t the 
ommon properties of the semi- and inde�nite-inner-produ
ts and de�ne

the semi-inde�nite inner produ
t as well as the 
orresponding semi-inde�nite inner produ
t

spa
e. We also give a generalized 
on
ept of Minkowski spa
e embedded in a semi-inde�nite

inner produ
t spa
e. In generalized Minkowski spa
e and generalized spa
e-time model with


hanging shape we investigate some important hypersurfa
es giving a generalization either for n-
dimensional hyperboli
 spa
e or the n-dimensional de Sitter spa
e. Following our investigations

in the Appendix we introdu
e the so-
alled time-spa
e manifold, whi
h is an analogous of the

Lorentzian manifold in a generalized spa
e-time model with 
hanging shape and we give a

version of general relativity theory valid in this stru
ture.

3.1. Semi-inde�nite inner produ
t spa
es

Let s1, s2, s3, s4, and s5 be the �ve de�ning properties of an s.i.p. with the homogeneity

property (see in Se
tion 2.2). (As to the names: s1 is the additivity property of the �rst

argument, s2 is the homogeneity property of the �rst argument, s3 means the positivity of

the fun
tion, s4 is the Cau
hy-S
hwartz inequality and s5 is the homogeneity property of the

se
ond argument.)

On the other hand, 
learly i1=s1, i2=s2, and the properties i3 and i4 are the antisymmetry

property and the nondegenera
y property of the inde�nite inner produ
t, respe
tively. It is easy

to see that s1, s2, s3, s5 imply i4, and if N is a positive (negative) subspa
e of an i.i.p. spa
e,

then s4 holds on N . In the following de�nition we 
ombine the 
on
epts of s.i.p. and i.i.p..

69
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70 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

Definition 3.1.1 ([8℄). The semi-inde�nite inner produ
t (s.i.i.p.) on a 
omplex ve
tor spa
e

V is a 
omplex fun
tion [x, y] : V × V −→ C with the following properties:

1: [x+ y, z] = [x, z] + [y, z] (additivity in the �rst argument),

2: [λx, y] = λ[x, y] for every λ ∈ C (homogeneity in the �rst argument),

3: [x, λy] = λ[x, y] for every λ ∈ C (homogeneity in the se
ond argument),

4: [x, x] ∈ R for every x ∈ V (the 
orresponding quadrati
 form is real-valued),

5: if either [x, y] = 0 for every y ∈ V or [y, x] = 0 for all y ∈ V , then x = 0 (nonde-

genera
y),

6: |[x, y]|2 ≤ [x, x][y, y] holds on non-positive and non-negative subspa
es of V, respe
-

tively. (the Cau
hy-S
hwartz inequality is valid on positive and negative subspa
es,

respe
tively).

A ve
tor spa
e V with a s.i.i.p. is 
alled an s.i.i.p. spa
e.

The interest in s.i.i.p. spa
es depends largely on the example spa
es given by the s.i.i.p. spa
e

stru
ture.

Example 3.1.1. We 
on
lude that an s.i.i.p. spa
e is a homogeneous s.i.p. spa
e if and only

if the property s3 holds, too. An s.i.i.p. spa
e is an i.i.p. spa
e if and only if the s.i.i.p. is

an antisymmetri
 produ
t. In this latter 
ase [x, x] = [x, x] implies 4, and the fun
tion is

also Hermitian linear in its se
ond argument. In fa
t, we have: [x, λy + µz] = [λy + µz, x] =

λ[y, x] + µ[z, x] = λ[x, y] + µ[x, z]. It is 
lear that both of the 
lassi
al "Minkowski spa
es" 
an

be represented either by an s.i.p or by an i.i.p., so automati
ally they 
an also be represented

as an s.i.i.p. spa
e.

Example 3.1.2. In an arbitrary 
omplex normed linear spa
e V we 
an de�ne an s.i.i.p. whi
h

is a generalization of a representing s.i.p. of the norm fun
tion. Let now C be the unit sphere of

the spa
e V . By the Hahn-Bana
h theorem there exists at least one 
ontinuous linear fun
tional,

and we 
hoose exa
tly one su
h that ‖ṽ⋆‖ = 1 and ṽ⋆(v) = 1. Consider a sign fun
tion ε([v])
with value ±1 on C/ ∼, where C/ ∼ means the fa
torization of C by the equivalen
e relation

”x ∼ y ⇔ x = λy with a nonzero λ”.

If now ε([v]) = 1 let it be denoted by v⋆ = ṽ⋆, and ε([v]) = −1 de�nes v⋆ = −ṽ⋆. Finally, extend
it homogeneously to V by the equality (λv)⋆ = λv⋆. Of 
ourse, for an arbitrary ve
tor v of V
the 
orresponding linear fun
tional satis�es the equalities v⋆(v) := ε([v])‖v‖2 and ‖v‖ = ‖v⋆‖.
Now the fun
tion

[u, v] = v⋆(u)

satis�es 1-5. If U is a non-negative subspa
e, then it is positive and we have for all nonzero

u, v ∈ U that

|[u, v]| = |v⋆(u)| = |v⋆(u)|
‖u‖ ‖u‖ ≤ ‖v⋆‖‖u‖ = ‖v‖‖u‖,

proving 6.

To de�ne the generalized Minkowski spa
e we need a lemma:

Lemma 3.1.1 ([8℄). Let (S, [·, ·]S) and (T,−[·, ·]T ) be two s.i.p. spa
es. Then the fun
tion [·, ·]− :
(S + T )× (S + T ) −→ C de�ned by

[s1 + t1, s2 + t2]
− := [s1, s2]− [t1, t2]

is an s.i.p. on the ve
tor spa
e S + T .

Proof. The fun
tion [·, ·]− is non-negative, as we 
an easily see from its de�nition. First we

prove the linearity in the �rst argument. We have

[λ′(s′ + t′) + λ′′(s′′ + t′′), s+ t]− = [λ′s′ + λ′′s′′, s]S − [λ′t′ + λ′′t′′, t]T =

= λ′[s′, s]S + λ′′[s′′, s]S − λ′[t′, t]T − λ′′[t′′, t]T = λ′[s′ + t′, s+ t]− + λ′′[s′′ + t′′, s+ t]−.
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3.1. SEMI-INDEFINITE INNER PRODUCT SPACES 71

The homogeneity in the se
ond argument is trivial. In fa
t, we have

[s′ + t′, λ(s+ t)]− = [s′, λs]S − [t′, λt]T = λ[s′ + t′, s+ t]−.

Finally we 
he
k the Cau
hy-S
hwartz inequality. We have

|[s1+t1, s2+t2]−|2 = [s1+t1, s2+t2]
−[s1 + t1, s2 + t2]− = ([s1, s2]S−[t1, t2]T )([s1, s2]S−[t1, t2]T ) =

= [s1, s2]S[s1, s2]S + [t1, t2]T [t1, t2]T + [s1, s2]S(−[t1, t2]T ) + (−[t1, t2]T )[s1, s2]S ≤
≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2Re{[s1, s2]S(−[t1, t2]T )} ≤

≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2|[s1, s2]S||[t1, t2]T | ≤
≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2

√
[s1, s1]S[s2, s2]S[t1, t1]T [t2, t2]T ,

and by the inequality between the arithmeti
 and geometri
 means we get that

[s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + 2
√
[s1, s1]S[s2, s2]S[t1, t1]T [t2, t2]T ≤

≤ [s1, s1]S[s2, s2]S + [t1, t1]T [t2, t2]T + [s1, s1]S(−[t2, t2]T + (−[t1, t1]T )[s2, s2]S =

= ([s1, s1]S − [t1, t1]T )([s2, s2]S − [t2, t2]T ) = [s1 + t1, s1 + t1]
−[s2 + t2, s2 + t2]

−.

�

It is possible that the s.i.i.p. spa
e V is a dire
t sum of its two subspa
es where one of them

is positive and the other one is negative. Then we have two more stru
tures on V , an s.i.p.

stru
ture (by Lemma 3.1.1) and a natural third one, whi
h we will 
all Minkowskian stru
ture.

More pre
isely, we have

Definition 3.1.2 ([8℄). Let (V, [·, ·]) be an s.i.i.p. spa
e. Let S, T ≤ V be positive and negative

subspa
es, where T is a dire
t 
omplement of S with respe
t to V . De�ne a produ
t on V by

the equality [u, v]+ = [s1 + t1, s2 + t2]
+ = [s1, s2] + [t1, t2], where si ∈ S and ti ∈ T , respe
tively.

Then we say that the pair (V, [·, ·]+) is a generalized Minkowski spa
e with Minkowski produ
t

[·, ·]+. We also say that V is a real generalized Minkowski spa
e if it is a real ve
tor spa
e and

the s.i.i.p. is a real valued fun
tion.

The Minkowski produ
t de�ned by the above equality satis�es properties 1-5 of the s.i.i.p.. But

in general, property 6 does not hold. To see this, de�ne an s.i.i.p. spa
e in the following way:

x

y

z

z=1/2y

max{|x|,|y|}
2
-1/4y

2
=1

Figure 3.1. The unit sphere of a positive subspa
e of the Example

Consider a 2-dimensional L∞
spa
e S of the embedding three dimensional Eu
lidean spa
e E3

.

Choose an orthonormed basis {e1, e2, e3} of E3
for whi
h e1, e2 ∈ S, and give an s.i.p. asso
iated

to the L∞
norm as follows:

[x1e1 + x2e2, y1e1 + y2e2]S := x1y1 lim
p→∞

1
(
1 +

(
y2
y1

)p)p−2
p

+ x2y2 lim
p→∞

1
(
1 +

(
y1
y2

)p) p−2
p

.

By Lemma 3.1.1 the fun
tion

[x1e1 + x2e2 + x3e3, y1e1 + y2e2 + y3e3]
− := [x1e1 + x2e2, y1e1 + y2e2]S + x3y3
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is an s.i.p. on E3
asso
iated to the norm

√
[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]− :=

√
max{|x1|, |x2|}2 + x23.

By the method of Example 3.1.2 
onsider su
h a sign fun
tion for whi
h ε(v) is equal to 1 if v
is in S ∩ C, and is equal to −1 if v = e3 holds. (C denotes the unit sphere, as in the previous

examples.) This sign fun
tion determines an s.i.i.p. [·, ·] and thus generates a Minkowski produ
t

[·, ·]+, for whi
h the 
orresponding square root fun
tion is

f(v) :=
√

[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]+ =
√
max{|x1|, |x2|}2 − x23.

As it 
an be easily seen, the plane x3 = αx2 for 0 < α < 1 is a positive subspa
e with respe
t

to the Minkowski produ
t, but its unit ball is not 
onvex (see Fig. 3.1).

But f(v) is homogeneous, 
orrespondingly it is not subadditive. Sin
e the Cau
hy-S
wartz

inequality implies subadditivity, this inequality remains false in this positive subspa
e.

S

T

Figure 3.2. The 
ase of the norm L∞.

Giles in [64℄ gave an asso
iated s.i.p. for Lp spa
es. Using the method of our Example 3.1.2, we


an de�ne s.i.i.p. spa
es based on the Lp stru
ture. Let (S, [·, ·]S) be the s.i.p. spa
e, where S is

the real Bana
h spa
e Lp1(X,S, µ) and T is the real Bana
h spa
e Lp2(Y,S ′, ν), respe
tively. If
1 < p1, p2 ≤ ∞, then these spa
es 
an be readily expressed, as a uniform s.i.p. spa
e with s.i.p.

de�ned by

[s1, s2]S =
1

‖s2‖p1−2
p1

∫

X

s1|s2|p1−1
sgn (s2)dµ

and

[t1, t2]T =
1

‖t2‖p2−2
p2

∫

Y

t1|t2|p2−1
sgn (t2)dν,

respe
tively. Consider the real ve
tor spa
e S + T with the s.i.p.

[u, v]− := [s1, s2]S + [t1, t2]T .

This is also a uniform s.i.p. spa
e, sin
e in Lemma 3.1.1 we proved that it is an s.i.p. spa
e and

|[z, x]− [z, y]| = |([s3, s1]S − [s3, s2]S) + ([t3, t1]T − [t3, t2]T )| ≤
≤ |[s3, s1]S − [s2, s1]S|+ |[t3, t1]T − [t2, t1]T | ≤ 2(p1 − 1)‖s1 − s2‖p1 + 2(p2 − 2)‖t1 − t2‖p2,

implying that the spa
e is uniformly 
ontinuous. It has been established that su
h spa
es are

uniformly 
onvex (see [38℄, p. 403). We 
ould de�ne an s.i.i.p spa
e on S + T su
h that the

subspa
e S is positive and T is a negative one, and a Minkowski spa
e by the Minkowski

produ
t [u, v]+ := [s1, s2]S − [t1, t2]T , respe
tively. (In Fig. 3.2 one 
an see the 
ase when

dimS = dim T + 1 = 2 and the norm of S is L∞.)

We de�ne the orthogonality of su
h a spa
e by a de�nition analogous to the de�nition of the

orthogonality of an i.i.p. or s.i.p. spa
e.
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Definition 3.1.3 ([8℄). The ve
tor v is orthogonal to the ve
tor u if [v, u] = 0. If U is a subspa
e

of V , de�ne the orthogonal 
ompanion of U in V by U⊥ = {v ∈ V |[v, u] = 0 for all u ∈ U}. A
ve
tor v is neutral ve
tor if [v, v] = 0.

We note that, as in the i.i.p. 
ase, the orthogonal 
ompanion is always a subspa
e of V .

Theorem 3.1.1. [8℄ Let V be an n-dimensional s.i.i.p. spa
e. Then the orthogonal 
ompanion

of a non-neutral ve
tor u is a subspa
e having a dire
t 
omplement of the linear hull of u in V .
The orthogonal 
ompanion of a neutral ve
tor v is a degenerate subspa
e of dimension n − 1

ontaining v.

We omit the easy proof.

Remark 3.1.1. The proof of Theorem 3.1.1 does not use the property 6 of the s.i.i.p.. So

this statement is true for any 
on
epts of produ
t satisfying properties 1-5. As we saw, the

Minkowski produ
t is also su
h a produ
t. It 
an be proved also that in a generalized Minkowski

spa
e, the positive and negative 
omponents S and T are Pythagorean orthogonal to ea
h other.

In fa
t, for every pair of ve
tors s ∈ S and t ∈ T , by de�nition we have [s − t, s − t]+ =
[s, s] + [−t,−t] = [s, s]+ + [t, t]+.

The following theorem will be a 
ommon generalization of the theorem on diameters 
onjugated

to ea
h other in a real, �nite dimensional normed linear spa
e, and a theorem on the existen
e of

an orthogonal system in an i.i.p. spa
e. A set of n diameters of the unit ball of an n-dimensional

real normed spa
e is 
onsidered to be a set of 
onjugate diameters if their normalized ve
tors

have the following property: Choosing one of them, ea
h ve
tor in the linear span of the re-

maining dire
tion ve
tors is orthogonal to it. An Auerba
h basis of a normed spa
e is a set of

dire
tion ve
tors having this property. Any real normed linear spa
e has at least two Auerba
h

bases. One is indu
ed by a 
ross-polytope ins
ribed in the unit ball of maximal volume (see

[139℄), and the other one by the midpoints of the fa
ets of a 
ir
ums
ribed parallelotope of

minimum volume (see [40℄). These two ways of �nding Auerba
h bases are dual in the sense

that if an Auerba
h basis is indu
ed by an ins
ribed 
ross-polytope of maximum volume, then

any dual basis is indu
ed by a 
ir
ums
ribed parallelotope of minimum volume, and vi
e versa

(
f. [95℄). If any minimum volume basis and maximum volume basis 
oin
ide, then by a result

of Lenz (see [102℄) we have that the spa
e is a real i.p. spa
e of �nite dimension.

For generalized Minkowski spa
es we have an analogous theorem whi
h straightforward proof

we omit here.

Theorem 3.1.2. [8℄ In a �nite dimensional, real, generalized Minkowski spa
e there is a basis

with the Auerba
h property. In other words, its ve
tors are orthogonal to the (n−1)-dimensional

subspa
e spanned by the remaining ones. For this basis there is a natural number k, less or

equal to n, for whi
h {e1, . . . , ek} ⊂ S and {ek+1, . . . , en} ⊂ T . Finally, this basis has also the

Auerba
h property in the s.i.p. spa
e (V, [·, ·]−).

3.2. Generalized spa
e-time model

It is easy to see that by this method, starting with arbitrary two normed spa
es S and T ,
one 
an mix a generalized Minkowski spa
e. Of 
ourse its smoothness property is basi
ally

determined by the analogous properties of S and T .

Definition 3.2.1 ([8℄). Let V be a generalized Minkowski spa
e. Then we 
all a ve
tor spa
e-

like, light-like, or time-like if its s
alar square is positive, zero, or negative, respe
tively. Let S,L
and T denote the sets of the spa
e-like, light-like, and time-like ve
tors, respe
tively. In a �nite

dimensional, real generalized Minkowski spa
e with dimT = 1 is 
alled generalized spa
e-time

model.

In the 
ase of generalized spa
e-time model we 
an geometri
ally 
hara
terize these sets of

ve
tors. At this time T is a union of its two parts, namely T = T + ∪ T −, where

T + = {s+ t ∈ T | where t = λen for λ ≥ 0} and T − = {s+ t ∈ T | where t = λen for λ ≤ 0}.
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Theorem 3.2.1 ([8℄). Let V be a generalized spa
e-time model. Then T is an open double 
one

with boundary L, and the positive part T +
(resp. negative part T −

) of T is 
onvex.

Proof. The 
oni
 property immediately follows from the equality [λv, λv]+ = λλ[v, v]+ =
|λ|2[v, v]+. Consider now the a�ne subspa
e of dimension (n−1) whi
h is of the form U = S+t,
where t ∈ T is arbitrary, but non zero. Then, for an element of T ⋂U , we have 0 ≥ [s+t, s+t]+ =
[s, s] + [t, t], and therefore [s, s] ≤ −[t, t]. This implies that the above interse
tion is a 
onvex

body in the (n − 1)-dimensional real ve
tor spa
e S. The s.i.i.p. in S indu
es a norm whose

unit ball is a 
entrally symmetri
 
onvex body. So T is a double 
one and its positive (resp.

negative) part is 
onvex, as we stated. For the ve
tors of its boundary equality holds, and so

these are light-like ve
tors. Sin
e those ve
tors of the spa
e, for whi
h the inequality does not

hold, are spa
e-time ve
tors, we also get the remaining statement of the theorem. �

In the rest of the paper [8℄ we 
onsidered a spe
ial subset, the imaginary unit sphere of a �nite

dimensional, real, generalized Minkowski spa
e. (Some steps of our investigation are also valid

in a 
omplex generalized Minkowski spa
e. If we do not use the attribute "real", then we think

about a 
omplex Minkowski spa
e.) We give a metri
 on it, and thus we will get a stru
ture

similar to the hyperboloid model of the hyperboli
 spa
e embedded in a spa
e-time model.

We note that if dimT > 1 or the spa
e is 
omplex, then the set of time-like ve
tors 
annot be

divided into two 
onvex 
omponents. So we have to 
onsider that our spa
e is a generalized

spa
e-time model.

3.2.1. The imaginary unit sphere. It is known that in a Lorentzian spa
e the imaginary

unit sphere 
an be identi�ed with the n−1-dimensional hyperboli
 spa
e. Hen
e the imaginary

unit sphere of a generalized spa
e-time model 
an be 
onsidered as a generalization of the

hyperboli
 spa
e. We begin with a de�nition:

Definition 3.2.2 ([9℄). The set

H := {v ∈ V |[v, v]+ = −1},
is 
alled the imaginary unit sphere.

With respe
t to the embedding real normed linear spa
e (V, [·, ·]−) (see Lemma 3.1.1) H is, as

we saw, a generalized two sheets hyperboloid 
orresponding to the two pie
es of T , respe
tively.

Usually we deal only with one sheet of the hyperboloid, or identify the two sheets proje
tively. In

this 
ase the spa
e-time 
omponent s ∈ S of v determines uniquely the time-like one, namely

t ∈ T . Let v ∈ H be arbitrary. Let Tv denote the set v + v⊥, where v⊥ is the orthogonal


omplement of v with respe
t to the s.i.i.p., thus a subspa
e.

Theorem 3.2.2 ([8℄). The set Tv 
orresponding to the point v = s + t ∈ H is a positive,

(n− 1)-dimensional a�ne subspa
e of the generalized spa
e-time model (V, [·, ·]+).
Proof. By the de�nition of H the 
omponent t of v is non-zero. As we saw in Theorem 3.1.1,

if [v, v] 6= 0, then v⊥ is an (n − 1)-dimensional subspa
e of V . Let now w ∈ Tv − v be an

arbitrary ve
tor. We have to prove that if [v, v] = −1 and w is orthogonal to v, then [w,w] > 0.
Let now w = s′ + t′ and assume that [t′, t′] = 0. Then, by the de�nition of T , t′ = 0 and thus

[w,w] = [s, s] > 0 holds. In this 
ase, we may assume that [t′, t′] 6= 0, and so t′ = λt. On the

other hand, we have 0 = [w, v]+ = [s′, s] + [t′, t]. We 
an use the Cau
hy-S
hwartz inequality

for the spa
e-time 
omponents, and we have

[s, s][s′, s′] ≥ |[s′, s]|2 = | − [t′, t]|2 = |λ|2| − [t, t]|2 = |λ|2[t, t]2.
Sin
e [s, s][t′, t′] = λλ[s, s][t, t] = |λ|2[s, s][t, t], we get the inequality

[s, s][w,w]+ = [s, s]([s′, s′] + [t′, t′]) ≥ |λ|2([t, t]2 + [s, s][t, t]).

By the de�nition of H we also have −1 = [v, v]+ = [s, s] + [t, t] and

[s, s][w,w]+ ≥ |λ|2([t, t]2 + (−1− [t, t])[t, t]) = −|λ|2[t, t] > 0.
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Consequently, if s is nonzero then [w,w] > 0, as we stated. If now [s, s] = 0 then [t, t] = −1,
and 0 = [s′ + t′, t] = [s′, t] + [t′, t] = [t′, t] implies that t′ = 0 and w ∈ S. Thus we proved the

statement. �

Ea
h of the a�ne spa
es Tv ofH 
an be 
onsidered as a semi-metri
 spa
e, where the semi-metri


arises from the Minkowski produ
t restri
ted to this positive subspa
e of V . We re
all that the

Minkowski produ
t does not satisfy the Cau
hy-S
hwartz inequality. Thus the 
orresponding

distan
e fun
tion does not satisfy the triangle inequality. Su
h a distan
e fun
tion is 
alled in

the literature semi-metri
 (see [138℄). Thus, if the set H is su�
iently smooth, then a metri



an be adopted for it, whi
h arises from the restri
tion of the Minkowski produ
t to the tangent

spa
es of H . Let us dis
uss this more pre
isely.

The dire
tional derivatives of a fun
tion f : S 7−→ R with respe
t to a unit ve
tor e of S 
an

be de�ned in the usual way, by the existen
e of the limits for real λ: f ′
e(s) = lim

λ7→0

f(s+λe)−f(s)
λ

.

Let now the generalized Minkowski spa
e be a generalized spa
e-time model, and 
onsider a

mapping f on S to R and a basis {e1, . . . , en}. The set of points F := {(s + f(s)en) ∈ V for

s ∈ S} is a so-
alled hypersurfa
e of this spa
e. Tangent ve
tors of a hypersurfa
e F in a point p
are the ve
tors asso
iated to the dire
tional derivatives of the 
oordinate fun
tions in the usual

way. So u is a tangent ve
tor of the hypersurfa
e F in its point v = (s+ f(s)en), if it is of the
form u = α(e+ f ′

e(s)en) for real α and unit ve
tor e ∈ S. The linear hull of the tangent ve
tors
translated into the point s is the tangent spa
e of F in s. If the tangent spa
e has dimension

(n − 1) we 
all it tangent hyperplane. It 
an be seen easily, that the expli
it form of H arises

from the fun
tion

f : s 7−→
√

1 + [s, s].

Sin
e its dire
tional derivatives 
an be 
on
retely determined, we 
an give a 
onne
tion between

the di�erentiability properties and the orthogonality one.

Lemma 3.2.1 ([8℄). Let V be a generalized Minkowski spa
e and assume that the s.i.p. [·, ·]|S
is 
ontinuous. (So the property s6 holds.) Then the dire
tional derivatives of the real valued

fun
tion f : s 7−→
√

1 + [s, s] are f ′
e(s) =

Re[e,s]√
1+[s,s]

.

Proof.

The 
onsidered derivative is

f(s+ λe)− f(s)

λ
=

√
1 + [s+ λe, s+ λe]−

√
1 + [s, s]

λ
=

√
1 + [s+ λe, s+ λe]

√
1 + [s, s]− (1 + [s, s])

λ
√

1 + [s, s]
.

Sin
e s + λe, s ∈ S, and S is a positive subspa
e, we have

0 ≤ (
√

[s+ λe, s+ λe]−
√
[s, s])2 = [s+ λe, s+ λe]− 2

√
[s+ λe, s+ λe]

√
[s, s] + [s, s],

and so [s + λe, s + λe] + [s, s] ≥ 2
√
[s+ λe, s+ λe]

√
[s, s] ≥ 2|[s + λe, s]|, yielding also [s +

λe, s+ λe] + [s, s] ≥ 2|[s, s+ λe]|. Using these inequalities, we get that

f(s+ λe)− f(s)

λ
≥
√
1 + 2|[s+ λe, s]|+ |[s+ λe, s]|2 − (1 + [s, s])

λ
√

1 + [s, s]
=

1 + |[s+ λe, s]| − 1− [s, s]

λ
√

1 + [s, s]
≥ Re{[s, s] + λ[e, s]} − [s, s]

λ
√

1 + [s, s]
=

Re[e, s]√
1 + [s, s]

.

But also

f(s+ λe)− f(s)

λ
=

(1 + [s+ λe, s+ λe])−
√

1 + [s, s]
√

(1 + [s+ λe, s+ λe])

λ
√

1 + [s+ λe, s+ λe]
≤

≤ (1 + [s+ λe, s+ λe])− 1− |[s, s+ λe]|
λ
√
1 + [s+ λe, s+ λe]

=
Re{[s+ λe, s+ λe]} − |[s, s+ λe]|

λ
√
1 + [s+ λe, s+ λe]

=

=
Re{[s, s+ λe] + λ[e, s+ λe]} − |[s, s+ λe]|

λ
√
1 + [s + λe, s+ λe]

≤
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≤ |[s, s+ λe]|+ Re{λ[e, s+ λe]} − |[s, s+ λe]|
λ
√

1 + [s+ λe, s+ λe]
=

Re{[e, s+ λe]}√
1 + [s+ λe, s+ λe]

.

Now the 
ontinuity property s6 implies that the examined limit exists, and that the di�erential

is

Re[e,s]√
1+[s,s]

, as we stated. �

The following theorem is a 
onsequen
e of this result.

Theorem 3.2.3 ([9℄). Let assume that the s.i.p. [·, ·] of S is di�erentiable. (So the property s6'

holds.) Then for every two ve
tors x and z in S we have:

[x, ·]′z(x) = 2Re[z, x]− [z, x], and ‖ · ‖′′x,z(x) =
Re[z, x]− [z, x]

‖x‖ .

