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Introduction

I) Primary objective. The dissertation treats sharp functional inequalities on curved spaces (non-
euclidean structures) with applications in various elliptic partial differential equations (PDEs), com-
bining various elements from geometric analysis, calculus of variations and group theory. The present
work resumes my contributions to these fields during the last 8 years, based on 19 papers (and one
monograph), all published or accepted for publication in well established mathematical journals; for

8 of them I am the sole author, while the other 11 articles were written with my collaborators.

IT) Historical facts. In order to investigate existence, uniqueness/multiplicity of various elliptic
PDEs (as Schrodinger, Dirichlet or Neumann problems), fine properties of Sobolev spaces and sharp
Sobolev inequalities are needed. For exemplification, let n > 2, p € (1,n), and recall the classical
Sobolev embedding W1P(R™) < LP"(R") with the Sobolev inequality

N 1/p* 1/p
</ |ulP d:r) < Snp </ IVu]pda:> , Yu € Wl’p(R”), (S)
n R"L

1 1 NP P14/ ln
where S, , = 7 2n » (%) (F(n/(p;;%ﬁngl)/p)) is the sharp constant, p* = np—fp denotes the

critical Sobolev exponent and p’ = z% is the conjugate of p, see Talenti [88]. Furthermore, the

unique class of extremal functions in (S) is uy(z) = ()\ + |1:]p/>1_n/p, A > 0. Inequality (S) has been
established by using a Schwarz symmetrization argument and the Pdlya-Szeg6 inequality, where the
sharp isoperimetric inequality in R" is deeply explored.

A natural question arose: what kind of geometric information is encoded into the Sobolev inequality
(S) whenever the ambient space is curved? To handle this problem, in the middle of the seventies
Aubin [8] initiated the so-called AB-program (see Druet and Hebey [34]) whose objective was to
establish the optimal values of A > 0 and B > 0 in the inequality

. 1/p* 1/p 1/p
(/ |ul? dvg> <A (/ |vguypdvg> + B (/ \uypdvg> , Yu € WHP(M), (AB)
M M M

where (M, g) is a complete n-dimensional Riemannian manifold, while dV, and V4 denote the canonical
volume form and gradient on (M, g), respectively. It turned out that (AB) deeply depends on the
curvature of (M, g). For instance, inequality (AB) holds on any n-dimensional Hadamard manifold!
(M,g) with A = S,,,, and B = 0 whenever the Cartan-Hadamard conjecture? holds on (M, g); such

1Simply connected, complete Riemannian manifold with nonpositive sectional curvature.
2The validity of the sharp isoperimetric inequality on Hadamard manifolds; see §1.1.2.
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cases occur for instance in low-dimensions n € {2, 3,4}, see Druet, Hebey and Vaugon [35]. However,
if (M, g) has nonnegative Ricci curvature, inequality (AB) holds with A = S, , and B = 0 if and
only if (M, g) is isometric to the Euclidean space R", see Ledoux [61]. Further contributions in the
Riemannian setting can be found in Bakry, Concordet and Ledoux [10], do Carmo and Xia [32], Ni
[70], Xia [97], and references therein.

In recent years considerable efforts have been made in order to investigate various nonlinear PDEs
involving Laplace-type operators in curved spaces. To handle these class of problems, various ap-
proaches have been elaborated, like the theory of Ricci flows and optimal mass transportation on
Riemannian/Finsler manifolds. One of the main motivations were the study of the famous Yamabe
problem, see the comprehensive monograph of Hebey [52], and the Poincaré conjecture proved by
Perelman [76]. In these works sharp geometric and functional inequalities as well as the influence of
curvature play crucial roles; see e.g. the Gross-type sharp logarithmic Sobolev inequality in the work
of Perelman [76]. Accordingly, this research topic is a very active and flourishing area of the geomet-
ric analysis, see e.g. Ambrosio, Gigli and Savaré [5, 6], Lott and Villani [65], Sturm [85, 86], Villani [92].

IIT) Scientific objectives and brief description of own contributions. In the last few years
I was interested to understand the geometric aspects of certain highly nonlinear phenomena on non-
euclidean structures, by describing the influence of curvature in some Sobolev-type inequalities and
elliptic problems formulated in the language of the calculus of variations. In the sequel, I intend to
briefly describe my results (obtained either as a sole author or in collaboration with my co-authors).
In order to avoid technicalities, most of the results are presented in the simplest possible way, although
many of them are also valid in more general settings (e.g. on not necessarily reversible Finsler manifolds
instead of Riemannian ones). These facts will be highlighted throughout the presentation.

The dissertation contains five chapters.

Chapter 1 is devoted to those fundamental notions and results which are indispensable to have a
self-contained character of the present work, recalling elements from the geometry of metric measure

spaces (Riemannian/Finsler manifolds and CD(K, N) spaces) as well as certain variational principles.

Chapter 2 is devoted to interpolation inequalities on curved spaces. We first recall the sharp
Gagliardo-Nirenberg interpolation inequality with its limit cases in the flat case R™, proved by Cordero-
Erausquin, Nazaret and Villani [24] and Gentil [45]. In the particular case, this inequality reduces
precisely to the sharp Sobolev inequality (S). Based on papers [109], [116], [110], [103] and [106], and

depending on the sign of the curvature, my achievements can be summarized as follows:

e Positively curved case (interpolation inequalities). It is well-known that any metric measure
space verifying the famous curvature-dimension condition CD(K, N)? & la Lott-Sturm-Villani
supports various geometric inequalities, as Brunn-Minkowski and Bishop-Gromov inequalities.
It was a challenging problem, suggested by Villani, whether such non-smooth spaces support

functional inequalities. In this context, we prove that the picture is quite rigid: if a CD(K,n)

3The curvature-dimension condition CD(K, N) was introduced by Lott and Villani [65] and Sturm [85, 86] on metric
measure spaces. In the case of a Riemannian/Finsler manifold M, the condition CD(K, N) represents the lower bound
K € R for the Ricci curvature on M and the upper bound N € R for the dimension of M, respectively.
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metric measure space (M, d, m) supports the Gagliardo-Nirenberg inequality or any of its limit
cases (LP-logarithmic Sobolev inequality or Faber-Krahn inequality) for some K > 0 and n > 2
and an n-density assumption at some point of M, then a global non-collapsing n-dimensional
volume growth holds, i.e., there exists a universal constant Cy > 0 such that m(B(z, p)) > Cop"
for all x € M and p > 0, where B(x,p) = {y € M : d(x,y) < p} (see Theorems 2.3, 2.4 and 2.5).
Due to the quantitative character of the volume growth estimate, we establish rigidity results on
Riemannian/Finsler manifolds with nonnegative Ricci curvature supporting Gagliardo-Nirenberg
inequalities via a quantitative Perelman-type homotopy construction. Roughly speaking, once
the constant in the Gagliardo-Nirenberg inequality (or in its limit cases) is closer and closer to
its optimal Euclidean counterpart, the Riemannian manifold with nonnegative Ricci curvature
is topologically closer and closer to the Euclidean space (see Theorem 2.6). In particular, our

rigidity result for the LP-logarithmic Sobolev inequality solves an open problem of Xia [98].

Negatively curved case (interpolation inequalities). Inspired by Ni [70] and Perelman [76], we
prove that Gagliardo-Nirenberg inequalities hold on n-dimensional Hadamard manifolds with the
same sharp constant as in R” whenever the Cartan-Hadamard conjecture holds. However, if one
expects extremal functions in Gagliardo-Nirenberg inequalities, it turns out that the Hadamard

manifold is isometric to the Euclidean space R™ (see Theorem 2.7).

Chapter 3 deals with famous uncertainty principles on curved spaces. As endpoints of the Caffarelli-

Kohn-Nirenberg inequality, we first recall both the sharp Heisenberg-Pauli-Weyl and sharp Hardy-

Poincaré uncertainty principles in the flat case R”. The own contributions, based on the papers [108],
[118], [107] and [104], can be summarized as follows:

e Positively curved case (uncertainty principles). We prove that on a complete Riemannian mani-

fold (M, g) with nonnegative Ricci curvature the sharp Heisenberg-Pauli-Weyl holds if and only
if the manifold is isometric to the Euclidean space of the same dimension (see Theorem 3.4). We
note that this result seems to be a strong rigidity in the sense that no quantitative form can be

established as in its counterparts from interpolation inequalities.

Negatively curved case (uncertainty principles). We first prove that the sharp Heisenberg-Pauli-
Weyl uncertainty principle holds on any n-dimensional Hadamard manifold (M, g); however,
positive extremals exist if and only if (M, g) is isometric to R™ (see Theorems 3.5 and 3.6).
We emphasize that these sharp results do not require the validity of the Cartan-Hadamard
conjecture as in the case of interpolation inequalities. Moreover, Theorem 3.6 emends a mistake
from Kombe and Ozaydin [59] on hyperbolic spaces. We then prove that stronger curvature
implies more powerful improvements in the Hardy-Poincaré uncertainty principle on Hadamard
manifolds (see Theorems 3.7 and 3.8); the latter result comes from the lack of extremals in the
Hardy-Poincaré inequality in R™. We also prove a sharp Hardy-Poincaré inequality for multiple

singularities (see Theorem 3.10) and a sharp Rellich uncertainty principle (see Theorem 3.11).

The next two chapters deal with applications of sharp Sobolev-type inequalities, providing a diversity of

existence, uniqueness/multiplicity results for elliptic PDEs both on Finsler and Riemannian manifolds,

emphasizing at the same time subtle differences between these two geometric settings.
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Chapter 4 treats some elliptic problems on not necessarily Finsler manifolds. The own contributions,

based on the papers [120] and [107], can be summarized as follows:

o Reversibility versus structure of Sobolev spaces. In order to investigate elliptic problems on

Finsler manifolds, basic properties of Sobolev spaces over Finsler manifolds are expected to be
valid, like the vector space structure, reflexivity, etc. Surprisingly, the reversibility constant
rp > 1 of a given Finsler manifold (M, F') turns to be decisive at this point. Indeed, we prove
that the Sobolev space over (M, F) is a reflexive Banach space whenever rp < +00 (see Theo-
rem 4.1), while there are non-compact Finsler manifolds (M, F') with rr = +oo for which the
"Sobolev space’ over these objects might not be even vector spaces. The latter (counter)example
is constructed on the n-dimensional unit ball endowed with a Funk-type Finsler metric (see The-
orem 4.2) and highlights the deep difference between Riemannian and Finsler worlds. This set

of results refills the missing piece in the theory of Sovolev spaces over non-compact manifolds.

Elliptic problems on Finsler-Hadamard manifolds. We first study an elliptic parameter-depen-
ding model problem on a Funk-type manifold which involves the Finsler-Laplacian and a singular
nonlinearity. By using variational arguments, we prove that for small parameters, the studied
problem has only the trivial solution, while for large parameters, the problem has two distinct
non-trivial weak solutions (see Theorem 4.3). We then consider a Poisson problem with a
pole/singularity on bounded domains of a Finsler-Hadamard manifold, proving via the Hardy-
Poincaré inequality (Chapter 3) uniqueness and further qualitative properties of the solution (see
Theorems 4.4 and 4.5). Spectacular results show that the shape of the solution to the Poisson

equation fully characterize the curvature of the Finsler manifold (see Theorems 4.6 and 4.7).

Chapter 5 is devoted to various elliptic problems on compact and non-compact Riemannian mani-

folds. The own contributions, based on the papers [113], [104] and [105] are summarized as follows:

e FElliptic problems on compact Riemannian manifolds. By using variational arguments, we prove a

sharp bifurcation result (concerning the existence of solutions) for a sublinear eigenvalue problem
on compact Riemannian manifolds (see Theorem 5.1), and provide its stability under small
perturbations (see Theorem 5.2). These results are applied to establish a sharp Emden-type
multiplicity result on an even-dimensional Euclidean space involving a singular term, by reducing
the initial problem to a PDE defined on the 1-codimensional unit sphere endowed with its usual

Riemannian metric (see Theorem 5.3).

Elliptic problems on non-compact Riemannian manifolds. At first, by applying a sharp multipo-
lar Hardy-Poincaré inequality (Chapter 3), we provide the existence of infinitely many symmet-
rically distinct solutions for an elliptic problem on the upper hemisphere, involving the natural
Laplace-Beltrami operator and two poles/singularities (see Theorem 5.5). This result is obtained
by an astounding group-theoretical argument leaning on the solvability of the Rubik cube (see
Theorem 5.4). Then, we prove the existence of infinitely many isometry-invariant solutions for a
Schrodinger-Maxwell system on Hadamard manifolds which involves an oscillatory nonlinearity
near the origin (see Theorem 5.6). Here, the action of the isometry group on the Hadamard

manifold plays a crucial role.
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IV) Formulation of the Theses (according to the regulation of the Academy). In the sequel

we will formulate four Theses which describe the main contributions of the present dissertation:

Thesis 1. (Sharp interpolation inequalities)

e CD(K, N) metric measure spaces in the sense of Lott-Sturm-Villani (with K > 0)
supporting interpolation inequalities are topologically rigid, having a global non-
collapsing volume growth. If the embedding constants in interpolation inequali-
ties are closer and closer to their optimal Euclidean counterparts, the Riemannian
manifold with nonnegative Ricci curvature is topologically closer and closer to

the Euclidean space.

e Hadamard manifolds support sharp interpolation inequalities whenever the Car-
tan-Hadamard conjecture holds (e.g. in dimensions 2, 3 and 4). The existence of

extremals however imply the flatness of the Hadamard manifolds.
Thesis 2. (Sharp uncertainty principles)

¢ Hadamard manifolds support the sharp Heisenberg-Pauli-Weyl uncertainty prin-
ciple (the validity of the Cartan-Hadamard conjecture is not needed). However,
a complete Riemannian manifold with nonnegative Ricci curvature supports the
sharp Heisenberg-Pauli-Weyl uncertainty principle if and only if the manifold is
isometric to the Euclidean space of the same dimension.

e Stronger negative curvature implies more powerful improvements in Hardy-Poin-

caré and Rellich uncertainty principles on Hadamard manifolds.
Thesis 3. (Elliptic problems on Finsler manifolds)

e Sobolev spaces over arbitrary Finsler manifolds with finite reversibility constants
are reflexive Banach spaces. There are however non-compact Finsler manifolds
with infinite reversibility constants for which the corresponding Sobolev spaces
are not even vector spaces.

e Parameter-depending sublinear elliptic problems on not necessarily reversible
Finsler manifolds with finite reversibility constant have two non-zero solutions
for enough large parameters. Moreover, the shape of the solution for the unipo-

lar Poisson equation fully characterize the curvature of the Finsler manifold.
Thesis 4. (Elliptic problems on Riemannian manifolds)

e Compactness of Riemannian manifolds in sublinear eigenvalue problems implies
sharp bifurcation phenomenon concerning the number of solutions: for small
values of the parameter there is only the zero solution, for large parameters there
are two non-zero solutions, while the gap interval can be arbitrarily small.

e Non-compactness of Riemannian manifolds can be compensated by certain iso-
metric group actions in order to guarantee multiple, isometry-invariant non-zero
solutions for elliptic problems. In particular, the technique of solving the Rubik

cube provides symmetrically distinct solutions.
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Notations and conventions

Notations:

(M,F) : Finsler manifold M with the Finsler metric F' : TM — M,
(M,g) : Riemannian manifold M with the inner product g;

dp : distance function on the Finsler manifold (M, F');
dg . distance function on the Riemannian manifold (M, g);
dz, : dp(xo,-) or dg(xo,-) where xg € M;

Vr : gradient on the Finsler manifold (M, F');

Vy : gradient on the Riemannian manifold (M, g);

\Y : (usual) Euclidean gradient;

Ap : Finsler-Laplacian operator;

Ay : Laplace-Beltrami operator;

A : (usual) Laplacian operator;

Volg : volume on the Finsler manifold (M, F');

Vol : volume on the Riemannian manifold (M, g);

Vol, : Euclidean volume;

BE(xo,7) : open forward/backward ball with center 29 and radius r > 0 in the Finsler manifold (M, F);
Bgy(x,r) : open ball with center zy and radius r > 0 in a Riemannian manifold (M, g);
Be(zg,r) : open ball with center xy and radius r > 0 in the Euclidean space;

B(zg,r) : open ball with center xp and radius r > 0 in a generic metric space (M, d);

B : Euler beta-function;

r : Euler gamma-function;

Wn : volume of the n-dimensional Euclidean unit ball;

L? : Lebesgue space over a given set (in a manifold or a metric measure space), p > 1;
|-l : LP-Lebesgue norm, p > 1;

H" : n-dimensional Hausdorff measure;

H}(M) : Sobolev space over the Riemannian manifold (M, g);
Ign : n X n identity matrix;
: transpose of a matrix;

{ar : sequence with general term ag, k € N.

vii



dc_1483 17
viii
Conventions:

e When no confusion arises, the norms || - ||z» and || - || zr(ar) abbreviate:

(a) I [|z»(ar,am) on a generic metric measure space (M, d, m);

(b) [+ [lr(ar.av,) on the Riemannian manifold (M, g), where dVj stands for the canonical Rie-

mannian measure on (M, g);

(¢) |l [zr(ar,avy) on the Finsler manifold (M, F'), where dV denotes the Busemann-Hausdoff

measure on (M, F);

(d) || - Ilzp(rn dz) on the Euclidean/normed space R™, where dx is the usual Lebesgue measure.

e When A is not the whole space we are working on, we use the notation ||ul|z»4) for the LP-norm
of the function v : A — R.
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Chapter 1

Fundamental notions and results

This chapter is devoted to those notions and results which will be used throughout the present work.

1.1 Geometry of metric measure spaces

Our results require certain comparison principles and fundamental inequalities within the class of
Riemannian, Finsler and CD(K, N) spaces, respectively.

1.1.1 Non-euclidean structures and comparison principles

1.1.1.1 Smooth setting: Riemannian and Finsler manifolds

Let M be a connected n-dimensional C'°°-manifold and T'M = | ,, T M be its tangent bundle.

Definition 1.1. The pair (M, F) is called a Finsler manifold if the continuous function F : TM —

[0,00) satisfies the conditions:
(a) F e C=(TM\{0});
(b) F(z,tv) =tF(z,v) for allt >0 and (z,v) € TM,
(¢) the n x n matriz

19 ~ ;9
v = . o — - _ F2 = ¢ T 1.1
g [9i(z,0)]ij=1,..n 2 Dvidu (x,v) , where v ;U oz’ (1.1)

ij=1,..n

is positive definite for all (z,v) € TM \ {0}. We will denote by g, the inner product on T, M
induced from (1.1).

If F(x,tv) = |t|F(z,v) for allt € R and (x,v) € TM, the Finsler manifold (M, F') is reversible.

If g;j(x) = gij(x,v) is independent of v then (M, F') = (M, g) is called a Riemannian manifold. A
Minkowski space consists of a finite dimensional vector space V' (identified with R™) and a Minkowski
norm which induces a Finsler metric on V' by translation, i.e., F(x,v) is independent on the base
point z; in such cases we often write F'(v) instead of F(x,v). A Finsler manifold (M, F) is called a

locally Minkowski space if any point in M admits a local coordinate system (%) on its neighborhood

1
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such that F(z,v) depends only on v and not on z. Another important class of Finsler manifolds is

provided by Randers spaces, which will be introduced and widely discussed in Chapter 4.

For every (z,a) € T*M, the polar transform (or, co-metric) of F' is given by

" a(v)
F*(x,a) = sup . 1.2
(. 0) ver,m\{o} F(z,v) (12

Note that for every 2 € M, the function F*(z,-) is a Minkowski norm on T*M. Since o — [F*(z, a)]?

1 92
is twi(;e differentiable on T;; M\ {0}, we consider the matrix g;;(z, o) 1= > Deidad [F*(z,a))? for every
o= Z a'dz’ € T M \ {0} in a local coordinate system (z?).
i=1
Let 7*T'M be the pull-back bundle of the tangent bundle T'M generated by the natural projection

m:TM\ {0} - M, see Bao, Chern and Shen [11]. The vectors of the pull-back bundle 7*T'M are
denoted by (v;w) with (z,y) = v € TM \ {0} and w € T, M. For simplicity, let 9;|, = (v;9/dz,)
be the natural local basis for 7*T' M, where v € T, M. One can introduce on 7*TM the fundamental

tensor g by
9(zw) = Gv = 9(9ilo, aj|v) = gij($7 Y), (1.3)

where v = 3°(0/02")|., see (1.1). Unlike the Levi-Civita connection in the Riemannian case, there
is no unique natural connection in the Finsler geometry. Among these connections on the pull-back
bundle 7*T' M, we choose a torsion-free and almost metric-compatible linear connection on 7*T'M, the
so-called Chern connection. The coefficients of the Chern connection are denoted by F;k, which are
instead of the well-known Christoffel symbols from Riemannian geometry. A Finsler manifold is of
Berwald type if the coefficients Ffj(m, y) in natural coordinates are independent of y. It is clear that
Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces. The Chern connection
induces on 7*T'M the curvature tensor R. By means of the connection, we also have the covariant
derivative Dyu of a vector field w in the direction v € T, M with reference vector v. A vector field
u = u(t) along a curve o is parallel if Dsu = 0. A C* curve o : [0,a] — M is a geodesic if Dyo = 0.
Geodesics are considered to be parametrized proportionally to arclength. The Finsler manifold is
forward (resp. backward) complete if every geodesic segment o : [0,a] — M can be extended to [0, 00)
(resp. to (—o0,al). (M, F) is complete if it is both forward and backward complete.

Let u,v € T, M be two non-collinear vectors and & = span{u,v} C T,M. By means of the

curvature tensor R, the flag curvature associated with the flag {S,v} is

90(R(U, V)V, U)

KS0) = WV)0u(0.0) - 20, V)

(1.4)

where U = (v;u),V = (v;v) € 7*TM. If (M, F) is Riemannian, the flag curvature reduces to the
sectional curvature which depends only on S. If for some ¢ € R we have K(S;v) < ¢ for every choice
of U and V, we say that the flag curvature on (M, F') is bounded above by ¢ and we denote this fact
by K < c. (M, F) is a Finsler-Hadamard manifold if it is simply connected, forward complete with

K < 0. A Riemannian Finsler-Hadamard manifold is simply called Hadamard manifold.

Take v € T, M with F'(z,v) =1 and let {¢;}_; with e, = v be an orthonormal basis of (T, M, g,)
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for g, from (1.1). Let S; = span{e;,v} for i = 1,...,n — 1. Then the Ricci curvature of v is defined by
Ric(v) := 317 K(S;;0).

Let o : [0,7] — M be a piecewise C* curve. The value Lp(o) = /T F(o(t),o(t))dt denotes
the integral length of o. For x1,z9 € M, denote by A(x1,x2) the set ofO all piecewise C°° curves
o :10,7] — M such that ¢(0) = x; and o(r) = x2. Define the distance function dp : M x M — [0, 00)
by

dp(z1,z2) = inf  Lp(o). (1.5)

oceN(z1,x2)

One clearly has that dp(x1,22) = 0 if and only if z; = x9, and dp verifies the triangle inequality.
The open forward (resp. backward) metric ball with center xg € M and radius p > 0 is defined
by Bi(zo,p) = {x € M : dp(zg,z) < p} (resp. Bp(zo,p) = {x € M : dp(z,z0) < p}). When
(M, F) = (R™ F) is a Minkowski space, one has that dp(z1,x2) = F(x2 — x1).

Let {8/8xi}i:17m7n be a local basis for the tangent bundle T'M, and {dxi}izl,”_,n be its dual basis
for T*M. Consider B,(1) = {y = (y') : F(x,4'0/02") < 1} C R™. The Hausdorff volume form
dm = dVF on (M, F) is defined by

dm(z) = dVp(z) = op(z)dz! A ... A da™, (1.6)

where op(x) = m. Hereafter, Vol.(S) and w,, denote the Euclidean volumes of the set S C R”

and of the n-dimensional unit ball, respectively. The Finslerian volume of an open set S C M is
Volp(9) = / dm(z). When (M, F) = (M, g) is Riemannian, we simply denote by dV, and Vol,(S) the
S

Riemannian measure and Riemannian volume of S C M, respectively. When (R™, F') is a Minkowski

space, then on account of (1.6), Volp(Bf(z, p)) = wpp™ for every p > 0 and = € R™.

Let {e;}i=1,..n be a basis for T, M and 95 = gu(€i,ej). By definition, the mean distortion p :
TM\ {0} — (0,00) and mean covariation S : TM \ {0} — R are

det(g;;)

p(v) = T and S(z,v) = %(lnﬂ(dv(t)))‘t:()v

respectively, where o, is the geodesic such that 0,(0) = z and 6,(0) = v. We say that (M, F') has
vanishing mean covariation if S(z,v) = 0 for every (x,v) € TM, and we denote it by S = 0. We note

that any Berwald space has vanishing mean covariation, see Shen [82].

For any ¢ < 0, we introduce the functions

T, if e= 0, %) if c= O’
So(r) = and ct.(r) = (1.7)
%\/}5—0)7 if ¢<0, v—ccoth(ry/—c), if ¢<0.

Consider )
Venlp) = [ 527 (r)ar
0
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In general, one has for every x € M that

L Volp(Bj(e,p) . Volp(By(z,p))

=1. 1.8
p—0+ Ven(p) p—0t Ven(p (1.8)

We recall the following Bishop-Gromov-type volume comparison result on Finsler manifolds.

Theorem 1.1. (Wu and Xin [96]) Let (M, F') be an n-dimensional Finsler manifold with S = 0.

Volg (Bf: (x,p))

a) If K < ¢ <0, the function p — is non-decreasing for every x € M. In particular,
Ve,n(p)

from (1.8) we have
Volp(Bf (z,p)) > Ven(p), Yo € M,p > 0. (1.9)

If equality holds in (1.9) for some x € M and py > 0, then K(-;%,(t)) = ¢ for every t € [0, po)
and y € T,M with F(x,y) = 1, where y, is the constant speed geodesic with v,(0) = z and

"Yy(o) =Y.

Vol (Bf (2,p))

(b) If (M, F) has nonnegative Ricci curvature, the function p — o

is non-increasing for
every x € M. In particular, from (1.8) we have

Volp(Bf(z,p)) < wpp™, Yoz € M, p> 0. (1.10)

If equality holds in (1.10), then the flag curvature is identically zero.

The Legendre transform J* : T*M — TM associates to each element o« € T;M the unique
maximizer on T, M of the map y — a(y) — %FQ(a:,y). This element can also be interpreted as the

unique vector y € T, M with the properties
F(a,y) = F(z,a) and a(y) = Flz,y)F*(z, ). (1.11)

In particular, if @ = Y, a’dz’ € T} M, one has that

S )
o) = ;8% <2 [F (x,a)]2> o (1.12)

Let u : M — R be a differentiable function in the distributional sense. The gradient of u is defined

by
Viru(z) = J*(z, Du(z)), (1.13)
where Du(x) € T M denotes the (distributional) derivative of u at x € M. In local coordinates, we
have
0 8 0
. D 1.14
D u(a)aat, V(e Z g1y, Du(a)) () (1.14)

In general, u — V pu is not linear. If g € M is fixed, due to Ohta and Sturm [73], one has that

F*(x,DdF($0,$)) = F(x, V]Mip(&?o,l’)) = de(xo,x)(Vpdp(xo,m)) =1 for a.e. z € M. (1.15)
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Let X be a vector field on M. On account of (1.6), the divergence is div(X) = éazi (crpX?) in a
local coordinate system (x%). The Finsler-Laplace operator
AFU = diV(VFu)
acts on the space VVJDCQ(M) and for every v € C§°(M), one has
/ vApudm(z) = —/ Du(V pu)dm(x). (1.16)
M M

Note that, in general, Ap(—u) # —Apu, unless (M, F) is reversible. In particular, for a Rie-
mannian manifold (M, F) = (M,g) the Finsler-Laplace operator is the usual Laplace-Beltrami op-
erator Apu = Agu, while for a Minkowski space (R", F'), by using (1.11), we have that Apu =
div(F*(Du)VF*(Du)) = div(F(Vu)VFE(Vu)).

We recall the following Laplacian comparison principle.

Theorem 1.2. (Shen [82], Wu and Xin [96]) Let (M, F) be an n-dimensional Finsler-Hadamard
manifold with S = 0. Let xg € M and ¢ < 0. Then the following statements hold:

(a) if K <c then Apdp(xo,z) > (n — 1)ct(dp(xo, x)) for every x € M\ {zo};

(b) if ¢ <K then Apdp(zo,x) < (n — 1)ct.(dp(xo, x)) for every x € M\ {xo}.

1.1.1.2 Non-smooth setting: CD(K, N) spaces a la Lott-Sturm-Villani

Let (M,d, m) be a metric measure space, i.e., (M,d) is a complete separable metric space and m is
a locally finite measure on M endowed with its Borel o-algebra. In the sequel, we assume that the
measure m on M is strictly positive, i.e., supp[m] = M. As usual, Po(M, d) is the L?-Wasserstein space
of probability measures on M, while Py(M, d, m) will denote the subspace of m-absolutely continuous
measures in Po(M,d). (M,d,m) is said to be proper if every bounded and closed subset of M is
compact.

