OT+EGY KIEMELT DOLGOZAT

ERDOS PETER

A Matematikus Doktori Szakbizottsdg utmutatdsa szerint aldbb di6héjban ismer-
tetem a legfontosabbnak gondolt dolgozataimat. Mivel ezek koziil egy tematikusan
nem illik a disszertcaiémba, és az abban szereplé eredményeknél sokkal kordbban
sziiletett, ezért még egy dolgozatot csatoltam a listdhoz, amely most nyomdédban
van, de szerintem érdeklodést fog kelteni.

P.L. Erdés - P. Frankl - G.O.H. Katona: Extremal hypergraphs problems
and convex hulls, Combinatorica 5 (1985), 11-26.

Az extremalis halmazrendszerek elméletében a tipikus kérdés a kovetkezd alaku:
adott egy véges alaphalmaz részhalmazainak rendszere (éltaldban valamilyen kom-
binatorikus feltétellel definidlva), ahol maximalizdlni kivanjuk a rendszer elemszd-
mat, vagy a részhalmazok elemszdmanak Osszegét, esetleg - altalanosabban - a
részhalmazok elemszamatodl fligg6 valamely sdlyfliggvény Osszegét. Egyszéval a
részhalmazok elemszamatol fliggd linearis optimalizalast szertnénk végrehajtani. A
szokasos modszerek mellett minden egyes optimalizalast énalléan kell megoldani.

Az idézett cikkben (illetve iker-cikkében) megkezdtitk halmazrendszerek konvex
burkdanak vizsgalatat: valamely n-halmaz egy részhalmaz rendszerének a profilja egy
n~+1-hosszu vektor: az i-ik koordindta az i-elemi részhalmazok szamat adja meg, és
az n + 1 dimenzids euklideszi tér egy (pozitiv oktdns beli) pontjanak tekinthetd. A
szoba johetd Gsszes halmazrendszer profiljai egy ponthalmazt alkotnak ugyanebben
a térben. Ezutan barmely, a részhalmazok elemszamaban linearis maximalizalasi
feladatot elegend6 a kapott ponthalmaz csticspontjain megoldani.

Az elaras elénye legaldbb kettOs: ha egyszer sikeriilt a csticspontokat leirni,
akkor barmely, djonnan felmeriilé maximalizalast is elegend6 rajtuk megoldani.
(Erre sok kés6bbi alkalmazds mutatott példat.) A mésik nyilvanvald elény - ev-
vel Osszefliggésben - a figyelembe veend6 csiicsok szama: mig elvben altaldban
exponencidlisan sok részhalmazrendszer koziil kell az optimadlisat kivédlasztani, a
szébajohetd csiucsok szama az esetek tobbségében csak polinomidlis, tovabba még
exponencialis méretli csicshalmazzal rendelkezd feladatok esetén is a cstucsokhoz
tartozd rendszerek szerkezete egyszert.

A hivatkozott cikkben ennek az eljardsnak elméleti alapjait fektettiik le, beve-
zettiik a sziikséges definicidkat és mddszereket adtunk a csiicsok meghatarozasanak
egyszertisitésére.

A dolgozat egy 1j teriiletet inditott az elméleten beliill. Az elmélet de facto
alapkonyve (Engel: Sperner Theory, Encyclopedia of Mathematics and Its Appli-
cations, Vol. 65 Cambridge University Press, 1997.) 6ndll6 fejezetetben targyalja.

P.L. Erdds - L. A. Székely: On weighted multiway cuts in trees, Mathe-
matical Programming 65 (1994), 93-105.

A multiway cut (MC) probléma, az él-Menger tétel ketténél tobb szinre torténd
esetleges altaldnositdsa, fontos helyet tOlt be a kombinatorikus optimalizalasban.
A feladat polinom idében megoldhaté sikgrafokon, korlatos szamu terminalpont
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esetén, egyébként NP-teljes feladat. (E. Dahlhaus - D.S. Johnson - C.H. Papadimi-
triou - P.D. Seymour - M. Yannakakis: The complexity of multiterminal cuts, STAM
J. Computing 23 (1994), 864-894.) Fenti cikkben (és el6zményeiben) bevezettiik az
MC probléma egy altaldnositdsat (néhényan szinezett MC (szMC) problémdnak ne-
vezik), amely természetes médon adédott egy bioinformatikai (evoliicids fak elméle-
te) problémdbol. Ttt termindlpontok egy N halmaza adott, tovdbba ennek egy k-
szinnel torténd v : N — [k] szinezése. Egy szMC élek egy olyan halmaza, amely
barmely két, eltérd szinii termindlpontot szeparal. Cél: a lehetd legkisebb élszamu
(stilyd) szMC megtaldldsa. Mint Dahlhaus és tarsai kimutattdk az szMC (amit hosz-
szabban elemeztek a cikkiikben) bonyolultabb, mint az eredeti MC, mér sikgrafokon
és azonosan 1 élstllyal is NP-teljes.

Cikkiinkben megmutattuk, hogy a probléma polinomialis megoldhato ”fa szert”
objektumokon, és sikeriilt egy ujtipusi minimax tételt is bebizonyitanunk, ame-
lyet aztan (mdsoknak) sikeriilt is az eredeti bioinformatikai probléméara alkalmazni.
A cikk alkalmazdsokat nyert tovdbba a robot vision elméletben, klasszifikdcids
problémakban illetve szétosztott szamitogéphaldzatok esetén a kommunikaciés kolt-
ség minimalizaldsaban.

L.A. Székely - M.A. Steel - P.L. Erdsds: Fourier calculus on evolutionary
trees, Advances in Appl. Math 14 (1993), 200—216.

Az 1990-es évek elején attorést jelentett az evolicids fak elméletében a Mike
Hendy éltal bevezetett Hadamard konjugdltak médszere. A biolégusok gyakran
képzelik el az evolicié torténetét, mint egy ismeretlen (gyakran gyorkeres) bindris
fa mentén fejlodé két allapoti Markov modell. Ilyenkor az élek mentén jelent-
kez6 eloszlasok illetve az észlelt levél-szinezés eloszlasok kozott egy Hadamard kon-
jugdlt kapcsolat van: barmelyikbdl kiszamithat6 a masik. A mddszer nagy szamitas
igényi, de megbizhato.

Az j-zélandi iskola képvisel6ivel egytittmiikodve kiterjesztettiik a mddszert négy
allapotu (kordbbi cikkek), illetve tetsz6leges Abel csoport értékii (az idézett cikk)
Markov modellekre is. Ilyenkor a jelzett eloszlasok kozott Fourier inverz parkapcso-
latok vannak. A leirt eljarasoknak egyfel6l gyakorlati alkalmazdsai vannak. Ezt jol
illusztralja, hogy a mddszerbol masfél éven beliil tankonyv anyag lett. Mésfel6l mar
tobb elméleti kovetkezmény is kideriilt: a mddszer szoros kapcsolatot mutat a fizikai
mezGelméletekben alkalmazott médszerekkel (P.D. Jarvis - J.D. Bashford), illetve
modern algebrai geometriai eredmények is kapcsolédnak hozza (trépikus geometriak
illetve torikus idedlok - (E.S. Allman - J.A. Rhodes; L. Pachter - B. Sturmfels, stb).

P.L. Erdés - M. A. Steel - L.A. Székely - T.J. Warnow: A few logs suffice
to build (almost) all trees (I), Random Structures and Algorithms 14 (1999),
153—-184.

Az evolucios fak rekonstrukcidjanak egyik nagy osztalya az un. supertree modsze-
rek: a cimkézett leveleket tartalmazo keresett binaris fat topologikus részféi atlapo-
16 rendszerébdl kivanjuk helyreallitani. Ha a részfdk ellentmonddk, akkor ezt az
ellentmondést valamilyen médon kezelni kell. Akkor is baj van, ha nem &ll rendel-
kezésre elegendd részfa.

A supertree modszerek talan legtobbet alkalmazott eljardsa, amikor négy leve-
let tartalmazo részfakbdl, un. quartet-tekbdl végezziik a rekonstrukciot. Kozked-
veltségét legfébbképpen annak koszonheti, hogy a négy levelet tartalmazo részfak
helyredllitdsa egyszeriinek tekinthetd, és sokféle bemenet (azaz biolégiai adat) al-
kalmazhatd. Ismert, ha minden quartet helyes, akkor a rekonstrukecié kénnyti (és
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gyors). Azonban annak eldontése, hogy egy adott quartet rendszer ellentmondés
mentes-e egy NP-nehéz feladat. Az is kozismert tovabbd, hogy a gyakorlati alkal-
mazasokban mindig keletkeznek hibds (pontosabban ellentmondé) quartetek.

Az idézett cikkben el6szor is felismertiik azt a nem meglepd tényt, hogy minél
messzebb vannak az eredeti faban egy adott quartet levelei, anndl valészinibb a
quartet hibas rekonstruédldsa. Majd bebizonyitottuk azt a tényt, hogy elegendd
csupa "rovid” (n levél esetén legfeljebb nagyjdbol 2log n hosszi) dgakat tartalmazd
quarteteket tekinteni. Ez egy determinisztikus eredmény, ahol az eredeti fa donti el,
mik a rovid dgak. Ez az adat persze (sajnos) ismeretlen a konkrét alkalmazdsokban:
kozvetett (példdaul tavolsdg) adatokbdl kell eldonteni, milyen quartetekben vannak
rovid dgak.

A cikkben kiilonféle Markov modellek mellett tSbb ilyen eljarast is kifejlesz-
tettiink, koztilik a DCM mddszer a legfontosabb. Az eljardsok hatékonysédga (gyor-
sasdga és adatsziikséglete) észszeril feltételek mellett kiszdmithat6 volt. A kapott
érték - nagyon meglepd maédon - kozel volt a szintén ebben a cikkben kifejlesztett
alsé korlathoz, az eljardsok majdnem optimaélisak. Végiil a cikkbe arra is javaslatot
tettiink, miként lehet egy konkrét eljards hatékonysdgat értékelni.

P.L. Erdés - M.A. Steel - L.A. Székely - T.J. Warnow: A few logs suffice
to build (almost) all trees (II), Theoretical Computer Science, 221 (1-2)
(1999), 77-118.

Ebben a cikkben el6szor kiilonféle tavolsag alapu fa-rekonstrukcids algoritmusok
hatékonysdganak Osszehasonlitdsara fejlesztettiink ki egy modszert. Ez az elemzés
sok elméleti munkdban keriil felhasznalasra — példaul a NeighborJoining algorit-
must (a jeleneleg taldn legnépszer(ibb faépit6 eljardst) elméletileg megalapozé At-
teson cikkben. A cikk f6 hozzajaruldsa a quartet médszerek témajdhoz egy tjjonnan
fejlesztett algoritmus, a Witness-Antiwitness Mddszer, amely a DCM-nél csak kicsit
hosszabb input sorozatokbdl lényegesen gyorsabban tudja 1 valdsziniiséggel rekon-
strudlni a fat.

Erdemes még megjegyezni, hogy az SQM mddszerek inputként inhomogén ada-
tokat is képesek elfogadni. Ez ott dont6 jelentGségli, ahol a vizsgalandé élolények
diverzifikdcidja miatt homogén adatok nem elérheték.

A két utébbi cikkre rengeteg hivatkozés tortént. A meghatarozott hatékonység
korlatokhoz kozel teljesité eljarasokat elnevezték fast converging modszereknek.
(Ezek szerint a cikkeinkben leirtak az elsd ilyen eljardsok.) Az ott lefektetett
elvek alapjan azdéta sok tovabbi ilyen eljarast fejlesztettek ki és elemeztek. Az
eredményeket minden az6ta megjelent evolicios fakkal foglalkozé konyvben részlete-
sen elemezték. A moddszerek tovabbfejlesztésében éppen napjainkban tortént egy
nagy ugras E. Mossel és tanitvanyainak kutatdsai nyoman.

PLUSSZ EGY DOLGOZAT

P.L. Erdés - L. Soukup: How to split antichains in infinite posets, Com-
binatorica 27 (2) (2007), 7—-77.

Egy P részben rendezett halmazban (posetben) egy antildnc akkor maximélis, ha
az antilanc alatti és feletti pontok egyiittesen kimeritik az egész P-t. Ez a maximalis
antilanc akkor splittel, ha van egy olyan < B, C > rendezett paticidja, amelyre mar
a B alatti és a C feletti pontok is kimeritik az egész P-t. (Persze kizdrdlag maximalis
antildnc splittelhet.) Végezetill egy y € P elem elvdgé-pont ha vannak tovabbi
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x,z € P pontok (z < y < 2), hogy az [z, z] zdrt intervallum megegyezik a [z, y]
és a [y, z] zért intervallumok tnidjdval. 1995 Sta ismeretes, hogy minden elvdgd-
pont mentes véges posetben minden maximalis antilanc splittel, tovabba, hogy az
a kérdés: "vajon egy tetszéleges véges poset minden maximalis antilanca splittel-
e’ egy NP-nehéz probléma. Az eltelt tiz évben a splittelés sokféle kapcsolatara
deriilt fény. Ezek egyike a véges relaciés struktirdk homomorfizmus posetjében
bevezett (dltaldnositott) dualitds, amely lényegében egy splittelés. (Lésd J. Nesetril
munkait.)

A cikkben (f8leg megszdmlalhatéan) végtelen posetek splitting tulajdonsdgaival
foglalkozunk. Sikeriilt splittel$ antildncokat taldlnunk jénéhany elvagé-pont mentes
végtelen posetben. Kifejlesztettiink egy mddszert, amely azt méri, mennyire ”nem
splittel” egy maximélis antildnc. Ezutdn azonosittunk egy lazasdgnak (angolul loo-
seness) nevezett tulajdonsagot, amelynek segitségével véges, nem maximaélis an-
tilancok splittelo illetve nem-splittel6 maximélis antilancokksd terjeszthetok ki. En-
nek segitségével megkonstrualtunk egy nem-splittelé maximalis antildncot a négyzet-
mentes szamok elvidgépont-mentes posetjében, amely egy korabbi bonyolult, Ahls-
wede és Khachatrian nevéhez fiiz6d6 konstrukcié altaldnositdsa. A mddszer késébb
alkalmasnak bizonyult irdanyitott grafok homomorphismus posetjében valamely vé-
ges antilanc altalanositott dualitassa valo kiterjesztéséhez. Végezetiil megmutattuk,
hogy a kivalasztasi axiéma a ZF axiéoma rendszer mellett ekvivalens egy alkalmasan
valasztott poset egy maximalis antilancanak splittelhet6ségével.
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EXTREMAL HYPERGRAPH PROBLEMS AND
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Péter L. ERDOS, P. FRANKL and G. O. H. KATONA
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The profile of a hypergraph on » vertices is ( fy, /3, ..., f,,) where f; denotes the number of i-
element edges. The extreme points of the set of profiles is determined for certain hypergraph classes.
The results contain many old theorems of extremal set theory as particular cases (Sperner, Erd6s—
Ko—Rado, Daykin—Frankl—Green—Hilton).

1. Introduction

Let X be a finite set of n elements and # be a family of its subsets (F < 2¥).
Then #, denotes the subfamily of the k-element subsets in F: F={4: AcF,
|A|=k}. Its size |#]|is denoted by f;. The vector (fy, fi, ..., f;) in the (n+1)-dimen-
sional Enclidean space R"*!is called the profile of #.

If a is a finite set in R"*, the convex hull (&) of o is the set of all convex linear
combinations of the elements of «. We say that eco is an extreme point of a iff ¢ is
not a convex linear combination of elements of o different from e. It is well-known
that («) is equal to the set of all convex linear combinations of its extreme points.
That s, the determination of the convex hull of a set is equivalent to finding its extreme
points.

) F is a Sperner-family iff it contains no members A4, Bwith A< B. In the pre-
vious paper we determined the extreme points of the set of profiles of all Sperner-
families. This was an easy consequence of a well-known inequality. A family is
intersecting if A, BEF implies AN B=0. The main result of [5] determines the
extreme points of the set of profiles of the intersecting Sperner-families.

_ On the other hand, the present paper starts a systematic treatment of the area.
It tries to determine the extreme points of the set of profiles of the simplest known
classes of families, using the methods of the previous paper. The effort is successful
for 3 classes:
1. intersecting families,
iy 2, )]\'-Sp(‘rner-fwm'ﬁes (there are no k+1 different members satisfying F,c...
s k41

AMS subiject classification (1980): 05 C 35; 05 C 65, 52 A 20
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3. #, ..., % are not necessarily disjoint families, where Ge€Z, Hed,
i#j, G#H imply G4 H.

Moreover, the method of the previous paper is analyzed here. One of the
ideas of the proofs is the following. A cyclic ordering % is taken of the underlying set
X and consider only the sets containg consecutive elements in 4. Any problem of the
above type can be realized for these consecutive sets, as well. Their solution is easier
but in some cases (in all the cases solved in these 2 papers) is sufficient. Theorem 4
describes the connection between the sets of extreme points of the original problem
and of the “‘consecutive” variant. An example will be given (F,, F.€# implies
|Fy(N Fy|=I) when the original problem is hopeless while the “consecutive’ variant
can be solved. Theorem 4 is, of course, too weak in this case.

We also list some known extremal theorems which are consequences of our
results.

For instance in Case 3 our method gives a unified proof of 3 different state-
ments of [1].

2. General results (=tools)

2.1. Essential extreme points. Let A be a class of families of subsets of the n-element
set X, thatis, Ac2*". p(A)denotes the set of profiles of the families belonging to A:

(1) 1A = {(fos - )i fi= |F |, FEA)

The set of extreme points of p(A) is denoted by £(A).

The A’s considered in this paper are hereditary, that is, 9 FEA implies
%€A. For hereditary A’s there is a way of reduction of the set of extreme points.
Before stating the theorem we have to introduce some more notations. 1*(A) is the
set of maximal profiles: p*(A) contains those elements (fy, ..., f;) of x#(A) for which
(8os s ENER(A) (805 ---» 8)=(fos .o f) (it denotes &o=fos -+-» &=f,) imply

(fos ---s f;)=(gos .--» g,). Furthermore let e*(A)=e(A)Nu*(A) be the set of the
essential extreme points.

Theorem 1. Suppose that A is hereditary. Then any element of £(A) can be obtained
by changing some coordinates of an element of ¢*(A) to zero. |

This fact is obvious. The proof requires very simple technique, therefore it is
omitted.

The significance of the theorem is that for a given A it is sufficient to determine
the set &"(A). Changing the components to zero we obtain a set of vectors, these
should be individually checked if they are extreme points.

If we want to prove that a certain set of points is £(A) then we have to show
that 1) any point of x(A) can be expressed as a convex linear combination of the
elements of &(A), and 2) the elements of £(A) are extreme points. To prove the first
condition an equality should be proved. The next theorem reduces this equality for
an inequality. If z is a set of vectors, % denotes the set of vectors obtained by changing
the components of the vectors of & for zero in all possible ways.

Theorem 2. Suppose that A is hereditary and a set &= {er, - e, } S p(A) is given.

CONVEX HULLS 13

~
|

IV
=]

If for any fep(A) there are constants 7, ... A=1 satisfying

I
Ma

il
-

(2) _f j-ifi
then £*(A)<Se. |}
This claim is useful, but trivial. (If g€ (u(A)) and 0=f=g then fE(u(A))).

2.2. Application of the duality theorem of linear programming. Using the transposed
forms f7 and e of the column vectors fand ¢;, resp., (2) can be written like

AT
3) @L@mk2z A
' 1) g

where (ef...el) denotes the (n+ 1) X m matrix with columns 7, ..., eX. Its constraints
are

4) =0 (l=i=m)

and

i)

m
Z ).l' = l.
i=1

Our aim is to find for fsuch 4;'s. This can be formulated in the way that

m

(5) min > 4
=1

should be found under the conditions (3) and (4) and the solution (5) of this linear
programming problem has to be =1. The dual of this problem is

€1 Vo
(<Y
(6) o | 1 B
) \Ya 1
0] »=0 (0=i=n)
(8) max > fiy;.
i=0

By the duality theorem of linear programming (8) is equal to (5). (5)=1 iff (§)=1.
This latter inequality can easily be formulated as

éﬁhél
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for any y;’s satisfying (6) and (7). It is worthwhile formulating this statement as a
theorem:

Theorem 3. Suppose that A is hereditary, a set g= {ers ...y €.} S u(A) is given and

2 =1
i=0
holds for any 3, ..., y, satisfying y,=0 (0=i=n) and

&Y 1
el _|!

en I\ ¥, 1

Then e"(A)Se. |

2.3. Reduction to the circle. Take a cyclic permutation % of the underlying set X and
consider only such subsets of X whose elements are consecutive in %. These sets are
called consecutive sets in 6. If # is a family of subsets of X, then # (%) is defined by
F(€)={F: Fe#, F is consecutive in %). Similarly, let A(%)={7(¥): FcA).
It is well-known (see e.g. [7]) that for some classes A it is enough to determine
max {|7|: FEA(¥)} and max {|F|: F €A} can be obtained from it by a simple
counting argument. Of course, this extremal problem for A(%) is easier than for A.
This method is sometimes called as the permutation method.

Before stating the result we have to introduce a notation. If e=(ey, €15 ...,8,)

then let
T(e) = [(‘,,. e, [?]/”’ e [g]/u, g B (nfl]/"’ e,,].

Theorem 4. (Blowing up the circle.) If e,. ....e, are the extreme points of ;;(A(@))
for any given cyclic permutation € then

1) € ({T(ey, .... T(e)}).

Proof. Let # be an element of A, with profile (f,. fi, ..., /). Define the weight-
function

v Cx. — I
u-u)_[o,o....,m,...,o] (FCX).

0T [F| n
Consider the sum 3 w(F) for all pairs (€, F) where € is a cyclic permutation, FE#
and F is consecutive in 7.
For a fixed ¥ we have
|
¥ WY = (i F (6)).
Fcém w(F) =D (profile of # (%))
Here the profile of % (%) is in K(A(%)), therefore it is a convex linear combination

2 %(%)e; of the extreme points ¢,, .... e, of 1(A®)) (2(%)=o0. g' 3 @) =1).
i=1 i=1
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Hence . et gl s 1' et _
S v =3 ZuP) = 3 g Zu@a= 3o (S h@e,
follows where é'; (u_—l_jﬁg;"((g)=l' We have proved that
(9) W‘Z’F w(F) is a convex linear combination of e, ..., €y. '

On the other hand, summing in the other way around we obtain

F|l(n—|F|)!
10 ZwE)=33wE) =300, "(H‘;’_S,D— o}

= (o s inf @) tinf (o ) |

where 2> denotes that (1,0, ..., 0) and (0, 0, ..., 0, 1) are taken for F=fand F=X,
resp., as the number of cyclic permutations in which Fis consecutive is |F|[!(n—|F[)!
for 0<|F|<n butitis (n—1)! for |F|=0,n. It follows by (9) that (10) is a convex
linear combination of e, ..., e,. This implies that (£, fi, ....f,) is a convex linear
combination of T(e,), ..., T(e,).

This theorem is really useful if T'(ey), ..., T(e,)€t(A) holds. (This can eaSily'
be checked.) Then ({T(e), ..., T(e,)}) S u(A) and p(A)={{T(e), ..., T(e,)}) obvi-
ously follow. T(e), ..., T(e,) are the extreme points of A. Unfortunately, this is
not true in general. An example will be given when ({T'(e)), ..., T(e,)}) is much
larger than (u(A)). ;

3. k-Sperner-families

Let S, denote the class of k-Sperner-families on an n-element set.
Theorem S. The extreme points of (S,) are the vectors whose ith components are either

n
[f] or 0 but have at most k non-zero components.

. 3 n
Proof. It is trivial that these vectors are in u(S,). To the vector [0, ...,[&],

0,505 ;’] S O] (/=k) one can find a k-sperner-family & with this profile: take all
i
Iy, ..., fj~element subsets of X.

n n
Moreover, these points are extreme. Let €=[0, sasy 0l [iJ'O' 1 [,-J.

0, ...,0); (I=k). It is easy to check that no u€é& is a convex linear combination
of the other points of u(S,). .

On the other hand, we have to prove that any element of u(S,) can bé expres-
sed as a convex linear combination of these vectors. Theorem 4 can be applied if we
show that the extreme points of (S, (%)) are the vectors whose ith components are
either n or 0 for O<i<n and either 1 or 0 for i=0, n, but have at most k 1NON-Zero,
components. By Theorem 1 it is sufficient to prove that &*(Sy(%)) is the set of vec-

2
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tors whose ith components are either n or 0 for 0<i<» and either 1 or 0 for i=0, n,
but have exactly k non-zero components. To prove this we apply Theorem 3. The
inequality

(11) ;Za =1

has to be verified for any k-Sperner-family in % with profile (f;, ... f,) and for any
system of y's satisfying y,=0 (0=i=n) and

k
(12) 2 olipny, =1

for "any choice 0=i;<...<i,=n where e(O=om)=1/n o()=1 (1=i=n—1).
Let us first show that (11) holds for the following simple systems of values:

ST S LIl T, | A
yﬂ k'! yl_"'_)n-l'—"k: }',.—k,
=1 yn=.=y,=0

1
yu=0,...,y,-=-’—l-,...,y,,=0 (A=i=n-1)

and
Yo=i= Y1 =0, 3. =1.
In other words we have to prove the inequalities
n—1
(13) %+ lﬁﬁ-& =1
ol nk k
(14) =1
(15) fi=n (A=i=n-1)
(16) A=

for the profile (fy, ..., /,) of any k-Sperner-family. (14)—(16) are trivial. The real
problem is (13). Suppose first that f,=f,=0 and consider a fixed F (%) with this
profile. Any element of X can be the “starting” point of at most kX members of F (%)

n—1
because of the k-Sperner property. Thus |# (%)|= 2, fi=nk. (13) follows. If exactly

i=1
one of fy and f, is 1 then the number of members & (%) “starting” with a fixed element
1s at most k—1. (13) follows like above. The case Jo=/f,=1 is analogous.
Let us prove now (11) under the general assumption (12). Consider a fixed
system of »’s and order o(i)y;: eWy=...=elyiy,,,, where by, ..., 1.,
k

is a permutation of 0, 1, ..., n. It follows by (12) that 3 ey, =1 If there is a
oyl h : : J=1 ;
strict inequality here, then multiply all the »'s with a constant (=1) to achieve

X 1
(17) jg;. 9(’;)y:,=?.
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It is easy to see that it is sufficient to prove (11) for such y’s. (12) and (17) imply

1 k=1
ey = i gl ey, = e n,

for any 10, ...,Ix_,. Hence we have

k—1 )
fiyi= ,‘§1 fi,y;}hl-‘ 2 J’—Q(fﬂy;,‘

v

= #lyy ot 200

k—1 fl.i g, nl{_
= ;‘:Z"l m(e(b)yf, a(fk)y:,,)+‘§ 20 ey,

For the latter row we obtain an upper estimate applying (13)—(16) and (17):

k-1
= Jz; n(e Dy, — o) y)+ e () yy, nk

= ﬂ[%_Q(!‘k)yfk]-'-'l{k-—l)Q(I*)yfk.f."kg(fk)y'k =Y

We have proved that (11) holds for y’s satisfying y,=0 (0=i=n) and (12). The
application of Theorem 3 finishes the proof. | |

The following theorem is an easy consequence of Theorem 5.

Theorem Sa. The hyperplanes bordering (u(S,)) are
fi=z0 0O=i=n)

j}/[?]:l O=i=n)

. n
Saf()=x n
i=0
Theorem 5 makes it easy to maximize |#|= 3 f; for families # belonging
i=0

to S,. It is sufficient to look for this maximum among the extreme points of u(Sy).
Theorem (Erdds [3])

W+k=1)/2) [
max |F| = L [i .
FSy i=|(n—k+1)j2)

For k=1 this is the old Sperner theorem [8].

2e
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4. Intersecting families 4

A family # is called t-intersecting (1=t=n) if Fy, Fo¢ F implies |FyN F|=
=t. Let 1, denote the class of r-intersecting families on an z-element set. The 1-
intersecting families are called simply intersecting. In case 1= 1, Iis written rather
than L. It seems to be too hard to determine the extreme points of u(I,). We are
able to do this only for 7=1. However, it can be done for 1,(%). Before formulating
the result we prove some preliminary lemmas.

Lemma 1. Suppose that A, ..., A, are v-clement consecutive sets along a cyclic per-
mutation € of an n-element set such that |4;N A I=t=1 for any 1=i<j=u where
t=v=1/2(n+t—1). Then u=v—t+1 holds.

Proof. Let 4,={x;, ..., x,} and suppose that the elements are ordered in this way.
Another 4 cannot meet 4, in both ends by the conditions. Therefore the possible
endpoints for 4 are x,, ..., x,_,, while the possible starting points are Xg, ..., X,_, 1.
However the set ending with x;(r=i=v—1) and the one starting with x;_,, . meet
in 7—1 elements only. Hence at most one of them can be amon gthe A’s. Consequently
there are at most v—¢ such A’s. |j

Lemma 2. If A,, ..., A, are v-element consecutive sets along a cyclic permutation of an
n-element set then

f .
| U 4;] = min (n, u+v—1).
i=1

Proof. Suppose first that have is an 4, containing no. starting point of another A.
Then the number of starting points is # while the number of other points of A4, is

v—I1,thatis, || 4|=u+v—1. On the other hand, if any A; contains the starting
=1
point of another one then the union of them is the whole underlying set X, that is,

u
U 4l=n. }
i=1

Lemma 3. [ Let (f, ..., L)Ep(L,(€)), f;20 for some i'[tél'é—n—-i-;—_']-]. Suppose

that t=j=n+t—1—i holds for some j. Then [i=i+i—fi—2(t—1) holds.

Proof. Suppose that #¢€1,(%) holds and its profile is oy =) Bkt =R
.-s Fy}. Consider the family o/={4: |d|=n—j, |[ANF,|=i—t-+1 for some 1=]=
=i}. The starting points of the (n—j)-element consecutive sets satisfying |AN F|=
=i—1+1 for a fixed / form a consecutive set of size 7—j—i+2¢—1. Applying Lem-
ma 2 the total number of these starting points is at least min (n, n—j—i+2t—=24f).
Therefore this is a lower bound for |7, Ac.s/ implies that |X—A4|=j and |(X—4)N
MF|=t—1. Hence we have at least min (n, n—j—i+2t—2+f) j-element conse-
cu’nge sgl)vsctsi X—A not belonging to %. Therefore fi=|%|=max (0, j+i—fi—
—2(t—1)).

We remark that Lemma 1 implies f;=i—¢+1 hence J+i—fi—2(t—1)=>0.
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Lemma 4. (fy, - [YEp(L(B)) iff the following conditions are fulfille.

(18) fi=0 0=i<i),
(19) C fi=imttl ((t=sismAr-1)P2),
20) = mingj =2~ D)@+ 112 < =)

where the minimum is taken on all i satisfying
(21) ' si=n+it-1-j, fi=0.
If this set is empty then (20) has the form fi=n (j<n), f,=1.

Proof. (18) trivially follows from (f;, .... £)€u(I,(%)) by the definitions. (19) and
(20) are consequenses of Lemmas 1 and 3, respectively.

Conversely we' have to prove that if (18)—(20) hold than there is an
F €1,(%) with profile (f;, ..., f,). This will be done by a construction. Let x,, ..., x,
be the elements of X according their order in %. For t=i=(n+t—1)/2, choose the
consecutive sets with endpoints x;, X;_4, ..., X;_, ;. On the other hand, if
(n+1—1)/2<i, take the sets with endpoints X,; X1, ..., X, s,—1. This family #
is trivially t-intersecting. |

So we obtained a purely algebraic characterization of ‘the polytope (u(1,(%) )}
Now the description of its essential vertices (Lemma 5) requires only linear algebraic
technique, so the proof of it will be sketched only.

Lemma 5. &*(1,(%)) consists of the following vectors

@)
©, ... 0, k—t+1, k—1+2, ..., n—k, Wi ol Bsepl)
PR TR -] (e aH-1-k  apeek a1 7w [!‘f‘k‘én—l_;"l]
0, .. 05 G (1)
Akt 0 (n+1t is even).

2

Proof. (Sketch). It is clear that (22) S (u(1.(¥))) and they are convex linearly
independent. :

If felu(1,(%) )) a vertex then it can be obtained as an intersection of (n+1)
hyperplanes of the form (18)—(21). It is easy to check that if fe(u(1,(€))) and ({

satisfies (n+1) inequalities of form (18)—(21) by equality then fcan be obtaine
from an element of (22) changing some components for zero. So (22) are the essential
vertices of (u(L(%))). §
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If 1=1 we may apply Theorem 4, Lemma 6 and Theorem | to determine
all the extreme points e of u(1(%)). The vectors T'(e) are

(23)
n—1 n—1 n—1 n n
(5. G0 e R )
3 % | = s = [1 =k ;5%

n

0; 5 0, |n+1 ....,{"i]]. I| (n is odd)
2

0 [ )
2

and the vectors obtained by substituting 0’s into some components. The vectors listed
in (23) are in p(1) as the following construction shows. Fix an element x of the under-
lying set X and take all the k-element, k+ 1-element, ..., (n—k)-element subsets
containing x and take all (n—k+1)-element, ..., n-element sets. It is easy to see that
this is an intersecting family and its profile is the desired vector. The same construc-
tion works for the vectors with the zeros. This proves the following.

Theorem 6. =" (1) consists of the vectors listed under (23). |
n
The number of extreme points is exponentially large. However, if 2 Cif;

i=0
should be maximized, where C;=0 then it is sufficient to consider &*(I). The size
of this set is linear. The most known consequence of the above theorem is the

Erdds—Ko—Rado theorem [4]. If # is an intersecting family of k-element sub-

sets of an n-element set and k=n/2 then max |F 1___[;::11]. [ |

This follows from Theorem 6 since no extreme point has a larger kth compo-
nent.

To determine max |.# | over any intersecting family # 2" is trivial. However
n

it can also be deduced from Theorem 6. |#|= 3 f; implies that we have to consider
i=o

the sum of the components in the extreme points. It is easy to see that fi47, ;=

) 1
:[n” ,_] for any extreme point and 0=i=(n—1)/2. Moreover, f,j;=— holds.

2 [;2

n
Hence 2’ f,;=2""'. In the same way, it is easy to deduce max |#| for intersecting
i=0
n
families with any size constraint. max ' i-f; can also be determined. For a further
i=0
application see [2].
If we try to combine Lemma 5 and Theorem 4 for #-intersecting families, then
the vectors 7'(e) will not belong to u(l,), therefore they are not extreme points,
either. To determine the extreme points of z(1,) seems to be very hard. It would imply
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the solution of many open problems. Such an open problem, raised by Erdds, Ko and
Rado, is to maximize the size of a 2-intersecting family of 2n-element subsets of a
4n-element set [4]. (Lemma 5 answers the same question for the circle.) Let us note

. . n
that one extreme point of u(I) is known, the one maximizing |#|= ‘z;ﬁ [6].

Finally we give a variant of Theorem 6. It can be proved by the duality theo-
rem. 1

Theorem 6a. If (fo, ..., f)en(l) and y,, vy, ..., v,=0 satisfy the inequalities

-1 -1
[E—l] J"k"‘[u k ]J’k—n"‘---

n—1 n n [ 2]
'*[u—k—l]”"‘”[n—kﬂ ]'”“'**‘+"'+[n)y" =1 |l=k=5

n

+1 n [ )
“T )'»TH+..-+[n]y, =1 (if nis odd)

then

2hn=1L 1
i=o

5. More families without inclusion among them

Daykin, Frankl, Greene and Hilton [1] investigated the families with the fol-
lowing properties. Let 7=2 be an integer and let #'(1=i=t) be a family of distinct
subsets of an n-element set X. The families are not necessarily disjoint but A€ %",
Aje FI, i#j, A;#A; imply 4,4 A;. In notation: (F, ..., FHEW,. The profile

t
of an element of W, is (f;, ..., f;) where f;= > |#/|. It can be considered as the
=1

profile of Zr' Z1 with multiplicities. The definitions and the results of Section 2
1

can be rcpgated for families with multiplicities. W, is obviously hereditary, so it is
enough to determine ¢*(W,) instead of &(W,). Colour the sets occuring exactly ones
or more times by green or red, resp. It is easy to see that a red set cannot be in inclu-
sion with any other green or red set. Therefore a red set can be added to all #/
without violating the conditions. In this way we associated to any (#%, ..., F)EW,
two families 2 and ¥ where no member of # is in inclusion with any member of
AU% and the members of % have multiplicity 1 while the multiplicity of any mem-
ber of 2 is between 1 and ¢. The set of such pairs (2, %) is denoted by B,. It is easy to
see that, conversely, the members of any (2, 9)¢B, can be distributed into sets
F1, ..., #". (Put all green sets into !, the copies of the red sets into different
#’s.) This shows u(W)=u(B,).
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‘Theorem 7. &*(W))=e*(B)) (1=2) consists of the vectors

0, a0 2la ks 0, ol =
M el sti 3 Uy ooy (Oﬁlz"n)

[(3]’[?][:]] if t<n+l.

- ‘The proof is 'based on the following lemmas.

Lemma 6. If (fy, ..., f,)Ep(B,(¥)) then

and add:‘xio&aﬂy

L3
2 f=m
i=1

for any-distinct iy, ..., i,.

