
Adapted complex
structures

Dissertation submitted to
The Hungarian Academy of Sciences

for the degree “MTA Doktora”
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Chapter 1

Preliminaries

This dissertation consists of two main parts. The first part contains five chapters
that can be read independently of each other. The first chapter contains no new
results, only an introduction and collection of frequently used notations. The
second chapter investigates symmetries of certain Stein manifolds and is based
on the paper [Sz95]. The third chapter studies the adapted complex structures
of compact normal Riemann homogeneous spaces and based on the paper [Sz98].
Chapter four is on the problem of existence of a geodesic flow invariant complex
(or more generally involutive) structure. The chapter is based on two papers.
Section 4.1 is based on [Sz99] and Section 4.2 is based on [Sz01]. Chapter five
is devoted to two related problems. Section 5.1 is concerned with the problem
of generalization of Chevalley’s extension problem to Weyl group equivariant
maps. This is based on the joint paper with Ádám Korányi [KSz]. Section 5.2
is about the problem of existence of hyperkahler metrics on (co)tangent bundles
and is based on the joint paper with Andrew Dancer [DSz].

The whole second part of the dissertation is motivated by the problem of
uniqueness in geometric quantization. The chapters here are related to each
other and the next builts on the results of the previous. Section 6.1 is based on
the joint paper with László Lempert [LSz12]. Section 6.2 is an introduction to
geometric quantization, including some unpublished results of mine [Sz-prep] in
Section 6.2.5 and 6.2.6. Chapter 7,8, and Section 9.1, 9.2 and 9.4 are based on
the joint paper with László Lempert [LSz14]. Section 9.3 is based on the paper
[Sz17].

1.1 Introduction

The notion that connects the different problems in this dissertation is the one
in the title: adapted complex structures. Although this term appeared first
time in our paper [LSz91], the equivalent notion of Monge-Ampère models was
the subject of my PhD thesis [Sz90] written at Notre Dame University. The
results of my thesis were published in the papers [LSz91, Sz91], but since they
are important for this dissertation as well, we shortly summarize them in this
introductory part together with some historical background.

Let Xn be a complex manifold of dimension n and u : X → R a twice
differentiable plurisubharmonic function. The complex, homogeneous, Monge-
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Ampère equation for u is
(∂∂u)n = 0, (1.1.1)

or, in local coordinates z1, . . . , zn on X,

det (∂2u/∂zj∂zk) = 0.

When n = 1, the above equations reduce to Laplace’s equation ∆u = 0, and the
Monge-Ampère equation is the most natural extension of the Laplace equation
to higher dimensional complex manifolds. It first appeared in a paper by Bre-
mermann, [Br]. For an extensive reference about work on the Monge-Ampère
equation see a survey paper by Bedford [Bed2].

The question we address here is the following. To what extent is a solution u
of (1.1.1), or even X, determined if certain global conditions are imposed on u?
We shall consider plurisubharmonic solutions u(z) of (1.1.1) that go to infinity
as z ∈ X diverges in X, or, more precisely, such that for any c ∈ R

{z ∈ X : u(z) ≤ c} is compact. (1.1.2)

In this case u is called an exhaustion function of X. A little more generally we
shall also consider bounded exhaustion functions u, i.e. when (1.1.2) is required
to hold only for c < supu <∞. In this generality there are too many solutions
u. For example if X = Y × Z with Y compact and Z Stein, any smooth
plurisubharmonic exhaustion function v on Z defines a solution u(y, z) = v(z).
To eliminate such examples we assume X itself is Stein.

Stein manifolds are generalizations of domains of holomorphy in Cn. They
admit plenty of nonconstant holomorphic functions so they are the natural ob-
jects to do function theory on them. They can be characterized as those complex
manifolds that can be realized as a closed complex submanifold of CN for some
N . Another characterization, due to Grauert, says that X is Stein iff there is a
τ : X → [0,∞) strictly plurisubharmonic exhaustion function.

On a fixed Stein manifold there are many such exhaustions. One may wonder
if for a given X one could choose a specific τ that is canonically attached to X.
Perhaps having such a special exhaustion makes it possible to characterize such
an X among Stein manifolds. Possible such characterizations are interesting,
since as one knows, the Riemann mapping theorem fails in higher dimensions.

It often happens in mathematics that the existence of a global solution of
a certain differential equation helps to classify the underlying manifold. For
instance having constant sectional curvature of a Riemannian metric.

The idea here is to try to use the (1.1.1) Monge-Ampère equation to clas-
sify Stein manifolds. Then however, it turns out that there are no everywhere
smooth exhaustion functions u that would solve (1.1.1) ( [LSz91, Theorem 1.1]
). This naturally leads us to admit u that have some type of singularities on
a set M ⊂ X. In fact, as [LSz91, Theorem 1.1] shows, this set M must be
related to the minimum set of u. By a theorem of Harvey and Wells [HW] such
a minimum set must be totally real and so its real dimension is at most n.

That a global condition, type of singularity, and the Monge-Ampère equation
may uniquely characterize complex manifolds X and functions u on them was
first observed by Stoll. In [Sto] he considered the situation when M reduces
to a point, in which case the natural (minimal) singularity to prescribe is a
logarithmic pole. He proved that in this case X is biholomorphic to Cn and u
is equivalent to |z|2. See also [Bu3, Wo].

3
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Later, Patrizio and Wong considered the other extreme, when the singular
set M is an n real dimensional manifold. Here the natural (minimal) singularity
to assume is a “square root singularity”, (cf. [PW]). They conjectured that in
certain cases the mere knowledge of the differentiable manifold M determines X
and u (viz. when M is diffeomorphic to a simply connected compact symmetric
space of rank 1). They could settle this conjecture only under the assumption
that a more precise information about the singular behavior of u is available.
Also, they constructed examples of X and u with M a compact symmetric
space of rank 1, or a torus. Apart from that, the main contribution of [PW] is
the description of the rich geometry that is determined by u. That there is an
interesting geometry associated with a solution of the Monge-Ampère equation
was first discovered by Stoll and Burns.

Further examples of solutions of the Monge-Ampère equation with square
root singularity were found by Lempert [L2]. In those examples M is a hyper-
bolic manifold, and the function u is a bounded exhaustion function of X.

The primary objects of study of the paper [LSz91] are unbounded exhaustion
functions u on Stein manifolds X that satisfy (1.1.1) and have square root
singularity along a smooth manifold M , dimRM=dimCX. A Kähler metric on
X (cf. also (1.2.11)) and its restriction, a Riemannian metric onM is introduced.
It is proved that X and u are determined (up to biholomorphism) by the metric
on M (even when u is bounded). This extends the result of [PW] that applies
when M with the metric above becomes a compact symmetric space of rank
1. This result can also be regarded as defining canonical complexifications of
Riemannian manifolds. Such canonical complexifications were called in [LSz91]
adapted complex structures (cf. also section 1.2.2). It was shown in [LSz91] that
they are equivalent to a solution of (1.1.1) with a square root type singularity.

Guillemin and Stenzel ([GS1, GS2]) investigated related problems. They
work on cotangent bundles of Riemannian manifolds. Although their formal
definitions are different from the ones in [LSz91], they recover the same complex
manifolds X and functions u as in [LSz91].

It is also proved in [LSz91] that when u is unbounded, the metric on M must
be nonnegatively curved. From this it follows that when M is diffeomorphic to
a torus, X and u are almost uniquely determined: they must be one of the
examples found by Patrizio and Wong.

However, the original conjecture of Patrizio and Wong does not hold. There
is a 1-parameter family of inequivalent examples with singularity set diffeomor-
phic to the sphere S2 [Sz91]. Furthermore it was proved in [Sz91] that for a
compact Riemannian symmetric space M of any rank, the adapted complex
structure exists on TM and for arbitrary compact, real-analytic Riemannian
manifold it exists in a neighborhood of the zero section in TM .

The notion of adapted complex structures was later extended to Koszul
connections ([Bi, Sz04]), Finsler metrics [DK] and magnetic flows [HK2].

On the other hand, the adapted complex structure of a Riemannian manifold
turns out to be just one member in a natural family of Kähler structures ([LSz12]
and section 6.1). This is the family that respects the symmetries of TM (gen-
erated by the geodesic flow and fiberwise dilations). They are parametrized by
s ∈ C\R and are positive Kähler when Im s > 0 and negative for Im s < 0. The
Kähler manifolds thus obtained constitute the fibers of a holomorphic fibration
over C\R, and the adapted complex structure of section 1.2.2 ([GS1, LSz91])
corresponds to the fiber over s = i. It is possible to extend the fibration to a
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fibration over C; however, the fibers over R will be real polarized rather than
Kähler. Thus one is led to the notion of adapted polarizations, of which an
adapted complex structure is just an extreme example. These are discussed in
chapter 6.

The papers [FMMN1, FMMN2] consider a one (real) parameter family of
Kähler structures on the cotangent bundle of a compact Lie group, that degen-
erates to a real polarization; this family is then used to explain geometrically
the so called Bargmann–Segal–Hall transformation of [Hal1, Hal2]. The papers
themselves make no explicit connection with adapted complex structures, but
the family considered there is the restriction of our family of adapted polar-
izations to the positive imaginary axis. Recently [HK] pointed out that for a
general closed real analytic Riemannian manifold the original adapted complex
structure is the analytic continuation to i of a real family of real polarizations.
The novelty of our approach is first that all those Kähler structures and real
polarizations can be derived from one principle; second that these structures,
taken together, constitute a fiber bundle (Theorem 6.1.11).

This fiber bundle plays an essential role in chapter 8 and section 9.3 in the
study of the problem of uniqueness in geometric quantization using the family
of adapted Kähler structures to perform geometric quantization.

At its simplest, geometric quantization (cf. section 6.2) is about associating
with a Riemannian manifold M a Hermitian line bundle L→ X and a Hilbert
space H (called the quantum Hilbert space) of its sections. In Kähler quanti-
zation, L is a holomorphic Hermitian line bundle and H consists of all square
integrable holomorphic sections of L. One often knows how to find L, except
that its construction involves choices, so that one really has to deal with a family
Ls → Xs of line bundles and Hilbert spaces Hs, parametrized by the possible
choices s ∈ S.

The problem of uniqueness is to find canonical unitary maps Hs → Ht (resp.
Hcorr
s → Hcorr

t ) corresponding to different choices s 6= t ∈ S—or rather pro-
jective unitary maps, the natural class of maps, since only the projectivized
Hilbert spaces have a physical meaning. This problem is a fundamental issue in
geometric quantization.

There are various solutions to this problem, the first the Stone–von Neu-
mann theorem [St1, vN1], long predating geometric quantization. It applies
whenever two Hilbert spaces carry irreducible representations of the canonical
commutation relations; if so, there is a unitary map, unique up to a scalar fac-
tor, that intertwines the two representations. However, the Hilbert spaces that
geometric quantization supplies do not carry such representations unless the
manifold to be quantized is an affine space. In geometric quantization there is
the Blattner–Kostant–Sternberg pairing [Bl1, Bl2, Ko2], which sometimes gives
rise to the sought for unitary map, but even in simple cases it may fail to do so
[Ra2].

In the early 1990s Hitchin in [Hi] and Axelrod, Della Pietra, and Witten in
[ADW] considered a situation when the possible choices s form a complex man-
ifold S. One has to be careful with what “possible choices” mean. The choices
in question are Kähler structures on TM , compatible with the canonical sym-
plectic form. If literally all such Kähler structures were considered, uniqueness
would be too much to hope for; it can be reasonably expected only if a preferred
family of Kähler structures, those dictated by the symmetries of the problem,
is used.
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[Hi] and [ADW] proposed to view the Hs as fibers of a holomorphic Hilbert
bundle H → S, introduce a connection on H, and use parallel transport to
identify the fibers Hs and Ht.

To see how parallel transport along a path from s to t depends on the path,
they computed the curvature of the connection. The curvature turned out to be
a scalar operator. Hence [ADW, Hi] concluded that parallel transport is, up to
a scalar factor, independent of the path, and yields the required identification
Hs ≈ Ht. Hitchin quantized compact phase spaces, his Hilbert spaces were finite
dimensional and his reasoning is mathematically rigorous. [ADW] is bolder,
quantizes noncompact and even infinite dimensional manifolds (affine spaces and
their quotients). This leads to infinite dimensional Hilbert spaces and worse,
and the paper, from a mathematical perspective, is not fully satisfactory, even
when the manifolds to be quantized are finite dimensional (cf. section 6.2.1).

The general set up is as follows. Consider a holomorphic submersion π : Y →
S of complex manifolds with fibers π−1s = Ys ⊂ Y , which are complex subman-
ifolds. Let ν be a smooth form on Y that restricts to a volume form on each Ys,
and let (E, hE) → Y be a Hermitian holomorphic vector bundle. We assume
that dimY , dimS, and rk E < ∞, Finally, let Hs denote the Hilbert space of
holomorphic L2–sections u of E|Ys, L2 in the sense that

∫
Ys
hE(u)ν <∞.

The quantization procedure in [ADW] leads to a very special case of this
set up. There the line bundles (E|Ys, hE) can be smoothly identified and the
Hilbert spaces HprQ

s of all L2 sections of E|Ys can be considered as fibers of a
trivial Hilbert bundle HprQ → S. This is done quite naturally, because [ADW]
forgoes the half–form correction. In each fiber of HprQ → S sits a subspace Hs,
and [ADW, bottom of p. 801] asserts that the Hs form a subbundle H ⊂ HprQ.
The paper offers no justification for this, nor an explanation of what is meant
by a subbundle.

When affine symplectic spaces are quantized, all the above issues can be
settled satisfactorily. One can either use the formulas in [W, Section 9.9], at-
tributed to Rawnsley, or the results of Kirwin and Wu, [KW]. The first is based
on the BKS pairing, the second on the Bargmann–Segal transformation.

A connection, closely related to the one in [ADW], and its parallel transport
are studied in [FMMN1, FMMN2]. These papers go beyond affine spaces. They
consider a one real parameter family of polarizations of the cotangent bundle
of a compact Lie group, a connection on the bundle of the corresponding quan-
tum Hilbert spaces, and express parallel transport through Hall’s generalization
of the Bargmann–Segal transformation [Hal1, Hal2]. This again justifies the
definition of the connection a posteriori, but says little about the uniqueness
problem that has not been known since [Hal2].

While it is certainly pleasing to realize that the BKS pairing and the Bargmann–
Segal and Fourier transformations can be interpreted geometrically as a result
of parallel transport, justifying [ADW] through [W, Section 9.9] and [KW] beats
the original purpose of the connection: if both the pairing and the Bargmann–
Segal transformation already identify the spaces Hs, why bother defining the
connection and studying its parallel transport? Put it differently: will the con-
nection proposed in [ADW] shed any light on the uniqueness problem when the
BKS pairing fails to provide the unitary identifications and no explicit integral
transformation like that of Bargmann–Segal is available? This is the question
that we address and partially answer in chapters 7, 8 and section 9.3.

6
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Most of these chapters revolve around the general set up described above,
a holomorphic submersion π : Y → S, a Hermitian holomorphic vector bundle
E → Y , and the Hilbert spaces Hs of holomorphic L2–sections of E|Ys. The
spaces Hs form what we call a Hilbert field p : H → S, where H simply means
the disjoint union of {Hs}s∈S . We ask whether one can endow H with the
structure of a Hilbert bundle and a connection on the bundle; furthermore,
whether the connection induces a path independent parallel transport. That is,
we are trying to understand the direct image of E under π. We emphasize that
π is not assumed to be proper. If it is, Grauert’s theorem [Gr] describes the
holomorphic structure of the direct image, and many papers, including [Be3,
BP, BF, BGS, MT1, MT2, Ts] reveal some aspects of its Hermitian structure;
the most recent related work seems to be [Sch]. However, the chief difficulties
we encounter here arise when π is not proper. Berndtsson in [Be1, Be2, Be3]
already studied the curvature of certain improper direct images, and in [Be4]
gave a striking application.

It may seem futile to consider completely general Y → S and E, as the
spaces Hs in general will not form a bundle and in fact will not have any extra
structure at all. Still, certain constructions are always possible, and it is only this
generality that guarantees that the constructions to be performed are natural.
In favorable cases the constructions lead to what we call smooth and analytic
fields of Hilbert spaces. These fields are analogous to Hermitian Hilbert bundles
with a connection, but the notion is quite a bit weaker. Chapter 7 is devoted
to fields of Hilbert spaces; the main results Theorems 7.1.7, 7.1.11, 7.4.2 and
Corollaries 7.1.8, 7.1.12) say that if an analytic field of Hilbert spaces has zero,
resp. central curvature, then it is equivalent to a Hermitian Hilbert bundle with
a flat, resp. projectively flat, connection.

In chapter 8 we turn to the direct image problem and discuss the construc-
tions that, in favorable cases, endow the direct image with the structure of a
smooth field of Hilbert spaces. We also provide criteria for this to happen, and
express the curvature of the field in terms of the geometry of Y and E.

Finally, in chapter 9 we test the general results obtained so far against geo-
metric quantization of a compact Riemannian manifold M , when quantization
is based on the family of adapted Kähler structures. The scheme leads to a
direct image problem. In many cases the direct image is an analytic field of
Hilbert spaces, and in some cases, namely for group manifolds, the field is even
flat, hence parallel transport provides the natural identification of the quantum
Hilbert spaces corresponding to different Kähler structures, i.e. in this case
quantization is unique. In section 9.3 we prove that among compact irreducible
Riemannian symmetric spaces precisely the group manifolds are those for which
quantization is unique.

The ideas in [ADW, Hi] in the context of Kähler, or “almost Kähler” quan-
tization of compact symplectic manifolds (N,ω) have been taken up in several
papers.Viña [Viñ] computed the curvature of a natural connection on the family
of quantum Hilbert spaces corresponding to (certain) complex structures on N
compatible with ω, and found that in general the curvature was nonzero. Foth
and Uribe [FU] replaced the prequantum line bundle L→ N by higher powers
Lk and computed the curvature of the resulting connection. Even in the semi-
classical limit k → ∞ the curvature did not tend to zero. However, Charles
[Char] proved that if the quantization scheme includes the half–form correction,
in the semiclassical limit the curvature does tend to zero.
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1.2 Frequently used notations

1.2.1 Geometry of the tangent bundle.

Let (M, g) be a complete, smooth n-dimensional (pseudo-)Riemannian manifold,
TM its tangent bundle, π : TM → M the bundle projection map and g the
(pseudo-)Riemannian metric on M .

When γ : R→M is a nonconstant geodesic, for any point w ∈ γ∗(TR), the
dimension of Tw(TM) and the dimension of the vector space of Jacobi fields
along γ is the same: 2n. In fact there is a natural isomorphism between these
two vector spaces, as we describe this below.

The image TR\R under the induced map γ∗ : TR→ TM is a two dimensio-
nal surface. As γ runs through all the nonconstant geodesics in M , the surfaces
γ∗(TR \ R) define a foliation of TM \M , the so called Riemann foliation.

For a γ : R→ M geodesic, a parallel vector field ξ along γ∗ is a vector field
along the map γ∗ : TR→ TM (i.e. a section of the pullback bundle (γ∗)

∗(TM)),
such that there exists a smooth family γt : R → M of geodesics with γ0 = γ
and

d

dt

∣∣∣∣
t=0

γt∗ = ξ.

For an m ∈ M , 0m ∈ TmM denotes the zero vector. The correspondence
m ↔ 0m identifies the manifold M with the zero section in TM and gives rise
to an identification of TmM and the tangent space of the zero section at 0m.

Let σ ∈ R and ξ a parallel vector field along γ∗. Then

ξ(σ) := ξ(0σ) =
d

dt
γt∗(0σ)

∣∣∣∣
t=0

=
d

dt
γt(σ)

∣∣∣∣
t=0

,

i.e. ξ|R is a Jacobi field along γ. Parallel vector fields can be thought of as
canonical extensions of Jacobi fields.

For s ∈ R let Ns : TM → TM be the map

Ns(z) = sz. (1.2.1)

When s 6= 0, Ns is a diffeomorphism. Denote by φs : TM → TM the geodesic
flow. According to [LSz91, Proposition 6.1], a vector field ξ along γ∗ : TR →
TM is parallel iff

Ns∗ξ = ξ, φs∗ξ = ξ s ∈ R. (1.2.2)

Since any point z ∈ TM \M determines a unique geodesic γz : R→M with
γ̇z(0) = z, it follows that the three vector spaces: Jacobi fields along γz, parallel
vector fields along γz∗ and Tw(TM) (for any w ∈ γz∗(TR)) naturally correspond
to each other. This is fundamental for the adapted complex structure and so
for this dissertation.

The canonical 1-form ϑ on TM is defined by

ϑ(v) := g(z, π∗v), v ∈ Tz(TM) (1.2.3)

and
ω := −dϑ (1.2.4)

is the canonical symplectic form on TM . Then

N∗s ω = sω, φ∗sω = ω s ∈ R. (1.2.5)
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When (z ∈ TM), the Levi-Cività connection of g determines a splitting of
Tz(TM), into vertical and horizontal subspaces. For z ∈ TM and v ∈ Tπ(z)M ,
vHz ∈ Tz(TM) (resp. vVz ∈ Tz(TM)) denotes the horizontal (resp. vertical) lift
of v to z. Then for v, z ∈ TpM and s 6= 0 we have

(Ns)∗v
H
z = vHsz, (Ns)∗v

V
z = svVsz. (1.2.6)

Now let γ be a unit speed geodesic. Let z = τ0γ̇(σ0), v = γ̇(σ0). Then we
have

(γ∗)∗

(
∂

∂σ

∣∣∣∣
(σ0,τ0)

)
= vHz , (γ∗)∗

(
∂

∂τ

∣∣∣∣
(σ0,τ0)

)
= vVz . (1.2.7)

Let now γ : R → M be a unit speed geodesic, and ξ1, . . . , ξn, η1 . . . , ηn
parallel vector fields along γ∗. We call (ξ1, . . . , ξn, η1 . . . , ηn) a symplectic frame,
if there exists a real number σ0 and an orthonormal basis

v1, . . . , vn−1, vn = γ̇(σ0) ∈ Tγ(σ0)M,

such that (with v := ∂σ0 ∈ Tσ0R) for any 1 ≤ j ≤ n, ξj(v) is the horizontal and
ηj(v) is the vertical lift of vj to z := γ∗(v) = γ̇(σ0).

This condition is equivalent to the following: the Jacobi fields ξj |R , ηj |R
satisfy (′ means covariant derivative along γ) the initial conditions

ξj(σ0) = vj , ξ′j(σ0) = 0, 1 ≤ j ≤ n,

ηj(σ0) = 0, η′j(σ0) = vj , 1 ≤ j ≤ n.

In particular the set of those real numbers σ, where ξ1(σ), . . . , ξn(σ) ∈
Tγ(σ)M are linearly dependent, is a discrete subset of R, denoted by S. Hence
there exists a smooth matrix valued map ϕ = (ϕjk), defined on R\S, such that

ηk(σ) =

n∑
j=1

ϕjk(σ)ξj(σ), σ ∈ R \ S, 1 ≤ k ≤ n. (1.2.8)

Proposition 1.2.1 (Szőke, [Sz95]). Let (Mn, g) be a Riemannian manifold.
Let γ be a unit speed geodesic and ξ1, . . . , ξn, η1, . . . , ηn be a symplectic frame
along γ∗. Let σ ∈ R, 0 6= τ ∈ R and w = τ∂σ ∈ (TσR). Then the 2n-tuple of
vectors {ξj(γ∗(w)), . . . , ηj(γ∗(w))}nj=1 forms a symplectic base in the symplectic
vector space (

Tγ∗(w)(TM), (1/τ)ω|γ∗(w)

)
,

i.e. for every 1 ≤ j, k ≤ n,

ω(ξj , ξk)(γ∗w) = 0 = ω(ηj , ηk)(γ∗w), ω(ξj , ηk)(γ∗w) = τδjk.

Proof. The orbit of a fixed point of the leaf γ∗(TR\R), under repeated applica-
tions of Ns and φt is the whole leaf. Therefore, according to (1.2.2) and (1.2.5),
it is enough to check our statement in one particular point z of γ∗(TR \R). We
can assume that z is the point where our frame is the horizontal resp. vertical
lift of an orthonormal base of Tπ(z)M , i.e. z = γ∗(v) with v := ∂σ0

∈ Tσ0
R).

Choose a Riemannian normal coordinate system around the point π(z), such
that vj = ∂/∂qj .
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With this choice we have

ξj(v) =
∂

∂qj
and ηj(v) =

∂

∂pj
, and ω|z =

∑
j

dqj ∧ dpj .

1.2.2 Adapted complex structures.

Every real-analytic manifold Mn posseses a complexification CM (see [Shu],
[WB]), that means the following: CM is a complex manifold containing M and
CM is equipped with an antiholomorphic involution σ : CM → CM whose fixed
point set is precisely M . Its construction is roughly as follows: one takes the
gluing maps of M between different real-analytic coordinate charts and holo-
morphically extend these maps to some domain in Cn. Using these holomorphic
maps we can glue together these new domains and obtain CM . The natural con-
jugation map on Cn induces an antiholomorphic involution σ : CM → CM with
fixed point set M . This complexification is unique only as a germ of complex
manifold along M . To get a canonical complexification one needs some extra
structure on our original manifold. For example one can take a Riemannian
metric.

There are two approaches to construct a canonical complexification out of a
metric. Although these two methods are very different, they lead to equivalent
complex structures. One approach is the method of Guillemin and Stenzel [GS1].
They work on the cotangent bundle T ∗M . The energy function “generates” the
complex structure, in an apropriate neighborhood of the zero section, with the
help of the canonical one form. The antiholomorphic involution here is the map
of T ∗M that multiplies each element in T ∗M with negative one.

The other approach grew out of studying global solutions of the complex
homogeneous Monge-Ampére equation (see (1.1.1)) on Stein manifolds (cf. [Bu2,
Bu3, Sto, PW, LSz91, Sz91]). This method also starts with a Riemannian metric
and certain complex curves play a fundamental role. These curves correspond to
geodesics on the original Riemannian manifold. The resulting complex structure
lives on the tangent (rather than the cotangent) bundle (or on open subset of it)
and is the so called adapted complex structure ([LSz91, Sz91], Definition 1.2.2).

When M = R, there is a natural identification TR ∼= C, given by (σ denotes
the coordinate on R)

TσR 3 τ
∂

∂σ
←→ σ + iτ ∈ C. (1.2.9)

This identification equipes TR with a complex structure that is fixed in the first
part of this dissertation.

Let (M, g) be Riemannian and 0 < r ≤ ∞. Let T rM be defined by

T rM = {v ∈ TM | g(v, v) < r2}.

When r =∞, T rM simply means TM . We call r the radius of the tube T rM .

Definition 1.2.2. Let (M, g) be a complete Riemannian manifold. Let D be a
domain in TM containing the zero section. A complex structure JA, defined on
D, is called adapted if for every geodesic γ : R→M , the map γ∗ is holomorphic
on (γ∗)

−1(D) ⊂ TR, where TR is endowed with the complex structure from
(1.2.9).
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The special case D = T rM with the adapted complex structure is also called
a Grauert tube. In the early days D was chosen to be of T rM with some r > 0
(see [Sz90, LSz91, Sz91]), but since then more general domains have turned out
to be of importance (cf. [FHW]).

From the definition one easily sees that the zero section in T rM is a maximal
dimensional totally real submanifold. According to [LSz91, Theorem 5.6] the
function

ρ : TM → R, ρ(v) := g(v, v) (1.2.10)

is strictly plurisubharmonic w.r.t. this complex structure thus it is a potential
function for a Kähler metric κg, defined by

κg(V,W ) = −i∂∂̄ρ(JV ∧W ), V,W ∈ Tz(TM)⊗ C, z ∈ T rM. (1.2.11)

It was shown in [LSz91, Corollary 5.5], that i∂∂̄ρ = ω, hence the Kähler form
of κg is precisely ω, the canonical symplectic form (see (1.2.4)) on the tangent
bundle. Together with (1.2.11), this implies that when we restrict the metric
κg to the zero section, we get back the original metric g. It was also proved
in [LSz91, Theorem 5.6 and Proposition 3.9], that M is a totally geodesic sub-
manifold of (T rM,κg) (see also [PW]). These properties indicate that κg is
indeed a natural (Kähler) extension of g. When M is compact, strict plurisub-
harmonicity of ρ in virtue of Grauert’s theorem implies that T rM is in fact a
Stein manifold.

It is always possible to express the almost complex tensor JA of the adapted
complex structure in terms of Jacobi fields and analytic continuation (see [LSz91]
or Theorem 2.2.3), but on a symmetric space we can do better. The Jacobi
equation can be solved explicitely and we get an explicit formula for JA as
follows.

Denote by R the curvature tensor of the metric and let z ∈ TpM . The
operator

Rz(.) = R(., z)z (1.2.12)

is the curvature operator (or Jacobi operator) associated to z. Let T̊M :=
TM \M . Then [Sz2, Theorem 2.5] with a little bit of calculations implies :

Proposition 1.2.3. Let (M, g) be a compact symmetric space. Let z ∈ T̊M .
Then JA maps the horizontal subspace at z to the vertical subspace and vice
versa. More precisely let vn = z/‖z‖ and v1, v2, . . . , vn an orthonormal basis
of TπzM consisting of eigenvectors of the Jacobi operator Rvn with eigenvalue
Λj , j = 1, . . . , n. Let h(x) := x coth(x). Let (vj)

H
z (resp. (vj)

V
z ) be the horizon-

tal (resp. vertical) lift of vj to the point z, j = 1, . . . , n. Then

JA(vj)
H
z = h(

√
Λj‖z‖)(vj)Vz . (1.2.13)

ie. with the positive, real-analytic function t(x) := h(
√
x), The matrix of JA in

the horizontal and vertical splitting Tz(TM) = Hz ⊕ Vz is:

JA|z =

[
0 −(t(Rz))

−1

t(Rz) 0

]
. (1.2.14)
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Chapter 2

Automorphisms of certain
Stein manifolds

2.1 The main results.

Let (M, g) be a compact Riemannian manifold and 0 < r ≤ ∞. The principal
results of this chapter are as follows.

We call r ≤ ∞ the maximal radius if adapted complex structure exists on
T rM but it does not exists on any other tube T sM with s > r.

In what follows, it is sometimes important whether r is maximal or not.
The advantage of a non-maximal radius is that in this case T rM is a relatively
compact subdomain of a Stein manifold (T sM , for some s > r) with smooth,
strictly pseudoconvex boundary.

Theorem 2.1.1 (Szőke [Sz95]). Let (M, g) and (N,h) be n-dimensional com-
pact Riemannian manifolds and 0 < r, s < ∞. Assume that adapted complex
structures exist on T rM and T sN . Let κg and κh be the induced Kähler metrics.
Suppose

Φ : (T rM,κg) −→ (T sN,κh). (2.1.1)

is a biholomorphic isometry. Then r = s. Let f be the restriction of Φ to M .
Then f maps M isometrically onto N and the induced map f∗ agrees with Φ on
T rM .

Later Burns and Hind [BH] proved that the theorem remains valid if Φ− is
only a biholomorphism.

In section 2.4 we treat automorphisms (only biholomorphic selfmaps, with-
out the isometry condition) of the complex manifold T rM , when r is finite. As
a corollary of a result of N. Mok ( [Mo]), we show

Theorem 2.1.2 (Szőke, [Sz95]). Let (M, g) be a compact Riemannian manifold.
Assume that an adapted complex structure exists on T rM for some 0 < r <∞.
Then

(a) Aut(T rM) is a compact Lie group.

(b) If M is orientable, or the universal cover is compact, then for any 0 <
s < S ≤ r, the complex manifolds T sM and TSM are not biholomorphic.
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In section 2.5 we prove a similar rigidity result as Theorem 2.1.1 above when
r =∞.

Theorem 2.1.3 (Szőke [Sz95]). Let (M, g) and (N,h) be compact Riemannian
manifolds. Assume the adapted complex structure exist on TM and TN , and
κg, κh are the induced Kähler metrics. Suppose that H1(M,R) = 0. Let

Φ : (TM, κg) −→ (TN, κh), (2.1.2)

be a biholomorphic isometry. Then Φ maps M diffeomorphically onto N , the
restriction map

f := Φ|M : (M, g) −→ (N,h),

is an isometry and Φ ≡ f∗.

The isometry condition is important in the theorem, biholomorphism in
itself is not enough. As the example 2.5.3 shows that Aut(T (Tn)) is infinite
dimensional for the compact flat torus Tn.

Section 2.6 treats the isometry group action on the tangent bundle of a
Riemannian manifold.

Theorem 2.1.4 (Szőke [Sz95]). Let (M, g) be a compact Riemannian manifold
that admits an adapted complex structure on its entire tangent bundle. Denote
by G the isometry group of (M, g). Consider G as a transformation group,
acting on TM by the induced action. This G-action extends to a group action
of GC (the complexification of G) on TM and this action is almost effective and
holomorphic.

2.2 Calculating the metric κg.

In this section we are going to give explicit formulas for κg using symplectic
frames. First we need to recall some more notation.

Denote by Mn
C the set of n×n complex matrices. For a Z ∈Mn

C , Z> denotes
the transpose of Z. For a real matrix X, X > 0 indicates, that X is symmetric
and positive definite.

The subset of Mn
C ,

Hn = {Z ∈Mn
C | Z = Z>, Im Z > 0}

is called the Siegel upper half plane. In particular H1 is the ordinary upper half
plane, that we also denote by C+.

Let (V, ω) be a symplectic vector space. A complex structure J : V → V is
said to calibrate the symplectic form ω, if the bilinear form ω(u, Jv), u, v ∈ V is
symmetric and positive definite. We will denote the set of calibrating complex
structures on (V, ω) by Jω.

Proposition 2.2.1 (Szőke, [Sz95]). Let (V 2n, ω) be a symplectic vector space.
Then Jω can be identified with Hn as follows. Fix a symplectic base u1, . . . , un,
v1, . . . , vn. If J ∈ Jω, then the n-tuples {uj}nj=1 and {vj}nj=1 both provide a C
basis of the complex vector space (V, J). Denote by Z := (fkl) the transition
matrix, i.e.

vk =
∑
l

flkul, k = 1, . . . , n. (2.2.1)
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Then Z ∈ Hn. And vice versa, assume that Z = Re Z + iIm Z ∈ Hn. Then
declaring {uj}nj=1 and {vj}nj=1 to be a C basis with transition matrix Z (as in
(2.2.1)), we define a complex structure JZ : V → V which calibrates ω, and can
be expressed as

JZuk =

n∑
j=1

(Im Z)
−1
jk [vj −

n∑
l=1

(Re Zlj)ul]. (2.2.2)

The matrix of the symmetric, positive definite bilinear form ω(., J.) in the base
uj , vk is (

[Im Z]−1 [Im Z]−1Re Z
Re Z[Im Z]−1 Re Z[Im Z]−1Im Z + Im Z

)
Proof. The proof is an easy calculation, left to the reader.

Proposition 2.2.2 (Szőke, [Sz95]). Let X and Y be complex manifolds and
ε > 0. Suppose we have a smooth map f : (−ε, ε)×X → Y and for every fixed
−ε < t < ε, the map ft(.) := f(t, .) : X → Y is holomorphic. Let

ξ = dft/dt|t=0 .

This is a section of f∗0TY0. Then ξ1,0 is a holomorphic section of f∗0T
1,0Y.

Proof. (cf. [LSz91, Prop. 5.1, p. 698] ) The statement is local, therefore we can
assume X = D1 ⊂ Cn, Y = D2 ⊂ Cm and f : (−ε, ε) ×D1 → D2. We have to
show that df/dt|t=0 is holomorphic. But

∂̄ζ

(
df

dt

∣∣∣∣
t=0

(t, ζ)

)
=

d

dt

∣∣∣∣
t=0

(
∂̄ζf(t, ζ)

)
≡ 0.

Armed with the last two propositions, we are now ready to prove the main
theorem of this section.

Theorem 2.2.3 (Szőke, [Sz95]). Let (M, g) be a Riemannian manifold and
0 < r ≤ ∞. Assume that adapted complex structure exists on T rM . Let γ
be a unit speed geodesic and (ξ1, . . . ξn, η1, . . . , ηn) be a symplectic frame along
γ∗. Let Dr := {ζ = σ + iτ ∈ C | |τ | < r}. Denote by S ⊂ R the discrete set
of points σ ∈ R, for which the vectors ξ1(σ), . . . , ξn(σ) ∈ Tγ(σ)M are linearly
dependent and by ϕjk the smooth functions on R \ S, such that (1.2.8) holds.
Then there exist meromorphic functions fjk : Dr → C ∪ {∞}, 1 ≤ j, k ≤ n,
which are holomorphic on Dr \ S and fjk(σ) = ϕjk(σ), for σ ∈ R \ S. Let
ζ = σ + iτ ∈ Dr \ R. Then

F (ζ) := (fjk(ζ)) ∈ Hn, if τ > 0, and − F (ζ) ∈ Hn, if τ < 0.
(2.2.3)

Let TR ∼= C as in (1.2.9) and p = γ∗ζ. Then

η1,0
k (γ∗(ζ)) =

n∑
j=1

fjk(ζ)ξ1,0
j (γ∗(ζ)), ζ ∈ Dr \ S, k = 1, . . . , n. (2.2.4)
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Let Jp : Tp(TM) → Tp(TM) be the adapted complex structure. If τ > 0, then
Jp can be expressed as

Jpξk(p) =

n∑
l=1

(Im F )−1
lk (ζ)

ηl(p)− n∑
j=1

(Re fjl)(ζ)ξj(p)

 , (2.2.5)

and for the Kähler metric κg we have

〈ξi(p), ξk(p)〉κg = ||p||g(Im F )−1
ik (ζ),

〈ξi(p), ηk(p)〉κg = ||p||g
[
(Im F )−1Re F

]
ik

(ζ),

〈ηi(p), ηk(p)〉κg = ||p||g
[
Re F (Im F )−1Re F + Im F

]
ik

(ζ).

(2.2.6)

If τ < 0, then formulas (2.2.5) and (2.2.6) are still valid if we replace ImF (ζ)
by -ImF (ζ).

Proof. (For (2.2.3) and (2.2.5) a slightly different proof was given in [LSz91].)
As we mentioned above, the Kähler form of κg is ω, the symplectic form of

the tangent bundle. Thus for any z ∈ T rM \M , and X,Y ∈ Tz(TM),

〈X,Y 〉κg = −ω(JX, Y ) = ||z||g [(1/||z||g)ω(X, JY )] . (2.2.7)

This implies that the complex structure Jz : Tz(TM)→ Tz(TM) calibrates the
symplectic form (1/||z||g)ωz. For τ > 0 (resp. τ < 0) (according to Proposi-
tion 1.2.1) {ξj(γ∗ζ), ηk(γ∗ζ)} (resp. {ξj(γ∗ζ),−ηk(γ∗ζ)}) is a symplectic basis
of

(Tp(TM), (1/||p||g)ωp).

Then Proposition 2.2.1 tells us that

{ξ1,0
j (γ∗(ζ))}nj=1 resp. {η1,0

j (γ∗(ζ))}nj=1

are both C-bases of the vector space T 1,0
γ∗(ζ)

(TM). If σ ∈ R\S, then {ξj(γ(σ))}nj=1

being an R basis of the vector space Tγ(σ)M , is also a C basis of T 1,0
γ(σ)(TM).

Therefore for any ζ ∈ Dr \ S, there exists a matrix F (ζ) = (fjk(ζ))nj,k=1 such
that (2.2.4) holds. Then (1.2.8) gives the equality (ϕjk(σ)) = (fjk(σ)), σ ∈ R\S.
From Proposition 2.2.2 we know that the maps

ξ1,0
j , η1,0

j : Dr −→ T 1,0(T rM), j, k = 1, . . . , n

are all holomorphic. Hence F is holomorphic on Dr \ S and meromorphic on
Dr. The rest follows from Proposition 2.2.1, and (2.2.1).

2.3 Holomorphic isometries of tubes with finite
radius.

In this section we only deal with tubes T rM , with 0 < r <∞. The case r =∞
will be treated separately in sections 2.5 and 2.6.
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Proposition 2.3.1 (“Schwarz lemma”, Szőke, [Sz95]). Let (Mn, g) and (Nn, h)
be compact Riemannian manifolds and 0 < r, s < ∞. Assume that adapted
complex structure exists on T rM and T sN . Let

Φ : T rM → T sN

be a holomorphic map such that Φ(M) ⊂ N . Then

r||Φ(p)||h ≤ s||p||g, p ∈ T rM. (2.3.1)

Proof. Define the functions u and v on T rM by u(p) := ||p||g and v(p) :=
||Φ(p)||h. Let η, ε, δ be small positive numbers and define cη and wε by

cη := max{v(p) | ||p||g = r − η} and wε :=
cη

r − η
u+ ε.

Denote by Dδη ⊂ T rM the domain

Dδη := {p ∈ T rM | δ < u(p) < r − η}.

For fixed ε, η and small enough δ > 0,

wε|∂Dδη ≥ v|∂Dδη .

It follows from [LSz91, Theorem 5.6], that u and v (and therefore wε as well) are
plurisubharmonic functions and they satisfy the complex homogeneous Monge-
Ampère equation on T rM \M. Applying the minimum principle of Bedford and
Taylor (see [BT]) for the functions wε and v on the domain Dδη we get

wε(q) ≥ v(q), for q ∈ Dδη. (2.3.2)

Because v goes to zero as we approach M , (2.3.2) also holds for any q ∈ T rM
with u(q) ≤ r − η. Letting ε go to zero yields

v(p) ≤ cη
r − η

u(p) ≤ s

r − η
u(p), when u(p) ≤ r − η. (2.3.3)

Fix now a point p in T rM . Then for every small enough η (2.3.3) holds. Letting
now η → 0 we obtain (2.3.1).

Theorem 2.3.2 (Szőke, [Sz95]). Let (Mn, g), (Nn, h) be compact Riemannian
manifolds and 0 < r, s < ∞. Assume that adapted complex structures exist on
T rM and T sN . Let

Φ : T rM → T sN

be a biholomorphism, such that Φ(M) ⊂ N . Then

f := Φ|M : (M, sg)→ (N, rh)

is an isometry, onto and Φ ≡ f∗ : T rM → T sN.

Proof. The fact that Φ is a biholomorphism and that N is compact and con-
nected gives that f is indeed onto. Denote by κg and κh the Kähler metrics
on T rM and T sN , induced by the strictly plurisubharmonic Kähler potential
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function || ||2g and || ||2h respectively (see (1.2.11)). Applying our (2.3.1) Schwarz
lemma for both Φ and its inverse, we obtain

r2||Φ(p)||2h = s2||p||2g, p ∈ T rM. (2.3.4)

It follows easily from its definition that rescaling the metric does not change the
induced complex structure, i.e. for any λ > 0, g and λg have the same adapted
complex structures defined on the same tube except the radius is measured with
different scales. Thus (2.3.4) yields, that

Φ : (T rM,κsg)→ (T sN,κrh)

is a biholomorphic isometry. This, together with the fact that along the zero
section the metric κsg (resp. κrh) is just sg (resp. rh), (see the remarks after
(1.2.11)), implies that

f : (M, sg) −→ (N, rh)

is indeed an isometry itself. Hence f∗, (see [LSz91]) and Φ are both biholomor-
phic and agree on the maximal dimensional totally real submanifold M . This
implies that they must agree everywhere.

2.3.1 Proof of Theorem 2.1.1

We can assume that s ≥ r. Denote by ρ1 and ρ2 the norm-square functions on
T rM and T sN respectively. Now (2.1.1) yields

∂∂̄ρ1 = Φ∗∂∂̄ρ2 = ∂∂̄(ρ2 ◦ Φ). (2.3.5)

Let
λ := ρ2 ◦ Φ− ρ1 + r2 − s2.

It follows from (2.3.5) that λ is a bounded pluriharmonic function on T rM .
Let γ : R → M be an arbitrary unit speed geodesic, parametrized by ar-

clength. Then v := λ ◦ γ∗ is a bounded harmonic function on the domain
D := {σ + iτ | σ ∈ R, |τ | < r}. If ζn ∈ D, ζn → z0 ∈ ∂D, then v(ζn) must go to
zero (Φ is a biholomorphism). This yields that v must vanish everywhere. This
is true for every geodesic, thus λ must also vanish identically. Hence we obtain

||Φ(p)||2h = ||p||2g + s2 − r2, p ∈ T rM. (2.3.6)

Φ is biholomorphic, so we can take a point q ∈ T rM with ||Φ(q)||h = 0. Since
we assumed s ≥ r, (2.3.6) implies s = r and thus (2.3.6) reads as

||Φ(p)||2h = ||p||2g, p ∈ T rM.

Theorem 2.3.2 now yields our claim.

2.4 Biholomorphisms of tubes with finite radius.

Now that we completely described all the biholomorphic isometries of our tube,
we would like to drop the condition of isometry and want to study the biholo-
morphism group of T rM , that we denote by Aut(T rM).
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Theorem 2.4.1 (Szőke, [Sz95]). Let X be a complex manifold. Suppose that
X admits a strictly plurisubharmonic bounded exhaustion function. Then X is
Kobayashi hyperbolic and Aut(X) is a Lie group.

Proof. The results in [Si, Corollary 5] and [Kob, Theorem V.2.1], together imply
our statement.

Theorem 2.4.2 (Szőke, [Sz95]). Let Xn be a complex manifold which admits
a bounded strictly plurisubharmonic exhaustion function. Suppose that the n-th
homology group, Hn(X,Z) is finitely generated and nonzero. Then Aut(X) is
a compact Lie group. Furthermore if f : X → X is a holomorphic map which
induces an isomorphism on Hn(X,Z) and f is injective, then f ∈Aut(X).

Proof. The theorem is essentially contained in [Mo, Theorem 1], , except that
Mok works with manifolds with a stronger assumption than ours. Namely he
assumes, in addition to our conditions, that X is hyperbolic in the sense of
Carathéodory. But the only place in his proof where he uses this extra condition
is to prove his Proposition 1.1. To get this proposition, in fact it suffices to know
that X is a taut manifold, which property our X has by virtue of [Si, Corollary
5], and [Ba, Theorem 2] .

Proof of Theorem 2.1.2. From [LSz91] we know that ρ : T rM → R (ρ is
from (1.2.10)) is a bounded strictly plurisubharmonic exhaustion function. Thus
according to Theorem 2.4.1, Aut(T rM) is a Lie group. If M is orientable, then
Hn(T rM,Z) ∼= Hn(M,Z) ∼= Z. Therefore the compactness of the automorphism
group and (b) follows from Theorem 2.4.2. (When S < r or the adapted complex
structure extends to a strictly larger tube than T rM , then we do not need to rely
on Mok’s theorem, it is enough to quote a much simplier fact [Bed1, Corollary
1.5]). The case when M is not necessarily orientable but its universal cover
is compact, follows from the part we have already shown, by standard lifting
arguments.

Now suppose thatM is arbitrary. Denote by M̂ the double sheeted orientable
cover of M and let p : M̂ →M be the projection map. Let ĝ be the pull back of
g onto M̂ . Since M is a compact differentiable manifold, its fundamental group
is finitely generated. In particular for a fixed base point x0 ∈ T rM,π1(T rM,x0)
has only finitely many subgroups of index 2. Denote these groups byG1, . . . , GN .

Let x̂0 ∈ T rM̂ , be also fixed, such that p∗(x̂0) = x0. We can assume

that G1 = p∗π1(T rM̂, x̂0). Now choosing any other base point x1 ∈ T rM , we
can connect x0 and x1 by a curve χ, which induces an isomorphism between
π1(T rM,x0), and π1(T rM,x1). This way we also identified the subgroups of
π1(T rM,x1) with index 2 with the groups Gj . It is easy to see that this iden-
tification is independent of the choice of the curve χ, since the subgroups Gj
are normal. Thus we can talk about the groups Gj independently of the base
point.

Now if Φ ∈Aut(T rM), y ∈ T rM, and Φ∗ : π1(T rM,y) → π1(T rM,Φ(y))
maps a group Gj to Gl, then it is not hard to see that for any other point
z ∈ T rM the induced map Φ∗ : π1(T rM, z)→ π1(T rM,Φ(z)) will also map Gj
to Gl. Hence it makes sence to say that an automorphism Φ maps the group
Gj to Gl.
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Now if Φ1,Φ2 ∈Aut(T rM), maps the group G1 to the same group Gl, then

the automorphism Φ = Φ−1
2 ◦Φ1 can be lifted to an automorphism of T rM̂ , since

Φ∗ preserves G1 = p∗π1(T rM̂, x̂0). Denote by G the subgroup of Aut(T rM)
consisting of all elements that preserves the subgroup G1. The above argument
shows that G has finite index and the already proved part of (a) gives that G
is compact. This implies that Aut(T rM) is compact as well.

2.5 Holomorphic isometries between tangent bun-
dles.

In this and section 2.6 we will be working with Riemannian manifolds (M, g),
which admit adapted complex structures on their entire tangent bundle. The
complex manifold TM will never be hyperbolic, unlike the tubes with finite
radius (any geodesic γ in M induces a nontrivial holomorphic map γ∗ : TR '
C→ TM). Hence we do not a priori know whether Aut(TM) is a Lie group or
not. In fact this group is not always finite dimensional, as the following example
shows.

Example 2.5.1 (Szőke, [Sz95]). The tangent bundle TS1 of the unit circle,
equipped with the adapted complex structure induced by the standard metric on
S1, is biholomorphic to the punctured complex plane C∗. Let Tn = S1×· · ·×S1

the n-dimensional torus with the product metric. Then T (Tn) with its adapted
complex structure is biholomorphic to C∗n := C∗×· · ·×C∗. For any holomorphic
function f : C→ C,

(C∗)n −→ (C∗)n (2.5.1)

Φ : (z1, z2, z3, . . . , zn) 7−→ (ef(z1z2)z1, e
−f(z1z2)z2, z3, . . . , zn) (2.5.2)

is an element of Aut(C∗n), showing the infinite dimensionality of Aut(T (Tn)).

Instead of a torus we can take any compact Lie group K different from the
unit circle, Aut(KC)) will be infinite dimensional [Sz98, Corollary 2.6]

Example 2.5.2 (Szőke, [Sz95]). Suppose that Γ is a lattice in Rn such that the
quotient manifold M := Rn/Γ, i = 1, 2 is diffeomorphic to the n-torus. Denote
by gΓ the induced metric on M . Considering the lattice Γ as being in the totally
real part of Cn = Rn + iRn, we can form the complex manifold Cn/Γ. Since
Cn = TRn carries the complex structure adapted to the Euclidean metric on
Rn, the underlying differentiable manifold of the complex manifold Cn/Γ will be
TM and the complex structure on it is adapted to gΓ.

It is straightforward to check that all the complex manifolds Cn/Γ will be
biholomorphic to (C∗)n, but the arising Riemannian manifolds (M, gΓ), for dif-
ferent choices of Γ, are not all isometric.

This example shows that the analogue of Theorem 2.3.2 for tubes with infi-
nite radius is false.

As a contrast to Example 2.5.2, we can prove now a rigidity theorem for
tubes with infinite radius.
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2.5.1 Proof of Theorem 2.1.3

As in the proof of Theorem 2.1.1, let ρ1 and ρ2 be the norm-square functions
on TM and TN . (2.1.2) implies

∂∂̄ρ1 = Φ∗∂∂̄ρ2 = ∂∂̄(ρ2 ◦ Φ). (2.5.3)

Let
λ := ρ2 ◦ Φ− ρ1. (2.5.4)

According to (2.5.3), λ is a pluriharmonic function on TM . Since H1(M,R) = 0,
we can find a holomorphic function Λ : TM → C, such that the imaginary part
of Λ is the function λ.

