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Preface

Many geometric properties can be described and investigated in terms of differen-
tial systems: by ordinary differential equations, partial differential equations, and
differential inequalities. In this dissertation, we present some of them focusing on
results about the

• inverse problem of the calculus of variations,

• metrizability, and projective metrizability,

• holonomy of Finsler manifolds,

• linearizability of 3-webs.

All of them are very well motivated, classical geometric problems, and have been in-
vestigated by excellent mathematicians for decades, if not for a century. Indeed, the
first results on the inverse problem of the calculus of variations, due to H. Helmholtz
from 1887, who derived a differential system on the so-called variational multiplier.
The metrizability and the projective metrizability appear explicitly in Hilbert’s
fourth problem asking for the construction of metrics for which the projective line
segments are geodesics. The linearizability problem of 3-webs is also over 100 years
old: T.H. Gronwall’s conjecture about the linearizable but not parallelizable pla-
nar 3-webs dates back to 1912. Finally, the notion of holonomy was introduced by
É. Cartan almost 100 years ago (in 1926) but the first results on the holonomy of
Finsler manifold are relatively recent: Zoltán Szabó described the holonomy group
of Berwald manifolds in 1981. We have been able to obtain new results in these
classical fields by using new approaches and new tools.

About the structure of the dissertation: at the beginning of each chapter, one can
find a section “Introduction” where we present the motivation and the description
of the geometric problems with a brief overview of the works and results obtained in
the corresponding fields. The introduction is followed by ”Preliminaries”, in which
we introduce the basic notions, notations, and tools used in the chapter. These
preliminary sections are constructed linearly in the sense that they contain only the
additional information and materials with respect to that of the previous chapters.
The sections after these introductory notes contain new results.
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Chapter 1

The inverse problem of the
calculus of variations

1.1 Introduction

The inverse problem of the calculus of variations is an old problem of differen-
tial geometry consisting of the characterization of second order ordinary differential
equations (SODE) or sprays derivable from a variational principle. The first results
on the inverse problem, due to H. Helmholtz from 1887, showed that the problem
can be formulated in terms of a system (called now Helmholtz system) containing
algebraic conditions and partial differential equations on the so-called variational
multiplier. The most significant contribution to this problem is the famous paper of
Jesse Douglas [36] in which, using Riquier’s integrability theory, he classified vari-
ational differential equations with two degrees of freedom. Generalizing his results
to higher dimensional cases is a hard problem because the Helmholtz system is an
over-determined partial differential system (PDE), so in general, it has no solution.
We cite [5, 6, 25, 34, 59, 61, 78, 79, 80] achieving significant progress on this prob-
lem. We note that in Douglas’ work and also in all the above-mentioned papers, the
results were obtained by analysing the Helmholtz system.

In our work [104, 105], we adopted a completely different approach: instead of
considering the Helmholtz system, we investigated the integrability of the Euler-
Lagrange partial differential system. Here, instead of the variational multiplier,
the unknown is the regular Lagrange function, and instead of algebraic and first
order partial differential equations, the system is composed by second order partial
differential equations. The relation between the two approaches can be given as
follows: if the Lagrangian E is a regular solution of the Euler-Lagrange PDE system,
then the regular matrix field (gij) with gij = ∂2E

∂yi∂yj
is a variational multiplier. The

two approaches are essentially equivalent, but working with the Euler-Lagrange
partial differential system allowed us to find and present the obstructions to the
existence of a variational principle in an intrinsic, natural and coordinate-free way.

The coordinate-free classification of the variational sprays on 2-dimensional man-
ifolds can be found in my Ph.D. dissertation [112]. It is clear from [36] and [112]
that, despite the fact that the dimension of the manifold is low, the analysis is

2
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 3

very complex. In the higher dimensional cases the situation is much more difficult
since the integrability condition also involves the curvature tensor, its derivatives
and the higher order elements of the graded Lie-algebra AS associated to the spray
(see Section 1.5). Therefore, it is not really reasonable to expect a classification of
variational sprays on n-dimensional manifolds where n ∈ N is arbitrary, unless we
consider a particular class of sprays. Natural restrictions can be imposed on the
curvature of the canonical connection associated to the spray. We considered the
flat and isotropic sprays in [104, 105]. Their geometrical meaning can be explained
as follows: if they are variational, the associated Lagrangian has isotropic curvature.
In this chapter we present further results. It is organized as follows.

After the preliminaries of Section 1.2, we generalize in Section 1.3 Douglas’ re-
sults about algebraic conditions on the variational multiplier. Indeed, in his article
[36], Douglas gives simple criteria on the existence of the variational multiplier and
therefore on the existence of a variational principle for SODEs on 2-dimensional
manifolds. These criteria can be carried over to the n-dimensional case [5, 78, 104].
In [79], W. Sarlet and his co-authors found a double hierarchy of algebraic conditions
for the variational multiplier which is determined by the Jacobi endomorphism, the
curvature tensor and their derivatives. We were able to improve these results: using
a differential algebraic characterization of connections and derivations we defined
a graded Lie-algebra associated in a natural way with the SODE. It contains al-
gebraic conditions on the variational multiplier and obstructions to the existence
of a variational principle (Theorem 1.3.5). This concept is of particular interest
when the dimension of the base manifold is large, because we are able to obtain new
information about the structure of the obstructions (Corollary 1.3.7 and 1.3.9).

The questions how many essentially different Lagrange functions can be associ-
ated with a SODE and how to determine this number in terms of geometric objects
and quantities are relevant, because the answers can lead to a better understanding
of the geometry of the geodesic structure. In Section 1.4 we investigate the above
questions. We introduce the notion of variational freedom, denoted by VS , which
shows how many different variational principles can be associated to a spray S or,
in other words, how many essentially different regular Lagrange functions exist for a
given spray. In general, a spray S is non-variational, therefore VS = 0. For most of
the variational cases, there is an essentially unique variational principle admitting S
as a solution, that is VS = 1. It may also happen that VS > 1, that is, there exist VS
essentially different Lagrange functions and variational principle associated to S. A
particularly interesting case when the Lagrange functions are 2-homogeneous. This
is the case for example in general relativity, in Riemannian and Finslerian geome-
tries. This motivates the problem to investigate the freedom of h(2)-variationality
when the Lagrange function must be 2-homogeneous. We show that in the regu-
lar case, the holonomy distribution can be used to determine VS, 2 and we give an
explicit formula to calculate it.

In Section 1.5 we consider an invariant version of the inverse problem: deter-
mine whether an equation of motion possessing some symmetry property can be
derived as the Euler-Lagrange equation of a regular Lagrangian having the same
symmetry. This investigation is motivated by the fact that the Euler-Lagrange
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 4

equation inherits the symmetries of the Lagrangian. There are interesting examples
of this phenomenon in the cases of motions on Lie groups, governed by the canonical
symmetric linear connection [26]. We say that there exists an invariant variational
principle for the SODE if it is variational with respect to a left-invariant regular La-
grange function. Interestingly, all possible situations can occur: there are examples
of Lie groups where 1) the canonical flow is not variational, 2) the canonical flow is
variational but the Lagrange functions are not invariant with respect to the action
of the group, 3) the canonical flow is variational and there are invariant Lagrange
functions with respect to the action of the group. We give an effective necessary
and sufficient condition for the existence of an invariant variational principle for
the canonical flow (Theorem 1.5.3). Using this, we determine the Lie groups up to
dimension four for which an invariant variational principle exists.

The results of this chapter are based on the papers [102, 113, 114, 115, 126].

1.2 Preliminaries

Throughout this paper M denotes an n-dimensional smooth manifold, C∞(M) de-
notes the ring of real-valued smooth functions, X (M) is the C∞(M)-module of
vector fields on M , π : TM →M is the tangent bundle of M , TM = TM\{0} is the
slit tangent space. V TM = Kerπ∗ is the vertical sub-bundle of TTM . We denote
by Λk(M), Sk(M) and Ψk(M) the C∞(M)-modules of skew-symmetric, symmetric
and vector valued k-forms respectively, and by Λk

v(TM), Skv (TM) and Ψk
v(TM) the

corresponding semi-basic C∞(TM)-modules. We consider Λ(M) =
⊕

k∈N Λk(M)
the graded algebra of differential forms on M and Ψ(M) =

⊕
k∈N Ψk(M) for the

graded algebra of vector-valued differential forms on M .

The Frölicher–Nijenhuis formalism

The Frölicher-Nijenhuis theory provides a complete description of the derivations of
Λ(M) with the help of vector-valued differential forms, for details we refer to [39].
The i∗ and the d∗ type derivations associated to a vector valued l-form L will be
denoted by iL and dL. They can be introduced in the following way: if L ∈ Ψl(M),
then

iLω(X1, . . . , Xl) = ω(L(X1, . . . , Xl)),

where X1, . . . , Xl ∈ X(M), ω ∈ Λ1(M). Furthermore, dL is the commutator of the
derivations iL and d, that is

dL := [iL, d] = iLd− (−1)l−1diL.

We remark that for X ∈ X(M) we have dX = LX the Lie derivative, and iX is
the substitution operator. The Frölicher–Nijenhuis bracket of K ∈ Ψk(M) and
L ∈ Ψl(M) is the unique [K,L] ∈ Ψk+l form, such that

[dK , dL] = d[K,L].
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 5

In the special case, when K ∈ Ψ1(M), X, Y ∈ X(M) we have [K,X] ∈ Ψ1(M)
defined as

[K,X](Y ) = [KY,X]−K[Y,X].

Spray and associated geometric quantities

Let J : TTM −→ TTM be the vertical endomorphism and C ∈ X(TM) the Liouville
vector field. In an induced local coordinate system (xi, yi) on TM we have

J = dxi ⊗ ∂

∂yi
, C = yi

∂

∂yi
.

Euler’s theorem for homogeneous functions implies that L ∈ C∞(TM) is a k-
homogeneous function in the y = (y1, . . . , yn) variables if and only if

yi
∂L

∂yi
− Lk = 0. (1.1)

The vertical endomorphism satisfies the following properties:

J2 = 0, Ker J = Im J = V TM, [J,C]=J. (1.2)

A semispray is a vector field S on TM satisfying the relation JS = C. A semispray
is called spray if [C,S] = S. The coordinate representation of a spray S takes the
form

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
, (1.3)

where the functions Gi(x, y) are homogeneous of degree 2 in y.
The geodesics of a spray are curves γ : I → M such that S ◦ γ̇ = γ̈. Locally,

they are the solutions of the second order ordinary differential equation (SODE)

ẍi = −2Gi (x, ẋ) , i = 1, . . . , n. (1.4)

Sprays describe a global and coordinate free way the systems of second order differ-
ential equations.

To every spray S a connection Γ := [J,S] can be associated [46]. Γ is called
the natural connection associated to S. One has Γ2 = Id. The eigenspace of Γ
corresponding to the eigenvalue −1 is the vertical space V TM , and the eigenspace
corresponding to +1 is called the horizontal space. For any z ∈ TM , we have
TzTM = HzTM ⊕ VzTM. The horizontal and vertical projectors are denoted by h
and v. One has

h =
1

2
(Id + Γ), v =

1

2
(Id− Γ). (1.5)

Locally, the above two projectors can be expressed as h = δ
δxi
⊗dxi, and v = ∂

∂yi
⊗δyi,

where
δ

δxi
=

∂

∂xi
−Gj

i (x, y)
∂

∂yj
, δyi = dyi +Gi

j(x, y)dxj, (1.6)
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 6

Gj
i = ∂Gj

∂yi
. In the sequel, F ∈ Ψ1(TM) denotes the almost complex structure

associated to the connection Γ.
The parallel translation of a vector along curves is defined through horizontal

lifts. Let γ : [0, 1] → M be a curve such that γ(0) = p and γ(1) = q. The parallel
translation τ : TpM → TqM along γ is defined as follows: if γh is the horizontal lift
of γ (ie. γ̇h(t) ∈ HTM and π ◦ γh = γ) with γh(0) = v, then τ(v) = w, where
γh(1) = w. More details about the parallel translation can be found in Section 3.2.

The Berwald connection D : X(TM)× X(TM)→ X(TM) is a linear connection
on TM defined as follows:

DXY = v[hX, vY ]+h[vX, hY ]+J [vX, (F+J)Y ]+(F+J)[hX, JY ]. (1.7)

Using formula (1.7), it follows that Dh = 0 and Dv = 0, which means that the
Berwald connection preserves both the horizontal and vertical distribution. More-
over, we have DJ = 0, which implies that the Berwald connection has the same
action on horizontal and vertical vector fields. Considering the (h, v, v) components
of the classical curvature of the Berwald connection we obtain a tensor-field

B(X, Y, Z) = DhXDJY JZ −DJYDhXJZ −D[hX,JY ]JZ (1.8)

called the Berwald curvature. Locally B(x,y) = Bijkl(x, y)dxj ⊗ dxk ⊗ dxl ⊗ ∂
∂xi

where

Bijkl(x, y) =
∂Gi

jk

∂yl
=

∂3Gi

∂yj∂yk∂yl
. (1.9)

It is identically zero if and only if the connection Γ is linear. The mean Berwald
curvature tensor field B(x,y) = Bjk(x, y)dxj ⊗ dxk is the trace

Bjk(x, y) = Bljkl(x, y) =
∂3Gl

∂yj∂yk∂yl
. (1.10)

The curvature of the nonlinear connection Γ is R = 1
2
[h, h], the Nijenhuis torsion

of the horizontal projection h. The curvature tensor

R(X, Y ) = v
[
hX, hY

]
, (1.11)

for X, Y ∈ X (TM), characterizes the integrability of the horizontal distribution
HTM : it is integrable, if and only if the curvature is identically zero.

The Jacobi endomorphism (or Riemann curvature in [82]) is defined as

Φ = iSR. (1.12)

The Jacobi endomorphism determines the curvature by the formula R = 1
3
[J,Φ].

The spray S is called flat if its Jacobi endomorphism has the form Φ = ρJ and
isotropic if

Φ = ρJ − α⊗ C (1.13)

with some λ ∈ C∞(TM), α ∈ Λ1
v(TM). We consider also the Ricci curvature Ric,

and the Ricci scalar ρ, [10], [82, Def. 8.1.7], which are given by

Ric = (n− 1)ρ = Ri
i = Tr(Φ). (1.14)
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 7

The Euler–Lagrange partial differential equation

A Lagrangian is a function E : TM → R smooth on TM and C1 on the zero section.
E is called regular, if the Euler–Poincaré 2-form ΩE := ddJE has maximal rank.
If LCE = 2E, and E is C2 on the 0-section, then E is quadratic and it defines a
(pseudo)-Riemannian metric on M by g(v, v) = 2E(v), v ∈ TM . If LCE = 2E and
E is C1 on the null-section, then E defines a Finsler structure. Note that from (1.1)
we find that iJddJ = d2

J = d[J,J ] = 0, so for every Lagrangian E we have

iJΩE = 0. (1.15)

A regular Lagrangian E allows us to define a pseudo-Riemannian metric on the
vertical bundle, by putting gE(JX, JY ) = ΩE(JX, Y ). The local expression of the
2-form ΩE is

ΩE =
1

2

( ∂2E

∂xα∂yβ
− ∂2E

∂xβ∂yα

)
dxα ∧ dxβ − ∂2E

∂yα∂yβ
dxα ∧ dyβ, (1.16)

and the Lagrangian E is regular if and only if

det
( ∂2E

∂yα∂yβ

)
6= 0.

Let E : TM → R be a regular Lagrangian. From [41] we know that the vector field
S on TM defined by

iSΩE = d(E − LCE) (1.17)

is a spray and the paths of S are the solutions to the Euler-Lagrange equations:

d

dt

∂E

∂ẋi
− ∂E

∂xi
= 0, α = 1, . . . , n. (1.18)

That motivates the following

Definition 1.2.1. A spray S is called variational if there exists a smooth regular
Lagrangian E which satisfies (1.17), the Euler-Lagrange equation.

When a regular Lagrangian E is given, (1.17), resp. (1.18), is a second order
ordinary differential system. On the other hand, when the spray S is given, then
(1.17), resp. (1.18), is a second-order partial differential system on the Lagrange
function E. We introduce the following

Definition 1.2.2. Let E be a Lagrangian and S a spray on the manifold M , then
the Euler-Lagrange form associated with E and S is

ωE := iSΩE + dLCE − dE. (1.19)

It is easy to see that ωE is semi-basic, and the local expression in the standard

coordinate system on TM is ωE =
∑n

i=1

[
S
(
∂E
∂yi

)
− ∂E
∂xi

]
dxi. Therefore, along a curve

γ = (x(t)) associated with S we have

ωE
∣∣
γ
=

n∑
i=1

(
d

dt

∂E

∂ẋi
− ∂E

∂xi

)
dxi, (1.20)
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 8

where d/dt denotes the derivation along γ. One can recognize that the coefficients
of the form (1.20) are the left hand sides of the Euler-Lagrange system (1.18).
Consequently, in order to find the solution to the inverse problem for a given second
order ordinary differential system, we have to look for a regular Lagrangian such
that

ωE = 0, (1.21)

or, using local coordinate system:

yj
∂2E

∂xj∂yi
− 2Gj(x, y)

∂2E

∂yj∂yi
− ∂E

∂xi
= 0, i = 1, . . . , n. (1.22)

Conclusion 1.2.3. To solve the inverse problem of the calculus of variations for a
given system of second-order ordinary differential equations or spray, one has to find
a regular Lagrangian E such that it solves the Euler–Lagrange partial differential
equation (1.21).

1.3 Algebraic conditions on the variational mul-

tiplier

One of the most important contribution to the solution of the inverse problem of
the calculus of variations is a paper of J. Douglas [36], where in the two-dimensional
case, he classifies systems of variational differential equations of second order. He
showed that the Euler-Lagrange partial differential system (1.21) associated with
the system of second-order differential equations (1.4) is equivalent to the first order
partial differential system

d

dt
gij +

∂Gk

∂yj
gik +

∂Gk

∂yi
gjk = 0,

Akj gik − Aki gjk = 0,

∂gij
∂yk
− ∂gik
∂yj

= 0,

gij − gji = 0,

det(gij) 6= 0,

(1.23)

where the unknown functions are gij, i, j = 1, . . . , n, and Aij are the components
of the Jacobi endomorphism. A solution E of (1.21) gives a solution of (1.23) by
taking

gij =
∂2E

∂yi∂yj
(1.24)

and conversely, for every solution of (1.23) there exists a regular solution E of (1.21)
so that (1.24) holds. A solution of (1.23) is called variational multiplier.
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 9

In this section, using a differential algebraic characterization of connections and
derivations, we present a graded Lie-algebra associated in a natural way with the
SODE. It contains algebraic conditions on the variational multipliers and gives in-
formation about the structure of the obstruction to the existence of a variational
principle.

Proposition 1.3.1. [113, Property 6.] Let E be a Lagrangian on the manifold
M . Then dJωE = iΓΩE. Consequently, if the spray S is variational and E is a
Lagrangian associated to S, then the horizontal distribution associated to the spray
S must be Lagrangian with respect to the symplectic 2-form ΩE.

Proof. The Euler-Lagrange form can be written in the following form:

ωE = iSddJE + dLSE − dE = dJLSE − i[J,S]dE = dJLSE − 2dhE.

Since the vertical distribution is integrable, we get [J, J ] = 0 and dJ ◦dJ = d[J,J ] = 0,
so

dJωE = −2dJdhE = 2dhdJE = 2(ihddJE − dihdjE) = 2ihΩE − 2ΩE = iΓΩE.

If the spray is variational and E is a Lagrangian associated with S, we have ωE = 0,
then iΓΩE = 0, so the connection associated to the spray is Lagrangian.

Let S be a spray on M , h be the horizontal projection associated to the connec-
tion Γ = [J,S], and L ∈ Ψv(TM). We introduce the semi-basic derivative of L with
respect to the spray S as

L′ := h∗ (v[S, L]) , (1.25)

and the semi-basic derivative of L with with respect to h:

dhL := [h, L]. (1.26)

Proposition 1.3.2. [113, Proposition 8.] Let S be a spray on M and L a semi-basic
vector valued 1-form. We have the formula

L′ = [S, L] + FL− L∧F, (1.27)

where F = h[S, h]−J is the almost complex structure associated to Γ. In particular,
suppose that S is variational, E being a Lagrangian associated to S. If the equation
iLΩE = 0 holds, then the equations

iL′ΩE = 0, iL′′ΩE = 0, iL′′′ΩE = 0, etc. (1.28)

hold too.
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 10

Proof. To show the first formula, we note that

L′(X1, ..., Xl) = v[S, L](hX1, ..., hXl) = v[S, L(X1, ..., Xl)]−
l∑

i=1

L(X1, ..., [S, hXi], ..., Xl)

= [S, L(X1, ...Xl)]−h[S, L(X1, ...Xl)]−
l∑

i=1

L(X1, ...[S, h]Xi, ...Xl)−
l∑

i=1

L(X1, ...[S, Xi], ...Xl)

= [S, L](X1, ...Xl) + FL(X1, ..., Xl)−
l∑

i=1

L(X1, ..., h[S, h]Xi, ..., Xl).

Using the identity h[S, h] = F+J and the hypothesis that L is semi-basic, we obtain
(1.27). Secondly, by the formula (1.27) we have

iL′Ω = i[S,L]Ω + iFLΩ− iF∧Ω = i[S,L]Ω + iFiLΩ− iLiFΩ

= LSiLΩ− dLω + iFiLΩ− iLiFΩ.

When S is variational and the function E is a Lagrangian associated to S, then
ωE = 0 and the connection Γ is Lagrangian, so we have iFΩE = 0. If the equation
iLΩE = 0 holds, we have also iL′ΩE = 0 and recursively we obtain (1.28).

Proposition 1.3.3. [113, Proposition 10.] Let L be a semi-basic vector valued l-
form. Then dhL is semi-basic. Moreover assume that S is variational, and E is
a Lagrangian associated to S. If the equation iLΩE = 0 holds, then the equation
idhLΩE = 0 holds too.

Proof. It is not difficult to check that if L is a semi-basic vector valued l-form, then
dhL is also semi-basic. Let us show the second part of the proposition. Let us assume
that S is variational, E is a Lagrangian associated to S, and L is a vector-valued
semi-basic l-form. By the relation

(−1)li[h,L] = ihdL − dLih − dL∧h

and taking into account that L∧h = l L, because L is semi-basic, we have

(−1)lidhLΩE = (−1)li[h,L]ddJE = ihdLddJE − dLihddJE − l dLddJE.

If the equation iLΩE = 0 holds, then

(−1)lidhLΩE = ihdiLddJE − dLi 1
2

(I+Γ)ddJE − l diLddJE

= −l diLddJE −
1

2
dLiΓddJE = 0.

Using the operations (1.25) and (1.26) we introduce the following
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Definition 1.3.4. [113, Definition 11.] The graded Lie algebra AS associated to
the spray S is the graded Lie sub-algebra of the vector-valued forms spanned by the
vertical endomorphism J , the Jacobi endomorphism Φ = v[h,S], and generated by
the action of the semi-basic derivations with respect the spray S and h defined by
formula (1.25) and (1.26) respectively, and by the Frölicher-Nijenhuis bracket [ , ].

AS is a graded Lie sub-algebra of the vector-valued semi-basic forms. The gra-
dation of AS is given by

AS = ⊕nk=1AkS (1.29)

where AkS := AS ∩Ψk(TM). Its importance is given by the following:

Theorem 1.3.5. [113, Theorem 2.] Let S be a variational spray and E a Lagrangian
associated to S. Then for every element L of AS the equation

iLΩE = 0 (1.30)

holds. Therefore every element of AS gives an algebraic condition on the variational
multiplier.

Proof. To prove the theorem we will show that in the case when S is variational
and E is a Lagrangian associated to S, then J and Φ satisfy the equation (1.30),
and the operations generating AS preserve this property. Indeed, (1.30), that is

i.) from [J, J ] = 0 we can easily obtain: iJΩE = iJddJE = d2
JE = d[J,J ]E = 0,

ii.) for the Jacobi endomorphism we have

iΦΩE = i[h,S]ΩE + iFΩE = ihLSΩE − LSihΩE + iFΩE

= ihdωE − LS(ΩE +
1

2
dJωE) + iFΩE

= ihdωE − dωE −
1

2
LSdJωE + iFΩE = dhωE −

1

2
LSdJωE + iFΩE

when S is variational and E is a Lagrangian associated to S, then ωE = 0
and the connection Γ is Lagrangian. Therefore every term vanishes, and the
equation (1.30) also holds for Φ = L.

iii.) from Propositions 1.3.2, and 1.3.3 respectively we know that if iLΩE = 0 holds
for L ∈ AS then iL′ΩE = 0, and idhLΩE = 0 hold too.

iv.) Let K,L ∈ AlS(TM) be semi-basic vector-valued forms, such that iKΩE = 0
and iLΩE = 0. Since K and L are semi-basic, we have L∧K ≡ 0 and hence

(−1)l i[K,L]ΩE =
(
iKdL − (−1)l(m−1)dLiK − dL∧K

)
ΩE

= iK(iLd− diL) ddJE − (−1)l(m−1)dLiKddJE − dL∧KddJE
= iKdiLΩE − (−1)l(m−1)dLiKΩE = 0.

dc_1714_19

Powered by TCPDF (www.tcpdf.org)



CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 12

Moreover, it is easy to see that (1.30) gives algebraic condition on the variational
multiplier. Indeed, from the local expression (1.16) of ΩE we get that if L ∈ Ψl(TM)
is semi-basic, then

iLΩE =
1

l!

∑
i∈Sl+1

ε(i)Lji1...il
∂2E

∂yj∂yil+1
dxi1 ∧ · · · ∧ dxil+1 ,

where Sp+l−1 denotes the (p + l − 1)!-order symmetric group and ε(i) the sign of
i = (i1, . . . , il). Then the equation iLΩE = 0 is an algebraic equation∑

i∈Sl+1

ε(i)Lji1...il gjil+1
= 0 (1.31)

in terms of the variational multiplier gjk = ∂2E
∂yj∂yk

.

Corollary 1.3.6. If at x ∈ TM one has rank
{
J, Φ, Φ′, . . . ,Φ(k), . . .

}
≥ n(n+1)

2
, then

S is not variational in the neighborhood of x.

Proof. Let us suppose that S is variational, E is an associated regular Lagrangian,

and gij =
∂2E

∂yi∂yj
is a variational multiplier. For every L ∈ A1

S the condition

iLΩE = 0 gives
gikL

k
j = gjkL

k
i .

i.e. the tensor L is symmetric with respect to gij. Since the tensors J , Φ, Φ′, Φ′′,
. . . are elements of AS , we have iΦ(k)ΩE = 0 for all k ∈ N. Therefore, if the spray
is variational, then the tensors J , Φ, Φ′, Φ′′, . . . , are self-adjoint with respect to
gij. The space of the (1, 1)-tensors which are self-adjoint with respect to a regular

matrix is n(n+1)
2

–dimensional. Consequently, if the spray is variational, then J , Φ,
Φ′, . . . , Φ(1/2)n(n+1)−1 are linearly dependent.

If dimM = 2, then AS only contains J , Φ and the hierarchy given by its semi-
basic derivatives Φ′, Φ′′. However, if dimM > 2, then we can find higher order
derivatives and other hierarchies in AS which give, in the generic case, new necessary
conditions for the variational multipliers. We arrive at the following generalization
of Corollary 1.3.6:

Corollary 1.3.7. If there exists an integer k ≤ n for which dimAkS(x) ≥ k
(
n+1
k+1

)
,

then the spray is not variational.

Definition 1.3.8. Let S be a spray x ∈ TM , and let us consider the system of
linear equations { ∑

i∈Sl+1

ε(i)Lji1...ilgjil+1
= 0

∣∣ L ∈ AS(x)
}

(1.32)

where Lji1...il are the components of L ∈ AS(x) and gij are the symmetric (gij = gji)
unknowns. The rank of the linear equations (1.32) is called the rank of the spray at
x ∈ TM .
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As equation (1.31) shows, the rank of a spray gives the number of independent
equations satisfied by the variational multipliers. Consequently, if the system (1.32)
does not have a solution with det(gij) 6= 0, then there is no variational multiplier
for S, and therefore the spray is non-variational. Thus we arrive at

Theorem 1.3.9. [113, Theorem 5.] If at x ∈ TM the rank of the spray S is greater

or equal with n(n+1)
2

, then S cannot be variational.

1.4 Freedom of variationality: the homogeneous

case

In this section we are considering a different aspect of the inverse problem of the
calculus of variations which is motivated by the fact that there are sprays for which

a) there is no regular Lagrange function, that is, the spray is not variational,

b) there is an essentially unique Lagrange function,

c) there are several essentially different regular Lagrange functions.

The questions of how many different Lagrange functions can be associated with a
spray and how to determine this number in terms of geometric objects are very
interesting because the answers can lead to a better understanding of the geodesic
structure. In this section we investigate the above questions by considering the
Euler-Lagrange partial differential system associated to sprays: We introduce the
notion of variational freedom, denoted by VS , which shows how many different vari-
ational principle can be associated to the spray or in other words, how many essen-
tially different regular Lagrange functions exist for a given spray.

To formulate properly the notion of variational freedom, we introduce the fol-
lowing terminology and notations. The solutions of the Euler-Lagrange partial dif-
ferential equation (1.21), or locally (1.22), are called Euler-Lagrange functions of
the spray S. The set of Euler-Lagrange functions of S will be denoted by ES , the
subset of k-homogeneous Euler-Lagrange functions will be denoted by ES,k:

ES = {E ∈ C∞(TM) | ωE = 0 } , (1.33)

ES,k = {E ∈ C∞(TM) | ωE = 0, LCE = kE } , k ∈ N. (1.34)

The spray S is variational (resp. h(k)−variational) if ES (resp. ES,k) contains a
regular Lagrangian. Particularly interesting the h(2)−variational property (see for
example Riemann and Finsler metrizability property, relativity theory, etc.).

If S is variational, then VS := rank (ES) is called the variational freedom. If S
is non-variational, then we set VS = 0. Remark that the notation VS = rank (ES)
means that ES can be locally generated by its VS functionally independent elements.
In other words, if the variational freedom of S is VS ≥ 1 then for every v0 ∈ TM there
exists a neighbourhood U ⊂ TM and functionally independent E1, . . . , EVS ∈ ES on
U such that any E ∈ ES can be expressed as

E(v) = ϕ
(
E1(v), . . . , EVS(v)

)
, ∀ v ∈ U,
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CHAPTER 1. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS 14

with some function ϕ : RVS → R. An analogous way, VS, k := rank (ES,k), and we set
VS, k = 0 if there is no regular element in ES,k. In particular, VS, 2 = rank (ES,2) shows
how many different 2−homogeneous Lagrange functions, or variational principles,
exist for the given spray. We are focusing our attention on this particular case.

Holonomy invariant functions

The holonomy distribution DH of a spray S is the distribution on TM generated by
the horizontal vector fields and their successive Lie-brackets, that is

DH :=
〈
Xh(TM)

〉
Lie

=
{

[X1, [. . . [Xm−1, Xm]...]]
∣∣ Xi ∈ Xh(TM)

}
. (1.35)

The holonomy distribution DH is the smallest involutive distribution containing the
horizontal distribution HTM . Using the horizontal and vertical projectors we have

DH = h(DH)⊕ v(DH) = HTM ⊕ v(DH).

The image of the curvature tensor is a subset of the vertical part of the holonomy
distribution, that is ImR ⊂ v(DH). Moreover, we have DH = HTM if and only
if R ≡ 0. When DH is a regular distribution, then it is integrable. Using the
definition of parallel translation via horizontal lifts, it is easy to see that the integral
manifold through v ∈ TM is the orbit Oτ (v) of v with respect to all possible parallel
translations. By the Frobenius integrability theorem one can find a coordinate
system (U, z) of TM in a neighborhood of v ∈ TM such that the components of
Oτ ∩ U are the sets

{w∈U | zi(w)=zi0, dimOτ+1 ≤ i ≤ 2n}, |zi0| < ε. (1.36)

We say that the parallel translation is regular if the distribution DH is regular and
the orbits of the parallel translation are regular in the sense that for any v ∈ TM
there is a neighbourhood U ⊂ TM such that any orbit Oτ has at most one connected
component in U . If the parallel translation is regular, then there exists a coordinate
system (U, z) of TM in a neighborhood of any v ∈ TM such that in (1.36) different
zi coordinates (dimOτ +1 ≤ i ≤ 2n) correspond to different orbits of the parallel
translation.

