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List of Symbols 
This dissertation includes a large number of equations with a large number symbols. 

Therefore, the strategy, in general, is to define the meaning of each symbol where (or: at least 

in the close vicinity where) it occurs. Hence it is not intended here to provide with a full list of 

all the symbols. However, it might be helpful to list those symbols which occur in various 

places, or which are thought to be the most important ones. 

 

Lowercase Latin italic letters 

a, b length and width of a strip, respectively 

a(k), b(k) length and width of the (k)-th strip, respectively 

bi width of the i-th flat plate of the cross-section (in Chapter 5 and in Appendices 

C and D) 

km =m×/a (where m is the number of half-waves along the length)  

m number of half-waves of the longitudinal shape function  

m number of nodes (in a cross-section) connecting to a certain node, in case of 

branched cross-sections  (occurs only in Section 2.2.3) 

n number of nodes of the cross-section of the thin-walled member (i.e., number 

of nodal lines in the FSM model) 

n number of flat plates of the cross-section of the thin-walled member (in 

Chapter 5 and in Appendices C and D) 

nm number of main nodes of the cross-section of the thin-walled member 

ns number of sub-nodes of the cross-section of the thin-walled member 

ne number of external nodes of the cross-section of the thin-walled member (i.e., 

those nodes to which only one single plate element is connected) 

nDOF number of displacement degrees of freedom (DOF) in the FSM model 

nM dimension of the deformation space, when deformations are constrained into a 

‘M’ space 

p number of strips in the FSM model of a thin-walled member 

pi participation (percentage) of the i-th deformation mode (i.e., i-th base vector) 

in a general deformation 

pM participation (percentage) of the ‘M’ deformation space in a general 

deformation 

py loading in the longitudinal y direction, uniformly distributed over the cross-

section  

q number of trigonometric terms, when the longitudinal shape function is 

assumed in a trigonometric series form (i.e., it is the maximum number of the 

considered longitudinal half-waves) 

r0S, r0S,r polar radius or gyration of the thin-walled cross-section, calculated with and 

without considering the own plate inertias 
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t thickness of a strip 

t(k) thickness of the (k)-th strip 

ti thickness of the i-th flat plate of the cross-section (in Chapter 5 and in 

Appendices C and D) 

u, v, w translational displacements (i.e., displacement functions) along the local x, y 

and z axis, respectively 

u1, u2 (local) translational displacement degrees of freedom for one strip in x 

v1, v2 (local) translational displacement degrees of freedom for one strip in y 

w1, w2 (local) translational displacement degrees of freedom for one strip in z 

u1
(j), u2

(j) (local) translational displacement DOF for the (j)-th strip in x 

v1
(j), v2

(j) (local) translational displacement DOF for the (j)-th strip in y 

w1
(j), w2

(j) (local) translational displacement DOF for the (j)-th strip in z 

u1[m], u2[m] (local) translational displacement DOF for one strip for a specific m value, i.e. 

for a specific number of longitudinal half-waves in x 

v1[m], v2[m] (local) translational displacement DOF for one strip for a specific m value, i.e. 

for a specific number of longitudinal half-waves in y 

w1[m], w2[m] (local) translational displacement DOF for one strip for a specific m value, i.e. 

for a specific number of longitudinal half-waves in z 

x, y, z local coordinate axes (y: longitudinal, x: in the plane of the strip/plate, z: 

perpendicular to the plane of the strip/plate)  

 

Uppercase Latin italic letters 

A  cross-sectional area 

As,Z  shear area along the Z direction 

E modulus of elasticity of the material (in case of isotropic material) 

Ex, Ey modulus of elasticity in the x and y directions (in case of orthotropic material) 

F axial (compressive) force acting at the ends of the thin-walled member (i.e., the 

resultant of the py distributed loading)  

G shear modulus of the material 

IX, IZ second moment of area calculated with regard to global X- and Z axis, 

respectively, with considering own plate inertias (i.e., the biti
3/12 terms) 

IX,r, IZ,r (reduced) second moment of area with regard to global X- and Z axis, 

respectively, with neglecting own plate inertias (i.e., the biti
3/12 terms),  

It  torsion constant (of a thin-walled cross-section) 

Iw, Iw,r  warping constant (of a thin-walled cross-section), with and without considering 

the through-thickness warping variation, respectively 

L length of the thin-walled column  

U, V, W translational displacements (i.e., displacement functions) along the global X, Y 

and Z axis, respectively 
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U1, U2, U3… global translational displacement degrees of freedom for the 1st, 2nd, 3rd, etc. 

nodal lines in a finite strip model, in x direction 

V1, V2, V3… global translational displacement degrees of freedom for the 1st, 2nd, 3rd, etc. 

nodal lines in a finite strip model, in y direction 

W1, W2, W3… global translational displacement degrees of freedom for the 1st, 2nd, 3rd, etc. 

nodal lines in a finite strip model, in y direction 

U0, V0, W0 amplitudes of the assumed global displacement functions for translational 

displacements along the global X, Y and Z axis, respectively 

W work done by the loading on the displacements (in Chapter 5 and Appendices 

C and D) 

X, Y, Z global coordinate axes (Y: longitudinal) 

XC, ZC  global coordinates of the mass centre of the cross-section 

XS, ZS  global coordinates of the shear centre of the cross-section 

XSC, ZSC   coordinates of shear centre with regard to mass centre 

 

Greek letters 

k) angle of the local x axis of the (k)-th strip, with respect to the global X axis 

x transverse normal strain (typically: function of x, y and z) 

y longitudinal normal strain (typically: function of x, y and z) 

y
II second-order part of the longitudinal normal strain (typically: function of x, y 

and z) 

xy in-plane shear strain (typically: function of x, y and z) 

x curvature in the transverse direction (i.e., along the local x axis) 

y curvature in the longitudinal direction (i.e., along the local y axis) 

xy mixed curvature (i.e., with respect to the local x and y axes) 

, or 1, 2… eigen-values, i.e., critical load factors 

 Poisson’s ratio of the material (in case of isotropic material) 

x,y Poisson’s ratio of in the x and y directions (in case of orthotropic material) 

 potential energy function 

int, ext internal and external part of the potential energy function, respectively 

 rotation (i.e., rotation function) about the local y longitudinal axis 

 rotation (i.e., rotation function) about the global Y longitudinal axis 

1, 2 (local) rotational degrees of freedom for one strip 

1
(j), 2

(j) (local) rotational DOF for the (j)-th strip 

1[m], 2[m] (local) rotational DOF for one strip for a specific m value, i.e. for a specific 

number of longitudinal half-waves 
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0 amplitude of the assumed global displacement function for rotation about the 

global Y longitudinal axis 

y,txy longitudinal normal stress and in-plane shear stress from loading, respectively 

 

Bold letters (vectors, matrices) 

d displacement vector (of the FSM problem), in general 

dM displacement vector of the constrained FSM problem, when deformations are 

constrained into a ‘M’ space 

Ke, Kg global elastic stiffness matrix and global geometric stiffness matrix, 

respectively 

Ke,M, Kg,M global elastic and geometric stiffness matrix of the constrained FSM problem, 

when deformations are constrained into a ‘M’ space 

R constraint matrix for the constrained FSM, in general 

RM constraint matrix for a specific ‘M’ deformation space  

 (diagonal) matrix with eigen-values (of an eigen-value problem) in its diagonal  

M (diagonal) matrix with eigen-values of a the constrained (generalized) eigen-

value problem in its diagonal, when deformations are constrained into a ‘M’ 

space 

 matrix of eigen-vectors of a (generalized) eigen-value problem  

M matrix of eigen-vectors of a constrained (generalized) eigen-value problem, 

when deformations are constrained into a ‘M’ space 
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1 Introduction 

1.1 General 

In this dissertation buckling of thin-walled members is discussed. Thin-walled members 

appear in many engineering applications, but most frequently in the building industry, 

automotive industry and airplane industry. Thin-walled members can be made of various 

materials, including steel, aluminium, plastic, composites, or even reinforced concrete. 

Perhaps the most typical thin-walled mass products are the cold-formed steel products which 

are more and more widely used in structural engineering, either as secondary load-bearing 

elements (e.g., purlins, columns of partition walls, etc.) or as primary load-bearing elements 

(e.g., skeleton of low- and midrise buildings). Spreading of cold-formed steel is driven by the 

need of fast and economic construction, and supported by the development of the production 

technology as well as by the improvement in design methods, design standards, and 

computation techniques. 

The work presented in this dissertation is essentially of theoretical nature, therefore, 

essentially independent of the application, and independent of the material of the member. 

Nevertheless, surely, the work has been initiated by the needs of cold-formed steel design, and 

the most evident and immediate application of the new results is in the design of cold-formed 

steel structures. That is why cold-formed steel will mostly be referenced as application (e.g., 

design recommendations, numerical examples, etc.). Though thin-walled members might have 

various topologies, here the focus is on the beam- or column-like members, built up from thin 

plates (like in cold-formed steel Z or C profiles). Examples are shown in Figure 1.1.  

Moreover, it is assumed that the members are prismatic (like in case of almost any cold-rolled 

steel profile). Finally, it is assumed that the member is built up from flat plates that are 

connected with sharp corners (which is, in some cases, an approximation, e.g., cold-formed 

steel members never have exactly sharp corners).  

Plate elements of thin-walled members (as defined above) are characterized by large width-to-

thickness ratios, i.e., they are slender, consequently buckling is a potential (and in many cases: 

the governing) mode of failure. The term ‘buckling’ will be used here in two connected, but 

different senses. In a more general sense buckling is the phenomenon which takes place under 

the effect of compressive forces/stresses, which typically involves relatively large 

deformations/displacements, which typically takes place in the form of a sudden change in the 

displacement/deformation field, and in which the small disturbing effects, also known as 

imperfections, have prominent role. In the other, more special sense buckling has similar 

meaning, but the phenomenon is idealized, assuming perfectly elastic and homogeneous 

material, perfect initial geometry, perfectly proportional and aligned loading, etc.  

Even in this more restricted sense buckling might be (and is) defined in various ways, here, it 

is fair to assume that buckling will take place as a bifurcation of equilibrium. This second, 

idealized buckling will also be referred here as elastic buckling or linear buckling. The load 

level at which bifurcation occurs is the critical load, also referred as buckling load. The state 

of the structure when bifurcation occurs is the critical state. The deformed shape that belongs 

to the secondary load path at the bifurcation point is the buckled shape, also referred as 

buckling mode. The process of determining the critical state (i.e., critical load, buckled shape) 

is the linear or elastic buckling analysis which in our cases will always mean the solution of a 

generalized eigen-value problem, in which the eigen-values are the critical load multipliers, 

and the eigen-vectors are the nodal representations of the buckled shapes. 
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(a) portal frames made of cold-formed steel members 

 

(b) cold-formed steel Z-shaped purlins 

 

(c) trusses made of cold-formed steel profiles 

Figure 1.1: Examples for thin-walled cold-formed steel members 

The work summarized in this dissertation is focusing on this second interpretation of 

buckling, therefore, mostly the term ‘buckling’ will be used in the second, idealized sense. 

However, the application of the results is in the ‘buckling analysis’, with ‘buckling’ 

interpreted in the first, more general sense. In this sense buckling analysis is the whole 

process that tries to describe the buckling phenomenon in general, and which leads to the 

practically most important characteristics, namely: buckling capacity. Buckling capacity is the 

maximum load that the structure is able to sustain without failure induced by buckling. If 

safety margin is also added to the buckling capacity (e.g., according to some design 

specification), it is appropriate to use the term design (buckling) capacity.  
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1.2 Investigated buckling types 

In typical applications the cold-formed steel members are subjected to compressive axial 

force and/or bending moment, from which longitudinal normal stresses develop. Under the 

effect of longitudinal compressive stresses usually three types (or: classes) of basic buckling 

phenomena are distinguished: local (L), distortional (D) and global (G) buckling. (Obviously, 

buckling might occur due to other-than-longitudinal stresses, e.g., shear buckling or web 

crippling, but these are out of the scope of this dissertation.) In a linear buckling analysis 

these buckling types most frequently take place in interaction with each other, i.e., the 

observed buckling pattern may have deformations combined from more than one buckling 

type. Buckling modes without this kind of interaction are referred to as pure buckling modes. 

Samples are shown in Figure 1.2 for a member with C-shaped cross-section. 

 

Figure 1.2: Illustration of global, distortional and local buckling modes 

Although there seems to be a consensus among researchers and practitioners on the global-

distortional-local classification of buckling modes, and although this classification directly 

appears in design specifications, too, formal definitions of the types has not existed for a long 

time, and even today there is no consensus on the exact meaning of the types. 

Global buckling is a buckling mode where the member deforms with no or negligibly small 

deformation in its cross-sectional shape. Thus, the deformations can (primarily or solely) be 

characterized by the displacements of the system line of the member. Depending on the 

deformations and the type of loading, further sub-classes can be defined such as: flexural 

buckling, torsional buckling, flexural-torsional buckling and lateral-torsional buckling.  

Local buckling (or local-plate buckling) is normally defined as the mode which involves 

plate-like deformations alone, without the translation of the intersection lines of the adjacent 

plate elements. Another important feature of local buckling is that the associated buckling 

length is the smallest among the three types, and typically less than the width of any plate that 

construct the cross-section. 

Distortional buckling seems to be the most problematic mode. As far as the associated 

buckling length is concerned it is typically in between the lengths of local and global modes, 

while the transverse deformations involve both plate-like deformations and the translation of 

one or multiple intersection lines of adjacent plate elements. 

global 

buckling 

distortional 

buckling local-plate 

buckling 
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1.3 Prediction of buckling capacity  

The buckling capacity is (can be) quite different from the elastic critical load, due to two 

major effects: the capacity degrading effect of the always existing imperfections, and the 

capacity increasing effect of the ability of the structure to switch to another, more stable load 

bearing mechanism. These two major factors will determine the post-buckling behaviour. 

Distinguishing between buckling types is important because each has its characteristic post-

buckling behaviour. Local buckling typically has significant post-buckling reserve (at least for 

larger slendernesses where the behaviour is primarily elastic). Distortional buckling may have 

post-buckling reserve, too, but considerably less compared to local buckling. Global buckling 

has no post-buckling reserve at all: the capacity of the member is always less than its elastic 

critical load. Thus, (i) it is extremely important to clearly classify the various buckling modes 

in order to get realistic design capacity, and (ii) this explains why different design methods 

have been evolved for the various buckling types. The most widely applied design methods 

are briefly summarized as follows. As it becomes clear, design approaches require the correct 

calculation of the member critical load, since the design capacity is dependent on it. Not only 

the value of the critical load is crucial, but the type of the buckling, too, to be able to properly 

consider the effect of imperfections and the possible post-buckling reserves. 

Global buckling 

Global buckling is the most classical and most well-known among the buckling phenomena. 

The linear buckling problem for the flexural case was first formulated mathematically and 

solved by Euler more than two hundred years ago. Solutions for other cases of global 

buckling, such as torsional, flexural-torsional or lateral-torsional buckling, are also well-

known. Also, there is a widely accepted and applied classic approach for the prediction of the 

corresponding design capacity, in which the capacity is the product of the cross-section 

capacity and a buckling reduction factor (i.e., ‘yield strength’×’area’×’reduction factor’). The 

reduction factor is dependent on the elastic critical load and some other (material and cross-

section) parameters. It is to observe that the effect of restraints, as well as the effect of load 

distribution is considered in the linear buckling problem. In case of global buckling, all major 

design standards for (cold-formed) steel [1/1-6/1] use this approach, though there are 

differences in the actual formulae. 

Local buckling 

In our case local buckling means the buckling of one or multiple rectangular plates under the 

effect of a unilateral (longitudinal) normal stress. The solution for the linear buckling problem 

for a single plate is, again, a classic one, various cases are solved by Timoshenko at the 

beginning of 1900s. The most used technique for capacity prediction is based on the effective 

width approach, the idea of which is to calculate a reduced (so-called ‘effective’) width, then 

the capacity can be predicted as the reduced plate area times the yield strength (i.e., ‘reduced 

width’×thickness’×‘yield strength’). The effect of loading as well as the effect of edge 

restraints can be considered in the elastic buckling load. For the reduction factor to get the 

effective width, mostly the so-called Winter-formula is used [3/1], proposed in the middle of 

the 20th century, which calculates the reduction factor from the elastic critical stress. 

When a thin-walled column/beam member is loaded by longitudinal stresses, there are 

multiple connected plate elements (partially or fully) in compression. The connected plate 

elements mean certain supports to each other (which is advantageous), and also their plate 

buckling is interaction with each other (which is disadvantageous). Codified design methods 

typically make a simplification and neglect the interaction of the connected plates, that is 

effective width is defined for each plate element separately from the others, and the so final 
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‘effective cross-section’ is then built up from the effective portions of the individual plate 

elements. Also, since plate buckling is associated with short buckling waves, the effect of 

loading (e.g., changing bending moment along the member axis) is practically negligible, 

hence, local buckling capacity is practically considered as characteristics of the cross-section. 

Distortional buckling 

Distortional buckling is the newest form of buckling, first described approx. 50 years ago. In 

typical cases distortional buckling is the quasi-flexural buckling of a stiffener. General 

analytical solutions for the corresponding critical load are not known, though lately there are 

proposals for some cases, such as C- or Z-shaped columns, but the involved calculations and 

formulae can be considered to be too complicated for practical use. Even so, the capacity 

prediction is still based on the elastic critical load value.  

There are two approaches. One approach calculates a reduction factor which is applied to 

reduce the thickness of the stiffener zone of the member [2/1]. The other approach uses a 

Winter-type formula (but with parameters different for those used for effective width 

calculation) to calculate a reduction factor which is applied for the whole cross-section of the 

member to reduce its cross-section capacity (similarly as in case of global buckling) [6/1] 

Since distortional buckling is associated with relatively short buckling waves, the effect of 

loading (e.g., changing bending moment along the member axis) is typically assumed to be 

negligible, hence, distortional buckling capacity is practically considered as characteristics of 

the cross-section. It must be mentioned, however, that this assumption is just a rough 

approximation, more precise calculations clearly show that distortional buckling does depend 

on various parameters of the problem, not only on cross-section properties. 

The Direct Strength Method 

Recently the so-called Direct Strength Method (DSM) has been proposed [7/1] and 

implemented in certain design standards. DSM integrates some of the existing approaches and 

extends them in order to have a uniform handling of all the three basic buckling phenomena. 

Essentially, DSM predicts a separate capacity for each of the G (global), D (distortional) and 

L (local) buckling, then the final capacity is simply the minimum of the three. Each individual 

capacity is predicted by using the same generic formula: ‘yield strength’×’cross-section 

area’×’reduction factor’. And in each of the G, D and L case the reduction factor is calculated 

from the corresponding G, D, or L elastic critical load by using a mode-specific formula. For 

the elastic critical load calculation FSM has been proposed, as shown in the next Section.   

1.4 G, D and L critical load calculation 

In capacity prediction it is essential to calculate elastic critical load (where ‘load’ can be 

interpreted as ‘force, ‘moment’, ‘stress’, or ‘load multiplier’) separately for G, D and L 

buckling. There are analytical or semi-analytical formulae for certain cases, but surely there 

are many practical cases where critical load formula are not available. Therefore, numerical 

methods should be applied. At the time when the work summarized in this dissertation started 

(circa 2003), there were three available numerical methods: shell finite element method 

(FEM), finite strip method (FSM), and generalized beam theory (GBT).  

Among numerical methods, the finite element method (FEM) is by far the most popular and 

general. FEM is applicable to practically any structural member, loading, and boundary 

condition and a large number of FEM software packages are available, e.g., Ansys [8/1]. 

When applied for thin-walled members, a large number of shell elements, and consequently a 

large number of degrees of freedom (DOF), are required. If critical loads are to be determined 

separately for G, D and L, what practically necessary is first (i) to determine the first critical 
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loads (with the lowest critical values) and corresponding buckled shapes, then (ii) to 

systematically check the buckled shapes, and (iii) to select the ones that can be regarded as 

first L, first D and first G mode. The practical experience is that (i) at least several dozens, or 

sometimes a few hundred modes have to be calculated and judged, and (ii) in many cases it is 

not evident which mode should be considered as first mode, especially in case of distortional 

buckling, since most of the FEM-calculated buckling shapes show certain interaction of the 

modes. Furthermore, while for a single cross-section, browsing through hundreds of candidate 

buckling modes is inefficient, but for procedures which require multiple consecutive analyses 

(e.g., optimization) the method is essentially unusable. 

For the buckling analysis of thin-walled prismatic members the finite strip method (FSM) has 

been found to be highly efficient, by using specific trigonometric base functions in the 

longitudinal direction of the member (while using classic polynomials in the transverse 

directions). The method has been proposed by Cheung [9/1-11/1], later popularized by 

Hancock [12/1] who formally implemented FSM into cold-formed steel member design, as 

well as developed a computer program THIN-WALL [13/1-15/1] available for the public. The 

method has further been popularized by Schafer [16/1], who developed the open source FSM 

software CUFSM [17/1-18/1], plus proposed a new design method, the so-called Direct 

Strength Method (DSM) [7/1], which is fully based on FSM elastic buckling analysis. (It is to 

note that other variants of FSM do exist, too, but in this dissertation FSM always refers to the 

one originated in [9/1-11/1], that can be regarded as specifically proposed for the stability 

analysis of thin-walled members.)   

FSM employs significantly fewer DOF than FEM, therefore, FSM is computationally more 

efficient than FEM. The price of the reduced computational effort is limited applicability: 

classical FSM works only on prismatic members. From the point of view of determining 

critical loads for G, D or L buckling, FSM is similar to FEM. However, FSM software 

packages, like THIN-WALL and CUFSM tried to overcome this problem by the automatic 

determination of the critical stress as a function of the buckling half-wavelength, which plot is 

frequently referred as signature curve. In case of many practical cross-sections the signature 

curve has two minimum points at smaller wave-lengths, while after a certain wave-length it 

tends asymptotically to zero (or to a small non-zero value), see Figure 1.3. By using this 

signature curve the G, D and L critical loads can be determined as follows: the first minimum 

point can be regarded as critical load for L, the second minimum point as critical load for D, 

while the value at the global buckling length (based on the member length and end restraints) 

is the critical load for G. Unfortunately, the signature curve might have more or less than two 

minimum points; in such cases this procedure becomes uncertain, but even in these cases the 

signature curve can be useful in critical load determination.  

 

Figure 1.3: Typical signature curve and buckled cross-section shapes of a C-section member 
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For many years the generalized beam theory (GBT) was the only method able to directly 

calculate critical loads separately for G, D or L buckling. Originally it was developed to 

analyse global and distortional modes, then extended to local (and other) modes, too [19/1-

21/1]. First- and second-order (i.e., linear buckling) analyses are both possible, considering 

isotropic and various orthotropic materials [22/1-24/1]. Originally it handled simple cross-

section members, then extended to very general cross-sections [25/1-28/1]. For a long time 

(including the time when the here-presented research has started, circa 2003) a major 

drawback of the method was that it lacked publicly available software implementation, which 

hole was later filled by the development of GBTUL software [29/1-30/1]. GBT shares most of 

the advantages and limitations of FSM: it elegantly handles straight prismatic members, with 

a relatively small number of DOF, but it is not easy (and in some cases, probably, impossible) 

to generalize it to more complicated cases (e.g., tapered members, members with holes, 

frames built up from thin-walled members, etc.). Nevertheless, GBT is probably the most 

researched area in thin-walled research during the last two decades, and here just a few 

important works are referred out of the many dozens of publications. 

 

1.5 Modal decomposition 

Two basic tasks can be identified and distinguished in the context of calculation of critical 

load for global-distortional-local buckling. One is the calculation of pure critical load when 

the aim is to calculate critical load specifically to G, D or L buckling. This could be done 

while forcing the member to deform in accordance with a buckling type (in other words: to 

constrain the deformation into a certain type). The lowest critical load from a constraint 

calculation could directly be used as critical load for the given buckling type. 

The other task is buckling mode identification, when critical load is calculated without any 

preliminary restriction on the deformations (as in regular FEM or FSM calculations), but after 

the determination of the buckled shape it is identified, i.e., it is defined whether the given 

mode belongs to which class. Since general buckling modes rarely identical to any pure mode, 

in the practice the mode identification defines what the participations from global, distortional 

and local modes are in a general deformation mode. In real design situations, then, critical 

load for, say, distortional buckling can be estimated by the lowest critical load in which the 

participation of distortional deformations is dominant.   

It is to note that modal identification can be applied to any deformations of a thin-walled 

member, however, in this dissertation it is applied only to buckled shapes obtained from a 

linear buckling analysis. Also, various calculations with enforced constraints can be 

performed (e.g., first- or second-order static analysis, dynamic analysis, etc.), however, in this 

dissertation only linear buckling problems are solved with constraints.  

Evidently, both tasks require a clear definition of buckling classes, and require the ability of 

constructing deformations that satisfy the definition of a given class. When discussing these 

tasks in general, the whole problem will be referred here as modal decomposition. Modal 

decomposition has been a challenging task for a long time. The basic dilemma is that general 

methods, which can handle arbitrary cross-sections, boundary conditions, and loads, cannot 

do modal decomposition; while, specialized methods, which successfully solve buckling 

classification, cannot readily handle general cross-sections, boundary conditions, and loads. 

The general aim of the research summarized in this dissertation is to develop numerical 

procedures so that modal decomposition would become available for a relatively wide range 

of practical situations. 
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1.6 Outline 

This dissertation summarizes the author’s research activity on modal decomposition of thin-

walled members. The dissertation focuses on those new results in which the author’s 

contribution has been dominant. Other closely related works, some of them with the 

contribution from the author, will also be mentioned for the sake of completeness.  

The dissertation covers results from approx. 10 years, i.e., from the period between 2003 and 

2014. It starts with the presentation of the constrained Finite Strip Method (cFSM), where the 

fundamental buckling classes has been defined by mechanical criteria, and the criteria are 

systematically implemented into the semi-analytical finite strip method. cFSM was the first 

shell-model-based discretization method which was able to perform modal decomposition. 

The first version of cFSM was developed in 2004-05. This version handled members with 

pinned-pinned end restraints and open cross-section only. This original cFSM is presented in 

Section 2. 

Later cFSM has been extended to handle other end restraints, and very recently, to handle 

closed cross-sections. This latter task – completed in 2012-14 – is summarized in Section 3 of 

this dissertation.   

After development the original cFSM, modal system of base functions for the deformation-

displacement field of a thin-walled member become available. The modal nature of the base 

system has been utilized in the (approximate) modal identification of buckling modes 

calculated by shell finite element analysis. The method, presented in Section 4, can be 

considered as the first method which provided an objective (i.e., mathematical) way to 

identify buckling modes calculated by shell FEM.  

In validating numerical methods, comparison to analytical solution is always useful and 

important. Comparison of cFSM pure global results to classical analytical solutions revealed 

some differences. As it turned out, the differences are due to the differences between beam-

model and shell-model. Therefore, shell-model-based analytical solutions for the critical loads 

have been worked out for a number of classical problems. In these works the thin-walled 

member is considered as a set of thin flat plates, constraints are introduced to enforce the 

member to deform in accordance to global mode (based on a certain global mode definition), 

from which alternative formulae for the critical loads are determined. In other words, the 

global modes are determined as in cFSM, but, unlike in cFSM, analytically. The analytical 

results are presented in Section 5.   
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2 Constrained Finite Strip Method for open cross-

section members 

2.1 Introduction 

2.1.1 General 

The constrained finite strip method (cFSM) is a special version of semi-analytical finite strip 

method (FSM), where mechanical constraints are applied to enforce the member to deform 

(e.g. buckle) in accordance with desired buckling modes: global, distortional, local, and other 

buckling. This Chapter summarizes the idea and most important derivations that are necessary 

for the method, following the publications [1/2-8/2]. First the FSM is briefly summarized (in 

Section 2.1.2). Then the constrained method is presented: the concept is outlined (Section 

2.1.3), mode definitions are provided (Section 2.1.4), and some important cFSM terms are 

defined (Section 2.1.5). Then the constraints matrices are derived (in Sections 2.2 and 2.3). In 

Section 2.4 the application of the method is illustrated. 

2.1.2 FSM essentials 

A typical open thin-walled member is given in Figure 2.1. The shaded portion is a strip 

(element) in an FSM mesh. Two left-handed coordinate systems are used throughout this 

Chapter: global and local, see Figure 2.1. The global coordinate system is denoted as: X-Y-Z, 

with the Y axis parallel with the longitudinal axis of the member. The local system is denoted 

as x-y-z, the y axis is parallel with Y, x is the in-plane transverse direction, and the z axis is 

perpendicular to the x-y plane. The displacement degrees of freedom (DOF) are assigned to 

nodal lines, that are longitudinal edge lines of the strips, and can be interpreted as amplitudes 

of the assumed longitudinal shape functions. Three translations (U-V-W) and a rotation () 

are considered as global displacements. Similarly, there are three translations (u-v-w) and a 

rotation () in the local system. It is to mention that the positive sign of the rotational DOF 

throughout Section 2 is the opposite of the positive rotation of the coordinate system (as 

shown in Figure 2.1), since (slightly strangely) this sign rule was used in the original work of 

Cheung [9/1-11/1] which later was adopted by many other FSM work e.g. [16/1-18/1] 

including the first cFSM publications [1/2-8/2]. 

 

Figure 2.1: FSM discretization, coordinate systems, displacements 
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The displacements of each strip is comprised of small deflection plate bending (w, ) and 

plane stress (u, v) for the membrane behaviour. Standard linear and cubic shape function are 

used in the transverse direction, while trigonometric functions (or function series) in the 

longitudinal direction. In case of pinned-pinned end restraints and longitudinal end loading, 

simple sine and cosine functions are appropriate as follows [9/1-11/1]: 
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For an individual strip the plate bending and membrane behaviour are completely uncoupled; 

however, assembly of the strips into the global stiffness matrix causes coupling of membrane 

(in-plane) and bending (out-of-plane) behaviour any time the angle between two adjacent 

strips is nonzero. 

It is to note that other boundary conditions may be treated but are not discussed here in 

Section 2. Moreover, at least two software implementations are available following these 

basic assumptions: THIN-WALL [13/1-15/1] and CUFSM [17/1-18/1]. The procedures 

presented here were implemented in CUFSM by using MatLab [9/2]. 