Lemma 2.5.3 (Szőke, [Sz95]). Let γ : R → M be a unit speed geodesic. Then
there exist A, βγ ∈ R, (βγ depends on γ) such that for every z = σ + iτ ∈ C,

ρ2 ◦ Φ(γ∗z) = τ2 + βγτ +A = ρ1(γ∗(z)) + βγτ +A (2.5.5)

Proof of Lemma 2.5.3. Let x ∈ N and q ∈ TxN . Denote by distκg and distκh
the distance function for the metric κg and κh respectively. From [LSz91] or
[PW] we know that

distκh(q, x) = distκh(q,N) = ||q||h. (2.5.6)

Let now m be an arbitrary point of M and p ∈ TmM . Denote by x ∈ N the
image of the point Φ(p) under the projection map π : TN → N . Then (2.5.6)
implies

||Φ(p)||h = distκh(Φ(p), x)

≤ distκh(Φ(p),Φ(m)) + distκh(Φ(m), x)

= distκg (p,m) + distκh(Φ(m), x)

≤ ||p||g + max
a∈M,b∈N

distκh(Φ(a), b) = ||p||g + C.

(2.5.7)

Taking square of both sides of (2.5.7), we obtain

ρ2 ◦ Φ(p) ≤ ρ1(p) + 2||p||gC + C2. (2.5.8)

Since λ is pluriharmonic (see (2.5.3) and (2.5.4)) and γ∗ is holomorphic, the
function v(z) := λ(γ∗(z)) is harmonic on C. The estimate (2.5.8) with p = γ∗(z)
gives

v(z) = λ(γ∗(z)) = ρ2(Φ(γ∗(z))− ρ1(γ∗z) ≤ 2|τ |C + C2. (2.5.9)

Harmonic functions on the complex plane with such growth condition can only
be linear (see [SaZ, (10.13), p. 335]), hence there exist βγ , Aγ such that

v(z) = βγτ +Aγ . (2.5.10)

Notice that Aγ is the value that the function λ takes along the curve γ. In
particular λ is a constant function along any geodesic in M . This implies that
Aγ does not depend on γ. (2.5.9) and (2.5.10) now imply our claim.

20

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



End of the proof of Theorem 2.1.3. Let now γ be any unit speed geodesic
in M . It follows from (2.5.4) and (2.5.5) that the holomorphic function Λ(γ∗(z))
must be of the form

Λ(γ∗(z)) = βγz + iA+ Ãγ , (2.5.11)

for some real number Ãγ . By our assumption M is compact and hence the real
part of Λ is bounded there. (2.5.11) implies that along the geodesic γ,

Re Λ(γ∗(σ)) = βγσ + Ãγ .

This yields βγ = 0. Therefore (2.5.5) reads as

ρ2(Φ(γ∗(z))) = ρ1(γ∗(z)) +A. (2.5.12)

This is true for every unit speed geodesic. Thus for every p ∈ TM ,

||Φ(p)||2h = ||p||2g +A. (2.5.13)

Plugging a point of M into (2.5.13) we obtain that A must be nonnegative.
On the other hand Φ is onto and thus for some p ∈ TM the left side of (2.5.13)
must vanish. This gives that A = 0 and therefore Φ maps M diffeomorphically
onto N . Φ was an isometry, thus its restriction to the zero section, which we
will call f , will also be an isometry. Since the restriction of the Kähler metric
κg (resp. κh) gives back the original metric g (resp. h) (see the remarks after
(1.2.11)), f : (M, g)→ (N,h) is also an isometry. The biholomorphisms Φ and
f∗ (see [LSz91]) agree on the maximal dimensional totally real subset M , hence
they must agree everywhere.

Remarks. If H1(M,R) is nontrivial, we can have other biholomorphic isometries
besides the ones that come from isometries between M and N . For instance
take (M, gΓ) as in Example 2.5.2. In Cn any translation with a nonzero, purely
imaginary vector is a holomorphic isometry, which descends to T (M) = Cn/Γ
and does not preserve the zero section.

2.6 Complexifying the isometry group action.

From [PW, Sz91] one knows that the round metric on the n-dimensional sphere
Sn induces its adapted complex structure on the entire tangent bundle and as
a complex manifold TSn is biholomorphic to the affine hyperquadric, Qn

Qn = {(z1, . . . , zn+1) ∈ Cn+1 | z2
1 + · · ·+ z2

n+1 = 1}.

Question: what is the group of biholomorphisms of Qn ∼= TSn? Even though
we do not know the answer to this question, it is clear that Qn admits many
biholomorphic selfmaps that do not arise from an isometry of Sn. Namely the
complex orthogonal group O(n+ 1,C) is a subgroup of Aut(Qn).

The main purpose of this section is to construct, for a given compact Rie-
mannian manifold (M, g) with adapted complex structure on TM , elements of
Aut(TM) which are not of the form ϕ∗ : TM → TM , for some ϕ ∈ Isom(M, g).
First we need some preparatory lemmas and propositions.
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Theorem 2.6.1 (Fatou [Koo]). Let u be a positive harmonic function defined
on C+. Then there exist a non-negative Borel measure µ on the real line and
a non-negative real number α, such that

∫
R 1/(1 + t2)dµ(t) is finite and for any

ζ = σ + iτ ∈ C+,

u(ζ) = ατ +
1

π

∫
R

τ

|w − t|2
dµ(t). (2.6.1)

Define the domain Dt ⊂ C by

Dt := {ζ = σ + iτ ∈ C | |σ| < 1, 1 < τ}.

Lemma 2.6.2 (Szőke, [Sz95]). There exists real numbers 0 < c1 < 1 < c2 with
the property that for any ζ = σ + iτ ∈ Dt and t ∈ R we have

c1
(1 + t2)

1

τ
<

τ

τ2 + (σ − t)2

c2
1 + t2

>
(τ − 1)2

[(σ − t)2 + 1][(σ − t)2 + τ2]
.

(2.6.2)

Proof. An easy calculation, left to the reader.

Lemma 2.6.3 (Szőke, [Sz95]). There exist positive real numbers c, C such that
for every holomorphic function f : C+ → C+ , and ζ = σ + iτ ∈ Dt we have

c

 min
|σ|≤1
z=σ+i

[Imf(z)]

 1

τ
< Imf(ζ) < C

 max
|σ|≤1
z=σ+i

|f(z)|

 τ, (2.6.3)

|Re f(ζ)| ≤ C max
|σ|≤1
z=σ+i

|f(z)|. (2.6.4)

Proof. Applying (2.6.1) to the imaginary part of f , for any ζ = σ+ iτ ∈ C+ we
get (for some nonnegative α and nonnegative Borel measure µ)

Im f(σ + iτ) = ατ +
1

π

∫
R

τ

(σ − t)2 + τ2
dµ(t). (2.6.5)

In particular for ζ = i, (2.6.5) gives

Im f(i) = α+
1

π

∫
R

1

1 + t2
dµ(t). (2.6.6)

Since µ is nonnegative, this yields that 0 ≤ α ≤ Imf(i).
Applying the estimate (2.6.2) to the integrand in (2.6.5) and using (2.6.6),

we obtain

Im f(σ+ iτ) > ατ +
1

π

∫
R

c1
τ(1 + t2)

dµ(t) =
α(τ2 − c1)

τ
+ c1

Imf(i)

τ
≥ Imf(i)

τ
c1.

This proves the left side of (2.6.3). To prove the rest, we have to differentiate
(2.6.5) with respect to ζ:

f ′(σ + iτ) = α+
1

π

∫
R

1

(σ − t+ iτ)2
dµ(t).
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This yields, by changing the order of integration,

f(ζ) = f(σ + i) +

∫ ζ

σ+i

f ′(z)dz

= f(σ + i) + iα(τ − 1) +
1

π

∫
R

i(τ − 1)

(σ − t+ i)(σ − t+ iτ)
dµ(t).

(2.6.7)

Using (2.6.2) and (2.6.6), we can estimate the integral in (2.6.7) by above,

∣∣∣∣ 1π
∫
R

i(τ − 1)

[σ − t+ i][σ − t+ iτ ]
dµ(t)

∣∣∣∣ ≤ √c2π
∫
R

1

1 + t2
dµ(t) ≤

√
c2Im f(i).

Applying this estimate, taking real and imaginary parts of (2.6.7) and using
the upper bound for α from (2.6.6) now yield our claims.

Lemma 2.6.4 (Szőke, [Sz95]). Let K be a compact topological space. Suppose
that we have a continuous map

F : K × C+ → Hn.

Assume that for every y ∈ K the map

F (y, .) : C+ → Hn

is holomorphic. Then there exists a constant A > 0, such that for every ζ =
σ + iτ ∈ Dt, and y ∈ K we have (|| || denotes the matrix norm)

||Re F (y, ζ)|| ≤ A,
||Im F (y, ζ)|| ≤ Aτ,
||(Im F )−1(y, ζ)|| < Aτ.

(2.6.8)

Proof. Let w ∈ Rn, ||w|| = 1. Define fw : K × C+ → C, by

fw(y, ζ) := 〈F (y, ζ)w,w〉.

Then the real (resp. imaginary) part of fw is the function (y, ζ) 7→ 〈ReF (y, ζ)w,w〉
(resp. 〈ImF (y, ζ)w,w〉). In particular fw maps into C+ and thus for every fixed
y ∈ K, ζ ∈ Dt, the estimates (2.6.3) and (2.6.4) hold.

Denote by L the compact set

{(x, z, w) ∈ K × C× Rn | |σ| ≤ 1, z = σ + i, ||w|| = 1}.

Then for every y ∈ K, ζ ∈ Dt we have (using (2.6.4))

||ReF (y, ζ)|| = max
w∈Rn
||w||=1

|Refw(y, ζ)| ≤ C
(

max
L
|〈F (x, z)w,w〉|

)
.

This proves the first inequality in (2.6.8). Using (2.6.3) in a similar way, now
yields the second and the third estimate.
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Proposition 2.6.5 (Szőke, [Sz95]). Let (M, g) be a Riemannian manifold which
admits an adapted complex structure on the entire tangent bundle. Let X be an
element of the Lie algebra of the isometry group Isom(M, g). Denote by X# the
induced infinitesimal vector field on TM (by the action of Isom(M, g) on TM).
Then X1,0

# is holomorphic on TM .

Proof. Isom(M, g) acts on TM by biholomorphisms (see [LSz91]). Let

f : R× TM −→ TM

(t, p) 7−→ (exp tX)∗p.
(2.6.9)

Then X# = df/dt|t=0 . Proposition 2.2.2 now implies our claim.

Theorem 2.6.6 (Szőke, [Sz95]). Let (M, g) be a compact Riemannian manifold.
Suppose that an adapted complex structure exists on the entire tangent bundle.
Let κg be the induced Kähler metric. Let X be an element of the Lie algebra of
the isometry group Isom(M, g). Denote by X# the induced infinitesimal vector
field on TM (by the action of Isom(M, g) on TM). Then there exist positive
constants AX and BX such that

||X#(p)||κg ≤ AX ||p||g +BX , (2.6.10)

for every p ∈ TM.

Proof. Let p be a point in TM with norm one. Let ε be a small, positive number.
Denote by Dε the ball in R2n−2 with radius ε. If ε is small enough, then we
can choose a neighbourhood Up of the point p in the unit sphere bundle of TM ,
such that Up is diffeomorphic to Dε × (−ε, ε) (because of [Le, Theorem 1.5], we
can assume that in fact we have a real analytic diffeomorphism) and under this
diffeomorphism ψ, the curves (for every fixed point y ∈ Dε)

t 7→ (y, t) ∈ Dε × (−ε, ε),

correspond to the trajectories of the geodesic flow. Thus Dε parametrizes the
trajectories of the geodesic flow in the neighbourhood Up.

For a fixed point q ∈ Up, take all positive multiples of q, to get a half line in
the tangent space Tπ(q)M . If we do this for every point in Up, the union of these
half lines provides us a domain Wp in TM . With the help of the diffeomorphism
ψ, we can get another diffeomorphism Ψ1,

Ψ1 : D := Dε × (−ε, ε)× (0,∞) −→Wp, (y , σ , τ ) 7−→ τψ(y, σ).

Choose real analytic vector fields ξ1, . . . , ξn, η1, . . . , ηn along the map ψ(., 0) :
Dε → Up (i.e. ξj(ψ(y, 0)), ηk(ψ(y, 0)) are elements of Tψ(y,0)TM) such that for
every point y ∈ Dε, q := ψ(y, 0)

ξ1(q), . . . , ξn(q), and η1(q), . . . ηn(q)

are the horizontal and vertical lifts of an orthonormal frame v1, . . . , vn ∈ Tπ(q)M ,
and vn = q. Extend now the vector fields ξj , ηk to be defined on D and invariant
with respect to the geodesic flow Φt (−ε < t < ε) and to the Ns (0 < s) actions
(see (1.2.2)), and call these extended fields with the same name.
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This way we obtained vector fields along the map Ψ1 : D → TM , such that
for every q = ψ(y, 0), the frame {ξj , ηj}nj=1 is a (restriction of a) symplectic
frame along the leaf Lq of the Riemann foliation, defined by q (see (1.2.2) and
the discussion above (1.2.8)).

Since X# is coming from the isometry group action, the vector field X# is
parallel along every leaf of the Riemannian foliation. Moreover, according to
Proposition 2.6.5, X1,0

# is holomorphic. Therefore there exists smooth (in fact
real analytic) functions

α1, . . . , αn, β1, . . . , βn : Dε → R,

such that for every (y, σ, τ) ∈ D,

X#(Ψ1(y, σ, τ)) =

n∑
j=1

αj(y)ξj(Ψ1(y, σ, τ)) +

n∑
k=1

βk(y)ηk(Ψ1(y, σ, τ)). (2.6.11)

For a point y ∈ Dε, denote by γy the unit speed geodesic, with initial datum
γ̇y(0) = ψ(y, 0). Thus for (y, σ, τ) ∈ D, ζ = σ + iτ we have that Ψ1(y, σ, τ) =
γy∗(ζ).

From Theorem 2.2.3 we obtain a map

F = (fjk) : Dε × C+ −→ Hn,

such that

η1,0
k (γy∗(ζ)) =

n∑
j=1

fjk(y, ζ)ξ1,0
j (γy∗ζ),

and because of our choice, F is also real analytic in the subdomain D ⊂ Dε×C+.
From the same theorem it also follows that for every y ∈ Dε, the map

F (y, .) : C+ → Hn

is holomorphic. According to [Sh, Theorem 1], this implies that

F : Dε × C+ −→ Hn

is real analytic. (Continuity would actually be enough for our purposes.) Let

α := (α1, . . . , αn), β := (β1, . . . , βn) : Dε → Rn.

Then (2.2.6) and (2.6.11) yield for any ζ ∈ C+, y ∈ Dε, p := γy∗(ζ)

〈X#, X#〉κg (p) = ||p||g{〈(Im F )−1(y, ζ)α(y), α(y)〉
+ 2〈((Im F )−1Re F )(y, ζ)α(y), β(y)〉
+ 〈[(Re F (Im F )−1Re F )(y, ζ)

+ Im F (y, ζ)]β(y), β(y)〉}.

(2.6.12)

Using our estimate (2.6.8), for K = Dε/2, we find a positive constant A = AK ,
such that for any ζ = σ + iτ ∈ Dt, and y ∈ K,
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〈(Im F )−1(y, ζ)α(y), α(y)〉κg ≤ A(sup
K
||α||2)τ

|〈[(Im F )−1Re F ](y, ζ)α(y), β(y)〉κg | ≤ A2(sup
K
||α|| sup

K
||β||)τ

|〈[Re F (Im F )−1Re F + Im F ](y, ζ)β(y), β(y)〉κg | ≤ (A3τ +Aτ) sup
K
||β||2.

(2.6.13)

(2.6.12) and (2.6.13) shows that for some positive real number Ã, and arbi-
trary z ∈ Ψ1(Dε/2 × (−ε, ε)× (1,∞)), we have

〈X#, X#〉κg (z) ≤ Ã||z||2g. (2.6.14)

Since the unit sphere bundle in TM is compact, we can choose a finite cover of
it with open subsets of the form ψ(Dε/2×(−ε, ε)). Hence we can find a constant

Ã, such that the estimate (2.6.14) in fact holds for every point z of the tangent
bundle with ||z|| ≥ 1, yielding our claim of (2.6.10).

Corollary 2.6.7 (Szőke, [Sz95]). Let (M, g) be a compact Riemannian manifold
which admits an adapted complex structure on the entire tangent bundle. Let
X be an element of the Lie algebra of Isom(M, g). Denote by X# the induced
infinitesimal vector field on TM . Then the flow of JX# is complete.

Proof. For the sake of brevity denote again by ρ the norm-square function on
TM and by κg the induced Kähler metric. From [LSz91, Prop.3.2] or [PW] we
know that

||gradρ||κg =
√
ρ.

Hence Theorem 2.6.6 yields

|(JX#)ρ(p)| = |〈gradρ, JX#〉κg (p)| ≤ CXρ(p) +DX , (2.6.15)

for some positive constants CX and DX . Since ρ is an exhaustion function on
TM , (2.6.15) implies (see [AM, Prop. 2.1.20], ) that the flow of JX# is indeed
complete.

To prove Theorem 2.1.4 we need one more ingredient.

Theorem 2.6.8 (Szőke, [Sz95]). Let (M, g) be a Riemannian manifold. Assume
that adapted complex structure exists on T rM for some positive number r. Let
Dr := {ζ = σ + iτ ∈ C | |τ | < r}. Suppose that we are given a function
h : T rM → C, that is real analytic along the zero section, and for every unit
speed geodesic γ, the composition map h ◦ γ∗ : Dr → C is holomorphic. Then h
is holomorphic.

Proof. In fact, this is implicitly contained in [Sz91]. [Le, Theorem 1.5] implies
that g is real analytic. The proof of [Sz95, Proposition 3.2], shows that h must
be holomorphic in an open neighbourhood of the zero section.

In order to prove that h is holomorphic everywhere, it suffices to show that
h is real analytic on T rM . We will use [Sh, Theorem 1] to achieve this.

Let p be a point of T rM \M with norm one. Choose a small open neighbour-
hood Up of p in the unit sphere bundle. We can assume that the Hamiltonian
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flow can be straightened out in Up, i.e. there exists an ε > 0 and a real-analytic
diffeomorphism

ψ : (−ε, ε)× Bε → Up,

(Bε ⊂ R2n−2 being the open ε-ball), such that the curves t 7→ ψ(t, x) are pre-
cisely the flow lines in Up, for every x ∈ Bε. Let

Dε = (−ε, ε)× (0, r)× Bε.

Then the map

Dε −→ T rM

Ψ : (σ, τ, x) 7−→ τψ(t, x)
(2.6.16)

is a real-analytic diffeomorphism onto its image. It is enough to show that the
composition map h◦Ψ is real-analytic. But using the fact that h is holomorphic
in a small neighbourhood of the zero section, we get that h ◦Ψ is real-analytic
in the region |σ| < ε, 0 < τ < ε, x ∈ Bε, and holomorphic in ζ = σ + iτ for each
x ∈ Bε. [Sh, Theorem 1] now implies our claim.

We are now ready to prove the main result of this section.

2.6.1 Proof of Theorem 2.1.4

Let G0 be the identity component of G. Since M is compact, G can have
only finitely many components. Hence it is enough to prove our statement for
the action of G0. Denote by A(TM) the complex vector space of holomorphic
vector fields on the complex manifold TM , i.e. A(TM) consists of vector fields
V such that V 1,0 is a holomorphic section of T 1,0TM . In fact A(TM) becomes
a complex Lie algebra if we take the obvious complex multiplication and Lie
bracket= minus the ordinary Lie bracket of vector fields. The integrability
of the almost complex tensor assures that A(TM) is indeed a complex Lie
algebra. The reason for the sign convention is to make things compatible with
induced infinitesimal generators. (See below.) Denote by g the Lie algebra of G.
From Proposition 2.6.5 we know that for any X ∈ g, the induced infinitesimal
generator X# on TM belongs to A(TM). The map

gC = g + ig −→ A(TM)

δ : X + iY 7−→ X# + JY#

(2.6.17)

is a C linear Lie-algebra monomorphism. (Lie-algebra homomorphism follows
from our sign convention see for example [AM, Proposition 4.1.26].)

Corollary 2.6.7 tells us that every element of L := δ(gC) induces a one
parameter group of diffeomorphisms of TM . It follows from Palais’ work (see

[Pa]), that there exists a unique, connected Lie group Ĝ0, whose underlying
group is a subgroup of the group of diffeomorphisms of TM , the Lie algebra of
Ĝ0 is L, the map

Ĝ0 × TM −→ TM

is differentiable (i.e. Ĝ0 is a connected Lie transformation group on TM , each

element of Ĝ0 different from the identity acts nontrivially on TM), and Ĝ0
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extends the G0 action on TM . (Hence G0 can also be considered a Lie subgroup

of Ĝ0.)

Since L is a complex Lie-algebra, the corresponding group Ĝ0 will be a
complex Lie group. Let G̃0 be the universal covering group of G0. Then TG̃0

∼=
(G̃0)C will be the universal cover of TG0

∼= (G0)C. By a theorem in Lie theory,
there exists a unique homomorphism,

∆ : (G̃0)C −→ Ĝ0,

with differential δ at the unit element.
Therefore ∆ is a holomorphic covering map. Then (since Ĝ0 extends the

action of G0)

Ker ∆ ⊃ K = Ker (G̃0 → G0) = Ker [(G̃0)C → (G0)C].

Thus we get a holomorphic covering map,

∆̃ : (G0)C = (G̃0)C/K −→ Ĝ0.

Hence (G0)C indeed acts on TM and since Ker ∆̃ is discrete (only the elements

of Ker ∆̃ act trivially on TM), the action is almost effective. Now we have to
show that the action is holomorphic.

Since the Lie-algebra of Ĝ0 is L ⊂ A(TM), all the elements of Ĝ0 that
belong to a 1-parameter subgroup, act by biholomorphisms on TM . But these
elements generate the whole group. Hence Ĝ0, and then of course (G0)C as well,
acts on TM by biholomorphisms. This implies that the transformation map

βC : (G0)C × TM −→ TM,

is holomorphic in the second variable. Since βC is smooth, in order to prove
that it is holomorphic in all its variables, it suffices to show that for any point
p ∈ TM , the map

βC
p : (G0)C → TM, (G0)C 3 a 7→ βC(a, p),

is holomorphic. From [Le, Theorem 1.5] we know that the metric on M is
real-analytic and therefore the restricted transformation map

β := βC∣∣
G0

: G0 × TM −→ TM,

is real-analytic and consequently βC
p

∣∣
G0

as well. Since TM is a Stein manifold,

we can think of βC
p as a map going into CN for some large N . Equipping

G0 with a two-sided invariant metric h, from Proposition 3.1.3 we know that
TG0 with the adapted complex structure of h is precisely (G0)C. Hence, using
Theorem 2.6.8, it suffices to prove that for any unit-speed geodesic γ : R →
G0, the composition map βC

p ◦ γ∗ is holomorphic. Because of homogeneity, it
suffices to check this for geodesics through the unit element, i.e. for 1-parameter
subgroups of G0. Let X ∈ g, γ(σ) = exp(σX) and ζ = σ + iτ . The induced
map is

γ∗ : TR ∼= C 3 ζ 7−→ exp(ζX) ∈ (G0)C.
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Hence the composition map βC
p ◦ γ∗ can also be written as a composition of the

holomorphic maps,

C 3 σ + iτ 7−→ σX# + τJX# ∈ L,

and
L 3 V 7−→ χV (1),

and thus itself is also holomorphic. Here χ is the trajectory of the vector field
V ∈ L with initial condition χ̇(0) = V (p). (This latter map is holomorphic since:
solutions of an O.D.E. that depends holomorphically on some parameters, also
depend holomorphically on the same parameters.)

29

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



Chapter 3

Compact, normal
Riemannian homogeneous
spaces

3.1 Adapted complex structures of compact, nor-
mal Riemannian homogeneous spaces

The main result of this chapter is the following theorem.

Theorem 3.1.1 (Szőke [Sz98]). Let K be a compact Lie group equipped with
a two sided invariant Riemannian metric g. Let L be a closed subgroup of
K and gn the induced Riemannian metric on M = K/L. Then the adapted
complex structure of gn exists on TM and with this complex structure TM is
biholomorphic to KC/LC.

Throughout this section K denotes a compact Lie group, L a closed sub-
group of K, g a two sided invariant Riemannian metric on K and gn the induced
Riemannian metric on M = K/L (the so called normal homogeneous Rieman-
nian metric). Two sided invarian (or biinvariant) means that left and right
translations in K are g−isometries.

It is well known that K can be imbedded into a unitary group U(N) (for
some large N) and from now on we tacitly always assume this. Denote by e the
identity matrix. Following [BD], the complexified group KC can be described
as follows. The underlying differentiable manifold for KC is just K × κ, where
κ = TeK is the Lie algebra of K. The group structure and the complex structure
can be defined by pulling back with the imbedding

Λ : K × κ −→ GL(N,C)

(a,X) 7−→ a exp(iX).
(3.1.1)

For an element a ∈ K denote by La the left translation La : b 7→ ab. With the
help of these diffeomorphisms, we can identify TK and KC:

∆ : TaK 3 Y 7−→ (a, (La)−1
∗ Y ) ∈ K × κ = KC. (3.1.2)
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Denote by l the Lie algebra of L and m the orthogonal complement, ie. κ = l+m.
Using the left K action on itself, the subspace m determines a subbundle M of
TK. Define the right L-action on K × κ by

(k,X)l := (kl, Ad(l−1)X). (3.1.3)

Since the metric g is two-sided invariant, the subspace m is AdL invariant and
the quotient space of K × κ w.r.t. the L-action of (3.1.3) is the vector bundle
K ×L m.

Let p : K → K/L be the projection and p∗ the induced map p∗ : TK →
T (K/L). The derivative of the right L-action on K gives a right L-action
on M and the restriction of ∆ to M gives an L-equivariant identification ∆M

between the bundles M and K × m. The quotient space M/L is precisely
T (K/L) and the quotient map is just p∗. The map ∆M descends to a map
∆K/L : T (K/L)→ K ×L m and the following diagram commutes.

TK ⊃M
∆M−−−−→ K ×m

p∗

y y
T (K/L)

∆K/L−−−−→ K ×L m.

The quotient map p : (K, g) → (K/L, gn) is a Riemannian submersion and at
any point k ∈ K the horizontal subspace is precisely Mk.

After all these preliminaries we only need to recall a result of Mostow (see
[Hei, Decomposition Theorem of Mostow in Sect. 3.1], cf. [Mo1, Mo2]).

Theorem 3.1.2. The map

Φ : K ×L m −→ KC/LC

(k, v) 7→ k exp(iv)LC.
(3.1.4)

is a K-equivariant diffeomorphism.

Proof of Theorem 3.1.1
The result follows from the following more precise theorem.

Theorem 3.1.3 (Szőke, [Sz98]). Let K be a compact Lie group and L a closed
subgroup of K. Let g be a two-sided invariant Riemannian metric on K. Then
Φ◦∆K/L is a biholomorphism between T (K/L) (with the adapted complex struc-
ture to gn) and KC/LC.

The special case L = {e} was already treated in [Sz95, Proposition 3.5].

Proof. Step 1:
Suppose L = {e}. We need to show that pulling back the complex structure

of GL(N,C) by Λ ◦∆ : TK → K × κ → GL(N,C) is adapted to g. Let γ be
an arbitrary geodesic through b ∈ K. Since g is two-sided invariant, γ can be
written as γ(σ) = b exp(σX), for some X ∈ κ. Since for any σ + iτ ∈ C,

(Lγ(σ))
−1
∗ (τ γ̇(σ)) = τ

d

dt

∣∣∣∣
t=σ

[γ(σ)−1γ(t)] = τ
d

dt

∣∣∣∣
t=0

{exp[(t− σ)X]} = τX,
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the composition map Λ ◦∆ ◦ γ∗ : C→ GL(N,C) is

ζ := σ + iτ 7→ b exp(σX) exp(iτX) = b exp(ζX),

that is holomorphic in ζ. Hence the complex structure is indeed adapted.
Step 2:
Let now γ : R → K/L be a gn geodesic. Since the projection map p :

(K, g)→ (K/L, gn) is a Riemannian submersion, γ can be lifted to a horizontal
geodesic γ̃ : R→ K (see for example [Bes, p.245, 9.42]). Horizontal means that
in fact γ̃∗ : TR→M, ie. γ̃(σ) = b expσX, where X ∈ m.

To show that the complex structure on T (K/L), given by the pull-back
w.r.t. Φ ◦ ∆K/L is adapted to gn, it is necessary and sufficient to check that
the composition Φ ◦ ∆K/L ◦ γ∗ : TR → KC/LC is holomorphic. This follows
from Step 1, the discussion before Theorem 3.1.2, the holomorphicity of π and
the commutativity of the diagram below. (We think of the group KC as the
complex subgroup of GL(N,C), KC = Λ(K ×m). )

C γ̃∗−−−−→ M −−−−→ K ×m
Λ−−−−→ KC

id

y p∗

y y π

y
C γ∗−−−−→ T (K/L)

∆K/L−−−−→ K ×L m
Φ−−−−→ KC/LC.
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Chapter 4

Geodesic flow invariant
involutive structures

An involutive structure on a smooth manifold X is simply a complex subbundle
V of the complexified tangent bundle of X with the property: for every (local)
sections Z1, Z2 of V their Lie bracket [Z1, Z2] is again a (local) section of V . This
notion is a natural generalization of foliations and complex and CR structures.
Their local properties were treated by Treves in [Tr] in great details. Some global
results were obtained by Hanges and Jacobowitz in [HJ] (general involutive
structures over compact manifolds) and by Jacobowitz [J], Meziani [Mez] and
Anbo Le [Le] (Mizohata structures). In the theory of geometric quantization
a specific kind of involutive structure, the so called complex polarization (see
section 4.2.4. and the book of Woodhouse [W]) plays a crucial role.

In this chapter we consider certain involutive structures on (parts of) TM ,
when M is a compact symmetric space. They arise as the limits of pushing
forward the adapted complex structure on TM by a certain 1-parameter group
of diffeomorphisms (see (4.0.1)). When the rank is 1, this limit structure is a
genuine complex structure. In the higher rank cases it shows a more complicated
behavior. We treat these cases separately in the next two sections.

In this chapter we use the following notation. The punctured tangent bundle

of a Riemannian manifold (M, g) is the set T̊M := TM \M (similarly T̊
∗
M).

Let Φε : T̊M → T̊M be the diffeomorphism

Φε(v) = ε exp(‖ v ‖) v

‖v‖
. (4.0.1)

4.1 Rank-1 symmetric spaces

The main purpose of this section is to explore the relationship of two complex
structures arising from different constructions on tangent bundles of compact
rank-1 symmetric spaces. The first of these is the adapted complex structure JA.
The second comes from geometric quantization. Since in this section only the
differential geometric nature of the latter complex structure matters, geometric
quantization itself will be discussed only later, in part two of this dissertation.

The second kind of complex structure JS lives on the punctured (co)tangent
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bundle of compact, rank-1 symmetric spaces. (Since the metric identifies TM
and T ∗M , from this point of view it does not matter which bundle we take.)

For spheres it was Souriau who in [So2] identified the regularized Kepler
manifold with the punctured (co)tangent bundle T̊∗Sn. He also defined a com-
plex manifold structure on this space, by showing that it is diffeomorphic to the
singular affine hyperquadric Q0 (cf. section 4.1.2).

Later it was observed by Rawnsley [Ra1], that the norm function is strictly
plurisubharmonic with respect to JS and thus it defines a Kähler metric on
T̊Sn. He also observed that the Kähler form of this metric is ω, the canonical
symplectic form (cf. (1.2.4)) restricted to T̊Sn. He also showed that JS is
invariant w.r.t. the normalized geodesic flow. Rawnsley used this in [Ra2] to
quantize the geodesic flow of spheres.

Subsequently Furutani and Tanaka [FT] defined a Kähler structure on the
punctured cotangent bundle of complex and quaternionic projective spaces.
Their Kähler structure is also invariant w.r.t. the normalized geodesic flow. Fu-
rutani and Yoshizawa [FY] used this Kähler structure to quantize the geodesic
flow on complex and quaternionic projective spaces.

Furutani and Tanaka described their Kähler structures in terms of matri-
ces in the spirit of Lie groups. A more geometric description of the complex
(Kähler) structure on T̊M (where M now can be either a sphere, a complex or
quaternionic projective space or their quotient w.r.t. a discrete group of isome-
tries) was given by Ii and Morikawa [IM]. We shall use Ii-Morikawa’s description
of these structures (see section 4.1.2 for more details).

4.1.1 The main result

The main result of this section is the following.

Theorem 4.1.1 (Szőke,[Sz99]). Let (M, g) be a compact, rank-1 symmetric
space. Then on T̊M the following limit complex structure J0 exits (Φε is from
(4.0.1)).

lim
ε→0

(Φε)∗JA = J0. (4.1.1)

The maps Ns, s > 0 (cf. 1.2.1) and the normalized geodesic flow are J0 holo-
morphic. When M is the sphere, J0 agrees with JS and for the complex and
quaternionic projective spaces it coincides with the structure studied in the pa-
pers ([FT, IM]).

Remarks. The theorem gives a unified treatment of all rank-1 symmetric spaces
and includes the missing exceptional Cayley projective plane as well, that was
not studied in the papers above.

Since the entire construction and the proof is compatible with taking quo-
tients w.r.t. a discrete subgroup of the isometry group, the result of Theo-
rem 4.1.1 is valid for such quotients as well.

4.1.2 Complex structures on T̊M

Let t ≥ 0. The complex n−dimensional quadric Qt is defined by

Qt = {z ∈ Cn+1 |
n+1∑
j=1

z2
j = t}. (4.1.2)

34

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



Qt is a complex submanifold when t > 0 and it has one singular point, the
origin for t = 0. When t > 0, Qt is biholomorphic to Q1. The adapted complex
structure of the round metric on the sphere Sn is defined on the whole tangent
bundle TSn and (TSn, JA) is biholomorphic to Q1. This latter fact can be seen
by taking the standard realization of TSn

{(e,X) ∈ Rn+1 × Rn+1 | ‖e‖ = 1, < e,X >= 0}. (4.1.3)

Then one can check that the complex structure on TSn using the diffeomorphism
δ : TSn → Q1

δ(e,X) := cosh(‖X‖)e+ i
sinh(‖X‖)
‖X‖

X (4.1.4)

is adapted to the round metric. Consequently for all t > 0, Qt \ Rn is also
biholomorphic to (T̊Sn, JA).

The complex structure JS on T̊Sn is obtained by pulling back the complex
structure of Q0 by the diffeomorphism T̊Sn → Q0 \ {0} defined by

(e,X) 7→ z = ||X||e+ iX (4.1.5)

Ii and Morikawa’s ([IM]) description of JS on T̊Sn is as follows. For 0 6=
z ∈ TpSn, JS maps horizontal vectors at z to vertical vectors according to the
formula

JSv
H
z = ||z||vVz , v ∈ TpM. (4.1.6)

Proposition 4.1.2 (Szőke,[Sz99]). The complex manifolds (T̊Sn, JA) and (T̊Sn, JS)
are not biholomorphic.

Proof. The statement is equivalent to showing that X = Q0 \ {0} and Y =
Q1 \ Sn are not biholomorphic. Suppose on the contrary that ψ : Y → X is a
biholomorphism. We can apply a theorem of Hartogs (see [Sha]), to conclude
that ψ has a holomorphic extension ψ̃ : Q1 → Cn+1 (the theorem we use
here says that if N is a complex manifold, L ⊂ N a real submanifold of real
codimension at least 2 and ψ : N \L→ C is holomorphic which does not extend
holomorphically to a point q ∈ L, then in a neighborhood of q, L is a complex
submanifold).

Since Q is defined as the zero set of a holomorphic function, therefore ψ̃ also
maps into Q0. Since ψ is biholomorphic and ψ̃ is holomorphic, ψ̃(Sn) must be
the point 0. But Sn is a maximal dimensional totally real submanifold in Q,
hence ψ̃ must be constant, a contradiction.

Despite of Proposition 4.1.2, JA and JS do have something to do with each
other. The complex manifold Q0 \ Rn = Q0 \ {0} is in some sense the limit of
the complex manifolds Qt \ Rn when t goes to zero. This gives the idea to try
to push forward JA by a family of diffeomorphisms in such a way that the limit
of these push forwards is JS . This indeed can be done as our Theorem 4.1.1
shows, but before we go on with the proof, we give another description of the
complex structures studied in [FT, IM, Ra1, So2].

Let (M,< ., . >) be a Riemannian manifold. Then Rz = R(., z)z is the
Jacobi operator, where R denotes the curvature tensor. Rz is self-adjoint and
z always belongs to its kernel. When M is a compact rank-1 symmetric space,
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Rz is positive semidefinite and its kernel is one dimensional, spanned by z. We
shall need a modified operator R̂z : TpM → TpM , defined as follows

R̂z(X) =< X, z > z +Rz(X) =< X, z > z +R(X, z)z. (4.1.7)

R̂z now is positive definite and we get an almost complex tensor J0 : Tz(TM)→
Tz(TM) in the horizontal and verical decomposition Tz(TS

n) = Hz + Vz, by
the formula

J0 =

 0 −
(√

R̂z

)−1√
R̂z 0

 . (4.1.8)

Examples.

1. Let (M, g) have constant curvature 1. Then the curvature tensor R has a
particularly simple form R(X,Y )Z =< Y,Z > X− < X,Z > Y.

Therefore in this case R̂z(X) =< z, z > X. This implies that for z 6= 0
the complex structure JS of (4.1.6), agrees with J0.

2. Let now (M, g, J) be a Kähler manifold of constant holomorphic sectional
curvature 4. Then the curvature tensor has the following form

R(X,Y )Z =< Y,Z > X− < X,Z > Y− < Y, JZ > JX

+ < X, JZ > JY + 2 < X, JY > JZ.
(4.1.9)

This yields
R̃zv =< z, z > v + 3 < v, Jz > Jz. (4.1.10)

From this it follows:√
R̃zv =

< v, Jz >

‖z‖
Jz + ‖z‖v, z 6= 0. (4.1.11)

The complex structure on T̊M studied by Furutani and Tanaka in [FT] is
defined by (see [IM])

J1(vHz ) =

{
2‖z‖vVz , if v = αJz, for some α ∈ R
‖z‖vVz , if v ⊥ Jz.

(4.1.12)

It follows from formula (4.1.11) that J1 in fact has the form of (4.1.8).

3. Let (M, g, I1, I2, I3) be a quaternion Kähler manifold of constant Q-sectional
curvature 4. Then

R(X,Y )Z = < Y,Z > X− < X,Z > Y

−
3∑
i=1

< Y, IiZ > IiX+ < X, IiZ > IiY + 2 < X, IiY > IiZ

(4.1.13)

This yields

R̃zv =< z, z > v +

3∑
i=1

< v, Iiz > Iiz. (4.1.14)
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Thus √
R̃zv = ‖z‖v +

3∑
i=1

< v, Iiz >

‖z‖
Iiz. (4.1.15)

The complex structure of Furutani-Tanaka is defined on T̊M by (see [IM])

J2v
H
z =

{
2‖z‖vVz , if v =

∑3
i=1 αiIiz for some αi ∈ R

‖z‖vVz , if v ⊥ Iiz, i = 1, 2, 3.
(4.1.16)

Comparing this to formula (4.1.15) yields that J2 again has the form
(4.1.8).

Proof of Theorem 4.1.1. We shall prove that limε→0(Φε)∗JA exists and has
the form of (4.1.8).

Step 1.
The diffeomorphism Φε maps any leaf of the Riemann foliation (cf. sec-

tion 1.2.1) onto itself. First we shall prove the existence of the limit complex
structure along a leaf.

Let γ : R→M be a unit speed geodesic. Denote by S the upper half plane.
Then γ∗ : S → TM , (σ + iτ) 7→ τ γ̇(σ) parametrizes a leaf. Define ψε : S → S
by ψε(σ+ iτ) = σ+ iε exp τ. Then ψε is a diffeomorphism of S and the following
diagram commutes:

S
γ∗−−−−→ (TM, JA)

ψε

y Φε

y
S

γ∗−−−−→ (TM, JA).

(4.1.17)

Denote by J+ the complex structure tensor on S. Since γ∗ is holomorphic, we
get

(Φε)∗JA = (Φε)∗(γ∗)∗J+ = (γ∗)∗(ψε)∗J+. (4.1.18)

Now let σ1 + iτ1 ∈ S. It follows from the definition of ψε, that

(ψε)∗
(
∂σ|σ1+iτ1

)
= ∂σ|σ1+iε exp τ1

(4.1.19)

and

(ψε)∗
(
∂τ |σ1+iτ1

)
= εeτ1∂τ |σ1+iε exp τ1

. (4.1.20)

This implies that the push forward complex structure at a fixed point σ0+iτ0
can be computed as follows

[(ψε)∗ J+]
(
∂σ|(σ0+iτ0)

)
= (ψε)∗

(
J+|(σ0+i log(τ0/ε))

(
∂σ|(σ0+i log(τ0/ε))

))
= (ψε)∗

(
∂τ |(σ0+i log(τ0/ε)

)
= ε exp(log(τ0/ε) ∂τ |(σ0+iτ0)

= τ0 ∂τ |(σ0+iτ0)

(4.1.21)
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Let Y = γ̇(σ0) and X = τ0Y . Recall from (1.2.7) that

(γ∗)∗

(
∂σ|(σ0+iτ0)

)
= Y Hz , (γ∗)∗

(
∂τ |(σ0+iτ0)

)
= Y Vz . (4.1.22)

Furthermore

R̂X(Y ) =< Y,X > X, (4.1.23)

hence √
R̂XY =

< Y,X >

‖X‖
X = X. (4.1.24)

So we get

J0

(
(γ∗)∗

(
∂σ|(σ0+τ0)

))
= J0Y

H
z = XV

X = (γ∗)∗

(
τ0∂τ |(σ0+iτ0)

)
. (4.1.25)

(4.1.18), (4.1.21), (4.1.25) together imply that the image γ∗(S) is a complex sub-
manifold w.r.t. both structures, J0 and (Φε)∗JA and in fact these two complex
structures coincide.

Step 2.
There is another natural distribution on T̊M (cf. [LSz91]), denoted by H,

that at a point z ∈T̊M is defined by (ρ : TM → R is from 1.2.11 and ϑ the
canonical 1-form (see (1.2.3))

Hz := kerϑz ∩ ker dρ. (4.1.26)

H and the Riemann foliation (cf. 1.2.1) are complementary distributions, ie. if
Lz is the leaf of the foliation through z, then Tz(T̊M) = Lz +Hz.

To complete the proof of the theorem we need to show the existence of the
limit limε→0(Φε)∗JA, when we restrict ourselves to the distribution H.

Let ε > 0 and p ∈ T̊M be fixed, ‖p‖ = c, define vn = p/c, r = log(c/ε),
q = (r/c)p, λ = (εer)/r. Then Φε maps the hypersurface Sr = {u = r} onto
Sc = {u = c}.

As before denote by Nλ the diffeomorphism of TM that is multiplication by
λ in the fibers. It is clear that

Φε|Sr = Nλ|Sr . (4.1.27)

Choose eigenvectors v1, . . . , vn−1 of Rvn such that together with vn they form
an orthonormal basis for Tπ(p)M . Recall from (1.2.13)

JA(vj)
H
q = h(

√
Λjr)(vj)

V
q , (4.1.28)

where h(x) = x cothx. From (1.2.6) we know

(Nλ)∗(vj)
H
q = (vj)

H
p , (Nλ)∗(vj)

V
q = (c/r)(vj)

V
p . (4.1.29)

From (4.1.27), (4.1.28) and (4.1.29) we get
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(Φε) ∗ JA(vj)
H
p = (Φε)∗

(
JA((Φε)

−1
∗ (vj)

H
p )
)

= (Φε)∗(JA(vj)
H
q )

= (Φε)∗

(
h(
√

Λjr)(vj)
V
q

)
= h(

√
Λjr)(c/r)(vj)

V
p .

(4.1.30)

Now r →∞ as ε→ 0. Hence h(
√

Λjr)(c/r) =
√

Λj coth(
√

Λjr)c→
√

Λjc.
This together with (4.1.30) implies

lim
ε→0

(Φε)∗JA(vj)
H
p =

√
Λjc(vj)

V
p . (4.1.31)

On the other hand

R̂pvj =< vj , p > p+Rp(vj)

=< vj , cv1 > cv1 + c2Rv1vj

= c2Λjvj .

(4.1.32)

This implies
J0(vj)

H
p = c

√
Λj(vj)

V
p . (4.1.33)

Finally (4.1.31) and (4.1.33) together imply that indeed limε→0(Φε)∗JA exists
and equals to J0. The examples after (4.1.8) show that J0 in fact coincides
with the complex structure studied by Furutani, Tanaka, Ii and Morikawa. The
normalized geodesic flow was shown to be J0-holomorphic in [IM].

Let now s > 0, 0 6= p ∈ TmM and v ∈ TmM be arbitrary. Define w by

w =
√
R̂spv. From the definition of R̂sp we get that

w = s

√
R̂pv. (4.1.34)

This together with the action (1.2.6) of (Ns)∗ and the definition (4.1.8) of J0

yields:

J0|sp (Ns)∗v
H
p = J0|sp v

H
sp = wVsp = (Ns)∗J0v

H
p , (4.1.35)

i.e. Ns is indeed J0-holomorphic.

4.2 Higher rank symmetric spaces

4.2.1 Preliminaries and the main results

Let (M, g) be a Riemannian manifold, π : TM →M its tangent bundle, z ∈ TM
and m = π(z) R the curvature tensor of g and Rz the curvature operator (see
1.2.12). Recall the operator

R̂z = g(., z)z +Rz (4.2.1)

from (4.1.7).
Let now (M, g) be a locally symmetric space whose universal cover is com-

pact. When the rank is larger than 1, there is no analogous complex structure
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to JS defined apriori. We need to find out what it should be. The operator R̂z
is only positive semi-definite but at least it admits a square root. We introduce
the following bundles over T̊M by defining their fibers at z is as follows

Dz = {XH
z − i(

√
RzX)Vz : X ∈ TmM ⊗ C},

Ez = {XH
z − i(

√
R̂zX)Vz : X ∈ TmM ⊗ C}.

(4.2.2)

When the rank is 1, E is the (1,0) tangent bundle of the J0 complex structure
from formula (4.1.7). When the rank of the universal cover of M is larger than
1, the bundles D, E , are only continuous, since R̂z is only semidefinite. E is not
the bundle of (1,0) tangent vectors of any complex or CR structure. It is rather
a kind of stratified involutive bundle containing a stratified CR structure and
posessing an open and dense stratum. See more on these later in this chapter.

An isometry of an arbitrary Riemannian manifold always preserves the cur-
vature tensor and its action on the tangent bundle commutes with horizontal
and vertical lifts. Thus we get the following invariance property of these bundles.

Proposition 4.2.1. Let ϕ be an isometry of (M, g). Denote by G any of the
bundles D or E. Then

(ϕ∗)∗G = G

One of the aims of this section is to exhibit several examples of involutive
structures over (mostly) noncompact manifolds arising naturally in geometry.
These examples describe the singular behavior of complex structures at the
boundary of their domains of definition (either at finite points or at infinity).

In section 4.2.3 we study homogeneous involutive structures associated to
a compact symmetric space M = U/K. In particular we show that all the U
orbits in T̊M possess CR and other homogeneous involutive structures.

Section 4.2.4 contains the main result: Theorem 4.2.11, where we show that
the bundle E is a nonnegative complex polarization on an open and dense sub-
domain of T̊M and furthermore it is preserved by the normalized geodesic flow.

More precisely we show that there exists a kind of stratification (due to the
walls of the Weyl chamber) of T̊M and on each stratum E is a real-analytic
involutive bundle containing an integrable CR structure. The CR dimension
varies from stratum to stratum. The CR structure is very closely related to the
classic complex structures of A. Borel on adjoint orbits (see Section 4.2.3). The
proof of the involutivity uses the appropriate results of section 4.2.3 concerning
homogeneous bundles over orbits.

Finally in Section 4.2.5 we explain why one cannot get (by scaling) geodesic
flow invariant genuine Kähler polarizations in the higher rank cases.

There is a certain dual notion to adapted complex structures, the so called
adapted product structures. All the results in this section have analogous state-
ments for these structures, but now M is a Riemannian symmetric space of
noncompact type. For the details and the statements see [Sz01].

4.2.2 Limit structures

In section 4.1 (see also [Ag]) we studied the behavior of the adapted complex
structure at “infinity” for a compact, rank-1 symmetric space.
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In this section we extend our method to treat all compact symmetric spaces.
We showed in Theorem 4.1.1 that J0 = limε→0(Φε)∗JA exists, provided (M, g)
is of rank-1. Furthermore this limit complex structure in the horizontal and
vertical splitting has the matrix in block form (4.1.8).

When the rank is larger than 1, the kernel of the operator R̂z is nontrivial at
every point z and its dimension varies from point to point due to the presence
of the walls of the Weyl chambers. Thus the matrix formula defining J0 makes
no sense.

The right approach here is: instead of working directly with the complex
structure tensor, consider rather the corresponding bundle of (1, 0) tangent vec-
tors.

Theorem 4.2.2 (Szőke,[Sz01]). Let (M, g) be a Riemannian manifold whose
universal cover is a compact, globally symmetric space. Then ( Φε is from
(4.0.1))

∃ lim
ε→0

(Φε)∗(T
1,0T̊M) = E . (4.2.3)

Proof. Let z ∈T̊M be fixed, ε > 0 be arbitrary and let c = ‖z‖,m = π(z), r =
log(c/ε), q = rz/c. Then ‖q‖ = r and Φε(q) = z. Let vn := z

‖z‖ and v1, . . . , vn
be an orthonormal basis of eigenvectors of Rvn with corresponding eigenvalues

Λ1, . . . ,Λn (Λj ≥ 0 since M̃ is compact symmetric). The calculations in [Sz91,
Theorem 2.5] yield that the adapted complex structure J at q is defined by the
formulas

Jq(vj)
H
q =

√
Λj‖q‖ coth(

√
Λj‖q‖)(vj)Vq

Jq(vj)
V
p = −

tanh(
√

Λj‖q‖)√
Λj‖q‖

(vj)
H
q ,

(4.2.4)

j = 1, . . . , n. Now we are going to calculate the image of the (1,0) tangent
bundle under the map Φε. First notice that when we restrict this map to the
level surface ‖.‖g = r, it agrees with the map Nλ (N is from (1.2.1)) with
λ = c/r. This observation together with (1.2.6) implies

(Φε)∗((vj)
H
q ) = (vj)

H
z , (4.2.5)

j = 1, . . . , n, and
(Φε)∗((vk)Vq ) = (c/r)(vk)Vz , (4.2.6)

k = 1, . . . , n− 1. It easily follows from the definition of Φε that

(Φε)∗((vn)Vq ) = c(vn)Vz . (4.2.7)

Now from (4.2.4)-(4.2.7) we get

(Φε)∗(T
1,0
q TM)) =

{
αn((vn)Hz − ic(vn)Vz ) + βn(c(vn)Vz + i(vn)Hz )

+

n−1∑
j=1

αj

(
(vj)

H
z − ic

√
Λj coth(

√
Λjr)(vj)

V
z

)

+

n−1∑
k=1

βk

(
c
√

Λj coth(
√

Λjr)(vk)Vz + i(vk)Hz

)
: αj , βk ∈ R

}
(4.2.8)
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Now as ε→ 0, r will go to infinity. Hence

lim
ε→0

√
Λj coth(

√
Λjr) =

√
Λj , j = 1, . . . , n− 1. (4.2.9)

Now because of our choices we get R̂zvn = c2vn, R̂zvj = c2Λjvj , j = 1, . . . , n−1.
This together with (4.2.2), (4.2.9) and (4.2.8) implies our claim (4.2.3).