A function E ∈ C∞(TM) is called holonomy invariant, if it is invariant with
respect to parallel translation. The set of holonomy invariant functions will be
denoted by HS . In the case when the parallel translation is regular, the tangent
spaces of its orbits are given by the holonomy distribution DH, that is Tv

(
Oτ (v)

)
=

DH(v). Consequently, E ∈ C∞(TM) is a holonomy invariant function if and only if
we have LXE = 0, X ∈ DH that is

HS = {E ∈ C∞(TM) | LXE = 0, X ∈ DH} . (1.37)

The subset of k-homogeneous holonomy invariant functions will be denoted by HS,k:

HS,k = {E ∈ HS | LCE = kE } . (1.38)
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Proposition 1.4.1. [102, Lemma 4.3.] A 2-homogeneous Lagrangian is an Euler-
Lagrange function of a spray S if and only if it is a holonomy invariant function.
Using the notation (1.34) and (1.38) we have

ES,2 = HS,2. (1.39)

Proof. Let h : TTM → DH be an arbitrary projection on DH. In [115, p. 86, The-
orem 1.] it was proven that a 2-homogeneous Lagrange function E : TM → R is a
solution of the Euler-Lagrange PDE if and only if it satisfies the equation

dhE = 0, (1.40)

where the dh operator is defined by the formula dhE(X) = hX(E) = LhXE. Conse-
quently (1.40) is satisfied if and only if E is a holonomy invariant function.

Considering ES and ES,k (k ∈ N), we can observe that both are vector spaces
over R. In particular, the linear combination of 2-homogeneous Euler-Lagrange
functions of S are also 2-homogeneous Euler-Lagrange functions of S. We can
consider such combination as a trivial combination. As the next proposition shows,
a much wider combination of homogeneous Euler-Lagrange functions can produce
new homogeneous Euler-Lagrange functions.

Proposition 1.4.2. [102, Proposition 4.2.] A 1-homogeneous functional combina-
tion of 2-homogeneous Euler-Lagrange functions of a spray S is also a 2-homogeneous
Euler-Lagrange functions of S.

Proof. Let ϕ = ϕ(z1, . . . , zr) be a smooth 1-homogeneous function and consider the
functional combination

E := ϕ
(
E1, . . . , Er

)
(1.41)

of E1, . . . , Er ∈ ES,2, that is, 2-homogeneous Euler-Lagrange functions of a spray S.
It is clear, that E is also 2−homogeneous. Moreover, using (1.2) we have Ei ∈ HS,2
and from (1.37) we get LXEi = 0 for any vector field X ∈ DH in the holonomy
distribution. Consequently, for X ∈ DH we have

LXE =
∂ϕ

∂z1
·LXE1 + · · ·+ ∂ϕ

∂zr
·LXEr = 0,

which shows that E ∈ HS,2 and from (1.2) we get E ∈ ES,2.

Proposition 1.4.2 shows that functional combinations of Euler-Lagrange func-
tions can result new variational principles for the spray. The following theorem can
be used to determine, in terms of geometric quantities associated to the spray, how
many essentially different variational principles exist for a given spray, that is what
the h(2)-variational freedom is.

Theorem 1.4.3. [102, Theorem 4.4] Let S be a metrizable spray such that the
parallel translation with respect to the associated connection is regular. Then

VS, 2 = codimDH. (1.42)
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To prove the theorem we need the following lemmas:

Lemma 1.4.4. Let S be a spray and Eo ∈ ES,2 non-vanishing on TM . Then E
is a 2−homogeneous Euler-Lagrange function of S if and only if θ := E/Eo is a
0−homogeneous holonomy invariant function:

E ∈ ES,2 ⇐⇒ θ = E/Eo ∈ HS,0.

Proof. Using Lemma 1.4.1 we obtain that both E and Eo are 2-homogeneous holo-
nomy invariant functions. Thus, θ := E/Eo is a 0-homogeneous holonomy invariant
function, that is, θ ∈ HS,0. Conversely, assume that θ = E/Eo ∈ HS,0. Then
E = θEo is a 2−homogeneous holonomy invariant function. By Proposition 1.4.1,
E is an Euler-Lagrange function of the spray S.

Lemma 1.4.5. The smallest involutive distribution DH,C :=
〈
DH, C

〉
Lie
, containing

DH and the Liouville vector field C is linearly generated by DH and C, that is,〈
DH, C

〉
Lie

= Span{DH, C}. (1.43)

Proof. If C ∈ DH then DH,C = DH and (1.43) is true. If C 6∈ DH, then consider-
ing X, Y ∈ DH,C and using the decomposition X = XDH+XC and Y = YDH+YC
corresponding to the directions DH and C we get

[X, Y ] = [XDH , YDH ] + [XC , YC ] + [XC , YDH ] + [XDH , YC ]. (1.44)

We have [XC , YC ] ∈ Span{C} and [XDH , YDH ] ∈ DH. Let us consider a local basis
B =

{
δ
δx1
, . . . , δ

δxn

}
of the horizontal space HTM . Then the holonomy distribution

DH can be generated locally by the elements of B and by their successive Lie brackets.
We have [C, δ

δxi
] = 0, and by the Jacobi identity, this is also true for the successive

brackets of the δ
δxi

’s. YDH ∈ DH can be written as a linear combination of the
elements YDH = gαYα, where Yα ∈ DH can be obtained by successive brackets of
the δ

δxi
’s, and therefore [C, Yα] = 0. Hence, for the C-directional component of X

we have XC = XcC with Xc ∈ C∞(TM) and [XC , YDH ] = (XCg
α)Yα − (YDHX

c)C
which is an element of Span{DH, C}. The same argument is valid for the fourth
term in (1.44).

Lemma 1.4.6. If the spray S is metrizable then C is transverse to DH on TM , that
is

Span{DH, C} = DH ⊕ Span{C}. (1.45)

Proof. If S is metrizable, then there exists a Finsler energy function Eo ∈ ES,2 of
S. Because of Proposition 1.4.1 we have Eo ∈ HS,2. On the other hand, by using
the homogeneity property of Eo we have LCvE = 2E(v) > 0 at any point v ∈ TM .
But the derivatives of Eo with respect to the elements of DH is zero. Therefore we
obtain that C 6∈ DH at v ∈ TM .
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Proof of Theorem 1.4.3. Let us denote by κ(∈ N) the rank of the distribution
DH. We will show that in a neighbourhood of a v ∈ TM one can find exactly
CodimDH = 2n− κ locally functionally independent elements in ES,2.

As the spray S is metrizable, therefore there exists a Finsler energy function
Eo ∈ ES,2 associated to S. From (1.43) and (1.45), we have DH,C = DH ⊕ C,
therefore dimDH,C = κ+ 1. Both DH and DH,C are involutive smooth distributions
on TM . By the Frobenius integrability theorem one can find a coordinate system
(U, z) of TM in a neighborhood of v0 ∈ TM , such that zi(v) = 1, z(U) =]1−ε, 1+ε[2n

and for all zκ+1
0 , . . . , z2n

0 with |1−zi0| < ε, the sets

Oτ ={w∈U | zi(w)=zi0, κ+1 ≤ i ≤ 2n}, N ={w ∈ U | zi(w)=zi0, κ+2 ≤ i ≤ 2n}

are integral manifolds of the distributions DH respectively DH,C over U . Moreover,
by the regularity of the parallel translation, the coordinate neighbourhood U can be
choosen in such a way that for any v ∈ U the orbitOτ (v) of v has only one component
in U under the parallel translations. In this case, different zi coordinates for κ+1 ≤
i ≤ 2n, correspond to different orbits, hence these coordinates parametrize the orbits
of the parallel translations on U . Let

DH = Span

{
∂

∂z1
, . . . ,

∂

∂zκ

}
, DH,C = Span

{
∂

∂z1
, . . . ,

∂

∂zκ
,

∂

∂zκ+1

}
, (1.46)

where Span
{

∂
∂zκ+1

}
= Span {C} , that is, ∂

∂zκ+1
= λC, with λ(v0) 6= 0. Hence we get

∂Eo
∂zκ+1

(v0) = λ(CEo)(v0) = 2λEo(v0) 6= 0. (1.47)

Considering the set of 0−homogeneous holonomy invariant functions, we have

θ ∈ HS,0 ⇐⇒

{
LXθ = 0, ∀ X∈DH
LCθ = 0,

}
⇐⇒ LXθ = 0, ∀ X∈DH,C .

(1.48)
From (1.46) and from (1.48), it follows that θ ∈ HS,0 on U if and only if it is a
function of the variables zκ+2, . . . , z2n, that is

θ = θ(zκ+2, . . . , z2n). (1.49)

By using a convenient bump function ψi in each variable zi (κ + 2 ≤ i ≤ 2n), we
obtain smooth functions θi := ψi · zi ∈ C∞(TM) (no summation convention is used
here), such that θi(v0) = 1, dθi

dzi
(v0) = 1 and supp(θi) ⊂ U . It is clear that

θκ+2, . . . , θ2n (1.50)

are functionally independent 0−homogeneous holonomy invariant functions on some
neighbourhood Ũ ⊂ U of v0 and any elements of HS,0 can be expressed on Ũ as their
functional combination. The functions (1.50) can be used to “modify” the original
Euler-Lagrange function Eo to obtain new elements of ES,2, functionally independent

on Ũ .
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Indeed, let Ei := (1 + θi)Eo for κ+ 2 ≤ i ≤ 2n, and set Eκ+1 := Eo. Since 1 + θi
are 0−homogeneous and Eo is 2-homogeneous holonomy invariant functions we get
that

Eκ+1, Eκ+2, . . . , E2n, (1.51)

are 2−homogeneous holonomy invariant functions. Then, by Lemma 1.4.4, the
elements of (1.51) are in ES,2. Moreover, by the construction we have

dEi = d
(
(1+θi)Eo

)
=
dθi
dzi

Eodz
i + (1+θi)dEo,

with no summation on i. Hence,

(dEi)v0 = (dzi)v0 +
(
1 + θi(v0)

)
(dEo)v0 .

and taking (1.47) into account we get

dEκ+1 ∧ dEκ+2 ∧ · · · ∧ dE2n(v0) =
(
dEo ∧ (dzκ+2 + θκ+2dEo) ∧ · · · ∧ (dz2n + θ2ndEo)

)
v0

= (dEo ∧ dzκ+2 ∧ · · · ∧ dz2n)v0
= 2(λEo dz

κ+1 ∧ dzκ+2 ∧ · · · ∧ dz2n)v0 6= 0,

that is, the functions (1.51) are functionally independent in some neighbourhood

Û ⊂ Ũ of v0 ∈ TM .
On the other hand, let us suppose that E ∈ ES,2 is a 2−homogeneous Euler-

Lagrange function associated to S. Using Lemma 1.4.4, we get that θ = E/Eo is
a 0−homogeneous holonomy invariant function. Then, θ has the form (1.49) on U
and it can thus be expressed as a functional combination θ = Ψ(θκ+2, . . . , θ2n). Since
Eo = Eκ+1 we get

E = Ψ

(
Eκ+2

Eκ+1

, . . . ,
E2n

Eκ+1

)
· Eκ+1

showing that E is locally a functional combinations of the elements (1.51).

1.5 Invariant variational principle for canonical

flows on Lie groups

In the sequel we will consider the case, where the manifold M := G is a Lie group.
We will denote by Lĝg or simply by ĝg the left translation of g ∈ G by ĝ ∈ G. Let
(x1, . . . , xn) = (x) be local coordinates on G, and let (x, y) with (y1, . . . , yn) = (y)
be the standard associated coordinate system on TG. We will also use the semi-
invariant coordinates (x, α) on TG ' G × g, where α = (Lx−1)∗y is the Maurer-
Cartan form. The corresponding coordinates on TTG are (x, α,X,A), that is,

(x, α,X,A) = X
∂

∂x

∣∣∣
(x,α)

+A
∂

∂α

∣∣∣
(x,α)

.
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Since the coordinates α = (αi) and A = (Ai) are left-invariant coordinates, we find
that the left translation by a group element g induces on TTG the following action

Lg(x, α,X,A) = (gx, α, gX,A) = gX
∂

∂x

∣∣∣
(gx,α)

+A
∂

∂α

∣∣∣
(gx,α)

.

The canonical projection π : TG → G is (x, α) → x, therefore π∗ : TTG → TG is
given by (x, α,X,A)→ (x, x−1X) and the vertical subspace on (x, α) ∈ TG is

V(x,α)TG := Kerπ∗ =
{

(x, α, 0, b) | b ∈ g
}
.

On a Lie group the geodesic flow of the canonical connection is described by the
system

ẍ = ẋx−1ẋ, (1.52)

and the vector field on the tangent space, corresponding to the geodesic flow of the
canonical connection is the spray S where

S(x,α) = (x, α, xα, 0) = xα
∂

∂x

∣∣∣
(x,α)

. (1.53)

Then γt is a geodesic of (1.53) if and only if the equation Sγ̇ = γ̈ holds. Moreover,
with (x, α) as a local coordinate system, the vertical endomorphism and the Liouville
vector fields are

J = (x−1dx)⊗ ∂

∂α
, C = α

∂

∂α
.

For more details (calculation of the horizontal and the vertical projecion, curvature
etc) see [126]. We have the following

Proposition 1.5.1. [96, Proposition 4.3] A Lagrangian E : TG → R is a left-
invariant solution to the Euler-Lagrange equation associated to the canonical spray
of the Lie group G, if and only if the system

∂E

∂xi
= 0, i = 1, . . . , n (1.54)

[a, α]i
∂E

∂αi
= 0, ∀a ∈ g, (1.55)

is satisfied.

Proof. The Euler-Lagrange partial differential equation associated to a spray S can
be written as (1.19) where the unknown is the Lagrangian E. If X = (x, a) denotes
a left-invariant vector field on G corresponding to a ∈ g, and Xv, Xh are its vertical
and horizontal lifts, then we have ωE(Xv) ≡ 0, since ωE is semi-basic. Moreover, we
have

ωE(Xh) = (iSddJE + dLCE − dE)(Xh) = ddJE(S, Xh) + dLCE(Xh)− dE(Xh)

= S
(
JXh(E)

)
−Xh

(
JS(E)

)
−J [S, Xh]E +Xh

(
C(E)

)
−XhE

= S
(
Xv(E)

)
−J [S, Xh]E −XhE.
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and in the Lie group case, using adapted coordinate system, one can find

ωE(Xh) = xα
∂

∂x

(
a
∂

∂α
(E)
)
−1

2
[a, α]

∂

∂α
(E)−

(
xa

∂

∂x
− 1

2
[a, α]

∂

∂α

)
E

= [a, α]
∂E

∂α
+ xαa

∂2E

∂x∂α
− xa∂E

∂x
.

If the Lagrangian is left-invariant, then ∂E
∂x

= 0 and we obtain that

ω(Xh) = [a, α]
∂E

∂α
= 0,

which completes the proof.

We remark that equation (1.54) expresses the fact that E is left-invariant and
(1.55) expresses that E is a solution of the Euler-Lagrange equation.

Corollary 1.5.2. The canonical flow of the Lie group G is variational with respect
to a left-invariant Lagrangian if and only if there exists an ad-invariant function
E : g→ R with nondegenerate Hessian.

Proof. Using Proposition 1.5.1 we get that the canonical flow is variational with
respect to an invariant Lagrangian if and only if the Frobenius differential system
(1.54) and (1.55) has a solution E : TG ' G × g → R satisfying the regularity
condition, or equivalently, there exists a function E : g→ R satisfying the equation

[a, α]
∂E
∂α

= 0, (1.56)

for all a ∈ g, such that the Hessian matrix
(

∂2E
∂αi∂αj

)
is nondegenrate. The equation

(1.56) is identically satisfied if and only if E is constant on the orbit of the ad
representation of g.

Let {e1, ..., en} be a basis of g. Then the structure constants Cγ
αβ of the Lie

algebra g are defined by
[eα, eβ] = Cγ

αβeγ. (1.57)

We have the following

Theorem 1.5.3. [114, Theorem 3.] There exists a left-invariant variational princi-
ple for the canonical flow of the Lie group G in a neighborhood of a generic element
α ∈ g if and only if the linear system

Ck
ijαjxk = 0, i = 1, . . . , n, (1.58)

Ck
ijxk + Ck

jmαmxik = 0, i, j = 1, . . . , n, (1.59)

has a solution {xi = εi, xij = εij} satisfying the condition det(εij) 6= 0.
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Proof. Let us consider the distribution ∆ in the tangent space of g defined as

∆α :=

{
Xa := [a, α]

∂

∂α

∣∣ a ∈ g

}
,

at any α ∈ g. One can easily show that ∆ is involutive and the system (1.56) is
integrable. Moreover, there exists a nondegenerate initial condition if and only if
the conditions of the theorem are satisfied.

Corollary 1.5.4. The canonical connection of a commutative Lie group is varia-
tional with respect to a left-invariant Lagrangian.

Corollary 1.5.5. If the derived Lie algebra is one dimensional, then there is no
left-invariant variational principle for the canonical flow.

Remark 1.5.6. The Lagrangian E(α) = K(α, α), where K is the Killing form of
G is always a solution to the equation (1.54) and (1.55). That way we rediscover
the well-known property of semi-simple Lie groups: the canonical connection is
variational with respect to a left-invariant Lagrangian.

Classification up to dimension 4

In [114], using Theorem 1.5.3, we classify Lie groups up to dimension 4 for which
there exists an invariant variational principle for the canonical geodesic flow.

2-dimensional Lie groups

There are, up to isomorphism, two Lie algebras distinguished according to whether
[ , ] is trivial or not. In the former case we have the abelian Lie algebra, and according
to Corollary 1.5.4 it is variational with respect to a left-invariant Lagrangian. The
latter one is the Lie algebra of the affine transformation group of the line. Using
Theorem 1.5.3 one can show that the solutions are non regular, and we can conclude
that there is no invariant variational principle for the canonical connection of the
affine group of the line.

3-dimensional Lie groups

In [93] G. Thompson proved that the canonical geodesic equations of 3-dimensional
Lie groups are locally variational. Moreover, we can use Jacobson’s classification of
the 3-dimensional Lie algebras which depends primarily on the dimension of the first
derived algebra g(1) where g denotes the original Lie algebra. We have the following
possibilities:

If dim(g(1)) = 0, then g is abelian and, according to Corollary 1.5.4, the canonical
connection of a commutative Lie group is variational with respect to a left-invariant
Lagrangian.
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If dim(g(1)) = 3, then g is simple and we have g = s`(2,R) or g = so(3). In both
cases the Killing form provides a regular invariant metric and so the connections are
variational.

If dim(g(1)) = 1 there are, up to isomorphism, two algebras distinguished ac-
cording to whether or not g(1) lies inside the center of g. In the former case g is
the Heisenberg algebra. Its canonical connection is a flat connection and so it is
variational. In the second case g is isomorphic to the Lie algebra of the group of
non-singular 2× 2 upper triangular matrices and so it is again variational. In both
cases, however, one can show, using Theorem 1.5.3, that the solutions of the systems
(1.58)–(1.59) are necessarily non-regular, and we can conclude that the correspond-
ing invariant variational principle does not exist.

4-dimensional Lie groups

According to [73], there are 12 classes of Lie algebras in dimension 4: A4,i, i =
1, . . . , 12. Several Lie algebras have parameters denoted by a or b or both. G. Thomp-
son and his co-workers determined in [40] whether or not the canonical connections
are variational. In [93] Thompson also obtained results on the existence of invariant
variational principles for the canonical flows. Using Theorem 1.5.3, one can com-
plete the classification: depending on the Lie alebra, the canonical geodesic flow of
the Lie group is

- non-variational in the cases: A4,7, A4,11a with 0 < a, and A4,9b with −1 < b < 1,

- variational but invariant variational principle does not exist in the cases: A4,1,
A4,2a, A4,3, A4,4, A4,5ab, A4,6ab, A4,9, A4,12,

- variational and invariant variational principle exists in the cases: A4,8 and A4,10.
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Chapter 2

Metrizability and projective
metrizability

2.1 Introduction

A special and very interesting problem, within the inverse problem of the calculus
of variations, is known as the metrizability problem. Here the regular Lagrangian
to search for is the energy function of a Finslerian or a Riemannian metric. If the
metric exists, then the integral curves of the given SODE are the geodesics of the
corresponding Finslerian or Riemannian metric. One can also consider the projective
metrizability problem, where one seeks for a Finslerian or a Riemannian metric
whose geodesics coincide up to an orientation preserving reparameterization with
the solution of the given SODE. Although metizability and projective metizability
can be considered both as a special case of the inverse problem of the calculus
of variations, because of their geometric interest we dedicate an entire paragraph
to these very natural and well-studied problems. We focus mainly to the Finsler
metrizability and projective Finsler metrizability. Several papers are devoted to
these problems (considered from the differential geometric point of view, see for
example the recent papers [12, 21, 32, 56, 60, 66, 80, 81, 91]).

In Section 2.3 we investigate the Finsler and the Landsberg metrizability prob-
lems. Both can be formulated in terms of partial differential systems. Indeed, by
characterizing Finsler metrics with their energy functions, the Finsler metrizability
problem can be described in terms of a second order PDE system composed by the
homogeneity condition (2.8) and the Euler-Lagrange partial differential equations
(2.9). Completing this system with the third order partial differential equations
(2.13) corresponding to the invariance of the metric with respect to the parallel
translations, we can obtain the conditions of the Landsberg metrizability. In [115],
using the holonomy invariance of the energy function, we proved that the Finsler
metrizablity’s second order PDE system can be reduced to a first order PDE system
on the same unknown function (Theorem 2.3.1). We formulated in a coordinate free
way the necessary and sufficient condition for metrizability in terms of a geometric
object DH, associated to the spray (Theorem 2.3.2 and Theorem 2.3.3). DH is called
the holonomy distribution [115] or the holonomy algebra [53]. We obtained simi-
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CHAPTER 2. METRIZABILITY AND PROJECTIVE METRIZABILITY 24

lar results on the Landsberg case: the Landsberg metrizablity’s third order PDE
system can be reduced to a first order PDE system (Theorem 2.3.4 and Theorem
2.3.5). Moreover, a necessary and sufficient condition for Landsberg metrizability
can be formulated in a coordinate free way in terms of a distribution generated by
the holonomy distribution and the image of the Berwald curvature.

In Section 2.4 we consider the Finsler metrizability with special curvature prop-
erties. The aim is to provide necessary and sufficient conditions for SODEs to be
the geodesic system of a Finsler metric of constant or scalar flag curvature, respec-
tively. We solve both problems. In the first part of Section 2.4 we focus on the
constant curvature case. When the spray has zero constant curvature, then there is
no obstruction to the existence of a locally defined Finsler structure that metricizes
the given spray [97, 29, 115]. In Theorem 2.4.1, we solved the non-zero curvature
case completely by providing a set of equations, which contains an algebraic equa-
tion and two tensorial differential equations, which have to be satisfied by the Jacobi
endomorphism of the SODE. In the second part of the section we focus on the charac-
terization of sprays that are metrizable by Finsler functions of scalar flag curvature.
We provide the necessary and sufficient conditions on the Jacobi endomorphism,
which can be used to decide whether or not a given homogeneous SODE represents
the geodesic equations of a Finsler function of scalar curvature. In Theorem 2.4.3
we provide conditions, which together with the isotropy condition, characterizes the
class of sprays that are metrizable by Finsler functions of scalar flag curvature. The
proof offers an algorithm to construct the Finsler function. We also showed that our
results lead to a new approach for Hilbert’s fourth problem. This problem asks to
construct and to investigate the geometries in which a straight line segment is the
shortest connection between two points, [4]. Alternatively, one can formulate the
problem as follows: ”given a domain Ω ⊂ Rn, determine all (Finsler) metrics on Ω
whose geodesics are straight lines”, [82, page 191]. Yet another formulation of the
problem requires to determine projectively flat Finsler metrics, [31]. Projectively
flat Finsler functions have isotropic geodesic sprays and therefore have constant or
scalar flag curvature. Such Finsler metrics were studied in [22, 86]. We used our re-
sults to investigate, when the projective deformations of a flat spray are metrizable.
Using these conditions, we showed how to construct examples which are solutions
to Hilbert’s fourth problem.

In Section 2.5 we consider the projective metrizability problem. Recently several
new results appeared about the projective Finsler metrizability [97, 31, 33, 33, 65,
68]. Various strategies can be chosen to deal with the problem: in [32] the generalized
Helmholtz system was considered, in [97] a system in terms of a semi-basic 1-form
was investigated, and in [33] an approach in terms of 2-forms was formulated. In
[75, 76] A. Rapcsák obtained necessary and sufficient conditions for the projective
metrizability in terms of a second order PDE system, now called Rapcsák equations
[32, 91, 82]. The coordinate free formulations of these equations can be found in
[54, 91]. In [110] and [111] the integrability of the Rapcsák system was investigated
by using the Spencer version of the Cartan-Kähler theorem. The compatibility
conditions can be expressed in terms of the curvature tensor. The curvature of flat
and of isotropic sprays satisfies these conditions. We remark that for these classes the
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projective metrizability problem has been discussed in [29, 30, 97], but the approach
in [110, 111] is different and can be particularly advantageous from the perspective
of further investigations in the non-isotropic curvature case. We proved that if the
spray is non-isotropic, then the symbol of the corresponding differential operator
is not involutive and that the Cartan test fails. Therefore the PDE system is not
integrable and higher integrability conditions exist. Using the Spencer technique,
this level, and the number of the extra integrability conditions can be calculated.

In Section 2.6 we investigate projective deformations and the rigidity of the
metrizability property. In [95] Yang shows that the projective class of a projectively
flat spray of constant flag curvature contains sprays which are not Finsler metrizable.
In [98] we extend Yang’s example and show that for an arbitrary spray its projective
class contains many sprays that are not Finsler metrizable. Considering holonomy
invariant projective changes in [103], we show that only very special holonomy in-
variant projective factors can lead to a metrizable projective deformation. These
holonomy invariant projective factors have to be related to the principal curvatures
of the deformed Finsler structure.

In Section 2.7 we investigate the invariant Riemann and Finsler metrizability
and projective metrizability of the canonical spray of Lie groups. Since the no-
tion of Finslerian metric is a generalisation of the notion of Riemannian metric
– as S.S. Chern said “Finsler geometry is just Riemannian geometry without the
quadratic restriction” [27] – therefore every Riemann metrizable spray (necessarily
quadratic) is trivially Finsler metrizable. The converse, in general, is not true; there
are Finsler metrizable sprays which are not Riemann metrizable. We remark that
in the class of quadratic sprays Zoltán Szabó’s theorem [88] states that the notion
of Finsler metrizability and Riemann metrizability coincide. The projective Finsler
metrizability is, however, different from projective Riemann metrizability, even in
the case of quadratic sprays. This follows since a quadratic spray can be projectively
equivalent to a non-quadratic one. Therefore, the class of projective Finsler metriz-
able sprays is in general strictly larger then the class of Riemann metrizable sprays,
even for quadratic sprays. The goal of Section 2.7 is to investigate the relationship
between invariant metrizability, and the invariant projective metrizability of the
canonical spray. We prove that the canonical connection of a Lie group is invariant
projective Finsler metrizable if and only if it is invariant Riemann metrizable. This
result shows the rigidity of the structure.

We consider also homogeneous spaces G/H with a special geodesic structure. A
left-invariant geodesic structure on G/H is called geodesic orbit structure (g.o. struc-
ture), if the geodesics can be derived as orbits of 1-parameter subgroups of G. In
V.I. Arnold’s terminology these curves are called ”relative equilibria” [8]. We prove
that a g.o. structure is invariant projective Riemann (resp. Finsler) metrizable if
and only if it is invariant Riemann (resp. Finsler) metrizable. In the quadratic case
we also obtain the rigidity property: the class of Riemann metrizable and projective
Finsler metrizable g.o. sprays coincide.

The results of this chapter are based on the papers [96, 97, 98, 99, 100, 101, 102,
103, 110, 115].
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2.2 Preliminaries

Finsler metric, geodesic spray, metrizability

A Finsler function on a manifold M is a continuous function F : TM → R, which
is smooth and positive away from the zero section, positive homogeneous of degree
one, and strictly convex on each tangent space. The pair (M,F ) is called a Finsler
manifold.

The energy function E : TM → R associated with a Finsler function F is defined
as E := 1

2
F 2. The symmetric bilinear form

gx,y : (u, v) 7→ gij(x, y)uivj =
1

2

∂2F2
x(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

, u, v ∈ TxM

is called the metric tensor of the Finsler manifold (M,F). The Finsler function is
called absolutely homogeneous at x ∈ M , if Fx(λy)= |λ|Fx(y) for all λ ∈ R. If F is
absolutely homogeneous at every x ∈M , then the Finsler manifold (M,F) is called
reversible.

The tensor components

gij :=
∂2E

∂yi∂yj
(2.1)

deternine a positive definite matrix gE = (gij) at any point (x, y) ∈ TM . The
regularity condition implies that the Euler-Poincaré 2-form of E, ΩE = ddJE, is
non-degenerate and hence it is a symplectic structure. Therefore, the equation
(1.17) uniquely determine a vector field S on TM that is called the geodesic spray
of the Finsler function. The geodesics of the spray S are the geodesics of the Finsler
manifold (M,F ). The geodesic spray is locally given by

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
, (2.2)

where

Gi(x, y) :=
1

4
gil(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk, (2.3)

are the geodesic coefficients. A spray S is called Finsler metrizable if there exists a
Finsler function F that satisfies the condition (2.3).

One can reformulate the regularity condition of the energy function in terms of
the Hessian of the Finsler function F as follows. Consider

hij(x, y) = F
∂2F

∂yi∂yj
(2.4)

the angular metric of the Finsler function. The metric tensor gij and the angular
tensor hij are related by

gij = hij +
∂F

∂yi
∂F

∂yj
. (2.5)
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Metric tensor gij has rank n if and only if angular tensor hij has rank (n − 1), see
[63]. Therefore, the regularity of the Finsler function F is equivalent with the fact
that the Euler-Poincaré 2-form ωF = ddJF has rank 2n− 2.

Consider F a Finsler function and Φ the Jacobi endomorphism (also called the
Riemann curvature [82]) of its geodesic spray S. The Finsler function F is said to be
of scalar (resp. constant) curvature if there exists a scalar (resp. constant) function
κ on TM , such that

Φ = κ
(
F 2J − FdJF ⊗ C

)
. (2.6)

F is called an Einstein metric if there exists a function λ ∈ C∞(M) such that the
Ricci scalar satisfies ρ(x, y) = λ(x)F 2(x, y). The notion of flag curvature extends the
concept of sectional curvature from the Riemannian to the Finslerian setting (see
[105, Chapter 3.5]). The Jacobi endomorphism of a Finsler metric is diagonalizable
in the following sense: there exist functions κi and horizontal vector fields Xα ∈
X (TM) for i = 1, . . . , n such that S = Xn and

Φ(Xi) = κi JXi, i = 1, . . . , n. (2.7)

(The summation convention is not applied in the above formula.) Xi is called an
eigenvector field of Φ corresponding to the eigenfunction κi. In particular, S is
always an eigenvector of Φ corresponding to λn = 0. The function κ1, . . . , κn−1 are
called the principal curvatures of the Finsler metric [83].

Formal integrability of partial differential operators

Let B be a vector bundle over M . If s is a section of B, then jk(s)x will denote the
kth order jet of s at the point x ∈M . The bundle of kth order jets of the sections of
B is denoted by JkB. In particular Jk(RM) will denote the kth order jet bundle of
real valued functions, that is the sections of the trivial line bundle. Let B1 and B2

be vector bundles over M and P : Sec (B1) → Sec (B2) a differential operator. An
s ∈ Sec(B1) is a solution to P if Ps ≡ 0.

