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Bevezetés

A disszertacié 1990-6ta keletkezett, alapvetéen bioinformatikai eredményeket
ismertet: a problémék dont6 tébbsége a molekularis biologia jelenlegi forra-
dalmaban felmerilt kombinatorikai kérdésekbdl ered.

Alkalmazott problémaknal gyakran eléfordul, hogy a megoldhatésag ked-
vérért az alkalmazott matematikai modellt olyan mértékig kell egyszertisiteni,
hogy az eredmények mar nem is igazan hasznosak az eredeti problémak szem-
pontjabol. Az is gyakran el6fordul, hogy bar a rendelkezésre allé eszkozokkel
kezelhet6 feladatok hasznosak, de matematikai értelemben mar érdektelenek:
megoldasuk konnyt vagy elméleti szempontokbdél nem mondanak tjat.

Meggy6zodésem szerint az ebben a disszertacioban targyalt kérdések nem
ilyenek: a nyert tételek, eljarasok és algoritmusok a gyakorlatban hasznosak,
jol alkalmazhatdk, ugyanakkor matematikailag is érdekesek, mert tisztan ma-
tematikai problémaként onalléan is megélljak a helyiiket.

A dolgozatban szereplé eredmények jelentds része hosszi (esetenként bo-
nyolult) bizonyitassal bir, ezek tobbségét itt nem ismertetem. Ehelyett a
f6 silyt a felmeriilt matematikai problémék hatterét (avagy jogosultsigat)
szolgaltato bioldgiai modellek matematikusok szamara értheto kifejtésére he-
lyezem. Azaz a diszszertacio "rovid értekezés” formajaban keriilt megirasra:
egy, a szokasosnal hosszabb bevezeté utan a relevans cikkek mellékletként
szerepelnek benne.

A dolozatban harom f6 rész taldlhatd, oOsszesen kilenc szakaszbdl all,
tovabba nyolc cikk szerepel mellékletként. A els6 két részben un. ewvolicios
fakat vizsgalok. FEzek (gyakran gyokeres) binaris fak, melyek levelei egy-
egy értelmiien cimkézettek, mig bels6 (eldgazd) csticsaik nem. A biol6gusok
ezeket hasznéljédk a fajok kozotti leszarmazdsi kapcsolatok dbrazoldséra (és
megtaldldsdra). A biolégiai adatokat kevés (tipikusan 2, 4 vagy 20) szin
felhasznalasaval alkotott szinvektorok hordozzék, tovabba a faval abréazolt
torténések valamilyen biolégusok altal feltételezett modell szerint torténnek.

Az els6 részben ez a modell a statisztikabol ismer6s parsimonia elv. Az itt
felmeriil6 optimalizacids problémék altalaban legalabb duplan exponenciéli-
sak, pontos megoldasukra kevés a remény. Ezért az elééllitott modellfak
koziil gyakran statisztikai alapon vélasztanak ”"megfelel6t”. Ebben a részben
ilyen statisztikdkkal kapcsolatos kombinatorikai problémakat vizsgalunk. Ko-
ziliik az els6 egy leszamlalasi kérdés, amely megoldasa a jol ismert Men-
ger tételeken alapulé dekompoziciét haszndl. A mddszerek ketténél tobb
szinre torténo alkalmazasahoz a multiway cut probléma jobb megértése lehet
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sziikséges, amely az els6 rész masik témaja.

A dolgozat méasodik része evoluciés fak néhany sztochasztikus modelljével
foglalkozik. Részben mutatészamokat illetve eszkozoket fejleszt ki a modellek
illetve médszerek Osszehasonlitasara, részben pedig gyors algoritmusokat ad
egy modellosztalyban a helyes evoliciés fak 1 valdszintiségli megtalalasahoz.

A disszertacié harmadik része véges abécé feletti korlatos hosszisagu
szavak rész-szavakbdl torténd rekonstrukciéjat vizsgdlja, amely microarray
kisérletek illetve igynevezett DNS kodok tervezéséhez nytujthat segitséget.

1. A multiway cut probléma

A modern kombinatorikus optimalizalas egy sokat vizsgalt tertilete a multi-
way cut probléma: adott a G graf élein egy w sulyfiiggvény. Adott tovabba
terminal pontok egy k elemi halmaza. Keresstink minimalis 0sszsulyu élva-
gast, ami a terminal pontokat paronként szeparalja: az élek elhagyasaval ke-
letkezett grafban kiilonféle szinli pontok kozott nincsenek utak. A k = 2 eset
a klasszikus él-Menger probléma. Mint a Dahlhaus - Johnson - Papadimitriou
- Seymour - Yannakakis cikk ([DahJoh92|) bebizonyitja, a probléma NP-
nehéz még a legegyszeriibb esetben is (hdrom szin, egység suly). Ugyanebben
a cikkben talalhaté az els6 approximélé algoritmus a problémara. Szintén itt
bizonyitjak be, hogy sikgrafokon a probléma kezelheté polinomialis idében,
ha a szinek szama korlatos. A probléma, kiilonosen az utébbi tiz évben,
komoly kutatasokat indukalt, szamos eredménnyel.

Székely Lészléval kozos cikkeinkben ([1, 2, 7, 10, 13]) bevezettiik az eredeti
multiway cut probléma egy altalanositasat: legyen G = (V) E) egy egyszerii
graf, C' = {1,2,...,r} pedig egy szinhalmaz. Ha N C V(&) a termindl pon-
tok halmaza, akkor egy y : N — C leképezést parcidlis szinezés-nek hivunk.
Ekkor egy x : V(G) — C leképezést akkor mondunk szinezésnek, ha a két
leképezés megegyezik a termindl pontokon. Az dltaldnositott multiway cut
probléma egy olyan legkisebb sulyu élrendszer megtalalasa, amely barmely
két, eltéro szint terminal pontot szeparal.

Amint azt Dahlhaus - Johnson - Papadimitriou - Seymour - Yannakakis
cikkeikben ([DahJoh92, DahJon94]) kimutatjak, bar az altalanositott multi-
way cut tetszoleges grafokon megegyezik az eredeti multiway cut problémaval,
specidlis grafosztélyokon azonban (mint sikgréafokon vagy acyclikus grafokon)
eltéroek. Példaul sikgrafokon az altalanositott multiway cut mar harom szin
mellett és egységsilyu élekkel is NP-teljes ([DahJoh92]).
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A cikkekben bevezettiink egy 1j tipusu alsé korlatot a multiway cut
silyara, tovabba egy 1j tipusu pakolési feladat felhasznalasaval illetve egy
minimax tétel bebizonyitasaval teljesen megoldottuk a fak multiway cut
problémajat. Ennek részben elméleti kovetkezményei vannak (1dsd példaul
[DahJon94] ), tovdbba az evoliciés fak elméletében is felhasznalasra keriiltek
(példdul [PenLoc94]). Az multiway cut-nak parhuzamos SQL-lekérdesések
tervezése témakorében is vannak alkalmazésai (példaul [HasMan98]), tovab-
ba kommunikéciés halézatok elméletében (példaul [Pou06]). Ez utébbi dol-
gozat a kommunikécios koltségek minimalizalasédval foglalkozik szétosztott
processzor halézatok esetén. Kimutatja, hogy a feladat leirasahoz az altalunk
bevezetett altalanositott multiway cut probléma az alkalmas, majd a ”partial
distribution problem” megoldasara a szinfiiggii sulyfiiggvényre kialakitott al-
goritmusunkat alkalmazza.

1.1. Minimalis silyu szinezések

A (szamunkra fontos) bioldgiai alkalmazdsokban a konstans élstlyoknal bo-
nyolultabb sulyfiiggvényekre van sziikség . Ehhez jelolje F(G) x 2 a graf
irdnyitott éleit (azaz mindegyik él mindkét irdnyitdssal jelen van). Egy
W E(G) x 2 — N7 leképezés egy (szinfiiggd) sulyfiggvény, ha a W (p, q)
és W(q, p) matrixok megegyeznek, tovabba a féatlokban csupa nulla van. A
W(p,q); = w(p,q;i,7) elem azt mondja meg, hogy a (p,q) élnek mennyi a
sulya egy Y szinezésben, ha x(p) =i, x(q) = j (avagy x(p) = 7, x(q¢) = ¢, ami
ugyan azt az értéket adja). A W szinfiiggetlen, ha minden f64tlén kiviili elem
azonos. A sulyfiiggvény értelemszeriien lesz élftiggetlen. Végiil W konstans,
ha egyszerre szin- és élfiiggetlen. Barmely y parcidlis szinezés particiondlja
a terminal pontokat: az azonos szinl pontok kertilnek azonos osztalyba. Eb-
ben a grafban élek egy halmaza, amelyek egytitt barmely két, eltérd szint
termindl pontot elvalasztanak, egy multiway cut-ot alkot. Vilagos, hogy egy
X szinezés szinvalté élei mindig multiway cut-ot alkotnak. Egy Y szinezés
silya a szinvalté élek oOsszsilya. Az adott grafon egy y parcidlis szinezés
0(G, x) hossza az Osszes lehetséges szinezés silydanak a minimuma.

A ((G, x) mennyiség meghatarozasanak komplexitasa fligg a silyfliggvény
és a graf szerkezetétol. Bioldgiai alkalmazasokban a grafok altalaban cimké-
zett levelekkel és nem-cimkézett belsé pontokkal rendelkezé binaris fak, ahol a
parcidlis szinezés a leveleken adott. Ezeket az objektumokat hivjak evolicids
fdknak. Konstans sulyfliggvények esetén evolucios fakra W.M. Fitch dolgo-
zott ki el6szor egy linedris algoritmust a hosszisag meghatarozésara. (Az
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algoritmus korrekt volt, bar a biolégus Fitch ezt nem latta sziikségesnek bi-
zonyitani. Ezt el6szor a matematikus Hartigan tette meg.) Székely Léaszldval
k6z0s [1] cikkiinkben szintén adunk egy (a korabbiaktdl kiilénboz6) bizonyitast
az algoritmus helyességére.

A Székely Lészloval kozos [10] cikk tetszéleges, levél szinezett fakra ad
undrisan polinomialis algoritmust szinfiiggo sulyfiiggvény esetén a hossz meg-
hatarozasara. (Itt minden egyes numerikus adatot egy-egy szamnak te-
kintlink, fliggetleniil annak nagysagatol, azaz attél, hogy milyen médon abra-
zolja a szamitégép.) Az algoritmus arra is alkalmas, hogyha minden belsé
pontban megadunk egy megendegett szinhalmazt, akkor az algoritmus vala-
melyik megengedett szint rendeli a belsé pontokhoz is. (Arra azonban nincs
esély, hogy polinomidlis idében megkeressiik az Osszes optimalis szinezést,
mert ebbdl akar exponencialisan sok is lehet - mint azt M.A. Steel egy
eredménye megmutatta.)

A cikk egyébként ennél egy kicsit altalanosabb allitast igazol:

1.1. Tétel ([10] Section 3). Legyen a grdf olyan, amelynek minden kérét a
terminal pontok lefedik. FEkkor létezik undrisan polinomdalis algoritmus eqy
optimalis szinezés meghatdrozdsdra szinfliggetlen sulyfigguény esetén.

Korabban Sankoff és Cedergen illetve Williamson és Fitch élfiiggetlen (de
szinfliggd) sulyfliiggvényeket tanulmanyoztak, és kozreadtak kiilonféle gyors,
bar csak heurisztikus algoritmusokat (azaz nem vizsgaltdk az algoritmusuk
helyességét vagy igazi futdsigényét).

Lényegesen bonyolultabb kérdést kapunk, ha levelek egy adott L hal-
mazahoz és a rajtuk adott y parcidlis szinezéshez meg akarjuk hatdrozni az
Osszes, a levelekre illeszkedO binaris fa koziil azt, amelyiknek a legkisebb a
hossza a x-re nézve. Ha a leveleket ma €16 fajok alkotjak, és a szinezés pedig
valamilyen biolégiai jellemzdjiiket jelenti (példaul morfolégiai jegyek, vagy
az atorokité anyag egy jellemzé része), akkor a legrovidebb fa megtaldlasa
azt a nézetet testesiti meg, hogy a természet az élet kialakitasandl takarékos
volt, a leheto legkevesebb valtozast hasznalta fel az Gsszes 1étezo élolény ki-
alakitasahoz. Ezt parsimonia elvnek hivjak, és tipikus feltevés kiillonboz6
statisztikai vizsgalatoknal.

Az evolucié kutatoi ezeket a bioldgiai jellemzéket karakter-eknek hivjak.
Azaz az i-ik karakter matematikai értelemben a szinvektor i-ik koordinatajat
jelenti.

A valés helyzetekben, azaz 1étez6 bioldgiai rendszerek vizsgalatakor, per-
sze nem csak egyetlen jellemz6 ir le egy-egy fajt, ezért minden fajt (azaz
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a keresett bindris fa leveleit) hosszabb szinvektorok jellemeznek. Annak
eldontése, hogy ilyen szinvektorok esetén létezik-e pontosan k hosszisagu fa
a x parcialis szinezésre nézve (ilyenkor az adott fara minden koordinataban
kiilon kiszémoljuk a hosszat, majd Osszeadjuk) NP-nehéz feladat, ezért az
érdekes gyakorlati esetekben ezt lehetetlen eldonteni. Ez egyébként Gra-
ham és Foulds egy eredménye [GraFou82]. Ezért a parsimonidval foglalkozdok
egyik 6 célnak az evolicios fak statisztikai tulajdonsagainak meghatarozasat
tartjak. Ezt gy lehetséges felhasznalni egyes keresett evolicios fak rekon-
strukcidjanal, hogy az éppen vizsgalt algoritmus ”termékeit” a statisztikai-
lag elvarhato fakkal hasonlitjak 6ssze. Minél kozelebb van az elvarhatéhoz,
annal jobb. Ezen statisztikai vizsgdlatok egyik lehetséges 1épése az adott
levélszinezéshez tartozé, éppen k hosszusagu féak leszamlélasa.

A legegyszeribb eset megtargyalasahoz rogzitsiink egy adott egy-karakte-
res, azaz egy hosszi szinvektorokbol allo 2-szinezést az L levél halmazon.
Legyen a és b a két szinosztaly mérete. Mennyi azon evolucids fak fi(a,b)
szama, amelyek hossza az adott levélszinezés mellett éppen k. A valaszt erre
Carter és munkatérsai (1990)-ben adtak meg:

Tétel. [Carter - Hendy - Penny - Székely - Wormald: ([CarHen90)) |

b(n)
b)=(k—1)!(2n —3k)N(a,k)N (b, k) ——————
ahol a+b =mn, a >0, b >0, és ahol N(x,k) jeloli az dsszesen x levéllel
rendelkezd €s k darab evolicios fabol dllo erddk szamdt.

(A [9] cikkem, egyebek ko6zott, egy bijektiv bizonyitdst adott az N(x, k) men-
nyiségekre.) A Carter tételre az eredeti bizonyitas tobbvéltozds Lagrange
inverziot és computer algebrat alkalmazott. M.A. Steel talalt egy jobb, bi-
jektiv megkozelitést ([Steel93]), amire Székely Laszléval kozos [7] cikkiink-
ben adtunk viszonylag révid és transzparens bizonyitast. A maddszer legfébb
érdekessége, hogy a leszamlalas el6tt bebizonyitja a k hosszu evolicids fak
egy struktura tételét, amely eredmény az él-Menger és a pont-Menger tételek
felvaltott alkalmazasain alapul.

A kettonél tobb szinnel szinezett evolicios fak leszamlalasahoz sziikség
lenne az evolicios fakra vonatkozd analdg tételek bebizonyitasara. A tobb
szinli pont-Menger tétel fakra véltoztatas nélkiil teljesiil, de ugyanez az él-
Menger (azaz a multiway cut) problémara nem igaz.
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1.2. Egy minimax eredmény fak multiway cut problé-
majara

Mivel az altaldnositott multiway cut probléma mar k& = 3 esetben is NP-
nehéz, természetesen nem lehet elvarni altalanosan érvényes, a Menger tétel-
hez hasonlé minimax eredményt vele kapcsolatban. Valéban, mint az kozis-
met, mar a k = 3 esetben sem igaz az él-Menger tétel analdgja: egyszeri
ellenpélda ré az egység élsilyokkal ellatott, a leveleket terminal pontokként
tartalmazé K 3 csillag. Az el6z6 szakaszban emlitett leszamlalasi feladat
kettonél tobb szinre torténé analég megoldasdhoz sziikség lenne egy fakra
érvényes minimax tétel bebizonyitdsira. Egy ilyet a [1, 2, 10] cikksorozatban
sikertilt Székely Laszldval kozosen kimunkalnunk. Megjegyzendo, hogy en-
nek felhasznaldsaval M.A. Steel valéban tovabb lépett a leszamlalasi feladat
targyaldsdban ([Steel93)).

A [1] cikkben a sulyozatlan esettel foglalkoztunk (pontosabban szélva itt
minden él silya 1), mig a [2, 10] dolgozatokban szinfiiggetlen silyfiiggvények
esetére dolgoztuk ki a megfelel6 minimax eredményt. A szakasz hatralévo
részében irdnyitatlan grafokban, két-két termindl pont k6zé, irdnyitott (ori-
ented) utakat pakolunk. Irdnyitott 1t igy keletkezik egy iranyitatlan P tbdl,
hogy megmondjuk, hogy a hatérolé termindl pontok koziil melyik az s(P)
kezdé pont, és melyik a t(P) végpont, tovabba feltessziik, hogy az utak nem
érintenek més terminal pontot.

1.2. Definicié. FEgy ut akkor szinvaltd, ha x szerint eltérd szinid termindl
pontok kézott fut. Két szinvdlto ut konfliktusban van,

(a) ha egy adott €lt ellenkezd iranyban haszndlnak (az utak irdnyitdsdt te-
kintve),

(b) ha két it ugyan azonos irdnyban haszndl eqy élt, de végpontjaik szine x
szerint megeqyezik.

Ekkor a [1] cikk szerint kovetkezé alsé becslés teljesiil a multiway cut nagysé-
gara:

1.3. Tétel. Legyen G hurokél mentes, irdnyitatlan grdf termindl pontok eqy
N halmazaval és eqy x parcialis szinezéssel. Legyen tovdbba P irdnyitott
utak egyrendszere a termindl pontok kozott, hogy semelyik ketté nincs kon-
fliktusban. Ekkor |P| sohasem nagyobb, mint barmely G-beli multiway cut
elemszama.
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Ha egy grafban a terminal pontok N halmaza lefed minden kort, akkor min-
den egyes N-beli pontot vagjunk annyi példanyra, amennyi a foka, és minden
példany szine legyen megegyez6 a pont eredeti y szerinti szinével. A keletke-
zett objektum ekkor egy levél-szinezett fa. Ez az egyszerii eljaras az alapja,
hogy az [1] cikknek az eredetileg fak multiway cut problémdjit megoldé mi-
nimax tétele a kovetkezo kicsit altalanosabb formaban is kimondhato:

1.4. Tétel. Legyen G hurokél mentes, iranyitatlan grdaf, termindl pontok egy
N halmazaval, amit eqy x parcidlis szinezés k szinnel szinez meg. Tegyuk fel,
hogy N pontjair a G minden korét lefedik. Ekkor, ha irdnyitott utak egy P
rendszere olyan, hogy semelyik két ut sincs konfliktusban, akkor az titrendszer
szdmossdga megeqyezik a legkisebb multiway cut elemszdmduval.

A tétel bizonyitasa a megkivant tutrendszer rekurziv megkonstrualdsan ala-
pul. Az algoritmus futasideje polinomialis.

Vegyiik észre, hogy miutan a keresett utrendszer semelyik két eleme sincs
konfliktusban egymaéssal, ezért az utak a fa felhaszndlt élein egyértelmiien
meghataroznak egy irdnyitast. Van-e mdd ennek az iranyitadsnak a meg-
hatarozasara az utrendszer rogzitése nélkil?

A kérdésfeltevés mogott az a gondolat, hogyha sikeriil megtalalni az
emlitett irdnyitast, akkor mar a szokdsos él-Menger tétel k-szoros alkal-
mazasaval meg lehet hatarozni az ttrendszert. Nevezetesen egy szint elkiilo-
nitiink az Osszes tobbitol, és az iranyitott graf ebben a 2-szinezésében ke-
restink iranyitott utakat.

A vazolt gondalatmenetet a Frank Andrassal és Székely Lészléval kozos
[13] cikkben sikeriilt bizonyitdssa érlelni. (Megjegyezziik, hogy a kovet-
kezékben a parcidlis szinezés terminal pontok egy S halamzat szinezi, még-
hozza gy, hogy minden szin egy ponton fordul el6. Ha nem ez a helyzet,
akkor minden szinre az 0sszes azonos szinli pontot egyesitjiik. Tovabba mos-
tant6l a multiway cut méretét mg-sel jeloljiik.) El6szor is szitkséglink van
néhany tovabbi definiciéra:

Legyen G egy iranyitott graf, legyen Z cstcsok egy részhalmaza. Ek-
kor legyen 04(Z) a G-ben a Z ponthalmazba belépd élek szama (7 befok”).
Tovabbé az A, B diszjunkt ponthalmazokra legyen A(A, B; é) az A-bol in-
dulé, B-ben végetéro, paronként éldiszjunkt iranyitott utak maximalis szama.
Az él-Menger tétel szerint ekkor A(4, B;G) = min (o(X): BC X CV — A).
A G hurokél mentes grafra és az s € S C V(G) pontra legyen A(S '\ s, s; G)
az (S '\ s) és az s kozott futd éldiszjunkt utak maximadlis szdma. Jelolje
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A(S — s, s: G) ugyanezt az iranyitott grafban, irdnyftott utakkal. A Menger
tétel alapjan mindkét mennyiség polinomialis kiszamithato.

Lovasz Laszl6 vezette be a 75 := > o A(S — s, 5; ) /2 mennyiséget, frak-
ciondlis S-utpakolasokkal kapcsolatban. Egy tovabbi mennyiség egy G-beli
T részfa értéke, amely a benne levo S-beli pontok szama, minusz 1. Legyen
viree a G-beli paronként éldiszjunkt részfak értékei osszegének a maximuma.

Végezetiil legyen Ug := max (ZSES A(S — s, 8; é)) , ahol G végigfut a G le-

hetséges Osszes iranyitasan. Ekkor

1.5. Tétel ([13] Theorem 1.1).

75 <VE* < Us < g, (1)
Megjegyzendo, hogy a s éppen az olyan iranyitott S dtrendszerek maximalis
mérete, hogy semelyik két iranyitott 1t ne legyen konfliktusban egymaéssal.
Ezutan a cikkben bebizonyitjuk a 1.4. Tétel kovetkezo valtozatat:

1.6. Tétel ([13] Theorem 2.1). Legyen G = (V, E) egy hurokél mentes grdf,
terminal pontok eqy S halmazdval, ahol G — S eqy fdat indukdl. Ekkor a
minimalis multiway cut

Vg = maxz AS —5,5.G) (2)

seS
ahol a maximalizalds az osszes lehetséges G irdanyitdson fut.

A tétel bizonyitasdban a graf sziikséges irdnyitdsa rekurziv médon, poli-
nomialis idében keriil meghatarozasra.

A kovetkezOkben a Székely Laszléval kozos [10] cikk alapjan vdzolom
hurokél mentes grafok tetszoleges, azaz él- és szinfiiggo, silyozasa mellett
egy lehetséges als6 becslést a (stulyozott) multiway cut értékére, és bemutatok
egy, a 1.4. Tétellel analég minimax eredményt fak stlyozott multiway cut
problémajara.

Legyen GG hurokél mentes graf terminal pontok egy N halmazaval, ahol a
parcialis szinezés megint k szint hasznal . Legyen P szinvaltd iranyitott N
utak halmaza (egyetlen 1t sem tartalmaz N-beli belsé pontot, de valamely
ut tobb példanyban is jelen lehet). Legyen tovabbéa e = (p,q) € E(G) egy
rogzitett él. Ekkor legyen

ni(e,P) =#{P €P : (p,q) € P és x(t(P)) = i},
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ahol a t(P) ujra az illeté ut végpontjat jeloli, a (p,q) € P jelolés pedig azt
jelenti, hogy az it a p pontban lép be az élbe, és a ¢ pontban hagyja el az
élt. Ezutan szinvalto utak egy rendszerét dtpakoldsnak mondjuk, ha minden
i # j szinpérra és minden (p, q) élre teljesiil:

ni((p,q), P) +n;((q,p), P) < w(p,q;j,19).

Jelolje p(G, x) a lehetséges titpakoldasok maximélis, multiplicitasos elemszamét.
Ekkor

1.7. Tétel ([10] Theorem 1). Legyen G tetszdleges, hurokél mentes grdf az
N termindl halmazzal és a x parcidlis szinezéssel. Legyen W egy (szinfiiggd)
sulyfigguény a grafon. Ekkor teljestl:

(G, x) > p(G, ).

Teljesiil tovabba a kovetkezd minimax tétel is (a sulyfliggvény itt kevéshé
altalanos):

1.8. Tétel ([10] Theorem 2). Tetszdleges T' fara és tetszdleges szinfiiggetlen
w : BE(T) — N sulyfiggvényre minden x : L(T) — C levélszinezés esetén
teljestil

UG, x) = p(G, x)-

A bizonyitas itt is az utpakolas polinom idében torténd, rekurzive megkon-
strudlasaval torténik.

A cikk (hasonléan a [1] cikkhez) tartalmazza a feladat egy, a linedris
programozas nyelvén megfogalmazott variansat, amely jelentosen kiilonbozik
a multiway cut szokasos LP megfogalmazasaitol.

Erdemes megjegyezni, hogy bar altalanos sulyfiiggvény esetén is van po-
linomidlis algoritmus egy optimélis multiway cut megkeresésére, de itt, el-
lentétben a korabbi esetekkel, mar nem tudtuk leirni az 0sszes optimalis mul-
tiway cut szerkezetét. Tovabba az el6z6 minimax tétel ebben az altalanossag-
ban mér is nem teljesiil: ezzel a kérdéssel a Székely Laszléval kozos [2] cikkben
foglalkoztunk. A cikk egy parcialis szinezés olyan kiterjesztéseire ajanl mini-
max eredményt, ahol a szinezés rendelkezik egy rekurzivnak nevezett specialis
tulajdonsaggal.

Megjegyezziik, hogy mint azt Frank Andras kimutatta (lasd [13]), a fa-
struktira igen hangsulyos szerepet jatszik a minimax tétel érvényességében.
Mar harom szin mellett is lehet taldlni olyan "majdnem kormentes” grafot,

14



1. abra. Ellenpélda a 1.4 Tételre S-sel nem lefedett kort tartalmazé graf
esetén (S ={A,B,C}, s =8,Us=71)

\/

amelyre mar nem teljestil a minimax tétel. (Lasd az 1. &brat!) Azt is
érdemes megjegyezni, hogy Székely Laszloval kozosen taldltunk egy olyan
”jobb” alsé becslést a multiway cut problémara, amely sohasem rosszabb az
eddig ismertetetteknél, és amely példaul a Frank féle ellenpélddban éppen
kell6 méretii utpakolashoz vezet. Azonban még nem sikeriilt meghatarozni
olyan, az elozéeknél tagabb grafosztalyt, ahol az 4j alsé becslés mindeniitt
egyenloséggel teljesiilne.
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2. Az evolucids fak sztochasztikus elmélete

Ebben a fejezetben olyan problémakat targyalok, amelyek ugyan tisztdan ma-
tematikai jellegliek, és amelyek nagy apparatust mozgatnak meg, azonban
eredetiik egyértelmiien a biolégidhoz kdthets. A problémak hattere egy széles
korben elfogadott bioldogiai modell, amely szerint az élovilag fejlodése, az 1j
fajok kialakulasa véletlen eseményeken alapul. A un. Kimura modell szamba
veszi ezen véletlen mutaciok torvényszertiségeit, de nem foglalkozik azzal a
kérdéssel, hogy a keletkezett egyedet mi tesz képessé a tulélésre, azaz mikor
véalhat egy 1j faj 6sévé. A modell helyességének eldontése nélkiil (ez a kérdés
egy matematikus szdmara amuigy is tdmadhatatlan) le kell szogezni, hogy a
modellt vilagszerte szaz és szaz kutatdcsoport tette vizsgdlatainak alapjava.

A fejezet két alapvetOen kiilonbozé megkozelitést targyal, ezek taldlhatok
az els6 két szakaszban. Az egyik egy un. karakter alapi modszer, amely
minden rendelkezésre all6 informaciét parhuzamosan hasznél, ezért nagy biz-
tonsaggal tudja a keresett evolucids fat felépiteni, de eléggé lassti. A modszer
lényegében két valdszintiség eloszlas kozott fennallé Hadamard, vagy altala-
nosabban Fourier transzformacios kapcsolatot hasznél fel. Ennek megfel6en
a neve Hadamard konjugdacio, esetleg Fourier pdarok modszere, de spektral
elméletnek is nevezik. Hivatkozott cikkeim koziil a [3, 4, 5, 6, 8, 11] dolgoza-
tok foglalkoznak az emlitett modszerrel. Mivel a szakaszhoz tartozé cikkek
lényegi részét képezték Székely Laszlo disszertaciéjanak, amelyet a ” Matema-
tikai Tudomanyok Doktora” cimért nyuijtott be, ezért itt csak utalas szertien
térek ki a témaédra, foleg arra koncentrdlva, milyen utéélete van ezeknek a
dolgozatoknak.

A masodik megkozelités un. quartet alapu: ilyenkor egy evolicios fa is-
mert levél-négyeseibdl torténik az evoliucids folyamat rekonstrukcidja. Ezt a
modszercsaladot altaldban a tavolsdg alapu eljarasok kozé helyezik (bar ez
nem torvényszerli): a négy levél altal meghatarozott részfa rekonstrukciéja
a levelek paronkénti (mért, szamitott, becsiilt) tavolsdgan alapul. A [12,
14, 15, 16, 17, 18] cikkek megalkottak az un. ”Short quartet médszereket”,
kozben megteremtették a kiilonféle faépitd algoritmusok analiziséhez meg-
felelo kornyezetet. Elmondhatjuk, hogy 1j elméleti alapokra helyeztiik a
tavolsag alapa faépito algoritmusokat, jelentés attorést érve el vele gy az
algoritmusok sebességében, mint megbizhatdosdagaban.

A két szakasz cikkeinek utééletét legjobban a szakirodalomra gyakorolt
hatasukkal lehet jellemezni. Ezt dontden a szakaszok végére hagyom. Itt
csak annyit emlitek meg, hogy a Hadamard konjugécié alapi modszer mar
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megjelenése utan harom évvel részletes ismertetésre keriilt egy biolégusok
alapképzését megcélzé tankonyvben ([SwoOls96]). Megjegyzem tovabba,
hogy az evolicids fak elméletének két, jelenleg alapvetonek szamitd kézikony-
ve ([Fel03, SemSte03]) az itt felsoroltak koziil jénéhany cikket részleteiben
is ismertet. Azt is érdemes megemliteni, hogy a kifejlesztett mddszerek
tobb kommerszidlis illetve szabadon hozzaférheté programcsomagban is meg-
talalhatok: ilyenek példaul a SplitsTree4, a SPECTRUM, illetve a PAUP és
Molphy programcsomagok.

A fejezet utolsé szakasza ugyan nem evolucids fak egy klasszikus értelem-
ben vett rekonstrukciés eljarasat targyalja, azonban mégis itt a helye. Egy
2004-es cikk alapjan ([21]) egy, a supertree médszerek kozé (is) besorolhatd
eljarast ismertetek fak rekonstrukeciéjarol.

2.1. Hadamard konjugacio

Az 1980-as évek elején M. Kimura japan biologus egy 3-paraméteres, vélet-
lenen alapulé mutaciés modellt dolgozott ki a fajok valtozékonysaganak meg-
magyarazasara. Méra ez valt a biolégusok altal legelfogadottabb modellé. Az
az alapfelvetése, hogy az él6lények atorokité anyagaban a valtozasok teljesen
véletlenszertien, egyméstol nem befolyasolva zajlanak le.

Ebben a modellben az atorokité anyagot egy négyelemt abécé A, G, T, C
betiib6l allé hosszi linedris szdlként (avagy szd-ként) célszerti elképzelni. A
betiik négy nuklein sav bazist jelolnek, ezek a Adenine és Guanine (gyijt&szo-
val Purine, ezek a két-gytirtis bazisok) illetve a Thymine és Cytosine (gytijto-
szoval Pyrimidine, ezek az egy-gylris bazisok). A szédlaknak egyértelmii
iranya van, amely mentén torténik a tarolt informacié feldolgozasa. Végiil
alapesetben az atorokito anyag két, egymashoz képest complementary, anti-
parallel szalbdl all. A fogalmak azt jelentik, hogy a szalak parhuzamosak de
ellentétes iranyuiak, tovabba minden egyes, azonos pozicidban levo bazispar
kozott kovalens foszfor kotés keletkezik. A kotések mindig az A—T és G—C
parok kozott jonnek létre, azaz az egyik szalon taldlhatd bazis egyértelmiien
meghatarozza a masik szdlon vele szemben taldlhaté bazist. FErre utal a
complementary kifejezés.

A biolégusok az éppen vizsgélt fajok fejlodéstorténetét a kvetkezd médon
szemléltetik: Ha ismernénk a fajfejlodést leird evolucids fat, akkor a vizsgalt
fajok kozos 6se lenne a fa gyokere, mig a vizsgalt fajokat a levelek szemlélte-
tik, végiil a leszdrmazds folyamén kialakult (azonban esetleg méar ki is halt)
"kozbiils¢” fajokat a belsd, 3-foku elagazasi pontok jelolik. Ezutdn minden
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egyes fajt egy-egy k hosszu sorozattal jellemezhetiink, amelynek elemei az
A, G, C,T betik koziil kertilnek ki. A fajok véltozasai pedig gy jelentkez-
nek, hogy az 6s és a kozvetlen leszarmazott fajokat (egy meghatarozott élen
fekvé csicsokat) leird k hosszi szavak bizonyos koordinatdkban kiilonbéznek.
(Altaléban, minél kozelebbi rokon két faj, annal tobb kozos elem van az 6ket
leiré k-szavakban.)

Most a Kimura modell szerint az élek mentén lejatszodo betii-valtozasok
egymastodl fiiggetlentil, véletlenszertien torténnek. Mivel a fejlédés a kozos
6stél a ma él6 fajok irdnyaban torténik, ezért a véltozasoknak egyértelmi
irdnya van, azonban a Kimura modell szerint egy valtozasnak és az ellentett
valtozasnak ugyanannyi a valdszintisége. A modell tovabbi feltevése, hogy
bar az egyes éleken a valtozasok valdszintiségei eltéréek lehetnek, azonban az
ezt leiré matrix szerkezete allandd: a matrix sorait az 6st leird vektor adott
pozicidjaban talalhaté betiik indexelik, mig az oszlopokat az utdéd megfeleld
betiii. A matrix bejegyzései pedig azt a valdsziniiséget adjik meg, amivel
a jelzett valtozas bekovetkezhet. Az adott méatrix ugyan fiigghet az éppen
jellemzett €élto6l, de attél nem, hogy ezen beliil melyik pozicibhoz tartozik.
Tovabba minden lehetséges matrixban az egyes sorok egymas permutacioi:
A lehetséges véltozasok (nincs véltozds, vagy a harom maésik betii egyike jon
létre) tartozé valdsziniiségek négy biokémiai valtozéast frnak le, amelyek a
kiindulé betttdl fiiggetlentil azonos valészintiséggel torténhetnek meg.

Mindezen tulajdonsagok alapjan vezethette be Evans és Speed azt a
modellt ([EvaSpe93]), ahol az egyes éleken torténé valtozasokat ugyancsak
az A,G,C, T betiikkel lehet leirni: a karakter kezdeti értéke, az élen hatd
valtozas, végil a karakter megvaltozott értéke a betlikon megadott négy
elemii Klein csoport hatasaként értelmezhet6. Ez azt jelenti, hogyha ismerjiik
az Ost és a leszarmazottat leird k-vektorokat, akkor meg tudjuk mondani,
hogy az egyes karakterekben milyen tipusu valtozasok torténtek. Masfeldl
ha tudjuk az 0s k-vektorat, illetve az élen hatd valtozasok vektorat, akkor
ki tudjuk szamitani az utédot jellemzé karaktereket. Erdekes megjegyezni,
hogy a Klein csoport definidlta valtozdsoknak biologiai leirdsat is meg lehet
adni.

Ebben a modellben mar kénnyen megértheté a véletlen valtozasok ge-
neralta "fejlodés”. Induljunk ki a fa topolégiajabdl, és a gyokérben taldlhatd
fajt jellemzo k-vektorbdl. FEzutan a véletlen fejlodés tgy torténik, hogy
a gyokértdl elindulva és a levelek felé kozeledve minden élre megadjuk az
ott érvényes atmenet valdszintiségek matrixat, tovabba ennek alapjan az
élen minden karakterben véletleniil valasztunk egy atmenet tipust. FEn-
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nek segitségével ki tudjuk szamolni az utéd k-vektorat, tovabba, hogy mi
a valészintisége annak, hogy az 0sbol pont ez az utdéd jon létre. A teljes
kiértékelés elvégzése utan most meg tudjuk hatarozni, hogy mi a valdszini-
sége annak, hogy az adott topologia, gyokér szinezés és atmenet matrixok
esetén éppen az adott levél konfiguracié jon létre.

[lyenkor az éleken illetve a leveleken taldlhaté szinelosztasok kozott — bi-
zonyos ésszer(i megszoritasok mellett (amelyek a gyakorlati problémak esetén
altalaban automaikusan teljesiilnek) — egy Fourier inverz parkapcsolat van,
amely miatt valamelyik elosztasbdl pontosan meghatarozhaté a masik elosz-
las. Ha az atmenet valdoszintiségek csak attdl fliggnek, hogy purin-pyrimidin
atmenet vagy megmaradas torténik, akkor a Fourier kapcsolat egy Hadamard
konjugéciés kapcsolatta egyszertisodik.

Ezek utan a leveleket 1étrehozo lehetséges fak kozil tgy lehet valasztani,
hogy olyan fat keresiink (a fahoz hozza tartozik a topoldgidja tovabbé az
el6bb emlitett valdsziniiség elosztasok az éleken), amely legjobban appro-
ximalja a levelekben ténylegesen megfigyelheto szinelosztast. Ezen a gondol-
atmeneten alapul az evoliciés fak un. spektrdl elmélete. A médszer 6sét (két
szinre), Hendy és Penny dolgozta ki ([HenPen93] - ezt a mddszert hivtdk
eredetileg az Hadamard konjugéltak médszerének).

A médszer négy szinre torténo altalanositasa a Székely Laszld, Mike Steel
és David Penny harmassal k6z0s [5] cikkben kezdtiik meg, illetve a Mike Steel-
lel, Székely Laszléval és Mike Hendyvel kozos [3] cikkben fejeztiik be. Szintén
ebben a cikkben foglalkoztunk avval a kérdéssel, hogy a gyakorlati életben,
ahol a leveleken megfigyelhet6 eloszlasok csak bizonyos hibakkal észlelhetok,
hogyan lehet egy megfelelé approximacids eljarast kifejleszteni. A kapott
modszert closest tree method-nak nevezik. A spectral mddszert a Klein cso-
port helyett tetszoleges véges Abel csoportra a Székely Laszloval és Mike
Steellel kozos [6] cikkben altaldnositottuk. Ennek kozvetlen haszna ott le-
het, ha a fajokat példaul nem DNS-kkel, hanem protein savaikkal (amibdl
az emberben példaul 20 van) azonositjuk. A médszernek egyébként filozoéfiai
értelemben nagy elonye, hogy képes bizonyos esetekben kimutatni, ha az ada-
tokra teljesen "rossz” modellt kivanunk rahizni, azaz popperi értelemben
falszifikalhaté.

A médszert oktaté céli {rasok ismertették, mint példaul a [SwoOls96]
tankonyv vagy a [Mor96] survey cikk. Felhasznéltdk konkrét bioldgiai kisér-
letek / megfigyelések kiértékelésére is (példaul a [PatWal00] cikk). Mint
kideriilt, hasonlé mddszerek ismertek voltak a quantummez elméletben (ldsd
példéul, egyebek kozott, a [JarBas01] vagy [AlIRho06]). Erdekes az is, hogy
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a modszer az egyike volt a legelsOknek, amelyet evolicios fakrdél evolicios
hél6zatokra dltalanositottak ([Bry05]).

Az evolicios fak rekonstrukciéjahoz mar 1987-t6]1 kezdve alkalmaztak
un. phylogenetikus invaridnsok-at. Ezek olyan fliggvények, amelyeket ha
kiértékeliink a levelekben 1étez6 ”idedlis” (azaz hibamentes) adatokon, ak-
kor az érték csak azon mulik, hogy éppen milyen topolégiaju faval kotjiik
ossze a leveleket. Invariansok egy rendszere akkor teljes, ha azonositani tud-
ja a 7valédi fat”: a valédi fAn minden invaridns eltiinik (a fiiggvény értke
0), amig minden egyéb fan legaldbb egy invaridns nem-zérus. A nem teljes
rendszerek is alkalmassak bizonyos fak hibdssdgdnak a kimutatdsara. (Lésd
példaul [Lak87] vagy [NguSpe92].)

A spektral analizis modszerének alapjan a M. A. Steel - L.A. Székely - P.L.
Erdés - P. Waddell szerzénégyes [8] cikke invaridnsok (polinomok) egy teljes
rendszerét hatarozta meg. Ezt gy lehet alkalmazni a fak rekonstrukciéjara,
hogy a levelek egy lehetséges 2-particidjara (amely a reménybeli fa egy élének
elhagydsaval keletkezhetett) kiértékeljiik az Osszes invaridanst. Ha mindegyik
értéke 0, akkor egy létezo élt talaltunk meg. Egyébként az él nem eleme
a fanak. Az pedig kozismert, hogyha egy bindris fandl ismerjik az egyes
élek elhagyasaval keletkezd levél 2-particidkat, akkor a fa konnyen és gyorsan
rekonstrualhato.

A mdédszert, egyéb invaridns médszerek vizsgdlatan kiviil (1dsd példaul a
[San93] cikket), konkrét bioldgiai szitudcidk elemzéséhez hasznaltdk, példaul
a szarvasbogarak evolucigjanak soran a szarvak nagysdgéanak a hatasat ele-
mezték vele ([EmIMar05]). Sok cikk DNS sorozatok elemzésén kiviil génsoro-
zatok elemzésére is haszndlja (pld. [AllRho04]), illetve ma mdar az algebrai
geometria médszereit is alkalmazzdk vele kapcsolatban ([EriRan04]).

2.2. A Short Quartet modszerek

Ebben a szakaszban egy egészen mas megkozelitést irunk le evoluciés fak
rekonstrukciéjara. Jelolje B(n) az n cimkézett levéllel amde cimkézetlen
eldgazasi pontokkal bird, gyokértelen fak halmazat. (Ezeket féligcimkézett
faknak, avagy X-fdknak (angolul X-treenek) is nevezik. Azért haszndlom a
szakaszban az X-fa kifejezést, hogy érzékeltessem a szélesebb kontexust.)
Legyen T egy B(n)-beli X-fa és legyen S a levelek egy részhalmaza. Ek-
kor jelolje Tjg az S altal generdlt részfat, mig jelolje Tig a generdlt binaris
(topoldgikus) részfat (azaz minden kettd fokd belsd pontot a két szomszédos
éllel egyiitt egyetlen élbe huzunk ossze). Ha adott az S levélhalmazon egy
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T-vel jelolt X-fa, akkor a fa egy élének a torlése egy 2-particiot hoz létre a
leveleken, amit a tovabbiakban split-nek neveziink. Ha mindkét osztaly le-
galabb két levelet tartalmaz, akkor a split nem-trividlis. Buneman régi tétele,
hogy barmely féligcimkézett fat egyértelmiien meghataroznak nem-trivialis
splitjei ([BunT71]).

Vildgos, hogy egy négy-levelii féligeimkézett fanak (ezeket quartet-nek ne-
vezziik) a harom potencidlis nem-trivialis splitjéb6l pontosan egy teljesiilhet
egy fdban: Legyen g = {a,b,c,d} egy T-beli levél-négyes. Azt mondjuk,

2. dbra. Splitek: Négy pont hérom lehetséges splitje: ablcd, ac|bd, ad|bc.
Ebbdl egy érvényes.

hogy a t, = ablcd egy érvényes (angolul wvalid) quartet split, ha ez a ge-
neralt T[; bindris részfanak a valédi, a faban szerepl6 splitje. Jelolje Q(T) =

{tq 1q € ([Z])} a T X-fa oOsszes érvényes quartet splitjét. A jol ismert, a
pszichologus Colonius és Schulze nevéhez fiz6dé klasszikus eredmény szerint
béarmely T fara a Q(T) halmaz egyértelmiilen meghatdrozza a T-t. Ez az
eljards, mint az konnyen lathato, polinomialis idében végrehajthaté.

Erre a tényre igen sokféle evolticids fa rekonstrukcios médszert alapoztak
(vagy prébéltak meg alapozni). Elvben egy ilyen gy miikddhetne, hogy a
moédszer elsé fazisaban valamilyen médon minden quartetre meghatarozzak
az érvényes splitet, majd a mésodik fazisban ezekbdl felépitik a fét. (Ponto-
sabban szélva ilyenkor a fa topoldgiajat lehet megkapni, de egy adott fa egy
élének hosszat — azaz a valtozas lezajlasahoz elegendo id6t, amely forditottan
aranyos a valtozas valdsziniiségével — mar nem nehéz viszonylag gyorsan meg-
hatérozni.)

Az ezen az elképzelésen alapuld egyszertt modszerek a gyakorlatban azo-
ban meglehetosen rosszul teljesitenek. Ennek az az oka, hogy szinte sohasem
sikeriil minden quartetre meghatarozni az érvényes spliteket, az eredmények
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altalaban ellentmonddak. Az eljarasok ennek a helyzetnek a lekiizdésére sok-
féle stratégiat alkalmaznak, amelyek azon alapulnak, hogy valamilyen médon
eldontik, hogy a kiszamitott splitek koziil melyiket ismerik el érvényesnek,
majd ezekbol kisérlik meg helyredllitani a fat. Ezen "klasszikus” moddsze-
rek kozil talan a K. Strimmer és A. von Haeseler nevéhez f(iz6d6 ”quar-
tet puzzling” eljardst hasznéljak a legtobbet ([StrHae96]). Tébb hasonld
modszert fejlesztettek ki, példaul Kearnay és kollégainak ”quartet cleaning”
modszerét és annak utddait ([BerKer99]), vagy a Kanaddban dolgozé magyar
Cstirés Miklds nevéhez fliz6d6 "harmonic greedy triplets” mddszert (lasd a
[CsuKao99] cikket).

Egyébként annak a meghatarozasa, hogy quartet splitek egy rendszeréhez
létezik-e X-fa, amelyben ezek érvényes splitek lennének, NP-nehéz feladat.
(M. Steel eredménye.)

A hibéasan rekonstrualt quartetek 1éte tehat erésen megneheziti a quartet
modszerek alkalmazasat. Azonban a rosszul rekonstrudlt quartet splitek léte
sajnos nem kellemetlen véletlen, hanem majdnem toérvényszert hiba. Mint
azt nem tul bonyolult szamitasokkal ki lehet mutatni, a fak topoldgidjara
és az eloszlasokra tett nagyon is ésszeri feltételek kozott a gyakorlati al-
kalmazasokban ilyen hibak majdnem biztosan el6fordulnak. A jelenségnek
az az oka, hogyha a quartet altal meghatarozott részfaban (relative) hosszu
utak vannak, akkor az it két végén levé két levél szine (karakter éllapota)
lényegében fiiggetlen egymastdl (akarhany mutécié lehet kozottiik).

A kutatdécsoportunk altal bevezetett ”short quartet” moédszereknek éppen
az a lényege, hogy a fat viszonylag rovid quartetjeibol rekonstrualjuk, tovab-
b4, hogy mar a quartetek rekonstrualasa elo6tt megmondjuk, melyik quartetek
kertilnek felhasznalasra. A csoport tagjai: Mike Steel, Székely Laszl6, Tandy
Warnow és jémagam.

El6szor a kovetkezo problémat kell megoldanunk: tegyiik fel, hogy adva
van érvényes quartet splitek egy (nem teljes) rendszere. A kérdés az, hogy
milyen médon és mikor lehet a rendszerbol meghatdrozni a keresett T fat.
(Vegylik észre, ez egy determinisztikus kérdés, a quartetek rekonstrukcidjanak
esetleges hibai itt nem szdmitanak.)

Erre tobbféle modszer is ismeretes. Egy lehetséges mdd az, hogy a ren-
delkezésre allo érvényes quartet splitek felhasznaldsaval, az eredeti adatok
tovabbi vizsgalata nélkiil, meghatarozzuk a tobbi splitet. Konnyt példaul
belatni,

ha ablcd érvényes quartet split T-ben, (3)
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akkor ba|cd és cd|ab hasonléan érvényes.

A harom splitet egyébként megegyezének gondoljuk. Vilagos, ha (3) teljesiil,
akkor ac|bd és ad|bc splitek nem érvényes splitjei a T fanak, ezek ilyenkor
ellentmondanak (3)-nak.

Az el6z6hoz hasonld kdvetkeztetési szabalyokat (inference rule) mar eléggé
sokat vizsgaltdk. Hasonloan konnyen megértheto a kovetkezo kovetkeztetési
szabdalyok érvényessége:

ha ab|cd és ac|de érvényes quartet splitek T-ben,

akkor szintén érvényesek az ab|ce, ab|de, és be|de splitek; (4)
tovabba

ha ab|cd és ab|ce érvényes quartet split T-ben, (5)

akkor ab|de is érvényes.

Ezek a szabdlyok diadikus-ak, hiszen két érvényes splitbol gyartunk egy har-
madikat. (Ezeket a szabalyokat M.C.H. Dekker vezette be az irodalomba.)
Azt mondjuk, hogy érvényes quartet splitek egy rendszere szemi-diadikusan
meghatérozza a T fat, ha a (3) és (4) szabalyok rekurziv alkalmazasaval
elééllithaté a fa minden érvényes quartet splitje (és persze csak azok). Ha
még a (5) szabdlyt is felhasznaljuk akkor diadikus el6éllitasrél beszéliink.
Maga az eljards, amikor rekurzivan kiszamitjuk az j quartet spliteket az
eredeti quartet halmaz (szemi-)diadikus lezdrdsa.

A [12] preprint egyik f6 eredménye a kovetkezd: jeldlje Lr(q) a g nevii
quartet generalta 7T}, (nem feltétleniil bindris) részfaban a leghosszabb, a Ts
faban egy élbe 0sszehtizddo ut élszamat. Ekkor teljestil:

2.1. Tétel ([12]). Legyen T € B(n) legaldbb négy levéllel. Jelolje D(T)
az 0szszes olyan quartet halmazdt, amelyekre Lr(q) < 18logn. Ekkor D(T)
szemi-diadikus lezdrdsa a levélszdm fligguényében polinomidlis iddben elddllitja
a fdt.