Both the elastic stiffness and geometric stiffness matrices can be assembled via the usual steps 

of finite element or finite strip method, see e.g. [16/1]. In case of Ke linear elastic material is 

considered. In case of Kg standard second-order strain terms are considered, assuming 

longitudinal end loads only (constant trough the thickness and linearly changing with local x 

axis). Once the stiffness matrices are compiled, buckling modes of a thin-walled member can 

be determined by solving the generalized eigen-value problem as follows: 

ΦΛKΦK ge   

where, Ke is the global elastic stiffness matrix and is a function of the member length, a, 

 nDOF21 ΦΦΦΦ ... , is the matrix of eigen-vectors, where nDOF is the number of DOF 

(nDOF is equal to 4×n, where n is the number of nodal lines),  nDOF ...diag 21
 is 

the diagonal matrix of eigen-values, and Kg is the global geometric stiffness matrix. In a 

typical application of the FSM (for thin-walled members) Eq. (2.4) is solved for various 

member lengths for a given axial stress distribution, then the calculated  values are plotted 

against the buckling length. Note, any deformation, d (including a buckling mode, i) is 

described in terms of their global DOF, which include longitudinal (V) translations, transverse 

(U and W) translations, and rotations (). 

2.1.3 Framework for constrained FSM  

The primary objective of cFSM is to define constraint matrices for each of the buckling mode 

classes. When applied, such a constraint matrix reduces the general deformation field, which 

is expressed by the nDOF FSM DOF, to a smaller DOF deformation field that satisfies the 

criteria defined for the given class. In practice, relationship between the nodal displacements 

can be established in the form of: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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MMdRd   

where d is a general nDOFelement displacement vector, dM is a displacement vector in the 

reduced space, and RM is the constraint matrix related to a given mode. Note, the subscript M 

expresses the constraint to a mode or a group of modes, i.e., M may be replaced by G (global), 

D (distortional), L (local), O (other) or any combination of them, e.g. GD, GDL, etc. It should 

also be noted that the dM vector, being in a reduced DOF space, is not necessarily associated 

directly with the original FSM nodal displacement DOF, but rather should be interpreted as a 

vector of generalized coordinates. 

Application of RM, via Eq. (2.5), defines a subspace of the original FSM DOF space that 

meets the criteria of mode M. Thus, the columns of RM may be considered as a set of base 

vectors in this space of mode M. Transformation inside the space of M is also possible, and 

thus the base vectors defined by RM are not unique. The vector space defined by the base 

vectors of a given mode (included in the relevant RM) will also be referred to as the G, D, L or 

O space, as well as we may speak about the GD space (as a union of G and D spaces), GDL 

space (as a union of G, D and L spaces), etc. Naturally, the GDLO space which includes all 

deformations is itself identical with the original FSM DOF space.  

A buckling mode shape (eigen-vector, ) is itself a deformation field, and thus the constraint 

of Eq. (2.5) may be employed on . By introducing Eq. (2.5) into Eq. (2.4), then pre-

multiplying by RM
T, we arrive at 

MMgMMMMeM ΦRKRΛΦRKR
TT

  

which can be re-written as  

MMg,MMMe, ΦKΛΦK   

which is recognizable as a new eigen-value problem, now in the constrained DOF space 

spanned by the given mode or modes (M). Here, Ke,M and Kg,M are the elastic and geometric 

stiffness matrix of the constrained FSM problem, respectively, defined as  

MeMMe RKRK
T

,   and MgMMg RKRK
T

,   

Note, RM is an nDOF×nM matrix, where nM is the dimension of the reduced DOF space. 

Consequently, Ke,M and Kg,M are nM×nM matrices unlike Ke and Kg which are much larger 

nDOF ×nDOF matrices. Thus, application of the constraint represents a form of model reduction. 

Finally, M is an nM×nM diagonal matrix containing the eigen-values for the given mode or 

modes only, and M is the matrix with the eigen-modes (or buckling modes) in its columns. 

Derivation of each of the various RM matrices requires different methodologies. Some may be 

defined directly (e.g., RL or RO), while others require relatively long derivations (e.g., RD or 

RG). In some cases no other approach is known than the one used and presented below (e.g., 

for RD), while in other cases more than one approach exist.  

2.1.4 Definition of buckling classes 

The separation of global (G), distortional (D), local (L) and other (O) deformation modes are 

completed through implementation of the following three criteria. 

Criterion #1: (a) xy = 0, i.e., there is no in-plane shear, (b) x = 0, i.e. there is no transverse 

strain, and (c) v is linear in x within a flat part (i.e. between two main nodes). 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Criterion #2: (a) v ≠ 0, i.e., the warping displacement is not constantly equal to zero along the 

whole cross-section, and (b) the cross-section is in transverse equilibrium. 

Criterion #3: x = 0, i.e., there is no transverse flexure.  

Application of the criteria to the G, D, L, and O (global, distortional, local, and other) 

buckling mode classes is given in Table 2.1, defining whether the given criterion is fulfilled 

(Yes), not fulfilled (No), or irrelevant (). It is to observe that Criterion 1 is essentially 

identical to the ones widely used in theories for open thin-walled beams, also referred to as 

Vlasov’s hypothesis.  

Table 2.1: Mode classification 

 G modes D modes L modes O modes 

Criterion #1 – Vlasov’s hypothesis Yes Yes Yes No 

Criterion #2 – Longitudinal warping Yes Yes No  

Criterion #3 – Undistorted section Yes No   

The above criteria are initiated by the generalized beam theory (GBT), which – before 

developing cFSM – was the only known method possessing the ability to produce and isolate 

solutions for all the global, distortional, and local buckling modes in a thin-walled members. 

It is to emphasize, however, that the complete set of these criteria never explicitly appeared in 

(early) GBT publications. Indeed, GBT does not require having such complete set of criteria, 

since in GBT there is no pre-defined displacement field which then is separated into some 

practically meaningful classes, but the displacement field is built up from the selected modes 

where the user – based on some intuition, or preliminary studies, or previous experiences – 

defines the modes to consider in the analysis. 

Note, for cross-sections with less than or equal to one internal main node, the mode classes 

slightly overlap. In the original cFSM this problem has not been properly addressed, so, such 

cross-sections are assumed to be excluded in Section 2 (but will be handled in Section 3).  

Further, O mode space may be separated into transverse extension (T) and shear (S) mode 

spaces (see [1/2]). Since in the original cFSM publications this separation has not been used 

and/or utilized, therefore, will not be addressed in Section 2, but will be discussed in detail in 

Section 3. Finally, Table 2.1 shows the mode classification as it is appeared and used in the 

original cFSM papers and software implementations; later the criteria are refined, as will be 

discussed in Section 3.   

2.1.5 Further cFSM terminology 

The line of intersection of two connecting plates will be called the nodal line (or simply: 

node), while the plates themselves are referred as strips. As will be shown, it is important to 

distinguish between main nodes, where the two connecting strips have a non-zero angle 

relative to one another, and sub-nodes, where the two connecting strips are parallel. Further, 

main nodes are categorized as internal main nodes (also referred as corner nodes) or external 

main nodes (also referred as end nodes), depending on whether at least two plates or only one 

single plate is connected to them. (Note, sub-nodes are always internal nodes). Thus, the total 

number of nodes (or nodal lines) is n, consisting of nm main nodes and ns sub-nodes 

(nm+ns = n). Considering that the total number of nodal lines is n, and 4 displacements are 

assigned to each nodal line, the total number of displacement DOF is: nDOF = 4×n. 

In some cases (i.e., for global and distortional modes as will be shown) sub-nodes may be 

eliminated. The resulting strips, i.e. the flat plates between main nodes, are called main strips. 
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Thus, an open cross-section thin-walled member may be described as either the assemblage of 

(n-1) strips, or (nm-1) main strips, whichever description is more appropriate. Note, all these 

terms are illustrated in Figure 2.2. 

The order of the DOF in the displacement vector and in the global stiffness matrix has no 

theoretical importance. Nevertheless, a properly selected order makes the developed 

expressions simpler. For this reason we introduce here a special DOF order used throughout 

the sub-sequent derivations (in Chapter 2), as follows:  

 TTTTTTTT
ΘWUWUVVd ssmmsm  

where Vm is an nm-element partition for longitudinal translation (Y-dir.) of main nodes, Vs is 

an ns-element partition for longitudinal translation of sub-nodes, Um and Wm are (nm-2) 

element partitions for transverse translations of the internal main nodes, Us and Ws are (ns+2) 

element partitions for transverse translations of the external main nodes and sub-nodes,  is 

an (nm+ns) element partition with the rotational DOF. 

 

2.2 Derivation for RGD 

2.2.1 Strategy 

To have RG and RD, first RGD is derived, and then it is separated into RG and RD. What makes 

it possible and relatively convenient to follow this approach, is that as a direct consequence of 

the applied mode definitions, in the case of G and D modes, the member displacements (U, W, 

) can be expressed as a function of the longitudinal displacements (V), i.e., global and 

distortional modes are completely and uniquely defined by cross-section warping. Further, the 

warping displacements may themselves be used to separate the G and D spaces from one 

another. As a consequence, (i) it is possible to develop a mathematical relationship between 

longitudinal displacement DOF and all the other DOF, (ii) the number of GD base vectors is 

equal to the number of main nodes (nm), and (iii) any set of nm independent warping 

distributions is applicable to serve as system of base vectors. 

Thus, the main goal here is to establish the mathematical relationship between the 

longitudinal displacement DOF of the main nodes (Vm) and all other DOF. The relationship is 

set up in two steps: first the effect of Criterion #1 is considered, then, in the second step, the 

impact of Criterion #2 is taken into consideration. 

 

2.2.2 Impact of Criterion #1 – unbranched cross-sections 

Numbering of an open, unbranched cross-section can conveniently be handled by the system 

shown in Figure 2.2, where node and strip numbers appear in circles and squares, 

respectively.  

When we consider Criterion #1, sub-nodes can (and should) be disregarded, as will become 

clear from the derivations. Linearity of warping within a flat element is automatically satisfied 

by the selection of FSM shape functions. 

(2.9) 
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(a) nodes and strips with sub-nodes    (b) nodes and strips without sub-nodes 

Figure 2.2: Description of an open, unbranched cross-section 

The two null strain criteria can be written as: 
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By substituting Eq. (2.1) into the null transverse strain criterion we get 

uuu  21  

Furthermore, by substituting Eq. (2.2) into the null shear strain criterion, we get:  

 
mbk

vvu
1

21   

with km = m/a. The physical meaning of Criterion #1 is illustrated in Figure 2.3 where 

unconstrained (left) and constrained (right) deformations are shown. 

 

 

Figure 2.3: Membrane deformations of a strip: general (left) and constrained (right) 

 

Let us apply Eq. (2.12) for an open, unbranched cross-section. Let us consider the i-th main 

nodal line of with the connecting main strips: (i-1)-th and (i)-th. The angles of the main strips 

(with respect to the positive x-axis) are i-1) and i), respectively. 
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Considering connectivity and the equivalence between the local v and global V DOF, the 

above equation can be re-written as follows: 
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The above equation provides relationship between the global longitudinal and local transverse 

displacements. In order to have the same relationship but expressed by the global transverse 

DOF, we need to make the appropriate coordinate transformation which leads to the 

relationship between the global nodal displacements (U,V) and the local (u) displacements of 

the (i-1)-th and (i)-th plate elements, as follows: 
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The equality of the left-hand sides of Eqs. (2.14) and  (2.15) leads to the relationship between 

the longitudinal V displacements (warping) and the transverse U and W displacements, as 

follows: 
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where Di is the determinant of the matrix with the ‘sin’ and ‘cos’ terms, defined as: 

)()1()1()( cossincossin iiii
iD  

 

Finally, based on Eq. (2.17), the relationship between the displacement vectors can be 

found: 
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or, in a more compact form: 

m1m VSU
mk

1
  and m1m VCW

mk

1
  

where Um  and Wm  are (nm-2) element vectors with the U and W DOF for internal main nodes 

from 2 to (nm-1), Vm is an nm element vector with the V-direction nodal displacements of the 

main nodes, while S1 and C1 are (nm-2)×nm matrices, containing basic cross-section geometry 

data.  

The above equations contain Di in the denominator, thus, it can be valid only if the case of 

Di = 0 is excluded. Considering that Eq. (2.18) can conveniently be rewritten as: 

)sin( )1()(  ii
iD  

we may conclude that (i) and (i-1) must not be equal to each other, which is fulfilled for main 

nodes by definition, but certainly not for sub-nodes. This is why main nodes have special 

importance, and this is why sub-nodes must be disregarded when Eq. (2.21) is applied.  

It is interesting to point out that the longitudinal (or: warping) displacement of the sub-nodes 

may easily be determined for GD modes. Eq. (2.21) provides a mathematical relationship 

between Vm and the translational DOF for the main nodes. However, Criterion #1(c) has an 

important impact on the warping displacements of the sub-nodes, namely, for GD modes the 

warping distribution has to be linear between two main nodes (i.e., within a main strip). Thus, 

elements of Vs can be calculated by linear interpolation, formally: 

Vs = Bvs Vm 

where the elements of Bvs can be calculated solely from strip widths. For example, the first 

two elements in the first row of Bvs may be written as follows: 

)1(

)1,1(

1,1
1

b

b
vsB  and 

)1(

)1,1(

2,1
b

b
vsB  

while other elements of the first row are zero. Here, b(1) and b(1,1) are the width of the first 

main strip and first strip, respectively. Construction of subsequent rows is similar. 

Although Criterion #1 presents certain restriction for the external main nodes, (because no 

transverse extension is allowed in the first and last plate elements) the external main nodes are 

conveniently handled in the sub-sequent parts of the derivations, thus, they are not discussed 

further in this section.  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 18 

2.2.3 Impact of Criterion #1 – branched cross-sections 

In a branched cross-section there is at least one node to which more than two plates are 

connected. As it will be shown below, this kind of nodes make the main difference in deriving 

the relationships between the various DOFs, thus, we will first concentrate on a node like this. 

Let us consider the i-th main node, with in adjoining plates, as it is presented in Figure 2.4. 

For the sake of simplicity, let us number the adjacent main nodes as 1, 2, 3, …, j, … m. The 

elements are denoted by their start and end nodes, like i.1, i.2, …, i.j, …, i.m, the first and 

second index being the start and end node, respectively. It should be underlined here that there 

may be sub-nodes within any element, however, these sub-nodes will be handled later. For 

this reason the figure shows the main nodes only. 

 

 

Figure 2.4: A general main node of a multi-branch cross-section with the adjacent elements 

and main nodes 

 

Similarly to what has been done for unbranched cross-sections, let us apply Eq. (2.13) for all 

the plate elements that are connected to the i-th node. Doing so we get in equations of the 

following kind: 
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Considering the relationship of local v and global V displacements, we can write that: 
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(2.25) 

 (2.26) 
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Similarly to what has been done for unbranched cross-sections, the usual transformation 

matrix can be applied for the Ui, Wi displacements, however, now, it should be applied in 

times, according to the number of connecting plate elements. Thus, we will arrive at an 

equation similar to Eq.  (2.15), but with more rows: 
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which is actually defines the relationship between the global U,W displacements of the given 

node and the local u displacements of the adjacent plate elements. 

Looking at Eq. (2.27), it is easy to understand that the transverse displacement of a node with 

multiple connecting plates is over-determined, since there are only two unknowns (namely: Ui 

and Wi) but in (in>2) equations. In other words, any two of the adjacent plate elements (with a 

distinct angle difference) would unambiguously determine the Ui, Wi displacements, 

consequently, the rest of the equations are redundant. If we yet want to satisfy Eq. (2.27), we 

cannot have arbitrary u-s, therefore, we cannot have arbitrary V longitudinal displacements. 

Mathematically, the problem can be handled as follows. Since the left-hand side of Eq.  (2.26) 

and (2.27) are identical, their right-hand sides must be equal, too, which leads to the following 

equation: 
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As it is discussed above, any two equations would determine the unknown Ui, Wi 

displacements (provided the corresponding angles are different), thus, let us select the first 

two equations to calculate the Ui, Wi transverse displacements, while the rest of the equations 

must be used to set up a restraint for the V longitudinal displacements. Thus, Eq. (2.28) can be 

partitioned as shown. By introducing some simplifying provisional notations: 
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(2.27) 

(2.28) 

(2.29) 
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Considering that B12 is a matrix with zero elements only, the DT transverse displacements can 

be expressed from the first row of Eq. (2.29), as follows: 

111
1

1

1
L

m
T

k
DBAD


  

At the same time, the second row of Eq. (2.29) can be used to express the longitudinal 

displacements of the other nodes (DL2): 

 1212
1

222 LTmL k DBDABD 


 

where the matrix inversion can always be performed B22 being a diagonal matrix with 

definitely non-zero diagonal elements. Furthermore, substituting Eq. (2.30) into Eq. (2.31) 

leads to the following formula: 

  121
1

2211
1

12
1

222 LL DBBBAABD


  

Thus, Eq.  (2.32) defines the relationship between the longitudinal displacements of nodes 

associated with a given node. If there are multiple nodes with more than two adjacent plates, 

similar equations should be applied. 

It is to be noted that the inverse matrix of A1 can be easily calculated analytically. The inverse 

matrix exists only if the selected two plates are not parallel. However, in case of a node with 

more than two adjoining plates there are always two non-parallel ones, therefore, the above 

procedure can always be performed by the appropriate partitioning of the problem. It may also 

be interesting to mention that the term 21
1

22 BB


 is easy to calculate. In fact, 21
1

22 BB


 is a 

matrix with (-1)s in its first column and zeros elsewhere.  

 

When considering the whole branched cross-sections, therefore, the main nodes can be 

grouped into determining and undetermining (redundant) groups. Obviously, determining 

main node group must be selected so that there would be (exactly) two neighbouring main 

nodes for each internal main nodes. Thus: 

 TTT
mrmdm VVV   

In the determination of the transverse displacements Vmd can be used similarly as Vm of an 

unbranched cross-section, by equations similar to Eq. (2.21):  

md1m VSU
mk

1
  and md1m VCW

mk

1
  

The Vmr redundant part of Vm can be determined also from Vmd, by the consecutive 

application of Eq. (2.32) for each main node with more than two adjoining main strips. 

Alternatively, from the  21
1

2211
1

12
1

22 BBBAAB


  nodal matrices a cross-section matrix 

can be compiled, which leads to the following expression for the relationship of redundant 

and determining warping displacements: 

mdvrmr VBV   

 

(2.30) 

(2.31) 

 (2.32) 

(2.33) 

(2.34) 

(2.35) 
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2.2.4 Impact of Criterion #2 

The physical meaning of Criterion #2(a) is that the main nodal lines do not remain straight in 

G and D modes, since for non-uniform, non-zero Vm non-zero Um and Wm results, as can be 

seen from Eq. (2.21). (The only exception is when Vm is constant, which leads to the so-called 

pure axial mode, as discussed later.)  

Criterion #2(b) requires equilibrium of the transverse stress resultants of any cross-section. 

Thus, this criterion has a direct analogy to a multi-span beam bending problem, as detailed 

below. The analogy is illustrated in Figure 2.5 where (a) the cross-section, (b) the equivalent 

beam model, and (c) the deformed geometry model are shown. 

The equivalent beam’s global geometry is identical with the cross-section geometry, which 

means that the nodes of the beam and those of the cross-section are identical. The bending 

rigidity of the equivalent beam is identical with the transverse plate rigidity of the member. 

The axial rigidity of the equivalent beam is assumed to be large, and the associated 

elongation/shortening negligible; therefore, only moments are considered in ensuring the 

cross-section equilibrium. 

The assumed loading is a kinematic loading, expressed by the movement of the supports. 

These support displacements are exactly the transverse U, W displacements in the Um and Wm 

vectors of Eq. (2.21). 

 

Figure 2.5: (a) cross-section, (b) the equivalent multi-span beam,  

(c) deformations due to imposed kinematic loading 

The equivalent beam problem requires the solution of a statically indeterminate system. 

Basically, there are two solution alternatives: the flexibility method and the stiffness method. 

In [6/2], the flexibility method has been applied (for unbranched cross-sections), which 

follows more closely the developments in GBT [22/1]. However, the stiffness method is 

simpler to generalize, and better fits an FSM implementation. Further, the stiffness matrix 

which is necessary to solve the equivalent beam problem can easily be derived from the 

regular FSM element stiffness matrices, which has a great advantage in the practical 

implementation of cFSM. Thus, the stiffness method is summarized here, following [8/2]. 
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Consider a single beam element, as shown in Figure 2.6. The assumed DOF is: w1, 1, w2, 2.  

 

Figure 2.6: DOF of an equivalent beam element 

The element stiffness matrix in the local coordinate system can be written as follows: 
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2
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te,k  

where EI is the bending stiffness of the bar. (Note that the t subscript is applied to emphasize 

that the presented matrix is for transverse displacement components.)  

Considering that the beam elements represent plate-like elements, bending rigidity should be 

taken as the plate bending rigidity, which can be formulated as follows, for isotropic and 

orthotropic material respectively: 

 2

3

112 


Eat
EI  or 

 yx

xatE
EI




112

3

 

where  is the Poisson’s ratio for isotropic material, while x and y are the Poisson’s ratios in 

the two perpendicular directions for orthotropic material. The global stiffness matrix can be 

compiled from the ke,t element stiffness matrices via coordinate transformation and assembly.  

Having the global transverse stiffness matrix compiled, the static equilibrium of the 

equivalent beam can be written as: 

ttte, qdK    or   

























t,u

t,k

t,u

t,k

t,uue,t,uke,

t,kue,t,kke,

q

q

d

d

KK

KK
 

where Ke,t is the transverse stiffness matrix (for the whole cross-section), dt is the 

displacement vector for the transverse DOF of the equivalent beam, and qt is the vector of 

nodal forces for the same DOF, and the k and u indexes correspond to the known and 

unknown sets of DOF. Thus, dt,k is that partition of the displacement vector which contains 

the known displacements, i.e., the U and W displacements of the internal main nodes, 

contained in the Um and Wm vectors of Eq. (2.21) and dt,u contains the other (unknown) 

transverse displacements, including the translations of the external main nodes, the 

translations of the sub-nodes, and the rotations for all the nodes, collected in the [Us, Ws, ]T 

vector. Similarly, qt,k is the vector of nodal forces acting on the known DOF, while forces 

acting on the unknown DOF are the qt,u partition of the force vector. External loads are not 

applied on the equivalent beam, thus qt,u is zero. Thus, expanding and solving the lower 

partition of Eq. (2.38), the unknown displacements can formally be expressed as follows: 

(2.36) 

(2.37) 

(2.38) 
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kt,ukt,e,uut,e,ut, dKKd
1

  

or, in a more explicit form: 
























m

m
t,uke,t,uue,s

s

W

U
KK

Θ

W

U
1

 

It is worth mentioning that in the practice the matrix inversion need not be performed, since 

the ukt,e,uut,e, KK
1

  product matrix can also be regarded as the formal solution of a linear 

equation system with multiple right-hand sides. 

2.2.5 Assembling RGD 

The calculation of RGD can be carried out by assembling its sub-matrices. Calculation of the 

sub-matrices can be completed on the basis of the preceding derivations, as summarized 

below. 

The longitudinal displacements of the determining main nodes, RGD,Vmd, can be arbitrarily 

selected. Each different RGD,Vmd leads to a specific RGD, hence, to a specific base vector 

system, however, any RGD,Vmd leads to the same GD space. Thus, the simplest natural solution 

is to set RGD,Vmd equal to the identity matrix. Warping displacements of the redundant main 

nodes can be determined by using Eq. (2.35). Finally, the warping displacements of all the 

main nodes can be constructed as in Eq. (2.33). 







vr

VmGD, B
I

R  

(Obviously, if there are no redundant main nodes, Bvr does not exist and RGD,Vm is simply 

equal to the identity matrix.) Warping displacements of sub-nodes RGD,Vs can be get by linear 

interpolation, by using Eq. (2.23): 

RGD,Vs = Bv RGD,Vm 

Transverse translational DOF of internal main nodes RGD,Um and RGD,Wm can be 

calculated by using Eq. (2.21): 

VmGD,1UmGD, RSR
mk

1
  and VmGD,1WmGD, RCR

mk

1
  

Transverse translational DOF of other nodes, i.e., RGD,Us, RGD,Ws, and RGD, can be calculated 

by using Eq. (2.40): 


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R

R
KK

R

R
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Finally, RGD is composed from its partitions: 

 TTTTTTTT
ΘGD,WsGD,UsGD,WmGD,UmGD,VsGD,VmGD,GD RRRRRRRR   

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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2.3 RG, RD, RL and RO matrices 

2.3.1 Assembling RG 

According to the basic FSM idea, member deformation is expressed as a function of cross-

section deformations, since longitudinal deformation must take place in the assumed 

sine/cosine waves (i.e., the longitudinal shape functions). In addition, the definition of G 

modes ensures that all the cross-sectional deformations are excluded. These conditions lead to 

the conclusion that there are only 4 DOF for G modes, according to the 4 types of 

displacement of the rigid-body-like cross-section. Thus, this suggests that four global modes 

exist, characterized by (i) longitudinal translation, (ii) the two transverse translations and (iii) 

the rotation along the member longitudinal axis (i.e., the 4 basic DOF of the FSM model).  

The mode, which exhibits longitudinal translation only, (and hence will be referred to as the 

axial mode) automatically defines a uniform warping distribution. The other three modes are 

also determined by rigid-body-like cross-section displacement; however, to derive the 

corresponding warping distribution requires further considerations. The idea employed is that 

application of unit displacements on the rigid cross-section defines the transverse DOF, 

including local u displacements, which are connected to the warping displacements by 

Criterion #1, which finally leads to the desired warping displacement distribution. 

Applying unit U, W or  on the rigid cross-section determines all transverse displacement 

DOF. Note, this discussion focuses on the main nodes only, though all sub-nodes are 

determined as well. The nodal U and W displacements; however, can easily be transformed 

into local u and w. Considering that the global U-Ws are not arbitrary but correspond to a 

rigid-body cross-section displacement, and considering that rigid cross-section means no 

transverse strain, thus only one single u per (main) strip exists, and these u-s can be expressed 

(for example) as: 















m
2

m
2 W

S
U

Cu 11 WU
 

where u is a vector with the local u-s from 1 to (nm-1), U1 and W1 are displacements of the 

first (end) node, while S2 and C2 are (nm-1)×(nm-1) diagonal matrices defined as 

S2 = diag(sin1), sin2), …) and C2 = diag(cos1), cos2), …), with i) the angle of the 

main strips. 

We can also consider the relationship between local u-s and the warping displacements, by 

applying Eq. (2.13): 
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or in short, with introducing a notation for the above matrix: 

m2VBu
mk

1
  

 

 

 

(2.46) 

(2.47) 

(2.48) 
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Considering Eqs. (2.46) and (2.48), we may write that: 




















Wm
S

Um
CVmB 222

111 WU

kr

 

Now, if the transverse translations of the main nodes are determined by the rigid-body cross-

section displacements, the corresponding Vm warping distribution can be calculated from Eq. 

(2.49). The number or equations in Eq. (2.49) is (nm-1), while the number of unknowns is nm, 

thus, one further condition must be introduced for the problem to become determinate. The 

selected condition is that the integral of the warping distribution over the whole cross-section 

should be zero. The resulting warping distributions are demonstrated in Figure 2.7 for a 

symmetrical C-shaped cross-section. The presented warping functions can also be interpreted 

as warping associated with special loadings, namely pure axial force, pure bending about two 

non-parallel axes, and pure torque. The G modes will be referred to as the axial mode, 

bending modes and torsional mode.  

By collecting the 4 characterizing (i.e., characterizing for the G mode space) warping 

distributions of the main nodes into a HG matrix, the RG global constraint matrix can be 

calculated as follows: 

RG = RGDHG  

 

 

Figure 2.7: Warping functions for global modes 

As Figure 2.7 suggests, HG can be determined directly from beam-model-based solutions. It 

may also be interesting to mention that though a direct relationship between transverse 

displacements and warping displacements exists, the magnitude can arbitrarily be set through 

the application of U, W or  of any magnitude on the rigid cross-section. From the viewpoint 

of the G space, the magnitude of the HG vectors is not relevant, therefore the HG vectors can 

be scaled arbitrarily. 

Finally, it is useful to highlight here that the two bending modes can be defined an infinite 

number of ways, depending on the ratio of the applied U and W. In other words, transverse 

displacements in any two non-parallel directions can be applied to generate the two bending 

mode base vectors. In most cases the most convenient is to apply two perpendicular transverse 

displacements; moreover, it may have further advantage if the two directions coincide with 

the principal axes of the cross-section. 

2.3.2 Assembling RD 

Currently no direct definition for distortional modes is known, thus, the warping functions for 

the distortional modes are generated such that the space that they define together with the base 

vectors of the G space result in the GD space. In other words, the D space is the null space of 

the G space within GD. Any base vector in the G space must be orthogonal to any base vector 

(2.49) 

(2.50) 
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in the D space. More exactly, it is not the vectors themselves which have to be orthogonal, but 

rather the warping functions.  

Though various orthogonality conditions are possible, we adopt the following condition: 

0)()()(  dxxtxvxv sr  

where the integral is over the whole cross-section, t(x) is the thickness, while vr(x) and vs(x) 

are two arbitrary warping functions of the G and D space, respectively. Note, that the above 

expression is nearly identical with the one used in GBT [22/1]. 

The integration can readily be performed strip by strip. Considering that the thickness is 

constant, then substituting the corresponding FSM shape functions: 
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This finally leads to the following expression: 
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where A(k) is the area of the k-th strip of the cross-section. Noting the equivalence of local v 

and global V nodal displacements the above expression can be re-written in terms of the 

global V displacements, and can be expressed by the following matrix equation: 

0sr VOV vA
T

 

where OvA is a n by n matrix, which is compiled from the A(k) and 2A(k) terms (similarly as 

e.g., the stiffness matrix is compiled), while Vr and Vs denotes two (different) column vectors 

of V which is constructed as VT = [ Vm
T  Vs

T ]. (Note, more discussion on orthogonality is in 

Section 3, while derivation of O orthogonality matrices can be found in Appendix A.) 

The above condition can directly be applied for HG and HD, by taking into consideration the 

relationship of V and Vm, similarly as in Eq. (2.23): 

  0H
B

I
OBIH G

v
vAvD 





T

T
 

where HD is the matrix the columns of which contains the warping DOF (of the main nodes) 

characterizing for the D mode space,  0 is a matrix full with zeros, I is the nm-order identity 

matrix, and BV is the matrix defined at Eq. (2.23). 

Since HG is known from the G mode space definition, the only unknown in the above 

equation is HD. Indeed, HD can be interpreted as the null-space of   G
v

vAv H
B

I
OBI 





T . 

