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Chapter 1

Preface

rI;E grand challenges facing society—energy, water, climate, food, health-—have become
too complex to be tacked within any single academic discipline alone. With academics,
research institutes, and government funding agencies increasingly inciting scientists to
break traditional disciplinary silos and bring multiple diverse academic research fields
together to deal with humanity’s greatest problems, interdisciplinary research has become
mainstream over the last decades.

1.1 Interdisciplinarity

Scientific advancement was traditionally made within well-defined scientific disciplines,
e.g. physics, chemistry, and biology. Loosely speaking, a discipline is a community of
scientists agreeing on a common set of challenges, terminology, methodology, expertise,
and practices, i.e., a scientific paradigm [128], strongly associated with a given scholastic
subject area. The reductionist approach facilitated significant scientific advancement in
the last centuries, but at the same time divided the scientific community into isolated
groups of specialists living in their walled gardens, developing their own language, forums,
and paradigm, pursuing minimal interaction with other scientific communities.

Modern societal problems, however, transcend conventional academic boundaries.
Consequently, there is a growing need for disciplines to collaborate in order to create
something more than the sum of their parts, without being constrained by one way of
thinking or tackling a problem. Interdisciplinary research targets such overarching re-
search problems, combining skills and knowledge from a variety of disciplines in a scien-
tific process that is much more integrated and efficient than working in groups divided by
subject.

The definition of what constitutes a “discipline” and what defines “interdisciplinarity”
has occupied much scholarly debate. Below, we embrace the following interpretation [161]:

“Interdisciplinary research is a mode of research by teams or individuals that
integrates information, data, techniques, tools, perspectives, concepts, and/or
theories from two or more disciplines or bodies of specialized knowledge to
advance fundamental understanding or to solve problems whose solutions are
beyond the scope of a single discipline or area of research practice.”

Interdisciplinarity has broad vocabulary [198]: broadly speaking, we distinguish tra-
ditional wntradisciplinary research that is working within a single discipline, crossdisci-
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plinary research that views one discipline from the perspective of another, multidisci-
plinary research where a select group of people from different disciplines works together,
each drawing on their disciplinary knowledge, and interdisciplinary or transdisciplinary
research where the emphasis is on integrating knowledge and methods in order to synthe-
size a unity of intellectual frameworks beyond the disciplinary perspectives.

The promise of interdisciplinary research is that one can tap into the expertise of
a wide range of disciplines, acquire a wider academic perspective, and learn the think-
ing styles of other disciplines. This interdisciplinary approach often yields new insights,
unexpected results, far-fetching consequences, and spawns entirely new disciplines. Nev-
ertheless, moving into a new discipline and culture will present challenges, too. Most
importantly, interdisciplinary research requires specialists to familiarize themselves with
the new theory, methodology, and practice of the subjects they are moving into. Further
challenges are mostly cultural in nature: every discipline has its own jargon and interdis-
ciplinary research requires scientists to understand and learn the new terminology; the
current structure of academic departments, including research programs, faculty, staff,
and organization, is specialized to a single field, which may make interdisciplinarity col-
laboration a challenge when the structures across departments do not align; and grant
calls, publication venues, and scientific forums are likewise structured around disciplines,
making it difficult to secure funding and publish interdisciplinary research results. Ac-
cordingly, interdisciplinary collaboration is the exception in large-scale academic research
today rather than the rule.

This is especially so in the area of computer science and network communications,
where the specialized nature of the related engineering fields has produced an immense
number of fragmented disciplines and sub-disciplines. As of 2020, the Association for
Computing Machinery (ACM), the largest international scientific community dedicated
to computing, counts 37 special interest groups (SIGs), each devoted to a distinct field of
computer science, ranging from general disciplines like computer communications (SIG-
COMNM ) and operating systems (SIGOPS), to specialized “niche” fields like symbolic & al-
gebraic manipulation (SIGSAM ) or university and college computing services (SIGUCCS).
None of these SIGs have interdisciplinary research among its primary goals. Even the in-
dividual disciplines are broken into their own respective subfields; within the field of net-
working the IEEE Communications Society (ComSoc) offers 15 different transactions and
journals, each specializing in a distinct smaller area within communications, like cognitive
communications, green communications, optical networking, or molecular and biological
communications. By the best of our knowledge, within the communications discipline
there are only two journals, the prestigious IEEE/ACM Transactions on Networking and
the IEEE Selected Areas of Communications, which openly welcome interdisciplinary re-
search on networking.?

1.2 Contributions

With the dramatic recent growth of the global Internet, which today connects tens
of thousands of autonomous network domains each operated by independent governmen-
tal, academic, military, and private enterprise stakeholders, millions of fixed and mobile
devices and billions users, and delivers trillions of US dollars in business value, the scale

!The author has published 6 papers in the IEEE/ACM Transactions on Networking [42,88,123,152,
172,181] and 2 in the IEEFE Selected Areas of Communications [136,204] during the last 15 years, mostly
dedicated to interdisciplinary studies.
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and complexity of the related theoretical, engineering, societal, and economic challenges
has greatly surpassed the capability of individual network communications disciplines to
tackle [103]. This calls for an interdisciplinary approach in computer networking, which
combines and synthesizes the models, methodologies, and algorithmic toolsets of different
disciplines, including control theory, information theory, graph theory and numerical op-
timization, into a single framework that can be used to attack notorious open problems
that have so far eluded the capability of individual disciplines to successfully solve.

The goal of this Dissertation is to foster interdisciplinarity in the field of computer net-
works and communications, by presenting a selection of recent advances on related open
problems that were made possible by an interdisciplinary research methodology. A com-
mon theme in the reviewed studies is that the interdisciplinary approach was applied in
a comprehensive manner, from the initial phase of model formulation and problem state-
ment through the development of the corresponding theoretical frameworks, algorithms
and data structures, all the way to the eventual implementations and evaluations, mixing
the terminology, methodology, tools and software libraries, from at least two disciplines.
This approach then yielded new models that produced answers to several compelling open
problems, and new algorithmic tools to experiment with the solutions developed.

1.3 Structure of this Dissertation

Chapter 2 is dedicated to an interdisciplinary study of fair resource allocation prob-
lems arising in the field of communication networks. Such resource allocation problems
manifest themselves naturally in several disciplines independently; e.g., in economy as
the distribution of income and wealth among individuals via markets or planning, in
game theory as multi-agent competitions to possess some valuable goods, or in computer
networks where multiple users bid for the limited transmission capacity available in a
communication network. This inherently multi-disciplinary nature of the resource allo-
cation problem expressly calls for an interdisciplinary approach. In the specific study we
present first, the task is to distribute transmission rates among users in a way so that
the allocation is feasible, in that the limited capacity transmission links in the network
do not become overloaded, and fair, in that none of the users remain discontented with
their resource share. The interdisciplinary nature of the approach stands in that (1) the
notion of fairness is generalized from the “usual” setting of max-min fairness to other no-
tions of fairness (Pareto-optimality, non-dominatedness, etc.) and (2) a unique geometric
model is developed that transforms the problem from the conventional flow-theoretical
framework to the language of convex geometry. As the most important contribution, we
answer the decade-old open problem whether max-min fair allocations can exist in the
case when we do not fix the paths of users beforehand [133, Section “When bottleneck
and water-filling become less obvious”|. We stress that achieving this result was made
possible thanks to the interdisciplinary approach and the use of geometric insights to a
problem that is conventionally analyzed in the context of a different discipline.

Chapter 3 presents a recent interdisciplinary approach to multipath rate-adaptive rout-
ing problems. An adaptive routing algorithm controls the rate at which traffic is routed
to each individual forwarding path in the network, in concert with the actual user de-
mands. Again, the emphasis is on feasibility; i.e., avoiding the over-subscription of the
limited transmission capacity of the network to avoid congestion. The research presented
casts the problem of rate-adaptive multipath routing, which is conventionally approached
using the toolset of numerical optimization and flow theory, in the setting of control the-
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ory. Again, the interdisciplinary approach is enforced right from the modeling phase: the
routing problem is formulated in the framework of constrained optimal control theory and
an optimal state-feedback routing controller is obtained that is then theoretically proved
to be stable, optimal, and feasible. As far as we know, this is the first time that the
existence of such an offline multipath routing algorithm is proved, which can route any
admissible traffic matrix in the network without prior knowledge on the user demands.
Again, this is made possible by the interdisciplinary approach, by applying the theory
and algorithms of constrained receding horizon control to the multipath routing problem.

Chapter 4 is devoted to an interdisciplinary study of scalable policy routing algorithms
for large-scale communication networks. In this study, the main concern is to generalize
the well-established scalable routing theories from the context of shortest-path-routing
to arbitrary path-selection policies that favor a broader set of attributes and descriptors
beyond path length (e.g., widest-path routing, secure routing, BGP valley-free routing).
Scalability in this setting means that the amount of information that needs to be stored at
network nodes does not grow prohibitively with the size of the network. This problem has
become especially compelling lately, with the unprecedented growth of the Internet and
the rising scalability concerns, given that the global Internet is not running on shortest-
path routing as prior work presumes. The interdisciplinary approach presented in this
Chapter is perhaps the most unorthodox one in this Dissertation; namely, the specifics
of routing policies are described using the formalism of abstract algebra, which makes it
possible to obtain a generic understanding of the scalability properties of different rout-
ing policies, stated purely in terms of abstract algebraic properties, that goes beyond the
piecemeal analyses available in the literature. The most important results here are (1) the
comprehensive scalability characterization of most known intra-domain routing policies
and the extension of the well-known negative results beyond shortest-path routing; (2)
using a novel algebraic generalization of the notion of stretch, several scalable “approx-
imate” routing algorithms for notoriously difficult routing problems that are known to
scale poorly in the optimal setting; and (3) the first proof for the existence of certain
pathological routing policies for which no scalable realizations exist even if permitting
arbitrary constant stretch.

Finally, Chapter 5 is dedicated to the problem of forwarding table compression, with
the goal to reduce the amount of routing state stored in the nodes of communication
networks. This study is closely related to the previous Chapter; whereas the foregoing
analysis was deliberately of worst-case nature, considering hypothetical routing algorithms
that would provide scalable routing state in any network topology, the present study
considers the attainable smallest routing state on particular inputs. Information-theory
and data compression theory lend themselves naturally in this context; surprisingly, the
study covered in this Chapter is the first one to cast the problem of forwarding table
compression in an information-theoretical framework. The major new result is the fixture
of an entropy notion to characterize the maximum compression that can be attained
on particular forwarding table instances and the definition of several forwarding table
compression schemes that, according to the evaluations that we also briefly cover, attain
orders of magnitude space reduction beyond the state-of-the-art. Crucially, our encoding
schemes are such that they allow to execute fast queries to the compressed forwarding
tables without explicit decompression, which makes them especially appealing to practice.

The organization of the subsequent chapters follow the same structure. In each Chap-
ter we provide the general background on the main problem first and we point at the
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potential to apply an interdisciplinary approach for the specific problem domain. Next,
we present formal models and problem formulations arising in the context of the chapter.
Then we turn to describe the main contributions, and finally we review related research
and position the new results in the grand theme of the field. Each chapter stands on its
own and can be read independently from the rest; whenever there is overlap between the
notations in two or more chapters we explicitly point the reader to the full definitions.
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Chapter 2

Fairness in Internet Routing: The
Geometric Perspective

rI:{IS Chapter is devoted to the problem of allocating scarce resources in a network so
that every user gets a fair share, for some reasonable definition of fairness. For example,
a fair allocation would be such that every user gets the same share and the allocation is
maximal in the sense that there does not exist any larger, even and feasible allocation.
We shall focus on the type of allocation problems that arises most often in networking:
allocate a fair traffic rate for each user in a network whose links are of limited capacity
(see Fig. 2.1).

2.1 Preliminaries

2.1.1 Fair Resource Allocation in Networks

It is an imminent incentive of the network operator to share the limited resources
available in the network, like costly compute nodes, scarce storage facilities, or constrained
interconnection capacities, between users in an efficient yet fair manner [26,107,115,132,
169,171|. Think of, for instance, a multi-tenant public cloud where server space is limited
by the physical dimensions of the data center facility [53,81,82,109,110,230], or a transport
network where users compete for the bandwidth of long-haul links [24,57,115,189,201]. If
certain users are overflown with resources while others are starved, unfairly traded users
may move to alternative operators with a more reasonable resource allocation regime in
place. In this context, a fair allocation means a strategy to distribute common wealth in
a way that maximizes users’ satisfaction with the share of resources they receive.

Among the many different definitions of fairness perhaps the most prevailing one is
max-min fairness. A max-min fair allocation is, roughly speaking, such that we cannot
increase the share of any of the users without decreasing the share of some other user that
already receives less or equal rate [107]. Max-min fairness is a simple yet powerful fairness
criterion, and consequently it has grown to be an essential ingredient in diverse fields
of networking, like flow and congestion control protocols [24,53,57,92,189,201], online
job scheduling [81, 82|, bandwidth sharing in ATM networks [47, 115], or distributing
compute [37, 108, 200], storage [13,110], memory [4], and network resources [57,81, 82,
109, 115,201, 230] in a multi-user computer system, a public cloud, or the Internet; for
comprehensive surveys see [26], [132], [58], [110], and [131].

6
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y=

Figure 2.1: Fair resource allocation in capacitated networks: users compete for the scarce
resources of the network and the task of the network operator is to arbitrate resources in a
way that the network is not over-committed beyond its capacity and each user is satisfied with
their share. For instance, an egalitarian resource allocation regime would share resources equally
between competing users.

