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To András Horányi for introducing me atmospheric science, his help and collaboration.

To Sebastian Lerch for the fruitful collaboration, great ideas and all his help with the R
codes.
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• TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project supported by the European Union
and co-financed by the European Social Fund.

Finally, I am grateful

to the University of Washington MURI group for providing the University of Washington
mesoscale ensemble data;
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ARPEGE Action de Recherche Petite Echelle Grande Echelle
BfG German Federal Institute of Hydrology
BFGS Broyden-Fletcher-Goldfarb-Shanno (algorithm)
BMA Bayesian Model Averaging
BS Brier Score
BSS Brier Skill Score
CDF Cumulative Distribution Function
COSMO Consortium for Small-Scale Modelling
CRPS Continuous Ranked Probability Score
CRPSS Continuous Ranked Probability Skill Score
CSG Censored and Shifted Gamma (distribution)
DM Diebold-Mariano (test)
DS Determinant Sharpness
DST Daylight Saving Time
ECMWF European Centre for Medium-Range Weather Forecasts
EE Euclidean Error
EM Expectation-Maximization (algorithm)
EMOS Ensemble Model Output Statistics
ENS (51-member ECMWF) Ensemble
EPS Ensemble Prediction System
ES Energy Score
GEFS Global Ensemble Forecast System
GEV Generalized Extreme Value (distribution)
GLAMEPS Grand Limited Area Model Ensemble Prediction System
HIRLAM High Resolution Limited Area Modelling
HMS Hungarian Meteorological Service
HRES (ECMWF) High-Resolution (forecast)
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Introduction

Capturing and modelling uncertainty is an essential need in any forecasting problem, and
in weather or hydrological prediction it may result in an enormous economical benefit.
In the early 90’s there was an important shift in the practice of weather forecasting from
deterministic forecasts obtained using numerical weather prediction (NWP) models in the
direction of probabilistic forecasting. The crucial step was the introduction of ensemble
prediction systems (EPSs) in operational use in 1992 both at the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the U.S. National Meteorological Cen-
ter. An EPS provides a range of forecasts corresponding to different runs of the NWP
models, which are usually generated from random perturbations in the initial conditions
and the stochastic physics parametrization. In the last decades, the ensemble method has
become a widely used technique all over the world as using ensemble forecasts one can, for
instance, easily provide prediction intervals reflecting to forecasts uncertainty. The ad-
vantage of ensemble forecasting is nicely illustrated by Figure 1 showing point forecasts of
temperature for Debrecen, Hungary, and the corresponding ECMWF ensemble forecasts.
In the latter case (Figure 1b) the ensemble mean can serve as a point forecast, however,
one can also observe how the forecast uncertainty increases with the increase of the lead
time of prediction. Note that both forecasts are available for public on the official web
page of the Hungarian Meteorological Service (www.met.hu).

However, raw ensemble forecasts often exhibit systematic errors as they might be bi-
ased or badly calibrated calling for some form of post-processing. Simple approaches to
bias correction or calibration have a long history, however, in the first years of the XXI.
century several more sophisticated methods appeared (Wilks, 2006), including parametric
models providing full predictive distributions of the weather variables at hand. Starting
with the fundamental works of Tilmann Gneiting and Adrian Raftery (Gneiting and
Raftery, 2005; Gneiting et al., 2005; Raftery et al., 2005) introducing Bayesian model av-
eraging (BMA) and ensemble model output statistics (EMOS) for ensemble calibration,
statistical post-processing of ensemble forecasts became a hot topic both in statistics
and in atmospheric sciences, resulting in a multitude of probabilistic models for different
weather quantities, new methods of estimation of parameters of these models and novel
approaches to forecast verification (Buizza, 2018). Recently, the German Meteorological
Service uses a special EMOS post-processing model (Schuhen et al., 2012) in operational
wind vector prediction for the Frankfurt Airport, and there are ongoing research projects
e.g. at the ECMWF pointing towards the introduction of statistical calibration in opera-
tional use (see e.g. Gneiting, 2014; Richardson et al., 2015; Baran et al., 2019b).

This dissertation is a summary of the achievements of the author in the area of proba-
bilistic forecasting. It contains new BMA and EMOS models for post-processing of water
levels and different weather quantities, novel approaches to training data selection in the

1
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2 INTRODUCTION

(a) (b)

Figure 1: Point forecasts (a) and ECMWF ensemble forecasts (b) of temperature for
Debrecen, Hungary. On panel (b) light and dark orange belts correspond to 80 % and
50 % central prediction intervals. Source: www.met.hu

parameter estimation process, and in some cases efficient algorithms for parameter esti-
mation are also provided. Note that the presented results are purely applied. Due to
the nature of the problems investigated, the verification of the proposed models and algo-
rithms can be based only on carefully chosen case studies, which is a standard approach in
probabilistic weather prediction. Using appropriate verification scores the forecast skill of
each suggested method is compared with the predictive performance of the corresponding
state of the art calibration models. The current work is mainly based on eight papers
of the author published either in statistical journals (Computational Statistics and Data
Analysis, Environmetrics, Journal of the Royal Statistical Society: Series C ) or in jour-
nals in the field of atmospheric (Meteorology and Atmospheric Physics, Quarterly Journal
of the Royal Statistical Society) or water sciences (Water Resources Research), but some
results of other published journal articles are also used.

The dissertation consists of six main chapters. Chapter 1 introduces the basic notions
of ensemble forecasting and statistical post-processing, lists the main parametric post-
processing approaches and parameter estimation strategies and describes the methods of
forecast evaluation. In Chapter 2 a novel BMA post-processing model for calibration of
ensemble forecasts of water levels is proposed (Baran et al., 2019a) together with an effi-
cient expectation-maximization (EM) algorithm based maximum likelihood (ML) method
for parameter estimation. Chapter 3 deals with calibration of wind speed forecasts. It
describes a new BMA approach (Baran, 2014) and two different EMOS models (Baran
and Lerch, 2015, 2016) together with the existing up to date methods. In Chapter 4
a novel EMOS model for probabilistic quantitative precipitation forecasting (Baran and
Nemoda, 2016) is compared with the existing parametric approaches. Joint calibration
of wind speed and temperature ensemble forecasts is investigated in Chapter 5 by intro-
ducing bivariate BMA (Baran and Möller, 2015) and EMOS (Baran and Möller, 2017)
models and comparing their predictive performance with the more general Gaussian cop-
ula approach (Möller et al., 2013). The fundamental part of the dissertation ends with
Chapter 6, where two semi-local methods for choosing training data for post-processing
models are described, followed by a short chapter containing some general conclusions.

Finally, we would like to mention that the implementation of the presented methods
resulted in thousands of lines of R code (R Core Team, 2019) and most of the EMOS
approaches considered in Chapters 3 and 4 are now available to a wide range of users as
parts of the ensembleMOS package (Yuen et al., 2018) of R.
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Chapter 1

Probabilistic forecasts and forecast
evaluation

1.1 Ensemble forecasts

The main objective of weather forecasting is to give a reliable prediction of future at-
mospheric states on the basis of observational data, prior forecasts valid for the initial
time of the predictions, and mathematical models describing the dynamical and physi-
cal behaviour of the atmosphere. These models numerically solve the set of the hydro-
thermodynamic non-linear partial differential equations of the atmosphere and its coupled
systems. A disadvantage of these NWP models is that since the atmosphere has a chaotic
character the solutions depend on the initial conditions and also on other uncertainties
related to the numerical weather prediction process. In practice it means that the results
of such models are never fully accurate and the forecast uncertainties should be also taken
into account in the forecast preparation. One can reduce the uncertainties by running
the model with different initial conditions resulting in an ensemble of forecasts (Leith,
1974). Using a forecast ensemble one can estimate the probability distribution of future
weather variables which opens the door for probabilistic weather forecasting (Gneiting
and Raftery, 2005), where not only the future atmospheric states are predicted, but also
the related uncertainty information such as variance, probabilities of various events, etc.

Since its first operational implementation (Buizza et al., 1993; Toth and Kalnay, 1997),
this approach has became a routinely used technique all over the world and recently all
major weather prediction centres have their own operational EPSs, e.g. the 30-member
Consortium for Small-scale Modelling (COSMO-DE) EPS of the German Meteorological
Service (Gebhardt et al., 2011; Ben Bouallègue et al., 2013), the 35-member Prévision
d’Ensemble ARPEGE1 (PEARP) EPS of Méteo France (Descamps et al., 2015) or the
51-member EPS of the independent intergovernmental ECMWF (ECMWF Directorate,
2012; Molteni et al., 1996; Leutbecher and Palmer, 2008), whereas the Hungarian Mete-
orological Service (HMS) operates the 11-member Aire Limitée Adaptation dynamique
Développement International-Hungary Ensemble Prediction System (ALADIN-HUNEPS;
Horányi et al., 2006). It is also worth mentioning the experimental 8-member University
of Washington mesoscale ensemble (UWME; Eckel and Mass, 2005), as an example of an
EPS operated not by a weather centre.

1Action de Recherche Petite Echelle Grande Echelle (i.e. Research Project on Small and Large Scales)

3
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4 CHAPTER 1. PROBABILISTIC FORECASTS AND FORECAST EVALUATION
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Figure 1.1: (a) Wind speed observations (blue line) and corresponding UWME forecasts
(bars) for Newport Municipal Airport, Oregon, USA, for the first two weeks of October
2008; (b) observed precipitation accumulation (blue line) and the corresponding ALADIN-
HUNEPS ensemble forecasts (bars) for Debrecen Airport, Hungary, for the first two weeks
of December 2010.

Although the transition from single deterministic forecasts to ensemble predictions
can be seen as an important step towards probabilistic forecasting, ensemble forecasts
are often underdispersive, that is, the spread of the ensemble is too small to account for
the full uncertainty, and subject to systematic bias. This phenomenon has been observed
with several operational ensemble prediction systems (see e.g. Buizza et al., 2005; Park
et al., 2008; Bougeault et al., 2010). A possible solution to account for this deficiency is
some form of statistical post-processing (Buizza, 2018).

To illustrate the systematic errors of ensemble forecasts, Figure 1.1a shows UWME
wind speed forecasts for Newport Municipal Airport (OR) and the corresponding observa-
tions for the first two weeks of October 2008, and Figure 1.1b shows ALADIN-HUNEPS
forecasts of precipitation accumulation at Debrecen Airport and the corresponding ob-
servations for the first two weeks of December 2010. Both time series illustrate the lack
of an appropriate representation of the forecast uncertainty as the verifying observations
frequently fall outside the range of the ensemble forecasts.

1.2 Statistical post-processing

Over the past decade, various statistical post-processing methods have been proposed in
the meteorological and statistical literature, for an overview see e.g. Wilks (2006); Gneit-
ing (2014); Williams et al. (2014), or Vannitsem et al. (2018). Among these probably the
most popular parametric approaches are the BMA (Raftery et al., 2005) and the EMOS
or non-homogeneous regression (Gneiting et al., 2005), which are partially implemented
in the ensembleBMA (Fraley et al., 2011) and ensembleMOS (Yuen et al., 2018) packages
of R (R Core Team, 2019) and provide estimates of the probability distributions of the
predictable weather quantities. Once the predictive distribution is given, its functionals
(e.g. median or mean) can easily be calculated and considered as point forecasts.

The BMA predictive probability density function (PDF) of a future weather quantity
is the weighted sum of individual PDFs corresponding to the ensemble members. An
individual PDF can be interpreted as the conditional PDF of the future weather quantity
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1.2. STATISTICAL POST-PROCESSING 5

provided the considered forecast is the best one and the weights are based on the relative
performance of the ensemble members during a given training period. In this way BMA
is a special, fixed parameter version of dynamic model averaging method developed by
Raftery et al. (2010). Weights and other model parameters are usually estimated using
linear regression and ML method, where the maximum of the likelihood function is found
by the EM algorithm. We remark that due to their flexibility, mixture models play an
essential role in data analysis (Böhning, 2014) and parameter estimation in mixture models
is a typical application of the EM algorithm (see Dempster et al. (1977), McLachlan
and Krishnan (1997) or more recently Lee and Scott (2012), Chen and Lindsay (2014)).
The BMA models of various weather quantities differ only in the PDFs of the mixture
components. For temperature and sea level pressure a normal distribution provides an
appropriate model (Raftery et al., 2005), but different laws are needed for wind speed
(Sloughter et al., 2010; Baran, 2014), precipitation (Sloughter et al., 2007) or surface wind
direction (Bao et al., 2010). However, one should also mention that in some situations
BMA post-processing might result, for instance, in model overfitting (Hamill, 2007) or
overweighting climatology (Hodyss et al., 2016).

The essentially simpler EMOS approach uses a single parametric distribution as a
predictive PDF with parameters depending on the ensemble members. The unknown
parameters specifying this dependence are estimated using forecasts and validating ob-
servations from a rolling training period, which allows automatic adjustments of the sta-
tistical model to any changes of the EPS (for instance seasonal variations or EPS model
updates). Similar to the BMA approach, different weather quantities require different
predictive PDFs. For example, Gneiting et al. (2005) models temperature with a Gaus-
sian predictive distribution where the mean is an affine function of the ensemble member
forecasts and the variance is an affine function of the ensemble variance. Over the last
years the EMOS approach has been extended to other weather variables such as wind
speed (Thorarinsdottir and Gneiting, 2010; Lerch and Thorarinsdottir, 2013; Baran and
Lerch, 2015; Scheuerer and Möller, 2015), precipitation (Scheuerer, 2014; Scheuerer and
Hamill, 2015; Baran and Nemoda, 2016), and total cloud cover (Hemri et al., 2016).

To illustrate the EMOS approach to post-processing, Figure 1.2a shows the observed
wind speed, the corresponding UWME forecasts and truncated normal (TN) and log-
normal (LN) EMOS predictive distributions (for details see Sections 3.2.1 and 3.2.2, re-
spectively) for Newport Municipal Airport for 2 October 2008. A different situation is
shown in Figure 1.2b, where the observed precipitation accumulation, the corresponding
ALADIN-HUNEPS ensemble forecasts and estimated censored and shifted gamma (CSG)
and censored generalized extreme value (GEV) EMOS predictive distributions (see Sec-
tions 4.2.1 and 4.2.2, respectively) for Debrecen Airport for 12 December 2010 are plotted.
In both cases, the spread of the ensemble forecasts is notably smaller than the spread of
the post-processed forecast distribution. Note that in both examples two different EMOS
models are proposed for the same weather quantity and in general, the success of sta-
tistical post-processing relies on finding appropriate parametric families for the weather
variable of interest. However, the choice of a suitable parametric model is a non-trivial
task and often a multitude of competing models is available. The relative performances
of these models usually vary for different data sets and applications.

The regime-switching combination models proposed by Lerch and Thorarinsdottir
(2013) and also investigated by Baran and Lerch (2015) partly alleviate the limited flex-
ibility of single parametric family models by selecting one of several candidate models
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Figure 1.2: (a) Wind speed observations, the corresponding UWME forecasts and TN
and LN EMOS predictive distributions for Newport Municipal Airport (OR) for 2 Octo-
ber 2008; (b) observed precipitation accumulation, the corresponding ALADIN-HUNEPS
ensemble forecasts and CSG and GEV EMOS predictive distributions for Debrecen Air-
port for 12 December 2010. Ensemble members: red bars; ensemble median: vertical red
line; observation: vertical orange line; predictive PDFs: blue/green lines; EMOS medians:
vertical blue/green lines.

based on covariate information. However, the applicability of this approach is subject to
the availability of suitable covariates. For some weather variables, full mixture EMOS
models can be formulated where the parameters and weights of a mixture of two forecast
distributions are estimated jointly (Baran and Lerch, 2016). However, such approaches are
limited to specific weather variables, and the estimation is computationally demanding.

Recently a more generally applicable route towards improving the forecast perfor-
mance has received significant interest (see e.g. Möller and Groß, 2016; Yang et al., 2017;
Bassetti et al., 2018), which is based on a two-step combination of predictive distributions
from individual post-processing models. In the first step, individual EMOS models based
on single parametric distributions are estimated, whereas in the second step the fore-
cast distributions are combined utilizing state of the art forecast combination techniques
such as the (spread-adjusted) linear pool, the beta-transformed linear pool (Gneiting and
Ranjan, 2013), or the recently proposed Bayesian, essentially non-parametric calibration
approach (Bassetti et al., 2018). Besides these techniques Baran and Lerch (2018) propose
a computationally efficient ’plug-in’ approach to determining combination weights in the
linear pool that is specific to post-processing applications.

Besides the calibration of univariate weather quantities an increasing interest has ap-
peared in modelling correlations between the different weather variables. In the special
case of wind vectors, Pinson (2012) suggested an adaptive calibration technique, whereas
Schuhen et al. (2012) and Sloughter et al. (2013) introduced bivariate EMOS and BMA
models, respectively. Further, Möller et al. (2013) developed a general approach where
after univariate calibration of the weather variables, the component predictive PDFs are
joined into a multivariate predictive density with the help of a Gaussian copula. An-
other idea appears in the ensemble copula coupling method Schefzik et al. (2013), where
after univariate calibration the rank order information in the raw ensemble is used to
restore correlations. For joint post-processing of ensemble forecasts of wind speed and
temperature Baran and Möller (2015) and Baran and Möller (2017) propose bivariate
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1.3. POST-PROCESSING APPROACHES 7

BMA and EMOS models, respectively, and finally, Schefzik (2016a,b) introduces non-
parametric approaches for modelling spatial dependencies between individual univariate
and multivariate post-processed forecasts.

Statistical calibration can also be applied to improve the performance of hydrological
forecasts. EMOS based statistical post-processing turned out to improve the predictive
performance of hydrological ensemble forecasts for different gauges along river Rhine
(Hemri et al., 2015; Hemri and Klein, 2017), whereas Baran et al. (2019a) propose a
doubly truncated BMA model for calibration of Box-Cox transformed ensemble forecasts
of water levels.

1.3 Post-processing approaches

As mentioned in Section 1.2, the Bayesian model averaging and ensemble model output
statistics are among the most popular post-processing approaches as they provide full
predictive distributions. In the present work we also concentrate on various versions of
these techniques describing new models and applications.

In what follows, let f1, f2, . . . , fK denote the ensemble forecast of a given weather or
hydrological quantity X for a given location, time and lead time under the assumption
that the ensemble members can be clearly distinguished and they are not exchangeable.
Such forecasts are usually outputs of multi-model, multi-analyses EPSs, where each mem-
ber can be identified and tracked. This property holds e.g. for the UWME or for the
COSMO-DE ensemble.

However, recently most operational EPSs incorporate ensembles where at least some
members can be considered as statistically indistinguishable and in this way exchangeable,
as these forecasts are generated using perturbed initial conditions. This is the case with
the 51-member operational ECMWF ensemble or one can mention multi-model EPSs such
as the Grand Limited Area Model Ensemble Prediction System (GLAMEPS) ensemble
(Iversen et al., 2011) or the THORPEX2 Interactive Grand Global Ensemble (Swinbank
et al., 2016).

In the remaining part of this chapter, if we have M ensemble members divided into
K exchangeable groups, where the kth group contains Mk ≥ 1 ensemble members
(
∑K

k=1Mk = M), notation fk,` is used for the `th member of the kth group.

1.3.1 Bayesian model averaging

The BMA predictive distribution of a weather or hydrological quantity X for a given
location, time and lead time proposed by Raftery et al. (2005) is a weighted mixture with
PDF

p(x| f1, . . . , fK ; θ1, . . . , θK) :=
K∑
k=1

ωkg
(
x| fk, θk

)
, (1.3.1)

where g
(
x|fk, θk

)
is the component PDF from a parametric family corresponding to the

kth ensemble member fk with parameter (vector) θk to be estimated, and ωk is the
corresponding weight determined by the relative performance of this particular member

2The Observing System Research and Predictability Experiment
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8 CHAPTER 1. PROBABILISTIC FORECASTS AND FORECAST EVALUATION

during the training period. Note that the weights should form a probability distribution,
that is ωk ≥ 0, k = 1, 2, . . . , K, and

∑K
k=1 ωk = 1.

To account for the existence of groups of exchangeable ensemble members, Fraley et
al. (2010) suggest to use the same weights and parameters within a given group. Thus, if
we have M ensemble members divided into K exchangeable groups, model (1.3.1) is
replaced by

p(x|f1,1, . . . , f1,M1 , . . . , fK,1, . . . , fK,MK
; θ1, . . . , θK) :=

K∑
k=1

Mk∑
`=1

ωkg
(
x| fk,`, θk

)
. (1.3.2)

For the sake of simplicity, in Sections 2.1, 3.1, 4.1 and 5.1 we provide results and formulae
only for model (1.3.1) as their extension to model (1.3.2) is rather straightforward.

Model parameters θk and weights ωk, k = 1, 2, . . . , K, are usually estimated using
rolling training data consisting of ensemble members and verifying observations from the
preceding n days. In general, a maximum likelihood approach is applied.

BMA models corresponding to various weather or hydrological quantities differ in the
component parametric distribution families and in the way the parameters are linked to
the ensemble members. E.g. to model temperature and sea level pressure Raftery et al.
(2005) propose a normal mixture with predictive distribution of the form

K∑
k=1

ωkN
(
αk + βkfk, σ

2
)
,

other currently available models with the corresponding quantities to be forecast are listed
below.

• Wind speed:

– Gamma mixture (Sloughter et al., 2010), for details see Section 3.1.1;

– Truncated normal mixture with cut-off at 0 from below (Baran, 2014), for
details see Section 3.1.2.

• Precipitation accumulation:

– Discrete-continuous model. Point mass at zero, gamma mixture for modelling
positive precipitation accumulation (Sloughter et al., 2007), for details see Sec-
tion 4.1.

• Wind direction:

– Von-Mises mixture (Bao et al., 2010).

• Box-Cox transformed water levels:

– Doubly truncated normal mixture (Baran et al., 2019a), for details see Section
2.1

• Wind vector:

– Bivariate normal mixture (Sloughter et al., 2013).
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1.3. POST-PROCESSING APPROACHES 9

• Wind speed and temperature:

– Bivariate normal mixture truncated from below at zero in the wind coordinate
(Baran and Möller, 2015), for details see Section 5.1.

1.3.2 Ensemble model output statistics

In contrast to the BMA approach, the EMOS forecast distribution is given by a single
parametric law with parameters that depend on the ensemble forecast. For a given weather
or hydrological quantity X for a given location, time and lead time it has the general
form

X | f1, . . . , fK ∼ h(x| f1, . . . , fK ; θ),

where the parametric PDF h(x| f1, . . . , fK ; θ) is connected to the ensemble members with
the help of suitable link functions. E.g. the EMOS predictive distribution for temperature
and sea level pressure suggested by Gneiting et al. (2005) is

N
(
a0 + a1f1 + . . .+ aKfK , b0 + b1S

2
)

with S2 :=
1

K − 1

K∑
k=1

(
fk − f

)2
, (1.3.3)

where f denotes the ensemble mean.
If the ensemble contains groups of statistically indistinguishable ensemble members,

members within a given group should share the same parameters (Gneiting, 2014) result-
ing in the exchangeable version

N
(
a0 + a1f 1 + · · ·+ aKfK , b0 + b1S

2
)

of model (1.3.3), where fk denotes the mean of the kth group.
Parameters of an EMOS model are estimated by optimizing the mean value of a proper

scoring rule (see Section 1.4) over the forecast cases in the (usually rolling) training data.
Again, different weather or hydrological quantities require different predictive distri-

butions and link functions.

• Wind speed:

– Truncated normal distribution with cut-off at 0 from below (Thorarinsdottir
and Gneiting, 2010), for details see Section 3.2.1;

– Generalized extreme value distribution (Lerch and Thorarinsdottir, 2013), for
details see Section 3.2.3;

– Log-normal distribution (Baran and Lerch, 2015), for details see Section 3.2.2.

• Precipitation accumulation:

– Censored generalized extreme value distribution (Scheuerer, 2014), for details
see Section 4.2.2;

– Censored, shifted gamma distribution (Scheuerer and Hamill, 2015; Baran and
Nemoda, 2016), for details see Section 4.2.1.

• Box-Cox transformed water levels:
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10 CHAPTER 1. PROBABILISTIC FORECASTS AND FORECAST EVALUATION

– Doubly truncated normal distribution (Hemri et al., 2015; Hemri and Klein,
2017), for details see Section 2.2.

• Wind vector:

– Bivariate normal distribution (Schuhen et al., 2012).

• Wind speed and temperature:

– Bivariate normal distribution truncated from below at zero in the wind coor-
dinate (Baran and Möller, 2017), for details see Section 5.2.

1.3.3 Parameter estimation strategies

The choice of the training data is important for statistical post-processing. As mentioned
before, for estimating the BMA and EMOS model parameters usually a rolling training
period is applied, and the estimates are obtained using ensemble forecasts and correspond-
ing validating observations for the preceding n calendar days. Given a training period,
there are two traditional approaches for spatial selection of the training data (Thorarins-
dottir and Gneiting, 2010). In the global (regional) approach, parameters are estimated
using all available forecast cases from the training period resulting in a single universal set
of parameters across the entire ensemble domain. It requires quite short training periods
(see e.g. Baran et al. (2013, 2014a,b) and Baran and Nemoda (2016), where the optimal
training period lengths for ALADIN-HUNEPS wind speed, temperature and precipitation
forecasts are given), but usually it is unsuitable for large and heterogeneous observation
domains. For local parameter estimation, one has distinct parameter estimates for the dif-
ferent stations obtained using only training data of the given station. To avoid numerical
stability problems, local models require much longer training periods (for optimal training
period lengths for EMOS modelling of different weather quantities see e.g. Hemri et al.,
2014), but if the training data is large enough, it will usually outperform the regional
approach. To combine the advantages of local and regional estimation, Lerch and Baran
(2017) introduced two semi-local methods where the training data for a given station is
augmented with data from stations with similar characteristics. The choice of similar
stations is based either on suitably defined distance functions or on clustering. In the dis-
tance based approach, which generalizes the idea of Hamill et al. (2008), training sets of
a given station are increased by including training data from the L nearest stations, and
distances are measured from historical data. In the clustering based semi-local method,
the observation sites are grouped into clusters using k-means clustering of feature vectors
depending both on the station climatology (observations at the given station) and the
forecast errors of the raw ensemble during the training period, then a regional parameter
estimation is performed within each cluster. With the help of these methods one can get
reliable parameter estimates even for short training periods and the obtained models may
outperform the local BMA or EMOS approaches (Lerch and Baran, 2017). A detailed
description of semi-local approaches to parameter estimation can be found in Chapter 6.
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1.4. FORECAST EVALUATION 11

1.4 Forecast evaluation

In probabilistic forecasting the general aim is to access the maximal sharpness of the
predictive distribution subject to calibration (Gneiting et al., 2007), where the latter
means a statistical consistency between the predictive distributions and the validating
observations, whereas the former refers to the concentration of the predictive distribution.

One of the simplest tools for getting a first impression about the calibration of en-
semble forecasts is the verification rank histogram (or Talagrand diagram), defined as the
histogram of ranks of validating observations with respect to the corresponding ensemble
forecasts (see e.g. Wilks, 2011, Section 8.7.2). In the case of a properly calibrated K-
member ensemble, the ranks follow a uniform distribution on {1, 2, . . . , K + 1}, and the
deviation from uniformity can be quantified by the reliability index ∆ defined by

∆ :=
K+1∑
r=1

∣∣∣ρr − 1

K + 1

∣∣∣, (1.4.1)

where ρr is the relative frequency of rank r (Delle Monache et al., 2006). The verification
rank histogram can also be generalized to multivariate ensemble forecasts, however, in this
case the usual problem is the proper definition of ranks. In Chapter 5 of the present work
we use the multivariate ordering proposed by Gneiting et al. (2008). For a probabilistic
forecast one can calculate the reliability index (and plot the verification rank histogram
as well) from a preferably large number of ensembles sampled from the predictive PDF
and the corresponding verifying observations.

In the univariate case the continuous counterpart of the verification rank histogram is
the probability integral transform (PIT) histogram. By definition, the PIT is the value of
predictive cumulative distribution function (CDF) at the validating observation (Raftery
et al., 2005), which in case of proper calibration should follow a uniform distribution on
the [0, 1] interval. Apart from the visual inspection of PIT histograms, formal statistical
test of uniformity can be used to assess calibration. The simplest idea is to make use
of the Kolmogorov-Smirnov test. This approach is followed in the case study of Section
2.3. However, as the PIT values of multi-step ahead probabilistic forecast exhibit se-
rial correlation (see e.g. Diebold et al., 1998) and the probabilistic forecasts cannot be
assumed to be independent in space and time, one can employ a moment-based test of
uniformity proposed by Knüppel (2015), which accounts for dependence in the PIT val-
ues. In particular, in Sections 3.3 and 4.3 we use the α0

1234 test of Knüppel (2015) that has
been demonstrated to have superior size and power properties compared with alternative
choices.

Predictive performance can be quantified with the help of scoring rules, which are loss
functions S(F, x) assigning numerical values to pairs (F, x) of forecasts and observations.
In the atmospheric sciences the most popular scoring rules are the continuous ranked
probability score (CRPS; Gneiting and Raftery, 2007; Wilks, 2011) and the logarithmic
score (LogS; Good, 1952). For a (predictive) CDF F (y) and real value (observation) x
the CRPS is defined as

CRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− I{y≥x}

)2
dy =

∫ x

−∞
F 2(y)dy +

∫ ∞
x

(
1− F (y)

)2
dy (1.4.2)

= E|X − x| − 1

2
E|X −X ′|,
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12 CHAPTER 1. PROBABILISTIC FORECASTS AND FORECAST EVALUATION

where IH denotes the indicator of a set H, whereas X and X ′ are independent
random variables with CDF F and finite first moment. The last representation in (1.4.2)
implies that the CRPS can be expressed in the same unit as the observation. In most
applications the CRPS has a simple closed form (see e.g. the R package scoringRules;
Jordan et al., 2017), otherwise the second integral expression in the definition (1.4.2)
should be evaluated numerically. According to our tests with the mixture EMOS model
of Section 3.2.5 (see also Baran and Lerch, 2016), this approach results in slightly more
accurate results and faster calculations than the numerical evaluation of the first integral
defining the CRPS. The logarithmic score is the negative logarithm of the predictive
density f(y) evaluated at the verifying observation, i.e.,

LogS(F, x) := − log(f(x)). (1.4.3)

Both CRPS and LogS are proper scoring rules (Gneiting and Raftery, 2007) which are
negatively oriented, that is, smaller scores indicate better forecasts.

