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Árpád Tóth
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Introduction

The goal of this dissertation is to describe some new results on the integrals of modular
forms along certain closed curves. We will refer to these integrals as cycle integrals of mod-
ular forms. When interpreted classically the curves of integration are closed geodesics on
the so called modular surface, the quotient of the hyperbolic plane of Bolyai-Lobachevsky
by a distinguished discrete group of isometries. In this language the simplest modular forms
are eigenfunctions of the Laplace-Beltrami operator. However for certain applications it is
better to view them as functions on PSL2(R) the isometry group of the hyperbolic plane.
In this version modular forms have a natural representation theoretic interpretation. The
lift of closed geodesics then become periodic orbits of the geodesic flow, and the integral of
modular forms along them give interesting information about these periodic orbits, such
as their linking numbers.

For example when the discrete group in question is SL2(Z), the right-coset space
SL2(Z)\ SL2(R) as a 3-manifold is diffeomorphic to the complement of the trefoil knot
in S3, as realized as the link of the surface singularity of z2 = w3 at the origin. E. Ghys
showed that the linking number of this trefoil knot with a periodic orbit of the geodesic flow
(called a modular knot in this case) is given by the Rademacher symbol. This symbol is a
close relative of the classical Dedekind symbol which arose historically in the computation
of cycle integrals of the logarithmic derivative of Dedekind’s eta function. In his 2006 ICM
talk Ghys brought attention to the intriguing question of understanding linking numbers
between modular knots either combinatorially or from an arithmetic point of view. These
linking numbers have to be properly interpreted as H1(S3 \Trefoil) = Z. A natural path to
take is to consider the symmetrized link of a modular knot, these arise as the union of the
periodic orbits corresponding to some γ, γ−1 ∈ SL2(Z). One of the problems considered in
this thesis concerns the construction of analogues of Dedekind’s eta function whose cycle
integrals produce the linking numbers between these symmetrized links. This is Chapter
5 of the present thesis, based on the paper [42].

Another interesting application of cycle integrals presented in this dissertation concerns
mock modular forms. Their theory was outlined by Ramanujan in his last letter to Hardy,
a few month before his untimely death at age 32. It was only recently in 2002 that Zwegers
found an intrinsic description of the elusive idea of what Ramanujan’s mock modular forms
are. Surprisingly, cycle integrals of PSL2(Z)-invariant functions with respect to arc length
give a natural construction of these objects [40]. This material is presented in Chapter 4.

There is yet another problem that arose recently concerning immersed surfaces on the
modular surface whose boundary is one of the closed geodesics. It is natural to expect that
the push-forward measure of the natural hyperbolic metric on these surfaces gets equidis-
tributed as the discriminant (a natural invariant of the geodesics) approaches infinity. This
problem too leads to cycle integrals, this time of PSL2(Z)-invariant differential forms, and
require a generalization of formulas due to Maass, and Katok-Sarnak [43]. This general-
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CONTENTS 3

ization and the resulting equidistribution results are presented from [43] and they form
Chapters 2 and 3 of the thesis.

Finally cycle integrals are closely related to sums of certain exponential sums named
after Salie and this is what we consider in the last chapter. This has interesting applica-
tions to the equidistribution of the so-called angles of these sums, or equivalently to the
distribution of the roots of quadratic congruences to prime moduli. A conceptual back-
ground for why one expects such equidistribution is given for example in [112]. The major
result of this chapter is from [123], which establishes these equidistribution results.

We will now put the results presented here in the framework of recent advances in auto-
morphic forms. This thesis deals with generalizations of work of Katok, Sarnak, Borcherds,
Zagier, Ghys, and many others and leads to some surprising new applications. It is with-
out doubt that for the general public the most exciting new developments in modular form
theory are related to Langland’s program on the relation between automorphic forms and
Galois representations. Instances such as Lafforgue’s proof of the Langlands’ conjectures
for the general linear group GL(n,K) for function fields or Ngo’s proof of the fundamen-
tal lemma for general reductive groups received Fields medals. (Lafforgue’s work contin-
ued earlier research of Drinfeld, another Fields medalist, who treated the case GL(2, K).)
Widely known by the general public is Wiles’ work on the modularity of Galois repre-
sentations associated to elliptic curves that allowed him to prove Fermat’s last theorem.
Borcherds’ achievements for which he too was awarded a Fields medal were more con-
nected to classical modular forms. Another major development is Lindenstrauss proof of
the quantum unique ergodicity (QUE) conjecture of Rudnick and Sarnak for arithmetic
surfaces for which he received the Fields medal in 2010. Also highly praised is this year’s
Fields medalist Venkatesh’ work that very successfully brought in homogeneous dynamics
into the subject. In both Lindenstrauss’ and Venkatesh’ work the role of number theory,
while somewhat hidden, is significant. The research presented in this thesis is in different
directions but in the same vain as theirs. Analysis and geometry in the classical sense play
a more accentuated role than number theory but arithmetic considerations are crucial in
most of the results presented below.

The organization of the dissertation is as follows. Chapter 1 gives a very short intro-
duction to modular forms to set up notation. In Chapter 2 we develop a formalism to deal
with cycle integrals of Poincaré series, this formalism will be used on several occasions.
The first of these applications is this same chapter’s main result about the extension of the
Katok-Sarnak formulas taken from [43]. Chapter 3 is about the resulting two-dimensional
equidistribution problem from [43]. Chapter 4 gives a brief description of mock modular
forms and describes how these can be constructed from cycle integrals [40]. It also includes
a construction of certain modular integrals used in connection with linking numbers in the
chapter that follows. In that chapter, Chapter 5, we review Ghys’ work on the geodesic
flow and derive our results from [42] on linking numbers between symmetrized modular
knots. Finally we prove the equidistribution of the angles of Salie sums in Chapter 6 [123].
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Chapter 1

Background on modular forms

1.1 Hyperbolic geometry in the upper half plane

model

One of the major discoveries of János Bolyai [56] was the fact that hyperbolic space contains
a surface (the so called parasphere or horopsphere) on which the natural geometry satisfies
the axioms of Euclid. Beltrami observed that the projection of a hyperbolic plane to
this surface gives models of hyperbolic geometry on an open disc in the Euclidean plane.
One of these models is conformal, and can be taken to the upper half plane via Cayley’s
transformation. This model was rediscovered and popularized by Poincaré while working
on Fuchsian funtions, and is usually named the Poincaré upper half plane [121].

Let H = {z ∈ C : Im z > 0}. The group

GL+
2 (R) = {[ a bc d ] : a, b, c, d ∈ R, ad− bc > 0}

acts on C via Möbius transformations, for g = [ a bc d ] ∈ GL+
2 (R)

gz =
az + b

cz + d
.

If z ∈ H then Im gz = det g Im z
|cz+d|2 and so gz is also in H. One checks easily that this is

a left action of GL+
2 (R) on H, (g1g2)(z) = g1(g2(z)). By an easy application of Swartz’s

lemma one sees that all holomorphic automorphisms of H are given by such Möbius trans-
formations. These automorphisms as a group are easily seen to be isomorphic to PSL2(R).

The metric

ds2 =
1

y2
(dx2 + dy2)

is invariant under the action of PSL2(R) (and has constant curvature -1). It follows that
the conformal isomorphisms are the orientation preserving isometries.

One verifies easily that vertical lines are geodesics, and then so are their PSL2(R)-
translates, which lead to semi-circles whose center lies on the real line. These are then the
hyperbolic lines of the model.

Define the cross ratio of z1, z2, z3, z4 ∈ C by

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
. (1.1.1)
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CHAPTER 1. BACKGROUND AND NOTATION 5

A useful formula for the distance between z and z∗ in H is given by

d(z, z∗) = log |[w, z, z∗, w∗]|, (1.1.2)

where w,w∗ ∈ R are the points where the geodesic arc joining z to z∗ intersects R and
where the order in which this arc passes through the points is given by w, z, z∗, w∗ (see e.g.
[9]).

If d(z, w) is the distance, then in terms of Cartesian coordinates it is easier to work
with

cosh d(z, w) = 1 + 2u(z, w)

where

u(z, w) =
|z − w|2

4 Im z Imw
The measure associated to the metric is also invariant and is given by

µ =
dxdy

y2

The hyperbolic Laplace operator is defined on smooth functions as the operator

∆ = (∆H) = y2(∂2
x + ∂2

y) = (y2∆R2).

One can show that −∆ is a non-negative operator on various L2-spaces (see below),
and so the normalization of the eigenvalues is as follows. If

∆f + λf = 0

then we call λ an eigenvalue. With this understanding the eigenvalues that arise for us are
non-negative and we can write them using additional parameters:

λ =
1

4
+ r2 = s(1− s).

Here r ∈ R or ir ∈ [−1
2
, 1

2
] and s = 1

2
+ ir. So each λ 6= 1

4
corresponds to two r values ±r,

and two s values s = 1
2
± ir.

1.2 SL2(Z)

Let Γ = PSL2(Z), it is a discrete subgroup of PSL2(R) and so acts totally discontinuously
on H. From the Euclidean algorithm or otherwise one shows that Γ = 〈S, T 〉, where as
Möbius transformations S(z) = −1

z
and T (z) = z + 1. We will occasionally overload the

notation by identifying S and T with the matrices

S = [ 0 −1
1 0 ] and T = [ 1 1

0 1 ]

or their image in PSL2(Z).
A fundamental domain for Γ is given by F = {z ∈ H : |Re z| < 1/2 and |z| > 1}, see

the figure. This means that

1. For each z ∈ H there is γ ∈ Γ such that γz ∈ F .

2. If z1, z2 ∈ F and γ ∈ Γ are such that γz1 = z2 then z1, z2 ∈ ∂F , where ∂F is the
boundary of F .

dc_1553_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 1. BACKGROUND AND NOTATION 6

Figure 1.1:

1.3 Invariant functions

The primary object of study in this thesis are functions invariant under Γ: f(γz) = f(z)
for all γ ∈ Γ. These function can be identified with functions f : Γ\H → C, and for the
purposes of spectral theory they can also be identified with functions on F . In what follows
we will freely move between these interpretations.

Define now the inner product of two invariant functions via:

〈f, g〉 =

∫
Γ\H

fgdµ =

∫
F
fgdµ

(This doesn’t depend on the choice of the fundamental domain F), and let

L2(Γ\H) = {f : 〈f, f〉 <∞}.

Then ∆ is an unbounded symmetric operator with respect to this inner product and
the goal is the ”spectral decomposition” of ∆ on L2(Γ\H).

Fourier expansion

Let
Γ∞ = {± [ 1 k

0 1 ] : k ∈ Z}.
Because of Γ∞-invariance, invariant functions have Fourier expansions of the form

f(z) =
∑
n∈Z

an(y)e(nx)

where as usual e(nx) = e2πinx. If ∆f + λf = 0, then by separation of variables the Fourier
coefficients will satisfy

a′′n(y) + (s(1− s)/y2 − 4π2n2)an(y) = 0.

When n = 0 two independent solutions are provided by ys, y1−s, except at s = 1/2, when
they are y1/2, y1/2 log y. When 6= 0, the two independent solutions are given by

√
yKs−1/2(y)

dc_1553_18
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CHAPTER 1. BACKGROUND AND NOTATION 7

and
√
yIs−1/2(y) [100, Chapter 10]. Since Is is exponentially growing as y →∞, it is clear

that for an L2-eigenfunction we have

an(y) = 2a(n)
√
yKs−1/2(2π|n|y).

for some a(n) ∈ C. This is one of many possible normalizations for a(n), but will be used
in this thesis.

Now the Fourier expansion, which in its general form exist for all invariant functions
gives a distinguished subspace given by those forms whose ”constant term” a0(y) is 0 almost
everywhere, as a function of y. It is called the space of cusp forms

L2
cusp = {f ∈ L2(Γ\H) :

∫ 1

0

f(x+ iy)dx = 0 (a.e. y)}

They are easy to characterize in another way that we will now describe.

Incomplete Eisenstein series.

The easiest construction of an invariant function is to average over the group Γ. This can
be done for example if we start with a smooth compactly supported function κ : H → C
and take ∑

g∈Γ

κ(γz)

(The sum is even locally finite and clearly invariant.)
A variant, which is even more important is that we start with a function ψ that is

already Γ∞ invariant and consider ∑
g∈Γ∞\Γ

ψ(γz).

(This is just like the first construction if we let ψ(z) =
∑
n∈Z

κ(z + n).)

Here, and in what follows, summation over left, or right coset spaces mean that the
sum is over a representative set of each coset. Implicit in these definitions is the (usually
trivial) fact that the sum does not depend on this choice of representatives.

In this second construction we can take the Fourier series components of ψ to reduce to
the case when ψ(z) = φ(y)e(mx). These are the Poincaré series that are the main objects
of study in what follows.

The simplest case is when m = 0 where we define

E(z, φ) =
∑

g∈Γ∞\Γ

φ(Im(γz))

and let
E = closure of {E(z, φ) : φ smooth, compactly supported on R+}

Note that in the definition of E(z, φ), we may replace compactly supported φ with
functions that satisfy φ(y) = O(yα) as y → 0+, for some α > 1. The resulting series are
locally uniformly convergent in norm, without any condition on the growth as y → ∞.
Such conditions at infinity are required however if one wants E(z, φ) to be in L2.
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CHAPTER 1. BACKGROUND AND NOTATION 8

By unfolding the sum that defines E(z, φ), one gets that u is orthogonal to E(z, φ), if
and only if ∫ ∞

0

φ(y)a0(y)
dy

y2
= 0.

and so
L2(Γ\H) = E ⊕ L2

cusp.

Interestingly, although E and L2
cusp are defined group theoretically, they have the fol-

lowing spectral description:

• ∆ has a pure discrete spectrum on L2
cusp: there is a basis (in the Hilbert space sense)

consisting of eigenfunctions. (Called eigenforms.)

• ∆ has a pure continuous spectrum on E except for the constant function which comes
as a residue of the Eisenstein series defined below.

1.4 Eisenstein series

The resolution of the space E of incomplete Eisenstein series is the theory of the Eisenstein
series E(z, s) defined for Re(s) > 1 by

E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s = 1
2
(Im z)s

∑
gcd(c,d)=1

|cz + d|−2s, (1.4.1)

where Γ∞ is the subgroup of Γ generated by T . Clearly E(z, s) is an eigenfunction of

∆ = −y−2(∂2
x + ∂2

y)

with eigenvalue λ = s(1 − s). If we define E∗(z, s) = Λ(2s)E(z, s), the Fourier expansion
of E∗(z, s) is given by (see e.g. [74])

E∗(z, s) = Λ(2s)ys+Λ(2−2s)y1−s+2y1/2
∑
n6=0

|n|s−1/2σ1−2s(|n|)Ks− 1
2
(2π|n|y)e(nx), (1.4.2)

where Λ(s) = π−s/2Γ( s
2
)ζ(s). Then E∗(z, s) is entire except at s = 0, 1 where it has simple

poles and satisfies the functional equation

E∗(z, 1− s) = E∗(s). (1.4.3)

Furthermore we have that

Ress=1E
∗(z, s) = −Ress=0E

∗(z, s) = 1
2
. (1.4.4)

The residue at s = 1 gives rise to constant term c0 in (1.4.5).
Let φ : (0,∞)→ C and consider its Mellin transform:

φ̂(s) =

∫ ∞
0

φ(y)y−s
dy

y

By Mellin inversion, if we choose σ > 1 where the Eisenstein series converges absolutely
we get

E(z, φ) =
1

2πi

∫
(σ)

E(z, s)φ̂(s)ds.

We can move the line of integration to σ = 1/2. When doing so we pickup a residue at
s = 1, a constant function. Then we have the following version of the spectral theorem:

dc_1553_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 1. BACKGROUND AND NOTATION 9

Theorem 1.4.1. If f is a smooth function in E then

f(z) = c0 +
1

4π

∫ ∞
−∞

c(t)E(z, 1
2

+ it)dt (1.4.5)

where

c0 = 〈f, 1〉〈1, 1〉−1 =
3

π

∫
F
f(z)dµ(z)

c(t) = 〈f, E(z, 1/2 + it)〉 =

∫
F
f(z)E(z, 1/2 + it)dµ(z)

The complementary statement about the cuspidal part of L2 is the following

Theorem 1.4.2. The eigenfunctions uj of ∆ in L2
cusp form a Hilbert-space basis of L2

cusp.
The associated eigenvalues λj form a discrete set, and λj → ∞. If f ∈ L2

cusp is smooth
then

f(z) =
∑ 〈f, uj〉
〈uj, uj〉

uj.

1.5 Invariant integral operators and the resolvent ker-

nel

Because of the role it plays in our arguments we outline the proof of the spectral resolution
for the cuspidal part. This is merely a sketch, details can be found in [65] and [72].

Let k(z, w) = κ(u(z, w)) where κ is smooth, compactly supported on (0,∞), or suf-
ficiently fast decaying at 0 and at ∞. This is a point pair invariant, in the sense that
k(gz, gw) = k(z, w), and it follows that ∆zk = ∆wk. Therefore we also have for smooth
f : H → C and

Lf =

∫
H
k(z, w)f(w)dµ(w)

that ∆Lf = L∆f .
If in the above f is Γ-invariant we can express Lf as

Lf =

∫
F
K(z, w)f(w)dµ(w)

using the kernel

K(z, w) =
∑
γ∈Γ

k(z, γw).

This is an integral operator on L2(Γ\H), and maps L2
cusp to itself, since taking the 0-th

Fourier coefficient commutes with L.
In general the kernel K is not a bounded function, and the problem of the growth at

the cusp is solved by subtracting

H(z, w) =
∑

g∈Γ∞\Γ

h(z, γw)

where

h(z, w) =

∫
R
k(z, w + t)dt.
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CHAPTER 1. BACKGROUND AND NOTATION 10

H(z, w) is an incomplete Eisenstein series (in w), and so the integral operator with kernel

K̂(z, w) = K(z, w)−H(z, w)

which is bounded on F ×F acts the same way on L2
cusp as L. Therefore L as an operator

on L2
cusp is compact and has discrete spectrum. Since it commutes with ∆ we almost get

that ∆ has discrete spectrum in L2
cusp, but this requires the construction of a kernel whose

image is dense. This is easiest done via the resolvent.

We will say that λ is in the resolvent set for ∆ if there is a bounded operator R, such
that (∆ + λ)Rf = f for all f , and R(∆ + λ)f = f , whenever defined.

A typical λ is in the resolvent set, when it is not we say λ is in the spectrum. In what
follows it is better to use the λ = s(1 − s) description, we will refer to s as being in the
resolvent set, or the spectrum.

To construct R = Rs for any Re s > 1 one looks at geodesic polar coordinates. Start
with a function ks(u) = ks(u(z, w)) such that

∆wgs(u) + s(1− s)kg(u) = δz

where δz is Dirac’s δ at z. Explicit computations show that gs has to satisfy

u(u+ 1)g′′s (u) + (2u+ 1)g′s(u) + s(1− s)gs(u) = 0

and gs(u) ∼ C| log u| as u → 0+. The solutions are standard [100, 48] but their explicit
form is not needed for us, only that ∑

g∈Γ

gs(z, γw)

converges to Gs absolutely and locally uniformly on Re s > 1. By a suitable choice, say
s = 2, this gives that L2

cusp is spanned by the eigenfunctions of (∆ − 2)−1, but then they
are eigenfunctions of ∆ as well.

To justify the analysis it is convenient to look at Ga−Gb for some a 6= b,Re a,Re b > 1.
Then the singularities of Ga(z, w), Gb(z, w) at z = w cancel each other out, and one may
use Hilbert’s identity

Ra −Rb = (a(1− a)− b(1− b))RaRb

where Rs = (∆ + s(1− s))−1.
We therefore have

Theorem 1.5.1. The eigenfunctions uj of ∆ in L2
cusp form a Hilbert-space basis of L2

cusp.
The associated eigenvalues from a discrete set, and λj →∞. If f ∈ L2

cusp then

f(z) =
∑
j

〈f, uj〉
〈uj, uj〉

uj.
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1.6 Residues of the Green function

It is easy to compute the spectral resolution of the resolvent kernel, at least heuristically.
If

Ga(z, w) = c0 +
∑
ϕ

cj(z)ϕj(w) + Eisenstein part

then

(∆ + a(1− a))

∫
F
Ga(z, w)ϕj(w)dµ(w) = ϕj(z)

which gives cj(z) = 1
sj(1−sj)−a(1−a)

φj(z).

Again this can be made precise by considering Ga −Gb.

Ga(z, w)−Gb(z, w) = ρ(a, b, 0) +
1

4πi

∫
(1/2)

ρ(a, b, s)E(z, s)E(w, s)ds+

∑
ϕ

ρ(a, b, sj)ϕj(z)ϕj(w).

where

ρ(a, b, s) =
1

s(1− s)− a(1− a)
− 1

s(1− s)− b(1− b)
It is an important fact that ρ as a rational function of s is O(1/s4). Note that N(T )

the number of eigenvalue parameters sj less than T in magnitude is O(T 2).
From the spectral expansion above we conclude that the Green function has a mero-

morphic continuation. The two parts behave differently

1. The Eisenstein part has an analytic continuation to Re s ∈ (0, 1) with no poles.

2. If sj = 1/2 + itj is one of the spectral parameters then

Ress=sj Gs(z, w) =
∑
ϕ

〈ϕ, ϕ〉−1ϕ(z)φ(w).

We will take the Fourier expansion of Gs(z, w) as in [48]. We have

Gs(z, w) =
√

Imw
∑
m∈Z

F−m(z, s)Ks−1/2(2π|m| Imw)e(mRew), (1.6.1)

where
Fm(z, s) =

∑
γ∈Γ∞\Γ

fm(γz, s), (1.6.2)

where f0(z, s) = ys and for m 6= 0

fm(z, s) = y1/2Is−1/2(2π|m|y)e(mx) = |m|−1/2

2π
Γ(s)
Γ(2s)

M0,s− 1
2
(4π|m|y)e(mx).

By the above we get

Proposition 1.6.1. For any m 6= 0 we have that Fm(z, s) has meromorphic continuation
in s to Re(s) > 0 and that

Ress= 1
2

+ir(2s− 1)Fm(z, s) =
∑
ϕ

〈ϕ, ϕ〉−12a(m)ϕ(z),

where the (finite) sum is over all Hecke-Maass cusp forms ϕ with Laplace eigenvalue 1
4

+r2

and a(m) is defined in (3.2.16).
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1.7 Congruence subgroups and cusps

A congruence subgroup is the preimage (under the natural map) of a subgroup of
SL2(Z/NZ), for some N . In this thesis we will only use

Γ0(q) = {[ a bc d ] ∈ Γ : c ≡ 0 mod q},

and except for the last chapter even this we will only need for q = 4. If Γ′ is a finite index

Figure 1.2: A fundamental domain for Γ0(4).

subgroup of Γ it acts on P 1(Q) = Q ∪ {∞} and has finitely many orbits. These orbits of
Γ′ are called the cusps of Γ′. They are frequently identified with a representative that is in
the closure of a fundamental domain in H when viewed as a subset of P 1(C). If c is a cusp,
we let Γ′c be the stabilizer of one of its representatives, (choosing a different representative
leads to a Γ′ conjugate subgroup). If c = a/c, (a, c) = 1 and γ = [ a bc d ] ∈ Γ, then c = γ∞,
and so γ−1Γ′cγ fixes ∞, and as such is a finite index subgroup of Γ∞. We call this index
the width of c.

Some simple observations follow [72] . Let c be a cusp of Γ0(q). Then c is equivalent to
some u

v
for which v|q. Moreover u

v
, and u′

v′
give rise to the same cusp, if and only if v = v′,

and u ≡ u′ mod (v, q/v). The width of the cusp u
v

is q
(v2,q)

.

For example, when q = 4, there are 3 cusps, ∞, 0, and 1/2, of width 1, 4 and 1 see the
figure above.

1.8 Half integral weight modular forms

Half integral weight modular forms generalize the (modified) Jacobi theta series,

θ(z) = Im(z)1/4
∑
n∈Z

e(n2z),

which is a modular form of weight 1/2 for Γ0(4). Set

J(γ, z) =
θ(γz)

θ(z)
for γ ∈ Γ0(4). (1.8.1)
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Say F defined on H has weight 1/2 for Γ0(4) if

F (γz) = J(γ, z)F (z) for all γ ∈ Γ0(4).

There is a parallel (yet more intricate) development for Maass forms of weight 1/2. The
invariant Laplace operator of weight 1/2 is given by

∆1/2 = y2(∂2
x + ∂2

y)− 1
2
iy∂x.

A Maass form of weight 1/2 for Γ0(4) has weight 1/2, is smooth and satisfies ∆1/2F +
λF = 0, where we write λ = λ(F ) = 1

4
+ ( r

2
)2. Such a form has Fourier expansion

ψ(z) =
∑
n6=0

b(n)W 1
4

signn, ir
2

(4π|n|y)e(nx). (1.8.2)

Usually we also require some growth conditions as well in the three cusps of Γ0(4). In
particular, a Maass cusp form F is in L2(Γ0(4)\H, dµ) and has the further property that
its zeroth Fourier coefficient in each cusp vanishes.

The resolvent kernel G1/2(z, z
′; s) for ∆1/2 in this case was also studied by Fay [48] (see

also [106]). It satisfies(
∆1/2 + s(1− s)

) ∫
Γ0(4)\H

G 1
2
(z, z′; s)u(z)dµ(z) = u(z′) (1.8.3)

for u ∈ L2(Γ0(4)\H, dµ) with weight 1/2. By Theorem 3.1 of [48] we have the Fourier
expansion1

G1/2(z
′, z; s) =

∑
n

F1/2,n(z, s)W 1
4

signn,s− 1
2
(4π|n|y′)e(−nx′)

valid for Im z′ > Im z, where for n 6= 0 and Re(s) > 1

F1/2,n(z, s) =
Γ(s− 1

4
signn)

4π|n|Γ(2s)

∑
γ∈Γ∞\Γ0(4)

J(γ, z)−1f1/2,n(γz, s) (1.8.4)

with
f1/2,n(z, s) = M 1

4
signn,s− 1

2
(4π|n| Im z)e(nRe z).

As in the weight 0 case, we have the following

Proposition 1.8.1. F1/2,n(z, s) has a meromorphic continuation to Re(s) > 0 with simple
poles at the points 1

2
+ ir

2
giving the discrete spectrum of ∆1/2 and that

Ress= 1
2

+ ir
2

(2s− 1)G1/2(z′, z) =
∑

ψ(z′)ψ(z)

and
Ress= 1

2
+ ir

2
(2s− 1)F1/2,n(z, s) =

∑
ψ

b(n)ψ(z). (1.8.5)

Here the sum is over an orthonormal basis {ψ} of Maass cusp forms for Vr and b(n) is as
1.8.2.

1 Note that in the notation of Fay, F1/2,n(z, s) = −Fn(z, s). The minus sign comes from his definition of

∆1/2. We are also using his (38), which gives G1/2(z, z
′; s) = G1/2(z

′, z; s). Observe as well that for weight
1/2 his k = 1/4.
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1.9 Hecke operators and Shimura-Shintani correspon-

dence

In this section we denote by U the space of cusp forms of weight 0 and Ur the space of
cusp forms of eigenvalue 1/4 + r2. Similarly V is the space of weight 1/2 cusp forms, and
Vr those cusp forms with spectral parameter 1/2 + ir/2.

For each m one also has the Hecke operator T (m) acting on U [72], these operators
commute with each other and ∆, therefore preserving Ur. If ϕ is also an eigenform of the
Hecke operators then one knows that a(1) 6= 0, and we may assume that a(1) = 1. We will
call such a form Hecke-normalized.

It is known that the space Ur has a basis of Hecke-normalized eigenforms {ϕ}.
Furthermore we can also assume that a(−n) = a(−1)a(n) = ±a(n). If a(−1) = 1 we

say that ϕ is even, otherwise odd since ϕ(−z) = a(−1)ϕ(z). Thus the associated L-function
has an Euler product (for Re(s) > 1):

L(s;ϕ) =
∑
n≥1

a(n)n−s =
∏

p prime

(1− a(p)p−s + p−2s)−1. (1.9.1)

The space V is equipped with Hecke operators T1/2(m2) [118]. There is an important
distinguished subspace of Vr, denoted by V +

r and called after Kohnen [82] the plus space,
that contains those Maass cusp forms ψ ∈ Vr whose n-th Fourier coefficient b(n) vanishes
unless n ≡ 0, 1 mod 4. It is clearly invariant under ∆1/2.

It is shown in [77] that V +
r has an orthonormal basis Br = {ψ} consisting of eigenfunc-

tion of all Hecke operators T1/2(p2) where p > 2 is prime. Fix such a basis Br.
Given ψ ∈ Br with Fourier expansion

ψ(z) =
∑
n6=0

b(n)W 1
4

signn, ir
2

(4π|n|y)e(nx) (1.9.2)

and a fundamental discriminant d with b(d) 6= 0 the Hecke relation T1/2(p2)ψ = aψ(p)ψ
implies that

Ld(s+ 1
2
)
∑
n≥1

b(dn2)n−s+1 = b(d)
∏
p

(1− aψ(p)p−s + p−2s)−1.

Define the numbers aψ(n) via∏
p

(1− aψ(p)p−s + p−2s)−1 =
∑
n≥1

aψ(n)n−s (1.9.3)

and let
Shimψ(z) = y1/2

∑
n6=0

2aψ(|n|)Kir(2π|n|y)e(nx). (1.9.4)

Note that for some d we must have that b(d) 6= 0 so that this is always defined.

Theorem 1.9.1 (Shimura lift). If ψ ∈ Vr is an eigenfunction of all 1/2-weight Hecke
operators, then Shimψ ∈ Ur and is also an eigenform of all weight 0 Hecke operators.
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1.10 Holomorphic modular forms and functions

Let Γ′ ≤ Γ BE a subgroup of finite index, and let f : H → C be a holomorphic function
that satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z) (1.10.1)

whenever [ a bc d ] ∈ Γ′. Such a form is called weakly holomorphic. We will now assume that
Γ′ = Γ. In particular we have T ∈ Γ′ and so we have

f(z + 1) = f(z).

It follows from this that there is f̃ : {0 < |q| < 1} → C, holomorphic such that

f(z) = f̃(e2πiz) (1.10.2)

We will say f is holomorphic (resp. meromorphic) at ∞ if f̃ is holomorphic (resp.
meromorphic) at 0. For ease of notation we will denote

q = e2πiz (1.10.3)

so that by (1.10.2) we have

f(z) =
∑
n

anq
n (1.10.4)

for some an ∈ C, called the Fourier coefficients of f .

Definition 1.10.1. We let

M !
k = {f : H → C : f satisfies 1.10.1, f(z) =

∞∑
n=n0

anq
n, for some n0}

Similarly let

Mk = {f : H → C : f satisfies 1.10.1, f(z) =
∞∑
n=0

anq
n}

and

Sk = {f : H → C : f satisfies 1.10.1, f(z) =
∞∑
n=1

anq
n}

For example let

E4(z) = 1 + 240
∞∑
n=1

n3qn

1− qn

E6(z) = 1− 504
∞∑
n=1

n5qn

1− qn

and

∆(z) =
1

1728

(
E3

4(z)− E2
6(z)

)
.

Then E4 ∈ M4, E6 ∈ M6 and ∆ ∈ S12. Moreover ∆ does not vanish on H and the
function

j(z) =
E3

4(z)

∆(z)

is invariant. Clearly it is in M !
0, the space of meromorphic modular functions, and it is

well known classically that M !
0 = C(j). The map j : H → C is conformal except at the

orbits of i and −1
2

+
√

3
2
i. It establishes a bijection between Γ\H and C.
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1.11 Closed geodesics

There are three closely related ways to describe closed geodesics. All three will appear in
the thesis.

Hyperbolic elements

Let σ be hyperbolic, with fixed points w1, w2. The geodesic Sσ connecting the two endpoints
becomes a closed geodesic in Γ\H. This requires some clarifying because Γ\H is only an
orbifold. Since σ is hyperbolic, it has real eigenvalues say λ1 > λ2, which we may assume
are positive after replacing σ by −σ if necessary. Then we have

σ

[
w1 w2

1 1

]
=

[
w1 w2

1 1

] [
λ1 0
0 λ2

]
and we can define

σ(t) =

[
w1 w2

1 1

] [
λt1 0
0 λt2

] [
w1 w2

1 1

]−1

.

If we now fix a point z0 on Sσ, then the image of the (parametrized) curve t→ σ(t)z0

becomes periodic on Γ\H with period 1. This may not be the minimal period, if it is we
call σ primitive. Then σ is primitive if and only if it is not a positive power of another
hyperbolic element. Since the eigenvalues λ1, λ2 are units in the maximal order O of
Kσ = Q(

√
(a+ d)2 − 4), σ is primitive if and only if the eigenvalues are the totally positive

fundamental units εD > 1/εD, whereD is the discriminant ofO. The above parametrization
is not by arc-length, the length of a primitive closed geodesic is easy to compute and is

length(CA) = 2 log εD. (1.11.1)

where εD is the totally positive fundamental unit in O.
It is easy to see that conjugate hyperbolic elements give the same curve in Γ\H.

Real quadratic extensions

Let K/Q be a real quadratic field. Then K = Q(
√
D) where D > 1 is the discriminant of

K. Let w 7→ w′ be the non-trivial Galois automorphism ofK and for α ∈ K let N(α) = αα′.
Let Cl+(K) be the group of fractional ideal classes taken in the narrow sense. Thus two
ideals a and b are in the same narrow class if there is a α ∈ K with N(α) > 0 so that
a = (α)b. Let h(D) = #Cl+(K) be the (narrow) class number and εD > 1 be the smallest
unit with positive norm in the ring of integers OK of K. We denote by I the principal class
and by J the class of the different (

√
D) of K, which coincides with the class of principal

ideals (α) where N(α) = αα′ < 0. Then

Cl(K) = Cl+(K)/J

is the class group in the wide sense. Clearly J 6= I iff OK contains no unit of norm −1.
In this case each wide ideal class is the union of two narrow classes, say A and JA. A
sufficient condition for J 6= I is that D is divisible by a prime p ≡ 3 (mod 4).