For a given number N > 1, the Rényi entropy functional Sy (-|m) : Po(M,d) — R with respect to

the measure m is defined by
Y
Sn(plm) = —/ pNdpu,
M

p being the density of u¢ in u = p+p® = pm+p®, where p€ and p® represent the absolutely continuous
and singular parts of u € Pa2(M,d), respectively.
Let K, N € R be two numbers with K > 0 and N > 1. For every ¢t € [0,1] and s > 0, consider the

function
+o0, if Ks?>(N—1)r?
() -5
Tn(s) =4 tw (sin (ts m) / sin (s %)) , if 0< Ks? < (N —1)7?;
t, if Ks?>=0.
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Definition 1.2. (Sturm [85, 86], Lott and Villani [65]) The space (M,d, m) satisfies the curvature-
dimension condition CD(K, N) if for every uo, u1 € Po(M,d, m) there exists an optimal coupling v of
to, 1 and a geodesic I : [0,1] — Pa(M,d, m) joining o and w1 such that

1

Sy (D(8)]m) < — / [Téé,ﬁ?u(xo,m)pg ¥ (w0) + 7Oy (o, 21))py ¥ (1) | dy(wo, 1)

for every t € [0,1] and N' > N, where py and p1 are the densities of ug and py with respect to m.

Clearly, when K = 0, the above inequality reduces to the geodesic convexity of Sy/(-|m) on the L2-
Wasserstein space Pa(M,d, m). We note that CD(K, N) can be defined also for K < 0; however, in

the present work we do not use it, thus we avoid its definition.

Let B(z,r) ={y € M : d(z,y) < r}. The following comparison results hold.

Theorem 1.3. (Sturm [86]) Let (M,d,m) be a metric measure space with strictly positive measure
m satisfying the curvature-dimension condition CD(K,N) for some K > 0 and N > 1. Then every
bounded set S C M has finite m-measure and the metric spheres OB(x,r) have zero m-measures.

Moreover, one has:

(i) [Generalized Bonnet-Myers theorem| If K > 0, then M =supp[m] is compact and has diameter

N-1

less than or equal to y/ ==.

(ii) [Generalized Bishop-Gromov inequality| If K = 0, then for every R >r >0 and x € M,

m(B(z,r))
N

m(B(z, R))
RN

>

Remark 1.1. (Ohta [71]) Let (M, F') be an n-dimensional complete reversible Finsler manifold with
S = 0 (endowed with the Busemann-Hausdorff measure dm = dVy). Then the condition CD(K, N)
holds on (M, dr, m) if and only if Ric(v) > K for every F(xz,v) =1 and dim(M) < N.

The following result will be useful in our proofs.

Lemma 1.1. Let (M,d,m) be a metric measure space which satisfies the curvature-dimension condi-
tion CD(0,n) for some n > 2. If

0 = lim sup "BEL) o
pP—00 wnpn

(1.17)

for some xg € M and a > 0, then

m(B(z,p)) > awnp™, Yz € M, p > 0.
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Proof. By fixing x € M and p > 0, one obtains successively that
B B
m(B(z,p)) > limsup m(B(@,r)) [see Theorem 1.3/(ii)]
Wy p" r—00 wpT™
B —d
> lim sup MEE T~ d(z0,7))) (B(x,) > Blao, (r — d(zo,))]
r—00 W™
_ limsup m(B(fL'07(7"—d($0’$))) . (T—d(ffoaif))
P00 wp(r — d(xg, )" rn
= (2 >a. [ef. (1.17)] O

1.1.2 Cartan-Hadamard conjecture

Let (M,g) be an n-dimensional Hadamard manifold (simply connected complete Riemannian man-
ifold with nonpositive sectional curvature) endowed with its canonical measure dV,. Although any
Hadamard manifold (M, g) is diffeomorphic to R, n = dim(M ), see Cartan’s theorem (see do Carmo
[31]), this is a wide class of non-compact Riemannian manifolds including important geometric objects
as Euclidean spaces, hyperbolic spaces, the space of symmetric positive definite matrices endowed with

a suitable Killing metric; further examples can be found in Bridson and Haefliger [18], and Jost [55].

Cartan-Hadamard conjecture in n-dimension. (Aubin [8]) Let (M,g) be an n-dimensional
(n > 2) Hadamard manifold. Then any compact domain D C M with smooth boundary 0D satisfies

the Fuclidean-type sharp isoperimetric inequality, i.e.,
1 n—1
Areay(0D) > nwyy Volg™ (D). (1.18)

Moreover, equality holds in (1.18) if and only if D is isometric to the n-dimensional Euclidean ball
with volume Voly(D).

Note that nw,% is precisely the isoperimetric ratio in the Euclidean setting. Hereafter, Area,(0D)
stands for the area of 9D with respect to the metric induced on 9D by g.

We note that the Cartan-Hadamard conjecture holds on hyperbolic spaces (of any dimension)
and on generic Hadamard manifolds in dimension 2 (cf. Beckenbach and Radé [14], and Weil [93]); in
dimension 3 (cf. Kleiner [56]); and in dimension 4 (cf. Croke [28]), but it is open for higher dimensions.

For n > 3, Croke [28] proved a general isoperimetric inequality on n-dimensional Hadamard man-
ifolds: for any bounded domain D C M with smooth boundary 0D, one has that

Areay(0D) > C(n)VOI;%1 (D), (1.19)

where
2
cos3 (t) sinn_2(t)dt> . (1.20)

s
2

= (nw -5 n—1)w,_1
O(n) = (nicy) (( Dot |

1
We recall that C'(n) < nwyy for every n > 3, while equality holds if and only if n = 4.
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1.2 Variational principles

It is common knowledge that the problem of minimizing a given functional has always been present
in the real world in one form or another (minimizing the energy, maximizing the profit). The main
objective of the field of calculus of variations is to optimize functionals. In the sequel we recall those
abstract methods which are going to be used throughout the dissertation (thus not mentioning such
classical tools as Du Bois-Reymond and Weierstrass principles, and Euler-Lagrange equations); for a

comprehensive treatment we refer to [117].

1.2.1 Direct variational methods

The following result is a very useful tool in the study of various partial differential equations where

no compactness is assumed on the domain of the functional.

Theorem 1.4. (Zeidler [100, p. 154]) Let X be a reflexive real Banach space, Xy be a weakly closed,
bounded subset of X, and E : Xy — R be a sequentially weak lower semicontinuous function. Then E

is bounded from below and its infimum is attained on Xj.

Remark 1.2. The boundedness of Xy C X in Theorem 1.4 is indispensable, which can be too
restrictive in certain applications. In such cases, once the functional £ : X — R is coercive, i.e.,
E(u) — +oo whenever ||u]| — 400, the minimization of E on X can be restricted to a sufficiently
large ball of X.

Definition 1.3. Let X be a real Banach space.

(a) A function E € C1(X,R) satisfies the Palais-Smale condition at level ¢ € R (shortly, (PS).-
condition) if every sequence {uy}r C X such that limg_,o E(ur) = ¢ and limg_,o [|[E'(ug)| = 0,
possesses a convergent subsequence.

(b) A function E € C'(X,R) satisfies the Palais-Smale condition (shortly, (PS)-condition) if it

satisfies the Palais-Smale condition at every level ¢ € R.
By a simple application of Ekeland’s variational principle, we obtain the next theorem (see [117]):

Theorem 1.5. Let X be a Banach space and a function E € C*(X,R) which is bounded from below.
If E satisfies the (PS).-condition at level ¢ = infx E, then c is a critical value of E, i.e., there exists
a point ug € X such that E(ug) = ¢ and ug is a critical point of E, i.e., E'(ug) = 0.

Let X be a real Banach space and X* its dual, and we denote by (-,-) the duality pair between
X and X*. Let E € C*X,R) and x : X — RU {+o00} be a proper (i.e., # +o0), convex, lower
semi-continuous function. Then, I = E + x is a Szulkin-type functional, see Szulkin [87]. An element
u € X is called a critical point of I = E + x, if

(E'(u),v —u) + x(v) — x(u) >0, VveX. (1.21)

The number I(u) is a critical value of I. If x = 0, the latter critical point notion reduces to the usual
notion E'(u) = 0. For u € D(x) = {u € X : x(u) < oo} we consider the set

ox(u) ={z" € X" : x(v) = x(u) > (z*,v —u), VYve X}.



dc_1483 17

The set dx(u) is called the subdifferential of x at u. Note that an equivalent formulation for (1.21) is
0€ E'(u) + dx(u) in X (1.22)
Let G be a group, e its identity element, and let 7 a representation of G over X, i.e., 7(g) € L(X)
for each g € G (where L(X) denotes the set of the linear and bounded operator from X into X), and
a) mw(e)u=u, Vu € X;
b)  7w(g192)u = 7(g91)(m(g2u)), Vg1,92 € G, u € X.

The representation 7, of G over X* is naturally induced by 7 by the relation
(Ta(g)v*,u) = (v*, m(g" ), Vg € G,v* € X*,u € X. (1.23)

We often write gu or gv* instead of m(g)u or m.(g)v*, respectively.

A function h : X — R is called G-invariant, if h(gu) = h(u) for every u € X and g € G. A subset
M of X is called G-invariant, if gM = {gu : uw € M} C M for every g € G.

The fized point sets of the group action G on X and X* are defined as

S=XY={ueX:gu=u, Vg€ G} and %, = (X" ={v* € X*: gv* =v*, Vg € G}.

We conclude this subsection with a non-smooth version of the principle of symmetric criticality.

Theorem 1.6. (Kobayashi, Otani [57], Palais [74]) Let X be a reflexive Banach space and let I =
E+ x:X — RU({+o0} be a Szulkin-type functional on X. If a compact group G acts linearly and
continuously on X, and the functionals E and x are G-invariant, then the principle of symmetric

criticality holds, i.e.,
0€ (Elx) (u)+d(x|s)(u) in ¥* = 0¢€ E'(u)+ dx(u) in X*.

1.2.2 Minimax theorems
In the sequel, we recall the simplest version of the Mountain Pass Theorem.

Theorem 1.7. (Ambrosetti and Rabinowitz [3]) Let X be a Banach space and a functional E €
CY(X,R) such that
inf  E(u) > a>max{E(uy), E(u1)}

lu—uoll=p

for some a € R and up # u1 € X with 0 < p < ||lug — ui||. If E satisfies the (PS).-condition at level

= inf E(~(t
¢= nf max (v(t))

where
Lo ={y € C([0,1], X) : 7(0) = ug, ¥(1) =w1},

then c is a critical value of E with ¢ > .
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The symmetric version of the Mountain Pass Theorem reads as follows.

Theorem 1.8. (Ambrosetti and Rabinowitz [3]) Let X be a Banach space and a functional E €
CH(X,R) satisfying the (PS)-condition such that:

(i) £(0) =0 and inf),—, E(u) > a for some o € R;
(ii) E is even;

(i) for all finite dimensional subspaces X C X there exists R := R(X) > 0 such that E(u) < 0 for
every u € X with ||lul| > R.

Then E possesses an unbounded sequence of critical values of E characterized by a minimazx argument.

If X is a Banach space, we denote by Wx the class of those functionals I : X — R having the
property that if {ux}x is a sequence in X converging weakly to v € X and liminfy_,o I(ug) < I(u)
then {uy}r has a subsequence strongly converging to wu.

According to the well-known three critical points theorem of Pucci and Serrin [77], if a function
E € CY(X,R) satisfies the (PS)-condition and it has two local minima, then E has at least three

distinct critical points. A stability result for the latter statement can be formulated as follows:

Theorem 1.9. (Ricceri [79, Theorem 2|) Consider the separable and reflexive real Banach space X .
Let I; € C1(X,R) be a coercive, sequentially weakly lower semicontinuous functional belonging to Wy,
bounded on each bounded subset of X with a derivative admitting a continuous inverse on X*; and
I, € C’l(X, R) be a functional with compact derivative. Assume that I has a strict local minimum ug

with I (uy) = Ia(ug) = 0. Setting the numbers

I I
7 = max 0, limsup 2(u),limSUp 2(1) : (1.24)
lull—oo 11(0) " usug Ti(u)
I
X = sup 2(v) (1.25)

n(w>o T1(u)’
assume that T < x.
Then, for each compact interval [a,b] C (1/x,1/7) (with the conventions 1/0 = oo and 1/oco0 = 0)
there exists k > 0 with the following property: for every \ € [a,b] and every functional I3 € C*(X,R)
with compact derivative, there exists § > 0 such that for each p € [0, 9], the equation

I (u) = Mj(u) — plj(u) = 0

admits at least three solutions in X having norm less than k.
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Chapter 2
Sharp interpolation inequalities

An important role in the theory of geometric functional inequalities is played by Sobolev-type interpo-
lation inequalities. This chapter is devoted to the sharp Gagliardo-Nirenberg interpolation inequality

and its limit cases on both positively and negatively curved spaces.

2.1 Interpolation inequalities in the flat case: a short overview

The optimal Gagliardo-Nirenberg inequality in the Euclidean case has been obtained by Del Pino
and Dolbeault [30] for a certain range of parameters by using symmetrization arguments. By using
optimal mass transportation, Cordero-Erausquin, Nazaret and Villani [24] extended the results from
[30] to prove optimal Gagliardo-Nirenberg inequalities on arbitrary normed spaces. In the sequel, we
recall the main achievements from [24] and some related results which serve as model cases in the flat
case.

Let || - || be an arbitrary norm on R™ (in particular, a reversible Minkowski norm); we may assume
that the Lebesgue measure of the unit ball in (R™, || - ||) is the volume of the n-dimensional Euclidean
unit ball w, = 72 /T (2% 4+ 1). The dual (or polar) norm ||- ||, of || - | is |||/« = SUp||y||<1 T * Y, Where the
dot operator denotes the Euclidean inner product. Let p € [1,n) and LP(R™) be the Lebesgue space

of order p. As usual, we consider the Sobolev spaces
Wle(RY) = {u e I’ (R") : Vu € LP(R")} and WYP(R") = {u € LP(R") : Vu € LP(R™)},

where p* = ;P and V is the gradient operator. If u € W1P(R"), the norm of Vu is

1/p
IVulle = ( / \Vu(w)H%:d:c> ,
RTL

where dz denotes the Lebesgue measure on R"™.
-
Fixn>2,pe (1,n) and o € <0 - } \ {1}; for every A > 0, let hg\[p(a:) = ()\ + (a— 1)||x||p/) e
: +
z € R", where p/ = Z% and r; = max{0,r} for r € R. The function héyp is positive everywhere for

a > 1, while héjp has always a compact support for a < 1. The following optimal Gagliardo-Nirenberg

) n—p

inequalities are known on normed spaces.

11
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Theorem 2.1. (Cordero-Erausquin, Nazaret and Villani [24, Theorem 4]) Let n > 2, p € (1,n) and
| - || be an arbitrary norm on R™.

° Ifl<a§nifp, then
lullzer < Gapnl Vel Lo llullyaly-syirs Yu € WHP(R™), (2.1)

where .
pla—1)

0:= ,
ap(p* —ap+a —1)

and the best constant

0.0 2 o_1
0 pP’\p'n (alp=1)+1 n\er (a(p=1)4+1\p op
a—1 n a—1 P a—
ga,p,n =

' (w8 (52 - 5:))

is attained by the family of functions h) . A > 0;

a7p’

o [f0<a<1, then

ull a1 < Nopall Vull L lull s, Yo € WHR), (2.3)
where “(1 )
(1 —«
Y= ) (2.4)
(p* —ap)(ap+1—a)
and the best constant
l+l J_ 1 1
p’\p ' n (a(p—1)+1 n\?p o-D+1 [a(p—1)+1\ alp-1)+1
1o (5)7 (S ) (a0
Na7p7n = / X
' (w08 (4= 3))"
1s attained by the family of functions héﬁp, A > 0.
In one of the borderline cases, i.e., & = -~ (thus 6 = 1), inequality (2.1) reduces to the optimal

n—p
Sobolev inequality (S), see Talenti [88] in the Euclidean case, and Alvino, Ferone, Lions and Trombetti

[2] for normed spaces.
In the other borderline cases, i.e., when & — 1 and a — 0, the inequalities (2.1) and (2.3) de-
generate to the optimal LP-logarithmic Sobolev inequality (called also as the entropy-energy inequality

involving the Shannon entropy) and Faber-Krahn-type inequality, respectively. More precisely, one has
Theorem 2.2. Let n > 2, p e (1,n) and || - || be an arbitrary norm on R™. Then we have:

e Limit case I (o — 1) (Gentil [45, Theorem 1.1]). One has

Entq, (|ul”) Z/ |ul"log |ulPdz < %log (Lol Vulyp) . Yue WHR™), Jlullr =1, (2.5)
R
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and the best constant — 1\t —n
J (p ) (wnf (”, ; 1))
n e P
1s attained by the family of Gaussian functions
n -1 n 7% DTN 4
\(x) = A w, °T (, + 1) e 21”1 X > 0
p
e Limit case II (o — 0) (Cordero-Erausquin, Nazaret and Villani [24, p. 320]). One has
1 .
lull 1 < Fpnl Vul| o |supp(u)| 57, Yu € WHP(R™), (2.6)

and the best constant )
1 1

Fpm = Hm Ny pn=n"rw, " (p) +n) »
a—0

1s attained by the family of functions
A 13 A _ /
fp (x) T (}él_% hoz,p(x) - (>‘ - Hx”p )+7 S Rn?
where supp(u) stands for the support of u and |supp(u)| is its Lebesgue measure.

Remark 2.1. The families of extremal functions in Theorems 2.1 (with « € <%, nL_p] \ {1}) and 2.2
are uniquely determined up to translation, constant multiplication and scaling, see [24], [30] and [45].

In the case 0 < a < %, the uniqueness of hg\%, is not known.

2.2 Interpolation inequalities on positively curved spaces: volume

non-collapsing

In this section we establish fine topological properties of metric measure spaces a la Lott-Sturm-Villani
which support Gagliardo-Nirenberg-type inequalities; the notations are kept from Section 2.1.
Let (M,d, m) be a metric measure space (with a strictly positive Borel measure m) and Lipy(M)

be the space of Lipschitz functions with compact support on M. For u € Lipy(M), let

|Vulq(z) = lirynj;lp W, r e M. (2.7)

Note that z — |Vu|4(x) is Borel measurable on M for u € Lipy(M).
As before, let n > 2 be an integer, p € (1,n) and a € (O L} \ {1}. Throughout this section we

' n—p
assume that the lower n-density of the measure m at a point xg € M is unitary, i.e.,
m(B(x
lim inf MEE0P) _ (D)"
p—0 wnp” 0

Remark 2.2. (D)}, clearly holds for every point zg on n-dimensional Riemannian and Finsler man-

ifolds endowed with the canonical Busemann-Hausdor{l measure.
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2.2.1 Gagliardo-Nirenberg inequalities: cases a > 1 and 0 < a <1

Theorem 2.3. (Kristaly [109]) Let (M,d,m) be a proper metric measure space which satisfies the
curvature-dimension condition CD(K,n) for some K > 0 and n > 2. Let p € (1,n) and assume that
(D)3, holds for some xo € M. Then the following statements hold:

(i) if 1 <a < ;% and the inequality

lullpor < C 11V ulallg llull 0 Vu € Lipy(M) (GN1)g™”

La(—1)+1>

holds for some C > Go pn, then K =0 and

%
m(B(z,p)) = (gac””> wyp", Vo €M, p>0.

(i) if 0 < o < 1 and the inequality
lull pato-+1 < CIl[Vulall s lull e, Yu € Lipg(M) (GN2)e™"

holds for some C > Ny pn, then K =0 and

~

m(B(z,p)) > (NC) wnp, Yz €M, p>0.

Proof of (i): 1 < a < ni_p. The proof is divided into several steps. We clearly may assume that C >
Gapn in (GN1)27; indeed, if C = Gq p,n one can consider the subsequent arguments for C := Gq pn+€
with small € > 0 and then take ¢ — 0.

STEP 1 (K = 0). If we assume that K > 0 then the generalized Bonnet-Myers theorem (see
Theorem 1.3/(i)) implies that M is compact and m(M) is finite. Taking the constant map u(z) =

m(M) in (GN1);" as a test function, we have a contradiction. Therefore, K = 0.

STEP 2 (ODE from the optimal Euclidean Gagliardo-Nirenberg inequality). We consider the op-

timal Gagliardo-Nirenberg inequality (2.1) in the particular case when the norm is precisely the Eu-

clidean norm |- |. After a simple rescaling, one can see that the function = — ()\ + |:1c|p/> T N>0,

is a family of extremals in (2.1); therefore, we have the following first order ODE

é 1-0

where h¢ @ (0,00) — R is given by

, a(p—1)+1
hG()\):/ () T dr a>0



dc_1483 17

15
For further use, we shall represent the function h¢g in two different ways, namely
—1 1 alp=1)+1 | n
he(\) = wnoB ap-D+1 A D
p/ a—1 p/ p/
o0
= / wnp" fa(A, p)dp, (2.9)
0
where (p—1)+1 o
(6% — N\ T—a ’_
fonp) = p == (A7) T (2.10)

STEP 3 (Differential inequality from (GN1)a7). By the generalized Bishop-Gromov inequality
(see Theorem 1.3/(ii)) and hypothesis (D)7 , one has that

m(B@o.p)) _ o m(Bao,r)

Wy p" r—0 wpr™

=1, p>0. (2.11)
Inspired by the form of hg, we consider the function wg : (0,00) — R defined by
, a(p—1)+1
wa(A) :/ ()\+dp(a;0,x)) T dm(xz), A > 0.
M

By using the layer cake representation, it follows that wg is well-defined and of class C!; indeed,

we(A) = /Ooom ({:c eM: (/\+dp'(a:0,:c)) T > t}) dt

a(p—1)+1

= /Ooo m(B(zo, p)) fa(A, p)dp [change t = ()\ + pp,> " and see (2.10)]
< [T felr oo see (2.11)]
0
= ha(N),
thus
0 <wag(A) < hg(A) <oo, A>0. (2.12)

For every A > 0 and k € N, we consider the function uy 5 : M — R defined by

1

uyk(7) = (min{0, &k — d(zo, )} + 1) ()\ + max {d(zo, z), k‘_l}pl>m .

Note that, since (M, d, m) is proper, the set supp(uy ) = B(xo,k+ 1) is compact. Consequently,
uy ;. € Lipy(M) for every A > 0 and k € N; thus, we can apply these functions in (GN1);”7, i.e.,

lusgllzer < ClIVurklall o luxslloton -

Moreover,
1

lim wy p(x) = ()\ + dP(zo, ac)) R uy(x).
k—o0
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By using the dominated convergence theorem, it turns out from the above inequality that uy also
verifies (GN1):7, i.e.,
0 -0
lurllzer < CHIVulallze luall ot (2.13)

The non-smooth chain rule gives that
/ e T,
Vurla(z) = = (A4 d"{wo,2)) = a7~ Hao, 2)| Vd(ao, )la(x). = € M. (2.14)

Since d(xg, ) is 1-Lipschitz, one has, |Vd(zg,)|q¢(z) < 1 for all z € M \ {z¢}. Thus, due to (2.13),
(2.14) and the form of the function w¢, we obtain the differential inequality

STEP 4 (Comparison of wg and hg near the origin). We claim that

. wg(A)
Jim. v 1. (2.16)

By hypothesis (D)2 | for every ¢ > 0 there exists p. > 0 such that

m(B(zo,p)) = (1 = €)wnp”, Vp € [0, pe]. (2.17)

Applying (2.17), one has that

wo() = /Ooom<B<:co,p>>fc<A,p>dp

1
7

a(p—1

Pe )+1+£ peA P
> (1- 6)/ wnp" fa(A p)dp = (1 —e)A 1me ¥ / wnp" fa(1, p)dp.
0 0

Thus, by the representation (2.9) of hg and the change of variables it turns out that

_ 1
pex P

wnp" fa(1, p)dp
lim in Z’G((;)) > (1—¢)liminf 0 =1--=
0 0 n
0+ he - /0 wnp"fa(1, p)dp

The above inequality (with € > 0 arbitrary small) combined with (2.12) proves the claim (2.16).

STEP 5 (Global comparison of wg and hg). We now claim that

wa(N) > <gacpn> ! ha(A) = ha(A), A > 0. (2.18)
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Since we assumed that C > Gq pn, by (2.16) one has that

lim ¢ :( ¢ >6 > 1.
A—0F hg()\) ga,p,n

Therefore, there exists Ag > 0 such that wg(X) > hg(X) for every A € (0, Ao).

By contradiction to (2.18), we assume that there exists A# > 0 such that wg(A\#) < ha(A\#). If
A= sup{0 < A < M :wg(N) = ha(M\)},
then 0 < Ao < \* < A, In particular,
we(\) < ha(N), YA € [A*,A#] .

The latter relation and the differential inequality (2.15) imply that for every A € [)\*, A#], we have

1

L) <ok () (e - 0T ) AT (), (219)
ap—1)+1°¢ ~ 7 \a-1 YT -1 G S
Moreover, since EG()\) = (Laép’b)? ha (M), the ODE in (2.8) can be equivalently transformed into the

equation
1
1-« T ad P p’ P/ a—1 ~ ~(1—_79)P
71’1/ )\ :C h )\ 7}\]1/ )\ he(a(p 1)+1) )\ 220
(Oé(p—l)+1 o )) 9<a—1> <G()+a(p_1)+1 el )> G () (2:20)

for every A > 0. For A > 0 fixed we introduce the increasing function jé} : (0,00) — R defined by

1
A a—1 o P\ a—1 gt
= —t AP At
i < ) W(al) o)

Relations (2.19) and (2.20) can be rewritten into

/ p~1 (1-0)p

) P + oD+ . 7 .
yé<—we<x>>sw( . ) ha T () = A (=Ra(V), YA€ |3 AF],

a—1

which implies that

i.e., the function 7LG — wg is non-increasing in [)\*, )\#]. In particular,
0 < (hg —wg)(A*) < (hg — wa)(X*) =0,

which is a contradiction. This concludes the proof of (2.18).



dc_1483 17

18

STEP 6 (Asymptotic volume growth estimate w.r.t. xp). We claim that

7
9 — timsup MBE0P) (ga’?”"> . (2.21)
p—roo wnp" C

By assuming the contrary, there exists g > 0 such that for some py > 0,

m(B(ZE‘o,,O)) < (ga,p,n

%
— €0, Vp > po.
" C > 0, VP = P0

By (2.18) and from the latter relation, we have that

0 < wa(h) (gc> ha()

(P (S s

Gopn \ 7\ [ . .
(1 +e0— <Cp> > / Wnp fc(A,p)dp—so/ wnp” fa(A, p)dp, VA > 0.
0 0

IN

By (2.9), a suitable rearrangement of the terms in the above relation shows that

—1D+1 n ' g —D+1
olip (PNl o gy o V(o (Gaen )T @b DAL i gy
p a—1 Py n+p C a—1

If we take the limit A — 400 in the last estimate, we obtain a contradiction. Thus, the claim (2.21)

is proved and it remains to apply Lemma 1.1, which concludes the proof of Theorem 2.3/(i). O

Proof of (ii): 0 < a < 1. We shall invoke some of the arguments from the proof of Theorem
2.3/(i), emphasizing that subtle differences arise due to the “dual” nature of the Gagliardo-Nirenberg
inequalities (GN1);” and (GN2);”. As before, we may assume that the inequality (GN2);"” holds
with C > N pp.

STEP 1. The fact that K = 0 works similarly as in Theorem 2.3/(i).

1
STEP 2. Since x — <)\p/ - \m|p/) " is an extremal function of (2.3) for every A > 0, we obtain
+

the ODE
BT TT() = Napn (2 ) (-n (A + LA AR % %
N P\ - a N plap-1)+1)" %
l—« 1—p' 11 lgp’y
) <pf<a<p EETR ”N“’) ’ (222)

where the function hy : (0,00) — R is defined by

a(p—1)+1

hn(\) = /n ()\p' — |x|Pl)+ e dx, A > 0.
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It is clear that hy is well-defined and of class C'' that can be represented as
-1 1 oo’ , A
v(3) = an 78 (LD g DY A [ 0,
P l -« Y 0
where N .
i) = SP L ( pYE p as, pe 0, (2.23)

STEP 3. Consider the function wy : (0,00) — R defined by

a(p—1)+1

wn(\) = /M ()\p/—dp/(xg,:c)>+ T dm(a),

where 2g € M is from (D)} . By the layer cake representation and relations (2.11) and (2.23), wy is
a well-defined positive C' function that also fulfills the inequality

A A
0 < wy()) = /O m(B(xo, p)) fx (M p)dp < /O o™ O p)dp = hy(V) < 00, A> 0. (2.24)

1

Since uy = (Ap/ — d” (o, )) "™ is a Lipschitz function on M with compact support B(zg, ), it
+

belongs to Lipg(M). Therefore, we may apply uy in (GN2);” and a similar reasoning as in (2.14)

leads to the differential inequality

™R

WIT T () < c(lflay(—wN(A)+p,(a(;:f)+1)Aw;v(x)> X

1=y

ap

l-—«a l—p’w/
x (p,(a(p 0 N(A)) L A> 0. (2.25)

STEP 4. For an arbitrarily fixed € > 0, let p. > 0 from (2.17). If 0 < A < p., one has that

A A
wn() = [ m(Blao. ) i) > (1=2) [ s (0o = (1= ().