Ez egy determinisztikus eredmény, amely a féligeimkézett fak definiciéjan
kivil semmit sem hasznal fel, tehat fliggetlen attél, hogy az evolicidénak
milyen modelljét alkalmazzuk. Azonban lehet6vé tette az irodalomban meg-
talalhaté elsé olyan evolicios fa rekonstrukcids algoritmus megszerkesztését,
amelynek teljes valdszintliségi analizise elvégzésre keriilt (mindez a purine-
pyrimidine parok cseréjére vonatkoz6 szimmetrikus, un. Cavander-Farris
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modellre tortént). Az analizis lényeges pontja annak meghatdrozasa, milyen
hosszi sorozatok elégségesek a levelek jellemzésére, hogy a rekonstrukcids
eljaras lényegében 1 valdszintiséggel hatarozza meg a keresett fat. Az algo-
ritmus elméleti jelentoségét az adja, hogy - véletleniil - ez az elégséges ka-
rakter szam nagyon kozel van a szintén ebben a cikkben meghatérozott in-
formacidelméletileg sziikséges minimalis hosszhoz, ami nagy n estén durvan
logn. Az is fontos, hogy a futdsidé is polinomiélis (bar nem tul j6 paramé-
terekkel).

Erdemes még megemliteni, hogy az informacidelméleti alsé korlaton kiviil
szintén meghatarozasra keriilt az egyik népszert rekonstrukcios eljaras, az
un. maximum compatibilty modszer altal megkovetelt minimalis sorozat
hossz, amely O(nlogn). Az is érdekes tovabbd, hogy a quartetek rekonst-
rukcidjara a modszer az el6z6 szakaszban emlitett invaridns moédszer egy
specialis valtozatat hasznalja, amely szintén tjszerti.

A Mike Stellel, Székely Laszloval és Tandy Warnowval k6zos 1997-es [14]
cikk a 2.1. Tételre talalt jelentos élesitést. Egy T evolicios faban egy ¢l
mélysége (depth) az éltél a lehetd legkozelebbi levélhez vezetd 1t élszama.
A fénak maganak a d(T) mélysége pedig a benne taldlhaté legnagyobb él
mélység. Példaul a ”sz6rés hernyd” mélysége (egy 1t lelogo élekkel) csak 1,
mig a legnagyobb lehetséges mélység is lényegében csak log, n (egy teljesen
kiegyenstilyozott bindris fanal).

2.2. Tétel ([14] Theorem 2). Legyen T egy X -fa n levéllel és legyen

o) ={ae () Lot <20y +1}

ahol csak olyan 4-leveli részfdkat vesziink figyelembe, amelyek kozépsd utja
egyetlen élbél all. Ekkor T meghatdrozhatd a D(T) szemi-diadikus lezdrtjabol.

Ugyanezek a szerzok 1997 és 1999 kozott egy sorozat cikket publikdltak a
Short Quartet algoritmus sémardl ([15, 16, 17, 18]). (A mddszereket egyiitte-
sen Short Quartet Mddszereknek (avagy SQM) nevezik.) Réviden Osszefog-
lalva a séma algoritmusai a kovetkezé modon épiilnek fel:

Short Quartet algoritmusok sémaja
(i) a feladat inputja quartetek egy rendszere,

(ii) amelyekbél valamilyen médszerrel kivélasztjuk a rovid quarteteket,
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(iii) rekonstrudljuk a kivélasztott rovid quartetek részfait,
(iv) a rekonstrualt quartetekbél helyreallitjuk a fat,

(v) az eljaras kozben felismerjiik, ha a kivalasztott kvartet rendszer alkal-
matlan a fa rekonstrudldséra (ellentmondé, vagy nem elégséges),

(vi) a (ii)-(v) 1épéseket addig ismételjiik, amig megkapjuk a fat, avagy felis-
merjik, hogy nem lehetséges a rekonstrukcio.

Erdemes itt kitérni a bioldgiai és matematikai szemléletmdd kiilonbozdségére:
a szerzok, Karl Popper szellemében, a séma erdsségének tekintették a fal-
szifikdlas képességét: a modszer felismerte, ha az input elégtelen vagy el-
lentmondé6. Ugyanakkor a biolégusok a rendszer hatranyanak tekintették,
hogy a séma nem minden esetben rekonstrudl egy fat. Az ellentmondast
napjainkban oldottak fel, méghozza kézenfekvé elvek szerint: E. Mossel és
munkatérsai ([DasHil06]) kidolgoztédk az SQM olyan véltozatait, amelyek a
lehet$ legnagyobb, még biztonsaggal rekonstrudlhaté erdét (azaz az ”igazi
fa” pontdiszjunkt részfiinak egy rendszerét) szolgéltatjdk.

A [16] cikk az altaldnos mddszer extended abstractjanak tekinthetd, rovid
osszefoglaldjat adja. A [15] cikk a mddszerek bioldgiai relevancigjat probalta
lefrni. Az elmélet szigoru kidolgozdsa a [17, 18] cikkekre maradt.

A [17] cikk el6szor is teljes altaldnossdgban bebizonyitja az informdcié-
elméleti also korlatot egy X-fa determinisztikus vagy véletlen médszeren ala-
pul6 rekonstrukcidjahoz sziikséges minimalis sorozat-hosszra.

Masodszor bebizonyitja a 2.2. Tétel egy még erésebb valtozatat. Ehhez
el6szor is bevezetjlik a reprezentativ quartetek fogalmat. Egy n leveli X-fa
mind az n — 3 bels6 éléhez hozzarendeliink pontosan egy reprezentativ quar-
tetet. Ez olyan quartet, amelynek kozépso utja megegyzik az éllel, a négy
hozzatartozé levelet pedig a kovetkez6 modon hatarozhatjuk meg. Elhagyva
az €élt, tovabba kozvetlen kornyezetét, négy darab gyokeres részfat kapunk.
Minden részfdban megkeressiik a gyokérhez (topolégiaban) legkozelebbi le-
velek koziil a legkisebb cimkét hordozot. Az igy meghatarozott négy levél
alkotja a keresett reprezentativ quartetet. (Megjegyzendd, hogy minden rep-
rezentativ quartet automatikusan révid.) Ezutén a cikk megmutatja, hogy:

2.3. Tétel ([17] Sec. 4.2). A reprezentativ quartetek diadikus lezdrtja egy-
értelmien meghatdrozza a fdt.
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(Mind lathaté, a megkivant quartetek szamanak csdkkenése maga utan vonja,
hogy (3), (4) és (5) kovetkeztetési szabédlyok mindegyikét fel kell hasznalni.)
A cikk ezutan leirja az SQM egyik megvalésitasat, a Dyadic Closure Tree
Construction algoritmust (roviditve DCTC algoritmust). Az algoritmus ered-
ményeit a kovetkez6é modon lehet 0sszegezni:

2.4. Tétel ([17] Theorem 6). Legyen a Q) quartet splitek eqy rendszere. Ek-
kor:

(i) Ha a DCTC meghatdroz egy fit Q-ra, és eqy mdsikat quartet splitek egy
bovebb rendszerére is, akkor a két fa megegyezik.

(ii) Ha a DCTC eredménye inkonzisztens, azaz ellentmondo quartet splitek
15 keletkeznek, akkor hasonlo torténik minden bovebb quartet rendszerre
18.

(iii) Ha a DCTC nem képes Q-bdl kiszamolni a fdt, akkor hasonlé a helyzet
barmely szikebb quartet rendszerre is.

(iv) Végil ha Q ellentmondds mentes és eleme minden reprezentativ quartet,
akkor a DCTC eldallitja o fat.

Megjegyzendd, hogy a cikk a DCTC algoritmusra egy O(n®) implementaciot
mutat be. Tovabba természetesen az is igaz, hogy a @) diadikus lezartja akkor
is eloallithatja a T-t, ha nem minden reprezentativ quartet szerepel benne.
A DCTC algoritmus-magra sokféle faépito algoritmust lehet alapitani.
Ezek mindegyikének quartetek egy-egy @ halmazat kell meghatarozni, amely
eléggé b6 ahhoz, hogy tartalmazza az 0sszes reprezentativ quartetet, de eléggé
szlik ahhoz, hogy ne legyen ellentmondé. Az Short Quartet Mddszer séma
alapfeltevése az, hogyha sikeriil a () meghatarozasakor csupa rovid quartet
felhasznalni, akkor az ellentmodasmentesség automatikusan teljestil.
Természetesen pontosan a rovid quartetek kivalasztasa a nehéz: az utak
hosszusaga egy topoldgikus mennyiség, a benne foglalt élek szaméval azonos.
A megfigyelt adatok azonban nem tartalmaznak erre direkt utaldst. Egy
lehetOség, ha a mért adatokra valamilyen tavolsdg fiiggvényt illesztiink, és
ennek alapjan probaljuk meg kivalasztani a topoldgikusan révid quartete-
ket. Nem szabad azonban elfelejteni, hogy ezek a mennyiségek matematikai
értelemben nem igazi tavolsagok: nem csak a haromszog-egyenlétlenséget
nem teljesitik, de gyakran nem is kommutativak. Egy masik probléma, hogy
egy rovid quartethez négy végpont sziikséges, és a kozépsod élhez illeszkedd
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mind négy utnak rovidnek kell lenni. Azonban mind a (Z) lehetséges négyesre
ellendrizni a hosszat nagyon lassu. Végiil itt érdemes megemliteni a modszer
azon elonyét, hogy a ()-ba felveendd egyes quartet splitek megéallapitasahoz
egyéb, akar kevert modszereket is lehet alkalmazni.

Egy lehetséges stratégiat a Diadic Closure Mddszer (DCM) ir le:  a
DCM egy tavolsag-becslés alapu eljarassal donti el, hogy mely quartete-
ket kivanja rekonstrudlni, magat a rekonstrukciét pedig a még Buneman
altal bevezetett un. four point médszerrel hajtja végre. Mint a cikk kovet-
kezo szakaszaban taldlhato, eléggé terjedelmes valdszintiségi analizis megmu-
tatja, a paraméterek egy meglehetdsen széles tartomanyaban a DCM nagy
valoszintiséggel helyesen rekonstrudlja a fat, és futasideje nem rosszabb, mint
O(n’logn). Ami azonban sokkal fontosabb, a médszer viszonylag rovid, az
elméleti hatarhoz kozeli hossziisdgu sorozatok ismeretét koveteli meg a helyes
rekonstrukciéhoz. Pontosabban:

2.5. Tétel ([17] Theorem 9). Tegyiik fel, hogy a Cavender-Farris modell
alatt k karakter fejlodik a T evolicios fa mentén, ahol minden e élen a
vadltozds valdsziniségére teljesil p(e) € [f,g], ahol f és g az n figgvényei.
Ekkor a DCM mddszer 1 — o(1) valdsziniséggel rekonstrudlja a T fdt, amen-
nyiben a karakterek szamdra teljesil a

c-logn

(1 — /1 = 2f)2(1 _ 29)4depth(T)+6

dsszefiiggés (ahol ¢ valamilyen régzitett konstans).

k >

(6)

Mint a tételbol lathatd, a sziikséges sorozat-hossz a fa mélységétol fligg, amig
mas ismert modszerek hatékonysaga altalaban a fa atmérdjének a fliggvénye.
Ezért a [17] dolgozat ezutén két gyakran tekintett valdsziniiségi eloszlas mel-
lett elemzi a fak mélységét és atmérojét. A két eloszlas: az egyenletes, ahol
minden fa egyforman valdszinti, és a Yule-Harding féle, amelynél a ”lombo-
sabb” (ezért id6ben hamarabb kifejl6dé) fak valdsziniisége nagyobb.

A kapott eredmények alapjan ezutdn a DCM mddszer hatékonysaga és
érzékenysége két masik, szintén (akkor) frissen fejlesztett és kozkedvelt mod-
szer paramétereivel keriil 6sszehasonlitasra. Az egyik a neighbor-joining algo-
ritmus (kozkeletli roviditéssel NJ), a mésik pedig az Agarwala és tarsai dltal
kifejlesztett 3-approximacios algoritmuson alapul, amely az L., normaban
legkozelebbi fat keresi. Ez utobbi alapjan Farach és Kannan fejlesztett ki
X-fa rekonstrukciés eljarast. Mindkettonek van worst-case analizise, amely
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alapjan moédszereikre a sziikséges sorozat hosszat a (6) formuldhoz hasonlé
egyetlotlenség becsli, de ahol a fa mélysége helyett az atméro szerpel. Ezért
a DCM sohasem rosszabb naluk, de dltalaban lényegesen elonyosebb.

Erdemes taldn megemliteni, hogy a neighbor-joining médszer konzisz-
tencidgjat bizonyité Atteson cikk ([Att99]) intenziven hasznilja a [18] cikk
eredményeit.

A cikksorozat utolsé cikke ([18]) elészor kiilonféle tavolsdg alapu fa-re-
konstrukciés algoritmusok hatékonysaganak osszehasonlitasara fejleszt ki egy
moédszert. Az ilyen modszerek altalaban szélva nem a levelekben 1évé ka-
rakter-sorozatokkal magukkal foglalkoznak, hanem el6szor meghatarozzak
az egyes levelek egymaéstol vald "tavolsagat”, amely a sorozatok "nem ha-
sonl6sagan” (dissimilarity) alapulnak: minél kevésbé hasonlé két sorozat,
annal nagyobb a tévolsdguk. (Itt megint hozza kell azonban tenni, hogy ezek
az értékek nem teljesitik a haromszog egyenlotlenséget. Ennek lekiizdésére
mar koran bevezettek bizonyos transzformaciokat, amely segitenek a problé-
mén. Azonban erre a tulajdonsédgra a targyalt algoritmusoknél nincs sziikség.)
Ez az elemzés sok elméleti munkédban kertil felhasznaldsra — példaul a mar
emlitett Atteson cikk ([Att99]).

A cikk f6 hozzajarulasa a quartet mdédszerek témajahoz egy tjonnan fej-
lesztett algoritmus. Ennek alapja a Witness-Antiwitness Tree Construction
modszer. A WATC alapja az edi-részfa fogalma. (A megnevezés az angol
edge-deletion-induced kifejezés roviditése, amit itt az egyszertiség kedvéért
haszndlok.) Ha egy fabdl elhagyunk egy élt (de a végpontjaikat nem), ak-
kor két gyokeres edi-részfa keletkezik. Két ilyen részfa iker (sibling), ha pont
diszjunktak és gyokereik tavolsaga a faban éppen 2 (azaz egy kettd élt tartal-
mazé Ut koti Ossze 6ket). Ha van kett6 iker edi-részfa, akkor gyokereiket egy
ketto hosszu tuttal 6sszekotve megint az eredeti fa egy edi-részfajat nyerjiik.
A WATC algoritmus a levelekbol kindulva egyre nagyobb és nagyobb edi-
részfakat konstrual meg. Egy adott pillanatban megkeres két edi-részfat,
amelyet egy nagyobb részfavé lehet egyesiteni egy 1ij gyokér bevezetésével (a
két eredeti gyokér ezen 1j pontnak lesznek a szomszédai).

Legyen adva egy T X-fa, tovabba quartet splitjeinek egy () rendszere.
Egy wv|wz quartet split tanisito (witness) a t; és ty részfa ikerségére, ha
u € t1, v € tg, tovabbd {w, z}N(t;Uty) = 0. Egy pq|rs quartet viszont az anti-
tanisitd (anti-witness) az ikerségiikre, ha p € t1, r € tq, és {q, s}N(t1Utz) = 0

Azt mondjuk, hogy

e a () rendelkezik a tanusito tulajdonsaggal a T' fara nézve, ha barmely
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két ¢, és ty iker edi-részfahoz (amennyiben a részfakon kiviil még le-
galabb két levél van T-ben) a (Q-ban van tanusité quartet split.

e a () rendelkezik az anti-taniusito tulajdonsaggal a T fara nézve, ha
amennyiben a ()-ban van tanusité quartet a nem-iker ¢ és t edi-részfak
ikerségére, akkor anti-tanusité quartet is talalhaté.

2.6. Tétel ([18], Subsetcions 4.4 — 4.6). Ha a reprezentativ quartetek Rr
halmaza része a Q-nak, akkor ) rendelkezik a T-re nézve a tanisito tula-
jdonsdggal. Tovdabbd, ha Ry C Q C Q(T) (azaz a reprezentativ quartetek
halmaza része az ellentmondds mentes Q-nak), tovabbd t; és to iker edi-
részfdk, akkor a Q-ban van legaldbb eqy tanisito quartet, de nincs egyetlen
anti-tanisito quartet sem.

Azt mondjuk tovabba, hogy quartet splitek egy @) halmaza T-kényszerits, ha
létezik egy olyan T° X-fa, amelyre

2. (@ rendelkezik anti-tanusito tulajdonsaggal a T-re nézve.

A WATC algoritmus ezek utén képes gyorsan (O(n? + |Q|log |Q|) idé alatt)
rekonstrudlni a T féligeimkézett fat ha a ) quartet halmaz T-kényszerito
([18]).

A cikkben ezutan a Witness-Antiwitness Method (WAM) mdédszer lefrasa
kovetkezik. ([18], Section 5.) Az algoritmus alapvet6 kérdése az, hogy ho-
gyan kell kivalasztani quartetek egy megfelel6 T-kényszerité () halmazat, ha
adott a levelek paronkénti tavolsdga. A moddszer tobbféle keresési stratégiat
vezet be, amelyek fliggnek nemcsak az elvart gyorsasagtél, hanem a rendel-
kezésre all6 sorozat-hosszaktol is.

Az algoritmus valdszintiségi elemzése azt mutatja, hogy a WAM sikere-
sen képes rekonstrualni a fat a DCM eljaraséval lényegében megegyez6 pa-
raméter tartomanyban, méghozza lényegesen gyorsabban, mint a DCM. Az
is 1ényeges, hogy ekozben a sziikséges sorozat-hossz csak kicsit mulja feliil a
DCM-nél sziikségeset.

Erdemes még azt is megjegyezni, hogy bar az elemzéseknél feltettiik, hogy
minden levél azonos hossziusagu karakter sorozattal van jellemezve, azonban
az algoritmusok futtatasahoz ez egyaltalan nem kotelezo. Ennek az az oka,
hogy a quartet splitek tavolsdg-adatok helyett egyéb informaciok alapjan is
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kiszamithatok: barmilyen méas modszer elfogadhaté a splitek szamitasara,
feltéve, hogy megbizhaté eredményeket adnak.

Ennek legfobb jelentésége az, hogy egészen nagy adathalmazok kezelésére
is alkalmasak lehetnek ezek a mddszerek. Ugyanis (mint mar emlitettiik) a
karakter sorozat alapi moddszerek nagy adathalmazon valé alkalmazhatdsa-
ganak elvi hatért szab, hogy nagyon divergens adatok (azaz nagyon sokféle
faj egyiittes eléforduldsa) esetén egyszertien nem létezhet elegendden hosszu,
kozos jellemzéket leird sorozat. (Primitiv példaként, ha példaul egyszerre
vizsgalunk gerinces és gerinctelen allatokat, akkor persze nem allnak ren-
delkezésre mindkét tipusra a gerinccel kapcsolatos karakterek.) Mindkét
modszeriink megkeriili a problémat, hiszen lehetséges, hogy eltérd négyesekre
eltér6 modszereket alkalmazunk a quartet splitek meghatarozasara. Ezekre
az esetekre azonban természetesen nem vonatkoznak az emlitett hatékonysag
vizsgalatok.

Az SQM médszerek eddig jelentés hatast mutattak az evolicios fak re-
konstrukciéjanak kutatasaban. Az egyik legelsé példa erre a Disk Covering
Method (Huson - Nettles - Parida - Warnow - Yooseph), [HusNet98]) kife-
jlesztése, amely mddszer az SQM alapjan egyéb ismert modszerek heuriszti-
kus felgyorsitasat igéri. Az E. Mossel vezette Berkeley-beli kutatécsoport egy
sorozat cikkben ([DasMos06, Mos03, Mos04, MosRoc05]) jelentdsen kiterjesz-
tette az SQM-ben kifejlesztett elveket. Sok egyéb elméleti cikk is visszanyilt
ezekhez az eredményekhez (példaul [ChoTul05]). Végiil harom Science cikk
is feldolgozza Gket ([DriAne04], [MosVig05, MosVig06]).

2.3. X-fak és sulyozott quartetek

A fejezet utolso szakaszdaban egy Andreas Dress-szel kozos eredményt ismer-
tetek ([21]).

Emlékeztetiil, a cimben szerepldé X -fa (X-tree) az evolicids fak egy masik
elnevezése, amit nem-biolégusok hasznalnak. Azért haszndlom itt én is ezt az
elnevezést, mert a modszer nem torodik avval, vajon a bemend adatok vala-
milyen biolégiai vizsgdlatbdl jottek-e. Az X-fa, értelemszeriien, egy (esetleg
gyOkeres) bindris fa, ahol az eldgazdsi pontok cimkézetlenek, mig a levelek
egy X halmazbdl kapnak egy-egy értelmiien cimkéket.

Legyen X egy véges halmaz és jelolje Sap(X) az X Osssszes négyeseibdl
megalkothato 2-2 splitet, azaz

Sp(X) = {{{ah{ear}]
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{a,b},{c,d} € ()2(), {a,b} N{c,d} = (Z)} ,

Jelolje Fy = Ey(T) a T fa Osszes bels6 élét, legyen tovabbd ¢ : B} — Ry
egy tetszoleges, de szigorian pozitiv, valos hossz-fiigguény. Minket az a W =
Wy, fliggvény érdekel, amelyet a kévetkezé médon definidlunk Sy (X)-en:

W Sop(X) = R abled — Y Ue) (7)
ecE(ab|cd)

ahol az Osszegzés a F(ab|cd) halmazra torténik, amely az 6sszes olyan e € F
élt tartalmazza, amely a T' faban szepardlja az a, b leveleket a ¢, d levelektol.
A W fiiggvény nyilvan a T'|{weqy Tészfa "kozéps6 részének” hosszat méri,
amennyiben a ablcd egy érvényes split, egyébként pedig nulla az értéke.

a ~—~—~ @ C

R

/ L(e) £(e") \\
b

Most konnyen ellenorizhetd, hogy egy teteszoleges X-fara és tetszoleges hossz-
fiiggvényre teljesiilnek a kovetkezo tulajdonsagok:

o~ d

(F1) Barmely X-beli, 4-elemii {a, b, ¢, d} részhalmaz esetén a W (ab|cd), W (ac|bd)
és W (ad|cb) szdmok koziil legaldbb kettd nulla.

(F2) Ha a T fa bindris, akkor barmely {a,b,c,d} € (f) négyes esetén
W (abled) + W (ac|bd) + W (ad|cb) > 0 (8)
teljestil.
(F3) Legyen a,b,c,d,x € X ahol [{a,b,c,z}| = |{b,c,d,x}| =4 és
W (ab|xzc), W (bz|cd) > 0,
akkor [{a,b,c,d,z}| =5 és

W (ab|zc) + W (bx|cd) = W (ablcd). (9)
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(F4) Bérmely 5-elemii X-beli {a,b, u, v, w} halmazra teljesiil

W (abluw) > min (W(ab\uv), W(ab\vw)). (10)

Ezek utan az idézett dolgozat {6 eredménye a kovetkezo:

2.7. Tétel ([21] Theorem 1.1). Egy
W . SQ|2(X) — RZO

leképezés akkor és csakis akkor dll elé eqy megfelelo T bindris fa, X levél
cimke halmaz és € hossz-figguény esetén Wy, formdban, amennyiben a W
fliggvény kielégiti az (F1) - (F4) feltételeket. Ilyenkor a W fiigguény illetve a
hossz-fiigguénnyel elldtott bindris fa kozotti megfelelés eqy kanonikus leképezés
erejéig eqyértelmai.

A tétel egyfelol a hossz-fiiggvények axiomatizaldsanak tekintheto: egy quar-
teteken megadott fliggvény akkor és csakis akkor lehet egy 1étezd X-fa hossz-
fiiggvénye, ha teljesiti a feltételeket. Masfel6l a tétel bizonyitasa egyben egy
fa rekonstrukcios eljarast is nyujt ezekbol az adatokbdl, amely a supertree
moédszerek kozé sorolhaté (lasd példaul [Wil04]).
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3. Szavak rekonstrukcidja - DNS kédok

A szavak kombinatorikdja (combinatorics on words) széles korben vizsgalt, jol
megalapozott teriilete a matematikanak. Gyokerei mélyen vannak a csoport-
illetve valoszintiségelméletben, és sok alkalmazast talalt az automatak mate-
matikai elméletében vagy a szamitégéptudomanyban. A vizsgalt objektum
altaldban egy véges I' = {1,2,...,k} dbécén értelmezett Osszes véges sz
(avagy sorozat) I'* Osszessége alkotta végtelen poset, amelyet a részsorozatnak
lenni relacié rendez el. (Ha vy...vy és wy...w, € T akkor v < w akkor és
csakis akkor teljesiil, ha k < ¢ és 3¢ : [k] — [f] szigorin monoton nové
leképezés, hogy Vi € [k] : v; = wy(;), ahol, a szokott médon, [k] = {1, ..., k}.)
A témardl j6 bevezet6 az M. Lothaire alnéven publikalé francia matematikus
csoport dltal megjelentetett [Lot97] konyv.

Ugyanezen objektumok fontos szerepet jatszanak a molekularis biologia
alapvet6é problémaiban is. Ilyenkor a vizsgalandé rendszert leiré bioldgiai
sorozatok a négy nukleotidat (A, C, G, T) tartalmazhatjdk. Ha DNS helyett
RNS sorozatokat vizsgdlunk, akkor a T (azaz tymine) helyett U (azaz ura-
cyl) szerepel a sorozatokban. A sorozatok (vagy szavak) vehetik betiiiket
az aminosavakbdl is (az emberi szervezetben ebbdl husz féle létezik, de az
Osszes él6lényben sem ismeretes 26-nal tobb). Tovébba tekinthetjiik a kro-
moszomékon eloéforduld géneket is, ahol a valédi biolégiai sorozatokban az
egyes gének egynél nagyobb multiplicitassal és kétféle iranyitassal is szerepel-
hetnek (emlékeztet6iil: a DNS szalaknak jol definidlt irdnya van). Ezeknél a
sorozatoknal kiilonféle véges optimalizalasi szamitasokat kell elvégezni. Fzek-
kel a feladatokkal a string (fizér) algoritmusok tudomanya foglalkozik. Ebbe
a témdaba taldn Dan Gusfield konyve ([Gus97]) a legjobb bevezeté.

A fejezet els6 szakaszaban egy tisztan szamitégéptudomanyi problémat
vizsgalok meg roviden egy A. Apostolicoval és M. Lewenstein-nel kozos cikk
alapjan ([25]). A kovetkezd szakaszokban egy véges dbécé feletti véges szd
poset tulajdonsagait tanulmanyozzuk: elébb a hagyomanyos kornyezetben,
majd a biolégidban hasznos ”forditott komplemens” rendezésben (a [20, 23,
26] dolgozatokat alapjdn). Végiil néhdny gondolatot irok le DNS kdédokkal
kapcsolatban ([22]).

3.1. Hibakat is megenged6 paraméteres parositasok

Ebben a szakaszban a string elmélet egyik alapveto problémajanak egy altala-
nositasat targyalom a [25] cikk alapjan. (A cikk immér kettd éve van nyomdai
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szakaszban, varhatéan 2006-ban megjelenik.) A kiilonféle string keresések a
szamitogépes eljarasok egyfajta alapvetd ”primitivjei”: olyan épitoelemek,
amelyeket a legkiilonfélébb eljarasokban hasznalnak. A szokdsos megfogal-
mazasandl adott egy (4ltaldban hosszi) sziveg (text), és egy (ltaldban sok-
kal rovidebb) minta (pattern), ahol a minta Osszes szovegbeli eléforduldsat
kell megtalalni. Ezt hivjak a minta pdrositdsdnak. Az alapprobléma sok-
féle valtozata ismert: megengedhetiink példaul korlatos szamu hibat a minta
el6fordulasaban, vagy torléseket illetve beszirasokat is. A paraméteres val-
tozatban a szoveg és a minta abécéje kiilonbozhet egymastol, és akkor gon-
doljuk, hogy egy adott poziciéban a minta megjelenik a szévegben, hogyha
létezik a két abécé kozott olyan injektiv leképezés, ami teljes aznossagot
garantal. A probléma a software engeneeringben, programok témoritésénél
meriilt fel.

A kézelité (hibdkat megengedd) paraméteres parositas a kovetkezd felada-
tot jelenti: legyen t = tits...t,, egy (hosszu) szoveg és legyen p = pips...pm
egy (r6videbb) minta, amelyek az (esetleg) eltéré X, és X, abécé folottiek.
Ezutan mindegyik ¢ szoveg-pozicidhoz keressiik azt a m; : X, — X, injekcidt,
amely maximalizdlja a megegyezések szamat a m;(p) leképzett minta és a
Litiyy..tizm—1 szovegdarab kozott (i = 1,2,..n —m + 1).

A probléma altaldnos esete konnyen megoldhaté O(nm(y/m + logn))
lépésben, ha a kérdést a szoveg minden poziciéjaban visszavezetjiik paros
grafok maximadlis sulyd parositasaira (ez mar 1974-ben is ismert volt).

A [25] cikk azt az esetet vizsgdlja, amikor mind a szoveg, mind a minta
futamokkal van kddolva: megadjuk az elsé poziciéban levo betlt megszakitas
nélkiili, (maximélis szdmu) egymést kovetd eléforduldsainak szédmat, majd
megadjuk a rdkovetkezo betlit, és annak a multiplicitasat, stb. Jelolje r; és
rp a szovegben illetve a mintdban jelenlevd futamok szamét.

A dolgozat egy O(r, x ;) id6 komplexitasu algoritmust fejleszt ki arra az
esetre, amikor legalabb az egyik abécé binaris. A futasidét terheli még egy
(szoveghosszban) linedris el6készit6 fazis, tovabbd egy logaritmikus szervezési
overhead.

3.2. Szavak rekonstrukcigja - klasszikus eset

A Sziklai Péterrel és David Torney-val k6zos [20] cikk a véges I' 4bécébél vett
szavak alkotta véges posetekkel foglalkozik: legyen P™ az dbécé betiiibdl
vett Osszes, legfeljebb n hosszu sorozat részben rendezett halmaza. A kapott
posetben a szavak hossza egy alkalmas rang fliggvényt hataroz meg, ezért a
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P poset szintezett. Jeldlje Pi(”) az i-edik szintet, amely az Osszes ¢ hosszu
részsorozatbdl all (0 <i < n).

Mig a végtelen valtozat napjainkban rengeteget vizsgalt objektum, ad-
dig a véges valtozat szinte semmilyen figyelmet sem kapott. Jelentdségét
tobbek kozott az adja, hogy a DNS vizsgédlatokban hasznalt torlés - beszurds
(delition-insertion) metrikan (avagy Levenshtein tévolsdgon) alapuld hiba-
javito kodok tanulmanyozasanak természetes kozege lehet. Ezen szavak kom-
binatérikajanak legfontosabb kutatdja maga Vladimir Levenshtein (példdul
[Lev92, LevOla, Lev0lb]). Egy masik fontos, korai eredmény P.J. Chase
nevéhez flizédik: 6 tanulmanyozta egy sorozat részsorozatai szamanak eloszla-
sat. Legyen S egy adott sorozat, jelolje S; az 1 hosszu részsorozatok halmazat,
még |S;| azok szamét.

Tétel. [P.J. Chase ([Cha76])] Az |Si|, (0 < i < n) szdmok egyszerrre érik
el maximumukat, méghozzd pontosan akkor, amikor az S szo az abécé egqy
ismétléses permutdcidja, azaz eqy (wy ... wg)...(wy... wg)wy ... w, formdji
sorozat, ahol ¢ =n (mod k) és wy ... wy a ' egy rdgzitett permutdcidja —
vagy pedig az el6zo sorozat forditottja.

A tovabbiakban jelolje By, a Chase Tételben leirt, maximalitast biztosité
elem altal generalt P(™-beli idealt, mint posetet.

3.2.1. Automorfizmusok

A By, posetet G. Burosch és tarsai sokat vizsgéaltak ([BurFra90, BurGro96]).
Az els6 cikk f6 eredményeként meghataroztak a k = 2 esetre kapott poset
automorfizmus csoportjat, amelyrol kideriilt, hogy az feltinden ”szegényes”.
A szerzok a By, posetet el6szor egy megfeleléen valasztott Boole héléba
agyaztak be és annak tulajdonsigait hasznaltak fel a bizonyitds soran. A
méasodik cikkben, hasonlé eszkozokkel, a kérdést az altalanos dbécé esetére
oldottak meg.

A [20] cikkben kidolgozott mddszer egyszer(i bizonyitast szolgdltat Bu-
roschék els cikkének eredményeire, mikozben lefrja a P™ poset automorfiz-
mus csoportjat is.

Jelolje Aut(P) a P poset automorfizmus csoportjat. Nyilvdnvald, hogy
a I' abécé barmely 7 permutéciéja indukélja a P™ egy o, automorfizmusét
a op(wiwy ... wy) = w(wy)w(ws) ... w(wy) jelolés mellett. Jelolje Symy az
Aut(P™) csoport o, automorfizmusok altal generalt részcsoportjit. Legyen
tovabba p azt a miveletet, amely barmely sorozatban megforditja az elemek
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sorrendjét (példaul p(abed) = deba). Ekkor p maga is automorfizmus, és
p~! = p. Jeldlje Zy a Aut(P™) csoport p éltal generdlt részcsoportjat. Azt
is konnyti latni, hogy p barmely masik automorfizmussal is felcserélhetd.

Az n = 2 esetben barmely (rendezetlen) {a,b} C I parra legyen o, az a
leképezés P?-n amely felcseréli ennek (és csak ennek) a két betiinek a sor-
rendjét, valahanyszor egyiitt jelentkeznek egy 2-sorozatban. Ilyen leképezés-
bél éppen (’;) van, barmely kiilonboz6 (rendezetlen) {a,b} és {c,d} parra
ezek az automorfizmusok kiilénboznek és felcserélhetok (hiszen més parokon
hatnak). Ezért ezek a o leképezések egyiitt az identitassal az Aut(P?) csoport

k
egy részcsoportjat képezik, amelyet 22(2)—\/61 jeloliink. A rész féeredményét

ezek utan gy lehet megfogalmazni, hogy a P™ csoport barmely automor-
k

fizmusat a Symy részcsoport és vagy a Z, vagy a 22(2 részcsoportok egy-egy
elemének szorzataként lehet eléallitani.

3.1. Tétel. (i) Han > 2, akkor Aut(P™) = Sym; @ Zy;
k
(ii) ha n = 2, akkor Aut(P™) = Symy ® ZQ(Q).

Burosch elsd (bindris) cikkének eredményei most konnyen kijonnek a 3.1.
Tétel bizonyitasara hasznalt gondolatmenetbol. A bizonyitas tovabbfejleszt-
het6 az éltaldnos dbécé esetére is: Ligeti Péter és Sziklai Péter ([LigSzi05])
ilyen médon 1j bizonyitédst taldlt a [BurGro96] cikk f6 tételre is.

3.2.2. Extremalis kombinatorikai tulajdonsagok

Most ratériink a P™ poset legalapvetébb kombinatorikai tulajdonségainak
a vizsgalatara. Emlékeztetoll: posetiink szintezett, és egy sorozat rangja
éppen a hossza, igy rang(P™) = n. Legyen P egy tetszbleges szintezett
poset 0 minimalis ranggal, és jelolje A az f-rangui elemek egy részhalmazat.
Ekkor A;A jeloli (0 < i < £ esetén) az i-edik drnyékdt az A-nak, mig V'A
jeloli (¢ < i <rang(P) esetén) a i-edik felsd drnyékat.

Elészor is vegyiik észre, hogy a P™ poset adott rangii elemeinek adott
(1-edik) arnyékai eltér6é szamossigiak lehetnek. Ugyanakkor, mint kideriilt,
barmely két azonos hossziisagi sorozat felsé j-arnyéka azonos elemszamai.

3.2. Tétel. Legyen & eqy rogzitett sorozat és legyen 7 olyan egész, hogy
€] < j < n. Ekkor azon j-sorozatok szdma, amelyek -t részsorozatként
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tartalmazzdk a kovetkezd:

N(j,& k) = jf (‘Z) (k—1)".

=0

Ezzel a tétellel egyébként 1j bizonyitast adtunk Levenshtein egy ismert ered-
ményére is ([Lev92]).

Mint tudjuk, barmely posetben a BLYM egyenlétlenséghdl kovetkezik a Sper-
ner tétel. A P részbenrendezett halmaz pedig kielégiti a BLYM tulaj-
donségot, valamint a BLYM konnyt kovetkezménye a normalizalt parositasi
tulajdonsdgnak (normalized matching property):

3.3. Tétel. A normalizdlt matching tulajdonsdg teljesil a P™ posetre, mert
az 1 tetszoleges egész értékére és az A C Pi(n) részhalmaz valamennyi vdlasztd-
sdra:

kIA| < [V A

Az éllitas egyébként a 3.2. Tétel kovetkezménye.

3.2.3. Szavak rekonstrukcigja linearis idében

Ebben a részben az Andreas Dressel kozos [23] cikk alapjan a véges I' abécé
feletti n-hosszu szavak részszavaibol linearis idoben torténé rekonstrukcidjat
targyalom.

Simon Imre 1975-ben valaszolta meg az altala és M. Schiitzenberger altal
még 1966 kortiil feltett kérdést: legyen I' egy véges dbécé és legyen w egy n-
betiit tartalmazo szé I felett. Tekintsiik a sz6 6sszes, legfeljebb m hosszisagu
részszavanak S(w, m) halmazat (tehat a részszavak frekvencidja nem ismert).
A kérdés az, hogy az S(w, m) mikor hatarozza meg egyértelmiien a w-t, azaz
milyen m-k mellett lehetséges, hogy két azonos hosszu, de eltéré w és w’
szavakra megegyeznek a megfeleld részszavakbol allé halmazok.

Tartalmazzon az abécé legalabb két betiit és legyen w = ababa...ba mig
w' = babab...ab. Ha mindkét sz6 2m + 1 hosszui, akkor kénnyen lathatd, hogy
koztiikk nem tesznek kiilonbséget a legfeljebb m hosszu részszavak halamzai.
Ugyanakkor teljestil:

Tétel. [Simon (1975)] A véges I' dbécé felett minden 2m + 1 hosszi szdt
egyértelmiien meghataroz legfeljebb m + 1 hosszi részszavainak halmaza.
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A tétel legszebb bizonyitdasa Jacques Sakarovitch és Simon Imre nevéhez
fliz6dik és a [Lot97] kényv 119-120. oldalan talalhat6. Itt érdemes meg-
jegyezni, ha a részszavak halmazan kiviil minden egyes részsz6 multiplicitdsat
is ismerjiik, akkor minden sz6t egyértelmiien meghatéroz a legfeljebb ~ 7/n
hosszu részszavainak kollekcidja.

Az ismert megkozelitések csupan egzisztencia bizonyitast adtak a Simon
tételére, azonban nem vizsgaltak a rekonstrukcidt ténylegesen végrehajto al-
goritmust. Ezt a munkdt a [23] cikkben végeztem el, Andreas Dress-szel
kozosen. Az eredmény kimondasahoz sziikség van néhany tovabbi jelolésre.
Jelolje ||w|| a (rész)sz6 hosszét, ||w||, pedig a széban szerepl6 a betiik szdma,
végiil legyen (;‘i) a w sz0 Osszes m-hosszu részszavanak a halmaza. A kovet-
kez6 tipusu kérdéseket tesziik fel:

(i) Mennyi ||w : m||, := max (Hv||a NS (;’i)) azaz az m-hosszi részszavak-
ban fellelhet6 a-betiik maximadlis szama?

(ii) Mennyi j,(w|m|k) := max (min (v Ha) v e (U),[v]l. > k:) azaz,
mi a maximuma a legalabb k darab a betiit tartalmazé m-hosszi rész-
szavakban szereplo legelso a betii pozicidjanak.

(iii) Mennyi jo(w|m|k) := min (max (v™a) :ve (Y),v]l.> k:) azaz mi
a minimuma a legalabb k darab a betiit tartalmazé m-hosszi részsza-
vakban szerepld legutolsd a betii poziciéjanak.

Ezutan a cikk f6 eredménye a kovetkezo:

3.4. Tétel ([23]). Adott a legaldbb kételemii I' dbécé, tovdbbd az n és m
természetes szamok, ahol 2m > n. Ekkor bdrmely w € T'™ sz6 rekon-
1

strudlhato |T'| darab (i)-es tipisi, tovabba |n(1 — m)J darab (ii)-es és ugya-

nannyi (iii)-as tipusi kérdéssel.

3.3. Szavak rekonstrukcidja - forditott komplemens eset

Ebben a szakaszban a [26] cikk eredményeit ismertetem. ElGszor réviden Gss-
zefoglalom a genetikai anyagrol sziikséges ismereteket. A bioldgiai atorokito
anyagot hordozé DNS sorozatok a négyelemii I' = { A, G, C, T'} 4bécé elemeit
hasznaljdk. A DNS tipikusan kettos spiral alakban talalhato, ahol a két szal
egymassal ellentétes iranyban fut (az atorokité anyagot feldolgozé enzimek
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felismerik a szdlak irdnyét), ahol az egyik szl A-ja mindig a maésik szél egy
T-jével van szemben, és hasonlé kapcsolat van a C' as G betiik kozott.

Ennek a helyzetnek a modellezéséhez legyen I' = {a, a; b, b} ahol a betiik
un. komplemens pdrokban vannak. Definialjuk a kovetkez6 miiveleteket: a =
a, b = b tovabba valamely w = wyws...w; szora legyen w = w; wy;_1 ... Wy,
amelyet az eredeti sz6 forditott (reverse) komplemensének neveziink. Koénnyen
lathat6, hogy (w) = w. Ezutdn minden sz6t azonositunk a forditott
komplemensével. Ezek utan a forditott komplemens rendezésben w < v
(azaz az els6é megeldzi a méasodikat) akkor és csakis akkor teljesiil, ha w
részszava v-nek vagy részszava v. Jelolje most S(m,w) mindazon legfeljebb
m hosszi v szavakat, amelyek megel6zik w-t (azaz vagy w vagy w szavak
részszavai). A Simon Imre tételének megfelel$ kérdés az, hogy milyen hosszii
w szavakat lehet biztosan rekonstrudlni az S(m,w) halmazbdl. (Itt is fel
lehet tenni a multiplicitdsos kérdést, de errél semmi sem ismert.)

Tekintsiik elészor a kovetkezd szavakat:

f/ — C—LQk+5 ak: és g/ — C—L2k:+571 ak:+1

ahol € € {0,1,2} és k > 1 tovabba (k,e) # (1,0). Ekkor mindkét sz6 hossza
3k + . Egyfelol a F' sz6 a?**¢ részszava teljesiti a? ¢ £ G’ Osszefiiggést.
Masfeldl konnyti ellenérizni, hogy

SQ2k+e—1,F)=5S02k+ec—-1,G").

)

A cikk egyik f6 eredménye a kovetkezo allitas:

3.5. Tétel ([26] Theorem 2.1). Minden legfeljebb 3m—1 hossziw € {a,a}*
sz0t egyértelmiien meghatdroz a hossza, tovabbd részszavainak S(2m,w) hal-
maza.

A kovetkezo példa azt illusztralja, hogyha szavunk legalabb kétféle komple-
mens parbdl tartalmaz betiiket, akkor kicsit "konnyebb” a rekonstrudlasa.
Tekintsiik a kovetkez6 szavakat:

F = —2k+e bbak és g — &2k+€—1 bbakﬂ,

ahol ¢ € {0,1,2} és k > 1 tovdbba (k,e) # (1,0). Mindkét szé hossza
3k + 2 + ¢. Egyfelol a F szé a?**¢ részszava teljesiti a?*t¢ £ G Osszefiiggést.
Masfelol konnyt ellenérizni, hogy

S2k+e—1,F) = S(2k +¢c—1,G).

A cikk masik f6 eredménye a kovetkezd allitas:
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3.6. Tétel ([26] Theorem 2.2). Minden legfeljebb 3m + 1 hosszi (m > 1)
szot, amely tartalmaz betdt mind az (a vagy a) mind a (b vagy b) pdrbol,
egyértelmiien meghatdroz a hossza, tovdbbd részszavainak S(2m,w) halmaza.

Az eredmények sorat a kovetkezo észrevétel teszi teljessé:

3.7. Tétel ([26] Theorem 3.5). A 3.6. Tétel akkor is igaz marad, ha a w
sz0 k > 2 kulonféle komplemens parbol tartalmaz betiket.

Taldn érdemes megjegyezni, hogy a bizonyitasokban a nehézséget mindeniitt
az jelenti, hogy bar sok (megel6z6) részszé van jelen, nem tudjuk réluk,
hogy a szénak, vagy annak forditott komplemensének a részszavai-e. Ez ad
magyarazatot arra is, miért kell ennyivel hosszabb részszavakat ismerniink
a forditott komplemens esetben. Azt is érdemes hozzatenni, hogy ebben az
esetben még nem ismeretes a rekonstrukcié komplexitasa.

3.4. DNS kédok

Az el6z6 szakaszban leirt részbenrendezés a szokasos Levenshtein (vagy de-
lition - insertition) metrikdhoz hasonld tavolsag fogalmat eredményez. Itt is
lehet ennek megfelelden hibajavité kédokat keresni. Ezeknek mar a Hu-
man Genome program idején nagy gyakorlati hasznunk volt, és megkon-
strudlasuk kézzel, heurisztikus alapon tortént. A sokszerzés [22] cikk ennek
a problémanak prébalt elméleti megalapozasa lenni. Fo célja a fogalmak és
feladatok rogzitése volt. A téma meglepden népszeri, a cikk megjelenése 6ta
eltelt szlik egy évben mar jonéhany hivatkozés tortént ra, a legutolsok egyike
[MilKas05].
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Abstract

We give a short and transparent bijective proof of the bichromatic binary tree theorem of Carter,
Hendy, Penny, Székely and Wormald on the number of bichromatic evolutionary trees. The proof
simplifies M.A. Steel’s proof.

Evolutionary trees are extensively studied structures in biostatistics. (These are
leaf-coloured binary trees. For details see, e.g., Felsenstein [4], Steel [10] or Carter
etal [1].)

In general, the mathematical problems arising here are hard (see [6]). One of the
very beginning steps is to count evolutionary trees. For two colours it was done by
Carter et al. [1]. Their work is based on the generating function method and on
a lengthy, computer-assisted application of the multivariate Lagrange inversion.
Recently Steel [10] gave a bijective proof for the bichromatic binary tree theorem
pioneering the application of Menger's theorem in enumerative theory. Unfortunate-
ly, his solution is rather involved. The goal of the present paper is to give a simple and
transparent bijective proof for the bichromatic binary tree theorem. Our work was
inspired by Steel’s work, actually we simplify some crucial steps in his proof and the
rest of the proof is identical to his one. The proof uses more graph theory than proofs
in enumerative theory usually do.
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Preliminaries and the bichromatic binary tree theorem

In this section we introduce some definitions and notations which may not be
common, and state the theorem of Carter et al.

In a tree, a vertex of degree 1 is a leaf. A tree is binary if every nonleaf vertex of the
tree has degree 3. A tree is rooteed binary if it has exactly one vertex of degree 2 and the
other nonleaf vertices have degree 3. The vertex of degree 2 is the root of the tree. By
definition, a singleton vertex is a binary tree and also a rooted binary tree. In this
degenerate tree above, the singleton vertex is a leaf, and in the rooted case it is a root
as well.

A (rooted) binary tree with labelled leaves is termed a (rooted) semilabelled
tree. Hereafter we identify the set of leaves and the set of labels and denote both
by L. A semilabelled rooted binary forest is a forest containing rooted semilabelled
binary trees, where the label sets of distinct trees are pairwise disjoint. The
following facts are well known. (The details can be found in several books and papers,
e.g, see [1,2,3].)

Lemma 0. (a) Any binary tree T with n leaves has 2n — 2 vertices and 2n — 3 edges.
(b) Any rooted binary tree T with n leaves has N(T) = 2n — 1 vertices and 2n — 2
edges.
(c) The total number of semilabelled binary trees with n leaves is

b(n) = (2n — 5)!.
(d) The total number of semilabelled rooted binary forests with n leaves and k trees is

2n—k—1

N(n,k)=< 1

>(2n ~ 2k — D).

Let T be a semilabelled binary tree. We term a map y: L — {4, B} a leaf-colouration.
A colouration §: V(T)— {A, B} is an extension of the leaf-colouration y if the two
maps are identical on the set L. The changing number of the colouration j is the
number of edges whose endvertices have different colours according to y. An exten-
sion is a minimal colouration according to the leal-colouration y if its changing number
is minimal among the changing numbers of all extensions of y. We refer to the minimal
changing number as the length of the tree T (according to y). An efficient algorithm for
calculating the length of a tree and finding a minimal colouration, due to [5], is
established in [7].

Let us fix now a 2-colouration y of the set L and denote by L, and L the nonempty
colour classes (L, u Lg=L). Set a=|L,| >0 and b = |Lg| >0. The question is:
What is the number of (unrooted) semilabelled binary trees whose leaf set is L and
length is exactly k (according to x)? Let fi(a, b) denote the number in question. Carter,
Hendy, Penny, Székely and Wormald proved [1], that
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Theorem.

b(n)

fila,b) = (k — 1)1(2n — 3k)N(a, k)N (b, k) bn—k +2)

wherea+b=mn,a>0,b>0.

In the rest of our paper we prove this theorem. The proof is based on a method
developed by Steel [10].

Steel’s decomposition

In this section we describe the structure of the bichromatic semilabelled trees of
length k.

Let y be a 2-colouration of the set L. The length of the tree T is equal to k iff the
deletion of k well-chosen edges decomposes T into subtrees with one colour being
present in each, but the deletion of less than k edges cannot do it. Due to Menger’s
theorem [8], this means that the maximum number of edge-disjoint paths from L, to
Lg is k. Since T is binary, two edge-disjoint paths between leaves are also vertex-
disjoint. Therefore there exist k (but no more than k) vertex-disjoint paths from L, to
Lg. A second application of Menger’s theorem guarantees the existence of a k-element
vertex set which covers every L — Ly path. Any such set is called a minimal covering
system. It is easy to see that incidence defines a one-to-one correspondence between
any minimal covering system and any k vertex-disjoint paths from L, to Lg.

The following lemma helps to understand the minimal covering systems.

Lemma 1. Suppose M is a minimal covering system. Set

,u(T)z{ﬂ {P:mePen}: meM},
nell
where II is the family of sets of k edge-disjoint paths connecting L, and Lg. Then

(@) u(T) is independent of the choice of M, the members of u(T) are vertex-disjoint
paths in T.

(b) Assume vy € ( Ju(T). Define the set M, by picking the vertex closest to vy from
every path of u(T). Then M, is a minimal covering system, hence, any point of any
member of u(T) belongs to some minimal covering system.

(c) vo e My and M, is unique as long as vy is given.

Proof. Notice the following consequence of Menger’s theorem: for minimal covering
systems M’, M”, a set of k edge-disjoint paths from L, to Lz defines a matching
between M’ and M” by the relation “being on the same path”.
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To prove (a), we have to see that any set of k edge-disjoint paths from L, to Lg
define the same matching.