Proof. Let (%, 9)€B,(¥) and let (f;, ....f,) be its profile. Denote by r; and g;
the number of #;-clement red and green members in #ZU% resp. Hence

4
g\(}4) fi, = trj+g;

holds. The i;-element green members and all the red ones in ZU% form a Sperner-
family, therefore

13
gi+tZn=n (1=j=1)
k=1
follows. Summing these inequalities we obtain

L
_,-‘2 (gj+1r) = in.
=1 *

Hence (24) implies the validity of the lemma. ||

Lemma 7. Suppose that c,, ..., ¢, are non-negative reals. Then, under the conditions

(25 z; ::-1— (0=i=n, tis an integer),
(26) Z Z = .[,
i=0
max ' ¢;z; is attained for
=0
To i = :-:— if ntl=1y,
(27)
1
(@, =..= 2, = T’ z;=0 (j% iy if na+l=>t

Proof. It is trivial. [J
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Lemma 8. Suppose that v, ..., v,=0 satisfy the following inequalities:

1A
i

1 L)
— (l=i<=n), p,= T

l .
R A

(28) (b Yo

I

<. S :
29 5 Yotn 2 yi+y, =1
/ i=1

Then (fo. . [)ER(B(B)) implies
9"5 it _éﬁ)’s = F

Proof. If f;70 then the empty set is either a red or a green member of ZU%. If
PeA then there is no other member: ;=0 (1=i=n). fy=t and y,=1/¢t imply the
statement. If 0€% then # is empty, therefore R_=L fi=n (si<n), fi=1. (29)
implies (30). If f,70, the situation is analogous. We may suppose that fy=f,=0.

Introduce the notations Zi=ny;, ¢i=fi/n (1=i<n). (28), (29) and éf,y,-
i=0

n—1 n—1
giverise to zZ=1/t(1=i<n), 3 z=1 and 3 ¢z. We may apply Lemma 7:
i=1 =1

n—1 1 »-1

0= -ﬁ?s‘g;ji if n+l1=1q,

1
n—} "t} ?-
2,1 fivi= 2 Gn=1y . { 1
i= i=1 T_Z’c. = — 2 fiy If nitl=u

I
i o nt j=

This is at most 1, in the first case trivially, in the second case by Lemma 6. (30) is
proved. J

Proof of Theorem 7. The vectors (4,0, ....0),(0,....0, m,0, ..., 0), (0,...,0,1)
and (l.m,...,n, 1) are obviously in 1(B,(%)). Consequently, Lemma 8 and
Theorem 3 imply that there vectors are the only candidates to be in £(B,(%))-
Hence Theorem 1 gives the candidates for 2(B.(%)).

If t=n+1 then (1, n, ..., n, D=1t"1(1,0, ..., 0)+ > (0, ...,0,m,0, ..., 00+
+7H0, .., 0, 1)+ (1 —(n+1)¢72) (0, ..., 0) shows that (L.n, ....m 1) is a convex
linear combination of the other ones. The extreme points of (B,(%)) are (0, ..., 0),
*0,...,0), (0,...,0,,0,...,0) and (0, ...,0, 7).

4 Suppose now that t<n+1. The set of possible extreme points of 1(B,(¥))
is completed with (1, n, ..., n, 1) and with the vectors obtained by writing zeros in
the place of some components of (1, n, .... n, 1). However, if the number of non-zero
components 1s =7 then it is a convex linear combination of (0, ..., 0), (z,0. ..., 0),
©,...,0,m,0,...,0) and (0, ..., 0, ). It is easy to see that the remaining ones are
all extreme points of u(B,(%)). Applying Theorem 4 the obtained vectors are all
element of u(B,). Moreover they are all extreme points. This proves the theorem. [
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Theorem 7a. The hyperplanes bordering (u(B,)) are

fi=0 (0=i=n)

and
ED znigl if t=n+1,
"‘“[-]z :
i
LAY 2 e o .
p (32) le' ~ =1 0O=i<ig...<i,=n) if t<n+l.
(;):
Proof. Theorem 7 implies that for any (f,. ..., £,)€ u(B,) there are A, ..., 4,, 4,,,=0
n+1
satisfying > ;=1 and
=0
Jo ¢ 8] 0 0 [g]
. 0 [n X n
=4 TSR L 80| ESE Y R 7 SO |
n y
A o) o G )

where 4,,,=0 in the case 7=n+1. This can be considered as a linear programming

n+1

. . " . . M.
problem with the result min 3’ 2,=1. The dual problem maximizes 2 fiy; under
i=0 i=0

é{(;za BE— (0=i=n)

(‘,\/1»31} 2"[:.']}-,.51 i f<nil

i=0

that is, 3 f»=1 holds under the conditions (33) an (34). Let us choose y,=
i=0

A N ; n
——-[r[,.]] (0=i=n) if r=n+1. 3 fiy;=1 becomes (31). Suppose now r—=n+1

i=0
-1
and choose y; =... :_r,-_:[r[?]] for some 0=i,<iy<...<i,=n. (33) and (34)
-1
are statisfied. This implies (32). Applying Lemma 8 with Zi=y; [?] and ¢;=f; [T]
we obtain that if 3 fy;=1 holds for the above special values of y's (that is, if (31)

i=o
and (32) holds) then it holds for any system of non-negative »'s statifying (33) and
(34). The hyperplanes 3 f;3;=1 different from (31) and (32) are superfluous. | |
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Theorem 7 easily implies the first part of the theorem of [1]
n '!

(35) _Z"Jﬁ = max |/ lij ;2"  for "(fy; <.-s F)ER,.
. 2

n -1
The same theorem allows us to maximize f,[?] for (fy, ..., f)EB,:
i=0

(36) éﬂ % = max (1, n+1).
(%)

This is the third part of the result in [1]. It is somewhat disturbing that (36)
does not imply (35). The reason is that (u(B,)) cannot be well characterized by an
arbitrarily chosen hyperplane.

To obtain the second part of the theorem of [1] the red and the green members
of (#, 9)eB, should be separated in the profile. The colour profile (ry, ....r,, g+ ...
vy &) Of (R, %) is defined by ri=|%,|. g;=|%| (0=i=#n). (B, denotes the set of
colour profiles of all members of B,. The proof of the next theorem is left to the
reader.

Theorem 8. The essential extreme points of y(B,) are

[0 [’,']0 0, 0 ] O=i=n)

0 7 W oaii Snti

. n) (n n

(n, 0, [0] [1] [n ] i

In other words, for any profile (ry. ....7,, 8. ..., g,) there are Ay, ....7,,
n+1
41 =0 satisfying > 4,=1
i=0n
o (g] 0 0 0

o e
00

rl=4 o |+4 0 + o t+A, 0 | 4+

|
- AR
[

&y 0 0 0

(>
@)
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Summing up the inequalities =4 i] O=i=n); we obtain

" 3 n =
r=3r= w.i[?]g FJ 4

Hence

follows. Substituting this into (37), it is easy to see that

Hl

As the number of red sets with multipl icity is rz, the middle part of the theorem of [1]
is proved: If the number of sets occuring at least twice in an (F, .... FNEW, is

r, then
pe |,
n
ds
=]

We are indebted to Z. Fiiredi for his many suggestions concerning the manu-
script.

It

fi=srt+]1-
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Abstract

A min-max theorem is developed for the multiway cut problem of edge-weighted trees. We present
a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary
representation. Applications to biology also require some more complex edge weights. We describe
a dynamic programming type algorithm for this more general problem from biology and show that
our min—max theorem does not apply to it.

AMS 1991 Subject Classifications: 05C05, 05C70, 90C27

Keywords: Multiway cut; Menger’s theorem; Tree; Duality in linear programming; Dynamic programming

1. Introduction

Let G=(V, E) be a simple graph, C={1, 2, ..., r} be a set of colours. For NCV(G), a
map x:N—C is a partial colouration. We usually think of a given partial colouration. A
map X : V(G) — C is a colouration if y(v) = x(v) holds for all vEN.

A colour dependent weight function assigns to every edge (p, g) and colours i, j a natural
number w(p, g; i, j), which tells the weight of the edge (p, g) in a colouration ¥, in which
X(p) =i, X(q) =j. We assume that w(p, g; i, i) =0 and w(p, q; i,j) =w(q, p; j. i). We say
that w is colour independent, if for any (p, q), i; #ji, i, # j,, we have w(p, q; i1, j;) =w(p,
q; is, j»). We say that w is edge independent, if for any (p,, q;) €E and (p,, ¢,) €E, and
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i, j€C, we have w(py, q1; i, J) =w(pas, q2; i, j). (Hence, any edge independent weight
function satisfies w(p, q; i, j} =w(p, q; J, i).) We say that w is constant, if it is colour and
edge independent.

An edge (p, q) is colour-changing in the colouration ¥, if X (p) # x(g). The changing
number of the colouration ¥ is the sum of weights of the colour-changing edges in Y, i.e.:

change(G, X)= ). w® ¢ X(p). X(9)) .

(P, @) EE(G)

A partial colouration y defines a partition of N by N;= {v €N: x(v) =i}. A set of edges that
separates every N, from all the other N;’s is termed a multiway cut [ 1]. Observe that the set
of colour-changing edges of a colouration X forms a multiway cut and every multiway cut
is represented in this way.

The length of the pair (G, x) is the minimum weight of a multiway cut, in formula:

I(G, x) =min{change(G, X): X colouration} .

An optimal colouration is a colouration ¥ such that change(G, X) =I(G, x).

The multiway cut problem for colour independent weight functions has been extensively
studied in combinatorial optimization (e.g. [1-3].). As Dahlhaus et al. pointed out [3],
this problem is NP-hard, even for |N| =3, |N;| =1 and constant weight.

On the other hand, if we restrict ourselves to planar graphs, a fixed number of colours,
and constant weight, then the problem becomes solvable in polynomial time [3]. A well-
known specialization of the multiway cut problem, which is solvable in polynomial time,
is r=2, which is considered in the undirected edge version of Menger’s theorem [8].

Although it is less known in the operations research community, some instances of the
multiway cut problem have great importance in biomathematics. In fact, the notions of the
changing number and the length came from genetics and we follow the terminology used
there. For the case of constant weight function, Fitch [6] and Hartigan [7] developed a
polynomial time algorithm to determine the length of a given tree. Sankoff and Cedergren
[13], and Williamson and Fitch [ 12] studied edge independent weight functions and made
polynomial time algorithms to find the length. Some explanation of the significance of the
multiway cut problem in biology is given in [4, 5].

The goal of the present paper is to study the multiway cut problem. In Section 2 we give
anew lower bound for the length of a multiway cut. Section 3 provides a dynamic program-
ming type algorithm to find the length of a tree with an arbitrary weight function. Section
4 uses the algorithm of Section 3 to establish a min—max theorem for the multiway cut
problem of trees, in the case of colour independent weight functions. All the results can be
extended to any graph G, in which N intersects every cycle. Section 5 describes our results
in terms of linear programming.

A preliminary version of the present paper has already appeared [5]. We are indebted to
the anonymous referees for their helpful observations that we use in this presentation.
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2. Lower bound for the weight of a multiway cut

Let G be a simple graph, NCV(G) and x:N— C be a partial colouration. Let w be a
colour dependent weight function.

Definition. An oriented path P in G starting at s(P) €N and terminating at t(P) EN is a
colour-changing path, if x(s(P)) # x(t(P)) and P has no internal vertex in N. (From now
on path means oriented path, unless we explicitly say the opposite.) Let us fix a family #
of colour-changing paths and let e= (p, q) € E(G). Define

ni(e, ) =#{P€P: (p, q) €EP and y(t(P)) =i} .

The notation (p, g) € P means that P enters the edge (p, g) at p and leaves at g.

Definition. Let y: N— C be a partial colouration and ¥ be a colouration on G. A family %
of colour-changing paths is a path packing, if all pairs of colours i #j and all edges (p, q)
satisfy

ni((p$ CI), ‘@) +nj((qa P), ‘@) <W(Pa q;]y l) .
The maximum cardinality of a path packing is denoted by p(G, ).

Theorem 1. For any graph G and partial colouration y, we have

(G, x) >2p(G, x) .

Proof. Let % be a path packing and ¥ : V(G) — C be an optimal colouration. Define a map
f:#— E(G) as follows: let f(P) = e if e is the last colour-changing edge in P in ¥. For any
colour changing edge e= (p, q), X{(p) =j and X(gq) =i (i+#] since e is colour changing),
we have

#{PeP: f(P)=e}<nm((p, @), P) +n;((q,p), F)<w(p, q; ], i) .
Therefore,

| #| <change(G, X)=1(G, x) . O

3. An algorithm to find optimal colourations

Now we focus on the multiway cut problem of trees. Let T be a tree and y:N— C be a
partial colouration, and let L(7) denote the set of leaves, i.e. vertices of degree 1. We
assume N=L(T). (It is obvious that the solution of the multiway cut problem of trees with
N=L(T) easily generalizes to the solution of the multiway cut problem of trees with
arbitrary N.) Let w be a colour dependent weight function. In this section we give a
polynomial time algorithm to determine all optimal colouration of 7 for the weight w.
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Let us fix an arbitrary non-leaf vertex, the root of T. Let (u, v) be an edge and let v be
closer to the root than u, then we say v=Father(u). (Father(root) is NIL.) We denote
the set of all u for which v = Father(u) by Son(v).

Our colouring algorithm has two phases. Starting from the leaves and approaching the
root we determine a penalty function of every vertex v recursively, and subsequently we
determine a suitable colouration ¥ starting from the root and spreading to the leaves.

Definition. The vector-valued penalty function is a map
pen: V(T) > (NU{=})",

such that pen;(v) means the length of the subtree separated by v from the root, if the colour
of v has to be i.

Phase 1. For every leaf v € L(T) let

en(v) = 0 ifveN;,
pen; % otherwise ,

where in an actual computation % may be substituted by a sufficiently large number. Take
a vertex v, such that pen(v) is not computed yet for the vertex v, but pen(u) is already
known for every vertex u € Son(v). Then compute

pen(v)= Y min  {w(u, v; ], 1) +penfu)} .
ueSon(p) /=1 o0 7
Phase II. Now we determine an optimal colouration X of T. First, let ¥ (root) be a colour
i, which minimizes the value pen(root). Furthermore, for a vertex v for which ¥(v) is not
settled yet, but ¥ (Father(v)) is already determined, let X (v) be a colour i, which minimizes
the expression

w(v, Father(v); i, x(Father(v))) + pen; (v).

It is easy to see, that every leaf v € N; satisfies X (v) =i= x(v), fori=1, ..., r.

The correctness of this algorithm is almost self-explanatory. Assume the positive integer
edge weights are given in unary representation. Then, the time complexity is O(n-r?-
(max weight) ), since at each step we calculate r* sums, take the minimum, and roughly 2n
steps are necessary because 7T has n vertices and n— 1 edges. You may change max weight
for log(max weight), if the edge weights come in binary representation.

In the rest of this section we focus on colour independent weight functions, since we can
develop a slightly more efficient version of this algorithm, which also can determine all
optimal colourations. Biologists may need all optimal colourations; the saving in running
time comes from avoiding the second minimization in Phase II. Also, case (A2) in the
proof of Theorem 2 will need the modified algorithm. For the sake of simplicity, for the
rest of this section the weight function is a map w: E(T) — N for colour changing edges
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and the weight of any edge not changing colour is 0. We use the usual Kronecker delta
notation.

Phase I'. For every leaf v, set
M, (v) =M,(v) = {i: pen,(v) =0} .
If pen(v) is not computed yet for the vertex v but pen(u) is already known for every vertex

u<Son(v), then set

pen(v) = Y} min {(1—6;)w(u, v) +penyu)} .

ucSon(yy /=1 bn 1
Let p(v) = min,pen;(v), and
Mi(v)={i€(l, ..., r}: penv) =p(v) },
M,(v)y={ie{l, ..., r}: pen(v) <p(v) +w(v, Father(v))} .
It is obvious that M| (v) CM,(v).

Phase II'. For ¥(root), take an arbitrary element of M, (root). If ¥(v) is not settled yet for
a vertex v, but X(Father(v)) is already determined, take

S(0) = x{Father(v)) if x(Father(v)) EM,(v) ,
X an arbitrary element of M;(v) otherwise .

It is easy to see, that every vertex v €N, satisfies x(v) =i= y(v), for i=1, ..., r. This
algorithm is obviously correct and permitting some extra freedom at certain steps, any
optimal colouration can be obtained by the modified algorithm. For this purpose we intro-
duce a third set of colours at Phase I':

Mi(v)={ie(], ..., r}: pen,(v) =p(v) +w(v, Father(v))} .

If in Phase II' we also allow to give the colour of ¥(Father(v)) to v, if
X (Father(v) ) € M5(v), then the algorithm still yields an optimal colouration. Moreover,
one can prove that running this algorithm in all possible ways yields all optimal colourations.
(We leave the proof to the reader.) The complexity of this revised algorithm is better by a
constant multiplicative factor than that of the original, but to get every optimal colouration
may take exponential time, since M. A. Steel exhibited trees with exponentially many optimal
colourations [11].

4. A min—max theorem
In this section we assume that the weight function is colour-independent and we prove

that the lower bound of Theorem 1 is tight for leaf-coloured trees, and then even for a larger
class of graphs.
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Theorem 2. Let T be an arbitrary tree with colour-independent weight function
w:E(T) — N and with leaf-colouration x:L(T) — C. Then

T, x)=p(T, x) -

We already know from Theorem 1 that the LHS is greater or equal than the RHS. We have
to prove the other inequality. For this end we construct the desired optimal path packing in
a recursive manner. At first, we explicitly construct optimal path packings for stars, i.e. for
trees with 1 branching vertex. Then, for a tree T with at least 2 branching vertices and with
w(n= Y w®
FEE(T)

sum of weights, we define a ‘smaller’ tree 7' for which we can trace back the problem of
the construction of an optimal path packing, such that we can ‘lift up’ the path packing from
T’ to T to get the solution. We may have at most W(T) ‘lift up’ steps. Here we give the
details.

For convenience, we want to use the functions Son and Father, therefore we fix, as in
Section 3, a root of T. In the complexity issues we assume that our tree is represented by
the vertices v and the sets Son(v) and Father(v), furthermore every element of Son(v) and
Father(v) (which represents edges) also contains the weight of the edge. The paths under
construction will be represented as double-linked lists, therefore, due to Theorem 1, the
space complexity of the representation is O(I(7, x) -n).

Definition. We say that a vertex v is of order 1 if every element of Son(v) is a leaf.

Notice that every tree with at least 2 branching vertices has a non-root vertex of order 1.
Before starting the main body of the proof we need the following lemma.

Lemma 1. One can assume that no vertex of order 1 has two sons with the same colour.

Let v be a vertex of order 1, such that Son(v) contains at least 2 leaves with identical colour.
Let 2.(T) denote the tree obtained from T by identification of the elements of Son(v) with
identical colour and adding up their edge weights, respectively. Now one can easily construct
an optimal path packing for T from an optimal path packing of 2. (7). Anyhow, we give a
formal proof, otherwise, the base case of our recursive algorithm would not be complete.

Proof. Define the tree ¥(T) formally as follows: let the tree T be a star with midpoint v
and with leaves {/;: ueSon(r) with y(u) =i} and let £(T) be the tree made of the trees
T\Son(v) and T’ by identification of their common v. The leaf-colouration and weight
function of Y.(T) are as follows:

NI 2{1)@) if ue L\Son(v) ,

ifu:‘l,',
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Y, w(w ) iff=(,0),
! — Z u=Son(v)
w' () XGu) =i .
w(f) otherwise .

Notice that (Z(T), ¥') = I(T, x).
Claim. If I(X(T), x¥') =p(X(T), x') then (T, x) =p(T, x).

Proof. Let Son(v) contain d different colours. We apply induction on |Son(v) |.
Base case: if |Son(v) | =d, then X(T) =T, y= X', and we have nothing to prove.
Inductive step: Suppose that we know Lemma 1 for all |Son(v) | <k. Assume now
|Son(v) | =k and for some fixed z;, z, € Son(v), let x(z;) = x(z,) . Join z; and z, into z. In
the new tree T * obtained by identification, define the leaf colouration and the weight
function as follows:

* — X(u) ifuqezl,zz’
X" () {X(Zl) ifu=z,

* — W(f) lff?&(u, Zi) ’
Wi = w(v, 1) +w(v, ) iff=(v,2).

Now we have X (T) =X(T*), therefore I(X(T)) =I(X(T*)). By the hypothesis there
exists a path packing ##* in the tree T * satisfying | #*| =I(T*). It is easy to divide the
paths of Z7* adjacent to vertex z into two groups, such that the members of one group are
adjacent to z; and the members of the other are adjacent to z, and both groups obey the
weight restriction on the edge adjacent to z;. In this way we obtain a path packing of /(T)
members in T. This proves the Claim as well as Lemma 1. [

The time complexity of this algorithm is O(¥, csency W(i, v)) so the time complexity
of all applications of Lemma 1 altogether is O(W(T)).

We return to the main body of the proof; we assume that any two sons of an arbitrary
vertex of order 1 have different colours. Our algorithm is given in a recursive form in the
variables b(T) and W(T), where b(T) is the number of branching (non-leaf) vertices of
T.

Base case: letb(T) = 1 and W(T) be arbitrary. Then T is a star; let v denote the midpoint
of it. Due to Lemma 1 we may assume that |L(T) | =r (i.e. every colour occurs once).
Assume that the edge (v, #) has maximum weight over all edges. Orient paths from u to
every other leaf z€ L(T)\ {u} with multiplicity w(v, z). This path system is obviously a
path packing and has /(7) members. This case requires O(W(T)) steps.

Recursive step: For any tree T with at least 2 branching vertices we shall find ‘smaller’
tree 7' with fewer branching vertices (b(7") <b(T)) or with smaller total weights
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(b(T')=b(T) and W(T') <W(T)) such that an optimal path packing of 7" can be lifted
up to an optimal path packing of T. Define
s(v)= max w(u, u).
ueSon(y)
We distinguish two cases:

(A) There is a vertex v of order 1 such that s(v) #w(v, Father()).

(B) s(v) =w(v, Father(v)) for every vertex v of order 1.

Case (A). Let X be an optimal colouration of T such that v is the first branching vertex
for which the colour sets M; were determined. We have two subcases; in (A1) we have
s(v) >w(v, Father(v)), in (A2) we have s(v) <w(v, Father(v)).

Case (Al). Let T" be the tree with the same vertex set, edge set and leaf colouration as
the tree T was, and let the new weight function w': E(T) — N such that

w(f) —1 if f= (v, u) where u€Son(v) ,
w(f) if otherwise .

w ()=

If w' () =0, then cancel this edge and its leaf endpoint from the tree T” to obtain the tree
T'. Due to our colouring algorithm, colouration ¥ is also optimal for the tree T”, therefore

I(T') + (|Son(v) | —1) =K(T) .

The total weight of tree T’ is less than of 7. Assume now that we have an optimal path
packing %' of I(T', x) elements in T". Denote by AT the star of v U Son(v) with weight
function w=1 and with the original leaf colouration. Let A% be optimal path packing in
AT (use the base case). Now the path system =" UAZ is obviously optimal path
packing in the tree T.

We can construct T’ and the path packings A% and & from the given tree T and path
packing &' in O(r- L, csony W(U, 1)) time, so that the total time complexity of the case
(Al) is O(rW(T)).

Case (A2). Now we have s(v) <w(v, Father(v) ). Let the tree T' be identical with the
tree T with the same leaf-colouration and with the weight function

s(v) if f= (v, Father(v)) ,
w(f) otherwise .

w ()=

Now it is easy to see that there exists an optimal colouration ¥ of T' satisfying X(v) =
X(Father(v)) which is also optimal in 7. (The only problem that can occur is that
X (Father(v) ) € M,(v) but x(Father(v)) €M} (v). In that case we can apply the extended
Phase II'.) Therefore, we have I(T) =I(T") and W(T') < W(T). Now we can easily ‘lift
up’ any optimal path packing & of T' to the tree T, namely # itself is obviously path
packing in T.

This operation takes O(1) time, so the total time complexity of case (A2) is O(n).

Case (B). From now on we assume that every vertex z of order 1 satisfies the condition
5(2) =w(z, Father(z)). For the rest of (B), we fix a vertex v; if the diameter of T'is 3, then
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let v be the root, otherwise, let v be a non-root vertex such that Son(v) € L(T) and every
non-leaf son is a vertex of order 1 (the existence of such a v is obvious). Let the non-leaf
sons of v be the vertices z;, ..., Z.

By the definition of case (B) it is easy to see the existence of an optimal coloration ¥
colouring v and every z; to the same colour. Therefore if T is the tree derived from the tree
T by contracting every edge of form (v, z;) (leaving the name of the new vertex v), which
is endowed with the original leaf-colouration and weight function on the existing edges,
then the restriction of the same colouration ¥ is also optimal for T and I(T) =1(T). On the
other hand, the tree T has less branching vertices than T.

Now due to our hypothesis we have an optimal path packing % in the tree T. Therefore

| P =T) .

Let us define the lift up #= {ﬁ: PeE P} of the path packing P, where P is identical with
P if no leaf u of Son(z;) (i=1, ..., k) belongs to the path P, and P comes from P by
subdivision of the edge (v, u) with vertex z; if endvertex(P) =u€Son(z;) (i=1, ..., k).
We have [(T) many elements in 2.

Let ¢,= (v, z;) (for every i=1, ..., k). For an edge f= (p, g), we write —f=1(q, p).
Now, by the definition of %, the condition

n(f, ) +n(—f, ) <w(f)

holds for every edge f#¢; (i=1, ..., k), but unfortunately this is not necessarily the case
for the edges e;.

We solve this problemin a slightly more general setting (Lemma 2). For this we introduce
the following notations: Let [x]* denote x, if x is non-negative, 0, if x is non-positive.
Define the badness of the colour changing path system % by

bad(#) = Y Y (e, P)+n(—e, P)—w(e)]™.
(i, Y ECXC e€E(G)
i*j
Call an edge oversaturated by the path system %, if the contribution of the edge to the
badness is positive. (We recall the definition e;= (v, z;).)

Lemma 2. Let & be a system of colour-changing paths on the tree T such that
(i) for alli, j, n,( e, P) <w(e;),
(ii) Z does not oversaturate any edge from E(T)\{ey, ..., e:}.

Then there exists a path packing P* in T of the same size.

Proof. If bad(#) =0 then 2 itself is a path packing. Suppose bad (%) >0, and, say, the
edge e, is oversaturated with colours 1 and 2, i.e.
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ni(ey, L) +n(—ey, P)>wley) .

Take a path P; € % such that e; € P, and y(¢#(P,)) =1 (where, say, t(P;) €Son(z;)), and
a path P,€% such that —e, €P, and x(#(P,))=2 (where #(P,)&Son(z;) and
s(P,) €Son(z,)). Now we distinguish the cases (BA) and (BB):

Case (BA). Suppose there is no P;€% for which —e, €P;, s(P3;)=s(P,) and
x(t(P3)) = 1. In this case we define the following path system:

Py =FU{PI\(P,},
where the path P is (s(P,), z;, t(P,) ), oriented from left to right.

Claim A.
bad(#;) <bad(X)—1.

Proof. It is easy to see that n;( +f, #)) <m(xf, L) for each i=1, ..., k and for each
fEE(T)\{ey, (21, s(P3)) }, furthermore

n(—e, P)=n(—e,P), i=1,..,k,

nier, #) =nle;, P), i=2,..,k,

ni(ey, #)=n(e, X)—1.
Finally, for the edge f, = (z;, s(P,)) we have

n(f, PO =nfo, P), i=1, ...k,

n(—f, P)=n(—f5, ), i=2,...,k,

m(~=for P +n(fo, ) <w(f), i=1, ..., k.
The last inequality is true, since otherwise n,( —f;, L) +n,(f, #) >w(f,) would hold,
contradicting the assumptions of Lemma 2. [

Case (BB). Suppose there exists a path P, which was forbidden in (BA). Then let %,

be the following path system:

P =RU{P, P; AP, J]\{P,, P3}

where P; A P, denotes the (unique) path oriented from s(P3) to t(P,).

Claim B.
bad(#,) <bad(F#)—1.
Proof. Set
E\={ey, (21, t(P1)), (z1, s(P3))} and E,=E(P,) UE(P,)\E(P;AP)).
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Then for each edge f€ E(T)\ (E;UE,) the estimates of Claim A hold. Furthermore, for
fEE, we have

n(+f, #)=n(tf, #), i=2,..k,

n(zxf, ) <m(tf, 2),

n( £z, t(P1)), P) =n(£(zy, ((P1)), &), i=1,..k,

n(te, P)=n(te,R), i=2,..,k,

n(te, P)=n(xe,#—1,

n( £ (21, (P3)) =n( £ (z1, 5(P3)), P) i=1, ..., k.

The equalities and inequalities above prove Claim B. [J

The surgeries described in Case (BA) and Case (BB) obviously keep the conditions of
Lemma 2, therefore they may be repeated until the badness drops to 0. Claims A and B
guarantee, that we finally reach 0. Lemma 2 and Theorem 2 are proved. [J

The determination of the tree T takes O(n) steps, therefore the total time complexity of
this procedure is O(nb(T)). To lift up the paths from & to & takes

O(r Y. w(y, z))

zeSon(v)

time, therefore the total time complexity of lift up operations is O(#W(T)). Finally, the
badness at Lemma 2 is at most

Y w2

z€Son(v)

and every edge can occur at most one application of Lemma 2 so the total time complexity
of Lemma 2 is O(max{rW(T), n*}).

The bookkeeping of (edge, path) incidences is necessary. A possible execution of this
task is to build up lists for every edge to store these incidences and to maintain these lists
at every °‘lift up’ step. The total time complexity of our recursive procedure is
O(max{rW(T), n?}), so it is unary polynomial.

The following theorem is an easy consequence of Theorem 2.

Theorem 3. Let G be a graph with a weight function w:E(T) — N and with a partial
colouration y:N— C. Assume that N intersects every cycle of G. Then
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(G, ) =p(G, x)

Proof. Obtain a forest by eliminating the vertices of N and making leaves from the edges
that were adjacent to them. Give the colour of » to the leaves that substitute a former n €N.
Apply Theorem 2 for each and every tree in the forest. []

5. The LP connection

One may consider the following linear programs related to the multiway cut problem
with colour independent weight function. Note that this is something, which is different
from the usual multiway cut polyhedron [1].

For every oriented edge (p, g) of G and every ordered pair of distinct colours ij define a
variable z,, ;. If gEN, then eliminate z,,;; and z,,;; for every j# x(g). Introduce new
quotient variables by identifying the surviving variables z,, ; and z,, ; in pairs. For conven-
ience we use the same notation for the quotient variables. Then the primal linear program
is:

Zpq.ij Z 0;

for every colour-changing path P, (a, bEN), have

Z Z Lpq,ix(b) = 1;

(P, q) EPap i:i+* x(b)
min Y 2,5 w(ps )

where the last sum is for all quotient variables. To describe the dual linear program, for
every colour-changing path P,, introduce a variable A, such that

/\ab = 0 )
for every quotient variable z,,, ;, have

Z /\ab+ Z Auu <W(Py ‘1),

x(b)=j x(vy=i
(p. q) EPap (q, p) EPw
max Y Ag.

We claim that these linear programs have integer optimal solutions. It is easy to see, that
p(G, ) <max ) A A, integer<max Y Ay, =min Y 7,05 w(p, q)
<min Y 2,05 W(P, q) 2,4, integer<I(G, Xx) .

Only the first and last inequalities require proofs from the chain of inequalities above. The
first one holds, since any path packing provides a feasible integer solution for the second
linear program. The last one holds, since we have an optimal colouration ¥ with total weight
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of the colour-changing edges of I(G, x); define z,, ;=1, iff (p, q) is a colour-changing
edge in the optimal colouration X and X(p) =i, x¥(q) =j hold, and z,, ;=0 otherwise. If
(G, x) =p(G, x). then equality holds everywhere in the chain.

It is a natural question whether these linear programs are totally dual integral [10], i.e.,
whether they have integer optimal solutions for colour dependent weight functions w(p, g;
i, j). Unfortunately, this is not the case, take for example the 3-star with center ¢ and leaves
x, y, z with colours y(x) =1, y(y) =2 and x(z) =3; and the weight function w(c, .; i,
J) =W, defined by the matrix

01 3
w={3 0 1j.
1 30
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1. INTRODUCTION

The purpose of the present paper is to develop in full generality the
mathematical tools that are being used in the spectral analysis /closest tree
method [H, HP1, HP2, SESP, SHSE, HPS] for the reconstruction of
evolutionary trees in Cavender’s model [C1] and in Kimura’s three-param-
eter model [K1, K2, K3]. All sections of this paper but the very last can be
read with zero knowledge from biology. The last section explains the
biological significance of the results from previous sections. An important
tool of our work is the Fourier calculus over finite Abelian groups; we
acknowledge the influence of Evans and Speed [ES]. We have already
announced part of the results of the present paper without proofs in
[SES]. The following lemma summarizes the basic facts that we need on
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characters and Fourier transform. We use the additive notation in Abelian
groups.

LemMa 1. Let G be a finite Abelian group, then

(i) the character group Gis isomorphic to G.

Gi) if f: G = C is a complex-valued function and f: G — C is defined
by

F) = X x(2)f(g),

geCG
then for allg € G

1 .
f(g) = ﬁxeéx(g) (x)-

(iii) The characters of a finite direct product of finite Abelian groups are
exactly the sums of characters.

Proof. See [Ko]l. O

Assume A4 = (a;;) is a p X q matrix with integer entries. Let us be
given a finite Abelian group G and the elements of G9 written in a véctor
form x = (x,,...,x,)", where x; € G. Define the vector y € G” by
y=(y-- yp)T, such that

(We want to abbreviate this fact to Ax =y and do not abuse this
formalism.) Let us be given p;: G — C functions (j = 1,..., q). Define for
x=(x,...,x)" € G,

q
F( = Tp(x).

Fory =(y,,...,y,)" € G?, let

fy) = X F(x).
xS,
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THEOREM 2. If x = (xy,..., x,)T € GP, then
. q P
f =11 X Pj(x)( Zaini)(x)-
J=1zeG i=1

Proof. By definition,

fFO)= L xMWf) = L x(y) L F(x)= Y F(x)x(Ax).

yeG? yeG*? )fAeGq: xeGY
x=y

Now we have

x(Ax) = l:IIXi((Ax)i) = l_l:IIXi

q »
Zaijxj) =T1 Il xi(a;x;).

j=1 j=1li=1

Hence,

f(X) = 2 _1_[1Pj(xj)l:[1Xi(auxj) = 1_[ Z Pj(xj)l:[lXi(aijxj)’

xeG9 = i=1xeG
as claimed. O

Note that for 4 = [1,1], x = (f, g)T, Theorem 2 gives back a special
instance of the classical result for the Fourier transform of the convolu-

tion, f*g=f- 8.

2. Our MobpeL AND Its Basic IDENTITIES

First we describe the mathematical model, which we work with. Let us
be given a tree T with leaf set L and one arbitrary leaf R, called a root.
We assume that no vertex has degree two. Assume that we are given a
finite Abelian group G and for the edges e € E(T) we have independent
G-valued random variables £, with distributions p,(g) := Prob(¢, = g),
such that £, c ;p.(g) = 1. We call the set of p, distributions (e € E(T)) a
transition mechanism and denote it by p.

Take G"~! = the set of leaf colourations o: L \{R} — G endowed with
pointwise operation; we denote the value of o at ! by o,. Produce a
random G-colouration of the leaves of the tree by evaluating £, for every
edge and giving as colour to the leaf / the sum of group elements along
the unique RI path. Let f_ denote the probability that we obtain the leaf
colouration o: L\ {R} — G in this way. In case we want to emphasize the
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dependence from the tree T and the transition mechanism p, we will write
T, p). .

Let x = (x, € G: | € L\{R}) be an ordered (n — 1)-tuple of charac-
ters. Then y € G"~!, and y acts on G" ! according to Lemma 1(iii). For
e € E(T), set

L, = {l € L: e separates | from R in T}.

Fore € E(T) and x € G" ', set

Xe = Z Xi> (1)

leL,

s0 x, € G. For h € G, e € E(T) define

I(h) = ):Gh(g)pe(g), (2)
re= T1 L(x.). (3)
e E(T)

We have the following Fourier inverse pair:

Tueorem 3. With x(o) =T, c pymyxi(a),

= L x(o)f, @)
ceG!

Ly & 5

fo = G XEGHVIX("')’X- (5)

Proof. Observe that (4) and (5) are equivalent by Lemma 1(ii) for any
f: G" !> C and r: G"~!' - C. (We decided not to use the usual hat
notation for this pair since their significance and frequent occurrence in
this paper.) To prove (4) with our f, and r.» apply Theorem 2 in the
following setting: p = n — 1, g = |E(T)|, A = (a,,) with

g = 1 if edge e lies on the Ri path
e 0 otherwise.

Take E = (¢,: e € E(T)) the vector of random group elements selected
independently on the edges, p,(x) = Prob(¢, = x), T = the vector of the
resulting random leaf colouration. Observe that the independence implies
F(x) = Prob(E = x), and f(y) = Prob(T =y). O
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For later use we define the polynomials R, = X, ¢ gn-1x(0)x,, with
independent variables x,. Observe that while R, is tree independent,
r, = R | -y, is tree dependent.

THEOREM 4. For the transition mechanisms p®, p* on the tree T and
o€ G" ! we have

k
L TT.09) = £(T.0%),
lay,09,..., o) =1
o to,t o oy =0o

UIEanl

where for g € G

k
pi(g) = 2 T1r0(s)).