If P is a linear differential operator of order k, then a morphism pk(P ) : Jk(B1)→
B2 can be associated to P . The lth order prolongation pk+l(P ) : Jk+l(B1)→ Jl(B2)
can be introduced in a natural way by taking the lth order derivatives. Solk+l,x(P ) :=
Ker pk+l,x(P ) denotes the set of formal solutions of order l at x ∈M . Obviously, we
have

Ps ≡ 0 ⇒ jl,x(s) ∈ Soll,x(P ),

for every l ≥ k and x ∈M . The differential operator P is called formally integrable
if Soll(P ) is a vector bundle for all l ≥ k, and the restriction πl,x : Soll+1,x(P ) →
Soll,x(P ) of the natural projection is onto for every l ≥ k. In that case any kth order
solution or initial data can be lifted into an infinite order solution. In the analytic
case, formal integrability implies the existence of solutions for arbitrary initial data
[23, p. 397]. To prove the formal integrability of a differential operator, one can use
the Cartan-Kähler theorem. To present it, we have to introduce some notations.

Let σk(P ) denote the symbol of P determined by the highest order terms of the
operator. It can be interpreted as a map σk(P ) : SkT ∗M ⊗B1 → B2. The symbol of
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the lth order prolongation of P is denoted by σk+l(P ) : Sk+lT ∗M⊗B1 → SlT ∗M⊗B2.
If E={e1, . . . , en} is a basis of TxM , we set

gk,x(P ) = Kerσk,x(P ),

gk,x(P )e1...ej =
{
A ∈ gk,x(P ) | ie1A = · · · = iejA = 0

}
, j = 1, . . . , n,

The basis E is called quasi-regular if one has

dim gk+1,x(P ) = dim gk,x(P ) +
n∑
j=1

dim gk,x(P )e1...ej .

A symbol is called involutive if there exists at any x ∈M a quasi-regular basis. We
remark that in the works of Cartan, and more generally in the theory of exterior
differential systems, ”involutivity” means more than the existence of a quasi-regular
basis and it refers to ”integrability” (cf. [23, pages 107 and 140]). Here we follow the
terminology of Goldschmidt (cf. [23, page 409]). The notion of involutivity allows
us to check the formal integrability in a simple way by using the following

Theorem 2.2.1 (Cartan-Kähler). Let P be a kth order linear partial differential op-
erator. Suppose that P is regular, that is Solk+1(P ) is a vector bundle over Solk(P ).
If the map πk : Solk+1(P )→ Solk(P ) is surjective and the symbol is involutive, then
P is formally integrable.

It can be shown that the condition of the existence of a quasi-regular basis can
be replaced by a weaker condition. The obstructions to the higher order successive
lift of the kth order solution are contained in some of the cohomology groups of a
certain complex called Spencer complex. The Hm,i Spencer cohomology group is
defined as Hm,i = Ker δmi /Im δmi−1 where

δmi : gm(P )⊗ ΛiT ∗M −→ gm−1(P )⊗ Λi+1T ∗M

is the restriction of the natural operator δmi : Sk+mT ∗M ⊗ ΛiT ∗M → Sk+m−1T ∗M ⊗
Λi+1T ∗M. The symbol of a kth order linear differential operator P is 2-acyclic if
Hm,2 = 0 for all m ≥ k. Using Spencer cohomology groups, a weaker version of
integrability theorem can be stated:

Theorem 2.2.2 (Goldschmidt). Let P be kth order regular linear partial differential
operator. If πk : Solk+1(P ) → Solk(P ) is onto and the symbol of the operator is 2-
acyclic then P is formally integrable.

Using a classical result of homological algebra, the surjectivity of πk+1 can be veri-
fied in the following way [23]: there exists a morphism ϕ : Solk(P )→ Coker (σk+1(P )),
such that the sequence

Solk+1(P )
πk−−→ Solk(P )

ϕ−−→ Coker (σk+1(P ))

is exact. Therefore πk is surjective if and only if ϕ ≡ 0. The map ϕ is called
obstruction map and Coker (σk+1(P )) is called obstruction space, because a kth

order solution s∈Solk(P ) can be prolonged into a (k+1)st order solution if and only
if ϕ(s) = 0.
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Remark 2.2.3. The map ϕ and therefore the integrability conditions can be com-
puted as follows: Let τ : T ∗⊗B2 → K be a morphism such that Ker τ=Imσk+1(P ).
Then K is isomorphic to Coker (σk+1(P )). Moreover, if sk,x = jk(s)x is a kth order
solution, that is (Ps)x = 0, then

ϕ(sk,x) = τ(∇(Ps))x,

where ∇ is an arbitrary linear connection on the bundle B2.

2.3 Finsler metrizability

In this section we investigate the following problem: under which conditions can a
second order differential equation (1.4) be the geodesic equation of a Finsler metric.
The energy function of a Finsler space is necessarily a 2-homogeneous solution of
the Euler-Lagrange PDE system, therefore, the second-order differential equation
(1.4) is Finsler metrizable, if and only if, there exists a solution E : TM → R to the
second order differential system

yi
∂E

∂yi
− 2E = 0, (2.8)

yj
∂2E

∂xj∂yi
+ f j(x, y)

∂2E

∂yj∂yi
− ∂E

∂xi
= 0, i = 1, . . . , n, (2.9)

so that the quadratic form gE defined in (2.1) is positive definite. Since the second
order PDE system describing the metrizability is composed by n+ 1 equations (and
one inequality), it is an overdetermined differential system. It is not surprising then,
that it has no solution in the generic case. It is more interesting however, that it can
be reduced to a first order PDE system which gives a nice geometric interpretation:

Theorem 2.3.1. [115, Theorem 1.] A Lagrangian E : TM → R is a solution of
the system composed by (2.8) and (2.9), if and only if, it is a solution of the first
order system {

LCE − 2E = 0,

dhE = 0,
(2.10)

where DH ⊂ TTM is the holonomy distribution generated by the horizontal vector
fields and their successive Lie-brackets, and h : TTM → DH is an arbitrary projec-
tion on DH.

We note that for X ∈ X (TM) we have dhE(X) = hX(E) = LhXE, so the second
equation of (2.10) means simply that the Lie-derivative of E with respect to vector
fields in the holonomy distribution DH is zero.

Proof. Let us suppose that E : TM → R is a solution of (2.10). Since HTM ⊂ DH,
we have h ◦ h = h and

dhE = dh◦hE = ihdhE − dhihE + i[h,h]E = ihdhE = 0.
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Moreover, the spray S is horizontal. Writing the Euler-Lagrange form in the form

ωE = iSddJE + dLCE − dE = dJLSE − i[J,S]dE = dJLSE − 2dhE

we obtain that ωE = 0 and E is a solution of (1.21) that is of (2.9).
On the other hand, let us suppose now that E : TM → R is a 2-homogeneous

solution of (1.21). We have

iSΩE = d(E − LCE) = −dE. (2.11)

Since [J, J ] = 0, we have d2
J = dJ ◦ dJ = d[J,J ] = 0, and iJΩE = 0, so iCΩE = iJdE.

Moreover, for every X ∈ X (TM) we have

iSΩE(X) = ΩE(S, X) = −ΩE(C,FX) = −iF iCΩE(X),

i.e. iSΩE = iF iCΩE. Thus, we obtain

iSΩE = −iF iCΩE = −iF iJdE = −dvE = −dE + dhE. (2.12)

Comparing (2.11) with (2.12) we obtain that dhE = 0. It follows that hX(E) =
0, i.e. E is constant with respect to horizontal vector fields. Therefore it must
be constant on the distribution generated by the horizontal sub-bundle taking the
recursive Lie-bracket operations, i.e. on DH. This means that we have dhE = 0 and
E is a solution of (2.10).

Corollary 2.3.2. If the Liouville vector field C is in DH, then S is not metrizable.

We have the following

Theorem 2.3.3. [115, Theorem 3.] Let S be an analytical spray over the analytical
manifold M . If DH has constant rank in a neighbourhood of v ∈ TM , then there
exists an analytical Finsler metric in a neighbourhood of v whose geodesics are given
by S, if and only if the kernel of the first prolongation of (2.10) at v contains positive
definite initial data.

Proof. The proof is based on Theorem 2.3.1. Indeed, one can show that the system
(2.10) is formally integrable. In the analytic case, this formal solution gives an
analytical solution in an open neighborhood of v ∈ TM . Theorem 2.3.1 shows that
this function is in fact a 2-homogeneous solution of the Euler-Lagrange PDE system
associated to S.

One can also consider the Landsberg metrizability problem, where we seek for
a Finsler function, such that the canonical connection Γ = [J, S] is metric, i.e. the
parallel transport preserves the metric defined by gE. This extra condition can be
described by the PDE system

∂gjk
∂xi
− Γli

∂gjk
∂yl
− Γlikglj − Γlijglk = 0, i, j, k = 1, . . . , n, (2.13)

which is a 3rd order PDE system in the energy function of the Finsler metric,
taking into account (2.1). Then S is Landsberg metrizable, if and only if there exists
a solution E : TM → R of the third-order PDE system composed by (2.8), (2.9)
and (2.13) so that the quadratic form gE is positive definite. We have the following
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Theorem 2.3.4. [115, Theorem 4.] The third-order partial differential system com-
posed by the equations (2.8), (2.9) and (2.13) is equivalent to the first order system{

LCE − 2E = 0,

dlE = 0,
(2.14)

where L is the distribution generated by the horizontal vector fields, the image of the
Berwald curvature (1.8) and their successive Lie-brackets and l : TTM → L is an
arbitrary projection of TTM onto L.

Using Theorem 2.3.4 one can prove the following

Theorem 2.3.5. [115, Theorem 5.] Let S and M be analytical, and suppose that
rank of L constant in a neighborhood of v ∈ TM . Then there exists a Finsler metric
of Landsberg type in a neighborhood of v whose geodesics are given by S, if and only
if the kernel of the first prolongation of (2.14) at v contains a positive definite initial
condition.

Freedom of the metrizability

Similarly to the notion of variational freedom, one can introduce the metrizability
freedom of a spray S showing how many functionally independent Finsler energy
functions and hence how many essentially different Finsler metrics exist for S. To
be more precise, let E+

S,2 be the set of Finsler energy functions, that is the set
of regular 2−homogeneous Lagrange functions with (3.14) positive definite. The
metrizability freedom of a spray S is m := rank (E+

S,2). If S is non-metrizable then
we set m = 0. We have

Proposition 2.3.6. [102, Proposition 4.9] Let S be a metrizable spray such that
the parallel translation with respect to the associated connection is regular. Then
m = codimDH.

Proof. Using the reasoning of Theorem 1.4.3 one can easily prove Proposition 2.3.6.
We just remark that, using the notation introduced in the proof of Theorem 1.4.3,
we have E0 ∈ E+

S,2 and for any i=κ+2, . . . , 2n, a sufficiently small nonzero constant
ci ∈ R can be chosen for Ei = (1 + ciθi)Eo to remain positive definite. Hence with
Eo = Eκ+1 we get {Eκ+1, Eκ+2, . . . , E2n} ⊂ E+

S,2. A similar argument to that we
used in the proof of Theorem 1.4.3 shows that these elements are locally functionally
independent and they locally generate E+

S,2 which proves the Proposition.
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2.4 Finsler metrizability with special curvature

properties

In this section we address the special case of the Finsler metrizability problem, where
the Finsler function we seek for has constant curvature. When the spray has zero
constant curvature, then there is no obstruction to the existence of a locally defined
Finsler structure that metricizes the given spray [97, 29, 115]. Therefore, we focus
on the case when the curvature is non-zero.

Metrizability by Finsler functions of constant curvature

An isotropic spray S (see formula (1.13)) is called weakly Ricci-constant if LSρ = 0,
and Ricci-constant if dhρ = 0. It is easy to see that if a spray S is Ricci constant,
then it is also weakly Ricci constant.

In the next theorem we provide the necessary and sufficient conditions for a spray
to be metrizable by a Finsler function of non-zero constant curvature.

Theorem 2.4.1. [99, Theorem 4.1] The spray S with non-vanishing Ricci curvature
is metrizable by a Finsler function of non-zero constant flag curvature if and only if
its Jacobi endomorphism Φ satisfies the following equations:

A) rank ddJ(Tr Φ) = 2n,

D1) 2(n− 1)Φ− 2(Tr Φ)J + dJ(Tr Φ)⊗ C = 0,

D2) dh(Tr Φ) = 0.

(2.15)

Proof. Consider a spray S with non-vanishing Ricci curvature. We assume that
its Jacobi endomorphism, Φ, satisfies the algebraic assumption A) as well as the
two tensorial equations (2.15). Since Φ satisfies D1), it follows that the Jacobi
endomorphism is given by formula (1.13), where 2(n−1)α = (n−1)dJρ = dJ(Tr Φ).
Therefore the spray S is isotropic and satisfies the condition dJα = 0.

Due to condition D2), we have that S is Ricci constant and it follows that the
spray S is weakly Ricci constant. Using the fact that 2α = dJρ we obtain

2LSα = LSdJρ = d[S,J ]ρ+ dJLSρ = dvρ = dρ. (2.16)

Within the assumption that the Ricci curvature does not vanish on TM , we may
consider the function F > 0 such that F 2 = sign(ρ)ρ > 0 on TM . Since ddJ(Tr Φ) =
(n−1)ddJρ = (n−1)ddJF

2, the assumption A) assures that F is a Finsler function.
The condition 2α = dJρ reads now 2α = dJF

2 and using formula (2.16) we obtain
LSdJF 2 = dF 2, which means that S is the geodesic spray of the Finsler function F .
We replace

Tr Φ = (n− 1)F 2 = (n− 1)ρ = (n− 1)iSα

and
dJ(Tr Φ) = 2(n− 1)FdJF = 2(n− 1)α = (n− 1)dJρ

in the expression for Φ and obtain formula (2.6) for κ = sign(ρ). It follows that spray
S is Finsler metrizable by the Finsler function F of constant curvature κ = sign(ρ).
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Conversely, if the spray S is Finsler metrizable by a Finsler function of non-zero
constant flag curvature then its Jacobi endomorphism is given by formula (2.6). It
is a straightforward computation to see that Φ satisfies all three conditions A), D1)
and D2) in (2.15).

Some of the conditions of Theorem 2.4.1 are related to the conditions of Theorem
7.2 in [105] as follows: both theorems use the assumption of non-vanishing Ricci
curvature ρ = iSα. Condition D1), which implies that the spray S is isotropic and
dJα = 0, is stronger then condition 2 of [105, Theorem 7.2]. Also condition D2)
implies that ∇α = 0 and therefore this implies condition 3 of [105, Theorem 7.2].
However, the conclusion in Theorem 2.4.1 is stronger as well, for a given spray, we
seek for the metrizability by a Finsler function of constant flag curvature. Theorem
[105, Theorem 7.2] characterizes local variational non-flat isotropic typical sprays.
The differentiability assumptions are different: while here we use smoothness, in
[105, Theorem 7.2] the analyticity of all geometric structures is assumed.

In Theorem 2.4.2 we will strengthen the result of Theorem 2.4.1 by limiting our
discussion to the case where Finsler metrizability is equivalent to the metrizability
by a Finsler function of constant curvature:

Theorem 2.4.2. [99, Theorem 4.2] Consider S a spray of non-vanishing Ricci
curvature on a manifold with dimM ≥ 3. Then, the spray is isotropic, satisfies the
algebraic condition A), and the condition dJα = 0, if and only if the following five
conditions are equivalent:
i) S is Finsler metrizable;

ii) S is metrizable by a Finsler metric of non-vanishing scalar flag curvature;

iii) S is Finsler metrizable by an Einstein metric;

iv) S is metrizable by a Finsler metric of non-zero constant flag curvature;

v) S is Ricci constant.

In the proof, we use Theorem 2.4.1 and the Finslerian version of Schur’s Lemma [9,
Lemma 3.10.2].

Metrizability by Finsler functions of scalar curvature

The problem we want to address in this subsection is the following: provide the
necessary and sufficient conditions for a spray S to be metrizable by a Finsler func-
tion of scalar flag curvature. Using formulae (1.13) and (2.6) it follows that for a
Finsler function F of scalar flag curvature κ, its geodesic spray S is isotropic, with
the Ricci scalar ρ = κF 2 and the semi-basic 1-form α = κFdJF. This fact restricts
the class of relevant sprays to start with to the class of isotropic sprays. The next
theorem provides an algorithm to construct the Finsler function that metricizes a
given spray, in the case when it is variational.

Theorem 2.4.3. [100, Theorem 3.1] Consider a spray S of non-vanishing Ricci
scalar. Then S is metrizable by a Finsler function of non-vanishing scalar flag
curvature if and only if
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i) S is isotropic;

ii) dJ(α/ρ) = 0;

iii) DhX(α/ρ) = 0, for all X ∈ X(TM);

iv) d(α/ρ) + 2iFα/ρ ∧ α/ρ is a symplectic form on TM .

Proof. We assume that the spray S is metrizable by a Finsler function F of scalar
flag curvature κ and we will prove that the four conditions i)-iv) are necessary. Since
the Jacobi endomorphism Φ is given by formula (1.13), it follows that S is isotropic,
and hence condition i) is satisfied. The semi-basic 1-form α and the Ricci scalar ρ
are given by

α = κFdJF, ρ = κF 2. (2.17)

It follows that α/ρ = dJF/F and therefore dJ(α/ρ) = 0, which means that condition
ii) is satisfied. Since S is the geodesic spray of the Finsler function F , it follows
from the second equation of (2.10) that dhF = 0. Therefore,

DhXF = (hX)(F ) = (dhF )(X) = 0

and DhXdJF = 0. It follows that DhX(α/ρ) = 0 and hence condition iii) is also
satisfied. We check now the regularity condition iv). Using dhF = 0 and J ◦ F = v,
we obtain

iF
α

ρ
= iF

1

F
dJF =

1

F
dvF =

1

F
dF.

Therefore, using the regularity of the Finsler function, it follows that

d

(
α

ρ

)
+ 2iF

α

ρ
∧ α
ρ

= d

(
dJF

F

)
+

2

F 2
dF ∧ dJF =

1

2F 2
ddJF

2

is a symplectic form on TM .
Let us prove now the sufficiency of the four conditions i)-iv). Consider a spray S

that satisfies all four conditions. First, condition i) says that the spray S is isotropic,
which means that its Jacobi endomorphism Φ is given by formula (1.13). The next
three conditions ii)-iv) refer to the semi-basic 1-form α and the Ricci scalar ρ, which
enter into the expression of the Jacobi endomorphism Φ.

From condition ii) we have that the semi-basic 1-form α/ρ is a dJ -closed 1-form.
Since the tangent structure J is integrable, it follows that [J, J ] = 0 and hence
d2
J = 0. Therefore, using a Poincaré-type Lemma for the differential operator dJ , it

follows that, locally, α/ρ is a dJ -exact 1-form. It follows that there exists a function
f , locally defined on TM , such that

1

ρ
α = dJf =

∂f

∂yi
dxi. (2.18)

Note that this function f is not unique, it is given up to an arbitrary basic function
a ∈ C∞(M). We will prove that using this function f and a corresponding basic
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function a, we can construct a Finsler function F = exp(f − a), of scalar flag
curvature, which metricizes the given spray S. Using the commutation rule for iS
and dJ , see [105, Appendix A], we have

LC(f) = iSdJf = iS
α

ρ
= 1. (2.19)

Using the condition ii) of the theorem, and the form (2.23) of the curvature tensor
R, we obtain

3dRf=(dJρ+α)∧dJf−C(f)dJα=(dJρ+α)∧α
ρ
−dJα=−ρdJ

(
α

ρ

)
=0. (2.20)

The third condition iii) of the theorem can be written locally as follows

Dδ/δxi
∂f

∂yi
=

∂

∂yi

(
δf

δxi

)
= 0, (2.21)

which means that the components ωi = δf/δxi are independent of the fibre coordi-
nates. In other words

ω = dhf =
δf

δxi
dxi, (2.22)

is a basic 1-form on TM . Due to the homogeneity condition for isotropic sprays, the
Ricci scalar is given by ρ = iSα. Using formulae (1.13), it can be shown that the
class of isotropic sprays can be characterized also in terms of the curvature R of the
nonlinear connection, [97, Prop. 3.4],

3R = (dJρ+ α) ∧ J − dJα⊗ C (2.23)

and we obtain

0 = dRf = d2
hf = dh(dhf) =

1

2

(
∂ωi
∂xj
− ∂ωj
∂xi

)
dxi ∧ dxj = d(dhf). (2.24)

It follows that the basic 1-form dhf ∈ Λ1(M) is closed and hence it is locally exact.
Therefore, there exists a function a, which is locally defined on M , such that

dhf = da = dha. (2.25)

We will prove now that the function

F = exp(f − a), (2.26)

locally defined on TM , is a Finsler function of scalar flag curvature whose geodesic
spray is the given spray S. Depending on the domain of the two functions f and
a, the function F might be a conic pseudo-Finsler function. From formula (2.19),
we have that C(F ) = exp(f − a)C(f) = F , which means that F is 1-homogeneous.
Using formula (2.25), we obtain that

dhF = exp(f − a)dh(f − a) = 0. (2.27)
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The semi-basic 1-form α/ρ, which is given by formula (2.18), can be expressed in
terms of the function F , given by formula (2.26), as follows

α

ρ
=
dJF

F
.

We use now (2.27) and obtain

d

(
α

ρ

)
+ 2iF

α

ρ
∧ α
ρ

=
1

F 2
ddJF

2. (2.28)

The last condition of the theorem assures that ddJF
2 is a symplectic form and hence

F is a Finsler function. Due to formula (2.27), we obtain that S is the geodesic spray
of the Finsler function F . To complete the proof, the last thing we have to show is
that F has non-vanishing scalar flag curvature. Since the Finsler function F is given
by formula (2.26), we have that F > 0 on TM and we may consider the function

κ =
ρ

F 2
. (2.29)

It follows that the semi-basic 1-form α is given by

α =
ρ

F
dJF = κFdJF. (2.30)

Since the Ricci scalar does not vanish, it follows that the function κ has the same
property. The last two formulae (2.29) and (2.30) show that the Jacobi endomor-
phism Φ, of the geodesic spray S of the Finsler function F , is given by formula (2.6).
Therefore, the Finsler function F has non-vanishing scalar flag curvature κ.

We remark that in the 2-dimensional case, Theorem 2.4.3 covers the Finsler
metrizability problem in the most general case. This is due to the fact that any
2-dimensional spray is isotropic and therefore, the Finsler metrizability problem is
equivalent to the metrizability by a Finsler function of scalar flag curvature. For the
2-dimensional case, Berwald provides the necessary and sufficient conditions in terms
of the curvature scalars, such that the extremals of a Finsler space are rectilinear
[15]. Dimension two is also important due to Douglas’ work [36], where the inverse
problem of the calculus of variation for two degrees of freedom is completely solved.
In that particular situation, our Theorem 2.4.3 corresponds to case II, in Douglas’
classification.

Hilbert’s fourth problem

“Hilbert’s fourth problem asks to construct and study the geometries in which the
straight line segment is the shortest connection between two points”, [4]. Alter-
natively, the problem can be reformulated as follows: “given a domain Ω ⊂ Rn,
determine all (Finsler) metrics on Ω whose geodesics are straight lines”, [82, p.191].
These Finsler metrics are projectively flat and can be studied using different tech-
niques, [31, 33, 85]. All such Finsler functions have constant or scalar flag curvature,
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therefore, we can use the conditions of Theorem 2.4.1 and Theorem 2.4.3 to test
when a projectively flat spray is Finsler metrizable. For such sprays we can use the
algorithms provided in the proofs of the theorems to construct solutions to Hilbert’s
fourth problem. For working examples see [100].

2.5 Projective Finsler metrizability

Two sprays are called projectively equivalent if their geodesics coincide up to an
orientation preserving reparameterization. One can easily see that the sprays S and
S̃ are projectively equivalent if and only if there exists a 1-homogeneous function
P ∈ C∞(TM), called the projective factor, such that S̃ = S − 2PC, [7, 82].

A spray S is called projective Finsler metrizable if it is projectively equivalent
to the geodesic spray of a Finsler function. Several results appeared about the pro-
jective Finsler metrizability problem [31, 32, 33, 37, 68, 97]. Various strategies can
be chosen to deal with it: in [32] the generalized Helmholtz system was considered,
in [33] an approach in terms of 2-forms was formulated. Here we present two ap-
proaches considered in [97] and [110, 111] respectively: the first is based on the
Helmholtz system, and the second on the Rapcsák system.

Projective metrizability through the Helmholtz conditions

The projective metrizability problem, similarly to the metrizability problem, can be
formulated as a particular case of the inverse problem of the calculus of variations.
To solve the problem, one of the approaches seeks for the existence of a multiplier
matrix that satisfies the Helmholtz conditions [61, 78]. In [25] these conditions where
reformulated in terms of a semi-basic 1-form. For the particular case of the projective
metrizability problem, it has been shown in [25] that only two of the four Helmholtz
conditions are independent. In this subsection we discuss the formal integrability
of these conditions using the Spencer-Goldschmidt version of the Cartan-Kähler
Theorem.

Theorem 2.5.1. [97, Theorem 1.] A spray S is projective Finsler metrizable if and
only if there exists a semi-basic 1-form θ ∈ Λ1

v(TM) such that

rank (dθ) = 2n− 2, iSθ > 0, (2.31)

LCθ = 0, dJθ = 0, dhθ = 0. (2.32)

Proof. We prove first that conditions (2.31) and (2.32) are necessary. We assume
that S is projective metrizable. Therefore, there exists a Finsler function F with
geodesic spray SF and a 1-homogeneous projective factor P on TM , such that
S = SF − 2PC. Consider θ = dJF , the Euler-Poincaré 1-form of the Finsler
function F . Due to the 1-homogeneity condition of F it follows that iSθ = C(F ) =
F > 0. The non-degenerate property of the Finsler energy function implies that
rank (dθ) = 2n − 2. Since θ is 0-homogeneous it follows that LCθ = 0. Condition
dJθ = 0 is also satisfied since dJθ = d2

JF = 0.
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It remains to show that dhθ = 0. The geodesic spray SF is uniquely determined
by condition (1.17) which in the Finslerian case is

iSddJF
2 = −dF 2. (2.33)

It follows that SF (F 2) = 0 and hence SF (F ) = 0. Since SF also satisfies condition
(2.33) it follows that LSF (Fθ) = FdF , which implies LSF θ = dF . Using S =
SF − 2PC we obtain that LSθ − 2LPCθ = dF . Using again the 0-homogeneity
of the semi-basic 1-form θ it follows LPCθ = PLCθ = 0 and hence LSθ = dF .
We apply now dJ to both sides of this last relation and use the commutation rules
LSdJ − dJLS = d[S,J ] = −dh + dv and ddJ + dJd = 0. Therefore,

−dhθ − dvθ = −ddJF = dJdF = dJLSθ = LSdJθ + dhθ − dvθ,

from where it follows that dhθ = 0.
We prove now that the conditions (2.31) and (2.32) are sufficient for the pro-

jective metrizability problem of the spray S. Consider θ ∈ Λ1(TM) a semi-basic
1-form that satisfies conditions (2.31) and (2.32). Define the function F = iSθ.
Using the commutation rule iSdJ + dJ iS = LC − i[S,J ] as well as conditions dJθ = 0
and LCθ = 0 it follows that dJF = dJ iSθ = ihθ = θ. Hence θ is the Euler-Poincaré
1-form of F . Now conditions (2.31) assure that F is a Finsler function. Consider
the function P ∈ C∞(TM) given by 2P = S(F )/F , which is 1-homogeneous. We
will show now that the spray S̃ = S − 2PC satisfies equation (2.33) and hence it is
the geodesic spray of the Finsler function F .

Using the commutation rule iSdh + dhiS = LS − i[S,h] and the fact that dhθ = 0
it follows

0 = iSdhθ = −dhiSθ + LSθ − i[S,h]θ.

From the fact that i[S,h]θ = dF ◦ J ◦ LSh = dF ◦ v = dvF it follows that LSθ =

dhF + dvF = dF . We show now that S̃ satisfies the same equation. Indeed LS̃θ =
LS−2PCθ = dF since LPCθ = 0. From the defining formula of function P is follows
that

S̃(F ) = S(F )− 2PC(F ) = S(F )− 2PF = 0.

Therefore
LS̃dJF

2 = 2FLS̃dJF = 2FdF = dF 2,

and hence S̃ is the geodesic spray of the Finsler function F .

The second part of the proof of Theorem 2.5.1 shows that if there exists a semi-
basic 1-form θ on TM that satisfies the conditions (2.31) and (2.32) then the given
spray S is projectively related to the spray

SF = S − LS(iSθ)

iSθ
C,
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which is the geodesic spray of the Finsler function F = iSθ. In this case, the semi-
basic 1-form θ = θidx

i is the Poincaré-Cartan 1-form of the Finsler function F ,
θ = dJF . Therefore,

θi =
∂F

∂yi
, hij = F

∂θi
∂yj

, Fdθ = hijδy
i ∧ dxj. (2.34)

Formulae (2.34) show the relationship between the 1-form θ, the solution of the
projective metrizability problem using Theorem 2.5.1, and the classical approach of
the problem using the multiplier matrix hij.

In order to study the formal integrability of the system (2.32) we consider the
first order partial differential operator P : Λ1

v(TM)→ Λ1
v(TM)⊕Λ2

v(TM)⊕Λ2
v(TM),

which we call the projective metrizability operator

P = (LC , dJ , dh) . (2.35)

It induces a morphism of vector bundles

p0(P ) : J1T ∗v → F1 := T ∗v ⊕ Λ2T ∗v ⊕ Λ2T ∗v ,

where

p0(P )(j1θ) =

(
∂θi
∂yj

yjdxi,
1

2

(
∂θi
∂yj
− ∂θj
∂yi

)
dxj ∧ dxi, 1

2

(
δθi
δxj
− δθj
δxi

)
dxj ∧ dxi

)
.

One can show, that there exists a quasi-regular basis, therefore the symbol of the
projective metrizability operator is involutive. Moreover, the integrability condition
is given by the following

Proposition 2.5.2. [97, Theorem 3.] A first order formal solution θ ∈ Λ1T ∗ of the
system (2.32) can be lifted into a second order solution if and only if dRθ = 0, where
R is the curvature tensor (1.11).

Proof. Let us define K = ⊕(2)Λ2T ∗v ⊕(3) Λ3T ∗v and the morphism τ = (τ1, ..., τ5) as
follows

τ1(A,B1, B2)(X, Y ) = A(JX, Y )− A(JY,X)−B1(C,X, Y ),

τ2(A,B1, B2)(X, Y ) = A(hX, Y )− A(hY,X)−B2(C,X, Y ),

τ3(A,B1, B2)(X, Y ) = B1(JX, Y )−B1(JY,X),

τ4(A,B1, B2)(X, Y ) = B2(hX, Y )−B2(hY,X),

τ5(A,B1, B2)(X, Y ) = B1(hX, Y )−B1(hY,X)B1 +B2(JX, Y )−B2(JY,X),
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for A ∈ T ∗ ⊗ T ∗v , B1, B2 ∈ T ∗ ⊗ Λ2T ∗v . We have a commutative diagram

0

��

0

��

0

��
0 // g2(P ) //

��

S2T ∗ ⊗ T ∗v
σ2(P ) //

ε

��

T ∗ ⊗ F1
////

τ

ε

��

K // 0

0 // Sol2(P ) i //

π1

��

J2T
∗
v

//

π1
��

//p1(P )

J1F1

π

��

OO

∇

0 // Sol1(P ) // //
i

J1T ∗v
po(P ) //

OO

��

F1

��
0 0

(2.36)

Consider a linear connection ∇ on TM such that ∇J = 0. It follows that the
connection ∇ preserves the vertical distribution and hence it will preserve semi-basic
forms. Therefore, one can view ∇ as a connection on the fibre bundle F1 → TM . It
follows that derivations DC = iC∇, DJ = τJ∇, and Dh = τh∇ preserve semi-basic
forms. As a first order partial differential operator, we can identify a connection ∇
with the bundle morphism p0(∇) : J1F1 → T ∗ ⊗ F1. We will use this morphism to
define the map ϕ : Sol1(P ) → K we mentioned in Remark 2.2.3. The morphism ϕ
is represented by the dashed path in the diagram (2.36).