A direct multivariate extension of the CRPS is the energy score (ES) introduced by
Gneiting and Raftery (2007). Given a CDF F on Rd and a d-dimensional vector x,
the energy score is defined as

ES(F,x) := E‖X − x‖ − 1

2
E‖X −X ′‖, (1.4.4)

where ‖ · ‖ denotes the Euclidean distance and, similar to the univariate case, X and
X ′ are independent random vectors having distribution F . However, in most cases (see
Section 5.4) the ES cannot be given in a closed form, so it is replaced by a Monte Carlo
approximation

ÊS(F,x) :=
1

n

n∑
j=1

‖Xj − x‖ −
1

2(n− 1)

n−1∑
j=1

‖Xj −Xj+1‖, (1.4.5)

where X1,X2, . . . ,Xn is a large random sample from F (Gneiting et al., 2008). Finally,
if F is a CDF corresponding to a forecast ensemble f 1,f 2, . . . ,fK then (1.4.5) reduces
to

ES(F,x) =
1

K

K∑
j=1

‖f j − x‖ −
1

2K2

K∑
j=1

K∑
k=1

‖f j − fk‖. (1.4.6)

Obviously, for univariate quantities (1.4.5) and (1.4.6) result in the approximation of the
CRPS of a probabilistic forecast and CRPS of the raw ensemble, respectively.

Besides the CRPS one can also consider Brier scores (BS; Wilks, 2011, Section 8.4.2)
for the dichotomous event that the observation x exceeds a given threshold y. For a
predictive CDF F (y) the Brier score is defined as

BS
(
F, x; y

)
:=
(
F (y)− I{y≥x}

)2
, (1.4.7)

(see e.g. Gneiting and Ranjan, 2011), and note that the CRPS is the integral of the
BS over all possible thresholds. Brier score is also negatively oriented and it plays an
important role e.g. in evaluating forecasts of the probability of no precipitation.
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1.4. FORECAST EVALUATION 13

To evaluate the goodness of fit of probabilistic forecasts to extreme values of the
univariate weather quantity at hand, a useful tool to be considered is the threshold-
weighted continuous ranked probability score (twCRPS)

twCRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− I{y≥x}

)2
ω(y)dy (1.4.8)

introduced by Gneiting and Ranjan (2011), where ω(y) ≥ 0 is a weight function. Ob-
viously, ω(y) ≡ 1 corresponds to the traditional CRPS defined by (1.4.2), while to
address values of the studied weather variable above a given threshold r one may set
ω(y) = I{y≥r}. In the case studies of Chapter 3 we consider threshold values corresponding
approximately to the 90th, 95th and 98th percentiles of the wind speed observations.

In case studies, with respect to a given score S(F, x), competing forecast methods
can be compared by the mean score value

SF :=
1

N

N∑
i=1

S
(
Fi, xi

)
(1.4.9)

over all pairs (Fi, xi), i = 1, 2, . . . , N, of forecasts and observations in the verification
data. Further, the improvement in a score SF for a forecast F with respect to a
reference forecast Fref can be quantified with the help of the corresponding skill score
(Gneiting and Raftery, 2007), defined as

SskillF := 1− SF
SFref

, (1.4.10)

where SFref denotes the mean score value corresponding to the reference approach. Thus,
besides the CRPS, BS and twCRPS one can also investigate the continuous ranked prob-
ability skill score (CRPSS; see e.g. Murphy, 1973; Gneiting and Raftery, 2007), the Brier
skill score (BSS; see e.g. Friedrichs and Thorarinsdottir, 2012) and the threshold-weighted
continuous ranked probability skill score (twCRPSS; see e.g. Lerch and Thorarinsdottir,
2013), respectively. These scores are positively oriented, that is the larger the better. In
the case studies of Chapters 2 and 4 we use the raw ensemble as a reference, whereas in
Chapter 3 skill scores with respect to the TN EMOS model are reported.

To compare the calibration of probabilities of a dichotomous event of exceeding a
given threshold calculated from the raw ensemble and the BMA and EMOS predictive
distributions, one can make use of reliability diagrams (Wilks, 2011, Section 8.4.4). The
reliability diagram plots the a graph of the observed frequency of the event against the
binned forecast frequencies and in the ideal case this graph should lie on the main diagonal
of the unit square. In the case studies of Chapter 4 the same thresholds as for the
BSs are considered, whereas the unit interval is divided into 11 bins with break points
0.05, 0.15, 0.25, . . . , 0.95. Following Bröcker and Smith (2007) and Scheuerer (2014), the
observed relative frequency of a bin is plotted against the mean of the corresponding
probabilities, and inset histograms displaying the frequencies of the different bins on
log 10 scales are also added.

Calibration and sharpness of a univariate predictive distribution can also be investi-
gated using the coverage and average width of the (1 − α)100 %, α ∈ (0, 1), central
prediction interval, respectively. As coverage we consider the proportion of validating
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14 CHAPTER 1. PROBABILISTIC FORECASTS AND FORECAST EVALUATION

observations located between the lower and upper α/2 quantiles of the predictive CDF,
and level α should be chosen to match the nominal coverage of the raw ensemble, that
is (K − 1)/(K + 1)100%, where again K is the ensemble size. As the coverage of a
calibrated predictive distribution should be around (1 − α)100 %, such a choice of α
allows direct comparison with the raw ensemble.

However, sharpness of an ensemble forecast or of a predictive distribution can also
be quantified by its standard deviation. An obvious generalization of this idea to d-
dimensional quantities is the determinant sharpness (DS; Möller et al., 2013) defined as

DS :=
(

det(Σ)
)1/(2d)

, (1.4.11)

where Σ is the covariance matrix of an ensemble or of a predictive PDF.
As point forecasts one can consider median and mean of the raw ensemble and of

the calibrated predictive distribution, which in the univariate case are evaluated with the
use of mean absolute errors (MAEs) and root mean square errors (RMSEs). Note that
MAE optimal for the median, while RMSE is optimal for the mean forecasts (Gneiting,
2011; Pinson and Hagedorn, 2012). For multivariate point forecasts the RMSE should be
replaced by the mean Euclidean error (EE) of forecasts from the corresponding validating
observations, where the ensemble median can be obtained using the Newton-type algo-
rithm given in Dennis and Schnabel (1983), the algorithm of Vardi and Zhang (2000), or
any other method implemented, e.g. in the R package pcaPP (Fritz et al., 2012). For a
predictive distribution F one may apply the same algorithm on a preferably large sample
from F .

Finally, as suggested by Gneiting and Ranjan (2011), statistical significance of the dif-
ferences between the verification scores is assessed by utilizing the Diebold-Mariano (DM;
Diebold and Mariano, 1995) test, which allows accounting for the temporal dependencies
in the forecast errors. Given a scoring rule S and two competing probabilistic forecasts
F and G, let

di(F,G) := S(Fi, xi)− S(Gi, xi), i = 1, 2, . . . , N,

denote the score differences over the verification data of size N . The test statistic of the
DM test is given by

tN =
√
N
SF − SG
σ̂N

, (1.4.12)

where SF and SG are the mean scores (1.4.9) corresponding to forecasts F and G,
respectively, and σ̂N is a suitable estimator of the asymptotic standard deviation of the
sequence of score differences di(F,G). Under some weak regularity assumptions, tN
asymptotically follows a standard normal distribution under the null hypothesis of equal
predictive performance. Negative values of tN indicate a better predictive performance
of F , whereas G is preferred in case of positive values of tN . In the case studies
of Chapters 2–5, following suggestions of Diebold and Mariano (1995) and Gneiting and
Ranjan (2011), as an estimator σ̂N in (1.4.12) for h step ahead forecasts we use the
sample autocovariance up to lag h− 1.
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Chapter 2

Statistical post-processing of
hydrological ensemble forecasts

Hydrological forecasts are important for a heterogeneous group of users such as, for in-
stance, the operators of hydrological power plants, flood prevention authorities, or ship-
ping companies. For rational decision making based on cost-benefit analyses an estimate of
the predictive uncertainty (Krzysztofowicz, 1999; Todini, 2008) needs to be provided with
any forecast. The state of the art approach of using a set of parallel runs of a hydrological
model driven by meteorological ensemble forecasts provided by NWP models (Cloke and
Pappenberger, 2009) gives a first estimate of the meteorological input uncertainty. How-
ever, as mentioned in Section 1.1, NWP ensembles are usually biased and underdispersed
and other sources of uncertainty like hydrological model formulation, boundary and ini-
tial condition uncertainty as well as measurement uncertainties are typically neglected.
Hence, statistical post-processing is important in order to reduce systematic errors and
to obtain an appropriate estimate of the predictive uncertainty. In this chapter, which
is based on Baran et al. (2019a), we introduce a novel BMA approach to post-processing
hydrological ensemble forecast and in a case study dealing with water levels at gauge
Kaub of river Rhine, the forecast skill of this new model is compared with the predictive
performance of the recently developed EMOS method of Hemri and Klein (2017) and the
raw ensemble forecasts.

2.1 Doubly truncated normal BMA model

For weather variables such as temperature or pressure, BMA models with Gaussian com-
ponents provide a reasonable fit (Raftery et al., 2005; Fraley et al., 2010), however, water
levels are typically non-Gaussian (see e.g. Duan et al., 2007), moreover, they are bounded
both from below and from above. These constraints should also be taken into account dur-
ing model formulation. A general procedure is to normalize the forecasts and observations
using, for instance, Box-Cox transformation

hλ(x) :=

{(
xλ − 1

)
/λ, λ 6= 0,

log(x), λ = 0
(2.1.1)

with some coefficient λ, perform post-processing, and then back-transform the results
using the inverse Box-Cox transformation (Duan et al., 2007; Hemri et al., 2013, 2014,
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16 CHAPTER 2. POST-PROCESSING OF HYDROLOGICAL FORECASTS

2015).

2.1.1 Model formulation

In Duan et al. (2007) and Hemri et al. (2013) the Box-Cox transformation is used prior to
applying BMA in order to achieve approximate normality despite the positive skewness of
water levels. Additionally, it is important to ensure that the resulting water level quantiles
of the predictive distribution are within realistic physical bounds. At the upper bound of
the distribution water levels should be lower than a water level threshold resulting from
an extreme flood with a small exceedance probability, at the lower bound water levels
should be higher than a water level threshold resulting from an extreme long-lasting low
water period with a small non-exceedance probability. In order to ensure realistic values
while still being able to benefit from the mathematical simplicity of Gaussian models,
following the ideas of Hemri and Klein (2017), for modelling Box-Cox transformed water
levels we use a doubly truncated normal distribution N b

a

(
µ, σ2

)
, with PDF

ga,b
(
x|µ, σ

)
:=

1
σ
ϕ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) , x ∈ [a, b], (2.1.2)

and ga,b
(
x|µ, σ

)
:= 0, otherwise, where a and b are the lower and upper bounds and ϕ

and Φ denote the PDF and the CDF of the standard normal distribution, respectively.
Note that the mean and variance of N b

a

(
µ, σ2

)
are

κ = µ+ σ
ϕ
(
a−µ
σ

)
− ϕ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) and (2.1.3)

%2 = σ2

1 +
a−µ
σ
ϕ
(
a−µ
σ

)
− b−µ

σ
ϕ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) −

(
ϕ
(
a−µ
σ

)
− ϕ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

))2
 ,

respectively. The proposed BMA predictive PDF (Baran et al., 2019a) is

p
(
x| f1, . . . , fK ; β01, . . . , β0K ; β11, . . . , β1K ;σ

)
=

K∑
k=1

ωkga,b
(
x| β0k + β1kfk, σ

)
, (2.1.4)

where we assume that the location of the kth mixture component is an affine function of
the corresponding ensemble member fk, and scale parameters are assumed to be equal for
all component PDFs. The latter assumption is for the sake of simplicity and is common in
BMA modelling (see e.g. Raftery et al., 2005), whereas the form of the location parameter
is in line with the truncated normal BMA model of Baran (2014), see also Section 3.1.2.
Further, note that the EMOS model of Hemri and Klein (2017) (see Section 2.2) also links
the ensemble members to the location and scale of the truncated normal distribution and
not to the corresponding mean and variance.

2.1.2 Parameter estimation

Location parameters β0k, β1k, weights ωk, k = 1, 2, . . . , K, and scale parameter σ can
be estimated from training data, which consists, for instance, of ensemble members and
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2.1. DOUBLY TRUNCATED NORMAL BMA MODEL 17

validating observations from the preceding n days. In the BMA approach, estimates of
location parameters are typically obtained by regressing the validating observations on
the ensemble members, whereas weights and scale parameter(s) are obtained via ML esti-
mation (see e.g. Raftery et al., 2005; Sloughter et al., 2007, 2010), where the log-likelihood
function of the training data is maximized using the EM algorithm for mixture distribu-
tions (Dempster et al., 1977; McLachlan and Krishnan, 1997). However, the regression
approach assumes the location parameters to be simple functions of the mean, which is
obviously not the case for the truncated normal distribution, see (2.1.3). Hence, we pro-
pose a pure ML method estimating all model parameters by maximizing the likelihood
function, which idea has already been considered e.g. by Sloughter et al. (2010).

In what follows, for a given location s ∈ S and time t ∈ T let fk,s,t denote the kth
ensemble member, and denote by xs,t the corresponding validating observation. Here S
denotes the set of locations sharing the same BMA model parameters and T is the set of
training dates. In the case study of Section 2.3, S consists of a single location, however,
for more complex ensemble domains different choices of training data are possible, for
more details see Chapter 6. Further, as in the case study of Section 2.3 the different lead
times are treated separately, reference to the lead time of the forecast is omitted. By
assuming the conditional independence of forecast errors with respect to the ensemble
members in space and time, the log-likelihood function for model (2.1.4) corresponding
to all forecast cases (s, t) in the training set equals

`(ω1, . . . , ωK , β01, . . . , β0K , β11, . . . , β1K , σ) =
∑
s,t

log

[
K∑
k=1

ωkga,b
(
xs,t| β0k + β1kfk,s,t, σ

)]
.

(2.1.5)
To obtain the ML estimates we apply EM algorithm for truncated Gaussian mixtures
proposed by Lee and Scott (2012) with a mean correction. In line with the classical EM
algorithm for mixtures (McLachlan and Krishnan, 1997), first we introduce latent binary
indicator variables zk,s,t identifying the mixture component where the observation xs,t
comes from, that is zk,s,t is one or zero according as whether xs,t follows or not the
kth component distribution. Using these indicator variables one can provide the complete
data log-likelihood corresponding to (2.1.5) in the form

`C(ω1, . . . , ωK , β01, . . . , β0K , β11, . . . , β1K , σ) (2.1.6)

=
∑
s,t

K∑
k=1

zk,s,t

[
log
(
ωk
)

+ log
(
ga,b
(
xs,t|µk,s,t, σ

))]
,

with µk,s,t := β0k + β1kfk,s,t. After specifying the initial values of the parameters the
EM algorithm alternates between an expectation (E) and a maximization (M) step until

convergence. As first guesses β
(0)
0k and β

(0)
1k , k = 1, 2, . . . , K, for the location parameters

we suggest to use the coefficients of the linear regression of xs,t on fk,s,t, so µ
(0)
k,s,t =

β
(0)
0k +β

(0)
1k fk,s,t. Initial scale σ(0) can be the standard deviation of the observations in the

training data set or the average residual standard deviation from the above regression,
whereas the initial weights might be chosen uniformly, that is ω

(0)
k = 1/K, k = 1, 2, . . . , K.

Then in the E step the latent variables are estimated using the conditional expectation
of the complete log-likelihood on the observed data, while in the M step the parameter
estimates are updated by maximizing `C given the actual values of the latent variables.
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18 CHAPTER 2. POST-PROCESSING OF HYDROLOGICAL FORECASTS

For the doubly truncated normal model specified by (2.1.2) and (2.1.4), the E step of
the (j + 1)st iteration is

z
(j+1)
k,s,t :=

ω
(j)
k ga,b

(
xs,t|µ(j)

k,s,t, σ
(j)
)∑K

i=1 ω
(j)
i ga,b

(
xs,t|µ(j)

i,s,t, σ
(j)
) . (2.1.7)

Once the estimates of the indicator variables (which are not necessary 0 or 1 any more)
are given, the first part of the M step updating the weights is obviously

ω
(j+1)
k :=

1

N

∑
s,t

z
(j+1)
k,s,t , (2.1.8)

where N is the total number of forecast cases in the training set.
Further, non-linear equations ∂`C

∂β0k
= 0 and ∂`C

∂β1k
= 0, k = 1, 2, . . . , K, lead us to

update formulae

β
(j+1)
0k :=

[∑
s,t

z
(j+1)
k,s,t

]−1∑
s,t

z
(j+1)
k,s,t

(xk,s,t − β(j)
1k fk,s,t

)
+ σ(j)

ϕ
(
b−µ(j)k,s,t
σ(j)

)
−ϕ
(
a−µ(j)k,s,t
σ(j)

)
Φ
(
b−µ(j)k,s,t
σ(j)

)
−Φ
(
a−µ(j)k,s,t
σ(j)

)
 ,

(2.1.9)

β
(j+1)
1k :=

[∑
s,t

z
(j+1)
k,s,t f

2
k,s,t

]−1∑
s,t

z
(j+1)
k,s,t fk,s,t

(xk,s,t−β(j)
0k

)
+σ(j)

ϕ
(
b−µ(j)k,s,t
σ(j)

)
−ϕ
(
a−µ(j)k,s,t
σ(j)

)
Φ
(
b−µ(j)k,s,t
σ(j)

)
−Φ
(
a−µ(j)k,s,t
σ(j)

)
 ,

respectively. However, using then simply µ
(j+1)
k,s,t := β

(j+1)
0k + β

(j+1)
1k fk,s,t as the update

of the location parameter results in an unstable parameter estimation process due to
numerical issues. Hence, we introduce a mean correction of form

µ
(j+1)
k,s,t := µ

(0)
k,s,t − σ

(j)
ϕ
(
a−β(j+1)

0k −β(j+1)
1k fk,s,t

σ(j)

)
− ϕ

(
b−β(j+1)

0k −β(j+1)
1k fk,s,t

σ(j)

)
Φ
(
b−β(j+1)

0k −β(j+1)
1k fk,s,t

σ(j)

)
− Φ

(
a−β(j+1)

0k −β(j+1)
1k fk,s,t

σ(j)

) , (2.1.10)

which reflects to the difference between the location and mean of a truncated normal
distribution, see (2.1.3). Finally, from ∂`C

∂σ
= 0 we obtain the last update formula

σ2(j+1) :=
1

N

∑
s,t

K∑
k=1

z
(j+1)
k,s,t

{(
xs,t − µ(j+1)

k,s,t

)2
(2.1.11)

+ σ(j)

(
b− µ(j+1)

k,s,t

)
ϕ
(
b−µ(j+1)

k,s,t

σ(j)

)
−
(
a− µ(j+1)

k,s,t

)
ϕ
(
a−µ(j+1)

k,s,t

σ(j)

)
Φ
(
b−µ(j+1)

k,s,t

σ(j)

)
−Φ
(
a−µ(j+1)

k,s,t

σ(j)

)
 .

Note that without truncation (−a = b = ∞) the terms of (2.1.9) and (2.1.11) depend-
ing on σ(j) disappear, so location (mean) and scale (standard deviation) are updated
separately, no mean correction is required, and we get back the classical EM algorithm
for normal mixtures.
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2.2. TRUNCATED NORMAL EMOS MODEL 19

As a more simple alternative approach, referred as mean corrected, one can omit the
update step (2.1.9) for β0k and β1k, simplify the mean correction step (2.1.10) to

µ
(j+1)
k,s,t := µ

(0)
k,s,t − σ

(j)
ϕ
(
a−µ(j)k,s,t
σ(j)

)
− ϕ

(
b−µ(j)k,s,t
σ(j)

)
Φ
(
b−µ(j)k,s,t
σ(j)

)
− Φ

(
a−µ(j)k,s,t
σ(j)

) , (2.1.12)

and only after the EM algorithm stops, estimate location parameters β0k and β1k from
a linear regression of the final value of µk,s,t on fk,s,t.

Finally, one can also try the classical naive approach, where location parameters β0k

and β1k are not updated at all, that is µ
(j+1)
k,s,t ≡ β

(0)
0k + β

(0)
1k fk,s,t.

In the case study of Section 2.3 the latter two approaches do not show significantly
different forecast skills, so only the results for the naive and pure ML BMA approaches are
reported. The two simple approaches provide very similar location and scale parameters,
the corresponding predictive distributions mainly differ in weights, whereas the pure ML
method results in completely different location parameters.

2.2 Truncated normal EMOS model

In the EMOS approach to calibration of Box-Cox transformed ensemble forecasts of water
levels proposed by Hemri and Klein (2017), the predictive distribution is a single doubly
truncated normal distribution N b

a

(
µ, σ2

)
defined by (2.1.2), and the ensemble members

are just linked to the location µ and scale σ via equations

µ = a0 + a1f1 + · · ·+ aKfK and σ2 = b0 + b1S
2, (2.2.13)

where S2 denotes the variance of the transformed ensemble. In the case of existence
of groups of exchangeable ensemble members the equation for the location in (2.2.13) is
replaced by

µ = a0 + a1f 1 + · · ·+ aKfK , (2.2.14)

where fk denotes the mean value of the kth group. According to the optimum score
estimation principle of Gneiting and Raftery (2007), location parameters a0, a1, . . . , aK ∈
R and scale parameters b0, b1 ≥ 0 are estimated from the training data by optimizing the
mean value of a proper verification score, which is usually the CRPS defined by (1.4.2).
Note that for the doubly truncated normal distribution N b

a

(
µ, σ2

)
the CRPS has a closed

form (Jordan et al., 2017), namely

CRPS
(
N b
a

(
µ, σ2

)
, x
)

= σ

[ z−µ
σ

[
2Φ
(
x−µ
σ

)
− Φ

(
b−µ
σ

)
− Φ

(
a−µ
σ

)]
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) (2.2.15)

+
2ϕ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) − Φ
(√2(b−µ)

σ

)
− Φ

(√2(a−µ)
σ

)
√
π
[
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)]2

]
.
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Figure 2.1: Box-Cox transformation parameter λ as function of the lead time.

2.3 Case study

The predictive performance of the truncated normal BMA approach described in Section
2.1 and its suitability for hydrological ensemble forecasts is assessed at the example of
multi-model ensemble forecasts of water level at gauge Kaub at river Rhine.

2.3.1 Data

BMA and EMOS calibration approaches are tested on ensemble forecasts of water level
(cm) at gauge Kaub of river Rhine (546 km) and the corresponding validating observa-
tions. Predictions for an eight year period between 1 January 2008 and 31 December
2015 are investigated with lead times from 1 h to 120 h with a time step of 1 h. The
minimum and maximum recorded water levels at this particular gauge are 35 cm and
825 cm, respectively. Our 79-member multimodel water level ensemble is obtained by
plugging ensemble forecasts for the relevant weather variables produced by different en-
semble prediction systems into the hydrological model HBV-96 (Lindström et al., 1997),
which is run at the German Federal Institute of Hydrology (BfG) for operational runoff
forecasting. We consider the ECMWF high resolution (HRES) forecast, the 51-member
ECMWF forecast (ENS) (Molteni et al., 1996; Leutbecher and Palmer, 2008), the 16-
member COSMO LEPS forecast of the limited-area ensemble prediction system of the
consortium for small-scale modelling (Montani et al., 2011) and the 11-member NCEP
GEFS forecast of the reforecast version 2 of the global ensemble forecast system of the
National Center for Environmental Prediction (Hamill et al., 2013). The runoff forecasts
are then converted into water level forecasts for the navigation-relevant gauges, includ-
ing gauge Kaub, using a hydrodynamic model. All ensemble forecast are initialized at 6
UTC. We remark that the data set at hand is part of the data studied in Hemri and Klein
(2017).

2.3.2 Verification results

As mentioned in Sections 2.1 and 2.2, BMA and EMOS post-processing is applied for
modelling Box-Cox transformed water levels. As in Hemri and Klein (2017), each lead
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Figure 2.2: Mean CRPS values (a) and CRPSS with respect to the raw ensemble (b);
p-values of DM tests for equality of mean CRPS of the two BMA approaches (c) and of
all models compared with EMOS (d). Horizontal dotted lines of (c) and (d) indicate a
5 % level of significance.

time has an individual Box-Cox parameter λ (see Figure 2.1) maximizing the in-sample
skill of seasonally fitted EMOS models in terms of the CRPS relative to the raw ensemble,
where data from the same season of other years are used for training. These estimates
are then averaged over the training periods in order to obtain one estimate per lead time.
Obviously, for a given lead time the same coefficient is applied both for the forecasts and
observations.

Similar to Hemri and Klein (2017), we assume that water levels are in the interval
spanned by half of the minimum and double of the maximum recorded water level, i.e.
they are between 17.5 cm and 1650 cm, so the Box-Cox transforms of these values serve
as lower and upper bounds for the truncated normal distribution used both in BMA and
EMOS modelling.

The generation of the hydrological ensemble forecast described in Section 2.3.1 induces
a natural grouping of the ensemble members. One contains just the forecast based on the
ECMWF HRES, the other 51-member group corresponds to the ECMWF ENS, whereas
forecasts based on COSMO LEPS and NCEP GEFS ensemble weather forecasts form
two other groups of sizes 16 and 11, respectively. Hence, Box-Cox transformed water
level forecasts are calibrated using the truncated normal BMA model for exchangeable
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Figure 2.3: Difference in MAE values from the raw ensemble (a) and p-values of DM tests
for equality of MAE of the various post-processing approaches (b). Horizontal dotted
lines indicate the reference raw ensemble (a) and a 5 % level of significance (b).

ensemble members specified by (1.3.2) and (2.1.2), and truncated normal EMOS given by
(2.2.13) and (2.2.14) with K = 4 and M1 = 1, M2 = 51, M3 = 16, M4 = 11. This
means that for BMA modelling 12, whereas for finding the EMOS predictive distribution 7
free parameters have to be estimated. To ensure a reasonably stable parameter estimation
we use a rolling training period of length 100 days. Thus, BMA and EMOS models are
verified on the period 10 April 2008 – 31 December 2015 (2822 calendar days). Further,
we consider one day ahead calibration for all lead times. This means that for modelling
water level e.g. for 1 January 2015 we use forecasts and observations for the preceding
100 days ending at 31 December 2014. For 24 h lead time the last forecasts are initialized
at 30 December 2014, whereas for 120 h lead time at 26 December 2014.

While BMA and EMOS models are fit to Box-Cox transformed values X ∈ [a, b], to
ensure comparability we provide verification scores for the original forecasts and observa-
tions. This means that for quantile based scores (MAE, coverage, average width), before
evaluating the score, the inverse Box-Cox transformation h−1

λ is applied to the appropri-
ate quantiles of the predictive CDF F , whereas the CRPS corresponding to the predictive
CDF G(y) := F

(
hλ(y)

)
of the original water level Y = h−1

λ (X) ∈
[
h−1
λ (a), h−1

λ (b)
]

and
a real value y equals

CRPS
(
G, y

)
=

∫ y

h−1
λ (a)

F 2
(
hλ(u)

)
du+

∫ h−1
λ (b)

y

(
1− F

(
hλ(u)

))2

du,

which integral should be approximated numerically.
In Figure 2.2a the mean CRPS values of the different post-processing approaches

and the raw ensemble are plotted as functions of the lead time. Note that compared
with the raw ensemble all calibration approaches reduce the mean CRPS and the gap
increases together with the lead time. The differences between the forecast skills are more
pronounced in Figure 2.2b showing the CRPSS values with respect to the raw ensemble
forecast. Note that all three presented methods have their maximal skill score at hour 9.
This reflects that the relative gap in CRPS between raw and post-processed forecasts is
increasing up to hour 9 and decreasing again thereafter. However, it does not imply that
the absolute forecast skill increases with lead time between hour 1 and hour 9. For shorter
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Figure 2.4: Coverage (a) and average width (b) of nominal 97.5 % central prediction
intervals. In panel (a) the ideal coverage is indicated by the horizontal dotted line.

lead times this increase is very fast and naive BMA shows the best predictive performance,
whereas for longer lead times the pure ML BMA starts dominating. Obviously, longer
lead times are also associated with larger forecast uncertainty which should be taken into
account when one compares predictive performance. According to the results of DM tests
for equal predictive performance, naive BMA significantly outperforms the raw ensemble
for all lead times and the same holds for the pure ML BMA except hour 1. In general,
in terms of the mean CRPS the two BMA approaches differ significantly mainly for very
short and long lead times, as can be observed on the graph of p-values displayed in Figure
2.2c. EMOS also significantly outperforms the raw ensemble for all lead times, and except
for the first couple of hours underperforms the BMA approaches, as depicted in Figure
2.2d.

There is much less variety in the performance of BMA and EMOS calibrated medians
in terms of the MAE. According to Figure 2.3a showing the difference in MAE with
respect to the raw ensemble the pure ML BMA has the best forecast skill, however, even
this approach underperforms the raw ensemble until hour 70. Note that DM tests for
equality of MAE values indicate that all differences plotted in Figure 2.3a are significant
(DM test results are not reported), which will definitely not be the case if we compare
the performance of the three post-processing methods, see the p-values of Figure 2.3b.