(81,825, g): =1

Proof. Define for o0 € G*™/,
k N
floy= L TIA(T.0®)
(g),00,..., o) i=1
0'|+(72+ o to=o
o eGn!

and f(a) = f,(T, p'”). We are going to prove f(c) = f (T, p*). Applying
Theorem 2 to the group G" ! in the setting p =k, g=1, A=
(1,1,..., 1), plo) = f(o) yields

k
fxo) = TTA(x);

i=1

and by Theorem 3 and (3)

flxy =TI XL x.28)p(g).

e€E(T) geG

Therefore,

fxy=TI X x.e)pi(e).

ecE(T) geG
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Finally, by Theorem 3,

Y x(o)f(o) =f(T,p"),

IGI"™" | (G
and by Lemma 1(i),
f(0)=|‘(—;|7_—| Y. x(0)f(o),

XeGn—l
yielding the wanted f(¢) = f (T, p*). O

We note that a special case of Theorem 4 occurred in the Ph.D. thesis
of the second author [S]. An algebra-oriented reader may be interested in

the fact that Theorem 4 boils down to the commutative law in the group
algebra C[G"'].

3. MaIN IDENTITIES

For e € E(T), 0 # g € G, define p=% € G"~! in the following way:
ppf=0forl e L, |+ R, and pj® = g for l € L,. Define €(T) = {p=%:
e € E(T), 0 # g € G}. For the following theorem (and later on) we
assume, that for every e € E(T), p,(0) is sufficiently close to 1, and hence

r, is also sufficiently close to one; therefore “logarithm” (such that

logl = 0 and log (ab) = log a + log b sufficiently many times) can be
given a satisfactory definition. Having the logarithm, complex exponentia-
tion a® will be exp(b log a), as usual.

THEOREM 5. For 0gn-1 # p € G"™1, p & €(T),

1_[ ,-;(p) =1;

: Xeén—l

for p = p®% € €(T),

I—I X — 1_[ ! (h)h(g)lGI"’z.
x e ’

xeGn! hel

and for p = Ogn-1,

1 = T1 T

xeGnl c€E(I) hed

The identities remain valid with all exponents conjugated.
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Proof. By (3) we have

1—[ r;(p)= I‘I nle(h)i(x(p):xfh)’

xeGn! ecE(T) hel

(1)-(2) altogether with x(p) = T, ;.\ myx/(p,) imply

Lipix=h= L { TT x(e): Txi-hf. (6
xwe6: VIEINR) leL,
1€LN(R)

Now it is obvious that for p = 0gn-1,

L {1 Tx=np-l6r,
XIGG: leL,
teIN(R)

since having fixed an arbitrary j € L, we have |G| choices for y, for any
I € L\(R, j}, and finally a unique choice for x;- Similarly, for p = p*# €
£(T),

b { IT x(e): X x =h} = h(g)IGI" %,
xeG: EINR) leL,
leIN(R)

since for any y = (x,: { € L\(R}), x(p*¢) = h(g) and having fixed an
arbitrary j € L,, we have |G| choices for y, for any / € L\{R, j} and,
finally, a unique choice for x,, like above.

The nontrivial part of the proof is the first identity. By the definition of
€(T), for 0gn-1 #+ p & €(T), either there

() exists | &€ L, I # R with p, # 0, or
(B) exist [, j € L,, such that p, # p,.

In (@), take an 7 € G such that n(p,) # 1. Such an 7 exists, since by
Lemma 1(ii) the matrix [ y(g)] is regular, and it already has a column full
of ones, namely, for p = 0. In (6), assign to the character y =
(X15-+e»Xpo--+» Xn—1) the character x = (xp,..-2m + Xpp-v5 Xn_y)- Ob-
serve that, on the one hand, we just permuted the terms in the sum (6) and
therefore fixed the value of the sum; on the other hand, we multiplied the
sum by n(p,) # 1. Hence, the sum is 0.

In (B), take an n € G such that n(p; — p,) = n(p,)n~'(p,) # 1. Such
an 7 exists, since like in (a), p, — p, would yield a second column full of
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ones in [ y(g)], contradicting the regularity. In (6), assign to the character
X=Cn s Xpooos Xjso-o» Xn) the character x = (xp, ..., x; —
Mye-esX; + M.ty Xp—y)- Observe that, on the one hand, we just per-
muted the terms in the sum (6) and therefore fixed the value of the sum;
on the other hand, we multiplied the sum by n(p; — p,) # 1. Hence, the
sum is 0.

The proof of the conjugated exponent version is virtually the same and
we leave it to the reader. O

We give an alternative logarithmic formulation of Theorem 5, since this
logarithmic formulation was discovered and published for G = Z, [H] and
G =Z, X Z, [SHSE]. Let K = [#(g)] denote the matrix, in which rows
correspond to & € G and columns correspond to g € G; let H = [x(a)]
denote the matrix, in which rows correspond to y € G"~! and columns
correspond to o € G"~ . Let the logarithm of a vector denote the vector
of logarithms of the components. Let f denote the vector of f)’s (o €
G" 1), and let p, denote the vector of p,(g)s (g € G) for every e € E(T).

THEOREM 6.

[H" log Hf],
0, if0#p & €(7),
— [k 'logKp,|,, if p=p=" € €(T), (7
):eeE(T)):hec[K_llog er],,, if p=0.

Proof. Take the logarithm of the conjugated exponent versions of the
identities in Theorem 5 and use the identities for the adjugates

1
____Kt_:K—l’ H* = H!

Te] IGI" !

to eliminate the powers of group orders. O

4. SErRIES ExPANSION

We say that a vector x of x’s (o € G"™ 1) is regular, if L x, = 1, x is
non-negative real, x, > . For the expansions in this section regularity is a
convenient sufficient condition, although it is not necessary.
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TueoreM 7. For a regular x and o # 0,

-1 r+1 r
[H llong] (———)—— !

Proof. We use regularity to establish

Y x(0)xo| <xq. (8)
o.o+0
Indeed,
L x(@)x,| < L Ix(o)lll = ¥ x,=1-x5<xq
oc:o#0 g.o%( o:o+0

We start with
(Hx], = Zx(v)x —xo(1+ r X(")—)
g:o*(

We combine (8) with the fact that radius of convergence of the Taylor
seriesof log z at z = 11is 1:

. -1 r+1 r
[log Hx], = log x, + ZS——)——( Y X(a’)—)
r=1 r og.o+0
Hence
—1 r+1 o
[H" log Hx], = |,. ; Z r) ):x(p)( Z 0x(«fl) )

( L o))

o, 0,20
+1
_ 1 i (_1)’ x0'|x(72 xa,
- |G|n—l r Z xr
r=1 (oy,..., o,) 0
;20

X Lx(=p 01+ +5,).
X
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Now observe that £, x(—p + o, + -+ +0,) vanishes, except if —p + o,
+ -+ +0, = 0 according to the summation in the theorem; and in this
case its value is |G|"™'. D

CoroLLARY 8. For a regular x and o # 0, we have the first- and
second-order approximations

[H" log Hx],, = x,/x,,

X, 1 XgXg
[H'logHx] = = - = ¥ 57,
T x 2 x2
0 (oy,07): 0
o toy=0
o),0,#0

respectively.

Let p** denote the k-order convolution of the transition mechanism
with itself as defined in Theorem 4; now Theorems 4 and 7 and a standard
inclusion—exclusion argument allows for the following expansion.

COROLLARY 9. For regular x and o + 0,

» - G VTR
[H lOng]a—rglkgl ’fé‘(T,P) o

5. INVARIANTS

Let us be given a tree T and another tree 7’ on the same leaf set L and
root R. Consider the indeterminates x_ for o € G" ! again. A multivari-
ate function q,(...,x,,...) is an invariant of the tree T, if g vanishes
after the substitution of f (T, p)'s into x_’s, for any transition mechanism
p of T. We expect that an invariant is non-zero for a typical substitution of
£, (T, p'ys into the x,’s; and hence searching for the tree T’ and its
transition mechanism p’ that resulted in the observed f,, we may reject a
wrong candidate 7, using its invariant(s). Consider

Split(T) = {L.(T): e € E(T)}

and observe that every element of Split(T) is represented by a unique edge
e, since T has no vertex of degree two. Call an edge e € E(T) passive for
(T, p), if p(0) = 1. Consider the set of ordered pairs (tree, transition
mechanism) on the same fixed leaf set L and root R; and define a relation
~ by (T, p) ~ (T, p")iff a(T", p") can be reached from both by contract-
ing passive edges. It is easy to see that ~ is an equivalence relation. For
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p € G"™1, define the tree independent C" — C functions

5,= II R®-1

P A
xeGnt

in a neighborhood of x, =1, x, = 0. For 0 #+ p & €(T), on the basis of
Theorem 5, we term the Sp’s as the canonical invariants of the tree T.

Now we are ready to state the main results of this Section; writing p, in
vector form we put p(0) into the first coordinate.

TueoREM 10.  Assume that for the transition mechanisms p and p', for
any edge e the vectors p, and p, are sufficiently close to (1,0,...,0)T.

(1) If f (T, p) satisfies the canonical invariants of T', then the elements
of Split(T)\ Split(T") are represented by passive edges in T.

(ii) If f (T, p) satisfies the canonical invariants of T' and f_(T', p")
satisfies the canonical invariants of T, then (T, p) ~ (T', p').

Gil) If a leaf colouration probability distribution f, comes from both
(T, p) and (T, p"), then (T, p) ~ (T', p').

(iv) The canonical invariants of the tree T are algebraically independent.

Proof. (i) Take an e € E(T) such that L, & Split(7T"). Then p=" &
€(T") for 0 # h € G; and the hypothesis of (i) implies [H ™! log Hflen =0
for all A # 0. On the other hand, (7) implies [H~!log Hf] jen =
[K~!'log Kp,], for all & + 0. Hence, [K~! log Kp,}, = 0 for all A + 0.
In other words, K~' log Kp, = (x,0,...,0)T for some number x, and
hence log Kp, = (x, x,..., x)T, Kp, = (exp(x), exp(x), ..., exp(x))T, and
finally p, = (exp(x),0,...,0); ie., the edge e must have been passive.

(i) is a simple application of (i). Observe that the hypothesis of (iii)
implies the hypothesis of (ii), and hence the conclusion of (ii) holds.

We finish the proof by (iv). We prove more: the 8,’s are algebraically
independent for p € G"!. By the multivariate Taylor formula the 3,
are algebraically independent iff the 8, + I’s are. Suppose that

YA, T1 (8, + 1)!’,,.: =Y T1 R})(:pimm“) 9)

s peG! 5 x€Gm !

is identically zero in a neighborhood of x, = 1, x, = 0 with a certain finite
set of complex coefficients A, and non-negative integer exponents i, .. We
may assume without loss of generality that s # s’ implies that for some p
we have i, ; # i, . Since the invertible linear transformation H turns the
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x,’s into the R,’s, we may study the vanishing of (9) in the independent
variables R,’s, all in a neighborhood of one. Having independent vari-
ables, the only way of vanishing (9) is cancellation; i.e., for some s # s’ and
all y € G"71,

L i, x(p)= X i, .x(p). (10)

The matrix H and its conjugate H are regular; hence (10) implies
i,,=1i,, forall p € G""', a contradiction. O

The reader might ask if logarithms and all the resulting fuss about
smallness of some quantities are necessary to obtain our results. Therefore
we show a simple example to point out that Theorem 10(iii) turns false if
we drop these conditions. Take an arbitrary tree 7 and define the
transition mechanism by p,(g) = 1/|G| for all e € E(T), g € G. Clearly,
f, will follow the uniform distribution independently of the topology of
the tree, contrary to Theorem 10(iii).

In the rest of this section we restrict ourselves to G = Z7'. For an
arbitrary given 0 # p € (Z7')" !, we define the polynomial 5, of all x.’s:

’ = p—
5p = | | Rx | | Rx'
xe@yr-n xe@Zmn -
x(p)=1 x(p)=—1

Clearly, we obtained polynomial invariants, of which most of Theorem 10
can be easily told, with the annoying exception of their algebraic indepen-
dence. In fact, we conjecture that the polynomials 5, together with the
polynomial R; — 1 = ¥_x_ — 1, are algebraically independent.

It is worth making the following comment here. Evans and Speed [ES]
conjecture that “the number of algebraically independent invariants and
the number of free parameters among the p,(g)’s obtained by an informal
parameter count add up to the number of variables x,.” Their first
problem seems to have been to set candidates for these independent
invariants. We have the suggestion above. Assume that for g # 0, p,(g) is
a variable and p,(0) =1 - X_,,p(g); then the number of free parame-
ters is |[E(T)|(2™ — 1), the number of variables x_, is 27"~ ", the number
of canonical invariants &, is 27D — |g(T)] — 1 = 2m*"D —
{E(T)I(2™ — 1) — 1; and actually, we have one more invariant, R, — 1 =
Y_x, — 1. The numerology works, but a positive result here would seem
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to involve algebraic geometry. Our Theorem 10(i) is some support for the
conjecture of Evans and Speed.

6. KiIMURA'S MobDELs OF MoLEcULAR EvOLUTION

One assumes that the process of evolution is described by a tree. In this
tree the labelled leaves denote some existing species represented by
corresponding segments of aligned DNA sequences; the unlabelled
branching vertices may denote unknown extinct ancestors. Let r denote
the immediate ancestor of the closest common ancestor of a given set of
existing species. We define the true tree of this set of species by taking the
subtree induced by them and r in the tree describing the process of
evolution and undoing the vertices of degree two.

The very problem of reconstruction may be put in this way: given a set
of species with corresponding segments of aligned DNA sequences, find
the true tree.

For G = Z,, the model described in Section 2 specializes to a model of
Cavender [C], for which Hendy and Penny found the special case of the
calculus above and applied it in their spectral analysis /closest tree method
for tree reconstruction from sequences over a two-letter purine—pyrimi-
dine alphabet [H, HP1, HP2]. Our part is the generalization for other
groups; the practical importance of this generalization is mostly for G =
Z, X Z,, ie., for sequences over the four-letter alphabet A, G, C,T; see
[SHSE]. However, it is theoretically possible to apply our calculus to either
of the two Abelian groups of order 20 (if the transition mechanisms of
amino acids follow either of these groups), and also to Z,, in Kimura’s
two-parameter model and the Jukes—Cantor model (see below). We
explain the G = Z, X Z, case in detail, the explanation also applies,
mutatis mutandis, to G = Z,.

From now on we describe Kimura’s three-parameter model [K2, K3]
and some restricted versions of it, which are known as Kimura’s two-
parameter model [K1} and Jukes—Cantor model [JC} (the Jukes-Cantor
model is more explicit in Neyman [N]). We assume that every bit of the
aligned DNA sequence is one of the four nucleotides, A (adenine), G
(guanine), C (cytosine), T (thymine); i.e., we neglect insertions and dele-
tions. We follow the group-theoretical setting of the models from Evans
and Speed [ES]). Identify the elements of Z, X Z, with the four nu-
cleotides, such that A is the unity. Take the true tree with a common
ancestor r and assume that an element of Z, X Z, is assigned under a
certain (unknown) distribution to r. The random group element at r is
regarded as the original nucleotide value there. To every edge of the tree
a random element of Z, X Z, is assigned independently; the distribution
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may vary from edge to edge. The random variable at an edge describes the
nucleotide change on that edge. In terms of biology, adding A = 0 on an
edge causes no change in the nucleotide, adding G causes transition, and
adding C or T causes one of the two possible types of transversions. To
every leaf / the sum of group elements along the unique path r/ and in r
itself is assigned. We have a random four-colouration of the leaves (in fact,
of all vertices) of the tree. That is Kimura’s three-parameter model of
molecular evolution. Kimura’s three-parameter model allows for every
edge e of the tree four arbitrary probabilities which sum up to one; i.e.,
three free parameters, which may be different on different edges. Kimura’s
two-parameter model is similar, but further restricted by p,(G) = p (T) for
all edges, and finally, the Jukes—Canter model requires, in addition,
p.(C) = p(T) for all edges.

After the work of Kimura, the general assumption for the mechanism of
molecular evolution is that changes in the DNA are random. It is assumed
that changes at different sites are independent and of identical distribu-
tion. In case the data violates too much the condition on identical
distribution, one may thin out the sequences by considering one site of
each of the codons (the consecutive triplets of nucleotides encoding amino
acids), particularly the third position, which is more redundant in the
coding scheme than the other two positions, and therefore less influenced
by natural selection. It is an interesting paradox of the theory of evolution,
that evolution is random at the molecular level and follows natural
selection at a high level. It is surprising enough, that the models above
were equiped with substitution mechanisms for transitions and transver-
sions that fit perfectly the group theoretical description, although this was
not the motivation for their invention.

The model, in which we work, slightly differs from Kimura’'s models,
namely, we do not have a root r for an unknown common ancestor. This is
in no way a serious loss, since biologists easily recover it by a method
called outgroup comparison. The root that we use, is, like in Section 2, one
arbitrary leaf R, which represents an existing species. At every site of the
sequence of R, we find a group element, and for standardization, in every
leaf we multiply at the same site with the inverse of that group eiement.
We refer to the sequences obtained as standardized sequences; note that
the standardized sequence of R contains zeros only. From the standard-
ized sequences we can read a leaf colouration at every bit; we count
relative frequencies of leaf colourations and we treat these relative fre-
quencies as if they were the f, leaf colouration probabilities from the
model of Section 2. Observe that the propagation of group elements along
the tree is direction dependent unless p(g) = p(g~") for all e and g;
and without this condition the standardization would not make sense.
However, for G = Z7*, the condition holds automatically. Standardization
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sets no restriction on the distribution at r, since we rather work with
nucleotide changes than use the nucleotide values. Despite the small
difference, our method will allow for reconstruction of the true tree that
evolved according to Kimura’s model, with the loss of r and with the
possible loss of the vertex adjacent to r, if it has degree three.

We had a set of species with corresponding segments of aligned DNA
sequences. We selected an arbitrary species for R and we standardized the
sequence from R and obtained an f relative frequency of the colouration
o among the bits. Now we face the following problem: which tree T and
transition mechanism p yield leaf colouration probabilities f, = f. for all
o? Working with real data, we must be satisfied with the best approxima-
tion in a reasonable norm. Having the transition mechanism of the true
tree allows for estimating a time scale, i.e., how long ago the evolutionary
events in question did happen. We note here, that the model of Section 2
does not imply the existence of the logarithms; however, for real data,
there is no problem with them, due to the empirical fact that fj > %
Working with f arising from the model of Section 2, Theorem 6 tells the
edges of the tree, and one can obtain the transition mechanism, i.e., p, for
all edges as well. The message of Theorem 10(ii) is that we may expect a
unique tree to yield the observed relative frequencies of leaf colourations.

Working with empirical f', the closest tree method [H], which is a
branch-and-bound algorithm, determines then the evolutionary tree and
its transition mechanism, which yields f, such that H~! log Hf approxi-
mates H~! log Hf' best in the Euclidean norm.

The significance of the series expansion is that a second-order approxi-
mation of H™!log Hf' can be computed O(+?) time, where ¢ is the
number of nonzero f.’s, which is subexponential by our experience for
real data. The use of the second-order approximation is expected to be
superior to computing of H~' log Hf' by fast Fourier transform on real
data; this is still to be tested.

The great advantage of using invariants is that one may discriminate
against some trees without (strong) assumptions regarding the transition
mechanism. Invariants were introduced by Cavender and Felsenstein
[CF, C2, C3] and Lake [L]; and recently Evans and Speed [ES] gave an
algebraic procedure based on Fourier analysis to decide if a polynomial is
invariant or not for G = Z7. The literature shows that all the efforts went
for polynomial invariants. There is a good reason to look for linear
invariants, namely, they are subject to reliable statistical methods. How-
ever, there are cases when linear invariants are known not to exist,
including Kimura’s three-parameter model [ES]. In lack of linear invari-
ants, there is at most a theoretical reason to prefer polynomial invariants.

The advantage of our canonical invariants to other invariants is that
they come from a predetermined list, and if you need the canonical
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invariants of a tree you just pick the right elements from the list. If it
comes to application of our polynomial invariants, then values of the
polynomial functions must be computed instead of the polynomials, since
computer algebra in many variables is rather prohibitive.

We see the significance of the Fourier calculus on evolutionary trees in
the fact that it puts the tree reconstruction to the basis of the generally
accepted theory of molecular evolution by Kimura, while most tree recon-
struction techniques lack any such mechanism in the background.
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[c3]
[CF)
[ES]
[H]
[HP1)
[HP2]
[HPS)

(IC)

(K1]

[(K2]
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ABSTRACT: A phylogenetic tree, also called an “evolutionary tree,” is a leaf-labeled tree
which represents the evolutionary history for a set of species, and the construction of such
trees is a fundamental problem in biology. Here we address the issue of how many sequence
sites are required in order to recover the tree with high probability when the sites evolve
under standard Markov-style ii.d. mutation models. We provide analytic upper and lower
bounds for the required sequence length, by developing a new polynomial time algorithm. In
particular, we show when the mutation probabilities are bounded the required sequence
length can grow surprisingly slowly (a power of log n) in the number n of sequences, for
almost all trees. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 153—184, 1999

1. INTRODUCTION

Rooted leaf-labeled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology, where such trees are

Correspondence to: Laszlé A. Székely
© 1999 John Wiley & Sons, Inc. CCC 1042-9832/99/020153-32

153



154 ERDOS ET AL.

called phylogenies. Molecular techniques have recently provided large amounts of
sequence data which are being used to reconstruct such trees. These methods
exploit the variation in the sequences due to random mutations that have occurred
at the sites, and statistically based approaches typically assume that sites mutate
independently and identically according to a Markov model. Under mild assump-
tions, for sequences generated by such a model, one can recover, with high
probability, the underlying unrooted tree provided the sequences are sufficiently
long in terms of the number k of sites. How large this value of & needs to be
depends on the reconstruction method, the details of the model, and the number n
of species. Determining bounds on k and its growth with » has become more
pressing since biologists have begun to reconstruct trees on increasingly large
numbers of species, often up to several hundred, from such sequences.

With this motivation, we provide upper and lower bounds for the value of &
required to reconstruct an underlying (unrooted) tree with high probability, and
address, in particular, the question of how fast k& must grow with n. We first show
that under any model, and any reconstruction method, kK must grow at least as fast
as log n, and that for a particular, simple reconstruction method, it must grow at
least as fast as nlogn, for any ii.d. model. We then construct a new tree
reconstruction method (the dyadic closure method) which, for a simple Markov
model, provides an upper bound on k which depends only on n, the range of the
mutation probabilities across the edges of the tree, and a quantity called the
“depth” of the tree. We show that the depth grows very slowly (O(loglog n)) for
almost all phylogenetic trees (under two distributions on trees). As a consequence,
we show that the value of k required for accurate tree reconstruction by the dyadic
closure method needs only to grow as a power of log n for almost all trees when
the mutation probabilities lie in a fixed interval, thereby improving results by
Farach and Kannan in [23].

The structure of the paper is as follows. In Section 2 we provide definitions, and
in Section 3 we provide lower bounds for k. In Section 4 we describe a technique
for reconstructing a tree from a partial collection of subtrees, each on four leaves.
We use this technique in Section 5, as the basis for our “dyadic closure” method.
Section 6 is the central part of the paper, here we analyze, using various probabilis-
tic arguments, an upper bound on the value of k required for this method to
correctly recover the underlying tree with high probability, when the sites evolve
under a simple, symmetric 2-state model. As this upper bound depends critically
upon the depth (a function of the shape of the tree) we show that the depth grows
very slowly (O(loglog n)) for a random tree selected under either of two distribu-
tions. This gives us the result that & need grow only sublinearly in n for nearly all
trees.

Our follow-up paper [21] extends the analysis presented in this paper for more
general, r-state stochastic models, and offers an alternative to dyadic closure, the
“witness—antiwitness” method. The witness—antiwitness method is faster than the
dyadic closure method on average, but does not yield a deterministic technique for
reconstructing a tree from a partial collection of subtrees, as the dyadic closure
method does; furthermore, the witness—antiwitness method may require somewhat
longer (by a constant multiplicative factor) input sequences than the dyadic closure
method.
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2. DEFINITIONS

Notation. [P[A] denotes the probability of event A4; E[ X] denotes the expectation
of random variable X. We denote the natural logarithm by log. The set [n] denotes

{1,2,...,n} and for any set S, (i) denotes the collection of subsets of S of size k.
R denotes the real numbers.

Definitions. (I) Trees. We will represent a phylogenetic tree T by a tree whose
leaves (vertices of degree 1) are labeled (by extant species, numbered by 1,2,...,n)
and whose remaining internal vertices (representing ancestral species) are unla-
beled. We will adopt the biological convention that phylogenetic trees are binary,
so that all internal nodes have degree 3, and we will also assume that 7T is
unrooted, for reasons described later in this section. There are 2n —5)!!'=Q2n —
5)2n —7)---3-1 different binary trees on n distinctly labeled leaves.

The edge set of the tree is denoted by E(T). Any edge adjacent to a leaf is
called a leaf edge, any other edge is called an internal edge. The path between the
vertices u and v in the tree is called the uv path, and is denoted P(u,v). For a
phylogenetic tree T and S C[n], there is a unique minimal subtree of T, contain-
ing all elements of S. We call this tree the subtree of T induced by S, and denote it
by Ts. We obtain the contracted subtree induced by S, denoted by T}, if we
substitute edges for all maximal paths of 7| in which every internal vertex has
degree 2. Since all trees are assumed to be binary, all contracted subtrees,
including, in particular, the subtrees on four leaves, are also binary. We use the
notation ij|kl for the contracted subtree on four leaves i, j, k,! in which the pair
i, ] is separated from the pair &,/ by an internal edge, and we also call ij|kl a valid
quartet split of T. Clearly any four leaves i, j, k,/ in a binary tree have exactly one
valid quartet split out of ijlkl, ikl jl, il|kj.

The topological distance d(u,v) between vertices u and v in a tree T is the
number of edges in P(u,v). A cherry in a binary tree is a pair of leaves at
topological distance 2. The diameter of the tree T, diam(T), is the maximum
topological distance in the tree. For an edge e of T, let 7, and 7, be the two
rooted subtrees of T obtained by deleting edge e from 7', and for i = 1,2, let d,(e)
be the topological distance from the root of 7; to its nearest leaf in 7,. The depth
of T is max, max{d,(e), d,(e)}, where e ranges over all internal edges in 7. We say
that a path P in the tree T is short if its topological length is at most depth(T) + 1,
and say that a quartet i,j,k,l is a short quartet if it induces a subtree which
contains a single edge connected to four disjoint short paths. The set of all short
quartets of the tree T is denoted by Qy,.(T). We will denote the set of valid
quartet splits for the short quartets by Q% . .(T).

(I1) Sites. Let us be given a set C of character states (such as C={4,C,G, T}
for DNA sequences; C = {the 20 amino acids} for protein sequences; C ={R,Y} or
{0,1} for purine-pyrimidine sequences). A sequence of length k is an ordered
k-tuple from C—that is, an element of C*. A collection of n such sequences—one
for each species labeled from [n]—is called a collection of aligned sequences.
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Aligned sequences have a convenient alternative description as follows. Place
the aligned sequences as rows of an n X k matrix, and call sife i the ith column of
this matrix. A pattern is one of the |C|" possible columns.

(IID Site substitution models. Many models have been proposed to describe,
stochastically, the evolution of sites. Usually these models assume that the sites
evolve identically and independently under a distribution that depends on the
model tree. Most models are more specific and also assume that each site evolves
on a rooted tree from a nondegenerate distribution 7 of the r possible states at
the root, according to a Markov assumption (namely, that the state at each vertex
is dependent only on its immediate parent). Each edge e oriented out from the
root has an associated r Xr stochastic transition matrix M(e). Although these
models are usually defined on a rooted binary tree 7 where the orientation is
provided by a time scale and the root has degree 2, these models can equally well
be described on an unrooted binary tree by (i) suppressing the degree 2 vertex in T,
(ii) selecting an arbitrary vertex (leaves not excluded), assigning to it an appropriate
distribution of states 7', possibly different from 7, and (iii) assigning an appropri-
ate transition matrix M'(e) [possibly different from M(e)] for each edge e. If we
regard the tree as now rooted at the selected vertex, and the “appropriate” choices
in (ii) and (iii) are made, then the resulting models give exactly the same distribu-
tion on patterns as the original model (see [46]) and as the rerooting is arbitrary we
see why it is impossible to hope for the reconstruction of more than the unrooted
underlying tree that generated the sequences under some time-induced, edge-
bisection rooting. The assumption that the underlying tree is binary is also in
keeping with the assumption in systematic biology, that speciation events are
almost always binary.

(IV) The Neyman model. The simplest stochastic model is a symmetric model
for binary characters due to Neyman [37], and also developed independently by
Cavender [12] and Farris [25]. Let {0, 1} denote the two states. The root is a fixed
leaf, the distribution 7 at the root is uniform. For each edge e of T we have an
associated mutation probability, which lies strictly between 0 and 0.5. Let p:
E(T) - (0,0.5) denote the associated map. We have an instance of the general
Markov model with M(e),, = M(e),, = p(e). We will call this the Neyman 2-state
model, but note that it has also been called the Cavender—Farris model. Neyman’s
original paper allows more than 2 states.

The Neyman 2-state model is hereditary on the subsets of the leaves—that is, if
we select a subset S of [#], and form the subtree T‘ ¢, then eliminate vertices of
degree 2, we can define mutation probabilities on the edges of 7§ so that the
probability distribution on the patterns on § is the same as the marginal of the
distribution on patterns provided by the original tree 7. Furthermore, the mutation
probabilities that we assign to an edge of 75 is just the probability p that the
endpoints of the associated path in the original tree T are in different states. The
probability that the endpoints of a path p are in different states is nicely related to
the mutation probabilities p,, p,,..., p, of edges of the k-path,

1 k
p=5(1—l_[(1—2p,~))- (1)
i=1

Formula (1) is well known, and is easy to prove by induction.
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(V) Distances. Any symmetric matrix, which is zero-diagonal and positive off-
diagonal, will be called a distance matrix. An n X n distance matrix D;; is called
additive, if there exists an n-leaf (not necessarily binary) with positive edge weights
on the internal edges and nonnegative edge weights on the leaf edges, so that D;;
equals the sum of edge weights in the tree along the P(i,j) path connecting i and
j. In [10], Buneman showed that the following Four-Point Condition characterizes
additive matrices (see also [42] and [53]):

Theorem 1 (Four-Point Condition). A matrix D is additive if and only if for all
i,j,k,1 (not necessarily distinct), the maximum of D; + Dy, Dy + Dy, Dy + Dy is
not unique. The edge-weighted tree with positive weights on internal edges and
nonnegative weights on leaf edges representing the additive distance matrix is
unique among the trees without vertices of degree 2.

Given a pair of parameters (T, p) for the Neyman 2-state model, and sequences
of length k generated by the model, let H(i,j) denote the Hamming distance of
sequences i and j and

H(iL))
hii =
k

(2)

denote the dissimilarity score of sequences i and j. The empirical corrected distance
between i and j is denoted by

d; = —log(1 —2hil). (3)

ij

The probability of a change in the state of any fixed character between the
sequences i and j is denoted by E”/ = E(h"), and we let

D,;= —3log(1—-2E") (4)

denote the corrected model distance between i and j. We assign to any edge e a
positive weight,

w(e) = —z3log(1-2p(e)). (%)

By Eq. (1), D;; is the sum of the weights (see previous equation) along the path
P(i, j) between i and j. Therefore, d;; converges in probability to D;; as k — .
Corrected distances were introduced to handle the problem that Hamming dis-
tances underestimate the “true evolutionary distances.” In certain continuous time
Markov models the edge weight means the expected number of back-and-forth
state changes along the edge, and defines an additive distance matrix.

(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function
@ that associates either a tree or the statement f ai | to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection
for the data given. Some methods are based upon sequences, while others are
based upon distances.
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According to the practice in systematic biology (see, for example, [29, 30, 49]), a
method is considered to be accurate if it recovers the unrooted binary tree 7', even
if it does not provide any estimate of the mutation probabilities. A necessary
condition for accuracy, under the models discussed above, is that two distinct trees,
T,T’, do not produce the same distribution of patterns no matter how the trees are
rooted, and no matter what their underlying Markov parameters are. This “iden-
tifiability” condition is violated under an extension of the i.i.d. Markov model when
there is an unknown distribution of rates across sites as described by Steel, Székely,
and Hendy [46]. However, it is shown in Steel [44] (see also Chang and Hartigan
[13] that the identifiability condition holds for the i.i.d. model under the weak
conditions that the components of 7 are not zero and the determinant det(M(e))
#0,1, —1, and in fact we can recover the underlying tree from the expected
frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods
applied to corrected distances will recover the correct tree topology from suffi-
ciently long sequences. Consequently, one approach to reconstructing trees from
distances is to seek an additive distance matrix of minimum distance (with respect
to some metric on distance matrices) from the input distance matrix. Many metrics
have been considered, but all resultant optimization problems have been shown or
are assumed to be NP-hard; see [1, 15, 24].

We will use a particular simple distance method, which we call the (Extended
Four-Point Method (FPM), to reconstruct trees on four leaves from a matrix of
interleaf distances.

Four-Point Method (FPM). Given a 4 X 4 distance matrix d, return the set of splits
ijlkl which satisfy d;; + dy; < min{d,;, +d;;, d;; + d ;).

Note that the Four-Point Method can return one, two, or three splits for a given
quartet. One split is returned if the minimum is unique, two are returned if the two
smallest values are identical but smaller than the largest, and three are returned if
all three values are equal.

In [26], Felsenstein showed that two popular methods—maximum parsimony and
maximum compatibility—can be statistically inconsistent, namely, for some parame-
ters of the model, the probability of recovering the correct tree topology tends to 0
as the sequence length grows. This region of the parameter space has been
subsequently named the “Felsenstein zone.” This result, and other more recent
embellishments (see Hendy [28], Zharkikh and Li [54], Takezaki and Nei [50], Steel,
Székely, and Hendy [46]), are asymptotic results—that is, they are concerned with
outcomes as the sequence length, k, tends to infinity.

We consider the question of how many sites k must be generated independently
and identically, according to a substitution model M, in order to reconstruct the
underlying binary tree on n species with prespecified probability at least € by a
particular method ®. Clearly, the answer will depend on ®, €, and 7, and also on
the fine details of M—in particular the unknown values of its parameters. It is
clear that for all models that have been proposed, if no restrictions are placed on
the parameters associated with edges of the tree then the sequence length might
need to be astronomically large, even for four sequences, since the “edge length”
of the internal edge(s) of the tree can be made arbitrarily short (as was pointed out
by Philippe and Douzery [38]). A similar problem arises for four sequences when
one or more of the four noninternal edges is “long”’—that is, when site saturation



FEW LOGS SUFFICE TO BUILD (ALMOST) ALL TREES 159

has occurred on the line of descent represented by the edge(s). Unfortunately, it is
difficult to analyze how well methods perform for sequences of a given length, k.
There has been some empirical work done on this subject, in which simulations of
sequences are made on different trees and different methods compared according
to the sequence length needed (see [31] for an example of a particularly interesting
study of sequence length needed to infer trees of size 4), but little analytical work
(see, however, [38]).

In this paper we consider only the Neyman 2-state model as our choice for M.
However, our results extend to the general i.i.d. Markov model, and the interested
reader is referred to the companion paper [21] for details.

3. LOWER BOUNDS

Since the number of binary trees on n leaves is (2n — 5)!!, encoding deterministi-
cally all such trees by binary sequences at the leaves requires that the sequence
length, k, satisfy (2n — 5)!! < 2", i.e., k = Q(log n). We now show that this infor-
mation-theoretic argument can be extended for arbitrary models of site evolution
and arbitrary deterministic or even randomized algorithms for tree reconstruction.
For each tree, T, and for each algorithm A, whether deterministic or randomized,
we will assume that T is equipped with a mechanism for generating sequences,
which allows the algorithm A to reconstruct the topology of the underlying tree T
from the sequences with probability bounded from below.

Theorem 2. Let A be an arbitrary algorithm, deterministic or randomized, which is
used to reconstruct binary trees from 0-1 sequences of length k associated with the
leaves, under an arbitrary model of substitutions. If A reconstructs the topology of any
binary tree T from the sequences at the leaves with probability greater than e (respec-
tively, greater than 1), then (2n — 5)!!e < 2"* (respectively, 2n — S)!! < 2" under the
assumption of (stochastic) independence of the substitution model and the reconstruc-
tion) and so k = Q(log n).

We prove this theorem in a more abstract setting:

Theorem 3. We have finite sets X and S and random functions f: S — X and
g X—S.

() If Plfg(x)=x]> € for all x € X then |S| > €| X|.
(i) If f, g are independent and P fg(x) =x]> 1 for all x € X then |S| > | X|.

Proof.  Proof of (i). By hypothesis €| X| <X P[fg(x)=x]=X X ,P[g(x)=s and
(&) =x]< (X, Plf(s)=xD=X1=ISI

Proof of (il). First note that P[ fg(x) =y]= X P[f(s) =y]P[g(x) = s] by indepen-
dence. Observe that for each x, there exists an s =s, for which P[f(s,)=x]1> 3,
since otherwise we have P[fg(x)=x]<4. Now, the map sending x to s, is
one-to-one from X into S (and so | X|<|[S| as required) since otherwise, if two
elements get mapped to s, then 1 =X P[f(s) =x]> 5 + 1. [ |
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The following example shows that our theorem is tight for e<1: Let X =
(X115 X105 X015 X9y - -y X 15 X000 @and S = {1, 2 .,n}, and let g(x;; ) i (with probabil-
ity 1); and let (i) =x,, with probability 1; x,2 with probablhty 5. Then P[ fg(x) =
x]=73, so Plfg(x)=x]> ¢, for any epsilon less than 1. However, notice that
X1/2 =S|

Curiously, once € exceeds 3 we must have |X|<|S|, under the assumption of
independence. Examples [52] show that the assumption of independence is neces-
sary. Independence is a reasonable assumption if we try to apply this result for
evolutionary tree reconstruction, and holds automatically if the tree reconstruction
method is deterministic.