If we also assume that the s.i.p. is 
ontinuously di�erentiable (so the norm is a C2
fun
tion),

then we also have

[x, ·]′x(y) = [x, x] and thus ‖ · ‖′′x,x(y) = ‖x‖2 − Re[x, y]2

‖y‖2 .

Proof. Sin
e

1

λ
([x+ λz, x+ λz]− [x, x]) =

1

λ
([x, x+ λz]− [x, x]) +

1

λ
[λz, x+ λz],

if λ tends to zero then the right hand side tends to [x, ·]′z(x)+ [z, x]. The left hand side is equal

to (√
1 + [x+ λz, x+ λz]−

√
1 + [x, x]

)(√
1 + [x+ λz, x+ λz] +

√
1 + [x, x]

)

λ
thus by Lemma 3.2.1 it tends to

Re[z, x]√
1 + [x, x]

2
√
1 + [x, x].

This implies the �rst equality [x, ·]′z(x) = 2Re[z, x] − [z, x]. Using Theorem 2.2.1 we also get

that ‖x‖(‖ · ‖′′x,z(x)) = [x, ·]′z(x)− Re[x,x]Re[z,x]
‖x‖2 , proving the se
ond statement, too.

If we assume that the norm is a C2
fun
tion of its argument then the �rst derivative of the

se
ond argument of the produ
t is a 
ontinuous fun
tion of its arguments. So the fun
tion

A(y) : S −→ R de�ned by the formula

A(y) = [x, ·]′x(y) = lim
λ7→0

1

λ
([x, y + λx]− [x, y])


ontinuous in y = 0. On the other hand for non-zero t ∈ R we use the notation tλ′ = λ and we

get that

A(ty) = lim
λ7→0

1

λ
([x, ty + λx]− [x, y]) = lim

λ′ 7→0

t

tλ′
([x, y + λ′x]− [x, y]) = A(y).

From this we 
an see immediately that [x, ·]′x(y) = A(y) = A(0) = [x, x] holds for every y.
Applying again the formula 
onne
ted the derivative of the produ
t and the norm we get the

last statement of the theorem, too. �

Now we apply our investigation in a generalized spa
e-time model to H . We 
an give a 
onne
-

tion between the di�erentiability properties and the orthogonality one.

Lemma 3.2.2 ([8℄). Let H be the imaginary unit sphere of a generalized spa
e-time model. Then

the tangent ve
tors of the hypersurfa
e H in its point v = s+
√
1 + [s, s]en form the orthogonal


omplement v⊥ of v.
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Proof. A tangent ve
tor of this spa
e is of the form u = α(e+f ′
e(s)en), where by the previous

lemma f ′
e(s) =

Re[e,s]√
1+[s,s]

= [e,s]√
1+[s,s]

. Thus we have

[
α

(
e+

[e, s]√
1 + [s, s]

en

)
, s+ t

]+
= α[e, s] + α

[
[e, s]√
1 + [s, s]

en,
√
1 + [s, s]en

]
= α([e, s]− [e, s]) = 0.

So the tangent ve
tors are orthogonal to the ve
tor v. Conversely, if for a ve
tor u = s′ +
t′ = s′ + λen we have 0 = [u, v] = [s′, s] + [t′, t] then [s′, s] = −[λen, t] = λ

√
1 + [s, s], sin
e

−[t, t] = 1 + [s, s] by the de�nition of H . Introdu
ing the notion e = s′√
[s′,s′]

, we get that

[e, s] =

[
s′√
[s′, s′]

, s

]
=

λ√
[s′, s′]

√
1 + [s, s],

implying that

λ√
[s′, s′]

=
[e, s]√
1 + [s, s]

= f ′
e(s).

In this way

u =
√

[s′, s′]

(
s′√
[s′, s′]

+
λ√
[s′, s′]

en

)
= α(e+ f ′

e(s)en).

This last equality shows that a ve
tor of the orthogonal 
omplement is a tangent ve
tor, as we

stated. �

We de�ned the Finsler spa
e type stru
ture for a hypersurfa
e of a generalized spa
e-time

model.

Definition 3.2.3 ([8℄). Let F be a hypersurfa
e of a generalized spa
e-time model for whi
h

the following properties hold:

i: In every point v of F , there is a (unique) tangent hyperplane Tv for whi
h the restri
tion
of the Minkowski produ
t [·, ·]+v is positive, and

ii: the fun
tion ds2v := [·, ·]+v : F × Tv × Tv −→ R+ ds2v : (v, u1, u2) 7−→ [u1, u2]
+
v varies

di�erentiable with the ve
tors v ∈ F and u1, u2 ∈ Tv.

Then we say that the pair (F, ds2) is a Minkowski-Finsler spa
e with semi-metri
 ds2 embedding

into the generalized spa
e-time model V .

Naturally "varies di�erentiable with the ve
tors v, u1, u2" means that for every v ∈ T and pairs

of ve
tors u1, u2 ∈ Tv the fun
tion [u1, u2]v is a di�erentiable fun
tion on F .
Assume now that the s.i.i.p. restri
ted into S is 
ontinuously di�erentiable. In a 
onne
ted

Finsler spa
e any point has a distan
e from any other point of the spa
e (see e.g. [138℄). By

our terminology the distan
e 
an be 
omputed in the following analogous way.

Definition 3.2.4 ([8℄). Denote by p, q a pair of points in H+
and 
onsider the set Γp,q of

equally oriented pie
ewise di�erentiable 
urves c(t) a ≤ t ≤ b of H+
emanating from p and

terminating at q. Then the Minkowskian-Finsler distan
e of these points is

ρ(p, q) = inf





b∫

a

√
[ċ(x), ċ(x)]+c(x)dx for c ∈ Γp,q



 ,

where ċ(x) means the tangent ve
tor of the 
urve c at its point c(x).

We would like to examine the in�uen
e of a linear isometry to the Minkowski-Finsler distan
e.

It is easy to see that this distan
e satis�es the triangle inequality; thus it is a metri
 on H+

(see [138℄).

Definition 3.2.5 ([8℄). A topologi
al isometry f : H −→ H of H is a homeomorphism of H
whi
h preserves the Minkowski-Finsler distan
e between ea
h pair of points of H.
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We note that in this de�nition a linear mapping F restri
ted to S gives an isometry between S
and its image F (S) implying that this image is a normed spa
e with respe
t to those s.i.p. whi
h

raised from the s.i.p. of S. This isometry is stronger than the usual one, in whi
h we need only

the equality of the norm of the 
orresponding ve
tors. As we 
an see earlier (Theorem 2.2.5)

Koehler theorem says that a mapping in a smooth Bana
h spa
e is an isometry if and only if it

preserves the (unique) s.i.p.. Thus, if the norm is at least smooth, then the two types of linear

isometry 
oin
ide. Koehler also proved [97℄ that if the generalized Riesz-Fis
her representation

theorem is valid in a normed spa
e, then every bounded linear operator A has a generalized

adjoint AT de�ned by the equality [A(x), y] = [x,AT (y)] for all x, y ∈ V . This mapping is the

usual Hilbert spa
e adjoint if the spa
e is an i.p. spa
e. In this more general setting this map is

not usually linear but it still has some interesting properties. The assumption for the s.i.p. in

Koehler paper [97℄ is that the spa
e should be a smooth and uniformly 
onvex Bana
h spa
e. It

is well known that uniform 
onvexity implies stri
t 
onvexity. On the other hand, we now take

also into 
onsideration (see [144℄ p. 111) that every, stri
tly 
onvex, �nite-dimensional normed

ve
tor spa
e is uniformly 
onvex. So for the rest of the se
tion we shall assume that the normed

spa
e S with respe
t to its s.i.p. is stri
tly 
onvex and smooth. It is 
onvenient to 
hara
terize

stri
t 
onvexity of the norm in terms of s.i.p. properties. E. Berkson [24℄ states, what 
an be

simply proved, namely

Lemma 3.2.3 ([24℄). An s.i.p. spa
e is stri
tly 
onvex if and only if [x, y] = ‖x‖‖y‖ with x, y 6= 0
implies y = λx for some real λ > 0.

The following theorem is true for the imaginary unit sphere.

Theorem 3.2.4 ([8℄). Let V be a generalized spa
e-time model.

• If S is a 
ontinuously di�erentiable s.i.p. spa
e, then (H+, ds2) is a Minkowski-Finsler

spa
e.

• If we assume that the subspa
e S is a stri
tly 
onvex, smooth normed spa
e with respe
t

to the norm asso
iated to the s.i.i.p. then the s.i.p. spa
e {V, [·, ·]−} is also smooth and

stri
tly 
onvex. Let F T
be the generalized adjoint of the linear mapping F with respe
t

to the s.i.p. spa
e {V, [·, ·]−}, and de�ne the involutory linear mapping J : V −→ V
by the equalities J |S = id|S, J |T = −id|T . The map F |H = f : H −→ H is a linear

isometry of the upper sheet H+
of H if and only if it is invertible, satis�es the equality:

F−1 = JF TJ, and, moreover, takes en into a point of H+
.

• A linear isometry of H+
is also a topologi
al isometry on it.

• Assume that also that the group of linear isometries of H+
a
ts transitively on H+

.

Denote the Minkowski-Finsler distan
e of H+
by d(·, ·). Then the following statement

is true: [a, b]+ = −ch(d(a, b)) for a, b ∈ H+
.

Proof. If the s.i.p. of S is a 
ontinuously di�erentiable one, then the norm is twi
e di�erentiable

(see Theorem 2.2.1). This also implies the 
ontinuity of the s.i.p., and so we know by Lemma

3.2.1 that there is a unique tangent hyperplane at ea
h point ofH . By Theorem 3.2.2 we get that

the Minkowski produ
t restri
ted to a tangent hyperplane is positive. So the �rst assumption

of the de�nition is valid.

To prove the se
ond 
ondition, 
onsider the produ
t [u1, u2]
+
v , where v is a point of H and u1,u2

are two ve
tors on its tangent hyperplane. Then, by Lemma 3.2.1, we have:

ui = αi

(
si +

[si, sv]√
1 + [sv, sv]

en

)
for i = 1, 2.

Here the ve
tors s1, s2, sv are in S and v = sv +
√

1 + [sv, sv]en. Thus the examined produ
t is

[u1, u2]
+
v = α1α2

[s1, s2](1 + [sv, sv])− [s1, sv][s2, sv]

(1 + [sv, sv])
.
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Sin
e the fun
tion [sv, sv] = ([v, en]
+)2 − 1 is a 
ontinuously di�erentiable fun
tion of v, and

[s1, s2] is (by our assumption) also a 
ontinuously di�erentiable fun
tion of its arguments, we

have to prove, that the map sending ui to si also has this property. But this latter fa
t is a


onsequen
e of the observation that the map u 7→ s is a proje
tion, and so it is linear.

To prove the statements of the se
ond item �rstly we notes that the embedding normed spa
e

{V, [·, ·]−} is also smooth and stri
tly 
onvex. The equality 1 = [s + t, s + t]− = [s, s]− [t, t] =
[s, s] + ‖t‖2 shows that the unit balls of the two norms are smooth at the same time. To prove

stri
t 
onvexity, 
onsider [s+ t, s′ + t′]− = ‖s+ t‖−‖s′ + t′‖−. Sin
e dimT = 1, we 
an assume

that t′ = λt for some real λ. Thus we get the equality

[s, s][s′, s′] = [s, s′]2 + [t, t]([s′, s′]− 2λ[s, s′] + λ2[s, s]).

By the Cau
hy-S
hwartz inequality we have

[s′, s′]− 2λ[s, s′] + λ2[s, s] ≥
(√

[λs, λs]−
√

[s′, s′]
)2

≥ 0,

and so

0 ≤ [s, s′]2 ≤ [s, s][s′, s′] = [s, s′]2 + [t, t]([s′, s′]− 2λ[s, s′] + λ2[s, s]) ≤ [s, s′]2,

implying that [t, t]([s′, s′] − 2λ[s, s′] + λ2[s, s]) = 0. If [t, t] = 0, then t = t′ = 0, and from

the stri
t 
onvexity of S we get that there is a real µ > 0 with s′ = µs. For this µ we have

also s′ + t′ = µ(s + t). So we 
an assume that [t, t] 6= 0, and thus both [s, s][s′, s′] = [s, s′]2

and ([s′, s′] − 2λ[s, s′] + λ2[s, s]) = 0 hold. But S is a stri
tly 
onvex spa
e. Therefore, again

for a nonzero s there is a real µ > 0 with s′ = µs. But this also implies 0 = (µ − λ)2[s, s],
showing that µ = λ and s′ + t′ = µ(s + t). Using Lemma 3.2.3, we get the stri
t 
onvexity of

the embedding normed spa
e.

Let now F be a linear isometry of H . It is 
lear that the linear operator J transforms the

Minkowski produ
t into the s.i.p. of the embedding spa
e. Pre
isely we have [v, w]+ = [v, Jw]−.
Now using the existen
e of the adjoint operator, the 
al
ulation

[v, Jw]− = [v, w]+ = [Fv, Fw]+ = [Fv, JFw]− = [v, F TJFw]−

holds for ea
h pair of ve
tors v and w. But the embedding spa
e is a non-degenerate one; thus

we get the equality J = F TJF, or equivalently F−1 = JF TJ . By its de�nition the last 
ondition
on F also holds.

Conversely, if F is a linear mapping satisfying the 
ondition of the theorem, then it preserves

the Minkowski produ
t. In fa
t,

[Fv, Fw]+ = [Fv, JFw]− = [v, F TJFw]− = [v, Jw]− = [v, w]+.

It takes the hyperboloid H homeomorphi
ally onto itself, implying that it takes a sheet onto

a sheet. Our last 
ondition guarantees that F (H+) = H+
and F is a linear isometry of H+

as

we stated.

We also reformulates the length of a path as follows. The Minkowski-Finsler semi-metri
 on

H+
is the fun
tion ds2 whi
h assigns at ea
h point v ∈ H+

the Minkowski produ
t whi
h is the

restri
tion of the Minkowski produ
t to the tangent spa
e Tv. This positive Minkowski produ
t

varies di�erentiably with v. Let U ≤ V be a subspa
e and 
onsider a map f : U −→ V . If it
is a totally di�erentiable map (with respe
t to the norm of the embedding n-spa
e in the sense

of Fre
het) then f(Tv) = Tf(v) for the tangent spa
es at v and f(v), respe
tively and one 
an

de�ne the pullba
k semi-metri
 f ⋆(ds2) at the point v by the following formula:

f ⋆(ds2)v(u1, u2) = ds2f(v)(Df(u1), Df(u2)) = [Df(u1), Df(u2)]
+
f(v).

The square root ds of the semi-metri
 fun
tion de�ned by

√
ds2v(u, u) is the so 
alled length

element and the length of a path is the integral of the pullba
k length element by the di�er-

entiable map c : R −→ V . This implies that if a linear isometry leaves the Minkowski-Finsler

semi-metri
 invariant by the pullba
k, then it preserves the integrand, and thus preserves the
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integral as well. Let now F be a linear isomorphism, and its restri
tion to H+
be f . Compute

the pullba
k metri
 as follows:

f ⋆(ds2)v(u1, u2) = ds2f(v)(Df(u1), Df(u2)) = [Df(u1), Df(u2)]
+
f(v) =

= [DF (u1), DF (u2)]
+
F (v) = [F (u1), F (u2)]

+
F (v)

be
ause F is linear. But it preserves the Minkowski produ
t, and therefore we 
on
lude that

[F (u1), F (u2)]
+
F (v) = [u1, u2]

+
v = (ds2)v(u1, u2).

This proves that a linear isometry of H+
is also a topologi
al and Finsler isometry on it.

Finally, in a Finsler spa
e a fun
tion preserving the distan
e transforms geodesi
s to geodesi
s

(see in [21℄). In our 
ase this is also true, sin
e it is basi
ally determined by the de�nition of the

distan
e and the smoothness properties whi
h are the same in both 
ases. Sin
e our spa
e is

homogeneous and linear isometry preserves the distan
e by the above argument, we 
an assume

that a = en. Let now b 6= a and 
onsider the 2-plane 〈a, b〉 spanned by the ve
tors a and b.
The restri
tion of the s.i.i.p. to the plane 〈a, b〉 is an i.i.p.; thus the restri
ted Finsler fun
tion

is a Riemannian one. So the interse
tion H ∩ 〈a, b〉 is a hyperbola in the embedding Eu
lidean

2-spa
e. Thus we 
an parameterize the points of a path from a to b by c(t) = sh(τ)e+ ch(t)en
for t ∈ [0, 1] with c(0) = a and c(1) = b. The length of an ar
 from 0 to x is

x∫

0

√
ch2(τ)− sh2(τ)dτ = x,

showing that the points of this ar
 satisfy the triangle inequality with equality. Consequently

it is a geodesi
 on H+
and therefore its ar
-length is the distan
e of the points a and c(x). On

the other hand, we also have

[a, b]+ = [en, sh(1)e+ ch(1)en]
+ = [en, ch(1)en] = −ch(1) = −ch(d(a, c(1)) = −ch(d(a, b)).

�

As it 
an be seen from the formula in this theorem, the generalized adjoint of a linear isom-

etry is a linear transformation. We also note that Theorem 3.2.4 in the i.p. 
ase gives the


hara
terization of the isometries of the hyperboli
 spa
e of dimension (n− 1).

3.2.2. Premanifolds in a generalized spa
e-time model. There is no and we did not

give a formal de�nition of an obje
t 
alling in our work [9℄ by premanifold. We use this word for

a set if it has a manifold-like stru
ture with high freedom in the 
hoosing of the distan
e fun
tion

of its tangent hyperplanes. For example we get premanifolds if we investigate the hypersurfa
es

of a generalized spa
e-time model. The most important types of manifolds as Riemannian,

Finslerian or semi-Riemannian 
an be investigated in this way. The stru
ture of our embedding

spa
e was introdu
ed in [8℄ and in the next paper [9℄ we 
ontinued our investigations by the

building up of di�erential geometry of hypersurfa
es. We gave the pre-version of the usual semi-

Riemannian or Finslerian spa
es, the hyperboli
 spa
e, the de Sitter sphere, the light 
one and

the unit sphere of the rounding semi inner produ
t spa
e, respe
tively. In the 
ase, when the

spa
e-like 
omponent of the generalized spa
e-time model is a 
ontinuously di�erentiable semi

inner produ
t spa
e then we get ba
k the known and usable geometri
al information on the


orresponding hypersurfa
es of a pseudo-Eu
lidean spa
e, e.g. we showed that a pre-hyperboli


spa
e has 
onstant negative 
urvature.

Let F be a hypersurfa
e de�ned by the fun
tion f : S −→ V . Here f(s) = s + f(s)en denotes

the point of F . The 
urve c : R −→ S de�ne a 
urve on F . We assume that c is a C2
-
urve.

Definition 3.2.6 ([126℄). We say that a hypersurfa
e is 
onvex if it lies on one side of its

ea
h tangent hyperplanes. It is stri
tly 
onvex if it is 
onvex and its tangent hyperplanes 
ontain

pre
isely one points of the hypersurfa
e, respe
tively.
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If we have a map f : S −→ V then it 
an be de
omposed to a sum of its spa
e-like and

time-like 
omponents. We have f = fS + fT where fS : S −→ S and fT : S −→ T , respe
tively.
With respe
t to the embedding s.i.p spa
e we 
an 
ompute its Fre
het derivative by Df =
[DfS, DfT ]

T
implying that Df(s) = DfS(s) + DfT (s). For brevity introdu
e the following

notation

[f1(c(t)), ·]+′

D(f2◦c)(t)
(f2(c(t))) :=

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))) − (f1)T (c(t))((f2)T ◦ c)′(t)

)
.

Now we state:

Lemma 3.2.4 ([9℄). If f1, f2 : S −→ V are two C2
maps and c : R −→ S is an arbitrary C2


urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ = [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+′
D(f2◦c)(t)((f2 ◦ c)(t)).

Proof. By de�nition

([f1 ◦ c, f2 ◦ c)]+)′|t := lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+ − [f1(c(t)), f2(c(t))]

+
)
=

= lim
λ→0

1

λ
([(f1)S(c(t+ λ)), (f2)S(c(t+ λ))]− [(f1)S(c(t)), (f2)S(c(t))])+

+ lim
λ→0

1

λ
([(f1)T (c(t + λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) .

We prove that the �rst part is

lim
λ→0

1

λ
([(f1)S(c(t+ λ))− (f1)S(c(t)), (f2)S(c(t+ λ))] + [(f1)S(c(t)), (f2)S(c(t+ λ))]−

−[(f1)S(c(t)), (f2)S(c(t))]) = [D((f1)S ◦ c)|t, (f2)S(c(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))).

To this take a 
oordinate system {e1, · · · , en−1} in S and 
onsider the 
oordinate-wise repre-

sentation (f2)S ◦ c =
n−1∑
i=1

((f2)S ◦ c)iei. Using Taylor's theorem for the 
oordinate fun
tions we

have that there are real parameters ti ∈ (t, t+ λ), for whi
h

((f2)S ◦ c)(t + λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we 
an get

[(f1)S(c(t)), (f2)S(c(t + λ))]− [(f1)S(c(t)), (f2)S(c(t))] =

= [(f1)S(c(t)), (f2)S(c(t))+D((f2)S◦c)(t)λ+
1

2
λ2

n−1∑

i=1

((f2)S◦c)′′i (ti)ei]−[(f1)S(c(t)), (f2)S(c(t))] =

= ([(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ]− [(f1)S(c(t)), (f2)S(c(t))]) +

+[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei]−

−[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ].
In the se
ond argument of this produ
t, the Lips
hwitz 
ondition holds with a real 
onstant

K for enough small λ's, so we have that the absolute value of the substra
tion of the last two

terms is less or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
]
.

Applying now the limit pro
edure at λ→ 0 we get the required equality.

In the se
ond part (f1)T and (f2)T are real-real fun
tions, respe
tively so

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =
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= −((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t).
Hen
e we have

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ =
= [D((f1)S ◦ c)(t), ((f2)S ◦ c)(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)(((f2)S ◦ c)(t)))−

−((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t) =
= [D(f1 ◦ c)(t), f2(c(t))]+

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)

)
,

and the statement is proved. �

In an Eu
lidean spa
e the �rst fundamental form is a positive de�nite quadrati
 form indu
ed

by the inner produ
t of the tangent spa
e. In generalized spa
e-time model the �rst fundamental

form is giving by the s
alar square of the tangent ve
tors with respe
t to the Minkowski produ
t

restri
ted to the tangent hyperplane.

Definition 3.2.7 ([9℄). The �rst fundamental form in a point (f(c(t)) of the hypersurfa
e F
is the produ
t

If(c(t) := [D(f ◦ c)(t), D(f ◦ c)(t)]+.
The variable of it is a tangent ve
tor, a tangent ve
tor of a variable 
urve c lying on F through

the point (f(c(t)). We 
an see that the �rst fundamental form is homogeneous of the se
ond

order but (in general) it has no a bilinear representation.

In fa
t, by the de�nition of f , (if {ei : i = 1 · · ·n− 1} is a basis in S) the 
omputation

If(c(t)) = [ċ(t) + (f ◦ c)′(t)en, ċ(t) + (f ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(f ◦ c)′(t)]2 = [ċ(t), ċ(t)]−

−
n−1∑

i,j=1

ċi(t)ċj(t)f
′
ei
(c(t))f′ej(c(t)) = [ċ(t), ċ(t)]− ċ(t)T

[
f′ei(c(t))f

′
ej
(c(t))

]n−1

i,j=1
ċ(t)

shows that it is not a quadrati
 form. It would be a quadrati
 form if and only if the quantity

[ċ(t), ċ(t)]− ċ(t)T ċ(t) = [ċ(t), ċ(t)]−
n−1∑

i=1

ċ2i (t)

vanishes. Thus if the Minkowski produ
t is an i.p. than we 
an assume that the basis {ei} in

S is orthonormal and we have that the mentioned di�eren
e is vanishing, furthermore ci(t) =

〈ei, c(t)〉 = 〈c(t), ei〉 and ċ(t) =
n−1∑
i=1

ċi(t)ei. So

If(c(t)) = ċ(t)T
(
Id−

[
f′ei(c(t))f

′
ej
(c(t))

]n−1

i,j=1

)
ċ(t),

and we get ba
k the 
lassi
al lo
al quadrati
 representation of the �rst fundamental form. Now

if ci(t) = 0 for i ≥ 3 then det I = 1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2
.

We now extend the de�nition of the se
ond fundamental form take into 
onsideration that the

produ
t has neither symmetry nor bilinearity properties. If v is a tangent ve
tor and n is a

normal ve
tor of the hypersurfa
e at its point f(c(t)) then we have 0 = [v, n]+ = [D(f ◦c)(t), (f ◦
c)(t)]+. Using Lemma 3.2.4 and the notation follows it, we get 0 = ([D(f ◦ c)(t), (n ◦ c)(t)]+)′ =
[D2(f ◦ c), n(c(t))]+ + [D(f ◦ c)(t), ·]+′

D(n◦c)(t)(n(c(t))).

We introdu
ed the unit normal ve
tor �elds n0
by the de�nition

n0(c(t)) :=

{
n(c(t)) if n is a light-like ve
tor

n(c(t))√
|[n(c(t)),n(c(t))]+|

otherwise.

Definition 3.2.8 ([9℄). The se
ond fundamental form at the point f(c(t)) de�ned by one of

the equivalent formulas:

II := [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) = −[D(f ◦ c)(t), ·]+′
D(n0◦c)(t)((n

0 ◦ c)(t)).

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



3.2. GENERALIZED SPACE-TIME MODEL 83

By the stru
ture of the generalized spa
e-time model assuming that n(s) = s + n(s)en we get

that

II = [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) =
[
D(ċ(t) +D(f ◦ c)(t)en),

c(t) + (n ◦ c)(t)en√
|[c(t), c(t)]− (n(c(t)))2|

]+
=

=

[
c̈(t) +

(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t) +

[
f′ei|c(t)

]
c̈(t)
)
en, c(t) + n(c(t))en

]+

√
|[c(t), c(t)]− (n(c(t)))2|

=

=

[
c̈(t) + [f′ei|c(t)]c̈(t)en, (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))

√
|[c(t), c(t)]− (n(c(t)))2|

=

=

[
D(f)|c(t)c̈(t), (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))

√
|[c(t), c(t)]− (n(c(t)))2|

=

= −


ċ(t)T

[
f′′ei,ej |c(t)n(c(t))√

|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1

ċ(t)


 .

We now 
an adopt a determinant of this fundamental form. It is the determinant of its quadrati


form:

det II := det



[

f′′ei,ej |c(t)n(c(t))√
|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1


 .

If we 
onsider a two-plane in the tangent hyperplane then it has a two dimensional pre-image

in S by the regular linear mapping Df . The getting plane is a normed one and we 
an 
onsider

an Auerba
h basis {e1, e2} in it.

Definition 3.2.9 ([9℄). The se
tional prin
ipal 
urvature of a 2-se
tion of the tangent hyper-

plane in the dire
tion of the 2-plane spanned by {u = Df(e1) and v = Df(e2)} are the extremal

values of the fun
tion

ρ(D(f ◦ c)) := IIf◦c(t)
If◦c(t)

,

of the variable D(f ◦c). We denote them by ρ(u, v)max and ρ(u, v)min, respe
tively. The se
tional

(Gauss) 
urvature κ(u, v) (at the examined point c(t)) is the produ
t

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min.