Modern software tools, such as MatLab [9/2], provide a simple way to solve the problem 

numerically. Once HD is defined, the corresponding constraint matrix can be calculated as 

follows:  

RD = RGDHD 

 

(2.51) 

(2.52) 

(2.53) 

 (2.54) 

(2.55) 

(2.56) 
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2.3.3 Assembling RL 

Definition of RL is a straightforward process and can be completed by the application of the 

defining criteria for L modes. First, L modes must meet the requirements given in 

Criterion #1, which results in the strict relationship between the longitudinal nodal 

displacements (warping) of the main nodes and the transverse nodal displacements of the 

internal main nodes, as formulated by Eq. (2.21) and /or (2.49). Moreover, Criterion #2 must 

not be fulfilled, which means that (i) all the warping displacements are zero, and (ii) 

transverse equilibrium may be violated. From the first condition, and considering Eq. (2.21), 

L modes have no translational displacements at any of the internal main nodes. Moreover, 

considering Criterion #1(a), local u displacements must be equal to zero for all the strips, that 

is no transverse strain is allowed. As a consequence, translation of other than internal main 

nodes is limited to the local w direction, i.e., perpendicular to the given plate element. 

Since no other restriction is given for L modes, all the displacements that are not excluded by 

the above conditions are free to occur. Namely, the possible displacements include (i) the 

local w-direction translation of the external main nodes, (ii) the local w-direction translation 

of the sub-nodes, and (iii) the rotation  of any nodes. All the other DOF are zero. A valid, 

and convenient way to have the RL matrix defined is to apply FEM-like (or FSM-like) base 

functions with unit displacement at one node while zeros at all the other nodes.  

In practice, RL can be assembled from its partitions. Among the partitions of RL, the only 

ones with non-zero elements are RL,Us, RL,Ws and RL,, while all the other sub-matrices are 

zero by definition. 

RL,Vm = 0, RL,Vs = 0, RL,Um = 0 and RL,Wm = 0 

The non-zero partitions of RL may be written as follows: 

 0SR 3UsL,  ,  0CR 3WsL,   and  I0R ΘL,   

where 0 marks the partitions with zeros (of various sizes), I marks the identity matrix (which 

in this case is an n×n matrix), while S3 and C3 are diagonal matrices (both with (ns+2)×(ns+2) 

size), and can be expressed as S3 = diag(-sin1, -sin2, …) and C3 = diag(cos1, cos2, …), 

where i is the angle of the strip at the location of the given i-th node. Finally, RL can be 

composed as follows: 

 TTTTTTTT
ΘL,WsL,UsL,WmL,UmL,VsL,VmL,L RRRRRRRR   

2.3.4 Defining RO 

The characterizing feature of O modes is that they do not satisfy Criterion #1, that is 

transverse strains and/or in-plane shear are not zero, and a non-linear warping distribution 

between two main nodes is allowed. This latter criterion is strongly connected to the existence 

of in-plane shear deformations. Thus, deformations in the O space exhibit either transverse 

extension/shortening, or in-plane shear. 

There are multiple ways to get RO. The simplest way is the direct application of the above 

considerations through a system of independent vectors with unit transverse extensions and 

unit shear deformations. Since both transverse strain and in-plane shear may occur in any 

strip, the number of transverse extension base vectors as well as the number of in-plane shear 

base vectors is equal to the number of strips (i.e., n-1). This approach is practical, and it is 

relatively easy to find the necessary 2×(n-1) independent base functions, see, e.g. [1/2]. Other 

ways to generate RO are discussed e.g., in [8/2, 10/2]. 

(2.57) 

(2.58) 

(2.59) 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 28 

2.4 Application 

2.4.1 Modal system 

The above-summarized procedures transform the nodal base system into a modal base system. 

The most important characteristics of the modal system is that the deformation classes are 

separated. (Further transformation within any class is still possible; this will be discussed in 

Section 3 of this dissertation.) Figure 2.8 illustrates the modal system for a widely used 

lipped channel member. The cross-section is discretized by the main nodes and a few sub-

nodes. Possible (typical) global (G), distortional (D) and local (L) deformations are shown.    

The constraint matrices pave the way for two distinct applications. First, they provide means 

for stability solutions to be focused only on a given buckling class, which may be referred to 

as modal solution or pure mode calculation. The other important outcome of the constraint 

matrices is that they may be used to classify a conventional FSM stability solution into the 

different fundamental buckling classes, which may be referred to as modal identification. 

 
G1 G2 G3 G4 D1 D2 

(a) warping displacements of RG and RD 

 
G1 G2 G3 G4 D1 D2 

(b) transverse displacements of RG and RD 

    
L1 L2 L3 L4 L5 L6 L7 L8 

 

L9 L10 L11 L12 L13 L14 L15 L16 

(c) transverse displacements of RL 

Figure 2.8: Typical modal base system for a lipped channel member 
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2.4.2 Pure buckling calculation 

As far as pure mode calculation is concerned, the essential step is the separation of the G, D L 

and O mode spaces, which is completed by the R constraint matrices. The column vectors of 

the RM matrices can be regarded as base vectors of the given space.  

Therefore, modal solution can directly be get, by solving the constrained generalized eigen-

value problem of Eq. (2.6) or (2.7). The resulted eigen-vectors are the buckling modes that 

satisfy the criteria for a given class, and may conveniently be called as pure buckling modes 

(e.g., pure global modes, pure distortional modes, etc.). The corresponding eigen-values thus 

provide the critical load multipliers (or critical stresses, critical loads, etc.) for any pure 

modes, as required by most of the design codes for the prediction of design capacity of thin-

walled members. 

The number of eigen-vectors within a mode space (of G, D, L or O) is identical to the 

dimension of the given mode space, which provides a natural upper limit for the number of 

pure buckling modes. (Note, in some cases the number of practically relevant pure buckling 

modes is smaller than the space dimension.) Thus, the presented method clearly defines the 

(maximum) number of pure buckling modes for any mode class and for any open cross-

section.  

More importantly, solution of the eigen-value problem in the G, D, L or O mode space (hence 

determination of pure buckling modes) introduces a significant reduction of the problem to be 

solved: instead of searching the eigen-vectors and eigen-values in the nDOF-dimensional 

space, much smaller spaces can be considered, which represents a significant computational 

advantage. The sizes of the sub-spaces are (generally) dependent on the cross-section, and can 

be expressed as follows: 4 for G space, (nm-4) for the D space, (nm+2ns+2) for the L space, 

and (2×nm+2×ns-2) for the O space. 

Concerning the space dimensions and pure modes the following remarks may be added. 

The categorization of the so-called pure axial mode is uncertain. The mode definitions 

adopted here (see Table 2.1) suggest that this mode is a global mode. However, classical 

beam theory solutions normally do not consider this mode but discuss 3 global modes only 

(e.g., in case of a column with doubly-symmetrical cross-section two flexural and a torsional 

mode). 

Though the number of D modes is usually equal to (nm-4), this formula is valid only if it 

yields to a non-negative number, i.e., when the number of main strips is at least 4. Otherwise, 

D modes do not exist. For example a standard channel section (without lips) has no D modes. 

In case of a cross-section consisting of only 2 main strips (i.e., an angle), the global pure 

torsional mode coincides with one of the L modes. In this case, the number of either the G or 

the L modes is decreased by 1.  

It may be interesting to mention that the constrained eigen-value problem can also be solved 

for sub-spaces within the G, D, L or O mode spaces. Practically this means that, instead of 

using the whole RM matrix, we may select any combination of its column vectors to solve the 

constrained eigen-value problem. If only one vector is selected, the problem reduces to a 

single-DOF problem, which yields to an individual buckling mode and corresponding critical 

load, which may have some practical advantage. Consider, as an example, the global buckling 

of a column: by the proper selection of base vectors, we may easily calculate pure flexural or 

pure torsional buckling. 

 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 30 

Modal solution is demonstrated here by a numerical example from [1/2]. A column member 

with a C-shaped cross-section (which is widely applied in cold-formed steel industry) is 

analysed. The dimensions of the C sections are as follows: total depth is 200 mm, flange 

width is 50 mm, lip length is 20 mm, thickness is 1.5 mm. The material is isotropic with 

E=210 GPa.    

Critical forces are calculated for a wide range of buckling lengths in the following options: 

all-mode solution (i.e., classic FSM solution, also called ‘signature curve’), and pure global, 

pure distortional, and pure local buckling solutions. The results are plotted in Figure 2.11.  

More examples can be found in [1/2, 5/2, 8/2]. 

 

Figure 2.9: Critical forces: unconstrained and constrained solutions 

2.4.3 Mode identification 

If the constrained eigen-value problem is solved within a certain (G, D, L or O) sub-space, it 

is evident that the resulting eigen-vectors span the same space as the column vectors of the 

given constraint matrix. Therefore, they can be regarded as another, orthogonal base system 

for the same space. The orthogonal L base system is illustrated in Figure 2.10, for the same 

section presented in Figure 2.8. 

 
L1 L2 L3 L4 L5 L6 L7 L8 

Figure 2.10: Possible orthogonal base vectors for L space 

The columns of the solution of (2.7), i.e., columns of M matrix will contain the orthogonal 

base vectors for the space. Since these vectors evidently span the given M space, they can be 

used to express any dM vector of the space as a linear combination, as follows: 

MMM cΦd   

where M is the nM×nM matrix of the orthogonal modes, while elements of cM vector defines 

the contribution of the modes.  

(2.60) 
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The M matrix can also be interpreted as a transformation matrix, which, if applied on RM, 

effectively transforms it to the orthogonal base system, but expressed in the original space of 

nodal DOF. To demonstrate this substitute Eq. (2.60) into Eq. (2.5): 

M
o
MMMMMM cRcΦRdRd   

which proves that any d nodal displacement vector that lies in a given M sub-space can be 

expressed as a linear combination of the column vectors of the o
MR  matrix which latter is a 

transformed form of the corresponding constraint matrix having the orthogonal modes in its 

columns, but now expressed with the original FSM DOF (i.e., original FSM nodal 

displacements). 

By determining the orthogonal modes for each of G, D, L and O, (i.e., solving the constrained 

eigen-value problem four times), the G,  D,  L, and O orthogonal base vectors become 

known, which can be expressed by the regular FSM nodal displacements, and finally can be 

assembled in a  o
O

o
L

o
D

o
G

o
GDLO

o
RRRRRR   matrix. Since G, D, L and O spaces 

together span the whole FSM DOF space, any d displacement vector can be expressed as the 

linear combination of the column vectors (i.e., orthogonal axial base vectors) of o
R matrix: 

   GDLO

o

GDLO

T

OLDG

o

O

o

L

o

D

o

G cRccccRRRRd   

It should be pointed out that cGDLO vector, in fact, gives the contribution of any individual 

modes (or more generally: of the G, D, L and O modes) in the general d displacement, thus, 

the task of modal identification is essentially solved. The participation of a given individual 

mode or a given M mode space can be calculated e.g., by the following equations: 


all

iii ccp  and 
allM

iiM ccp  

It is important to mention that the above procedure is not unique, and can be realized in 

multiple ways. One aspect is the orthogonalization. Since orthogonal base vectors are 

determined via a generalized eigen-value problem, they are dependent on the applied loading. 

The simplest loading is a uniformly distributed concentric compressive force, but other 

loading is possible, too. Another issue is the normalization of the orthogonal vectors. Various 

normalizations are possible, which may lead to slightly different cGDLO vector, hence, 

different mode identifications. The discussion of these questions is out of the scope of this 

dissertation (see e.g., [10/2]). The mode identification is illustrated here by a numerical 

example. The same C-section member is solved (i.e., all-mode solution), then the buckling 

modes are identified: participations from G, D, L and O modes are determined by the above 

process. Some deformed cross-section shapes are shown in Figure 2.11, while participations 

are presented in Figure 2.12. 

2.5 Summary and continuation of the work 

In the previous Sections the cFSM method has been presented. The cFSM can be considered 

as the first method which makes modal decomposition of a shell model (in this case: finite 

strip model) possible. The method is based on the proposed formal mechanical definition of 

G, D and L modes. The method can be applied to solve two basic problems: (i) to calculate 

critical loads for any pure (e.g., G, D or L) modes or any combination of individual modes 

(e.g., G+D, D+L, etc), and (ii) to perform modal identification of general deformation modes. 

The method has been implemented into the open source CUFSM software. (See Thesis #1 in 

Chapter 6 of this dissertation.) 

(2.61) 

(2.62) 

(2.63) 
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Figure 2.11: Buckled cross-section shapes in unconstrained solution 

 

Figure 2.12: Mode participation in unconstrained solution 

The cFSM has been tested and validated by comparison to other methods, especially to 

analytical solutions (where available, that is mostly in case of global buckling) and to GBT 

[11/2-14/2]. The GBT-cFSM comparison covered extensive numerical studies as well as 

theoretical aspects. The comparison showed that cFSM, GBT and analytical formulae lead to 

very similar critical loads, however, small differences exist especially in case of global 

buckling. The existing differences can be traced back to the differences in initial assumptions, 

mostly in the mode definitions.  

The immediate practical application of the cFSM method is the design of cold-formed steel 

members where critical loads for the various pure buckling modes are required by the design 

specifications. Obviously, practical design problems can be (and have been) solved without 

cFSM, but cFSM made the design more objective and fully automatic for a wide range of 

cross-sections. And, unlike GBT, cFSM was widely available for researchers and practitioners 

as being implemented in CUFSM.   

However, beside the direct practical usefulness of cFSM, it initiated several new research 

results, too, as briefly summarized right below. 

Though the working-out of (the first version of) cFSM was an important achievement in 

modal decomposition of thin-walled members, it did not solve all the problems. The most 

important questions remained to be answered are as follows. 

 Numerical studies revealed some differences between critical forces for global buckling 

calculated by cFSM and other methods (including GBT and analytical solutions).  
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 Original cFSM works for open cross-sections only. 

 cFSM requires that the member is highly regular in the longitudinal direction, due to the 

limitations of FSM itself.   

 The available modal decomposition methods (including cFSM and GBT) are based on the 

assumption that the member is built up from plane elements. If the cross-section has 

curved parts, current mode decomposition methods lead to unsatisfactory results. 

The first question is mainly theoretical one (since the differences are practically negligible in 

most cases). The others involve theoretical aspects, too, but with pronounced direct practical 

consequences. 

Almost immediately after the birth of original cFSM its further development has started, 

trying to answering the above-mentioned challenges. 

 The most direct development of the original cFSM is its extension to other end restraint 

conditions, by adding new longitudinal base functions, to be able to handle other than 

pinned-pinned end restraints. This work has been completed by Li and Schafer [15/2-

18/2].  

 Djafour and his colleagues, while developed their own version of cFSM, proposed 

alternative interpretation and definition for some cFSM constraint matrices, see [19/2-

21/2]. Though he suggests that his version of cFSM works for closed cross-sections, he 

did not solve the real problem, i.e., torsional modes of closed cross-sections are not 

handled. Djafour and his colleagues have also presented a solution for constraining spline 

finite strip method [22/2]. 

 Casafont used the idea to constrain shell finite element models, see e.g. [23/2-25/2]. He 

developed pre- and post-processing routines to the Ansys commercial finite element 

software package which made it possible to calculate pure buckling modes of perforated 

thin-walled members. Though this work is practically useful, his method still involves 

limitations. For example, the necessary mechanical criteria are only approximately 

satisfied, therefore extreme cases (e.g. very short members, etc.) cannot be properly 

handled. Or, the method does not provide full decomposition, therefore, modal 

identification is not possible. Furthermore, the applied constraints increase the size of the 

problem, though theoretically the constraining should reduce the problem size (as in 

cFSM).  

 cFSM initiated parametric studies on the effect of rounded corners, since cold-formed 

steel members are always produced with rounded corners. This research has been done 

partly under the guidance of the Author [26/2-31/2], partly of Schafer [32/2-33/2].  

 Since cFSM can make design procedure clear and fully automatic, it is used in optimal 

shape search algorithms, too, see e.g. [34/2-39/2].   

 The idea of modal decomposition of a general displacement filed, as well as the cFSM 

base functions are also applied in identifying measured geometric imperfections of cold-

formed steel members, see [40/2-41/2].  

 cFSM has been extended to handle thin-walled members with arbitrary (flat-walled) 

cross-sections. This work has been completed by the Author, the results are presented in 

Chapter 3 of this dissertation. 

 Another cFSM-initiated result is the application of cFSM base functions to identify FEM-

calculated deformations. This idea has been proposed by the Author, then later developed 

by others, too. This will be discussed in Chapter 4 of this dissertation. 

 cFSM induced new analytical results, too, achieved primarily by the Author. New 

analytical formulae for some global buckling modes are derived on the basis of modelling 

the member as a set of connected plate elements. This work is the topic of Chapter 5 of 

this dissertation. 
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3 Constrained Finite Strip Method for arbitrary 

flat-walled cross-section members 

3.1 Introduction 

3.1.1 General 

In Chapter 2 the constrained Finite Strip Method (cFSM) is presented as originally developed 

and published. In this Chapter it will be generalized. The generalization, first of all, involves 

the extension of the method to cover arbitrary flat-walled cross-sections, including closed 

cross sections and more generally shaped cross-sections. The new, generalized cFSM is based 

on an improved FSM version where various end restraints are handled by employing various 

trigonometric series as longitudinal base functions. That is why the FSM is revisited here and 

the general BC FSM version is very briefly summarized (in Section 3.1.2).  Then, the 

generalized cFSM is presented. Since in case of closed cross-sections or any cross-section 

with one or multiple closed parts the in-plane (membrane) shear deformations have 

pronounced role, first these shear deformations are discussed and a modal system is proposed 

for the description of the shear deformations (in Section 3.2). In Section 3.3 the construction 

of the constraint matrices is summarized. Though some of the constraint matrices have 

already been derived in Chapter 2 (e.g., RG, RD, RL), in Section 3.3 a novel approach is used: 

(i) practically meaningful sub-spaces are introduced, and (ii) a unified approach is used for the 

construction of all the constraint matrices. In Section 3.4 possible, practically useful 

transformation of the base systems (i.e., constraint matrices) are discussed. Finally, some 

illustrative examples are presented (in Section 3.5). 

 

3.1.2 FSM with generalized longitudinal shape functions 

In Section 2 FSM is summarized by assuming the simplest longitudinal shape functions which 

corresponds to pinned-pinned (or: simple-simple) end restraints. However, other end restraints 

can also be handled, by using more complicated longitudinal shape functions, namely: 

trigonometric series, see [11/1, 15/2-18/2]. The u, v and w displacements in this case are 

approximated (within a strip) as follows: 
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where a is the member length and b is the width of the given strip, while Y[m] is the 

longitudinal base function. The Y[m] functions are dependent on the end restraints, as follows: 

 

 (3.1) 

(3.2) 

(3.3) 
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pinned-pinned: 
a

ym
Y m


 sin][  

clamped-clamped: 
a

y

a

ym
Y m
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 sinsin][  

pinned-clamped: 
a

ym

m

m
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ym
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a
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2
sin

)2/1(
sin][




 

Note, the assumed coordinate systems and displacement DOF are identical to those shown in 

Figure 2.1, with one important difference: throughout Chapter 3 the positive rotational DOF 

is in accordance with the positive rotation of the coordinate system (i.e., it is just opposite the 

sign rule used in Chapter 2). 

While in the pinned-pinned case the solution can be found for any m term independently of 

the other m terms, i.e., the m terms are uncoupled, in case of other end restraints (e.g. 

clamped-clamped) the m terms are coupled. This also means that it is not enough to consider 

one single m term, but multiple m terms are necessary in the solution. This does not 

essentially modify the FSM procedure, but increases the size of the problem, i.e., the size of 

the stiffness matrices. While the size of the local matrices for a specific m term is 8 by 8, for 

the series solution it is: (8×q) by (8×q). 

From the local stiffness matrices the whole member’s (global) stiffness matrices (elastic and 

geometric, Ke and Kg) can be compiled as usual, by transformation to global coordinates and 

assembly. The size of the global matrices is (4×p×q) by (4×p×q), where p is the number of 

strips and q is the number of considered terms in the longitudinal shape functions. 

For a given distribution of edge tractions on a member the geometric stiffness matrix scales 

linearly, resulting in the classic eigen-buckling problem, formally the same as in Eq. (2.4), 

however, the size of the matrices are different. From the equation the eigen-values (i.e., 

critical load multipliers) and eigen-modes (i.e., buckling modes) can be determined. 

3.1.3 Basics of generalized cFSM  

The new, generalized cFSM has a number of novel features. First, it is developed for the 

general BC (series) FSM version.  

Then, a simple, but practically useful novelty is the organization of mode spaces into primary 

and secondary mode spaces. Primary modes are those deformation modes which exist even if 

a minimal discretization is used, that is if one strip per one flat plate is applied. In other 

words: degrees of freedom (DOF) are assumed at the main nodes only. Secondary modes, on 

the other hand, are those modes which exist only if flat plates are discretized into multiple 

strips, i.e., when sub-nodes are applied which are located within a flat plate. Even more 

precisely, in fact, any discretization can be applied to the member, but primary modes will use 

only DOF at main nodes, while secondary modes will use DOF at sub-nodes only.  

An essential novelty is the application of new (in-plane) shear modes. These shear modes will 

be presented in Section 3.2 here. Along with the introduction of new shear modes the global 

and shear mode spaces are further subdivided into smaller sub-spaces. This is reflected by the 

new, more refined mode description table, which summarizes the most important mechanical 

features of the mode spaces and sub-spaces.  

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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3.2 Role and decomposition of membrane shear 

3.2.1 General 

Though in Table 2.1 it is not detailed, S/T space can be subdivided into two characteristic 

sub-spaces: shear (S) space in which the null-transverse-strain criterion is still satisfied but the 

null-shear-strain criterion not, and transverse extension (T) space in which none of the strains 

are zero. Here, we are concentrating on the S sub-space, therefore, on in-plane shear 

deformations. In-plane shear deformations are essential to handle closed cross-sections and 

general cross-sections with closed part(s), and also to include shear-deformable beam theories 

in global buckling modes in cFSM. The presentation of the result is based on [1/3-2/3] 

If twisting rotation is applied for a cross-section geometry as shown in Figure 3.1, 0/  yu  

for each strip (by properly selecting local coordinate systems). If the in-plane shear strain is 

zero, however, 0/  xv for each strip. Therefore, V1>V2>V3>V4>V5>V6. If the cross-section 

is open (i.e. node 1 and 6 are two different nodes), such warping distribution is physically 

possible. If the cross-section is closed, however, (i.e., there is physical continuity at node 

1=6,) V1=V6 should be satisfied, which is clearly incompatible with the null-shear-strain 

criterion. The conclusion is that torsion of closed cross-sections (or any cross-section with one 

or multiple closed parts) requires in-plane shear. 

 

Figure 3.1: Null-shear-strain and closed cross-sections 

Classical buckling solutions (e.g., presented by Euler) exclude shear deformations of the 

beam/column by adopting Euler-Bernoulli beam theory, assuming that: (i) the cross-section 

planes remain planes during axial and flexural deformations, and (ii) that normals to the 

undeformed middle line remain normal during the deformations. This also means that the 

plate elements of a thin-walled member cannot exhibit in-plane shear deformations. In case of 

shear-deformable beam theory the first criterion can be still valid, but normals to the 

undeformed middle line do not remain normal during deformation. This also means that the 

plate elements of a thin-walled member can have in-plane shear deformations.  

Depending on the shear deformations, three basic categories are defined here. If shear 

deformations are excluded, it is referred as beam model with no shear. If (in-plane) shear (in 

the plate elements) is allowed, and if the shear deformations are resulted in linear warping 

distribution, the model will be referred here as beam model with primary shear. If the shear 

deformations are more general and resulted in nonlinear warping distribution, the model will 

be referred here as model with secondary shear. It is to note that the linearity or nonlinearity 

of the warping deformations is interpreted at the middle planes of the strips. 
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3.2.2 In-plane deformations in a single plate  

Let us first analyse the deformations of a flat plate element of a member. In accordance with 

the mode definition table (Table 2.1) in most of the deformation modes the transverse 

extension is forced to be zero, i.e., 0 xux . Transverse strain is zero if the transverse 

displacement is constant (in x). Practically it means that the longitudinal fibres are parallel 

with each other, which furthermore means that the in-plane deformations are similar to that of 

a beam member in flexure. The in-plane deformation field of a flat plate thus can be 

illustrated as in Figure 3.2, for various possible shear deformations. 

 
           with no shear with primary shear with primary & secondary shear 

Figure 3.2: Null-transverse-extension in-plane deformations in a strip 

If the shear is non-zero and the warping is linear (in x), the deformation field can readily be 

considered as the superposition of two basic deformation components. The two basic 

components can be any two out of three (see Figure 3.3): a) a no shear component, b) a 

primary shear component with transverse-only displacements, and c) a primary shear 

component with warping-only displacements. Evidently, only two out of the three are linearly 

independent, i.e., each of the three basic components can be expressed by the linear 

combination of the other two.  

The most general deformation field is the one with non-linear warping. This field can be 

considered as the superposition of three basic components, for example: no shear + primary 

shear + secondary shear. For the primary shear component either warping-only or transverse-

only components can be used.  

 
no shear primary shear 

transverse-only displ. 

primary shear 

warping-only displ. 

Figure 3.3: Deformation components for linear warping 

 (It is to note that, alternatively, the general deformation field could be composed as: warping-

only primary shear + transverse-only primary shear + secondary shear. From practical point of 

view it is more convenient to have a shear-free component, so we will use the first way to 

compose the general deformation field.)  

When applied in FSM, the above deformation components need to be described with strips. In 

case of no-shear component one strip per one flat plate element is appropriate to use. 

Applying null-transverse-strain and null-shear-strain criteria to a single strip for a specific m 

term, linearity of v in x is automatically satisfied (by the selected transverse shape functions). 

The effect of null-transverse-strain criterion can easily be obtained by substituting 

0/  xux  into the u(x,y) function, which is satisfied if  

(3.9) 
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][2][1 mm uu   

for any m. (Thus, transverse translation can conveniently denoted by u[m], or simply u.) 

The effect of null-shear-strain criterion (together with null-transverse-strain) can be obtained 

similarly. It leads to: 






m

a

b

vv
u

mm
m

][2][1
][  

It is to observe that the above equations are essentially identical to Eq. (2.11) and Eq. (2.12), 

even though the here-assumed longitudinal function is different. Moreover, in the above 

formula bvv mm /)( ][2][1   is nothing else than the rate of change of the warping, i.e., the 

rotation of the plate edge around the local z-axis, which is therefore linearly proportional to 

the transverse displacement. As it can be seen, the no-shear component is characterized by 

non-zero transverse and non-zero warping displacements. 

As far as primary shear component is concerned, again, one strip per one flat plate element is 

appropriate to use. Null-transverse-strain criterion is still satisfied, therefore, 

][][2][1 mmm uuu  , but the in-plane shear strain is non-zero. In fact, in-plane shear strain is 

constant in the local x direction. 

In case of warping-only displacements 0u  and, consequently 0 yu  and 

)const(xxv  , which leads to )const(xxy  . (The notation ‘ )const(x ’ means 

‘constant in x’.) 

In case of transverse-only displacements )const()( xxv   and )const()( xxu  , consequently 

)const(xyu   and 0 xv , which leads to )const(xxy  . 

In case of secondary shear, let us first assume that we have only one strip per one flat plate. 

Null-transverse-strain criterion is still satisfied, which means that )const(xyu  . At the 

same time, the warping varies linearly, that is )lin()( xxv   within one strip due to the 

selection of shape functions. This means that )const(xxv  . Thus, within one strip 

)const(xxy  , and nonlinear warping is not possible. However, if multiple strips are applied 

within a flat plate element of a member, nonlinear warping might be achieved. In fact, any 

nonlinear warping functions can be approximated by any required accuracy by applying a fine 

enough discretization (i.e., large enough number of strips). 

A basic conclusion is thus, that no-shear and primary shear components can readily be 

described by using one strip per one flat plate in a member. Secondary shear requires multiple 

strips per flat plates. Hence, it will be assumed here that in case of no-shear and primary shear 

modes the simplest one strip per one plate discretization is used, while in case of secondary 

shear modes multiple strips are assumed within one flat plate element. 

 

3.2.3 Primary shear deformations in a member 

3.2.3.1 Unit and zero shear strains 

Primary shear in a member can typically be described by various base systems. Since the most 

characterizing mechanical feature of primary shear is that in-plane shear strain is constant in x 

within a flat plate element, a natural base system is to use 1-s and 0-s for the shear strain in 

(3.10) 
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the various plates (i.e. main strips). The important conclusion is that the number of 

independent primary shear modes is equal to the number of flat plate elements of the member. 

The base system with unit and zero shear strain might be realized by either having warping-

only or transverse-only displacements. Warping-only base system with unit and zero shear 

strains is illustrated in Figure 3.4 for an open unbranched cross-section. The illustrated 

longitudinal distribution of warping displacements corresponds to a cosine function, that is 

simple-simple end restraints. (Note, those plates are highlighted in the figures, where the 

shear strain is non-zero). As it can be seen, such base system is physically possible for any 

open cross-section member, but it can also be easily understood that such base system is 

physically impossible (i.e., geometrically incompatible) for any closed cross-section or cross-

section with closed part(s).  

In Figure 3.5 similar base systems are shown, however, with transverse-only displacements. 

The illustrated longitudinal distribution of transverse displacements corresponds to a sine 

function, that is simple-simple end restraints. If the cross-section is open and unbranched, 

such base system is always possible. However, if the cross-section is branched, not all the 

deformed shapes with unit and zero shear strains are physically possible. This is illustrated in 

Figure 3.5 (bottom) for an I-section, where only 3 linearly independent deformations are 

geometrically compatible out of the 5.  

 

Figure 3.4: Unit and zero shear strains, warping-only displacements 

 

 

 

Figure 3.5: Zero and non-zero shear strains, transverse-only displacements 
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3.2.3.2 Unit and zero warping displacements 

Warping-only displacements can be described by applying 1-s and 0-s as (nodal) warping 

displacements, as illustrated in Figure 3.6. Obviously, such base system is existing for any 

cross-section shape, and the number of base vectors is equal to the number of nodal lines. The 

vectors are linearly independent and involves in-plane shear, therefore, it can serve as a base 

system. However, the space spanned by these base vectors is not identical to the space of 

primary shear modes. There are (might be) two differences. 

 

Figure 3.6: Unit and zero warping displacements 

One difference is that the space spanned by the base vectors (with 1-s and 0-s as warping 

displacements) is always larger than the space of primary shear. By simply summarizing the 

base vectors, we arrive at a deformation mode with uniform warping, i.e. the axial mode, 

which does not involve shear, so, it is clearly out of the space of primary shear.  

The other potential difference is discussed as follows. In case of open (unbranched or 

branched) cross-section, for the number of nodal lines (n) and number of plate elements (p): 

1 np . As we have seen, the dimension of primary shear mode space is p. We have n base 

vectors with unit and zero warping, therefore, 1n base vectors with non-zero shear strain 

can be defined, which is just the number of independent primary shear modes. Thus, in case 

of open cross-sections the base system with unit and zero warping displacements properly 

spans the whole space of primary shear (plus, includes the axial mode). 