Consider θ ∈ Λ1
v(TM) such that j1

uθ ∈ Sol1,u(P ) ⊂ J1
uT
∗
v is a first order solution

of P at u ∈ TM . Then, we have

ϕuθ = τu∇(Pθ) = τu(∇LCθ,∇dJθ,∇dhθ).

Since LCθ, dJθ, and dhθ vanish at u ∈ TM , it follows that when acting on these
semi-basic forms we have DC = LC , DJ = dJ and Dh = dh. Using the fact that
[J,C] = J , [h,C] = 0, [J, J ] = 0, and [h, J ] = 0, it follows that

τ1 (∇Pθ)u = (τJ∇LCθ − iC∇dJθ)u = (dJLCθ − LCdJθ)u = (d[J,C]θ)u = 0,

τ2 (∇Pθ)u = (τh∇LCθ − iC∇dhθ)u = (dhLCθ − LCdhθ)u = (d[h,C]θ)u = 0,

τ3 (∇Pθ)u = (τJ∇dJθ)u =
(
d2
Jθ
)
u

= 1
2
(d[J,J ]θ)u = 0,

τ4 (∇Pθ)u = (τh∇dhθ)u =
(
d2
hθ
)
u

= 1
2
(d[h,h]θ)u = (dRθ)u,

τ5 (∇Pθ)u = (τh∇dJθ + τJ∇dhθ)u = (d[h,J ]θ)u = 0.

From the above calculations follows that a first order formal solution θ of the system
(2.32) can be lifted into a second order solution if and only if dRθ = 0.

We present now some particular classes of sprays for which the projective metriz-
ability operator (2.35) is integrable, and hence these sprays are projective metrizable.
These classes of sprays are:
i) flat sprays, (R = 0);
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ii) isotropic sprays, (R = α∧J+β⊗C, for α a semi-basic 1-form and β a semi-basic
2-form on TM ;

iii) arbitrary sprays on 2-dimensional manifolds.
For each of these classes of sprays, one can show that the curvature obstruction is
automatically satisfied and hence in the analytic case the projective metrizability
problem has a solution.

Indeed, in the flat case i), the obstruction is identically satisfied. The fact that
flat sprays are projective metrizable was already demonstrated with other methods
in [29]. Assume now ii), that is, the spray S is isotropic. It follows that the curvature
tensor has the form R = α∧J+β⊗C, for α ∈ Λ1

v and β ∈ Λ2
v. Then, for a semi-basic

1-form θ on TM , we have

dRθ = α ∧ dJθ + β ⊗ LCθ. (2.37)

If θ is a solution of the differential system (2.32) it follows that LCθ = 0 and
dJθ = 0, and using formula (2.37) it follows that dRθ = 0. Therefore, the obstruction
for the formal integrability of P is satisfied. In [30] it has been shown that any
isotropic sprays is projectively equivalent to a flat spray and hence it is projectively
metrizable.

If dimM = 2 then for a semi-basic 1-form θ on TM , dRθ is a semi-basic 3-form
and hence it vanishes. It has been shown by Matsumoto [64] that every spray on a
surface is projectively related to a Finsler spray, using the results of Darboux about
second order differential equations.

Projective metrizability through the Rapcsák system

András Rapcsák in [75] obtained necessary and sufficient conditions for the pro-
jective Finsler metrizability in terms of a second order PDE system, now called
Rapcsák equations [32, 91, 82]. Rapcsák’s approach is simple and natural: one finds
conditions directly on the Finsler function that one seeks for. In this subsection,
we consider the Rapcsák system composed of the 1-homogeneity condition and the
Rapcsák equations.

Proposition 2.5.3. [110, Proposition 3.1] A spray S is projective Finsler metrizable

if and only if there exists a Finsler function F̃ : TM→R, such that

iSddJ F̃ = 0. (2.38)

Proof. The spray S is projective Finsler metrizable if and only if there exists a Finsler
metrizable spray S̃ which is projective equivalent to S. Because of the projective
equivalence, there exists a function P , such that S̃ = S − 2PC. Let us denote by
F̃ the Finsler function associated to S̃. It is well known that F̃ is invariant by the
parallel translation associated to the connection Γ̃ = [J, S̃] and therefore we have

dh̃F̃ = 0. Using the relation h̃ = h−PJ−dJP⊗C between the horizontal projectors

[98, Proposition 4.4] and the 1-homogeneity of F̃ , we get

0 = dh̃F̃ = dhF̃ − dPJ F̃ − dJPCF̃ = dhF̃ − dJ(PF̃ ). (2.39)
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Substituting S into (2.39), using JS = C and the homogeneity of F̃ and P , we get

iSdh̃F̃ = 0, and we find that the projective factor is P = 1

2F̃
SF̃ . Replacing P in

(2.39) by the above expression we get

dhF̃ − dJ
( 1

2F̃
(F̃ dSF̃ )

)
= dhF̃ −

1

2
dJ(dSF̃ ) = 0.

Using (1.5) and the relation d[J,S] = dJdS − dSdJ we obtain

0 = dΓ+IF̃ − dJdSF̃ = −iSddJ F̃ − dCF̃ + dF̃ = −iSddJ F̃ .

We note that a coordinate version of the above theorem was proved by A. Rapcsák
in [75], and a coordinate free versions were given in [54, 91]. Here we presented a
different proof.

According to Proposition 2.5.3, the projective metrizability leads to the inves-
tigation of the Rapcsák system, that is the partial differential system composed by
the 1-homogeneity condition and the equation (2.38).

We remark that the Rapcsák system is equivalent to the PDE system composed
by the Euler-Lagrange equation (1.21) and the homogeneity condition (1.1) with
k = 1. Therefore, it is similar to the Finsler metrizability’s system (see Paragraph
2.3) which is composed by the Euler-Lagrange equation (1.21) and the homogeneity
condition (1.1) with k = 2. This is why one might think that the geometric inves-
tigations of the two systems are analogous. Unfortunately, this is not the case: a
2-homogeneous Euler-Lagrange system can be reduced to a first order partial dif-
ferential system (see Theorem 2.3.1), but the method cannot be applied for the
1-homogeneous Euler-Lagrange system.

The differential operator corresponding to the Rapcsák system is P1 = (PS , PC),
where

PS(F ) = iSddJF, PC(F ) = LCF − F,

that is PSF = 0 corresponds to (2.38) and PCF = 0 to the 1-homogeneity property
of F . The local expression of the PDE equations represented by PS and PC are(

yj
∂2F

∂xj∂yi
+ f j

∂2F

∂yj∂yi
− ∂F

∂xj

)
dxi −

(
∂F

∂yi
+ yj

∂2F

∂yi∂xj
− ∂F

∂xi

)
dyi = 0,

yi
∂F

∂yi
− F = 0.

The computation to show the formal integrability of the Rapcsák system is similar
to that of the Euler-Lagrange system investigated in [105]: the first integrability
condition contains new PDE equations which can be expressed in terms of the
associated connection Γ = [J,S]. Considering the system completed with these
integrability conditions – called extended Rapcsák system [110] – its compatibility
conditions can be expressed in terms of the curvature tensor. More precisely, one can
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show that the compatibility conditions are equivalent to the equation iΦddJF = 0
or iWddJF = 0, where Φ is the Jacobi endomorphism and

W = Φ− 1

n− 1
(TrΦ)J +

1

2(n− 1)
dJ(TrΦ)⊗ C

is the Weyl tensor associated to S. One obtains the following

Theorem 2.5.4. [110, Theorem 4.6] Let S be a spray on a manifold M . The
extended Rapcsák system is formally integrable if and only if the spray is of isotropic
curvature.

From the theorem one can get the following

Corollary 2.5.5. [110, Corollary 4.7] Let S be a analytic spray on an analytic
manifold M . If dimM = 2, or dimM ≥ 3 and S is of isotropic curvature, then S
is locally projective Finsler metrizable.

To solve the projective metrizability problem in the non-isotropic case, one has to
consider the extended Rapcsák system enlarged with the curvature conditions. The
difficulties come from the fact that, as it was proved in [110] by using the classical
Cartan-Kähler theory, the symbol of the operator is not involutive and the Cartan
test fails. It follows that the system is not integrable: higher order compatibility
conditions exist. Using the Spencer technique, the level where these higher order
integrability conditions appear can be calculated. In [111] we obtained new results
on the n-dimensional case, where the eigenvalues of the Jacobi tensor are pairwise
different. We identified the higher-order compatibility conditions causing the non
2-acyclicity of the Spencer cohomology sequences. We also considered the three-
dimensional case, where we have found a class of non-isotropic sprays for which the
PDE system is integrable and, consequently, the corresponding SODEs are projective
metrizable.

2.6 Projective rigidity of the geodesic structure

In this section, we consider projective deformations of the geodesic structure of
Finsler manifolds. We note that if S and S̃ = S − 2PC are projectively equivalent
sprays on the manifold M with projective factor P∈C∞(TM), then the connections,
Jacobi endomorphisms, and curvature tensors of the two sprays are related by the
following formulae [98, Proposition 4.4]:

Γ̃ = Γ− 2(PJ + dJP ⊗ C),

h̃ = h− PJ − dJP ⊗ C,
ṽ = v + PJ + dJP ⊗ C, (2.40)

Φ̃ = Φ + (P2 − S(P))J + (2dhP − PdJP −∇dJP)⊗ C,
R̃ = R + dJdhP ⊗ C + (PdJP − dhP) ∧ J.
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Projective deformation with the Finsler function

Let S be the geodesic spray of the Finsler manifold (M,F ). Since the projective
factor P has to be a 1-homogeneous function on the manifold TM , the most obvious
and natural choice is P = λF , where λ ∈ R is a non-zero constant and F is the
Finsler function determining the geodesic structure. That leads us to consider the
projective deformation

S̃ = S − 2λFC (2.41)

of the geodesic spray S. We have the following

Theorem 2.6.1. [98, Theorem 5.1] Let S be the geodesic spray associated to the
Finsler function F . Then the projective deformation (2.41) of S is not Finsler
metrizable for almost every value of λ ∈ R.

The theorem shows how rigid the Finsler metrizability property is with respect
to the corresponding reparameterization of the geodesics. The proof of the the-
orem is based on the investigation of the properties of the holonomy distribution
associated to the deformed spray S̃. With some computations, one can show that
for almost every value of λ ∈ R, the deformed holonomy distribution D̃H contains
the Liouville vector field, and using Corollary 2.3.2 we get that the corresponding
sprays are not metrizable. We obtain that the projective class of an arbitrary spray
contains infinitely many sprays which are not Finsler metrizable. We remark that
the particular case when the geodesic spray S of a Finsler function is flat and has
constant flag curvature was investigated by Yang in [95] using different techniques.

Holonomy invariant projective deformation

In [103] we considered the case where the projective factor is invariant with respect
to parallel translations, that is the projective factor is a holonomy invariant function.
One can extend the results of Theorem 2.6.1 by proving the following

Theorem 2.6.2. [103, Theorem 1] For any nontrivial holonomy invariant 1-homo-
geneous projective factor P and for almost any scalar λ ∈ R, the projective defor-
mation S̃ = S − 2λP C of a Finsler metrizable spray S is not metrizable.

Indeed, from (2.40) one can get that the geometric quantities associated to the

projectively deformed spray S̃ are

h̃ = h− λ(PJ + dJP ⊗ C), (2.42a)

ṽ = v + λ(PJ + dJP ⊗ C), (2.42b)

Φ̃ = Φ + λ2(P2J − PdJP ⊗ C), (2.42c)

For further computation and analysis, it will be very useful to introduce a decom-
position of the horizontal (resp. the vertical) distributions adapted to a holonomic
projective deformation associated to the projective factor P : we introduce the en-
domorphsims

hP = h− dJP
P
⊗ S, vP = v − dvP

P
⊗ C. (2.43)
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and we set HP := ImhP and VP := ImvP . We have J(HP ) = VP .

Lemma 2.6.3.

1. Properties of vP and VP :

i) ker(vP ) = HTM ⊕ Span{C}
ii) Im(vP ) = VP is an (n− 1)-dimensional involutive subdistribution of V TM ,

iii) any X ∈ VP is an infinitesimal symmetry of P that is LXP = 0.
iv) the vertical distribution have the decomposition V TM = VP ⊕ Span{C}.

2. Properties of hP and HP :

i) ker(hP ) = V TM ⊕ Span{S}
ii) Im(hP ) = HP is an (n− 1)-dimensional subdistribution of HTM ,

iii) any X ∈ HP is an infinitesimal symmetry of P that is LXP = 0.
iv) the horizontal distribution have the decomposition HTM = HP ⊕ Span{S},

We show 1.) in detail. The computations for 2.) are similar.

Proof. i) We note that HTM = Ker v, therefore HTM ⊂ Ker vP . Moreover, if
V ∈ ker vP is vertical, then using v(V ) = V we get vP (V ) = 0 if and only if

V = V (P)
P
C, that is V ∈ Span{C} and we get i).

ii) We will use the simplified notation ∂̇i := ∂
∂yi

and Pi := ∂P
∂yi

, Pij := ∂2P
∂yi∂yj

etc.
Let us define the vector fields

hi := hP (δi) = δi −
Pi
P
S, vi := vP (∂̇i) = ∂̇i −

Pi
P
C (2.44)

for i = 1, . . . , n. We get

HP = Span{h1, . . . , hn}, VP = Span{v1, . . . , vn}. (2.45)

Because the 1-homogeneity property of P , for any vi, vj ∈ VP , their Lie bracket is

[vi, vj] =
[
∂̇i −

Pi
P
yk∂̇k, ∂̇j −

Pj
P
y`∂̇`

]
=
Pi
P
vj −

Pj
P
vi

and from (2.45) we get that [vi, vj] ∈ VP , hence VP is involutive.

iii) One can check that the generators (2.45) of the distribution VP are infinites-
imal symmetries of P . Indeed, LCP = P , and therefore

LviP = ∂̇i(P)− Pi
P
C(P) = Pi −

Pi
P
P = 0. (2.46)

iv) Supposing C ∈ VP we get form (2.45) that C = Civi with some coefficients
Ci. From iii) we get vi(P) = 0, i = 1, . . . , n. On the other hand, because of the
1-homogeneity of P , we have C(P) = P . Then P = C(P) = Civi(P) = 0 which is
a contradiction.
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In order to investigate the curvature property of the projective deformed struc-
ture, let us fix an arbitrary point (x, y) ∈ TM . Then for almost any value of λ ∈ R
the inequality

κi(x, y) + λ2P2(x, y) 6= 0, (2.47)

holds for any i = 1, . . . , n, where κn = 0 and κi, i = 1, . . . , n−1 denote the principal
curvatures of the Finsler metric F . From the continuity of the eigenfunctions of
Φ we get that there is an open neighbourhood U ⊂ TM of (x, y) such that the
condition (2.47) is satisfied. From now on, geometric objects will be considered on
this neighbourhood.

Lemma 2.6.4. For any nonzero λ ∈ R such that (2.47) holds, the image of the

Jacobi endomorphism Φ̃ of S̃ is VP , that is Im Φ̃ = VP .

Proof. Φ̃ is determined by (2.42c). Its image can be calculated by using horizontal
vectors. We will use the horizontal eigenvecotrs {X1, . . . , Xn} of Φ introduced in
(2.7). We have Xn = S and

dJP(S) = dJSP = dCP = P ,

hence we obtain

Φ̃(S) = Φ(S) + λ2P2JS − λ2P dJP(S)⊗ C = 0 + λ2P2C − λ2P2C = 0.

For 1 ≤ i < n we have Xi ∈ HP and JXi ∈ VP . From (1.iii) of Lemma 2.6.3 we get
dJP(Xi) = LJXiP = 0. It follows that

Φ̃(Xi) = Φ(Xi) + λ2(P2J − PdJP ⊗ C)(Xi) = (κi + λ2P2)JXi. (2.48)

Using (2.47) we get that JXi ∈ Im Φ̃, and Im Φ̃ = Span{JX1, . . . , JXn−1} = VP .

Since the image of the Jacobi endomorphism Φ̃ is a subspace of the holonomy
distribution D̃H we get that under the hypothesis of Lemma 2.6.4:

VP ⊂ D̃H. (2.49)

Proposition 2.6.5. If the projective factor P is nonlinear and λ 6= 0 satisfies (2.47)
on U ⊂ TM , then the holonomy distribution of the non-trivial projectively deformed
spray S̃ = S − 2λPC is the full second tangent space, that is D̃H = TTM.

Proof. The holonomy distribution D̃H of the spray S̃ contains its horizontal space
H̃TM and the image of the the Riemann curvature Φ̃, therefore, from Lemma 2.6.4
we get that

H̃TM ⊕ VP ⊂ D̃H. (2.50)

It follows that h̃i := h̃(hi) and vi are elements of D̃H. By the involutivity of D̃H the

Lie bracket [h̃i, vi] and its horizontal part are in D̃H, so its vertical part is too:

ṽ[h̃i, vj] ∈ D̃H. (2.51)
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On the other hand, we get from (2.42a) h̃i = hi−λPvi, and hence, taking LviP = 0

into account, we have ṽ[h̃i, vj] = ṽ[hi, vj] − λP ṽ[vi, vj]. Since the distribution VP is
integrable ṽ is the identity on VP and we have ṽ[vi, vj] = [vi, vj] ∈ VP . Therefore, we
get that

ṽ[hi, vj] ∈ D̃H. (2.52)

On the other hand, one can obtain that v[hi, vj] =
(
Gk
ij − PiP G

k
j

)
vk, from which we

get that v[hi, vj] ∈ VP and

v[hi, vj] ∈ D̃H. (2.53)

By (2.42b), we have

ṽ[hi, vj]− v[hi, vj] = λPJ [hi, vj] + λLJ [hi,vj ]P C (2.54)

and because the left-hand side is in D̃H, so is the right-hand side:

P · J [hi, vj] + LJ [hi,vj ]P C ∈ D̃H. (2.55)

Since J [hi, vj] = Pi
P vj +

Pij
P C, from (1.iii) of Lemma 2.6.3 we get

P · J [hi, vj] + LJ [hi,vj ]P · C = Pivj + 2PijC. (2.56)

Using (2.49) and (2.55) we get that PijC ∈ D̃H, and since P is non linear,

C ∈ D̃H. (2.57)

Completing (2.50) with Span{C} we get H̃TM ⊕ VP ⊕ Span{C} ⊂ D̃H. According

to (1.iv) of Lemma 2.6.3 we have VP ⊕ Span{C} = V TM = Ṽ TM , therefore

D̃H = H̃TM ⊕ Ṽ TM = TTM, (2.58)

which proves the proposition.

Proposition 2.6.6. [103, Proposition 4.1] Let λ ∈ R be such that (2.47) holds. If

dimM > 1 and λ 6= 0, then the projectively deformed spray S̃ = S − 2λPC is not
metrizable.

Proof. Depending on the linearity of the projective factor P we consider two cases. If
the projective factor P is nonlinear, from Proposition 2.6.5 we get that D̃H = TTM
and, in particular C ∈ D̃H. From Corollary 2.3.2 we get that the spray S̃ is not
metrizable.

On the other hand, if the projective factor P is linear, let us suppose that S̃
is Finsler metrizable and Ẽ is a Finsler energy function associated with S̃. Using
(2.49) and Proposition 1.4.1 we get

LviẼ = 0 =⇒ ∂̇iẼ −
Pi
P
LC(Ẽ) = 0 =⇒ ∂̇iẼ

Ẽ
= 2

∂̇iP
P

,
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therefore, locally there exists a function θ(x) on M such that Ẽ = P2eθ(x). Writing
the linear projective factor in the form P = ai(x)yi we get

gij(x, y) =
∂2Ẽ

∂yi∂yj
= 2ai(x)aj(x)eθ(x),

hence gij has rank 1 and in the case n ≥ 2, the energy function Ẽ is degenerate
which is a contradiction.

Proof of the Theorem 2.6.2. Let P be a nontrivial holonomy invariant 1-homogeneous
function. Let us fix a point x ∈M and a direction y ∈ TxM . Then, using the eigen-
value κi of the Jacobi endomorphism Φ at y, the set

Λ(x,y) :=
{
λ ∈ R | κi + λ2P2 = 0, i = 1, . . . , n−1

}
(2.59)

is a finite set, therefore its complement is an open dense subset of R. For any
element λ ∈ R \ Λ(x,y) we have (2.47) and, using Theorem 2.6.6, one obtains that

S̃ = S − 2λP C is not metrizable.

As the precedent results show, for a given Finsler structure (M,F ), only very
specific holonomy invariant projective factors can produce Finsler metrizable sprays.
Such projective factor must be related to the principal curvatures of the original
Finsler structure. More precisely, we have the following

Corollary 2.6.7. Let (M,F ) be a Finsler manifold, S its geodesic spray and let P̃ be

a holonomy invariant nonzero function. If the projective deformation S̃ = S−2P̃ C,
is metrizable, then

P̃2 + κi = 0, (2.60)

for some (nonzero) principal curvature κi, i ∈ {1, . . . , n−1}.

In particular we obtain that if the principal curvatures are all non-negative, then
there is no non-trivial holonomy invariant metrizable projective deformation of the
Finsler structure.

Projective deformation with Funk function

The projective factor P of a projective deformation is called a Funk function, if the
projective deformation preserves the curvature tensor and the Jacobi endomorphism.
In [82, page 177], Zhongmin Shen asks “whether or not there always exist non-trivial
Funk functions on a spray space”. The existence of non-trivial Funk functions, for
the general case of a non-flat SODE, is still an open problem. We proved that the
answer is negative for the geodesic spray of a Finsler function of non-vanishing scalar
flag curvature:
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Theorem 2.6.8. [101, Theorem 3.1] Consider a Finsler function F of non-vanishing
scalar flag curvature. Then, there are no non-trivial Funk functions for the Finsler
space (M,F ).

It would be very interesting to describe the necessary and sufficient conditions
for a projective deformation of a metrizable spray to be metrizable. This problem
is however very complex and it contains, as a particular case, Hilbert’s fourth prob-
lem. Even partial results, when the projective factor possesses special geometric or
analytic properties, can be interesting.

2.7 Invariant metrizability and projective metriz-

ability

In this section, we investigate the relationship between invariant metrizability and
the invariant projective metrizability of the canonical sprays of Lie groups. In the
case of the invariant metrizability problem we ask if there exists a left-invariant
Riemann (resp. Finsler) metric, such that its geodesics are the geodesics of the
canonical spray. In the case of the invariant projective metrizability problem we ask
if there exists a left-invariant Riemann (resp. Finsler) metric, such that its geodesics
are projectively equivalent to the geodesics of the canonical spray.

Remark 2.7.1. From Section 2.3 and Section 2.5 we know that both the metriz-
ability and projective metrizability problems can be formulated in terms of a system
of partial differential equations which is composed of the appropriate homogeneity
condition and the Euler-Lagrange PDE equations on the energy function: a given
spray S is

1) Riemann (resp. Finsler) metrizable if and only if there exists a quadratic (resp.
2-homogeneous) function E : TM→R, such that ( ∂2E

∂yi∂yj
) is positive definite on

TM and the Euler-Lagrange PDE system (1.21) is satisfied.

2) projective Riemann (resp. projective Finsler) metrizable if and only if there exists

a quadratic (resp. 2-homogeneous) function Ẽ : TM→R, such that the matrix

field ( ∂2Ẽ
∂yi∂yj

) is positive definite on TM and the Euler-Lagrange PDE system

(1.21) is satisfied with F̃ :=
√

2Ẽ.

Proposition 2.7.2. [96, Proposition 3.4] Let S be a spray and L be a Lagrangian.
If E is a first integral for S, then we have

ωE = 0 ⇔ dhE = 0. (2.61)

Proof. Consider E a first integral for S, that is S(E) = dSE = 0. Then, using the
Frölicher-Nijenhuis calculus, we get

ωE = iSddJE+ddCE−dE = dSdJE−diSdJE+ddCE−dE = −(dΓE+dE) = −2dhE,

which shows the equivalence of the two conditions of (2.61).
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Corollary 2.7.3. Let S be a spray, let L be a non-zero first integral for S and
f a smooth non-vanishing function on R with non-vanishing derivative. Then, E
satisfies the Euler-Lagrange equation (1.21) associated to S, if and only if f◦E is a
solution of (1.21).

Proof. From Proposition 2.7.2 we know that ωE = 0 is equivalent to dhE = 0 and
equation ωf◦E = 0 is equivalent to dh(f ◦E) = 0. Moreover, since f ′ 6= 0 and
dh(f ◦E) = f ′ · dhE, we have dh(f ◦E) = 0 if and only if dhE = 0 holds.

Invariant metrizability and projective metrizability of the canonical geodesic
structure of Lie groups

We follow the notation introduced in Section 1.4. In particular, G denotes a finite
dimensional Lie group, λg : G→ G is the left translation of G, TG ∼= G×g, and the
corresponding semi-invariant coordinate system is given by (x, α) = (xi, αi). Then
we have the following

Proposition 2.7.4. [96, Proposition 4.4] The canonical spray of a Lie group is
left-invariant projective Riemann (resp. projective Finsler) metrizable if and only if
it is left-invariant Riemann (resp. Finsler) metrizable.

Proof. Let us denote by S the canonical spray of the Lie group G. It is clear
that if S is Riemann (resp. Finsler) metrizable, then it is also projective Riemann
(resp. Finsler) metrizable. Conversely, let us suppose that S is projective Riemann
(resp. Finsler) metrizable. Then, according to Remark 2.7.1, there exists a left-

invariant quadratic (resp. 2-homogeneous) function Ê : TG → R such that the

matrix field ( ∂2Ê
∂yi∂yj

) is positive definite on TM and F̂ :=
√

2Ê satisfies the Euler-
Lagrange PDE associated to S. Because of the left-invariance condition, we have
dSF̂ = 0 and, using Corollary 2.7.3, we get that Ê := 1

2
(F̂ )2 is also a solution of the

Euler-Lagrange PDE associated to S. Then, according to Remark 2.7.1, the given
Ê is the energy function of a Riemann (resp. Finsler) metric which implies that S
is Riemann (resp. Finsler) metrizable.

We have the following result.

Theorem 2.7.5. [96, Theorem 4.5] The canonical spray of a Lie group is left-
invariant projective Finsler metrizable if and only if it is left-invariant Riemann
metrizable.

Proof. In one direction the statement is trivial: if the canonical spray is Riemann
metrizable, then it is trivially Finsler metrizable and also projective Finsler metriz-
able. Let us consider the converse statement, and suppose that the canonical spray
S is projective Finsler metrizable. Then, according to Proposition 2.7.4, it is also
Finsler metrizable. Since S is quadratic, it follows that the associated connection is
linear. Hence, the Finsler metrizability induces the existence of a Berwald metric on
the Lie group. Using Szabó’s theorem which states that for every Berwald metric
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there exists a Riemannian metric such that the geodesics of the Berwald and Rie-
mannian metrics are the same (cf. [88]), we get that the canonical spray is Riemann
metrizable.

We can obtain the following

Corollary 2.7.6. [96, Corollary 4.6] The canonical spray of a Lie group G is left-
invariant Riemann, Finsler, projective Riemann or projective Finsler metrizable if
and only if there exists a scalar product 〈 , 〉 on g such that

〈[a, α], α〉 = 0 (2.62)

for every a, α ∈ g.

Proof. An invariant Riemannian metric induces a scalar product 〈 , 〉 on g. Using
the coordinate system (x, α) on TG ' G×g, the associated energy function is given
by E : G × g → R, where E(x, α) = 〈α, α〉. The Euler-Lagrange equation (1.56)
then implies (2.62).

Remark 2.7.7. We want to draw attention to a few interesting phenomena. First
of all, although the canonical spray of a Lie group is a very natural object, it is not
true that it is always metrizable. In [40] there are several examples of Lie groups
and Lie algebras where the canonical spray is non metrizable.
Secondly, despite the fact that the canonical spray is left (and also right) invariant,
and the Euler-Lagrange equation inherits the symmetries of the Lagrangian, it is
not true that the “metrizability” property means automatically “metrizability by a
left-invariant metric”. Indeed, for example the 3-dimensional Heisenberg group H3

is not metrizable or projective metrizable with an invariant Riemann (or Finsler)
metric [114], however, since its curvature tensor vanishes identically, the canonical
spray is metrizable. The corresponding (non invariant) Riemannian metric is given
by g=dx2+dy2+(dz−dx−dy)2, (see [40]).

Theorem 2.7.5 shows that the geometric structure associated with the canonical
spray of a Lie group has a certain rigidity property: the potentially larger class of
Lie groups, where the canonical spray is projective Finsler metrizable coincides with
the class of Lie groups, where the canonical spray is Riemann metrizable. We note
that this property relies heavily on the fact that the canonical spray of a Lie group is
quadratic, and the Lie derivative of a left-invariant Lagrange function with respect
to the canonical spray is identically zero. The second property is not true in general
for an arbitrary left-invariant spray. An interesting generalization can be obtained
by considering the class of homogeneous spaces.

Invariant metrizability and projective metrizability of geodesic orbit struc-
tures of homogeneous spaces

Let M be a connected manifold on which the Lie transformation group G acts
transitively. Let us fix an origin o ∈ M and denote by H the stabilizer of o ∈ M
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in the group G and by π : G → G/H the projection map. H is called the isotropy
group of the homogeneous space G/H. Then M is isomorphic to the factor space
G/H with origin H, and its tangent space at o ∈ M is isomorphic to g/h, where g
and h are the Lie-algebras of the Lie groups G and H respectively. The action of G
on M is determined by the map

λ : (g,m) 7→ λgm = g ·m : G×M →M.

Geodesic structures, sprays, metrics, Lagrangians on M are called invariant, if they
are invariant with respect to the action of G. It is clear, that invariant sprays,
metrics and Lagrangians can be characterized by their values on ToM .

A geodesic γ(t), emanating from the origin o ∈ M , is called homogeneous or
stationary [89, 90], if there exists Xγ ∈ g, such that γ(t) is the orbit of the 1-
parameter subgroup {exp tXγ, t∈R} of G, that is

γ(t) = λexp tXγo = (exp tXγ) · o. (2.63)

The Lie algebra element Xγ ∈ g is called the geodesic vector associated to the
direction γ̇(0) ∈ ToM . A left-invariant geodesic structure is called geodesic orbit
structure (g.o. structure), if any geodesic γ(t) emanating from the origin o∈M is
homogeneous. A spray is called geodesic orbit spray (g.o. spray), if it corresponds
to a g.o. structure. Homogeneous geodesics are called in V.I. Arnold’s terminology
“relative equilibria” [8].

Definition 2.7.8. A map σ : ToM → g is called a homogeneous lift1 if the following
conditions are satisfied:

1) π∗ ◦ σ = idToM .

2) σ is 1-homogeneous, that is σ(κ · v) = κσ(v), for every v ∈ ToM and κ ∈ R.

3) σ is Ad(H)-invariant, that is σ(λh∗v) = Adhσ(v) for all h ∈ H and v ∈ ToM .

The homogeneous lift σ is called C∞-differentiable if it is continuous on ToM and
C∞-differentiable on ToM \ {0}.

It is clear that any g.o. spray determines a C∞-differentiable homogeneous lift by
associating to v ∈ ToM its geodesic vector X = σ(v) and vice versa, every homoge-
neous lift determines a g.o. spray by left translations. Moreover, it is not difficult to
see that invariant functions are constant along the geodesics of a g.o. spray. Hence
we can obtain the following generalisation of the Proposition 2.7.4.

Proposition 2.7.9. [96, Proposition 5.5] A g.o. spray is invariant projective Rie-
mann (resp. Finsler) metrizable if and only if it is invariant Riemann (resp. Finsler)
metrizable.