In the 
ase of a symmetri
 and bilinear produ
t, both of the fundamental forms are quadrati


and the se
tional prin
ipal 
urvatures attained in orthogonal dire
tions. They are the eigenval-

ues of the pair of quadrati
 forms IIf◦c(t) and If◦c(t). This implies that ρ(u, v)max and ρ(u, v)min

are the solutions of the equality:

0 = det
(
IIf◦c(t) − λIf◦c(t)

)
= det

(
If◦c(t)

)
det
(
(If◦c(t))

−1IIf◦c(t) − λId
)
,

showing that

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =

= [n0(c(t)), n0(c(t))]+ det
(
I−1
f◦c(t)IIf◦c(t)

)
= [n(c(t)), n(c(t))]+

det IIf◦c(t)
det If◦c(t)

=

= [n0(c(t)), n0(c(t))]+

(
f′′e1,e1|c(t)f′′e2,e2|c(t) −

(
f′′e1,e2|c(t)

)2)
(n(c(t)))2

(
1− (f′e1(c(t)))

2 − (f′e2(c(t)))
2
)
|[c(t), c(t)]− (n(c(t)))2| .

But we 
an 
hoose for the fun
tion n

n(c(t)) := f′e1(c(t))e1 + f′e2(c(t))e2 + en
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with n(c(t)) = 1 and for a 2-plane of the tangent hyperplane whi
h 
ontains only spa
e-like

ve
tors and has time-like normal ve
tor with absolute value

[n(c(t)), n(c(t))]+ =
√

1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2

getting the well-known formula

κ(u, v) =
−f′′e1,e1|c(t)f′′e2,e2|c(t) +

(
f′′e1,e2|c(t)

)2
(
1− (f′e1(c(t)))

2 − (f′e2(c(t)))
2
)2

(see in [49℄ p.95.).

The Ri

i 
urvature of a Riemannian hypersurfa
e at a point p = (f ◦ c)(t) in the dire
tion of

the tangent ve
tor v = D(f ◦ c) is the sum of the se
tional 
urvatures in the dire
tions of the

planes spanned by the tangent ve
tors v and ui, where ui are the ve
tors of an orthonormal basis

of the orthogonal 
omplement of v. This value is independent from the 
hoosing of the basis.

Choose random (by uniform distribution) the orthonormal basis! The 
orresponding se
tional


urvatures κ(ui, v) will be random variables with the same expe
ted values. The sum of them

is again a random variable whi
h expe
ted value 
orresponding to the Ri

i 
urvature at p
with respe
t to v. Hen
e it is equal to n− 2-times the expe
ted value of the random se
tional


urvature determined by all of the two planes through v. Similarly the s
alar 
urvature of the

hypersurfa
e at a point is the sum of the se
tional 
urvatures de�ned by any two ve
tors of an

orthonormal basis of the tangent spa
e, it is also 
an be 
onsidered as an expe
ted value. This

motivates the following de�nition:

Definition 3.2.10 ([9℄). The Ri

i 
urvature Ric(v) in the dire
tion of the tangent ve
tor v
at the point f(c(t)) is

Ric(v)f(c(t)) := (n− 2) · E(κf(c(t))(u, v))
where κf(c(t))(u, v) is the random variable of the se
tional 
urvatures of the two planes spanned

by v and a random u of the tangent hyperplane holding the equality [u, v]+ = 0. We also say

that the s
alar 
urvature of the hypersurfa
e f at its point f(c(t)) is

Γf(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)).

In [9℄ we investigated four spe
ial hypersurfa
es as premanifold the pre-versions of the hyper-

boli
 spa
e, the de Sitter sphere, the light 
one and the unit sphere of the rounding semi inner

produ
t spa
e, respe
tively.

We examined the imaginary unit sphere as the set H+
.

The set G is the 
olle
tion of those points of a generalized spa
e-time model whi
h has s
alar

square equal to one. In a pseudo-Eu
lidean spa
e this set was 
alled the de Sitter sphere. The

tangent hyperplanes of the de Sitter sphere are pseudo-Eu
lidean spa
es. G is not a hypersurfa
e

but we 
an restri
t our investigation to the positive part of G de�ned by

G+ = {s+ t ∈ G : t = λen where λ > 0}.
We remark that the lo
al geometries of G+

and G topologi
ally identi
al. G+
is a hypersurfa
e

de�ned by the fun
tion g(s) = s+ g(s)en, where g(s) =
√
−1 + [s, s] for [s, s] > 1.

Let L+
be the positive part of the double 
one determined by the fun
tion: l(s) = s+

√
[s, s]en.

Finally the set K 
olle
ts the points of the unit sphere of the embedding s.i.p. spa
e. In a

pseudo-Eu
lidean spa
e it is the unit sphere of the embedding Eu
lidean spa
e. Its tangent

hyperplanes are pseudo-Eu
lidean spa
es. K is not a hypersurfa
e but we 
an also restri
t our

investigation to its positive part de�ned by K+ = {s + t ∈ K : t = λen where λ > 0}. It 
an
be de�ned by the fun
tion: k(s) = s+ k(s)en, where k(s) =

√
1− [s, s] for [s, s] < 1.

The di�erential geometri
 properties of these four premanifolds are:

Theorem 3.2.5 ([9℄). Let H+
, G+

, L+
and K+

denote the imaginary unit sphere, the de Sitter

sphere, the light 
one and the unit sphere of the embedding s.i.p. spa
e, respe
tively.
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(1) H+
is always 
onvex. It is stri
tly 
onvex if and only if the s.i.p. spa
e S is a stri
tly


onvex spa
e.

(2) If S is a 
ontinuously di�erentiable s.i.p. spa
e then H+
has 
onstant negative 
urva-

ture.

(3) G+
and its tangent hyperplanes are interse
ting, 
onsequently there is no point at whi
h

G would be 
onvex.

(4) The de Sitter sphere G has 
onstant positive 
urvature if S is a 
ontinuously di�eren-

tiable s.i.p spa
e.

(5) The light 
one L+
has zero 
urvatures if S is a 
ontinuously di�erentiable s.i.p spa
e.

(6) K+
is 
onvex. If S is a stri
tly 
onvex spa
e, then K+

is also stri
tly 
onvex.

(7) The fundamental forms of K are

� I = [ċ, ċ]− ([ċ(t),c(t)]+[c(t),·]′
ċ(t)

(c(t)))
2

4(1−[c(t),c(t)])
= [ċ, ċ]− [ċ(t),c(t)]2

1−[c(t),c(t)]
,

� II = 1√
|−1+2[c(t),c(t)]|

(
−[ċ(t), ċ(t)] + [ċ(t),c(t)]2

−1+[c(t),c(t)]

)
= − 1√

|−1+2[c(t),c(t)]|
I.

The prin
ipal, se
tional, Ri

i and s
alar 
urvatures at a point k(c(t)) are
� ρmax(u, v) = ρmin(u, v) = − 1√

|−1+2[c(t),c(t)]|
,

� κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1+2[c(t),c(t)]
,

� Ric(v)k(c(t)) := (n− 2) · E(κk(c(t))(u, v)) = n−2
−1+2[c(t),c(t)]

,

� Γk(c(t)) :=
(
n−1
2

)
· E(κf(c(t))(u, v)) = (n−1

2 )
−1+2[c(t),c(t)]

, respectively.

(8) At the points of K+
having the equality 2[c(t), c(t)] = 1, all of the 
urvatures 
an be

de�ned as in the 
ase of the light 
one and 
an be regarded as zero.

Proof. We prove these statements step by step.

(1) Let w = s′ + t′ be a point of H+
and 
onsider the produ
t

[w − v, v]+ = [s′ − s, s] + [t′ − t, t] = [s′, s]− [s, s]− (λ′ − λ)λ = [s′, s]− λ′λ+ 1,

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respe
tively. Sin
e
√

1 + [s′, s′] = λ′ and
√
1 + [s, s] = λ

thus

[w−v, v]+ = [s′, s]−
√

1 + [s′, s′]
√
1 + [s, s]+1 ≤

√
[s′, s′][s, s]−

√
1 + [s′, s′]

√
1 + [s, s]+1 ≤ 0,

be
ause of the relation [s′, s′][s, s]+2
√

[s′, s′][s, s]+1 ≤ [s′, s′][s, s]+([s′, s′]+[s, s])+1. Remark

that equality holds if and only if the norms of s′ and s are equal to ea
h other and thus

λ′ = λ, too. So we have [s′, s] − [s, s] = 0, or equivalently [s′, s] =
√

[s′, s′][s, s]. From the


hara
terization of the stri
t 
onvexity of an s.i.p. spa
e we get H+

ontains only the point v

of the tangent spa
e Tv if and only if the s.i.p. spa
e S is stri
tly 
onvex.

(2) To determine the �rst fundamental form 
onsider the map h = s+ h(s)en giving the points

of H+
. (Here h(s) =

√
1 + [s, s] is a real valued fun
tion.) Then we get that

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(h ◦ c)′(t)]2,
where ċ(t) means the tangent ve
tor of the 
urve c of S at its point c(t). Using Lemma 3.2.1

and Theorem 3.2.3 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(1 + [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

From this formula, by the Cau
hy-S
hwartz inequality, we 
an get a new proof for the fa
t that

this form is positive. The se
ond fundamental form of H+
is

II := [c̈(t) + (h ◦ c)′′(t)en, c(t) + (h ◦ c)(t)en]+(h◦c)(t) = [c̈(t), c(t)]− (h ◦ c)′′(t)h(c(t)),

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



86 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

sin
e n ◦ c = h ◦ c = c(t) + (h ◦ c)(t)en. First we 
ompute the derivative of (h ◦ c)′(t) : R −→ R

at its point t. We use again the formulas of Lemma 3.2.1 and Lemma 3.2.4 getting

(h ◦ c)′′(t) = ((h ◦ c)′)′ (t) =
(

[ċ(t), c(t)]√
1 + [c(t), c(t)]

)′

=
[ċ(t), c(t)]′√
1 + [c(t), c(t)]

−
[ċ(t),c(t)]√
1+[c(t),c(t)]

[ċ(t), c(t)]

(1 + [c(t), c(t)])

and so

(h◦c)′′(t)h(c(t)) = [ċ(t), c(t)]′− [ċ(t), c(t)]2

1 + [c(t), c(t)]
=
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

Thus the se
ond fundamental form is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
,

or using the formula

‖y‖‖ · ‖′′x,z(y) = [x, ·]′z(y)−
Re[x, y]Re[z, y]

‖y‖2 ,

we get an equivalent form:

II = −‖c(t)‖‖ · ‖′′ċ(t),ċ(t)c(t)−
[ċ(t), c(t)]2

‖c(t)‖2(1 + ‖c(t)‖2) .

If we also assume that the norm is a C2
fun
tion of its argument then we 
an use Theorem

3.2.3 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
= −I.

By the positivity of the �rst fundamental form on H+
, we get that the se
ond fundamental

form is negative de�nite and

ρ(u, v)max = ρ(u, v)min = −1.

This implies that the se
tional 
urvatures are equal to −1, the Ri

i and s
alar 
urvatures in

any dire
tion at any point is −(n− 2) and −
(
n−1
2

)
, respe
tively.

(3) At an arbitrary point of G+
there are two sets lying on G+

and having in distin
t halfspa
es

with respe
t to the 
orresponding tangent hyperplane. The �rst set is the interse
tion of the

2-plane spanned by en and s + t ∈ M ; and the other one is an arbitrary 
urve of the (n − 2)-
hypersurfa
e de�ned by the interse
tion of G and the hyperplane S + (s+ t). In fa
t, a normal

ve
tor of the tangent hyperplane at s+ t is itself s+ t, be
ause we have
[
e +

[e, s]√
−1 + [s, s]

en, s+
√

−1 + [s, s]en

]+
= 0.

Thus with α > 1√
[s,s]

we have

[(
αs+

√
−1 + [αs, αs]en

)
−
(
s+

√
−1 + [s, s]en

)
, s+

√
−1 + [s, s]en

]+
=

= (α− 1)[s, s] + (
√

−1 + [s, s]−
√
−1 + [αs, αs])

√
−1 + [s, s] =

= −1 + α[s, s]−
√
(−1 + [αs, αs])(−1 + [s, s]) =

= α[s, s]− 1−
√

1− (1 + α2)[s, s] + α2[s, s]2 ≥ 2(α[s, s]− 1) > 2(‖s‖ − 1) ≥ 0.

On the other hand if s′ + t ∈ M arbitrary, then ‖s′‖ = ‖s‖ thus [s′ − s + (t − t), s + t]+ =

[s′, s]− [s, s] ≤
√
[s′, s′]

√
[s, s]− [s, s] = 0, with equality if and only if s′ = ±s.

(4) Using the fun
tion g, the �rst fundamental form has the form

I = [ċ(t) + (g ◦ c)′(t)en, ċ(t) + (g ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(g ◦ c)′(t)]2.
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Using Lemma 3.2.1 and Theorem 3.2.3 we get

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(−1 + [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Furthermore we also have that n ◦ c = g ◦ c = c(t) + (g ◦ c)(t)en thus we get:

II := [c̈(t) + (g ◦ c)′′(t)en, c(t) + (g ◦ c)(t)en]+(g◦c)(t) = [c̈(t), c(t)]− (g ◦ c)′′(t)g(c(t)).
The derivative of the real fun
tion (g ◦ c)′(t) = D(g ◦ c)(t) : R −→ R at its point t is:

(g ◦ c)′′(t) = [ċ(t), c(t)]′√
−1 + [c(t), c(t)]

−
[ċ(t),c(t)]√
−1+[c(t),c(t)]

[ċ(t), c(t)]

(−1 + [c(t), c(t)])

so by Lemma 3.2.4

(g ◦ c)′′(t)g(c(t)) = [ċ(t), c(t)]′ − [ċ(t), c(t)]2

−1 + [c(t), c(t)]
=
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Thus we have

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

If we assume again that the norm is a C2
fun
tion of its argument then we 
an use again

Theorem 3.2.3 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
= −I,

as in the 
ase of H+
. The prin
ipal 
urvatures are equal to −1. But the s
alar squares of the

normal ve
tors is positive at all points of G+
implying that the se
tional 
urvatures are equal

to 1. The Ri

i 
urvatures in any dire
tions and at any points are equal to (n − 2), moreover

the s
alar 
urvatures at any points are equal to

(
n−1
2

)
.

(5) If S is a uniformly 
ontinuous s.i.p. spa
e, then the tangent ve
tors at s are of the form:

u = α (e + ‖ · ‖′e(s)en) = α

(
e +

[e, s]√
[s, s]

en

)
.

Thus all tangents orthogonal to l(s) whi
h is also a tangent ve
tor. (Choose e = s0 and α = ‖s‖!)
But the orthogonal 
ompanion of a neutral ve
tor in a s.i.i.p spa
e is an (n − 1)-dimensional

degenerated subspa
e 
ontaining it (Theorem 3.1.1), tangent hyperplanes are exist at every

points of L+
and it is an (n − 1)-dimensional degenerated subspa
e of V . This also a support

hyperplane of L. In fa
t, by v = s+ t and w = s′ + t′ we get

[w − v, v]+ = [s′, s] + [t′, t] = [s′, s]− λ′λ

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respe
tively. Sin
e
√
[s′, s′] = λ′

and

√
[s, s] = λ thus [w − v, v]+ = [s′, s]−

√
[s′, s′]

√
[s, s] ≤ 0 holds. We remark that equality

holds if and only if s′ = αs meaning that there is only one line of L+
in the tangent spa
e Tv.

Thus the light 
one is 
onvex and thus the se
ond fundamental form is semi-de�nite quadrati


form. It also follows that any other ve
tors of the tangent hyperplane are spa
e-like ones and

there are two types of tangent 2-planes; one of them spa
e-like plane and the other one 
ontains

spa
e-like ve
tors and a doubled line of light-like ve
tors. In the �rst 
ase, the 
orresponding

prin
ipal and se
tional 
urvatures is well de�ned and have negative values, respe
tively. To

determine it we 
ompute the fundamental forms.

In the 
ase when S is 
ontinuously di�erentiable, the �rst fundamental form is

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4[c(t), c(t)]
= [ċ, ċ]− [ċ(t), c(t)]2

[c(t), c(t)]
,
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and the se
ond one is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

[c(t), c(t)]
= −[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

[c(t), c(t)]
= −I.

Thus the prin
ipal 
urvatures are −1 as in the 
ases of the unit spheres. However our de�nition

gives at su
h a point zero se
tional 
urvature for it, be
ause of the zero lengths of the normal

ve
tors. The above 
omputation 
an be used in the se
ond 
ase, too. Agreed that we 
al
ulate

the fundamental forms only non-light-like dire
tions, so on the plane of the se
ond type the

prin
ipal 
urvatures are also −1 and the se
tional 
urvatures are zero, too. This implies that

the Ri

i and s
alar 
urvatures are also zero, respe
tively.

(6) The dire
tional derivatives of the fun
tion k : s 7−→
√

1− [s, s] for [s, s] < 1 gives the


orresponding tangent ve
tors of form u = α(e + k′e(s)en). Sin
e by the fun
tion f : s 7−→√
1 + [s, s], we have the equality f2(s) + k2(s) = 2 the derivative in the dire
tion of the unit

ve
tor e ∈ S is k′e(s) = − [e,s]√
1−[s,s]

meaning that [u, u]+ = α2
(
1− [e,s]2

(1−[s,s])

)
= α2 1−[s,s]−[e,s]2

1−[s,s]
.

From this we 
an see immediately that

[u, u]+ > 0 if 1− [s, s] > [e, s]2

[u, u]+ = 0 if 1− [s, s] = [e, s]2

[u, u]+ < 0 if 1− [s, s] < [e, s]2.

It follows that the ve
tor s′ of the (n − 2)-subspa
e of S orthogonal to s gives a spa
e-like

tangent ve
tor and the ve
tor 
orresponding to αs is a time-like one. Let w = s′ + t′ be a point

of K+
and 
onsider the produ
t

[w − v, nv]
+ = [s′ − s, s′′] + [t′ − t, t′′] = [s′, s′′]− [s, s′′]− (λ′ − λ)λ′′,

where t′′ = λ′′en, t
′ = λ′en, t = λen and s′′, s′, s ∈ S with positive λ′′, λ′ and λ, respe
tively.

Sin
e

√
1− [s′, s′] = λ′ and

√
1− [s, s] = λ and nv = s−

√
1− [s, s]en thus

[w−v, nv]+ = [s′, s]+
√

1− [s′, s′]
√
1− [s, s]−1 ≤

√
[s′, s′][s, s]+

√
1− [s′, s′]

√
1− [s, s]−1 ≤ 0,

be
ause 2
√
[s′, s′][s, s] ≤ [s′, s′]+ [s, s]). We remark that equality holds in the inequalities if and

only if the norms of s′ and s are equal to ea
h other. So we have the equality [s′, s]− [s, s] = 0,

or equivalently [s′, s] =
√
[s′, s′][s, s]. We also get that v is the only point of K+

lying on the

tangent spa
e Tv if and only if the s.i.p. spa
e S is stri
tly 
onvex.

(7) Using the fun
tion k we get

I = [ċ(t), ċ(t)]− [(k ◦ c)′(t)]2.
Using Lemma 3.2.1 and Theorem 3.2.3 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2

4(1− [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

1− [c(t), c(t)]
,

and assuming that 2[c(t), c(t)] 6= 1 we get

II =

[
c̈(t) + (k ◦ c)′′(t)en,

c(t)− (k ◦ c)(t)en√
| − 1 + 2[c(t), c(t)]|

]+

(k◦c)(t)

=
1√

| − 1 + 2[c(t), c(t)]|
([c̈(t), c(t)] + (k ◦ c)′′(t)k(c(t))) .

Lemma 3.2.4 implies that

(k ◦ c)′′(t)k(c(t)) = −[ċ(t), c(t)]′ +
[ċ(t), c(t)]2

1− [c(t), c(t)]
= −

(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
+

[ċ(t), c(t)]2

1− [c(t), c(t)]
.

thus we have

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ·]′ċ(t)(c(t)) +

[ċ(t), c(t)]2

1− [c(t), c(t)]

)
.
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Assuming that S is 
ontinuously di�erentiable and using Theorem 3.2.3 we get

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

−1 + [c(t), c(t)]

)
= − 1√

| − 1 + 2[c(t), c(t)]|
I.

The prin
ipal 
urvatures at a point k(c(t)) are

ρmax(u, v) = ρmin(u, v) = − 1√
| − 1 + 2[c(t), c(t)]|

giving the se
tional 
urvatures

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1 + 2[c(t), c(t)]
.

The Ri

i 
urvatures in any dire
tions at the point k(c(t)) are equal to

Ric(v)k(c(t)) := (n− 2) ·E(κk(c(t))(u, v)) =
n− 2

−1 + 2[c(t), c(t)]

and the s
alar 
urvature of the hypersurfa
e K+
at its point k(c(t)) is

Γk(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)) =

(
n−1
2

)

−1 + 2[c(t), c(t)]
.

(8) Finally we remark that at the points of K+
having the equality 2[c(t), c(t)] = 1 all of the


urvatures 
an be de�ned as in the 
ase of the light 
one and 
an be regarded to zero. �

As we saw H+
whi
h is the generalization of the hyperboli
 spa
e 
an be 
onsidered as a pre-

manifold it is the pre-hyperboli
 spa
e in our terminology. We 
an tell about G as a premanifold

of 
onstant positive 
urvature and we may say that it is a pre-sphere L is a premanifold with zero

se
tional, Ri

i and s
alar 
urvatures, respe
tively. We may also say that it is a pre-Eu
lidean

spa
e. K+
is an example to a premanifold with non-
onstant 
urvatures.

3.3. The metri
 spa
e of norms

The investigations of the author on the generalized spa
e-time models of 
hanging shape pro-

posed that de�ne "Gaussian" (or other type) probability measure on the metri
 spa
e of 
en-

trally symmetri
 
onvex, 
ompa
t bodies. This leads to a very important part of 
onvex geom-

etry to the investigation of the Spa
e of Convex Bodies. A good survey on the long history 
an

be found in Se
tion 13 of the book [71℄ of P. Gruber. We shall investigate the probability spa
e

of norms de�ned on a real, n-dimensional Eu
lidean spa
e V . A norm fun
tion on V de�ned

by its unit ball K, whi
h is a 
entrally symmetri
 in O 
onvex body. Su
h bodies give a 
losed

proper subset K0 of the spa
e of 
onvex bodies K of (V, 〈·, ·〉)1. It is known that the Hausdor�

distan
e δh is a metri
 on K and with this metri
 (K, δh) is a lo
ally 
ompa
t spa
e. (See in

[71℄,[72℄.) Thus there should be many measures available on these spa
e. Unfortunately this

is not so. Bandt and Baraki in [22℄ proved answering to a problem of M
Mullen [135℄ that

there is no positive σ-�nite Borel measure on it whi
h is invariant with respe
t to all isome-

tries of (K, δh) into itself. This result ex
lude the possibility of the existen
e of a volume-type

measure. It was a natural question that 
an whether be found su
h a σ-�nite Borel measure

on K whi
h holds the property that it is non-zero for any open set of K and invariant under

rigid motions of the embedding ve
tor spa
e. This long standing question was answered in the

last 
lose by Ho�mann in [90℄. His result 
an be summarized as follows. Ea
h σ-�nite rotation
and translation invariant Borel measure on (K, δh) is the vague limit of su
h measures and that

ea
h σ-�nite Borel measure on (K, δh) is the vague limit of measures of the form

∑∞
i=1 αnδKn,

1

We rather denote in this paper the spa
e of O-symmetri
 
onvex bodies by K0 as the spa
e of 
onvex

bodies with 
entroid O.
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90 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

where {Kn , n ∈ N} is a 
ountable, dense subset of (K, δh), (αn) is a sequen
e of positive real

numbers for whi
h

∞∑
i=1

αn <∞ and δKn denote the Dira
 measure 
on
entrated at Kn.

Ho�mann also observed that a result of Bárány [23℄ "suggest that it might not be possible to

de�ne a "uniform" probability measure on the set of all polytopes whi
h have rational verti
es

and are 
ontained in the unit ball". The known 
on
ept of Gaussian random 
onvex bodies

[125℄ gives a poor 
lass of Gaussian measures be
ause of a random 
onvex body is Gaussian

if and only if there exists a deterministi
 body and a Gaussian random ve
tor su
h that the

random body is the sum of the deterministi
 one and the random ve
tor almost surely. He asked

"whether there exists an alternative approa
h to "Gaussian" random 
onvex bodies whi
h yields

a ri
her 
lass of "Gaussian" measures on (K, δh).
Our observation is that on 
ertain large probability spa
e the uniformity or normality properties


ould be only "relative" one and thus we 
an require these properties in their impa
ts through

a given fun
tion of the spa
e. More pre
isely, we require the normality or uniformity on a

pushforward measure by a given geometri
 fun
tion of the elements of the spa
e (here on the

spa
e of 
onvex bodies). To this purpose we use the thinness fun
tion α0(K) of K de�ned by

the help of the 
on
epts of diameter diamK and width w(K) of a 
onvex body K.

3.3.1. The thinness fun
tion and other de�nitions. We re
all some ne
essary de�ni-

tions. Deeper understanding of the subje
t on 
onvex geometry and geometri
 measure theory

I suggest to read the books [71℄, [94℄ and [133℄ where all properties of the following 
on
epts


an be found. Let K be the set of 
onvex bodies of an Eu
lidean ve
tor spa
e of dimension

n. It is endowed with the topology indu
ed by the Hausdor� metri
 δh, whi
h was de�ned in

subse
tion 2.1.4. If we 
onsider a topology on K or on a subspa
e of it, su
h as the spa
e of

O-symmetri
 
onvex bodies K0, it is always assumed that it is the topology indu
ed by δh.
From geometri
 measure theory we will use the 
on
epts of Borel, Dira
, Haar and Lebesgue-

measure. All of these 
on
epts 
an be found in [56℄ or [86℄. We also use some basi
 tools of

probability theory, e.g. the 
on
epts of trun
ated Gaussian and uniform distributions, and the


on
ept of the pushforward and pullba
k of a measure. The reader 
an read on these 
on
ept

on the internet or in basi
 works on probability theory e.g. in [58℄ or [88℄.

Let denote by w(K) the in�mum of the distan
es between parallel support hyperplanes of the


onvex body K. This is the width of K. The diameter of K (diamK) is the supremum of the

distan
es between two points of K. It 
an be regarded also as the supremum of the distan
es

between parallel support hyperplanes of K. By these two quantities we de�ned a new one.

Definition 3.3.1 ([10℄). Let denote by α0(K) the number

α0(K) =
diamK

w(K) + diamK
.

We 
all it the thinness of the 
onvex body K.

The thinness is

1
2
in the 
ase of the Eu
lidean ball only and it is equal to 1 if K has of dimension

less or equal to (n− 1).
Let now BE be the unit ball of the embedding Eu
lidean spa
e and let de�ne the unit sphere

of K0 around BE by the equality: K1
0 := {K ∈ K0 | δh(K,BE) = 1}.