In case of a closed cross-section: np  . The dimension of primary shear mode space is p, 

while there are only 11  pn base vectors with non-zero shear. This means that the base 

system with unit and zero warping displacements does not span the whole space of primary 

shear modes; in fact, one primary shear mode is missing. 

If the cross-section is more general, but with closed part(s), np  . Obviously, the base 

system with unit and zero warping displacements does not span the whole space of primary 

shear modes, but some shear modes are missing.   

The conclusion is that the base system with unit and zero warping displacements might span 

the whole or only a part of the primary shear modes space, depending on the cross-section 

topology.  

3.2.3.3 Unit and zero transverse displacements 

It is also possible to define a base system with unit and zero transverse displacements (i.e., by 

forcing unit translation in U or W direction in one node, while forcing zero translation 

elsewhere). If the number of nodal lines is n, 2n such base vectors exist. Obviously, the so-

constructed base system spans a much larger space than the space of primary shear. This base 

system contains deformations which are out of the desired space, but still, it does not 

necessarily includes the whole space of primary shear. 

If the unit transverse displacements are arbitrary, the null-transverse-strain criterion is not 

necessarily satisfied. Thus, only those combinations of the transverse displacements are 

appropriate which satisfy the null-transverse-strain criterion. In a member with p strips the 
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null-transverse-strain means p criteria, given by p equations. If p~  denotes the linearly 

independent equations out of these p equations, the number of modes with zero transverse 

strain determined by the base system with unit and zero transverse displacements will be: 

pn ~2  . In many cases (i.e., many cross-section shapes) pp ~ , but in case of a general cross-

sections pp ~ . (Note, there is no simple and generally applicable way to decide the number 

of linearly independent equations. The problem is analogous to deciding kinematic 

determinacy of a 2D truss. If truss-bars are assigned to each walls of the cross-section and 

hinges are assumed in the wall junctions, the cross-section is transformed into a 2D truss. If 

the so-constructed equivalent truss is kinematically determinate or indeterminate, pp ~ . If 

the equivalent truss is kinematically overdeterminate, pp ~ . In case of simpler truss 

geometries the determinacy can be decided by visual inspection, while for a complicated 

geometry the determinacy can be determined by numerical analysis.) 

If the cross-section has outstand elements with end-nodes (i.e., nodes to which only one single 

plate/strip is connected), the space must further be reduced. In case of an end-node, the U+W 

displacement cannot be arbitrary, since if U+W is transformed into local w-directional 

displacement (with u = 0), the resulting deformation is shear-free (for the outstand plate). 

Therefore, the number of independent deformations with primary shear is finally: 
enpn  ~2 , 

where ne is the number of end-nodes in the cross-section. 

For example, in case of open unbranched cross-sections 1 np , pp ~  and 2en , 

therefore the number of compatible independent base vectors with non-zero shear is: 

pnpn e  ~2 . Thus, in this case the base system with unit and zero transverse 

displacements properly spans the whole space of primary shear modes. 

If the cross-section is open and branched, 1 np , pp ~  and 2en . The number of 

compatible independent base vectors with non-zero shear is smaller than p (in fact, enp  2 ). 

It means that some modes are missing, as can also be seen in Figure 3.5 (bottom). 

In case of closed cross-sections: np  , pp ~  and 0en , therefore the number of 

compatible independent base vectors with non-zero shear is: pnpn e  ~2 . Thus, there are 

no missing shear modes.  

If the cross-section is general, but with closed part(s), the number of compatible modes that 

can be described by unit and zero transverse displacements can be equal to or smaller than p. 

Some shear modes, thus, might be missing.  

The conclusion here is that the base system with unit and zero transverse displacements can 

be used to construct deformations with primary shear. During the construction one must 

exclude the modes with non-zero transverse strains and the modes with zero shear strains (due 

to outstand elements). The number of compatible modes can be equal to or smaller than the 

number of theoretically existing independent shear modes, the potential deficiency being 

dependent on the cross-section.  

3.2.3.4 Modal shear 

A common feature of primary shear (SP), global (G) and distortional (D) modes is that they 

involve warping and/or transverse displacements. In G and D the non-zero warping 

displacements are associated with non-zero transverse displacements, unlike in case of 

primary shear modes, where either the warping or transverse displacements are (or can be) 

zero. Another common feature of G, D and SP modes is that one strip per one flat plate 

element is enough to use (i.e., no sub-nodes are necessary).  
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Based on these common features, it is possible to define shear modes by taking the warping 

displacements of G and D modes only, while forcing zeros for all the other displacements. 

The so-constructed modes will obviously linearly independent, and involve shear strains in 

one or multiple flat plates (i.e., main strips). Moreover, these modes are characterized by 

constant shear strain within any flat plate element (i.e., any main strip). All these 

characteristics are identical to those of the modes defined by unit and zero warping 

displacements as shown in Section 3.2.3.2. It means that the mode space defined by the 

warping displacements of the G and D modes is a sub-space of the primary warping-only 

shear modes. 

Similarly, it is possible to take the transverse displacements of G and D modes only, while 

forcing zero warping displacements. The so-constructed modes will obviously linearly 

independent, and involve shear strains in one or multiple flat plates/strips. Moreover, these 

modes are characterized by constant shear strain within any flat plate, and also characterized 

by transverse-only displacements. All these characteristics are identical to those of the modes 

defined by unit and zero transverse displacements as shown in Section 3.2.3.3. It means that 

the mode space defined by the transverse displacements of the G and D modes is a sub-space 

of the primary transverse-only shear modes.   

In Figure 3.7 the warping-only and transverse-only primary shear modes of a C-section 

member are presented. There are two shear bending modes, one shear torsion mode, two shear 

distortional modes, and both warping-only and transverse-only set of shear modes are found 

(top and bottom row, respectively). 

 

 

shear bending shear bending shear torsion shear distortion shear distortion 

 

shear bending shear bending shear torsion shear distortion shear distortion 

Figure 3.7: Primary shear modes of a C section (top: warping-only, bottom: transverse-only) 

 

In case of an I section (Figure 3.8), there are no distortional modes. There are 5 plate 

elements, therefore, 5 primary shear modes. The primary shear modes therefore are consisted 

of: two shear bending modes (either warping-only or transverse-only), one shear torsion mode 

(either warping-only or transverse-only), and two other primary shear modes (which exist 

only among warping-only modes.  
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Primary shear modes of a rectangular hollow section (RHS) are shown Figure 3.9. Since the 

cross-section is closed, global torsion does not exist, but there is one distortional mode. The 

number of warping-only shear modes is 3, while the number of transverse-only shear modes is 

4 (in accordance with the previous considerations and figures). Thus, two shear bending and 

one shear distortional modes exist with both warping-only and transverse-only displacements, 

but there is an additional transverse-only shear mode too, which is nothing else than a shear 

torsional mode. (Note, a more general cross-section is illustrated in Figure 3.11.) 

 

 

shear bending shear bending shear torsion shear other shear other 

 

shear bending shear bending shear torsion 

Figure 3.8: Primary shear modes of an I section 

 

 

shear bending shear bending shear distortion 

 

shear bending shear bending shear torsion shear distortion 

Figure 3.9: Primary shear modes of a rectangular hollow section 
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3.3 Construction of the constraint matrices 

As the original derivation of cFSM [1/2-8/2] assumed open cross-sections, therefore, many of 

the formulae cannot directly be applied for closed cross-sections. Therefore, the derivations 

need to be generalized by removing the possible most restrictions with regard to cross-section 

topology. This generalization is another important (and necessary) feature of the generalized 

cFSM. In fact, the generalization of the derivations is the topic of the following Section of this 

dissertation, based on [3/3-8/3]. 

3.3.1 Mode definition 

Mechanical characteristics of the mode spaces and sub-spaces are given in Table 3.1. Three 

in-plane strains and three out-of-plane curvatures are given, as follows: xux  , 

yvy  , xvyuxy  , 
22 xwx  , 22 ywy   and yxwxy  2 , 

where all the u, v and w functions are interpreted at the middle surface of the plates (i.e., at 

z = 0). Moreover, ‘C’, ‘L’ and ‘NL’ mean piece-wise constant, piece-wise linear and non-

linear in local x direction, where the ’piece’ is a flat plate between two main nodes. It is to 

note that y could be substituted by v, while y could be substituted by w. In row ‘eq.’ it is 

given whether the cross-section equilibrium is satisfied or not (Y or N, respectively). Finally, 

in the last row it is also given (for informative purpose) whether the deformation mode is 

associated with rigid-body-type cross-section displacements or not (Y or N, respectively). It is 

to observe that between the various warping-only S modes there is no mechanical difference, 

they are separated only for practical purpose. A final important comment is that although 

Table 3.1 is virtually different from Table 2.1, there is no conflict between the two tables: the 

new mode definition table does not modify the original mode definitions, it only gives more 

details. 

Table 3.1: Mechanical criteria for mode classes in the generalized cFSM   

 primary modes secondary m. 

 GA GB GT D LP SBw STw SDw SCw SBt STt SDt SCt TP LS SS TS 

x 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 NL 

y C L L L 0 L L L L 0 0 0 0 0 0 NL 0 

γxy 0 0 0 0 0 C C C C C C C C C 0 NL NL 

x 0 0 0 L L 0 0 0 0 0 0 L L L NL 0 0 

y 0 C L NL NL 0 0 0 0 C L NL NL NL NL 0 0 

xy 0 0 C NL NL 0 0 0 0 0 C NL NL NL NL 0 0 

eq. Y Y Y Y N Y Y Y Y Y Y Y N N N Y N 

rigid Y Y Y N N Y Y Y Y Y Y N N N N Y Y 

 

The terminology and short description of the subspaces are given here as follows.  

 GA is the axial mode space, which involves uniform warping displacement only (and 

which is typically considered as part of the G space). 

 GB is global bending sub-space of G space, consisted of two bending modes.  

 GT is the global torsion sub-space that involves the rigid-body torsion of the cross-

section, and since it is part of the G space, it is shear free (therefore typically 
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associated with warping displacements, too). GT exists only if the cross-section is 

open, since if the cross-section is closed or has closed part(s), shear-free torsion is 

physically impossible. 

 D is the space of distortional mode space.  

 LP is the mode space for primary local(-plate) modes. 

 SBw is the primary (warping-only) shear bending mode space, characterized by 

warping displacements identical to those of GB. 

 STw is the primary (warping-only) shear torsion mode space, characterized by warping 

displacements identical to those of GT. If GT does not exist, STw does not exist, neither. 

 SDw is the primary (warping-only) shear distortional mode space, characterized by 

warping displacements identical to those of D. 

 SCw is the primary (warping-only) other shear mode space, that is the subspace of 

primary warping-only shear mode (i.e., with constant shear strain along x) which is not 

part of any of SBw, STw, and SDw. 

 SBt is the primary (transverse-only) shear bending mode space, characterized by 

transverse displacements identical to those of GB. 

 STt is the primary (transverse-only) shear torsion mode space, characterized by 

transverse displacements identical to those of GT. If GT does not exist, STt does still 

exist, since rigid-body-type torsional displacements for the cross-section can always 

be applied. 

 SDt is the primary (transverse-only) shear distortional mode space, characterized by 

transverse displacements identical to those of D. 

 SCt is the primary (transverse-only) other shear mode space, that is the subspace of 

primary transverse-only shear mode (i.e., with constant shear strain along x) which is 

not part of any of SBt, STt, and SDt. 

 TP is the mode space for primary transverse extension modes. 

 LS is the mode space for secondary local(-plate) modes. 

 SS is the mode space for secondary shear modes (with warping-only displacements). 

 TS is the mode space for secondary transverse extension modes. 

Detailed information on shear sub-spaces is given in Section 3.2, while the practical way of 

constructing the various spaces and sub-spaces is summarized in Sections 3.3 and 3.4. 

As far as GB, SBw and SBt are concerned, any two of them are linearly independent of each 

other. However, all the three are linearly dependent, therefore, any of them can be expressed 

by the linear combination of the other two. Similar linear dependency exists for D, SDw and 

SDt. Finally, the same is true for GT, STw and STt, at least if GT exists. (If GT does not exist, STw 

does not exist, neither, therefore, linear dependency is not an issue.) It is also to note that SCw 

and SCt are linearly independent sub-spaces and obviously independent of G and D, too. 

Thus, the primary shear mode space can be composed as illustrated in Figure 3.10.  

 

 

Figure 3.10: Decomposition of primary shear modes 
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3.3.2 Outline of mode construction 

In the following Sections of the dissertation the generalized derivations for the deformation 

modes are presented. The derivations closely follow Table 3.1. The construction of the modes 

is presented in accordance of the order of Table 3.1, starting with the GA axial mode and 

ending with the secondary modes. It is to note that the order of primary mode spaces is not 

arbitrary, since the construction of certain modes requires the knowledge of other modes. 

For the construction of the base system of any mode space, three kinds of information will be 

used. One is directly included in Table 3.1, namely: for any mode space or sub-space certain 

strain components are equal to zero. These null criteria, found in the first 6 rows of Table 3.1, 

are practically useful, since these are the ones that can easily be enforced. In row #7 it is given 

whether transverse equilibrium of the cross-section is satisfied or not. Since transverse 

equilibrium can also be interpreted as nullity of the unbalanced nodal forces/moments, 

transverse equilibrium is also treated as a null criterion, which, again, can easily be enforced. 

The two other types of information are similar, namely: the various spaces must be linearly 

independent of each other, while the sub-spaces must be orthogonal to each other (in a certain 

sense). Linear independency is enforced by independency criteria, orthogonality can be 

enforced by orthogonality criteria.  

Both null criteria and orthogonality criteria are (mostly) expressed by matrix equations, where 

the matrices are applied to the displacement vectors in order to enforce the embedded 

criterion. Matrices for null criteria are denoted by Z and an appropriate subscript (where the 

subscript comes from the first column of Table 3.1). The orthogonality matrices are denoted 

by O and an appropriate subscript. The subscripts determine which displacement or strain 

component distribution is orthogonal, e.g., Ov expresses orthogonality of v functions, i.e., 

warping distributions. All the orthogonality criteria are interpreted for the cross-section 

middle line. (Note, independency criteria do not require any special constraint matrix.) 

The derivation of Z and O matrices are summarized in Appendix A and B. Note, all the Z 

matrices are compiled so that the column number would be equal to the DOF number (i.e., the 

length of the displacement vector), therefore, enforcement of a null criterion requires Zd = 0. 

(Note, in some cases further conditions are needed to be satisfied, which conditions, however, 

can also be expressed by simple matrices.) The orthogonality matrices are square matrices, 

row and column number being equal to the DOF number. Therefore, enforcement of an 

orthogonality criterion for two non-identical displacement vectors requires dr
TOds = 0. 

Finally, independency criterion is enforced by requiring the scalar product of two 

displacement vectors to be zero, i.e., dr
Tds = 0. 

Comments on the size of the spaces and sub-spaces are provided. In some cases simple rule 

can be given for the sub-space dimension, in other cases such simple rule does not exist. It is 

to emphasize, however, that the preliminary knowledge of the space dimensions is not 

required, in fact, the dimension is ultimately determined by the process of constructing the 

given space or sub-space. Some other comments are also given, e.g., on the distribution of 

some displacements or strains. These comments are generally valid, but exceptions might 

exist. The exceptions are limited to very simple cross-section topologies, which are discussed 

separately at the end of Section 3. 

The modes are illustrated in Figure 3.11. The presented deformed shapes correspond to 

simple-simple end restraints with one longitudinal single half-wave. It is to emphasize that 

Table 3.1 defines mode spaces, but does not specifically define a base system for any (multi-

dimensional) mode space. It means that various base systems are possible, as discussed later. 

Figure 3.11 shows possible base vectors. 
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3.3.3 Global mode space 

3.3.3.1 Axial mode space 

Axial mode is a mode where x = γxy = x = y = xy = 0, plus transverse equilibrium is 

satisfied. All these criteria are summarized by the following mathematical expression: 

0d
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Transverse equilibrium is automatically satisfied for any rigid-body cross-sectional 

displacements (e.g., if x = 0), therefore, it can be eliminated. Null longitudinal curvature and 

null mixed curvature (i.e., xy = 0) require that 0i , while null transverse curvature 

requires that jiji  and any for   . However, if 0i , ji  is automatically 

satisfied. Moreover, Zkx becomes identical to Zkxy if 0i . Consequently, if null mixed 

curvature is enforced, null transverse curvature criterion is automatically satisfied. Thus, the 

above criterion can be written in a simplified form as follows: 
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Mathematically, the above criteria can be handled as follows. The dGA vector must satisfy (i) 

the ZGAdGA = 0 equation, (ii) and the 0i equations. This latter condition can also be 

expressed in matrix form as follows: 

GA0GAGA dZd
0
I

d 





  

where GAd contains the non-zero elements of the dGA displacement vector, I is an identity 

matrix the size of which is equal to total number of DOF which are (might be) non-zero, 

while 0 is a matrix full of zeros, with column number equal to the size of I, while row number 

equal to the number of DOF which are zero. In the actual case, therefore, if there are n nodal 

lines in the finite strip model, I is a 3n by 3n square matrix, while 0 is an n by 3n matrix. 

Eq (3.12) can be written as follows: 
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from which GAd  can formally be expressed as the null-space of the ZGAZ0 matrix: 

)null( 0GAGA ZZd   

 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Finally the dGA displacement vector(s) can be achieved by solving the following equation: 

)null( 0GA0GA0GA ZZZdZd   

Since the null function determines a base system for all the vectors that satisfy the given 

criteria, the resulted displacement vectors are nothing else than the constraint matrix, in this 

actual case, the RGA constraint matrix for the axial mode space. Therefore: 

)null( 0GA0GA ZZZR   

By looking at the structure and physical meaning of the various Z matrices, one might 

conclude that: (i) null transverse curvature enforces rigid-body type cross-section 

displacements, (ii) null mixed curvature enforces zero rotation, (iii) null longitudinal 

curvature enforces zero transverse translations, (iv) null transverse normal strain and null 

membrane shear strain criteria define a relationship between transverse and longitudinal 

translational displacements, however, if there are no translations, the warping must be zero or 

constant. Thus, in case of a general cross-section the above equation defines one single 

displacement field characterized by uniform warping along the cross-section. Therefore there 

is no need to formally solve Eq. (3.17), since uniform warping can be defined directly.   

3.3.3.2 Global bending mode space 

Bending mode is a mode where x = γxy = x = xy = 0, plus transverse equilibrium is satisfied. 

As mentioned at the axial mode space, null mixed curvature criterion includes null transverse 

curvature criterion, therefore, can be disregarded. Also, null transverse curvature criterion 

includes transverse equilibrium. Therefore, the displacement vectors of the bending mode 

class, i.e., the RGB constraint matrix must satisfy the following criteria: 
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Similarly, as presented for the axial mode space, the 0i  criteria can be incorporated into 

the matrix equation.  

By looking at the structure and physical meaning of the various Z matrices, one might 

conclude that: (i) null transverse curvature enforces rigid-body type cross-section 

displacements, (ii) null mixed curvature enforces zero rotation, (iii) null transverse normal 

strain and null membrane shear strain criteria define a relationship between transverse and 

longitudinal translational displacements, therefore, if transverse translations are determined, 

the warping translations are determined, too. Thus, in case of a general cross-section the 

above equation defines a 3-dimensional mode space, characterized by rigid-body cross-

section displacements with zero rotation. Obviously, this 3-dimensional space includes the 

already defined and discussed axial mode, too. Therefore, one must subtract the axial mode 

from the 3-dimensional space defined by Eq.  (3.18). The simplest way to complete the 

subtraction is to add an orthogonality criterion to Eq.  (3.18). Bending modes are 

characterized by linear warping distribution over the whole cross-section, therefore, warping 

distribution of GA and GB modes are orthogonal. Namely:  

0
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(3.16) 

(3.17) 

 (3.18) 

(3.19) 
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Eq.  (3.18) thus can be extended as follows:  
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from which RGB can be expressed.  

This equation leads to two independent mode vectors, i.e., two bending modes. Both bending 

modes are characterized by piecewise linear warping distribution and transverse rigid-body-

type cross-section displacements in two non-coinciding directions. The above equation does 

not specifically determine two base vectors, only the mode space. Practically it means that 

transverse displacements in any two non-coinciding directions can be used as base vectors for 

the GB space. Typically, it is convenient to select two perpendicular directions. Moreover, 

further orthogonalization within the GB space is possible (which is equivalent to select two 

principal axes for the base vectors), which question is further discussed in Section 3.4. 

3.3.3.3 Global torsion mode space 

Global torsion mode is a mode where x = γxy = x = 0, plus transverse equilibrium is satisfied. 

Moreover, the (primary) warping distribution of torsion mode is orthogonal to those of axial 

and bending modes. Therefore, RGT can be calculated from the following equation:  
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This equation leads to either one or zero mode vector. If global torsion mode exists, typically 

the resulted displacements include piecewise linear warping distribution.  

3.3.4 Other primary mode spaces 

Constraint matrices for the other primary mode spaces can be constructed similarly, by 

applying the null criteria according to Table 3.1, and by applying orthogonality and 

independency criteria where necessary. The order of the construction is not arbitrary. The 

necessary matrix equations are summarized as follows.  
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



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
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
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





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T
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T

T

and  any for   0 iVi   

It is to note that primary warping-only shear space can be determined, but cannot be separated 

into SBw, STw and SDw purely from the mechanical criteria of Table 3.1. However, since they 

possess warping distribution identical to that of GB, GT and D, respectively, the constraint 

matrices can easily be constructed from the constraint matrices of the corresponding global 

sub-spaces. The same is true for SBt and SDt.  

All the resulted mode spaces are illustrated in Figure 3.11 for a two-cell cross-section. 

 

(3.24) 

 (3.25) 

(3.26) 

 (3.27) 

 (3.28) 

(3.29) 

 (3.30) 
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GA GB1 GB2 D1 LP1 

     
LP2 LP3 LP4 LP5 LP6 

     
SBw1 SBw2 SDw1 SCw1 SCw2 

     
SBt1 SBt2 STt SDt1 SCt1 

     
TP1 TP2 TP3 TP4 TP5 

  

   

TP6 TP7    

Figure 3.11: Modal decomposition of a 2-cell cross-section 
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3.3.5 Exceptions: overlaps of primary mode spaces 

The above presented procedures for the calculation of various modes lead to distinct mode 

spaces for almost all the cases. Overlap occurs between shear and global modes, 

independently of the cross-section shape or topology, as already mentioned above. This 

question is discussed in full detail in [1/3-2/3].  Moreover, overlap of the spaces occurs in case 

of some very specific cross-section topologies, namely, if the cross-section has zero corner 

node (i.e., the cross-section is consisted of a single plate), or one corner node (i.e., the cross-

section has an L, T or X shape). These overlaps are discussed in detail in [5/3]. 

 

3.3.6 Secondary mode spaces  

3.3.6.1 Secondary local mode space  

In case of primary local mode space the transverse curvature function is piece-wise linear 

(i.e., linear within a flat plate element in between two main nodes), while secondary local 

modes are characterized by non-linear transverse curvature function even within a flat plate 

element. Otherwise the primary and secondary local mode vectors share the same mechanical 

features. 

Therefore, similarly to the primary L modes, secondary L modes have zero warping, zero 

transverse extension and in-plane shear strain. The simplest construction of the base vectors is 

to apply 1-s and 0-s for the rotational and w-directional translational DOF of the sub-nodes. 

(Note, all the DOF of all the main nodes are zero, since main nodes are fully handled by the 

primary local modes.) This means that the number of linearly independent secondary local 

base vectors is twice the number of sub-nodes.  

The enforcement of 1-s and 0-s can be completed plate by plate. For one plate the resulted 

base system is illustrated in Figure 3.12. 

 

 

LS1 LS2 LS3 LS4 

 

LS5 LS6 LS7 LS8 

Figure 3.12: Base system for secondary local mode space of a single plate 
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3.3.6.2 Secondary shear mode space  

In case of primary shear mode space it is the in-plane shear strain function which is piece-

wise linear along the local x-axis (i.e., linear within a flat plate element in between two main 

nodes), while secondary shear modes are characterized by non-linear shear strain function 

even within a flat plate element. Otherwise the primary and secondary shear mode vectors 

share the same mechanical features. 

In case of primary shear modes two sets are generated: warping-only and transverse-only 

mode spaces. It is easy to understand that transverse-only secondary modes are physically 

impossible. Let us consider a flat element and assume multiple strips. If local u is enforced in 

any strip, the same local u must occur in all the strips in order to maintain geometric 

compatibility. This means, furthermore, that the shear strain in each strip will be the same (in 

any cross-section, i.e., for any value of y=Y).  

Thus, secondary shear modes can be constructed solely by the warping-only way. The 

simplest construction of the base vectors is to apply 1-s and 0-s for the warping DOF of the 

sub-nodes, see Figure 3.13. (Note, all the DOF of all the main nodes are zero, since main 

nodes are fully handled by the primary shear modes.) This means that the number of linearly 

independent secondary shear base vectors is equal to the number of sub-nodes. 

 

SS1 SS2 SS3 SS4 

Figure 3.13: Base system for secondary shear mode space of a single plate 

 

3.3.6.3 Secondary transverse extension mode space  

In case of primary transverse extension mode space it is the local u displacement function 

which is piece-wise linear along the local x-axis (i.e., linear within a flat plate element in 

between two main nodes), while secondary transverse extension modes are characterized by 

non-linear local u function even within a flat plate element. Otherwise the primary and 

secondary transverse extension mode vectors share the same mechanical features. 

Therefore, similarly the primary T modes, secondary T modes have zero warping. The 

simplest construction of the base vectors is to apply 1-s and 0-s for the local u-directional 

translational DOF of the sub-nodes, see Figure 3.14. (Note, all the DOF of all the main nodes 

are zero, since main nodes are fully handled by the primary transverse extension modes.) This 

means that the number of linearly independent secondary transverse extension base vectors is 

equal to the number of sub-nodes. 

 

 

TS1 TS2 TS3 TS4 

Figure 3.14: Base system for secondary transverse extension mode space of a single plate 
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3.4 Orthogonality within the mode spaces 

3.4.1 General 

The construction of the various mode spaces are presented previously in Section 3.3. The 

presented procedures fully and unambiguously determine the mode spaces. The spaces are 

determined by their base vectors (or: base functions). The presented procedures lead to a 

native (or: natural) set of base vectors for any mode space. However, transformation within 

any (multi-dimensional) space is possible, i.e., base vectors can be defined in infinite number 

of ways. From practical aspects it might be useful to apply other than the native base vectors. 

If the mode space is one-dimensional (such as A, or GT), obviously there is no need or 

possibility for various base systems.  

In certain cases more than one way exists to create a native base system. For example, in case 

of LP space, the mode vectors can be determined by solving Eq. (3.23), or by setting 1-s and 

0-s for rotations and w-directional translations of end-nodes.  

In case of multi-dimensional spaces there is infinite number of base systems. Here, orthogonal 

base systems will be presented. However, orthogonality can be interpreted in various ways 

even within the same mode space. Two basic interpretations can be considered: 

(i) orthogonality in cross-section sense, and (ii) orthogonality in member sense.  

The orthogonality in member sense is essentially the same kind of orthogonality which is 

included in CUFSM and discussed in detail in [10/2]. Therefore, member orthogonality is not 

discussed here.  

The most important feature of cross-section orthogonality is that the base vectors are intended 

to be determined independently of the longitudinal shape functions (which also means that 

independently of the length of the member, and independently of the end restraints) and 

independently of the loading. Since the construction of the native base vectors involve the 

effect of member length (and ultimately that of the longitudinal shape functions), first 

dependency on longitudinal shape functions are discussed. 

 

3.4.2 Dependency on longitudinal shape functions 

Though longitudinal shape functions are appearing in multiple places in the derivations, 

mostly they can be eliminated during the derivations and finally most of the mode spaces are 

independent of the longitudinal base functions, consequently, independent of member length 

and of end restraints.  

Basically there is one matrix in which the effect of longitudinal base functions is directly 

included, this is Zgxy. The effect is visible by the existence of the 
m

a
or 

a

m
term in Eq. (B20) 

or Eq. (B21). This term comes from the first derivative of the internal function of ][mY , where 

][mY  is the longitudinal shape function for the (local) displacements u and w. In the semi-

analytical FSM the ][mY functions are selected so that this first derivative of internal functions 

would be identical for any end restraint condition. In this sense, thus, for the given set of 

longitudinal base functions Zgxy is independent of the end restraints, while the effect of 

longitudinal base function appears only in the am  term.  
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The am term is dependent on the m parameter (which can roughly be interpreted as the 

number of half-waves along the length), and the member length a. It can be understood that 

this term makes the relationship between local u and local v displacements if null-shear-strain 

criterion is enforced: the smaller this am  ratio is, the smaller the warping displacements are 

that belong to a certain transverse displacement.  

Which mode spaces are affected by the am ratio? By looking at the construction of the 

mode spaces it turns out that only GB, GT and D modes are affected. In all the other mode 

spaces either local v or local u is zero. A common feature of these mode spaces is that there is 

a one-to-one relationship between the warping and transverse displacements of the member 

cross-section. (This is more evident from the original cFSM derivations where this 

relationship is expressed by closed-formed formulae, see [4/2].) Therefore, either the warping 

displacements, or the transverse displacements unambigously define these mode spaces. The 

warping or transverse displacements alone are independent of the length, thus, it is possible to 

have the interpretation that the GB, GT and D mode spaces are essentially determined by either 

the warping displacements or transverse displacements, though when constructing the mode 

vectors one must consider both warping and transverse displacements, therefore, must 

consider dependence on m and a. 

Even so, it must be decided whether warping displacements or transverse displacements are 

taken as the determining part of the displacements. In most cross-sections this decision has no 

any theoretical or practical importance. However, if the cross-section is too simple, i.e., it has 

zero or one corner node only, GB and GT space overlaps with other spaces. If the overlapping 

modes are assigned to global spaces, these modes will have transverse displacements but no 

warping displacements (since just this is the feature of these modes that causes the 

overlapping). Therefore, it seems to be somewhat more general to consider the transverse 

displacements as the determining part of the displacements for the GB, GT and D mode spaces. 

(It is to note, however, that in GBT and original cFSM the construction of GB, GT and D 

modes are based on rather the warping displacements than transverse displacements.) 

Thus, there are mode spaces which are de facto independent of m and a, while for GB, GT and 

D mode spaces it is possible to select a part of the displacements which characterizes the 

whole displacement field and which is independent of m and a.  

There are at least two advantages of having quasi length-independent version of base vectors. 