Max-min fairness is most easily described in a network model where a single path
is assigned to each user and this path remains fixed during the lifetime of the network.
Here, the task is to compute a rate at which users can send data to their path, so that the
allocation is max-min fair and neither of the edges gets overloaded. A very useful tool to
solve this problem is the notion of bottlenecks [26]: Given any user, the bottleneck edge
for this user is an edge with the properties that

(i) it is filled to capacity, that is, users send just enough load to the link so that the
bandwidth is fully utilized, and

(17) the user has the maximum rate amongst the users whose path traverses the edge.

Bottlenecks are very tightly coupled with max-min fairness, for it can be shown that an
allocation of rates is max-min fair over some fixed single-path routing if and only if all
users have a bottleneck edge.

From the practical standpoint, the importance of this bottleneck argumentation is
multi-faceted. First, as the name suggests, bottlenecks point to certain shortages of re-
sources in a network that, given the selected set of paths, constrain the fair allocation.
Additionally, bottlenecks substantiate a fast algorithm, the so called water-filling algo-
rithm, to find a max-min fair allocation [26] (see later).

Curiously, the actual assignment of paths to users influences the emergent maz-min
fair allocation to a great extent, in that different selections of paths will yield different
max-min fair allocations. In the conventional approach to bandwidth allocation problems,
however, the forwarding path assigned to users is fized and the fair allocation is to be found
with regards to this fixed set of paths. This feels arbitrary and unintuitive; after all, it
is the specifics of the network, in particular the network topology and link capacities,
that fundamentally determine the share of resources that can be allocated to users and
not some random routing decision. Accordingly, we should first compute a mazx-min fair
allocation that is only dependent on the network itself, and only after this we should pick a
routing that realizes it. Below, we shall refer to this problem as the general max-min fair
bandwidth allocation problem [169-171,173], and all the former incarnations will be called
fixed-path maz-min fair bandwidth allocation problems. The main focus in this Chapter is
this generalized version of the bandwidth allocation problem.
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2.1.2 Contributions

In the past several attempts have been made to address the general max-min band-
width fair allocation problem [150], [133]. These works provide a quantitative treatment,
establishing the existence and uniqueness of a max-min fair allocation in the generalized
model and providing several algorithms to compute it, heavily relying on techniques from
lexicographical optimization. Below, we complement existing quantitative arguments with
a qualitative treatment, building a completely new framework using mainly geometric prin-
ciples [169-171,173]. Our results reveal the intricate relationship between the specifics
of a network and the generalized max-min fair allocation; in particular, we answer the
old problem (first raised in [133, Section “When bottleneck and water-filling become less
obvious”|) whether the bottleneck argumentation generalizes from the fized-path model to
the routing-independent generic model in the affirmative.

Our contributions in particular are as follows [169-171,173].

e We show that the set of feasible bandwidth allocations in a capacitated network
forms a convex polytope. This result is essential as it then fixes the existence of a
max-min fair allocation in the general, routing-independent setting.

e We provide a “geometric” bottleneck argumentation for the general setting, whereby
users’ bottlenecks are represented as certain supporting hyperplanes of the above
feasible set, and we show that the properties for of “fixed-path” bottlenecks naturally
extend to our geometric interpretation.

e We translate the geometric notion of bottlenecks back to a graph-theoretical setting
that is better suited for operators to reason about resource scarcities in their net-
work; the new interpretation represents bottlenecks as critical cuts in the network
which again possess the distinctive properties of “conventional” bottlenecks.

The rest of this Chapter is structured as follows. In Section 2.2 we introduce a model
for the general max-min fair bandwidth allocation problem and we give some examples.
Then, in Section 2.3 we characterize the set of feasible bandwidth allocations, we use
this characterization to (re-)state the existence of generally max-min fair allocations, and
we give the geometric and the graph-theoretical bottleneck argumentations. Finally, in
Section 2.5 we summarize the related work and position our results in the considerable
body of literature on fair rate allocation problems.

2.2 Formal Model

In this Chapter, the task we consider is to compute a transmission rate (or throughput,
for short) for each user that is feasible, so it can be routed in the network without violating
the edge capacities, efficient, so that the resources of the network are fully utilized, and,
last but not least, satisfies some fairness criteria. Perhaps the most instrumental way to
understand the context of such fair allocations is through an example.

Example 2.1. Consider the simple directed network of Fig. 2.2a and suppose that there
are 3 source-destination pairs (or users or commodities): (1,5), (2,5) and (3,5) (see
Fig. 2.2b). All edge capacities are uniformly 1 unit. For example, if we were to arbitrate
resources between users strictly evenly then we would allocate 1/2 transmission rate for
each user; say, we could let user (1,5) to use the path 1 — 4 — 5 and user (2,5) the path
2 — 4 — b, sharing the bottleneck resource of capacity 1 on link (4,5), and user (3,5)
would receive exclusive access to link (3,5), sending all of its share, 1/2 units of traffic, to
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Users: T
\ (s1,d1) = (1,5)
< > < > @ (s2,d2) = (2,5)
(s3,ds) = (3,5) e
/ 6
@ Max-min fair rate: [1/2,1/2, 1] :
(a) topology (b) parameters (c) feasible allocations

Figure 2.2: A sample network and the set of rates realizable in it. All edge capacities are equal
to 1. There are 3 source-destination pairs (1,5), (2,5) and (3,5), whose rate is denoted by 61,
02 and 03, respectively.

this link. This allocation is certainly feasible and gives even share to each user, and it is
also maximal in this regard. On the other hand, this allocation would waste resources (so
it would go against our objective for “efficiency” set out above): observe that user (3,5)
could attain higher rate (a rate of 1 unit) if he/she would be able to use the full capacity
of link (3,5), but this would violate our fairness principle that we assign even share to
each user.

Max-min fair resource allocations. It seems that we need to come up with a better
notion for defining the way to balance between the, seemingly contradictory, requirements
of feasibility, efficiency, and fairness [115]. Taking ideas from axiomatic theories of fairness
[131], economy (Atkinson’s index [9,213]), game theory (Nash bargaining [153|, Shapley
value [188]), sociology [131], political philosophy [111]|, and multi-user computer systems
[108,110,131], fair resource allocations are usually associated with the below four fairness

principles (see a comprehensive discussion in [110, Appendix D| and a unifying treatment
in [131]):

e Sharing incentive: a fair allocation incentivizes users to share resources, by ensuring
that no user is better off in a system in which resources are statically and equally
partitioned.

e Strategy-proofness: users cannot improve their allocation by lying about their spe-
cific requirements.

e Enuvy-freeness: no user would want to trade his/her allocation with that of another
user.

e Ffficiency: it is not possible to improve the allocation of a user without decreasing
the allocation of some other user (Pareto-efficiency).

It has been shown that in the context of bandwidth allocation in capacitated networks
these fairness principles boil down to the maz-min fair allocation strategy [107] (but see
also [131]), defined loosely speaking as an allocation whereby “there is no way to make
any person better off without hurting anybody else who is already poorer” (see later for
a formal definition).

It is by far not evident whether such a max-min fair allocation exists in a specific
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context, like the fair bandwidth allocation problem [133]. Still, for the case when the paths
for users are fixed, existence of a max-min fair rate allocation is indeed guaranteed [107].

Example 2.2. Assume that in the sample network of Example 2.1, path 1 — 4 — 5 is
assigned to user (1,5), path 2 — 4 — 5 to user (2,5), and the direct path 3 — 5 to user
(3,5), respectively. Then, the max-min fair allocation is given by the vector [1/2,1/2,1],
where coordinates specify the bandwidth share received by each user, as per the ordering of
users in Fig. 2.2. Observe that this allocation indeed possesses the max-min fair property
in that no users could get better rate without taking away bandwidth from some other
user whose share is already smaller or equal. For instance, if we were to increase the rate
of user (1,3) from /2 to, say, 3/4, then we would need to decrease the share of user (2, 3)
from 1/2 to 1/4 as the aggregate capacity that is made available to the users is constrained
at the bottleneck edge (4,5) at 1 unit.

The fixed-path model. Curiously, the actual selection of paths influences the emergent
max-min fair allocation, and bottlenecks, to a great extent.

Example 2.3. Consider Example 2.1. If the path of user (3,5) is changed to 3 — 4 — 5,
then the max-min fair rate vector turns to [1/3,1/3,1/3] (another “even share” bandwidth
allocation). It is possible to extend this “single-path” formulation to a (limited) “multi-
path” setting under the assumption that the traffic splitting ratio at paths’ branching
nodes is known in advance: if we assign both paths 3 — 5 and 3 — 4 — 5 to user (3,5)
with the restriction that traffic must be split equally between the two paths, then the
max-min fair allocation ends up being [2/5,2/5,2/5] and the (shared) bottleneck is again
link (4,5) [26].

Max-min fair allocations in this fixed-path model are strongly dependent on the specific
routes assigned to users and this goes against the very fairness principles enumerated
above; even though users may not envy each other’s rate but they may certainly envy
each other’s routes and may rightfully ask for a routing that would favor their desire for
more bandwidth. Consequently, the “fized-path” version of the fair bandwidth allocation
problem wviolates basically all of the principles for fairness, in that

e it may not provide incentive for sharing as users will strive for a routing that maxi-
mizes their max-min share (e.g., user (3,5) will want exclusive access to both paths
3 — 4 — 5 and 3 — 5 as his/her max-min share becomes 2 units in this case);

e it is not strategy proof as users will generally lie about their bandwidth requirements
to get a routing that maximizes their share;

e it is not envy-free, since a user may not be satisfied with the routing, and the
resultant max-min share, he/she receives;

e and finally it is not (Pareto-)efficient as it is dependent on the exact paths and
traffic splitting ratios assigned to the users and there may exist other assignments
that would lead to better utility.

The main objective of this Chapter is to sidestep this adverse dependence of bandwidth
allocations on particular assignment of paths; namely, the general formulation for the
max-min fair bandwidth allocation problem asks for an allocation that is independent
from particular routings. The idea is that we would find a max-min fair allocation that is
only dependent on the specifics of the network (topology and link capacities) and not on
some random fixed paths and, consequently, would fulfill all the fairness principles, i.e.,
sharing incentive, strategy-proofness, envy-freeness, and Pareto-efficiency.
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2.2.1 Model and Notation

In the mathematical model, we are given a network configuration comprising (i) a
directed graph G(V, E) with nodes V and edges, links, or directed arcs?, E, where n = |V/|
and m = |E|; (ii) the column m-vector of (finite) link capacities ¢ = [c;; > 0: (1,7) € EJ;
(111) a set of users, represented by a set of unique source-destination pairs (sy, dy) : k € K;
and (iv) a set of paths® P, available to each user & € K. In our model, P} may contain
only a single path for each user, in which case the model simplifies into the conventional
fixed single-path model, a set of “good” paths assigned by the operator (e.g., using the
k-shortest path algorithm), or, at the extreme setting, it may contain all directed paths
from s — di in G.; the splitting ratios do not need to be fixed in any of these cases. The
theory we present will apply to each of these settings. Let p; denote the number of paths
for k£ and let p be the number of all paths. Finally, let P describe path-arc incidence
matrix corresponding to Py; here, P, has a p; columns, one for each directed path in G
that can be utilized by user k for sending traffic, and m rows, one for each arc (i,7) € E.
Then, the entry in P, corresponding to path P and edge (i, j) equals 1 if P traverses (i, j)
in the same direction as (4, j) is oriented and zero otherwise.

We shall use the short-hand notation G. to mean a particular network configuration,
with the graph, capacities, and users included. The below mild regularity condition then
gives a useful characterization of the network configurations that admit a reasonable
definition for the fair bandwidth allocation problem.

Definition 2.1. A network configuration G, is regular, if

e a path exists in G, from s; to d for each k € K and
e all edge capacities are finite and strictly positive.

It is easy to see that any network configuration can be reduced to a collection of
regular network configurations by rewriting infinite link capacities with a capacity “large
enough”, removing edges with zero capacity, and clearing disconnected users.

Feasible routings. Next, we define formally the set of feasible routings, i.e., assignments
of paths to users together with respective sending rates, supported by a particular network
configuration. Let up denote the amount of traffic, or flow, sent by user k to path P € Py
and let u;, denote the column-vector whose components are up : P € Py:

u=[ug: k€K €R* xR”? x ... x RP¥ =R .

The Euclidean space RP will be called the flow space. See a summary of notations in
Table 2.1.

With this notation in mind the below definition gives the set of all feasible routings
supported by some network configuration.

Definition 2.2. Given a network configuration, the flow polytope M (G.) C RP is the set
of admissible path-flows, subject to link capacities and non-negativity constraints:

M(G,) :{uzzpkuk <e, u>0} . (2.1)
ke

2In the rest of this Chapter we use the terms “link” and “arc” interchangeably.
3Path-flow formulation is chosen only for convenience. The results apply equally to the arc-flow
formulation.
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Convex polyhedra. Readers proficient in network flow theory might find the formula-
tion (2.1) familiar, since M(G,) is in fact the set of feasible solutions for the family of
multicommodity flow problems [186]. Here, the constraint ), Pyuy, < c¢ requires that flows
do not over-utilize link capacities and v > 0 disallows negative flows. Note that the term
“polytope” implies a geometric concept, in particular, a polytope is a compact convex set
whose faces are “flat” (hyper)planes, a higher-dimension geometric generalization of the
well-known concepts of polygons (in 2D) or (Platonian) solids (in 3D). Following are some
important definitions form convex analysis that we shall rely on below [234] [87] [19] [186].