For a fixed narrow ideal class A ∈ Cl+(K) and a = wZ + Z ∈ A with w > w′ let Sw
be the geodesic in H with endpoints w′ and w. The modular closed geodesic CA on Γ\H
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is defined as follows. Define γw = ± [ a bc d ] ∈ Γ, where a, b, c, d ∈ Z are determined by

εDw =aw + b (1.11.2)

εD =cw + d,

with εD our unit. Then γw is a primitive hyperbolic transformation in Γ with fixed points
w′ and w. Since

(cw + d)−2 = ε−2
D < 1,

we have that w is the attracting fixed point of γw. This induces on the geodesic Sw a
clock-wise orientation. Distinct a and w for A induce Γ-conjugate transformations γw. If
we choose some point z0 on Sw then the directed arc on Sw from z0 to γw(z0), when reduced
modulo Γ, is the associated closed geodesic CA on Γ\H. It is well-defined for the class A
and gives rise to a unique set of oriented arcs (that could overlap) in F . We also use CA
to denote this set of arcs. Again it is well-known and easy to see using (1.11.2) that

length(CA) = 2 log εD. (1.11.3)

Binary quadratic forms

In place of ideal classes, it is sometimes more convenient to use binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2,

where a, b, c ∈ Z and D = b2−4ac. Quadratic forms are especially useful when one wants to
consider arbitrary discriminants D. For fundamental D all quadratic forms are primitive
in that gcd(a, b, c) = 1 and we have a simple correspondence between narrow ideal classes
of K and equivalence classes of binary quadratic forms of discriminant D with respect to
the usual action of PSL(2,Z). This correspondence is induced by a 7→ Q(x, y), where
a = wZ + Z with wσ < w and

Q(x, y) = N(x− wy)/N(a).

The map takes the narrow ideal class of a to the Γ-equivalence class of Q. The inverse map
is given by Q(x, y) 7→ wZ + Z where

w =
−b+

√
D

2a
,

provided we choose Q in its class to have a > 0. The following table of correspondences is
useful. Suppose that Q = [a, b, c] represents in this way the ideal class A. Then

[a,−b, c] represents A−1 (1.11.4)

[−a, b,−c] represents JA (1.11.5)

[−a,−b,−c] represents JA−1. (1.11.6)

For a primitive quadratic form Q(x, y) = [a′, b′, c′] with any non-square discriminant
d′ > 1 its group of automorphs in Γ is generated by

γQ = ±
[
t−b′u

2
−c′u

a′u t+b′u
2

]
, (1.11.7)
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where (t, u) gives the smallest integer solution with t, u ≥ 1 to

t2 − d′u2 = 4

(see [108]).
If

Q(x, y) = N(x− wy)/N(a)

as above then γQ = γw and εD = t+u
√
D

2
. Therefore the closed geodesic associated to the

hyperbolic element γQ agrees with the closed geodesic associated to the narrow class A.
Using (1.11.6) we see that the closed geodesic CJA−1 has the same image as CA but with

the opposite orientation.
It is also possible to describe the primitive quadratic form associated to a hyperbolic

element. If σ =
(
a b
c d

)
is a primitive hyperbolic element, then let u = gcd(c, d − a, b) and

set

Qσ(z) = − c
u
X2 +

a− d
u

XY +
b

u
Y 2,

then Qσ is primitive and its group of automorphs is generated by σQσ = σ.
When D > 0 and Q is primitive and n ∈ Z+ define CnQ = CQ. When D < 0 let

zQ = −b+
√
D

2a
∈ H if Q = [a, b, c] and let ωQ be the number of automorphs of Q in Γ.

Remark 1.11.1. The arcs of CA might retrace back over themselves. When this happens
CA is said to be reciprocal. In terms of the class A, it means that JA−1 = A or equivalently
A2 = J . Sarnak [110] has given a comprehensive treatment of these remarkable geodesics
for arbitrary discriminants.

1.12 Genus characters

We need to define genus characters for arbitrary discriminants. We will mainly use the
language of binary quadratic forms. Let QD be the set of Q with discriminant D that
are positive definite when D < 0. For Q = [a, b, c] with discriminant D = d′d where d is
fundamental we define

χ(Q) =

{(
d
m

)
if (a, b, c, d) = 1 where Q represents m and (m, d) = 1,

0, if (a, b, c, d) > 1.

Now assume that d is a fundamental discriminant and that D = dd′. We need an
associated exponential sum, defined for c ≡ 0 (mod 4) by

Sm(d′, d; c) =
∑

b(mod c)

b2≡D (mod c)

χ
(
[ c
4
, b, b

2−D
c

]
)
e
(

2mb
c

)
. (1.12.1)

Clearly
S−m(d′, d; c) = Sm(d′, d; c) = Sm(d′, d; c).

We have the identity

χd(−Q) = (sgn d)χd(Q). (1.12.2)
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A crucial ingredient in what follows is an identity connecting the weight 1/2 Klooster-
man sum with Sm(d, d′; c) above. In a special case this identity is due to Salié and variants
have found many applications in the theory of modular forms. We shall use a general
version due essentially to Kohnen [83]. To define the weight 1/2 Kloosterman sum we
need an explicit formula for the theta multiplier in J(γ, z) = θ(γz)/θ(z) introduced above.
This may be found in [118, p. 447]. As usual, for non-zero z ∈ C and v ∈ R we define
zv = |z|v exp(iv arg z) with arg z ∈ (−π, π]. We have

J(γ, z) = (cz + a)1/2ε−1
a

(
c
a

)
for γ = ± [ ∗ ∗c a ] ∈ Γ0(4),

where
(
c
a

)
is the extended Kronecker symbol and

εa =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4).

For c ∈ Z+ with c ≡ 0 (mod 4) and m,n ∈ Z let

K1/2(m,n; c) =
∑

a(mod c)

(
c
a

)
εae
(
ma+na

c

)
be the weight 1/2 Kloosterman sum. Here a ∈ Z satisfies

aa ≡ 1 (mod c).

It is convenient to define the modified Kloosterman sum

K+(m,n; c) = (1− i)K1/2(m,n; c)×

{
1 if c/4 is even

2 otherwise.
(1.12.3)

It is easily checked that

K+(m,n; c) = K+(n,m; c) = K+(n,m; c). (1.12.4)

The following identity is proved by a slight modification of the proof given by Kohnen in
[83, Prop. 5, p. 259] (see also [35], [75] and [124]).

Proposition 1.12.1. For positive c ≡ 0 (mod 4), d,m ∈ Z with d ≡ 0, 1 (mod 4) and D
a fundamental discriminant, we have

Sm(d,D; c) =
∑

n|(m, c4)

(
D
n

)√
n
c
K+

(
d, m

2D
n2 ; c

n

)
.

By Möbius inversion in two variables this can be written in the form

c−1/2K+(d,m2D, c) =
∑

n|(m, c4)

µ(n)
(
D
n

)
Sm/n

(
d,D; c

n

)
. (1.12.5)

Note that this gives an identity for K+(d, d′, c) for any pair d, d′ ≡ 0, 1 (mod 4). An
immediate consequence of (1.12.5) and the obvious upper bound

Sm(d,D; c)�ε c
ε
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CHAPTER 1. BACKGROUND AND NOTATION 20

is the upper bound
K+(d, d′, c)�ε c

1/2+ε, (1.12.6)

which holds for any ε > 0. Furthermore, since for any m,n ∈ Z we have

K1/2(m,n; c) = 1
4
K1/2(4m, 4n; 4c),

(1.12.6) implies that for any m,n ∈ Z

K1/2(m,n, c)�ε c
1/2+ε.

This elementary bound correspond to Weil’s bound for the ordinary (weight 0) Kloosterman
sum

K0(m,n; c) =
∑

a(mod c)

(a,c)=1

e
(
ma+na

c

)
,

which states that (see [128], [66, Lemma 2])

K0(m,n; c)�ε (m,n, c)1/2c1/2+ε. (1.12.7)
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Chapter 2

The Shimura-Shintani
correspondence and formulas of
Katok-Sarnak type

2.1 Background and statements of results

Correspondences between automorphic forms on different groups have a long and rich
history as can be seen in the works of Doi-Naganuma, Shimura, Langlands and many
others. The Shimura-Shintani [118, 119] correspondence lead to many applications via the
formulas of Waldspurger [125] and Kohnen-Zagier [84]. The analogous formula in case of
Maass forms was given by Katok and Sarnak[77]. A particularly important application of
such formulas is due to Duke on the equidistribution of CM points and closed geodesics
[35]. There are various methods for proving this family of formulas that use either theta-
kernels, or spectral methods [11]. Recently an extension of the Katok-Sarnak formula was
developed in [41] with applications to a new type of equidistribution result. In this chapter
we will present the part of the paper where this extension is proved.

2.1.1 Katok-Sarnak type formulas

Let u(z) = E(z, s),. We recall a version of a classical formula of Hecke. Let L(s, χd) be
the Dirichlet L-function with character given by the Kronecker symbol χd(·) =

(
d
·

)
and for

α = 1
2
(1− sign d) define the completed L-function

Λ(s, χd) = π−s/2Γ( s+a
2

)|d|s/2L(s, χd). (2.1.1)

Theorem 2.1.1. For the genus character χ associated to D = d′d and Re(s) = 1
2

we have

Λ(s, χd′)Λ(s, χd) =
∑
Q∈

χ(Q)


∫
CQ
i∂zE

∗(z, s)dz if d′, d < 0∫
CQ
E∗(z, s)y−1|dz| if d′, d > 0

2
√
πω−1

D E∗(zA, s) if d′d < 0.

This formula is due to Hecke except when d′, d < 0. Theorem 2.1.1 can be expressed in
terms of Maass forms of weight 1/2.

Set for fundamental d

b(d, s) = (4π)−1/4|d|−3/4Λ(s, χd)

21
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CHAPTER 2. KATOK-SARNAK FORMULAS 22

and define b(dm2, s) for m ∈ Z+ by means of the Shimura relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2 , s

)
= ms−1/2σ1−2s(m)b(d, s).

Then it follows from [40, Proposition 2 p.959] that

E∗1/2(z, s) = Λ(2s)2sy
s
2

+ 1
4 + Λ(2− 2s)21−sy

3
4
− s

2 +∑
n≡0,1(mod 4)

n 6=0

b(n, s)W 1
4

sgnn, s
2
− 1

4
(4π|n|y)e(nx)

has weight 1/2 for Γ0(4). The idea behind this example originates in the papers of H.
Cohen [27] and Goldfeld and Hoffstein [51]. See also [117], [34].

The formula
Λ(s, χd′)Λ(s, χd) = 2

√
π|D|3/4b(d′, s)b(d, s) (2.1.2)

in connection with Theorem 2.1.1 hints strongly as to what should take place for cusp
forms; this is the extension (and refinement) of the formula of Katok-Sarnak mentioned
earlier. Their result from [77], together with [8], gives the case d = 1 in the following.1

Theorem 2.1.2 ([43]). Let

ϕ(z) = 2y1/2
∑
n6=0

a(n)Kir(2π|n|y)e(nx)

be a fixed even Hecke-Maass cusp form for Γ. Then there exists a unique nonzero F (z)
with weight 1/2 for Γ0(4) with Fourier expansion

F (z) =
∑

n≡0,1(mod 4)
n6=0

b(n)W 1
4

sgnn, ir
2

(4π|n|y)e(nx),

such that for any pair of co-prime fundamental discriminants d′ and d we have

12
√
π|D|

3
4 b(d′)b(d) = 〈ϕ, ϕ〉−1

∑
Q∈

χ(Q)


∫
CQ
i∂zϕ(z)z if d′, d < 0∫

CQ
ϕ(z)y−1|dz| if d′, d > 0

2
√
π ω−1

D ϕ(zQ) if d′d < 0,

(2.1.3)

where χ is the genus character associated to D = d′d. Here 〈F, F 〉 =
∫

Γ0(4)\H |F |
2dµ = 1

and the value of b(n) for a general discriminant n = dm2 for m ∈ Z+ is determined by
means of the Shimura relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
= a(m)b(d).

1Except that when d′ < 0 we get in (2.1.3) on the RHS 2
√
π ω−1D instead of their (2

√
π ωD)−1.
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CHAPTER 2. KATOK-SARNAK FORMULAS 23

Remarks. The
√
π in (2.1.2) and (2.1.3) is an artifact of the normalization of the Whit-

taker function. Also, if we choose F in Theorem 2.1.2 so that 〈F, F 〉 = 6, which is the
index of Γ0(4) in Γ, then we get 2 in the LHS of (2.1.3) instead of 12, which matches the
Eisenstein series case (2.1.2). Perhaps not coincidentally,

Ress=1E
∗
1/2(z, s) = 1

2
θ(z)

and by [26] we have 〈1
2
θ(z), 1

2
θ(z)〉 = 6.

It is also possible to evaluate |b(d)|2. When d = 1 this was done in [77] and in general
by Baruch and Mao [8]. Here we quote their result in our context. Under the same
assumptions as in Theorem 2.1.2 we have

12π|d||b(d)|2 = 〈ϕ, ϕ〉−1Γ(1
2

+ ir
2
− sign d

4
)Γ(1

2
− ir

2
− sign d

4
)L(1

2
, ϕ, χd), (2.1.4)

where
L(s, ϕ, χd) =

∑
n≥1

χd(n)a(n)n−s.

Hence in the cuspidal case our problem also reduces to obtaining a sub-convexity bound,
this time for a twisted L-function.

Results like Theorem 2.1.2 and (2.1.4) have a long history, especially in the holomorphic
case. Some important early papers are those by Kohnen and Zagier [84], Shintani [119]
and Waldspurger [125]. All of these relied on the fundamental paper of Shimura [118].

Examples

It is interesting to evaluate numerically some examples of Theorem 2.1.2. This is possible
thanks to computations done by Strömberg [122]. Note that half-integral weight Fourier
coefficients, even in the holomorphic case, are notoriously difficult to compute.

For example, for ϕ(z) we take the first occurring even Hecke-Maass form with eigenvalue

λ = 190.13154731 · · · = 1
2

+ r2,

where r/2 = 6.889875675 . . . . We have

〈ϕ, ϕ〉 = 7.26300636× 10−19.

A large number of Hecke eigenvalues for this ϕ are given (approximately, but with great
accuracy) in the accompanying files of the paper of Booker, Strömbergsson and Venkatesh
[14]. The first six values to twelve places are given in Table 2.1.

A few values of b(d) for fundamental d (except for d = 1, which we computed indepen-
dently) are computed from Strömberg’s Table 5 and given in our Table 2.2.

Let us illustrate Theorem 2.1.2 in a few cases. Consider first the quadratic field Q(
√

3),
for which D = 12 = 4 · 3. There are 2 classes: the principal class I with associated cycle
((4)) and J with cycle ((2, 3)). For D = 12 = (1)(12)

127/4
√
π b(1)b(12) = 2〈ϕ, ϕ〉−1

∫
∂FI

ϕ(z)y−1|dz| = −1.94029× 109

and for D = (−3)(−4)

127/4
√
π b(−3)b(−4) = λ〈ϕ, ϕ〉−1

∫
FI
ϕ(z)dµ(z) = 1.04759× 1010.
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Table 2.1: Hecke eigenvalues

p a(p)

2 1.549304477941
3 0.246899772453
5 0.737060385348
7 -0.261420075765
11 -0.953564652617
13 0.278827029162

Table 2.2: Weight 1/2 coefficients

d > 0 b(d) d < 0 b(d)

1 10894.40532 -3 6404.69711
5 894.31877 -4 11927.63292
8 2191.95607 -7 8495.02618
12 -1298.74136 -8 -4512.60385

Two examples when D < 0: D = (1)(−3)

18 33/4 b(1)b(−3) = 〈ϕ, ϕ〉−1ϕ(1+
√
−3

2
) = 2.86296× 109

and D = (1)(−4)

12 43/4 b(1)b(−4) = 〈ϕ, ϕ〉−1ϕ(i) = 4.41046× 109.

In these examples the integrals and special values were computed by approximating ϕ by
its Fourier expansion and using the Fourier coefficients given in the files accompanying [14].

2.2 Proofs

2.2.1 Maass forms and the resolvent kernel

Our proof of Theorem 2.1.2 is similar in spirit to that of Hecke’s for the Eisenstein series
case. We will employ resolvent kernels for the Laplacian of weight 0 and weight 1/2. The
residue of such a resolvent at a spectral point gives the reproducing kernel for the associated
eigenspace. Our principal reference here is the paper of Fay [48]. Other references include
Hejhal [65] and Roelcke [106].

We begin with the case of Maass cusp forms of weight 0 for Γ. For Re(s) > 1 consider
the Poincaré series

Fm(z, s) =
∑

γ∈Γ∞\Γ

fm(γz, s), (2.2.1)

where f0(z, s) = ys and for m 6= 0

fm(z, s) = y1/2Is−1/2(2π|m|y)e(mx) = |m|−1/2

2π
Γ(s)
Γ(2s)

M0,s− 1
2
(4π|m|y)e(mx).
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The function Fm(z, s), which was first studied by Neunhöffer [98] and Niebur [99], is a
Γ-invariant eigenfunction of ∆:

∆Fm(z, s) = s(1− s)Fm(z, s).

As in Proposition 1.8.1 we will get to the Maass cusp forms through residues of Fm(z, s).

Proposition 2.2.1. For any m 6= 0 we have that Fm(z, s) has meromorphic continuation
in s to Re(s) > 0 and that

Ress= 1
2

+ir(2s− 1)Fm(z, s) =
∑
ϕ

〈ϕ, ϕ〉−12a(m)ϕ(z),

where the (finite) sum is over all Hecke-Maass cusp forms ϕ with Laplace eigenvalue 1
4

+r2

and a(m) is defined in (3.2.16).

For comparison with the weight 1/2 case that we will treat next, it is instructive to
carry the analysis one step further. The Fourier expansion of Fm(z, s) is given by (see
[48],[40])

Fm(z, s) = fm(z, s) + 2|m|1/2−sσ2s−1(|m|)
(2s−1)Λ(2s)

y1−s + 2y1/2
∑
n 6=0

Φ(m,n; s)Ks− 1
2
(2π|n|y)e(nx),

where for Re(s) > 1

Φ(m,n; s) =
∑
c>0

c−1K(m,n; c) ·

{
I2s−1(4π

√
|mn| c−1) if mn < 0

J2s−1(4π
√
|mn| c−1) if mn > 0.

Here K(m,n; c) is the Kloosterman sum

K(m,n; c) =
∑

a(mod c)

(a,c)=1

e
(
ma+na

c

)
.

It follows that for fixed m,n with mn 6= 0 the function Φ(m,n; s) has meromorphic con-
tinuation to Re(s) > 0 and

Ress= 1
2

+ir(2s− 1)Φ(−m,n; s) = 2
∑
ϕ

〈ϕ, ϕ〉−1a(m)a(n),

where the sum is over all Hecke-Maass cusp forms ϕ for Γ with eigenvalue 1
4

+ r2.
There is a parallel (yet more intricate) development for Maass forms of weight 1/2 as

outlined in Section 1.1.8. By Theorem 3.1 of [48] we have the Fourier expansion2

G1/2(z
′, z; s) =

∑
n

F1/2,n(z, s)W 1
4

signn,s− 1
2
(4π|n|y′)e(−nx′)

valid for Im z′ > Im z, where for n 6= 0 and Re(s) > 1

F1/2,n(z, s) =
Γ(s− 1

4
signn)

4π|n|Γ(2s)

∑
γ∈Γ∞\Γ0(4)

J(γ, z)−1f1/2,n(γz, s) (2.2.2)

2 Note that in the notation of Fay, F1/2,n(z, s) = −Fn(z, s). The minus sign comes from his definition of

∆1/2. We are also using his (38), which gives G1/2(z, z
′; s) = G1/2(z

′, z; s). Observe as well that for weight
1/2 his k = 1/4.
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with
f1/2,n(z, s) = M 1

4
signn,s− 1

2
(4π|n| Im z)e(nRe z).

As above it follows that F1/2,n(z, s) has a meromorphic continuation to Re(s) > 0 with
simple poles at the points 1

2
+ ir

2
giving the discrete spectrum of ∆1/2 and that

Ress= 1
2

+ ir
2

(2s− 1)G1/2(z′, z) =
∑

ψ(z′)ψ(z)

and
Ress= 1

2
+ ir

2
(2s− 1)F1/2,n(z, s) =

∑
ψ

b(n)ψ(z). (2.2.3)

Here the sum is over an orthonormal basis {ψ} of Maass cusp forms for Vr and b(n) is
defined by

ψ(z) =
∑
n6=0

b(n)W 1
4

signn, ir
2

(4π|n|y)e(nx). (2.2.4)

2.2.2 Plus space

There is an important distinguished subspace of Vr, denoted by V +
r and called after Kohnen

the plus space, that contains those Maass cusp forms ψ ∈ Vr whose n-th Fourier coefficient
b(n) vanishes unless n ≡ 0, 1 (mod 4). It is clearly invariant under ∆1/2. We shall apply to
F1/2,n(z, s) from (1.8.4) the projection operator pr+ : Vr → V +

r defined by pr+ = 2
3
WU + 1

3
,

where3

Uψ(z) =
√

2
4

3∑
ν=0

ψ( z+ν
4

) and W ψ(z) = e
iπ
4

(
z
|z|

)− 1
2ψ(− 1

4z
).

We will need an expansion of each of the Fourier coefficients of pr+F1/2,m(z, s) whenm ≡ 0, 1
(mod 4). These involve certain Kloosterman sums of weight 1/2 that we now recall. Let(
c
a

)
be the extended Kronecker symbol (see [118]) and set

εa =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4).

Then for c ∈ Z+ with c ≡ 0 (mod 4) and m,n ∈ Z

K1/2(m,n; c) =
∑

a(mod c)

(
c
a

)
εae
(
ma+na

c

)
(2.2.5)

defines the weight 1/2 Kloosterman sum. Here a ∈ Z satisfies aa ≡ 1 (mod c). It is
convenient to define the modified Kloosterman sum

K+(m,n; c) = (1− i)K1/2(m,n; c)×

{
1 if c/4 is even

2 otherwise.

It is easily checked that

K+(m,n; c) = K+(n,m; c) = K+(n,m; c). (2.2.6)

3The constant
√

2 which is not present in [40] is due to the factor y1/4 that comes from our normalization.
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It follows4 from [40, Proposition 2 p.959] that for Re(s) > 1 and d any non-zero integer
with d ≡ 0, 1 (mod 4) we have

pr+F1/2,d(z, s) =
2

3

Γ(s− sign d
4

)

4π|d|Γ(2s)
M 1

4
sign d,s− 1

2
(4π|d|y)e(dx) (2.2.7)

+
∑

n≡0,1(4)

Φ+(n, d; s)W 1
4

signn,s− 1
2
(4π|n|y)e(nx)

where for n 6= 0 we have

Φ+(n, d; s) =
1

|nd| 12
Γ(s− signn

4
)Γ(s− sign d

4
)

3
√
π 22−2s Γ(2s− 1

2
)

∑
c≡0(4)
c>0

K+(n, d; c)

c

I2s−1

(
4π
√
|nd|
c

)
if nd < 0

J2s−1

(
4π
√
|nd|
c

)
if nd > 0.

(2.2.8)

As in [48, Cor 3.6 p.178] we have that Φ+(n, d; s) has a meromorphic continuation to all s
and it is now straightforward to get from (2.2.7) and (1.8.5) the following residue formula.

Theorem 2.2.2. For fixed discriminants d′, d the function Φ+(d′, d; s) has meromorphic
continuation to Re(s) > 0 and

Ress= 1
2

+ ir
2

(2s− 1)Φ+(d′, d; s) =
∑
ψ

b(d′)b(d),

where the sum is over an orthonormal basis of cusp forms ψ for V +
r and b(d) is the Fourier

coefficient of ψ as in (1.8.2).

2.2.3 Cycle integrals of Poincaré series

We next give an identity from which the extended Katok–Sarnak formula will be derived.
Our main source is [40], where other relevant references are also given. As in the previous
section, we will deal with general discriminants. This causes no essential new difficulties
and makes it easier to quote some of our previous results. It also makes it clear how one
could approach our main theorem for non-fundamental discriminants.

As further preparation for the proof of Theorem 3.2.3, in this section we will compute
the cycle integrals of certain general Poincaré series, which we will then specialize. This
will be used both here and in Chapter 5. To begin we need to make some elementary
observations about cycle integrals. For Q ∈ Qd with d > 0 not a square let SQ be the
oriented semi-circle defined by

a|z|2 + bRe z + c = 0, (2.2.9)

directed counterclockwise if a > 0 and clockwise if a < 0. Clearly

SgQ = gSQ, (2.2.10)

for any g ∈ Γ. Given z ∈ SQ let CQ be the directed arc on SQ from z to g
Q
z, where g

Q

was defined in (1.11). It can easily be checked that CQ has the same orientation as SQ. It
is convenient to define

dzQ =

√
d dz

Q(z, 1)
. (2.2.11)

4There is a typo in (2.19) of [40]. It should read P+
d (z, s) = 3

2pr+(Pd(z, s)).
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On the geodesic corresponding to Q we have the dzQ = |dz|
y

= ds. If z′ = gz for some g ∈ Γ
we have

dz′gQ = dzQ. (2.2.12)

For any Γ–invariant function f on H the integral
∫
CQ
f(z)dzQ is both independent of

z ∈ SQ and is a class invariant. This is an immediate consequence of the following lemma
that expresses this cycle integral as a sum of integrals over arcs in a fixed fundamental
domain for Γ. This lemma will also be used in Chapter 5 as well. Let F be the standard
fundamental domain for Γ

F = {z ∈ H;−1
2
≤ Re z ≤ 0, |z| ≥ 1} ∪ {z ∈ H; 0 < Re z < 1

2
, |z| > 1}.

Lemma 2.2.3. Let Q ∈ Qd be a form with d > 0 not a square and F ′ = gF be the image
of F under any fixed g ∈ Γ. Suppose that f is Γ-invariant and continuous on SQ. Then for
any z ∈ SQ we have ∫

CQ

f(z)dzQ =
∑
q∈(Q)

∫
Sq∩F ′

f(z)dzq, (2.2.13)

where (Q) denotes the class of Q.

Proof. Let f̃(z) = f(z) if z ∈ F ′ and f̃(z) = 0 otherwise, so f(z) =
∑

g∈Γ f̃(gz) with only
a discrete set of exceptions. Thus∫

CQ

f(z)dzQ =

∫
CQ

∑
g∈Γ

f̃(gz)dzQ =
∑

g∈Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

f̃(gσz)dzQ =
∑

g∈Γ/ΓQ

∫
SQ

f̃(gz)dzQ.

Take gz as a new variable. By (2.2.10) and (2.2.12) we get∫
CQ

f(z)dzQ =
∑

g∈Γ/ΓQ

∫
SgQ

f̃(z)dzgQ,

which immediately yields (2.2.13).

The general Poincaré series are built from a test function φ : R+ → C assumed to be
smooth and to satisfy φ(y) = Oε(y

1+ε), for any ε > 0. For any m ∈ Z let

Gm(z, φ) =
∑

g∈Γ∞\Γ

e (mRe gz)φ(Im gz). (2.2.14)

This sum converges uniformly on compacta and defines a smooth Γ-invariant function on
H. We will express its cycle integrals in terms of the sum Sm(d, d′; c) from (1.12.1). Define
for t > 0 the integral transform.

Φm(t) =

∫ π

0

cos(2πmt cos θ)φ(t sin θ)
dθ

sin θ
.

For φ as above we see that this integral converges absolutely and that Φm(t) = Oε(t
1+ε).

As we have seen, we may assume without loss that d,D > 0.
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Proposition 2.2.4. Suppose that d, d′ > 0 with D = dd′ not a square. Then for all m ∈ Z∑
Q∈Γ\Qdd′

χ(Q)

∫
CQ

Gm(z, φ)dzQ =
∑

0<c≡0(4)

Sm(d, d′; c)Φm

(
2
√
dd′

c

)
.

Proof. For each Q, interchanging the sum defining Gm and the integral yields∫
CQ

Gm(z, φ)dzQ =
∑

g∈Γ∞\Γ

∫
CQ

e(mRe gz)φ(Im gz)dzQ. (2.2.15)

Now ΓQ, the group of automorphs of Q, acts freely on Γ∞\Γ so we have that∑
g∈Γ∞\Γ

∫
CQ

e(mRe gz)φ(Im gz)dzQ =

∑
g∈Γ∞\Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

e(mRe gσz)φ(Im gσz)dzQ =

∑
g∈Γ∞\Γ/ΓQ

∫
SQ

e(mRe gz)φ(Im gz)dzQ.

Applying (2.2.12) and (2.2.10) in the last expression, we get from (2.2.15) that∫
CQ

Gm(z, φ)dzQ =
∑

g∈Γ∞\Γ/ΓQ

∫
SgQ

e(mRe z)φ(Im z)dzgQ

and hence that∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(z, φ)dzQ =
∑

Q∈Γ∞\QdD

χ(Q)

∫
SQ

e(mRe z)φ(Im z)dzQ.

We now need to parameterize the cycle explicitly. Let

zQ =
−b
2a

+
i
√
d

2|a|
, (2.2.16)

which is easily seen to be the apex of the circle SQ. We can parameterize SQ by θ ∈ (0, π)
via

z =

{
Re zQ + eiθ Im zQ if a > 0

Re zQ − e−iθ Im zQ if a < 0.

With this parameterization we find that

Q(z, 1) =
d

4a
·

{
e2iθ − 1 if a > 0

e−2iθ − 1 if a < 0

and hence that dzQ = dθ/ sin θ. If χ(−Q) = −χ(Q) the integrals cancel each other. When
χ(Q) = χ(−Q) we arrive at the identity∑

Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(z, φ)dzQ = 2
∑

Q∈Γ∞\Q+
dD

χ(Q) e(mRe zQ)Φm(Im zQ).

The proof of Proposition 2.2.4 is thus reduced to the following lemma.
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Lemma 2.2.5. Let φ be as above and suppose that dd′ = D is not a square. Then for all
m ∈ Z we have the identity∑

Γ∞\Q+
D

χ(Q) e(mRe zQ)φ(Im zQ) = 1
2

∑
0<c≡0(4)

Sm(d, d′; c)φ
(

2
√
|D|
c

)
,

where zQ is defined in (2.2.16).

Proof. Under the growth condition on φ both series are absolutely convergent, and can be
rearranged at will. Consider the left hand side. For g = ±( 1 k

0 1 ) ∈ Γ∞ and Q = [a, b, c] ∈
QD, gQ = [a, b− 2ka, ∗] and so the map

[a, b, c] 7→ (a, b mod 2a)

is Γ∞-invariant. Thus

∑
Γ∞\Q+

D

χ(Q)e(mRe zQ)φ(Im zQ) =
∞∑
a=1

φ

(√
|D|

2a

)∑
b (2a)

χ([a, b, b
2−D
4a

]) e(−mb
2a

).

The sum in b is restricted to those values for which b2−D
4a

is an integer. This happens
exactly when b2 ≡ D (mod 4a). Thus the inner sum is∑

b (2a)
b2≡D (4a)

χ([a, b, b
2−D
4a

])e(−mb
2a

) = 1
2

∑
b (4a)

b2≡D (4a)

χ([a, b, b
2−D
4a

]) e(−2mb
4a

) = 1
2
Sm(d, d′; 4a).

Replace 4a by c to finish the proof.

We remark that the positive definite version of Lemma 2.2.4 is following well-known
formula for dd′ = D < 0:∑

Q∈Γ\QD

w−1
Q χ(Q)Gm(z, φ) = 1

2

∑
0<c≡0(4)

Sm(d, d′; c)φ
(

2
√
|dD|
c

)
. (2.2.17)

This formula is an immediate consequence of Lemma 2.2.5.
The following is the weight 2 analog of Proposition 2.2.4. Because the proof requires

minor modifications of the proof presented above for Proposition 2.2.4 it will be omitted.

Proposition 2.2.6. Suppose that d′, d < 0 and that dd′ = D is not a square. Then for all
m ∈ Z ∑

Q∈Γ\QD

χ(Q)

∫
CQ

Pm(z, φ)dz =
∑

0<c≡0(4)

Sm(d, d′; c)Ψm

(
2
√
D
c

)
where

Ψm(t) = it

∫ π

0

e(mt cos θ)φ(t sin θ)eiθdθ (2.2.18)

The following result together with Propositions 1.6.1 and 2.2.2, will be used to derive
the extended Katok-Sarnak formula. The first and second parts follow directly from [40],
but we include them here for the sake of completeness. Recall that Fm was defined in
(1.6.2) and Φ+ in (2.2.8).
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Theorem 2.2.7 ([43]). Let m 6= 0 and Re(s) > 1. Suppose that d is a fundamental
discriminant and that d′ is any discriminant such that D = d′d is not a square. Then

6π
1
2 |D|

3
4 |m|

∑
n|m
n>0

n−
3
2

(
d
n

)
Φ+
(
d′, m

2d
n2 ; s

2
+ 1

4

)
=

∑
Q∈Γ\QD

χ(Q)


2
√
πω−1

Q Fm(zQ, s) if d′d < 0,∫
CQ
Fm(z, s)y−1|dz| if d′, d > 0,∫

CQ
i ∂zFm(z, s)dz if d′, d < 0.

(2.2.19)

Lemma 2.2.8. For m 6= 0, d′d < 0 and Re(s) > 1 we have∑
Q∈Γ\QD

χ(Q)ω−1
Q Fm(zQ, s) = 2−1/2|D|1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Is−1/2(4π|m|
√
D
c

).

Proof. This follows directly from the above. See also [40, Prop.4 p.970].

Similarly we have for the second case the following.

Lemma 2.2.9. For m 6= 0, d′, d > 0 with d′d not a square and Re(s) > 1 we have

∑
Q∈Γ\QD

χ(Q)

∫
CQ
Fm(z, s)y−1|dz| = 2s−1/2 Γ( s

2
)2

Γ(s)
D1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Js−1/2(4π|m|
√
D
c

).

Proof. Note that
√
D

Q(z,1)
dz = y−1|dz| on CQ. Therefore Proposition 2.2.4 is applicable. The

result follows from AppendixA.2 where the associated transform Φ is evaluated for the
Poincaré series above.

The third case requires some new computations.

Lemma 2.2.10. For m 6= 0, d′, d < 0 with d′d not a square and Re(s) > 1 we have

∑
Q∈Γ\QD

χ(Q)

∫
CQ
i∂zFm(z, s)dz = 2s−1/2 Γ( s+1

2
)2

Γ(s)
D1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Js−1/2(4π|m|
√
D
c

).