One is a computational advantage. In a typical cFSM analysis either multiple lengths or 

multiple m terms are considered (or both), which means that nearly identical calculations are 

repeated multiple times. It is computationally efficient to construct an initial base vector first 

for a specific value of a and m, say, a0 and m0, while the effect of changing am ratio can 

easily be considered by multiplying, say, the warping displacements by m/m0 and a0/a ratios.  

Another important consequence of applying an initial set of base vectors is that the order of 

the individual base vectors can be kept constant during a cFSM analysis, even if the length, or 

the considered m terms are changing. Thus, if cFSM analysis aims to calculate a specific 

buckling mode for various lengths and/or various end restraints, the necessary individual 

mode vector or vectors will be found in the same position within the full set of base vectors. 

Indeed, these length-independent base vectors can be constructed solely based on the 

geometry of the cross-section middle-line, and in this way this length-independent base vector 

set can be considered as a “property” of the cross-section geometry.      
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3.4.3 Orthogonality in cross-section 

Cross-section orthogonal base vectors (functions) are interpreted as follows: (i) some 

displacement functions (or derivatives of displacement function) are orthogonal to each other, 

(ii) the orthogonality is satisfied by base vectors within the same mode space, and (iii) the 

orthogonality is interpreted in cross-sections (rather than in the member). 

The orthogonality is interpreted here as: 

0 dsff sr  if sr   and 0 dsff sr  if sr   

where f function is a displacement function (or derivative of displacement function), which 

can be determined from a displacement vector. Since orthogonality is intended to be 

interpreted for a cross-section (rather than for the whole member), f function must be selected 

so that it would be characteristic for the cross-section. Similar orthogonality condition has 

already been applied during the construction of the mode spaces. The most evident one of 

such orthogonality conditions is the orthogonality of warping functions within the GD space. 

These functions are characteristic for G and D spaces, thus, can readily be used to create 

orthogonal mode vectors. For other mode spaces other functions might be advantageous. It is 

to emphasize that the orthogonalization process, though practically useful and based on 

mechanical considerations, has no unambiguous mechanical background, which means that 

there is no one-and-single good solution but there are (or might be) multiple reasonable 

solutions. In the following a possible “best” approach is followed where the orthogonalization 

is based on that geometric property which is considered to be the most characterizing for the 

given space. Namely: warping for G, transverse curvature for L, in-plane shear strain for S, 

and in-plane transverse strain for T. As far as D is concerned, it can be orthogonalized in two 

meaningful ways, either by using the warping functions or by using the transverse curvature 

functions. The two orthogonalization schemes lead to visually similar, but mathematically not 

always exactly identical orthogonal mode vectors. It is experienced that for the most typical 

sections (such as lipped channel) there is no practical difference between the two approaches, 

however, for more complicated sections the orthogonalzation with regard to transverse 

curvature is practically better. 

For the potentially multi-dimensional primary mode spaces the following equations apply:  

DROR GBvGB 
T

 

DROR DvD 
T

 or DROR DkxD 
T

 

DROR LPkxLP 
T

 

DROR SCwdvxSCw 
T

 

DROR SCtuSCt 
T

 

DROR TPexTP 
T

 

where D is a diagonal matrix (of various size) with non-zero elements in the main diagonal, 

while O matrices represent the orthogonality criteria. The derivation of the O matrices can be 

found in the Appendix A. 

 

 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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Similarly, for the (typically multi-dimensional) secondary mode spaces:  

DROR LSkxLS 
T

 

DROR SSdvxSS 
T

 

DROR TSexTS 
T

 

It is to note that SB and SD spaces are (or can be) multi-dimensional, too. However, these 

spaces should be tied to GB and D, therefore, if GB and D are orthogonalized, SB and SD are 

automatically orthogonalized in the same way. 

The native base vectors for a given M mode space, n
MR , do not usually satisfy the above 

equations, instead, nTn
MM ORR is a fully populated matrix. In order to have the orthogonal 

version the base vectors, nTn
MM ORR  must be diagonalized, which requires the solution of a 

simple eigen-value problem. 

It is also to note that in case of S mode space orthogonality is interpreted for the in-plane 

shear strain xvyuxy  . However, if u = 0, (as in case of warping-only shear modes,) 

the shear strain is simplified to xvxy  , hence orthogonality of xy is equivalent to that 

of  xv   (which can be enforced by Odvx). Similarly, if v = 0, (as in case of transverse-only 

shear modes,) the shear strain is simplified to yuxy  , hence orthogonality of xy is 

equivalent to that of yu  . However, the distribution of yu  along the cross-section middle 

line is identical to that of the u function, therefore the orthogonality can be enforced by Ou. 

3.4.4 Ordering the cross-section orthogonal base vectors 

The importance of ordering the individual base vectors (within a mode space) is a practical 

one. A reasonable base vector order might help in selecting the mode vectors if a specific 

buckling mode is aimed to calculate. Moreover, if a mode space is large enough, and the 

practically more important base vectors are somehow identified, it is reasonable to run the 

analysis in a reduced DOF space, by selecting the practically more important base vectors 

only, which leads to a reduced problem size (and therefore, to a faster process). 

The here proposed procedure involves two major steps: (i) scaling the base vectors and (ii) 

ordering the base vectors. 

As far as scaling is concerned a simple but straightforward way is to set the maximum value 

of a characteristic displacement component to 1. The characteristic displacement component 

can be the local w for GB, GT, D, L (including both primary and secondary L) and transverse-

only S modes, the local v for GA and warping-only S modes (including secondary shear 

modes), while the local u for T modes (both primary and secondary). 

The ordering is not a theoretically well-established process, i.e., various ordering strategies 

are possible and can be reasonable. The here-followed procedure aims to define the order so 

that the order would follow the practical importance of the vectors of a given sub-space (i.e., 

the most important vector should come first, etc.). The ‘practical importance’ of a base vector 

is measured by the likeliness of its contribution in the first (or: first few) elastic buckling 

modes of a thin-walled member with the actual cross-section geometry if the member is 

subjected to some typical longitudinal loading. This aim can be achieved if the ordering is 

based on a measure which is closely related to the strain energy content of the deformation 

(3.38) 

(3.39) 

(3.40) 
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mode represented by the base vector. However, since here both the orthogonalization and the 

ordering are intended to be independent of the longitudinal distribution of the displacements 

(i.e., independent of the member length, of end restraints, of applied longitudinal shape 

functions), this energy-related measure must be interpreted to the cross-section. 

As an example, L modes are characterized by zero warping, zero transverse membrane 

strains, zero shear membrane strains, but non-zero transverse curvature (i.e., non-zero 

transverse strains for z ≠ 0). It is possible and reasonable, therefore, to define the measure of 

strain energy content by the following expression: 

dsxx     or    



p

k

b
k

x
k

x dx

k

1)( 0

)()(

)(

 

where p is the number of strips. As it is shown in the derivation of Okx (in Appendix B), the 

above expression can be written as LkxL ROR
T

, which is essentially similar to the one that 

appears in Eq. (3.34) or (3.38).  

For all the sub-spaces the measure of strain energy content can be determined similarly, by 

using that strain component which is the most characterizing for the given cross-section 

deformation. Namely: longitudinal in-plane strain y for G, transverse curvature x for D and 

L, in-plane shear strain γxy for S, and in-plane transverse strain x for T. (Note the distribution 

of y is identical to that of the v warping function, therefore, Ov can be used for the G space.) 

It is to note that SB and SD spaces are tied to GB and D, therefore, if base vectors of GB and D 

are ordered, SB and SD are automatically ordered in the same way. 

 

3.5 Application 

To illustrate the extended features of the generalized cFSM, the above described procedures 

are applied for a hollow-flange U-section member. More examples can be found e.g., in [5/3]. 

Figures 3.15 to 3.26 show the ‘native’ and ‘orthogonal’ base systems for the actual cross-

section. (To reduce the sizes of secondary spaces, a rough discretization is used, having a few 

sub-nodes in the web only.) 

In Figure 3.27 critical load values are plotted in the function of buckling length, for a beam 

member in uniform bending. The cross-section is a hollow-flange U, with total depth of 

440 mm, flange width of 120 mm, flange depth of 60 mm, thickness of 2 mm. The material is 

isotropic (steel), with E=210 GPa. The critical stresses are calculated employing several 

options (and with using a proper discretization): all-mode solution (i.e., classic FSM solution, 

also called ‘signature curve’), and pure “global”, distortional, and local buckling solutions. 

For the “global” mode, it is essential to consider G and ST modes, since lateral-torsional 

buckling is associated with torsional deformations, and rigid-body torsional deformation for 

closed sections is found in the ST space. The modal identification of the all-mode curve (i.e., 

so-called signature curve) is shown in Figure 3.28, where G, D, L, S and T participations are 

given in percentages as a function of length. Selected buckled mode shapes and modal 

participations are provided in Figure 3.29. More discussion of the results, as well as 

additional examples can be found in [5/3]. 

 

 

(3.41) 
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GB1 GB2 D1 D2 D3 

Figure 3.15: Native base system for the GB and D spaces 

     
GB1 GB2 D1 D2 D3 

Figure 3.16: Cross-section orthogonal base system for the GB and D spaces 

 
LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 

Figure 3.17: Native base system for the LP space 
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LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 

Figure 3.18: Cross-section orthogonal base system for the LP space 

 

 
LS1 LS2 LS3 LS4 LS5 LS6 

Figure 3.19: Native base system for the LS space 

 

 
LS1 LS2 LS3 LS4 LS5 LS6 

Figure 3.20: Cross-section orthogonal base system for the LS space 

 

 
SBw1 SBw2 SDw1 SDw2 SDw3 SCw1 SCw2 

Figure 3.21: Cross-section orthogonal base system for the SPw space 
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SBt1 SBt2 SDt1 SDt2 SDt3 STt SCt1 

Figure 3.22: Cross-section orthogonal base system for the SPt space 

 

     
SS1 SS2 SS3  SS1 SS2 SS3 

Figure 3.23: Native (left) and cross-section orthogonal (right) base system for the SS space 

 

 
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 

Figure 3.24: Native base system for the TP space 

 

 
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 

Figure 3.25: Cross-section orthogonal base system for the TP space 
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TS1 TS2 TS3  TS1 TS2 TS3 

Figure 3.26: Native (left) and cross-section orthogonal (right) base system for the TS space 

 

 

Figure 3.27: All-mode and pure-mode critical stresses for the hollow-flange U-beam 

 

 

Figure 3.28: Mode participations in all-mode solution for the hollow-flange U-beam  

 

3.6 Summary and continuation of the work 

In this Chapter a generalized cFSM has been presented. The generalized cFSM has extended 

capabilities, the most important one is that it handles arbitrary flat-walled cross-sections. 

Moreover, various (series) longitudinal functions are considered, new, practically meaningful 

subspaces are introduced, and cross-section orthogonal base systems are proposed. (See 

Thesis #2 in Chapter 6.) 
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buckled shape 

 

length (mm) 100 300 1500 2500 15000 

G % 0.0 0.0 31.4 45.2 82.8 

D % 0.1 0.2 38.2 49.8 11.0 

L % 99.7 99.4 28.7 4.1 0.0 

S % 0.2 0.4 1.6 1.0 6.2 

T % 0.0 0.0 0.0 0.0 0.0 

Figure 3.29: Buckled shape samples and mode participations in all-mode solution of the 

hollow-flange U-beam  

 

The generalized cFSM method has been implemented into a new version of CUFSM 

software. (Unfortunately, at the moment, the new version of CUFSM is not publicly 

available.) 

The practical usefulness of the generalized cFSM is obvious: not only cold-rolled members, 

but members with closed part(s) can be handled, such as aluminium or plastic extrusions, 

welded steel members, etc. Moreover, the “too” simple cross-sections (like L, T or X) are 

properly handled (unlike in the original cFSM). 

There are still two basic limitations of the method. One is the set of limitations caused by the 

FSM itself. In order to remove these limitations, the constraining technique should be applied 

within the context of finite element method. This would further (significantly) generalize the 

method, by allowing the analysis of thin-walled members with intermediate supports, 

members with (certain) cross-section changes, members with holes/perforations, etc. In fact, 

this work has already started by the Author, the first results have already been published [9/3-

17/3]. 

The other basic limitation of the cFSM method is that it requires flat-walled member (model). 

This limitation is caused by the currently used definition of local and distortional modes, 

therefore, this limitation is shared by GBT, too. Though the handling of members with small 

curved parts (e.g., cold-formed members with rounded corners) is solved as far as practical 

design is concerned (see e.g. [26/2-33/2], it remains an interesting topic for further 

(theoretical) research how the modal decomposition methods can be extended for members 

with curved cross-sections.  

It is also to mention that generalization is possible even within the context of semi-analytical 

FSM, by considering more general loading and more second-order terms in the stability 

analysis. Such version of cFSM has very lately been developed by Rendall and colleagues 

[18/3-21/3]. 
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4 Mode identification of deformations calculated by 

shell finite element analysis 

4.1 Introduction 

4.1.1 General 

The cFSM method (as presented in the previous Chapters) successfully solves two basic tasks: 

pure buckling mode calculation and modal identification. Since the method is based on the 

finite strip method, it can handle only those problems which are within the realm of FSM. 

Since there is practical need to analyse more general cases, there has been research effort to 

push the limits of cFSM and to analyse members that cannot directly be handled by cFSM. 

Based on cFSM, Casafont (and his colleagues) showed how the mechanical constraints used 

in cFSM can partially be implemented into a commercial finite element software package (see 

[23/2-25/2]) and how the member can be enforced to deform in accordance with the 

mechanical criteria of a given mode space. Incidentally, they have analysed perforated 

members, and successfully calculated arbitrary pure or coupled buckling modes to such 

members (which otherwise cannot be analysed by FSM). However, since in their method the 

mechanical criteria are satisfied only approximately (i.e., not for the whole displacement field 

but only at sufficiently large number of locations), their method is not able to make a base 

transformation, therefore, modal identification is not possible. 

At the same time approximate modal identification of deformations calculated by FEM 

analysis has also been proposed by the Author (later applied and extended by others). The 

method, originally presented in [1/4-2/4], employs the base functions of cFSM to approximate 

the FEM-calculated deformations. The derivations are presented in Section 4.2. In Section 4.3 

the concept is proved by numerical studies. Since the proposed method is relatively time-

consuming, enhancement of the method has also been proposed, see Section 4.4. 

4.1.2 Problem statement 

Design specifications – in many cases – require the knowledge of critical load for the 

characteristic buckling types. If a problem does not fit to CUFSM or GBTUL, calculation of 

pure buckling mode is problematic or impossible. In such cases (e.g., a cold-formed purlin 

elastically supported at certain intervals and subjected to some transverse distributed loading) 

it is still possible to perform a shell FEM analysis, but the calculated buckling shapes must 

somehow be identified so that critical load factors associated with the desired modes could be 

(at least approximately) determined.  

Since a typical shell FEM model requires thousands of degrees of freedom, thousands of 

candidate buckling shapes can be calculated. Even if only those with the lowest critical load 

factors are considered, it is not unusual that a couple of dozens of shapes must be identified. 

Without some mathematical method, the identification is fairly subjective, since the practical 

experience is that FEM-calculated buckled shapes rarely look like pure buckled shapes. This 

is illustrated in Figure 4.1, where some buckled shapes are shown, calculated by shell FEM 

analysis for a C section column member. Some of the modes can easily be identified (e.g., #1, 

#2, #24, #33), while other modes are problematic (e.g., #5, #18, #42, #48). However, by using 

the cFSM base functions, a simple mathematical (i.e., objective) identification method can be 

established.  
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#1 #2 #5 #18 #19 #24 #33 #35 #39 #42 #48 #49 

            

Figure 4.1: FEM-calculated buckling modes 

4.2 Approximation of FEM displacements 

A FEM displacement function is intended to be approximated by the linear combination of 

cFSM base functions. The base functions are expressed by base vectors and thus the 

minimization precedes on the error vector (instead of error function). The solution is 

presented in [1/4-2/4], and can be summarized as follows.  

To have the best approximation, the norm of the derr error vector is minimized: 

)min( errerr dd
T

 

Considering that the error can be expressed as the difference between the finite element 

displacement vector (dFE) and its approximation, i.e., the Φc  linear combination of the cFSM 

base vectors, Eq. (4.1) can be written as:   

    ΦcdΦcd
T

 FEFEmin   

where Φ  is the matrix with the FSM base vectors and c is the vector of unknown combination 

factors (i.e., c is the modal identification answer that we seek). Expanding Eq. (4.2), then 

simplifying, the function to be minimized can be expressed as: 

   )(min2min TT
FE

T
FE

T
FE cΦcΦccdΦdd f  

Minimization finally leads to a linear system of equations to be solved for c: 

FE
TT0

)(
dΦΦcΦ

c

c




f
 

After calculating the combination factors, pi participation of an individual buckling mode (or 

base function) can be calculated as follows:  


all

iii ccp

 

where ci is an element of the c vector.
  

 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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Tthe pM participation of a class M can be calculated as follows:  


allM

iiM ccp

 

where M denotes that summation should be over all elements of a given mode class. 

Once the FEM displacement function is expressed by the cFSM base functions, the error of 

the approximation can conveniently be measured as the norm of the error vector relative to the 

norm of the displacement vector: 

FE
T

FEerr
T

err dddderror
  

4.3 Proof-of-concept example 

To illustrate the application and capabilities of the proposed identification method, a 

parametric study is completed on a symmetric lipped channel (C-shape) column. The column 

length is 1200 mm, with a web height of 100 mm, flange width of 60 mm, lip lengths of 

10 mm, and thickness of 2 mm. Note, the dimensions are for the mid-line, and sharp corners 

are employed. Steel material is assumed with a Young’s modulus of 210 000 MPa and 

Poisson’s ratio of 0.3. Various model parameters are examined, including FEM mesh density, 

number of cFSM base functions, support conditions, and type of loading (i.e., column or 

beam). 

The FEM calculations are conducted in ANSYS [8/1], using 4-node, 24-DOF shell elements 

(SHELL63 in ANSYS terminology) in a highly regular rectangular mesh. Both the cross-

section discretization and longitudinal element dimension is constant along the member 

length, and is defined so that the aspect ratio of all the shell elements is close to unity. 

The cFSM base functions are characterized by the deformed cross-section shape and by the 

longitudinal wave-length. Samples of the cFSM base functions are presented in Figure 4.2, 

where the base functions for one global mode (namely: flexural) are shown for various half-

wave lengths (namely: for m = 1, 2, 3, 4 and 12), as well as some distortional (for m = 1, 2, 4 

and 5) and local (for m = 1, 12 and 32) deformation modes are shown. 

 

            

1200 600 400 300 100 1200 600 300 100 1200 100 37.5 

Figure 4.2: Selected modes with various wave-lengths (wave-lengths are in mm) 

(4.6) 

(4.7) 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 67 

To illustrate the proposed modal identification method, first a simple column problem is 

solved for the geometric and material data given above. The column is simply supported (i.e., 

pinned at both ends). The first 50 buckling modes are calculated in ANSYS. This covers those 

modes where the buckling load is smaller than (approximately) 3 times the minimum (first) 

buckling load. For each buckling mode the cFSM modal identification approximation as 

described herein is performed. The accuracy of the cFSM approximation is measured by the 

error, as defined in Eq. (4.7). 

A relatively fine cross-section discretization is used, with 3, 5 and 1 sub-nodes in the flanges, 

web and flange lips, respectively. Thus, the total number of nodes within a cross-section is 19. 

In the finite element analysis the member is divided into 64 elements in the longitudinal 

direction, therefore the total number of FE nodes is 1235, while the total number of 

displacement degrees of freedom (DOF) is 7410.  

The cross-section discretization of the cFSM base functions is identical to that of the FE 

model, while the m number of longitudinal half-waves is from 1 to 32, thus, a maximum of 32 

half-waves are considered along the member length. Note, even though the cross-section 

discretizations in cFSM and FEM are identical, this does not mean identical DOF, since FSM 

nodal lines have only 4 displacement DOF. In the actual example 19 FSM nodal lines implies 

76 FSM DOF for a given m half-wave number, thus, the total number of the considered cFSM 

base functions is 76×32 = 2432 FSM DOF. 

Participation results are presented in Table 4.1 where the G, D, L and O participations, as 

well as the calculated error are given for the first 50 buckling modes of a pinned-pinned 

column problem. Deformed shapes for selected cases are presented in Figure 4.3: both FEM 

solutions (dFE) and their cFSM approximations (c) are shown.  

 

 

mode 1 mode 2 mode 24 mode 18 mode 48 mode 5 

            
c dFE c dFE c dFE c dFE c dFE c dFE 

Figure 4.3: cFSM approximation (c) of FE eigen-modes (dFE) for columns with FSM-

like end restraints 
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Table 4.1: GDLO participations for the first 50 buckling modes of the illustrative example 

mode G D L O error

nr % % % % %

1 85.9 5.5 0.2 8.4 0.0

2 1.0 91.3 4.7 3.0 0.0

3 0.9 83.7 11.0 4.4 0.0

4 0.5 37.6 58.2 3.8 0.1

5 0.5 37.7 58.9 2.9 0.1

6 0.5 72.3 21.3 5.9 0.0

7 0.6 30.3 66.4 2.7 0.1

8 0.3 24.0 72.5 3.1 0.1

9 0.3 13.5 83.8 2.4 0.1

10 0.5 23.5 73.2 2.8 0.1

11 0.6 29.0 67.8 2.6 0.1

12 0.4 15.5 81.2 2.9 0.1

13 0.2 8.5 88.8 2.5 0.1

14 0.3 18.4 79.0 2.3 0.2

15 0.8 41.6 53.7 3.9 0.1

16 0.4 11.1 86.1 2.3 0.3

17 1.3 82.0 13.1 3.5 0.0

18 0.7 39.4 57.5 2.4 0.3

19 0.6 26.3 68.6 4.5 0.0

20 0.6 19.4 76.9 3.2 0.5

21 1.2 68.9 26.3 3.5 0.0

22 0.7 50.2 42.8 6.3 0.0

23 0.2 14.7 82.9 2.2 0.5

24 0.8 7.6 89.6 2.0 0.8

25 4.4 83.9 5.8 5.8 0.0              

mode G D L O error

nr % % % % %

26 8.0 81.3 5.2 5.5 0.1

27 0.3 11.2 86.7 1.8 0.9

28 10.8 83.2 2.5 3.5 0.0

29 1.5 5.1 91.6 1.8 1.4

30 0.2 8.5 89.6 1.7 1.4

31 3.8 4.3 89.9 2.0 2.5

32 0.2 13.9 84.1 1.9 2.5

33 70.8 19.3 1.3 8.6 0.0

34 10.1 75.3 8.3 6.3 0.1

35 13.7 5.6 77.8 2.9 5.2

36 0.5 69.8 25.1 4.6 0.2

37 3.1 74.2 14.6 8.0 0.0

38 0.2 28.2 68.9 2.7 5.0

39 15.8 9.6 69.7 4.9 99.6

40 0.3 23.9 71.7 4.1 99.6

41 15.2 9.4 70.3 5.1 99.9

42 15.3 69.6 9.1 6.0 0.1

43 0.7 21.7 71.9 5.6 99.9

44 14.5 10.8 70.2 4.5 99.9

45 1.5 34.6 57.1 6.8 1.7

46 4.2 26.8 63.9 5.2 2.4

47 1.9 42.3 48.4 7.5 0.7

48 9.8 46.0 39.2 5.0 0.3

49 0.6 14.5 79.6 5.3 0.6

50 7.9 39.8 47.3 5.1 0.4  
 

 

For most of the modes the cFSM approximation is excellent, as both the deformed shapes of 

Figure 4.3 and small error in Table 4.1 indicates. More exactly, in 45 buckling modes out of 

the considered 50 the cFSM approximation of the FEM buckling modes are practically 

accurate, and there are only 5 buckling modes where the method failed to yield realistic 

approximations. Careful examination of the 5 buckling modes with significant identification 

error shows that all involve more than 32 small buckling half-waves, which fully explains the 

failure of the cFSM approximation, since the maximum number of half-waves applied is 32. 

(Obviously, by increasing the number of half-waves in the cFSM functions the erroneous 

cases could be reduced.) 

The GDLO participations of Table 4.1 are in accordance with engineering expectations. For 

example, mode #1 is clearly global (flexural-torsional), #2 is dominantly distortional, #24 is 

local. In most of the cases various modes are coupled, sometimes with similar wave-lengths 

(e.g., D+L #19, G+D #33), but just as often with different wave-lengths (see e.g., G+D #42, 

G+L #35, D+L #18, G+D+L #48). The proposed mode identification method successfully 

handles cases where deformations are more-or-less localized, see e.g., #5. 

Furthermore, a reasonable agreement is experienced when comparing the provided GDLO 

participations to those calculated by the cFSM solution itself (as implemented in CUFSM  
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[17/1]). This is demonstrated in Figure 4.4 where the proposed approximate identification of 

the FE solutions are compared with the cFSM solutions. A buckling half-wavelength is 

manually assigned to most of the 50 modes: for some modes e.g., #1, #2, #19, #24 o #33 this 

is readily apparent, for other modes, e.g., #5, more judgment is required and in some cases no 

single half-wavelength can be assigned, see e.g. #18, #35, #42, #48. Buckling stresses and 

dominant half-wavelengths predicted by the FE and the FSM models are nearly identical, see 

Figure 4.4 (top). Modal participation (Figure 4.4, bottom) highlights some of the additional 

information contained in the FE models. In the FSM model only one buckling mode can exist 

at a given half-wavelength, but FE models may have different half-wavelengths superposed, 

thus the modal participation shows some scatter about the traditional cFSM predictions. 

Based on the presented calculations it may be concluded that the proposed modal 

identification method is a viable identification technique for the considered pinned-pinned 

column problem if the minimal half-wave length of the cFSM base functions is selected so 

that it would be smaller than the minimal buckling length of the buckling mode desired to 

identify. 

 
Figure 4.4:  Comparison of (a) buckling stress and (b) mode participation as a function of 

half-wavelength 

 

4.4 Approximation with reduced number of cFSM base functions 

The numerical studies presented above prove the applicability of the proposed buckling mode 

identification method. It is also suggested, however, that a relatively fine FEM discretization 

is necessary if various buckling modes are to be identified, including ones with small buckling 

lengths. Since the number of cFSM base functions is tied to the FEM mesh, a fine mesh 

requires a significant number of cFSM base functions, which ultimately results in fairly 

significant computational effort. This is clearly unfavourable. At the same time, by looking at 

the details of the participation calculations, one can immediately observe that many of the 

applied cFSM base functions have negligible contribution in any buckling mode of practical 

interest, which suggests that by carefully applying a selected subset of cFSM base functions 

the computational effort might be significantly reduced without deteriorating the results.  
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Two options for reducing the number of cFSM base functions have been tested: (i) ‘manual’ 

or user selection of a subset of the cFSM base functions, and (ii) ‘automatic’ selection of the 

base functions based on the eigen-value associated with Eq. (2.7). In the ‘manual’ method 

those cFSM functions that likely have minor importance are disregarded. Namely: higher 

cross-sectional L modes are disregarded, since these L modes involve smaller transverse 

waves, which are practically irrelevant in normal conditions. O modes rarely have high 

participations and therefore all O modes are disregarded. In the example this reduces the 

number of cross-section deformation modes to 10 (in case of a C section), independent of the 

cross-section discretization, thus, the total number of cFSM base functions is equal to 10mmax 

where mmax is the number of various longitudinal half-waves.  

The ‘automatic’ method utilizes the fact that cFSM base functions themselves are eigen-

functions, i.e., buckling modes of a column problem. Those base functions corresponding to 

eigen-values larger than r times the minimal eigen-value are disregarded. Thus, the only 

necessary parameter is r. Note, this option influences both the cross-section deformation 

modes and the longitudinal wave-lengths, by filtering out base functions with important cross-

section deformations but with unrealistic longitudinal wave-lengths (e.g., G modes with many 

small longitudinal waves, or L modes with very long half-waves, etc.).  

 
Table 4.2: Change of GDLO participations and errors for the first 30 buckling modes of 

the beam problem with reduced number of cFSM functions: 
 ‘manual’ reduction on the left, ‘automatic’ reduction on the right 

mode DG DD DL DO D-error

nr % % % % %

min 0.4 0.0 -0.7 -8.2 0.1

max 7.6 7.9 0.1 -3.3 1.4

average 0.9 4.9 -0.3 -5.5 0.7              

mode DG DD DL DO D-error

nr % % % % %

min -4.1 -3.4 -1.6 -5.0 0.3

max 5.5 3.9 4.1 4.5 3.4

average -0.5 1.7 0.4 -1.6 1.1  

 

The GDLO participations have been calculated for the column problem of the previous 

Section with a reduced number of cFSM base functions. For the ‘manual’ reduction all G and 

D modes and the first 4 L modes have been considered (remaining L and O modes are 

disregarded). This reduces the number of cFSM base functions to 320 (instead of the original 

2432), with mmax=32. In case of the ‘automatic’ reduction r=30 has been used, which yields to 

similar (but slightly smaller) number of base functions, namely: 283, while keeping some or 

all of the cross-section modes from all four buckling classes (thus, some O modes, too). The 

results are summarized in Table 4.2 (for the first 30 FE buckling modes), where the change of 

the participations and errors are given with respect to the results obtained with all the cFSM 

base functions, see Table 4.1. The minimum, maximum and average changes are given.  

Both reduction methods work reasonably. There are no significant changes in the results: the 

increased error is typically negligible, and the GDLO participations are essentially unchanged. 

The most important change is that in case of the ‘manual’ option the O contributions 

disappear and they are added primarily to G or D contributions (whichever is more dominant). 

A properly selected subset of cFSM base functions can significantly decrease the problem size 

and therefore significantly decrease computation time. It might be interesting to mention that 

in case of the specific example the computation time on an ordinary PC (circa 2009) could be 

as long as 1 hour if all 2432 cFSM base functions are considered, but dropped to less than a 

minute if a reduced subset with 300 functions are used (using MatLab). 
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As far as the difference between the ‘manual’ or ‘automatic’ reduction is concerned, both 

options are effective and applicable. Still, the ‘automatic’ option seems to be advantageous 

since (i) it requires less judgment and input from the user, (ii) it might lead to more accurate 

participation results, (iii) it is easy to control the size of the problem and/or the accuracy of 

the results, and (iv) it yields a smaller number of cFSM base functions (compared to the 

‘manual’ option and assuming approx. the same accuracy of the results, which should become 

more evident for longer members.) 

 

4.5 Summary and continuation of the work 

In this Chapter the method developed for the identification of FEM-calculated deformation 

modes has been presented. The method employs the cFSM base functions, the linear 

combination of which is used to approximate the deformations. Since in the cFSM base 

functions the various mode classes are separated, the separation can readily be done for the 

linear combination, too, which directly leads to the contribution of each mode class to the 

analysed displacement field. The method is illustrated for the identification of buckling modes 

of pinned-pinned columns. A way to reduce the number of employed cFSM base functions is 

also proposed and illustrated. (Thesis #3 is based on these results, see Chapter 6.) 