Definition 2.3. Let R” be the n-dimensional Euclidean space.

e Polyhedra: A set P C R"™ is a polyhedron if it arises as the intersection of finitely
many closed half-spaces: P = {z : Az < b} for some m x n matrix A and column m-
vector b (half-space representation). An inequality ax < b for P is a valid inequality
if Vr € P:ax < b holds.

e Properties of polyhedra: A polyhedron P is a conver set: for any xi,zo € P :
Az1 + (1 = AN)zg € P. In addition, P is down-monotone if for any x € P and for any
0<y<uaz:y€P. Pis bounded if it does not contain a ray {x + Ay : A > 0}. A
compact (closed and bounded) polyhedron is called a polytope.

e FExtreme points: The convex combination Conv{xy,...,zs} of points {x1, o, ..., xs}
in R? is defined as

Conv{xy,..., x5} = {:c 23N, A, A > 0, where @ = ZAixi and ZAi = 1}

i=1 =1

Given a polytope P, some x € P is an extreme point of P if it cannot be generated as
the convex combination of two distinct points in P. Any polytope P = {x : Az < b}
is equivalently described by the convex-combination of its extreme points xq, . .., zy:
P = Conv{zy,...,zs} (vertex-representation).

e Operations on polytopes: An affine projection of a polytope P through an affine map
m(z) = Ax + b is a set m(P) = {n(z) : * € P}; an affine projection of a polyhedron
is again a polyhedron and if P is bounded then 7(P) is also bounded. The scalar
multiple of a polytope P = {x : Az < b} is defined as AP = {z : Az < \b}.

e Triangulations: The boundary OP of P consists of the set of points z € P for which
one or more inequalities in Az < b hold with equality. A simplex is a d-dimensional
polytope arising as the convex combination of exactly d + 1 affinely independent
extreme points. A polyhedral partition of P is a set of disjunct (apart from the
boundaries) polytopes @; : i € {1,...,q} so that P = |J, Q;. A triangulation is a
polyhedral partition @; : i € {1,...,¢} so that each @, is a simplex. A boundary-
triangulation is a triangulation where the extreme points of ); do not introduce
interior points, i.e., each ); is a convex combination of some subset of the extreme
points of P.

Easily, M (G.,) is an intersection of finitely many half-spaces by (2.1) and consequently
it is indeed a polyhedron. Additionally, it is also bounded and full-dimensional if G, is
regular.

Feasible and fair rate allocations. Given a routing ug,k € K, the (total) rate, or
throughput, of user k equals the sum of the flows sent by user k to the paths available to
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Table 2.1: Notation.

G(V,E) a directed graph, with the set of nodes V' (]V| = n) and the set
of directed arcs E (|E| =m)

c the column m-vector of arc capacities

(sk,dk) source-destination pairs, or users, for k € £ = {1,..., K}

P the set of s — di paths assigned to some user k €

b an m X pg path-arc incidence matrix for the paths P, of user k

P,ij the row of Py corresponding to arc (i,j) € E

Dk the number of paths for user k, p, = [Pk

D number of all paths, p = >, . Pk

up path-flow routed over path P € Py,

U, a column-vector, whose components are up : P € Pj, for some
k € K (whether we mean uy or up will always be clear from the
context)

u a routing, a column p-vector u = [uy, : k € K|

0 a traffic matrix, a column K-vector 6 = [0} : k € K]

Ok the amount of traffic requested by user k €

M(G.) or M | flow polytope, the set of path flows on P subject to non-
negativity and capacity constraints

T(Ge)or T demand or throughput polytope, the set of flow rates realizable
in G, over P subject to capacity constraints

17 a vector of all 1s of proper size

T throughput mapping 7, a RP +— T function 7 (u) = [0 = 1T uy, :
ke K]

C a cut, a set of edges C C FE whose removal from the network
would disconnect all directed s to dj paths for at least one user
kel

Ke the set of users disconnected by some cut C

k: 0, = ZPePk up = 1Tuy,. We collect users’ rates into a column K-vector § = [0 : k € K]
for ease of notation; the vector # € RY is called a traffic matriz and R¥ is called the
throughput space. Given a traffic matrix § = [0, : k € K], we say that a routing u realizes
0 if u € M(G.) and 6, = 17wy, for each k € K. Since the mapping from the flow space
to the throughput space will often come up in the context of this and the subsequent
Chapter, we introduce a distinct notation and terminology below.

Definition 2.4. The throughput mapping T is a R? +— RX function 7 (u) = Qu, where Q
is a K xp matrix, the elements in kth row of () are all 1 at positions >, _, pi+1,...,> . i
and all zero otherwise.

Using this notation, we can give a series of increasingly stronger definitions for fair
rate allocations:

Definition 2.5. Given a network configuration G,, a rate allocation 0 = [0 : k € K] is

e feasible, if there exists a routing u that realizes 0: u € M(G,.) and 0 = 1Tuy, k € K;

e non-dominated for some user k, if changing the allocation from 6 to 0y + € for user
k while fixing the rate of other users would be infeasible for any € > 0;

e (strictly) Pareto-efficient, if all the users are non-dominated at ; and finally
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Algorithm 2.1 Generalized water-filling algorithm for network configuration G..
1: B=0;0=0
2: while B # K
A Iila())({)\ : 0 + A is feasible for each k € K\ B}
>

3:
4: O < 0 + A for each k € £\ B
5:
6:

B« {k € K : k is non-dominated at 0}
end while

e mazx-min fair, if it is Pareto-efficient and every other feasible allocation has the
property that the rate of a user can be increased only at the price of decreasing the
rate of some other user that already receives a smaller, or equal rate:

for each feasible rate allocation 6’ : 6, > 6 =
3l € K\ {k} so that §; < 6, and 6, < 6, . (2.2)

In this setting, the efficiency principle is embodied by the requirements for non-
dominatedness and Pareto-efficiency while envy-freeness is guaranteed by the max-min
principle.

The water-filling algorithm in the fixed-path model. A way to obtain the max-
min fair allocation itself in the fixed-path model is the water-filling algorithm, an iterative
rate augmentation procedure to obtain a bandwidth allocation that admits a so called
bottleneck argumentation and therefore is guaranteed to be max-min fair [26]. In each
iteration of the water-filling algorithm users’ rates are increased at the same pace until
some edge gets saturated, at which point we fix the rate of the users whose path traverses
the saturated edge and assign the edge as a bottleneck for these users, and then keep
on increasing the rate of unblocked users until eventually all users get blocked. In the
conventional setting of the fixed-path model the correct termination of the algorithm
is trivially guaranteed by that each user has a single path (or multiple paths with fixed
splitting ratios) [26]; observe, however, that such guarantees do not so trivially exist when
paths become problem variables (cf., e.g., the search in line 3).

Algorithm 2.1 gives the formal description of the water-filling algorithm (see later for
why we call it the “Generalized water-filling algorithm” already at this point).

The water-filling algorithm is guaranteed to terminate in a max-min fair allocation
0 in O(|K|) steps; the argumentation goes on by showing that the bottleneck edge ey
assigned by the algorithm to each user k € K has the property that (i) e is filled to
capacity at 6 and (7i) the user k has the maximum rate amongst the users whose path
traverses ey; these properties together result in a rate allocation that is Pareto-efficient
and fulfills (2.2), i.e., is max-min fair [26].

2.2.2 Problem Formulation

The max-min fair bandwidth allocation problem is concerned with finding an allocation
of rates to users that fulfills all four fairness principles set out above: sharing incentive,
strategy-proofness, envy-freeness, and Pareto-efficiency. The fixed-path version, where the
set of paths Py available to each user k is limited to a single s, — dj path, is adequately
handled in all undergraduate text books on networking [26]; however, we have seen that
this strategy might not comply with the fairness principles in that the dependence on
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a particular set of, from the users’ perspective, arbitrary, routes may still induce envy
between users.

The general formulation for the max-min fair bandwidth allocation problem asks for
a fair resource allocation that would be independent of any routings whatsoever [169—
171,173|. This problem was first raised in [133, Section “When bottleneck and water-
filling become less obvious”|, in the hope that it would fix the fairness issues of the fixed-
path model. Then, the question whether a bottleneck argumentation exists that would
intuitively generalize the analogous notions from the fixed-path model to the routing-
independent generic model was left open. This formulation is the main concern in this
Chapter; for the purposes of the subsequent discussion we give the formal problem state-
ment as follows.

Definition 2.6. Given a network configuration GG., the general max-min fair bandwidth
allocation problem is concerned with finding an allocation of rates 6 that is

e feasible: Ju € M(G,) so that ;, = 17wy, for each k € K;

e Parcto-efficient: increasingthe rate of any user k£ € IC from 6y to 0y + ¢ while fixing
the rate of the rest of the users would be infeasible for any € > 0; and

e envy-free: no user could get larger rate without decreasing the rate of some other
user that is already smaller or equal, see Eq. (2.2).

This definition is now independent of any particular selection of routings, as the only
input is the network configuration (i.e., the graph, link capacities, and users) itself. Cor-
respondingly, the water-filling algorithm, and the related constructive schemes to prove
the existence of a max-min fair allocation, cannot be extended to the general case naively,
since these constructions depend on a particular routing (recall Algorithm 2.1).

2.3 General Max-min Fair Bandwidth Allocation

Below, we tackle the general formulation for the maz-min fair bandwidth allocation
problem by identifying a bandwidth allocation scheme that is dependent only on the
specifics of the network configuration without having to fix the paths of the users before-
hand in any ways [169-171,173|. First, we restate an earlier finding from [133] that such
an allocation is guaranteed to exist in any network, but this time adopting an unconven-
tional, purely geometric approach. Our new approach will then allow us to go beyond
the insights that could be attained by lexicographic optimization in [133]; in particular,
we give a bottleneck argumentation for the general setting and show how intuitively it
generalizes the concept of bottlenecks from the fixed-path model.

2.3.1 The Feasible Set of the Bandwidth Allocation Problem

Our strategy to solve the general formulation for the max-min fair bandwidth allo-
cation problem is to characterize the feasible set of the problem and, provided that the
feasible set is compact and convex, use the result from [133, Theorem 1] to show that the
max-min fair allocation exists and it is unique.

The bandwidth allocation problem asks for a set of rates, one particular scalar rate
assigned to each user, that fulfills the criteria of feasibility, Pareto-efficiency, and envy-
freeness (cf. Definition 2.6). Here, the latter two requirements, Pareto-efficiency and
envy-freeness, merely point to certain allocations that are somehow desirable from an
operational standpoint, and as such can be seen as “objectives” to maximize over some
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set of feasible rates, but the set of admissible allocations is purely dictated by the first
requirement, feasibility. This in turn is, recall, informally stated as follows: a rate alloca-
tion is feasible if there is a routing that realizes it, subject to capacity constraints, as the
sum of path-flows for each user; here, the feasible path-flows themselves are characterized
by the flow polytope as per Definition 2.2.

With this observation in mind, we can describe the set of feasible rate allocations,
which we shall denote for a particular network configuration G, as T'(G.), as follows:

Definition 2.7. Given a graph configuration G.. the set of feasible rate allocations in
(i, is defined as follows:

T(G.) = {6 : Ju € M(G,) so that 0, = 17u, for each k € £} Cc R* . (2.3)

In this setting, the set T'(G.) is generally restricted only on the input graph configura-
tion G, but it is completely independent of particular routings. Our critical observation
is that T'(G.) arises as an affine projection of the flow polytope M(G.) and as such, it is
itself a convex polytope. The formal result is as follows [29,171,177|:

Theorem 2.8. For any network configuration G,, the feasible set T(G.) of the rate
allocation problem is a convex polyhedron. Additionally, if G, is regular then T(G.)
is bounded, full-dimensional, and down-monotone. In general the size of the half-space
representation of T'(G.) may grow exponentially with the network size (irrepresentability).

Proof. From (2.3) it follows that T'(G.) is the affine projection of M(G.) through the
affine map 7(u) = Hu = [m(uy,) : k € K], mp(up) = 1Tug. As such, it is a polyhedron by
Definition 2.3 and, provided that G, is regular, it is also bounded and full-dimensional by
that M (G.) is also bounded and full-dimensional and the projection matrix IT is of full row
rank. Finally, it is also fairly easy to see that T'(G.) is down-monotone (this is also called
the “free-disposal property” in [133]): if some allocation of rates € is feasible then any
allocation 0 < 7 < 6 it dominates is also feasible. Finally, regarding irrepresentability:
in [29] we show a network configuration in which both the half-space and the vertex
representation of T grows as Q(2X) with the number of users K. Accordingly, in general
no polynomial size description for T'(G,) exists. O

We shall call T(G,.) the throughput polytope henceforth and we shall usually assume
the regularity of G..

Example 2.4. The throughput polytope for the sample network in Example 2.1 is given
in Fig. 2.2c and is formally specified as follows:

T(Ge) = {[01,02,05] : 01 40y + 05 < 2 (2.4
01+02 <1 (2.5)
917 027 03 Z 0} (26

For instance, the constraint #; + 6, < 1 confines the aggregate rate of user (1,5) and
(2,5) at 1 unit; this constraint comes from the fact that these users share the link (4, 5)
and the capacity of that link, 1 unit, does not allow them to get higher aggregate rate.
Similarly, #; + 05 + 03 < 2 comes from that the total traffic needs to be routed through
the cut formed by the links {(3,5), (4,5)} and the aggregate capacity of this cut, 2 units,
presents an impenetrable bottleneck in rate allocation.
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Figure 2.3: Another sample network and the associated set of feasible rates. Edge capacities are
marked in parentheses. Pareto-efficient allocations are marked by bold lines, while the max-min
fair point is denoted by a black dot.

The observation that certain constraints, or valid inequalities, and certain cuts are fun-
damentally associated with critical resource shortages in the network will be fundamental
in the below in developing our bottleneck argumentation for the general bandwidth allo-
cation problem. In the rest of this Chapter, we shall use the below, slightly more complex
example to demonstrate the importance of this observation.