On the contrary, assume that two path systems define two different matchings of
M’, M". The two matchings define a graph G on the vertex set M’ A M” with edges
taken from the matchings. G contains a cycle of length longer than 2. Recall that the
edges of this cycle can be represented by subpaths of the two path systems. Since T is
cycle-free, these subpaths altogether cover twice a path P of T. This contradicts to the
disjointness of the path systems.

We have proved that u(7) is independent of the choice of M. Finally, note that
a nonempty intersection of paths in a tree is a path itself.

(We do not need this explicitly, but you may observe that any system of representa-
tives of u(T') covers every path of every © and clearly every minimal covering system
M occurs as such a system of representatives—just define u(7') by this M! Unfortu-
nately, not every system of representatives is a minimal covering system. This makes
life more difficult.)

To prove (b) notice that every L, — Ly path intersects at least one member of (7).
If a path P’ from L, to Ly intersects two members of p( T'), then one member separates
the other member from v,. Now by definition, the first intersection of P’ with the other
member belongs to M, and covers the path P’. Hence we may assume that P’
intersects a unique P e u(T). We claim that P’ contains the whole P. Hence
PnMyeP.

In order to prove the latter claim, we consider two cases. Either P’ € = for some
neIl, or not. In the first case, P’ occurs in the intersection that defines P, hence
P < P'. In the second case, P’ intersects two paths from every n € I1, otherwise we may
exchange P’ with the only path = intersected by P’ to geta P’en’ e II. It is easy to
conclude that there exist P,, P, € u(T), such that P’ intersects two paths from every 7,
which contain P,, P,, respectively. Finally, P’ intersects both P,, P,, a contradic-
tion. [

Take M, from Lemma 1. Define the semilabelled forest #' = {T\: ve My}
of pairwise disjoint subtrees of 7 as follows: For every vertex u of the tree T
the unique path u — v, contains at least one element of M,. Let u belong to T7,
iff v is the nearest vertex to u among these vertices. Finally, let the tree T, (v € M)
be the subtree of T, which is spanned by those leaves of T, which also belong
to L.

Lemma 2. The semilabelled forest F = { T,: ve My} satisfies the following conditions:
(a) The leaf set of # coincides with L.
(b) If ve M, then ve T, and the path vo— T, reaches the tree T, at the vertex v.
(c) The degree of the vertex v e (Mo\{vo}) in the tree T, is equal to 2.
(d) Every tree T, is bichromatic (that is it has two colours) according to the leaf-
colouration y. Removing the vertex v from the tree T,, the remaining two (or if v = vo,
then two or three) subtrees are monochromatic according to y.
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Proof. Parts (a) and (b) directly follow from the definition of #. Part (c) follows from
(b). Part (d) contains the essence of this lemma. The set M, is a covering system,
therefore the subtrees derived by removing the vertex v must be monochromatic (i.e.,
they cannot contain leaves of different colours). On the other hand, these subtrees
must show two different colours, otherwise any path P:L,— Ly covered solely by
vertex v out of the elements of M, must be closer to the vertex v, than the subtree 7,
itself. Therefore the neighbour v’ of vertex v in the direction of v, also covers P. So the
choice of v from M, was wrong, v" must have been chosen. [

In the next step we derive a new semilabelled forest from #: for every vertex v e M,
we contract the vertices of degree 2 in the tree 7, except the vertex v itself. Finally if
the degree of v, in the tree T, is equal to 3 then we add a root into this tree which
covers every L, — Lg path in T, . Denote # ° the derived semilabelled forest consist-
ing of k rooted binary trees. This forest is the Steel decomposition of the tree T (with
respect to the leaf-colouration x and the vertex v,). We call the tree derived from 7,
the kernel of that decomposition.

Lemma 3. For any given v, the Steel decomposition of the tree T is unique. Moreover, if
o, Vo € P e p(T), then they define the same Steel decomposition.

Proof. By definition, the forest # is determined by the minimal covering system M.
We have already proved the uniqueness of M. Changing v, for vy, we end up with
6=M0_{00}U{U6}. D

Let # = {Ty; Ty,...,Ty_, } be an arbitrary semilabelled rooted binary forest with
leafset L = Ly Lg. Lete; (i = 1,... ,k — 1) denote the number of edges in the tree T;,
and let e, be (edge number of T,) — 1. An extension of the forest % is a semilabelled
binary tree whose Steel decomposition is the forest # with kernel 7.

The first question is: How can we find extensions of the forest # ? Let B be a binary
tree and let B; be a rooted binary tree. The insertion of B, into B is the following
operation: subdivide by a new vertex one of the edges of B and connect the new vertex
to the root of By by a new edge.

Lemmad. Let F = {Ty; T,,..., Ty} be a semilabelled rooted binary forest. Let T, be
the binary tree derived from T, by deleting the root and joining its neighbours. Insert
recursively the trees T,, T,, ..., Ty _, into the actual tree, where the initial actual tree is
To, and later on the actual tree is the result of the last insertion. Let T be the semilabelled
binary tree which is the last actual tree. Then there is a vertex v, in T, such that the Steel
decomposition of the tree T according to vy coincides with the forest F.

Proof. Let v, be any neighbour of the root of T, in T,. This vertex covers every path
L4 — Lgin the tree T,. The vertex v, together with the original roots of Ty, ..., T\ _;
form a minimal covering system in the tree 7. It is easy to see that this system also
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satisfies the minimum distance condition with respect to the vertex vy. Therefore the
Steel decomposition of T with respect to vgis . U

Lemma 5. Let Ext(Ty; Ty, ..., Ti— 1) denote the set of extensions of the forest . We
have

{Ext(To; Ty, ..., T—1)| = eow—f%.
Proof. We apply mathematical induction on k. If we use the abbreviation
T(eg,k — 1) = |Ext(Ty; Ty, ..., Ti—1)|, then we have to prove, that:

(@) Tleo, 1) =1

(b) T(eg,k — 1) =(2n — 2k + 1) T(eq, k — 2).

Case (a) is trivial, because the unique extension of the forest { 7, } is the tree T, itself.

(b) Suppose T is an extension of &. Define a directed tree T° as follows: The
vertices of T¢ are Ty, Ty, ..., Ti— ;. An arbitrary ordered pair (T, T;) (or (f”o, T;)) is an
arc if the last root of the trees TO, T,,..., Ty before v; on the path vy — v;in the tree
T is the vertex v;. Every vertex of T° (except the vertex T,) has in degree exactly one,
and the corresponding arc tells us where the tree T, is inserted in this extension.
Examine the insertion of the tree 7. We distinguish two disjoint subcases:

(bl) Thereisanie {2,...,k — 1} for which (T}, T;)is an arcin T*. Then there are ¢;
different insertions of T, into T;. After any of these insertions we have a forest of k — 1
trees (one of them is the kernel Ty). By the inductive hypothesis any forest built has
T(eo, k — 2) different extensions. So the total number of extensions of these types is

(ex+e3+ - +e1)T(eg,k—2)

(b2) The ordered pair (T, T, ) is an arc in 7* In this case the tree 7 is inserted into
the tree 7. We have e, different ways to realize this insertion. After the insertion we
have a forest of k — 1 trees, where the kernel has e, + e; + 2 edges. Therefore any of
the forests built can be extended in

b(n)

ot et D e Tk — 17+ 2)

ways. Therefore the total number of extensions of this type is
(eo + €1 + 2) T(eg, k — 2).
Adding up the numbers from the subcases, the total number of the extensions is
Tlegk—1)=(eo+e,+ - +e—_1+2)T(eo, k—2)
=(2n — 2k + 1) T(eo, k — 2).

(In the last step we used Lemma O(a) and (b)) O
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The proof of the Theorem

Let y be an arbitrary but fixed 2-colouration of the set L with colour classes L , and
Lp, where [L,| = a and | Lg| = b. Denote & (a, b) the set of semilabelled binary trees
of length k (according to y) with leaf set L. Let

F¥a,b) = {(T,P): Te Fy(a,b), Peu(T)).

Let # (a, b, k) denote the collection of semilabelled rooted binary forests of k trees with
leaf set L, such that every tree has two oppositely coloured, monochromatic subtrees if
its root is removed. Finally let

G(a,b)={(F,To,T): F e H(a,bk), Toe F,Te Ext(To; F\{T,})}.
Lemma 6. There exists a bijection y from F }(a,b) onto %,(a,b).

Proof. For (T, P) e #¥(a,b) let Y(T,P) = (¥, Ty, T) where & is the Steel decomposi-
tion of T according to vertex vy € P and Ty is the kernel of the decomposition. Since
the Steel decomposition is unique and P is connected, the map  is well defined. If
Y(T,P) = y(T’,P’) then T = T by the definition of . The kernels of the decomposi-
tions are identical. Therefore P = P’, since both of them are an element of y( 7)) which
is in the kernel. So  is injective. Finally, Lemma 4 proves that y is onto. [J

Lemma 7.

b(n)

Sula,b) = (k — 1)!(2n — 3k)N(a, k) N(b, k) m

Proof. We know that | % (a,b)| = fi(a,b). Therefore |F ¥(a,b)| = kfi(a,b). Now we
have

|%(a,b)l = ) Y IExt(To; F\{To})l
FeH(a, b k) ToeF
b(n)
eg————
Feh bk Toeg bn—k+2)

b(n)
bin—k+2)

(2n — 3k)) #(a, b, k)|

Furthermore, we know that [ (a, b, k)| = k!N(a, k) N (b, k). (The forests of #(a, b, k)
can be built as follows: take a semilabelled forest of k rooted binary trees with leaf set
L, and a semilabelled forest of k rooted binary trees with leaf set L, match them up
and make bichromatic rooted binary trees from the pairs.) Now Lemma 6 finishes the
proof. [
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Abstract

A min-max theorem is developed for the multiway cut problem of edge-weighted trees. We present
a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary
representation. Applications to biology also require some more complex edge weights. We describe
a dynamic programming type algorithm for this more general problem from biology and show that
our min—max theorem does not apply to it.
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1. Introduction

Let G=(V, E) be a simple graph, C={1, 2, ..., r} be a set of colours. For NCV(G), a
map x:N—C is a partial colouration. We usually think of a given partial colouration. A
map X : V(G) — C is a colouration if y(v) = x(v) holds for all vEN.

A colour dependent weight function assigns to every edge (p, g) and colours i, j a natural
number w(p, g; i, j), which tells the weight of the edge (p, g) in a colouration ¥, in which
X(p) =i, X(q) =j. We assume that w(p, g; i, i) =0 and w(p, q; i,j) =w(q, p; j. i). We say
that w is colour independent, if for any (p, q), i; #ji, i, # j,, we have w(p, q; i1, j;) =w(p,
q; is, j»). We say that w is edge independent, if for any (p,, q;) €E and (p,, ¢,) €E, and
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i, j€C, we have w(py, q1; i, J) =w(pas, q2; i, j). (Hence, any edge independent weight
function satisfies w(p, q; i, j} =w(p, q; J, i).) We say that w is constant, if it is colour and
edge independent.

An edge (p, q) is colour-changing in the colouration ¥, if X (p) # x(g). The changing
number of the colouration ¥ is the sum of weights of the colour-changing edges in Y, i.e.:

change(G, X)= ). w® ¢ X(p). X(9)) .

(P, @) EE(G)

A partial colouration y defines a partition of N by N;= {v €N: x(v) =i}. A set of edges that
separates every N, from all the other N;’s is termed a multiway cut [ 1]. Observe that the set
of colour-changing edges of a colouration X forms a multiway cut and every multiway cut
is represented in this way.

The length of the pair (G, x) is the minimum weight of a multiway cut, in formula:

I(G, x) =min{change(G, X): X colouration} .

An optimal colouration is a colouration ¥ such that change(G, X) =I(G, x).

The multiway cut problem for colour independent weight functions has been extensively
studied in combinatorial optimization (e.g. [1-3].). As Dahlhaus et al. pointed out [3],
this problem is NP-hard, even for |N| =3, |N;| =1 and constant weight.

On the other hand, if we restrict ourselves to planar graphs, a fixed number of colours,
and constant weight, then the problem becomes solvable in polynomial time [3]. A well-
known specialization of the multiway cut problem, which is solvable in polynomial time,
is r=2, which is considered in the undirected edge version of Menger’s theorem [8].

Although it is less known in the operations research community, some instances of the
multiway cut problem have great importance in biomathematics. In fact, the notions of the
changing number and the length came from genetics and we follow the terminology used
there. For the case of constant weight function, Fitch [6] and Hartigan [7] developed a
polynomial time algorithm to determine the length of a given tree. Sankoff and Cedergren
[13], and Williamson and Fitch [ 12] studied edge independent weight functions and made
polynomial time algorithms to find the length. Some explanation of the significance of the
multiway cut problem in biology is given in [4, 5].

The goal of the present paper is to study the multiway cut problem. In Section 2 we give
anew lower bound for the length of a multiway cut. Section 3 provides a dynamic program-
ming type algorithm to find the length of a tree with an arbitrary weight function. Section
4 uses the algorithm of Section 3 to establish a min—max theorem for the multiway cut
problem of trees, in the case of colour independent weight functions. All the results can be
extended to any graph G, in which N intersects every cycle. Section 5 describes our results
in terms of linear programming.

A preliminary version of the present paper has already appeared [5]. We are indebted to
the anonymous referees for their helpful observations that we use in this presentation.
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2. Lower bound for the weight of a multiway cut

Let G be a simple graph, NCV(G) and x:N— C be a partial colouration. Let w be a
colour dependent weight function.

Definition. An oriented path P in G starting at s(P) €N and terminating at t(P) EN is a
colour-changing path, if x(s(P)) # x(t(P)) and P has no internal vertex in N. (From now
on path means oriented path, unless we explicitly say the opposite.) Let us fix a family #
of colour-changing paths and let e= (p, q) € E(G). Define

ni(e, ) =#{P€P: (p, q) €EP and y(t(P)) =i} .

The notation (p, g) € P means that P enters the edge (p, g) at p and leaves at g.

Definition. Let y: N— C be a partial colouration and ¥ be a colouration on G. A family %
of colour-changing paths is a path packing, if all pairs of colours i #j and all edges (p, q)
satisfy

ni((p$ CI), ‘@) +nj((qa P), ‘@) <W(Pa q;]y l) .
The maximum cardinality of a path packing is denoted by p(G, ).

Theorem 1. For any graph G and partial colouration y, we have

(G, x) >2p(G, x) .

Proof. Let % be a path packing and ¥ : V(G) — C be an optimal colouration. Define a map
f:#— E(G) as follows: let f(P) = e if e is the last colour-changing edge in P in ¥. For any
colour changing edge e= (p, q), X{(p) =j and X(gq) =i (i+#] since e is colour changing),
we have

#{PeP: f(P)=e}<nm((p, @), P) +n;((q,p), F)<w(p, q; ], i) .
Therefore,

| #| <change(G, X)=1(G, x) . O

3. An algorithm to find optimal colourations

Now we focus on the multiway cut problem of trees. Let T be a tree and y:N— C be a
partial colouration, and let L(7) denote the set of leaves, i.e. vertices of degree 1. We
assume N=L(T). (It is obvious that the solution of the multiway cut problem of trees with
N=L(T) easily generalizes to the solution of the multiway cut problem of trees with
arbitrary N.) Let w be a colour dependent weight function. In this section we give a
polynomial time algorithm to determine all optimal colouration of 7 for the weight w.
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Let us fix an arbitrary non-leaf vertex, the root of T. Let (u, v) be an edge and let v be
closer to the root than u, then we say v=Father(u). (Father(root) is NIL.) We denote
the set of all u for which v = Father(u) by Son(v).

Our colouring algorithm has two phases. Starting from the leaves and approaching the
root we determine a penalty function of every vertex v recursively, and subsequently we
determine a suitable colouration ¥ starting from the root and spreading to the leaves.

Definition. The vector-valued penalty function is a map
pen: V(T) > (NU{=})",

such that pen;(v) means the length of the subtree separated by v from the root, if the colour
of v has to be i.

Phase 1. For every leaf v € L(T) let

en(v) = 0 ifveN;,
pen; % otherwise ,

where in an actual computation % may be substituted by a sufficiently large number. Take
a vertex v, such that pen(v) is not computed yet for the vertex v, but pen(u) is already
known for every vertex u € Son(v). Then compute

pen(v)= Y min  {w(u, v; ], 1) +penfu)} .
ueSon(p) /=1 o0 7
Phase II. Now we determine an optimal colouration X of T. First, let ¥ (root) be a colour
i, which minimizes the value pen(root). Furthermore, for a vertex v for which ¥(v) is not
settled yet, but ¥ (Father(v)) is already determined, let X (v) be a colour i, which minimizes
the expression

w(v, Father(v); i, x(Father(v))) + pen; (v).

It is easy to see, that every leaf v € N; satisfies X (v) =i= x(v), fori=1, ..., r.

The correctness of this algorithm is almost self-explanatory. Assume the positive integer
edge weights are given in unary representation. Then, the time complexity is O(n-r?-
(max weight) ), since at each step we calculate r* sums, take the minimum, and roughly 2n
steps are necessary because 7T has n vertices and n— 1 edges. You may change max weight
for log(max weight), if the edge weights come in binary representation.

In the rest of this section we focus on colour independent weight functions, since we can
develop a slightly more efficient version of this algorithm, which also can determine all
optimal colourations. Biologists may need all optimal colourations; the saving in running
time comes from avoiding the second minimization in Phase II. Also, case (A2) in the
proof of Theorem 2 will need the modified algorithm. For the sake of simplicity, for the
rest of this section the weight function is a map w: E(T) — N for colour changing edges
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and the weight of any edge not changing colour is 0. We use the usual Kronecker delta
notation.

Phase I'. For every leaf v, set
M, (v) =M,(v) = {i: pen,(v) =0} .
If pen(v) is not computed yet for the vertex v but pen(u) is already known for every vertex

u<Son(v), then set

pen(v) = Y} min {(1—6;)w(u, v) +penyu)} .

ucSon(yy /=1 bn 1
Let p(v) = min,pen;(v), and
Mi(v)={i€(l, ..., r}: penv) =p(v) },
M,(v)y={ie{l, ..., r}: pen(v) <p(v) +w(v, Father(v))} .
It is obvious that M| (v) CM,(v).

Phase II'. For ¥(root), take an arbitrary element of M, (root). If ¥(v) is not settled yet for
a vertex v, but X(Father(v)) is already determined, take

S(0) = x{Father(v)) if x(Father(v)) EM,(v) ,
X an arbitrary element of M;(v) otherwise .

It is easy to see, that every vertex v €N, satisfies x(v) =i= y(v), for i=1, ..., r. This
algorithm is obviously correct and permitting some extra freedom at certain steps, any
optimal colouration can be obtained by the modified algorithm. For this purpose we intro-
duce a third set of colours at Phase I':

Mi(v)={ie(], ..., r}: pen,(v) =p(v) +w(v, Father(v))} .

If in Phase II' we also allow to give the colour of ¥(Father(v)) to v, if
X (Father(v) ) € M5(v), then the algorithm still yields an optimal colouration. Moreover,
one can prove that running this algorithm in all possible ways yields all optimal colourations.
(We leave the proof to the reader.) The complexity of this revised algorithm is better by a
constant multiplicative factor than that of the original, but to get every optimal colouration
may take exponential time, since M. A. Steel exhibited trees with exponentially many optimal
colourations [11].

4. A min—max theorem
In this section we assume that the weight function is colour-independent and we prove

that the lower bound of Theorem 1 is tight for leaf-coloured trees, and then even for a larger
class of graphs.
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Theorem 2. Let T be an arbitrary tree with colour-independent weight function
w:E(T) — N and with leaf-colouration x:L(T) — C. Then

T, x)=p(T, x) -

We already know from Theorem 1 that the LHS is greater or equal than the RHS. We have
to prove the other inequality. For this end we construct the desired optimal path packing in
a recursive manner. At first, we explicitly construct optimal path packings for stars, i.e. for
trees with 1 branching vertex. Then, for a tree T with at least 2 branching vertices and with
w(n= Y w®
FEE(T)

sum of weights, we define a ‘smaller’ tree 7' for which we can trace back the problem of
the construction of an optimal path packing, such that we can ‘lift up’ the path packing from
T’ to T to get the solution. We may have at most W(T) ‘lift up’ steps. Here we give the
details.

For convenience, we want to use the functions Son and Father, therefore we fix, as in
Section 3, a root of T. In the complexity issues we assume that our tree is represented by
the vertices v and the sets Son(v) and Father(v), furthermore every element of Son(v) and
Father(v) (which represents edges) also contains the weight of the edge. The paths under
construction will be represented as double-linked lists, therefore, due to Theorem 1, the
space complexity of the representation is O(I(7, x) -n).

Definition. We say that a vertex v is of order 1 if every element of Son(v) is a leaf.

Notice that every tree with at least 2 branching vertices has a non-root vertex of order 1.
Before starting the main body of the proof we need the following lemma.

Lemma 1. One can assume that no vertex of order 1 has two sons with the same colour.

Let v be a vertex of order 1, such that Son(v) contains at least 2 leaves with identical colour.
Let 2.(T) denote the tree obtained from T by identification of the elements of Son(v) with
identical colour and adding up their edge weights, respectively. Now one can easily construct
an optimal path packing for T from an optimal path packing of 2. (7). Anyhow, we give a
formal proof, otherwise, the base case of our recursive algorithm would not be complete.

Proof. Define the tree ¥(T) formally as follows: let the tree T be a star with midpoint v
and with leaves {/;: ueSon(r) with y(u) =i} and let £(T) be the tree made of the trees
T\Son(v) and T’ by identification of their common v. The leaf-colouration and weight
function of Y.(T) are as follows:

NI 2{1)@) if ue L\Son(v) ,

ifu:‘l,',
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Y, w(w ) iff=(,0),
! — Z u=Son(v)
w' () XGu) =i .
w(f) otherwise .

Notice that (Z(T), ¥') = I(T, x).
Claim. If I(X(T), x¥') =p(X(T), x') then (T, x) =p(T, x).

Proof. Let Son(v) contain d different colours. We apply induction on |Son(v) |.
Base case: if |Son(v) | =d, then X(T) =T, y= X', and we have nothing to prove.
Inductive step: Suppose that we know Lemma 1 for all |Son(v) | <k. Assume now
|Son(v) | =k and for some fixed z;, z, € Son(v), let x(z;) = x(z,) . Join z; and z, into z. In
the new tree T * obtained by identification, define the leaf colouration and the weight
function as follows:

* — X(u) ifuqezl,zz’
X" () {X(Zl) ifu=z,

* — W(f) lff?&(u, Zi) ’
Wi = w(v, 1) +w(v, ) iff=(v,2).

Now we have X (T) =X(T*), therefore I(X(T)) =I(X(T*)). By the hypothesis there
exists a path packing ##* in the tree T * satisfying | #*| =I(T*). It is easy to divide the
paths of Z7* adjacent to vertex z into two groups, such that the members of one group are
adjacent to z; and the members of the other are adjacent to z, and both groups obey the
weight restriction on the edge adjacent to z;. In this way we obtain a path packing of /(T)
members in T. This proves the Claim as well as Lemma 1. [

The time complexity of this algorithm is O(¥, csency W(i, v)) so the time complexity
of all applications of Lemma 1 altogether is O(W(T)).

We return to the main body of the proof; we assume that any two sons of an arbitrary
vertex of order 1 have different colours. Our algorithm is given in a recursive form in the
variables b(T) and W(T), where b(T) is the number of branching (non-leaf) vertices of
T.

Base case: letb(T) = 1 and W(T) be arbitrary. Then T is a star; let v denote the midpoint
of it. Due to Lemma 1 we may assume that |L(T) | =r (i.e. every colour occurs once).
Assume that the edge (v, #) has maximum weight over all edges. Orient paths from u to
every other leaf z€ L(T)\ {u} with multiplicity w(v, z). This path system is obviously a
path packing and has /(7) members. This case requires O(W(T)) steps.

Recursive step: For any tree T with at least 2 branching vertices we shall find ‘smaller’
tree 7' with fewer branching vertices (b(7") <b(T)) or with smaller total weights
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(b(T')=b(T) and W(T') <W(T)) such that an optimal path packing of 7" can be lifted
up to an optimal path packing of T. Define
s(v)= max w(u, u).
ueSon(y)
We distinguish two cases:

(A) There is a vertex v of order 1 such that s(v) #w(v, Father()).

(B) s(v) =w(v, Father(v)) for every vertex v of order 1.

Case (A). Let X be an optimal colouration of T such that v is the first branching vertex
for which the colour sets M; were determined. We have two subcases; in (A1) we have
s(v) >w(v, Father(v)), in (A2) we have s(v) <w(v, Father(v)).

Case (Al). Let T" be the tree with the same vertex set, edge set and leaf colouration as
the tree T was, and let the new weight function w': E(T) — N such that

w(f) —1 if f= (v, u) where u€Son(v) ,
w(f) if otherwise .

w ()=

If w' () =0, then cancel this edge and its leaf endpoint from the tree T” to obtain the tree
T'. Due to our colouring algorithm, colouration ¥ is also optimal for the tree T”, therefore

I(T') + (|Son(v) | —1) =K(T) .

The total weight of tree T’ is less than of 7. Assume now that we have an optimal path
packing %' of I(T', x) elements in T". Denote by AT the star of v U Son(v) with weight
function w=1 and with the original leaf colouration. Let A% be optimal path packing in
AT (use the base case). Now the path system =" UAZ is obviously optimal path
packing in the tree T.

We can construct T’ and the path packings A% and & from the given tree T and path
packing &' in O(r- L, csony W(U, 1)) time, so that the total time complexity of the case
(Al) is O(rW(T)).

Case (A2). Now we have s(v) <w(v, Father(v) ). Let the tree T' be identical with the
tree T with the same leaf-colouration and with the weight function

s(v) if f= (v, Father(v)) ,
w(f) otherwise .

w ()=

Now it is easy to see that there exists an optimal colouration ¥ of T' satisfying X(v) =
X(Father(v)) which is also optimal in 7. (The only problem that can occur is that
X (Father(v) ) € M,(v) but x(Father(v)) €M} (v). In that case we can apply the extended
Phase II'.) Therefore, we have I(T) =I(T") and W(T') < W(T). Now we can easily ‘lift
up’ any optimal path packing & of T' to the tree T, namely # itself is obviously path
packing in T.

This operation takes O(1) time, so the total time complexity of case (A2) is O(n).

Case (B). From now on we assume that every vertex z of order 1 satisfies the condition
5(2) =w(z, Father(z)). For the rest of (B), we fix a vertex v; if the diameter of T'is 3, then
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let v be the root, otherwise, let v be a non-root vertex such that Son(v) € L(T) and every
non-leaf son is a vertex of order 1 (the existence of such a v is obvious). Let the non-leaf
sons of v be the vertices z;, ..., Z.

By the definition of case (B) it is easy to see the existence of an optimal coloration ¥
colouring v and every z; to the same colour. Therefore if T is the tree derived from the tree
T by contracting every edge of form (v, z;) (leaving the name of the new vertex v), which
is endowed with the original leaf-colouration and weight function on the existing edges,
then the restriction of the same colouration ¥ is also optimal for T and I(T) =1(T). On the
other hand, the tree T has less branching vertices than T.

Now due to our hypothesis we have an optimal path packing % in the tree T. Therefore

| P =T) .

Let us define the lift up #= {ﬁ: PeE P} of the path packing P, where P is identical with
P if no leaf u of Son(z;) (i=1, ..., k) belongs to the path P, and P comes from P by
subdivision of the edge (v, u) with vertex z; if endvertex(P) =u€Son(z;) (i=1, ..., k).
We have [(T) many elements in 2.

Let ¢,= (v, z;) (for every i=1, ..., k). For an edge f= (p, g), we write —f=1(q, p).
Now, by the definition of %, the condition

n(f, ) +n(—f, ) <w(f)

holds for every edge f#¢; (i=1, ..., k), but unfortunately this is not necessarily the case
for the edges e;.

We solve this problemin a slightly more general setting (Lemma 2). For this we introduce
the following notations: Let [x]* denote x, if x is non-negative, 0, if x is non-positive.
Define the badness of the colour changing path system % by

bad(#) = Y Y (e, P)+n(—e, P)—w(e)]™.
(i, Y ECXC e€E(G)
i*j
Call an edge oversaturated by the path system %, if the contribution of the edge to the
badness is positive. (We recall the definition e;= (v, z;).)

Lemma 2. Let & be a system of colour-changing paths on the tree T such that
(i) for alli, j, n,( e, P) <w(e;),
(ii) Z does not oversaturate any edge from E(T)\{ey, ..., e:}.

Then there exists a path packing P* in T of the same size.

Proof. If bad(#) =0 then 2 itself is a path packing. Suppose bad (%) >0, and, say, the
edge e, is oversaturated with colours 1 and 2, i.e.
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ni(ey, L) +n(—ey, P)>wley) .

Take a path P; € % such that e; € P, and y(¢#(P,)) =1 (where, say, t(P;) €Son(z;)), and
a path P,€% such that —e, €P, and x(#(P,))=2 (where #(P,)&Son(z;) and
s(P,) €Son(z,)). Now we distinguish the cases (BA) and (BB):

Case (BA). Suppose there is no P;€% for which —e, €P;, s(P3;)=s(P,) and
x(t(P3)) = 1. In this case we define the following path system:

Py =FU{PI\(P,},
where the path P is (s(P,), z;, t(P,) ), oriented from left to right.

Claim A.
bad(#;) <bad(X)—1.

Proof. It is easy to see that n;( +f, #)) <m(xf, L) for each i=1, ..., k and for each
fEE(T)\{ey, (21, s(P3)) }, furthermore

n(—e, P)=n(—e,P), i=1,..,k,

nier, #) =nle;, P), i=2,..,k,

ni(ey, #)=n(e, X)—1.
Finally, for the edge f, = (z;, s(P,)) we have

n(f, PO =nfo, P), i=1, ...k,

n(—f, P)=n(—f5, ), i=2,...,k,

m(~=for P +n(fo, ) <w(f), i=1, ..., k.
The last inequality is true, since otherwise n,( —f;, L) +n,(f, #) >w(f,) would hold,
contradicting the assumptions of Lemma 2. [

Case (BB). Suppose there exists a path P, which was forbidden in (BA). Then let %,

be the following path system:

P =RU{P, P; AP, J]\{P,, P3}

where P; A P, denotes the (unique) path oriented from s(P3) to t(P,).

Claim B.
bad(#,) <bad(F#)—1.
Proof. Set
E\={ey, (21, t(P1)), (z1, s(P3))} and E,=E(P,) UE(P,)\E(P;AP)).



P.L. Erdds, L.A. Székely / Mathematical Programming 65 (1994) 93~105 103

Then for each edge f€ E(T)\ (E;UE,) the estimates of Claim A hold. Furthermore, for
fEE, we have

n(+f, #)=n(tf, #), i=2,..k,

n(zxf, ) <m(tf, 2),

n( £z, t(P1)), P) =n(£(zy, ((P1)), &), i=1,..k,

n(te, P)=n(te,R), i=2,..,k,

n(te, P)=n(xe,#—1,

n( £ (21, (P3)) =n( £ (z1, 5(P3)), P) i=1, ..., k.

The equalities and inequalities above prove Claim B. [J

The surgeries described in Case (BA) and Case (BB) obviously keep the conditions of
Lemma 2, therefore they may be repeated until the badness drops to 0. Claims A and B
guarantee, that we finally reach 0. Lemma 2 and Theorem 2 are proved. [J

The determination of the tree T takes O(n) steps, therefore the total time complexity of
this procedure is O(nb(T)). To lift up the paths from & to & takes

O(r Y. w(y, z))

zeSon(v)

time, therefore the total time complexity of lift up operations is O(#W(T)). Finally, the
badness at Lemma 2 is at most

Y w2

z€Son(v)

and every edge can occur at most one application of Lemma 2 so the total time complexity
of Lemma 2 is O(max{rW(T), n*}).

The bookkeeping of (edge, path) incidences is necessary. A possible execution of this
task is to build up lists for every edge to store these incidences and to maintain these lists
at every °‘lift up’ step. The total time complexity of our recursive procedure is
O(max{rW(T), n?}), so it is unary polynomial.

The following theorem is an easy consequence of Theorem 2.

Theorem 3. Let G be a graph with a weight function w:E(T) — N and with a partial
colouration y:N— C. Assume that N intersects every cycle of G. Then
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(G, ) =p(G, x)

Proof. Obtain a forest by eliminating the vertices of N and making leaves from the edges
that were adjacent to them. Give the colour of » to the leaves that substitute a former n €N.
Apply Theorem 2 for each and every tree in the forest. []

5. The LP connection

One may consider the following linear programs related to the multiway cut problem
with colour independent weight function. Note that this is something, which is different
from the usual multiway cut polyhedron [1].

For every oriented edge (p, g) of G and every ordered pair of distinct colours ij define a
variable z,, ;. If gEN, then eliminate z,,;; and z,,;; for every j# x(g). Introduce new
quotient variables by identifying the surviving variables z,, ; and z,, ; in pairs. For conven-
ience we use the same notation for the quotient variables. Then the primal linear program
is:

Zpq.ij Z 0;

for every colour-changing path P, (a, bEN), have

Z Z Lpq,ix(b) = 1;

(P, q) EPap i:i+* x(b)
min Y 2,5 w(ps )

where the last sum is for all quotient variables. To describe the dual linear program, for
every colour-changing path P,, introduce a variable A, such that

/\ab = 0 )
for every quotient variable z,,, ;, have

Z /\ab+ Z Auu <W(Py ‘1),

x(b)=j x(vy=i
(p. q) EPap (q, p) EPw
max Y Ag.

We claim that these linear programs have integer optimal solutions. It is easy to see, that
p(G, ) <max ) A A, integer<max Y Ay, =min Y 7,05 w(p, q)
<min Y 2,05 W(P, q) 2,4, integer<I(G, Xx) .

Only the first and last inequalities require proofs from the chain of inequalities above. The
first one holds, since any path packing provides a feasible integer solution for the second
linear program. The last one holds, since we have an optimal colouration ¥ with total weight
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of the colour-changing edges of I(G, x); define z,, ;=1, iff (p, q) is a colour-changing
edge in the optimal colouration X and X(p) =i, x¥(q) =j hold, and z,, ;=0 otherwise. If
(G, x) =p(G, x). then equality holds everywhere in the chain.

It is a natural question whether these linear programs are totally dual integral [10], i.e.,
whether they have integer optimal solutions for colour dependent weight functions w(p, g;
i, j). Unfortunately, this is not the case, take for example the 3-star with center ¢ and leaves
x, y, z with colours y(x) =1, y(y) =2 and x(z) =3; and the weight function w(c, .; i,
J) =W, defined by the matrix

01 3
w={3 0 1j.
1 30
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Abstract

We compare three lower bounds for the minimum cardinality of a multiway cut in a graph
separating a given set S of terminals. The main result is a relatively short algorithmic proof
for a simplified version of a min—max theorem of the first and the third authors asserting that
the best of the three lower bounds is actually attainable if every circuit of the graph contains a
terminal node. © 1998 Elsevier Science B.V. All rights reserved.

0. Introduction

Let G=(V,E) be a connected graph with no loops and S a specified subset of nodes.
A family 2 :={W,1,..., ¥/} of pairwise disjoint non-empty subsets of ¥ whose union
is V is called a partition of V. 2 is said to separate S or to be S-separating if each
member of 2 contains exactly one element of S. The value eg(2) of # is the number
of edges connecting distinct parts. Clearly, eg(2) =)y, d(X)/2 where d(X') denotes
the number of edges leaving X. The set of edges connecting distinct members of an
S-separating partititon # is called a multiway cut (separating S). We are interested in
the minimum cardinality ng of a multiway cut, that is, in an S-separating partition of
minimum value.

Minimum multiway cuts have been subject of study before, see, e.g. [1-3]. The
minimum multiway cut problem was shown to be NP-complete even for some restricted
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versions [4]. Paper [5] introduced a new lower bound for the minimum cardinality of
a multiway cut and proved a min—max theorem in the special case when the nodes of
S cover all circuits. For this special class, even the weighted multiway cut problem
has been solved in [6].

In the first section we introduce a new lower bound Vs for the minimum multiway
cut. This value is the same as the lower bound used in [5] but its definition is more
transparent. We compare Vg with two known lower bounds and prove that, among
these three, Vs is always the best (that is, the largest). Section 2 includes the main
contribution of the paper: it is a relatively simple algorithmic proof for a simlified
version of a min—-max theorem of [5]. This result is about undirected graphs and the
basic idea behind the present simplification is that we introduce orientations of the
underlying undirected graph.

We need the following notions and notation. A leaf of a tree is a node of degree
one. A star is a tree whose all but possibly one nodes are leaves. We call a directed
tree T an arborescence if every node is reachable by a directed path from a special
node, called the root of 7.

Given a hypergraph ¥, the degree of a node u is the number of members of
& containing u. For a subset Z of nodes of a graph G =(V,E), the set of edges
connecting Z and ¥ —Z is called a cut. It is denoted by [Z, ¥ —Z] and its cardinality by
d(Z)=dg(Z). For a digraph G let o(Z)= 0z(Z) denote the number of edges entering
Z. For two disjoint subsets 4,B of V, let A(4,B; G) denote the maximum number of
edge-disjont (directed) paths with starting node in 4 and end node in B. By Menger’s
theorem A(4,B; G)=min(g(X):BCX C ¥V —A). For s€ S let A(S —s,s;G) denote the
maximum number of edge-disjoint paths from § — s to s. If G is a directed graph we
use the notation A(S —s,s; @) for the maximum number of edge-disjoint directed paths
from § — s to s. Note that via the Max-flow Min-cut algorithm both A(S — s,s; G) and
AS —s,s; 6) are computable in polynomial time.

1. Lower bounds

First, we try to find some lower bounds for ms. Let t§ := > ses MS —5,5;G)/2. The
quantity t¢ was introduced by Lovasz [7]. He proved that 7§ is equal to the maximum
value of a fractional packing of S-paths and also to the minimum value of a fractional
edge-covering of S-paths, where an S-path is a path connecting two distinct elements
of S. For t§ one has 1§ =3 s A(S — 5,5, G)/2< > s d(V;)/2 = eg(P) for any S-
separating partition 2 = {¥;: s€ S}, from which t¥ <ns follows. Therefore, 7§ is a
polynomially computable lower bound for =s. It is not a very good one though as
is shown by a star with &£ leaves where S consists of the & leaves. For such a star
T8 =k/2 and mg =k — 1.

In order to obtain better bounds we introduce two other parameters. By the value
val(T) of a sub-tree T of G we mean the number of its leaves belonging to S
minus one. In particular, the value of a path connecting two elements of S is 1.
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Let vi® denote the maximum sum of values of edge-disjoint trees of G. Let vy:=
max(} s A(S —s,5; G)) where the maximum is taken over all orientations G of G.

Theorem 1.1. 78 <V <5 <.

Proof. To see the last inequality, suppose that G is an orientation of G for which
Vs =) s M8 — 5,5;G) and that 2:={V;: s€S} an S-separating partition for which
ecg(?)=ns. Then

Vs=Y US—55G)<Y o)=Y d(V)2=eq(P)=ns,
sES sES seS
as required.

The middle inequality is also straightforward. Indeed, let 73, 75,..., T; be the mem-
bers of an optimal packing of trees. Orient the edges of each 7; as follows. Choose
arbitrarily a leaf of 7; in S and orient each edge of 7; so as to obtain an arborescence
with this root. The edges not in any 7; may be oriented arbitrarily. In such an orienta-
tion G of G the value A(S—s,s; G) is at least as large as the number of trees containing
s whose chosen root is different from s. Therefore, the sum Y < A(S — s,5; G) is at
least the sum of the values of the trees. We obtain, that Vs> " ¢ A(S —s,s; G)= viee,

Finally, we prove the first inequality

1o (G) <VI*(G). (1.1)

By induction, we assume that

() inequality (1.1) holds for any graph G’ = (V’,E’) for which |V'|+|E’| <|V|+I|E|.

We may assume that the deletion of any edge e decreases t+. Indeed, if the
deletion of e leaves t; unchanged, then by (x) we have 1¢(G)=15(G — e)<
Vi®(G — e) <vE*(G), as required. We also may assume that there is no edge e con-
necting two elements of S. Indeed, leaving out such an edge decreases both 3 and
v§®® by one and hence (*) implies again (1.1).

Case 1: There is a set Z of nodes for which |Z|>2, ZNS = {s} for some s€§ and
MS - 5,5,G)=d(Z).

Contract Z into one node denoted by sz. In the contracted graph G’ let 8" :=S§—s+s7.
Using (*) and the fact that contraction does not decrease any value A(S—x,x; G)(x €S),
we have VI®(G')>1},(G') 2 15,(G). Therefore, there is a family 7 of edge-disjoint
trees in G’ so that S (val(T): T € 7')>1§(G).

We assume that |.7”| is as large as possible. In this case we claim that each terminal
node x €5’ belonging to a tree T € ' is a leaf of T. For otherwise we could split T
at x into dr(x) subtrees. Then the total value of the new family of trees is unchanged,
contradicting the maximality of ||, and the claim follows.

Since A(S — s,5;G)=dg(Z), there is a family of dg(Z) edge-disjoint paths in G
connecting s and § — s. For an edge e in the cut [Z,V — Z] let P, denote the path
in this family containing e and let P, be the subpath of P. whose first node is s
and last edge is e. If a tree 7/ €7’ uses an edge ¢’ of G’ corresponding to an edge
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e€[Z,V—Z] of G, then T:=T"—¢e'+P'(e) is a tree of G for which val(7)=val(T").
In 7' replace each such 77 by T.

Every tree in "’ not containing sz corresponds to a tree T of G (disjoint from Z)
whose value is the same. Therefore, we have obtained a family 7 of edge-disjoint trees
of G for which vi*¢(G)> Y (val(T): T€ 7)=3_ (val(T'): T' € ") 21(G') 2 15(G),
as required.

Case 2:

AS — 5,5;G)=dg(s)<dg(Z) (1.2)

holds whenever s€ S, ZNS={s} and |Z|>2.

By Menger’s theorem, the deletion of an edge e decreases 7¢ if and only if e belongs
to a (minimum) cut [Z,V — Z] for which ZN§= {s} and dg(s)=A(S — s,5;G) for
some s € S. Therefore, every edge e of G has exactly one end-node in S, that is, G is
bipartite.

For each s€S, veV — S let c(sv) denote the number of parallel edges between s
and v. For t €V — s let a(v):=max(c(sv): s €S). We claim that

wv)<dg(v)/2, (1.3)

for otherwise dg({s,v})<dgs(s), contradicting (1.2). By (1.3) the set of edges inci-
dent to v can be partitioned into x(v) stars so that each contains at least two edges.
The value of one such star is one less than the number of its edges and hence the
total value of the x(v) trees is dg(v) — x(v). Applying this way of partitioning to
each v€V — S, we obtain a family of trees whose total value is Y ([dg(v) — «(v)]:
veV —8)>S(de(v)/2: veEV —8)=|E|2=3(dc(s)/2: s€8) = (MS—5,5,G)/2:
s € 8)=1%(G), from which (1.1) follows.

In Theorem 1.1 strict inequality may occur at each place. That was shown already
for the first inequality. In the graph in Fig. 1 75 =3 =v{* and V5 =4 =75, that is the
second inequality is strict.

In the first graph in Fig. 2 5 =6, V§*=7=7s, ns=8. (A tree-packing of total
value 7 is shown in the second of Fig. 2. The fact that ¥5 <8 can be shown by case
checking.)

LN

S={A,B,C}

Fig. 1.
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Fig. 2.

2. Min-max theorem and algorithm

The example of Fig. 2 leaves little room to find classes of graphs for which Vs = 7.
In what follows, we prove that those graphs for which G — S induces a tree form such
a class. (The apparently more general case when G — § induces a forest is easily seen
to be equivalent to the tree case.) The theorem below is equivalent to the min-max
theorem of [5], but formulated in simpler terms relying on the notion of orientations.
This idea gave rise to a proof significantly simpler than the original one. (Actually, the
result below extends to the case when G — S may induce only two-element circuits.
This is equivalent to the weighted multiway cut problem in trees and was solved in [6].
We hope, though the details have not yet been worked out, that the present orientation
method can be extended to the weighted case, as well.)

If one is interested only in computing a minimum multiway cut in the special case
when G — S induces a tree, then a simple greedy type algorithm is available in [5]
whose proof of correctness is also very simple and does not need any kind of duality
theory. The first part of the present algorithm is nothing but a reformulation of the
greedy algorithm from [5]. The main novelty here lies in the second part of the algo-
rithm where an optimal orientation is computed yielding a relatively simple proof of
Theorem 2.1.

Theorem 2.1. Let G=(V,E) be an undirected graph with a terminal set S for which
G — S induces a tree. Then Vs =y, that is, the minimum cardinality of a multiway
cut separating S is equal to the maximum of 3 ¢ M(S —s,5;G) over all orientations
G of G.

Proof. We have seen that Vs <mg. In order to prove the equality, we are going to
construct a partition # separating S and an orientation G of G so that

ea(X)=AS —5,5;G) whenever s€ X € 2. 2.1)
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Before proceeding to the proof, let us mention that there is another interpretation of
the problem. Consider each element of S as a colour. Then the minimum multiway
cut problem is equivalent to colouring the nodes with the available |S| colours so as
to minimize the number of bi-chromatic edges. For a given colouration we say that
an edge uv is bi-chromatic if its two ends have different colours. The other edges are
called mono-chromatic.

We may assume that S is a stable set. We also may assume, without loss of gener-
ality, that for every edge sv with s € S the degree of v is 2. If this is not the case, then
subdivide the edge vs by a new node. Clearly, the theorem holds for the new graph if
and only if it holds for the original.

Let T = (U, F) denote the tree induced by G —S. By the assumptions we made, only
the leaves of 7 have neighbours in §. We may furthermore assume that every leaf v
actually has one neighbour in S for otherwise we may delete v without changing the
problem.

Let us choose an arbitrary non-leaf node r of T and call it a root. The height
h(u) of a node u of T is the length of the unique path from r to u. For an edge
e=uv with A(u)=h(v) — | we say that node v and edge e are above u and that u and
e are under v. That is, the nodes above u are exactly those neighbours of ¥ whose
height is one bigger than that of u. Furthermore, every node u but the root has ex-
actly one node under u. There is no node under the root and above a leaf. (In the
literature a node above u is called a child of ¥ and a node under u is called a parent
of u.)

With the help of a depth first search (say), determine an ordering of the elements
of U, described by a one-to-one mapping f:U — {1,2,...,|U|}, in such a way that
f(r)=1and f(u)< f(v) whenever uv is an edge of T with A(u)=h(v) — 1.

The algorithm consists of two parts. In the first one we determine a partition 2 of
V separating S while the second part serves for computing the orientation.

Part 1: Computing partition 2. The partition & will be given by a function ¢: ¥V —
S such that o(s):=s for s€S. (In other words o(u) will be the colour of u.) The
o-values of the tree are computed in two phases.

In the first phase a subset L(u) of S will be assigned to every node u of T, as
follows. According to the ordering f of U, consider the elements u of U in a reverse
order (that is, root » is considered last). If u is a leaf whose unique neighbour in §
is 5, then let L(u):={s}. Suppose that u is a node for which L(v) has been computed
for all nodes v above u. Let L(u) consist of the nodes of maximum degree of the
hypergraph {L(v): v is above u}. The first phase terminates when L(») (and hence
every other L(v)) has been computed.

Intuitively, we think of L(u) as the set of candidate colours from which the final
colour of u will be chosen during the second phase of Part 1. The sets L(u) are
determined in a downward manner (toward the root) and L(u) consists of those colours
which appear most often in the (already determined) candidate colour-sets of nodes
above u.
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In the second phase we work upward, that is we consider the elements v of U in the
(forward) ordering given by f. Start at the root » and define o(7) to be an arbitrary
member of L(r). In the general step, when v is considered let uv denote the unique
edge of T under v. By the choice of the ordering, u precedes v and hence o(u) has
already been determined.

(a) If o(u) € L(v), then let a(v):=a(u),
(b) if o(u) & L(v), then let (v) be an arbitrary member of L(v).

Intuitively, this means that the colour of root r is an arbitrary member of the candi-
date colour-set L(r). Furthermore, if the colour g(«) of a node of tree T has already
been determined and e = uv is an edge of T above u, then the colour ¢(v) of v is al-
ways chosen from the candidate colour-set L(v) of v so as to make e mono-chromatic
whenever this is possible. (That is, e becomes bi-chromatic if the final colour o(u«) of
u is not in the set L(v) of candidate colours of v.) This way, we have determined a
colouration ¢ of the nodes of G, or, equivalently, a partition Z:={V;: s€S} of V
where V;:={ueV: o(v)=s}.

Part 2. Computing the orientation of 7. In the second part of the algorithm we
define the orientation of the edges of G in such a way that once the orientation of
an edge has been determined, it will never be changed later. Let e=uv be an edge
of T with A(u)=h(v) — 1. The orientation of e will be specified by declaring that
e is either an up-edge or a down-edge. e being an up-edge means that e is oriented
from u to v while e being a down-edge means that e is oriented from v to u. We
will call a node v distinct from the root an up-node if the (unique) edge under v is an
up-edge. Node v is called a down-node if either u=r or if the edge under « is a down-
edge.

Let all bi-chromatic edges be up-edges. To determine the orientation of other edges,
we consider the nodes u of T in the order of their height starting with root » and
determine the orientation of all the mono-chromatic edges above w. Therefore, when
a node u is considered, its status of being an up-node or a down-node has already
been determined. Specifically, the orientation of the mono-chromatic edges above u is
determined by the following rules.

Rule 1: If u is a down-node, then let every mono-chromatic edge above u be a
down-edge.

Rule 2: If u is an up-node, then choose arbitrarily a mono-chromatic edge uz above u
(there is one!) and, apart from uz, let all mono-chromatic edges above u be down-edge.
We will call uz a special edge.

Rule 3: If e is an edge connecting a leaf ¥ of 7 and a node s in S, then orient e
so that the in-degree (and the out-degree) of u be 1.

In other words, every bi-chromatic edge is an up-edge and every mono-chromatic
edge above u, with one exception in case u is a down-node, is a down-edge.

Let G denote the resulting directed graph. Henceforth, our main concern is to prove
that the partition & and the orientation G satisfy (2.1). To this end let us consider
an element s€ S (that is, one of the colours) and the set F,:= {ujvy,..., w05} of
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bi-chromatic edges of G for which o(v;)=s. That is, F; is the set of edges of G
entering the part F; of £ containing s.

We are going to find & edge-disjoint paths from S — s to s. The existence of such
paths directly implies (2.1). It follows from Rule 2 that for any up-node v; (i=1,...,k)
there is a unique path £/ in G from v; to s consisting of special edges. Since special
edges are mono-chromatic these paths are inside ¥;. They are edge-disjoint (and actually
node-disjoint, except at s) since no two special edges enter the same node.

Therefore, all what we have to show is that there are k edge-disjoint paths 2" from
S —stov; (i=1,...,k). By glueing together paths P/ and P/" we will obtain a path
P, from a node of S — s to s that uses edge u;v;.

Let G, =(V,E;) be a subgraph of G where E, consists of three types of edges. Recall
that if (a directed edge) yv is a down-edge or vy is an up-edge, then y is above v.