Proof. Let S be a g.o. spray. If L : TM → R is an invariant Lagrangian, then L is
constant along the geodesics, that is along the integral curves of S. Consequently
we have dSL = 0. Using Corollary 2.7.3 and similar argument that was used for
Proposition 2.7.4 we can obtain the proof of the proposition.

1In [118] the terminology horizontal lift was used, but in Finsler geometry, this terminology is
widely used for a different object.
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We remark that the connection Γ = [J,S] determined by a g.o. spray S is not
necessarily linear, therefore it is not true in general that the Finsler metrizability
entail the Riemann metrizability as it was the case for the canonical spray of Lie
groups. However, if the g.o. spray is quadratic then the associated connection is
linear. Therefore we can use Szabó’s results and, similarly to Theorem 2.7.5, we can
get the following

Theorem 2.7.10. [96, Theorem 5.6] [96, Corollary 4.6] A quadratic g.o. spray is
invariant projective Finsler metrizable if and only if it is invariant Riemann metriz-
able.

Remark 2.7.11. A different invariant metrizability concept of the G/H structure is
considered in [35] by S. Deng and Z. Hou where the G/H structure is called invariant
metrizable if there exists an invariant metric on it. The invariant metrizability (and
projective metrizability) of a g.o. structure or g.o. spray is however more subtle,
because in this case not only the G/H homogeneous space, but also the geodesic
structure is fixed and we want to metrize both. It may happen that the g.o. structure
on a homogeneous space G/H is not invariant metrizable, but the G/H structure
is.
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Chapter 3

On the holonomy of Finsler
manifolds

3.1 Introduction

The parallelism on Riemannian and Finslerian manifolds is defined through the
covariant differentiation with respect to the canonical connection, that is, through a
system of differential equations. The attached geometric structure is the holonomy
group, which can be introduced in a very natural way: it is the group generated
by parallel translations along loops. In contrast to the Finslerian case, Riemannian
holonomy groups have been extensively studied. One of the earliest fundamental
results is the theorem of Borel and Lichnerowicz [18] from 1952, claiming that the
holonomy group of a simply connected Riemannian manifold is a closed Lie subgroup
of the orthogonal group O(n). By now, the complete classification of Riemannian
holonomy groups is known [14, 20, 51].

Similarly to the Riemannian case, the holonomy group of a Finsler manifold is the
group generated by canonical (homogeneous) parallel translations along closed loops.
Despite the analogous construction, Finslerian holonomy can be much more complex
than Riemannian. The holonomy groups of non-Riemannian Finsler manifolds have
been described only in a few special cases: Z.I. Szabó proved that for Berwald
metrics there exist Riemannian metrics with the same holonomy group (cf. [88]),
and for Landsberg metrics L. Kozma showed that the holonomy groups are compact
Lie groups consisting of isometries of the indicatrix with respect to an induced
Riemannian metric (cf. [56, 57]).

A thorough study of holonomy groups of homogeneous (nonlinear) connections
was initiated by W. Barthel in his basic work [13] in 1963; he gave a construction
for a holonomy algebra of vector fields on the tangent space. In [69] P. Michor
proposed a general setting for the study of infinite dimensional holonomy groups
and holonomy algebras which was the motivation for us to start investigating the
tangent objects to a subgroup of the diffeomorphism group [119]. Since then, we
manage to obtain several new results on the Finsler holonomy structure (cf. [108,
109, 120, 121, 122, 123, 124]). In this chapter we present our results about this
topic.

54
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In Section 3.2 we collect the necessary definitions and constructions of Finsler
geometry: canonical covariant derivative, parallel translation and holonomy.

In Section 3.3 we investigate the tangent structure of subgroups of the diffeomor-
phism group Diff∞(M) of a manifold M . We introduce the notion of tangent Lie
algebra of subgroups: denoting by ToG the set of tangent vector fields to a subgroup
G of the diffeomorphism group at the identity, we prove that ToG is a Lie subalgebra
of the Lie algebra of smooth vector fields on M (Theorem 3.3.3). It follows that any
subalgebra of ToG inherit the tangential property, that is the elements of a subalge-
bra generated by tangent vector fields to the subgroup G are tangent to G (Corollary
3.3.5). This property can be particularly interesting when the Lie bracket of two
tangent vector fields to G generates a new direction, because the tangential property
will be satisfied in the new direction as well. As we show in Theorem 3.3.7, when
M is compact, the group generated by the exponential image of ToG is a subgroup
of the closure of G in Diff∞(M). This fact can give important information about
the group G itself, especially in the infinite dimensional case. The concept can be
adapted for any subgroup G of any (finite or infinite dimensional) Lie group GL. In
the particular case when G is a Lie subgroup of GL, then ToG = g is just the usual
Lie subalgebra of the Lie algebra of GL.

In Section 3.4 and 3.5 we investigate the tangent algebra and subalgebra of the
holonomy group and the fibered holonomy group of Finsler manifolds. We introduce
the notion of curvature algebra of a Finsler manifold, which is a generalization of
the matrix algebra generated by curvature operators of a Riemannian manifold.
We show that the vector fields belonging to the curvature algebra are tangent to
the fibered holonomy group. We also define the infinitesimal holonomy algebra as
the smallest Lie algebra of vector fields on an indicatrix, containing the curvature
vector fields and their horizontal covariant derivatives with respect to the Berwald
connection. We prove the tangential property of the elements of the infinitesimal
holonomy algebra to the holonomy group. Both the curvature algebra and the
infinitesimal holonomy algebra can give important information about the holonomy
properties of Finsler manifolds.

In Section 3.6 we prove that the dimension of the curvature algebra of a posi-
tive definite non-Riemannian Finsler manifold of non-zero constant curvature with
dimension n > 2 is strictly greater than the dimension of the orthogonal group
acting on its tangent space, hence the holonomy group can not be a compact Lie
group. In addition, we provide an example of a left-invariant singular (non y-global)
Finsler metric of Berwald-Moór-type on the 3-dimensional Heisenberg group which
has infinite dimensional curvature algebra and hence its holonomy group is not a
(finite dimensional) Lie group. These results gave a positive answer to the following
problem formulated by S.S. Chern and Z. Shen: ”Is there a Finsler manifold whose
holonomy group is not the holonomy group of any Riemannian manifold?” [28, page
85].

In Section 3.7 we investigate the holonomy group of locally projectively flat
Finsler manifolds of constant curvature. Our aim is to characterize all locally pro-
jectively flat Finsler manifolds with infinite dimensional holonomy group. To get
such a characterization, we investigate the dimension of the infinitesimal holonomy
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algebra. We obtain that non-Riemannian locally projectively flat Finsler manifolds
of nonzero constant curvature have infinite dimensional infinitesimal holonomy al-
gebra. Using this general result and the tangential property of the infinitesimal
holonomy algebra, we prove that the holonomy group of a locally projectively flat
Finsler manifold of constant curvature is finite dimensional if and only if it is a
Riemannian manifold or a flat Finsler manifold.

In Section 3.8 we show that the holonomy group of a certain class of simply
connected, projectively flat Finsler 2-manifolds of constant curvature is not a finite
dimensional Lie group, and we prove that its topological closure is Diff∞+ (S1), the
connected component of the diffeomorphism group of the circle (cf. [123]). The sig-
nificance of this result comes from the fact that, before our investigation, not a single
infinite dimensional Finsler holonomy group has been described. This class of Finsler
2-manifolds contains the standard Funk metric (of constant negative curvature) and
the Bryant-Shen spheres (of constant positive curvature) [21, 85]. In these exam-
ples the holonomy groups are maximal. In addition, we investigate the holonomy
structure of the most accessible and demonstrative 2-dimensional Finsler surfaces,
Randers surfaces. In the Randers case, the Finsler function is a Riemann norm
deformed by a 1-form. Randers metrics describe the Zermelo navigation problem on
Riemannian manifolds [11]. This fact may suggest that the holonomy structures of
Randers manifolds and Riemannian manifolds are similar, but our result (Theorem
3.8.6) shows that quite the opposite is true: the holonomy group of a simply con-
nected, locally projectively flat non-Riemannian Randers two-manifold of non-zero
constant flag curvature is maximal and its closure is isomorphic to Diff∞+ (S1). These
results are surprising because they show that even in the case when the geodesic
structure is simple (the geodesics are straight lines), the holonomy group can still be
very large. We also obtain the classification of the holonomy groups of projectively
flat Randers surfaces (Corollary 3.8.7).

The results of this chapter are based on the papers [108, 109, 120, 122, 123, 124].

3.2 Preliminaries

Covariant derivative and parallel translation

Let (M,F ) be a Finsler manifold and S its geodesic spray. The horizontal distribu-
tion HTM ⊂ TTM introduced in Chapter 2.2 associated with the spray S can be
considered as the image of the horizontal lift which is the vector space isomorphism
ly : TxM → HyTM for x ∈M and y ∈ TxM defined by

ly

( ∂

∂xi

)
=

∂

∂xi
−Gk

i (x, y)
∂

∂yk
, (3.1)

in the coordinate system (xi, yi) of TM . For the horizontal lift of a vector field X
we will often use the simplified notation Xh. The pull-back bundle of (TM, π,M)
corresponding to the map π : TM →M is denoted by (π∗TM, π, TM). Clearly, the
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mapping (
x, y, ξi

∂

∂yi

)
7→
(
x, y, ξi

∂

∂xi

)
: V TM → π∗TM (3.2)

is a canonical bundle isomorphism. In the following we will use the isomorphism
(3.2) for the identification of these bundles.

Let X (M) be the vector space of smooth vector fields on the manifold M and
X̂∞(TM) be the vector space of smooth sections of the vertical bundle (VTM, τ, TM).
The horizontal Berwald covariant derivative of a section ξ ∈ X̂∞(TM) by a vector
field X ∈ X∞(M) is given by

∇Xξ := [Xh, ξ ].

If ξ(x, y) = ξi(x, y) ∂
∂yi

and X(x) = X i(x) ∂
∂xi

then ∇Xξ can be expressed as

∇Xξ =

(
∂ξi(x, y)

∂xj
−Gk

j (x, y)
∂ξi(x, y)

∂yk
+Gi

jk(x, y)ξk(x, y)

)
Xj ∂

∂yi
, (3.3)

where Gi
jk :=

∂Gij
∂yk

. Moreover, by defining the horizontal Berwald covariant derivative

∇Xφ = l(X)φ =

(
∂φ

∂xj
−Gk

j (x, y)
∂φ(x, y)

∂yk

)
Xj

of a smooth function φ : TM → R, then (3.3)) can be extended to sections of the
tensor bundle over (π∗TM, π, TM) using the canonical bundle isomorphism (3.2).

Curvature

The curvature tensor of the Finsler manifold (M,F) is the curvature tensor R asso-
ciated to its geodesic spray. One can calculate it by using the formula (1.11). The
local expression of the curvature tensor is given by R(x,y) = Ri

jk(x, y)dxj ⊗ dxk⊗ ∂
∂xi

where

Ri
jk(x, y) =

∂Gi
j(x, y)

∂xk
− ∂Gi

k(x, y)

∂xj
+Gm

j (x, y)Gi
km(x, y)−Gm

k (x, y)Gi
jm(x, y) (3.4)

in a local coordinate system. The manifold (M,F) has constant flag curvature
λ ∈ R, if for any x ∈M the local expression of the Riemannian curvature is

Ri
jk(x, y) = λ

(
δikgjm(x, y)ym − δijgkm(x, y)ym

)
. (3.5)

In this case the flag curvature of the Finsler manifold (cf. [28], Section 2.1 pp. 43-
46) does not depend either on the point or on the 2-flag. The Landsberg curvature
tensor field is defined as

L(x,y)(u, v, w) = g(x,y) (∇wB(u, v, w), y) ,

for y, u, v, w ∈ TxM . According to [82, Lemma 6.2.2], one has ∇wg(x,y)(u, v) =
−2L(x,y)(u, v, w). Moreover, the horizontal Berwald covariant derivative of the tensor
field

Q(x,y) =
(
δijgkm(x, y)ym − δikgjm(x, y)ym

)
dxj ⊗ dxk ⊗ dxl ⊗ ∂

∂xi
(3.6)
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vanishes. Indeed, for any vector field W ∈ X∞(M) we have ∇W idTM = 0 and
∇Wy = 0. Moreover, since L(x,y)(y, v, w) = 0 (cf. [82, equation 6.28]) we get the
assertion.

Parallel translation

Parallel vector fields X(t) = X i(t) ∂
∂xi

along a curve c(t) are defined by the solutions
of the differential equation

DċX(t) :=
(dX i(t)

dt
+Gi

j(c(t), X(t))ċj(t)
) ∂

∂xi
= 0. (3.7)

Since the functions Gi
j(x, y) are positive 1–homogeneous with respect to the variable

y, we have Dċ(λX(t)) = λDċX(t) for any λ ≥ 0. The differential equation (3.7) can
be expressed by the horizontal covariant derivative (3.3) using the bundle isomor-
phism (3.2) as follows: a vector field X(t) = X i(t) ∂

∂xi
along a curve c(t) is parallel

if it satisfies the equation
DċX = 0. (3.8)

Clearly, for any X0 ∈ Tc(0)M there is a unique parallel vector field X(t) along the
curve c such that X0 = X(0). Moreover, if X(t) is a parallel vector field along c,
then λX(t) is also parallel along c for any λ ≥ 0. Then the homogeneous (nonlinear)
parallel translation

Pc : Tc(0)M → Tc(1)M (3.9)

along a curve c(t) is defined by the positive homogeneous map Pc : X0 7→ X1 given
by the value X1 = X(1) at t = 1 of the parallel vector field with initial value
X(0) = X0.

The parallel translation can be introduced geometrically using the notion of the
horizontal distribution. Namely, we call a curve in TM horizontal if the tangent
vectors of this curve are contained in the horizontal distribution HTM⊂TTM . Let
now c(t) be a curve in the manifold M joining the points p and q. The horizontal
lift ch(t) = (c(t), X i(t) ∂

∂xi
) of c(t) is the curve ch(t) in TM defined by the properties

that ch(t) projects on c(t) and ch(t) is horizontal that is ċh(t) ∈ Hc(t). This means
according to equation (3.1) that

ċi(t)
∂

∂xi
+
d

dt
X i(t)

∂

∂yi
=

(
∂

∂xi
−Gk

i (x, y)
∂

∂yk

)
ċi(t),

i.e. the tangent vector of the lifted curve ch(t) is the horizontal lift of the tangent
vector ċi(t) ∂

∂xi
of c(t). It follows that a vector field X(t) along a curve c(t) is parallel

if and only if it is a solution of the differential equation

d

dt

(
c(t), X i(t)

∂

∂xi

)
= lX(t)(ċ(t)), (3.10)

or equivalently X(t) satisfies the differential equation (3.7). Hence the parallel
translation along a curve c(t) joining the points p and q is the map Pc : TpM → TqM
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determined by the intersection points of the horizontal lifts of the curve c(t) with
the tangent spaces TpM and TqM .

We remark that the horizontal lift ϕht of the flow ϕt of a vector field X ∈X (M)
is the flow of the horizontal lift of the vector field Xh ∈ X (TM). Therefore the
parallel translation along the integral curves of X can be calculated in terms of the
horizontal lift of the flow:

P tϕ = ϕht . (3.11)

Since the parallel translation is determined by the horizontal distribution, a Finsler
manifold can be considered as a particular case of a fibered manifold equipped with
an Ehresmann connection (cf. [38]). Indeed, an Ehresmann connection of a fibered
manifold is given by a horizontal distribution, which is a complement to the vertical
distribution consisting of the tangent spaces of the fibers. For a spray manifold
the fibered manifold is the tangent bundle of M and the horizontal distribution
determined by the horizontal lift ly : TxM → HyTM expressed by equation (3.1).

Finsler holonomy

The holonomy group of a Riemannian or Finslerian manifolds is the group gener-
ated by parallel translations along loops with respect to the canonical associated
connection. Despite the similarities, the holonomy properties of Finsler manifolds
are essentially different from the Riemannian one, and it is far from being well un-
derstood. The main difficulty comes from the fact that in the general case, the
canonical connection of a Finsler manifold is neither linear nor metrical, that is
the parallel translation is not necessarily preserving the metric. Only much weaker
properties are fulfilled: instead of the linearity it is only 1−homogeneous, and in-
stead of the metrical property it is preserving only the norm function. Nonetheless
these properties allow us to consider the parallel translations as maps between the
indicatrices, and therefore the holonomy group can be considered as a subgroup of
the diffeomorphism group of the indicatrix. Indeed, let (M,F) be an n-dimensional
Finsler manifold. The indicatrix Ix at x ∈M is a hypersurface of TxM defined by

Ix := { y ∈ TxM : F(y) = 1 } . (3.12)

The indicatrix (3.12) is a compact hypersurface in the tangent space TxM , diffeo-
morphic to the standard (n−1)-dimensional sphere. In the sequel (I, π,M) will
denote the indicatrix bundle of (M,F) and i : I ↪→ TM the natural embedding of
the indicatrix bundle into the tangent bundle (TM, π,M).

On a Finsler manifold (M,F), the parallel translation (3.9) along a curve c :
[0, 1] → R is a differentiable map between the slit tangent spaces preserving the
value of the Finsler function F , therefore it induces a map

Pc : Ic(0) −→ Ic(1) (3.13)

between the indicatrices. Since the parallel translation is also 1-homogeneous, it is
entirely characterized by the map (3.13). Indeed, we have Pc(0) = 0 and for every
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non-zero vector v ∈ Tc(0)M we have

Pc(v) = |v| · Pc
(
v

|v|

)
.

It follows from these observations that the holonomy group Holx(M) of the Finsler
manifold (M,F) at the point x ∈ M is uniquely determined by its action on the
indicatrix Ix. Hence we can formulate the following

Definition 3.2.1. The holonomy group Holx(M) of a Finsler space (M,F ) at x ∈M
is the subgroup of the group of diffeomorphisms Diff∞(Ix) of the indicatrix Ix
determined by parallel translation of Ix along piece-wise differentiable closed curves
initiated at the point x ∈M .

We note that the holonomy group Holx(M) is a topological subgroup of the
regular infinite dimensional Lie group Diff∞(Ix), but its differentiable structure is
not known in general.

3.3 Tangent Lie algebra of a subgroup of the dif-

feomorphism group

Let G be a subgroup of Diff∞(M) where M is a differentiable manifold. We do not
suppose any special property on G, in particular, we do not suppose that G is a Lie
subgroup of Diff∞(M). Our aim is to introduce a tangential property and a tangent
object to G, and to show that the set of tangent elements has a Lie algebra structure.
We also show that the constructed tangent Lie algebra can give information about
the group G.

A smooth curve c : I → M on the manifold M has a (k−1)st-order singularity
at t = 0, if its derivatives vanish up to order k−1, (k ≥ 0). It is well known that
if the curve c has a (k−1)st-order singularity at 0 ∈ R, then its kth order derivative
c(k)(0) = Xp is a tangent vector at p = c(0). In that case, the curve c is called a
kth-order integral curve of the vector Xp ∈ TpM . Extending this concept to vector
fields, we introduce the following

Definition 3.3.1. [109, Definition 3.1] A C∞−smooth curve in the diffeomorphism
group ϕ : I → Diff∞(M), t → ϕt is called an integral curve of the vector field
X ∈ X (M) if

(1) ϕ0 = idM ,

(2) there exists k ∈ N such that for any point p ∈ M the curve t → ϕt(p) is a
kth-order integral curve of X(p) ∈ TpM.

This k ∈ N is called the order of the integral curve ϕt of the vector field X.

In particular, the flow ϕXt of X ∈ X (M) is a 1st-order integral curve of X. Moreover,
if k > 1 and t→ ϕt is a kth−order integral curve of the vector field X then we have

ϕ0 = idM ,
∂ϕt
∂t

∣∣∣
t=0

= 0, . . .
∂k−1ϕt
∂tk−1

∣∣∣
t=0

= 0,
∂kϕt
∂tk

∣∣∣
t=0

= X. (3.14)
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Using the terminology of Definition 3.3.1 we introduce the following

Definition 3.3.2. A vector field X ∈ X (M) is called tangent to a subgroup G of
the diffeomorphism group Diff∞(M) if there exists an integral curve of X in G. The
set of tangent vector fields of G is denoted by ToG.

We have X ∈ ToG if and only if there exists a C∞−smooth curve ϕ : I →
Diff∞(M) such that ϕt ∈ G with ϕ0 = idM , and there exists k ∈ N such that
equation (3.14) is satisfied. One can observe that in Definition 3.3.2 we do not
suppose that G is a Lie subgroup of Diff∞(M). Indeed, we use the differential
structure of the later to formulate the smoothness condition on the curve in G.
Nevertheless, we have the following

Theorem 3.3.3. [109, Theorem 3.4] If G is a subgroup of Diff∞(M), then ToG is
a Lie subalgebra of X (M).

Proof. We have to show that

X, Y ∈ ToG ⇒ [X, Y ] ∈ ToG, (3.15a)

X, Y ∈ ToG ⇒ X + Y ∈ ToG, (3.15b)

λ ∈ R, X ∈ ToG ⇒ λX ∈ ToG. (3.15c)

Indeed, let X, Y ∈ ToG, that is X, Y ∈ X (M) tangent to G. According to Definition
3.3.1, there exist k, l ∈ N such that ϕt, ψt ∈ G are integral curves of X and Y
respectively. Let us suppose that ϕt is a kth−order integral curve of X and ψt is an
lth-order integral curve of Y (k, l ≥ 1). Then

ϕ0 = idM ,

{
∂iϕt
∂ti

∣∣∣
t=0

= 0

}
1≤i<k

∂kϕt
∂tk

∣∣∣
t=0

= X, (3.16)

and

ψ0 = idM ,

{
∂jψt
∂tj

∣∣∣
t=0
= 0

}
1≤j<l

∂lϕt
∂tl

∣∣∣
t=0

= Y. (3.17)

To show (3.15a) we use a computation similar to that of [67]: Considering the group
theoretical commutator

[ϕt, ψs] := ϕ−1
t ◦ ψ−1

s ◦ ϕt ◦ ψs, (3.18)

we get a two-parameter family of diffeomorphisms such that if one of the parameters
s or t is zero then (3.18) is the identity transformation. From (3.16) and (3.17) we
also know that the first, potentially nonzero derivative is the (k + l)th order mixed
derivative:

∂(k+l) [ϕt, ψs]

∂tk∂sl

∣∣∣
(0,0)

(p) =
∂l

∂sl

∣∣∣
s=0

(
∂k
(
ϕ−1
s ◦ ψ−1

t ◦ ϕs ◦ ψt(p)
)

∂tk

∣∣∣
t=0

)

=
∂l

∂sl

∣∣∣
s=0

(
d
(
ϕ−1
s

)
ϕs(p)
◦ ∂

kψ−1
t

∂tk

∣∣∣
t=0

(ψs(p))

)
,

(3.19)
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where d (ϕ−1
s )ϕs(p) denotes the tangent map (or Jacobi operator) of ϕ−1

s at the point

ϕs(p). Since d
(
ϕ−1
s=0

)
ϕs(p)

= id, the above formula can be written in the form

d

(
∂lϕ−1

s

∂sl

∣∣∣
s=0

)
p

∂kψ−1
t (p)

∂tk

∣∣∣
t=0

+ d

(
∂kψ−1

t

∂tk

∣∣∣
t=0

)
p

∂lϕs(p)

∂sl

∣∣∣
s=0

. (3.20)

From ϕt ◦ ϕ−1
t = id we get

0 =
∂k

∂tk

∣∣∣
t=0

(
ϕt ◦ ϕ−1

t

)
= X +

∂k(ϕ−1
t )

∂tk

∣∣∣
t=0

which yields
∂k(ϕ−1

t )

∂tk
∣∣
t=0

= −X. (3.21)

Therefore we get that (3.20) can be written as

d

(
∂lϕs
∂sl

∣∣∣
s=0

)
p

∂kψt(p)

∂tk

∣∣∣
t=0
− d

(
∂kψt
∂tk

∣∣∣
t=0

)
p

∂lϕs(p)

∂sl

∣∣∣
s=0

, (3.22)

which is the Lie bracket of the vector fields X and Y , that is

∂k+l [ϕt, ψs]

∂tk∂sl

∣∣∣
(0,0)

= [Y,X] . (3.23)

From (3.23) we get that t→ [ϕt, ψt] is a (k+ l)th-order integral curve of [Y,X] in G.
By exchanging ϕt and ψt we get that t→ [ψt, ϕt] is a (k + l)th-order integral curve
of [X, Y ] in G. It follows that [X, Y ] ∈ ToG which proves (3.15a).

Let us show (3.15b): for any c1, c2,m1,m2 ∈ R, φt = ϕc1tm1 ◦ ψc2tm2 is a smooth
curve in G with φ0 = ϕ0 ◦ ψ0 = idM . Moreover, if r denotes the least common
multiple of k and l and

m1 = r/k, m2 = r/l, c1 =
(
mk

1(r − k)!
)−1/r

, c2 =
(
ml

2(r − l)!
)−1/r

,

one gets
∂rφt
∂tr

∣∣∣
t=0

=
∂r

∂tr

∣∣∣
t=0

(ϕc1tm1 ◦ ψc2tm2 ) = X + Y, (3.24)

showing that ψt is an rth-order integral curve of X + Y in G, therefore X + Y is
tangent to G.

To show (3.15c) we have to examine two separate cases depending on the sign of
λ. It is clear that in the case when λ ≥ 0, one can reparametrize the integral curve
of X, and using that the lower order terms are zero, we get

∂kϕ
k√
λt

∂tk

∣∣∣
t=0

= λX. (3.25)

In the case when λ < 0 one can use (3.21) and we get

∂k

∂tk

∣∣∣
t=0

(
ϕ−1
k
√
|λ|t

)
= −|λ|X = λX (3.26)

From (21) and (22) we get that λX is tangent to G, that is λX ∈ ToG, and from
11b) and 11c) we get that any linear combinations of X and Y are in ToG.
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Definition 3.3.4. [109, Definition 3.5] T0G is called the tangent Lie algebra of the
subgroup G ⊂ Diff∞(M).

As a direct consequence of Theorem 3.3.3 we get the following

Corollary 3.3.5. [109, Corollary 3.6] Let G be a subgroup of Diff∞(M) and Σ ⊂
X (M) a subset such that its elements are tangent to G. Then the Lie subalgebra〈

Σ
〉
Lie of X (M) generated by Σ is also tangent to G, that is

Σ ⊂ ToG ⇒
〈

Σ
〉
Lie
⊂ ToG.

Remark 3.3.6. Slightly different tangent properties of vector fields to a subgroup
G of the diffeomorphism group were already introduced in [119]. We will refer to the
property [119, Definition 2.] as the weak tangent property and to [119, Definition
4.] as the strong tangent property. Our language is justified by the fact that any
strongly tangent vector field to a subgroup G is also tangent to G, and any tangent
vector field to G is also weakly tangent to G.

The main feature of ToG is that one can obtain information about the group G.
Indeed, one has the following

Theorem 3.3.7. [109, Theorem 3.10] Let M be a compact manifold, G a subgroup
of Diff∞(M) and G its topological closure with respect to the C∞ topology. Then the
group generated by the exponential image of the tangent Lie algebra ToG with respect
to the exponential map exp: X (M)→ Diff∞(M) is a subgroup of G.

Proof. If X ∈ ToG, then there exists a C1-differentiable 1-parameter family {ψt} ⊂ G
of diffeomorphisms of M such that ψ0 = idM and X = ∂ψt

∂t

∣∣
t=0
. Then, using the

argument of [72, Corollary 5.4, p. 84] on ψt we get that

ψn
(
t
n

)
= ψ

(
t
n

)
◦ · · · ◦ ψ

(
t
n

)
in G, as a sequence of Diff∞(M), converges uniformly in all derivatives to exp(tX).
It follows that

{ exp(tX) | t ∈ R } ⊂ G,
for any X ∈ToG. Therefore, one has exp (ToG) ⊂ G and if we denote by

〈
exp(ToG)

〉
the group generated by the exponential image of ToG we get〈

exp(ToG)
〉
⊂ G,

which proves Theorem 3.3.7.

The concept worked out in Definition 3.3.2 and Theorem 3.3.3 can be adapted
not only for subgroups of the diffeomorphism group but for any subgroup of any
(finite or infinite dimensional) Lie group (see Definition 3.11 and Theorem 3.12 of
[109]). In the particular case when G is a Lie subgroup of GL, then ToG = g is just
the usual Lie subalgebra of the Lie algebra gL of GL, associated to the Lie subgroup
G. Hence this construction generalizes the classical notion of the Lie subalgebra
associated to a Lie subgroup.
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3.4 Fibered holonomy algebra and its Lie subal-

gebras

The notion of fibered holonomy group Holf (M) of a Finsler manifold (M,F ) was
introduced in [119]: it is the group generated by fiber preserving diffeomorphisms
Φ of the indicatrix bundle (IM,π,M), such that for any p ∈ M the restriction
Φp = Φ|Ip is an element of the holonomy group Holp(M). It is obvious that

Holf (M) ⊂ Diff∞(IM), (3.27)

where Holf (M) is actually a subgroup of the diffeomorphism group of the indicatrix
bundle. We remark that it is not known whether or not Holf (M) is a Lie subgroup
of Diff∞(IM). The set of tangent vector fields to the group Holf (M) denoted as
holf (M) that is

holf (M) := T0

(
Holf (M)

)
, (3.28)

and called the fibered holonomy algebra of the Finsler manifold (M,F ). From The-
orem 3.3.3 one can obtain the following

Theorem 3.4.1. [109, Theorem 4.2] The fibered holonomy algebra holf (M) is a Lie
subalgebra of the Lie algebra of smooth vector fields X (IM).

Remark 3.4.2. A vector field X ∈ X (I) is tangent to the fibered holonomy group
Holf (M) if and only if there exists a family of fiber preserving diffeomorphisms ϕt
of the bundle (I, π,M) such that for any indicatrix Ip, p ∈ M , the induced family
of diffeomorphisms ϕt

∣∣
Ip

is contained in the holonomy group Holp(M) and ϕt
∣∣
Ip

is

an integral curve of X
∣∣
Ip

. It follows that X
∣∣
Ip

is tangent to the holonomy group

Holp(M). Furthermore, since π(ϕt
∣∣
Ip

)≡ p we get π∗(X) = 0 for every p ∈ M , that

is tangent vector fields to the fibered holonomy group Holf (M) are vertical vector
fields.

In the sequel we will investigate the two most important Lie subalgebras of
holf (M) which can be introduced with the help of the curvature tensor (1.11) of a
Finsler manifold: the curvature algebra and the infinitesimal holonomy algebra.

Curvature algebra

Definition 3.4.3. A vector field ξ ∈ X (IM) is called a curvature vector field if there
exist vector fields X, Y ∈ X (M) such that ξ = R(Xh, Y h). The Lie subalgebra R
of vector fields generated by curvature vector fields is called the curvature algebra.

It is easy to see from the definition of the curvature tensor that a curvature
vector field can be calculated as

ξ = R(Xh, Y h) =
[
Xh, Y h

]
−
[
X, Y

]h
, (3.29)

and we have R ⊂ X (IM). Moreover, we have the following

dc_1714_19

Powered by TCPDF (www.tcpdf.org)



CHAPTER 3. ON THE HOLONOMY OF FINSLER MANIFOLDS 65

Proposition 3.4.4. [109, Proposition 4.4]

1. The elements of the curvature algebra are tangent to the group Holf (M).
2. The curvature algebra R is a Lie subalgebra of holf (M).