Remarks. Let ϕ(ε, t) : R+ × R+ → R+ be a smooth function such that for
each ε > 0, ϕ(ε, .) is a monotone increasing diffeomorphism of R+. Denote
its inverse by ψε. Define the diffeomorphism Φε,ϕ :T̊M →T̊M by Φε,ϕ(v) =
(ϕ(ε, ‖v‖)/‖v‖)v. Following the same steps as above one can prove that the
limit

lim
ε→0

(Φε,ϕ)∗(T
1,0(T̊M))

exists provided

lim
ε→0

1

ψ′ε(c)
, lim

ε→0
a coth(aψε(c))

exist for each c > 0, a ≥ 0.
Take for instance for ϕ(ε, t) = εtλ, λ > 0. When λ = 1, Φε,ϕ(v) = Nεv = εv

and one gets that
lim
ε→0

(Nε)∗T
1,0(T̊M) = D,

where D is from (4.2.2).
The slight drawback of this choice is the fact that every z is in the kernel of

Rz and thus Dz ∩ Dz is always nontrivial. Even in the rank-1 case D recovers
only part of the complex structure studied by Souriau etc... , the complex
structure along the leaves of the Riemann foliation is lost.

4.2.3 Homogeneous involutive structures

Recall that the homogeneous manifold B = U/K is called reductive if the Lie
algebra u of U admits a direct sum decomposition u = k0 + m0, where k0 is the
Lie algebra of K and m0 is an Ad(K) invariant vector subspace of u. A typical
example is when K is compact and m0 is the orthogonal complement of k0 w.r.t.
any Ad(K) invariant inner product on u.

Let π : U → U/K be the projection map, b := [K] and e the unit element in
U . The restriction of π∗ to m0 gives an isomorphism between m0 and TbB. With
this isomorphism a choice of a left U homogeneous subbundle E of TCB = TB⊗
C is equivalent with the choice of an Ad(K) invariant subspace S ⊂ m = m0⊗C
such that π∗ : S ∼= Eb (the fiber over b). Ad(K) invariance implies (and is
equivalent to when K is connected)

[k0, S] ⊂ S. (4.2.10)

Proposition 4.2.3 (Szőke,[Sz01]). Let B = U/K be a reductive homogeneous
manifold. Let k = k0 ⊗ C. A left U homogeneous subbundle E of TCB is
involutive iff

π−1
∗ (Eb) is a Lie subalgebra of u⊗ C (4.2.11)

and this condition is equivalent to

[S, S] ⊂ S + k. (4.2.12)
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Proof. From our assumptions we have

π−1
∗ (Eb) = S ⊕ k.

Using (4.2.10) we get that (4.2.11) and (4.2.12) are indeed equivalent. With
the help of the left U action on itself the vector spaces S,m, k, π−1

∗ (Eb) generate
left U homogeneous subbundles S,M,K, E of TCU . Since the vector spaces are
Ad(K) invariant, the corresponding bundles are right K homogeneous as well.
We also have

E = S ⊕ K.

Since k is a Lie algebra, K is an involutive bundle and (4.2.11) is equivalent with
the involutivity of E .

The left U equivariant map π∗ : M → TCB is a fiberwise isomorphism,
similarly the map π∗|S : S → E. Thus any smooth section X of TCB can be
uniquely lifted to a smooth section X̌ of M so that for q ∈ U , π∗(X̌q) = Xπ(q).
Thus for any vector fields X,Y on B

π∗[X̌, Y̌ ] = [X,Y ]. (4.2.13)

For a vector bundle G denote by Γ(G) the smooth (local) sections of G.
(4.2.13) implies that the involutivity of E is equivalent to: for any X,Y ∈

Γ(E), [X̌, Y̌ ] ∈ Γ(E). Those sections of S that are lifts of Γ(E), locally span S.
Consequently the involutivity of E is the same thing as

[Γ(S),Γ(S)] ⊂ Γ(E).

On the other hand from (4.2.10) we get

[Γ(K),Γ(S)] ⊂ Γ(S).

Since K is always involutive we finally can conclude that E is involutive iff E
is.

Now let U be a connected Lie group andK a closed subgroup of U . LetK0 be
the identity component of K. Then the natural map U/K0 → U/K, aK0 7→ aK
is a covering with sheet number |K : K0|. Thus if we assume in addition that
U/K is simply connected, we can conclude that the group K is connected. (We
could also conclude this using the beginning part of the homotopy sequence of
the fibration U → U/K.)

In the rest of this section we assume that (M, g) is a compact, simply con-
nected globally symmetric Riemannian manifold. We shall denote by U the
identity component of the isometry group and by K the stabilizer subgroup of
a fixed point of M . Thus u is semisimple (cf. [He1]) and U and K are com-
pact and connected (connectivity of K follows from the discussion above) and
M ↔ U/K. The geodesic symmetry at p = [K] gives rise to an involutive auto-
morphism θ of u with fixed points set k0, the Lie algebra of K. The eigenspaces
of θ decompose the Lie algebra u = k0⊕p∗ where p∗ is the −1 eigenspace. Since
θ is an automorphism, we get

[k0, p∗] ⊂ p∗ and [p∗, p∗] ⊂ k0. (4.2.14)
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The negative of the Killing form of u provides an Ad(K) invariant inner
product on p∗ ↔ TpM and we shall assume that this gives the U invariant sym-
metric metric on M . We shall need this in Theorem 4.2.6 and Proposition 4.2.7.
In general U/K has many U invariant symmetric metrics (i.e. when the Ad(K)
action on p∗ is not irreducible) that are not proportional. However the induced
Riemannian connection (cf. [He1]) and thus the adapted complex structure on
TM (cf. [Sz98]) is the same for all possible choices.

Let g = u ⊗ C. Introduce the following subspaces of g. Let k = k0 ⊗ C,
p0 = ip∗, g0 = k0 + p0 (a semisimple Lie algebra, the noncompact dual to u),
hp∗ ⊂ p∗ be a maximal abelian subspace, hp0 = ihp∗ , hp = hp0 ⊗ C, h0 ⊂ g0

a maximal abelian subalgebra that contains hp0 , hk0 = h0 ∩ k0, hk = hk0 ⊗ C,
h∗ = (hk0 ⊕ hp∗) and h = h∗ ⊗ C. Then h is a Cartan subalgebra of g.

Denote by ∆ the corresponding nonzero roots. For an α ∈ ∆, the root space
is

gα = {v ∈ g | [H, v] = α(H)v,∀H ∈ h}.
Let Σ = Σ(g, hp0

) be the set of restricted roots and let Cp0
⊂ hp0

be an open
Weyl chamber , i.e. a component of the complement (in hp0) of the kernels of
the restricted roots.

Let now 0 6= v ∈ Cp0
(the closed Weyl chamber) be a fixed vector. Denote

by Lv the centralizer of v in K that is Lv = {k ∈ K | Ad(k)v = v}. The group
Lv will be connected since K is (see [He, Corollary 2.8, p. 287]). Its Lie algebra
is

lv = {X ∈ k0 | [v,X] = 0}.
If α ∈ ∆ then αθ = α(θ.) is also a nonzero root and α(v) = 0 iff αθ(v) = 0 since
θ(v) = −v. The root space corresponding to αθ is θ(gα). For a w ∈ g denote
by w its conjugate w.r.t. u ⊂ g = u⊗C. It is well known (cf. [He1, Lemma 3.1
p.257]), that gα = g−α. Let

Hv =
∑
α∈∆+

α(v)6=0

gα and Gv =
∑
α∈∆
α(v)=0

gα. (4.2.15)

The root space decomposition of g yields a θ invariant decomposition

g = h⊕ Gv ⊕Hv ⊕Hv.
Thus

lv ⊗ C = (h⊕ Gv) ∩ k = hk ⊕ Gv ∩ k, (4.2.16)

and so
g = lv ⊗ C⊕Hv ⊕Hv ⊕ hp ⊕ Gv ∩ p. (4.2.17)

Let Bv = U/Lv and b = [Lv]. The tangent space TC
b Bv is now identified with

m = Hv ⊕Hv ⊕ hp ⊕ Gv ∩ p. (4.2.18)

We can get a more precise description of Gv ∩ p as follows. Namely from its
definition it is obvious that α = αθ iff α vanishes identically on hp. Denote by
∆p the set of those roots that do not vanish identically on hp. One easily sees
that for α ∈ ∆p we have αθ < 0 iff α > 0 and∑

α∈∆\∆p

gα ⊂ k.
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Now pick a nonzero element Xα ∈ gα for each α ∈ ∆+
p . Thus we get

Gv ∩ p = {
∑
α∈∆+

p

α(v)=0

aα(Xα − θXα) : aα ∈ C}.

Hence
dimCGv ∩ p = #{α ∈ ∆+

p : α(v) = 0}. (4.2.19)

Denote this number by cv.
So far we purposefully did not specify a particular ordering on the duals of

hp0 and hR = hp0 + ihk0 . We shall do that now. The choice of the Weyl chamber
determines the set of the positive restricted roots, consequently the set of the
simple restricted roots β1, . . . , βl, where l = dimRhp0

is the rank of M . But we
still have the freedom to decide the order among them. We make this choice to
be compatible with v.

So renumber the simple restricted roots to get λ1, . . . , λl so that for some
1 ≤ j ≤ l (depending on v), λ1(v) 6= 0, . . . , λj(v) 6= 0, λj+1(v) = · · · = λl(v) = 0.
Declaring that λ1 > · · · > λl we get an ordering of the dual of hp0

. Extending
this to a compatible ordering of the dual of hR we get the ordering we shall use.
Denote by ∆+ the corresponding set of positive roots and Σ+ the set of positive
restricted roots. Let

Fv = {w ∈ Cp0
| λ1(w) 6= 0, . . . , λj(w) 6= 0, λj+1(w) = · · · = λl(w) = 0}.

(4.2.20)
This is the face of the closed Weyl chamber that contains v. For instance when
v ∈ Cp0 , Fv = Cp0 .

Proposition 4.2.4 (Szőke,[Sz01]). Let α ∈ ∆, α(v) 6= 0. Then α(v) > 0 and
α > 0 are equivalent. Let α ∈ ∆+, α(v) 6= 0 and β ∈ ∆ with β(v) = 0. Then α
is positive on Fv and α+ β > 0.

Proof. α(v) 6= 0 implies λ = α|hp
∈ Σ. Hence there are integers nk all non-

negative or nonpositive so that λ =
∑l
k=1 nkλk (cf. in [He1, Theorem 2.19,

p.292.]). Therefore 0 6= λ(v) =
∑j
k=1 nkλk(v). Thus one of the coefficients

nt, t = 1, . . . , j must be non-zero. This shows the equivalence of α(v) > 0 and
α > 0. It also shows that α > 0 on Fv. Our last statement is obvious since from
our assumptions ν := β|hp

=
∑l
k=j+1mkλk and λ =

∑j
k=1 nkλk, where nk is a

non-negative integer and at least one of them is different from zero.

Proposition 4.2.5 (Szőke,[Sz01]). Every element in Fv has the same central-
izer in K.

Proof. Let w ∈ Fv. in [He1, Theorem 2.19, p. 292] shows that a root vanishes
on v iff it vanishes on w. Thus the Lie algebra of Lw and Lv is the same (cf.
(4.2.16)). Since both groups and K are connected our statement follows.

Now we are going to define involutive structures on the homogeneous mani-
fold Bv = U/Lv. Let Nv be the complexification of the orthogonal complement
of v in hp0

. Introduce the following subspaces of m (also thought of as subspaces
of TC

b Bv).
Qb = hp ⊕ (Gv ∩ p) Sb = Nv ⊕ (Gv ∩ p),

Ab = Hv ⊕Qb Eb = Hv ⊕ Sb. (4.2.21)
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Theorem 4.2.6 (Szőke,[Sz01]). The subspace Hv determines a left U homoge-
neous integrable CR structure on Bv. Let l be the rank of M . The CR codimen-
sion is l + cv. When v is generic (i.e. v ∈ Cp0

), cv = 0 and we recover the CR
structure of R. Aguilar (cf. [Ag]). The subspaces Qb, Sb, Ab and Eb define the
U homogeneous involutive subbundles Q, S, A, E of TCBv.

Proof. To show that the subspaces really provide U homogeneous bundles, we
need to check that condition (4.2.10) holds. The integrability of the CR struc-
ture and the involutivity of the bundles requires to check (4.2.12). This is the
point where we need our special choice of ordering of the roots. To calculate
the appropriate Lie brackets we need to recall the following facts.

Let α be a nonzero root. Since the Killing form B of U is nondegenerate
we can define a vector Hα so that B(., Hα) = α(.). Since we use B to get
our metric on M , v and Hα are orthogonal iff α(v) = 0. We also have that
hR =

∑
α∈R RHα = hp0

+ ihk0 (cf. [He1, Lemma 3.2, p.259]).
The structure theory of the root systems tells us (cf. [He1]) that for any

α, β ∈ ∆, the Lie bracket [gα, gβ ] is CHα if α+ β = 0, is gα+β if α+ β ∈ ∆ and
is zero otherwise. This immediately implies

[G,G] ⊂ G +Nv + hk.

Using this, together with (4.2.14) and Proposition 4.2.4, it is a straightforward
calculation that indeed in all required cases (4.2.10) and (4.2.12) hold. In par-
ticular we get that the U homogeneous CR structure defined by Hv is formally
integrable. Since everything is real-analytic it is necessarily a genuinely inte-
grable (cf. Section 4.2.4) CR structure.

We shall call the CR structure in the previous theorem the standard CR
structure on the manifold U/Lv since in a way it is well known. The reason is
as follows. Let

Zv = {a ∈ U : Ad(a)v = v}

Its Lie algebra zv is then

zv = {X ∈ u : [v,X] = 0}.

Thus
zv ⊗ C = h⊕ Gv.

Hence
zv ⊗ C = lv ⊗ C⊕ hp ⊕ Gv ∩ p

and
g = zv ⊗ C⊕Hv ⊕Hv.

Thus the quotient space U/Zv, that is just the adjoint U orbit of iv in u, is
a complex manifold. The bundle of (1,0) tangent vectors is the U homogeneous
vector bundle corresponding to the subspace Hv. This complex structure was
discovered by A. Borel in the fifties and was studied extensively from various
points of views ever since (see for example [Bes]). Because of the construction
the natural projection

U/Lv −→ U/Zv
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is a CR map.
Our next aim is to use the involutive bundles of Theorem 4.2.6 to obtain a

clear picture of the bundles D, E (cf. (4.2.2)). Bv = U/Lv is of course the U -
orbit of iv ∈ hp∗ ⊂ p∗ ↔ TpM in TM . Now according to Proposition 4.2.5 each
element in Fv has the same centralizer in K, so the next proposition describing
the orbit structure of TM comes very naturally. We shall use this description to
establish the connection between the involutive bundles of Theorem 4.2.6 and
D, E . This will prove the involutivity of the latter bundles over the “cone-like”
submanifolds β(U/Lv × Fv) ⊂T̊M , where β sends (aLv, w) to a∗(iw). Letting
U act trivially on the second coordinate we get an U action on (U/Lv) × Fv.
Let b = [Lv] and Zv = Bv × Fv.

Proposition 4.2.7 (Szőke,[Sz01]). The map

β : Zv −→ TM

is a real-analytic U equivariant imbedding.

Proof. We adopt the proof from [He1, p. 294-295], to our situation. Proposi-
tion 4.2.5 shows that β is well defined. β is clearly real-analytic and U equiv-
ariant. Suppose that for a, c ∈ U and w1, w2 ∈ Fv we have a∗(iw1) = c∗(iw2).
Then (c−1a)∗(iw1) = iw2. This implies that c−1a belongs to K. Since wj both
belong to the closed Weyl chamber Chp0

, there must be an element in the Weyl

group that also sends w1 to w2. But Chp0
is the space of K orbits therefore

c−1a must be the identity and so w1 = w2 and thus c−1a ∈ Lv because of
Proposition 4.2.5. Hence β is injective.

To show that it is an imbedding therefore it suffices to check the injectivity
of β∗ at ([Lv], w) where w ∈ Fv is arbitrary.

Let Y be in TbBv ∩ p∗ and S ∈ TwFv. Then ((exp tY )b, w + tS) is a curve
in Zv with tangent vector (Y, S). Since (exp tY )∗(iw) is the parallel translation
of iw along the geodesic defined by Y (cf. in [He1, Theorem 3.3, p.208]) we get

β∗(Y, S) = (Y )Hiw + (S)Viw,

where H stands for the horizontal and V for the vertical lift. Therefore β∗
is injective on (TbBv ∩ p∗) × TwFv. Now suppose Y ∈ TbBv ∩ k0. Then
(exp tY )∗(iw) = Ad(tY )(iw). Therefore

β∗(Y, S) = ([Y, iw])Viw + (S)Viw.

Using the Killing form B of U

B([Y, iw], S) = B(Y, [iw, S]) = 0,

since iw, S ∈ hp. Thus [Y, iw] and S are perpendicular. (Remember that our
metric on M comes from B.) Therefore β∗(Y, S) can be zero only if S = 0 =
[Y, iw]. We need to show that Y is zero. From (4.2.17) we get

(TbBv ⊗ C) ∩ k = Hv ⊕Hv ∩ k.

Pick an element Xα from each one dimensional positive root space gα. Since
a root α that does not vanish identically on hp0

is positive iff αθ < 0, each
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Y ∈ (TbBv ⊗ C) ∩ k can be uniquelly written as

Y =
∑
α∈∆+

α(v) 6=0

aα(Xα + θXα)

for some complex numbers aα. Thus for w ∈ Fv

[Y, iw] = −
∑
α∈∆+

α(v) 6=0

aαα(iw)(Xα − θXα)

and this is again a direct sum. Now from [He1, Theorem 2.19, p.292] we know
that α ∈ ∆+, α(v) 6= 0 implies α(w) 6= 0 and thus α(iw) 6= 0. Hence [Y, iw] can
be zero iff Y itself is equal to zero giving that indeed β∗ is injective.

Denote by R+v the half line in hp0 consisting of the positive multiples of
v. Let Gv = (U/Lv) × R+v ⊂ Zv. At the point q = ([Lv], sv), s > 0 define a
subspace of TqGv ⊗ C by Lq = {(λv,−iλsv) | λ ∈ C} (in the first component v
is thought of as a tangent vector of U/Lv at [Lv] as an element of hp). Using
the U action we get a U homogeneous line bundle L → Gv.

Proposition 4.2.8 (Szőke,[Sz01]). Denote by pr : Gv → U/Lv the projection
map. The bundle pr∗E ⊕ L → Gv is involutive.

Proof. The sum is really a direct sum since v as a tangent vector of U/Lv was
left out in the definition of E (cf. Theorem 4.2.6). Since L is a line bundle and
we saw that E is involutive it is enough to show [Γ(L),Γ(pr∗E)] ⊂ Γ(pr∗E)
(where again Γ denotes (local) sections). The vector v defines a unique U
invariant complex vector field X over U/Lv that at the point [Lv] is v itself. We
also think of X as a vector field over Gv that does not depend on the second
component.

The standard trivializing section of T (R+v) determines a U invariant section
γ of TGv. Then X − isγ is a global trivializing section of L. Since obviously
Γ(pr∗E) and γ commute, we only need to show that [X,Γ(E)] ⊂ Γ(E). Lift E
to get the U homogeneous subbundle Ě → U of M (where M → U is the U
homogeneous bundle corresponding to m ↔ TC

b Bv cf. (4.2.18). Lift X to get
the left U invariant vector field Xv over U . This is the left invariant vector field
determined by v ∈ TC

e U = g. It suffices to show [X̌, Ě] ⊂ Ě that we have using
U homogeneity and the fact that

Ěe =
∑
α∈∆+

α(v)6=0

gα ⊕Nv ⊕ (
∑
α∈∆
α(v)=0

gα) ∩ p.

Proposition 4.2.9 (Szőke,[Sz01]). Let now ‖v‖ = 1. Then β∗ is an isomor-
phism between the bundles pr∗E⊕L and E |β(Gv) and between pr∗A and D |β(Zv).

Proof. Because of homogeneity it suffices to show this for the points ([Lv], sv).
As before let Bv = U/Lv, p = [K], z = isv ∈ hp∗ ⊂ TpM and b = [Lv].
Denote by W the orthogonal complement of kerRz in TpM . Then rewriting
their definition (cf. (4.2.2)) we get
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Dz = (kerRz ⊗ C)Hz ⊕ {νHz − i(
√
Rzν)Vz | ν ∈W ⊗ C}

Ez = (ker R̂z ⊗ C)Hz ⊕ C([z]Hz − i(‖z‖z)Vz )⊕ {νHz − i(
√
Rzν)Vz | ν ∈W ⊗ C}.

(4.2.22)

As we saw in the proof of Proposition 4.2.7 , for any Y ∈ TbBv ∩ p∗ ,
β∗(Y, 0) = (Y )Hz . Therefore the definition immediately implies that β∗L is
precisely the middle term in Ez.

[He1, Lemma 2.9, p. 288] yields that Sb = (ker R̂z)⊗C and Qb = (kerRz)⊗C
(where Qb and Sb are from Theorem 4.2.6). Thus we can conclude that β∗(Qb) =
[Qb]

H
z and β∗(Sb) = [Sb]

H
z will be precisely the first components in (4.2.22).

Let now 0 6= η ∈ gα, where α ∈ ∆+, α(v) 6= 0. η = ηk + ηp denotes the
components w.r.t. the decomposition g = k⊕ p. Let w = sv. η ∈ gα implies

[w, ηk] = α(w)ηp, [w, ηp] = α(w)ηk.

ηp cannot be zero because this would mean α(w) = 0 contradicting to α|Fv > 0.

Just as in the proof of Proposition 4.2.7, for any Y ∈ k ∩ TC
b (B), we have

β∗(Y ) = ([Y, z])Hz . Hence we get

β∗η = (ηp)Hz + ([ηk, z])Vz = (ηp)Hz + (−α(iw)ηp)Vz 6= 0. (4.2.23)

On the other hand
Rzη

p = −[z, [z, ηp]] = α2(w)ηp. (4.2.24)

Since α ∈ ∆+, Proposition 4.2.4 implies α(w) > 0 i.e.
√
Rzη

p = α(w)ηp.
Thus (4.2.23) yields that β∗η belongs to the second component of Dz and the
third component of Ez in (4.2.22). Consequently the entire image β∗Hv (Hv is
from (4.2.15)) is contained in this component and we can again refer to [He1,
Lemma 2.9, p. 288] to conclude that this way we get all the elements of this
component.

Corollary 4.2.10 (Szőke,[Sz01]). For each 0 6= v ∈ Cp0
, the restriction of the

bundles D and E to the manifold β∗((U/Lv)× Fv) are involutive.

Proof. Fv is foliated by the R+ action. This induces a foliation on Zv =
(U/Lv) × Fv. As a consequence of Proposition 4.2.9 β∗E is a smooth in fact
real-analytic vector bundle. Proposition 4.2.8 tells us that this bundle is tan-
gential to and involutive along each leaf of the foliation of D. Consequently β∗E
is globally involutive. The involutivity of the bundle A (Theorem 4.2.6) and
Proposition 4.2.9 together imply the involutivity of D|β(Zv).

4.2.4 Polarizations

Let (M, g) be a Riemannian manifold. Recall that the canonical 1-form θ on TM
is defined by θ(ξ) = g(π∗ξ, z), where z ∈ TM, ξ ∈ Tz(TM) and π : TM → M
is the projection map. The canonical symplectic form is then ω = −dθ. Let
ξ, η ∈ Tz(TM). The value ω(ξ, η) can be computed by the formula

ω(ξ, η) = g(π∗ξ,Kη)− g(π∗η,Kξ), (4.2.25)

where K : T (TM)→ TM is the connection map.
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Denote by ωC the complex bilinear extension of ω. Let E : TM → R,
E(v) = g(v, v)/2 and ϕ(v) = ‖v‖. The corresponding Hamiltonian vector fields
are ξE , ξϕ and their flows φt and ψt.

Now let (M, g) be a locally symmetric space whose universal cover M̃ is

compact. Let cov : M̃ → M be the covering map. We continue to use the
terminology of section 4.2.3. So M̃ = U/K, p = [K], hp∗ ⊂ TpM̃ maximal
abelian, 0 6= v ∈ Cp0

⊂ hp0
= ihp∗ . Let z = cov(iv) and Dv = cov∗ ◦β((U/Lv)×

Fv) ⊂ TM . When v is generic (i.e. v ∈ Cp0
) Dv is an open and dense subset of

TM .

Theorem 4.2.11 (Szőke,[Sz01]). The continuous bundles D, E →T̊M (cf. (4.2.2)
) are Nλ, λ > 0 and ψt, t ∈ R invariant. Their fibers are ωC Lagrangian. For
each α ∈ Dz or Ez, −iωC(α, α) ≥ 0. The restrictions D|Dv , E|Dv are real-

analytic involutive bundles. Let l be the rank of M̃ . The dimension

dimCEq ∩ Eq = dimCDq ∩ Dq − 1 = dimRkerR̂q = dimRkerRq − 1 = l − 1 + cv

is constant for q ∈ Dv (where cv is from (4.2.19)).

Before the proof, a few words about its motivation. Let XN be a smooth
manifold and V a smooth complex subbundle of C⊗ TX of rank s. (Since the
least possible smoothness in this paper does not play any role, for us smooth shall
always mean C∞.) The bundle V is called integrable if in some neighborhood of
each point in X there are smooth complex valued functions g1, . . . , gN−s such
that dg1∧· · ·∧dgN−s 6= 0 and with the property: if Z is any smooth local section
of V , then Zydgj = 0 for each 1 ≤ j ≤ N − s. Integrability implies involutivity
and in the real-analytic category they are equivalent (see for instance [BER]).
They are also equivalent in the case N = 2n, s = n, V ∩ V = 0. This is the
celebrated Newlander-Nirenberg theorem (cf. [NN]), but there do exist many
CR structures that are only formaly integrable (involutive) but not integrable
(imbeddable) in the above stronger sense.

Definition 4.2.12. (cf. [W]) Let (X,ω) be a symplectic manifold and V be a
complex subbundle of C⊗TX. V is called a complex polarization of (X,ω) if for
each x ∈ X, the fiber Vx is Lagrangian in C ⊗ TxX, the dimension of Vx ∩ V x
is constant and V is integrable.

For a symplectic vector space (W,ω), a complex Lagrangian subspace P of
WC = C ⊗ W is called nonnegative (resp. positive) if for each α ∈ P (resp.
0 6= α ∈ P ) −iω(α, α) ≥ 0 (resp. > 0). When this property holds for each fiber
of a polarization we get the notion of nonnegative (resp. positive) polarizations.
The bundle of (1,0) tangent vectors of a Kähler manifold is always a positive
polarization and vice versa: if V is a positive polarization on X then V ∩V = 0
and V defines a complex structure J whose (1,0) tangent bundle is V and ω
becomes the Kähler form on X. Thus Theorem 4.2.11 can also be phrased in
this way: for a generic vector v, the bundle E|Dv is a nonnegative complex
polarization of (Dv, ω) and this polarization is invariant w.r.t. the normalized
geodesic flow. This was in fact the main motivation of the theorem.

Proof of Theorem 4.2.11. It is enough to prove the theorem for the case when
M = M̃ is a simply connected globally symmetric space since all the construc-
tions naturally factorize when we take coverings.
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The statement that the fibers Dz, Ez are ωC-Lagrangian follows from the
definition of E , the fact that the operators Rz, R̂z are positive semidefinite (in
fact we only need that they are selfadjoint) and from formula (4.2.25).

If α = AHz − i(
√
R̂zA)Vz + iBHz + (

√
R̂zB)Vz ∈ Ez, (where A,B are from

Tπ(z)M) a direct calculation using formula (4.2.25) again shows

−iωC(α, α) = 2g(A,
√
R̂zA) + 2g(B,

√
R̂zB) ≥ 0.

Replacing R̂z by Rz we get the statement for Dz
Now let λ > 0, X ∈ Tπ(z)M . Then R̂λzX = g(X,λz)λz + R(X,λz)λz =

λ2R̂zX. Let w = Nλz = λz. Thus (1.2.6) implies

(Nλ)∗(
√
R̂zX)Vz = (λ

√
R̂zX)Vw = (

√
R̂λzX)Vw .

This yields that D, E are indeed Nλ-invariant.
Now we shall show that they are ψt-invariant as well. Let z ∈T̊M . We need

to prove that for any X ∈ Tπ(z)M

(ψt)∗(X
H
z − i(

√
RzX)Vz ) ∈ Dψt(z)

(ψt)∗(X
H
z − i(

√
R̂zX)Vz ) ∈ Eψt(z).

(4.2.26)

The definition of ψt yields that for any q ∈T̊M , s = t/‖q‖

ψtq = φsq. (4.2.27)

This implies that ψt(λq) = λψt(q) for any λ > 0. Therefore it suffices to check
(4.2.26) when ‖z‖ = 1. Denote by γ the geodesic with initial condition γ̇(0) = z.
Let w = γ̇(t). Thus (ψt)∗z

H
z = (φt)∗z

H
z = wHw . It is also easy to see that

(ψt)∗(z)
V
z = (w)Vw . All these together with

√
R̂zz = z,

√
Rzz = 0,

√
Rww = 0

imply
(ψt)∗(z

H
z ) = (w)Hw ∈ Dw,

(ψt)∗(z
H
z − i(

√
R̂zz)

V
z ) = (w)Hw − i(w)Vw = (w)Hw − i(

√
R̂ww)Vw ∈ Ew.

Now let X⊥z. Then
√
R̂zX =

√
RzX. We want to show that (4.2.26) holds.

The vectors XH
z and (

√
RzX)Vz are tangential to the level surface ‖.‖ = 1,

where φt and ψt are identical. Now φt invariant vector fields along the curve
γ̇ and Jacobi fields J along the geodesic γ correspond to each other with the
correspondence ξ = (J)H + (J ′)V , where ′ denotes covariant derivative.

As before let vn = z, v1, . . . , vn be an orthonormal basis of eigenvectors of
Rvn with eigenvalues Λj (Λj ≥ 0). Let Ξj be parallel vector fields along γ with

Ξj(0) = vj . Since X⊥z,X =
∑n−1
j=1 αjvj .

The space M is symmetric so the vector field

J1(t) =

n−1∑
j=1

αj cos(
√

Λjt)Ξj

is a Jacobi field along γ with initial conditions J1(0) = X, J ′1(0) = 0.
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Similarly

J2(t) =

n−1∑
j=1

αj sin(
√

Λjt)Ξj

is another Jacobi field with initial conditions J2(0) = 0, J ′2(0) =
√
RzX. From

the definitions we obtain

J ′1(t) = −
√
RwJ2(t), J ′2(t) =

√
RwJ1(t).

All the above together yield

(ψt)∗(X
H
z − i(

√
RzX)Vz ) =(φt)∗X

H
z − i(φt)∗((

√
RzX)Vz )

=(J1(t))Hw + (J ′1(t))Vw − i(J2(t))Hw − i(J ′2(t))Vw

=(J1(t))Hw − (
√
RwJ2(t))Vw

− i(J2(t))Hw − i(
√
RwJ1(t))Vw ∈ Ew.

(4.2.28)

Corollary 4.2.10 implies that the restrictions of D, E to Dv are real-analytic
and involutive. From (4.2.22) we get Eq ∩Eq = (kerR̂z⊗C)Hz . As we said in the

proof of Proposition 4.2.9, kerR̂z ⊗ C = Sb and (4.2.22) yields our claim.

4.2.5 Scalings

By scaling we mean a family of diffeomorphisms Φε :T̊M →T̊M . We do not
require Φε to be onto but smaller ε should mean larger image and the union of
the images for all possible ε should be T̊M .

We impose the following symmetry conditions on the scalings. For each ε

Φε is U equivariant, (4.2.29)

and
Φε preserves Cp∗and the fibers of TM. (4.2.30)

Theorem 4.2.13 (Szőke,[Sz01]). Let (M, g) be a compact, simply connected
symmetric space. Let l be its rank and U the identity component of its isometry
group. Suppose we have a scaling Φε :T̊M →T̊M with symmetry conditions
(4.2.29) and (4.2.30). Assume that the limit bundle

E = lim(Φε)∗T
1,0(T̊M)

exists (where (1,0) is w.r.t. the adapted complex structure) on the domain D ⊂
TM that is the union of all U orbits of an open Weyl chamber. Furthermore
assume that E is invariant w.r.t. the normalized geodesic flow and the scalings
Nλ. Then for any z ∈ D

dimCEz ∩ Ez ≥
l − 1

2
.

For the proof see [Sz01, Theorem 7.1].
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Chapter 5

Weyl group equivariant
maps and hyperkähler
metrics

5.1 Weyl group equivariant maps, the main re-
sults

In the theory of symmetric spaces a fundamental role is played by Chevalley’s
extension theorem [He2, p.299, p.340], [Har1]:

Suppose g is a semisimple Lie algebra of non-compact type over R, θ a Cartan
involution, and g = k+p the corresponding Cartan decomposition of g and a ⊂ p
a maximal Abelian subspace. Let G be a connected Lie group with Lie algebra
g, let K be its maximal compact subgroup. Then K acts on p by the adjoint
representation and W , the Weyl group, acts on a. The theorem states that every
W -invariant polynomial on a extends to a unique K-invariant polynomial on p.
It is an immediate consequence that the two polynomial algebras in question
are isomorphic.

This theorem remains true if “polynomial” is replaced by C∞ or Cω (see
[Da], [He2, p.295], and the comments at the beginning of section 5.1.1.

It is a natural question to ask, whether analogous results hold for W -
equivariant polynomial (resp. C∞, Cω) mappings. In this note we show that
the answer is positive, and in fact a substantial part of the solution is already
contained, somewhat indirectly in [Sol] and [Mi1, Mi2].

Theorem 5.1.1 (Korányi, Szőke, [KSz]). Any W -equivariant polynomial (resp.
C∞, Cω) map a→ a can be extended to a K-equivariant polynomial (resp. C∞,
Cω) map p→ p. The extension is unique.

The result will be used in Proposition 5.2.8 in constructing hyperkähler
metrics on the tangent bundle of compact hermitian symmetric spaces. Another
immediate consequence of the extension theorem is the following.

Corollary 5.1.2 (Korányi, Szőke, [KSz]). Let (M, g) be a symmetric space of
compact or non-compact type, m0 ∈M , a ⊂ Tm0

M a maximal flat subspace and
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W the Weyl group. Then every W−equivariant C∞ (resp. Cω) map ϕ from a
to a extends uniquely to an isometry group equivariant C∞ (resp. Cω) map Φ
from TM to TM . Φ is a (C∞ or Cω) diffeomorphism iff ϕ is.

Theorem 5.1.1 provokes the next natural question. Does this theorem de-
scribe all possible K-equivariant maps? This is answered by our next result,
Theorem 5.1.3.

We call a K-equivariant map F : p → p radial if there exists a maximal
Abelian subspace a in p that is mapped into itself by F . Since K acts transitively
on the set of such a’s, a radial map necessarily maps every maximal Abelian
subspace of p into itself.

Assume now that g is simple. We say that g is of Hermitian type if p
has a K−invariant complex structure, i.e. if the associated symmetric space is
Hermitian symmetric.

Theorem 5.1.3 (Korányi, Szőke, [KSz]). Let F : p → p be a K-equivariant
polynomial (resp C∞ or Cω) map. If g is not of Hermitian type, then F is
radial. Let g be of Hermitian type and let I be the complex structure on p. If
Fj : p→ p, j = 1, 2 are arbitrary K-equivariant radial polynomial (resp. C∞ or
Cω) maps, then F = F1 + IF2 is a K-equivariant polynomial (resp. C∞ or Cω)
map. Every K-equivariant polynomial (resp. C∞ or Cω) map p→ p arises this
way.

In section 5.1.1 we discuss a structure theorem for W -invariant C∞ or Cω p-
forms inspired by Solomon’s similar result for W -invariant polynomial p-forms
(cf. [Sol], [He2, p.363] , [Mi1]). This structure theorem is important for our
purpose because W -invariant one forms are essentially the same thing as W -
equivariant maps (see Proposition 5.1.8).

Theorem 5.1.1 is proved in section 5.1.2, and Theorem 5.1.3 is proved in
section 5.1.4.

5.1.1 W -invariant p-forms.

Let E be an n-dimensional real vector space andW a finite reflection group on E.
A theorem of Chevalley ([Che], [He2, Theorem 3.1, p.356]) says that there exist
algebraically independent W -invariant real polynomials j1, . . . , jn, such that
every W -invariant real polynomial on E is a polynomial of j1, . . . , jn. In other
words, setting J (x) = (j1(x), . . . , jn(x)), for every W -invariant polynomial f
on E we have f = f̄ ◦ J with some polynomial f̄ on Rn. The same statement
is true when f (and f̄) are in C∞ [Sch], [Da], or in Cω [Lu]. Note that these
results immediately imply the C∞ and Cω analogues of the Chevalley extension
theorem.

The above results describe the structure of theW -invariant polynomial (resp.
C∞, Cω) functions, i.e. W -invariant 0-forms. There exists an analogous struc-
ture theorem for W -invariant p-forms, where p > 0, as well.

Proposition 5.1.4 (Korányi, Szőke, [KSz]). Let 0 ∈ G ⊂ Rn−1 be open, B =
G×(−ε, ε) ⊂ Rn, f ∈ Ck(B) (resp. C∞(B) or Cω(B)) and f(x′, 0) ≡ 0, x′ ∈ G.
Then F := f

xn
∈ Ck−1(B) (resp. C∞(B) or Cω(B)) and F (x′, 0) = ∂xnf(x′, 0).

Proof. Let x = (x′, xn) be fixed and let g : B × [0, 1] → R be defined as
g(x′, xn, t) = f(x′, txn). The Newton-Leibniz formula applied to the function
g(x, .) yields
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f(x) =

∫ 1

0

(∂tg)(x, s)ds =

∫ 1

0

xn∂xnf(x′, sxn)ds.

Proposition 5.1.5 (Korányi, Szőke, [KSz]). Let X be a C∞-manifold and
h ∈ C∞(X,R). Let Z(h) denote the zeroes of h. Suppose dh(x) 6= 0 if x ∈ Z(h).
Let now f ∈ C∞(X,R), f |Z(h) ≡ 0. Then F := f

h ∈ C
∞(X,R). If X,h, f ∈ Cω,

then F ∈ Cω as well.

Proof. The implicit function theorem and Proposition 5.1.4 yield the statement.

Proposition 5.1.6 (Korányi, Szőke, [KSz]). Let X be a Cω-manifold and
h1, h2, . . . , hr ∈ Cω(X,R). Let Zj be the zero set of hj and Z = ∪rj=1Zj. As-
sume that for each j, dhj |Zj 6= 0. Furthermore suppose that for every component

M of Zj, for each k 6= j, hk|M 6≡ 0. Let f ∈ C∞(X,R) (resp. ∈ Cω(X,R))
and f |Z ≡ 0. Then

F =
f

h1h2 . . . hr
∈ C∞(X,R) (resp. ∈ Cω(X,R)).

Proof. We prove the statement by induction on r. For r = 1 this is Proposi-
tion 5.1.5. Suppose we proved the statement for r − 1. Then

Fr−1 =
f

h1h2 . . . hr−1
∈ C∞(X,R) (resp. ∈ Cω(X,R)).

Let M be an arbitrary component of Zr. Then for 1 ≤ j ≤ r − 1, hj |M is 6≡ 0
and real-analytic. Therefore the interior of Zj∩M in M is empty. Consequently
the set

H := M \ (

r−1⋃
j=1

(Zj ∩M))

is open and dense in M . By our assumption Fr−1|H ≡ 0. Hence Fr−1|M ≡ 0,
yielding that Fr−1|Zr ≡ 0. This together with Proposition 5.1.5 proves our
claim.

Let now E,W, j1, . . . , jn be as at the beginning of this section.

Theorem 5.1.7 (Structure Theorem I, (Korányi, Szőke, [KSz])). Let α be a
W−invariant polynomial, C∞ or Cω p-form (p > 0) on E. Then α can be
expressed uniquely as

α =
∑

i1<···<ip

αi1,...,ipdji1 ∧ · · · ∧ djip , (5.1.1)

where αi1,...,ip are W -invariant polynomial, C∞ or Cω functions on E.

The polynomial case is Solomon’s theorem [Sol]. The C∞ case was proved by
P. Michor [Mi1, Lemma 3.3]. His proof could be slightly simplified by quoting
[He2, Lemma 3.7, p.361], that immediately yields formula (4) in [Mi1, p. 1636].
The real-analytic version follows the same line of reasoning as the C∞ case. To
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be more precise, let σ1, . . . , σr be the reflections in W and β1 = 0, . . . , βr = 0
the corresponding reflecting hyperplanes. Let π =

∏r
i=1 βi. If a Cω function g

satisfies g ◦ σ = detσ−1g for each σ ∈W , then g must vanish on the zero locus
of π and Proposition 5.1.6 implies that g = πh, where h is a W -invariant Cω

function.
The rest of the proof of [Mi1, Lemma 3.3], goes through literally, C∞ re-

placed by Cω everywhere, proving the real-analytic version.

Remarks. 1). If D is a W invariant open subset of E and α is a W -invariant
p-form over D, the same proof shows that α can be expressed by the same
formula as in the Theorem, except the functions αi1,...,ip are defined only on D
and their smoothness (i.e. C∞, or real-analytic) agrees with that of α.

2). The structure theorem can be restated as follows: For every W -invariant
polynomial, C∞ or Cω p-form α on E there exists a p-form ᾱ of the same
smoothness on Rn such that α = J ∗ᾱ.

5.1.2 Equivariant maps.

Let E be a finite dimensional real vector space. As usual we identify the tangent
space of E at all points with E. Let b be a non-degenerate symmetric bilinear
form on E. Given a 1-form α on E (i.e. a section of T ∗E) we associate to it the
map hα : E → E defined by

b(hα(p), v) = αp(v) (∀v ∈ E). (5.1.2)

Clearly α→ hα is a bijection between 1-forms on E and maps of E to E.
If A is a linear transformation on E, we have A∗v = Av under our identifi-

cations. If A is orthogonal with respect to b, then

(A∗α)p(v) = αAp(Av) = b(hα(Ap), Av) = b(A−1hα(Ap), v). (5.1.3)

Comparison with (5.1.2) shows that

A∗α = α ⇐⇒ A−1 ◦ hα ◦A = hα, (5.1.4)

i.e. α is A-invariant iff hα is A-equivariant.
So we have proved the following:

Proposition 5.1.8 (Korányi, Szőke, [KSz]). Let E be a finite dimensional real
vector space equipped with a nondegenerate symmetric bilinear form b. Let G be
a group acting on E by b-orthogonal transformations and let α be a 1-form on E.
Then α is G-invariant iff the corresponding map hα : E → E is G-equivariant.

Let now f : E → R be a smooth function and A a linear transformation on
E. Since the pull-back by a smooth map commutes with the exterior derivative
and the origin is a fixed point of A we have

f ◦A ≡ f iff A∗df ≡ df. (5.1.5)

We write ∇f for hdf . This is then just the classical notion of the gradient
of f regarded as an E-valued function on E. Now (5.1.3), (5.1.4) and (5.1.5)
together imply:
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Proposition 5.1.9 (Korányi, Szőke, [KSz]). Let E be a finite-dimensional real
vector space equipped with a nondegenerate symmetric bilinear form b. Let G
be a group acting on E by b-orthogonal transformations and f : E → R a
differentiable function. Then the following statements are equivalent.

1. f is G-invariant,

2. df is G-invariant,

3. ∇f is G-equivariant.

Let now j1 . . . jn be as at the beginning of subsection 5.1.1. In light of
Proposition 5.1.9, the maps ∇ji : a → a are W -equivariant. Furthermore as
a consequence of the Structure Theorem of subsection 5.1.1 and of Proposi-
tion 5.1.8 we get:

Proposition 5.1.10 (Korányi, Szőke, [KSz]). Let En be an n−dimensional real
vector space and W a finite reflection group on E. Then every W -equivariant
polynomial (resp. C∞ or Cω) map ϕ : E → E is of the form

ϕ =

n∑
i=1

hi∇ji,

where each hi is a W -invariant polynomial (resp. C∞ or Cω) function.

We now return to the case of a real semisimple Lie algebra g with k, p, a, G,
K, W , as in the introduction.

5.1.3 Proof of Theorem 5.1.1

Let j̃i be the K-invariant extension of ji to p. In view of Proposition 5.1.10
and of the Chevalley extension theorem (and its C∞ and Cω versions cf. the
beginning of subsection 5.1.1) it suffices to show that each ∇ji extends to a K-
equivariant polynomial map p→ p. To prove this, we note that for H ∈ a the K-
orbit OH of H is orthogonal to a, since every tangent vector at H to OH is of the
form [Z,H] with Z ∈ k, and for every H ′ ∈ a, B([Z,H], H ′) = B(Z, [H,H ′]) = 0
(where B is the Killing form). If H is a regular element, comparison of the
Iwasawa and Bruhat decompositions shows that the codimension of OH in p
equals dim a. Since j̃i is constant on OH , it follows that

∇pj̃i(H) = (∇aji)(H).

By continuity this is then true for all H ∈ a. By Proposition 5.1.9, ∇pj̃i is
K-equivariant, so the proof is finished.

Recall from subsection 5.1 that a K-equivariant map F : p → p is called
radial, if there exists a maximal Abelian subspace a in p, that is carried into itself
by F . Theorem 5.1.1 yields an isomorphism between the space of W -equivariant
polynomial, C∞ resp. Cω maps and K-equivariant radial polynomial, C∞ resp.
Cω maps. The question whether there are other kinds of K-equivariant maps,
will be addressed in the next subsection.

A differential form α on p is called horizontal if α vanishes on the tangent
vectors of the K-orbits, ie. ιX]α = 0 for all X ∈ k, where X] denotes the
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induced vector field on p. Clearly a K-invariant 1-form is horizontal iff the
corresponding K-equivariant map is radial.

As in the proof of Theorem 5.1.1, let j̃i be the K-invariant extension of ji
to p.

Structure Theorem I, Proposition 5.1.9, Chevalley’s extension theorem and
its C∞ and Cω versions imply.

Theorem 5.1.11 (Structure Theorem II (Korányi, Szőke, [KSz])). A polyno-
mial (resp, C∞ or Cω) horizontal p-form on p is K-invariant iff α can be
expressed as

α =
∑

i1<···<ip

αi1,...,ipdj̃i1 ∧ · · · ∧ dj̃ip ,

where αi1,...,ip are K-invariant polynomials (resp. C∞, or Cω functions). The
imbedding ι : a → p yields an isomorphism between the space of horizontal K-
invariant p-forms on p and the space of W -invariant p-forms on a (cf. [Mi1,
3.7 Theorem]).

5.1.4 Proof of Theorem 5.1.3

Let g be a real simple Lie algebra of non-compact type, with θ, k, p, a, G, K,
W , as in subsection 5.1. As usual, we write M , M ′ for the centralizer resp. the
normalizer of a in K. We set

pM = {v ∈ p | Ad(k)v = v,∀k ∈M}.

Lemma 5.1.12 (Korányi, Szőke, [KSz]). If g is not of Hermitian type, then

pM = a. (5.1.6)

If g is of Hermitian type,
pM = a⊕ Ia. (5.1.7)

Proof. Denote by Σ the set of nonzero restricted roots with respect to θ, a. Let
gλ be the root space corresponding to λ ∈ Σ. The group M maps every root
space gλ into itself. Let S denote the (possibly empty) set of all λ ∈ Σ roots,
such that M acts trivially on gλ. M ′ (and so the Weyl group as well) acts on
Σ and it is not hard to see that S is the union of full W orbits. The M action
and θ commute on g and θgλ = g−λ. This shows that λ ∈ S iff −λ ∈ S.

Choose an ordering in the dual of a. Then

p = a⊕ (Id− θ)(
⊕
λ>0

gλ). (5.1.8)

Denote by S+ the positive roots in S. (5.1.8) implies

pM = a⊕ (Id− θ)(
⊕
λ∈S+

gλ). (5.1.9)

It is well known that in case dim gλ > 1, M acts transitively on the unit sphere
in gλ. Therefore all root spaces in (5.1.9) are 1-dimensional.
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Let B be the Killing form of g (which is positive definite on p) and for a
λ ∈ Σ, denote by Aλ ∈ a the vector such that λ(.) = B(., Aλ). Let

A′λ :=
2

λ(Aλ)
Aλ.

Our statements involve only the adjoint action of G and K. This is the same
for any connected version of G. Therefore, in the following we may assume that
G is contained in the simply connected version of its complexification. [He1, (4),
p.322], then says, that mλ := expGC

(iπA′λ) ∈ K and then obviously mλ ∈ M
for each λ ∈ Σ.

Let λ, α ∈ Σ be arbitrary simple roots. Then

α(A′λ) =
2α(Aλ)

λ(Aλ)
= n(α, λ)

is the corresponding Cartan integer. Let Xα ∈ gα be a nonzero vector. Then

Ad(mλ)Xα = Ad(expGC
(iπA′λ))Xα = eiπα(A′λ)Xα = eiπn(α,λ)Xα. (5.1.10)

(5.1.10) implies that M will certainly be nontrivial on gα (i.e. α 6∈ S) if there is
a simple λ such that n(α, λ) is odd. This is the case if in the Dynkin diagram
α is tied to some λ by a single or a triple tie and also if there is a λ tied to α
by a double tie but α is shorter than λ (in which case n(α, λ) = −1).

Assume now that Σ is reduced. The discussion above shows that S cannot
contain any simple root, except possibly in the case Cl (l ≥ 2, where l = dim a),
when there is one simple root, namely the longest one, to be called α with only
a double tie to a shorter root, and in the case A1, where we call α the only
simple root. In all these cases g is of Hermitian type.

One of the standard properties of root systems (cf. [Bo, p. 279]) is that
every W−orbit in Σ contains a simple root. Therefore when Σ is reduced, S is
either empty or g is of Hermitian type and S may contain only one orbit, the
W−orbit of the longest simple root.

Let now Σ be non-reduced, i.e. of type BCl (l ≥ 2) or A1. Then using the
table in [He1, p.532-533] , together with (5.1.10), the discussion afterward and
the fact that λ ∈ S implies dim gλ = 1, we can conclude that S cannot contain
any simple root. Consequently S may only contain the one left out W−orbit,
namely the orbit of longest roots, i.e. if β denotes the unique shortest simple
root, S may contain the W− orbit of 2β. In the non-Hermitian case, again
checking the table in [He1, p. 532-533], one can see that dim g2β > 1, showing
that in this case S = ∅. This proves (5.1.6).

When g is of Hermitian type, I is in the center of Ad(K), whence it follows
that pM contains a⊕ Ia. To see that pM cannot be larger we observe that, by
the discussion above, S may contain only the longest roots of the root systems
Cl, or BCl or A1, with the roots having multiplicity one. The number of longest
positive roots in these systems is l (resp. 1). So dim pM cannot exceed 2 dim a,
proving (5.1.7).

Armed with the result of Lemma 5.1.12 we can now prove Theorem 5.1.3.
Let F : p→ p be a K-equivariant map. Then F is in particular M -equivariant
and thus maps pM into itself.
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If g is not of hermitian type, (5.1.6) implies that F is radial.
If g is of hermitian type, then I = Ad(k0), where k0 is in the center of K.

In particular as a map, I : p→ p is K-equivariant and linear.
Hence for any two K-equivariant radial maps Fj , the sum F1 + IF2 is also

K-equivariant and its smoothness agrees with that of Fj .
Now let F : p → p be an arbitrary K-equivariant polynomial (resp. C∞ or

Cω) map. The restriction of F to a determines F completely. In light of (5.1.7)
this restriction maps into a ⊕ Ia. Therefore it is of the form f1 + If2, where
fj : a→ a.