Example 2.5. Consider the network configuration given in Fig. 2.3. The corresponding
throughput polytope is as follows:

T(G.) = {[bh,02,05] : 61 <2 (2.7)
b2+ 03 <3 (2.8)
0) + 205 < 4 (2.9)
01,602,603 >0 } (2.10)

In the below discussions we shall usually consider the below half-space representation
of T(G,):
T(G)=1{0>0:pl0<b;,icT}, (2.11)

where Z is a (finite) index set and for each ¢ € Z it holds that 8 > 0 and b; is a
positive scalar. Such a half-space representation is guaranteed to exist by Theorem 2.8;
in particular, 5] > 0 and b; > 0 are guaranteed by down-monotonity.

The remarkable observation here is that the constraint matrix is non-negative, 37 > 0,
and the right-hand-side is strictly positive, b > 0. There exists a far-reaching character-
ization of the throughput polytope that explains why this is the case, in that it can be
shown that each valid inequality of T'(G.) arises as shortest-path lengths over some non-
negative weights assigned to the edges in G; this observation is sometimes referred to as
the “Japanese Theorem” on the traces of [105] and [162], see also [186].

Proposition 2.9. Let G. be a regular network configuration and let T'(G.) be the cor-
responding throughput polytope. Then, an inequality 876 < b is valid for T(G.) if and
only if there exist non-negative weights w? = [w;; : (i,7) € E] on the edges of G(V, E) so
that 87 = [B; : k € K] is less than, or equal to the length of the shortest path from s; to
dj, over the edge weights w for each user k € K and b = w’ec.
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Proof. Since T(G.) is the affine projection of M (G.) through the affine map m(u) = [17uy,
k € K], we can apply Cernikov’s block-elimination method [234] to M (G,) to obtain that
row K-vectors 37 and row m-vectors w? lying in the projection cone

W(Ge) ={[8"w" = D wiy > By VEeK,YPEP,  (212)
(zy )epP
w’ >0} (2.13)

generate all the valid inequalities of T'(G.) as follows:
(BT, w'] € W(G.) & V0 € T(G.): BT <w'c .

In fact, it is enough to take the inequalities generated by the extreme rays of W(G.).
Thus, the representation (2.11) contains only finitely many half-spaces [234]. Observe
that here vectors w can be thought of as non-negative weights and ;s as upper bounds
on the weight of the shortest path from s, to dj over the edge weights w for each k € IC,
which concludes the proof. O]

Example 2.6. Recall the sample network in Example 2.5 and consider the valid inequality
01 4+ 205 < 4 in the half-space representation (2.7)—(2.10) of the throughput polytope. It
is easy to see that this inequality is generated by the weight assignment wy3 = wss = 1,
wss = 2, and all zero otherwise, and the resultant shortest path weights are 3; = 1 for
user (1,6), 52 = 0 for user (7,8), and B3 = 2 for user (7,5). The reader easily checks that
the rest of the inequalities have their own generating weights too; note that one can find
such a generating weight set for any valid inequality by solving a linear program over the
projection cone (2.12)—(2.13) (see later in Section 2.4.2).

2.3.2 Max-min Fair Allocation on the Throughput Polytope

Next, we establish the existence of a well-defined solution for the general max-min
fair bandwidth allocation problem. In particular, we use the below result from [133,
Proposition 1 and Theorem 1]:

Proposition 2.10. If a set X is convex and compact, then there exists a max-min fair
allocation on X and it is unique.

In the previous section, we have shown that the set of feasible rate allocations over a
regular network configuration is a polytope, which is by regularity convex and compact
(see Theorem 2.8). This gives rise to the below result.

Corollary 2.11. Given a regular network configuration, a solution to the general max-
min fair bandwidth allocation problem exists and it is unique.

2.4 Generalized Bottlenecks

We now turn to discuss the way bottlenecks arise in the context of the general max-
min fair bandwidth allocation problem. Recall, a bottleneck argumentation is crucial in
the context of networking as bottlenecks point at certain critical shortages of resources
in a network that adversely constrain users’ achievable rates, and because they also sub-
stantiate a fast iterative algorithm, the water-filling algorithm, to find the max-min fair
allocation itself. Note that the max-min fair allocation could still be found, by max-min
programming, even in the absence of a bottleneck argumentation, but water-filling is much
faster and more intuitive [133].
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2.4.1 Geometric Interpretation

First, we build a geometric understanding by developing adequate bottleneck argu-
mentations for increasingly complex fairness notions, starting from the set of feasible
rate allocations and iterating from simpler notions, like non-dominatedness and Pareto-
efficiency, to fully-fledged max-min fairness (cf. Definition 2.5). Our key observation is
that valid inequalities of the throughout polytope provide a purely geometric framework
to generalize bottlenecks from the fixed-path model to the general one and the defining
properties of bottlenecks readily find their geometric counterparts in this framework.

Above, we have developed the insight that different fairness notions merely state at
certain subsets of the feasible rate allocation set, that is, the throughput polytope, and as
such can be approached as simple objective functions that embody the particular notion of
fairness under consideration, which is to be maximized over the feasible set to obtain the
fair rate allocation itself. This insight then drives us to characterize these “fair subsets”
of the feasible rate allocation space in terms of certain touching hyperplanes, or valid
inequalities, of the throughput polytope, on the basis that such touching hyperplanes
in convex analysis provide the mathematical framework to identify the optimal feasible
solutions of linear and convex programs [19].

Non-dominated rate allocations. Recall, the rate vector 6 is non-dominated for some
user k if there is no allocation with strictly larger share for k& when leaving the share of
the rest of the users intact. The following result gives a bottleneck argumentation in the
geometric sense for such non-dominated allocations.

Theorem 2.12. Consider a feasible rate allocation 6 € T(G,) and let N’ C K denote the
set of non-dominated users at . Then, N # ) if and only if there exists an inequality
BTH < b that is

e valid: for each ¢’ € T(G,) : 10" <b,
o tight: 8760 = b, and
o complementary: (f); > 0 if and only if k € NV.

Proof. Of course, if no user is dominated at 6 then there can be no valid inequality that
were tight at 0, i.e, #37,b: fT6' < b for all ¢ € T(G,) but 376 = b. To prove the other
direction, let T(G.) = {6 > 0: 810 < b;, i € I} and assume that N # (). Furthermore,
let B be the index set of constraints binding at : B = {i € Z : 5,6 = b;}, and let
Bl =350 and b= >, zb;. Note that N'# 0 < B # 0.

First, 870" < b is valid for T(G.) since it is the non-negative sum of valid inequalities
for T(G,). This proves the first claim. Second, 876 < b is tight at 6, 376 = b, since
it is the sum of valid inequalities binding at #, which proves the second claim. To prove
complementarity, using f; > 0 for each i € Z we write: () =0 for k € K < (5;)r =0
for all constraints binding at # < Je > 0 and small enough so that 6 + e, € T(G.) <
user k is dominated at 6. This concludes the proof. O

Example 2.7. Consider the rate allocation § = [2,0, 1] in the sample network of Exam-
ple 2.5, where user (s1,d;) = (1, 6) receives 2 units of bandwidth and user (s3,d3) = (7,5)
receives 1 unit, and user (sa,d2) = (7,8) does not get any capacity at all. This allocation
is clearly feasible, as user (1,6) may use the paths 1 -2 —-3 —6and 1 —4 — 5 — 6 by
splitting its traffic equally and user (7,5) may use 7 — 8 — 5. Furthermore, users (1, 6)
and (7,5) are non-dominated at this rate allocation as they cannot voluntarily increase
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their share without taking away capacity from each other, while user (7,8) is dominated
as there are 2 units of free capacity available along the direct path 7 — 8. To obtain the
corresponding valid inequality, we sum up the two binding constraints (2.7) and (2.9) to
obtain 6; + #3 < 3. Observe how this inequality is valid and tight at 6, and also that the
coefficients (), are strictly positive precisely for the non-dominated users N' = {1, 3}.

The above complementarity property will motivate us to call such valid inequalities
as “geometric bottlenecks”. Indeed, in the above example the inequality 6; + 03 < 3 is
exactly the upper bound on our capacity to increase the aggregate rate of user 1 and 3
any further from 6 = [2,0,1], and as such, marks a critical shortage of resources in the
network for these two users. Should they ask for more bandwidth, the operator could
always point user 1 and 3 at this inequality and argue that it is impossible to augment
the bandwidth allocation of any one of them without hurting the other one.

Pareto-efficient rate allocations. A Pareto-efficient rate allocation is such that any
user is either at its (single-commodity) maximum flow, so the current rate cannot be
increased at all, or otherwise increasing the rate is possible only at the expense of de-
creasing the rate of some other user. It is then easy to dissect Pareto-efficiency to non-
dominatedness.

Observation 2.13. A rate allocation 0 € T(G,) is (strictly) Pareto-efficient if and only
it all users are non-dominated at 6.

The following result, which pinpoints the “bottleneck inequalities” for Pareto-efficient
allocations, is easily seen to be a simple application of Theorem 2.12 and Observation 2.13.

Theorem 2.14. A rate allocation 6 € T'(G..) is Pareto-efficient, if and only if there exists
an inequality 576 < b that is

e wvalid: for each 0 € T(G.) : 70 < b,
o tight: 570 = b, and
e strictly positive: Yk € KC: (8)r > 0.

This suggests a simple (water-filling-like) algorithm to search for a Pareto-efficient
allocation in T'(G.): in each iteration increase the rate of dominated users at the same
pace as long as it is possible; eventually all the users will be blocked and so a valid
inequality 376 < b with all strictly positive (3)r coordinates must be binding at the
resultant point; hence the emergent ¢ is Pareto-efficient.

Example 2.8. In the sample network of Example 2.5, the two line segments joining the
points [2, 3, 0] and [2,2, 1], respectively [2,2, 1] and [0, 1, 2], contain all the Pareto-efficient
points (see the bold line segments in Fig. 2.3c). The reader will easily generate the valid
inequalities for these points as per Theorem 2.14.

Max-min fair rate allocation. From the aspect of fairness, Pareto-efficiency is a some-
what weak, although clearly desirable criterion; desirable because it avoids the wastage
of resources non-dominatedness generally allows for, and weak because Pareto-efficiency
permits allocations where one user gets everything (for instance the allocation [0, 0, 2] is
Pareto-efficient in the sample network of Example 2.1). The concept of max-min fairness
is based on the idea to pick the “fairest” Pareto-efficient allocation, where fairness itself
is manifested by the premise that “there is no way to make any person better off without
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hurting anybody else who is already poorer” (see Definition 2.6). Correspondingly, a max-
min fair allocation, if it exists, provably provides sharing incentive, it is strategy-proof,
and envy-free. Existence of a solution in turn for the context of the general max-min fair
bandwidth allocation problem is guaranteed by Corollary 2.11.

What remained to be done is to find an adequate notion for bottleneck inequalities
for max-min fairness, on the traces of Theorem 2.12 and Theorem 2.14. It turns out,
however, that this time our characterization involves not just one but exactly K wvalid
inequalities, one for each user. Consider the below claim.

Theorem 2.15. A rate allocation 6 € T'(G.) is max-min fair, if and only if for each user
k € K there exists an inequality 376" < b that is

e wvalid: for each 0 € T(G.) : 70 <b,
o tight: f70 = b, and
o maz-min complementary: VI € IC: (), > 0 if and only if 6, < 6.

The valid inequality 576" < b associated with each user k by the above claim will be
called the bottleneck inequality for k.

Proof. For each k € K construct the vector 8 with coordinates defined as follows:

o 0, 6, <0,
L 0,  otherwise

Observe that exactly those users [ are non-dominated at 6 for which 6; < 6, and all other
users are dominated. Now, simply apply Theorem 2.12 to 6’ to obtain a valid inequality
that satisfies the claims. O

What is remarkable in this result is that bottleneck inequalities work very much like
bottleneck edges in the fixed-path model (hence the name). With this analogy in mind
we could rephrase Theorem 2.15 as follows: an allocation of rates is max-min fair in the
generic sense, if and only if all users have a bottleneck (inequality). This formulation
is exactly the same as the one given for the fixed-path model, only the definition of
bottlenecks differs somewhat.

Interestingly, the analogy goes even further, since not just bottlenecks but the water-
filling algorithm too extends to the general max-min fair allocation problem. Recall that
the water-filling algorithm is based on the idea to generate a bottleneck for at least one
user in every iteration, no matter in which form bottlenecks are defined. Provided that
the bottlenecks arise in the form of a bottleneck inequality, Theorem 2.15 guarantees
that what we eventually obtain by running the water-filling algorithm on the throughput
polytope is exactly the max-min fair allocation. The below claim formalizes this second
important consequence of Theorem 2.15.

Corollary 2.16. The water-filling algorithm is correct to obtain a max-min fair allocation
over T'(G.).

Considering the pseudocode given in Algorithm 2.1, it is straightforward to imple-
ment this algorithm both in the fixed-path setting and the routing-independent case;
hence the name “Generalized water-filling algorithm”. The running time of the algorithm
then is clearly polynomial provided that the input (the throughput polytope), is of poly-
nomial size; this, however, is not guaranteed in general due to the irrepresentability of
the throughput polytope (see Theorem 2.8).
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Example 2.9. Consider the sample network of Example 2.5 and execute the water-filling
algorithm. As the first step, increase the rate of all users at the same pace, which amounts
to, starting from the origin, moving along the direction [1, 1, 1] as long as some users get
blocked. This occurs at the point [%, %, %], where the constraint 6; + 203 < 4 becomes
active. Fix this constraint as the bottleneck inequality for the blocked users (1,6) and
(7,5), and increase the rate of the remaining user that is still dominated, (7,8), as long
as possible. This final user gets blocked at the rate of g and the resultant allocation,
0 = [3,2,3] is max-min fair. To obtain the bottleneck for the last user, (7,8), sum the
two constraints binding at 6, which yields 6, + 6, 4+ 3603 < 7.