This lower bound applied to an arbitrary algorithm, but particular algorithms
may admit much larger lower bounds. Consider, for example, the Maximum
Compatibility Method (MC), which we now define. Given a set of binary sequences,
each site defines a partition of the sequences into two sets, those containing a 0 in
that position, and those containing a 1 in that position. The site is said to be
compatible on a tree T if the tree T contains an edge whose removal would define
the same partition. The objective of the maximum compatibility method is a tree T
which has the largest number of sites compatible with it. Maximum compatibility is
an NP-hard optimization problem [16], although the MC method can clearly be
implemented as a nonpolynomial time algorithm. We now show that the sequence
length needed by MC to obtain the correct topology with constant probability must
grow at least as fast as nlogn.

Theorem 4. Assume that 2-state sites on n species evolve on a binary tree T
according to any stochastic model in which the sites evolve identically and indepen-
dently. Let k(n) denote the smallest number of sites for which the Maximum Compati-
bility Method is guaranteed to reconstruct the topology of T with probability greater than
1. Then, for n large enough,

k(n) > (n—3)log(n—3) —(n—3). (6)

Proof. We say that a site is trivial if it defines a partition of the sequences into
one class or into two classes so that one of the classes is a singleton. Now, fix x and
assume that we are given k* = [(n — 3)log(n — 3) + x(n — 3)] nontrivial sites inde-
pendently selected from the same distribution. We show that the probability of
obtaining the correct tree under MC is at most e ¢~ for n large enough. This
proves the theorem by setting x = —1, since k(n) = k*|,_ _; is needed.

Let o(T) denote the set of internal splits of 7. Since T is binary, |o(T)|=n —3
[10]. For o € o(T), let the random variable X, be the number of nontrivial sites
which induce split . Define X =%, . , X, . A necessary (though not sufficient)
condition for maximum compatibility to select T is that all the internal splits of T
are present among the k* nontrivial sites. Thus, we have the inequality,

P[MC(S)=T] <P[N, c yr{ X, > 0}]

*

P[OUEO’(T){XU>0}|X=I.] XP[X=i]
1

>~

i

I/\

ini)l(c [P)[nu'e U'(T){XU'> O}|X= l]
P[N

e ol Xy > 0} X =k*]. (7)



FEW LOGS SUFFICE TO BUILD (ALMOST) ALL TREES 161

Let p(o) denote the probability of generating split o at a particular site. Due to
the model, p(o) does not depend on the site. It is not difficult to show that (7) is
maximized when the p(o)s are all equal (o € o(T)) and sum to 1.

Indeed, by compactness arguments, there exists a probability distribution maxi-
mizing (7). We show that it cannot be nonuniform, and therefore the uniform
distribution maximizes (7). Assume that the maximizing distribution p is nonuni-
form, say, p(o)# p(p). We introduce a new distribution p’ with p'(o)=p'(p)
=1(p(a)+p(p), and p'(a)=p(a) for a+ o, p. The probability of having
exactly i sites supporting o or p is the same for p and p’. Conditioning on the
number of sites supporting o or p, it is easy to see that any distribution of sites
supporting all nontrivial splits has strictly higher probability in p’ than in p.

Knowing that the p(o)s are all equal (o € o(T)) and sum to 1, determining (7)
is just the classical occupancy problem where k* balls are randomly assigned to
n — 3 boxes with uniform distribution, and one asks for the probability that each
box has at least one ball in it. Equation (6) now follows from a result on the
asymptotics of this problem (Erdés and Rényi [18]): for x € R, k* balls (k* as
defined above), and n — 3 boxes, the limit of probability of filling each boxes is

—e X
e ¢ . |

This theorem shows that the sequence length that suffices for the MC method to
be accurate is in Q(n log n), but does not provide us with any upper bound on that
sequence length. This upper bound remains an open problem.

In Section 5, we will present a new method [the Dyadic Closure Method (DCM)]
for reconstructing trees. DCM has the property that for almost all trees, with a
wide range allowed for the mutation probabilities, the sequence length that suffices
for correct topology reconstruction grows no more than polynomially in the lower
bound of log n (see Theorem 2) required for any method. In fact the same holds
for all trees with a narrow range allowed for the mutation probabilities. First,

however, we set up a combinatorial technique for reconstructing trees from
selected subtrees of size 4.

4. DYADIC INFERENCE OF TREES

Certain classical tree reconstruction methods [6,14,47,48,55] are based upon
reconstructing trees on quartets of leaves, them combining these trees into one
tree on the entire set of leaves. Here we describe a method which requires only
certain quartet splits be reconstructed (the “representative quartet splits”), and
then infers the remaining quartet splits using “inference rules.” Once we have
splits for all the possible quartets of leaves, we can then reconstruct the tree (if one
exists) that is uniquely consistent with all the quartet splits.

In this section, we prove a stronger result than was provided in [19], that the
representative quartet splits suffice to define the tree. We also present a tree
reconstruction algorithm, DCTC (for Dyadic Closure Tree Construction) based upon
dyadic closure. The input to DCTC is a set Q of quartet splits and we show that
DCTC is guaranteed to reconstruct the tree properly if the set O contains only
valid quartet splits and contains all the representative quartet splits of 7. We also
show that if Q contains all representative quartet splits but also contains invalid
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quartet splits, then DCTC discovers incompatibility. In the remaining case, where
Q does not contain all the representative quartet splits of any 7, DCTC returns
Inconsistent (and then the input was inconsistent indeed), or a tree (which is then
the only tree consistent with the input), or Insufficient.

4.1. Inference Rules

Recall that, for a binary tree 7 on n leaves, and a quartet of leaves,
g={a,b,c,d} € ([Z]), t,=ablcd

is a valid quartet split of T if T = ablcd (i.., there is at least one edge in T whose
removal separates the pair a, b from the pair c,d). It is easy to see that

if ablcd is a valid quartet split of T, then so are balcd and cd|ab, (8)

and we identify these three splits; and if ablcd holds, then ac|bd and ad|bc are not
valid quartet splits of T, and we say that any of them contradicts ablcd. Let

om=|reas ()

denote the set of valid quartet splits of T. It is a classical result that Q(T)
determines T (Colonius and Schulze [14], Bandelt and Dress [6]); indeed for each
i €[n], {tq: i €q} determines T, and T can be computed from {tq: ieq} in
polynomial time.

It would be nice to determine for a set of quartet splits whether there is a tree
for which they are valid quartet splits. Unfortunately, this problem is NP-complete
(Steel [43]). It also would be useful to know which subsets of Q(T') determine T,
and for which subsets a polynomial time procedure would exist to reconstruct 7. A
natural step in this direction is to define inference: we can infer from a set of
quartet splits A4 a quartet split ¢, if whenever A € Q(T) for a binary tree T, then
t € Q(T) as well.

Instead, Dekker [17] introduced a restricted concept, dyadic and higher order
inference. Following Dekker, we say that a set of quartet splits A dyadically implies
a quartet split ¢, if ¢ can be derived from A by repeated applications of rules

(8)—(10):
if ablcd and aclde are valid quartet splits of T,
then so are ab|ce, ab|de, and bc|de, (9)

and,
if ablcd and ab|ce are valid quartet splits of 7', then so is ab|de. (10)

It is easy to check that these rules infer valid quartet splits from valid quartet splits,
and the set of quartet splits dyadically inferred from an input set of quartet splits
can be computed in polynomial time. Setting a complete list of inference rules
seems hopeless (Bryant and Steel [9]): for any r, there are r-ary inference rules,
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which infer a valid quartet split from some r valid quartet splits, such that their
action cannot be expressed through lower order inference rules.

4.2. Tree Inference Using Dyadic Rules

In this section we define the dyadic closure of a set of quartet splits, and describe
conditions on the set of quartet splits under which the dyadic closure defines all
valid quartet splits of a binary tree. This section extends and strengthens results
from earlier work [19, 45].

Definition 1. Given a finite set of quartet splits O, we define the dyadic closure
cl(Q) of Q as the set of quartet splits than can be inferred from Q by the repeated
use of the rules (8—10). We say that Q is inconsistent, if Q is not contained in the
set of valid quartet splits of any tree, otherwise Q is consistent. For each of the
n — 3 internal edges of the n-leaf binary tree T we assign a representative quartet
{s,5,,53,5,) as follows. The deletion of the internal edge and its endpoints defines
four rooted subtrees ¢,,t,,5,t,. Within each subtree ¢;, select from among the
leaves which are closest topologically to the root the one, s;, which is the smallest
natural number (recall that the leaves of our trees are natural numbers). This
procedure associates to each edge a set of four leaves, i, j, k, I. (By construction, it
is clear that the quartet i, j, k,/ induces a short quartet in 7—see Section 2 for the
definition of “short quartet.”) We call the quartet split of a representative quartet
a representative quartet split of T, and we denote the set of representative quartet
splits of T" by R;.

The aim of this section is to show that the dyadic closure suffices to compute the
tree T from any set of valid quartet splits of 7" which contain R,. We begin with:

Lemma 1. Suppose S is a set of n — 3 quartet splits which is consistent with a unique
binary tree T on n leaves. Furthermore, suppose that S can be ordered q,...,q,_5 in
such a way that q; contains at least one label which does not appear in {q,,...,q;_}
fori=2,...,n — 3. Then, the dyadic closure of S is Q(T).

Proof.  First, observe that it is sufficient to show the lemma for the case when g;
contains exactly one label which does not appear in{q,,...,q;_;} fori=2,...,n =3,
since n — 4 quartets have to add n — 4 new vertices. Let S, ={q,,...,¢,;}, and let L,
be the union of the leaves of the quartet splits in §;, and let 7, = 7|7 be the binary
subtree of T induced by L,. We first make

Claim 1. The only tree on L; consistent with S, is T, for 1,...,n —3.

Proof of Claim 1. The claim is true by the hypothesis of Lemma 1 for i =n — 3;
suppose for some i <n —3 it is false. Then there exist (at least) two trees that
realize S;, one of which is T, the other we will call T#. Now each quartet
Git15--->q,_5 adds a new leaf to the tree so far constructed from 7, and T#. Now
for each quartet we can always attach that new leaf in at least one position in the
tree so far constructed so as to satisfy the corresponding quartet split (and all
earlier ones, since they don’t involve that leaf). Thus we end up with two trees
consistent with S, and these are different trees since when we restrict them to L,,
they differ. But this contradicts our hypothesis. ]
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Next we make

Claim 2. If x is the new leaf introduced by q,_, = xalbc then x and a form a cherry
of T.

Proof of Claim 2. First assume that x belongs to the cherry xy but a #y. Since
this quartet is the only occurrence of x we do not have any information about this
cherry, therefore the reconstruction of the tree 7' cannot be correct, a contradic-
tion.

Now assume that x is not in a cherry at all. Then the neighbor of x has two
other neighbors, and those are not leaves. In turn they have two other neighbors
each. Hence, we can describe x’s place in T in the following representation in
Fig. 1: take a binary tree with five leaves, label the middle leaf x, and replace the
other four leaves by corresponding subtrees of 7.

Now suppose g, ; = ax|bc. Regardless of where a,b,c come from (among the
four subtrees in the representation), we can always move x onto at least two of the
other four edges in T, and so obtain a different tree consistent with S (recall that
q,_5 is the only quartet containing x, and thereby the only obstruction to us
moving x!). Since the theorem assumes that the quartets are consistent with a
unique tree, this contradicts our assumptions. ]

Finally, it is easy to show the following:

Claim 3. Suppose xy is a cherry of T. Select leaves a, b from each of the two subtrees
adjacent to the cherry. Let T' be the binary tree obtained by deleting leaf x. Then
cl(Q(T") U {xylab}) = O(T).

Now, we can apply induction on n to establish the lemma. It is clearly
(vacuously) true for n =4, so suppose n > 4. Let x be the new leaf introduced by
q,_3, and let the binary tree 7' be T with x deleted.

In view of Claim 1, S,_, is a set of n — 4 quartets that define 7, _, =T", a tree
on n — 1 leaves and which satisfy the hypothesis that g; introduces exactly one new
leaf. Thus, applying the induction hypothesis, the dyadic closure of S,_, is Q(T").
Since § = S,,_ contains S, _,, the dyadic closure of S also contains Q(7"), which is
the set of all quartet splits of 7 that do not include x.

Catin”

Fig. 1. Position of a leaf x, which is not a cherry, in a binary tree.
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Now, by Claim 2, x is in a cherry; let its sibling in the cherry be y, so
q, 5 = ablxy, say, where a and b must lie in each of the two subtrees adjacent to
the cherry. (It is easy to see that if a, b both lie in just one of these subtrees, then
S would not define T.)

Now, as we just said, the dyadic closure of S contains Q(7”) and it also contains
ablxy (where a,b are as specified in the preceding paragraph) and so by the
idempotent nature of dyadic closure [i.e., cl(B) = cl(cl(B))] it follows from Claim 3
that the dyadic closure of S equals Q(T). E B N

Lemma 2. The set of representative quartet splits R, of a binary tree T satisfies the
conditions of Lemma 1. Hence, the dyadic closure of Ry is Q(T).

Proof. In order to make an induction proof possible, we make a more general
statement. Given a binary tree 7" with a positive edge weighting w, we define the
representative quartet of an edge e to be the quartet tree defined by taking the
lowest indiced closest leaf in each of the four subtrees, where we define “closest”
in terms of the weight of the path (rather than the topological distance) to the root
of the subtree. We also define the representative quartet splits of the weighted tree,
Ry, as in the definition of representative quartets of unweighted trees, with the
only change being that each s; €¢, is selected to minimize the weighted path length
rather than topological path length (i.e., the edge weights on the path are summed
together, to compute the weighted path length). Observe that if all weights are
equal to 1, then we get back the original definitions. When turning to binary
subtrees of a given weighted tree, we assign the sum of weights of the original
edges to any newly created edge which is composed of them, and denote the new
weighting by w*. Now we can easily prove by induction the following generalization
of the statement of Lemma 2:

Claim 4. Take the set of representative quartet splits Ry, of a weighted n-leaf binary
tree T. Then for every other n-leaf binary tree F, we have that Ry, € Q(F) implies

T =F as unweighted trees. Furthermore, Ry ,, can be ordered q,,...,q, 5 in such a
way that q; contains exactly one label that does not appear in {q,...,q;_,} for
i=2,...,n-3.

Proof of Claim 4. First we show that the only tree consistent with the set of
representative splits R, of a binary tree 7 is T itself. Look for the smallest (in n)
counterexample 7, such that R, , € Q(F) for a tree F # T. Clearly n has to be at
least 5. Therefore T has at least two different cherries, say xy and uv, such that
d(u, x) > 4. Let us denote by w(l) the weight of the leaf edge corresponding to the
leaf 1. If w(x) <w(y) or [w(x) =w(y) and x <y], then due to the construction of
R; ,, vertex y occurs in exactly one elements of R; ,, say p, which is the
representative of the edge that separates xy from the rest of the tree. A similar
argument would show that one of u,v, say v, occurs in exactly one element of
Ry, say g. It also follows that p # q. It is not difficult to check that

RTE‘,,]\U.), w =Ry \(p} and RT\E“,.]\(,»,W* =Rr\{q} (11)
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according to the definition of weight after contracting edges, where T is the
binary tree obtained by contracting paths into edges in the subtree of 7" spanned
by the vertex set K. Hence, by the minimality of the counterexample, T\ () =
Fiavy and T oy = Fiiupn - We know that any edge of F defines a bipartition of

[n], and traces of these bipartitions on [r]\{y} and [n]\{v} are exactly the
bipartitions produced by the edges of F,(, on [#]\{y} and the bipartitions
produced by the edges of Fif,\ (,y on [n]\{v}. Therefore also in F both xy and uv
make cherries, and hence T = F, a contradiction.

For the other part of the claim, it immediately follows by induction from
formula (11) that R, can be ordered so that every quartet in the order contains
at least one (and therefore exactly one) new leaf. [Eliminate quartet splits recur-
sively using (11), and put R, ,, in the reverse order.] [ |

Note that the generalization for weighted trees was necessary, since without
weights formula (11) would fail. E B N

We note here that representative quartets cannot be defined by selecting any
nearest leaf in the four subtrees associated with an internal edge. For example,
consider the tree T on six leaves labeled 1 through 6, with a central vertex and
cherries (1,2), (3,4), and (5, 6), hanging from the central vertex. If we selected the
quartet splits by arbitrarily picking closest leaves in each of the four subtrees
around each internal edge, we could possibly select splits 12|36, 34|15, and 56[24;
however, these splits do not uniquely identify the tree T, since the tree with
cherries 15, 24, and 36, is also consistent with these quartets.

4.3. Dyadic Closure Tree Construction Algorithm

We now present the Dyadic Closure Tree Construction method (DCTC) for
computing the dyadic closure of a set Q of quartet splits, and which returns the
tree T when cl(Q) = O(T).

Before we present the algorithm, we note the following interesting lemma:

Lemma 3. If cl(Q) contains exactly one split for each possible quartet then cl(Q) =
O(T) for a unique binary tree T.

Proof. By Proposition (2) of [6], a set O* of noncontradictory quartet splits equals
Q(T) for some tree T precisely if it satisfies the substitution property: If ablcd € Q%
then for all e & {a, b, ¢, d}, ab|ce € O, or aelcd € Q*. Furthermore, in that case, T
is unique.

Applying this characterization to Q* = cl(Q), suppose ablcd € cl(Q) but ablce &
cl(Q). Thus, either aelbc € cl(Q) or aclbe € cl(Q). In the either case, the dyadic
inference rule applied to the pair {ablcd, ae|lbc} or to {ablcd, ac|be} implies aelcd
cl(Q), and so cl(Q) satisfies the substitution property. Thus cl(Q) = Q(T) for a
unique tree 7. Finally, since cl(Q) contains a split for each possible quartet, it
follows that T must be binary. ]
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We now continue with the description of the DCTC algorithm.
Algorithm DCTC.
Step 1. We compute the dyadic closure, cl(Q), of Q.
Step 2.

e Case 1. cl(Q) contains a pair of contradictory splits for some quartet: return
Inconsistent.

e Case 2. cl(Q) has no contradictory splits, but fails to have a split for every
quartet: Return Insufficient.

e Case 3. cl(Q) has exactly one split for each quartet: apply standard algo-
rithms [6,51] to cl(Q) to reconstruct the tree T such that Q(T) = cl(Q).
Return T.

(Case 3 depends upon Lemma 3 above.)
To completely describe the DCTC method we need to specify how we compute
the dyadic closure of a set O of quartet splits.

Efficient computation of dyadic closure. The description we now give of an
efficient method for computing the dyadic closure will only actually completely
compute the dyadic closure of Q if cI(Q) = Q(T) for some tree T. Otherwise, cl(Q)
will either contain a contradictory pair of splits for some quartet, or cl(Q) will not
contain a split for every quartet. In the first of these two cases, the method will
return Inconsistent, and in the second of these two cases, the method will return
Insufficient. However, the method can be easily modified to compute cl(Q) for all
sets Q.

We will maintain a four-dimensional array Splits and constrain
Splits; .+ . » to either be empty, or to contain exactly one split that has been
inferred so far for the quartet i, j, k,l. In the event that two conflicting splits are
inferred for the same quartet, the algorithm will immediately return Inconsistent,
and halt. We will also maintain a queue Q,.,, of new splits that must be processed
We initialize Spl i t s to contain the splits in the input Q, and we initialize Q
be Q, ordered arbitrarily.

The dyadic inference rules in equations (8)—(10) show that we infer new splits by
combining two splits at a time, where the underlying quartets for the two splits
share three leaves. Consequently, each split ij|kl can only be combined with splits
on quartets {a, i, j, k}, {a,i,],1}, {a,i,k,1}, and {a, j, k, [}, where a & {i, j, k,[}. Con-
sequently, there are only 4(n — 4) other splits with which any split can be combined
using these dyadic rules to generate new splits.

Pop a split ijlkl off the queue Q,.,, and examine each of the appropriate
4(n — 4) entries in Spl i t s. For each nonempty entry in Spl i t s that is examined
in this process, compute the O(1) splits that arise from the combination of the two
splits. Suppose the combination generates a split ablcd. If Splits, , . , contains a
different split from ablcd, then Return Inconsistent. If Splits, , . ,is empty, then
set Splits,, . ,=ablcd, and add ablcd to the queue Q.. Otherwise
Splits, .q already contains the split ablcd, and we do not modify the data
structures.

new
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Continue until the queue Q,.,, is empty, or Inconsistency has been observed. If
the Q,., empties before Inconsistency is observed, then check if every entry of
Spli ts is nonempty. If so, then cl(Q) = Q(T) for some tree; Return Splits. If
some entry in Spl it s is empty, then return Insufficient.

Theorem 5. The efficient computation of the dyadic closure uses O(n>) time, and at
the termination of the algorithm the Spl i t s matrix is either identically equal to cl(Q),
or the algorithm has returned Inconsistent. Furthermore, if the algorithm returns
Inconsistent, then cl(Q) contains a pair of contradictory splits.

Proof. 1t is clear that if the algorithm only computes splits using dyadic closure, so
that at any point in the application of the algorithm, Splits ccl(Q). Conse-
quently, if the algorithm returns Inconsistent, then cl(Q) does contain a pair of
contradictory splits. If the algorithm does not return Inconsistent, then it is clear
from the design that every split which could be inferred using these dyadic rules
would be in the Spl i t s matrix when the algorithm terminates.

The running time analysis is easy. Every combination of quartet splits takes O(1)
time to process. Processing a quartet split involves examining 4(n — 4) entries in
the Splits matrix, and hence costs O(n). If a split jjlkl is generated by the
combination of two splits, then it is only added to the queue if Splits, ;, , is
empty when ijlkl is generated. Consequently, at most O(n*) splits ever enter the
queue. [ |

We now prove our main theorem of this section:
Theorem 6. Let Q be a set of quartet splits.

1. If DCTAQ)=T,DCTAQ)=T',and Q< Q', then T=T'.

2. If DCTC(Q) = Inconsistent and Q € Q', then DCTO(Q’) = Inconsistent.
3. If DCTA(Q) = Insufficient and Q' C Q, then DCT((Q') = Insufficient.
4. If R, < Q cO(T), then DCTC(Q) =T.

Proof.  Assertion (1) follows from the fact that if DCTC(Q) = T, then the dyadic
closure phase of the DCTC algorithm computes exactly one split for every quartet,
so that cl(Q) = Q(T) by Lemma 3. Therefore, if Q € (', then cl(Q) c cl(Q'), so that
Q(T) ccl(Q') = Q(T"). Since T and T’ are binary trees, it follows that Q(7T) = Q(T")
and T=1T".

Assertion (2) follows from the fact that if DCTCQ(Q) = Inconsistent, then cl(Q)
contains two contradictory splits for the same quartet. If Q € Q', then cl(Q’) also
contains the same two contradictory splits, and so DCTC(Q') = Inconsistent.

Assertion (3) follows from the fact that if DCTC(Q) = Insufficient, then cl(Q)
does not contain contradictory pairs of splits, and also lacks a split for at least one
quartet. If Q' € Q, then cl(Q’) also does not contain contradictory pairs of splits
and also lacks a split for some quartet. Consequently, DCTC(Q') = Insufficient.

Assertion (4) follows from Lemma 2 and Assertion (1). [ |

Note that DCTC(Q) = Insufficient does not actually imply that Q < Q(T') for any
tree; that is, it may be that Q ¢ Q(T') for any tree, but cl(Q) may not contain any
contradictory splits!



FEW LOGS SUFFICE TO BUILD (ALMOST) ALL TREES 169

5. DYADIC CLOSURE METHOD

We now describe a new method for tree reconstruction, which we call the Dyadic
Closure Method, or DCM.

Suppose T is a fixed binary tree. From the previous section, we know that if we
can find a set Q of quartet splits such that R, c Q c Q(T), then DCTC(Q) will
reconstruct 7.

One approach to find such a set QO would be to let Q be the set of splits
(computed using the Four-Point Method) on all possible quartets. However, it is
possible that the sequence length needed to ensure that every quartet is accurately
analyzed might be too large to obtain accurate reconstructions of large trees, or of
trees containing short edges.

The approach we take in the Dyadic Closure Method is to use sets of quartet
splits based upon the quartets whose topologies should be easy to infer from short
sequences, rather than upon all possible quartets. (By contrast, other quartet based
methods, such as Quartet Puzzling [47, 48], the Buneman tree construction [7], etc.
infer quartet splits for all the possible quartets in the tree.) Basing the tree
reconstruction upon properly selected sets of quartets makes it possible to expect,
even from short sequences, that all the quartet splits inferred for the selected
subset of quartets will be valid.

Since what we need is a set Q such that R, € Q € Q(T), we need to ensure that
we pick a large enough set of quartets so that it contains all of R, and yet not too
large that it contains any invalid quartet splits. Surprisingly, obtaining such a set Q
is quite easy (once the sequences are long enough), and we describe a greedy
approach which accomplishes this task. We will also show that the greedy approach
can be implemented very efficiently, so that not too many calls to the DCTC
algorithm need to be made in order to reconstruct the tree, and analyze the
sequence length needed for the greedy approach to succeed with 1 — o(1) probabil-
ity.

We now describe how this is accomplished.

Definition 2. [Q,, and the width of a quartet]. The width of a quartet i, j, k,[ is
defined to be the maximum of A", h'*, K hi* hi' h*' where A"/ denotes the
dissimilarity score between sequences i and j (see Section 2). For each quartet
whose width is at most w, compute all feasible splits on that quartet using the
four-point method. Q,, is defined to be the set of all such reconstructed splits.

(We note that we could also compute the split for a given quartet of sequences in
any number of ways, including maximum likelihood estimation, parsimony, etc., but
we will not explore these options in this paper.)

For large enough values of w, Q, will with high probability contain invalid
quartet splits (unless the sequences are very long), while for very small values of w,
Q,, will with high probability only contain valid quartet splits (unless the sequences
are very short). Since our objective is a set of quartet splits Q such that R, CcQ C
Q(T), what we need is a set Q,, such that Q,, contains only valid quartet splits, and
yet w is large enough so that all representative quartets are contained in Q,, as
well.
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We define sets
o={we{hi:1<i,j<n}: R, CQ,}, (12)
and
F={wef{hi:1<i,j<n}:Q,c0O(T)}. (13)

In other words, & is the set of widths w (drawn from the set of dissimilarity scores)
which equal to exceed the largest width of any representative quartet, and % is the
set of widths (drawn from the same set) such that all quartet splits of that
dissimilarity score are correctly analyzed by the Four-Point Method.

It is clear that & is an initial segment in the list of widths, and that . is a final
segment (these segments can be empty). It is easy to see that if w €&/ N.Z, then
DCTC(Q,,) = T. Thus, if the sequences are long enough, we can apply DCTC to
each of the O(n?) sets Q, of splits, and hence reconstruct the tree properly.
However, the sequences may not be long enough to ensure that such a w exists;
ie., & NF = is possible! Consequently, we will require that &/ NZ # J, and
state this requirement as an hypothesis (later, we will show in Theorem 9 that this
hypothesis holds with high probability for sufficiently long sequences),

A NGB + . (14)

When this hypothesis holds, we clearly have a polynomial time algorithm, but we
can also show that the DCTC algorithm enables a binary search approach over the
realized widths values, so that instead of O(n?) calls to the DCTC algorithm, we
will have only O(log n) such calls.

Recall that DCTC(Q,,) is either a tree T, Inconsistent, or Insufficient.

o Insufficient. This indicates that w is too small, because not all representative
quartet splits are present, and we should increase w.

e Tree output. If this happens, the quartets are consistent with a unique tree,
and that tree is returned.

¢ Inconsistent. This indicates that the quartet splits are incompatible, so that no
tree exists which is consistent with each of the constraints. In this case, we
have computed the split of at least one quartet incorrectly. This indicates that
w is too large, and we should decrease w.

If not all representative quartets are inferred correctly, then every set Q,, will
be either insufficient or inconsistent with 7', perhaps consistent with a different
tree. In this case the sequences are too short for the DCM to reconstruct a tree
accurately.

We summarize our discussion as follows:

Dyadic Closure Method.

Step 1. Compute the distance matrices d and & (recall that d is the matrix of
corrected empirical distances, and % is the matrix of normalized Hamming dis-
tances, i.e., the dissimilarity score).

Step 2. Do a binary search as follows: for w € {h"}, determine Q,,. If DCTC(Q,)
=T, for some tree T, then Return 7. If DCTC returns Inconsistent, then w is too
large; decrease w. If DCTC returns Insufficient, then w is too small; increase w.
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Step 3. If for all w, DCTC applied to Q,, returns Insufficient or Inconsistent, then
Return Fail.

We now show that this method accurately reconstructs the tree T if &/ NZ # &
[i.e., if hypothesis (14) holds].

Theorem 7. Let T be a fixed binary tree. The Dyadic Closure Method returns T if
hypothesis (14) holds, and runs in O(n° log n) time on any input.

Proof. 1If wew N, then DCTC applied to Q,, returns the correct tree T by
Theorem 6. Hypothesis (14) implies that &/ N% # J, hence the Dyadic Closure
Method returns a tree if it examines any width in that intersection; hence, we need
only prove that DCM either examines a width in that intersection, or else
reconstructs the correct tree for some other width. This follows directly from
Theorem 6.

The running time analysis is easy. Since we do a binary search, the DCTC
algorithm is called at most O(log n) times. The dyadic closure phase of the DCTC
algorithm costs O(n°) time, by Lemma 5, and reconstructing the tree T from cl(Q)
uses at most O(n°) time using standard techniques. [ |

Note that we have only guaranteed performance for DCM when & NZ # J;
indeed, when &/ NZ = J, we have no guarantee that DCM will return the correct
tree. In the following section, we discuss the ramifications of this requirement for
accuracy, and show that the sequence length needed to guarantee that &/ NZ # J
with high probability is actually not very large.

6. PERFORMANCE OF DYADIC CLOSURE METHOD FOR TREE
RECONSTRUCTION UNDER THE NEYMAN 2-STATE MODEL

In this section we analyze the performance of a distance-based application of DCM
to reconstruct trees under the Neyman 2-state model under two standard distribu-
tions.

6.1. Analysis of the Dyadic Closure Method

Our analysis of the Dyadic Closure Method has two parts. In the first part, we
establish the probability that the estimation (using the Four-Point Method) of the
split induced by a given quartet is correct. In the second part, we establish the
probability that the greedy method we use contains all short quartets but no
incorrectly analyzed quartet.

Our analysis of the performance of the DCM method depends heavily on the
following two lemmas:

Lemma 4 [Azuma—Hoeffding inequality, see [3]l. Suppose X =(X,, X,,..., X))
are independent random variables taking values in any set S, and L: S* - R is any
function that satisfies the condition: |L(w) — L(v)| < t whenever w and v differ at just
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one coordinate. Then,

LX) ~E[0] 2 4] <exp| - 51 |

/\2
P[L(X) —E[L(X)] < — 4] sexp(—m). [ ]
We define the (standard) L. metric on distance matrices, L. (d,d') = max; jld,- j
—dj;l. The following discussion relies upon definitions and notations from
Section 2.

Lemma 5. Let T be an edge weighted binary tree with four leaves i, j, k, 1, let D be the
additive distance matrix on these four leaves defined by T, and let x be the weight on
the single internal edge in T. Let d be an arbitrary distance matrix on the four leaves.
Then the Four-Point Method infers the split induced by T from d if L(d, D) <x/2.

Proof.  Suppose that L (d, D) <x/2, and assume that T has the valid split |kl
Note that the four-point method will return a single quartet, split ij|kI if and only if
d;;+dy, <min{d;, +d;,d,; +d,}. Note that since ijlkl is a valid quartet split in
T,D;;+ Dy, +2x =D, + D; =D, + Dj. Since L(d, D) <x/2, it follows that

di;+dy <D+ Dy +x,

dy+dy>Dy +D;—x,
and

dy+d;>Dy+Dy —x,

with the consequence that d;; +d,, is the (unique) smallest of the three pairwise
sums. |

Recall that DCM applied to the Neyman 2-state model computes quartet splits
using the four-point method (FPM).

Theorem 8. Assume that z is a lower bound for the transition probability of any edge
of a tree T in the Neyman 2-state model, y > max E" is an upper bound on the
compound changing probability over all ij paths in a quartet q of T. The probability that
FPM fails to return the correct quartet split on q from k sites is at most

186xp_(1_ 1_282)(1_2y)k. (15)

Proof.  First observe from formula (1) that z is also a lower bound for the
compound changing probability for the path connecting any two vertices of 7. We
know that FPM returns the appropriate subtree given the additive distances D;;;
furthermore, if |d;; — D;;| < — +log(1 — 22) for all i, j, then FPM also returns the
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appropriate subtree on all jjkl, by Lemma 5. Consequently,
P[FPMerrs] < IP[EIi,j: |D,; —d,;|> — {log(1 — 22)]. (16)
Hence by (16), we have
P[FPMerrs] < ZIP[IDij—dijl> —%log(l—Zz)]. (17)
i

For convenience, we drop the subscripts when we analyze the events in (17) and
just write D and d; we write p for the corresponding transition probability E* and
p for the relative frequency h'. By simple algebra,

p
1-2p°

1
|D—d|=510g if p<p, (18)

A

1
D—dl= -1 if p>p. 19
| | SloeT—5 s ip=p (19)

Now we consider the probability that the Four-Point Method fails, i.e., the event
estimated in (17). If p >p, then formula (19) applies, so that P[FPMerrs] is
algebraically equivalent to

p-p=1[(1-22)""" —1](1-2p). (20)

This can then be analyzed using Lemma 4. The other case is where p < p. In this
case, formula (18) applies, and P[FPM errs] is algebraically equivalent to

p—-p 1

—[(1-22)""%=1]. 21
35 > 311722 ] (21)
Select an arbitrary positive number €. Then p —p > (1 — 2 p)e with probability
—e*(1-2p)°k
exp_ L2V K (22)
2
by Lemma 4. If p —p <(1 —2p)e, then
1 1 1 1
< = .
1-2p (1-2p)—-2e(1-2p) (1-2p) (1-2¢)
Hence
p— 1
p| =2 - ~l(1-22)7 1]
1-2p -2
N 2
p—p 1 -1,2 _52(1_2p) k
<P >—[(1-2 =1+ _—
[(1—2p)(1—26) pl(1-22) [|+exp 2
—e(1-2p)k
sl -

7 201 —2¢)? _Z—l/z_2
vew (1-2p)(1-2 )8[(1 22) 1] k' 2
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Note that e=(3)[1 — (1 —22)"/?] is the optimal choice. Formulae (22-24) con-
tribute each the same exponential expression to the error, and (16) or (17)
multiplies it by 6, due to the six pairs in the summation. ]

This allows us to state our main result. First, recall the definition of depth from
Section 2.

Theorem 9. Suppose k sites evolve under the Neyman 2-state model on a binary tree
T, so that for all edges e, p(e) €[f, gl, where we allow f, g to be functions of n. Then
the dyadic closure method reconstructs T with probability 1 — o(1), if
c-logn
k> (25)

(1 - M)z(l —pg)tdeph(™+6 ’

where c is a fixed constant.

Proof. Tt suffices to show that hypothesis (14) holds. For k evolving sites (.e.,
sequences of length k), and 7> 0, let us define the following two sets, S, = {{i, j}:
h' < 0.5 — 7} and

zZ = {qe([z]):forall i,jeq,{i,j} ESZT}’

and the following four events,

A =Qshort(T) gZT’ (26)
_ - [n]
B, = FPM correctly returns the split of the quartet g € ( ik (27)
B= N B, (28)
q9€Z,

C = S,_ contains all pairs {i, j} with EY < 0.5 — 37 and no pair {i, j}
with E > 0.5 — 7. (29)

Thus, Pl N# + ] > P[ A N B]. Define

A= (1 _ 2g)2depth(T)+3. (30)
We claim that
P[C]=1—(n®—n)e "*/?, (31)
and
A
PlA4lC]=1, ifr< 5 (32)

To establish (31), first note that 4"/ satisfies the hypothesis of the Azuma—Hoeff-
ding inequality (Lemma 4 with X, the sequence of states for site i and = 1/k).
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Suppose E/ > .5 — 7. Then,
P[{i,j} €S,,] =P[h" <0.5-27]

<P[r —EY"<05-2r—EV] <P[h —E[hV] < — 7| <e”7*/2,

Since there are at most (g) pairs {i, j}, the probability that at least one pair {i, j}

with EY > 0.5 — 7 lies in §,, is at most (g)e’fzk/z. By a similar argument, the
probability that S, fails to contain a pair {i, j} with EY < 0.5 — 37 is also at most
(g)e_TZk/z. These two bounds establish (31).