Since F is K−equivariant, in particular it is M ′−equivariant as well. But k0

is central in K. This yields that fj are M ′−, and consequently W−equivariant
maps. Now from Theorem 5.1.1 we know that fj extends to a K-equivariant
map Fj : p → p. The maps G = F1 + IF2 and F are K-equivariant and their
restriction to a is the same. Therefore G ≡ F .

Since aK-invariant 1-form α is horizontal iff the correspondingK-equivariant
map hα is radial, as an immediate corollary of Theorem 5.1.3 we get.

Corollary 5.1.13 (Korányi, Szőke, [KSz]). Suppose α is a K-invariant poly-
nomial (resp. C∞ or Cω) 1-form. If g is not of hermitian type, then α is
horizontal. If g is of hermitian type, then there exist unique K-invariant hori-
zontal polynomial (resp. C∞ or Cω) 1-forms βj, j = 1, 2, such that α = β1+Iβ2

and every 1-form of this type is K-invariant.

5.2 Hyperkähler metrics, the main result

A manifold X is called hypercomplex if X admits two integrable anticommut-
ing almost complex structure I and J . Then for all (x, y, z) ∈ R3, so that
x2 +y2 +z2 = 1 holds, xI+yJ+zK is also an integrable almost complex struc-
ture. This implies in particular that the real dimension of X is a multiple of four.
X is called hyperkähler if it admits a metric g that is Kähler with respect to
both complex stuctures I and J . Then g will be Kähler also for the xI+yJ+zK
complex structures as well. A Riemannian manifold (X4n, g) is hyperkähler iff
the holonomy group lies in Sp(n). These manifolds are important in particu-
lar because they are automatically Ricci flat. These Riemannian manifolds as
possible new geometries first appeared in Berger’s classification of the holon-
omy groups. The first (complete) examples were constructed by Eguchi and
Hanson [EH] on T ∗CP 1− and Calabi [C] on T ∗CPn. Later Burns [Bu2], using
twistor methods, generalized these. He showed that for any compact, Hermitian
symmetric space M , T ∗M admits a complete hyperkähler metric. Further im-
portant examples are the ALE spaces, gravitational instantons, moduli spaces of
solutions to certain gauge theory equations (instanton moduli spaces, monopole
moduli spaces, etc.), Nakajima quiver varieties.

Let M be a complex manifold. Then T ∗M inherits a natural complex struc-
ture. If M also has a Riemannian metric g, we can identify TM and T ∗M and
obtain a complex structure I on TM , with respect to which the zero section M
is complex. This will be different from the standard complex structure on TM
induced by that on M .

It is tempting to conjecture that I and J (the adapted complex structure of g)
anticommute and so generate a hypercomplex structure. Along the zero section
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in TM this is indeed the case. But even for complex projective spaces (with their
canonical Kähler structure) this is never true away from M . The idea to remedy
this is to look for a diffeomorphism φ : TM → TM such that φ∗JI = −Iφ∗J .
At least for compact hermitian symmetric spaces of classical type this approach
works. Looking for such a diffeomorphism that is equivariant with respect to
the isometry action makes it essentially (up to a positive constant) unique. All
this is the content of Theorem 5.2.9.

There even exists a metric on the manifold TM that makes the hypercomplex
structure generated by φ∗J and I hyperkähler and we get our main result.

Theorem 5.2.1 (Dancer-Szőke, [DSz]). Let M be a compact, hermitian sym-
metric space associated to a classical Lie group. Then TM admits a complete
hyperkähler metric.

In our methodM needs to be of classical type only at one step, in Lemma 5.2.6.
Our theorem gives a new proof of Burns’ result using the adapted complex

structures. Yet another proof, using the method of symplectic reduction, was
given by Biquart s Gauduchon [BG].

5.2.1 Symmetric spaces.

We now assume M is an irreducible Hermitian (hence Kähler) symmetric space.
Our aim is to find a diffeomorphism φ : TM → TM such that φ∗JI = −Iφ∗J .
Our strategy is to first consider a diffeomorphism of the tangent space at one
point, equivariant with respect to the isotropy action, and then extend it to the
whole tangent bundle by homogeneity.

We first review the Cartan theory for symmetric spaces, following Helgason
[He1]. Let M = U/K be a compact irreducible symmetric space with Cartan
decomposition u = k + p∗, where u and k are the Lie algebras of U and K, and
p∗ is an Ad K-invariant complement for k. If we fix a basepoint m in U/K,
then we can identify p∗ with the tangent space at this point. Denote by R the
curvature tensor on U/K, so if X,Y, Z ∈ p∗ we have R(X,Y )Z = −[[X,Y ], Z].
It follows that the Jacobi operator RX = R(., X)X is equal to −(adX)2.

Let hp∗ be a maximal abelian subspace of p∗. Then the dimension r of hp∗
is the rank of the symmetric space. Σ denotes the set of restricted roots. They
are real valued linear functionals on ihp∗ , but we shall identify them with real
valued linear functionals on hp∗ in the obvious way. The kernel of a restricted
root α is a hyperplane denoted by L(α). The connected components of the
complement of the union of these hyperplanes are the Weyl chambers. The
Weyl group is generated by the reflections in the hyperplanes L(α), and acts
simply transitively on the set of Weyl chambers.

The closure C̄ of any Weyl chamber C is a transversal for the action of
K on p∗. C̄ is a convex subset of hp∗ bounded by a collection of hyperplanes
L(αj) = Kerαj , (j = 1, . . . , s). If S is a subset of {α1, . . . , αs} we let LS =
∩{L(α) : α ∈ S}. If S is empty we take LS = hp∗ .

Lemma 5.2.2 (Dancer-Szőke, [DSz]). Let f be a bijection of C̄ onto itself which
maps C̄ ∩ LS bijectively onto itself for each subset S of {α1, . . . , αs}. Then we
can extend f to a K-equivariant bijection of p∗ onto itself and hence to a U -
equivariant bijection of TM onto itself.
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Proof. The argument of of [He1, Lemma 2.14 of Chapter VII] shows that the
stabiliser of a point x ∈ hp∗ for the action of U depends only on the set of roots
vanishing at x. Taking the intersection of the U -stabiliser with K, we see that
this conclusion also holds for the K-stabiliser. Equivalently, the K-stabiliser of
x depends only on the set of hyperplanes L(αj) which contain x.

Our hypotheses on f now imply that the K-stabilisers of x and f(x) are
identical for each x, so the equivariant extension statements follow easily.

Finally we need to establish some lemmas which will enable us to calculate
the derivative of a U -equivariant diffeomorphism of the tangent bundle of a
symmetric space U/K. We shall use these results in subsection 5.2.2, when we
study the pullback of the adapted complex structure by a diffeomorphism of
T (U/K).

Lemma 5.2.3 (Dancer-Szőke, [DSz]). Let M = U/K be a symmetric space,
and φ a U -equivariant fiber preserving diffeomorphism of TM . Let m be the
basepoint [K] of M , and identify p∗ with TmM . Suppose that φ restricts to a
diffeomorphism of hp∗ onto itself. Let v ∈ p∗ and let z be a nonzero element of
hp∗ . We shall regard z as a point of TM . Let vHz , v

H
φ(z) denote the horizontal

lifts of v to z and φ(z) respectively. Then

φ∗v
H
z = vHφ(z).

Proof. Let γ be the geodesic with γ(0) = m and γ̇(0) = v. As M is a symmetric
space, γ is given by γ(t) = exp(tv)m. Moreover, parallel transport along this
geodesic is given by Y 7→ exp(tv)∗Y . (We are regarding exp(tv) ∈ U as defining
a transformation of M). Therefore the vector field χ defined by χ(t) = exp(tv)∗z
is parallel along γ and satisfies χ(0) = z. We deduce that vHz = χ̇(0).

Now, using the equivariance of φ we have

φ(χ(t)) = φ(exp(tv)∗z) = exp(tv)∗φ(z),

so the vector field t 7→ φ(χ(t)) is also parallel along γ. Differentiating φ(χ(t))
at t = 0 proves our claim.

Lemma 5.2.4 (Dancer-Szőke, [DSz]). Let M,φ,m, v, z be as in Lemma 5.2.3
and let Rx be the Jacobi operator associated to x ∈ hp∗ . Suppose that λ is a
linear functional on hp∗ and that

Rxv = λ(x)2v (5.2.1)

for all x ∈ hp∗ . Assume moreover that λ(z) 6= 0. Denote by vVz and vVφ(z) the

vertical lifts of v to z and φ(z) respectively. Then

φ∗v
V
z =

λ(φ(z))

λ(z)
vVφ(z).

Proof. First observe that putting x = x1 + x2 in (5.2.1), and using the Ja-
cobi identity and the fact that x1 and x2 commute, shows that [[x1, v], x2] =
λ(x1)λ(x2)v for all x1, x2 ∈ hp∗ .

Consider the curve in p∗ = TmM defined by κ : t 7→ Ad(tΘ)z, where Θ =
λ(z)−2[z, v]. Now [Θ, z] = v, from (5.2.1), so κ′(0) is the vertical lift vVz of v to
z. Using the equivariance of φ again, we have
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φ(κ(t)) = φ(Ad(tΘ)z) = Ad(tΘ)φ(z). (5.2.2)

Differentiating (5.2.2) at t = 0 shows that φ∗v
V
z is the vertical lift to φ(z) of

[Θ, φ(z)], but by the discussion above

[Θ, φ(z)] =
1

λ(z)2
[[z, v], φ(z)] =

λ(z)λ(φ(z))

λ(z)2
v,

giving the required result.

5.2.2 Anticommuting complex structures.

Let M be a Kähler manifold with complex structure I0. Then I0 induces a
complex manifold structure on T ∗M . The pullback of this, via the metric defines
the complex structure I on TM , that in the Tz(TM) = THz ⊕TVz decomposition
has the form

I = I0 ⊕ (−I0). (5.2.3)

For any compact hermitian symmetric space M = U/K the adapted com-
plex structure J is defined on the whole of TM . If φ is a diffeomorphism of
TM we can pull back J to obtain a new complex structure. Our aim is to
find a U -equivariant diffeomorphism of TM such that the complex structure I
anticommutes with φ∗J . We shall simplify the calculations by making a suit-
able choice of bases for the tangent space to TM at points z and φ(z), and by
exploiting the equivariance of φ.

Definition 5.2.5. Let M = U/K be a compact irreducible hermitian symmetric
space of rank r, with its complex structure defined by an endomorphism I0 of
p∗. We shall say that M satisfies condition (∗) if there exists a maximal abelian
subspace hp∗ in p∗, an orthonormal basis e1, . . . , er for hp∗ , and an orthogonal
direct sum decomposition

p∗ = hp∗ ⊕ I0hp∗ ⊕1≤j<k≤r (Vjk ⊕ I0Vjk)⊕rk=1 Qk (5.2.4)

satisfying the following conditions.

(i) Each space Qk is I0-invariant (and possibly zero).

(ii) If x =
∑r
s=1 λs(x)es ∈ hp∗ , and v ∈ Vjk, q ∈ Qk, we have

RxI0ei = 4λ2
i (x)I0ei (i = 1, . . . , r), (5.2.5)

Rxv = (λj(x)− λk(x))2v, (5.2.6)

RxI0v = (λj(x) + λk(x))2I0v, (5.2.7)

Rxq = λk(x)2q. (5.2.8)

for each j, k.

Lemma 5.2.6 (Dancer-Szőke, [DSz]). Every compact irreducible hermitian sym-
metric space associated to one of the classical groups satisfies condition (∗).
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Proof. This is established by a case-by-case check, using the classification of
compact hermitian symmetric spaces (cf. [He1].

(i) Complex Grassmannians SU(a+ b)/S(U(a)× U(b)) with a ≤ b.
The rank is a. Let

p∗ =

{(
0 −P̄T
P 0

)
: P ∈Ma×b(C)

}
with I0 defined by multiplication by

√
−1. We let hp∗ be the subset of p∗

obtained by taking P = (∆ 0) where ∆ ∈Ma×a(R) is diagonal. If we denote by
Ejk the matrix with 1 in the jk position and 0 elsewhere, taking P = Eii (i =
1, . . . .a) defines an orthonormal basis for hp∗ . For 1 ≤ j < k ≤ a, Vjk is
spanned over R by the two elements of p∗ obtained by taking P = Ejk + Ekj
and P =

√
−1(Ejk − Ekj). For 1 ≤ k ≤ a we obtain a basis for Qk over C by

taking P = Ekl (l = a+ 1, . . . , b).
(ii) SO(2n)/U(n). Here the rank is [n2 ]. Let

p∗ =

{(
Z W
W −Z

)
: Z,W ∈Mn×n(R), ZT = −Z,WT = −W

}
The complex structure sends (Z W ) to (−WZ). We choose hp∗ to be the

subspace of p∗ where W = 0 and Z belongs to the standard Cartan algebra of
so(n). The matrices where one of the 2× 2 blocks on the diagonal of Z is(

0 1√
2

− 1√
2

0

)
,

and the other blocks are zero, form an orthonormal basis for hp∗ . In order to
define the other spaces in the decomposition (∗) we must introduce some more
notation. Let A be an n×n real skew-symmetric matrix. If n is even, we write
A as 

A11 . . . A1r

−AT12 . . . A2r

· . . . ·
· . . . ·

−AT1r . . . Arr

 ,

where each Ajk is a 2× 2 matrix. If n is odd, we write A as
A11 . . . A1r B1

−AT12 . . . A2r B2

· . . . · ·
· . . . · ·

−AT1r . . . Arr Br
−BT1 . . . −BTr 0

 ,

where the Ajk are as above and the Bj are 2× 1 matrices.
For every 2× 2 matrix Ψ, let EΨ

jk be the n×n matrix with Ajk = Ψ and all
other Amq (m ≤ q), as well as the matrices Bm, equal to zero.

If Ω is a 2× 1 matrix, let EΩ
j be the n× n matrix with Bj = Ω and all the

other Bk, as well as all the Amq, equal to zero.
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Then for 1 ≤ j < k ≤ r,

Vjk =

{(
EΨ
jk Eχjk

Eχjk −EΨ
jk

)
: Ψ =

(
a b
−b a

)
, χ =

(
c d
d −c

)
, a, b, c, d ∈ R

}
.

Also, for k = 1, . . . , r we have

Qk =

{(
EΩ
k EΞ

k

EΞ
k −EΩ

k

)
: Ω,Ξ ∈ R2

}
.

The Qk terms only occur if n is odd.
(iii) Sp(n)/U(n).
The rank is n. Let

p∗ =

{(
Z1 Z2

Z2 −Z1

)
: Z1, Z2 ∈ iMn×n(R), Z1, Z2 ∈ u(n)

}
.

The complex structure sends (Z1 Z2) to (−Z2 Z1). We choose hp∗ to be
the subspace defined by taking Z1 to be diagonal and Z2 to be zero. Letting
Z1 = iEjj (j = 1, . . . , n)) defines an orthonormal basis for hp∗ . We define a
basis for Vjk over R by letting Z1 = i(Ejk + Ekj), Z2 = 0. There are no Qk
terms.

(iv) Quadrics SO(n+ 2)/SO(n)× SO(2), (n ≥ 2).
The rank is 2. Let

p∗ =

{(
0 −ZT
Z 0

)
: Z ∈Mn×2(R)

}
,

and let hp∗ be defined by taking Z to be of the form, where (a, b ∈ R)
a b
b a
0 0
· ·
· ·
0 0

 .

We define an orthonormal basis for hp∗ by taking a = 1/
√

2, b = 0 and a = 0,
b = 1/

√
2. If we write Z as (Z1 Z2) where Z1, Z2 are column vectors, then the

complex structure is defined by

I0 : (Z1 Z2) 7→ (−Z2 Z1)

As the rank is two, the only Vjk term which occurs is V12. A basis of V12 over R
is defined by taking Z = Ek1−Ek2, (k = 3, . . . , n). There are no Qk terms.

It is not known whether condition (*) also holds for the exceptional hermitian
symmetric spaces. Condition (*) in Definition 5.2.5 will enable us to choose a
good basis in which to do the calculations of the next theorem.

Theorem 5.2.7 (Dancer-Szőke, [DSz]). Let M = U/K be a compact hermitian
symmetric space satisfying condition (∗). Let hp∗ , e1, . . . , er be as in Defini-
tion 5.2.4 and let φ be a U -equivariant diffeomorphism of TM , restricting to
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a diffeomorphism of hp∗ onto itself, which preserves each open Weyl chamber.
Then φ∗J anticommutes with I if and only if there exists a positive constant s
such that

φ(z) =
1

2

r∑
j=1

sinh−1(sλj)ej , z =

r∑
j=1

λjej ∈ hp∗ (5.2.9)

Proof. We regard the coordinates λj on hp∗ as defining real-valued linear func-
tionals on this space. As discussed in subsubsection 5.2.1, to each λj we can

associate a linear functional λ̃j on hp∗ by setting λ̃j(w) = λj(−iw). From [He1,
Corollary2.10 of Chapter VII] we see that the set of restricted roots is

Σ = {±2λ̃m,±(λ̃j − λ̃k),±(λ̃j + λ̃k),±λ̃m : 1 ≤ m ≤ r, 1 ≤ j < k ≤ r},

so
C = {x ∈ hp∗ : λ1(x) > . . . > λr(x) > 0}

is an open Weyl chamber in hp∗ . The set of points conjugate to points in C
by the action of U is an open and dense subset of TM . The action of U on
TM is holomorphic with respect to both I and J , so it is sufficient to check
anticommutation at points z of C. We shall choose special bases of Tz(TM)
and Tφ(z)(TM) with respect to which we shall calculate φ∗, I and (φ∗J)z.

For each pair (j, k) with 1 ≤ j < k ≤ r choose an orthonormal basis for Vjk.
Applying I0 to these bases gives an orthonormal basis for each I0Vjk. Finally,
for each k pick an orthonormal basis for Qk. Then the union of these bases,
together with the elements ej , I0ej (j = 1, . . . , r) forms an orthonormal basis
for p∗. The horizontal and vertical lifts of this basis to z and φ(z) give bases for
Tz(TM) and Tφ(z)(TM) respectively.

From (5.2.3), Proposition 1.2.3 and Lemmas 5.2.3 and 5.2.4, we see that I
and φ∗ preserve horizontal and vertical spaces while J interchanges them. With
respect to the decomposition into horizontal and vertical spaces, we have that
φ∗ : Tz(TM)→ Tφ(z)(TM) is represented by a matrix of the form(

Id 0
0 B

)
.

The maps Jφ(z) : Tφ(z)(TM) → Tφ(z)(TM) and Iz : Tz(TM) → Tz(TM) are
represented by (

0 −A−1

A 0

)
,

(
I0 0
0 −I0

)
,

respectively, for some A. It readily follows that the pulled back complex struc-
ture φ∗J at z commutes with Iz if and only if

I0A
−1B = A−1BI0. (5.2.10)

We may regard A,B, I0 as endomorphisms of p∗. The decomposition (5.2.4)
of p∗ will be used to calculate A,B, I0 explicitly and see when the anticommuta-
tion relation (5.2.10) holds. We shall see that each of the spaces Vjk⊕I0Vjk,Qk
and hp∗ + I0hp∗ is invariant under I0, A and B so it is sufficient to work on each
of these spaces separately. We shall denote by λk, φk the k th. component of z
and φ(z) respectively, relative to the basis e1, . . . , er.
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(i) Let us first study the space Qk. From (5.2.8), we see that Rφ(z)/‖φ(z)‖
is a scalar operator on Qk with eigenvalue φ2

k/ ‖ φ(z) ‖2. Then (1.2.13) now
shows that on Qk

A = φk coth(φk)Id.

Moreover, by Lemma 5.2.4 we find that B is also a scalar operator with eigen-
value φk/λk. Therefore (5.2.10) holds automatically on Qk.

(ii) On the subspace ĥ = hp∗+I0hp∗ , let us use the basis e1, . . . , er, I0e1, . . . , I0er.
Now, for any x ∈ hp∗ we have Rxej = 0. Combining this with (5.2.5) and ap-
plying Proposition 1.2.3, we can calculate A. As before, we use Lemma 5.2.4 to
find B, and we find that on ĥ

A−1 =

(
Id 0
0 µ

)
, B =

(
dφ 0
0 ν

)
,

with respect to our basis. Here dφ is the derivative of φ : hp∗ → hp∗ in the
coordinates given by the basis e1, . . . , er. The matrices µ and ν are diagonal
with entries tanh(2φj)/2φj and φj/λj respectively.

On ĥ the anticommutation equation (5.2.10) is equivalent to

dφ = νµ

which in turn is equivalent to

2λi
∂φi
∂λi

= tanh(2φi), (i = 1, . . . , r) (5.2.11)

∂φi
∂λj

= 0, if i 6= j. (5.2.12)

These equations have solution

φi =
1

2
sinh−1(siλi), (i = 1, . . . , r) (5.2.13)

where s1, . . . , pr are constants. (5.2.13) only defines a diffeomorphism of hp∗
preserving Weyl chambers and equivariant with respect to the Weyl group if the
si must all be equal to some positive constant s. Equation (5.2.13) shows that
the restriction of φ to hp∗ must be of the form (5.2.9). As φ is U -equivariant,
we see that the anticommutation condition determines φ up to a choice of a
positive real number.

(iii) We shall now demonstrate the converse implication. In order to show
that the anticommutation relation (5.2.10) holds, we must look at the spaces
Pjk = Vjk ⊕ I0Vjk. We see that

I0|Pjk =

(
0 −Id
Id 0

)
Proceeding as before, we use Proposition 1.2.3 and (5.2.6)-(5.2.7) to calculate
A−1 and find that

A−1
∣∣
Pjk

=

(
ρ1Id 0

0 ρ2Id

)
,

where

ρ1 =
tanh(φj − φk)

φj − φk
, ρ2 =

tanh(φj + φk)

φj + φk
.
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Lemma 5.2.4 tells us that

B|Pjk =

(
σ1Id 0

0 σ2Id

)
,

where

σ1 =
tanh(φj − φk)

λj − λk
, σ2 =

tanh(φj + φk)

λj + λk
.

It follows that the anticommutation condition on Pjk is equivalent to

tanh(φj + φk)

λj + λk
=

tanh(φj − φk)

λj − λk
. (5.2.14)

We have already seen that if φi = 1
2 sinh−1(sλi) for each i then the anticommu-

tation relation holds on each Qk and on ĥ. It is easy to check that if φ is given
by (5.2.9) on C then (5.2.14) holds, so anticommutation holds on each Pjk also.
It follows that I and φ∗J anticommutate at all points of the open Weyl chamber
C, and hence everywhere on TM .

Proposition 5.2.8 (Dancer-Szőke, [DSz]). Let M = U/K be a compact, irre-
ducible Riemannian symmetric space. Let hp∗ be a maximal abelian subspace of
p∗ and e1, . . . , er an orthonormal basis for hp∗ and s > 0. Let φ : C → C be
defined by

φ(z) :

r∑
j=1

λjej 7→
1

2

r∑
j=1

sinh−1(sλj)ej , (5.2.15)

Then φ and φ−1 extends uniquely as a U -equivariant real-analytic diffeomor-
phism TM → TM .

Proof. Clearly this map extends to a bijection of the closure of C onto itself,
which satisfies the hypotheses of Lemma 5.2.2. It therefore extends uniquely to
a U -equivariant bijection φ of TM . Then the result follows from Corollary 5.1.2.

Geatti and Iannuzzi uses the diffeomorphism φ in a recent paper [GI] to treat
the noncompact Hermitian symmetric spaces. The original proof of Propo-
sition 5.2.8 in [DSz] used the classification of compact hermitian symmetric
spaces and also assumed that M was of classical type. Note that φ is the iden-
tity on the zero section of TM , because the map (5.2.9) fixes the origin in C̄.
Combining Proposition 5.2.8 and Theorem 5.2.7, we obtain the next theorem.

Theorem 5.2.9. Let M = U/K be a compact irreducible Hermitian symmetric
space satisfying condition (∗). Then the map (5.2.15) extends to a U -equivariant
fibre-preserving diffeomorphism φ of TM , equal to the identity on M , such that
I anticommutes with the pullback of J by φ.

Proof of Theorem 5.2.1. The adapted complex structure for a product of
manifolds is just the product of the individual adapted complex structures. This
together with the fact that φ is equivariant and I, J are invariant with respect
to the isometry group of M , implies that we can assume that M is irreducible.

It follows from Theorem 5.2.9 that I and φ∗J generate a hypercomplex
structure on TM . Now, the symplectic form ω on TM and the complex structure
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I define a complex-symplectic form ωC = ω2 + iω3, where ω2, ω3 are real-valued
two forms. If we define a tensor ĝ by ĝ(X,Y ) = −ω2((φ∗J)X,Y ) then, using
our expression for φ∗J , and Propositon 1.2.1, we can check that ĝ defines a
Riemannian metric, hermitian with respect to I and φ∗J . We therefore have a
hyperhermitian structure, and as ω2 and ω3 are closed it is in fact a hyperkähler
structure.

As the hyperkähler structure is U -invariant and the complex-symplectic form
is the standard one, results of [BG] show that it coincides with that found in
[Bu2] and [BG]. The metric is therefore complete.
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Part II

The family of adapted
complex structures
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Chapter 6

Adapted complex
structures and geometric
quantization

6.1 New look at adapted complex structures,
the main results

In this chapter we are going to show that the adapted complex structure of a
Riemannian manifold is in fact just one member in a natural family of Kähler
structures. This is the family of Kähler structures that respects the symmetries
of the phase space N . To see this, it is advantageous to adhere to Souriau’s
philosophy ([So1]) and define the phase space N of a compact Riemannian
manifold not as TM or T ∗M but as the manifold of parametrized geodesics
x : R → M . Any t0 ∈ R induces a diffeomorphism N 3 x 7→ ẋ(t0) ∈ TM , and
the pull back of the canonical symplectic form of TM ≈ T ∗M is independent
of t0; we denote it by ω. We identify M with the submanifold of zero speed
geodesics in N . Affine reparametrizations t 7→ a + bt, a, b ∈ R, act on N and
define a right action of the Lie semigroup A of affine reparametrizations.

To simplify the notation here, we formulate the main results assuming that
we work on the full phase space. This is the situation that will be important
most of the time later on.

Given a complex manifold structure on A, a complex structure on N is called
adapted if for every x ∈ N the orbit map A 3 σ 7→ xσ ∈ N is holomorphic.We
show that: an adapted complex structure on N can exist only if the initial
compex structure on A is left invariant. Left invariant complex structures on A
are parametrized by the points of C \R. For each s ∈ C \R and corresponding
left invariant complex structure I(s) on A, if an I(s) adapted complex structure
J(s) exists on N , then this structure is unique and if J(i) exists, then J(s) also
exists for all s in s ∈ C \ R. The points of the upper half plane (denoted from
now on by S) correspond to J(s) in which ω is a Kähler form. The original
definition of adapted complex structures in Definition 1.2.2 corresponds to the
parameter s = i.

The family of adapted complex structures J(s), s ∈ S on N can all be put
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together to form a holomorphic fibration π : Y → S, where the fibers Ys = π−1s
are biholomorphic to (N, J(s)). In fact, as a differentiable manifold, Y = S×N ,
and the projection pr: Y → N realizes the biholomorphisms Ys → (N, J(s)).

(cf. Theorems 6.1.2, 6.1.4, 6.1.6, 6.1.10, 6.1.11 and Corollary 6.1.5.)

6.1.1 Polarized manifolds

A polarization of a smooth manifold N is given by a smooth, involutive, complex
subbundle P ⊂ C⊗ TN , of rank m = (1/2) dimN . Involutivity means that the
bracket of sections of P is again a section of P . This definition is more general
than the one, say, in [W] (or Definition 4.2.12) but in our context this is the
natural one. Sometimes even more general structures have to be considered,
where the rank condition is omitted; these are the involutive manifolds.

A polarization is real if P = P ; it is equivalent to the datum of an m
dimensional foliation of N . A polarization is complex if P and P are transverse;
this one is equivalent to a complex structure on N . In the former case P consists
of tangents to the leaves, in the latter P is the bundle of (1, 0) vectors. A smooth
map f of polarized manifolds (M,Q) → (N,P ) is called polarized if f∗Q ⊂ P .
As is well known, a polarized map f between two polarized manifolds, where
both polarizations are complex, is equivalent with f being a holomorphic map.

Consider now a smooth manifold N on which a Lie semigroup G acts smooth-
ly on the right. Fix a polarization of G.

Definition 6.1.1. A polarization of N is called adapted (to the polarization of
G) if for every x ∈ N the map G 3 g 7→ xg ∈ N is polarized.

6.1.2 The affine semigroup

This is the Lie semigroup A of affine transformations σ : R→ R, t 7→ σt = a+bt,
where a, b ∈ R. Here a = a(σ), b = b(σ) serve as global coordinates on A,
and identify it with R2. With this single coordinate chart A becomes a Lie
semigroup. The subset of A with b > 0 forms a Lie (sub)group, that we shall
denote by A+. In the above coordinates A+ is identified, as a smooth manifold,
with the upper half plane S.

Denote by Lσ, Rσ left and right translations of A. By a left invariant polar-
ization Q of A we mean one for which Lσ : A → A is polarized for every σ ∈ A.
In the identification A ∼= R2 invariance means that the fibers Qσ, σ ∈ A, are
Euclidean translates of each other. Hence associating with a polarization Q of
A the complex line Qid ⊂ C ⊗ TidA yields a bijection between the set of left
invariant polarizations and P(C⊗ TidA) ≈ CP1. All left invariant polarizations
but one can be obtained by the following construction. The (left) action of A
on R extends to an affine action on C. Fix s ∈ C, let

fs(σ) = σs and Q(s) = (fs∗)
−1T 1,0C. (6.1.1)

E.g., Q(i) gives the usual complex structure on A ∼= R2, In general, for s
nonreal, Q(s) is a complex polarization. We shall denote the corresponding
complex structure by I(s).

For s real Q(s) is a real polarization whose leaves are straight lines of slope
−1/s. Equivalently, with Hs = {σ ∈ A : σs = s}, s ∈ R, the leaves of Q(s)
are left translates of Hs. We write Q(∞) for the exceptional, real polarization,
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whose leaves have slope 0. Now (6.1.1) and fσs = fs ◦ Rσ together imply that
Rσ : (A, Q(σs))→ (A, Q(s)) is a polarized map.

For an s ∈ C, let σs ∈ A be the unique element with fi(σs) = σs(i) = s.
The curves α(u), β(u), u ∈ R with

α(u) = {t 7→ u+ t}, β(u) = {t 7→ eut} (6.1.2)

are 1-parameter subgroups in A+ and α̇(0), β̇(0) form a basis in its Lie algebra.
Define the homomorphism χ : A → R by χ(σ) = b if σt = a + bt, and let

Aρ = {σ ∈ A : |χ(σ)| ≤ ρ}, 0 ≤ ρ ≤ ∞. Thus Aρ ⊂ A is a normal sub–
semigroup if ρ ≤ 1. Everything that we discussed in this subsection applies to
A1 instead of A as well.

6.1.3 Riemannian manifolds

Let M be a complete Riemannian manifold, dimM = m > 0. Define the phase
space N of M not as TM or T ∗M , but as the manifold of geodesics x : R→M .

Any t0 ∈ R induces a diffeomorphism N 3 x 7→ ẋ(t0) ∈ TM , and the pull
back of the canonical symplectic form on TM ≈ T ∗M is independent of t0 (see
[W, Section 2.3]); it will be denoted by ω. It corresponds to the form

∑
dqi∧dpi

(written in terms of the usual local coordinates on TM ≈ T ∗M .) Note the sign
convention used for ω.

Elements of TxN can be identified with Jacobi fields along x. If ( , ) denotes
the Riemannian inner product on TM , then for Jacobi fields ξ, η ∈ TxN

ω(ξ, η) = (ξ(t), η′(t))− (η(t), ξ′(t)), for any t ∈ R, (6.1.3)

where prime indicates Levi–Civita covariant differentiation, see [Kl, 3.1.14–17].
Further, let L(x) denote the speed of a geodesic x ∈ N , squared (so L is twice
the free Lagrangian). It will be convenient to associate with a point q ∈M the
constant geodesic ≡ q. This identifies M with the submanifold of zero speed
geodesics.

Composition of geodesics with affine transformations R→ R defines a right
action of A on N . We shall consider adapted polarizations on A1–invariant
open subsets X ⊂ N . The domains on which the adapted complex structures
of [GS1, LSz91] were defined correspond to the set of geodesics of speed < r,
with r ∈ (0,∞] (but since then adapted complex structures on more general
invariant sets have turned out to be of importance, see [FHW] and references
there). Put Ωx(σ) = Aσ(x) = x ◦ σ for x ∈ N, σ ∈ A. Then

A∗σω = χ(σ)ω. (6.1.4)

When σt = a + t, (6.1.4) expresses the fact that the geodesic flow preserves ω,
and when σt = bt, (6.1.4) holds because in the canonical identification N ≈ TM
in local coordinates Aσ is given by (qj , pj) 7→ (qj , bpj). Since A is generated by
translations and dilations, (6.1.4) holds for all σ ∈ A.

By Definition 6.1.1, given a polarization Q of A1, a polarization P of X is
adapted to Q if Ωx : (A1, Q)→ (X,P ) is polarized for every x ∈ X. If Q is left
invariant and 0 < ρ <∞, this is equivalent to saying that Ωx : (Aρ, Q)→ (X,P )
is polarized for every x ∈ XA1/ρ.
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Theorem 6.1.2 (Lempert, Szőke,[LSz12]). (a) If a nonempty, A1–invariant
open X ⊂ N has a polarization P adapted to a polarization Q of A1, then Q
is left invariant. If Q = Q(s), s ∈ R, then it determines P uniquely. P must
be a real polarization. For an s ∈ C \ R, Q = Q(s) determines P uniquely iff
Q = Q(i) does. In any case there is at most one complex polarization on X that
is adapted to Q(s).

(b) If M is a closed analytic Riemannian manifold, then there is a A1–
invariant open X ⊂ N , containg all zero speed geodesics, such that XA1/|Im s|

has a polarization P (s) adapted to (A1, Q(s)), for every s ∈ C. P (s) will be
a complex polarization when s ∈ C \ R and a real polarization for s ∈ R. The
same is true if M is not necessarily closed, but modulo its isometry group it is
compact.

Proof. Suppose (X,P ) is adapted to Q. Fix a nonconstant geodesic x ∈ X;
then Ωx : (A1, Q) → (X,P ) is a polarized immersion. Since Ωx◦σ = Ωx ◦ Lσ is
also polarized for σ ∈ A1, it follows that Lσ : (A1, Q) → (A1, Q) is polarized,
i.e., Q is left invariant.

Let now Q = Q(s), s ∈ C, σ ∈ A and x ∈ X. Consider the commutative
diagram

XA1/|χ(σ)| Aσ−−−−→ X

Ωx

x Ωx

x
A1/|χ(σ)| Rσ−−−−→ A1,

and recall that Rσ : (A, Q(σs))→ (A, Q(s)) is polarized.
Now Aσ : XA1/|χ(σ)| → X is a diffeomorphism if χ(σ) 6= 0, and the diagram

implies that Aσ pulls back any Q(σs)–adapted polarization to a Q(s)–adapted
polarization. Therefore uniqueness and existence for s = i implies the same for
any s ∈ C\R. Concretely, if σs = i, then χ(σ) = 1/Im s, and so if X admits
a Q(i)–adapted polarization, then XA1/|Im s| will admit a Q(s)–adapted polar-
ization. Also if the Q(i)–adapted polarization is complex, the Q(s)–adapted
polarization is complex as well. Now uniqueness and existence of the adapted
complex polarization for s = i is the content of [LSz91, Theorem 4.2] and [Sz91,
Theorem 2.2]. This proves part (a).

Finally, let s ∈ R and πs : N → M be given by πs(x) = x(s). As said,
the leaves of Q(s) are left translates of the sub–semigroup Hs ⊂ A. That P
is adapted to Q(s) means it is tangential to the orbits Ωx(Hs). As x ranges
over a fiber π−1

s y, these orbits all pass through the constant geodesic ≡ y, that
we denote y. Their tangents at y form the vertical tangent space Ty(π−1

s y),
which then must agree with Py. Furthermore, the vector field generating the
Hs–action, being tangent to the orbits, is a section of P . Since P is involutive,
it must be invariant under the action of Hs∩A1. But πs is also invariant, hence
for any x ∈ X and y as above, πs∗Px = πs∗Py = 0. Therefore P consists of
the tangent spaces to the fibers of πs, and is unique. It is straightforward that,
conversely, the tangent spaces to the fibers form a polarization of N , adapted
to (A1, Q(s)) (and to (A, Q(s))).

Remarks. It is tempting to claim in part (a) that the Q(i) complex polarization
determines any adapted polarization on X, not only the complex ones. But
this is not known. It is easy to see that for any adapted Q(i) polarization
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P , P |M and P̄
∣∣
M

will be transverse and so they remain transverse in a small
neighborhood of M in X. That means, P will be a complex polarization in this
small neighborhood, hence the uniqueness result [LSz91, Theorem 4.2] applies.
The difficulty is that a Q(i) adapted polarization P may not be complex in all
of X, as for example in [Sz01, Theorem 1.2] and we do not know how to prove
uniqueness for such adapted polarizations.

It is straightforward that, after the canonical identification N ∼= TM , a
complex polarization adapted to Q(i) becomes the adapted complex structure of
[LSz91, Definition 4.1]. More generally (but as a special case of Definition 6.1.1)

Definition 6.1.3. Given a complex manifold structure on A1, a complex struc-
ture on X is adapted if for every x ∈ X the orbit map A1 3 σ 7→ xσ ∈ X is
holomorphic.

From Theorem 6.1.2 (a) adapted complex structure on X can exist only if
the initial complex structure on A1 is left invariant. Recall from subsection6.1.2
that the left invariant complex structures on A1 are parametrized by points
in C\R as follows. Each σ ∈ A extends to an affine map of C. For fixed
s ∈ C\R, let I(s) denote the pull back of the complex structure of C by the
map A1 3 σ 7→ σs ∈ C. Then the structures I(s) are all the left invariant
complex structures on A1. From Theorem 6.1.2 we get.

Theorem 6.1.4 (Lempert, Szőke,[LSz12]). Let M be a compact Riemannian
manifold.

(a) If on an open A1–invariant X ⊂ N there is a complex structure adapted
to (A1, I(s)), then this structure is unique. It will be denoted J(s).

(b) If M is real analytic, then there is an A1–invariant open neighborhood
X of M ⊂ N such that XA1/|Im s| has a complex structure J(s) adapted to
(A1, I(s)), for all s ∈ C\R.

The proof of Theorem 6.1.2 also gave the following.

Corollary 6.1.5 (Lempert, Szőke,[LSz12]). Let s ∈ C and σ ∈ A. If a A1–
invariant X ⊂ N admits a Q(s)–adapted polarization P (s), then XA1/|χ(σ)|

admits a Q(σs)–adapted polarization P (σs), and

Aσ : (XA1/|χ(σ)|, P (σs))→ (X,P (s))

is polarized, in fact a polarized isomorphism when χ(σ) 6= 0.

We shall continue using J(s) for the I(s)–adapted complex structure on
X ⊂ N , whenever it exists. Recall that L(x) denote the speed squared of a
geodesic x ∈ N .

Theorem 6.1.6 (Lempert, Szőke,[LSz12]). For s ∈ C\R let ∂s, ∂s denote the
complex exterior derivations for the complex structure J(s) on X (if this latter
exists). The symplectic form ω on X ⊂ N ∼= TM is given by

iω = (Im s)∂s∂sL.

In particular, ω is a positive or negative (1, 1)–form depending on whether
Im s > 0 or < 0.
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Proof. When s = i, the claims are in [LSz91, Corollary 5.5 and Theorem 5.6].
(Note that E and Ω there correspond to our L/2, resp. −ω.) Hence the general
case follows by Corollary 6.1.5, because A∗σL = χ(σ)2L and by (6.1.4), A∗σω =
χ(σ)ω.

In [HK] Hall and Kirwin consider a holomorphic family P ′(s) of polarizations
of (neighborhoods of M in) TM . When s is real, P ′(s) is the pullback of the
vertical polarization of TM by time s geodesic flow, and P ′(i) is the original
adapted complex structure of [GS1, LSz91]. [HK] also studies the effect of
fiberwise scaling on this family. After analytic continuation from real to complex
σ in [HK, Theorem 3.3], a comparison with our Corollary 6.1.5 shows that under
the canonical identification N → TM , P (s) corresponds to P ′(s).

6.1.4 The canonical bundle

In the set up of Section 6.1.3, let s ∈ C \ R and consider a A1–invariant open
X ⊂ N that admits a Q(s)–adapted complex polarization P (s). Recall that the
corresponding complex structures were denoted by I(s) and J(s). The canonical
bundle of (X, J(s)) is the holomorphic line bundle Ks → X of (m, 0)–forms. If
s = i, we simply write K instead of Ki. Ks has a Hermitian metric hK

s

defined
by

hK
s

(Θ)ωm(x) = im
2

m!Θ ∧ Θ̄, Θ ∈ Ks
x, x ∈ X. (6.1.5)

Sometimes we we just write shortly |α|2 instead of hK
s

(α, α). Recall from 6.1.2
that σs ∈ A is the unique element with σs(i) = s. For simplicity assume
that X = N . According to 6.1.5, the map Aσs : (N, J(s)) → (N, J(i)) is a
biholomorphism.

Proposition 6.1.7 (Lempert, Szőke,[LSz14]). Assume M is oriented. Then
the bundle Ks is holomorphically trivial.

Proof. It is enough to deal with the case s = i. Since (N, J(i)) is a Stein
manifold ([LSz91, Theorem 5.6]), by the Oka principle, see e.g. [Hö, pp. 144-
145] , it suffices to show that K is smoothly trivial. M is a deformation retract
in N , so we only need to show that K|M is trivial. Since M is oriented, the
bundle KM →M of real m−forms is trivial. But restricting a form in K|M to
TM is an isomorphism K|M ≈ C⊗KM and we are done.

Due to the proposition, when M is orientable, there is a Hermitian holo-
morphic (in fact trivial) line bundle (κ, hκ) so that κ ⊗ κ ≈ K. Let now Θ be
a trivializing section of K, i.e. a nowhere vanishing holomorphic (m,0) form
on (N, J(i)) and θ the corresponding section of κ with θ ⊗ θ = Θ. Taking
κs := A∗σsκ, we have κs ⊗ κs ≈ Ks. Let Θs := A∗σsΘ and θs := A∗σsθ.

Let E = ωm

m! be the Liouville volume form on N . From (6.1.4) we get

A∗σ(E) = χ(σ)m. (6.1.6)

Proposition 6.1.8 (Lempert, Szőke,[LSz14]).

|Θs|2 = (Im s)m|Θ|2 ◦Aσs |θs|2 = (Im s)
m
2 |Θ| ◦Aσs .
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Proof. Since χ(σs) = Im s, ((6.1.5) and (6.1.6) implies

Θs ∧ Θ̄s = A∗σs(Θ ∧ Θ̄) = A∗σs(|Θ|
2(−i)m

2

E) = (−i)m
2

(Im s)m(|Θ|2 ◦Aσs)E

In light of ((6.1.5) this proves the first formula from which the second follows.

We shall need the above propositions in subsection 6.2.4.
In the rest of this subsection we compute hK

s

, something that is needed for
purposes of quantization. We start by recalling certain constructions and results
from [LSz91, Sz95]. Denote by id∈ A the identity transformation R→ R.

The action of A on N induces an action on TN and C ⊗ TN , denoted
(ξ, σ) 7→ ξσ. Let x ∈ X. Any ξ ∈ TxX can be decomposed into (1, 0) and (0, 1)
components with respect to the structure P (s): ξ = ξ1,0+ξ0,1. If J : TX → TX
denotes the complex structure operator for P (s), then ξ1,0 = (ξ − iJξ)/2. The
map σ 7→ (ξσ)1,0 is holomorphic as a map (A1, Q(s)) → T 1,0(X,P (s)) (in the
sense that it has a holomorphic extension to a neighborhood of A1), see [LSz91,
Proposition 5.1]

Now consider two m–tuples ξ1, . . . and η1, . . . ∈ TxN , and assume that the
ξ1,0
j are linearly independent. Those σ for which (ξjσ)1,0 are linearly dependent

form a discrete subset ∆ ⊂ A. For σ ∈ A0 \ ∆ the ξjσ are also independent.
Since when σ ∈ A0, the vectors ξjσ, ηjσ are tangential to the m–dimensional
manifold of zero speed geodesics, on A0\∆ there is a smooth real m×m–matrix
valued function φ0 = (φ0

jk) such that

ηjσ =
∑
k

φ0
jk(σ)ξkσ, σ ∈ A0 \∆. (6.1.7)

Further, there is a meromorphic m ×m–matrix valued function φ = (φjk) on
(A1, Q(s)), with poles restricted to ∆, such that

(ηjσ)1,0 =
∑
k

φjk(σ)(ξkσ)1,0 (6.1.8)

By (6.1.7) and (6.1.8), φ is the analytic continuation of φ0.

Theorem 6.1.9 (Lempert, Szőke,[LSz12]). Suppose x ∈ X and ξ1, . . . , ηm ∈
TxX form a symplectic basis:

ω(ξj , ξk) = ω(ηj , ηk) = 0, ω(ξj , ηk) = δjk, 1 ≤ j, k ≤ m.

If φ is as in (6.1.8), then for Θ ∈ Ks
x

hK(Θ) = 2m|Θ(ξ1, . . . , ξm)|2 det Im φ(id). (6.1.9)

It is possible to derive (6.1.9) from [HK, (3.9)] and [KW, (3.9)], but the
following proof is shorter and self contained.

Proof. With ζj =
∑
k Imφjk(id)ξk

Θ ∧ Θ̄(ζ1,0
1 , . . . , ζ1,0

m , η0,1
1 , . . . , η0,1

m ) = Θ(ζ1,0
1 , . . .)Θ(η1,0

1 , . . .)

= Θ(ζ1, . . .)Θ(η1,0
1 , . . .) = |Θ(ξ1, . . .)|2 det Imφ(id) det φ̄(id). (6.1.10)
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Taking real parts in (6.1.8) gives ηj =
∑
k Re φjk(id)ξk + Jζj . Thus

2ω(ζ1,0
j , η0,1

l ) = 2ω(ζ1,0
j , ηl) = ω(ζj − iJζj , ηl)

= ω
(∑

k

Imφjk(id)ξk, ηl
)
− iω

(
ηj −

∑
k

Re φjk(id)ξk, ηl
)

= Imφjl(id) + iRe φjl(id) = iφ̄jl(id),

and

ωm(ζ1,0
1 , . . . , ζ1,0

m , η0,1
1 , . . . , η0,1

m ) = m!im(m−1) det
(
ω(ζ1,0

j , η0,1
l )
)

= m!im
2

2−m det φ̄(id).

Comparing this with (6.1.5) and (6.1.10) yields (6.1.9).

6.1.5 The family of adapted polarizations

Finally we shall construct a polarized fibration Z → C whose fibers represent
the various (X,P (s)). With s ∈ C, x ∈ N consider the embeddings

ix : C 3 s 7→ (s, x) ∈ C×N, js : N 3 x 7→ (s, x) ∈ C×N. (6.1.11)

Also, let π : C×N → C denote the projection.

Theorem 6.1.10 (Lempert, Szőke,[LSz12]). Suppose that a A1–invariant open
X ⊂ N admits the adapted polarization (complex structure) P (i).

(a) On Z = {(s, x) ∈ C×N : x ∈ XA1/|Im s|} there is a unique polarization
P such that the maps

ix : ((ix)−1Z, T 1,0C)→ (Z,P ), js : (XA1/|Im s|, P (s))→ (Z,P )

are polarized for all s ∈ C, x ∈ N . With this P , π : (Z,P ) → (C, T 1,0C) is
polarized, and (Z \ π−1R, P ) = Z0 is a complex manifold.

(b) Let ∂, ∂̄ denote the complex exterior derivations on Z0, and ω̃ the pullback
of ω along the map (s, x)→ x. Then

iω̃ = ∂̄∂(LIm s) on Z0, (6.1.12)

LIm s is plurisub/superharmonic if Im s > 0, resp. < 0, and satisfies the
Monge–Ampère equation rk ∂̄∂(LIm s) = m.

(c) Finally, endow (C, T 1,0C)× (X,P (i)) with the product complex structure.
Then the map Φ: Z → C×X given by

Φ(s, x) = (s, x ◦ σ), where σi = fi(σ) = s, (6.1.13)

is polarized, and in fact restricts to a biholomorphism Z0 → (C\R)×X.

Proof. Since the range of ix∗ and js∗ together span T (C×N), the polarization P
in question is unique, and must be given by

P(s,x) = ix∗T
1,0
s C⊕ js∗P (s)x, (s, x) ∈ Z. (6.1.14)

In view of Corollary 6.1.5 this formula defines a subbundle P ⊂ C⊗TZ. Our P
has rank m+ 1 all right, but is it involutive? To decide, first we check that Φ in
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6.1.13 is polarized, i.e. Φ∗ maps P into T 1,0(C×X). With notation introduced
earlier

(Φ ◦ ix)(s) = (s, (Ωx ◦ f−1
i )(s)), (Φ ◦ js)(x) = (s,Aσx).

Now Ωx : (Ar/
√
L(x), Q(i))→ (X,P (i)) is holomorphic by the definition of P (i)

and by the observation preceding Theorem 6.1.2; also fi : (A, Q(i)) → C is bi-
holomorphic by the definition of Q(i). Therefore Φ◦ix is holomorphic. Similarly
Φ◦js : (XA1/|Im s|, P (s))→ (C×X,T 1,0(C×X)) is polarized by Corollary 6.1.5
(s there corresponds to i here, though). Putting these and 6.1.13 together, we
see Φ∗P ⊂ T 1,0(C×X) indeed.

Since T 1,0(C×X) is involutive and Φ is a diffeomorphism over Z0, it follows
that P is involutive over Z0, which therefore is a complex manifold. By density,
P is involutive over all of Z. That π is polarized is obvious, so (a) and (c) have
been proved. As to 6.1.12, the two sides restricted to the fibers of π agree by
Theorem 6.1.6. Tangents to the fibers of (s, x) → x, the “horizontal fibers”,
constitute the kernel of iω̃; to finish the proof it will suffice to show the same for
Ker ∂̄∂(LIm s). The restriction of ∂̄∂(LIm s) to the horizontal fibers is certainly
0, since L restricts to a constant and ix is holomorphic; but that is not quite
enough. It will be necessary to compute ∂̄∂(LIm s), that we do by pulling it
back along Φ−1.

If in 6.1.13 σt = a + bt, then b = Im s. Hence (Φ−1)∗(LIm s) = L/Im s.
(With a slight abuse of notation, L stands for both a function on N and its
pull back along the projection C×N → N . Also, Im s stands for a function on
C×N .) On (C \ R)×X

∂̄∂
L

Im s
=
∂̄∂L

Im s
+
ds̄ ∧ ∂L− ∂̄L ∧ ds

2i(Im s)2
+
Lds̄ ∧ ds
2(Im s)3

. (6.1.15)

In computing ∂L, ∂̄L, the operators corresponding to the complex structure
P (i) are to be used. Now (∂̄∂L)m+1 and (∂̄∂L)m ∧ ∂L vanish, thus by 6.1.15,(
∂̄∂(L/Im s)

)m+1
equals

(m+ 1)
( ∂̄∂L

Im s

)m ∧ Lds̄ ∧ ds
2(Im s)3

−
(
m+ 1

2

)( ∂̄∂L
Im s

)m−1 ∧ (ds̄ ∧ ∂L− ∂̄L ∧ ds)2

4(Im s)4

=
(m+ 1)ds̄ ∧ ds

4(Im s)m+3
∧
(
2L(∂̄∂L)m −m(∂̄∂L)m−1 ∧ ∂̄L ∧ ∂L

)
. (6.1.16)

According to [LSz91, (5.20)], where E = L/2, the last expression vanishes. As
−i∂̄∂(L/Im s) is definite along the fibers of π, its signature is m pluses (or
minuses) and one 0, and the same holds for −i∂̄∂(LIm s) on Z0. In particular,
(LIm s) is plurisub/superharmonic, and because ∂̄∂(LIm s) vanishes on the
horizontal fibers, its kernel consists of the tangents to the horizontal fibers.
This then proves 6.1.12 and the rest of (b).