Consequently, the latter relation together with (2.24) implies that

. wn(A)
1 =1. 2.26
)\i>r(r)l+ hN()\) ( )
STEP 5. We shall prove that
wy(N) > (N“CJ””) T hv(N) = hv(A), A > 0. (2.27)

By using (2.26), one has that

im v :( ¢ )W > 1,
)\*}0+ hN(A) Na’p7n
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which implies the existence of a number Ao > 0 such that wy(X) > hx () for every A € (0, Ao).

We assume by contradiction that there exists A# > 0 such that wy(A\#) < hy(M\#). If X* =
sup{0 < A < A# 1wy (A) = An(A)}, then 0 < A\g < A* < A# and

wn(\) < hn(\), VA€ [A*,Aﬂ . (2.28)

For every A > 0, let jj}, : <w, oo> — R be the function defined by

wo-e(2) (i) Gramie ™) "

It is clear that j])\‘, is a well-defined positive increasing function. A direct computation yields that both

bS]

values
w / TNy th(A)

are greater than % for every A > 0. Taking into account (2.4), we have

1 vy 1=y 7

- )

alp—1)+1 p ap n

Y 1=y

therefore, if we divide the inequality (2.25) by wy  ** (A), we obtain that

~

Wit () < 3 ((logwn ) (N)) . YA > 0. (229)
In a similar manner, by hy () = (N“C"p’">; hn(A) and relation (2.22), we have that

~_ ~

Iyt (A) = i ((1og hN)’()\)) , YA > 0. (2.30)

Thus, by (2.28)-(2.30), it turns out that

~_ 0
n

i ((oghn)' () = oy

() < wy (V) < 3 (logww) (V) vA € [32#].

Since the inverse of j; is also increasing, it follows that (log hy ) (A) < (logwy)'(A) for every A €

[A*, A#]. Therefore, the function A — log Zf]\\’[ ((i)) is non-increasing in the interval [A*, \#]. In particular,
it follows that

hy (\*) Ay ()

a contradiction, which proves the validity of the claim (2.27).

< log =0,

STEP 6. We shall prove that

lim sup m(B(z0, p)) > <Na’p’n> ! . (2.31)

p—r00 WpP™ C
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By contradiction, we assume that there exists €9 > 0 such that for some pg > 0,

“'(B(anp)) -/\/;xpn v
MBS — — £ vVp > 00.
n n — C 0’ -_ 0

The previous inequality and (2.27) imply that for every A > po,

/oA (m(iﬁ{ P _ (N%p’”> :> wnp" f (A, p)dp

Napn % po n g T
140 — <c> / wnp" (A p)dp — 60/ wnp" [ (A; p)dp.
0 0

Reorganizing the latter estimate, it follows that for every A > 0,

n_(ap—1)+1 n / P Noapn )7\ a(p—1)+1 iy
—B|——————— 41, — | P < 1 — e P
60p’ < j Y + T “n+p +eo C 1—a 10

o
AN
g
4
—~
>
|
7N\
=
5
3
~_
2|
>
>~
S~—
Il

IN

Once we let A — oo in the latter estimate, we get a contradiction. Therefore, (2.31) holds and Lemma

1.1 yields that
m(B(, p)) > (Na’m)W Vee M, p>0

wpp™ T C
which concludes the proof of Theorem 2.3/(ii). O
Remark 2.3. The particular case p = 2 and o = -5 (n > 3) is contained in [116], where a volume

doubling property is assumed on metric measure spaces instead of CD(K, n).

2.2.2 Limit case I (o« — 1): LP-logarithmic Sobolev inequality

Theorem 2.4. (Kristaly [109]) Under the same assumptions as in Theorem 2.3, if
n .
Entqpm([ulf) = / lulPlog |u[Pdm < ;log (C[Vulallf,) s Vu € Lipg(M), |lullrr =1 (LS)Z
M

holds for some C > Ly, then K =0 and

‘CP” % n
m(B(z,p)) > <C> wpp', Yr e M, p>0.

Proof. We shall assume that C > £, ,, in (LS)%.
STEP 1. As in the previous proofs, we obtain that K = 0; the only difference is that we shall
consider u(z) = m(M) /P as a test function in (LS), in order to fulfill the normalization ||ul|z» = 1.

STEP 2. Since the functions lz/)\ (A > 0) in Theorem 2.2 are extremals in (2.5), once we plug them,
we obtain a first order ODE of the form

hp(A) _n P\ phi (V)
—loghr(\) + Ahi(k) = ;log <—£,,,n <p> A hi(/\)> , A>0, (2.32)
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where Az, : (0,00) — R is defined by

hi(\) = / el 4z

For later use, we recall that hy can be represented alternatively by

oy 274 T

S

0 / , o oo / ,
= /\p/wn/ e M pntP Tl = A p'wn/ e Pl (2.33)
0

0

STEP 3. Let wy, : (0,00) — R be defined by

wL()\):/ e*)‘dpl(xo’x)dm(:v),
M

n

where xo € M is the element from hypothesis (D)xo. Note that wy, is well-defined, positive and

differentiable. Indeed, by the layer cake representation, for every A > 0 we obtain that
wr(A) = / m ({x e M : e M4 (@02) t}) dt
0

- /1 m ({x eEM: e_)‘dpl(wo’”") > t}) d¢
0

= W [ (B [change ¢ = ¢
0
< )\p’wn/ e_’\pplp”ﬂ’/_ldp [see (2.11)]
0
= hL()\)<+OO.

Let us consider the family of functions uy : M — R (A > 0) defined by

/
e—%dp(cco,a:)

ﬂ,\(x): , x € M.

1
wr(A)?
It is clear that |uy||z» = 1 and as in the proof of Theorem 2.3/(i), the function @) can be approximated
by elements from Lipg(M); in fact, %y can be used as a test function in (LS)Z. Thus, plugging @y into
the inequality (LS)%, applying both the non-smooth chain rule and the fact that |Vd(zo,-)|a(z) <1
for every x € M \ {xo}, it yields that

B _n (T ut ()
log L(/\)—i—)\wL()\)gplg( C(p) )\wL()\)>,)\>O. (2.34)

STEP 4. We prove that

=1 (2.35)
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For a fixed € > 0, let p. > 0 from (2.17). Then one has
00 o, pe / ’
wr(\) = Ap’/ m(B(zo, p))e M p""tdp > Np/(1 - 6)wn/ e M pr P ldp
0 0
1
n pf)‘p/ / , 1
= XN 7p(1- E)wn/ e P lgg, [change t = \#' p]
0
Therefore, by the third representation of hy, (see (2.33)) it turns out that
. cwrp(N)
1 f >1-—-=c.
Ao hp(N) = ©
The arbitrariness of € > 0 together with Step 3 implies the validity of (2.35).
STEP 5. We claim that
Lon\” ~
wr(N\) > T’ hrp(A) =: hp(A), A > 0. (2.36)

Since C > Ly, by (2.35) it follows that

lim EUL(A):< ¢ >Z>1.

A—+00 hL()\)

Consequently, there exists X > 0 such that wr,(A) > hr()) for all A > X. If we introduce the notations
W(A) = logw(A) and H(A) =log hr(A), A > 0,

the latter relation implies that
W(A) > H(N), VA > X, (2.37)

while relations in (2.34) and (2.32) can be rewritten in terms of W and H as

— W)+ AV (N) < %log <—c (Z)p )\pW’()\)> LA 0, (2.38)
" —H\) + A\H'(\) = %log (—c (i)pvﬁ’(w LA > 0. (2.39)

Claim (2.36) is proved once we show that W () > H()) for all A > 0. By contradiction, we assume
there exists A# > 0 such that W (A\#) < H(A#). Due to (2.37), A# < X. On one hand, let

A =inf{A > M\ W(\) = H\)}.

In particular,
W) < H\), VA€ [A#,A*} . (2.40)



dc_1483 17

24
On the other hand, if we introduce for every A > 0 the function j; : (0,00) — R by

N n P\?

Jr(t)=—=log (C| =) APt )+ At, t >0,

p p
relations (2.38) and (2.39) become
~W) <Gp(=W'(N) and — H(\) = jp(=H'(\), >0,
respectively. By the previous relations and (2.40) it yields that
RH'(N) = —HQ) £ =W < j2(-W'(N), Wre pF X,

Since j}‘J is increasing, it follows that W — His a non-increasing function on [)\#, A*] , which implies

0= (W — H)(\") < (W — H)(\) <0,

a contradiction. This completes the proof of (2.36).

STEP 6. We claim that

lim sup M0 P) (E”’”>Z. (2.41)

pP—+00 wpp™ C

By assuming the contrary, there exists €9 > 0 such that for some pg > 0,

m(B($07 ,0)) < <»Cp,n

%
— Yo > po.
wnpn C ) €0, P = Po
Combining the latter relation with (2.36) and (2.33), we obtain that

w0~ (%) 1y

[40] ro, = oo ’ ,
Ap//o m(B(xo, p)e ™ 7' ~Ldp+ M, (<E3> p _5‘)) / e

PO

o
IN

IN

Lon\? [ ;o
—Ap’wn< c )/ e M P ldp, WA > 0.
0

Rearranging the above inequality, by (2.11) it follows that

e '—1 Lon\? PO e —1
50/ e M P i dp < [ 1 - (g) + <o / e M p" TP dp, YA > 0.
0 0

Due to (2.33), the latter inequality implies

1 Lyn\? a
80“F(Tl,+1>§ 1—<p’>p+€0 Po /,V/\>O.
ATy \p C n+p
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Now, letting A — 0 we obtain a contradiction. Therefore, the proof of (2.41) is concluded. Thus,

Lemma 1.1 gives that

m(B(:p) 5 (Enn )" e ar, p> 0
Wnpn C ) ) )

which ends the proof of Theorem 2.4. O

2.2.3 Limit case II (o« — 0): Faber-Krahn inequality
Theorem 2.5. (Kristély [109]) Under the same assumptions as in Theorem 2.3, if
L .
lull s < € l[[Vuldl| L m(supp(w))' ™7, Vu € Lipy(M) (FK)e

holds for some C > F,,, then K =0 and

m(B(z,p)) > (%") wnp", Yz € M,p > 0.

Proof. Similarly as before, we may assume that C > F, .
STEP 1. Analogously to Theorem 2.3/(i), it follows that K = 0.
STEP 2. The function z — ()\p, - |x|p/> being extremal in (2.6) for every A > 0, a direct
_l’_

computation shows that

1
]. ’ p*

1 1—
1
) = Ft! (~he)+ 2AG0)) " (SN 0) T (2.42)
where hp : (0,00) = R is given by

hr(\) = / (Ap’ - |x|p/>+d$, A> 0.

STEP 3. Let 29 € M from (D)} . Since uy = ()\p, — dP(x, )) € Lipy(M), we may insert uy into
+
(FK){ obtaining

1

luallzr < € [||Vuslall e m(supp(uy))' 7. (2.43)
At first, we observe that
IVupla(@) = p'd? (@0, 2)|Vd(zo, -)|a(z) < p'd” (20, 2), Vo € Blxg, \),

while [Vuylq(z) =
(see Theorem 1.3), we have that m(supp(uy)) = m(B(xg,A)) = m(B(xg,A)). We now introduce the

function wg : (0,00) — R given by wpr(\) = / <)\p/ - dp,(:no,m)) dm(z), A > 0. Due to the layer
M +

0 for every x ¢ B(xo,)). Moreover, since the spheres have zero m-measures
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cake representation, one has that

wrp(\) = /B . (AP’—dp’(;co,x)) dm(z) = A ' m(B(zo, \)) — /B ( A)dp’(xo,gc)dm(a;)
A
= Vm(BlaoN) = [ (m(Bla0. ) = m(Blao.p) ¢ Ndp [change t =
>\ /
= o [ B .

Therefore, uy| 1 = we(X), m(supp(un)) = m(B(zo, A)) = LA wfp(X), and

1 1

/ P 1 P

11Vurlallr <p' </ dp(xo,a:)dm(:c)> =y (—wp(/\) + ,Awg(A)> ’
B(zo,\) p

Consequently, inequality (2.43) takes the form

wr() < 6 (e + 2aupm)” (ZAup) T Ao

which is formally (2.25) if @ — 0, since lim,_,0y = 1 and lim,—0 1(;—; =1- 1%’ due to (2.4).
Therefore, we may proceed as in the Steps 4-6 of the proof of Theorem 2.3/(ii), proving that

- wp(A) Tpn\"
1 =1 A) > : hrp(A), YVA>0
and finally
B 2"
m( (l’,p)) > <‘Fp7 > , Vo € ]\47 p > 07
wWp P C
which concludes the proof of Theorem 2.5. O

2.2.4 Rigidities via Munn-Perelman homotopic quantification

We first state an Aubin-Hebey-type result ([8] and [52]) for Gagliardo-Nirenberg inequalities which is

valid on generic Riemannian manifolds.

Lemma 2.1. Let (M, g) be an n-dimensional (n > 2) complete Riemannian manifold and C > 0. The

following statements hold:

(i) if (GN1)2"? holds on (M, g) for somep € (1,n) and o € (1, nifp} , then C > Ga pn;
(ii) of (GN2)g”* holds on (M, g) for some p € (1,n) and o € (0,1), then C > Ny pn;
(iil) f (LS)% holds on (M, g) for some p € (1,n), then C > Ly, n;

(iv) if (FK)%& holds on (M, g) for some p € (1,n), then C > Fp .

Proof. (i) By contradiction, we assume that (GN1);*” holds on (M,g) for some p € (1,n), o €
(1, ni_p], and C < Go pn- Let zg € M be fixed arbitrarily. For every € > 0, there exists a local chart
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(Q,) of M at the point zyp and a number 6 > 0 such that p(Q2) = B.(0,d) and the components
gij = gij(x) of the Riemannian metric g on (€2, ¢) satisfy

(1— 8)(5,‘]‘ < gij < (1+ E)(Sij (2.44)

in the sense of bilinear forms; here, d;; denotes the Kronecker symbol. Since (GN1)”* is valid, relation
(2.44) shows that for every € > 0 small enough, there exists . > 0 and C. € (C,Gq,pn) such that

||v"LaP(Be(O,5),d:E) < CEHVUH%P(BE(O,(s),dx)||v’ 2;(6P*1>+1(Be(0,5),dx)’ V6 € (07 56)7 S LipO(Be(O7 5)) (245)

Let us fix u € Lipy(R™) arbitrarily and set vy(x) = )\%u()\a;), A > 0. For A > 0 large enough, one has
vy € Lipg(Be(0,6)). If we plug in vy into (2.45), by using the scaling properties

VOl Lp (B (0,6),d2) = M VUl Lo@naey and  [[uallLe(B.0,6),de) = A7 7 |ull La@n az), V¢ >0, (2.46)

and the form of the number 6 (see (2.2)), it follows that

0 -6
HUHLQP(R",dx) < C€HquLP(R”,dx)Huuia(p—l)Jrl(Rmdz)'

If we insert the extremal function hg\y,p of the optimal Gagliardo-Nirenberg inequality on R™ (a > 1)

into the latter relation, Theorem 2.1 yields that G, ., < C., a contradiction.

The proofs of (ii) (iii) and (iv) are analogous to (i), taking into account in addition to (2.46) that
Entq,([oAl") = Entay (Jul”) + nllul[Z, log A

and
H"(supp(va)) = A™"H" (supp(u)),

respectively. O

Let (M, g) be an n-dimensional (n > 2) complete Riemannian manifold with nonnegative Ricci
curvature endowed with its canonical volume element dV;. The asymptotic volume growth of (M, g)

1,(B
AVG g = lim aBa(®:1))

r—00 wpr™

By the Bishop-Gromov comparison theorem it follows that AVG(ysg) < 1 and this number is inde-
pendent of the point x € M.

Given k € {1,...,n}, let us denote by dj,, > 0 the smallest positive solution to the equation

k
1052 (K)s (1 + i) —1
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in the variable s, where

1, if §=0,
Crm(i) =
3+ 10Ck (i — 1) + (16k)"L(1 4 10Cy (i — 1)), if i€ {1,...,k}.

We now consider the smooth, bijective and increasing function hy p, : (0,6 ,) — (1,00) defined by

k —1
hisn(s) = {1 — 10M2Cy 0 (K) s (1+ i) ] .

For every s > 1, let

-1
1[1+ " n] , if k=1,
8k, 5.m) = o) B
max{ﬁ(l,s,n),ﬁ(i, 1+ hk#(s),n) i=1,.,k— 1} , if ke{2,...,n}.

The constant 5(k, s,n), which is used to prove the Perelman’s maximal volume lemma, denotes the
minimum volume growth of (M, g) needed to guarantee that any continuous map f : S — By(z, p)
has a continuous extension g : D**! — By (z, cp), where D*1 = {y € R¥! : |y| < 1} and SF = oDF
see Munn [69]. The non-quantitative form of this construction is due to Perelman [75], who proved
that if (M, g) has nonnegative Ricci curvature and the volumes of the balls centered at a fixed point are
almost maximal, then M is contractible. We will use the quantitative form of Perelman’s construction,
introducing

ayp(k,n) = Sei(rllio)ﬁ(k,s,n).

By construction, aprp(k,n) is non-decreasing in k; for explicit values of apsp(k,n), see Munn [69].

In the sequel we restrict our attention to the LP-logarithmic Sobolev inequality (LS)% on (M, g)
with nonnegative Ricci curvature, by proving that once C > 0 is closer and closer to the optimal
Euclidean constant £, ,, the manifold (M, ¢g) approaches topologically more and more to the Euclidean
space R™. To state the result, let m(M) be the k-th homotopy group of (M, g).

Theorem 2.6. (Kristély [109]) Let (M, g) be an n-dimensional (n > 2) complete Riemannian manifold
with nonnegative Ricci curvature, and assume the LP-logarithmic Sobolev inequality (LS)IC7 holds on
(M, g) for some p € (1,n) and C > 0. Then the following assertions hold:

(i) C > Ly
(ii) the order of the fundamental group m (M) is bounded above by <Lgn>; :
(iii) if C < onp(k‘o,n)_%Ep,n for some ko € {1,...,n}, then m (M) = ... = m, (M) = 0;

iv) if C < app(n,n L n, then M is contractible;
p’

v) C =L, if and only if (M, g) is isometric to the Fuclidean space R™.
p7
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Proof. (i) It follows from Lemma 2.1/(iii), i.e., C > L, .

(ii) Anderson [7] and Li [62] stated that if there exists ¢y > 0 such that Vol (By(x, p)) > cownp™ for
every p > 0, then (M, g) has finite fundamental group 71 (M) and its order is bounded above by ¢y~ !.
Thus it remains to apply Theorem 2.4, due both to Remark 1.1 and to the fact that [Vulg, = [Vgul,
where | - | is the norm coming from the Riemannian metric g.

(iii) Assume that C < CMMP(I{?(),TL)_%L‘p?n for some ko € {1,...,n}. By Theorem 2.4, we have that

1,(B N\ v
AVG(M79) = lim VOg( g(l',r)) Z <£p, > > OéMp(k(),n) Z 2 OéMp(l,n).

r—00 Wy ™ C
By Munn [69, Theorem 1.2], it follows that w1 (M) = ... = mg, (M) = 0.
(iv) If C < aMp(n,n)_%Epm, then w1 (M) = ... = m, (M) = 0, which implies the contractibility of

M, see e.g. Luft [66].

(v) If C = Ly, then by Theorem 2.4 and the Bishop-Gromov volume comparison theorem follows
that Voly(By(z, p)) = wpp” for every x € M and p > 0. The equality in Bishop-Gromov theorem
implies that (M, g) is isometric to the Euclidean space R™. The converse trivially holds. U

Remark 2.4. In the study of heat kernel bounds on an n-dimensional complete Riemannian manifold

(M, g) with nonnegative Ricci curvature, the logarithmic Sobolev inequality
n
Entay, (u?) < 5 1og (CIVulfaaar, ) » Yo € CEM), Jlullzz = 1, (2.47)

plays a central role, where C' > 0. In fact, (2.47) is equivalent to an upper bound of the heat kernel
pi(x,y) on M, i.e.,

sup py(z,y) < Ct™2, t >0, (2.48)
z,yeM
for some C' > 0. According to Theorem 2.2, the optimal constant in (2.47) for the Euclidean space
R"is C = Lpp = %; this scale-invariant form on R™ can be deduced by the famous Gross [50]

logarithmic Sobolev inequality
2 2
El’ltd,yn (U ) < 2Hvu||L2(Rn,d'yn)v Yu € CSO(RTL), ||UHL2(R",d’yn) = 17
n _la|?

where the canonical Gaussian measure 7, has the density d,(z) = (2m)"2e” 27, z € R", see Weissler
[94]. Sharp estimates on the heat kernel shows that on a complete Riemannian manifold (M, g)
with nonnegative Ricci curvature the L?-logarithmic Sobolev inequality (2.47) holds with the optimal
Euclidean constant C' = L, 2 = 2 if and only if (M, g) is isometric to R™, cf. Bakry, Concordet and

nme

Ledoux [10], Ni [70], and Li [62]. In this case, C = (47)~ 2 in (2.48).

Remark 2.5. In particular, Theorem 2.6/(v) gives a positive answer to the open problem of Xia
[98] concerning the validity of the optimal LP-logarithmic Sobolev inequality for generic p € (1,7n) in
the same geometric context as above. Xia’s formulation was deeply motivated by the lack of sharp

LP-estimates (p # 2) for the heat kernel on Riemannian manifolds with nonnegative Ricci curvature.
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Similar results to Theorem 2.6 can be stated also for Gagliardo-Nirenberg inequalities (GN1);"”
and (GN2);*, and for Faber-Krahn inequality (FK)? with trivial modifications. In particular, we

have the next corollary.

Corollary 2.1. Let (M, g) be an n-dimensional (n > 2) complete Riemannian manifold with nonneg-

ative Ricci curvature. The following statements are equivalent:

n—p

(i) (GNl)gf’pm holds on (M, g) for some p € (1,n) and o € (1, L} ;
(ii) (GN2)f\‘/’gpyn holds on (M, g) for some p € (1,n) and o € (0,1);
(iii) (LS)ZZ,W holds on (M, g) for some p € (1,n);

(iv) (FK)’}M holds on (M, g) for some p € (1,n);

(v) (M,g) is isometric to the Fuclidean space R™.

Remark 2.6. (a) The equivalence (i)<(v) in Corollary 2.1 is precisely the main result of Xia [97].

(b) A similar rigidity result to Corollary 2.1 can be stated on reversible Finsler manifolds endowed
with the natural Busemann-Hausdoff measure dV of (M, F). Indeed, if (M, F) is a reversible Finsler
manifold and u € Lipy(M ), then relation (2.7) can be interpreted as

|Vulg, (z) = F*(z, Du(x)) for a.e. x € M, (2.49)

where Du(xz) € T;(M) is the distributional derivative of u at € M, see Ohta and Sturm [73]. In
fact, by using Remark 1.1, we can replace the notions “Riemannian” and “Fuclidean” in Corollary

2.1 by the notions “Berwald” and “Minkowski”, respectively.

2.3 Interpolation inequalities on negatively curved spaces: influence

of the Cartan-Hadamard conjecture

This section provides negatively curved counterparts for the results obtained in §2.2.4. To do this,
let (M,g) be an n-dimensional (n > 2) Hadamard manifold endowed with its canonical form dVj.
By using classical Morse theory and density arguments, in order to handle Gagliardo-Nirenberg-type
inequalities (and generic Sobolev inequalities) on (M, g), it is enough to consider continuous test
functions u : M — [0, 00) with compact support S C M, where S is smooth enough, u being of class
C? in S and having only non-degenerate critical points in S.

Due to Druet, Hebey and Vaugon [35], we associate with such a function u : M — [0,00) its
Euclidean rearrangement function u* : R™ — [0, 00) which is radially symmetric, non-increasing in |z,

and for every t > 0 is defined by
Vol ({x € R" : w*(z) > t}) = Voly ({z € M : u(x) > t}). (2.50)

Here, Vol. denotes the usual n-dimensional Euclidean volume. By recalling the Croke’s constant

C(n) > 0 from (1.20), the following properties are crucial in our further arguments.
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Lemma 2.2. Let (M,g) be an n-dimensional (n > 2) Hadamard manifold. Let u : M — [0,00)
be a non-zero function with the above properties and u* : R™ — [0,00) its Fuclidean rearrangement

function. Then the following properties hold:
(i) Volume-preservation: Voly(supp(u)) = Vol (supp(u*));
(ii) Norm-preservation: for every q € (0, oc], we have ||ul|pa(ary = [|[u*||Larn);

(iii) Pdlya-Szegd inequality: for every p € (1,n), one has

1

nwyy .
%HVQUHLP(M) > [|Vu* || Lo @n)-

Moreover, if the Cartan-Hadamard conjecture holds, then

IVgullLeary = [[VU* || Lo @ny- (2.51)

Proof. (1)&(ii) It is clear that u* is a Lipschitz function with compact support, and by definition,
one has [[ul|pec(ary = [[u*||Loo(mny and Volg(supp(u)) = Vole(supp(u®)). If ¢ € (0,00), the layer cake
representation immediately implies that ||u|pe(ar) = ||u* || La(wn)-

(iii) We follow the arguments from Hebey [52], Ni [70] and Perelman [76]. For every 0 < ¢t <
l[ul| oo a1y, We consider the level sets Ay = u~'(t) € S € M and A} = (u*)~'(¢) C R, which are the
boundaries of the sets {x € M : u(z) >t} and {z € R : u*(x) > t}, respectively. Since u* is radially
symmetric, the set A} is an (n — 1)-dimensional sphere for every 0 < ¢ < |[ul[foo(ar)- If Area. denotes

the usual (n — 1)-dimensional Euclidean area, the Euclidean isoperimetric relation gives that
1 n—1
Areac(A}) = nwy Vol.® ({z € R" : u*(z) > t}).
Due to Croke’s estimate (see relation (1.19)) and (2.50), it follows that

Areag(Ay) > C(n)Vol?({x €M :u(x)>t}) = C’(n)Vol:%({x e R" 1 u*(x) > t})

- C(Z) Areac(A)). (2.52)

nwyy

If we introduce the notation
V(t) := Volg({x € M : u(z) > t}) = Vol.({x € R" : u*(x) > t}),

the co-area formula gives

1 1
V'(t :—/ —do :—/ —do., 2.53
( ) A, ’vgu‘ g A vu*‘ ( )

where dog (resp. do.) denotes the natural (n — 1)-dimensional Riemannian (resp. Lebesgue) measure

induced by dVj (resp. dz). Since |Vu*| is constant on the sphere A}, by the second relation of (2.53)
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it turns out that
Areac(A})

VO= Rl

, z €A (2.54)

Holder’s inequality and the first relation of (2.53) imply that

Areay(Ay) :/ doy < (—V'(1))"7 (/A \Vgu|p1dag>;.

Ay

Therefore, by (2.52) and (2.54), for every 0 <t < |ul[zeo(7s) and z € A} we have that

p 1—
_ - C(n) Area.(AF)\ P
Voul'do, > Area?(A;) (=V'(1)' " > Areal (A} (t
/At’ g ‘ g g( t)( ()) nwé ( t) |VU*($)’
P
_ (0@) V' ld.
nwy At

The latter estimate and the co-area formula give

/ |V gulPdV, = / / |V uP~ doydt
M 0 Ag

Y

(23) [ e
_ (C(”l)>p /n IVu* Pdz, (2.55)

nwyy

which concludes the first part of the proof.
If the Cartan-Hadamard conjecture holds, we can apply (1.18) instead of (1.19), obtaining instead
of (2.52) that
Areay(A;) > Areac(Af) for every 0 <t < |[ullpoo(ar), (2.56)

and subsequently, / |V ulPdV, > / |Vu*|Pdx, which ends the proof. O
M R"

We are in the position to state the main result of this section, where we need the notion introduced
in [110]. Given a Riemannian manifold (M, g), a function u : M — [0,00) is concentrated around
xo € M, if for every 0 < t < ||u||r~ the level set {z € M : u(z) > t} is a geodesic ball By(xq,r;) for
some r; > 0. Note that in the Euclidean space R" the extremal function hg\“p is concentrated around
the origin, cf. Theorems 2.1 and 2.2.

Theorem 2.7. (Farkas, Kristdly and Szakal [106]) Let (M, g) be an n-dimensional (n > 2) Hadamard

manifold, p € (1,n) and « € (1, anp} . Then:

(i) the Gagliardo-Nirenberg inequality

lullzor < C IV gullgo lull 20 Vu € Cg° (M) (GN1)¢?

Lap—1)+1)

S 3|~

0
holds for C = <g°;n)> Gapn;
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(ii) if the Cartan-Hadamard conjecture holds on (M,g), then the optimal Gagliardo-Nirenberg in-
equality (GNl)g(’lppn is valid on (M, g), i.e

. IV gullpllull} 20, 1)
ueCs® (M)\{0} [ul[Lov

Gapn = : (2.57)

a5, there exists a bounded positive extremal function in (GN1);*

moreover, for a fived o € (1,

ga NN
concentrated around xq if and only if (M, g) is isometric to the Euclidean space R™.