The following lemma shows the usable of the thinness fun
tion in our investigation.

Lemma 3.3.1 ([10℄). If K ∈ K1
0 and α0 := α0(K) is the thinness of K then we have

δh(αK,BE) =

{
2α− 1 if α0 ≤ α
2α + 1− 2 α

α0
if 0 ≤ α < α0.

Proof. Assume that δh(K,BE) is the distan
e of the points x ∈ bdBE and y ∈ bdK. Then

‖y‖E = ‖x‖E + 1 = 2 and 0, x, y are 
ollinear. (We note that the norm of the point y is also
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3.3. THE METRIC SPACE OF NORMS 91

the half of the diameter diamK of K with respe
t to the Eu
lidean metri
.) This implies that

for α > 1 the points

1
α
x and y give a segment with length δh

(
K, 1

α
BE

)
and thus

δh
(
K,

1

α
BE

)
=

∥∥∥∥y −
1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2− 1

α

holds. If α < 1 then the situation is a little bit more 
ompli
ated. In this 
ase there is a real

number α0 ∈
[
1
2
, 1
)
su
h that if α0 ≤ α < 1 then again

δh
(
K,

1

α
BE

)
=

∥∥∥∥y −
1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2− 1

α

but for α0 ≥ α > 0 we have a new pair of points y′ ∈ bdK and x′ ∈ bdBE where the distan
e

attained. The point y′ is a point of bdK with minimal norm and we have the equality

1

α0
− ‖y′‖ = 2− 1

α0
.

Thus the norm of y′ is equal to 2( 1
α0

− 1). In this 
ase

δh
(
K,

1

α
BE

)
=

∥∥∥∥−y′ +
1

α
x′
∥∥∥∥
E

=
1

α
− 2

(
1

α0

− 1

)
= 2 +

1

α
− 2

α0

.

We thus have the equality

δh(αK,BE) = αδh
(
K,

1

α
BE

)
=

{
2α− 1 if α0 ≤ α
2α + 1− 2 α

α0
if 0 ≤ α < α0.

The 
onstant α0 depends only on the body K and it has the following geometri
 meaning.

‖y′‖E = 2
α0

− 2 is the half of the width w(K) of the 
entrally symmetri
 body K, be
ause it is

a point on bdK with minimal norm. So we 
an see that

1

2
≤ α0 =

2

‖y′‖E + 2
=

diamK

w(K) + diamK
< 1

as we stated. �

3.3.2. The 
onstru
ted measure and its measure theoreti
 properties. We now


onstru
t a measure on K1
0 whi
h pushforward by the thinness fun
tion has uniform distribution.

To this (following Ho�mann's paper) we introdu
ed the orbits of a body K about the spe
ial

orthogonal group SO(n) by [K]. These are 
ompa
t subsets of K1
0, and if we 
onsider an open

subset of K1
0 then the union of the 
orresponding orbits is also open. Hen
e there exists a

measurable mapping s : K1
0 −→ K1

0 su
h that s(K) = s(K ′) if and only if K and K ′
are on the

same orbit. Let K̃1
0 := {K ∈ K1

0 , s(K) = K} whi
h is measurable subset of K1
0. We equip it

with the indu
ed topology of K1
0. Finally let Φ1

2a : K̃1
0 × SO(n) −→ K1

0 is the mapping de�ned

by the equality: Φ1
2a(K,Θ) = ΘK. Our notation is analogous with the notation of [90℄. It

was proved in [90℄ (Lemma 2) that a non-trivial σ-�nite measure µ0 on K0 is invariant under

rotations (meaning that for Θ ∈ SO(n) we have µ0(A) = µ(ΘA) for all Borel sets A of K0) if

and only if there exists a σ-�nite measure µ̃0 on K̃0 su
h that µ0 = Φ2a(µ̃0 ⊗ νn), where νn is

the Haar measure on SO(n). It is obvious that in the 
ase of K1
0 there is a similar result by our

mapping Φ1
2a(K,Θ) whi
h is the restri
tion of Ho�mann's map Φ2a(K,Θ) onto the set K1

0.

First we 
hose a 
ountable system of bodies Km to de�ne a probability measure on K̃1
0. Without

loss of generality we may assume that ea
h of the bodies of K̃1
0 has a 
ommon diameter of length

4 denoted by d, whi
h lies on the nth axe of 
oordinates (hen
e it is the 
onvex hull of the points

{2en,−2en}). Consider the set of diadi
 rational numbers in (0, 2]. We 
an write them as follows:

{
m(n, k) :=

k

2n
where n = 0, · · ·∞ and for a �xed n, 0 < k ≤ 2n+1

}
.
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92 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

De�ne the body Km(n,k) as the 
onvex hull of the union of the segment d and the ball around

the origin with radius m(n, k). For ea
h n we have 2n+1
su
h bodies, thus the de�nition

µ̃1
0 := lim

n→∞

2n+1∑

k=1

1

2n+1
δKm(n,k)

de�ne a probability measure on K̃1
0.

Lemma 3.3.2 ([10℄). The pushforward measure w(K)−1(µ̃1
0) has uniform distribution on the

interval (0, 4].

Proof. Let B′ = (0, x] be a level set of (0, 4]. By de�nition

w(K)−1(µ̃1
0)(B

′) = µ̃1
0

({
K ∈ K̃1

0 | w(K) ∈ B′
})

= lim
n→∞

∑

Km(n,k)∈w(K)−1(B′)

0<k≤2n+1

1

2n+1
=

= lim
n→∞

∑

2m(n,k)∈B′

1

2n+1
= lim

n→∞

∑

2m(n,k)<x

1

2n+1
= lim

n→∞

2n−1x∑

k=1

1

2n+1
=
x

4

showing that w(K)−1(µ̃1
0) is the uniform distribution of the interval (0, 4]. �

The Gaussian measure γ of the n2
-dimensional matrix spa
e Rn×n

de�ned by the density

fun
tion G(X)

G(X)dλn
2

:=
1

(√
2π
)n2 e

− 1
2
Tr(XTX)dλn

2

,

where dλn
2
is the n2

-dimensional Lebesgue measure. The Haar measure νn of Rn×n
is the

pushforward measure of the Gaussian measure by the mappingM de�ned by the Gram-S
hmidt

pro
ess (see in [107℄). We stated the following:

Theorem 3.3.1 ([10℄). Let de�ne the measure ν̃10 by density fun
tion dν̃10 = 4
(w+4)2

dµ̃1
0. Then

α0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))

is a probability measure with uniform distribution on [1
2
, 1).

Proof. We are stating that the pushforward measure α0(K)−1
(
Φ1

2a

((
ν̃10 ⊗ νn

)))
has uni-

form distribution on [1
2
, 1) if and only if the pushforward measure w(K)−1

(
µ̃1
0

)
has uniform

distribution on (0, 4]. To prove this 
onsider a Borel set B of [1
2
, 1) and its image B′

under the

bije
tive transformation τ : t 7→ τ(t) := 4
t
− 4. Of 
ourse B′

is a Borel set of the interval (0, 4]

whi
h is the image of [1
2
, 1) with respe
t to τ . We now have that

∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))
= α0(K)−1

(
Φ1

2a

(
ν̃10 ⊗ νn

))
(B) =

= Φ1
2a

(
ν̃10 ⊗ νn

)
(α0(K)−1(B)) = ν̃10

((
Φ1

2a

)−1

1

(
(α0(K)−1(B))

))
νn

((
Φ1

2a

)−1

2

(
α0(K)−1(B))

))

where (Φ1
2a)

−1
1 and (Φ1

2a)
−1
2 means the 
omponents of the set-valued inverse of the fun
tion Φ1

2a,

respe
tively. Sin
e (Φ1
2a)

−1
2 (α0(K)−1(B))) is the group O(n) we have that

∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃10 ⊗ νn

))
= ν̃10

((
Φ1

2a

)−1

1

(
α0(K)−1(B)

))
=

∫

(Φ1
2a)

−1

1
(α−1

0 (B))

dν̃10 .
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On the other hand

(
Φ1

2a

)−1

1

(
α−1
0 (B)

)
=

{
K̃ ∈ K̃1

0 | α0(K̃) =
4

w(K̃) + 4
∈ B

}
=

=

{
K̃ ∈ K̃1

0 | w(K̃) ∈ B′ =
4

B
− 4

}

implying that ∫

(Φ1
2a)

−1

1
(α−1

0 (B))

dν̃10 =

∫

{
K̃∈K̃1

0|w(K̃)∈B′
}

4

(w + 4)2
dµ̃1

0,

and it is equal to ∫

τ∈B′

4

(4 + τ)2
dτ =

∫

t∈B

dt

if and only if w(K)−1
(
µ̃1
0

)
has uniform distribution on (0, 4] as we stated.

Sin
e Lemma 3.3.2 says that w(K)−1
(
µ̃1
0

)
has uniform distribution on the interval [0, 4] we

also proved the theorem. �

Let denote by ν10 the measure Φ1
2a

(
ν̃10 ⊗ νn

)
. The following step gives su
h a probability measure

on (K0, δ
h) whi
h pushforward measure by the fun
tion α0(K) has trun
ated normal distribution

on the range interval [1
2
, 1). We identi�ed K0 with K1

0×[0,∞), and introdu
ed Φ4 as the mapping

Φ4 : (K,α) 7→ αK. Finally we 
an identify K0 with K1
0 × [0,∞). To this end let Φ4 be the

mapping Φ4 : (K,α) 7→ αK.

Lemma 3.3.3. [10℄ From the image K ′ = Φ4(K) we 
an determine uniquely the body K and

the 
onstant α.

Proof. K ′ = αK implies that α0(K) = α0(K
′) = d(K ′)

w(K ′)+d(K ′)
and thus α0(K) is uniquely

determined. We also know the value of α′ := δh(αK,BE). We are 
onsidering two 
ases. In the

�rst 
ase we assume that α ≥ α0 and hen
e by Lemma 3.3.1 we get that α′ = 2α−1 or α = α′+1
2

,

and in the se
ond one we assume 0 ≤ α ≤ α0 then we have α′ = 2α + 1 − 2 α
α0

or α = α′−1
2− 2

α0

=

α0(α′−1)
2(α0−1)

. From these we get that the �rst 
ase implies α0 ≤ α′+1
2

so α′ ≥ 2α0 − 1 and in the

se
ond one we have α0 ≥ α0(α′−1)
2(α0−1)

≥ 0. Hen
e we get 2α0 − 1 ≥ α′ ≥ 0. So �rst we determine α′

and the value

2α0 − 1 =
2diamK

w(K) + diamK
− 1 =

diamK − w(K)

diamK + w(K)
.

Then using the above equalities we 
an 
al
ulate α whi
h is uniquely determined. Now K is

equal to

1
α
K ′

. �

Denote by Φ−1
4 (K ′) :=

((
Φ−1

4

)
1
(K ′),

(
Φ−1

4

)
2
(K ′)

)
the pair (K,α) determined by the method

of Lemma 3.3.3. If we have a σ-�nite measure ν10 on K1
0 then we also have a σ-�nite measure

ν0 on K0 by the de�nition

ν0 = Φ4(ν
1
0 ⊗ ν),

where ν is a σ-�nite measure on (0,∞).
De�ne the set fun
tion p(A) as follows. If A ⊂ K0 ν0 is a measurable set let be

p(A) :=
1√
2πσ2

∫

K ′∈A

e−



δh



BE,
α0(K

′)

Φ−1
4 (K′)2

K′








2

2σ2 dν0.

The main result of [10℄ is:
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Theorem 3.3.2 ([10℄). If ν10 is su
h a probability measure on K1
0 for whi
h α0(K)−1(ν10) has

uniform distribution, ν0 = Φ4(ν
1
0 ⊗ ν) where ν is a probability measure on (0,∞) and Φ is the

probability fun
tion of the standard normal distribution then

P (A) :=
4p(A)(

Φ
(
1
σ

)
− Φ(0)

) =
4(

Φ
(
1
σ

)
− Φ(0)

)√
2πσ2

∫

K ′∈A

e−



δh



BE,
α0(K

′)

Φ−1
4 (K′)2

K′








2

2σ2 dν0

is a probability measure on K0. Moreover α0(K)−1(P ) has trun
ated normal distribution on the

interval [1
2
, 1), (with mean

1
2
and varian
e

(
σ
2

)2
), so

α0(K)−1(P )

({
1

2
≤ t ≤ c

})
= P ({K ∈ K0 | α0(K) ≤ c}) =

Φ
(
c− 1

2
σ
2

)
− Φ(0)

Φ
(
1
σ

)
− Φ(0)

.

Proof.

p(A) =
1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)

∫

α∈(Φ−1
4 )

2
(A)

e−

(
δh

(
BE,

α0(K
′)

α αK

))2

2σ2 dνdν10

however α0(K
′) = α0(K) so it is equal to

1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)




∫

α∈(Φ−1
4 )

2
(A)

e−
α0(K)′2

2σ2 dν


 dν10 =

=
1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)




∫

αK∈A
α≥α0(K)

e−
(2α0(K)−1)2

2σ2 dν +

∫

αK∈A
0≤α≤α0(K)

e−

(
2α0(K)+1−2

α0(K)
α0(K)

)2

2σ2 dν


dν10 =

=
1√
2πσ2

∫

K∈(Φ−1
4 )(A)1




∫

α∈(Φ−1
4 )

2
(A)

e−
(2α0(K)−1)2

2σ2 dν


 dν10 =

ν
(
α ∈

(
Φ−1

4

)
2
(A)
)

√
2πσ2

∫

K∈(Φ−1
4 )(A)1

e−
(2α0(K)−1)2

2σ2 dν10 .

For A = K0 we have that it is equal to

ν((0,∞))√
2πσ2

1∫

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν10)(t)

)
.

Sin
e ν is a probability measure on (0,∞) and α0(K)−1(ν10) has uniform distribution on [1
2
, 1)

so we have that

p(K0) =
1

2
√
2π σ

2

1

2




1∫

−∞

e
− 1

2

(
t−1

2
σ
2

)2

dt−

1
2∫

−∞

e
− 1

2

(
t−1

2
σ
2

)2

dt


 =

Φ
(
1
σ

)
− Φ(0)

4
,

where the fun
tion

Φ(x) =
1√
2π

∫ x

∞
e

(
−u2

2

)

du

is the standard normal distribution fun
tion.

Analogously, for the set K0(c) := {K ′ ∈ K0 | α0(K
′) = α0(K) ≤ c} we have

p(K0(c)) =
ν((0,∞))√

2πσ2

c∫

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν10)(t)

)
=

Φ
(
c− 1

2
σ
2

)
− Φ(0)

4
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thus the measure

P (A) :=
4

Φ
(
1
σ

)
− Φ(0)

p(A)

is su
h a probability measure on K0 whi
h pushforward by the fun
tion α0(K) has normal

distribution. �

3.3.3. Extra
tion the measure to a geometri
 probability measure. The existen
e

of a measure with similar properties on the spa
e K of 
onvex bodies follows easily. In fa
t,

let denote by m(K) := 1
2
(K + (−K)) where the addition means the Minkowski sum of 
onvex

bodies. The mapping m : K −→ K0 is a 
ontinuous fun
tion on K and thus it de�nes a pullba
k

measure µ on K by the rule µ(H) = P (m(H)) where H = m−1(H ′) for a Borel set H ′ ∈ K0.

Observe that m has the following properties:

(1) surje
tive

(2) for any set S ⊂ K and a ve
tor t ∈ Rn
we have m(S + t) = m(S)

(3) for any K ∈ K holds that diamK = diam(m(K)), w(K) = w(m(K) implying that

α0(K) = α0(m(K)).

This implies that the fun
tion α0 is well-de�ned on K and for any Borel set B ∈
[
1
2
, 1
)

µ
(
α−1
0 (B)

)
= P (m

(
α−1
0 (B)

)
) = P (α−1

0 |K0(B)) showing that the pushforward of the measure

µ has trun
ated normal distribution on the interval

[
1
2
, 1
)
.

Note that this measure is a geometri
 measure in the sense that invariant under rigid motions.

The basi
 questions on su
h a measure are: "Do the 
onvex polytopes have measure zero, do the

smooth bodies have positive measure, or does a neighborhood always have positive measure?"

The previous 
onstru
tion we 
an modify su
h that the improved one solves positively the above

questions.

Lemma 3.3.4 ([10℄). Denote by P0 the set of O-symmetri
 
onvex polytopes. Then we have

P (P0) = 0.

Proof. Introdu
e the sets P1
0 and P̃1

0 as we did in the 
ase of the O-symmetri
 bodies K0. By

de�nition we have µ̃1
0

(
K̃1

0 \ P̃1
0

)
= 1 showing that µ̃1

0

(
P̃1

0

)
= 0. Thus

ν̃10

(
P̃1

0

)
=

∫

P̃1
0

dν̃10 =

∫

P̃1
0

4

(w + 4)2
dµ̃1

0 = 0,

and so

ν10
(
P1

0

)
= Φ1

2a

(
P̃1

0 ⊗ νn

)(
P̃1

0 , SO(n)
)
= 0.

Finally, we have ν0 (P0) = Φ4 (ν
1
0 ⊗ ν) (P1

0 , [0,∞)) = 0 implying p (P0) = P (P0) = 0 as we

stated. �

We de�ne the new system in two steps.

• Change the body Km(n,k) to a smooth body K l
m(n,k) de�ned by the 
onvex hull of the

ball around the origin with radius m(n, k) and the two balls of radius εl =
1
2l
m(n, k)

with 
enters ±(2− εl)en.
• Substitute ea
h elements of the system of the bodies K l

m(n,k) with a new 
ountable

system of bodies. Consider a dense, 
ountable and 
entrally symmetri
 point system

{P1,−P1, P2,−P2 · · · } in the 
losed ball of radius 2 with the additional property that

there is no two distan
es between the pairs of points whi
h are equals to ea
h other.

(Su
h a point system is exist.) We assume that the �rst point P1 is the endpoint of

2en and denote by Si a similarity of En
whi
h sends P1 into Pi and the ball of radius

2 at the origin into the ball of radius OPi 
entered at the origin O, too. Consider the


ountable set of bodies S
(
K l
m(n,k)

)
:=
{
Si

(
K l
m(n,k)

)
, i = 1, 2, . . .

}
and de�ne the

elements of the new set Hl
m(n,k) by indu
tion as follows:
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� The �rst element is itself the set K l
m(n,k) := S1

(
K l
m(n,k)

)
.

� In the se
ond step 
onsider su
h pairs from the list S
(
K l
m(n,k)

)
one of whi
h

has diameter 4 and 
onstru
t their 
onvex hulls. Add these bodies also to the set

Hl
m(n,k).

� In the third step 
onstru
t the 
onvex hull of the triplet from whi
h one has

diameter 4. Add these bodies to Hl
m(n,k), too.

� ... and so on.

Hen
e we have a 
ountable system of 
entrally symmetri
 
onvex bodies with diameter 4. The
getting set Hl

m(n,k) has a partition into 
ountable subsets. So we have:

Hl
m(n,k) = K l

m(n,k)∪̇
{
conv

{
Si
(
K l
m(n,k)

)
, Sj
(
K l
m(n,k)

)}
for i, j

}
∪̇

∪̇
{
conv

{
Si
(
K l
m(n,k)

)
, Sj
(
K l
m(n,k)

)
, Sk

(
K l
m(n,k)

)}
for i, j, k

}
∪̇ · · · ,

where all of the elements are smooth bodies having diameter 4. The following te
hni
al lemma

is important.

Lemma 3.3.5 ([10℄). The bodies of

H =
{
Hl
m(n,k) m,n, k, l ∈ N

}

are pairwise non-
ongruent. For an arbitrary polytope Q ∈ P0 and for a given number ε we 
an

hoose an element R ∈ H for whi
h hold that δh (Q,R) < ε.

Proof. The �rst statement follows from the fa
t that ea
h of the bodies of H 
ontains a

maximal �at part whi
h is the 
onvex hulls of the points Pi. By the 
hoi
e of the point system

{Pi} these parts are pairwise non-
ongruent. The proof of the se
ond statement based on the

fa
t that for large l, m(n, k) with a small k the bodies S
(
K l
m(n,k)

)
essentially are O-symmetri


segments and thus their 
onvex hull is 
lose to a polytope with respe
t to the Hausdor� distan
e.

We here omit the straightforward argument. �

We are distributing among the elements of Hl
m(n,k) that part of the measure µ̃1

0 whi
h originally


on
entrated on K l
m(n,k).

For a �xed r ∈ N 
onsider a sequen
e (αri ) of positive numbers whi
h holds the property

∞∑
i=1

αri = 1. Let Lri (l) be the ith element of the r-th subset of the above partition of Hl
m(n,k).

Thus it is a 
onvex hull of exa
tly r 
opies of bodies from S
(
K l
m(n,k)

)
. We give it the weight

αri /2
r
.

Definition 3.3.2 ([10℄). Choose a sequen
e of positive numbers βl with again the property

∞∑
l=1

βl = 1. De�ne a measure

˜̃
µ1
0 by the equality:

˜̃
µ1
0 := lim

n→∞

2n+1∑

k=1

∞∑

l=1

∞∑

r=1

∞∑

i=1

βlα
r
i

2n+1+r
δLr

i (l)
.

We prove the following theorem:

Theorem 3.3.3 ([10℄). On the spa
e of norms there is a probability measure P with the following

properties:

• The neighborhoods has positive measure.

• The set of polytopes has zero measure.

• The set of smooth bodies has measure 1.
• The pushforward α0(K)−1(P ) of P has trun
ated normal distribution on the interval

[1
2
, 1).
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Proof. Consider the measure

˜̃
µ1
0 without the measure µ̃1

0 and expand it for K0 on the way

as we did it with µ̃1
0. The �nal measure P by Lemma 3.3.4 on the set of polytopes has zero

value. By the remark before the de�nition of the new system we know that the set of smooth

bodies of K0 has measure 1 sin
e the elements of H are smooth. The required property on the

approximation of polytopes follows from Lemma 3.3.5 sin
e for ea
h polytope we 
an �nd a

body from Hl
m(n,k) 
lose to them. The de�nition of

˜̃
µ1
0 guarantees that the distribution of

˜̃
µ1
0

and µ̃1
0 are agree proving our last statement. �

3.4. Generalized spa
e-time model with 
hanging shape

Our investigation on spa
e-time originated from Minkowski, Lorentz, Einstein and Riemann.

Minkowski observed (see [123℄) that the mathemati
al stru
ture of spe
ial relativity requires

a spe
ial kind of geometry the geometry of spa
e-time. In spa
e-time we have a homogeneous

system of points in ea
h point we 
an measure the distan
e at the same manner. Lo
ally we

have only three types of points whi
h are agree one of the spa
e-like, time-like and light-like

properties, respe
tively. Global relativity rewrote this 
on
ept, the existen
e of gravity 
hanges

the geometri
 stru
ture of the spa
e hen
e we 
annot 
onsider our world su
h a manifold whi
h

has the same lo
al metri
 geometry in its points independently from the position of the points

and the date of the event. In su
h a model the metri
 of the geometry 
hanges by point to

point. The des
ription in its full generalization require the Riemann geometri
 approa
h in

whi
h the leading role of the time is loose. To approa
h global relativity theory we should use

the mathemati
al ba
kground of a Lorentzian manifold in whi
h the points of the world don't

ordered by the time. Though this generalization is ne
essary for a 
omplete handing of this

problem there are many important situation in whi
h the ordering role of the time natural and

indisputable. Our goal is to 
reate an immediate stru
ture between spa
e-time and Lorentzian

manifold suitable to des
ribe those phenomenon in whi
h the time has an important role. For

this purpose we give in [11℄ a mathemati
al model 
alled by time-spa
e in two versions (one of

them deterministi
 and the other one is random) and prove that substantially all of them 
an

be 
onsidered relevant. The knowledge of the author either this model and the 
orresponding

investigations are new. On the other hand there is fully developed theory whi
h 
an be followed

in this situation. Hen
e the results in this paper 
an be valued di�erently. We 
on
entrate in

this thesis only su
h things whi
h fully understandable for a pure mathemati
s.

3.4.1. Deterministi
 time-spa
e model. We assume that there is an absolute 
oordi-

nate system of dimension n in whi
h we are modeling the universe by a time-spa
e model. The

origin is a generalized spa
e-time model in whi
h the time axis plays the role of the absolute

time. In a �xed moment (with respe
t to this absolute time) the 
olle
tion of the points of

the spa
e 
an be regarded as an open pun
tured ball of the embedding normed spa
e whi
h

is 
entered at the origin that does not 
ontain the origin. The omitted point is the origin of

a 
oordinate system giving the spa
e-like 
oordinates of the world-points with respe
t to our

time-spa
e system. Sin
e the points of the axis of the absolute-time are not in our universe

there is no referen
e system in our modeled world whi
h determines the absolute time.

2

In our deterministi
 model (based on a generalized spa
e-time model) the absolute 
oordinates

of points are 
al
ulated by a �xed basis of the embedding ve
tor spa
e. The ve
tor s(τ) means

the 
olle
tion of the spa
e-
omponents with respe
t to the absolute time τ , the quantity τ has

to be measured on a line T whi
h orthogonal to the linear subspa
e S of the ve
tors s(τ).
(The orthogonality was 
onsidered as the Pythagorean orthogonality of the embedding normed

spa
e.) Consider a �xed Eu
lidean ve
tor spa
e with unit ball BE on S and use its usual

2

In mathemati
al point of view there is no importan
e that the absolute time-axis 
an be found (is "exists")

or 
annot be found (is not "exists"). In our 
al
ulations assume that the shape of the universe in a moment is

an open 
entrally symmetri
 
onvex body. Its 
enter is also unknown and we 
an visualize it as a point of the

axis of absolute-time.
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Figure 3.3. The shape of the universe.

fun
tions e.g. volume, diameter, width, thinness and Hausdor� distan
e. With respe
t to the

moment τ of the absolute time we have a unit ball K(τ) in the 
orresponding normed spa
e

{S, ‖ · ‖τ}. The modeled universe at τ is the ball τK(τ) ⊂ {S, ‖ · ‖τ}. The shape of the model at

the moment τ depends on the shape of the 
entrally symmetri
 
onvex body K(τ). The 
enter
of the model is on the axis of the absolute time, it 
annot be determined. For 
al
ulations on

time-spa
e we need further smoothness properties on K(τ). These are

• K(τ) is a 
entrally symmetri
, 
onvex, 
ompa
t, C2
body of volume vol(BE).

• For ea
h pairs of points s′, s′′ the fun
tion K : R+ ∪ {0} → K0, τ 7→ K(τ) holds the
property that [s′, s′′]τ : τ 7→ [s′, s′′]τ is a C1

-fun
tion.

Definition 3.4.1. [11℄ We say that a generalized spa
e-time model endowed with a fun
tion

K(τ) holding the above properties is a deterministi
 time-spa
e model.

The main subset of a deterministi
 time-spa
e model 
ontains the points of negative norm-

square. This is the set of time-like points and the upper 
onne
ted sheet of the time-like points

is the modeled universe. The points of the universe have positive time-
omponents. We denote

this model by (M,K(τ)).
We remark that in the two-dimensional 
ase for ea
h τ , K(τ) is a segment with length two, thus

our model is the 2-dimensional spa
e-time. On the other hand, with n greater than or equal

to 3, the two-dimensional spa
e-time se
tions of our general spa
e-time bounded by general

(non-
onvex) 
urves symmetri
 about the time-axis (see on Fig. 3.3).