The results that will be important in the quantization later on are the fol-
lowing parts of Theorem 6.1.10. The adapted complex structures J(s) of The-
orem 6.1.4 can all be put together to form a holomorphic fibration.
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Theorem 6.1.11 (Lempert, Szőke,[LSz12]). Suppose that an A1–invariant open
X ⊂ N admits a complex structure adapted to I(i). Then on

Z = {(s, x) ∈ (C\R)×N : x ∈ XA1/|Im s|}

there is a unique complex structure that restricts on each fiber {s} ×XA1/|Im s|

to the structure adapted to I(s), and for each x ∈ N , the map s 7→ (s, x) ∈ Z
is holomorphic where defined. The projection map π : Z → C\R is then a
holomorphic submersion. The pull back ω̃ of ω along the projection pr : (C \
R)×N → N satisfies

iω̃ = ∂∂(L Im s) on Z. (6.1.17)

(Here, a little abusively, L Im s stands for the function (s, x) 7→ L(x)Im s.)
Finally, if X is endowed with the I(i) adapted complex structure J(i), and
(C\R)×X with the product structure, then the map

Z 3 (s, x) 7→ (s, xσ) ∈ (C\R)×X, where σi = s, (6.1.18)

is a biholomorphism. In particular, Z 3 (s, x) 7→ s ∈ C is holomorphic.

6.2 Geometric quantization

Suppose an m–dimensional compact Riemannian manifold M is the classical
configuration space of a mechanical system, the metric corresponding to twice
the kinetic energy. The aim of geometric quantization is to construct a Hilbert
space H, called the quantum Hilbert space, associated to this system in a canon-
ical way. In this process, according to the prescriptions of Kostant and Souriau
[Ko1, So1, W], one first passes to phase space N , a symplectic manifold with
an exact symplectic form ω. As it is discussed in section 6.1.3, N is the man-
ifold of parametrized geodesics in M . (In fact geometric quantization intends
to quantize any symplectic manifold with an integral symplectic form, not only
the phase spaces we are concerned with in this dissertation.)

The next step is the choice of a Hermitian line bundle L → N (so called
“prequantum line bundle”) with a Hermitian connection whose curvature is−iω.
If M is simply connected, the bundle is unique up to a connection preserving
Hermitian isomorphism. In any case, one such line bundle is obtained from a
real 1–form a on N such that da = −ω, by letting L = N × C → N to be the
trivial line bundle with hL(x, γ) = |γ|2 the trivial metric on it. If sections are
identified with functions ψ : N → C, the connection ∇L is defined by

∇Lζ ψ = ζψ + ia(ζ)ψ, ζ ∈ VectN. (6.2.1)

The first candidate for the searched for Hilbert space is the so called prequantum
Hilbert space HprQ consisting of the L2 sections of L (where the volume form
is the Liouville volume form ωm/m!). Based on physical principles HprQ is
considered to be too big, and the construction has to be modified.

For this purpose the next step is a choice of a polarization on N . With
the help of the polarization one would like to take the quantum Hilbert space
H as the Hilbert subspace of HprQ consisting of the L2–sections of L that are
covariantly constant along the polarization.

80

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



Suppose first that the polarization is real and N = TM . The most obvious
choice is the vertical polarization, given by the foliation defined by the fibers
TqM , q ∈ M . In this case a section being covariantly constant along the po-
larization simply means that it is constant along each leaf of the polarization.
But such a section could never be in L2 w.r.t. the Liouville volume form. After
some technical steps (that we leave out since real polarizations play no role in
the rest), finally one gets the quantum Hilbert space consisting of the sections of
L that are covariantly constant along the foliation and L2, but w.r.t. a different
measure, that is the extension of the volume measure of M by zero to N \M .
Saying it differently, H is simply the space L2(M) where the measure is the
volume measure of the Riemannian metric on M . Real polarizations will play
no role in the rest of this disszertation.

Now suppose a complex polarization exists on N , or on an open subset
X in N , in which ω becomes a Kähler form. This yields a holomorphic line
bundle structure on L|X . Covariantly constant along the polarization then
means precisely that the section is holomorphic. Therefore H will consist of
sections of L|X that are holomorphic and L2 with respect to the Liouville volume
form.

Along with bare quantization there is also quantization with half–form cor-
rection. This produces somewhat different quantum Hilbert spaces; the cor-
rected Hilbert spaces often have cleaner mathematical properties and are in
better agreement with observations.

In Kähler quantization described above, this means the following. One looks
at the canonical bundle KX → X (the bundle of (m, 0)–forms) and fixes a line
bundle κ→ X such that κ⊗κ is isomorphic to KX , along with an isomorphism
κ ⊗ κ → KX . κ inherits from KX the structure of a Hermitian holomorphic
line bundle. Such a κ does not necessarily exist and when it does it may not be
unique. The corrected quantum Hilbert space Hcorr then consists of holomor-
phic L2–sections of L⊗ κ.

6.2.1 Problem of uniqueness

In certain situations an entire family (parametrized by a set S) of complex
structures exists on N (or on an open subset X in N) resulting a family of
quantum Hilbert spaces Hs (or Hcorr

s ). The question of uniqueness arises.
Can one identify these Hilbert spaces in a canonical way? As it was mentioned
in the introduction, when S is a complex manifold itself, [Hi] [ADW] proposed
to view the Hs as fibers of a holomorphic Hilbert bundle H → S, introduce a
connection on H, and use parallel transport to identify the fibers Hs and Ht.

6.2.2 Quantization without half form correction

Since the smooth prequantum line bundle L→ N is independent of s ∈ S, spaces
Hs are all closed subspaces of the fixed Hilbert space HprQ. To implement the
idea of [ADW, Hi] above, it seems natural to try to view the family Hs as the
fibers of a Hilbert subbundle H → S of the trivial bundle S × HprQ → S, as
[ADW, bottom of p. 801] suggests, but we are not aware of any general result
that would guarantee such a statement. In particular it is not known whether,
using the family of adapted complex structures, the family {Hs, s ∈ S} forms a
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subbundle in S ×HprQ → S or not. The paper [ADW] provides no solution for
this, nor an explanation of what is meant by a subbundle.

The next step is the definition of a connection on H, through its connection
form [ADW, pp. 803–805]. (If H were a Hilbert subbundle of S×HprQ → S, the
quantum connection could arise from the canonical flat hermitian connection by
orthogonal projection. But this in itself would not guarantee the (projective)
flatness of H, ie. the uniqueness of quantization.)

In ordinary situations, connection and connection form determine each other
once a (local) trivialization of the bundle, in this case H, is fixed. The situation
at hand is not ordinary though, because no local trivialization of H is available
a priori, and the connection form must refer to the trivialization of HprQ. But
this connection form and the connection ∇ it determines are also not ordinary.
It is quite clear that if a smooth section of HprQ is covariantly differentiated
along a smooth vector field, the result in general will not be a section of HprQ.
The most one can hope for is that if a smooth section of HprQ happens to take
values in H, then its covariant derivative will be a smooth section of H; [ADW,
last paragraph on p. 803] verifies this, but only under the implicit assumption
that the derivative is a smooth section of HprQ. In fact, at this point it is
conceivable that zero is the only section of HprQ that can be differentiated.
Accepting, nevertheless, that ∇ can be applied to a large space of sections,
its curvature can be computed, and turns out to be a multiple of the identity
operator (on each fiber Hs). This raises a couple of questions: knowing that
an out–of–ordinary connection ∇ is projectively flat, will its parallel transport
be independent, up to a scalar, of the path? Even more fundamentally, does ∇
determine a parallel transport?

This is the question that we address and partially answer in chapters 7, 8
and 9.

6.2.3 Half form correction

When the half-form correction is included in the quantization process, a further
difficulty arises in implementing the idea of [ADW]. The prequantum hermitian
line bundles L ⊗ κs will now also depend on s ∈ S. Hence the Hilbert space
HprQ
s , the space of its L2 sections, will depend on s as well, forming a family

of Hilbert spaces of which the corrected quantum Hilbert spaces form a family
of Hilbert subspaces. So the first step would be to produce a Hilbert bundle
structure on HprQ

s . {HprQ
s , s ∈ S} form a Hilbert bundle.

The main purpose of the next section is to demonstrate that using the family
of adapted complex structures for geometric quantization, there are at least two
natural, inequivalent ways to make {HprQ

s } a Hilbert bundle. The topology on
these bundles is the same, but their smooth structure (and therefore the set
of smooth sections) are different. This is the content of Theorem 6.2.2. This
shows that we need other ways to handle this problem. See the remarks after
that Theorem.

6.2.4 The field of prequantum Hilbert spaces

Recall some notations from section 6.1.3): S is the upper half plane, Mm is
a simply connected, compact m−dimensional Riemannian manifold, the phase
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space N is the manifold of parametrized geodesics, ω is the canonical symplectic
form, E = ωm

m! the Liouville volume form, da = −ω, where a is a real 1−form.
Since M is simply connected, the prequantum Hermitian line bundle L→ N

with hermitian connection whose curvature is −iω is unique. It is the trivial
line bundle L = N × C → N with the trivial metric hL(x, γ) = |γ|2 on it.
Let ϑ(x) := (x, 1), x ∈ N . Then the sections of L have the form fϑ, where
f : N → C and the connection formula (6.2.1) on L simplifies to

∇Lζ ϑ = ia(ζ),

where ζ is any (complex) vector field on N .
We assume that the adapted complex structure J(i) exists on N . Then from

Corollary 6.1.5 we know that for each s ∈ S the adapted complex structure J(s)
also exists, furthermore (N, J(s)) and (N, J(i)) are biholomorphic. For each
s ∈ S the symplectic form ω is a Kähler form on (N, J(s)). (Theorem 6.1.6).
Hence L becomes a holomorphic line bundle. From Proposition 6.1.7 we know
that the canonical bundle K → (N, J(i)) is holomorphically trivial. Let Θ
be a nowhere vanishing holomorphic (m,0) form on (N, J(i)). Let (κ, hκ) be
the holomorphic (in fact trivial) line bundle so that κ ⊗ κ ≈ K and θ the
corresponding holomorphic section of κ with θ ⊗ θ = Θ. Let κs := A∗σsκ. Then
κs ⊗ κs ≈ Ks. Θs := A∗σsΘ and θs := A∗σsθ are also nowhere vanishing sections
of Ks resp. κs.

Since ϑ ⊗ θs is a nowhere vanishing section of L ⊗ κs, the half-form cor-
rected prequantum Hilbert space HprQ

s corresponding to the Kähler manifold
(N,ω, J(s)), s ∈ S is the Hilbert space of L2 sections of the bundle L⊗ κs, i.e.

HprQ
s = {fsϑ⊗ θs | fs : N → C,

∫
N

|fs|2|θs|2L <∞}.

Let
HprQ := ∪∗s∈SHprQ

s (6.2.2)

be the disjoint union of these Hilbert spaces. Except the natural projection map
p : HprQ → S, for which each fiber p−1(s) is a Hilbert space, there is no further
structure defined yet on the set HprQ. This is an example that we call (cf.
Definition 7.1.1) a field of Hilbert spaces, that is simply a a map p : H → S of
sets, with each fiber Hs = p−1s endowed with the structure of a Hilbert space.

6.2.5 A unitary representation of A+

Keeping the notations of the previous section, let L2(N, E) be the L2 space
w.r.t. the Liouville volume form and U(L2(N, E)) the unitary self maps of this
Hilbert space. Induced by the right action of A on N , we get the vector fields
X ,Y on N , corresponding to α̇(0) and β̇(0) (cf. 6.1.2).

Theorem 6.2.1. With σ ∈ A+, the map

ρ(σ) : L2(N, E) → L2(N, E)
f 7→ χ(σ)

m
2 f ◦Aσ

(6.2.3)

is unitary and yields a unitary representation

ρ : A+ → U(L2(N, E)).
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The map
% : A+ × L2(N, E) −→ L2(N, E), (6.2.4)

defined by %(σ, f) := ρ(σ)f is continuous, but not differentiable.

Proof. (6.1.6) implies∫
N

|ρ(σ)f |2E =

∫
N

χ(σ)m|f ◦Aσ|2E =

∫
N

A∗σ(|f |2E) =

∫
N

|f |2E

hence ρ(σ) in (6.2.3) is unitary. Also if σ, σ′ ∈ A+,

ρ(σσ′)f = χ(σσ′)
m
2 f ◦Aσσ′ =

χ(σσ′)
m
2 f ◦ (Aσ′ ◦Aσ) = χ(σ)

m
2 (ρ(σ′)f) ◦Aσ = ρ(σ)(ρ(σ′)f)

shows that ρ is a representation.
We prove the continuity of % in two steps.
First step: Let g ∈ L2(N, E) and σ ∈ A+ be fixed. Assume that g is

continuous with compact support. We want to show that, if f ∈ L2(N, E) is
close to g and σ′ ∈ A+ is close to σ′, then ρ(σ′)f is close to ρ(σ)g. In the rest
of the proof norm always refers to the L2 norm w.r.t. the volume form E .

‖ρ(σ′)f − ρ(σ)g‖ ≤ ‖ρ(σ′)f − ρ(σ′)g‖+ ‖ρ(σ′)g − ρ(σ)g‖ =

= ‖f − g‖+ ‖ρ(σ′)g − ρ(σ)g‖,

since ρ(σ′) is unitary. We rewrite the second term.

C2 := ‖ρ(σ′)g − ρ(σ)g‖2 =

∫
N

|χ(σ′)
m
2 g ◦Aσ′ − χ(σ)

m
2 g ◦Aσ|2E =

=

∫
N

χ(σ)m(|χ(σ′σ−1))
m
2 g ◦Aσ−1σ′ − g|2 ◦Aσ)E =

=

∫
N

|(χ(σ′σ−1))
m
2 g ◦Aσ−1σ′ − g|2E ,

(6.2.5)

because ρ(σ) is also unitary. Thus the triangle inequality implies

C ≤

∫
N

((χ(σ′σ−1))
m
2 − 1)2|g ◦Aσ−1σ′ |2E

 1
2

+

∫
N

|g ◦Aσ−1σ′ − g|2E

 1
2 .

Denote the two terms here by I and II. Using the unitarity of ρ(σ−1σ′) we get

I = χ(σσ′
−1

)
m
2

∣∣χ(σ′σ−1)
m
2 − 1

∣∣ ‖g‖
If σ′ is close to σ, χ(σ′σ−1) is near to 1 and so I is close to zero. Also in this
case Aσ−1σ′ is close to the identity diffeomorphism of N . Because of our choice
g is uniformly continuous on its support. Consequently II is also near to zero.
All these imply the continuity of %.
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Second step: Let now g ∈ L2(N, E) be arbitrary. Choose a g1 near g that is
continuous with compact support. Let f ∈ L2(N, E). Then

‖ρ(σ′)f − ρ(σ)g‖ ≤ ‖ρ(σ′)f − ρ(σ′)g‖+ ‖ρ(σ′)g − ρ(σ′)g1‖+

+‖ρ(σ′)g1 − ρ(σ)g1‖+ ‖ρ(σ)g1 − ρ(σ)g‖
= ‖f − g‖+ ‖g − g1‖+ ‖ρ(σ′)g1 − ρ(σ)g1‖+ ‖g1 − g‖

and applying the first step to g1 we get the continuity of % at (σ, g).
To justify that % is not differentiable, it suffices to show that its partial

derivative with respect to the σ variable does not exist.
Consider the 1-parameter subgroups α, β in A+ from (6.1.2) and let g ∈

L2(N, E) be arbitrary. Then %(α(s), g) = g ◦ Aα(s), %(β(s), g) = e
sm
2 g ◦ Aβ(s).

So we would get

d

ds

∣∣∣∣
s=0

%(α(s), g) = X g, d

ds

∣∣∣∣
s=0

%(β(s), g) =
m

2
g + Yg.

For a generic g neither X g, nor Yg exists and even if it does it is not necessarily
square integrable.

6.2.6 Nonequivalent smooth structures on HprQ

Now the map

L := S × L2(N, E)
A−→ HprQ

(s, f) 7−→ f
|θs|ϑ⊗ θs

is a fiber preserving bijection and its restriction to each fiber is unitary. There-
fore pushing forward L with A, equips HprQ with a smooth (in fact) trivial
Hilbert bundle structure. The canonical flat hermitian connection on L yields
an orthogonal connection on HprQ.

When M is a compact Lie group equipped with a biinvariant metric, this is
the Hilbert bundle structure with hermitian connection chosen by C. Florentino,
P. Matias, J. Mourão and J. Nunes in their papers [FMMN1, FMMN2], except
that they do not consider the full parameter space S, only the positive imaginary
axes.

But this is not the only possible natural way to equip HprQ with a Hilbert
bundle structure. Let ψs = fsϑ ⊗ θs ∈ HprQ

s . Then from Proposition 6.1.8 we
get

‖ψs‖2L2 =

∫
N

|fs|2|θs|2E = (Im s)
m
2

∫
N

|fs|2(|Θ| ◦Aσs)E =

= (Im s)−
m
2

∫
N

A∗σs(|fs|
2 ◦A−1

σs |Θ|)E = (Im s)−
m
2

∫
N

(|fs|2 ◦A−1
σs )|Θ|E

Therefore the map

HprQ B−→ L = S × L2(N, E)

fsϑ⊗ θs 7−→ (s, (Im s)−
m
4 fs ◦A−1

σs

√
|Θ|)

is a fiber preserving bijection whose restriction to each fiber is unitary. By
pulling back L with B, the Hilbert field p : HprQ → S inherits another smooth
(in fact trivial) Hilbert bundle structure. We claim that as a smooth bundle,
this is different from the one we obtained with the help of the map A earlier.
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Theorem 6.2.2. The Hilbert bundle structures on p : HprQ → S obtained
by the maps A and B are isomorphic as continuous Hilbert bundles but their
smooth structures are different.

Proof. Using Proposition 6.1.8 we calculate the map B ◦A : L → L to be

(s, f) 7→ (s, (Im s)−
m
2 f ◦A−1

σs ) = (s, %((σs)
−1)f).

It follows from Theorem 6.2.1 that the fiberwise unitary map B ◦A is a home-
omorphism but it is not differentiable.

In light of Theorem 6.2.2, the idea in section 6.2.1 to make Hcorr a Hilbert
subbundle of HprQ doesn’t work. This difficulty led us in [LSz14] to introduce
the notion of smooth and analytic fields of Hilbert spaces generalizing Hilbert
bundles with a hermitian connection. The next chapter treats these objects
in details. In chapter 8 we show that direct images of holomorphic vector
bundles under a nonproper map naturaly produce such objects. Finally in
chapter 9 we return to the uniqueness problem of quantization using the family
of adapted complex structures. The holomorphic submersion of Theorem 6.1.11
plays a fundamental role in translating things into a direct image problem that
produces the fields of Hilbert spaces whose flatness means uniqueness does hold
in quantization.
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Chapter 7

Fields of Hilbert spaces

7.1 Hilbert bundles and fields of Hilbert spaces

7.1.1 Hilbert bundles

Since this notion is used rather liberally in the subject, it will be reviewed here
to fix the terminology. Given Banach spaces X,Y over the reals and U ⊂ X
open, a map f : U → Y is C1 if

df(x; ξ) = lim
t→0

f(x+ tξ)− f(x)

t
(7.1.1)

exists and defines a continuous function U × X → Y . If df is C1 one says f
is C2, and so on. Smooth maps are the ones that are Cn for all n. A Banach
manifold is a Hausdorff space M with an open cover U and homeomorphisms ϕU
of U ∈ U on open subsets VU ⊂ XU of Banach spaces; the compositions ϕU ′◦ϕ−1

U

should be smooth where defined. Cn–maps between Banach manifolds M,M ′

are defined using the charts ϕU , ϕ
′
U ′ . The set of Cn maps M → M ′ is denoted

Cn(M ;M ′), and when M ′ = C, simply Cn(M), with n = ∞ corresponding to
smooth maps.

A smooth (always complex) Hilbert bundle is a smooth map p : H → S
of Banach manifolds, each fiber p−1s, s ∈ S, endowed with the structure of
a complex vector space; for each s ∈ S there should exist a neighborhood
U ⊂ S, a complex Hilbert space X, and a smooth map (local trivialization)
F : p−1U → X, whose restriction to each fiber p−1t, t ∈ U , is linear, and such
that p× F : p−1U → U ×X is diffeomorphic. A subset K ⊂ H is a subbundle
if above U,X, and F can be chosen so that F (K ∩ p−1t) = Y for every t ∈ U ,
where Y ⊂ X is a closed subspace. In this case K → S inherits the structure
of a Hilbert bundle. Smooth sections of a Hilbert bundle and the sum H ′⊕H ′′
of Hilbert bundles H ′, H ′′ → S are defined as in finite dimensions. The space
of smooth sections is denoted C∞(S,H).

A (smooth) Hermitian metric on a Hilbert bundle H → S is a function
h : H ⊕ H → C; it is required that the local trivializations F : p−1U → X
discussed above can be chosen so that h(u, v) = 〈F (u), F (v)〉 for u, v ∈ p−1t, t ∈
U , where 〈, 〉 stands for the inner product of X. Our convention is that 〈, 〉 and
so h are C–linear in the first argument.
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Let Vect S denote the Lie algebra of smooth complex vector fields on S.
(In all that follows S will be finite dimensional, so we need not worry about
how exactly vector fields are defined in infinite dimensions.) The action of
ξ ∈ VectS on Banach valued functions f : U → Y , U ⊂ S open, is denoted ξf .
A connection ∇ on a Hilbert bundle H → S associates with every ξ ∈ VectS
a linear map ∇ξ : C∞(S,H) → C∞(S,H). It is required that for every local
trivialization F : p−1U → X there should exist a smooth map A : C ⊗ TU →
EndX, linear on the fibers C⊗ TsU , such that on U

F (∇ξϕ) = ξF (ϕ) +A(ξ)F (ϕ), ϕ ∈ C∞(S,H).

Here EndX is the Banach space of continuous linear operators on X, endowed
with the operator norm. Thus A is an EndX valued form on U , the connection
form of ∇ in the given local trivialization. The connection is flat, resp. projec-
tively flat, if in some neighborhood of every s ∈ S there is a trivialization in
which the connection form is 0, resp. takes values in scalar operators. These
are equivalent to requiring that the curvature operator ∇ξ∇η −∇η∇ξ −∇[ξ,η]

should be 0, resp. multiplication by a function r(ξ, η) ∈ C∞(S). If H has a
Hermitian metric h, ∇ is said to be Hermitian if

ξh(ϕ,ψ) = h(∇ξϕ,ψ) + h(ϕ,∇ξψ), ξ ∈ VectS, ϕ, ψ ∈ C∞(S,H).

Holomorphic Hilbert bundles are defined analogously. When X,Y are com-
plex Banach spaces, and U ⊂ X is open, f : U → Y is holomorphic if df(x; ξ)
defined in (7.1.1) is not only continuous but also complex linear in ξ ∈ X.
This implies f ∈ C∞(U ;Y ). Given the notion of holomorphy, complex mani-
folds and holomorphic Hilbert bundles over them are defined as their smooth
counterparts, except “smooth” is replaced by “holomorphic” throughout.

7.1.2 Fields of Hilbert spaces.

In most respects, Hilbert bundles behave very much like finite rank bundles.
However, the type of direct images discussed in the Introduction are rarely
Hilbert bundles, and even when they are, it is impossible to prove this directly.
Fields of Hilbert spaces are looser structures that direct images are more likely
to be. We proceed to define them and formulate the main results that connect
these weaker structures with Hilbert bundles.

Definition 7.1.1. A field of Hilbert spaces is a map p : H → S of sets, with
each fiber Hs = p−1s endowed with the structure of a Hilbert space.

This, of course, is such a weak notion that it borders the useless. Something
that goes for it is that any direct image considered in the Introduction has this
structure. We shall presently see variants of this notion, with more structure.
For the time being, note that one can talk about sections of a field of Hilbert
spaces: these are maps ϕ : S → H with ϕ(s) ∈ Hs. Sections constitute a module
over the ring of all functions S → C in an obvious way. The inner products on
the fibers, taken together, define a function

h : H ⊕H → C, where H ⊕H =
∐
s∈S

Hs ⊕Hs.
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If v ∈ H, we also write h(v) for h(v, v) (and we do likewise with Hermitian
metrics on Hilbert bundles). By the restriction of H → S to a subset U ⊂ S is

meant the field H|U = p−1U
p→ U of Hilbert spaces.

Definition 7.1.2. Let S be a smooth manifold. A smooth structure on a field
H → S of Hilbert spaces is given by specifying a set Γ∞ of sections of H,
closed under addition and under multiplication by elements of C∞(S), and linear
operators ∇ξ : Γ∞ → Γ∞ for each ξ ∈ VectS, such that for ξ, η ∈ VectS,
f ∈ C∞(S), ϕ,ψ ∈ Γ∞

∇ξ+η = ∇ξ +∇η, ∇fξ = f∇ξ, ∇ξ(fϕ) = (ξf)ϕ+ f∇ξϕ; (7.1.2)

h(ϕ,ψ) ∈ C∞(S) and ξh(ϕ,ψ) = h(∇ξϕ,ψ) + h(ϕ,∇ξψ); (7.1.3)

{ϕ(s) : ϕ ∈ Γ∞} ⊂ Hs is dense, for all s ∈ S. (7.1.4)

The collection ∇ of the operators ∇ξ is called a connection on H.—The
analogous, but cruder notion of “continuous field of Hilbert spaces” was invented
by Godement in 1951; and even earlier von Neumann introduced what now are
called “measurable fields of Hilbert spaces”, [Di, Go, vN2]. In addition to these,
the definition above was motivated by a suggestion of Berndtsson, made in 2005
in an email, that the bundle–like objects that arise from direct images should
be studied through a dense family of their sections, rather than through local
trivializations.

For brevity, fields of Hilbert spaces (with a smooth structure) will be called
(smooth) Hilbert fields. Fix a smooth Hilbert field H → S. Henceforward S
will always be assumed finite dimensional.

Lemma 7.1.3 (Lempert, Szőke [LSz14]). If ϕ,ψ ∈ Γ∞ agree in a neighborhood
of some s ∈ S, then so do ∇ξϕ and ∇ξψ.

Proof. Let f ∈ C∞(S) be 0 near s and 1 in a neighborhood of supp (ϕ − ψ).
Then near s

∇ξϕ−∇ξψ = ∇ξ(f(ϕ− ψ)) = (ξf)(ϕ− ψ) + f∇ξ(ϕ− ψ) = 0.

For this reason, if U ⊂ S is open, the Hilbert field H|U → U has a nat-
ural smooth structure given by Γ∞|U = {ϕ|U : ϕ ∈ Γ∞} and ∇U defined by
restriction.

The curvature R of H → S is defined by

R(ξ, η)ϕ = (∇ξ∇η −∇η∇ξ −∇[ξ,η])ϕ, ξ, η ∈ VectS, ϕ ∈ Γ∞,

and H is called flat if R = 0, i.e., R(ξ, η)ϕ = 0 for all ξ, η, ϕ.

Lemma 7.1.4. (Lempert, Szőke [LSz14])
(i) R(ξ, η)ϕ(s) depends only on ξ(s), η(s), and ϕ(s), hence induces a densely

defined operator on Hs, denoted R(ξ(s), η(s)).
(ii) The adjoint of R(ξ(s), η(s)) is an extension of −R(ξ̄(s), η̄(s)). In par-

ticular, the adjoint is densely defined, and so R(ξ(s), η(s)) is closable.
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Proof. From its definition one checks that R(ξ, η) is C∞(S)–bilinear in ξ, η. Any
ξ that vanishes at s can be written

∑
fjξj with fj(s) = 0, whence R(ξ, η)ϕ(s) =

0 follows if ξ(s) = 0; and similarly if η(s) = 0. This implies that as far as ξ
and η are concerned, R(ξ, η)ϕ(s) depends only on ξ(s), η(s). Next apply (7.1.3)
repeatedly, to obtain for ϕ,ψ ∈ Γ∞

0 = (ξη − ηξ − [ξ, η])h(ϕ,ψ) = h(R(ξ, η)ϕ,ψ) + h(ϕ,R(ξ, η)ψ). (7.1.5)

By the density condition (7.1.4) the rest of (i) and also (ii) follow.

Our main concern will be flat fields and bundles. The following is a key
definition:

Definition 7.1.5. A trivialization of a smooth Hilbert field H → S is a map
T : H → V , with V a Hilbert space, such that T |Hs is unitary, s ∈ S, and for
ϕ ∈ Γ∞, ξ ∈ VectS

Tϕ ∈ C∞(S;V ) and T (∇ξϕ) = ξTϕ. (7.1.6)

If H → S has a trivialization, it is flat, but to prove the converse more needs
to be assumed, namely that H is analytic.

7.1.3 Analytic Hilbert fields

Let H → S be a smooth Hilbert field over a (real) analytic manifold S. Write
VectωS ⊂ VectS for the Lie algebra of analytic vector fields.

Definition 7.1.6. (i) A section ϕ ∈ Γ∞ is analytic if for any compact C ⊂ S
and any finite set Ξ of vector fields, analytic in a neighborhood of C, there is
an ε > 0 such that

sup
εn

n!
h(∇ξn . . .∇ξ1ϕ)(s)1/2 <∞, (7.1.7)

where the sup is taken over n = 0, 1, . . . , ξj ∈ Ξ, and s ∈ C. The set of analytic
sections is denoted Γω ⊂ Γ∞.

(ii) H → S is an analytic Hilbert field if {ϕ(s) : ϕ ∈ Γω} ⊂ Hs is dense for
all s ∈ S.

If H → S is analytic and U ⊂ S is open, then clearly H|U is also analytic.

Theorem 7.1.7 (Lempert, Szőke [LSz14]). Let H → S be an analytic Hilbert
field over a connected base S.

(i) If T : H → V and T ′ : H → V ′ are trivializations, then T ′ = τT with a
unitary τ : V → V ′.

(ii) If S is simply connected and H is flat, then H has a trivialization.

Corollary 7.1.8 (Lempert, Szőke [LSz14]). Let H → S be a flat analytic Hilbert
field. Then there are a Hermitian Hilbert bundle K → S with a flat connection
∇K and a map F : H → K, unitary between the fibers Hs,Ks, such that for
ϕ ∈ Γ∞ and ξ ∈ VectS

Fϕ ∈ C∞(S,K) and F (∇ξϕ) = ∇Kξ Fϕ.

Moreover, if K ′ → S is another flat Hermitian Hilbert bundle and F ′ : H →
K ′ is like F , then F ′ ◦ F−1 : K → K ′ is a connection preserving isometric
isomorphism.
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The proof of the Corollary is left to the reader.

Proof of Theorem 7.1.7. (i)Let ‖ ‖ denote the norm of V . Iterating (7.1.7) gives

T (∇ξn . . .∇ξ1ϕ) = ξn . . . ξ1Tϕ. (7.1.8)

This implies that Tϕ : S → V is analytic when ϕ ∈ Γω. Indeed, it can be
assumed that S ⊂ Rd is open. Let Ξ ⊂ VectωS consist of coordinate vector
fields ∂1, . . . , ∂d. If C ⊂ S is compact, then by (7.1.7) and (7.1.8)

sup
εn

n!
‖ξn . . . ξ1Tϕ‖ <∞,

the sup over n = 0, 1, . . . , ξj ∈ Ξ, s ∈ C, so that Tϕ is analytic. Similarly, T ′ϕ
is also analytic.

Now fix s0 ∈ S and define a unitary map τ = T ′(T |Hs0)−1 : V → V . If
ϕ ∈ A and ξ1, . . . , ξn ∈ VectS, then at s0

ξn . . . ξ1T
′ϕ = T ′∇ξn . . .∇ξ1ϕ = τT∇ξn . . .∇ξ1ϕ = ξn . . . ξ1τTϕ.

Since the derivatives of τTϕ and T ′ϕ agree at s0, τTϕ = T ′ϕ everywhere. By
density τT = T ′ then follows.

The proof of the existence part is harder, and the details will take up sec-
tions 7.2, 7.3, and 7.4. For the time being we note that in Theorem 7.1.7 the
analyticity assumption cannot be relaxed to mere smoothness. The following
example emerged in a conversation with Larry Brown.

Example 7.1.9 (Lempert, Szőke [LSz14]). There is a flat smooth Hilbert field
H → Rd that cannot be trivialized.

Indeed, let U ⊂ Rd be open, X a positive dimensional Hilbert space, and
Hs = X if s ∈ U , Hs = {0} if s ∈ Rd \ U . Then H =

∐
s∈Rd Hs → Rd is

a Hilbert field, whose sections can be identified with functions ϕ : Rd → X,
vanishing outside U . Let

Γ∞ = {ϕ ∈ C∞(Rd;X) : supp ϕ ⊂ U},

and ∇ξϕ = ξϕ. This defines a smooth structure on H, which is flat but cannot
be trivialized unless U = ∅ or Rd.

The example is not as artificial as it may seem. Hilbert fields like it do arise
as direct images of holomorphic vector bundles under improper submersions,
see 8.3.3.

7.1.4 Projective flatness

A smooth Hilbert field H → S with positive dimensional fibers is called projec-
tively flat if the curvature operator R(ξ, η) : Γ∞ → Γ∞ is multiplication by a
function r(ξ, η) : S → C. In this case one also says that the curvature is central.

The function r(ξ, η) is necessarily smooth, because for ϕ,ψ ∈ Γ∞

r(ξ, η)h(ϕ,ψ) = h(R(ξ, η)ϕ,ψ) ∈ C∞(S).
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It is pure imaginary when ξ, η are real, since R(ξ, η) is skew–symmetric (Lem-
ma 7.1.4). Like R(ξ(s), η(s)), r(ξ, η)(s) depends only on ξ(s) and η(s). Hence r
is a 2–form, in fact a closed 2–form, as one computes directly from the definitions
(the point is that R satisfies the Bianchi identity).

As with bundles, a simple twisting will reduce projectively flat smooth
Hilbert fields H → S to flat ones. Suppose r is not only closed but exact.
There is a smoothly trivial Hermitian line bundle L → S with Hermitian con-
nection ∇L whose curvature is −r, see e.g. [W, Proposition (8.3.1)]. The twisted
Hilbert field

L⊗H =
∐
s∈S

Ls ⊗Hs → S

has an obvious smooth structure given by Γ∞L⊗H = {λ ⊗ ϕ : λ ∈ C∞(S,L),
ϕ ∈ Γ∞},

∇L⊗Hξ (λ⊗ ϕ) = (∇Lξ λ)⊗ ϕ+ λ⊗∇ξϕ;

and one computes that L ⊗H has zero curvature. If H is analytic, so will be
L⊗H.

Definition 7.1.10. A projective trivialization of a smooth Hilbert field H → S
is a map T : H → V , with V a Hilbert space, such that T |Hs is unitary for
s ∈ S, and with some 1–form a on S, for all ϕ ∈ Γ∞, ξ ∈ VectS

Tϕ ∈ C∞(S;V ), T (∇ξϕ) = ξTϕ+ a(ξ)Tϕ.

If H has a projective trivialization, then it is projectively flat, its curvature
R(ξ, η) being multiplication by da(ξ, η). Further, if T is a projective trivializa-
tion, then T ′ = f · T will be another one, with any f ∈ C∞(S), |f | ≡ 1. The
corresponding 1–form is a′ = a− df/f .

In view of the above twisting construction, one can deduce from Theo-
rem 7.1.7:

Theorem 7.1.11 (Lempert, Szőke [LSz14]). Let H → S be an analytic Hilbert
field over a connected base S.

(i) If T : H → V and T ′ : H → V ′ are projective trivializations, then T ′ =
f · (τT ), with f ∈ C∞(S) and τ : V → V ′ unitary.

(ii) Suppose the curvature R(ξ, η) of H is multiplication by r(ξ, η), and r is
exact. If S is simply connected, then H has a projective trivialization.

The significance of Theorems 7.1.7 and 7.1.11 for the uniqueness problem is
the following. Suppose H → S is a (projectively) flat analytic Hilbert field, S is
connected and simply connected (and H2(S,R) = 0). Then the trivializations in
Theorem 7.1.7, resp. 7.1.11, provide a way to identify the fibers of H canonically
(resp. canonically up to a scalar factor).

Theorem 7.1.11 in turn implies

Corollary 7.1.12 (Lempert, Szőke [LSz14]). Let H → S be a projectively
flat analytic Hilbert field. There are a Hermitian Hilbert bundle K → S with a
projectively flat connection ∇K and a fibered map F : H → K, fiberwise unitary,
such that for ϕ ∈ Γ∞ and ξ ∈ VectS

Fϕ ∈ C∞(S,K), F (∇ξϕ) = ∇Kξ Fϕ.

Moreover, if K ′ → S and F ′ : H → K ′ are like K and F , then F ′◦F−1 : K → K ′

is a connection preserving isometric isomorphism.
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7.2 Fundamentals of analysis in Hilbert fields

Fix a smooth Hilbert field H → S.

7.2.1 Completion

Let U ⊂ S be open and ϕj a sequence of sections of H|U . We say that ϕj
converges to a section ϕ (almost) everywhere or (locally) uniformly if h(ϕj −
ϕ)→ 0 in the corresponding sense. The following is obvious:

Lemma 7.2.1 (Lempert, Szőke [LSz14]). If ϕj → ϕ and ψj → ψ in any of the
four senses indicated, then ϕj + ψj → ϕ+ ψ and h(ϕj , ψj)→ h(ϕ,ψ).

Denote by Γ0(U) the C(U)–module of those sections ϕ of H|U that are
locally uniform limits on U of ϕj ∈ Γ∞. Further, denote by Γ1(U) the C1(U)–
submodule of those ϕ ∈ Γ0(U) for which there are ϕj ∈ Γ∞ such that ϕj |U → ϕ
locally uniformly, and for every ξ ∈ VectU

∇ξϕj |U converges locally uniformly. (7.2.1)

Clearly, it suffices to require (7.2.1) for ξ in a family Ξ ⊂ VectS that spans
C⊗ TU .

Lemma 7.2.2 (Lempert, Szőke [LSz14]). The limit in (7.2.1) depends only on
ϕ, not on ϕj.

Proof. With ψ ∈ Γ∞

ξh(ϕj , ψ) = h(∇ξϕj , ψ) + h(ϕj ,∇ξψ).

As j → ∞, the right side tends to a continuous limit, locally uniformly on U ,
therefore so does the left hand side. It follows that h(ϕ,ψ) ∈ C1(U) and

ξh(ϕ,ψ) = limh(∇ξϕj , ψ) + h(ϕ,∇ξψ).

Hence the limit here is independent of ϕj , and the density assumption (7.1.4)
implies the claim.

If ϕ ∈ Γ1(U) and ϕj are as above, put ∇Uξ ϕ = lim∇ξϕj |U ∈ Γ0(U). The

operator ∇Uξ : Γ1(U)→ Γ0(U) has the properties described in (7.1.2) and (7.1.3)

(except that only h(ϕ,ψ) ∈ C1(U) is guaranteed for ϕ,ψ ∈ Γ1(U)). In what
follows, we will drop the superscript U and just write ∇ξ : Γ1(U)→ Γ0(U).

The Cn(U)–modules Γn(U) for n ∈ N can now be defined inductively: ϕ ∈
Γn(U) if ϕ,∇ξϕ ∈ Γn−1(U) for all ξ ∈ VectU . The C∞(U)–module Γ∞(U) =⋂
n Γn(U) ⊃ Γ∞|U together with ∇|Γ∞(U) define a smooth structure on the

Hilbert field H|U . Given ξ1, ξ2, . . . ∈ VectS and a compact C ⊂ U ,

‖ϕ‖C,ξ1,...,ξm = max
C

h(∇ξm . . .∇ξ1ϕ)1/2

is a seminorm on Γ∞(U) and Γn(U), provided m ≤ n. These seminorms turn
Γ∞(U) and Γn(U) into locally convex topological vector spaces. The spaces
are in fact Fréchet, because countably many seminorms suffice to define the
topology, and because they will be complete, as one shows by a simple diagonal
argument for n = 1 and by induction for n > 1. The operation of C∞(U),
Cn(U) on Γ∞(U), Γn(U), given by (f, ϕ) 7→ fϕ is continuous, so these spaces
are continuous modules.
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7.2.2 Sobolev norms

Fix a smooth volume form λ on S and a finite Ξ ⊂ VectS that spans the tangent
bundle of S. If ϕ ∈ Γn(S), put

‖ϕ‖2n =
∑∫

S

h(∇ξm . . .∇ξ1ϕ)λ ≤ ∞, (7.2.2)

where the sum is over 0 ≤ m ≤ n and ξj ∈ Ξ. The Sobolev “norm” || ||n
depends on the choice of λ and Ξ, but if a compact C ⊂ S is fixed, for sections
supported in C different choices lead to equivalent norms.

Lemma 7.2.3 (Lempert, Szőke [LSz14]). Given a compact C ⊂ S, there is a
constant α such that with d = dimS and ϕ ∈ Γd(S)

max
C

h(ϕ) ≤ α‖ϕ‖2d.

This is weaker than the usual Sobolev inequality, where d could be replaced
by any n > d/2, but it is still useful.

Proof. A partition of unity will reduce to the case when S = Rd, λ = dx1 ∧
dx2 ∧ . . ., Ξ consists of ξj = ∂/∂xj , j = 1, . . . , d, and ϕ is compactly supported.

Since f(x) =
x1∫
−∞

x2∫
−∞

. . . (ξd . . . ξ1f)λ for compactly supported f ∈ Cd(S),

sup
S
|f | ≤

∫
S

|ξd . . . ξ1f |λ.

Putting f = h(ϕ) and repeatedly using Leibniz’s rule (7.1.3), the Lemma follows.

7.2.3 Analyticity

This subsection revolves around the notion of uniform analyticity. Consider a
smooth Hilbert field H → S over an analytic base S.

Definition 7.2.4. Let C ⊂ S be compact and F and A families of functions,
resp. sections of H, each smooth in a neighborhood of C. Then F , resp. A, is
uniformly analytic on C if, given a finite family Ξ of vector fields, analytic in a
neighborhood of C, there is an ε > 0 such that for f ∈ F , resp. ϕ ∈ A,

sup
εn

n!
|ξn . . . ξ1f(s)| <∞, resp. sup

εn

n!
h(∇ξn . . .∇ξ1ϕ)(s)1/2 <∞, (7.2.3)

the sup over n = 0, 1, . . ., ξj ∈ Ξ, and s ∈ C. A family A ⊂ Γω is uniformly
analytic if it is uniformly analytic on every compact C ⊂ S.

Lemma 7.2.5 (Lempert, Szőke [LSz14]). Let F be a family of functions analytic
in a neighborhood of a compact C ⊂ S.

(i) If F is finite, then it is uniformly analytic on C.
(ii) If F is uniformly analytic on C, F ′ ⊂ F is finite, and Ξ is a finite family
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of vector fields, analytic in a neighborhood of C, then there are constants a,
depending only on F , and b, depending only on F ′, such that for fj ∈ F ′, ξj ∈ Ξ

max
C
|ξn . . . ξ1(fm · · · f1)| ≤ n!anbm.

In particular, polynomials of elements of F also form a uniformly analytic family
on C.

Proof. (i) It suffices to prove for F = {f} a singleton. If on a neighborhood of
C there are analytic coordinates x1, . . . , xd and Ξ = {∂/∂xj : j = 1, . . . , d}, then
(7.2.3) is the definition of analyticity of f . If the vector fields in Ξ are linear
combinations of ∂/∂xj with analytic coefficients, then (7.2.3) follows from [Ne,
Theorem 2 and Corollary 3.1]. Indeed, by Theorem 2 the family {∂/∂xj : j =
1, . . . , d} “analytically dominates” Ξ; when this is fed into Corollary 3.1, the
conclusion becomes the first estimate in (7.2.3). Finally, an arbitrary C is the
union of finitely many Ci, each contained in a coordinate neighborhood, so that
F is indeed uniformly analytic.

(ii) By assumption there is a β > 0, depending only on F ′, such that

max
C
|ξn . . . ξ1f | ≤ n!ε−nβ for f ∈ F ′. (7.2.4)

Introduce the following notation for I = {i1 < i2 < . . . < ik} :

ξI = ξik . . . ξi1 , ∇I = ∇ξik . . .∇ξi1 , f I = fik · · · fi1 . (7.2.5)

Then ξn . . . ξ1(fm · · · f1) =
∑

(ξJmfm)(ξJm−1
fm−1) · · · (ξJ1f1), the sum taken

over all partitions J1 t . . . t Jm = {1, . . . , n}. By (7.2.4)

max
C
|ξn · · · ξ1(fm · · · f1)| ≤

∑
ε−|Jm|−...−|J1|βm|Jm|! · · · |J1|! =∑

k1+...+km=n

ε−nβmkm! · · · k1!
n!

k1!
· · · km!,

where the multinomial coefficient counts the number of partitions with |Ji| =
ki ≥ 0. There are (

n+m− 1

m− 1

)
≤ 2n+m

terms in the last sum, which then is ≤ n!(2/ε)n(2β)m.

Lemma 7.2.6 (Lempert, Szőke [LSz14]). Let C ⊂ S be compact, F a family of
functions, uniformly analytic on C, Ξ a finite set of vector fields, analytic in a
neighborhood of C, and Z a finite set of linear combinations of elements of Ξ,
with analytic coefficients. Suppose ε > 0, A ⊂ Γ∞, and for every ϕ ∈ A

sup
εn

n!
h(∇ξn . . .∇ξ1ϕ)(s)1/2 <∞, (7.2.6)

the sup taken over n = 0, 1, . . . , ξi ∈ Ξ, and s ∈ C. Then there is a δ > 0 such
that for every ψ in the vector space spanned by f∇ηm . . .∇η1ϕ, where f ∈ F ,
m = 0, 1, . . . , ηj ∈ Ξ, and ϕ ∈ A,

sup
δn

n!
h(∇ζn . . .∇ζ1ψ)(s)1/2 <∞, (7.2.7)

the sup taken over n = 0, 1, . . . , ζj ∈ Z, and s ∈ C.
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Proof. First, assume that each ζj ∈ Ξ. It suffices to deal with ψ of form ψ = fϕ,
where f ∈ F and ϕ ∈ A, because ϕ′ = ∇ηm . . .∇η1ϕ also satisfies (7.2.6) with ε
replaced by any ε′ < ε. Using notation (7.2.5)

∇ζn . . .∇ζ1(fϕ) =
∑

(ζIf)∇Jϕ,

the sum is over partitions I t J = {1, . . . , n}. It can be assumed that the ε’s
in the first estimate in (7.2.3) and in (7.2.6) are the same. Denoting by α a
number that dominates both suprema, on C

h(∇ζn . . .∇ζ1(fϕ))1/2 ≤
∑
I,J

αε−|I||I|!αε−|J||J |! =

n∑
k=0

α2ε−nk!(n− k)!

(
n

k

)
≤ (n+ 1)!α2ε−n.

It follows that (7.2.7) holds with δ = ε/2.
Second, assume that ψ = ϕ ∈ A. There is a finite family F ′ of functions

analytic in a neighborhood of C such that each ζ ∈ Z is a sum of vector fields
of form fξ, f ∈ F ′, ξ ∈ Ξ. It suffices to check (7.2.7) when the ζj are of form
fjξj , fj ∈ F , ξj ∈ Ξ. We prove by induction that

∇fnξn . . .∇f1ξ1ϕ =
∑

f Ik(ξJkf
Ik−1) · · · (ξJ2f I1)∇J1ϕ, (7.2.8)

where in the sum
∐k

1 Ii =
∐k

1 Jj = {1, . . . , n}; Jj 6= ∅; and each partition
∐
Jj

occurs at most once. Suppose this is true for n− 1, i.e.,

∇fn−1ξn−1 . . .∇f1ξ1ϕ =
∑

f Ik(ξJkf
Ik−1) · · · ∇J1ϕ. (7.2.9)

Applying ∇fnξn = fn∇ξn , each term on the right gives rise to

fnξnf
Ik(ξJkf

Ik−1) · · · ∇J1ϕ+ fnIk(ξnJkf
Ik−1) · · · ∇J1ϕ+

+fnIk(ξJkf
Ik−1)(ξnJk−1

f Ik−2) · · · ∇J1ϕ+ . . .

+fnIk(ξJkf
Ik−1) · · · (ξJ2f I1)∇nJ1ϕ,

where nI and nJ stand for {n} ∪ I and {n} ∪ J . Every term here is indeed

of form f I
′
l (ξJ′lf

I′l−1) · · · ∇J′1ϕ, the J ′j 6= ∅ partition {1, . . . , n}, and in (7.2.3) no
partition is repeated. Moreover, knowing {J ′l , . . . , J ′1}, the unique {Jk, . . . , J1}
in (7.2.9) can be located that gave rise to it. Thus (7.2.8) is verified.

Choose a, b as in Lemma 7.2.5, and let α denote the supremum in (7.2.6).
It can be assumed that εa = 1. If in (7.2.8) the partitions

∐
Jj are grouped

according to the cardinalities |Jj | = nj > 0, each group will contain at most
n!/(n1! · · ·nk!) partitions. Hence

h(∇fnξn . . .∇f1ξ1ϕ)1/2 ≤
∑

a|Jk|+...+|J2|b|Ik|+...+|I1|αε−|J1||Jk|! · · · |J1|!

= α
∑

n1+n2+...=n

anbnn1! · · ·nk!
n!

n1!
· · ·nk!.

The last sum has 2n−1 terms, which means that δ = 1/(2ab) satisfies (7.2.7).
Thus (7.2.7) has been proved in two special cases. By combining the two,

the Lemma is obtained in general.
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Corollary 7.2.7 (Lempert, Szőke [LSz14]). To prove that A ⊂ Γ∞ is uniformly
analytic on C, it suffices to check Definition 7.2.4 for a single Ξ ⊂ VectωS, as
long as Ξ spans C⊗ TS.

The next result will not be needed until section 8.4. Briefly, it says that
an analytic Hilbert bundle with an analytic connection gives rise to an analytic
Hilbert field; and the same for Banach bundles and Banach fields. Let (B, ‖ ‖)
be a Banach space and A : C ⊗ TS → EndB an analytic map, linear on each
C ⊗ TsS. Thus A is a connection form, and determines a connection D on
functions f ∈ C∞(S;B):

Dξf = ξf +A(ξ)f ∈ C∞(S;B), ξ ∈ VectS.

In other words, D is a connection on the trivial bundle S ×B→ S.

Lemma 7.2.8 (Lempert, Szőke [LSz14]). Given a finite Ξ ⊂ VectωS, a compact
C ⊂ S, and an analytic f : S → B, there is an ε > 0 such that

sup
εn

n!
‖Dξn . . . Dξ1f(s)‖ <∞, (7.2.10)

the sup taken over n = 0, 1, . . . , ξj ∈ Ξ, and s ∈ C.

Proof. First consider the complex version, where S is a complex manifold, A and
f are holomorphic, and Ξ consists of holomorphic vector fields of type (1, 0).
Since the issue is local, S can be taken an open subset of Cd, and it can be
assumed without losing generality that each ξ ∈ Ξ has length < 1. There are
a δ0 > 0 and a neighborhood U ⊂ S of C such that each vector field ξ ∈ Ξ
has a flow gtξ = gt defined on U , for complex time t, |t| < δ0. This means that

gt maps U biholomorphically into Cd, gts depends holomorphically on (s, t),
g0 = idU , and ∂gts/∂t = ξ(gts) (in particular, ξ is holomorphic on gtU). Next
define holomorphic functions P tξ = P t : U → EndB, |t| < δ0, by the initial value
problem

∂P t(s)/∂t = P t(s)A(ξ(gts)), P 0(s) = idB, s ∈ U.