We now establish (32). For ¢ € R(T) and i, j € q, if a path e,e, - ¢, joins leaves
i and j, then ¢ <2depth(T) + 3 by the definition of R(T). Using these facts, (1),
and the bound p(e) <g, we obtain EV/ =0.5[1 —(1 —2p,)--- (1 —2p)] < 0.5(1 — A).
Consequently, E/ < 0.5 — 37 (by assumption that 7 < A/6) and so {i, j} €S, once
we condition on the occurrence of event C. This holds for all i,j€gq, so by
definition of Z_ we have g € Z_. This establishes (32).

Define a set,

X= {qe([Z]);max{Eif:i,qu}<0.5—T},

(note that X is not a random variable, while Z_,S_ are). Now, for ¢ € X, the
induced subtree in 7' has mutation probability at least f(n) on its central edge, and
mutation probability of no more than max{E": i,j € q} < 0.5 — 7 on any pendant
edge. Then, by Theorem 8 we have

~(1-VI=2f) "%

P[B,] =1—18exp g (33)
whenever g € X. Also, the occurrence of event C implies that
Z_CX, (34)

since if g€ Z,, and i,j € q, then i,j €S,_, and then (by event C), EV <0.5— 7,
hence g € X. Thus, since B= N, B,, we have

Pwmckﬂb(ﬂBJmC

q4€Z,

zﬂ(ﬂBJﬁC,

qgeEX

where the second inequality follows from (34), as this shows that when C occurs,
Ngez B, 2 N, e x B, Invoking the Bonferonni inequality, we deduce that

P[BNC]=1- ¥ P[B,] -P[C]. (35)

qgeX
Thus, from above,

P[ANB]=P[ANBNC]=P[BNC],
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(since P[A|C]=1), and so, by (33) and (35),

~(1-VI=2f) "%

8

P[A ﬁB]Zl—lS(Z)exp _(nz_n)eﬁzk/z‘

Formula (25) follows by an easy calculation. ]

6.2. Distributions on Trees

In the previous section we provided an upper bound on the sequence length that
suffices for the Dyadic Closure Method to achieve an accurate estimation with high
probability, and this upper bound depends critically upon the depth of the tree. In
this section, we determine the depth of a random tree under two simple models of
random binary trees.

These models are the uniform model, in which each tree has the same probabil-
ity, and the Yule—Harding model, studied in [2,8,27] (the definition of this model is
given later in this section). This distribution is based upon a simple model of
speciation, and results in “bushier” trees than the uniform model. The following
results are needed to analyze the performance of our method on random binary
trees.

Theorem 10.

(i) For a random semilabeled binary tree T with n leaves under the uniform model,
depth(T) < (2 + o(1)log, log ,(2n) with probability 1 — o(1).

(i) For a random semilabeled binary tree T with n leaves under the Yule—Harding
distribution, after suppressing the root, depth(T) = (1 + o(1))log, log, n with
probability 1 — o(1).

Proof. This proof relies upon the definition of an edi-subtree, which we now
define. If (a, b) is an edge of a tree T, and we delete the edge (a, b) but not the
endpoints a or b, then we create two subtrees, one containing the node a and one
containing the node b. By rooting each of these subtrees at a (or b), we obtain an
edge-deletion induced subtree, or “edi-subtree.”

We now establish (i). Recall that the number of all semilabeled binary trees is
(2n —5)!! Now there is a unique (unlabeled) binary tree F on 2'+ 1 leaves with
the following description: one endpoint of an edge is identified with the degree 2
root of a complete binary tree with 2’ leaves. The number of semilabeled binary
trees whose underlying topology is F is (2 + 1)! /2% !, This is fairly easy to check
and this also follows from Burnside’s lemma as applied to the action of the
symmetric group on trees, as was first observed by [32] in this context. A rooted
semilabeled binary forest is a forest on n labeled leaves, m trees, such that every
tree is either a single leaf or a binary tree which is rooted at a vertex of degree 2. It
was proved by Carter et al. [11] that the number of rooted semilabeled binary
forests is

N(n,m) = (2”n:f’l_ 1)(2n—2m— NI
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Now we apply the probabilistic method. We want to set a number ¢ large enough,
such that the total number of edi-subtrees of depth at least ¢ in the set of all
semilabeled binary trees on n vertices is o((2n — 5)!!). The theorem then follows
for this number 7. We show that some ¢ = (2 + o(1))log, log,(2n) suffices. We
count ordered pairs in two ways, as usual: Let E, denote the number of edi-sub-
trees of depth at least ¢ (edi-subtrees induced by internal edges and leaf edges
combined) counted over of all semilabeled trees. Then E, is equal to the number
of ways to construct a rooted semilabeled binary forest on n leaves of 2 + 1 trees,
then use the 2 + 1 trees as leaf set to create all F-shaped semilabeled trees (as
described above), with finally attaching the leaves of F to the roots of the elements
of the forest. Then E, = (2" + 1)! /2% ~')N(n,2" + 1). Hence everything boils down
to finding a ¢ for which

Q'+D!(2p—2t=2
22‘—1 2t

Clearly ¢t = (2 + 8)log, log,(2n) suffices.

We now consider (ii). First we describe the proof for the usual rooted
Yule—Harding trees. These trees are defined by the following construction proce-
dure. Make a random permutation 7, 7,,..., w, of the n leaves, and join 7, and
7, by edges t a root R of degree 2. Add each of the remaining leaves sequentially,
by randomly (with the uniform probability) selecting an edge incident to a leaf in
the tree already constructed, subdividing the edge, and make 7; adjacent to the
newly introduced node. For the depth of a Yule—Harding tree, consider the
following recursive labeling of the edges of the tree. Call the edge ;R (for i = 1,2)
“i new.” When m; is added (i > 3) by insertion into an edge with label “j new,” we
given label “i new” to the leaf edge added, give label “j new” to the leaf part of the
subdivided edge, and turn the label “j new” into “j old” on the other part of the
subdivided edge. Clearly, after / insertions, all numbers 1,2,...,/ occur exactly
once with label new, in each occasion labeling leaf edges. The following which may
help in understanding the labeling: edges with “old” label are exactly the internal
edges and j is the smallest label in the subtree separated by an edge labeled
“j old” from the root R, any time during the labeling procedure.

We now derive an upper bound for the probability that an edi-subtree of depth
d develops. If it happens, then a leaf edge inserted at some point has to grow a
deep edi-subtree on one side. Let us denote by T the rooted random tree that we
already obtained with i leaves. Consider the probability that the most recently
inserted edge i new ever defines an edi-subtree with depth d. Such an event can
happen in two ways: this edi-subtree may emerge on the leaf side of the edge or on
the tree side of the edge (these sides are defined when the edge is created). Let us
denote these probabilities by P[i, OUT|T;®] and P[i, IN|T;®], since these probabili-
ties may depend on the shape of the tree already obtained (and, in fact, the second
probability does so depend on the shape of T.}). We estimate these quantities with
tree-independent quantities.

For the moment, take for granted the following inequalities,

P[i,OUTITR| < P[i, IN|T], (36)

)(2;1—2”1 —3)l=0((2n-5)!).

P[i,INITR]| < e(d,n), (37)
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for some function e(d, n) defined below. Clearly,

P[3 depth d edi-subtree] < 2 Y P[i,OUTITR|P[TR] + P[i, INITR| P[],

i=1 R
(38)
and using (36) and (37), (38) simplifies to
P[3 depth d edi-subtree] <2ne(d,n). (39)

We now find an appropriate e(d, n).

For convenience we assume that 2* = n — 2, since it simplifies the calculations.
Set k=2%"1—1, it is clear that at least k properly placed insertions are needed to
make the current edge “i new” have depth d on its tree side. Indeed, 7; was
inserted into a leaf edge labeled “j new” and one side of this leaf edge is still a
leaf, which has to develop into depth d — 1, and this development requires at least
k new leaf insertions.

Focus now entirely on the k insertions that change “j new” into an edi-subtree
of depth d — 1. Rank these insertions by 1,2,...,k in order, and denote by 0 the
original “j new” leaf edge. Then any insertion ranked i > 1 may go into one of
those ranked 0,1,...,i — 1. Call the function which tells for i=1,2,..., k%, which
depth i is inserted into, a core. Clearly, the number of cores is at most k*.

We now estimate the probability that a fixed core emerges. For any fixed
i, <i, < -+ <i,, the probability that inserting ™, will make the insertion enumer-
ated under depth j, for all j =1,2,...,k, is at most

1 1 1

ii—1 i,—1 i—1

by independence. Summarizing our observations,

1 1 1
P[i,INIT?] <kfol | =, —....,
i i+1 n—1
ko L] ! 40

< e, ,

B R S (40)
where g is the symmetric polynomial of m variables of degree k. We set
e(n,d)=a}r,(3,3,...,—-5). To estimate (40), observe that any term in
ak ,(3,5,...,) can be described as having exactly a; reciprocals of integers

substituted from the interval (27", 27]. The point is that those reciprocals differ
little in each of those intervals, and hence a close estimate is possible. A generic
term of g;* , as described above is estimated from above by

SRR &
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Hence e€(n, d) is at most

2 4 8 2371 —(1-a -a s—1a
Z (01)(02)(03)'”(%1)2 d-ay+2-a5+ - +(s—1) r]), (42)

a;ta+ -+ +.al‘,1=k
a;<2'

by (41). Since

i 1
2 —ia;
(a_)Z = a!’

(42) is less than or equal

1
L alay--a,_,!"
u1+az+~~~+>a54=k 1-%2 s—1
a;<2'

(43)

Observe that the number of terms in (43) is at most the number of compositions of
k into s — 1 terms,

k+s—2
s—2 )

The product of factorials is minimized (irrespective of a; <2') if all a;s are taken
equal. Hence, setting k =s'"? for any fixed § > 0, (43) is at most

)
B [(ESE—

and (39) goes to zero. For the depth d, our calculation yields (1+ 8+
o(1))log, log, n with probability 1 — o(1).

We leave the establishment of (36) to the reader. Now, to obtain a similar result
for unrooted Yule—Harding trees, just repeat the argument above, but use the
unrooted 7, instead of the rooted T;X. The probability of any 7, is the sum of
probabilities of 2i — 3 rooted T;%s, since the root could have been on every edge of
T.. Hence formula (37) has to be changed for P[i,IN|T;] < (2n — 3)e(d, n). With
this change the same proof goes through, and the threshold does not change. ]

and hence

e(n,d) <k*

6.3. The Performance of Dyadic Closure Method and Two Other Distance Methods
for Inferring Trees in the Neyman 2-State Model

In this section we describe the convergence rate for the DCM method, and
compare it briefly to the rates for two other distance-based methods, the Agarwala
et al. 3-approximation algorithm [1] for the L, nearest tree, and neighbor-joining
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[40]. We make the natural assumption that all methods use the same corrected
empirical distances from Neyman 2-state model trees.

The neighbor-joining method is perhaps the most popular distance-based method
used in phylogenetic reconstruction, and in many simulation studies (see [33,34,41]
for an entry into this literature) it seems to outperform other popular distance
based methods. The Agarwala et al. algorithm [1] is a distance-based method which
provides a 3-approximation to the L, nearest tree problem, so that it is one of the
few methods which provide a provable performance guarantee with respect to any
relevant optimization criterion. Thus, these two methods are two of the most
promising distance-based methods against which to compare our method. Both
these methods use polynomial time.

In [23], Farach and Kannan analyzed the performance of the 3-approximation
algorithm with respect to tree reconstruction in the Neyman 2-state model, and
proved that the Agarwala et al. algorithm converged quickly for the variational
distance (a related but different concern). Recently, Kannan [35] extended the
analysis and obtained the following counterpart to (25): If T is a Neyman 2-state
model tree with mutation rates in the range [f, g], and if sequences of length &’
are generated on this tree, where

c'-logn

> f2(1 _ zg)zdiam(T) ’

(44)

for an appropriate constant ¢’, and were diam(7') denotes the “diameter” of T,
then with probability 1 —o(1) the result of applying Agarwala et al. to corrected
distances will be a tree with the same topology as the model tree. In [5], Atteson
proved an identical statement for neighbor-joining, though with a different con-
stant (the proved constant for neighbor-joining is smaller than the proved constant
for the Agarwala et al. algorithm).

Comparing this formula to (25), we note that the comparison of depth and
diameter is the issue, since (1 — /1 —2f)*=0O(f?) for small f. It is easy to see
that diam(7") > 2 depth(T') for binary trees T, but the diameter of a tree can in fact
be quite large (up to n — 1), while the depth is never more than log n. Thus, for
every fixed range of mutation probabilities, the sequence length that suffices to
guarantee accuracy for the neighbor-joining or Agarwala et al. algorithms can be
quite large (i.e., it can grow exponentially in the number of leaves), while the
sequence length that suffices for the Dyadic Closure Method will never grow more
than polynomially. See also [20,21,39] for further studies on the sequence length
requirements of these methods.

The following table summarizes the worst case analysis of the sequence length
that suffices for the dyadic closure method to obtain an accurate estimation of the
tree, for a fixed and a variable range of mutation probabilities. We express these
sequence lengths as functions of the number n of leaves, and use results from (25)
and Section 6.2 on the depth of random binary trees. “Best case” (respectively,
“worst case”) trees refers to best case (respectively worst case) shape with respect
to the sequence length needed to recover the tree as a function of the number n of
leaves. Best case trees for DCM are those whose depth is small with respect to the
number of leaves; these are the caterpillar trees, i.e., trees which are formed by
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TABLE 1 Sequence Length Needed by Dyadic Closure Method to Return Trees under the
Neyman 2-State Model

Range of Mutation Probabilities on Edges:

[f.g] 1 loglogn
f, g are constants , —————
logn™ logn
Worst case trees polynomial polylog
Best case trees logarithmic polylog
Random (uniform) trees polylog polylog
Random (Yule-Harding) trees polylog polylog

attaching n leaves to a long path. Worst case trees for DCM are those trees whose
depth is large with respect to the number of leaves; these are the complete binary
trees. All trees are assumed to be binary.

One has to keep in mind that comparison of performance guarantees for
algorithms do not substitute for comparison of performances. Unfortunately, no
analysis is available yet on the performance of the Agarwala et al. and neighbor-
joining algorithms on random trees, therefore we had to use their worst case
estimates also for the case of random leaves.

7. SUMMARY

We have provided upper and lower bounds on the sequence length k for accurate
tree reconstruction, and have shown that in certain cases these two bounds are
surprisingly close in their order of growth with n. It is quite possible that even
better upper bounds could be obtained by a tighter analysis of our DCM approach,
or perhaps by analyzing other methods.

Our results may provide a nice analytical explanation for some of the surprising
results of recent simulation studies (see, for example, [30]) which found that trees
on hundreds of species could be accurately reconstructed from sequences of only a
few thousand sites long. For molecular biology the results of this paper may be
viewed, optimistically, as suggesting that large trees can be reconstructed accu-
rately from realistic length sequences. Nevertheless, some caution is required, since
the evolution of real sequences will only be approximately described by these
models, and the presence of very short and/or very long edges will call for longer
sequence lengths.

ACKNOWLEDGMENTS
Thanks are due to Sampath Kannan for extending ;he analysis of [23] to consider

the topology estimation, and to David Bryant and Eva Czabarka for proofreading
the manuscript.



182 ERDOS ET AL.

Tandy Warnow was supported by an NSF Young Investigator Award CCR-
9457800, a David and Lucille Packard Foundation fellowship, and generous re-
search support from the Penn Research Foundation and Paul Angello. Michael
Steel was supported by the New Zealand Marsden Fund and the New Zealand
Ministry of Research, Science and Technology. Péter L. Erdés was supported in
part by the Hungarian National Science Fund contracts T 016 358. Laszl6 Székely
was supported by the National Science Foundation grant DMS 9701211, the
Hungarian National Science Fund contracts T 016 358 and T 019 367, and
European Communities (Cooperation in Science and Technology with Central and
Eastern European Countries) contract ERBCIPACT 930 113. This research started
in 1995 when the authors enjoyed the hospitality of DIMACS during the Special
Year for Mathematical Support to Molecular Biology, and was completed in 1997
while enjoying the hospitality of Andreas Dress, at Universitit Bielefeld, in
Germany.

REFERENCES

[1] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup, On the
approximability of numerical taxonomy: fitting distances by tree metrics, Proceedings of
the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 365-372.

[2] D.J. Aldous, “Probability distributions on cladograms,” Discrete random structures,
IMA Vol. in Mathematics and its Applications, Vol. 76, D.J. Aldous and R. Permantle
(Editors), Springer-Verlag, Berlin/New York, 1995, pp. 1-18.

[3] N. Alon and J.H. Spencer, The probabilistic method, Wiley, New York, 1992.

[4] A. Ambainis, R. Desper, M. Farach, and S. Kannan, Nearly tight bounds on the
learnability of evolution, Proc of the 1998 Foundations of Comp Sci, to appear.

[5] K. Atteson, The performance of neighbor-joining algorithms of phylogeny reconstruc-
tion, Proc COCOON 1997, Computing and Combinatorics, Third Annual International
Conference, Shanghai, China, Aug. 1997, Lecture Notes in Computer Science, Vol.
1276, Springer-Verlag, Berlin/New York, pp. 101-110.

[6] H.-J. Bandelt and A. Dress, Reconstructing the shape of a tree from observed
dissimilarity data, Adv Appl Math 7 (1986), 309—-343.

[71 V. Berry and O. Gascuel, Inferring evolutionary trees with strong combinatorial
evidence, Proc COCOON 1997, Computing and Combinatorics, Third Annual Interna-
tional Conference, Shanghai, China, Aug. 1997, Lecture Notes in Computer Science,
Vol. 1276, Springer-Verlag, Berlin/New York, pp. 111-123.

[8] J.K.M. Brown, Probabilities of evolutionary trees, Syst Biol 43 (1994), 78-91.

[9] D.J. Bryant and M.A. Steel, Extension operations on sets of leaf-labelled trees, Adv
Appl Math 16 (1995), 425-453.

[10] P. Buneman, “The recovery of trees from measures of dissimilarity,” Mathematics in
the archaeological and historical sciences, F.R. Hodson, D.G. Kendall, P. Tatu (Editors),
Edinburgh Univ. Press, Edinburgh, 1971, pp. 387-395.

[11] M. Carter, M. Hendy, D. Penny, L.A. Székely, and N.C. Wormald, On the distribution
of lengths of evolutionary trees, SIAM J Disc Math 3 (1990), 38—47.

[12] J.A. Cavender, Taxonomy with confidence, Math Biosci 40 (1978), 271-280.

[13] J.T. Chang and J.A. Hartigan, Reconstruction of evolutionary trees from pairwise
distributions on current species, Computing Science and Statistics: Proc 23rd Symp on
the Interface, 1991, pp. 254-257.



FEW LOGS SUFFICE TO BUILD (ALMOST) ALL TREES 183

[14] H. Colonius and H.H. Schultze, Tree structure for proximity data, British J Math Stat
Psychol 34 (1981), 167-180.

[15] W.H.E. Day, Computational complexity of inferring phylogenies from dissimilarities
matrices, Inform Process Lett 30 (1989), 215-220.

[16] W.H.E. Day and D. Sankoff, Computational complexity of inferring phylogenies by
compatibility, Syst Zoology 35 (1986), 224-229.

[17] M.C.H. Dekker, Reconstruction methods for derivation trees, Master’s Thesis, Vrije
Universiteit, Amsterdam, 1986.

[18] P. ErdGs and A. Rényi, On a classical problem in probability theory, Magy Tud Akad
Mat Kutaté Int Kozl 6 (1961), 215-220.

[19] P.L. Erdds, M.A. Steel, L.A. Székely, and T. Warnow, Local quartet splits of a binary
tree infer all quartet splits via one dyadic inference rule, Comput Artif Intell 16(2)
(1997), 217-227.

[20] P.L. Erdds, M.A. Steel, L.A. Székely, and T. Warnow, “Inferring big trees from short
quartets,” ICALP’97, 24th International Colloquium on Automata, Languages, and
Programming (Silver Jubilee of EATCS), Bologna, Italy, July 7-11, 1997, Lecture Notes
in Computer Science, Vol. 1256, Springer-Verlag, Berlin/New York, 1997, 1-11.

[21] P.L. Erd8s, M.A. Steel, L.A. Székely, and T. Warnow, A few logs suffice to build
(almost) all trees-1II, Theoret Comput Sci special issue on selected papers from ICALP
1997, to appear.

[22] P.L. Erdds, K. Rice, M. Steel, L. Szekely, and T. Warnow, The short quartet method,
Mathematical Modeling and Scientific Computing, to appear.

[23] M. Farach and S. Kannan, Efficient algorithms for inverting evolution, Proc ACM Symp
on the Foundations of Computer Science, 1996, pp. 230—236.

[24] M. Farach, S. Kannan, and T. Warnow, A robust model for inferring optimal evolution-
ary trees, Algorithmica 13 (1995), 155-179.

[25] J.S. Farris, A probability model for inferring evolutionary trees, Syst Zoology 22 (1973),
250-256.

[26] J. Felsenstein, Cases in which parsimony or compatibility methods will be positively
misleading, Syst Zoology 27 (1978), 401-410.

[27] E.F. Harding, The probabilities of rooted tree shapes generated by random bifurcation,
Adv Appl Probab 3 (1971), 44-77.

[28] M.D. Hendy, The relationship between simple evolutionary tree models and observable
sequence data, Syst Zoology 38(4) (1989), 310-321.

[29] D. Hillis, Approaches for assessing phylogenetic accuracy, Syst Biol 44 (1995), 3-16.
[30] D. Hillis, Inferring complex phylogenies, Nature 383(12) (Sept. 1996), 130-131.

[31] D. Hillis, J. Huelsenbeck, and D. Swofford, Hobgoblin of phylogenetics? Nature 369
(1994), 363-364.

[32] M. Hendy, C. Little, and D. Penny, Comparing trees with pendant vertices labelled,
SIAM J Appl Math 44 (1984), 1054-1065.

[33] J. Huelsenbeck, Performance of phylogenetic methods in simulation, Syst Biol 44
(1995), 17-48.

[34] J.P. Huelsenbeck and D. Hillis, Success of phylogenetic methods in the four-taxon case,
Syst Biol 42 (1993), 247-264.

[35] S. Kannan, personal communication.

[36] M. Kimura, Estimation of evolutionary distances between homologous nucleotide
sequences, Proc Nat Acad Sci USA 78 (1981), 454-458.



184 ERDOS ET AL.

[37] J. Neyman, “Molecular studies of evolution: a source of novel statistical problems,”
Statistical decision theory and related topics, S.S. Gupta and J. Yackel (Editors),
Academic Press, New York, 1971, pp. 1-27.

[38] H. Philippe and E. Douzery, The pitfalls of molecular phylogeny based on four species,
as illustrated by the cetacea/artiodactyla relationships, J Mammal Evol 2 (1994),
133-152.

[39] K. Rice and T. Warnow, “Parsimony is hard to beat!,” Proc COCOON 1997, Comput-
ing and combinatorics, Third Annual International Conference, Shanghai, China, Aug.
1997, Lecture Notes in Computer Science, Vol. 1276, Springer-Verlag, Berlin/New
York, pp. 124-133.

[40] N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing
phylogenetic trees, Mol Biol Evol 4 (1987), 406—425.

[41] N. Saitou and T. Imanishi, Relative efficiencies of the Fitch—Mzargoliash, maximum
parsimony, maximum likelihood, minimum evolution, and neighbor-joining methods of
phylogenetic tree construction in obtaining the correct tree, Mol Biol Evol 6 (1989),
514-525.

[42] Y.S. Smolensky, A method for linear recording of graphs, USSR Comput Math Phys 2
(1969), 396-397.

[43] M.A. Steel, The complexity of reconstructing trees from qualitative characters and
subtrees, J Classification 9 (1992), 91-116.

[44] M.A. Steel, Recovering a tree from the leaf colourations it generates under a Markov
model, Appl Math Lett 7 (1994), 19-24.

[45] M.A. Steel, L.A. Székely, and P.L. Erd8s, The number of nucleotide sites needed to
accurately reconstruct large evolutionary trees, DIMACS Technical Report No. 96-19.

[46] M.A. Steel, L.A. Székely, and M.D. Hendy, Reconstructing trees when sequence sites
evolve at variable rates, J Comput Biol 1 (1994), 153-163.

[47] K. Strimmer and A. von Haeseler, Quartet puzzling: a quartet maximum likelihood
method for reconstructing tree topologies, Mol Biol Evol 13 (1996), 964-969.

[48] K. Strimmer, N. Goldman, and A. von Haeseler, Bayesian probabilities and quartet
puzzling, Mol Biol Evol 14 (1997), 210-211.

[49] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis, “Phylogenetic inference,”
Molecular systematics, D.M. Hillis, C. Moritz, and B.K. Mable (Editors), Chap. 11, 2nd
ed., Sinauer Associates, Inc., Sunderland, 1996, pp. 407-514.

[50] N. Takezaki and M. Nei, Inconsistency of the maximum parsimony method when the
rate of nucleotide substitution is constant, J Mol Evol 39 (1994), 210-218.

[51] T. Warnow, Combinatorial algorithms for constructing phylogenetic trees, Ph.D. thesis,
University of California-Berkeley, 1991.

[52] P. Winkler, personal communication.

[53] K. A. Zaretsky, Reconstruction of a tree from the distances between its pendant
vertices, Uspekhi Math Nauk (Russian Math Surveys), 20 (1965), 90-92 (in Russian).

[54] A. Zharkikh and W.H. Li, Inconsistency of the maximum-parsimony method: The case
of five taxa with a molecular clock, Syst Biol 42 (1993), 113-125.

[55] S.J. Wilson, Measuring inconsistency in phylogenetic trees, J Theoret Biol 190 (1998),
15-36.



Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 221 (1999) 77-118

www.elsevier.com/locate/tcs

A few logs suffice to build (almost) all trees: Part 11

Péter L. Erdos**, Michael A. Steel®, Laszlo A. Székely®,
Tandy J. Warnow!
d Mathematical Institute of the Hungarian Academy of Sciences, P.O.Box 127,1364 Budapest, Hungary
b Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

¢ Department of Mathematics, University of South Carolina, Columbia, SC, USA
4 Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA, USA

Abstract

Inferring evolutionary trees is an interesting and important problem in biology, but one that is
computationally difficult as most associated optimization problems are NP-hard. Although many
methods are provably statistically consistent (i.e. the probability of recovering the correct tree
converges to 1 as the sequence length increases), the actual rate of convergence for different
methods has not been well understood. In a recent paper we introduced a new method for
reconstructing evolutionary trees called the dyadic closure method (DCM), and we showed that
DCM has a very fast convergence rate. DCM runs in O(x® logn) time, where 7 is the number
of sequences, and so, although polynomial, the computational requirements are potentially too
large to be of use in practice. In this paper we present another tree reconstruction method, the
witness—antiwitness method (WAM). WAM is faster than DCM, especially on random trees, and
converges to the true tree topology at the same rate as DCM. We also compare WAM to other
methods used to reconstruct trees, including Neighbor Joining (possibly the most popular method
among molecular biologists), and new methods introduced in the computer science literature.
(© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Rooted leaf-labelled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology (where such trees are called
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“phylogenies™). Molecular techniques have recently provided large amounts of sequence
(DNA, RNA, or amino-acid) data that are being used to reconstruct such trees. Statis-
tically based methods construct trees from sequence data, by exploiting the variation in
the sequences due to random mutations that have occurred. A typical assumption made
by these tree construction methods is that the evolutionary process operates through
“point mutations”, where the positions, or “sites”, within the sequences mutate down
the tree. Thus, by modelling how the different sites evolve down the tree, the entire
mutational process on the sequences can be described. A further assumption that is
typically made is that the evolutionary processes governing each site are identical, and
independent (i.i.d.). For such models of evolution, some tree construction methods are
guaranteed to recover the underlying unrooted tree from adequately long sequences
generated by the tree, with arbitrarily high probability.

There are two basic types of tree reconstruction methods: sequence-based methods
and distance-based methods. Distance-based methods for tree reconstruction have two
steps. In the first step, the input sequences are represented by an » x n matrix d of pair-
wise dissimilarities (these may or may not observe the triangle inequality, and hence
may not be truly “distances”). In the second step, the method M computes an additive
matrix M(d) (that is, an n x »n distance matrix which exactly fits an edge-weighted tree)
from the pairwise dissimilarity matrix, d. Distance methods are typically polynomial
time. Sequence-based methods, on the other hand, do not represent the relationship
between the sequences as a distance matrix; instead, these methods typically attempt to
solve NP-hard optimization problems based upon the original sequence data, and are
computationally intensive. See [26] for further information on phylogenetic methods in
general.

A tree reconstruction method, whether sequence-based or distance-based, is con-
sidered to be accurate with respect to the topology prediction if the tree associated
(uniquely) with the computed additive matrix has the same unrooted topology as
the tree used to generate the observed sequences. A method is said to be sraristi-
cally consistent for a model tree T if the probability of recovering the topology of
T from sequences generated randomly on 7 converges to 1 as the sequence length
increases to infinity. It has long been understood that most distance-based methods
are statistically consistent methods for inferring trees under models of evolution in
which the sites evolve i.i.d., but that some sequence-based methods (notably, the op-
timization problem maximum parsimony [25]) are not statistically consistent on all
trees under these models. For this reason, some biologists prefer to use distance-
based methods. However, not much is known, even experimentally, about the se-
quence length a given distance-based method needs for exact topological accuracy
with high probability. How long the sequences have to be to guarantee high proba-
bility of recovering the tree depends on the reconstruction method, the details of the
model, and the number » of species. Determining bounds on that length and its growth
with » has become more pressing since biologists have begun to reconstruct trees
on increasingly larger numbers of species (often up to several hundred) from such
sequences.
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In a previous paper [20], we addressed this question for trees under the Neyman
2-state model of site evolution, and obtained the following results:

1. We established a lower bound of log n on the sequence length that every method,
randomized or deterministic, requires in order to reconstruct any given n-leaf tree
in any 2-state model of sequence evolution,

2. We showed that the maximum compatibility method of phylogenetic tree construc-
tion requires sequences of length at least nlog n to obtain the tree with high prob-
ability, and

3. We presented a new polynomial time method (the dyadic closure method (DCM))
for reconstructing trees in the Neyman 2-state model, and showed that polylogarith-
mic length sequences suffice for accurate tree reconstruction with probability near
one on almost all trees, and polynomial length sequence length always suffices for
any tree under reasonable assumptions on mutation probabilities.

Thus, the DCM [20] has a very fast convergence rate, which on almost all trees is
within a polynomial of our established lower bound of log# for any method. However,
although DCM uses only polynomial time, it has large computational requirements (it
has Q(n%k + »° log n) running time, and uses O(#n*) space), where k is the sequence
length. This may make it infeasible for reconstructing large trees.

In this paper, we present the witness—antiwitness method (WAM), a new and faster
quartet-based method for tree reconstruction, which has the same asymptotic conver-
gence rate as the DCM. The running time of WAM has a worst-case bound O(n%k +
n* log nlog k) where k is the sequence length, and is even faster under some reason-
able restrictions on the model (see Theorem 12 for details). Thus, WAM is a faster
algorithm than DCM, and has essentially the same convergence rate to the true tree
topology as DCM. The provable bounds on the running time of WAM depend heavily
on the depth of the model tree. We introduced the “depth” in [20] and showed that
depth(T) is bounded from above by log » for all binary trees T, and that random trees
have depths bounded by O(log log n).

In addition to presenting the new method, we present a framework for a comparative
analysis of the convergence rates of different distance based methods. We apply this
technique to several different methods, neighbor joining [43], the Agarwala et al. [1]
“single-pivot” algorithm and its variant [21], the “double-pivot” algorithm, and the
naive quartet method (a method we describe in this paper). We obtain upper bounds
on the sequence lengths that suffice for accuracy for these distance-based methods, and
show that these upper bounds grow exponentially in the weighted diameter of the tree,
which is the maximum number of expected mutations for a random site on any leaf-
to-leaf path in the tree. We analyze the weighted diameter of random trees under two
distributions. We show that the diameter of random trees is €2(1/n) under the uniform
distribution, and Q(log n) under the Yule-Harding distribution. Consequently, these
upper bounds on the sequence lengths that suffice for accuracy for these other distance-
based methods are significantly larger than the upper bounds obtained for DCM and
WAM. We note that our upper bounds for the algorithms in [1,21] match those given
by Sampath Kannan (personal communication). Finally, we generalize our methods and
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results to more general Markov models, and find the same relative performance (these
results should be compared to those of Ambainis et al. in [4]). (While this framework
provides a comparison between the convergence rates of these methods, it is limited by
the fact that these are upper bounds on the sequence lengths that suffice for accuracy
for these distance methods. These upper bounds may be loose, but no better upper
bounds on these methods are yet known, to our knowledge. Obtaining better bounds
on the convergence rates of these and other methods is an important open question.)

The structure of the paper is as follows. In Section 2 we provide definitions and
discuss tree reconstruction methods in general. In Section 3, we describe the analytical
framework for deriving upper bounds on the sequence lengths needed by different meth-
ods for exact accuracy in tree reconstruction, and we use this framework to provide an
initial comparison between various distance-based methods. In Section 4, we describe
the witness—antiwitness tree construction algorithm (WATC), and in Section 5, we de-
scribe the witness—antiwitness method (WAM) in full. In Section 6, we analyze the per-
formance of WAM for reconstructing trees under the Neyman model of site evolution,
and compare its performance to other promising distance-based methods. We extend the
analysis of WAM to reconstructing trees under the general r-state Markov model in Sec-
tion 7. Finally, in Section 8, we disucss the applicability of our results to biological data.

2. Definitions

Notation. P[4] denotes the probability of event 4; E[X] denotes the expectation of
random variable X. We denote the natural logarithm by log. The set [#] denotes
{1,2,...,n} and for any set S, (f) denotes the collection of subsets of S of size
k. R denotes the real numbers.

Definition. (I) Trees. We will represent a phylogenetic tree T by a semi-labelled tree
whose leaves (vertices of degree one) are labelled by extant species, numbered by
1,2,...,n, and whose remaining internal vertices (representing ancestral species) are
unlabelled. We will adopt the biological convention that phylogenetic trees are binary,
meaning that all internal nodes have degree three, and we will also assume that T is
unrooted (this is due to scientific and technical reasons which indicate that the location
of the root can be either difficult or impossible to determine from data). We let B(n)
denote the set of all (2n—5)!'=(2n—5)(2n—7)---3-1 semi-labelled binary trees on
the leaf set [n].

The path between vertices u and v in the tree is called the uv path, and is denoted
P(u,v). The topological distance L(u,v) between vertices u and v in a tree T is the
number of edges in P(u,v). The edge set of the tree is denoted by E(T). Any edge
adjacent to a leaf is called a leaf edge, any other edge is called an internal edge. For
a phylogenetic tree T and S C[n], there is a unique minimal subtree of T, containing
all elements of S. We call this tree the subtree of T induced by S, and denote it by
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T\s. We obtain the contracted subtree induced by S, denoted by T, |§, if we substitute
edges for all maximal paths of 7|g in which every internal vertex has degree two. We
denote by ij|kl the tree on four leaves i,j,k,/ in which the pair 7,/ is separated from
the pair &,/ by an internal edge. When the contracted subtree of 7 induced by leaves
i,/ k, 1 is the tree ij|kl, we call ij|kl a valid quartet split of T on the quartet of leaves
{i,j,k,I}. Since all trees are assumed to be binary, all contracted subtrees (including,
in particular, the quartet subtrees) are also binary. Consequently, the set Q(T') of valid
quartet splits for a binary tree 7 has cardinality (:) .

(I) Sites. Consider a set C of character states (such as C={4,C,G,T} for DNA
sequences; C = {the 20 amino acids} for protein sequences; C ={R,Y} or {0,1} for
purine—pyrimidine sequences). A sequence of length k is an ordered k-tuple from C
— that is, an element of C*. A collection of n such sequences — one for each species
labelled from [n] — is called a collection of aligned sequences.

Aligned sequences have a convenient alternative description as follows. Place the
aligned sequences as rows of an »n x k matrix, and call site i the ith column of this
matrix. A pattern is one of the |C|" possible columns.

(1I1) Site substitution models. Many models have been proposed to describe the evo-
lution of sites as a stochastic process. Such models depend on the underlying phyloge-
netic tree 7 and some randomness. Most models assume that the sites are independently
and identically distributed (i.i.d.).

The models on which we test our algorithm also assume the Markov property that
the random assignment of a character state to a vertex v is determined by the character
state of its immediate ancestor, and a random substitution on the connecting edge.
In the most general stochastic model that we study, the sequence sites evolve i.i.d.
according to the general Markov model from the root [47]. We now briefly discuss this
general Markov model. Since the i.i.d. condition is assumed, it is enough to consider
the evolution of a single site in the sequences. Substitutions (point mutations) at a site
are generally modelled by a probability distribution 7 on a set of »>1 character states
at the root p of the tree (an arbitrary vertex or a subdividing point on an edge), and
each edge e oriented out from the root has an associated » x » stochastic transition
matrix M(e). The random character state at the root “evolves” down the tree — thereby
assigning characters randomly to the vertices, from the root down to the leaves. For
each edge e = (u,v), with u between v and the root, (M (e)).s is the probability that v
has character state § given that u has character state a.