Type A: A down-edge yv belongs to E; if s¢& L(y).

Type B: An up-edge vy belongs to E; if s€ L(y) and a(v) #s.

Type C: An edge tu of G belongs to E, if t€S —s.

Note that a down-edge yv€E, is mono-chromatic and ¢(v)=0c(y)#s. Hence,
o(v) € L(y). For a non-special up-edge vy, a(v) €& L(y).

Let o(u) (respectively, 6(#)) denote the number of edges in E; entering (leaving) u.

Lemma 2.2. o(u)>(u) for every node u of T.

Proof. By Rule 3, the lemma holds for leaves so suppose that u is not a leaf. If
o(u)=s, then, by Rules 1 and 2, (u)=0<g(u). Therefore, we will assume that
o(u)#s. Let A:={y€U: y is above u,s € L(y),0(u) ¢L(y)} and B:={y€U: y is
above u,s & L(y), o(u) € L(y)}. Let a:=|4|, f:=|B|.

Since o(u) € L(u), the definition of L(x) implies that

B=a and if f=a, then s€L(u). 2.2)

Let x denote the node under u in case u #r.

Case 1: u is a down-node. Then the edges of E, above u that leave u are precisely
the edges from u to 4. Hence, 8(u)<a + 1 and 6(u)=a if u is the root. Each edge
under an element of B is a down-edge and belongs to E; from which o(u)=f. If
u=r, then o(u)>f=o=05(u), as required. So suppose that u#r. If fZa + 1, then
o(u)=8(u). If a=p, then (2.2) implies that ux ¢ E; and hence g(u)>f= o =d(u).

Case 2: u is an up-node. If a=p, then s€L(u) by (2.2). Now a(x)#s, since
o(x)=s would imply o(u)=s which is not the case. Therefore, xu € E;.

Let uz denote the special edge above u. Now, o(u)=0(z) € L(z) and hence z ¢ 4.
We distinguish two cases.

If z € B, then s ¢ L(z) and hence uz ¢ E,. Therefore, the edges in E; leaving u are
the edges from u to 4, that is, 8(u)=a. For every node y € B —z the edge under y
is oriented toward u. If f=>a + 1, then g(u)=f — 1 >a=06(u). If f=o, then xu € E;
and hence o(u)=(f — 1)+ 1 =a=3d(u).
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If z¢ B, then d(u)<a+ 1. If f=a+ 1, then g(u)=f=a+ 1 =20(u). If f=a, then
xu€E; and hence o) 2f+ 1=a+120(u). O

Now, we can construct the paths P’ (i=1,...,k) in a greedy way. Starting at u,v,
we can go backward in E; as long as we arrive at a node of § which is distinct from
s since the tail of every edge in E; has got a colour distinct from s. That is, we have
constructed a directed path P/’ that starts at an element of § — s and its last edge is
u v;. After leaving out the edges of this path the property of Lemma 2.2 continues
to hold, so we can repeat the construction to obtain the required edge-disjoint paths
P P,... B
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¢

Abstract. A significant problem in phylogeny is to reconstruct a semilabelled bi-
nary tree from few valid quartet splits of it. It is well-known that every semilabelled
binary tree is determined by its set of all valid quartet splits. Here we strengthen
this result by showing that its local (i.e. small diameter) quartet splits infer by a
dyadic inference rule all valid quartet splits, and hence determine the tree. The
results of the paper also present a polynomial time algorithm to recover the tree.

Keywords: semilabelled binary trees, subtrees, phylogeny, quartets.

1 INTRODUCTION

We first provide a summary of notations used throughout this paper. The set [n]
denotes {1,2,...,n} and for any set S, (¥) denotes the collection of subsets of S
of size k.

A sem:labelled binary tree T is a tree whose leaves (vertices of degree 1) are
labelled by the number 1,2,...,n, and whose remaining internal vertices are un-
labelled and of degree three. Let B(S) denote the set of semilabelled binary trees
on leaf set S, and let B(n) = B([n]). For T € B(n) and S C [n], there is a unique
minimal subtree of T" which contains all the elements of S. We call this tree the
subtree of T induced by S, and denote it by T}5. We obtain the binary subtree of T
induced by S, denoted by Tl*s, if we substitute edges for all maximal paths of 7}g
in which every internal vertex has degree two. Thus, T}s € B(S). If |S| = k, then
we refer to T’*S as a binary k-subtree.

Given a semilabelled binary tree T with leaf set S, deleting an edge e of T' dis-
connécts T into two components, and thereby induces a bipartition of S consisting
of the leaves of the two components. This bipartition is called a split of T' induced
by the edge e; the split is called non-trivial if both components contain at least 2
leaves. Buneman [3] showed that each semilabelled binary tree T is uniquely defined
by its non-trivial splits.
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For a semilabelled binary tree T € B(n), and for a quartet of leaves, ¢ =
{a.b,c,d} € (1), we say that t, = abled is a valid quartet split of T, if abled is a
split of TI*; It is easy to see that

if abled is a valid quartet split of T, then so are baled and cd|ab, (1)

and we understand these three splits as identical. If (1) holds, then aclbd and ad|bc
are not valid quartet splits of T, and we say that any of them contradicts (1).

2 TREE RECONSTRUCTION FROM AN INCOMPLETE SET OF
VALID QUARTET SPLITS

Let Q(T) = {tq 1q€ ([Z])} denote the set of valid quartet splits of T. It is a

classical result that Q(T) determines T (Colonius and Schulze [4], also Bandelt
and Dress [1]); indeed for each i € [n], {t, : i € ¢} determines T, and T can be
computed in polynomial time. For example, a simple algorithm for reconstructing
T from Q(T') is simply to build up T recursively from the tree with leaf set 1,2,3
by attaching (in any order) the remaining elements from [n] as new leaves to the
tree so far constructed. In this way, one uses @(7") to determine the unique edge
of each partial tree to which the new leaf must be attached by bisecting the edge
and making the recently created vertex adjacent to the new leaf.

An extension of Colonius and Schultze’s result [4] is that for any T' € B(n),
a carefully chosen subset of Q(T) of cardinality n — 3 determines T (Steel [9]).
Another extension is that an unknown semilabelled binary tree T' with n- leaves
can be constructed by asking at most O(nlogn) queries of the form: “what is ¢,?”
for a choice of ¢ that depends on the answers to the queries so far asked (Pearl and
Tarsi 7], Kannan, Lawler, and Warnow [6]).

It would be useful to tell from a set of quartet splits if they are valid quartet
splits of any semilabelled binary tree. Unfortunately, this problem is NP-complete
(Steel [9]). It also would be useful to know which subsets of Q(T") determine T and
which subsets would allow for a polynomial time procedure to reconstruct 7. A
natural step in this direction is to define inference: a set of quartet splits A infers
a quartet split ¢, if whenever A C Q(T) for a semilabelled binary tree T, then
ty € Q(T) as well.

Setting a complete list of inference rules seems hopeless (Bryant and Steel [2]).
However, having just some valid quartet splits of T, it is often possible to infer
additional valid quartet splits of T, for example (see [1], [2] or [5]):

if abled and ac|de are valid quartet splits of T,
then so are ab|ce, ab|de, and bclde; (2)
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if abljed and ab|ce are valid quartet splits of T, then so is ablde; (3)
if ablcd, ablef and ce|df are valid quartet splits of T', then so is ab|df.  (4)

In (2) and (3) we infer a valid quartet split from two other quartet splits. These
rules are called second order or dyadic rules. In (4) we see a third order rule. These
rules are due to Dekker [5]. A set of quartet splits A dyadically infers a quartet
split ¢, if ¢ can be derived from A by repeated applications of rules (1), (2} and (3).

It is worth mentioning that for every integer r there are inference rules of order
7 that cannot be inferred by repeated application of lower-order inference rules.
(See Dekker [5] and Bryant and Steel [2].)

We say that a set of quartet splits A semidyadically infers a quartet split ¢, if ¢
can be derived from A by repeated applications of rules (1) and (2). Quartet splits
(semi)dyadically inferred by a set of quartet splits can be computed in polynomial
time, and quartet splits (semi)dyadically inferred by a set of valid quartet splits
of a tree are valid. We denote by cls(A4) the set of all quartet splits semidyadi-
cally inferred by the set A of quartet splits. We say that a set of quartet splits A
(semi)dyadically determine T if they (semi)dyadically infer all valid quartet splits
of T, ie. Q(T); in other words, Q fully determines the'tree 7.

3 TREE RECONSTRUCTION FROM LOCAL QUARTETS

For a semilabelled binary tree T € B{(n), and a quartet of leaves, ¢ € ({Z}), let
Lr(q,e) denote the length (the number of edges) of the path P, of T}, which turned
into the edge e of T]’; We will abuse the notation somewhat and let Lr(g) denote
the length of the longest path of Tj, which is turned into an edge of Tltﬂ ie.
Lr(q) = max.Lpr(q,e). In [10] Steel et al. proved the following extension of the
classical result of Colonius and Shultze:

Theorem 1. For a semilabelled binary tree T on [n} (n > 4), let

D(Ty={qe€ <[Z]> : Lr(q) £ 18logn}.
Then S(T') = {t, valid quartet split of T : ¢ € D(T)} semidyadically determines
T. In particular, 7' can be reconstructed from S(T') in polynomial time.

The interesting point in this proposition is that the local quartets fully determine
the underlying binary tree. Based on this fact we built a reconstruction method for
Cavender—Farris trees (see [10]). Our main goal is to strengthen Theorem 1. We
need some more definitions.

- The depth of an edge e in a semilabelled binary tree T is the number of edges on
the path from e to the nearest leaf. The depth of T, d(T), is the maximum depth
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of any edge e in T. For example, the depth of a complete semilabelled binary tree
on n leaves is [log, n]. By contrast, a caterpillar on n leaves (the tree defined by
a path p = v1,vs,...,vn_2 in which v; and v,_> each has two adjacent leaves and
the neighbor of each remaining nodes on p is a leaf) has depth 1.

A cherry in a binary tree is a pair of leaves sharing a common neighbor, i.e. a pair

of leaves at distance two in the tree.

The following theorem is the main result of this paper:

Theorem 2. For a semilabelled binary tree T on [n], let
D(T) = {q € <[Z]> :Lr(q) <2d(T)+ 1 and Lr(g,e) =1,
where e is the internal edge of TITI} .

Then p(T) := {Tﬁ; : ¢ € D(T)} semidyadically determines 7. In particular, T’ can
be reconstructed from p(7') in polynomial time.

Proof. We use induction on n. The result holds for n = 4, so we suppose n > 4.
We distinguish two cases:

(a) Every leaf of T is in a cherry, i.e. the leaves of T can be matched ({1, [3),...,
(In—1,15), such that every pair (ly;,_;,l2;) forms a cherry.

(b) There is a leaf ! not covered by any cherry, i.e. [ is separated from any other
leaf by at least three edges.

In Case (a), let A; be the common neighbour of the leaves l;—; and [»;. The
deletion of all leaves of T results in a subtree T, whose leaves are just the A;’s.
Note that if E denotes the set of the T-leaves, E = {l3; : 1 =1,...,n/2}, then T"
is isomorphic to Tip. It is clear that d(T") = d(T) — 1.

During the proof we assign to quartet splits of 7' certain quartet splits of 7', and
call this operation eztenston. (The point of definition is to extend a valid quartet
split into valid quartet splits.)

For a quartet of T'-leaves, ¢' € Q(T'), where ty = A As|AcAq, we define the
standard general extension of ty by the quartet split ¢4 = lp.lop|laclza € Q(T). Now
for any quartet of T"-leaves ¢' € D(T"), we have

Lr(q) < Lp(g)+1<2(d - 1)+ 1]+ 1< 2d + 1,

and, if e is the internal edge of T7, then Lr(q,e) = Lr:(¢',e) = 1. Thus the
standard general extension ¢, of the valid quartet split t,, € p(T") belongs to p(T').
We define the non-standard general extensions of the valid quartet split ¢, similarly,
but we allow the substitution of one or more ly; with ly;_;. It is clear that every
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non-standard general extension belongs to p(T') as well. Therefore if p'(T) is the
set of all general extensions of ty € p(T”), then p’(T') is a subset of p(T").

For each leaf A; of T”, let X;,Y; denote the leaf sets of the two other rooted sub-
trees of T" incident with the unique neighbour of ; in 7", v;. Since p(7”) determines
, there is a quartet ¢; in D(T") containing /\j,/\ . and Ay, where A\;, € X, and
)\yl € Y;. We define the standard special extension of tq by t c= oy 1l211l2z lay,; -

It is easy to see that
Lr(g) < Lr(gy) +1<2(d-1)+1]+1<2d+1.

In addition, if e denotes the internal edge of T* then Lr(gj,e) = 1. Thus t,, €

p(T) holds. We define the non-standard speczal extensions of the previous Vahd
quartet split ¢, 7 similarly, but lo,; may be substituted by ly.,—1 and/or ly,; may

be substituted by ly,,_;. All the non-standard special extensions belong to p(T')
as well. Let p*(T) denote the set of all special extensions of 2 for every j =

1,2,...,n/2. Then p*(T') C p(T). Therefore

cly (p'(T) U p™(T)) € cla(p(T')). (3)

To finish the proof in Case (a), we now show that the left-hand side of (5) equals
Q(T), so that clo(p(T)) = Q(T), as claimed. For this purpose, let ¢, = L. l)l.lq
denote an arbitrary valid quartet split in 7. Let A4, Ay, Ac and Ay be the neighbours
of these T-leaves, respectively. If these four 7'-leaves are pairwise distinct, then
tg = AaAs|AcAq is a valid split; and since (by hypothesis) elo(p(T")) = Q(T"), there
is a sequence of inferences in T yielding t,, € Q(T") from p(7”), using rules (1)
and (2). Repeating the same sequence of inferences with the general extensions of
these quartet splits (and working in Q(T')), we infer ¢, as well.

If A\a = X = A; (where j is an integer between 1 and n/2), then for every
Ac € X; the valid quartet split ly;l5;_1]lcl2y, belongs to the left-hand side of (5).
If the nelghbour of I, happens to be A;,, then this is true by the definition of
the special extension. So we may assume that A, # A;,. By the preceding part
of this case analysis, the valid quartet split lo;,lc|l2y, lzj belongs to the left-hand
side of (5) (the neighbours of the four leaves are pairwise distinct). Using rule (1)
for the special extension ¢,,, we infer Iy, l5y,|l2;l2;—1. The application of the third
consequence in rule (2) infers I /5y, |l2;A2;-1. Finally, a second application of rule (1)
gives the required valid quartet split.

Similarly, the valid quartet split Io;Aa;_1|lcl2-; (again, Ac # Az;) belongs to the
left hand side of (5), as it is shown by the application of the same second order
inference rule for Iy, lc|l2y,l2; and for the “opposite” of the valid quartet split 2 ;.

If we change the role of A;; and A, we obtain analogous inferences. (Namely,
we can infer the quartet splits lojly;_1|lclay;, where A % Ay;.) Furthermore, since
in the use of inference rules \;; and A, do not play any special role, changing the
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role of Iy, (or lyy;) with an arbitrary leaf [; € X; (or € Y}, respectively), then we
obtain analogous inferences. Therefore the only remaining case is A. = Aq. Without
loss of generality we may assume that A, € X;. Due to the previous argument, we
have already inferred lz;la;_1]lzy, 1. and ly;lyy,|l.lg. The application of the second
consequence of the inference rule (2) infers l3;l2;-1|l.l4, which finishes the proof of
Case (a).

In Case (b), we use the following notations: let [ denote a leaf not covered by any
cherry, let A be the neighbour of [, and let A and I be the other two neighbours
of A (by the choice of [, these vertices exist and are of degree three). Let the two
subtrees attached to A and disjoint from A be denoted A and B, and assume that
the number of leaves in A is at most the number of leaves in B. Similarly, let the
two subtrees attached to I" be C and D, and assumne that the leaves in C' is at most
the number of leaves in D.

Let the semilabelled binary trees Tr and Tx be defined in the following way:
let T be the semilabelled binary tree generated by A, B, and the leaves [ and I
The semilabelled binary tree Ty is generated by C, D, and the leaves [ and A.

By induction, clz(p(T3)) = Q(T;) hold for i = A, I. Let the leaf ¢ € C be the
closest leaf to I" from C, and let the leaf a € A be the closest leaf to A from A.
Let R, be obtained from p(Tr) by omitting the quartet splits of the form I'zlyz,
where z # [, and substituting valid quartet splits I'l|yz € p(Tr) with quartet
splits cllyz € Q(T). Similarly, let R, be obtained from p(TAa) by omitting quartet
splits Az|yz for x # [ and substituting quartet splits Al|yz with allyz € Q(T).
We define the lift-up of valid quartet splits from p(T4) U p(Tr) considering them
being quartets from Q(T'), substituting I" by ¢ and A by a whenever necessary, i.e.
whenever I or A belong to the quartets. Therefore, the quartets in R, and R, are
lift-ups from some quartet splits of the subtrees T4 and Tr, respectively. We now
show that R, U R. is a subset of p(T). For this purpose, let t;, be the lift-up of
the valid quartet split t,; € p(T4) and similarly, let ¢, be the lift-up of the valid
quartet split t,; € p(TT).

It is easy to see that Lr(q.) = Lt1,(q),) except for some quartet splits of the
form t,, = la|yé. Similarly, Lr(¢q.) = L1.(q.) except for some quartet splits of
the form t,, = cl|af. What remains is to show that Lr(la|yé) < 2d(T) + 1 and
Lr(cd|aB) < 2d(T) + 1. Due to symmetry it is sufficient to prove the first claim
only. We will use the notation t, = cl|af.

For the pendant edge e of T}, incident with either o and 8, we have Ly(q,e) <
2d(T) + 1 since
LT(qve) = LTF (qa 6) S LTF (q) S Qd(TF) +1 S Qd(T) + 1.

For the edges e = (A, A) and e = (A, 1) we have Lr(gq,e) = 1. Thus, it remains to
establish that
Lr(g,e) <2d(T) +1 (6)
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for the edge € of Ty incident with c. If |C| = 1, then we have nothing to prove since
Lr(g,e) =2 <2d(T)+ 1.

Now for |C| > 1 suppose on contrary to (6) that Lr(g,e) > 2d(T) + 1. Then
dr(A,¢) > 2d(T) + 1 (where dr(z,y) denotes the distance of x and y in the tree T,
that is the length of the path from x to y). Since ¢ is the closest leaf in C to A, all
leaves in C are at distance > 2d(7T") + 1 from A. Let e* = (x,y) be an edge of C for
which dp(I,2) = d — 1 and dp(I',y) = d. By the definition of d(T), the depth of
e* is at most d(T"), therefore there must be a leaf I* of T at distance at most d(T")
from e*. On the one hand [* cannot belong to C since all leaves of C must be at
distance > d(T") + 1 from e* (by the assumption Lr(g,e) > 2d + 1). On the other
hand [* # [ since the distance dr(l,z) = d + 1. Finally, for every leaf I* € D, the
distance dp(l*,z) > d because the path from z to [* uses at least two edges of D
since D has at least two leaves. This contradiction proves that Lr(q,e) < 2d(T)+1
and therefore R. C p(T), and a similar argument shows that R, C p(T). Therefore
we have

cla(Re U R.) C cla(p(T)). (7

To finish the proof in Case (b), we are going to show that the left-hand side of (7)
equals Q(T), so that cl,(p(T)) = Q(T), as claimed. For this purpose, let b denote
the B-leaf in T, which is closest to A. Similarly, let d denote the closest leaf to
I' from D in T. We note that the distance dr(b,A\) < 2d(T') + 2 because we can
repeat the proof of formula (6) except that A can be of cardinality one. Therefore
d(b,A) < 2d(T) + 1. A similar condition holds for the leaf d € D which is the
closest one to I'. From know on, the letters a, b, c and d always refer to these fixed
leaves.

At first we show that the valid quartet split cz|yz € Q(T'), which is the lift-up of
the quartet split I'z|yz € p(Tr), belongs to the LHS of (7). Because I'z|yz € p(Tr),
therefore if z belongs to A, then y, z € B, and they are on different subtrees of the
neighbour @ of A. Furthermore, without loss of generality we may assume that b
is on the same subtree of ¢ as z.)

We know that d(z, A) < 2d(T) + 1, since I'z|yz € p(Tr). We just show that
d(b, A) < 2d + 1. Therefore the valid quartet split /c|zb belongs to R,.. Similarly,
lz|yb € R, also holds. Applying the first consequence of inference rule (2), we have
lelzy € cla(R.). Putting this together with lz|yz € R. (which follows from the
fact that d(I', A) = d(l, A4)) and applying again rule (2), consequence 3, we proved
that cz|yz € clo(R.). The symmetric claim aulvw € cla(R,) holds for the lift-up of
Auvw € p(Ta). Thus, we have proved:

the lift-up version of any element of p(Ta) or p(Tr) (®)
belongs to cla(R,) or cla(R,).

Let a and B denote two leaves in AUB. Since aB|{I" € Q(Tr), therefore, due to (8),
there is a “lifted up” inference sequence for ag)lc by semidyadic inference rules.
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For 7,6 € C U D we have a similar result. Thus, we have proved:

for leaves 7,6 € C U D allvé € cla(Ra), (9)
for leaves o, 8 € AU B af|lc € cla(R,). (10)

From now on, a, 3, and é always refer to leaves like above, but they are not fixed
leaves.

Assume that @ # o (if this is not true, then exchange the names a and f).
Similarly, we may assume that ¢ # 6. Applying the choice 3 = a, for property (10)
we have ac|lec € clo(R,.). Similarly, for v = ¢ and § = d in (9) we have al|cd €
clz(R,). The application of the first consequence of rule (2) gives:

L]

aalld € cl2(R, U R,). (11)

The substitution § = d in (9) gives al|yd € cla(R.). This, together with (11),
through the application of the third consequence of (2) gives:

allyd € cly(R, U R,). (12)
(10) together with (12) (where v = ¢) gives (through rule (2), first consequence)
af|ld € cla(R, U R,). (13)

Applying the symmetry rule (1) for (12) and (13) and using again the semidyadical
rule (2) with its third consequence and taking again its symmetric form, we have

af|ly € ela(R. U R,). (14)

Since v was not involved in the proof of (14) (except that v € R,UR.), the following
symmetric claim can also be inferred through similar reasoning:

allyé € cla(R. U R.). (15)
Properties (14) and (15) together with our inductive hypothesis give:
for any ¢; € Q(T) such that | € q,q; € clo(R, U R,). (16)
Furthermore (14) and (15) and the application of (2), first consequence, proves:
aflvé € cly(Ry UR,). : (17)
Finally, let =,y and z be leaves of AU B, Let ;c be on a subtree of A, where ¥ and

z are not. By (14) (and with symmetry) we have Iv|zy € clo(R, U R.). Moreover,
Iz|yz € R, due to our inductive hypothesis. These two together, through rule (2),
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third consequence, give zy|yz € cla(R, U R.). By symmetry, we also know the
analogous result with subtrees T4 and T exchanged; therefore we have proved:

. n .
if a quartet ¢ € ([4]> contains three leaves from T4, one leaf

(18)

from Ty, or vice versa, but I ¢ g, then t, € clr»(R, U R.).

Now, for the quartet ¢ = {s,u,v,w} such that every leaf € A U B U {l}, it is easy
to see that ¢ € Q(Tr); therefore t, € clo(p(Tr)), and the “lifted up” version of
this proof ensures that ¢, € clo(R.). This fact (and its analogues for the other
half-graph) together with properties (16), (17) and (18) finish the proof of Case
(b), and we are done. 0

It is worth noting that Theorem 2 strengthens Theorem 1, as it is shown by the
following result:

Lemma 3. For any semilabelled binary tree T on [n],d(T) < log,n — 1.

Proof. Suppose edge e of T has maximal depth d = d(T'). Then there is a set
V. of at least 2¢ vertices at distance d — 1 from e, and none of these can be a
leaf of T. For v € V, let S(v) be set of leaves of T that become separated from
¢ upon deletion of v. Since S(v) N S(v') = @ for v # 2/, and |S(v)] > 2, we have
n=|Usev, S(v)] > 2|V.| > 2 x 2% = 29%! | a5 claimed. o
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ABSTRACT: A phylogenetic tree, also called an “evolutionary tree,” is a leaf-labeled tree
which represents the evolutionary history for a set of species, and the construction of such
trees is a fundamental problem in biology. Here we address the issue of how many sequence
sites are required in order to recover the tree with high probability when the sites evolve
under standard Markov-style ii.d. mutation models. We provide analytic upper and lower
bounds for the required sequence length, by developing a new polynomial time algorithm. In
particular, we show when the mutation probabilities are bounded the required sequence
length can grow surprisingly slowly (a power of log n) in the number n of sequences, for
almost all trees. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 153—184, 1999

1. INTRODUCTION

Rooted leaf-labeled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology, where such trees are
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called phylogenies. Molecular techniques have recently provided large amounts of
sequence data which are being used to reconstruct such trees. These methods
exploit the variation in the sequences due to random mutations that have occurred
at the sites, and statistically based approaches typically assume that sites mutate
independently and identically according to a Markov model. Under mild assump-
tions, for sequences generated by such a model, one can recover, with high
probability, the underlying unrooted tree provided the sequences are sufficiently
long in terms of the number k of sites. How large this value of & needs to be
depends on the reconstruction method, the details of the model, and the number n
of species. Determining bounds on k and its growth with » has become more
pressing since biologists have begun to reconstruct trees on increasingly large
numbers of species, often up to several hundred, from such sequences.

With this motivation, we provide upper and lower bounds for the value of &
required to reconstruct an underlying (unrooted) tree with high probability, and
address, in particular, the question of how fast k& must grow with n. We first show
that under any model, and any reconstruction method, kK must grow at least as fast
as log n, and that for a particular, simple reconstruction method, it must grow at
least as fast as nlogn, for any ii.d. model. We then construct a new tree
reconstruction method (the dyadic closure method) which, for a simple Markov
model, provides an upper bound on k which depends only on n, the range of the
mutation probabilities across the edges of the tree, and a quantity called the
“depth” of the tree. We show that the depth grows very slowly (O(loglog n)) for
almost all phylogenetic trees (under two distributions on trees). As a consequence,
we show that the value of k required for accurate tree reconstruction by the dyadic
closure method needs only to grow as a power of log n for almost all trees when
the mutation probabilities lie in a fixed interval, thereby improving results by
Farach and Kannan in [23].

The structure of the paper is as follows. In Section 2 we provide definitions, and
in Section 3 we provide lower bounds for k. In Section 4 we describe a technique
for reconstructing a tree from a partial collection of subtrees, each on four leaves.
We use this technique in Section 5, as the basis for our “dyadic closure” method.
Section 6 is the central part of the paper, here we analyze, using various probabilis-
tic arguments, an upper bound on the value of k required for this method to
correctly recover the underlying tree with high probability, when the sites evolve
under a simple, symmetric 2-state model. As this upper bound depends critically
upon the depth (a function of the shape of the tree) we show that the depth grows
very slowly (O(loglog n)) for a random tree selected under either of two distribu-
tions. This gives us the result that & need grow only sublinearly in n for nearly all
trees.

Our follow-up paper [21] extends the analysis presented in this paper for more
general, r-state stochastic models, and offers an alternative to dyadic closure, the
“witness—antiwitness” method. The witness—antiwitness method is faster than the
dyadic closure method on average, but does not yield a deterministic technique for
reconstructing a tree from a partial collection of subtrees, as the dyadic closure
method does; furthermore, the witness—antiwitness method may require somewhat
longer (by a constant multiplicative factor) input sequences than the dyadic closure
method.
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2. DEFINITIONS

Notation. [P[A] denotes the probability of event A4; E[ X] denotes the expectation
of random variable X. We denote the natural logarithm by log. The set [n] denotes

{1,2,...,n} and for any set S, (i) denotes the collection of subsets of S of size k.
R denotes the real numbers.

Definitions. (I) Trees. We will represent a phylogenetic tree T by a tree whose
leaves (vertices of degree 1) are labeled (by extant species, numbered by 1,2,...,n)
and whose remaining internal vertices (representing ancestral species) are unla-
beled. We will adopt the biological convention that phylogenetic trees are binary,
so that all internal nodes have degree 3, and we will also assume that 7T is
unrooted, for reasons described later in this section. There are 2n —5)!!'=Q2n —
5)2n —7)---3-1 different binary trees on n distinctly labeled leaves.

The edge set of the tree is denoted by E(T). Any edge adjacent to a leaf is
called a leaf edge, any other edge is called an internal edge. The path between the
vertices u and v in the tree is called the uv path, and is denoted P(u,v). For a
phylogenetic tree T and S C[n], there is a unique minimal subtree of T, contain-
ing all elements of S. We call this tree the subtree of T induced by S, and denote it
by Ts. We obtain the contracted subtree induced by S, denoted by T}, if we
substitute edges for all maximal paths of 7| in which every internal vertex has
degree 2. Since all trees are assumed to be binary, all contracted subtrees,
including, in particular, the subtrees on four leaves, are also binary. We use the
notation ij|kl for the contracted subtree on four leaves i, j, k,! in which the pair
i, ] is separated from the pair &,/ by an internal edge, and we also call ij|kl a valid
quartet split of T. Clearly any four leaves i, j, k,/ in a binary tree have exactly one
valid quartet split out of ijlkl, ikl jl, il|kj.

The topological distance d(u,v) between vertices u and v in a tree T is the
number of edges in P(u,v). A cherry in a binary tree is a pair of leaves at
topological distance 2. The diameter of the tree T, diam(T), is the maximum
topological distance in the tree. For an edge e of T, let 7, and 7, be the two
rooted subtrees of T obtained by deleting edge e from 7', and for i = 1,2, let d,(e)
be the topological distance from the root of 7; to its nearest leaf in 7,. The depth
of T is max, max{d,(e), d,(e)}, where e ranges over all internal edges in 7. We say
that a path P in the tree T is short if its topological length is at most depth(T) + 1,
and say that a quartet i,j,k,l is a short quartet if it induces a subtree which
contains a single edge connected to four disjoint short paths. The set of all short
quartets of the tree T is denoted by Qy,.(T). We will denote the set of valid
quartet splits for the short quartets by Q% . .(T).

(I1) Sites. Let us be given a set C of character states (such as C={4,C,G, T}
for DNA sequences; C = {the 20 amino acids} for protein sequences; C ={R,Y} or
{0,1} for purine-pyrimidine sequences). A sequence of length k is an ordered
k-tuple from C—that is, an element of C*. A collection of n such sequences—one
for each species labeled from [n]—is called a collection of aligned sequences.
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Aligned sequences have a convenient alternative description as follows. Place
the aligned sequences as rows of an n X k matrix, and call sife i the ith column of
this matrix. A pattern is one of the |C|" possible columns.

(IID Site substitution models. Many models have been proposed to describe,
stochastically, the evolution of sites. Usually these models assume that the sites
evolve identically and independently under a distribution that depends on the
model tree. Most models are more specific and also assume that each site evolves
on a rooted tree from a nondegenerate distribution 7 of the r possible states at
the root, according to a Markov assumption (namely, that the state at each vertex
is dependent only on its immediate parent). Each edge e oriented out from the
root has an associated r Xr stochastic transition matrix M(e). Although these
models are usually defined on a rooted binary tree 7 where the orientation is
provided by a time scale and the root has degree 2, these models can equally well
be described on an unrooted binary tree by (i) suppressing the degree 2 vertex in T,
(ii) selecting an arbitrary vertex (leaves not excluded), assigning to it an appropriate
distribution of states 7', possibly different from 7, and (iii) assigning an appropri-
ate transition matrix M'(e) [possibly different from M(e)] for each edge e. If we
regard the tree as now rooted at the selected vertex, and the “appropriate” choices
in (ii) and (iii) are made, then the resulting models give exactly the same distribu-
tion on patterns as the original model (see [46]) and as the rerooting is arbitrary we
see why it is impossible to hope for the reconstruction of more than the unrooted
underlying tree that generated the sequences under some time-induced, edge-
bisection rooting. The assumption that the underlying tree is binary is also in
keeping with the assumption in systematic biology, that speciation events are
almost always binary.

(IV) The Neyman model. The simplest stochastic model is a symmetric model
for binary characters due to Neyman [37], and also developed independently by
Cavender [12] and Farris [25]. Let {0, 1} denote the two states. The root is a fixed
leaf, the distribution 7 at the root is uniform. For each edge e of T we have an
associated mutation probability, which lies strictly between 0 and 0.5. Let p:
E(T) - (0,0.5) denote the associated map. We have an instance of the general
Markov model with M(e),, = M(e),, = p(e). We will call this the Neyman 2-state
model, but note that it has also been called the Cavender—Farris model. Neyman’s
original paper allows more than 2 states.

The Neyman 2-state model is hereditary on the subsets of the leaves—that is, if
we select a subset S of [#], and form the subtree T‘ ¢, then eliminate vertices of
degree 2, we can define mutation probabilities on the edges of 7§ so that the
probability distribution on the patterns on § is the same as the marginal of the
distribution on patterns provided by the original tree 7. Furthermore, the mutation
probabilities that we assign to an edge of 75 is just the probability p that the
endpoints of the associated path in the original tree T are in different states. The
probability that the endpoints of a path p are in different states is nicely related to
the mutation probabilities p,, p,,..., p, of edges of the k-path,

1 k
p=5(1—l_[(1—2p,~))- (1)
i=1

Formula (1) is well known, and is easy to prove by induction.
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(V) Distances. Any symmetric matrix, which is zero-diagonal and positive off-
diagonal, will be called a distance matrix. An n X n distance matrix D;; is called
additive, if there exists an n-leaf (not necessarily binary) with positive edge weights
on the internal edges and nonnegative edge weights on the leaf edges, so that D;;
equals the sum of edge weights in the tree along the P(i,j) path connecting i and
j. In [10], Buneman showed that the following Four-Point Condition characterizes
additive matrices (see also [42] and [53]):

Theorem 1 (Four-Point Condition). A matrix D is additive if and only if for all
i,j,k,1 (not necessarily distinct), the maximum of D; + Dy, Dy + Dy, Dy + Dy is
not unique. The edge-weighted tree with positive weights on internal edges and
nonnegative weights on leaf edges representing the additive distance matrix is
unique among the trees without vertices of degree 2.

Given a pair of parameters (T, p) for the Neyman 2-state model, and sequences
of length k generated by the model, let H(i,j) denote the Hamming distance of
sequences i and j and

H(iL))
hii =
k

(2)

denote the dissimilarity score of sequences i and j. The empirical corrected distance
between i and j is denoted by

d; = —log(1 —2hil). (3)

ij

The probability of a change in the state of any fixed character between the
sequences i and j is denoted by E”/ = E(h"), and we let

D,;= —3log(1—-2E") (4)

denote the corrected model distance between i and j. We assign to any edge e a
positive weight,

w(e) = —z3log(1-2p(e)). (%)

By Eq. (1), D;; is the sum of the weights (see previous equation) along the path
P(i, j) between i and j. Therefore, d;; converges in probability to D;; as k — .
Corrected distances were introduced to handle the problem that Hamming dis-
tances underestimate the “true evolutionary distances.” In certain continuous time
Markov models the edge weight means the expected number of back-and-forth
state changes along the edge, and defines an additive distance matrix.

(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function
@ that associates either a tree or the statement f ai | to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection
for the data given. Some methods are based upon sequences, while others are
based upon distances.
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According to the practice in systematic biology (see, for example, [29, 30, 49]), a
method is considered to be accurate if it recovers the unrooted binary tree 7', even
if it does not provide any estimate of the mutation probabilities. A necessary
condition for accuracy, under the models discussed above, is that two distinct trees,
T,T’, do not produce the same distribution of patterns no matter how the trees are
rooted, and no matter what their underlying Markov parameters are. This “iden-
tifiability” condition is violated under an extension of the i.i.d. Markov model when
there is an unknown distribution of rates across sites as described by Steel, Székely,
and Hendy [46]. However, it is shown in Steel [44] (see also Chang and Hartigan
[13] that the identifiability condition holds for the i.i.d. model under the weak
conditions that the components of 7 are not zero and the determinant det(M(e))
#0,1, —1, and in fact we can recover the underlying tree from the expected
frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods
applied to corrected distances will recover the correct tree topology from suffi-
ciently long sequences. Consequently, one approach to reconstructing trees from
distances is to seek an additive distance matrix of minimum distance (with respect
to some metric on distance matrices) from the input distance matrix. Many metrics
have been considered, but all resultant optimization problems have been shown or
are assumed to be NP-hard; see [1, 15, 24].

We will use a particular simple distance method, which we call the (Extended
Four-Point Method (FPM), to reconstruct trees on four leaves from a matrix of
interleaf distances.

Four-Point Method (FPM). Given a 4 X 4 distance matrix d, return the set of splits
ijlkl which satisfy d;; + dy; < min{d,;, +d;;, d;; + d ;).

Note that the Four-Point Method can return one, two, or three splits for a given
quartet. One split is returned if the minimum is unique, two are returned if the two
smallest values are identical but smaller than the largest, and three are returned if
all three values are equal.

In [26], Felsenstein showed that two popular methods—maximum parsimony and
maximum compatibility—can be statistically inconsistent, namely, for some parame-
ters of the model, the probability of recovering the correct tree topology tends to 0
as the sequence length grows. This region of the parameter space has been
subsequently named the “Felsenstein zone.” This result, and other more recent
embellishments (see Hendy [28], Zharkikh and Li [54], Takezaki and Nei [50], Steel,
Székely, and Hendy [46]), are asymptotic results—that is, they are concerned with
outcomes as the sequence length, k, tends to infinity.

We consider the question of how many sites k must be generated independently
and identically, according to a substitution model M, in order to reconstruct the
underlying binary tree on n species with prespecified probability at least € by a
particular method ®. Clearly, the answer will depend on ®, €, and 7, and also on
the fine details of M—in particular the unknown values of its parameters. It is
clear that for all models that have been proposed, if no restrictions are placed on
the parameters associated with edges of the tree then the sequence length might
need to be astronomically large, even for four sequences, since the “edge length”
of the internal edge(s) of the tree can be made arbitrarily short (as was pointed out
by Philippe and Douzery [38]). A similar problem arises for four sequences when
one or more of the four noninternal edges is “long”’—that is, when site saturation
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has occurred on the line of descent represented by the edge(s). Unfortunately, it is
difficult to analyze how well methods perform for sequences of a given length, k.
There has been some empirical work done on this subject, in which simulations of
sequences are made on different trees and different methods compared according
to the sequence length needed (see [31] for an example of a particularly interesting
study of sequence length needed to infer trees of size 4), but little analytical work
(see, however, [38]).

In this paper we consider only the Neyman 2-state model as our choice for M.
However, our results extend to the general i.i.d. Markov model, and the interested
reader is referred to the companion paper [21] for details.

3. LOWER BOUNDS

Since the number of binary trees on n leaves is (2n — 5)!!, encoding deterministi-
cally all such trees by binary sequences at the leaves requires that the sequence
length, k, satisfy (2n — 5)!! < 2", i.e., k = Q(log n). We now show that this infor-
mation-theoretic argument can be extended for arbitrary models of site evolution
and arbitrary deterministic or even randomized algorithms for tree reconstruction.
For each tree, T, and for each algorithm A, whether deterministic or randomized,
we will assume that T is equipped with a mechanism for generating sequences,
which allows the algorithm A to reconstruct the topology of the underlying tree T
from the sequences with probability bounded from below.

Theorem 2. Let A be an arbitrary algorithm, deterministic or randomized, which is
used to reconstruct binary trees from 0-1 sequences of length k associated with the
leaves, under an arbitrary model of substitutions. If A reconstructs the topology of any
binary tree T from the sequences at the leaves with probability greater than e (respec-
tively, greater than 1), then (2n — 5)!!e < 2"* (respectively, 2n — S)!! < 2" under the
assumption of (stochastic) independence of the substitution model and the reconstruc-
tion) and so k = Q(log n).

We prove this theorem in a more abstract setting:

Theorem 3. We have finite sets X and S and random functions f: S — X and
g X—S.

() If Plfg(x)=x]> € for all x € X then |S| > €| X|.
(i) If f, g are independent and P fg(x) =x]> 1 for all x € X then |S| > | X|.

Proof.  Proof of (i). By hypothesis €| X| <X P[fg(x)=x]=X X ,P[g(x)=s and
(&) =x]< (X, Plf(s)=xD=X1=ISI

Proof of (il). First note that P[ fg(x) =y]= X P[f(s) =y]P[g(x) = s] by indepen-
dence. Observe that for each x, there exists an s =s, for which P[f(s,)=x]1> 3,
since otherwise we have P[fg(x)=x]<4. Now, the map sending x to s, is
one-to-one from X into S (and so | X|<|[S| as required) since otherwise, if two
elements get mapped to s, then 1 =X P[f(s) =x]> 5 + 1. [ |
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The following example shows that our theorem is tight for e<1: Let X =
(X115 X105 X015 X9y - -y X 15 X000 @and S = {1, 2 .,n}, and let g(x;; ) i (with probabil-
ity 1); and let (i) =x,, with probability 1; x,2 with probablhty 5. Then P[ fg(x) =
x]=73, so Plfg(x)=x]> ¢, for any epsilon less than 1. However, notice that
X1/2 =S|

Curiously, once € exceeds 3 we must have |X|<|S|, under the assumption of
independence. Examples [52] show that the assumption of independence is neces-
sary. Independence is a reasonable assumption if we try to apply this result for
evolutionary tree reconstruction, and holds automatically if the tree reconstruction
method is deterministic.

This lower bound applied to an arbitrary algorithm, but particular algorithms
may admit much larger lower bounds. Consider, for example, the Maximum
Compatibility Method (MC), which we now define. Given a set of binary sequences,
each site defines a partition of the sequences into two sets, those containing a 0 in
that position, and those containing a 1 in that position. The site is said to be
compatible on a tree T if the tree T contains an edge whose removal would define
the same partition. The objective of the maximum compatibility method is a tree T
which has the largest number of sites compatible with it. Maximum compatibility is
an NP-hard optimization problem [16], although the MC method can clearly be
implemented as a nonpolynomial time algorithm. We now show that the sequence
length needed by MC to obtain the correct topology with constant probability must
grow at least as fast as nlogn.

Theorem 4. Assume that 2-state sites on n species evolve on a binary tree T
according to any stochastic model in which the sites evolve identically and indepen-
dently. Let k(n) denote the smallest number of sites for which the Maximum Compati-
bility Method is guaranteed to reconstruct the topology of T with probability greater than
1. Then, for n large enough,

k(n) > (n—3)log(n—3) —(n—3). (6)

Proof. We say that a site is trivial if it defines a partition of the sequences into
one class or into two classes so that one of the classes is a singleton. Now, fix x and
assume that we are given k* = [(n — 3)log(n — 3) + x(n — 3)] nontrivial sites inde-
pendently selected from the same distribution. We show that the probability of
obtaining the correct tree under MC is at most e ¢~ for n large enough. This
proves the theorem by setting x = —1, since k(n) = k*|,_ _; is needed.

Let o(T) denote the set of internal splits of 7. Since T is binary, |o(T)|=n —3
[10]. For o € o(T), let the random variable X, be the number of nontrivial sites
which induce split . Define X =%, . , X, . A necessary (though not sufficient)
condition for maximum compatibility to select T is that all the internal splits of T
are present among the k* nontrivial sites. Thus, we have the inequality,

P[MC(S)=T] <P[N, c yr{ X, > 0}]

*

P[OUEO’(T){XU>0}|X=I.] XP[X=i]
1

>~

i

I/\

ini)l(c [P)[nu'e U'(T){XU'> O}|X= l]
P[N

e ol Xy > 0} X =k*]. (7)
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Let p(o) denote the probability of generating split o at a particular site. Due to
the model, p(o) does not depend on the site. It is not difficult to show that (7) is
maximized when the p(o)s are all equal (o € o(T)) and sum to 1.

Indeed, by compactness arguments, there exists a probability distribution maxi-
mizing (7). We show that it cannot be nonuniform, and therefore the uniform
distribution maximizes (7). Assume that the maximizing distribution p is nonuni-
form, say, p(o)# p(p). We introduce a new distribution p’ with p'(o)=p'(p)
=1(p(a)+p(p), and p'(a)=p(a) for a+ o, p. The probability of having
exactly i sites supporting o or p is the same for p and p’. Conditioning on the
number of sites supporting o or p, it is easy to see that any distribution of sites
supporting all nontrivial splits has strictly higher probability in p’ than in p.

Knowing that the p(o)s are all equal (o € o(T)) and sum to 1, determining (7)
is just the classical occupancy problem where k* balls are randomly assigned to
n — 3 boxes with uniform distribution, and one asks for the probability that each
box has at least one ball in it. Equation (6) now follows from a result on the
asymptotics of this problem (Erdés and Rényi [18]): for x € R, k* balls (k* as
defined above), and n — 3 boxes, the limit of probability of filling each boxes is

—e X
e ¢ . |

This theorem shows that the sequence length that suffices for the MC method to
be accurate is in Q(n log n), but does not provide us with any upper bound on that
sequence length. This upper bound remains an open problem.

In Section 5, we will present a new method [the Dyadic Closure Method (DCM)]
for reconstructing trees. DCM has the property that for almost all trees, with a
wide range allowed for the mutation probabilities, the sequence length that suffices
for correct topology reconstruction grows no more than polynomially in the lower
bound of log n (see Theorem 2) required for any method. In fact the same holds
for all trees with a narrow range allowed for the mutation probabilities. First,

however, we set up a combinatorial technique for reconstructing trees from
selected subtrees of size 4.

4. DYADIC INFERENCE OF TREES

Certain classical tree reconstruction methods [6,14,47,48,55] are based upon
reconstructing trees on quartets of leaves, them combining these trees into one
tree on the entire set of leaves. Here we describe a method which requires only
certain quartet splits be reconstructed (the “representative quartet splits”), and
then infers the remaining quartet splits using “inference rules.” Once we have
splits for all the possible quartets of leaves, we can then reconstruct the tree (if one
exists) that is uniquely consistent with all the quartet splits.

In this section, we prove a stronger result than was provided in [19], that the
representative quartet splits suffice to define the tree. We also present a tree
reconstruction algorithm, DCTC (for Dyadic Closure Tree Construction) based upon
dyadic closure. The input to DCTC is a set Q of quartet splits and we show that
DCTC is guaranteed to reconstruct the tree properly if the set O contains only
valid quartet splits and contains all the representative quartet splits of 7. We also
show that if Q contains all representative quartet splits but also contains invalid
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quartet splits, then DCTC discovers incompatibility. In the remaining case, where
Q does not contain all the representative quartet splits of any 7, DCTC returns
Inconsistent (and then the input was inconsistent indeed), or a tree (which is then
the only tree consistent with the input), or Insufficient.

4.1. Inference Rules

Recall that, for a binary tree 7 on n leaves, and a quartet of leaves,
g={a,b,c,d} € ([Z]), t,=ablcd

is a valid quartet split of T if T = ablcd (i.., there is at least one edge in T whose
removal separates the pair a, b from the pair c,d). It is easy to see that

if ablcd is a valid quartet split of T, then so are balcd and cd|ab, (8)

and we identify these three splits; and if ablcd holds, then ac|bd and ad|bc are not
valid quartet splits of T, and we say that any of them contradicts ablcd. Let

om=|reas ()

denote the set of valid quartet splits of T. It is a classical result that Q(T)
determines T (Colonius and Schulze [14], Bandelt and Dress [6]); indeed for each
i €[n], {tq: i €q} determines T, and T can be computed from {tq: ieq} in
polynomial time.

It would be nice to determine for a set of quartet splits whether there is a tree
for which they are valid quartet splits. Unfortunately, this problem is NP-complete
(Steel [43]). It also would be useful to know which subsets of Q(T') determine T,
and for which subsets a polynomial time procedure would exist to reconstruct 7. A
natural step in this direction is to define inference: we can infer from a set of
quartet splits A4 a quartet split ¢, if whenever A € Q(T) for a binary tree T, then
t € Q(T) as well.

Instead, Dekker [17] introduced a restricted concept, dyadic and higher order
inference. Following Dekker, we say that a set of quartet splits A dyadically implies
a quartet split ¢, if ¢ can be derived from A by repeated applications of rules

(8)—(10):
if ablcd and aclde are valid quartet splits of T,
then so are ab|ce, ab|de, and bc|de, (9)

and,
if ablcd and ab|ce are valid quartet splits of 7', then so is ab|de. (10)

It is easy to check that these rules infer valid quartet splits from valid quartet splits,
and the set of quartet splits dyadically inferred from an input set of quartet splits
can be computed in polynomial time. Setting a complete list of inference rules
seems hopeless (Bryant and Steel [9]): for any r, there are r-ary inference rules,



FEW LOGS SUFFICE TO BUILD (ALMOST) ALL TREES 163

which infer a valid quartet split from some r valid quartet splits, such that their
action cannot be expressed through lower order inference rules.

4.2. Tree Inference Using Dyadic Rules

In this section we define the dyadic closure of a set of quartet splits, and describe
conditions on the set of quartet splits under which the dyadic closure defines all
valid quartet splits of a binary tree. This section extends and strengthens results
from earlier work [19, 45].

Definition 1. Given a finite set of quartet splits O, we define the dyadic closure
cl(Q) of Q as the set of quartet splits than can be inferred from Q by the repeated
use of the rules (8—10). We say that Q is inconsistent, if Q is not contained in the
set of valid quartet splits of any tree, otherwise Q is consistent. For each of the
n — 3 internal edges of the n-leaf binary tree T we assign a representative quartet
{s,5,,53,5,) as follows. The deletion of the internal edge and its endpoints defines
four rooted subtrees ¢,,t,,5,t,. Within each subtree ¢;, select from among the
leaves which are closest topologically to the root the one, s;, which is the smallest
natural number (recall that the leaves of our trees are natural numbers). This
procedure associates to each edge a set of four leaves, i, j, k, I. (By construction, it
is clear that the quartet i, j, k,/ induces a short quartet in 7—see Section 2 for the
definition of “short quartet.”) We call the quartet split of a representative quartet
a representative quartet split of T, and we denote the set of representative quartet
splits of T" by R;.

The aim of this section is to show that the dyadic closure suffices to compute the
tree T from any set of valid quartet splits of 7" which contain R,. We begin with:

Lemma 1. Suppose S is a set of n — 3 quartet splits which is consistent with a unique
binary tree T on n leaves. Furthermore, suppose that S can be ordered q,...,q,_5 in
such a way that q; contains at least one label which does not appear in {q,,...,q;_}
fori=2,...,n — 3. Then, the dyadic closure of S is Q(T).

Proof.  First, observe that it is sufficient to show the lemma for the case when g;
contains exactly one label which does not appear in{q,,...,q;_;} fori=2,...,n =3,
since n — 4 quartets have to add n — 4 new vertices. Let S, ={q,,...,¢,;}, and let L,
be the union of the leaves of the quartet splits in §;, and let 7, = 7|7 be the binary
subtree of T induced by L,. We first make

Claim 1. The only tree on L; consistent with S, is T, for 1,...,n —3.