Then P t(s) is holomorphic in (s, t), and for f ∈ C∞(U ;B)

∂
(
P t(s)f(gts)

)
/∂t = (∂P t(s)/∂t) f(gts) + P t(s)(ξf)(gts) = Dξf(s),

when t = 0. Using this with ξ = ξj ∈ Ξ and iterating, for s ∈ U

Dξn . . . Dξ1f(s) =
∂nP t1...tn(s)f(gt1ξ1 . . . g

tn
ξn

)

∂t1 . . . ∂tn

∣∣∣∣
t1=...=tn=0

, (7.2.11)

where

P t1...tn(s) = P tnξn (s)P
tn−1

ξn−1
(gtnξns) . . . P

t1
ξ1

(gt2ξ2 . . . g
tn
ξn
s). (7.2.12)

Choose a positive δ < min{δ0, dist(C, ∂U)}. Since each ξj has length < 1, it
follows by induction that if |t1|+ . . .+ |tn| ≤ δ, then gtnξ1 . . . g

tn
ξn

(C) is inside the
(|t1| + . . . + |tn|)–neighborhood of C, in particular, inside U . Choose a > 0 so
that

‖f(s)‖, ‖P tξ (s)‖EndB < a, when ξ ∈ Ξ, |t| ≤ δ,

97

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



and s is in the δ–neighborhood of C. Then ‖P t1...tn(s)f(gt1ξ1 . . . g
tn
ξn
s)‖ < an+1

for s ∈ C and |tj | ≤ δ/n, in view of (7.2.12). By Cauchy’s estimate (7.2.11)
indeed implies

‖Dξn . . . Dξ1f(s)‖ ≤ an+1(n/δ)n ≤ n!a(ae2/δ)n.

The lemma, as stated for real analytic objects, follows from the complex
analytic version by passing to a complexification of S and extending to it A, f ,
and ξ ∈ Ξ holomorphically.

7.3 Horizontal sections in Hilbert fields

The trivialization claimed in Theorem 7.1.7(ii) depends on the existence of a
large supply of horizontal sections, whose properties we will investigate in this
section.

7.3.1 Horizontal sections

Let p : H → S be a smooth Hilbert field. If U ⊂ S is open, a section ϕ ∈ Γ1(U)
satisfying ∇ξϕ = 0 for all ξ ∈ VectU is called horizontal. A horizontal section
is automatically in Γ∞(U). Of course, it suffices to verify ∇ξϕ = 0 for a family
of ξ’s that span each tangent space TsU .

Lemma 7.3.1 (Lempert, Szőke [LSz14]). If U is connected and ϕ,ψ ∈ Γ∞(U)
are horizontal, then h(ϕ,ψ) is constant.

Proof. Indeed, ξh(ϕ,ψ) = h(∇ξϕ,ψ) + h(ϕ,∇ξψ) = 0.

Lemma 7.3.2 (Lempert, Szőke [LSz14]). Given s ∈ S, the set

{θ(s) : θ ∈ Γ∞(S) is horizontal}

is closed in Hs.

Proof. We can assume S connected. If θj ∈ Γ∞(S) are horizontal for j =
1, 2, . . ., and θj(s)→ v ∈ Hs, then Lemma 7.3.1 implies θj is a Cauchy sequence
in Γ0(S), hence by horizontality also in Γ∞(S). The limit θ ∈ Γ∞(S) is clearly
horizontal, and θ(s) = v.

Lemma 7.3.3 (Lempert, Szőke [LSz14]). Suppose S is simply connected and
each s ∈ S has a neighborhood Us such that through every v ∈ H|Us there
passes a horizontal section of H|Us. Then through every v ∈ H there passes a
horizontal section of H.

Proof. Consider open subsets U ⊂ S and horizontal θ ∈ Γ∞(U). The sets
θ(U) ⊂ H for all such pairs (U, θ) form a basis of a topology on H, and with
this topology p : H → S is a covering map.

Indeed, the sets θ(U) cover H by assumption. Further, if v ∈ θ′(U ′)∩θ′′(U ′′),
and V ⊂ U ′ ∩U ′′ is a connected neighborhood of pv, then Lemma 7.3.1 implies
h(θ′|V −θ′′|V ) is constant, hence 0. Therefore v ∈ θ′(V ) ⊂ θ′(U ′)∩θ′′(U ′′); this
is all that is needed for the collection θ(U) to be a basis of a topology. Next
with any connected Us as in the assumption let

W = {θ ∈ Γ∞(Us) : θ is horizontal},
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endowed with the discrete topology. Using Lemma 7.3.1 and the assumption
one checks that the map

Us ×W 3 (t, θ) 7→ θ(t) ∈ H|Us

is a homeomorphism. Thus p is a covering map.
But the covering p : H → S is trivial, because S is simply connected. Since

sections of p are the same as horizontal θ ∈ Γ∞(S), the lemma follows.

7.3.2 Flat analytic Hilbert fields

Now let H → S be a flat analytic Hilbert field over a simply connected base.

Lemma 7.3.4 (Lempert, Szőke [LSz14]). Through every v ∈ H there passes a
horizontal section of H.

The proof to be given is rather simpler than the one in the first version of the
paper. The simplification was inspired by an idea of Dat Tran, who proposed
formula (7.3.2) below, when dimS = 1, to construct horizontal sections out of
analytic sections.

Proof. Assume first that there is a uniformly analytic subspace A ⊂ Γ∞ that is
dense in Γ∞ in the topology of Γ∞(S). Fix a relatively compact open U ⊂ S so
that analytic coordinates x1, . . . , xd exist in a neighborhood of U and

U = {s ∈ S : |xj(s)| < 1, j = 1, . . . , d}.

Set Ξ = {ηj = ∂/∂xj , j = 1, . . . , d}. As A is uniformly analytic, there is an
ε > 0 such that for ϕ ∈ A

sup
εn

n!
max
U

h(∇ξn . . .∇ξ1ϕ)1/2 <∞, (7.3.1)

the sup over n = 0, 1, . . . and ξj ∈ Ξ. We will use multiindex notation: if
I = (i1, . . . , id) is a nonnegative multiindex, and y = (y1, . . . , yd), then

|I| = i1 + . . .+ id, I! = i1! · · · id!, yI = yi11 · · · y
id
d , ∇I = ∇i1η1 . . .∇

id
ηd
.

Since H is flat, it does not matter in which order we apply the operators ∇ηj
in the last expression. Given ϕ ∈ A and t ∈ U , define

θ =
∑
I

(
x(t)− x

)I∇Iϕ/I!, (7.3.2)

the sum over all nonnegative multiindices I. In view of (7.3.1) the series is
termwise dominated by

∞∑
n=0

∑
|I|=n

∣∣(x(t)− x
)I ∣∣h(∇Iϕ)1/2

I!

≤ const

∞∑
n=0

∑
|I|=n

∣∣(x(t)− x
)I ∣∣(n

I

)
ε−n = const

∞∑
n=0

( d∑
j=1

|xj(t)− xj |
ε

)n
,

(7.3.3)
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hence converges locally uniformly on Vt = {τ ∈ U :
∑
j |xj(t)−xj(τ)| < ε}. Sim-

ilarly, taking covariant derivatives gives series that converge locally uniformly
on Vt, whence θ ∈ Γ∞(Vt). In particular, ∇ηk applied to (7.3.2) produces a

series in which for each multiindex J = (j1, . . . , jd) the coefficient of
(
x(t)−x

)J
is

∇(j1,...,jk+1,...,jd)ϕ

J !
− ∇

(j1,...,jk+1,...,jd)ϕ

J !
= 0;

which means that θ is horizontal. Since for the θ obtained in this way the values
θ(t) = ϕ(t) ∈ Ht form a dense set, by Lemma 7.3.2 through any v ∈ Ht there
passes a horizontal section of H|Vt. Letting Us = {t ∈ U :

∑
j |xj(s)− xj(t)| <

ε/2}, s ∈ U , it follows that through any v ∈ H|Us there passes a horizontal
section of H|Us. But then by Lemma 7.3.3 through v there even passes a
horizontal section of H, as claimed.

Without the assumption on the uniformly analytic subspace A we can argue
as follows. Embed S as an analytic submanifold of some Rk and fix a finite
Ξ ⊂ VectωS that spans C ⊗ TS. Let S′ ⊂ S be a relatively compact, simply
connected, open subset. Given ε > 0, let Bε ⊂ Γ∞|S′ consist of those ϕ ∈ Γ∞|S′
for which

sup
εn

n!
h(∇ξn . . .∇ξ1ϕ)(s)1/2 <∞,

the sup taken over n = 0, 1, . . . , ξj ∈ Ξ, and s ∈ S′. Let furthermore Aε ⊂ Γ∞|S′
be the vector space spanned by ψ = f∇ξm . . .∇ξ1ϕ, where f is the restriction to
S′ of a polynomial on Rk, m = 0, 1, . . . , ξj ∈ Ξ, and ϕ ∈ Bε. By Lemma 7.2.5,
Lemma 7.2.6 and by Corollary 7.2.7, Aε is uniformly analytic on S′. Finally,
for s ∈ S′ let

Hε
s = {ψ(s) : ψ ∈ Aε}, and Γ∞ε = Aε ∩ Γ∞|S′, (7.3.4)

the first closure taken in Hs, the second in Γ∞(S′); and let Hε =
∐
s∈S′ H

ε
s .

Now Hε → S′ is a subfield of H|S′ → S′ and Γ∞ε a C∞(S′)–module of its
sections. Since ∇ξΓ∞ε ⊂ Γ∞ε for ξ ∈ VectS′, Γ∞ε defines a smooth structure on
the Hilbert field Hε → S′. The subspace Aε ⊂ Γ∞ε being uniformly analytic on
S′, by (7.3.4) the first part of this proof gives that through every v ∈ Hε there
passes a horizontal section θ ∈ Γ∞ε (S′) ⊂ Γ∞(S′). Since

⋃
ε>0H

ε
s is dense in

Hs for s ∈ S′, Lemma 7.3.2 implies that through every v ∈ H|S′ there passes
a horizontal θ ∈ Γ(S′). Lemma 7.3.4 in complete generality then follows from
Lemma 7.3.3.

7.4 Trivializing Hilbert fields

In this section we fix a flat analytic Hilbert field p : H → S over a connected and
simply connected base, and after some preparation prove Theorem 7.1.7(ii), in
fact in a more precise form.

Lemma 7.4.1 (Lempert, Szőke [LSz14]). Let V be a Hilbert space with inner
product ( | ) and f ∈ Cn−1(S;V ), n = 1, 2, . . .. If for every ξ ∈ VectS there is
an fξ ∈ Cn−1(S;V ) such that

(f |θ) ∈ Cn(S;V ) and ξ(f |θ) = (fξ|θ), θ ∈ V,

then f ∈ Cn(S;V ) and ξf = fξ.
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Proof. We can assume S = Rd. If χ ∈ Cn(S) is compactly supported, then
χ ∗ f , χ ∗ fξ ∈ Cn(S;V ). With a constant vector field ξ and θ ∈ V

(ξ(χ ∗ f)|θ) = ξ(χ ∗ (f |θ)) = χ ∗ ξ(f |θ) = χ ∗ (fξ|θ) = (χ ∗ fξ|θ),

whence ξ(χ ∗ f) = χ ∗ fξ. Choose a sequence of χ = χk that approximate
the Dirac measure at 0. Then χk ∗ f → f and χk ∗ fξ → fξ in Cn−1(S;V ).
Furthermore

ξ(χk ∗ f)− ξ(χl ∗ f) = χk ∗ fξ − χl ∗ fξ → 0, as k, l→∞,

also in Cn−1(S;V ). Thus χk ∗f is a Cauchy sequence even in Cn(S;V ), whence
the claim.

We are now ready to prove the existence part of Theorem 7.1.7, in the
following stronger form:

Theorem 7.4.2 (Lempert, Szőke [LSz14]). Let S be a connected and simply
connected analytic manifold and H → S a flat analytic Hilbert field. There are
a Hilbert space V and a map T : H → V , unitary on each fiber Hs, such that a
section ϕ of H is in Γn(S) if and only if Tϕ ∈ Cn(S;V ), n = 0, 1, . . .. Moreover

ξTϕ = T∇ξϕ if ξ ∈ VectS, ϕ ∈ Γ1(S).

Proof. Let V be the vector space of horizontal sections in Γ∞(S). By Lemma 7.3.1
h(ϕ,ψ) is constant if ϕ,ψ ∈ V . Denote this constant by (ϕ|ψ); it is an in-
ner product that turns V into a pre–Hilbert space. Given s ∈ S, the map
V 3 θ 7→ θ(s) ∈ Hs is linear, isometric, and, by Lemma 7.3.4, surjective. In
particular, V is a Hilbert space. The inverse maps Hs → V , put together, define
a fiberwise unitary map T : H → V . Composition by T induces a bijection be-
tween sections of H and functions S → V . By the definition of T , if θ ∈ Γ∞(S)
is horizontal, i.e., θ ∈ V , then Tθ : S → V is the constant map ≡ θ.

To verify the properties of T , assume S = Rd with coordinates x1, . . . , xd.
Suppose Tϕ = P =

∑
θJx

J is a V –valued polynomial, θJ ∈ V . Then ϕ =∑
xJθJ ∈ Γ∞(S), and

T (∇ξm . . .∇ξ1ϕ) = ξn . . . ξ1P, ξj ∈ VectS. (7.4.1)

Suppose next that Tϕ ∈ Cn(S;V ). There is a sequence Pk of V –valued polyno-
mials tending to Tϕ in the Cn–topology. If Pk = Tϕk, then (7.4.1) shows that
ϕk is a Cauchy sequence in Γn(S). Also, ϕk → ϕ pointwise, hence ϕ ∈ Γn(S);
and ∇ξϕk → ∇ξϕ pointwise, if n ≥ 1. Therefore

ξTϕ = lim ξTϕk = limT∇ξϕk = T (∇ξϕ).

The converse implication will be proved by induction on n. Start with ϕ ∈
Γ0(S). Given s0 ∈ S, let θ = Tϕ(s0), so that θ(s0) = ϕ(s0). Also θ = Tθ(s) for
s ∈ S, hence ‖ ‖ denoting the norm on V

‖Tϕ(s)− Tϕ(s0)‖ = ‖Tϕ(s)− Tθ(s)‖ = h(ϕ(s)− θ(s))1/2 → 0

as s→ s0. In other words, Tϕ is continuous.
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Suppose now that n ≥ 1 and that ψ ∈ Γn−1(S) implies Tψ ∈ Cn−1(S;V ).
If ϕ ∈ Γn(S) then f = Tϕ ∈ Cn−1(S;V ). For any θ ∈ V and ξ ∈ VectS

(f |θ) = h(ϕ, θ) ∈ Cn(S) and ξ(f |θ) = h(∇ξϕ, θ) = (fξ|θ),

with fξ = T∇ξϕ ∈ Cn−1(S;V ). By Lemma 7.4.1 f ∈ Cn(S;V ), and the proof
is complete.
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Chapter 8

Direct images as fields of
Hilbert spaces

In this section we fix a surjective holomorphic submersion π : Y → S of finite
dimensional complex manifolds; a smooth form ν on Y that restricts to a volume
form on each fiber Ys = π−1s, s ∈ S 1; and a Hermitian holomorphic vector
bundle (E, hE) → Y of finite rank. Write Es for E|Ys, and let Hs denote the
Hilbert space of holomorphic L2–sections of Es, with

h(u, v) =

∫
Ys

hE(u, v)ν, u, v ∈ Hs, (∗)

the inner product. The spaces Hs together form a Hilbert field H → S. The
main question is under what conditions canH be endowed with a natural smooth
structure. In section 8.1, under a mild condition on E we construct a C∞(S)–
module Γ∞ of sections of H and a Hermitian connection ∇ on it. Whether
Γ∞ and ∇ indeed turn H into a smooth Hilbert field depends on whether Γ∞

is dense in every fiber Hs, as required by (7.1.4). In section 8.2 we formulate
geometric and analytic conditions that imply (7.1.4). The geometric condition
bears on the fibration Y → S, and in practice is easy to verify. Among the
analytic conditions the most fearsome concerns the Bergman projection of Es
and its smoothness as s varies. In the next chapter we will see that in direct
images that arise in quantization the geometric condition is always satisfied,
and often the analytic condition can be verified, too.

8.1 Basic constructions

8.1.1 Notation

In addition to Hs it will be convenient to introduce the spaces Ks, consisting
of smooth L2–sections of Es. They constitute a field of pre–Hilbert spaces K =∐
s∈S Ks → S; the inner products on K will still be denoted by h, defined by

the same formula (∗) as for H. Sections ϕ of K are in one to one correspondence

1In all that follows, only the restrictions ν|Ys will matter, so one could as well take ν to
be a relative form on the fibration. The form ν will be called a relative volume form.

103

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



with sections Φ of E that are smooth and L2 on each Ys, the correspondence
being Φ(y) = ϕ(πy)(y), for y ∈ Y . Write Φ = ϕ̂ or ϕ = Φ̌ to indicate ϕ and Φ
correspond.

A lift of a smooth vector field ξ ∈ VectS is a vector field ξ̂ ∈ VectY such that
π∗ξ̂(y) = ξ(π(y)) for y ∈ Y . If ξ is of type (1, 0) or (0, 1), the lift ξ̂ should also

be. In spite of what is perhaps suggested by the notation, ξ̂ is not determined
by ξ. Lifts of ξ ≡ 0 are the vertical vector fields.

The Chern connection on (E, hE) will be denoted ∇E . That is, ∇E is Her-
mitian, and if ζ ∈ VectY is of type (0, 1), then in any holomorphic local trivi-
alization of E ∇ζΦ can be computed by applying ∂ζ = iζ∂ to the components
of Φ. In particular ∇Eζ depends only on the holomorphic structure of E, not on

hE , when ζ is of type (0, 1). The curvature of ∇E will be denoted RE .
On a general complex manifold X, Vect′X and Vect′′X will stand for the

space of smooth (1, 0), resp. (0, 1), vector fields.

8.1.2 Continuous sections

Let us say that a section ϕ of H or K is continuous if ϕ̂ is a continuous section
of E and h(ϕ) ∈ C(S).

Lemma 8.1.1 (Lempert, Szőke [LSz14]). If ϕ,ψ are continuous sections of H
or K, then h(ϕ,ψ) ∈ C(S) and ϕ+ ψ is also a continuous section.

Proof. The second claim is an obvious consequence of the first, which in turn is a
special case of the following: if Φ,Ψ are continuous sections of E and

∫
Ys

hE(Φ)ν,∫
Ys

hE(Ψ)ν < ∞ depend continuously on s ∈ S, then
∫
Ys

hE(Φ,Ψ)ν is also con-

tinuous in s. This latter is clear if Y = S×X → S is a trivial fibration, E → Y
is also trivial, and Φ,Ψ are compactly supported. The case of a general Y,E,
but Φ,Ψ still compactly supported, follows from this by a partition of unity.
If Φ,Ψ are arbitrary, s0 ∈ S, and ε > 0, choose a compact C ⊂ Ys0 so that∫
Ys0\C

(hE(Φ) + hE(Ψ))ν < ε. Let f : Y → [0, 1] be continuous and compactly

supported, f = 1 on C. By what we know already, as s→ s0∫
Ys

f2hE(Φ,Ψ)ν =

∫
Ys

hE(fΦ, fΨ)ν →
∫
Ys0

f2hE(Φ,Ψ)ν. (8.1.1)

On the other hand

0 ≤
∫
Ys

hE(Φ)ν −
∫
Ys

f2hE(Φ)ν →
∫
Ys0

(
hE(Φ)− hE(fΦ)

)
ν ≤

∫
Ys0\C

hE(Φ)ν < ε,

and similarly for Ψ, whence∣∣∣∣ ∫
Ys

(1− f2)hE(Φ,Ψ)ν

∣∣∣∣2 ≤ ∫
Ys

(1− f2)hE(Φ)ν

∫
Ys

(1− f2)hE(Ψ)ν < ε2 (8.1.2)

if s is sufficiently close to s0. Putting (8.1.1) and (8.1.2) together finishes the
proof.

It follows that continuous sections of H and K form a C(S)–module; write
Γ0 for the former.
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8.1.3 Smooth sections

Let ξ ∈ Vect′′S, ξ̂ ∈ Vect′′Y its lift, and ϕ,ψ ∈ Γ0.

Definition 8.1.2. If ϕ̂ ∈ C1(Y,E) and ∇E
ξ̂
ϕ̂ = ψ̂, write ∇ξϕ = ψ.

Lemma 8.1.3 (Lempert, Szőke [LSz14]). Given ϕ, there is at most one such

ψ, and ψ is independent of the lift ξ̂.

Proof. Uniqueness is obvious because ψ̂ determines ψ; independence follows
because two lifts differ by a vertical (0, 1)–field, which annihilates ϕ̂.

Let
Γ∂ = {ϕ ∈ Γ0 : ∇ξϕ ∈ Γ0 exists for all ξ ∈ Vect′′S},

a C1(S)–submodule of Γ0.

Definition 8.1.4. Given ξ ∈ Vect′S and ϕ,ψ ∈ Γ0, ∇ξϕ = ψ means that

ξh(ϕ, θ) = h(ψ, θ) + h(ϕ,∇ξθ), θ ∈ Γ∂ ,

in the weak sense (or “in the sense of distributions”).
To ensure that ∇ξϕ is unique, we introduce

Hypothesis 8.1.5. {θ(s) : θ ∈ Γ∂} ⊂ Hs is dense for s ∈ S,

and we will assume it throughout this section. We define Γ1 as the set of those

ϕ ∈ Γ∂ for which ∇ξϕ exists for all ξ ∈ Vect′S. If ϕ ∈ Γ1 and ξ ∈ VectS, define

∇ξϕ = ∇ξ1,0 ϕ+∇ξ0,1 ϕ,

with ξ1,0 and ξ0,1 the (1, 0) and (0, 1) components of ξ. Thus Γ1 is a C∞(S)–
module, and ∇ξ : Γ1 → Γ0 has the usual properties of covariant differentiation
(∇ξϕ is C∞(S)–linear in ξ; in ϕ it is C–linear and satisfies the Leibniz rule). The
spaces Γn ⊂ Γ1 for n = 2, 3, . . . are defined inductively: ϕ ∈ Γn if ∇ξϕ ∈ Γn−1

for every ξ ∈ VectS. Finally, Γ∞ =
⋂
n Γn.

Lemma 8.1.6 (Lempert, Szőke [LSz14]). If ϕ ∈ Γ0 and ∇ξn . . .∇ξ1ϕ ∈ Γ0 for
all n and ξ1, . . . ∈ Vect′′S (in particular, if ϕ ∈ Γ∞), then ϕ̂ ∈ C∞(Y,E).

Proof. Any ζ ∈ VectY is a linear combination of lifted vector fields ξ̂ with
smooth coefficients. It follows that ∇Eζn . . .∇

E
ζ1
ϕ̂ is continuous for all n and

ζ1, . . . ∈ Vect′′Y , and the regularity of ∂̄ implies ϕ̂ is smooth.

Lemma 8.1.7 (Lempert, Szőke [LSz14]). If ϕ,ψ ∈ Γ1 and ξ ∈ VectS, then
h(ϕ,ψ) ∈ C1(S) and

ξh(ϕ,ψ) = h(∇ξϕ,ψ) + h(ϕ,∇ξψ). (8.1.3)

Proof. If ξ ∈ Vect′S then (8.1.3) holds by definition, at least weakly. Taking
conjugates:

ξh(ψ,ϕ) = h(ψ,∇ξϕ) + h(∇ξψ,ϕ),

so that (8.1.3) holds weakly for (0, 1) fields as well; hence for all ξ ∈ VectS.
Thus all weak derivatives ξh(ϕ,ψ) are continuous, whence h(ϕ,ψ) ∈ C1(S).

So ∇ is a Hermitian connection, and by induction, h(ϕ,ψ) ∈ Cn(S) if ϕ,ψ ∈
Γn. Therefore Γ∞ and ∇ (restricted to Γ∞) have all the attributes of a smooth
structure, except possibly the density property (7.1.4). The density issue will
be addressed in the next section.
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8.1.4 Symmetries

Since the construction above was natural, the effect of symmetries on the di-
rect image is easy to understand. Suppose g : Y → Y is a biholomorphism that
leaves each Ys and ν|Ys invariant, and lifts to a holomorphic automorphism gE of
(E, hE). Composition with gE defines a unitary operator on each Hs, and so an
automorphism of the Hilbert field H → S, denoted gH . Assuming the construc-
tion in 8.1.2, 8.1.3 does endow H with a smooth structure, it is straightforward
that Γ∞ is invariant under composition with gH , and ∇ξ(gHϕ) = gH∇ξϕ.

If G is a compact group of such biholomorphisms, and the lifts satisfy
gEg

′
E = (gg′)E , then the gH define an action of G on H. Given an irre-

ducible representation of G on a vector space V and χ its character, the linear
span of all invariant subspaces of Hs, resp. Γ∞, that are isomorphic to V form
the χ–isotypical subspace Hχ

s ⊂ Hs, resp. Γ∞χ ⊂ Γ∞ (see [BD, III.5]). Thus
Hχ =

∐
s∈S H

χ
s is a Hilbert subfield of H and Γ∞χ is a C∞(S)–module of its

sections. It is straightforward that ∇ξΓ∞χ ⊂ Γ∞χ for ξ ∈ VectS.

Lemma 8.1.8 (Lempert, Szőke [LSz14]). If the direct image H is a smooth
Hilbert field, then Γ∞χ ⊂ Γ∞ and ∇χ = ∇|Γ∞χ endow Hχ with a smooth Hilbert
field structure. The curvature Rχ(ξ, η) of Hχ is the restriction of the curvature
R(ξ, η) of H. If H is analytic, then so is Hχ.

Proof. Let dg denote Haar measure on G, of total mass 1. If ϕ ∈ Γ∞, resp. Γω,
then ψ =

∫
G

χ(g)gHϕdg/χ(e) ∈ Γ∞χ , resp. Γωχ. In fact, ϕ 7→ ψ is a projection

Γ∞ → Γ∞χ . The corresponding fact is in [He2, IV, Lemma 1.7] for isotypical
subspaces of locally convex spaces like C∞(Y,E), hence it holds also for Γ∞.
This implies that {ψ(s) : ψ ∈ Γ∞χ } ⊂ (Hχ)s is dense, and thereforeHχ is smooth;
analyticity is dealt with likewise. The relation between R and Rχ follows directly
from the definitions.

8.1.5 Direct image in the smooth category

The above tentative construction of a smooth Hilbert field structure on the
direct image depended strongly on holomorphy, and would be impossible in
the smooth category. Suppose Y → S is a submersion of smooth manifolds,
ν is a smooth form on Y restricting to a volume form on each fiber Ys, and
(E, hE) → Y is a smooth complex vector bundle with a Hermitian connection
∇E . The spaces Ks of L2–sections of E|Ys form a Hilbert field K → S, and
it is possible to define the module Γ0 of its continuous sections, similarly to
what was done in 8.1.2 But it is not possible to go further to define Γ1 and a
connection in a natural way. This even applies to the holomorphic category, if
in 8.1.3, instead of holomorphic L2 sections Hs one considers all L2–sections
Ks (or smooth L2–sections Ks). The space Γ1 and ∇ can be defined only if the
submersion Y → S is given more structure, for example a connection (a smooth
subbundle of TY , complementary to the vertical subbundle). In the direct image
problems originating in geometric quantization, to be considered in the next
chapter, there are at least two equally natural candidates for such a connection.
This means that on the Hilbert field K there are two natural, and different,
(tentative) smooth structures. For this reason it is best not to try to explain
the smooth structure of H through K (as is done in [ADW, FMMN1, FMMN2]
), by invoking a more–or–less natural connection on Y → S, but rather define
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the smooth structure of H directly, relying only on the structures that Y and
E naturally have.

8.2 The density issue

In this section we will subject Y → S and E → Y to geometric and analytic
conditions to ensure the direct image field H → S is indeed smooth.

8.2.1 Complete vector fields

The geometric condition involves vector fields that are complete in a certain
sense. Let M be an m–dimensional smooth manifold. A continuous m–form
ω on M induces a Borel measure, denoted |ω| : if in a coordinate patch ω =
fdx1 ∧ dx2 ∧ . . ., then |ω| = |f |dx1dx2 . . .. Suppose now M is oriented. Let Lξ
stand for Lie derivative.

Definition 8.2.1. A vector field ξ ∈ VectM is integrally complete if the fol-
lowing holds. Suppose ω is an m–form of class C1 on M . If |ω| and |Lξω| are
finite measures, then

∫
M

Lξω = 0.

Lemma 8.2.2 (Lempert, Szőke [LSz14]). Any of the assumptions below implies
ξ ∈ VectM is integrally complete:

(i) ξ is integrally complete;
(ii) ξ is real and complete;
(iii) there are compactly supported C1–functions ak : M → [0, 1] such that for

every compact C ⊂M, ak|C ≡ 1 for large enough k, and supx,k |ξak(x)| <∞;
(iv) M is a complete Riemannian manifold and the length |ξ(x)| grows lin-

early (= O(1 + dist(x, x0)).

Proof. (i) This is so because Lξω = Lξω.
(ii) Completeness means ξ has a global flow gt, t ∈ R. If |Lξω| is finite, then∫

M

Lξω =
∫
M

g∗tLξω for any t. Hence

∫
M

Lξω =

1∫
0

∫
M

g∗tLξωdt =

∫
M

1∫
0

d

dt
(g∗t ω)dt =

∫
M

g∗1ω −
∫
M

ω = 0.

(iii) If ξ is compactly supported, then Re , ξ and Im ξ are complete, and
(ii) implies the claim. If ω, instead of ξ, is compactly supported,

∫
M

Lξω = 0

still follows for we are free to modify ξ outside supp ω to make it compactly
supported. For a general ω as in Definition
refD:711, akω is compactly supported, so as k →∞

0 =

∫
M

Lξakω =

∫
M

(ξak)ω +

∫
M

akLξω →
∫
M

Lξω.

(iv) By smoothing the Lipschitz function dist(·, x0) one obtains a real f ∈
C1(M) such that |f(x)− dist(x, x0)| ≤ 1 and |grad f(x)| ≤ 2. Let furthermore
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αk : R→ [0, 1] be C1–functions such that

αk(t) =

{
1, if t ≤ k
0, if t ≥ 2k

, |α′k(t)| ≤ 2/k for all t.

Then ak = αk ◦ f satisfies the conditions in (iii) and the claim follows.

8.2.2 The conditions

Returning to the vector bundle E → Y , for s ∈ S, let Bs : L2(Es)→ Hs denote
the Bergman projection (orthogonal projection on Hs). If Φ is such a section of
E that Φ|Ys ∈ L2(Es), then using notation introduced in 8.1.1, sections BΦ of
E and B̌Φ of H can be defined by

(BΦ)|Ys = Bs(Φ|Ys) and B̌Φ = (BΦ)̌ .

If ζ ∈ VectY , then div ζ = divνζ will denote the smooth function on Y satisfying

(Lζν)|Ys = (div ζ)ν|Ys, s ∈ S.

Consider the following conditions on Y → S, resp. E → Y :

(G) There is a family Ξ ⊂ Vect′S that spans the bundle T 1,0S, and each ξ ∈ Ξ
has an integrally complete lift ξc ∈ Vect′Y .

This is a geometric condition. To formulate the analytic condition, we fix Ξ
and the lifts ξc of ξ ∈ Ξ once and for all. If η ∈ Ξ then ηc denotes the conjugate
of ηc.

(A) There is a subspace AE ⊂ C∞(Y,E) with the following properties. If
Φ ∈ AE then

(A1)
∫
Ys

hE(Φ)ν ∈ R depends continuously on s ∈ S; and

(A2) if ξ ∈ Ξ and η = ξ, then (div ξc)Φ, ∇EξcΦ, ∇EηcΦ, and BΦ ∈ AE .
Further,

(A3) if u ∈ Hs and ε > 0, then there is a Φ ∈ AE such that
∫
Ys

hE(Φ−u)ν < ε.

Theorem 8.2.3 (Lempert, Szőke [LSz14]). If (G) and (A) hold, then so does
Hypothesis 8.1.5, and Γ∞,∇ defined in 8.1.3 endow H → S with the structure
of a smooth Hilbert field.

Proof. If Φ ∈ AE then (A1–2) imply B̌Φ ∈ Γ0, and (A2) implies Ψ = ∇EηcBΦ ∈
AE when η ∈ Ξ. Now Ψ is holomorphic along the fibers Ys. Indeed, if ζ ∈
Vect′′Y is vertical,

∇Eζ Ψ = ∇Eζ ∇EηcBΦ = ∇Eηc∇Eζ BΦ +∇E[ζ,ηc]BΦ, (8.2.1)

because the curvature of ∇E is of type (1, 1). Furthermore, [ζ, ηc] = −Lηcζ ∈
Vect′′Y is also vertical, because ηc is a lifted vector field. Since BΦ is fiberwise
holomorphic, (8.2.1) vanishes. Thus Ψ is fiberwise holomorphic and so ∇ηB̌Φ =

Ψ̌ ∈ Γ0. This being true when η ∈ Ξ, B̌Φ ∈ Γ∂ follows as Ξ spans. But (A3)
implies

{(B̌Φ)(s) : Φ ∈ AE} ⊂ Hs is dense, (8.2.2)

hence Hypothesis 8.1.5 holds. To complete the proof we need
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Lemma 8.2.4 (Lempert, Szőke [LSz14]). If Φ ∈ AE then B̌Φ ∈ Γ∞ and for
ξ ∈ Ξ

∇ξB̌Φ = B̌(∇EξcΦ + Φ div ξc). (8.2.3)

Granting the lemma we are done, since among the requirements for a smooth
Hilbert field (2.2.1–2) were already verified in subsection 6.3, and (7.1.4) follows
from (8.2.2) and the lemma.

8.2.3 The proof of Lemma 8.2.4.

This will take some preparation.

Lemma 8.2.5 (Lempert, Szőke [LSz14]). Let λ be a smooth, compactly sup-
ported form on S, of top degree, and f : Y → C Borel measurable. If either
f ≥ 0 and λ ≥ 0, or f is integrable with respect to the measure |ν ∧ π∗λ|, then
g(s) =

∫
Ys

fν exists for a.e. s ∈ S, and

∫
S

gλ =

∫
Y

fν ∧ π∗λ. (8.2.4)

Proof. If π : Y = S × X → S is trivial, and ν is pulled back from a form on
X, then the claim is a special case of the Fubini–Tonnelli theorem. If π is still
trivial but ν is arbitrary, then one can factorize ν = aν0 with a : Y → (0,∞)
smooth and ν0 pulled back from X, so that this case follows from the previous.
Since a general submersion Y → S is locally (in Y ) trivial, (8.2.4) still follows
if f is compactly supported. Failing that, choose a sequence bk : Y → [0, 1]
of compactly supported smooth functions that converge monotonically to 1.
Writing (8.2.4) for bkf and letting k →∞, the claim follows in general.

Lemma 8.2.6. (Lempert, Szőke [LSz14]) If Φ,Ψ ∈ AE then g(s) =
∫
Ys

hE(Φ,Ψ)ν

is a smooth function on S, and with ξ ∈ Ξ, η = ξ

(ξg)(s) =

∫
Ys

hE(∇EξcΦ + Φ div ξc,Ψ)ν +

∫
Ys

hE(Φ,∇EηcΨ)ν. (8.2.5)

Proof. Let J(s) stand for the right hand side of (8.2.5). By Lemma 8.1.1 and
conditions (A1–2), J is continuous. That (8.2.5) holds in the weak sense means
that for any compactly supported smooth form λ on S, of top degree,∫

S

gLξλ+

∫
S

Jλ = 0.

The left hand side here is, in view of Lemma 8.2.5,∫
Y

hE(Φ,Ψ)ν ∧ Lξcπ∗λ+

∫
Y

{hE(∇EξcΦ + Φ div ξc,Ψ) + hE(Φ,∇EηcΨ)}ν ∧ π∗λ

=

∫
Y

Lξc{hE(Φ,Ψ)ν ∧ π∗λ},
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which is indeed 0, since ξc is integrally complete. Upon interchanging Φ and Ψ,
and conjugating, (8.2.5) in the weak sense also follows if ξ ∈ Ξ. Since all these
weak derivatives are continuous, g ∈ C1(S), and (8.2.5) holds in the pointwise
sense. From here g ∈ Cn(S) follows by induction, taking condition (A2) into
account.

The same proof also gives

Lemma 8.2.7 (Lempert, Szőke [LSz14]). (8.2.5) holds in the weak sense even

if instead of Ψ ∈ AE we assume Ψ = θ̂, where θ ∈ Γ∂ .

Proof of Lemma 8.2.4. Write ψ for the right hand side of (8.2.3) and let η = ξ.

By (A1–2), ψ ∈ Γ0. If θ ∈ Γ∂ then

h(B̌Φ, θ)(s) =

∫
Ys

hE(BΦ, θ̂)ν =

∫
Ys

hE(Φ, θ̂)ν,

h(ψ, θ)(s) =

∫
Ys

hE(B(∇EξcΦ + Φ div ξc), θ̂)ν =

∫
Ys

hE(∇EξcΦ + Φ div ξc, θ̂)ν,

h(B̌Φ,∇ηθ)(s) =

∫
Ys

hE(BΦ,∇Eηc θ̂)ν =

∫
Ys

hE(Φ,∇Eηc θ̂),

because θ̂ and ∇Eηc θ̂ = (∇ηθ)ˆ are holomorphic on Ys. Hence Lemma 8.2.7 gives

ξh(B̌Φ, θ) = h(ψ, θ) + h(B̌Φ,∇ξθ)

in the weak sense, which is the formula that defines ψ = ∇ξB̌Φ. This proves

(8.2.3). We have already seen in the proof of Theorem refT:721 that B̌Φ ∈ Γ∂ ,
now we can conclude B̌Φ ∈ Γ1. From here B̌Φ ∈ Γn for all n is proved by
induction, using (8.2.3).

8.3 Curvature

In this section we assume conditions (G) and (A) of subsection 8.2.2 and com-
pute the curvature R of the direct image Hilbert field. The simpler the structure
of π : Y → S and E, the more transparent the expression of R will be.

8.3.1 Generalities

Let A = {B̌Φ: Φ ∈ AE}. By Lemma 8.2.4, A ⊂ Γ∞. If ϕ ∈ A then ϕ̂ = Bϕ̂,
hence by Lemma 8.2.4 and by Definition 8.1.2

∇ξϕ = B̌(∇E
ξ̂
ϕ̂+ ϕ̂div ξ̂), ∇ηϕ = (∇Eη̂ ϕ̂)ˇ (8.3.1)

provided ξ ∈ Ξ, ξ̂ = ξc, and η ∈ Vect′′S. The first formula will also hold
for arbitrary ξ ∈ Vect′S, except the lift ξ̂ will have to be chosen carefully. If
ξ =

∑
fjξj , a locally finite sum with ξj ∈ Ξ and fj ∈ C∞(S), a correct lift is

ξ̂ =
∑

(π∗fj)ξ
c
j . In principle (8.3.1) allows for the computation of R(ξ, η)ϕ =

(∇ξ∇η−∇η∇ξ−∇[ξ,η])ϕ when ξ ∈ Vect′S and η ∈ Vect′′S (and ϕ ∈ A). These
are the only nonzero components of R:
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Lemma 8.3.1. (Lempert, Szőke [LSz14]) R(ξ1, ξ2) = R(η1, η2) = 0 if ξj ∈
Vect′S, ηj ∈ Vect′′S.

Proof. Since RE(η̂1, η̂2) = 0, Definition 8.1.2 gives R(η1, η2) = 0. It follows that
h
(
R(ξ1, ξ2)ϕ,ψ

)
= −h

(
ϕ,R(ξ1, ξ2)ψ

)
= 0 by (7.1.5), and R(ξ1, ξ2) = 0.

The computation of R(ξ, η) depends, predictably, on understanding commu-
tators, specifically ∇Eη̂ B −B∇Eη̂ .

Lemma 8.3.2 (Lempert, Szőke [LSz14]). (i) Let Cη = ∇Eη̂ B −B∇Eη̂ . If η ∈ Ξ
then (CηΦ)|Ys ∈ Hs depends only on Φ|Ys for Φ ∈ AE and s ∈ S.

(ii) Defining Čη : AE → Γ∞ by ČηΦ = (CηΦ)̌ ,

R(ξ, η)ϕ = B̌
(
RE(ξ̂, η̂) +∇E

[ξ̂,η̂]
− (η̂ div ξ̂)

)
ϕ̂− Čη(∇E

ξ̂
+ div ξ̂)ϕ̂, (8.3.2)

if ξ ∈ Vect′S, η ∈ Vect′′S, [ξ, η] = 0, and ϕ ∈ A. The lift ξ̂ should be chosen as∑
(π∗fj)ξ

c
j if ξ =

∑
fjξj with ξj ∈ Ξ, fj ∈ C∞(S), and similarly for η̂.

In (8.3.2) and in various curvature formulas below η̂ div ξ̂, div ξ̂, etc. stand
for the operators of multiplication by the corresponding function.

Proof. If Ψ ∈ AE then g(s) =
∫
Ys

hE(BΨ,Φ−BΦ)ν = 0. Therefore ηg = 0 and

by Lemma 8.2.6

∫
Ys

hE(∇EηcBΨ + (BΨ) div ηc,Φ−BΦ)ν =

∫
Ys

hE(BΨ,∇EηcBΦ−∇EηcΦ)ν

=

∫
Ys

hE(BΨ,∇EηcBΦ−B∇EηcΦ)ν = h(B̌Ψ, ČηΦ)(s).

(8.3.3)

Since the first term in (8.3.3) depends only on (Ψ and) Φ|Ys, so does the last,
and (i) follows by condition (A3). (ii) in turn follows by substituting (8.3.1) in
the formula R(ξ, η)ϕ = ∇ξ∇ηϕ−∇η∇ξϕ and commuting B past ∇Eη̂ .

8.3.2 Special cases.

Suppose that, in addition to ∇E , E admits another connection ∇′, and each
ξ ∈ Ξ has a lift ξh ∈ Vect′Y such that if Φ ∈ C∞(Y,E) is holomorphic on the
fibers Ys, then so is ∇′ξhΦ. The connection ∇′ need not be Hermitian or of type

(1, 0). Thus ∇E = ∇′ + a, with a an EndE–valued 1–form, and ξc − ξh = β(ξ)
is vertical.

Lemma 8.3.3 (Lempert, Szőke [LSz14]). In addition to the assumptions and
notation above, suppose a(ξh)Ψ ∈ AE and ∇Eβ(ξ)Ψ ∈ AE when ξ ∈ Ξ and
Ψ ∈ AE. Then on AE

(I −B)∇E
ξ̂
B = (I −B)(∇Eβ(ξ) + a(ξh))B, (8.3.4)

Cξ = [(I −B)(∇Eβ(ξ) + a(ξh) + div ξ̂)B]∗, (8.3.5)
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if ξ̂ = ξc. Here the operator ∇Eβ(ξ) +a(ξh)+div ξ̂ is considered fiberwise, defined

on the dense subspaces {Ψ(s) : Ψ ∈ AE} ⊂ L2(Es), and ∗ means adjoint.
Again, (8.3.4) and (8.3.5) also hold for locally finite combinations ξ =

∑
fjξj

of ξj ∈ Ξ with fj ∈ C∞(S), if ξ̂, ξh, and β(ξ) are defined by
∑

(π∗fj)ξ
c
j ,∑

(π∗fj)ξ
h
j , and

∑
(π∗fj)β(ξj).

Proof. (8.3.4) follows because

∇Eξc = ∇Eβ(ξ) + a(ξh) +∇′ξh , (8.3.6)

and I − B annihilates fiberwise holomorphic sections. Since B∗s = Bs, (8.3.3)
can be rewritten, setting η = ξ,∫
Ys

hE
(
(I −B)(∇E

ξ̂
+ div ξ̂)BΨ,Φ

)
ν =

∫
Ys

hE(BΨ, CηΦ)ν =

∫
Ys

hE(Ψ, CηΦ)ν,

because CηΦ|Ys ∈ Hs. Substituting (8.3.4) on the left, (8.3.5) follows.

Putting (8.3.2), (8.3.4) and (8.3.5) together gives

(
R(ξ, η)ϕ

)̂
= B

(
RE(ξ̂, η̂) +∇E

[ξ̂,η̂]
− (η̂ div ξ̂)

)
ϕ̂

− [(I −B)(∇Eβ(η) + a(ηh) + div η̂)B]∗(∇Eβ(ξ) + a(ξh) + div ξ̂)ϕ̂,

(8.3.7)

provided [ξ, η] = 0 and ϕ ∈ A.
The connection ∇′ and the lifts ξh can be found if Y → S is an open

subfibration of a trivial fibration S × X → S, and E is the restriction to Y
of a bundle pulled back from a bundle F → X. Indeed, the pull back of any
connection on F can serve as ∇′, if ξh denotes the horizontal lift of ξ. A
simplification occurs if Y = S × X → S itself is trivial. Then condition (G)
is satisfied if Ξ consists of all compactly supported ξ ∈ Vect′S, and ξc = ξh is
the horizontal lift. That ξc is integrally complete follows from Lemma 8.2.2(iv)
(S×X is to be endowed with a complete product metric). In this case β(η) = 0
and after a little manipulation (8.3.7) becomes

R(ξ, η)ϕ = B̌
(
RE(ξh, ηh)− (ηhdiv ξh)

)
ϕ̂

− B̌(a(ηh) + div ηh)∗(I −B)(a(ξh) + div ξh)ϕ̂.
(8.3.8)

In (8.3.8) the adjoint can be computed pointwise, on each Ey. For example,
(div ηh)∗ = div ηh.

Finally, suppose that Y = S ×X → S is trivial, (E, hE) is pulled back from
a bundle (F, hF )→ X, and condition (A) in 8.2.2 holds. Choosing ξh = ξc the
horizontal lift of ξ ∈ VectS, one can take ∇′ = ∇E . This gives RE(ξh, ηh) = 0
and a = 0, so (8.3.8) becomes

R(ξ, η)ϕ = −B̌(ηh div ξh)ϕ̂− B̌(div ηh)(I −B)(div ξh)ϕ̂, (8.3.9)

provided ξ ∈ Vect′S, η ∈ Vect′′S, [ξ, η] = 0, and ϕ ∈ A.
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8.3.3 A smooth and flat nontrivial Hilbert field [LSz3]

We illustrate the material in sections 8.1 - 8.3 by the following example. Let S
be any connected complex manifold, Y = S ×C, π : Y → S the projection, and
(E, h) → Y the trivial Hermitian line bundle. Let ρ : S → [0,∞) be smooth,
and define the relative volume form ν by

i(1 + ρ(s)|x|2)−2dx̄ ∧ dx, s ∈ S, x ∈ C.

Write S+ for the set where ρ > 0. It is easy to check that the fibers Hs of
the direct image Hilbert field consist of the constant functions when s ∈ S+,
while Hs = 0 for other s ∈ S. Theorem 8.2.3 can be used to show that the
direct image is in fact a smooth Hilbert field. For this Ξ is chosen to consist of
all compactly supported ξ ∈ Vect′S, and ξc the horizontal lift of ξ ∈ Ξ. If AE
consists of finite sums of sections of form f(s)(1+ρ(s)|x|2)−k, where f ∈ C∞(S)
is supported in S+ and k = 0, 1, . . ., it is not hard to verify that the conditions
of the theorem are satisfied, and the direct image is indeed a smooth Hilbert
field. Further, the curvature of the field can be computed, e.g., using (8.3.9),
and if ρ is the modulus of a holomorphic function squared, it turns out to be 0.

Therefore in this case the direct image Hilbert field H is smooth and flat,
but unless ρ vanishes identically or nowhere, it cannot be trivialized.

8.4 An example

8.4.1 A good family of holomorphic sections

Here we discuss direct image problems for which conditions (G) and (A) of
8.2.2 can be verified. As a result, the direct image Hilbert fields are smooth,
resp. analytic. The analysis of direct image problems in geometric quantization
will be based on these examples.

Let (F, hF )→ X be a Hermitian holomorphic vector bundle and ν0 a smooth
volume form on X. With a complex manifold S let Y = S ×X, Λ ∈ C∞(Y ),
and π : S × X → S, pr : S × X → X the projections. Consider the direct
image Hilbert field H → S of the pulled back bundle (E, hE) = pr∗(F, hF ),
using the relative volume form ν = eΛpr∗ν0. For simplicity assume Λ(s, x) =
a(s)L(x) + b(s), with a < 0, L > 0. If ξh ∈ VectY denotes the horizontal lift of
ξ ∈ VectS, then

div ξh = ξhΛ, ξhΛ(s, x) = L(x)ξa(s) + ξb(s). (8.4.1)

Given t ∈ R, let W t be the Hilbert space of measurable sections v of F such
that

ht(v) =

∫
X

hF (v)etLν0 <∞, (8.4.2)

and V t ⊂W t the subspace of holomorphic sections.

Lemma 8.4.1 (Lempert, Szőke [LSz14]). Let {Vi}i∈I be a collection of vector
spaces, each consisting of certain holomorphic sections of F . Assume that for
t < 0

(i) each Vi ⊂ V t, and the norms (ht)1/2 for different t are all equivalent on
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Vi;
(ii) if t+ 2τ < 0 and v ∈ Vi, the Bergman projection of W t maps eτLv into

Vi;
(iii)

∑
i∈I Vi is dense in V t.

Then the direct image H → S of E → Y is a smooth Hilbert field. If a, b are
analytic, then H is analytic, too.

The hypothesis is satisfied if L is bounded and the collection consists of a
single space, namely V t for any t < 0. In section 9.2 the lemma will be applied
with L unbounded, but F will admit a large group of symmetries, and for the
isotypical subspaces Vi the hypothesis can be verified.

Proof. (a) The Vi can be assumed complete in the norms (ht)1/2, t < 0. As-
sumption (ii) implies that for v ∈ Vi the Bergman projection of W t maps LneτLv
into Vi, if t+2τ < 0 and n = 0, 1, . . .. This can be proved by induction as follows.
When n = 0, the claim is just (ii). For any n

Lneα
′L − LneαL

α′ − α
→ Ln+1eαL, as α′ → α < 0,

uniformly on X. Hence if t+ 2τ < 0 then

Lneτ
′L − LneτL

τ ′ − τ
v → Ln+1eτLv as τ ′ → τ

in W t. Applying Bergman projection to both sides provides the induction step.
For s ∈ S, let Pi,n(s) : Vi → Vi denote the Toeplitz operator of multiplication

by Ln followed by Bergman projection in the space L2(F, eΛ(s,·)ν0). As we have
seen, Pi,n(s) indeed maps into Vi. It follows from Lemma 8.4.2 below that
Pi,n : S → EndVi is smooth, and even analytic if a is. Here EndVi is the
Banach space of operators on Vi, endowed with the operator norm coming from
any hτ , τ < 0.