Proof. Now (1.6.2) and a calculation using differentiation formulas for the Whittaker func-
tions in [93, p.302] gives for that for Re(s) > 1

−2i∂zFm(z, s) =
∑

γ∈Γ∞\Γ

f2,m(γz, s)
d(γz)

dz

where
f2,m(z) = −s|m|−1/2(2πy)−1 Γ(s)

Γ(2s)
Msgn(m),s−1/2(4π|m|y)e(mx). (2.2.20)

We can now apply Proposition 2.2.6 for the Poincaré series

Pm(z, φ) =
∑

γ∈Γ∞\Γ

f(γz)
d(γz)

dz
.
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formed by f(z) = e(mRe z)φ(Im z) where

φ(t) = −s|m|−1/2(2πy)−1 Γ(s)
Γ(2s)

Msgn(m),s−1/2(4π|m|y).

Recall that in this case∑
Q∈Γ\QD

χ(Q)

∫
CQ

Pm(z, φ)dz =
∑

0<c≡0(4)

Sm(d, d′; c)Ψm

(
2
√
D
c

)
where

Ψm(t) = it

∫ π

0

e(mt cos θ)φ(t sin θ)eiθdθ (2.2.21)

The proof of the theorem is now reduced to the following lemma about special functions.

Lemma 2.2.11. For µ ∈ C, t > 0 and Re(s) > 0∫ π

0

e±i(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ
= G(s, µ)t1/2Js−1/2(t) (2.2.22)

where

G(s, µ) = e(±µ/4)(2π)3/2 2−sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)
.

Proof. See Appendix A.3.

The following identity, which allows us to relate the cycle integrals to the spectral
coefficients, is proved by a slight modification of the proof given by Kohnen in [83, Prop.
5, p. 259] (see also [35], [75] and [124]).

Lemma 2.2.12. For positive c ≡ 0 (mod 4), d,m ∈ Z with d′ ≡ 0, 1 (mod 4) and d a
fundamental discriminant, we have

Sm(d′, d; c) =
∑

n|(m, c4)

(
d
n

)√
n
c
K+

(
d′, m

2d
n2 ; c

n

)
.

Proceeding as in [40], Proposition 2.2.7 follows from Lemmas 2.2.9,2.2.10 and 2.2.12.

Remarks. For the purpose of proving the extended Katok–Sarnak formula by the method
of spectral residues we actually have many choices of Poincaré series to use since we can
add a holomorphic form without changing the residues. Thus we could employ the Poincaré
series originally used by Selberg [114] (see also [55]). This might make some of the cal-
culations somewhat simpler but that would not give an exact formula like we obtain in
Proposition 2.2.7. One advantage of an exact formula is that we can also use it to show
that cycle integrals of modular functions give weight 1/2 weak Maass forms. This was done
in [40] for the first two cases of Proposition 2.2.7. The last case can also be applied in this
way. It is also possible to prove Theorem 2.1.1 by these methods.
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2.2.4 Proof of Theorem 2.1.2

Recall the plus space V +
r of Maass cusp forms of weight 1/2 defined in Section 2.2.1 above.

It is shown in [77] that V +
r has an orthonormal basis Br = {ψ} consisting of eigenfunction

of all Hecke operators Tp2 where p > 2 is prime. Fix such a basis Br. Given ψ ∈ Br with
Fourier expansion

ψ(z) =
∑
n6=0

b(n)W 1
4

sgnn, ir
2

(4π|n|y)e(nx) (2.2.23)

and a fundamental discriminant d with b(d) 6= 0 the Hecke relation Tp2ψ = aψ(p)ψ implies
that

Ld(s+ 1
2
)
∑
n≥1

b(dn2)n−s+1 = b(d)
∏
p

(1− aψ(p)p−s + p−2s)−1.

Define the numbers aψ(n) via∏
p

(1− aψ(p)p−s + p−2s)−1 =
∑
n≥1

aψ(n)n−s (2.2.24)

and let
Shimψ(z) = y1/2

∑
n6=0

2aψ(|n|)Kir(2π|n|y)e(nx). (2.2.25)

Note that for some d we must have that b(d) 6= 0 so that this is always defined.
It is convenient to define

Trd,d′(ϕ) =
1

〈ϕ, ϕ〉
∑

Q∈Γ\QD

χ(Q)


2
√
πω−1

Q ϕ(zQ) if d′d < 0∫
CQ
ϕ(z)y−1|dz| if d′, d > 0,∫

CQ
i ∂zϕ(z)dz if d′, d < 0,

Theorem 2.1.2 follows easily from the next Proposition.

Proposition 2.2.13. For any even Hecke-Maass cusp form ϕ for Γ with Laplace eigenvalue
1
2

+r2 there is a unique ψ ∈ Br with Fourier expansion given in (1.9.2) so that ϕ = Shimψ
and such that for d a fundamental discriminant and d′ any discriminant such that D = d′d
is not a square we have

Trd,d′(ϕ) = 12π
1
2D

3
4 b(d′)b(d),

where χ is the genus character associated to the factorization D = d′d.

Proof. Let m > 0 and suppose that D = d′d > 1 where d is fundamental. First we will
show that

12π
1
2D

3
4

∑
ψ∈Br

b(d′)b(d)aψ(m) =
∑
ϕ

a(m)Trd,d′(ϕ), (2.2.26)

where ϕ is summed over all Hecke–Maass cusp forms with Laplace eigenvalue 1
2

+ r2. We
have from Propositions 1.6.1 and 2.2.7 that for every m 6= 0

6π
1
2D

3
4 |m|

∑
n|m
n>0

n−
3
2

(
d
n

)
Ress= 1

2
+ir(2s− 1)Φ+

(
d′, m

2d
n2 ; s

2
+ 1

4

)
=
∑
ϕ

2a(m)Trd,d′(ϕ).

(2.2.27)
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Observe that

Ress= 1
2

+ir(2s− 1)Φ+
(
d′, d; s

2
+ 1

4

)
=2ir lim

s→1
2

+ir

(
s− (1

2
+ ir)

)
Φ+
(
d′, d; s

2
+ 1

4

)
which, setting s = 2w − 1

2
, =4ir lim

w→1
2

+
ir
2

(
w − (1

2
+ ir

2
)
)
Φ+ (d′, d;w)

= 4Res
s=

1
2

+
ir
2

(2s− 1)Φ+ (d′, d; s) .

Therefore, Proposition 2.2.2 gives

Ress= 1
2

+ir(2s− 1)Φ+
(
d′, m

2d
n2 ; s

2
+ 1

4

)
= 4

∑
ψ

b(d′)b(m
2d
n2 ),

where the sum is over an orthonormal basis of cusp forms {ψ} for V +
r and b(d) is the

Fourier coefficient of ψ as in (1.8.2). By (2.2.27) we get

24π
1
2D

3
4m

∑
ψ∈Br

b(d′)
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
=
∑
ϕ

2a(m)Trd,d′(ϕ),

and we obtain (2.2.26) by using the Hecke relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
= aψ(m)b(d).

It follows from (2.2.26) and (1.9.4) that

12π1/2D3/4
∑
ψ

b(d′)b(d)Shim(ψ) =
∑
ϕ

Trd,d′(ϕ)ϕ. (2.2.28)

This identity is valid for all discriminants d, d′ where d is fundamental, and dd′ is not a
square. As in the proof of Theorem 1 on p.129 of Biró in [11], one can conclude that
Shim(ψ) is a weight 0 Maass form with eigenvalue 1

2
+ r2 and by (1.9.3) it is some ϕ. This

leads to
12π1/2D3/4

∑
ϕ

∑
Shim(ψ)=ϕ

b(d′)b(d)ϕ =
∑
ϕ

Trd,d′(ϕ)ϕ.

The linear independence of the Maass forms ϕ now gives the following version of the
proposition:

12π1/2D3/4
∑

Shim(ψ)=ϕ

b(d′)b(d) = Trd,d′(ϕ).

Finally, it is known (see [8, Theorem 1.2]) that ψ 7→ ϕ = Shim(ψ) gives a bijection between
Br and the even Hecke-Maass cusp forms ϕ with Laplace eigenvalue 1

2
+ r2, thus finishing

the proof of Proposition 2.2.13.

Remarks. Some of our arguments in the proof of Theorem 2.1.2 are quite similar in spirit
to those of Biró in [11], who applies the Kuznetsov formula to prove a generalization of the
Katok-Sarnak formula to general levels, but still for only positive discriminants d.

The method employed by Katok-Sarnak to prove their formula is based on a theta
correspondence. This idea, which is a refinement of that introduced by Maass [92], was
first used by Siegel to study indefinite quadratic forms. It would be interesting to apply
this method to give our extension.
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Chapter 3

A new geometric invariant for real
quadratic fields

The purpose of this chapter is to give a geometric interpretation and related applications
of the new case in the extension of Katok-Sarnak formula.

3.1 Background and statements of results

3.1.1 Fuchsian groups

Suppose that Γ ⊂ PSL(2,R) is a non-elementary Fuchsian group (see [9] for background).
Let Λ be the limit set of Γ. The group Γ is said to be of the first kind when Λ = R,
otherwise of the second kind. In general, R − Λ is a countable union of mutually disjoint
open intervals. Let NΓ be the intersection of the (non-Euclidean) open half-planes that
lie above the geodesics having the same endpoints as these intervals. This NΓ is called
the Nielsen region of Γ. It is shown in [9, Thm 8.5.2] that NΓ is the smallest non-empty
Γ-invariant open convex subset of H. Clearly NΓ = H exactly when Γ is of the first kind.

Suppose now that Γ is finitely generated. Let H∗ be the upper half-plane with all
elliptic points of Γ removed. Then Γ\H∗ becomes a Riemann surface of genus g with
t < ∞ conformal disks and finitely many points removed. The group Γ is said to have
signature (g;m1, . . . ,mr; s; t) where m1, . . . ,mr are the orders of the elliptic points and
there are s parabolic cusps of Γ\H∗. The boundary circle of each removed disk is freely
homotopic in Γ\H∗ to a unique un-oriented closed geodesic (see e.g. [47, Prop. 1.3]). These
geodesics are the image in Γ\H∗ of the boundary of the Nielsen region.

Thus Γ\NΓ is a Riemann surface with signature having t geodesic boundary curves,
s cusps, and r orbifold points. Let FΓ ⊂ H be a fundamental domain for Γ\NΓ. For
simplicity we will identify the surface with FΓ. This should cause no confusion as long as
it is understood that for us ∂FΓ denotes the boundary of the surface (as a subset of H)
and not of the fundamental domain as a subset of H. In other words, we will not count as
part of the boundary of FΓ those sides of FΓ that are identified by Γ. The Gauss-Bonnet
theorem [9, Thm 10.4.3] gives

1
2π

area(FΓ) = 2(g − 1) + s+ t+
r∑
j=1

(
1− 1

mj

)
. (3.1.1)

Suppose now that Γ = PSL(2,Z) is the usual modular group. As is well-known, Γ is

35
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generated by
S = ± [ 0 1

−1 0 ] and T = ± [ 1 1
0 1 ]

and has signature (0; 2, 3; 1, 0). Let F denote the standard fundamental domain for Γ :

F = {z ∈ H;−1/2 ≤ Rex ≤ 0 and |z| ≥ 1} ∪ {z ∈ H; 0 < Rex < 1/2 and |z| > 1}.

By (3.1.1) or otherwise we have that area(F) = π
3
.

An interesting question whether a closed geodesic is the boundary of an immersed
surface in Γ\H. We will show that this the case, if we are not looking at immersed disks,
immersions of a disk from which a point os removed.

Theorem 3.1.1. There is a Fuchsian group of the second kind with signature

(0; 2, . . . , 2︸ ︷︷ ︸
` times

; 1; 1).

The hyperbolic Riemann surface FA thus has genus 0, contains ` points of order 2 and
has one cusp and one boundary component. The boundary ∂FA is a simple closed geodesic
whose image in F is CA.

We will also prove that these immersed surfaces when averaged over genera become
equidistributed as the discriminant approaches ∞.

3.2 Proofs

3.2.1 Minus continued fractions

Each ideal class A ∈ Cl+(K) contains fractional ideals of the form wZ + Z ∈ A where
w ∈ K is such that w > wσ. Consider the minus (or backward) continued fraction of w:

w = Ja0, a1, a2, . . .K = a0 −
1

a1 −
1

a2 −
1

a3 − · · ·
where aj ∈ Z with aj ≥ 2 for j ≥ 1. This continued fraction is eventually periodic and has
a unique primitive cycle ((n1, . . . , n`)) of length `, only defined up to cyclic permutations.
Different admissible choices of w lead to the same primitive cycle. The continued fraction
is purely periodic precisely when w is reduced in the sense that

0 < w′igma < 1 < w

(see [61], [132]). The cycle ((n1, . . . , n`)) characterizes A; it is a complete class invariant.
The length ` = `A, which is also the number of distinct reduced w, is another invariant as
is the sum

m = mA = n1 + · · ·+ n`. (3.2.1)

The cycle of A−1 is given by that of A reversed:

((n`, . . . , n1)) . (3.2.2)

To see this observe that A−1 is represented by (1/w′igma)Z + Z and by [135, p.128] the
continued fraction of 1/w′igma has (3.2.2) as its cycle.
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3.2.2 Hyperbolic surfaces

The basic object we will study is a certain hyperbolic surface with boundary associated to
A. This surface is built out of the cycle ((n1, . . . , n`)) of A. For each class A choose once
and for all a fixed wZ + Z ∈ A with w reduced, hence a fixed `-tuple (n1, . . . n`). For each
k = 1, . . . ` define the elliptic element of order 2 in Γ:

Sk = T (n1+···nk)ST−(n1+···nk). (3.2.3)

Consider the subgroup of the modular group

ΓA = 〈S1, S2, . . . , S`, T
m〉 = 〈S, S1, . . . , S`−1, T

m〉, (3.2.4)

where m was defined in (3.2.1). We will show below in Theorem 4.1.1 that ΓA is an infinite
index (i.e. thin) subgroup of Γ, hence a Fuchsian group of the second kind. A different
choice of wZ + Z ∈ A with reduced w leads to a conjugate subgroup ΓA in Γ, in fact
conjugate by a translation. In case ` = 1 we have that ΓA = 〈S, T n1〉, which is among
those studied by Hecke [64].

Let NA = NΓA be the Nielsen region of ΓA and FA = FΓA the associated surface. Before
giving its properties, it is useful to see some examples.

Example

Consider the quadratic field Q(
√

7), for which D = 28 = 4 · 7. There are 2 classes: the
principal class I with associated cycle ((3, 6)) and J with cycle ((3, 3, 2, 2, 2)).

Figure 3.1: Fundamental Domain for ΓI when d = 28.

Figure 3.2: The Surface FI .
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Figure 3.3: The Surface FI .

The fundamental norm one unit is ε28 = 8 + 3
√

7. The class I contains

(3+
√

7
2

)Z + Z

with reduced w = 3+
√

7
2

= J3, 6K. A fundamental domain for the Fuchsian group of the
second kind

ΓI = 〈S, T 3ST−3, T 9〉

is indicated in Figure 3.1. It has signature (0; 2, 2; 1, 1). The surface FI is depicted in
Figure 3.2 and is bounded from below by the simple closed geodesic ∂FI consisting of the
two large circular arcs. The length of ∂FI is 2 log(8 + 3

√
7) and the area of FI is 2π.

Another depiction is in Figure 3.3, where the two distinguished points are the points of
order 2 and segments connect them to the boundary geodesic.

Figure 3.4: Fundamental Domain for ΓJ in case d = 28.

Figure 3.5: The Surface FJ .

The other class J contains the ideal (5+
√

7
3

)Z + Z with reduced

5+
√

7
3

= J3, 3, 2, 2, 2K.
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A fundamental domain for the Fuchsian group of the second kind

ΓJ = 〈S, T 3ST−3, T 6ST−6, T 8ST−8, T 10ST−10, T 12〉

is indicated in Figure 3.4. It has signature (0; 2, 2, 2, 2, 2; 1, 1). The surface FJ is pictured
in Figure 3.5. It has area 5π. The closed geodesic that bounds FJ also has length 2 log(8+
3
√

7).
When either surface FI or FJ is mapped to F we obtain overlapping polygons and the

image of their boundaries are the closed geodesics CI and CJ , which have the same image
as sets but with opposite orientations. This is depicted in Figure 3.6.

Figure 3.6: Projection of FI and ∂FI to the modular surface.

Theorem 3.2.1. The group ΓA defined in (3.2.4) is Fuchsian of the second kind with
signature

(0; 2, . . . , 2︸ ︷︷ ︸
` times

; 1; 1).

The hyperbolic Riemann surface FA thus has genus 0, contains ` points of order 2 and
has one cusp and one boundary component. The boundary ∂FA is a simple closed geodesic
whose image in F is CA. We have

length(∂FA) = 2 log εD and area(FA) = π`A. (3.2.5)

The conformal class of FA determines A.

Proof. The first two statements of Theorem 3.2.1 follow easily from an examination of the
fundamental domain for

ΓA = 〈S, S1, . . . , S`−1, T
m〉

constructed like in the examples above. That this construction is valid is an easy con-
sequence of the Poincaré theorem for fundamental polygons [104] (see also [94]). It also
follows that ΓA is isomorphic to the free product

Z ∗ Z/2Z ∗ · · · ∗ Z/2Z︸ ︷︷ ︸
` times

.
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Note that the unique boundary circle of ΓA\H∗ can be visualized by identifying endpoints
of the intervals on R bounding the fundamental domain using elliptic elements and the
translation of ΓA.

We next show that the boundary component of FA is a simple closed geodesic whose
image in Γ\H is CA. Using the minus continued fraction of w we have by [76] that for γw
from (1.11.2)

γw = S1S2 · · ·S`Tm, (3.2.6)

where Sk is given in (3.2.3) and m in (3.2.1). In particular,

γw ∈ ΓA = 〈S1, S2, . . . , S`, T
m〉.

Recall that we have fixed a choice of reduced w for each ideal class A. Consider the point
z, the intersection of the unit circle with the geodesic in H with endpoints w′igma and w,
which exists since w is reduced. We have by (3.2.6) that

γw(z) = γ(z) = S1S2 · · ·S`Tm(z), so

T−mS` · · ·S2S1γ(z) = z. (3.2.7)

The circular arc from z to γ(z) will intersect the circle with equation (x−n1)2 +y2 = 1
at some z∗, say, since by the construction of the backward continued fraction expansion we
have that n1 − 1 < w < n1. The image of the arc from z∗ to γ(z) under S1 covers another
part of the boundary of FA. Again the excess arc from S1(z∗) to S1γ(z) will intersect the
circle (x − n1 − n2)2 + y2 = 1 at some z∗∗ since again n1 + n2 − 1 < S1(w) < n1 + n2.
Using now S2 we can map the new excess arc from S2(z∗∗) to S2S1γ(z). We can repeat
this process of cutting off arcs until we have applied S`. Now observe that by (3.2.7), upon
application of T−m, we have returned to z. Since the maps are isometries we see the
bounding geodesic arcs piece together to give exactly one copy of CA, known to have length
2 log εD.

See Figure 3.7 for an illustration of the proof when w = 3+
√

7
2

from our first example

above. Here γ = T 3 S T 6 S = ±( 17 −3
6 −1 ) while z∗ = 5+

√
3i

2
, S1(z∗) = 7+

√
3i

2
and S1γ(z) =

17+
√

3i
2

.

Figure 3.7: Cutting up ∂FA.

Clearly the constructed geodesic is freely homotopic to the boundary circle of ΓA\H∗
and hence by uniqueness is the boundary curve of FA.

The fact that the area of FA is π`A is an immediate consequence of (3.1.1).
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Finally we must show that the conformal type of FA determines A to complete the proof
of Theorem 3.2.1. We will do this by demonstrating that this conformal type determines
the cycle ((n1, . . . n`)). By the above construction of FA, each elliptic fixed point in FA
determines a unique point on the boundary geodesic that is closest to it. The boundary
geodesic (which is simple and oriented) determines an ordering of these points, which is
unique up to cyclic permutations. This determines an ordering of the elliptic fixed points.
Using (1.1.2) we compute the cycle of hyperbolic distances between successive fixed points
of S0, S1, . . . S` inH. This is given by (V (n1), V (n2), . . . V (n`)), where V (x) is the monotone
increasing function

V (x) = log
(x

2

(√
x2 + 4 + x

)
+ 1
)
.

The cycle of distances is a conformal invariant since these distances and the orientation of
the boundary geodesic are preserved under conformal equivalence. The cycle of distances
clearly determines the cycle ((n1, . . . n`)) since V is monotone increasing.

This completes the proof of Theorem 3.2.1.

Remark 3.2.2. Although this is not needed for us, note that the shaded region in the figure
can be described as the convex polygon U that is the intersection of the strip 0 ≤ Re z ≤
m with the closed hyperbolic half-planes that lie above the geodesics whose endpoints
are Sk...S1w

′igma and Sk...S1w, and the closed hyperbolic half-planes that lie above the
geodesics given by T n1+...+nkC, where C is the unit semi-circle. It is easy to see that U
is contained in the closure of Nielsen region of Γ (since the semi-circles with endpoints
Sk...S1w

′igma and Sk...S1w are). The image of U in ΓA\H is then part of the closure of
Γ\NA with the same boundary, and so must equal to it, (since the latter is path-connected).
This shows that the shaded region in the figure is the intersection of the (closure of the)
Nielsen region with the (closure of the) fundamental domain for ΓA.

3.2.3 Uniform distribution

In this section we state the main result of this paper. To obtain satisfactory results about
the uniform distribution of FA, we average over a genus of ideal classes of K. A genus is
an element of the group of genera, which is (isomorphic to) the quotient group

Gen(K) = Cl+(K)/(Cl+(K))2. (3.2.8)

It is classical that Gen(K) ∼= (Z/2Z)ω(D)−1 so if GD is a genus in Cl+(K) then

#GD = 21−ω(D)h(D), (3.2.9)

where ω(D) is the number of distinct prime factors of D.

Theorem 3.2.3. Suppose that for each positive fundamental discriminant D > 1 we choose
a genus GD ∈ Gen(K). Let Ω be an open disc contained in the fundamental domain F for
Γ = PSL(2,Z) and let ΓΩ be its orbit under the action of Γ. We have

π
3

∑
A∈GD

area(FA ∩ ΓΩ) ∼ area(Ω)
∑
A∈GD

area(FA), (3.2.10)

as D →∞ through fundamental discriminants.
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In view of Theorem 3.2.1, the uniform distribution of closed geodesics proven in [35]
(generalized to genera) can be stated in the following form1:

π
3

∑
A∈GD

length(∂FA ∩ ΓΩ) ∼ area(Ω)
∑
A∈GD

length(∂FA) (3.2.11)

as D →∞ through fundamental discriminants.
The statement of (3.2.11) given in [35] has averaging over the entire class group. Unlike

(3.2.11), (3.2.10) is actually trivial when one averages over the whole group since we get
an even covering in that case and the ∼ can be replaced by equality. The reason is that
FA and FJA−1 are complementary in that their union covers F evenly and the images of
their boundary geodesics are the same as sets but with opposite orientations. For instance,
the surfaces FI and FJ are complementary. In general, (3.2.10) is trivial when J is in
the principal genus. This happens if and only if D is not divisible by any primes p ≡ 3
(mod 4) or, equivalently, when D is the sum of two squares (see e.g. [59, Prop. 3.1]). In
particular, for any class A that satisfies A2 = J , so that CA is reciprocal, we have that FA
covers F evenly.

An interesting special case for which (3.2.10) is non-trivial is when D = 4p where p ≡ 3
(mod 4) is prime. The case p = 7 was illustrated above. There are exactly two genera, one
containing I and the other containing J . Cohen and Lenstra [28] have conjectured that I
and J are the only classes in their respective genera for > 75% of such p. This happens
exactly when K has wide class number one. Suppose that arbitrarily large such p exist.
Then Theorem 3.2.3 and (3.2.11) imply that as p→∞ through such p we have that

area(FI ∩ ΓΩ)

area(FI)
∼ area(Ω)

area(F)
and

length(∂FI ∩ ΓΩ)

length(∂FI)
∼ area(Ω)

area(F)
.

Remarks. Since FI and FJ are complementary, their distribution properties are directly
related. A pretty class number formula of Hirzebruch and Zagier [61] (see also [131]) states
that for such p > 3

`J − `I = 3h(−p),
where h(−p) is the class number of the imaginary quadratic field Q(

√
−p). Upon using

that area(FA) = π`A, this is equivalent to the area formula

area(FJ)− area(FI) = 3πh(−p).

There is a third hyperbolic distribution problem, one associated to imaginary quadratic
fields. For K = Q(

√
D) with D < 0 we may again associate to each ideal class A a geometric

object, a CM point we denote by zA ∈ F where zAZ + Z ∈ A. Choose for each D a genus
GD, noting that (3.2.8) and (3.2.9) are valid for D < 0. Then by [35] generalized to genera
we have that

π
3

#{A ∈ GD | zA ∈ Ω} ∼ area(Ω) #GD (3.2.12)

as D → −∞ through fundamental discriminants.

3.2.4 The analytic approach

Here we give a brief review of the analytic method and then state the extensions of formulas
of Hecke and Katok-Sarnak that we will use to prove Theorem 3.2.3. Since it creates no

1Recall our convention concerning ∂FA.
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new difficulties, we will allow both positive and negative D and set things up so that
only obvious modifications are needed to prove the other two uniform distribution results
(3.2.11) and (3.2.12). The analytic approach that we follow is based on the spectral theory
of the Laplacian for automorphic forms and strong sub-convexity estimates for L-values, or
equivalently non-trivial estimates of Fourier coefficients of modular forms of half-integral
weight. Standard references for this section are Hejhal’s book [65], the book of Iwaniec
[72] and that of Iwaniec and Kowalski [74]. Some other related distribution problems are
treated in Sarnak’s book [111].

In this paper we will make use of many standard special functions, including the Bessel
functions Is, Js, Ks and the Whittaker functions Mr,s,Wr,s. Some standard references for
their properties are [93] and [126].

The initial idea is to employ hyperbolic Weyl integrals, which are analogous to the usual
Weyl sums used in proving the uniform distribution of sequences of points on a circle. One
approximates the characteristic function of ΓΩ from above and from below by smooth Γ-
invariant functions with compact support. If f : H → R+ is such a function we expand it
spectrally:

f(z) = c0 +
1

4π

∫ ∞
−∞

c(t)E(z, 1
2

+ it)dt+
∑
ϕ

c(ϕ)〈ϕ, ϕ〉−1ϕ(z), (3.2.13)

where 〈ϕ, ϕ〉 =
∫
F |ϕ(x)|2dµ(z). Here E(z, s) is the Eisenstein series as in 1.4.1 of weight 0

given for Re(s) > 1 by

E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s = 1
2
(Im z)s

∑
gcd(c,d)=1

|cz + d|−2s, (3.2.14)

where Γ∞ is the subgroup of Γ generated by T .
The second sum in (1.4.5) is over the countably infinite set of Hecke-Maass cusp forms ϕ.

Like the Eisenstein series, these are Maass forms in that they are Γ-invariant eigenfunctions
of ∆ with ∆ϕ = λϕ, where we express the eigenvalue uniquely as

λ = λ(ϕ) = 1
4

+ r2 (3.2.15)

and choose r ≥ 0. Being a Hecke-Maass cusp form means that, in addition, ϕ is an
eigenfunction of all the Hecke operators, that ‖ϕ‖2 = 〈ϕ, ϕ〉 < ∞ and that the constant
term in its Fourier expansion at i∞ is zero. We can and always will normalize such a
Hecke-Maass cusp form ϕ so that this Fourier expansion has the form2

ϕ(z) = 2y1/2
∑
m6=0

a(m)Kir(2π|m|y)e(mx), (3.2.16)

where a(1) = 1. We can also assume that

a(−n) = a(−1)a(n) = ±a(n).

If a(−1) = 1 we say that ϕ is even, otherwise odd since ϕ(−z) = a(−1)ϕ(z) or equivalently
ϕ(z) = a(−1)ϕ(z). Thus the associated L-function has an Euler product (for Re(s) > 1):

L(s;ϕ) =
∑
n≥1

a(n)n−s =
∏

p prime

(1− a(p)p−s + p−2s)−1. (3.2.17)

2Note the 2 in front!
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Furthermore, its completion

Λ(s;ϕ) = π−sΓ( s+ir+ε
2

)Γ( s−ir+ε
2

)L(s;ϕ), (3.2.18)

is entire and satisfies the functional equation Λ(s;ϕ) = (−1)εΛ(1−s;ϕ), where ε = 1−a(−1)
2

.

Remark 3.2.4. Note that the Eisenstein series is also an even Hecke eigenform and that
its associated L-function

L(s; t) =
∑
n≥1

nitσ−2it(m)m−s = ζ(s+ it)ζ(s− it),

defined for a fixed t, satisfies Λ(s, t) = π−sΓ( s+it
2

)Γ( s−it
2

)L(s, t) = Λ(1−s, t). Unlike Λ(s;ϕ),
it has poles, reflecting the fact that E(z, s) is not a cusp form.

Weyl’s law gives that as x→∞

#{ϕ;λ(ϕ) ≤ x} ∼ x

12
. (3.2.19)

The first five values of λ to five decimal places (see [14]) are

91.14134, 148.43213, 190.13154, 206.41679, 260.68740. (3.2.20)

It appears to be likely that each λ is simple but this is open. The eigenvalues in (3.2.20),
all belong to odd forms except the third.

For our f the spectral expansion (1.4.5) converges uniformly on compact subsets of H.

Hyperbolic Weyl integrals

The Weyl integrals give the remainder terms in the asymptotics and are of two types de-
pending on whether they come from the Eisenstein series or the Hecke-Maass cusp forms.
Let u(z) denote either E(z, s) for Re(s) = 1/2 or 〈ϕ, ϕ〉−1ϕ(z). Note that E(z, s) is abso-
lutely integrable over FA for Re(s) = 1/2 by (1.4.2). To pick out genera we need genus
characters, or what is the same thing, real characters of Cl+(K). These are in one to one
correspondence with factorizations D = d′d where d′, d are fundamental discriminants. See
Section 1.12 for more information about the genus characters. Given such a χ define

Weyl(u, χ) =
∑

A∈Cl+(K)

χ(A)


λ
2

∫
FA
u(z)dµ(z) if d′, d < 0∫

∂FA
u(z)y−1|dz| if d′, d > 0

1
ωD

u(zA) if d′d < 0.

(3.2.21)

Here ωD = 1 except that ω−3 = 3 and ω−4 = 2.
To prove uniform distribution by the analytic method we need estimates for Weyl(u, χ)

for real χ that are non-trivial in the D-aspect and uniform (but weak) in the spectral
aspect. This is enough since the Weyl integral in (3.2.21) in the first case is zero when
d′, d > 0 as is that in the second case when d′, d < 0.
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3.2.5 Proof of Theorem 3.2.3

To get the surface case of Theorem 2.1.1 we need to express the Weyl surface integrals in
terms of cycle integrals. Of course, the main tool for this is Stokes’ theorem. We do the
cusp form case at the same time.

Lemma 3.2.5. For u as in (3.2.21) we have

λ
2

∫
FA
u(z)dµ(z) =

∫
CA
i ∂zu(z)dz. (3.2.22)

By an integral over CA we always mean the integral from z0 ∈ Sw to γw(z0) ∈ Sw along
the arc on Sw, assuming that the integral is independent of z0.

A little more generally we have the following lemma. Recall that m was defined in
(3.2.1).

Lemma 3.2.6. Suppose that F (z) is any real analytic ΓA-invariant function on H that
satisfies

∆F = −y2(Fxx + Fyy) = s(1− s)F (3.2.23)

and the growth condition
∫ m

0
∂zF (x+ iY )dx = o(1) as Y →∞. Then we have

s(1−s)
2

∫
FA
F (z)dµ(z) =

∫
∂FA

i ∂zF (z)dz. (3.2.24)

Proof. By Stokes’ theorem we have∫
FA(Y )

∂z(∂zF (z))dz dz = −
∫
∂FA

∂zF (z)dz +

∫ m

0

∂zF (x+ iY )dx,

where FA(Y ) = {z ∈ FA; Im(z) < Y }. Using that dz dz = −2idx dy, we have by (3.2.23)

∂z∂zF (z)dz dz = i
2
s(1− s)F (z)dµ(z).

By our growth assumption on F we get (3.2.24) by letting Y →∞.

To deduce Lemma 3.2.5, note that both E(z, s) and ϕ(z) satisfy (3.2.23) and that the
growth condition for ϕ is clear while that for E(z, s) when Re(s) = 1/2 follows from its
Fourier expansion (1.4.2). Finally, since both ϕ(z) and E(z, s) are Γ-invariant we may
replace the integrals over ∂FA by integrals over CA.

We now show how to deduce Theorem 3.2.3 (and (3.2.11) and (3.2.12)) from Theorems
2.1.1 and 2.1.2. In order to show that we actually have an asymptotic formula we need a
lower bound for the main term that is larger than the remainder terms. The main term
comes from the constant c0 in the spectral expansion (1.4.5). It is a little more complicated
to obtain a lower bound for the main term in (3.2.10) than the corresponding bounds for
geodesics or CM points, which we get almost directly from Siegel’s theorem. For the
geodesic case we have by the class number formula and (3.2.9) that∑

A∈GD

length(∂FA) = 22−ω(D)h(D) log εD.

Similarly, when D < 0 we have

#GD = 21−ω(D)h(D).
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By Siegel’s theorem we obtain that the main term in either case is �ε |D|1/2−ε for any
ε > 0, where the implied constant is not effective.

Unlike the lengths of the closed geodesics, the areas of the surfaces FA are not the same
for different A! Still, we have the needed lower bound.

Proposition 3.2.7. For any ε > 0 we have that∑
A∈GD

area(FA)�ε D
1/2−ε. (3.2.25)

The implied constant is not effectively computable for a given ε.

Proof. We have by Theorem 3.2.1 that∑
A∈GD

area(FA) =
∑
A∈GD

`A. (3.2.26)

We have the identity (see [135, p.167] or [135, p.138])∏
w reduced

w = εD. (3.2.27)

Now for a reduced w there are a, b, c ∈ Z with D = b2 − 4ac and

a, c > 0 and a+ b+ c < 0

so that w = −b+
√
D

2a
. Thus

√
D ≥

√
D
a

= w − w′igma > w − 1.

We conclude that w <
√
D + 1, so (3.2.27) easily implies that

`A >
log εD

log(
√
D + 1)

. (3.2.28)

Using (3.2.26), (3.2.28), (3.2.9) and Siegel’s theorem (see [30]), we derive (3.2.25).