Proof. (i) Let u : M — [0,00) be an arbitrarily fixed test function with the above properties (i.e., it
is continuous with a compact support S C M, S being smooth enough and u of class C? in S with
only non-degenerate critical points in S). According to Theorem 2.1, the Euclidean rearrangement
function u* : R™ — [0, 00) of u satisfies the optimal Gagliardo-Nirenberg inequality (2.1), thus Lemma
2.2/(ii)-(iii) implies that

HUHLQP(M) = HU*HL‘W (R™)
< gayp, |Vu HLP(]R" Hu ||La(p D+1(Rn)
l 0
Nwyy
= C(n) Gapn |V9u||LP(M)||uHLa(p D+ (A7)

(ii) If the Cartan-Hadamard conjecture holds, then a similar argument as above and (2.51) imply
that

[[w*] Low ) (2.58)

e

Hu||LaP(M)

A

0
— ga,pﬂ’LHVU*HLP(R’n Hu La(p 1)+1(Rn)

0
< Gapnl Vaullzoan 1l o141 o

e, (GN1)g" —holds on (M,g). Moreover, Lemma 2.1 shows that (GN1)¢* cannot hold with
C < Gupn, which ends the proof of the optimality in (2.57).

Let us fix a € (1, Py p], and assume that there exists a bounded positive extremal function u :
M — [0,00) in (GN1)g" Gor,, concentrated around zo. By rescaling, we may assume that lull oo (ary = 1.
Since u is an extremal function, we have equalities in relation (2.58) which implies that the Euclidean
rearrangement u* : R” — [0,00) of u is an extremal function in the optimal Euclidean Gagliardo-
Nirenberg inequality (2.1). Thus, the uniqueness (up to translation, constant multiplication and
scaling) of the extremals in (2.1) and ||u*||pec(mn) = |lul|foc(ar) = 1 determine the shape of u* which

-«

is given by u*(z) = (1 + co|x]p/) , © € R", for some ¢y > 0. By construction, u* is concentrated

around the origin and for every 0 < ¢t < 1, we have

{z e R" : u*(z) >t} = Be(0,71), (2.59)
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_L/ 1
where r; = ¢y ” (tl_o‘ — 1) »" . We claim that

{xr € M :u(z) >t} = By(xo,r), 0 <t <1 (2.60)

By assumption, the function w is concentrated around zg, thus there exists r; > 0 such that {z € M :
u(x) >t} = By(zo, 7). We are going to prove that r; = r;, which proves the claim.
According to (2.50) and (2.59), one has

Voly(Bgy(zo,77)) = Volg({z € M :u(x) > t})
= Vol.({r e R" : u*(z) > t}) (2.61)
= Vole(Be(0,7¢)). (2.62)

Furthermore, since u is an extremal function in (GNl)gf o by the equalities in (2.58) and Lemma

2.2/(ii), it turns out that we have actually equality also in the Pdlya-Szegd inequality, i.e.,

IVgullzeary = (VU™ Lo (®r)-

An inspection of the proof of Pélya-Szegd inequality (see Lemma 2.2/(iii)) applied to the functions
v and u* shows that we have also equality in (2.56), i.e., Areay(A;) = Areac(Af), 0 <t < 1. In
particular, the latter relation, the isoperimetric equality for the pair (A}, Bo(r;)) and relation (2.50)
imply that

1 -1
Areay(0By(zo,1})) = Areag(Ay) = Areac(A}) = nwy Vole™ ({z € R" : u*(z) > t})
1 n-1
= nwiVolg" ({x € M :u(z) > t})
1 n-1
= nwj Volg™ (By(zo,74))-

From the validity of the Cartan-Hadamard conjecture (in particular, from the equality case in (1.18)),
the above relation implies that the open geodesic ball {x € M : u(x) > t} = By(xo,r}) is isometric to
the n-dimensional Euclidean ball with volume Voly(By(xo,7;)). On the other hand, by relation (2.61)
we actually have that the balls By(xo,r;) and By(r:) are isometric, thus r; = r¢, proving the claim
(2.60).

On account of (2.60) and (2.50), it follows that Voly(Bg(zo,7¢)) = wprf, 0 < t < 1. Since
limy; 7y = 0 and limy_07r; = +o0, the continuity of ¢ — 7 on (0,1) and the latter relation im-
ply that

Voly(By(zo, p)) = wnp”, Vp > 0. (2.63)

By Theorem 1.1 we obtain that the sectional curvature on (M, g) is identically zero, thus (M, g) is

isometric to the Euclidean space R™. O

We state in the sequel (without proof) similar results to Theorem 2.7 concerning (GN2);", (LS)Z

and (FK)g, respectively. For instance, we have the following result.
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Theorem 2.8. Let (M, g) be an n-dimensional (n > 2) Cartan-Hadamard manifold and p € (1,n).
Then:

1N\P
(i) the LP-logarithmic Sobolev inequality (LS)% holds on (M, g) for C = (g“(’f)) Lpn;

(ii) if the Cartan-Hadamard conjecture holds on (M,g), then the optimal LP-logarithmic Sobolev
inequality (LS)ZZM is valid on (M, g), i.e.,

p
S - IV,ulls,
P uecso (M), |lullpp=1 ¢nEntavy ([ul?)’

moreover, there exists a positive extremal function uw € C§° (M) in (LS)’ZP _ concentrated around

some point xy € M if and only if (M, g) is isometric to R™.

2.4 Further results and comments

I) Morrey-Sobolev interpolation inequalities on Riemannian manifolds. Let (M, g) be an
n-dimensional complete Riemannian manifold and p > n > 2. For some C' > 0, we consider on (M, g)

the Morrey-Sobolev interpolation inequality

HUHLO"(M) < C HuH};E]M) H Y gqup(M)7 Vu € LipO(jM)a (I'IS)C
where
np
S — 2.64
1 np+p—n ( )

By using symmetrization and rearrangement arguments, Talenti [88] proved that if (M, g) = (R",e)

is the standard Euclidean space, then (MS)c, ,) holds on R™ with the sharp constant

Lo 11\ (1 1\ (1 z
i _ mnp n+p’ _ n+p’
C(p,n) = (nwy ) »+v’ ( + /) ( - > ’ (B (np' +1,p" + 1>> o
n o p nop n

By omitting the proofs, similar arguments as in Sections 2.2 and 2.3 lead to the following results.

Theorem 2.9. (Kristaly [110]) Consider the n-dimensional (n > 2) complete Riemannian manifold
(M, g) with nonnegative Ricci curvature, let p > n, and assume that (MS). holds on (M, g) for some
C > 0. Then the following assertions hold:

(i) C > C(p,n) and (M, g) has the non-collapsing volume growth property, i.e.,

pn

C p-nt
Voly(By(z, p)) > <%n)) ’ wpp, Yz e M,p>0;

(i) (MS)c(p,n) holds on (M, g) if and only if (M, g) is isometric to R™.

Theorem 2.10. (Kristaly [110]) Consider the n-dimensional (n > 2) Hadamard manifold which

verifies the Cartan-Hadamard conjecture in the same dimension, and let p > n.
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(i) The Morrey-Sobolev inequality (MS)C(p’n) holds on (M, g); moreover, C(p,n) is sharp, i.e.,

el a1 Vgl
Clp,n)™' = inf L2 LD,
u€Lipg(M)\{0} ”UHLw(M)

where n is given by (2.64).

(ii) Let xg € M. For every k > 0 there exists a nonnegative extremal function u € Lipy(M) in

(MS) ¢y, concentrated around zo and H"(sprt u) = « if and only if (M, g) is isometric to R™.

p.n)
IT) Second-order Sobolev inequalities on Riemannian manifolds with nonnegative Ricci
curvature. Let (M, g) be an n-dimensional (n > 5) complete Riemannian manifold. For some C' > 0,

we consider the second-order Sobolev inequality

2
of
([ wan)” <c [ @uwran, e cpon, (8S)c

2n

where 2! = — is the second-order critical Sobolev exponent. Note that the Euclidean space R"

supports (SS)g, for

4/n
Ko = [r*n(n — 4)(n* — 4)] - (EEZ%) :
2

Moreover, K is optimal, see Edmunds, Fortunato and Janelli [36], and the unique class of extremal
4—n
functions is uy,(z) = (A + |z — 20?) 2 , @ € R", where A > 0 and z¢ € R" are arbitrarily fixed.
The only result in the second-order case reads as follows, whose proof follows the line of Theorem
2.3.

Theorem 2.11. (Barbosa and Kristaly [103]) Let (M,g) be an n-dimensional (n > 5) complete
Riemannian manifold with nonnegative Ricci curvature which satisfies the distance Laplacian growth
condition

Ay Dgdpy > 1 —5

for some xg € M. Assume that (M, g) supports the second-order Sobolev inequality (SS)c for some
C > 0. Then the following properties hold:

(i) C = Ko;
(ii) 4f in addition C < %KO’ then we have the global volume non-collapsing property

Voly(By(x, p)) > (C1Ko) fwap™, Yo € M, p > 0.
We conclude the present chapter with some comments and remarks.

IIT) Non-smooth versus smooth settings. In Section 2.2 we were able to treat interpolation

inequalities on any non-smooth metric measure space (M,d, m) verifying the CD(K, N) condition,
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K > 0. Here, one of the key facts was the eikonal inequality |Vd(xo,-)|a(xz) <1 for all x € M \ {xo},

which is a purely metric relation.

At this point, a natural question arises concerning the validity of (sharp) functional inequalities
on generic metric measure spaces which are nonpositively curved (e.g. in the sense of Aleksandrov or
Busemann), see Jost [55]. In particular, a purely metric measure approach to this subject — assuming
we follow the same line as above — requires a deeper understanding of the following two issues at least.
Firstly, we substantially exploited the co-area formula; on a generic metric measure space (M, d, m) it
is well-known a co-area inequality involving the quantity |Vul|q, u € Lipy(M ), see Bobkov and Houdré
[15, Lemma 3.1], but the equality case requires some regularity of the measure (which are clearly valid
on Riemannian and Finsler manifolds with their canonical volume forms). Secondly, the Croke-type
isoperimetric inequality (1.19) is indispensable in our arguments; in the generic case, certain restric-
tions should be made on the isoperimetric profile of the metric measure space we are working on; a

possible starting point could be the recent works by Martin and Milman [67, 68].

IV) First-order versus higher-order Sobolev inequalities on non-Euclidean structures.
With respect to first-order Sobolev inequalities, much less is known about higher-order Sobolev in-
equalities on curved spaces.

Let (M, g) be an n-dimensional complete Riemannian manifold with nonnegative Ricci curvature
and fix k € N such that n > 2k. Let us consider for some C' > 0 the k-th order Sobolev inequality

(f, e,

n—2k

<C [ (@AyPupav,, vue cgn) (S)E
M

where
k/2 . .
L/ Ag/ u, if k is even,
Ag/ U =

IVo(AS ™V 2u)), if ks odd.

L72 . . . .
Clearly, we have that (S)f. = (GN1)£*" and (S)Z = (SS)¢. It is far to be clear how is it possible
to establish k-th order counterparts of Theorems 2.3 and 2.11 with k£ > 3. We note that the optimal

Euclidean k-th order Sobolev inequalities are well-known with the optimal constant

. I‘(n) 2k/n
A= [nbn(n 200 (a2 — 4) (r(”)) |
2

and the unique class of extremals (up to translations and multiplications) is uy(z) = (A + \le)%% ,
z € R, see Cotsiolis and Tavoularis [27], Liu [64]. Once we use wy = (A +d3,) e for some zg € M
as a test-function in (S)'é, after a multiple application of the chain rule we have to estimate in a sharp
way the terms appearing in A];/ Qw)\, similar to the eikonal equation |V4d;,| = 1 and the distance
Laplacian comparison dz,Agdz, < n — 1, respectively. To the best of our knowledge, only Theorem
2.11 is available in the literature for a higher-order case on Riemannian manifolds with nonnegative

Ricci curvature. In this result the distance Laplacian growth condition d;,Ayd;, > n — 5 for some
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xo € M is indispensable which shows the genuine second-order character of the studied problem. We
note that the first-order counterpart of this condition is the eikonal equation (or eikonal inequality),
which trivially holds on any complete Riemannian manifold (or on any metric measure space).

On the other hand, no result is available in the literature for higher-order Sobolev inequalities
on Hadamard manifolds, similarly to the results from Section 2.3. The obstacle to extend first-order
arguments to higher-order ones is the lack of a suitable Pdlya-Szegé inequality for symmetrization.
In particular, if (M, g) is an n-dimensional (n > 2) Hadamard manifold, and u : M — [0,00) is a

non-zero function with v* : R® — [0, 00) its Euclidean rearrangement function (see Lemma 2.2), we

cannot compare the terms / (Ayu)*dV, and / (Au*)?da.

M R
V) Finsler versus Riemannian settings. According to relation (2.49), the global volume non-
collapsing properties in Theorems 2.3, 2.4 and 2.5 can be formulated in the Finsler context. However,
similar results to those from §2.2.4 concerning rigidities via Munn-Perelman homotopic quantification
seems to be valid only in the Riemannian setting. Similar fact is valid concerning sharp interpolation
inequalities in the negatively curved setting, see Theorem 2.7, due to the Riemannian character of the

Cartan-Hadamard conjecture.

VI) Sharp Sobolev-type inequalities on Riemannian manifolds versus distortion coeffi-
cients. Let (M, g) be an n-dimensional (n > 2) complete non-compact Riemannian manifold. The
main challenging question is to find
1-6
IVl ]

Copt(M, g) ™ = inf LoD+
)= g [l o

where a,p and 0 are from Theorem 2.1. It seems that the constant C,p(M,g) encodes a lot of
geometric information about (M, g); indeed, summarizing the results of the present chapter, we know
that:

o Copt(M,g) > Gopn for any Riemannian manifold (see Lemma 2.1).

o Copt(M,g) = Gapn whenever (M, g) is a Hadamard manifold verifying the Cartan-Hadamard

conjecture (see Theorem 2.7);

o Copt(M,g) > Gapn whenever the Ricci curvature is nonnegative and (M, g) is not isometric to
R™ (see Theorem 2.3 and Corollary 2.1).

Although the aforementioned problem seems to be almost impossibly to be resolved in its full gen-
erality, some preliminary analysis shows that the distortion coefficients of (M, g) should play crucial
roles in this study, introduced by Cordero-Erausquin, McCann and Schmuckenschlager [23] and suc-
cessfully explored in [102] to establish sharp geometric inequalities in the sub-Riemannian setting of

the Heisenberg group.
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Chapter 3

Sharp uncertainty principles

Uncertainty principles appear in quantum mechanics by simultaneously studying the position and
momentum of a given particle. In this chapter we investigate the influence of the curvature on sharp
uncertainty principles on Riemannian/Finsler manifolds.

3.1 Uncertainty principles in the flat case: a short overview

Let p,qg € R and n € N be such that

2p —
0<q<2<pand2<n<(p2q), (3.1)
p —_—
and denote by || - || an arbitrary norm in R™ and its dual | - ||+, see Section 2.1. In what follows, we

consider the Caffarelli-Kohn-Nirenberg inequality (see [19]), i.e.,

</R ||vu(x)||,%dx> </R W@) > ;2‘1)2 (/R ’T‘gﬁfdxf, Vu € CP(R").  (CKN)

One can prove directly the next property.

Theorem 3.1. (Xia [98]) The constant (";72‘1)2 is sharp in (CKN) and the class of extremals uy(z) =

1
(A [|lzl|*79) =7, XA >0, is unique up to scaling factors and translations.

One of the endpoints of (CKN) (when p — 2 and ¢ — 0) is the Heisenberg-Pauli-Weyl principle

</R IIVU(x)Hde> (/R HxH?u?(a:)dx) > ZQ </nu2(x)dx>2, Yu € C°(R™). (HPW)

The Heisenberg-Pauli-Weyl uncertainty principle in quantum mechanics states that the position and
momentum of a given particle cannot be accurately determined simultaneously, see Heisenberg [54].
(HPW) is the PDE formulation of this principle whose rigorous mathematical formulation is at-

tributed to Pauli and Weyl [95]. It is also known the following result.

Theorem 3.2. The constant %2 is sharp in (HPW) and the class of extremals, provided by the

_ 2
_ ol

Gaussian functions uy(x) , A >0, is unique up to scaling factors and translations.

39
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Another endpoint of (CKN) (when p — 2 and ¢ — 2) is the famous Hardy-Poincaré uncertainty

principle

2 (Tl—2)2 U2($) 00 (TN
/Rn |Vu(e)Pde > " /R e, Yue CF(R") (HP)

One of the milestones of singular PDEs is the following result (see e.g. Adimurthi, Chaudhuri and

Ramaswamy [1], Barbatis, Filippas and Tertikas [12], Brezis and Vazquez [17], Filippas and Tertikas
[43], Ghoussoub and Moradifam [48, 49]).

Theorem 3.3. The constant % is sharp in (HP), but there are no extremal functions.

3.2 Heisenberg-Pauli-Weyl uncertainty principle on Riemannian ma-
nifolds

Since its initial formulation, the Heisenberg-Pauli-Weyl principle is deserving continuously a deep
source of inspiration in mathematical physics. Without the sake of completeness, the Heisenberg-
Pauli-Weyl principle has been studied in various contexts, among others by Erb [37, 38] and Kombe
and Ozaydin [58, 59] on compact/complete Riemannian manifolds.

Let (M, g) be an n-dimensional (n > 2) complete non-compact Riemannian manifold, and p :
M — R be a function such that |Vyp| =1 and pAgp > C for some C > 0. In this setting, Kombe and
Ozaydin [58, 59] proved that

(/M \vgu|2dVQ> (/M ,02u2dVg> > (011)2 (/M u2dVg>2, Yu e C(M). (3.2)

In the Euclidean case, if p = |-|, then A|-| = "‘—T and C' = n—1, thus (3.2) becomes precisely (HPW).
When (M, g) is the n-dimensional hyperbolic case, inequality (3.2) also holds for C' = n — 1. In the

Ad

latter case, Kombe and Ozaydin [59] claimed that %2 is also sharp and v = e~ is an extremal, where

d is the hyperbolic distance. It turns out that this statement is false, as we will explain in §3.2.2.
Accordingly, the purpose of the present section is to describe a complete scenario concerning the
sharp Heisenberg-Pauli-Weyl uncertainty principle on complete Riemannian manifolds. To do this,

for xy € M fixed, we consider the Heisenberg-Pauli-Weyl uncertainty principle on (M, g) as

2 2
( /M \Vgu]2d‘/;]> < /M dgouzdvg) > "Z ( /M u2dvg> . Yu e CP(M). (HPW),,

3.2.1 Positively curved case: strong rigidity

Theorem 3.4. (Kristaly [108]) Let (M, g) be an n-dimensional (n > 2) complete Riemannian manifold

with nonnegative Ricci curvature. The following statements are equivalent:
(a) (HPW),_ holds for some z¢ € M;
(b) (HPW),  holds for every z¢ € M;

(¢) (M, g) is isometric to R™.
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Proof. Implications (c¢)=(b)=-(a) trivially hold. The proof of the implication (a)=-(c) is divided into
four steps. Let g € M be fixed.

Step 1. If (M,g) is isometric to R", then (HPW),  can be transformed into the inequality

(HPW) for which the standard class of Gaussian functions are extremals, see Theorem 3.2.

For later use, if we consider the function 7" : (0,00) — R defined by
T(\) = / ) e 24z A >0,
the equality for the Gaussian extremals in Theorem 3.2 can be rewritten into the form
—AT'(\) = gT()\), A > 0. (3.3)

Moreover, by the layer cake representation and a change of variables, one has the following represen-

tations which are used later:

o0 2 (o)
T(\) = 4w, / prle M dp = wn / e, (3.4)
0 0

STEP 2. Since (HPW)_ holds, (M, g) cannot be compact. We consider the class of functions
uy(z) = e i@\ > 0.

Clearly, the function uy can be approximated by elements from C§°(M) for every A > 0. By inserting
uy into (HPW),_ , and by using the eikonal equation |Vydy,| = 1 a.e. on M, we obtain the inequality

_ 2 n _ 2
2\ /M d2 e P odv, > o) /Me a0 v, A > 0. (3.5)
We introduce the function 7 : (0,00) — R defined by
F() = / P QA > 0.
M
By the layer cake representation, .7 can be equivalently rewritten into
> 2\d2 ! 2\d2
TN = / Volg({xEM:e_ =0 >t}>dt:/ Volg<{x6M:e_ 0 >t})dt
0 0
= 4)\/ Volg(Bg(mo,p))pe_Q)‘p2dp.
0

Since the Ricci curvature is nonnegative, on account of (1.10), the function .7 is well-defined and
differentiable. Thus, relation (3.5) is equivalent to
- AT'(\) >

n
2

T(N), A>0. (3.6)
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STEP 3. We shall prove that

By (3.3) and (3.6) it turns out that

. YA > 0.

Integrating this inequality, it yields that the function A — % is non-increasing; in particular,

TN . .. TN
) > h)\rr_l)})réf T VA > 0. (3.8)

Now, we prove that

AQ)
lim inf > 1. .
i) = (39
Due to relation (1.8), for every ¢ > 0 one can find p. > 0 such that
Voly(By(zo,p)) > (1 — e)wpp™, Vp €0, pel.
Consequently, one has

TA) = 4A /0 Voly(By (o, p))pe " dp

pe
> 4/\(1—E)wn/ P e qp
0

) V2Ape R
= e (1-— E)wn/ t" e~ qat. [change V2Ap = t]
2 0
Now, by (3.4), it yields that
TN
>1—e¢.
ety =1 E

Since € > 0 is arbitrary, relation (3.9) holds. This ends the proof of the claim (3.7).

STEP 4. Due to (3.4), relation (3.7) is equivalent to

/ (Voly(By(z0,p)) — wnp™) ,oe_z’\p2d,0 >0, YA > 0.
0
On account of (1.10), we necessarily have that

Voly (By(zo, p)) = wnp™, Vp > 0.

Standard arguments show that the latter relation does not depend on zg € M, thus by the equality

in Theorem 1.1/(b) we have that the sectional curvature is identically zero, which conludes the proof. [J
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3.2.2 Negatively curved case: curvature versus extremals
Based on (1.7), for every ¢ <0, let D, : [0,00) — R be defined by
0, if p=0,
pcte(p) —1, if p>0.

Note that D, > 0. At first, we present a quantitative version of the Heisenberg-Pauli-Weyl principle.
Theorem 3.5. (Kristaly [108])] Let (M, g) be an n-dimensional (n > 2) Hadamard manifold such

that the sectional curvature is bounded from above by ¢ < 0. Then

2 -1 2
(/ |vgu|2dvg> </ dgoﬁdvq) > "Z </ (1 + "n Dc(dxo)> quVg> » Voo € M,u € Cg°(M).
M M M

Proof. Let z9 € M and u € C3°(M) be fixed arbitrarily. According to Theorem 1.2/(a), one has that

/ Ag(d2 udV, = 2 / (1 + duy Agdy, )u?dV,
M M

> 2/ (14 (n — 1)dyg,cte(dy, ))u?dV,
M

1
= 2n/ <1+ n Dc(dx0)> u?dV,. (3.10)
M n

An integration by parts yields the equality

/ Ay(d2 )2V, = - / (V,(u2), Vy(d2,))dV, = —4 / sy (Vg1 V gdlag) AV
M M M

By using the eikonal equation |Vyd,,| = 1 a.e. on M, one has that |(Vgu, Vydz,)| < |Vgu|. Thus, by

Hoélder inequality one obtains that

2
(/ udyy (Vgu, ngm0>dvg> < </ dfcou?dv:q) (/ |Vguy2dvg>.
M M M

The latter relation coupled with (3.10) yields the quantitative Heisenberg-Pauli-Weyl principle. O

The main result of this subsection reads as follows.
Theorem 3.6. (Kristdly [108]) Let (M, g) be an n-dimensional (n > 2) Hadamard manifold.

(i) [Sharpness| The Heisenberg-Pauli-Weyl principle (HPW)_ — holds for every xo € M; moreover,

y ([ 1vokav,) ([ &ean,)
— = inf M M .

4 wecge(M)\{0} </ u2dV)2
v g

2
n2 . .
T 18 sharp, i.e.,
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(ii) [Extremals] The following statements are equivalent:

1s attained by a positive extremal in (HPW)xO for some xg € M;

—
R
NERSES

is attained by a positive extremal in (HPW),_ - for every z¢ € M;
(c) (M,g) is isometric to R™.

Proof. (i) Let xg € M be fixed. Since D, > 0, due to Theorem 3.5, the Heisenberg-Pauli-Weyl
uncertainty principle (HPW)_holds. We prove that the constant %2 is optimal in (HPW),_ , by
following the Aubin-Hebey argument, see [8], [52], and the arguments from Lemma 2.1. Let

( / |vgu\2dvg> < / d§0u2dvg>
M M

CHPW = inf . (3.11)

ueCq (M)\{0} b\
Mu dVy

Since (HPW)IO holds, then Cypw > ”72. Assume that Cypw > %2. By (3.11), one has

2
( / |vguy2dvg> < / d§0u2dvg) > Crpw < / u2dvg) , Yu € C°(M). (3.12)
M M M

For every € > 0, there exists a local chart (€, ¢) of M at z¢ and a number § > 0 such that p(Q2) =

Bc(0,0), while the components g;; of the metric g satisfy in the sense of bilinear forms the inequalities
(1 — 6)5@‘ <gij < (1 + 8)51']'. (3.13)

According to (3.12) and (3.13), for £ > 0 small enough, there exists 4 > 0 and Chpw > %2 such that

for every ¢ € (0,6) and w € C§°(B.(0,9)),

2
(/ |Vw2dx> </ ]a:|2w2dx> > Chpw (/ w2dx> . (3.14)
B.(0,6) Be(0,6) B.(0,6)

Let u € C§°(R™) be arbitrarily fixed and set wy(z) = u(Az), A > 0. It is clear that wy € C5°(B.(0,0))
for large enough A > 0. Inserting w) into (3.14), and recalling the scaling properties

/ |Vawy [2dz = )\2_"/ |Vu|?dz, / lz[Pwide = )\_2_”/ |z 2u?de,
Be(0,6) R" ¢(0,6) R™
/ wide = /\_"/ uldz,
Bc(0,9) n
2
</ |Vu]2dx> (/ |x\2u2dx> > Chpw (/ u2dm> .
n Rn n

In particular, in the latter relation we may substitute the Gaussian function u(z) = e_|x|2, obtaining

that % > Clypw, @ contradiction. Consequently, Cypyw = ”72.

and

it follows that
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(ii) Observe that if (M, g) is isometric to R™, the sharp Heisenberg-Pauli-Weyl uncertainty principle
(HPW)_  can be equivalently transformed into (HPW) for which the Gaussians uy(z) = el
A > 0, are extremal functions. Thus, the implications (c)=-(b)=-(a) hold true.

We now prove (a)=(c). Let ug > 0 be an extremal function in (HPW)_ ~for some zy € M. In
particular, in the estimates in Theorem 3.5 we should have equalities; thus, by (3.10) one has D. =0
(i.e., we necessarily have ¢ = 0, so the sectional curvature of (M, g) cannot be bounded above by a

fixed negative number), and
Ag(d2)) = 2n. (3.15)

Let us fix p > 0 arbitrarily. Note that the unit outward pointing normal vector to the sphere
Sg(xo, p) = 0Bg(xg,p) = {x € M : dy(xo,2) = p} is n = Vydy,. Denote by dg, the volume form on
Sg(zo, p) induced by dV;. Applying Stokes’ formula and the fact that (n,n) = 1, by (3.15) we have

2nVol,(By(z0,p)) = / Ag(d2,))dV, = /
Bg(z0,p) By(zo,p)

= 2/ dyo(n, Vydy,)dsy = 2,0/ (n,n)dg, = 2p/ dgg
Sg(wo,p) Sg(mo,p) Sg(mo,p)

= 2pAI‘eag(Sg(x07p))7

div(Vy(d2,))dV, = / (n, Vy(d2,))dsg
Sg(x()vp)

where

. Vol (By(xg,p+¢€)) — Voly,(By(zo, p d
Areaug(Sg(avo,p)):81_1}(151+ o(By(wo )5) o(By (o ):: d—pVolg(Bg(:):o,p))

is the surface area of Sy(zo, p). Thus, the above relations imply that

d%VOIQ(Bg(xoy p) n

Vol,(By(z0,p)) P’

By integrating this expression and due to relation (1.8), we conclude that
Voly(By(zo, p)) = wpp™, ¥p > 0. (3.16)

The equality case of Theorem 1.1/(a) implies that the sectional curvature on (M, g) is identically zero,

which concludes the proof. O

Remark 3.1. Implication (a)=(c) in Theorem 3.6 has also a geometric proof. Indeed, due to Jost
[55, Lemma 2.1.5] and relation (3.15), it follows that we have equality in the CAT(0)-inequality with
the reference point zg € M, i.e., for every geodesic segment ~y : [0,1] — M and s € [0, 1], we have that

dy(0,7(s)) = (1 — s)dj (0, 7(0)) + sd (w0, 7(1)) — 5(1 — 5)d5(7(0), 7(1)).