The positive effect of post-processing on calibration can be clearly observed on Figure
2.4a showing the coverages of nominal 97.5 % central prediction intervals as functions of
the lead time. All post-processing approaches for all lead times result in almost perfect
coverage, whereas the coverage of the raw ensemble is much lower and strongly depends
on the lead time. The coverage values of the two BMA approaches are almost identical
and after hour 4 they are closer to the nominal value than those of the EMOS. Finally,
as depicted in Figure 2.4b, the raw ensemble produces the sharpest forecasts for all lead
times, however, at the cost of being uncalibrated. This is fully in line with the verification
rank histograms of the raw ensemble and PIT histograms of post-processed forecasts for
lead times 24, 72 and 120 hours plotted in Figure 2.5. All verification rank histograms
are strongly U-shaped (and the same holds for other lead times, not reported), indicating
that the raw ensemble is strongly underdispersive and requires post-processing. BMA
and EMOS approaches significantly improve the statistical calibration of the forecast and
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Figure 2.5: Verification rank histogram of the raw ensemble and PIT histograms of the
BMA and EMOS post-processed forecasts for lead times 24, 72 and 120 hours.

result in more uniform PIT histograms, although for hour 120 naive BMA and EMOS
still show a slight underdispersion. Figure 2.6 displays the values of the test statistic of
the Kolmogorov-Smirnov test for uniformity of PIT values for different post-processing
approaches. Although the uniformity of the PIT values of pure ML BMA, naive BMA
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Figure 2.6: Values of the test statistic of Kolmogorov-Smirnov tests for uniformity of PIT
values. Smaller values indicate better fit, dotted horizontal line corresponds to 5 % level
of significance.

and EMOS can be accepted at a 5 % level of significance for only 9 (5, 6, 7, 14, 17, 72,
75, 77, 79 h), 6 (4, 5, 6, 7, 14, 17 h) and 4 (5, 6, 7, 9 h) different lead times, Figure 2.6
nicely illustrates the ranking of different approaches in terms of goodness of fit of PIT.

2.4 Conclusions

In this chapter we describe a BMA model of for calibrating Box-Cox transformed hydro-
logical ensemble forecasts of water level, providing a predictive distribution which is a
weighted mixture of doubly truncated normal distributions. The model with three differ-
ent parameter estimation approaches is tested on the 79-member BfG ensemble forecast
of water level at gauge Kaub of river Rhine for 120 different lead times. For verification
we use the CRPS of the probabilistic forecast distributions and the MAE of the corre-
sponding median forecasts. Further, we analyse the coverage and the average width of
nominal central prediction intervals, which serve as measures of calibration and sharpness,
respectively. Furthermore, the forecast skill of the BMA model is compared with that of
the recently introduced EMOS model of Hemri and Klein (2017) and the raw ensemble.

Based on the results of the presented case study one can conclude that compared
with the raw ensemble, post-processing always improves the calibration of probabilistic
and accuracy of point forecasts. Further, BMA model utilizing pure ML for parameter
estimation has the best predictive performance and, except very short lead times, the
BMA approach significantly outperforms the EMOS calibration.
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Chapter 3

Statistical calibration of wind speed
forecasts

In our industrialized world several important applications require reliable and accurate
wind speed forecasts. These include, but are not limited to agriculture, aviation or wind
energy production. In particular, high wind speeds can cause severe damages to infras-
tructure and their predictions are important parts of weather warnings.

Nowadays, weather services typically produce ensemble forecasts for wind speed, how-
ever, these forecasts often suffer from the lack of calibration calling again for some form
of post-processing (Buizza, 2018).

In this chapter we introduce several approaches to post-processing wind speed en-
semble forecasts and test the predictive skill of these new methods using three different
data sets containing forecasts produced by completely different ensemble prediction sys-
tems (UWME, ECMWF EPS, ALADIN-HUNEPS EPS) which cover different forecast
domains. The chapter is based on Baran (2014), Baran and Lerch (2015) and Baran and
Lerch (2016) and uses also some results of Baran et al. (2013) and Baran et al. (2014b).

3.1 BMA models for wind speed

To model wind speed one requires non-negative and skewed distributions. A popular
candidate is the Weibull distribution (see e.g. Justus et al., 1978), however, gamma dis-
tribution is also a traditional choice (Garcia et al., 1988).

3.1.1 Gamma BMA model

In the BMA approach of Sloughter et al. (2010) for modelling wind speed the component
PDFs in the predictive distribution (1.3.1) follow a gamma law Γ(κ, θ) with shape κ > 0
and scale θ > 0 having PDF

g(x|κ, θ) :=

{
xκ−1e−x/θ

θκΓ(κ)
, x > 0,

0, otherwise,
(3.1.1)

where Γ(κ) denotes value of the gamma function at κ. A gamma distribution can also
be parametrized by its mean µ > 0 and standard deviation σ > 0 using expressions

κ = µ2/σ2 and θ = σ2/µ,

27
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28 CHAPTER 3. CALIBRATION OF WIND SPEED FORECASTS

and Sloughter et al. (2010) suggests to express these quantities as affine functions

µk = b0k + b1kfk and σk = c0 + c1fk (3.1.2)

of the corresponding ensemble member fk. This results in a BMA predictive distribution

p(x| f1, . . . , fK ; b01, . . . , b0K ; b11, . . . , b1K ; c0, c1) =
K∑
k=1

ωkgk(x| fk),

where gk(x| fk) denotes the PDF of a gamma distribution with mean and standard
deviation specified by (3.1.2).

Mean parameters b0k, b1k are estimated from the training data using a simple linear
regression of the validating observations on the corresponding ensemble members, whereas
for weights ωk and standard deviation parameters c0 and c1, as usual, the likelihood
function is maximized with the help of the EM algorithm. However, in this situation, in
contrast e.g. to the normal BMA model of Raftery et al. (2005), one cannot use closed
formulae in the maximization step (see Section 2.1.2), so a numerical optimization is
required, which increases the computation costs of modelling.

3.1.2 Truncated normal BMA model

Using the ideas of Thorarinsdottir and Gneiting (2010), for modelling wind speed we
consider a mixture of truncated normal distributions with cut-off at zero (Baran, 2014).
The proposed predictive distribution is

p
(
x| f1, . . . , fK ; β01, . . . , β0K ; β11, . . . , β1K ;σ

)
=

K∑
k=1

ωkg0,∞
(
x| β0k + β1kfk, σ

)
, (3.1.3)

where ga,b
(
x|µ, σ

)
is the PDF of the doubly truncated normal distribution defined by

(2.1.2). In this way model (3.1.3) is a special case of the doubly truncated BMA model
(2.1.4) discussed in Section 2.1 with a = 0 and b =∞, however, one should note that
the latter hydrological model was introduced four years later than the former one for wind
speed.

Similar to Section 2.1.2, three different approaches to parameter estimation are con-
sidered (for detailed description see Baran, 2014).

• Naive: location parameters β0k, β1k are estimated from the training data by
regressing the validating observations on the corresponding ensemble members. ML
method with EM algorithm for truncated normal mixtures is used for obtaining
weights ωk and scale σ.

• Mean corrected : location parameters are estimated as in the naive approach, how-
ever, in each step of the EM algorithm a mean correction similar to (2.1.12) is
applied to account for the difference between the mean and location parameter of a
truncated normal distribution (see (2.1.3)).

• Pure ML: all parameters are estimated by ML, the update formulae for the EM
algorithm are special cases of (2.1.7) – (2.1.11) for a = 0, b =∞.

Note that in the EM algorithm all three methods use closed formulae.
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3.2. EMOS MODELS FOR WIND SPEED 29

3.2 EMOS models for wind speed

Besides the BMA models of Section 3.1, over recent years a wide range of EMOS based
post-processing approaches and modelling strategies for wind speed forecasts have been
introduced.

3.2.1 Truncated normal EMOS model

Consider again the TN distribution N∞0
(
µ, σ2

)
with location µ, scale σ > 0 and cut-off

at zero. The EMOS predictive distribution of wind speed proposed by Thorarinsdottir
and Gneiting (2010) is

N∞0
(
a0 + a1f1 + · · ·+ aKfK , b0 + b1S

2
)

with S2 :=
1

K − 1

K∑
k=1

(
fk − f

)2
, (3.2.4)

which is a special case of the hydrological EMOS model (2.2.13) discussed in Section
2.2. Further, if the ensemble can be divided into groups of exchangeable members, the
predictive distribution changes to

N∞0
(
a0 + a1f 1 + · · ·+ aKfK , b0 + b1S

2
)
, (3.2.5)

see also (2.2.14). To estimate location parameters a0 ∈ R, a1, . . . , aK ≥ 0 and scale
parameters b0, b1 ≥ 0, one can again use the optimum score estimation principle and
minimize an appropriate verification score over the training data.

3.2.2 Log-normal EMOS model

As an alternative to the TN model of Section 3.2.1, we propose an EMOS approach based
on an LN distribution (Baran and Lerch, 2015). This distribution has a heavier upper
tail, and in this way it is more appropriate to model high wind speed values. The PDF
of the LN distribution LN

(
µ, σ

)
with location µ and shape σ > 0 is

h(x|µ, σ) :=
1

xσ
ϕ
(
(log x− µ)/σ

)
, x ≥ 0, (3.2.6)

and h(x|µ, σ) := 0, otherwise, while the mean m and variance v of this distribution
are

m = eµ+σ2/2 and v = e2µ+σ2(
eσ

2 − 1
)
,

respectively. Further, since

µ = log

(
m2

√
v +m2

)
and σ =

√
log
(

1 +
v

m2

)
, (3.2.7)

an LN distribution can also be parametrized by these quantities. In our EMOS approach
m and v are affine functions of the ensemble members and ensemble variance, respec-
tively, that is

m = α0 + α1f1 + · · ·+ αKfK and v = β0 + β1S
2. (3.2.8)

Similar to the TN model, to obtain the values of mean and variance parameters α0 ∈
R, α1, . . . , αK ≥ 0 and β0, β1 ≥ 0, respectively, one has to perform an optimum score
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estimation based on some verification measure. Obviously, for the case of exchangeable
ensemble members instead of (3.2.8) we have

m = α0 + α1f 1 + · · ·+ αKfK and v = β0 + β1S
2. (3.2.9)

3.2.3 Generalized extreme value EMOS model

Another approach to post-processing of wind speed ensemble forecasts is to consider a
GEV distribution GEV

(
µ, σ, ξ

)
with location µ, scale σ > 0 and shape ξ characterized

by CDF

H(x|µ, σ, ξ) :=

exp
(
−
[
1 + ξ(x−µ

σ
)
]−1/ξ

)
, ξ 6= 0;

exp
(
− exp

(
− x−µ

σ

))
, ξ = 0,

(3.2.10)

if 1+ξ(x−µ)/σ > 0 and zero otherwise. This definition shows the main disadvantage of
using a GEV distribution for modelling wind speed: namely, there is a positive probability
for a GEV distributed random variable to be negative.

For calibrating ECMWF ensemble forecasts of wind speed over Germany, Lerch and
Thorarinsdottir (2013) suggest to model location and scale parameters by

µ = γ0 + γ1f1 + · · ·+ γKfK and σ = σ0 + σ1f, (3.2.11)

while the shape parameter ξ is considered to be independent of the ensemble. The
exchangeable version of the GEV EMOS models operates with link functions

µ = γ0 + γ1f 1 + · · ·+ γKfK and σ = σ0 + σ1f. (3.2.12)

In general, one can also incorporate the ensemble variance into the models of location
and scale. However, preliminary studies showed that models (3.2.11) and (3.2.12) are also
reasonable choices for the case studies of Section 3.3. Again, all model parameters are
estimated by optimizing an appropriate verification measure over the training data.

3.2.4 Regime-switching models

To combine the advantageous properties of light-tailed (TN) and heavy-tailed (LN or
GEV) approaches, one can also investigate a regime-switching method (Lerch and Tho-
rarinsdottir, 2013). Depending on the value of the ensemble median fmed, one can con-
sider either a light- or a heavy-tailed distribution based EMOS model. Given a threshold
θ > 0, the EMOS predictive distribution is e.g. N∞0

(
µTN , σ

2
TN

)
if fmed < θ and

LN
(
µLN , σLN

)
, otherwise (Baran and Lerch, 2015). Model parameters µTN and σTN

depend on the ensemble forecast according to (3.2.4) or (3.2.5), while the expressions for
µLN and σLN can be obtained form (3.2.8) or (3.2.9) via transformation (3.2.7). For
training the combined model, we propose two different methods. If the training data
set is large enough, i.e. many forecast cases belong to each day to be investigated, the
heavy-tailed (LN or GEV) model is trained using only ensemble forecasts where fmed ≥ θ,
while forecasts with ensemble median under the threshold are used to train the light-tailed
(TN) one. This technique is applied for calibrating the UWME and the ECMWF ensem-
ble forecasts, see Section 3.3.1. However, in the case of the ALADIN-HUNEPS ensemble
(Section 3.3.1) one has only 10 observation stations, so there are not enough data for
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separate training of the component models. In such situations one might utilize the same
training data set both for the light-tailed and heavy-tailed predictive distribution and
then choose between these two models according to the value of the ensemble median.
This particular idea is applied in Section 3.3.3 for the ALADIN-HUNEPS forecasts.

We remark that, as an alternative to the use of a fixed threshold over the whole data
set, one might also apply an “adaptive” estimation procedure, where for each forecast
date the threshold parameter is re-estimated as a fixed quantile of the ensemble medians
in the corresponding training period. However, for none of the investigated ensembles
and combination models, this adaptive threshold parameter estimation procedure results
in significant improvements of the scores and therefore we focus on the computationally
simpler procedures using a fixed threshold value.

EMOS models based on combining two parametric families by exclusively selecting one
of them at each forecast instance also suffer from the drawback that a suitable covariate
has to be chosen as a selection criterion. This necessary step limits the flexibility of the
combination models in practice as the adequacy of covariates might depend on the data
set at hand. While the ensemble median works reasonably well in the data sets considered
here, this observation might change for different EPSs.

3.2.5 Mixture model

In order to combine the advantages of lighter and heavier-tailed distributions flexibly and
to avoid the aforementioned problems in the process, we introduce new EMOS models
based on weighted mixtures of two parametric distributions.

In particular, we propose to model wind speed with a weighted mixture of models
(3.2.4) and (3.2.8) (or (3.2.5) and (3.2.9) for groups of exchangeable ensemble members)
resulting in the predictive PDF

ψ(x|µTN , σTN ;µLN , σLN ;ω) := ωg(x|µTN , σTN) + (1− ω)h(x|µLN , σLN), (3.2.13)

where the dependence of parameters µTN , σTN and µLN , σLN on the ensemble are
given by (3.2.4) (or (3.2.5)) and (3.2.8) (or (3.2.9)) and (3.2.7), respectively (Baran and
Lerch, 2016). In the case of model (3.2.13), location and scale/shape parameters of the
TN and LN models, together with the weight ω ∈ [0, 1], are estimated simultaneously
by optimizing some verification score over the training data.

Note that instead of a LN distribution, in (3.2.13) one can incorporate other non-
negative laws with heavy right tails. A natural choice would be the generalized Pareto
distribution (GPD) used in extreme value theory (see e.g. Bentzien and Friederichs, 2012),
however, tests for the ensemble forecasts considered in our case studies indicate a worse
predictive performance of the TN-GPD model compared with the TN-LN mixture and
the benchmark models.

In comparison with the basic and regime-switching EMOS approaches of Sections 3.2.1
– 3.2.4, the new mixture model exhibits desirable properties from a theoretical perspective
as it does not require the exclusive choice of one of multiple parametric families and is
more flexible than models based on single parametric distributions. Its advantages from
a practical perspective such as a significantly improved calibration will be demonstrated
in Section 3.3.3.
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3.2.6 Parameter estimation details

All EMOS models specified above have some parameters to be estimated. Similar to
Section 2.2, we follow the optimum score principle of Gneiting and Raftery (2007) and
minimize the mean value of a proper scoring rule over the training data. The usual
candidates are the CRPS and LogS defined by (1.4.2) and (1.4.3), respectively. According
to the arguments of Gneiting and Raftery (2007), from these two candidates the use of
the mean CRPS in general results in more robust parameter estimation procedures.

For wind speed models of Sections 3.2.1 – 3.2.3 based on single parametric families
CRPS can be expressed in closed form allowing efficient optimization procedures. The
CRPS of the TN distribution N∞0

(
µ, σ2

)
is obviously a special case of (2.2.15) with

a = 0 and b =∞, namely

CRPS
(
N∞0

(
µ, σ2

)
, x
)

=σ

[
x− µ
σ

Φ
(
µ/σ

)(
2Φ
(
(x− µ)/σ

)
+ Φ

(
µ/σ

)
− 2
)

+ 2ϕ
(
(x− µ)/σ

)
Φ
(
µ/σ

)
− 1√

π
Φ
(√

2µ/σ
)][

Φ
(
µ/σ

)]−2

for x ≥ 0, which formula was derived by Thorarinsdottir and Gneiting (2010). Using
direct calculations one can also verify that the CRPS of the LN distribution (Baran and
Lerch, 2015) is

CRPS
(
LN

(
µ, σ2

)
, x
)

=x
[
2Φ
(
(log x− µ)/σ

)
− 1
]

− 2eµ+σ2/2
[
Φ
(
(log x− µ)/σ − σ

)
+ Φ

(
σ/
√

2
)
− 1
]
, x ≥ 0.

The closed form of the CRPS for the GEV distribution with non-zero shape ξ equals

CRPS
(
GEV

(
µ, σ, ξ

)
, x
)

=
[
µ− x− σ/ξ

][
1− 2H(x|µ, σ, ξ)

]
− σ

ξ

[
2ξΓ(1− ξ)− 2Γ`

(
1− ξ,− logH(x|µ, σ, ξ)

]
,

where Γ and Γ` denote the gamma and the lower incomplete gamma functions, respec-
tively, whereas for ξ = 0 one has

CRPS
(
GEV

(
µ, σ, ξ

)
, x
)

= µ− x+ σ[γ − log x]− 2σEi
(

logH(x|µ, σ, ξ)
)

with γ ≈ 0.5772 denoting the Euler-Mascheroni constant and Ei(x) :=
∫ x
−∞

et

t
dt being

the exponential integral (Friedrichs and Thorarinsdottir, 2012).
In the case studies of Section 3.3.3 for both the TN and the LN EMOS model we

estimate model parameters by minimizing the mean CRPS of the predictive distributions
and validating observations corresponding to the forecast cases of the training period.
However, the GEV model optimization is numerically unstable when using the mean
CRPS. Hence in this case, as suggested by Lerch and Thorarinsdottir (2013), parameters
are estimated with the help of the ML method optimizing the mean logarithmic score.
Objective functions are minimized using the optim function in R by making use of the
popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Press et al., 2007, Section
10.9). Obviously, the same approaches to parameter estimation are applied for the TN-LN
and TN-GEV regime-switching models.
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Figure 3.1: Verification rank histograms. (a) UWME for the calendar year 2008; (b)
ECMWF ensemble for the period 1 May 2010 – 30 April 2011; (c) ALADIN-HUNEPS
ensemble for the period 1 April 2012 – 31 March 2013.

In the case of mixture model (3.2.13) the CRPS can be evaluated only numerically,
resulting in very long optimization procedures. Hence, we also investigate ML estimation
of the parameters and in figures and tables of Section 3.3.3, the corresponding mixture
models are denoted by TN-LN mix. (CRPS) and TN-LN mix. (ML). In these cases the
Nelder-Mead (Nelder and Mead, 1965) algorithm is applied, which method is slower, but
more robust than the BFGS.

3.3 Case studies

The forecast skill of the truncated normal BMA model proposed by Baran (2014) and
the EMOS models of (Baran and Lerch, 2015, 2016) are tested in several case studies
with the help of UWME, ECMWF and ALADIN-HUNEPS ensemble forecasts of wind
speed. Model parameters of all post-processing methods are estimated using the regional
approach, described in details in Section 1.3.3.

3.3.1 Data

University of Washington mesoscale ensemble

The 8 members of the UWME are obtained from different runs of the fifth genera-
tion Pennsylvania State University–National Center for Atmospheric Research mesoscale
model with initial conditions from different sources (Grell et al., 1995). The EPS covers
the Pacific Northwest region of western North America providing forecasts on a 12 km
grid. Our data base contains ensembles of 48 h forecasts and corresponding validating
observations of 10 m maximal wind speed (maximum of the hourly instantaneous wind
speeds given in m/s, that is 2-minute averages from the period of two minutes before the
hour to on the hour, over the previous 18 hours, see e.g. Sloughter et al. (2010)) for 152
stations in the Automated Surface Observing Network (National Weather Service, 1998)
in the states of Washington, Oregon, Idaho, California and Nevada in the United States
for calendar years 2007 and 2008. The forecasts are initialized at 0 UTC (5 pm local time
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34 CHAPTER 3. CALIBRATION OF WIND SPEED FORECASTS

when daylight saving time (DST) is in use and 4 pm otherwise) and the generation of the
ensemble ensures that its members are not exchangeable. In the present study we inves-
tigate only forecasts for calendar year 2008 with additional data from the last month of
2007 used for parameter estimation. Standard quality control procedures were applied to
the data set and after removing days and locations with missing data 101 stations remain
where the number of days for which forecasts and validating observations are available
varies between 160 and 291.

Figure 3.1a shows the verification rank histogram of the raw ensemble, which is
strongly U-shaped as in many cases the ensemble members either underepredict or over-
predict the validating observations. The ensemble range contains the observed maximal
wind speed in only 45.24 % of the cases (the nominal value of this coverage equals 7/9, i.e
77.78 %). Hence, the ensemble is underdispersive and thus uncalibrated and would require
statistical post-processing to yield an improved forecast probability density function.

ECMWF ensemble

The global ensemble prediction system of the ECMWF consists of 50 exchangeable en-
semble members which are generated from random perturbations in initial conditions and
stochastic physics parametrization (Molteni et al., 1996; Leutbecher and Palmer, 2008).
Forecasts of near-surface (10 meter) wind speed (given in m/s) for lead times up to 15 days
ahead are issued four times a day with a horizontal resolution of about 18 km. Following
Lerch and Thorarinsdottir (2013), we focus on the ECMWF ensemble run initialized at
00 UTC (2 am local time when DST operates and 1 am otherwise) and one day ahead
forecasts. Predictions of daily maximum wind speed are obtained as the daily maximum
of each ensemble member at each grid point location.

The verification is performed over a set of 228 synoptic observation stations over Ger-
many. The validating observations are hourly observations of 10-minute average wind
speed measured over the 10 minutes before the hour. Daily maximum wind speed obser-
vations are given by the maximum over the 24 hours corresponding to the time frame of
the ensemble forecast. Ensemble forecasts at individual station locations are obtained by
bilinear interpolation of the gridded model output. Our results are based on a verification
period from 1 May 2010 to 30 April 2011, consisting of 83 220 individual forecast cases.
Additional data from 1 February 2010 to 30 April 2010 are used to allow for training
periods of equal lengths for all days in the verification period and for model selection
purposes.

The verification rank histogram of the ECMWF ensemble displayed in Figure 3.1b
is even more U-shaped than that of the UWME, and the ensemble range contains the
validating observation just in 43.40 % of all cases (here the nominal value is 49/51, that
is 96.08 %). Again, the ensemble is underdispersive and statistical calibration is required.

ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS system of the HMS covers a large part of continental Europe with
a horizontal resolution of 8 km and is obtained with dynamical downscaling (by the AL-
ADIN limited area model) of the global ARPEGE based PEARP system of Météo France
(Horányi et al., 2006; Descamps et al., 2015). The ensemble consists of 11 members, 10
initialized from perturbed initial conditions and one control member from the unperturbed
analysis, implying that the ensemble contains groups of exchangeable forecasts.
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The data base contains 11-member ensembles of 42 hour forecasts of 10 meter wind
speed (given in m/s) for 10 major cities in Hungary (Budapest, Debrecen, Győr, Kecs-
kemét, Miskolc, Nagykanizsa, Nýıregyháza, Pécs, Szeged, Szombathely) produced by the
ALADIN-HUNEPS system of the HMS, together with the corresponding validating ob-
servations for two different periods. The first data period is between 1 October 2010 and
25 March 2011, whereas the second covers a whole year from 1 April 2012 to 31 March
2013. The validating observations were scrutinized by basic quality control algorithms
(e.g. consistency checks) and considered as instantaneous values (valid at a given time),
however, they are in fact mean values over the preceding 10 minutes. The model wind
speed values are also considered as instantaneous, but they are representatives for a given
model time step, which is 5 min in our case.

The forecasts are initialized at 18 UTC (8 pm local time when DST operates and 7
pm otherwise). Both data sets are fairly complete since there are three and six days with
missing data. These dates are excluded from the analysis.

Similar to the previous two EPSs, the verification rank histogram of the raw ALADIN-
HUNEPS ensemble for the period between 1 April 2012 and 31 March 2013 is far from the
desired uniform distribution (see Figure 3.1c), however, it shows a less underdispersive
character. The better fit of the ensemble can also be observed on its coverage value
of 61.21 %, where the latter should be compared with the nominal coverage of 83.33 %
(10/12). The same applies for the verification ranks of the period from 1 October 2010
to 25 March 2011 (not illustrated), here the ensemble coverage is 61.03 %.

3.3.2 BMA modelling of wind speed forecasts

The following two case studies demonstrate the forecast skill of the truncated normal
BMA model (3.1.3), which is tested on the ALADIN-HUNEPS ensemble of the HMS and
on the 8-member UWME.

Verification results for the ALADIN-HUNEPS ensemble

In the first case study we consider ALADIN-HUNEPS ensemble forecasts of wind speed
and the corresponding validating observations for the period between 1 October 2010 and
25 March 2011. This data base coincides with the one investigated in Baran et al. (2013),
where the authors calibrated the raw ensemble with the help of the gamma BMA model
of Sloughter et al. (2010) (see Section 3.1.1) considering a training period of 28 calendar
days. The optimal training period length was obtained by comparing the mean CRPS of
BMA predictive CDFs, the MAE of BMA median and the RMSE of BMA mean forecasts
using training periods of 10, 11, . . . , 60 days. For details see Baran et al. (2013). In this
way ensemble members, validating observations and BMA models are available for 146
calendar days (on 20 November 2010 all ensemble members are missing), that is for 1 460
individual forecast cases.

The generation of the ALADIN-HUNEPS ensemble suggests a natural grouping of
the members into two exchangeable groups. One contains the control denoted by fc,
whereas in the other are 10 ensemble members corresponding to the different perturbed
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Figure 3.2: Plume diagram of ensemble forecast of 10 m wind speed for Debrecen Airport
initialized at 18 UTC, 22 October 2010.

initial conditions denoted by fp,1, . . . , fp,10. This leads us to model

p
(
x| fc fp,1, . . . , fp,10;αc, αp; βc, βp;σ

)
= ωg0,∞

(
x|αc + βcfc, σ

)
(3.3.14)

+
1− ω

10

10∑
`=1

g0,∞
(
x|αp + βpfp,`, σ

)
,

where ω ∈ [0, 1], and g0,∞ is defined by (2.1.2).

However, by investigating a bit more the raw ensemble, one can realize that there is
a possibility to further distinguish between some of the members (as it was also done
for temperature data investigated in Baran et al. (2014a)). This is demonstrated by
Figure 3.2, where the plume diagram of the ensemble forecasts of 10 m wind speed for
Debrecen initialized at 18 UTC, 22 October 2010 can be seen. Figure 3.2 indicates that
in practice two clusters of the 10 exchangeable members can be distinguished (partic-
ularly look at the 9–15 h and 24–42 h forecast ranges). The two different groups can
be linked with the ensemble members created by adding (odd numbered members) and
subtracting (even numbered members) 5 perturbations to/from the unperturbed initial
conditions (Horányi et al., 2011). Consequently, the behaviour of ensemble member groups
{f`,1, f`,3, f`,5, f`,7, f`,9} and {f`,2, f`,4, f`,6, f`,8, f`,10} differ from each other.

Therefore, one can also consider a model with three exchangeable groups: control,
odd numbered exchangeable members and even numbered exchangeable members. This
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

TN-N BMA 0.723 1.063 83.49 3.639
Two TN-MC BMA 0.706 1.052 84.32 3.693
groups TN-ML BMA 0.707 1.052 84.25 3.674

Gamma BMA 0.758 1.068 83.56 3.791
TN-N BMA 0.721 1.061 83.84 3.627

Three TN-MC BMA 0.704 1.048 84.32 3.675
groups TN-ML BMA 0.704 1.049 84.18 3.663

Gamma BMA 0.755 1.064 83.42 3.760
Raw ensemble 0.860 1.122 61.92 2.597

Table 3.1: Mean CRPS of probabilistic, MAE of median forecasts, coverage and average
of nominal 83.33 % central prediction interval for the ALADIN-HUNEPS ensemble.