Proof of Claim 1. The claim is true by the hypothesis of Lemma 1 for i =n — 3;
suppose for some i <n —3 it is false. Then there exist (at least) two trees that
realize S;, one of which is T, the other we will call T#. Now each quartet
Git15--->q,_5 adds a new leaf to the tree so far constructed from 7, and T#. Now
for each quartet we can always attach that new leaf in at least one position in the
tree so far constructed so as to satisfy the corresponding quartet split (and all
earlier ones, since they don’t involve that leaf). Thus we end up with two trees
consistent with S, and these are different trees since when we restrict them to L,,
they differ. But this contradicts our hypothesis. ]
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Next we make

Claim 2. If x is the new leaf introduced by q,_, = xalbc then x and a form a cherry
of T.

Proof of Claim 2. First assume that x belongs to the cherry xy but a #y. Since
this quartet is the only occurrence of x we do not have any information about this
cherry, therefore the reconstruction of the tree 7' cannot be correct, a contradic-
tion.

Now assume that x is not in a cherry at all. Then the neighbor of x has two
other neighbors, and those are not leaves. In turn they have two other neighbors
each. Hence, we can describe x’s place in T in the following representation in
Fig. 1: take a binary tree with five leaves, label the middle leaf x, and replace the
other four leaves by corresponding subtrees of 7.

Now suppose g, ; = ax|bc. Regardless of where a,b,c come from (among the
four subtrees in the representation), we can always move x onto at least two of the
other four edges in T, and so obtain a different tree consistent with S (recall that
q,_5 is the only quartet containing x, and thereby the only obstruction to us
moving x!). Since the theorem assumes that the quartets are consistent with a
unique tree, this contradicts our assumptions. ]

Finally, it is easy to show the following:

Claim 3. Suppose xy is a cherry of T. Select leaves a, b from each of the two subtrees
adjacent to the cherry. Let T' be the binary tree obtained by deleting leaf x. Then
cl(Q(T") U {xylab}) = O(T).

Now, we can apply induction on n to establish the lemma. It is clearly
(vacuously) true for n =4, so suppose n > 4. Let x be the new leaf introduced by
q,_3, and let the binary tree 7' be T with x deleted.

In view of Claim 1, S,_, is a set of n — 4 quartets that define 7, _, =T", a tree
on n — 1 leaves and which satisfy the hypothesis that g; introduces exactly one new
leaf. Thus, applying the induction hypothesis, the dyadic closure of S,_, is Q(T").
Since § = S,,_ contains S, _,, the dyadic closure of S also contains Q(7"), which is
the set of all quartet splits of 7 that do not include x.

Catin”

Fig. 1. Position of a leaf x, which is not a cherry, in a binary tree.
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Now, by Claim 2, x is in a cherry; let its sibling in the cherry be y, so
q, 5 = ablxy, say, where a and b must lie in each of the two subtrees adjacent to
the cherry. (It is easy to see that if a, b both lie in just one of these subtrees, then
S would not define T.)

Now, as we just said, the dyadic closure of S contains Q(7”) and it also contains
ablxy (where a,b are as specified in the preceding paragraph) and so by the
idempotent nature of dyadic closure [i.e., cl(B) = cl(cl(B))] it follows from Claim 3
that the dyadic closure of S equals Q(T). E B N

Lemma 2. The set of representative quartet splits R, of a binary tree T satisfies the
conditions of Lemma 1. Hence, the dyadic closure of Ry is Q(T).

Proof. In order to make an induction proof possible, we make a more general
statement. Given a binary tree 7" with a positive edge weighting w, we define the
representative quartet of an edge e to be the quartet tree defined by taking the
lowest indiced closest leaf in each of the four subtrees, where we define “closest”
in terms of the weight of the path (rather than the topological distance) to the root
of the subtree. We also define the representative quartet splits of the weighted tree,
Ry, as in the definition of representative quartets of unweighted trees, with the
only change being that each s; €¢, is selected to minimize the weighted path length
rather than topological path length (i.e., the edge weights on the path are summed
together, to compute the weighted path length). Observe that if all weights are
equal to 1, then we get back the original definitions. When turning to binary
subtrees of a given weighted tree, we assign the sum of weights of the original
edges to any newly created edge which is composed of them, and denote the new
weighting by w*. Now we can easily prove by induction the following generalization
of the statement of Lemma 2:

Claim 4. Take the set of representative quartet splits Ry, of a weighted n-leaf binary
tree T. Then for every other n-leaf binary tree F, we have that Ry, € Q(F) implies

T =F as unweighted trees. Furthermore, Ry ,, can be ordered q,,...,q, 5 in such a
way that q; contains exactly one label that does not appear in {q,...,q;_,} for
i=2,...,n-3.

Proof of Claim 4. First we show that the only tree consistent with the set of
representative splits R, of a binary tree 7 is T itself. Look for the smallest (in n)
counterexample 7, such that R, , € Q(F) for a tree F # T. Clearly n has to be at
least 5. Therefore T has at least two different cherries, say xy and uv, such that
d(u, x) > 4. Let us denote by w(l) the weight of the leaf edge corresponding to the
leaf 1. If w(x) <w(y) or [w(x) =w(y) and x <y], then due to the construction of
R; ,, vertex y occurs in exactly one elements of R; ,, say p, which is the
representative of the edge that separates xy from the rest of the tree. A similar
argument would show that one of u,v, say v, occurs in exactly one element of
Ry, say g. It also follows that p # q. It is not difficult to check that

RTE‘,,]\U.), w =Ry \(p} and RT\E“,.]\(,»,W* =Rr\{q} (11)



166 ERDOS ET AL.

according to the definition of weight after contracting edges, where T is the
binary tree obtained by contracting paths into edges in the subtree of 7" spanned
by the vertex set K. Hence, by the minimality of the counterexample, T\ () =
Fiavy and T oy = Fiiupn - We know that any edge of F defines a bipartition of

[n], and traces of these bipartitions on [r]\{y} and [n]\{v} are exactly the
bipartitions produced by the edges of F,(, on [#]\{y} and the bipartitions
produced by the edges of Fif,\ (,y on [n]\{v}. Therefore also in F both xy and uv
make cherries, and hence T = F, a contradiction.

For the other part of the claim, it immediately follows by induction from
formula (11) that R, can be ordered so that every quartet in the order contains
at least one (and therefore exactly one) new leaf. [Eliminate quartet splits recur-
sively using (11), and put R, ,, in the reverse order.] [ |

Note that the generalization for weighted trees was necessary, since without
weights formula (11) would fail. E B N

We note here that representative quartets cannot be defined by selecting any
nearest leaf in the four subtrees associated with an internal edge. For example,
consider the tree T on six leaves labeled 1 through 6, with a central vertex and
cherries (1,2), (3,4), and (5, 6), hanging from the central vertex. If we selected the
quartet splits by arbitrarily picking closest leaves in each of the four subtrees
around each internal edge, we could possibly select splits 12|36, 34|15, and 56[24;
however, these splits do not uniquely identify the tree T, since the tree with
cherries 15, 24, and 36, is also consistent with these quartets.

4.3. Dyadic Closure Tree Construction Algorithm

We now present the Dyadic Closure Tree Construction method (DCTC) for
computing the dyadic closure of a set Q of quartet splits, and which returns the
tree T when cl(Q) = O(T).

Before we present the algorithm, we note the following interesting lemma:

Lemma 3. If cl(Q) contains exactly one split for each possible quartet then cl(Q) =
O(T) for a unique binary tree T.

Proof. By Proposition (2) of [6], a set O* of noncontradictory quartet splits equals
Q(T) for some tree T precisely if it satisfies the substitution property: If ablcd € Q%
then for all e & {a, b, ¢, d}, ab|ce € O, or aelcd € Q*. Furthermore, in that case, T
is unique.

Applying this characterization to Q* = cl(Q), suppose ablcd € cl(Q) but ablce &
cl(Q). Thus, either aelbc € cl(Q) or aclbe € cl(Q). In the either case, the dyadic
inference rule applied to the pair {ablcd, ae|lbc} or to {ablcd, ac|be} implies aelcd
cl(Q), and so cl(Q) satisfies the substitution property. Thus cl(Q) = Q(T) for a
unique tree 7. Finally, since cl(Q) contains a split for each possible quartet, it
follows that T must be binary. ]
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We now continue with the description of the DCTC algorithm.
Algorithm DCTC.
Step 1. We compute the dyadic closure, cl(Q), of Q.
Step 2.

e Case 1. cl(Q) contains a pair of contradictory splits for some quartet: return
Inconsistent.

e Case 2. cl(Q) has no contradictory splits, but fails to have a split for every
quartet: Return Insufficient.

e Case 3. cl(Q) has exactly one split for each quartet: apply standard algo-
rithms [6,51] to cl(Q) to reconstruct the tree T such that Q(T) = cl(Q).
Return T.

(Case 3 depends upon Lemma 3 above.)
To completely describe the DCTC method we need to specify how we compute
the dyadic closure of a set O of quartet splits.

Efficient computation of dyadic closure. The description we now give of an
efficient method for computing the dyadic closure will only actually completely
compute the dyadic closure of Q if cI(Q) = Q(T) for some tree T. Otherwise, cl(Q)
will either contain a contradictory pair of splits for some quartet, or cl(Q) will not
contain a split for every quartet. In the first of these two cases, the method will
return Inconsistent, and in the second of these two cases, the method will return
Insufficient. However, the method can be easily modified to compute cl(Q) for all
sets Q.

We will maintain a four-dimensional array Splits and constrain
Splits; .+ . » to either be empty, or to contain exactly one split that has been
inferred so far for the quartet i, j, k,l. In the event that two conflicting splits are
inferred for the same quartet, the algorithm will immediately return Inconsistent,
and halt. We will also maintain a queue Q,.,, of new splits that must be processed
We initialize Spl i t s to contain the splits in the input Q, and we initialize Q
be Q, ordered arbitrarily.

The dyadic inference rules in equations (8)—(10) show that we infer new splits by
combining two splits at a time, where the underlying quartets for the two splits
share three leaves. Consequently, each split ij|kl can only be combined with splits
on quartets {a, i, j, k}, {a,i,],1}, {a,i,k,1}, and {a, j, k, [}, where a & {i, j, k,[}. Con-
sequently, there are only 4(n — 4) other splits with which any split can be combined
using these dyadic rules to generate new splits.

Pop a split ijlkl off the queue Q,.,, and examine each of the appropriate
4(n — 4) entries in Spl i t s. For each nonempty entry in Spl i t s that is examined
in this process, compute the O(1) splits that arise from the combination of the two
splits. Suppose the combination generates a split ablcd. If Splits, , . , contains a
different split from ablcd, then Return Inconsistent. If Splits, , . ,is empty, then
set Splits,, . ,=ablcd, and add ablcd to the queue Q.. Otherwise
Splits, .q already contains the split ablcd, and we do not modify the data
structures.

new
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Continue until the queue Q,.,, is empty, or Inconsistency has been observed. If
the Q,., empties before Inconsistency is observed, then check if every entry of
Spli ts is nonempty. If so, then cl(Q) = Q(T) for some tree; Return Splits. If
some entry in Spl it s is empty, then return Insufficient.

Theorem 5. The efficient computation of the dyadic closure uses O(n>) time, and at
the termination of the algorithm the Spl i t s matrix is either identically equal to cl(Q),
or the algorithm has returned Inconsistent. Furthermore, if the algorithm returns
Inconsistent, then cl(Q) contains a pair of contradictory splits.

Proof. 1t is clear that if the algorithm only computes splits using dyadic closure, so
that at any point in the application of the algorithm, Splits ccl(Q). Conse-
quently, if the algorithm returns Inconsistent, then cl(Q) does contain a pair of
contradictory splits. If the algorithm does not return Inconsistent, then it is clear
from the design that every split which could be inferred using these dyadic rules
would be in the Spl i t s matrix when the algorithm terminates.

The running time analysis is easy. Every combination of quartet splits takes O(1)
time to process. Processing a quartet split involves examining 4(n — 4) entries in
the Splits matrix, and hence costs O(n). If a split jjlkl is generated by the
combination of two splits, then it is only added to the queue if Splits, ;, , is
empty when ijlkl is generated. Consequently, at most O(n*) splits ever enter the
queue. [ |

We now prove our main theorem of this section:
Theorem 6. Let Q be a set of quartet splits.

1. If DCTAQ)=T,DCTAQ)=T',and Q< Q', then T=T'.

2. If DCTC(Q) = Inconsistent and Q € Q', then DCTO(Q’) = Inconsistent.
3. If DCTA(Q) = Insufficient and Q' C Q, then DCT((Q') = Insufficient.
4. If R, < Q cO(T), then DCTC(Q) =T.

Proof.  Assertion (1) follows from the fact that if DCTC(Q) = T, then the dyadic
closure phase of the DCTC algorithm computes exactly one split for every quartet,
so that cl(Q) = Q(T) by Lemma 3. Therefore, if Q € (', then cl(Q) c cl(Q'), so that
Q(T) ccl(Q') = Q(T"). Since T and T’ are binary trees, it follows that Q(7T) = Q(T")
and T=1T".

Assertion (2) follows from the fact that if DCTCQ(Q) = Inconsistent, then cl(Q)
contains two contradictory splits for the same quartet. If Q € Q', then cl(Q’) also
contains the same two contradictory splits, and so DCTC(Q') = Inconsistent.

Assertion (3) follows from the fact that if DCTC(Q) = Insufficient, then cl(Q)
does not contain contradictory pairs of splits, and also lacks a split for at least one
quartet. If Q' € Q, then cl(Q’) also does not contain contradictory pairs of splits
and also lacks a split for some quartet. Consequently, DCTC(Q') = Insufficient.

Assertion (4) follows from Lemma 2 and Assertion (1). [ |

Note that DCTC(Q) = Insufficient does not actually imply that Q < Q(T') for any
tree; that is, it may be that Q ¢ Q(T') for any tree, but cl(Q) may not contain any
contradictory splits!
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5. DYADIC CLOSURE METHOD

We now describe a new method for tree reconstruction, which we call the Dyadic
Closure Method, or DCM.

Suppose T is a fixed binary tree. From the previous section, we know that if we
can find a set Q of quartet splits such that R, c Q c Q(T), then DCTC(Q) will
reconstruct 7.

One approach to find such a set QO would be to let Q be the set of splits
(computed using the Four-Point Method) on all possible quartets. However, it is
possible that the sequence length needed to ensure that every quartet is accurately
analyzed might be too large to obtain accurate reconstructions of large trees, or of
trees containing short edges.

The approach we take in the Dyadic Closure Method is to use sets of quartet
splits based upon the quartets whose topologies should be easy to infer from short
sequences, rather than upon all possible quartets. (By contrast, other quartet based
methods, such as Quartet Puzzling [47, 48], the Buneman tree construction [7], etc.
infer quartet splits for all the possible quartets in the tree.) Basing the tree
reconstruction upon properly selected sets of quartets makes it possible to expect,
even from short sequences, that all the quartet splits inferred for the selected
subset of quartets will be valid.

Since what we need is a set Q such that R, € Q € Q(T), we need to ensure that
we pick a large enough set of quartets so that it contains all of R, and yet not too
large that it contains any invalid quartet splits. Surprisingly, obtaining such a set Q
is quite easy (once the sequences are long enough), and we describe a greedy
approach which accomplishes this task. We will also show that the greedy approach
can be implemented very efficiently, so that not too many calls to the DCTC
algorithm need to be made in order to reconstruct the tree, and analyze the
sequence length needed for the greedy approach to succeed with 1 — o(1) probabil-
ity.

We now describe how this is accomplished.

Definition 2. [Q,, and the width of a quartet]. The width of a quartet i, j, k,[ is
defined to be the maximum of A", h'*, K hi* hi' h*' where A"/ denotes the
dissimilarity score between sequences i and j (see Section 2). For each quartet
whose width is at most w, compute all feasible splits on that quartet using the
four-point method. Q,, is defined to be the set of all such reconstructed splits.

(We note that we could also compute the split for a given quartet of sequences in
any number of ways, including maximum likelihood estimation, parsimony, etc., but
we will not explore these options in this paper.)

For large enough values of w, Q, will with high probability contain invalid
quartet splits (unless the sequences are very long), while for very small values of w,
Q,, will with high probability only contain valid quartet splits (unless the sequences
are very short). Since our objective is a set of quartet splits Q such that R, CcQ C
Q(T), what we need is a set Q,, such that Q,, contains only valid quartet splits, and
yet w is large enough so that all representative quartets are contained in Q,, as
well.
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We define sets
o={we{hi:1<i,j<n}: R, CQ,}, (12)
and
F={wef{hi:1<i,j<n}:Q,c0O(T)}. (13)

In other words, & is the set of widths w (drawn from the set of dissimilarity scores)
which equal to exceed the largest width of any representative quartet, and % is the
set of widths (drawn from the same set) such that all quartet splits of that
dissimilarity score are correctly analyzed by the Four-Point Method.

It is clear that & is an initial segment in the list of widths, and that . is a final
segment (these segments can be empty). It is easy to see that if w €&/ N.Z, then
DCTC(Q,,) = T. Thus, if the sequences are long enough, we can apply DCTC to
each of the O(n?) sets Q, of splits, and hence reconstruct the tree properly.
However, the sequences may not be long enough to ensure that such a w exists;
ie., & NF = is possible! Consequently, we will require that &/ NZ # J, and
state this requirement as an hypothesis (later, we will show in Theorem 9 that this
hypothesis holds with high probability for sufficiently long sequences),

A NGB + . (14)

When this hypothesis holds, we clearly have a polynomial time algorithm, but we
can also show that the DCTC algorithm enables a binary search approach over the
realized widths values, so that instead of O(n?) calls to the DCTC algorithm, we
will have only O(log n) such calls.

Recall that DCTC(Q,,) is either a tree T, Inconsistent, or Insufficient.

o Insufficient. This indicates that w is too small, because not all representative
quartet splits are present, and we should increase w.

e Tree output. If this happens, the quartets are consistent with a unique tree,
and that tree is returned.

¢ Inconsistent. This indicates that the quartet splits are incompatible, so that no
tree exists which is consistent with each of the constraints. In this case, we
have computed the split of at least one quartet incorrectly. This indicates that
w is too large, and we should decrease w.

If not all representative quartets are inferred correctly, then every set Q,, will
be either insufficient or inconsistent with 7', perhaps consistent with a different
tree. In this case the sequences are too short for the DCM to reconstruct a tree
accurately.

We summarize our discussion as follows:

Dyadic Closure Method.

Step 1. Compute the distance matrices d and & (recall that d is the matrix of
corrected empirical distances, and % is the matrix of normalized Hamming dis-
tances, i.e., the dissimilarity score).

Step 2. Do a binary search as follows: for w € {h"}, determine Q,,. If DCTC(Q,)
=T, for some tree T, then Return 7. If DCTC returns Inconsistent, then w is too
large; decrease w. If DCTC returns Insufficient, then w is too small; increase w.
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Step 3. If for all w, DCTC applied to Q,, returns Insufficient or Inconsistent, then
Return Fail.

We now show that this method accurately reconstructs the tree T if &/ NZ # &
[i.e., if hypothesis (14) holds].

Theorem 7. Let T be a fixed binary tree. The Dyadic Closure Method returns T if
hypothesis (14) holds, and runs in O(n° log n) time on any input.

Proof. 1If wew N, then DCTC applied to Q,, returns the correct tree T by
Theorem 6. Hypothesis (14) implies that &/ N% # J, hence the Dyadic Closure
Method returns a tree if it examines any width in that intersection; hence, we need
only prove that DCM either examines a width in that intersection, or else
reconstructs the correct tree for some other width. This follows directly from
Theorem 6.

The running time analysis is easy. Since we do a binary search, the DCTC
algorithm is called at most O(log n) times. The dyadic closure phase of the DCTC
algorithm costs O(n°) time, by Lemma 5, and reconstructing the tree T from cl(Q)
uses at most O(n°) time using standard techniques. [ |

Note that we have only guaranteed performance for DCM when & NZ # J;
indeed, when &/ NZ = J, we have no guarantee that DCM will return the correct
tree. In the following section, we discuss the ramifications of this requirement for
accuracy, and show that the sequence length needed to guarantee that &/ NZ # J
with high probability is actually not very large.

6. PERFORMANCE OF DYADIC CLOSURE METHOD FOR TREE
RECONSTRUCTION UNDER THE NEYMAN 2-STATE MODEL

In this section we analyze the performance of a distance-based application of DCM
to reconstruct trees under the Neyman 2-state model under two standard distribu-
tions.

6.1. Analysis of the Dyadic Closure Method

Our analysis of the Dyadic Closure Method has two parts. In the first part, we
establish the probability that the estimation (using the Four-Point Method) of the
split induced by a given quartet is correct. In the second part, we establish the
probability that the greedy method we use contains all short quartets but no
incorrectly analyzed quartet.

Our analysis of the performance of the DCM method depends heavily on the
following two lemmas:

Lemma 4 [Azuma—Hoeffding inequality, see [3]l. Suppose X =(X,, X,,..., X))
are independent random variables taking values in any set S, and L: S* - R is any
function that satisfies the condition: |L(w) — L(v)| < t whenever w and v differ at just
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one coordinate. Then,

LX) ~E[0] 2 4] <exp| - 51 |

/\2
P[L(X) —E[L(X)] < — 4] sexp(—m). [ ]
We define the (standard) L. metric on distance matrices, L. (d,d') = max; jld,- j
—dj;l. The following discussion relies upon definitions and notations from
Section 2.

Lemma 5. Let T be an edge weighted binary tree with four leaves i, j, k, 1, let D be the
additive distance matrix on these four leaves defined by T, and let x be the weight on
the single internal edge in T. Let d be an arbitrary distance matrix on the four leaves.
Then the Four-Point Method infers the split induced by T from d if L(d, D) <x/2.

Proof.  Suppose that L (d, D) <x/2, and assume that T has the valid split |kl
Note that the four-point method will return a single quartet, split ij|kI if and only if
d;;+dy, <min{d;, +d;,d,; +d,}. Note that since ijlkl is a valid quartet split in
T,D;;+ Dy, +2x =D, + D; =D, + Dj. Since L(d, D) <x/2, it follows that

di;+dy <D+ Dy +x,

dy+dy>Dy +D;—x,
and

dy+d;>Dy+Dy —x,

with the consequence that d;; +d,, is the (unique) smallest of the three pairwise
sums. |

Recall that DCM applied to the Neyman 2-state model computes quartet splits
using the four-point method (FPM).

Theorem 8. Assume that z is a lower bound for the transition probability of any edge
of a tree T in the Neyman 2-state model, y > max E" is an upper bound on the
compound changing probability over all ij paths in a quartet q of T. The probability that
FPM fails to return the correct quartet split on q from k sites is at most

186xp_(1_ 1_282)(1_2y)k. (15)

Proof.  First observe from formula (1) that z is also a lower bound for the
compound changing probability for the path connecting any two vertices of 7. We
know that FPM returns the appropriate subtree given the additive distances D;;;
furthermore, if |d;; — D;;| < — +log(1 — 22) for all i, j, then FPM also returns the
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appropriate subtree on all jjkl, by Lemma 5. Consequently,
P[FPMerrs] < IP[EIi,j: |D,; —d,;|> — {log(1 — 22)]. (16)
Hence by (16), we have
P[FPMerrs] < ZIP[IDij—dijl> —%log(l—Zz)]. (17)
i

For convenience, we drop the subscripts when we analyze the events in (17) and
just write D and d; we write p for the corresponding transition probability E* and
p for the relative frequency h'. By simple algebra,

p
1-2p°

1
|D—d|=510g if p<p, (18)

A

1
D—dl= -1 if p>p. 19
| | SloeT—5 s ip=p (19)

Now we consider the probability that the Four-Point Method fails, i.e., the event
estimated in (17). If p >p, then formula (19) applies, so that P[FPMerrs] is
algebraically equivalent to

p-p=1[(1-22)""" —1](1-2p). (20)

This can then be analyzed using Lemma 4. The other case is where p < p. In this
case, formula (18) applies, and P[FPM errs] is algebraically equivalent to

p—-p 1

—[(1-22)""%=1]. 21
35 > 311722 ] (21)
Select an arbitrary positive number €. Then p —p > (1 — 2 p)e with probability
—e*(1-2p)°k
exp_ L2V K (22)
2
by Lemma 4. If p —p <(1 —2p)e, then
1 1 1 1
< = .
1-2p (1-2p)—-2e(1-2p) (1-2p) (1-2¢)
Hence
p— 1
p| =2 - ~l(1-22)7 1]
1-2p -2
N 2
p—p 1 -1,2 _52(1_2p) k
<P >—[(1-2 =1+ _—
[(1—2p)(1—26) pl(1-22) [|+exp 2
—e(1-2p)k
sl -

7 201 —2¢)? _Z—l/z_2
vew (1-2p)(1-2 )8[(1 22) 1] k' 2
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Note that e=(3)[1 — (1 —22)"/?] is the optimal choice. Formulae (22-24) con-
tribute each the same exponential expression to the error, and (16) or (17)
multiplies it by 6, due to the six pairs in the summation. ]

This allows us to state our main result. First, recall the definition of depth from
Section 2.

Theorem 9. Suppose k sites evolve under the Neyman 2-state model on a binary tree
T, so that for all edges e, p(e) €[f, gl, where we allow f, g to be functions of n. Then
the dyadic closure method reconstructs T with probability 1 — o(1), if
c-logn
k> (25)

(1 - M)z(l —pg)tdeph(™+6 ’

where c is a fixed constant.

Proof. Tt suffices to show that hypothesis (14) holds. For k evolving sites (.e.,
sequences of length k), and 7> 0, let us define the following two sets, S, = {{i, j}:
h' < 0.5 — 7} and

zZ = {qe([z]):forall i,jeq,{i,j} ESZT}’

and the following four events,

A =Qshort(T) gZT’ (26)
_ - [n]
B, = FPM correctly returns the split of the quartet g € ( ik (27)
B= N B, (28)
q9€Z,

C = S,_ contains all pairs {i, j} with EY < 0.5 — 37 and no pair {i, j}
with E > 0.5 — 7. (29)

Thus, Pl N# + ] > P[ A N B]. Define

A= (1 _ 2g)2depth(T)+3. (30)
We claim that
P[C]=1—(n®—n)e "*/?, (31)
and
A
PlA4lC]=1, ifr< 5 (32)

To establish (31), first note that 4"/ satisfies the hypothesis of the Azuma—Hoeff-
ding inequality (Lemma 4 with X, the sequence of states for site i and = 1/k).
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Suppose E/ > .5 — 7. Then,
P[{i,j} €S,,] =P[h" <0.5-27]

<P[r —EY"<05-2r—EV] <P[h —E[hV] < — 7| <e”7*/2,

Since there are at most (g) pairs {i, j}, the probability that at least one pair {i, j}

with EY > 0.5 — 7 lies in §,, is at most (g)e’fzk/z. By a similar argument, the
probability that S, fails to contain a pair {i, j} with EY < 0.5 — 37 is also at most
(g)e_TZk/z. These two bounds establish (31).

We now establish (32). For ¢ € R(T) and i, j € q, if a path e,e, - ¢, joins leaves
i and j, then ¢ <2depth(T) + 3 by the definition of R(T). Using these facts, (1),
and the bound p(e) <g, we obtain EV/ =0.5[1 —(1 —2p,)--- (1 —2p)] < 0.5(1 — A).
Consequently, E/ < 0.5 — 37 (by assumption that 7 < A/6) and so {i, j} €S, once
we condition on the occurrence of event C. This holds for all i,j€gq, so by
definition of Z_ we have g € Z_. This establishes (32).

Define a set,

X= {qe([Z]);max{Eif:i,qu}<0.5—T},

(note that X is not a random variable, while Z_,S_ are). Now, for ¢ € X, the
induced subtree in 7' has mutation probability at least f(n) on its central edge, and
mutation probability of no more than max{E": i,j € q} < 0.5 — 7 on any pendant
edge. Then, by Theorem 8 we have

~(1-VI=2f) "%

P[B,] =1—18exp g (33)
whenever g € X. Also, the occurrence of event C implies that
Z_CX, (34)

since if g€ Z,, and i,j € q, then i,j €S,_, and then (by event C), EV <0.5— 7,
hence g € X. Thus, since B= N, B,, we have

Pwmckﬂb(ﬂBJmC

q4€Z,

zﬂ(ﬂBJﬁC,

qgeEX

where the second inequality follows from (34), as this shows that when C occurs,
Ngez B, 2 N, e x B, Invoking the Bonferonni inequality, we deduce that

P[BNC]=1- ¥ P[B,] -P[C]. (35)

qgeX
Thus, from above,

P[ANB]=P[ANBNC]=P[BNC],
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(since P[A|C]=1), and so, by (33) and (35),

~(1-VI=2f) "%

8

P[A ﬁB]Zl—lS(Z)exp _(nz_n)eﬁzk/z‘

Formula (25) follows by an easy calculation. ]

6.2. Distributions on Trees

In the previous section we provided an upper bound on the sequence length that
suffices for the Dyadic Closure Method to achieve an accurate estimation with high
probability, and this upper bound depends critically upon the depth of the tree. In
this section, we determine the depth of a random tree under two simple models of
random binary trees.

These models are the uniform model, in which each tree has the same probabil-
ity, and the Yule—Harding model, studied in [2,8,27] (the definition of this model is
given later in this section). This distribution is based upon a simple model of
speciation, and results in “bushier” trees than the uniform model. The following
results are needed to analyze the performance of our method on random binary
trees.

Theorem 10.

(i) For a random semilabeled binary tree T with n leaves under the uniform model,
depth(T) < (2 + o(1)log, log ,(2n) with probability 1 — o(1).

(i) For a random semilabeled binary tree T with n leaves under the Yule—Harding
distribution, after suppressing the root, depth(T) = (1 + o(1))log, log, n with
probability 1 — o(1).

Proof. This proof relies upon the definition of an edi-subtree, which we now
define. If (a, b) is an edge of a tree T, and we delete the edge (a, b) but not the
endpoints a or b, then we create two subtrees, one containing the node a and one
containing the node b. By rooting each of these subtrees at a (or b), we obtain an
edge-deletion induced subtree, or “edi-subtree.”

We now establish (i). Recall that the number of all semilabeled binary trees is
(2n —5)!! Now there is a unique (unlabeled) binary tree F on 2'+ 1 leaves with
the following description: one endpoint of an edge is identified with the degree 2
root of a complete binary tree with 2’ leaves. The number of semilabeled binary
trees whose underlying topology is F is (2 + 1)! /2% !, This is fairly easy to check
and this also follows from Burnside’s lemma as applied to the action of the
symmetric group on trees, as was first observed by [32] in this context. A rooted
semilabeled binary forest is a forest on n labeled leaves, m trees, such that every
tree is either a single leaf or a binary tree which is rooted at a vertex of degree 2. It
was proved by Carter et al. [11] that the number of rooted semilabeled binary
forests is

N(n,m) = (2”n:f’l_ 1)(2n—2m— NI
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Now we apply the probabilistic method. We want to set a number ¢ large enough,
such that the total number of edi-subtrees of depth at least ¢ in the set of all
semilabeled binary trees on n vertices is o((2n — 5)!!). The theorem then follows
for this number 7. We show that some ¢ = (2 + o(1))log, log,(2n) suffices. We
count ordered pairs in two ways, as usual: Let E, denote the number of edi-sub-
trees of depth at least ¢ (edi-subtrees induced by internal edges and leaf edges
combined) counted over of all semilabeled trees. Then E, is equal to the number
of ways to construct a rooted semilabeled binary forest on n leaves of 2 + 1 trees,
then use the 2 + 1 trees as leaf set to create all F-shaped semilabeled trees (as
described above), with finally attaching the leaves of F to the roots of the elements
of the forest. Then E, = (2" + 1)! /2% ~')N(n,2" + 1). Hence everything boils down
to finding a ¢ for which

Q'+D!(2p—2t=2
22‘—1 2t

Clearly ¢t = (2 + 8)log, log,(2n) suffices.

We now consider (ii). First we describe the proof for the usual rooted
Yule—Harding trees. These trees are defined by the following construction proce-
dure. Make a random permutation 7, 7,,..., w, of the n leaves, and join 7, and
7, by edges t a root R of degree 2. Add each of the remaining leaves sequentially,
by randomly (with the uniform probability) selecting an edge incident to a leaf in
the tree already constructed, subdividing the edge, and make 7; adjacent to the
newly introduced node. For the depth of a Yule—Harding tree, consider the
following recursive labeling of the edges of the tree. Call the edge ;R (for i = 1,2)
“i new.” When m; is added (i > 3) by insertion into an edge with label “j new,” we
given label “i new” to the leaf edge added, give label “j new” to the leaf part of the
subdivided edge, and turn the label “j new” into “j old” on the other part of the
subdivided edge. Clearly, after / insertions, all numbers 1,2,...,/ occur exactly
once with label new, in each occasion labeling leaf edges. The following which may
help in understanding the labeling: edges with “old” label are exactly the internal
edges and j is the smallest label in the subtree separated by an edge labeled
“j old” from the root R, any time during the labeling procedure.

We now derive an upper bound for the probability that an edi-subtree of depth
d develops. If it happens, then a leaf edge inserted at some point has to grow a
deep edi-subtree on one side. Let us denote by T the rooted random tree that we
already obtained with i leaves. Consider the probability that the most recently
inserted edge i new ever defines an edi-subtree with depth d. Such an event can
happen in two ways: this edi-subtree may emerge on the leaf side of the edge or on
the tree side of the edge (these sides are defined when the edge is created). Let us
denote these probabilities by P[i, OUT|T;®] and P[i, IN|T;®], since these probabili-
ties may depend on the shape of the tree already obtained (and, in fact, the second
probability does so depend on the shape of T.}). We estimate these quantities with
tree-independent quantities.

For the moment, take for granted the following inequalities,

P[i,OUTITR| < P[i, IN|T], (36)

)(2;1—2”1 —3)l=0((2n-5)!).

P[i,INITR]| < e(d,n), (37)
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for some function e(d, n) defined below. Clearly,

P[3 depth d edi-subtree] < 2 Y P[i,OUTITR|P[TR] + P[i, INITR| P[],

i=1 R
(38)
and using (36) and (37), (38) simplifies to
P[3 depth d edi-subtree] <2ne(d,n). (39)

We now find an appropriate e(d, n).

For convenience we assume that 2* = n — 2, since it simplifies the calculations.
Set k=2%"1—1, it is clear that at least k properly placed insertions are needed to
make the current edge “i new” have depth d on its tree side. Indeed, 7; was
inserted into a leaf edge labeled “j new” and one side of this leaf edge is still a
leaf, which has to develop into depth d — 1, and this development requires at least
k new leaf insertions.

Focus now entirely on the k insertions that change “j new” into an edi-subtree
of depth d — 1. Rank these insertions by 1,2,...,k in order, and denote by 0 the
original “j new” leaf edge. Then any insertion ranked i > 1 may go into one of
those ranked 0,1,...,i — 1. Call the function which tells for i=1,2,..., k%, which
depth i is inserted into, a core. Clearly, the number of cores is at most k*.

We now estimate the probability that a fixed core emerges. For any fixed
i, <i, < -+ <i,, the probability that inserting ™, will make the insertion enumer-
ated under depth j, for all j =1,2,...,k, is at most

1 1 1

ii—1 i,—1 i—1

by independence. Summarizing our observations,

1 1 1
P[i,INIT?] <kfol | =, —....,
i i+1 n—1
ko L] ! 40

< e, ,

B R S (40)
where g is the symmetric polynomial of m variables of degree k. We set
e(n,d)=a}r,(3,3,...,—-5). To estimate (40), observe that any term in
ak ,(3,5,...,) can be described as having exactly a; reciprocals of integers

substituted from the interval (27", 27]. The point is that those reciprocals differ
little in each of those intervals, and hence a close estimate is possible. A generic
term of g;* , as described above is estimated from above by

SRR &
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Hence e€(n, d) is at most

2 4 8 2371 —(1-a -a s—1a
Z (01)(02)(03)'”(%1)2 d-ay+2-a5+ - +(s—1) r]), (42)

a;ta+ -+ +.al‘,1=k
a;<2'

by (41). Since

i 1
2 —ia;
(a_)Z = a!’

(42) is less than or equal

1
L alay--a,_,!"
u1+az+~~~+>a54=k 1-%2 s—1
a;<2'

(43)

Observe that the number of terms in (43) is at most the number of compositions of
k into s — 1 terms,

k+s—2
s—2 )

The product of factorials is minimized (irrespective of a; <2') if all a;s are taken
equal. Hence, setting k =s'"? for any fixed § > 0, (43) is at most

)
B [(ESE—

and (39) goes to zero. For the depth d, our calculation yields (1+ 8+
o(1))log, log, n with probability 1 — o(1).

We leave the establishment of (36) to the reader. Now, to obtain a similar result
for unrooted Yule—Harding trees, just repeat the argument above, but use the
unrooted 7, instead of the rooted T;X. The probability of any 7, is the sum of
probabilities of 2i — 3 rooted T;%s, since the root could have been on every edge of
T.. Hence formula (37) has to be changed for P[i,IN|T;] < (2n — 3)e(d, n). With
this change the same proof goes through, and the threshold does not change. ]

and hence

e(n,d) <k*

6.3. The Performance of Dyadic Closure Method and Two Other Distance Methods
for Inferring Trees in the Neyman 2-State Model

In this section we describe the convergence rate for the DCM method, and
compare it briefly to the rates for two other distance-based methods, the Agarwala
et al. 3-approximation algorithm [1] for the L, nearest tree, and neighbor-joining
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[40]. We make the natural assumption that all methods use the same corrected
empirical distances from Neyman 2-state model trees.

The neighbor-joining method is perhaps the most popular distance-based method
used in phylogenetic reconstruction, and in many simulation studies (see [33,34,41]
for an entry into this literature) it seems to outperform other popular distance
based methods. The Agarwala et al. algorithm [1] is a distance-based method which
provides a 3-approximation to the L, nearest tree problem, so that it is one of the
few methods which provide a provable performance guarantee with respect to any
relevant optimization criterion. Thus, these two methods are two of the most
promising distance-based methods against which to compare our method. Both
these methods use polynomial time.

In [23], Farach and Kannan analyzed the performance of the 3-approximation
algorithm with respect to tree reconstruction in the Neyman 2-state model, and
proved that the Agarwala et al. algorithm converged quickly for the variational
distance (a related but different concern). Recently, Kannan [35] extended the
analysis and obtained the following counterpart to (25): If T is a Neyman 2-state
model tree with mutation rates in the range [f, g], and if sequences of length &’
are generated on this tree, where

c'-logn

> f2(1 _ zg)zdiam(T) ’

(44)

for an appropriate constant ¢’, and were diam(7') denotes the “diameter” of T,
then with probability 1 —o(1) the result of applying Agarwala et al. to corrected
distances will be a tree with the same topology as the model tree. In [5], Atteson
proved an identical statement for neighbor-joining, though with a different con-
stant (the proved constant for neighbor-joining is smaller than the proved constant
for the Agarwala et al. algorithm).

Comparing this formula to (25), we note that the comparison of depth and
diameter is the issue, since (1 — /1 —2f)*=0O(f?) for small f. It is easy to see
that diam(7") > 2 depth(T') for binary trees T, but the diameter of a tree can in fact
be quite large (up to n — 1), while the depth is never more than log n. Thus, for
every fixed range of mutation probabilities, the sequence length that suffices to
guarantee accuracy for the neighbor-joining or Agarwala et al. algorithms can be
quite large (i.e., it can grow exponentially in the number of leaves), while the
sequence length that suffices for the Dyadic Closure Method will never grow more
than polynomially. See also [20,21,39] for further studies on the sequence length
requirements of these methods.

The following table summarizes the worst case analysis of the sequence length
that suffices for the dyadic closure method to obtain an accurate estimation of the
tree, for a fixed and a variable range of mutation probabilities. We express these
sequence lengths as functions of the number n of leaves, and use results from (25)
and Section 6.2 on the depth of random binary trees. “Best case” (respectively,
“worst case”) trees refers to best case (respectively worst case) shape with respect
to the sequence length needed to recover the tree as a function of the number n of
leaves. Best case trees for DCM are those whose depth is small with respect to the
number of leaves; these are the caterpillar trees, i.e., trees which are formed by
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TABLE 1 Sequence Length Needed by Dyadic Closure Method to Return Trees under the
Neyman 2-State Model

Range of Mutation Probabilities on Edges:

[f.g] 1 loglogn
f, g are constants , —————
logn™ logn
Worst case trees polynomial polylog
Best case trees logarithmic polylog
Random (uniform) trees polylog polylog
Random (Yule-Harding) trees polylog polylog

attaching n leaves to a long path. Worst case trees for DCM are those trees whose
depth is large with respect to the number of leaves; these are the complete binary
trees. All trees are assumed to be binary.

One has to keep in mind that comparison of performance guarantees for
algorithms do not substitute for comparison of performances. Unfortunately, no
analysis is available yet on the performance of the Agarwala et al. and neighbor-
joining algorithms on random trees, therefore we had to use their worst case
estimates also for the case of random leaves.

7. SUMMARY

We have provided upper and lower bounds on the sequence length k for accurate
tree reconstruction, and have shown that in certain cases these two bounds are
surprisingly close in their order of growth with n. It is quite possible that even
better upper bounds could be obtained by a tighter analysis of our DCM approach,
or perhaps by analyzing other methods.

Our results may provide a nice analytical explanation for some of the surprising
results of recent simulation studies (see, for example, [30]) which found that trees
on hundreds of species could be accurately reconstructed from sequences of only a
few thousand sites long. For molecular biology the results of this paper may be
viewed, optimistically, as suggesting that large trees can be reconstructed accu-
rately from realistic length sequences. Nevertheless, some caution is required, since
the evolution of real sequences will only be approximately described by these
models, and the presence of very short and/or very long edges will call for longer
sequence lengths.
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Abstract

Inferring evolutionary trees is an interesting and important problem in biology, but one that is
computationally difficult as most associated optimization problems are NP-hard. Although many
methods are provably statistically consistent (i.e. the probability of recovering the correct tree
converges to 1 as the sequence length increases), the actual rate of convergence for different
methods has not been well understood. In a recent paper we introduced a new method for
reconstructing evolutionary trees called the dyadic closure method (DCM), and we showed that
DCM has a very fast convergence rate. DCM runs in O(x® logn) time, where 7 is the number
of sequences, and so, although polynomial, the computational requirements are potentially too
large to be of use in practice. In this paper we present another tree reconstruction method, the
witness—antiwitness method (WAM). WAM is faster than DCM, especially on random trees, and
converges to the true tree topology at the same rate as DCM. We also compare WAM to other
methods used to reconstruct trees, including Neighbor Joining (possibly the most popular method
among molecular biologists), and new methods introduced in the computer science literature.
(© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Rooted leaf-labelled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology (where such trees are called
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“phylogenies™). Molecular techniques have recently provided large amounts of sequence
(DNA, RNA, or amino-acid) data that are being used to reconstruct such trees. Statis-
tically based methods construct trees from sequence data, by exploiting the variation in
the sequences due to random mutations that have occurred. A typical assumption made
by these tree construction methods is that the evolutionary process operates through
“point mutations”, where the positions, or “sites”, within the sequences mutate down
the tree. Thus, by modelling how the different sites evolve down the tree, the entire
mutational process on the sequences can be described. A further assumption that is
typically made is that the evolutionary processes governing each site are identical, and
independent (i.i.d.). For such models of evolution, some tree construction methods are
guaranteed to recover the underlying unrooted tree from adequately long sequences
generated by the tree, with arbitrarily high probability.

There are two basic types of tree reconstruction methods: sequence-based methods
and distance-based methods. Distance-based methods for tree reconstruction have two
steps. In the first step, the input sequences are represented by an » x n matrix d of pair-
wise dissimilarities (these may or may not observe the triangle inequality, and hence
may not be truly “distances”). In the second step, the method M computes an additive
matrix M(d) (that is, an n x »n distance matrix which exactly fits an edge-weighted tree)
from the pairwise dissimilarity matrix, d. Distance methods are typically polynomial
time. Sequence-based methods, on the other hand, do not represent the relationship
between the sequences as a distance matrix; instead, these methods typically attempt to
solve NP-hard optimization problems based upon the original sequence data, and are
computationally intensive. See [26] for further information on phylogenetic methods in
general.

A tree reconstruction method, whether sequence-based or distance-based, is con-
sidered to be accurate with respect to the topology prediction if the tree associated
(uniquely) with the computed additive matrix has the same unrooted topology as
the tree used to generate the observed sequences. A method is said to be sraristi-
cally consistent for a model tree T if the probability of recovering the topology of
T from sequences generated randomly on 7 converges to 1 as the sequence length
increases to infinity. It has long been understood that most distance-based methods
are statistically consistent methods for inferring trees under models of evolution in
which the sites evolve i.i.d., but that some sequence-based methods (notably, the op-
timization problem maximum parsimony [25]) are not statistically consistent on all
trees under these models. For this reason, some biologists prefer to use distance-
based methods. However, not much is known, even experimentally, about the se-
quence length a given distance-based method needs for exact topological accuracy
with high probability. How long the sequences have to be to guarantee high proba-
bility of recovering the tree depends on the reconstruction method, the details of the
model, and the number » of species. Determining bounds on that length and its growth
with » has become more pressing since biologists have begun to reconstruct trees
on increasingly larger numbers of species (often up to several hundred) from such
sequences.
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In a previous paper [20], we addressed this question for trees under the Neyman
2-state model of site evolution, and obtained the following results:

1. We established a lower bound of log n on the sequence length that every method,
randomized or deterministic, requires in order to reconstruct any given n-leaf tree
in any 2-state model of sequence evolution,

2. We showed that the maximum compatibility method of phylogenetic tree construc-
tion requires sequences of length at least nlog n to obtain the tree with high prob-
ability, and

3. We presented a new polynomial time method (the dyadic closure method (DCM))
for reconstructing trees in the Neyman 2-state model, and showed that polylogarith-
mic length sequences suffice for accurate tree reconstruction with probability near
one on almost all trees, and polynomial length sequence length always suffices for
any tree under reasonable assumptions on mutation probabilities.

Thus, the DCM [20] has a very fast convergence rate, which on almost all trees is
within a polynomial of our established lower bound of log# for any method. However,
although DCM uses only polynomial time, it has large computational requirements (it
has Q(n%k + »° log n) running time, and uses O(#n*) space), where k is the sequence
length. This may make it infeasible for reconstructing large trees.

In this paper, we present the witness—antiwitness method (WAM), a new and faster
quartet-based method for tree reconstruction, which has the same asymptotic conver-
gence rate as the DCM. The running time of WAM has a worst-case bound O(n%k +
n* log nlog k) where k is the sequence length, and is even faster under some reason-
able restrictions on the model (see Theorem 12 for details). Thus, WAM is a faster
algorithm than DCM, and has essentially the same convergence rate to the true tree
topology as DCM. The provable bounds on the running time of WAM depend heavily
on the depth of the model tree. We introduced the “depth” in [20] and showed that
depth(T) is bounded from above by log » for all binary trees T, and that random trees
have depths bounded by O(log log n).

In addition to presenting the new method, we present a framework for a comparative
analysis of the convergence rates of different distance based methods. We apply this
technique to several different methods, neighbor joining [43], the Agarwala et al. [1]
“single-pivot” algorithm and its variant [21], the “double-pivot” algorithm, and the
naive quartet method (a method we describe in this paper). We obtain upper bounds
on the sequence lengths that suffice for accuracy for these distance-based methods, and
show that these upper bounds grow exponentially in the weighted diameter of the tree,
which is the maximum number of expected mutations for a random site on any leaf-
to-leaf path in the tree. We analyze the weighted diameter of random trees under two
distributions. We show that the diameter of random trees is €2(1/n) under the uniform
distribution, and Q(log n) under the Yule-Harding distribution. Consequently, these
upper bounds on the sequence lengths that suffice for accuracy for these other distance-
based methods are significantly larger than the upper bounds obtained for DCM and
WAM. We note that our upper bounds for the algorithms in [1,21] match those given
by Sampath Kannan (personal communication). Finally, we generalize our methods and
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results to more general Markov models, and find the same relative performance (these
results should be compared to those of Ambainis et al. in [4]). (While this framework
provides a comparison between the convergence rates of these methods, it is limited by
the fact that these are upper bounds on the sequence lengths that suffice for accuracy
for these distance methods. These upper bounds may be loose, but no better upper
bounds on these methods are yet known, to our knowledge. Obtaining better bounds
on the convergence rates of these and other methods is an important open question.)

The structure of the paper is as follows. In Section 2 we provide definitions and
discuss tree reconstruction methods in general. In Section 3, we describe the analytical
framework for deriving upper bounds on the sequence lengths needed by different meth-
ods for exact accuracy in tree reconstruction, and we use this framework to provide an
initial comparison between various distance-based methods. In Section 4, we describe
the witness—antiwitness tree construction algorithm (WATC), and in Section 5, we de-
scribe the witness—antiwitness method (WAM) in full. In Section 6, we analyze the per-
formance of WAM for reconstructing trees under the Neyman model of site evolution,
and compare its performance to other promising distance-based methods. We extend the
analysis of WAM to reconstructing trees under the general r-state Markov model in Sec-
tion 7. Finally, in Section 8, we disucss the applicability of our results to biological data.

2. Definitions

Notation. P[4] denotes the probability of event 4; E[X] denotes the expectation of
random variable X. We denote the natural logarithm by log. The set [#] denotes
{1,2,...,n} and for any set S, (f) denotes the collection of subsets of S of size
k. R denotes the real numbers.

Definition. (I) Trees. We will represent a phylogenetic tree T by a semi-labelled tree
whose leaves (vertices of degree one) are labelled by extant species, numbered by
1,2,...,n, and whose remaining internal vertices (representing ancestral species) are
unlabelled. We will adopt the biological convention that phylogenetic trees are binary,
meaning that all internal nodes have degree three, and we will also assume that T is
unrooted (this is due to scientific and technical reasons which indicate that the location
of the root can be either difficult or impossible to determine from data). We let B(n)
denote the set of all (2n—5)!'=(2n—5)(2n—7)---3-1 semi-labelled binary trees on
the leaf set [n].

The path between vertices u and v in the tree is called the uv path, and is denoted
P(u,v). The topological distance L(u,v) between vertices u and v in a tree T is the
number of edges in P(u,v). The edge set of the tree is denoted by E(T). Any edge
adjacent to a leaf is called a leaf edge, any other edge is called an internal edge. For
a phylogenetic tree T and S C[n], there is a unique minimal subtree of T, containing
all elements of S. We call this tree the subtree of T induced by S, and denote it by



P.L. Erdds et al. | Theoretical Computer Science 221 (1999) 77-118 81

T\s. We obtain the contracted subtree induced by S, denoted by T, |§, if we substitute
edges for all maximal paths of 7|g in which every internal vertex has degree two. We
denote by ij|kl the tree on four leaves i,j,k,/ in which the pair 7,/ is separated from
the pair &,/ by an internal edge. When the contracted subtree of 7 induced by leaves
i,/ k, 1 is the tree ij|kl, we call ij|kl a valid quartet split of T on the quartet of leaves
{i,j,k,I}. Since all trees are assumed to be binary, all contracted subtrees (including,
in particular, the quartet subtrees) are also binary. Consequently, the set Q(T') of valid
quartet splits for a binary tree 7 has cardinality (:) .