The proposed identification method induced some further research work. First, the method 

has been tested for other end restraints [3/4-4/4], and it was concluded that the simple 

sinusoidal cFSM base functions can be applied to other-then-pinned end restraints, too, 

provided the transverse translational displacements are restrained.  

Furthermore, Joó (with the contribution of the Author) applied the method for beam problems, 

including Z-shaped members with intermediate elastic restraints (as in case of e.g., purlins 

with trapezoidal sheeting). It was also demonstrated how the identification method can be 

used in design calculations, see [5/4]. 

Li and Schafer further extended the method. First, they investigated how other FSM 

longitudinal shape functions can be utilized to handle various end restraints. Finally, they 

proposed a so-called generalized set of cFSM base functions which was proved to be 

applicable to members with arbitrary end restraints. Later they also applied the identification 

method for deformations obtained from (geometrically and materially) nonlinear finite 

element analysis [6/4-8/4]. This work has been continued till lately by Li [9/4]  

It is also to mention that Nedelcu has been proposed a similar mode identification method, but 

with using base functions distilled from GBT, see [10/4-12/4].  
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5 Analytical formulae for global buckling 

5.1 Introduction 

5.1.1 General 

The birth of cFSM made it possible, and CUFSM software made it very easy to calculate 

critical loads for classical global buckling (e.g., flexural buckling) and compare the results to 

classical analytical solutions (e.g., Euler formula in case of flexural buckling). The 

comparison revealed some differences, the two most important ones being that (i) cFSM 

global buckling critical forces were a few percent higher than those from classical analytical 

solutions, and (ii) cFSM global buckling critical forces typically (but not always) were found 

to tend to a finite value as the member length approaches zero while analytical solutions 

predict infinitely large critical values for extremely small length.  

In order to provide explanation for the experienced differences, research work started aiming 

to derive alternative analytical formulae for global buckling. The alternative derivations 

imitate the cFSM assumptions and will be referred as formulae based on shell model, while 

the classical analytical formulae will be referred here as ones based on beam model. Note, the 

term beam is used to describe a model where the beam or column member is modelled by a 

one-dimensional element, that is line, to which cross-section properties are assigned. On the 

other hand, the term shell is used to describe a model where two-dimensional elements are 

used, in this specific case flat strips, and both in-plane (membrane) strains/stresses and out-of-

plane displacements (i.e., bending strains/stresses) are considered.   

First, in Section 5.1.2, the initial assumptions are summarized, while Sections 5.2 and 5.3 

presents the main steps and most important results of the derivations with neglecting or 

considering in-plane shear deformations, respectively, based on [1/5-5/5]. Demonstrative 

numerical examples are also provided. 

5.1.2 Initial assumptions 

An illustration of the member as well as the applied global (X,Y,Z) and local (x,y,z) coordinate 

systems are presented in Figure 5.1. 

 

 

Figure 5.1: Coordinate-systems, basic terminology  
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The applied basic mechanical assumptions intend to imitate those of a FSM or shell FEM 

solution. More exactly, the assumption system closely follows that of the semi-analytical 

FSM, as implemented in CUFSM, see [16/1-18/1].  

For the analysed member it is assumed that: (i) the analysed member is a column, (ii) the 

column is prismatic, (iii) the column is supported by two hinges at its ends, (iv) the column is 

loaded by a compressive force (uniformly distributed along the cross-section), (v) its material 

is linearly elastic, and (vi) it is free from imperfections (residual stresses, initial deformations, 

material inhomogenities, etc.).   

As far as boundary support conditions are concerned, the applied longitudinal shape functions 

correspond to ‘globally and locally pinned’ and ‘free to warp’ support conditions. More 

precisely, for both column ends: (i) local transverse translations (i.e., in the x and z direction) 

are restrained, which also means that global transverse translations (i.e., in the X and Z 

direction) are restrained, (ii) translations in the y or Y direction can freely occur, i.e., the cross-

section warping is allowed, (iii) local twisting rotations of the strips are restrained, which also 

means that global twisting of the cross-section is restrained, (iv) and finally local rotations 

about the strips’ local x-axis can freely occur, as well as global rotations about global X and Z 

axis can freely take place.  

For the member deformation and displacements we assume that (i) the member is modelled 

by 2D surface elements, i.e., strips, (ii) in-plane (membrane) and out-of-plane (plate bending) 

deformations are allowed, (iii) for the in-plane behaviour a classical 2D stress state is 

considered, (iv) for the out-of-plane behaviour a classical Kirchhoff plate is considered, and 

(v) displacements are constrained to global buckling mode. 

For the derivations the energy method is used. The total potential of the member is expressed, 

and critical force is searched by utilizing that in equilibrium the total potential is stationary. 

 

5.2 Global buckling without in-plane shear 

5.2.1 Definition for global buckling 

Classical solutions for stability problems of beams or columns are based on beam models. 

This means that the assumed displacements are assigned to cross-sections along the axis of 

the member. It is to highlight that this does not mean rigid cross-sections with zero 

deformations, but it does mean that cross-sectional deformations are assumed to be small, 

therefore, a priori assumed to be negligible. (Note, longitudinal stresses are necessarily 

associated with transverse strains due to Poisson effect, and transverse strains lead to cross-

section deformations: first of all width-change of the strips, but, if multiple strips are 

connected to each other, width changes usually induce flexural deformations, too.)  

When the member is handled as a set of connecting plate elements (such as strips in FSM or 

shell elements in FEM applications), exact imitation of beam theory assumptions is generally 

not possible, since in case of an arbitrary cross-section shape, it is practically impossible to 

find boundary conditions which enforce the reference line (i.e., line defined by cross-section 

mass centres) to deform (i.e., buckle) exactly as in beam theory solutions, but otherwise allow 

all the other DOF free.  

The conclusion is that the global buckling definition embedded in beam model solutions 

cannot be directly applied in shell model solutions, therefore an appropriate definition for 
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global buckling is necessary. Here, probably the simplest practically applicable definition is 

proposed and will be used, namely: global buckling is a buckling mode when all the possible 

cross-section deformations are excluded. In other words, cross-section deformations are 

restricted to such an extent which is possible with the assumed DOF, while all the other cross-

section deformations are assumed to be negligibly small. In case of shell model, this means 

that a buckling mode is global if the relative positions of any cross-section nodes do not 

change during the deformations.  

Classical solutions for buckling of columns (or beams) are based on Euler-Bernoulli-Navier 

beam model theory. There are two important assumptions: (i) the cross-section planes remain 

planes and (ii) normals to the undeformed middle line remain normal during the 

deformations. When it is intended to apply for thin-walled members, this definition can 

directly be applied if the member has axial and/or flexural deformations. However, if the 

member has torsional deformations, too, the above definitions need to be generalized. The 

following generalization is applied here: the two basic assumptions must be satisfied by each 

plate element of the thin-walled member. (For the sake of mathematical precision, in this case 

there is an almost trivial further assumption, namely: the axial displacements must be 

continuous along the cross-section line.) In Section 5.2 these assumptions of the Euler-

Bernoulli-Navier hypotheses are assumed to be valid (whilst the effect of the elimination of 

the second part of the hypothesis is discussed in Section 5.3). 

It is to mention that this global buckling definition is exactly identical to that used in the 

derivations of the constrained finite strip method (cFSM), see Chapter 2 and 3. 

5.2.2 Overview of derivations 

In classical column buckling solutions that are based on beam model, three displacement 

degrees of freedom are considered (transverse translations and rotation about the longitudinal 

axis), as a direct consequence of (i) not considering cross-section deformations and (ii) 

assuming longitudinal displacement distribution in a predefined form (e.g., sinusoidal form in 

case of flexural buckling of a pinned-pinned column).  

To define global DOF for a shell model, the same logic is followed. The applied assumptions 

are as follows: (i) there is no deformation of the cross-section mid-line in accordance with the 

applied definition for global buckling, (ii) through-thickness deformations are disregarded, 

(again, in accordance with global buckling definition), (iii) longitudinal shape functions are 

assumed in a pre-defined form, which form is defined by the boundary conditions and the 

differential equations of the flat plate elements. 

These assumptions finally exclude all but 4 modes of displacements: transverse translations 

(U and W), longitudinal translation (V), and rotation about the longitudinal axis (). All these 

displacements requires a certain reference point to which they are assigned: the mass centre 

for the translational DOF, while the shear centre of the cross-section for the rotation.  

The global displacement functions can be expressed as follows: 

)sin(sin 00 ykU
L

ym
UU m


  

)sin(sin 00 ykW
L

ym
WW m


  

)sin(sin 00 yk
L
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m


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(5.1) 

(5.2) 

(5.3) 
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)cos(cos 00 ykV
L

ym
VV m


  

where L is the member length, m is the number of considered half-waves, and the subscript 

‘0’ denotes the amplitude of the displacement component. The details of the derivations are 

given in Appendix C. The main steps are summarized here. 

 Starting from the above global displacement functions, first the displacement 

amplitudes of the mid-points of each strip are expressed (um0,i, vm0,i, wm0,i and m0,i). 

 From the strips’ mid-point displacements the whole displacement field of the strips 

can be constructed, i.e., u(x,y,z), v(x,y,z), w(x,y,z). 

 By derivations, first and second-order strains can be determined. 

 From the first-order strains stresses can be calculated by applying generalized Hooke’s 

law. 

 The internal potential, i.e., strain energy can be determined by using (first-order) 

stresses and strains and by integrating the elementary strain energy for the whole 

volume of each strip. 

 The external potential, i.e. the negative of the work done by the external loading can 

be determined by using the second-order strains and by integrating the elementary 

work for the whole volume of each strip. 

As soon as the total potential is expressed by the four displacement parameters (U0, V0, W0 

and 0) the critical forces can be determined, utilizing that in equilibrium the total potential 

energy is stationary. A set of 4 (linear) equations can be established for the 4 displacement 

parameters of the problem as follows: 

0000
0000





















WUV
  


























































0

0

0

0

0

0

0

000

0

0

0

0

444342

343332

242322

11

W

U

V

CCC

CCC

CCC

C

 

Note, the coefficient matrix is symmetric, C12 = C13 = C14 =0 for any option, while the other 

elements of the coefficient matrix are given in Appendix C. 

To have non-trivial solution, the coefficient matrix has to be singular: 

0)det( C  

which leads to the critical values of loads. Since in the first row/column of the C matrix non-

zero element is only in the main diagonal, the above equation leads to a 3rd-order polynomial, 

plus a 1st order equation. In a general case the solution for the 3rd-order equation cannot be 

easily expressed, therefore, general closed-formed solution cannot be given here. Specific 

cases, however, are discussed in detail in the subsequent Sections. 

5.2.3 Derivation options 

As can be seen above, the total energy of the structure is expressed in the function of the 

displacements. This total potential energy is the sum of (i) accumulated elastic strain energy, 

(i.e. internal energy) and (ii) potential energy of the external loads (i.e., external energy). 

As far as the potential energy of the external loading is concerned, for conservative loads, it is 

the negative of the work done by the loads as the structure deforms. When calculating this 

work, in order to have stability solution, the nonlinearity of the strain-displacement 

relationship must be considered. As usual, second-order approximation is used. Moreover, 

 (5.4) 

(5.5) 

(5.6) 
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considering that (i) the load is applied in the longitudinal direction only, (ii) the transverse 

strain is excluded by the global buckling definition, and (iii) through-thickness strain is 

disregarded, it is enough to deal with the y  longitudinal strain.  

Looking at the relevant textbooks, one might conclude that two options are normally used. In 

classical beam-model-based column buckling solutions the following expression is used for 

the strain: 
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Practically it means that the shortening of the beam due to transverse flexure (in either local x 

or z direction) is considered as second-order effect. 

At the other hand, classic textbooks on theory of elasticity or on shell finite elements usually 

define the y  strain component as follows (see e.g. [6/5]): 
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Between the two options the ( yv  )2 term makes the difference. It is interesting to note that 

semi-analytical FSM solutions include this additional term, see e.g., [10/1-11/1, 16/1-18/1]. It 

would be hard to give any definite statement about shell finite element applications due to 

their large variety, still, it seems to be fair to assume that mostly if not exclusively they are 

based on the second, more general formula. It might be interesting to mention that 

consideration of the ( yv  )2 term is possible in beam finite element applications, too, if 

geometrically non-linear frame analysis is intended to perform, see e.g., Chapter 9 of [7/5]. 

For an elementary volume (with dA area any dy length) the (second-order) elementary work 

done by the external loading py (which is a uniformly distributed loading over the cross-

section for the investigated case) can be calculated as: 
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The total work is simply the integral of the dW elementary work along the length and over the 

whole cross-section, which latter integration can conveniently be done strip by strip. 

However, there are still two further options. In case of integrations over a cross-section 

(which is a quite frequent engineering task, consider e.g., calculation of practically any cross-

section property,) the mathematically precise formula is: 
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(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 77 

where L is the member length, bi and ti is the width and thickness of the i-th strip, 

respectively, while n is the number of strips. In case of thin-walled cross-sections the 

integration over the thickness is frequently simplified, by neglecting the effect of through-

thickness variation of the strain, which yields to a simplified formula: 
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(For example, when second moment of area is calculated, the application of the second 

expression is equivalent with neglecting the biti
3/12 terms, which is commonly used for thin-

walled cross-sections, see e.g., Annex C of [2/1].  

The accumulated elastic strain energy as the member is deformed can be expressed by well-

known integral formulae. For the investigated problem, utilizing that 0 xyxx , the 

expression is: 
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where my and mxy are moments for a unit-width strip portion, while y and xy are 

corresponding curvatures, and y is the longitudinal membrane stress (in our case: y = py). It 

is to be observed that the first term of the above expression corresponds to the membrane 

strain energy while the second and third terms to the bending strain energy. 

However, similarly to the external potential, it is possible to consider a simplifying option, by 

neglecting the effect of strain-stress variation through the thickness. It can also be understood 

that this simplification is equivalent with neglecting the bending strain energy, which leads to 

the following simplified expression for the strain energy: 
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Since the external potential can be calculated by 4 different ways, while internal potential by 

2 different ways, 8 different options are considered here for the total potential energy, as 

summarized in Table 5.1. 

 

Table 5.1: Definition of calculation options 

option nnn nny nyn nyy ynn yny yyn yyy 

( yv  )2 term considered? no no no no yes yes yes yes 

through-thickness stress-strain 

variation in external potential? 
no no yes yes no no yes yes 

through-thickness stress-strain 

variation in internal potential? 
no yes no yes no yes no yes 

(5.12) 

(5.13) 

(5.14) 

dc_1416_17

Powered by TCPDF (www.tcpdf.org)



 78 

5.2.4 Flexural buckling 

Let us consider the case of flexural buckling, by assuming that the analysed cross-section is 

mono-symmetrical (or: double-symmetrical), and also assuming that the axis of symmetry is 

the (global) X-axis. In this case the C23=C32 elements and the C24=C42 elements are zero, 

which simplifies the second equation of Eq. (5.5) as follows: 

0022 UC  

The non-trivial solution exist if C22 = 0, from which the critical force can easily be expressed 

for the various options. The formulae are summarized in Table 5.2 

In the table the following notations are used: 
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in which E is the modulus of elasticity,  is the Poisson’s ratio, L is the member length, while 

the applied cross-sectional properties are as follows: A is the cross-sectional area, IZ is the 

second moment of area calculated with regard to global Z-axis, with considering own plate 

inertias (i.e., the biti
3/12 terms), IZ,r is the (reduced) second moment of area with regard to 

global Z-axis, with neglecting own plate inertias (i.e., the biti
3/12 terms). 

If the longitudinal second-order strain term ( yv  )2 is neglected, i.e., for n×× options, the 

solution for the critical force is very similar to the well-known Euler-formula 22 /LEI . The 

moment of inertia can be IZ or IZ,r, depending on whether the through-thickness strain/stress 

variation is considered or not in the strain energy calculation, which is equivalent to consider 

or not the biti
3/12 own plate inertia terms. Both IZ and IZ,r are widely accepted and used in the 

practice, moreover, in most of thin-walled cross-sections the difference between them is 

negligible.  

However, there is another important difference between the presented solutions and the Euler-

formula: the (1-2) term in the denominator. This is clearly the consequence of the applied 2D 

model and the global buckling definition which does not allow transverse 

extension/shortening of the strips (x = 0), therefore introduces an increase of the bending 

stiffness. The increased stiffness is directly reflected in the increase of the critical force with 

regard to Euler-formula. The magnitude of this increase is dependent on the value of 

Poisson’s ratio. For usual steel, for example,  = 0.3, which means approx. 10% rigidity 

increase, since 1/(1-2) = 1.10. 

If the longitudinal second-order strain term ( yv  )2 is considered, i.e., for y×× options, the 

solution for the critical force for flexural buckling takes a slightly more complex form. As far 

as tendencies are concerned, it is easy to understand that the effect of the ( yv  )2 term 

vanishes as L. For example, let us consider the nnn and ynn cases: 
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(5.15) 

(5.16) 

(5.17) 
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Table 5.2: Critical force formulae for flexural buckling 

option critical force for flexural buckling (about Z) L0 
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On the other hand, for very short columns the difference between the corresponding n×× and 

y×× cases is significant, which can be well illustrated with L0. It is evident that for any 

n×× option the critical force tends to infinity, while for the y×× cases it tends to a finite 

value, see Table 5.2. 

As far as the various options are concerned, it may be fair to say that ×ny and ×yn options are 

slightly inconsistent, since it does not seem to be logical to consider through-thickness 

strain/stress variation in one component of the potential energy but neglect it in another 

component. In spite of this inconsistency, yny is still an existing option: it is included e.g., in 

[10/1-11/1] and in the CUFSM software [17/1-18/1] since option yny is exactly identical to 

what is implemented in CUFSM (when mode decomposition is enforced). Moreover, the 

same inconsistency is possible to find in well-known and widely accepted finite element 

software applications, as demonstrated by numerical examples, see below and in [4/5]. This 

inconsistency causes negligible error in the majority of practical cases, but it is possible to 

find applications when its effect is not negligible. 
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5.2.5 Pure torsional buckling 

Pure torsional buckling might occur if the analysed cross-section is double-symmetrical or 

point-symmetrical, therefore XSC = ZSC = 0. This means that C42=C43=C24=C34=0 in the 

coefficient matrix, therefore, the 4th equation of Eq. (5.5) is simplified to: 

0044 C  

The non-trivial solution exist if C44 = 0, from which the critical force can be expressed for the 

various options, as summarized in Table 5.3 

 

Table 5.3: Critical force formulae for pure torsional buckling  

option critical force for pure torsional buckling L L0 
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In the above table the symbols are as follows. 
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in which G is the shear modulus, Iw and Iw,r are warping constant, with and without 

considering the through-thickness warping variation, respectively, It is the torsion constant, IX 

is the second moment of area calculated with regard to global X-axis, with considering own 

plate inertias (i.e., the biti
3/12 terms), IX,r is the (reduced) second moment of area with regard 

to global X-axis, with neglecting own plate inertias (i.e., the biti
3/12 terms), finally, XSC and 

ZSC  are the coordinates of shear centre with regard to mass centre, i.e., CSSC XXX   and 

CSSC ZZZ  , where XC and ZC are the global coordinates of the mass centre of the cross-

section, while XS and ZS are the global coordinates of the shear centre of the cross-section. 

The other symbols are defined previously. 

If the longitudinal second-order strain term ( yv  )2 is neglected, i.e., for n×× options, the 

solutions for the critical force are similar to the classical beam-model-based solution, which is 

usually given as follows, see e.g., [8/5]: 
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The above (beam-model-based) classical solution is most similar to the solutions for nny and 

nyy options (between which the only difference is how the polar radius of gyration is 

calculated: without or with considering the warping variation through the thickness).  

The most trivial difference is the (1-2) term in the denominator of the warping term (i.e., 
22 / LEIw ). Similarly to what has already been mentioned for flexural buckling, this  

1/(1-2) term is clearly the consequence of the applied 2D model and global buckling 

definition which prevents transverse extension/shortening of the strips. Unlike in flexural 

buckling, however, the difference is not constant (for a given value of ), but depends on the 

beam length. As L, the effect of 1/(1-2) term vanishes, while for L0 the effect of 

restrained transverse contraction tends to 1/(1-2). 

Another potential difference is how the warping constant is calculated. Though in classical 

solutions usually ‘Iw’ symbol is used, its meaning is most likely Iw,r (according to the 

notations used here), since the Iw warping constant with considering through-thickness 

warping variation is hardly used in the practice. Most textbooks concentrate on Iw,r only (see 

e.g. Annex C of [2/1]), while formulae for Iw are limited to single plates, T and L sections, see 

e.g., [6/5]. Since the increment of Iw with regard to Iw,r, which sometimes referred as 

secondary warping, is usually neglected in the engineering practice, whilst the torsion 

constant It is normally taken into account, the critical force for pure torsional buckling in the 

practice is slightly different from any of the shell-model based solutions. 

If the longitudinal second-order strain term ( yv  )2 is considered, i.e., for y×× options, the 

solution for the critical force for pure torsional buckling takes a slightly more complex form. 

As far as tendencies are concerned, it is easy to prove that the effect of the ( yv  )2 term 

vanishes as L. For example, in case if nyy and yyy cases: 

(5.19) 

(5.20) 

(5.21) 
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Similarly to flexural buckling, for any regular double-symmetrical (or point-symmetrical) 

cross section in case of all the n×× options (i.e., when longitudinal second-order strain term is 

not considered) the critical forces tend to infinity as L approaches zero, while in case of all the 

y×× options (i.e., when longitudinal second-order strain term is not considered) the critical 

forces tend to a finite value as L approaches zero, see Table 5.3. 

Moreover, in case of all the ××n options (i.e., when through-thickness strain variation is not 

considered in calculating strain energy) the critical forces tend to zero as L tends to infinity, 

while in case of all the ××y options (i.e., when through-thickness strain variation is considered 

in calculating strain energy) the critical forces tend to GIt as L tends to infinity (see Table 

5.3). 

 

5.2.6 Flexural-torsional buckling 

Let us consider the case of flexural-torsional buckling, by assuming that the analysed cross-

section is mono-symmetrical, and also assuming that the axis of symmetry is the (global) Z-

axis. In this case the C32=C23 and C34=C43 elements of coefficient matrix of Eq. (5.5) are zero. 

Therefore the 2nd and 4th rows of the equation can be written as follows: 
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which leads to a 2nd-order equation: 

0
2
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The equation can be solved analytically for any option. The critical force can be expressed in 

the general form as follows:  
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with symbols defined in Table 5.4 Note, 0 <  < 1, while F, T and  are equal to or 

greater than 1. 

The formula of Eq. (5.25) is similar to the classical analytical solution, which becomes more 

evident if the critical force for the simplest nnn (or nyn) option is expressed, as follows: 

(5.22) 

(5.23) 

(5.24) 

 (5.25) 
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The formula of Eq (5.26) is seemingly identical with that of the classical solution, see e.g., 

[8/5] or [2/1]. Even so, the classical beam-model-based critical force is not identical to any of 

the shell-model-based solutions, since the FF and FT terms (i.e., the critical forces for flexural 

and for pure torsional buckling) are slightly different from how they are usually calculated in 

the engineering practice. (E.g., the effect of secondary warping, or the effect of restrained 

transverse contraction, as discussed in the previous Sections.) Ultimately this leads to the 

conclusion that the presented shell-model-based critical force for FT buckling will never 

perfectly coincide with the classical solution most likely used in the practice.  

 

Table 5.4: Definition of symbols in critical force formula for flexural-torsional buckling 
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In the above table the new symbols are as follows.  
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It might be interesting to highlight that unlike in case of flexural or torsional buckling, the 

formulae of some of the n×× options are different from classical solutions. More specifically, 

if we consider nny or nyy option, the critical force formula can be expressed as follows. 
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The most evident difference between Eq. (5.26) and Eq. (5.30) is the F term. It might be 

interesting to mention that F is dependent on a cross-section property denoted by IZ, which 

has a magnitude comparable to It, therefore, the F term is negligibly small with regard to 

Fcr,X or Fcr,Z in many practical cases. It is possible to find cross-sections and column lengths, 

however, where the influence of the F term is not negligible, therefore, the differences 

between the various n×× options are not negligible. 

Finally, it is to mention that solutions for y×× options are more complicated formulae than 

those for n×× options. If the member length is long, the difference between any n×× and its 

y×× counterpart is negligible. However, as L0, n×× solutions tend to infinity, while y×× 

solutions approach a finite value. For the sake of completeness, let us mention here that in 

case of ynn and yyy options this finite value is Fa, while in case of yny and yyn options these 

finite values can be expressed by the following formulae: 
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 (5.27) 

 (5.28) 

(5.29) 

(5.30) 

(5.31) 
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5.2.7 Axial mode 

The first three equations of Eq. (5.5) have been discussed in detail in the previous Sections. 

Finally, let us consider the last equation which always independent of the other three.  

In case of n×× options, i.e., when the longitudinal second-order strain term ( yv  )2 is 

neglected, the last equation of Eq. (5.5) is: 

00  VFa    

which does not yield to a critical force. However, if the ( yv  )2 term is considered, as in 

y×× options, the last equation of Eq. (5.5) takes the following form: 

0)( 0  VFF a  

from which a critical force can be expressed as: 

2,
1 


EA

FF aAcr  

Thus, if transverse displacements of the column are restrained, i.e., U0 = W0 = 0 = 0, but 

longitudinal displacement is allowed, a critical force can still be calculated which is the Fcr,A 

value. This unusual buckling mode is referred here as axial mode. It should be emphasized 

that even though the column axis remains straight in axial mode, the displacement field of the 

column is not identical to that of a pre-buckling state, since in this latter case V varies linearly 

along the column longitudinal axis, see Eq. (5.36), while in the axial mode V is a cosine 

function, see Eq.  (5.4).   
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The difference between the first-order deformations and axial mode is illustrated in Figure 

5.2  

It might be interesting to mention that buckling in axial mode can be regarded as a bifurcation 

of equilibrium. To demonstrate this, it is convenient to show a load-displacement plot, where 

‘load’ is the applied force, while ‘displacement’ is selected to be the rate of change of the 

engineering strain (i.e., yyy   ' ) at the column ends. In case of first-order solution this 

displacement parameter is zero, while in case of axial mode buckling it is calculated as 

follows: 
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which can be zero or an arbitrary (small) non-zero value. Therefore, the load-displacement 

plot looks like the one in Figure 5.3. 

Even though the axial mode is a mathematically possible solution of Eq. (5.5), the value of the 

associated critical force is extremely high, therefore, it is surely impossible to experience 

buckling in axial mode for a real column. Still, this buckling mode has some influence on all 

the other modes (i.e., flexural, torsional or flexural-torsional), as soon as the ( yv  )2 term is 

considered in the potential energy of the external loading. By looking at the critical force 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 
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formulae for y×× options, (see e.g., Table 5.2 or Table 5.3,) the formulae can be interpreted 

as Dunkerley-type interaction formulae, where the interaction takes place between the axial 

mode and flexural or torsional mode. More precisely, the formulae are essentially in 

accordance with Föppl-Papkovich theorem see e.g., [9/5]. The existence of Dunkerley-type 

interaction for flexural-torsional buckling is less evident from the formulae of Table 5.4, but 

it is found by numerical results, see [4/5]. 

Finally, it is to mention that the effect of axial deformations on the critical force is reported by 

some textbooks, too. For example, it is mentioned in [10/5] in connection with flexural 

buckling. 

 

 

         a) deformed shape   b) displacement distribution 

Figure 5.2: Longitudinal displacements in axial mode 

 

 

Figure 5.3: Bifurcation of equilibrium in case of axial mode buckling 
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5.2.8 Demonstrative examples 

In the previous Sections the shell-model-based analytical formulae for various global column 

buckling types have been derived and briefly discussed from theoretical aspects. In this 

Section numerical studies are shown, based on [4/5]: flexural, pure torsional and flexural-

torsional buckling of simply supported columns are considered and critical forces are 

calculated by using various methods, namely: shell-model-based formulae in 8 options (as 

detailed above), cFSM, shell FEM, GBT (as implemented in GBTUL), and the analytical 

formulae as in Annex C of [2/1]. In case of shell FEM Ansys is used with carefully selected 

restraints so that the shell model would approximate the cFSM assumptions as much as 

possible. (For details about the shell model, see [4/5].) Various cross-sections are considered 

in the studies, three of them presented here, see Figure 5.4. The members are assumed to be 

made of steel (E=210000 MPa), however, with assuming  = 0 in order to eliminate the 

differences caused by the restrained or unrestrained transverse strains. The critical forces are 

calculated a fairly wide range of column lengths in order to be able to compare the tendencies 

at extreme lengths, too. 

Some typical deformed shapes are shown in Figure 5.5 (from the shell FEM analysis), while 

numerical results are summarized in tables (Table 5.5 to Table 5.8). As it can be observed, in 

case of flexural buckling of a usual cross-section (I-1) the differences between the various 

methods are negligible at least for practical member lengths (i.e., if the column is not too 

short). In other cases, however, e.g., in the cross-section has unusual dimensions, or, if 

buckling involves torsion, or, especially if the member length is extremely short, the 

differences between the results from the various methods are more significant. 