Forecast

F
o

re
c
a

s
t

TN−N 2G

TN−MC 2G

TN−ML 2G

Gamma 2G

TN−N 3G

TN−MC 3G

TN−ML 3G

Gamma 3G

Ensemble

TN−N 2GTN−MC 2GTN−ML 2GGamma 2GTN−N 3GTN−MC 3GTN−ML 3GGamma 3GEnsemble

−3.64 −0.12 2.25 2.80 0.93 −0.51 1.87 2.18 NA

−4.53 −1.31 1.09 1.59 −1.66 −1.73 0.11 NA <−5.00

−4.79 −1.18 1.34 1.17 −1.45 −1.53 NA 0.74 −4.41

−2.75 1.21 1.82 2.22 0.75 NA >5.00 >5.00 >5.00

−3.78 −0.35 2.01 2.64 NA <−5.00 3.70 4.80 −0.87

−4.85 −1.88 −0.23 NA <−5.00 <−5.00 −1.34 −1.19 <−5.00

<−5.00 −1.52 NA 0.14 −4.59 <−5.00 −1.65 −0.87 −4.68

−2.94 NA >5.00 >5.00 >5.00 −1.20 >5.00 >5.00 >5.00

NA >5.00 >5.00 >5.00 >5.00 >5.00 >5.00 >5.00 >5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 3.3: Values of the test statistic of the two-tailed DM test for equal predictive per-
formance based on CRPS (upper triangle) and absolute error of median forecasts (lower
triangle) for the ALADIN-HUNEPS data. Green/red entries indicate superior perfor-
mance of the forecast in the corresponding row/column.

approach results in the predictive PDF

q
(
x| fc, fp,1, . . . , fp,10;αc, αo, αe; βc, βo, βe;σ

)
= ωcg0,∞

(
x|αc + fcβc, σ

)
(3.3.15)

+
5∑
`=1

(
ωog0,∞

(
x|αo + βofp,2`−1, σ

)
+ ωeg0,∞

(
x|αe + βefp,2`, σ

))
,

where for weights ωc, ωo, ωe ∈ [0, 1] we have ωc + 5ωo + 5ωe = 1.
In Table 3.1 the mean CRPS of different probabilistic forecasts and MAE of median

forecasts are given together with the coverage and average width of nominal 83.33 %
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Figure 3.4: Pit histograms of BMA post-processed ALADIN-HUNEPS ensemble forecasts
of wind speed and verification rank histogram of the raw ensemble for the period 30
October 2010 – 25 March 2011.

central prediction intervals. Verification measures of probabilistic forecasts and point
forecasts calculated using three versions of truncated normal BMA models (3.3.14) and
(3.3.15) (TN-N: naive; TN-MC: mean corrected; TN-ML: pure ML) are compared with
the corresponding measures calculated for the raw ensemble and applying gamma BMA
post-processing (Baran et al., 2013). We remark that gamma BMA models had also been
fit to powers 1/3, 1/2, 3/2 and 2 of wind speed (see Sloughter et al., 2010), but the
untransformed model gave the best results. Compared with the raw ensemble all BMA
post-processed forecasts show a significant decrease in all verification scores considered.
The results of the DM tests for equal predictive performance in terms of mean CRPS and
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TN-N BMA TN-MC BMA TN-ML BMA Gamma BMA
Two groups 9.41× 10−4 2.11× 10−3 4.17× 10−3 4.28× 10−2

Three groups 3.02× 10−4 5.63× 10−4 1.67× 10−2 7.28× 10−2

Table 3.2: Significance levels of α0
1234 tests for uniformity of PIT values corresponding to

two- and three-group models for the ALADIN-HUNEPS ensemble.

absolute error of median forecasts are given in Figure 3.4. Further, as the listed CRPS and
MAE values show, the fit of the truncated normal BMA probabilistic and point forecasts
to the validating observations is better than the fit of the gamma BMA ones.

Concerning calibration, one can observe that the coverage values of BMA central pre-
diction intervals are rather close to the correct coverage for all models considered, whereas
the coverage values of the central prediction intervals calculated from the raw ensemble
are quite poor. This shows that BMA post-processing greatly improves calibration. Fur-
ther, the truncated normal BMA models yield a bit sharper predictions than the gamma
BMA forecasts, and one can also observe that the three-group model slightly outperforms
the two-group one.

These results are fully in line with the PIT histograms and verification rank histogram
displayed in Figure 3.4. The U-shape of the latter indicates strong underdispersion, which
is nicely corrected by post-processing. Instead of the Kolmogorov-Smirnov test applied in
the case study of Chapter 2, here we make use of the moment-based α0

1234 test proposed
by Knüppel (2015) to test uniformity of PIT values. According to the significance levels
given in Table 3.2, one can accept uniformity just for the three group gamma BMA model,
but the reported p-values are in accordance with the shapes of the histograms and might
be used for ranking the different post-processing approaches. Note that Kolmogorov-
Smirnov test results in different ranking. Uniformity of PIT values can be accepted for
the TN-ML BMA with both groupings of the ensemble members and for the three-group
TN-MC BMA, the corresponding p-values are 0.129, 0.176 and 0.056, respectively.

Finally, we remark that similar to Chapter 2, the mean correction step (2.1.10) in the
pure ML parameter estimation method seems to be necessary. Running the algorithm
without it e.g. for the three group model yields slightly smaller mean CRPS (0.702) but
larger MAE value (1.050) and wider central prediction intervals.

Verification results for the University of Washington mesoscale ensemble

As a contrast to the ALADIN-HUNEPS ensemble, the members f1, f2, . . . , f8 of the
UWME are non exchangeable. In this way the corresponding BMA model is

p
(
x| f1, . . . , f8;α1, . . . , α8; β1, . . . , β8;σ

)
=

8∑
`=1

ω`g
(
x|α` + β`f`, σ

)
, (3.3.16)

where weights ω`, ` = 1, 2, . . . , 8, satisfy
∑8

`=1 ω` = 1. For estimation of model
parameters we use the same 25 days training period as in Sloughter et al. (2010), where
the authors calibrated wind speed forecasts of the UWME for a different time period (1
November 2002 – 31 December 2003). As before, we consider the performance of the
BMA predictive PDF (3.3.16) under all three parameter estimation methods of Section
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

TN-N BMA 1.097 1.575 80.45 4.925
TN-MC BMA 1.084 1.560 80.88 4.940
TN-ML BMA 1.077 1.553 81.07 4.957
Gamma BMA 1.112 1.573 78.85 4.828
Raw ensemble 1.353 1.655 45.24 2.532

Table 3.3: Mean CRPS of probabilistic, MAE of median forecasts, coverage and average
width of nominal 77.78 % central prediction interval for the UWME.

Forecast

F
o
re

c
a
s
t

TN−N

TN−MC

TN−ML

Gamma

Ensemble

TN−NTN−MCTN−MLGammaEnsemble

<−5.00 1.41 >5.00 >5.00 NA

<−5.00 <−5.00 >5.00 NA <−5.00

<−5.00 <−5.00 NA <−5.00 <−5.00

<−5.00 NA >5.00 >5.00 >5.00

NA >5.00 >5.00 >5.00 >5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 3.5: Values of the test statistic of the two-tailed DM test for equal predictive
performance based on CRPS (upper triangle) and absolute error of median forecasts (lower
triangle) for the UWME data. Green/red entries indicate superior performance of the
forecast in the corresponding row/column.

3.1.2, whereas the gamma BMA model of Sloughter et al. (2010) is used as a benchmark.
Ensemble forecasts for the calendar year 2008 are calibrated, where in total we have 27 481
individual forecast cases.

Table 3.3 shows verification scores of UWME probabilistic and point forecasts and
coverage and average width of the nominal 77.78 % central prediction interval, whereas the
corresponding results of the DM tests for equal predictive performance in terms of mean
CRPS and absolute error of median forecasts are given in Figure 3.4. Compared with the
raw ensemble, TN BMA calibration results in coverage values rather close to the correct
coverage, significantly lower CRPS and MAE values and wider central prediction intervals.
However, the latter fact is a natural consequence of the highly underdispersive character of
the raw ensemble. From the three competing parameter estimation methods the pure ML
approach yields the lowest CRPS and MAE values combined with the highest coverage and
widest central prediction intervals. For the UWME, gamma BMA calibration results in
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Figure 3.6: Pit histograms of BMA post-processed UWME wind speed forecasts and
verification rank histogram of the raw ensemble for calendar year 2008.

Forecast TN-N BMA TN-MC BMA TN-ML BMA Gamma BMA
Mean p-value 1.83× 10−12 1.30× 10−10 1.78× 10−8 0.088

Table 3.4: p-values of α0
1234 tests for uniformity of PIT values for the UWME. Means of

10000 random samples of sizes 2500 each.

significantly higher CRPS and MAE values than the TN BMA except the naive approach
to parameter estimation, where there is no difference in the predictive performance of
the absolute errors. Further, gamma BMA results in a coverage closer to the nominal
value and slightly sharper central prediction intervals, which is also reflected in the PIT
histograms of Figure 3.6. All PIT histograms are far closer to the uniform distribution
than the verification rank histogram of the raw ensemble, and the slight hump shape of
PITs of the three BMA approaches is in line with the larger coverage values of Table 3.3.

Although the α0
1234 test rejects the uniformity of PIT values for all post-processing

approaches, one can reasonably quantify the differences in calibration by considering the
mean p-values of random samples of PITs. Here we take 10000 random samples of sizes
2500 each, and the mean p-values for the different calibration methods given in Table 3.4
are consistent with the shapes of the corresponding histograms of Figure 3.6. Note that
a similar ranking of BMA models can be obtained using the Kolmogorov-Smirnov test.
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Figure 3.7: Densities of computation times for the truncated normal and gamma BMA
models. ALADIN-HUNEPS ensemble for the period 30 October 2010 – 25 March 2011
with (a) two groups and (b) three groups of exchangeable members; (c) UWME for the
calendar year 2008.

Computational aspects of BMA post-processing

For all BMA methods which have been developed so far the most time consuming part of
ensemble post-processing is the EM algorithm applied for ML estimation of parameters.
For the model presented in Section 3.1.2 we make use of the truncated data EM algorithm
for Gaussian mixture models (Lee and Scott, 2012), for the details of parameter estimation
see Section 2.1.2 or Baran (2014). In this way, similar to the BMA model with normal
components (Raftery et al., 2005), we have closed formulae both in expectation (E) and
in maximization (M) steps, whereas in the M step of the gamma BMA model of Sloughter
et al. (2010) a numerical optimization is used. This difference results in a reasonable gain
in speed in favour of the TN BMA approach, which can clearly be observed in Figure 3.7
displaying the kernel density estimates of the distribution of computation times for the
various post-processing approaches. Speed tests were made on a portable computer under
a 64 bit Fedora 28 operating system (Intel Quad Core i7-4700MQ CPU (2.40GHz × 4),
20 Gb RAM) using the gamma BMA model of the ensembleBMA package of R (Fraley et
al., 2011) and self-developed codes for the truncated normal BMA approach, which had
been adapted to the package. Obviously, from operational point of view the time saved
in estimating parameters for a single day is negligible compared with the amount of time
needed to create the forecast ensemble. In this way the choice between the two competing
methods should be based on their predictive performance. However, if one has to perform
modelling for a long time period, moreover, repeating it several times e.g. using different
training period lengths in order to determine the optimal one (see e.g. Raftery et al., 2005;
Baran et al., 2013, 2014a,b), this small daily difference in speed saves a lot of computation
time.

3.3.3 EMOS modelling of wind speed forecasts

To investigate the predictive performance of the EMOS models introduced in Baran and
Lerch (2015) and Baran and Lerch (2016) we consider three different case studies. We

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



3.3. CASE STUDIES 43

15 20 25 30 35 40

1
.0

3
5

1
.0

4
0

1
.0

4
5

1
.0

5
0

Length of training period (day)

C
R

P
S

TN

LN

GEV

4 5 6 7 8 9 10

1
.0

3
3

1
.0

3
5

1
.0

3
7

1
.0

3
9

Threshold (m/s)

C
R

P
S

20

25

30

35

40

4 5 6 7 8

1
.0

3
3

1
.0

3
5

1
.0

3
7

1
.0

3
9

Threshold (m/s)

C
R

P
S

20

25

30

35

40

(a) (b) (c)

Figure 3.8: Mean CRPS values of the (a) EMOS predictive distributions for various
training period lengths; (b) TN-LN mixture models corresponding to different training
period lengths as functions of the threshold; (c) TN-GEV mixture models corresponding
to different training period lengths as functions of the threshold for the ECMWF ensemble.

compare the forecast skill of the TN, LN and GEV EMOS approaches together with the
corresponding regime-switching methods and the TN-LN mixture model with the raw
ensemble forecast and climatology. The latter treats the observations from the train-
ing period as a forecast ensemble and often used as a baseline for forecast evaluation.
We consider wind speed forecasts of the 50-member ECMWF ensemble, the 11-member
ALADIN-HUNEPS ensemble of the HMS and the 8-member UWME. As indicated in
Section 3.3.1, the three EPSs differ both in generation of the ensemble members and in
the predicted wind speed quantity.

Verification results for the ECMWF ensemble

As the fifty members of the ECMWF ensemble are fully exchangeable, the dependencies
of the parameters of the TN, LN and GEV distributions on the ensemble members are
specified by (3.2.5), (3.2.9) and (3.2.12), respectively, with K = 1.

As a first step, we determine the optimal length of the rolling training period valid for
all models and the optimal threshold values for TN-LN and TN-GEV regime-switching
approaches. Figure 3.8a, showing the mean CRPS values of all three simple EMOS models
as functions of the training period length varying from 15 to 40 days, suggests the use of a
training period of 20 days. This particular length of the training period is also supported
by Figures 3.8b and 3.8c, where mean CRPS values of the TN-LN and TN-GEV regime-
switching models, respectively, are plotted as functions of the threshold θ for various
training period lengths. According to Figure 3.8b, for the TN-LN model the optimal
threshold is 8.0 m/s, whereas for the TN-GEV model similar arguments lead us to a
threshold of 5.2 m/s, see Figure 3.8c. Using these parameter values, ensemble forecasts
for the one year period between 1 May 2010 and 30 April 2011 are calibrated. In the case
of the two regime-switching models an LN distribution is used in around 14 %, while a
GEV distribution is applied in about 19 % of the 83 220 individual forecast cases.

Table 3.5 summarizes the verification scores of different probabilistic forecasts together
with the average width and coverage of the nominal 96.08 % central prediction intervals.
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

TN-LN mix. (CRPS) 1.030 1.384 94.34 7.716
TN-LN mix. (ML) 1.034 1.391 95.81 8.723
TN-LN r.s. (θ=8.0) 1.033 1.379 92.49 6.363
TN-GEV r.s. (θ=7.3) 1.033 1.381 92.89 6.600
TN 1.045 1.388 92.19 6.385
LN 1.037 1.386 93.16 6.909
GEV 1.034 1.388 94.84 8.221
Ensemble 1.263 1.441 45.00 1.800
Climatology 1.550 2.144 95.84 11.91

Table 3.5: Mean CRPS of probabilistic, MAE of median forecasts, coverage and average
width of 96.08 % central prediction intervals for the ECMWF ensemble.

The improvement with respect to the raw ensemble and climatology is quantified in lower
mean CRPS and MAE, and the EMOS predictive PDFs result in calibrated central pre-
diction intervals with coverages very close to the nominal value. The much wider central
prediction intervals of the EMOS models compared with the ensemble are a natural con-
sequence of the underdispersive character of the latter.

Among the competing post-processing methods the mixture and regime-switching
models clearly outperform the EMOS approaches based on single distributions in almost
all scores investigated. The lowest CRPS value belongs to the mixture model with param-
eters estimated by optimizing the mean CRPS, whereas the regime-switching approaches
produce the best MAE scores. The two parameter estimation methods of the TN-LN
mixture model make only a very slight difference in model performance (ML estimation
leads to slightly worse scores) and the TN-LN mixture EMOS models are able to keep up
with the regime-switching approaches.

According to the results of DM tests (not reported), the TN-LN mixture model with
ML parameter estimation, the two regime switching models and the GEV EMOS approach
do not differ significantly in terms of the mean CRPS. For all other mean CRPS pairs
the p-values are less than 0.01 under the null hypothesis of equal predictive performance.
Further, in terms of the MAE the only non-significant difference at a 5 % level is between
the TN and the GEV EMOS models.

Further, note that the TN, LN and TN-LN regime switching and mixture models are
strictly positive, whereas the GEV and TN-GEV models occasionally assign small non-
zero probabilities to negative wind speed observations. For the ECMWF data at hand
this effect is typically negligible as the average (maximum) probability mass assigned to
negative wind speeds is smaller than 0.01 % (5 %) for the GEV model and smaller than
10−7 % (0.001 %) for the TN-GEV model.

To assess the predictive ability for high wind speed observations we also compute the
twCRPS scores (1.4.8) at threshold values 10, 12 and 15 m/s corresponding approximately
to the 90th, 95th and 98th percentiles of the wind speed observations, see Table 3.6.
The best scores in the upper tail are obtained by the TN-LN and TN-GEV regime-
switching methods followed by the TN-LN mixture model with parameters optimizing
the mean CRPS. In almost all cases the relative improvements over the TN model are
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Forecast twCRPS (m/s)
r=10 r=12 r=15

TN-LN mix. (CRPS) 0.194 0.106 0.041
TN-LN mix. (ML) 0.197 0.108 0.042
TN-LN r.s. (θ=8.0) 0.191 0.103 0.039
TN-GEV r.s. (θ=7.3) 0.191 0.103 0.039
TN 0.200 0.110 0.042
LN 0.198 0.109 0.042
GEV 0.195 0.106 0.041
Ensemble 0.211 0.113 0.043
Climatology 0.251 0.128 0.045

Table 3.6: Mean twCRPS for various thresholds r for the ECMWF ensemble.
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Figure 3.9: twCRPSS values for the ECMWF ensemble with TN as reference model.

considerably higher compared with the improvements in the unweighted CRPS and all
score differences in Table 3.6 between the various post-processing methods are significant
at a 5 % level. Figure 3.9 further shows the twCRPSS (see (1.4.8)–(1.4.10)) as a function
of the threshold employed in the indicator weight function with the TN model as reference
forecast. The twCRPSS is strictly positive for all models and threshold values, indicating
improvements compared with the TN model. Except for the LN model, the twCRPSS of
the various post-processing approaches generally increases for larger threshold values and
the greatest relative improvements over the TN model can be detected at threshold values
around 15 m/s. Despite the decreasing twCRPSS values of the LN model, the TN-LN
regime switching model achieves the largest improvements over the TN EMOS method,
closely followed by the TN-GEV regime-switching approach. Further, for large threshold
values the GEV EMOS approach is able to catch up with the TN-LN mixture model with
parameters estimated by optimizing the mean CRPS.

Figure 3.10 shows the weights ω of the mixture model (3.2.13) estimated using
optimizations with respect to the mean CRPS and the mean logarithmic score over the
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Figure 3.10: Weights of the TN component of the TN-LN mixture model for the ECMWF
ensemble.

training data. Despite the similar predictive skills (see Tables 3.5 and 3.6), the two
parameter estimating methods result in completely different sets of weights having only a
minor non-significant correlation of 0.063. However, having a closer look at the predictive
PDFs one can observe that the corresponding locations and scales/shapes of the TN and
LN components produced by the two different estimation methods are strongly correlated,
their correlations vary between 0.921 and 0.968, except for the scales of the TN component
with a correlation of 0.283.

The positive effect of calibration can also be observed on Figure 3.11 showing the
PIT histograms of post-processed forecasts and the verification rank histogram of the raw
ECMWF ensemble. PIT values of mixture model (3.2.13) with both parameter estimation
methods provide the best fit to the desired uniform distribution, whereas the histograms
of the two regime-switching approaches are biased, which property is inherited from the
TN part of the mixtures. LN EMOS shows similar behaviour to the TN EMOS, however
the deviation from uniformity is less pronounced. Finally, as the hump shape of the
corresponding PIT histogram indicates, the GEV EMOS model is slightly overdispersed
and has too heavy tails.

Similar to Section 3.3.2, we again consider the α0
1234 test of uniformity, as it takes

into account the dependence of PIT values. By applying it to PITs of all 83 220 indi-
vidual forecast cases the uniformity is rejected for all models, so further investigations
are required. In contrast to the previous case study, now we quantify the differences in
calibration by having a look at the rejection rates of the α0

1234 test at a 5 % level, based
on 10 000 random samples of size 2 500 each, reported in Table 3.7. For the ECMWF
data the null hypothesis of uniformity is rejected in all of the cases for all models but the
TN-LN mixtures, which is clearly in line with the visual inspection of the PIT histograms
in Figure 3.11.
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Figure 3.11: Pit histograms of EMOS post-processed ECMWF ensemble forecast of wind
speed and verification rank histogram of the raw ensemble for the period 1 May 2010 –
30 April 2011.

Verification results for the ALADIN-HUNEPS ensemble

The data base investigated in this case study differs from the one considered in Section
3.3.2. It contains ensemble forecasts of wind speed and validating observations for the
one year period between 1 April 2012 and 31 March 2013 and was first studied from
the point of view of statistical calibration in Baran et al. (2014b). Similar to the case
study of Section 3.3.2, we consider the natural grouping of ensemble members into two
groups, where the first group contains just the control member, while in the second
are the ten statistically indistinguishable ensemble members initialized from randomly
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Forecast ECMWF ALADIN-HUNEPS UWME
TN-LN mix. (CRPS) 68.72 0 46.85
TN-LN mix. (ML) 25.58 1.02 30.71
TN-LN r.s. (θ=8.0) 100.0 100.0 67.22
TN-GEV r.s. (θ=7.3) 100.0 100.0 95.22
TN 100.0 100.0 100.0
LN 100.0 100.0 100.0
GEV 100.0 78.89 18.49

Table 3.7: Bootstrap estimates of rejection rates (%) of the α0
1234 test of uniformity based

on 10 000 random samples of size 2 500 each at the 5 % level for the different data sets.
Lower rejection rates correspond to better calibrated forecasts with the null hypothesis
of uniformity being rejected on fewer occasions.
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Figure 3.12: Mean CRPS values of the (a) EMOS predictive distributions for various
training period lengths; (b) TN-LN mixture models corresponding to different training
period lengths as functions of the threshold; (c) TN-GEV mixture models corresponding to
different training period lengths as functions of the threshold for the ALADIN-HUNEPS
ensemble.

perturbed initial conditions. One should remark here that in Baran et al. (2014b) the
refined grouping, where the odd and even numbered exchangeable ensemble members
form two separate groups, is also studied (see also the three-group model of Section
3.3.2). However, since in the present study the results corresponding to the two- and
three-group models are rather similar, only the two-group case is reported.

The detailed study of this particular data set reported in Baran et al. (2014a) shows
that for the TN distribution based EMOS model, the optimal length of the rolling training
period for ALADIN-HUNEPS wind speed forecasts is 43 days. Using this training period
length one has a verification period between 15 May 2012 and 31 March 2013 containing
315 calendar days (3 150 forecast cases). Having a look at the mean CRPS values of
TN, LN and GEV models as functions of the length of the training period presented in
Figure 3.12a, one can derive that this value of 43 days can also be accepted as optimal for
all methods, moreover, the optimal TN-LN and TN-GEV thresholds of 6.9 m/s (Figure
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

TN-LN mix. (CRPS) 0.736 1.037 83.02 3.621
TN-LN mix. (ML) 0.737 1.040 83.14 3.583
TN-LN r.s. (θ=6.9) 0.737 1.035 83.59 3.535
TN-GEV r.s. (θ=5.0) 0.735 1.039 85.59 3.723
TN 0.738 1.037 83.59 3.534
LN 0.741 1.038 80.44 3.567
GEV 0.737 1.041 81.21 3.541
Ensemble 0.803 1.069 68.22 2.884
Climatology 1.046 1.481 82.54 4.924

Table 3.8: Mean CRPS of probabilistic, MAE of median forecasts and coverage and
average width of 83.33 % central prediction intervals for the ALADIN-HUNEPS ensemble.

Forecast twCRPS (m/s)
r=6 r=7 r=9

TN-LN mix. (CRPS) 0.100 0.053 0.011
TN-LN mix. (ML) 0.100 0.053 0.011
TN-LN r.s. (θ=6.9) 0.101 0.054 0.011
TN-GEV r.s. (θ=5.0) 0.098 0.052 0.011
TN 0.102 0.054 0.012
LN 0.102 0.054 0.011
GEV 0.098 0.052 0.011
Ensemble 0.112 0.059 0.013
Climatology 0.127 0.064 0.012

Table 3.9: Mean twCRPS for various thresholds r for the ALADIN-HUNEPS ensemble.

3.12b) and 5 m/s (Figure 3.12c), respectively, belong to the 43 days training period, too.
The corresponding percentages of usage of LN and GEV distributions in the mixtures are
4 % and 15 %, respectively.

Consider first Table 3.8 reporting the mean CRPS of probabilistic and MAE of median
forecasts together with the coverage and average width of the 83.33 % central prediction
intervals for the various EMOS models, the ALADIN-HUNEPS ensemble and climatolog-
ical forecasts. The raw ensemble outperforms climatology and produces sharp forecasts,
however, at the cost of being uncalibrated. Post-processing substantially improves the
calibration and predictive skill of the raw ensemble. All EMOS models significantly out-
perform it in terms of mean CRPS and MAE (DM test results are not reported) and
have coverages much closer to the nominal value. Regime switching approaches provide
the best results, however, the differences in mean CRPS between the mixture and regime
switching models are not significant at a 5 % level. The LN EMOS approach results in
the highest mean CRPS and significantly underperforms the competitors. In terms of
MAE, the TN-LN regime switching model produces the most accurate forecasts, however,
the corresponding value does not differ significantly from the MAE of TN and LN EMOS
methods and from the mixture model with parameters optimizing the mean CRPS.
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Figure 3.13: twCRPSS values for the ALADIN-HUNEPS ensemble with TN as reference
model.
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Figure 3.14: Weights of the TN component of the TN-LN mixture model for the ALADIN-
HUNEPS ensemble.

Table 3.9 shows the twCRPS scores for three different thresholds corresponding again
to the 90th, 95th and 98th percentiles of wind speed observations. For 6 m/s and 7 m/s
threshold values the GEV and TN-GEV models result in significantly lower twCRPS
scores than all other post-processing approaches (DM test results are not reported),
whereas for r = 9 m/s there is no statistically significant difference between the com-
peting EMOS models. This phenomenon can also be observed on Figure 3.13, where
the twCRPSS values with respect to the reference TN EMOS approach are plotted as
functions of the threshold r. Models utilizing GEV distribution provide almost iden-
tical curves, have a clear advantage for thresholds between 4 and 10 m/s, but after it
the performances decay quickly. However, one should also note that the mean (maxi-
mal) probabilities of predicting a negative wind speed by the GEV and TN-GEV regime
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Figure 3.15: Pit histograms of EMOS post-processed ALADIN-HUNEPS ensemble fore-
cast of wind speed and verification rank histogram of the raw ensemble for the period 15
May 2012 – 31 March 2013.

switching methods are 0.33 % (9.46 %) and 2.74× 10−3 % (0.15 %), respectively.

Further, similar to the previous case study, the weights belonging to the two parameter
estimation methods for the TN-LN mixture model (see Figure 3.14) are uncorrelated,
whereas the correlations of the corresponding location and scale/shape parameters of the
TN (µTN and σTN) and LN components (µLN and σLN) are 0.875, 0.660 and
0.747, 0.414, respectively.

Finally, let us investigate the PIT histograms of all considered EMOS models, dis-
played in Figure 3.15. Compared with the verification rank histogram of the raw ensemble,
all post-processing methods result in a significant improvement in the goodness of fit to
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Figure 3.16: Mean CRPS values of the (a) EMOS predictive distributions for various
training period lengths; (b) TN-LN mixture models corresponding to different training
period lengths as functions of the threshold; (c) TN-GEV mixture models corresponding
to different training period lengths as functions of the threshold for the UWME.

the uniform distribution, while from the competing calibration methods the TN-LN mix-
ture models have the best performance. These two histograms show no visible tendency
in deviation from uniformity, LN and GEV EMOS models result in slightly overdispersed
PIT histograms, whereas the histograms of the regime switching approaches mimic the
histogram of the TN EMOS model. These shapes are fully in line with the corresponding
rejection rates of the α0

1234 test reported in Table 3.7.

Verification results for the UWME

The members of the UWME are clearly distinguishable, as they are generated using initial
conditions from eight different sources. Hence, location and scale/shape parameters of
the TN, LN and GEV distributions are linked to the ensemble via (3.2.4), (3.2.8) and
(3.2.11), respectively, with K = 8.

To determine the optimal length of the training period for all models and the optimal
model thresholds for the regime-switching approaches, we proceed as for the ECMWF
and ALADIN-HUNEPS ensemble and compute the mean CRPS over a range of lengths
of training periods and choices for the model threshold θ. The mean CRPS of the GEV
model takes its minimum at day 30 (see Figure 3.16a) and this training period length
seems reasonable for the other two models, too. The use of a 30 day training period is
also supported by Figures 3.16b and 3.16c suggesting model thresholds of θ = 8.0 m/s
and θ = 7.3 m/s for the TN-LN and TN-GEV regime-switching models, respectively.
However, for the UWME the threshold values have much bigger effect than in the case of
the ALADIN-HUNEPS ensemble, as the curves corresponding to different training period
lengths are very close to each other and often intersect. Using a 30 day training period
and the above thresholds, ensemble forecasts for the calendar year 2008 are calibrated.
In the case of the two regime-switching models an LN distribution is used in around one
third, while a GEV distribution is applied in about 40 % of the 27 481 individual forecast
cases. Note that in the case study of Section 3.3.2 a different training period length of 25
days is applied.
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

TN-LN mix. (CRPS) 1.104 1.551 79.02 4.786
TN-LN mix. (ML) 1.108 1.560 78.12 4.779
TN-LN r.s. (θ=5.7) 1.105 1.550 77.73 4.642
TN-GEV r.s (θ=5.2) 1.105 1.555 77.20 4.597
TN 1.114 1.550 78.65 4.666
LN 1.114 1.554 77.29 4.692
GEV 1.100 1.554 77.20 4.686
Ensemble 1.353 1.655 45.24 2.532
Climatology 1.412 1.987 81.10 5.898

Table 3.10: Mean CRPS of probabilistic, MAE of median forecasts and coverage and
average width of 77.78 % central prediction intervals for the UWME.