(IV) The Neyman model. The simplest stochastic model is a symmetric model
for binary characters due to Neyman [40], and was also developed independently by
Cavender [12] and Farris [24]. Let {0, 1} denote the two states. The root is a fixed leaf,
the distribution 7 at the root is uniform. For each edge e of T we have an associated
mutation probability, which lies strictly between 0 and 0.5. Let p:E(T)—(0,0.5)
denote the associated map. We have an instance of the general Markov model with
M(e)o1 =M (e)o = p(e). We will call this the Neyman 2-state model, but note that it
has also been called the Cavender—Farris model, and is equivalent to the Jukes—Cantor
model when restricted to two states.
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The Neyman 2-state model is hereditary on subsets of the leaves — that is, if we
select a subset S of [n], and form the subtree 7T|g, then eliminate vertices of degree
two, we can define mutation probabilities on the edges of Tl’g so that the probability
distribution on the patterns on S is the same as the marginal of the distribution on
patterns provided by the original tree 7. Furthermore, the mutation probabilities that
we assign to an edge of T, |’§ is just the probability p that the endpoints of the associated

path in the original tree T are in different states.

Lemma 1. The probability p that the endpoints of a path P of topological length k
are in different states is related to the mutation probabilities p\, p,,..., px of edges
of P as follows:

1 k
p=; (1 ~ I - 2pi)> .
i=1

Lemma 1 is folklore and is easy to prove by induction.

(V) Distances. Any symmetric matrix, which is zero-diagonal and positive off-
diagonal, will be called a distance matrix. (These “distances”, however, may not satisfy
the triangle inequality, because the distance corrections used in phylogenetics, and de-
scribed below, do not always satisfy the triangle inequality. Since it is nevertheless the
practice in systematics to refer to these quantities as “distances”, we will do so here as
well.) An n x n distance matrix D;; is called additive, if there exists an n-leaf tree (not
necessarily binary) with positive edge lengths on the internal edges and non-negative
edge lengths on the leaf edges, so that D;; equals the sum of edge lengths in the
tree along the P(i,j) path connecting leaves i and j. In [10], Buneman showed that
the following four-point condition characterizes additive matrices (see also [45, 64]):

Theorem 1 (Four-point condition). A4 matrix D is additive if and only if for all i, j,k, |
(not necessarily distinct), the maximum of D;j+Dy;, Dy+Dj;, Dy+Dy is not unique.
The tree with positive lengths on internal edges and non-negative lengths on leaf edges
representing the additive distance matrix is unique among the trees without vertices
of degree two.

Given a pair of parameters (7, p) for the Neyman 2-state model, and sequences of
length & generated by the model, let H(i,j) denote the Hamming distance of sequences
i and j and AY = H(i,j)/k denote the dissimilarity score of sequences i and j. The
empirical corrected distance between i and j is denoted by

dij= — $log(l —2hY). (1)

The probability of a change in the state of any fixed character between the sequences
i and j is denoted by £V =[E(hY), and we let

Dy = — {log(1 —2EY) (2)
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denote the corrected model distance between i and j. We assign to any edge e a
positive length

I(e)= — 1 log(1 — 2p(e)). (3)

By Lemma 1, D;; is the sum of the lengths (see previous equation) along the path
P(i,j) between i and j, and hence D;; is an additive distance matrix. Furthermore,
d;; converges in probability to Dj; as the sequence length tends to infinity. These
mathematical facts also have significance in biology, since under certain continuous
time Markov models [48], which may be used to justify our models, /(¢) and D;; are the
expected number of back-and-forth state changes along edges and paths, respectively.
A similar phenomenon and hence a similar distance correction exists for the general
stochastic model [47], and is discussed in detail in Section 7.

(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function
& that associates either a tree or the statement Fail to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection for
the data given.

According to the practice in systematic biology (see, for example, [31,32,52]), a
method is considered to be accurate if it recovers the unrooted binary tree 7', even if
it does not provide any estimate of the mutation probabilities. A necessary condition
for accuracy, under the models discussed above, is that two distinct trees, 7,77, do
not produce the same distribution of patterns no matter how the trees are rooted, and
no matter what their underlying Markov parameters are. This “identifiability” condition
is violated under an extension of the i.i.d. Markov model when there is an unknown
distribution of rates across sites as described by Steel et al. [49]. However, it is shown
in [47] (see also [13]) that the identifiability condition holds for the i.i.d model under
the weak conditions that the components of 7 are not zero and, for each edge e, the
determinant det(M(e))#£0,1,—1, and in fact we can recover the underlying tree from
the expected frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods ap-
plied to corrected distances will recover the correct tree topology from sufficiently
long sequences. Consequently, one approach (which is guaranteed to yield a stafisti-
cally consistent estimate) to reconstructing trees from distances is to seek an additive
distance matrix of minimum distance (with respect to some metric on distance ma-
trices) from the input distance matrix. Many metrics have been considered, but all
resultant optimization problems have been shown or are assumed to be NP-hard (see
[1,17,23] for results on such problems).

(VII) Specific tree construction algorithms. In this paper, we will be particularly
interested in certain distance methods, the four-point method (FPM), the naive method,
neighbor joining, and the Agarwala et al. algorithm. We now describe these methods.

Four-Point Method (FPM). Given a 4 x 4 distance matrix , return the split i|k/
which satisfies d;; + dy < min{dy +d;;,d;; +d i }. If there is no such split, return
Fail.
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FPM is a not truly a tree reconstruction method, because it can only be applied to
datsets of size four. We include it here, because it is a subroutine in the Naive Method,
which we now describe.

The Naive Method uses the four-point method to infer a split for every quartet
i,j,k,I. Thus, if the matrix is additive, the four-point method can be used to detect
the valid quartet split on every quartet of vertices, and then standard algorithms [6, 14]
can be used to reconstruct the tree from the set of splits. Note that the naive method
is guaranteed to be accurate when the input distance matrix is additive, but it will
also be accurate even for non-additive distance matrices under conditions which we
will describe later (see Section 3). Most quartet-based methods (see, for example,
[7,50,51]) begin in the same way, constructing a split for every quartet, and then
accommodate possible inconsistencies using some technique specific to the method,;
the naive method, by contrast, only returns a tree if all inferred splits are consistent
with that tree. The obvious optimization problem (find a maximum number of quartets
which are simultaneously realizable) is of unknown computational complexity.

The Agarwala et al. algorithm [1] is a 3-approximation algorithm for the nearest
tree with respect to the L., -metric, where L..(4,B)= max;; |[4;; — B;;|. Given input d,
the result of applying the Agarwala et al. algorithm to d is an additive distance matrix
D such that L, (d,D)<3L..(d,D°"), where D" is an optimal solution.

The use of the Agarwala et al. algorithm for inferring trees has been studied in two
papers (see [22] for a study of its use for inferring trees under the Neyman model,
and [4] for a study of its use for inferring trees under the general Markov model).
However, both [22, 4] consider the performance of the Agarwala et al. algorithm with
respect to the variational distance metric. Optimizing with respect to this metric is
related to — but distinct from — estimating the tree T, since it is concerned as well
with the mutational parameters p.

The neighbor joining method [43] is a method for reconstructing trees from distance
matrices, which is based upon agglomerative clustering. It is possibly the most popular
method among molecular biologists for reconstructing trees, and does surprisingly well
in some experimental studies; see, for example, [34, 35].

All these methods are known to be statistically consistent for inferring trees both
under the Neyman 2-state model and under the general r-state Markov model of site
evolution.

3. A framework for the comparison of distance-based methods

Although it is understood that all reasonable distance-based methods will converge
on the true tree given sequences of adequate length, understanding the rate of con-
vergence (as a function of sequence length) to the true topology is more complicated.
However, it is possible sometimes to compare different distance-based methods, without
reference to the underlying model. The purpose of this section is to provide a frame-
work for an explicit comparison among different distance-based methods. We will use
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this technique to compare the 3-approximation algorithm of Agarwala et al. to the
Naive method. Our analysis of these two algorithms shows that on any distance matrix
for which the first algorithm is guaranteed to reconstruct the true tree, so is the naive
method. Since our new method, WAM, is guaranteed to reconstruct the true tree on
any dataset for which the naive method is also guaranteed to reconstruct the true tree,
this analysis also establishes a comparison between the Agarwala et al. algorithm and
WAM.

By the four-point condition (Theorem 1) every additive distance matrix corresponds
to a unique tree without vertices of degree 2, and with positive internal edge lengths,
and non-negative lengths on edges incident with leaves.

Suppose we have a binary model tree 7 with positively weighted internal edges.
Let x be the minimum edge-weight among internal edges, and let D be the associated
additive distance matrix. Let d be an observed distance matrix, and let 4 =L, (d,D).

For every distance-based reconstruction method &, we seek a constant ¢(®) such
that

(@)= sup{c: A<cx = P(d) yields T}.

Lemma 2. (i) Two additive distance matrices D and D' define the same topology if
and only if for all quartets the relative orders of the pairwise sums of distances for
that quartet are identical in the two matrices.

(ii) For every edge-weighted binary tree T with minimum internal edge weight x,
and any 9> 0, there is a different binary tree T' such that L..(D,D")=x/2+1, where
D' is the additive distance matrix for T’

(iii) Given any n x n distance matrix d, four indices i,j,k,1 in [n], let pij; denote
the difference between the maximum and the median of the three pairwise sums,
dij +du, dy +dy, dii + dy. Let P be the maximum of the pgu over all quartets
i,j,k,1. Then there is no additive distance matrix D such that L..(d,D)<P/4.

Proof. Claim (i) is a direct consequence of the four-point condition (Theorem 1).

To prove (ii), for a given T, contract an internal edge e having minimum edge
weight x, obtaining a non-binary tree 7'. 7’ has exactly one vertex adjacent to four
edges. Add x/4 to the weight of each of the four edges. Insert a new edge of weight ¢
to resolve the vertex of degree four, so that we obtain a binary tree 7"/, different from
T. Let D be the additive distance matrix for 7 and let D" be the additive distance
matrix for 7”. It is easy to see that then L..(D,D')=x/2 + 9.

For the proof of (iii), let D be an additive distance matrix with L. (d,D)=¢<t/4.
For all quartets i,j,k [, the median and the maximum of the three pairwise sums
induced by i, j,k I are identical in D. Now consider the quartet 7,k [ for which
Pijr =1. The maximum and the median of the three pairwise sums in d differ by p;u.
In order for the maximum and median of the three pairwise sums to be equal in D,
at least one pairwise distance must change by at least p;/4. However &< p;u/4,
contradicting the assumption. [
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Theorem 2. Let D be an additive n x n distance matrix defining a binary tree T, d be
a fixed distance matrix, and let 5 =L, (d,D). Assume that x is the minimum weight
of internal edges of T in the edge weighting corresponding to D.

(i) A hypothetical exact algorithm for the Lo.-nearest tree is guaranteed to return
the topology of T from d if 6 <x/4.

(i1) (@) The 3-approximation algorithm for the L ,-nearest tree is guaranteed to
return the topology of T from d if d<x/8. (b) For all n there exists at least one d
with § =x/6 for which the method can err. (c) If 6=x/4, the algorithm can err for
every such d.

(iii) The naive method is guaranteed to return the topology of T from d if 6 <x/2,
and there exists a d for any §>x/2 for which the method can err.

Proof. To prove (i), assume that D* is an additive distance matrix with L..(d,D*) <9,
and let T* denote the tree topology corresponding to D*. According to Lemma 2,
Part (i), D* and D define the same tree iff the relative order of pairwise sums of
distances agree for all quartets in the two matrices. We will prove that D* and D
define the same tree topology by contradiction.

So suppose D* and D do not define the same tree topology. Then there is a quartet,
i,J,k, 1, of leaves, where (without loss of generality) the topology induced by matrix
D is ijlkl and the topology induced by matrix D* is ik|jl. Thus, there exist positive
constants P and ¢ so that 2P + Dy; + Dy = Dy + Dj; and D}; + Dy =D} + D} + 2.
Now P2ux, since P is an internal path length in 7. By the triangle inequality we have

Loo(D,D*)<20. “)
We have
2P+2£:D,-k+Dj1—Dij—Dk1+D;;+D:/“D;Z_Dj*l )

and hence by the triangle inequality
2x <2P + 26 <80. (6)

Since § <x/4, this implies that such a quartet i, j,k,/ does not exist, and so D and D*
define the same tree topology.

To prove (ii)(a), let D* denote the output of the 3-approximation algorithm and
T* denote the corresponding tree. Following similar arguments, L..(d,D*)<34, so
that corresponding to formula (4) we have L.(D,D*)<4d, and corresponding to
formula (6) we have 2x < 164. To prove (ii)(b), we now give an example where the
3-approximation algorithm can fail in which L (D,d)=x/6. Let d be distance matrix
defined by d,, =d ., =7/3, dyy=dx =3 and d,;, =d,,, = 10/3. By item (iii) of Lemma
2, it follows that there is no additive distance matrix D with L..(d,D)<1/6. Now let
D be the additive distance matrix induced by the binary tree 7 on leaves wu,v,w,x
with topology uvjwx and with edge length as follows: the central edge in T has
weight 1 and all other edges have weight 13/12. Then, L..(D,d)=1/6 so that D
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is a closest additive distance matrix to d. Furthermore, L,.(d,D)=x/6, since x=1
is the lowest edge weight in 7. However there is another additive distance ma-
trix induced by a different tree which lies within 3 times this minimal distance.
Namely, let D” be the additive distance matrix induced by the binary tree with topol-
ogy uwl|vox with interior edge weighted 1/3 and other edges weighted 5/4. Then,
Loo(D",d)=1/2=3Ls(D,d)=3minp{L..(D,d)}, as claimed. It is easy to see that
this example can be embedded in any size distance matrix so that for all # such exam-
ples exist. For (ii)(c), suppose d is a distance matrix, D is its closest additive distance
matrix, and x is the smallest weight of any edge in D. Then contract the edge e of
weight x in 7, the edge-weighted realization of D, and add x/4 to every edge originally
incident to e. Let D’ be the distance matrix of the new edge-weighted tree, 7’. It follows
that L. (D,D")=1x/2 and so that L..(d,D’) <Loo(d, D)+ Loo(D,D"). If Loy(d,D)=x/4,
then L., (d,D")<3x/4, by the triangle inequality. Hence the 3-approximation algorithm
could return the topology of T or of 77, and since they are different there is a possibility
of making the wrong choice.
To prove (iii), arguments similar to the ones above obtain

2P +2¢=Dy +Dj — Dy — Dy +dy +diy — du — d;
and 2x <2P + 2¢<46. The required example is in Lemma 2, Part (ii). O

In other words, given any matrix d of corrected distances, if an exact algorithm for
the Lo.-nearest tree can be guaranteed — by this analysis — to correctly reconstruct the
topology of the model tree, then so can the Naive method. This may suggest that there
is an inherent limitation of the L., -nearest tree approach to reconstructing phylogenetic
tree topologies. However, note that the analytical results are pessimistic; that is, they
guarantee a high probability of an accurate performance once sequence lengths exceed
some threshold, but do not guarantee a low probability of accurate performance for
sequences below those lengths. Even so, these techniques are essentially the same ones
that have been used in other studies to obtain analytical results regarding convergence
to the true tree (see also [4,22]).

4. The witness—antiwitness tree construction (WATC)

4.1. Introduction

In this section we describe the witness—antiwitness tree construction algorithm
(WATC). This procedure, which is the heart of our witness—antiwitness method
(WAM), solves certain restricted instances of the NP-complete quartet consistency prob-
lem [46], and solves them faster than the dyadic closure tree construction algorithm
(DCTC) that we used as a procedure previously in our dyadic closure method (DCM)
[20]. We therefore achieve an improvement with respect to computational requirements
over DCM, and pay for it by requiring somewhat longer sequences.
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Let e be an edge in T. Deleting e but not its endpoints creates two rooted sub-
trees, Ty and T»; these are called edi-subtrees, where “edi” stands for “edge-deletion-
induced”. Each edi-subtree having at least two leaves can be seen as being composed
of two smaller edi-subtrees. The algorithm we will describe, the witness—antiwitness
tree construction algorithm, or WATC, constructs the tree “from the outside in”, by
inferring larger and larger edi-subtrees, until the entire tree is defined. Thus, the algo-
rithm has to decide at each iteration at least one pair of edi-subtrees to “join” into a
new edi-subtree. In the tree, such pairs can be recognized by the constraints (a) that
they are disjoint, and (b) that their roots are at distance two from each other. These
pairs of edi-subtrees are then said to be “siblings”. The algorithm determines whether
a pair of edi-subtrees are siblings by using the quartet splits. We will show that if the
set O satisfles certain conditions then WATC is guaranteed to reconstruct the tree 7
from Q.

The conditions that Q must satisfy in order for WATC to be guaranteed to reconstruct
the tree T are slightly more restrictive than those we required in the DCTC method,
but do not require significantly longer sequences. Sets  which satisfy these conditions
are said to be T-forcing. The first stage of WATC assumes that Q is T-forcing, and
on that basis attempts to reconstruct the tree 7. If during the course of the algorithm it
can be determined that Q is not T-forcing, then the algorithm returns Fuil. Otherwise,
a tree T’ is constructed. At this point, the second stage of WATC begins, in which we
determine whether T is the unique tree that is consistent with Q. If O fails this test,
then the algorithm returns Fuil, and otherwise it returns T.

Just as in the dyadic closure method (DCM) we will need a search technique to find
an appropriate set (. Whereas binary search was a feasible technique for the DCM,
it is no longer feasible in this case. Search techniques for an appropriate set Q are
discussed in Section 5.

4.2. Definitions and preliminary material

Within each edi-subtree ¢, select that unique leaf which is the lowest valued leaf
among those closest topologically to the root (recall that leaves are identified with
positive integers). This is called the representative of ¢, and is denoted rep(r). If the
edi-subtree consists of a single leaf, then the representative leaf is identical with this
single leaf, which also happens to be the root of the edi-subtree at the same time.

The diameter of the tree T, diam(T), is the maximum topological distance in
the tree between any pair of leaves. We define the depth of an edi-subtree ¢ to
be L(root(t),rep(t)), and denote this quantity by depth(T). The depth of T is then
max, {depth(t)}, as ¢ ranges over all edi-subtrees yielded by internal edges of T. We
say that a path P in the tree T is short if its topological length is at most depth(T)+ 1,
and say that a quartet 7, j, &,/ is a short quartet if it induces a subtree which contains
a single edge connected to four disjoint short paths. The set of all short quartets of the
tree T is denoted by Quon(7T). We will denote the set of valid quartet splits for the
short quartets by QX _(T).
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For each of the n—3 internal edges of the n-leaf binary tree T we assign a represen-
tative quartet {i, j,k,1} as follows. The deletion of the internal edge and its endpoints
defines four rooted subtrees. Pick the representative from each of these subtrees to
obtain i, j,k,/; by definition, the quartet 7, j,k, is a short quartet in the tree. We call
the split of this quartet a representative quartet split of T, and we denote the set of
representative quartet splits of 7 by Rr. Note that by definition

R7 € Qhhon(T) € QD). (7)

We will say that a set Q of quartet splits is consistent with a tree T if QC Q(T').
We will say that Q is consistent if there exists a tree T with which Q is consistent,
and otherwise Q is said to be inconsistent. In [20], we proved:

Theorem 3. Ler T be a binary tree on [n]. If R is consistent with a binary tree T' on
[n], then T =T'. Therefore, if Ry C Q, then either Q is inconsistent, or () is consistent
with T. Furthermore, Q cannot be consistent with two distinct trees if Ry CQ.

Let S be a set of n sequences generated under the Neyman model of evolution, and
let d be the matrix of corrected empirical distances. Given any four sequences i,/,k, [
from S, we define the width of the quartet on i, ,k,/ to be max(dy;, du.du, di,dj, dir).
For any we R", let O, denote the set of quartet splits of width at most w, inferred
using the four-point method.

4.3. The dyadic closure method

The dyadic closure method is based on the dyadic closure tree construction (DCTC)
algorithm, which uses dyadic closure (see [20, 18]) to reconstruct a tree T consistent
with an input set Q of quartet splits. Recall that Q(7T) denotes the set of all valid
quartet splits in a tree 7, and that given Q(T), the tree T is uniquely defined. The
dyadic closure of a set Q is denoted by cl/(Q), and consists of all splits that can
be inferred by combining two splits at a time from (), and from previously inferred
quartet splits. In [20], we showed that the dyadic closure ¢/(Q) could be computed
in O(#°) time, and that if Q contained all the representative quartet splits of a tree,
and contained only valid quartet splits, (i.e. if Ry CQ CQO(T)), then c/(Q)=0O(T).
Consequently, the DCTC algorithm reconstructs the tree T if Ry CQ C O(T). It is also
easy to see that no set () can simultaneously satisfy this condition for two distinct
binary trees 7,7’, by Theorem 3, and furthermore, if Q satisfies this condition for T,
it can be quickly verified that T is the unique solution to the reconstruction problem.
Thus, when Q is such that for some binary tree 7, Rr CQ C O(T'), then the DCTC
algorithm properly reconstructs 7. The problem cases are when Q does not satisfy this
condition for any T.

We handle the problem cases by specifying the output DCTC(Q) to be as follows:
e binary tree T such that c/(Q)=Q(T) (this type of output is guaranteed when

RrCQCOT)),
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e inconsistent when cl(Q) contains two contradictory splits for the same quartet, or
o insufficient otherwise.

Note that this specification does not prohibit the algorithm from reconstructing a
binary tree T, even if () does not contain all of Ry. In such a case, the tree T
will nevertheless satisfy c/(Q)=Q(T); therefore, no other binary tree 7’ will sat-
isfy O C Q(T")). Note that if DCTC(Q) = Inconsistent, then Q £Q(T) for any binary
tree T, so that if O C Q" then DCTC(Q') = Inconsistent as well. On the other hand,
if DCTC(Q)= Insufficient and Q' C Q, then DCTC(Q') = Insufficient also. Thus, if
DCTC(Q) is Inconsistent, then there is no tree T consistent with O, but if DCTC(Q)
is Insufficient, then it is still possible that some tree exists consistent with O, but the
set O is insufficient with respect to the requirements of the DCTC method.

Now consider what happens if we let O be (, the set of quartet splits based
upon quartets of width at most w. The output of the DCTC algorithm will indicate
whether w is too big (i.e. when DCTC(Q,,) = Inconsistent), or too small (i.e. when
DCTC(Q.) = Insufficient). Consequently, DCTC can be used as part of a tree con-
struction method, where splits of quartets (of some specified width w) are estimated
using some specified method, and we search through the possible widths w using binary
search.

In [20], we studied a specific variant of this approach, called the Dyadic Closure
Method (DCM), in which quartet trees are estimated using the four-point method (see
Definition VII in Section 2). We analyzed the sequence length that suffices for accu-
rate tree construction by DCM and showed that it grows very slowly; for almost all
trees under two distributions on binary trees the sequence length that suffices for tree
reconstruction under DCM is only polylogarithmic in n, once 0< f<g<.5 are fixed
and p(e)€|[f,g] is assumed. Thus, DCM has a very fast convergence rate. DCM
uses O(n*k + n’logn) time and O(n*) space; therefore it is a statistically consistent
polynomial time method for inferring trees under the Neyman model of evolution. For
practical purposes, however, the computational requirements of the DCM method are
excessive for inferring large trees, where n can be on the order of hundreds.

4.4. Witnesses, antiwitnesses, and T-forcing sets

Recall that the witness—-antiwitness tree construction algorithm constructs 7 from the
outside in, by determining in each iteration which pairs of edi-subtrees are siblings.
This is accomplished by using the quartet splits to guide the inference of edi-subtrees.
We now describe precisely how this is accomplished.

Definition 1. Recall that an edi-subtree is a subtree of T induced by the deletion
of an edge in the tree. Two edi-subtrees are siblings if they are disjoint, the path
between their roots contains exactly two edges, and there are at least two leaves not
in either of these two edi-subtrees. (The last condition — that there are at least two
leaves not in either of the two edi-subtrees — is nonstandard, but is assumed because it
simplifies our discussion.) Let ¢, and #, be two vertex disjoint edi-subtrees. A witness
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to the siblinghood of t| and t; is a quartet split uv|wx such that u€¢, ves, and
{w,x}N(t1Ur) = 0. We call such quartets witnesses. An anti-witness to the siblinghood
of t; and t; is a quartet split pgql|rs, such that pet, r€t, and {g,s} N (1 U n)=0.
We will call these anti-witnesses.

Definition 2. Let T be a binary tree and O a set of quartet splits defined on the leaves

of T.

e O has the witness property for T: Whenever 1| and 1, are sibling edi-subtrees of T
and T —t; — 1, has at least two leaves, then there is a quartet split of O which is a
witness to the siblinghood of ¢, and ;.

e O has the antiwitness property for T: Whenever there is a witness in Q to the
siblinghood of two edi-subtrees #; and #, which are not siblings in T, then there is
a quartet split in Q which is an antiwitness to the siblinghood of 7, and #.

Theorem 4. If Ry C Q, then Q has the witness property for T. Furthermore, if Ry C
QCO(T), and t, and 1, are sibling edi-subtrees, then Q contains at least one witness,
but no antiwitness, to the siblinghood of t| and t,.

The proof is straightforward, and is omitted.

Suppose T is a fixed binary tree, and Q is a set of quartet splits defined on the
leaves of T. The problem of reconstructing 7 from Q is in general NP-hard [46], but
in [20] we showed that if Ry CQC Q(T) we can reconstruct 7 in O(n’) time, and
validate that T is the unique tree consistent with Q. Now we define a stronger property
for O which, when it holds, will allow us to reconstruct T from Q (and validate that
T is the unique tree consistent with Q) in O(n* + |Q|log |Q]) time. Thus, this is a
faster algorithm than the DCTC algorithm that we presented in [20].

Definition 3 (T-forcing sets of quartet splits). A set O of quartet splits is said to be
T-forcing if there exists a binary tree T such that

1. Rr CQC O(T), and

2. O has the antiwitness property for 7.

Two points should be made about this definition. Since Ry C Q, Q has the witness
property for T, and it is impossible for O to be both T-forcing and 7’-forcing for
distinct 7 and T’, since by Theorem 3, Rr is consistent with a unique tree. Finally,
note that the first condition Ry C Q C Q(T') was the requirement we made for the dyadic
closure tree construction (DCTC) algorithm in [20], and so T-forcing sets of quartet
splits have to satisfy the assumptions of the DCTC algorithm, plus one additional
assumption: having the antiwitness property.

4.5. WATC

The algorithm we will now describe operates by constructing the tree from the
outside in, via a sequence of iterations. Each iteration involves determining a new set of
edi-subtrees, where each edi-subtree is either an edi-subtree in the previous iteration or
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is the result of making two edi-subtrees from the previous iteration siblings. Thus, each
iteration involves determining which pairs of edi-subtrees from the previous iteration
are siblings, and hence should be joined into one edi-subtree in this iteration.

We make the determination of siblinghood of edi-subtrees by applying the witness
and antiwitness properties, but we note that only certain splits are considered to be
relevant to this determination. In other words, we will require that any split used either
as a witness or an anti-witness have leaves in four distinct edi-subtrees that exist at
the time of the determination of siblinghood for this particular pair. Such splits are
considered to be active, and other splits are considered to be inactive. All splits begin
as active, but become inactive during the course of the algorithm (and once inactive,
they remain inactive). We will use the terms “active witness™ and “active antiwitness”
to refer to active splits which are used as witnesses and antiwitesses. We will infer
that two edi-subtrees are siblings if and only if there is an active witness to their
siblinghood and no active anti-witness. (Note that this inference will be accurate if O
has the witness and antiwitness properties, but otherwise the algorithm may make a
false inference, or fail to make any inference.)

We represent our determination of siblinghood as a graph on the edi-subtrees we
have currently found. Thus, suppose at the beginning of the current iteration there are
p edi-subtrees, £1,1,,...,4,. The graph for this iteration has p nodes, one for each edi-
subtree, and we put an edge between every pair of edi-subtrees which have at least one
witness and no anti-witness in the set of quartet topologies. The algorithm proceeds
by then merging pairs of sibling edi-subtrees (recognized by edges in the graph) into
a single (new) edi-subtree. The next iteration of the algorithm then requires that the
graph is reconstructed, since witnesses and antiwitnesses must consist of four leaves,
each drawn from distinct edi-subtrees (these are the active witnesses and antiwitnesses
— thus, quartet splits begin as active, but can become inactive as edi-subtrees are
merged).

The last iteration of the algorithm occurs when the number of edi-subtrees left is
four, or there are no pairs of edi-subtrees which satisfy the conditions for siblinghood.
If no pair of edi-subtrees satisfy the criteria for being siblings, then the algorithm
returns Fail. On the other hand, if there are exactly four edi-subtrees, and if there are
two disjoint pairs of sibling edi-subtrees, then we return the tree formed by merging
each of the two pairs of sibling edi-subtrees into a single edi-subtree, and then joining
the roots of these two (new) edi-subtrees by an edge.

If a tree 77 is reconstructed by the algorithm, we will not return 77 until we verify
that

R COQCT").

If the tree 7’ passes this test, then we return 7”7, and in all other cases we return Fail.
We summarize this discussion in the following:

The WATC algorithm

Stage I:

e Start with every leaf of T defining an edi-subtree.
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e While there are at least four edi-subtrees do:

o Form the graph G on vertex set given by the edi-subtrees, and with edge set de-
fined by siblinghood; i.e., (x, y) € E(G) if and only if there is at least one witness
and no antiwitness to the siblinghood of edi-subtrees x and y. All witnesses and
antiwitnesses must be splits on four leaves in which each leaf lies in a distinct
edi-subtree; these are the active witnesses and antiwitnesses.

— Case: there are exactly four edi-subtrees: Let the four subtrees be x, y,z,w. If
the edge set of the graph G is {(x, y),(z, w)}, then construct the tree 7 formed
by making the edi-subtrees x and y siblings, the edi-subtrees z and w siblings,
and adding an edge between the roots of the two new edi-subtrees; else, return
Fail.

~ Case: there are more than four edi-subtrees: If the graph has at least one
edge, then select one, say (x, y), and make the roots of the edi-subtrees x
and y children of a common root r, and replace the pair x and y by one
edi-subtree. If no component edge exists, then Return Fail.

Stage 11
o Verify that T satisfies the constraints Ry CQ C Q(T). If so, return 7T, and else return

Fail.

The runtime of this algorithm depends upon how the two edi-subtrees are found that
can be siblings.

4.6. Implementation of WATC

We describe here a fast implementation of the WATC algorithm.

We begin by constructing a multigraph on # nodes, bijectively labelled by the species.
Edges in this multigraph will be colored either green or red, with one green edge be-
tween | and j for each witness to the siblinghood of i and j, and one red edge between
i and j for each antiwitness. Thus, each quartet split ij|k/ defines six edges in the multi-
graph, with two green edges ((ij) and (k/)) and four red edges ((ik),(il),(jk),(jI)).
Each green edge is annotated with the quartet that defined it and the topology on that
quartet, so that the other edges associated to that quartet can be identified. Constructing
this multi-graph takes O(|Q|) time. Note that edi-subtrees x and y are determined to
be siblings if there exists a green edge (x, y) but no red edge (x, y).

We will maintain several data structures:

e Red(i, ), the number of red edges between nodes i and j, so that accesses, incre-
ments, and decrements to Red(i,j) take O(1) time,

e Green(i, j), the set of green edges between nodes { and ;, maintained in such a way
that we can enumerate the elements in |Green(J,j)| time, and so that we can union
two such sets in O(1) time,

e T}, the ith edi-subtree (i.e. the edi-subtree corresponding to node ), maintained as a
directed graph with edges directed away from the root,

e Tree, an array such that Tree[i] = j indicates that leaf i is in tree 7. This is initialized
by Tree[i]=1i for all i, and
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o Candidates, the set of pairs of edi-subtrees which have at least one green edge and
no red edges between them (and hence are candidates for siblinghood). We maintain
this set using doubly-linked lists, and we also have pointers info the list from other
datastructures (Green (1, 7)) so that we can access, add, and delete elements from the
set in O(1) time.

Finding a sibling pair: A pair of edi-subtrees are inferred to be siblings if and only
if they have at least one green edges and no red edges between them. We maintain
a list of possible sibling pairs of edi-subtrees in the set Candidates, and the members
of Candidates are pairs of the form i,j where both i and ; are edi-subtrees. (Testing
whether 7 is a current edi-subtree is easy; just check that 7ree[i]=i.) We take an
element (i,;) from the set Candidates and verify that the pair is valid. This requires
verifying that both i and j are current names for edi-subtrees, which can be accom-
plished by checking that Tree[i]=i and Tree| j]1=j. If (i,j) fails this test, we delete
(i,j) from the set of Candidates, and examine instead a different pair. However, if
(i,j) passes this test, we then verify that the pair 7,/ have at least one green edge and
no red edges between them. For technical reasons (which we describe below), it is
possible that Green(i,j) will contain a ghost green edge. We now define what ghost
green edges are, and how we can recognize them in O(1) time.

Definition 4. A ghost green edge is a green edge (a,b) which was defined by a quartet
split ab|cd, but which was not deleted after the edi-subtrees containing ¢ and d were
merged into a single edi-subtree.

Detecting whether a green edge is a ghost is done as follows. Recall that every
green edge (a,b) is annotated with the quartet (a, b, ¢, d) that gave rise to it. Therefore,
given a green edge (a,b), we look up the edi-subtrees for the members of the other
green edge (c,d) (using the Tree array), and see if ¢ and d still belong to distinct
edi-subtrees. If Tree[c] = Tree[d] then (a,b) is a ghost green edge (since ¢ and d were
already placed in the same edi-subtree) and otherwise it is a true green edge.

Every ghost we find in Green(i, j) we simply delete, and if Green(i,j) contains only
ghost edges, we remove (i,j) from the set Candidates (the edi-subtrees i and j are
not actually siblings). If we find any non-ghost green edge in Green(i,j), then (i,j)
are inferred to be sibling edi-subtrees, and we enter the next phase.

Processing a sibling pair: Having found a pair i and j of edi-subtrees which are
siblings, we need to update all the data-structures appropriately. We now describe how
we do this.

First, we process every green edge e in Green(i,j) by deleting the four red edges
associated to e (this is accomplished by decrementing appropriate entries in the matrix
Red). Note that we do not explicitly (or implicitly) delete the other green edge asso-
ciated with edge e, and rather leave that green edge to be handled later; this is how
ghost green edges arise.

After we finish processing every green edge, we merge the two edi-subtrees into one
edi-subtree. We will use one index, say 7, to indicate the number of the new edi-subtree
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created. We update 7; so that it has a new root, and the children of the new root are
the roots of the previous edi-subtrees 1; and 7T, and we update the Tree array so that
all entries which previously held a j now hold .

We also have to reset Red(i,k) and Green(i,k) for every other edi-subtree £,
since the edi-subtree labelled i has changed. We set Red(i,k)= Red(i,k)+ Red(},k),
and Green(i, k) = Green(i,k)U Green(j, k) for all k. We then set Red(j,k)=0 and
Green(j,k)=0, if we wish (this is for safety, but is not really needed).

We also have to update the Candidates set. This involves deletions of some pairs,
and insertions of others. The only pairs which need to be deleted are those i,k for
which there is now a red edge between edi-subtrees i and &, but for which previously
there was none. This can be observed during the course of updating the Red(i, k)
entries, since every pair (#,k) which should be deleted has Red(i,k)=0 before the
update, and Red(i,k) > 0 after the update. Pairs (i,k) which must be inserted in the
Candidates set are those (i,k) which previously had Green(i,k)=0 and which now
have Green(i,k) # (). Accessing, inserting, and deleting the elements of Candidates
takes O(1) time each, so this takes O(1) additional time.

We now discuss the runtime analysis of the first stage of WATC:

Theorem 5. The first stage of WATC uses O(n®> + |Q}) time.

Proof. Creating the multi-graph clearly costs only O(]Q|) time. Initializing all the
datastructures takes O(n?) time. There are at most O(|Q|) green edges in the multigraph
we create, and each green edge is processed at most once, after which it is deleted.
Processing a green edge costs O(1) time, since Tree can be accessed in O(1) time.
There are at most n — 1 siblinghood detections, and updating the datastructures after
detecting siblinghood only costs O(n) time (beyond the cost of processing green edges).
Implementing the datastructures Green(i,j) and Candidates so that updates are efficient
is easy through the use of pointers and records. Hence, the total cost of the first stage
is O(n*+1Q|). O

So suppose the result of the first phase constructs a tree 7' from the set Q of splits.
The second stage of the WATC algorithm needs to verify that Ry C QO C QO(T'); we now
describe how this is accomplished efficiently.

Given T, we can compute Ry in O(n?) time in a straightforward way: for each of
the O(n) edi-subtrees ¢, we compute the representative rep(t) in O(n) time. We then
use the representatives to compute Ry, which has size O(n), in O(n) additional time.
Verifying that Ry C Q then takes at most O(nlog n + |Q|log|Q]) time. First we make
sorted list of quartet splits by the lexicographic order of the 4 vertices involved. Sorting
is in O(|Q|log |Q}) time. Then we use a binary search to determine membership, which
costs O(log n) time for each element of Ry, since |Q| = O(n*). Verifying that Q C O(T)
then can be done by verifying that g€ Q(T) for each g € Q. This is easily done in
O(1) time per g using O(1) /ca queries (to determine the valid split for each quartet
which has a split in Q). Preprocessing T so that we can do /ca queries in O(1) time
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per query can be done in O(n) time, using the algorithm of Harel and Tarjan [53].
Consequently, we have proven:

Theorem 6. The second stage of WATC takes O(n* + |Q|log|Q|) time. Therefore,
WATC takes O(n* + |Q|log|Ql) time.

4.7. Proof of correctness of WATC

We begin by proving that the WATC algorithm correctly reconstructs the tree T
provided that Q is T-forcing.

Theorem 7. If Q is T-forcing, then WATC(Q)=T.