Now, Alexandrov’s rigidity result implies that the geodesic triangle formed by the points zg, v(0) and
~(1) is flat, see Bridson and Haefliger [18]. Thus, (M, g) is isometric to the Euclidean space R™.
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We conclude this section by discussing the existence of extremals in the Heisenberg-Pauli-Weyl
uncertainty principle on hyperbolic spaces. For the hyperbolic space we use the Poincaré ball model
H" = B.(0,1) = {x € R" : |z| < 1} endowed with the Riemannian metric

Ihyp(@) = (95 (%)) j=1,...n = D*(2) 45,

where p(z) = ﬁ It is well-known that (H", gnyp) is a Cartan-Hadamard manifold with constant

sectional curvature —1. The volume form is
dVign (z) = p"(x)dz, (3.17)
while the hyperbolic gradient and Laplace-Beltrami operator are given by

Vinu = p—g and Agnu = p"div(p"2Vu),

respectively. The hyperbolic distance between the origin and z € H" is

1+ |z
dH (0,.%') n(l—‘$|)

Recently, Kombe and Ozaydin [59] stated a Heisenberg-Pauli-Weyl uncertainty principle on

(H™, ghyp). For completeness, we recall the full statement of Theorem 4.2 from [59]:

“Let w € C°(H"), d = d(x) = dgn(0,z) and n > 2. Then

2 2
</ |VHnu|2dVHn> (/ d2u2dVHn> > ”Z (/ quVHn> . (3.18)
]H[’ﬂ n n

Moreover, equality holds in (3.18) if u(z) = Ae=°?*, where A € R, and

n—1 Cnfg
a—n_2<n—1+277 Cn) (3.19)

with Cy, = / e*adeVHn, a>0.

Relation (3.18) holds true, see also Theorem 3.6. However, the statement concerning the equality in

(3.18) cannot happen, which has the following three independent proofs.

Argument 1 (based on Theorem 3.6). Following Kombe and Ozaydin [59], let us assume that the
hyperbolic Gaussian u = e~ > ( is an extremal function in (3.18) for some a > 0. Due to Theorem
3.6/(ii), it follows that the hyperbolic space (H", gnyp,) is isometric to the standard Euclidean space

R"™, a contradiction.
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Argument 2 (based on the non-solvability of (3.19)) . Let C,, = Cy () = / e~ qVign be as above.

n

We claim that the nonlinear equation (3.19) cannot be solved generically in « > 0. For simplicity, we

consider only the case n = 4; then equation (3.19) reduces to a = w(«), where

/ e~ QWi
H2

/ e_ad2 dVH4
H4

Since w > %, the values for a should belong to [%, o0) in order to solve o = w(«). By using the

3
w(a) := B 3427

2 S
Gauss error function erf(s) = T / e_tzdt, after some elementary computation we obtain that
T Jo

w(a) > 2a+ 1 for every « € [4,00). The latter inequality implies the non-solvability of o = w(«).

Argument 3 (based on Theorem 3.5). Due to Theorem 3.5, for every u € C§°(H") one has

(/Hn !VHnu\QdVHn> </ d2u2dVHn) > Ti </ (1 - n; 1D_1(d)> u2dvﬂn>2. (3.20)

Since D_;(d) > 0, if we have equality in (3.18) for u = e for some a > 0, we necessarily have

in (3.20) the relation D_;(p) = 0 for every p > 0 which means that for every p > 0 one has that
0 = pct_1(p) — 1 = pcoth(p) — 1, a contradiction. Moreover, in the inequality (3.20) the constant
%2 is sharp and an integration by parts easily shows (by using the exact form of the volume element
(3.17)) that the equality holds for the hyperbolic Gaussian family of functions u, = e o > 0.
Therefore, hyperbolic Gaussian functions uy = e_’\d2, A > 0, represent the family of extremals for the
quantitative Heisenberg-Pauli-Weyl uncertainty principle (3.20), but not for the ’pure’ Heisenberg-

Pauli-Weyl uncertainty (3.18).

3.3 Hardy-Poincaré uncertainty principle on Riemannian manifolds

Depending on the curvature restrictions and number of poles/singularities, in this section we provide

sharp Hardy-Poincaré uncertainty principles on Riemannian manifolds.

3.3.1 Unipolar case

At first, we present a quantitative version of the Hardy-Poincaré inequality on Hadamard manifolds.

Theorem 3.7. (Kristaly [108]) Let (M,g) be an n-dimensional (n > 3) Hadamard manifold with

sectional curvature bounded from above by ¢ < 0. Then for every xg € M and v € C§°(M) we have

—-2)2 2(n —1) u?
24 >(”/ 1+ 2" D (dyy) | ——dV,. HP
[, vy = 22 (1 2, ) v, (HP),,

(n—2)
1

In addition, the constant 1s sharp and never attained.
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Proof. Let zg € M and u € C°(M) be arbitrarily fixed and i = 252 > 0. We consider the function
0 2

v = d u. Thus, for u = dz/'v one has that

Vou = —fidy "oV ydy, + dyFV v,

0
which yields the inequality
IVoul? > F2dy 2202 V gdy, |* — 211d 2 0(V gdyy, Vgv).

0

By the eikonal equation |V4d.,| =1 a.e. on M, after integrating the latter inequality, we obtain

/ |V ul?dV, > 2 / dy 2P 2v2dV, + Ry, (3.21)
M M
where
~ — ~_ 1 - o
Ry = —2f /M Ay 2P 0(V ydog , Vgv)dVy = 3 /M<vg(v2), Vo(dy ) dv,
1 o~ ~ _om_ ~
— _5 /M UZAg(d:c(?u)d‘/g = /M v2d:1302u 2 (—2,[1, -1+ dwOAgde) d%
—1)(n—2 2
> (n)(n)/ (dygCto(dsy) — 1) L(x)dvg’ [see Theorem 1.2]
2 M d9260
(n—1)(n—2)

u?(x)
= T Dy(dyy)—-2dV,,
9 /]\/[ ( 0) dg%o g

which completes the first part of the proof.

We shall prove in the sequel that > = (nf)Q is sharp in (HP), , i.e.,

2
e | IVautay,
. 42) = wec o) 20 1) 2 (322
ueCse n— u”
/M (1 + — Dc(dw0)> d%O dVy

Fix the numbers R > r > 0 and a smooth cutoff function ) : M — [0,1] with supp(¢)) = By(zo, R)

and ¢ (z) = 1 for & € By(zo,r); moreover, for every € > 0, let

u: = (max{e, dy, }) . (3.23)
On one hand,

Ii(e) = /M|vg(¢u5)12dvg
_ / IV, () 2V, + / IVy(uc) 2V
By (zo,7)

Bg(xovR)\BQ ($0,T)

= Ao 2dVy + 11 (2),

[
Bg(x0,m)\Bg(wo,¢)
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where the quantity
i - | 1V (ue) PV,
By (z0,R)\Bg(xo,r)

is finite and does not depend on € > 0 whenever € < r. On the other hand,

n— ug )2 ug)?
Le) = /M <1+2(n_21)Dc(de)) WdQ ) v, > /M (1/;2) av,

> / d; 22V, =: I(e).
Bg(Io,T)\BQ(Io,E)

Applying the layer cake representation, we deduce that for 0 < ¢ < r, one has that

Le) = / 42 2qV, = / d;"dV,
By(z0,r)\Bg(z0,¢) By (z0,r)\Bg(z0,¢)
e e—n
> [ Vol Byeo N 2w [ gt see (1.9)]

= nwp(lnr —Ine).

In particular, lim_ o+ I2(¢) = +o0o. Thus, from the above relations it follows that

/ |V gul*dV,

(n—2)?
4 = u€C°° \{0} —1) u?
R X a2,
~2
< lim L(E) < lim B2 )T ) IQ(E) +Il(€)
e—0t Io (E) e—0t 12(5)
— ﬁ2 — (n B 2)2

4 )
which concludes the proof of (3.22).
If we assume the function ug # 0 is an extremal in (HP), , on one hand, due to (3.21) we have
that
/ d, 2V gvol*dV, = 0, (3.24)
M

where vy = df;‘ouo. Using (3.24), it follows that vy is a constant function, thus ug = cod;Oﬁ for some
¢p € R\ {0}. On the other hand, similar estimates as above show (see the function I5) that

/ |V guo|*dYV, :ﬁ2/ —dV =i / "V, =
M

ie., ugp & WH2(M,dV,) and cZT(:) ¢ L*(M,dV,), a contradiction. O

Remark 3.2. Theorem 3.7 provides a quantitative form of the main results from Carron [20] and

D’Ambrosio and Dipierro [29].
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In the next statement we provide a new type of improved Hardy-Poincaré inequality which shows

that more curvature implies more powerful improvements.

Theorem 3.8. (Kristdly [108]) Let (M, g) be an n-dimensional (n > 3) Hadamard manifold such that
its sectional curvature is bounded from above by ¢ < 0. Then for every xo € M and v € C§°(M), we
have that

9 (n —2)? / u? 3le/(n —1)(n —2) / u?
dv, > —+— | —-d dvj.
/M |vgu| ‘/g — 4 M d%O ‘/;I + 2 . 7_[_2 + ‘C|d%0 va

(n—2)
7

In addition, the constant is sharp (independently by the second term on the right hand side).

Proof. By the continued fraction representation of the function p — coth(p), one has that

‘) (i'l(‘))— >4 p>0
C 5 V .

We conclude this subsection by stating a Hardy-Poincaré inequality on Finsler-Hadamard mani-

folds which will be used in Chapter 5; its proof is similar to Theorem 3.7, thus we omit it.

Theorem 3.9. (Farkas, Kristdly és Varga [107]) Let (M, F) be an n-dimensional (n > 3) Finsler-
Hadamard manifold with S = 0, and let xo € M be fixed. Then

. 2 (n—2) u? () .
/M (" (2, ~D(Jul) @) Vi () > " /M P V(). e (M), (3.25)

_0\2
where the constant ™ 42) 1s optimal and never attained.

3.3.2 Multipolar case

Let m > 2 and S = {z1,...,xm} C M be a set of pairwise distinct poles in a Riemannian manifold
(M, g). For simplicity of notation, let d; = dy(-,z;) for every i € {1,...,m}. A multipolar Hardy-

Poincaré theorem on general Riemannian manifolds reads as follows.

Theorem 3.10. (Faraci, Farkas and Kristaly [104]) Let (M, g) be an n-dimensional (n > 3) complete

Riemannian manifold and S = {x1,...,xm} C M be the set of pairwise distinct poles, m > 2. Then

—2)? d; d; |?
[ > 02 5[ [T Sl
M m 1<icj<m /M i J
n—2m diAdi—(n—l) 00
+— > /M = u?dV,, Yue C&(M). (3.26)
i=1 ?

Moreover, in the bipolar case (i.e., when m = 2), the constant (72;73)2 = @ is sharp in (3.26).
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m
Proof. Let E = H d?~™ and fix u € C§°(M) arbitrarily. A direct calculation gives
i=1

1 N Vyd;

v (uE7i> — EmV u+ uE n M\ O({xz} U cut(z;)),
i=1

=1

where cut(x;) denotes the cut locus of the point x;, see do Carmo [31]. Integrating the latter relation,

the divergence theorem and eikonal equation give that

/M‘vg(uE—iﬂind%: /|v uf2av, + "= 2 /
= z/<

_ /|vuy2dv+” /Z; .

SR () e

. [ V4d; diNgd; — 1
d1V< 51’ ) = gd? , 1€{1,...,m}.

m

One clearly has that

Thus, an algebraic reorganization of the latter relation provides an Agmon-Allegretto-Piepenbrink-

type multipolar representation

/ |V ul?dV, — (

ey

diAgd; — (n—1 . .
where K;(u) = / g 7 (n )u2dVg. Inequality (3.26) directly follows from (3.27).
M i

Vd Vd

1<z<j<m

25 K(uw), (3.27)
=1

In the sequel, we deal with the sharpness of the constant g = (";LEV in (3.26) when m = 2. In
this case, the right hand side of (3.26) behaves as %d;z(x x;) whenever z — z; and by the local
behavior of the geodesic balls we may expect the optimality of (n=2) 2)
let A;[r,R] = {x € M :r <di(z) < R} forr < Randi € {1,...,m}. If 0 < r < R, a layer cake

representation yields for every i € {1,...,m} that

. In order to be more explicit,

Vol,(By(x;, R))

Vol, (B, (i, R
/ d;ndVg — g gn _ Og( gn(x T')) —|—TL/ VOlg(Bg($i,p))),0_l_ndp
A;[r,R] R r r

R
= o(R) + nwy, log gt (3.28)
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Let S = {z1,22} be the set of distinct poles. Let ¢ € (0,1) be small enough and By(x1,2/c) N
Bgy(x2,2+/¢) = 0. Consider the function

log dig(z) 2-n )
10<g(5))d7' 2 (LIT), lf T e Ai[52,8],
2log( =) 2-n

us(z) = T&%ﬂ@2uxif x € Aile, Ve,
0, otherwise,

with 4 € {1,2}. Note that u. € C°(M) has the compact support U?Zl A;[e%, /€] € M and it can be

used as a test function in (3.26). For later use let us introduce the notations £* := 1/log? (%),

Vydi, Vyd dAd —1
L;:/vag%%,g+:/ Vgdi, Vo) %%,KP_E:/ )u@%
M M dids

and

117,
= — + — dv,.
7= |, [+ ]

By direct computations, one has that
I. — ppJ- = O(1), L. = 0O(Ve), Ke =O(ye) as € =0, (3.29)

and
lim J; = +o0. (3.30)

e—0

Combining relations (3.29) and (3.30) with inequality (3.26), we have that

I — %_Zlca < 7. + nT_2|’C6’ _ ﬂH«7z—:+O(1)
\.75_2£€ o j€_2|£€| x75+0(%)

pH < — pm as e — 0,

which concludes the proof. O

Remark 3.3. Let us assume in Theorem 3.10 that (M, g) is a Riemannian manifold with sectional

curvature verifying K < c¢. By the Laplace comparison theorem we have that

M 1<Z<]<m
(n—2)(n—-1) D.(d;) .
+““5‘4‘*§: —iﬁ—u%n@ Vu € C3(M). (3.31)

In addition, if (M, g) is a Hadamard manifold with K < ¢ < 0, then D.(r) > W;”'jjrz for all » > 0.
Accordingly, stronger curvature of the Hadamard manifold implies improvement in the multipolar
Hardy-Poincaré inequality (3.31), similarly as in the unipolar case, see Theorems 3.7 and 3.8. In

particular, if K = 0, inequality (3.31) reduces precisely to the main result of Cazacu and Zuazua [21].
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A positively curved counterpart of (3.31) can be also stated as a consequence of Theorem 3.10.

Corollary 3.1. (Faraci, Farkas and Kristaly [104]) Let S'! be the open upper hemisphere and S =
{x1, .., xm} C ST be a set of pairwise distinct poles, where n >3 and m > 2. Let f = max dg(xo, z;),

i=1m
where xg = (0, ...,0,1) is the north pole of the sphere S™ and g is the natural Riemannian metric of

S™ inherited by R"T'. Then, we have the inequality

9 (n —2)?
[l = "2 S /

1<i<j<m

Vgdi  Vgd,
. d]

w?dVy, Vue Hy(Sh), (3.32)

T =3(+5)°

where ||qu(n,ﬁ) = /Sn |V yu|*dV, + C(n, B) /n u?dV, and C(n, ) = (n —1)(n — Z)W
+

S

Proof. Let M = S™ be the standard unit sphere in R®*! and the open upper hemisphere St ={y=
(Y1y ooy Ynt1) € S™ : ypt1 > 0}. By Theorem 3.10 we have that

/Sn Veuldy, > 20§ /

+ 1<i<j<m

Vqd; Vd

Qd%

- d;Agdi — (n— 1
+”m Z/n g d2" )uzdvg, Vu € CP(S™).

Since K = 1, the two-sided Laplace comparison theorem shows that Ayd; = (n — 1) cot(d;).
Fix v € C§°(S"). By using both the Mittag-Lefller expansion

cot(t 7+2tzt2 332 te(0,m),

and the fact that 0 < d; <, ¢ € {1,...,m} (up to null-measured poles), one has that

diAgdi — (n—1) 4
/n g 7 u”dVy = n—l/z
+ 3

+k1

Since d; < w, we obtain that

/i“de </ i“72dv—i w2dv,
1k:27r2k2_d%2 9= ik:27r2k2—7r2 I 4gn2 9

n
S+

. 7r
Moreover, since 3 = mfﬁdg(xo’ﬂfi) < 3, one can see that for every v € S, d;(x) = dy(z, ;) <
i=1,m

dg(z,20) + dg(z0,2;) < 5 + 3. Thus, 72 —d? > 7? - (B + g)Q > 0, which implies that

/ u? dV<1/ w2 dv,
snm—di T g2 (g4 1) Jsy .
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Combining the above two estimates, we have that

/Sn |V9“|2dV9+C(n,ﬁ)/S u? v, > (=27 T /

+ + 1<i<j<m

'dj u? dVy,

where

™ -3(8+5)"
272 (7‘(’2 —(B+ %)2)

The latter inequality can be extended to H ; (S) by standard approximation/density argument. [J

¢(n,B) = (n—=1)(n —2)

3.4 Further results and comments

I) Rellich uncertainty principle on Hadamard manifolds. Second-order Hardy inequalities are

referred to Rellich inequalities whose most familiar forms can be stated as follows; given n > 5, one

has
2 —4 2 2
/ (Au)?dz > =4 / U, Yu € CS°(RY), (3.33)
2 2
/ (Au)?dz > ”Z / ‘Ef"i dz, Yu € CS°(R™), (3.34)
n Rn

2(p_
where both constants ™ (?6 9’ and ” are sharp, but are never attained. Their extensions, in the spirit

of Theorem 3.8, can be stated as follows.

Theorem 3.11. (Kristaly and Repovs [118]) Let (M,g) be an n-dimensional Hadamard manifold

such that its sectional curvature is bounded from above by ¢ < 0. Let xg € M be fized arbitrarily.

(a) If n > 5, then for every u € C§°(M) one has that

- 3leln(n —1)(n —2)(n —4) u?
Ay, > / —dV / v,
] @awrav, 1 v B2,

2(m_A)2
where the constant ™ (7{6 ° s sharp.

(b) If n>9, then for every u € C3°(M) one has that

2 vV ul? 3le|n(n — 1)(n — 4)? u?
Awray, > [ Vel / d
/M( gul Vo = | e, Vet 3 w2 i),

where the constant %2 s sharp.

These results can be obtained also on Finsler manifolds, see Kristaly and Repovs [118] (for the re-
versible case), and Yuan, Zhao and Shen [99] (for the non-reversible case). In these cases, the so-called
Green-deflection of any C§°(M) function plays a crucial role, which is automatically verified in the

Riemannian setting.
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IT) Sharpness in the Heisenberg-Pauli-Weyl uncertainty principle. On one hand, if (M, g)
is a complete n-dimensional Riemannian manifold with nonnegative Ricci curvature and assume the

inequality

2
< /M yvgu|2dvg> ( /M d§0u2dvg> >C < /M u2dVg> , Yu € Cy°(M), (HPW)

holds for some C' € (O, %2} , it is an open problem if one has for some a > 0 a global volume non-

collapsing property of the type

4C\“
Voly(By(z, p)) > <n?> wpp", Yz e M, p > 0.
On the other hand, it is remarkable that the sharp Heisenberg-Pauli-Weyl uncertainty principle holds

on Hadamard manifolds without requiring the validity of the Cartan-Hadamard conjecture.

IIT) Hardy-Poincaré uncertainty principle on positively curved spaces. It seems that sim-
ilar rigidity results for the Hardy-Poincaré inequalities as in Theorem 3.4 cannot be established on
nonnegatively curved spaces. The problem comes from the lack of extremal functions in the Euclidean
Hardy-Poincaré inequality (see Theorem 3.3) which should serve as a comparison function in the

positively curved case.
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Chapter 4
Elliptic problems on Finsler manifolds

Various elliptic problems are discussed on Minkowski spaces (R", F'), where F € C?(R",[0,00)) is
convex and the leading term is given by the nonlinear Finsler-Laplace operator associated with the
Minkowski norm F', see Alvino, Ferone, Lions and Trombetti [2], Ferone and Kawohl [42], and refer-
ences therein. In this class of problems variational arguments are applied, the key roles being played by
fine properties of Sobolev spaces, sharpness of Sobolev inequalities, as well as the lower semicontinuity

of the energy functionals associated with the studied problems.

In order to have a global approach, the theory of Sobolev spaces has been deeply investigated
on metric measure spaces, see Ambrosio, Colombo and Di Marino [4], Cheeger [22], and Hajlasz and
Koskela [51]. In [4], the authors proved that if the metric space (X,d) is doubling and separable,
and the measure m is finite on bounded sets of X, the Sobolev space W12(X,d, m) is reflezive; here,

W2(X,d, m) contains functions u € L?(X, m) with finite 2-relaxed slope endowed by the norm

1/2
U </ |Vu\32dm+/ u2dm> ,
X ' X

where |Vul,2(z) denotes the 2-relaxed slope of u at € X.

This result clearly applies to differential structures as well. Indeed, if (M, F') is a reversible Finsler

manifold (in particular, a Riemannian manifold), then for every x € M and u € C§°(M), one has that

’vu|*72($) = lim sup M

msup (0 EE = [Vl (2) = F (@, Duf))

see also (2.49). Consequently, within the class of reversible Finsler manifolds, the synthetic notion
of Sobolev spaces on metric measure spaces (see Ambrosio, Colombo and Di Marino [4], Cheeger
[22]) and the analytic notion of Sobolev spaces on Finsler manifolds (see Ge and Shen [44], Ohta
and Sturm [73]) coincide. However, Sobolev spaces over non-compact Finsler manifolds may behave

pathologically which require a fine analysis based on the so-called reversibility constant.

Accordingly, this chapter is devoted to elliptic problems on Finsler manifolds, emphasizing the

influence of non-reversibility in some nonlinear phenomena.

o7
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4.1 Sobolev spaces on Finsler manifolds: the effect of non-reversibility
Let (M, F') be a Finsler manifold. We consider the number

F
rp = sup rp(xz), where rp(z):=  sup Py (4.1)

zeM yerom\{o} F (@, —y)’

called as the reversibility constant associated with F', see Rademacher [78]. It is clear that rp > 1
(possibly, rp = +00), and rp = 1 if and only if (M, F') is reversible. We may define the reversibility
constant rg+ associated with the polar transform F™* of ' and we observe that rp« = rp.

The number

Ip = inf Ip(z). where Ip(e) =  inf  Jen®:¥)
zeM y,0,wET M\{0} G(z w) (y’ y)

is the wuniformity constant associated with F' which measures how far (M, F') and (M, F*) are from
Riemannian structures. More precisely, one can see that [p < 1, and I = 1 if and only if (M, F) is a
Riemannian manifold. In the same manner, we can define the constant (g« for F*, and it follows that

lp+ = lp. The definition of [r in turn shows that
[F*(z,ta+ (1= )B)]* <t [F*(z, )] + (1 = t) [F*(2, B)] — lpt(1 — t) [F* (2, B — )] (4.2)
forallz € M, o, € TfM and t € [0,1]. Furthermore, one can deduce that

Ip(z)ri(z) <1, Vo € M. (4.3)

In the sequel, we shall use the canonical Hausdorff measure (1.6) on (M, F'), dm = dVp. Consider

the Sobolev spaces

loc

WY2(M, F,m) := {u e WhA(M) / [F*(z, Du(z))])* dm(z) < —i—oo} ,
M
associated with (M, F') and let Wol’Q(M, F,m) be the closure of C§°(M) with respect to the norm
1/2
|ullF = (/ [F*(z, Du(z))]* dm(x) +/ u2(:v)dm(m)> . (4.4)
M M

Note that || - || is usually only an asymmetric norm. Denote by

F2(z,y) + F*(x,—y)
2

1/2
Fio(w,y) = ( ) » (2,y) e TM

the symmetrized Finsler metric associated with F which induces the reversible Finsler manifold
(M, Fy). The symmetrized Finsler metric associated with F* may be different from F, i.e., in general
2[F*(x, ) # [F*(z,a)]> + [F*(z,—a)]?. Clearly, if (M, F) = (M, g) is a Riemannian manifold, the
Sobolev space W2(M, F,m) coincides with the usual Sobolev space H gl (M), see Hebey [52].
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The first result of this section concerns the case when rp < +00.

Theorem 4.1. (Farkas, Kristaly and Varga [107]) Let (M, F) be an n-dimensional (n > 2) complete
Finsler manifold such that rp < 4+00. Then (Wol’2(M, F,m), |- ||lr,) is a reflexive Banach space, while

the norm || - ||, and its asymmetric counterpart || - | are equivalent. In particular,
—1/2 _9\ —1/2
1 =+ 7’% 1 + 'l"F 1.2
(F57%) e <l < (25 Julle, ue WA Fym). (45)
Proof. First of all, we note that the norm || - ||z, is considered also with respect to the Hausdorff

measure dm = dVp (not with dVx,), i.e.,

lulle, = ([ 17 Duo)Pama) + [ (aam(e)) " (46)

On account of the convexity of o > [F*(x,)]?, if u,v € W01’2(M, F,m) then one easily shows that
u+uv e Wol’z(M, F,m). On account of rr < 0o, we have that cu € Wol’Q(M, F,m) for every ¢ € R and
u € WOI’Q(M, F,m). Therefore, I/VOI’Q(M7 F,m) is a vector space over R.

We recall that the norms |- ||, and ||-||r are symmetric and not necessarily symmetric, respectively.
The definition of the reversibility constant rz shows that || - |s, and || - || are equivalent; thus, one
has that

142\ 142\
(57) F*(x,a>gF:<x,a>s< F) F*(z,0), Y(z,0) € T*M,

2 2
which implies relation (4.5). Let L*(M,m) := {u:M — R:u is measurable, ||lul|;2(ys,m) < o0},
where
1/2
lullzim = [ @@m@)
M
It is clear that (L*(M,m),|| - ||f2(ar,m)) is a Hilbert space. Since o [F*(2,a)])?, and consequently
o — [F*(z,a)]* are (strictly) convex functions, it follows that (Wol’Q(M, F,m),|| - ||F,) is a closed
subspace of the Hilbert space L?(M,m), thus (Wol’Q(M, F,m), | - ||r,) is reflexive. O

In the sequel, we consider some specific examples concerning the applicability of Theorem 4.1.

Example 4.1. (a) Riemannian manifolds. If (M,F) = (M, g) is Riemannian, then rp = Ip = 1,
thus Theorem 4.1 is well-known by Hebey [52].

(b) Compact Finsler manifolds. When the not necessarily reversible Finsler manifold (M, F') is
compact, we clearly have that rr < 400, thus Theorem 4.1 applies. This particular case is well-known
by Ge and Shen [44], and Ohta and Sturm [73].

(¢) Minkowski spaces. If (M, F') is a Minkowski space, then rp < 400, thus Theorem 4.1 applies.

(d) Randers spaces. Let M be a manifold and we introduce the Finsler metric F' : TM — [0, 00)
defined by

F(x,y) =V 9:(y,y) + Ba(y), (2,y) € TM, (4.7)
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where ¢ is a Riemannian metric on M, 3 is an 1-form on M, and we assume that

1Bllg(2) = V93(Bz, Bz) < 1, Yz € M.

The co-metric g% can be identified as the inverse g, ' of the symmetric positive definite matrix g,.
Clearly, the Randers space (M, F') in (4.7) is reversible if and only if 8 = 0. The canonical measure
on (M, F) is
ntl
dVp(z) = (1= 1Bll5(2)) = dVy(x), (4.8)

where dV(z) denotes the canonical Riemannian volume form of g on M.

A direct computation shows (see [120]) that the polar transform of F' from (4.7) is

[95(c, )7 + (1= [1B112(x)) |l 2(2) — g3 (v, B)
F*(z,a) = \/g . HﬁgHQ(x) J J , (x,a) € T*M. (4.9)

Moreover, the symmetrized Finsler metric and its polar transform are

. 2
Fw.9) = Va9 + B) and Fi(z,0) = \/ lallye) - (DL o)
9
Another direct computation gives that
_ 1+ Bllg(=) _ (1= 1Bl
re(x) = WHZ(J?) and Ilp(z) = (W) , v e M. (4.11)

According to (4.11), we observe that rp = sup,c,, 77 (z) can be either finite of infinite, depending on
the subtle structure of the Randers space.

For instance, if S = 0, then rr < 400 and Theorem 4.1 can be applied. Indeed, if (M, F) is a
Randers space with S = 0, Ohta [72] proved that § is a Killing form of constant g-length, i.e., there

exists fp € (0,1) such that ||3||4(x) = By for every x € M. In particular, by (4.11), one has that

2
TR = ifgg < +oo and lp = (L:gg) > 0.

However, there are cases where Randers spaces provide unbounded reversibility constants; see

Theorem 4.2 below which also shows the sharpness of Theorem 4.1.

We consider the usual n-dimensional (n > 2) unit ball B.(0,1) endowed with a Funk-type metric,
see Shen [83]. Namely, for every a € [0, 1], we introduce the function F, : B.(0,1) x R" — R,

VIl = (lzPly? = (z,y)?) (z,y)
Fa(x,y) = 1— ’{E‘Z + CLl — ’x‘Q,

2 € Be(0,1), y € T,B.(0,1) =R".  (4.12)

Hereafter, | - | and (-,-) denote the n-dimensional Euclidean norm and inner product, respectively;
moreover, let dm, = dVE, be the volume element. Usual reasonings from Finsler geometry show that
(Be(0,1), F,) is a Randers space. Moreover, for a = 0, the pair (B, (0, 1), Fy) reduces to the well-known

Riemannian Klein model, while for a = 1, the object (B(0, 1), F1) is the usual Finslerian Funk model.
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Theorem 4.2. (Kristdly and Rudas [120]) If a € [0,1], the following statements are equivalent:
(i) Wol’z(Be(O, 1), Fa,my) is a vector space over R;
(ii) 7F, < +o0;
(iii) a € [0,1).