Forecast twCRPS (m/s)
r=9 r=10.5 r=14

TN-LN mix. (CRPS) 0.147 0.073 0.010
TN-LN mix. (ML) 0.147 0.073 0.010
TN-LN r.s. (θ=5.7) 0.149 0.073 0.010
TN-GEV r.s (θ=5.2) 0.145 0.072 0.010
TN 0.150 0.074 0.010
LN 0.147 0.073 0.010
GEV 0.145 0.072 0.010
Ensemble 0.175 0.085 0.011
Climatology 0.173 0.081 0.010

Table 3.11: Mean twCRPS for various thresholds r for the UWME.

Mean CRPS of probabilistic, MAE of median forecasts and the coverage and average
width of 77.78 % central prediction intervals are reported in Table 3.10. Compared with
the raw ensemble and climatology, post-processed forecasts exhibit the same behaviour
as before: improved predictive skills and better calibration. The GEV EMOS method
provides the smallest mean CRPS, there is no significant difference between the two
regime-switching approaches and the mixture model optimizing the mean CRPS, and all
post-processing approaches but the LN model significantly outperform the TN EMOS
(DM test results are not reported). However, the latter method is the more accurate in
terms of the MAE of median forecasts together with the TN-LN regime-switching model
and the TN-LN mixture with CRPS optimization. The differences between MAE values
of these approaches are again not significant. Note that the 77.73 % coverage of the TN-
LN regime-switching model is very close to the nominal coverage of 77.78 % of the raw
ensemble, combined with the second sharpest central prediction interval from the seven
post-processing approaches. From the two different parameter estimation methods for the
TN-LN mixture model, similar to the previous two case studies, the one using the ML
approach results in slightly worse predictive performance.

To investigate the forecast skill of the different post-processing approaches for high
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Figure 3.18: Weights of the TN component of the TN-LN mixture model for the UWME.

wind speed, consider first Table 3.11 summarizing the mean twCRPS over calendar year
2008 for three different thresholds. Threshold values 9, 10.5 and 14 m/s again correspond
to the 90th, 95th and 98th percentiles of the observed wind speed. Similar to the previous
two case studies, GEV and TN-GEV regime-switching EMOS models provide the smallest
score and their superiority can also be observed on Figure 3.17 displaying twCRPSS with
respect to the TN EMOS as function of the threshold. Note that the advantage of models
using GEV distribution is far less pronounced than e.g. in the case of the ECMWF data,
but here the GEV EMOS model outperforms its regime switching counterpart. However,
we remark that for the GEV model the mean (maximal) probability of forecasting a
negative wind speed is around 0.05 % (3.89 %), whereas for the TN-GEV regime switching
approach this probability equals 0.02 % (2.67 %).

In contrast to the ECMWF and ALADIN-HUNEPS ensembles, the weights of the TN
component of the two versions of model (3.2.13) plotted in Figure 3.18 show a positive
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Figure 3.19: Pit histograms of EMOS post-processed UWME forecast of wind speed and
verification rank histogram of the raw ensemble.

correlation of 0.214. Further, for the UWME the parameter estimates of µLN and σLN
exhibit stronger correlations than the estimated location and scale parameters µTN and
σTN of the TN component, the corresponding values are 0.858, 0.826 and 0.427, 0.259,
respectively.

Finally, to get an overview about calibration, consider again the PIT histograms of the
EMOS predictive distributions displayed in Figure 3.19. All post-processing approaches
are able to significantly improve the underdispersive character of the UWME. The PIT
histograms, in general, are much closer to the uniform distribution than in the previous
two case studies, just TN and LN EMOS models show a slight overdispersion, which is
nicely corrected by combining them using regime-switching. The flattest PIT histograms
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Figure 3.20: Densities of computation times for the TN, LN and GEV models. (a)
ECMWF ensemble for the period 1 May 2010 – 30 April 2011; (b) UWME for the calendar
year 2008; (c) ALADIN-HUNEPS ensemble for the period 15 May 2012 – 31 March 2013.

correspond to the GEV and mixture models, which is completely in accordance with the
results of the goodness of fit test provided in Table 3.7. Note that this is the only situation,
when any post-processing approach results in better calibration than the TN-LN mixture
models.

Computational aspects of EMOS post-processing

In EMOS post-processing the most computation intensive part is the numerical optimiza-
tion used in parameter estimation. Figure 3.20a–c show the kernel density estimates of the
distribution of computation times over the days in the verification period for the individ-
ual EMOS models for the UWME, ECMWF ensemble and ALADIN-HUNEPS ensemble,
respectively, calculated on the portable computer specified in Section 3.3.3 (64 bit Fedora
28 operating system, Intel Quad Core i7-4700MQ CPU (2.40GHz × 4), 20 Gb RAM). In
contrast to the previous case study, model parameters were calculated without the help of
the general ensembleMOS package of R (Yuen et al., 2018), using individual codes tailored
to the particular tasks. The densities displayed in Figure 3.20 clearly show that in terms
of computation time the LN model outperforms both the TN and the GEV method. In
the case of the regime-switching approaches, roughly one has to add the computation
costs of the component models. We do not present the results for the mixture models as
they are not directly comparable. From the one hand they result in larger dimensional
optimization problems to be solved using a different optimization algorithm (Nelder-Mead
instead of BFGS), from the other hand optimization with respect to the mean CRPS re-
quires a numerical integration at each iteration step when the CRPS is evaluated. Hence,
the computation cost of the mixture model using CRPS optimization is about 500 times
higher than that of the one using the ML approach. In this way, as the forecast skill of the
two TN-LN mixture models is rather similar, the latter is preferred. Finally, one should
remark again that the computation cost of all presented post-processing approaches but
the above mentioned problematic mixture model is negligible compared with the costs
of producing the forecast ensemble, thus the choice of the calibration method should be
based merely on the forecast skill.
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3.4 Conclusions

In this chapter we investigate various parametric calibration method for ensemble forecasts
of wind speed. First we describe a new BMA model for providing a predictive PDF which
is a mixture of normal distributions truncated to the left at zero. The model presented
here is a special case of the one given in Chapter 2, where the statistical calibration
of hydrological ensemble forecasts is investigated. The truncated normal BMA model
with three different approaches to parameter estimation is tested on ensemble forecasts
of wind speed produced by ALADIN-HUNEPS EPS of the HMS and on the 8-member
UWME. Using appropriate verification measures (CRPS of probabilistic, MAE of median
forecasts, coverage and average width of central prediction intervals corresponding to the
nominal coverage) and graphical tools, the predictive performance of this novel approach
is compared with that of the gamma BMA model. Based on the results of these two case
studies we conclude that truncated normal BMA post-processing of ensemble predictions
of wind speed significantly improves the calibration of probabilistic and accuracy of point
forecasts. Further, the predictive performance of the truncated normal BMA model is
significantly better than the forecast skill of the gamma BMA method, moreover, in
terms of computation time the new approach is more efficient.

Then we study a novel EMOS model for calibrating ensemble forecasts of wind speed
providing a predictive PDF which follows a log-normal distribution. In order to have
better forecasts in the tails, we also consider a regime-switching approach based on the
ensemble median, which considers a truncated normal EMOS model for low values and a
log-normal EMOS for the high ones. Even more flexibility can be reached by the use of
the mixture predictive PDF modelling wind speed as a weighted mixture of a truncated
normal and a log-normal distribution with location and scale/shape parameters depending
on the ensemble. Model parameters and mixture weight are estimated simultaneously by
optimizing either the mean continuous ranked probabilistic score or the mean logarithmic
score (ML estimation) of the predictive distribution over the training data. Similar to
the BMA models, the LN EMOS, TN-LN regime-switching EMOS and TN-LN mixture
EMOS approaches are tested on wind speed forecasts of the UWME and the ALADIN-
HUNEPS ensemble, but now the set of case studies is extended with the calibration of the
50-member ECMWF ensemble forecasts. These EPSs differ both in the wind speed quan-
tities being forecast and in the generation of the ensemble members. The predictive skills
of the new model are compared with those of the TN based EMOS method, the GEV and
the TN-GEV regime-switching EMOS models, the raw ensemble and the climatological
forecasts. In order to assess forecast skill at high wind speed values, besides the verifi-
cation scores and graphical tools of the other case study of this section, mean twCRPS
values corresponding to 90th, 95th and 98th percentiles of the verifying observations are
also considered. Compared with the raw ensemble and climatology, the advantage of
EMOS post-processing is unquestionable. Considering just EMOS models based on sin-
gle parametric distributions, the GEV EMOS approach, especially for high wind speed
values, results in slightly better calibrated forecasts than the TN and LN EMOS models.
However, the GEV EMOS might occasionally predict negative wind speed values. In the
case of the ALADIN-HUNEPS ensemble the maximal probability of this event is almost
10 %, which is far beyond being acceptable. A possible solution is to investigate the use
of a truncated GEV distribution in EMOS modelling, which is a reasonable direction of
future research. TN-LN and TN-GEV regime-switching approaches successfully combine
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the advantages of light- and heavy-tailed distributions and result in significant improve-
ments in calibration. Moreover, for the latter model the maximal probability of predicting
negative wind speed is also substantially reduced compared with the GEV EMOS. The
main difficulty of the regime-switching approaches is in finding an appropriate covariate
to select between the heavy- and light-tailed component and in specifying the correspond-
ing threshold. This problem can be solved by the use of e.g. the TN-LN mixture model,
which does not require the exclusive choice of one of the parametric families as forecast
distribution and it is not necessary to determine suitable covariates for model selection or
to estimate model selection threshold over the training period. Obviously, simultaneous
estimation of the mixing weight and model parameters of both components is computa-
tionally more demanding than the aforementioned EMOS approaches. In our three case
studies the mixture model results in the best calibration, however, the small increase in
verification scores compared with the regime-switching approaches is often non-significant.
Naturally, there are many other ways of combining different post-processing methods in
order to improve predictive performance. A detailed comparison of the state of the art
techniques including the TN-LN mixture model can be found in Baran and Lerch (2018).
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Chapter 4

Models for probabilistic quantitative
precipitation forecasting

Statistical calibration of ensemble forecasts of precipitation is far more difficult than
the post-processing of e.g. temperature or wind speed. As pointed out by Scheuerer and
Hamill (2015), precipitation has a discrete-continuous nature with a positive probability of
being zero, and larger expected precipitation amount results in larger forecast uncertainty.
Sloughter et al. (2007) introduced a BMA model where each individual predictive PDF
consists of a discrete component at zero and a gamma distribution modelling the case of
positive precipitation amounts. Wilks (2009) uses extended logistic regression to provide
full probability distribution forecasts, whereas in EMOS modelling a popular choice is to
consider a continuous distribution that can take both positive and negative values and left
censor it at zero (Scheuerer, 2014; Scheuerer and Hamill, 2015), thereby assigning the mass
of negative values to a zero precipitation accumulation. In this chapter, based on Baran
and Nemoda (2016), we introduce a new EMOS model for calibrating ensemble forecasts
of precipitation and overview some existing approaches to post-processing providing full
predictive distribution of this weather quantity. The forecast skill of the new model
is investigated in two case studies dealing with calibration of UWME and ALADIN-
HUNEPS ensemble precipitation forecasts.

4.1 Discrete-continuous gamma BMA model

The BMA method suggested by Sloughter et al. (2007) treats separately the cases of
zero and positive precipitation and provides a predictive distribution of the cube root
of precipitation accumulation. Given an ensemble member fk, the probability of zero
precipitation is specified by logistic regression

logitP(x = 0| fk) := log
P(x = 0| fk)
P(x > 0| fk)

= a0k + a1kf
1/3
k + a2kI{fk=0}, (4.1.1)

whereas the conditional distribution of the cube root x of precipitation accumulation
given that it is positive follows a gamma law Γ(κk, θk) with shape κk > 0 and scale
θk > 0 with PDF (3.1.1). Mean µk = κkθk and variance σ2

k = κkθ
2
k are linked to the

ensemble members via equations

µk = b0k + b1kf
1/3
k and σ2

k = c0 + c1fk. (4.1.2)

59
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The BMA predictive PDF is

p(x| f1, . . . , fK) =
K∑
k=1

ωk

(
P(x = 0| fk)I{x=0} + P(x > 0| fk)gk(x| fk)I{x>0}

)
,

where P(x = 0| fk) is defined by (4.1.1) and gk(x| fk) denotes the gamma PDF with
mean and variance specified by (4.1.2).

Parameters a0k, a1k, a2k are estimated from the training data by logistic regression,
mean parameters b0k, b1k are obtained using linear regression connecting the cube roots of
non-zero observations of precipitation accumulation to the cube roots of the corresponding
ensemble members, whereas for estimating weights ωk and variance parameters c0, c1

one uses the maximum likelihood approach with EM algorithm to maximize the likelihood
function. For mode details see Sloughter et al. (2007).

4.2 EMOS models for precipitation forecasting

As mentioned earlier, EMOS approach provides a single model for the probability of zero
precipitation and for the PDF of the positive precipitation amount. Here we present two
different methods which are both included in the ensembleMOS package of R (Yuen et al.,
2018), for a detailed overview of the state of the art approaches see Wilks (2018).

4.2.1 Censored and shifted gamma EMOS model

Consider a gamma distribution Γ(κ, θ) with shape κ > 0 and scale θ > 0, specified by
the PDF (3.1.1), let δ > 0, and denote by G(x|κ, θ) the CDF of the Γ(κ, θ) distribution.
Then the shifted gamma distribution left censored at zero (CSG) Γ 0(κ, θ, δ) with shape
κ, scale θ and shift δ can be defined with CDF

G0(x|κ, θ, δ) :=

{
G(x+ δ|κ, θ), x ≥ 0,

0, x < 0.
(4.2.3)

This distribution assigns mass G(δ|κ, θ) to the origin and has generalized PDF

g0(x|κ, θ, δ) := I{x=0}G(δ|κ, θ) + I{x>0}g(x+ δ| k, θ).

Short calculation shows that the mean µ0 of Γ0(κ, θ, δ) equals

µ0 = θκ
(
1−G(δ|κ+ 1, θ)

)
− δ
(
1−G(δ|κ, θ)

)
,

whereas the p-quantile qp (0 < p < 1) of (4.2.3) equals 0 if p ≤ G(δ|κ, θ), and the
solution of G(qp + δ|κ, θ) = p, otherwise.

In the CSG EMOS model proposed by Baran and Nemoda (2016), the ensemble mem-
bers are linked to the mean µ and variance σ2 of the underlying gamma distribution
via equations

µ = a0 + a1f1 + · · ·+ aKfK and σ2 = b0 + b1f, (4.2.4)
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where f denotes the ensemble mean. Further, similar to EMOS models for other weather
or hydrological quantities, the exchangeable version of model (4.2.4) equals

µ = a0 + a1f 1 + · · ·+ aKfK , σ2 = b0 + b1f. (4.2.5)

Note, that the expression of the mean (or location) as an affine function of the en-
semble is general in EMOS post-processing (see e.g. Thorarinsdottir and Gneiting, 2010;
Scheuerer, 2014; Baran and Lerch, 2015), whereas the dependence of the variance pa-
rameter on the ensemble mean is similar to the expression of the variance in the gamma
BMA model of Sloughter et al. (2007) (see Section 4.1), and it is in line with the relation
of forecast uncertainty to the expected precipitation amount mentioned in the introduc-
tion of this chapter. Moreover, practical tests show that, at least for the UWME and
ALADIN-HUNEPS ensemble considered in the case studies of Section 4.3, models (4.2.4)
and (4.2.5), respectively, significantly outperform the corresponding CSG EMOS models
with variance parameters

σ2 = b0 + b1S
2 and σ2 = b0 + b1 MD,

where S2 is the ensemble variance and

MD :=
1

K2

K∑
k,`=1

∣∣fk − f`∣∣ (4.2.6)

is the more robust ensemble mean difference (Scheuerer, 2014). Further, compared with
the proposed models, natural modifications

σ2 = b0 + b1S
2 + b2f or σ2 = (b0 + b1f)2

in the CSG EMOS variance structure do not result in improved forecasts skills.

4.2.2 Censored generalized extreme value EMOS model

The EMOS model for precipitation accumulation proposed by Scheuerer (2014) is based
on a censored GEV distribution GEV0

(
µ, σ, ξ

)
with location µ, scale σ > 0 and shape

ξ having CDF

H0(x|µ, σ, ξ) = H(x|µ, σ, ξ), if x ≥ 0, and H0(x|µ, σ, ξ) := 0, otherwise, (4.2.7)

where H(x|µ, σ, ξ) is defined by (3.2.10). For −0.278 < ξ < 1 this distribution has a
positive skewness and an existing mean of

m =

{
µ+ σ Γ(1−ξ)−1

ξ
, ξ 6= 0;

µ+ σγ, ξ = 0,

where γ denotes the Euler-Mascheroni constant (see Section 3.2.6).
Scheuerer (2014) suggests to link the ensemble members to the mean and scale of the

censored CSG distribution via

m = α0 + α1f1 + · · ·+ αKfK + νp0 and σ = β0 + β1 MD, (4.2.8)

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



62 CHAPTER 4. PROBABILISTIC PRECIPITATION FORECASTING

where

p0 :=
1

K

K∑
k=1

I{fk=0}

and MD is the ensemble mean difference defined by (4.2.6). In the exchangeable version
of model (4.2.8) the link function to the mean is obviously

m = α0 + α1f 1 + · · ·+ αKfK + νp0. (4.2.9)

4.2.3 Parameter estimation

Following again the optimal score estimation principle of Gneiting and Raftery (2007),
mean parameters a0, a1, . . . , aK ≥ 0, variance parameters b0, b1 ≥ 0 and shift parameter
δ > 0 of the CSG model of Section 4.2.1 can be estimated from the training data by
optimizing the mean CRPS over the training set, and the same applies for the mean
parameters α0, α1, . . . , αK ≥ 0, ν ∈ R, scale parameters β0, β1 ≥ 0 and shape parameter
ξ ∈ (−0.278, 1) of the censored GEV model of Section 4.2.2.

Scheuerer and Hamill (2015) provide a closed expression for the CRPS for a CSG
distribution in the form

CRPS
(
Γ0(κ, θ, δ), x

)
= (x+ δ)

[
2G(x+ δ|κ, θ)− 1

]
− θκ

π
B
(
1/2, κ+1/2

)[
1−G(2δ| 2κ, θ)

]
+ θκ

[
1+2G(δ|κ, θ)G(δ|κ+1, θ)−G2(δ|κ, θ)−2G(y + δ|κ+1, θ)

]
− δG2(δ|κ, θ),

where B denotes the beta function. CRPS of the censored GEV also has a simple closed
form, which for ξ 6= 0 equals

CRPS
(
GEV0(µ, σ, ξ), x

)
= (µ− x)

[
1− 2H(x|µ, σ, ξ)

]
+ µH2(0|µ, σ, ξ)

− 2
σ

ξ

[
1−H(x|µ, σ, ξ)− Γ`

(
1− ξ,− logH(x|µ, σ, ξ)

)]
+
σ

ξ

[
1−H2(0|µ, σ, ξ)− 2ξΓ`

(
1− ξ,− logH(0|µ, σ, ξ)

)]
,

where Γ` stands for the lower incomplete gamma function, whereas for ξ ∈ (−ε, ε) with
a reasonably small ε, Scheuerer (2014) suggests to use approximation

CRPS
(
GEV0(µ, σ, ξ), x

)
≈ ε−ξ

2ε
CRPS

(
GEV0(µ, σ, ε), x

)
+
ε+ξ

2ε
CRPS

(
GEV0(µ, σ,−ε), x

)
.

4.3 Case studies

The predictive performance of the CSG EMOS model proposed by Baran and Nemoda
(2016) (Section 4.2.1) is tested on ensemble forecasts produced by the UWME and
ALADIN-HUNEPS EPSs, and the results are compared with the fits of the censored GEV
EMOS (Section 4.2.1) and gamma BMA (Section 4.1) models investigated by Scheuerer
(2014) and Sloughter et al. (2007), respectively, and the verification scores of the raw en-
semble. We remark that according to the suggestions of Scheuerer (2014), for estimating
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Figure 4.1: Verification rank histograms (a) of the UWME forecasts for calendar year
2008 and (b) of the ALADIN-HUNEPS ensemble for the period 1 October 2010 – 25
March 2011.

the parameters of the GEV EMOS model for a given day, the estimates for the preceding
day serve as initial conditions for the box constrained Broyden-Fletcher-Goldfarb-Shanno
(Byrd et al., 1995) optimization algorithm. Compared with the case of fixed initial con-
ditions, this approach results in a slight increase of the forecast skills of the GEV EMOS
model, whereas for the CSG EMOS method, at least in our case studies, fixed initial
conditions are preferred. Further, for all investigated models we consider the regional
approach to parameter estimation (see Section 1.3.3).

4.3.1 Data

University of Washington mesoscale ensemble

We consider 48 h forecasts of the 8-member UWME introduced in Section 3.3.1 and cor-
responding validating observations of 24 h precipitation accumulation for 152 stations in
the Automated Surface Observing Network in five US states. The forecasts are initialized
at 0 UTC, and similar to the case studies of Section 3.3 we investigate data for calendar
year 2008 with additional forecasts and observations from the last three months of 2007
used for parameter estimation. After removing days and locations with missing data 83
stations remain resulting in 20 522 forecast cases for 2008.

Figure 4.1a shows the verification rank histogram of the raw ensemble, where zero ob-
servations are randomized among all zero forecasts. This histogram is far from the desired
uniform distribution as in many cases the ensemble members overestimate the validat-
ing observation. The ensemble range contains the observed precipitation accumulation
in 67.82 % of the cases, whereas the nominal coverage of the ensemble equals 77.78 %.
Hence, the UWME is uncalibrated, and would require statistical post-processing to yield
an improved forecast probability density function.
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Figure 4.2: PIT histograms of EMOS and BMA post-processed UWME precipitation
forecasts and verification rank histogram of the raw ensemble for calendar year 2008.

Model CSG EMOS GEV EMOS Gamma BMA
Mean p-value 9.46× 10−3 2.49× 10−2 3.33× 10−4

Table 4.1: p-values of α0
1234 tests for uniformity of PIT values for the UWME. Means of

10000 random samples of sizes 2500 each.

ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS precipitation data base at hand contains 11-member ensembles
of 42 h forecasts (initialized at 18 UTC) produced by the ALADIN-HUNEPS system of
the HMS (see Section 3.3.1) of 24 h precipitation accumulation for 10 major cities in
Hungary (Budapest, Debrecen, Győr, Miskolc, Nagykanizsa, Nýıregyháza, Pécs, Sopron,
Szeged, Szombathely) together with the corresponding validating observations for the
period between 1 October 2010 and 25 March 2011. The data set is fairly complete since
there are only two dates when three ensemble members are missing for all sites. These
dates are excluded from the analysis.

The verification rank histogram of the raw ensemble, displayed in Figure 4.1b, shows
far better calibration, than that of the UWME. The coverage of the ALADIN-HUNEPS
ensemble equals 84.20 %, which is very close to the nominal value of 83.33 %.
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

CSG EMOS 2.252 3.019 80.46 8.350
GEV EMOS 2.283 3.033 79.91 8.683
Gamma BMA 2.357 3.220 83.44 9.515
Ensemble 2.929 3.708 67.95 8.599

Table 4.2: Mean CRPS of probabilistic forecasts, MAE of median forecasts and coverage
and average width of 77.78 % central prediction intervals for the UWME.

Forecast

F
o

re
c
a

s
t

CSG EMOS

GEV EMOS

Gamma BMA

Ens

CSG EMOSGEV EMOSGamma BMAEns

<−5.00 <−5.00 −1.57 NA

<−5.00 <−5.00 NA >5.00

<−5.00 NA 3.36 4.51

NA >5.00 >5.00 >5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 4.3: Values of the test statistic of the two-tailed DM test for equal predictive
performance based on CRPS (upper triangle) and absolute error of median forecasts (lower
triangle) for the UWME data. Green/red entries indicate superior performance of the
forecast in the corresponding row/column.

4.3.2 Verification results for the UWME

The eight members of the UWME are generated using initial and boundary conditions
from different sources, implying that the ensemble members are clearly distinguishable.
Hence, similar to the corresponding wind speed models of Section 3.3, the mean and
the variance of the underlying gamma distribution of the CSG EMOS model are linked
to the ensemble members according to (4.2.4) with K = 8. Obviously, the reference
censored GEV EMOS and gamma BMA models are also formulated under the assumption
of non-exchangeable ensemble members.

A detailed study of CRPS and MAE values of the CSG EMOS and gamma BMA
models corresponding to training period lengths of 20, 25, . . . , 100 days indicates that
both scores have global minima at 70 days. Hence, in our analysis we calibrate the
UWME forecasts for calendar year 2008 using this training period length.

Figure 4.2 showing the PIT histograms of the CSG EMOS, GEV EMOS and gamma
BMA models and the verification rank histogram of the raw ensemble clearly illustrates
the advantage of statistical post-processing. Note that for our discrete-continuous models
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Forecast CRPSS Brier Skill Score
0 mm 5 mm 15 mm 25 mm 30 mm

CSG EMOS 0.231 0.393 0.243 0.268 0.248 0.237
GEV EMOS 0.221 0.403 0.219 0.252 0.239 0.235
Gamma BMA 0.196 0.419 0.231 0.240 0.196 0.188

Table 4.3: CRPSS and BSS values with respect to the raw UWME.

in the case of zero observed precipitation the PIT is a random value chosen uniformly from
the interval between zero and the probability of no precipitation (Sloughter et al., 2007).
Unfortunately, Knüppel’s α0

1234 test rejects the uniformity of the PIT values for all models.
However, for a quantification of the deviation from uniformity one can again consider the
sampling approach of Section 3.3. Indeed, the mean p-values of 10000 random samples of
PITs of sizes 2500 each, given in Table 4.1, nicely follow the shapes of the histograms of
Figure 4.2. Note that the use of the Kolmogorov-Smirnov test results in the same ranking
of the competing calibration methods. The mean p-values for CSG EMOS, GEV EMOS
and Gamma BMA models are 0.154, 0.310 and 0.044, respectively.

In Table 4.2 the mean CRPS of probabilistic forecasts, the MAE of median forecasts
and the coverage and average width of 77.78 % central prediction intervals for the two
EMOS approaches, the gamma BMA model and the raw ensemble are reported, whereas
Figure 4.3 shows the results of DM tests for equal predictive performance based on the
CRPS values and the absolute errors of median forecasts. By examining these results,
one can clearly observe the obvious advantage of post-processing with respect to the raw
ensemble, which is quantified in the significant decrease of the mean CRPS and MAE
values and in a substantial improvement in coverage. Further, the CSG EMOS model
results in the lowest mean CRPS, whereas in terms MAE there is no difference between the
two EMOS methods, which significantly outperform the gamma BMA approach both in
calibration of probabilistic and accuracy of point forecasts. The CSG EMOS model results
in the sharpest central prediction interval combined with a rather fair coverage, whereas
the central prediction intervals corresponding to the other two calibration methods are
slightly wider than that of the raw ensemble.

The improvement in calibration caused by statistical post-processing can also be ob-
served in skill scores reported in Table 4.3 and reliability diagrams displayed in Figure
4.4. Note that thresholds 5, 15, 25, 30 mm correspond approximately to the 45th, 75th,
85th and 90th percentiles of the observed non-zero precipitation accumulation. Gamma
BMA method performs well in predicting the probability of positive precipitation and
exceeding the 5 mm threshold, whereas for higher threshold values it is behind the two
EMOS approaches, where the CSG EMOS model presents slightly better forecast skills.
Hence, one can conclude, that in case of the UWME the EMOS approaches outperform
both the raw ensemble and the gamma BMA model and the proposed CSG EMOS model
slightly outperforms the GEV EMOS method.

4.3.3 Verification results for the ALADIN-HUNEPS ensemble

As a contrast to the UWME, the way the ALADIN-HUNEPS ensemble is generated in-
duces a natural grouping of the ensemble members. The first group contains the control,
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Figure 4.4: Reliability diagrams of the raw ensemble and EMOS and BMA post-processed
forecasts for the UWME for the calendar year 2008. The inset histograms display the log-
frequency of cases within the respective bins.

whereas the second group consists of the 10 exchangeable ensemble members. This split-
ting results in the GEV EMOS model (4.2.5) with K = 2, M1 = 1 and M2 = 10,
and the same grouping is considered for the benchmark GEV EMOS and gamma BMA
models.

Again, in order to determine the appropriate length of the rolling training period
the mean CRPS and MAE values of the various models for training periods of lengths
20, 25, . . . , 100 calendar days are investigated. In order to ensure the comparability of
the results corresponding to different training period lengths, verification scores from 10
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Figure 4.5: PIT histograms of EMOS and BMA post-processed ALADIN-HUNEPS en-
semble forecasts of precipitation and verification rank histogram of the raw ensemble for
the period 27 November 2010 – 25 March 2011.

Model CSG EMOS GEV EMOS Gamma BMA
p-value 2.90× 10−3 0.907 2.21× 10−5

Table 4.4: p-values of α0
1234 tests for uniformity of PIT values for the ALADIN-HUNEPS

ensemble.

January to 25 March 2011 are considered. The corresponding curves of the CRPS and
MAE scores plotted against the training period lengths (not shown) have global minima
at 85 days, however they have elbows at 55 days, that is, up to this training period length
the decrease is rather steep then the values stabilize. Hence, as in general shorter training
periods are preferred, for calibrating the ALADIN-HUNEPS ensemble a training period of
length 55 days is used. This means that ensemble members, validating observations, and
predictive PDFs are available for the period from 27 November 2010 to 25 March 2011
having 119 calendar days (just after the first 55 day training period) and 1 180 forecast
cases, since on 15 February 2011 three ensemble members are missing and this date is
excluded from the analysis. This time interval starts more than 6 weeks earlier than the
one used for determination of the optimal training period length.

