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Summary

As an engineer and researcher, I have been dealing with the research, standardization and industrial-
ization of wireless communication systems since the late 90’s. Specifically, I have been witnessing and
contributing to the evolution of the 3rd, 4th and currently to the 5th generation of cellular networks.
The impact of this evolution on the society, public administration, businesses and individuals has been
profound and played a key role in defining the information age and shaping the fully connected societies.
Indeed, the technology footprint of cellular networks has lead to unprecedented economies of scale,
which, in turn resulted in a rapid growth of technology solutions that enable them to operate with high
spectral and energy efficiency in a great number of spectrum bands.

My contributions to the advances of cellular technologies lie in the fields of radio resourcemanagement
and signal processing for multi-antenna systems, and specifically in the areas of channel estimation and
receiver design. In particular, my contributions as a researcher are threefold: (i) conducting research for
the purpose of proposing channel estimation and receiver designs that are superior to their state-of-the-art
counterparts, (ii) identifying the necessary changes in communication standards that ensure the inter-
operability of such novel designs and (iii) developing suitable methodology for the performance analysis
of the proposed channel estimation and receiver techniques. The results of these efforts include research
papers in internationally recognized journals and book chapters, communication standards specifically
developed for the inter-operability of cellular systems and more than 40 internationally granted patents
that are deployed cellular systems around the world.

In this thesis, I develop methodology and techniques to develop receiver algorithms that are optimal
in terms of minimizing the mean squared error of the received data symbols in the presence of the
estimation errors of the prevailing wireless channels through which communication takes place. The
proposed methodology and techniques enable me to prove that the state-of-the-art receiver structures are
suboptimal in the presence ofwireless channel estimation errors, while the proposed receivers are optimal
in terms of minimizing the symbol errors at multi-antenna receivers. I also developed methodology that
enables the exact analysis of the symbol errors as functions of the resources used for obtaining channel
estimates at the wireless receiver and transmitting data through the wireless channel.

These methods have lead to channel estimation techniques and receiver algorithms that significantly
improve the spectral and energy efficiency of multi-antenna cellular systems, and simplify the design
of receiver algorithms when the number of deployed antennas at cellular infrastructure nodes increases
over time.
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Összefoglaló

A kilencvenes évek óta a vezetéknélküli távközlő rendszerek kutatásával, szabványosításával és ipari
megvalósításával foglalkozom.Munkám során hozzájárultam a harmadik, negyedik és jelenleg az ötödik
generációs celluláris rendszerek fejlődéséhez. E fejlődés jelentős hatást gyakorol társadalmunk szinte
minden szegmensére, és meghatározó szerepet játszik az információs társadalom formálásában. A cel-
luláris rendszerek széleskörű használata lehetővé tette e rendszerekben alkalmazott csúcstechnológiák
gyorsan megtérülő kifejlesztését és gazdaságos bevezetését. Ezeknek a mérnöki megoldásoknak köszön-
hetően a celluláris hálózatok milliók számára teszik lehetővé az Internetes szolgáltatások elérését.

Kutatási területem a vezetéknélküli távközlő rendszerek rádiós erőforrásainak menedzselését segítő
algoritmusok, valamint az ilyen rendszerekben alkalmazható jelfeldolgozó módszerek. Specifikusan,
e disszertáció eredményei hozzájárulnak a többantennás vezetéknélküli távközlő rendszerekben al-
kalmazható csatornabecslő és jelvevő módszerek fejlesztéséhez, ezen módszerek szabványosításához
valamint teljesítményelemzéséhez. E területeken elért eredményeimet nemzetközi konferenciákon és
tudományos folyóiratokban valamit számos könyvfejezetben tettem közzé. A javasolt rádiós erőforrás-
kezlő és többantennás rendszerekben alkalmazható jelfeldolgozó technikák ipari megvalósitását jelenleg
több, mint negyven nemzetközi szabadalom védi.

Jelen disszertáció olyan módszereket és technikákat mutat be, melyek optimális többantennás vevők
kifejlesztését teszik lehetővé, abban az értelemben, hogy a vett adatszimbólumok átlagos négyzetes
hibája minimális. A disszertációban kidolgozott módszerekről bebizonyítom, hogy a jelenleg alka-
lmazásban lévő vevőalgoritmusok szuboptimálisak, azaz nem minimalizálják a vett adatszimbólumok
becslési hibáját olyan esetekben, melyekben a rádiós csatorna állapota a vevő számára nem pontosan
ismert. Az általam javasolt módszer újdonsága, hogy a csatornabecslést és a küldött adatszimbólumok
dekódolását együttesen kezeli. Ezáltal lehetővé válik a csatornabecslésre és az adatküldésre szánt rádiós
erőforrások együttes kezelése és optimalizálása. Olyan matematikai módszereket dolgoztam ki, melyek
ezen együttes csatornebecslő - jelvevő módszerek pontos, zárt képletekkel történő elemzését teszik
lehetővé, és ezáltal betekintést nyújtanak az antennák számanak, az alkalmazott adóteljesítménynek
és más mérnöki paramétereknek a kommunikáció minőségére és spektrumhatékonyságára gyakorolt
hatásának az elemzésére.

A disszertációban javasolt módszerek összességükben nagyban javítják a többantennás celluláris
rendszerek spektrális és rádiós erőforrás hatékonyságát és a vezetéknélküli csatornán történő kommu-
nikáció minőségét.
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Chapter 1
Introduction

1.1 Technological Motivation

In this section I review some of the relevant literature in the areas of information theoretical aspects
of wideband communications, Multiple Input Multiple Output (MIMO) transceiver design, pilot based
channel estimation techniques and specifically techniques to mitigate the affects of pilot contamination
(PC) and Channel State Information (CSI) errors. I also point out my contributions to this line of research.

1.1.1 Information Theoretical Aspects of Wideband Communications and Capacity
Analysis

An important insight from the works reported in [1] and [2] is that there is a continuum between
the extremes of communicating in non-coherent (without CSI availability) and coherent (perfect CSI)
fashions over wireless channels in terms of the achieved spectral efficiency. Specifically, communicating
over a completely unknown channel is subject to a penalty of the channel uncertainty, sometimes in the
form of training costs. On the one hand, this penalty depends on the knowledge the receiver has of the
channel and on the channel’s rate of change. On the other hand, reducing this penalty by sending over
only a fraction of the available degrees of freedom results in a loss of spectral efficiency.

In practice, the channel coherence time might be long enough to both estimate the fading coefficients
and use such estimates to communicate coherently after the estimation period, as well as to achieve
performance close to the fully coherent case (as emphasized in [3]).

Reference [2] studies the connection between the channel uncertainty penalty and the coherence
length of the channel in MIMO systems. A key observation is that in the low signal-to-noise ratio (SNR)
regime, estimating the channel at the receiver may not be possible and hence communication may be
desirable without training. More exactly, if the channel coherence length is above a certain antenna- and
SNR-dependent threshold, the noncoherent and coherent capacities become the same in the low-SNR
regime.

The above results suggest that, depending on the SNR and the number of antennas, there may be
a large gap between the coherent and noncoherent extremes in terms of achievable spectral efficiency,
and channel learning is key in bridging this gap. Therefore, it is interesting to consider the ultra-
wideband (UWB) regime and focus on the case when training signals are used for channel estimation at
the receiver. The capacity of this scheme is studied in [4] to investigate the impact of multipath sparsity
on achieving coherent capacity. The key results of that paper are a lower bound on the capacity of the
training-based communication scheme and the coherence level that can be achieved, and the insights
into the impact of channel sparsity on the achievable capacity in the UWB regime.

The work in [5] studies the impact of channel state feedback on the achievable rates in sparse
wideband channels. A key insight is that a partial and/or limited feedback scheme, where only one
bit per independent degree-of-freedom (DoF) is available at the transmitter, can nearly achieve the
performance of a system in which perfect CSI is available at the transmitter. References [6] and [7] focus
on acquiring channel state information at the transmitter in multi-user systems where the feedback from
each user terminal must be limited. It is shown that the combination of long term channel statistics and
instantaneous norm feedback provides sufficient information at the transmitter for efficient scheduling,
beamforming and link adaptation in wide-area scenarios. More recently, the work in [8] considers a
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2 1 Introduction

case in which a transmitter with two antennas broadcasts to two single-antenna users. It is assumed that
the two receiving users have perfect channel information, whereas the transmitter has only statistical
information of each user’s link (covariance matrix of the vector channel). The paper focuses on the
design of beamforming vectors that depend on such statistical information and maximize the ergodic
sum-rate delivered to the two users.

1.1.2 Multiple Input Multiple Output Transceiver Design

Reference [9] deals with robust MIMO precoding design with deterministic imperfect channel state
information at the transmitter channel state information at the transmitter (CSIT) such that the worst-
case received SNR is maximized, or the worst-case error probability is minimized. Reference [10] is
concerned with the design of linear MIMO transceivers that are robust to CSI perturbations at both
sides of the link that is to errors in CSIT and channel state information at the receiver channel state
information at the receiver (CSIR). In that work, the design of the transceiver is based on minimizing
the average sum MSE of all data streams and users. That paper assumes a perturbation error (modelled
as a Gaussian additive term), but this CSI error is not controlled by pilot power or the training scheme.
Therefore, the pilot-data trade-off is not considered in that paper. The model used in [11] builds on the
uplink (UL)-downlink (DL) duality in sumMSE under imperfect CSI. In that work, the imperfectness of
the channel knowledge is taken into account in the joint minimum mean squared error (MMSE) design.
The sum MSE minimization problem for the UL and DL is subject to power constraints. However, the
aspect of pilot power is not considered, and the MSE is not derived as a function of the pilot power under
a constrained pilot-data budget.

1.1.3 Channel Estimation and the Pilot-to-Data Power Ratio

The seminal work reported in [12] evaluates the difference between the mutual information when the
receiver has only an estimate of the channel and when it has perfect knowledge of the channel. Upper
and lower bounds are established on this difference and are related to the variance of the channel
measurement error. In [13] it is shown how training based channel estimation affects the capacity of the
fading channel, recognizing that training imposes a substantial information-theoretic penalty, especially
when the coherence interval T is only slightly larger than the number of transmit antennas or when the
SNR is low. In these regimes, learning the entire channel is highly suboptimal. Conversely, if the SNR is
high, and T is much larger than M , training-based schemes can come very close to achieving capacity.
Therefore, the power that should be spent on training and data transmission depends on the relation
between T and M . The work in [14] can be seen as a sequel of [13], taking into account intersymbol
interference and the receiver technique (equalizer) used on the receiver side. However, none of these
works consider the regularized MMSE receiver, and therefore the pilot power setting that minimizes the
MSE of a regularized MMSE receiver is not discussed in these papers.

The Multi-user Multiple Input Multiple Output (MU-MIMO) setting is the focus of [15], in which
the coherence interval of T symbols is expended for channel training, channel estimation, and precoder
computation for DL transmission. Specifically, the optimum number of terminals in terms of the DL
spectral efficiency is determined for a given coherence interval, number of base station antennas, and
DL/UL signal-to-interference-plus-noise ratio. There is no receiver design involved and the pilot-to-data
power trade-off is out of the scope of the optimization process.

Reference [16] investigates the optimization of the pilot overhead for single-user wireless fading
channels, and the dependencies of this pilot overhead on various system parameters of interest (e.g.
fading rate, SNR) are quantified. By finding an expansion of the spectral efficiency for the overhead
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1.2 Dissertation Structure 3

optimization in terms of the fading rate around the perfect-CSI point, the square root dependence of both
the overhead and the spectral efficiency penalty is clearly identified.

1.1.4 Contributions of the Dissertation

In this dissertation, I consider the uplink of Single-UserMultiple InputMultiple Output (SU-MIMO) and
MU-MIMO systems that use pilot based estimation techniques to acquire CSIR and aim at minimizing
theMSE of the received data symbols. To this end, in this rather general setting, the dissertation addresses
the key design aspects of designing the optimal receiver structure and the finding optimal Pilot-to-Data
Power Ratio (PDPR) an MMSE receiver for data reception.

My contributions to the existing literature are as follows:

• I derive the actual MMSE receiver that – in contrast to the classical or naive formula – minimizes
the MSE of the estimated uplink data symbols in the presence of PDPR dependent estimation errors.

• I derive a closed form exact expression for the MSE, as a function of not only the PDPR but also the
number of antennas. This exact formula allows me to arrive at the key insight that employing the
actual MMSE gives large gains as the number of antennas grows large.

• For the case of uncorrelated receive antennas at the base station (BS), I give a closed form expression
for the MSE of the estimated data symbols and for the pilot power that minimizes this MSE.

• For the case of correlated receive antennas at the BS, I identify the regularized MMSE receiver
structure, and give closed form expressions for the achieved MSE.

• I derive a closed form for MSE of the equalized data symbols for arbitrary correlation structure
between the antennas by allowing any covariancematrix of the uplink channel. This form is powerful,
because it considers not only the pilot and data transmit power levels and the number of receive
antennas at the base station as independent variables, but it also explicitly takes into account antenna
spacing and the statistics of the angle-of-arrivals (AoAs), including the angular spread as a parameter.
For example, the methodology enables me to study the impact of the PDPR on the UL performance
for the popular 3GPP spatial channel model often used to model the wireless channels in cellular
systems. The closed form formula takes into account the impact of number of antennas, AoA and
angular spread on the MSE and thereby on the PDPR that minimizes the MSE.

• I derive closed forms for both the uplink data MSE and spectral efficiency taking into account the
constraints of the comb and block type pilot arrangements. As a major difference with respect to
previous works, this closed form result allows me to find the close-to- optimum number of pilot
symbols and pilot power for a generic channel estimation method. In particular, I compare Least
Square (LS) and MMSE channel estimation in block-type and comb-type pilot arrangement, for a
BS that employs a large number of antennas.

These results allow me to study numerically the gains of using the regularized MMSE receiver and
optimal pilot power levels over schemes that use the naive receivers and/or suboptimal pilot power levels.
A key insight is that the pilot power that minimizes the MSE does not depend on the number of antennas,
but heavily depends on the path loss between the BS and the mobile terminal.

1.2 Structure of the Dissertation

Due to the complexity of MU-MIMO systems and the inherent trade-offs associated with CSI acquisition
and data reception, different system configurations are appropriate in specific deployment scenarios.
Therefore, in this dissertation, I consider a wide range of system configurations, as specified in Table
1.1.

dc_1513_18

Powered by TCPDF (www.tcpdf.org)



4 1 Introduction

Table 1.1 System Configuration and Main Results of Chapters 3-7

Chapter Basic System
Setup

Receiver Struc-
ture

Antenna Correla-
tion

Comment Main Results

Chapter 3 single user naive receiver uncorrelated
antennas

LS channel estima-
tion, single pilot
symbol

Theorem 3.1

Chapter 4 multiuser naive and true
MMSE

uncorrelated
antennas

LS channel estima-
tion, pilot sequence

Theorem 4.3.3,
Theorem 4.5.1

Chapter 5 single user naive receiver correlated anten-
nas

LS and MMSE
channel estimation,
pilot sequence

Theorem 5.5.1

Chapter 6 single user naive receiver uncorrelated
antennas

LS and MMSE
channel estimation,
comb and block
type pilot symbol
arrangements

Theorem 6.5.1,
Theorem 6.5.2

Chapter 7 multiuser naive and true
MMSE

correlated anten-
nas

LS and MMSE
channel estimation

Theorem 7.5.1,
Propositions 7.5.2
and 7.5.3

Chapter 2 considers a simplified system as compared with real MU-MIMO systems deployed in
practice. Despite this simplification in terms of both channel estimation and data reception, the abstract
model of Chapter 2 and the derived results on the MSE of the received data symbols provide valuable
insights, and serve as a starting point for the more realistic system models developed in the subsequent
chapters. The main result of this chapter is a closed form expression for the MSE in a single user SIMO
system in the case of uncorrelated antennas.

Chapter 3 considers a system, in which multiple users share the same time-frequency resource and
facilitate CSI acquisition at the BS by transmitting orthogonal pilot sequences in the code domain. The
main result of this chapter is the derivation of the receiver that minimizes the MSE of the uplink received
data symbols in the presence of MU-MIMO interference and CSI errors at the receiver. As I will point
out, the literature uses the terminology of MMSE receiver for receivers that, in fact, do not minimize
the MSE unless perfect CSI is available at the receiver. To distinguish the true MMSE receiver from
the receiver that requires perfect CSI, in this dissertation I use the terms naive receivers and MMSE
receivers, where the latter refers to the receiver that does not require perfect CSI to minimize the MSE,
as it is detailed in Chapter 3.

Chapter 4 relaxes the assumption on uncorrelated antennas, and thereby it aims at analyzing a
significantly more realistic model than that of the preceding chapters. However, allowing for arbitrary
antenna correlation structures by taking into account antenna spacing and AoA conditions of antenna
arrays used in practice makes the analysis more involved. The main result of this chapter is the closed
form derivation of the MSE taking into account antenna correlation.

Chapter 5 assumes perfectly uncorrelated antennas, but allows for comb and block type pilot ar-
rangements. The results of this chapter include closed form formulas for the MSE of the received data
symbols, and approximate closed form formulas for the spectral efficiency of the system. The results of
this chapter are important for selecting the best channel estimation scheme and pilot symbol pattern in
systems using moderate or large number of antennas.

Finally, Chapter 6 develops a model that can capture the characteristics of MU-MIMO systems in
which antenna correlation cannot be ignored and uses the MMSE receiver. This chapter generalizes
the results of Chapter 3 by allowing for correlated antennas. It also proves a result that was first
conjectured, based on numerical experiments in Chapter 3. This result states that the optimal pilot power
that minimizes the MSE is independent of the number of receive antennas when the system uses the
true MMSE receiver. This result is an important difference as compared with the naive receiver, whose
optimal pilot power is sensitive to the number of antennas, and have to be reconfigured when increasing
the number of antennas at deployed BSs.
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Chapter 2
Background

2.1 The Evolution of Multi-Antenna Systems: From Single User to Massive
Multi-user Multiple Input Multiple Output Systems

Conventional communication systems equipped with a a single transmit antenna and a single receive
antenna are called Single Input Single Output (SISO) communication systems (Figure 2.1, upper left).
This intuitively clear terminology explicitly refers to a signal model that involves the convolution of the
complex impulse response of the wireless channel (typically represented as a random variable h) and
the single input x to model the single output y:

y = h? x+ n, (2.1)

where n is complex baseband additive white Gaussian noise. The above equation is for a single
realization of the complex single output y.

The value of multiple antenna systems as a means to improve communications, including improving
the overall system capacity and transmission reliability, was recognized in the early ages of wireless
communications. Specifically, adaptive transmit or receive beamforming bymeans of employingmultiple
antennas either at the transmitter or the receiver roots back to classic papers that appeared in the 1960s and
1970s [17, 18, 19]. In particular, Widrow et al. described the Least Mean Square (LMS) adaptive antenna
array, which is a technique to adaptively determine the weights that are derived from the received signal
to minimize the MSE between the received signal and a reference (pilot) signal [17, 19]. Applebaum
proposed a multiple antenna array structure that adaptively suppresses sidelobe energy when the desired
signal’s AoA is known, such as in a radar system.

Starting from the 1980’s, there has been a renewed and increased interest in employing multiple
antenna techniques in commercial systems, particularlymobile and cellular systems, wheremultipath and
unintentional interference from simultaneously served users was the main and increasing concern [20].
However, it was not until the cost of digital signal processing was dramatically reduced and commercial
wireless systems matured in the late 1990s that adaptive beamforming became commercially feasible,
and large scale industrial interest has started to take off.

While traditional SISO systems exploit time- or frequency-domain processing and decoding of
the transmitted and received data, the use of additional antenna elements at the cellular BS or user
equipment (UE) side opens up the extra spatial dimension to signal precoding and detection. Depending
on the availability of multiple antennas at the transmitter and the receiver, such techniques are classified
as SIMO, multiple input single output (MISO) or MIMO (Figure 2.1, upper middle and upper right).
Specifically, space-time and space-frequency processing methods in SIMO, MISO and MIMO systems
make use of the spatial dimension with the aim of improving the link’s performance in terms of error
rate, data rate or spectral and energy efficiency [19].

In the context of cellular networks, for example, in the scenario of a multi-antenna enabled BS
communicatingwith a single antennaUE, the UL andDL are referred to as SIMO andMISO respectively.
When a multi-antenna terminal is involved, a full MIMO link may be obtained, although the termMIMO
is sometimes also used in a collective sense including SIMO and MISO as special cases.

A MIMO system, in which the transmitter and receiver are equipped with M and N antennas
respectively, is conveniently characterized by the multi-dimensional version of (2.1) as follows:
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6 2 Background

interference 
cooperation 

Single Cell SISO Single Cell SIMO and MISO Single Cell MIMO 

Single Cell MU MIMO Multi-Cell MU MIMO Network/Cooperative  
MU MIMO 

Fig. 2.1 The evolution of multiple antenna systems from single cell single input single output transmissions to cooperative
network multiple input multiple output transmissions.

y = H︸︷︷︸
N×M

x︸︷︷︸
M×1

+ n︸︷︷︸
N×1

∈ CN×1, (2.2)

where x and y represent the complex M and N dimensional input and output vectors of the MIMO
system respectively.

While a point-to-point multiple-antenna link between a BS and a UE is referred to as SU-MIMO,
MU-MIMO features several UEs communicating simultaneously using the same frequency- and time-
domain resources (Figure 2.1, lower left). By extension, considering a multi-cell system, neighboring
BSs sharing their antennas and forming a virtualMIMO system to communicate with the same set of UEs
in different cells are called cooperative multi-point (CoMP) or network MIMO transmission/reception
(Figure 2.1, lower middle and lower right).

Multiple antenna techniques, as illustrated by Figure 2.1 offer (the combinations of) three advantages
over traditional SISO systems:

• Diversity gain: The diversity gain corresponds to the mitigation of the effect of multipath fading,
by means of transmitting and/or receiving over multiple wireless channels created by the multiple
antennas on the transmit and/or receive sides of the communication link.

• Array gain: The array gain corresponds to a spatial version of the well-known matched-filter gain
achieved by time-domain receivers.

• Spatial multiplexing gain: The spatial multiplexing gain refers to the ability to send multiple data
streams in parallel and to separate themon the basis of their spatial signature. The spatialmultiplexing
gain is a particularly attractive gain of MIMO systems over SISO systems, because MIMO data
stream multiplexing does not come at the cost of bandwidth expansion and can therefore yield
drastic spectral efficiency gains.

As we shall see, the gains associated with multi-antenna systems strongly depend on the availability
of CSI – the matrix H in (2.2) – at the transmitter and the receiver, which motivated the research and
standardization communities to develop resource efficient techniques that enable the acquisition of CSIT
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and CSIR. Due to their great impact on the achievable gains, these acquisition techniques form an
important part of MIMO systems, as discussed in more detail in the next section.

Due to the advances in digital signal processing, antenna theory and the commercial success of
MIMO, and in particular, MU-MIMO systems, the research community has been investigating the
characteristics of large scale antenna systems, in which the cellular BS is equipped with a great number
of antennas. Indeed, evolving wireless standards are expected to support the deployment of several tens
or even hundreds of transmit and receive antennas at infrastructure nodes and over ten transmit and
receive antennas at commercial UEs. It is worth noting that in the asymptotic regime of such large scale
or massive MIMO systems, it turns out that the lack of accurate CSI is the main cause of performance
saturation, besides hardware impairments. Therefore, scalable and resource efficient CSI acquisition
techniques have been and continues to be in the focus of the MIMO community ever since the large
commercial deployments of such systems have started.

2.2 Channel State Information Acquisition and Transceiver Design: Major
Challenges in Multiple Input Multiple Output Systems

As noted, the spectral and energy-efficient operation of wireless systems in general, and multiple antenna
systems in particular, relies on the acquisition of accurate CSIT and CSIR [21]. The main reasons for this
are that (1) transmitters of modern wireless systems adapt the transmitted signal characteristics to the
prevailing channel conditions and (2) the effect of the channel on the transmitted signal must be estimated
in order to recover the transmitted information. As long as the receiver accurately estimates how the
channel modifies the transmitted signal, it can recover the signal from the impacts of the wireless channel.
In practice, pilot signal-based data-aided techniques are used not only due to their superior performance
in fast fading environments, but also due to their cost efficiency and inter-operability in commercial
systems. Consequently, channel estimation methods have been studied extensively and a large number of
schemes, including blind, data-aided, and decision-directed non-blind techniques, have been evaluated
and proposed in the literature [22, 23, 24].