To prove the first part of the proposition, let ξ ∈ X (IM) be a curvature vector field
and X, Y ∈ X (M) such that ξ = R(Xh, Y h). We have to show that ξ ∈ holf (M).
We denote by ϕ and ψ the integral curves of X and Y respectively. Define

αt,s :=


ϕs, 0 ≤ s ≤ t,

ψs−tϕt, t ≤ s ≤ 2t,

ϕ2t−sψtϕt, 2t ≤ s ≤ 3t,

ψ3t−sϕ−tψtϕt, 3t ≤ s ≤ 4t.

and
βt,s := ψ−sϕ−sψsϕs, 0 ≤ s ≤ t,

for sufficiently small t ∈ R. Then, for every p ∈ M and fixed t the map αt(p) : s→
αt,s(p) and βt(p) : s → βt,s(p) are parametrized curves: αt(p) : s → αt,s(p) is a (not
necessarily closed) parallelogram and βt(p) joins the endpoints of αt(p). Indeed, for
every p ∈ M and fixed t the endpoint of αt(p) coincides with the endpoint of βt(p)
and consequently the curve αt(p) ∗ β−1

t (p) defined as going along the curve αt(p)
then continuing along β−1

t (p) (which is the curve βt(p) with opposed orientation) is
a closed curve that starts and ends at p ∈M . Let us consider

ht,p := Pαt(p)∗β−1
t (p) = Pαt(p) ◦ P−1

βt(p)
, (3.30)

the parallel translation along αt(p) ∗ β−1
t (p). We have the following

Lemma 3.4.5. For any p ∈M
(1) ht,p ∈ Holp(M),

(2) t→ ht/
√

2,p is a second order integral curve of ξp := ξ
∣∣
Ip

(
∈ X (Ip)

)
.

Proof. For every p ∈ M and sufficiently small t, the curve αt(p) ∗ β−1
t (p) is a loop

starting and ending at p. Therefore, the parallel transport ht,p : Ip → Ip is a holo-
nomy transformation at p, and we get (1) of the lemma.

To show (2) we first remark that α0(p) and β0(p) are the trivial curves (s →
α0,s(p) = β0,s(p) ≡ p), therefore the parallel translation along them is the identity
transformation and

h0,p = idIp . (3.31)

On the other hand, the parallel transport along a curve is determined by the hori-
zontal lift of the curve, and along the integral curves of the vector fields X and Y ,
it can be expressed with the flows of the horizontal lifts Xh and Y h. Let us consider
first the curve αt(p): the parallel transport of a vector v ∈ Ip along the curve αt(p)
is

Pαt(p)(v) =



ϕX
h

s (v), 0 ≤ s ≤ t,

ϕY
h

s−tϕ
Xh

t (v), t ≤ s ≤ 2t,

ϕX
h

−(s−2t)ϕ
Y h

t ϕX
h

t (v), 2t ≤ s ≤ 3t,

ϕY
h

−(s−3t)ϕ
Xh

−t ϕ
Y h

t ϕX
h

t (v), 3t ≤ s ≤ 4t.
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Therefore, Pαt(p) corresponds to the infinitesimal (not necessarily closed) parallelo-
gram having as sides the integral curves of the horizontal lifts Xh and Y h. From the
well known properties of the Lie bracket (see for example [87, p.162]) we get that

d

dt

∣∣∣
t=0
Pαt(v) = 0, and

d2

dt2

∣∣∣
t=0
Pαt(v) = 2

[
Xh, Y h

]
v
. (3.32)

On the other hand, the parallel transport of a vector w ∈ Iαt(p) along β−1
t (p) can be

calculated with the help of its horizontal lift Pβ−1
t

(w) = P−1
βt

(w) = ((β)h(t))−1(w),

where by the definition of the horizontal lift π ◦ (β)h(t) = β(t) and (β−1)h(0) = w
are fulfilled. Since d

dt

∣∣
t=0
βt(p) = 0, and d2

dt2

∣∣
t=0
βt(p)(v) = 2 [X, Y ]p , we obtain

d

dt

∣∣∣
t=0
P−1
βt

= 0 and
d2

dt2

∣∣∣
t=0
P−1
βt

(v) = −
(
2 [X, Y ]h

)
v
, (3.33)

thus, from the two equations of (3.32) and the two equations of (3.33) we get

d

dt

∣∣∣
t=0
ht(v) = 0 and

d2

dt2

∣∣∣
t=0
ht(v) = 2

([
Xh, Y h

]
−
[
X, Y

]h)
v

= 2ξp, (3.34)

where we also used (3.29). To summarize, we get from (3.31) and (3.34):

h0,p = id
∣∣
Ip
,

d

dt

∣∣∣
t=0
ht,p = 0,

1

2

d2

dt2

∣∣∣
t=0
ht,p = ξp, (3.35)

which means that the reparametrized map t→ ht/
√

2,p is a second order integral curve
of the curvature vector field ξp ∈ X (Ip) and proves point (2) of the lemma.

Proof of Proposition 3.4.4. Let us consider the map ht : IM → IM on the indica-
trix bundle, where ht

∣∣
Ip

:= ht,p and h̃t := ht/
√

2. From Lemma 3.4.5 we get

(1) h̃t ∈ Holf (M),

(2) t→ h̃t is a second order integral curve of the vector field ξ ∈ X (I),

which shows that the curvature vector field ξ is tangent to Holf (M) and proves the
first part of the proposition. Applying Corollary 3.3.5, we get that the Lie algebra
generated by the curvature vector field is tangent to Holf (M) which proves the
second part of the proposition.

We remark that (1) of Proposition 3.4.4 is an improvement of Proposition 3
and Corollary 2 of [119]. Indeed, the tangent property proved in [119] is weaker: C1

instead of C∞ smoothness. Moreover, [119] uses a very strong topological restriction
on the manifold M supposing it is diffeomorphic to the n-dimensional euclidean
space. In Proposition (3.4.4) we presented a natural geometric construction without
constraint on the topology of the manifold M .
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Infinitesimal holonomy algebra

Definition 3.4.6. The infinitesimal holonomy algebra hol∗(M) of a Finsler mani-
fold (M,F ) is the smallest Lie algebra on the indicatrix bundle which satisfies the
following properties:

1) curvature vector fields are element of hol∗(M),

2) if ξ, η ∈ hol∗(M), then [ξ, η] ∈ hol∗(M),

3) if ξ ∈ hol∗(M) and X ∈ X (M), then the horizontal Berwald covariant deriva-
tive ∇Xξ is also an element of hol∗(M).

We have the following

Proposition 3.4.7. [109, Proposition 4.7]

1. The elements of the infinitesimal holonomy algebra are tangent to Holf (M).

2. The infinitesimal holonomy algebra hol∗(M) is a Lie subalgebra of holf (M).

Proof. It is not difficult to show that if ξ ∈ X (I) is tangent to the fibered holonomy
group Holf (M), then its horizontal covariant derivative ∇Xξ along any vector field
X ∈ X (M) is also tangent to Holf (M). Indeed, let P be the (nonlinear) parallel
translation along the flow ϕ of the vector field X, i.e. for every p ∈ M and t ∈
(−εp, εp) the map Pt(p) : IpM → Iϕt(p)M is the (nonlinear) parallel translation
along the integral curve of X. If {Φt}t∈(−ε,ε) is a C∞-differentiable kth order integral
curve of ξ in Holf (M), then the commutator

[Φt,Pt] := Φ−1
t ◦ P−1

t ◦ Φt ◦ Pt

is a k + 1st order integral curve of
[
Xh, ξ

]
= ∇Xξ at any point of M , which shows

that the vector field ∇Xξ is tangent to Holf (M).
Moreover, we know from 3.4.4 that the curvature vector fields are tangent toHolf (M).
As a consequence, the infinitesimal holonomy algebra is generated by vector fields,
tangent to Holf (M) and, according to Corollary 3.3.5, any element of the generated
Lie algebra is also tangent to Holf (M) proving the second part of the proposi-
tion.

We remark that the first part of Proposition 3.4.7 is an improvement of [119,
Theorem 2], because the strong topology condition on the manifold M being diffeo-
morphic to Rn is dropped.

3.5 Holonomy algebra and its Lie subalgebras

Let (M,F ) be an n−dimensional Finsler manifold. At any points p ∈M the indica-
trix defined in (3.12) is an (n−1)-dimensional compact manifold in TpM . Therefore,
the diffeomorphism group Diff∞(Ip) is an infinite dimensional Fréchet Lie group
whose Lie algebra is X (Ip), the Lie algebra of smooth vector fields on Ip. As it was
introduced in Section 3.2, the holonomy group

Holp(M) ⊂ Diff∞(IpM), (3.36)
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is a subgroup of the diffeomorphism group Diff∞(IpM). The set of tangent vector
fields to the group Holp(M) will be denoted as

holp(M) := T0

(
Holp(M)

)
. (3.37)

holp(M) is called the holonomy algebra of the Finsler manifold (M,F ) at p ∈ M .
From Theorem 3.3.3 one obtains

Theorem 3.5.1. [109, Theorem 4.9] The holonomy algebra holp(M) of a Finsler
manifold (M,F ) at p ∈M is a Lie subalgebra of X (Ip).

The Berwald translate

Let γ := x(t), 0 ≤ t ≤ a be a smooth curve joining the points q=x(0) and p=x(a)
on the Finsler manifold (M,F). Considering a vector field ξ on the indicatrix Iq,
the map Pa∗ ◦ ξ ◦ P−1

a gives a vector field

Bγξ = Pa∗ξ ◦ (Pa)−1 (3.38)

on the indicatrix IpM . Moreover, for any vector field ξ ∈ hol∗q(M) ⊂ X (Iq) in
the infinitesimal holonomy algebra at q, the vector field (3.38) is tangent to the
holonomy group Holp(M). Indeed, if φt ∈ Holq(M) is an integral curve of ξ in
Holq(M), then

τa ◦ φt ◦ τ−1
a ∈ Holp(M)

is an integral curve of (3.38). The vector field Bγξ will be called the Berwald
translate of the vector field ξ ∈ X (Iq) along the curve γ.

Corollary 3.5.2. The holonomy algebra holp(M) of the Finsler manifold (M,F)
at the point p ∈ M contains the Berwald translates of all infinitesimal holonomy
algebras along arbitrary curves γ, joining any points q with the point p.

Remark 3.5.3. Clearly, the smallest Lie algebra of vector fields on the indicatrix
IpM , containing the Berwald translates of all infinitesimal holonomy algebras along
arbitrary curves is a Lie subalgebra of the holonomy algebra. It is still an open
question whether or not these two Lie algebras coincide.

In the sequel we identify two important Lie subalgebras of the holonomy algebra
of Finsler manifolds.

Curvature algebra at a point of the Finsler manifold

Let (M,F) be a Finsler manifold and p ∈M .

Definition 3.5.4. A vector field ξp ∈ X (Ip) on the indicatrix Ip ⊂ TpM is called
a curvature vector field at p if there exist tangent vectors Xp, Yp ∈ TpM such that
ξp = R(Xh

p , Y
h
p ). The Lie subalgebra Rp of vector fields generated by curvature

vector fields at p is called the curvature algebra at p.
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The relationship between the curvature algebra Rp at p ∈ M and the curvature
algebra R introduced in Definition 3.4.3 is:

Rp =
{
ξp = ξ|Ip

∣∣ ξ ∈ R
}
,

that is Rp is the restriction of R to the indicatrix Ip. We have

Proposition 3.5.5. [109, Proposition 4.4] The elements of the curvature algebra
Rp at p ∈M are tangent to the the holonomy group Holp(M). Furthermore, the
curvature algebra Rp is a Lie subalgebra of the holonomy algebra holp(M).

To prove the proposition, the argument is analogous to that of Proposition 3.4.4.

Infinitesimal holonomy algebra at a point of the Finsler manifold

Let (M,F) be a Finsler manifold and p ∈ M . By restricting the infinitesimal
holonomy algebra at a point we can obtain

Definition 3.5.6. The Lie algebra hol∗p(M) :=
{
ξ|Ip

∣∣ ξ ∈ hol∗(M)
}

of vector fields
on the indicatrix Ip is called the infinitesimal holonomy algebra at the point p ∈M .

From Proposition 3.4.7 we get

Proposition 3.5.7. [109, Proposition 4.7] The elements of the infinitesimal ho-
lonomy algebra hol∗p(M) are tangent to the group Holp(M). Furthermore, the in-
finitesimal holonomy algebra hol∗p(M) is a Lie subalgebra of the holonomy algebra
holp(M).

We note that by the construction of the infinitesimal holonomy algebra, the
curvature vector fields are elements of hol∗p(M), therefore we have the sequence of
the Lie algebras

Rp(M) ⊂ hol∗p(M) ⊂ holp(M) ⊂ X (Ip) . (3.39)

We also remark that the first parts of the statement of Proposition 3.5.5 and 3.5.7
are improvements of the results of [119] because the tangential property of the Lie
algebra is improved: we can guaranty C∞-smoothness instead of C1-smoothness.

Remark 3.5.8. In general, the curvature algebra is strictly smaller than the in-
finitesimal holonomy algebra. Nevertheless, one can find examples, where the cur-
vature algebra and the infinitesimal holonomy algebra coincide. Indeed, one can
show that if (M,F ) is a Finsler surface with non-zero constant flag curvature, then
hol∗p(M) = Rp(M) if and only if the mean Berwald curvature (1.10) of (M,F )
vanishes on Ip.

Z. Shen constructed in [84] two families of Randers surfaces depending on the
real parameter ε, which are of constant flag curvature κ = 1 on the unit sphere
S2 ⊂ R3, and of constant flag curvature κ = −1 on a disk D2 ⊂ R2. These Finsler
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surfaces are not projectively flat and have vanishing S-curvature (c.f. [84, Theorems
1.1 and 1.2]). Their Finsler function is defined by

α =

√
ε2h(ν, y)2 + h(y, y) (1− ε2h(ν, ν))

1− ε2h(ν, ν)
, β =

εh(ν, y)

1− ε2h(ν, ν)
, (3.40)

where h is the standard metric of the sphere S2, (resp. the standard Klein met-
ric on the unit disk D2) and ν denotes the vector field defined by (−x2, x1, 0) at
(x1, x2, x3) ∈ S2, and by (−x2, x1) at (x1, x2) ∈ D2 respectively. At any point of the
Randers-type Finsler surfaces defined by (3.40) the infinitesimal holonomy algebra
and the curvature algebra coincide.

3.6 Finsler manifolds of constant curvature

We consider a Finsler manifold (M,F ) of non-zero constant curvature. In this case
for any x ∈M the curvature vector field Rx(X, Y ) at y ∈ Ix has the form (cf. (3.5))

R(X, Y )(y) = c
(
δijgkm(y)ym − δikgjm(y)ym

)
XjY k ∂

∂yi
, c ∈ R, c 6= 0.

Putting yj = gjm(y)ym we can write R(X, Y )(y) = c
(
δijyk − δikyj

)
XjY k ∂

∂yi
. Any

linear combination of curvature vector fields has the form

r(A)(y) = Ajk
(
δijyk − δikyj

) ∂

∂yi
,

where A = Ajk ∂
∂xj
∧ ∂

∂xk
∈ TxM ∧ TxM is arbitrary bivector at x ∈M .

Lemma 3.6.1. [120, Lemma 10] Let (M,F ) be a Finsler manifold of non-zero
constant curvature. The curvature algebra Rx at any point x ∈M satisfies

dimRx ≥
n(n− 1)

2
, (3.41)

where n = dimM .

Indeed, let us consider the curvature vector fields rjk = rx
(
∂
∂xj
, ∂
∂xk

)
(y) at a fixed

point x ∈M . If a linear combination

Ajkrjk = Ajk(δijyk − δikyj)
∂

∂yi
= 2Aikyk

∂

∂yi

of curvature vector fields rjk with constant coefficients Ajk = −Akj satisfies Ajkrjk =
0 for any y ∈ TxM then one has the linear equation Aikyk = 0 for any fixed index
i. Since the covector fields y1, . . . , yn are linearly independent we obtain Ajk = 0
for all j, k ∈ {1, . . . , n}. It follows that the curvature vector fields rjk are linearly

independent for any j < k and hence dimRx ≥ n(n−1)
2

.
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Corollary 3.6.2. Let (M, g) be a Riemannian manifold of non-zero constant curva-
ture with n = dimM . The curvature algebra Rx at any point x ∈ M is isomorphic
to the orthogonal Lie algebra o(n).

Proof. The holonomy group of a Riemannian manifold is a subgroup of the orthog-
onal group O(n) of the tangent space TxM and hence the curvature algebra Rx is a
subalgebra of the orthogonal Lie algebra o(n). Hence the previous assertion implies
the corollary.

Theorem 3.6.3. [120, Theorem 12.] Let (M,F ) be a Finsler manifold of non-zero
constant curvature with dimM = n, n > 2. If the point x ∈ M is not (semi-)
Riemannian then

dimRx >
n(n− 1)

2
. (3.42)

Proof. We assume that the point x ∈ M is non-Riemannian but dimRx = n(n−1)
2

.
For any constant skew-symmetric matrices {Ajk} and {Bjk} the Lie bracket of
vector fields Aikyk

∂
∂yi

and Bikyk
∂
∂yi

has the form Cikyk
∂
∂yi

, where {Cik} is a
constant skew-symmetric matrix. Using the homogeneity of ghl we obtain

∂yh
∂ym

=
∂ghl
∂ym

yl + ghm = ghm (3.43)

and hence[
Amk yk

∂

∂ym
, Bih yh

∂

∂yi

]
=

(
Amk Bih ∂yh

∂ym
−Bmk Aih

∂yh
∂ym

)
yk

∂

∂yi

=
(
Bih ghmA

mk − Aih ghmBmk
)
yk

∂

∂yi
= Cik yk

∂

∂yi
.

In particular, for the skew-symmetric matrices Eij
ab = δiaδ

j
b−δibδja, a, b ∈ {1, . . . , n},

we have[
Eij
ab yj

∂

∂yi
, Ekl

cd yl
∂

∂yk

]
=
(
Eih
cd ghmE

mk
ab − Eih

ab ghmE
mk
cd

)
yk

∂

∂yi
= Λim

ab,cd ym
∂

∂yi
,

where the constants Λij
ab,cd satisfy Λij

ab,cd = −Λji
ab,cd = −Λij

ba,cd = −Λij
ab,dc = −Λij

cd,ab.
Putting i = a and computing the trace for these indices we obtain

(n− 2)(gbd yc − gbc yd) = Λl
b,cd yl, (3.44)

where Λl
b,cd := Λil

ib,cd. The right hand side is a linear form in the variables y1, . . . , yn.
According to the identity (3.44) this linear form vanishes for yc = yd = 0, hence

Λl
b,cd = 0 for l 6= c, d. Denoting λ

(c)
bd := 1

n−2
Λc
b,cd (no summation for the index c) we

get the identities
gbd yc − gbc yd = λ

(c)
bd yc − λ

(d)
bc yd.

Putting yd = 0 we obtain gbd
∣∣
yd=0

= λ
(c)
bd for any c 6= d. It follows λ

(c)
bd is independent

of the index c (6= d). Defining λbd := λ
(c)
bd with some c (6= d) we obtain from (3.44)

the identity
gbd yc − gbc yd = λbd yc − λbc yd (3.45)
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for any b, c, d ∈ {1, . . . , n}. We have

λcd yb−λcb yd = (gbd yc−gbc yd)− (gdb yc−gdc yb) = (λbd yc−λbc yd)− (λdb yc−λdc yb).

which implies the identity

(λcd yb − λcb yd) + (λdb yc − λdc yb) + (λbc yd − λbd yc) =

= (λcd − λdc) yb + (λdb − λbd) yc + (λbc − λcb) yd = 0. (3.46)

Since dimM > 2, we can consider 3 different indices b, c, d and we obtain from the
identity (3.46) that λbc = λcb for any b, c ∈ {1, . . . , n}. By differentiating the identity
(3.45) we get

∂gbd
∂ya

yc −
∂gbc
∂ya

yd + gbd δ
a
c − gbc δad = λbd δ

a
c − λbc δad .

Using (3.43) we obtain

∂ya
∂yq

(
∂gbd
∂ya

yc −
∂gbc
∂ya

yd

)
+ gbd gcq − gbc gdq = λbd gcq − λbc gdq,

since
(
∂gbd
∂yq

yc − ∂gbc
∂yq

yd

)
yb = 0 we get the identity

yd gcq − yc gdq = λbd y
b gcq − λbc yb gdq.

Multiplying both sides of this identity by the inverse (gqr) of the matrix (gcq) and
taking the trace with respect to the indices c, r we obtain the identity (n− 1) yd =
(n−1)λbd y

b. Hence gbd y
b = λbd y

b and gbd = λbd, which means that the point x ∈M
is (semi-) Riemannian. From this contradiction follows the assertion.

Corollary 3.6.4. The curvature algebra Rx at a point x ∈M of a Finsler manifold
(M,F ) of non-zero constant curvature satisfies

dimRx =
n(n− 1)

2
, where n=dimM, (3.47)

if and only if n= 2 or the point x ∈M is (semi-) Riemannian.

Theorem 3.6.5. [120, Theorem 13.] Let (M,F ) be a positive definite n-dimensional
Finsler manifold of non-zero constant curvature with n > 2. The holonomy group
of (M,F ) is a compact Lie group if and only if (M,F ) is a Riemannian manifold.

Proof. We assume that the holonomy group of a Finsler manifold (M,F ) of non-
zero constant curvature with dimM ≥ 3 is a compact Lie transformation group
on the indicatrix Ix. The curvature algebra Rx at a point x ∈ M is tangent to
the holonomy group Holx(M) and hence dimHolx(M) ≥ dimRx. If there exists

a not (semi-) Riemannian point x ∈ M , then dimRx > n(n−1)
2

. The (n − 1)-
dimensional indicatrix Ix at x can be equipped with a Riemannian metric which is
invariant with respect to the compact Lie transformation group Holx(M). Since the
group of isometries of an n− 1-dimensional Riemannian manifold is of dimension at
most n(n−1)

2
(cf. Kobayashi [55, p. 46]) we obtain a contradiction, which proves the

assertion.
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Since the holonomy group of a Landsberg manifold is a subgroup of the isometry
group of the indicatrix, we obtain that any Landsberg manifold of non-zero constant
curvature with dimension > 2 is Riemannian (cf. Numata [71]).

We can summarize our results as follows:

Theorem 3.6.6. [120, Theorem 14.] The holonomy group of any non-Riemannian
positive definite Finsler manifold of non-zero constant curvature with dimension > 2
does not occur as the holonomy group of any Riemannian manifold.

Infinite dimensional curvature algebra

Let us consider the singular (non y-global) Finsler manifold (H3, F ), where H3 is
the 3-dimensional Heisenberg group and F is a left-invariant Berwald-Moór metric
(cf. [82, Example 1.1.5, p. 8]). The group H3 can be realized as the Lie group of ma-

trices of the form
[

1 x1 x2

0 1 x3
0 0 1

]
, where x = (x1, x2, x3) ∈ R3 and hence the multiplication

can be written as

(x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3).

The vector 0 = (0, 0, 0) ∈ R3 gives the unit element of H3. The Lie algebra h3 =

T0H3 consists of matrices of the form
[

0 a1 a2

0 0 a3
0 0 0

]
, corresponding to the tangent vector

a=a1 ∂
∂x1

+a2 ∂
∂x2

+a3 ∂
∂x3

at the unit element 0 ∈ H3. A left-invariant Berwald-Moór
Finsler metric F is induced by the (singular) Minkowski functional F0 : h3 → R:

F0(a) :=
(
a1a2a3

) 2
3

of the Lie algebra in the following way: if y = (y1, y2, y3) is a tangent vector at
x ∈ H3, then

F (x, y) := F0(x
−1y).

The coordinate expression of the singular (non y-global) Finsler metric F is

F (x, y) =
(
y1
(
y2−x1y3

)
y3
) 2

3 .

Since F is left-invariant, the associated geometric structures (connection, geodesics,
curvature) are also left-invariant and the curvature algebras at different points are

isomorphic. Let us denote Y k,m := y1ky3my21−k−m−1
, k,m ∈ N, and consider the

vector fields

Ak,m(a1, a2, a3) = a1Y k+1,m ∂

∂y1

∣∣∣
0

+ a2Y k,m ∂

∂y2

∣∣∣
0

+ a3Y k,m+1 ∂

∂y3

∣∣∣
0
, (3.48)

with (a1, a2, a3) ∈ R3 and k,m ∈ N. Then the curvature vector fields r0(i, j) =

r0

(
∂
∂xi
, ∂
∂xj

)
at 0 ∈ H3 can be written as

r0(1, 2) = 1
4
A1,2(−5, 1, 4), r0(1, 3) = 1

4
A1,1(11, 0,−11), r0(2, 3) = 1

4
A2,1(−4,−1, 5).
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A direct computation shows that for any (a1, a2, a3), (b1, b2, b3) ∈ R3 one has[
Ak,m(a1, a2, a3), Ap,q(b1, b2, b3)

]
= Ak+p,m+q(c1, c2, c3)

with some (c1, c2, c3) ∈ R3 and the successive Lie brackets generate infinitely many
linearly independent elements. We get the

Proposition 3.6.7. [120, Proposition 15.] The curvature algebra Rx at any point
x ∈ H3 is a Lie algebra of infinite dimension.

3.7 Projective Finsler manifolds of constant cur-

vature

In this chapter we are investigating the holonomy property of projective Finsler man-
ifolds of constant curvature. Our aim is to characterise the classes of such manifolds
where the holonomy group is finite (resp. infinite) dimensional. One of the key tools
is the infinitesimal holonomy algebra. According to Proposition 3.5.7, the infinitesi-
mal holonomy algebra hol∗x(M) is tangent to the holonomy group Holx(M). There-
fore, the group generated by the exponential image of the infinitesimal holonomy
algebra at x ∈ M with respect to the exponential map expx : X (Ix) → Diff∞(Ix)
is a subgroup of the closed holonomy group Holx(M). Consequently, we have the
following estimation on the dimensions:

dim hol∗x(M) ≤ dimHolx(M). (3.49)

Projectively flat Finsler manifolds

A Finsler manifold on an open subset D ⊂ Rn is said to be projectively flat, if all
geodesics of (D,F ) are contained in straight lines of the affine space associated to
Rn. A Finsler manifold (M,F ) is said to be locally projectively flat, if for any point
in p ∈ M there exists a local coordinate map x : U → Rn of a neighbourhood
U ⊂M of p such that the Finsler manifold induced by the Finsler function F on the
image x(U) = D is projectively flat. The space Rn containing D is called projectively
related to (M,F ).

Let (M,F ) be a locally projectively flat Finsler manifold and (x1, . . . , xn) : U → D a
local coordinate map corresponding to canonical coordinates of the space Rn which
is projectively related to (M,F ). Then the geodesic coefficients (2.3) are of the form

Gi(x, y) = P(x, y)yi, Gi
k =

∂P
∂yk

yi+Pδik, Gi
kl =

∂2P
∂yk∂yl

yi+
∂P
∂yk

δil+
∂P
∂yl

δik, (3.50)

where P is a 1-homogeneous function in y, called the projective factor (cf. [28,
p. 63]) of (M,F ). Clearly, the intersections of 2-planes of Rn with the image D of
the coordinate map (x1, . . . , xn) : U → D are images of totally geodesic submanifolds
of (M,F ).
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Remark 3.7.1. The canonical homogeneous parallel translation in a locally projec-
tively flat Finsler manifold (M,F ) along curves c(t) contained in the domain of the
coordinate system (x1, . . . , xn) are linear maps if and only if the projective factor
P(x, y) is a linear function in y. Hence the non-linearity in y of the projective factor
implies that the locally projectively flat Finsler manifold is non-Riemannian.

Holonomy of projective Finsler surfaces of constant curvature

A Finsler manifold (M,F ) of dimension 2 is called Finsler surface. In this case the
indicatrix is 1-dimensional at any point x ∈M , hence the curvature vector fields at
x ∈M are proportional to any given non-vanishing curvature vector field. It follows
that the curvature algebra Rx(M) has a simple structure: it is at most 1-dimensional
and commutative. Even in this case, the infinitesimal holonomy algebra hol∗x(M)
can be higher dimensional, potentially infinite dimensional. For the investigation of
such examples we use a classical result of S. Lie claiming that the dimension of a
finite-dimensional Lie algebra of vector fields on a connected 1-dimensional manifold
is less than 4 (cf. [1, Theorem 4.3.4]). We obtain the following

Lemma 3.7.2. If the infinitesimal holonomy algebra hol∗x(M) of a Finsler surface
(M,F ) contains 4 simultaneously non-vanishing R-linearly independent vector fields,
then hol∗x(M), and therefore holx(M), is infinite dimensional.

Proof. If the infinitesimal holonomy algebra is finite dimensional, then the dimen-
sion of the corresponding Lie group acting locally effectively on the 1-dimensional
indicatrix would be at least 4, which is a contradiction.

Proposition 3.7.3. [122, Proposition 3.2] The infinitesimal holonomy algebra hol∗x(M)
of any locally projectively flat non-Riemannian Finsler surface (M,F ) of constant
curvature λ 6= 0 is infinite dimensional.

Proof. Let us suppose that (M,F ) is a locally projectively flat Finsler surface of
non-zero constant curvature λ and the point x∈M is non-Riemannian. Moreover,
we assume that the infinitesimal holonomy algebra is finite dimensional at x. We
will show that this assumption leads to contradiction which will prove then, that
the infinitesimal holonomy algebra is actually infinite dimensional.

Let (x1, x2) be a local coordinate system centered at x, corresponding to the
canonical coordinates of the Euclidean plane which is projectively related to (M,F ),
and let (y1, y2) be the induced coordinate system in the tangent planes TxM .

Consider the curvature vector field ξ ∈ X (IxM) at the point x∈M defined as

y → ξ(x, y) :=R

(
∂

∂x1

,
∂

∂x2

)
(x, y) = λ

(
δi2g1m(x, y)ym − δi1g2m(x, y)ym

) ∂
∂yi

.

Since λ 6= 0, the vector field ξ is non-vanishing. Moreover, since (M,F ) is of constant
flag curvature, the horizontal Berwald covariant derivative ∇WR of the curvature
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tensor field R vanishes and one has

∇W ξ = R

(
∇k

(
∂

∂x1
∧ ∂

∂x2

))
W k.

Since

∇k

(
∂

∂x1
∧ ∂

∂x2

)
=
(
G1
k1 +G2

k2

) ∂

∂x1
∧ ∂

∂x2

we obtain ∇W ξ = (G1
k1 +G2

k2)W kξ. According to (3.50) we have Gm
km = 3 ∂P

∂yk
and

hence ∇kξ = 3 ∂P
∂yk
ξ, where ∇k = ∇ ∂

∂xk
. Moreover, we have

∇j

(
∂P
∂yk

)
=

∂2P
∂xj∂yk

−Gm
j

∂2P
∂ym∂yk

=
∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

,

and hence

∇j(∇kξ) = 3

(
∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

+ 3
∂P
∂yk

∂P
∂yj

)
ξ.

According to [28, Lemma 8.2.1, equation (8.25)], we have

∂2P
∂xj∂yk

=
∂P
∂yj

∂P
∂yk

+
∂2P
∂yj∂yk

− λ gjk, (3.51)

hence ∇j(∇kξ) = 3
(
4 ∂P
∂yj

∂P
∂yk
− λ gjk

)
ξ. It follows that for any fixed 1 ≤ j, k ≤ 2,

the vector field on Ix defined as

y → ξ(x, y), y → ∇1ξ(x, y), y → ∇2ξ(x, y), y → ∇j(∇kξ) (x, y), (3.52)

are R-linearly independent if and only if the functions

1,
∂P
∂y1

,
∂P
∂y2

,
∂P
∂yj

∂P
∂yk
− λ

4
gjk (3.53)

are R-linearly independent. Indeed, since we assumed that the Finsler function F is
non-Riemannian at the point x, then F 2(x, y) is non-quadratic in y and according
to Remark 3.7.1, the function P(x, y) is non-linear in y on TxM . Let us choose a
direction y0 =(y1

0, y
2
0) ∈ TxM with y1

0 6= 0, y2
0 6= 0. By restricting U if it is necessary

we can suppose that for any y ∈ U we have y1 6= 0, y2 6= 0. To avoid confusion
between coordinate indexes and exponents, we rename the fiber coordinates of vec-
tors belonging to U by (u, v) = (y1, y2). Using the values of P on U we can define
a 1-variable function f = f(t) on an interval I ⊂ R by

f(t) :=
1

v
P(x1, x2, tv, v). (3.54)

Then we can express P and its derivatives with f as

P=v f(u/v), P1 =f ′(u/v), P2 =f(u/v)− u

v
f ′(u/v),

P11 =
1

v
f ′′(u/v), P12 =− u

v2
f ′′(u/v), P22 =

u2

v3
f ′′(u/v),

(3.55)
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where we are using the simplified notation Pi = ∂P
∂yi

, Pjk = ∂2P
∂yj∂yk

. One can show

that, because of the non-linearity of P , the functions 1, ∂P
∂y1

, ∂P
∂y2

are R-linearly
independent. Moreover, since Ix is 1-dimensional and we assumed that the holonomy
group is finite dimensional, according to the Lemma 3.7.2, we obtain that the 4
vector fields in (3.52) are R-linearly dependent for any j, k ∈ {1, 2}. Therefore,
the four functions (3.53) are R-linearly dependent for any j, k ∈ {1, 2}. Being the
first three functions in (3.53) R-linearly independent, the fourth function must be a
linear combination of the first three: there exist constants ai, bi, ci ∈ R, i = 1, 2, 3,
such that

λ

4
g11 = P1P1 + a1 + b1P1 + c1P2,

λ

4
g12 = P1P2 + a2 + b2P1 + c2P2,

λ

4
g22 = P2P2 + a3 + b3P1 + c3P2.