Remark 3.2.8. It is also possible to give an upper bound for `A. For example, Eichler
[44] gave a general argument that yields for the modular group that

`A < c log εD

for an explicit c.

We now turn to estimating the Weyl integrals.

Proposition 3.2.9. There is a constant C > 0 such that for any ε > 0 we have

Weyl(E(·, s), χ)�ε |s|C |D|7/16+ε (3.2.29)

Weyl(〈ϕ, ϕ〉−1ϕ, χ)�ε r
C |D|13/28+ε (3.2.30)

where Re(s) = 1/2 and ϕ is any even Hecke–Maass cusp form with Laplace eigenvalue
1
4

+ r2.
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Proof. By Theorem 2.1.1 and standard estimates for the gamma function quotient and for
ζ(2s), we have for Re(s) = 1/2 that

Weyl(s, χ)�ε |s|C |L(s, χd′)L(s, χd)|D1/4+ε. (3.2.31)

Thus (3.2.29) now follows from the subconvexity bound of Burgess [23] made uniform in s
(see [74, Theorem 12.9 p.329]): for any ε > 0 we have

L(s, χd)� |s||d|3/16+ε,

where the implied constant depends only on ε.
Part (3.2.30) of Proposition 3.2.9 follows straight from Theorem 2.1.2 and Theorem 5

of [35].

To see that it is enough to restrict to even Maass cusp forms observe that for an odd
form all the Weyl integrals are identically zero. To see this first observe that χ(A) =
χ(A−1). There is a symmetry under A→ A−1 of all the geometric objects that forces the
corresponding sum of integrals for A and A−1 to cancel for an odd form ϕ. For example,
when d′, d < 0 we have that∫

FA−1

ϕ(z)dµ(z) = −
∫
FA
ϕ(z)dµ(z). (3.2.32)

To get (3.2.32) observe that by (3.2.2) the cycle for A−1 is that for A reversed. This has the
effect of making a left translate by T−mA of the fundamental domain FA−1 a mirror image
in the imaginary axis of FA. Here we are using the fundamental domains constructed in
the proof of Theorem 3.2.1. The cases d′, d > 0 and d′d < 0 are handled similarly by using
(1.11.4).

Theorem 3.2.3 follows from Propositions 3.2.7 and 3.2.9 and the fact that the spectral
coefficients in (1.4.5) satisfy

c(t)� |s|−A and c(ϕ)� |r|−A

for any A > 0 and by the Weyl law (3.2.19). See e.g. [72].

Remarks. There has been a lot of progress on subconvexity estimates since the paper
[35] that we quote was written. We were content to use the result of [35] here since any
strong non-trivial estimate is enough to get the uniform distribution results. By “strong”
we mean a power savings in the exponent, and this is required due to our use of Siegel’s
theorem for the main term.

After the fundamental paper of Iwaniec [71], techniques for dealing directly with the
L-functions were developed in a series of papers starting with [38]. See also [39]. Currently
the best known subconvexity bound for the L-functions (2.1.4) was obtained in the break-
through paper [29] of Conrey and Iwaniec, which gives the exponent 1/3 + ε of |D| in both
estimates of Proposition 3.2.9 but under the technical assumption that D is odd. This
result was improved by Young [130], who gives the same value 1/3 + ε for the exponent of
C in these estimates. See also the paper of Blomer and Harcos [12]. Although we have not
pursued this here, such explicit hybrid estimates would allow one to improve the ranges of
certain parameters in the distribution results.

In a different direction, it would be interesting to see if the methods of arithmetic ergodic
theory could be applied here along the lines of the paper [45] of Einsiedler, Lindenstrauss,
Michel and Venkatesh.
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Chapter 4

Mock modular forms and cycle
integrals

4.1 Background and statements of results

One of the early appearance of modular forms is the generating series

∞∑
n=1

p(n)qn

of the partition function p(n). With a slight modification we see that

q−1/24

∞∑
n=1

p(n)qn = q−1/24

∞∏
n=1

1

1− qn
=

1

η(z)
.

Here q = e2πiz and η(z) is Dedekind’s function, which is a modular form of weight 1/2.
An interesting identity follows from considering the Durfee square of the Ferrers diagram
of the partition. This is the maximal square that can be fit in the Ferrers diagram.

Figure 4.1: The Durfee square of the partition 3 + 4 + 7 + 8 = 22

If we let bm(n) be the number of partitions of n with a Durfee square of size m ×m,
then

∞∑
n=1

bm(n)qn =
qm

2

(1− q)2(1− q2)2...(1− qm)2

since 1
(1−q)(1−q2)...(1−qm)

is the closed form of the generating series of the number of partitions
of n into parts not exceeding m. Putting the above together we get the Eulerian series
identity

∞∑
n=1

p(n)qn = 1 +
∞∑
m=1

qm
2

(1− q)2(1− q2)2...(1− qm)2

48
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The modularity of η allowed Ramanujan and Hardy to derive [60], via the circle method,
the asymptotic expression

p(n) ∼ eπ
√

2n/3

4n
√

3
. (4.1.1)

Mock modular forms, introduced by Ramanujan in his last letter to Hardy, play an
important role in extending such considerations to more constrained partitions. Consider
for example the q-series

f(z) = q−1/24
∑
n≥0

qn
2

(1 + q)2 · · · (1 + qn)2

(
q = e(z) = e2πiz, z ∈ H

)
.

Up to the factor q−1/24 this is one of Ramanujan’s original mock theta functions, and
is related to the number of partitions of even ranks. Ramanujan’s original definition of
what a mock modular forms should be was somewhat vague, his examples are holomorphic
functions that have at rational numbers the same asymptotics as (meromorphic) modular
forms. This is clearly motivated by the desire to extend the circle method to such restricted
partitions.

Ramanujan’s ideas, while motivating, were hard to conceptualize, despite work by many
great mathematicians, including Watson, Selberg, Andrews and others [3, 113, 127]. This
has changed recently, due to the discovery of Zwegers [136, 137] that Ramanujan’s mock
theta functions of weight 1/2 can be completed to become modular by the addition of a
certain non-holomorphic function on the upper half planeH. This complement is associated
to a modular form of weight 3/2, the shadow of the mock theta function. To illustrate on

the above example f(z) = q−1/24
∑

n≥0
qn

2

(1+q)2···(1+qn)2
, the shadow of f is the weight 3/2

cusp form (a unary theta series)

g(z) =
∑

n∈1+6Z

n qn
2/24.

The Eichler integral of g is

g∗(z) =
∑

n∈1+6Z

sgn(n) β(n
2y
6

) q−n
2/24

(
y = Im z

)
.

Here β(x) is defined for x > 0 in terms of the complementary error function and the
standard incomplete gamma function by

β(x) = erfc(
√
πx) =

1√
π

Γ(1
2
, πx), where Γ(s, x) =

∞∫
x

tse−t dt
t
. (4.1.2)

Observe that the Fourier expansion of the non-holomorphic Eichler integral g∗(z) mirrors
that of g(z).

It is proved in [137] that the completion

f̂(z) = f(z) + g∗(z)

transforms like a modular form of weight 1/2 for Γ(2), the well known congruence subgroup
of Γ = PSL(2,Z).
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The appearance of the Eichler integral is best explained via the ξ operator introduced
in [20]. Let f : H → C and define

ξk(f) = 2iyk ∂f
∂z
.

It is easily checked that

ξk
(
(cz + d)−kf(gz)

)
= (cz + d)k−2(ξkf)(gz)

for any g = ± [ a bc d ] ∈ PSL(2,R). Thus if f(z) has weight k for Γ then ξkf has weight 2− k
and ξkf = 0 if and only if f is holomorphic. The weight k Laplacian, first introduced by
Maass, can be conveniently defined by

∆k = −ξ2−k ◦ ξk (4.1.3)

If f is a real analytic function on H of weight k for Γ that is harmonic on H in the sense
that

∆kf = 0

then f will have a Fourier expansion at i∞ each of whose terms has at most linearly
exponential growth. Such an f is called harmonic weak Maass form if it has only finitely
many such growing terms. The space of all such forms is denoted by H !

k. It is clear that
the space of weakly holomorphic modular forms M !

k is a subset of H !
k. It follows easily from

its general properties that ξk maps H !
k to M !

2−k with kernel M !
k.

In addition to leading to a number of new results about mock theta functions, the work
of Zwegers has stimulated the study of other kinds of mock modular forms as well (see
[101] and [133] for surveys on some of these developments). For example g∗ satisfies

ξ1/2g
∗(z) =

√
6

3

∑
n∈1+6Z

qn
2/24

and the right hand side of of the above identity is a a cusp form of weight 3/2, (that above we
called, following Zagier, the shadow of f). An explicit determination of the transformation
formula allowed Bringmann and Ono to derive an exact formula of Rademacher-type for the
coefficients of Ramanujan’s mock theta function f(q). This formula refines Ramanujan’s
first order asymptotic (4.1.1), and had been conjectured by Andrews and Dragonette (see
[36] for references). Combined with Rademacher’s formula it gives exact formulas for the
number of partitions with even (resp. odd) ranks. The work of Zwegers also stimulated
numerous other results about mock theta functions. See the surveys [36, 101, 133].

4.1.1 Cycle integrals of the j-function and mock modular forms

In this section we will consider mock modular forms of weight 1/2 for Γ0(4). In some
sense this is the simplest case, but has not been treated before our work in [40] because
the associated shadows, if not zero, cannot be cusp forms. We will show that they are
nevertheless quite interesting, and have remarkable connections with cycle integrals of the
modular j-function and modular integrals having rational period functions. First let us
define mock modular forms precisely in this context. Let

θ(z) = 1 + 2 q + 2 q4 + 2 q9 + 2 q16 + · · ·
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be the Jacobi theta series, which is a modular form of weight 1/2 for Γ0(4). Set

J(γ, z) = θ(γz)/θ(z) for γ ∈ Γ0(4). (4.1.4)

For k ∈ 1/2 +Z say that f defined on H has weight k for Γ0(4) (or simply has weight k) if

f(γz) = J(γ, z)2kf(z) for all γ ∈ Γ0(4).

Let M !
k be the space comprising functions holomorphic on H of weight k for Γ0(4) whose

Fourier coefficients a(n) in the expansion f(z) =
∑

n a(n)qn are supported on integers
n ≥ n0, for some n0 ∈ Z, with (−1)k−1/2n ≡ 0, 1 (mod 4).

Specializing now to the case of weight 1/2, let E(z) be the entire function given by any
of the following formulas

E(z) =

∫ 1

0

e−πzu
2

du =
erf(
√
πz)

2
√
z

=
∞∑
n=0

(−πz)n

(2n+ 1)n!
. (4.1.5)

For any g(z) =
∑

n bn q
n ∈M !

3/2 we define the non-holomorphic Eichler integral of g by

g∗(z) = −4
√
y
∑
n≤0

bn E(4ny) q−n +
∑
n>0

bn√
n
β(4ny)q−n. (4.1.6)

where β(x) is as in (4.1.2). Let f(z) =
∑

n anq
n be holomorphic on H and such that

its coefficients an are supported on integers n0 < n, n0 ∈ Z, and also satisfying n ≡
0, 1 (mod 4). We will say that f(z) is a mock modular form of weight 1/2 for Γ0(4) if there
exists a g ∈M !

3/2, its shadow, so that

f̂(z) = f(z) + g∗(z)

has weight 1/2 for Γ0(4). Denote by M1/2 the space of all mock modular forms of weight 1/2
for Γ0(4). Obviously M !

1/2 ⊂M1/2 but it is not at all clear that there are any non-modular
mock modular forms.

Nevertheless they exist as I showed with Duke and Imamoglu in [40]. In fact they are
closely related to the work of Borcherds and Zagier on traces of singular moduli of the
classical j-function

j(z) = q−1 + 744 + 196884 q + · · · .

It is well-known and easily shown that C[j], has a unique basis {jm}m≥0 whose members
are of the form jm(z) = q−m + Ø(q). For example

j0 = 1, j1 = j − 744, j2 = j2 − 1488j + 159768, . . . . (4.1.7)

Here j1(z) is the normalized Hauptmodule for Γ. In this paper, unless otherwise specified,
d is assumed to be an integer d ≡ 0, 1( mod 4) and is called a discriminant if d 6= 0. For
each discriminant D let QD be the set of integral binary quadratic forms of discriminant
D that are positive definite if D < 0. The forms are acted on as usual by Γ, resulting in
finitely many classes Γ\QD. Let ΓQ be the group of automorphs of Q (see section 1.11 for
more details).
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Suppose that D < 0. For Q ∈ QD and zQ a root of Q in H, the numbers j1(zQ) are
known by the classical theory of complex multiplication to form a Gal(Q/Q)-invariant set
of algebraic integers, so that their weighted sum

TrD(j1) =
∑

Q∈Γ\QD

|ΓQ|−1j1(zQ) (4.1.8)

is an integer. A beautiful theorem of Zagier [134] asserts that these integers give the Fourier
coefficients of a weight 3/2 weakly holomorphic form in T−(z) ∈M !

3/2:

T−(z) = −q−1 + 2 +
∑
D≤0

TrD(j1)|D|q|D| (4.1.9)

= −q−1 + 2− 248 q3 + 492 q4 − 4119 q7 + 7256 q8 + · · · .

A natural question is whether one can give a similar statement for the numbers TrD(j1)
defined for non-square D > 0 by

TrD(j1) = 1
2π

∑
Q∈Γ\QD

∫
CQ

j1(z) dz
Q(z,1)

. (4.1.10)

Here CQ is any smooth curve from any z ∈ H to g
Q
z, where gQ is a certain distinguished

generator of the infinite cyclic group ΓQ of automorphs of Q. Note: TrD(j1) is well-defined.
In [40] we proved that the generating function

T+(z) =
∑
d>0

Trd(j1)qd (4.1.11)

(with a suitable definition of TrD(j1) when D is a perfect square) defines a mock modular
form of weight 1/2 for Γ0(4) with shadow T−(z) from (4.1.9).

Theorem 4.1.1 ([40]). The function T̂+(z) on H defined by

T̂+(z) = T+(z) + T∗−(z)

=
∑
D>0

TrD(j1) qD + 4
√
y E(−4y) q − 8

√
y +

∑
D<0

TrD(j1)√
|D|

β(4|D| y) qD

has weight 1/2 for Γ0(4).

Zagier [134] showed that g1(z) = T−(z) from (4.1.9) is the first member of a basis
{gD}0<D≡0,1(4) for M !

3/2, where for each D > 0 the function gD(z) is uniquely determined

by having a q-expansion of the form1

gD(z) = −q−D +
∑
n≤0

n≡0,1 (mod 4)

a(D,n)q|n|. (4.1.12)

We define a(D,n) = 0 unless d, n ≡ 0, 1 (mod 4).

For D ≤ 0 consider the “dual” form

fD(z) = qD +
∑
n>0

a(n,D)qn. (4.1.13)

1This is the negative of the gD(z) defined in [134].
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As was shown in [134], the set {fD}D≤0 coincides with the basis given by Borcherds [15]
for M !

1/2. Thus f0(z) = θ(z) and the first few terms of the next function are

f−3(z) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · .

One of the main results in [40] is that Borcherds’ basis extends naturally to a basis
for M1/2. The construction of this extension relies heavily on the spectral theory of Maass
forms.

Theorem 4.1.2 ([40]). For each D > 0 there is a unique mock modular form fD(z) ∈M1/2

with shadow gD(z) having a Fourier expansion of the form

fD(z) =
∑
n>0

a(n,D)qn. (4.1.14)

These Fourier coefficients a(n,D) satisfy a(n,D) = a(D,n). The set {fD}d≡0,1( mod 4) gives
a basis for M1/2.

We have thus defined a(n, d) for all d, n with n > 0. We use them to evaluate certain
twisted traces, which we now define. Suppose that d > 0 is a fundamental discriminant.
There is a function χd : Qdd′ → {−1, 1} that restricts to a real character (a genus character)
on the group of primitive classes and can be used to define a general twisted trace for
dd′ = D not a square by

Trd,d′(jm) =

{
1√
D

∑
χd(Q)|ΓQ|−1jm(zQ), if dd′ < 0 ;

1
2π

∑
χd(Q)

∫
CQ
jm(z) dz

Q(z,1)
if dd′ > 0,

(4.1.15)

each sum being over Q ∈ Γ\QD.
In the paper [40] we established the following evaluation, which generalizes a well-known

result of Zagier [134, (25)] to include positive d.

Theorem 4.1.3 ([40]). Let a(n, d) be the mock modular coefficients defined in (4.1.13) and
( 4.1.14). Suppose that m ≥ 1. For d′ ≡ 0, 1 (mod 4) and fundamental d > 0 with dd′ not
a square we have

Trd,d′(jm) =
∑
n|m

(
d′

m/n

)
n a(n2d′, d). (4.1.16)

Together with Theorem 4.1.2, Theorem 4.1.3 implies Theorem 3.2.1 after we define
TrD(j1) to be equal to a(D, 1) when D is a perfect square.

In particular, for non-square dd′ with d > 0, Theorem 4.1.3 gives

a(d, d′) =

{
1√
d

∑
χ(Q)|ΓQ|−1j1(zQ), if dd′ < 0;

1
2π

∑
χ(Q)

∫
CQ
j1(z) dz

Q(z,1)
, if dd′ > 0,

(4.1.17)

where each sum is over Q ∈ Γ\QdD.
The proof in [40] that we reproduce below uses Poincaré series and a Kloosterman sum

identity that generalizes a well-known result of Salié.
Concerning the case m = 0, there exists an interesting “second order” mock modular

form Z+(z) of weight 1/2 that is almost, but not quite, in M1/2 with Fourier expansion

Z+(z) =
∑
d>0

Trd(1) qd. (4.1.18)
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Here Trd(1) must be defined suitably for square d while for d > 1 a fundamental discrimi-
nant we have

Trd(1) = π−1d−1/2 h(d) log εd,

where h(d) is the narrow class number of Q(
√
d) and εd is its smallest unit > 1 of norm

1. A (generalized) shadow of Z+(z) is the completion of the mock modular form Z−(z)
of weight 3/2 with shadow θ(z) discovered by Zagier in 1975 [131] (see also [62]) whose
Fourier expansion is

Z−(z) =
∑
d≤0

Trd(1)q|d|. (4.1.19)

Here for any d ≤ 0 we have that Trd(1) = H(|d|), the usual Hurwitz class number, whose
first few values are given by

H(0) = − 1
12
, H(3) = 1

3
, H(4) = 1

2
, H(7) = 1, . . . .

The completion of Z−(z), which has weight 3/2 for Γ0(4) is given by

Ẑ−(z) = Z−(z) +
1

16π

∑
n∈Z

Γ(−1
2
, 4πn2y)q−n

2

. (4.1.20)

Define for y > 0 the special function

α(y) =

√
y

4π

∫ ∞
0

t−1/2 log(1 + t)e−πytdt.

The next result shows that Z+(z) from (4.1.18) has Ẑ−(z) as a generalized shadow.

Theorem 4.1.4 ([40]). The function Ẑ+(z) whose Fourier expansion is given by

Ẑ+(z) =
∑
d>0

Trd(1) qd +

√
y

3
+
∑
d<0

Trd(1)√
|d|

β(4|d|y)qd +
∑
n6=0

α(4n2y)qn
2 − 1

4π
log y,

(4.1.21)

has weight 1/2 for Γ0(4).

The automorphic nature of Ẑ+(z) gives some reason to hope that there might be a
connection between the cycle integrals of j and abelian extensions of real quadratic fields.

4.1.2 Modular integrals with rational period functions

The last result we quote form [40] concerns an unexpected connection between mock mod-
ular forms of weight 1/2 and modular integrals having rational period functions. Define
for each D ≡ 0, 1( mod 4)

FD(z) = −TrD(1)−
∑
m≥1

(∑
n|m

n a(n2, D)
)
qm. (4.1.22)

Note that FD(z) is the derivative of the formal Shimura lift of fD. When D < 0 Borcherds
showed that FD is a meromorphic modular form of weight 2 for Γ having a simple pole
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with residue |ΓQ|−1 at each point zQ ∈ H of discriminant d. Thus one has corresponding
properties of the infinite product

q−TrD(1)
∏
m≥1

(1− qm)a(m2,D).

In case D = 0 one finds that this product is ∆(z)1/12, and we have that

F0(z) = 1
12
− 2

∑
n≥1

σ(m)qm = 1
12
E2(z).

This is a holomorphic modular integral of weight 2 with a rational period function:

F0(z)− z−2F0(−1
z
) = − 1

2πi
z−1.

Another important result of [40] is the following

Theorem 4.1.5 ([40]). For each D > 0 not a square the function FD defined in (4.1.22)
is a holomorphic modular integral of weight 2 with a rational period function:

FD(z)− z−2FD(−1
z
) =

1

π

∑
c<0<a

b2−4ac=D

(az2 + bz + c)−1. (4.1.23)

The Fourier expansion of FD(z) can be expressed in the form

Fd(z) = −
∑
m≥0

TrD(jm) qm.

Note that the period function has simple poles at certain real quadratic integers of
discriminant D, in analogy to the behavior of FD(z) when D < 0. The existence of a
holomorphic F satisfying (4.1.23) with growth conditions was proved by Knopp [85], [86].
He used a certain Poincaré series built out of cocycles, however, it appears to be very
difficult to extract explicit information about F from this construction. At the end of
their paper [25], Choie and Zagier raised the problem of explicit construction of a modular
integral with a given rational period function. Parson [102] gave a more direct construction
in weights k > 2 using series of the form∑

a>0

(az2 + bz + c)−k/2,

which are partial versions of certain hyperbolic Poincaré series studied by Zagier, but they
do not converge when k = 2. In any case, the expression of the Fourier coefficients as sums
of cycle integrals is not immediate from this construction, although it is possible to deduce
such expressions this way, at least in higher weights, using methods from [40].

For the rational period functions that occur in (4.1.23) the modular integral given by
FD(z) also gives a real quadratic analogue of (the logarithmic derivative of) the Borcherds
product. Also note that the function FD is closely related to the modular integrals con-
sidered in the next chapter. The underlying technical achievement of that chapter is the
general transformation formula for these functions under an arbitrary modular substitution
just as in the case of the Dedekind η function, Dedekind’s main result is the determina-
tion of the transformation formula of log η under all modular substitutions, and not just
inversion.
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4.2 Proofs

4.2.1 Weakly harmonic modular forms

We begin by proving Theorem 4.1.2 using the theory of weakly harmonic forms. Set
k ∈ 1/2 + Z. If f of weight k for Γ0(4) is smooth, for example, it will have a Fourier
expansion in each cusp. For the cusp at i∞ we have the Fourier expansion

f(z) =
∑
n

a(n; y)e(nx) (4.2.1)

which, if f is holomorphic, has a(n; y) = a(n)e(niy). Set

f e(z) =
∑
n≡0(2)

a(n; y
4
)e(nx

4
) and f o(z) =

∑
n≡1(2)

a(n; y
4
)e(n

8
)e(nx

4
). (4.2.2)

Suppose that the Fourier coefficients a(n; y) satisfy the plus space condition, meaning that
they vanish unless (−1)k−1/2n ≡ 0, 1 (mod 4). An easy extension of arguments given in
[84, p.190] shows that such an f satisfies

(2z
i

)−kf(− 1
4z

) = αf e(z) and (2z+1
i

)−kf( z
2z+1

) = αf o(z) (4.2.3)

where
α = (−1)b

2k+1
4
c2−k+ 1

2 .

In particular, the behavior of such an f at the cusps 0 and 1/2 is determined by that at
i∞. Thus to check that such a form is weakly holomorphic, meaning it is holomorphic on
H and meromorphic in the cusps, one only needs look at the Fourier expansion at i∞, as
we have done in the Introduction. As there, let M !

k denote the space of all such forms. Let
M+

k ⊂ M !
k denote the subspace of holomorphic forms (having no pole in the cusps) and

S+
k ⊂M+

k the subspace of cusp forms (having zeros there).
Consider the Maass-type differential operator ξk defined for any k ∈ R through its

action on a differentiable function f on H by

ξk(f) = 2iyk ∂f
∂z
.

This operator is studied in detail in [20]. It is easily checked that

ξk
(
(γz + δ)−kf(gz)

)
= (γz + δ)k−2(ξkf)(gz)

for any g ∈ PSL(2,R). Thus if f(z) has weight k for Γ0(4) then ξkf has weight 2− k and
ξkf = 0 if and only if f is holomorphic. Also ξk preserves the plus space condition. The
weight k Laplacian can be conveniently defined by

∆k = −ξ2−k ◦ ξk.

Specializing now to k = 1/2, suppose that h is a real analytic function on H of weight
1/2 for Γ0(4) that is harmonic on H in the sense that

∆1/2h = 0. (4.2.4)
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By separation of variables every such h has a (unique) Fourier expansion in the cusp at∞
of the form

h(z) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n)Wn(y)e(nx). (4.2.5)

The functions Wn(y) and Mn(y) in the Fourier expansion (4.2.5) are defined in terms
of the functions β(x) and E(z) from (4.1.2) and (4.1.5) by

Wn(y) =e−2πny


|n|− 1

2 β(4|n|y) if n < 0,

−4y
1
2 if n = 0,

n−
1
2 if n > 0,

(4.2.6)

Mn(y) =e−2πny


1− β(4|n| y) if n < 0,

1 if n = 0,

4(ny)
1
2 E(−4ny) if n > 0.

(4.2.7)

We remark that Wn(y) andMn(y) are special cases of Whittaker functions, (see (4.2.15))
and we use the notation W and M to suggest this relation. More importantly, the defini-
tions (4.2.6) and (4.2.7) make possible the complete symmetry of the Fourier coefficients of
the basis to be given in the next Proposition. It becomes clear after working with them that
one can define the normalization for the Fourier coefficients in different reasonable ways,
each with advantages and disadvantages. Note that the function Wn(y) is exponentially
decaying while Mn(y) is exponentially growing in y (see (A.1.4)).

Let H !
1/2 denote the space of all real analytic functions on H of weight 1/2 for Γ0(4)

that satisfy (4.2.4), whose Fourier coefficients at ∞ are supported on integers n with
n ≡ 0, 1(mod4) and that have only finitely many non-zero coefficients b(n). As before
this is enough to control bad behavior in the other cusps. We will call such an h ∈ H !

1/2

weakly harmonic.2 This space was identified by Bruinier and Funke [19] as being interesting
arithmetically. It follows easily from its general properties that ξ1/2 maps H !

1/2 to M !
3/2

with kernel M !
1/2. This is also directly visible after a calculation from (4.2.7) and (4.2.6)

yields the formulas

ξ1/2

(
Mn(y)e(nx)

)
= 2|n|

1
2 q−n ξ1/2

(
Wn(y)e(nx)

)
=

{
0 if n > 0

−2q|n| if n ≤ 0.
(4.2.8)

Given h in (4.2.5) with b(n) = 0 for all n, we infer that ξ1/2h ∈ M+
3/2 = {0}. This implies

that h ∈ S+
1/2 = {0}, and proves the following uniqueness result.

Lemma 4.2.1. If h ∈ H !
1/2 has Fourier expansion

h(z) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n)Wn(y)e(nx), (4.2.9)

then h = 0 if and only if b(n) = 0 for all n ≡ 0, 1 (mod 4).

2The definition of harmonic weak Maass forms, for example as given in [21] and elsewhere, is more
restrictive and does not apply to the non-holomorphic h ∈ H !

1/2, so we use the terminology weakly harmonic
to avoid confusion.
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It is now easy to explain the relation between mock modular forms and weakly harmonic
ones (c.f. [133]). It follows easily from (4.2.6), (4.2.7) and (4.2.8), or directly, that for
g(z) ∈M !

3/2

ξ1/2 g
∗(z) = −2 g(z),

where g∗(z) was defined in (4.1.6). As a consequence we see that if f ∈ M1/2 and if

f̂ = f + g∗ is its completion, then f̂ ∈ H !
1/2 since ξ1/2 f̂(z) = −2g(z) so ∆1/2f̂ = 0.

Also f̂(z) satisfies the plus space condition. In fact it is easy to see that f 7→ f̂ defines
an isomorphism from M1/2 to H !

1/2. Given h ∈ H !
1/2 let g = −1

2
ξ1/2(h) ∈ M !

3/2 and take

h+ = h − g∗. It is easily checked that h 7→ h+ gives the inverse of f 7→ f̂ . Call h+ the
holomorphic part of h. In terms of the Fourier expansion (4.2.5)

h+(z) =
∑
n≤0

b(n)qn +
∑
n>0

a(n)n−1/2qn. (4.2.10)

The next result gives one natural basis for H !
1/2.

Proposition 4.2.2. For each d ≡ 0, 1 (mod 4) there is a unique hd ∈ H !
1/2 with Fourier

expansion of the form

hd(z) =Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx). (4.2.11)

The set {hd}d≡0,1 (4) forms a basis for H !
1/2. The coefficients ad(n) satisfy the symmetry

relation
ad(n) = an(d) (4.2.12)

for all integers n, d ≡ 0, 1 (mod 4). When d > 0 we have

ξ1/2 hd(z) = −2d
1
2 gd(z), (4.2.13)

where gd ∈M !
3/2 has Fourier expansion given in (4.1.12).

Theorem 4.1.2 is an immediate consequence of this proposition. We see that for d ≤ 0
we have that hd = fd from (4.1.13) and a(n, d) = n−1/2ad(n) unless n = d < 0, in which
case ad(d) = |d|1/2. If d > 0 let fd(z) =

∑
n>0 a(n, d)qn be the holomorphic part of d−1/2 hd.

This gives the fd(z) from Theorem 4.1.2 and we find that for n > 0 we have

a(n, d) = (dn)−1/2ad(n). (4.2.14)

We remark that the fact we quoted from [134] that {fd}d≤0 from (4.1.13) gives the Borcherds
basis for M !

1/2 also follows from the symmetry relation (4.2.12) and (4.2.13) of Proposition
4.2.2.

We now turn to the construction of hd. We will give a uniform construction using
Poincaré series. Due to some delicate convergence issues that arise from this approach, we
will define them through analytic continuation. For fixed s with Re(s) > 1/2 and n ∈ Z
let

Mn(y, s) =

{
Γ(2s)−1(4π|n|y)−

1
4M 1

4
sgnn,s− 1

2
(4π|n|y) if n 6= 0,

ys−
1
4 if n = 0

Wn(y, s) =

{
|n|− 3

4 Γ(s+ sgnn
4

)−1(4πy)−
1
4W 1

4
sgnn,s− 1

2
(4π|n|y), if n 6= 0

22s−
1
2

(2s−1)Γ(2s−1/2)
y

3
4
−s, if n = 0,
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where M and W are the usual Whittaker functions (see Appendix A.1). By (A.1.6) and
(A.1.7), for n 6= 0 we have that

Mn(y) =Mn(y, 3/4) and Wn(y) =Wn(y, 3/4) (4.2.15)

where Mn(y) and Wn(y) were given in (4.2.7) and (4.2.6). However, M0(y) =W0(y, 3/4)
and W0(y) = M0(y, 3/4).3 We also need the usual I and J-Bessel functions, defined for
fixed ν and y > 0 by (see e.g. [89])

Iν(y) =
∞∑
k=0

(y/2)ν+2k

k! Γ(ν + k + 1)
and Jν(y) =

∞∑
k=0

(−1)k(y/2)ν+2k

k! Γ(ν + k + 1)
. (4.2.16)

For m ∈ Z let
ψm(z, s) =Mm(y, s)e(mx). (4.2.17)

It follows from (A.1.3) and (4.1.3) that

∆1/2ψm(z, s) = (s− 1
4
)(3

4
− s)ψm(z, s).

Define the Poincaré series

Pm(z, s) =
∑

g∈Γ∞\Γ0(4)

j(g, z)−1ψm(gz, s),

where Γ∞ is the subgroup of translations. By (A.1.5) this series converges absolutely
and uniformly on compacta for Re s > 1. The function P0(z, s) is the usual weight 1/2
Eisenstein series. It is clear that for Re(s) > 1 and any m the function Pm(z, s) has weight
1/2 and that Pm satisfies

∆1/2Pm(z, s) = (s− 1
4
)(3

4
− s)Pm(z, s).

As in [83], in order to get forms whose Fourier expansions are supported on n ≡ 0, 1
(mod 4) we will employ the projection operator pr+ = 2

3
(U4 ◦W4) + 1

3
, where

(U4f)(z) = 1
4

∑
ν mod 4

f
(
z+ν

4

)
and (W4f)(z) =

(
2z
i

)−1/2
f(−1/4z).

For each d ≡ 0, 1 (mod 4) and Re(s) > 1 define

P+
d (z, s) = pr+(Pd(z, s)). (4.2.18)

Proposition 4.2.3. For any d ≡ 0, 1 (mod 4) and Re(s) > 1 the function P+
d (z, s) has

weight 1/2 and satisfies

∆1/2P
+
d (z, s) = (s− 1

4
)(3

4
− s)P+

d (z, s).

3 This notational switching is inessential but gives a cleaner statement of Proposition 4.2.2 and some
other results.
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Its Fourier expansion is given by

P+
d (z, s) =Md(y, s)e(dx) +

∑
n≡0,1(4)

bd(n, s)Wn(y, s)e(nx), where (4.2.19)

bd(n, s) =
∑

0<c≡0(4)

K+(d, n; c)×


2

1
2π|dn| 14 c−1I2s−1

(
4π
√
|dn|
c

)
if dn < 0;

2
1
2π|dn| 14 c−1J2s−1

(
4π
√
|dn|
c

)
if dn > 0,

πs+
1
4 |d+ n|s− 1

4 c−2s if dn = 0, d+ n 6= 0,

2
1
2
−2sπ

1
2 Γ(2s)c−2s if d = n = 0,

(4.2.20)

where K+(d, n; c) is the modified Kloosterman sum defined in (1.12.3) below. The sum
defining each bd(n, s) is absolutely convergent.

Proof. The first statement is clear. So is the last statement using the trivial bound for
K+(d, n; c) and the definitions (4.2.16).

For the calculation of the Fourier expansion we employ the following lemma, whose
proof is standard and follows from an application of Poisson summation using an integral
formula found in [48, p. 176]. See [81, Lemma 2, p. 20] or [83] for the prototype result.