Proof. On M = B.(0,1) the metric F, in (4.12) follows from the Klein metric gx and 1-form S,

where \/
VP = (zPlyl? = (2, 9)?) _ T
(gK)Z(y7y) - 1_ ’1"2 ) Bz = al — |.%"2
It is clear that 5
(gK)Z] = i Ti%s Z)j S {17 ...,’I’l},

T—lz? (1= [af?)?

and g% = (gx)~! where the elements of the matrix gx are

gt = (1= 2) (05 — wszy), 1,5 € {1}

18]l () = \/ 97 (BL, B2) = alz| < 1. (4.13)

Therefore, by (4.11) and (4.13), the reversibility constant associated with F, on B.(0,1) is

Consequently,

I+a
l+ae| | 74 if a€l0,1),

rF, = sup rp(x)= sup 1—alz|
— a|T
2€B(0,1) |z <1 +o0o, if a=1.

Accordingly, (ii) and (iii) are equivalent. The implication (ii)=-(i) follows by Theorem 3.10.

It remains to prove the implication (i)=-(iii). Due to (4.8), we have

n+l
dVFa(x) = (1 - CLQ"Q:‘Q) : dVgK(x>v (4'14)
where the Klein volume form is )
AV, (z) = ———~dx.
MO

The polar transform of F, is

V(= [2A) A - a2y — (1 - a?) (1 — [2[){z,9)? — a(l — |z*){z,y)
1 —a?|z|?

F(z.y) = . (415)

It is clear that F;* = F, and TEr =Tp,.

By assumption, we know that

Wy ?(Be(0,1)) := Wy (Be(0,1), Fay ma)

is a vector space over R; by contradiction, we also assume that one may have a = 1. In this case, Fj,
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is precisely the Funk metric

_ VP = (2Pl = (@y)?) | (oy)

i (x,y) = , T € Be(0,1), y € R".
1(35 y) 1 |l“2 + 1_ |..’L“2 T 6( ) Y
Note that the metric F; can be obtained by ’a: + %’ = 1, while the distance function associated
with F} is
— o2 — 2|2 — 2) _ _
dp (21, 32) = In Ve = 222 = (21 2[aa]? — (21, 22)%) — (21,22 9«“1>7 1,05 € B.0,1),

Ve — @o? = (Jz1P|aa]? — (w1, 22)?) — (x2, 22 — 21)

see Shen [83, p. 141 and p. 4]. In particular, dp, (0,2) = —In(1 — |z|), = € B¢(0,1). On one hand, by

(1.15) or direct computation via (4.15), we have that
Fi(xz,Ddp, (0,2)) =1, x #0. (4.16)

On the other hand, another direct computation and (4.15) shows that

1+ |z

Fl*(xv _DdFl(OaJ:)) = 1— |ZE‘7

z #0. (4.17)

Let u: B.(0,1) — R be defined by

dp, (0,z)

u(x) = —y/1—|z|=—€e " 2
It is clear that u € VVli’f(Be(O, 1)). Since dVp, (x) = dz, see (4.14), we have that

Wn,

w2 (2)dVr () = .
/Be(o’l) )V (2) = 2

B dFl (0,x)

Therefore, by using the identity Du(z) = e~ 2 Ddp (0,z), equality (4.16) yields that

1 w
C, = / F(z, Du(x Qdex:/ 1—|z))de = ——.
1 &wm[1( (@))]" VR (z) = 5 &wm( ) n+1)
Thus, ||ull%, = %, sou € WOLQ’I(Be(O, 1)).
However, relation (4.17) implies that
. 1 1+ |z])?
G o= [ b P =g [ G e
B.(0,1) Be(0,1) 2]

ie,—u¢ Wol’2(Be(0, 1), F1,my), contradicting the vector space structure of the set Wol’Z’l(Be(O, 1)) =
Wo?(Be(0,1), Fy, my). O
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Remark 4.1. Let a € [0,1). For every € B(0,1), one has 0 < 1 — a? < 1 — a?|z|> < 1; thus, the

volume forms dV, (x) and dVj, (z) generate equivalent measures. Moreover, one also has that

1

méﬁ((y,y) < [Fj(%y)}Q < 1- a)QQ%(yay)v z € Be(0,1), y € R™. (4.18)
Consequently,
(1-a2)"F .
HiaHUHH;K < llullr, = g llullmy, v € G5°(Be(0,1)).

In particular, the topologies generated by (Wol’2’a(Be(O, D), - lr,) and (Hy, (Be(0,1)),]| - HH;K) are
equivalent whenever a € [0, 1). Moreover, a result of Federer and Fleming [40] for the Klein ball model
(Be(0,1), Fy) states that

/‘ u%mdnK@>sf2/’ g5 (Du(z), Du(z)) AV, (2), YCP(Be(0,1)).  (4.19)
Be(0,1) (n =12 Jp.01

Therefore, the norm || - || HY, and the ’gradient’ norm over the Klein metric model given by u +—
1

2

|lu|lx = (/ 95 (Du(z), Du(x))dVy, (1:)) are also equivalent, i.e.,
(0,1

1
4 2
e < g, < (14 o) Ml (420

Remark 4.2. The space W0172’1(Be(0, 1)) is a closed convex cone in L}(B.(0, 1)), where L5(B.(0,1))

denotes the usual class of measurable functions u : B¢(0,1) — R such that

wm=</
Be(0

whenever 1 < p < co. Ljj will be denoted in the usual way by LP.

P

|u(x)[PdVF, (l‘)) < 00,
1)

)

4.2 Sublinear problems on the Funk ball

Consider the model problem

—Ap,u(zr) = As(x)h(u(z)) in B(0,1),
(Px)

u(x) = 0, if x| — 1,

where a € [0,1), F, is the Funk-type metric (4.12), A > 0 is a parameter, k € L'(B.(0,1)) N
L>°(B.(0,1)) and h : [0,00) — R is a continuous function which fulfills the properties:
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(h1) h(s) =o(s) as s — 0" and s — oo;
(h2) H(sg) > 0 for some so > 0, where H(s) = [; h(t)dt.

Note that h(s) = o(s) as s — oo implies the sublinearity of h at infinity. Furthermore, due to both
(h1) and (h2), the number ¢ = maxssg @ is well-defined and positive. Since h(0) = 0, we can
extend h as h(s) = 0 for every s < 0.

Theorem 4.3. (Kristdly and Rudas, [120]) Let a € [0, 1) be fized, k € L' (B.(0,1))NL>(B.(0,1))\{0}
be a radially symmetric nonnegative function and a continuous function h : [0,00) — R verifying (hl)
and (h2). Then, we have:

1 (n-1)2(1-a?)"F

(i) (Py) has only the zero solution whenever 0 < \ < cngFJHLOOW;

(ii) there exists X > 0 such that (Py) has at least two distinct non-zero, nonnegative, radially sym-

metric weak solutions whenever X > \.

Proof. First of all, by (1.16), an element u € Wol’2’a(Be(O, 1)) is a weak solution of problem (P,) if
u(z) — 0 as |z| — 1 and

/ Do(V 5, u)dVi, () = A / k(@) h(u(@))o(2)dVi, (z), Yo € C(Bu(0,1)).  (4.21)
Be(O,l) Be(O,l)

(i) Let uw € Wol’z’a(Be(O, 1)) be a weak solution to (Py). By density reasons, in (4.21) we may use
v = u as a test-function, obtaining by means of relations (1.11), (4.14), (4.19) and (4.18) that

/ (F2 (2, Du(a)? AV, (z) = / Du(V p, u)dVi, () = A k(@) h(u())ulz) AV, (2)
B:(0,1) B.(0,1) Be(0,1)
< Acullall / W (2)dV,y ()
Be((),l)
4)\Ch|!f€HL°°/ .
< — Du(x), Du(x))dVy,. (
< T [ D), D)V )
4 = (1 2
< DeltlielUaP [ (5, Due) avi (o).
(n—1)2(1—a?)2 JBc(0,1)
: el (n=1)2(1—a)"E .
Consequently, if 0 < X < ¢, H/<;HLOQW, u is necessarily 0.

(ii) The proof is divided into several steps.

STep 1. Consider (HglK(Be(O,l)), - HHglK) the usual Riemannian Sobolev space defined on
(Be(0,1), Fy), see Hebey [52]. We observe that the topologies generated by the Sobolev spaces
(W *(Be(0,1), Fayma), || - ||7,) and (HL, (Be(0,1)),] - I3, ) are equivalent whenever a € [0,1). Let
I : Hy, (Be(0,1)) = R be the energy functional associated with problem (Py), i.e.,

Ta(w) = HE(u) — NH(w),
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where

= *(z, Du(x))]? dm,(z) an u) = k(z)H (u(z))dmg(x).
5<u>.—/36(071)[Fa<  Du(z))]? dmg(z) and H(u) /Be(m) () H (u(z))dm, (2)

Due to (hl), the energy Jy is well-defined and of class C'. Furthermore, by relation (1.12), one has
that

Ti(u)(v) = / [Do(V g, u) (@) = Ar(z)h(u(@))v(z)] dmg(z).

B.(0,1)

Accordingly, J; (u) = 0 holds if and only if u is a weak solution to problem (Py).

STEP 2. In spite of the fact that H, _(B.(0,1)) is embedded into LP(B.(0,1)), p € [2,2*), see

Hebey [52], the embedding is not compact. To recover the compactness, we consider the subspace
H,.(B:(0,1)) = {u € H;K(Be(O, 1) u(x) = u(|x|)}

of radially symmetric functions in H, glK (Be(0,1)). Using a Strauss-type inequality, the embedding
H,(B.(0,1)) < LP(B.(0,1)) is compact for every p € (2,2*). Moreover, for every u € H,(B.(0,1)), a
Strauss-type radial estimate gives that u(z) — 0 as |z| — 1.

Consider the action of the orthogonal group O(n) on the Sobolev space Hj (B.(0,1)) defined by
(r*u)(z) =u(r"'x), u€ H,, (B(0,1)), 7 € O(n), x € B(0,1). (4.22)

We observe that the fixed point set of O(n) on HglK (Bc(0,1)) is exactly the subspace H,(B(0,1)) of

the radially symmetric functions in Hj _(B.(0,1)), see §1.2.1. Furthermore, F; is O(n)-invariant, i.e.,
F;(tx,my) = F,;(z,y), V7T € O(n), = € B:(0,1), y € R". (4.23)

Accordingly, since the chain rule gives D(7 * u)(z) = (77!)!Du(r~'2) = 7Du(r~'x), we have that

Elrru) = /B oy [FiE DL @) dm o)

= / [Fy(x, TDu(T_lx))]2 dmg(z) [change 771z = £]
.(0,1)
= / [F (12, 7Du(2))]? dmg(72) [see (4.23) and dm,(72) = dmg(z)]
B:(0,1)
= [ EeDu) dma (2
B:(0,1)
= &(u),

for every 7 € O(n) and u € H, _(B.(0,1)), which means that £ is O(n)-invariant. A similar argument
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shows that A is also O(n)-invariant and the group O(n) acts isometrically on H} (B.(0,1)), i.e

H(T*u) = H(u),
(ru) ) vr € O(n), u € H, (B.(0,1)).

7= ullay = llullay .

Using these properties, we have that the energy functional 7y is O(n)-invariant. Thus, by the smooth
principle of symmetric criticality of Palais (see Theorem 1.6) if follows that the critical points of
R = IAlH,(B.(0,1)) are also critical points of J). Accordingly, in order to find radially symmetric
weak solutions to problem (P,), it is sufficient to guarantee critical points for Ry. Let & and H, be
the restriction of £ and H to H,(B.(0, 1)), respectively.

STEP 3. We assert that

. C) (4.24)
weH, (B (0,1)) IIullHl u€H,(Be(0,1)) IIUII
lell g, —0 lellpry =00
Due to (hl), for every € > 0 there exists J. € (0,1) such that
0 < |h(s)] < |s|, V|s| < dc, |s| >t (4.25)

< | <
[[#ll oo

Fix p € (2,2%); clearly, the function s — z,(f)l is bounded on [§., 5 !]. Therefore, for some m. > 0,

one has that
|s| + me|s|P~L, Vs eR. (4.26)

g
< [n(s)| <
Tl

Thus, for every u € H,(B(0,1)), it yields that
0<[Hr(u)] < / k()| H (u(x))|dVE, (z)
Be(0,1)

<)oy [ | ¥t
/36(0,1) [EUQ(QC) + %”(x)’u(x) p} AV, ()

9 m
Sl + el Splulyy

IA

where S, > 0 is the best embedding constant in H,(B.(0,1)) < LP(B.(0,1)). Accordingly, for every
u € Hy(Be(0,1)) \ {0}, one obtains that

[ ()

< € s e Sl

[l 2
IK

Since p > 2 and € > 0 is arbitrarily small, the first limit in (4.24) follows once ||u||H;K — 0 in
H,(B.(0,1)).
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Let ¢ € (1,2) be fixed. Since h € C(R,R), there also exists a number M, > 0 such that
h
0< ‘Sq(‘_?’ < M., Vs € [6.,6.],
where 0. € (0,1) is from (4.25). The latter relation together with (4.25) give the inequality
0 < |h(s)| € ———|s| + Mc|s|7"L, Vs € R
1]l Lo
Similarly as above, it yields that
Ella 12 M- q
0] < Sy -+ Cll e Tl (a.27)

For every u € H,(B.(0,1)) \ {0}, we have that

_ ()

= Nl

e M. q—2
< 3 + YHKHLﬁ ||UHH(}K

Since € > 0 is arbitrary and ¢ € (1,2), taking the limit HuHHglK — 00 in Hy(B.(0,1)), we obtain the

second relation in (4.24).

STEP 4. We are going to prove that the functional R, is bounded from below, coercive, and
satisfies the (PS)-condition on H,(B(0,1)) for every A > 0. At first, by (4.27), it follows that

Ra(u) = %Er(u)f)\’}-lr(u)

(1—a2) 2 9 € 9 Ma .
> o~ 2 )\ e .
2 gy o Ml = Ag iy, = AZEIRN 2 lully,

n+1

Since || - HHglK and || - || x are equivalent norms (see (4.20)) and r < 2, by choosing ¢ > 0 sufficiently

small, it follows that Ry is bounded from below and coercive, i.e., Ry(u) — 400 as HuHHle — +00.

Now, let {u}r be a sequence in H, (B (0, 1)) such that {R(ux)}x is bounded and || R} (ug)||« — 0.
Since R is coercive, the sequence {uy} is bounded in H,(B¢(0,1)). Therefore, up to a subsequence,
we may suppose that up — u weakly in H,(B.(0,1)) and ux — u strongly in LP(B.(0,1)) for some
u € Hy(B(0,1)) and p € (2,2%). In particular, we have that

RA(w)(u — ug) — 0 and R (ug)(u — ug) — 0 as k — oo. (4.28)

A direct computation gives that

/ (Du(x) — Dup(2))(V r,u(x) = Vi, up(x))dVE, (z)
B.(0,1)

= RA\(u)(u — ug) — R (ug)(u —ug) + )\/B o k(z)[h(ug) — h(u)](ug — u)dVE, (x).
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By (4.28), the first two terms tend to zero. Moreover, due to (4.26), it follows that

To— / (@) h(ug) — h(w)| - [k — u|dVi, (2)
Be([),l)
< /B o (e(Jug| + [u]) + me||K]| Lo (JunlP ™" + [wP)) [ug, — uldVi, (z)
< ellukllmy, + llullgy Illur —ullgy + me |kl oo (lunlB + Nl )l — ul 1o

Since € > 0 is arbitrary small and uy — u strongly in LP(B.(0, 1)), the last expression tends to zero

Moreover, one has the inequality

Er(u—ug) = / [Fy (Du(x) — Duy(«)))* dVr, (x)
B.(0,1)

1+a)?

(152) [ (Dule) ~ Duro) (V) = Vo))V o).
—a B.(0,1)

Therefore, & (u—uy) — 0 as k — oo, which means in particular (see Remark 4.1) that {uy}, converges

strongly to u in H,(Be(0,1)).

By the assumption on k and using (h2), one can find a truncation function wuy €

STEP 5.
H,(B.(0,1)) \ {0} such that #,(ug) > 0. Accordingly, the number
oY . Er(u)
A= f
ueHTl(%e(O,l)) 2H, (u)
Hr(u)>0

is well-defined. By relation (4.24), we obtain that 0 < X < oo By fixing A > )\, there exists @y €

>0and A > Luj) > A Therefore,

H,(B.(0,1)) with the property #,(uy) . ()
r{UA

1
1 — . < " 1 B - N |
5\ HT(EI:{OJ))RA < Ra(uy) 25r(u>\) NH, (i) < 0

By Step 4, the functional R is bounded from below and satisfies the (P.S)-condition. Thus, ci is a
critical value of the functional R (see Theorem 1.5), i.e., there exists u} € H,(B.(0,1)) such that

Ra(u}) = ¢} <0 and R) (u}) = 0. Clearly, one has that u} # 0 since R(0) = 0.
Let A > X be fixed. Simple estimates give that
n+1
(1-a*) = my
— A—= [l Sy |lul (4.29)

1
Raw) = 58 () = Nt (w) 2 5 ol [

where p € (2,2*) and my := m. > 0. Consider the number

1
n+1

i, (1 - a?)™ 7
Py = min ,
2\ BNl SEma(l + a1+ o)
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By (4.29) and Step 5 it follows that

inf  Ry(u) =ny > 0="Rx(0) > Rx(&y),

u =
lull gy, =ex

i.e., Ry provides the mountain pass geometry (see Theorem 1.7). Due to Step 4, one may apply
the Mountain Pass Theorem, resulting the existence of u3 € H,(B.(0,1)) such that R} (u3) = 0 and
Ra(u3) = 3, where the number ¢3 is given by ¢5 = inf,er, maxe(o1] Ra(v(t)), with I'g = {y €
C([0,1]; H-(Be(0,1))) : v(0) = 0, v(1) = uy}. Note that

s> inf  Ry(u) > 0.
lellzry  =px

Therefore, 0 # u?\ %+ u}\ Since by extension h(s) = 0 for every s < 0, both elements u}\ and ui are

nonnegative, which concludes our proof. U

4.3 Unipolar Poisson equations on Finsler-Hadamard manifolds

In this section we establish some qualitative results concerning the model unipolar Poisson problem

Lhu=1 in Q,
(P&)
u =0 on 0f),

where 1 € R is a parameter, €2 is an open bounded domain in an n-dimensional (n > 3), not necessarily
reversible Finsler-Hadamard manifold (M, F') endowed with its usual canonical measure m, xy € 2 is
fixed and

Lhu=Ap(—u) , ue WyHQ, F,m),

U
J— Mi

d% (17(), .CU)
is the singular Finsler-Laplace operator.

At first, we need some preparatory results. We recall the notation p := ”T_Q from Section 3.3.

Lemma 4.1. Let (M, F) be an n-dimensional (n > 3) Finsler-Hadamard manifold with S = 0 and
lp >0, and let Q C M be an open domain. If £%u < U}v in Q and u <wv on I, then u < v a.e. in
Q whenever p € [0, lprp21i%).

Proof. Assume that Q. = {z € Q: u(z) > v(z)} has a positive m-measure. Multiplying Lhu < Lv
by (u — v)4, relation (1.16) gives that

/(D(—)—D(— WV (=) — Ve(—u))dm(z) — / Md <0
o, v u F(—v r(—u))dm(z) — u m(z) < 0.

Q+ d%‘(:B()? 3;')
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By (1.13) and the mean value theorem, the definition of I yields that

(D(—v) = D(=w)(Vp(—v) = V(=) > e [F*(2, D(~v) = D(=u))? = LpF*(z, D(u — v))]”
lpr? [F* (2, =D (u — v)),

V

for every x € (1. Combining these relations with Theorem 3.9, it follows that

(zFr;2 . /%) /Q+ [F* (2, —D(u — v)(z))]* dm(z) < 0,

which is a contradiction. O

Lemma 4.2. Let (M, F) be an n-dimensional (n > 3) Finsler-Hadamard manifold with S = 0 and
lp > 0, and let Q@ C M be an open domain and xog € ) be a fized point. Then the functional
K, : Wy (Q, F,m) — R defined by

u®(x)

= *(z, Du(z))]* dm(z) — ————dm(x
Ko = [ 1 DuPdm() [ 7 sam(a)

is positive unless u = 0 and strictly convexr whenever 0 < p < FT‘EQ,ZZQ.

Proof. Let 0 < pu < lpr;2ﬁ2 and z¢ € ) be arbitrarily fixed. By (4.3), one has that 7% < l;l < 4o00.
The positivity of K, follows by Theorem 3.9. Let 0 <t < 1 and u,v € Wol’2(ﬂ, F,m) be fixed where
u # v. Then, by using inequalities (4.2) and

F*(z,D(v —u)(z)) 2 15" F*(z, =D (v — u)(z)), = € Q,

and by applying Theorem 3.9, one has that

K, (bu+(1—t)) — /Q[F*(az,tDu(x) + (1= ) Do) dm(z) ‘“/Q( oy dm()
<t [ I D) amG@) + (- 1) [ 1, Dot P amz)
Lt - 1) / [F* (@ Dlo = w)(@)dma) ~ 1 | (t“j%&o‘g Y dm(z)
= tK — 1)K, (v)
v—Uu 2
—t(1 —t)l /Q<F*(:L‘,Dvu)(x))] — plpt M) dm(z)
< Ky (w) — Ky (v)
Uv—Uu 2
—t(1—t lFTEQ <F* x,—D|v — u|(z ))]2 - ul;lr%é%(xo l)> dm(z)
< Ky () + (1=K, (

which concludes the proof. U
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We introduce the singular energy functional associated with the operator L4 on W01’2(9, F,m),

Eu(u) = (Lpu)(u).
According to (1.16), we have that

= *(z, —Du(z))]* dm(z) — ﬂmx— —u
) = [ 1o ~Dua)]dmie) e | T () = K ()

Theorem 4.4. (Farkas, Kristaly and Varga [107]) Let (M, F') be an n-dimensional (n > 3) Finsler-
Hadamard manifold with S =0 and lp > 0, and let  C M be an open bounded domain and xy € € be
a fized point. Then problem (P§) has a unique, nonnegative weak solution for every p € [0, lFT;2ﬁ2).

Proof. Let u € [0,1 Fr52ﬁ2) be fixed and consider the energy functional associated with problem (P§),
ie.,

Folu) = %/cu(—u) - /Qu(x)dm(:v), w e Wr(Q, Fm).

It is clear that F, € C’l(I/VO1 ’Q(Q, F,m),R), and its critical points are precisely the weak solutions to
problem (P§). Let R > 0 be such that Q C B} (zg, R). According to Wu and Xin [96, Theorem 7.3],

we have that
" 2
M(Q) = inf /Q[F o DU e

uEWOLQ(Q,F,m)\{O} /uQ(x)dm(x) o 4R2T% .
Q

Consequently, for every u € W& ’Z(Q, F,m), one obtains that

* A1(Q
[ 17 Dute) P dm(a) = 24l
Since ||-||r and ||-||, are equivalent (see (4.5)), we conclude that F,, is bounded from below and coercive
on the reflexive Banach space (Wol’Q(Q, F,m), |- ||r,), i-e., Fu(u) = +oo whenever ||u||r, = +00. Due
to Theorem 1.4 and Remark 1.2, F,, has a global minimum point u, € VVO1 ’2((2, F,m). Moreover, due
to Lemma 4.2, F,, is strictly convex on W&’Q(Q, F,m), thus the minimum point v, € Wol’z(Q, F,m) of
F . is unique. Lemma 4.1 implies that u, > 0. O

In the sequel, we establish some fine properties of the solution to the Poisson problem (Pf)). We

need again further preparatory results.

Lemma 4.3. Let (M, F) be an n-dimensional (n > 3) Finsler-Hadamard manifold, f € C?(0,00) be

a non-increasing function and xo € M. Then

f(dr(zo,7))

E%(f(dp(xo,l‘))) = _f”(dF('TO’ .T)) - f/(dF(‘TO’ li)) ’ AFdF(x()v‘r) —H 2 ( )
Vo o, T

, ¢ € M\ {xo}.
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Proof. Since f’ <0, the claim follows from basic properties of the Legendre transform. Namely,

Ap(=fldr(zo,x))) = div(Ve(=f(dr(zo,x)))) = div(J*(z, D(—f(dr(z0,2))))
= div(J*(z, — f'(dp(z0, 7)) Ddp(x0,2))) = div(—f (dp(x0, 7))V pdp(x0, 7))
= *f”(dF(xOvm)) - f/(dp(l‘o,l‘)) : AFdF('TOa .T),

which concludes the proof. O

For fixed u € [0, 1%), ¢ < 0 and p > 0, we introduce the ordinary differential equation

£+ (n = 1) (r)ete(r) + p L% +1 =0, r € (0, p],

p (Q¢,)
p) =0, /0 f(r)?r"ldr < oo

Lemma 4.4. (Qf,) has a unique nonnegative non-increasing solution of class C*(0, p).

Proof. Although the statement is expected to hold (due to the boundary conditions), we provide
its proof which requires elements from Riemannian geometry. We fix p € [0, %), ¢ < 0 and p > 0.
Consider the Riemannian space form (M, g.) with constant sectional curvature ¢ < 0, i.e., (M,g.)
is isometric to the Euclidean space when ¢ = 0, or (M, g.) is isometric to the hyperbolic space with
sectional curvature ¢ < 0. Let g € M be fixed. Since (M, g.) verifies the assumptions of Theorem
4.4, the problem

—Agu— ’MW =1 in By (zo,p), (RE)
u=70 on 0By (zo,p),

has a unique nonnegative solution ug which is nothing but the unique global minimum point of the
energy functional F, : Wol’Z(Bgc (zo,p), ge, m) — R defined by

1 1 u?(x)
fu—/ DuxQdma?—/ dmm—/ w(z)dm(z).
w1 =5 Bgcuo,p)’ (g dme) =5 Bye(wo.p) B (%0, ) ) By, (20.9) (r)dm()

In this particular case, dm denotes the canonical Riemannian volume form on (M, g.).

Let u§ : By.(z0,p) — [0,00) be the non-increasing symmetric rearrangement of uy in (M, g.); see
Section 2.3 for a similar notion. The Pdélya-Szegé and Hardy-Littlewood inequalities (see Baersntein
[9] and Lemma 2.2) imply that

/ |Dug(z) 2. dm(x) > / Dy ()2 dm(x),
Bgc (Io,p) Bgc (I‘va)

and

RO, ww?
/Bgc(QJO,P) dgc(.%'(],.l‘)d ( )S/Bgc(zoﬂp d (xo, )d ( ),
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respectively. Moreover, by the Cavalieri principle, we also have that

ugp(x)dm(z) = up(x)dm(z).
/B (z0,p) ol)dm(z) /Bgc(wo,p) o(e)dm(z)

Therefore, we obtain that F,(ug) > F,(uj). Consequently, by the uniqueness of the global min-

ge

imizer of F,, we have that ug = wug; thus, its form is wo(z) = f(t), where ¢t = dy.(zo,z) and
f :(0,p] — R is a nonnegative non-increasing function. Clearly, f(p) = 0 since up(z) = 0 when-

ever dg. (zo,x) = p. Moreover, since uy = uj € W& ’Q(Bgc (0, p), ge, m), a suitable change of variables
p

gives that / [f’(r)]Qr"_ldr < 00. By Lemma 4.3 and Theorem 1.2, it follows that the first part of
0

(RE,) can be transformed into the first part of (Q~,); in particular, problem (9% ,) has a nonnegative
non-increasing solution. Standard regularity theory implies that f € C*°(0, p), see Evans [39, p. 334].
Finally, if we assume that (QF,) has two distinct nonnegative non-increasing solutions fi and fa, then
both functions u;(z) = fi(dg. (0, 2)) (i € {1,2}) verify (RE,), which are distinct global minima of the

functional F,, a contradiction. O

Remark 4.3. Usually, we are not able to solve explicitly the ODE (QF ;). However, in some particular

cases we have its solution; namely,

—fN P
M-i-12n <p2 <%> - TQ) ) if c= 0,
p s
Tppe(r) = / sinh(stc)_"+1/ sinh(ty/—c)" " dtds, if ¢<0andp=0,
T 0

W(\/%—u,p) ﬁiiiii;j\/ﬁ%g; W(,/ u,r), if c:—l,n:?)andue[(),%),

where W : (0, 3] x (0,00) — R is given by

2v
(25 — 4v2) sin(vm)I'(v) sinh(r) %

3 5 5 3 3 9
X{( —2v) 3F4<[ Z I;4+;]§|:2,1+V72+V74+;:|,T2>><

x (2" ?sin(vm) K, fr’) + 27w L, (r)) T —

r
3 ) ) 3 3 9
—1/(5—!—21/)2”_13174([4—12/,4—;,4—;] ; [ 1—u,—l/,—y] ,7"2) X

W(v,r) =

x T'(v)? sin(mr)ly(r)rg”}.

Here, I, and K, are the modified Bessel functions of the first and second kinds of order v, respectively,

while 3Fy denotes the generalized hypergeometric function.