(3.56)

The integrability conditions ∂1g21 − ∂2g11 = 0 and ∂1g22 − ∂2g12 = 0 obtained form
(2.1) yield

P2P11 − P1P12 + b2P11 + (c2 − b1)P12 − c1P22 = 0,

P1P22 − P2P12 − b3P11 + (b2 − c3)P12 + c2P22 = 0,
(3.57)

and from (3.55) we obtain the equations

(f − u

v
f ′)

1

v
f ′′ + f ′

u

v2
f ′′ + b2

1

v
f ′′ − (c2 − b1)

u

v2
f ′′ − c1

u2

v3
f ′′ = 0,

f ′
u2

v3
f ′′ + (f − u

v
f ′)

u

v2
f ′′ − b3

1

v
f ′′ − (b2 − c3)

u

v2
f ′′ + c2

u2

v3
f ′′ = 0.

(3.58)

Since by the non-linearity of P on U we have f ′′ 6= 0 and we get

f + b2 + (b1 − c2)
u

v
− c1u

2

v2
= 0,

u

v
f − b3 + (c3 − b2)

u

v
+

c2u
2

v2
= 0, (3.59)

for any t = u/v in an interval I ⊂ R. The solution of this system of quadratic
equations for the function f is given by f(t) = −c2 t− b2 with c1 = b3 = 0, b1 = 2c2,
c3 = 2b2. But this is a contradiction, since we supposed that by the non-linearity of
P we have f ′′ 6= 0 on this interval. Hence the functions 1, P1, P2, PjPk − λ

4
gjk can

not be linearly dependent for any j, k ∈ {1, 2}, from which follows the assertion.

Remark 3.7.4. From Proposition 3.7.3 we get that if (M,F ) is non-Riemannian
and λ 6= 0, then the holonomy group has an infinite dimensional tangent algebra.

Indeed, according to [119, Theorem 6.3] the infinitesimal holonomy algebra hol∗x(M)
is tangent to the holonomy group Holx(M), from which follows the assertion.

Now, we can prove our main result:

Theorem 3.7.5. [122, Theorem 3.7] The holonomy group of a locally projectively
flat simply connected Finsler surface (M,F ) of constant curvature λ is
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– finite dimensional if (M,F ) is Riemannian or λ = 0,

– infinite dimensional if it is non-Riemannian with nonzero curvature.

Proof. If (M,F ) is Riemannian then its holonomy group is a Lie subgroup of the
orthogonal group and therefore it is a finite dimensional compact Lie group.

If (M,F ) has zero curvature, then the horizontal distribution associated to the
canonical connection in the tangent bundle is integrable and hence the holonomy
group is trivial.

If (M,F ) is non-Riemannian with non-zero curvature λ, then from Proposition
3.7.3 we get that hol∗x(M) is infinite dimensional. Using the inequality (3.49) we get
that Holx(M) cannot be finite dimensional.

Holonomy of projective Finsler manifolds of constant curvature

We consider now the n-dimensional case. First we prove that the infinitesimal
holonomy algebra of a totally geodesic submanifold of a Finsler manifold can be
embedded into the infinitesimal holonomy algebra of the entire manifold. This
result can yield lower estimate for the dimension of the holonomy group.

A submanifold M̄ in a Finsler manifold (M,F ) is called totally geodesic if any
geodesic which is tangent to M̄ at some point is contained in M̄ . A totally geodesic
submanifold M̄ of (M,F ) is called auto-parallel if the homogeneous (nonlinear)
parallel translations along curves in the submanifold M̄ leave invariant the tangent
bundle TM̄ and for every ξ ∈ X

(
M̄
)

the horizontal Berwald covariant derivative
∇Xξ belongs to X

(
M̄
)
.

Lemma 3.7.6. Let M̄ be a totally geodesic submanifold in a Finsler manifold
(M,F ). The following assertions hold:

(a) the geodesic spray S induces a spray S̄ on the submanifold M̄ ,

(b) M̄ is an auto-parallel submanifold,

Proof. Assume that the manifolds M̄ and M are k, respectively n = k + p di-
mensional. Let (x1, . . . , xk, xk+1, . . . , xn) be an adapted coordinate system, i.e. the
submanifold M̄ is locally given by the equations xk+1 = · · · = xn = 0. We denote
the indices running on the values {1, . . . , k} or {k + 1, . . . , n} by α, β, γ or σ, τ ,
respectively. The differential equation (1.4) of geodesics yields that the geodesic
coefficients Gσ(x, y) satisfy

Gσ(x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0) = 0

identically, hence their derivatives with respect to y1, . . . , yk are also vanishing. It
follows that Gσ

α = 0 and Gσ
α β = 0 at any (x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0).

Hence the induced spray S̄ on M̄ is defined by the geodesic coefficients

Ḡβ(x1, . . . , xk; y1, . . . , yk) = Gβ(x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0). (3.60)

The homogeneous (nonlinear) parallel translation τc : Tc(0)M → Tc(1)M along curves
in the submanifold M̄ and the horizontal covariant derivative on M̄ with respect to
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the spray S coincide with the parallel translation and horizontal covariant derivative
on M̄ with respect to the spray S̄. Hence the assertions are true.

Totally geodesic and auto-parallel submanifolds

Lemma 3.7.7. Let M̄ be a totally geodesic submanifold in a spray manifold (M,S).
The curvature vector fields at any point of M̄ can be extended to a curvature vector
field of M .

Proof. Assume that the manifolds M̄ and M are k, respectively n = k + p dimen-
sional. Let (x1, . . . , xk, xk+1, . . . , xn) be an adapted coordinate system, that is the
submanifold M̄ is locally given by the equations xk+1 = · · · = xn = 0. Using the
notation of the proof of Lemma 3.7.6 we get from equation (3.60) that Gσ

α = 0 and
Gσ
α β = 0 for any (x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0) we have

∂Gσ
α

∂xβ
−
∂Gσ

β

∂xα
+Gτ

αG
σ
βτ −Gτ

βG
σ
ατ +Gγ

αG
σ
βγ −G

γ
βG

σ
αγ = 0

at (x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0). Hence the curvature tensors R̄ and R,
corresponding to the spray S̄, respectively to the spray S satisfy

R̄(X, Y )(x, y) = R(X, Y )(x, y) if x ∈ M̄ and y,X, Y ∈ TxM̄.

It follows that for any givenX, Y ∈ TxM̄ the curvature vector field ξ̄(y) = R̄(X, Y )(x, y)
at x ∈ M̄ defined on TxM̄ can be extended to the curvature vector field ξ(y) =
R(X, Y )(x, y) at x ∈ M̄ defined on TxM .

Proposition 3.7.8. [124, Theorem 4.3] Let M̄ be a totally geodesic 2-dimensional
submanifold of a Finsler manifold (M,F ) such that the infinitesimal holonomy alge-
bra hol∗x(M̄) of M̄ is infinite dimensional. Then the infinitesimal holonomy algebra
hol∗x(M) of M is infinite dimensional.

Proof. According to Lemma 3.7.7, any curvature vector field of M̄ at x ∈ M̄ ⊂ M
defined on IxM̄ can be extended to a curvature vector field on the indicatrix IxM .
Hence the curvature algebra Rx(M̄) of the submanifold M̄ can be embedded into
the curvature algebra Rx(M) of the manifold (M,F ). Assume that ξ̄ is a vector field
belonging to the infinitesimal holonomy algebra hol∗x(M̄) which can be extended to
the vector field ξ belonging to the infinitesimal holonomy algebra hol∗x(M). Any
vector field X̄ ∈ X

(
M̄
)

can be extended to a vector field X ∈ X (M), hence the
horizontal Berwald covariant derivative along X̄ ∈ X

(
M̄
)

of ξ̄ can be extended to
the Berwald horizontal covariant derivative along X ∈ X (M) of the vector field ξ. It
follows that the infinitesimal holonomy algebra hol∗x(M̄) of the submanifold M̄ can be
embedded into the infinitesimal holonomy algebra hol∗x(M) of the Finsler manifold
(M,F ). Consequently, hol∗x(M) is infinite dimensional and hence the holonomy
group Holx(M) is an infinite dimensional subgroup of Diff∞(Ix).
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This result can be applied to locally projectively flat Finsler manifolds, as they
have for each tangent 2-plane a totally geodesic submanifold which is tangent to
this 2-plane.

Theorem 3.7.9. [122, Theorem 3.6] The holonomy group of a locally projectively
flat simply connected n-dimensional Finsler manifold (M,F ) of constant curvature
λ is

• finite dimensional if (M,F ) is Riemannian or λ = 0,

• infinite dimensional if (M,F ) is non-Riemannian and λ 6= 0.

Proof. If (M,F ) is Riemannian then its holonomy group is a Lie subgroup of the
orthogonal group and therefore it is a finite dimensional compact Lie group.

If (M,F ) has zero curvature, then the horizontal distribution associated to the
canonical connection in the tangent bundle is integrable and hence the holonomy
group is trivial.

If (M,F ) is non-Riemannian having non-zero curvature λ, then for each tangent

2-plane T ⊂ TxM the manifold M has a totally geodesic submanifold M̃ ⊂ M
such that TxM̃ = T . This M̃ with the induced metric is a locally projectively flat
Finsler surface of constant curvature λ. Therefore from Proposition 3.7.3 we get
that hol∗x(M̃) is infinite dimensional. Moreover, according to Proposition 3.7.8 ,

if a Finsler manifold (M,F ) has a totally geodesic 2-dimensional submanifold M̃

such that the infinitesimal holonomy algebra of M̃ is infinite dimensional, then the
infinitesimal holonomy algebra hol∗x(M) of the containing manifold is also infinite
dimensional. Using (3.49) we get that Holx(M) cannot be finite dimensional. Hence
the assertion is true.

We note that there are examples of non-Riemannian type locally projectively
flat Finsler manifolds with λ = 0 and with λ 6= 0 curvature (cf. [62, 85]).

Remark 3.7.10. In the previous theorem, the key condition for the Finsler metric
tensor was not the positive definiteness but its non-degenerate property. Therefore
Theorem 3.7.9 can be generalized as follows.

A pair (M,F ) is called semi-Finsler manifold if in the definition of Finsler man-
ifolds the positive definiteness of the Finsler metric tensor is replaced by the non-
degenerate property. Then we have

Corollary 3.7.11. The holonomy group of a locally projectively flat simply con-
nected semi-Finsler manifold (M,F ) of constant curvature λ is finite dimensional if
and only if (M,F ) is semi-Riemannian or λ = 0.
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3.8 Finsler surfaces with maximal holonomy

The group Diff∞+ (S1) and the Fourier algebra

Let S1 = R mod 2π be the unit circle with the standard counterclockwise orienta-
tion. The group Diff∞+ (S1) of orientation preserving diffeomorphisms of S1 is the
connected component of Diff∞(S1). The Lie algebra of Diff∞+ (S1) is X (S1) – denoted
also by Vect(S1) in the literature – can be written in the form f(t) d

dt
, where f is a

2π-periodic smooth function on the real line R. A sequence {fj ddt}j∈N ⊂ Vect (S1)
converges to f d

dt
in the Fréchet topology of Vect(S1) if and only if the functions fj

and all their derivatives converge uniformly to f , respectively to the corresponding
derivatives of f . The Lie bracket on Vect(S1) is given by[

f
d

dt
, g
d

dt

]
=
(
g
df

dt
− dg

dt
f
) d
dt
.

The Fourier algebra F(S1) on S1 is the Lie subalgebra of Vect(S1) consisting of vector
fields f d

dt
such that f(t) has finite Fourier series, i.e. f(t) is a Fourier polynomial.

The vector fields
{
d
dt
, cosnt d

dt
, sinnt d

dt

}
n∈N provide a basis for F(S1). A direct

computation shows that the vector fields

d

dt
, cos t

d

dt
, sin t

d

dt
, cos 2t

d

dt
, sin 2t

d

dt
(3.61)

generate the Lie algebra F(S1). The complexification F(S1)⊗RC of F(S1) is called
the Witt algebra W(S1) on S1 having the natural basis

{
ieint d

dt

}
n∈Z, with the Lie

bracket [ieimt d
dt
, ieint d

dt
] = i(m− n)ei(n+m)t d

dt
.

Lemma 3.8.1. The group
〈

exp (F(S1))
〉

generated by the topological closure of the

exponential image of the Fourier algebra F(S1) is the orientation preserving diffeo-
morphism group Diff∞+ (S1).

Proof. The Fourier algebra F(S1) is a dense subalgebra of Vect(S1) with respect to
the Fréchet topology, i.e. F(S1) = Vect(S1). This assertion follows from the fact that
any r-times continuously differentiable function can be approximated uniformly by
the arithmetical means of the partial sums of its Fourier series (cf. [52, Theorem
2.12]). The exponential mapping is continuous (c.f. in [72, Lemma 4.1, p. 79]),
hence we have

exp
(
Vect(S1)

)
= exp

(
F(S1)

)
⊂ exp

(
F(S1)

)
⊂ Diff∞+ (S1) (3.62)

which gives, for the generated groups, the relations〈
exp

(
Vect(S1)

)〉
⊂
〈

exp
(
F(S1)

) 〉
⊂ Diff∞+ (S1). (3.63)

Moreover, the conjugation map Ad : Diff∞+ (S1)× Vect(S1) satisfies the relation

h exp sξ h−1 = exp sAd(h)ξ
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for every h ∈ Diff∞+ (S1) and ξ ∈ Vect(S1). Clearly, the Lie algebra Vect(S1) is
invariant under conjugation and hence the group

〈
exp

(
Vect(S1)

)〉
is also invariant

under conjugation. Therefore
〈
exp

(
Vect(S1)

)〉
is a normal subgroup of Diff∞+ (S1).

On the other hand Diff∞+ (S1) is a simple group (cf. [48]) which means that its
only non-trivial normal subgroup is itself. Therefore, we have

〈
exp

(
Vect(S1)

)〉
=

Diff∞+ (S1), and using (3.63) we get〈
exp(F(S1))

〉
= Diff∞+ (S1).

Holonomy of the standard Funk plane and the Bryant-Shen 2-spheres

Using the results of the preceding section we can prove the following statement,
which provides a useful tool to investigate the closed holonomy group of Finsler
2-manifolds.

Proposition 3.8.2. [123, Proposition 5.1] If the infinitesimal holonomy algebra
hol∗x(M) at a point x ∈M of a simply connected Finsler 2-manifold (M,F ) contains
the Fourier algebra F(S1) on the indicatrix at x, then Holx(M) is isomorphic to
Diff∞+ (S1).

Proof. Since M is simply connected we have

Holx(M) ⊂ Diff∞+ (S1). (3.64)

On the other hand, using Theorem 3.3.7, we get

exp
(
F(S1)

)
⊂Holx(M) ⇒ exp

(
F(S1)

)
⊂Holx(M) ⇒

〈
exp

(
F(S1)

) 〉
⊂Holx(M),

and from the last relation, using Lemma 3.8.1, we can obtain that

Diff∞+ (S1) ⊂ Holx(M). (3.65)

Comparing (3.64) and (3.65) we get the assertion.

Using this proposition we can prove our main result:

Theorem 3.8.3. [123, Theorem 5.2] Let (M,F) be a simply connected projectively
flat Finsler manifold of constant curvature λ 6= 0. Assume that there exists a point
x0∈M such that on Tx0M the induced Minkowski norm is the Euclidean norm, that
is F(x0, y) = ‖y‖, and the projective factor at x0 satisfies P(x0, y) = c · ‖y‖ with
c ∈ R, c 6= 0. Then the closed holonomy group Holx0(M) at x0 is isomorphic to
Diff∞+ (S1).
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Proof. Since (M,F ) is a locally projectively flat Finsler manifold of non-zero con-
stant curvature, we can use an (x1, x2) local coordinate system centered at x0 ∈M ,
corresponding to the canonical coordinates of the Euclidean space which is pro-
jectively related to (M,F ). Let (y1, y2) be the induced coordinate system in the
tangent plane TxM . In the sequel we identify the tangent plane Tx0M with R2 by
using the coordinate system (y1, y2). We will use the Euclidean norm ‖(y1, y2)‖ =√

(y1)2 + (y2)2 of R2 and the corresponding polar coordinate system (er, t) too.

Let us consider the curvature vector field ξ at x0 = 0 defined by

ξ=R

(
∂

∂x1

,
∂

∂x2

) ∣∣∣
x=0

= λ
(
δi2g1m(0, y)ym − δi1g2m(0, y)ym

) ∂
∂xi

Since (M,F ) is of constant flag curvature, the horizontal Berwald covariant deriva-
tive ∇WR of the tensor field R vanishes, c.f. Lemma 3.2. Therefore the covariant
derivative of ξ can be written in the form

∇W ξ = R

(
∇k

(
∂

∂x1
∧ ∂

∂x2

))
W k.

Since

∇k

(
∂

∂x1
∧ ∂

∂x2

)
=
(
G1
k1 +G2

k2

) ∂

∂x1
∧ ∂

∂x2

we obtain ∇W ξ = (G1
k1 +G2

k2)W kξ. Using (3.50) we can express Gm
km = 3 ∂P

∂yk
=

3c y
k

‖y‖ and hence

∇kξ = 3
∂P

∂yk
ξ = 3c

yk

‖y‖
ξ,

where we use the notation ∇k = ∇ ∂

∂xk
. Moreover we have

∇j

(
∂P
∂yk

)
=

∂2P
∂xj∂yk

−Gm
j

∂2P
∂ym∂yk

=
∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

,

and hence

∇j (∇kξ) = 3

{
∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

+ 3
∂P
∂yk

∂P
∂yj

}
ξ.

According to Lemma 8.2.1, in [28, equation (8.25), p. 155], we obtain

∂2P
∂xj∂yk

=
∂P
∂yj

∂P
∂yk

+ P ∂2P
∂yj∂yk

− λ

2

∂2F 2

∂yj∂yk
.

Using the assumptions on F and on the projective factor P we can get at x0

∇j (∇kξ) = 3

(
4c2 ∂F

∂yj
∂F

∂yk
− λ

2

∂2F 2

∂yj∂yk

)
ξ

and hence

∇j (∇kξ) = 3

(
4 c2 y

jyk

‖y‖2
− λ δjk

)
ξ,
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where δjk ∈ {0, 1} such that δjk = 1 if and only if j = k.
Let us introduce polar coordinates y1 = r cos t, y2 = r sin t in the tangent space
Tx0M . We can express the curvature vector field, its first and second covariant
derivatives along the indicatrix curve {(cos t, sin t); 0 ≤ t < 2π} as follows:

ξ=λ
d

dt
, ∇1ξ=3cλ cos t

d

dt
, ∇2ξ=−3cλ sin t

d

dt
, ∇1(∇2ξ) = 12 c2λ sin 2t

d

dt
,

∇1(∇1ξ)=λ
(
12 c2 cos2 t−λ

) d
dt
, ∇2(∇2ξ)=λ

(
12 c2 sin2 t−λ

) d
dt
.

Since c λ 6= 0, the vector fields

d

dt
, cos t

d

dt
, sin t

d

dt
, cos t sin t

d

dt
, cos2 t

d

dt
, sin2 t

d

dt

are contained in the infinitesimal holonomy algebra hol∗x0(M). It follows that the
generator system{

d

dt
, cos t

d

dt
, sin t

d

dt
, cos 2t

d

dt
, sin 2t

d

dt

}
of the Fourier algebra F(S1) (c.f. equation (3.61)) is contained in the infinitesimal
holonomy algebra hol∗x0(M). Hence the assertion follows from Proposition 3.8.2.

We remark, that the standard Funk plane and the Bryant-Shen 2-spheres are con-
nected, projectively flat Finsler manifolds of nonzero constant curvature. Moreover,
in each of them, there exists a point x0 ∈ M and an adapted local coordinate sys-
tem centered at x0 with the following properties: the Finsler norm F(x0, y) and the
projective factor P(x0, y) at x0 are given by F(x0, y) = ‖y‖ and by P(x0, y) = c·‖y‖
with some constant c ∈ R, c 6= 0, where ‖y‖ is an Euclidean norm in the tangent
space at x0. Using Theorem 3.8.3 we can obtain

Theorem 3.8.4. [123, Theorem 5.3] The closed holonomy groups of the standard
Funk plane and of the Bryant-Shen 2-spheres are maximal, that is diffeomorphic to
the orientation preserving diffeomorphism group of S1.

Holonomy of projectively flat Randers surfaces

Projectively flat non-Riemannian Randers manifolds with non-zero constant flag
curvature were classified by Z. Shen in [86]. He proved that any projectively flat
Randers manifold (M,F ) with non-zero constant flag curvature has negative curva-
ture. Moreover, these metrics can be normalized by a constant factor so that the
curvature is λ = −1/4. In this case (M,F ) is isometric to the Finsler manifold
defined by the Finsler function

Fa(x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+ ε

(
〈x, y〉

1− |x|2
+
〈a, y〉

1 + 〈a, x〉

)
(3.66)
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on the unit ball Dn ⊂ Rn, where a ∈ Rn is a constant vector with |a| < 1 and ε = ±1
[86, Theorem 1.1]. We note that the restriction of any orthogonal transformation
φ ∈ O(n,Rn) on Dn does not change the Finsler function (3.66), therefore one can
assume that a ∈ Rn has the form a = (a1, 0, . . . , 0). We can consider (Dn, Fa) as the
standard model of projectively flat Randers manifolds with non-zero constant flag
curvature.

According to [28, Lemma 8.2.1], if (M ⊂Rn, F ) is a projectively flat manifold,
then its projective factor can be computed using the formula

P(x, y) =
1

2F

∂F

∂xi
yi. (3.67)

It follows that the computation of the coefficients of the associated connection is
relatively easy: in the case (3.66) it gives

2P(x, y) =
ε
√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2
− 〈a, y〉

1 + 〈a, x〉
. (3.68)

The geodesic coefficients and the connection coefficients can be computed from (3.68)
by using (3.50).

Proposition 3.8.5. [108, Proposition 1.] The closed holonomy group of (D2, Fa) is
diffeomorphic to Diff∞+ (S1).

We consider here the case when ε = 1 in the expression (3.66) of Fa. The
computation when ε = −1 is analogous. The curvature vector field ξ = R (∂x1 , ∂x2)
at the point 0 ∈ R2 is

ξ = R (∂x1 , ∂x2) =
1

4

y2 (a1y1 + ‖y‖)
‖y‖

∂

∂y1

− 1

4

(
y1 + y1a

2
1 + 2 a1 ‖y‖

) ∂

∂y2

. (3.69)

Since the Minkowski norm at 0 ∈ D2 is Fa(0, y) = ‖y‖ + 〈a, y〉, the indicatrix
I0 ⊂ T0M at 0 is defined by the equation

√
y2

1 + y2
2 + a1y1 = 1. Using polar

coordinates (r, t) a parametrization of I0 is given by

φ(t) =

(
cos t

1 + a1 cos t
,

sin t

1 + a1 cos t

)
. (3.70)

The restriction ξ0 := ξ
∣∣
I0

of the curvature vector field (3.69) on I0 is ξ0 := ω(t) d
dt

where ω(t) := −1
4
(1 + a1 cos t)2. Let us introduce the notation

Σn := SpanR

{
ξl,m0 | 0 ≤ l +m ≤ n

}
, (3.71)

where ξl,m0 = sinlt cosmt ξ0. On can show by induction that for any n ∈ N we have
Σn ⊂ hol∗0(D2, Fa) and consequently, the infinitesimal holonomy algebra contains
the Fourier algebra. Hence from Proposition 3.8.2 we get that the holonomy group
Hol0(D2, Fa) is maximal, and its closure is diffeomorphic to Diff∞+ (S1).

Using Z. Shen’s classification theorem of Randers manifolds we can get the fol-
lowing
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Theorem 3.8.6. [108, Theorem 3.] The holonomy group of a simply connected non-
Riemannian projectively flat Randers surface of constant non-zero flag curvature is
maximal and its closure is diffeomorphic to the orientation preserving diffeomor-
phism group of S1, that is

Holx(M) ∼= Diff∞+ (S1).

Proof. Let (M,F ) be a simply connected non-Riemannian projectively flat Randers
two-manifold of constant non-zero flag curvature and x ∈ M . Rescaling the met-
ric by a constant factor does not change the parallel translation and the holonomy
group. Hence we can suppose that the metric is normalized so that the curvature
is λ = −1

4
. Using Shen’s results, F can be locally expressed in the form Fa given

in (3.66) where a = (a1, 0) ∈ R2 is a nonzero constant vector with |a1| < 1. From
Proposition 3.8.5 we get, that the closed holonomy group is maximal and diffeomor-
phic to Diff∞+ (S1).

We can obtain the following

Corollary 3.8.7. [108, Corollary 4.] The closure of the holonomy group Hol(M)
of a simply connected, locally projectively flat Randers two-manifold of constant flag
curvature λ is

1. the trivial group {id}, when λ = 0;

2. the rotation group SO(2), when λ 6= 0 and the metric is Riemannian;

3. diffeomorphic to Diff∞+ (S1), when λ 6= 0 and the metric is non-Riemannian.

Proof. The holonomy structures listed in 1.) and 2.) correspond to the (already
well known) finite dimensional holonomy cases. When λ 6= 0 and the metric is
non-Riemannian we get 3.) from Theorem 3.8.6.
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Chapter 4

Linearizability of planar 3-webs

4.1 Introduction

Let M be a two-dimensional real or complex differentiable manifold. A 3-web is
given in an open domain D of M by three foliations of smooth curves in general
position. Two webs W and W̃ are locally equivalent at p ∈ M , if there exists a
local diffeomorphism on a neighborhood of p which transforms W into W̃ . A 3-web
is called linear (resp. parallel) if it is given by 3 foliations of straight lines (resp. of
parallel lines). A 3-web which is equivalent to a linear (resp. parallel) web is called
linearizable (resp. parallelizable).

Basic examples of planar 3-webs come from complex projective algebraic geom-
etry. If C ⊂ P2 is a reduced algebraic curve of degree 3, by duality in P̌2, one can
obtain a 3-web called the algebraic web associated with C ⊂ P2 (cf. [50, 74]). H. Graf
and W. Sauer proved in 1924 a theorem, which in web geometry language can be
stated as follows: a linear web is parallelizable if and only if it is associated with an
algebraic curve of degree 3, i.e. its leaves are tangent lines to an algebraic curve of
degree 3 [16, p. 24].

Although the problem of finding a linearizability criterion is a very natural one,
it is far from being trivial. T.H. Gronwall conjectured that if a non-parallelizable
3-web W is linearizable, then up to a projective transformation there is a unique
diffeomorphism which maps W into a linear 3-web. G. Bol suggested a method in
[17] how to find a criterion of linearizability, but he was unable to carry out the
computation. He showed that the number of projectively different linear 3-webs in
the plane which are equivalent to a non-parallelizable 3-web is finite and less than 17.
The formulation of the linearizability problem in terms of the Chern connection was
suggested by M.A. Akivis in a lecture given in Moscow in 1973. In his approach the
linearizability problem is reduced to the solvability of a system of nonlinear partial
differential equations on the components of the affine deformation tensor. Using
Akivis’ idea V.V. Goldberg determined in [42] the first integrability conditions of
the partial differential system.

In 2001, [106] solved the linearizability problem by determining the integrability
condition of the PDE system. It was proved that, in the non-parallelizable case,
there exists an algebraic submanifold A of the space of vector valued symmetric
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tensors (A ⊂ S2T ∗ ⊗ T ) on a neighborhood of any point p ∈ M , expressed in
terms of the curvature of the Chern connection and its covariant derivatives up to
order 6, so that the affine deformation tensor is a section of S2T ∗ ⊗ T with values
in A. In particular: the web is linearizable if and only if A 6= ∅ and there exists
at most 15 projectively nonequivalent linearizations of a nonparallelizable 3-web.
The expressions of the polynomials and their coefficients which define A can be
found in [107]. The criteria of linearizability provide the possibility to make explicit
computation on concrete examples to decide whether or not they are linearizable.

The controversy. In 2006 V.V. Goldberg (expert in web theory, author of several
books and many papers on web theory) and V.V. Lychagin (well-known expert
on PDE systems, member of the Russian Academy of Sciences) found results on
the linearizability [43, 44]. Their results were different from that of [106] and they
qualified them “incomplete because they do not contain all conditions” (see [43, page
171] and [44, page 70]) without pointing out any missing integrability condition or
developing any further justification. The results of [106] and [44] cannot be both
correct because there are cases where the two theories contradict. Hence the small
but dedicated scientific community working on the problems related to web geometry
was in suspense (see for example [2, page 2], [3, page 2], [19, page 30], [94, page 40]).

Decisive example. The direct comparison of the two theories is not straightfor-
ward since the formulas in both cases are long and complex containing the curvature
tensor and its higher-order different (covariant resp. partial) derivatives. There is,
however, a very specific case, where the two theories show clearly opposite results:
Using [106] one gets that the web W given by the system (4.21) is linearizable (see
[106, page 2653]) while [44] states the opposite (cf. page 171, line 7–10). Evidently,
the correct theory should give the correct answer in that specific case. Finally, the
linearizability problem of W has been considered in [116] and it has been proven
that W is indeed linearizable by showing the existence of the affine deformation
tensor. More explicitly, as Remark 4.4.1 shows, the web W is linearizable, therefore
the prediction of [106] is correct and the statement of [44] is wrong.

4.2 Preliminaries

Let W be a differential 3-web on a manifold M given by a triplet of mutually
transversal foliations {F1,F2,F3}. From the definitions it follows that M is even
dimensional and that the dimension of the tangent distributions of the foliations
F1, F2, F3 is the half of the dimension of M . The foliations {F1,F2,F3} are called
horizontal, vertical and transversal, and their tangent spaces are denoted by T h,
T v and T t. The 3-web W is linearizable if and only if there exists a flat linear
connection ∇L preserving the web.

A 3−web is equivalent to a pair {h, j} of (1,1)-tensor fields on the manifold,
satisfying the following conditions:

1. h2 = h, j2 = id,
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2. jh = vj, where v = id− h,

3. Kerh, Imh, and Ker(h+ id) are integrable distributions.

Moreover, for any 3−web, there exists a unique linear connection ∇ on M which
satisfies ∇h = 0, ∇j = 0, and T (hX, vY ) = 0, ∀X, Y ∈ TM , T being the torsion
tensor of ∇. ∇ is called the Chern connection (see [70]).

A symmetrical (1,2)-tensor field L is called a pre-linearization if the connection

∇L
XY = ∇XY + L(X, Y )

preserves the web, that is the leaves are auto-parallel curves with respect to ∇L. A
pre-linearization is a linearization if the connection ∇L is flat i.e. its curvature van-
ishes. Two pre-linearizations L and L′ are projectively equivalent if the connections
∇L and ∇L′ are projectively related, that is there exists ω ∈ Λ1(M), such that

∇L
XY = ∇L′

XY + ω(X)Y + ω(Y )X.