As the number of antennas at the BS and the simultaneously served users grows large, it is desirable
to have pilot based schemes that are scalable in terms of the required pilot symbols and provide high
quality CSI for UL data detection and DL precoding. To this end, MU-MIMO systems employing a
large number of antennas typically rely on channel reciprocity and employ uplink pilots to acquire
CSI at BSs. Although solutions for non-reciprocal systems (such as systems operating in frequency
division duplex (FDD) mode) are available [25], it is generally assumed that massive MIMO systems
can advantageously operate in time division duplex (TDD) mode exploiting channel reciprocity [26, 27].

Pilot reuse generally causes contamination of the channel estimates, which is known as PC or pilot
pollution. As there are a large number of channels to be estimated in MU-MIMO and massive MIMO
systems, accurateCSI acquisition scalingwith the number ofBS antennas becomes a significant challenge
due to the potentially limited number of pilots available. Indeed, PC limits the performance gains of
non-cooperative MU-MIMO systems [26, 28]. Specifically, PC is known to cause a saturation effect
in the signal-to-interference-plus-noise ratio (SINR) as the number of BS antennas increases to a very
large value. This is in contrast to the PC exempt scenario where the SINR increases almost linearly
with the number of antennas [28]. It is therefore clear that the trade-offs associated with the resources
used for pilot signals and those reserved for data transmission is a key design aspect of modern wireless
communication systems.
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Trade-Offs: 

Higher pilot 
power 

Better channel estimate 
SNR degradation 
for data; 
 
Increased effect of pilot  
contamination 

More pilot 
symbols 

Better channel estimate; 
Less aggressive pilot reuse; 
More users for MU  
multiplexing 

Less data symbols 

Block type allocation 

Comb type alloaction 

Time-frequency spaced pilot allocation 

Pilot csatorna 

Adatcsatorna 

Pilot csatorna 

Pilot subcarrier 

Adatcsatorna 

Data subcarrier 

Frequency 

Frequency 

Frequency 

Pilot subcarrier 
Data subcarrier 

Pilot subcarrier 
Data subcarrier 

Fig. 2.2 Trade-offs associated with channel estimation, reference (pilot) signal design in MU-MIMO systems

2.3 Fundamental Trade-Offs in the Design of Multi-user Multiple Input Multiple
Output Systems

Although pilot-based CSI acquisition is advantageous in fast fading environments, its inherent trade-offs
must be taken into account when designing channel estimation techniques for various purposes. These
purposes include demodulation, precoding or beamforming, spatial multiplexing and other channel-
dependent algorithms such as frequency selective scheduling or adaptive modulation and coding scheme
(MCS) selection [29, 30, 15]. The inherent trade-offs between allocating resources to pilot and data
symbols include the following, as illustrated in Figure 2.2:

• Increasing the power, time, or frequency resources to pilot signals improves the quality of the channel
estimate, but leaves fewer resources for uplink or downlink data transmission [29, 30, 15].

• Constructing long pilot sequences (for example, employing orthogonal symbol sequences such as
those based on the well-known Zadoff-Chu sequences in Long Term Evolution (LTE) systems) helps
to avoid tight pilot reuse in multi-cell systems), helps to reduce or avoid inter-cell pilot interference.
This is because long pilot sequences enable to construct a great number of orthogonal sequences
and, consequently, help avoid pilot reuse in neighbor cells, and thereby address the root cause of
PC. On the other hand, spending a greater number of symbols on pilots increases the pilot overhead
and might violate the coherence bandwidth [15, 16].

• Specifically in MU-MIMO systems, increasing the number of orthogonal pilot sequences may
increase the number of spatially multiplexed users at the expense of spending more symbols when
creating the orthogonal sequences [29, 30].

In particular, increasing the pilot power increases the SNR of the received pilot signal, and thereby
improves the quality of channel estimation in terms of the MSE of the channel estimate [31]. Unfortu-
nately, increasing the pilot power may also lead to the SNR degradation of the data signals, and may
exacerbate the PC problem in multi-cell scenarios [32]. In addition to these inherent trade-offs, the
arrangement of the pilot symbols in the time, frequency, and spatial domains have been shown to have
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2.3 Fundamental Trade-Offs in the Design of Multi-user Multiple Input Multiple Output Systems 9

a significant impact on the performance of MU-MIMO and massive MIMO systems in practice, see for
example [29, 30, 33].
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Chapter 3
The Pilot-to-Data Power Ratio in Single User Systems

3.1 Introduction

In this chapter I consider a single input multiple output SIMO system in which the Mobile Station (MS)
balances its PDPR, while the BS uses LS channel estimation to initialize a linear MMSE equalizer. The
objective of this chapter is to derive a closed form for the MSE of the equalized data symbols. To obtain
engineering insight into the inherent pilot-data trade-off as the number of antennas increases at the BS,
my objective is to derive an MSE formula that includes not only the pilot and data transmit power levels
as independent variables, but also the number of receive antennas at the base station (Nr ). This formula
allows me to study the impact of Nr on the MSE and thereby on the PDPR that minimizes the MSE. To
the best of my knowledge the MSE formula as well as the insights obtained in the numerical section of
this chapter are novel.

3.2 System Model

I consider the uplink transmission of a SIMO single cell multi-user wireless system, in which users
are scheduled on orthogonal frequency channels. It is assumed that each mobile station (MS) employs
an orthogonal pilot sequence, so that no interference between pilots is present in the system. This
is a common assumption in massive multi-user MIMO systems in which a single MS may have a
single antenna [26]. Since the channel is quasi-static frequency-flat within each transmission block, it
is equivalent to model the whole pilot sequence as a single symbol per resource block with power Pp ,
while each data symbol is transmitted with power P. The BS estimates the channel h (column vector
of dimension Nr , where Nr is the number of receive antennas at the BS) by employing LS channel
estimators to initialize linear MMSE equalizers.

3.2.1 Channel Estimation Model

Each MS transmits an orthogonal pilot symbol x j that is received by the BS. Thus, the column vector of
the received pilot signal at the BS from the j th MS is:

yp
j =

√
Pp
j α jhj x j +np, (3.1)

where it is assumed that hj is a circular symmetric complex normal distributed vector with mean vector
0 and covariance matrix Cj (of size Nr ), denoted as hj ∼ CN (0,Cj ), α j accounts for the propagation
loss, np ∼ CN (0,σ2 I) is the contribution from additive Gaussian noise and the pilot symbol is scaled as
|x j |

2 = 1,∀ j. Since I assume orthogonal pilot sequences, the channel estimation process can be assumed
independent for each MS, and I can therefore drop the index j. With a LS channel estimator, the BS
estimates the channel based on (3.1) assuming

ĥ =
yp

√
Ppαx

,

11
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12 3 The Pilot-to-Data Power Ratio in Single User Systems

that is:
ĥ = h+

np

√
Ppαx

; |x |2 = 1. (3.2)

It then follows that the estimated channel ĥ is distributed as follows:

ĥ ∼ CN (0,R), (3.3)

with R , E
{
ĥĥH

}
= C+ σ2

Ppα2 I.
Further, it follows that the channel estimation error w , ĥ− h is also normally distributed with a

covariance inversely proportional to the employed pilot power:

w ∼ CN (0,Cw); Cw ,
σ2

Ppα2 INr .

Equations (3.2)-(3.3) imply thath and ĥ are jointly circular symmetric complexGaussian (multivariate
normal) distributed random variables [34], [35]. Specifically, recall from [34] that the covariance matrix
of the joint probability density function (PDF) is composed by autocovariance matrices Ch,h, Cĥ,ĥ and
cross covariance matrices Ch,ĥ, Cĥ,h as

[
Ch,h Ch,ĥ
Cĥ,h Cĥ,ĥ

]
=

[
C C
C R

]
,

and R = C+Cw.

3.2.2 Determining the Conditional Channel Distribution

From the joint PDF of h and ĥ I can compute the following conditional distributions.

Result 3.2.1 Given a random channel realization h, the estimated channel ĥ conditioned to h can be
shown to be distributed as

(ĥ | h) ∼ h+CN (0,Cw). (3.4)

Result 3.2.2 The distribution of the channel realization h conditioned to the estimate ĥ is normally
distributed as follows:

(h | ĥ) ∼ Dĥ+CN
(
0,Q

)
, (3.5)

where D = CR−1 and Q = C−CR−1C.

The proofs of these results are provided in the Appendix of this chapter.
To capture the tradeoff between the pilot and data power, I need to calculate the mean square error of

the equalized data symbols. To this end, let us consider an equalization model in the next subsection.

3.2.3 Equalizer Model based on the Least Square Channel Estimator

The Nr dimensional data signal received by the BS is

y = α
√

P hx+n, (3.6)
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3.3 Determining the Unconditional Mean Squared Error 13

where |x |2 = 1. I assume that the BS employs a naiveMMSE equalizer, where the estimated channel (3.2)
is taken as if it was the actual channel:

G = α
√

P ĥH (α2PĥĥH +σ2INr )−1. (3.7)

Under this assumption, I state the following result as a first step towards determining the MSE.

Result 3.2.3 Let MSE(h, ĥ) = Ex,n
{
|Gy− x |2

}
be the MSE for the equalized symbols, given the real-

izations of h and ĥ. It is

MSE(h, ĥ) = α2PGhhHGH −2α
√

PRe[Gh]+σ2GGH +1. (3.8)

The proof is presented in the Appendix. From this, my next result follows directly.

Result 3.2.4 LetMSE(ĥ) =Eh |ĥ

{
MSE(h, ĥ)

}
be theMSE for the equalized symbols, given the estimated

channel realization ĥ. It satisfies

MSE(ĥ) =G
(
α2P(DĥĥHDH +Q)+σ2INr

)
GH −2α

√
PRe{GDĥ}+1. (3.9)

The proof is presented in the Appendix of the chapter.

3.3 Determining the Unconditional Mean Squared Error

Based on the conditional MSE expression of the preceding section, I am now interested in deriving the
unconditional expectation of the MSE. To this end, the following two lemmas turn out to be useful.

Lemma 3.1. Given a channel estimate instance ĥ, the MMSE weighting matrix G, as a function of the
number of receive antennas at the base station (Nr ) can be expressed as follows

G =
α
√

P

‖ĥ‖2α2P+σ2
ĥH, (3.10)

where ‖ĥ‖2 = ĥH ĥ =
∑Nr

i=1 | ĥi |
2.

The proof is presented in the Appendix.
Using this simple expression of G I can further simplify the conditional expectation of the MSE of

the MMSE equalized data symbols.

Lemma 3.2. When assuming independent channel distributions with identical variances, that is the
channel covariance matrix is diagonal in the form of C = %I, where % ∈ R+, then the covariance matrices
D, Q are D = dI, Q = qI with d = %(%+ σ2

Ppα2 )−1, q = %(1− d) and (3.9) simplifies to

MSE(ĥ) = 1−
2‖ĥ‖2dα2P

‖ĥ‖2α2P+σ2
+

‖ĥ‖2α2P(
‖ĥ‖2α2P+σ2

)2 ·
[
‖ĥ‖2d2α2P+ qα2P+σ2

]
. (3.11)

The proof is presented in the Appendix of this chapter. After these preparations I can state the main
theorem about the MSE.

Theorem 3.1. The expected value of the mean square error of the equalized symbols is
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14 3 The Pilot-to-Data Power Ratio in Single User Systems

E {MSE} = d2Nr

(
G(a,1+Nr )+ prG(1+Nr,1+Nr )−1

)
+

+
b
pr

(
G(a,Nr )+ prG(Nr,Nr )−1

)
−2d ·

(
prG(Nr,1+Nr )

)
+1;

where p = α2P, a = σ2, and

G(x, y) ,
1
pr

e
a
pr xEin

(
y,

a
pr

)
,

and Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function which is commonly available
in numerical programming environments (e.g., it is called ExpIntegralE in Mathematica).

The proof is provided in the Appendix of the chapter.
It is important to note that q and d carry the dependency on the pilot power Pp and p carries the

dependency on the data power P in E {MSE}.

3.4 Numerical Results

Fig. 3.1 Contour plot of the MSE achieved by specific pilot and data power settings of a SIMO system with Nr = 2
receiver antennas. The diagonal line indicates the feasible region of a mobile station of a sum power level of 250 mW.

In this section I consider a single cell SIMO system and concentrate on the performance of a single
mobile station (MS) scheduled on a flat fading frequency channel. Unless stated otherwise, I assume
that the MS has a power budget of 24 dBm that needs to be shared between the pilot and data symbols,
as described in Section 3.2.
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3.4 Numerical Results 15

Fig. 3.2 Contour plot of the MSE achieved by specific pilot and data power settings of a SIMO system with 100 receiver
antennas. The diagonal line indicates the feasible region of a mobile station of a sum power level of 250 mW.

Figure 3.1-3.2 are contour plots of the MSE of the equalized symbols as a function of the employed
pilot and data transmit power levels when the number of receive antennas is Nr = 2 and Nr = 100
respectively. These figures indicate the pilot-data transmit power level pairs that maintain a given MSE.
For example, in Figure 3.1 we can see that the lowest MSE value that is feasible with a 250 mW power
budget is 0.5. In contrast, Figure 3.2 shows that when Nr = 100, the same power budget can maintain an
MSE less than 0.1. From this figure it is also clear that the ’knee’ of the MSE curves is shifted toward
much lower data power levels, which intuitively suggests a shift in the optimal PDPR. For example, the
optimal MSE with 250 mW power budget is attained at around Pp = 145,P = 105 on Figure 3.1 and
around Pp = 215,P = 35 on Figure 3.2.

Figure 3.3 shows the impact of increasing the number of antennas at the base station from 2 to 100 in
terms of the MSE performance as the function of the pilot and data transmit power. On the lower plane
(Nr = 100), the pilot power minimizing the MSE is shifted towards a higher value compared with the
Nr = 2 case (indicated with a circle) when I assume a power budget of 250 mW.

These results are reinforced by Figure 3.4 that shows the MSE as a function of the allocated pilot
power under varying power budget (200mW, 225 mW and 250 mW) and assuming different number
of receive antennas (Nr = 2, Nr = 20 and Nr = 100). Here we can clearly see the tendency that as the
number of the antennas grows large, the MS needs to allocate a smaller share of the total budget to data
transmission and can ’afford’ a larger share of the budget for pilot transmission. This basic insight is in
line with the classical observation by Marzetta predicting a diminishing data transmit power required for
maintaining an SNR target [26].

Figure 3.5 shows the MSE as a function of the data power and the path loss for two antenna
configurations (Nr = 2 and Nr = 100). We can observe that the data power level that minimizes the MSE
is not only dependent on Nr , but also on the path loss. Specifically, for larger path loss (cell edge) users,
more data power (i.e. less pilot power) minimizes the MSE than for cell center users. However, this effect
becomes less pronounced as the number of antennas increases.
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16 3 The Pilot-to-Data Power Ratio in Single User Systems

Fig. 3.3 The MSE of a SIMO system of 2 and 100 antennas. The circle indicates the optimal pilot and data power setting
for the 2 antenna system with a sum power constraint of 250 mW.

3.5 Concluding Remarks

The main contribution of this chapter is the derivation of the MSE as the function of the employed
pilot and data power levels as well as the number of receive antennas in SIMO systems. The numerical
results provide two key insights. First, as the number of antennas at the base station increases, the MSE
is minimized when a larger portion of the total transmit power budget is allocated for pilot transmission.
This result is in line with the results from massive MIMO systems that suggest that the required transmit
energy per bit vanishes as the number of antennas grows large. Secondly, as the path loss between the
MS transmitting the pilot and base station increases, a smaller portion of the power budget needs to
be spent on the pilot power. This second effect becomes less pronounced as the number of antennas
at the base station increases. My summary is therefore that the PDPR that minimizes the MSE of the
equalized symbols heavily depends on both the number of antennas and the MS position within the cell.
An important future work is to investigate multicell systems, in which greater pilot power does not only
imply lower available power for data transmission, but also a higher level of pilot contamination [26].
Therefore, these conclusions from the single cell analysis need to be reexamined in multicell systems.
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3.5 Concluding Remarks 17

Fig. 3.4 The MSE as a function of the pilot power of a SIMO system with Nr = 2, 20, 100 antennas respectively, for 3
different sum power constraints (200 mW, 225 mW and 250 mW). As the number of antennas increases, the optimal pilot
power increases.

Appendix of Chapter 3

Proof of Result 3.2.1

Proof. To prove the result I apply (10.24)-(10.28) of [34], but in contrast with [34], (3.4) and (3.5), in
this proof I explicitly distinguish between the condition, h0, and the unconditional random vector, h.
According to [34] the conditional distribution of ĥ|h0 is complex normal with the following properties:

E(ĥ|h0) = E(ĥ)︸︷︷︸
0

+ Cĥ,h︸︷︷︸
C

C−1
h,h︸︷︷︸

C−1

(
h0− E(h)︸︷︷︸

0

)
= h0.

Cĥ |h0
= Cĥ,ĥ−Cĥ,hC−1

h,hCh,ĥ = R−C = Cw;

ut

Proof of Result 3.2.2

Proof. Similarly to the proof of Result 3.2.1, h|ĥ0 is complex normal distributed with the following
mean and covariance [34]

E(h|ĥ0) = E(h)+Ch,ĥC−1
ĥ,ĥ

(
ĥ0−E(ĥ)

)
= CR−1ĥ0;

Ch |ĥ0
= Ch,h−Ch,ĥC−1

ĥ,ĥCĥ,h = C−CR−1C.
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18 3 The Pilot-to-Data Power Ratio in Single User Systems

Fig. 3.5 The MSE as a function of the data power and the distance dependent path loss of a sum power constrained (250
mW) SIMO system with Nr = 2 and Nr = 100 antennas. For Nr = 2, as the path loss increases, the data power level that
minimizes the MSE increases. However, this effect is not visible for Nr = 100.

ut

Proof of Result 3.2.3

Proof. Having y = α
√

Phx +n the mean square error of the equalized symbols, given a specific set of
realizations h and ĥ can be calculated as:

MSE
(
h, ĥ

)
= Ex,n

{
|Gy− x |2

}
= Ex,n



| (Gα

√
Ph−1)x︸             ︷︷             ︸
a

+ Gn︸︷︷︸
b

|2


. (3.12)

Using |a+ b|2 = (a+ b)(aH + bH ) = aaH + abH + aHb+ bbH I further have
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MSE
(
h, ĥ

)
= Ex,n

{
((Gα

√
Ph−1)x)((Gα

√
Ph−1)x)H

}
+

+Ex,n
{
((Gα

√
Ph−1)x)(Gn)H

}
+Ex,n

{
Gn((Gα

√
Ph−1)x)H

}
+

+Ex,n
{
Gn(Gn)H

}
=

= (Gα
√

Ph−1)Ex,n{xxH }︸       ︷︷       ︸
1

(Gα
√

Ph−1)H+

+ (Gα
√

Ph−1)Ex,n{x}︸  ︷︷  ︸
0

Ex,n{nH }GH+

+GEx,n{n}Ex,n{x}︸  ︷︷  ︸
0

(Gα
√

Ph−1)H+

+GEx,n{nnH }︸       ︷︷       ︸
σ2I

GH ==
���Ghα

√
P−1���

2
+σ2GGH .

Finally

MSE
(
h, ĥ

)
=

���Ghα
√

P−1���
2
+σ2GGH =

=
(
Ghα

√
P−1

)
·
(
Ghα

√
P−1

)H
+σ2GGH =

=
(
Ghα

√
P−1

)
·
(
hHGHα

√
P−1

)
+σ2GGH =

= α2PGhhHGH −Ghα
√

P−hHGHα
√

P+1+σ2GGH =

= α2PGhhHGH −α
√

P
(
Gh+hHGH )

+1+σ2GGH =

= α2PGhhHGH −α
√

P 2Re [Gh]+1+σ2GGH .

ut

Proof of Result 3.2.4

Proof. I can compute Eh |ĥ

{
MSE

(
h, ĥ

)}
based on the conditional distribution given in (3.5):(

h��ĥ
)
∼ Dĥ+CN

(
0,Q

)
.

Recall that for a complex random column vector X:

E(XXH ) = E(X) E(X)H +Cov(X).

Consequently,
E{h|ĥ} = Dĥ and E{hhH |ĥ} = DĥĥHDH +Q .

The expectation reads as:
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20 3 The Pilot-to-Data Power Ratio in Single User Systems

MSE
(
ĥ
)
= Eh |ĥ

{
MSE

(
h, ĥ

)}
= (3.13)

= Eh |ĥ

{
GhhHGHα2P

}
−Eh |ĥ

{
2α
√

PRe
[
Gh

]}
+

+σ2GGH +1 =

=GEh |ĥ

{
hhH

}
GHα2P−2α

√
PRe

[
GEh |ĥ {h}

]
+

+σ2GGH +1 =

=G(DĥĥHDH +Q)GHα2P−2α
√

PRe
[
GDĥ

]
+

+σ2GGH +1 =

=G
(
α2P(DĥĥHDH +Q)+σ2I

)
GH−

−2α
√

PRe
[
GDĥ

]
+1.

I now focus on the first term of the above and make use of the following. From (3.5) I know that:(
h��ĥ

)
∼ CN

(
Dĥ,Q

)
.

Then: (
hhH ��ĥ

)
∼ CN

(
DĥĥHDH +Q,ChhH ��ĥ

)
.

With this, the first term of (3.13) becomes:

G
(
α2P(DĥĥHDH +Q)+σ2I

)
GH =G

(
α2P

(
DĥĥHDH +Q

))
GH .

Now focusing on the second term of (3.13):

−2α
√

PRe
[
GDĥ

]
= −2α

√
PEx,n

{
Re {Gh} ���{ĥ}

}

= −2α
√

PRe
{
GE

(
h��ĥ

)}
= −2α

√
PRe

{
GDĥ

}
. (3.14)

Putting the first and second term together, the right hand side of (3.13) finally takes the following form:

MSE
(
ĥ
)
=G

(
α2P

(
DĥĥHDH +Q

))
GH −2α

√
PRe

[
GDĥ

]
+σ2GGH +1. (3.15)

ut

Proof of Lemma 3.1

Proof. From (3.7) I have
G

(
α2PĥĥH +σ2I

)
= α
√

PĥH , (3.16)

whose solution for G is (3.10). To show this, I substitute (3.10) into the left hand side of (3.16) and
obtain
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α
√

P

‖ĥ‖2α2P+σ2
ĥH

(
α2PĥĥH +σ2I

)
=

α
√

P

‖ĥ‖2α2P+σ2
α2P ĥH ĥ︸︷︷︸

‖ĥ‖2

ĥH +
α
√

P

‖ĥ‖2α2P+σ2
σ2ĥHI =

α
√

P
(

α2P‖ĥ‖2

‖ĥ‖2α2P+σ2
ĥH +

σ2

‖ĥ‖2α2P+σ2
ĥH

)
=

α
√

PĥH ,

which is indeed the right hand side of (3.16). According to the matrix inversion lemma for matrices A,
B, C, D of size n× n, n×m, m×m, m× n, respectively, I have

(A+BCD)−1 = A−1−A−1B
(
DA−1B+C−1

)−1
DA−1 .