The final question that remained to be answered is that, once we computed the max-
min fair allocation #, how to obtain a routing that realizes it. That is, we need to find
path-flows v € M(G.) so that 6, = 17w, for each k € K. This amounts to solving a
multicommodity flow problem (in fact, a simple linear feasibility problem [186]) below
with the rate variables fixed at 6:

max 0 : ZPkuk <c (2.14)
kek
Tu, =60, Vkek (2.15)
w>0 (2.16)

This can be done in polynomial time [18]. The computed path-flows will then supply
a set of forwarding paths and a rate at which users have to distribute their traffic to those
paths. In this example we deliberately fixed the objective at zero (see the next section
for the motivation); of course operators are free to substitute any objective function they
feel important, like minimizing the lengths of the paths, minimizing the maximum link
utilization, etc.

Example 2.10. Solving the linear program (2.14)—(2.16) for the sample network of Ex-
ample 2.5, we obtain that user (1,6) must split its traffic evenly between the paths
12 —>3—>6and1l - 4 — 5 — 6; user (7,8) must transmit over the direct
link; while user (7,5) has to apply the traffic splitting ratio 1 : 3 between the paths
7T—+8—>2—3—4—5and 7— 8 — 5. This routing, once established in the network,
will automatically realize the max-min fair throughput allocation € using the exact same
distributed flow control and queuing techniques as in the fixed-path model [132].

2.4.2 Graph-theoretic Interpretation

So far, we have shown how the concept of bottlenecks extend from the fixed-path
max-min fair rate allocation problem to the generic case. Analogously to the traditional
model, we could obtain an “if and only if” relation between the existence of bottlenecks for
each user and max-min fairness, which also guaranteed the correctness of the water-filling
algorithm. Regrettably, however, our bottlenecks are currently defined in terms of valid
inequalities, which, being more of a geometric concept rather than a network theoretical
one, is not really descriptive. Below, we translate this bottleneck argumentation to the
more palpable concept of network cuts whose properties show remarkable similarity with
the properties of “bottleneck edges” in the fixed-path model.

In the heart of the fixed-path model there lies the notion of bottleneck edges. A
bottleneck edge is one that blocks any increase in the throughput of the user it belongs to.
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This is because (i) it is filled up to capacity when we realize the max-min fair allocation,
and (i) the corresponding user has the maximum rate among the users that use that
edge. This conventional interpretation fails in the generic model, since neither the set of
paths nor the users of a particular edge are fixed.

A bottleneck edge blocks one particular, fixed path of some user. To block all paths
we have to consider an entire set of edges, a cut, which, when removed from the network,
disconnects every directed path connecting the source to the destination. This suggests
the idea to search for the generalization of bottleneck edges in the form of bottleneck cuts.
What remained to be done is to translate the defining properties of bottleneck edges and
bottleneck inequalities to bottleneck cuts.

Let # be max-min fair in a regular network configuration G. and choose some user
k € K. Additionally, suppose that we have somehow found the corresponding bottleneck
cut C and let K¢, € K denote the set of users whose source node is separated away from
the respective destination node by Cj, (see notations in Table 2.1).

First, consider the following defining property of bottleneck edges in the fixed-path
model: “a user’s rate is maximal at its bottleneck edge among the users whose path
traverses that edge” [107] [26]. In terms of bottleneck cuts, this property will translate into
the following: “a user’s rate is maximal among the users separated by the corresponding
bottleneck cut.”

Property 2.17. Given a max-min fair allocation 6 € G, for a user k € K with bottleneck
cut Cj it holds that
leKe, &0, <0 .

The second defining property of bottleneck edges is that they are always filled to
capacity at the max-min fair allocation. Note that in the fixed-path model there is
exactly one way to realize a particular rate allocation since the paths and the splitting
ratios (in the multipath case) are fixed. In the general model, however, we need to
take into consideration all routings that can be used to realize the max-min fair rate
allocation and we shall require the bottleneck cut to be saturated no matter how, i.e.,
over which particular sets of paths, we choose to route users’ traffic. This leads to the
below generalization.

Property 2.18. Given a max-min fair allocation # € G, and any routing u € M(G.,)
that realizes 6, for a user k € K with bottleneck cut C, it holds that

Vl] ECk Z Z up = Cij -

lEch PePy:(i,5)eP

Interestingly, these two, fairly naive, generalizations of the defining properties of bot-
tleneck edges establish a sufficiently rich framework for characterizing bottlenecks in the
general model. In particular, by Property 2.18 a bottleneck cut of a user k is always
saturated, regardless of the chosen routing, and therefore any increase in the rate of user
k would decrease the rate of some other user that also traverses the same bottleneck
cut but whose throughput is already smaller by Property 2.17. Again, this property is
independent of the actual routing. This reasoning then gives rise to the main result of
this Chapter, a bottleneck argumentation for the general max-min fair bandwidth allo-
cation problem that is completely analogous to the conventional argumentation for the
fixed-path model.
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Theorem 2.19. An allocation of rates § € T'(G..) is max-min fair, if and only if each user
has a bottleneck cut with Property 2.17 and Property 2.18.

Proof. We have already seen that some 6 € T'(G.) is max-min fair if and only if each user
k € K has a bottleneck inequality 870" < b = w’c that is valid, tight at 8, and max-min
complementary (see Theorem 2.15). Here, w can be thought of as edge weights and (),
as the length of the shortest path from s; to d; over the weights w (see Proposition 2.9).
Now, define the corresponding bottleneck cut for user k as

Ch ={(i,5) € E:w; >0} . (2.17)

Using this setting, K¢, = {{ € £ : (B); > 0} = {l € K : 6, < 6}, where the first
equality comes from the observation that Cj cuts away exactly those users [ € K¢, whose
shortest path weight, i.e., (), is strictly positive, and the second equality follows from
max-min complementarity in Theorem 2.15. Thus, C; as defined by (2.17) immediately
satisfies Property 2.17.

To prove the theorem, we only need to show that it fulfills Property 2.18 too. For this,
consider the below primal-dual pair of linear programs, the primal of which we have used
earlier to find a routing for a given rate allocation in (2.14)—(2.16) and the dual is simply
an optimization problem over the projection cone (2.12)—(2.13):

> ma;( O< giz; min w’c — B0 (2.22)

lex L = ¢ : o wg > Vie K,VP e P (2.23

T A o
u>0 (2.21) v |

Any routing u that realizes 6 is feasible and optimal in the primal (2.18)—(2.21) and the
coefficients [w”, B7] of the bottleneck inequality for user k are feasible in the dual (2.22)—
(2.24) and, by tightness 876 = w'¢, also optimal. Applying complementary slackness
from the Karush-Kuhn-Tucker conditions of linear programming [18] to (2.19) and (2.23)
we have that

(WP —1"8)uy =0 Vliek (2.25)
and
w” (¢ — ZPkuk) =0 . (2.26)
kek

Then, for any [ ¢ K¢, we have §, = 0 (by again max-min complementarity from Theo-
rem 2.15) and hence w? Pju; = 0 by using (2.25), and so we write for each (i,5) € E:

wi; >0=>u, =0 Vi¢Ke, VP, eP:(i,j)€P, . (2.27)

Finally, using (2.26) we write

V(i,j) € E:wy >0= ¢ = Z Z Uy = Z Z Ug (2.28)

lek P,ePy:(ij)ep, leKc, PyePy:(i,5)EP,

where the second equality comes from (2.27). Observing that (2.28) essentially coincides
with Property 2.18 completes the proof. n
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Example 2.11. Consider again the sample network in Example 2.5. We have seen that
users (1,6) and (7,5) get blocked in the first iteration of the water-filling algorithm at
the rate allocation [%, %, %] by the bottleneck inequality 6; + 263 < 4 which is, recall
from Section 2.3.1, generated by the weight set wy3 = wy5 = 1, wgs = 2, and all zero
otherwise. Using (2.17) we get the bottleneck cut C; = C3 = {(2,3),(4,5),(8,5)}. This
cut then spectacularly demonstrates the essence of the bottleneck argumentation as of
Theorem 2.19, in that it separates away exactly the blocked users (1,6) and (7,5) and it
is saturated by any routing that produces the rates 6; = 05 = % (in fact, there is only one
option to choose from). Finally, the bottleneck cut for the last remaining user, (7,8), is
Cy = {(7,8)} UCy; we kindly encourage the reader to verify that both Property 2.17 and

Property 2.18 hold for this cut as well.

As a final remark, we note that the above bottleneck argumentation is valid for any
arbitrary regular network, not just the simple and, coincidentally, acyclic ones we cited as
examples. Additionally, it is noteworthy to mention that our bottleneck argumentation
contains the conventional one as a special case; to see this, it is enough to restrict each user
to a single path and observe that bottleneck cuts degrade to the conventional bottleneck
edges in this case.

2.5 Related Work

It is difficult to trace back efficient resource allocations and fairness notions to a
definite origin; fairness notions find their roots in diverse fields of economy (Atkinson’s
index [9,213]), game theory (Nash bargaining [153|, Shapley value [188]), sociology [131],
political philosophy [111], and even information theory and entropy functions (Rényi
entropy [185]). The earliest applications to telecommunications are related to bandwidth
allocation problems, see [26,107, 108, 115, 132|; later this setting has been extended to
basically all aspects of computer systems [4, 13,24,37,47, 53, 57,81, 82,92, 108-110, 115,
133,189,200, 201,230]. For excellent undergaduate-level text on the subject see [26,132],
and for comprehensive recent surveys consult [110, Appendix D] and [131].

Highlighting its usefulness, several extensions and ramifications of max-min fairness
have come to existence throughout the years, like “plain” min-max fairness [133], weighted
max-min fairness [26|, max-min utility fairness [36], upward max-min fairness [52,53|, a-
fairness [115], etc. Note that most of these concepts can be traced back to the unweighted
case [133], correspondingly our results generally hold for these extended notions as well.
Most existing work is for the fixed-path model; for initial takes on the general max-min
fair allocation problem see [150] and [133|. The latter paper by Le Boudec and Radunovic
is crucial in the context of this Chapter, as this was the first work that stated bandwidth
allocation problems as mathematical programs, gave existence characterizations in terms
of the feasible set for these mathematical programs, and called for extending the bottleneck
argumentation to the routing-independent, generic case [133, Section “When bottleneck
and water-filling become less obvious”|. In this Chapter, we have closed this long-standing
open research problem.

Recently, with the trend towards outsourcing web services to large-scale public cloud
providers’ data centers the problem of fair resource allocation has become immensely
more complex, in that now multiple types of resources, like compute [37,108,200], storage
[13,110], memory [4], and network facilities 57,81, 82,109, 115,201, 230] all need to be
handed out to users at the same time and fairness must be guaranteed simultaneously
across all types of resources. For instance, dominant resource fairness [81] aims for an



dc 1738 20
26 Rétvari, Gabor D.Sc. Dissertation

allocation that is max-min fair in the dominant (i.e., most intensively used) resource
type of each user, multi-resource fairness [109,110,230| deals with the case when users
can trade-off certain types of resources for others, and constrained max-min fairness [82]
develops a fair resource allocation framework for the case when feasible simultaneous
allocations of resources are subject to further intricate constraints. Extending our generic
formulation and the accompanying treatment to these cases, however, is beyond the scope
of this Dissertation and left for further intriguing study herein.
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Chapter 3

Adaptive Routing: The
Control-theoretic Perspective

rI;AFFIC engineering is the art and science of monitoring, analyzing, and optimizing the
way traffic is conveyed through a service provider network, in order to deliver the required
user experience to customers, to avoid congestion that might cause service disruptions,
and to materialize the largest profit margin attainable with the installed network infras-
tructure [11]. The most important means by which these diverse goals can be realized
is a routing algorithm, responsible for mapping traffic demands to the physical network
infrastructure. In this Chapter, our focus is the design of such routing and rate-control
algorithms.

3.1 Preliminaries

3.1.1 Network Routing and Multipath Rate-control

The main factors to consider in the design of routing and rate-control algorithms is the
characteristics of traffic that enters and leaves the network, and the availability and accu-
racy of the information on the actual traffic demands at the time the routing algorithm
makes a decision. In cases when the traffic matrix is reasonably static for a longer period of
time, historical measurements (and traffic matrices constructed based on them [89,147]),
data mining techniques, and behavioral analyses can be used to make accurate predic-
tions about future demands [225] and provision forwarding paths statically with respect
to the predicted traffic characteristics [35,71]. Internet traffic, however, tends to exhibit
substantial variation over a wide range of timescales due to various reasons beyond the
control of the operator [184]. The instabilities and oscillations in the inter-domain routing
ecosystem [205,206,208], the emergence of overlay networks and peer-to-peer applications,
traffic bursts caused by flash crowds, the emergence of communications protocols with-
out rate-control (e.g., media and VoIP), and the rapidly changing Internet application
landscape, are all factors making accurate traffic matriz estimation and, correspondingly,
provisioning static routes increasingly hard [122,129,218|.

The problem is that when traffic demands change abruptly on a small timescale the
traffic engineering algorithm does not have time to re-adjust static forwarding paths ap-
propriately, leading to congestion, increased packet loss, delay, and jitter, all in all, a
deterioration of user experience. Accordingly, traffic engineering algorithms have grad-

27
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ually evolved from what was initially a predominantly static setting [35, 71|, through
optimizing for multiple traffic matrices 72,146, 183,203,218, 232| towards fully adaptive
schemes [25,70,77,98,112,116,117,130]. Such adaptive routing algorithms make no as-
sumption on input traffic demands whatsoever, but rather try to adapt routing to the
temporary demands. In general, the goal of such a rate-adaptive multipath routing algo-
rithm is to, given users’ traffic demands, distribute these demands dynamically along one
or more forwarding paths provisioned for each user in a way so as to minimize congestion
and, possibly, fulfill further network-level operational objectives [134].