Lemma 4.2.4. Let [ a bc d ] ∈ SL(2,R) have c > 0 and suppose that Re(s) > 1/2. Then for
ψm defined in (4.2.17) with any m ∈ Z, we have

∑
r∈Z

(c(z + r) + d)−1/2ψm

(
a(z + r) + b

c(z + r) + d
, s

)
= 2πi−1/2

∑
n∈Z

e
(
am+nd

c

)
Wn(y, s)e(nx)

×


c−1|mn| 14J2s−1(4π

√
|mn|c−1) if mn > 0

c−1|mn| 14 I2s−1(4π
√
|mn|c−1) if mn < 0

2−
1
2πs−

3
4 c−2s|m+ n|s− 1

4 if mn = 0, m+ n 6= 0,

π−
1
2 (2c)−2sΓ(2s) if m = n = 0,

where both sides of the identity converge uniformly on compact subsets of H.

With this Lemma, the computation of the Fourier coefficients parallels so closely that
given in [81, pp. 18–27] in the holomorphic case that we will omit the details.

It is a well-known consequence of the theory of the resolvent kernel that Pd(z, s) has
an analytic continuation in s to Re(s) > 1/2 except for possibly finitely many simple poles
in (1/2, 1). These poles may only occur at points of the discrete spectrum of ∆1/2 on the
Hilbert space consisting of weight 1/2 functions f on H that satisfy∫

Γ\H
|f(z)|2y dµ <∞ (dµ = y−2dx dy),

and this space contains the residues.4 It is easily seen from (4.2.18) that P+
d (z, s) also has

an analytic continuation to Re(s) > 1/2 with at most finitely many simple poles in (1/2, 1).

4See [48, p.179 ] and its references, especially [106] and [46]. A very clear treatment when the weight
is 0 and the multiplier is trivial is given in [98]. In particular, see Satz 6.8 p.60; the case of weight 1/2 is
similar.
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Actually, such poles can only occur in (1
2
, 3

4
], since by (1.12.6) and (4.2.16) the series in

(4.2.20) giving the Fourier coefficient bd(n, s) converges absolutely for Re(s) > 3/4. Thus
for Re(s) > 1/2 away from these poles the function P+

d (z, s) has weight 1/2 and satisfies

∆1/2P
+
d (z, s) = (s− 1

4
)(3

4
− s)P+

d (z, s).

Furthermore a residue at s = 3/4 is a weight 1/2 weakly harmonic form f ∈ H !
1/2. In fact,

the Fourier expansion of f can be obtained from that of P+
d in (4.2.19) by taking residues

term by term, a process that is easily justified using the integral representations for the
Fourier coefficients since the convergence is uniform on compacta. This shows that the
Fourier expansion of f is supported on n with n ≡ 0, 1 (mod 4) and that it can have no
exponentially growing terms. Another way to see these facts is to observe that f is the
projection of the residue of Pd, which comes from the discrete spectrum. Thus by Lemma
4.2.1 applied to f − b(0)θ, we obtain the following result.

Lemma 4.2.5. For each d and each z ∈ H the function P+
d (z, s) has an analytic continu-

ation around s = 3/4 with at most a simple pole there with residue

ress=3/4P
+
d (z, s) = ρd θ(z), (4.2.21)

where ρd ∈ C.

When d = 0 this result is well-known. In fact, b0(n, s) can be computed in terms of
Dirichlet L-functions. We have the following formulas (see e.g. [69]).

Lemma 4.2.6. For m ∈ Z+ and D a fundamental discriminant we have that∑
n|m

(
D
n

)
b0(Dm

2

n2 , s) =22−4sπs+
1
4m

3
2
−2s|D|s−

1
4σ4s−2(m)

LD(2s− 1
2
)

ζ(4s− 1)
and (4.2.22)

b0(0, s) =π
1
2 2

5
2
−6sΓ(2s)

ζ(4s− 2)

ζ(4s− 1)
, (4.2.23)

where LD is the Dirichlet L-function.

By Möbius inversion, (4.2.22) gives for m 6= 0 the identity

b0(Dm2, s) = 22−4sπs+
1
4 |D|s−

1
4
LD(2s− 1/2)

ζ(4s− 1)

∑
n|m

µ(m/n)
(

D
m/n

)
n

3
2
−2sσ4s−2(n). (4.2.24)

This yields a direct proof of Lemma 4.2.5 in case d = 0. Since b0(d, s) = bd(0, s), which is
clear from (1.12.4) and (4.2.20), a calculation using (4.2.24) and the (4.2.23) also gives the
constant ρd in (4.2.21):

ρd =


3

4π
if d = 0,

6
π

√
d if d is a non-zero square,

0 otherwise.

(4.2.25)

We are finally ready to define the basis functions hd. For d 6= 0 let

hd(z, s) = P+
d (z, s)− bd(0, s)

b0(0, s)
P+

0 (z, s). (4.2.26)
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It has the Fourier expansion

hd(z, s) =Md(y, s)e(dx)− bd(0, s)

b0(0, s)
ys−

1
4 +

∑
06=n≡0,1(4)

ad(n, s)Wn(y, s)e(nx), where

(4.2.27)

ad(n, s) =bd(n, s)−
bd(0, s)b0(n, s)

b0(0, s)
. (4.2.28)

Lemma 4.2.7. For each nonzero d ≡ 0, 1 (mod 4) the function hd(z, s) defined in (4.2.26)
has an analytic continuation to s = 3/4 and

hd(z, 3/4) = hd(z) ∈ H !
1/2.

The Fourier expansion of each such hd at ∞ has the form (4.2.11), where for each nonzero
n ≡ 0, 1 (mod 4) we have

ad(n) = lim
s→3/4+

ad(n, s).

Furthermore, ad(0) = 2
√
d if d is a square and ad(0) = 0 otherwise.

Proof. Observe that hd(z, s) defined in (4.2.26) is holomorphic at s = 3/4, since otherwise
by Proposition 4.2.5 it would have as residue there a nonzero multiple of θ(z), which
cannot happen since (4.2.27) does not yield the constant term in θ. From (4.2.27) its
Fourier expansion is given by

hd(z) =Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx),

where ad(n) = lims→3/4+ ad(n, s) for n 6= 0 and, after recalling the definition ofW0(y) from
(4.2.6), we have that

ad(0) = lim
s→3/4+

bd(0, s)

4b0(0, s)
. (4.2.29)

Here again we use the integral representations for the Fourier coefficients and the fact that
hd(z, s) → hd(z) uniformly on compacta as s → 3/4+. Thus hd ∈ H !

1/2 for all d 6= 0.

The last statement of Lemma 4.2.7 can easily be obtained from (4.2.29), (4.2.24) and
(4.2.23).

Continuing with the proof of Proposition 4.2.2, we next show that the symmetry relation
(4.2.12) holds. By (1.12.4) and (4.2.20) we have that bd(n, s) = bn(d, s), hence by (4.2.28)

ad(n, s) = an(d, s). (4.2.30)

Now (4.2.12) follows from Lemma 4.2.7 and (4.2.30), where we use that h0 = θ in case
nd = 0. Note that a0(0) = 0. A direct calculation using (4.2.8) together with (4.2.12)
yields (4.2.13). This completes the proof of Proposition 4.2.2 and hence of Theorem 4.1.2.

4.2.2 Cycle integrals of Poincaré series

As further preparation for the proof of Theorem 4.1.3, in this section we will compute the
cycle integrals of certain general Poincaré series, which we will then specialize in order to
treat jm. To begin we need to make some elementary observations about cycle integrals.

dc_1553_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 4. MOCK MODULAR FORMS 63

As in (2.2.9) for Q ∈ Qd with d > 0 not a square let SQ be the oriented semi-circle defined
by

a|z|2 + bRe z + c = 0, (4.2.31)

directed counterclockwise if a > 0 and clockwise if a < 0. Clearly

SgQ = gSQ, (4.2.32)

for any g ∈ Γ. Given z ∈ SQ let CQ be the directed arc on SQ from z to g
Q
z, where g

Q

was defined in Section 1.11. It can easily be checked that CQ has the same orientation as
SQ. It is convenient to define

dzQ =

√
d dz

Q(z, 1)
. (4.2.33)

If z′ = gz for some g ∈ Γ we have
dz′gQ = dzQ. (4.2.34)

For any Γ–invariant function f onH the integral
∫
CQ
f(z)dzQ is both independent of z ∈ SQ

and is a class invariant.
Now we will specialize the Poincaré series Gm from (2.2.14) and construct the modular

functions jm. Let Gm(z, s) = Gm(z, φm,s), where

φm,s(y) =

{
ys if m = 0

2π|m| 12y 1
2 Is− 1

2
(2π|m|y) if m 6= 0,

with Is−1/2 the Bessel function as before. The resulting Γ-invariant function satisfies

40Gm(z, s) = s(1− s)Gm(z, s).

The functionG0 is the usual Eisenstein series whileGm form 6= 0 was studied by Neunhöffer
[98] and Niebur [99], among others. The required analytic properties of Gm(z, s) in s are
most easily obtained from their Fourier expansions. For the Eisenstein series we have the
well known formulas (see e.g. [74])

G0(z, s) = ys + c0(0, s)y1−s +
∑
n6=0

c0(n, s)Ks− 1
2
(2π|n|y)e(nx),

where Ks− 1
2

is the K-Bessel function (see e.g. [89]),

c0(0, s) =
ξ(2s− 1)

ξ(2s)
and for n 6= 0 c0(n, s) =

2y1/2

ξ(2s)
|n|s−1/2σ1−2s(|n|),

with ξ(s) = π−
s
2 Γ(s/2)ζ(s). For m 6= 0 the Fourier expansion of Gm can be found in [48],

and is given by

Gm(z, s) = 2π|m|
1
2y

1
2 Is− 1

2
(2π|m|y)e(mx) + cm(0, s)y1−s

+4π|m|1/2y1/2
∑
n6=0

|n|1/2cm(n, s)Ks− 1
2
(2π|n|y)e(nx),

where

cm(0, s) =
4π|m|1−sσ2s−1(|m|)

(2s− 1)ξ(2s)
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and

cm(n; s) =
∑
c>0

c−1K0(m,n; c) ·

{
I2s−1(4π

√
|mn| c−1) if mn < 0

J2s−1(4π
√
|mn| c−1) if mn > 0.

Define for m ∈ Z+ and Re(s) > 1

jm(z, s) = G−m(z, s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2
)ζ(2s− 1)

G0(z, s). (4.2.35)

It follows from its Fourier expansion, Weil’s bound (1.12.7) and (4.2.16) that jm(z, s) has
an analytic continuation to Re(s) > 3/4. Furthermore, since a bounded harmonic function
is constant, for m ∈ Z+ we have

jm(z, 1) = jm(z), (4.2.36)

where jm was defined above (4.1.7) (c.f. [99]). Alternatively, we could apply the theory of
the resolvent kernel in weight 0 to get the analytic continuation of jm(z, s) up to Re s > 1/2.

In view of (4.2.36), in order to compute the traces of jm(z, s) it is enough to compute
them for Gm(z, s). We have the following identities, which are known when m = 0 (Dirich-
let/Hecke) and when dD < 0 (see e.g. [37], [35], [21]). For the convenience of the reader
we will give a uniform proof.

Proposition 4.2.8. Let Re(s) > 1 and m ∈ Z. Suppose that d and D are not both negative
and that dD is not a square. Then, when dD < 0 we have

∑
Q∈Γ\QdD

χ(Q)

wQ
Gm(zQ, s) =


√

2π|m| 12 |dD|
1
4
∑

c≡0(4)

Sm(d,D;c)

c1/2
Is− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0

2s−1 |dD|
s
2
∑

c≡0(4)

S0(d,D;c)
cs

if m = 0,

while when dD > 0 we have

∑
Q∈Γ\QdD

χ(Q)

B(s)

∫
CQ

Gm(z, s)dzQ =


√

2π|m| 12 |dD|
1
4
∑

c≡0(4)

Sm(d,D;c)

c1/2
Js− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0

2s−1 |dD|
s
2
∑

c≡0(4)

S0(d,D;c)
cs

if m = 0,

where B(s) = 2sΓ( s
2
)2/Γ(s).

Proof. By (2.2.17) the proof of Proposition 4.2.8 reduces to the case dD > 0. Applying
Lemma 2.2.4 when m = 0 we use the well-known evaluation∫ π

0

(sin θ)s−1dθ = 2s−1 Γ( s
2
)2

Γ(s)
.

When m 6= 0 we need the following not-so-well-known evaluation to finish the proof.

Lemma 4.2.9. For Re(s) > 0 we have∫ π

0

cos(t cos θ)Is− 1
2
(t sin θ)

dθ

(sin θ)1/2
= 2s−1 Γ( s

2
)2

Γ(s)
Js−1/2(t).

Proof. See Appendix A.2.
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4.2.3 The traces in terms of Fourier coefficients

In this section we complete the proofs of Theorems 4.1.3 and 4.1.4. We need to express
the traces of jm in terms of the Fourier coefficients of our basis hd. This is first done for
jm(z, s) with Re(s) > 1 by applying Proposition 1.12.1 to transform the sum of exponential
sums in Proposition 4.2.8 into a sum of Kloosterman sums, which is then related to the
coefficients of hd(z, s). The method of using Kloosterman sums in this way was first applied
by Zagier [131] to base change, then by Kohnen [83] to the Shimura lift and more recently
to weakly holomorphic forms in [18], [35], [75] and [21].

Theorem 4.1.3 follows from Lemma 4.2.7, (4.2.36) and the next result by taking the
limit as s→ 1+ of both sides of (4.2.37). Also we use the relationship between a(n, d) and
ad(n) given in and above equation (4.2.14). We remark that we actually get a slightly more
general result than Theorem 4.1.3 in that we may allow D < 0, but the general result is
best left in terms of the coefficients ad(n).

Proposition 4.2.10. Let m ∈ Z+ and Re(s) > 1. Suppose that d and D are not both
negative and that dD is not a square. Then

∑
n|m

(
D
n

)
ad
(
m2D
n2 ,

s
2

+ 1
4

)
=


∑

Q χ(Q)w−1
Q jm(zQ, s) if dD < 0,

B(s)−1
∑

Q χ(Q)
∫
CQ
jm(z, s)dzQ if dD > 0,

(4.2.37)

where each sum on the right hand side is over Q ∈ Γ\QdD.

Proof. It is convenient to set for any m ∈ Z

Tm(s) =

{∑
Q χ(Q)w−1

Q Gm(zQ, s) if dD < 0,

B(s)−1
∑

Q χ(Q)
∫
CQ
Gm(z, s)dzQ if dD > 0,

where each sum is over Q ∈ Γ\QdD. By Propositions 4.2.8 and 1.12.1 we have for m 6= 0
and Re(s) > 1 that

Tm(s) = π|2m|
1
2 |dD|

1
4

∑
n|m

(
D
n

)
n−

1
2

∑
c≡0(4)

c−1K+
(
d, m

2D
n2 ; c

)
·


Is− 1

2

(
4π
c

√
m2

n2 |Dd|
)

if dD < 0,

Js− 1
2

(
4π
c

√
m2

n2 |Dd|
)

if dD > 0,

while when m = 0 we have

T0(s) = 2s−1 |dD|
s
2 LD(s)

∑
c≡0(4)

c−s−1/2K+
(
d, 0; c

)
.

Thus by (4.2.20) of Proposition 4.2.3 we derive that

Tm(s) =


∑

n|m
(
D
n

)
bd
(
m2D
n2 ,

s
2

+ 1
4

)
, if m 6= 0

2s−1π−
s+1
2 |D|

s
2 LD(s)bd(0,

s
2

+ 1
4
) if m = 0.

(4.2.38)

In view of (4.2.35), in order to prove Proposition 4.2.10 it is enough to show that∑
n|m

(
D
n

)
ad
(
m2D
n2 ,

s
2

+ 1
4

)
= Tm(s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2
)ζ(2s− 1)

T0(s). (4.2.39)
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By (4.2.28) and the first formula of (4.2.38) the left hand side of (4.2.39) is

Tm(s)−
bd(0,

s
2

+ 1
4
)

b0(0, s
2

+ 1
4
)

∑
n|m

(
D
n

)
b0(m

2D
n2 ,

s
2

+ 1
4
).

Hence by the second formula of (4.2.38) we are reduced to showing that

b0(0, s
2

+ 1
4
)−1
∑
n|m

(
D
n

)
b0(m

2D
n2 ,

s
2

+ 1
4
) =

2sπs/2|D|s/2m1−sσ2s−1(m)LD(s)

Γ(s+ 1
2
)ζ(2s− 1)

,

which follows by Lemma 4.2.6. This finishes the proof of Proposition 4.2.10, hence of
Theorem 4.1.3.

We now give a quick proof of Theorem 4.1.4. By (4.2.25) we have

Ress= 3
4
P+

0 (z, s) = 3
4π
θ(z).

The function Ẑ+(z) can now be defined through the limit formula5

Ẑ+(z) = 1
3

lim
s→ 3

4

(
P+

0 (z, s)−
3

4π
θ(z)

s− 3/4

)
. (4.2.40)

It follows from (4.2.40) that Ẑ+(z) has weight 1/2 and satisfies

∆1/2(Ẑ+) = − 1
8π
θ. (4.2.41)

Finally, using (4.2.38) when m = 0 and the fact that G0(z, s) has a simple pole at s = 1

with residue 3/π, one shows that Ẑ+(z) has a Fourier expansion of the form (4.1.21).

The statement that Ẑ+(z) has generalized shadow Ẑ−(z) from (4.1.20) can now be made
precise since it follows from (4.2.41) and the easily established identity

ξ3/2 Ẑ= − 1
4π
θ,

that
ξ1/2 Ẑ+ = −2Ẑ−.

4.2.4 Rational period functions

We now prove Theorem 4.1.5. First we give a rough bound for the traces in terms of m
when d > 0 is not a square that is sufficient to show that Fd is holomorphic in H.

Proposition 4.2.11. For d > 0 not a square and m ∈ Z+ we have for all ε > 0 that

Trd(jm)�d,ε m
5/4+ε.

5We remark that a similar limit formula was considered in [34].
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Proof. It follows from [67, Thm 1. p. 110] that for fixed d not a square and x > 0, we have
for all ε > 0 that ∑

0<n<x

Sm(d, 1; 4n)�d,ε (mx)ε(m5/4 + x3/4), (4.2.42)

after replacing d by 4d if necessary. For 1 < s < 2 we have by (1.12) and the well-known
bound (see e.g. [89, pp. 122])

Jv(y)�ν y
−1/2

that ∑
0<n≤m

Sm(d, 1; 4n)
√

m
n
Js− 1

2

(
π
√
|d|m

n

)
�d,ε m

1+ε.

By (4.2.16) we have for x > m

∑
m<n<x

Sm(d, 1; 4n)
√

m
n
Js− 1

2

(
π
√
|d|m

n

)
�d,ε m

s

∣∣∣∣∣ ∑
m<n<x

Sm(d, 1; 4n)n−s

∣∣∣∣∣+m1+ε.

Summation by parts and (4.2.42) give

ms
∑

m<n<x

Sm(d, 1; 4n)n−s �d,ε m
5/4+ε.

Now Proposition 4.2.11 follows by Proposition 4.2.8 and (4.2.35) by taking s→ 1+ in the
resulting uniform inequality ∑

Q∈Γ\Qd

∫
CQ

jm(z, s)dzQ �d,ε m
5/4+ε

and using (4.2.36).

It follows from Theorem 4.1.3 and Proposition 4.2.11 that the function Fd defined in
(4.1.22) for d > 0 not a square can be represented by the series

Fd(z) = −
∑
m≥0

Trd(jm) qm, (4.2.43)

which gives a holomorphic function on H. The basis {jm}m≥0 has a generating function
that goes back to Faber (see e.g. [4]):∑

m≥0

jm(z)qm =
j′(z)

j(z)− j(z)
, where j′(z) =

1

2πi

d j

d z
. (4.2.44)

Note that this formal series converges when Im(z) > Im(z) and that for fixed z not a zero
of j′ it has a simple pole at z = z with residue (2πi)−1. It follows from (4.2.44) and (4.2.43)
that for Im(z) sufficiently large we have

Fd(z) =
1

2π

∑
Q∈Γ\Qd

∫
CQ

j′(z)

j(z)− j(z)

dz

Q(z, 1)
, (4.2.45)

where we take for CQ an arc on SQ, the semi-circle defined in (2.2.9). Let F ′ = −F−1

be the image of the standard fundamental domain under inversion z 7→ −1/z. By (4.2.45)
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and Lemma 2.2.3 applied to each class of Qd and to each fundamental domain F and F ′,
we can write

Fd(z) =
1

4π

∑
Q∈Qd

(∫
SQ∩F

j′(z)

j(z)− j(z)

dz

Q(z, 1)
+

∫
SQ∩F ′

j′(z)

j(z)− j(z)

dz

Q(z, 1)

)
.

Now it is easily seen that each of these integrals is invariant under Q 7→ −Q, so we may
restrict the sum to Q+

d , giving

Fd(z) =
1

2π

∑
Q∈Q+

d

(∫
SQ∩F

j′(z)

j(z)− j(z)

dz

Q(z, 1)
+

∫
SQ∩F ′

j′(z)

j(z)− j(z)

dz

Q(z, 1)

)
. (4.2.46)

Recall from [25] that an indefinite quadratic form Q = [a, b, c] is called simple if c < 0 < a.
It is easily seen that Q ∈ Qd is simple if and only if Q ∈ Q+

d and SQ intersects F ′′ = F∪F ′.
For simple Q let AQ = SQ ∩ F ′′ be the arc in F ′′ oriented from right to left. Clearly AQ
must connect the two “vertical” sides of F ′′.6 Thus from (4.2.46) we obtain the identity

Fd(z) =
1

2π

∑
Q simple

b2−4ac=d

∫
AQ

j′(z)

j(z)− j(z)

dz

Q(z, 1)
.

Now we deform each arc AQ in the sum of integrals to BQ, which is within F ′′ and has
the same endpoints as AQ, but travels above z. By evaluating each resulting residue at z,
we get the formula

Fd(z) =
1

2π

∑
Q simple

b2−4ac=d

∫
BQ

j′(z)

j(z)− j(z)

dz

Q(z, 1)
+

1

2π

∑
Q simple

b2−4ac=d

Q(z, 1)−1,

which is also valid at −1/z. A simple calculation now shows that (4.1.23) holds in a
neighborhood of z, hence for all z ∈ H. Thus Theorem 4.1.5 follows.

Finally, for fixed m ∈ Z+ the inequality (4.2.42) can be used to show that the series in
Proposition 4.2.8 converges when s = 1. They yield the formula upon using the elementary
evaluation

J1/2(y) =
√

2
πy

sin y.

6For example, when d = 12 the simple forms are [1, 0,−3], [1,−2,−2], [1, 2,−2], [3, 0,−1], [2, 2,−1], [2,−2,−1].
A diagram showing the corresponding arcs AQ in this case is given in Figure 1.
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Chapter 5

Modular cocycles and linking
numbers

5.1 Background and statements of results

5.1.1 The Rademacher symbol as a linking number

The Dedekind η-function, Dedekind’s symbol and the Rademacher
symbol

Let G = SL(2,R) and Γ = SL(2,Z). The homogeneous space Γ\G is diffeomorphic to the
3-manifoldM the complement of a trefoil knot in the 3-sphere S3. (This is due to Quillen,
see below.) Recall the diagonal geodesic flow on Γ\G. Suppose that γ =

(
a b
c d

)
∈ Γ is a

primitive hyperbolic element with an eigenvalue ε > 1. Fix a g ∈ G so that g−1γg =
(
ε 0
0 1/ε

)
.

Then

Γg 7→ Γg

[
et 0
0 e−t

]
where t ∈ [0, log ε] gives a primitive oriented closed orbit in Γ\G which depends only on
the conjugacy class of γ. The image of this orbit in M is a modular knot. Below we will
review Ghys [52] beautiful result that the linking number of this knot with the trefoil (with
some orientation) is given by the Rademacher symbol

Ψ(γ) = Φ(γ)− 3 sign(c(a+ d)). (5.1.1)

Here Φ(γ) is the Dedekind symbol defined for all γ =
(
a b
c d

)
∈ Γ by

Φ(γ) =

{
b
d

if c = 0
a+d
c
− 12 sign c · s(a, c) if c 6= 0,

(5.1.2)

where s(a, c) is the Dedekind sum defined for gcd(a, c) = 1, c 6= 0 by

s(a, c) =

|c|−1∑
n=1

((n
c

))((na
c

))
. (5.1.3)

As usual, ((x)) = 0 if x ∈ Z and otherwise ((x)) = x− bxc − 1/2.
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The Rademacher symbol defined for all γ ∈ Γ by (5.1.1) is a conjugacy class invariant
[105] and, for γ hyperbolic, it is the homogenization of the Dedekind symbol Φ(γ) [7] [24].
More precisely,

Ψ(γ) = lim
n→∞

Φ(γn)

n
(5.1.4)

In addition to its role here, the Dedekind sum s(a, c) occurs in surprisingly diverse
contexts (see e.g. [6], [105], [79]). Among its many properties we note here only the
famous reciprocity formula for a, c > 0

s(a, c)− s(−c, a) = 1
12

(
a2+c2+1

ac

)
− 1

4
. (5.1.5)

The Dedekind symbol arose in Dedekind’s [31] evaluation of the transformation law for the
logarithm of

η(z) = q1/24
∏
m≥1

(1− qm)

or equivalently that of log ∆, where

∆(z) = q
∏
m≥1

(1− qm)24.

Here as usual q = e(z) = e2πiz for z ∈ H. Thus for any γ =
(
a b
c d

)
∈ Γ we have

log ∆(γz)− log ∆(z) = 6 log(−(cz + d)2) + 2πiΦ(γ), (5.1.6)

where Φ(γ) is given by the formula (5.1.2) and where we choose arg(−(cz+d)2) ∈ (−π, π).

Quillen’s identification

Let E4, E6 be the Eisenstein series of weight 4 and 6. They provide a realization of
SL2(Z)\ SL2(R) as follows. Any function of weight k can be lifted to SL2(R) via

f̃(g) = f(gi)jk(g, i)

where jk(g, z) = (cz + d)−k. We will first map SL2(R) into C2 via

F : g 7→ (Ẽ6(g), Ẽ4(g)).

Since E3
4(z)−E2

6(z) does not vanish on H the image of F avoids the set V = {(z, w) :
z2 − w3 = 0}. We can act by R∗+ on C2 via

(z, w) 7→ λ · (z, w) = (λ3z, λ2w).

Then it is clear that if (z, w) ∈ V then so is λ · (z, w), and conversely if (z, w) 6∈ V then
λ · (z, w) 6∈ V .

We need the following

1. if g1, g2 ∈ SL2(R) and ∃λ > 0 such that

λ · F (g1) = F (g2)

then ∃γ ∈ Γ such that γg1 = g2.
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2. For g ∈ SL2(R) ∃g ∈ G, λ > 0 such that (z, w) = λ · F (g) satisfies |z|2 + |w|2 = 2.
This λ depends smoothly on g.

3. If (z, w) ∈ C2 is such that |z|2 + |w|2 = 2 and z3 − w2 6= 0 then ∃g ∈ G, λ > 0 such
that

(z, w) = λ · F (g).

These are standard and follow from properties of the modular invariant j, see the
appendix.

Instead of S3 we will use X = {(z, w) : |z|2 + |w|2 = 2} which is clearly homeomorphic
to S3 but is a more convenient normalization.

By the above for each (z, w) ∈ X \ V there is a unique g ∈ Γ\G, and a unique λ > 0
such that

(z, w) = λ · F (g)

and this maps Γ\G one-to-one and onto X \ V . One easily checks that this is a homeo-
morphism (g 7→ λ(g) is continuous).

It remains to identify X ∩ V . Assume (z, w) ∈ X and z2 = w3. Then

|w|3 + |w|2 = 2

which is only possible if |w| = 1, in which case we also have |z| = 1. Therefore

X ∩ V = {(z, w) ∈ S1 : z2 = w3}.

This set is clearly homeomorphic to S1 via eiθ 7→ (e3iθ, e2iθ) and so is a knot. It
is not difficult to construct a knot diagram that identifies this knot with the trefoil, or
alternatively we may just take this construction as the definition of the trefoil knot.

The geodesic flow. Periodic orbits.

Let x ∈ Γ\ SL2(R) and consider the map φt : Γ\ SL2(R)→ Γ\ SL2(R)

x 7→ xφ(t)

where
φ(t) =

[
et 0
0 e−t

]
.

It is easy to see that φt+s = φt ◦φs, the resulting flow is called the geodesic flow. When
Γ\ SL2(R) is identified with unit tangent bundle with Γ\H this is the geodesic flow in the
geometric sense, the flow induced by geodesics.

The periodic orbits of φt correspond to conjugacy classes of primitive hyperbolic con-
jugacy classes {γ} in Γ. Here hyperbolic means that γ have distinct real eigenvalues, and
primitive refers to non-divisibility, there is no σ ∈ Γ such that σn = γ for some n.

To make the relation between hyperbolic elements and periodic orbits explicit note that
if γ ∈ Γ has tr γ > 2 and fixed points w′ < w then both γ and γ−1 are diagonalized by
M = 1√

w−w′ [
w w′
1 1 ]. By replacing γ with γ−1 if necessary we may assume that

γM = M

[
ε 0
0 1/ε

]
where ε > 1. When a+ d > 2 this is equivalent to c > 0. Both

γ̃+(t) = Mφ(t) and γ̃−(t) = MSφ(t)

are periodic orbits of the geodesic flow g 7→ gφ(t) on Γ\ SL2(R).
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Ghys’ theorem

As above define ∆̃ : SL2(R)→ C by

∆̃(g) = ∆(gi)j12(g, i)

where for g = [ a bc d ] ∈ SL2(R)
j12(g, z) = (cz + d)−12.

Similar lifts Ẽ4, Ẽ6 of the classical Eisenstein series E4 and E6 give an embedding of
Γ\ SL2(R) into C2. The 3-manifold {(Ẽ4(g), Ẽ6(g) : g ∈ SL2(R)} is disjoint from the
hypersurface V = {(z, w) : z3 = w2} and is easily seen to be homeomorphic to the comple-
ment of V ∩ S3, the trefoil knot, in S3. Let γ ∈ SL2(R) be hyperbolic, with tr γ > 2. We
are looking for the linking number of the closed periodic orbit γ̃+ with the trefoil (after

the above identification). Since Ẽ4
3− Ẽ6

2
= ∆̃, a general topological argument shows that

this linking number is the same as the winding number of ∆̃(γ̃+(t)) around 0. This in turn
can be computed as follows

2πi ind(∆̃(γ̃+(t)), 0) =

∫
γ̃+

d∆̃

∆̃
=

∫
γ̃+

d∆

∆
+

∫
γ̃+

dj12

j12

.

The first integral can be evaluated from the transformation formula of log ∆ from
γ̃+(0)i = Mi = z0 to γ̃+(log ε)i = γz0

log ∆(γz0)− log ∆(z0) = 12 log

(
cz0 + d

i sign c

)
+ 2πiΦ(γ)

with Φ(γ) as in (5.1.2). (See [105] equation (60) on page 49.)
Similarly the value of the second integral is 12 log(cz0 + d) and the linking number of

the closed orbit of a hyperbolic γ is given by

6

πi

(
log

(
cz0 + d

i sign c

)
− log(cz0 + d)

)
+ Φ(γ)

Finally for Im z0 > 0

6

πi

(
log

(
cz0 + d

i sign c

)
− log(cz0 + d)

)
= −3 sign c

leading to Ghys’ theorem.

5.1.2 Generalizations of the Dedekind symbol

At the end of his paper Ghys mentions the problem of interpreting the linking number
between two modular knots. In this section we will approach this question by giving an
appropriate generalization of the Dedekind symbol. To do this we give an equivalent but
slightly different approach to the above results about the Dedekind symbol: it arises as a
limiting value of the weight 0 cocycle whose derivative is 12c

cz+d
. This limiting value is an

integer and its homogenization is also an integer that gives the linking number with the
trefoil.

To put this into perspective, let P be the space of holomorphic functions f on H such
that f(z) � yα + y−α for some α depending on f . For any integer k ∈ 2Z, γ ∈ Γ acts on
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P by the usual slash action defined via f |kγ = (cz + d)−kf(γz). A 1-cocycle of weight k
for Γ with coefficients in P is a map Γ→ P given by γ 7→ r(γ, z) with

r(σγ, z) = r(σ, z)|kγ + r(γ, z)

for all γ, σ ∈ Γ. Now given a 1-cocycle r(γ, z) of weight 2 for Γ there will be a unique
1-cocycle R(γ, z) of weight 0 for Γ such that

d

dz
R(γ, z) = r(γ, z), (5.1.7)

the uniqueness following from the fact that H1(Γ,C) = {0}. We call R(γ, z) the primitive
of r(γ, z).

The weight 2 cocycle relevant to the Dedekind sum is given for γ = [ a bc d ] by

r(γ, z) =
12c

cz + d

which, up to a constant, appears in the transformation formula of the weight 2 Eisenstein
series E2(z) (and which therefore equals a multiple of ∆′(z)/∆(z)). It follows from (5.1.6)
that the primitive for this cocycle is

R(γ, z) = 6 log(−(cz + d)2) + 2πiΦ(γ),

provided c 6= 0, from which we have the limit formula for Φ(γ) in (5.1.2):

Φ(γ) = 1
2π

lim
y→∞

ImR(γ, iy). (5.1.8)

As an attempt to generalize the linking number formula of Ghys to two closed orbits,
we will associate to any conjugacy class C of hyperbolic σ ∈ Γ with trσ > 2 the weight
two 1-cocycle defined for c 6= 0 and γ =

(
a b
c d

)
∈ Γ by

rC(γ, z) := εC
∑ 1

z − w
− 1

z − w′
, (5.1.9)

where the sum is over the fixed points w′, w of σ ∈ C, satisfying w′ < −d/c < w and

εC =

{
1 if σ 6∼ σ−1

2 if σ ∼ σ−1
. (5.1.10)

If c = 0 we let rC(γ, z) = 0.
With Duke and Imamoglu we proved the following theorems.

Theorem 5.1.1. Let rC(γ, z) be defined as in (5.1.9). Then rC(γ, z) is a weight 2 cocycle
for Γ.

Let C be a primitive conjugacy class of Γ. Theorem 5.1.1 has an immediate corollary
for the functional equation of the function

FC(z) =
∞∑
m=0

aC(m)e2πimz
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where the coefficient aC(n) is given by the cycle integral

aC(m) =
√
D′
∫ σz0

z0

jm(z) dz
Qσ(z)

. (5.1.11)

Here σ =
(
a′ b′

c′ d′

)
∈ C is primitive and we set Qσ(z) = c′z2 + (d′ − a′)z − b′ and D′ =

(a′ + d′)2 − 4. The path of integration can be taken as any path from z0 to σz0. In
particular, if λ is the eigenvalue > 1 of σ2 then

aC(0) = log λ,

assuming that trσ > 2.