We 
an give a produ
t similar to the Minkowski produ
t of a generalized spa
e-time model. In

a two-dimensional plane the role of the light-
one play the 
urve [αe(τ)e, αe(τ)e]τ + [τ, τ ] = 0.
For a �xed dire
tion x, we 
onsider the 
urves tβ,e : τ 7→ βαe(τ)e + τen through the point

x = βαe(τ)e + τen. Note that x is a time-like point if |β| < 1. The role of the imaginary unit

sphere is played by the set of points

∪
{{

s+ τ where

√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
.

In the dire
tion of e it is a 
urve de�ned by the impli
it equation

√
[s, s]τ + 1 = τ , τ ≥ 1. The

interse
tion of this 
urve with tβ,e is a point satisfying the equality [βαe(τ ⋆)e, βαe(τ ⋆)e]τ
⋆

+1 =

(τ ⋆)2, with parameter τ ⋆, and hen
e we get β2 (τ ⋆)2 + 1 = (τ ⋆)2, or equivalently (τ ⋆)2 = 1
1−β2 .

Assuming that our examination is on the positive part of the set of time-like points we have

τ ⋆ = 1√
1−β2

or β =

√
(τ⋆)2−1

τ⋆
.

In the spa
e-time model the tangent of the imaginary unit 
urve is orthogonal to the position

ve
tor of the 
ommon point. This requires that in the 
ase of generalized spa
e-time model, the

produ
t [
e+

(√
[s, s]τ + 1

)′
e
(βαe(τ ⋆)e) en, βα

e (τ ⋆) e+ τ ⋆en

]
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will be equal to zero. Another 
laim that the produ
t is equal to the 
orresponding norm-

square in the 
ase when its arguments 
ontains the same ve
tors. We will need a lemma on the

dire
tional derivative of the fun
tion whi
h de�nes the imaginary unit sphere.

Lemma 3.4.1 ([11℄). The dire
tional derivative of the real valued fun
tion h(s) =
√
[s, s]h(s) + 1

is

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=
2

2h(s)− ∂[s,s]τ

∂τ
(h(s))

[e, s]h(s),

or equivalently

h′e(s) =
1

h(s)− ‖s‖h(s) ∂‖s‖τ
∂τ

(h(s))
[e, s]h(s).

Proof. The 
onsidered derivative is

h′e(s) =
1

2
√
1 + [s, s]h(s)

([s, s]h(s))′e.

It 
an be seen easily (or use the 
al
ulation of Theorem 3.4.1 with the substitutions c(t+ λ) =
s+ λe, (f1)S = (f2)S = id|S and (f1)T = (f2)T = h) that the dire
tional derivative is equal to

h′e(s) =
1

2
√

1 + [s, s]h(s)

(
[e, s]h(s) +

(
[s, ·]h(s)

)′
e
(s) +

∂[s, s]τ

∂τ
(h(s)) · (h)′e(s)

)
=

=
1

2
√

1 + [s, s]h(s)

(
2[e, s]h(s) +

∂[s, s]τ

∂τ
(h(s)) · (h)′e(s)

)
.

Thus we get

h′e(s)

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√

1 + [s, s]h(s)

)
=

[e, s]h(s)√
1 + [s, s]h(s)

,

or equivalently the required formulas

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=
1

h(s)− ‖s‖h(s) ∂‖s‖τ
∂τ

(h(s))
[e, s]h(s).

�

Definition 3.4.2 ([11℄). For two ve
tors s1 + τ1 and s2 + τ2 of the deterministi
 time-spa
e

model de�ne their produ
t with the equality

[s1 + τ1, s2 + τ2]
+,T := [s1, s2]

τ2 + [τ1, τ2] = [s1, s2]
τ2 − τ1τ2.

Here [s1, s2]
τ2

means the s.i.p de�ned by the norm ‖ · ‖τ2 . This produ
t is not a Minkowski

produ
t, as there is no homogeneity property in the se
ond variable. On the other hand the

additivity and homogeneity properties of the �rst variable, the properties on non-degenera
y of

the produ
t are again hold, and the 
ontinuity and di�erentiability properties of this produ
t

also remain the same as of a Minkowski produ
t. The 
al
ulations in a generalized spa
e-time

model basi
ally depend on a rule on the di�erentiability of the se
ond variable of the Minkowski

produ
t. Using the notation

[f1(c(t)), ·]+′

D(f2◦c)(t)
(f2(c(t))) :=

(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))) − (f1)T (c(t))((f2)T ◦ c)′(t)

)
,

in Lemma 3.2.4 we stated that if f1, f2 : S −→ V = S + T are two C2
maps and c : R −→ S is

an arbitrary C2

urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ = [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+′
D(f2◦c)(t)((f2 ◦ c)(t)).

Regarding to the importan
e of this rule we reprodu
e it in a time-spa
e model. Let denote by

fS and fT the 
omponent fun
tions of f with respe
t to the subspa
es S and T , respe
tively.
By de�nition, let us denote

(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t))) :=
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=
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)+

+(f1)T (c(t))
∂2[(f2)S(c(t)), (f2)S(c(t))]

τ

(∂τ)2
((f2)T (c(t))) [D((f2)S ◦ c)(t), (f2)S(c(t))](f2)T (c(t)) .

We now generalize the formula of Lemma 3.2.4.

Theorem 3.4.1 ([11℄). If f1, f2 : S −→ V = S + T are two C2
maps and c : R −→ S is an

arbitrary C2

urve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+,T )′ = [D(f1 ◦ c)(t), f2(c(t))]+,T +
(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t)

Proof. By de�nition

([f1 ◦ c, f2 ◦ c)]+,T )′|t := lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+,T − [f1(c(t)), f2(c(t))]

+,T
)
=

= lim
λ→0

1

λ

(
[(f1)S(c(t+ λ)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]

(f2)T (c(t))
)
+

+ lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) .

The �rst part 
an be written in the form

lim
λ→0

1

λ

(
[(f1)S(c(t+ λ))− (f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ))+

+[(f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t))

)
.

We prove that it is equal to

[D((f1)S ◦ c)|t, (f2)S(c(t))](f2)T (c(t)) +
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

In this latter equation the �rst term 
omes from the value of the �rst bra
ket of the earlier

one. We 
al
ulate now the remaining substra
tion. For this, take the �xed (absolute) 
oordinate

system {e1, · · · , en−1} of S and 
onsider the 
oordinate-wise representation (f2)S◦c =
n−1∑
i=1

((f2)S◦
c)iei. Using Taylor's theorem for the 
oordinate fun
tions we have that there are real parameters

ti ∈ (t, t + λ), for whi
h

((f2)S ◦ c)(t+ λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we get that

[(f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t)) =

=

[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t)) =

=
(
[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) − [(f1)S(c(t)), (f2)S(c(t))]

(f2)T (c(t))
)
+

+



[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))
)
.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 101

Dividing by λ and applying the limit pro
edure when λ tends to zero we get from the �rst

bra
ket the value:

(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

(((f2)S ◦ c)(t))).
We also determine the value of the se
ond bra
ket. By De�nition 3.4.2 the se
ond term in this

bra
ket is

[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) = [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ)) −

−∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ − o(λ′),

where (f2)T (c(t+ λ)) = (f2)T (c(t)) + λ′ and lim
λ′ 7→0

o(λ′)
λ′

= 0.

Sin
e (f2)T c(t+ λ) = (f2)T c(t) + λ ((f2)T ◦ c)′ (t) + o1(λ), we have that λ
′ = λ ((f2)T ◦ c)′ (t) +

o1(λ). By the Lips
hitz 
ondition (whi
h also holds in the se
ond variable of the produ
t) there

is a real 
onstant K with whi
h we have that the absolute value of the substra
tion

[
(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ))

is less than or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

.

Dividing by λ and applying the limit pro
edure as λ→ 0, this quantity tends to zero. Dividing

also by λ, for the remaining parts we have

1

λ

∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ + o(λ′) =

=
∂[(f1)S(c(t)), (f2)S(c(t)) + λD((f2)S ◦ c)(t)](f2)T (c(t))

∂τ

(
((f2)T ◦ c)′ (t) + o1(λ)

λ

)
+

+

(
o
(
λ ((f2)T ◦ c)′ (t) + o1(λ)

)

λ ((f2)T ◦ c)′ (t) + o1(λ)

)(
λ ((f2)T ◦ c)′ (t) + o1(λ)

λ

)
,

and if λ tends to zero then it is equal to

∂[(f1)S(c(t)), (f2)S(c(t))]
τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

Thus, we proved our statement on the spa
e-like 
omponent. On the other hand (f1)T , (f2)T ,
are real-real fun
tions, respe
tively. This implies that

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =

= −((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t)
showing the assertion of the theorem. �

In a deterministi
 time-spa
e model we should investigate su
h n−1-dimensional subsets whi
h


annot be 
onsidered globally as a hypersurfa
e but lo
ally holds this property.
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102 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

3.4.1.1. Imaginary unit sphere of a deterministi
 time-spa
e model. The points of H+,T

an

be de�ned by the union ∪
{{

s+ τ where

√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
. Our assumption onK(τ)


annot guaranties that for every s ∈ S there is a τ whi
h holds the equality

√
[s, s]τ + 1 = τ .

On the other hand if we assume that ρH(K(τ), BE) ≤ 1 the ball 2K(τ) 
ontains the Eu
lidean
ball BE for every τ . Hen
e [s, s]τ ≤ 4‖s‖2E so for all τ with τ 2 > 4‖s‖2E + 1, the inequality

[s, s]τ + 1 < τ 2 holds. Sin
e for a non-zero ve
tor s we have also that [s, s]1 + 1 > 1, the
statement follows by 
ontinuity. Clearly, H+,T

generally 
annot be 
onsidered as a hypersurfa
e

of the time-spa
e implying that its di�erential geometry 
an be 
onsidered only on the base of

its impli
it de�nition. On the other hand we 
an 
onsider the fun
tion H : V → R de�ned by

H(s + τen) :=
√

[s, s]τ + 1 − τ . If v0 = s0 + τ0en is a point on H+,T
then we have H(v0) = 0.

By our de�nition H is 
ontinuously di�erentiable at the point v0. Assume that

∂H

∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√
[s, s]τ + 1

(v0)− 1 6= 0, or equivalently
∂([s0, s0]

τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 + 1.

Then by the impli
it fun
tion theorem there is a neighborhood U of v0 and a fun
tion h : S → R

su
h that τ = h(s) hold for the points v = s+ τen of H+,T
. Thus we have in U (as in Lemma

3.4.1) that h(s) =
√
[s, s]h(s) + 1. If the ve
tor s 
omes from a point of a 
urve c(t) ⊂ S by the

de�nition c(t+ λ) : λ→ s+ λe, we get the equality: (h ◦ c)(t) =
√

[(c(t), c(t)]h(c(t)) + 1 and also

(h ◦ c)′(t) = [ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

+
∂[c(t),c(t)]τ

∂τ
(h(c(t))) · (h ◦ c)′(t)

2
√

1 + [c(t), c(t)]h(c(t))

or equivalently,

(h ◦ c)′(t) =
(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√

1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

=

=
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[ċ(t), c(t)]h(c(t)).

We note that the additional value

∂[c(t), c(t)]τ

∂τ
(h(c(t)))

of the formula depend on the position c(t + 0) = s and do not depend on the dire
tion ve
tor

e. Thus the �rst fundamental form is:

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+,T = [ċ(t), ċ(t)](h◦c)
′(t) − [(h ◦ c)′(t)]2 =

= [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

To 
al
ulate the se
ond fundamental form we have to determine the unit normal ve
tor �eld.

A tangent ve
tor is

ċ(t) + (h ◦ c)′(t)en = ċ(t) +

(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√
1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

en.

We 
an see that[
ċ(t) +

2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

en,
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + h(c(t))en

]+,T
= 0

showing the equality

n ◦ c = 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 103

The se
ond fundamental form of H+,T
is

II :=

[
c̈(t) + (h ◦ c)′′(t)en,

2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en
]+,T

(h◦c)(t)

=

=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)](h◦c)(t) − (h ◦ c)′′(t)h(c(t)).

In fa
t we 
an use here Theorem 3.4.1. Thus we get �rst that

(h ◦ c)′′(t) =
(

2 [ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)′

= A+ B

where

A =
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

(
[c̈(t), c(t)]h(c(t)) +

(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t))+

+
2[ċ(t), c(t)]h(c(t)) ∂[ċ(t),c(t)]

τ

∂τ
(h(c(t)))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)

and

B =
−2[ċ(t), c(t)]h(c(t))

(
2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2 2
(
(h ◦ c)′(t)

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

)
=

−2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

(
((h ◦ c)′(t))2

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

)
.

Sin
e in time-spa
e model we have

(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t)) = [ċ(t), ċ(t)](h◦c)
′(t))

we get that the

se
ond fundamental form is:

II =
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)]h(c(t)) − (h ◦ c)′′(t)h(c(t)) =

=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
−[ċ(t), ċ(t)](h◦c)

′(t)+

+ ((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)2
(h(c(t)))

)
− 2(h ◦ c)′(t)∂[ċ(t), c(t)]

τ

∂τ
(h(c(t)))

]
,

where

(h ◦ c)′(t)) = 2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

.

Observe, that if the norm is a 
onstant fun
tion of the time, these formulas simplify to the

formulas of the generalized spa
e-time model. We now give three examples to illustrate that

these important formulas 
an be 
al
ulated, 
on
retely.

Example 3.4.1. [11℄

(1) For a 3-dimensional example we take the fun
tion K(τ) : τ 7→ Gτ , where Gτ is the ellipse

of area π with half-axes τe1 and

1
τ
e2. Here {e1, e2} is an orthonormed basis of the embedding

Eu
lidean plane. The 
onne
tion between the norms of the ve
tor s = xe1+ye2 and its Eu
lidean


oordinates is [s, s]τ = τ 2x2 + y2

τ2
. The impli
ite equation for the 
orresponding imaginary unit

sphere is τ =
√
1 + τ 2x2 + y2

τ2
, if we assume that 2τx2 − 2y2

τ3
6= 2τ , or equivalently x2 − 1 6= y2

τ4
.

For a ve
tor s = (x, y)T we ex
lude the moment τ holding the equality τ 4 = y2

x2−1
where x2 6= 1.
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104 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

(Thus if x2 = 1 there is no τ , whi
h we should ex
lude from the investigation.) Solving the

impli
it equation we get that

τ 2 =
1±

√
1 + 4(1− x2)y2

2(1− x2)
if x2 6= 1,

and in the 
ase when x2 = 1 τ has to be ∞ for every y. This formula shows that we 
an get

real values for τ if and only if x2 ≤ 1 + 1
4y2

. Thus the domain of the imaginary unit sphere is

the union of three domains bounded by the 
urves x = ±1 and x = ±
√

1 + 1
4y2

drawing on the

�gure Fig 3.4.

x=1x= -1 x
2
= 1+

1

4 y 2

x

y

Figure 3.4. The domain of the imaginary unit sphere in the example.

Sin
e τ 2 > 0 we also have that if |x| < 1 then we have to 
onsider the equality with positive

sign

τ 2 =
1 +

√
1 + 4(1− x2)y2

2(1− x2)
,

and for the other two 
onne
ted 
omponents we have to 
hoose the equality with negative sign:

τ 2 =
1−

√
1 + 4(1− x2)y2

2(1− x2)
.

The �rst fundamental form is

I = [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

Sin
e

[ċ(t), c(t)]h(c(t)) = h(c(t))2 ˙x(t)x(t) +
˙y(t)y(t)

h(c(t))2
,

∂[c(t), c(t)]τ

∂τ
(h(c(t))) = 2h(c(t))x(t)2 − 2y(t)2

h(c(t))3
,

we have that

I = ((h ◦ c)′(t))2
(
(ẋ(t))2 − 1

)
+

(ẏ(t))2

((h ◦ c)′(t))2 ,
where

(h ◦ c)′(t) = h(c(t)
(h(c(t))4 ẋ(t)x(t) + ẏ(t)y(t)

(h(c(t))4 (1− (x(t))2) + (y(t))2

with

(h(c(t)))2 =
1±

√
1 + 4(1− (x(t))2)(y(t))2

2(1− (x(t))2)
.
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3.4. GENERALIZED SPACE-TIME MODEL WITH CHANGING SHAPE 105

We also get that

II = − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2(ẋ(t))2+

+
(ẏ(t))2

((h ◦ c)′(t))2 − ((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

∂τ
(h(c(t)))

)
+

+ 2(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

]
=

= − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2

(
(ẋ(t))2 − 1 + (x(t))2 +

3(y(t))2

(h(c(t)))4

)
+

+4(h ◦ c)′(t)
(
h(c(t))ẋ(t)x(t)− ẏ(t)y(t)

(h(c(t)))3

)
+

(ẏ(t))2

((h ◦ c)′(t))2

]
.

For 
on
reteness let

c(t) = (x(t), y(t)) = (t cosα,
√
2 + t sinα), and t0 = 0.

Then we have that (h(c(t0)))
2 = 2 be
ause in the formula

1±
√

1 + 4(1− x(t)2)y(t)2

2(1− x(t)2)

we have to 
al
ulate with positive sign. Sin
e

(h ◦ c)′(t0) =
√
2

√
2 sinα

4 + 2
=

1

3
sinα,

we get that

I =
1

9
sin2 α(cos2 α− 1) +

sin2 α
1
9
sin2 α

= 9− 1

9
sin4 α > 0.

Similarly the se
ond fundamental form is

II = −2

3

(
1

9
sin2 α

(
cos2 α− 1 +

3

2

)
+ 9 +

2
√
2

3
sin2 α

)
=

= −2

3

((
1

6
+

2
√
2

3

)
sin2 α− 1

9
sin4 α + 9

)
=

= −1 + 4
√
2

9
sin2 α+

2

27
sin4 α− 6.

The extremal values of the non-positive fun
tion

II

I
=

2
27
sin4 α− 1+4

√
2

9
sin2 α− 6

9− 1
9
sin4 α

attained at the dire
tions α for whi
h either cosα = 0 or sinα = 0 with the respe
tive negative

values −157+12
√
2

240
and −2

3
. Sin
e the normal ve
tor at this point is

n ◦ c = 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)e3 =
2

3
(0,

√
2)T +

√
2e3 =

=
√
2

((
0,

2

3

)T
+ e3

)
,

we have that the norm-square of it is 2
(
2
9
− 1
)
= −14

9
< 0 and hen
e the Gaussian 
urvature

is negative at this point.
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106 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

(2) For a further example 
hoose an ellipseGα as in the previous example with a �xed parameter

α, where 1 ≤ α ≤ 2. Let K(τ) be the rotated 
opy of this ellipse about the time axis with the

angle τ . Then

[s, s]τ = [xe1 + ye2, xe1 + ye2]
τ = α2(cos τx+ sin τy)2 +

(− sin τx+ cos τy)2

α2
=

=

(
α2x2 +

y2

α2

)
cos2 τ +

(
α2y2 +

x2

α2

)
sin2 τ + 2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

)
sin2 τ + 2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

) 1
2
−

−1

2

(
α2 − 1

α2

)(
y2 − x2

)
cos 2τ + sin 2τ

(
α2 − 1

α2

)
=

=
1

2
(α2 +

1

α2
)(x2 + y2) +

(
α2 − 1

α2

)(
sin 2τ − 1

2

(
y2 − x2

)
cos 2τ

)

The impli
ite equation of the imaginary unit sphere is

τ =

√
1 +

α4 + 1

2α2
(x2 + y2) +

α4 − 1

α2

(
sin 2τ − 1

2
(y2 − x2) cos 2τ

)
.

Here there is no expli
it form for τ however in a 
on
rete point the fundamental forms and


urvatures 
an be determined. We remark that the Hausdor� distan
es of the unit ball K(τ)
from BE is less or equal to 1, thus the domain is the whole plane. Sin
e the norm indu
ed by

an inner produ
t in every moments, the 
orresponding time-spa
e is a semi-Riemann manifold.

(3) We 
an get premanifolds if the square of the examined norms 
an not be represented as the

s
alar square of an inner produ
t. A three-dimensional example 
an be get from the fun
tion

K(τ) whi
h sends τ for τ > 1 to the unit ball of the lτ spa
e with Eu
lidean area π. In this


ase

[s, s]τ =
v(lτ )

π
τ
√

|x|τ + |y|τ , where v(lτ ) =
Γ
(
1 + 1

τ

)2

Γ
(
1 + 2

τ

) 4

is the volume of the unit ball of the standard lτ norm of the plane. Here for τ we have the

impli
ite equality

τ =

√
1 +

v(lτ )

π
τ
√

|x|τ + |y|τ .
As in the previous example the domain is also the plane S. �

3.4.1.2. The de Sitter sphere in time-spa
e. The points of the de Sitter sphere G+,T

an

be de�ned by the union ∪
{{

s+ τen where

√
[s, s]τ − 1 = τ

}
, [s, s]τ ≥ 1

}
. G+

is not a hy-

persurfa
e. It 
an be handled by the impli
it fun
tion τ =
√

−1 + [s, s]τ for [s, s]τ > 1, using

the assumption

∂G
∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√

[s,s]τ−1
(v0)− 1 6= 0, or equivalently ∂([s0,s0]τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 − 1.

Using the equality h2(s) + g2(s) = [s, s]h(s) + [s, s]g(s), the derivative of g in the dire
tion of the

unit ve
tor e ∈ S 
an be 
al
ulated from the equality

2h(s)h′e(s) + 2g(s)g′e(s) =
(
[s, s]h(s) + [s, s]g(s)

)′
=

=

(
2[e, s]h(s) +

∂[s, s]h(s)

∂τ
(τ) · h′e(s)

)
+

(
2[e, s]g(s) +

∂[s, s]g(s)

∂τ
(τ) · g′e(s)

)
.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)
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Thus

g′e(s) =
2[e, s]g(s)

2g(s)− ∂[s,s]g(s)

∂τ
(g(s))

.

The �rst and se
ond fundamental forms have analogous forms as in the 
ase of the imaginary

unit sphere H+,T
.

3.4.1.3. The shape fun
tion. To use our new model in relativity theory we 
an 
larify the

following question: How we de�ne the so-
alled "inertial frame" in our model? If we insist

on "a Des
artes-system of the spa
e whi
h moving with a 
onstant velo
ity" then we have to

interpret two things; the 
on
epts of Des
artes system and the 
on
ept of velo
ity, respe
tively.

In a deterministi
 time-spa
e we have a fun
tion K(τ), and we have more possibilities to

de�ne orthogonality in a 
on
rete moment τ . We shall �xe a 
on
ept of orthogonality and

we will 
onsider it in every normed spa
e. The most natural 
hoi
e is the 
on
ept of Birkho�

orthogonality. Using it, in every normed spa
e we 
an 
onsider an Auerba
h basis (see Theorem

3.1.2) whi
h 
an play the role of a basi
 
oordinate frame. We 
an determine the 
oordinates of

the point with respe
t to this basis. We say that a frame is at rest with respe
t to the absolute

time if its origin (as a parti
le) is at rest with respe
t to the absolute time τ and the unit

ve
tors of its axes are at rest with respe
t to a �xed Eu
lidean orthogonal basis of S. In this


ase the world line of the origin in the model is a verti
al line (parallel to T ); it is the 
olle
tion
of those points of the model whi
h absolute spa
e-
oordinates do not 
hanges by the 
hange of

the absolute time. Unfortunately, pra
ti
ally we do not know an absolute 
oordinate system,

and we 
an not 
he
k the immobility of the axes of su
h a frame. This motivates our de�nition

on inertial frame and inertial frame "at rest", respe
tively. We denote by (S, ‖ · ‖τ ) the normed

spa
e with unit ball K(τ). In S we �x an Eu
lidean orthonormal basis and give the 
oordinates

of a point (ve
tor) of S with respe
t to this basis. We get 
urves in S parameterized by the

time τ . In our 
on
ept the parti
le is a random fun
tion x : Ix → S holding two 
onditions:

• the set Ix ⊂ T+
is an interval

• [x(τ), x(τ)]τ < 0 if τ ∈ Ix.

The parti
le lives on the interval Ix, is born at the moment inf Ix and dies at the moment sup Ix.
Sin
e all time-se
tions of a time-spa
e model is a normed spa
e of dimension n the Borel sets of

the time-se
tions are independent from the time. This means that we 
an 
onsider the physi
al

spe
i�es of a parti
le as a traje
tory of a sto
hasti
 pro
ess. A parti
le "realisti
" if it holds

the "known laws of physi
" and "idealisti
" otherwise. This is only a terminology for own use,

the mathemati
al 
ontain of the expression "known laws of physi
s" is indeterminable. Sin
e

the norm (and thus the metri
) in a time-spa
e model 
hanges by the time, the formulas of the

density fun
tion of a �xed distribution also 
hanges by the time. For example, if we say that

both of the fun
tions f(x(τ1)) and f(x(τ2)) have normal distribution on its domain τ1K(τ1) and
τ2K(τ2) we have to use distin
t formulas on their density fun
tions, respe
tively. The uniform

distribution is the only distribution whi
h density fun
tion is independent from the time. First

we introdu
e an inner metri
 δK(τ) on the spa
e at the moment τ .3 These thread motivates the

following de�nition:

Definition 3.4.3 ([11℄). Let X(τ) : T → τK(τ) be a 
ontinuously di�erentiable (by the time)

traje
tory of the random fun
tion (x(τ) , τ ∈ Ix). We say that the parti
le x(τ) is realisti
 in

its position if for every τ ∈ Ix the random variable δK(τ) (X(τ), x(τ)) has normal distribution

3

We have two possibilities, either we 
an 
onsider this spa
e with its original metri
 δK(τ)(u, v) := ‖u−v‖τ ,
(arise from the norm) � at this time the spa
e bounded and all distan
es are less then 2τ � or as another

possibility we 
an de�ne a distan
e whi
h derives from the ball τK(τ) indire
tly. For example let u, v ∈ τK(τ)
be two points and denote by (uv)∞ and (uv)−∞ the interse
tion points of the line (uv) and the boundary of the

ball τK(τ), respe
tively. (Here the point v separates the points u and (uv)∞.) Let (u, v, (uv)∞, (uv)−∞) denote
the 
ross ratio of the four points and let δK(τ)(u, v) := ln (u, v, (uv)∞, (uv)−∞) be the inner metri
 of the spa
e

τK(τ). We note that if the norm is Eu
lidean it is the usual distan
e of a modeled hyperboli
 spa
e (whi
h is

unbounded with respe
t to this metri
).
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on τK(τ). In other words the sto
hasti
 pro
ess

(
δK(τ) (X(τ), x(τ)) , τ ∈ Ix

)
has stationary

Gaussian pro
ess with respe
t to a given 
ontinuously di�erentiable fun
tion X(τ). We 
all the

fun
tion X(τ) the world-line of the parti
le x(τ).

We note that the two metri
s de�ned in footnote 2 are essentially agree for small distan
es, thus

the 
on
ept of "realisti
 in its position" independent from the 
hoi
e of δK(τ). As a re�nement of

this 
on
ept we de�ne another one, whi
h 
an be 
onsidered as a generalization of the prin
iple

on the maximality of the speed of the light.