Proof. We first prove that all decisions made by the algorithm are correct, and then
prove that the algorithm never fails to make a correct decision.

We use induction on the number of iterations to prove that no incorrect decisions
are made by the algorithm. At the first iteration, every edi-subtree is a leaf, and these
are correct. Now assume that so far the WATC algorithm applied to Q has constructed
only correct edi-subtrees, and the next step merges two edi-subtrees, ¢, and #,, into
one, but that these are not actually siblings.

Since Q has the antiwitness property, there is a valid quartet split ablcd € Q with
acti,c€t and {b,d} N(t; Ut;)=10. We need only show that this antiwitness is still
active at the time that we merged ¢, and ¢, into one edi-subtree.

Suppose that the split ablcd is not active at the time we merged £ and . In
this case, then the four leaves a,b,c,d are in fewer than four distinct edi-subtrees.
The assumption {b,d} N (¢ Ut;) =0 then implies that we have already created an edi-
subtree ¢ containing both b and d. This edi-subtree is true, since we have assumed all
edi-subtrees constructed so far are accurate. Now, consider the edge ¢’ whose deletion
creates the subtree ¢. This edge cannot exist if ab|cd is a valid quartet split and neither
b nor d are in #; Ut,. Consequently, the antiwitness ablcd is still active at the time
we merged £ and #,, contradicting that we made that merger, and hence all inferred
edi-subtrees are correct.

We now show that the algorithm never fails to be able to make a correct decision.
If O is T-forcing, then Ry C Q. Now if ¢ and ¢ are sibling edi-subtrees, then let e
be the edge in 7 whose deletion disconnects ¢U¢# from the rest of the tree T. Let
g be the representative quartet split associated to e. This quartet split is a witness to
the siblinghood of ¢ and ¢/, which will remain active throughout the iterations of the
algorithm until the entire tree is constructed (otherwise there are only three edi-subtrees
present at some point, and this is contradicted by the structure of the algorithm).
Furthermore, since Q C Q(T), there is no invalid quartet split, and consequently no
antiwitness to the siblinghood of ¢ and #. Therefore, the algorithm will never fail to
have opportunities to merge pairs of sibling edi-subtrees. [
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Theorem 8. If the WATC algorithm returns a tree T given a set Q of quartet splits,
then Q is consistent with T and with no other tree T'. If WATC does not return a
tree T, then Q is not T-forcing.

Proof. The proof is not difficult. If T is returned by WATC, then Q satisfies Rr C Q C
Q(T). Under this condition @ is consistent with 7 and with no other tree, by
Theorem 3. Hence the first assertion holds. For the second assertion, if Q is T-forcing,
then by the previous theorem WATC returns T after the first stage. The conditions for
being T-forcing include that Ry € Q C ((T'), so that the verification step is successful,
and Q is returned. [

5. The witness—antiwitness method (WAM)

In the previous section we described the WATC algorithm which reconstructs T given
a T-forcing set of quartet splits, (. In this section we describe a set of search strategies
for finding such a set (. These strategies vary in their number of queries on quartet
split sets (ranging from O(loglog n) to O(n?)), but also vary in the sequence length
needed in order for the search strategy to be successful with high probability. All have
the same asymptotic sequence length requirement as the dyadic closure method [20],
but differ in terms of the multiplicative constant.

Before we describe and analyze these search strategies, we begin with some results
on the four-point Method, and on random trees.

5.1. Previous results

Lemma 3 (Azuma—Hoeffding inequality, see [3]). Suppose X =(X1,Xs,...,Xx) are in-
dependent random variables taking values in any set S, and L : S* — R is any function
that satisfies the condition: |L(u) — L(v)| <t whenever u and v differ at just one co-
ordinate. Then, for any 1 > 0, we have

/12
PL(X) — E[L(X)] =A< exp(—m> ,
22
PIL(X) — E[L(X]< — A]< exp<~m> .
In [20], we proved:

Theorem 9. Assume that z is a lower bound for the transition probability of any
edge of a tree T in the Neyman 2-state model, y > max EV is an upper bound on the
compound changing probability over all ij paths in a quartet q of T. The probability
that FPM fails to return the correct quartet split on q is at most

18 exp(—(1 — V1 — 22)*(1 — 2¥)’k/8)). (8)
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In [20] we also provided an upper bound on the growth of the depth of random
trees under two distributions:

Theorem 10. (i) For a random semilabelled binary tree T with n leaves under the
uniform model, depth(T)<(2 + o(1))log, log, (2n) with probability 1 — o(1).

(i1) For a random semilabelled binary tree T with n leaves under the Yule-Harding
distribution, after suppressing the root, depth(T)=(1+o(1))log, log, n with proba-
bility 1 —o(1).

5.2. Search strategies

Let O, denote the set of splits inferred using the four-point method on quartets
whose width is at most w; recall that the width of a quartet i, j, 4,/ is the maximum
of dij,dix,dir,djx,d;1,dy. The objective is to find a set O, such that O, is T-forcing.

Definition 5.
d={weR": Rr CQ,},
B={weR": 0, CQ(T)}.

We now state without proof the following observation which is straightforward.

Observation 1. o7 is either (), or is (w4, 00) for some positive real number wy. B is
either O, or is (0,wg), for some positive real number wg.

Sequential search for T-forcing Q,.: A sequential search through the sets Q,,, testing
each Q,, for being T'-forcing by a simple application of WATC algorithm, is an obvious
solution to the problem of finding a T-forcing set which will find a T-forcing set
from shorter sequences than any other search strategy through the sets Q,,. However,
in the worst case, it examines O(nz) sets (O, since w can be any of the values in
{di;: 1<i < j<n}, and hence it has high computational requirements.

Sparse-high search for a T-forcing Q,: We describe here a sparse search that ex-
amines at most O(log k) sets ,, and hence has lower computational requirements, but
may require longer sequences. Even so, we prove that the sequence length require-
ment has the same order of magnitude as the sequential search. This sparse search
examines the high end of the values of w, and so we call it the Sparse-high search
strategy.

Let 7 < 1/4 be given. We define Z, to be the set of quartets i,j,k ! such that
max{h¥, h'* h'! bk hJt BF} < 1/2 — 27. Note then that the set of splits (inferred using
the four-point method) on quartets in Z; is Oy, where w(t)= — %(log(4r)).

The sparse-high search examines t=1/8,1/16,..., until it finds a 7 such that Z, =
Qw(r) is T-forcing, or until w(tr) exceeds every d;;.

We now define conditions under which each of these search strategies are guaranteed
to find a T-forcing set Q,,. Recall the sets o = {w: Ry C O, },and Z ={w: Q,,.CO(T)}.
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We now define the following assumptions:
ANAB+0, (9

Iw* e A NAB, st Q.+ has the antiwitness property, (10)

It*, st Vee[r™/2, 7", w(t) e /N B, and Quw(z) has the antiwitness property.
(11)

It is clear that if assumptions (16) and (17) hold, then the sequential search strategy
will be guaranteed to succeed in reconstructing the tree, and that the Sparse-high search
strategy requires that assumption (11) hold as well.

We now analyze the sequence length needed to get each of these assumptions to
hold with constant probability.

6. How WAM performs under the Neyman 2-state model

In this section we analyze the performance of the witness—antiwitness method
(WAM), with respect to computational and sequence-length requirements. The anal-
ysis of the sequence length requirement follows a similar analysis for DCM in [20],
but turns out to be more complicated, and results in constant times longer sequences.
The analysis of the computational complexity of WAM is both in the worst case, and
under the assumption that the tree topology is drawn from a random distribution. Fi-
nally, we compare the performance of WAM to other methods, with respect to both
these issues.

6.1. Sequence length needed by WAM

Theorem 11. Suppose k sites evolve under the Cavender—Farris model on a binary
tree T, so that for all edges e, p.<[f,qg), where we allow f = f(n) and g=g(n) to
be functions of n. We assume that limsup, g(n) < 1/2. Then both the sparse-high
and sequential search based on the WATC algorithm returns the true tree T with
probability 1 — o(1), if

S c-logn
(1— /1 — 2f)2(1 _ 2g)4deplh(T)’

where ¢ is a fixed constant.

k

(12)

Proof. Note that the sparse-high search requires assumptions (16)—(18), while the
sequential search only requires assumptions (16) and (17). We will show that the given
sequence length suffices for all three assumptions to hold with probability 1 — o(1).

We begin by showing that assumption (9) holds, i.e. that Rr CQ,. CO(T) for
some w.
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For k evolving sites (i.e. sequences of length &), and fixed © > 0, let us define the
following two sets:

S.={{i,j}: B < 0.5 -1},
and

A {qe <[Z]>: for all i,qu,{i,j}eSzf},

and the following four events:

A:Qshon(T)nga (13)

B, =FPM correctly returns the split of the quartet g € <[Z]) , (14)

B= ﬂ B, (15)
q€Z;

C =S, contains all {i,j} with EY < 0.5 -3t and no {i,j} with EY>0.5 — 1.
(16)

Note that B is the event that 0,y C O(T), so that AN B is the event that Q:;mn C Owin)
CO(T), or w(t)e .o/ NA. Thus, P[.o/ N & # ] = P[4 N B]. Define

J=(1 — 2g)2ePth(I)+3 (17)
We claim that

P[C}=1 — (n? — n)e *#?2 (18)
and

P[4|C]=1 if t<}/6. (19)

To establish (18), first note that A/ satisfies the hypothesis of the Azuma—Hoeflding
inequality (Lemma 3 with X; =1 if the /th bits of the sequences of leaves i and j
differ, and X; =0 otherwise, and ¢ = 1/k). Suppose E¥ >0.5 — 1. Then,

Pl{i,j} € S2] = PAY < 0.5 — 21]
< P[AY — EV <0.5 — 21 — EN < P[AY — E[AY] < — 1] <e " %2,

Since there are at most (}) pairs {i,j}, the probability that at least one pair {i,;} with
EY>0.5 — 1 lies in Sy, is at most (}) e~“#2_ By a similar argument, the probability
that Sy. fails to contain a pair {i,j} with EY < 0.5 — 37 is also at most (7)e~"%2,
These two bounds establish (18).

We now establish (19). For ¢ € Quon(T) and i,j €4, if a path eje; - - - ¢, joins leaves
i and j, then 1<2depth(T) + 3 by the definixtion of Quon(7). Using these facts,
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Lemma 1, and the bound p,<g, we obtain E¥=0.5[1—(1 —2p))---(1 —2p,)] <
0.5(1 —4). Consequently, £V < 0.5—37 (by assumption that t <1/6) and so {7,j} € S,
once we condition on the occurrence of event C. This holds for all i,j€gq, so by
definition of Z, we have g € Z,. This establishes (19).

Define a set

X = {qe <[Z]>: max{E": i,j€q} < 0.5 — r}

(note that X is not a random variable, while Z;, S; are). Now, for ¢ € X, the induced
subtree in 7 has mutation probability at least f(n) on its central edge, and mutation
probability of no more than max{EY: i,j € g} <0.5 — t on any pendant edge. Then, by
Theorem 9 we have

P[B,1>1 — 18 exp(—(1 — /1 — 21 Y*T*k/8) (20)
whenever g € X. Also, the occurrence of event C implies that
Z.CX Q1)

since if g€ Z,, and i,j € g, then i, j € S,,, and then (by event C), E¥ <0.5 — 1, hence

g€ X. Thus,
2P| N B, | NCY,
qeX

where the second inequality follows from (21), as this shows that when C occurs,
N gez. Bq 2 N sex Bq- Invoking the Bonferonni inequality, we deduce that

P[BﬂC]zP{( ﬂB,,) nec

q<€Z;

P[BNC]>1- Y P[B,] - PIC]. (22)
qeX

Thus, from above,
P[ANB]ZP[ANBNC]=P[BNC(C]

(since P[4|C]=1), and so, by (20) and (22),

P[ANB]=1 — IS(Z) exp(—(1 — /1=2f 2T2k/8) _ (nz _ n)e_rzkﬂ.

Formula (12) follows by an easy calculation for t=c - 4, for any 0 < ¢<1/6.

We proceed to prove that assumption (10) holds. Recall the definition of Q)=
{FPM(q): g€ Z,}. Now let D be the event that whenever ¢ and ¢ are two edi-subtrees
which are not siblings, but there is a witness in Q,.(t) to the siblinghood of T, then
there is also an antiwitness in Q,(7).

Recalling Theorem 4, it is obvious that event AN BN D implies Assumptions (9)
and (10). We are going to show that P[4ANBND]=1 - o(1) under the conditions of
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u=rep (t3 )
vV=rep (t4 )

Fig. 1. Finding an antiwitness.

the theorem for a certain choice of 7, which is just slightly smaller than the t that
sufficed for the assumption (9). Technically, we are going to show

P[D|ANBNC]=1. (23)

proof of (23): D= UtI i Heep, Where 11, 1; denote two disjoint edi-subtrees of T, and
H, ., denotes the event that there is a witness but no antiwitness for the siblinghood
of ¢t in Qur). Therefore, in order to prove (23), it suffices to prove

P[H,, ,]ANBNC]=0. (24)

Assume that there is a witness for the siblinghood of #,£ where ¢, and £, are not
siblings. We will show that O,y contains an antiwitness to the siblinghood of ¢ and #,.
Let the witness to the siblinghood of 7, and , be ab|cd, where ac t;, bet;, and c,d
not in 1 Ut. Let pg be an internal edge of the unique ab path in T containing the
midpoint of the path P(a,b) measured using the lengths defined by the corrected model
distances D, and with p closer to a and ¢ closer to 5, i.e. the edge ( p,q) maximizes
the following quantity:

min (1 —2E%,1 — 2E%). (25)
pq internal edge
Let p’ and ¢’ be neighbors of p and g respectively that are not on the path between
nodes a and b. Consider the edi-subtrees r; and 14 tooted at p’ and ¢’ respectively,
formed by deleting ( p, p’) and (q,q’), respectively. Set u =rep(t3), v=rep(ts) (Fig. 1).
We are going to show that

{a,b,u,v} € Z,, (26)

and aulbv € O, ). The proof of (26) is the only issue, since by (15) the split of
{a,b,u,v} is correctly reconstructed, and is au|bv by construction. Clearly

PlH, ,|ANBNCI<P[{a,b,u,v} ¢ Z,]JANBNC). (27)
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The RHS of (27) can be further estimated by

PlA™>0.5 — 2t1[ANBNC] + P[A? 0.5 — 2t|ANBNC]
P[A">0.5 — 21]ANBN C] + P[A" >0.5 — 2t|[ANBNC]
+ P[K* 0.5 — 2t|[4NBNC]. (28)

The fifth term P[A*' >20.5 — 271[ANBNC]=0, since it is easy to find a short quartet
which contains u,v; and therefore by (13), #** < 0.5 —27. Here is how to find a short
quartet containing « and v. Let &’ denote the neighbor of p on the ab path towards a,
and let g denote the neighbor of ¢ on the ab path towards . Consider the edi-subtree #s
defined by pa’, which contains the leaf a, and the edi-subtree f¢ defined by gd’, which
contains the leaf b. It is easy to check that {u,v,rep(ts),rep(ts)} is a short quartet.

In order to finish the proof of (24), and hence the proof of (23), it suffices to show
that the other four terms in (28) are zero as well. The third and fourth terms are
symmetric to the first and second, and in fact the second has a worse bound than the
first. Therefore it suffices to prove that

P[A™>0.5 — 21|ANBNC]=0. (29)

We assume that {a,v} ¢Sy, and show that consequently 7 is large. Hence, for a
properly small 7, Formula (29), and hence (23) holds. From {a, v} ¢ Sy,, conditioning
on C,

E* > 0.5 31, (30)
and {a,b} €S, and hence, conditioning on C,
E? < 05—1 (31)

There is no difficulty to extend the definition of EY to cases when at least one of i,/ is
an internal vertex of the tree. Simple algebra yields from formula (30) and Lemma 1,
that

61>1—2E“ =(1 —2EP")(1 — 2EP*). (32)
We have
1 = 2E7° 2 (1 — 2g)*PHD+2 = /)(1 — 2g) (33)

by the definition of A4 (see formula (17)) and the choice of v as representative. By
formula (25), it is easy to see that

1 —2EPA 2 q(1 — 2g)*\/1 — 2E9. (34)

Combining (31)-(34), we obtain 67> /(1 —2g)(1 —2g)*v/2t. This formula fails, if
we select

T=c; - (1 —2¢g)°4 (35)

with a sufficiently small positive constant c;.
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Case 1: p ¢ty and q ¢ 1> (as in Fig. 1). Then au|bv € Q) is an anti-witness, as
desired.

When Case 1 does not hold, the only problem that can arise is if the valid split au|bv
does not satisfies the condition {u,v} N (f; Ut;) =10, and hence is not an antiwitness.

Case 2: pcty or g €t,. Without loss of generality we may assume p €t. Now we
redefine the location of the edge pg on the ab path as follows. Let p denote the first
vertex after root(f1) on the ab path and let g denote the second. Clearly ¢ ¢ 15, since ¢
and £, are not siblings. We also redefine p’,q, 13, u, t4, v according to the new p and q.
Redefine a to be rep(s;) and call the old a as a*. Now we are going to show (26) and
that aulbv € Q) is the sought-for antiwitness (note a,u,v have been redefined, but b
has not). Again, we have to see (27) and prove that (28) is termwise zero.

For pairs u,v where {u,v} € S,,, we proceed exactly as in Case 1. Observe that
E® and E® decreased during the redefinition, so a calculation like (29)—(35) still
goes through. Observe that L(a,u)<2depth(T)+ 2, L(a,v)<2depth(T) + 3, and hence
{a,u} €S2 and {a,v} €S,,, exactly as in the proof of (19). The only thing left to
prove is {a,b} € Sy;.

In order to prove P[h%>0.5 — 2t|ANBNC]=0, since under the condition C, it
suffices to prove 1 — 2E% > 61. However,

1 _ 2Eab :(1 _ 2Ea,root(t1))(1 _ 2Era()t(t1),b)>(1 _ 2g)d€pf/1(r)(1 _ 29)2 m’

and we still have v1 —E9? > /27 according to (31). A calculation like the one
resulting in (35) gives the result wanted, and we are finished with the proof of (23).

Using these statements, P[4ANBND]=ZP[ANBNDANBNCIx P[ANBNC]=
P[ANBNCl=P[BNC], and we are back to the same estimates that proved assump-
tion (9), but we need a slightly smaller v and consequently slightly larger k.

Note that the proof above applies to all ¢3 € [¢2/2,¢;], if it applies to ¢3 =c; and
¢3=¢3/2, so that assumption (11) holds. [J

Note that the proof also handled the problem that arises if some of the dissimilarity
scores exceed 1/2, and so we cannot even compute corrected distances. The moral is
that those pairs are not needed according to the proof. Therefore there is no need for
additional conditioning for the shape of the observed data.

6.2. Runtime analysis of the search strategies

Theorem 12. (i) The running time of WAM based on sequential search is O(nk +
n®log n)

(ii) The running time of WAM based on sparse-high search is O(n*k-+n*log nlogk).
Assume now that our model tree is a random binary tree, under the uniform or
Yule—Harding distribution, and all mutation probabilities are taken from an interval
(p — &n, p + &), for a sufficiently small sequence e,. If k is as large as in (12), then
with probability 1 — o(1)

(iii) The running time of WAM based on sequential search is O(n*k+n’poly log n).

(iv) The running time of WAM based on sparse-high search is O(n*k+n’poly log n).
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Proof. Computing the matrices 4 and d takes O(n’k) time. (All distance methods
begin by computing these distance matrices, but this “overhead cost” is usually always
mentioned in the running time analysis of a given method.) Let wy be defined to be
the smallest w € A such that Q, is T-forcing. Let i(w) be the order of w within the
sorted 4" values. Then, since each call of the WATC algorithm uses O(n* +|Q|log |Q|)
time, the running time of the sequential search is O(i(wo)(n* + |Qu, | 10g |Qu,|)), after
the preprocessing.

For (i), the sequential search application of the WATC algorithm is O(x® log n),
since we need never do more than examine all sets Q,, and the largest such set has
cardinality O(n*).

Claim (ii) follows form the observations that the sparse-high search calls the WATC
algorithm at most O(log k) times, and each call costs at most O(r*logn) time.

We now prove (iii). The depth of a random tree (under either the uniform or Yule-
Harding distributions) is with high probability O(log log #n) by Theorem 10, and so there
are at most O(polylogn) leaves which are no more than about O(loglogn) distance
(measured topologically) from any fixed leaf. This is the only fact that we exploit
from the assumption of randomness of the tree. For two leaves i, j, recall that L(i, /)
denotes the topological distance between i and j. We are going to show that if 7 is the
value at which the search reconstructs the tree in the proof of Theorem 11, then with
probability 1 — o(1) we have L(i,)=O(loglogn), whenever i,j € g € Q. This yields
|Qwiey| =n - polylog(n). In the proof of Theorem 11, according to formula (18), event
C holds with probability 1 — o(1). In that proof Q) is denoted by Z,4. Now

(1 =2g) D =1 —2EY > /2, (36)

where the equality follows from Lemma 1, and the inequality follows from the condi-
tioning on the event C. Plugging in (35) for T immediately yields L(i, j) = O(log log n).
Since the sequential search makes O(npolylog(n)) calls to the WATC algorithm, (iii)
follows.

To obtain (iv), observe that Formulae (35), (17), and depth(T )= O(loglogn) imply
that the number of iterations in the sparse-high search is

—log, t=0(—log(1 — 2g) - depth(T)) = O(log log n). O

6.3. The performance of other distance methods under the Neyman 2-state model

In this section we describe the convergence rate for the WAM and DCM method, and
compare it briefly to the rates for two other distance-based methods, the Agarwala et
al. 3-approximation algorithm [1] for the L. -nearest tree, and neighbor joining [43].
We make the natural assumption that all methods use the same corrected empirical
distances from Neyman 2-state model trees. The comparison we provide in this section
will establish that our method requires exponentially shorter sequences in order to
ensure accuracy of the topology estimation than the algorithm of Agarwala et al., for
almost all trees under uniform or Yule-Harding probability distributions. The trees
for which the two methods need comparable sequence lengths are those in which the
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diameter and the depth are as close as possible — such as complete binary trees. Even in
these cases, WAM and DCM will nevertheless need shorter sequences than Agarwala
et al. to obtain the topology with high probability, as we showed it in Section 3.
(Again, note that this analysis is inherently pessimistic, and it is possible that the
methods may obtain accurate reconstructions from shorter sequences than suffice by
this analysis.)

The neighbor joining method is perhaps the most popular distance-based method
used in phylogenetic reconstruction, and in many simulation studies (see [34, 35, 44]
for an entry into this literature) it seems to outperform other popular distance based
methods. The Agarwala et al. algorithm [1] is a distance-based method which provides
a 3-approximation to the L., nearest tree problem, so that it is one of the few methods
which provide a provable performance guarantee with respect to any relevant optimiza-
tion criterion. Thus, these two methods are two of the most promising distance-based
methods against which to compare our method. All these methods use polynomial time.

In [22], Farach and Kannan analyzed the performance of the Agarwala et al. algo-
rithm with respect to tree reconstruction in the Neyman 2-state model, and proved that
the Agarwala et al. algorithm converged quickly for the variational distance. Personal
communication from S. Kannan gave a counterpart to (12): if T is a Neyman 2-state
model tree with mutation rates in the range [f,g], and if sequences of length k' are
generated on this tree, where

, ¢ -log n
> fZ(l _ Zg)Zdiam(T)

(37)

for an appropriate constant ¢/, and where diam(T) denotes the “diameter” of T, then
with probability 1 — o(1) the result of applying Agarwala et al. to corrected distances
will return the topology of the model tree. In [5], Atteson proved the same result for
Neighbor Joining though with a different constant. (The constant for neighbor joining
is smaller than the constant for the Agarwala et al. algorithm, suggesting that neigh-
bor joining can be guaranteed to be accurate from shorter sequences than Agarwala
et al., on any tree in the Neyman 2-state model. However, remember that this anal-
ysis 18 pessimistic, and it may be that correct reconstruction is possible from shorter
sequences than this analysis suggests.)

Comparing this formula to (12), we note that the comparison of depth and diam-
eter is the issue, since (1 — /1 —2f)? =O(f?) for small f. It is easy to sce that
diam(T )= 2depth(T) for binary trees 7, but the diameter of a tree can in fact be quite
large (up to n — 1), while the depth is never more than log#n. Thus, for every fixed
range of mutation probabilities, the sequence length that suffices to guarantee accuracy
for the Neighbor Joining or Agarwala et al. algorithms can be quite large (i.e. it can
grow exponentially in the number of leaves), while the sequence length that suffices
for the witness-antiwitness method will never grow more than polynomially.

In order to understand the bound on the sequence length needed by these methods,
we now turn to an analysis of the diameter of random trees. The models for random
trees are the uniform model, in which each tree has the same probability, and the
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Yule—Harding model, studied in [2,8,29]. This distribution is based upon a simple
model of speciation, and results in “bushier” trees than the uniform model.

Theorem 13. (i) For a random semilabelled binary tree T with n leaves under the
uniform model, diam(T) > e\/n with probability 1 — O(g?).

(i1) For a random semilabelled binary tree T with n leaves under the Yule—Harding
distribution, after suppressing the root, diam(T) = ©(log n), with probability 1 —o(1).

Proof. We begin by establishing (i). The result of Carter et al. [11] immediately
implies that leaves a, b have distance m+1 with probability exactly m!N(n—2,m)/(2n—
5)!! under the uniform model. For small enough ¢, m <&\/n, this probability is ©(m/n).
Summing up the probabilities from m =1 to m = ¢/n, we see that diam(T) > ¢\/n with
probability at least 1 — O(g?).

We now consider (ii). First we describe rooted Yule-Harding trees. These trees
are defined by the following constructive procedure. Make a random permutation
71, 72,..., T, Of the n leaves, and join 7 and 7; by edges to a root R of degree 2. Add
each of the remaining leaves sequentially, by randomly (with the uniform probability)
selecting an edge incident to a leaf in the tree already constructed, subdividing the
edge, and make 7; adjacent to the newly introduced node. For a rooted Yule-Harding
tree TR, let A(TR) denote the maximum distance of any leaf from the root. Let T be
the unrooted Yule-Harding tree obtained from 7R by suppressing the root, and iden-
tifying the two edges incident with the root. Let diam(T) denote the diameter of T.
Then, we always have

TR < diam(T) <2h(T?) — 1.

Now Aldous [2] shows that #(TR)/log n converges in distribution to a (nonzero)
constant ¢. Then, with probability tending to 1, diam(T)/log n will lie between ¢
and 2¢. U

In Table 1, we summarize sequence length that suffice for accurate reconstruction
with high probability of WAM and DCM, and compare these to the sequence lengths
that suffice for the Agarwala et al. algorithm, according to the analyses that we have
given above (thus, our summary is based upon (12), (37), and Theorems 10 and 13).
Sequence lengths are given in terms of growth as a function of », and assume that
mutation probabilities on edges lie within the specified ranges.

7. Extension to general stochastic models

In this section we consider the generalization of the WAM and DCM for inferring
trees in the general stochastic model. Just as in the case of the Neyman 2-state model,
we find that WAM and DCM obtains accurate estimations of the tree from sequences
whose length is never more than polynomial in the number of leaves (for every fixed
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Table 1
Range of mutation probabilities on edges
[f.ql { 1 loglogn]
f.g are constants logn’ logn
Binary trees DCM/WAM Polynomial Polylog
Worst-case Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(uniform modet) Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(Yule—Harding) Agarwala et al. Polynomial Polylog

range for the mutation probabilities), and in general only polylogarithmic in the number
of leaves. This should be contrasted to the study of Ambainis et al. [4].

Suppose the sequence sites evolve i.id. according to the “general” Markov model —
that is, there is some distribution of states 7 at the root of the tree, and each edge e
has an associated stochastic transition matrix M (e), and the (random) state at the root
evolves down the tree under a natural Markov assumption, as in the general stochastic
model of Definition (III).

Let fij(a,f) denote the probability that leaf i is in state o and leaf j is in state f.
By indexing the states, f;;(o, §) forms a square matrix, Fj=[fij(2,8)]. Then

¢ij = — log det(F;;) (38)

denotes the corrected model distance between i and j. (There will be a guarantee for
det(F;)>0.)

The corrected empirical distance ¢;[j of two species is computed as in (38), but uses
the matrix ﬁij composed of the relative frequencies 4/’:-]-(0(, B) of i being in state x and
J being in state 8, instead of the probability fj;(a, f):

¢, = —logdet(Fy). (39)

Then, ¢;; can be derived from a positive edge weighting of the model tree, provided
that the identifiability condition described in Section 2 (Tree Reconstruction) holds.
These mild conditions only require that det(M(e)) not take on the values 0,1, —1, and
that the components of 7 are nonzero (i.e. every state has a positive probability of
occurrence at the root).

Note that det(M(e)) takes the values 1 or —1 precisely if M(e) is a permutation
matrix. Also, for the Neyman 2-state model det(M(e)) =1 — 2p(e), where p(e) is the
mutation probability on edge e; thus, det(M(e))>0 and det(M(e)) tend to 0 as p
approaches 0.5, and tend to 1 as p approaches 0. In general, (1/2)[1 — det(M(e)] plays
the role of p(e) in the general model. Thus, a natural extension of our restriction
S <p(e)<g and from the Neyman 2-state model corresponds to

0<1—2x' < det(M(e))<1 ~2x<1, (40)
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for suitable x,x’, and we will henceforth impose this restriction for all edges of the
tree. For technical reasons, we also impose the mildly restrictive condition that every
vertex can be in each state u with at least a certain fixed positive probability:

n(v), > e 41)

This condition (41) certainly holds under the Neyman 2-state model, the Kimura 3-
state model [39], and much more general models (providing each state has positive
probability of occurring at the root). Indeed this last weaker condition might be enough,
but it would seem to complicate the analysis quite a lot.

Now, let i(e) be the weight of edge e in the realization of ¢ on the (unrooted
version) of the true underlying tree T.

Lemma 4. Set 6(x)= —0.5log(1 — 2x). Then
Ae)= — 0.5log(det(M(e)))=d(x) (42)

Jfor every edge e of T.

Proof. The second inequality follows from the restriction we imposed above on
det(M(e)). The first inequality in (42) follows from similar arguments to those ap-
pearing in [47]; for the sake of completeness we give a proof.

Let T be the unrooted version of 77. Now the edges of T correspond bijectively to
the edges of T, except perhaps for one troublesome edge of T which arises whenever
the root of 77 has degree two — in that case, two edges e, e; of T adjacent to p are
identified to form e. For convenience, we assume in this proof that p is not a leaf.

We now prove that A(e)> — 0.5 logdet(M(e)) for all (non-troublesome) edges e of
T, and if T has a troublesome edge ¢ corresponding to edges e¢; and e, in 77, then
Ae)= — 0.5log(det(M(e;)) det(M(e2))).

For any edge e =(v,w) of 77 where w is a leaf, let

h(e) = —logdet(M(e)) — 0.5log |[] n(v),
U

while, for any edge e = (v,w) of T” for which neither of v, w are leaves, let

h(e) = —logdet(M(e)) — 0.5log | [[ n(v),| + 0.5log []—[ n(w)#] .
u u

Thus, # describes a weighting of the edges of T” and thereby a weighting A* of the
edges of T by setting #* equal to 4 on the non-troublesome edges, and the convention
that if 7 has a troublesome edge e arising from the identification of a pair e, ¢; of
edges of 77 then h™(e)=h(e;) + h(e;). Now, h realizes the ¢;; values on 7”. Thus,
h* also realizes the ¢;; values, on T and since (as we show) the edge weighting is
strictly positive, it follows, by classical results [10], that this is the unique such edge
weighting of 7. Thus 1= A*.
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Now for an edge ¢ =(v,w) of T where w is a leaf,
h(e)= — logdet(M(e)) = — 0.5logdet(M (e))

as claimed. Alternatively, for an edge e ={(v,w) of T for which neither of v, w are
leaves, we have

h(e)= —logdet(M(e)) — 0.5log {H (v,

u

+0.51og {H n(w)u] )

H

In order to derive our desired inequality we establish a further result. Let us suppose
M ={M,,] is any r X r matrix with non-negative entries and x is a row vector of length
r with non-negative entries. We claim that

[T (xM), = |detM)|]] x,.
2 u

To obtain this, note that the left-hand side is just

H (Evavp> = (EMU(|)1M0(2)2"'MU(I‘)I‘> Hx;u
a H

n v

where the second summation is over all permutations ¢ of (1,2,...,#), and so this sum
is at least |det(M )], since the permanent of a nonnegative matrix is never smaller than
the absolute value of its determinant. Now, [m(w)i,..., a(w),] =[w(v)i,..., n(v)]M (e),
and so, applying the above inequality to the case M =M (e) and x = [n(v)y,...,n(v),],
we obtain

[[n(w), = det(M(eN]] n(v),.
u

H

Thus,

0.5log det(M(e))<0.5log [H n(w)\} —0.5log I:H n(u)u]

v I
and so

h{e) = —0.5logdet(M(e))

—-0.5 <log det(M(e)) + log

11 n(u)u} —log [H n(w)“] >
" i

= —0.5 logdet(M(e)),

as claimed.

The inequalities for 4 now extend to #* =/ for all (non-troublesome) edges of 7.
If 7% has a troublesome edge e then A(e)=h*(e)=h(e )+ h(ey), and from the above
we have h(e;)= — 0.5logdet(M(e;)) for i=1,2. [



P.L. Erdés et al. | Theoretical Computer Science 221 (1999) 77-118 111

Theorem 14. Let x=x(n) and x' =x'(n) be such that for all edges in the tree T,
0<1—2x"' < det(M(e))<1 —2x<1. Assume x' has an upper bound strictly less than
1/2. Mutatis mutandis, algorithms FPM, DCM and WAM, Theorems 9, 11, and 12
generalize to the general stochastic model under (40) and (41). WAM and DCM
returns the binary model tree T with probability 1 — o(1) if

c-logn

k> xz(l —2x! )4depth(T) (43)
with a certain constant c.
Proof. Recall the definition of the corrected empirical distance, 4;,;,-, and d(x)
(=—0.51log(1 —2x)). We first establish the following

Claim: If

|65y — byl > 8(x)/2 (44)
then

| det(FV) — det(FY)| > x det(FY /4. (45)

Proof of Claim: By inequality (44),

.
log(det(F )>‘> - %log(l ~2x)

log(det(F")) — log(det(F"))| = |log | o

and so det(F")/det(FY) is either greater than (1—2x)~"/4, or less than (1—2x)"/4. Thus,
|det(F7) — det(F/)| >min{a~ (x), " (x)} det(F¥) where at(x):=1— (1 —2x)"*; a0~ =
(I —2x)~Y* — 1. Now, it can be checked that, for x strictly between 0 and 1/2,
a7 (x), %" (x)>x/4 which establishes the Claim.

To apply Lemma 3, we need to know how det(F"/) responds to the replacement at
one site of a pattern by a different pattern. If I:"] Y is the resulting F-matrix for this
perturbed data set, then

EY=FY + (1/k)D"
where DY has one entry of +1, one entry of —1, and all other entries 0. Consequently,
|det(£Y) — det(FV)| <c /k (46)

for some constant ¢;.

Next, for any real analytic function f defined on a vector x having a normalized
multinomial distribution with parameters & and p, we have (by Taylor expansion of
f about u to the second derivative term, followed by application of the expectation
operator):

L/~ G0l < 5ME leont ),
Ly
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where cov(x;,x;) is the covariance of x;,x; (equal to p;(1 — p;)/k, when i=j, and
— iy /k otherwise); and where M is the maximal value of any of the second derivatives
of f over the unit simplex. Thus, since det(F") is a polynomial in the entries of FY,
we have:

|E[det(F¥)] — det(F7)| < ca/k 47)
for some constant ¢,. Combining (47) with the triangle inequality gives

|det(F7) — det(FY)| < | det(FV) — E[det(F)]| + c2/k

and so
P(ldet(F7) — det(F")| > 1] < P[|det(F) — E[det(F")]|>(t — ca/k)] (48)
for any ¢>0. Hence by Lemma 3, applied with (46), we have
" N . det(FV 2
P[] det(F) — det(F)| > x det(F)/4] <2 exp <—d ()‘——‘%(J . %) k) (49)

for a constant d. For the validity of the latter argument we need that

xdet(FY) o

4 k

Now, how can we set a lower bound for det(#%)? Note that det(F") is just the product

of det(M(e)) over all edges on the path from / to j, times the product of n(v;;), over

all states p, where m(v) is the vector of probabilities of states at vertex v, and v;; is

the most recent common ancestor of i and j in the tree. Due to our hypotheses (41),
we have

>0. (50)

det FU > c3(1 — 2x" )40 (51)

with a positive constant c;. However, the conditions of the Theorem required k& >cx !
(1 — 2x")~96:) and therefore taking a sufficiently large ¢ guarantees (50).
Putting the pieces (44), (45) and (49) together we see that

ij 2
Pllgy — byl >8(x)/21<2 exp(_d<£‘1°}§@ - Ck_2> k) , (52)
Combining (51) and (42), we have
A G N2
® [0y — dyl>(1/2)min{ice)}] <2exp<d(c4f“24# - f) k) ,

where ¢4 is a positive constant, and d(i,j) is the number of edges in T separating
leaves i and j. Hence, for any fixed quartet ¢ of diameter diam(q),

P[FPM errs on q] <K exp(—D'x*(1 — 2x"?4am@) gy (53)

for constants D’,K. Thus we have an analogue of Theorem 9.
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Now we show how to generalize the proof of Theorem 11. To avoid needless rep-
etitions, we give details for the proof of assumption (9) only, and leave the proofs of
assumptions (10) and (11) to the Reader. Note that the proof of correctness of DCM
hinges exactly on assumption (9). Having a distance function in the general model,
the width and algorithmic operations based on width generalize in a straightforward
way.