That H is smooth will follow from Theorem refT:721. To satisfy condition
(G), Ξ is taken to consist of all compactly supported ξ ∈ Vect′S and ξc = ξh is
the horizontal lift. As to condition (A), if f is a function on S such that f(s),
for s ∈ S, is a smooth section of F that is in L2(F, eΛ(s,·)ν0), define sections
σ(f), σ̌(f) of E and K (cf. 8.1.1) by

σ(f)(s, x) = f(s)(x) and σ̌(f)(s) = σ(f)|{s} ×X, (8.4.3)

so that σ̌(f) = σ(f)ˇ. Let Ai consist of linear combinations of sections of E of
form

Ψ = σ(Lnf), where n = 0, 1, . . . and f ∈ C∞(S;Vi), (8.4.4)

and let AE =
∑
i∈I Ai. As the inclusion Vi ⊂ C∞(X,F ) is continuous, AE ⊂

C∞(Y,E). It is easy to check that it satisfies conditions (A1–3). First, with Ψ
in (8.4.4) ∫

{s}×X

hE(Ψ)ν =

∫
X

hF (f(s))L2nea(s)L+b(s)ν0 <∞
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by (i), and depends continuously on s by the Dominated Convergence Theorem.
In view of Lemma 8.1.1 it follows that all Φ ∈ AE satisfy (A1). Also, for
ξ ∈ VectS

Ψ div ξh = σ
(
Ln+1(ξa)f

)
+ σ

(
Ln(ξb)f

)
∈ Ai,

∇EξcΨ = σ(Lnξf) ∈ Ai, and BΨ = σ(Pi,nf) ∈ Ai,

the latter because Pi,n is smooth. Hence condition (A2) is satisfied, and so is
(A3), in view of (iii). Therefore H → S is indeed smooth.

(b) Suppose a, b are analytic. Since σ(v)(s, x) = v(x) for v ∈ Vi, all one needs
to prove is that σ̌(v) ∈ Γω; then the analyticity of H will follow in view of (iii).
This means that given a finite Ξ0 ⊂ VectωS, the derivatives ∇ξn . . .∇ξ1 σ̌(v)
have to be estimated for ξj ∈ Ξ0 as in (7.1.7), cf. also Corollary 7.2.7. For
f ∈ C∞(S;Vi) and ξ, η ∈ Vect′S, by (8.3.1) and (8.4.1)

∇ξσ̌(f) = σ̌{ξf + (ξa)Pi,1f + (ξb)f}, ∇ησ̌(f) = σ̌(ηf). (8.4.5)

Defining Dξf = ξf + (ξa)Pi,1f + (ξb)f and Dηf = ηf , then extending Dζ by
linearity to all ζ ∈ VectS, (8.4.5) simplifies:

∇ζ σ̌(f) = σ̌(Dζf), ζ ∈ VectS.

Here Dζ : C∞(S;Vi) → C∞(S;Vi) is a connection of the type discussed in
Lemma 7.2.8. Iterating:

∇ξn . . .∇ξ1 σ̌(f) = σ̌(Dξn . . . Dξ1f),

and the estimate (7.2.10) indeed implies that σ̌(v) ∈ Γω.

It remains to show that Pi,n is smooth. In the situation of Lemma 8.4.1
(assuming Vi complete), fix t < 0 and with τ < t/2, consider the Toeplitz
operator Qi(τ) : Vi → Vi that is multiplication by e(τ−t)L followed by Bergman
projection in W t. (Again, Qi(τ) indeed maps into Vi by assumption (ii) of
Lemma 8.4.1.) Multiplication by e(τ−t)L, as an operator Vi →W t, is an analytic
function of τ < t/2, so that Qi : (−∞, t/2)→ EndVi is also analytic. Since∫

X

hF (Qi(τ)v, v)etLν0 =

∫
X

hF (v)eτLν0 = hτ (v), v ∈ Vi,

Lemma 8.4.1(i) implies that the self–adjoint operator Qi(τ) on (Vi, h
t) has a

bounded inverse. Hence Q−1
i : (−∞, t/2)→ EndVi is also analytic. Smoothness

and analyticity of Pi,n therefore follow from

Lemma 8.4.2 (Lempert, Szőke [LSz14]). Pi,n(s) = Q−1
i (a(s))Q

(n)
i (a(s)) when

a(s) < t/2.

Proof. By the definition of Qi(τ), for v, w ∈ Vi∫
X

hF (e(τ−t)Lv, w)etLν0 =

∫
X

hF (Qi(τ)v, w)etLν0. (8.4.6)
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Differentiating n times with respect to τ , and using (8.4.6) again∫
X

hF (e(τ−t)LLnv, w)etLν0 =

∫
X

hF (Q
(n)
i (τ)v, w)etLν0

=

∫
X

hF (Qi(τ)Qi(τ)−1Q
(n)
i (τ)v, w)etLν0

=

∫
X

hF (e(τ−t)LQi(τ)−1Q
(n)
i (τ)v, w)etLν0.

Hence, putting τ = a(s)∫
X

hF (Lnv, w)eΛ(s,·)ν0 =

∫
X

hF (Qi(τ)−1Q
(n)
i (τ)v, w)eΛ(s,·)ν0,

and the claim follows.

8.4.2 Curvature.

Under the assumptions of Lemma 8.4.1 the curvature of H can be expressed
very simply. Put Pi(s) = eb(s)Qi(a(s)) (also a Toeplitz operator, with symbol
eΛ(s,·)−tL); from Lemma 8.4.2 P−1

i ξPi = (ξa)Pi,1 + ξb, so that by (8.4.5)

∇ξσ̌(f) = σ̌(ξf + (P−1
i ξPi)f) for ξ ∈ Vect′S and f ∈ C∞(S, Vi).

Hence if η ∈ Vect′′S and [ξ, η] = 0, then for v ∈ Vi

R(ξ, η)σ̌(v) = −∇η∇ξσ̌(v) = −σ̌
(
η(P−1

i ξPi)v
)
. (8.4.7)

Theorem 8.4.3 (Lempert, Szőke [LSz14]). Let t < 0. In the situation of Lem-
ma 8.4.1, in order that on St = {s ∈ S : a(s) < t/2} the curvature R of H be
zero, resp. central (see 7.1.4), it is sufficient and necessary that for s ∈ St and
ξ ∈ Vect′St, η ∈ Vect′′St the operators

∂(P−1
i ∂Pi)

(
ξ(s), η(s)

)
: Vi → Vi, i ∈ I,

should be zero, resp. multiples ridVi of the identity, r independent of i.

Proof. The necessity is obvious from (8.4.7). As to sufficiency, the assumption
implies that for each s ∈ St the operator R(ξ(s), η(s)) : Hs → Hs agrees with a
multiple of idHs on a dense subset of Hs. Therefore the closure of R(ξ(s), η(s)),
which exists by Lemma 7.1.4, is a multiple of idHs , whence R is indeed zero,
resp. central.
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Chapter 9

Quantizing the family of
adapted Kähler structures

9.1 Quantization

In this section M will be a compact, real-analytic Riemannian manifold and
N denotes the manifold of its parametrized geodesics. Unless otherwise stated,
X ⊂ N will be an A1–invariant open subset as in Theorem 6.1.4(b), on which
the adapted complex structure J(i) exists, or more generally, any open subset
of N contained in an A1–invariant open subset of N on which J(i) exists.

9.1.1 Quantization without half form correction

According to Theorem 6.1.6 for each s ∈ C\R the symplectic form ω is of type
(1, 1) in the structure J(s). Hence there is a Hermitian holomorphic line bundle
Es → (XA1/|Im s, J(s)), with curvature −iω, as discussed in section 6.2; it is
unique, if X (i.e., M) is simply connected. The quantum Hilbert space Hs

consists of holomorphic L2–sections of Es. By Theorem 6.1.6 Es is positively
or negatively curved according to the sign of Im s, and the two types behave
very differently. Positively curved bundles tend to have an ample supply of
holomorphic L2–sections; negatively curved ones tend to have few. For example,
when M = S1 is quantized, the adapted complex structures exist on all of N ,
and X = N is a possible choice. If Im s < 0, zero will be the only holomorphic
L2–section of Es. This suggests that when Im s < 0, the quantum Hilbert space
should be the L2–cohomology group of Es (∂–cohomology) in degree (0,m), an
idea that first appeared in [Va]. We shall not pursue this line here, though, and
henceforward restrict ourselves to s lying in the upper half plane S ⊂ C and
instead of Z of Theorem 6.1.11, we will work with

Y = {(s, x) ∈ S ×N : x ∈ XA1/Im s} ⊂ Z.

Thus Y inherits a complex manifold structure from Z. As before, the projection
Y → S will be denoted π, the projection S × N → N by pr, and Ys = π−1s.
There is a Hermitian holomorphic line bundle E → Y whose curvature is

−iω̃|Y = −∂∂(L Im s) = i d(∂ − ∂)(iL Im s/2),
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where ω̃ = pr∗ω. It is constructed as the prequantum line bundle in section 6.2.
As a smooth bundle, E = Y × C → Y , the metric is hE(y, γ) = |γ|2, and the
connection, viewed as if acting on functions ψ : Y → C, is

∇Eζ ψ = ζψ + ψ(ζ0,1 − ζ1,0)(L Im s)/2, (9.1.1)

where ζ1,0, ζ0,1 are the (1, 0) and (0, 1) components of ζ ∈ VectY . The holo-
morphic structure of E is determined by declaring a section ψ holomorphic if
∇Eζ ψ = 0 for ζ ∈ Vect′′Y ; by (9.1.1) this means −2ζψ = ψζ(L Im s). For exam-

ple, the section ψ0 corresponding to e−LIm s/2 is holomorphic, and its Hermitian
length squared is

hE(ψ0(s, x)) = e−L(x)Im s, (s, x) ∈ Y. (9.1.2)

In particular, E is holomorphically trivial.
For s ∈ S the bundles Es = E|Ys are the prequantum line bundles for the

Kähler manifold (Ys, J(s), ω̃|Ys). This means that the spaces Hs of their holo-
morphic L2–sections are the fibers of a direct image Hilbert field H → S of the
type studied in chapter 8. The relative volume form ν there is now ω̃m/m!.
To solve the uniqueness problem therefore one must decide if the construction
in section 8.1 indeed endows H → S with a smooth structure; whether this
structure is in fact analytic; and whether it is projectively flat. These questions
will be partially answered in section 9.2 and 9.3. For the time being, we de-
rive a rather general formula for the curvature of the direct image, under the
assumptions in section 8.3.

Define a metric h0 on E by

hE0 ((s, x), γ) = |γ|2eL(x)Im s, (s, x) ∈ Y, γ ∈ C.

In view of (9.1.2) hE0 (ψ0) ≡ 1, whence (E, hE0 ) is trivial as a Hermitian holo-
morphic line bundle. Since∫

Ys

hE(ψ)
ω̃m

m!
=

∫
Ys

hE0 (ψ)ν, where ν =
ω̃m

m!
e−LIm s, (9.1.3)

the Hilbert field H → S is also the direct image of (E, hE0 ), provided the rela-
tive volume form ν from (9.1.3) is used. Furthermore, by Theorem 6.1.11 the
fibration Y → S is isomorphic to the trivial fibration S × X → S, where X
is considered with the complex structure J(i): the inverse of the map (6.1.18)
provides the isomorphism Ψ: S×X → Y . Thus H → S is also the direct image
of the trivial Hermitian holomorphic line bundle

(E′, hE
′

0 ) = Ψ∗(E, hE0 )→ S ×X,

using the relative volume form ν′ = Ψ∗ν. To compute ν′, note that in (6.1.18)
if σt = a + bt, then σi = s means b = Im s, hence L(xσ−1) = L(x)/(Im s)2.
Therefore

Ψ∗(L Im s) = L/Im s.

Here, mildly abusively, L Im s on the left stands for the function Y 3 (s, x) 7→
L(x)Im s, while L/Im s on the right stands for the function S × X 3 (s, x) 7→
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L(x)/Im s. Because of (6.1.17) it follows that when restricted to {s} ×X,

iΨ∗ω̃ = ∂∂L/Im s = iω̃/Im s, (9.1.4)

ν′ = Ψ∗ν = (Im s)−me−L/Im sω̃m/m!. (9.1.5)

Knowing the restriction of ν′ to each {s} ×X determines the structure of the
direct image. It also determines div ξh = divν′ξ

h and div ηh for the horizontal
lift of, say, ξ = ∂/∂s and η = ∂/∂s:

div ξh =
im

2Im s
− iL

2(Im s)2
, div ηh = − im

2Im s
+

iL

2(Im s)2
.

Hence (8.3.9) gives

Lemma 9.1.1 (Lempert, Szőke [LSz14]). If condition (A) of section 8.2.2 holds,
then the curvature of H is given, for ϕ ∈ A, by

4R

(
∂

∂s
,
∂

∂s

)
ϕ = B̌

(
LBL

(Im s)4
− L2

(Im s)4
+

2L

(Im s)3
− m

(Im s)2

)
ϕ̂. (9.1.6)

Here (and in (9.1.11)) L stands for the operator of multiplication with the func-
tion L, and LBL means the product of three operators.

9.1.2 The half–form correction.

Let Ω =
∧m

T ∗1,0Y → Y be the holomorphic vector bundle of (m, 0)–forms,
Ω0 the subbundle of those forms that vanish on each Ys, and Kπ = Ω/Ω0 the
relative canonical bundle, a holomorphic line bundle. Elements of a fiber (Kπ)y
are in one–to–one correspondence with (m, 0)–forms on TyYπ(y). Thus Kπ|Ys is
(canonically isomorphic to) the canonical bundle of Ys and the Kähler metric
on Ys induces a Hermitian metric hKπ on Kπ by the formula

hKπ (α)ω̃m|Ys = im
2

m!α ∧ α, α ∈ Kπ|Ys. (9.1.7)

Lemma 9.1.2 (Lempert, Szőke [LSz14]). If M is orientable, then Kπ is smooth-
ly trivial.

Proof. Let σ0 ∈ A1 be the zero map R → R. Since the semigroup A1 is
connected and acts fiberwise on Y , σ0Y = S ×M is a deformation retract of
Y ⊂ N . On the other hand, {i} ×M is a deformation retract of S ×M . The
upshot is that it suffices to prove that Kπ|{i}×M , or KX |M , is trivial. Let KM

denote the bundle of real m–forms on M , trivial by assumption. Restricting a
form in KX |M to TM is an isomorphism KX |M ≈ C ⊗KM , hence KX |M is
indeed trivial.

Assuming therefore that M is orientable, there is a smoothly trivial Her-
mitian holomorphic line bundle (κ, hκ) so that κ ⊗ κ ≈ Kπ. If M is simply
connected, then κ (and the isomorphism κ ⊗ κ → Kπ) are unique, up to a
certain natural notion of equivalence. In any case, we fix κ. The restrictions
κ|Ys are the half–form bundles of the fibers Ys, and the spaces of holomorphic
L2–sections of E ⊗ κ|Ys form the corrected Hilbert field Hcorr → S.

If Y is a Stein manifold—and one can always find X so that Y is Stein—
, the smooth triviality of κ implies it is holomorphically trivial, by the Oka
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principle, see e.g. [Hö, pp. 144–145]. In all the examples to work out, κ will
be trivial. In this case the correction can be implemented not by changing the
bundle E to E ⊗ κ, but by modifying the relative volume form ν. Suppose
θ0 is a nowhere zero holomorphic section of κ. Tensoring with θ0 induces an
isomorphism between the spaces of holomorphic sections of E|Ys and E ⊗ κ|Ys.
For a section ψ of E|Ys∫
Ys

hE⊗κ(ψ ⊗ θ0)
ω̃m

m!
=

∫
Ys

hE0 (ψ)ν, where ν =
ω̃m

m!
e−LIm shκ(θ0), (9.1.8)

and hE0 = hEeLIm s is the flat metric from section 9.1.1. This shows that the
corrected Hilbert field Hcorr → S is the direct image of E itself but with relative
volume form ν given in (9.1.8).

It is also the direct image of the flat bundle (E′, hE
′

0 ) = Ψ∗(E, hE0 )→ S×X,
the pull back of E along the biholomorphism Ψ: S×X → Y , as in section 9.1.1,
but this time the relative volume form

ν′ = Ψ∗ν = (Im s)−me−L/Im sω̃mΨ∗hκ(θ0)/m! (9.1.9)

is to be used. If choices are made with care, the factor Ψ∗hκ(θ0) above can be
represented more explicitly. Start with a nowhere zero holomorphic section Θ
of KX , the canonical bundle of X (endowed with the complex structure J(i)).
Choose the half–form bundle κX of X so that it has a holomorphic section
θ whose square is Θ. The pull back of KX along pr : S × X → X will be
identified with Ψ∗Kπ as a holomorphic line bundle, and similarly pr∗κX with
Ψ∗κ. Finally, pick θ0 so that Ψ∗θ0 = pr∗θ, and let Θ0 = θ0 ⊗ θ0. From (9.1.7),
restricted to {s} ×X,

Ψ∗(hKπ (Θ0)ω̃m) = im
2

m!Ψ∗(Θ0 ∧Θ0).

Using (9.1.4), the left hand side is

Ψ∗hKπ (Θ0)Ψ∗ω̃m = Ψ∗hKπ (Θ0)ω̃m(Im s)−m,

while the right hand side is

im
2

m! pr∗(Θ ∧Θ) = hKX (Θ)ω̃m,

where the metric hKX on KX is defined by hKX (α)ωm = im
2

m!α∧ α, α ∈ KX .
It follows that Ψ∗hκ(θ0) = Ψ∗hKπ (Θ0)1/2 = hKX (Θ)1/2(Im s)m/2.

Substituting into (9.1.9):

ν′ = (Im s)−m/2e−L/Im shKX (Θ)1/2ω̃m/m!, (9.1.10)

where again hKX (Θ) and L are used both for functions on X and for their pull
back to S×X. From (9.1.10) div ξh can be computed for ξ ∈ VectS, and (8.3.9)
gives a formula for the corrected curvature:

Lemma 9.1.3 (Lempert, Szőke [LSz14]). If condition (A) of subsection 8.2.2
holds, then the curvature of the corrected direct image field is given, for ϕ ∈ A,
by

4R

(
∂

∂s
,
∂

∂s

)
ϕ = B̌

(
LBL

(Im s)4
− L2

(Im s)4
+

2L

(Im s)3
− m

2(Im s)2

)
ϕ̂. (9.1.11)
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Seemingly this differs from the uncorrected curvature (9.1.6) by a central
term only, but the difference is more important than that: the Bergman projec-
tions in (9.1.6) and (9.1.11) refer to differently weighted Bergman spaces.

The analysis in this chapter proved the following:

Theorem 9.1.4 (Lempert, Szőke [LSz14]). Consider the adapted Kähler quan-
tizations of an m–dimensional compact Riemannian manifold M , as described in
this chapter. The resulting field of quantum Hilbert spaces can also be obtained
as the direct image of a trivial Hermitian holomorphic line bundle over S ×X,
with relative volume form eΛpr∗ν0, where pr : S ×X → X is the projection and

Λ(s, x) = −L(x)/Im s−m log Im s, ν0 = ωm/m! (9.1.12)

for bare quantization, and

Λ(s, x) = −L(x)/Im s− (m/2) log Im s, ν0 = hKX (Θ)1/2ωm/m! (9.1.13)

for half–form corrected quantization. Here X ⊂ N is open, contained in an A1–
invariant open subset of N on which the complex structure adapted to (A1, I(i))
exists, and hKX (Θ)1/2 is the norm of a nonvanishing holomorphic section Θ of
KX (assumed to exist).

This implies

Corollary 9.1.5 (Lempert, Szőke [LSz14]). If L is bounded on X, then the
resulting field of quantum Hilbert spaces, corrected or not, is analytic.

Proof. In view of the assumptions, (9.1.12) and (9.1.13) this follows from Lem-
ma 8.4.1. Indeed, W t, V t of the lemma are independent of t ∈ R, and with
I = {i} a singleton, Vi = V t satisfies the hypotheses of the lemma.

9.2 Groups and homogeneous spaces.

The main emphasis of this section is on quantizing Riemannian manifolds that
are Lie groups, using the family of adapted Kähler structures. The resulting
fields of quantum Hilbert spaces, corrected or not, are analytic; the corrected
fields are flat, while the uncorrected ones are in general not even projectively
flat. Some of the analysis applies to certain homogeneous spaces as well, and
sections 9.2.1, 9.2.2 are written in this generality.

9.2.1 Normal homogeneous spaces.

Suppose on a compact Riemannian manifold M a compact Lie group G acts
on the left by isometries. The induced action on the manifold N of geodesics
preserves each adapted complex structure. Assume the action onM is transitive,
and fix a point o ∈M . The group has a left invariant Riemannian metric so that
the map G 3 g 7→ go ∈ M is a Riemannian submersion. Denoting by Go ⊂ G
the isotropy subgroup of o, M can be isometrically identified with G/Go. Write
g and go ⊂ g for the Lie algebra of G and Go, and let p ⊂ g be the orthogonal
complement of go. Let exp stand for the exponential map g→ G (and later also
for the exponential map C⊗ g→ GC of the complexified group).
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We assume that M is a normal homogeneous space, which means that the
metric on G can be chosen biinvariant. This has three consequences. First, the
geodesics in M are of form t 7→ g(exp tζ)o, with g ∈ G and ζ ∈ p (because t 7→
g exp tζ are the geodesics in G that are orthogonal to the fibers of the projection
G → G/Go). Second, the adapted Kähler structures J(s) exist on all of N ;
third, the action of G on N extends to a holomorphic action of the complexified
group GC on (N, J(s)). The isotropy group of (the constant geodesic ≡) o in N
is the complexification GC

o ⊂ GC of Go, so that (N, J(s)) is GC–equivariantly
biholomorphic to GC/GC

o . This is proved in [Sz98] for s = i, and follows for
general s from Theorem 6.1.11. The construction in [Sz98, Theorem 2.2],
transcribed from TM to N , gives the following description of the equivariant
biholomorphism Ψ: (N, J(s)) → GC/GC

o . Any geodesic x : R → M ≈ G/Go ⊂
GC/GC

o can be continued to a holomorphic map C → GC/GC
o , also denoted x;

then Ψ(x) = x(s). That is, if x(t) = g(exp tζ)o, then

Ψ(x) = g(exp sζ)GC
o ∈ GC/GC

o . (9.2.1)

The map GC 3 g 7→ go ∈ N will be denoted q.
The upshot of all this is that it is possible to quantize M by the procedure

described in 9.1.1 and 9.1.2, by taking X = N . However, it will be instructive
to be more general, and allow X ⊂ N to be an arbitrary connected G–invariant
neighborhood of M ⊂ N .

Theorem 9.2.1 (Lempert, Szőke, [LSz14]). The resulting field of quantum Hil-
bert spaces, corrected or not, is analytic.

This will follow from Lemma 8.4.1 and Theorem 9.1.4, upon decomposing the
quantum Hilbert spaces into G–isotypical summands. However, in the corrected
version the factor hKX (Θ) in (9.1.13) has to be evaluated first. Let P : C⊗ g→
C⊗ p denote projection along C⊗ go.

Lemma 9.2.2 (Lempert, Szőke [LSz14]). KX has a GC–invariant holomorphic
section Θ whose restriction to

∧m
TM is the Riemannian volume form of M .

Further, let ζ ∈ p, γ ∈ G, and x(t) = γ(exp tζ)o be a geodesic. Consider the
operators on C⊗ p

A1(t, ζ) = P (e−tad ζ +
1− e−tad ζ

2ad ζ
Pad ζ)|C⊗ p,

A2(t, ζ) = P
1− e−tad ζ

ad ζ
|C⊗ p,

(9.2.2)

where (1− e−tad ζ)/ad ζ is defined by its power series. Then

hKX (Θ)(x) = im det
(
A∗2(i, ζ)A1(i, ζ)−A∗1(i, ζ)A2(i, ζ)

)
. (9.2.3)

Proof. It can be assumed that X = N . Let λ ∈ (KX)o restrict to the Rieman-
nian volume form. Then g∗λ = λ for g ∈ Go, and by analytic continuation
also for g ∈ GC

o . This implies that if x ∈ N , and g ∈ GC is such that gx = o,
then g∗λ is independent of which g is chosen; therefore Θ(x) = g∗λ defines the
section sought.
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Next, hKX (Θ) can be computed in the following way according to [LSz12,
Theorem 5]. Take a symplectic basis ξ1, . . . , ξm, η1, . . . , ηm of TxN , i.e.,

ω(ξj , ξk) = ω(ηj , ηk) = 0, ω(ξj , ηk) = δjk. (9.2.4)

Denoting the induced action of Σ on TN by (ξ, σ) 7→ ξσ, there is a smooth
m×m matrix valued function φ0 = (φ0

jk) on Σ0 minus a discrete set such that

ηjσ =
∑
k

φ0
jk(σ)ξkσ.

This φ0 has a meromorphic continuation φ to a neighborhood of (Σ1, I(i)),
holomorphic near σ = id (in fact, on all of Σ\Σ0). Then

hKX (Θ)(x) = 2m|Θ(ξ1, . . . , ξm)|2 det=φ(id). (9.2.5)

To prove that this agrees with (9.2.3), by G–invariance it can be assumed
that γ = id so that x(0) = o. The Jacobi fields ξ1, . . . , ηm will be constructed as
follows. If τ ∈ g and g ∈ G, write gτ, τg ∈ TgG for the left, resp. right, translate
of τ . When τ ∈ go then gτ ⊥ gp, so that for any τ ∈ g we have q∗gτ = q∗gPτ .
Let ζ1, . . . , ζm ∈ p be an orthonormal basis, and consider the vector fields along
x : R→M given by

ξj(t) = q∗(exp tζ)A1(t, ζ)ζj

= q∗(exp tζ)
(
e−tad ζ +

1− e−tad ζ

2ad ζ
Pad ζ

)
ζj ,

ηj(t) = q∗(exp tζ)A2(t, ζ)ζj = q∗(exp tζ)
1− e−tad ζ

ad ζ
ζj .

(9.2.6)

Here ηj is the Jacobi field corresponding to the geodesic variation yu(t) =
q exp t(ζ + uζj), according to the formula for the differential of the exponential
map, see [He1, Chapter II, Theorem 1.7].

In ξj the term q∗(exp tζ)e−tad ζζj = q∗(ζj exp tζ) is the Jacobi field corre-
sponding to the variation xu(t) = q(expuζj)(exp tζ). The other term is the
same as ηj(t)/2, except that ζj is replaced by P (ad ζ)ζj ∈ p, so it is also a Ja-
cobi field. The upshot is that both ξj , ηj are Jacobi fields, ξj , ηj ∈ TxN . From
(9.2.6) ξj(0) = q∗ζj , ηj(0) = 0, and η′j(0) = q∗ζj ; hence when t = 0

ξ′j(t) = q∗(exp tζ)′ζj + q∗
(
dA1(t, ζ)/dt

)
ζj . (9.2.7)

According to [GHL, 3.55] the first term on the right is the projection of a
covariant derivative on G; namely, of the left invariant extension of ζj , in the
direction ζ. This covariant derivative, in turn, is [ζ, ζj ]/2, see [GHL, 2.90]. As
the last term in (9.2.7) is q∗(−ad ζ + Pad ζ/2)ζj ,

ξ′j(0) = q∗ ([ζ, ζj ]/2− [ζ, ζj ] + P [ζ, ζj ]/2) = 0.

Hence by (6.1.3) ξj , ηj form a symplectic basis of TxN . From (9.2.6)

ηj(t) =
∑
k

ψjk(t)ξk(t), t ∈ R,
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where ψ(t) = (ψjk(t)) is the matrix of A2(t, ζ)A1(t, ζ)−1 in the basis ζ1, . . . , ζm;
by [LSz91, Proposition 6.11] and by analytic continuation it is symmetric, for
any t ∈ C.

Suppose σ ∈ Σ0 is a constant map σt ≡ a ∈ R. Then ξjσ ∈ TxσN agrees
with ξj(a) ∈ Tx(a)M ⊂ TxσN , hence the matrix φ0(σ) equals ψ(a) = ψ(σi).
The map (Σ, I(i)) 3 σ 7→ σi ∈ C being holomorphic, φ(id) = ψ(i) follows. As
this matrix is symmetric,

det=φ(id) = (2i)−m det
(
A2(i, ζ)A1(i, ζ)−1 −A∗1(i, ζ)−1A∗2(i, ζ)

)
. (9.2.8)

Similarly, Θ
(
(ξ1σ)1,0, . . . , (ξmσ)1,0

)
is a holomorphic function of σ, because

each (ξjσ)1,0 ∈ T 1,0X is, see [LSz91, Proposition 5.1]. When σ ∈ Σ0 as above,

Θ
(
(ξ1σ)1,0, . . . , (ξmσ)1,0

)
= Θ0(ξ1σ, . . . , ξmσ) = detA1(σi, ζ),

hence by analytic continuation to σ = id

detA1(i, ζ) = Θ(ξ1,0
1 , . . . , ξ1,0

m ) = Θ(ξ1, . . . , ξm).

Substituting this and (9.2.8) into (9.2.5), (9.2.3) follows.

Proof of Theorem 9.2.1. We will apply Lemma 8.4.1 and Theorem 9.1.4. The
Hilbert field in question is the direct image of the trivial Hermitian holomorphic
line bundle on S × X, using a relative volume form ν = eΛpr∗ν0. Here, by
(9.1.12) and (9.1.13)

Λ(s, x) = −L(x)/=s−m log=s, ν0 = ωm/m!, resp. (9.2.9)

Λ(s, x) = −L(x)/=s− (m/2) log=s, ν0 = hKX (Θ)1/2ωm/m!, (9.2.10)

for bare, resp. corrected quantization, hKX (Θ) given in (9.2.3). In both
cases ν0 is G–invariant. It follows that G acts unitarily on each Hilbert space
WT = L2(X, eTLν0), T ∈ R, and on its subspace V T of holomorphic functions:
the action of g ∈ G on v ∈ WT is gv = (g−1)∗v (pull back by g−1). The
same formula also defines an action of G on O(X), and the isotypical subspaces
Vχ ⊂ O(X) corresponding to irreducible characters χ of G will play the role of
the spaces Vi in Lemma 8.4.1. Accordingly, the conditions of the lemma have
to be verified.

Since M ⊂ X is maximally real, O(X) 3 v 7→ v|M maps Vχ injectively in
the χ–isotypical subspace of L2(M). By the Peter–Weyl theorem this latter is
finite dimensional, and therefore so is Vχ. The restriction G → GL(Vχ) of the
G–representation on O(X) extends to a holomorphic representation ρ : GC →
GL(Vχ). Functions v ∈ Vχ can be estimated pointwise as follows. In a fixed or-
thonormal basis v1, . . . , vn of Vχ, ρ is given by a matrix (ρjk). Let g ∈ G,
ζ ∈ p, and x ∈ X be given by x(t) = g(exp tζ)o. Since g exp iζ acts on
GC/GC

o by left multiplication, formula (9.2.1) for the GC equivariant biholo-
morphism N → GC/GC

o shows that x = g(exp iζ)o, if o ∈ M is identified
with the constant geodesic ≡ o. If v =

∑
αkvk then ρ

(
(g exp iζ)−1

)
v =∑

jk ρjk
(
(g exp iζ)−1

)
αkvj , and

|v(x)| =
∑

ρjk
(
(g exp iζ)−1

)
αkvj(o) ≤ c1ec2|ζ| = c1e

c2
√
L(x), (9.2.11)
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because the operator norm of ρ(g) is 1 and of ρ((exp iζ)−1) is ≤ ec2|ζ|. Similarly,

from (9.2.2) and (9.2.3) hKX (Θ)1/2(x) ≤ c3ec4
√
L(x). Finally, phase space inte-

grals and volumes can be easily computed by first integrating along the fibers
and then over the base, see e.g. [Chav, Theorem 5.2, p.227]. This gives∫

{x∈N :
√
L(x)<r}

ωm/m! = σmr
mVol M,

σm denoting the volume of the unit ball in Rm. Putting all this together, if
T < 0 ∫

X

|v|2eTLν0 ≤
∫
N

c′ec
√
L+TL ωm

m!
= c′′

∞∫
0

ec
√
r+Trdrm <∞,

whether ν0 is given in (9.2.9) or (9.2.10), so that Vχ ⊂ V T . Since dimVχ <
∞, the norms (hT )1/2 are equivalent on Vχ, which proves assumption (i) of
Lemma 8.4.1. Since both multiplication by eτL and Bergman projection in WT

are G–equivariant, (ii) of the lemma is satisfied; and (iii) is also, because the
Vχ are the isotypical subspaces of V T as well, and their span is dense (see [He2,
IV. Lemma 1.9]). Hence Theorem 9.2.1 indeed follows from Lemma 8.4.1.

9.2.2 Curvature.

According to 8.4.2, the curvature of the direct image can be computed from
certain Toeplitz operators. Continuing with the set up and the notation in
9.2.1, if τ < 0 is fixed, for a(s) < τ/2 the Toeplitz operators Pχ(s) : Vχ → Vχ
in question are multiplication by eΛ(s,·)−τL, followed by orthogonal projection
in L2(X, eτLν0). Here Λ(s, ·) = a(s)L + b(s) and ν0 are given in (9.2.9),
resp. (9.2.10). Often Pχ(s) turns out to be a scalar operator, and can be com-
puted from a character integral. Let pX consist of those ζ ∈ p for which the
geodesic t 7→ (exp tζ)o is in X; this is an open subset of p.

Lemma 9.2.3 (Lempert, Szőke [LSz14]). Suppose dimVχ > 0 and Pχ(s) is a
scalar operator pχ(s) idVχ . Then

pχ(s) =

∫
pX

∫
Go

ea(s)|ζ|2+b(s)χ(go exp(−2iζ)) dogo dµ(ζ), (9.2.12)

where dogo is normalized Haar measure on Go; for bare quantization µ is a
suitable translation invariant measure on p—possibly depending on χ but not on
s—, while for corrected quantization µ is the invariant measure multiplied by
(cf. (9.2.2))

|det
(
A∗2(i, ζ)A1(i, ζ)−A∗1(i, ζ)A2(i, ζ)

)
|1/2. (9.2.13)

Proof. The holomorphic function GC 3 g 7→ χ(g−1) ∈ C is in the χ–isotypical
subspace of the left regular representation of GC on O(GC), because the corre-
sponding matrix elements are. Therefore ṽ ∈ O(GC) given by

ṽ(g) =

∫
Go

χ(g−1go) dogo (9.2.14)
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is also in the isotypical subspace. Since ṽ is invariant under translations by Go,
hence also by GC

o , it descends to a v ∈ Vχ. Now v 6≡ 0. Indeed, the projection
of any w ∈ L2(M) on the χ–isotypical subspace is dimχ

∫
G

χ(g−1)gw dg. Take

a u ∈ Vχ with u(o) 6= 0 (a suitable translate of any u′ ∈ Vχ \ {0} will have this
property). The projection of u|M is of course itself, so

0 6=
∫
G

χ(g−1)u(g−1o) dg =

∫
G×Go

χ(g−1)u(g−1g−1
o o) dg dogo (9.2.15)

=

∫
G

(∫
Go

χ(g−1go) dogo

)
u(g−1o) dg. (9.2.16)

Hence (9.2.14) shows that ṽ 6≡ 0 and v 6≡ 0. Next∫
X

ea(s)L+b(s)vvν0 =

∫
X

(Pχ(s)v)veτLν0 =

∫
X

pχ(s)|v|2eτLν0, and (9.2.17)

pχ(s) =

∫
X

ea(s)L+b(s)|v|2ν0

/∫
X

eτL|v|2ν0. (9.2.18)

As L and ν0 are G–invariant, the first integral in (9.2.17) is∫
X

( ∫
G

eaL+b|γv|2dγ
)
ν0, (9.2.19)

the phase space integral of a G–invariant function. Let No = q exp ip ⊂ N
consist of geodesics x such that x(0) = o, Xo = X ∩ No = q exp ipX , and let
dx, resp. dζ, be the translation invariant measure on No ≈ ToM , resp. p,
normalized by the metric. When ν0 = ωm/m!, again by (9.2.19) equals

Vol (M)

∫
Xo

∫
G

eaL(x)+b|γv(x)|2dγ dx

= Vol (M)

∫
pX

∫
G

ea|ζ|
2+b|v

(
γ−1(exp iζ)o

)
|2dγ dζ.

(9.2.20)

With the half–form correction included, in view of (9.2.3), (9.2.10) the integrand
on the right of (9.2.20) has to be multiplied by (9.2.13), to yield, in both cases∫

X

eaL+b|v|2ν0 = Vol (M)

∫
pX

ea|ζ|
2+b

∫
G

|ṽ(γ−1 exp iζ)|2dγ dµ(ζ). (9.2.21)

Next we compute the inner integral on the right. If g = γ exp iζ with γ ∈ G
and ζ ∈ g, write g∗ = (exp iζ)γ−1, so that the map g 7→ g∗ is antiholomorphic.
When g1, g2 ∈ G,∫

G

χ(g1γ)χ(g2γ) dγ =

∫
G

χ(g)χ(g−1g1g
−1
2 ) dg = χ(g1g

−1
2 )/dimχ,
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see [BD p.83, Proposition 4.16]. The last expression is χ(g1g
∗
2)/ dimχ, hence∫

G

χ(g1γ)χ(g2γ) dγ = χ(g1g
∗
2)/ dimχ, g1, g2 ∈ GC

by analytic continuation. As χ is a class function, with ζ ∈ p and g = exp iζ
therefore∫

G

|ṽ(γ−1g)|2dγ =

∫
G×Go×Go

χ(g1g
−1γ)χ(g2g−1γ) dγ dog1 dog2

=

∫
Go×Go

χ(g1g
−1(g2g

−1)∗) dog1 dog2/dimχ

=

∫
Go×Go

χ(g−1
2 g1(g∗g)−1) dog1 dog2/ dimχ =

∫
Go

χ(go exp(−2iζ)) dogo/dimχ.

Substituting this into (9.2.21) and then into (9.2.17), the lemma is obtained,
if one notes that the second integral in (9.2.17) is independent of s, and one
subsumes all the constants into dµ.

9.2.3 Group manifolds.

Theorem 9.2.4 (Lempert, Szőke, [LSz14]). Suppose M is a compact Lie group
G with a biinvariant metric. If M is quantized by the family of adapted Kähler
structures (N, J(s)), Im s > 0, and the half–form correction is included, then
the resulting field of quantum Hilbert spaces Hcorr is flat.

Proof. The results of 9.2.1 and 9.2.2 apply with Go the trivial group and pX =
p = g. Since P in (9.2.2) is the identity, one computes A1(i, ζ) = (1 + e−iad ζ)/2
and A2(i, ζ) = (1− e−iad ζ)/ad ζ, so that

im det
(
A∗2(i, ζ)A1(i, ζ)−A∗1(i, ζ)A2(i, ζ)

)
= det(2 sin ad ζ/ad ζ) > 0

in view of (9.2.3). The isotypical subspaces of L2(M) are invariant under the
left–right action of G×G and are irreducible as G×G representations. It follows
that the Vχ are also irreducible. As both L and ν0 are G × G–invariant, the
Toeplitz operators Pχ(s) : Vχ → Vχ are G×G–equivariant, whence multiples of
the identity by Schur’s lemma. Which multiple, is given by Lemma 9.2.3:

pχ(s) =

∫
g

ea(s)|ζ|2+b(s)χ(exp(−2iζ))

(
det

2 sin ad ζ

ad ζ

)1/2

dζ, (9.2.22)

dζ denoting a suitable translation invariant measure on g. In light of Theo-
rem 8.4.3 all we have to show is that log pχ is harmonic.

Let T ⊂ G be a maximal torus, t ⊂ g its Lie algebra with orthogonal
complement t⊥, and W the Weyl group. The integral in (9.2.22) can be reduced
to t. The map

G/T × t 3 (gT, τ) 7→ Ad (g)τ ∈ g (9.2.23)

is generically a |W |–fold covering, and by computing its differential, one can
relate the pullback of dζ to the product of the G–invariant measure on G/T
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and the translation invariant measure on t. The pullback measure turns out to
be |det ad τ |t⊥| times an invariant product measure. The computation is the
same as for Weyl’s formula, see e.g. [BD, IV. (1.8)]. If R denotes the set of
(nonzero) roots, the eigenvalues of ad τ |t⊥ are iα(τ), α ∈ R, and as the negative
of each root is also a root, the factor above is

∏
α∈R α(τ). Thus the integral of

any Ad G–invariant f ∈ L1(g) can be computed upon pulling back by (9.2.23):∫
g

f(ζ)dζ =

∫
t

f(τ)
∏
α∈R

α(τ)dτ, (9.2.24)

with dτ a suitable translation invariant measure. Denoting by R+ ⊂ R a choice
of positive roots, the constituents in (9.2.22) restrict to t as(

det
2 sin ad τ

ad τ

)1/2

=

(∏
α∈R

2 sin iα(τ)

iα(τ)

)1/2

=
∏
α∈R+

2 shα(τ)

α(τ)
,

χ(exp(−2iτ)) =
∑
w∈W

e2λ(wτ) detw
/ ∏
α∈R+

shα(τ),

this latter by Weyl’s character and denominator formulas, see [Kn, Theorem
5.113]. Here λ : t→ R is a linear form, the highest weight of χ plus

∑
α∈R+ α/2,

and detw = ±1 is the determinant of w : t → t. Further,
∏
α∈R+ α(wτ) =

detw
∏
α∈R+ α(τ). This is obvious for reflections w ∈ W that change the sign

of one positive root and permute the others, and it follows in general because W
is generated by such reflections, see [BD, V. (4.6) Corollary and (4.10) Lemma].
Therefore by (9.2.22) and (9.2.24)

pχ = 2|R
+|
∫
t

ea|τ |
2+b

∑
w∈W

e2λ(wτ) detw
∏
α∈R+

α(τ) dτ

= |W |2|R
+|
∫
t

ea|τ |
2+b e2λ(τ)

∏
α∈R+

α(τ) dτ.

Denoting by λ∗ ∈ t the dual of λ ∈ t∗ with respect to the inner product on t,
the substitution τ → τ/

√
−a− λ∗/a transforms the last integral into

(−a)−(dim t)/2 eb−|λ
∗|2/a

∫
t

e−|τ |
2 ∏
α∈R+

α
(
τ/
√
−a− λ∗/a

)
dτ. (9.2.25)

Lemma 9.2.5 (Lempert, Szőke [LSz14]). The function
∏
α∈R+

α is harmonic
on t.

Accepting this for the moment, by the mean value theorem the integral in
(9.2.25) is∫

t

e−|τ |
2 ∏
α∈R+

α(−λ∗/a) dτ = π(dim t)/2(−a)−|R
+|
∏
α∈R+

α(λ∗).

Now a(s) = −1/=s and b(s) = −(m/2) log=s. Since C ⊗ g is the direct sum
of C ⊗ t and the one dimensional root spaces gα, α ∈ R, it follows that m =
dim t + 2|R+|, and (9.2.3), (9.2.25) give

pχ(s) = const (=s)|R
+|+(dim t−m)/2 e|λ

∗|2=s = const e|λ
∗|2=s,
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with the constant depending on χ but not on s. Hence ∂∂ log pχ = 0, and Hcorr

is flat by Theorem 8.4.3.

Proof of Lemma 9.2.5. See [He2, Chapter III], immediately after Corollary 3.8.
Alternatively, the lemma can be deduced from Weyl’s denominator formula∏

α∈R+

shα(τ) =
∑
w∈W

eρ(wτ) detw, ρ =
∑
α∈R+

α/2.

The right hand side is manifestly an eigenfunction of the Laplacian ∆. Hence∏
α∈R+ α(τ), the lowest term in the homogeneous expansion of the left hand

side, must be annihilated by ∆.

In [Hu, Lemma 3.3] Huebschmann already computed the integral in (9.2.22),
and in fact the integrals in (9.2.19) when X = GC, by somewhat different means.

Without the half–form correction little changes formally: in the integrand in
(9.2.22) the last factor is omitted, which leads to

pχ = const

∫
t

ea|τ |
2+b+2λ(τ)

∏
α∈R+

α(τ)2

shα(τ)
dτ. (9.2.26)

When G is commutative, the uncorrected integral is the same as the corrected,
except that now b(s) = −m log=s, so that

∂∂ log pχ(s) =
mds ∧ ds
8(=s)2

.

This is still independent of χ, and H is projectively flat. However, with a
noncommutative G matters are altogether different. For example, if G = SU(2),

T = {diag(eit, e−it) : t ∈ R}, t = {τ = idiag(t,−t) : t ∈ R) ⊂ su(2),

the roots are α(τ) = ±2t, of which we take 2t as positive. In (9.2.26) the possible
λ are λ(τ) = (k + 1)t, k = 0, 1, . . .. Hence pχ is constant times∫

R

eat
2+b e

2(k+1)t

sh 2t
t2dt =

∫
R

eat
2+b e

2(k+1)t − e−2(k+1)t

e2t − e−2t
t2dt

=

∫
R

eat
2+b

k∑
j=0

e2(k−2j)tt2dt = (=s)−3/2
k∑
j=0

e(k−2j)2=s(1 + 2(k − 2j)2=s
)
.

Now ∂∂ log pχ depends on χ, i.e. on k. Indeed, write uk(s) for the last sum
above. Comparing the cases of k = 0 and a general k one sees that ∂∂ log pχ
is independent of k only if log uk is harmonic. But log uk(s) is a function of
=s, and not a linear function at that; hence it is not harmonic. Therefore by
Theorem 8.4.3 the uncorrected direct image is not projectively flat.

9.2.4 A variant [LSz14].

Even if the adapted Kähler structures of a compact group M = G exist on the
entire space N of its geodesics, quantization can be based on any open X ⊂ N .
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A little calculation shows that, in general, the resulting field of quantum Hilbert
spaces will not be projectively flat. For example, let G = S1, r > 0, and let X
consist of geodesics of speed < r. From Lemma 9.2.3

pχ = const

r∫
−r

eaζ
2+be2kζdζ,

k ∈ Z parametrizing the irreducible characters of S1. The substitution ζ =
r − t/(k + ar) evaluates the integral as

ear
2+2kr+b

k + ar

2r(k+ar)∫
0

eat
2/(k+ar)2−2t dt ∼ ear

2+2kr+b

2(k + ar)

when k →∞, and similar asymptotics hold for the s–derivatives of the integral.
Hence

∂∂ log pχ(s) = ∂∂
(
a(s)r2 + b(s)

)
+ (r/k)∂∂(1/=s) + o(1/k).

This again depends on k, so by Theorem 8.4.3 the fields H and Hcorr are not
projectively flat.

9.3 Compact symmetric spaces. The main re-
sults

Let (Mm, g) be an m-dimensional, compact, irreducible, simply connected, Rie-
mannian symmetric space. Then (see [He1]) M is isometric to U/K, where U
is a compact, connected, simply connected, semisimple Lie group and K is the
fixed point set (automatically connected) of a nontrivial involution θ : U → U .
The metric on U/K is induced from a biinvariant metric on U . Furthermore ei-
ther U is simple or has the form U = G×G where G is simple, θ(g1, g2) = (g2, g1)
and K is the diagonal in G×G. In the latter case M is isometric to G equipped
with a biinvariant metric.

Let u be the Lie algebra of U , uC its complexification and UC the simply
connected complex Lie group with Lie algebra uC.

As we saw in section 3.1 UC is biholomorphic with the tangent bundle TU ,
the latter is equipped with the adapted complex structure of a biinvariant metric
on U (see Theorem 3.1.1). This is the complex structure that corresponds to
the parameter i from Section 6.1.2.

θ induces a Lie algebra involution θ∗ : u → u. Then u = k + p∗, where
k = {X ∈ u : θ∗(X) = X} and p∗ = {X ∈ u : θ∗(X) = −X}. Here k is the Lie
algebra of K and p∗ can be identified with T[K]M .

Let p0 = ip∗, g0 = k+p0 and denote by G0 the analytic subgroup of UC with
Lie algebra g0. Then G0 is closed in UC and K ⊂ G0. Let θC be the holomorphic
extension of θ to UC. Then θC|G0

is a Cartan involution on G0 with fixed point
set K. The corresponding symmetric space X = G0/K is the noncompact dual
of U/K.

Let a∗ ⊂ p∗ be a maximal Abelian subspace. Its dimension r := dim a∗ is
the rank of M . Let a0 := ia∗ and h0 ⊂ g0 be a maximal Abelian subalgebra
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containing a0. The complexification of h0 (resp. of a0) is h (resp. a). Let ∆
be the set of nonzero roots corresponding to (uC, h) and Σ the set of restricted
roots.

Let hk0 = h0∩ k and hR = a0 + ihk0 . The roots are real valued on hR. Choose
a compatible ordering in the dual spaces of a0 and hR. This yields an ordering
of ∆ and Σ. Let ρ∆ be half the sum of the positive roots and ρ its restriction to
a, i.e. ρ = (1/2)

∑
α∈Σ+

mαα, where mα is the multiplicity of α. a+ ⊂ a0 denotes

the positive Weyl chamber

a+ := {H ∈ a0 : α(H) > 0,∀α ∈ Σ+}.

The classification of compact, irreducible Riemannian symmetric spaces shows
that the restricted root system together with the multiplicity function deter-
mines the symmetric space uniquely (see [He1]). In particular

Proposition 9.3.1. A compact, simply connected Riemannian symmetric spa-
ce M is isometric to a compact, simply connected Lie group equipped with a
biinvariant metric if and only if Σ is a reduced root system and each mα is
equal to 2.

(See [Lo, Theorem 4.4, p.82]).
Our main result is.

Theorem 9.3.2 (Szőke, [Sz17]). Let (M, g) be a compact, irreducible, simply
connected, Riemannian symmetric space. Assume the corrected field of quantum
Hilbert spaces Hcorr → S obtained from the family of adapted Kähler structures
is projectively flat. Then M is isometric to a group manifold, i.e. a compact,
connected, simple, simply connected Lie group equipped with a biinvariant met-
ric.

The special case when (M, g) is a round sphere was proved in [LSz14, The-
orem 12.1.1] and the rank-1 case in [LSz15, Theorem 1.1].

The main scheme of the proof of the theorem is based on the rank-1 case
[LSz15], but the situation here is much more complicated.

Writing M in the form M = U/K, each irreducible K−spherical repre-
sentation of U gives rise to a certain integral on the positive Weyl chamber
(9.3.7). The integrand involves the corresponding K−spherical function and it
also depends on a real parameter τ , that takes arbitrary positive values. Pro-
jective flatness of the Hilbert field Hcorr is expressed as a simple relation among
these integrals (Theorem 9.3.4). Since the explicit value of these integrals is not
known, one needs other ways to test projective flatness.

The idea in the rank-1 case ([LSz15]) was to tend with τ to zero resp. to∞,
calculate the asymptotic behavior of our integrals and compare the information
obtained this way with the relation that holds among the integrals correspond-
ing to different spherical representations. In the rank-1 situation K−spherical
functions are quite explicit, they reduce to hypergeometric polynomials, greatly
simplifying the situation.

In the higher rank case, the basic idea is the same, but the situation is
more involved. We still want to calculate the asymptotic behavior of those
(now multivariable) integrals as τ → 0, resp. τ → ∞. The τ → 0 asymptotic
needs a multivariable version of Watson’s lemma. The spherical functions now
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correspond to multivariable Jacobi polynomials associated to the restricted root
system ([Hec, HO1, HO2, HS]) and they are much more complicated functions
to calculate with.

The key observation here is that despite this, their main contribution to
the asymptotic behavior of our integrals (when τ → ∞) is simple. The Jacobi
polynomials are actually exponential polynomials, where each term corresponds
to a weight of the given K−spherical representation. The main contribution
comes only from one term, that corresponds to the highest weight. We even
know the coefficient of this term, it is Harish-Chandra’s c−function. This is the
content of Proposition 9.3.8 and Theorem 9.3.16. As a consequence, projective
flatness implies that a certain numerical quantity Q(δ) (see (9.3.27)) associated
to every irreducible K−spherical representation δ, that involves only the usual
Γ function, the restricted root system, the multiplicities and the highest weight
of δ, in fact is independent of the representation (Theorem 9.3.19).

Finally the question, for which spaces will this be true, can be translated
to a problem about abstract root systems with multiplicities. This problem is
treated in Theorem 9.3.23, after which the proof of Theorem 9.3.2 easily follows.