Substituting A = σ2I, B = α
√

Pĥ, C = 1, D = α
√

PĥH , I have

(σ2I+α2PĥĥH )−1 =
1
σ2 I−

1
σ2 Iα

√
Pĥ · ·

(
α
√

PĥH 1
σ2 Iα

√
Pĥ+1

)−1
α
√

PĥH 1
σ2 I =

=
1
σ2 I−

α2P
σ4 ĥĥH

α2P
σ2 ĥH ĥ+1

,

where ĥH ĥ = ‖ĥ‖2. Finally,

G = α
√

PĥH (α2PĥĥH +σ2I)−1 =
α
√

P
σ2 ĥH −

α
√

Pα2P
σ4 ĥH ĥ

α2P
σ2 ‖ĥ‖2+1

ĥH =

=
α
√

P
σ2 ĥH

(
1−

α2P‖ĥ‖2

α2P‖ĥ‖2+σ2

)
=
α
√

P
σ2 ĥH

(
σ2

α2P‖ĥ‖2+σ2

)
=

=
α
√

P

α2P‖ĥ‖2+σ2
ĥH .

ut

Proof of Lemma 3.2

Proof. To simplify the notation I introduce z such that

G =
α
√

P

‖ĥ‖2α2P+σ2
ĥH = z ĥH

Substituting this into (3.9) and using D = dI, Q = qI yields (since d ∈ R+):
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22 3 The Pilot-to-Data Power Ratio in Single User Systems

MSE
(
ĥ
)
= zĥH

[
α2P

(
dIĥĥHdI+ qI

)
+σ2I

]
zĥ−2α

√
PRe

{
zĥHdIĥ

}
+1 =

= zĥH
[
α2P

(
d2ĥĥH + qI

)
+σ2I

]
zĥ−2α

√
PRe

{
zdĥH ĥ

}
+1 =

= z2α2Pd2ĥH ĥĥH ĥ+ z2α2PqĥH ĥ+ z2σ2ĥH ĥ−2α
√

PRe
{
zd‖ĥ‖2

}
+1 =

= z2α2Pd2‖ĥ‖2‖ĥ‖2+ z2α2Pq‖ĥ‖2+ z2σ2‖ĥ‖2−2α
√

Pzd‖ĥ‖2+1 =

= z2‖ĥ‖2
(
α2Pd2‖ĥ‖2+α2Pq+σ2

)
−2α
√

Pzd‖ĥ‖2+1 ,

which is equivalent with (3.11). ut

Proof of Theorem 3.1

Proof. To shorten the notation I introduce Y = ‖ĥ‖2, p = α2P and b = qp+σ2 and rewrite (3.11) with
these notations.

MSE(ĥ) = d2p
pY 2

(σ2+ pY )2 + b
pY

(σ2+ pY )2 −2d
pY

σ2+ pY
+1. (3.17)

Next, I observe that MSE(ĥ) depends on ĥ only through ‖ĥ‖2 and ‖ĥ‖4. Since ĥ is a complex normal
random vector (3.3) with covariance matrix R = rI and r = %+ σ2

Ppα2 , it follows that Y = ‖ĥ‖2 follows the
Gamma(Nr,1/r) distribution (the sum of Nr independent r.v. which are exponentially distributed with
parameter 1/r) with probability density function:

fY (x) =
r−Nr xNr−1e−x/r

(Nr −1)!
x > 0. (3.18)

I will make use of the following integrals:

∫ ∞

x=0

r−Nr xNr−1e−x/r

(Nr −1)!
·

px2

(a+ px)2 dx =
Nr

(
− pr + e

a
pr

(
a+ (1+Nr )pr

)
Ein

(
1+Nr,

a
pr

))
p2r

; (3.19)

∫ ∞

x=0

r−Nr xNr−1e−x/r

(Nr −1)!
·

px
(a+ px)2 dx =

−pr + e
a
pr

(
a+Nr pr

)
Ein

(
Nr,

a
pr

)
p2r2 ; (3.20)

and ∫ ∞

x=0

r−Nr xNr−1e−x/r

(Nr −1)!
·

px
(a+ px)

dx = e
a
pr NrEin

(
1+Nr,

a
pr

)
, (3.21)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.
Theorem 3.1 follows from averaging (3.17) according to the density function (3.18) and using (3.19)-

(3.21):
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E {MSE} = d2p
∫ ∞

x=0

px2

(a+ px)2 fY (x)dx+ b
∫ ∞

x=0

px
(a+ px)2 fY (x)dx−

−2d
∫ ∞

x=0

px
a+ px

fY (x)dx+1 =

= d2p · Nr

(
e

a
pr

(
a+ (1+Nr )pr

)
· Ein

(
1+Nr,

a
pr

)
− pr

)
1

p2r
+

+ b ·
(
e

a
pr

(
a+Nr pr

)
· Ein

(
Nr,

a
pr

)
− pr

)
1

p2r2−

−2d ·
(
e

a
pr NrEin

(
1+Nr,

a
pr

))
+1 =

= d2Nr
1
pr

(
e

a
pr aEin

(
1+Nr,

a
pr

)
+ e

a
pr (1+Nr )prEin

(
1+Nr,

a
pr

)
− pr

)
+

+ b
1

p2r2

(
e

a
pr aEin

(
Nr,

a
pr

)
+ e

a
pr Nr prEin

(
Nr,

a
pr

)
− pr

)
−

−2d ·
(
e

a
pr NrEin

(
1+Nr,

a
pr

))
+1 =

= d2Nr

(
G(a,1+Nr )+ prG(1+Nr,1+Nr )−1

)
+

+
b
pr

(
G(a,Nr )+ prG(Nr,Nr )−1

)
−2d ·

(
prG(Nr,1+Nr )

)
+1;

where

G(x, y) ,
1
pr

e
a
pr xEin

(
y,

a
pr

)
.

ut
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Chapter 4
The Minimum Mean Squared Error Receiver in the
Presence of Channel Estimation Errors

4.1 Introduction

As discussed, in MU-MIMO systems, the fundamental trade-off between spending resources CSI acqui-
sition and data transmission is known to affect the performance in terms of spectral and energy efficiency
[16], [36]. Therefore, balancing the pilot-to-data power ratio (PDPR) [29] and determining the number
of pilot and data symbols are important aspects of designing MU-MIMO systems [15], [37], [38]. From
a different perspective, a related work combined a transmitter employing a linear dispersion code (LDC)
and a linear MMSE detector at the receiver [39]. It has been found that optimizing the average normal-
ized MSE is relevant for detectors employing a linear front end and helps designing optimal transmit
strategies. In this chapter I build on the results on SU-MIMO systems in Chapter 2 and consider the
uplink of a MU-MIMO system employing an MMSE receiver for data reception [40]. Similarly to the
receiver studied in the previous chapter, the MU-MIMO MMSE receiver is initialized by the estimates
of the CSI rather than assuming the availability of perfect CSI. Thus, the contribution of this chapter to
the existing literature is two-fold:

1. I derive the actualMMSE receiver that, – in contrast to the classical or naïve formula [41] –minimizes
the MSE of the estimated uplink data symbols in the presence of PDPR dependent estimation errors.

2. Secondly, I derive a closed form exact expression for the MSE, as a function of not only the PDPR
but also the number of antennas. This exact formula allows me to arrive at the key insight that
employing the actual MMSE gives large gains as the number of antennas grows large.

4.2 System and Channel Estimation Model

In this chapter I consider the uplink of a MU-MIMO system, in which the MS transmit orthogonal pilot
sequences s =

[
s1, ..., sτp

]T
∈ Cτp×1, in which each pilot symbol is scaled as |si |2 = 1, for i = 1, .., τp .

The pilot sequences are constructed such that they remain orthogonal as long as the number of spatially
multiplexed users is maximum τp . Specifically, without loss of generality, it is assumed that the number
MU-MIMO users is K ≤ τp . In practice, K � Nr , where Nr is the number of antennas at the BS.

In this chapter I assume a comb type arrangement of the pilot symbols [42]. Given F subcarriers
in the coherence bandwidth, a fraction of τp subcarriers are allocated to the pilot and Fd = F − τp
subcarriers are allocated to the data symbols. Each MS transmits at a constant power Ptot , however,
the transmission power can be distributed unequally in each subcarrier. In particular, considering a
transmitted power Pp for each pilot symbol and P for each data symbol transmission, the sum constraint
of τpPp + (F − τp)P = Ptot is enforced. Thus, the Nr × τp matrix of the received pilot signal from a
specific MS at the BS can be conveniently written as:

Yp = α
√

PphsT +N, (4.1)

where it is assumed that h ∈ CNr×1 is a circular symmetric complex normal distributed column vector
with mean vector 0 and covariance matrix C (of size Nr ), denoted as h ∼ CN (0,C), α accounts for the

25
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26 4 The Minimum Mean Squared Error Receiver in the Presence of Channel Estimation Errors

propagation loss, N ∈ CNr×τp is the spatially and temporally additive white Gaussian noise (AWGN)
with element-wise variance σ2

p , where the index p refers to the noise power on the received pilot signal.
In this chapter I assume that the BS uses the popular least square (LS) estimator that relies on

correlating the received signal with the known pilot sequence. Note that my methodology to determine
the MSE of the received data is not confined to the LS estimator, but is directly applicable to an MMSE
or other channel estimation techniques as well. For eachMS, the BS utilizes pilot sequence orthogonality
and estimates the channel based on (4.1) assuming:

ĥ = h+w =
1

α
√

Pp

Yps∗(sT s∗)−1 = h+
1

α
√

Ppτp
Ns∗, (4.2)

where s∗ =
[
s∗1, ..., s

∗
τp

]T
∈ Cτp×1 denotes the vector of pilot symbols and (sT s∗) = τp . By considering

h ∼ CN (0,C), it follows that the estimated channel ĥ is a circular symmetric complex normal distributed
vector ĥ ∼ CN (0,R), with

R , E{ĥĥH } = C+
σ2
p

α2Ppτp
INr . (4.3)

As it was shown in [42], the distribution of the channel realization h conditioned on the estimate ĥ is
normally distributed as follows:

(h | ĥ) ∼ Dĥ+CN
(
0,Q

)
, (4.4)

where D , CR−1 and Q , C−CR−1C.

4.2.1 Perfect Channel Estimation

With perfect channel estimation:

(h | ĥ) ∼ Dĥ+CN
(
0,Q

)
, (4.5)

where D , CR−1 = INr and Q , C−CR−1C = 0Nr .
That is:

G? =Gnaive, G?
κ =Gnaive

κ Gκ

where

Gnaïve =Gnaïve(ĥ) =
α
√

PĥH

α2P | |ĥ| |2+σ2

Note that the squared error is:
|Gy− x |2

4.3 The Linear Minimum Mean Squared Error Receiver

4.3.1 Received Data Signal Model

The MU-MIMO received data signal at the BS can be written as:
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4.3 The Linear Minimum Mean Squared Error Receiver 27

y = ακhκ
√

Pκ xκ︸        ︷︷        ︸
User-κ

+

K∑
k,κ

αkhk

√
Pk xk︸              ︷︷              ︸

Other users

+nd, (4.6)

where αk ·hk is the M ×1 vector channel including large and small scale fading between User-k and the
BS (αk and hk respectively), xk is the transmitted data symbol by User-k and nd emphasizes the noise
on the received data signal.

4.3.2 Employing a Minimum Mean Squared Error Receiver at the Base Station

In this chapter the BS employs anMMSE receiverGκ ∈C
1×Nr to estimate the data symbol transmitted by

User-κ. Recall that the MMSE receiver aims at minimizing the mean-square error between the estimate
Gκy and the transmitted symbol xκ :

Gκ , argmin
G
E{MSE} = argmin

G
E{|Gy− xκ |2}. (4.7)

When the BS employs a naïve receiver, the estimated channel is taken as if it was the actual channel:

Gnaive
κ = ακ

√
Pκ ĥH

κ (α2
κPκ ĥκ ĥH

κ +σ
2
dI)−1. (4.8)

As we shall see, this receiver does not minimize the MSE.

4.3.3 Determining the Actual Minimum Mean Squared Error Receiver Matrix

This section is concerned with determining the MMSE receiver matrix Gk that the BS should use to
demodulate the received data signal such that the data estimation error for User-κ is minimized taking
explicitly account that the BS has access only to the estimated channels ĥκ , as opposed to the naïve
receiver that minimizes theMSE only when perfect channel estimation is assumed. To this end, I consider
the MSE of the estimated data symbols of the tagged User-κ: obtained from the signal model of (4.6)
using a receiver vector Gκ :

MSE (Gκ,h1, . . .,hK ) = Ex,nd
{|Gκy− xκ |2} =

= Ex,nd

������
(Gκακhκ

√
Pκ −1)xκ +

K∑
k,κ

Gκαkhk

√
Pk xk +Gκnd

������

2

=

= Ex,nd

���(Gκακhκ
√

Pκ −1)xκ
���
2
+

K∑
k,κ

PkEx,nd
|Gκαkhk xk |2+

+Ex,nd
|Gκnd |

2 , (4.9)

where I utilized that E{xk } = 0 and E{nd } = 0.
Additionally, utilizing E{xk x∗

k
} = 1 and E{ndnH

d
} = σ2

d
INr , I have:
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28 4 The Minimum Mean Squared Error Receiver in the Presence of Channel Estimation Errors

MSE (Gκ,h1, . . .,hK ) =

���Gκακhκ
√

Pκ −1���
2
+

K∑
k,κ

Pk |Gκαkhk |
2+σ2

dGκGH
κ , (4.10)

from which my first result follows.

Result 4.3.1 When the BS uses the receiver vector Gκ , the MSE of the received data symbols of the
tagged user κ assuming perfect channel state information at the base station is:

MSE (Gκ,hκ ) =
Eh1,...,hκ−1,hκ+1,...,hK {MSE (Gκ,h1, . . .,hK )} =

α2
κPκGκhκhH

κ GH
κ −ακ

√
Pκ (Gκhκ +hH

κ GH
κ )+1+

+

K∑
k,κ

α2
kPkGκCkGH

κ︸                  ︷︷                  ︸
Multi-User Interference

+σ2
dGκGH

κ . (4.11)

Although this result is useful, I need an expression for the MSE as a function of ĥ, rather than h.

Result 4.3.2 The MSE of the received data symbols of the tagged user κ as a function of the estimated
channel at the BS is:

MSE
(
Gκ, ĥκ

)
= Ehκ |ĥκMSE (Gκ,hκ ) =

α2
κPκGκ (Dκ ĥκ ĥH

κ Dκ
H +Qκ )GH

κ

−ακ
√

Pκ (GκDκ ĥκ + ĥH
κ Dκ

HGH
κ )+1+

K∑
k,κ

α2
kPkGκCkGH

κ +σ
2
dGκGH

κ . (4.12)

Using these results, I am in the position of deriving the optimal MU-MIMO receiver vector for User-κ:

Theorem 4.3.3 The optimal G?
κ can be derived as:

G?
κ = ακ

√
Pκ ĥH

κ Dκ
H ·

·*
,
α2
κPκ

(
Dκ ĥκ ĥH

κ Dκ
H +Qκ

)
+

K∑
k,κ

α2
kPkCk +σ

2
dI+

-

−1

. (4.13)

The proof is in the Appendix of the present chapter.

4.4 Determining the Mean Squared Error of the Received Data Symbols with
Optimal G?

In the case of proper antenna spacing, the channel covariance matrices can be modeled as Cκ = cκI,
which for k = κ implies Dκ = dκI, Qκ = qκI. In this case, the MSE as a function of the estimated channel
can be obtained as follows.

Lemma 4.4.1 In the case of uncorrelated antennas at the BS, when the BS employs the optimal receiver
G?
κ , the mean square error of the received data symbols can be expressed as:
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4.5 Calculating the Unconditional Mean Squared Error 29

MSE
(
ĥκ

)
= −2ακ

√
Pκgκdκ | |ĥκ | |2+1+

g2
κ ·

*
,
α2
κPκd2

κ | |ĥκ | |4+ *
,
α2
κPκqκ +

K∑
k,κ

α2
kPkck +σ2

d
+
-
| |ĥκ | |2+

-

where

gκ ,
ακ
√

Pκdκ
α2
κPκ

(
d2
κ | |ĥκ | |2+ qκ

)
+

∑K
k,κ α

2
k
Pkck +σ2

d

. (4.14)

I can now derive the unconditional MSE from MSE = EĥκMSE
(
ĥκ

)
based on the distribution of ĥκ

which I recall from (4.3) as ĥκ ∼ CN
(
0,Rκ

)
.

4.5 Calculating the Unconditional Mean Squared Error

To calculate the unconditional MSE, notice that the MSE(ĥκ ) depends on ĥκ only through | |ĥκ | |2. Thus,
I can conveniently introduce Yκ , | |ĥκ | |2, substitute gκ into (4.14) and, by inspecting (4.14), introduce
the following notations:

T1 , g2
κ

(
α2
κPκd2

κ | |ĥκ | |4
)
= sκ

sκY 2
κ

(bκ + sκYκ )2 , (4.15)

where I introduced the notation sκ , d2
κpκ , pκ , α2

κPκ , σ2
κ ,

∑K
k,κ α

2
κPκcκ +σ2

d
and Yκ , | |ĥκ | |2 and

bκ , qκpκ +σ2
κ . Similarly:

T2 , g2
κ

*
,
α2
κPκqκ +

K∑
k,κ

α2
kPkck +σ2

d
+
-
| |ĥκ | |2 =

= bκ
sκYκ

(bκ + sκYκ )2 , (4.16)

T3 , 2dκακ
√

Pκ | |ĥκ | |2 · gκ =

= 2
d2
κpκYκ

σ2
κ + pκ

(
d2
κYκ + qκ

) = 2
sκYκ

bκ + sκYκ
. (4.17)

I can now prove the following proposition, which will serve as the basis for numerical evaluations.

Theorem 4.5.1 The unconditional MSE of the received data symbols of User-κ when the BS uses the
optimal G?

κ receiver is as follows.
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MSE =

sκ ·
Nr

(
− sκr + e

bκ
sκ r

(
bκ + (1+Nr )sκr

)
Ein

(
1+Nr,

bκ
sκr

))
s2
κr

+

+ bκ ·
−sκr + e

bκ
sκ r

(
bκ +Nr sκr

)
Ein

(
Nr,

bκ
sκr

)
s2
κr2

−

−2 · e
bκ
sκ r NrEin

(
1+Nr,

bκ
sκr

)
+1, (4.18)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.

The proof is in the Appendix of this chapter.

4.6 Numerical Results and Concluding Remarks

Table 4.1 System Parameters

Parameter Value
Number of antennas Nr = 2, 4, 8, 10, 20, 50, 100, 500
Path Loss of tagged User-κ α = 40, 45, 50 dB
Number of pilot and data symbols τp = 1; τd = 11
Power budget τpPp +τdP = Ptot =250 mW.

In this section I consider a single cell single user MIMO system, in which the mobile terminal is
equipped with a single transmit antenna, whereas the BS employs Nr receive antennas. Note that the
performance characteristics of the proposed MMSE receiver as compared with the naïve receiver are
similar in the multi-user MIMO case from the perspective of the tagged user, since the proposed receiver
treats the multi-user interference as noise according to (4.13). The key input parameters to this system
that are necessary to obtain numerical results using theMSE derivation in this chapter (ultimately relying
on Theorem 4.5.1) are listed in Table 4.1.

Figure 4.1 compares the performance of the system in which the number of antennas at the BS grows
large (Nr = 500). As expected, given a fix sum power budget of τpPp+τdP = Ptot =250 mW, the optimal
pilot-data power allocation becomes non trivial as it depends on the number of antennas, path loss and
the employed receiver structure. The minimum value of the MSE in all cases are marked with a dot,
which clearly indicate that the achievable minimum MSE with this power budget is significantly lower
when employing the MMSE receiver.

Figure 4.2 shows the achievable minimum MSE value and the optimal pilot power setting as the
function of the number of antennas at the base station. First, notice that the gain in terms of achievable
minimum MSE increases as the number of antennas increases.

For example, at Nr = 500 the gain is around 6 dB. Interestingly, the pilot power setting that minimizes
the MSE does not depend on the number of antennas when using the MMSE receiver, whereas it
increases with the number of antennas in the case of the naïve receiver. The intuitive explanation for
this is that in the case of uncorrelated antennas, according to equation (4.3), the diagonal elements of
the covariance of the CSI error does not depend on the number of antennas, although the size of the
matrix does. Thus, the pilot-data ration when using the MMSE receiver does not depend on the number
of antennas, as opposed to the naïve receiver case, which does not minimize the MSE. The formal proof
of this phenomenon will be presented in Chapter 7.
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Naïve receiver

MMSE

Naïve receiver

MMSE

Minimum value

Fig. 4.1 MSE as the function of the pilot power Pp assuming a fixed pilot+data power budget with Nr = 20 and Nr = 500
number of antennas when using the naïve receiver and the MMSE receiver.

Appendix of Chapter 4

Appendix I: Proof of Result 4.3.1

From (4.10) it follows, that focusing on the tagged User-κ:

MSE (Gκ,hκ ) = Eh1,...,hκ−1,hκ+1,...,hKMSE (Gκ,h1, . . .,hK ) =
���Gκακhκ

√
Pκ −1���

2
+

∑
k,k,κ

α2
kPkEhk

|Gκhk |
2+σ2

dGκGH
κ . (4.19)

Recognizing that [42]:

���Gκhκα
√

P−1���
2
= α2PGκhκhH

κ GH
κ −α

√
P(Gκhκ +hH

κ GH
κ )+1,

and Ehk
|Gκhk |

2 =GκEhk
|hk |

2GH
κ =GκCkGH

κ , the result follows.

Appendix II: Proof of Result 4.3.2

Utilizing (hκ | ĥκ ) ∼Dκ ĥκ +CN
(
0,Qκ

)
, where Dκ =CκRκ

−1 , Rκ =Cκ +Cw
κ and Qκ =Cκ −CκRκ

−1Cκ ,
and, by averaging over hκ |ĥκ , and following the technique proposed in [42], the result follows.

dc_1513_18

Powered by TCPDF (www.tcpdf.org)



32 4 The Minimum Mean Squared Error Receiver in the Presence of Channel Estimation Errors

MIN MSE

OPT PILOT

Naïve receiver

Naïve receiver

MMSE

MMSE

Fig. 4.2 The achievable minimum MSE and the optimum pilot power as the function of the number of the base station
antennas when employing the naïve receiver and the MMSE receiver. The dots in the figure correspond to the case of
Nr = 20 and Nr = 500 antennas.

Appendix III: Proof of Theorem 4.3.3

To derive the optimal Gκ , I rewrite MSE
(
Gκ, ĥκ

)
in quadratic form of (xAxH −xB−BHxH +1):

MSE
(
Gκ, ĥκ

)
= − Gκ︸︷︷︸

x

ακ
√

PκDκ ĥκ︸         ︷︷         ︸
B

−ακ
√

Pκ ĥH
κ DH

κ GH
κ +1+

+Gκ
*
,
α2
κPκ

(
Dκ ĥκ ĥH

κ Dκ
H +Qκ

)
+

K∑
k,κ

α2
kPkCk +σ

2
dI+

-︸                                                            ︷︷                                                            ︸
A

GH
κ (4.20)

Based on this quadratic form, the optimal receiver (x? = BHA−1) is as in (4.13).
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Appendix IV: Proof of Lemma 4.4.1

If Cκ = cκI, implying Dκ = dκI, Qκ = qκI and the optimal G?
κ can be written as:

G?
κ =

ακ
√

Pκdκ
α2
κPκ

(
d2
κ | |ĥκ | |2+ qκ

)
+

∑K
k,κ α

2
k
Pkck +σ2

d

ĥH
κ

, gκ · ĥH
κ . (4.21)

Substituting G?
κ into the MSE of Result 4.3.2 gives the lemma.

Appendix V: Proof of Theorem 4.5.1

Recognizing that Yκ is Gamma distributed, the density function of Yκ∀κ is given by (dropping the index
κ for convenience):

fY (x) =
r−Nr xNr−1e−x/r

(Nr −1)!
x > 0. (4.22)

Theorem (4.5.1) follows from Lemma (4.4.1) taking the average of MSE
(
ĥκ

)
using the the following

integrals:

∫ ∞

x=0
T1 fYκ (x)dx =

sκ ·
Nr

(
− sκr + e

bκ
sκ r

(
bκ + (1+Nr )sκr

)
Ein

(
1+Nr,

bκ
sκr

))
s2
κr

; (4.23)

∫ ∞

x=0
T2 fYκ (x)dx = bκ ·

−sκr + e
bκ
sκ r

(
bκ +Nr sκr

)
Ein

(
Nr,

bκ
sκr

)
s2
κr2

; (4.24)

∫ ∞

x=0
T3 fYκ (x)dx = 2 · e

bκ
sκ r NrEin

(
1+Nr,

bκ
sκr

)
. (4.25)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.
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Chapter 5
The Impact of Antenna Correlation on the Pilot-to-Data
Power Ratio

5.1 Introduction

The preceding chapters investigated the optimal PDPR in the case of uncorrelated antennas giving rise to
a diagonal covariance matrix. An isolated cell without modeling antenna correlation was also considered
in [31, 42], while the multi-cell case was studied in [43], where it was found that the so called distributed
iterative channel inversion (DICI) algorithm originally proposed by [44] can be advantageously extended
taking into account the pilot-data power trade off. However, none of the aforementioned works captures
the impact of antenna correlation on the performance of SIMO systems.