Theorem 4.5. (Farkas, Kristdly and Varga [107]) Let (M, F') be an n-dimensional (n > 3) Finsler-
Hadamard manifold with S = 0 and lp > 0, and let Q@ C M be an open bounded domain. Let
w € 0, ler ) and xg € Q be fizred. If c; < K < o <0, then the unique weak solution u to problem
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(P§) verifies the inequalities
Op,p1,c1 (dF(.%’(],J))) < U(l’) < Uu,pz,cz(dF(x(]:w)) fOT a.e. T € B;(x()?pl)?

where p; = sup{p > 0: B} (xo,p) C N} and p2 = inf{p > 0:Q C B} (z,p)}-
In particular, if K = ¢ <0 and Q = Bf.(xo, p) for some p > 0, then o, (dr(zo,")) is the unique

weak solution to problem (77]’;+ ), being also a pointwise solution in Bf(zo, p) \ {zo}-

F (z0,p)

Proof. Consider u to be the unique solution to the Poisson problem (Pg). We will state that

L0 ppres (A (20,2))) < 1= Lin(u) in Bj(zo,p),

Op,p1,c1 (dF(anx)) =0< U(ZE) on 3B;(:L'0,p1),

where py :=sup{p > 0: B} (z0,p) C O}.
Firstly, since ¢; < K, according to Theorem 1.2/(b) and to the fact that o, ,, ¢, is non-increasing,
by (QF, p,) it follows that

Op,p1,c1 (dF (:L‘Oa $))
d2(zo, )
Tppr,er (AF (20, 2))
d%‘ (.%'0, .1‘)

1 = =000 (dr(z0,2)) = (n =)oy, ,, . (dr (20, 2))cte, (dp (20, 7)) — p

> =0y .0 ([dF(20,2)) = 0, 1 o (dp (20, ) Apdp(zo, ) — pt

= Lp(oupr.e(dr(zo, v))),

for every x € Bf: (20, p1) \ {20}
Secondly, since u is nonnegative in 2, we have that 0 = 0, ,, ¢, (dr(z0,2)) < u(z) on B} (20, p1).

We can apply the comparison principle (Lemma 4.1), obtaining the inequality
Oppr,ei (dr(zo, ) < u(z) for ae. x € B;(a:g, p1)-

In a similar way, by using Theorem 1.2/(a) and K < ¢y, we prove that

1= L% (u) < L%(Oup e (dp(20,2))) In €,
w(x) =0 < 0ppyeo (AR (0, 2)) on 0f,
where py = inf{p > 0: Q C Bf (o, p)}. Therefore, by Lemma 4.1 we have that
w(x) < Oppoeo(dp(zo, x)) for ae. x € Q.

In the particular case when K = ¢ < 0 and Q) = B;(xo,p) for some p > 0, then p; = p2 = p,
and the aforementioned arguments imply that w(x) = 0, c(dr(20,2)) is the unique (weak) solution

to problem (P4

. . . . . . +
Bt (onp)) which is also a pointwise solution in B (zo, p) \ {zo}. O
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A simple consequence of Theorem 4.5 is the following corollary.

Corollary 4.1. Consider the Minkowski space (M, F) = (R™, || - ||) and let u € [0,1pr;2fi%), zo € R”

and p > 0 be fized. Then u = o, p0(||- —z0|]) € C®(B} (20, p) \ {z0}) is the unique pointwise solution
u ot

to problem (PB;(IO”O)) in By (xo,p) \ {zo}-

Proof. (M,F) = (R", ] -||) being a Minkowski space, it is a Finsler-Hadamard manifold with S = 0,
K =0 and [r > 0. It remains to apply Theorem 4.5. O

Remark 4.4. (i) In addition to the conclusions of Corollary 4.1, one can see that:
(a) oup0 € CHBF (20, p)) if and only if 4 = 0; and
(b) oup0 € C*(Bf(wo,p)) if and only if = 0 and F = || - || is Euclidean.

(ii) When (M, F') = (R™, || - ||) is a reversible Minkowski space and p = 0, Corollary 4.1 reduces to
Theorem 2.1 from Ferone and Kawohl [42].

We establish an estimate for the solution of the singular Poisson equation on backward geodesic
balls on Minkowski spaces. To do this, we assume that Tt p0 is formally extended beyond r;l p by
the same function, its explicit form being given after the problem (9% ,). Although problem (77;_ (@ p))

0,
cannot be solved explicitly in general, the following sharp estimates can be given for its unique solution

by means of the reversibility constant rg.

Proposition 4.1. Consider the Minkowski space (M, F) = (R", ||-||) and let pu € [0,1pr* %), ©o € R™

and p > 0 be fized. If u, , denotes the unique weak solution to problem (77;_( . p)), then
F\Z0;

(@t polllz = 2ol)+ < U p(2) < Tprppolllz = xoll) for a.e. @ € Br(wo, p).

Moreover, the above two bounds coincide if and only if (M, F') is reversible.

Proof. The proof immediately follows by the comparison principle (Lemma 4.1), showing that

Lh(w;, ) =1=LE(w} ) in Bg(zo,p),

m,p Hsp
w, , <0< wi) on 0Bp(zo,p),
where wy, ,(z) := Uu,rglp,o(”x — o)) and wf ,(2) := oprppo(llz — @0l]), respectively. O

The converse of Theorem 4.5 reads as follows.

Theorem 4.6. (Farkas, Kristaly and Varga [107]) Let (M, F') be an n-dimensional (n > 3) Finsler-
Hadamard manifold with S = 0, lp > 0 and K < ¢ < 0. Let p € [O,ZFTI;Qﬁz) and xg € M be fixed.
}’(zo,p)) in Bi(zo,p) \ {zo} for
some p > 0, then the flag curvature K(-;4z04(t)) = ¢ for every t € [0,p) and y € T, M \ {0}, where

If the function o, p(dr(z0,-)) is the unique pointwise solution of (Pg

Vao,y 15 the constant speed geodesic with vz, 4(0) = o and Yz, 4(0) = y.
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Proof. Fix xyp € M and assume that the function u(z) = o, (dr(zo,)) is the unique pointwise
solution to problem (Pj;*(m p)) in B} (20, p) \ {wo} for some p > 0 and p € [0,1prz°[?). By Lemma
F\Z0,

4.3 and from the fact that o, is a solution of (Qf,), one has that pointwisely

Apdp(zg,z) = (n — 1)cte(dp(zo,2)), Vo € B (m0,p) \ {z0}-

It turns out that the latter relation is equivalent to

Apwc(dp(zo,z)) =1, Vx € B;(azo,p) \ {zo},

where . s
we(r) :/ sc_”+1(s)/ st (t)dtds. (4.30)
0 0

The proof proceeds similarly as in Theorem 3.6/(ii), obtaining that

VolF(B;t(aco,p)) — fim VolF(B;S(xo,s))
Ven(p) s—0F VC,n(S)

=1, p>0. (4.31)

According to Theorem 1.1/(a), it yields K(-;¥4,4(t)) = ¢ for every t € [0,p) and y € T, M with
F(z0,y) = 1, where v, 4 is the constant speed geodesic with 7, 4(0) = zo and J4,,4(0) = . O

Remark 4.5. In Theorem 4.6 we stated that the flag curvature is radially constant with respect to the
point xg € M. The latter fact means that flag curvature is constant along every geodesics emanating
from the point xg where the flag-poles are the velocities of the geodesics. However, for general Finsler
manifolds, this statement does not imply that the flag curvature K is fully constant. In the particular
case when (M, F) = (M, g) is a Hadamard manifold (i.e., the flag curvature and sectional curvature
coincide, thus the flag is not relevant), Theorems 4.5-4.6, and the classification of Riemannian space
forms (see do Carmo [31, Theorem 4.1]) give a characterization of the Euclidean and hyperbolic spaces
up to isometries by means of the shape of solutions to the Poisson equation (P4) as stated in the next

corollary.

Corollary 4.2. Let (M, g) be an n-dimensional (n > 3) Hadamard manifold with sectional curvature

bounded above by ¢ < 0. Then the following statements are equivalent:

(i) for some p € [0,2) and xg € M, the function oy, ,c(dg(z0,-)) is the unique pointwise solution
to the Poisson equation (Pg,g(xo p)) in Bg(xo,p) \ {zo} for every p > 0;

(ii) (M, g) is isometric to the n-dimensional space form with curvature c.

We note that no full classification is available for Finslerian space forms (i.e., the flag curvature is
constant). However, the class of Berwald spaces provide a similar result as Corollary 4.2 in the flat

case.

Theorem 4.7. (Farkas, Kristaly and Varga [107]) Let (M, F') be an n-dimensional (n > 3) Finsler-
Hadamard manifold of Berwald type with lp > 0. Then the following statements are equivalent:
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(i) for some pu € [0,lprp*i?) and xg € M, the function o, ,0(dr(zo,)) is the unique pointwise

) in Bf(z0,p) \ {zo} for every p > 0;

solution to the Poisson equation (Png
F

(z0,p)

(ii) (M, F) is isometric to an n-dimensional Minkowski space.

Proof. The implication (ii)=-(i) is trivial, see Corollary 4.1; it remains to prove that (i)=-(ii). By
the proof of Theorem 4.6, we obtain Volp (B} (z,p)) = Von(p) = wyp™ for all z € M and p > 0.
On account of Theorem 1.1, we conclude that K = 0. Note that every Berwald space with K = 0
is necessarily a locally Minkowski space, see Bao, Chern and Shen [11, Section 10.5]. Therefore, the

global volume identity actually implies that (M, F') is isometric to a Minkowski space. U

4.4 Further problems and comments

I) Finiteness of the reversibility constant versus the vector space structure of Sobolev
spaces. According to Theorem 4.1, a highly non-trivial problem is to characterize those non-reversible
Finsler manifolds for which the Sobolev spaces over them has a vector space structure. In fact, we
conjecture that the Sobolev space VVO1 ’2(M ,F,m) on a Finsler manifold (M, F) (with its canonical
volume element m) is a vector space if and only if rp < 4o0.

The latter statement is supported by Theorem 4.2, where we proved that VVO1 ’Q(BE(O, 1), Foymg)
has a vector space structure over R if and only if rp, < 400, where F, is the Funk-type metric. A
similar result is also provided on the Finsler-Poincaré disc, see [107]. Note that both examples belong

to the class of Randers spaces.

IT) Non-smooth critical point theory versus closed convex cones. The case a = 1 (Funk
model) is not well understood in Section 4.2, since the set VVOI’Q’I(Be(O7 1)) = WOI’Q(Be(O, 1), F1,mp) is
not a vector space over R. However, we believe that variational problems can also be treated within this
context by using elements from the theory of non-smooth Szulkin-type [87] critical points involving
the indicator function associated with the closed convex cone W&’Q’l(Be(O, 1)) in L2(B.(0,1)), see
Section 1.2 and Szulkin [117, Section 2|. For simplicity of the presentation, we only considered elliptic
problems involving sublinear terms at infinity. The above variational arguments seem to work also
for elliptic problems involving the Finsler-Laplace operator Ap,, a € [0,1), and for superlinear or

oscillatory nonlinear terms as well, see e.g. [114].
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Chapter 5

Elliptic problems on Riemannian

manifolds

Elliptic problems on Riemannian manifolds have been intensively studied in the last decades. One
of the main motivations was the famous Yamabe problem. Indeed, given an n-dimensional (n > 3)
compact /complete Riemannian manifold (M, g), the Yamabe problem concerns the existence of a
Riemannian metric go conformal to g for which the scalar curvature is constant. It turns out that this
problem can be transformed into an elliptic PDE involving the Laplace-Beltrami operator; namely,
the Yamabe problem is equivalent to finding a positive solution u € C*°(M) to

n—2 _ n—2 o1
D T dm e )

—Agu+
where S := Sy(z) is the scalar curvature on (M, g), and 2* := 2n/(n — 2) is the usual critical Sobolev
exponent, see e.g. Aubin [8] and Hebey [52]. A similar problem to (Y) is the so-called Nirenberg
problem on the sphere S™.

Another class of elliptic problems appears in the case when the right hand side s — s> =1, s > 0 of
(Y) is replaced by some general nonlinear term s — f(s) satisfying certain growth conditions at the
origin and infinity. In particular, such problems arise in mathematical physics, formulated as Klein-
Gordon, Schrodinger or Schrédinger-Maxwell equations on Riemannian manifolds, see e.g. Druet and
Hebey [33], Hebey and Wei [53], Ghimenti and Micheletti [46], Thizy [89], and references therein.

This chapter is devoted to investigate a diversity of elliptic problems on compact/complete Rie-
mannian manifolds, complementing in some aspects the aforementioned works. In particular, the
Riemannian structure, contrary to the Finslerian one, allows us to provide sharp bifurcation phenom-
ena as well as surprising multiplicity results by means of group-theoretical arguments based on Rubik

actions and oscillatory behavior of nonlinear functions.

79



dc_1483 17

80

5.1 Sharp sublinear problems on compact Riemannian manifolds

Consider the class of functions

s—0t S s—0o0 S

where Ry = [0, 00). For every f € F, the numbers

or = mag 2 and op = mag 27 61
are well-defined and positive, where F'(s) := /OS f(t)dt, s > 0.
5.1.1 Sharp bifurcation on compact Riemannian manifolds
Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold and
AL(M) ={a € L®(M) : essinfpya > 0}.
For fixed f € F and a, 8 € A4 (M), we consider the eigenvalue problem
—Agu+ a(x)u = A3(x) f(u) on M, (Py)

where A > 0 is a parameter.

Problem (Py) has been studied in the pure power case, i.e., when f(s) = |s|P~!s, p > 1, see Cotsiolis
and Tliopoulos [25, 26] for M = S? and Vézquez and Véron [91] for general compact Riemannian
manifolds. In the aforementioned papers the authors obtained existence and multiplicity of solutions
for (Py) by means of various variational arguments.

In the sequel, we provide the following sharp bifurcation result.

Theorem 5.1. (Kristély [113]) Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold,
feF and a,f € AL (M). The following statements hold:

(i) for every 0 < A\ < c]?lHB/aHZio(M), problem (Py) has only the trivial solution;

(ii) for every \ > c;1||a/ﬁ|\Loo(M), problem (Py) has at least two distinct non-zero nonnegative

solutions.

Proof. Let f € F and «, 8 € AL (M). Since f(0) = 0, instead of f : [0,00) — [0,00), we consider its
extension to the whole R, by letting f(s) = 0 for every s < 0. If u € H;(M) is a solution of (Py), it
turns to be nonnegative.

First of all, we prove that c¢; > cp. Indeed, let so > 0 be a maximum point of the function

s > 21258), ie., cp = @ Then, sq is a critical point of s — ”;55); a simple calculation shows that
0
f(s0)so = 2F(so). Therefore,
2F
¢f = max f(s) > f(s0) _ (280) .

s>0 s S0 50
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Now, we assume that ¢y = cp =: C. Let 50 := inf{so >0:C= &;0)} Note that 595 > 0 thus
80

we may fix tg € (0,50) arbitrarily. In particular, we have that 2F(ty) < Ct3. On the other hand,
from the definition of cf, one has f(s) < ¢fs = Cs for all s > 0. Combining these facts, we obtain

S0
0 =2F(30) — C33 = (2F (tp) — Ct3) + 2/ [f(s) = Cs]ds < 0, a contradiction. Therefore, ¢y > cp for

to
every f € F.
(i) Assume that u € Hy (M) is a solution to (Py). Multiplying (Py) by the test function u € Hgl(M),
we obtain

Jul2 = /M<<vgu,vgu>+a<x>u2>dwzx /Mﬁ(fc)f(u)dV
)\Hﬁ/aHLw(M)Cf/Moz(a:)uzdvg

< AlB/all oo uyerlulla

IN

Now, if 0 < X < cJ?lHﬁ/aHzio, the above estimate implies u = 0.

(i) For every A >0, let E) : H}(M) — R be the energy functional
E)\(u) = Il(u) - )\Ig(u)
associated with problem (P)), where

I (u) := f||uH2 and Ir(u / B(x x))dVy, u € Hy(M). (5.2)

It is clear that I;,I, € C'(H gl(M ),R), and every critical point of E) is exactly a weak solution to

problem (Py). Furthermore, a similar reasoning as in Theorem 4.3 (Step 3) shows that u 283

inherits the properties of f € F; namely,

m =
u=0 I1(u)  Julla—soo I1(u)

L) _ oy 2O (5.3)

Let us fix sop > 0 such that F(sp) > 0; this choice is possible, due to the fact that f € F. If

us, () = sg is the constant function on M, we have that
I(usy) = 18]l 1 an F(s0) > 0 and 1 (us,) = ||| 155 > 0.
Thus, we may define the number

A= inf L(w)
Iy(w)>0 Io(u)

(5.4)

Now, we can apply Theorem 1.9, by choosing X = H;(M), as well as I; and I from (5.2).
On account of (1.25), it is clear that \* = x~! > 0. Standard functional analysis arguments show
that the functional I; is coercive (see again Theorem 4.3), sequentially weakly lower semicontinuous
which belongs to WH; (M), bounded on each bounded subset of H, ; (M), and its derivative admits a
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continuous inverse on H, 91 (M )* Moreover, Is has a compact derivative on H, gl(M ), due to the fact
that H gl(M ) is compactly embedded into L4(M) for every ¢ € [1,2*). Moreover, I; has a strict global
minimum ug = 0, and [;(0) = I3(0) = 0. The definition of the number 7 (see (1.24)) and (5.3) give
that 7 = 0. Therefore, on account of Theorem 1.9 (with I3 = 0), we have: for every compact interval
[a,b] C (A*, 00) there exists k£ > 0 such that for each A € [a, b], the equation Ef(u) = I7(u)— A5 (u) =0
admits at least three solutions uf € H} (M), i € {1,2,3}, having H} (M )-norms less than . Moreover,
since H gl(M ) contains the (positive) constant functions on M, we have that

I5(u) 2/ B)F(s)dv, 1Bl (ary
X = Ssup > sup M =cr
nw>o 11(u) ~ >0 / a(z)s*dV, lloell L any
M

Consequently, \* = x~! < c}lﬂa/BHLm(M), thus the above statements are valid for every A\ >
C}lHoz/ﬁHLoo(M), which ends the proof. 0

Remark 5.1. (a) An elementary estimate also shows that x < cp||8/a||ge(ar)- In conclusion, we have
a two-sided estimate for A*; namely, we have CE1||5/C¥||Z&0(M) <A <L C;lea//B”Loo(M). In particular,

if 5/a = ¢ for some ¢ > 0, then \* = c}lc_l.

(b) Note that cy and cp may be arbitrary close to each other. Indeed, if a > 1 and f(s) =

min{max{0, s —1},a— 1}, then it is clear that f € F, and one has ¢y = 1 and cp = Z’—H Therefore,

¢y and cp become close to each other once a is sufficiently large.

The general form of Theorem 1.9 gives the possibility to show that (P)) is stable with respect to

small perturbations. Indeed, let us consider the perturbed problem
—Agu+ a(@)u = AB(z) f(u) + py(z)h(u) on M, (Pau)

where v € L>®(M), and h : R — R is subcritical, i.e., for some p € [1,2*) and ¢ > 0 we have
[h(s)] < ¢(1 4 [s[P) for every s € R. One can prove that the function I3 : Hj(M) — R defined by

Iy(u) = /M () H (u(2))dV),

S
belongs to C(Hy(M),R) with compact derivative, where H(s) := / h(t)dt. Thus, we can apply
0

Theorem 1.9 in its full generality, which reads as follows.

Theorem 5.2. (Kristaly [113]) Let f € F and o, B € A (M) be fized. Then for every compact interval
[a,b] C (c}lHa/BHLoo(M),oo) , there exists n > 0 with the following property: for every \ € [a,b], for
every v € L*°(M;R), and for every subcritical function h : R — R, there exists 6 > 0 such that for
every p € [0,4], problem (Py,) has at least two distinct non-zero nonnegative weak solutions whose

norms in Hgl(M) are less than 7.
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5.1.2 Sharp singular elliptic problem of Emden-type
We present an application of Theorem 5.1 to the singular elliptic problem in the form
—Ow = Nz T K (2 |2]) f(|J2| M), @ € RFE {0}, (Sx)

where f € F, K € L>®(S*"*1), m > 1, and A > 0 is a parameter. Here, S?’*! denotes the standard

(2m + 1)-dimensional unit sphere. Our result reads as follows.

Theorem 5.3. (Kristaly [113]) Let f € F and K € A (S*™*1), m > 1 be fived. Then we have:

(i) for every 0 < A < c;1m2||KHZiO(SMH), problem (Sy) has only the trivial solution;

(ii) for every A > cp'm?|| K~} (| oo (s2m-+1y, problem (Sy) has at least two distinct non-zero nonnegative

solutions.

Proof. At first, we prove (ii). The solutions to (S)) are being sought in the particular form
v(@) = v(lz|,z/|z]) = u(r, o) = r~"u(0), (5:5)

where (r,0) € (0,00) x S?™*+1 are the spherical coordinates in R?™*2\ {0}. By means of the transfor-

mation (5.5), the equation (Sy) reduces to
~Agu+mPu = \K(0)f(u), o €SP

where A, denotes the Laplace-Beltrami operator on (S?m+1 g) and g is the canonical metric induced
by R?™+2_ Tt remains to apply Theorem 5.1/(ii) for (M, g) = (S*™*!,g), a = m?, and 5 = K.

Now, we prove (i). On account of Theorem 5.1/(i) and the aforementioned argument, we expect
to have the threshold value c}lmQHK ||Z(}<> (s2m+1) for nonexistence. To see this, let v € DL2(R?™+2) be
a solution to (Sy). We multiply the equation (Sy) by the test function v and integrate it on R?"+2;
by using the sharp Hardy-Poincaré inequality in R*™+2 (see Theorem 3.3), we obtain

/ Voltdr = A / "™ 2K (e/|a]) £ (2| v)vda
R2m+2 R2m+2

< Acf/ 122K (2 |2])02d
R2m+2
< )\Cf||K”Loo(S?m+1)/ |m]_2v2d93
R27n+2
4
<

s 2
el m@omo) G 557 /RQW Vo|2dz

1
_ Acf\|Knym(Szm+l)WAQm+2 Vol2da.

Thus, if 0 < A < c;1m2||KHZiO(Sm+1), we have necessarily that v = 0, which concludes the proof. [
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5.2 Bipolar Schrodinger equations on a hemisphere: multiplicity via

Rubik actions

Motivated by molecular physics and quantum chemistry/cosmology, some efforts have been made
over the last decades to investigate elliptic phenomena involving multiple singularities. Indeed, such
phenomena appear when one tries to describe the behavior of electrons and atomic nuclei in a molecule
within the theory of Born-Oppenheimer approximation or Thomas-Fermi theory, where the particles
can be modeled as certain pairwise distinct singularities/poles 1, ..., z,, € R™, producing their effect
within the form z + |z —x;|~1, i € {1,...,m}, see e.g. Bosi, Dolbeaut and Esteban [16], Felli, Marchini
and Terracini [41], and Lieb [63]. All of the aforementioned works considered the flat/isotropic setting
where no external force is present. Once the ambient space structure is perturbed, for instance by
a magnetic or gravitational field, the above results do not provide a full description of the physical
phenomenon due to the presence of the curvature.

We study a simple model on the n-dimensional open upper hemisphere S = {x = (21, ..., Zp4+1) €
S™ : 241 > 0}, by fixing just two different poles, x1, 22 € S"}. More precisely, we consider the Dirichlet

problem
2

Vgdi  Vgd
g 972 u+ |ufP~?u, in ST

di da

—Agu+C(n, B)u = p ‘

(Psn)
u =0, on OS",

where ¢ is the natural Riemannian structure on the standard unit sphere S" inherited by R"*!,
di(z) = dg(w,z;) for i € {1,2} (as in §3.3.2), p € (2,2*) and pu € [0,7?) are fixed, and C(n, 3) =

w2 — )?
(n—1)(n— Z)W Hereafter, i = 52, while zg = (0, ...,0, 1) denotes the north pole of S"
2

and f := max{dy(xo, 1), dg(x0,z2)}. Before stating the main result of this section, we need a specific

contruction based on group-theoretical arguments.

5.2.1 Rubik actions: a group-theoretical argument

The goal of this subsection is to provide a generic tool to produce symmetrically different functions
belonging to a given Sobolev space by using a suitable splitting of the orthogonal group O(d + 1),
d > 1. To handle this problem, we explore the technique of solving the Rubik cube, described in [115]
and simplified in [101] for the Heisenberg group. Roughly speaking, d+1 corresponds to the number of
total ’sides’ of the cube, while the sides of the cube are certain blocks in the decomposition subgroup
G =0(dy) x ... x O(dy) with dy + ... +dp, =d + 1, d; > 2 for every j € {1,....k}.

To be more precise, let d = 3 or d > 5 be fixed, and for every j € {1,...,t4}, with t; = [%] +
(—1)4*1 — 1, consider the groups

O(G+1)x0(d—2j—1)x0(j +1), ifj#%?t,

O (%) x0 (), if j = 451,
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Note that t4 = 0. It is clear that a particular G;-l does not act transitively on the sphere S¢; in terms of
the Rubik cube, it is not enough to rotate only one side in order to solve it. However, to recover the
transitivity, we shall combine different groups of the type G;l; roughly speaking, in the Rubik cube we
are rotating (a minimal number of) appropriate sides to solve it. We denote by <G§l; G;l> the group
generated by Ggl and G?.

Theorem 5.4. (Kristaly [115]) Let d = 3 or d > 5 be fized and i,j € {1,...,tq} with i # j. Then the
group (GY; G?} acts transitively on S°.

Proof. Without loss of generality, we assume that j > 4. For further use, let 0 = (0,...,0) € R*,
ke {1,..,d+1}. Let us fix n = (n1,12,n3) € S arbitrarily with 7,73 € Rt and 7, € R&21;
clearly, ny disappears from 7 whenever 2j = d — 1. Taking into account the fact that O(j + 1)
acts transitively on S/, there are g]l,gjz € O(j + 1) such that if g; = gjl X Ipa—2j-1 X 9]2- € G;l, then
gim = (0, |m|,m2,|n3],0;). Since j — 1 > i, the transitive action of O(d — 2i — 1) on S¥"%~2 implies
the existence of g} € O(d — 2i — 1) such that g} (0;—;_1,|m],n2,|m3],0j—i—1) = (1,04—2i—2). Therefore,
if g; = Igit1 X gil X Ipi+1 € G? then g;g;n = (0i41,1,04—i—1) € s,

By repeating the same procedure for another element 77 € S¢, there exists g; € G¢ and g; € G;l such
that §ig;7 = (0it1,1,0a—1) € S*. Accordingly, n = g; 'g; 'G:g;7 = g; ':9;7, where g; = g;'Gi € Gi,
which concludes the proof. U

5.2.2 Multiple solutions for bipolar Schrodinger equations on a hemisphere

The main result of this section reads as follows.

Theorem 5.5. (Faraci, Farkas and Kristaly [104]) Let S7. be the open upper hemisphere (n > 3),
S = {1,202} C S be the set of poles, p € (2,2*) and p € [0, 5?) be fized and zg = (0, ...,0,1) be the
north pole. The following statements hold.

(i) Problem (Psn) has infinitely many weak solutions in H}(S%). In addition, if z1 = (a,0,...,0,b)
and xo = (—a,0, ...,0,b) for some a,b € R with a®>+b*> =1 and b > 0, then problem (PSZ&L-) has a

sequence {uy}x, of distinct weak solutions in H,(S'}) of the form

Ug = U <y1, \/y% +o+ y%ayn—i-l) = U <y1, \V1I—vi— y721+1,yn+1> .

(i) Ifn=5o0rn>17, and x1 = (a,0,...,0,b), 22 = (—a,0, ...,0,b) for some a,b € R with a>+b* =1
and b > 0, then there exists at least s, = [g} + (—1)"_1 — 2 sequences of sign-changing weak

solutions to (Psy) in H,(S%) whose elements mutually differ by their symmetries.

Proof. Fix pu € [0, %) arbitrarily. The energy functional & : Hg1 (S%) — R associated with problem
(Pgr}r) is
2 1
u?dVy — / [ulP dV,.
p sy

" / Vydy  Vydy
dy dy

1
E(u) = EHUH(ZJ(n,B) ~ 2 )

It is clear that £ € C'(H}(S"),R) and its critical points are precisely the weak solutions to (Psn ).
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(i) We note that the embedding H, (S"}) < LP(S") is compact for every p € (2,2*), see e.g. Hebey
[52]. By means of Corollary 3.1, one can easily prove that the functional £ has the mountain pass
geometry and is even, i.e., E(—u) = E(u) for every u € H, gl (S%). Accordinly, a simple reasoning shows
that & satisfies the assumptions of the symmetric version of the Mountain Pass Theorem (see Theorem
1.8), thus there exists a sequence of distinct critical points of £ which are weak solutions to problem
(Pgi) in Hgl(Sﬁ)

Let 21 = (a,0,...,0,b) and 29 = (—a,0, ...,0,b) fixed for some a,b € R with a® + b* =1 and b > 0.
We note that in this case § = dy(xo, 1) = dgy(z0,x2) = arccos(b). We shall prove that the energy
functional £ is Go-invariant, where G := idg x O(n — 1) x idg. Hereafter, the action of G on Hg1 (S%)
is given by

(Cou)(z) =u(Ctx), Yuc H;(S’}r),g € Go,x € SYy.