Definition 3.4.4 ([11℄). We say that a parti
le realisti
 in its speed if it is realisti
 in its

position and the derivatives of its world-line X(τ) are time-like ve
tors.

Sin
e the shape of the sets of the time-like points in a time-spa
e is not a 
one, it is possible that

u is a time-like ve
tor but αu is not with 
ertain α. On the other hand in a random time-spa
e

model the speed of those parti
les whi
h realisti
 in its speed with a great probability are less

than to the speed of the light. Note that our theory does not ex
lude the possibility of the

existen
e of a parti
le with speed is greater to the speed of the light at a moment neither in the


ase of generalized spa
e-time model or in the 
ase of a parti
le whi
h is realisti
 in its speed.

For su
h two parti
les x′, x′′ whi
h are realisti
 in their position we 
an de�ne a instantaneously

distan
e by the equality:

δ(x′(τ), x′′(τ)) = ‖X ′(τ)−X ′′(τ)‖τ =
√
[X ′(τ)−X ′′(τ), X ′(τ)−X ′′(τ)]+,T .

We 
an say that two parti
les x′ and x′′ are agree if the expe
ted value of their distan
es is

equal to zero. Let I = Ix′ ∩ Ix′′ be the 
ommon part of their domains. The required equality is:

E(δK(τ)(x
′(τ), x′′(τ))) =

∫

I

δK(τ)(x
′(τ), x′′(τ))dτ =

∫

I

‖X ′(τ)−X ′′(τ)‖τdτ = 0.

We also de�ne the 
on
ept of a frame as follows:

Definition 3.4.5 ([11℄). The system {f1(τ), f2(τ), f3(τ), o(τ)} ⊂ (S, ‖ · ‖+τ ) × τK(τ) is a

frame, if the following assumptions hold:

• o(τ) is a parti
le realisti
 in its speed, with su
h a world-line O(τ) : T → τK(τ) whi
h
does not interse
t the absolute time axis T ,

• the fun
tions fi(τ) : T → ∪{(S, ‖ · ‖τ) , τ ∈ T} are 
ontinuously di�erentiable, for all

�xed τ ,
• the system {f1(τ), f2(τ), f3(τ)} is an Auerba
h basis with origin O(τ) in the normed

spa
e (S, ‖ · ‖τ ).
We remark that a 
ondition stating that the frame building up from elements of an Auerba
h

basis is very strong. In the most 
ases the Auerba
h basis is unique. In an inner produ
t spa
e

a set of pairwise 
onjugate diameters of element n of the unit ellipsoid gives an Auerba
h basis.

It is easy to see that every two Auerba
h basis are isometri
 to ea
h other, there is a linear

isometry of the spa
e sending the �rst into the se
ond. Thus the set of the Auerba
h bases 
an

be get using the elements of the symmetry group of the spa
e from a �xed one. The following

lemma is obviously and we leave its proof to the reader.

Lemma 3.4.2 ([11℄). For every ε > 0 and a pair {K ′,A′} where K ′ ∈ K0 is a unit ball of

C2
-
lass and A′

is an Auerba
h basis of the normed spa
e (S, ‖ · ‖K ′) there is a δ > 0 su
h that

if for K ′′
holds δH(K

′, K ′′) < δ then it 
an be found an Auerba
h basis A′′ ∈ (S, ‖ · ‖K ′′) for
whi
h δH(A′,A′′) < ε holds.

Note, that in a good model we have to guarantee that Einstein's 
onvention on the equivalen
e

of the inertial frames 
an be remained for us. However at this time we have no possibility to

give the 
on
epts of "frame at rest" and the 
on
ept of "frame whi
h moves 
onstant velo
ity

with respe
t to another one". The reason is that when we 
hanged the norm of the spa
e by the

fun
tion K(τ) we 
on
entrated only the 
hange of the shape of the unit ball and did not use any
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orresponden
e between the points of the two unit balls. Obviously, in a 
on
rete 
omputation

we should pro
eed vi
e versa, �rst we should give a 
orresponden
e between the points of the

old unit ball and the new one and this implies the 
hange of the norm. To this purpose we may

de�ne a homotopi
 mapping K whi
h des
ribes the deformation of the norm. From Lemma

3.4.2 above it follows that we 
an de�ne a shape fun
tion as follows

Definition 3.4.6. [11℄ The homotopi
 mapping K (x, τ) : (S, ‖ · ‖E)× T → (S, ‖ · ‖E) is 
alled
by the shape fun
tion of the time-spa
e if it holds the following assumptions:

• K (x, τ) is homogeneous in its �rst variable and 
ontinuously di�erentiable in its se
ond

one,

• K ({e1, e2, e3}, τ) is an Auerba
h basis of (S, ‖ · ‖τ ) for every τ ,
• K (BE , τ) = K(τ).

The shape fun
tion determines the 
hanges at all levels in a time spa
e, for example a frame

is "at rest" if its 
hange arises only from this globally determined 
hange, and "moves with


onstant velo
ity" if its origin has this property and the dire
tions of its axes are "at rest".

Pre
isely, we say, that

Definition 3.4.7 ([11℄). The frame {f1(τ), f2(τ), f3(τ), o(τ)} moves with 
onstant velo
ity

with respe
t to the time-spa
e if for every pairs τ , τ ′ in T+
we have

fi(τ) = K (fi(τ
′), τ) for all i with 1 ≤ i ≤ 3

and there are two ve
tors O = o1e1 + o2e2 + o3e3 ∈ S and v = v1e1 + v2e2 + v3e3 ∈ S that

for all values of τ we have O(τ) = K(O, τ) + τK(v, τ). A frame is at rest with respe
t to the

time-spa
e if the ve
tor v is the zero ve
tor of S.

Consider the derivative of the above equality by τ . We get that Ȯ(τ) = ∂K(O,τ)
∂τ

+ K(v, τ) +

τ ∂K(v,τ)
∂τ

, showing that for su
h a homotopi
 mapping, whi
h is 
onstant in the time, the orbit

of O(τ) is a line with dire
tion ve
tor v through the origin of the time spa
e. Similarly in the


ase when v is the zero ve
tor it is a verti
al (parallel to T ) line-segment through O.

Example 3.4.2. [11℄ Consider the se
ond example of Example 3.4.1. The shape fun
tion 
an

be get as follows: K
(
(x, y)T , τ

)
=
(
αx cos τ − 1

α
y sin τ, αx sin τ + 1

α
y cos τ

)T
. Then we have

K (BE , τ) =

(
cos τ sin τ
− sin τ cos τ

)
Gα furthermore we get also that K (e1, τ) = (α cos τ, α sin τ)T ,

K (e2, τ) =
(
− 1
α
sin τ, 1

α
cos τ

)T
gives an Auerba
h basis for the 
orresponding norm. The unit

ve
tors of a frame at rest 
an be get if we use the a�nity

(
α cos τ 1

α
sin τ

−α sin τ 1
α
cos τ

)
for the ve
tors

(cos β, sin β)T , (− sin β, cosβ)T , respe
tively. (Here β is a given parameter.) With respe
t to

the absolute 
oordinate-system the world-line of the origin is a heli
al

τ 7→
(
αo1 cos τ +

1

α
o2 sin τ,−αo1 sin τ +

1

α
o2 cos τ

)T

through a given point O = (o1, o2)
T
of the plane S. �

The 
on
ept of shape fun
tion gives a 
han
e to de�ne the so-
alled time-axes.

Definition 3.4.8 ([11℄). A time-axis of the time-spa
e model is a world-line O(τ) of su
h a

parti
le whi
h moves with 
onstant velo
ity with respe
t to the time-spa
e and starts from the

origin. More pre
isely, for the world-line (O(τ), τ) we have K(O, τ) = 0 and hen
e with a given

ve
tor v ∈ S, O(τ) = τK(v, τ).

Example 3.4.3. Let the fun
tion K is de�ned (as in the previous example) with the equality:

K
(
(x, y)T , τ

)
=

(
αx cos τ − 1

α
y sin τ, αx sin τ +

1

α
y cos τ

)T
,
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then the time-axis de�ned by the ve
tor v = (v1, v2)
T
is the 
urve

(
τ

(
αv1 cos τ −

1

α
v2 sin τ

)
, τ

(
αv1 sin τ +

1

α
v2 cos τ

)
, τ

)T
. �

In a spa
e-time model a time-axis is a line through the origin. Moreover the time-axes interse
t

the imaginary unit sphere orthogonally. In time-spa
e this is not true generally.

Proposition 3.4.1. [11℄ A time-axis interse
ts orthogonally of the imaginary sphere of param-

eter c at the point (s, τ ⋆) if and only if for all dire
tions e of S with the fun
tion c(t+ λ) : λ→
s+ λe holds the equality:

[
ċ(t), c(t) +

1

c2 − ‖v‖2E
∂K(v, τ)

∂τ

(
1√

c2 − ‖v‖2E

)] 1√
c2−‖v‖2

E

=

=


ċ(t),

2c2√
c2−‖v‖2E

2c2√
c2−‖v‖2E

− ∂[c(t),c(t)]τ

∂τ
( 1√

c2−‖v‖2E
)
c(t)




1√
c2−‖v‖2

E

.

Before the proof we observe that if the shape fun
tion does not depend on the time that the

required equality holds.

Proof. The time-axis and the imaginary sphere of parameter c interse
t in the point at the

parameter value τ ⋆. Thus we have (τ ⋆)2
(
[K(v, τ ⋆),K(v, τ ⋆)]τ

⋆ − c2
)
= −1 or reordering it the

other one: [K(v, τ ⋆),K(v, τ ⋆)]τ
⋆

=
(
c2 − 1

(τ⋆)2

)
. We note that for an arbitrary pair v and τ we

have the equality [K(v, τ),K(v, τ)]τ = ‖v‖2E [K(v0, τ),K(v0, τ)]
τ
= ‖v‖2E, where v0 is the unit

ve
tor in the dire
tion of v. Hen
e ‖v‖2E =
(
c2 − 1

(τ⋆)2

)
or equivalently (τ ⋆)2 = 1

c2−‖v‖2E
. Now we

determine the angle of the imaginary unit sphere and the time-axis de�ned above. The velo
ity

ve
tor of the time-axis at the examined point is

τ ⋆K(v, τ ⋆) + (τ ⋆)2
∂K(v, τ)

∂τ
(τ ⋆) + τ ⋆e4.

If we re
al
ulate the tangent ve
tor of the unit sphere of parameter c at its point s+ τe4 using
also the opportunity c(t+ λ) = s+ λe, we get that it is

ċ(t) +
2 [ċ(t), c(t)]τ

2c2τ − ∂[c(t),c(t)]τ

∂τ
(τ)

e4

The produ
t of the two ve
tors is

[
ċ(t), τ ⋆K(v, τ ⋆) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
− c2

2τ ⋆ [ċ(t), c(t)]τ
⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

=

=

[
ċ(t), τ ⋆K(v, τ ⋆) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
−
[
ċ(t),

2c2τ ⋆c(t)

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

]τ⋆
.

Sin
e we have τ ⋆K(v, τ ⋆) = s = c(t) this formula 
an be simpli�ed into the form

[
ċ(t), c(t) + (τ ⋆)2

∂K(v, τ)

∂τ
(τ ⋆)

]τ⋆
−
[
ċ(t),

2c2τ ⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

c(t)

]τ⋆
.

�
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A non-trivial situation in whi
h the above orthogonality holds if for the unknown fun
tion α(τ ⋆)
the following equation system 
an be solved:

∂K(v, τ)

∂τ
(τ ⋆) = α(τ ⋆)c(t)

1 + (τ ⋆)2α(τ ⋆) =
2c2τ ⋆

2τ ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ ⋆)

.

In fa
t, if we eliminate α(τ ⋆) we get the following equation:

(τ ⋆)2
(
2τ ⋆c2 − ∂ [c(t), c(t)]τ

∂τ
(τ ⋆)

)
∂K(v, τ)

∂τ
(τ ⋆) =

∂ [c(t), c(t)]τ

∂τ
(τ ⋆)c(t).

Example 3.4.4. In this example we show that there is non-trivial shape fun
tion for whi
h

the above equality on orthogonality holds. Let de�ne the shape fun
tion by the non-zero s
alar

valued fun
tion K(v, τ) = α(v, τ)v. Then we get that

∂K(v,τ)
∂τ

= ∂α(v,τ)
∂τ

v and K(c(t), τ) =
α(c(t), τ)c(t), implying the equality α2(c(t), τ) [c(t), c(t)]τ = ‖c(t)‖2E. Sin
e α(v, τ) 6= 0, from

[c(t), c(t)]τ =
‖c(t)‖2E
α2(c(t),τ)

we get that

∂ [c(t), c(t)]τ

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
.

The orthogonality 
ondition for a general τ means the equality

τ 2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

∂α(c(t), τ)

∂τ

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
c(t)

and again if the fun
tion α(v, τ) is a 
onstant we have a solution. In the other 
ase, we 
an

simplify it with its derivative and get that

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)
c(t).

We also know the 
onne
tion between c(t) and v, be
ause at the point τ ⋆ we have c(t) =
τ ⋆K(v, τ ⋆) = τ ⋆α(v, τ ⋆)v. This simpli�es the above equality to equality among s
alar fun
tions:

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)
τ ⋆α(c(t), τ ⋆),

whi
h 
an be written in the form

− τ 3c2

τ 2 + τ ⋆α(c(t), τ ⋆)
=

∂α(c(t),τ)
∂τ

α3(c(t), τ)
.

Solving this separable di�erential equation, we get the following solution

α2(c(t), τ) =
(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E

c2 (τ 2 − τ ⋆α(c(t), τ ⋆) ln(τ 2 + τ ⋆α(c(t), τ ⋆))) + (τ ⋆)2α2(c(t), τ ⋆)‖v‖2EC
.

To get the identity at the point τ ⋆ we substitute it and we 
an determine the 
onstant C.

C =
(τ ⋆)2 (‖v‖2E − c2) + c2τ ⋆α(c(t), τ ⋆) ln((τ ⋆)2 + τ ⋆α(c(t), τ ⋆))

(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E
.

With this 
onstant the required equality on α(c(t), τ) is

α2(c(t), τ) =
(τ ⋆)2α2(c(t), τ ⋆)‖v‖2E

c2τ 2 − (τ ⋆)2 (c2 − ‖v‖2E)− c2τ ⋆α(c(t), τ ⋆) ln
(

τ2+τ⋆α(c(t),τ⋆)
(τ⋆)2+τ⋆α(c(t),τ⋆)

) .

The fun
tion α(c(t), τ) is well-de�ned real valued fun
tion if the right hand side is greater or

equal to zero. From this assumption we get the inequality

τ 2 − τ ⋆α(c(t), τ ⋆) ln
(
τ 2 + τ ⋆α(c(t), τ ⋆)

)
≥
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112 3. FROM THE S.I.I.P TO THE TIME-SPACE MANIFOLD

≥
(
1− ‖v‖2E

c2

)
(τ ⋆)2 − τ ⋆α(c(t), τ ⋆) ln

(
(τ ⋆)2 + τ ⋆α(c(t), τ ⋆)

)
.

Sin
e the left hand side is a monotone in
reasing fun
tion of its variable τ ≥ 0, we have to pi
k
up a value in whi
h the equality holds to determine a range interval where this equality also

holds. It is easy to 
al
ulate that at the value

τ =

√(
1− ‖v‖2E

c2

)
τ ⋆

the equality holds thus α2(c(t), τ) 
an be de�ned well if τ ≥
√(

1− ‖v‖2E
c2

)
τ ⋆.

Using the assumption that the point c(t) is on the imaginary sphere of parameter c we get that

α(c(t), τ ⋆)2 = c2τ ⋆2 − 1,

and thus

α2(c(t), τ) =
(τ ⋆)2(c2τ ⋆2 − 1)‖v‖2E

c2τ 2 − τ ⋆2 (c2 − ‖v‖2E)− τ ⋆
√
c2(τ ⋆)2 − 1 ln

(
τ2+τ⋆

√
c2(τ⋆)2−1

(τ⋆)2+τ⋆
√
c2(τ⋆)2−1

) .

�

3.4.2. Random time-spa
e model. Of 
ourse, we 
an 
hoose the fun
tion K(τ) "ran-
domly". To this purpose we use Kolmogorov's extension theorem (or theorem on 
onsisten
y,

see in [99℄). This says that a suitably "
onsistent" 
olle
tion of �nite-dimensional distributions

will de�ne a probability measure on the produ
t spa
e. The sample spa
e here is K0 with

the Hausdor� distan
e. It is a lo
ally 
ompa
t, separable (se
ond-
ountable) metri
 spa
e. By

Blas
hke's sele
tion theorem (see in [78℄) K is a boundedly 
ompa
t spa
e so it is also 
omplete.

It is easy to 
he
k that K0 is also a 
omplete metri
 spa
e if we assume that the non-proper

bodies (
entrally symmetri
 
onvex 
ompa
t sets with empty interior) also belong to it. Let

P be su
h a probability measure whi
h de�ned in Subse
tion 3.3.2. In every moment we 
on-

sider the same probability spa
e (K0, P ) and also 
onsider in ea
h of the �nite 
olle
tions of

moments the 
orresponding produ
t spa
es ((K0)
r, P r) . The 
onsisten
y assumption of Kol-

mogorov's theorem now automati
ally holds. By the extension theorem we have a probability

measure P̂ on the measure spa
e of the fun
tions on T to K0 with the σ-algebra generated by

the 
ylinder sets of the spa
e. The distribution of the proje
tion of P̂ to the probability spa
e

of a �x moment is the distribution of P .

Definition 3.4.9 ([11℄). Let (Kτ , τ ≥ 0) be a random fun
tion de�ned as an element of the

Kolmogorov's extension

(
ΠK0, P̂

)
of the probability spa
e (K0, P ). We say that the generalized

spa
e-time model with the random fun
tion

K̂τ :=
n

√
vol(BE)

vol(Kτ )
Kτ

is a random time-spa
e model. Here α0(Kτ ) is a random variable with trun
ated normal distri-

bution and thus (α0(Kτ ) , τ ≥ 0) is a stationary Gaussian pro
ess. We 
all it the shape pro
ess

of the random time-spa
e model.

It is 
lear that a deterministi
 time-spa
e model is a spe
ial traje
tory of the random time-spa
e

model. The following theorem is essential.

Theorem 3.4.2 ([11℄). For a traje
tory L(τ) of the random time-spa
e model, for a �nite set

0 ≤ τ1 ≤ · · · ≤ τs of moments and for a ε > 0 there is a deterministi
 time-spa
e model de�ned

by the fun
tion K(τ) for whi
h

sup
i
{ρH (L(τi), K(τi))} ≤ ε.
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Proof. Sin
e the set of 
entrally symmetri
 
onvex bodies with C∞
-boundary is dense in

the set of 
entrally symmetri
 
onvex bodies (see [135℄), we 
an 
hoose, for every τi, a body

K(τi) ∈ K0 with C
2
boundary with the required volume for whi
h ρH (L(τi), K(τi)) ≤ ε holds.

We prove that these bodies 
an be 
onne
ted with su
h a traje
tory of the random time-spa
e

model for whi
h the fun
tion K holds the properties of the de�ning fun
tion of a deterministi


time-spa
e model. The impa
t of the K fun
tion on a �xed ve
tor s ∈ S 
an be 
he
ked

on the vary of its norm. Using the Minkowski fun
tional, we 
an get the norm of a ve
tor

s as the length of a �xed segment relative to the length of the diameter of the unit ball

interse
ted by the half-line 
ontaining the segment [O,P ]. This means that we 
an determine

the 
hange of the length of a diameter of a �xed dire
tion if we 
hange the shape of the

body by the time. Consider a representation of the body by polar 
oordinates with respe
t to

its 
enter O. Sin
e the boundary of the body is of 
lass C2
, all of their 
oordinate fun
tions

have the analogous property. This fun
tion depends also on the time τ , the 
hange of the

unit ball implies the 
hange of its 
oordinate fun
tions. We say that the traje
tory K(τ) is

a 
ontinuously di�erentiable fun
tion if for a �xed 
oordinate representation its 
oordinate

fun
tions are 
ontinuously di�erentiable fun
tions of the time. This is equivalent to the property

that the support fun
tion h(K(τ)) is 
ontinuously di�erentiable as the fun
tion of the time τ .
The di�erentiability property of the traje
tory implies the analogous di�erentiability property

of the 
hange of the norm of a �x ve
tor sin
e the points of the boundary of the unit ball has

an equation of the form rτ = (r(ϕ1, · · · , ϕn−1))
τ
. We 
an 
on
lude that if the traje
tory K(τ)

is a 
ontinuously di�erentiable fun
tion, this holds also for the fun
tion τ →
√
[s, s]τ . In a

spa
e S with an inner produ
t the polarity equation implies the required assumption. If S is

(only) a smooth normed spa
e with a semi inner produ
t, we need further 
omments. Sin
e for

a di�erentiable norm fun
tion M
Shane's equality holds, we have

[x, y]τ = ‖y‖τ((‖ · ‖τ )′x (y)) = ‖y‖τ(‖ · ‖′x(y))τ .
On the other hand, the fun
tion (‖ · ‖′x(y))τ is also 
ontinuously di�erentiable fun
tion of y,
thus the thread using on the norm fun
tion above is appli
able for it, too. This means that the

di�erentiability property of the traje
tory implies the analogous di�erentiability property of the

fun
tion τ → (‖ · ‖′x(y))τ . Using the rule of the produ
t fun
tion we also have that τ → [x, y]τ

is 
ontinuously di�erentiable if the traje
tory τ → K(τ) holds this property.
We now de�ne a di�erentiable traje
tory through the points (τi, K(τi)). If τ, τ

′
i ∈ [τi, τi+1]

denote by KBezier(τ) the formal Bezier spline of se
ond order through the points (τi, K(τi)) and
(τi+1, K(τi+1)) with "tangents" through the point (τ ′i , L(τ

′
i)). Thus we have by de�nition

KBezier(τ) :=

(
1− τ − τi

τi+1 − τi

)2

K(τi)+2

(
1− τ − τi

τi+1 − τi

)
τ − τi
τi+1 − τi

L(τi)+

(
τ − τi
τi+1 − τi

)2

K(τi+1),

where the addition is the Minkowski addition and the produ
t is the respe
tive homotheti


mapping. If we assume that for all values of i (1 < i < s) the body K(τi) is a Minkowski


onvex 
ombination of the bodies L(τ ′i) and L(τ ′i+1) the fun
tion KBezier(τ) is valid on the

whole interval [τ1, τs]. Sin
e for positive 
onstants α, β we have

hαK ′+βK ′′(x) = αhK ′(x) + βhK ′′(x),

we also get that KBezier(τ) is a 
ontinuously di�erentiable traje
tory in its whole domain. We

have to prove yet that for a �xed τ , the set KBezier(τ) is a 
entrally symmetri
 
onvex 
ompa
t

body with C2
-
lass boundary but these statements follow immediately from the 
on
ept of

Minkowski linear 
ombination.

Finally we normalize this traje
tory under the volume fun
tion and extra
t it to the whole

T . The fun
tion K(τ) determines a required deterministi
 time-spa
e model if we de�ne it as
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follows:

K(τ) =





n

√
vol(BE)

vol(KBezier(τs))
KBezier(τs) if τs < τ

n

√
vol(BE)

vol(KBezier(τ))
KBezier(τ) if τ1 ≤ τ ≤ τs

n

√
vol(BE)

vol(KBezier(τ1))
KBezier(τ1) if τ < τ1 .

�

An important 
onsequen
e of this theorem that without loss of generality we 
an assume, that

the time-spa
e model is deterministi
.
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APPENDIX A

Relativity theory in time-spa
e

Our model � des
ribed in the previous se
tion � 
an be 
onsidered also as a model of the universe

1

. The

deterministi
 variant obviously 
ontains as a spe
ial 
ase the model of Minkowski spa
e-time. On the other

hand it 
an be extended to a generalization of the Robertson-Walker spa
e-time, too. The advantage of our

model that S 
an be 
onsidered also as a general normed spa
e (without inner produ
t).

The time-spa
e 
an be de�ned in a more 
onvenient way, using a shape fun
tion. It regulates the methods of


al
ulations in time-spa
e and gives the possibility to rewrite the equality of spe
ial and global relativity.

A.1. On the formulas of spe
ial relativity theory

Consider the upper part of the imaginary sphere of parameter c in a four-dimensional deterministi
 time-spa
e

model. Without the imaginary unit sphere we 
onsider the imaginary unit sphere Hc of parameter c with the


orresponding produ
t [x′, x′′]+,T := [s′, s′′]τ
′′

+ c2 [τ ′, τ ′′]. Pra
ti
ally the 
onstant c 
an be 
onsidered as the

speed of the light in va
uum. Assume that the shape-fun
tion is a two-times 
ontinuously di�erentiable fun
tion.

We need two axioms to interpret in time-spa
e of the usual axioms of spe
ial relativity theory. First we assume

that:

Axiom A.1.1. The laws of physi
s are invariant under transformations between frames. The laws of physi
s

will be the same whether you are testing them in frame "at rest", or a frame moving with a 
onstant velo
ity

relative to the "rest" frame.

Axiom A.1.2. The speed of light in a va
uum is measured to be the same by all observers in frames.

These two axioms 
an be transformed into the language of the time-spa
e by the method of Minkowski [123℄. To

this we use Hc introdu
ed and the group Gc as the set of those isometries of the spa
e whi
h leave invariant Hc.

Su
h an isometry 
an be interpreted as a 
oordinate transformation of the time-spa
e whi
h sends the axis of the

absolute time into another time-axis t′, and also maps the interse
tion point of the absolute time-axis with the

imaginary sphere Hc into the interse
tion point of the new time-axis and Hc. An isometry of the time-spa
e is

also a homeomorphism thus it maps the subspa
e S into a topologi
al hyperplane S′
of the embedding normed

spa
e. S′
is orthogonal to the new time-axis in the sense that its tangent hyperplane at the origin is orthogonal

to t′ with respe
t to the produ
t of the spa
e. Of 
ourse the new spa
e-axes are 
ontinuously di�erentiable 
urves

in S′
whi
h tangents at the origin are orthogonal to ea
h other. Sin
e the absolute time-axis is orthogonal to

the imaginary sphere Hc the new time-axis t′ must holds this property, too. Thus the investigations in the

previous se
tion are essential from this point of view. Assuming that the de�nition of the time-spa
e implies

this property we 
an get some formulas similar to of spe
ial relativity. We note that the fun
tion K(v, τ) holds
the orthogonality property of ve
tors of S and by the equality [K(v, τ),K(v, τ)]τ = ‖v‖2E we 
an see also that

the formulas on time-dilatation and length-
ontra
tion are valid, too. This implies that using the well-known

notations β = ‖v‖E

c
, γ = 1√

1−β2
we get that the 
onne
tion between the time τ0 and τ of an event measuring by

two observers one of at rest and the other moves with an 
onstant velo
ity ‖v‖E with respe
t to the time-spa
e

is τ = γτ0. Consider now a moving rod whi
h points move 
onstant velo
ity with respe
t to the time-spa
e su
h

that it is always parallel to the velo
ity ve
tor K(v, τ). Then we have ‖v‖E = L0

T
where T is the time 
al
ulated

from the length L0 and the velo
ity ve
tor v by su
h an observer whi
h moves with the rod. Another observer


an 
al
ulate the length L from the measured time T0 and the velo
ity v by the formula ‖v‖E = L
T0
. Using the

above formula of dilatation we get the known Fitzgerald 
ontra
tion of the rod: L = L0

√
1− β2 = L0

γ
.