In this chapter, I turn my attention to a SIMO system in which the MS balances its PDPR, while the
base station uses LS or MMSE channel estimation to initialize a linear MMSE equalizer. The specific
contributions of this chapter to the line of related works are the derivations of a closed form for the
MSE of the equalized data symbols for arbitrary correlation structure between the antennas by allowing
any covariance matrix of the uplink channel. Similarly to the preceding chapter, this more general form
is powerful, because it considers not only the pilot and data transmit power levels and the number of
receive antennas at the base station (Nr ) as independent variables, but it also explicitly takes into account
antenna spacing and the statistics of the AoAs, including the angular spread as a parameter. For example,
this methodology enables me to study the impact of the PDPR on the UL performance for the popular
3GPP spatial channel model (SCM) often used to model the wireless channels in cellular systems. The
closed form formula takes into account the impact of Nr , AoA and angular spread on the MSE and
thereby on the PDPR that minimizes the MSE. To the best of my knowledge the analytical result as well
as the insights obtained in the numerical section of this chapter are novel.

The system model is defined in Section 5.2. In this section, for the sake of completeness and
readability, I restate and reuse some results of [42]. Next, Section 5.3 describes the channel estimation
models for least square and minimum mean square error channel estimators. Section 5.4 is concerned
with deriving the conditional mean square error of the uplink equalized data symbols using either of the
channel estimation techniques and assuming MMSE equalization. Based on the results of this section,
the unconditional MSEwith arbitrary channel covariance matrix is determined in Section 5.5. Numerical
results are studied in Section 5.6. Section 5.7 concludes this chapter.

5.2 System Model

I consider the uplink transmission of a multi-antenna single cell wireless system, in which users are
scheduled on orthogonal frequency channels. It is assumed that each mobile station (MS) employs an
orthogonal pilot sequence, so that no interference between pilots is present in the system. This is a
common assumption in massive MU-MIMO systems in which a single MS may have a single antenna.
The BS estimates the channel h (column vector of dimension Nr , where Nr is the number of receive
antennas at the BS) by either LS or MMSE channel estimators to initialize an MMSE equalizer for
uplink data reception. Since I assume orthogonal pilot sequences, the channel estimation process can
be assumed independent for each MS. I consider a time-frequency resource of T time slots in the
channel coherence time, and F subcarriers in the coherence bandwidth, with a total number of symbols

35
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36 5 The Impact of Antenna Correlation on the Pilot-to-Data Power Ratio

τp + τd = F ·T , where I denote by τp the number of symbols allocated to pilot, and by τd the number
of data symbols allocated to data (τp + τd = τ). Moreover, I consider a transmission power level Pp and
P for each pilot and data symbol, respectively. With this setup, I consider two pilot symbol allocation
methods, namely block type and comb type, which will be discussed in the following subsections.

5.2.1 Block Type Pilot Allocation

The block type pilot arrangement consists of allocating one or more time slots for pilot transmission,
by using all subcarriers in those time slots. This approach is a suitable strategy for slow time-varying
channels. Given T slots, a fraction of Tp slots are allocated to the pilot and Td =T −Tp slots are allocated
to the data symbols. Note that a maximum transmission power Ptot is allowed in each time slot, among
all F subcarriers. This power constraint is then identical for both the pilot (Pp) and data power (P), i.e.,

FPp ≤ Ptot FP ≤ Ptot . (5.1)

The power cannot be traded between pilot and data, but the energy budget can be distributed by tuning
the number of time slots Tp and Td , i.e., τp = FTp and τd = FTd .

5.2.2 Comb Type Pilot Allocation

In the comb type pilot arrangement a certain number of subcarriers are allocated to pilot symbols,
continuously in time. This approach is a suitable strategy for non-frequency selective channels. Given
F subcarriers in the coherence bandwidth, a fraction of Fp subcarriers are allocated to the pilot and
Fd = F −Fp subcarriers are allocated to the data symbols.

Each MS transmits at a constant power Ptot , however, the transmission power can be distributed
unequally in each subcarrier. In particular, considering a transmitted power Pp for each pilot symbol and
P for each data symbol transmission, the following constraint is enforced:

τp

T
Pp +

τd
T

P = Ptot (5.2)

The total number of symbols for pilot is τp = TFp and for data is τd = TFd . However, with comb type
pilot arrangement, the trade off between pilot and data signals includes the trade-offs between the number
of frequency channels and between the transmit power levels, which is an additional degree of freedom
compared with the block type arrangement. With fixed (given or standardized) τp and τd the engineering
freedom includes the tuning of the Pp and P power levels, which is the topic of the present chapter.

5.3 Channel Estimation

Let us consider a MS that transmits an orthogonal pilot sequence s = [s1, ..., sτp ]T , where each symbol
is scaled as |si |2 = 1, for i = 1, .., τp . Thus, the Nr × τp matrix of the received pilot signal at the BS from
the MS is

Yp = α
√

PphsT +N, (5.3)
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5.3 Channel Estimation 37

where I assume that h is a circular symmetric complex normal distributed vector with mean vector 0
and covariance matrix C (of size Nr ), denoted as h ∼ CN (0,C), α accounts for the propagation loss,
N ∈ CNr×τp is the spatially and temporally additive white Gaussian noise (AWGN) with element-wise
variance σ2.

In this chapter, I consider two techniques, i.e., the LS and the MMSE channel estimation that are
detailed in the following subsections.

5.3.1 Least Square Estimation

Conventional LS estimation relies on correlating the received signal with the known pilot sequence. The
BS estimates the channel based on (5.3) assuming

ĥLS = h+ h̃LS =
1

α
√

Pp

Yps∗(sT s∗)−1 = h+
1

α
√

Ppτp
Ns∗. (5.4)

Note that Ns∗ =
[∑τp

i=1 s∗i ni,1, ...,
∑τp

i=1 s∗i ni,Nr

]T
, then Ns∗ ∼ CN (0, τpσ2INr ).

By considering h ∼ CN (0,C), it follows that the estimated channel ĥLS is a circular symmetric
complex normal distributed vector ĥLS ∼ CN (0,RLS ), with

RLS = E{ĥLSĥH
LS } = C+

σ2

α2Ppτp
INr . (5.5)

The channel estimation error is defined as h̃LS = h− ĥLS , so that h̃LS ∼ CN (0,WLS ) with

WLS =
σ2

α2Ppτp
INr

and the estimation mean square error (MSE) is derived as

εLS = E{| |h̃LS | |
2
F } = tr {WLS } =

Nrσ
2

α2Ppτp
, (5.6)

where | | · | |2F is the Frobenius norm.

5.3.2 Minimum Mean Squared Error Estimation

In this case I find it convenient to define a training matrix S = s ⊗ INr (of size τpNr × Nr ), so that
SHS = τpINr . The τpNr ×1 vector of received signal (5.3) can be conveniently rewritten as

Ỹp = α
√

PpSh+ Ñ. (5.7)

where Ỹp, Ñ ∈ CτpNr×1.
TheMMSE equalizer aims at minimizing theMSE between the estimate ĥMMSE =HỸp and the channel
h. More precisely,
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38 5 The Impact of Antenna Correlation on the Pilot-to-Data Power Ratio

H =argmin
H
E{| |HỸp −h| |2F }

=α
√

Pp (σ2INr +α
2PpCSHS)−1CSH ; H ∈ CNr×τpNr .

The MMSE estimate is then expressed as

ĥMMSE = α
√
Pp (σ2INr +α

2PpτpC)−1CSH (α
√
PpSh+ Ñ)

=

(
σ2

α2Ppτp
INr +C

)−1

C*
,
h+

1
α
√
Ppτp

SH Ñ+
-
. (5.8)

Notice that SH Ñ∼ CN (0, τpσ2INr ), therefore the estimated channel ĥMMSE is also a circular symmetric
complex normal distributed vector ĥMMSE ∼ CN (0,RMMSE), that is

ĥMMSE = h+ h̃MMSE, (5.9)

and

RMMSE = C2
(

σ2

α2Ppτp
INr +C

)−1

, (5.10)

where I considered C = CH and applied the commutativity of C and INr to substitute(
σ2

α2Ppτp
INr +C

)−1

C = C
(

σ2

α2Ppτp
INr +C

)−1

.

The channel estimation error is h̃MMSE = h− ĥMMSE so that h̃MMSE ∼ CN (0,WMMSE) with

WMMSE = C*
,
INr +

α2Ppτp

σ2 C+
-

−1

and the estimation MSE simply follows as

εMMSE = tr



C*
,
INr +

α2Ppτp

σ2 C+
-

−1 

. (5.11)

Notice that for both the LS and MMSE channel estimations, the estimation MSE is a monotonically
decreasing function of the pilot energy per antenna Ppτp . The quantity Ppτp can be regarded as the total
pilot power (energy) budget, that - assuming a fixed τp - can be tuned by tuning Pp .

5.4 Determining the Conditional Mean Square Error

5.4.1 A Key Observation

Equations (5.4) and (5.9) imply that h and ĥ are jointly circular symmetric complex Gaussian (multivari-
ate normal) distributed random variables [34], [35] . Specifically, recall from [34] that the covariance
matrix of the joint PDF is composed by autocovariancematricesCh,h,Cĥ,ĥ and cross covariancematrices
Ch,ĥ, Cĥ,h as
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5.4 Determining the Conditional Mean Square Error 39
[
Ch,h Ch,ĥ
Cĥ,h Cĥ,ĥ

]
=

[
C C
C R

]
,

and
R =

{
RLS for LS estimation,
RMMSE for MMSE estimation.

5.4.2 Determining the Conditional Channel Distribution

From the joint PDF of h and ĥ I can compute the following conditional distributions.

Result 5.4.1 Given a random channel realization h, the estimated channel ĥ conditioned to h can be
shown to be distributed as

(ĥ | h) ∼ h+CN (0,R−C). (5.12)

Result 5.4.2 The distribution of the channel realization h conditioned to the estimate ĥ is normally
distributed as follows:

(h | ĥ) ∼ Dĥ+CN
(
0,Q

)
, (5.13)

where D = CR−1 and Q = C−CR−1C.

Both of these results can be easily verified by exploiting the basic characteristics of multivariate Gaussian
random variables [34]. To capture the tradeoff between the pilot and data power, I need to calculate the
mean square error of the equalized data symbols. To this end, I consider an equalization model in the
next subsection.

5.4.3 Equalizer Model Based on Least Square or Minimum Mean Squared Error
Channel Estimation

The data signal received by the BS is

y = α
√

Phx+n, (5.14)

where |x |2 = 1. I assume that the BS employs a naive MMSE equalizer, where the estimated channel
(either ĥLS or ĥMMSE) is taken as if it was the actual channel:

G = α
√

PĥH (α2PĥĥH +σ2I)−1. (5.15)

Under this assumption, recall the following result from [31] as a first step towards determining the
unconditional MSE.

Result 5.4.3 Let MSE(h, ĥ) =Ex,n
{
|Gy− x |2

}
be the MSE for the equalized symbols, given the realiza-

tions of h and ĥ. It is

MSE(h, ĥ) = α2PGhhHGH−

−2α
√

PRe[Gh]+σ2GGH +1. (5.16)

From this, my next result follows directly.
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40 5 The Impact of Antenna Correlation on the Pilot-to-Data Power Ratio

Result 5.4.4 Let MSE(ĥ) = Eh |ĥ

{
MSE(h, ĥ)

}
be the MSE for each equalized data symbol, given the

estimated channel realization ĥ. It satisfies (see also [45]):

MSE(ĥ) =G
(
α2P(DĥĥHDH +Q)+σ2I

)
GH−

−2α
√

PRe{GDĥ}+1. (5.17)

5.5 Derivation of the Unconditional Mean Squared Error

Based on the conditional MSE expression of the preceding section, I am now interested in deriving the
unconditional expectation of the MSE. To this end, the following two lemmas turn out to be useful.

Lemma 5.1. Given a channel estimate instance ĥ, the MMSE weighting matrix G, as a function of the
number of receive antennas at the base station (Nr ) can be expressed as follows

G =
α
√

P

‖ĥ‖2α2P+σ2
ĥH, (5.18)

where ‖ĥ‖2 = ĥH ĥ =
∑Nr

i=1 | ĥi |
2.

The proof of the lemma is straightforward based on Chapter 3 of this dissertation [31]. Using z =
α
√
P

‖ĥ‖2α2P+σ2 and this simple expression of G I can express the conditional expectation of the MSE of the
MMSE equalized data symbols as a function of the channel covariance, C.

Lemma 5.2.

MSE(ĥ) = z2α2P ĥHDĥĥHDH ĥ+ z2α2P ĥHQĥ+ z2σ2ĥH ĥ−2zα
√

PRe{ĥHDĥ}+1.

where z = α
√
P

‖ĥ‖2α2P+σ2 is a function of ‖ĥ‖2.

The proof is in the Appendix.

5.5.1 Computing z

Computing z in Lemma 5.2 is essential in calculating the unconditional MSE. This can be done using
the following lemma.

Lemma 5.3.

z =
1

α
√
P
·

∫ ∞

x=0
e−x (ĥH ĥ+σ2/(α2P))dx

and

z2 =
1

α2P
·

∫ ∞

x=0
xe−x (ĥH ĥ+σ2/(α2P))dx.

The proof is in the appendix of this chapter.
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5.5 Derivation of the Unconditional Mean Squared Error 41

5.5.2 Singular Value Decomposition

To take the expectation with respect to ĥ of the terms of MSE(ĥ) as in Lemma 5.2, I introduce
the following decomposition. ĥ is CN (0,R) distributed with R = C+ σ2

Ppα2 I and recall from Result
5.4.2 that D = CR−1. Let C = ΘHSCΘ be the singular value decomposition of C. Then R = ΘHSRΘ,
D = ΘHSDΘ and Q = ΘHSQΘ with SR = SC +

σ2

Ppα2 I, SD = SCS−1
R , and SQ = SC −SCS−1

R SC where
matrices S• are real non-negative diagonal matrices. Specifically, I will refer to the diagonal elements
of SD and SR using the notations dk = SDkk and rk = SRkk , respectively. Let v =Θĥ, then v is a random
vector with distribution CN (0,SR), since

E(vvH ) = E(ΘĥĥHΘH ) =ΘE(ĥĥH )ΘH =

=ΘRΘH =ΘΘHSRΘΘH = SR .

That is, the elements of v are independent, but they have different variances.

5.5.3 Terms of the MSE = Eĥ
{
MSE(ĥ)

}

To compute Eĥ

{
MSE(ĥ)

}
based on Lemma 5.2, I need to calculate the following terms (T1, T2 and T3):

Eĥ

{
MSE(ĥ)

}
=α2P Eĥ

{
z2 ĥHDĥĥHDH ĥ

}︸                                 ︷︷                                 ︸
,T1

+

+Eĥ

{
z2 ĥH

(
α2PQ+σ2I

)
ĥ

}︸                                 ︷︷                                 ︸
,T2

+

−2α
√
P Eĥ

{
z Re {ĥHDĥ}

}︸                             ︷︷                             ︸
,T3

+1.

With Lemmas 5.1, 5.2 and 5.3 in my hands, I can state the main result on calculating the terms T1, T2
and T3.

Theorem 5.5.1 The mean square error (MSE) of the uplink received data with arbitrary correlation
matrix C of the uplink channel can be calculated as in the sum of the terms T1, T2 and T3 plus 1, where

T1 =
∑
k

∑
`,`,k

dkd` ·

·

∫ ∞

x=0
xe−xσ

2/(α2P) 1
x+ rk

1
x+ r`

∏
i

ri
x+ ri

dx+

+
∑
k

d2
k

∫ ∞

x=0
xe−xσ

2/(α2P) 2
(x+ rk )2

∏
i

ri
x+ ri

dx;

T2 =
1
α2P

∑
k

mk

∫ ∞

x=0
xe−x

σ2
α2P

1
x+ rk

∏
i

ri
x+ ri

dx;

and
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42 5 The Impact of Antenna Correlation on the Pilot-to-Data Power Ratio

T3 = 2
∑
k

dk

∫ ∞

x=0
e−x

σ2
α2P

1
x+ rk

∏
i

ri
x+ ri

dx,

where SM = α
2PSQ+σ

2I is a diagonal matrix with diagonal elements mk = SMkk = α
2Pqk +σ2, where

qk = SQkk .

The proof of Theorem 5.5.1 is in the Appendix of this chapter.

5.6 Numerical Results

5.6.1 Channel Model and Covariance Matrix

Table 5.1 System Parameters

Parameter Value
Number of antennas Nr = 2, 4, 8, 10, 20
Path Loss α = 50, 55, 60 dB
Power budget τpPp +τdP = Ptot mW, as in Eq. (5.2).
Antenna spacing D/λ = 0.15, ..., 1.5
Mean Angle of Arrival (AoA) θ̄ = 70◦
Angular spread 2 · θ∆ = 5, ..., 45◦

In this section I consider a single cell system, in which MSs use orthogonal pilots to facilitate the
estimation of the uplink channel by the BS. Recall from Section 5.3 that the channel estimation process
is independent for each MS and I can therefore focus on a single user. The covariance matrix C of the
channel h as the function of the antenna spacing, mean angle of arrival and angular spread is modeled as
by the well known spatial channel model, which is known to be accurate in non-line-of-sight environment
with rich scattering and all antenna elements identically polarized, see [46]. For uniformly distributed
angle of arrivals, the (m,n) element of the covariance matrix C are given by

Cm,n =
1

2θ∆

∫ θ∆

−θ∆

e j ·2π · Dλ (n−m) cos(θ̄+x)dx,

where the system parameters are given in Table 5.1. The covariance matrix C becomes practically
diagonal as the antenna spacing and the angular spread grows beyond Dλ > 1 and θ∆ > 30◦. In contrast,
with critically spaced antennas Dλ = 0.5 and θ∆ < 10◦, the antenna correlation in terms of the off-
diagonal elements of C can be considered strong. A validation of the proposed channel model with data
from a realistic channel simulator was included in [45].

5.6.2 Numerical Results

Recall that the MSE of the received data symbols according to Theorem 5.5.1 depends on the pilot
through the product tpPp (which I call the pilot budget) and the data power P for each transmitted data
symbol. Figures 5.1 and 5.2 compare theMSE that can be achieved by a particular setting of the pilot and
data power levels in the case of uncorrelated and highly correlated antennas (for the case with Nr = 20
receive antennas). The impact of high antenna correlation is that in order to reach the same MSE, a
higher power level for both the pilot and data transmission must be used.
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Fig. 5.1 Contour plot of the MSE achieved by specific pilot and data power settings of a SIMO system with Nr = 20
uncorrelated receiver antennas at a fix path loss position of 50 dB. For example anMSE value less than 0.03 can be reached
by setting the pilot power budget to τpPp ≥ 70 mW and the data power P ≥ 60 mW, or by Pp ≥ 200 mW and P ≥ 20
mW. We can see that with a total power budget of 250 mW, and with proper pilot-data balancing, a minimum MSE that is
clearly less than 0.03 can be reached.

Figures 5.3 and 5.4 compare the MSE that can be achieved by a particular setting of the data power
levels in the case of uncorrelated and highly correlated antennas (for the case with Nr = 20 receive
antennas) at different path loss positions. Although the impact of high antenna correlation is clearly
high, the proper setting of the pilot-to-data-power ratio has a more pronounced effect.

5.7 Conclusions

This chapter developed a model of a single cell system, in which MSs use orthogonal pilots to facilitate
uplink channel estimation by the BS. I developed a methodology to calculate the MSE of the uplink
equalized data symbols and derived a closed form for the MSE as a function of not only the number
of antennas, the pilot power and the data transmit power, but also the path loss and other parameters
that determine the covariance matrix of the fast fading channel between the MS and the BS. With this
methodology, through numerical examples, I found that although the impact of antenna correlation on
the MSE performance can be significant, this impact can be compensated by setting the correct pilot-
to-data power ratio (PDPR) in case of a total power budget. Furthermore, I found that as the number of
antennas grows, a higher ratio of the power budget should be spent on pilots, virtually independently
of the antenna correlation. This can be seen in line with the findings of massive MIMO systems that
suggest that the data transmit power at the MS can be significantly lower as the number of antennas at
the BS grows large.
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Fig. 5.2 Contour plot of the MSE achieved by specific pilot and data power settings of a SIMO system with Nr = 20
correlated receiver antennas at a fix path loss position of 50 dB. Compared with Figure 5.1, we can see that with similar
sum power budget, the MSE value that can be reached is somewhat higher. For example, with a power budget of 250 mW,
an MSE value that is less than 0.08 can be realized (τpPp = 150 mW and P = 100 mW).

Appendix of Chapter 5

Proof of Lemma 5.2

MSE(ĥ) = z ĥH
(
α2P(DĥĥHDH +Q)+σ2I

)
z ĥ−

−2α
√

PRe{z ĥHDĥ}+1 =
= z2α2P ĥHDĥĥHDH ĥ+ z2α2P ĥHQĥ+

+ z2σ2ĥH ĥ−2zα
√

PRe{ĥHDĥ}+1.

Proof or Lemma 1

According to the matrix inversion lemma for matrices A, B, C, D of size n× n, n×m, m×m, m× n,
respectively, I have

(A+BCD)−1 =

A−1−A−1B
(
DA−1B+C−1

)−1
DA−1 .
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Fig. 5.3 Contour plot of the MSE as the function of the data power and the path loss
under a total power (250 mW) constraint with Nr = 20 uncorrelated antennas. For example, with the near optimal
data power setting and MSE value of 0.14 can be reached at 58 dB path loss.

Substituting A = σ2I, B = α
√

Pĥ, C = 1, D = α
√

PĥH I have

(σ2I+α2PĥĥH )−1 =
1
σ2 I−

1
σ2 Iα

√
Pĥ·

·

(
α
√

PĥH 1
σ2 Iα

√
Pĥ+1

)−1
α
√

PĥH 1
σ2 I =

=
1
σ2 I−

α2P
σ4 ĥĥH

α2P
σ2 ĥH ĥ+1

,

where ĥH ĥ = ‖ĥ‖2. Finally,

G = α
√

PĥH (α2PĥĥH +σ2I)−1

=
α
√

P
σ2 ĥH −

α
√

Pα2P
σ4 ĥH ĥ

α2P
σ2 ‖ĥ‖2+1

ĥH

=
α
√

P
σ2 ĥH

(
1−

α2P‖ĥ‖2

α2P‖ĥ‖2+σ2

)
=
α
√

P
σ2 ĥH

(
σ2

α2P‖ĥ‖2+σ2

)
=

α
√

P

α2P‖ĥ‖2+σ2
ĥH .
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Fig. 5.4 Contour plot of the MSE as the function of the data power and the path loss
under a total power (250 mW) constraint with Nr = 20 highly correlated antennas. For example, with the near
optimal data power setting and MSE value of 0.14 can be reached at 55 dB path loss.

Proof of Lemma 5.3

First, notice that according to equation 3.326 (2) of [47]:∫ ∞

x=0
xme−yx

n

dx =
Γ (γ)
nyγ

; γ =
m+1
n

,

which specifically for n = 1 means:

1
yγ
=

∫ ∞

x=0

xγ−1

Γ(γ)
e−xydx.

that is, for γ = 1 and y = ‖ĥ‖2+σ2/(α2P):

z =
α
√
P

‖ĥ‖2α2P+σ2
=

1
α
√
P

1
‖ĥ‖2 +σ2/(α2P)

=

=
1

α
√
P Γ(1)︸︷︷︸

1

·

∫ ∞

x=0
e−x

(
ĥH ĥ+σ2/(α2P)

)
dx

and, for γ = 2:
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z2 =
α2P

( ‖ĥ‖2α2P+σ2)2
=

=
1

α2P Γ(2)︸︷︷︸
1

·

∫ ∞

x=0
xe−x

(
ĥH ĥ+σ2/(α2P)

)
dx.