Rate-adaptive multipath routing is a difficult problem and, correspondingly, prior
algorithms proposed in the literature generally adopt various heuristic rate-adaptation
schemes that track users’ demand dynamics on a “best-effort” basis, with no 25,70, 77,
98,112,116,117,130] or only a rather lose characterization on the worst-case congestion
that may result in the network [7,14,62,163-165,212|. In many commercially operated
networks, like transit, provider or enterprise networks, often any level of congestion is
detrimental, given the growing share of inelastic multimedia traffic and the corresponding
strict Service Level Agreements (SLAs) and Quality of Service (QoS) requirements posed
by the paying customers [70,98,112,218]. So far, it has been an open problem to find
a multipath rate-adaptive routing algorithm that simultaneously achieves (i) provable sta-
bility, (i1) optimalilty with respect to any linear or quadratic objective function, and (iii)
feasibility, so that the algorithm can accommodate any admissible traffic matrix in the
network without violating link capacities.

3.1.2 Contributions

In this Chapter, we provide such an optimal multipath rate-adaptive scheme. Our
main contribution is casting the routing problem in the framework of constrained optimal
control theory, which allows us to obtain optimal state feedback routing controllers for
any network under mild regularity conditions. Our simulations studies confirm that our
routing controllers are viable in small- and middle-sized networks.

The particular contributions are as follows [157,177,178|:

e We introduce a control-theoretic model for rate-adaptive multipath routing. Our
model allows to design general routing controllers that do not rely on static or
estimated traffic matrices but rather dynamically adapt to varying demands.

e We prove that for any network there exists an optimal rate-adaptive multipath
routing algorithm that can route any traffic matrix without congestion, provided
that each particular traffic matrix would be routable by a static routing that is
computed specifically just for that traffic matrix.

o We show that our rate-adaptive multipath routing algorithm is optimal, feasible and
stable. In addition, we derive some useful operational properties; e.g., we show that
the resultant routing is continuous over the demand set.

e Finally, we give a new complexity characterization for our routing controllers. Our
technique is based on a novel use of boundary-triangulations to solve multi-parametric
feasibility programs and may be of interest beyond the scope of this Chapter. We
show empirically that our technique often gives tighter space characterizations than
previous techniques.

We note finally that the models, algorithms, and evaluation results presented in this
Chapter constitute just a small fragment of our universal framework rate-adaptive multi-
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path routing called generalized oblivious routing [158]. In this model, we consider different
types of affine functions, which embody the very rate-adaptation mechanism in multipath
routing, to obtain different routing architectures, be that distributed, centralized, or hy-
brid. Crucially, this model then lends itself readily to reason about the respective archi-
tectures; consequently, for the first time in the literature we were able to measure different
routing architectures against one another on a common ground. Due to its complexity
we will not present the entire framework here; rather we concentrate on just one specific
part of the framework, namely, the centralized setting. The interested reader is referred
to our comprehensive journal paper [158]; but see also a brief background on generalized
oblivious routing in Section 3.5.

The Chapter is organized as follows. In Section 3.2 we recall some notation, we
motivate rate-adaptive multipath routing control on an illustrative example, we review
the basics of model predictive control (MPC), and we cast rate-adaptive routing in this
framework. In Section 3.3 we derive a set of optimal controllers for this system model and
discuss important theoretical and operational considerations, and in Section 3.4 we give a
new complexity characterization and highlight some preliminary performance evaluation
results. Finally, in Section 3.5 we review related work and position our optimal controllers
in the general theme of rate-adaptive routing.

3.2 Formal Model

In order to make this Chapter as self-contained as possible, first we briefly recall
some notation from the previous Chapter. For a summary of the notations used in this
Chapter, the reader is referred back to Table 2.1. Then, we review some important facts
from optimal control theory, and finally we present our formal system model for optimal
routing control.

3.2.1 Notation

The basic problem of rate-adaptive multipath routing can be formulated as follows.
Given a network topology G(V, E) consisting of n nodes and m edges; edge capacities
¢ =|cj 1 (1,7) € E]; and a set of source-destination pairs (or users) (si,di) € K, each
one provisioned* a set of paths P, and each one presenting its momentary traffic demand
0, to the network, the task is to adjust sending rates up along each path P € Py of
each user k£ € K so that no link becomes overloaded (the aggregate flow sent to a link
does not exceed the link’s capacity). Additionally, one may pose additional constraints on
the routing algorithm, like complexity bounds, fairness in allocating network resources,
or optimality with respect to some objective function that expresses the performance
preferences of the network operator. Below, we deal with the latter case.

The ensuing analysis is built upon the notion of piecewise affine routing functions, as
they are simple enough to be incorporated into a control-theoretic optimization frame-
work, yet broad enough to express most routing methods relevant to practice, like single-
path routing, equal-cost multipath, traffic splitting ratios, etc [30].

Definition 3.1. A piecewise affine (or simply, affine) routing function S = {(S%(6), R;) :
i € T} is defined as a collection of simple affine functions §*(#) over a polyhedral partition

4Recall, the combination of a particular graph G(V,E), edge capacities ¢, source-destination pairs
(sk,dr) € K, and paths Py, is called a network configuration G..
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Figure 3.1: A sample configuration: (a) a directed network, (b) source-destination pairs and
paths for each user, (c) the corresponding flow polytope and (d) the throughput polytope.

S'(0) = F'0 + ¢" whenever 6 € R; ieT

where [ are p x K matrices and ¢ are column p-vectors.

Equivalently, when decomposed into separate routing functions Sy () for the source-
destination pairs k € K we get:

Si(0) = Fj0 + g;, whenever § € R; 1€l

where F} are p; x K matrices and g} are column pg-vectors.
Next, we motivate why piecewise affine routing functions are crucial as the driver for
optimal rate-adaptive multipath routing on a simple example.

Example 3.1. Consider the simple network depicted in Fig. 3.1. We give two routing
controllers for this network in Fig. 3.2a and Fig. 3.2b. Our routing controllers are re-
markably simple: they consist of a set of control regions R; and the corresponding affine
routing functions S;(#), so that the sending rate of users is set to u = S;(f) whenever the
traffic matrix 0 is in R;, i.e., # € R;. For instance, consider the controller in Fig. 3.2b and
suppose that both user 1 and user 2 insert 1 unit of traffic into the network. Then, since
the traffic matrix 0 = [1,1]7 is in Ry, we apply routing function Sy() corresponding to
R, to obtain the rates u; = 1, ug = 0 and uz = 1. For § = [2,0]” in the same region we
get u=[1,1,0]".

Our sample controller exhibits some appealing properties.

First, the resultant routing is feasible in that the sending rate of the users is assigned
so that no one link gets over-provisioned no matter what traffic matrix the users present to
the network, as long as that traffic matrix is routable with some static routing. Recall, the
set of “statically routable” traffic matrices  forms the so called throughput polytope T'(G..)
associated with the network configuration G, (Definition 2.2). Geometrically, feasibility
here means that for any 0 € T(G.), the corresponding rate-allocation provided by the
routing function S(#) is inside the flow polytope M(G.), that is, S(0) € M(G,.) (see
Definition 2.7). Formally.

Definition 3.2. Given a network configuration G., a routing function S(0) is feasible if

V0 € T(G.): > PuS(0) < cand S(6) >0 .

kek
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Figure 3.2: Optimal routing controllers and control regions for the sample network in Fig. 3.1:
(a) an optimal controller for the case when path p; is preferred over ps, and (b) an optimal con-
troller when path-preference is the other way around. Observe how our controllers can consider
operational path-preferences in the routing functions produced.

Second, our sample rate-adaptive routing controllers are stable [112,137]. Stability
has multiple connotations in control theory; roughly speaking, stability in the context of
rate-adaptive routing means that to any bounded input, i.e., a traffic matrix, a routing
function orders bounded output, i.e., a routing (BIBO stability); or that the routing
function is such that for any initial state the rates converge to the origin in finite time
without permanent oscillations (asymptotic stability). This latter property is crucial in
an operational setting and therefore we shall adopt it below. Interestingly, the lack of
stability and the resultant network-wide routing oscillations turned out to be the case
why the ARPANET was switched from what originally was an adaptive routing scheme,
where link costs were varied proportionally to the link load, to a fundamentally static
setting [25]. In our case, such oscillations will provably never happen.

Third, our routing controllers are also optimal in that the controllers, whenever pre-
sented with a choice, will choose a routing that minimizes some cost function that can be
freely set by the operator. See formal definitions in [21-23,28]; below we rather illustrate
optimality in routing control with an example.

Example 3.2. Consider the sample network in Fig. 3.1. The routing function in Fig. 3.2a
is optimized with respect to a payoff function that assigns smaller cost per unit flow to
the single-hop path P; than to the two-hop path P; i.e., this controller favors minimum
hop-count paths. Consequently, the controller fills the shorter path(s) first (e.g., the one-
hop path P; in Fig. 3.1) and only after the short paths are loaded to capacity it routes
additional traffic to the longer path (e.g., the two-hop path P, in Fig. 3.1). Contrariwise,
the routing controller in Fig.3.2b is optimal for the opposite case, i.e., when the admin-
istrative cost of P, is smaller than that of P, (e.g., because the longer path may still
provide smaller delay); in this case the controller first fills P, and only after this it fills
the less-preferred path P;, gradually shifting traffic from P, to P, as user 2 increases its
demand to ensure feasibility. Later, we show that the framework allows for more complex
objective criteria as well, i.e., quadratic cost functions.
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In the rest of this Chapter, we show that such stable, feasible and optimal routing
controllers exist in any network, and each one takes the above form: a set of regions
and the corresponding affine routing functions. But first we need to recall some basic
definitions from optimal routing theory in order to describe rate-adaptive routing in a
formal control theoretic model.

3.2.2 Constrained Model Predictive Control

Next, we cast multipath rate-adaptive control in the framework of (Constrained) Model
Predictive Control (MPC, also called Moving or Receding Horizon Control) [28]. In this
framework, a system (or the plant) is described by a model that can be used to predict the
dynamics of the system in a given timeframe (control horizon), plus a set of operational
constraints that describe admissible states along the system’s trajectory. In the usual
setting, the system dynamics and the constraints are complex enough to rule out any
offline solution for the entire time horizon; rather, the control action is obtained by
solving online, at each time instant, a finite horizon open-loop optimal control problem,
using the current state of the plant as the initial state, and applying the first control in the
resultant optimal control sequence immediately to the plant. This way, the complexity
of the offline solution is significantly reduced and, should the system diverge from the
predicted trajectory due to, e.g., an unexpected input or inaccuracies in the model, the
controller can still adapt by being reinitialized from the current state in each time step. At
the same time, this online approach requires solving a mathematical program in each time
step, which may be prohibitive for systems with very fast dynamics, like rate-adaptive
routing.

Nevertheless, for the simplest form of MPC, linear MPC, a fast offline solution can
often be obtained with reasonable computational effort. This reduces the online control
computation to the simple evaluation of an explicitly defined (closed form) piecewise
linear function, which allows to effectively regulate even extremely dynamic plants. The
price we pay for the simplicity of offline MPC is skyrocketing space (storage) complexity
for the resultant controller, but for smaller systems where space complexity is not that
important offline control is undoubtedly the preferred choice over online control (see below
for space complexity characterizations). Below, we shall adopt this offline approach for
rate-adaptive routing.

Suppose that a system is characterized by some state (x), input (u) and output (y)
variables, whose evolution in time is governed by the following general linear system [195]:

y(t) =Cx(t) + Du(l) (S)

Here, A, B, C, and D are constant matrices of proper size and z(t), u(t) and y(t) are
the values of the state(s), input(s) and output(s), respectively, at time ¢. Additionally, a
set of constraints can be specified to which the system state and the input must obey at
every time instance; e.g., the framework admits polyhedral constraints Qz(t) < g.

Suppose, in addition, that we are given an objective function, the cost function or the
payoff function, which prizes the evolution of the system in time as the function of the
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input and the initial state:
P(u(.),2(0)) = gz z(N) + > _(r"u(t) +q"x(t)) (P)

where N is the control horizon and q?, rT and ¢7 (all constant row-vectors of proper size)
are the terminal cost and running payoffs for the input and the state, respectively. For
completeness, we note that the framework allows for linear [21,22] as well as quadratic
payoffs [23]; below, we concentrate on the linear setting for brevity.

Now, the basic problem of optimal control theory is to design a controller to adjust the
input u, so that the system (S), starting from some initial state x(0), is regulated obeying
the constraints (C) along an optimal trajectory, as measured by the payoff function (P).
In this setting, u is called an optimal control.

3.2.3 Optimal Rate-adaptive Routing Control

Next, we cast multipath rate-adaptive routing in the above control-theoretic model.

In our model, the system state is the amount of traffic waiting to be served at the source
nodes, the output is simply this same state (which therefore we shall omit henceforth),
and the control is the amount of traffic placed at individual paths of the users. Formally,
let z(t) be a column K-vector whose kth component describes the amount of data to be
delivered from s; at time ¢, and let up(t) describe the flow routed at path P € Py, k € K
at t.

Given the initial conditions x(0) = 6 : Yk € K, our model will be characterized by
the following system dynamics:

wr(t+1) = a(t) — 7 Y up(t) VE € K (D)
Pepy,

z(0) = O Vk e K (I)

The state x(t) integrates the data fed by the users at the source nodes into the network
at time zero (the initial state), minus the sum of flows carried away along the individual
paths of the user within the discrete time step 7. In other words, zj(¢) models the amount
of traffic accumulated in the input buffer of each source-destination pair k£ at time ¢, and
the initial state x(0) is simply the demand of user k presented to the system at the zero-
th time instance. For the sake of simplicity, we shall assume henceforth that the discrete
time step is 1 unit and @ is scaled accordingly, and so we shall omit 7 in the equations. In
the above model we assume that no further traffic arrives within the time frame 7/NV; this
assumption will be relaxed later by adopting a 1-step receding horizon control model.