 

Figure 5.4: Sample cross-sections  

        

      flexural buckling (I-1)        pure torsional buckling (I-2)    flexural-torsional buckling (I-4) 

Figure 5.5: Some typical FEM buckling modes  
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Table 5.5: Critical forces for flexural buckling of I-1 section 

length mm  0 10 100 1000 10000  inf

nnn kN inf 2.72E+08 2 719 688 27 197 271.97 0

nny kN inf 2.72E+08 2 723 934 27 239 272.39 0

nyn kN inf 2.72E+08 2 719 688 27 197 271.97 0

nyy kN inf 2.72E+08 2 723 934 27 239 272.39 0

ynn kN 1 718 619 1 707 827 1 053 128 26 773 271.93 0

yny kN 1 721 302 1 710 493 1 054 773 26 815 272.35 0

yyn kN 1 715 940 1 705 181 1 052 122 26 773 271.93 0

yyy kN 1 718 619 1 707 844 1 053 765 26 814 272.35 0

GBT kN - - 2 723 934 27 239 272.39 -

cFSM kN - 1 710 509 1 054 782 26 815 272.35 -

FEM kN - 1 710 564 1 054 804 26 825 272.49 -

EC3 kN inf 2.72E+08 2 719 688 27 197 271.97 0

ca
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o
n
 o
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n

 

Table 5.6: Critical forces for flexural buckling of I-2 section 

length mm  0 10 100 1000 10000  inf

nnn kN inf 1 259 115 12 591 125.91 1.2591 0

nny kN inf 1 683 717 16 837 168.37 1.6837 0

nyn kN inf 1 259 115 12 591 125.91 1.2591 0

nyy kN inf 1 683 717 16 837 168.37 1.6837 0

ynn kN 868 119 513 842 12 411 125.89 1.2591 0

yny kN 1 160 869 687 121 16 596 168.35 1.6837 0

yyn kN 649 195 428 343 12 352 125.89 1.2591 0

yyy kN 868 119 572 790 16 517 168.34 1.6837 0

GBT kN - 1 683 717 16 837 168.37 1.6830 -

cFSM kN - 687 122 16 596 168.35 1.6837 -

FEM kN - 686 056 16 594 168.36 1.6871 -

EC3 kN inf 1 259 115 12 591 125.91 1.2591 0
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Table 5.7: Critical forces for pure torsional buckling of I-2 section 

length mm  0 10 100 1000 10000  inf

nnn kN inf 2 711 540 27 115 271.2 2.71 0

nny kN inf 3 018 235 30 969 1 095.8 797.12 794.11

nyn kN inf 2 710 301 27 103 271.0 2.71 0

nyy kN inf 3 016 855 30 954 1 095.3 796.76 793.74

ynn kN 868 119 657 588 26 294 271.1 2.71 0

yny kN 966 055 731 966 30 031 1 095.5 797.12 794.11

yyn kN 780 111 605 755 26 193 270.9 2.71 0

yyy kN 868 119 674 271 29 915 1 095.0 796.76 793.74

GBT kN - 3 018 235 30 969 1 095.9 797.12 -

cFSM kN - 731 967 30 031 1 095.5 797.12 -

FEM kN - 732 396 30 043 1 095.5 797.12 -

EC3 kN inf 2 712 334 27 910 1 065.3 796.82 794.11

ca
lc

u
la

ti
o
n
 o

p
ti
o
n
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Table 5.8: Critical forces for flexural-torsional buckling of I-4 section 

length mm  0 10 100 1000 10000  inf

nnn kN inf 2 039 103 20 391 203.91 2.039 0

nny kN inf 2 507 555 25 469 592.52 17.700 0

nyn kN inf 2 038 713 20 387 203.87 2.039 0

nyy kN inf 2 507 075 25 464 592.44 17.700 0

ynn kN 1 038 219 687 947 19 998 203.87 2.039 0

yny kN 1 044 887 845 916 24 978 592.37 17.700 0

yyn kN 844 306 597 072 19 906 203.82 2.039 0

yyy kN 1 038 219 734 265 24 864 592.26 17.700 0

GBT kN - 2 507 556 25 469 592.52 17.700 -

cFSM kN - 845 913 24 978 592.37 17.700 -

FEM kN - 846 542 24 988 592.28 17.698 -

EC3 kN inf 2 039 500 20 787 544.97 17.272 0

ca
lc

u
la

ti
o
n
 o

p
ti
o
n

 

 

5.3 Flexural buckling with in-plane shear 

5.3.1 Global buckling definition 

The applied global buckling definition here is essentially identical to that of Section 5.2, with 

one important difference. In Section 5.2 in-plane (membrane) shear deformations have been 

excluded by adopting Euler-Bernoulli-Navier beam theory. Here, the first assumption of the 

Euler-Bernoulli-Navier hypothesis is still kept, but the second one is not, i.e., normals to the 

undeformed middle line do not remain normal during deformation. It is still assumed, 

however, that the shear deformations are resulted in linear warping distribution. According to 

the terminology of Section 3, thus, primary shear is considered only (together with global 

deformation modes).  

As it has been discussed in Section 3.2.2, deformations with primary shear can be realized in a 

few ways as a superposition of two basic deformation modes. Here the selected two basic 

components are (i) the shear-free global deformation mode and (ii) the transverse-only 

deformation mode. Since here the focus is on flexural buckling, global-bending and shear-

bending modes are considered. 

5.3.2 Overview of derivations 

In classical flexural buckling solutions that are based on beam model, one single displacement 

degree of freedom is considered i.e., (transverse translation), as a direct consequence of (i) not 

considering cross-section deformations and (ii) assuming longitudinal displacement 

distribution in a predefined form (in the case of two-hinged column: sinusoidal form).  

To define global DOF for a shell model, the same logic is followed. The applied assumptions 

are as follows: (i) there is no transverse deformation of the cross-section mid-line, (ii) 

through-thickness deformations are disregarded, and (iii) longitudinal shape functions are 

assumed in a pre-defined form, which form is defined by the boundary conditions and the 

differential equations of the flat plate elements. Moreover, (iv) linear warping is assumed. 

These assumptions finally exclude all but 7 modes of displacements: transverse translations 

(U and W), longitudinal translation (V), rotation about the longitudinal axis (), two pure 
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shear modes with U and W translations, and a shear mode with twisting. (In cFSM 

terminology: 4 G modes, 2 SB modes and 1 ST mode.) However, if we aim flexural buckling 

here, it is enough to consider fewer modes, namely: axial mode, one global bending mode and 

the corresponding shear bending mode. The reference line is the line going through the cross-

sections’ mass centres.  

The investigated column is assumed globally and locally pinned at both ends, therefore the 

global displacement function can be written as follows: 

  )sin()sin(sin 0000 ykWWykW
L

ym
WW m

sn
m 


  

)cos(cos 00 ykV
L

ym
VV m


  

where L is the member length, m is the number of considered half-waves, and the subscript 

‘0’ denotes the amplitude of the displacement component. It is to highlight that the transverse 

displacement is superposed from two components, the ‘no shear’ component is denoted by a 

superscript ‘n’, while the (pure) ‘shear’ component is marked by a superscript ‘s’. 

The derivations follow the same logic as summarized in Section 5.2.2. The details of the 

derivations can be found in [5/5], and are also given in Appendix D. The main steps are 

summarized here as follows. 

 Starting from the above global displacement functions, first the displacement 

amplitudes of the mid-points of each strip are expressed (um0,i, vm0,i and wm0,i). 

 From the strips’ mid-point displacements the whole displacement field of the strips 

can be constructed, i.e., u(x,y,z), v(x,y,z), w(x,y,z). 

 First and second-order strains can be determined. 

 From the first-order strains stresses can be calculated by applying Hooke’s law. 

 The internal potential, i.e., strain energy can be determined by using (first-order) 

stresses and strains and by integrating the elementary strain energy for the whole 

volume of each strip. 

 The external potential, i.e. the negative of the work done by the external loading can 

be determined by using the second-order strains and by integrating the elementary 

work for the whole volume of each strip. 

As soon as the total potential is expressed by the three displacement parameters (V0, W0
n and 

W0
s) the critical forces can be determined, utilizing that in equilibrium the total potential 

energy is stationary. A set of 3 (linear) equations can be established as follows: 
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Note, the coefficient matrix is symmetric, and the non-zero elements of the coefficient matrix 

are given in Appendix D. 

The critical forces can be calculated by utilizing that the coefficient matrix has to be singular. 

Obviously, the 1st equation is independent of the others, therefore, singularity of the 

coefficient matrix lead to first- and second-order equations. 

(5.39) 

(5.40) 

 (5.41) 
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5.3.3 Calculation options 

The external potential can be determined in the 4 options as detailed in Section 5.2.3. The 

expressions for the external work are identical to those in Eqs. (5.10) to (5.12).  

The accumulated elastic strain energy can be expressed in two options. For the investigated 

problem, utilizing that 0,,,  ixyixix , the exact expression is: 
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where y and y is the longitudinal membrane stress and strain, respectively (in this case: 

y = py), xy and xy is the shear membrane stress and strain, respectively, and other symbols 

are defined above. It is to be observed that the first and second term of the above expression 

correspond to the membrane strain energy while the third term to the bending strain energy. 

The above expression can be simplified by neglecting the effect of strain-stress variation 

through the thickness. This simplification is equivalent with neglecting the bending strain 

energy, which leads to: 
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Finally, the total potential energy can be expressed in 8 different options, as summarized in 

Table 5.1. Out of the 8 options, 4 can be considered as consistent: nnn, nyy, ynn, and yyy. 

These consistent options will mostly be discussed here. However, as it is proved in [3/5-4/5], 

yny option is the one mostly used in numerical shell implementations, therefore, this yny 

option will also be presented here. 

5.3.4 The critical force 

The first equation in Eq. (5.41) is always independent of the others, therefore can be handled 

separately. In case of n×× options this first equation does not lead to any critical force, while 

in case of y×× options it leads to a critical force equal to Fa.  

The second and third rows form an equation system. The critical forces can be found by 

utilizing that the coefficient matrix has to be singular, which leads to a linear or quadratic 

equation as follows: 
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where F is the external force, the alpha coefficients are given in Table 5.9. Moreover: 
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(5.42) 

 (5.43) 

(5.44) 

(5.45) 
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in which E and G are the modulus of elasticity and the shear modulus,  is the Poisson’s ratio, 

L is the member length, while the applied cross-sectional properties are as follows: A is the 

cross-sectional area, IX is the second moment of areas calculated with regard to global X-axis, 

with considering own plate inertias (i.e., the biti
3/12 terms), IX,r is the (reduced) second 

moment of area with regard to global X-axis with neglecting own plate inertias (i.e., the 

biti
3/12 terms), As,Z is the shear area along the Z direction, defined as follows: 


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i

iiiZs tbA
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, cos  

where bi and ti is the width and thickness of the i-th strip, respectively, while i is the (signed) 

angle of the i-th strip with respect to the positive X-axis (i.e., the angle between the global and 

the i-th strip local coordinate system). 

It is to observe that the value of alpha coefficients can be either 0 or 1, or at least close to 1. 

It can also be observed that in case of n×× options the equation is first-order, therefore it leads 

to one single critical force. The single critical force value can be expressed as follows: 
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In case of y×× options the equation is quadratic, therefore it leads to two critical force values. 

These critical values can be expressed as follows: 
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Table 5.9: Coefficients in Eq. (5.44) and Eq. (5.49) 

option 1 2 3 4 

nnn 0 1 1 0 

nny 0 1 1 1 

nyn 0 1 1 0 

nyy 0 1 1 1 

ynn 1 1 
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(5.48) 
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5.3.5 Demonstration of the buckling modes with shear 

The critical force formulae derived above will be discussed and illustrated in this Section. The 

presented figures belong to the major-axis flexural buckling of an IPE400 steel column, but it 

is to emphasize that in this Section only the buckling behaviour and tendencies are presented 

and the formulae are discussed in general (therefore, the actual numerical values are not 

important at all).  The length of the column is changing in an extremely wide range so that the 

differences between the various options would be more visible. Here, only the 4 consistent 

options are discussed.  

5.3.5.1 Option nnn 

In case of nnn option only one single critical force exists, as illustrated in Figure 5.6. The 

critical force and also the deformation is combined from two components: the classical shear-

free flexural mode and the transverse-only shear mode. The formula, see Eq. (5.47) is a well-

known interaction formula, known as Dunkerley-type summation formula. (More precisely, it 

is an example when the resulting buckling mode can exactly be calculated in accordance with 

the Föppl-Papkovich theorem, see [9/5].) 

As it can clearly be seen from Figure 5.6, and can also be concluded from the critical force 

formula, for greater buckling lengths the shear-free mode is dominant, therefore, the critical 

force is practically identical to that calculated from Euler-formula. On the other hand, for 

small lengths the pure shear mode is dominant, that is why a (practically horizontal) shear 

plateau is found in the buckling force diagram. In Figure 5.6 (as well in subsequent similar 

figures) these modes are illustrated, which are, therefore, not pure modes, but dominant 

modes for the given section of the buckling curve. 

As far as the bending term is concerned, there is a clear difference between (5.47) and the 

Euler-formula, namely the (1-2) term in the denominator. This is clearly the consequence of 

the applied shell model and the global buckling definition which does not allow transverse 

extension/shortening of the strips (x = 0), as already discussed in Section 5.2. 

It is also to mention that the derived solution for the nnn option is identical to the classical 

beam-model-based formula in [8/5], or also to the one (as a special case) in [11/5], if (but only 

if) the bending rigidity is calculated with neglecting the own plate inertias (i.e., the bt3/12 

terms), and the Poisson’s ratio is set to zero to avoid the artificial increase of rigidity. 

 

Figure 5.6: Illustration of critical forces and buckling modes in nnn option 
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5.3.5.2 Option nyy 

In case of nyy option only one single critical force exists, as illustrated in Figure 5.7. The 

critical force and also the deformation is combined from three components: (i) the classical 

shear-free (primary) flexural mode, (ii) the transverse-only shear mode, and (iii) a secondary 

bending mode. The first two modes are identical to those found in option nnn. As far as 

primary and secondary bending modes are concerned, both are pure bending modes, however, 

in the primary mode the flexural rigidity is calculated with neglecting the own plate inertias 

(i.e., the bt3/12 terms), while in the secondary mode only the own plate inertias are considered 

in the rigidity. In most of practical thin-walled sections the secondary terms are small and are 

frequently neglected. 

The formula of Eq (5.48) is a combination of two summation formulae: the primary bending 

mode and the pure shear mode is combined according to Dunkerley summation formula, 

while the secondary bending term is simply added to the combined effect of the two others, as 

it is the case in Southwell summation, see [9/5]. The secondary bending mode has little effect 

unless the column is extremely short (Figure 5.7), or the shear rigidity is very low. 

It might be interesting to mention that if the shear rigidity is infinitely large, the formula tends 

to the classical Euler-formula. It is still slightly different from option nnn, however, since in 

option nyy the classical solution includes bending rigidity with considering the own plate 

inertias (i.e., includes the effect of secondary rigidity). 

 

Figure 5.7: Illustration of critical forces and buckling modes in nyy option 

 

5.3.5.3 Option ynn 

In case of ynn option there are two or three critical forces. One is Fa which belongs to so-

called axial mode. The other one or two critical values can be calculated by solving the 

equation from Eq. (5.49): 
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If none of FX,r and Fs,Z is zero, the equation has two distinct real positive roots. However, if 

any of them zero (which might be a practical case), there is only one critical solution. 

(5.50) 
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Let us explore the tendencies at extreme length values. If L  0, then 01 , rXF , which leads 

to two critical forces as follows: 

a
ynn

Xcr FF ,
 and 

Zs
ynn

Xcr FF ,,   

In case of any regular material Fs,Z < Fa, therefore the smaller critical force tends to Fs,Z as L 

approaches zero. 

In case of large L-s it is fair to assume that aF1  and ZsF ,1 are negligible small compared to 

rXF ,1 , from which two critical forces can be found: 
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It means that in the ynn option four buckling modes are involved, though only two appear in 

the mode that belongs to the lowest eigen-value, as shown in Figure 5.8. 

 

 

Figure 5.8: Illustration of critical forces and buckling modes in ynn option 

 

5.3.5.4 Option yyy 

In case of yyy option, three critical forces can always be found. Altogether 5 buckling modes 

are involved, i.e., all the 5 modes that appear in other options. The modes and tendencies are 

demonstrated in Figure 5.9. As it can be seen from the figure (and can also be proved 

mathematically), all the three critical forces tend to Fa as L approaches zero. On the other 

hand, three distinct critical forces are found for large L-s, namely (in ascending order):  
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Figure 5.9: Illustration of critical forces and buckling modes in yyy option 

 

5.3.6 Demonstrative numerical examples 

In this Section some numerical examples are presented. First, the newly derived analytical 

formulae are verified by comparing the analytical results to other methods, namely: cFSM and 

shell FEM. In the second part of the numerical examples the effect of the various options of 

the analytical formulae are addressed and discussed.  

Flexural buckling of simple two-hinged columns are considered, and critical force values are 

calculated and compared. The cross-sections are I-1 and I-2, as shown in Figure 5.4. Two 

materials are considered. ‘Mat1’ is basically a regular steel material, with E = 210 000 MPa. 

‘Mat1’ is assumed to be isotropic, however, the Possion’s ratio is set to zero in order to 

eliminate the (unrealistic) stiffness increasing caused by the 1/(1-2) term in the critical force 

formulae. ‘Mat2’ is an orthotropic material, with E = 210 000 MPa, but with G = 2100 MPa, 

which is 1/50 of the shear modulus of an equivalent isotropic material. Both major-axis and 

minor-axis buckling are considered. All the 8 options (according to Table 1) are briefly 

discussed here, though the focus is on the consistent options. The shell FEM results are 

obtained by carefully applied restraints, see [4/5]. 

Table 5.10 and 5.11 summarize the results of comparison of various calculation methods. The 

effect of various options of the analytical formulae are also presented in Figures 5.10 and 

5.11. It is to highlight that the yny option is used in the analytical results, since earlier studies 

proved that cFSM and the applied shell FEM follows assumptions identical to those of option 

yny. In all the cases primary shear deformation is assumed, i.e., the cross-sections planes 

remain planes during the deformations. As it can be seen the cFSM and analytical results are 

practically identical, the relative differences between them being less than 10-6. The 

differences between FEM and the analytical results are somewhat larger, but still very small, 

practically negligible, the maximal difference being less than 0.1%. It is also to highlight that 

the very good coincidence is obtained not only for usual steel sections, but for unusual 

sections with unusual material properties, too. 

Table 5.10 and Figure 5.10 show results for a regular I section (I-1) with regular steel 

material. The main conclusion is that though differences exist between the various calculation 
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options, the differences are pronounced only for extremely short (theoretical) lengths, 

therefore the selection of option has negligible effect for typical length ranges. 

In Table 5.11 and Figure 5.11 results for a (very) narrow I section (I-2) made of low shear 

rigidity material are shown. This section is characterized by relatively large secondary 

bending stiffness compared to the primary bending stiffness (especially in minor-axis 

bending). Therefore, there is a visible difference between ××n and ××y options even for 

regular steel material, which are enlarged if the material is orthotropic with low shear rigidity 

(Figure 5.11). It is to observe that non-negligible differences might exist in these cases even 

in the range of column lengths of practical interest. 

 

Table 5.10: Comparison of various calculation methods for I-1 

length mm 20 200 2000 20000 buckl. mode

formula, yny kN 731 282 340 161 83 600.3 1 150.65 I-1

cFSM kN 731 282 340 161 83 600.3 1 150.65 Mat1

FEM kN 731 028 340 109 83 602.5 1 150.67 major-axis

formula, yny kN 610 579 270 921 6 694.64 68.0866 I-1

cFSM kN 610 579 270 921 6 694.64 68.0866 Mat1

FEM kN 610 138 270 963 6 694.98 68.1079 major-axis  

 

Figure 5.10: Major-axis buckling critical forces for the I-1 section in various options (Mat1) 

 

Table 5.11: Comparison of various calculation methods for I-2 

length mm 10 100 1000 10000 buckl. mode

formula, yny kN 261 951 9 526.58 6 689.90 1 223.03 I-2

cFSM kN 261 951 9 526.58 6 689.90 1 223.03 Mat2

FEM kN 262 274 9 526.48 6 689.88 1 223.04 major-axis

formula, yny kN 426 299 5 743.39 159.674 1.68278 I-2

cFSM kN 426 299 5 743.39 159.674 1.68278 Mat2

FEM kN 425 959 5 742.84 159.678 1.68286 minor-axis  
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Figure 5.11: Minor-axis buckling critical forces for the I-2 section in various options (Mat2) 

Thus, it can be concluded that the tendency of the critical force vs. buckling length curve is 

defined by the selected option, as well as the ratio of the participating stiffnesses. In case of 

regular cross-sections with isotropic material, there is little difference between the various 

options at least in the length range of practical interest. In these cases the effect of shear 

deformations is small, too. If the stiffness ratios are distinctly different from those of regular 

steel sections, (due to irregular cross-section shape and/or low shear rigidity material,) the 

tendencies might be different, as well as the differences between the various calculation 

options might be enlarged. In these cases the effect of shear deformations themselves might 

be more pronounced and non-negligible even for practical member lengths. 

5.4 Summary and continuation of the work 

In this Chapter new analytical formulae for the critical forces to column buckling are 

presented. The novelty of the analytical formulae is that they are based on shell model, i.e., 

the thin-walled member is modelled as a set of connected strips. As it was shown, the 

derivations can be completed in various options, depending on how the through-thickness 

variation of strains/stresses is considered and depending on how the second-order strain is 

defined. Formulae are derived with neglecting and also with considering in-plane shear 

deformations. The obtained formulae are discussed by theoretical considerations and validated 

by numerical studies. (See Thesis #4 in Chapter 6.) 

Here, only buckling of shear-free columns, and flexural buckling of shear-deformable 

columns are presented, but some further results can be found in papers. In [12/5] formulae for 

the lateral-torsional buckling of doubly-symmetrical shear-free beams are presented. In [13/5] 

pure torsional buckling of shear-deformable columns are discussed and analytical formulae 

are derived for open and closed cross-sections. All these derivations are based on shell-model 

assumptions, unlike other solutions that are based on beam model (see, e.g. [14/5-15/5]). 

Obviously, further, practically interesting cases could be investigated (e.g., lateral-torsional 

buckling of mono-symmetrical cross-section beams, or, flexural-torsional buckling of shear-

deformable columns, etc.). These cases are planned to analyse in the future.  
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6 Summary of the new scientific results 
This dissertation summarizes the Author’s scientific results from the period 2003-2014. The 

work started with the development of the constrained finite strip method, then continued in 

other closely related directions, partly by the Author, partly by other researchers. Naturally, 

this dissertation concentrates on those results which have been achieved with the primary 

contribution from the Author, while other results are just tangentially mentioned. Based on the 

achieved results, theses are formed as follows. 

Thesis #1: I, together with Benjamin W. Schafer, have worked out the constrained finite strip 

method (cFSM) for the linear buckling analysis of thin-walled members with open, flat-

walled cross-sections and pinned-pinned end restraints. [1/2-8/2] 

The results in which my contribution is dominant are as follows: 

a) I have defined the mechanical criteria for the global, distortional and local buckling 

mode spaces. 

b) I have derived the constraint matrices for the global, distortional, local and other mode 

spaces, by implementing the mechanical criteria into the semi-analytical finite strip 

base functions. 

Thesis #2: I have extended the constrained finite strip method for the linear buckling analysis 

of members with arbitrary flat-walled cross-sections, with considering various end restraints. 

[1/3-5/3] 

The new results are detailed as follows: 

a) I have proposed decomposition within the local, shear and transverse extension mode 

spaces. I have given the mechanical description for the proposed sub-spaces. 

b) I have proposed base vectors for the shear mode spaces. 

c) I have derived the constraint matrices for all the sub-spaces.  

d) I have proposed a way for the ortogonalization and ordering of the base vectors within 

any sub-space, which leads to a practically meaningful set of base vectors that are 

independent of the longitudinal shape functions of the FSM.  

Thesis #3: I have worked out a method for the modal identification of the displacement field 

of flat-walled members, if the displacements are calculated by shell finite element analysis. 

[1/4-2/4] 

The new results are detailed as follows: 

a) I have derived the formulae necessary for the modal identification. 

b) I have proposed a measure for the accuracy of the modal identification. 

c) I have proposed a way for the reduction of the equation system to be solved, which 

makes the modal identification procedure computationally more efficient. 

Thesis #4: I have derived shell-model-based analytical formulae for the calculation of the 

critical force of columns. [1/5-5/5] 

The new results are detailed as follows: 

a) I have derived the formulae for flexural buckling, torsional buckling, and flexural 

torsional buckling of shear-undeformable thin-walled two-hinged columns. 

b) I have derived the formulae for flexural buckling of shear-deformable thin-walled two-

hinged columns, considering in-plane shear deformations of the plate elements. 

c) I have shown how some assumptions of the derivation influence the critical load 

results. 
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Appendix A: Orthogonality criteria 

A1. Orthogonality of v 

The orthogonality of v displacements is interpreted as follows: 

0 dsvv sr  if sr   

where vr and vs are two warping distributions for the whole ‘cross-section’, and ‘cross-

section’ is interpreted here as the line formed by the middle lines of the strips. Therefore: 
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where b(k) is the width of the k-th strip, and the summation is done for all the p strips. By 

substituting the FSM shape functions from Eq. (3.2), the orthogonality for one strip: 
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The integral expression can analytically be calculated which leads to the following formula: 
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The summation for all the strips is equivalent with the compilation of the above matrices strip 

by strip (utilizing also the simple relationship of local and global longitudinal displacements). 

The  2][ /  maY m  term is constant for all the strips, and certainly non-zero, therefore it can be 

eliminated from the final expression. Eq. (A2) finally can be written as:  

0dOd svr 
T

 if sr   

where dr and ds are two non-identical displacement vectors, and the Ov matrix is compiled 

according to the following scheme: 
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Ov is a square matrix with as many rows and columns as many degrees of freedom the 

member has. It is to observe that Ov is constructed very similarly to the elastic stiffness 

matrix, or more precisely, to those elements of the elastic stiffness matrix that belong to the 

longitudinal displacements. Indeed, the non-zero elements of Ov can be distilled from Ke.    
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A2. Orthogonality of u 

The orthogonality of u displacements is interpreted as follows: 

0 dsuu sr  and sr   

where ur and us are two transverse translation functions for the whole ‘cross-section’, and 

‘cross-section’ is interpreted here as the middle line of the strips. Therefore, the expression 

can be re-formulated as follows: 
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where b(k) is the width of the k-th strip, and the summation is done for all the p strips. Since 

the shape functions for u and v are identical see Eqs. (3.1) and (3.2), the integration for a strip 

leads to an expression very similar to Eq. (A4), as follows: 
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After summation Eq. (A7) leads to: 

0dOd sur 
T

if sr   

where dr and ds are two non-identical displacement vectors, and the Ou matrix is compiled 

from the 3)(kb  and 6)(kb  terms with considering the sin(k) and cos(k) terms due to local-

to-global coordinate transformation. 

Ou is a square matrix with as many rows and columns as many degrees of freedom the 

member has. It is to observe that Ou is constructed very similarly to those elements of the 

elastic stiffness matrix that belong to the transverse displacements. Indeed, the non-zero 

elements of Ou can be distilled from Ke.    

 

A3. Orthogonality of ∂v/∂x 

The orthogonality of ∂v/∂x is interpreted as follows: 
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where vr and vs are warping functions for the whole ‘cross-section’, and ‘cross-section’ is 

interpreted here as the middle line of the strips. The integration for one single strip: 

 
2

][)(

2

)(

1

0

)()(

)(

)(
)(

2

)(

1

0

)()( )()(

11

1

1



























































































 m

a
Y

v

v
dx

bb

b

b
vvdx

x

v

x

v
mk

r

k

r

b

kk

k

k
k

r

k

r

b k

s

k

r

kk

 

The integral expression can analytically be calculated by using the FSM shape functions. For 

one single strip: 
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After compilation Eq. (A11) becomes:  

0dOd sdvxr 
T

 if sr   

where dr and ds are two non-identical displacement vectors, and the Odvx matrix is compiled 

from the )(1 kb terms, similarly as illustrated by Eq. (A6). 

Odvx is a square matrix with as many rows and columns as many degrees of freedom the 

member has.    

A4. Orthogonality of x 

The orthogonality of x is interpreted as follows: 
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where ur and us are local displacement functions for the whole ‘cross-section’, and ‘cross-

section’ is interpreted here as the middle line of the strips. The expression is essentially 

similar to Eq. (A11), therefore, leads to equations similar to Eqs. (A13) and (A14). For one 

single strip:  
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After compilation Eq. (A15) becomes:  

0dOd sexr 
T

 if sr   

where dr and ds are two non-identical displacement vectors, and the Oex matrix is compiled 

from the )(1 kb terms. 

A5. Orthogonality of x 

The orthogonality of the transverse curvature is interpreted as follows: 

0,,  dssxrx  and sr   

where x,r and x,s are two transverse curvature functions for the whole ‘cross-section’. 

Therefore, the expression can be re-formulated as follows: 
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where b(k) is the width of the k-th strip, and the summation is done for all the p strips. The 

transverse curvature is the second derivative of the w displacement function with respect to x, 

see e.g. Eq. (B25). For one single strip the integration cam be done as follows:  
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
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Eq. (A18) can finally be written as: 

0dOd skxr 
T

 if sr   

where dr and ds are two non-identical displacement vectors, and the Okx matrix is compiled 

similarly as e.g., Ou, considering also the local-to-global coordinate transformation. 

Okx is a square matrix with as many rows and columns as many degrees of freedom the 

member has. It is to observe that Okx is constructed very similarly to those elements of the 

elastic stiffness matrix that belong to the transverse displacements. Indeed, the non-zero 

elements of Okx can be distilled from Ke. More precisely, Okx itself can be interpreted as a 

stiffness matrix, which belongs to a 2D frame, the geometry of which is the cross-section mid-

line, and the frame is modelled by beam elements with 2 DOF per node (namely: one rotation 

and one translation perpendicular to the beam) and all the beam elements have identical 

stiffness properties. 

 

(A20) 

 (A21) 

(A22) 
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Appendix B: Null criteria 

B1. Null transverse strain 

The null transverse normal strain criterion is as follows: 

0





x

u
x  

which is interpreted for the middle surface. 

In FSM the u displacement of the middle surface is expressed as a product of the shape 

function and the nodal displacements. 

][
2

11),( mY
u

u

b

x

b

x
yxu 





























  

where ][mY  is the longitudinal shape function, which depends on the assumed end restraints, 

see Eqs. (3.4)-(3.8). For example, in case of S-S, it is a simple sine function. 

Substituting Eq. (B2) into Eq. (B1) we get: 

0][
21 







 mx Y

b

uu

x

u
, 

and since ][mY function is generally not equal to zero, the two nodal displacements have to be 

equal. In a member there are multiple strips, therefore, for the (k)-th strip: 

)(
2

)(
1

kk
uu   

This criterion means constraint for the global U and W translational displacements of the two 

nodes (nodal lines) of the strip. It is well-known that the relationship between the local x,y and 

the global X,Y co-ordinates can generally be expressed as: 























Z
X

z
x

cossin
sincos

 

Therefore, assuming that the start and end node of the (k)-th strip is i and j, respectively: 

)()()()( sincossincos k
j

k
j

k
i

k
i WUWU   

from which: 

0sincossincos )()()()(  k
j

k
j

k
i

k
i WUWU  

where 
)(k is the (signed) angle of the (k)-th strip with regard to to the positive X axis. 

The same equation can be written to each strip. In matrix form we may write these equations 

as follows: 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 
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

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
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0
0
0

)()()()(

j

i

j

i

kkkk

W

W

U

U

 

or: 

0dR ex   

It means that the null transverse strain criterion is satisfied if the displacement vector satisfies 

the above equation. The number of columns of Rex is equal to the number of DOF, the 

number of rows is equal to the number of strips. 