Proposition 4.2.1. A tensor field L in S2T ∗ ⊗ T is a linearization if and only if

1) vL(hX, hY ) = 0,

2) hL(vX, vY ) = 0,

3) L(hX, hY ) + jL(jhX, jhY )− hL(jhX, hY )

− hL(hX, jhY )− jvL(jhX, hY )− jvL(hX, jhY ) = 0,

4) ∇XL(Y, Z)−∇YL(X,Z) + L(X,L(Y, Z))− L(Y, L(X,Z)) +R(X, Y )Z = 0,

holds, for any X, Y, Z ∈ T , where R denotes the curvature of the Chern connection.

The proof is a straightforward verification. Properties 1), 2) and 3) mean that
L is a pre-linearization and follows from the fact that ∇L preserves the web, while
property 4) expresses, that the curvature of ∇L vanishes.

In the sequel, we suppose that the dimension of M is two. LetW be a web on M
and {e1, e2} a frame at p ∈M adapted to the web, i.e. e1 ∈ T hp , e2 = je1 ∈ T vp . Let
L be a pre-linearization at p, whose components are Lkij, that is: L(ei, ej) = Lkijek,
and let us set the tensor-field s to be represented by the components 2L1

12 − L2
22.

The tensor s will be called the base of L. The following proposition is elementary,
but it is the key for the proof of our main theorem.

Proposition 4.2.2. Two pre-linearizations L and L′ are projectively equivalent if
and only if they have the same base, i.e. s = s′.

Indeed, if L and L′ are two projectively equivalent pre-linearizations, then there
exists ω ∈ T ∗ such that L′ = L+ ω � id, i.e. in the frame {e1, e2} :

L′
1
11 = L1

11 + 2ω1, L′
2
22 = L2

22 + 2ω2, L′
1
12 = L1

12 + ω2
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where ω1 and ω2 are the components of ω. This system is consistent if and only if
L′112 − L1

12 = 1
2
(L′222 − L2

22), i.e. s = s′.

Let L ∈ E be a pre-linearization. We introduce the tensors x, y, z : T h ⊗ T h → T h

defined by 
x (hX, hY ) := L (hX, hY ),

y (hX, hY ) := jL (jhX, jhY ),

z (hX, hY ) := hL (hX , jhY ).

(4.1)

One denotes by x2 the (1,3) tensor defined by

x2 (hX, hY, hZ) := x (x (hX, hY ), hZ).

Similarly, we define the product xy, x3 (which is a (1,4) tensor field), etc.
The space of pre-linearizations E is a 3-dimensional vector bundle over M , and x,

y, z can be used to parameterize it. However, taking into account some symmetries
of the problem and the Proposition 4.2.2, it is better to introduce the tensors s, t :
T h ⊕ T h → T h defined by

s := 2z − y
t := 1

2
(x+ y − 2z)

(4.2)

and parameterize E by s, t, z where s is the base of the web (see Definition 4.2).

In order to simplify the notation, we denote by C1 and C2 the tensor fields(⊗p+1 T h
∗)⊗ T h defined by

C1 (hX, hX1, ..., hXp) = (∇hXC) (hX1, ..., hXp),
C2 (hX, hX1, ..., hXp) = (∇jhXC) (hX1, ..., hXp),

(4.3)

where C is a tensor field in
(⊗p T h

∗)⊗T h. By recursion, we introduce the successive
covariant derivatives with the convention that Ci1i2 := (Ci2)i1 . Thus, xi1,...,ip is the
(1, p+ 2) tensor defined in an adapted frame by

xi1,...,ip (e1, ..., e1︸ ︷︷ ︸
p times

, hX, hY ) = (∇∇ · · ·∇︸ ︷︷ ︸
p times

x) (ei1 , ..., eip , hX, hY ).

We denote R the tensor R : T h ⊕ T h ⊕ T h → T h defined by

R(hX, hY )hZ = R(jhX, hY )hZ (4.4)

where R is the curvature of the Chern connection. With the above notation we have

(∇i∇jL
l
i1,...,im

)− (∇j∇iL
l
i1,...,im

) = Rl
ijkL

k
i1,...,im

−Rk
iji1
Llk,...,im − · · · −R

k
ijimL

l
i1,...,k

.

In particular
C12 − C21 = (p− 1)RC (4.5)

for a tensor field C ∈
(⊗p T h

∗)⊗ T h.
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4.3 The linearization theorem

In the sequel E denotes the bundle of the pre-linearizations and F := Λ2T ∗ ⊗ T .
In order to study the linearizability of W , we will consider the differential operator
P1 : E → F and study the integrability of the differential system

P1(L) = 0, (4.6)

where (
P1(L)

)
(X, Y, Z) = (∇XL)(Y, Z)− (∇YL)(X,Z)

+ L(X,L(Y, Z))− L(Y, L(X,Z)) +R(X, Y )Z
(4.7)

for every X, Y, Z ∈ T . Using the tensors (4.2) and resolving two equations in z1 and
t2 the system (4.6) can be written as:

t1 = st+ t2,

t2 = 1
3
s1 − 2

3
s2 + zt− 1

3
R,

z1 = 2
3
s1 − 1

3
s2 + zt+ 1

3
R,

z2 = −zs+ z2.

(4.8)

Note that P1 is regular because the symbol and its prolongation are regular maps.
The system (4.8) can be seen as a Frobenius system on the variables t and z with s
a parameter. By formula (4.5), the integrability conditions are

z12 − z21 = Rz,
t12 − t21 = Rt,
s12 − s21 = Rs,

and thus from (4.8) we can arrive at the system

P2 =

{
s22 = 2s21 − ss2 + 2ss1 +Rs+R2,

s11 = 2s21 − 2ss2 + ss1 +Rs+R1,
(4.9)

(see also [49, equation (* bis)]). The operator P2 : Sec (E2) → F2 corresponding
to the system (4.9) is a quasi-linear second order differential operator, where E2 =
T h
∗ ⊗ T h∗ ⊗ T h, and F2 := F ′ ⊕ F ′ with F ′ := T h

∗ ⊗ T h∗ ⊗ E2. The linearizability
of the web is equivalent to the integrability of the operator P2. In the sequel we will
examine the integrability of P2.

Proposition 4.3.1. [107, Proposition 4.1.] At every p ∈M all 2nd−order solution
at p of P2 can be lifted into a 3rh−order solution.

Indeed, fixing an adapted base {e1, e2 = je1}, the symbol of P2 is the map

σ2 : S2T ⊗ E2 → F2, σ2(A) = (A22 − 2A21, A11 − 2A21),
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where Aij = A(ei, ej). So g2 := Kerσ2 is defined by the equations

A22 − 2A21 = 0 and A11 − 2A21 = 0.

Since these equations are independent, we have rankσ2 = 2, dim g2 = 1. On the
other hand, for the symbol of the first prolongation

σ3 : S3T ∗ ⊗ E2 → T ∗ ⊗ F2, σ3(B) = (Bk22 − 2Bk21, Bk11 − 2Bk21) (4.10)

where Bijk = B(ei, ej, ek), we find that g3 = Kerσ3 is defined by the equations

Bk22 − 2Bk21 = 0, Bk11 − 2Bk21 = 0,

k = 1, 2. It is easy to verify that these equations are also independent. There-
fore rank σ3 = 4 = dim(T ∗ ⊗ F2) and dimg3 = 0, thus σ3 is an isomorphism and
Cokerσ3 = 0. We have the following exact diagram:

S2T ∗ ⊗ E2
σ3−−−→ T ∗ ⊗ F −−−→ Cokerσ3 = 0

ε

y ε

y
R3 −−−→ J3(E2)

p1(P2)−−−→ J1F

π3

y π3

y π1

y
R2 −−−→ J2(E2)

p0(P2)−−−→ F

Using a homological algebraic argument it can be shown, that π̄3 is onto, i.e. every
2nd− order solution of P2 can be lifted into a 3rd−order solution. �

Proposition 4.3.2. [107, Proposition 4.2.] The operator P2 is not 2−acyclic, i.e.
there is a higher order obstruction which arises for the integrability of P2.

Indeed, the sequence

0 −→ g`+1(P2)
i−−−→ g`(P2)⊗ T ∗ δ`(P2)−−−→ g`−1(P2)⊗ Λ2T ∗ −→ 0

is not exact for all l ≥ 2, where δ` denotes the skew-symmetrization in the cor-
responding variables: for ` = 3 we have rank δ3 = 0 which is strictly smaller than
dim(g2 ⊗ Λ2T ∗) = 1. �

Obstructions to linearizability

In order to find the higher order obstruction we consider the prolongation of P2, i.e.
the operator P3 := (P2,∇P2), where ∇P2 : T ∗ ⊗ E2 −→ T ∗ ⊗ F2 is the covariant
derivative of P2 with respect to the Chern connection. Explicitly, this system is
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formed by the system (4.9) and by the following four equations:

s212 =ss21 − 1
3
s1s2 + 4

3
s2

2 − 2
3
s2

1 + 4
3
Rs2 + 2s2s1

+Rs2 + (2R2 −R1)s− 2
3
R21 − 1

3
R12

s211 =− ss21 + 1
3
s1s2 + 2

3
s2

2 − 4
3
s2

1 + (5
3
R+ 2s2)s2

− 10Rs1 + (R2 − 2R1)s− 1
3
R21 − 2

3
R12

s111 =− 2ss21 − 4
3
s1s2 + 4

3
s2

2 − 5
3
s2

1 + (10
3
R+ 2s2)s2 − (5

3
R− s2)s1

−Rs2 + (2R2 − 2R1)s− 2
3
R21 − 4

3
R12 +R11

s222 =2ss21 + 4
3
s1s2 + 5

3
s2

2 − 4
3
s2

1 + (5
3
R+ s2)s2 − (10

3
R− 2s2)s1

+Rs2 + (2R2 − 2R1)s− 4
3
R21 − 2

3
R12 +R22

(4.11)

Since (4.11) can be solved with respect to the 3rd−order derivatives, the existence
of a 2nd-order formal solution implies the existence of 3rd−order solutions. One can
show that the symbol of P3 is involutive. Moreover, any 3rd−order solution of P3

can be lifted into a 4th−order solution if and only if ϕ = 0, where

ϕ(s) =− 24Rs21 − (24Rs+ 12R1 − 6R2)s1 + (24Rs+ 6R1 − 8R2)s2

+ 3Rs3 + (−4R2 − 3R22 +R21 + 2R12 − 13R2 − 3R11)s

+ 2R122 −R221 −R112 − 5RR1 − 2R121 − 11RR2

(4.12)

Indeed, using the equations (4.9) and (4.11), we obtain

ϕ(s) =∇11[2s21−s22−ss2 + 2ss1+Rs+R2]−2∇12[2s21−s22−ss2 + 2ss1+Rs+R2]

+2∇12[2s21−s11−2ss2+ss1+Rs+R1]−∇22[2s21−s11−2ss2+ss1+Rs+R1]

By formula (4.5) we can eliminate the 4th−order derivatives and find (4.12). More-
over, we can remark that dim g3,p = 0 and therefore dim gk,p = 0 for every k > 3. It
follows that the symbol of P3 is involutive. (We use the terminology introduced in
Chapter 2.2, see also the monograph [23, p.121].) �

If R = 0, then ϕ = 0, therefore, all 3rd−order solution of P3 can be lifted into
a 4th−order solution. Since its symbol is involutive, P3 is formally integrable and
consequently, it is integrable in the analytical case. We have the following

Corollary 4.3.3. [106, Corollary 4.2] If W is a parallelizable 3-web on the plane,
then for all L0 ∈ Ep there exists a germ of linearizations L which prolongs L0.

In accord of the Graf-Sauer Theorem, one can deduce that for a parallelizable
web, there exist non projectively equivalent linearizations. Indeed, it is sufficient to
consider L0, L

′
0 ∈ Ep with sp 6= s′p and to prolong them in germs of linearizations to

obtain two non projectively equivalent germs of linearization.

Second obstruction to linearizability

In the sequel we will suppose that R 6= 0. In this case the compatibility condition
(4.12) is not satisfied, so we have to add it to our differential system and consider
the enlarged second order quasi-linear system Pϕ = 0:

Pϕ := (P2, ϕ),
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where P2 is defined by (4.9) and ϕ is given by (4.12).

Lemma 4.3.4. A 2nd−order formal solution j2,ps of Pϕ at p ∈M , can be lifted into
a 3rd−order solution if and only if:{

ψ1
p := 24R(s2)2 − 48Rs1s2 + α(s)s1 + β(s)s2 + γ(s) = 0

ψ2
p := −24R(s1)2 + 48Rs1s2 + α̂(s)s1 + β̂(s)s2 + γ̂(s) = 0.

(4.13)

where α, β, α̂, β̂ are polynomials in s of degree 2 with coefficients R and its deriva-
tives up to order 2, γ and γ̂ are polynomials in s of degree 3 with coefficients R and
its derivatives up to order 4. Their explicit expressions are given in [107].

Proof. One can show that there are exactly two relations between the highest order
terms of the prolongation, and a 2nd order solution (j2s)p of Pϕ can be lifted into a
3rd order solution if and only if (ψ1, ψ2)p = 0 where

(ψ1, ψ2)p := τ3∇(Pϕ(s))p

We have:
ψ1 = 24R[∇(P2(s))]11 + [∇(ϕ)]2 − 2[∇(ϕ)]1

ψ2 = 24R[∇(P2(s))]22 + [∇(ϕ)]1 − 2[∇(ϕ)]2

Using the equations P2(s)p = 0, ϕ(s)p = 0 and the permutation formula (4.5), we
find that ψ1(p) and ψ2(p) can be written as a function of s and its derivatives at
p ∈ M , up to order 3. Nevertheless, using formula (4.5) we can also eliminate the
3rd order derivatives of s at p. On the other hand, with the help of the equation
P2 = 0 and ϕ = 0 we can express the 2nd order derivatives of s with the 1st order
derivatives of s. The calculation gives the formulas.

The linearization

Since the compatibility conditions ψ1 = 0 and ψ2 = 0 found in the previous section
are not identically satisfied, we have to introduce them into the system Pϕ. We
arrive at the extended system:

Pψ = (P2, ϕ, ψ
1, ψ2). (4.14)

Differentiating the equations ψ1 = 0 and ψ2 = 0 with respect to e1 and e2 we find 4
equations: ψij = 0, i, j = 1, 2, where

ψ1
1 = 24R1s

2
2 + β̃s12 − 48R1s1s2 + (α− 48Rs2)s11 + α1s1 + β1s2 + γ1

ψ1
2 = 24R2s

2
2 + β̃s22 − 48R2s1s2 + (α− 48Rs2)s21 + α2s1 + β2s2 + γ2

ψ2
2 = −24R1s

2
1 + α̃s11 + 48R1s1s2 + (48Rs1 + β̂)s12 + α̂1s1 + β̂1s2 + γ̂1

ψ2
2 = −24R2s

2
1 + α̃s21 + 48R2s1s2 + (48Rs1 + β̂)s22 + α̂2s1 + β̂2s2 + γ̂2
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In this expression, we can eliminate the second order derivatives using the equation
(4.9) and ϕ = 0, and with the help of the equations of (4.13), we can express the
terms s2

1 and s2
2 as a function of s1, s2 and the product s1s2. Therefore the system

Pψ = 0, ∇Pψ1 = 0, ∇Pψ2 = 0 (4.15)

is equivalent to the system formed by equation (4.14) and the four linear equations
in s1, s2 and s1s2:

L (W) =


a1s1 + b1s2 + c1s1s2 = d1,

a2s1 + b2s2 + c2s1s2 = d2,

a3s1 + b3s2 + c3s1s2 = d3,

a4s1 + b4s2 + c4s1s2 = d4,

(4.16)

where ai, bi, i = 1, . . . , 4 are polynomials in s of degree 3, whose coefficients are R
and its derivatives up to order 3, c1 and c4 are polynomials in s of degree 1 with
coefficients R, R1 and R2, c2 and c3 can be expressed as a function of R, R1 and
R2, and d1, d4 (resp. d2 and d3) are polynomials in s of degree 5 (resp. 4), with
coefficients R and its derivatives up to order 5. Their explicit expression can be
found in [107, Appendix]. The direct computation shows that the determinant

det


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 = 0 (4.17)

so that the system (4.16) is compatible. On the other hand, the 3rd−order minors
of the system (4.16) are polynomials in s of degree 7 which are not identically zero.
Therefore, there is an open dense U ⊂ C2 on which,

D(s) =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ 6= 0.

Solving on U the system S for s1, s2 and s1s2 we obtain:

s1 = F (s) =
A(s)

D(s)
, s2 = G(s) =

B(s)

D(s)
(4.18)

and

s1s2 = H(s) =
C(s)

D(s)
, (4.19)

where A = A(s), B = B(s) and C = C(s) are polynomials in s of degrees 8, 8, and
11 respectively:

A =

∣∣∣∣∣∣
−d1 b1 c1

−d2 b2 c2

−d3 b3 c3

∣∣∣∣∣∣ , B =

∣∣∣∣∣∣
a1 −d1 c1

a2 −d2 c2

a3 −d3 c3

∣∣∣∣∣∣ , C =

∣∣∣∣∣∣
a1 b1 −d1

a2 b2 −d2

a3 b3 −d3

∣∣∣∣∣∣ .
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By (4.19) we must find F (s) ·G(s) = H(s). Thus, the solution of s for the lineariza-
tion system must be in the algebraic manifold defined by

Q1(s) := AB − CD = 0. (4.20)

On the other hand, the compatibility condition of the system (4.18) is

s12 − s21 = Rs.

Computing it explicitly we find that s must be in the algebraic manifold defined by

Q2(s) = 0,

where Q2 is polynomial in s of degree 15. Indeed, if A(s) =
∑8

i=1Ais
i, B(s) =∑8

i=1Bis
i, and D(s) =

∑7
i=1 Dis

i where Ai, Bi and Ci are functions on M , then
using (4.18) we obtain

Q2(s) =
( 8∑
i=1

(∇2Bi)s
i
)( 7∑

i=1

Dis
i
)
−
( 8∑
i=1

Bis
i
)( 7∑

i=1

(∇2Di)s
i
)

−
( 8∑
i=1

(∇1Ai)s
i
)( 7∑

i=1

Dis
i
)
−
( 8∑
i=1

Ais
i
)( 7∑

i=1

(∇1Di)s
i
)

+
( 8∑
i=1

Bis
i−1
)( 8∑

i=1

Ais
i
)
−
( 8∑
i=1

Bis
i
)( 8∑

i=1

Ais
i−1
)
−RsD2.

Moreover, we must impose that s1 and s2 given by (4.18) verify the 5 equations of
Pψ, this implies 5 polynomial equations Qi = 0, i = 3, ..., 7. Finally, we arrive at the
conclusion that if the web is linearizable then s must be in the algebraic manifold
A, where A is defined by the equations Qi = 0, i = 1, ..., 7:

A := {Qi = 0 | i = 1, . . . , 7}.

So the compatibility system has a solution in the neighborhood of a point p ∈M
if and only if the algebraic variety A is not empty. If A 6= ∅, then for all s0 ∈ A,
there exists a neighborhood U of s0 so that all s ∈ U can be prolonged in a germ
s̃ as a basis of linearization. The explicit expressions of the polynomials Qi can be
computed. The degree of these polynomials Qi, i = 1, . . . , 7 are 18, 15, 23, 23, 24,
17 and 17 respectively. One obtains the following results:

Theorem 4.3.5. [106, Theorem 5.1] A non-parallelizable 3−web W is linearizable
if and only if there is an open set U of M on which the polynomials Q1, . . . , Q7

have common roots. Moreover, if this condition is satisfied, then for all p ∈ U and
all pre-linearization L0 ∈ Ep whose base is in A = {Qi = 0 | i = 1, ..., 7}, there exists
a unique linearization L so that Lp = L0.

Since the lowest degree of the polynomials defining A is 15 we arrive at the
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Theorem 4.3.6. [106, Theorem 5.2] For a non parallelizable 3−web, there exist at
most 15 projectively non equivalent linearizations.

An old problem related to the linearizability of webs is the Gronwall Conjecture
(1912) [47]: If a non-parallelizable 3-web W in the (real or complex) plane is lin-
earizable, then, up to a projective transformation, there is a unique diffeomorphism
which maps W into a linear 3-web. Using Theorem 4.3.6, the Gronwall conjecture
can be expressed in the following way: for any non parallelizable 3-web in the (real
or complex) plane

deg
{

gcd(Q1, ..., Q7)
}
≤ 1,

where gcd denotes the greatest common divisor of the corresponding polynomials
and deg is its degree.

4.4 The controversial web and its linearization

In 2006, V.V. Goldberg and V.V. Lychagin investigated the linearizability of 3-webs
in [44]. Their results were different from that of [106]. The direct comparison of
the two theories is not straightforward, since the formulas in both cases are long
and complex containing the curvature tensor and its different derivatives. There is,
however, a very specific case, where the two theories show clearly opposite results.
This is given by an explicit example of a 3-web W determined by the web function
f(x, y) := (x+ y)e−x, i.e. the 3-web given by the foliations

x = const, y = const, (x+ y) e−x = const. (4.21)

From the theory developed in [106] it follows that (4.21) is linearizable (see [106,
page 2653]) but the theory worked out by Goldberg and Lychagin leads to the non-
linearizability of W (see [43, page 38] and [44, page 171, line 7–10]). Consequently,
example (4.21) can be used for testing, which theory describes the linearizabilty
condition.

We proved in [116] that the results of [106] are correct. Indeed, the Chern
connection of the web W is determined by:

∇∂1
∂1 =

1

x1 + x2 − 1
∂1, ∇∂2

∂2 =
1

1− x1 − x2

∂2, ∇∂2
∂1 = ∇∂1

∂2 = 0.

and its curvature is determined by R∇(∂1, ∂2)∂i = (x1 + x2 − 1)−2 ∂i, for i = 1, 2.
Therefore, the Chern connection is non-flat and the web W is not parallelizable.
Following step by step the computation described in the previous chapter one can
find, that the polynomial Q1 defined in (4.20) can be written as

Q1(s) = (1 + s) Q̃1(s), (4.22)

where Q̃1 is polynomial in s of degree 18 and has the form

Q̃1(s) =
17∑
k=0

 δ(k)∑
i+j=0

αijk(x
i
1x

j
2 + xj1x

i
2)

 sk
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where δ(0) = 15, δ(1) = 16 and δ(k) = 17 for 3 ≤ k ≤ 17. The coefficients αijk ∈ R
can be computed easily with a computer algebra system like Maple. From (4.22) it
is obvious that

s(x1, x2) ≡ −1 (4.23)

is a solution of the polynomial Q1(s). Moreover, further calculation shows that
(4.23) is a solution of all the polynomials Qi(s) for i = 2, . . . , 7. This shows that
the web is linearizable. Let us go further and find the linearization explicitly. By
substituting s(x1, x2) ≡ −1 into (4.8) one can obtain the system

t1 = t2 − t+
t

x1 + x2 − 1
,

t2 = tz,

z1 = tz − 1

(x1 + x2 − 1)2
,

z2 = z2 − 2z

x1 + x2 − 1
.

(4.24)

There are two solutions of the differential system (4.24):

Solution 1.


t(x1, x2) = 0,

z(x1, x2) =
1− x1 − a

(−1 + x1 + x2)(x2 − a)
,

(4.25)

Solution 2.


t(x1, x2) =

(−1 + x1 + x2) e−x1

(x1 + x2)e−x1 + ax2 + b
,

z(x1, x2) =
e−x1 + a− x1a+ b(

(x1 + x2) e−x1 + ax2 + b
)
(x1 + x2 − 1)

(4.26)

where a and b are arbitrary constants.

Solution 1. Here we consider the solution (4.25) of (4.24). Rewriting the
expression of t(x1, x2) and z(x1, x2) with the help of (4.23) we can determine the
components of the affine deformation tensor L:

L1
11 = −1, L2

12 = 0, L2
22 = − x2 − 2 + 2x1 + a

(x1 + x2 − 1)(x2 − a)
, L1

12 =
1− x1 − a

(−1 + x1 + x2)(x2 − a)
.

The deformed connection ∇L in the standard base is given by the following equa-
tions:

∇L
∂1
∂1 = ∇∂1∂1 + L(∂1, ∂1) =

κ1

κ
∂1 + L1

11∂1 =
x1 + x2 − 2

1− x1 − x2

∂1, (4.27a)

∇L
∂1
∂2 = ∇∂1∂2 + L(∂1, ∂2) = L1

12∂1 + L2
12∂2 =

1− x1 − a
(−1 + x1 + x2)(x2 − a)

∂1, (4.27b)

∇L
∂2
∂1 = ∇∂2∂1 + L(∂2, ∂1) = L1

12∂1 + L2
12∂2 =

1− x1 − a
(−1 + x1 + x2)(x2 − a)

∂1, (4.27c)

∇L
∂2
∂2 = ∇∂2∂2 + L(∂2, ∂2) = −κ2

κ
∂2 + L2

22∂2 =
2

a− x2

∂2, (4.27d)
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where κ = ∂1f/∂2f = 1−x2−x2. It is obvious that ∇L
∂i
∂j−∇L

∂j
∂i = 0 and therefore

the torsion of ∇L is zero. The equation (4.27a)) (resp. (4.27d)) shows that the
covariant derivative of a horizontal (resp. vertical) vector field with respect to a
horizontal (resp. vertical) vector field is horizontal (resp. vertical). One can easily
show that the covariant derivative of a transversal vector field with respect to a
transversal vector field is transversal. Direct calculation shows that ∇L is flat, that
is its curvature tensor is identically zero.

Solution 2. Here we consider the solution (4.26) of (4.24)). Completing the
expression of t(x1, x2) and z(x1, x2) with (4.23) we can find that the components of
L, the affine deformation tensor, are:

L1
11 =

(x1 + x2 − 2)e−x1 − ax2 − b
(x1 + x2)e−x1 + ax2 + b

, L2
22 =

(2− x1 − x2)e−x1 − a(2x1 + x2 − 2) + b

(x1 + x2 − 1)((x1 + x2)e−x1 + ax2 + b)
,

L2
12 =

(x1 + x2 − 1) e−x1

(x1 + x2)e−x1 + ax2 + b
, L1

12 =
e−x1 − ax1 + a+ b

(x1 + x2 − 1)
(
(x1 + x2) e−x1 + ax2 + b

) .
The deformed connection ∇L in the standard base is given by the following equa-
tions:

∇L
∂1
∂1 =

(
1

x1 + x2 − 1
+

(x1 + x2 − 2)e−x1 − ax2 − b
(x1 + x2)e−x1 + ax2 + b

)
∂1 (4.28a)

∇L
∂1
∂2 =

e−x1 + a− x1a+ b(
(x1 + x2) e−x1 + ax2 + b

)
(x1 + x2 − 1)

∂1 +
(x1 + x2 − 1) e−x1

(x1 + x2)e−x1 + ax2 + b
∂2,

(4.28b)

∇L
∂2
∂1 =

e−x1 + a− x1a+ b(
(x1 + x2) e−x1 + ax2 + b

)
(x1 + x2 − 1)

∂1 +
(x1 + x2 − 1) e−x1

(x1 + x2)e−x1 + ax2 + b
∂2,

(4.28c)

∇L
∂2
∂2 =

−2(e−x1 + a)

(x1 + x2)e−x1 + ax2 + b
∂2 (4.28d)

As in the previous case ∇L
∂i
∂j −∇L

∂j
∂i = 0 and the torsion of ∇L is zero. Equation

(4.28a) (resp. (4.28d)) shows that the covariant derivative of a horizontal (resp. ver-
tical) vector field with respect to a horizontal (resp. vertical) vector field is horizontal
(resp. vertical). We have

∇(∂1−κ∂2)(∂1 − κ∂2) = ∇∂1∂1 − κ∇∂2∂1 − κ∇∂1∂2 − (∂1κ) ∂2 + κ(∂2κ) ∂2 + κ2∇∂2∂2

=
(x1 + x2)2e−x1 + (4a+ b)(x1 + x2)− a(2x2

1 + x2
2 + 3x2x1 + 2)

(x1 + x2 − 1)((x1 + x2)e−x1 + ax2 + b)
(∂1 − κ∂2)

which shows that the covariant derivative of a transversal vector field with respect
to a transversal vector field is transversal. As in the previous case, ∇L is flat i.e. its
curvature tensor is identically zero.

The above computation shows that in both cases the corresponding affine de-
formation tensors define linearizations of the web W and the solutions correspond
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to different linearizations. However, these linearizations are projectively equivalent.
Indeed, the parameter s, called the base of the linearization, is a projective invariant
of the linearizations: two linearizations are projectively equivalent if and only if they
have the same base. Here the two linearizations have the same base (s(x1, x2) ≡ −1)
which shows that they are projectively equivalent.

Remark 4.4.1. [117, page 98]
There is a more direct proof of the linearizability of the webW given by the system
(4.21). Indeed, one can consider the diffeomorphism x̄ = f(x, y), ȳ = y which clearly
transforms the foliations y = const and f(x, y) = const into linear foliations. The
line x = c of the first foliation becomes the line x̄ = (c + ȳ)e−c. This method can
be used also in the more general setting for the webs defined by the web function
f(x, y) = a(x)x+b(x)y. The linearizing diffeomorphism was indicated to me by J.-P.
Dufour in a personal communication.
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Symbols

Symbol Explanation page

M smooth manifold 4

C∞(M) real-valued smooth functions 4

X (M) smooth vector fields on M 4

TM tangent bundle of M 4

TM slit tangent bundle 4

Λk(M) skew-symmetric forms 4

Sk(M) symmetric forms 4

Ψk(M) vector valued k-forms 4

LX Lie derivative with respect to X 4

dL d∗ derivation associated to L 4

iL i∗ derivation associated to L 4

[K,L] Frölicher–Nijenhuis bracket of K, L 4

V TM vertical bundle 4

HTM horizontal bundle 4

J vertical endomorphism 5

S spray 5

Gi spray coefficients 5

Gi
j

∂Gi

∂yj
5

Gi
jk

∂Gi

∂yj∂yk
6

v vertical projector 5

h horizontal projector 5
δ
δxi

∂
∂xi
−Gj

i (x, y) ∂
∂yj

5

Γ nonlinear connection 5

C Liouville vector field 5

DXY Berwald connection 6

R curvature tensor 6

Φ Jacobi endomorphism 6

ρ Ricci scalar 6

ωE Euler–Lagrange form 7

ΩE Euler-Poincaré 2-form 7

gij variational multiplier 8

F almost complex structure 9
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Symbol Explanation page

DH holonomy distribution 14

HS set of holonomy invariant functions 14

HS,k set of k-homogeneous holonomy invariant functions 14

F Finsler norm function 26

κi principal curvatures 27

jk(s)x kth order jet of s at x 27

JkB bundle of kth order jets of B 27

σk(P ) symbol of P 27

Hm,i Spencer cohomology group 28

ly horizontal lift 56

Ri
jk component of the curvature tensor 57

Pc parallel translation along c 58

Ip indicatrix at p 59

Holp(M) holonomy group at p 60

holp(M) holonomy algebra at p 68

G subgroup of Diff∞(M) 60

ToG tangent Lie algebra of G 61

G topological closure of G 63

exp exponential map 63

Holf (M) fibered holonomy group 64

holf (M) fibered holonomy algebra 64

R curvature algebra 64

Rp curvature algebra at p 68

hol∗(M) infinitesimal holonomy algebra 67

hol∗p(M) infinitesimal holonomy algebra at p 69

S1 unite circle 81

F(S1) Fourier algebra 81

Diff∞(S1) diffeomorphism group of S1 81

Diff∞+ (S1) orientation preserving diffeomorphism group of S1 81
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nomogrammes à points alignés. Journ. de Math. (6), 8: 59–102, 1912.

dc_1714_19

Powered by TCPDF (www.tcpdf.org)



[48] M. R. Herman.: Sur le groupe des difféomorphismes du tore. Ann. Inst. Fourier
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