The control must respect certain operational constraints in assigning rates to the users;
in particular, edge capacities may not be violated at any instance of time:

)3

rates are non-negative:

VEeK: wu(t) >0 ; (C2)

and the controller cannot clear more data from the source nodes than it is available there:

VkeK: ap(t) >0 . (C3)
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Observe that (C1) and (C2) coincide with the feasibility constraint of Definition 3.2 in
that they require u(t) to be a valid routing; or in other words, we require u(t) € M(G.)
in every time step. Let (C) denote the full constraint system (C1)—(C2)—(C3).

Finally, the objective of the routing controller is to minimize the cost of the resultant
routing over the time horizon N or, equivalently, to maximize the payoff function:

N-1

min P(u(.), 2(0)) = ¢f=(N) + Y ru(t) + ¢"(t) . (P)

t=0

In this formulation, setting the terminal cost q? > 0 will drive the system to eventually
settle in, or as close as possible to, the origin; other formulations may enforce any desired
terminal state 7y by adding an explicit constraint z(N) € TF.

Given a network configuration G., the dynamics (D), the initial condition (I), the
constraints (C), and the payoff function (P) together make up the Optimal Rate-adaptive
Routing (ORAR) model for G..

3.3 Optimal Controller Design

Next, we design an optimal controller for the ORAR model described above. The
controller’s job will be to remove as much data from the inputs as possible; in other
words, the controller regulates the states towards the origin. The main contribution in
this Section is summarized by the below result.

Theorem 3.3. Given a regular network configuration, there is an offline one-step receding
horizon controller, called the ORAR controller, that is feasible, optimal, and stable under
the ORAR model for any initial state 6§ € T'(G.,).

The rest of this Section is devoted to prove the above claim. The proof will consist of
a series of technical results, which together will support Theorem 3.3.

The first step of controller design is to convince ourselves that our system is well-
behaved and so a suitable controller exists. We say that a system is controllable if there
exists a control that drives it from any optional initial state into the origin in finite time,
and it is observable if it is possible to identify the state of a system at any instance of
time through output measurements.

Lemma 3.4. If a network configuration G. is regular and ¢f > 0, " > 0, and ¢" > 0,
then the system is both controllable and observable under the ORAR model.

Recall, a regular network configuration G. according to Definition 2.1 is such that
there is a path in G, from s to dy for each user £ € K and all edge capacities are finite
and strictly positive. Regularity was key to our fairness notions in the previous Chapter;
in this Chapter we reuse the same mild regularity conditions to characterize network
configurations that admit an optimal routing scheme.

Proof. First, observability is trivial since in the ORAR model the output corresponds to
the system state so we can measure it directly. Controllability, furthermore, is also easy to
show. Consider a trivial controller that puts some small nonzero flow to the usable paths
of each user in each time step, subject to (C); such a trivial controller always exists in a
regular network and gradually clears all data from each source node, driving the system
to the origin in finite time. O]
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We note that the result is only sufficient and not necessary; see [23,28] for stronger
characterizations.
The second result concerns the existence of the ORAR controller.

Lemma 3.5. Given a regular network configuration GG, consider the ORAR model defined
by the plant

wr(t+1) = a(t) — 7 Y up(t) Vk e K (D)

2,(0) = O Vk e K (I)

the constraints

kek
u(t) > 0 Vk € K (C2)
rp(t) > 0 Vk e K (C3)
and the payoff
min P(u(.), 2(0)) = ¢Fe(N) + 3 r7u(t) + ¢"a(1) (P)

where ¢f > 0, 7" > 0 and ¢" > 0. Then, for any N > 0 there exists a control law that,
starting from any initial state 8 = [0y : k € K] (I), regulates the network according to the
dynamics (D), satisfying conditions (C), and optimizing the payoff function (P).

Proof. Consider the below linear program that describes the ORAR model:

min q?a:(N)—k - riu(t) 4+ ¢ (t) (P)
s.t. wr(t+1) =a(t) = Y up(t)  VkeKVte{0,...,N—1} (D)
PPy,

21,(0) = b, Vk e K (1)
> Pa(t) <c vte{0,...,N—1} (C1)
ke

u(t) >0 vte {0,...,N —1} (C2)
z(t) >0 vte{l,...,N} (C3)

The size of this linear program is polynomial in the size of GG, and the control horizon
N. In fact, an online MPC controller would solve exactly this linear program in each
time step, setting the initial state 6 from the current state of the system. To get an
offline controller, we can solve this system as a multi-parametric linear program, using
e.g., the algorithm in [30], to obtain a control law that is general in the initial state
parameter ; i.e., the initial state is not fixed but rather it is revealed to the controller
during runtime. The result is a function u(.) = S(#), which to each initial state 6 orders
a routing action u(t) at each time instance t throughout the control horizon. Then,
the existence of such a solution as the function of the multi-dimensional parameter 4 is
guaranteed by [23, Corollary 2|. O
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Figure 3.3: The centralized ORAR routing controller architecture.

Suppose N = 1 and call the control law u(6) obtained by solving the above multi-
parametric program the ORAR control law. See Example 3.1 for the sample ORAR
controllers.

Next, we show a set of useful properties of the ORAR control and the corresponding
payoff dynamics (the so called value function). We will generally omit the proofs; the
reader is referred to the manuscripts [23,84,85,167| for a general theory of optimal offline
model predictive control of constrained systems and the related stability analysis [28]; the
below results are applications of the results therein. For full reference, the detailed proofs
can be found in our earlier work [158,177].

Lemma 3.6. The ORAR control law u(.) is a continuous and piecewise affine function
of 6:
wl)=Fb+g ifOeR,i=1...r,

where R;s are closed polyhedral sets in R¥. Alternatively, if the ORAR system is solved
for an initial set state Ty, then the control regions R; partition Ty.

Lemma 3.7. The ORAR control law u(.) is asymptotically stable.

Lemma 3.8. The ORAR control optimizes any linear payoff whenever ¢; > 0, 7" > 0
and ¢” > 0 and the value function is continuous, convex, and piecewise affine.

Lemma 3.9. The set of initial states for which the ORAR controller converges in 1 steps
to the origin (the 1-step feasible set) equals T'(G.).

The significance of Theorem 3.3 is that, theoretically, no information on expected
traffic is necessary to design a multipath rate-control algorithm that guarantees feasibility,
stability, and optimality over the entire demand space T(G.). The controller will clear
out any traffic demand @ from the source nodes in a single step as long as 6 € T(G.); this
can be easily seen by observing that the solution to the multi-parametric linear program
for a given 6 (the offline ORAR control) is ezactly the same as the optimal solution of
the (non-parametric) linear program where ¢ is fixed (the online ORAR control), and
the set of @ for which the fixed linear program is feasible is, by definition, T'(G.). In
other words, our offline controller assigns a feasible routing to any traffic matrix for which
an online controller would produce a feasible static routing, but instead of having to
solve the linear program (P)—(I)-(D)—(C) online in each timestamp, our controller can
be precomputed offline, still guaranteeing convergence to the origin in a single timestep
(N =1).

In operation, the ORAR controller node periodically scans the network, reads the
momentary traffic demands 6 from the sources, solves a series of polyhedron inclusion
problems to find ¢ € Z so that 6 € R;, evaluates u = F;0 + g; to find the optimal routing
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for 6, and downloads the resultant traffic splitting ratios to the routers. See Fig. 3.3 for
a schematic model of this architecture. This scheme fits perfectly into the centralized
control framework advocated for Software Defined Networks (SDN), which makes the
ORAR controller an appealing candidate for SDN traffic engineering [3].

An additional benefit is that the ORAR controller allows for optimizing the routing
function through specifying the objective (P); both linear and convex quadratic objective
functions are permitted [23,28,30]. Plausible objectives would be to minimize delay or the
maximum link utilization. Furthermore, continuity of the control law, both inside routing
domains an across boundaries, guarantees smooth routing transients.

3.4 Complexity

To obtain the ORAR control law, one needs to solve a multi-parametric linear or
quadratic program, which is, although computationally quite involving, viable thanks
to recent advances in geometric multi-parametric programming [23,30]. Unfortunately,
the resultant control law may prove prohibitively complex, as there is no polynomial
upper bound on the number of control regions and individual simple routing functions
that emerge when solving the multi-parametric linear program [23,30]. When Z exceeds
about 10°, centralized routing becomes impractical as the controller spends most of its
time solving polyhedron inclusion problems trying to figure out which individual routing
function to apply. Storage requirements too can become an issue.

Consequently, the number of control regions in the control law chiefly determines the
practical applicability of the ORAR controller. Unfortunately, the worst-case complexity
bound provided in [23, Section 4.4] is somewhat lose and largely prohibitive in practice.
The next result, which may be of interest beyond the context of ORAR, rather bounds
the complexity of 1-step ORAR control to the size of the smallest boundary-triangulation
of the throughput polytope (recall from Definition 2.3 that a boundary-triangulation is a
partition of a polytope into a set of simplices so that all vertices of the simplices lie on the
boundary of the polytope). Complexity of boundary-triangulations is a heavily researched
area |20]; consequently our bound often provides tighter complexity characterizations than
the worst-case result in [23|. Unfortunately, we pay a price for reduced size; namely, our
triangulation-based scheme relaxes the optimality requirement in ORAR control and it
focuses on feasibilty instead. Such problems with an empty payoff function are called
multi-parametric feasibility problems.

The main result is as follows.

Theorem 3.10. Given a regular network configuration G., consider the ORAR model
with an empty payoff, described by the dynamics (D), the initial condition (I), the con-
straints (C), let N =1 and add the terminal condition

2(1)=0 VkeK . (T)

Then, the minimal number of control regions in the 1-step ORAR controller for the system
(D)—(I)~(C)—(T) is upper bounded by the size of the minimal boundary-triangulation of
T(G,).

The Theorem is the corollary of the following claim.

Lemma 3.11. For a regular network configuration G. and any boundary-triangulation
Qi i€ {l,...,q} of T, there exists a continuous compound affine routing function & =
{(RZ,SZ) 11 E I} so that Z = {1, e ,q}, ’R,Z = Qi, and Vi € I,VG S ,R,,L : 81(6) S M(Gc)
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Proof. Let 6y,...,0, be the extreme points of T'(G.) and let uq,...,us be path-flows so
that T(u;) = 6; for all ¢ € {1,...,s}. (Recall, T is the throughput mapping as per
Definition 2.4: T (u) = [0y = 1Tuy : k € K]). For any simplex Q; in the boundary-
triangulation of T'(G.), @; = Conv{b,,,6;,,...,0;,} for some K + 1 affinely independent
extreme points of T(G.); let wu;, ..., u;, be the path-flows corresponding to the extreme
points of Q;: 05, ..., 0;,. Without loss of generality, choose 0;, as a basis point and define
the K x K matrix B; = [0;, —0,,, ..., 0;, —0;,]. Note that B, is invertible. Let u;, be the
path-flow realizing 6;, and U; be a p x K matrix defined as U; = [u;, — Uiy, - - -, Wipe — U |-

Consider an arbitrary point 6 € @);. Then, there exist Ao, A1,..., Ag with Ay > 0 and
Zf:o Ar = 1, so that

K K
0="> Mbiy => by, — 0y + 0y,
k=0 k=0
K K K
== Z )\;ﬁlk - Z )\ke’io + 61’0 - Z >\k<0’lk - 91‘0) -+ 91'0
k=0 k=0 k=0
K
=) M0, — 0y) + 05, = Bid+ 65, (3.1)
k=1
where A is a column K-vector formed by the coordinates \;. Consider the path-flow

K K
u:Z)\kuzk :Z/\k(uzk —ui0)+ui0 = Uj/\—|—ui0 . (32)
k=0 k=1

Observe that u is a routing for 0, as 7 (u) = T (UN+w;y) = T(U)A+T (u;,) = BA+6;, = 0.
In addition, v € M(G.) as u is a convex combination of vectors in M (G.). Noting that
A= B; (0 —0;) by (3.1), we have that

w=U;B; (0 — 6;,) + ui, = U; B0 + (uy, — U;B;6;,) (3.3)

is a feasible affine routing function for #. Since the above holds for any 6 € ) we conclude
that (3.3) is a routing function on the entire simplex @);. Using the above construction
on each Q; : i € {1,...,q} gives a piecewise affine routing function S = {(S;,Q;) : j €
{1,...,¢}}. Finally, continuity is trivial by (3.1) and (3.2). O

Note that finding a triangulation for which ¢ is minimal is a very difficult computa-
tional problem [20] and even if we manage to find one, the size ¢ may still be exponential.
We found that in practice the ORAR controllers produced by boundary-triangulations are
often less complex, especially for smaller systems where obtaining an optimal (minimal)
boundary-triangulation is computationally feasible.

Example 3.3. For the running example, a minimal boundary-triangulation of T'(G.) and
the corresponding piecewise affine ORAR routing function is given in Fig. 3.4.

A straightforward way to further reduce controller complexity would be to increase
the control horizon N. Recall that N connotes the time the controller is allowed to
spend driving the system into the origin. Thus, the larger the control horizon the slower
the controller. This is expected to yield larger control regions and hence to decrease
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Figure 3.4: The ORAR routing function and the corresponding boundary-triangulation.

complexity. It must be noted, however, that the ORAR model, in its current form,
assumes that no further traffic arrives into the input buffers within the time frame 7/N.
When this assumption is violated, the system state as predicted by the controller and the
real system state diverge. This problem emerges only for N-step controllers where N > 1;
for N = 1, no prediction is needed as the system is cleared out in a single step. And even
when N > 1 a moderate model inaccuracy does not pose problem in receding horizon
control, since we consider only the first control action that is based on exact system state
(the initial state).