B2. Null longitudinal strain 

The null longitudinal strain criterion is as follows: 

0





y

v
y  

which is interpreted for the middle surface. In FSM the v function is as follows: 




































m

a
Y

v

v

b

x

b

x
yxv m][

2

11),(  

Thus, the longitudinal strain is expressed as: 

01 ][
2

1 







































m

a
Y

v

v

b

x

b

x

y

v
m  

This equation is satisfied only if both v1 and v2 are zero. The same equation can be written to 

each strip which leads to the conclusion that all the V translations must be equal to zero in 

order to satisfy the null longitudinal strain criterion. In short: 

nodes  theallfor 0iV  

 

B3. Null shear strain 

The null shear strain criterion is as follows: 

0










x

v

y

u
xy  

which is interpreted for the middle surface. 

(B8) 

(B9) 

(B10) 

(B11) 

(B12) 

(B13) 

(B14) 
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u(x,y) and v(x,y) are already defined above. Since v is linear in x within a strip, xv   is 

constant. Therefore, the criterion is satisfied only if u is constant in x. However, if u is 

constant in x, the transverse normal strain is zero, which means that the null transverse strain 

criterion is satisfied. The conclusion is that for the given transverse shape functions null shear 

strain criterion cannot be satisfied without satisfying the null transverse strain criterion, too. 

For the (k)-th strip: 

 







m

a
Y

b
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x

v
mk

kk
][)(

)(
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1
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2

)(
11 m

k
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k

YuY
u

u

b

x

b

x

y

u

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













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























 

Substituting Eqs. (B15) and (B16) into Eq. (B14): 

   0
1

][)(

)(
1

)(
2][

)( 



m

a
Y

b
vvYu mk

kk
m

k  

After eliminating ][mY  the second part can be expressed with global DOF as follows: 

   






m

a

b
VV

m

a

b
vv

kijk

kk

)()(

)(
1

)(
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11
 

while the first part can be expressed either from node i or j: 

)()()()()( sincossincos k
j

k
j

k
i

k
i

k WUWUu   

Either way can be selected. Let us use node i, in this case the null shear strain criterion is: 

  0
1

sincos
)(

)()( 



m
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b
VVWU

kij
k
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The same equation can be written to each strip. In matrix form we may write these equations 

as follows: 


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






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0dRgxy   

The number of columns of Rgxy is equal to the number of DOF, the number of rows is equal to 

the number of strips. 

(B15) 

(B16) 

(B17) 

(B18) 

(B19) 

(B20) 

(B21) 

 (B22) 
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B4. Null transverse curvature 

The null transverse curvature criterion is as follows: 

0
2

2





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x

w
x  

which is interpreted for the middle surface. 

The w function in FSM is expressed as follows: 
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Taking the second derivative with regard to x, applying it for the (k)-th strip (and taking 

advantage that  ][mY  is non-zero), the criterion can be written as follows: 
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After rearranging:  

    02646
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The equation is satisfied for any x if (and only if) both terms in brackets are equal to zero: 

02646and0612612 2
)(

21
)(

12
)(

21
)(

1  kkkk bwbwbwbw  

These equations are satisfied if: 

021   and 0)(
21  kbww  

These equations define rigid-body motion of the strip cross-section. We have similar two 

equations for each strip. From the 021   equations it can be concluded that the 

rotational displacement must be equal at all the nodes (which will simply be denoted here as 

). Plus, the relationship between rotational and translational DOF can be expressed as 

follows: 

0cossincossin )()()()()(  kk
j

k
j

k
i

k
i bWUWU  

 

 

 

 

 

(B23) 

(B24) 

(B25) 

(B26) 

(B27) 

(B28) 

(B29) 
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In matrix form: 
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or: 

0dRkx   and jiji  and any for    

It means that the null transverse curvature criterion is satisfied (i) if all the rotational DOF are 

equal to each other in the displacement vector, and (ii) if the displacement vector satisfies the 

above equation. 

The number of columns of Rkx is equal to the number of DOF. The number of rows is equal 

to the number of strips. 

 

B5. Null longitudinal curvature 

The null longitudinal curvature criterion is as follows: 
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which is interpreted for the middle surface. The w function in FSM is expressed e.g., by Eq. 

(B24). Thus, the criterion is: 
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Since ][mY   is non-zero, it can be eliminated. After rearranging and applying to the (k)-th strip: 
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(B30) 

(B31) 

 (B32) 

(B33) 
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The equation is satisfied if all the terms in brackets are equal to zero: 
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These equations are satisfied if: 

0and0and0and0 2211  ww  

We have similar equations for each strip. From the rotational equations it can be concluded 

that the rotational displacement must be equal to zero at all the nodes. Moreover, the 

translational equations can be expressed as follows: 
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In matrix form: 
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or: 

0dRky   and nodes  theallfor 0i  

It means that the null longitudinal curvature criterion is satisfied (i) if all the rotational DOF 

are zero, and (ii) if the displacement vector satisfies the above equation. The number of 

columns of Rky is equal to the number of DOF, the number of rows is twice the number of 

strips. 

 

B6. Null mixed curvature 

The null longitudinal curvature criterion is as follows: 

 

 

which is interpreted for the middle surface. The w function in FSM is expressed above. Thus, 

the criterion is: 
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Since ][mY  is non-zero, it can be eliminated. After rearranging and applying to the (k)-th strip:  
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The equation is satisfied if all the terms in brackets are equal to zero: 
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These equations are satisfied if: 

0and0 1121  ww  

We have similar equations for each strip. From the rotational equations it can be concluded 

that the rotational displacement must be equal to zero at all the nodes. Moreover, the 

translational equations can be expressed as follows: 

0cossincossin )()()()(  k
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In matrix form: 
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or: 

0dRkxy   and nodes  theallfor 0i  

It means that the null mixed curvature criterion is satisfied (i) if all the rotational DOF are 

zero, and (ii) if the displacement vector satisfies the above equation. The number of columns 

of Rkxy is equal to the number of DOF, the number of rows is equal to the number of strips. 

(B41) 

 (B42) 

(B43) 

(B44) 

(B45) 

(B46) 

(B47) 
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B7. Transverse equilibrium of the cross-section  

Transverse equilibrium of the cross-section is interpreted as follows. 

a) The 2D frame is assumed, the geometry of which is identical to the line defined by the 

cross-section mid-line. 

b) Some stiffness properties are assigned to the beams. The most convenient (and 

simplest) idea is to assume uniform stiffness for all the beams (e.g., EI = 1). 

c) The 2D frame is modelled by beam elements with 2 DOF per node (namely: one 

rotation and one translation perpendicular to the beam). 

d) The beam is loaded by prescribed displacements at the corner nodes (i.e., at the 

junction of beams). 

e) The free DOF of this frame model are determined so that the whole frame would be in 

equilibrium. 

In (d) the prescribed displacements are the U and V translations of the corner nodes, while the 

unknown displacements are the  rotations of the corner nodes and the U, V and   of all the 

other nodes. Since there are no supports and force-type loading on the 2D frame, equilibrium 

means that reaction forces may develop at the prescribed DOF, but reaction forces are zero at 

the free DOF. Thus, this equilibrium criterion can be formulated similarly to the null-strain 

criteria, as follows: 

0dReq   

where Req can readily be constructed from the transverse (elastic) stiffness matrix of the 

cross-section. However, the transverse (elastic) stiffness matrix is nothing else then the Okx 

matrix as discussed above. Basically, Req is consisted of those rows of Okx which belong to 

the un-prescribed DOF. Thus, the number of column of Req is equal to the number of DOF, 

while the number of rows of Req is equal to the number of un-prescribed DOF. 

 

 

 

 

 

 

 

(B48) 
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Appendix C: Derivation of the coefficient matrix for 

column buckling with neglecting in-plane shear 

C1. Global displacements of the member 

Global displacements are defined for the reference line of the member. The reference line for 

the translational components is the (straight) line that goes through the centroid of the cross-

sections, while the reference line for the rotation is the (straight) line that goes through the 

shear centres of the cross-sections. For the coordinate systems, see Figure 5.1. 

The transverse displacement functions: 

)sin(sin 00 ykU
L

ym
UU m


  

)sin(sin 00 ykW
L

ym
WW m


  

)sin(sin 00 yk
L

ym
m


  

The longitudinal displacement function: 

)cos(cos 00 ykV
L

ym
VV m


  

In the above expressions:  

Lmkm   

where L is the member length. 

C2. Local displacements of a strip 

Displacements in the mid-point 

For the rotations it is evident that the rotation of any strip must be equal to the rotation of the 

cross-section itself, which is a direct consequence of the rigid cross-sections. Thus, for the i-th 

strip (i.e., for each strip): 

 im,  

where ‘m’ in the subscript denotes that the local displacement is interpreted at the midpoint of 

the strip (i.e., x = z = 0). Knowing that the global rotation function has sinusoidal longitudinal 

distribution, similar longitudinal distribution of the local rotation functions is obtained, that 

can be expressed as: 

)sin(sin ,0,0, yk
L

ym
mimimim 


  

where m0,i thus the amplitude of the local rotation functions of the i-th strip, interpreted in the 

middle point of the strip, and obviously: 

0,0  im  

 

(C1) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(C8) 
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The transverse translations (i.e., u and w) can be expressed by using the well-known 

geometric transformations, namely, for the i-th strip, assuming small rotations, it can be 

written that: 

 iSimiSimiiim ZZXXWUu  sin)(cos)(sincos ,,,  

 iSimiSimiiim ZZXXWUw  cos)(sin)(cossin ,,,  

where Xm,i and Zm,i are the global coordinates of the strips’ mid-points, XS and ZS are the 

global coordinates of the shear centre of the cross-section, while i is the (signed) angle of the 

i-th strip with respect to the positive X-axis (i.e., the angle between the global and the i-th 

strip local coordinate system). 

Obviously, the local transverse translation functions have sinusoidal longitudinal 

distributions, therefore they can be expressed as: 

)sin(sin ,0,0, yku
L

ym
uu mimimim 


  

)sin(sin ,0,0, ykw
L

ym
ww mimimim 


  

The amplitudes um0,i and wm0,i therefore can be expressed by the global displacement 

amplitudes as follows:  

 iSimiSimiiim ZZXXWUu  sin)(cos)(sincos ,,000,0  

 iSimiSimiiim ZZXXWUw  cos)(sin)(cossin ,,000,0  

 

For the longitudinal displacements (i.e., warping) the following equation is valid for any value 

of y = Y: 

imCimxCimzim ZZXXVv ,,,, )()(   

where Xm,i and Zm,i are the global coordinates of the strips’ mid-points, XC and ZC are the 

global coordinates of the mass centre of the cross-section, x and z  are the rotations of the 

given cross-section about its global x and z-axis, respectively, m,i  is the sectoral coordinate 

(with respect to shear centre) at the location of the i-th strip mid-point, while   is the rate of 

change of the twist of the cross-section. Note that formulae for the calculation of shear centre 

and sectoral coordinates can be found in textbooks, as well as a good summary is given in the 

Eurocode for cold-formed steel, see Annex C of [2/1]. 

x , z and   can be expressed by as the first derivative of the corresponding displacement 

function, as follows: 

)cos()cos( 00 ykykkW
y

W
mxmmx 




  

)cos()cos( 00 ykykkU
y

U
mzmmz 




  

)cos()cos( 00 ykykk
y

mmm 



  

(C9) 

(C10) 

(C11) 

(C12) 

(C13) 

(C14) 

(C15) 

(C16) 

(C17) 

(C18) 
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Obviously, the local warping function has cosine distribution along the length, therefore can 

also be expressed as: 

)cos(cos ,0,0, ykv
L

ym
vv mimimim 


  

The vm0,i amplitude can be get by combining Eqs. (C15) and (C18):  

imCimxCimzim ZZXXVv ,0,0,00,0 )()(   

Then, by considering Eqs. (C16), (C17) and (C18): 

immCimmCimmim kZZkWXXkUVv ,00,0,00,0 )()(   

 

Adding displacement distribution over the strip cross-section 

When constructing the distribution in an arbitrary x,z position, the following criteria must be 

satisfied. 

 Since the cross-section is rigid, transverse extension must be zero for each strip, thus 

0x , which means that u is constant in x.  

 The v longitudinal (warping) displacements linearly vary in x, since in-plane shear is 

assumed to be zero. This assumption also implies that rotation about local z-axis can 

be expressed by the first derivative of the v warping displacement (at the middle of the 

strip). 

 Since cross-section distortion is excluded, the transverse curvature is zero, 0 x , 

which means that w must be linear in x, while the  rotation is constant (in x). 

 Kirchhoff plate theory assumes that normals to the undeformed middle plane remain 

straight, normal and inextensional during the deformations, thus, the u and v 

displacements vary linearly in z, while w displacement is constant along the thickness. 

Moreover, the rotation about x and y can be calculated as the first derivative of w (at 

the middle-plane). 

Considering all the above criteria, the local displacement functions for any strip in any cross-

section (i.e., any value of y) may be written as follows:  

imi ,  

zuu imimi ,,   

xww imimi ,,   

zxvv ixizimi ,,,   

where ui, vi, wi and i are the local displacement functions, um,i, vm,i and wm,i are the local 

translation functions of the given strip mid-line in the x, y and z direction, respectively, m,i is 

the twisting rotation of the strip middle point, while ix,  and iz,  are the rotations of the 

given strip about its local x and z-axis. (Note, all of these quantities should belong to the same 

y value.) 

Since the strips’ rotations are dependent on the displacements of the strips’ (longitudinal) 

mid-lines, the following equations may be written: 

(C19) 

(C20) 

(C21) 

(C22) 

(C23) 

(C24) 

(C25) 
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)cos()cos( ,0,0
,

, ykykkw
y

w
mixmmim

im
ix 




  

)cos()cos( ,0,0
,

, ykykku
y

u
mizmmim

im
iz 




  

Combining Eqs (C26), (C27) and Eq (C25), the local displacement functions of the i-th strip 

can be written as follows: 

)sin()( ,0,0 ykzuu mimimi    

)cos()()cos()( ,0,0,0,0,0,0 ykzkwxkuvykzxvv mmimmimimmixizimi   

)sin()( ,0,0 ykxww mimimi   

)sin(,0 ykmimi   

It is to observe, thus, that the local displacement functions for any strip are expressed by the 

maximum local displacements of the strips’ (longitudinal) mid-lines, namely: um0,i, vm0,i, wm0,i 

and m0,i. Since the local displacement amplitudes are expressed by the global displacement 

amplitudes, see Eqs. (C8), (C13), (C14) and (C21), ultimately the local displacement 

functions are expressed by 4 parameters, thus, the whole displacement field of the beam is 

expressed by the parameters U0, V0, W0 and 0. 

 

C3. Strains 

For the out-of-plane deformations the classical Kirchhoff thin plate theory is applied. The 

geometric equations are usually expressed as follows: 
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For the in-plane behaviour, the following geometric equations must be satisfied: 
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(C26) 

(C27) 

(C28) 

(C29) 

(C30) 

(C31) 

(C32) 

(C33) 

(C34) 

(C35) 

(C36) 

(C37) 
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C4. Stresses 

Linear elastic material is assumed, thus, the constitutive equation is the generalized Hooke’s 

law. The applied strip model is consisted of a plane stress membrane and a Kirchhoff plate, 

the constitutive equation is necessary to define for both in-plane and out-of-plane behaviour. 

For the in-plane behaviour the 2D Hooke’s law is used, which can be simplified because of 

0,,  ixyix : 
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where E and G are the modulus of elasticity and the shear modulus, while  is the Poisson’s 

ratio. 

For the out-of-plane behaviour the constitutive equation is most frequently expressed by stress 

resultants rather than by stresses. The relationship can again be simplified due to 0.  ix . 
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where t is the thickness of the considered strip, mx,i, my,i and mxy,i are moments for a unit-width 

strip portion. 

C5. External potential 

The external potential is expressed as discussed by Section 5.2.3. The work done by the 

external (uniformly distributed) py loading is: 
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where L is the member length, bi and ti is the width and thickness of the i-th strip, 

respectively, n is the number of strips, and the second-order strain term is expressed as: 










































22

,
2

1

y

w

y

u iiII
iy  or 























































222

,
2

1

y

w

y

v

y

u iiiII
iy  

It is to observe that the external potential energy can be expressed by the 4 displacement 

parameters. 

(C38) 
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C6. Internal potential 

The accumulated elastic strain energy as the member is deformed can be expressed by well-

known integral formulae, as discussed in Section 5.2.3. For the investigated problem, utilizing 

that 0,,,  ixyixix , the expression is: 
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or, with neglecting the bending energy terms: 
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where L is the member length, bi and ti is the width and thickness of the i-th strip, 

respectively, while n is the number of strips.  

It is to observe that the internal potential energy can be expressed by the 4 displacement 

parameters. 

 

C7. Total potential 

The total potential is the sum of the internal potential (i.e., strain energy) and of the external 

potential (i.e., negative of the work done by the external loading). Since the external potential 

can be calculated by 4 different ways, while internal potential by 2 different ways, the total 

potential energy can be expressed by 8 different ways. The applied options are summarized in 

Table 5.1.  

C8. Coefficient matrix 

Utilizing that in equilibrium the total potential energy is stationary, a set of 4 (linear) 

equations can be established for the 4 displacement parameters of the problem: 
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Note, the coefficient matrix is symmetric. The non-zero elements of the coefficient matrix are 

given in Table C1 and Table C2. 

 

(C42) 

(C43) 

(C44) 
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Table C1: Elements of coefficient matrix for n×× options 

option nnn nny nyn nyy 

C11 aF  aF  aF  aF  

C22 rZFF ,  ZFF   rZFF ,  ZFF   

C33 rXFF ,  XFF   rXFF ,  XFF   

C44 rwrS FFr ,
2

,0   )(
2

,0 twrS FFFr   rwS FFr ,
2

0   )(
2

0 twS FFFr   

C23 rXZF ,  XZF  rXZF ,  XZF  

C24 FZSC  )( ZSC FFZ   FZSC  )( ZSC FFZ   

C34 FX SC  )( XSC FFX   FX SC  )( XSC FFX   

 

Table C2: Elements of coefficient matrix for y×× options 

option ynn yny yyn yyy 

C11 FC
nnn

11  FC
nny

11  FC
nyn

11  FC
nyy

11  

C22 
a

rZnnn

F

F
FC

,
22   

a

rZnny

F

F
FC

,
22   

a

Znyn

F

F
FC 22  

a

Znyy

F

F
FC 22  

C33 
a

rXnnn

F

F
FC

,
33   

a

rXnny

F

F
FC

,
33   

a

Xnyn

F

F
FC 33  

a

Xnyy

F

F
FC 33  

C44 
a

rwnnn

F

F
FC

,
44   

a

rwnny

F

F
FC

,
44   

a

wnyn

F

F
FC 44  

a

wnyy

F

F
FC 44  

C23 
a

rXZnnn

F

F
FC

,
23   

a

rXZnny

F

F
FC

,
23   

a

XZnyn

F

F
FC 23  

a

XZnyy

F

F
FC 23  

C24 
nnn

C24  
nny

C24  
a

Z
SC

nyn

F

F
FZC 24  

a

Z
SC

nyy

F

F
FZC 24  

C34 
nnn

C34  
nny

C34  
a

X
SC

nyn

F

F
FXC 34  

a

X
SC

nyy

F

F
FXC 34  
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In Table C1 and Table C2 F is the applied axial force, and the other symbols are as follows. 

22

2

)1( L

EI
F X
X




  and 

22

,
2

,
)1( L

EI
F

rX
rX




  

22

2

)1( L

EI
F Z
Z




  and 

22

,
2

,
)1( L

EI
F

rZ
rZ






  

22

2

)1( L

EI
F XZ
XZ




  and 

22

,
2

,
)1( L

EI
F

rXZ
rXZ




  

22

2

)1( L

EI
F w

w





  and 

22

,
2

,
)1( L

EI
F

rw
rw






  

22

2

)1( L

EI
F X

X


 



  and 

22

2

)1( L

EI
F Z

Z


 



  

tt GIF   

21 


EA
Fa  

in which E and G are the modulus of elasticity and the shear modulus,  is the Poisson’s ratio, 

L is the member length, while the applied cross-sectional properties are as follows: 

 A is the cross-sectional area,  

 IX and IZ are the second moment of areas calculated with regard to global X and Z-axis, 

respectively, with considering own plate inertias (i.e., the biti
3/12 terms),  

 IX,r and IZ,r are (reduced) second moment of areas with regard to global X and Z-axis, 

respectively, with neglecting own plate inertias (i.e., the biti
3/12 terms), 

 IXZ,r and IXZ are the product moment of area with regard to X and Z-axis with 

neglecting or considering the own plate inertias, respectively, 

 Iw and Iw,r are warping constant, with and without considering the through-thickness 

warping variation, respectively, 

 It is the torsion constant, 

 XSC and ZSC  are the coordinates of shear centre with regard to mass centre, i.e., 

CSSC XXX   and CSSC ZZZ  , where XC and ZC are the global coordinates of 

the mass centre of the cross-section, while XS and ZS are the global coordinates of the 

shear centre of the cross-section, and 

 222
0 SCSC

ZX
S ZX

A

II
r 


  and 

22,,2
,0 SCSC

rZrX
rS ZX

A

II
r 


  

 

 

 

(C45) 

(C46) 

(C47) 

(C48) 

(C49) 
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 IX and IZ are cross-section properties defined as follows: 












 

00

0)(
1

SC

SC

A

C
SCX

Xif

XifdAZZ
XI


   












 

00

0)(
1

SC

SC

A

C
SCZ

Zif

ZifdAXX
ZI


  

The critical forces can be calculated by utilizing that the coefficient matrix has to be singular, 

therefore, finally the following equation must be solved: 

0)det( C  

The results, i.e., the critical forces are discussed in Chapter 5. 

 

 

(C52) 

(C53) 
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Appendix D: Derivation of the coefficient matrix for 

flexural buckling with considering in-plane shear 

D1. Global displacements of the member 

Global displacements are defined for the reference line of the member. The reference line for 

the translational components is the (straight) line that goes through the centroid of the cross-

sections, while the reference line for the rotation is the (straight) line that goes through the 

shear centres of the cross-sections. For the coordinate systems, see Figure 5.1. 

The transverse displacement function is assumed to be the sum of two components: a no-shear 

and a shear components, as follows: 

  )sin()sin(sin 0000 ykWWykW
L

ym
WW m

sn
m 


  

The longitudinal displacement function: 

)cos(cos 00 ykV
L

ym
VV m


  

In the above expressions:  

Lmkm   

where L is the member length. 

 

D2. Local displacements of a strip 

Displacements in the mid-point 

By utilizing that no cross-section distortion is allowed (by the global buckling definition), the 

transverse displacement and rotation of the reference point of any cross-section fully 

determines the displacements of the strips. First, let us express the displacements of the strips’ 

(longitudinal) mid-lines in the local coordinate system:  

iim Wu  sin,  

iim Ww  cos,  

where um,i, and wm,i are the local displacement functions of the i-th strip mid-line in the x and z 

direction, respectively, while i is the (signed) angle of the i-th strip with respect to the 

positive X-axis (i.e., the angle between the global and the i-th strip local coordinate system). 

Obviously, the local transverse translation functions have sinusoidal longitudinal 

distributions, therefore they can be expressed as: 

)sin(sin ,0,0, yku
L

ym
uu mimimim 


  

)sin(sin ,0,0, ykw
L

ym
ww mimimim 


  

(D1) 

(D2) 

(D3) 

(D4) 

(D5) 

(D6) 

(D7) 
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where the amplitudes um0,i and wm0,i can be expressed by the global displacement amplitudes, 

by using the well-known geometric transformations. Namely, for the i-th strip, assuming 

small rotations, it can be written that:  

  i
sn

im WWu  sin00,0  

  i
sn

im WWw  cos00,0  

 

For the longitudinal displacements (i.e., warping) the following equation is valid for any value 

of y = Y: 

 Cimxim ZZVv  ,,  

where Zm,i is the global coordinate of the strips’ mid-points, ZC is the global coordinates of the 

mass centre of the cross-section, and x is the rotation of the given cross-section about its 

global x-axis. 

x , can be expressed by as the first derivative of the corresponding displacement function, as 

follows: 

)cos()cos( 00 ykykkW
y

W
mxmm

n
n

x 



  

Obviously, the local warping function has cosine distribution along the length, therefore can 

also be expressed as: 

)cos(cos ,0,0, ykv
L

ym
vv mimimim 


  

The vm0,i amplitude can be get by combining Eqs. (D10) and (D12):  

)( ,00,0 Cimxim ZZVv   

Then, by considering Eq. (D11): 

)( ,00,0 Cimm
n

im ZZkWVv   

 

Note, there is no twisting rotation of any strip. 

 

Adding displacement distribution over the strip cross-section 

The next step is to construct the local displacement functions for each strip, from the local 

displacements of the strip’s mid-line. To do this, the following considerations are necessary: 

 Since the cross-section is rigid, transverse extension must be zero for each strip, thus 

0 x , which means that u is constant in x.  

 The v longitudinal (warping) displacements linearly vary in x. Moreover, rotation 

about local z-axis can be expressed by the first derivative of the v warping 

displacement (at the middle of the strip). 

(D8) 

(D9) 

(D10) 

(D11) 

(D12) 

(D13) 

(D14) 
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 Since cross-section distortion is excluded, the transverse curvature is zero, 0x , 

which means that w must be linear in x, while the  rotation is constant (in x). 

However, if the twisting rotation of the cross-section is excluded, as in the case of 

flexural buckling, the constant  twisting rotation will be zero for any strip. 

 Kirchhoff plate theory assumes that normals to the undeformed middle plane remain 

straight, normal and inextensional during the deformations, thus, the u and v 

displacements vary linearly in z, while w displacement is constant along the thickness. 

Moreover, the rotation about x and y can be calculated as the first derivative of w (at 

the middle-plane). 

By utilizing the above assumptions, the x and z  rotations of the i-th strip about its local x 

and z-axis can be written: 

  )cos()cos( ,0,0,0
,

, ykykwwk
y

w
mixm

s
im

n
imm

im
ix 




  

  )cos()cos( ,0,0
,

, ykykuk
y

u
mizm

n
imm

im
iz 




  

By considering Eqs (D8), (D9) and (D14) plus Eqs (D15) and (D16), the local displacement 

functions of the i-th strip can be written as follows: 

  )sin(,0.0 ykuuu m
s

im
n

imi   

  )sin(,0,0 ykwww m
s

im
n

imi   

 

   )cos(

)cos(

.0.0.0,0

,0,0,0

ykzwwkxukv

ykzxvv

m
s

im
n

imm
n

immim

mixizimi




 

It is to observe, thus, that the local displacement functions for any strip are expressed by the 

maximum local displacements of the strips’ (longitudinal) mid-lines, which, however, are 

expressed by the three global displacement parameters, 0V , 
nW0  and 

sW0 , thus, the whole 

displacement field of the member is expressed by the three global parameters. 

D3. Strains 

For the out-of-plane deformations the classical Kirchhoff thin plate theory is applied. The 

geometric equations are usually expressed as follows: 

2

,
2

,
x

w im
ix




  

2

,
2

,
y

w im
iy




  

yx

w im
ixy






,
2

, 2  

 

(D15) 

(D16) 

(D17) 

(D18) 

(D19) 

(D20) 

(D21) 

(D22) 
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For the in-plane behaviour the following geometric equations must be satisfied: 

x

u im
ix






,
,  

y

v im
iy






,
,  

x

v

y

u imim
ixy











,,
,  

D4. Stresses 

Linear elastic material is assumed, thus, the constitutive equation is the generalized Hooke’s 

law. The applied strip model is consisted of a plane stress membrane and a Kirchhoff plate, 

the constitutive equation is necessary to define for both in-plane and out-of-plane behaviour. 

For the in-plane behaviour the 2D Hooke’s law is used, which can be simplified because of 

0,  ix : 
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where E and G are the modulus of elasticity and the shear modulus, while  is the Poisson’s 

ratio. 

For the out-of-plane behaviour the constitutive equation is most frequently expressed by stress 

resultants rather than by stresses. The relationship can again be simplified due to 

0,,  ixyix . 
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where t is the thickness of the considered strip, mx,i, my,i and mxy,i are moments for a unit-width 

strip portion. 

 

 

D5. External potential 

The external potential is expressed as discussed by Section 5.3.3. The work done by the 

external (uniformly distributed) py loading is: 

(D23) 

(D24) 

(D25) 

(D26) 

(D27) 

(D28) 
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where L is the member length, bi and ti is the width and thickness of the i-th strip, 

respectively, n is the number of strips, and the second-order strain term is expressed as: 
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It is to observe that the external potential energy can be expressed by the 3 displacement 

parameters. 

D6. Internal potential 

The accumulated elastic strain energy as the member is deformed can be expressed by well-

known integral formulae, as discussed in Section 5.2.3. For the investigated problem, utilizing 

that 0,,,  ixyixix , the expression is: 
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or, with neglecting the bending energy term: 
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where L is the member length, bi and ti is the width and thickness of the i-th strip, 

respectively, while n is the number of strips.  

It is to observe that the internal potential energy can be expressed by the 3 displacement 

parameters. 

 

D7. Total potential 

The total potential is the sum of the internal potential (i.e., strain energy) and of the external 

potential (i.e., negative of the work done by the external loading). Since the external potential 

can be calculated by 4 different ways, while internal potential by 2 different ways, the total 

potential energy can be expressed by 8 different ways. The applied options are summarized in 

Table 5.1. 

D8. Coefficient matrix 

Utilizing that in equilibrium the total potential energy is stationary, a set of 4 (linear) 

equations can be established for the 4 displacement parameters of the problem: 

(D29) 

(D30) 

(D31) 
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Note, the coefficient matrix is symmetric. The coefficient matrices for the various options are 

given by the following equations. 
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with the following symbols: 

(D32) 

(D33) 

(D34) 

(D35) 

(D36) 

(D37) 

(D38) 
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in which E and G are the modulus of elasticity and the shear modulus,  is the Poisson’s ratio, 

L is the member length, while the applied cross-sectional properties are as follows: 

 A is the cross-sectional area,  

 IX is the second moment of areas calculated with regard to global X-axis, with 

considering own plate inertias (i.e., the biti
3/12 terms),  

 IX,r is the (reduced) second moment of areas with regard to global X-axis, with 

neglecting own plate inertias (i.e., the biti
3/12 terms), 

 As,Z is the shear area along the Z direction, defined as follows: 





n

i

iiiZs tbA
1

, cos  

where bi and ti is the width and thickness of the i-th strip, respectively, while i is the (signed) 

angle of the i-th strip with respect to the positive X-axis (i.e., the angle between the global and 

the i-th strip local coordinate system). 

 

The critical forces can be calculated by utilizing that the coefficient matrix has to be singular. 

The results, i.e., the critical forces are discussed in Chapter 5. 
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