Theorem 5.1.2. For the function FC defined above satisfies

FC(γz)(cz + d)−2 − FC(z) = rC(γ, z).

This is extends Theorem 4.1.5 to an arbitrary element of Γ, to a slightly more general
function then Fd (which arises as the sum of certain FC-s.)

Concerning the generalization of Dedekind’s symbol let

GC(z) = aC(0)z +
1

2πi

∞∑
m=1

aC(m)

m
e2πimz

be a primitive of FC(z) and RC(γ, z) be the unique primitive of rC(γ, z) which is a 0-cycle,
so that we have

GC(γz)−GC(z) =

∫ γz

z

FC(w)dw = RC(γ, z).

Next we define the Dedekind symbol for C and any γ ∈ Γ by

ΦC(γ) = 2
π

lim
y→∞

ImRC(γ, iy) (5.1.12)

We also extended (5.1.8) form log η to the functions FC.

Theorem 5.1.3. ΦC(γ) exists and is an integer.

5.1.3 Linking number between symmetric modular links

In order to define the linking number of two cycles in a manifold we must assume that they
are each homologous to 0 and that they don’t intersect. For two orbits as above one can
either fill in the trefoil appropriately to get S3, as is done in [53], or restrict attention to
orbits that are null-homologous as in [32]. It is not immediately clear what role modular
forms may play in the first approach as the SL2-geometry is then lost. In the second course
one may use a theorem that goes back to Birkhoff to show that the link determined by
a primitive hyperbolic element and its inverse is null-homologous in M. Our main result
with Duke and Imamoglu is that for two such distinct symmetric links, denoted also by
Cγ, and Cσ, their linking number Lk(Cσ, Cγ) is given by the homogenization of ΦCσ . More
precisely
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Theorem 5.1.4. If C is a hyperbolic conjugacy class then

lim
n→∞

ΦCσ(γn)

n
.

exists.

The value of the limit, called the homogenization of ΦC will be denoted by ΨCσ(γ).
Recall that Ghys result interprets the homogenization of the Dedekind symbol as a linking
number. The natural extension of this to ΨC is the following

Theorem 5.1.5. Let Cσ and Cγ denote also the links associated to two different primitive
conjugacy classes. Then

Lk(Cσ, Cγ) = ΨCσ(γ)

5.1.4 Reciprocity

With Duke and Imamoglu I also gave an expression for ΦC(γ) in terms of a special value of
a certain Dirichlet series that has some properties analogous to the Dedekind sum s(a, c)
from (5.1.3), including the reciprocity formula (5.1.5). That something like this might be
possible is indicated by the fact that for the Dirichlet series

L(s, a/c) =
∑
n≥1

σ(n)e(a
c
n)n−s,

where σ(n) is the usual divisor sum, we have the limit formula

s(a, c) = 1
2πi

lim
s→1

[
L(s, a

c
) + 1

2s−2

]
, (5.1.13)

assuming c > 0.
The Dirichlet series associated to the cocycles of Theorem 5.1.1 are given explicitly as

follows. For each m ≥ 0 let jm be the unique modular function holomorphic on H whose
Fourier expansion begins

jm(z) = q−m + Ø(q)

and define for α ∈ Q the Dirichlet series

LC(s, a) =
∑
n≥1

aC(n)e(na)n−s, (5.1.14)

where the coefficient aC(n) is given by the cycle integral

aC(m) =
√
D′
∫ σz0

z0

jm(z) dz
Qσ(z)

. (5.1.15)

as in (5.1.11).
Our next theorem gives the connection of this Dirichlet series to ΦC(γ).

Theorem 5.1.6. Let γ =
(
a b
c d

)
∈ Γ with c 6= 0 and and LC(s, a/c) be the Dirichlet series as

in (5.1.14). Then LC(s, a/c) converges for Re(s) > 9/4, has a meromorphic continuation
to s > 0 and is holomorphic at s = 1. Moreover

ΦC(γ) = − 1
π2 ReLC(1, a/c). (5.1.16)
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It is interesting that ΦC(γ) depends only on a/c mod 1. Furthermore, we have the
following reciprocity formula:

For zi ∈ C ∪ {∞}, let

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)

denote the cross ratio. We assume that (a, c) = 1 and ac 6= 0. Then

1

iπ
[LC(1, a/c)− LC(1,−c/a)] = −2

(
a2+c2+1

ac

)
log λ+ εC

∑
w′<0<w

log[a
c
, w, w′,− c

a
] (5.1.17)

Here we interpret the imaginary part of the logarithm of a negative real number to be π.
Note that (5.1.17) is in some sense analogous to (5.1.5) and allows for a fast calculation

of LC(1, a/c). Now we restrict ourselves to the imaginary part of RC(γ, z). Recall that

ΦC(γ) = 2
π

lim
y→∞

ImRC(γ, iy) = − 1
π2 ReLC(1, a/c).

We start with

Theorem 5.1.7. Let γ ∈ Γ be a hyperbolic element. Then ΦC(γ) = −|IC(−d/c, i∞)| where
|IC(−d/c, i∞)| counts the number of intersections of image of the half line {−d/c+ it : t >
0} and the closed geodesic associated to C.

Note that since LC(1, a/c) depends only on a/c mod 1, so does ΦC(γ) and hence for
c 6= 0 we can write ΦC(a/c) = ΦC(γ). The following theorem is an analogue of Dedekind’s
reciprocity formula. It allows for, via Euclid’s algorithm, a quick computation of ΦC(γ).

Theorem 5.1.8. Let C be a hyperbolic conjugacy class and γ = [ a bc d ]. For ac 6= 0 we have

ΦC(a/c) = ΦC(−c/a) +
εC
2

∑
w′<0<w

(1− sign[a
c
, w, w′,− c

a
]) (5.1.18)

5.2 Proofs

5.2.1 Dirichlet series associated to weight 2 cocycles

Recall that a (strongly) parabolic cocycle of weight k for Γ with coefficients in P is a map
Γ→ P given by γ 7→ r(γ, z) with

r(σγ, z) = r(σ, z)|kγ + r(γ, z)

for all γ, σ ∈ Γ which also satisfies r(T, z) ≡ 0.
It follows from a more general result of Knopp [88] that given a parabolic cocycle r(γ, z)

for Γ there is F (z) =
∑

n≥0 ane
2πinz with an � nC for some C > 0 such that ∀γ ∈ Γ,

F |kγ(z) = F (z) + r(γ, z).

The function F (z) is called the modular integral associated to r(γ, z). We now restrict
ourselves to the case of k = 2 and let r(γ, z) be a cocycle of weight 2. We associate to
r(γ, z) and its modular integral a Dirichlet series

L(F, s, a/c) =
∑
n≥1

ane(
an

c
)n−s.

dc_1553_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 5. MODULAR COCYCLES AND LINKING NUMBERS 77

In this section we will first prove a general theorem giving the relation of the special value
of L(F, 1, a/c) to the unique weight 0 cocycle R(γ, z) which satisfies R′(γ, z) = r(γ, z).

This is based on the fact the function G(z) = a0z +
∑

n>0
an

2πin
e2πinz is a primitive of

F (z) and satisfies d
dz

(G(γz)−G(z)) = r(γ, z). This gives a relation between R(γ, z) and
γz∫
z

(F (w)−a0)dw, which in turn expresses limy→∞R(γ, iy) in terms of the “period-integral”∫ i∞

a/c

(F (w) − a0)dw. If F were a weight 2 cusp form, it is well known that this period

integral is expressible in terms of the central value of a twisted Dirichlet series of F . The
next theorem shows the case of modular integrals is similar. More precisely we have the
following theorem.

Theorem 5.2.1. Let r(γ, z) ∈ P be a cocycle of weight 2 and F (z) =
∑

n≥0 anq
n be its

modular integral. Assume that an � nα for some α > 0. For γ =
(
a b
c d

)
, let

Λ(s, a
c
) = Λ(F, s, a

c
) =

(
2π
c

)−s
Γ(s)

∑
n≥1

ane(
an

c
)n−s (5.2.1)

and

H(s, a
c
) = Λ(s, a

c
) +

∫ ∞
1

r(γ,−d/c+ it/c)t1−sdt+
a0

s
− a0

2− s
. (5.2.2)

Then H(s, a
c
) is entire and satisfies the functional equation H(s, a

c
) = −H(2 − s, −d

c
).

Moreover if

R(γ, z) = −i
c
H(1, a

c
) +

∫ z

− d
c

+ i
c

r(γ, w)dw + a0

(
a+d
c

)
(5.2.3)

Then R(γ, z) is the weight zero cocycle such that R′(γ, z) = r(γ, z).

Proof. Let zt = −d
c

+ i
ct

so that γzt = a
c

+ it
c

and czt + d = i/t. Then

Λ(s, a/c) =

∫ ∞
0

(F (γzt)− a0)ts−1dt

=

∫ 1

0

(F (γzt)− a0)ts−1dt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
−
∫ ∞

1

F (γz1/t)(it)
−2t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
−
∫ ∞

1

[F (z1/t) + r(γ, z1/t)]t
1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
+

a0

2− s
−
∫ ∞

1

r(γ, z1/t)t
1−sdt

−
∫ ∞

1

(F (z1/t)− a0)t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

Hence

H(s, a
c
) =Λ(s, a

c
) +

∫ ∞
1

r(γ,−d/c+ it/c)t1−sdt+
a0

s
− a0

2− s

=−
∫ ∞

1

(F (z1/t)− a0)t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt (5.2.4)
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Both integrals in (5.2.4) converge for all s ∈ C due to the exponential decay of the
integrands proving the analytic continuation of H(s, a

c
) to the whole complex plane. The

functional equation H(s, a/c) = −H(2 − s,−d/c) also follows easily from (5.2.4) since
z1/t = −d

c
+ it

c
and γzt = a

c
+ it

c
.

We next take the limit s→ 1 to get

H(1, a
c
) =− c

i

∫ i∞

z1

(F (z)− a0)dz +
c

i

∫ i∞

γz1

(F (z)− a0)dz

=− c

i

(
G(γz1)−G(z1)− a0

(
a+ d

c

))
where G(z) = a0z +

∑
n≥1

an
2πin

qn. Since G′(z) = F (z),

G(γz)−G(z) =

∫ z

z1

r(γ, w)dw + Φ(γ)

with Φ(γ) = (G(γz1)−G(z1)).
Hence

R(γ, z) =

∫ z

z1

r(γ, w)dw + (G(γz1)−G(z1)) = G(γz)−G(z)

is a cocycle being the boundary of a function G. This finishes the proof of the theorem
since clearly R′(γ, z) = r(γ, z).

As an immediate corollary of Theorem 5.2.1 we prove the limit formula (5.1.13) for the
classical Dedekind sums defined as in (5.1.3).

Corollary 5.2.2. Let s(a, c) be the Dedekind sum and

L(s, a/c) =
∑
n≥1

σ(n)e(a
c
n)n−s,

Then
s(a, c) = 1

2πi
lim
s→1

[
L(s, a

c
) + 1

2s−2

]
.

Proof. We apply Theorem 5.2.1 in the case of Eisenstein series F (z) = E2(z) = 1 −
24
∑
σ(n)qn and its cocycle r(γ, z) = 6

πi
c

cz+d
, so that L(F, s, a/c) = −24L(s, a/c). For

simplicity assume c > 0. As a primitive of r(γ, z) we choose 6
πi

log
(
cz+d
i

)
. Using (5.2.2)

and (5.2.3) we have

R(γ, z) = lim
s→1

[
− 24

2πi
L(s, a/c)− 6

πi

1

s− 1

]
+

6

πi

∫ z

−d/c+i/c

c

cw + d
dw +

(
a+ d

c

)
(5.2.5)

=
12

2πi
log

cz + d

i
+ Φ(γ) (5.2.6)

where

Φ(γ) = lim
s→1

[
−12

πi
L(s, a/c)− 6

πi

1

s− 1

]
+

(
a+ d

c

)
The limit formula (5.1.13) now follows from Dedekind’s formula (5.1.2) for Φ(γ).
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5.2.2 Weight 2 rational cocycles for the modular group

In this section we restrict ourselves to cocycles of weight 2 which are rational functions.
The simplest example is r(γ, z) = 12c/(cz + d) whose poles are in Q. In the case r(γ, z) is
a rational cocycle whose poles are not rational it is known that r(S, z) can be written as a
finite linear combination of functions of the form

√
D
∑
AC<0

signA

Az2 +Bz + C
(5.2.7)

where Q(X, Y ) = AX2 + BXY + CY 2 runs over quadratic forms in the class C (see
[5, 25, 102, 103]). Rational period functions were introduced by Knopp in the 1970s [86, 87]
who showed using results from [85] that they have modular integrals. His construction
arises from a meromorphic Poincaré series formed out of cocycles and is very difficult
to compute (see also [44]). On the other hand in [40] and [41] certain explicit modular
integrals were constructed whose Fourier coefficients are given by cycle integrals of weakly
holomorphic forms. These functions are parametrized by classes of indefinite quadratic
forms C and are given by the Fourier expansion

FC(z) =
∑
m≥0

aC(m)e(mz). (5.2.8)

with

aC(m) =
√
D

∫ σz0

z0

jm(z) dz
Q(z)

. (5.2.9)

Here jm is the unique modular function whose Fourier expansion has the form q−m +O(q),
Q is any quadratic form in the class C, σ = σQ is a distinguished generator of the group
of automorphs of Q. The value of the integral is independent of the path and the point
z0 ∈ H. In [40] it is shown that the function FC arises from the cycle integral of the Green

function j′(z)
j(z)−j(w)

. The cycle integral of this Green function is modular but with jump
singularities along the geodesic. FC is then the analytic continuation from the connected
component of the cusp. It is holomorphic, but no longer invariant.

The association Q 7→ σQ sets up a bijection between elements of the class C of the
quadratic form Q and the conjugacy class of σQ, which by abuse of notation will also be
denoted by C. Since it is more convenient for us to express our results in terms of the
hyperbolic conjugacy class, we briefly recall this correspondence. If Q(X, Y ) = AX2 +
BXY +CY 2 has discriminant D = B2 − 4AC, and t, u are the smallest positive solutions
of Pell’s equation t2 −Du2 = 4 then

σQ =

[
t+Bu

2
Cu

−Au t−Bu
2

]
.

Conversely if σ =
(
a′ b′

c′ d′

)
∈ C is a primitive hyperbolic element and we set Qσ(z) =

(c′X2 + (d′ − a′)XY − b′Y 2), and Q = −1
u
Qσ with u = gcd(c′, d′ − a′, b′) then σQ = σ. It

follows that with D′ = (a′ + d′)2 − 4 we also have

aC(m) =
√
D′
∫ σz0

z0

jm(z) dz
Qσ(z)

as in (5.1.11).
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As in [40] one can show that aC(m) � m5/4+ε for any ε > 0 and FC satisfies the
transformation property

z−2FC(−1/z)− FC(z) = εC
∑

w′Q<0<wQ

1

z − w
− 1

z − w′
. (5.2.10)

Note that the rational function on the right hand side above is the same as in (5.2.7).
Here for Q ∈ C, w′Q < wQ are the two roots of Q(t, 1) = 0. If σ = σQ then these are

also the fixed points w′σ < wσ of σ, and εC is defined as in (5.1.10).
If C denotes the class of Q or the class of the hyperbolic element σQ we let

WC =
{

(w′Q, wQ) : Q ∈ C
}

= {(w′σ, wσ) : σ ∈ C} (5.2.11)

the ordered pairs of roots of Q ∈ C or equivalently the fixed points of σ.
For a fixed γ ∈ SL2(Z), we let as in (5.1.9),

rC(γ, z) := εC
∑ 1

z − w
− 1

z − w′

where the sum is over (w′, w) ∈ WC, satisfying w′ < −d/c < w if c 6= 0 and rC(γ, z) ≡ 0
otherwise.

Remark 5.2.3. Although the set WC is infinite, the sum defining rC(γ, z) is finite. To
see this note that in the case that −d/c is an integer the number of terms is the same as
the number of quadratic forms [A,B,C] for which AC < 0. Otherwise consider a form

[A,B,C] satisfying −B−
√
D

2A
< −d

c
< −B+

√
D

2A
, then the form [A, cB, c2C] has discriminant

c2D and its roots are separated by −d, and integer.

For later use we give another description of rC(γ, z). For σ ∈ C a fixed hyperbolic
element, let wσ, wσ′ be its two fixed points, Γσ = {g ∈ Γ : g−1σg = σ}, and Sσ be the
semicircle whose endpoints are wσ and w′σ. Let ∂H = R ∪ i∞ and H = H ∪ ∂H.

For z1, z2 ∈ H we denote the geodesic segment joining z1 and z2 by `z1,z2 . Let

IC(z1, z2) = {α ∈ Γ/Γσ : αSσ intersects `z1,z2}. (5.2.12)

and let |IC(z1, z2)| denote the cardinality of IC(z1, z2).
Note that if we define the net of σ, Nσ as the preimage of the closed geodesic associated

to σ in H so that
Nσ :=

⋃
g∈Γ

gSσ =
⋃
g∈Γ

Sg−1σg, (5.2.13)

then |IC(α, β)| counts the number of intersections of the geodesic segment `α,β with the
semicircles in Nσ, the net of σ. MoreoverWC is simply the set of end points of the geodesics
in the net Nσ.

With the above notation we also have

rC(γ, z) =
∑

α∈IC(−d/c,i∞)

sign(αwσ − αw′σ)

(
1

z − αwσ
− 1

z − αw′σ

)
(5.2.14)

Theorem 5.2.4. For any γ, σ ∈ Γ, with γ =
(
a b
c d

)
rC(σγ, z) = rC(σ, γz)(cz + d)−2 + rC(γ, z) (5.2.15)
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Proof. To ease the notation the dependence on C, which is fixed, is suppressed. As usual
let T and S denote the two generators of Γ corresponding to the translation z → z+ 1 and
the inversion z → −1/z respectively. First note that r(Tγ, z) = r(γ, z). Hence if we prove

r(Sγ, z) = r(S, γz)(cz + d)−2 + r(γ, z) (5.2.16)

the proposition follows by induction on the word length expressing σ in terms of the
generators S and T. Recall that for z, w ∈ C and γ ∈ Γ

w − w′

(γz − w)(γz − w′)
(cz + d)−2 =

γ−1w − γ−1w′

(z − γ−1w)(z − γ−1w′)
(5.2.17)

Since Sγ =
[
−c −d
a b

]
to prove (5.2.16), using (5.2.17) we have to prove that

∑
w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w

(
1

z − w
− 1

z − w′

)
=

∑
w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
(5.2.18)

all sums over pairs (w′, w) ∈ W .
Assume first that ac > 0 so that −d/c < −b/a. On the left hand side of (5.2.18) we

have ∑
−d/c<w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w<−b/a

(
1

z − w
− 1

z − w′

)
(5.2.19)

On the other hand we can write for the right hand side of (5.2.18)∑
w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
=

∑
w′<0<w<a/c

(
1

z − γ−1w
− 1

z − γ−1w′

)
+

∑
w′<0<a/c<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
(5.2.20)

Now note that

γ−1z = −d
c
− 1

c2(z − a/c)

and the function x → −d
c
− 1

c2(x−a/c) is monotonic for x ∈ (−∞, a/c) and also for x ∈
(a/c,∞).

It follows that for w′ < 0 < w < a/c,

− d/c < γ−1w′ < −b/a < γ−1w (5.2.21)

and similarly that for w′ < 0 < a/c < w

γ−1w < −d/c < γ−1w′ < −b/a. (5.2.22)
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Using (5.2.21) and (5.2.22) in (5.2.20) we get that

∑
w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
=

∑
w′<0<w<a/c

(
1

z − γ−1w
− 1

z − γ−1w′

)
+

∑
w′<0<a/c<w

(
1

z − γ−1w
− 1

z − γ−1w′

)

=
∑

−d/c<w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w<−b/a

(
1

z − w
− 1

z − w′

)
(5.2.23)

This proves (5.2.18) when ac > 0. The case ac < 0 follows in the same manner. The case
ac = 0 can be checked easily since c = 0 corresponds to γ = Tm whereas a = 0 rises from
γ = STm.

This proves Theorem 5.2.4 and hence also Theorem 5.1.1 from the introduction.

Extending our earlier work we show that

Theorem 5.2.5. For any hyperbolic conjugacy class C the function FC(z) is holomorphic
on H and satisfies

(cz + d)−2FC(γz) = FC(z) + rC(γ, z) (5.2.24)

Proof. The claim is trivial for T and has been established for the generator S = [ 0 −1
1 0 ] in

[41]. It is possible to give a proof of the general case along the lines of the proof of (5.2.10)
given in [41]. However the algebraic proof above already established that the rational
function rC(γ, z) defined in (5.1.9) is a weight 2 cocycle. Since it agrees with the cocycle
associated to FC(z) for the generators γ = S = [ 0 −1

1 0 ] and T = [ 1 1
0 1 ] the difference is a

1-cocycle that vanishes on both S and T and so must vanish identically.

5.2.3 The Dirichlet Series associated to FC(z)

Guided by the example of the Eisenstein series E2(z) and its primitive log ∆(z), it is natural
to study a primitive of a general modular integral, and the associated weight zero cocycle
that appears in its transformation property.

We look at this problem in the case of the function FC(z) and determine the unique
weight 0 primitive RC(γ, z) of the cocycles rC(γ, z) in terms of the special values of the
Dirichlet series L(FC, s, a/c).

The next theorem and its corollary, which are based on Theorem 5.2.1, proves Theo-
rem 5.1.6 from the introduction.

Theorem 5.2.6. Let FC(z) be the modular integral in (5.2.8) and LC(s, a/c) :=
L(FC, s, a/c) be its associated Dirichlet series. Then LC(s, a/c) converges for Re(s) > 9/4,
has a meromorphic continuation to s > 0 and is holomorphic at s = 1. Moreover if RC(γ, z)
is the unique weight 0 cocycle such that R′C(γ, z) = rC(γ, z) then

RC(γ, z) = εC
∑

w<−d
c
<w′

log(z − w)− log(z − w′) + 1
2πi
LC(1, a/c) + aC(0)

(
a+ d

c

)
(5.2.25)
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Proof. The convergence of LC(s, a/c) for Re(s) > 9/4 follows from the bound aC(m) �
m5/4+ε which was proved in Proposition 6 of [40].

To prove (5.2.25), in Theorem 5.2.1 we let r(γ, z) = rC(γ, z) = εC
∑

w′<−d/c<w
1

z−w−
1

z−w′ .

As a primitive of rC(γ, z) we choose

εC
∑

w′<−d/c<w

log(z − w)− log(z − w′).

Once again using (5.2.2) and (5.2.3) we have

RC(γ, z) =
−i
c

lim
s→1

[(
2π

c

)−s
Γ(s)LC(s, a/c) +

∫ ∞
1

rC(γ,−d/c+ it/c)t1−sdt

]
(5.2.26)

+

∫ z

z1

rC(γ, w)dw + aC(0)

(
a+ d

c

)
where z1 = −d/c+ i/c.

Contrary to the case of E2, the Dirichlet series LC(s, a/c) has no pole at s = 1. This is
due to the fact that at s = 1 the first integral in (5.2.26) has the finite value

εC
∑

w′<−d/c<w

log(z1 − w)− log(z1 − w′).

To finish the proof of Theorem 5.2.6 we combine the two integrals in (5.2.26) to get

RC(γ, z) =
1

2πi
LC(1, a/c) +

∫ z

∞
rC(γ, z)dw + aC(0)

(
a+ d

c

)
(5.2.27)

=
1

2πi
LC(1, a/c) + εC

∑
w′<−d/c<w

log(z − w)− log(z − w′) + aC(0)

(
a+ d

c

)
.

Since aC(0) = log λ is real, the following corollary easily follows from (5.2.25)

Corollary 5.2.7. Let ΦC(γ) = 2
π

limy→∞ ImRC(γ, iy). Then

ΦC(γ) = − 1
π2 ReLC(1, a/c).

In the rest of the section we will give two applications of Theorem 5.2.6 and the cocycle
relation

RC(σγ, z) = RC(σ, γz) +RC(γ, z).

The first one is an analog of the Dedekind’s reciprocity formula (5.1.5) for the Dirichlet
series LC(1, a/c). More precisely we have

Theorem 5.2.8. Let (a, c) = 1 and ac 6= 0. Then

1

iπ
[LC(1, a/c)− LC(1,−c/a)] = −2

(
a2+c2+1

ac

)
log λ− νC(a/c)) (5.2.28)

where

νC(x) = εC
∑

w′<0<w

[
log

(
x− w
x− w′

)
− log

(
1 + xw

1 + xw′

)]
.

Here we interpret the imaginary part of the logarithm of a negative real number to be
π.
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Proof. Let γ = [ a bc d ] and S = [ 0 −1
1 0 ] . From (5.2.27) we have

RC(γ, z) =
1

2πi
LC(1, a/c) +

∫ z

i∞
rC(γ, w)dw + aC(0)

(
a+ d

c

)
Since RC(γ, z) is a cocycle it satisfies

RC(Sγ, z) = RC(S, γz) +RC(γ, z). (5.2.29)

Hence

RC(Sγ, z) =
1

2πi
LC(1,−c/a) +

∫ z

i∞
rC(Sγ,w)dw + aC(0)

(
b− c
a

)
(5.2.30)

=
1

2πi
LC(1, 0) +

∫ γz

i∞
rC(S,w)dw

+
1

2πi
LC(1, a/c) +

∫ z

i∞
rC(γ, w)dw + aC(0)

(
a+ d

c

)
We let z → i∞ to get

1

2πi
[LC(1,−c/a)− LC(1, a/c)] =aC(0)

(
a2 + c2 + 1

ac

)
(5.2.31)

+
1

2πi
LC(1, 0) +

∫ a/c

i∞
rC(S,w)dw (5.2.32)

Hence

1

2πi
[LC(1,−c/a)− LC(1, a/c)]

= aC(0)

(
a2 + c2 + 1

ac

)
+

1

2πi
LC(1, 0)

+ εC
∑

w′<0<w

log(
a

c
− w)− log(

a

c
− w′) (5.2.33)

Now replacing the roles of −c with a and a with c gives

1

2πi
[LC(1, a/c)− LC(1,−a/c)]

= −aC(0)

(
a2 + c2 + 1

ac

)
+

1

2πi
LC(1, 0)

+ εC
∑

w′<0<w

log(
−c
a
− w)− log(

−c
a
− w′) (5.2.34)

Finally noting that aC(0) = log λ and taking the difference of the last two equations prove
(5.2.28).

As a second application we have the following geometric interpretation of the special
value of the Dirichlet series LC(s, a/c).
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Theorem 5.2.9. Let LC(s, a/c) be the Dirichlet series associated to FC(z). Then

1

2πi
[LC(1, a/c) + LC(1,−d/c)] (5.2.35)

= −εC
∑

w′<−d
c
<w

log(−d
c
− w)− log(−d

c
− w′) (5.2.36)

=− εC

2 log

∣∣∣∣∣∣
∏

w′<−d
c
<w

tan

(
θw
2

)∣∣∣∣∣∣+ iπ
∑

w′<−d
c
<w

1

 (5.2.37)

where the sum and the product runs over elements (w′, w) ∈ WC that are separated by −d
c
.

θw is the angle of intersection of the vertical line (−d/c,−d/c + i∞) with the semicircle
with end points w′ and w. Here θw is the angle containing the line segment connecting this
intersection to w′.

Proof. Let γ = [ a bc d ] . Using the cocycle relation 0 = RC(γ, γ
−1z) +RC(γ

−1, z), the formula
(5.2.25) and taking the limit as z → i∞ leads to the first equality (5.2.36). Since−d/c, w, w′
all lie on the real axis, the argument of each logarithm term in the sum in (5.2.36) is π.
Here we interpret the imaginary part of the logarithm of a negative real number to be π.
This proves that the imaginary part of (5.2.36) is indeed given by π

∑
w′<−d

c
<w 1.

The fact that the real part (5.2.36) is given as in (5.2.37) follows easily using elementary
geometry. (See also [9] p.116.)

5.2.4 Intersection numbers

In this section we restrict ourselves to the imaginary part of RC(γ, z). Recall from (5.2.7)
that

ΦC(γ) = 2
π

lim
y→∞

ImRC(γ, iy) = − 1
π2 ReLC(1, a/c).

Our first goal is to prove that ΦC(γ) is an intersection number, hence an integer.
We start by noting that Theorem 5.2.9 gives

ΦC(γ) + ΦC(γ
−1) = 2

∑
w′<−d

c
<w

1

and hence as a simple corollary we have

Proposition 5.2.10. Let C be the conjugacy class of a hyperbolic element σ, γ = [ a bc d ]
another hyperbolic element in Γ and IC(γ

−1(i∞), i∞) = IC(−d/c, i∞) be as defined in
(5.2.12). Then

ΦC(γ) + ΦC(γ
−1) = −2|IC(−d/c, i∞)|

The next result shows that ΦC(γ) is already an integer.

Theorem 5.2.11. Let γ ∈ Γ be a hyperbolic element. Then ΦC(γ) = −|IC(−d/c, i∞)| and
hence ΦC(γ) ∈ Z.
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Proof. For γ1 =
[
a1 b1
c1 d1

]
, γ2 =

[
a2 b2
c2 d2

]
, two not necessarily hyperbolic elements of Γ, let

δC(γ1, γ2) = ΦC(γ1γ2)− ΦC(γ1)− ΦC(γ2).

Note that IC(−d1/c1, i∞) = IC(γ
−1
1 i∞, i∞). We will show that

δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ−1

2 i∞, i∞)| − |IC((γ1γ2)−1i∞, i∞)|. (5.2.38)

This will prove the theorem since this then γ 7→ ΦC(γ) + |IC(γ−1i∞, i∞)| is a homomor-
phism of Γ into C and so is identically 0.

First note that if either γ1 or γ2 is T n for some n ∈ Z then δC(γ1, γ2) = 0 and the
identity holds trivially. So we assume that γ1, γ2 are not parabolic.

To prove (5.2.38) note that from definition (5.1.12) of ΦC(γ) and the cocycle property
we have

δC(γ1, γ2) =
2εC
π

lim
y→∞

Im(RC(γ1, γ2iy)−RC(γ1, iy))

which by (5.2.27) equals

2εC
π

lim
y→∞

[∑
arg

(
γ2iy − w
γ2iy − w′

)
−
∑

arg

(
iy − w
iy − w′

)]
the sums are over (w′, w) ∈ WC, w′ < −d1/c1 < w . The second sum in the limit clearly
goes to zero. Since γ2iy → a2/c2 when y →∞

δC(γ1, γ2) = 2εCn(γ−1
1 , γ2) (5.2.39)

where n(γ−1
1 , γ2) is the number of (w′, w) ∈ WC, for which w′ < −d1/c1, a2/c2 < w. By the

definition (5.2.12) we have

εCn(γ−1
1 , γ2) = |IC(γ−1

1 i∞, i∞) ∩ IC(γ2i∞, i∞)|

Any geodesic that does not go through the vertices of an ideal hyperbolic triangle
intersects exactly two sides of the triangle if it intersects the triangle at all. Applying this
fact to the ideal hyperbolic triangle with vertices i∞, a2/c2 = γ2i∞ and −d1/c1 = γ−1

1 i∞
shows that the sets

IC(γ
−1
1 i∞, i∞) ∩ IC(γ2i∞, i∞),

IC(γ
−1
1 i∞, i∞) ∩ IC(γ2i∞, γ−1

1 i∞) and

IC(γ2i∞, γ−1
1 i∞) ∩ IC(γ2i∞, i∞)

are mutually disjoint. A standard inclusion exclusion argument then gives

δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ2i∞, i∞)| − |IC(γ−1

1 i∞, γ2i∞)|

Finally we use that |IC(z2, z1)| = |IC(z1, z2)| = |IC(γz1, γz2)| for all γ ∈ Γ to establish
that

δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ−1

2 i∞, i∞)| − |IC(γ−1
2 γ−1

1 i∞, i∞)|. (5.2.40)
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Note that formula (5.2.39) for the co-boundary δC of ΦC allows one to calculate ΦC(γ)
successively by writing γ in terms of some set of generators of the group Γ. We give an
alternative approach for establishing that ΦC takes integer values. This method does not
identify ΦC geometrically but also gives a fast algorithm to compute it.

Note that since LC(1, a/c) depends only on a/c mod 1, so does ΦC(γ) and hence for
c 6= 0 we can write ΦC(a/c) = ΦC(γ). The following is a simple corollary of Theorem 5.2.9
and Corollary 5.2.7.

Lemma 5.2.12. Let S = [ 0 −1
1 0 ] . Then

ΦC(0) = ΦC(S) = −εC
∑

w′<0<w

1

The following theorem is an analogue of Dedekind’s reciprocity formula. It allows for,
via Euclid’s algorithm, a quick computation of ΦC(γ).

Theorem 5.2.13. Let C be a hyperbolic conjugacy class and γ = [ a bc d ]. For ac 6= 0 we
have

ΦC(a/c) = ΦC(−c/a)− 1

π
Im νC(a/c) (5.2.41)

Proof. The formula follows from Theorem 5.2.8 and Corollary 5.2.7. Note that our defini-
tion of the argument gives Im log x = 0 for a positive real number x, and Im log x = π for
a negative real number x.

Remark 5.2.14. Note that

1

π
Im νC(a/c) = −εC

∑
w′<0<w

sign

(− c
a
− w

− c
a
− w′

)
− sign

( a
c
− w

a
c
− w′

)
and

sign

(− c
a
− w

− c
a
− w′

)
− sign

( a
c
− w

a
c
− w′

)
is non zero only for those w′ < 0 < w for which exactly one of {a

c
,− c

a
} is in the open interval

(−w′, w). Therefore once all the conjugates of σ ∈ C whose fixed points are separated by
0 are listed (an easy task, see Remark 5.2.3) the right hand side in the above theorem is
an easily computable elementary function of a

c
. This in turn allows a fast calculation of

ΦC(a/c) in view of ΦC(
a
c
) = ΦC(

a+nc
c

) for any n ∈ Z. Since ΦC(0) is an integer, it also
establishes that ΦC(

a
c
) is an integer.