Compared with the verification rank histogram of the raw ensemble, the PIT his-
tograms of the post-processed forecasts displayed in Figure 4.5 show a substantial im-
provement in calibration. For the GEV EMOS model the α0

1234 test accepts the uniformity
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

CSG EMOS 0.465 0.636 89.15 2.185
GEV EMOS 0.477 0.641 86.53 2.192
Gamma BMA 0.532 0.708 93.73 2.854
Ensemble 0.485 0.640 84.24 2.436

Table 4.5: Mean CRPS of probabilistic forecasts, MAE of median forecasts and cover-
age and average width of 83.33 % central prediction intervals for the ALADIN-HUNEPS
ensemble.

Forecast

F
o

re
c
a

s
t

CSG EMOS

GEV EMOS

Gamma BMA

Ens

CSG EMOSGEV EMOSGamma BMAEns

−0.25 −2.68 −0.80 NA

0.08 −2.70 NA 2.76

2.11 NA 3.59 3.98

NA −2.50 1.18 2.93

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 4.6: Values of the test statistic of the two-tailed DM test for equal predictive per-
formance based on CRPS (upper triangle) and absolute error of median forecasts (lower
triangle) for the ALADIN-HUNEPS data. Green/red entries indicate superior perfor-
mance of the forecast in the corresponding row/column.

of the PIT values (see Table 4.4 and note the extremely high p-value), whereas the other
two p-values are in accordance with the slight bias of the histogram of the CSG EMOS
and the hump shaped histogram of the Gamma BMA model indicating some overdisper-
sion. Note that based on the Kolmogorov-Smirnov test, PITs of both EMOS models can
be taken as uniformly distributed. The p-values for the CSG and GEV EMOS and the
gamma BMA are 0.119, 0.921 and 0.003, respectively.

Concerning the two EMOS approaches, the verification scores of Table 4.5 together
with the results of the corresponding DM tests for equal predictive performance (see
Figure 4.6) display similar behaviour as in the case of the UWME. There is no significant
difference between the MAE values of the CSG and GEV EMOS methods and the former
results in the lowest CRPS and the sharpest 83.33 % central prediction interval. Further,
the EMOS models significantly outperform both the raw ensemble and the gamma BMA
approach, despite the raw ensemble is rather well calibrated and has far better predictive
skill than the BMA calibrated forecast. Note that the large mean CRPS and coverage
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Forecast CRPSS Brier Skill Score
0 mm 1 mm 5 mm 7 mm 9 mm

CSG EMOS 0.042 0.094 0.057 -0.011 -0.025 0.019
GEV EMOS 0.017 0.166 0.008 -0.022 -0.030 0.027
Gamma BMA -0.098 0.151 -0.070 -0.265 -0.136 -0.023

Table 4.6: CRPSS and BSS values with respect to the raw ALADIN-HUNEPS ensemble.

of the BMA predictive distribution is totally in line with the shape of the corresponding
PIT histogram of Figure 4.5.

The good predictive performance of the ALADIN-HUNEPS ensemble can also be
observed on the large amount of negative skill scores reported in Table 4.6 (threshold
values 1, 5, 7, 9 mm again correspond approximately to the 45th, 75th, 85th and 90th
percentiles of the observed non-zero precipitation accumulation) and on the reliability
diagrams of Figure 4.7. Similar to the case of the UWME, for 0 mm threshold the gamma
BMA model has good predictive performance, whereas for higher threshold values it
underperforms the CSG and GEV EMOS models and the raw ensemble. However, in
connection with the reliability diagrams one should also note that the hectic behaviour of
the graphs (compared with the rather smooth diagrams of Figure 4.4) is a consequence of
the shortage of data, as the verification period contains only 394 observations of positive
precipitation, which is around one third of the forecast cases.

Taking into account both the uniformity of the PIT values and the verification scores
in Tables 4.5 and 4.6 it can be said that the proposed CSG EMOS model has the best
overall performance in calibration of the raw ALADIN-HUNEPS ensemble forecasts of
precipitation accumulation.

4.3.4 Computational aspects

As it has been already mentioned in the case studies of Section 3.3, in EMOS modelling
the numerical optimization used in parameter estimation, whereas in BMA calibration
the EM algorithm including also an optimization step is the most time consuming part.
In Figures 4.8a and 4.8b the kernel density estimates of the distribution of computation
times over the days in the verification period for the competing post-processing models
are plotted for UWME and ALADIN-HUNEPS ensemble, respectively. Modelling was
performed on the same portable computer as in the other case studies (Intel Quad Core
i7-4700MQ CPU (2.40GHz × 4), 20 Gb RAM) with the help of the ensembleMOS (Yuen et
al., 2018) and ensembleBMA (Fraley et al., 2011) packages of R. The GEV EMOS approach
outperforms the CSG EMOS in terms of computation costs and both EMOS methods
provide faster modelling than the BMA. However, even the longest estimation procedure
calculating BMA model parameters for UWME for a given day took 148 seconds, so all
three investigated models seem to be fast enough for operational use.

4.4 Conclusions

In this chapter we describe a new EMOS model for calibrating ensemble forecasts of pre-
cipitation accumulation, where the predictive distribution follows a censored and shifted
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Figure 4.7: Reliability diagrams of the raw ensemble and EMOS and BMA post-processed
forecasts for the ALADIN-HUNEPS ensemble for the period 27 November 2010 – 25 March
2011. The inset histograms display the log-frequency of cases within the respective bins.

gamma distribution, with mean and variance of the underlying gamma law being affine
functions of the raw ensemble and the ensemble mean, respectively. The CSG EMOS
method is tested on ensemble forecasts of 24 h precipitation accumulation of the 8-member
University of Washington mesoscale ensemble and on the 11-member ALADIN-HUNEPS
ensemble of the Hungarian Meteorological Service. These ensemble prediction systems
differ both in the climate of the covered area and in the generation of the ensemble mem-
bers. By investigating the uniformity of the PIT values of predictive distributions, the
mean CRPS of probabilistic forecasts, the Brier scores and reliability diagrams for various
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Figure 4.8: Densities of computation times for the CSG EMOS, GEV EMOS and gamma
BMA models. (a) UWME for the calendar year 2008; (b) ALADIN-HUNEPS ensemble
for the period 27 November 2010 – 25 March 2011.

thresholds, the MAE of median forecasts and the average width and coverage of central
prediction intervals corresponding to the nominal coverage, the predictive skill of the
new approach is compared with that of the GEV EMOS method (Scheuerer, 2014), the
gamma BMA model (Sloughter et al., 2007) and the raw ensemble. From the results of
the presented case studies one can conclude that in terms of calibration of probabilistic
and accuracy of point forecasts the proposed CSG EMOS model significantly outperforms
both the raw ensemble and the BMA model and shows slightly better forecast skill than
the GEV EMOS approach.

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



Chapter 5

Bivariate models for wind speed and
temperature

As it has already been mentioned in Section 1.3, for temperature observations normal
BMA and EMOS models fit reasonably well, while for wind speed observations BMA
methods with gamma and truncated normal components and EMOS approaches based
on truncated normal, log-normal and generalized extreme value distributions have been
developed. This gives the natural idea of joint modelling wind speed and temperature
with a bivariate normal distribution with first (wind) coordinate truncated from below at
zero. Based on Baran and Möller (2015) and Baran and Möller (2017), respectively, in this
chapter we introduce a bivariate BMA and a bivariate EMOS model for joint calibration of
ensemble forecasts of these two weather quantities. The predictive performance of the new
bivariate approaches is tested on two data sets based on UWME and ALADIN-HUNEPS
ensemble prediction systems.

5.1 Bivariate BMA model

The proposed BMA approach (Baran and Möller, 2015) is based on a bivariate truncated
normal distribution with first coordinate truncated from below at zero N 0

2 (µ,Σ), where

µ =

[
µW
µT

]
and Σ =

[
σ2
W σWT

σWT σ2
T

]

denote the location vector and scale matrix, respectively. Along this chapter subscripts
W and T refer to wind speed and temperature, respectively. If Σ is regular, the joint
PDF of this special bivariate distribution equals

g(x|µ,Σ):=

(
det(Σ)

)−1/2

2πΦ
(
µW/σW

) exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
I{xW≥0}, x=

[
xW
xT

]
∈R2,

(5.1.1)
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whereas the corresponding mean vector κ and covariance matrix Ξ are

κ = µ+
ϕ
(
µW/σW

)
Φ
(
µW/σW

) [ σW
σWT/σW

]
and

Ξ = Σ−

µW
σW

ϕ
(
µW/σW

)
Φ
(
µW/σW

) +

(
ϕ
(
µW/σW

)
Φ
(
µW/σW

))2
[ σ2

W σWT

σWT σ2
WT/σ

2
W

]
,

respectively.

5.1.1 Model formulation

Consider a BMA mixture (1.3.1) where the location vector µk of the kth component PDF
is an affine function of the corresponding ensemble member fk and the scale matrices of
all components are equal, resulting in the model

p(x|f 1, . . . ,fK ;A1, . . . , AK ;B1, . . . , BK ; Σ) :=
K∑
k=1

ωkg(x|Ak +Bkfk,Σ), (5.1.2)

where g is the PDF defined by (5.1.1), Ak ∈ R2 and Bk is a two-by-two real matrix. In
this way model (5.1.2) is a direct extension of the univariate BMA models of temperature
and wind speed investigated in Raftery et al. (2005) and Baran (2014), where the authors
also used the assumption of a common scale parameter for all BMA components. It
reduces the number of parameters to be estimated and makes computations easier.

One can have an even more parsimonious model by using the same bias correction
parameters for all ensemble members, resulting in the predictive PDF

q(x|f 1, . . . ,fK ;A;B; Σ) :=
K∑
k=1

ωkg(x|A+Bfk,Σ). (5.1.3)

We remark that a similar type of simplification is used in the wind speed model of the
ensembleBMA package of R (Fraley et al., 2011).

5.1.2 Parameter estimation

Similar to the univariate BMA approaches, model parameters Ak, Bk, ωk, k = 1, 2, . . . , K,
and Σ of PDF (5.1.2) and A, B, Σ and ωk, k = 1, 2, . . . , K, of PDF (5.1.3) are usually
estimated using training data consisting of ensemble members and validating observations
from the preceding n days (rolling training period). In what follows, fk,s,t denotes the
kth ensemble member vector for location s ∈ S and time t ∈ T , and by xs,t we denote
the corresponding validating observation. Here we consider a bivariate generalization of
the pure ML approach with EM algorithm for truncated normal mixtures described in
Section 2.1.2, see also Baran et al. (2019a) and Baran (2014).
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Full model

Under the assumption of independence of forecast errors in space and time, the log-
likelihood function corresponding to model (5.1.2) equals

`(ω1, . . . , ωM ;A1, . . . , AK ;B1, . . . , BK ; Σ) =
∑
s,t

log

[
K∑
k=1

ωkg
(
xs,t|Ak+Bkfk,s,t,Σ

)]
,

(5.1.4)
where the first summation is over all locations s ∈ S and time points t from the training
period containing N forecast cases (N distinct values of (s, t)).

After introducing latent allocation variables zk,s,t taking values one or zero according
as whether xs,t comes from the kth component PDF or not, the complete data log-
likelihood corresponding to the training data and allocations equals

`C(ω1, . . . , ωK ;A1, . . . , AK ;B1, . . . , BK ; Σ)

=
∑
s,t

K∑
k=1

zk,s,t

[
log(ωk) + log

(
g
(
xs,t|Ak +Bkfk,s,t,Σ

))]
.

As mentioned in Section 2.1.2, the EM algorithm starts with initial values of the
parameters, then alternates between an expectation (E) step and a maximization (M)
step until convergence. The coefficients of linear regression of the validating observations
on the corresponding ensemble members can serve as initial values of A

(0)
k and B

(0)
k , k =

1, 2, . . . , K, the covariance matrix of the validating observations can be taken as Σ(0),
while the initial weights ω

(0)
k , k = 1, 2, . . . , K, might be set to be all equal.

For the truncated normal mixture model given by (5.1.1) and (5.1.2) the E step is,

z
(j+1)
k,s,t :=

ω
(j)
k g
(
xs,t|A(j)

k +B
(j)
k fk,s,t,Σ

(j)
)∑M

i=1 ω
(j)
i g
(
xs,t|A(j)

i +B
(j)
i f i,s,t,Σ

(j)
) , (5.1.5)

where the superscript refers to the actual iteration. Observe again, that the above es-
timates of zk,s,t are usually not integers even though the true values of these latent
allocation variables are either 0 or 1. Further, the first part of the M step is

ω
(j+1)
k :=

1

N

∑
s,t

z
(j+1)
k,s,t , (5.1.6)

while the second part can be derived from equations

∂`C
∂Ak

= 0,
∂`C
∂Bk

= 0,
∂`C
∂Σ

= 0, k = 1, 2, . . . , K. (5.1.7)

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



76 CHAPTER 5. BIVARIATE MODELS FOR WIND SPEED AND TEMPERATURE

As the above system of equations is non-linear, we suggest iteration steps

A
(j+1)
k :=

∑
s,t

z
(j+1)
k,s,t

(xs,t−B(j)
k fk,s,t

)
− 1

σ
(j)
W

ϕ
(
µ

(j)
W,k,s,t/σ

(j)
W

)
Φ
(
µ

(j)
W,k,s,t/σ

(j)
W

) [(σ(j)
W

)2

σ
(j)
WT

][∑
s,t

z
(j+1)
k,s,t

]−1

,

B
(j+1)
k :=

∑
s,t

z
(j+1)
k,s,t

(xs,t−A(j+1)
k

)
− 1

σ
(j)
W

ϕ
(
µ̃

(j)
W,k,s,t/σ

(j)
W

)
Φ
(
µ̃

(j)
W,k,s,t/σ

(j)
W

) [(σ(j)
W

)2

σ
(j)
WT

]f>k,s,t
 (5.1.8)

×
[∑

s,t

z
(j+1)
k,s,t fk,s,tf

>
k,s,t

]−1

,

Σ(j+1) :=
1

N

∑
s,t

K∑
k=1

z
(j+1)
k,s,t

((
xs,t − µ(j+1)

k,s,t

)(
xs,t − µ(j+1)

k,s,t

)>

+µ
(j+1)
k,s,t

1

σ
(j)
W

ϕ
(
µ

(j+1)
W,k,s,t/σ

(j)
W

)
Φ
(
µ

(j+1)
W,k,s,t/σ

(j)
W

) [(σ(j)
W

)2
σ

(j)
WT

σ
(j)
WT

(
σ

(j)
WT/σ

(j)
W

)3

] ,

where µ
(j)
W,k,s,t and µ̃

(j)
W,k,s,t denote the first (wind) coordinates of µ

(j)
k,s,t := A

(j)
k +B

(j)
k fk,s,t

and µ̃
(j)
k,s,t := A

(j+1)
k +B

(j)
k fk,s,t, respectively.

Parsimonious model

For the parsimonious model (5.1.3) the log-likelihood function is obviously

`(ω1, . . . , ωK ;A;B; Σ) =
∑
s,t

log

[
K∑
k=1

ωkg
(
xs,t|A+Bfk,s,t,Σ

)]
,

which is maximized using the same type of EM algorithm as before. The E step, and
the iterations corresponding to ω

(j+1)
k and Σ(j+1) are obvious modifications of (5.1.5),

(5.1.6) and of the last iteration of (5.1.8), respectively, while the first two iterations of
(5.1.8) should be replaced by

A(j+1) :=
1

N

∑
s,t

K∑
k=1

z
(j+1)
k,s,t

(xs,t −B(j)fk,s,t

)
− 1

σ
(j)
W

ϕ
(
µ

(j)
W,k,s,t/σ

(j)
W

)
Φ
(
µ

(j)
W,k,s,t/σ

(j)
W

) [(σ(j)
W

)2

σ
(j)
WT

] ,

B(j+1) :=
∑
s,t

K∑
k=1

z
(j+1)
k,s,t

(xs,t − A(j+1)
)
− 1

σ
(j)
W

ϕ
(
µ̃

(j)
W,k,s,t/σ

(j)
W

)
Φ
(
µ̃

(j)
W,k,s,t/σ

(j)
W

) [(σ(j)
W

)2

σ
(j)
WT

]f>k,s,t
×
[∑

s,t

K∑
k=1

z
(j+1)
k,s,t fk,s,tf

>
k,s,t

]−1

.

In this case µ
(j)
W,k,s,t and µ̃

(j)
W,k,s,t denote the first coordinates of µ

(j)
k,s,t := A(j) +B(j)fk,s,t

and µ̃
(j)
k,s,t := A(j+1) +B(j)fk,s,t, respectively.
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5.2 Bivariate truncated normal EMOS model

5.2.1 Model formulation

As a simple alternative to joint BMA post-processing of wind speed and temperature
forecasts, one can consider an EMOS approach (Baran and Möller, 2017) with bivariate
predictive distribution

N 0
2

(
A+ B1f 1 + · · ·+ BKfK , C +DSD>

)
with S :=

1

K−1

K∑
k=1

(
fk − f

)(
fk − f

)>
,

(5.2.1)
where f denotes the ensemble mean vector. Parameter vector A ∈ R2 and two-
by-two real parameter matrices B1, . . . ,BK and C, D of model (5.2.1), where C
is assumed to be symmetric and non-negative definite, can again be estimated e.g. from
rolling training data. According to the general procedure for EMOS models, the estimates
optimize the mean of a proper verification score over all forecast cases of the training set.
Here we optimize the mean logarithmic score (1.4.3), and we remark again that under
the assumption of independence in space and time this approach is equivalent to the ML
method. Obviously, the forecast errors are usually not independent, however, since one
is estimating the conditional distribution of a single weather quantity vector with respect
to the corresponding forecasts, the parameter estimates are not really sensitive to this
assumption (see e.g. Raftery et al., 2005).

In the case of existence of groups of exchangeable ensemble members, one has to follow
the usual procedure and instead of model (5.2.1) consider the predictive distribution

N 0
2

(
A+ B1f 1 + · · ·+ BKfK , C +DSD>

)
, (5.2.2)

where fk denotes the mean of the kth group.

5.2.2 Parameter estimation

In bivariate EMOS models (5.2.1) and (5.2.2) the number of free parameters to be es-
timated is 4K + 10, which means 14 unknown parameters even in the simplest case of
a single exchangeable ensemble group. Hence, for estimating the parameters of models
(5.2.1) and (5.2.2) mostly the regional EMOS approach (see Section 1.3.3) is applicable,
unless one has an extremely large data set allowing very long training periods.

The mean logarithmic score is optimized numerically using principally the Nelder-
Mead algorithm, as the faster but less robust BFGS becomes unstable in the case of a
small training set. Both optimization methods require initial values, and the starting
values of the location parameters A and B1, . . . ,BK are coefficients of the bivariate
linear regression of the observations on the ensemble forecasts over the training period.
Further, for the scale parameters C and D, the previous day’s estimates can serve
as initials values, however, according to our experience, fixed starting values (we simply
use two-by-two unit matrices) provide slightly better results. Finally, to enforce the non-
negative definiteness of the parameter matrix C, one can set C = CC> and perform
the optimization with respect to C.
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5.3 Gaussian copula approach

The Gaussian copula approach allows to construct a post-processed joint distribution
based on the individually post-processed marginals. For d weather variables of interest
with (individually post-processed) marginal distributions F1, F2, . . . , Fd, the joint dis-
tribution F of the weather variables takes the following form under a Gaussian copula
model

F (x1, . . . , xd |C) := Φd
(
Φ−1(F1(x1)), . . . , Φ−1(Fd(xd))

∣∣C).
Here, Φ−1 denotes the inverse CDF of a standard Gaussian distribution, Φd(· |Σ) is
the CDF of a d-variate Gaussian distribution with covariance matrix Σ, whereas C is
a d× d correlation matrix, i.e. a positive definite matrix with unit diagonal. To be fully
defined, the Gaussian copula requires only the marginal distributions F1, F2, . . . , Fd and
the correlation matrix C. For univariate post-processing of the marginal distributions
F1, F2, . . . , Fd any post-processing model of choice can be used. In the original approach of
Möller et al. (2013) the marginals were post-processed merely with suitable BMA models,
whereas for the comparison with the bivariate methods presented in Sections 5.1 and 5.2,
the copula marginals are fitted with appropriate univariate BMA and EMOS models,
respectively. While each observation is associated with its own copula F , they all share
the same correlation matrix. Therefore, C can be obtained by estimating latent Gaussian
factors zj = Φ−1

(
Fj(xj)

)
, j = 1, 2, . . . , d, from observations x = (x1, x2, . . . , xd) of a

separate (historic) data set. The correlation matrix is then directly estimated from the
fitted latent Gaussian factors, for further details see Möller et al. (2013).

5.4 Case studies

The forecast skill of the bivariate BMA and EMOS models described in Sections 5.1.1
and 5.2, respectively, is tested on the 8-member UWME and on the ALADIN-HUNEPS
ensemble of the HMS. Model parameters in both case studies are estimated using the
global approach (see Section 1.3.3). The goodness of fit of the predictive distributions
is quantified with the multivariate scores given in Section 1.4, and the obtained results
are compared with the fits of the independent BMA and EMOS models of wind speed
(Baran, 2014; Thorarinsdottir and Gneiting, 2010) and temperature (Raftery et al., 2005;
Gneiting et al., 2005) and the Gaussian copula method proposed by Möller et al. (2013)
both with BMA and EMOS marginal distributions. We remark that the parameters of the
independent univariate EMOS models are estimated by minimizing the mean CRPS of
the training data. For fitting the marginal predictive distributions in the Gaussian copula
approach, we employ the same univariate BMA and EMOS models for wind speed and
temperature as in the independent case. Therefore, their model parameters are estimated
by the minimum CRPS method as well. If one has a closed expression for the CRPS,
which is the case both for the normal and the truncated normal distribution, this method
usually gives better results than optimization with respect to the logarithmic score.

Further, for the case study conducted in Möller et al. (2013), the univariate post-
processing of the copula marginals is performed at each considered station individually,
as the performance of the method at specific stations as well as the structure of correlations
were investigated. Here the copula marginals are formed by applying global BMA and
EMOS models to have a better comparability to the proposed bivariate approaches. This
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Figure 5.1: Verification rank histograms of the UMWE forecasts of maximum wind speed
(a) and minimum temperature (b) and the multivariate rank histogram (c) for the calendar
year 2008.

leads to the estimation of only one single correlation matrix over all considered stations
instead of station specific correlation matrices.

5.4.1 Data

University of Washington mesoscale ensemble

Our study is based on 48 h UWME forecasts and corresponding validating observations
of 10 m maximum wind speed (given in m/s, for a detailed description see Section 3.3.1)
and 2 m minimum temperature (given in K) covering the same domain (Pacific Northwest
of the United States) as in the case studies of Chapters 3 and 4. Again, we investigate
only forecasts for calendar year 2008 with additional data from 2007 used for parameter
estimation. After removing days and locations with missing data, 90 stations remain
where the number of days for which forecasts and validating observations are available
varies between 141 and 290.

Several studies have verified that wind speed and temperature forecasts of the UWME
are strongly underdispersive (see e.g. Thorarinsdottir and Gneiting, 2010; Fraley et al.,
2010), and consequently uncalibrated. Obviously, the lack of calibration will remain valid
if one considers these ensemble forecasts together, as predictions of a bivariate weather
quantity. The underdispersive character of the raw ensemble can nicely be observed in
Figure 5.1 displaying the univariate verification rank histograms of wind speed and tem-
perature forecasts together with their joint multivariate rank histogram. The correspond-
ing reliability indices ∆ defined by (1.4.1) are 0.647, 0.842 and 0.550, respectively, and
in many cases the raw ensemble either over-, or underestimates the verifying observation.
Further, the need of bivariate modelling can be justified both by the positive correlation
of 0.125 of the verifying observations of wind speed and temperature for calendar year
2008 taken along all dates and locations, and by the correlations of 0.187 and 0.189 of
forecast errors of the ensemble median and mean, respectively.
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Figure 5.2: Verification rank histograms of the ALADIN-HUNEPS ensemble forecasts
of wind speed (a) and temperature (b) and the multivariate rank histogram (c) for the
period 1 April 2012 – 31 March 2013.

ALADIN-HUNEPS ensemble

Besides the 11-member wind speed ensemble forecasts and observations described in detail
in Section 3.3.1, in this study we consider the matching ensembles of 42 h forecasts of
2 m temperature (given in K) produced by the ALADIN-HUNEPS EPS, together with
the corresponding validating observations for the one-year period between 1 April 2012
and 31 March 2013 and for the period from 1 October 2010 to 25 March 2011. For more
details about the investigated ALADIN-HUNEPS temperature data sets see Baran et al.
(2014a,b).

ALADIN-HUNEPS wind speed and temperature forecasts are better calibrated than
those of the UWME, however, the rank histograms in Figure 5.2 still exhibit a strong
underdispersive character. The bivariate reliability index equals 0.317, whereas the relia-
bility indices of wind speed and temperature are 0.322 and 0.455, respectively. The need
of bivariate post-processing is again supported by the forecast error correlations of 0.119
and 0.123 of the ensemble median and mean, respectively, however, in this case the verify-
ing observations of wind speed and temperature show a very slight negative correlation of
−0.029. This latter difference compared with the UWME, where this correlation equals
0.125, might be explained by the different types of wind and temperature quantities being
examined (maximal vs. instantaneous).

5.4.2 Verification results for the UWME

In the present case study we apply the same training period length of 40 days as in Möller
et al. (2013) which was determined with the help of an exploratory data analysis on a
subset of the data set. Since in our rolling training periods for estimating the BMA and
EMOS parameters we can also use data from calendar year 2007, predictive distributions
can be produced for the whole calendar year 2008. This means 291 calendar days (after
excluding dates with missing data) and a total of 24 302 individual forecast cases. As the
eight ensemble members of the UWME are not exchangeable, for calibration we apply
bivariate BMA models (5.1.2) and (5.1.3) and EMOS model (5.2.1) with M = 8.
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Probabilistic forecasts Median forecasts Mean forecasts
ES ∆ DS EE % %err EE % %err

BMA 2.110 0.015 2.250 2.973 0.154 0.182 2.972 0.155 0.183
Pars. BMA 2.117 0.033 2.286 2.967 0.180 0.182 2.967 0.171 0.182
Indep. BMA 2.124 0.048 2.320 2.977 0.163 0.175 2.977 0.151 0.177
Copula BMA 2.089 0.030 2.272 2.977 0.160 0.176 2.978 0.152 0.177
EMOS 2.127 0.025 2.273 2.982 0.165 0.182 2.982 0.157 0.182
Indep. EMOS 2.118 0.059 2.206 2.966 0.164 0.176 2.966 0.155 0.178
Copula EMOS 2.088 0.021 2.169 2.967 0.162 0.178 2.967 0.156 0.179
Raw ensemble 2.562 0.550 0.773 3.087 0.017 0.187 3.072 0.007 0.189

Table 5.1: Mean energy score (ES), reliability index (∆) and mean determinant sharp-
ness (DS) of probabilistic forecasts, mean Euclidean error (EE) of point forecasts (me-
dian/mean), empirical correlation (%) and empirical correlation of errors (%err) of wind
speed and temperature components of point forecasts for the UWME. Empirical correla-
tion of observations corresponding to the forecast cases: 0.125.

Forecast

F
o
re

c
a
st

BMA

Pars.BMA

Ind.BMA

Cop.BMA

EMOS

Ind.EMOS

Cop.EMOS

Ensemble

BMAPars.BMAInd.BMACop.BMAEMOSInd.EMOSCop.EMOSEnsemble

<-5.00 2.90 3.45 -2.94 -1.89 -1.68 2.65 NA

<-5.00 0.21 0.86 <-5.00 <-5.00 <-5.00 NA 4.83

<-5.00 >5.00 >5.00 -2.20 -2.24 NA >5.00 >5.00

<-5.00 >5.00 >5.00 -2.01 NA <-5.00 -4.85 -3.66

<-5.00 >5.00 >5.00 NA >5.00 1.90 >5.00 >5.00

<-5.00 -2.68 NA <-5.00 >5.00 <-5.00 1.39 >5.00

<-5.00 NA <-5.00 <-5.00 -1.99 <-5.00 <-5.00 -3.87

NA >5.00 >5.00 >5.00 >5.00 >5.00 >5.00 >5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 5.3: Values of the test statistic of the two-tailed DM test for equal predictive
performance based on ES (upper triangle) and EE of median forecasts (lower triangle) for
the UWME data. Green/red entries indicate superior performance of the forecast in the
corresponding row/column.

In the case of the copula method, data from calendar year 2007 are applied for esti-
mating the correlation between the two weather quantities, and the resulting correlation
matrix is then employed for the analysis of the 2008 data.

In Table 5.1 the verification scores calculated using the BMA model (5.1.2) and its
parsimonious version (5.1.3), the EMOS model (5.2.1), the independent BMA and EMOS
models of wind speed and temperature, the copula model of Möller et al. (2013) both
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Figure 5.4: Multivariate rank histograms of BMA, parsimonious BMA, independent BMA,
BMA based Gaussian copula, EMOS, independent EMOS, EMOS based Gaussian copula
post-processed and raw UWME forecasts of maximum wind speed and minimum temper-
ature. Average p-values of chi-square tests for uniformity (mean significance for 10000
random samples of sizes 2500 each): BMA: 0.439; parsimonious BMA: 0.304; indepen-
dent BMA: 0.132; BMA based Gaussian copula: 0.347; EMOS: 0.373; independent EMOS:
0.046; EMOS based Gaussian copula: 0.382.

with BMA and EMOS post-processed marginals and the raw ensemble are given, whereas
Figure 5.3 contains the results of two-tailed Diebold-Mariano tests of equal predictive
performance in terms of the mean energy score (ES) and mean Euclidean error (EE)
of median forecasts. Compared with the raw ensemble, all post-processing techniques
substantially improve the calibration of probabilistic forecasts, which is quantified by
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the significant decrease of the ES and large change in the reliability index (∆). The
improvement can also be observed in Figure 5.4 showing the corresponding multivariate
rank histograms based either on samples from the various predictive distributions or on
raw ensemble forecasts. Although the chi-square test rejects uniformity for all post-
processing models, the mean p-values of 10000 random samples of multivariate ranks of
sizes 2500 each nicely reflect the shapes of the corresponding histograms of Figure 5.4
and reliability indices ∆ of Table 5.1. The price to pay for the better calibration is the
substantial loss in sharpness (see the corresponding values of DS), however, this is a direct
consequence of the small dispersion of the raw ensemble (see Figure 5.1). Post-processing
also results in slightly (but significantly) smaller mean Euclidean errors (EE) indicating
more accurate median and mean forecasts. Further, the empirical correlations % of the
wind and temperature components of the post-processed point forecasts are much closer to
the correlation of 0.125 of the verifying observations than the corresponding correlations
of the ensemble median and mean which are smaller by a magnitude. This latter is a
weakness of the raw ensemble, however, one should also remark that all error correlations
%err (including the raw ensemble) are very similar to each other (around 0.180).