Term T1

Using the singular value decomposition based transformation as in Section 5.5.2 v = Θĥ and Lemma
5.3, I can write:

T1 = α
2PEĥ

{
z2 ĥHDĥĥHDH ĥ

}
=

= Eĥ

{∫ ∞

x=0
xe−x(ĥH ĥ+σ2/(α2P))dx ĥHDĥĥHDH ĥ

}
=

= Ev

{∫ ∞

x=0
xe−x(vH v+σ2/(α2P))dx vHSDvvHSD

Hv
}
=

= Ev

{∫ ∞

x=0
xe−x(∑i v

H
i vi+σ

2/(α2P)) dx ·

·*
,

∑
k

vHk SDkkvk+
-

*
,

∑
`

vH` SD``v`+
-



=

=

∫ ∞

x=0
xe−xσ

2/(α2P) ·Ev



∏
i

e−x(vH
i vi ) ·

·*
,

∑
k

vHk SDkkvk+
-

*
,

∑
`

vH` SD``v`+
-




dx. (5.19)

The expectation in (5.19) can be computed as follows:

Ev



∏
i

e−x |vi |
2
dx *

,

∑
k

SDkk |vk |
2+

-
*
,

∑
`

SD`` |v` |
2+

-



=

=
∑
k

∑
`,`,k

SDkkSD`` ·

·Ev
{
e−x |vk |

2
|vk |

2e−x |v` |
2
|v` |

2
∏

i,i,k,i,`

e−x |vi |
2

︸            ︷︷            ︸
n−2 terms

}
+
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+
∑
k

SD
2
kk Ev




e−x |vk |
2
|vk |

4
∏
i,i,k

e−x |vi |
2

︸        ︷︷        ︸
n−1 terms




=

=
∑
k

∑
`,`,k

SDkkSD`` Evk

{
|vk |

2e−x |vk |
2 }
·

·Ev`

{
|v` |

2e−x |v` |
2 } ∏

i,i,k,i,`

Evi

{
e−x |vi |

2 }
+

+
∑
k

SD
2
kk Evk

{
|vk |

4e−x |vk |
2 } ∏

i,i,k

Evi

{
e−x |vi |

2 }
,

where y = |vi |2 is exponentially distributed with parameter ri = SRii . Consequently:

Evi

{
e−x |vi |

2 }
=

∫ ∞

y=0
rie−riye−xydy =

ri
x+ ri

;

Evi

{
|vi |

2e−x |vi |
2 }
=

∫ ∞

y=0
rie−riy ye−xydy =

ri
(x+ ri)2 ;

Evi

{
|vi |

4e−x |vi |
2 }
=

∫ ∞

y=0
rie−riy y2e−xydy =

2ri
(x+ ri)3 .

Substituting all of these into the expectation and using di = SDii , I have:∑
k

∑
`,`,k

dkd` Evk

{
|vk |

2e−x |vk |
2 }
Ev`

{
|v` |

2e−x |v` |
2 }
·

·
∏

i,i,k,i,`

Evi

{
e−x |vi |

2 }
+

+
∑
k

d2
k Evk

{
|vk |

4e−x |vk |
2 } ∏

i,i,k

Evi

{
e−x |vi |

2 }
=

=
∑
k

∑
`,`,k

dkd`
rk

(x+ rk )2
r`

(x+ r` )2

∏
i,i,k,i,`

ri
x+ ri

+

+
∑
k

d2
k

2rk
(x+ rk )3

∏
i,i,k

ri
x+ ri

.

Multiplying and dividing with the missing terms of the products, the expectation in (5.19) can be written
as: ∑

k

∑
`,`,k

dkd`
1

x+ rk

1
x+ r`

∏
i

ri
x+ ri

+
∑
k

d2
k

2
(x+ rk )2

∏
i

ri
x+ ri

.

Substituting this expression for the expectation, I finally get for T1:
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T1 =
∫ ∞

x=0
xe−xσ

2/(α2P) ·Ev

{∏
i

e−x(vH
i vi ) ·

· *
,

∑
k

vHk SDkkvk+
-

*
,

∑
`

vH` SD``v`+
-

}
dx =

=
∑
k

∑
`,`,k

dkd`

∫ ∞

x=0
xe−xσ

2/(α2P) rk
(x+ rk )2

r`
(x+ r` )2 ·

·
∏

i,i,k,i,`

ri
x+ ri

dx+

+
∑
k

d2
k

∫ ∞

x=0
xe−xσ

2/(α2P) 2rk
(x+ rk )3

∏
i,i,k

ri
x+ ri

dx =

=
∑
k

∑
`,`,k

dkd` ·

·

∫ ∞

x=0
xe−xσ

2/(α2P) 1
x+ rk

1
x+ r`

∏
i

ri
x+ ri

dx+

+
∑
k

d2
k

∫ ∞

x=0
xe−xσ

2/(α2P) 2
(x+ rk )2

∏
i

ri
x+ ri

dx.

All of these integrals can be computed efficiently, but they do not have nice closed forms.

Term T2

T2 = Eĥ

{
z2 ĥH

(
α2PQ+σ2I

)
ĥ

}
=

= Eĥ

{
z2 ĥH

(
α2PΘHSQΘ+σ2ΘHΘ

)
ĥ

}
=

= Eĥ

{
z2 ĥHΘH

(
α2PSQ+σ

2I
)

Θĥ
}
=

= Ev
{
z2 vH

(
α2PSQ+σ

2I
)

v
}
=

= Ev
{
z2 vHSMv

}
,

where SM = α
2PSQ+σ

2I is a diagonal matrix with diagonal elements SMii = α
2PSQii+σ

2. Substituting
z:

T2 =
1
α2P

Ev

{∫ ∞

x=0
xe
−x

(
vH v+ σ2

α2P

)
dxvHSMv

}
=

=
1
α2P

Ev

{∫ ∞

x=0
xe−x(vH v)e−x

σ2
α2P dxvHSMv

}
=

=
1
α2P

∫ ∞

x=0
xe−x

σ2
α2PEv




∏
i

e−xv
H
i vi

∑
k

vHk SMkkvk



dx. (5.20)

Similarly to the derivation of the expectation expression in T1, the expectation in (5.20) can be written
as:
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Ev



∏
i

e−x(vH
i vi )

∑
k

vH
k SMkkvk



=

=
∑
k

SMkkEvk

{
|vk |

2e−x |vk |
2 } ∏

i,k

Evi

{
e−x |vi |

2 }
=

=
∑
k

SMkk
rk

(x+rk )2

∏
i,k

ri

x+ri
=

=
∑
k

SMkk
1

x+rk

∏
i

ri

x+ri
.

Finally T2 is

T2 =
1

α2P

∑
k

SMkk

∫ ∞

x=0
xe
−x σ2

α2 P
1

x+rk

∏
i

ri

x+ri
dx.

Term T3

T3 = 2α
√

P Eĥ

{
z Re{ĥHDĥ}

}
=

= 2α
√

P Eĥ

{
z Re{ĥHΘHSDΘĥ}

}
=

= 2α
√

P Ev




z Re{vHSDv︸  ︷︷  ︸
real

}



= 2α

√
P Ev

{
z vHSDv}

}
.

and, for the expectation, the same approach is applicable as above. That is:

T3 = 2α
√

P
1

α
√

P
Ev

{∫ ∞

x=0
e
−x

(
vH v+ σ2

α2P

)
dx vHSDv

}
=

= 2 Ev

{∫ ∞

x=0
e−x(vH v)e−x

σ2
α2P dx vHSDv

}
=

= 2
∫ ∞

x=0
e−x

σ2
α2PEv




∏
i

e−xv
H
i vi

∑
k

vHk SDkkvk



dx =

= 2
∫ ∞

x=0
e−x

σ2
α2P

∑
k

SDkk
1

x+ rk

∏
i

ri
x+ ri

dx =

= 2
∑
k

SDkk

∫ ∞

x=0
e−x

σ2
α2P

1
x+ rk

∏
i

ri
x+ ri

dx.
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Chapter 6
Block and Comb Type Channel Estimation

6.1 Introduction

Since the seminal work by Hassibi and Hochwald [13], a number of papers investigated the trade-off
between the resources used for CSI acquisition and data transmission. For example, assuming a block
fading reciprocal channel, a finite number of symbols in the time and frequency domains are available for
CSI acquisition, and uplink as well as DL precoding and data transmission [15], [48]. Also, under a fixed
power budget, pilot symbols reduce the transmitted energy for data symbols, as it has been pointed out in
[29] and [30] where the optimal PDPR is investigated for various pilot patterns and receiver structures.
The results of [30], for example, indicate that the optimal PDPR provides about 2-3 dB gain compared
with equal power for pilot and data symbols. Subsequently, [49] derived a closed form of the optimal
PDPR for MMSE channel estimation and showed that a tight bound lying in the quasi-optimal region
provides a good approximation for the optimal PDPR. More recently, [50] derived a closed form PDPR
thatmaximizes the capacity bound ofMIMOorthogonal frequency divisionmodulation (MIMO-OFDM)
systems and studied the impact of carrier frequency offset (CFO) on maximizing power allocation.

In [16] and [51], equivalence conditions for the achievable spectral efficiency between block-fading
channels and continuous-fading channels are discussed. An approximate closed-form analytical expres-
sion of the spectral efficiency is derived in the hypothesis of MMSE estimation.

In a previous work [31], I investigated the effects of the PDPR on the MSE, assuming a single pilot
and a single data symbol under a fixed sum power budget with least square (LS) channel estimation
at the base station (BS). While [31] provides insight into the trade-off related to PDPR, it does not
consider the trade-off related to the number of symbols used for CSI acquisition and data transmission,
which is critical for the spectral efficiency. Therefore, the purpose of the present chapter is to devise a
methodology to find the optimum number of pilot and data symbols and the optimum PDPR. It turns out
that the constraints for these trade-offs depend on the pilot pattern that is used in the time and frequency
domains. Specifically, the so called block type arrangement dedicates all frequency channels within a
given time slot to either channel estimation or data transmission whereas the comb pilot pattern employs
pilot and data symbols mixed in the frequency domain within a single time slot.

The design of the uplink demodulation reference signals (DMRS) specifically in 3GPP Long Term
Evolution Advanced (LTE-A) systems is described in [52]. In the LTE uplink, DMRS:s are used to
facilitate channel estimation for the coherent demodulation of the physical uplink shared and control
channels. The LTE DMRS:s occupy specific Orthogonal Frequency Division Multiplexing (OFDM)
symbols within the uplink subframe according to the block type arrangement and support a large number
of user equipment utilizing cyclic extensions of the well known Zadoff-Chu sequences [53].

My key contribution in the present chapter is the derivation of a closed form solution for both the
uplink data MSE and spectral efficiency specifically taking into account the constraints of the comb and
block type pilot arrangements. As a major difference with respect to previous works (i.e., [13]–[51],
this closed form result allows me to find the close-to-optimum number of pilot symbols and pilot power
for a generic channel estimation method. In particular, I compare LS and MMSE channel estimation
in block-type and comb-type pilot arrangement, for a BS employing a large number of antennas. This
approach enables me to arrive at some insights that are novel in the massive MIMO literature.

The system model, including the description of the block and comb type pilot patterns, is defined
in Sect. 6.2. Next, Section III, discusses the LS and MMSE channel estimation algorithms specifically
in block or comb systems and, in Section IV, I introduce the the MSE and spectral efficiency for the

51
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52 6 Block and Comb Type Channel Estimation

equalized uplink data symbols assuming linear MMSE reception. My main analytical results are derived
in Section V. Section VI presents numerical results and Section VII concludes the chapter.

6.2 System Model

I consider the uplink transmission of a multi-antenna single cell wireless system, in which users are
scheduled on orthogonal frequency channels. It is assumed that each mobile station (MS) employs an
orthogonal pilot sequence, so that no interference between pilots is present in the system. This is a
common assumption in massive multi-user MIMO systems in which a single MS may have a single
antenna. The base station (BS) estimates the channel h (column vector of dimension Nr , where Nr is the
number of receive antennas at the BS) by either LS or MMSE channel estimation to initialize an MMSE
equalizer for uplink data reception. Since I assume orthogonal pilot sequences, the channel estimation
process can be assumed independent for each MS. I consider a time-frequency resource of T time slots
in the channel coherence time, and F subcarriers in the coherence bandwidth, with a total number of
symbols τ = F ·T . I denote by τp the number of symbols allocated to pilots, and by τd the number of
symbols allocated to data (τp + τd = τ). Moreover, I consider a transmission power level Pp and P for
each pilot and data symbol, respectively. With this setup, I consider two pilot symbol allocation methods,
namely block type and comb type, which I discuss in the following subsections.

6.2.1 Block Type Pilot Allocation

The block type pilot arrangement consists of allocating one or more time slots for pilot transmission,
by using all subcarriers in those time slots. This approach is a suitable strategy for slow time-varying
channels. Given T slots, a fraction of Tp slots are allocated to the pilot and Td =T −Tp slots are allocated
to the data symbols. Note that a maximum transmission power Ptot is allowed in each time slot, among
all F subcarriers. This power constraint is then identical for both the pilot (Pp) and data power (P), i.e.,

FPp ≤ Ptot FP ≤ Ptot . (6.1)

The power cannot be traded between pilot and data, but the energy budget can be distributed by tuning
the number of time slots Tp and Td , i.e., τp = FTp and τd = FTd .

6.2.2 Comb Type Pilot Allocation

In the comb type pilot arrangement a certain number of subcarriers are allocated to pilot symbols,
continuously in time. This approach is a suitable strategy for non-frequency selective channels. Given
F subcarriers in the coherence bandwidth, a fraction of Fp subcarriers are allocated to the pilot and
Fd = F −Fp subcarriers are allocated to the data symbols.

Each MS transmits at a constant power Ptot , however, the transmission power can be distributed
unequally in each subcarrier. In particular, let us consider a transmitted power Pp for each pilot symbol
and P for each data symbol transmission; then the following constraint is enforced:

FpPp + (F −Fp)P = Ptot . (6.2)

The total number of symbols for pilots is τp = TFp and for data is τd = TFd . However, with comb
type pilot arrangement, the trade-off between pilot and data signals includes the trade-offs between the
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6.3 Channel Estimation 53

number of frequency channels and between the transmit power levels, which is an additional degree of
freedom compared with the block type arrangement.

6.3 Channel Estimation

Let us consider a MS that transmits an orthogonal pilot sequence s = [s1, ..., sτp ]T , where each symbol
is scaled as |si |2 = 1, for i = 1, .., τp . Thus, the Nr × τp matrix of the received pilot signal at the BS from
the MS is

Yp = α
√

PphsT +N, (6.3)

where I assume that h is a circular symmetric complex normal distributed vector of r.v. with mean vector
0 and covariance matrix C (of size Nr ), denoted as h ∼ CN (0,C), α accounts for the propagation loss,
N ∈ CNr×τp is the spatially and temporally additive white Gaussian noise (AWGN) with element-wise
variance σ2.

In this chapter, I consider two techniques, i.e., the least square (LS) and the minimum mean-square
error (MMSE) channel estimation that are detailed in the following subsections.

6.3.1 Least Square Estimation

Conventional LS estimation relies on correlating the received signal with the known pilot sequence. The
BS estimates the channel based on (6.3) assuming

ĥLS = h+ h̃LS =
1

α
√

Pp

Yps∗(sT s∗)−1 = h+
1

α
√

Ppτp
Ns∗. (6.4)

Note that Ns∗ =
[∑τp

i=1 s∗i ni,1, ...,
∑τp

i=1 s∗i ni,Nr

]T
, then Ns∗ ∼ CN (0, τpσ2INr ).

By considering h ∼ CN (0,C), it follows that the estimated channel ĥLS is a circular symmetric
complex normal distributed vector ĥLS ∼ CN (0,RLS ), with

RLS = E{ĥLSĥH
LS } = C+

σ2

α2Ppτp
INr . (6.5)

The channel estimation error is defined as h̃LS = h− ĥLS , so that h̃LS ∼ CN (0,WLS ) with

WLS =
σ2

α2Ppτp
INr

and the estimation mean square error (MSE) is derived as

εLS = E{| |h̃LS | |
2
F } = tr {WLS } =

Nrσ
2

α2Ppτp
, (6.6)

where | | · | |2F is the Frobenius norm.
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54 6 Block and Comb Type Channel Estimation

6.3.2 Minimum Mean Squared Error Estimation

I define a training matrix S = s⊗ INr (of size τpNr × Nr ), so that SHS = τpINr . The τpNr ×1 vector of
received signal (6.3) can be conveniently rewritten as

Ỹp = α
√

PpSh+ Ñ.

where Ỹp, Ñ ∈ CτpNr×1.
TheMMSE equalizer aims at minimizing theMSE between the estimate ĥMMSE =HỸp and the channel
h. More precisely,

H =argmin
H
E{| |HỸp −h| |2F }

=α
√

Pp (σ2INr +α
2PpCSHS)−1CSH ; H ∈ CNr×τpNr .

The MMSE estimate is then expressed as

ĥMMSE = α
√

Pp (σ2INr +α
2PpτpC)−1CSH (α

√
PpSh+ Ñ)

=

(
σ2

α2Ppτp
INr +C

)−1

C*
,
h+

1
α
√

Ppτp
SH Ñ+

-
. (6.7)

Notice that SHN ∼ CN (0, τpσ2INr ), therefore the estimated channel ĥMMSE is also a circular
symmetric complex normal distributed vector ĥMMSE ∼ CN (0,RMMSE ), that is

ĥMMSE = h+ h̃MMSE,

and

RMMSE = C2
(

σ2

α2Ppτp
INr +C

)−1

, (6.8)

where I considered C = CH and applied the commutativity of C and INr to substitute(
σ2

α2Ppτp
INr +C

)−1

C = C
(

σ2

α2Ppτp
INr +C

)−1

.

The channel estimation error is h̃MMSE = h− ĥMMSE so that h̃MMSE ∼ CN (0,WMMSE ) with

WMMSE = C*
,
INr +

α2Ppτp

σ2 C+
-

−1

and the estimation MSE simply follows as

εMMSE = tr



C*
,
INr +

α2Ppτp

σ2 C+
-

−1

. (6.9)

Notice that for both LS and MMSE channel estimation, the estimation MSE is a monotonically
decreasing function of the pilot energy per antenna Ppτp .

In the next section, I characterize the receiver and the uplink signal MSE and spectral efficiency based
on h̃ which is computed for LS (ĥLS) and MMSE estimation (ĥMMSE ) in this section.
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6.5 Analytical Derivation of the Spectral Efficiency 55

6.4 Linear Minimum Mean Squared Error Receiver

I consider a MMSE receiver at the BS. For each transmitted data symbol x, the data signal received by
the BS can be written as

y = α
√

Phx+n,

where n ∼ CN (0,σ2INr ).
Using a linear detection matrix G of size 1×Nr , the mean-square error between the estimate Gy and

the transmitted symbol x is (Gy− x)2. The resulting MSE(h) = Ex,n{(Gy− x)2} is

MSE(h) =G(α2PhhH +σ2I)Nr GH

−α
√

P(Gh+hHGH )+1. (6.10)

According to [54], the instantaneous signal-to-noise-ratio (SNR) of the MMSE receiver is given by:

γ(h) =
1

MSE(h)
−1.

Using this relationship, the achievable spectral efficiency can be expressed as:

S(h) =

(
τ− τp

)
τ

[
log

(
1

MSE(h)

)]
. (6.11)

Recall that the performance of the MMSE receiver depends on the availability of channel state
information (CSI) at the receiver. In the considered scenario, the channel h is not available at the BS.
The BS implements the MMSE receiver by using the estimated channel ĥ as if it was the actual channel,
[31], i.e., the detection matrix, which is a function of ĥ (more precisely, ĥLS or ĥMMSE ) is calculated as

G =G(ĥ) =
α
√

PĥH

α2P | |ĥ| |2+σ2
. (6.12)

In the next section, I derive a closed form analytical expression for the uplink MSE and the spectral
efficiency for both LS and MMSE channel estimation.

6.5 Analytical Derivation of the Spectral Efficiency

In this section, I propose an analytical model to study the performance of the single-cell multiple antenna
system illustrated in the previous section, in order to derive the optimal resource (slot/frequency/power)
allocation for pilot and data. I first introduce a useful lemma and then I derive (6.10) and (6.11)
analytically, by considering the MMSE receiver in (6.12).

6.5.1 Conditional Distribution of the Channel

When implementing the MMSE receiver in (6.12), the expression of the uplink MSE in (6.10) contains
both the actual channel h and the estimated channel ĥ. However, since the square error is averaged over
n, the MSE depends on the conditional distribution (ĥ|h) or, equivalently, (h|ĥ). Therefore, in order to
compute the unconditional MSE analytically, I introduce the following lemma.
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Lemma 6.1. The conditional distribution of the channel given its estimation ĥ is

(h|ĥ) ∼ CN (Dĥ,Q), (6.13)

where
D =

{
CR−1

LS for LS estimation
INr for MMSE estimation

Q =
{

C−CR−1
LSC for LS estimation

C−RMMSE for MMSE estimation

with RLS and RMMSE given in (6.5) and (6.7), respectively.

Proof. The proof is reported in the Appendix.

6.5.2 Calculating the Uplink Mean Squared Error

By using Lemma 6.1, theMSE in (6.10) can be conveniently expressed as a function of only the estimated
channel ĥ as

MSE(ĥ) =G(ĥ)
(
α2P(DĥĥHDH +Q)+σ2INr

)
G(ĥ)H

−α
√

P
(
G(ĥ)Dĥ+ ĥHDHG(ĥ)H

)
+1. (6.14)

In the special case of independent channel distributions with identical variances (i.e., C = cINr ), I
exploit the following lemma.

Lemma 6.2. Assume C = cINr , where c ∈ R+, then the matrices D and Q are diagonal with D = dINr

and Q = qINr and the MSE is given by

MSE(ĥ) =
p2 | |ĥ| |4(d−1)2+ p‖ĥ‖2(2σ2−2dσ2+ b)+σ4(

p‖ĥ‖2+σ2
)2 , (6.15)

where p = α2P and b = qp+σ2.

Proof. The proof is reported in the appendix.

It is important to notice that (6.15) depends on the channel only though the norms ‖ĥ‖2 and | |ĥ| |4.

6.5.3 Calculating the Spectral Efficiency

The spectral efficiency expression in (6.11) can be also conveniently rewritten as a function of ĥ, by
using the results from Lemma 6.1 and 6.2. The average spectral efficiency is then

S̄ =
(τ− τp)

τ
Eĥ

{ [
log

(
1

MSE(ĥ)

)]}
. (6.16)

which leads to the following results.
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6.5 Analytical Derivation of the Spectral Efficiency 57

Theorem 6.5.1 (Spectral efficiency with LS estimation) Assume C = cINr , where c ∈ R+, then the
average spectral efficiency with LS channel estimation and MMSE receiver is

S̄LS =
(τ− τp)

τ

(
2G(x0)−G(x1)−G(x2)

(Nr −1)!
− log(d−1)2

)
(6.17)

with x1,2 =
1
2

*
,
− 2σ2−2dσ2+b

p(d−1)2 ±

√(
2σ2−2dσ2+b

p(d−1)2

)2
− 4σ4

p2 (d−1)2
+
-
, x0 =

σ2

p , p = α2P, b= qp+σ2, q = c(1−c/r ,

r = c+ σ2

α2Ppτp
,

and where

G(x) =MeijerG1,3
2,3

(
0,1

0,0,Nr

�����
x
r

)
, (6.18)

is the Meijer G-function.

Proof. The proof is reported in the Appendix of this chapter.