We finish this section by collecting some results about the hyperbolic geometry that will
be needed to prove Theorem 5.1.5 from the introduction, In particular it will be important
for us to compare |ICσ(γ−1z0, z0)| and |ICσ(γ−1i∞, i∞)|. We start with a simple lemma
about hyperbolic quadrangles. Recall that for z1, z2 ∈ H the geodesic segment connecting
z1 and z2 is denoted by `z1,z2 .

Lemma 5.2.15. Let z1, z2 ∈ H and x1, x2 ∈ ∂H. If ` is a geodesic that intersects neither
the geodesic half line `z1,x1 nor the geodesic half line `z2,x2 then ` intersects either both `x1,x2
and `z1,z2 or it intersects neither of them.
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Proof. By applying a hyperbolic isometry we may assume that ` = `0,i∞. The geodesic
arc from z1 to x1 does not intersect ` = (0, i∞), so x1 and Re(z1) have the same sign.
Similarly the geodesic arc from z2 to x2 does not intersect (0, i∞), so x2 and Re(z2) have
the same sign. Finally the arc from z1 to z2 intersects (0, i∞) if and only if their real parts
have opposite signs. This proves that ` either intersects both the arc from z1 to z2 and the
geodesic from x1 to x2 or that intersects neither of them.

Proposition 5.2.16. Let σ, γ be hyperbolic elements, and fix a point z0 ∈ Sγ. Then∣∣ |ICσ(γ−1z0, z0)| − |ICσ(γ−1i∞, i∞)|
∣∣ ≤ 2|ICσ(z0, i∞)|. (5.2.42)

Note that we do not assume γ to be primitive.

Proof. Let γ = [ a bc d ]. Consider the geodesic circular arc L1 connecting γ−1z0 to γ−1i∞ =
−d/c and the half-line L2 connecting z0 to i∞. Assume that αSσ intersects neither L1 nor
L2. Then it follows from Lemma 5.2.15 that either αSσ intersects both the arc from z0 to
γ−1z0 and the line from −d/c to i∞ or αSσ intersects neither of them.

Hence we have shown that the symmetric difference of the sets IC(−d/c, i∞) and
IC(z0, γ

−1z0) is a subset of IC(z0, i∞) ∪ IC(−d/c, γ−1z0);

IC(−d/c, i∞)4IC(z0, γ
−1z0) ⊂ IC(z0, i∞) ∪ IC(−d/c, γ−1z0, )

Since

| |IC(z0, γ
−1z0)| − |IC(−d/c, i∞)| | ≤ |IC(−d/c, i∞)4IC(z0, γ

−1z0)|

and IC(z0, i∞) and IC(−d/c, γ−1z0) have the same cardinality |ICσ(z0, i∞)| this proves the
proposition.

5.2.5 Linking numbers in Γ\SL2(R)

In this section we prove Theorem 5.1.5. This is based on results of the previous section
and a theorem of Birkhoff [10].

If γ is a primitive hyperbolic element such that tr γ > 2 there is an associated closed
periodic orbit of the geodesic flow whose linking number with the trefoil is given by the
Rademacher symbol (see [6], [7],[52]).

Ψ(γ) = Φ(γ)− 3 sign c(a+ d) = lim
n→∞

Φ(γn)

n
.

For the convenience of the reader we sketch Ghys’ argument for the identification of
the Rademacher symbol with the linking number with the trefoil in the Appendix.

Our goal in this section is to provide the background for a similar interpretation for the
homogenization of ΦC(γ) of Theorem 5.1.5,

ΨC(γ) := lim
n→∞

ΦC(γ
n)

n

as a linking number.
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As alluded above this is based on Theorem 5.2.19, originally due to Birkhoff, (cf. [10])
which relates this linking number to the geometry of the net Nσ of a primitive hyperbolic
element σ ∈ C. Birkhoff’s theorem [10, Section 27] which proves the existence of a certain
surface bounding symmetric curves which is a surface of section of the geodesic flow, is
more general than what is needed for us. This theorem was popularized by Fried [49] who
named them Birkhoff sections. The theorem holds in even more generality as shown in
[1, 2, 58, 70]. As is clear from this rich history there are a number of proofs of this theorem
especially for compact hyperbolic surfaces (see e.g. [22] and the references therein, also
[32] and esp. section 3 of [33]). For the convenience of the reader we also give one which
is self contained and very elementary; it is based on a simple computation of the sign
of the triple product of three vectors in the Lie-algebra sl2(R), (Proposition 5.2.18). The
relation to the invariant ΨC(γ) follows from a careful book-keeping of potential multiplicities
(Lemmas 5.2.21, 5.2.22, and 5.2.23).

To make this explicit note that if γ ∈ Γ has tr γ > 2 and fixed points w′ < w then both
γ and γ−1 are diagonalized by M = 1√

w−w′ [
w w′
1 1 ]. By replacing γ with γ−1 we may assume

that

γM = M

[
ε 0
0 1/ε

]
where ε > 1. When a+ d > 2 this is equivalent to sign c > 0. Both

γ̃+(t) = Mφ(t) and γ̃−(t) = MSφ(t)

are periodic orbits of the geodesic flow g 7→ gφ(t) on Γ\SL2(R). Here φ(t) =
[
et 0
0 e−t

]
.

We now move on to interpret linking numbers combinatorially as intersection numbers.
Let [γ̃+] and [γ̃−] be the homology class of the curves t 7→ Mφ(t), t ∈ [0, log ε] and t 7→
MSφ(t), t ∈ [0, log ε], respectively. Note that γ̃+(t)i, t ∈ [0 log ε] maps into a geodesic arc in
H connecting Mi to γMi on the semicircle with endpoints w and w′. On the quotient space
Γ\H this is a closed geodesic, and γ̃−(t)i simply travels this closed geodesic backwards.
The natural Seifert surface bounding [γ̃+] and [γ̃−] is just formed by the collection of unit
tangent vectors rotating counterclockwise continuously through 180 degrees from the one
orientation of the circle to the other. This is the geometric content of the following

Lemma 5.2.17. [γ̃+] + [γ̃−] is null-homologous in Γ\SL2(R).

Proof. In fact we even have that Mφ(t) and MSφ(−t) are homotopic via

h : [0, log ε]× [0, π/2] → G

(t, θ) 7→Mφ(t)k(θ)

where as usual

k(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

Note the image of h is an immersed sub-manifold Xγ in the quotient space Γ\SL2(R).
This follows readily from the fact that φ(t1)k(θ1) = φ(t2)k(θ2), for θi ∈ [0, π/2] implies
t1 = t2, θ1 = θ2 and so the image of h when viewed in SL2(R) is an embedded submanifold.
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Now assume that Cσ and Cγ are two (different) primitive conjugacy classes. The above
construction of the null-homologous chains associated to σ, γ have a well-defined linking
number [54], [90] which we denote by Lk(Cσ, Cγ). (This is well defined as the chains
themselves depend only on the conjugacy class.) A geometric interpretation of this linking
number between the trivial homology class [γ̃+] + [γ̃−] and [σ̃+] + [σ̃−] is given as the
number of signed intersections of Xγ (the surface defined above by the homotopy map h)
and σ̃+(s) and σ̃−(s), s ∈ [0, log λ], the closed orbits associated to σ. The geodesic flow
has the interesting property that all intersections of Xγ and σ̃+ have the same sign.

We fix the sign by fixing an orientation as follows. We think of SL2(R) as a subspace
of the space of real 2 × 2 matrices. The tangent space at the identity is the set of 2 × 2
real matrices with trace 0 where we fix the basis (see [68] pg 27)

x =

[
0 1
0 0

]
, y =

[
0 0
1 0

]
, and h =

[
1 0
0 −1

]
and we say the orientation of three tangent vectors tangent to SL2(R) at g is positive, i.e.
three matrices v1, v2, v3 are positively oriented if g−1v1, g

−1v2, g
−1v3, are positively oriented

at the identity. We then have the following proposition.

Proposition 5.2.18. Let N = 1√
wσ−w′σ

[
wσ w′σ
1 1

]
, where wσ, w

′
σ are the two fixed points of

σ. Assume that the trajectory Nφ(s) is disjoint from [γ̃+] + [γ̃−] and intersects Xγ̃ at a
point g. Then the sign of the intersection is negative.

Proof. Let
g = Mφ(t)k(θ) = Nφ(s).

To compute the sign of the intersection we have to compute the determinant of the coeffi-
cient matrix of the tangent vectors

g−1Mφ′(t)k(θ), g−1Mφ(t)κ′(θ) and g−1Nφ′(s).

Since φ′(t) = φ(t)h and κ′(θ) = κ(θ)(y − x) we have

g−1Mφ′(t)k(θ) = k(−θ)hk(θ),

g−1Mφ(t)k′(θ) = (y − x),

and

g−1Nφ′(s) = h.

Since k(−θ) [ 1 0
0 −1 ] k(θ) =

[
cos 2θ − sin 2θ
− sin 2θ − cos 2θ

]
= − sin 2θx − sin 2θy + cos 2θh the value of

the determinant we need to compute is −2 sin 2θ, always negative since θ ∈ (0, π/2).

An immediate consequence of Proposition 5.2.18 is the following theorem.

Theorem 5.2.19. Let M = 1√
wγ−w′γ

[
wγ w′γ
1 1

]
, N = 1√

wσ−w′σ

[
wσ w′σ
1 1

]
, with {wγ, w′γ} and

{wσ, w′σ}, the fixed points of γ and σ respectively so that

γM = M

[
ε 0
0 1/ε

]
, σN = N

[
λ 0
0 1/λ

]
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and let

A = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [0, π/2) : ∃α ∈ Γ,Mφ(t)k(θ) = αNφ(s)} (5.2.43)

and

B = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [0, π/2) : ∃α ∈ Γ,Mφ(t)k(θ) = αNSφ(s)}. (5.2.44)

For the linking number we have

Lk(Cσ, Cγ) = −|A| − |B|.

Proof. By definition each point in the set A corresponds to an intersection of the surface
Xγ with the curve [σ̃+] and similarly points in B correspond to intersections of Xγ with
the curve [σ̃−]. Hence for the linking number, using Proposition 5.2.18, we have

Lk(Cσ, Cγ) = −|A| − |B|

which proves Theorem 5.2.19.

Note that it is natural to interpret (see for example [32]) the elements of A as values
{(s, t) ∈ [0, log λ) × [0, log ε) : Mφ(t)i = Nφ(s)i ∈ Γ\H}, i.e. the number of intersections
of the closed geodesics in Γ\H associated to γ, σ, and similarly for B, since each time the
underlying path of σ in H crosses the underlying curve of γ, precisely one of its two lifts
will intersect the Seifert surface. The proper interpretation of this geometric idea requires
care due to both multiplicities arising from self-intersections and the presence of elliptic
elements in Γ = SL2(Z). To avoid these complications we go directly to |IC(z0, γz0)| which
counts the group elements in IC(z0, γz0). In this notation Birkhoff’s theorem takes the
following form:

Theorem 5.2.20 (Birkhoff). If we let z0 = Mi ∈ Sγ then

Lk(Cσ, Cγ) = −|ICσ(z0, γz0)|

The theorem will follow from a series lemmas relating |A|+ |B| to |ICσ(z0, γz0)|.

Lemma 5.2.21. For A,B as in (5.2.43), (5.2.44) we have A ∩B = ∅.

Proof. Recall that each point in A, (resp in B) corresponds to an intersection of Xγ with
the curve σ̃+ ( resp σ̃−).

Assume that (s, t, θ) ∈ A ∩ B with Mφ(t)k(θ) = αNφ(s) and Mφ(t)k(θ) = βNSφ(s)
for some α, β ∈ Γ. It follows that β−1α = NSN−1. Recall that N = 1√

wσ−w′σ

[
wσ w′σ
1 1

]
,

where wσ, w
′
σ are the two fixed points of σ. Now a simple matrix multiplication shows

that the matrix NSN−1 cannot have integer entries, contradicting β−1α ∈ SL(2,Z). Hence
A ∩B = ∅.
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Lemma 5.2.22. There is a bijection between B in (5.2.44) and

B′ = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [π/2, π) : ∃α ∈ Γ,Mφ(t)k(θ) = αNφ(s)}

given for s 6= 0 by
(s, t, θ) 7→ (log λ− s, t, θ + π/2).

and for s = 0 by
(0, t, θ) 7→ (0, t, θ + π/2)

Proof. Assume (s, t, θ) ∈ B. The case s = 0 is trivial and otherwise ∃α ∈ Γ such that

Mφ(t)k(θ) = αNSφ(s).

Since σN = Nφ(log λ)
Mφ(t)k(θ) = ασ−1Nφ(log λ− s)S.

This gives the claim since S−1 = −k(π/2).

Lemma 5.2.23. There is a bijection between the set A ∪ B′ and ICσ(z0, γz0) and hence
|A ∪B′| = |IC(z0, γz0)|.

Proof. We define a map

f : A ∪B′ → Γ/Γσ (5.2.45)

(s, t, θ) 7→ αΓσ. (5.2.46)

Here α is the unique element in Γ given by

Mφ(t)k(θ)φ(−s)N−1 = α. (5.2.47)

To see that f is injective let f(s, t, θ) = f(s′, t′, θ′) with Mφ(t)k(θ)φ(−s)N−1 = α and
Mφ(t′)k(θ′)φ(−s′)N−1 = β. Then ασk = β for some k ∈ Z. Hence

φ(t)k(θ)φ(−s)N−1σkN = φ(t′)k(θ′)φ(−s′).

Since N−1σkN = φ(k log λ) we have

φ(t− t′)k(θ)φ(k log λ− s+ s′) = k(θ′).

Now a simple matrix multiplication shows that this equality holds only if (s, t, θ) =
(s′, t′, θ′), proving the injectivity of f .

To show that f(s, t, θ) ∈ IC(z0, γz0), let (s, t, θ), α be such that

Mφ(t)k(θ) = αNφ(s).

Now Mφ(t)i is in Aγ, the geodesic arc connecting z0 = Mi and γz0 where as Nφ(s)i is in
Sσ and hence αΓσ ∈ IC(z0, γz0).

Finally to see that this map is onto ICσ(z0, γz0), let α be such that αΓσ ∈ ICσ(z0, γz0)
so that there is z ∈ Sσ for which αz ∈ Aγ, and so αz = Mφ(t)i for some t ∈ [0, log ε), and
also z = σkNφ(s)i for some s ∈ [0, log λ). Since the stabilizer of i in SL2(R) is SO(2),
there exists θ ∈ [0, 2π), such that

Mφ(t)k(θ) = ασkNφ(s).

Replacing α by −α if necessary we may assume that θ ∈ [0, π) proving surjectivity.
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Proof of the Theorem 5.2.20.

By Birkhoff’s theorem for the linking number we have

Lk(Cσ, Cγ) = −|A| − |B|.

By Lemma 5.2.21 , A∩B = ∅ and we have Lk(Cσ, Cγ) = −|A∪B|. Finally by Lemma 5.2.22
and Lemma 5.2.23, |A ∪B| = |ICσ(z0, γz0)|.

This finishes the proof of the Theorem 5.2.20.

We are now ready to prove

Theorem 5.2.24. Let Cσ and Cγ be different primitive conjugacy classes. Then

Lk(Cσ, Cγ) = ΨCσ(γ)

Proof. By Theorem 5.2.20 we have

Lk(Cσ, Cγn) = −|IC(z0, γ
nz0)|

and by Theorem 5.1.7

ΦC(γ
n) = −|IC(γ−ni∞, i∞)|

Clearly IC(z0, γ
−nz0) = IC(z0, γ

nz0) and hence

|nLk(Cσ, Cγ)− ΦCσ(γn)| = | |IC(z0, γ
−nz0)| − |IC(γ−ni∞, i∞)| |

Now using Proposition 5.2.16 we have

|Lk(Cσ, Cγ)−
ΦCσ(γn)

n
| ≤ 2|IC(z0, i∞)|

n

Since |IC(z0, i∞)| is independent of n this proves

Lk(Cσ, Cγ) = lim
n→∞

ΦCσ(γn)

n
= ΨCσ(γ).
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Chapter 6

Equidistribution of roots of quadratic
congruences to prime moduli

6.1 Background and statements of results

Let F (x) ∈ Z[x] be a primitive, irreducible polynomial. By Lagrange’s theorem the con-
gruence

F (x) ≡ 0 mod p

cannot have more than degF solutions, when p is prime. A natural question is to investigate
the distribution of the roots among the various congruence classes. When degF is at least
2, and irreducible, one conjectures that for any 0 ≤ a < b < 1 the frequency of roots
ν mod p satisfying a ≤ ν/p < b approaches b− a as p runs through all prime numbers.

The main result of the paper is the proof of this conjecture for quadratic polynomials.
As a corollary we get a similar statement about the equidistribution of the angles of the
Salié sum S(m,n; p) (defined below) as p runs through primes.

Our main theorem and the corollary extends a result of Duke, Friedlander, and Iwaniec
[37]. They obtained the same result under the assumption that the discriminant of F is
negative (or mn < 0 in the corollary).

We now proceed to give more precise statements of the results and an overview of the
history of the problem. A sequence xn ∈ [0, 1] is said to be uniformly distributed with
respect to Lebesgue measure (or simply uniformly distributed) if

lim
N→∞

#{1 ≤ n ≤ N : a < xn < b}
N

= b− a

An equivalent requirement is that

lim
N→∞

1

N

N∑
n=1

e2πikxn = 0

for all k 6= 0. This criterion, which is due to Weyl [15], is the most convenient to use in
practice.

Since the equidistribution, or lack of it, depends on the sequence and not on the set of
points {xn : n ∈ N} ⊂ [0, 1], we make the following natural choice of ordering of the set

X = {(n, ν) : n ≤ x, F (ν) ≡ 0 mod n, 0 ≤ ν < n}.

94
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Let (n, ν) < (m,µ) if either n < m or n = m, ν < µ. In view of the estimate

#{ν : F (ν) ≡ 0 mod n, 0 ≤ ν < n} � nε

the ordering of the roots for a fixed modulus n is unimportant. When we speak of the
distribution properties of the roots of the congruence F (x) ≡ 0 we are actually interested
in the distribution of the sequence of points {ν/n ∈ [0, 1] : (n, ν) ∈ X} (with the above
ordering). Similarly, we consider the subsequence {ν/p : (p, ν) ∈ X, p prime}. We simply
say that (these sequences of) the roots are ordered by their denominators.

For linear functions the roots are not uniformly distributed (see Section 6.2.2. When
degF is at least 2, Hooley [67] showed that at least if the moduli are not restricted to
primes but are allowed to take any positive integer as a value, the sequence ν/n is uniformly
distributed when ordered by denominators.

Hooley’s result is established via Weyl’s criterion through the estimation of certain
exponential sums. For congruences of degree 2, Hooley’s techniques lead to better estimates
(see [67]) but still do not yield an easy extension to prime moduli. However, for quadratic
polynomials of negative discriminant, Duke, Friedlander, and Iwaniec [37] have succeeded
in proving that the sequence ν/p arising from the solutions of the quadratic congruence is
uniformly distributed in [0, 1].

Both of the above-mentioned results as well as this work are based on estimates of sums
of Kloosterman sums defined below. As is usual in analytic number theory, we use the
notation e(x) = e2πix.

Definition 6.1.1. The Kloosterman sum is

K(m,n; p) =
∑

xy≡1(c)

e

(
mx+ ny

c

)
By Weil’s famous result [128] there is an angle 0 ≤ θp ≤ π so that

K(m,n; p) =
√
p(eiθp + e−iθp)

and so |K(m,n; p)| ≤ 2p1/2. Some elementary transformation properties of K(m,n; c) then
lead to

K(m,n; c) ≤ (m,n, c)1/2c1/2τ(n)

where τ(n) is the number of positive divisors of n. Since (2) uses the Riemann hypothesis
for curves over finite fields, it is somewhat surprising that, for the Salié sum defined by

S(m,n; c) =
∑

xy≡1(c)

(x
c

)
e

(
mx+ ny

c

)
an estimate of the same quality is elementary in view of the identity (see [124]).

Theorem 6.1.2 ([124]). The Salie sum is

S(m,n; p) = εp

(
n

p

)
√
p

∑
y2≡4mn(p)

e

(
y

p

)
.

(Here εp = 1 or i, depending on whether p ≡ 1 or −1 mod 4 and
(
n
p

)
is the Legendre

symbol.)
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Our main result is the following.

Theorem 6.1.3. Let P (x) = Ax2 +Bx+C be such that B2− 4AC is not a square. Let S
be an arithmetic progression that contains infinitely many primes. Then, as p runs through
the prime numbers in S, the roots of the congruence

P (ν) ≡ 0 mod p

are uniformly distributed with respect to Lebesgue measure.

Corollary 6.1.4. Fix m,n so that mn is not a square. As p runs through the set of prime
numbers in S the angles of the Salié sum S(m,n; p) are uniformly distributed with respect
to Lebesgue measure.

(This is again in contrast with Kloosterman sums that are conjectured to follow a
Sato-Tate distribution.)

The results of this paper are based on sieve results of [3] that we summarize in Section
7.2.2. What needs to be done is essentially an estimation of certain exponential sums,
which can be transformed into sums of Kloosterman sums in the spirit of Hooley’s work.
This is the content of Section 7.2.5.

Although the possibility of this approach was suggested already in [67], two obstacles
arise for an F with positive discriminant. One is the presence of the infinite group of
automorphs U . This is handled using a U -invariant partition of unity.

Another less conceptual difficulty is the appearance of certain exponential sums whose
expression in terms of classical Kloosterman sums would require considerable effort. Since
the basic idea is to use Lagrange’s presentation of a root of F (ν) ≡ 0 ( mod p) in terms
of quadratic forms, we overcome both of these obstacles by working on the group SL(2,Z)
(and on certain congruence subgroups) instead of the homogeneous space of quadratic
forms. Since our estimations would require transferring all the sums of Kloosterman sums
into this form anyway, this approach bypasses a significant amount of simple but tedious
calculations.

The Kloosterman sums on congruence subgroups are reviewed in Section 7.2.4, where
the estimation of the sums of Kloosterman sums in question is achieved along the lines of
[34]. The estimates are completed in last section.

6.2 Proofs

6.2.1 Salie’s identity

There are a number of proofs for Theorem 6.1.2 see e.g. [107, 129]. We present one from
[124] that is shortest. Recall that

S(m,n; p) =
∑

xx≡1(p)

(
x

p

)
e

(
mx+ nx

p

)
We may assume (p,mn) = 1, otherwise the sum is trivial. Then S(m,n; p) =(

n
p

)
S(mn, 1; p). Consider now ∑

y2≡mn(p)

e

(
2y

p

)
.
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We may write this as ∑
y mod p

1

p

∑
x mod p

e

(
2y

p

)
e

(
x(y2 −mn)

p

)
.

Interchanging the two sums leads to 0 when x ≡ 0 mod p and otherwise to a Gauss sum∑
y mod p

e

(
xy2 + 2y

p

)
=
∑

y mod p

e

(
x(x2y2 + 2xy)

p

)
=

(
x

p

)
e

(
−x
p

) ∑
t mod p

e

(
t2

p

)
whose evaluation is well known and this immediately leads to

S(mn, 1; p) = εp

(
n

p

)
√
p

∑
y2≡4mn(p)

e

(
y

p

)

(Here εp = 1 or i, depending on whether p ≡ 1 or −1 mod 4 and
(
n
p

)
is the Legendre

symbol.)

6.2.2 Criterion for the uniform distribution of roots of congru-
ences

In order for the interested reader to develop some feel for the subject, we briefly mention the
case of a linear function F (x) = ax + b. For an integer a, a stands for the multiplicative
inverse of a to a modulus whose value should always be clear from the context. Now,
assuming (p - a) = 1, the only solution of ax ≡ b mod p is ab mod p, and so∑

e

(
kν

p

)
=
∑

e

(
kab

p

)
+O(1).

In view of

a

p
+
p

a
− 1

ap
∈ Z

the second sum above can be transformed to∑
p≤x

e

(
kab

p

)
=
∑
p≤x

e

(
kbp

a

)
+O(log log x).

Since the right-hand side depends only on the values of p mod a, the estimation of the above
sums is equivalent to the prime number theorem for arithmetic progressions. However, this
case is uncharacteristic; the roots tend to accumulate around the φ(a) points of {k/a ∈
[0, 1] : gcd(k, a) = 1}, and this shows that the conditions of Theorem 1.2 are necessary.

Higher-order polynomials present some difficulties because the natural ordering of the
roots of the polynomial congruences mod p cannot be enumerated using an explicit ex-
pression. However, for S = {n ≡ n0 mod s} and S(x) = {n ∈ S : 0 < n ≤ x}, we have the
following asymptotic:

#(p, ν) : p ∈ S(x), F (ν) ≡ 0 mod p} ∼ CSx

log x
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where the constant CS, whose value depends on the field extension K = Q(ζ, z), is
never zero (ζ is a primitive s-th root of unity, and z is any root of F (x)). When degF = 2,
the result is an easy corollary of quadratic reciprocity and the prime number theorem for
arithmetic progressions. (In general one needs the Chebotarev density theorem for the
normal closure of the field K.)

Weyl’s criterion now takes the following form: the roots of the polynomial congruence
F (x) ≡ 0 mod p give rise to a sequence that is uniformly distributed with respect to
Lebesgue measure if and only if, for every k 6= 0,

lim
x→∞

1

π(x)

∑
p∈S(x)

∑
F (ν)≡0 (n)

e

(
kν

p

)
.

To simplify notation, we follow [67] and [37] and introduce

ρk(n) =
∑

F (ν)≡0 (n)

e

(
kν

n

)
Thus, to verify Weyl’s criterion, we need to estimate

∑
χ(p)ρk(p) for all Dirichlet characters

χ mod s. However, there does not seem to be a way to convert this problem into a result
about the non-vanishing of a Dirichlet series, and the only way to proceed is through sieve
methods.

In [37] a sieve powerful enough to give a simple criterion for any polynomial is developed,
and we now recall this theory.

Theorem 6.2.1. Let ρk(n) be as above, and let 0 < ε < 1/3 be arbitrary. Assume that
when summing over q < x1/2−ε and nq < x, we have∑

q

∑
n

λqχ(n)ρk(qn)� x

(log x)2
max{|λd|}, (6.2.1)

and also assume that when summing over p < x1/3−ε and {(n, p) = 1 : n < x/p}, we
have that ∑

p

∑
n

αnβpρk(pn)� x

(log x)2 degF+1
max{|αn|, |βp|} (6.2.2)

holds in case βp is supported on primes. (The character values are now absorbed in the
αn, βp.) Then

lim sup
x→∞

1

π(x)

∣∣∣∣∣∑
p≤x

χ(p)ρk(p)

∣∣∣∣∣ ≤ 10ε

It is also established in [37], and this is crucial, that the second condition (6.2.2) can
be reduced to the first one (6.2.1) based on the following. Let B(N,P ) =

∑
αnβpρk(np).

Here N ≤ n ≤ 2N,P ≤ p ≤ 2P , p is restricted to primes and gcd(n, p) = 1.

Theorem 6.2.2. Assume that, for some ε, η > 0,∑
n≤N

ρk(qn)� N1−η

uniformly in the range h� q � N1−ε. If P 2 ≤ N1−ε, then

B(N,P )� N1−η/2P max{|αnβp|}.
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Proof.

. See [37, Section 5, pp. 432-433]. The lemma is not stated in this form explicitly, but
the proof works without any modifications.

6.2.3 Kloosterman sums

In this section we derive the estimates for sums of Kloosterman sums. We briefly review
the history of these sums and their relation to spectral properties of congruence subgroups,
which culminates in the Kuznecov formulas and their various generalizations for Fuchsian
groups of the first kind. For a nice introduction see [72]. Motohashi’s book [96] is also
useful, although he concentrates on the full modular group.

After setting up notation we illustrate the power of this machinery by deriving estimates
in the style of Deshouillers and Iwaniec [34]. Our treatment concentrates on estimates
with specific application to our problem. For a more complete treatment, see the above-
mentioned book by Iwaniec and the references therein. Recall the definition of the classical
Kloosterman sum

K(m,n; c) =
∑

xy≡ 1(c)

e

(
mx+ ny

c

)
.

What is needed in most applications is a good estimate for sums of Kloosterman sums,
such as ∑

c≤x

1

c
K(m,n; c) (6.2.3)

For an individual term, Weil’s bound K(m,n; c) ≤ τ(n)(m,n, c)1/2c1/2 is the best possi-
ble, but Linnik [91] and Selberg [114] conjectured that (6.2.3) is majorized by any positive
power of x whenever gcd(m,n)1/2 < x.

We now define general Kloosterman sums for congruence subgroups. Let a, b be two
cusps for Γ = Γ0(q), and let Γa,Γb be the corresponding stabilizer subgroups of these cusps
in Γ. For any cusp c we can choose σc ∈ SL2(R) such that

σ−1
c Γcσc = B = {± [ 1 k

0 1 ] : k ∈ Z} . (6.2.4)

Definition 6.2.3. The Kloosterman sumKσa,σb(m,n) (corresponding to the above choices)
is defined to be

Kσa,σb(m,n; c) =
∑

e

(
ma+ nd

c

)
,

where the sum is over g = [ a ∗c d ] ∈ B\σ−1
a Γσb/B or, equivalently, over the set {g :

σagσ
−1
b ∈ Γa\Γ/Γb}.

Some simple observations follow [72] . Let c be a cusp of Γ0(q). Then c is equivalent to
some u

v
for which v|q. Moreover u

v
, and u′

v′
give rise to the same cusp, if and only if v = v′,

and u ≡ u′ mod (v, q/v). The width of the cusp u
v

is q
(v2,q)

.

Definition 6.2.4. If c = u
v

be a cusp for Γ0(q) we will denote (v, q/v) by C(c).
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Lemma 6.2.5. Assume that

g−1
a Γaga = {(± 1 kA

0 1 ] : k ∈ Z}

and
g−1
b Γbgb = {(± 1 kB

0 1 ] : k ∈ Z}

Let also σa = ga

[√
A 0

0 1/
√
A

]
and similarly σb = gb

[√
B 0

0 1/
√
B

]
. Then

1. σa, σb satisfy (6.2.4) and

Kσa,σb(m,n; c
√
AB) =

∑
e

(
ma

Ac
+
nd

Bc

)
,

where the sum is over {g : ga [ a ∗c d ] g−1
b ∈ Γa\Γ/Γb};

2. if ga, gb ∈ SL2(Z), then

Kσa,σb(m,n; c
√
AB) ≤ (m,n,ABc)1/2(ABc)1/2τ(ABc)

Lemma 6.2.6. Assume that Γ′ = g−1Γg. Let σ′a,= gσa, σ
′
b = gσb. Then we have

KΓ
σa,σb

(m,n, c) = KΓ′

σ′aσ
′
b
(m,n, c);

Remark 6.2.7. This lemma is particularly useful for us in the following situation. Let
Γ′ = Γ0(M [M,N ]), and let

Γ = {[ a bc d ] ∈ SL(2,Z) : b ≡ 0 mod N, c ≡ 0 mod [M,N ]} .

Then we can use the lemma with g =
[√

N 0

0 1/
√
N

]
.

Let uj(z) be an orthonormal basis in the space of Maass forms for Γ0(q). Then λj =
1/4+ t2j ≥ 0; Selberg conjectured that λj ≥ 1/4 with the exception of λ0 = 0, that is, when
u(z) is constant. It is well known that uj(z) have a Fourier expansion at each cusp of the
form

uj(σaz) = y1/2
∑
n6=0

ρaj(n)Kitj(2π|n|y)e(nx)

We normalize the Fourier coefficients by taking

νaj :=

(
4π|n|

coshπtj

)1/2

ρaj(n).

From now on all Kloosterman sums are for Γ0(q) for some q (or sums that can be trans-
formed into them by the remark above). Let f be of compact support; then Kuznetsov’s
formula (see [8], [2], and [1]) states that

∑
c

1

c
Kab(m,n; c)f

(
4π
√
|mn|
c

)
=
∑
tj

f̂(tj)νaj(m)νbj(n) + · · · ,
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where the contribution from the Eisenstein series and holomorphic modular forms is sup-
pressed. The transform f̂ is given by

f̂(t) =

∫ ∞
0

N2it(x)f(x)
dx

x

Here Nν(x) depends on the sign of mn as follows:

Nν(x) =

{
(2 sin(πν/2))−1(J−ν(x)− Jν(x)) when mn > 0;

Kν(x) when mn < 0.

The Bessel transforms of f that arise can be estimated in terms of the following quantities
(see [34]):

∆0 =

∫ ∞
0

|f(x)|(1 + | log(x)|)
x

dx;

∆i =

∫ ∞
0

∣∣∣∣∣
(
x
d

dx

)i
f(x)

∣∣∣∣∣ dxx , i = 1, 2;

∆ =

∫ ∞
0

|f(x)|x−3/2dx.

By splitting the spectral sums at T = 1 + ∆2/∆1 and using the large sieve inequalities for
the Fourier coefficients such as

∑
|tj |≤T

∣∣∣∣∣∑
nN

anνaj(n)

∣∣∣∣∣
2

� (T 2 + q−1N logN‖an‖2
2),

one arrives at (see [72] ) the following theorem.

Theorem 6.2.8. Let a, b be cusps of Γ0(q), and assume that C(a), C(b)� 1 (Def.6.2.4).
Then

∑
nN

an
∑
c

1

c
Kab(m,n; c)f

(
4π
√
|mn|
c

)

�

{
(∆0 + ∆1)

(
1 +

m

q

)1/2(
1 +

N

q

)1/2

+ (∆1∆2)1/2 + Em,N(q, f)

}
X(log 2mN)‖a‖,

where Em,N(q, f) is the contribution from the exceptional spectrum, for which we have
the following estimate:

Em,N(q, f)�
(

∆

q
(q +m)1/4(q +N)1/4(mN)1/4

)
× (log 2mN)‖a‖.

It is conjectured by Selberg that exceptional eigenvalues do not exist for Γ0(q) and,
therefore, Em,N(q, f) = 0. At present the best result due to Kim and Sarnak [78] is that,
for all eigenvalues, λ ≥ 975/4096 = 0.238.... The above estimate for Em,N(q, f) uses density
theorems for the exceptional spectrum to get around this problem.

We now proceed to derive some estimates that are used in the last section.
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Theorem 6.2.9. Let N,C ≥ 1, G(n, c) be supported in [N, 2N ] × [C, 2C], and suppose
that, for i, j = 0, 1, 2,

∂i+j

(∂n)i(∂c)j
G(n, c)� N−iC−j.