Comparing the different post-processing techniques it is noticeable that the main dif-
ference between the various approaches to calibration appears in the reliability index.
The bivariate BMA model results in the smallest ∆ value, followed by the EMOS based
Gaussian copula and the bivariate EMOS methods, which is in line with shapes of the cor-
responding multivariate rank histograms plotted in Figure 5.4. The large ∆ values and
the slightly U-shaped rank histograms of the independent BMA and EMOS approaches
support the idea of bivariate modelling. Further, BMA model (5.1.2) outperforms its
parsimonious counterpart (5.1.3) in terms of ES, ∆ and DS, whereas the smallest
energy scores correspond to the two copula approaches. However, in the model choice one
should also take into account that copula methods require additional data for estimating
the correlation matrix, whereas in the BMA and EMOS approaches the parameters are
estimated using only the training data. Finally, in case of the latter two methods the
computational costs (see Section 5.4.4) might also have an influence on the decision.

5.4.3 Verification results for the ALADIN-HUNEPS ensemble

In the case of the ALADIN-HUNEPS ensemble we consider the same natural grouping of
ensemble members into two groups as in Sections 3.3 and 4.3.3. The first group contains
just the control member f c, whereas in the second are the 10 statistically indistin-
guishable ensemble members f p,1, . . . ,f p,10, initialized from randomly perturbed initial
conditions. This leads us to the BMA predictive PDF

p
(
x|f c f p,1, . . . ,f p,10;Ac, Ap;Bc, Bp; Σ

)
=ωg

(
x|Ac +Bcf c,Σ

)
(5.4.1)

+
1− ω

10

10∑
`=1

g
(
x|Ap +Bpf p,`,Σ

)
,

which is a particular case of model (5.1.2), and to its parsimonious version

q
(
x|f c f p,1, . . . ,f p,10;A;B; Σ

)
= ωg

(
x|A+Bf c,Σ

)
+

1−ω
10

10∑
`=1

g
(
x|A+Bf p,`,Σ

)
(5.4.2)
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Probabilistic forecasts Median forecasts Mean forecasts
ES ∆ DS EE % %err EE % %err

BMA 1.434 0.031 1.539 2.004 −0.032 0.129 2.007 −0.041 0.129
Pars. BMA 1.428 0.021 1.534 1.999 −0.031 0.131 1.998 −0.035 0.128
Indep. BMA 1.454 0.015 1.573 2.033 −0.018 0.119 2.032 −0.030 0.119
Copula BMA 1.393 0.063 1.526 2.032 −0.021 0.119 2.031 −0.030 0.119
EMOS 1.442 0.034 1.478 2.015 −0.041 0.132 2.016 −0.049 0.132
Indep. EMOS 1.436 0.051 1.456 2.002 −0.033 0.128 2.002 −0.044 0.127
Copula EMOS 1.384 0.075 1.557 2.000 −0.036 0.128 2.000 −0.044 0.127
Raw ensemble 1.623 0.327 0.935 2.102 −0.068 0.122 2.083 −0.060 0.124

Table 5.2: Mean energy score (ES), reliability index (∆) and mean determinant sharp-
ness (DS) of probabilistic forecasts, mean Euclidean error (EE) of point forecasts (me-
dian/mean), empirical correlation (%) and empirical correlation of errors (%err) of wind
speed and temperature components of point forecasts for the ALADIN-HUNEPS ensem-
ble. Empirical correlation of observations corresponding to the forecast cases: −0.033.

corresponding to model (5.1.3), where ω ∈ [0, 1], and g is defined by (5.1.1). The
bivariate EMOS predictive distribution can be given as a special case of model (5.2.2),
namely

N 0
2

(
A+ Bcf c + Bpf p, C +DSD>

)
,

where f p is the mean vector of the 10 exchangeable ensemble members.

Based on a preliminary data analysis (univariate BMA and EMOS calibration of wind
speed and temperature forecasts) we use a 40 days training period. In this way ensemble
members, validating observations and BMA and EMOS models are available for the period
12 May 2012 – 31 March 2013 (just after the first 40 days training period having 318
calendar days, since on six days all ensemble members are missing). In line with the case
study performed in Möller et al. (2013), additional data of the period 1 October 2010 –
25 March 2011 are utilized to estimate the correlation matrices of the Gaussian copula
models. For the BMA and EMOS fits that are employed to estimate the correlation
structure, a 40 days training period was used as well. The resulting (global) correlation
matrices are then carried forward into the analysis of the 2012/2013 data.

The effects of statistical calibration of ensemble forecasts are quantified by the multi-
variate scores reported in Table 5.2, whereas Figure 5.5 gives the results of DM tests for
equal predictive performance for energy score and Euclidean error of median forecasts.
Compared with the raw ensemble all seven post-processing methods result in significantly
lower energy scores and substantially smaller reliability indices (see also Figure 5.6). Simi-
lar to the UWME, one can also observe a significant loss in determinant sharpness which is
again an effect of the underdispersive nature of the ensemble. However, here the increase
in DS is around 60 %, whereas for the UWME the raw ensemble is almost three times
sharper than the various predictive PDFs. This again indicates the better calibration of
the ALADIN-HUNEPS ensemble, which is fully consistent with Figures 5.1 and 5.2 and
the corresponding reliability indices given in Section 5.4.1. Further, the ensemble median
and mean vectors produce significantly larger Euclidean errors than the corresponding
post-processed point forecasts. Moreover, the empirical correlations of the components of
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Forecast

F
o
re

c
a
st

BMA

Pars.BMA

Ind.BMA

Cop.BMA

EMOS

Ind.EMOS

Cop.EMOS

Ensemble

BMAPars.BMAInd.BMACop.BMAEMOSInd.EMOSCop.EMOSEnsemble

<-5.00 0.84 0.29 -2.30 <-5.00 <-5.00 1.59 NA

<-5.00 -0.16 -0.70 -3.49 <-5.00 <-5.00 NA -3.29

-4.52 >5.00 >5.00 2.69 2.33 NA >5.00 >5.00

-4.66 >5.00 >5.00 2.50 NA <-5.00 -3.10 -3.69

<-5.00 3.28 2.71 NA 4.18 -2.89 4.86 2.44

<-5.00 3.13 NA -1.93 3.80 -4.90 2.40 0.48

<-5.00 NA <-5.00 <-5.00 -1.96 <-5.00 -4.18 -4.78

NA >5.00 >5.00 >5.00 >5.00 >5.00 >5.00 >5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

Figure 5.5: Values of the test statistic of the two-tailed DM test for equal predictive
performance based on ES (upper triangle) and EE of median forecasts (lower triangle)
for the ALADIN-HUNEPS data. Green/red entries indicate superior performance of the
forecast in the corresponding row/column.

the ensemble median and mean are almost the double of the nominal correlation −0.033
of observations, whereas the correlations of wind speed and temperature components of
the BMA and EMOS point forecasts are close to this value. Finally, both the ensemble
median/mean and their calibrated counterparts exhibit almost the same forecast error
correlations.

From the competing post-processing methods the Gaussian copula approach with
EMOS marginals results in the lowest energy score and the second lowest Euclidean errors,
however, the differences compared with the corresponding scores of the bivariate BMA
and EMOS models (especially in the EE values) are rather small, and in some cases not
significant (see Figure 5.5). Reliability indices show far larger variability and the highest
scores belong to the two copula models followed by the independent EMOS approach. The
∆ values in Table 5.2 are in accordance with the corresponding rank histograms in Figure
5.6 and mean p-values of chi-square tests for uniformity as well: the rank histograms of
both copula methods are strongly hump-shaped indicating overdispersion, whereas the
histogram of the independent EMOS approach exhibits some underdispersion. For the
ALADIN-HUNEPS ensemble the two bivariate BMA models have the best overall perfor-
mance, closely followed by the bivariate EMOS method, however, similar to the case of
the UWME, the computational costs might also effect the model choice.

5.4.4 Computational aspects

As mentioned in Section 3.3.2, in the case of BMA calibration the bottleneck with respect
to the computation costs is the EM algorithm applied for ML estimation of the parameters.
Although the bivariate BMA model described is Section 5.1 makes use of a modification
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Figure 5.6: Multivariate rank histograms of BMA, parsimonious BMA, independent BMA,
BMA based Gaussian copula, EMOS, independent EMOS, EMOS based Gaussian copula
post-processed and raw ALADIN-HUNEPS ensemble forecasts of wind speed and temper-
ature for the period 12 May 2012 – 31 March 2013. Average p-values of chi-square tests
for uniformity (mean significance for 10000 random samples of sizes 2500 each): BMA:
0.320; parsimonious BMA: 0.408; independent BMA: 0.449; BMA based Gaussian copula:
0.046; EMOS: 0.278; independent EMOS: 0.132; EMOS based Gaussian copula: 0.019.

of the truncated data EM algorithm for Gaussian mixture models (Lee and Scott, 2012)
which operates with closed formulae and there is no need of numerical optimization in
the M step, due to the large number of free parameters (UWME: 59; ALADIN-HUNEPS:
17) it requires quite a lot of iterations resulting in long computation times.

For the EMOS methods the most time-consuming and problematic part of ensemble
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Figure 5.7: Densities of computation times for the bivariate BMA and EMOS models.
(a) UWME for the calendar year 2008; (b) ALADIN-HUNEPS ensemble for the period
12 May 2012 – 31 March 2013.

post-processing is the numerical optimization used in parameter estimation. In the case of
bivariate EMOS calibration of the ALADIN-HUNEPS ensemble only the robust Nelder-
Mead algorithm occurs to be reliable, as one has to estimate 18 free parameters with the
help of 400 forecast cases of the training data. For the UWME the data/parameter ratio
is much better, as 42 free parameters have to be estimated using on average 3354 forecast
cases. For this data set the reported Nelder-Mead and the faster BFGS algorithm give
almost the same results.

Figures 5.7a and 5.7b show the kernel density estimates of the distribution of compu-
tation times over the days in the verification period for bivariate BMA and EMOS models
(implemented in R) for the UWME and ALADIN-HUNEPS ensemble, respectively, cal-
culated again on the same portable computer as in the previous case studies (Intel Quad
Core i7-4700MQ CPU (2.40GHz × 4), 20 Gb RAM). We remark that in Figure 5.7a the
density of computation times of the EMOS model with BFGS optimization is also plotted.
The densities displayed in Figure 5.7 clearly show that in terms of computation time the
EMOS model outperforms the BMA approach. However, one should also remark that
these computation times are still too long for an operational use.

Finally, the Gaussian copula method starts with fast univariate BMA or EMOS cal-
ibrations, where the mean computation times allocated to parameter estimation of e.g.
wind speed/temperature EMOS models for individual days in the verification periods of
the UWME and the ALADIN-HUNEPS ensemble are 2.193/4.908 and 0.097/0.068 sec-
onds, respectively. However, this approach utilizes an additional data set for estimating
the correlation matrix of the Gaussian copula on the basis of additional post-processing of
the univariate predictive PDFs. Hence, in terms of computational efficiency the presented
version of the copula method is not comparable with the bivariate approaches and it is
excluded from our analysis. Note that a model estimating EMOS parameters and copula
covariances dynamically from the training data would be more appropriate for comparison.
Such a dynamic approach of estimating the copula correlation was briefly investigated for
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the case study of Möller et al. (2013), but did not yield significant improvement over the
static approach.

5.5 Conclusions

In this chapter bivariate BMA and EMOS models for joint calibration of ensemble fore-
casts of wind speed and temperature are described which are based on a bivariate normal
distribution truncated from below at zero in its first coordinate. The model is tested
on wind speed and temperature forecasts of the 8-member University of Washington
mesoscale ensemble and of the 11-member ALADIN-HUNEPS ensemble of the Hungar-
ian Meteorological Service. These ensemble prediction systems differ both in the weather
quantities being forecast and in the generation of the ensemble members.

Using appropriate verification measures (energy score, reliability index and determi-
nant sharpness of probabilistic forecasts and Euclidean errors, correlations, as well as
correlations of errors of median/mean forecasts) the predictive performance of the bi-
variate models is compared with the forecast skills of the independent BMA and EMOS
calibrations of wind speed and temperature, the Gaussian copula method of Möller et al.
(2013) based on both univariate BMA and univariate EMOS models and the raw ensemble
vectors as well.

From the results of the presented case studies one can conclude that compared with the
raw ensemble, post-processing always improves the calibration of probabilistic and accu-
racy of point forecasts. In terms of predictive performance the bivariate models are able to
keep up with the more general Gaussian copula approach, however, without requiring an
additional data set for estimating the correlations. Further, concerning the computational
costs, bivariate EMOS approach outperforms the bivariate BMA calibration.

Finally, one should remark that the Gaussian copula approach can be applied for any
desired type and number of weather quantities, whereas the current versions of the bivari-
ate BMA and EMOS models are applicable only for a bivariate weather quantity vector
where the components can be assumed to be normal and truncated normal. However,
such low dimensional parametric post-processing methods can serve as building blocks
e.g. for non-parametric calibration approaches taking into account spatial dependence
(Schefzik, 2016b).
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Chapter 6

Semi-local approaches to parameter
estimation

As it has been discussed in Section 1.3.3, for selecting the training sets for parameter
estimation in BMA and EMOS modelling two basic approaches are given by local and
regional methods. In the local approach, only forecast cases from the single observation
station of interest are considered for the parameter estimation, whereas in the regional
approach, data from all available observation stations are composited to form a single
training set for all stations. Local estimation generally results in better predictive perfor-
mance, however, numerically it is often problematic if only limited amounts of training
data are available. In contrast, there are typically no numerical stability issues in regional
parameter estimation, however, in the case of large ensemble domains it is undesirable to
obtain a single set of coefficients for all observation stations due to the potentially signif-
icant differences in the climatological properties of the observation stations and forecast
errors of the ensemble.

In this chapter we apply the truncated normal EMOS model of Thorarinsdottir and
Gneiting (2010) described in Section 3.2.1 for statistical post-processing of wind speed
forecasts of the 52-member Grand Limited Area Model Ensemble Prediction System
(GLAMEPS; Iversen et al., 2011). The GLAMEPS ensemble covers a large domain
across Europe and Northern Africa, however, only a short period of data is available.
This makes both regional and local estimation problematic. Two similarity-based semi-
local approaches to parameter estimation are described (Lerch and Baran, 2017) in order
to account for these challenges. The distance-based approach uses data from stations with
similar characteristics to augment the training data for a given station and follows ideas of
Hamill et al. (2008), whereas the clustering-based approach employs k-means clustering
to obtain groups of similar observation stations with respect to various features which
then form shared training sets for parameter estimation within each cluster.

6.1 The GLAMEPS ensemble

The GLAMEPS ensemble is a short-range multi-model EPS launched in 2006 as a part of
the cooperation between the Aire Limitée Adaptation dynamique Developpement Interna-
tional (ALADIN) and High Resolution Limited Area Modelling (HIRLAM) consortia. It
operates on a large domain covering Europe, North-Africa and the Northern Atlantic and
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Figure 6.1: Locations of observation stations (a) and verification rank histogram (b) of
the GLAMEPS ensemble.

the currently running Version 2 (GLAMEPSv2) is a combination of the subensembles from
two versions of the Aire Limitée Application de la Recherche à l’Operationnel (ALARO)
model (intéractions soil biosphere atmosphère (ISBA) and surface externalisée (SURFEX)
schemes, see e.g. Noilhan and Planton (1989) and Hamdi et al. (2014)) and two versions of
the HIRLAM model (Kain-Fritsch and soft transition condensation (STRACO) schemes,
see e.g. Kain and Fritsch (1990) and Sass (2002)). Each subensemble consists of 12 per-
turbed members and a control forecast, and half of the perturbed members are lagged by
6 h (Deckmyn, 2014).

Our data base contains 52 ensemble members of 18 h ahead forecasts of 10 m wind
speed for 1 738 observation sites (see Figure 6.1a) together with the corresponding validat-
ing observations for 2 October – 25 November 2013, and 2 February – 18 May 2014. We
divide the available data into two equally large periods from October 2013 to February
2014 and from March 2014 to May 2014 in order to allow for rolling training periods of
sufficient length. The forecasts are evaluated over the second period. Data from the first
period are used to obtain training periods of equal lengths for all days, and to determine
the similarities between the stations, see Section 6.2.2 for details.

The U-shaped verification rank histogram of the GLAMEPS ensemble depicted in
Figure 6.1b indicates that the GLAMEPS wind speed forecasts lack calibration and are
underdispersive, i.e. too many observations fall outside the ensemble range. This defi-
ciency can be observed for various ensemble prediction systems, see e.g. Baran and Lerch
(2015) or the case studies of Chapter 3.

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



6.2. EMOS MODELS FOR THE GLAMEPS ENSEMBLE 91

6.2 EMOS models for the GLAMEPS ensemble

To calibrate GLAMEPS ensemble forecasts we apply the truncated normal EMOS model
(3.2.5), where location and scale parameters are affine functions of the ensemble means
of the different exchangeable groups of ensemble members and the ensemble variance,
respectively.

6.2.1 Model formulations

The link functions connecting the parameters of the predictive distribution of the EMOS
models and the ensemble forecasts depend on the stochastic properties of the ensemble.
The GLAMEPS ensemble consists of four subensembles which differ in the choice of
numerical model and parametrization scheme. Each subensemble contains a control and
6 + 6 (non-lagged and lagged) perturbed members. This induces a natural grouping into
twelve groups:

– ALARO model with ISBA parametrization scheme, group of size 6 with group mean
fAI ;

– ALARO model with SURFEX parametrization scheme, group of size 6 with group
mean fAS;

– HIRLAM model with Kain-Fritsch parametrization scheme, group of size 6 with
group mean fHK ;

– HIRLAM model with STRACO parametrization scheme, group of size 6 with group
mean fHS;

– lagged versions of above groups, 4 individual groups of size 6 with group means f •L,
where • ∈ {AI,AS,HK,HS};

– control forecasts fAI,c, fAS,c, fHK,c, fHS,c, 4 individual groups of size 1.

The members within each individual group are exchangeable and should share a com-
mon set of EMOS coefficients, resulting in a predictive TN distribution with location

a0 + aAI,cfAI,c +
(
aAIfAI + aAILfAIL

)
+ aAS,cfAS,c +

(
aASfAS + aASLfASL

)
(6.2.1)

+ aHK,cfHK,c +
(
aHKfHK + aHKLfHKL

)
+ aHS,cfHS,c +

(
aHSfHS + aHSLfHSL

)
and scale b0+b1S

2, which is a special case of model (3.2.5). This model has a total number
of 15 parameters to be estimated and will be referred to as full model.

A natural simplification is to assign the same parameter values to the lagged and
non-lagged exchangeable ensemble members of a subensemble, which results in a reduced
model with location

a0 + aAI,cfAI,c + aAI
(
fAI + fAIL

)
+ aAS,cfAS,c + aAS

(
fAS + fASL

)
(6.2.2)

+ aHK,cfHK,c + aHK
(
fHK + fHKL

)
+ aHS,cfHS,c + aHS

(
fHS + fHSL

)
and 11 parameters to be estimated. This model will be referred to as lag ignoring model.
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Finally, we also investigate the fully exchangeable situation where the existence of the
aforementioned groups is ignored, and all ensemble members are assumed to form a single
exchangeable group. In this case the predictive distribution is given by

N∞0
(
a0 + a1f, b0 + b1S

2
)
, (6.2.3)

where again, f denotes the ensemble mean, and we refer to this model as simplified model.

6.2.2 Similarity-based semi-local parameter estimation

In general, the coefficients of the TN EMOS model are estimated by minimizing the
mean CRPS of the predictive distributions over suitably chosen rolling training periods
consisting of the preceding n days. As described in Section 1.3.3, there exist two basic
approaches for selecting the training data: regional and local. The regional (or global)
approach composites ensemble forecasts and validating observations from all available
stations during the rolling training period. In the case of the GLAMEPS ensemble regional
estimation of parameters means that a single set of coefficients is used for the wide-
ranging domain and the geographical and climatological variability might thus not be
sufficiently taken into account. Although this approach can be implemented without
numerical stability issues and offers slight gains in predictive performance compared with
the raw ensemble (see Section 6.3), there is room for further improvement for large and
heterogeneous domains.

By contrast, the local approach produces distinct parameter estimates for different
stations by using only the training data of the given station. Local models typically result
in better predictive performance compared with regional models (see e.g. Thorarinsdottir
and Gneiting, 2010; Schuhen et al., 2012), however, these training sets contain only one
observation per day and the estimation of local EMOS models thus requires significantly
longer training periods to avoid numerical stability issues. For example, in the case of the
GLAMEPS data, full model (6.2.1) has 15 parameters to be estimated, which makes the
use of local EMOS problematic.

We propose two alternative similarity-based semi-local approaches which avoid the
problems that make both regional and local estimation of the EMOS coefficients undesir-
able for the GLAMEPS data. The basic idea of the semi-local methods is to combine the
advantages of regional and local estimation by augmenting the training data for a given
station with data from stations with similar characteristics. The choice of similar stations
is either based on suitably defined distance functions or on clustering.

Distance-based semi-local model

Following Hamill et al. (2008), the training sets of a given station are increased by includ-
ing training data from other stations with similar features. The similarity between stations
is determined based on suitably defined distance functions. We use the term distance func-
tion in a general sense with only one of the proposed similarity measures depending on the
actual geographical locations of the observation stations. From a mathematical point of
view, all considered distance functions are semi-metrics, i.e. non-negative and symmetric
functions d : {1, . . . , 1738} × {1, . . . , 1738} → R with d(i, i) = 0. Distance functions
can thus be seen as negatively oriented similarity measures with smaller values indicating
more similar characteristics of the stations of interest. Note that compared with Hamill
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et al. (2008), we consider alternative choices of distance functions, and our forecasts are
evaluated over a set of observation stations whereas the forecasts and analysis data used
by Hamill et al. (2008) are given on a grid where different conclusions may apply.

Generally, the distance between two stations i and j denoted by d(i, j) with
i, j ∈ {1, . . . , 1738} is determined using the first period of available data from October
2013 to February 2014 which is distinct from the verification period. In the semi-local
estimation of the EMOS model for a given station i0, we then add the corresponding
forecast cases in the rolling training period from the L most similar stations, i.e. the L
stations with the smallest distances d(i0, j), j ∈ {1, . . . , 1738}.

Alternatively, one could also iteratively determine the similarities anew in every rolling
training period. However, this approach requires lots of computational resources as the
1737·1738

2
≈ 1.5× 106 pairwise distances between stations have to be re-computed for every

training period, and is thus infeasible due to the large number of observation stations. In
particular, note that already the non-iterative semi-local model estimation with a fixed
set of similarities is computationally more demanding compared with local parameter
estimation which arises as a special case for L = 1. Furthermore, initial tests did
not indicate substantial improvements in the predictive performance for the GLAMEPS
data, we thus limit our discussion to the use of a fixed period of data for determining the
similarities.

We investigate the following four distance functions.

Distance 1: Geographical locations. The distance between stations i and j is given
by the Euclidean distance of the locations (Xi,Yi) and (Xj,Yj) of the two stations, i.e.

d(1)(i, j) :=
√

(Xi −Xj)2 + (Yi − Yj)2.

The Euclidean distance is employed here since the station locations in the data set are
given on the linearly transformed model estimation grid. In general, the great circle
distance is a more appropriate distance measure for actual geographical locations on the
globe.

Distance 2: Station climatology. Let F̂i denote the empirical CDF of wind speed
observations at station i over the first period of data. Similarly to the distance function
which was proposed by Hamill et al. (2008), the distance to station j is given by the

normalized sum over the absolute differences of the respective empirical CDFs F̂i and
F̂j evaluated at a set of fixed values S, i.e.

d(2)(i, j) :=
1

|S|
∑
x∈S

∣∣∣F̂i(x)− F̂j(x)
∣∣∣ ,

where |S| denotes the cardinality of S. Here, we choose S = {0, 0.5, 1, 1.5, . . . , 14.5, 15}
(equidistant evaluation points between the minimum observation of 0 m/s and the 99th
percentile of all observations at 15 m/s) and note that the obtained sets of similar stations
are somewhat robust to minor changes in the definition of the set of evaluation points,
e.g. setting S = {0, 1, . . . , 20} results in very similar sets of close stations.

Distance 3: Ensemble forecast errors. Denote the ensemble mean for station i and
date t by f i,t and the corresponding verifying observation by xi,t, then the forecast
error ei,t of the ensemble mean is given by

ei,t = f i,t − xi,t.
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Figure 6.2: Illustration of the 100 most similar stations measured by the four distance
functions for two reference stations at Ouessant, France (a) and Vienna, Austria (b). The
reference stations are indicated by black dots. Several points are part of the set of similar
stations in more than one similarity measure; in this case they are assigned the color of
the last mentioned distance.

The third distance function is based on the distribution of these forecast errors. To that
end, we define the empirical CDF of the forecast errors at station i as

Ĝe
i (z) :=

1

|T |
∑
t∈T

I{f i,t−xi,t≤z}, (6.2.4)

where T denotes the set of dates in the first period of data. The distance between two
stations i and j is then given by

d(3)(i, j) :=
1

|S ′|
∑
x∈S′

∣∣∣Ĝe
i (x)− Ĝe

j(x)
∣∣∣ ,

where S ′ = {−10,−9.5,−9,−8.5, . . . , 0, . . . , 8.5, 9, 9.5, 10} denotes the set of fixed values
at which the empirical CDFs of the forecast errors are evaluated.

Distance 4: Combination of distances 2 and 3. We add up the values of distances 2 and
3 to define a distance function which depends on both the climatology of the observations
as well as the distribution of the forecast errors of the ensemble. With the above notation
the corresponding distance function is

d(4)(i, j) := d(2)(i, j) + d(3)(i, j) =
1

|S|
∑
x∈S

∣∣∣F̂i(x)− F̂j(x)
∣∣∣+

1

|S ′|
∑
x∈S̃′

∣∣∣Ĝe
i (x)− Ĝe

j(x)
∣∣∣ .
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6.2. EMOS MODELS FOR THE GLAMEPS ENSEMBLE 95

Figure 6.2 illustrates the four distance functions for two of the observation stations
by displaying the 100 most similar stations in a specific colour each. For the station
at Ouessant (Figure 6.2a) located on the North-Western coast of France, it can be ob-
served that the 100 most similar stations measured by the distance functions depending
on the distribution of observations and forecast errors (distances 2–4) are mostly located
at coastal regions and islands in Northern Europe, in particular if these characteristics are
combined (distance 4). By contrast, the most similar stations to the observation site at
Vienna (Figure 6.2b) are distributed over continental central Europe, mostly located in
France, Germany and Poland. Because of the differences in the density of the observation
station network, the stations in close geographical proximity to the reference station at
Ouessant are spread out over larger geographical distances compared with the respec-
tive stations around Vienna. Therefore, data from stations with different climatological
properties might be added to the training sets for parameter estimation which indicates
a potential drawback of the location-based distance 1.

Clustering-based semi-local model

Further, as an alternative to the distance-based approach we propose a semi-local ap-
proach based on cluster analysis. Here, the observation sites are grouped into clusters,
and parameter estimation is performed for each cluster individually using only ensemble
forecasts and validating observations at stations within the given cluster. To determine
the clusters of observation stations we apply k-means clustering (see e.g. Hastie et al.,
2009) to various choices of feature sets which are based on climatological characteristics
of the observation stations and the distribution of forecast errors.

In comparison with the distance-based method, the clustering-based semi-local ap-
proach is computationally much more efficient as the parameter estimation is only per-
formed for k distinct training sets for each given day, whereas the distance-based approach
requires individual estimation of the coefficients at each of the 1738 stations with partially
overlapping training sets. Further, the similarities between the observation stations are
obtained in a more efficient way as clustering is computationally less demanding com-
pared with the computation of pair-wise distances between all observation stations (up
to symmetry). In particular, clustering-based semi-local estimation is also computation-
ally more efficient than local parameter estimation which arises as a special case with
k = 1738 clusters of size 1 each. In this light, clustering-based semi-local models offer a
compromise between adaptivity and parsimony of the numerical estimation.

The discussion does not account for the computational costs of the actual clustering.
However, there are efficient algorithms for k-means clustering, e.g. the Hartigan-Wong
algorithm (Hartigan and Wong, 1979), which converge rapidly for the data at hand. The
costs of the actual clustering are thus negligible compared with the computational costs
of the numerical parameter estimation. In contrast with the distance-based approach,
this allows for iteratively determining the clusters anew in every training period without
a significant increase in the overall computational costs. This adaptive approach will be
pursued for all clustering-based semi-local models discussed below.

We denote the number of features used in the k-means clustering procedure by N
and consider the following feature sets.