Theorem 6.5.2 (Spectral efficiency with MMSE estimation) Assume C = cINr , where c ∈ R+, then
the average spectral efficiency with MMSE channel estimation and MMSE receiver is

S̄MMSE =
(τ− τp)

τ

(
log(pb)+

2G(x3)−G(x4)
(Nr −1)!

)
(6.19)

with x3 =
σ2

p , x4 =
σ2

pb , b = qp+σ2, q = σ2c
σ2+α2cPpτp

, and G(x) defined in (6.18).

Proof. The proof is reported in the Appendix of this chapter.

Notice that for a fixed pilot energy, the average spectral efficiency decreases with τp . Intuitively, this
means that for a given pilot energy (τpPp), this energy should be concentrated to as few time slots as
possible with the maximum allowed pilot power Pp . This is because the estimation MSE in Eqs. (6.6)
and (6.9) only depend on the τp and Pp through the product (that is the pilot energy). The hypothesis
of independent and identical channel distributions (i.e., C = cINr ) is necessary to obtain a tractable
analytical expression and it is widely adopted in the related literature (i.e., [16]). Although correlation
among antennas may have an effect on the value of achievable spectral efficiency, the optimal pilot
resource allocation is not expected to change significantly with the antenna correlation.

6.5.4 Summary

In this section, I derived the spectral efficiency for a single cell multi-antenna system with pilot-
based channel estimation that implements a linear MMSE receiver. Moreover, I provided a closed form
analytical expression of the spectral efficiency that makes use of the Meijer G-function, for both LS and
MMSE channel estimation methods.

I started by deriving the conditional distribution (h|ĥ), which allows for computing the uplink MSE
as a function of the norm of the estimated channel ‖ĥ‖2 through Lemma 6.2. By averaging the spectral
efficiency over the distribution of ‖ĥ‖2, I derived the closed form expression of the spectral efficiency
for LS estimation in Result 6.5.1 and for MMSE estimation in Result 6.5.2.
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2 4 6 8 10 12 14
Pilot Time Slots

0.1

0.2

0.5

1.0

2.0

SE

Nr=1000

MMSE

LS

Nr=10

SE

Fig. 6.1 Spectral efficiency (SE) in bps/Hz in log scale of block type channel estimation as a function of the number
of pilot time slots with Nr = 10 and Nr = 1000 antennas at the BS. With block type arrangement and EPA, all F = 12
subcarriers in each of the T = 14 time slots are dedicated to either pilot or data transmission with Ptot = 250 mW total
transmit power shared equally in the frequency domain. The Tp that maximizes spectral efficiency is clearly different with
LS and MMSE estimations.

Under the constraints (6.1) and (6.2) for symbols and power in the time-frequency domain, this model
reproduces the behavior of the block type and comb type pilot arrangement, respectively, as I will show
in the following section.

6.6 Numerical Results

6.6.1 Equal Power Density for Each Symbol Allocation

Recall that equal power allocation (EPA) implies that all symbols within a slot are transmitted with
Ptot/F transmit power. In this case, the pilot-data resource allocation trade-off consists of the number
of time slots (Tp out of T) in the case of block type arrangement or the number of frequency channels
(Fp out of F) in the case of comb type arrangement used for pilot transmission.

Figure 6.1 shows the spectral efficiency in bps/Hz as the function of time slots Tp when using LS
and MMSE channel estimation with Nr = 10 and Nr = 1000 BS antennas for a specific value of the
large scale fading (50 dB). As expected, the maximum spectral efficiency that can be reached with
MMSE estimation (3 bps/Hz) is much higher than that of the optimum spectral efficiency value with
LS estimation (1 bps/Hz). Also, the optimum spectral efficiency is reached with different Tp settings:
while with MMSE Tp = 2 maximizes the spectral efficiency, with LS more slots need to be spent on CSI
acquisition (Tp = 5).

Figure 6.2 shows a similar tendency in terms of the necessary frequency channels (subcarriers)
that optimize the spectral efficiency with comb type pilot arrangement. The similar (almost identical)
behavior that can be seen in Figure 6.1 and 6.2 can be explained by noticing that under the assumption
of channel coherence in the time and frequency domains of a resource block of F = 12 frequency
channel and T = 14 time slots, block and comb type arrangements with equal power allocation among
the F ×T = 168 resource elements result in the same total pilot energy. That is under the coherence
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SE
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MMSE

LS
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Fig. 6.2 Spectral efficiency (SE) in log scale of comb type channel estimation as a function of the number of pilot channels
in the frequency domain with Nr = 10 and Nr = 1000 antennas at the BS. With comb type arrangement and EPA, Fp

subcarriers (each with Ptot/F transmit power) are used to transmit pilot symbols in each of the T = 14 time slots. The
Fp that maximizes spectral efficiency is clearly different with LS and MMSE estimations.

assumption, the roles of the time and frequency domains from the perspective of pilot energy are the
same.

6.6.2 Optimum Power Allocation

When using the comb pilot symbol pattern, it is possible to use Fp subcarriers for transmitting pilot
symbols and the remaining F −Fp symbols for data transmission in each time slot. In this case, it is also
possible to use unequal total power for pilot (Pp) and data symbol transmission as long as the sum over
the F symbols in each time slot does not exceed the Ptot power budget. In this case, each of the Fp pilot
subcarriers are transmitted with Fp/Pp transmit power and both Fp and Pp are design parameters.

Figure 6.3 shows the value of the pilot power Pp in mW that maximizes the spectral efficiency when
using the comb arrangement and employing LS (upper) and MMSE (lower) channel estimation as the
number of antennas grows from Nr = 2 to Nr = 1000. With LS, the optimal pilot power grows from
about 40% to around 80% of the Ptot total power budget, whereas with MMSE estimation, the optimal
pilot power remains the same.

Figure 6.4 shows the achieved spectral efficiency as the function of the antennas with LS and MMSE
estimation with equal (EPA) and optimal pilot power allocation. Optimizing the pilot power is clearly
beneficial with both LS and MMSE estimations. With LS estimation, optimizing the pilot power is
particularly important as the number of antennas grows large, but even with MMSE estimation, the
spectral efficiency increases by 20%. Recall that unequal power allocation over the subcarriers in each
time slot requires comb type arrangement, implying that with block type pilot pattern, MMSE estimation
gives large gains over LS estimation when the number of antennas is large.

Figures 6.5 and 6.6 compare the achievable spectral efficiency as the function of the pilot power and
the number of pilot frequency channels with Nr = 10 and Nr = 1000 receive antennas. With Nr = 10, the
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200 400 600 800 1000
Nr

50

100

150

200

Optimal Pilot Power

LS

MMSE

Fig. 6.3 Optimum pilot power in mW as the function of the number of receive antennas at the BS when using LS (upper
curve) orMMSE (lower curve) channel estimation.With LS estimation, the optimum pilot power increases with the number
of antennas, whereas withMMSE estimation, the optimum pilot power is constant (staying at 40% of the total power budget
Ptot in each time slot).

achievable spectral efficiency is similar with LS andMMSE channel estimation, whereas with Nr = 1000
antennas, the optimal spectral efficiency is roughly twice as high with MMSE as with LS.

6.7 Conclusions

This chapter considered the trade-off between the time, frequency and power resources allocated to the
transmission of pilot and data symbols and its impact on the MSE and spectral efficiency of the uplink of
a single cell system, in which the number of receive antennas grows large. I made the point that the joint
allocation of frequency, time and power resources is subject to constraints that depend on the specific
pilot pattern, such as the pattern used by the block and comb type pilot arrangements. In this rather
general setting, I provided an analytical method to calculate the MSE and the uplink spectral efficiency
that enabled me to derive exact numerical results when the receiver at the base station employs LS or
MMSE channel estimation and MMSE equalizer for uplink data reception. I found that with a large
number of antennas, exploiting the engineering freedom of tuning both the number of pilot symbols
and the pilot transmit power levels become increasingly important, especially if the relatively simple LS
estimator is used at the base station. Also, the gain of usingMMSE estimation (preferably with optimized
pilot power allocation) increases over LS estimation. Interestingly, the optimal PPDR is different when
using MMSE and LS estimators and the gain in terms of spectral efficiency when optimizing both the
number of pilot symbols and the transmit power levels increases as the number of antennas increases.
I believe that the proposed methodology as well as the obtained insights are new and provide useful
guidelines for designing practical large antenna systems.
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Fig. 6.4 The spectral efficiency (SE) as the function of the number of receive antennas at the BS, when employing LS (lower
2 curves) and MMSE (upper 2 curves) channel estimation. In both cases, optimum pilot power allocation is compared with
equal power allocation between pilot and data transmission. With LS estimation, optimum pilot power allocation gives
large gains, whereas with MMSE estimation, this spectral efficiency gain obtained by optimum pilot power allocation is
less, although still significant.

Appendix of Chapter 6

Proof of Lemma 6.1

Given h ∼ CN (0,C), and ĥ ∼ CN (0,R), from (10.24)–(10.27) of [34], it follows that h|ĥ is a complex
normal distributed random vector with the following mean and covariance

E(h|ĥ) = E(hĥH )R−1ĥ,
Ch |ĥ =C−E(hĥH )R−1E(ĥhH ).

For the LS channel estimation model in (6.4), I derive

E(hĥH ) = C+
1

α
√

Ppτp
E(hsTNH ) = C.

For the MMSE channel estimation model in (6.7), I derive

E(hĥH ) =
(

σ2

α2Ppτp
INr +C

)−1

C*
,
C+

1
α
√
Ppτp

E
(
hÑHS

)+
-

=

(
σ2

α2Ppτp
INr +C

)−1

C2 = C2
(

σ2

α2Ppτp
INr +C

)−1

.

The expressions of D and Q in (6.13) are obtained by substitution.
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62 6 Block and Comb Type Channel Estimation

Fig. 6.5 Spectral efficiency with comb pilot arrangement and LS (lower) and MMSE (upper) channel estimation as a
function of the number of frequency channels and the total pilot power (out of the Ptot ) with Nr = 10 receive antennas.
The pilot power that maximizes spectral efficiency is around P

opt
p = 100 mW with both LS and MMSE.

Fig. 6.6 Spectral efficiency with comb pilot arrangement and LS (lower) and MMSE (upper) channel estimation as a
function of the number of frequency channels and the total pilot power with Nr = 1000 receive antennas. The pilot power
that maximizes spectral efficiency is around P

opt
p = 200 mW with LS and 100 mW with MMSE estimation.

Proof of Lemma 6.2

Let us assume C = cINr . In the LS estimation case, from (6.5) I have
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RLS =

(
c+

σ2

α2Ppτp

)
INr

and therefore by using Lemma 6.1, D = dINr and Q = qINr , where

d = c
(
c+

σ2

α2Ppτp

)−1

and q = c− c2
(
c+

σ2

α2Ppτp

)−1

.

In the MMSE estimation case, from (6.8) I have

RMMSE = c2
(
c+

σ2

α2Ppτp

)−1

INr ,

and therefore by using Lemma 6.1, D = dINr and Q = qINr , where

d = 1 and q = c− c2
(
c+

σ2

α2Ppτp

)−1

.

By replacing D = dINr , Q = qINr and (6.12) in (6.14), I obtain

MSE(ĥ) =1−
2‖ĥ‖2dα2P

‖ĥ‖2α2P+σ2
+

‖ĥ‖2α2P(
‖ĥ‖2α2P+σ2

)2

×
[
‖ĥ‖2d2α2P+ qα2P+σ2

]
=

=

(
‖ĥ‖2p+σ2

)2(
‖ĥ‖2p+σ2

)2 −
2‖ĥ‖2dp(‖ĥ‖2p+σ2)(

‖ĥ‖2p+σ2
)2 +

+
‖ĥ‖2p(‖ĥ‖2d2p+

b︷   ︸︸   ︷
qp+σ2)(

‖ĥ‖2p+σ2
)2 .

MSE(ĥ) =
p2 | |ĥ| |4(d−1)2+ p‖ĥ‖2(2σ2−2dσ2+ b)+σ4(

‖ĥ‖2p+σ2
)2 ,

where p = α2P, b = qp+σ2.

Proof of Result 1

The key step to prove Result 1 is to derive the expectation of the log term in Eq. (6.16).
By considering the MSE in (6.15), the log term in Eq. (6.16) can be written as:
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64 6 Block and Comb Type Channel Estimation

log
(

1
MSE(ĥ)

)
= − log

(
MSE(ĥ)

)
=− log

(
p2Y 2(d−1)2+ pY (2σ2−2dσ2+ b)+σ4

)
+2log

(
Y p+σ2

)
where Y = ‖ĥ‖2.

I therefore need to calculate the following expectation:

Eĥ

[
− log

(
MSE(ĥ)

)]
= 2

∫ ∞

x=0
log

(
xp+σ2

)
fY (x)dx (6.20)

−

∫ ∞

x=0
log

(
p2x2(d−1)2+ px(2σ2−2dσ2+ b)+σ4

)
fY (x)dx,

where the density function of Y – being the sum of exponentially distributed random variables of
parameter r , where r is the diagonal element of R –, is given by [31]:

fY (x) =
r−Nr xNr−1e−x/r

(Nr −1)!
x > 0.

Notice that for LS estimation, d = c
(
c+ σ2

α2Ppτp

)−1
, 1, therefore the terms of the integral can be

rearranged as follows

Eĥ

[
− log

(
MSE(ĥ)

)]
= 2

∫ ∞

x=0
log (p (x+ x0)) fY (x)dx

−

∫ ∞

x=0
log

(
p2(d−1)2(x2+ a1x+ a0)

)
fY (x)dx

=2
∫ ∞

x=0
log(x+ x0) fY (x)dx− log(d−1)2

−

∫ ∞

x=0
log(x2+ a1x+ a0) fY (x)dx (6.21)

where x0 =
σ2

p , a0 =
σ4

p2 (d−1)2 , and a1 =
2σ2−2dσ2+b

p(d−1)2 .

The last integral can be further simplified by considering

log(x2+ a1x+ a0) = log(x− x1)− log(x− x2),

where x1,2 = 0.5
(
−a1±

√
a2

1 −4a0

)
.

In conclusion, I have to compute integrals of the form
∫ ∞
x=0 log (x+ A) fY (x)dx, which can be solved

in Mathematica [55] via the Meijer G-function.
Specifically: ∫ ∞

x=0
log(x+ A) fY (x)dx =

ANr

(Nr −1)!rNr
MeijerG1,3

2,3

(
−Nr,−Nr +1
−Nr,−Nr,0

�����
A
r

)
(6.22)

where A,Nr > 0, r > 1 and MeijerGm,n
p,q

(
a1, ...,ap

b1, ...,bq

�����
z
)
is the Meijer G-function with parameters p,q,m,n.

Recognizing that
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zNr MeijerG1,3
2,3

(
−Nr,−Nr +1
−Nr,−Nr,0

�����
z
)

=MeijerG1,3
2,3

(
0,1

0,0,Nr

�����
z
)
,

(6.22) is equivalent with:

∫ ∞

x=0
log(x+ A) fY (x)dx =

MeijerG1,3
2,3

(
0,1

0,0,Nr

�����
z
)

(Nr −1)!
(6.23)

where z = A
r .

By substituting the result of (6.23) in (6.21), (6.17) follows.

Proof of Result 2

The proof follows with similar steps as for Result 1. However, in the MMSE case, I have d = 1, and the
expectation in (6.20) can be conveniently rewritten as

Eĥ

[
− log

(
MSE(ĥ)

)]
=

=2
∫ ∞

x=0
log

(
xp+σ2

)
fY (x)dx−

∫ ∞

x=0
log

(
pxb+σ4

)
fY (x)dx

= log(pb)+2
∫ ∞

x=0
log (x+x3) fY (x)dx−

∫ ∞

x=0
log (x+x4) fY (x)dx,

with x3 =
σ2

p , x4 =
σ2

pb , b = qp+σ2, q = σ2c
σ2+α2cPpτp

,

which is solved in Mathematica by using the Meijer G-function defined in (6.18).
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Chapter 7
The Pilot-to-Data Power Ratio in Multiuser Systems

7.1 Introduction

The previous chapters suggest that for the purpose of determining the optimal pilot power setting, it is
important to take into account the operation of practical channel estimation and receiver algorithms. To
the best of my knowledge, exact expressions for the achieved MSE and spectral efficiency (SE) when
using practical channel estimation such as LS and receiver algorithms such as MMSE, and accounting
for the PDPR and antenna correlation, are not available. In this chapter, I address this problem and derive
closed form expressions for the uplink of a MU-MIMO system, in which the BS uses LS or MMSE
channel estimation and MMSE receiver. Throughout, I assume that the output of the MMSE detector,
the residual signal plus interference from other spatial streams as well as the estimation error of the
received data symbols can be approximated as Gaussian [41]. Because in practice the CSI estimation
error is likely to be bounded, my design can be regarded as a worst-case design approach. Thereby,
my contributions (detailed in Sections 7.3-7.6 and the Appendices) to the lines of works above can be
summarized as follows:

• I derive closed form exact expressions for both the MSE and the SE taking into account the CSI
errors that are specific to the employed channel estimation technique;

• I explicitly take into account the impact of antenna correlation on these performance measures.

These formulas are then used to compare the performance of MU-MIMO systems employing the
naïve and MMSE receivers. An interesting insight is that when the system uses the MMSE receiver, the
PDPR minimizing the MSE does not depend on the number of receive antennas at the BS but rather is
dependent on the large-scale fading. This is in contrast to a system that employs the naïve receiver, for
which the pilot power minimizing the MSE depends on the number of receive antennas. This insight
can help set the pilot power almost optimally in practical systems in which the number of BS antennas
can depend on the actual deployment scenario [56], [57]. In particular, my results show that when the
optimal pilot power setting is employed at the terminal side, and the true MMSE receiver is used at the
base station side, the system’s performance is close to that of a hypothetical system that would have
access to the perfect CSI.

This chapter is structured as follows. Section 7.2 describes the system model and summarizes pre-
liminaries needed for development of the contributions of this chapter. Sections 7.3 and 7.4 analyze the
MSE in the case of uncorrelated and correlated antennas at the receiver, respectively. Section 7.5 derives
closed form expressions for the MSE and SE when the receiver uses the MMSE receiver. Section 7.6
presents numerical results on the MSE and SE, and Section 7.7 concludes the chapter.

7.2 Channel Estimation and Receiver Model

7.2.1 Channel Estimation Model

I consider the uplink of a MU-MIMO system, in which the MSs transmit orthogonal pilot sequences of
length τp: s =

[
s1, ..., sτp

]T
∈ Cτp×1, in which each pilot symbol is scaled as |si |2 = 1, for i = 1, .., τp .

The pilot sequences are constructed such that they remain orthogonal as long as the number of spatially
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multiplexed users is maximum τp [33]. In practice, such pilot sequences can be defined using the
popular Zadoff-Chu sequences [53],[58]. Specifically, without loss of generality, assume that the number
MU-MIMO users is K ≤ τp . In practice, K � Nr , where Nr is the number of antennas at the BS [27].

As emphasized in [27], MU MIMO differs from point-to-point MIMO in two respects: first, the
terminals are typically separated by many wavelengths, and second, the terminals cannot collaborate
among themselves, either to transmit or to receive data. That is, in MU MIMO systems, the terminals
are autonomous so that I can assume that the transmit array is uncorrelated. However, it is important to
capture the correlation structure at the receiver side so that I can evaluate the impact of CSIR errors on
the optimal pilot power and the achieved MSE.

In this chapter I assume a comb type arrangement of the pilot symbols. Given F subcarriers in the
coherence bandwidth, a fraction of τp subcarriers are allocated to the pilot and τd = F−τp subcarriers are
allocated to the data symbols. Each MS transmits at a constant power Ptot , however, this transmission
power can be distributed unequally among the subcarriers. In particular, considering User-` with a
transmitted power Pp,` for each pilot symbol and P` for each data symbol transmission, the sum
constraint of:

τpPp,` + τdP` = Ptot (7.1)

is enforced. In practice, this type of arrangement is suitable for time varying channels, so that channel
estimation is facilitated at the same time instant that is used for data transmission. Thus, the Nr × τp
matrix of the received pilot signal from User-` at the BS can be conveniently written as:

Yp
`
= α`

√
Pp,`h` sT +N, (7.2)

where I assume that h` ∈ CNr×1 is a circular symmetric complex normal distributed column vector
with mean vector 0 and covariance matrix C` (of size Nr ), denoted as h` ∼ CN (0,C` ), α` accounts for
the large scale fading, N ∈ CNr×τp is the spatially and temporally AWGN with element-wise variance
σ2
p , where the index p refers to the noise power on the received pilot signal.
In this chapter I assume that the BS uses the popular LS estimator that relies on correlating the received

signal with the known pilot sequence. Note that the proposed methodology to determine the MSE of the
received data is not confined to the LS estimator, but is directly applicable to an MMSE or other linear
channel estimation techniques as well. For each MS, the BS utilizes pilot sequence orthogonality and
estimates the channel based on (7.2) assuming:

ĥ` = h` +w` =
1

α`
√

Pp,`

Yp
`

s∗(sT s∗)−1

= h` +
1

α`
√

Pp,`τp
Ns∗, (7.3)

where s∗ =
[
s∗1, ..., s

∗
τp

]T
∈ Cτp×1 denotes the vector of pilot symbols and (sT s∗) = τp . By considering

h` ∼ CN (0,C` ), it follows that the estimated channel ĥ` is a circular symmetric complex normal
distributed vector ĥ` ∼ CN (0,R` ), with

R` , E{ĥ` ĥH
` } = C` +

σ2
p

α2
`
Pp,`τp

INr . (7.4)

By recognizing that h and ĥ are jointly circular symmetric complex Gaussian (multivariate normal)
distributed random variables, the distribution of the channel realization h` conditioned on the estimate
ĥ` is normally distributed as follows [34], [31]:

(h` | ĥ` ) ∼ CN
(
D` ĥ`,Q`

)
, (7.5)
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where D` , C`R−1
` and Q` , C` −C`R−1

` C` .

7.2.2 Received Data Signal Model

The MU-MIMO received data signal at the BS can be written as:

y = α`h`
√

P` x`︸        ︷︷        ︸
User-`

+

K∑
k,`

αkhk

√
Pk xk︸              ︷︷              ︸

Other users

+nd, (7.6)

where αk hk is the M ×1 vector channel including large and small scale fading between User-k and the
BS, Pk is the data transmit power of User-k, xk is the transmitted data symbol by User-k and nd denotes
the Gaussian noise on the received data signal.

7.2.3 Employing a Minimum Mean Squared Error Receiver at the Base Station

In this chapter the BS employs anMMSE receiverG` ∈C
1×Nr to estimate the data symbol transmitted by

User-`. As it was shown in [59], in the case of a linear receiver G` that requires the estimated channel of
only User-` as its input, the MSE of the estimated data symbols of User-` can be conveniently expressed
in the following quadratic form:

MSE
(
G`, ĥ`

)
=G`

*
,
α2
`P`

(
D` ĥ` ĥH

` DH
` +Q`

)
+

K∑
k,`

α2
kPkCk+σ

2
dI+

-
GH
` −

−α`
√

P` (G`D` ĥ` + ĥH
` DH

` GH
` )+1. (7.7)

As we shall see later, my analysis allows for an arbitrary channel covariance matrix at the receiver side
(C`) in (7.7) that allows me to analyze the impact of CSI errors on the MSE performance with arbitrary
correlation structure of the base station antennas. Recall that the MMSE receiver aims at minimizing the
MSE between the estimate G`y and the transmitted symbol x` :

G?
` , argmin

G
E{MSE} = argmin

G
E{|G`y− x` |2}. (7.8)

When the BS employs a naïve receiver, the estimated channel is taken as if it was the actual channel:

Gnaïve
` = α`

√
P` ĥH

` (α2
`P` ĥ` ĥH

` +σ
2
dI)−1. (7.9)

As it was shown in [59], this receiver does not minimize the MSE. Using the quadratic form in (7.7),
it can be shown that the receiver that minimizes the MSE of the received data symbols, is constructed
as:

G?
` = α`

√
P` ĥH

` DH
` · (7.10)

· *
,
α2
`P`

(
D` ĥ` ĥH

` DH
` +Q`

)
+

K∑
k,`

α2
kPkCk +σ

2
dI+

-

−1

.
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7.2.4 Calculating the Mean Squared Error When Employing the Minimum Mean
Squared Error Receiver

In [59] it was shown that for the special case when the channel covariance matrices C` and consequently
the matrices R` , D` and Q` are proportional to the identity matrix INr with diagonal elements c` , r` ,
d` and q` respectively, the unconditional MSE` of the uplink estimated data symbols of User-` when
employing the G?