(I) Sites. Consider a set C of character states (such as C={4,C,G,T} for DNA
sequences; C = {the 20 amino acids} for protein sequences; C ={R,Y} or {0,1} for
purine—pyrimidine sequences). A sequence of length k is an ordered k-tuple from C
— that is, an element of C*. A collection of n such sequences — one for each species
labelled from [n] — is called a collection of aligned sequences.

Aligned sequences have a convenient alternative description as follows. Place the
aligned sequences as rows of an »n x k matrix, and call site i the ith column of this
matrix. A pattern is one of the |C|" possible columns.

(1I1) Site substitution models. Many models have been proposed to describe the evo-
lution of sites as a stochastic process. Such models depend on the underlying phyloge-
netic tree 7 and some randomness. Most models assume that the sites are independently
and identically distributed (i.i.d.).

The models on which we test our algorithm also assume the Markov property that
the random assignment of a character state to a vertex v is determined by the character
state of its immediate ancestor, and a random substitution on the connecting edge.
In the most general stochastic model that we study, the sequence sites evolve i.i.d.
according to the general Markov model from the root [47]. We now briefly discuss this
general Markov model. Since the i.i.d. condition is assumed, it is enough to consider
the evolution of a single site in the sequences. Substitutions (point mutations) at a site
are generally modelled by a probability distribution 7 on a set of »>1 character states
at the root p of the tree (an arbitrary vertex or a subdividing point on an edge), and
each edge e oriented out from the root has an associated » x » stochastic transition
matrix M(e). The random character state at the root “evolves” down the tree — thereby
assigning characters randomly to the vertices, from the root down to the leaves. For
each edge e = (u,v), with u between v and the root, (M (e)).s is the probability that v
has character state § given that u has character state a.

(IV) The Neyman model. The simplest stochastic model is a symmetric model
for binary characters due to Neyman [40], and was also developed independently by
Cavender [12] and Farris [24]. Let {0, 1} denote the two states. The root is a fixed leaf,
the distribution 7 at the root is uniform. For each edge e of T we have an associated
mutation probability, which lies strictly between 0 and 0.5. Let p:E(T)—(0,0.5)
denote the associated map. We have an instance of the general Markov model with
M(e)o1 =M (e)o = p(e). We will call this the Neyman 2-state model, but note that it
has also been called the Cavender—Farris model, and is equivalent to the Jukes—Cantor
model when restricted to two states.
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The Neyman 2-state model is hereditary on subsets of the leaves — that is, if we
select a subset S of [n], and form the subtree 7T|g, then eliminate vertices of degree
two, we can define mutation probabilities on the edges of Tl’g so that the probability
distribution on the patterns on S is the same as the marginal of the distribution on
patterns provided by the original tree 7. Furthermore, the mutation probabilities that
we assign to an edge of T, |’§ is just the probability p that the endpoints of the associated

path in the original tree T are in different states.

Lemma 1. The probability p that the endpoints of a path P of topological length k
are in different states is related to the mutation probabilities p\, p,,..., px of edges
of P as follows:

1 k
p=; (1 ~ I - 2pi)> .
i=1

Lemma 1 is folklore and is easy to prove by induction.

(V) Distances. Any symmetric matrix, which is zero-diagonal and positive off-
diagonal, will be called a distance matrix. (These “distances”, however, may not satisfy
the triangle inequality, because the distance corrections used in phylogenetics, and de-
scribed below, do not always satisfy the triangle inequality. Since it is nevertheless the
practice in systematics to refer to these quantities as “distances”, we will do so here as
well.) An n x n distance matrix D;; is called additive, if there exists an n-leaf tree (not
necessarily binary) with positive edge lengths on the internal edges and non-negative
edge lengths on the leaf edges, so that D;; equals the sum of edge lengths in the
tree along the P(i,j) path connecting leaves i and j. In [10], Buneman showed that
the following four-point condition characterizes additive matrices (see also [45, 64]):

Theorem 1 (Four-point condition). A4 matrix D is additive if and only if for all i, j,k, |
(not necessarily distinct), the maximum of D;j+Dy;, Dy+Dj;, Dy+Dy is not unique.
The tree with positive lengths on internal edges and non-negative lengths on leaf edges
representing the additive distance matrix is unique among the trees without vertices
of degree two.

Given a pair of parameters (7, p) for the Neyman 2-state model, and sequences of
length & generated by the model, let H(i,j) denote the Hamming distance of sequences
i and j and AY = H(i,j)/k denote the dissimilarity score of sequences i and j. The
empirical corrected distance between i and j is denoted by

dij= — $log(l —2hY). (1)

The probability of a change in the state of any fixed character between the sequences
i and j is denoted by £V =[E(hY), and we let

Dy = — {log(1 —2EY) (2)
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denote the corrected model distance between i and j. We assign to any edge e a
positive length

I(e)= — 1 log(1 — 2p(e)). (3)

By Lemma 1, D;; is the sum of the lengths (see previous equation) along the path
P(i,j) between i and j, and hence D;; is an additive distance matrix. Furthermore,
d;; converges in probability to Dj; as the sequence length tends to infinity. These
mathematical facts also have significance in biology, since under certain continuous
time Markov models [48], which may be used to justify our models, /(¢) and D;; are the
expected number of back-and-forth state changes along edges and paths, respectively.
A similar phenomenon and hence a similar distance correction exists for the general
stochastic model [47], and is discussed in detail in Section 7.

(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function
& that associates either a tree or the statement Fail to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection for
the data given.

According to the practice in systematic biology (see, for example, [31,32,52]), a
method is considered to be accurate if it recovers the unrooted binary tree 7', even if
it does not provide any estimate of the mutation probabilities. A necessary condition
for accuracy, under the models discussed above, is that two distinct trees, 7,77, do
not produce the same distribution of patterns no matter how the trees are rooted, and
no matter what their underlying Markov parameters are. This “identifiability” condition
is violated under an extension of the i.i.d. Markov model when there is an unknown
distribution of rates across sites as described by Steel et al. [49]. However, it is shown
in [47] (see also [13]) that the identifiability condition holds for the i.i.d model under
the weak conditions that the components of 7 are not zero and, for each edge e, the
determinant det(M(e))#£0,1,—1, and in fact we can recover the underlying tree from
the expected frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods ap-
plied to corrected distances will recover the correct tree topology from sufficiently
long sequences. Consequently, one approach (which is guaranteed to yield a stafisti-
cally consistent estimate) to reconstructing trees from distances is to seek an additive
distance matrix of minimum distance (with respect to some metric on distance ma-
trices) from the input distance matrix. Many metrics have been considered, but all
resultant optimization problems have been shown or are assumed to be NP-hard (see
[1,17,23] for results on such problems).

(VII) Specific tree construction algorithms. In this paper, we will be particularly
interested in certain distance methods, the four-point method (FPM), the naive method,
neighbor joining, and the Agarwala et al. algorithm. We now describe these methods.

Four-Point Method (FPM). Given a 4 x 4 distance matrix , return the split i|k/
which satisfies d;; + dy < min{dy +d;;,d;; +d i }. If there is no such split, return
Fail.
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FPM is a not truly a tree reconstruction method, because it can only be applied to
datsets of size four. We include it here, because it is a subroutine in the Naive Method,
which we now describe.

The Naive Method uses the four-point method to infer a split for every quartet
i,j,k,I. Thus, if the matrix is additive, the four-point method can be used to detect
the valid quartet split on every quartet of vertices, and then standard algorithms [6, 14]
can be used to reconstruct the tree from the set of splits. Note that the naive method
is guaranteed to be accurate when the input distance matrix is additive, but it will
also be accurate even for non-additive distance matrices under conditions which we
will describe later (see Section 3). Most quartet-based methods (see, for example,
[7,50,51]) begin in the same way, constructing a split for every quartet, and then
accommodate possible inconsistencies using some technique specific to the method,;
the naive method, by contrast, only returns a tree if all inferred splits are consistent
with that tree. The obvious optimization problem (find a maximum number of quartets
which are simultaneously realizable) is of unknown computational complexity.

The Agarwala et al. algorithm [1] is a 3-approximation algorithm for the nearest
tree with respect to the L., -metric, where L..(4,B)= max;; |[4;; — B;;|. Given input d,
the result of applying the Agarwala et al. algorithm to d is an additive distance matrix
D such that L, (d,D)<3L..(d,D°"), where D" is an optimal solution.

The use of the Agarwala et al. algorithm for inferring trees has been studied in two
papers (see [22] for a study of its use for inferring trees under the Neyman model,
and [4] for a study of its use for inferring trees under the general Markov model).
However, both [22, 4] consider the performance of the Agarwala et al. algorithm with
respect to the variational distance metric. Optimizing with respect to this metric is
related to — but distinct from — estimating the tree T, since it is concerned as well
with the mutational parameters p.

The neighbor joining method [43] is a method for reconstructing trees from distance
matrices, which is based upon agglomerative clustering. It is possibly the most popular
method among molecular biologists for reconstructing trees, and does surprisingly well
in some experimental studies; see, for example, [34, 35].

All these methods are known to be statistically consistent for inferring trees both
under the Neyman 2-state model and under the general r-state Markov model of site
evolution.

3. A framework for the comparison of distance-based methods

Although it is understood that all reasonable distance-based methods will converge
on the true tree given sequences of adequate length, understanding the rate of con-
vergence (as a function of sequence length) to the true topology is more complicated.
However, it is possible sometimes to compare different distance-based methods, without
reference to the underlying model. The purpose of this section is to provide a frame-
work for an explicit comparison among different distance-based methods. We will use
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this technique to compare the 3-approximation algorithm of Agarwala et al. to the
Naive method. Our analysis of these two algorithms shows that on any distance matrix
for which the first algorithm is guaranteed to reconstruct the true tree, so is the naive
method. Since our new method, WAM, is guaranteed to reconstruct the true tree on
any dataset for which the naive method is also guaranteed to reconstruct the true tree,
this analysis also establishes a comparison between the Agarwala et al. algorithm and
WAM.

By the four-point condition (Theorem 1) every additive distance matrix corresponds
to a unique tree without vertices of degree 2, and with positive internal edge lengths,
and non-negative lengths on edges incident with leaves.

Suppose we have a binary model tree 7 with positively weighted internal edges.
Let x be the minimum edge-weight among internal edges, and let D be the associated
additive distance matrix. Let d be an observed distance matrix, and let 4 =L, (d,D).

For every distance-based reconstruction method &, we seek a constant ¢(®) such
that

(@)= sup{c: A<cx = P(d) yields T}.

Lemma 2. (i) Two additive distance matrices D and D' define the same topology if
and only if for all quartets the relative orders of the pairwise sums of distances for
that quartet are identical in the two matrices.

(ii) For every edge-weighted binary tree T with minimum internal edge weight x,
and any 9> 0, there is a different binary tree T' such that L..(D,D")=x/2+1, where
D' is the additive distance matrix for T’

(iii) Given any n x n distance matrix d, four indices i,j,k,1 in [n], let pij; denote
the difference between the maximum and the median of the three pairwise sums,
dij +du, dy +dy, dii + dy. Let P be the maximum of the pgu over all quartets
i,j,k,1. Then there is no additive distance matrix D such that L..(d,D)<P/4.

Proof. Claim (i) is a direct consequence of the four-point condition (Theorem 1).

To prove (ii), for a given T, contract an internal edge e having minimum edge
weight x, obtaining a non-binary tree 7'. 7’ has exactly one vertex adjacent to four
edges. Add x/4 to the weight of each of the four edges. Insert a new edge of weight ¢
to resolve the vertex of degree four, so that we obtain a binary tree 7"/, different from
T. Let D be the additive distance matrix for 7 and let D" be the additive distance
matrix for 7”. It is easy to see that then L..(D,D')=x/2 + 9.

For the proof of (iii), let D be an additive distance matrix with L. (d,D)=¢<t/4.
For all quartets i,j,k [, the median and the maximum of the three pairwise sums
induced by i, j,k I are identical in D. Now consider the quartet 7,k [ for which
Pijr =1. The maximum and the median of the three pairwise sums in d differ by p;u.
In order for the maximum and median of the three pairwise sums to be equal in D,
at least one pairwise distance must change by at least p;/4. However &< p;u/4,
contradicting the assumption. [
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Theorem 2. Let D be an additive n x n distance matrix defining a binary tree T, d be
a fixed distance matrix, and let 5 =L, (d,D). Assume that x is the minimum weight
of internal edges of T in the edge weighting corresponding to D.

(i) A hypothetical exact algorithm for the Lo.-nearest tree is guaranteed to return
the topology of T from d if 6 <x/4.

(i1) (@) The 3-approximation algorithm for the L ,-nearest tree is guaranteed to
return the topology of T from d if d<x/8. (b) For all n there exists at least one d
with § =x/6 for which the method can err. (c) If 6=x/4, the algorithm can err for
every such d.

(iii) The naive method is guaranteed to return the topology of T from d if 6 <x/2,
and there exists a d for any §>x/2 for which the method can err.

Proof. To prove (i), assume that D* is an additive distance matrix with L..(d,D*) <9,
and let T* denote the tree topology corresponding to D*. According to Lemma 2,
Part (i), D* and D define the same tree iff the relative order of pairwise sums of
distances agree for all quartets in the two matrices. We will prove that D* and D
define the same tree topology by contradiction.

So suppose D* and D do not define the same tree topology. Then there is a quartet,
i,J,k, 1, of leaves, where (without loss of generality) the topology induced by matrix
D is ijlkl and the topology induced by matrix D* is ik|jl. Thus, there exist positive
constants P and ¢ so that 2P + Dy; + Dy = Dy + Dj; and D}; + Dy =D} + D} + 2.
Now P2ux, since P is an internal path length in 7. By the triangle inequality we have

Loo(D,D*)<20. “)
We have
2P+2£:D,-k+Dj1—Dij—Dk1+D;;+D:/“D;Z_Dj*l )

and hence by the triangle inequality
2x <2P + 26 <80. (6)

Since § <x/4, this implies that such a quartet i, j,k,/ does not exist, and so D and D*
define the same tree topology.

To prove (ii)(a), let D* denote the output of the 3-approximation algorithm and
T* denote the corresponding tree. Following similar arguments, L..(d,D*)<34, so
that corresponding to formula (4) we have L.(D,D*)<4d, and corresponding to
formula (6) we have 2x < 164. To prove (ii)(b), we now give an example where the
3-approximation algorithm can fail in which L (D,d)=x/6. Let d be distance matrix
defined by d,, =d ., =7/3, dyy=dx =3 and d,;, =d,,, = 10/3. By item (iii) of Lemma
2, it follows that there is no additive distance matrix D with L..(d,D)<1/6. Now let
D be the additive distance matrix induced by the binary tree 7 on leaves wu,v,w,x
with topology uvjwx and with edge length as follows: the central edge in T has
weight 1 and all other edges have weight 13/12. Then, L..(D,d)=1/6 so that D
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is a closest additive distance matrix to d. Furthermore, L,.(d,D)=x/6, since x=1
is the lowest edge weight in 7. However there is another additive distance ma-
trix induced by a different tree which lies within 3 times this minimal distance.
Namely, let D” be the additive distance matrix induced by the binary tree with topol-
ogy uwl|vox with interior edge weighted 1/3 and other edges weighted 5/4. Then,
Loo(D",d)=1/2=3Ls(D,d)=3minp{L..(D,d)}, as claimed. It is easy to see that
this example can be embedded in any size distance matrix so that for all # such exam-
ples exist. For (ii)(c), suppose d is a distance matrix, D is its closest additive distance
matrix, and x is the smallest weight of any edge in D. Then contract the edge e of
weight x in 7, the edge-weighted realization of D, and add x/4 to every edge originally
incident to e. Let D’ be the distance matrix of the new edge-weighted tree, 7’. It follows
that L. (D,D")=1x/2 and so that L..(d,D’) <Loo(d, D)+ Loo(D,D"). If Loy(d,D)=x/4,
then L., (d,D")<3x/4, by the triangle inequality. Hence the 3-approximation algorithm
could return the topology of T or of 77, and since they are different there is a possibility
of making the wrong choice.
To prove (iii), arguments similar to the ones above obtain

2P +2¢=Dy +Dj — Dy — Dy +dy +diy — du — d;
and 2x <2P + 2¢<46. The required example is in Lemma 2, Part (ii). O

In other words, given any matrix d of corrected distances, if an exact algorithm for
the Lo.-nearest tree can be guaranteed — by this analysis — to correctly reconstruct the
topology of the model tree, then so can the Naive method. This may suggest that there
is an inherent limitation of the L., -nearest tree approach to reconstructing phylogenetic
tree topologies. However, note that the analytical results are pessimistic; that is, they
guarantee a high probability of an accurate performance once sequence lengths exceed
some threshold, but do not guarantee a low probability of accurate performance for
sequences below those lengths. Even so, these techniques are essentially the same ones
that have been used in other studies to obtain analytical results regarding convergence
to the true tree (see also [4,22]).

4. The witness—antiwitness tree construction (WATC)

4.1. Introduction

In this section we describe the witness—antiwitness tree construction algorithm
(WATC). This procedure, which is the heart of our witness—antiwitness method
(WAM), solves certain restricted instances of the NP-complete quartet consistency prob-
lem [46], and solves them faster than the dyadic closure tree construction algorithm
(DCTC) that we used as a procedure previously in our dyadic closure method (DCM)
[20]. We therefore achieve an improvement with respect to computational requirements
over DCM, and pay for it by requiring somewhat longer sequences.
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Let e be an edge in T. Deleting e but not its endpoints creates two rooted sub-
trees, Ty and T»; these are called edi-subtrees, where “edi” stands for “edge-deletion-
induced”. Each edi-subtree having at least two leaves can be seen as being composed
of two smaller edi-subtrees. The algorithm we will describe, the witness—antiwitness
tree construction algorithm, or WATC, constructs the tree “from the outside in”, by
inferring larger and larger edi-subtrees, until the entire tree is defined. Thus, the algo-
rithm has to decide at each iteration at least one pair of edi-subtrees to “join” into a
new edi-subtree. In the tree, such pairs can be recognized by the constraints (a) that
they are disjoint, and (b) that their roots are at distance two from each other. These
pairs of edi-subtrees are then said to be “siblings”. The algorithm determines whether
a pair of edi-subtrees are siblings by using the quartet splits. We will show that if the
set O satisfles certain conditions then WATC is guaranteed to reconstruct the tree 7
from Q.

The conditions that Q must satisfy in order for WATC to be guaranteed to reconstruct
the tree T are slightly more restrictive than those we required in the DCTC method,
but do not require significantly longer sequences. Sets  which satisfy these conditions
are said to be T-forcing. The first stage of WATC assumes that Q is T-forcing, and
on that basis attempts to reconstruct the tree 7. If during the course of the algorithm it
can be determined that Q is not T-forcing, then the algorithm returns Fuil. Otherwise,
a tree T’ is constructed. At this point, the second stage of WATC begins, in which we
determine whether T is the unique tree that is consistent with Q. If O fails this test,
then the algorithm returns Fuil, and otherwise it returns T.

Just as in the dyadic closure method (DCM) we will need a search technique to find
an appropriate set (. Whereas binary search was a feasible technique for the DCM,
it is no longer feasible in this case. Search techniques for an appropriate set Q are
discussed in Section 5.

4.2. Definitions and preliminary material

Within each edi-subtree ¢, select that unique leaf which is the lowest valued leaf
among those closest topologically to the root (recall that leaves are identified with
positive integers). This is called the representative of ¢, and is denoted rep(r). If the
edi-subtree consists of a single leaf, then the representative leaf is identical with this
single leaf, which also happens to be the root of the edi-subtree at the same time.

The diameter of the tree T, diam(T), is the maximum topological distance in
the tree between any pair of leaves. We define the depth of an edi-subtree ¢ to
be L(root(t),rep(t)), and denote this quantity by depth(T). The depth of T is then
max, {depth(t)}, as ¢ ranges over all edi-subtrees yielded by internal edges of T. We
say that a path P in the tree T is short if its topological length is at most depth(T)+ 1,
and say that a quartet 7, j, &,/ is a short quartet if it induces a subtree which contains
a single edge connected to four disjoint short paths. The set of all short quartets of the
tree T is denoted by Quon(7T). We will denote the set of valid quartet splits for the
short quartets by QX _(T).
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For each of the n—3 internal edges of the n-leaf binary tree T we assign a represen-
tative quartet {i, j,k,1} as follows. The deletion of the internal edge and its endpoints
defines four rooted subtrees. Pick the representative from each of these subtrees to
obtain i, j,k,/; by definition, the quartet 7, j,k, is a short quartet in the tree. We call
the split of this quartet a representative quartet split of T, and we denote the set of
representative quartet splits of 7 by Rr. Note that by definition

R7 € Qhhon(T) € QD). (7)

We will say that a set Q of quartet splits is consistent with a tree T if QC Q(T').
We will say that Q is consistent if there exists a tree T with which Q is consistent,
and otherwise Q is said to be inconsistent. In [20], we proved:

Theorem 3. Ler T be a binary tree on [n]. If R is consistent with a binary tree T' on
[n], then T =T'. Therefore, if Ry C Q, then either Q is inconsistent, or () is consistent
with T. Furthermore, Q cannot be consistent with two distinct trees if Ry CQ.

Let S be a set of n sequences generated under the Neyman model of evolution, and
let d be the matrix of corrected empirical distances. Given any four sequences i,/,k, [
from S, we define the width of the quartet on i, ,k,/ to be max(dy;, du.du, di,dj, dir).
For any we R", let O, denote the set of quartet splits of width at most w, inferred
using the four-point method.

4.3. The dyadic closure method

The dyadic closure method is based on the dyadic closure tree construction (DCTC)
algorithm, which uses dyadic closure (see [20, 18]) to reconstruct a tree T consistent
with an input set Q of quartet splits. Recall that Q(7T) denotes the set of all valid
quartet splits in a tree 7, and that given Q(T), the tree T is uniquely defined. The
dyadic closure of a set Q is denoted by cl/(Q), and consists of all splits that can
be inferred by combining two splits at a time from (), and from previously inferred
quartet splits. In [20], we showed that the dyadic closure ¢/(Q) could be computed
in O(#°) time, and that if Q contained all the representative quartet splits of a tree,
and contained only valid quartet splits, (i.e. if Ry CQ CQO(T)), then c/(Q)=0O(T).
Consequently, the DCTC algorithm reconstructs the tree T if Ry CQ C O(T). It is also
easy to see that no set () can simultaneously satisfy this condition for two distinct
binary trees 7,7’, by Theorem 3, and furthermore, if Q satisfies this condition for T,
it can be quickly verified that T is the unique solution to the reconstruction problem.
Thus, when Q is such that for some binary tree 7, Rr CQ C O(T'), then the DCTC
algorithm properly reconstructs 7. The problem cases are when Q does not satisfy this
condition for any T.

We handle the problem cases by specifying the output DCTC(Q) to be as follows:
e binary tree T such that c/(Q)=Q(T) (this type of output is guaranteed when

RrCQCOT)),
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e inconsistent when cl(Q) contains two contradictory splits for the same quartet, or
o insufficient otherwise.

Note that this specification does not prohibit the algorithm from reconstructing a
binary tree T, even if () does not contain all of Ry. In such a case, the tree T
will nevertheless satisfy c/(Q)=Q(T); therefore, no other binary tree 7’ will sat-
isfy O C Q(T")). Note that if DCTC(Q) = Inconsistent, then Q £Q(T) for any binary
tree T, so that if O C Q" then DCTC(Q') = Inconsistent as well. On the other hand,
if DCTC(Q)= Insufficient and Q' C Q, then DCTC(Q') = Insufficient also. Thus, if
DCTC(Q) is Inconsistent, then there is no tree T consistent with O, but if DCTC(Q)
is Insufficient, then it is still possible that some tree exists consistent with O, but the
set O is insufficient with respect to the requirements of the DCTC method.

Now consider what happens if we let O be (, the set of quartet splits based
upon quartets of width at most w. The output of the DCTC algorithm will indicate
whether w is too big (i.e. when DCTC(Q,,) = Inconsistent), or too small (i.e. when
DCTC(Q.) = Insufficient). Consequently, DCTC can be used as part of a tree con-
struction method, where splits of quartets (of some specified width w) are estimated
using some specified method, and we search through the possible widths w using binary
search.

In [20], we studied a specific variant of this approach, called the Dyadic Closure
Method (DCM), in which quartet trees are estimated using the four-point method (see
Definition VII in Section 2). We analyzed the sequence length that suffices for accu-
rate tree construction by DCM and showed that it grows very slowly; for almost all
trees under two distributions on binary trees the sequence length that suffices for tree
reconstruction under DCM is only polylogarithmic in n, once 0< f<g<.5 are fixed
and p(e)€|[f,g] is assumed. Thus, DCM has a very fast convergence rate. DCM
uses O(n*k + n’logn) time and O(n*) space; therefore it is a statistically consistent
polynomial time method for inferring trees under the Neyman model of evolution. For
practical purposes, however, the computational requirements of the DCM method are
excessive for inferring large trees, where n can be on the order of hundreds.

4.4. Witnesses, antiwitnesses, and T-forcing sets

Recall that the witness—-antiwitness tree construction algorithm constructs 7 from the
outside in, by determining in each iteration which pairs of edi-subtrees are siblings.
This is accomplished by using the quartet splits to guide the inference of edi-subtrees.
We now describe precisely how this is accomplished.

Definition 1. Recall that an edi-subtree is a subtree of T induced by the deletion
of an edge in the tree. Two edi-subtrees are siblings if they are disjoint, the path
between their roots contains exactly two edges, and there are at least two leaves not
in either of these two edi-subtrees. (The last condition — that there are at least two
leaves not in either of the two edi-subtrees — is nonstandard, but is assumed because it
simplifies our discussion.) Let ¢, and #, be two vertex disjoint edi-subtrees. A witness
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to the siblinghood of t| and t; is a quartet split uv|wx such that u€¢, ves, and
{w,x}N(t1Ur) = 0. We call such quartets witnesses. An anti-witness to the siblinghood
of t; and t; is a quartet split pgql|rs, such that pet, r€t, and {g,s} N (1 U n)=0.
We will call these anti-witnesses.

Definition 2. Let T be a binary tree and O a set of quartet splits defined on the leaves

of T.

e O has the witness property for T: Whenever 1| and 1, are sibling edi-subtrees of T
and T —t; — 1, has at least two leaves, then there is a quartet split of O which is a
witness to the siblinghood of ¢, and ;.

e O has the antiwitness property for T: Whenever there is a witness in Q to the
siblinghood of two edi-subtrees #; and #, which are not siblings in T, then there is
a quartet split in Q which is an antiwitness to the siblinghood of 7, and #.

Theorem 4. If Ry C Q, then Q has the witness property for T. Furthermore, if Ry C
QCO(T), and t, and 1, are sibling edi-subtrees, then Q contains at least one witness,
but no antiwitness, to the siblinghood of t| and t,.

The proof is straightforward, and is omitted.

Suppose T is a fixed binary tree, and Q is a set of quartet splits defined on the
leaves of T. The problem of reconstructing 7 from Q is in general NP-hard [46], but
in [20] we showed that if Ry CQC Q(T) we can reconstruct 7 in O(n’) time, and
validate that T is the unique tree consistent with Q. Now we define a stronger property
for O which, when it holds, will allow us to reconstruct T from Q (and validate that
T is the unique tree consistent with Q) in O(n* + |Q|log |Q]) time. Thus, this is a
faster algorithm than the DCTC algorithm that we presented in [20].

Definition 3 (T-forcing sets of quartet splits). A set O of quartet splits is said to be
T-forcing if there exists a binary tree T such that

1. Rr CQC O(T), and

2. O has the antiwitness property for 7.

Two points should be made about this definition. Since Ry C Q, Q has the witness
property for T, and it is impossible for O to be both T-forcing and 7’-forcing for
distinct 7 and T’, since by Theorem 3, Rr is consistent with a unique tree. Finally,
note that the first condition Ry C Q C Q(T') was the requirement we made for the dyadic
closure tree construction (DCTC) algorithm in [20], and so T-forcing sets of quartet
splits have to satisfy the assumptions of the DCTC algorithm, plus one additional
assumption: having the antiwitness property.

4.5. WATC

The algorithm we will now describe operates by constructing the tree from the
outside in, via a sequence of iterations. Each iteration involves determining a new set of
edi-subtrees, where each edi-subtree is either an edi-subtree in the previous iteration or
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is the result of making two edi-subtrees from the previous iteration siblings. Thus, each
iteration involves determining which pairs of edi-subtrees from the previous iteration
are siblings, and hence should be joined into one edi-subtree in this iteration.

We make the determination of siblinghood of edi-subtrees by applying the witness
and antiwitness properties, but we note that only certain splits are considered to be
relevant to this determination. In other words, we will require that any split used either
as a witness or an anti-witness have leaves in four distinct edi-subtrees that exist at
the time of the determination of siblinghood for this particular pair. Such splits are
considered to be active, and other splits are considered to be inactive. All splits begin
as active, but become inactive during the course of the algorithm (and once inactive,
they remain inactive). We will use the terms “active witness™ and “active antiwitness”
to refer to active splits which are used as witnesses and antiwitesses. We will infer
that two edi-subtrees are siblings if and only if there is an active witness to their
siblinghood and no active anti-witness. (Note that this inference will be accurate if O
has the witness and antiwitness properties, but otherwise the algorithm may make a
false inference, or fail to make any inference.)

We represent our determination of siblinghood as a graph on the edi-subtrees we
have currently found. Thus, suppose at the beginning of the current iteration there are
p edi-subtrees, £1,1,,...,4,. The graph for this iteration has p nodes, one for each edi-
subtree, and we put an edge between every pair of edi-subtrees which have at least one
witness and no anti-witness in the set of quartet topologies. The algorithm proceeds
by then merging pairs of sibling edi-subtrees (recognized by edges in the graph) into
a single (new) edi-subtree. The next iteration of the algorithm then requires that the
graph is reconstructed, since witnesses and antiwitnesses must consist of four leaves,
each drawn from distinct edi-subtrees (these are the active witnesses and antiwitnesses
— thus, quartet splits begin as active, but can become inactive as edi-subtrees are
merged).

The last iteration of the algorithm occurs when the number of edi-subtrees left is
four, or there are no pairs of edi-subtrees which satisfy the conditions for siblinghood.
If no pair of edi-subtrees satisfy the criteria for being siblings, then the algorithm
returns Fail. On the other hand, if there are exactly four edi-subtrees, and if there are
two disjoint pairs of sibling edi-subtrees, then we return the tree formed by merging
each of the two pairs of sibling edi-subtrees into a single edi-subtree, and then joining
the roots of these two (new) edi-subtrees by an edge.

If a tree 77 is reconstructed by the algorithm, we will not return 77 until we verify
that

R COQCT").

If the tree 7’ passes this test, then we return 7”7, and in all other cases we return Fail.
We summarize this discussion in the following:

The WATC algorithm

Stage I:

e Start with every leaf of T defining an edi-subtree.
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e While there are at least four edi-subtrees do:

o Form the graph G on vertex set given by the edi-subtrees, and with edge set de-
fined by siblinghood; i.e., (x, y) € E(G) if and only if there is at least one witness
and no antiwitness to the siblinghood of edi-subtrees x and y. All witnesses and
antiwitnesses must be splits on four leaves in which each leaf lies in a distinct
edi-subtree; these are the active witnesses and antiwitnesses.

— Case: there are exactly four edi-subtrees: Let the four subtrees be x, y,z,w. If
the edge set of the graph G is {(x, y),(z, w)}, then construct the tree 7 formed
by making the edi-subtrees x and y siblings, the edi-subtrees z and w siblings,
and adding an edge between the roots of the two new edi-subtrees; else, return
Fail.

~ Case: there are more than four edi-subtrees: If the graph has at least one
edge, then select one, say (x, y), and make the roots of the edi-subtrees x
and y children of a common root r, and replace the pair x and y by one
edi-subtree. If no component edge exists, then Return Fail.

Stage 11
o Verify that T satisfies the constraints Ry CQ C Q(T). If so, return 7T, and else return

Fail.

The runtime of this algorithm depends upon how the two edi-subtrees are found that
can be siblings.

4.6. Implementation of WATC

We describe here a fast implementation of the WATC algorithm.

We begin by constructing a multigraph on # nodes, bijectively labelled by the species.
Edges in this multigraph will be colored either green or red, with one green edge be-
tween | and j for each witness to the siblinghood of i and j, and one red edge between
i and j for each antiwitness. Thus, each quartet split ij|k/ defines six edges in the multi-
graph, with two green edges ((ij) and (k/)) and four red edges ((ik),(il),(jk),(jI)).
Each green edge is annotated with the quartet that defined it and the topology on that
quartet, so that the other edges associated to that quartet can be identified. Constructing
this multi-graph takes O(|Q|) time. Note that edi-subtrees x and y are determined to
be siblings if there exists a green edge (x, y) but no red edge (x, y).

We will maintain several data structures:

e Red(i, ), the number of red edges between nodes i and j, so that accesses, incre-
ments, and decrements to Red(i,j) take O(1) time,

e Green(i, j), the set of green edges between nodes { and ;, maintained in such a way
that we can enumerate the elements in |Green(J,j)| time, and so that we can union
two such sets in O(1) time,

e T}, the ith edi-subtree (i.e. the edi-subtree corresponding to node ), maintained as a
directed graph with edges directed away from the root,

e Tree, an array such that Tree[i] = j indicates that leaf i is in tree 7. This is initialized
by Tree[i]=1i for all i, and
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o Candidates, the set of pairs of edi-subtrees which have at least one green edge and
no red edges between them (and hence are candidates for siblinghood). We maintain
this set using doubly-linked lists, and we also have pointers info the list from other
datastructures (Green (1, 7)) so that we can access, add, and delete elements from the
set in O(1) time.

Finding a sibling pair: A pair of edi-subtrees are inferred to be siblings if and only
if they have at least one green edges and no red edges between them. We maintain
a list of possible sibling pairs of edi-subtrees in the set Candidates, and the members
of Candidates are pairs of the form i,j where both i and ; are edi-subtrees. (Testing
whether 7 is a current edi-subtree is easy; just check that 7ree[i]=i.) We take an
element (i,;) from the set Candidates and verify that the pair is valid. This requires
verifying that both i and j are current names for edi-subtrees, which can be accom-
plished by checking that Tree[i]=i and Tree| j]1=j. If (i,j) fails this test, we delete
(i,j) from the set of Candidates, and examine instead a different pair. However, if
(i,j) passes this test, we then verify that the pair 7,/ have at least one green edge and
no red edges between them. For technical reasons (which we describe below), it is
possible that Green(i,j) will contain a ghost green edge. We now define what ghost
green edges are, and how we can recognize them in O(1) time.

Definition 4. A ghost green edge is a green edge (a,b) which was defined by a quartet
split ab|cd, but which was not deleted after the edi-subtrees containing ¢ and d were
merged into a single edi-subtree.

Detecting whether a green edge is a ghost is done as follows. Recall that every
green edge (a,b) is annotated with the quartet (a, b, ¢, d) that gave rise to it. Therefore,
given a green edge (a,b), we look up the edi-subtrees for the members of the other
green edge (c,d) (using the Tree array), and see if ¢ and d still belong to distinct
edi-subtrees. If Tree[c] = Tree[d] then (a,b) is a ghost green edge (since ¢ and d were
already placed in the same edi-subtree) and otherwise it is a true green edge.

Every ghost we find in Green(i, j) we simply delete, and if Green(i,j) contains only
ghost edges, we remove (i,j) from the set Candidates (the edi-subtrees i and j are
not actually siblings). If we find any non-ghost green edge in Green(i,j), then (i,j)
are inferred to be sibling edi-subtrees, and we enter the next phase.

Processing a sibling pair: Having found a pair i and j of edi-subtrees which are
siblings, we need to update all the data-structures appropriately. We now describe how
we do this.

First, we process every green edge e in Green(i,j) by deleting the four red edges
associated to e (this is accomplished by decrementing appropriate entries in the matrix
Red). Note that we do not explicitly (or implicitly) delete the other green edge asso-
ciated with edge e, and rather leave that green edge to be handled later; this is how
ghost green edges arise.

After we finish processing every green edge, we merge the two edi-subtrees into one
edi-subtree. We will use one index, say 7, to indicate the number of the new edi-subtree
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created. We update 7; so that it has a new root, and the children of the new root are
the roots of the previous edi-subtrees 1; and 7T, and we update the Tree array so that
all entries which previously held a j now hold .

We also have to reset Red(i,k) and Green(i,k) for every other edi-subtree £,
since the edi-subtree labelled i has changed. We set Red(i,k)= Red(i,k)+ Red(},k),
and Green(i, k) = Green(i,k)U Green(j, k) for all k. We then set Red(j,k)=0 and
Green(j,k)=0, if we wish (this is for safety, but is not really needed).

We also have to update the Candidates set. This involves deletions of some pairs,
and insertions of others. The only pairs which need to be deleted are those i,k for
which there is now a red edge between edi-subtrees i and &, but for which previously
there was none. This can be observed during the course of updating the Red(i, k)
entries, since every pair (#,k) which should be deleted has Red(i,k)=0 before the
update, and Red(i,k) > 0 after the update. Pairs (i,k) which must be inserted in the
Candidates set are those (i,k) which previously had Green(i,k)=0 and which now
have Green(i,k) # (). Accessing, inserting, and deleting the elements of Candidates
takes O(1) time each, so this takes O(1) additional time.

We now discuss the runtime analysis of the first stage of WATC:

Theorem 5. The first stage of WATC uses O(n®> + |Q}) time.

Proof. Creating the multi-graph clearly costs only O(]Q|) time. Initializing all the
datastructures takes O(n?) time. There are at most O(|Q|) green edges in the multigraph
we create, and each green edge is processed at most once, after which it is deleted.
Processing a green edge costs O(1) time, since Tree can be accessed in O(1) time.
There are at most n — 1 siblinghood detections, and updating the datastructures after
detecting siblinghood only costs O(n) time (beyond the cost of processing green edges).
Implementing the datastructures Green(i,j) and Candidates so that updates are efficient
is easy through the use of pointers and records. Hence, the total cost of the first stage
is O(n*+1Q|). O

So suppose the result of the first phase constructs a tree 7' from the set Q of splits.
The second stage of the WATC algorithm needs to verify that Ry C QO C QO(T'); we now
describe how this is accomplished efficiently.

Given T, we can compute Ry in O(n?) time in a straightforward way: for each of
the O(n) edi-subtrees ¢, we compute the representative rep(t) in O(n) time. We then
use the representatives to compute Ry, which has size O(n), in O(n) additional time.
Verifying that Ry C Q then takes at most O(nlog n + |Q|log|Q]) time. First we make
sorted list of quartet splits by the lexicographic order of the 4 vertices involved. Sorting
is in O(|Q|log |Q}) time. Then we use a binary search to determine membership, which
costs O(log n) time for each element of Ry, since |Q| = O(n*). Verifying that Q C O(T)
then can be done by verifying that g€ Q(T) for each g € Q. This is easily done in
O(1) time per g using O(1) /ca queries (to determine the valid split for each quartet
which has a split in Q). Preprocessing T so that we can do /ca queries in O(1) time
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per query can be done in O(n) time, using the algorithm of Harel and Tarjan [53].
Consequently, we have proven:

Theorem 6. The second stage of WATC takes O(n* + |Q|log|Q|) time. Therefore,
WATC takes O(n* + |Q|log|Ql) time.

4.7. Proof of correctness of WATC

We begin by proving that the WATC algorithm correctly reconstructs the tree T
provided that Q is T-forcing.

Theorem 7. If Q is T-forcing, then WATC(Q)=T.

Proof. We first prove that all decisions made by the algorithm are correct, and then
prove that the algorithm never fails to make a correct decision.

We use induction on the number of iterations to prove that no incorrect decisions
are made by the algorithm. At the first iteration, every edi-subtree is a leaf, and these
are correct. Now assume that so far the WATC algorithm applied to Q has constructed
only correct edi-subtrees, and the next step merges two edi-subtrees, ¢, and #,, into
one, but that these are not actually siblings.

Since Q has the antiwitness property, there is a valid quartet split ablcd € Q with
acti,c€t and {b,d} N(t; Ut;)=10. We need only show that this antiwitness is still
active at the time that we merged ¢, and ¢, into one edi-subtree.

Suppose that the split ablcd is not active at the time we merged £ and . In
this case, then the four leaves a,b,c,d are in fewer than four distinct edi-subtrees.
The assumption {b,d} N (¢ Ut;) =0 then implies that we have already created an edi-
subtree ¢ containing both b and d. This edi-subtree is true, since we have assumed all
edi-subtrees constructed so far are accurate. Now, consider the edge ¢’ whose deletion
creates the subtree ¢. This edge cannot exist if ab|cd is a valid quartet split and neither
b nor d are in #; Ut,. Consequently, the antiwitness ablcd is still active at the time
we merged £ and #,, contradicting that we made that merger, and hence all inferred
edi-subtrees are correct.

We now show that the algorithm never fails to be able to make a correct decision.
If O is T-forcing, then Ry C Q. Now if ¢ and ¢ are sibling edi-subtrees, then let e
be the edge in 7 whose deletion disconnects ¢U¢# from the rest of the tree T. Let
g be the representative quartet split associated to e. This quartet split is a witness to
the siblinghood of ¢ and ¢/, which will remain active throughout the iterations of the
algorithm until the entire tree is constructed (otherwise there are only three edi-subtrees
present at some point, and this is contradicted by the structure of the algorithm).
Furthermore, since Q C Q(T), there is no invalid quartet split, and consequently no
antiwitness to the siblinghood of ¢ and #. Therefore, the algorithm will never fail to
have opportunities to merge pairs of sibling edi-subtrees. [



P.L. Erdos et al. | Theoretical Computer Science 221 (1999) 77-118 97

Theorem 8. If the WATC algorithm returns a tree T given a set Q of quartet splits,
then Q is consistent with T and with no other tree T'. If WATC does not return a
tree T, then Q is not T-forcing.

Proof. The proof is not difficult. If T is returned by WATC, then Q satisfies Rr C Q C
Q(T). Under this condition @ is consistent with 7 and with no other tree, by
Theorem 3. Hence the first assertion holds. For the second assertion, if Q is T-forcing,
then by the previous theorem WATC returns T after the first stage. The conditions for
being T-forcing include that Ry € Q C ((T'), so that the verification step is successful,
and Q is returned. [

5. The witness—antiwitness method (WAM)

In the previous section we described the WATC algorithm which reconstructs T given
a T-forcing set of quartet splits, (. In this section we describe a set of search strategies
for finding such a set (. These strategies vary in their number of queries on quartet
split sets (ranging from O(loglog n) to O(n?)), but also vary in the sequence length
needed in order for the search strategy to be successful with high probability. All have
the same asymptotic sequence length requirement as the dyadic closure method [20],
but differ in terms of the multiplicative constant.

Before we describe and analyze these search strategies, we begin with some results
on the four-point Method, and on random trees.

5.1. Previous results

Lemma 3 (Azuma—Hoeffding inequality, see [3]). Suppose X =(X1,Xs,...,Xx) are in-
dependent random variables taking values in any set S, and L : S* — R is any function
that satisfies the condition: |L(u) — L(v)| <t whenever u and v differ at just one co-
ordinate. Then, for any 1 > 0, we have

/12
PL(X) — E[L(X)] =A< exp(—m> ,
22
PIL(X) — E[L(X]< — A]< exp<~m> .
In [20], we proved:

Theorem 9. Assume that z is a lower bound for the transition probability of any
edge of a tree T in the Neyman 2-state model, y > max EV is an upper bound on the
compound changing probability over all ij paths in a quartet q of T. The probability
that FPM fails to return the correct quartet split on q is at most

18 exp(—(1 — V1 — 22)*(1 — 2¥)’k/8)). (8)
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In [20] we also provided an upper bound on the growth of the depth of random
trees under two distributions:

Theorem 10. (i) For a random semilabelled binary tree T with n leaves under the
uniform model, depth(T)<(2 + o(1))log, log, (2n) with probability 1 — o(1).

(i1) For a random semilabelled binary tree T with n leaves under the Yule-Harding
distribution, after suppressing the root, depth(T)=(1+o(1))log, log, n with proba-
bility 1 —o(1).

5.2. Search strategies

Let O, denote the set of splits inferred using the four-point method on quartets
whose width is at most w; recall that the width of a quartet i, j, 4,/ is the maximum
of dij,dix,dir,djx,d;1,dy. The objective is to find a set O, such that O, is T-forcing.

Definition 5.
d={weR": Rr CQ,},
B={weR": 0, CQ(T)}.

We now state without proof the following observation which is straightforward.

Observation 1. o7 is either (), or is (w4, 00) for some positive real number wy. B is
either O, or is (0,wg), for some positive real number wg.

Sequential search for T-forcing Q,.: A sequential search through the sets Q,,, testing
each Q,, for being T'-forcing by a simple application of WATC algorithm, is an obvious
solution to the problem of finding a T-forcing set which will find a T-forcing set
from shorter sequences than any other search strategy through the sets Q,,. However,
in the worst case, it examines O(nz) sets (O, since w can be any of the values in
{di;: 1<i < j<n}, and hence it has high computational requirements.

Sparse-high search for a T-forcing Q,: We describe here a sparse search that ex-
amines at most O(log k) sets ,, and hence has lower computational requirements, but
may require longer sequences. Even so, we prove that the sequence length require-
ment has the same order of magnitude as the sequential search. This sparse search
examines the high end of the values of w, and so we call it the Sparse-high search
strategy.

Let 7 < 1/4 be given. We define Z, to be the set of quartets i,j,k ! such that
max{h¥, h'* h'! bk hJt BF} < 1/2 — 27. Note then that the set of splits (inferred using
the four-point method) on quartets in Z; is Oy, where w(t)= — %(log(4r)).

The sparse-high search examines t=1/8,1/16,..., until it finds a 7 such that Z, =
Qw(r) is T-forcing, or until w(tr) exceeds every d;;.

We now define conditions under which each of these search strategies are guaranteed
to find a T-forcing set Q,,. Recall the sets o = {w: Ry C O, },and Z ={w: Q,,.CO(T)}.
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We now define the following assumptions:
ANAB+0, (9

Iw* e A NAB, st Q.+ has the antiwitness property, (10)

It*, st Vee[r™/2, 7", w(t) e /N B, and Quw(z) has the antiwitness property.
(11)

It is clear that if assumptions (16) and (17) hold, then the sequential search strategy
will be guaranteed to succeed in reconstructing the tree, and that the Sparse-high search
strategy requires that assumption (11) hold as well.

We now analyze the sequence length needed to get each of these assumptions to
hold with constant probability.

6. How WAM performs under the Neyman 2-state model

In this section we analyze the performance of the witness—antiwitness method
(WAM), with respect to computational and sequence-length requirements. The anal-
ysis of the sequence length requirement follows a similar analysis for DCM in [20],
but turns out to be more complicated, and results in constant times longer sequences.
The analysis of the computational complexity of WAM is both in the worst case, and
under the assumption that the tree topology is drawn from a random distribution. Fi-
nally, we compare the performance of WAM to other methods, with respect to both
these issues.

6.1. Sequence length needed by WAM

Theorem 11. Suppose k sites evolve under the Cavender—Farris model on a binary
tree T, so that for all edges e, p.<[f,qg), where we allow f = f(n) and g=g(n) to
be functions of n. We assume that limsup, g(n) < 1/2. Then both the sparse-high
and sequential search based on the WATC algorithm returns the true tree T with
probability 1 — o(1), if

S c-logn
(1— /1 — 2f)2(1 _ 2g)4deplh(T)’

where ¢ is a fixed constant.

k

(12)

Proof. Note that the sparse-high search requires assumptions (16)—(18), while the
sequential search only requires assumptions (16) and (17). We will show that the given
sequence length suffices for all three assumptions to hold with probability 1 — o(1).

We begin by showing that assumption (9) holds, i.e. that Rr CQ,. CO(T) for
some w.
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For k evolving sites (i.e. sequences of length &), and fixed © > 0, let us define the
following two sets:

S.={{i,j}: B < 0.5 -1},
and

A {qe <[Z]>: for all i,qu,{i,j}eSzf},

and the following four events:

A:Qshon(T)nga (13)

B, =FPM correctly returns the split of the quartet g € <[Z]) , (14)

B= ﬂ B, (15)
q€Z;

C =S, contains all {i,j} with EY < 0.5 -3t and no {i,j} with EY>0.5 — 1.
(16)

Note that B is the event that 0,y C O(T), so that AN B is the event that Q:;mn C Owin)
CO(T), or w(t)e .o/ NA. Thus, P[.o/ N & # ] = P[4 N B]. Define

J=(1 — 2g)2ePth(I)+3 (17)
We claim that

P[C}=1 — (n? — n)e *#?2 (18)
and

P[4|C]=1 if t<}/6. (19)

To establish (18), first note that A/ satisfies the hypothesis of the Azuma—Hoeflding
inequality (Lemma 3 with X; =1 if the /th bits of the sequences of leaves i and j
differ, and X; =0 otherwise, and ¢ = 1/k). Suppose E¥ >0.5 — 1. Then,

Pl{i,j} € S2] = PAY < 0.5 — 21]
< P[AY — EV <0.5 — 21 — EN < P[AY — E[AY] < — 1] <e " %2,

Since there are at most (}) pairs {i,j}, the probability that at least one pair {i,;} with
EY>0.5 — 1 lies in Sy, is at most (}) e~“#2_ By a similar argument, the probability
that Sy. fails to contain a pair {i,j} with EY < 0.5 — 37 is also at most (7)e~"%2,
These two bounds establish (18).

We now establish (19). For ¢ € Quon(T) and i,j €4, if a path eje; - - - ¢, joins leaves
i and j, then 1<2depth(T) + 3 by the definixtion of Quon(7). Using these facts,
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Lemma 1, and the bound p,<g, we obtain E¥=0.5[1—(1 —2p))---(1 —2p,)] <
0.5(1 —4). Consequently, £V < 0.5—37 (by assumption that t <1/6) and so {7,j} € S,
once we condition on the occurrence of event C. This holds for all i,j€gq, so by
definition of Z, we have g € Z,. This establishes (19).

Define a set

X = {qe <[Z]>: max{E": i,j€q} < 0.5 — r}

(note that X is not a random variable, while Z;, S; are). Now, for ¢ € X, the induced
subtree in 7 has mutation probability at least f(n) on its central edge, and mutation
probability of no more than max{EY: i,j € g} <0.5 — t on any pendant edge. Then, by
Theorem 9 we have

P[B,1>1 — 18 exp(—(1 — /1 — 21 Y*T*k/8) (20)
whenever g € X. Also, the occurrence of event C implies that
Z.CX Q1)

since if g€ Z,, and i,j € g, then i, j € S,,, and then (by event C), E¥ <0.5 — 1, hence

g€ X. Thus,
2P| N B, | NCY,
qeX

where the second inequality follows from (21), as this shows that when C occurs,
N gez. Bq 2 N sex Bq- Invoking the Bonferonni inequality, we deduce that

P[BﬂC]zP{( ﬂB,,) nec

q<€Z;

P[BNC]>1- Y P[B,] - PIC]. (22)
qeX

Thus, from above,
P[ANB]ZP[ANBNC]=P[BNC(C]

(since P[4|C]=1), and so, by (20) and (22),

P[ANB]=1 — IS(Z) exp(—(1 — /1=2f 2T2k/8) _ (nz _ n)e_rzkﬂ.