Lorentz transformation in time spa
e also based on the usual experiment in whi
h we send a ray of light to a

mirror in dire
tion of the unit ve
tor e with distan
e d from me.

If we at rest we 
an determine in time spa
e the points A, C and B of departure, turn and arrival of the ray of

light, respe
tively. A and B are on the absolute time-axis at heights τA, and τB, respe
tively. The position of

C is

(τC − τA)K(ce, τC − τA) + τCe4 =
τB − τA

2
K

(
ce,

τB − τA
2

)
+
τB + τA

2
e4,

1

In this appendix we 
he
k the usability our 
on
ept in pra
ti
e. Despite the 
ontent of this appendix belongs

to the area of theoreti
al physi
s it is strongly 
onne
ted to the useless of my mathemati
al investigations.
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sin
e we know that the light take the road ba
k and forth over the same time. We observe that the norm of the

spa
e-like 
omponent sC is ‖sC‖τC = c τB−τA
2 as in the usual 
ase of spa
e-time.

The moving observer syn
hronized its 
lo
k with the observer at rest in the origin, and moves in the dire
-

tion v with velo
ity ‖v‖E. We assume that the moving observer also sees the experiment thus its time-axis


orresponding to the ve
tor v meats the world-line of the light in two points A′
and B′

positioning on the

respe
tive 
urves AC and CB. This implies that the respe
tive spa
e-like 
omponents of the world-line of

the light and the world-line of the axis are parallels to ea
h other in every minutes. By formula we have:

‖v‖EK(e, τ) = K(v, τ). From this we get the equality τA′K(v, τA′) + τA′e4 = (τA′ − τA)K(ce, τA′ − τA) + τA′e4.

This implies that τA′
2‖v‖E2− c2τA′

2 = (τA′ − τA)2c2− c2τA′
2
and thus τA′ = c

c−‖v‖E
τA. The proper time (τA′)0

is (τA′)0 =
√
1− β2 c

c−‖v‖E
τA = τA

√
1+β
1−β . Similarly we also get that (τB′)0 = τB

√
1−β
1+β , and we determine the

new time 
oordinate of the point C with respe
t to the new 
oordinate system:

(τC)0 =
(τA′)0 + (τB′ )0

2
=

1

2

(
τA

√
1 + β

1− β
+ τB

√
1− β

1 + β

)
.

Sin
e we have that the norm of the spa
e-like 
omponent is ‖sC‖E = c τB−τA
2 , we get that τA = τC − ‖sC‖E

c
and

τB = τC + ‖sC‖E

c
and thus

(τC)0 =
1

2

((
τC − ‖sC‖E

c

)√
1 + β

1− β
+

(
τC +

‖sC‖E
c

)√
1− β

1 + β

)
=
τC − β‖sC‖E

c√
1− β2

=

=
τC − ‖v‖E‖sC‖E

c2√
1− ‖v‖2

E

c2

=
τC − [K(sC ,τC),K(v,τC)]τC

c2√
1− ‖v‖2

E

c2

.

On the other hand we also have that the spa
e-like 
omponent ((sC)0)S of the transformed spa
e-like ve
tor

(sC)0 arise also from a ve
tor parallel to e thus it is of the form K(((sC)0)S , τ) = ‖((sC)0)S‖EK(e, τ). For the

norm of (sC)0 we know that ‖(sC)0‖+,T = c (τB′)0−(τA′)0
2 , hen
e ‖(sC)0‖+,T = ‖sC‖E−‖v‖EτC√

1−
‖v‖2

E

c2

. If we 
onsider

the ve
tor (̂sC)0 = γ (K(sC , τC)−K(v, τC)τC) ∈ S, we get a norm-preserving, bije
tive mapping L̂ from the

world-line of the light into S with the de�nition

L̂ : K((sC)0, (τC)0) 7→ γ (K(sC , τC)−K(v, τC)τC) .

The 
onne
tion between the spa
e-like 
oordinates of the point with respe
t to the two frames now has a more

familiar form. Hen
eforth the Lorentz transformation means for us the 
orresponden
e:

s 7→ K̂(s′, τ ′) = γ (K(s, τ)−K(v, τ)τ)

τ 7→ τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)
,

and the inverse Lorentz transformation the another one

K̂(s′, τ ′) 7→ K(s, τ) = γ (K(s′, τ ′) +K(v, τ ′)τ ′)

τ ′ 7→ τ = γ

(
τ ′ +

[K(s′, τ ′),K(v, τ ′)]τ
′

c2

)
.

First note that we 
an determine the 
omponents of (sC)0 with respe
t to the absolute 
oordinate system, too.

Sin
e (sC)0 and τK(v, τ) + τe4 are orthogonal to ea
h other we get that

[K(((sC)0)S , τC),K(v, τC)]
τC = c2((sC)0)T ,

implying that ((sC)0)T = ‖((sC)0)S‖E‖v‖E

c2
. Thus we get the equality

‖((sC)0)S‖2E

(
1− c2

(‖v‖E
c2

)2
)

=


‖sC‖E − ‖v‖EτC√

1− ‖v‖2
E

c2




2

,

implying that

‖((sC)0)S‖E =
‖sC‖E − ‖v‖EτC(

1− ‖v‖2
E

c2

) = γ2 (‖sC‖E − ‖v‖EτC)

and

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
=

‖v‖E‖sC‖E − ‖v‖2EτC
c2 − ‖v‖2E

.
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We get that

(sC)0 = γ2 (‖sC‖E − ‖v‖EτC)
(
K(e, τC) +

‖v‖E
c2

e4

)
=

= γ2 (K(sC , τC)−K(v, τC)τC) +

(
γ

1− γ

)2

(‖sC‖E − ‖v‖EτC) e4.

We 
an determine also the length of this ve
tor in the new 
oordinate system, too. Sin
e

[(sC)0, (sC)0]
+,T =

(
‖(sC)0‖+,T

)2
=

(‖sC‖τC − ‖v‖EτC)2

1− ‖v‖2
E

c2

=
[sC , sC ]

τC − 2‖sC‖τC‖v‖EτC + (‖v‖EτC)2

1− ‖v‖2
E

c2

and

((τC)0)
2
=

(τC)
2 − 2τC

‖v‖E‖sC‖τC

c2
+ (‖v‖E‖sC‖τC )2

c4

1− ‖v‖2
E

c2

,

hen
e the equality [(sC)0, (sC)0]
+,T − c2 ((τC)0)

2 = [sC , sC ]
τC − c2 (τC)

2
shows that under the a
tion of the

Lorentz transformation the "norm-squares" of the ve
tors of the time-spa
e are invariant as in the 
ase of the

usual spa
e-time.

Finally we determine those points of the spa
e whi
h new time-
oordinates are zero and thus we get a mapping

from the subspa
e S into the time-spa
e. Let s ∈ S arbitrary and 
onsider the 
orresponding point K(s, τ)+τe4
and assume that 0 = τ0 = γτ − γ ‖v‖E

c2
‖K(s, τ)‖τ , hen
e τ = ‖v‖E‖s‖E

c2
. Then we get the mapping of the


oordinate subspa
e S under the a
tion of the isometry 
orresponding to that Lorentz transformation whi
h

sends the absolute time-axis into the time-axis τK(v, τ) + τe4 in question. This is the set

S0 =

{
K

(
s,

‖v‖E‖s‖E
c2

)
+

‖v‖E‖s‖E
c2

e4 | s ∈ S

}
.

For a boost in an arbitrary dire
tion with velo
ity v, it is 
onvenient to de
ompose the spatial ve
tor s into


omponents perpendi
ular and parallel to v: s = s1 + s2 so that [K(s, τ),K(v, τ)]τ = [K(s1, τ),K(v, τ)]τ +
[K(s2, τ),K(v, τ)]τ = [K(s2, τ),K(v, τ)]τ . Then, only time and the 
omponent K(s2, τ) in the dire
tion of

K(v, τ);

τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)

K̂(s′, τ ′) = K(s1, τ) + γ(K(s2, τ) −K(v, τ)τ)

are "distorted" by the Lorentz fa
tor γ. The se
ond equality 
an be written also in the form:

ŝ′ = K(s, τ) +

(
γ − 1

‖v‖2E
[K(s, τ),K(v, τ)]τ − γτ

)
K(v, τ).

Remark A.1.1. If we have two time-axes τK(v′, τ) + τe4 and τK(v′′, τ) + τe4 then there are two subgroups of

the 
orresponding Lorentz transformations mapping the absolute time-axis onto another time-axes, respe
tively.

These two subgroups are also subgroups of Gc. Their elements 
an be paired on the base of their a
tion on S.
The pairs of these isometries de�ne a new isometry of the spa
e (and its inverse) on a natural way, with the


omposition one of them and the inverse of the other. Omitting the absolute time-axis from the spa
e (as we

suggest earlier) the invarian
e of the produ
t on the remaining spa
e and also the physi
al axioms of spe
ial

relativity 
an remain in e�e
t.

If K(u, τ) and K(v, τ ′) are two velo
ity ve
tors then using the formula for inverse Lorentz transformation of

the 
orresponding di�erentials we get that dτ = γ

(
dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ

′

c2

)
and K(ds, dτ) = K(dŝ′, dτ ′) +

(
1−γ
‖v‖2

E

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

+ γdτ ′
)
K(v, τ ′). Thus

K(u, τ) =
K(ds, dτ)

dτ
=

K(dŝ′, dτ ′) +
(

1−γ
‖v‖2

E

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

+ γdτ ′
)
K(v, τ ′)

γ
(
dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ′

c2

) =

=

(
K(v, τ ′) + 1

γ

K(dŝ′,dτ ′)
dτ ′ + 1+γ

γc2

[
K(dŝ′,dτ ′)

dτ ′ ,K(v, τ ′)
]τ ′

K(v, τ ′)

)

1 +

[
K(dŝ′,dτ′)

dτ′ ,K(v,τ ′)

]τ′

c2

=

(
K(v, τ ′) + 1

γ
K(u′, dτ ′) + 1+γ

γc2
[K(u′, dτ ′),K(v, τ ′)]τ

′

K(v, τ ′)
)

1 + [K(u′,dτ ′),K(v,τ ′)]τ′

c2

.
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118 A. RELATIVITY THEORY IN TIME-SPACE

Our following starting point is the velo
ity ve
tor (or four-velo
ity). The absolute time 
oordinate is τ , this

de�nes a world line of form S(τ) = K(s(τ), τ) + τe4. Its proper time is τ0 = τ
γ
= τ

√
1− ‖v‖2

E

c2
, where v is the

velo
ity ve
tor of the moving frame. By de�nition

V (τ) :=
dS(τ)

dτ0
= γ

(
d(K(s(τ), τ))

dτ
+ e4

)
.

If the shape-fun
tion is a linear mapping then

d(K(s(τ),τ))
dτ = K(ṡ(τ), 1) := K(v(τ), 1) and we also have

[V (τ), V (τ)]+,T = γ2
(
[K(v(τ), 1),K(v(τ), 1)]1 − c2

)
= −c2. The a

eleration is de�ned as the 
hange in

four-velo
ity over the parti
le's proper time. Hen
e now the velo
ity of the parti
le is also a fun
tion of τ as

without γ we have the fun
tion γ(τ). The de�nition is:

A(τ) :=
dV

dτ0
= γ(τ)

dV

dτ
= γ2(τ)

d2K(s(τ), τ)

dτ2
+ γ(τ)γ′(τ)

d(K(s(τ), τ))

dτ
+ γ(τ)γ′(τ)e4,

where with notation a(τ) = v′(τ) = s′′(τ),

γ′(τ) =


 1√

1− ‖v(τ)‖2
E

c2




′

=


 1√

1− [K(v(τ),1),K(v(τ),1)]1

c2




′

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
(
1− [K(v(τ),1),K(v(τ),1)]1

c2

) 3
2

=

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
γ3(τ),

In the 
ase of linear shape-fun
tion it has the form A(τ) = γ2(τ)K(a(τ), 0)+γ(τ)γ′(τ)K(v(τ), 1))+γ(τ)γ′(τ)e4.
Sin
e in this 
ase [V (τ), V (τ)]+,T = −c2, we have

[A(τ), V (τ)]T,+ = γ3(τ)
(
[K(a(τ), 0),K(v(τ), 1)]

1
+

+γ2(τ)
[K(a(τ), 0),K(v(τ), 1)]

1

c2
‖v(τ)‖2E − γ2(τ) [K(a(τ), 0),K(v(τ), 1)]

1

)
=

= γ3(τ)

(
[K(a(τ), 0),K(v(τ), 1)]

1 − c2 − ‖v(τ)‖2E
c2 − ‖v(τ)‖2E

[K(a(τ), 0),K(v(τ), 1)]
1

)
= 0.

By Theorem 2 on the derivative of the produ
t (
orresponding to smooth and stri
tly 
onvex norms) we also

get this result, in fa
t we have

0 =
d[V (τ), V (τ)]+,T

dτ
= 2

[
dV

dτ
, V

]+,T
+
∂[V (τ), V (τ)]τ

∂τ
(1) · 0 =

2

γ
[A(τ), V (τ)]+,T .

Also in the 
ase of linear shape-fun
tion the momentum is P = m0V = γm0 (K(v(τ), τ) + e4) where m0

is the invariant mass. We also have that [P, P ]+,T = γ2m2
0(‖v‖2E − c2) = (m0c)

2
. Similarly the for
e is

F = dP
dτ = m0γ

2(τ)K(a(τ), τ) + γ(τ)γ′(τ)K(v(τ), τ)) + γ(τ)γ′(τ)e4, and thus holds [F, V ]+,T = 0.

A.2. General relativity theory

In time-spa
e there is a way to des
ribe and visualize 
ertain spa
es whi
h are solutions of Einstein's equation.

The �rst method is when we embed into an at least four-dimensional time-spa
e as an four-dimensional manifold

whi
h inner metri
 is a solution of the Einstein equation. Our basi
 referen
es here are the books [50℄ and [70℄.

A.2.1. Metri
s embedded into a time-spa
e.

A.2.1.1. The Minkowski-Lorentz metri
. The simplest example of a Lorentz manifold is the �at-spa
e metri


whi
h 
an be given as R4
with 
oordinates (t, x, y, z) and the metri
 fun
tion: ds2 = −c2dt2+dx2+dy2+dz2. In

the above 
oordinates, the matrix representation is η =




−c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . In spheri
al 
oordinates (t, r, θ, φ),

the �at spa
e metri
 takes the form ds2 = −c2dt2 + dr2 + r2dΩ2
.

It 
an be 
onsidered also in a 5-dimensional time-spa
e with shape-fun
tion K (v, τ) = v as the metri
 of a

4-dimensional subspa
e through the absolute time-axis. By the equivalen
e of time axes in a usually spa
e-time

it also 
an be 
onsidered as arbitrary subspa
e distin
t to the 4-dimensional subspa
e of spa
e-like ve
tors, too.
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A.2. GENERAL RELATIVITY THEORY 119

A.2.1.2. The de Sitter and the anti-de Sitter metri
s. The de Sitter spa
e is the spa
e de�ned on the de Sitter

sphere of a Minkowski spa
e of one higher dimension. Usually the metri
 
an be 
onsidered as the restri
tion of

the Minkowski metri
 ds2 = −c2dt2 +dx21 +dx22 +dx23 + dx24 to the sphere −x20 + x21 + x22 + x23 + x24 = α2 = 3
Λ ,

where Λ is the 
osmologi
al 
onstant (see e.g. in [70℄). Using also our 
onstant c this latter equation 
an be

rewrite as −ct2 + (x′1)
2 + (x′2)

2 + (x′3)
2 + (x′4)

2 = 1 where x0 = t , 1
α
= c and x′i =

1
α
xi. This shows that in the

5-dimensional time spa
e with shape-fun
tion K (v, τ) = v it is the hyperboloid with one sheet with 
ir
ular

symmetry about the absolute time-axis.

The anti-de Sitter spa
e is the hyperboli
 analogue of the ellipti
 de Sitter spa
e. The Minkowski spa
e of one

higher dimension 
an be restri
ted to the so 
alled anti-de Sitter sphere (also 
alled by in our terminology as

imaginary sphere) de�ned by the equality −x20+x21+x22+x23 = −α2
. The shape fun
tion again isK (v, τ) = v and

the 
orresponding 4-submanifold is the hyperboloid of two sheets with hyperplane symmetry as the 4-subspa
e
S of spa
e-time ve
tors.

A.2.1.3. The Friedmann-Lemaître-Robertson-Walker metri
s. A standard metri
 forms of the Friedmann-

Lemaître-Robertson-Walker metri
s (F-L-R-W) family of spa
e-times 
an be obtained by using suitable 
oor-

dinate parameterizations of the 3-spa
es of 
onstant 
urvature. One of its forms is

ds2 = −dt2 +
R2(t)

1 + 1
4k(x

2 + y2 + z2)

(
dx2 + dy2 + dz2

)
,

where k ∈ {−1, 0, 1} is �xed. By the parametrization τ = t this metri
 is the metri
 of a time-spa
e with

shape-fun
tion K (v, τ). Observe that ‖v‖2E = [K (v, τ) ,K (v, τ)]
τ
= R2(τ)

1+ 1
4k‖v‖

2
E

‖K (v, τ) ‖2E. Note that we 
an


hoose the 
onstant k also as a fun
tion of the absolute time τ giving a deterministi
 time-spa
e with more

generality. Hen
e the shape-fun
tion is K (v, τ) =

√
1+ 1

4 k(τ)‖v‖
2
E

R(τ) v.

A.2.2. Three-dimensional visualization of a metri
 in a four-time-spa
e. The se
ond method is

when we 
onsider a four-dimensional time-spa
e and a three-dimensional sub-manifold in it with the property

that the metri
 of the time-spa
e at the points of the sub-manifold 
an be 
orresponded to the given one. This

method gives a good visualization of the solution in a 
ase when the examined metri
 has some spe
iality e.g.

there is no dependen
e on time or (and) the metri
 has a spheri
al symmetry. The examples of this se
tion are

also semi-Riemannian manifolds. We 
onsider now su
h solutions whi
h have the form:

ds2 = −(1− f(r))c2dt2 +
1

1− f(r)
dr2 + r2(dθ2 + sin2 θdφ2)

where dΩ2 := dθ2 + sin2 θdφ2 is the standard metri
 on the 2-sphere. Thus we have to sear
h a shape fun
tion

K (v, τ) of the embedding spa
e and a sub-manifold of it on whi
h the Minkowski-metri
 gives the required one.

If the metri
 isotropi
 we have a 
han
e to give it by isotropi
 
oordinates. To this we substitute the parameter

r by the fun
tion r = g(r⋆), and solve the di�erential equation:

f(g(r⋆)) = 1−
(
r⋆g′(r⋆)

g(r⋆)

)2

for the unknown fun
tion g(r⋆). Then we get the metri
 in the isotropi
 form

ds2 = −
(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2

(
dr⋆2 + r⋆2(dθ2 + sin2 θdφ2)

)
.

For isotropi
 re
tangular 
oordinates x = r⋆ sin θ cosφ, y = r⋆ sin θ sinφ and z = r⋆ cos θ the metri
 be
omes

ds2 = −
(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2
(
dx2 + dy2 + dz2

)
,

where r⋆ =
√
x2 + y2 + z2. From this substituting ds2 = 0 and rearranging the equality, we get that the velo
ity

of the light is √
dx2

dt2
+

dy2

dt2
+

dz2

dt2
=
r⋆2g′(r⋆)

g2(r⋆)
c,

independent from its dire
tion and varies with only the radial distan
e r⋆ (from the point mass at the origin of

the 
oordinates). In the points of the hypersurfa
e t = r⋆ =
√
x2 + y2 + z2 the metri
 
an be parameterized by

the time:

ds2 = −
(
tg′(t)

g(t)

)2

c2dt2 +
g2(t)

t2
(
dx2 + dy2 + dz2

)
,

and from the equation

tg′(t)

g(t)
dt = dτ
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120 A. RELATIVITY THEORY IN TIME-SPACE

we 
an give a re-s
ale of the time by the parametrization

τ :=

∫
t
g′(t)

g(t)
dt = t ln(g(t))−

∫
ln(g(t))dt.

From this equation we determine the inverse fun
tion ĝ for whi
h t = ĝ(τ). Sin
e ĝ(τ) = t = r⋆ =
√
x2 + y2 + z2

we also have that the examined set of points of the spa
e-time is a hypersurfa
e de�ned by the equality:

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)√
x2 + y2 + z2.

This implies a new form of the metri
 at the points of this hypersurfa
e:

ds2 = −c2dτ2 + g2(ĝ(τ))

ĝ(τ)
2

(
dx2 + dy2 + dz2

)
.

The 
orresponding inner produ
t has the matrix form:




−c2 0 0 0

0 g2(ĝ(τ))

ĝ(τ)2
0 0

0 0 g2(ĝ(τ))

ĝ(τ)2
0

0 0 0 g2(ĝ(τ))

ĝ(τ)2




and hen
e the

Eu
lidean lengthes of the ve
tors of the spa
e depend only on the absolute moment τ in whi
h we would

like to measure it. Thus we 
an visualize the examined metri
 as a metri
 at the points of the hypersurfa
e

τ =
(
t ln(g(t))−

∫
ln(g(t))dt

)
‖v‖E of 
ertain time-spa
e. We note that this is not the inner metri
 of the

examined surfa
e of dimension 3 whi
h 
an be 
onsidered as metri
 of a three-dimensional spa
e-time. To

determine the shape-fun
tion observe that ‖v‖2E = [K (v, τ) ,K (v, τ)]
τ
= g2(ĝ(τ))

ĝ(τ)2
‖K (v, τ) ‖2E from whi
h we

get that K (v, τ) = ĝ(τ)
g(ĝ(τ))v. It is 
lear that the �at spa
e metri
 
an be 
onsidered in this way. Here f(r) ≡ 0,

g = id and τ = t implying that K (v, τ) = v and the hypersurfa
e is the light-
one de�ned by τ = ‖v‖E.
We now give some further examples.

A.2.2.1. The S
hwarzs
hild metri
. Besides the �at spa
e metri
 the most important metri
 in general

relativity is the S
hwarzs
hild metri
 whi
h 
an be given in the set of lo
al polar-
oordinates (t, r, ϕ, θ) by

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2dΩ2

where, again, dΩ2
is the standard metri
 on the 2-

sphere. Here G is the gravitation 
onstant and M is a 
onstant with the dimensions of mass. The fun
tion f is

f(r) = 2GM
c2r

:= rs
r
with 
onstant rs =

2GM
c2

. The di�erential equation on g is

rs
g(r⋆) = 1 −

(
r⋆g′(r⋆)
g(r⋆)

)2
with the

solution g(r⋆) = rs
4 c1r

⋆
(
1 + 1

c1r⋆

)2
, and if we 
hoose

4
rs

for the parameter c1 we get the known (see in [50℄)

solution g(r⋆) = r⋆
(
1 + rs

4r⋆

)2
. For isotropi
 re
tangular 
oordinates the metri
 be
omes

ds2 = − (1− rs
4r⋆ )

2

(1 + rs
4r⋆ )

2
c2dt2 +

(
1 +

rs
4r⋆

)4
(dx2 + dy2 + dz2).

The equation between τ and t is

τ =

∫
(1− rs

4t )

(1 + rs
4t )

dt =

∫
4t− rs
4t+ rs

dt = t− 2rs

∫
1

4t+ rs
dt = t− rs

2
ln
(
t+

rs
4

)
+ C.

Of 
ourse we 
an 
hoose C = 0. Similarly to the known tortoise-
oordinates there is no expli
ite inverse fun
tion

of this parametrization whi
h we denote by ĝ(τ) = t. The shape-fun
tion of the 
orresponding time-spa
e is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

(
1 +

rs
4ĝ(τ)

)−2

v.

A.2.2.2. The Reissner-Nordström metri
. In spheri
al 
oordinates (t, r, θ, φ), the line element for the

Reissner-Nordström metri
 is ds2 = −
(
1− rS

r
+

r2Q
r2

)
c2 dt2 + 1

1−
rS
r
+

r2
Q

r2

dr2 + r2 dθ2 + r2 sin2 θdφ2, here again

t is the time 
oordinate (measured by a stationary 
lo
k at in�nity), r is the radial 
oordinate, rS = 2GM/c2

is the S
hwarzs
hild radius of the body, and rQ is a 
hara
teristi
 length s
ale given by r2Q = Q2G
4πε0c4

. Here

1/4πε0 is the Coulomb for
e 
onstant. The fun
tion f is f(r) = rs
r
− r2Q

r2
. The di�erential equation on g is

rs
g(r⋆) −

r2Q
g2(r⋆) = 1 −

(
r⋆g′(r⋆)
g(r⋆)

)2
with the solution g(r⋆) =

√
r2s
4 − r2Q

c1
2 r

⋆
(
1 + 1

c1r⋆

)2
−
√

r2s
4 − r2Q + rs

2 , if we


hoose c1 := 2√
r2s
4 −r2

Q

we get a more simple form:

g(r⋆) = r⋆


1 +

√
r2s
4 − r2Q

2r⋆




2

−
√
r2s
4

− r2Q +
rs
2

= r⋆


1 +

r2s
4 − r2Q
4r⋆2


+

rs
2
.
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For the isotropi
 re
tangular 
oordinates we have:

ds2 = −




r⋆
(
1−

r2s
4 −r2Q
4r⋆2

)

r⋆
(
1 +

r2s
4 −r2

Q

4r⋆2

)
+ rs

2




2

c2dt2 +



r⋆
(
1 +

r2s
4 −r2Q
4r⋆2

)
+ rs

2

r⋆




2

(dx2 + dy2 + dz2).

Our pro
ess now leads to the new time parameter

τ = t−
(rs
4

− rQ
2

)
ln

((
t+

rs
4

)2
−
r2Q
4

)
− rQ ln

(
t+

rs
4

+
rQ
2

)
+ C,

whi
h in the 
ase of C = rQ = 0 gives ba
k the parametrization of S
hwarzs
hild solution. The shape-fun
tion

of the sear
hed time-spa
e 
an be determined by the 
orresponding inverse t = ĝ(τ), it is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

ĝ(τ)

ĝ(τ)

(
1 +

r2s
4 −r2

Q

4ĝ(τ)2

)
+ rs

2

v.

Analogously 
an be 
omputed the time-spa
e visualization of the S
hwarzs
hild-de Sitter solution whi
h we now

omit.

A.2.2.3. The Bertotti-Robinson metri
. The Bertotti-Robinson spa
e-time is the only 
onformally �at so-

lution of the Einstein-Maxwell equalities for a non-null sour
e-free ele
tromagneti
 �eld. The metri
 is: ds2 =
Q2

r2

(
−dt2 + dx2 + dy2 + dz2

)
, and on the light-
one t = r it has the form ds2 = −Q2

t2
dt2+ e2

t2

(
dx2 + dy2 + dz2

)
.