` receiver can be calculated as follows.

Theorem 7.2.1 The unconditional MSE` of the received data symbols of User-` when the BS uses the
optimal G?

` receiver is as follows:

MSE` =
b`

(
e

b`
s` r`

(
b` +Nr s`r`

)
Ein

(
Nr,

b`
s`r`

)
− s`r`

)
s2
`
r2
`

+

Nr

(
e

b`
s` r`

(
b`+(1+Nr )s`r`

)
Ein

(
1+Nr,

b`
s`r`

)
− s`r`

)
s`r`

−2 · e
b`

s` r` NrEin

(
1+Nr,

b`
s`r`

)
+1, (7.11)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function, s` , d2
`p` , b` , q`p` +σ2

d

with p` , α2
`P` .

The proof is in the Appendix of this chapter.
Notice that specifically in the case of LS channel estimation and when C` is of the form of c`INr ,

from (7.4)-(7.5) I have:

r` = c` +
σ2
p

α2
`
Pp,`τp

; d` =
c`
r`

; q` = c` − c`d` . (7.12)

7.3 Analysis of the Mean Squared Error in the Case of Uncorrelated Antennas

This section presents the optimal pilot power setting for the case when C` is proportional to the identity
matrix that is C` = c`INr . I start with a further simplified version of Proposition 7.2.1.

Lemma 7.3.1 When the BS uses the optimal G?
` receiver and the channel can be assumed C` = c`INr ,

theMSE of the estimated data symbols of each user can be calculated as follows:

MSE(µ` ) = µ`eµ` Ein (Nr, µ` ) , (7.13)

where µ` = µ(Pp,` ) is defined by

µ` ,
σ2
d
σ2
pτd + c`α2

`

(
σ2
pPtot + τpPp,`

(
σ2
d
τd −σ

2
p

))
c2
`
α4
`
Pp,`τp (Ptot − τpPp,` )

. (7.14)

The proof is in the Appendix II.
As it was underscored by [1] and [4], there is a gap in spectral efficiency between coherent and

noncoherent communications and channel learning plays an important role in bridging this gap. Lemma
7.3.1 captures the training cost (τpPp,`) of communicating over an unknown channel specifically in the
case of an uplink of MU MIMO system employing an MMSE receiver.
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For the naïve (Gnaïve
`

) as well as for the optimal MMSE receiver (G?
` ), it is important to find the pilot

power that minimizes the MSE. For the naïve receiver I obtain the optimal pilot power by numerical
optimization, whereas for the optimal MMSE receiver the pilot power that minimizes the MSE has a
closed form expression. The following proposition presents the optimal PDPR as a function of the total
power and coherence budget and the large scale fading between the MS and the BS.

Theorem 7.3.2 When employing the MMSE receiver G?
` , in the case of C` = c`INr , the pilot power that

minimizes the MSE is independent of the number of receive antennas Nr and is given by:

P?p,` =
σdσp

√
(c`Ptotα

2
`
+σ2

p)(c`Ptotα
2
`
+σ2

d
τd)τd

c`α2
`
τp (σ2

d
τd −σ

2
p)

−
σ2
p (c`Ptotα

2
` +σ

2
d
τd)

c`α2
`
τp (σ2

d
τd −σ

2
p)

. (7.15)

The proof is in the Appendix of this chapter.

Remark 7.1. In the case of σd = σp = σ, expression (7.15) can be further simplified as

P∗p,` =Ptot

*.....
,

√(
1+ σ2

c`Ptotα
2
`

τd

) (
1+ σ2

c`Ptotα
2
`

)
τd

τp (τd −1)

−

(
1+ σ2

c`Ptotα
2
`

τd

)
τp (τd −1)

+///
-

.

The optimal pilot power is a fraction of the power budget Ptot that depends on the number of pilot
symbols τp and data symbols τd . It is also easy to verify that in the case of perfect channel knowledge
(i.e., assuming σp = 0), expression (7.15) returns P∗p,` = 0.

7.4 Analysis of the Mean Squared Error in the Case of Correlated Antennas

7.4.1 Determining G?

I now consider the general case when the channel covariance matrices (Ck) are not diagonal, that is when
allowing for an arbitrary correlation structure between the BS antennas. I assume that the BS employs
the optimal MMSE equalizer according to (7.10) and write

G?
` = α`

√
P` ĥH

` DH
`

(
Ψ`+α

2
`P`D` ĥ` ĥH

` DH
`

)−1
, (7.16)

where

Ψ` , α
2
`P`Q` +

K∑
k,`

α2
kPkCk +σ

2
dINr , (7.17)
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is a positive definite matrix which contains the covariance from all intra- and intercell interference
sources that cause interference to the signal of User-` and the self covariance term related with Q` .

For an explicit inversion in (7.16), I introduce the SVD of Ψ` , that is Ψ` = ΘH
` S`Θ` . Since Ψ` is

positive definite, it is non singular and I can therefore define:

ν` , S−1/2
`

Θ`D` ĥ`, (7.18)

which is a linear transformed version of ĥ` . It will be useful to notice that:

ĥH
` DH

` Ψ−1
` = ĥH

` DH
` ΘH

` S−1
` Θ` = ν

H
` S−1/2

`
Θ`, (7.19)

and

ĥH
` DH

` Ψ−1
` D` ĥ` = | |ν` | |2, (7.20)

and note that from (7.18) I have
D` ĥ` =ΘH

` S1/2
`
ν` . (7.21)

With these notations, it is straightforward to prove the following useful lemma.

Lemma 7.4.1 Given a channel estimate instance ĥ` , the MMSE weight matrix G` , as a function of the
number of receive antennas at the BS (Nr ) can be expressed as follows:

G?
` =

α`
√

P`
α2
`
P` | |ν` | |2+1

νH` S−1/2
`

Θ`, (7.22)

where | |ν` | |2 = νH` ν` =
∑Nr

i=1 |ν`i |
2.

The proof is in Appendix IV.
To simplify the discussion, I introduce

g` ,
α`
√

P`
α2
`
P` | |ν` | |2+1

. (7.23)

7.4.2 Determining the Mean Squared Error When Using G?

To determine the MSE, I first need to find the distribution of ν` . The distribution of ν` is readable from
(7.18) (notice that Ψ` and thereby S` are not random variables), and recall that ĥ` is complex normal
distributed with, ĥ` ∼ CN (0,R` ). Therefore, for ν` I have

ν` ∼ CN (0,Ω` ), (7.24)

where

Ω` , E(ν`νH` ) = E
(
(S−1/2
`

Θ`D` ĥ` )(S−1/2
`

Θ`D` ĥ` )H
)

= S−1/2
`

Θ`D`E
(
ĥ` ĥH

`

)
DH
` ΘH

` S−1/2
`

= S−1/2
`

Θ`D`R`DH
` ΘH

` S−1/2
`

.

I will need the SVD of Ω` :
Ω` =ΘH

Ω`
SΩ`ΘΩ`, (7.25)

where ΘΩ` is an orthogonal matrix (ΘH
Ω`

ΘΩ` = INr ).
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Furthermore, I will need the linear transform of ν` , which I denote with ω` whose covariance matrix is
diagonal:

ω` , ΘΩ`ν` . (7.26)

Notice that (for ease of notation dropping the index `):

| |ω | |2 = ωHω = νHΘH
Ω ΘΩν = ν

Hν = | |ν | |2 (7.27)

and

Eω
(
ωωH

)
= Eν

(
ΘΩνν

HΘH
Ω

)
=ΘΩEν

(
ννH

)
ΘH

Ω =

=ΘΩΘH
Ω SΩΘΩΘH

Ω = SΩ. (7.28)

It is now straightforward to prove the following lemma.
Lemma 7.4.2 The MSE of User-` as a function of ν` , as defined in (7.18), is as follows.

MSE (ν` ) =
1

α2
`
P` | |ν` | |2+1

(7.29)

The proof is in Appendix V.

Remark 7.2. It is insightful to compare (7.29) with the MSE of a system with uncorrelated antennas and
perfect channel estimation, that is when D = I, Q = 0 and ĥ = h. In this case, from (7.50) I get:

MSE (h) =
1

α2
`
P`
| |h` | |2
σ2

d

+1
, (7.30)

which indicates that ν` can be seen as an "equivalent channel" in the system of correlated antennas and
partial CSI information, that is ν` captures the impact of both antenna correlation and CSI estimation
errors on the MSE.

7.5 Calculating the Unconditional Mean Squared Error and the Spectral
Efficiency

Recall from Lemma 7.4.1 that | |ν` | |2 = νH` ν` =
∑Nr

i=1 |ν`i |
2, where the ν`i -s (i = 1, . . .,Nr ) are, in general,

not independent random variables. However, according to (7.28), the covariance matrix of ω` – that
is SΩ – is diagonal, with not necessarily equal diagonal elements. Therefore, each |ω`i |2 (denoted by
|ωi |

2 in the sequel) is exponentially distributed. Building on this observation, I can prove the following
theorem, which is useful for determining the MSE and the spectral efficiency.

Theorem 7.5.1 The mean squared error of the received data symbols and the spectral efficiency can be
calculated as:

MSE =
∫
x

1
α2
`
P` x+1

f (x)dx, (7.31)

and

η = −

∫
x

log


1
α2
`
P` x+1


f (x)dx, (7.32)
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74 7 The Pilot-to-Data Power Ratio in Multiuser Systems

respectively.

Proof. Denote the variance ofωi with ξ2
i , and note that |ωi |

2 is exponentially distributed with parameter
λi = 1/ξ2

i . Therefore,
∑Nr

i=1 |ωi |
2 is the sumof Nr independent exponentially distributed randomvariables.

The set of distributions composed by independent exponentially distributed phases are referred to as
phase type distributions [60] and has a closed form description with matrix exponential functions. That
is, the density function of

∑Nr

i=1 |ωi |
2 is

f (x) = eT1 eAxeNr λNr , (7.33)

where ei is the i-th unit vector (whose only nonzero element is 1 at position i) and the matrix A is:

A =
*.....
,

−λ1 λ1
−λ2 λ2

. . .
. . .

−λNr

+/////
-

. (7.34)

Using f (x) and (7.29), I have:

MSE = Eν (MSE(ν)) = Eω (MSE(ω)) =

=

∫
x

1
α2
`
P` x+1

f (x)dx, (7.35)

and:

η = −Eν
(
log[MSE(ν)]

)
= −Eω

(
log[MSE(ω)]

)
= −

∫
x

log


1
α2
`
P` x+1


f (x)dx, (7.36)

which completes the proof.

This general case simplifies to the following two special ones.

7.5.1 Case 1: Distinct Variances

I will now assume that N is the number of non-zero singular values in SΩ and all non-zero ξi (and λi) are
distinct (different). In this special but in practice important case, I can state the following proposition.

Proposition 7.5.2 If the non-zero variances ξ2
i , 0 are distinct, theMSE and the spectral efficiency can

be calculated as

MSE =
N∑
i=1

−λ
−N

2
i e

λi
p Ein

(
1, −λip

)
p

N∏
j=1, j,i

(
1−

λi
λ j

) , (7.37)
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and

η =

N∑
i=1

−λ
2−N

2
i e

λi
p Ein

(
1, −λip

)
N∏

j=1, j,i

(
1−

λi
λ j

) , (7.38)

respectively.

Proof. Notice that when all non-zero ξi , and consequently all λi are distinct (different), f (x) simplifies
to:

f (x) =
N∑
i=1

λie−λi x

N∏
j=1, j,i

(
1−

λi
λ j

) . (7.39)

Therefore, using (7.31), for the MSE I get:

MSE =
N∑
i=1

−λ
−N

2
i e

λi
p Ein

(
1, −λip

)
p

N∏
j=1, j,i

(
1−

λi
λ j

) , (7.40)

where recall from Proposition 7.2.1 that p = α2P` .
Similarly, using (7.32), for the SE I get:

η =

N∑
i=1

−λ
2−N

2
i e

λi
p Ein

(
1, −λip

)
N∏

j=1, j,i

(
1−

λi
λ j

) , (7.41)

which completes the proof.

7.5.2 Case 2: All Variances of ω are Equal

In the special, but in practice important case, when all variances of ω are equal, that is when ξi = ξ =
λ−1/2, ∀i ≤ N , I can state the following proposition.

Proposition 7.5.3 If all variances ξ2
i , 0 are equal, theMSE and the spectral efficiency can be calculated

as

MSE =
λ

p
e
λ
p Ein

(
N,
λ

p

)
(7.42)

and

η =
G

( λ
p

)
aN (N−1)!

, (7.43)

respectively, where
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G(x) ,MeijerG3,1
1,0

(
−Nr ;−(Nr −1)
−Nr,−Nr,0; .

�����
x
)
, (7.44)

is the Meijer G function.

Proof. For the proof, notice that when all variances ξ2
i , 0 are equal, f (x) becomes:

f (x,N, λ) =
λN xN−1e−λx

(N −1)!
, (7.45)

and for the MSE I get:

MSE =
λ

p
e
λ
p Ein

(
N,
λ

p

)
. (7.46)

Similarly, using f (x), for the SE, I get:

η =
G

( λ
p

)
aN (N−1)!

, (7.47)

which completes the proof.

In case of identical variances in ω, (7.42) gives the same expression as (7.13) in accordance with the
fact that SΩ is proportional to the identity matrix.

7.6 Numerical Analysis of the Mean Squared Error

7.6.1 Channel Model and Covariance Matrix

Table 7.1 System Parameters

Parameter Value
Number of antennas Nr = 4, 16, 20, 64, 100, 500
Path Loss α` = 40, 45, 50 dB
Power budget τpPp,` +τdP` = Ptot = 250 mW, as in Eq. (7.1).
Total number of symbols (per time slot) F = 12
Antenna spacing D/λ = 0.15, ..., 1.5
Mean Angle of Arrival (AoA) θ̄ = 70◦
Angular spread 2 · θ∆ = 5, ..., 45◦

In this section I consider a single cell system, in which MSs use orthogonal pilots to facilitate the
estimation of the uplink channel by the BS. Recall from Section 7.2 that the channel estimation process
is independent for each MS and I can therefore focus on a single user. The covariance matrix C` of
the channel h` as the function of the antenna spacing, mean angle of arrival and angular spread is
modeled as by the well known spatial channel model, which is known to be accurate in non-line-of-sight
environment with rich scattering and all antenna elements identically polarized, see [46]. For uniformly
distributed angle of arrivals, the (m,n) (m,n ∈ {1, . . .,Nr }) element of the covariance matrix of User-`
C` is given by

Cm,n =
1

2θ∆

∫ θ∆

−θ∆

e j ·2π · Dλ (n−m) cos(θ̄+x)dx, (7.48)
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PL=

40 dB

PL=

50 dB

Perfect CSI

Perfect CSI

MMSE

MMSENaïve Naïve

Gain Gain

Fig. 7.1 Cumulative distribution function of the squared error in a single user MIMO scenario when the path loss between
the UE and the BS is set to 40 and 50 dB when using the naïve receiver, the MMSE receiver and the receiver which has
access to the perfect CSI with Nr = 500 antennas.

where the system parameters are given in Table 7.1. The covariance matrix C` becomes practically
diagonal as the antenna spacing and the angular spread grows beyond Dλ > 1 and θ∆ > 30◦. In contrast,
with critically spaced antennas Dλ = 0.5 and θ∆ < 10◦, the antenna correlation in terms of the off-
diagonal elements of C` can be considered strong. Note that modeling the correlation matrices at the
receiver side according to (7.48) corresponds to using the one-sided narrowband Kronecker model with
receiver-side correlation, which is an appropriate model for the uplink of MU MIMO systems [27].

7.6.2 Numerical Results

In this section I consider a single cell single userMIMO system, in which the mobile terminal is equipped
with a single transmit antenna, whereas the BS employs Nr receive antennas. Note that the performance
characteristics of the proposed MMSE receiver as compared with the naïve receiver are similar in the
multi-user MIMO case from the perspective of the tagged user, since the proposed receiver treats the
multi-user interference as noise according to (7.10). The key input parameters to this system that are
necessary to obtain numerical results using the MSE derivation in this chapter are listed in Table 7.1.

Figure 7.1 shows the cumulative distribution function (CDF) of the squared error of the estimated
data symbols at the BS, i.e. the CDF of ‖Gy− x‖2 using the naïve and the MMSE receiver when the
number of antennas at the BS is Nr = 500. In all three cases in terms of path loss (α` = 40, α` = 45 and
α` = 50 dB), the gain of the MMSE receiver is large in the entire region of the CDF. For example, at
α` = 40, the median of the CDF is -21 dB with the naïve receiver and -29 dB with the MMSE receiver.
This result indicates that using the MMSE receiver is advantageous not only in the average sense, but in
virtually all channel states.
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Fig. 7.2 Comparing the performance of the naïve and the MMSE receiver in the case of correlated (solid lines) and
uncorrelated (dashed lines) antennas (with Nr = 4, 16, 64).

Figure 7.2 examines the impact of antenna correlation on the MSE with the naïve and the MMSE
receivers. The impact of antenna correlation in terms of the achievable MSE decreases as the number
of antennas increases from Nr = 4 to Nr = 64. An intuitive explanation of this insight is that the impact
of correlation can be thought of as a factor that decreases the effective number of antennas, that is the
number of antennas which contribute to the estimation of the transmitted data symbol. As the number of
antennas grows large, antenna correlation decreases the effective number of antennas, but the loss due
to this is not as significant as this loss when the number antennas is low. Instead, as the figure shows,
at large number of antennas tuning the pilot power plays a more important role in minimizing the MSE
than the effect of antenna correlation.

Figure 7.3 compares the performance of the naïve and the MMSE receivers with that of a receiver
that has access to the perfect CSI, that is assuming that ĥ` = h` . This situation corresponds to D` = I
and Q` = 0 and the structure of the naïve and the MMSE receivers coincide. Indeed, recall that the naïve
receiver does minimize the MSE in the case of perfect CSI. The key aspect to observe in Figure 7.3 is
that the gap between the MMSE receiver and the receiver operating with perfect CSI does not depend
on Nr . This is in sharp contrast with the gap between the naïve receiver and the receiver with perfect
CSI, which largely increases as the number of antennas gets large.

Figure 7.4 shows the SE of a MU MIMO system, in which the number of spatially multiplexed users
is equal to the length of the employed pilot sequence τp . Figure 7.4 illustrates the trade-off between
increasing the number of MU MIMO users and the necessary number of pilot symbols used to create
orthogonal pilot sequences. A greater number of users increases the SE of the system at the expense of
spending more symbols on the pilot signals. Therefore, I can see that around τp = 6 the SE reaches its
highest value. The gain in terms of SE of using the MMSE receiver is around 25% when the number of
antennas is large.
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Fig. 7.3 Comparing the MSE performance of the naïve and MMSE receivers with that of a receiver that uses perfect CSI.
As the pilot power increases, the MSE achieved by the receiver that uses perfect CSI increases, because due to the sum
power constraint the transmit power available for the data symbols decreases.

7.7 Conclusions

In this chapter, I first derived an analytical expression (G?
` ) of a linear receiver structure that minimizes

the MSE of the uplink estimated data symbols when the receive antennas possess a known correlation
structure. I then derived closed form expressions for the MSE and the achievable SE when employing
this MMSE receiver as a function of the pilot and data power, number of antennas, and path loss. I used
Monte Carlo simulations to verify the analytical results and to gain insight into the system behavior
when using G?

` .
From the analysis I conclude that when employing the true MMSE receiver (G?) at the BS in a

MU MIMO system, the pilot power that minimizes the MSE is independent of the number of receive
antennas. This implies that the optimal training does not need to be adjusted for sites with different
numbers of antennas or when upgrading existing antenna sites to a larger number of antennas. In the
special, (but in practice, typical) case when the thermal noise power levels on the data and pilot signals
are equal, setting the pilot power by the terminal is easy, because the terminals continuously measure
the path loss to the serving BS.

The simulation results provide the following insights:

• The performance difference between the naïve and the MMSE receiver increases with an increasing
number of antennas. However, the performance gap between the MMSE receiver and the receiver
that has access to a perfect CSI does not increase with the number of antennas.

• When the number of antennas is large, the impact of antenna correlation on the MSE is relatively
small as compared with the impact of appropriately tuning the pilot power. When using the MMSE
receiver (G?

` ), the optimal pilot power does not depend on the number of receive antennas, but is
quite sensitive to large-scale fading.
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Fig. 7.4 Spectral efficiency as a function of the employed pilot symbols τp . In this example, the number of users in MU
MIMO system is set equally to τp , that is I assume that the number of users that can be spatially multiplexed equals the
pilot sequence length.

• When the number of antennas is large, the gain of using the MMSE receiver over using the naïve
receiver is large, not only in terms of MSE, but also in the entire CDF of the squared error of the
estimated data symbols.

I also showed that the well known relation between the MSE and the SE that holds for the case
when perfect CSI at the MMSE receiver is available is valid also for the case of imperfect CSI at
the regularized MMSE receiver (G?). The deeper analysis of the impact of CSI errors in the case of
non-separable channel models is an important topic for future research.
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Appendix of Chapter 7

Proof of Proposition 7.2.1

Proof. If C` = c`I, implying D` = d`I, Q` = q`I and the optimal G?
` of (7.10) can be written as:

G?
` =

α`
√

P`d`
α2
`
P`

(
d2
`
| |ĥ` | |2+ q`

)
+

∑K
k,` α

2
k
Pkck +σ2

d

ĥH
`

, g` · ĥH
` . (7.49)

Substituting G?
` into (7.7) I get:

MSE
(
ĥ`

)
= −2α`

√
P`g`d` | |ĥ` | |2 +1+

g2
` ·

*
,
α2
`P`d

2
` | |ĥ` | |

4 + *
,
α2
`P`q` +

K∑
k,`

α2
kPkck +σ

2
d

+
-
| |ĥ` | |2+

-
. (7.50)

Recognizing that ϕ` , | |ĥ` | |2 is Gamma distributed, the density function of ϕ` ∀` is given by (dropping
the index ` for convenience):

fϕ (x) =
r−Nr xNr−1e−x/r

(Nr −1)!
x > 0. (7.51)

Proposition 7.2.1 follows from Lemma (7.50) by taking the average of MSE
(
ĥ`

)
using the the following

integrals: ∫ ∞

x=0
T1 fϕ (x)dx =

s` ·

Nr

(
− s`r` +e

b`
s` r`

(
b` + (1+Nr )s`r`

)
Ein

(
1+Nr,

b`
s` r`

))
s2
`
r`

;

(7.52)

∫ ∞

x=0
T2 fϕ (x)dx =

b` ·
−s`r` +e

b`
s` r`

(
b` +Nr s`r`

)
Ein

(
Nr,

b`
s` r`

)
s2
`
r2
`

; (7.53)

∫ ∞

x=0
T3 fϕ (x)dx = 2 · e

b`
s` r` NrEin

(
1+Nr,

b`

s`r`

)
, (7.54)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.

Proof of Lemma 7.3.1

Proof. I rewrite the MSE expression in (7.11), by making use of the following recursive relation, from
[61] (also available at [62, 8.19.12]):

µ`Ein(Nr, µ` )+NrEin(Nr +1, µ` ) = e−µ` . (7.55)
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Substituting µ` = b
rs in this relation, using the terms of the MSE in (7.11) and rearranging, I obtain:

MSE =
b`

r` s`
e

b`
r` s` Ein

(
Nr,

b`
r` s`

)
, (7.56)

where, similarly to the notation used in Proposition 1, b` , q`p` +σ2
d
with p` , α2

`P` and s` , d2
`p` and

r` , d` and q` are defined in (7.12).
Finally, recognizing that:

µ` =
b`

r` s`
=

q`α2
`P` +σ2

d

d2
`
α2
`
P`r`

= (7.57)

=
σ2
d
σ2
pτd + c`α2

` (σ2
pPtot + τpPp,` (σ2

d
τd −σ

2
p))

c2
`
α4
`
Pp,`τp (Ptot −Pp,`τp)

and substituting (7.1) into P` the lemma follows.