Let

A =
∑
c

1

c

∑
n

anG(n, c)Kab(m,n; c).

Then

A� ‖a‖

{(
1 +

m

q

)1/2(
1 +

N

q

)1/2

+
C1/2

q
(q +m)1/4(q +N)1/4

}
log2mNCq.

Proof. We start by defining

F (t, x) =

∫ ∞
−∞

G

(
u,

4π
√
mu

x

)
e(tu)du.

Then

A =

∫ ∞
−∞

∑
n,c

an
1

c
F

(
t,

4π
√
mn

c

)
We apply Theorem 3.3 for each individual t and then integrate over t. It is easy to

establish that

∆0 � N(1 + log(mNCq))

and that

∆i � N for i = 1, 2.

This is used for small t.
For large values of t we use

F (t, x) =

∫ ∞
−∞

d2

du2

[
G

(
u,

4π
√
mu

x

)]
e(ut)

−4π2t2
dx

Then |F (t, x)| � 1/Nt2, and so

∆0(t)� 1 + log(mNCq)

Nt2

and

∆i(t)�
1

Nt2

for i = 1, 2
Combining these estimates,

∆0(t)� N

1 +N2t2
(1 + log(mNCq))
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and

∆i(t)�
N

1 +N2t2

for i = 1, 2.
Note that ∆ is needed to estimate the contribution from the exceptional eigenvalues.
Since |F (t, x)| � N and |F (t, x)| � 1/Nt2, we have

∆(t)� X−1/2 N

1 +N2t2
,

where [X, 2X] is the support of F (t, ·), X '
√
mN/C; that is,

∆(t)� C1/2

4
√
mN

N

1 +N2t2
.

The theorem follows after integrating Theorem 6.2.8 with respect to t.

6.2.4 Reduction to sums of Kloosterman sums

Recall that with ρk(n) =
∑

P (ν)≡0(n)

e(kν/n) we want to estimate

Lq(X) =
∑

X≤n≤2X

ρk(qn)e

(
jn

s

)
(6.2.5)

or the more general sum

Lq(f) =
∑
n≡0(q)

ρk(n)f(n), (6.2.6)

where the function f has support in [qX, 2qX]. (The factor e(nj/s) is absorbed in f .) At
first any f will do, but later it will be convenient for us to use a smooth f instead of the
characteristic function of the interval [qX, 2qX]. In the rest of the section we transform
Lq(f) into sums of Kloosterman sums based on the theory of binary quadratic forms. In
this transformation a small error term arise, and we must keep track of the dependence
on k, q and X as this is crucial in applying the sieve argument, dependence on other fixed
factors will be ignored.

Although this transformation could be done as in [[67], without ever mentioning the
congruence subgroups Γ0(q), we follow a slightly different path. Apart from some technical
simplifications, the main advantage is that we arrive at the generalized Kloosterman sums
to which the results of Section 3 are directly applicable.

Let P (x) = Ax2 +Bx+ C , with discriminant D = B2 − 4AC.

Lemma 6.2.10. We have

ρk(n) = e

(
−kB)

2An

)∑
y∈Yn

e

(
ky

2An

)
where

Yn = {y mod 2An : y ≡ B mod 2A and y2 ≡ D mod 4An}. (6.2.7)
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Proof. Assume P (ν) ≡ 0 mod n, and let y = 2Aν + B. Then y mod 2An is uniquely
determined by ν mod n, y ≡ B mod 2A and y2 ≡ D mod 4An.

To handle Lq(f) we use the classical correspondence between solutions of y2 ≡ D and
representations of the modulus by quadratic forms as in [5].

Let Q(X, Y ) = MX2 + 2RXY +NY 2 be a quadratic form of discriminant 4D so that
R2 −MN = D. On occasion we will write [M,R,N ] for Q and also identify it with the
matrix [M R

R N ].
Recall that one of the many possible action of g = [ a bc d ] ∈ SL2(Z) on Q is

gQ = g [M R
R N ] gt.

This is clearly a left-action, (g1g2)Q = g1(g2Q). We will need the the explicit form of this
action

g · (MX2 + 2RXY +NY 2) = M(g)X2 + 2R(g)XY +N(g)Y 2.

Here for g = [ a bc d ], M(g) = Q(a, b), N(g) = Q(c, d), and R(g) = [ a b ] [M R
R N ] [ cd ], so

M(g) = Ma2 +Rab+Nb2 (6.2.8)

R(g) = Mac+R(ad+ bc) +Nbd (6.2.9)

N(g) = Mc2 +Rcd+Nd2. (6.2.10)

Definition 6.2.11. Let
Λ = {[ a bc d ] : b, c ≡ 0 mod 2A} ,

Lemma 6.2.12. If

V = {(M,R,N) : R2 −MN = D,R ≡ B (2A),M ≡ 0 (4A)}

then V is invariant under the action of Λ and Yn in Lemma 6.2.7 is in bijection with
Λ∞\V .

Proof. If y is in Yn it gives rise to an element in V via

Qy =
[
(y2 −D)/n, y, n

]
.

Note, that y1 ≡ y2 mod 2An if and only if the corresponding quadratic forms transform
into one another by an element of the form [ 1 ∗

0 1 ] ∈ Λ∞.

It is well known that Λ\V is finite, and we choose a finite set {Qj(X, Y ) = MjX
2 +

2RjXY +NjY
2 : j = 1, ..., h}, so that

V =
h⋃
j=1

Λ · (Mj, Rj, Nj).

Remark 6.2.13. By an old theorem of Weber we may even choose Qj in such a way as
to make sure that Nj is prime. This is unnecessary for the moment, and is only needed to
simplify an elementary argument in Section 6.2.5.

We summarize the above in the next proposition.
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Proposition 6.2.14.

Lq(f) =
∑
n≡0(q)

f(n)ρk(n) =
h∑
j=1

(∑q
f(Nj(g))e

(
−kB)

2An

)
e

(
kRj(g)

2ANj(g)

))
,

where
∑q restricts the sum to those g ∈ Λ∞\Λ/Uj for which Qj(c, d) ≡ 0 mod q. Since

N(τ · Q) = N(Q) for every Q and every τ ∈ Λ∞ this property does not depend on the
representative of the Λ∞-coset. The group Uj is the group of automorphs of Qj in Λ,

Uj = {g ∈ Λ : g ·Qj = Qj}.

The functions Rj(g), Nj(g) are those defined in (6.2.9) and (6.2.10) for Qj.

Remark 6.2.15. The change of notation to Uj for the stabilizers is to further emphasize
the fact that we are now using a different action of SL2 on quadratic forms.

Definition 6.2.16. LetQ be a quadratic form, U its group of automorphs in Λ. A partition
of unity for the group U is a function ψ : SL2(R) → [0, 1] with the following properties
ψ(τg) = ψ(g) for τ ∈ Λ∞ and ∑

u∈U

ψ(gu) = 1

for all g for which N(g) = Q(g21, g22) is positive.

Of course in the case D < 0, #Uj < ∞ , and one could simply use the constant
function ψ(g) = (#Uj)−1. For positive discriminants the existence of a partition of unity
is established in the following

Proposition 6.2.17. Let U ∈ SL2(R) be of hyperbolic type, with row eigenvectors (1, w1)
and (1, w2), w1 < w2. Then there exists a smooth function ψ on SL2(R), such that for all
g = [ g11 g12g21 g22 ] ∈ SL2(R) for which w1 < g22/g21 < w2:

∞∑
k=−∞

ψ(gUk) = 1.

In addition we may assume that ψ(g) = φ(g22/g21) for some smooth, compactly supported
function φ whose support is contained in (w1, w2), and therefore ψ([ 1 t

0 1 ] g) = ψ(g), for any
t ∈ R.

Proof. Since the action of U on the second row (g21, g22) is linear, we can consider the
induced fractional linear transformation on t = g22/g21:

(1 : t) 7→ (1 : b+dt
a+ct

).

We will denote this map t 7→ b+dt
a+ct

by Ũ . Since detU = 1, Ũ(t) = d
c
− 1

c2x+ac
, and

so it is continuous and strictly increasing on both (−∞,−a
c
) and (−a

c
,∞). Moreover if

t1 < −a
c
< t2, then c2t1 + ac < 0 < c2t2 + ac, and so Ũ(t1) > Ũ(t2). It follows, that if

w1 < w2 are the fixed points of Ũ , then −a
c
6∈ (w1, w2), and so Ũ takes this open interval

to itself bijectively.
Consider now s(t) = t−w1

w2−t . Since
[

1 w1
1 w2

]
U =

[
λ 0
0 1/λ

] [
1 w1
1 w2

]
we have that

s(Ũ(t)) =
1

λ2
s(t).
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The rest of the argument now follows the standard proof of a partition of unity. By
replacing U by U−1 if necessary, (which we can, since the proposition is about the cyclic
group generated ny U), we may assume that λ > 1.

Let h0 be smooth non-negative function on (0,∞), which is supported on [1/λ2, λ2],
such that it is strictly positive (say 1) on [1/λ, λ]. Then the function h1(s) =

∑
k∈Z h0(λ2ks)

is smooth since the sum is locally finite.
We also have that h0 ≤ h1, and that h1(λ2s) = h1(s). It follows that h1 is everywhere

positive on (0,∞) and we may therefore define h(s) = h0(s)/h1(s), which is smooth.
Clearly

∑
k∈Z h(λ2ks) = 1 for all s ∈ (0,∞).

Finally let

φ(t) = h
(
t−w1

w2−t

)
and ψ(g) = φ(g22/g21). (6.2.11)

The property
∑∞

k=−∞ ψ(gUk) = 1 is valid by the above construction. Since the function
ψ only depends on g22/g21, the property ψ([ 1 t

0 1 ] g) = ψ(g), holds trivially for any t ∈ R.

Proposition 6.2.18. Let Q = (M,R,N) with N < 0, R2 −MN = D, and stabilizer U .
Let ψ and φ be as in the proposition above for the group of automorphs of Q, and let

F (c, d) = f(Q(c, d))φ

(
d

c

)
.

Assume also that supp f ⊂ [qX, 2qX]. With the notation (6.2.9) and (6.2.10) we have

∑q

g∈Λ∞\Λ/U

f(N(g))e

(
−kB)

2AN(g)

)
e

(
kR(g)

2AN(g)

)
=

∑q

g∈Λ∞\Λ

e

(
ka

2Ac

)
F (c, d) +O(k log(qX)),

where on both sides
∑q restricts the sums to g = [ a bc d ] for which Q(c, d) ≡ 0 mod q. The

implied constant depends on M,R,N,A,B and max |f |, but does not depend on k, q or X.

Proof. By the construction of ψ,

q∑
g∈Λ∞\Λ/U

f(N(g))e

(
kR(g)

2AN(g)

)
=

∑
g∈Λ∞\Λ

f(N(g))ψ(g)e

(
kR(g)

2AN(g)

)
=

∑
g∈Λ∞\Λ

f(Q(c, d))φ

(
d

c

)
e

(
kR(g)

2AN(g)

)
=

q∑
g∈Λ∞\Λ

F (c, d)e

(
kR(g)

N(g)

)
.

The main idea going back to [67] is to use Bruhat decomposition which leads to the
identity

Mac+R(ad+ bc) +Nbd

Mc2 + 2Rcd+Nd2
=
a

c
− Rc+Nd

c(Mc2 + 2Rcd+Nd2)
.

Therefore we have

e

(
kR(g)

N(g)

)
= e

(
ka

c

)
e

(
k(Rc+Nd)

cQ(c, d)

)
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and here k(Rc+Nd)
cQ(c,d)

= k(R+Nd/c)
Q(c,d)

� 1
qX

by our assumptions, and so

e

(
k(Rc+Nd)

cQ(c, d)

)
= 1 +O

(
k

Q(c, d)

)
the implied constant depending on the form [M,R,N ] only. We therefore have

q∑
g∈Λ∞\Λ/U

f(N(g))e

(
kR(g)

2AN(g)

)
=
∑q

g∈Λ∞\Λ

e

(
ka

2Ac

)
+O(k)

∑q,f,φ

g∈Λ∞\Λ

1

Q(c, d)

where
∑q,f,φ

now indicates that the sum is over those (c, d), for which d/c is in the

support of φ, Q(c, d) is in the support of f and also Q(c, d) ≡ 0 mod q. The simplest way
to estimate this sum is to compare it to∫∫

Ω

dxdy

Q(x, y)

where Ω = {(x, y) ∈ R2 : y/x ∈ [t1, t2], Q(x, y) ∈ [qX, 2qX]}, where suppφ ⊂ [t1, t2]. This
leaves the congruence condition out, but still gives a satisfactory answer. The integral
is easily evaluated by the change of variables t = x/y, s =

√
Q(x, y), and leads to the

log(qX) error term.

Alternatively, we may remove the log q term, by noticing that {(c, d) : d/c ∈ [t1, t2] :
Q(c, d) = n} ≤ Cτ(n), where τ(n) is the number of divisors of n. (In fact with the
construction in Proposition 6.2.17 we may chose C to be 2.), Applying Dirichlet’s theorem
on the sum of τ(n) gives the improvement, which plays no role here, and therefore the
details are omitted.

Let Γ = Γ(q, A) = Γ0(q) ∩ Λ.

Remark 6.2.19. We will not show the dependence on q, which is fixed for the identity
that we are about to derive. It would also make the sub-index indicating the stabilizer of
a cusp very inconvenient to show. Note, that

Γ∞ = {g ∈ Γ : g∞ =∞} = {[ 1 kA
0 1 ] = Λ∞.

Recall from Definition 3.1 that, for the congruence subgroup Γq and cusps a, b of Γq,
the generalized Kloosterman sum is

Kab(m,n) =
∑

e

(
ma+ nd

c

)
,

the sum being over {σagσ−1
b ∈ Γa\Γ/Γb}. We are now ready to state the main proposition.

Theorem 6.2.20. Assume the notation of Proposition 6.2.18.∑
g∈Λ∞\Λ

F (c, d)e

(
ka

c

)
=
∑q

c

∑
m,c

1

c
√

2awc
K∞c(m, k; c)Gc(m, c).

Here K∞c(m, k; c) is a Kloosterman sum for the group Γq the sum is over certain cusps
c whose description is given in the proof, and where m ∈ Z, and c ∈ qwZ, w being the
width of the cusps c. The function G is defined by

Gc(m, c) =

∫ ∞
−∞

F (c, y)e

(
−my
cwc

)
dy
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Proof. First, if g = [ a bc d ] we will overload the notation and use F (g) for the function
g 7→ F (c, d).

Recall that
∑q means that g is subject to the condition Q(c, d) ≡ 0 mod q. To handle

this condition we split the sum as follows:∑q

g∈Λ∞\Λ

F (g)e

(
ka

2Ac

)
=
∑
g

∑q

h

F (gh)e

(
ka

2Ac

)
where gh = [ a ∗c ∗ ], and where g runs through Γ∞\Γ, and the sum in h is over those h ∈ Γ\Λ
for which N(h·Q) ≡ 0 mod q. This is well defined since for all g ∈ Γq and for any quadratic
form Q:

N(g ·Q) ≡ N(Q) mod q.

Note that as g runs through Γ∞\Γ, gh runs through Γ∞\Γh. Let w be the width of the
cusp c = h(∞), and let

Bw =

{(
1 mw
0 1

)
: m ∈ Z

}
.

Now let g = [ a bc d ], then∑
g∈Γ∞\Γh

F (g)e

(
ka

2Ac

)
=

∑
g∈Γ∞\Γh/Bw

e

(
ka

2Ac

)∑
m∈Z

F (g [ 1 mw
0 1 ])

By Poisson summation the inner sum equals∑
m∈Z

∫ ∞
−∞

F ([ a bc d ] [ 1 xw
0 1 ]) e(−mx)dx.

After the change of variable x = t− d/wc, the whole sum becomes∑
m∈Z

∑
g∈Γ∞\Γh/Bw

e

(
ka

2Ac
+
md

wc

)∫ ∞
−∞

F ([ ∗ ∗c cwt ]) e(−mt)dt

Since hBw = Γch, we recognize the sum∑
gh−1∈Γ∞\Γ/Γc

e

(
ma

2Ac
+
kd

wc

)
as a Kloosterman sum K∞c(m, k; c

√
2Aw). (Use Lemma 6.2.5 with a = ∞, ga = I,

b = c, and gb = h.)
Finally substituting y = cwt we have∫ ∞

−∞
F (c, cwt) e(−mt)dt = 1

cw

∫ ∞
−∞

F (c, y) e
(
−my

cw

)
dy = Gc(m, c)

.
Remark. By Lemma6.2.6 the above Kloosterman sums can be replaced by Kloosterman

sums for the group Γ0(qA2), and we make this identification in what follows.
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6.2.5 Proof of the main theorem

For the estimation of the right-hand side of (13), the sum in m is split at some parameter
to be defined later. It is best to denote this parameter qM for some M > 1 to ease the
notation in the final estimates.

We will first bound the sum of Kloosterman sums that arose for our problem in the
range when

|m| ≥ qM,

where we simply use Weil’s bound

K(m, k; c
√

2Aw)� τ(c)(m, k, wc)1/2(wc)1/2

together with some elementary estimates.
First we need the following

Proposition 6.2.21. The function

G(m, c) =

∫ ∞
−∞

F (c, cwt) e(−mt)dt

decays rapidly in m:

G(m, c)� wL−1m−L (6.2.12)

for any L, the implied constant depending on L only.

Since
F (c, cwt) = f(Q(c, cwt))φ(wt)

the proposition is a simple consequence of the following lemma.

Lemma 6.2.22. Let f(x) be supported in [X, 2X]. Let

Cl = max{|Xjf (j)(x)| : x ∈ [X, 2X], j ≤ l}.

Let u(x) = Q(c, cwt) for some quadratic form Q. Assume c � X1/2. Let D = d/dt.
Then

Dl(f(u(t)))� Clw
l,

where the implied constant only depends on the degree of the derivation l and the coef-
ficients of Q.

Proof. The derivative in question is a sum of monomials of the form (see e.g.[120, Chapter
5] for a more precise form)

f (j)(u)(c2u′)2j−l(c2u′′)l−j

and this is bounded by ClX
−j(Xw)2j−l(Xw2)l−j.

.

Proof of the Proposition. Now (6.2.12) is a standard property of Fourier integrals that
follows from Lemma 5.1 after integrating by parts.
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Since |Γ : Λ| is large (about q), we still need to establish that the number of h ∈ Γ\Λ
that contribute to the sum is negligible. This is shown by first grouping the cosets according
to what cusp arises as h(∞) and then counting for each cusp separately.

Definition 6.2.23. Let Q = [M,R,N ], and let

Ac =
∑q

h(∞)=c

1

where h ∈ Γ\Λ, N(h) ≡ 0 mod q.

Lemma 6.2.24. In Definition 6.2.23, choose c = h(∞) = a
c

such that c|q. (This can
always be done.)

a) Let the cusp c = h(∞) = a
c

be as above. If c 6 |N then Ac = 0.
b) Make the assumption that N is prime. (See Remark 6.2.13). Then, when Ac 6= 0, it

is majorized by τ(q).

Proof. It is well known that the representative elements in Γ\Λ can be chosen so that c|q.
Now, assume h = [ a bc d ] ∈ Γ\Λ has the property that q|N(h) = Q(c, d). By our choice

c|q, and this implies that c|Nd2, and since gcd(c, d) = 1, c|N . This restriction on h shows
that only the above-specified cusps can arise as h(∞) with property Ac 6= 0 .

From now on we will make the simplifying assumption that N is prime, see Re-
mark 6.2.13.

First,t he number of cusps that arise in the estimates have either c = 1, with width
w = q, or they have c = N , with width q/(q,N2).

We now bound the number of h for each of the two types. If h(∞) = h′(∞), then there
is τ ∈ Λ∞ such that h′ = τh. Suppose τ = [ 1 m

0 1 ] . The condition N(h′) ≡ 0 mod q leads to
the following quadratic congruence for m : (2Rc2 + 2Ncd)m + Nc2m2 ≡ 0 mod q,. Write
q = Nαq1, with (q1, N) = 1 to conclude that this has at most O(τ(q)) solutions with an
absolute implied constant.

Corollary 6.2.25. Let c be a cusp of Γ such that Ac 6= 0 . Let w be the width of c. Then
w � q.

We are now ready to prove the following

Proposition 6.2.26. For any positive integer L, we have∑
qM≤|m|

∑
c

1

c
Gc(m, c)K(m, k; c

√
2Aw)� q−1/4X3/4M−L

where the implied constant depends on L only.

Proof. We will use the Weil-bound from Lemma 6.2.5

|K(m, k; 2c
√
Aw)| ≤ (m, k, 2Ac)1/2(2Awc)1/2τ(2Awc)

Since

G(m, c) =

∫ ∞
−∞

F (c, cwt) e(−mt)dt =

∫ ∞
−∞

f(Q(c, cwt))φ(wt)e(−mt)dt
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in c its support is contained in {c : f(c2Q(1, cwt)) 6= 0}. Now the construction of the
partition of unity φ in Proposition 6.2.17 shows that for wt in the support of φ, Q(1, wt)
is positive, and so there are constants 0 < µ1, µ2, such that when φ(wt) 6= 0, we have
µ1 < Q(1, wt) < µ2. (These depend on Q, and φ only.) Therefore c �

√
qX. Now use

Proposition 6.2.21 with L+1 instead of L and sum all these estimates get the Proposition.

We now move to the treat the sum over the range m ≤ qM

Lemma 6.2.27. ∑
|m|≤qM

∑
c

1

c
Gc(c, y)K∞c(m, k; c

√
2Aw)� q1/4X3/4M.

Proof. We interchange the sums and the integral that defines G(m, c). For simplicity we
make the substitution y = cwt. If we split the interval [0, qM ] into dyadic intervals, then
we are in position to apply Theorem 6.2.9 for each individual y1 Note that the conditions
of Theorem 6.2.20 are satisfied with C = C(y)�

√
qX and N = qM , giving∑

c,m

1

cw
F (c, y)K∞c(m, k;

√
2Awc)

�

{(
1 +

k

q

)1/2(
1 +

M

q

)
+

(qX)1/4

q
(q + k)1/4(q +M)1/4

}
(log2 kMX)

√
M√
w
.

Under the assumptions k � q we have by Corollary 5.4 that

∑
c,m

1

c
Fc(c, y)K∞c(m, k; c

√
2Ac)�

(
X

q

)1/4

M.

The integration is along an interval of length
√
qX, and the lemma follows.

The estimates depend on L, that is, the bounds on the first L derivatives of f , and
on M . For the unsmoothing below, we choose M = q1/(2L) for some integer L to get (for
q � X)

Lq(f)� q1/4X3/4(1+1/(2L))

(the implied constant depending on L).
The passage from the estimation of Lq(f) to that of Lq(X) gives rise to a loss in the

quality of the estimates. However, the new estimates still suffice to prove the analogue of
(6.2.1).

Proposition 6.2.28. Let Lq(X) be as in (6.2.5). We have

Lq(X)�
( q
X

)
X1+1/L2

where the implied constant depends on L, the coefficients A,B,C of the original quadratic
equation, but independent of q or X.

1To be more precise, one needs a smooth version of this; the error that results can be estimated trivially
using the above Proposition.
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Proof. Fix a positive integer L and a function g(µ, t) such that g(µ, t) = 0 when t ≤ 1 or
2 ≤ t, such that g(µ, t) = µL when 1 + µ ≤ t ≤ 2− µ. Note that for 0 < µ < 1/4 the first
L derivatives (∂/∂t)j(µ, t)� 1 with a constant that depends on our choice of g (that is L)
but not the other parameters q and X.

To apply our estimates for primes in arithmetic progressions to some modulus s we
choose our f in Lq(f) to be

f(x) = g
(
µ, x

qX

)
e
(
jx
s

)
.

The exponential factor is harmless, and will have no effect in the estimates that follow.
First,

Lq(X) = µ−LLq(f) +O(µX) logX.

Here in the intervals [X,X+µX], [2X−µX, 2X] we trivially estimate using |ρk(n)| � τ(n).
We choose µ = [(q/X)1/4X1+(1/L)]1/L. By (15),

Lq(f)�
( q
X

)1/4

X1+1/(2L),

where the implied constant depends on L only. Therefore,

Lq(X)�
( q
X

)1/(4L)

X1+1/L2

as claimed.

Finally we have the following

Theorem 6.2.29. Let 0 < ε < 1/3, and assume that q ≤ x1/2−ε . Then there exists an
η > 0 such that ∑

q<x1/2−ε

λd
∑
qn≤x

ρh(qn)� x1−η max{|λq|}

holds with a constant that depends on ε alone.

Proof. Choose L ≥ 2/ε in (16). Then∑
q<x1/2−ε

λq
∑
qn≤x

ρk(qn)� max{|λq|}x1−η

with η = (1/200)ε2.

In view of the criteria of Theorems 2.1 and 2.2, this concludes the proof of Theorem
1.2.
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Appendix A

Special functions

A.1 Whittaker functions

A standard reference for the theory of Whittaker functions is [126, Chap. 16]. Another
good reference is [93]. For the convenience of the reader we will record here some of the
properties of these special functions that we need.

For fixed µ, ν with Re(ν ± µ + 1/2) > 0 the Whittaker functions may be defined for
y > 0 by [93, pp. 311, 313]

Mµ,ν(y) =yν+ 1
2 e

y
2

Γ(1+2ν)

Γ(ν+µ+ 1
2

)Γ(ν−µ+ 1
2

)

∫ 1

0

tν+µ− 1
2 (1− t)ν−µ−

1
2 e−yt dt and (A.1.1)

Wµ,ν(y) =yν+ 1
2 e

y
2 1

Γ(ν−µ+ 1
2

)

∫ ∞
1

tν+µ− 1
2 (t− 1)ν−µ−

1
2 e−yt dt. (A.1.2)

Both Mµ,ν(y) and Wµ,ν(y) satisfy the second order linear differential equation

d2w

dy2
+
(
− 1

4
+ µy−1 + (1

4
− ν2)y−2

)
w = 0. (A.1.3)

Their asymptotic behavior as y →∞ for fixed µ, ν is easily found from (A.1.1) and (A.1.2)
by changing variable t 7→ t/y:

Mµ,ν(y) ∼ Γ(1+2ν)

Γ(ν−µ+ 1
2

)
y−µey/2 and Wµ,ν(y) ∼ yµe−y/2. (A.1.4)

In particular, they are linearly independent. For small y we get directly from (A.1.1) that

Mµ,ν(y) = yν+ 1
2

(
1 + Øµ,ν(y)

)
. (A.1.5)

It is also apparent from (A.1.1) and (A.1.2) that when ν − µ = 1/2 we have

Mµ,ν(y) + (2µ+ 1)Wµ,ν(y) = Γ(2µ+ 2)y−µey/2, (A.1.6)

while when ν + µ = 1/2 we have from (A.1.2) that

Wµ,ν(y) = yµe−y/2. (A.1.7)

The I-Bessel and K-Bessel functions are special Whittaker functions [93]:

Iν(y) = 2−2ν− 1
2 Γ(ν + 1)−1y−

1
2M0,ν(2y) and Kν(y) =

√
π
2y
W0,ν(2y).

Their asymptotic properties for large y thus follow from (A.1.4).
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A.2 An integral

We give the proof of the following evaluation. For Re(s) > 0 we have∫ π

0

cos(t cos θ)Is− 1
2
(t sin θ)

dθ

(sin θ)1/2
= 2s−1 Γ( s

2
)2

Γ(s)
Js−1/2(t).

Proof. Denote the left hand side by Ls(t). We use the definition of Is− 1
2

in (4.2.16) to get

Ls(t) =
∞∑
k=0

(t/2)s+2k−1/2

k!Γ(s+ k + 1
2
)

∫ π

0

cos(t cos θ)(sin θ)s+2k−1dθ.

Lommel’s integral representation [125, p. 47 ] gives for Re v > −1/2 that

Jν(y) =
(y/2)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ π

0

cos(y cos θ)(sin θ)2νdθ.

Thus for Re(s) > 0 we have that

Ls(t) = Γ(1
2
)
∞∑
k=0

Γ( s
2

+ k)

k!Γ(s+ k + 1
2
)
(t/2)s/2+kJ(s−1)/2+k(t).

This Neumann series can be evaluated (see [125, p.143,eq.1]) giving for Re(s) > 0

Ls(t) =
Γ(1

2
)Γ( s

2
)

Γ( s
2

+ 1
2
)
Js−1/2(t).

The result follows by the duplication formula for Γ(s).

A.3 Another integral

In this appendix we give a proof of the following integral formula which was given in Lemma
2.2.11. For µ ∈ C, t > 0 and Re(s) > 0∫ π

0

e±i(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ
= G(s, µ)t1/2Js−1/2(t) (A.3.1)

where

G(s, µ) = e(±µ/4)(2π)3/2 2−sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)
.

Proof. To prove the lemma we will restrict to the case when the signs in (A.3.1) are positive
since the formula with negative signs follows by complex conjugation. To prove the Lemma
we will prove that both sides of (A.3.1) satisfy the same order differential equation and
that the Taylor series coefficients of both sides agree up to order 2.

Let λ = s− 1/2 and g(t) = t1/2Jλ(t). A simple computation shows that

t3/2
[
g′′(t) + (1 + (1/4− λ2)/t2)g(t)

]
= t2J ′′λ(t) + tJ ′λ(t) + (t2 − λ2)Jλ(t) = 0.

Hence we want to show that the left hand side of (A.3.1) also satisfies

f ′′(t) + (1 + (1/4− λ2)/t2)f(t) = 0.
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Factoring out the t-dependent part we need to compute

h′′(t) +

(
1 +

1/4− λ2

t2

)
h(t)

for h(t) = ei(tcosθ)Mµ,λ(2t sin θ).
The fact that the Whittaker function Mµ,λ satisfies the differential equation

M ′′
µ,λ(2t sin θ) =

(
1

4
− µ

2t sin θ
− 1/4− λ2

4t2 sin2 θ

)
Mµ,λ(2t sin θ)

and

h′′(t) = [− cos2 θMµ,λ(2t sin θ) + 4 sin2 θM ′′
µ,λ(2t sin θ)]ei(tcosθ)

+4i cos θ sin θM ′
µ,λ(2t sin θ)ei(tcosθ)

leads to

h′′(t) +
(

1− λ2−1/4
t2

)
h(t) =

(
2 sin2 θ − 2µ sin θ

t

)
h(t) + 2i sin 2θe±i(tcosθ)M ′

µ,λ(2t sin θ).

Using this last equation gives for the integral in (A.3.1)(
d2

dt2
+

(
1 +

1/4− λ2

t2

))∫ π

0

ei(tcosθ+µθ)Mµ,λ(2t sin θ)
dθ

sin θ

=

∫ π

0

(
2 sin θ − 2µ

t

)
h(t)eiµθdθ + 2i

∫ π

0

2 cos θei(tcosθ)+iµθM ′
µ,λ(2t sin θ)dθ.

Now we use d
dθ
Mµ,λ(2t sin θ) = M ′

µ,λ(2t sin θ)2t cos θ and integration by parts to get

2i

π∫
0

ei(tcosθ+µθ)M ′
µ,λ(2t sin θ)2 cos θdθ = −2i

t

π∫
0

d

dθ

(
ei(tcosθ+µθ)

)
Mµ,λ(2t sin θ)dθ

as
[
ei(tcosθ+µθ)Mµ,λ(2t sin θ)

]π
0

= 0. Finally, since

−2i

t

π∫
0

d

dθ

(
ei(tcosθ+µθ)

)
Mµ,λ(2t sin θ)dθ =

∫ π

0

(
2µ

t
− 2 sin θ

)
h(t)eiµθdθ

we have (
d2

dt2
+

(
1 +

1/4− λ2

t2

))∫ π

0

ei(tcosθ+µθ)Mµ,λ(2t sin θ)
dθ

sin θ
= 0.

This proves that both sides of (A.3.1) satisfy the same differential equation.
To prove the Lemma we still need to check the Taylor coefficients. To this end we use

the Taylor expansions of the exponential function and of the Whittaker function, namely

Mµ,s−1/2(x) = e−x/2xs
∞∑
n=0

(s− µ)n
(2s)n

xn

n!
.
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Then ∫ π

0

ei(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ

=
∞∑
n=0

∞∑
m=0

(s− µ)n
(2s)nn!

(2t)n+s (it)m

m!

∫ π

0

ei(m+µ)θ(sin θ)n+s−1dθ.

Using the integral formula (see [105, p 511, 3.892(1)])∫ π

0

eiβx sinν−1 xdx =
πeiπβ/2Γ(ν)

Γ(ν+β+1
2

)Γ(ν−β+1
2

)

and (a)n = Γ(a+n)
Γ(a)

gives

∫ π

0

ei(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ

= (2π)e(µ/4)
Γ(2s)

Γ(s− µ)

∞∑
`=0

∑
m+n=`

(−1)mΓ(s− µ+ n)Γ(s+ n)

m!n!Γ(2s+ n)Γ(n+s+m+µ+1
2

)Γ(n+s−m−µ+1
2

)
ts+` (A.3.2)

On the other hand using the Taylor expansion

t1/2Js−1/2(t) =
∞∑
r=0

(−1)r(t/2)s+2r

r!Γ(s+ 1/2 + r)

gives for the right hand side of (A.3.1)

G(s, µ)t1/2Js−1/2(t) =
(π)3/2e(µ/4)22−2sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)

∞∑
r=0

(−1)r2−2r

r!Γ(s+ 1/2 + r)
ts+2r (A.3.3)

A straightforward calculation shows that the coefficients of ts, ts+1 and ts+2 in (A.3.2)
and (A.3.3) match, which is more than what is needed to finish the proof of the Lemma.

...
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Maass-Poincaré series. Math. Ann. 337 (2007), no. 3, 591–612.

[18] Bruinier, J.H., Borcherds products and Chern classes of Hirzebruch-Zagier divisors.
Invent. Math. 138 (1999), no. 1, 51–83.

[19] Bruinier, J. H.; Funke, J., Traces of CM values of modular functions. J. Reine Angew.
Math. 594 (2006), 1–33.

[20] Bruinier, J. H.; Funke, J., On two geometric theta lifts. Duke Math. J. 125 (2004),
no. 1, 45–90.

[21] Bruinier and Ono, K., Heegner divisors, L-functions and harmonic weak Maass forms,
to appear.

[22] Brunella, Marco. ”On the discrete Godbillon-Vey invariant and Dehn surgery on
geodesic flows.” Annales de la Faculte des sciences de Toulouse: Mathématiques.
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