Formula (12) follows by an easy calculation for t=c - 4, for any 0 < ¢<1/6.

We proceed to prove that assumption (10) holds. Recall the definition of Q)=
{FPM(q): g€ Z,}. Now let D be the event that whenever ¢ and ¢ are two edi-subtrees
which are not siblings, but there is a witness in Q,.(t) to the siblinghood of T, then
there is also an antiwitness in Q,(7).

Recalling Theorem 4, it is obvious that event AN BN D implies Assumptions (9)
and (10). We are going to show that P[4ANBND]=1 - o(1) under the conditions of



102 P.L. Erdés et al | Theoretical Computer Science 221 (1999) 77-118

u=rep (t3 )
vV=rep (t4 )

Fig. 1. Finding an antiwitness.

the theorem for a certain choice of 7, which is just slightly smaller than the t that
sufficed for the assumption (9). Technically, we are going to show

P[D|ANBNC]=1. (23)

proof of (23): D= UtI i Heep, Where 11, 1; denote two disjoint edi-subtrees of T, and
H, ., denotes the event that there is a witness but no antiwitness for the siblinghood
of ¢t in Qur). Therefore, in order to prove (23), it suffices to prove

P[H,, ,]ANBNC]=0. (24)

Assume that there is a witness for the siblinghood of #,£ where ¢, and £, are not
siblings. We will show that O,y contains an antiwitness to the siblinghood of ¢ and #,.
Let the witness to the siblinghood of 7, and , be ab|cd, where ac t;, bet;, and c,d
not in 1 Ut. Let pg be an internal edge of the unique ab path in T containing the
midpoint of the path P(a,b) measured using the lengths defined by the corrected model
distances D, and with p closer to a and ¢ closer to 5, i.e. the edge ( p,q) maximizes
the following quantity:

min (1 —2E%,1 — 2E%). (25)
pq internal edge
Let p’ and ¢’ be neighbors of p and g respectively that are not on the path between
nodes a and b. Consider the edi-subtrees r; and 14 tooted at p’ and ¢’ respectively,
formed by deleting ( p, p’) and (q,q’), respectively. Set u =rep(t3), v=rep(ts) (Fig. 1).
We are going to show that

{a,b,u,v} € Z,, (26)

and aulbv € O, ). The proof of (26) is the only issue, since by (15) the split of
{a,b,u,v} is correctly reconstructed, and is au|bv by construction. Clearly

PlH, ,|ANBNCI<P[{a,b,u,v} ¢ Z,]JANBNC). (27)
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The RHS of (27) can be further estimated by

PlA™>0.5 — 2t1[ANBNC] + P[A? 0.5 — 2t|ANBNC]
P[A">0.5 — 21]ANBN C] + P[A" >0.5 — 2t|[ANBNC]
+ P[K* 0.5 — 2t|[4NBNC]. (28)

The fifth term P[A*' >20.5 — 271[ANBNC]=0, since it is easy to find a short quartet
which contains u,v; and therefore by (13), #** < 0.5 —27. Here is how to find a short
quartet containing « and v. Let &’ denote the neighbor of p on the ab path towards a,
and let g denote the neighbor of ¢ on the ab path towards . Consider the edi-subtree #s
defined by pa’, which contains the leaf a, and the edi-subtree f¢ defined by gd’, which
contains the leaf b. It is easy to check that {u,v,rep(ts),rep(ts)} is a short quartet.

In order to finish the proof of (24), and hence the proof of (23), it suffices to show
that the other four terms in (28) are zero as well. The third and fourth terms are
symmetric to the first and second, and in fact the second has a worse bound than the
first. Therefore it suffices to prove that

P[A™>0.5 — 21|ANBNC]=0. (29)

We assume that {a,v} ¢Sy, and show that consequently 7 is large. Hence, for a
properly small 7, Formula (29), and hence (23) holds. From {a, v} ¢ Sy,, conditioning
on C,

E* > 0.5 31, (30)
and {a,b} €S, and hence, conditioning on C,
E? < 05—1 (31)

There is no difficulty to extend the definition of EY to cases when at least one of i,/ is
an internal vertex of the tree. Simple algebra yields from formula (30) and Lemma 1,
that

61>1—2E“ =(1 —2EP")(1 — 2EP*). (32)
We have
1 = 2E7° 2 (1 — 2g)*PHD+2 = /)(1 — 2g) (33)

by the definition of A4 (see formula (17)) and the choice of v as representative. By
formula (25), it is easy to see that

1 —2EPA 2 q(1 — 2g)*\/1 — 2E9. (34)

Combining (31)-(34), we obtain 67> /(1 —2g)(1 —2g)*v/2t. This formula fails, if
we select

T=c; - (1 —2¢g)°4 (35)

with a sufficiently small positive constant c;.
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Case 1: p ¢ty and q ¢ 1> (as in Fig. 1). Then au|bv € Q) is an anti-witness, as
desired.

When Case 1 does not hold, the only problem that can arise is if the valid split au|bv
does not satisfies the condition {u,v} N (f; Ut;) =10, and hence is not an antiwitness.

Case 2: pcty or g €t,. Without loss of generality we may assume p €t. Now we
redefine the location of the edge pg on the ab path as follows. Let p denote the first
vertex after root(f1) on the ab path and let g denote the second. Clearly ¢ ¢ 15, since ¢
and £, are not siblings. We also redefine p’,q, 13, u, t4, v according to the new p and q.
Redefine a to be rep(s;) and call the old a as a*. Now we are going to show (26) and
that aulbv € Q) is the sought-for antiwitness (note a,u,v have been redefined, but b
has not). Again, we have to see (27) and prove that (28) is termwise zero.

For pairs u,v where {u,v} € S,,, we proceed exactly as in Case 1. Observe that
E® and E® decreased during the redefinition, so a calculation like (29)—(35) still
goes through. Observe that L(a,u)<2depth(T)+ 2, L(a,v)<2depth(T) + 3, and hence
{a,u} €S2 and {a,v} €S,,, exactly as in the proof of (19). The only thing left to
prove is {a,b} € Sy;.

In order to prove P[h%>0.5 — 2t|ANBNC]=0, since under the condition C, it
suffices to prove 1 — 2E% > 61. However,

1 _ 2Eab :(1 _ 2Ea,root(t1))(1 _ 2Era()t(t1),b)>(1 _ 2g)d€pf/1(r)(1 _ 29)2 m’

and we still have v1 —E9? > /27 according to (31). A calculation like the one
resulting in (35) gives the result wanted, and we are finished with the proof of (23).

Using these statements, P[4ANBND]=ZP[ANBNDANBNCIx P[ANBNC]=
P[ANBNCl=P[BNC], and we are back to the same estimates that proved assump-
tion (9), but we need a slightly smaller v and consequently slightly larger k.

Note that the proof above applies to all ¢3 € [¢2/2,¢;], if it applies to ¢3 =c; and
¢3=¢3/2, so that assumption (11) holds. [J

Note that the proof also handled the problem that arises if some of the dissimilarity
scores exceed 1/2, and so we cannot even compute corrected distances. The moral is
that those pairs are not needed according to the proof. Therefore there is no need for
additional conditioning for the shape of the observed data.

6.2. Runtime analysis of the search strategies

Theorem 12. (i) The running time of WAM based on sequential search is O(nk +
n®log n)

(ii) The running time of WAM based on sparse-high search is O(n*k-+n*log nlogk).
Assume now that our model tree is a random binary tree, under the uniform or
Yule—Harding distribution, and all mutation probabilities are taken from an interval
(p — &n, p + &), for a sufficiently small sequence e,. If k is as large as in (12), then
with probability 1 — o(1)

(iii) The running time of WAM based on sequential search is O(n*k+n’poly log n).

(iv) The running time of WAM based on sparse-high search is O(n*k+n’poly log n).
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Proof. Computing the matrices 4 and d takes O(n’k) time. (All distance methods
begin by computing these distance matrices, but this “overhead cost” is usually always
mentioned in the running time analysis of a given method.) Let wy be defined to be
the smallest w € A such that Q, is T-forcing. Let i(w) be the order of w within the
sorted 4" values. Then, since each call of the WATC algorithm uses O(n* +|Q|log |Q|)
time, the running time of the sequential search is O(i(wo)(n* + |Qu, | 10g |Qu,|)), after
the preprocessing.

For (i), the sequential search application of the WATC algorithm is O(x® log n),
since we need never do more than examine all sets Q,, and the largest such set has
cardinality O(n*).

Claim (ii) follows form the observations that the sparse-high search calls the WATC
algorithm at most O(log k) times, and each call costs at most O(r*logn) time.

We now prove (iii). The depth of a random tree (under either the uniform or Yule-
Harding distributions) is with high probability O(log log #n) by Theorem 10, and so there
are at most O(polylogn) leaves which are no more than about O(loglogn) distance
(measured topologically) from any fixed leaf. This is the only fact that we exploit
from the assumption of randomness of the tree. For two leaves i, j, recall that L(i, /)
denotes the topological distance between i and j. We are going to show that if 7 is the
value at which the search reconstructs the tree in the proof of Theorem 11, then with
probability 1 — o(1) we have L(i,)=O(loglogn), whenever i,j € g € Q. This yields
|Qwiey| =n - polylog(n). In the proof of Theorem 11, according to formula (18), event
C holds with probability 1 — o(1). In that proof Q) is denoted by Z,4. Now

(1 =2g) D =1 —2EY > /2, (36)

where the equality follows from Lemma 1, and the inequality follows from the condi-
tioning on the event C. Plugging in (35) for T immediately yields L(i, j) = O(log log n).
Since the sequential search makes O(npolylog(n)) calls to the WATC algorithm, (iii)
follows.

To obtain (iv), observe that Formulae (35), (17), and depth(T )= O(loglogn) imply
that the number of iterations in the sparse-high search is

—log, t=0(—log(1 — 2g) - depth(T)) = O(log log n). O

6.3. The performance of other distance methods under the Neyman 2-state model

In this section we describe the convergence rate for the WAM and DCM method, and
compare it briefly to the rates for two other distance-based methods, the Agarwala et
al. 3-approximation algorithm [1] for the L. -nearest tree, and neighbor joining [43].
We make the natural assumption that all methods use the same corrected empirical
distances from Neyman 2-state model trees. The comparison we provide in this section
will establish that our method requires exponentially shorter sequences in order to
ensure accuracy of the topology estimation than the algorithm of Agarwala et al., for
almost all trees under uniform or Yule-Harding probability distributions. The trees
for which the two methods need comparable sequence lengths are those in which the
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diameter and the depth are as close as possible — such as complete binary trees. Even in
these cases, WAM and DCM will nevertheless need shorter sequences than Agarwala
et al. to obtain the topology with high probability, as we showed it in Section 3.
(Again, note that this analysis is inherently pessimistic, and it is possible that the
methods may obtain accurate reconstructions from shorter sequences than suffice by
this analysis.)

The neighbor joining method is perhaps the most popular distance-based method
used in phylogenetic reconstruction, and in many simulation studies (see [34, 35, 44]
for an entry into this literature) it seems to outperform other popular distance based
methods. The Agarwala et al. algorithm [1] is a distance-based method which provides
a 3-approximation to the L., nearest tree problem, so that it is one of the few methods
which provide a provable performance guarantee with respect to any relevant optimiza-
tion criterion. Thus, these two methods are two of the most promising distance-based
methods against which to compare our method. All these methods use polynomial time.

In [22], Farach and Kannan analyzed the performance of the Agarwala et al. algo-
rithm with respect to tree reconstruction in the Neyman 2-state model, and proved that
the Agarwala et al. algorithm converged quickly for the variational distance. Personal
communication from S. Kannan gave a counterpart to (12): if T is a Neyman 2-state
model tree with mutation rates in the range [f,g], and if sequences of length k' are
generated on this tree, where

, ¢ -log n
> fZ(l _ Zg)Zdiam(T)

(37)

for an appropriate constant ¢/, and where diam(T) denotes the “diameter” of T, then
with probability 1 — o(1) the result of applying Agarwala et al. to corrected distances
will return the topology of the model tree. In [5], Atteson proved the same result for
Neighbor Joining though with a different constant. (The constant for neighbor joining
is smaller than the constant for the Agarwala et al. algorithm, suggesting that neigh-
bor joining can be guaranteed to be accurate from shorter sequences than Agarwala
et al., on any tree in the Neyman 2-state model. However, remember that this anal-
ysis 18 pessimistic, and it may be that correct reconstruction is possible from shorter
sequences than this analysis suggests.)

Comparing this formula to (12), we note that the comparison of depth and diam-
eter is the issue, since (1 — /1 —2f)? =O(f?) for small f. It is easy to sce that
diam(T )= 2depth(T) for binary trees 7, but the diameter of a tree can in fact be quite
large (up to n — 1), while the depth is never more than log#n. Thus, for every fixed
range of mutation probabilities, the sequence length that suffices to guarantee accuracy
for the Neighbor Joining or Agarwala et al. algorithms can be quite large (i.e. it can
grow exponentially in the number of leaves), while the sequence length that suffices
for the witness-antiwitness method will never grow more than polynomially.

In order to understand the bound on the sequence length needed by these methods,
we now turn to an analysis of the diameter of random trees. The models for random
trees are the uniform model, in which each tree has the same probability, and the
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Yule—Harding model, studied in [2,8,29]. This distribution is based upon a simple
model of speciation, and results in “bushier” trees than the uniform model.

Theorem 13. (i) For a random semilabelled binary tree T with n leaves under the
uniform model, diam(T) > e\/n with probability 1 — O(g?).

(i1) For a random semilabelled binary tree T with n leaves under the Yule—Harding
distribution, after suppressing the root, diam(T) = ©(log n), with probability 1 —o(1).

Proof. We begin by establishing (i). The result of Carter et al. [11] immediately
implies that leaves a, b have distance m+1 with probability exactly m!N(n—2,m)/(2n—
5)!! under the uniform model. For small enough ¢, m <&\/n, this probability is ©(m/n).
Summing up the probabilities from m =1 to m = ¢/n, we see that diam(T) > ¢\/n with
probability at least 1 — O(g?).

We now consider (ii). First we describe rooted Yule-Harding trees. These trees
are defined by the following constructive procedure. Make a random permutation
71, 72,..., T, Of the n leaves, and join 7 and 7; by edges to a root R of degree 2. Add
each of the remaining leaves sequentially, by randomly (with the uniform probability)
selecting an edge incident to a leaf in the tree already constructed, subdividing the
edge, and make 7; adjacent to the newly introduced node. For a rooted Yule-Harding
tree TR, let A(TR) denote the maximum distance of any leaf from the root. Let T be
the unrooted Yule-Harding tree obtained from 7R by suppressing the root, and iden-
tifying the two edges incident with the root. Let diam(T) denote the diameter of T.
Then, we always have

TR < diam(T) <2h(T?) — 1.

Now Aldous [2] shows that #(TR)/log n converges in distribution to a (nonzero)
constant ¢. Then, with probability tending to 1, diam(T)/log n will lie between ¢
and 2¢. U

In Table 1, we summarize sequence length that suffice for accurate reconstruction
with high probability of WAM and DCM, and compare these to the sequence lengths
that suffice for the Agarwala et al. algorithm, according to the analyses that we have
given above (thus, our summary is based upon (12), (37), and Theorems 10 and 13).
Sequence lengths are given in terms of growth as a function of », and assume that
mutation probabilities on edges lie within the specified ranges.

7. Extension to general stochastic models

In this section we consider the generalization of the WAM and DCM for inferring
trees in the general stochastic model. Just as in the case of the Neyman 2-state model,
we find that WAM and DCM obtains accurate estimations of the tree from sequences
whose length is never more than polynomial in the number of leaves (for every fixed
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Table 1
Range of mutation probabilities on edges
[f.ql { 1 loglogn]
f.g are constants logn’ logn
Binary trees DCM/WAM Polynomial Polylog
Worst-case Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(uniform modet) Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(Yule—Harding) Agarwala et al. Polynomial Polylog

range for the mutation probabilities), and in general only polylogarithmic in the number
of leaves. This should be contrasted to the study of Ambainis et al. [4].

Suppose the sequence sites evolve i.id. according to the “general” Markov model —
that is, there is some distribution of states 7 at the root of the tree, and each edge e
has an associated stochastic transition matrix M (e), and the (random) state at the root
evolves down the tree under a natural Markov assumption, as in the general stochastic
model of Definition (III).

Let fij(a,f) denote the probability that leaf i is in state o and leaf j is in state f.
By indexing the states, f;;(o, §) forms a square matrix, Fj=[fij(2,8)]. Then

¢ij = — log det(F;;) (38)

denotes the corrected model distance between i and j. (There will be a guarantee for
det(F;)>0.)

The corrected empirical distance ¢;[j of two species is computed as in (38), but uses
the matrix ﬁij composed of the relative frequencies 4/’:-]-(0(, B) of i being in state x and
J being in state 8, instead of the probability fj;(a, f):

¢, = —logdet(Fy). (39)

Then, ¢;; can be derived from a positive edge weighting of the model tree, provided
that the identifiability condition described in Section 2 (Tree Reconstruction) holds.
These mild conditions only require that det(M(e)) not take on the values 0,1, —1, and
that the components of 7 are nonzero (i.e. every state has a positive probability of
occurrence at the root).

Note that det(M(e)) takes the values 1 or —1 precisely if M(e) is a permutation
matrix. Also, for the Neyman 2-state model det(M(e)) =1 — 2p(e), where p(e) is the
mutation probability on edge e; thus, det(M(e))>0 and det(M(e)) tend to 0 as p
approaches 0.5, and tend to 1 as p approaches 0. In general, (1/2)[1 — det(M(e)] plays
the role of p(e) in the general model. Thus, a natural extension of our restriction
S <p(e)<g and from the Neyman 2-state model corresponds to

0<1—2x' < det(M(e))<1 ~2x<1, (40)
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for suitable x,x’, and we will henceforth impose this restriction for all edges of the
tree. For technical reasons, we also impose the mildly restrictive condition that every
vertex can be in each state u with at least a certain fixed positive probability:

n(v), > e 41)

This condition (41) certainly holds under the Neyman 2-state model, the Kimura 3-
state model [39], and much more general models (providing each state has positive
probability of occurring at the root). Indeed this last weaker condition might be enough,
but it would seem to complicate the analysis quite a lot.

Now, let i(e) be the weight of edge e in the realization of ¢ on the (unrooted
version) of the true underlying tree T.

Lemma 4. Set 6(x)= —0.5log(1 — 2x). Then
Ae)= — 0.5log(det(M(e)))=d(x) (42)

Jfor every edge e of T.

Proof. The second inequality follows from the restriction we imposed above on
det(M(e)). The first inequality in (42) follows from similar arguments to those ap-
pearing in [47]; for the sake of completeness we give a proof.

Let T be the unrooted version of 77. Now the edges of T correspond bijectively to
the edges of T, except perhaps for one troublesome edge of T which arises whenever
the root of 77 has degree two — in that case, two edges e, e; of T adjacent to p are
identified to form e. For convenience, we assume in this proof that p is not a leaf.

We now prove that A(e)> — 0.5 logdet(M(e)) for all (non-troublesome) edges e of
T, and if T has a troublesome edge ¢ corresponding to edges e¢; and e, in 77, then
Ae)= — 0.5log(det(M(e;)) det(M(e2))).

For any edge e =(v,w) of 77 where w is a leaf, let

h(e) = —logdet(M(e)) — 0.5log |[] n(v),
U

while, for any edge e = (v,w) of T” for which neither of v, w are leaves, let

h(e) = —logdet(M(e)) — 0.5log | [[ n(v),| + 0.5log []—[ n(w)#] .
u u

Thus, # describes a weighting of the edges of T” and thereby a weighting A* of the
edges of T by setting #* equal to 4 on the non-troublesome edges, and the convention
that if 7 has a troublesome edge e arising from the identification of a pair e, ¢; of
edges of 77 then h™(e)=h(e;) + h(e;). Now, h realizes the ¢;; values on 7”. Thus,
h* also realizes the ¢;; values, on T and since (as we show) the edge weighting is
strictly positive, it follows, by classical results [10], that this is the unique such edge
weighting of 7. Thus 1= A*.



110 P.L. Erdbs et al. | Theoretical Computer Science 221 (1999) 77-118

Now for an edge ¢ =(v,w) of T where w is a leaf,
h(e)= — logdet(M(e)) = — 0.5logdet(M (e))

as claimed. Alternatively, for an edge e ={(v,w) of T for which neither of v, w are
leaves, we have

h(e)= —logdet(M(e)) — 0.5log {H (v,

u

+0.51og {H n(w)u] )

H

In order to derive our desired inequality we establish a further result. Let us suppose
M ={M,,] is any r X r matrix with non-negative entries and x is a row vector of length
r with non-negative entries. We claim that

[T (xM), = |detM)|]] x,.
2 u

To obtain this, note that the left-hand side is just

H (Evavp> = (EMU(|)1M0(2)2"'MU(I‘)I‘> Hx;u
a H

n v

where the second summation is over all permutations ¢ of (1,2,...,#), and so this sum
is at least |det(M )], since the permanent of a nonnegative matrix is never smaller than
the absolute value of its determinant. Now, [m(w)i,..., a(w),] =[w(v)i,..., n(v)]M (e),
and so, applying the above inequality to the case M =M (e) and x = [n(v)y,...,n(v),],
we obtain

[[n(w), = det(M(eN]] n(v),.
u

H

Thus,

0.5log det(M(e))<0.5log [H n(w)\} —0.5log I:H n(u)u]

v I
and so

h{e) = —0.5logdet(M(e))

—-0.5 <log det(M(e)) + log

11 n(u)u} —log [H n(w)“] >
" i

= —0.5 logdet(M(e)),

as claimed.

The inequalities for 4 now extend to #* =/ for all (non-troublesome) edges of 7.
If 7% has a troublesome edge e then A(e)=h*(e)=h(e )+ h(ey), and from the above
we have h(e;)= — 0.5logdet(M(e;)) for i=1,2. [



P.L. Erdés et al. | Theoretical Computer Science 221 (1999) 77-118 111

Theorem 14. Let x=x(n) and x' =x'(n) be such that for all edges in the tree T,
0<1—2x"' < det(M(e))<1 —2x<1. Assume x' has an upper bound strictly less than
1/2. Mutatis mutandis, algorithms FPM, DCM and WAM, Theorems 9, 11, and 12
generalize to the general stochastic model under (40) and (41). WAM and DCM
returns the binary model tree T with probability 1 — o(1) if

c-logn

k> xz(l —2x! )4depth(T) (43)
with a certain constant c.
Proof. Recall the definition of the corrected empirical distance, 4;,;,-, and d(x)
(=—0.51log(1 —2x)). We first establish the following

Claim: If

|65y — byl > 8(x)/2 (44)
then

| det(FV) — det(FY)| > x det(FY /4. (45)

Proof of Claim: By inequality (44),

.
log(det(F )>‘> - %log(l ~2x)

log(det(F")) — log(det(F"))| = |log | o

and so det(F")/det(FY) is either greater than (1—2x)~"/4, or less than (1—2x)"/4. Thus,
|det(F7) — det(F/)| >min{a~ (x), " (x)} det(F¥) where at(x):=1— (1 —2x)"*; a0~ =
(I —2x)~Y* — 1. Now, it can be checked that, for x strictly between 0 and 1/2,
a7 (x), %" (x)>x/4 which establishes the Claim.

To apply Lemma 3, we need to know how det(F"/) responds to the replacement at
one site of a pattern by a different pattern. If I:"] Y is the resulting F-matrix for this
perturbed data set, then

EY=FY + (1/k)D"
where DY has one entry of +1, one entry of —1, and all other entries 0. Consequently,
|det(£Y) — det(FV)| <c /k (46)

for some constant ¢;.

Next, for any real analytic function f defined on a vector x having a normalized
multinomial distribution with parameters & and p, we have (by Taylor expansion of
f about u to the second derivative term, followed by application of the expectation
operator):

L/~ G0l < 5ME leont ),
Ly
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where cov(x;,x;) is the covariance of x;,x; (equal to p;(1 — p;)/k, when i=j, and
— iy /k otherwise); and where M is the maximal value of any of the second derivatives
of f over the unit simplex. Thus, since det(F") is a polynomial in the entries of FY,
we have:

|E[det(F¥)] — det(F7)| < ca/k 47)
for some constant ¢,. Combining (47) with the triangle inequality gives

|det(F7) — det(FY)| < | det(FV) — E[det(F)]| + c2/k

and so
P(ldet(F7) — det(F")| > 1] < P[|det(F) — E[det(F")]|>(t — ca/k)] (48)
for any ¢>0. Hence by Lemma 3, applied with (46), we have
" N . det(FV 2
P[] det(F) — det(F)| > x det(F)/4] <2 exp <—d ()‘——‘%(J . %) k) (49)

for a constant d. For the validity of the latter argument we need that

xdet(FY) o

4 k

Now, how can we set a lower bound for det(#%)? Note that det(F") is just the product

of det(M(e)) over all edges on the path from / to j, times the product of n(v;;), over

all states p, where m(v) is the vector of probabilities of states at vertex v, and v;; is

the most recent common ancestor of i and j in the tree. Due to our hypotheses (41),
we have

>0. (50)

det FU > c3(1 — 2x" )40 (51)

with a positive constant c;. However, the conditions of the Theorem required k& >cx !
(1 — 2x")~96:) and therefore taking a sufficiently large ¢ guarantees (50).
Putting the pieces (44), (45) and (49) together we see that

ij 2
Pllgy — byl >8(x)/21<2 exp(_d<£‘1°}§@ - Ck_2> k) , (52)
Combining (51) and (42), we have
A G N2
® [0y — dyl>(1/2)min{ice)}] <2exp<d(c4f“24# - f) k) ,

where ¢4 is a positive constant, and d(i,j) is the number of edges in T separating
leaves i and j. Hence, for any fixed quartet ¢ of diameter diam(q),

P[FPM errs on q] <K exp(—D'x*(1 — 2x"?4am@) gy (53)

for constants D’,K. Thus we have an analogue of Theorem 9.
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Now we show how to generalize the proof of Theorem 11. To avoid needless rep-
etitions, we give details for the proof of assumption (9) only, and leave the proofs of
assumptions (10) and (11) to the Reader. Note that the proof of correctness of DCM
hinges exactly on assumption (9). Having a distance function in the general model,
the width and algorithmic operations based on width generalize in a straightforward
way.

For k evolving sites (i.e. sequences of length &), and >0, let us define the follow-
ing two sets, S; = {{i,j}: det(F¥)>21} and Z, = {g e ("W). for all i,j €q,{i,j} € S}
(note the similarity between the definition for the set Z,, and that for the set Q,
of quartet splits of quartets of width at most w). We also define the following two
events, 4 = {Qswon(T)C Z;} and B =FPM correctly reconstructs the tree for all g € Z,.
Thus, P[o/ N % # 0] =P[4NB]. Let C be the event: “S,, contains all pairs {i,j} with
det(FY)> 61, and no pair {i,;j} with det(F/)<27”. Define /=g (1 — 2x")>drH(I+3,
We claim that

P[C]>1 — (n* — n)e~* (54)
for a constant ¢>0 and
P[4|C]=1 if T<i/6. (55)

Suppose det(F¥)<21. To establish (54), using arguments similar to those between
(45) and (49) one easily sees that Lemma 3 applies and

P[{i.j} € Sy] = P[det(F7) > 41]
< Pdet(F7) — det(F7 )= 27] <e~7

for a constant ¢>0.

Since there are at most () such pairs {i,j} such that det(F¥) <21, the probability
that at least one such pair lies in S;; is at most (;)e*”Zk. By a similar argument,
the probability that S,, fails to contain a pair {i,j} with det(F7)>67 is also at most
(g)e_”zk . These two bounds establish (54).

We now establish (55). For ¢ € Qqwon(T) and i, j € g, if a path eje, ... e, joins leaves
i and j, then ¢t <2depth(T)+3 by the definition of Qspon(T). Using these facts, and the
bound det(M(e)) =1 —2x’, we obtain det(F7) = ¢ (1 —2x")!. Consequently, det(F"/)> 61
(by assumption that 1<<4/6 ) and so {i,j} € S2; once we condition on the occurrence
of event C. This holds for all i,j€gq, so by definition of Z, we have g€ Z.. This
establishes (55).

Then for any quartet g € Qson(7), if e is the central edge of the contracted subtree
induced by ¢ in T, then det(M(e))<1 — 2x. Furthermore, conditional on C, for any
pendant edge e,det(M(e))> min{det(F"): i,j € g} >2t. Thus, by (53), which is the
analogue of Theorem 9, and the Bonferroni inequality, we can follow the corresponding
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proof from Theorem 11, to obtain (using (54) and (55))
PLANBI>1 - K () ) exp(~Dx*(1 = 2/ YT 0k) — (n — e

for constants K,D’ >0 Formula (43) now follows by an easy calculation.

Note that the proof also handled the problem that arises if some logarithms are to
be taken of negative numbers and so we cannot even compute corrected distances. The
morale is that those pairs are not needed according to the proof. Therefore there is no
need for additional conditioning for the shape of the observed data.

8. Considerations for biological data analysis

The focus of this paper has been to establish analytically that every evolutionary tree
is accurately reconstructable from quartets of closely related taxa, and, furthermore, this
requires just very short sequences, given certain assumptions about the model tree. This
is a significant theoretical result, especially since the bounds that we obtain indicate
that the sequence lengths that suffices for accuracy with high probability using our
new methods are very much shorter than those that suffice for accuracy using other
very promising distance-based methods. However, are these observations significant for
biological datasets? And if they are, are these methods likely to be practically useful
(or merely indications of what might be achieved in future)?

The answer to the first question, concerning the significant for biological datasets, de-
pends upon whether there are biologically realistic evolutionary trees that have smaller
“weighted depth” than “weighted diameter”, a concept that we now define.

Let 7 be an edge-weighted tree with positive weights on the internal edges and
non-negative weights on the edges incident with leaves. Let ¢ be an internal edge of
the tree. The weighted depth around edge e is the minimum value of ¢ so that there
exists a set of four leaves, i, j,k, /, with one leaf in each of the four subtrees induced
by the removal of e and its endpoints, where g = max{d},d},.d},d},,d],d];}. The
weighted depth of the tree T is then the maximum weighted depth of any edge in 7.
The weighted diameter of a tree T is simply the maximum a’fy, taken over all pairs
of leaves x, y. We will denote the weighted depth of a tree 7 by wdepth(T) and its
weighted diameter by w diam(T).

The analysis given in the previous sections of the sequence length that suffices for
accuracy for various methods can be restated as follows:

Corollary 1. DCM and WAM will be accurate with probability 1 — 9 if the sequence
length exceeds

c IOg neO(wdepth(T))’

where ¢ is a constant that depends upon only = min, p(e) and 6. The other distance
based methods (Agarwala et al.’s single-pivot algorithm and its variant, the double-
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pivot algorithm, the naive method, and neighbor-joining) are accurate with the same
probability if the sequence length exceeds

C/ 10g neO(wdiam(T))’

where ¢’ is a constant that also depends only upon f = min.{p(e)} and é.

These are only upper bounds (i.e. these may be loose, and exact accuracy may be
possible from shorter sequences), but these are also currently the best upper bounds
that are known for these methods, to our knowledge.

Thus, to compare the sequence lengths that suffice for exact topological accuracy, we
need to compare the weighted depth to the weighted diameter. A reasonable comparison
between these two quantities for biologically realistic trees is difficult, as there are very
few well established evolutionary trees, especially of large divergent datasets. On the
other hand, for some data sets, evolution may proceed in a more-or-less clock-like
fashion (i.e. the number of mutations that occurs along an evolutionary lineage is
roughly proportional to time). For such data sets, it can be seen that the weighted
depth and the weighted diameter are exactly the same. Under these circumstances,
there is no benefit to using DCM or WAM instead of one of the better other distance
methods, such as neighbor joining, although this analysis also does not suggest that
neighbor joining will outperform DCM or WAM (to be precise, the conditions that
guarantee accuracy for neighbor-joining will also guarantee accuracy for DCM and
WAM, and vice versa). Thus, for clock-like evolutionary conditions, these techniques
do not provide any advantage from a theoretical standpoint.

On the other hand, there are important biological data sets for which evolution pro-
ceeds in a very non-clock like fashion, according to various analyses by biologists and
statisticians (see, for example, [55, 56]). For these data sets, there could be significant
advantage obtained by using techniques such as DCM and WAM, which examine only
closely related taxa in order to reconstruct the tree. The degree to which DCM and
WAM could provide an advantage would theoretically depend upon the magnitude of
the difference between the weighted depth and weighted diameter. This magnitude is
likely to be largest for sets of highly divergent taxa, rather than for closely related
taxa.

As a practical tool, DCM and WAM are not entirely satisfactory, in part because
DCM and WAM only return trees when the conditions hold for exact accuracy. Al-
though some biologists would rather get no tree than get an incorrect tree [41], not all
biologists share this view, and so partially correct trees are often desirable. Thus, the
answer to the second question is basically negative.

However, DCM and WAM were not designed to be practical tools, but rather to
indicate theoretical possibilities, and to suggest how better methods might be invented
which could have the theoretical guarantees that DCM and WAM provide, while having
better performance in practice. Furthermore, such methods Aave recently been devel-
oped. The disk-covering method of Huson et al. [36] the harmonic greedy triples
method of Csuros and Kao [16], and the method of Cryan et al. [15] have each used
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the observations in this paper and obtained methods with convergence rates that are
never worse than polynomial by using only small distances to (re)construct the tree.
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Abstract. In this note, we consider a finite set X and maps W from the set 5 o(X) of all 2, 2-
splits of X into R>p. We show that such a map W is induced, in a canonical way, by a binary
X-tree for which a positive length £(e) is associated to every inner edge e if and only if (i) exactly
two of the three numbers W (ab|cd), W(ac|bd), and W(ad|cb) vanish, for any four distinct ele-
ments a, b, ¢, d in X, (ii) a # d and W(abjxc) + W (ax|cd) = W (ab|cd) holds for all a, b, c, d, x
in X with #{a, b, ¢, x} = #{b, ¢, d, x} = 4 and W(ab|cx), W(ax|cd) > 0, and (iii) W(ab|uv) >
min (W (ab|uw), W(abjvw)) holds for any five distinct elements a, b, u, v, w in X. Possible gen-
eralizations regarding arbitrary R-trees and applications regarding tree-reconstruction algorithms
are indicated.

Keywords: biological systematics, phylogeny, phylogenetic combinatorics, evolutionary trees,
tree reconstruction, X-trees, quartet methods, quartet systems, weighted quartet systems.

1. Introduction

Let X be a finite set of cardinality n, and let T = (V, E) be an X-tree, i.e., a finite tree
without vertices of degree 2 whose set of leaves coincides with X. Further,

(i) let ()f) denote, for any natural number i, the set of all subsets of X of cardinality i,
(ii) let 5p2(X) denote the set of all partial 2, 2-splits of X:

52200~ {{tab). o)} |(ab) 0.0 < (5 ): abnfed) o},
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(iii) let Eg = Eo(T) denote the set of pending edges of T, i.e., of edges incident with a
leaf:
Eo=Eo(T) ;= {ec E|enX #0},

(iv) let Ex = E1(T) denote the complementary set of inner edges of T:
Ei = El(T) = E\Eo7
(v) and let
{: B — Ryo
denote an arbitrary, but strictly positive length function defined on that set.
For convenience, we will also write abjcd for the unordered pair {{a, b}, {c,d}} of
subsets of X of cardinality at most 2, for any a, b, ¢, d € X (so that abjcd € Sp»(X)

holds if and only if one has #{a, b, ¢, d} = 4).
We are interested in the map W = Wr , defined on $;»(X) by

W: $pp(X) = Rao, abled — Y, £(e), (Y
e<E (ablcd)

where the sum runs over the set E(ab|cd) of all edges e € E that separate the leaves
a, b from the leaves ¢, d. Clearly, the function W measures the total length of the “inner
path” of the quartet tree T, b ¢ 4 “spanned” by a, b, ¢, d in case T contains at least one
edge that separates a, b from c, d, and it vanishes otherwise.

The following facts are easily established:

(F1) Given any 4-subset {a, b, ¢, d} of X, at least two of the three numbers W(abjcd),
W (ac|bd), and W(ad|cb) vanish.

(F2) If T is binary, i.e., if all vertices in V outside X have degree 3 or — equivalently
— if #V = 2n— 2 holds (recall that there is no vertex of degree 2), one has

W (ab|cd) +W/(ac|bd) +W(ad|cb) > 0 (1.2)

forall {a,b,c,d} € (}).
(F3) Givena, b, c,d,xe Xwith#{a, b, c,x} =#{b,c,d,x} =4 and

W(abl|xc), W(bx|cd) > 0,
one has#{a, b, c,d, x} =5and
W(ab|xc) +W(bx|cd) = W(ab|cd). (1.3)



X-Trees and Weighted Quartet Systems 157

(F4) Given any 5-subset {a, b, u, v, w} of X, one has
W (abluw) > min (W(ab|uv),W(ab|vw)), (1.4)
i.e., the two smaller ones of the three numbers
W (abjuv), W(abjuw), W (ablww)

must coincide or, still in other words, W(abjuv) < W(abjuw) implies that
W (abjuv) = W (abjvw) for all a, b, u, v, w € X as above.

Our main result is the following:

Theorem 1.1. A map
W: $p2(X) — Rxo

is of the form Wy , for some finite binary tree T with leave set X and some length
function ¢ defined on the set E;(T) of inner edges of T if and only if W satisfies the
conditions (F1) to (F4) above. Moreover, if W satisfies those four conditions, thetree T
and the length function ¢: E1(T) — R0 with W =W, are uniquely determined (up
to canonical isomorphism) by W.

It was established already in 1977 by the psychologists Colonius and Schulze (cf.
[5,6]), the first two papers on quartet analysis that initiated much further work devoted
to this topic, cf. [7-39] that, given any subset Q of Sy »(X), there exists a binary X-tree
T = (V, E) such that the set

Q= {ablcd € Sp(X) | E(ablcd) # 0}

of 2[2-splits in $S»(X) induced by T coincides with Q if and only if the following three
assertions hold:

(Q1) #(Qn{ablcd, aclbd, ad|cb}) = 1 holds for all {a, b, ¢, d} € (}),
(Q2) ablcx € Q and ax|cd € Q implies abjed € Q forall {a, b, ¢, d, x} € (3),
(Q3) abluv, abjvw € Q implies abjuw € Q for all {a, b, u, v, w} € (3),

in which case this tree is uniquely determined by Q..
Thus, the support

supp(W) := {ablcd € Sp(X) | W(ablcd) #0}

of any map W: $,2(X) — R that satisfies the conditions (F1) to (F4) above is obvi-
ously of the form Q 1 for some unique binary X-tree T. Thus, a proof of the existence
part of Theorem 1.1 could easily be based on this observation. In this note however, we
want to proceed in a more direct way, not so much to avoid referring to any previous
work, but because our direct approach also yields new tree-building strategies.

The paper is organized as follows: In the next section, we will show that the map
Wr o1 $72(X) — R associated with a binary X-tree T and a length function £: E1(T)
— R determines T and ¢ up to canonical isomorphism. Then, we will show that a
map W S$p2(X) — Rxg is of the form W = Wk , for some binary X-tree T and length
function ¢: E1(T) — Ry if and only if W satisfies the conditions (F1) to (F4) above.
And finally, we shall discuss various promising directions of future research as well as
some simple algorithmic applications of our results in the last section.
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2. Wy, Determines T and ¢ up to Canonical Isomor phism

Givi

en any two binary X-trees T and T’ and maps ¢: E3(T) — Rsp and ¢': Ey(T') —

R-o, we will show here that Wr , = W/ implies the existence of a unique map
¢@: V(T) = V(T') with o(x) = xforall xe X and {¢(u), o(v)} € E(T’) forall {u, v} €
E(T), and that this map is necessarily bijective, induces a bijection between E(T) and
E(T’), and commutes with ¢ and ¢’ (i.e., £({u,v}) = ¢'({o(u), ¢(v)}) holds for this
map ¢ and all {u, v} € E(T)).

i)

i)

i)

iv)

v)

To construct ¢(v), recall the following facts:

Given any finite connected graph G = (V, E), the standard graph metric dg in-
duced on V by G is defined to be the map from V x V into Ny that maps each
pair (u,v) € V x V onto the minimal number dg(u, v) of edges that constitute a
path from u to v in G, i.e., onto the minimum of all k € Ny for which vertices
Vo :i=Uu,Vi,..., W :=veVexistwith {vi_1,vi} e Eforalli=1,... k

A finite connected graph G = (V, E) is defined to be a median graph if, for all
u, v, w € V, there exists a unique vertex m= medg(u, v, w) in V with

ds(u, v) = dg(u, m)+dg(m, v),
de(u, w) = dg(u, m)+dg(m, w),

and
da(v, w) = dg(v, m) + da(m, w),

in which case medg(u, v, w) = medg(V, u, w) = medg(u, w, v) and medg(u, u, w)
= uhold for all u, v, w e V (cf. [1]).

Any X-tree T = (V, E) is a median graph and every vertex vin V is of the formv=
medy (a, b, ¢) for some appropriate leaves a, b, cin X, and one has medr (a, b, ¢) €
V — X for some a, b, c € X if and only if #{a, b, c} = 3 holds.

Given a X-tree T = (V, E), a length function ¢: E1(T) — R0, and four distinct
leaves a, b, ¢, d € X, one has W ¢(ab|cd) > 0 if and only if one has

medr (a, b, c) = medy(a, b, d) # medt (a, ¢, d) = medy (b, c, d),

in which case E(ablcd) consists exactly of the set of edges e € E; (T) on the unique
path from medr(a, b, c) = medy(a, b, d) to medr(a, ¢,d) = medy (b, c, d) and
Wr ¢(ablcd) is exactly the length of that path relative to .

If, moreover, T is binary, one has

medr (ay, a, ag) = medr (by, a, ag)

for four distinct elements ay, &, a3, by € X if and only if one has W ¢(a by |azag)
> 0, and one has medy (a1, az, a3) = medr (by, by, b3) for some ay, ay, as, by, by,
bz in X with #{ay, ap, ag} = 3 if and only if there exists a permutation = of the
index set {1, 2, 3} with either & = by ;) or #{ay, az, a3, by } =4 and Wr (aiby )|
ajay) >O0foralli, j, kin {1,2,3} with {1,2,3} = {i, j, k} in which case we must
also have #{by, by, b3} = 3 as well as either bj = a; 1y or #{bx, by, bg, a1} =
4 and Wr,g(bianfl(i”bjbk) >0foralli, j,ke {1, 2,3} with {1, 2,3} = {i, ], k}.
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In particular, we can decide whether we have medr (as, a2, ag) = med (b1, by, bs)
for some ag, az, as, b1, by, bs in X with #{ay, az, az} = 3 from exclusively analy-
sing the support of Wr .

vi) One can decide whether two distinct vertices uand vin T form an edge by studying
medians: Indeed, given any two distinct vertices u, v € V, one can choose elements
X1, X2, X3, X4 € X, not necessarily distinct, as indicated in the figure below:

Xl\\u V/xs
N

i.e., with
u = medr (X1, X2, X3g) = medr (X1, X2, X4)

and
v = medr (X1, X3, X4) = medr (X2, X3, X4),

and one has {u, v} € E(T) if and only if
medr (X1, X3, Y) € {medr (x1, %2,y), medr (X3, Xa, Y), U, V}

holds for all y € X.

These well-known and easily established facts allow us to define the required map
¢: V(T) = V(T'): For every x € X, we put ¢(x) := x, and for every ve V(T) — X,
we choose ay, ap, ag € X with v=medy (az, az, ag) and put

¢(v) 1= medr (a1, a2, ag).

This is clearly well defined in view of Assertion v) above, we have ¢(x) = x for every
x € X simply by definition, and we have

¢(Vv) = medy/(ay, az, ag)

forallveV and a, a, az € X with v=medy (a1, az, a3) —even in case v € X because
this implies that at least two of the three elements a;, a», ag must coincide with v which
in turn implies that

medys (a1, @2, a3) = V=0(V)

must hold also in this case. Further, we have {¢(u), ¢(v)} € E(T’) for all {u,v} €
E(T): Indeed, if {u, v} € E(T) holds, we can choose X, X2, X3, X4 € X as described in
Assertion vi) above and, applying ¢, we get

@(u) = medy/ (X1, X2, X3) = medys (X1, X2, Xa),

¢(v) = medy/ (X1, X3, Xa) = medy (X2, X3, Xa),
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as well as

medr/ (X2, X3,y) = @(medr (X2, X3, Y))
€ {o(medr (x1, X2, Y)), o(medr (X2, X3, ), ¢(u), ¢(v) }
= {medr/(x1, X2, y), medr (X2, X3, Y), @(u), @(V) }

for all y € X. Hence,
{o(u), p(v)} € E(T'),

as claimed.

It is also easy to see that any map ¢: V(T) — V(T’) with ¢(x) = x for all x e X
and {o(u), o(v)} € E(T’) for all {u,v} € E(T) is necessarily bijective and induces a
bijection between E(T) and E(T’) and, hence, also one between E;(T) and E;(T'):
Indeed, the image o(V(T)) of V(T) must contain all vertices on all paths between any
two leaves in T, and the image {{¢(u), ()} |{u,v} € E(T)} of E(T) must contain
all edges on all of those paths. Thus, the map ¢: V(T) — V(T’) as well as the induced
map from E(T) into E(T’) must be surjective and, hence, bijective because one has
#HV(T)=#V(T')=2n—2and #E(T) = #E(T') = #V(T) — 1 = 2n— 3 in view of the
fact that both, T and T’, were assumed to be binary X-trees.

Finally, we have necessarily

(({u, vh) = ({o(u), 9()})

for any edge {u, v} € E; because, as above, we can choose X1, X2, X3, X4 € X with
U= medr (X1, X2, X3) = medy (X2, X2, X3) and v = medr (X2, X3, Xa) = medt (X1, X3, X4).
Hence,

0({u, V) =Wr ¢ (XaXe|XaXa) = Wh o (XaXe|XaXa) = €' ({@(u), @(V)}),

as claimed.

It remains to observe that ¢ is uniquely determined by T and T’: However, as ob-
served already above, any map w: V(T) — V(T’) with y(x) = x for all x € X and
{w(u), y(v)} € E(T’) forall {u, v} € E(T) is necessarily bijective and induces a bijec-
tion from E(T) onto E(T’). Thus, dr (X, y) = dr/(X, y), and hence,

\|I(medT (Xﬂ Y, Z)) = medT’ (Xa Y, Z) = (p(mEdT (Xﬂ Y, Z))

must hold for all x, y, z€ X implying that also y(v) = ¢(v) must hold for all ve V.

3. Deriving T and ¢ fromW

In this section, we will assume throughout that W is a map from $,»(X) into R that
satisfies the conditions (F1) to (F4) stated above, and we want to show that a binary
X-tree T and amap ¢: E1(T) — R with W =Wr , then necessarily exist.
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To simplify notations, we will say that W(ab|x|cd) holds for some elements a, b, c,
d, xin X if and only if the four elements a, b, x, cand the four elements b, x, ¢, d are dis-
tinct and one has W(ab|xc), W(bx|cd) > 0. We will begin by collecting some technical-
ities regarding this quinternary relation. Note first that W (ab|x|cd) implies #{a, b, x, c,
d}=5and

W(abjcd) = W(ab|xc) + W (bx|cd) > W(ab|xc), W(bx|cd) > 0
in view of (F3). Hence,
W(ab|xc) = W(ab|xd) > 0, W(ax|cd) = W (bx|cd) >0 (3.1)
in view of (F4). This proves the implication “(i) = (ii)” in
Lemma3.1. For all a, b, c, d, xin X, the following assertions are equivalent:

(i) W(ab|x|cd) holds, i.e., one has #{a, b, x,c} = #{b, x, ¢,d} = 4 and W(ab|xc),
W (bx|cd) > 0.

(i) #{a, b, x, c,d} =5, W(ab|cd) = W (ab|xc) +W/(bx|cd), W(ab|xd) = W(ab|xc) >
0, and W(ax|cd) = W(bx|cd) > 0.

(iii) #{a,b,c,d} =#{a, b, d, x} =4 and W(ab|cd) > W (ab|xd) > 0.
(iv) #{a, b,x, c,d} =5, W(abjcd) > 0, W(ab|xc) = W(ab|xd), furthermore W (xa|dc)
=W(xb|dc).
In particular, given any 5-subset {a, b, x, ¢, d} of X, one has
W(ablx|cd) < W(balx|cd) < W(cd|x|ab) < --- .
Proof. It is obvious that (ii) = (iii) and (ii) = (iv) hold.
(iii) = (i): Clearly, we must have c # xand, hence, #{a, b, x, ¢, d} =5. IfW(bx|dc) > 0
would not hold, we would either haveW(bc’dx) > 0and thereforeW(ab]c]dx) implying
W(ab)cd) > W(ab|xd) = W(ab|cd) +W(bc|xd) > W (abcd),

an obvious contradiction, or we would have W(bd|cx) > 0 and, hence, also W (ab|d
|cx) in contradiction to W(ab|dc) # W(abldx). Thus, W(ab|x|dc), or equivalently,
W (ablx|cd) must hold, as claimed.

(iv) = (i): We must have W(ab|xc) > 0 because, otherwise, we would have either
W (xalbc) > 0 and therefore W(xa|b|cd), or W(xblac) > 0 and therefore W(xb|a|cd),
both assertions being in contradiction to our assumption W(xa|cd) = W(xb|cd). By
symmetry (exchanging a,b with ¢, d), we must also have W (bx|cd) > 0 implying that
W(ab|x|cd) > 0 must hold indeed. |

Corollary 3.2. If W(ab|cd) > 0 and W(ab|cd) > W(ax|cd), W(bx|cd) hold for any
five distinct elementsa, b, ¢, d, x € X, one has

W(ab|xc) > 0.
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Proof. Otherwise, we could assume without loss of generality that W(xa|bc) > 0 holds
which, together with W(ab|cd) > 0, would imply W(xa|b|cd), and hence,

W(xa|cd) = W(xa|bc) + W (ab|cd) > W(ab|cd),
a contradiction. ]
Corollary 3.3. If W(ab\xy), W(ab\yz) > 0 holdsfor anyfivedistinct elementsa, b, x, y,

ze< X, one has
W(ax’})/z’):W(bx’b/z’)

forall X,y,Z e Xwith{x,y,z} = {X, ¥, Z}.

Proof. Our assumptions imply W (ab|xz) > min {W (ablxy), W(abl|yz) } > 0. Thus, sym-
metry (relative to X, y, 2) allows us to assume, without loss of generality, thatW(bx\yz) >
0 holds. Together with W (ab|xy) > 0, this implies W(ab|x|yz), and hence,

W(ax|yz) = W(bx|yz) > 0,
which in turn implies that
W(ax|yZ) =W(bxX|yz)
holds forall X, y', Z with {X, ¥, Z} = {x, y, z} because both terms vanish in case X’ # X,
and both terms coincide with W (ax|yz) = W(bx|yz) in case X' = x. |
Corollary 3.4. If
0 < W(ablxy) < W(ab|xz), W(ablyz)
holdsfor fivedistinct elementsa, b, x, y, zin X, onehaseither W(ab|x|yz) or W(ab|y|xz)
and, hence, in any case
W(ab|xz) =W (ablxy) +W(ay|xz) = W(ablxy) +W(by|xz) 3.2)
aswell as
W(ablyz) = W(ablxy) +W(ax|yz) = W(ab|xy) + W(bxlyz). (33)

Proof. Clearly, both W(ab|x|yz) and W(ab|y|xz) imply (3.2) and (3.3). Thus, it is
enough to show that either W(bx|yz) > 0 or W(by|xz) > 0 must hold. Yet, otherwise
we would have W(bzxy) > 0 implying that W(ab|z/xy) would hold in contradiction to
W(ablxy) < W(ab|xz). |

Next, we define
W(ab) * %) := min {W(ab|xy) ‘ (xy}e (X \ {Za, b}) }

for any two distinct elements a, b € X.