For k evolving sites (i.e. sequences of length &), and >0, let us define the follow-
ing two sets, S; = {{i,j}: det(F¥)>21} and Z, = {g e ("W). for all i,j €q,{i,j} € S}
(note the similarity between the definition for the set Z,, and that for the set Q,
of quartet splits of quartets of width at most w). We also define the following two
events, 4 = {Qswon(T)C Z;} and B =FPM correctly reconstructs the tree for all g € Z,.
Thus, P[o/ N % # 0] =P[4NB]. Let C be the event: “S,, contains all pairs {i,j} with
det(FY)> 61, and no pair {i,;j} with det(F/)<27”. Define /=g (1 — 2x")>drH(I+3,
We claim that

P[C]>1 — (n* — n)e~* (54)
for a constant ¢>0 and
P[4|C]=1 if T<i/6. (55)

Suppose det(F¥)<21. To establish (54), using arguments similar to those between
(45) and (49) one easily sees that Lemma 3 applies and

P[{i.j} € Sy] = P[det(F7) > 41]
< Pdet(F7) — det(F7 )= 27] <e~7

for a constant ¢>0.

Since there are at most () such pairs {i,j} such that det(F¥) <21, the probability
that at least one such pair lies in S;; is at most (;)e*”Zk. By a similar argument,
the probability that S,, fails to contain a pair {i,j} with det(F7)>67 is also at most
(g)e_”zk . These two bounds establish (54).

We now establish (55). For ¢ € Qqwon(T) and i, j € g, if a path eje, ... e, joins leaves
i and j, then ¢t <2depth(T)+3 by the definition of Qspon(T). Using these facts, and the
bound det(M(e)) =1 —2x’, we obtain det(F7) = ¢ (1 —2x")!. Consequently, det(F"/)> 61
(by assumption that 1<<4/6 ) and so {i,j} € S2; once we condition on the occurrence
of event C. This holds for all i,j€gq, so by definition of Z, we have g€ Z.. This
establishes (55).

Then for any quartet g € Qson(7), if e is the central edge of the contracted subtree
induced by ¢ in T, then det(M(e))<1 — 2x. Furthermore, conditional on C, for any
pendant edge e,det(M(e))> min{det(F"): i,j € g} >2t. Thus, by (53), which is the
analogue of Theorem 9, and the Bonferroni inequality, we can follow the corresponding
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proof from Theorem 11, to obtain (using (54) and (55))
PLANBI>1 - K () ) exp(~Dx*(1 = 2/ YT 0k) — (n — e

for constants K,D’ >0 Formula (43) now follows by an easy calculation.

Note that the proof also handled the problem that arises if some logarithms are to
be taken of negative numbers and so we cannot even compute corrected distances. The
morale is that those pairs are not needed according to the proof. Therefore there is no
need for additional conditioning for the shape of the observed data.

8. Considerations for biological data analysis

The focus of this paper has been to establish analytically that every evolutionary tree
is accurately reconstructable from quartets of closely related taxa, and, furthermore, this
requires just very short sequences, given certain assumptions about the model tree. This
is a significant theoretical result, especially since the bounds that we obtain indicate
that the sequence lengths that suffices for accuracy with high probability using our
new methods are very much shorter than those that suffice for accuracy using other
very promising distance-based methods. However, are these observations significant for
biological datasets? And if they are, are these methods likely to be practically useful
(or merely indications of what might be achieved in future)?

The answer to the first question, concerning the significant for biological datasets, de-
pends upon whether there are biologically realistic evolutionary trees that have smaller
“weighted depth” than “weighted diameter”, a concept that we now define.

Let 7 be an edge-weighted tree with positive weights on the internal edges and
non-negative weights on the edges incident with leaves. Let ¢ be an internal edge of
the tree. The weighted depth around edge e is the minimum value of ¢ so that there
exists a set of four leaves, i, j,k, /, with one leaf in each of the four subtrees induced
by the removal of e and its endpoints, where g = max{d},d},.d},d},,d],d];}. The
weighted depth of the tree T is then the maximum weighted depth of any edge in 7.
The weighted diameter of a tree T is simply the maximum a’fy, taken over all pairs
of leaves x, y. We will denote the weighted depth of a tree 7 by wdepth(T) and its
weighted diameter by w diam(T).

The analysis given in the previous sections of the sequence length that suffices for
accuracy for various methods can be restated as follows:

Corollary 1. DCM and WAM will be accurate with probability 1 — 9 if the sequence
length exceeds

c IOg neO(wdepth(T))’

where ¢ is a constant that depends upon only = min, p(e) and 6. The other distance
based methods (Agarwala et al.’s single-pivot algorithm and its variant, the double-
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pivot algorithm, the naive method, and neighbor-joining) are accurate with the same
probability if the sequence length exceeds

C/ 10g neO(wdiam(T))’

where ¢’ is a constant that also depends only upon f = min.{p(e)} and é.

These are only upper bounds (i.e. these may be loose, and exact accuracy may be
possible from shorter sequences), but these are also currently the best upper bounds
that are known for these methods, to our knowledge.

Thus, to compare the sequence lengths that suffice for exact topological accuracy, we
need to compare the weighted depth to the weighted diameter. A reasonable comparison
between these two quantities for biologically realistic trees is difficult, as there are very
few well established evolutionary trees, especially of large divergent datasets. On the
other hand, for some data sets, evolution may proceed in a more-or-less clock-like
fashion (i.e. the number of mutations that occurs along an evolutionary lineage is
roughly proportional to time). For such data sets, it can be seen that the weighted
depth and the weighted diameter are exactly the same. Under these circumstances,
there is no benefit to using DCM or WAM instead of one of the better other distance
methods, such as neighbor joining, although this analysis also does not suggest that
neighbor joining will outperform DCM or WAM (to be precise, the conditions that
guarantee accuracy for neighbor-joining will also guarantee accuracy for DCM and
WAM, and vice versa). Thus, for clock-like evolutionary conditions, these techniques
do not provide any advantage from a theoretical standpoint.

On the other hand, there are important biological data sets for which evolution pro-
ceeds in a very non-clock like fashion, according to various analyses by biologists and
statisticians (see, for example, [55, 56]). For these data sets, there could be significant
advantage obtained by using techniques such as DCM and WAM, which examine only
closely related taxa in order to reconstruct the tree. The degree to which DCM and
WAM could provide an advantage would theoretically depend upon the magnitude of
the difference between the weighted depth and weighted diameter. This magnitude is
likely to be largest for sets of highly divergent taxa, rather than for closely related
taxa.

As a practical tool, DCM and WAM are not entirely satisfactory, in part because
DCM and WAM only return trees when the conditions hold for exact accuracy. Al-
though some biologists would rather get no tree than get an incorrect tree [41], not all
biologists share this view, and so partially correct trees are often desirable. Thus, the
answer to the second question is basically negative.

However, DCM and WAM were not designed to be practical tools, but rather to
indicate theoretical possibilities, and to suggest how better methods might be invented
which could have the theoretical guarantees that DCM and WAM provide, while having
better performance in practice. Furthermore, such methods Aave recently been devel-
oped. The disk-covering method of Huson et al. [36] the harmonic greedy triples
method of Csuros and Kao [16], and the method of Cryan et al. [15] have each used
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the observations in this paper and obtained methods with convergence rates that are
never worse than polynomial by using only small distances to (re)construct the tree.
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A maximal antichain A of poset P splits if and only if there is a set B C A such that
for each p € P either b < p for some b € B or p <c for some c € A\ B. The poset P is
cut-free if and only if there are no <y < z in P such that [z,2], = [2,y]p Uy, 2] p.
By [1] every maximal antichain in a finite cut-free poset splits. Although this statement
for infinite posets fails (see [2])) we prove here that if a maximal antichain in a cut-free
poset “resembles” to a finite set then it splits. We also show that a version of this theorem
is just equivalent to Axiom of Choice.

We also investigate possible strengthening of the statements that “A does not split”
and we could find a maximal strengthening.

1. Introduction

Given a poset P = (P,<) and subset AC P we define the upset AT and the
downset AV of A as follows:

Al={peP:3acAda<pp}
and
At={peP:JacAp<pal.
An antichain in P is a set of pairwise incomparable elements. If A is a

maximal antichain in P then clearly P = ATU A}, We say that A splits if
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there is B C A such that P=B'U(A\B)*. Some maximal antichain may split
in a trivial way: e.g. P=A". Some antichains can not split for the following
trivial reason: there are x,y,z € P such that z <py <p z and y is the only
element in the antichain which is comparable to x or z.

Let us remark that the splitting property can be considered as a gener-
alization of property-B, for an explanation see [7].

You can not expect an “easy” characterization of the maximal antichains
in finite posets which splits because this question is NP-complete, see [1].
However in the same paper it was also shown that if a finite poset P has a
property which is just a bit stronger than the lack of above type obstacle
points y then every maximal antichain of P splits. To recall that result we
should introduce some new notions.

An element y € P is called cutting point if and only if there are x,z € P
such that x <py<pz and [z,z] =[z,y]Uy, z]. (The interval [z,z] ={Vye P:
x<y<z}.) We say that P is cut-free if there is no cutting point in it. (This
property was called dense, see e.g. [1], but the current wording seems to be
more adequate.)

Theorem 1.1 ([1, Theorem 3.1]). Let P be a finite cut-free poset. Then
every maximal antichain A splits.

This result yields immediately following question: what about infinite
posets?

Ahlswede and Khachatrian showed ([2]) that the plain generalization
of Theorem 1.1 for infinite posets fails: the finite-subset-lattice ([w]<*,C),
which is cut-free, contains an infinite antichain which does not split.

In Section 2 we prove Theorem 2.7 saying that if a maximal antichain of
an infinite poset satisfies some extra assumptions than it splits. This result
yield that if a maximal antichain of a cut-free poset “resembles” a finite
antichain then it splits (see Theorem 2.10).

On the other hand, in Section 3 we show that that the non-splitting be-
havior of the poset ([w]“,C) is not exceptional: if an infinite poset is rich
enough in elements then it should contain non-splitting antichains, see The-
orem 3.6. Let us recall that Ahlswede and Khachatrian use number theory
in [2] to construct a non-splitting antichain; our proof is purely combinato-
rial. Besides this result in Section 3 we also investigate possible strengthen-
ing of the statements that “A does not split”. To formulate these results we
introduce the following notation. If P is a poset and A C P is a maximal
antichain put

S(A)={(B,C): BC A,CC A P=BluC*.
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Clearly A splits if and only if there is (B,C) € G(A) with BNC = (. The
maximal strengthening of the above mention result of Ahlswede and Khacha-
trian would be a cut-free poset P and a maximal antichain A C P with
S(P)={(A,A)}, but Corollary 3.3 says that this is not possible. In Theo-
rem 3.8 we show that Theorem 3.6 is the maximal possible strengthening.

Quite surprisingly, the technique we developed to construct non-splitting
antichain can be used to build splitting antichains as well, see Theorem 3.9.

Our notation is standard. Put At = At U AT, If 2 € P write 2 for {z}T,
2t for {z}* and 2% for {x}*. If AC P and P is not clear form the context
we write AT7 for AT, and A” for A*. On the poset P we always think the
poset P=(P,<).

2. Positive theorems

Definition 2.1. Let P be a poset and A C P be a maximal antichain.
An element x € A\ A is high if and only if there is no y € 2" N A% with
ytnA S 2TNA. An element z € AT\ A is low if and only if there is no
vEZtNAT with viﬂA;ziﬂA.

Lemma 2.2. If P is a poset, A C P is a maximal antichain which does
not contain cutting points, x € A*\ A is high and z € AT\ A is low then
[z, 2] N Al £ 1.

Proof. Assume on the contrary that [z,z]NA={y}. Since y is not a cutting
point there is u € [z, z] such that y and u are incomparable. By the indirect
assumption we have u ¢ A. If u € AT then wtNA C (2t N A)\ {y}, ie. 2 is
not low. Hence u € A+, But then u' N A C (zTnA)\{y}, i.e.  is not high.
Contradiction. |

Definition 2.3. Given a family ACP(X) a well-ordering < of X is called
mazximizing well-ordering for A if and only if max_ A exists for each A€ A.
The family A is said to be mazimizing if and only if there is a maximizing
well-ordering for A.

For example, the family [X]<“ is clearly maximizing because any well-
ordering of X is maximizing for this family.

If ACP(X) and < is a well-ordering of X let MIN(A, <)={min, A: A€
A} and MAX (A, <)={max_, A: A€ A and max_ A exists}.

In [9] Klimé gave a characterization of maximizing families. Although he
used a different terminology we can formulate his result as follows:
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Theorem 2.4 ([9, Theorem 7]). ACP(X) is a maximizing family if and
only if there is a function f:A— X such that f(A)€ A for each A€ A and
there is no sequence (A;:i<w) in A such that f(A;)# f(Aiy1) € A; for each
i<w and the set {A;:i<w} is infinite.

Definition 2.5. Given a family A C P(X) a set Y C X is called a point
cover if and only if ANY #0 for each A€ A. Y is a minimal point cover if
and only if it is a point cover but no proper subset of Y is a point cover.

The following lemma gives us a method to construct splits of certain
antichains in certain posets.

Lemma 2.6. Let P be a poset and AC P be a maximal antichain. Assume
that there are two functions B and B such that

(i) B:A"\ A—P(A) and 0#£B(y) C ANyt for each ye AT\ A,
(ii) B:A*\A—=P(A) and 0#B(x) CANal for each z€ AM\ A,
(iii) |B(y)NB(x)|#1 for each x € A¥*\ A and yc AT\ A

Write B={B(x):2€ A*\ A} and B={B(z):x€ AT\ A}.

(1) If < is a maximizing well-ordering of B then MIN(B, <)"MAX(B, <) =10,
and so A splits.

(2) If C C A is a minimal point cover of B then (A\C,C)€&(A) and so A
splits.

Proof. (1) Indeed, max_ B(x) =min. B(y) would imply that B(x)NB(y)=

{max_ B(x)} which contradicts to property (iii) in the choice of B and B.

Since clearly A*\ ACMIN(B, <)+ and AT\ ACMAX(B, <)" we have that
A splits.

(2) Since C is a point cover we have A\ A C C*. To prove the other
property assume on the contrary that AT\ A¢ (A\C)T, i.e. there is y € AT\ A
such that B(y) € C. Pick an arbitrary z € B(y). Since C'\ {z} is not a
point cover of B there is x € A+\ A such that B(x) N C = {z}. But then
{2} CcB(z)NB(y) CB(x)NC={z} which contradicts (iii). |

Theorem 2.7. Let P be a poset and AC P be a maximal antichain which
does not contain cutting points. Assume that

(i) for each y€ AT\ A there is a low z€ AT\ A with 2 <y,
(ii) for each x € A\ A there is a high t € A*\ A such that z <t,

If either

(1) the family {x"NA:x is high } is maximizing or
(2) the family {x"NA:x is high } has a minimal point cover
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then A splits.

Proof. Let L ={y € AT\ A:yislow} and H = {z € A*\ A : x is high}.
Let M=AUHUL and let @ be the subordering of P with the underlining
set M. Since [x,y] C M for each {x,y} €[M]?, (i.e. M is “convex” in P) the
antichain A does not contain cutting points in Q.

Since A is clearly a maximal antichain in @, every element of H is high
in Q and every element of L is low. Thus, by Lemma 2.2, we have

(1) [z, y] N A| # 1 for each x € H and y € L.

Let B(z)=2"nA and B(y) =y'NA. We want to apply Lemma 2.6. Properties
(i)-(ii) are clear. Since B(z)NB(y)=[z,y] N A, property (1) implies that the
functions B and B satisfies Lemma 2.6.(iii).

Since (1) implies Lemma 2.6.(1), and (2) implies Lemma 2.6.(2) hence
we have that A splits in Q: there is B C A such that BT=L and (A\B)*=H
in Q. Since LT=AT\ A in P and H*=L*\ A in P we have that BT= AT\ 4
and (A\ B)t =A%\ A in P. Thus B witnesses that A splits. |

Let us remark the nontrivial fact that condition (1) is stronger than (2):
as Klimé proved in [9] a maximizing family A has a minimal point cover.
However we included the statement with proof here because you can get two
different splits for A when {xTN A:x is high } is maximizing: one applying
Lemma 2.6.(1) directly and the other by finding a minimal point cover for
{z"MN A:x is high } and then applying Lemma 2.6.(2).

A poset P = (P, <) is called well-founded (or satisfies the Descending
Chain Condition), if there exists no infinite descending chain: if x1 > xo >
Zn > ... then there exists an integer 7 such that x;=x; for all j>i.

Theorem 2.8. Let P be a well-founded poset and let A be a maximal,
cutting point free antichain, such that for every p € A*\ A there exists
element x(p) € A*\ A with p < a(p) such that a(p)' N A is finite. Then A
splits.

Proof. We want to apply Theorem 2.7. Property (ii) holds by assumptions.
Moreover 2T N A is finite for each high elements and so Property (1) holds.
The minimal elements of AT\ A are all low, hence Property (i) also holds. i

The next observation provides a very useful tool to manipulate the an-
tichain pairs in &(A) of maximal antichains in cut-free posets.

Lemma 2.9. Assume that P is a poset, AC P is a maximal antichain, and
(B,C)€e&(A). Then for each y€ BNC ify is not a cutting point then either

(B\{y},C)€6(A) or (B,C\{y}) €6(A).
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Proof. Assume on the contrary that this is not true, so there are z,z € P
such that * <y <z, o ¢ (C\{y})* and 2 ¢ (B\ {y})!. Since y is not a
cutting point, there is ¢ € [z, z] such that y and ¢ are incomparable. Then
te (B\{yH)Tu(C\{y})*. If y’ <t for some 3 € B\{y} then ' < z, contradiction.
If t <y’ for some y' € C'\ {y} then xz<y', contradiction. ]

Theorem 2.10. Let A be a maximal antichain in the poset P such that A
does not contain cutting points and

(YN Al <w forall z € P,
then A splits.

This result is a direct generalization of Theorem 1.1 ([1]). We give here
two different proofs. However it is not clear yet the complexity of these
methods to find a splitting (at least of the second one) in the case of finite
cut-free posets. It is also a question whether all possible splitting arise along
the second method.

First proof. Consider the poset Q(P)=(&(A), <) where (B,C)=<(B'.C")
if and only if BO B’ and C > (",

We want to apply the Zorn lemma to find a maximal elements of Q(P).
So let ((Bg,C¢):£ <n) be an increasing chain in Q(P). Put B=N{B¢:{ <n}
and C'=n{C¢:£<n}. Let € P be arbitrary. Since (2¥)N A is finite there is
¢ <nsuch that (z¥)NB=(2¥)NB; and (2)NC = (2¥)NC;. Since z € BEUC’Ci
we have x € BTUCY. Since 2 was arbitrary we have (B,C) € G(A), and so
(B,C) is the required upper bound of ((Bg¢,C¢):£ <n).

Thus the Zorn lemma implies that Q(P) has a maximal element (B,C).

But then BNC=0 by Lemma 2.9. ]
Second proof. Apply Theorem 2.7. Since (1) and (2) clearly holds we can
apply that result to get that A splits. ]

Finally we give one more application of Theorem 2.7: we prove a theorem
on the subset lattice of the natural numbers.

Let A be a maximal antichain in P(w) and let = € (A+\ A). Denote
Card(A) the set of the cardinalities present in A, and denote Card, (A) the
set of cardinalities of those elements in A which are comparable to x. We
say that this « behaves well if |Card,(A)|=w then w € Card,(A) as well. If,
for example, | Card(A)| is finite, then every element behaves well.

Theorem 2.11. Let A be a maximal antichain in P(w). Assume that
(2) vy (AT\A) o AN £,
furthermore every element x € A*\ A behaves well. Then A splits.
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Proof. Let I = AN[w]”, F=AN[w]*" and Q =P (w)\I*. Clearly F is a
maximal antichain in ). Next we show that:

Claim 2.12. For each c€ (F*\ F)NQ there is a high h€ Q with cCh.

Card.(F') is finite, because ¢ behaves well. Write n=max Card, (F). Fix
feFne nw™ and pick h € [w]™ * with ¢ C h C f. Then h is high in Q
because it is maximal in (F+¥\ F)NQ.

Claim 2.13. For each b€ FT\ F there is a low ( € Q such that { C b and
(*NF is finite.

Indeed, let j=min{|f|: f € FNb*}, pick feb*NFN[w]’ and let (e[w] !
with f C £Cb. Then ¢ is minimal in F*+\ F hence it is low in Q. Moreover
(N F is clearly finite.

Hence we can apply Theorem 2.7 for Q! (the dual of poset Q) and F
to yield that F splits in Q: there is G C F such that G\ G = F'\ G and
F\GV=F*,

Then G shows that A splits in P. Indeed, FT = A" because of assump-
tion (2). Hence GT=A" in P. On the other hand, if c€ A then either c€Q
and so c€ (F\G)*, or c'NAN[w]“#0 and so c€ (A\ F)* C(A\G)*. 1

3. Negative theorems

In this Section we study maximal antichains of countable posets, together
the possible structures of non-splitting maximal antichains.
To start we give some consequences of Lemma 2.9. At first we have:

Corollary 3.1. If a maximal antichain A does not split in a cut-free poset
P then |[BNC|=w for each (B,C)€&(A).

Which in turns gives a direct generalization of Theorem 1.1:

Corollary 3.2. Every finite maximal antichain splits in every cut-free
poset.

We think that in the future Lemma 2.9 will provide the standard proof
of Theorem 1.1. Lemma 2.9 also shows that in cut-free posets there are no
maximal antichains A with maximally degenerated G(A):

Corollary 3.3. There exits no cut-free poset P such that S(A)={(A4,A)}
for some maximal antichain AC P.
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On the other hand, in Theorem 3.6 below we show that the structure of
S(A) can be quite degenerated: it might happen that every pair in G(A)
contains A itself. To formulate this result we need one more definition.

Definition 3.4. A poset P is loose if and only if for each x € P and F €
[P]=“ if 2¢ F"" then there is y € 2"\ {x} such that yg F*UF™.

Assume that P is loose and p € P. Let F = (). Then p ¢ F' hence by
sleaziness there is y € P with y€a"\ {z}, i.e. y>x. Thus we have:

Remark. A loose poset does not have maximal elements. Especially, it is
infinite.

Claim 3.5. ([w]~*,C) is loose.

Proof. Indeed, if » € W] and F is a finite subset of [w]<* with x ¢ F'
then let n be a natural number not belonging to = or any set in F, and put
y=xU{n}. Let fEF. Then 0 # f\2=f\y hence y¢ F'. Moreover, n€y\ f
and so y ¢ F*t. |

Theorem 3.6. Assume that P=(P,<) is a countable, loose poset. Then P
contains a maximal antichain A such that

(i) if (B,C)€G(A) then B=A,
(i) if A is finite then N{C:(B,C)e &(A)} #0,
(iii) if A is infinite then so is C for each (B,C) € G(A),
(iv) if P is cut-free then A is infinite.
Proof. Let (p,,:n <w) be an enumeration of the elements of P. By induction
on n €w we choose elements x,,,Yn, 2n € P with z, <y, <z, as follows.

Let m, =min{m :p,, & {yi i <n}TU{y; :i <n}+}. If m, is not defined
then the we stop the construction. Assume that m,, is defined. Since y; < z;
we have p,,, ¢ {y:,z :i <n}'. Furthermore since P is loose there is x, € P
with pm,, <z, such that

T E{yi,zi i < n}TU{yi,zi 1< n}i.

Applying the sleaziness of P once more there is y, € P with z, <y, such
that

(3) Yn & {yiyzi i < n}T U{yi,zi i < n}i.

Applying the sleaziness of P a third time there is z, € P with y, < z, such
that

Zn YiyZi te<nmyp' Uy, 2 te < ngv.
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We claim that A={y,:n<w,y, is defined} has the required properties.
First observe, that A is an antichain by Property (3).

By induction on n we can see that m, >n and so p, € {y;:i <n}TU{y;:
i <n}*Uy,*, hence the antichain A is maximal.

Assume that (B,C) € S(A). Let n be arbitrary such that m,, is defined.
By Property (4) we have z, & {y;:i <n}TU{y;:i <n}*. By Property (3) we
have z,, ¢ {y;:i >n}TU{y;:i>n}+. Since y, < z, we have z,  AU(A\{y, })T.
Thus z, € BTUC* implies then vy, € B. Hence B=A. (That is (i) holds.)

Since pm, < yn we have p,,, ¢ A'. By the choice of m, we have p,,, ¢
{yi,:i <n}U{y; i <n}*. Thus pn,, € {yp € C:k>n}t. Hence {m:z,, € C}
is cofinal in {m: x,, is defined}. Therefore y,, € C' provided that A is finite
and n=max{n':m,, is defined} and so (ii) holds, and C'is infinite provided
that A is infinite. (That is (iii) holds.) Let’s remark that one can prove (iii)
by observing that if C' would be finite then Lemma 2.9 and Property (i)
together would prove that (B,0) € §(A), a clear contradiction.

Properties (ii) and (iii) imply that A does not split. Since, according to
Corollary 3.2, finite antichains split in a cut-free posets we have that A is
infinite provided that P is cut-free. (That is (iv) holds.) |

Since <[w]<w ) C> is loose and cut-free, we can apply Theorem 3.6 to get
the following corollary.

Corollary 3.7. <[w]<w,c> contains a maximal antichain A such that if
(B,C)eB(A) then A=B and C is infinite, and so A does not split.

This result is a farfetched generalization of the construction given by
Ahlswede and Khachatrian in [2].

The following result shows that even more can be said about maximal
antichains A in cut-free posets, where every pair in G(A) contains A itself,
showing also that Theorem 3.6 is sharp in a certain sense.

Theorem 3.8. Assume that P=(P,<) is a countable, cut-free poset, AC P
is a maximal antichain such that A= B for each (B,C)€ &(A). Then there
is (A,C) e 6(A) with |[A\C|=w.

Proof. Since (A\{a},A) ¢ G(A) we can pick z, € P such that a < z, and
za ¢ (A\{a})! for each a € A.

We claim that 2T N A is infinite for each 2 € A*\ A and this statement
finishes the proof: Indeed, in this case there is C' € [A]* such that |(zTNnA)N
C|=|(x"NA)\C|=w for each z € AN\ A, and so (4,C) € G(A) with |A\C|=w.
(This is the well-known Bernstein’s Lemma [3].)

To prove our claim assume on the contrary that B=x"NA is finite for
some x € A+\ A. Choose x such that |B| is minimal. Clearly |B| > 0. Let
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y € B be arbitrary. Then = <y < 2z, and P is cut-free so there is t € [z, z,]
which is incomparable with y.

Now t € A% because a <t would imply a < z, and so a=y for any a € 4,
but ¢t and y were incomparable. Moreover t' N A C (2" N A)\ {y}, which
contradicts the minimality of the cardinality of =N A. ]

Till now we used the sleaziness to show that certain antichain can not
split, or to restrict the structure of G(A). The next theorem shows that the
sleaziness can be used even in the other direction: to guarantee the existence
of splitting antichains.

Theorem 3.9. Assume that P = (P,<) is a countable poset such that P
and P~ are loose. Then P contains a maximal antichain A which splits.

Proof. Write P = {p,,: n <w}. By induction on n we will construct finite
disjoint subsets B, and C, of P such that

(i) B,UC, is an antichain,

(ii) B, 1CB, and C,,_1 CC,,

(iii) pn_1€BIUCH.
It is enough to show that we can carry out the induction because taking
B=U{B, :n€w} and C =U{C, : n € w} we have that A:=BUC is a
maximal antichain having the splitting (B, C).

Let By = Cy = 0. Assume that B,_; and C,,_; are constructed. Write

p=pn_1. I p€ BI?I u Cifl then let C,,=C,,_1 and B,,=B,,_1. So we can
assume that p¢ Bl _ UCT_,.

Case 1. pgéCZfl.

Then p ¢ (C,,_1UB, 1)T. Since P is loose there is p < ¢ such that ¢ ¢
(Cp 1UB, 1)'U(Cp 1UB, 1)} ie. B, 1UC, 1U{q¢} is an antichain. Let
C,=C, 1U{q} and B, =B, 1. Then pcq¢cC C%, B,, and C,, are disjoint
and B, UC,, is an antichain.

Case 2. p¢ B}

n—1"
Then p ¢ (B,_1 UC,_1)*. Since P~! is loose there is ¢ < p such that
q¢ (B,_1UC,_)*U(B,_1UC,_1), i.e. C,,_1UB,,_1U{q} is an antichain. Let

B,=B,_1U{q} and C,=C,_1. Then pcq' C Bi, C, and B,, are disjoint
and C,, U B,, is an antichain.

Case 3. p€ Bi_l 002—1-
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Then there is b€ B, 1 and c€ C,,_1 such that c<p<b, i.e. B, 1UC, 1
is not an antichain. Contradiction, this case is not possible which finishes
the proof. ]

The maximal antichains in the poset Z of the integer are the singletons
and they clear don’t split.

Problem 3.10. Is there a countable cut-free poset P which does not con-
tain splitting maximal antichains?

Consider the following countable, well-founded, cut-free poset. Let the
underlying set of P be w x w. Put (n,m) <p (n',m') if and only if n <n'.
Then the antichains in P are the sets {n} X w for n <w, and {n} x w splits

because
P ={(n,i)}* u{(n,j)}'

whenever i # j. We do not have any characterization of posets having only
splitting maximal antichains.

Till now we were interested the existence of splitting of maximal an-
tichains. One can ask, however, how many different splits can be found.

Problem 3.11. Fix a cardinal k. Is there a countable cut-free poset P
having a maximal antichain A such that

def
Kp =

{B:(B,A\ B) € 6(A)}| =~r?

In general, we do not know the answer. Since |A| is countable 24 can
be considered as a topological space homeomorphic to the w'™ power of the
two element discrete topological space 2 = {0,1}, i.e. to the Cantor set.
Hence we have the Borel hierarchy on 24. Since G(A) is a Gs-subset of
24 x 24 hence either G(A) is at most countable or has cardinality 2¢ by [8,
Theorem 11.18(iii)]. The case k=2 is trivial. The case k=1 is also trivial:
let P be well-founded and A be the minimal points of P. However the xp
can be 1 in a less trivial way.

Claim 3.12. There is a countable, cut-free poset P and an infinite maximal
antichain A C P such that

(i) Va€e A Jz,ye P x<a<y,
(i) {BCA:(B,A\B)e&(A)}=1.

Proof. Consider the poset @ on Figure 1. The poset @ is cut-free. The set
A = {b,c} is a maximal antichain in @ and &(A) = {(b,c)}. Let P be the
disjoint union of countable many copies of Q. ]
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Figure 1. Poset @

4. Some set-theory

In this section we will use the standard set-theoretical notation throughout,
see e.g. [8].

The answers to the questions which we investigated in connection with
countable posets in Section 3 does not depend on the actual set-theoretical
universe in which we work. The reason is that all the statements can be for-
mulated as a Y3 (a) or I13(a) formula with some parameter a € w*, and so
they are absolute by Schoenfield’s absoluteness theorem, [8, Theorem 25.20).
For example, given a countable poset P and maximal antichain A C P state-
ments like “A splits”, or “no maximal antichains of P splits”, or “every
maximal antichain of P splits” are all absolute: their truth value depends
on only P and A and independent of the set-theoretical universe. Same ar-
gument gives that although we do not know the answer to the problem 3.10
we can expect a yes or no answer in ZFC.

The situation changes dramatically if we consider uncountable partially
ordered sets. We will give an example after Proposition 4.3 that given a
poset P of size w; and maximal antichain A C P the statement “A splits”
can depend on the set-theoretical universe in which we live. We will also show
that axiom & can be reformulated as a statement on splitting property of
certain antichains in certain posets, see proposition 4.3.

Definition 4.1. Let £ be the set of the countable limit ordinals. We say
that (T, :a€ L) is a &-sequence if and only if T, C o is cofinal for each a € L
and for each X € [wq]*" there is o € £ with T,, C X. Axiom & holds if and
only if there is a &-sequence.
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It is well-known that axiom & is independent from ZFC: there is a & se-
quence in the constructible universe L of Godel but Martin’s Axiom excludes
the existence of such a sequence.

Definition 4.2. Given a sequence 7 ={Tj:3€ L}, where T, C « is cofinal,
we define the poset Q(7) as follows. The underlying set of Q(7) is ({2} x
L)U(2Xxwi). Let (0,n) <(1,£) if and only if n<&. Let (1,{) < (2,3) if and
only if (€Tps. Let <g(7) be the partial ordering generated by <.

The poset Q(T) is clearly cut-free.

Proposition 4.3. Let T = {Ts : § € L}, where T, C « is cofinal. The
maximal antichain A = {1} x w;y splits in Q(T) if and only if T is not a
&-sequence.

Proof. If 7 is not a & sequence then there is X € [wy]*" such that T,\ X #0
for each @ € £. Let B ={1} x (w1 \ X) and C = {1} x X. Then for each
a € L there is £ €wy \ X with £ €T, and so (1,£) <(2,a), i.e. B> {2} x L.
Moreover for each n<wy there is £ € X with n<¢ and so (0,£ <(1,n)). Thus
{0} x wy C C*. Hence BTUCH=Q(T).

Assume now that 7 is a &-sequence and let (B,C) € G(A). We show
that A\ B is countable and C is uncountable. If C'C A is countable then
(0,sup{a:(1,a) €C}+1) ¢ C*. Assume on the contrary that e.g. A\ B is
uncountable. Then X = {£ : (1,£) ¢ B} € [wi]*! and so there is a € L
with T, C X. Let = (2,a). Then ANzt = {1} x T,, and so BNat =0,
i.e. z ¢ BT. Since C* is disjoint to {2} x £ we obtain that z ¢ BTUCY, a
contradiction. Hence the set A\ B is countable. |

Example. Fix a &-sequence 7 =(Ts:5€ L) in L. Then, by proposition 4.3,
the antichain A={1}xw; does not split in Q(7). It is well-known that there
is a c.c.c generic extension of L in which Martin’s Axiom holds, and so axiom
& fails, especially 7 is not a &-sequence. Hence, applying proposition 4.3
again we obtain that A splits in this generic extension. Hence the statement
“A splits” is not absolute.

As we have seen splitting property can be used to formulate an equivalent
of axiom &. The next proposition shows that even the Axiom of Choice can
be reformulated in a similar way.

Theorem 4.4. (ZF) The Axiom of Choice is equivalent to the statement
of Theorem 2.8.

Proof. Assume that the statement of Theorem 2.8 holds. Let A={A;:i€ I}
be a family of pairwise disjoint nonempty sets. Without loss of generality
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|A;|#1 for each i € I. We need to show that there is a choice function on A.
To do so define the poset R(A)=(R,<pg) as follows:

(5) R=10U(u{4;:iel})u (AP ieT}).
(6) <= {(a,i):i€el,ae A4} U{{({a,b},a):a€ A;,be A\ {a}.i €T},

and let <p be the partial order generated by <.

RSN
N

U{[Ai]2 11 € I} {avb} {aac} {dae}

The poset R(A) is well-founded and cut-free. The set A=U{A;:i €1} isa
maximal antichain in it and |#TNA|=2 for each z€ AY\ A=U{[A,]*:ieT}.
Hence A splits by theorem 2.8, R= BTU(A\B)* for some B C A. Since I ¢ B'
we have BN A; # () for each i € I. On the other hand |A; N B| < 1. Indeed
{b,c} €[B*N[A;]* would imply that {b,c} ¢ (A\ B)*. Hence |[BN A;|=1 for
each i € I and so we have a choice function f on A: let f(i) =U(A;N B)
foriel. |

I

U{Ai:iEI}

Let us conclude this Section with a generalization of property “loose” to
bigger cardinals. The proofs of the results are very similar to those in the
first part of Section 3, therefore we leave them to the diligent reader.

Definition 4.5. Given a cardinal k, a poset P is k-loose if and only if for
each € P and F € [P]~" if 2 ¢ F' then there is y € 2T\ {#} such that
y¢ FrUFT,

Claim 4.6. If k and X cardinal such that A\ < k or A\ = k = cf(k) then
<[n]<)‘ , §> is k-loose.

Theorem 4.7. Assume that P=(P,<) is a k-loose poset of cardinality k.
Then P contains a maximal antichain A such that

(i) if (B,C)€eS(A) then B= A,

(i) cf(|C|)=cf(|A|) for each (B,C) € &(A).
(iii) if P is cut-free then A is infinite.
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Corollary 4.8. If k<* = \ = x then <[/€]<’\,§> contains a maximal an-
tichain which does not split. In particular,

(i) for each infinite cardinal k the poset ([k]~“,C) contains maximal an-
tichain which does not split,

(ii) if the continuum hypothesis holds then ([wy]”,C) contains maximal
antichain which does not split.

Proof. Since ‘[/{]O“ =r<* =g, and <[n]<)‘,§> is cut-free and k-loose we

can apply Theorem 4.7 to get the required maximal antichain. ]

Corollary 4.9. If 2* =w; then the cut-free poset P(w)/[w]< contains an
antichain which does not split.
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