Feature set 1: Station climatology. Let F̂i,n denote the empirical CDF of the wind
speed observations at station i over the rolling training period consisting of the preceding
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Figure 6.3: Illustration of cluster memberships of the observation stations based on feature
sets (a) 1 (climatology), (b) 2 (forecast errors) and (c) 3 (climatology and forecast errors)
obtained with a fixed number of 5 clusters and 24 features. Colours are assigned to the
clusters by size (in descending order: blue, red, green, yellow, black).

n forecast cases at this station. The feature set for station i is given by the set of
equidistant quantiles of F̂i,n at levels 1

N+1
, 2
N+1

, . . . , N
N+1

.

Feature set 2: Forecast errors. Denote the empirical CDF (6.2.4) of forecast errors

ei,t by Ĝe
i,n(z), where the set T in the expression t ∈ T denotes the preceding n

dates as the clusters are iteratively determined anew in every rolling training period. The
feature set for station i is then given by the set of equidistant quantiles of Ĝe

i,n at levels
1

N+1
, 2
N+1

, . . . , N
N+1

.

Feature set 3: Combination of feature sets 1 and 2. To define a feature set that
depends on both the station climatology and the distribution of forecast errors, we combine
equidistant quantiles of F̂i,n at levels 1

N1+1
, . . . , N1

N1+1
and equidistant quantiles of Ĝe

i,n

at levels 1
N2+1

, . . . , N2

N2+1
into one single set of size N = N1 +N2, where N1 and N2 are

defined as follows. If N is an even number, let N1 = N2 = N
2

, otherwise let N1 = dN
2
e

and N2 = N −N1.

Alternative choices of feature sets where the geographical location of the observation
stations is included in the definition have also been investigated, but result in a reduction
of the predictive performance and are thus omitted in the following discussion.

Figure 6.3 illustrates the clusters obtained for observation stations for the different
feature sets with a fixed number of k = 5 clusters. For the feature set defined in terms
of the distribution of the observations (feature set 1, Figure 6.3a), one can observe two
larger clusters distributed over central Europe, where one cluster mainly contains stations
in Germany and France, whereas the other contains most of the stations in the Alps and
continental Eastern Europe. The remaining clusters are predominantly centred near the
United Kingdom and coastal regions of France and Northern Europe. If the clusters are
determined on the basis of forecast errors (feature set 2, Figure 6.3b), the stations are
mainly grouped into three almost equally large clusters, where the most notable difference
compared with the first feature set is the predominant presence of the third cluster in
North-Eastern Europe. Further, the stations in the United Kingdom and coastal regions
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6.3. RESULTS 97

of Europe now mostly belong to the two biggest clusters rather than forming separate sets.
Clustering based on a combination of the distribution of the observations and forecast
errors (feature set 3, Figure 6.3c) results in a pattern of cluster memberships in between
the other two choices. In particular, the alpine regions, continental Europe and the coastal
regions and the United Kingdom show the most clear-cut separation compared with the
other feature sets.

6.3 Results

The forecast skill of the semi-local approaches of parameter estimation is tested on full, lag
ignoring and simplified TN EMOS models for calibrating GLAMEPS wind speed ensemble
forecasts (3.2.5) with location parameters linked to the ensemble via (6.2.1), (6.2.2) and
(6.2.3), respectively. The results are compared with the predictive performance of regional
and local approaches.

6.3.1 Selection of tuning parameters for semi-local parameter
estimation methods

Both semi-local parameter estimation techniques require the choice of various tuning
parameters given by the length of the rolling training period, the number of similar
stations to be taken into account, the number of features and the number of clusters.
We now discuss the effect of these tuning parameters on the predictive performance of
the forecast models. For that, the full, lag ignoring and simplified model were estimated
using the distance-based and clustering-based semi-local parameter estimation techniques
described in Section 6.2.2. Conclusions are drawn based on the mean CRPS over the
evaluation period. For comparison, note that the average CRPS values of the GLAMEPS
ensemble and the best regional TN model are 1.058 and 0.955, respectively. Because of
numerical stability issues in the parameter estimation, a comparison to local models is
impossible, an estimate of the mean CRPS of the locally estimated simplified TN model
(6.2.3) can be obtained if problematic parameter estimates (around 0.1 % of the forecast
cases) are replaced by corresponding estimates from preceding forecast cases. The mean
CRPS of the local simplified model with such subsequent modifications equals 0.790, see
Section 6.3.2.

Distance-based approach

In the distance-based semi-local approach to parameter estimation, the size of the training
set for a given station i is increased by including corresponding training data from the
L most similar stations, i.e. the L stations with the smallest distances d(i, j), j ∈
{1, 2, . . . , 1738}. Note that for the distance functions defined in Section 6.2.2, d(i, i) = 0,
a value of, e.g. L = 5 thus means that the training set for station i consists of data
from this station, and of data from the 4 stations with the smallest distances to station
i. Figure 6.4 illustrates the effect of L on the predictive performance measured as mean
CRPS of the three proposed models for selected lengths of the training period.

For distance 1 the predictive performance decreases with the number of similar sta-
tions added to the training sets, except for the more complex lag ignoring and full models
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Figure 6.4: Effect of the number of similar stations L on the predictive performance of
the distance-based semi-local models for three choices of training period lengths n (in
days) (missing line segments indicate unsuccessful parameter estimation for these choices
of tuning parameters; note the different scales of the plots in the first and second row
caused by the varying predictive performances of the respective models).

and shorter training periods, where the best CRPS values are attained for values around
L = 20. Clearly, the inclusion of similar stations then allows for unproblematic param-
eter estimation, but generally, if the similarities are determined based on geographical
locations, as few stations as possible should be used in order to achieve results as close as
possible to the favourable (but even for long training periods impossible) local parameter
estimation corresponding to L = 1. Similar conclusions apply for the climatology-based
distance 2, however, the predictive performance of these models is notably better.

A different pattern emerges for distances 3 and 4 based on forecast errors and combi-
nations with climatology shown in the second row of Figure 6.4. In contrast with distances
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1 and 2, augmenting the training sets with data from similar stations here generally im-
proves the forecasts. The best predictive performances are achieved with choices of L
between 10 and 30 depending on the similarity measure and the length of the training
period, whereas smaller values of L result in worse predictions. The mean CRPS in-
creases for values of L exceeding around 30, however, note that these semi-local models
still perform better than the local model for a wide range of tuning parameter values.

The effect of the length of the rolling training periods consisting of the preceding n
days can also be seen from Figure 6.4 where each individual plot contains three different
choices of n. Together with further investigations of plots of the average CRPS against
the employed training period lengths (which are not shown), one can observe that n only
has a small effect on the predictive performance of the models. For all considered distance
functions, the forecast skill increases slightly with longer training periods, in particular
for the more complex models and smaller values of L. This is to be expected from the
smaller size of the training sets as parameter estimation becomes problematic for short
training periods and few additional forecast cases from similar stations taken into account.

The simplified models show a slight decrease in predictive performance for training
periods longer than 40–50 days, however, the differences are negligible compared with
those between models based on varying choices of distance functions or varying numbers
of similar stations taken into account. The overall best predictive performances across
the three considered model formulations are achieved with training period lengths of 80
days.

Clustering-based approach

In the clustering-based semi-local approach k-means clustering based on the different
feature sets is employed to group the observation stations into clusters. The lower com-
putational costs of this approach allow for iterative computation of the clusters in every
training period. This adaptive application of k-means clustering leads of improvements
in mean CRPS of around 1− 5 % compared with a non-iterative implementation.

Figure 6.5 illustrates the effect of the number of clusters k on the predictive perfor-
mance. Choosing k = 1 obviously corresponds to regional parameter estimation. For all
three feature sets considered here, the predictive performance increases for larger values
of k up to around 100 clusters except for shorter training periods. Clearly, a larger
number of clusters allows for a more refined grouping into sets of observation stations
with similar characteristics. The predictive performance generally decreases if much more
than k = 100 clusters are used. This behaviour is not surprising as the clusters become
smaller and parameter estimation eventually becomes numerically unstable, particularly
for the lag ignoring and full models. Depending on training period length and feature
set, only small improvements can be observed for k exceeding values of around 40–70
clusters.

As observed for the distance-based models, the clustering-based semi-local models de-
fined in terms of the distribution of forecast errors and the station climatology (feature
sets 2 and 3) are able to outperform the local model over a wide range of tuning pa-
rameter choices except for short training periods. The worse predictive performance for
shorter training periods is to be expected as the smaller amount of forecasts cases used
to determine the clusters might result in a less accurate partitioning of the observation
stations. Compared with the distance-based approach it can be observed that, for some
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Figure 6.5: Effect of the number of clusters k on the predictive performance of clustering-
based semi-local models for three choices of training period lengths n (in days) (all
models are estimated with feature sets of size N = 24; missing line segments indicate
unsuccessful parameter estimation for these choices of tuning parameters).

k, training period lengths below 80 days are optimal. However, in comparison with the
effect of different choices of feature sets the effect of the length of the training period is
negligible.

Thus far, all clustering-based semi-local models shown in Figure 6.5 were estimated
for a fixed feature set size of N = 24. Further investigations (which are not shown)
indicate that the feature set size has only a small effect on the predictive performance
compared with varying choices of k or n as long as sufficiently many features (around
5–10 depending on the other tuning parameters) are used. Reasons for this behaviour
include the aforementioned robustness of the obtained cluster memberships with regards
to N . The best results across all considered tuning parameter combinations are generally
obtained for feature set sizes between 20 and 40 thus justifying our previous choice of
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N = 24.

6.3.2 Forecast performance

The predictive performance of the semi-local models is evaluated by computing the mean
CRPS of probabilistic forecasts, the mean absolute error of median forecasts and coverage
and average width of nominal 96.2 % central prediction intervals (see Section 1.4) for the
models considered. These scores evaluated over the verification period 1 March – 18
May 2014. We use the local climatological forecasts given by the observations at the
corresponding station during the rolling training periods, the raw GLAMEPS ensemble
predictions, and probabilistic forecasts by the regional TN model as benchmark models.
Although locally estimated models are desirable, the estimation of these models is highly
problematic for the GLAMEPS data due to the issues discussed earlier. Even for the
simplified model (6.2.3) with a maximum training period length of 80 days, numerical
issues occur in the local parameter estimation; e.g. some scale parameters are estimated to
be 0. In this case the problematic parameter estimates are replaced by the preceding ones.
Note that such subsequent adjustments are not necessary for the semi-local or regional
models. Further, neither the full nor the lag ignoring local model can be successfully
estimated as the employed numerical optimization algorithms fail to converge or produce
numerical errors.

For brevity, we limit our discussion to the simplified and lag ignoring models. Figures
6.4 and 6.5 indicate that the full models generally result in slightly worse predictive
performance compared with the lag ignoring ones, therefore the additional computational
costs of taking into account the lagging in the subensembles are not justified. Different
conclusions may apply for other ensemble prediction systems with lagged members.

With regards to the tuning parameters for the semi-local approaches, we employ a
fixed training period length of 80 days, and use a fixed number of N = 24 features for
k-means clustering to ensure comparability across the different models. For the individual
distance-based and clustering-based semi-local models we then choose suitable values for
the number of most similar stations L and the number of clusters k from Figures 6.4 and
6.5. While the chosen tuning parameter combinations might not be the overall optimal
values for the individual models, the results hold for a wide range of tuning parameter
choices as indicated by the sensitivity considerations in Section 6.3.1.

To determine the optimal tuning parameter values for a new data set we suggest
to follow common practice from the extant literature on ensemble post-processing, and
testing various combinations of parameter values, perhaps on a shorter initial test set.
For the GLAMEPS ensemble, our analysis indicates that the most influential tuning
parameters for the semi-local model estimation are the number of similar stations L,
and the number of clusters k, respectively, see Section 6.3.1 for details.

Table 6.1 shows the mean CRPS, MAE of median values and coverage and average
width of 96.2 % central prediction intervals for the models considered. The raw GLAMEPS
ensemble predictions outperform the climatological forecasts and provide sharp prediction
intervals, however, at the cost of being uncalibrated. Regional TN models are able to im-
prove the calibration of the ensemble and result in around 10 % better mean CRPS values,
however, the semi-local approaches significantly outperform the regional approaches for
all considered models and tuning parameter choices, see also Figures 6.4 and 6.5.

Among the distance-based semi-local models, the best predictive performances are
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Forecast CRPS MAE Coverage Av. width
(m/s) (m/s) (%) (m/s)

Local climatology 1.127 1.580 96.6 7.96
GLAMEPS ensemble 1.058 1.376 67.1 3.50
Regional TN models
Simplified 0.957 1.324 90.3 6.36
Lag ignoring 0.955 1.320 90.3 6.33
Local TN models (with subsequent modifications)
Simplified 0.790 1.100 88.7 5.12
Distance-based semi-local TN models
D1 simplified L = 3 0.873 1.218 90.2 5.99
D1 lag ignoring L = 3 0.887 1.236 89.2 5.71
D2 simplified L = 5 0.816 1.136 90.0 5.61
D2 lag ignoring L = 5 0.815 1.136 89.6 5.42
D3 simplified L = 5 0.774 1.083 90.3 5.25
D3 lag ignoring L = 10 0.774 1.083 90.2 5.21
D4 simplified L = 3 0.766 1.069 89.9 5.16
D4 lag ignoring L = 10 0.770 1.075 90.0 5.18
Clustering-based semi-local TN models
C1 simplified k = 70 0.836 1.162 89.8 5.68
C1 lag ignoring k = 70 0.832 1.156 89.6 5.55
C2 simplified k = 70 0.789 1.103 89.9 5.25
C2 lag ignoring k = 70 0.787 1.099 89.8 5.22
C3 simplified k = 70 0.782 1.091 89.7 5.19
C3 lag ignoring k = 70 0.781 1.090 89.7 5.17

Table 6.1: Mean CRPS of probabilistic, MAE of median forecasts and coverage and
average width of 96.2 % nominal central prediction intervals evaluated over the second
period of data from March to May 2014. A training period length of 80 days is used for
all models and the feature set size for the clustering-based models is fixed at N = 24.

achieved by distance functions 3 and 4 which utilize the climatological distribution and
its combination with the distribution of the forecast errors, respectively. These semi-local
models are also able to outperform the local model for a wide range of tuning parameter
choices without requiring subsequent corrections and further allow for a successful estima-
tion of the more complex lag ignoring and full semi-local models. Except for distance 2,
the simplified model generally performs slightly better than the lag ignoring one, however,
the differences are negligible compared with the differences between the varying model
estimation approaches.

We obtain similar results for the clustering-based semi-local models which perform
slightly worse compared with the corresponding distance-based models, however, still
outperform the regional models and the local model if the clusters are determined based
on forecast errors and station climatology. Here, the lag ignoring models show better
predictive performances compared with the simplified models but, again, the differences
are small compared with the influence of the choice of feature sets.

Formal statistical tests of equal predictive ability were performed to assess the signif-
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Figure 6.6: PIT histograms of the EMOS post-processed forecasts (all models are esti-
mated with a rolling training period of 80 days; the semi-local models displayed are those
with the best mean CRPS, see Table 6.1 for the corresponding tuning parameter choices).

icance of these findings. Two-sided Diebold-Mariano tests (see Section 1.4) based on the
CRPS indicate that all observed score differences are significant at the 5 % level.

Figure 6.6 shows PIT histograms of the regional, the local and the semi-local models
with the best mean CRPS values. Compared with the verification rank histogram of the
raw GLAMEPS ensemble forecasts (see Figure 6.1b), all post-processing models exhibit
substantially improved calibration with PIT histograms showing much smaller deviations
from the desired uniform distribution. The hump-shaped PIT histogram of the regional
TN model indicates a slight underprediction of lower wind speed values. The local and
semi-local models are able to correct for this deficiency and show slightly better calibra-
tion, in particular for the semi-local models. However, all models consistently show a
slight underdispersion that can also be seen from the coverage values reported in Table
6.1. This deficiency appears to be a general drawback of models based on the TN dis-
tribution (see the case studies of Chapter 3 or Baran and Lerch (2015)). Alternative
distributional choices such as a weighted mixture of TN and log-normal distributions
might lead to further improvements in calibration, as demonstrated in the case studies of
Chapter 3 (see also Baran and Lerch, 2016). An application of the semi-local approach
might be particularly interesting for this more complex model as many parameters have
to be estimated and local estimation may thus not be feasible.

To conclude, we note that the overall best predictive performance is achieved by semi-
local models where the similarities between stations are determined based on combinations
of the distributions of observations and forecast errors at the given stations. Although
all semi-local models show significantly better predictive performance than the regional
models, these best models can also outperform the locally estimated model. The semi-
local parameter estimation methods further allow for estimating more complex models
without numerical issues, whereas local estimation is only possible for simplified model
formulations with a reduced number of parameters and still requires subsequent modifica-
tions. Figures 6.4 and 6.5 indicate that these conclusions hold for a wide range of tuning
parameter choices.

6.4 Conclusions

Two semi-local approaches to parameter estimation for ensemble post-processing are in-
troduced where the training data for a given observation station are augmented with data
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from stations with similar characteristics. The distance-based approach roughly follows
the ideas of Hamill et al. (2008) and uses distance functions to determine the similari-
ties between observations stations, whereas the novel clustering-based approach employs
k-means clustering to obtain groups of similar stations.

The semi-local models outperform regional and local models and offer several advan-
tages over these standard approaches to parameter estimation while being straightforward
to implement. The clustering-based semi-local model estimation is further computation-
ally much more efficient than local estimation. Although distance-based semi-local models
show slightly better predictive performance compared with the clustering-based ones, the
estimation requires substantially more computational resources. In particular, an iterative
computation of the similarities in every training period is not feasible for the distance-
based models. A recent application of the clustering-based semi-local approach can be
found in Baran et al. (2019b), where the statistical post-processing of ECMWF global
dual-resolution temperature ensemble forecasts is investigated.

Compared with the work of Hamill et al. (2008), several alternative distance functions
are proposed and the distance-based approach for observations at specific stations is used
instead of gridded data. It would be interesting to apply the novel similarity measures as
well as the clustering-based approach to grid-based forecast and analysis data and assess
potential differences. In particular, similarity measures incorporating the distribution of
forecast errors (distances 3 and 4) might also offer improvements over the climatology-
based distance function used by Hamill et al. (2008) when applied to gridded data. For
this reason we have recently started experiments with clustering-based semi-local EMOS
calibration of ECMWF gridded dual-resolution precipitation forecasts for Europe with
the data set identical to the one studied in Gascón et al. (2019), where the authors
select training data for non-parametric calibration using the approach of Hamill et al.
(2008). Further, in connected works, Kleiber et al. (2011); Scheuerer and Büermann
(2014), and Scheuerer and Möller (2015) consider alternative approaches incorporating
techniques from geostatistics and novel model formulations that entail local adaptivity
of the parameters, and allow for extrapolating the forecasts to locations or grid points
without observations. These schemes are particularly important for interpolating local
forecasts obtained at observation stations to the model grid.

The distance functions considered here are defined in terms of station locations, ob-
servations, and forecast errors of the ensemble. Alternative choices of similarity measures
proposed in related works may lead to further improvements for different EPSs. For exam-
ple, Schefzik (2016a) proposes a similarity measure defined in terms of mean and variance
of the ensemble forecasts, and Kleiber et al. (2011) include covariates such as elevation
and land use information. However, for the GLAMEPS predictions, similarities defined
by characteristics of the ensemble overlap with location-based similarities (distance 1) to
a great extent, and covariate information was not available for the data at hand.

The group memberships of the observation stations in the clustering-based semi-local
models are determined by k-means clustering. Alternative clustering methods might
potentially lead to improvements (for reviews and comparisons see e.g. Fraley and Raftery,
1998). We did not incorporate information on the geographical locations of the stations
or characteristics of the ensemble into the selected feature sets as initial tests indicated
a worse predictive performance. For different ensemble prediction systems, alternative
choices of feature sets may lead to further improvements. One should also take into
account that for a small number of observation stations with rather different climatology,
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for some sites the proposed k-means clustering approach might result in local parameter
estimation. This is the situation in the case study of Dı́az et al. (2019) on calibration of
ensemble forecasts of temperature, where the forecast domain contains the high-mountain
region around Santiago de Chile. To estimate mean and variance parameters of the
corresponding EMOS model (1.3.3) using a rather short training period of 20 days, instead
of the proposed dynamic clustering, fixed clusters based on station elevation are preferred.

Further, Junk et al. (2015) propose analog-based local EMOS models where the train-
ing set for a given station is chosen by selecting forecast cases with similar ensemble
forecasts for that station and similar ideas appear in Hemri and Klein (2017). This
analog-based approach thus utilizes information for a given station in an optimal way by
selecting subsets of the local training sets, whereas our semi-local models combine informa-
tion from multiple observation stations based on similarities. Although the analog-based
modification of the local parameter estimation method shows good predictive performance
in case studies on hub height wind speed (Junk et al., 2015) and water level (Hemri and
Klein, 2017), it requires sufficiently long training periods for locally selecting similar fore-
cast cases. The implementation of this analog-based approach is thus infeasible for the
GLAMEPS data, however, comparisons and combinations with the similarity-based semi-
local approaches proposed here are of interest and might result in further improvement
in predictive performance.
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Conclusions and discussion

We hope that the results presented in Chapters 2 – 6, despite they focus on the work of the
author in probabilistic weather and hydrological forecasting, are able to provide an insight
into the main parametric approaches to statistical post-processing of ensemble forecasts,
give some heuristics behind the various models and also show the difficulties of model
formulation, parameter estimation and forecast verification. For a very detailed summary
of the current state of the art in statistical calibration we refer to the recent monograph
of Vannitsem et al. (2018) containing all methods described here but the BMA model
for post-processing water level ensemble forecasts introduced in Baran et al. (2019a) and
explained in detail in Chapter 2.

Chapters 2 – 5 are formulated around different predictable quantities describing the
corresponding BMA and EMOS models. As demonstrated, forecast skill of the raw ensem-
ble is always significantly improved by statistical calibration, however, in most of the cases
the is no unique winner, that is a method outperforming its competitors in all verification
measures for all case studies. Thus, in order to choose the appropriate post-processing
approach for the data set at hand, one has to look always at the whole picture including
the calibration and sharpness of probabilistic forecasts, the accuracy of point forecasts,
and in some situations also the computational costs.

The BMA model of Chapter 2 considerably outperforms the reference EMOS approach
when classical rolling window training periods are used for estimating the model param-
eters. However, as our further tests indicate (see Baran et al., 2019a), the use of analog-
based selection of training periods from Hemri and Klein (2017) drastically decreases the
gap in forecast skill, leaving only a small advantage of BMA compared with EMOS. This
indicates that using a more sophisticated post-processing approach or the use of a smarter
selection of training data are fairly redundant. Accordingly, we can recommend to use
EMOS with analog-based training periods if a sufficiently long set of hydrological data
is available and BMA otherwise. As an extension of the current study and direction of
future research, following the ideas of Hemri et al. (2015) and Bellier et al. (2018), one can
combine the BMA calibrated forecasts corresponding to different locations and lead times
either into temporally, or both spatially and temporally coherent multivariate predictions
with the help of modern techniques such as e.g. the ensemble copula coupling (Schefzik
et al., 2013) or the Gaussian copula approach (Pinson and Girard, 2012).

As demonstrated in Chapter 3, several different BMA and EMOS models exist for
calibrating ensemble forecasts of wind speed. The proposed truncated normal BMA pro-
vides a significantly faster algorithm for estimating model parameters than the competing
gamma BMA approach of Sloughter et al. (2010) and exhibits better forecast skill. The
paper presenting this approach (Baran, 2014) is already highly cited and our next task
is to have the model tested in many other case studies. We are planning to get the trun-
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cated normal BMA approach included in the ensembleBMA package of R, which will make
the method available to a wide range of users. Further, the EMOS approaches utilizing
a log-normal distribution justified their raison d’etre by showing very good predictive
performance in various case studies. Besides the situations investigated by the author,
LN and TN-LN mixture EMOS models serve as benchmark models e.g. in investigating
the forecast skill of the recent constrained quantile regression spline approach of Bremnes
(2019). As mentioned in Section 3.4, the simplest direction of further research could be
the use of a truncated GEV distribution in EMOS modelling, in order to correct the
disadvantage of predicting negative wind speeds with positive probability of the currently
available GEV distribution based approaches. More ambitious plans are the generaliza-
tion of the time series model of Möller and Groß (2016) to non-Gaussian (e.g. truncated
normal) variables and the modification of the Markovian EMOS approach of Möller et al.
(2015) in order to incorporate spatial dependencies into wind speed modelling.

From the weather variables investigated in the present work, the calibration of precip-
itation forecasts occurs to be the most difficult task. On the one hand, the non-negative
predictive distribution is not absolutely continuous, as it should put a positive weight on
zero precipitation. On the other hand, precipitation data sets contain lots of zero observa-
tions, that is, large training sets are required for reliable parameter estimation in the case
of positive precipitation amounts. The post-processing methods described in Chapter 4
show two different solutions to the first problem and in the presented two case studies
the novel CSG EMOS model significantly outperforms the more complex gamma BMA
approach and shows slightly better predictive performance than the GEV EMOS model.
However, as pointed out by Hamill et al. (2017), “a method that has been demonstrated
to produce high-quality post-processed guidance with a lengthy training data set and a
single-model ensemble will not necessarily perform optimally with multi-model ensem-
bles and short training data sets.” Thus, a reasonable direction of further research is
to investigate the calibration of precipitation accumulation forecasts using the semi-local
approaches of Chapter 6, which allow the use of much shorter rolling training periods.

The bivariate BMA and EMOS models of Chapter 5 demonstrate that inter-variable
dependencies of various weather quantities can be successfully modelled in a parametric
way. In the presented case studies both proposed methods outperform the raw ensemble
forecasts with a large margin and are able to keep up with the more general Gaussian
copula approach of Möller et al. (2013). Obviously, parametric models tailored to specific
weather variables are restricted to low-dimensional settings, however, as demonstrated
by Schefzik (2016b), they can serve as components of more complex calibration methods
assessing also spatial dependencies. Following this idea, one can also try to extend the
above mentioned Markovian EMOS approach to obtain a spatial bivariate model for joint
calibration of wind speed and temperature ensemble forecasts. A different direction of
further studies is the application of low-dimensional parametric models for calibration of
ensemble forecasts of user-oriented variables, which quantities have recently gained an
increasing interest (see e.g. the past Forecast Verification Metric Challenge1 of the Joint
Working Group on Forecast Verification Research of World Meteorological Organization’s
World Weather Research Programme or the TIGGE/S2S Challenge2 of the ECMWF).

1http://www.wmo.int/pages/prog/arep/wwrp/new/FcstVerChallenge.html [Accessed on 16 June
2019]

2https://www.ecmwf.int/sites/default/files/medialibrary/2018-11/TIGGE-S2S-WS_

Challenge.pdf [Accessed on 16 June 2019]
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As an example one can consider Thom’s Discomfort Index (Stathopoulou et al., 2005)
combining temperature and relative humidity. From a reasonable joint predictive PDF
of the latter two weather quantities one can obtain a predictive distribution for post-
processing of ensemble forecasts of the derived Discomfort Index.

Finally, the distance-based and clustering-based semi-local approaches presented in
Chapter 6 provide general tools to training data selection both for parametric and non-
parametric post-processing methods. Besides the EMOS calibration of dual-resolution
temperature forecasts with the help of the clustering-based method (Baran et al., 2019b),
the possibility of extending the state of the art post-processing approaches with semi-
local parameter estimation is mentioned in several recently published works. As examples
one can mention Holman et al. (2018), which investigates the calibration of wind vectors
using a bivariate normal EMOS model, or van Straaten et al. (2018), where both non-
parametric quantile regression forests and a parametric method based on a zero-adjusted
gamma distribution are applied to post-processing of high-resolution ensemble precipita-
tion forecasts.
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Dı́az, M., Nicolis, O., Maŕın, J. C. and Baran, S. (2019) Statistical post-processing of
ensemble forecasts of temperature in Santiago de Chile. Meteorol. Appl., under review.

Diebold, F. X., Gunther, T. and Tay, A. (1998) Evaluating density forecasts, with appli-
cations to financial risk management. Int. Econ. Rev. 39, 863–883.

Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy. J. Bus. Econ.
Stat. 13, 253–263.

Duan, Q., Ajami, N. K., Gao, X. and Sorooshian, S. (2007) Multi-model ensemble hydro-
logic prediction using Bayesian model averaging. Adv. Water Resour. 30, 1371–1386.

Eckel, F. A. and Mass, C. F. (2005) Effective mesoscale, short-range ensemble forecasting.
Weather Forecast. 20, 328–350.

ECMWF Directorate (2012) Describing ECMWF’s forecasts and forecasting system.
ECMWF Newsletter 133, 11–13.

Fraley, C. and Raftery, A. E. (1998) How many clusters? Which clustering method?
Answers via model-based cluster analysis. Comput. J. 41 578–588.

Fraley, C., Raftery, A. E. and Gneiting, T. (2010) Calibrating multimodel forecast ensem-
bles with exchangeable and missing members using Bayesian model averaging. Mon.
Weather Rev. 138, 190–202.

Fraley, C., Raftery, A. E., Gneiting, T., Sloughter, J. M. and Berrocal, V. J. (2011)
Probabilistic weather forecasting in R. R J. 3, 55–63.

Friederichs, P. and Thorarinsdottir, T. L. (2012) Forecast verification for extreme value
distributions with an application to probabilistic peak wind prediction. Environmetrics
23, 579–594.

Fritz, H., Filzmoser, P. and Croux, C. (2012) A comparison of algorithms for the multi-
variate L1-median. Comput. Stat. 27, 393–410.

dc_1665_19

Powered by TCPDF (www.tcpdf.org)



114 BIBLIOGRAPHY

Garcia, A., Torres. J. L., Prieto, E. and De Francisco, A. (1998) Fitting wind speed
distributions: A case study. Sol. Energ. 62, 139–144.

Gascón, E., Lavers, D., Hamill, T. M., Richardson, D. S., Ben Bouallègue,
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