Note that in case the map W is of the form W , for some binary X-tree T and some
length function ¢: E1(T) — R~o, we have W(ab| xx) > 0 for any two distinct vertices a
and b if and only if the vertices aand b form a cherry in T, i.e., the two unique vertices
u,vinV with {a, u}, {b, v} € E coincide.
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Corollary 3.5. If
W (agbo|codo) = max {W(ab|cd) ‘ ablcd ¢ 52‘2(X)}

holds for some aghy|codo € S2(X), one hasW (agho| * *) > 0 as well asW(agX|yz) =
W (box|yz) for all {x,y, z} € (X\{%-bo}),
Proof. Corollary 3.2 implies thatW(aobo\xco) > 0 must hold for all xin X — {ag, bo, Co }

which in turn implies thatW(aobo\xy) > 0 holds for all x,y € X — {ag, b} with x £y,
in view of (F4) and, therefore, also

W (a0X|y2) =W (box|yz)
forall {x, y, z} € (*\{%:%}) in view of Corollary 3.3. 1

Corollary 3.6. If 0 <W(ab|xy) =W(ab|x*x) holdsfor four distinct elementsa, b, x, y €
X, one has
W(ab|xz) = W(ab|xy) + W(ay|x2)
aswell as
W (ablyz) = W(ab|xy) +W(ax|yz)
forall ze (X\ {a, b, x, y}).
Proof. This follows directly from Corollary 3.4. |

Next, we define

Whp(ax|cd) := max {W(az|cd) ‘ ze X\ {a,b,c, d}}

for any four distinct elements a, b, ¢, d € X. The following result will be crucial for our
proof of Theorem 1.1:

Lemma3.7. If W(ab| x*) > 0 holdsfor two distinct elementsa, b € X, one has
W (ab|cd) = W(ab)  *) +Wp(ax |cd) (3.4)

for any two distinct elements ¢, d € X'\ {a, b}. In particular, a map W from S5 (X)
into R>q that satisfies the conditions (F1) to (F4) is completely determined, for any two
distinct elements a, b € X with W(ab| x*) > 0, by itsvalues on $;o(X \ @) U S2(X \ b)
and the value of W(ab| * x).

Proof. In case W(ab|cd) = W(abl « x), we have to show that W(az|cd) = 0 holds for
all ze X\ {a, b, c,d} which follows from the fact that W(az/cd) > 0 for some z €
X\ {a, b, c, d} would imply W(ba|zcd) in view of W(ba|zc) > 0 and W(az|cd) > 0 in
contradiction to W(ab|cd) = W(ab| x x) < W(ab|zc).

Otherwise, we have W(ab|cd) > W(ab| = ) and we can use (F4) to find some
ze X\ {a, b, c,d} with W(abjzc) = W(ab| **) and, therefore, W(ba|z/cd) in view
of W(abjcd) > W (ab|zc) > 0 and Lemma 3.1, (iii) = (i) = (ii) and, thus,

W (ab|cd) = W(ab|cz) +W(azlcd) = W(ab]| x *) +W(az|cd)
< W(ab| x %) +Wp(ax |cd).
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It remains to show that
W(aZ|cd) < W(azlcd)

holds for all Z € X\ {a, b, c,d}. Otherwise, however, we would have W(aZ|cd) >
W(az|cd) > 0 for some Z € X\ {a, b, ¢, d, z} and, hence, W(aZ|z|cd) by Lemma 3.1,
(iii) = (i) = (ii) which in turn would imply W(ba|Z|zc) in view of W(aZ|zc) > 0
and W(ba|Zz) > W(ab| x %) > 0, and, hence, W(ab|Zc) < W(abj|zc) in contradiction to
W(ab|zc) = W(ab| * *) <W/(ab|Zc). |

We now turn to the remaining part of the proof of Theorem 1.1. We already showed
in the previous section that there can be at most one pair T, ¢ with W = Wr ;. So, it
remains to show that such an X-tree T and a length function ¢ indeed exist.

To this end, we will use induction relative to the cardinality n of X. Clearly, Theo-
rem 1.1 holds in case n = 4. Indeed, if the elements in X are labelled a, b, c, d so that
W (ab|cd) > 0 and, hence, W(ac|bd) = W(ad|bc) = 0 holds, the tree

T = Tajea

= ({a, b, ¢, d, Ugp, ucd},{{a, Uab}, {b, Uap}, {C, Ucd }, {d, Ueq }, {Uap, ucd}})

with exactly four leaves a, b, ¢, d and two additional vertices named Uz, Ucg Of degree
3, Ugp adjacent to a, b, and ugq, Ugq adjacent to ¢, d, and uyy, together with the map

¢ {{Uab, Uoa} } — R>0, {Uap, Uea} > W(ablcd)

is obviously the unique required pair T, £ with W =W ;.
To perform induction, we now assume n > 4 and choose aobo|codo € «52\2()() with

W (a0bo|codo) > W (ab]cd) (3.5)

for all abjcd € S2(X).
In view Corollary 3.5, this implies that W(agho| * %) > 0 as well as

W (a0X|yz) =W (box|yz) (3.6)

for any three distinct elements {x, y, z} in X — {ap, bo}.
Next, using our inductive hypothesis, we choose a binary (X \ {ap})-tree T and a
length function ¢1: E1(T1) — R0 with

Wit = W15, x o))
and note that, in view of (3.6), we have also
Wt = W1, ,ix (o))’

for the binary (X — {bg})-tree T, and the length function ¢»: E;(T,) — R derived by
renaming the vertex ap in Ty by by.

Let up denote the unique vertex in V (Ty) with {up, bo} € E(T1) (and, hence, with
{up, &} € E(Ty)). Itis clear that up is not a leaf in either Ty or T,. Now, choose
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some further element wy not in any set previously considered and define T = (V, E)
and ¢: Ey(T) — Ry as follows:

V:=V(T1)U{ag, Wo},

E := {{a0, Wo}, {bo, Wo}{uo, wo} } UE(T1)\ {{bo, o} }.

Note that
Eq(T) = Ex(T1) U {{uo, Wo} }
holds. Put
t(e) =ti(e)
forall ec E1(Ty), and
£({ug, Wo}) := W (aghg| * *). (3.7)

One has to show that W = Wt 4y holds. However, both maps coincide on Sp»(X'\
a0) U S2(X\ bo) in view of our construction, and we have also Wy ;) (aobg| * ) =
£({uo, Wo}) = W(apho| * ). Thus, our claim follows from Lemma 3.7.

The observations leading to this proof immediately suggest various algorithms to
construct the tree and to determine the length function: First one has to determine a
suitable labelling X = {a1, ay,..., an} of the elements in X and then, in a second run,
one builds the tree in a recursive fashion.

4, Discussion

The crucial observation used above that a map W: $»(X) — Rxo which satisfies the
conditions (F1)—(F4) and certain inequalities is uniquely determined by its restriction to
a certain subset of 55 (X), raises the question for which other collections of inequalities
and corresponding subsets of Sp>(X) this might hold. E.g., one can generalize the
observation above and show that, given any four distinct elements a;, az, ag, a4 in X
with

0 < W(awaz|agas) < W(ajap|asay)

forall {&, a, &, &} € (}) with W(a}a|a;a;) > 0 and
#({a1, 8, ag, au} N {ay, @, a3, a4 }) =3,

the map W is uniquely determined by its restriction to all 4-subsets {xi, X2, X3, X4} of
X for which {xq, X2, X3, X4} is either contained in

Asi={an, 3, a0} U{ae X\ {a, &, a0} [W(awalapas) > 0}

orin
Ao = {an, a0, a0} U{ae X\ {an, &, a0} W(azalaras) > 0}

orin

Ag={ay, a5, ar}U{ae X\ {a, a5, s} W(asaulaag) > 0},
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or, finally, in

Ay i={a, a3} U {ae X\ {au, ag, as }|W(a1as|aas) > 0}.

Using this observation, the required X-tree T and length function ¢ with W = W , can
also be constructed as follows: One first chooses two distinct elements a3, a; in X for
which some subset {x, y} € (X\{azl’az}) with W(azaz|xy) > 0 exists, then one chooses
two distinct elements a3, a4 in X \ {ay, a»} with

W (azaz|agas) = min {W(a1a2|xy) ‘{x, y} € <X \ {21’ aZ}) , W(azap|xy) > 0} ,

and observes that W (aiaz|agas) < W(a)a,|aga),) must hold for all {a}, &), a5, a,} €
(%) with W(a{ aj|a4a,) > 0 and #({ay, @, ag, as} N{a}, &, aj, &, }) = 3, then one con-
structs the subsets A, Az, Az, A4 as above and, notingthat ay € Ay UAy and ap € As UA,
hold, and then one uses the induction hypothesis to find, for eachi € {1, 2, 3,4}, an A;-
tree T together with a length function /; such that W, , =W(s, , () holds. Finally, one
“fuses” these four “small” trees in an appropriate (and absolutely canonical) way into
one big supertree T and one uses the length function /1, /2, ¢3, ¢4 to define a length
function ¢ for T for which one finally observes that W = Wr , must hold by referring to
the above generalization of Corollary 3.5.
More generally, one may as well start with any arbitrary labelling

X={a,a,...,an}

of the elements in X and use the above analysis to construct recursively, starting with
the tree Ty := ({ay, &, as, v}, {{a, v}|i = 1,2, 3}), a sequence of trees T () with leave
set X; :={ay,..., &} and length function ¢; defined on E; (T;) fori =4,..., nsuch that

W = VW, 4
S22(%i) '

holds foralli =4,...,n.

Indeed, comparing W-values, one can — for each i =4, ..., n — identify that edge
& = {u;, vi } in TU~1) to which the new pending edge with leaf a; has to be attached. The
tree T(1) then results from T(=1 by eliminating the edge g and adding a new internal
vertex w; as well as three new edges {ui, w; }, {wi, vi}, {wi, &}, and the length function
¢; can then also be defined easily on the (one or two) new internal edges while keeping
the value of ¢;_; on all internal edges of T() that are also internal edges of T(-1).

While, given a map W that satisfies the conditions (F1) to (F4), the outcome of
any such recursive construction does, of course, not depend on the labelling of X, the
algorithmic procedure will selective only use certain W-values (depending strongly on
the chosen labelling) and can thus be applied to any map W from $;»(X) into Rxo
whether or not (F1) to (F4) are satisfied. And it will always produce a weighted X-tree
depending on that map W and the input labelling.

In a forthcoming paper, we will discuss various ideas on how to make a sensible
choice of the input labelling in case one starts with a map W that satisfies the conditions
(F1) to (F4) only approximately, and present some related experimental results.
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Our result also suggests to study arbitrary subsets X of S,2(X) and maps Wp: X —
R>o and ask for necessary and/or sufficient conditions on X and Wy that imply that
there exists at least (or at most) one extension W = 52‘2(X) — R of Wy that satisfies
the conditions (X) as well as perhaps certain inequalities, or for algorithms that decide
extendability and/or construct such an extension if it exists. The results by Boecker and
others (cf. [2—-4]) suggest that deciding unique extendability might, at least in certain
cases, be considerably simpler than just deciding extendability.

Another question that arises naturally in this context is how, given any map W:
Sj2(X) — Rxo, one can find a map W': $,5(X) — R that satisfies the conditions
(F1)-(F4) and approximates W as closely as possible (relative to some predefined mea-
sure of “closeness”). While prescribing the support of W’ (i.e., the topology of the
X-tree in question), least square approximations should be easy, a linear-programming
approach (similar to that pursued by Weyer-Menkhoff [40], see also [24]) in the case
of unweighted X-trees where only the support of W’ is of interest) would be welcome
whenever any a priori assumptions about that support cannot be provided.
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Abstract. We examine finite words over an alphabet I = {a, a b, l_)} of pairs of letters, where

each word wiws - - wy is identified with its reverse complement ; - - v, (where @a=a, b=b).
We seek the smallest £ such that every word of length n, composed from I', is uniquely determined
by the set of its subwords of length up to k. Our almost sharp result (k ~ 2n/3) is an analogue of
a classical result for “normal” words. This problem has its roots in bioinformatics.
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1. Introduction

Let A be a finite alphabet and let A* denote the set of all finite sequences over A, called
words. For s, w € A* we say that s is a subword of w (s < w) if s is a (not necessarily
consecutive) subsequence of w. (Note, that some authors have called these constructs
“subsequences”, reserving “subword” for consecutive subsequences.) The length of w
is denoted by |w|. The following result was independently rediscovered repeatedly; as
far as we are aware the problem originally was posed by Schiitzenberger and Simon.
(In the bibliography we try to give the original sources relevant to our problem. It is not
our intention, however, to give a comprehensive bibliography.)

Theorem 1.1. (Simon [8]) Every word w € A* with at most 2m — 1 letters is completely
determined by its length and by the set of all its subwords of length at most m.

* This work was supported, in part, by Hungarian NSF, under contract Nos. AT48826, NK62321, F043772,
N34040, T34702, T37846, T43758, ETIK, Magyary Z. grant and by the U.S.D.O.E..
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The pair of words abababa and bababab shows clearly that this result is sharp. In
Simon’s paper it was noted that it suffices to prove the theorem for the two-letter case:
A = {a, b}. Perhaps the shortest proof of Theorem 1.1 is due to Sakarovitch and Simon
(see [6, pp. 119-120]); we were influenced by this nice proof.

Levenshtein in his papers [3-5] considers more generalizations of the reconstruc-
tion problem. In [3] the author examines which other sets of subwords or super-words
determine uniquely the original word, in [4] the maximum size of the set of common
subwords (or super-words) of two different words of a given length is given in a recur-
sive way. In [5] every unknown sequence is reconstructed from its versions distorted by
errors of a certain type, which are considered as outputs of repeated transmissions over
a channel, and a minimal number of transmissions sufficient to reconstruct the original
word (either exactly or with a given probability) is given. In both of the latter papers
simple reconstruction algorithms are given.

In this paper we study another version of this problem. Let I' = {a, a b, l_)} be an
alphabet where the letters come in pairs (called complement pairs); and let ' denote
the set of all finite sequences, called words, composed from I'. Define @ = a, b = b and
for a word w = wiwy---wy, € T let w = wyw;—1 -+ Wy, the reverse complement of w.
Note that (w) = w. Now we want to keep the essence of the previous partial ordering,
while, in our poset, each word is identified with its reverse complement.

As in the foregoing theorem, we do not address effective reconstruction essentially;
our concern is the prefatory problem of determining the minimal 7 such that the sub-
words of length up to m determine each word of length n. In the “classical case” the
reconstruction problem was recently addressed (see, Dress and Erdés [1]). In the re-
verse complement case the problem seems to be more complicated, and no results are
presently available.

Our problem and definitions have biological motivations (for details see [2]). DNA
typically exists as paired, reverse complementary words or strands: The Watson-Crick
double helix, with its four letters, A, C, G and T paired via A =T and C = G. Cor-
responding DNA codes could involve the insertion-deletion metric — with bounded
similarity between two strands: The length of the longest subword common either to
the strands or common to one strand and the reverse complement of the other.

Another common task is to decide rapidly and efficiently whether a given DNA
double-strand (for example an erroneous gene, which is associated with illness) is
present in a sample. This setting typically invokes microarrays: Ten thousand or so
of relatively short DNA words (called probes) are fixed on a glass slide. The sample
reacts with the probes, and the probes which bind material from the sample are deter-
mined. We may model this process with our definition, i.e., to say that binding occurs
if the probe is a subword of either strand. One may argue that the physicochemical
laws do not allow each subword of the long DNA word to bind effectively because, for
instance, “blocks” of consecutive matches may be required for binding. Although this
is a perfectly legitimate objection, our aim is to provide additional background for such
applications.

Before we list our main results, let us remark that our problem is a special case of a
general class of problems, in which group orbits substitute for the classes of words and
their reverse complements. The group must have a well defined action on all subwords
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— an induced action based, for instance, on permuting letter identities and letter posi-
tions. (The group considered herein is of order two.) A permutation may, for example,
act on the positions included in subwords through the respective complete ordering.
Thus, one version of the general problem is:

Given the k-spectra of the words for its orbits (the set of subwords of up to length k
occurring in any of these words), find a characterization of all the (permutation) groups
which yield k-spectra one-to-one correspondence with these orbits. For the general
problem, the respective partial order would be inclusion when any member of the orbit
occurs as a subword.

2. Main Results

In this section we formulate our main results. Let us recall that in our partial order
every word is identified with its reverse complement. Therefore, if in this partial order
the word g is smaller than the word f, then it can happen that g is a subword of f or
it is a subword of its reverse complement f. For convenience, if we do not know (or
do not care) which is the case, then we will say that the word g precedes the word f
(g < f). Let S(m, f) denote the set of words of length < m, which precede f. We seek
to determine when S(/m, f) uniquely defines f.

One may note essential differences between this and the original problem; here, for
instance, we may have more subwords but we do not distinguish between individual
subwords belonging to a word or to its reverse complement. This difference is evident
when the alphabet consists of a letter and its complement.

Let us consider the following example:

F'=a*"*dk and @G =aFreld 2.1

where € € {0, 1,2}, k > 1 and (k, €) # (1, 0). The length of both words is 3k+¢€. On
the one hand, the subword @*t€ of ¥’ satisfies g*<t€ A g’ . On the other hand, it is
easy to check that

S(2k+e—1,7)=S(2k+e—1,G").
In this paper we prove the following result:

Theorem 2.1. Every word f € {a, a}* of length at most 3m — 1 is uniquely determined
by its length and by the set
D'(f) :=S(2m, f).
The proof of this result can be found in Section 4.

The next example illustrates that if our words contain letters from more than one
complement pair, then they are “easier to distinguish”. Consider the following words:

F = =2k+€ I;bak and g — 52kt+e—1 I;bakﬂ, (22)

wheree € {0, 1,2} and k > 1 and (k, €) # (1, 0). The length of both words is 3k +2 +€.
On the one hand, the subword @%**¢ of F satisfies a2 1€ # G. On the other hand, it is
easy to verify that

SQRk+e—1,F)=S2k+e—1,G).

We have the following statement:
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Theorem 2.2. Every word f € I'* of length at most 3m+ 1 (m > 1) containing both
(aora) and (b or b) is uniquely determined by its length and by the set

D(f) :=S(2m, f).

The examples abab and abba show that in case of m = 1 the statement is not true.
The proof of this result can be found in Section 5.

Please recognize that due to our definitions, the expression “uniquely determined”
means “uniquely determined, up to reverse complementation”. The statement pertains
to the case of € = 2 in the example.

3. Easy Consequences

There are some immediate consequences of the results of Section 2. For example in the
case when our words contain letters from one complement pair only, one may formulate
the following result.

Corollary 3.1. Every word f € {a,a}* of length at most n is uniquely determined by
its length and by the set S ({w—‘ , f) .

Proof. Let m be the smallest integer such that n < 3m — 1. Then P(”; Z)W > 2m and

Theorem 2.1 applies. |

Correspondingly, for the case of words containing letters from two complement
pairs, we have

Corollary 3.2. Every word f € T'* of length at most n containing both (a or @) and (b
or b) is uniquely determined by its length and by the set S ( {MJ , f)

Proof. The statement is straightforward: Let m be the smallest integer such that n <
3m+1. Then {MJ > 2m, therefore Theorem 2.2 applies. |

Our instinct says that Corollaries 3.1 and 3.2 are not sharp. We suspect that the truth
is the following:

Conjecture 3.3. Each word of length at most 3m+ 2 + € containing both (a or ) and
(b or b) is uniquely determined by its length and by the set S(2m+ ¢, f). Furthermore,
each word of length at most 3m + € containing only a or a is uniquely determined by its
length and by the set S(2m+ €, f).

If our words are self-reverse complementary, then we are back to the original prob-
lem:

Remark 3.4. Let the words f and g € T (of length at most ) be self-reverse comple-
mentary, that is f = f and g = §. Now if S([(n+1)/2], f) =S([(n+1)/2],g) then
f=g

Proof. If for the word w we have w < f and f = f, then w is a subword of f as well as
of f. Therefore Theorem 1.1 applies. |
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For the original problem it was almost trivial that from the result for the case of 2-
letter alphabet one derives an (approximate) result for the case of k-element alphabets
as well. The situation here is similar but the proof requires some work:

Theorem 3.5. Theorem 2.2 remains valid if the word f contains letters from k > 2
different complement pairs.

Proof. We use induction on the number k of different complement pairs present. The
case of two pairs present is Theorem 2.2. Assume that the statement is valid for the case
of k— 1 different pairs present. Let f and g be words with length |f| = |g| <3m+1,
and in both words let there be k different complement pairs present. The alphabet is
{ai,ai,..., ax, ag}. LetALz,Al,z be a new pair of complementary letters, and f > be
the word derived from f by identifying all occurrences of @ and a, with A; > and all
occurrences of @; and a, with Al,z. The word g1 5 is derived similarly. The new words
contain letters from k — 1 different pairs and D (f1,2) = D (g1,2). The inductive hypoth-
esis gives that 12 = g1.2 (one might need to exchange the names of g » and ,57112).
Furthermore, for the subwords f', and g} , consisting of all occurrences of the let-

ters {a1, di, az, d,} we have D(ffz) = D(g*[ 2); therefore, we can apply Theorem 2.2.
Whence 7, =g}, 0r fi , =& »-

In the case of ff', = g7, irlterleaving f1,2~and /1, we can determine f which is
identical to g. In case of f1 2 = g1,2 and f , = g] , we can proceed similarly. However,

it can happen that

fl,z = 41,2, but fl,z 75 §172, while (3.1)

fia# 8l but fi,=g7,. (3.2)

2 2
fore f7, = g} , cannot occur. So let |fi 2| =€ be even. From Condition (3.2) it
follows that there is an index j < ¢/2 such that f,(j) = a1, g ,(j) = a2, while
Ji,(6+1—j)=as and gj ,({+1— j) = a;. From Condition (3.1) it follows that
there is a subscript i < (3m+ 1)/2 such that fi 2(i) = a3 (therefore g 2(i) = a3 also
holds) while g; »(3m+2 —i) = b where b # as. If b € {ay,..., ax}, then introducing
the new letters By, By, B2, B>, substitute all occurrences of a; and a3 with By, all oc-
currences of @, a3 with By, all occurrences of the letters as, ay, ..., a; with By, and,
finally, all occurrences of the letters @, dg, ..., @ with By in the original words. The
result is the words 2 and g% which satisfy the conditions of Theorem 2.2 while clearly

B + gP and fB +# ¢B, a contradiction.

If, however, b € {a, az, aa, ..., a}, then we may define a bipartition of the al-
phabet, where letters b and a3z belong to different classes, and letters a; and a, also
belong to different classes. Then substitute all occurrences of the letters from the first
class of the bipartition with Cj, C; and the letters from the second class with C», C,,
respectively. The new words clearly satisfy the conditions of Theorem 2.2; however,
the consequence of Theorem 2.2 does not hold. |

. . f1,]+1 eS|
The value ‘fl*qzl cannot be odd, since otherwise fi » (\fl,z\ ) =812 (\gl,z\ ), there-

This proof suggests that the existence of letters from more complement pairs de-
creases the necessary subword length in the result.
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Because our approach does not work for very short words, we use the following
enumerative result:

Remark 3.6. Theorems 2.1 and 2.2 were tested by a computer program for short words
(for | f] < 13 and for selected words with | f| < 18) and were found valid. Therefore our
proofs need only address sufficiently long words, allowing reasoning which is effective
above a (usually very small) length.

In the next two sections we prove our main results. The general approach used is
similar to the one in the proof of Theorem 3.5: Identify a subword of the word under
investigation which distinguishes the word and its reverse complement from each other.
Such a subword can identify the word itself. The greater the similarity between the
word and its reverse complement, the harder to find such a subword but, compensating
for this difficulty, the more is known about the structure of such words.

4. The Proof of Theorem 2.1
Assume that f and g are words in {a, @}" of the same length such that
|f|=1gl <3m—1 and D'(f)=D'(g)=D".

Due to Remark 3.4, we may assume that f is not self-reverse complementary. Denote
by A(w) the number of a’s in the word w, and define A(w) analogously. Without loss of
generality we may assume that both words f and g are written in the form where A(f) >
A(f)and A(g) > A(g). At first assume that A(f) > A(g), which also means that A(f) <
A(g). If A(f) > 2m, then take an arbitrary subword g’ of g such that A(g’), A(g") >
A(f)+ 1. Itis clear that g’ £ f. If, instead, A(f) < 2m, then take the subword f’ of
f containing A(g) + 1 @’s. It is also clear that f’ £ g and that |f’|, |¢’| < 2m, which
constitutes a contradiction. Therefore, in this proof henceforth we assume that we have

A:=A(f)=A(g) and A:=A(f)=A(g). 4.1)
Before proceeding we introduce one more notion: a word contains a run of length k

when it contains k consecutive copies of a certain letter.

4.1. The Case A < A

In this case we know that f # f and g # g, and each subword of f or g containing
at least A + 1 a’s obeys these inequalities. All subwords from S(2m, f), containing
at least A + 1 a’s, are subwords of g, because they cannot be subwords of § — and
correspondingly, the analogous statement holds for the subwords from S(2m, g).

Our words f and g can be written in the following form:

fi=d%aa"a---aa®> and g:=d"aa"a---aa”,

where s = A, and any [; or J; can be zero. If f # g, then the subset

L:= {lE{O,...,S}U[#J[}
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has at least two elements. Without loss of generality we may assume that I, =
min{l;, J;: [ € L}, i.e., f contains a shortest run — of those letters indexed by L. Then
consider the subword g’ of g containing all its @’s, containing at least Iy + 1 a’s in the
{-th run of a’s, and finally containing, as needed, other copies of a’s so that altogether
there are at least A+ 1 a’s. Then, due to the definition, g’ is not a subword of f, further-
more, by the number of a’s, it is also clear that g’ is also not a subword of f. We know

that A
|gl} Smax{({a—‘ —1)+1+A, ZA—i—l},

since the left argument of the maximum includes, within its parentheses, the largest pos-
sible value for I;. If | g | < 24 + 1 < 2m holds, then there is a contradiction. Therefore
this method shows that D'(f) and D’(g) must be different while A+ 1 < m. Continuing
the proof from now on (in this section) we assume that

A>m—1. 4.2)

Hence, in this case
A=3m—-1—-A<2m-—1. “4.3)

Denote by f(a, £) the subword of f containing all a’s and the /-th run of @’s. By our
assumptions these are subwords of g, but, as we have just seen, not subwords of g.
Therefore both f and g can be written in the following forms:

f=d%a"a"a”?---a"a" and g=da"%a'a"a? --aa", 4.4)

where rg or r; can be zero, while rq,..., r,_1 and all s; and z; are non-zero.

Now we are going to show that for all i we also have s; = z; (which, of course,
implies that f = g).

Let F € {x, y}* be an arbitrary word and assume it is written in the form

F = x"0y 1 x1y52 oyt ylt 4.5)

where the runs are not empty (except, possibly, the very first and last). Thatis rg, 7, > 0
and all other superscripts > 0. A subword W of F is well recognizable for the pair
x,y if one can reconstruct exactly which letter of W comes from which x- or y-runs
of F. (Reverse complementation is not taken into consideration here. Generally we
will ensure separately that the well recognizable subword’s reverse complement is not
a subword of the original.) It is clear that if the subword W’ of F contains W as a
subword, then W’ is also well recognizable. The subword F; containing one letter from
each run is clearly well recognizable. Even better, if ro and r; are both non-zero (or,
oppositely, both zero), then the reverse complement of this subword is automatically
not a subword of F. But when F has a large number of runs (say each run consists of
one letter), then one can find much shorter well recognizable subwords.

Proposition 4.1. Let W (F) be the subword of F defined as follows:

() W(F) retains at least one x from each x-run.
() Ifro orry > 1, then W(F) contains one x from the respective run and one y from
the neighboring y-run.
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(IIT) From all other x-runs with precisely two letters, let W(F) contains both.
(IV) From all other x-runs with at least three letters, W (F) contains one x from the
run and one'y from both adjacent runs.
(Enl) If between two previously chosen y’s there are only two-letter x-runs, then keep
one x from each of these runs and take one element from each y-run in-between.
(En2) From every run of y’s, remove all but one.

Then the resulting W (F) is a well recognizable subword of F for the pair x, y.

(The two last procedures enhance the previously constructed well recognizable
words, that give their different kinds of names.) Proposition 4.1 may be thought of
as an algorithm, whose six steps are applied sequentially in a single pass. Thus, its va-
lidity is evident. Let us remark that without operation (Enl) the subword W (F') would
be still a well recognizable subword, but this operation decreases the number of letters
by one with each application. Note that W (F) never has more letters than the total
number of runs in f and neither is it ever shorter than the number of x-runs. However,
this construction is sensible for one-letter runs and in their presence it produces well
recognizable words with fewer letters than the total number of runs.

Note also that any well recognizable subword of f in Condition (4.4) is also a well
recognizable subword of g.

Assume now that f # g, that is the series s1,..., s; and z1, ..., z; are different. Then
the set

L:={le{l,....t}|si#z}

has at least two elements, since the total number of @’s are the same in both of our
words. Without loss of generality we may assume that zp = min{s;, z;: [ € L}. At first
take the subword f] of f containing all its a’s and z; 4 1 a@’s from the ¢-th G-run. This
word is clearly a well recognizable one, and, due to A > A, its reverse complement is
not a subword of f or g. Therefore, if A+z,+ 1 < 2m, then f; € D'(f) but f; € D'(g),
a contradiction.

If, however, this is not the case, then |f]| = 2m+ o and

A=2m+o—(z+1), (4.6)
A:3m—1—A:m—0ﬂ—|—Zz,

where o0 > 1. By the minimality of z; there is another a-run in f with at least zy elements.
Therefore there are at most

t<24+A—Qu+1)=m+1—(z+a) 4.7

a-runs in the word f, and there is at most one more: that is, at most m+2 — (z/+ o) a-
runs in f.

Recall that the subword f is not in D’(f) because it has o extra letters and zy >
o> 1 (viz. (4.6)).

Assume at first that rg, r; > 0. Then consider the subword f> of the word f contain-
ing one letter from each run except the ¢-th G-run, which contains z; + 1 @’s. This word
is well recognizable, and f, is not a subword of f or g because they do not contain
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enough a-runs. Furthermore, f, is also clearly not a subword of g, since in the /-th
a-run there are too many letters. Due to (4.7) we know that

|l ST+2+20<142[m+1— (z+ )] +20 =2m+3 — 20—z < 2m,

since z¢ > o > 1. Therefore f, € D'(f) but f> & D’(g), a contradiction.

If ro = r, = 0 then we can repeat the previous reasoning since ﬁ is not a subword
of f or g because there are not enough a-runs in them. If, say, ro > 0 and r, = 0, then
we cannot rule out that the reverse complement of f> is a subword of g. In this case
there are precisely r (<m+1— (z¢y+)) a-runs in f. Construct the subword f3 of f
as follows: it contains one letter from each run except the ¢/-th a-run, which contains
z¢+ 1 a’s. Then f3 looks like f, but it has one fewer element, due to r; = 0. It is a well
recognizable subword of f but not a subword of g. Its length is

If3] =2t + 20 <|f2],

therefore also f3 € D’(f). In general, this would yield a contradiction, but if r,_p > 7,
then f3 could be a subword of g. But then let f4 be constructed from f3 by adding
z¢ more a letters to the (f — z¢)-th a-run. This f4 is clearly a subword of f but not a
subword of g or g. Finally

Ifa| = f3] +20e <2m+2—200< 2m.

Therefore f; € D’(f) but € D’(g), a contradiction. The case A < A is proved.

4.2. The Case A=A

In this case we can prove a slightly stronger version of Theorem 2.1: we can suppose
that | f] < 3m. Now |f| = |g| is even, i.e., m = 2k and the two words are of the form

f=a"a"d"a?---a"d" and g=daa"d"a?. . Gk, (4.8)

whererg+---+rn=s1+--+ss=Ro+---+Rr =z1+---+2z2r =A =3k and at least
one of rp, r; and at least one of Ry, Ry is positive, otherwise we exchange the names of
f and f, and similarly for g as well. Now without loss of generality we may assume that
ro > 0. Then in g we have Ry > 0. Otherwise the subword a@* of f does not precede g
(since there are not enough a’s after the first a in g, and not enough a’s before the last a
ing).

If r; > 0 also holds, then consider the subword f; = @a. If 3k+ 1 < 4k then f; €
D’(f) but f is not a subword of g, since there are not enough a’s after the first a in
g. Therefore f) itself is a subword of g and we have Ry > 0; otherwise, there are not
enough a@’s before the last a in g. It also means that f; is a well recognizable subword
of f and g as well. Therefore r, = 0 < Ry = 0. (If, however, |f| < 4, then applying
Remark 3.6 completes the proof.)

Assume at first that

r, Ry > 0. (4.9)

Denote by F; the subword of f derived from f; by inserting one a from the i-th a-run.
If A> 6 then F; € D' (f). These words together, for all i, describe the length of the
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a-runs in f, and all those runs are the complete union of some consecutive a-runs in
g. Repeating the process with g, yielding G;’s, we have the similar correspondence
between the a-runs of f and g. Therefore the a-run structures of f and g are identical:
t=T,ands;=z;;i=1,...,t. df A <5 then Remark 3.6 finishes the proof.) Therefore
our words are of the form

f=d3"a"g?---a@a" and g=dRa"da2.. @k (4.10)

Assume now that f # g: that is, the series ry,..., r; and Ry, ..., R, are different. Then
the set

L:= {lE{O,...,t}|r[7éR1}

has at least two elements, since the total number of a’s is A in both words. With-
out loss of generality we may assume that Ry = min{r;, R;: [ € L}. Consider the f-
subword fo = @1t HsegRet1 gserit+s1q This is clearly neither a subword of g nor of
g. Therefore A + Ry + 2 > 4k, implying that R, > k — 1. Due to the selection pro-
cedure for R, there is another a-run in f of length at least Ry,. Then all the other
a-runs in f altogether contain < 3k — (2R, + 1) letters; hence the numbers of a-runs
are limited: ¢ < 3k — 2R,. Let the subword f3 contain one letter from each differ-
ent run in f, and contain Ry more letters from the ¢-th a-run. This word has at most
2(3k—2R;) + 14 Ry = 6k —3R;+ 1 < 3k + 4 letters (here we used Ry > k — 1). Since
f3 is a subword of f but does not precede g and this is a contradiction (unless k£ < 2,
when |f| < 12 and Remark 3.6 applies; or k = 3 and the length of word f’s a-runs are
3,2,1,1, 1, 1 which allows again the use of Remark 3.6), Theorem 2.1 is established
for this case.
From now on we assume that (4.9) does not hold: that is we have

r=Rr =0. 4.11)

(Let us recall that at that point we do not know whether the number of runs in f and
g are equal or different.) Let f(a;i) denote the subword of f containing all its a’s,
furthermore one a from the i-th @-runof f;i=1,...,¢.

Claim: Every f(a;i) is a subsequence of g or every f(a; i) is a subsequence of g or
both hold.

Indeed, if every f(a;i) is a subsequence of both words then there is nothing to
prove. Therefore assume that there is an index i such that f(a; i) is a subsequence of
g but not of g. Then for all indices [ # i the subword f(a; ) is also a subword of g.
Indeed, if there is an index I, such that the subword f(a; /) was a subword of g but not
of g, then consider the analogous subword f(a; i, [) of f, containing altogether A 4 2
letters (all a’s and one letter from the i-th and one from the /-th @-run). This would
not be a subword either of g or g, a contradiction, if A > 6 (if A < 6 then Remark 3.6
applies). The Claim is proved.

Therefore we may assume that all f(a; i) are subwords of g; therefore t < T, and
one can make ¢ groups g7,..., g; of consecutive a-runs in g such that the total length
of a-runs within g7 is equal to s;. Repeat the whole process for the subwords glasi). Tt

still might be necessary to substitute ffor f, but due to (4.11) this already implies that
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t=T. (4.12)

But from this equation it also follows that each g(a; i) is a subword of f, since they are
just the image in g of the subwords f(a; ). Therefore we also have r; = R; for all i.
Now repeat the whole process for the analogous subwords f(a; i) of f. This yields

(si =z, foralli) or (s;=R,_; foralli).

In the first case the proof is complete. Assume that this is not the case. Then the second
relation series holds. But repeating the whole process again for the analogous subwords
g(a, i) then we get that z; = r,_;, for all i. Since we have r; = R; it follows that s; = z;
for all i, which contradicts our assumption, and Theorem 2.1 is proved.

5. Proof of Theorem 2.2

In this section, for conciseness, we will use the notation d for both a and a and b for
both b and b, when the actual value of @ or b is immaterial. With this notation every
word of I'* can be considered as a word from {d, l;}*. Assume that f and g are words
in I'™* of the same length such that

fl=lg|<3m+1 and D(f)=D(g)=D. 5.1)

Without loss of generality we may also assume, due to Remark 3.4, that at least one of
the two words, say g, is not self-reverse complementary. Furthermore let

p=max{|s|: s€ DNa*} and g=max{[s|: s€DNbH*}.

Without loss of generality we can assume that g < p. Let f(a) denote the subword
of f consisting of all @’s. The notation f(b), g(a), and g(b) are analogous. Then, by
definition, |f(a)| > p and |f(b)| > ¢; hence

29 <p+q<|fl@)|+|f(B)]=[f] <3m+1,

and consequently ¢ < 2% < 2m if 1 < m. This implies that |f(b)| = |g(b)| = ¢. Tt
also implies that |f(a)| = |g(a)| holds. We remark that |f(a)| may exceed p. (Note
that if ¢ is odd, then the subwords containing all b’s are different from their reverse
complements. )

Due to these properties there exist non-negative integers ¢, T; iq, ..., it; ¥1,..., 1t
Jo,--+, jrs and Ry, ..., Ry such that

f: goprigit .. g and g= &Joleﬁjl ...bRTL’i./T, (5.2)

where ¢ can be equal to T, and iy, i, jo, jr can be zero, while all other superscripts are
nonnegative integers, and, furthermore, where i + - -+ i = jo+---+ jr = |f(a)| and
ri+--+r=Ri+---+Rr =|f(b)|. Since g < 2m, the subwords f(b) and g(b) belong
to S(2m, f) = D; therefore f(b) = g(b) or f(b) = g(b), or both. Let us remark that we
have our general form (4.5) with letters @ and b; therefore Proposition 4.1 applies to
these words.

For two words w and u denote by w ~ u if both of w < u and u < w hold. The
following observation will be useful later.
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Proposition 5.1. Assume that T =t, i = jy fork=0,...,tandr;=R;forl=1,...,t,
and furthermore f(a) ~ g(a) and f(b) ~ g(b). Then f ~ g.

Proof. Suppose instead that f # g and f # g. We can obtain f by interleaving the runs of

f(a) and f(b). Since f # g itis easy to see that we must get g from the runs of f(a) and
f(D). If at least one of f(a) and f(b) is self-reverse complementary, then we get f = g

or f = g, a contradiction. Suppose now that f(a) # f(a) and f(b) # f(b). Then due to
Theorem 1.1 there exists a subword a; of length at most [(|f(a)|+1)/2], such that, say,

a, < f(a),buta, £ f(;). We get b, of length at most [ (| f(b)|+1)/2] similarly. Now let
[« be the word obtained from interleaving a, and b,. Clearly f, < f but f,. A g. Hence

if |f1 > 7, then [ fe] < [(f(«)| +1)/2] + [(IF (D) +1)/2] = [(f +2)/2] = [Bm+
3)/2] < 2m, a contradiction. (The cases |f| < 7 are covered by Remark 3.6.) |

Next we are going to show that the conditions of Proposition 5.1 hold.

At first we show that the run structures in f(b) and in at least one of g(b) and g(b)
are identical. Denote by f(b; ¢) the subword consisting of all its b’s and one letter from
the ¢-th d-run. Since |f(b; £)| < 2m, m > 1, this belongs to D(f) = D(g).

Claim: Every f(b; ¢) is a subsequence of g or a subsequence of g or both hold.

Indeed, if every f(b;{) is a subsequence of both words then there is nothing to
prove. Therefore assume that for a particular k the word f(b; k) is a subword of, say,
g but not of g. Then for all ¢ the words f(b; £) are subwords of g as well. Indeed, if
there is a j # k such that f(b; j) is a subword of g but not of g, then the f-subword
f(b; k, j), defined analogously, is not a subword of either g or g. Because |f(b; k, j)| <
(3m+1)/2+ 2, this yields a contradiction for m < 5. (The cases m < 4 are covered by
Remark 3.6.) The Claim is proved.

So we can assume that every f(b; ¢) is a subsequence of, say, g. Thereforet < T,
and one can construct ¢ groups g7,..., &/ of consecutive b-runs in g such that the total
length of the b-runs within g; is equal to r;. Repeat the whole process for the subwords

g(a;i). It is possible that we had to substitute f for f, but this already implies that
t = T. But from this equation it also follows that each g(a; £) can be chosen to be a
subword of f since, as we know, the subwords f(a; i) can be found in g. Therefore we
also have r; = R; for all i and

f=a"pah - bhat and g =albalt .- brak, (5.3)

where the b-runs with the same superscripts are identical. Furthermore, we also know
that the number of non-empty d-runs in f and g are equal as well. Indeed, if the multiset
{io, i} has no fewer non-zero elements than the multiset { jo, j,}, then the word con-
taining one d from the nonempty runs indexed by the first multiset and f(b) establishes
this relation. Therefore the number of non-empty d-runs in f and g is the same, say r’:
equaltor—1,rorz+1.

It remains to prove that f(a) ~ g(a) and that g can be written in a form such that
ir = ji for all possible k. (Note that if one must interchange g and g then we will show

that in that case f(b) = f(b).)

5.1. The Case g =1
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Let us start with the special case ¢ = 1. Now without loss of generality we may assume
that both words are written in the form where b = b (otherwise we can take the reverse
complement form of the word). Now any subword of f containing the letter » should
be contained in g in its original form because changing the subword into its reverse
complement would change b into b. Since |f(a)| = |g(a)|, io +i1 = jo + j1.

If the multisets {io, {1 } and {jo, j1 } were different, then there would exist a unique
smallest element within them, say, the i;: we have iy > jo, j; > i;. Take a subword u
of g of the form

u=ba"t'.

This subword clearly does not precede f (there are not enough a@’s after b in the word
). Since |u| < (B3m+1)/2 <2m, m > 1, therefore D(f) # D(g), a contradiction. The
ordered pairs (ig, i1) and (jo, j1) coincide. Denote by fp the longest simple subword of
f ending with b and by fi the longest subword of f starting with b. The definitions of gg
and g; are similar. Now fy and go are words of the same length, and all their subwords
of length < 2m, ending with b coincide as well. Denote by f; and g the same words
without their b terminuses. Then we know that all subwords of length [(|f;|+1)/2]
of f and g are the same over the alphabet a, @, in the simple subword relation. Ap-
plication of Theorem 1.1 gives that fj = g in the original ordering. Furthermore, the
same applies to /| and g7; therefore we have proved that f = g.

From now on we assume that 1 < ¢ < (3m+1)/2. Therefore |f(a)| =3m+1—g <
3m — 1. Now considering the elements @* € D and applying Theorem 2.1 we get that

The only remaining goal is to prove that the a-structure of the words are the same, i.e.,
i = ji for all k.

5.2. TheCase 1 <g<m+1

Proposition 5.2. If 1 < g <m—+ 1 and there are two indices £ € {0,..., t} for which
q+ig>2m, 5.4)
thenwe havet =2, g=m+1,ip =i = jo=j1 =m.
Proof. Indeed, if ¢ < m and if there are two distinct indices k # [ satisfying (5.4) then
qt+i+qg+ig>2m+14+2m+1;

therefore
q+i+ix>4m+2—g>3m+2>|f],

a contradiction.

If, however, ¢ = m+ 1 and ip = i; = m, then jy = j; as well. Otherwise we would
have, say, jo < i; < ji. Then a g-subword consisting of one letter from the middle b-run
and i1 + 1 letters from the j;-run is clearly shorter than 2m but does not precede f, a
contradiction. Let us remark that in this case Proposition 5.1 is applicable directly, and
Theorem 2.2 is proved. |
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If there is precisely one index ¢ satisfying (5.4), then the corresponding run will
be called a long run, while the other runs are called short. Denote by f*(b; k) the f-
subword consisting of all its b’s and the complete k-th d-run. For short runs the length
of these words is at most 2m; therefore these belong to D(f) = D(g). Assume for a

moment that f(b) = g(b) # g(b). Then f*(b; k) is not a subword of g for any short
run, and therefore we can find equality of the lengths of the short runs, i.e., iy = ji
for short runs. Furthermore, because of Proposition 5.2 (i) there is only one d-run (the
¢-th), whose length can not be ascertained from the subwords, but then |iy| = 3m+1—
q) — Xize lik] = (B3m~+1—¢q) — Yize | jk| = | je|, which completes the proof in this case.
Therefore from now on we assume that

f(b) = g(b) = g(b)
holds as well. (We also know that g = | f ()| is even, but this is not important.)

Case 1. Assume at first that there is a long run in the word f and this is the /-th
one. Then g also has at least one long run. Indeed, let u; denote an (2m — g)-letter
subword of the long run. Then the f-subword f(b) Uu; belongs to D(g), and the image
of u; is contained in a long a-run of g. However, g cannot contain two long runs,
otherwise Proposition 5.2 would apply, a contradiction. Therefore g contains exactly
one long run and we may assume that f and g contain their respective long runs at
the same index £. Let us assume now that £ # ¢t — £. Then denote by f; the subword
containing everything except the ¢-th and (¢ — £)-th d-runs. This has at most 2m letters,
and therefore belongs to D(f): that is, it precedes the analogously defined g-subword
g;- Similarly g7 precedes f;. Consequently we know that f; ~ g7. This means that

(@ f; :(gjv}f,or
®) 7 =g

or both. But all the three possibilities imply that iy +i;—¢ = j¢ + jr—¢. If (b) does not
hold then there is a k # ¢, t — £ such that f(b; k) is not a subword of g(b; ¢ — k). But
since i;_ # 0, the subword f(b; k, t — £) (consisting of all b’s and one element of the
k-th and one element of the (r — ¢)-th d-runs each) which is not longer than 2m, is
therefore a subword of g(b; k, t — £), and vice versa, which shows that Proposition 5.1
is applicable. If, however, (b) holds but (a) does not, then there is a k such that f(b; k)
is not a subword of g(b; k). Then let u denote an 2m — g — iy, element subword of the
long run in f. Let f’ be the word consisting of u and f(b; k). This is not a subword of
g but also not a subword of g(b; t —k, t — £) unless g is very close to m and j,_¢ is also
close to m. But then we have a small run-number » and then there is a well recognizable
subword of f with at most 2r + 1 letters and repeating the previous reasoning we get
the contradiction.

We now come to the case when £ =t — /£ and ¢ is odd. But then if f; has at most
2m letters, which allows us to show as before that f; ~ g7, and then we can apply
Proposition 5.1 again. If this is not the case then we have g =m+1 and iy = m. If
we have at least four non-empty d-runs then for all k # ¢ we have f(b;k,t —k) ~
g(b; k,t — k), showing that iy = j,. Furthermore, it is impossible, as usual, that for
ki, ky we have f(b; ki, t—ki) = g(b; k1, t — ki) while f(b; ko, t —kz) = g(b; ko, t — k).
(We can use the previous technique again.) So Proposition 5.1 is applicable again.
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Case 2. Next suppose that there is no long run. Then all f(b; k) € D(f) = D(g).
Assume that for all k the subword f(b; k, t — k) has length < 2m. Then for all k we
have f(b; k,t —k) ~ g(b; k,t — k). Moreover, as usual, we can show that if there is
a k such that f(b; k,t — k) is equal to g(b; k,t — k) but not to its reverse complement;
then for all other I # k we also have f(b;l,t —1) = g(b;1,t —1). Indeed, if this is
not the case then there is a subword f; of f(b; k,t — k) with at most [(ix +i;—4)/2]
letters from its @-runs showing that f(b;1,t — ) # g(b; 1, —1). Similarly, there is a
subword f> of f(b; 1,1 —1) with at most [(i; +i—;)/2] letters from its d-runs showing
that f(b;1,r—1) # g(b;1,t — ). Putting together these two subwords we get a word
from D(f) which does not belong to D(g), a contradiction, except that ¢ = m + 1 and
both d-run pairs contain exactly m — 1 letters, where m is odd. But again, we can find a
well recognizable word with ten letters, and repeating the whole process we are done.

So what remains is that we have an ¢ such that g+ iy +i;_¢ > 2m. Then for all
other k # ¢, t — ¢ we have f(b; k,t — k) ~ g(b; k, t — k). (Otherwise we have four non-
empty d-runs, and finding a well recognizable word with eight letters finishes the proof.)
Again we can show that, say, f(b; k, t — k) is equal to g(b; k, t — k). Of course, we get
that ip 4+ i;—¢ = jo + jr—¢. Then the multisets {i¢, i} and {j;, j—¢} are the same.
Otherwise there would be a clear maximum, say iy and then f(b; i¢) does not precede g,
a contradiction. So we are done exceptthatiy = j,_¢ # jo=1i;_¢. If forallk £ ¢, t — € we
have f(b; k,t —k) = g(b; k, t — k), then we can apply Proposition 5.1 to obtain f = g,
or there is a k which does not satisfy this. As usual, we can construct a subword of
S owith [(ix +i—k)/2] + [(ie +i—¢) /2] letters from the respective d-runs which does
not precede g: a contradiction, except that again those four runs contain all the a’s.
Repeating the reasoning, we can construct a well recognizable word of length at most,
say, 10. So the case 1 < g <m+ 1 is solved.

5.3. The Case g > m+1

In this case we have p = |f(a)| < 2m — 1. Therefore any subword f;. consisting of f(a)

and an arbitrary letter from the k-th h-run belongs to D(f). If f(a) # f(a) then it also
means that for all k the subword f; is a subword of g, and therefore for all £ we have
ix = jx. Proposition 5.1 completes the proof.

So we may assume that f(a) = f(a). Suppose that there is a k such that f; is a
subword of g but not of g. Assume furthermore that there is an ¢ such that f; is a
subword of g but not of g. (If this second subword does not exist then we already have
that the lengths of the d-runs in f and g are identical.) Let fi ; denote the “union” of
the former two subwords, then it is a subword of f but not a subword either of g or of
g If g > m+2 then fi , € D(f) therefore it is a contradiction and we are done. But

q = m+2 can not be true, otherwise p = 2m — 1 would hold, and therefore f(a) # f(a),
a contradiction. Theorem 2.2 is fully proved. |
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