By the new time 
oordinate τ = Q ln t or t = e
τ
Q

using orthogonal spa
e 
oordinates we get the form ds2 =

−dτ2 + Q2

e
2τ
Q

(
dx2 + dy2 + dz2

)
. Thus it 
an be visualize on the hypersurfa
e τ = e ln r of the time-spa
e with

shape-fun
tion: K (v, τ) := e
τ
Q

Q
v.

A.2.3. Einstein's equation. As we saw in the previous se
tion the dire
t embedding of a solution of

Einstein's equation into a time-spa
e requires non-linear and very 
ompli
ated shape-fun
tions. It 
an be seen

also that there are su
h solutions whi
h there are no natural embedding into a time-spa
e. This motivates the

investigations of the present se
tion. Our building up follows the paper of Prof. Alan Heavens [89℄.

A.2.3.1. Homogeneous time-spa
e-manifolds and the Equivalen
e Prin
iple. We 
onsider now su
h manifolds

whi
h tangent spa
es are four-dimensional time-spa
es with given shape-fun
tions. More pre
isely:

Definition A.2.1. Let S be the set of linear mappings K(v, τ) : E3 × R −→ E3
holding the properties of a

linear shape-fun
tion given in De�nition 3.4.6. Giving for it the natural topology we say that S is the spa
e of

shape-fun
tions. If we have a pair of a four-dimensional topologi
al manifold M and a smooth (C∞
) mapping

K : M −→ S with the property that at the point P ∈ M the tangent spa
e is the time-spa
e de�ned by

K(P ) = K
P (s, τ) ∈ S we say that it is a time-spa
e-manifold. The time-spa
e manifold is homogeneous if the

mapping K is a 
onstant fun
tion.

Note that a Lorentzian manifold is su
h a homogeneous time-spa
e manifold whi
h shape-fun
tion is independent

from the time and it is the identity mapping on its spa
e-like 
omponents, namely K
P (s, τ) = s for all P and

for all τ . Its matrix-form (using the 
olumn representation of ve
tors in time-spa
e) is:




1 0 0 0
0 1 0 0
0 0 1 0




Our

purpose to build up the theory of global relativity in a homogeneous time-spa
e-manifolds. We a

ept the

so-
alled Strong Equivalen
e Prin
iple of Einstein in the following form:

Axiom A.2.1. (Equivalen
e Prin
iple) At any point in a homogeneous time-spa
e manifold it is possible to 
hoose

a lo
ally-inertial frame in whi
h the laws of physi
s are the same as the spe
ial relativity of the 
orresponding

time-spa
e.

A

ording to this prin
iple, there is a 
oordinate-system in whi
h a freely-moving parti
le moves with 
onstant

velo
ity with respe
t to the time-spa
e K(P ) = K
P (s, τ) = K(s, τ). It is 
onvenient to write the world line

S(τ) = K(s(τ), τ)+τe4 parametri
ally, as a fun
tion of the proper time τ0 = τ
γ(τ) . In Se
tion A.1 we determined

the velo
ity using the time-spa
e parameter τ :V (τ) = γ(τ)
(

d(K(s(τ),τ))
dτ + e4

)
= γ(τ) (K(v(τ), 1) + e4). Taking

into 
onsideration again that the shape-fun
tion is linear, the a

eleration is:

A(τ) = γ2(τ)K(a(τ), 0) + γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]

τ

c2
K(v(τ), 1) + γ4(τ)

[K(a(τ), 0),K(v(τ), 1)]
τ

c2
e4,

giving the di�erential equation A(τ) = 0 for su
h parti
le whi
h moves linearly with respe
t to this frame.
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A.2.3.2. A�ne 
onne
tion and the metri
 on a homogeneous time-spa
e manifold. Consider any other 
o-

ordinate system in whi
h the parti
le 
oordinates are S′(τ0). Using the 
hain rule, the de�ning equation

0 = A(τ0) =
dV (τ0)

dτ0
=

d2S(τ0)

dτ20
be
omes

0 =
d

dτ0

(
dS

dS′

dS′(τ0)

dτ0

)
=

dS

dS′

d2S′(τ0)

dτ20
+

d

dτ0

(
dS

dS′

)
dS′(τ0)

dτ0
=

dS

dS′

d2S′(τ0)

dτ20
+

d2S

dS′dS′

dS′(τ0)

dτ0

dS′(τ0)

dτ0
,

where

dS
dS′ means the total derivatives of the mapping of the time-spa
e sending the path S′(τ0) into the spe
i�


path S(τ0), and the trilinear fun
tion

d2S
dS′dS′ is the se
ond total derivatives of the same mapping. (If there is a

general smooth transformation between the 
oordinate-frames, the 
orresponding derivatives are exist.) From

this equality we get the tensor form of the so 
alled geodesi
 equation of homogeneous time-spa
e manifold, it

is:

d2S′(τ0)

dτ20
+

(
dS′

dS

d2S

dS′dS′

)
dS′(τ0)

dτ0

dS′(τ0)

dτ0
=

d2S′(τ0)

dτ20
+ Γ(S′, S)

dS′(τ0)

dτ0

dS′(τ0)

dτ0
= 0.

Here we denote the inverse of the total derivatives

dS
dS′ by

dS′

dS . The name of Γ(S′, S) is the a�ne 
onne
tion.

For the uniform labelling we denote by x4 the identity fun
tion. Sin
e the shape fun
tion is a linear mapping we


an represent it as the multipli
ation on left by the 3× 4 matrix K = [kij ] = kij . In the rest of this paragraph

we apply all 
onventions of general relativity. The Greek alphabet is used for spa
e and time 
omponents,

where indi
es take values 1,2,3,4 (frequently used letters are µ, ν, · · · ) and the Latin alphabet is used for spatial


omponents only, where indi
es take values 1,2,3 (frequently used letters are i, j, ...) and a

ording to the

Einstein's 
onvention, when an index variable appears twi
e in a single term it implies summation of that term

over all the values of the index. The upper indi
es are indi
es of 
oordinates, 
oe�
ients or basis ve
tors.

The mapping S : S′(τ0) −→ S(τ0) sendsK(x′
1
, x′

2
, x′

3
, x′

4
)T+x′

4
e4 into the ve
torK(x1, x2, x3, x4)T+x4e4. De-

note by K̃ the 4× 4 matrix with 
oe�
ients:




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
0 0 0 1


 then we get S : K̃(x′

1
, x′

2
, x′

3
, x′

4
)T 7→

K̃(x1, x2, x3, x4)T . If the shape-fun
tion K restri
ted to the subspa
e S is a regular linear mapping than we

also have K̃−1SK̃(x′
1
, x′

2
, x′

3
, x′

4
)T = (x1, x2, x3, x4)T and we have that

[
∂xα

∂x′µ

]
=

dK̃−1SK̃
dS′

= K̃−1 dS
dS′

K̃ and so

dS
dS′

= K̃

[
∂xα

∂x′µ

]
K̃−1.

Hen
e

dS′

dS
= K̃

[
∂xα

∂x′µ

]−1

K̃−1 = K̃

[
∂x′

µ

∂xα

]
K̃−1

and

[
d2S

dS′dS′

]α
= K̃

[
∂2xα

∂x′µ∂x′ν

]
K̃−1

implying that the a�ne 
onne
tion is:

Γ(S′, S)λµν = K̃
∂x′

λ

∂xα
∂2xα

∂x′µ∂x′ν
K̃−1 = K̃ΓλµνK̃

−1 = K̃

{
λ
µν

}
K̃−1.

Sin
e S′(τ0) = K̃(x′
1
, x′

2
, x′

3
, x′

4
)T thus we also get three equalities, the �rst one is:

dS′(τ0)

dτ0
= K̃

(
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)T
=

(
k1α

dx′
α

dτ0
, k2α

dx′
α

dτ0
, k3α

dx′
α

dτ0
, k4α

dx′
α

dτ0

)T
=

[
kλα

dx′
α

dτ0

]
.

The se
ond equality is:

dS′(τ0)

dτ0

dS′(τ0)

dτ0
= K̃

(
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)T (
dx′

1

dτ0
,
dx′

2

dτ0
,
dx′

3

dτ0
,
dx′

4

dτ0

)
K̃T = K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

and the third one is:

d2S′(τ0)

dτ20
= K̃

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
=

[
kλα

d2x′
α

dτ20

]
.

The geodesi
 equation now:

0 = K̃

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
+ K̃ΓλµνK̃

−1K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,
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A.2. GENERAL RELATIVITY THEORY 123

or equivalently

0 =

(
d2x′

1

dτ20
,
d2x′

2

dτ20
,
d2x′

3

dτ20
,
d2x′

4

dτ20

)T
+ Γλµν

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

implying that

0 =
d2x′

λ

dτ20
+ Γλµν

dx′
µ

dτ0
kνζ

dx′
ζ

dτ0
.

Sin
e for the proper time we have the equality

−c2dτ20 = dST
(

1 0
0 −c2

)
dS =

(
dS

dS′
dS′

)T
η
dS

dS′
dS′ = dS′T gdS′

hen
e

g(S′, S) =

(
dS

dS′

)T
η
dS

dS′
.

Let denote by [j
ik] the transpose of the matrix [kij ] and K

i
j the elements of the inverse of K̃. Then sin
e

g(S′, S) =
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃TηK̃

[
∂xα

∂x′µ

]
K̃−1

thus

g(S′, S)ϕψ = ϕ
µK

∂xα

∂x′µ
α
δkηδ,εk

ε
β

∂xβ

∂x′ν
Kν

ψ.

This matrix is the metri
 tensor of the homogeneous time-spa
e manifold in question. If K̃ is the unit matrix,

then µ = ϕ, ν = ψ, α = δ and β = ε implying the known formula

gµν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ .

Also note that if K̃ is an orthogonal transformation then we get a more simple form of the metri
:

g(S′, S) = K̃

[
∂xl

∂x′i

]T
η

[
∂xl

∂x′i

]
K̃T .

To determine the 
onne
tion between the metri
 and the a�ne 
onne
tion we determine the partial derivative

of the metri
.

∂g(S′, S)

∂x′λ
=
(
K̃−1

)T [ ∂2xα

∂x′µ∂x′λ

]T
K̃T ηK̃

[
∂xβ

∂x′ν

]
K̃−1 +

(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃T ηK̃

[
∂2xβ

∂x′ν∂x′λ

]
K̃−1,

and sin
e

∂2xα

∂x′µ∂x′λ
=
∂xα

∂x′ρ
K̃−1Γ(S′, S)ρµλK̃

we have

∂g(S′, S)ϕψ

∂x′λ
= Γ(S′, S)ρϕλg(S

′, S)ρψ + g(S′, S)ϕρΓ(S
′, S)ρλψ

as in the 
lassi
al 
ase. Denote by g(S, S′)ϕρ the inverse of the metri
 tensor then we get the 
onne
tion:

Γ(S′, S)σλµ =
1

2
g(S, S′)νσ

{
∂g(S′, S)µ,ν

∂x′λ
+
∂g(S′, S)λ,ν

∂x′µ
− ∂g(S′, S)µ,λ

∂x′ν

}
.

Covariant derivative, parallel transport and the 
urvature tensor. Sin
e we determined the a�ne 
onne
tion

we 
an de�ne the 
ovariant derivative of a ve
tors �elds on the way:

V µ;λ =
∂V µ

∂x′λ
+ Γ(S′, S)µλρV

ρ =
∂V µ

∂x′λ
+ K̃ΓµλδK̃

−1V δ.

In fa
t, it 
onverts ve
tors into tensor on the basis of the following 
al
ulation:

K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1V ν ;ρ = K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃ΓνρδK̃

−1V δ
)

=

= K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃

∂x′
ν

∂xα
∂2xα

∂x′ρ∂x′δ
K̃−1V δ

)
=

=
∂V ′µ

∂x′λ
+ K̃

∂x′
µ

∂xα
∂2xα

∂x′λ∂x′δ
K̃−1V ′δ =

∂V ′µ

∂x′λ
+ K̃ΓµλδK̃

−1V ′δ = V ′µ
;λ.

Note that the 
ovariant derivative of a 
o-ve
tor is

Vµ;λ =
∂Vµ

∂x′λ
− Γ(S′, S)µλρV

ρ,
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and the 
ovariant derivative of a tensor has the rule, ea
h upper index adds a Γ term and ea
h lower index

subtra
ts one. For this reason the 
ovariant derivative of the metri
 tensor (by our 
al
ulation above) vanishes.

Again from the de�nition of the 
ovariant derivative we get that the equation of parallel transport is now:

dV µ

dτ0
= −Γ(S′, S)µλν

dx′
λ

dτ0
V ν .

From this it follows that the parallel-transport along a side δx′
β
of a small 
losed parallelogram is

δV α = −Γαβν(S
′, S)V νδx′

β

and thus the total 
hange around a small 
losed parallelogram with sides δaµ, δbν is

δV α = (Γαβν;ρ(S
′, S)V ν + Γαβν(S

′, S)V ν ;ρ − Γαρν;β(S
′, S)V ν − Γαρν(S

′, S)V ν ;β) δa
βδbρ

implying that δV α = R(S′, S)ασρβV
σδaβδbρ. Here R(S′, S)ασρβ is the Riemann 
urvature tensor de�ned by

R(S′, S)ασρβ := Γ(S′, S)αβσ;ρ − Γ(S′, S)αρσ;β + Γ(S′, S)αρνΓ(S
′, S)νσβ − Γ(S′, S)αβνΓ(S

′, S)νσρ.

The Ri

i Tensor and the s
alar 
urvature de�ned by

R(S′, S)σβ := R(S′, S)ασαβ and R(S′, S) := R(S′, S)σσ,

respe
tively.

A.2.3.3. Einstein's equation. As we 
an saw in the previous paragraph all of the notion of global relativity


an be de�ned in a time-spa
e-manifold thus all of the equations between them is a well-de�ned equation. On

the other hand Einstein's equation take into 
onsideration the fa
ts of physi
; hen
e 
ontains parameters whi
h


an not be 
hanged. Fortunately we noted earlier that the 
ovariant derivative of our metri
 tensor vanishes,

too. Thus also vanishes the 
ovariant derivative its inverse and hen
e we 
an write the Einstein's equation

with 
osmologi
al 
onstant Λ, too. The equation is formally the same that the original one, but 
ontains a new

(undetermined) parameter whi
h is the matrix K̃ of the shape-fun
tion. It is:

R(S′, S)µν − 1

2
g(S′, S)µνR(S′, S)− Λg(S′, S)µν =

8πG

c4
T µν,

where the parameter G 
an be adjusted so that the a
tive and gravitational masses are equal and T µν is the

energy-momentum tensor.
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onvex body. Beiträge zur Geometrie und Algebra 50/1
(2009) 219-233.

[4℄ Bounded representation and radial proje
tions of bise
tors in normed spa
es. (
ommon with H.Martini)

Ro
ky Mountain Journal of Mathemati
s 43/1 (2013) 179�191.

[5℄ Isometries of Minkowski geometries. Linear Algebra and Its Appli
ations 512, (2017) 172-190

[6℄ Coni
s in Normed Planes. (
ommon with H.Martini) Extra
ta Math. 26/1 (2011) 29�43.

[7℄ Angle measures, general rotations, and roulettes in normed planes (
ommon with V.Balestro and H.Martini)

Analysis and Mathemati
al Physi
s DOI: 10.1007/s13324-016-0155-3 (2016).

[8℄ Semi-inde�nite inner produ
t and generalized Minkowski spa
es. Journal of Geometry and Physi
s 60

(2010) 1190-1208.

[9℄ Premanifolds. Note di Matemati
a 31/2 (2011) 17�51.

[10℄ Normally distributed probability measure on the metri
 spa
e of norms. A
ta Mathemati
a S
ientia 33/5

(2013) 1231-1242.

[11℄ Generalized Minkowski spa
e with 
hanging shape. Aequationes Mathemati
ae 87/3 (2014) 337-377

[12℄ On the volume of the 
onvex hull of two 
onvex bodies (in 
ommon with Zs.Lángi) Monatshefte für Math-

ematik 174/2 (2014) 219-229.

[13℄ On the i
osahedron inequality of László Fejes-Tóth Journal of Mathemati
al Inequalities 10/2 (2016),

521�539.

[14℄ Formulas on hyperboli
 volume. Aequationes Mathemati
ae 83/1 (2012), 97-116.

Other papers mentioned in the Dissertation

[15℄ Ahn H-K., Brass P., Shin C-S., Maximum overlap and minimum 
onvex hull of two 
onvex polyhedra under

translations, Comput. Geom. 40 (2008), 171-177.

[16℄ Alexandrov, P.S.: Combinatorial topology. Graylo
k Press Ro
hester, N.Y 1956.

[17℄ Alonso, J. and Benítez, C., Orthogonality in normed linear spa
es: a survey, II. Relations between main

orthogonalities, Extra
ta Math. 4 (1989), 121-131.

[18℄ Auerba
h, H.: Sur une propiérté 
ara
téristique de l'ellipsoide. Studia Math. 9 (1940) 17�22.

[19℄ Aurenhammer, F., Klein, R.: Voronoi diagrams. Handbook of Computational Geometry, Chapter 5, Eds.

J.-R. Sa
k and J. Urrutia, North-Holland, Amsterdam, 2000, pp. 201-209.

[20℄ Balestro, V., G.Horváth, Á., Martini, H., Teixeira, R.: Angle in normed spa
es Aequationes Mathemati
ae

(2016) Doi: 10.1007/s00010-016-0445-8

[21℄ Bao, D., Chern S. S., Shen Z.: An Introdu
tion to Riemannian-Finsler Geometry. Springer-Verlag, Berlin,

1999.

[22℄ Bandt, C., Baraki G.,: Metri
ally invariant measures on lo
ally homogeneous spa
es and hyperspa
es.

Pa
i�
. J. Math. 121 (1986), 13�28.

[23℄ Bárány, I.: A�ne perimeter and limit shape. J. Reine Angew. Math. 484 (1997), 71�84.

[24℄ Berkson, E.: Some types of Bana
h spa
es, Hermitian operators and Bade fun
tionals. Trans. Amer. Math.

So
. 116 (1965), 376�385.

[25℄ J.D. Berman and K. Hanes, Volumes of polyhedra ins
ribed in the unit sphere in E3
, Math. Ann. 188

(1970), 78�84.

[26℄ Birkho�, G.: Orthogonality in linear metri
 spa
es. Duke Math. J. 1 (1935), 169�172.

[27℄ Birkho� G., Morris R.: Confo
al 
oni
s in Spa
e-Time. Amer. Math. Monthly 69(1), 1�4 (1962)

[28℄ Boltyanski, V., Martini, H., Soltan, P. S.: Ex
ursions into Combinatorial Geometry, Springer, Berlin et al.,

1997.

[29℄ Bolyai, J. Appendix in Tentamen written by F.Bolyai, Marosvásárhely, 1832

[30℄ Brass P.: Erd®s distan
e problems in normed spa
es, Comput. Geom. 6 (1996), 195-214

129

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



130 BIBLIOGRAPHY

[31℄ P. Brass, W. Moser and J. Pa
h, Resear
h Problems in Dis
rete Geometry, Springer, New York, 2005.

[32℄ Brown, M.: A proof of the generalized S
hoen�ies theorem. Bull.Amer. Math.So
. 66 (1960), 74�76.

[33℄ Brown, M.: Some appli
ations of an approximation theorem on inverse limits. Pro
. Amer. Math. So
. 11

(1960), 478�483.

[34℄ Busemann, H.: Angular measure and integral 
urvature, Canad. J. Math. 1(1949), 279-296.

[35℄ Busemann, H.: The geometry of Finsler spa
es, Bull. Amer. Math. So
. 56 (1950), 5-16.

[36℄ Busemann, H.: The foundations of Minkowskian geometry, Commentarii Mathemati
i Helveti
i 24 (1950),

156-187.

[37℄ Casey, J., A treatise on spheri
al trigonometry, and its appli
ation to Geodesy and Astronomy, with nu-

merous examples, Hodges, Figgis and CO., Grafton-ST. London: Longmans, Green, and CO., 1889.

[38℄ Clarkson, J. A.: Uniformly 
onvex spa
es. Trans. Amer. Math. So
. 40 (1936), 396�414.

[39℄ H.T. Croft, K.J. Fal
oner and R.K. Guy, Unsolved Problems in Geometry, Vol. 2, Springer, New York,

1991.

[40℄ Day, M. M.: Polygons 
ir
ums
ribed about 
losed 
onvex 
urves. Trans. Amer. Math. So
. 62 (1947), 315�

319.

[41℄ M.M.Day, Normed linear spa
es. Springer-Verlag, Berlin, 1958.

[42℄ M.M.Day, Some 
hara
terization of inner-produ
t spa
es. Trans. Amer. Math. So
. 62 (1947) 320�337.

[43℄ Daverman, R.J.: De
omposition of Manifolds. A
ademi
 Press, New York, 1986.

[44℄ Dekster, B. V.: An angle in Minkowski spa
e, J. Geom. 80 (2004), 31-47.

[45℄ Dekster, B. V.: A metri
 spa
e of dire
tions in Minkowski spa
e, J. Geom. 80 (2004), 48-64.

[46℄ Dekster, B. V.: Total angle around a point in Minkowski plane, J. Geom. 93 (2009), 38-45.

[47℄ Diminnie, C. R.: Andalafte, E.Z., Freese, R.W.: Generalized angles and a 
hara
terization of inner produ
t

spa
es, Houston J. Math. 14 (1988), 475-480.

[48℄ Düvelmeyer, N.: Angle measures and bise
tors in Minkowski planes, Canad. Math. Bull. 48/4 (2005)

523-534.

[49℄ B. A. Dubrovin, A. T. Fomenko, S. P. Novikov: Modern Geometry- Methods and Appli
ations, Part I. The

geometry of Surfa
es, Transformation Groups, and Fields. Se
ond Edition, Springer-Verlag, 1992.

[50℄ Eddington, A.S. The Mathemati
al Theory of Relativity Cambridge University press, 1924.

[51℄ Ergin, A.A., On the one-parameter Lorentzian motion. Comm. Fa
. S
i. Univ. Ankara, Series A 40 (1991),

59�66.

[52℄ Ergüt, M., Aydin, A.P., Bildik, N., The geometry of the 
anoni
al system and one-parameter motions in

2-dimensional Lorentzian spa
e, The Journal of Firat University 3/1 (1988), 113�122.

[53℄ Fankhänel, A.: I-measures in Minkowski planes, Beitr. Algebra Geom. 50 (2009), 295-299.

[54℄ Fankhänel, A.: On angular measures in Minkowski planes, Beitr. Algebra Geom. 52 (2011), 335-342.

[55℄ Fáry, I. and Rédei, L., Der zentralsymmetris
he Kern und die zentralsymmetris
he Hülle von konvexen

Körpern. (German), Math. Ann., 122 (1950), 205-220.

[56℄ Federer, H.: Geometri
 Measure Theory. Springer-Verlag 1969.

[57℄ L. Fejes-Tóth, Regular Figures, The Ma
millan Company, New York, 1964.

[58℄ Feller, W.: An Introdu
tion to Probability Theory and Its Appli
ations. 3rd ed. New York: Wiley, 1968.

[59℄ Finsler, P.: Über Kurven und Flä
hen in allgemeinen Räumen, Dissertation, Göttingen, 1918.

[60℄ Finsler, P.: Über eine Verallgemeinerung des Satzes von Meusnier, Vierteljahrss
hr. Naturf. Ges. Züri
h

85 (1940), 155-164.

[61℄ Fleming, R. J., Jamison, J. E.: Adjoint abelian operators on LP and C(K). Transa
tions of the Ameri
an

Math. So
. 217 (1976) 87�98.

[62℄ Gar
ia-Roig, J.-L.: On the group of isometries and a system of fun
tional equations of a real normed plane,

Inner Produ
t Spa
es and Appli
ations, Pitman Resear
h Notes in Mathemati
s Series 376. Longman,

Harlow (1997), pp. 42-53.

[63℄ R.J. Gardner, Geometri
 Tomography, Cambridge University Press, 1995

[64℄ Giles, J. R.: Classes of semi inner-produ
t spa
es. Trans. Amer. Math.So
. 129/3 (1967), 436�446.

[65℄ Glaeser, G., Sta
hel, H.: Open Geometry: OpenGLr
+ Advan
ed Geometry, Springer-Verlag New York,

1999.

[66℄ Gohberg, I., Lan
ester, P., Rodman, L.: Inde�nite Linear Algebra and Appli
ations. Birkhauser, Basel-

Boston-Berlin, 2005.

[67℄ Goodey P.M., Wood
o
k, M.M.: Interse
tions of 
onvex bodies with their translates, The Geometri
 Vein

ed. C.Davis, B.Grünbaum and F.A.Sherk Springer-Verlag, 1982.

[68℄ Goodey P.M.: Homotheti
 ellipsoids. Math. Pro
. Comb. Phil. So
. 93 (1983) 25�34.

[69℄ Graham R. L., Witsenhausen H. S., Zassenhaus H. J.: On tightest pa
kings in the Minkowski plane, Pa
i�


Journal of Mathemati
s 41/3 (1972), 699-715.

[70℄ Gri�ths, G. P., Podolský Exa
t spa
e-times in Einstein's general relativity. Cambridge University Press

2009.

dc_1387_17

Powered by TCPDF (www.tcpdf.org)



BIBLIOGRAPHY 131

[71℄ Gruber, P.M.: Convex and Dis
rete Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 2007.

[72℄ Gruber, P.M., Wills, J.M. (Hrsg.): Handbook of Convex Geometry Volume A,B, North Holland, Amsterdam

1993.

[73℄ Gruber, P.M.: Minimal ellipsoids and their duals. Rend. Cir
. Mat. Palermo 37/2 (1988) 35�64.

[74℄ Gruber P.M.: Kennzei
hnende Eigens
haften von euklidis
hen Räumen und Ellipsoiden. I. J. reine angew.

Math. 256 (1974) 61�83.

[75℄ Gruber P.M.: Kennzei
hnende Eigens
haften von euklidis
hen Räumen und Ellipsoiden. II. J. reine angew.

Math. 270 (1974) 123�142.

[76℄ Gruber P.M.: Kennzei
hnende Eigens
haften von euklidis
hen Räumen und Ellipsoiden. III. Monatsh.

Math. 78 (1974) 311�340.

[77℄ Gruber P.M., Lekkerkerker C.G.: Geometry of numbers. North-Holland Amsterdam-New York-Oxford-

Tokyo, 1987.

[78℄ Gruber P.M., Wills J.M. (Hrsg.) Handbook of Convex Geometry. Volume A,B, North Holland, Amsterdam

1993.

[79℄ Gunawan, H., Lindiarni, J., Neswan, O.: P -,I-,g-, and D-angles in normed spa
es, ITB J. S
i. 40/1 (2008),

24-32.

[80℄ G.Horváth, Á.:Relativity theory in time-spa
e manifold. Univ. J. of Physi
s and Appl. 10/4, (2016)

115�127.

[81℄ G.Horváth, Á., Maximal 
onvex hull of 
onne
ting simpli
es, Stud. Univ. �ilina Math. Ser. 22 (2008),

7-19.

[82℄ G.Horváth, Á., On an extremal problem 
onne
ted with simpli
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