Since ¢ € Gy is an isometry on R™*!, a change of variables easily implies that

1 s 1/
u— —||lu - = u|? dV,
Sl = 5 [, 1 4%

is Gg-invariant. Thus, it remains to deal with the GGp-invariance of the functional

d do |?
u Voti _ Vgt u? dV,.
5 | dn ds
We recall that )
Vodi  Vedo[* 11 (Vydi, Vydy)
d1 d2 d% d% d1d2
and Vgdy(-,y)(x) = —ezf(%ﬂ(ﬁ) for every distinct points x,y € S'}. Spherical calculus shows that

di(z; — x cos(d;))
sin(di) ’

exp, L (z;) = i€ {1,2}, v €8\ {z;}.

Therefore,

-1
exp,  (x; xcos(d;) — x; ) n
Vydy(@) = Vydy(a, 1) = d‘< ) _ Si;(;’) L ie{L2), zeS\{z}).  (5.6)

Let ¢ € Go, i € {1,2} and x € ST \ {x;} be fixed. Since (x; = x; and ( is an isometry for the metric
dg, it follows that

di(Cr) = dy(Cx, 3i) = dyg(C, (i) = dg(, i) = di(),

and by applying (5.6), one has (Vdy(Cx, x1), Vgdy(Cx,22)) = (Vgdg(z, 1), Vedg(x, 22)). Therefore,
the above properties (combined with a trivial change of variables) imply that the energy functional £
is Go-invariant, i.e., £({ ou) = E(u) for every u € Hgl(S’}r) and ¢ € Go.

We can apply the same variational argument as above (see Theorem 1.8) to the functional & =
€| g, (sn)> where
He,(Sh) ={ue H;(SCLF) :(ou=u, V¢ € Go}.
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Accordingly, one can find a sequence {up}p C Hg,(S) of pairwise distinct critical points of &.
Moreover, due to the smooth principle of symmetric criticality of Palais (see Theorem 1.6), the critical
points of & are also critical points of the original energy functional £, thus weak solutions to problem

(Pgi). Since uy are Go-invariant functions, they have the form
wjy = uy, (y1, VY + .+ y%,ynH) = wy, <y1, V1—vi— y2+1,yn+1> , keN.

(ii) Let n =5 or n > 7 be fixed, and denote by s, = [2] + (=1)"~! — 2. (Note that ss = 0.) For
every j € {1,...,s,} we consider

O(+1)x0n—2j-3)x0(+1), if j#23

G =
O (%) x0(*3%), it =g
and _ -
0 0 Ipj+1
0 Ignss 0 | if J#%
T = Ipj+1 0 0

O IRn—l 3

, it j="5".
I na 0
L R 2

Note that 7; ¢ G, TjG?Tj_l = G} and 7']-2 = idgn-1. Let us introduce the group

G:,;;Tj = idg % <G§L,Tj> X idg C O(n+1).

The latter properties show that we have two types of elements in G;{Tj: either of the type é? =
idg x G} x idg or idg x 7;G”} x idg. Following the idea of Bartsch and Willem [13], we introduce the
action of the group G?Jj on the space H, ; (ST) by

~ u(¢ ), if (=cCe CN;;Z,
((®u)(z) = (5.7)
—u(¢F ), i C=FCeqn, \ G,
for every ¢ € é;‘ = idg x G} x idg, 7; = idg X 7; X idg, u € H;(S’}r) and z € S. We define the
subspace
Hap (%)= {uenisy) (ou=u veay,}

of H gl (S%) that consists of all symmetric points with respect to the compact group GZTJ. By (5.7)
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and Theorem 5.4 (applied for d = n — 2) we obtain that for every j # k € {1,2, ..., s, } one has that
Hey (S})NHey  (SY) = {0} (5.8)

In a similar way as above, we can prove that the energy functional £ is GZTj—invariant for every

j €{1,...,sn} (note that & is an even functional), where the group action on Hj(S" ) is given by (5.7).

Therefore, for every j € {1,...,s,} there exists a sequence {u]} C HG?@ (S1) of distinct critical

points of & = &|g,, (s7)- Again by the smooth principle of symmetric criticality (see Theorem 1.6),
JTj

{Ui}k C HG%j (S7) are distinct critical points also for &, thus weak solutions to problem (Psn ). It is

clear that every u?g is sign-changing (see (5.7)) and according to (5.8), elements in different sequences

have mutually different symmetry properties. This concludes the proof. O

5.3 Schrodinger-Maxwell equations on Hadamard manifolds: mul-

tiplicity via oscillation
The Schrédinger-Maxwell system

—%Au—kwuﬂ—eugo:f(a:,u) in R3,
(5.9)

—Ap = 4reu? in R3,

describes the statical behavior of a charged non-relativistic quantum mechanical particle interacting
with the electromagnetic field. More precisely, the unknown terms u : R — R and ¢ : R? — R are
the fields associated with the particle and the electric potential, respectively. Hereafter, the quantities
m, e, w and h are the mass, charge, phase, and Planck’s constant, respectively, while f : R3 x R — R
is a Carathéodory function verifying some growth conditions. In fact, system (5.9) comes from the

evolutionary nonlinear Schrodinger equation by using a Lyapunov-Schmidt reduction.

Motivated by certain physical phenomena, Schrodinger-Maxwell systems has been studied in the
last few years on m-dimensional compact Riemannian manifolds, where 2 < n < 5, see Druet and
Hebey [33], Hebey and Wei [53], Ghimenti and Micheletti [46, 47], and Thizy [89, 90]. More precisely,

in the aforementioned papers various forms of the system

—%Agu—kwu—keugo:f(u) in M,
(5.10)

—Agp + o = dreu? in M,

has been considered, where (M, g) is a compact Riemannian manifold and f has a certain nonlinear

growth. As expected, the compactness of (M, g) played a crucial role in these investigations.

The purpose of the present section is to provide a multiplicity result for the Maxwell-Schrédinger
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system
—Aju+u+eup =az)f(u) in M,
(SM)
—Agp+ o = qu? in M,

whenever (M, g) is a Hadamard manifold and f : [0,00) — R is a continuous function that verifies the

assumptions:

F(s) F(s)

S
(f3) —oo < liminf ——= < limsup —;= = +oc0, where F(s) = / f(t)dt;
s—0 S 5s—0 S 0

(f2) there exists a sequence {sy}; C (0,1) converging to 0 such that f(sx) <0, k € N.

Note that (f§) and (f2) imply an oscillatory behavior of the function f near the origin. Since
(M, g) is not compact, we shall explore certain actions of its group of isometries in order to re-
gain some compactness. To do this, we denote by Isomgy(M) the group of isometries of (M, g)
and let G' be a subgroup of Isomy(M). The function u : M — R is said to be radially symmet-
ric with respect to xg € M if u depends on dy(xo,-). The fized point set of G on M is given by
Fixy/(G) = {r € M : o(x) = x for all 0 € G}. For a given xg € M, we formulate the following hy-

potheses.
(HZE) The group G is a compact connected subgroup of Isomg(M) such that Fixpr(G) = {zo}.

The main result of the present section reads as follows.

Theorem 5.6. (Farkas and Kristaly [105]) Let (M, g) be an n-dimensional (3 < n < 5) homogeneous
Hadamard manifold, o € M be fized, « € L'(M) N L®(M) be a non-zero nonnegative radially
symmetric function with respect to xo and G C Isomg(M) be a group that satisfies the hypothesis
(HE). If f : [0,00) — R is a continuous function satisfying (fy) and (f3), then there exists a
sequence {(u, 9%2)}16 C Hgl(M) X Hgl(M) of distinct nonnegative G-invariant weak solutions to (SM)
such that

. 0 — i =
s el o = Jlim e llyan) =0

The proof of Theorem 5.6 is a logical puzzle which is assembled by several pieces. At first, we
prove that the system (SM) can be discussed by variational arguments, reducing it to the detection
of critical points of a specific energy functional (see §5.3.1). Then we consider an auxiliary, closely
related problem to (SM) by locating in a precise way its solutions (see §5.3.2). Finally, we put all
these results together to produce multiple solutions to (SM).

In the sequel, we assume the hypotheses of Theorem 5.6 are verified.

5.3.1 Variational formulation of the Maxwell-Schrodinger system

We define the energy functional J : H; (M) x H, (M) — R associated with system (SM), namely,

1 e e e
() = Sl + 5 | edVy— £ [ Wglav, - [ v~ [ a@raav,.
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The functional J is well-defined and of class C' on Hj (M) x H,(M). To see this, we have to consider
the second and fifth terms from J; the other terms trivially verify the required properties. First, a

comparison principle and suitable Sobolev embeddings give that there exists C' > 0 such that for every
(u, ) € Hy(M) x Hy(M),

1 1—L
. 2% An 2%
0< / pudVy < (/ ©? dVg> </ ’u\"“’dvg) < C\|<PHH;(M)HU||§11(M) < 00,
M M M ’ g

where we used 3 <n < 5. Since f is subcritical, we have that the functional F : H, ;(M ) — R defined
by

Flu) = / a(z)F(u)dVy,
M
is well-defined and F € C'(H, gl (M), R). The following observation is trivial.

STEP 1. The pair (u,p) € H;(M) X Hgl(M) is a weak solution to (SM) if and only if (u,p) is a
critical point of J .

Due to Lax-Milgram theorem, we introduce the map ¢, : Hy(M) — H}(M) by associating with

every u € H gl(M ) the unique solution ¢ = ¢,, to the Maxwell equation
—Agp+p= qu2.

We recall some important properties of the function u — ¢, which are straightforward adaptations of

the Euclidean case (see [119]) to the Riemannian setting:

leulyan =4 [ ealdVy, o0 (5.11)
u / puudV, is convex; (5.12)
M
/ (upy —vpy) (u—v)dVy >0, Yu,v € H;(M) (5.13)
M

The “one-variable” energy functional &y : H, ;(M ) — R associated with system (SM) is defined by

1 e
Eu) = Sllullpan + 5 [ euu?dV, — Flu). (5.14)
2 9( ) 4 M

By using standard variational arguments, one can perform the next step.

STEP 2. The pair (u,p) € H;(M) X Hgl(M) is a critical point of J if and only if u is a critical point
of & and p = ¢,. Moreover, we have that

& (u)(v) = /M(<Vgu, Vgv) +uv + epyuv)dVy — /M a(z) f(u)vdVy, Yv e H;(M) (5.15)

Let xp € M, G C Isomy(M) and o € L*(M) N L% (M) as in the hypotheses. The action of G on
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H}(M) is defined by
(o xu)(z) = u(c™ (z)), Yo € G, ueHgl(M), x €M, (5.16)
where 0~ : M — M is the inverse of the isometry o. Let
Hyo(M)={ucHy(M):0xu=u, Yo € G}

be the subspace of G-invariant functions of H ;(M ) and Eq : H ;’G(M ) = R be the restriction of the

energy functional £ to H gl (M). The following statement is crucial in our investigation.

STEP 3. If ug € H917G(M) is a critical point of Eg, then it is a critical point also for € and py,, s
G-invariant.

Proof. Due to relation (5.16), the group G acts continuously on H;(M ). We claim that &£ is G-
invariant. To prove this, let u € H gl(M ) and o € G be fixed. Since o : M — M is an isometry on
M, we have by (5.16) and the chain rule that V(o * u)(x) = Doy-1(,)Vgu(o ™' (x)) for every x € M,
where Dog-1(yy @ Ty-1(;yM — T M denotes the differential of o at the point o~ 1(x). The (signed)
Jacobian determinant of o is 1 and Do,-1(,) preserves inner products; thus, by relation (5.16) and by

applying the change of variables y = o ~1(x), it turns out that

o cullyan = [ (9@ + (0 5 0)(@) dVy(a)

= /M (IVgu(o™ @) 2oy + w2 (07 (@) V(@) = /M (1Vquly)? + () dVy(y)
= Nullf -

A change of variable and the properties of the function « give that

Floxu) = /Ma(z:)F((a*u)(x))d%(gg):/

a(@)F (u(o™!(z))) dVy(z) :/ a(y)F(u(y))dVy(y)
M
= F(u).

M

We now consider the Maxwell equation —A @y +Poru = q(ou)? which reads pointwisely —AgPosu(y)+
Yosu(y) = qu(c™(y))?, y € M. After a change of variables one has that —A Qg (0(2))+ o (0 (x)) =
qu®(z), x € M, which means by the uniqueness that @, (o (x)) = @.(x). Therefore,

/ Gomn(2)(0 % u)?(2)AV, () = / oulo (@) (o (2))dV (z)= / AT
M M M

which proves the G-invariance of u — / @uu*dV,. Since the fixed point set of H;(M ) for G is
M

H;G(M ), the principle of symmetric criticality (see Theorem 1.6) shows that every critical point
ug € H ;’G(M ) of &g is also a critical point of £. Moreover, from the above uniqueness argument, for

every 0 € G and x € M we have @y, (0 * ) = Qowug (0T) = pug (), €., @y, is G-invariant. O
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By Steps 1-3, we have the following implications: for an element u € Hgl’G(M )
E(u)=0 = &'u) =0 & J'(u,pu) =0 & (u,p,) is a weak solution of (SM). (5.17)

In order to guarantee G-invariant weak solutions to (SM), it is enough to produce critical points for
the energy functional &; : H;,G(M ) = R. Since the embedding Hj (M) < LP(M) is only continuous
for every p € [2,2*], we adapt the next Lions-type result in order to regain some compactness by

exploring the presence of group symmetries.

Proposition 5.1. (Skrzypczak and Tintarev [84, Theorem 1.3 and Proposition 3.1]) Let (M, g) be an
n-dimensional (n > 3) homogeneous Hadamard manifold and G be a compact connected subgroup of
Isomgy (M) such that Fixp (G) is a singleton. Then Hgl,G(M) is compactly embedded into LP(M) for
every p € (2,2%).

5.3.2 Truncation technique

This subsection treats an auxiliary Schrodinger-Maxwell system

—Agu+u+eup =a(z)f(u) in M,
—Ayp + o = qu? in M,

where the following assumptions hold:
(f1) f:[0,00) = R is a bounded function such that f(0) = 0;
(f2) there are 0 < a < b such that f(s) < 0 for all s € [a, b)].

Let € be the “one-variable” energy functional associated with system (ng/l), and E~G be the re-
striction of & to the set H ;G(M ). It is clear that & is well-defined. Consider the number b € R from

(};)7 for further use, we introduce the sets
Wb = {ue Hgl(M) tull oo (ary < b} and wg=w’n H;G(M).

Lemma 5.1. Let (M, g) be an n-dimensional (3 < n <5) homogeneous Hadamard manifold, xo € M
be fized, o« € LY (M)NL*> (M) be a non-zero nonnegative radially symmetric function with respect to xg
and G C Isomy(M) be a group that satisfies the hypothesis (HE ). If f:]0,00) = R is a continuous
function satisfying (fl) and (jg), then:

(i) the infimum of EG on Wg 1s attained at an element ug € Wg;
(ii) ug(x) € [0,a] a.e. x € M;
(ili) (uq,Pug) is a weak solution to system (SM).

Proof. (i) By using the same method as in the proof of Theorem 4.3 and Proposition 5.1, the functional

&g is sequentially weakly lower semicontinuous and bounded from below on H;G(M ). The set W is
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convex and closed in H;G(M ), thus weakly closed. Therefore, the claim directly follows (see Theorem
1.4 and Remark 1.2); let ug € Wg be the infimum of & on W(b;.

(ii) We consider the function v(s) = min(s4,a) and set w = yowug. Since 7y is Lipschitz continuous,
then w € Hg1 (M) (see Hebey, [52, Proposition 2.5, page 24]). We claim that w € H;G(M). Indeed,

(0 w)(z) =w (07 (2)) = (youg) (07 (2)) =7 (uc (07 (2))) = (uc(2)) = w(x),

for every x € M and o € G. By construction, we clearly have that w € Wg.

Consider A = {x € M : ug(z) ¢ [0,a]} and suppose that the Riemannian measure of A is positive.
If
Ar={r € A:ug(z) <0} and Ay ={z € A : ug(x) > a},

one has that A = A; U Ag, and from the construction we have w(x) = ug(z) for all x € M \ A,
w(z) =0 for all z € Ay, and w(z) = a for all x € As. The latter facts show that

e

_ _ 1 1
Ea(w) — Eqlug) = — 5 /A IV yuc|*dV, + 3 /A(w2 —uZ)dV, + 1 /A(c,oww2 — puguz) AV,

- /A a(z) (ﬁ(w)—ﬁ(uG)) dv,.

Here, F(s) = / f(t)dt. We observe that
0

/ (w2—u%)dVg——/ ungng/ (a* — ug) dV, < 0.
A Ax A

It is also clear that / a(z)(F(w) — ﬁ(uG))dVg =0, and due to the mean value theorem and (f5) we
Aq

have that / a(z)(F(w) — ﬁ(ug))dvg > 0. Furthermore,
A

/A(@ww2 — Qug)dVy = —/A PucugdVy +/ (Puw?® — Pugug)dVy,
1

Az

and since 0 < w < u¢, we have that
/A (‘waz - ‘Pucu%‘)dvg <0.
2

Combining the above estimates, we have Eg(w) — Eg(ug) < 0.

On the other hand, since w € W then Ea(w) > Eq(ug) = inf &£, thus we necessarily have that
WG

[ v, = [ @y, o
Aq As

which implies that the Riemannian measure of A should be zero, a contradiction.
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(iii) The proof is divided into two steps.

STEP 1. &'(ug)(w —ug) > 0 for all w € WP, Tt is clear that the set W? is closed and convex
in Hj(M). Let xy» be the indicator function of the set W’ (ie., xys(u) = 0 if u € WP, and
Xwe(u) = 400 otherwise) and consider the Szulkin-type functional Z : H; (M) — R U {400} given
by T = £+ Xwb- On account of the definition of the set Wg, the restriction of xyv to Hgl,G(M) is
precisely the indicator function Xw, of the set Wg. By (i), since ug is a local minimum point of &a
relative to the set Wg, it is also a local minimum point of the Szulkin-type functional Zg = Ea+ Xw,

on H;G(M ). In particular, ug is a critical point of Zg in the sense of Szulkin (see Section 1.2), i.e.,
0 € E:(ug) + 8XW§ (ug) in (H;G(M)) :

By exploring the compactness of the group G, we may apply the non-smooth principle of symmetric

criticality for Szulkin-type functionals (see Theorem 1.6), obtaining that
ol . 1 *
0 € &'(ug) + Ixwr(ug) in (Hg (M))".

Consequently, the claim follows since for every w € W we have that

0 < &'(ug)(w — ug) + xp(w) — Xy (ua).

STEP 2. (uq,puy) 15 a weak solution to the system (SM). By assumption (f) it is clear that

Cpn = sup | f(s)| < co. The previous step and (5.15) imply that
seR

0 < / (Vyug, Vg(w — ug))dV, +/ ug(w — ug)dVy
M M

+e /M UGPug (W —ug)dVy — /M a(m)f(ug)(u} —ug)dVy, Yw € WP,

Let us define the truncation function ((s) = sgn(s)min{|s|,b}. Since ¢ is Lipschitz continuous and
¢(0) = 0, then for fixed & > 0 and v € HJ (M) the function we = ¢ o (ug + ev) belongs to H} (M),
see Hebey [52, Proposition 2.5, page 24]. By construction, w¢ € Wb, Now, standard estimates for the

test-function w = w yield

0§/ <VguG,ng>dVg+/ qudngLe/ uGgoqudVg—/ a(x)f(uG)UdVg.
M M M M

Replacing v by (—v), it follows that
0= / (Vyug, Vgu)dVy —i—/ ugvdV, + e/ UG PugvdVy —/ a(x)f(ua)vd%,
M M M M

i.e., & (ug) = 0. Thus (ug, us) is a G-invariant weak solution to (SM). O
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Now, we are ready to conclude the proof of Theorem 5.6. Let s > 0, 0 < r < p and A,,[r,p] =
By(zo,p+ 1)\ By(zo,p — r) be an annulus-type domain. We also define the function w, : M — R by

¢

0, x € M\ Ag,lr, pl,
ws(r) = s, x € Agylr/2,p),
2s
- (r — |dg(@o, x) — pl), @ € Agolr, p] \ Azolr/2, p).

Note that (Hg”) implies w, € Hgl?G(M).
Due to (f3) and the continuity of f one can fix two sequences {0}k, {7 }x such that lim 6y =

k—+o0

lim n; =0, and for every k£ € N,
k—4o0

0<Opr1 <mp<sp<bOp<l, (5.18)
f(s) <0 for every s € [n, 0k, (5.19)

Consider the truncation function fix(s) = f(min(s,6)). Since f(0) = 0 (by (f3) and (f2)), then
fx(0) = 0 and we may extend continuously the function fj to the whole real line by fx(s) = 0if s < 0.

S
For every s € R and k € N, we define Fj(s) = / fr(t)dt. It is clear that fi satisfies the assumptions
0

(]71) and ('72) Thus, applying Lemma 5.1 to the function fi, & € N, the system

—Agu+u+eup = a(x)fy(u) in M,

(5.20)
—Agp + ¢ = qu? in M,
has a G-invariant weak solution (u, cpug) € H;G(M) X H;G(M) such that
u? € [0,mx] a.e. € M, (5.21)
) is the infimum of the functional & on the set WZF, (5.22)

where

1 e
) = 3l + § [ eV~ [ alo)Ba)ay,,

By (5.21), (u, cpug) € H;G(M) X H;G(M) is also a weak solution to the initial system (SM).

It remains to prove the existence of infinitely many distinct elements in the sequence {(ug, goug)}k.
Note that there exist 0 < r < p such that essinfs, [, > 0. For simplicity, let D = Ay, [r, p] and
K = Agy[r/2,p]. By (f3) there exist lp > 0 and § € (0,6;) such that

F(s) > —lps® for every s € (0,9). (5.23)

Assumption (f}) implies the existence of a non-increasing sequence {3} C (0,68) such that s < ny
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and
F(31) > Los:, Vk €N, (5.24)
where Lo > 0 is large enough, e.g.,
. 1 4 e

Loessinf g > 3 1+ 2 Voly(D) + ZHQDgHLl(D) + ol £r (ar)- (5.25)

Note that
1 9 e
En(ws,) =5 lws gy oy + 26 = Iy

where

o= [ o uddVy and I = [ a@)Pi(ws, ).
D D

Observe that I, < 57||¢s|11(p), k € N. Moreover, by (5.23) and (5.24) we have that
Jp > Loé%essinf;(a - l()g%”OéHLl(M), ke N.

Therefore,

1 4 e .
5k(wgk) < 3% <2 <1 + 73> VOlg(D) + ZHSO(SHLl(D) + l(]HOéHLl(M) — LQGSSlana> .

Thus, on one hand, by (5.25) we have that

Ek(ug) = in@i &L < 5k(w§k) < 0. (5.26)
Wa

On the other hand, by (5.18) and (5.21) we obtain that

Er(ug) > —/ (@) Fy(up)dVy = —/ a(x)F(u))dVy > —|lel i max |f(s)|k, k€ N.
M M s€[0,1]

Combining the latter relations, it yields that

lim & (ul)) = 0.

k—4-o00
Since E(ul) = & (u?) for all k € N, we obtain that the sequence {ul}, contains infinitely many

distinct elements. In particular, by (5.26) we have that

Loo2
§Huk”H;(M) <l e | £(8) |k

which implies that lim Hu2||H1(M) = 0. Recalling (5.11), we also have lim [¢,ol z1(ar) = 0, which
k—o0 9 k—o0 kg

concludes the proof. O
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We close this section with some examples for which Theorem 5.6 can be applied.

e Fuclidean spaces. 1If (M,g) = (R", ge) is the usual Euclidean space, then o = 0 and G =
SO(n1) x ... x SO(ny) with n, > 2, k € {1,...,1} and ny + ... + n; = n, satisty (HZ’). Here,
SO(k) denotes the special orthogonal group in dimension k. Indeed, we have Fixgn (G) = {0}.

e Hyperbolic spaces. Let us consider the Poincaré ball model H" = B.(0,1) = {z € R" : |z| < 1}
from §3.2.2. Hypothesis (HZ”) is verified with the same choices as above.

e Symmetric positive definite matrices. Let Sym(n,R) be the set of real-valued symmetric n x n
matrices, P(n,R) C Sym(n,R) be the w—dimensional cone of symmetric positive definite
matrices, and P(n,R); be the subspace of matrices in P(n,R) with determinant one. The set

P(n,R) is endowed with the scalar product
(U V)x =Te(X'VX'U), VX € P(n,R), U,V € Tx(P(n,R)) ~ Sym(n,R),

where Tr(Y') denotes the trace of Y € Sym(n,R), and let us denote by dg : P(n,R)xP(n,R) — R
the induced metric function. The pair (P(n,R), ({-,-))) is a Hadamard manifold, see [112] and
Lang [60, Chapter XII]. Note that P(n,R); is a convex totally geodesic submanifold of P(n,R)
and the special linear group SL(n,R) leaves P(n,R); invariant and acts transitively on it; thus
(P(n,R)1, ((-,-))) is itself a homogeneous Hadamard manifold, see Bridson and Haefliger [18,
Chapter I1.10]. Moreover, for every o € SL(n,R), the map [o] : P(n,R); — P(n,R); defined by

[0](X) = 0 X 0!, is an isometry.

Let G = SO(n). One can prove that
Fixp(nr), (G) = {Irn}.
On one hand, it is clear that Ig» € Fixp(, r), (G); indeed, for every o € G' we have that
[0](Ign) = olgno’ = oot = Ign.

On the other hand, if X € Fixp(, ), (G), then it turns out that 0 Xo = Xoo for every o € G.
By using elementary matrices from G, the latter relation implies that Xg = cIgr» for some c € R.

Since Xy € P(n,R)1, we necessarily have ¢ = 1.

5.4 Further results and comments

I) Sublinear problems on compact Riemannian manifolds: the gap interval. In The-
orem 5.1, we proved that c; and crp may be arbitrary close to each other, thus the gap interval
c}lﬂ Blallis, cxtlla/B|| Looi| can be arbitrarily small, but never degenerated. It is not clear what can

be said about the number of solutions to the problem (Py) when A belongs to the latter interval.

IT) Infinitely many solutions: Finsler versus Riemannian settings. We note that the argu-

ments in the proof of Theorem 5.5 cannot be applied in generic Finsler manifolds to produce infinitely
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many solutions to elliptic problems. Indeed, we recall that we used the symmetric version of the
Mountain Pass Theorem, which required the evenness of the energy functional associated to the stu-
died problem. Now, if we consider the Randers space (B¢(0,1); F,) from Section 4.2 with the metric
F, defined by (4.12), we observe that the energy functional

u [E* (2, Du(x))]* dVE, (2)
Be(071)

is not even, thus it is not G} -invariant (see the action (5.7)); the latter follows by the fact that F,

is not reversible unless a = 0, which corresponds to the Riemannian (non-Finslerian) Klein model.

ITT) Schrédinger-Maxwell systems of Poisson type. Beside the Schrodinger-Maxwell system
(SM) involving oscillatory nonlinear terms, is it possible to treat other systems. For instance, if we

consider the Schrédinger-Maxwell system with a Poisson-type term, we can prove

Theorem 5.7. (Farkas and Kristaly [105]) Let (M, g) be an n-dimensional (3 < n < 6) homoge-
neous Hadamard manifold, and o € L*(M) be a nonnegative function. Then there exists a unique,

nonnegative weak solution (ug, po) € H;(M) X H;(M) to the system

—Agu+u+eup =ax) in M,
(SM)
—Ayp + o = qu? in M.

Moreover, if xo € M is fixred and « is radially symmetric with respect to xq, then (ug, po) is G-invariant

with respect to any group G C Isomg(M) which satisfies (HE).

IV) Schrodinger-Poisson systems with arbitrary growth nonlinearity. For simplicity, let
2 C R™ be an open bounded domain, n > 2 (2 can also be a subset of a complete Riemannian

manifold). We consider the model Schrédinger-Poisson system

—Au = P in
—Ap=f(u) in Q (SP)

u=¢ =20 on 0f),

where

(5.27)

and the continuous function f : R — R fulfills the hypotheses:

ls| 7 ls| »

(H}) —oo < liminfg_yg % < limsup,_, % = 400, where F(s) = / f(t)dt, s € R,
0
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(H3) there exist two sequences {ax}x and {by} in (0,00) with by1 < ax < by, limg_, by = 0 such

that
sgn(s)f(s) <0, V|s| € [ak, bx],
(H) limg_ 00 Z—: =0 and limy_,o m[_:iw =0.

b, ”

Hypotheses (H}) — (Hg) imply an oscillatory behaviour of f near the origin. By using the general
variational principle of Ricceri [80, 81], one can prove the following result, which constitutes a kind of

counterpart for Theorem 5.6:

Theorem 5.8. (Kristaly [114]) Assume that (5.27) holds and f € C(R,R) fulfills (H}) — (Hg). Then,
system (SP) possesses a sequence {(ug, or) e C X x X of distinct (strong) solutions which satisfy

Jim fugllx = lm lorllx = lm fugze@) = m [loglze@) =0,

pt1

where X = WQP%I(Q) NW," » ().
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