Proof of Proposition 7.3.2

I first prove the following lemma that will be useful for the proof of Proposition 7.3.2.

Lemma 7.7.1 For n > 0 and x ≥ 0, the following limit holds:

lim
x→∞

x2 (1− ex (n+ x)Ein(n, x)
)
= −n. (7.58)

Proof. Recalling the basic relationship between the incomplete Gamma function and the exponential
integral function:

Ein(n, x) = xn−1
Γ(1− n, x), (7.59)

and using the following expansion formula that is valid for large values of x (see [63]):

Γ(1− n, x) ∼

∼ x−ne−x
(
1+
−n
x
+
−n(−n−1)

x2 +

+
−n(−n−1)(−n−2)

x3 + . . .
)
, (7.60)

I have:

x2 (1−ex (n+ x)Ein(n, x)
)
∼ x2

(
1−ex (n+ x)xn−1x−ne−x ·

·
(
1+
−n

x
+
−n(−n−1)

x2 +
−n(−n−1)(−n−2)

x3 + . . .
))
. (7.61)

Rearranging terms, I finally get, for large x:

x2 (1− ex (n+ x)Ein(n, x)
)
∼

−n+
2n(1+ n)

x
−

3n(1+ n)(2+ n)
x2 +

+
4n(1+ n)(2+ n)(3+ n)

x3 ∓ . . . (7.62)

dc_1513_18

Powered by TCPDF (www.tcpdf.org)



7.7 Conclusions 83

from which it follows:
lim
x→∞

x2 (1− ex (n+ x)Ein(n, x)
)
= −n. (7.63)

I can now prove Proposition 7.3.2.

Proof (Proof of Proposition 7.3.2). I begin by taking the first derivative of MSE as a function of Pp,` .
To this end, I use (7.11) and take the derivative of the MSE with respect to µ` :

MSE′(µ` ) =− µ`eµ` Ein (Nr−1, µ` )+
+ eµ` Ein (Nr, µ` )+ µ`eµ` Ein (Nr ) . (7.64)

After some algebraic manipulation based on (7.55), I obtain:

MSE′(µ` ) = eµ`
(
Nr + µ`

)
Ein (Nr, µ` )−1. (7.65)

From [61] (also available at [62, 8.19.21]) I have

1 < (x+ n)exEin (n, x) <
x+ n

x+ n−1
.

Substituting x = µ` and n = Nr shows that MSE′(µ` ) , 0 if 0 < µ` .
Next, I consider the first derivative of µ(Pp,` ) as defined in (7.14) with respect to Pp,` :

µ′(Pp,` ) =
σ2
d
σ2
pτd (2Pp,`τp −Ptot )

c2
`
P2
p,`
α4
`
τp (Ptot − τpPp,` )2

+

+
c`α2

`

(
P2
p,`τ

2
p

(
σ2
d
τd −σ

2
p

)
+2Pp,`Ptotσ

2
pτp −σ

2
pP2

tot

)
c2
`
P2
p,`
α4
`
τp (Ptot − τpPp,` )2

. (7.66)

The numerator of (7.66) is a second order polynomial of Pp,` with the following coefficients a0 =−Ptot z,
a1 = 2τp z, a2 = c`α2

`τ
2
p (σ2

d
τd −σ

2
p), where z = (c`Ptotα

2
` +σ

2
d
τd)σ2

p . a0 is negative, a1 is positive and
the sign of a2 depends on the sign of σ2

d
τd −σ

2
p . In reasonable cases a2 is positive as well, because

τd > 1 and σd ≈ σp . When a2 is positive the numerator of (7.66) has one positive and one negative root,
because a1 <

√
a2

1 − a0a2 and the positive root is

P∗p,` =
−a1+

√
a2

1 −4a0a2

2a2
. (7.67)

Finally, the first derivative of the MSE with respect to Pp,` is:

d
dPp,`

MSE =MSE′(µ` ) · µ′(Pp,` ). (7.68)

Recall that MSE′(µ` ) , 0, the roots of d
dPp,`

MSE are identical with the roots of the numerator of
(7.66) and the positive root of d

dPp,`
MSE is P∗p,` .

I still need to show that P?
p,` corresponds to a local minimum. To this end, I study the sign of

limPp,`→0+
d

dPp,`
MSE. If the limit is negative then P?

p,` corresponds to a local minimum. Unfortunately,
(7.68) is not directly applicable because limPp,`→0+ µ

′(Pp,` ) = 0 and limµ`→∞MSE′(µ` ) =∞. Instead,
according to (7.56) I introduce F (n, x) = xexEin(n, x) and rewrite (7.57) as

dc_1513_18

Powered by TCPDF (www.tcpdf.org)



84 7 The Pilot-to-Data Power Ratio in Multiuser Systems

µ` =
b1+ b2Pp,`

Pp,` (b3−Pp,` )
,

where b1 =
σ2

d
σ2

pτd+c`α
2
`Ptotσ

2
p

c2
`
α4
`
τ2
p

, b2 =
c`α

2
`τp (σ2

d
τd−σ

2
p )

c2
`
α4
`
τ2
p

, b3 =
Ptot

τp
and note that b1 and b3 are positive.

This wayMSE = F
(
Nr,

b1+b2Pp,`

Pp,` (b3−Pp,` )

)
. Introducing P̃` =

b1Pp,` (b3−Pp,` )
b3 (b1+b2Pp,` ) I also have MSE = F

(
Nr,

b1
P̃`b3

)
and can rewrite the limit as

lim
Pp,`→0+

d
dPp,`

MSE = lim
Pp,`→0+

d
dPp,`

F
(
Nr,

b1+ b2Pp,`

Pp,` (b3−Pp,` )

)
=

= lim
Pp,`→0+

d
dPp,`

P̃` lim
P̃`→0+

d
dP̃`

F
(
Nr,

b1

P̃`b3

)
.

The first term converges to 1, while the second term converges to − Nr b3
b1

based on (7.58).

Proof of Lemma 7.4.1

Proof. According to the matrix inversion lemma for matrices A, B, C, D of size n× n, n×m, m×m,
m× n, respectively, I have

(A+BCD)−1 =

A−1−A−1B
(
DA−1B+C−1

)−1
DA−1 .

Substituting A =Ψ` , B = α`
√

P`D` ĥ` , C = 1, D = α`
√

P` ĥH
` DH

` I have:

(
Ψ` +α

2
`P`D` ĥ` ĥH

` DH
`

)−1
=Ψ−1

` −Ψ−1
` α`

√
P`D` ĥ` ·

(
α`

√
P` ĥH

` DH
` Ψ−1

` α`
√

P`D` ĥ` +1
)−1
·

·α`
√

P` ĥH
` DH

` Ψ−1
` =

=Ψ−1
` −

α2
`P`

α2
`
P` ĥH

`
DH
`

Ψ−1
`

D` ĥ`+1
·Ψ−1

` D` ĥ` ĥH
` DH

` Ψ−1
` . (7.69)

Substituting (7.69) into (7.16) gives:

G?
` = α`

√
P` ĥH

` DH
` ·

(
Ψ−1
` −

α2
`P`

α2
`
P` ĥH

`
D`Ψ−1

`
D` ĥ`+1

Ψ−1
` D` ĥ` ĥH

` DH
` Ψ−1

`

)
. (7.70)

Recall that Ψ` =ΘH
` S`Θ` is the SVD of Ψ` . Substituting (7.19) - (7.20), and this SVD into (7.70) I

get:

G?
` = α`

√
P`

(
νH` S−1/2

`
Θ` −

α2
`P`

α2
`
P` | |ν` | |2+1

| |ν` | |
2νH` S−1/2

`
Θ`

)
=

= α`
√

P` *
,
1−

α2
`P` | |ν` | |2

α2
`
P` | |ν` | |2+1

+
-
νH` S−1/2

`
Θ` =

α`
√

P`
α2
`
P` | |ν` | |2+1

νH` S−1/2
`

Θ` . (7.71)
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Proof of Lemma 7.4.2

Proof. Substituting (7.17) into (7.7) with optimal MMSE receiver, I get:

MSE
(
ĥ`

)
=G?

`

(
α2
`P`D` ĥ` ĥH

` D`
H +Ψ`

)
G?H

` −α`
√

P` (G?
`D` ĥ` + ĥH

` D`
HG?H

` )+1. (7.72)

From (7.22), (7.21) and the SVD of Ψ` I have:

G?
`D` ĥ` = g`νH` ν` = g` | |ν` | |

2, (7.73)

G?
`Ψ`G?H

` = g
2
`ν

H
` ν` = g

2
` | |ν` | |

2, (7.74)

substituting this into (7.72) I obtain

MSE (ν` ) = α2
`P`g2

` | |ν` | |
4+g2

` | |ν` | |
2−2α`

√
P`g` | |ν` | |2+1, (7.75)

where g` is also a function of | |ν` | |2 according to (7.23). Substituting (7.23) into (7.75) gives the lemma
after some algebraic manipulations.
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Chapter 8
Applications of the Results: Pilot-to-Data Power Ratio
Balancing in the Massive MIMO Concept by the METIS
Project

8.1 Background 1: Long Term Evolution and 5G Networks by the 3rd
Generation Partnership Project

Currently, the Long Term Evolution (LTE) networks defined and developed by the 3rd Generation
Partnership Project (3GPP) are the fastest growing cellular technology in history. Indeed, almost a
quarter of all global mobile subscribers are using LTE, and it is expected that by 2021 this will increase
to more than half of all subscribers, accounting for approximately 4.3 billion subscriptions. In certain
regions, such as Korea, Japan, China and the U.S.A, LTE has already reached or exceeded 90 percent
penetration [64]. The technology footprint of 3GPP technologies in general and LTE in particular, has led
to unprecedented economies of scale, which, in turn resulted in a rapid growth of technology solutions
that enable LTE to operate with high spectral and energy efficiency in a great number of spectrum bands.

As the demands for higher throughput and more data capacity, particularly for video, and better
broadband services continue to be growing, the mobile industry is now focusing on developing a new set
of technology enablers and features, collectively recognized as the 5th generation (5G)mobile technology.
5G, often referred to as New Radio (NR) in 3GPP, is also targeted to meet the diverse requirements
imposed by vertical markets, including massive machine type communication between sensors and
actuators, ultra-reliable and/or low latency communication and a host of various Internet of Things (IoT)
applications.

MIMO systems involving a number of antenna elements with an order of magnitude larger than in the
early releases of wireless standards is a quickly maturing technology developed by the 3GPP. Indeed,
an ongoing work item of 3GPP for the Release-14 of the Long Term Evolution (LTE) is identifying the
technology enablers and performance benefits of deploying up to 64 antenna ports at wireless access
points and BSs. While this is a significant increase of the number of antenna ports as compared with
today’s typical deployments, to fully realize the promises of scaling up MIMO to very large (referred to
as full dimension or massiveMIMO) arrays in practice requires further research and system development
work.

8.2 Background 2: MIMO Systems for 5G Developed in the METIS Project

As the standardization of massive MIMO systems in the 3GPP progresses, the research community has
started to explore the potential of very large arrays as an enabler technology for meeting the requirements
of 5th generation systems. Indeed, in its final deliverable, the European 5G project Mobile and Wireless
Communication Enablers for the 2020 Information Society (METIS) identifies massive MIMO as a key
5G enabler and proposes specific technology components that will allow the cost efficient deployment
of cellular (and specifically 3GPP) systems taking advantage of hundreds of antennas at cellular base
stations. The main findings of the METIS project are summarized in [65].

One of the technology components is CSI acquisition and handling the inherent pilot-data resource
allocation trade-off in a near optimal fashion.
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8.3 Application: Channel State Information Acquisition in the METIS 5G
Concept

Understanding andmanaging the inherent trade-offs related to CSI acquisition inmassiveMIMO systems
is fundamental to the design of such systems [4], [5], [7]. As it has been discussed in details in [4], the
level of pilot contamination in terms of the number of users using non-orthogonal pilot sequences can
be controlled by, among other techniques, setting the pilot sequence reuse factor across the cells of a
multi-cell system.

Also, the effect of pilot contamination can be mitigated by downlink pilot contamination elimination
precoding (PCEP) proposed by [5]. In my approach, the level of pilot contamination is controlled by
adaptively setting the pilot reuse factor and balancing the pilot-data power ratio, which is beneficial for
both the uplink and downlink performance.

When operating in limited coherence time and frequency channel conditions, the number of symbols
that is available within the coherence time of the channel is limited and the inherent trade-offs between
allocating resources to pilot and data symbols include the following:

• Allocating more power, time, or frequency resources improves the quality of the channel estimate,
but leaves fewer resources for uplink and downlink data transmission.

• Constructing longer pilot sequences helps to avoid tight pilot reuse in multi-cell systems, which in
turn helps to reduce or avoid pilot contamination. On the other hand, spending a greater number of
symbols on pilots increases the pilot overhead.

• In multiuser MIMO systems, increasing the number of orthogonal pilot sequences may increase the
number of spatially multiplexed users, since a larger number of orthogonal pilot sequences enable
the system to distinguish a larger number of users in the code domain. However, this comes at the
expense of having longer pilot sequences.

The METIS massive MIMO concept combines the coordinated allocation of resources available for
pilot (reference) signals across multiple cells and the balancing of the pilot-data resources within each
cell [8]. For pilot contamination mitigation the Operation and Maintenance System employs low-rate
multi-cell coordination to set the pilot reuse factor (e.g. pilot reuse-1 or pilot reuse-3) depending on the
cell load and the coherence time budget that can be used for creating pilot sequences.

For example, at pedestrian speed of 1.5 m/s and outdoor cell radius of around 1000 m at 2 GHz
carrier frequency, the number of symbols within the coherent bandwidth and time are around B ·T = 300
KHz x 25 ms = 7500, whereas this coherent budget is only a few hundred symbols at vehicular speeds
(with coherence time of T ≈ 1.25 ms). Notice that even a greater-than-one pilot reuse scheme does not
eliminate pilot contamination, since pilot interference can be caused by all surrounding cells. Therefore,
within each cell, each mobile station employs pilot-data power ratio balancing at a fine time scale to
maximize spectral efficiency [8].
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Chapter 9
Summary

9.1 Thesis I: Pilot-to-Data Power Ratio in Single User Systems

Thesis I considers a single input multiple output SIMO system in which the MS balances its PDPR,
while the BS uses LS channel estimation to initialize its linear MMSE equalizer. Thesis I is concerned
with calculating the MSE of the uplink estimated data symbols based on the uplink received data signal
and the available channel estimate by the multiple antenna BS.

Theorem 9.1. Let the number of receive antennas at a multiple antenna BS be denoted by Nr . The
expected value of the mean square error of the equalized symbols is

E {MSE} = d2Nr

(
G(a,1+Nr )+ prG(1+Nr,1+Nr )−1

)
+

+
b
pr

(
G(a,Nr )+ prG(Nr,Nr )−1

)
−2d ·

(
prG(Nr,1+Nr )

)
+1;

where P is the transmit power employed by the MS for transmitting the data symbols, p = α2P, a = σ2,
α is the large scale fading, σ2 is the noise power at the receive antenna, b = qp+σ2, R , E

{
ĥĥH

}
=

C+ σ2

Ppα2 I = r I, and

G(x, y) ,
1
pr

e
a
pr xEin

(
y,

a
pr

)
,

and Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.

9.2 Thesis II: Minimum Mean Squared Error Receiver in the Presence of
Channel State Information Errors

Thesis II is concerned with deriving an explicit formula for a receiver that minimizes the mean squared
error of the estimated data symbols when the receiver has a non-perfect channel estimate. Thesis II also
derives a closed form expression for the MSE when this optimum receiver is used, as a function of the
number of receive antennas and the applied data and pilot power. Specifically, using the notation and
terminology of Thesis I, I have the following results.

Let κ be the index of a tagged user in a MU-MIMO system of K users, κ = 1 . . .K , and let G?
κ denote

the receiver vector that minimizes the MSE of the estimated data symbols of the tagged user.
The optimal MU-MIMO receiver vector for User-κ is as follows:

Theorem 9.2.1 The optimal G?
κ can be derived as:

G?
κ = ακ

√
Pκ ĥH

κ DH
κ ·

·*
,
α2
κPκ

(
Dκ ĥκ ĥH

κ Dκ
H +Qκ

)
+

K∑
k,κ

α2
kPkCk +σ

2
dI+

-

−1

. (9.1)
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Next, it is of great interest to determine the MSE of the estimated data symbols when employing G?
κ

as the receiver of the tagged user. To this end, the following result holds.

Theorem 9.2.2 The unconditional MSE of the received data symbols of User-κ when the BS uses the
optimal G?

κ receiver is as follows.

MSE =

sκ ·
Nr

(
− sκr + e

bκ
sκ r

(
bκ + (1+Nr )sκr

)
Ein

(
1+Nr,

bκ
sκr

))
s2
κr

+

+ bκ ·
−sκr + e

bκ
sκ r

(
bκ +Nr sκr

)
Ein

(
Nr,

bκ
sκr

)
s2
κr2

−

−2 · e
bκ
sκ r NrEin

(
1+Nr,

bκ
sκr

)
+1, (9.2)

where Ein(n, z) ,
∫ ∞

1 e−zt/tn dt is a standard exponential integral function.

9.3 Thesis III: The Impact of Antenna Correlation on the Pilot-to-Data Power
Ratio

Thesis III is concerned with determining the MSE of the estimated data symbols at multiple antenna
receivers with correlated receive antenna structures. Specifically, Thesis III allows for an arbitrary
correlation matrix structure at the multiple antenna receiver and derives a closed form expression for the
MSE of the received data symbols as follows.

Theorem 9.3.1 The mean square error (MSE) of the uplink received data with arbitrary covariance
matrix C of the uplink channel can be calculated as

MSE = T1+T2+T3+1, (9.3)

where

T1 =
∑
k

∑
`,`,k

dkd` ·

·

∫ ∞

x=0
xe−xσ

2/(α2P) 1
x+ rk

1
x+ r`

∏
i

ri
x+ ri

dx+

+
∑
k

d2
k

∫ ∞

x=0
xe−xσ

2/(α2P) 2
(x+ rk )2

∏
i

ri
x+ ri

dx;

T2 =
1
α2P

∑
k

mk

∫ ∞

x=0
xe−x

σ2
α2P

1
x+ rk

∏
i

ri
x+ ri

dx;

and
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T3 = 2
∑
k

dk

∫ ∞

x=0
e−x

σ2
α2P

1
x+ rk

∏
i

ri
x+ ri

dx,

where SM , α
2PSQ+σ

2I is a diagonal matrix with diagonal elements mk = SMkk = α
2Pqk +σ2, where

qk = SQkk .

9.4 Thesis IV: Block and Comb Type Channel Estimation

Thesis IV derives analytical results for the spectral efficiency of MU-MIMO systems, in which the
overall resources must be shared between channel estimation and data transmission. Specifically, Thesis
IV shows that the spectral efficiency in MU-MIMO systems is not only a function of the PDPR, but it
also depends on the specific channel estimation scheme, as given by the following results.

Theorem 9.4.1 (Spectral efficiency with LS estimation) Assume C = cINr , where c ∈ R+, then the
average spectral efficiency with LS channel estimation and MMSE receiver is

S̄LS =
(τ− τp)

τ

(
2G(x0)−G(x1)−G(x2)

(Nr −1)!
− log(d−1)2

)
(9.4)

with x1,2 =
1
2

*
,
− 2σ2−2dσ2+b

p(d−1)2 ±

√(
2σ2−2dσ2+b

p(d−1)2

)2
− 4σ4

p2 (d−1)2
+
-
, x0 =

σ2

p , p = α2P, b= qp+σ2, q = c(1−c/r ,

r = c+ σ2

α2Ppτp
,

and where

G(x) =MeijerG1,3
2,3

(
0,1

0,0,Nr

�����
x
r

)
, (9.5)

is the Meijer G-function.

Theorem 9.4.2 (Spectral efficiency with MMSE estimation) Assume C = cINr , where c ∈ R+, then
the average spectral efficiency with MMSE channel estimation and MMSE receiver is

S̄MMSE =
(τ− τp)

τ

(
log(pb)+

2G(x3)−G(x4)
(Nr −1)!

)
(9.6)

with x3 =
σ2

p , x4 =
σ2

pb , b = qp+σ2, q = σ2c
σ2+α2cPpτp

, and G(x) defined in 9.4.1.

9.5 Thesis V: The Pilot-to-Data Power Ratio in Multiuser Systems

Thesis V derives analytical results for the MSE of the received data symbols and the overall spectral
efficiency of MU-MIMO systems, in which the overall resources must be shared between channel
estimation and data transmission, and the receive antennas are correlated according to an arbitrary
correlation structure.

Let

Ψ` , α
2
`P`Q` +

K∑
k,`

α2
kPkCk +σ

2
dINr , (9.7)

and
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Ψ` =ΘH
` S`Θ` (9.8)

denote the singular value decomposition (SVD) of Ψ` . Furthermore, define the linear transformed
version of the estimated channel ĥ` as:

ν` , S−1/2
`

Θ`D` ĥ`, (9.9)

and denote the distribution of ν` as:
ν` ∼ CN (0,Ω` ), (9.10)

where

Ω` , E(ν`νH` ) = S−1/2
`

Θ`D`R`DH
` ΘH

` S−1/2
`

,

and denote the SVD of Ω` :
Ω` =ΘH

Ω`
SΩ`ΘΩ`, (9.11)

where ΘΩ` is an orthogonal matrix.
Also, denote the linear transform of ν` , with ω`

ω` , ΘΩ`ν` , (9.12)

and its diagonal covariance matrix with SΩ.
With this notation, the MSE and the SE can be calculated as follows:

Theorem 9.5.1 Denote the variance of ωi with ξ2
i . Then, |ωi |

2 is exponentially distributed with param-
eter λi = 1/ξ2

i , and the mean squared error of the received data symbols can be calculated as:

MSE =
∫
x

1
α2
`
P` x+1

f (x)dx, (9.13)

while the spectral efficiency can be calculated as:

η = −

∫
x

log


1
α2
`
P` x+1


f (x)dx, (9.14)

where α` represents the large scale fading (path loss) of User-`, and f (x) is the the density function
of

∑Nr

i=1 |ωi |
2:

f (x) = eT1 eAxeNr λNr , (9.15)

where ei is the i-th unit vector (whose only nonzero element is 1 at position i), and the matrix A is:

A =
*.....
,

−λ1 λ1
−λ2 λ2

. . .
. . .

−λNr

+/////
-

. (9.16)

For the special but important case, when all non-zero ξi (and λi) are distinct (different), the following
result holds:
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Proposition 9.5.2 When all non-zero ξi (and λi) are distinct (different), then

f (x) =
N∑
i=1

λie−λi x

N∏
j=1, j,i

(
1−

λi
λ j

) , (9.17)

and the mean squared error can be calculated as:

MSE =
N∑
i=1

−λ
−N

2
i e

λi
p Ein

(
1, −λip

)
p

N∏
j=1, j,i

(
1−

λi
λ j

) , (9.18)

where p = α2P` .
The SE can be calculated as follows:

η =

N∑
i=1

−λ
2−N

2
i e

λi
p Ein

(
1, −λip

)
N∏

j=1, j,i

(
1−

λi
λ j

) . (9.19)

In the special but important when all variances of ω are equal, the following proposition holds:

Proposition 9.5.3 Suppose ξi = ξ = λ−1/2, ∀i ≤ N . Then, f (x) follows the Erlang distribution as
follows:

f (x,N, λ) =
λN xN−1e−λx

(N −1)!
, (9.20)

and the MSE is given by:

MSE =
λ

p
e
λ
p Ein

(
N,
λ

p

)
, (9.21)

and the spectral efficiency can be calculated as:

η =
G

( λ
p

)
aN (N−1)!

, (9.22)

where

G(x) ,MeijerG3,1
1,0

(
−Nr ;−(Nr −1)
−Nr,−Nr,0; .

�����
x
)
, (9.23)

is the Meijer G function.
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