We prove Theorem 9.3.2 in Section 9.3.9. Recall that group manifolds were
treated in section 9.2.3 , where in 9.2.4 it was shown that whenever M is iso-
metric to a compact, simply connected Lie group with a biinvariant metric, the
field Hcorr → S is flat. Theorem 9.3.2 and Theorem 9.2.4 together yields the
following result.

Theorem 9.3.3 (Szőke, [Sz17]). Let (M, g) be a compact, irreducible, simply
connected, Riemannian symmetric space. Then the corrected field of quantum
Hilbert spaces Hcorr → S is projectively flat if and only if M is isometric to a
group manifold. In the latter case the field Hcorr → S is even flat.

We remark here, that it is not known whether Hcorr is a Hilbert bundle or
not, when M is a compact symmetric space, but not a group manifold.

9.3.1 Flatness and projective flatness

At least for some normal homogeneous spaces, namely for symmetric spaces
the computations outlined in 9.2.1 and 9.2.2 can be made concrete enough to
determine if the curvature of the associated field of quantum Hilbert spaces is
central or not. Consider a compact, simply connected, irreducible Riemannian
symmetric space (Mm, g), given in the form M = U/K as in Sect. 9.3

This fits into the framework of 9.2.1 and 9.2.2. To quantize M the family
of adapted Kähler structures on all of N will be used and Hcorr → S is the
corresponding field of quantum Hilbert spaces obtained. (S being the complex
upper half plane). We will only treat half–form corrected quantization.

U acts on (N, J(i)) by biholomorphisms and this action induces a represen-
tation π̂ on O(N, J(i)), by the formula av = (a−1)∗v (pull back by a−1), where
a ∈ U , v ∈ O(N, J(i)). The same formula defines a unitary representation π on
L2(M). The restrictions Vχ|M of the isotypical subspaces of π̂ are precisely the
isotypical subspaces of π and the latter are well known to be finite dimensional.
Since M is a maximal dimensional, totally real submanifold in N , we get that
Vχ are also finite dimensional.

The restrictions of π̂ to the isotypical subspaces Vχ (or equivalently the
restrictions of π to Vχ|M ) are irreducible, they are precisely the irreducible
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K−spherical representations of U ([He2, Chap. V, Theorem 4.3]). Therefore
from now on we use the spherical representations δ themselves instead of their
character χ, to label the objects (unlike in section 9.2.2 or [LSz14]), for example
Vδ will replace Vχ.

Flatness of the field Hcorr → S can be understood in terms of certain
Toeplitz operators Pδ(s) on Vδ (cf. section 9.2.2. They are U -equivariant,
whence according to Schur’s lemma, have the form Pδ(s) = pδ(s)IdVδ with an
appropriate function pδ. H

corr → S is flat (resp. projectively flat) if and only
if ∂̄∂ log pδ(s) = 0 for all δ (resp. ∂̄∂ log pδ(s) is independent of δ), see 8.4.3,
([LSz14, Theorem 9.2.1]).

In our situation according to 9.2.3, ([LSz14, Lemma 11.2.1]) pδ(s) depends
only on τ = Ims and has the specific form

pδ(s) = Ccδτ
−m/2qδ(τ), (9.3.1)

where m is the dimension of the space M , C is some constant, cδ a constant for
each representation δ and qδ an appropriate function (see (9.3.7) for the precise
form). As one easily sees, a factor like Cτ−m/2 that depends only on τ = Ims
but not on δ does not affect the condition for projective flatness. In our case,
in light of (9.3.1), the above mentioned characterization of (projective) flatness
takes the form.

Theorem 9.3.4.

(a) Hcorr → S is flat iff for each δ, log(pδ(s)) is harmonic.

(b) Hcorr → S is projectively flat iff for each δ there exist constants Aδ > 0, Bδ
with qδ(τ) = Aδe

Bδτqδ0 , where δ0 denotes the trivial representation.

Since we cannot compute qδ explicitly, we cannot check directly whether con-
dition (b) in Theorem 9.3.4 holds or not. Therefore we shall apply the following
strategy to prove Theorem 9.3.2 We shall investigate the asymptotic behavior
of qδ(τ) as τ tends to 0 and to infinity. From the τ → 0 asymptotics we shall
determine the values of Aδ and Bδ dictated by condition (b) in Theorem 9.3.4.
Then do the same as τ → ∞ and obtain possible different values for Aδ and
Bδ. If the values for Aδ or Bδ do not match as τ → 0 and as τ → ∞, we can
conclude that the Hilbert field is not projectively flat.

It turns out, that Bδ does not help in determining the projective flatness
of Hcorr → S, for all rank-1 symmetric spaces the two asymptotics give the
same value for Bδ (see Remark 9.3.6, after Theorem 9.3.18). Theorem 9.3.2
is proved by showing that the τ → 0 asymptotics yields Aδ = 1 for all δ
(see Theorem 9.3.14), on the other hand the τ → ∞ asymptotic shows that if
the coefficient Aδ is independent of δ, the restricted root system of M must be
reduced and all multiplicities of the roots are equal to two (see Section 9.3.6 and
9.3.8). But these properties characterize compact Lie groups among compact
Riemannian symmetric spaces (see [Lo]]) and Theorem 9.3.2 will follow.

9.3.2 The function qδ(τ)

Now to implement the plan in Sect. 9.3.1, we need to recall first of all the precise
form of pδ(s) (see (9.2.12), τ =Ims).

pδ(s) =
cδ
τm/2

∫
p∗

∫
K

e−
|ζ|2
τ χδ(k exp(−2iζ))dk µdζ, (9.3.2)
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where cδ is independent of s, dk is normalized Haar measure on K, dζ is the
Lebesgue measure on p∗ induced by the metric, χδ the character of δ and µ is
expressed through the operators A1, A2 in (9.2.2).

Now for symmetric spaces [k, p∗] ⊂ p∗ and [p∗, p∗] ⊂ k. Therefore if ζ ∈ p∗
then Padζ|C⊗ p∗ = 0,

A1(i, ζ) = cos adζ|C⊗ p∗, A2(i, ζ) = i(sin adζ)/adζ|C⊗ p∗, and

im det
(
A∗2(i, ζ)A1(i, ζ)−A∗1(i, ζ)A2(i, ζ)

)
= det

(
(sin 2adζ)/adζ|C⊗ p∗

)
> 0.

Hence in (9.3.2) µ =
√
η, where

η(ζ) = det

(
sin 2adζ

adζ

∣∣∣∣
C⊗p∗

)
. (9.3.3)

The function fδ(g) =
∫
K
χδ(kg

−1)dk, g ∈ U is known as the K−spherical
function ([Har1, Har2]), corresponding to the representation δ, see [He2, Theo-
rem 4.2, p.417]. We denote by the same letter the holomorphic extension of fδ
to the complexified group UC. Thus we can rewrite (9.3.2) as an integral over
p0 and we get

pδ(s) =
cδ
τm/2

∫
p0

e−
|H|2
τ fδ(exp(2H))

√
η(−iH) dH. (9.3.4)

Every restricted root α ∈ Σ is real valued on a0. Furthermore the operator
ad2
H , H ∈ p0, is symmetric, has zero eigenvalue with multiplicity r = dim a0 and

α(H)2 with multiplicity mα. Thus from (9.3.3) and the identity sin i2z/iz =
sh2z/z we get

η(−iH) = 2r
∏
α∈Σ+

(
sh(2α(H))

α(H)

)mα
. (9.3.5)

Let C(a0) := {k ∈ K : Ad(k)ζ = ζ, ∀ζ ∈ a0} be the centralizer of a0 in K.
Recall the following integral formula for the generalized polar coordinate map

Φ : (K/C(a0))× a0 → p0, Φ(kC(a0), H) := Ad(k)H,

Theorem 9.3.5. Let f ∈ L1(p0) be an Ad(K) invariant function. Then∫
p0

f(H)dH = c

∫
a+

f(H)
∏
α∈Σ+

α(H)mαdH,

where c is some constant, independent of f and a+ ⊂ a0 denotes the positive
Weyl chamber.

(See [He2, Theorem 5.17, p.195].)

Proposition 9.3.6 (Lempert, Szőke [LSz15]). The function fχ ◦ exp is AdK
invariant on the Lie algebra uC of UC.

Proof. For any k, k0 ∈ K, ζ ∈ uC

χ(k exp(−Ad(k0)ζ)) = χ(kk0 exp(−ζ)k−1
0 ) = χ(k−1

0 kk0 exp(−ζ)).
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Thus

fχ(exp(Ad(k0)ζ)) =

∫
K

χ(k−1
0 kk0 exp(−ζ))dk = fχ(exp(ζ)).

Proposition 9.3.7 (Lempert, Szőke [LSz15]). Let F ∈ O(C) be an even func-
tion and v ∈ p∗. Then F (ad(v)) (defined by its power series) maps C⊗ p∗ into
itself and det(F (ad(v))|C⊗p∗) is an AdK invariant function.

Proof. For every k in K, Ad(k) is in Aut(u). Thus for every v ∈ u, l = 0, 1, . . .

(ad(Ad(k)v))l = Ad(k) ◦ (ad(v))l ◦Ad(k)−1.

Hence
F (ad(Ad(k)v)) = Ad(k) ◦ F (ad(v)) ◦Ad(k)−1.

Since p∗ is both Ad(k) and (ad(v))2l invariant (l = 0, 1 . . . ), the statement
follows.

From Proposition 9.3.6 and Proposition 9.3.7 we know that fδ ◦ exp and
η are AdK invariant on p0. Thus Theorem9.3.5, (9.3.4) and (9.3.5) yields the
following formula.

pδ(s) = 2rcδcτ
−m/2

∫
a+

e−
|H|2
τ fδ(exp(2H))

∏
α∈Σ+

(α(H)sh(2α(H)))
mα
2 dH.

(9.3.6)
In the special case when M is isometric to a compact Lie group G, let U = G×G
and K be the diagonal in U . Then the K−spherical functions will have the form
fδ = χδ/d(δ), where δ is an irreducible representation of G, χδ its character
and d(δ) denotes its dimension ([He2, p.407]). Thus, as we saw in section
9.2.4, fδ is given by the Weyl character formula and since all mα = 2 the
terms sh(2α(H)) cancel out the Weyl denominator and we end up essentially
integrating the product of a Gaussian and a harmonic polynomial. This yielded
that log(pδ(s)) = c1 + c2Ims, that is a harmonic function and we got that the
field Hcorr → S was flat.

To treat the other symmetric spaces, we introduce the essential part of pδ
as a function of τ > 0:

qδ(τ) :=

∫
a+

e−
|H|2
τ fδ(exp(2H))

∏
α∈Σ+

(α(H)sh(2α(H)))
mα
2 dH. (9.3.7)

9.3.3 Spherical functions

In order to be able to handle the integral in (9.3.7), we shall need another
description of spherical functions. Let δ : U → GL(V ) be an irreducible
K−spherical representation. We can endow V with a scalar product 〈., .〉 that
makes δ unitary. Let vK ∈ V be a K−fixed vector with unit length. Then the
spherical function fδ corresponding to δ is ([He2, Theorem 3.7, p.414] )

fδ(g) := 〈δ(g)vK , vK〉, g ∈ U.
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Since δ extends holomorphically to the complexified group UC, the same formula
yields the holomorphic extension of fδ to UC.

We would like to obtain some formula for the function fδ ◦ exp, occurring in
(9.3.7), when we restrict it to the Cartan subalgebra h in uC.

Let Λ(δ) be the set of weights of δ and for a weight µ, Wµ the corresponding
weight space.

The weight spaces give an orthogonal direct decomposition of V , thus

vK =
∑

µ∈Λ(δ)

wµ, wµ ∈Wµ,

where ‖vK‖ = 1 implies
∑
‖wµ‖2 = 1.

Let H ∈ h. Then (cf. [Vr])

fδ(exp 2H) = 〈exp(δ∗2H)vK , vK〉 =
∑

µ∈Λ(δ)

e2µ(H)〈wµ, wµ〉. (9.3.8)

Later on we shall need to figure out which term in (9.3.8) has the dominating
contribution when (9.3.8) is plugged into the formula (9.3.7) of qδ. It is no
surprise that the term corresponding to the highest weight will play this role.
Theorem 9.3.16 will give the precise answer. That theorem will be based on
Theorem 9.3.15, a general result on asymptotics of integrals of the form (9.3.7),
where the function fδ is replaced by an exponential of a linear function, like
the terms in (9.3.8). The result of Theorem 9.3.15 shall explain why we need
Proposition 9.3.8.

Let λ be the highest weight of δ. Then dimWλ = 1. Let vλ ∈ Wλ with
‖vλ‖ = 1. Thus wλ = aλvλ with aλ = 〈vK , vλ〉. From the first formula in [He2,
p.538], we know that aλ 6= 0 and

〈wλ, wλ〉 = |aλ|2 = c(−iλ− iρ), (9.3.9)

where ρ = ρ∆|a0
is half the sum of the positive restricted roots with multiplicity,

X = G/K the noncompact dual symmetric space and c is the corresponding
Harish-Chandra’s c–function of G ([Har1, Har2], [He2, (8), p.538] ).

Proposition 9.3.8 (Szőke [Sz17]). Let µ ∈ Λ(δ), µ 6= λ. Then

‖ (µ+ ρ∆) |a0
‖ < ‖ (λ+ ρ∆) |a0

‖.

Proof. We follow the steps of the proof of [He2, Theorem. 1.3, p.498], that is
the same statement without taking restrictions to a0. First we show that

(λ− µ)|a0
6≡ 0. (9.3.10)

Since λ is the highest weight of a K−spherical representation, the Cartan-
Helgason theorem ([He2, Theorem 4.1 (1), p.535] ) implies

λ|ihk0
≡ 0.

Thus if (9.3.10) does not hold, we would get 〈λ− µ, λ〉 = 0 and then

〈µ, µ〉 = 〈µ− λ, µ− λ〉+ 〈λ, λ〉 > 〈λ, λ〉, (9.3.11)
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since µ 6= λ. But (9.3.11) contradicts the fact that for all weights µ, ‖µ‖ ≤ ‖λ‖
(see [He2, Theorem 1.3 (7), p.498] ) and so (9.3.10) is proved.

We need to show

C := ‖λ+ ρ‖2 − ‖ µ|a0
+ ρ‖2 > 0.

But

C = ‖λ‖2 − ‖ µ|a0
‖2 + 2〈λ− µ|a0

, ρ〉 ≥ ‖λ‖2 − ‖µ‖2 + 2〈λ− µ|a0
, ρ〉. (9.3.12)

And since ‖λ‖ ≥ ‖µ‖, it suffices to show that the last term in (9.3.12) is positive.
Let α1, . . . , αl be a basis of the roots, compatible with Σ, i.e. for 1 ≤

j ≤ r αj |a0
∈ Σ+ forming a basis of Σ. Since µ is a weight, ∃nj ∈ Z+ with

µ = λ −
l∑
1
njαj . Now (9.3.10) implies that ∃j with 1 ≤ j ≤ r and nj > 0.

Proposition 9.3.9 below shows that 〈αj |a0
, ρ〉 > 0 for 1 ≤ j ≤ r. Hence

〈λ− µ|a0
, ρ〉 =

r∑
1

nj〈αj |a0
, ρ〉 > 0,

thus indeed C > 0.

Proposition 9.3.9 (Szőke [Sz17]). Let α1, . . . , αr ∈ Σ+ be a basis of the re-
stricted roots Σ with multiplicities mαj . Then

〈ρ, αj〉 = (mαj/2 +m2αj )〈αj , αj〉, j = 1 . . . , r (9.3.13)

where m2αj is meant to be zero if 2αj is not a root.

Proof. Let Σ+
j = Σ+ \ {αj , 2αj}, ρj = 1

2

∑
α∈Σ+

j

mαα and Sαj the reflection on

a0, corresponding to αj . As is well known ([He1, ChVII, Sect. 3, Lemma 2.21]
) Sαj permutes the elements of Σ+

j , hence Sαjρj = ρj . From their definitions
we get

ρ = ρj +
mαjαj +m2αj2αj

2
.

Thus
Sαjρ = ρ−mαjαj −m2αj2αj .

Since Sαj is an orthogonal transformation, we obtain

〈ρ, αj〉 = 〈Sαjρ, Sαjαj〉 = 〈ρ−mαjαj −m2αj2αj ,−αj〉

and (9.3.13) follows.

9.3.4 τ → 0 asymptotics, a multivariable Watson lemma

Proposition 9.3.10 (Szőke [Sz17]). Let 0 < τ , 0 < h, D ⊂ Rn be a domain that
is a homogeneous cone (ξ ∈ D, 0 < r implies rξ ∈ D), G := D ∩ Sn−1 (where
Sn−1 is the unit sphere in Rn) and Q an h-homogeneous (for all ξ ∈ D, 0 < r,
Q(rξ) = rhQ(ξ) ) continuous function defined on D. Then∫

D

e
−‖H‖2

τ Q(H)dH =
Γ(n+h

2 )

2

∫
G

Q(ξ)dξ

 τ
n+h

2 ,

where Γ denotes the usual gamma function.
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Proof. Using polar coordinates and the homogeneity of Q we get

∫
D

e
−‖H‖2

τ Q(H)dH =

∞∫
0

∫
G

e
−r2
τ rn+h−1Q(ξ)dξdr.

Substituting r =
√
τt yields the formula.

Proposition 9.3.11 (Szőke [Sz17]). Let δ, τ0 > 0, D ⊂ Rn be a domain, Dδ :=
D ∩ {‖H‖ ≥ δ} and g a Lebesgue measurable function on D with

C :=

∫
D

e−
‖H‖2
τ0 |g(H)|dH <∞.

Then for every 0 < τ < τ0∫
Dδ

e
−‖H‖2

τ |g(H)|dH ≤ Ceδ
2( 1
τ0
− 1
τ ).

Proof. Let δ ≤ ‖H‖. Then

e‖H‖
2( 1
τ0
− 1
τ ) ≤ eδ

2( 1
τ0
− 1
τ ).

Thus ∫
Dδ

e
−‖H‖2

τ |g(H)|dH =

∫
Dδ

e
−‖H‖2
τ0 |g(H)|e‖H‖

2( 1
τ0
− 1
τ )dH ≤

≤
∫
Dδ

e
−‖H‖2
τ0 |g(H)|eδ

2( 1
τ0
− 1
τ )dH.

Theorem 9.3.12 (Szőke [Sz17]). Let 0 < a ≤ ∞, G be a domain in Sn−1 (unit
sphere), 0 < d,

Ga := {rξ : 0 < r < a, ξ ∈ G}

and Q a d−homogeneous continuous function defined on Ga. Suppose f ∈
C(Ga) that is C∞ in a neighborhood of the origin. Assume that for some 0 < τ0
the function e−‖H‖

2/τ0Q(H)f(H) is in L1(Ga). For 0 < τ < τ0 let Φ(τ) be
defined by

Φ(τ) =

∫
Ga

e−
‖H‖2
τ Q(H)f(H)dH.

Then Φ admits an asymptotic series expansion around 0:

Φ(τ) ∼
∞∑
j=0

Γ(n+d+j
2 )

2

∫
G

QPjdξ τ
n+d+j

2 , τ → 0,

where Pj is the j − th homogeneous polynomial term of the Taylor series of f
around the origin.
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Proof. We follow the scheme of the proof of Watson’s lemma in one variable (cf.
[Mu]). Let 0 < δ ≤ a be so small that f is C∞ in a neighborhood of the ball

Bnδ (0). Then Ga ∩ Bnδ (0) = Gδ and with h(τ,H) = e−‖H‖
2/τQ(H)f(H)

Φ(τ) =

∫
Ga∩{‖H‖≥δ}

h(τ,H)dH +

∫
Gδ

h(τ,H)dH =: Φ1(τ) + Φ2(τ).

With g(H) = Q(H)f(H) and C =
∫
Ga

e−
‖H‖2
τ0 |Q(H)f(H)|dH, Proposition 9.3.11

implies

|Φ1(τ)| ≤ Ce
δ2

τ0 e−
δ2

τ = o(τn), τ → 0,

for all n ∈ N. The Taylor formula with remainder term yields

f(H) =

N∑
j=0

Pj(H) + fN (H), ‖H‖ ≤ δ, |fN (H)| ≤ CN‖H‖N+1, (9.3.14)

where Pj is a j−homogeneous polynomial and CN an appropriate constant.
Thus

Φ2(τ) =

N∑
j=0

∫
Gδ

e−
‖H‖2
τ Q(H)Pj(H)dH +

∫
Gδ

e−
‖H‖2
τ Q(H)fN (H)dH

and ∫
Gδ

e−
‖H‖2
τ Q(H)Pj(H)dH =

∫
G∞

e−
‖H‖2
τ Q(H)Pj(H)dH−

∫
G∞∩{‖H‖≥δ}

e−
‖H‖2
τ Q(H)Pj(H)dH.

In light of Proposition 9.3.10 the first integral on the right hand side is equal to

Γ(n+d+j
2 )

2

∫
G

QPjdξ

 τ
n+d+j

2 ,

and Proposition 9.3.11 yields with g = QPj , that the second integral is o(τn)
for all n ∈ N. Homogeneity of Q implies |Q(H)| ≤ K‖H‖d with some K > 0.
Then from (9.3.14) and Proposition 9.3.10 we get∣∣∣∣∣∣

∫
Gδ

e−
‖H‖2
τ Q(H)fN (H)dH

∣∣∣∣∣∣ ≤ CNK
∫
G∞

e−
‖H‖2
τ ‖H‖N+d+1dH =

= V ol(G)CNK
Γ(n+d+N+1

2 )

2
τ
n+d+N+1

2 ,

finishing the proof of the theorem.
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9.3.5 Determining Aδ and Bδ from τ → 0

Let us get back to the symmetric space situation. Suppose (Mm = U/K, g)
is a compact, simply connected, irreducible, Riemannian symmetric space as
in Section 9.3. As before, m is the dimension of M . Let δ be an irreducible
K−spherical representation and fδ the corresponding spherical function. Then

fδ(exp(2H)) = 1 +R1(H) +R2(H) + . . . , H ∈ a0, (9.3.15)

where Rj is the j−th homogeneous polynomial term of the Taylor series. Since
fδ ◦ exp is AdK invariant on p0 (see [LSz15, Proposition 2.1]), it is Weyl group
invariant on a0. Therefore every Rj is Weyl group invariant as well. Since M
is irreducible, the Weyl group acts irreducible on a0, thus R1 ≡ 0 and R2 must
be of the form

R2(H) = bδ‖H‖2, (9.3.16)

with some bδ ∈ R. (9.3.16) is true because up to a constant scalar, ‖H‖2 is the
only Weyl group invariant quadratic polynomial on a0. One can see this either
as a corollary of Schur’s lemma, or as a corollary of Chevalley’s theorem (see
[Hum, Sect. 3.5, 3.7]). For the trivial representation δ0, fδ0 ≡ 1 and bδ0 = 0.

Proposition 9.3.13 (Szőke [Sz17]). Assume that the rank of M is 1 and λ is
the highest weight of δ. Then

bδ =
2(‖λ+ ρ‖2 − ‖ρ‖2)

m
.

Proof. If Σ is nonreduced, Σ+ = {β, β/2} and Σ+ = {β} in the reduced case.
The corresponding multiplicities are mβ and mβ/2, where our convention is
that the latter is zero when Σ is reduced. Let H0 ∈ a+ with ‖H0‖ = 1. Then
β(H0) = ‖β‖. Recall that Gauss’ hypergeometric functions are given by

F (a, b, c, z) := 1+
ab

c
z+· · ·+a(a+ 1) . . . (a+ k − 1)b(b+ 1) . . . (b+ k − 1)

k!c(c+ 1) . . . (c+ k − 1)
zk+. . .

where a, b, c ∈ C, c 6∈ Z− = {0,−1,−2, . . .}. The series converges at least in
the unit disk. If n ∈ Z+, b = −n, A ∈ C \ Z−, and a = A + n, then F is a
polynomial (in z) of degree n.

According to [He2, Theorem 4.1(ii), p. 535, and Sect. 3, p. 542] the highest
weight of δ has the form λ = nδβ, where nδ ∈ Z+. Let

aδ :=
1

2
mβ/2 +mβ + nδ, cδ :=

mβ/2 +mβ + 1

2
=
m

2
.

Denote by Fδ the hypergeometric function (polynomial in this case), correspond-
ing to these parameters

Fδ(x) = F (aδ,−nδ, cδ, x).

According to [He2, formula (25), p.543], the spherical function fδ can be ex-
pressed as

fδ(exp(2H)) = Fδ(−sh2(β(H))), H ∈ a0.

Hence
fδ(exp(2H)) = 1 +

aδnδ
cδ
‖β‖2‖H‖2 + o(‖H‖2).
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Thus bδ = aδnδ
cδ
‖β‖2. Now ρ = 1

2 (mβ/2β/2 +mββ), hence

aδnδ‖β‖2 = 2〈ρ, λ〉+ ‖λ‖2,

and our statement follows.

The τ → 0 asymptotics yields the following values for Aδ, Bδ in Theo-
rem 9.3.4 (b).

Theorem 9.3.14 (Szőke [Sz17]). Suppose the corrected field of quantum Hilbert
spaces Hcorr → S is projectively flat. Then for every irreducible K−spherical
representation δ,

Aδ = 1, Bδ =
m

2
bδ.

Proof. Easy calculation shows that

F (H) :=
∏
α∈Σ+

(
sh(2α(H))

α(H)

)mα
2

= 1 +
∑
α∈Σ+

mα

3
α2(H) + . . . (9.3.17)

From (9.3.16) and (9.3.17) we obtain that in the homogeneous polynomial series
expansion of

fδ(exp(2H))F (H) = 1 + P δ2 (H) + P δ3 (H) + . . . ,

the quadratic term is

P δ2 (H) = bδ‖H‖2 +
∑
α∈Σ+

mα

3
α2(H) = bδ‖H‖2 + P δ02 (H). (9.3.18)

Now Q(H) :=
∏

α∈Σ+

α(H)mα is a homogeneous polynomial of degree

d =
∑
α∈Σ+

mα = m− r,

where r = dim a0 is the rank of M . Applying Theorem 9.3.12 with f , Q, a =∞,
G = a+ ∩ Sr−1 we obtain

qδ(τ) =
Γ(m2 )

2

∫
G

Q(ξ)dξ τ
m
2 +

Γ(m+2
2 )

2

∫
G

Q(ξ)P δ2 (ξ)dξ τ
m+2

2 + o(τ
m+2

2 ).

(9.3.19)
Hence we get

∫
G

Q(ξ)dξ > 0, since the restricted roots are positive on the Weyl

chamber a+. Now writing out (9.3.19) for both δ and the trivial representation
δ0, comparing the coefficients of the τ

m
2 term in the asymptotic series and using

Theorem 9.3.4 (b) we obtain Aδ = 1. Then comparing the coefficients of the

τ
m+2

2 as well, we obtain

Bδ
Γ(m2 )

2

∫
G

Q(ξ)dξ =
Γ(m+2

2 )

2

∫
G

Q(ξ)(P δ2 (ξ)− P δ02 (ξ))dξ. (9.3.20)

From (9.3.18) we get P δ2 (ξ)− P δ02 (ξ) = bδ‖ξ‖2 = bδ, since G is part of the unit
sphere. Thus (9.3.20) yields Bδ = m

2 bδ.
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9.3.6 Asymptotics at infinity

The following setting is motivated by the system of restricted roots of a compact
Riemannian symmetric space.

Let (Z, 〈., .〉) be a Euclidean space of dimension r and Σ+ ⊂ Z∗ a finite set
so that

Z+ := {H ∈ Z | α(H) > 0,∀α ∈ Σ+}

is nonempty. For each α ∈ Σ+, let mα > 0 be given and define

m := r +
∑
α∈Σ+

mα, ρ :=
1

2

∑
α∈Σ+

mαα.

For a linear functional l : Z → R, define Al ∈ Z by l(H) =< Al, H >, H ∈
Z. Then 〈l, L〉 := 〈Al, AL〉, l, L ∈ Z∗, defines an inner product on Z∗. Let
f : Z+ → R be any measurable function. Assuming the integral below is finite,
introduce the following function, defined for τ > 0.

q(τ, f) =

∫
Z+

e−
‖H‖2
τ f(H)

∏
α∈Σ+

(α(H)sh(2α(H)))
mα
2 dH. (9.3.21)

With µ ∈ Z∗, let Iµ(τ) := q(τ, e2µ). Even though it is impossible to calculate
precisely this integral (except in some special cases), it is possible to determine
the order of its magnitude as τ →∞, and that suffices for our purposes.

Theorem 9.3.15 (Szőke [Sz17]). For any µ ∈ Z∗

Iµ(τ) =

2r−mπ
r
2

∏
α∈Σ+

〈µ+ ρ, α〉
mα
2 τ

m
2 eτ‖µ+ρ‖2(1 + o(1)), Aµ+ρ ∈ Z+

τ
m
2 eτ‖µ+ρ‖2o(1), Aµ+ρ ∈ Z \ Z+

as τ →∞.

Proof. Factoring out emαα(H) from the product for each α ∈ Σ+, we get

Iµ(τ) = 2r−m
∫
Z+

e−
‖H‖2
τ +2µ(H)+2ρ(H)

∏
α∈Σ+

α(H)
mα
2 (1− e−4α(H))

mα
2 dH

Now

−‖H‖2/τ + 2µ(H) + 2ρ(H) = −‖H/
√
τ −
√
τAµ+ρ‖2 + τ‖µ+ ρ‖2.

Thus

Iµ(τ) =
eτ‖µ+ρ‖2

2m−r

∫
Z+

e−‖H/
√
τ−
√
τAµ+ρ‖2

∏
α∈Σ+

α(H)
mα
2 (1− e−4α(H))

mα
2 dH

Let Φτ (Y ) be the affine linear change of coordinates in Z defined by

Φτ (Y ) :=
√
τY + τAµ+ρ.

Then det Φ′τ = τ
r
2 and with H = Φτ (Y ),

α(H) = α(
√
τY + τAµ+ρ) = τα(Y/

√
τ +Aµ+ρ).
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Using the coordinate change Φτ the integral Iµ is transformed to

Iµ(τ) =
τ
m
2 eτ‖µ+ρ‖2

2m−r

∫
Φ−1(Z+)

e−‖Y ‖
2 ∏
α∈Σ+

α(Φτ (Y )/τ)
mα
2 (1−e−4α(Φτ (Y )))

mα
2 dY

Let χτ (Y ) be the characteristic function of the set Φ−1(Z+) and let

gτ (Y ) := χτ (Y )
∏
α∈Σ+

α(Y/
√
τ +Aµ+ρ)

mα
2 (1− e−4α(Φτ (Y )))

mα
2 ,

that is now defined on the entire space Z and

Iµ(τ) =
τ
m
2 eτ‖µ+ρ‖2

2m−r

∫
Z

e−‖Y ‖
2

gτ (Y )dY.

We want to show that the integral here has a limit as τ → ∞. First we prove
this for the function gτ (Y ).

Claim. For all Y ∈ Z

lim
τ→∞

gτ (Y ) =


∏

α∈Σ+

〈µ+ ρ, α〉
mα
2 , Aµ+ρ ∈ Z+

0, Aµ+ρ ∈ Z \ Z+

Proof of the Claim. First let Aµ+ρ ∈ Z+. Then α(Aµ+ρ) > 0, for all Σ+. Let
Y ∈ Z be arbitrary. Then with an appropriate τ0, α(

√
τY + τAµ+ρ) > 0 holds

for every τ ≥ τ0. Thus Y ∈ Φ−1
τ (Z+) and so χτ (Y ) = 1 for τ ≥ τ0. Also

lim
τ→∞

α(Y/
√
τ +Aµ+ρ) = α(Aµ+ρ) = 〈α, µ+ ρ〉 > 0

and hence lim
τ→∞

α(ΦτY ) =∞. All these together prove our claim in this case.

Now let Aµ+ρ ∈ Z \ Z+. Suppose there is an α ∈ Σ+ with α(Aµ+ρ) < 0.
Then for all Y in Z there exists some τ0 > 0 so that for every τ ≥ τ0, α(

√
τY +

τAµ+ρ) < 0 and consequently Y 6∈ Φ−1
τ (Z+) implying χτ (Y ) = 0 = gτ (Y ).

Now assume there is at least one α ∈ Σ+ with α(Aµ+ρ) = 0 and β(Aµ+ρ) ≥ 0
for all β ∈ Σ+. Denote by Σ+0 those β ∈ Σ+, for which β(Aµ+ρ) = 0.

Let Y ∈ Z. If there exists a β ∈ Σ+0 with β(Y ) ≤ 0, then β(
√
τY +τAµ+ρ) ≤

0 and so χτ (Y ) = 0 = gτ (Y ) for all τ > 0.
Suppose that for all β ∈ Σ+0, β(Y ) > 0. Then for all τ > 0 and β ∈ Σ+0,

β(
√
τY ) = β(ΦτY ) > 0 and so 0 < 1 − e−4β(Φτ (Y )) < 1. Also just as before:

with an appropriate τ0, β(
√
τY + τAµ+ρ) > 0 holds for every τ ≥ τ0 and

β ∈ Σ+ \ Σ+0. Thus for all τ ≥ τ0, Φτ (Y ) ∈ Z+ hence

χτ (Y ) = 1 and 0 <
∏
α∈Σ+

(1− e−4α(Φτ (Y ))
mα
2 < 1.

But
lim
τ→∞

∏
α∈Σ+

(α(Y/
√
τ +Aµ+ρ))

mα
2 =

∏
α∈Σ+

(α(Aµ+ρ))
mα
2 = 0,

proving that lim
τ→∞

gτ (Y ) = 0.
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Now to finish the proof of the theorem we estimate gτ (Y ). By its definition
gτ (Y ) vanishes outside of the set Φ−1(Z+).

Hence the trivial estimate yields

|gτ (Y )| ≤
∏
α∈Σ+

‖α‖
mα
2 (‖Y ‖+ ‖Aµ+ρ‖)

mα
2 =: C.

Valid for all Y ∈ Z and τ ≥ 1. Thus Ce−‖Y ‖
2

is an integrable majorant of
gτ (Y ) for all τ ≥ 1. Using Lebesgue’s dominated convergence theorem together

with our claim and the fact that
∫
Z

e−‖Y ‖
2

dY = π
r
2 finishes the proof of the

theorem.

Back to symmetric spaces again, let (Mm = U/K, g) be a compact, irre-
ducible, simply connected, Riemannian symmetric space, δ an irreducible uni-
tary K−spherical representation of U with highest weight λ. c denotes Harish-
Chandra’s c−function associated to the dual symmetric space X = G/K and
qδ is from (9.3.7).

Theorem 9.3.16 (Szőke [Sz17]).

qδ(τ) = 2r−mπ
r
2 c(−iλ− iρ)

( ∏
α∈Σ+

〈λ+ ρ, α〉
mα
2

)
τ
m
2 eτ‖λ+ρ‖2(1 + o(1)),

as τ →∞.

Proof. It follows from the Cartan-Helgason theorem ([He2, Theorem 4.1, p.535]),
that Aλ ∈ a+. But then Proposition 9.3.9 implies with l = λ + ρ, that
Al ∈ a+. Thus if µ is a weight of δ, different from λ, Proposition 9.3.8 and
Theorem 9.3.15 (with Z = a0 and Σ+ the set of positive restricted roots) yields
Iµ(τ) = Iλ(τ)o(1), as τ → ∞. Now using (9.3.8) for the spherical function
corresponding to δ we get

qδ(τ) =
∑

µ∈Λ(δ)

〈wµ, wµ〉Iµ(τ) (9.3.22)

The discussion above implies, that Iλ(τ) dominates all the other terms in
(9.3.22). Therefore (9.3.9) and Theorem 9.3.15 finish the proof.

Since c(−iρ) = 1, Theorem 9.3.4 and Theorem 9.3.16 yield Theorem 9.3.17.

Theorem 9.3.17 (Szőke [Sz17]). If the corrected field of quantum Hilbert spaces
Hcorr → S is projectively flat, then for every irreducible K−spherical represen-
tation δ with highest weight λ,

Aδ =

c(−iλ− iρ)
∏

α∈Σ+

〈λ+ ρ, α〉
mα
2∏

α∈Σ+

〈ρ, α〉mα2
. (9.3.23)

and
Bδ = ‖λ+ ρ‖2 − ‖ρ‖2. (9.3.24)
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Denote by Σ0 the set of indivisible restricted roots, i.e. those α ∈ Σ, for
which cα ∈ Σ implies c = ±1,±2. Let Σ+

0 = Σ0 ∩ Σ+. As before, for an α ∈ Σ
we take m2α = 0 if 2α 6∈ Σ and α0 = α/〈α, α〉. Now combining Theorem 9.3.14
with Theorem 9.3.17 we get.

Theorem 9.3.18 (Szőke [Sz17]). Assume the corrected field of quantum Hilbert
spaces Hcorr → S is projectively flat. Let δ be an irreducible K−spherical
representation with highest weight λ. Then Aδ must be equal to 1, hence the
quantity

c(−iλ− iρ)
∏
α∈Σ+

0

〈λ+ ρ, α0〉
mα+m2α

2 (9.3.25)

is independent of δ and

‖λ+ ρ‖2 − ‖ρ‖2 =
m

2
bδ, (9.3.26)

where bδ is from (9.3.16).

Remarks. 1) Proposition 9.3.13 shows that when M = U/K is any compact,
irreducible, simply connected Riemannian symmetric space of rank-1, (9.3.26)
holds for every irreducible K−spherical representation of U . Thus the constants
Bδ from Theorem 9.3.4 (b) do not help in deciding whether the field Hcorr → S
is projectively flat or not. It is not clear whether (9.3.26) should always hold
for the higher rank symmetric spaces as well, regardless of projective flatness.

2) If M is isometric to a compact Lie group U equipped with a biinvariant
metric, we know from [LSz14, Theorem 11.3.1], that Hcorr → S is flat. Also it
is well known in this case, that for all α ∈ Σ, mα = 2 and m2α = 0 (i.e. Σ is
reduced). Now with

π(ν) :=
∏
α∈Σ+

〈ν, α〉, ν ∈ a∗0,

we have

c(ν) =
π(ρ)

π(iν)

(see [He2, p. 447]) and the quantity in (9.3.25) is equal to π(ρ), indeed inde-
pendent of δ.

Next we express condition (9.3.25) purely in terms of the root system Σ and
its multiplicities.

Theorem 9.3.19 (Szőke [Sz17]). Let δ be an irreducible K−spherical repre-
sentation with highest weight λ. Suppose the corrected field of quantum Hilbert
spaces Hcorr → S is projectively flat. Then the quantity

Q(δ) :=
∏
α∈Σ+

0

Γ( 1
4mα + 1

2 〈λ+ ρ, α0〉)Γ(〈λ+ ρ, α0〉)〈λ+ ρ, α0〉
mα+m2α

2

Γ( 1
2mα + 〈λ+ ρ, α0〉)Γ( 1

4mα + 1
2m2α + 1

2 〈λ+ ρ, α0〉)

(9.3.27)
is independent of δ.

If m2α = 0 and mα = 2 for all α ∈ Σ+
0 , then it is obvious that Q(δ) is in

fact independent of δ. This is the group manifold case.
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Proof. The Gindikin-Karpelevič formula expresses Harish-Chandra’s c−functi-
on as a meromorphic function on a∗C (see [He2, p.447]),

c(ν) = c0
∏
α∈Σ+

0

2〈−iν,α0〉Γ(〈iν, α0〉)
Γ( 1

2 ( 1
2mα + 1 + 〈iν, α0〉))Γ( 1

2 ( 1
2mα +m2α + 〈iν, α0〉))

.

(9.3.28)
Here the constant c0 is determined by c(−iρ) = 1. Using the duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ(z +
1

2
),

from (9.3.28) we get

c(−iλ− iρ) = c1
∏
α∈Σ+

0

Γ( 1
2 ( 1

2mα + 〈λ+ ρ, α0〉))Γ(〈λ+ ρ, α0〉)
Γ( 1

2mα + 〈λ+ ρ, α0〉)Γ( 1
2 ( 1

2mα +m2α + 〈λ+ ρ, α0〉))
,

(9.3.29)
where

c1 = c0
∏
α∈Σ+

0

2mα/2

2
√
π
.

From (9.3.25) and (9.3.29) we see (since (2α)0 = α0/2), that the quantity in
(9.3.25) does not depend on δ iff Q(δ) is independent of δ.

9.3.7 Γ-related functions

Here we take a closer look at the functions appearing in (9.3.27) to find out
which compact symmetric spaces have the property that Q(δ) (from (9.3.27))
is independent of δ.

Let 0 < a, 0 ≤ b, c, d be given constants, P := {z ∈ C : 0 < Re z} and

F (z, a, b, c, d) :=
Γ(cz + a+ b)Γ(2cz + 2a)(2cz + 2a)2b+d

Γ(2cz + 2a+ 2b)Γ(cz + a+ b+ d)
, (9.3.30)

considered as a function of z, where Γ denotes the usual Γ function.

Proposition 9.3.20 (Szőke [Sz17]). F (z, a, b, c, d) is a bounded holomorphic
function in a neighborhood of P .

Proof. Since Γ is zero free and holomorphic in P , F will be holomorphic in a
neighborhood of P . The substitution w = cz shows that it is enough to prove
boundedness when c = 1. Let 0 < A be arbitrary. From

Γ(w +A) ∼ wAΓ(w), w →∞, w ∈ P,

(see [Re, p.59]) we get

F (w, a, b, 1, d) ∼ wa+b(2w)2a(2w + 2a)2b+d

(2w)2a+2bwa+b+d
∼ 2d, w →∞, w ∈ P,

showing the boundedness of F .

Let 0 < aj , cj , 0 ≤ bj , dj , j = 1, . . . , N and G(z) :=
N∏
j=1

F (z, aj , bj , cj , dj).
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Proposition 9.3.21 (Szőke [Sz17]). Assume that for some s, as
cs
<

aj
cj

, for all

j 6= s and there exists a constant D 6= 0 with G(n) = D for all n ∈ Z+. Then
2bs + ds = 1.

Proof. After renumbering we can assume that s = 1. From Proposition 9.3.20
we know that G is a bounded holomorphic function in a neighborhood of P . In
light of Carlson’s theorem ([Ti, p.186]), our assumptions imply that G ≡ D and
so

(2c1z + 2a1)2b1+d1

N∏
j=2

(2cjz + 2aj)
2bj+dj

≡ D
N∏
j=1

Γ(2cjz + 2aj + 2bj)Γ(cjz + aj + bj + dj)

Γ(cjz + aj + bj)Γ(2cjz + 2aj)
. (9.3.31)

Since a1/c1 < aj/cj , 1 < j and because Γ is zero free and holomorphic in
C \ {0,−1,−2, . . . } and has first order poles in the nonpositive integers, the
right hand side is holomorphic in a neighborhood U of {Rez ≥ −a1c1 } and has

a simple zero at −a1c1 . Furthermore
N∏
j=2

(2cjz + 2aj)
2bj+dj is holomorphic and

zero free in U . Hence (2c1z + 2a1)2b1+d1 should extend holomorphically to a
neighborhood of z0 := −a1c1 , with a first order zero at z0. But this happens iff
2b1 + d1 = 1.

9.3.8 Root systems

Let (Z, 〈., .〉) be an r−dimensional Euclidean space. For 0 6= α ∈ Z let α0 =
α/〈α, α〉.

Let R ⊂ Z be a (possible nonreduced) root system. Choose a basis α1, . . . , αr
of R and let R+ be the set of positive roots, Z+ := {0, 1, 2, . . .}.

P+ := {γ ∈ Z : 〈γ, α0〉 ∈ Z+,∀α ∈ R+}. (9.3.32)

According to the Cartan-Helgason theorem ([He2, Theorem 4.1, p.535, Corollary
4.2, p.538]), when Z = a∗0 and R = Σ the set of restricted roots of a compact,
simply connected Riemannian symmetric space M = U/K, the highest weights
of the irreducible K-spherical representations of U are precisely the elements of
P+.

A multiplicity function on R is a map m : R→ R, denoted by α 7→ mα such
that mwα = mα for every Weyl group element w. Let ρ := 1

2

∑
α∈R+

mαα. Denote

by R0 the set of indivisible roots and R+
0 = R+ ∩ R0. Inspired by the formula

(9.3.27) for Q(δ), we define the analogous function for µ ∈ P+ as follows.

Q(µ) :=
∏
α∈R+

0

Γ( 1
4mα + 1

2 〈µ+ ρ, α0〉)Γ(〈µ+ ρ, α0〉)〈µ+ ρ, α0〉
mα+m2α

2

Γ( 1
2mα + 〈µ+ ρ, α0〉)Γ( 1

4mα + 1
2m2α + 1

2 〈µ+ ρ, α0〉)

(9.3.33)
(9.3.36) below shows that this is a well defined quantity when all multiplici-
ties are positive. Denote by R∗ the set of unmultipliable roots in R. A basis
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β1, . . . , βr of R∗ can be obtained by taking βj = αj if 2αj 6∈ R and βj = 2αj if
2αj ∈ R. Define µj ∈ Z, j = 1, . . . , r by

〈µj , βk,0〉 = δjk, j, k = 1, . . . , r. (9.3.34)

Then

µ ∈ P+ if and only if µ =

r∑
j=1

njµj with nj ∈ Z+ (9.3.35)

([He3, Proposition 4.23, p.150]).

Proposition 9.3.22 (Szőke [Sz17]). Suppose that 0 < mα for all α ∈ R. Then

0 < 〈ρ, α〉 and 0 ≤ 〈µ, α〉 ∀α ∈ R+,∀µ ∈ P+. (9.3.36)

For a fixed 1 ≤ j ≤ r, let R+
j := {α ∈ R+

0 : 0 < 〈µj , α0〉}. Then

〈ρ, αj,0〉
〈µj , αj,0〉

<
〈ρ, α0〉
〈µj , α0〉

, ∀α ∈ R+
j , α 6= αj . (9.3.37)

Proof. The proof of Proposition 9.3.9 also works here, showing the first part of
(9.3.36). The second part follows from (9.3.34) and (9.3.35). If αj 6= α ∈ R+

j ,

then α =
r∑
1
nsαs with ns ∈ Z+. From (9.3.34) we have 0 < 〈µj , αj〉 and

0 < 〈µj , α〉 = nj〈µj , αj〉. (9.3.38)

Hence 0 < nj . Since α is indivisible and is different from αj , there must be at
least one more s with 0 < ns. (9.3.36) then implies

〈ρ, njαj〉 < 〈ρ, α〉. (9.3.39)

Now in light of (9.3.38), if we divide (9.3.39) by nj〈µj , αj〉 we get (9.3.37).

We call a multiplicity function m : R→ R geometric if it takes only positive
integer values and satisfies the following property: if α ∈ R and mα is odd, then
2α 6∈ R. For α ∈ R we use the convention as before: m2α = 0 if 2α is not a
root. If R = Σ, a restricted root system of a compact, Riemannian symmetric
space, its multiplicity function is geometric in this sense, see [Ar, Proposition
2.3] or [He1, p.530, 4F].

Theorem 9.3.23 (Szőke [Sz17]). Let R be an irreducible root system with a
geometric multiplicity function m. Suppose Q(µ), µ ∈ P+ is independent of µ
(Q(µ) is from (9.3.33)). Then R is reduced and for all α ∈ R, mα = 2.

Proof. Let βj ∈ R, µj ∈ Z as in (9.3.34) and fix a j with 1 ≤ j ≤ r. From
(9.3.34) we have nµj ∈ P+ for all n ∈ Z+. Now let

Hj(z) :=
∏
α∈R+

0

F

(
z,
〈ρ, α0〉

2
,
mα

4
,
〈µj , α0〉

2
,
m2α

2

)
,

where F is from (9.3.30). Then from (9.3.33) we get

Q(nµj) = Hj(n), ∀n ∈ Z+.
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By our assumption on Q, Hj(n) will be independent of n. For any values of the
parameters a, b, d, the function F (z, a, b, 0, d) from (9.3.30) is always a nonzero
constant. Thus if we leave out from the definition of Hj all those terms that
correspond to a root α ∈ R+

0 with 〈µj , α0〉 = 0, the result is still a function
that is a nonzero constant on the nonnegative integers. Let R+

j := {α ∈ R+
0 :

〈µj , α0〉 > 0} be as in Proposition 9.3.22 and

Gj(z) :=
∏
α∈R+

j

F

(
z,
〈ρ, α0〉

2
,
mα

4
,
〈µj , α0〉

2
,
m2α

2

)
.

Then we still have that Gj(n) is a nonzero constant when n ∈ Z+. This together
with (9.3.37) and Proposition 9.3.21 implies

mαj +m2αj = 2. (9.3.40)

Since m is a geometric multiplicity function, (9.3.40) yields mαj = 2 and m2αj =
0. Thus 2αj is not a root. Since R0, R and m are Weyl group invariant, this
yields that R is reduced and m ≡ 2.

9.3.9 Proof of Theorem 9.3.2

If (M, g) is an irreducible, simply connected, compact, Riemannian symmetric
space, the set of restricted roots Σ in a∗0 forms an irreducible root system with a
geometric multiplicity function. In light of Theorem 9.3.19 and Theorem 9.3.33,
projective flatness of Hcorr → S implies Σ is reduced and all the multiplicities
are equal to 2. But these conditions characterize compact Lie groups among
compact Riemannian symmetric spaces ([Lo, Theorem 4.4, p.82]).

9.4 Factoring out symmetries [LSz14]

The above computations together with subsection 9.2.3 throw some light on
the problem of reduction in quantization. Suppose a mechanical system, with
classical configuration space a Riemannian manifold M , admits a group K of
symmetries. Thus K acts on M by isometries. The question is how to reduce the
corresponding quantum Hilbert space, i.e., how to factor out the symmetries.
Should one first construct the quantum Hilbert space Hcorr of M , on which K
acts unitarily, and then pass to the subspace Hcorr,K of fixed vectors; or rather
quantize the quotient M/K (assumed to be a manifold)?

Suppose M = U is a compact Lie group with biinvariant metric, K ⊂ U is a
closed subgroup, that acts on M by left translations, and the quantum Hilbert
spaces are constructed from the adapted Kähler structures. In the first method
of reduction, the field Hcorr → S of corrected quantum Hilbert spaces for M
is flat, hence so is the subfield Hcorr,K → S of fixed vectors, by Theorem 9.2.4
and Lemma 8.1.8. Therefore the quantum Hilbert spaces Hcorr,K

s , s ∈ S, are
canonically isomorphic. On the other hand Theorem 9.3.2 shows, that in the
second method of reduction, when U/K is a compact, irreducible Riemannian
symmetric space that is not a group manifold, the field of quantum Hilbert
spaces for U/K will not be projectively flat, and the quantum Hilbert spaces
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corresponding to different adapted Kähler structures will not be (projectively)
canonically isomorphic. This suggests that the first method of reduction is
favored over the second.
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higher direct images Ann. Sci. Éc. Norm. Sup.(4), 41, 2008, 905–924

[Mo1] G.D. Mostow: Some new decomposition theorems for semi-simple
groups, Memoirs of the AMS, 4, 1955, 31–54

[Mo2] G.D. Mostow: On covariant fiberings of Klein spaces,
Am.J.Math.,77, 1955, 247–278

[Mu] J.D. Murray: Asymptotic analysis, Springer-Verlag, New York, 1984

156

dc_1536_18

Powered by TCPDF (www.tcpdf.org)



[Ne] E. Nelson: Analytic vectors, Ann. of Math. (2), 70, 1959, 572–615

[vN1] J. von Neumann: Die Eindeutigkeit der Schrödingerschen Opera-
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[Sz17] R. Szőke: Quantization of compact Riemannian symmetric spaces,
J. Geom. Phys., 119, 2017, 286-303
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