Setting the control horizon not only affects controller complexity, but it also has pro-
found impact on the set of states to which the controller orders control action. In general,
the N-step feasible set, the set of states from which the ORAR plant converges into the
origin in IV steps, monotonically increases with N and it precisely coincides with the set
of states to which an N-step ORAR control orders control action. An 1-step ORAR con-
troller covers only the set of admissible traffic matrices T'(G..), and increasing the control
horizon monotonically broadens the range of traffic matrices the ORAR controller can
handle.

Fig. 3.5 gives a quick roundup on the practical complexity or ORAR controllers; for
detailed numerical evaluation see [157,158,177,178]. The results are presented for a
well-known network topology that is often considered in the related literature as a repre-
sentative ISP topology: the NSENET Phase IT network [43] consists of 12 routers and 128
links. We generated increasingly complex scenarios by increasing the number of users K.
The source-destination pairs for each K were chosen according to the bimodal distribution
and 2 maximally node-disjoint paths were provisioned per user [89, 147].

Fig. 3.5 gives the average number of control regions for the ORAR controller when
K is varied between 1 and 9. Recall, this controller is provably stable, feasible, and
optimal, therefore the most important question in this case is the price we pay in terms
of complexity for optimality. We conclude that ORAR control is viable only for networks
serving only a couple of users, but complexity quickly becomes prohibitive when the total
number of paths in the system surpasses about 20. To answer this challenge, in our later
work [157,158,177,178| we present a family of distributed, centralized, and hybrid routing
controllers, each striking a different balance between complexity and performance.

3.5 Related Work

In this Section, we position our results in the context of recent work on traffic engi-
neering and multipath rate-control algorithms.
Traffic management algorithms strive to eliminate network-wide congestion. To this
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Figure 3.5: The complexity of the ORAR controllers on the NSFNET Phase II network topol-
ogy [43|: the number of control regions obtained with the multi-parametric programming method
(“MP-LP”) and from a random (not necessarily minimal!) boundary-triangulation (“triangula-
tion”), as the function of the number of users K. Note the logarithmic scale on the y axis.

end, a flow-control algorithm adapts the rate at which source nodes emit traffic in concert
with the congestion feedback received from the network. Examples are various versions of
the venerable Transmission Control Protocol (TCP) and other network utility maximiza-
tion schemes [41]. Recently, there has been a trend towards generalizing these flow-control
algorithms to the case when users communicate over more than one path and they actively
control not only the source rate but the fraction of traffic routed along the individual paths,
or the paths themselves, as well [94,98,99,116,117,229|. This brings us to the second
form of traffic management algorithms: multipath rate-control |70,77,98,99,112,129,224|.
Here, the amount of traffic to be routed is given and the task is to allocate the load on
the forwarding paths in a way to minimize congestion. While flow control is chiefly an
end-to-end scheme, multipath rate-control is much better suited to an intra-domain traffic
engineering setting, where the domain border routers do not have control over the sending
rate of each individual endhost.

A simple form of rate-adaptation is to periodically recompute routers’ forwarding
tables with respect to fresh measurement data. Basically any static scheme [35,71,147|
can be made adaptive this way. It is an untrivial task, however, to decide when to re-
compute: intervening too often causes frequent traffic fluctuations, instability, and adverse
packet reordering, while re-computing too rarely might lead to traffic loss as the traffic
matrix and the routing might get out of alignment [146,147]. Promising ways to overcome
this problem is to design a routing that is “sufficiently good” for multiple traffic matrices
at the same time [72,203,218,232|, or to make no assumption on input traffic whatsoever.
This extreme setting is called oblivious routing |7,25,70,77,98,112,116,117,130,163].

Right from the beginning, multipath rate-control algorithms were conceived to be
distributed [77], which means that only information available to a router locally can be
used to make routing decisions. It quickly turned out, however, that conflicting deci-
sions made by routers unaware of each other’s state can easily lead to wide-scale route
oscillations [25,118|. A minimalistic approach to eliminate instability is to apply no rate-
adaptation at all: e.g., in oblivious routing traffic splitting ratios are set statically to
minimize congestion over any combination of demands [7,14,62,163-165,212|. Curiously,
oblivious routing can be surprisingly efficient: in his seminal work, Récke showed that in
undirected graphs we pay only a polylogarithmic factor in congestion compared to the
best attainable routing [163]. He later improved the worst-case bound to purely logarith-
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mic [164], which is asymptotically tight [17]. Directed graphs do not admit a logarithmic
upper bound [14], but in most cases relevant to practice the congestion penalty reaches
at most 2 [7]. Even though surprisingly small, this bound still allows substantial link
over-subscription |7,218].

It seems, therefore, that some forms of rate-adaptation is inevitable, but special care
must be taken to avoid instabilities and wide-scale route oscillations [25,118]. Most
proposals, therefore, introduce some forms of a signaling mechanism to collect state infor-
mation from the network. TeXCP applies periodic path probing to collect link utilization
information [112], REPLEX uses a complete distance-vector protocol infrastructure to
distribute the network state [70], while DATE and TRUMP rely on timely feedback from
the network [98,99]. This leads to control overhead, hampers implementation and deploy-
ment, and often causes sub-optimality when links are not allowed to be saturated to full
capacity to avoid instability [98,99]. For a promising approach to mitigate these issues,
see [129]. As far as we know, the centralized ORAR control framework presented in this
Chapter is the first multipath rate-control algorithm that combines feasibility, in that it
provably avoids congestion, stability, in that there can be no route oscillations [25, 77/,
and optimality, in that it allows to optimize any payoff, in a practical and mathematically
sound routing scheme.

Feasibility, stability and optimality of ORAR control, however, comes at a distinct
price: moving from the distributed model to a centralized one. In ORAR control routers
merely execute the forwarding commands sent by the controller [178], which makes ORAR
control an appealing candidate for implementing traffic engineering in software-defined
networks [144,226]. Unfortunately, a centralized architecture presents its own set of
challenges: the central controller is a single point of failure and scales poorly, and it
also needs a stable information exchange mechanism implemented by all nodes. This, in
turn, may induce dead-time control instabilities due to the delay between when data is
measured and respective control action is taken.

Recently, there has been a trend towards a hybridization of routing architectures, where
decision making is partially migrated to a central controller. A good example is [224],
where a central node computes and sets link weights based on which routers can calculate
the best traffic splitting ratios independently. In [177]|, we present a hybrid oblivious
routing scheme that fits neatly into this trend. The numerical evaluations suggest that
our hybrid scheme introduces very little added complexity compared to fully-distributed
schemes but, unfortunately, the provable optimality and stability of the centralized ORAR
scheme is now lost.

It seems that each of the architectural models of distributed (e.g., oblivious routing),
centralized (as presented in this Chapter), and hybrid multipath rate-control (as of our
prior work, [177]) bring about their own benefits and pose their own challenges. Measuring
these against each other so far has been possible on a purely ad-hoc basis, supported only
by piecemeal analysis and anecdotal evidence, but an all-encompassing mathematical
framework has been missing. In order to close this gap, in our recent work we propose a
new model for rate-adaptive multipath routing that we call generalized oblivious routing,
which allows one to analyze distributed, centralized, and hybrid routing architectures within
a single framework, and to develop quantitative as well as qualitative arguments regarding
their optimality, stability, and realizability [157,158,177]. Our framework is a novel
generalization of “conventional” oblivious routing; in particular, the oblivious routing
scheme as per |7,14,62,163-165] arises as the distributed realization of our model, the
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ORAR control model presented in this Chapter boils down to the centralized incarnation,
and our hybrid distributed-centralized algorithm as of [177]| provides the middle-ground,
combining the simplicity of the distributed realization with the efficiency of the centralized
one. In this regard, our work can be seen as a sequel to [41]: whereas Chiang et al.
in [41] provide the first comprehensive mathematical framework to understand control
function layering in network architectures, ours is the first mathematical framework for
understanding the organization of control in network architectures, be that distributed,
centralized, or hybrid.
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Chapter 4

Scalable Internet Routing: The
Algebraic Perspective

rI:{E main concern in the previous Chapters has been the efficient and fair mapping of
users’ requested traffic demands to the underlying network topology. This task arises most
prominently in an intra-domain setting, a fixed scope domain in the Internet architecture
where the forwarding paths, the bandwidth allocation, and multipath rate-control are
all tightly controlled by a single network administrator. In the inter-domain setting,
however, the Internet consists of thousands network domains operated autonomously by
independent service providers. Consequently, there is only very loose control any single
stake-holder (i.e., operator) can exert over the end-to-end path, the bandwidth, and the
overall traffic rate through the potentially dozens of Internet administrative domains user
traffic traverses (although, strikingly, end-to-end rate-control algorithms can still provide
certain efficiency and fairness guarantees even at this vast scale [41,110]).

In this and the subsequent Chapters, our attention mowves to the most critical aspect of
large-scale network routing: scalability [126]. In particular, we aim (i) to define scalable
routing schemes that minimize the amount of routing information that needs to be stored
at, and synchronized across, network nodes, but still retain our capability to define certain
network-level performance or service objectives for the resultant routes (this Chapter),
and (i) to study routing-state-compression mechanisms that allow routers to compress
the routing information they have to maintain to the minimum theoretically possible size
(next Chapter). First, in this Chapter we shall extend the theory of compact routing
from shortest-path routing to essentially arbitrary routing policies, which will allow us to
get a more meaningful characterization of the memory requirements of Internet routing
which, contrary to general belief, is not shortest-path-based.

4.1 Preliminaries

4.1.1 Compact Routing and Routing Policies

Compact routing theory is the research field aimed at identifying the fundamental
scaling limits of shortest-path routing and constructing algorithms that meet these limits
[49,73,78-80,126,209]. Shortest-path routing is a key ingredient in many modern network
architectures, as it generally ensures low transmission delay while also minimizes the
effort needed to transmit one unit of information from the source to the destination. To
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what extent shortest-path routing can scale to large networks, in terms of the memory
requirements of implementing the local forwarding functionality at network nodes, has
been on the research agenda for a long time.

It has been shown that, in general, it is impossible to implement shortest-path routing
with routing tables whose size in all network topologies grows slower than [inear with
the increase of the network size |73,80|. This negative result paints a rather pessimistic
picture on the viability of large-scale Internet routing: in terms of this result memory
in Internet routers’ data plane needs to be upgraded with adding a constant number of
storage bits for every node introduced into the network. Network operators would rather
opt for a logarithmically scaling memory footprint, where a constant number of additional
bits is enough to handle even the doubling of the network size.

To answer this challenge, compact routing research seeks algorithms to decrease routing
table sizes at the price of letting packets to be routed along slightly suboptimal paths. In this
context, “slightly suboptimal” means that the forwarding paths are allowed to be longer
than the shortest ones, but length increase must be bounded by a constant stretch factor.
By now, the research community has built a strong theoretical foundation for compact
shortest-path routing, fully characterizing the stretch and memory footprint on a broad
catalog of network topologies including hypercubes, trees, scale-free networks, and planar
graphs [74,75,78,125,209|, and generic network topologies [49,209].

It turns out, however, that shortest-path routing is a rather poor description of the
path selection preferences (the so called routing policies) in use over the Internet. This
is because operators usually consider a broader set of attributes beyond mere path length
when provisioning routes, in order to ensure an expedient flow of user traffic through the
network. Such additional attributes may include path reliability and resilience constraints
[228]; bandwidth and perceived congestion [6,140,219]; business relations and service level
agreements between Internet service providers [5,33]; security, etc. These path selection
strategies are usually described under the umbrella of policy routing. Practically speaking,
a routing policy is a function that selects a preferred transmission route from the set of all
forwarding paths available between two endpoints, according to predefined requirements.

Indeed, a significant portion of the Internet today runs over policy routing [10, 33,
135,219, 228|. However, currently theoretical scalability characterizations are available
only for shortest-path routing, which leaves a considerable gap in our understanding of
the long term sustainability of the Internet. The challenge we tackle in this Chapter is
to take the first steps towards filling this gap, by defining a mathematical framework to
characterize the scalabiliy of routing policies beyond mere shortest-paths.

4.1.2 Contributions

In this Chapter, we construct a mathematical model what we call algebraic compact
(policy) routing. This model allows us to study the memory requirements of routing
policies in a simple algebraic model and identify the fundamental scalability characteristics
of general policy routing. In doing so we build on the recent work of Sobrinho and
Griffin [86,91, 191, 192], which describes disparate routing policy structures in a single
theoretical framework using the notion of routing algebras. A routing algebra abstracts
away the syntactic and semantic diversity of routing policies and, consequently, it lets us
to study routing policies in a general, abstract sense. Using this framework, we give an
algebraic characterization of the scalability of policy routing and we take a look at the
applicability of constant-stretch compact routing schemes in an abstract algebraic setting.
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Our contributions in particular are as follows [88,175,176,236|.

e We introduce algebraic compact routing, an extension of the compact routing model
defined by Fraigniaud and Gavoille [73,80| from shortest-path routing to practically
arbitrary routing polices, by taking a novel abstract algebraic approach.

e We identify the algebraic requirements for a policy to be implementable with sub-
linear routing tables and we give a comprehensive scalability characterization for
many practically important routing policies used throughout the Internet.

e By generalizing the notion of stretch, we explore the algebraic conditions under
which the well-known shortest-path-based constant-stretch compact routing schemes
generalize to policy routing [49,209].

e We give the first negative result showing that certain routing policies do not admit
sublinear size routing tables even for arbitrary constant stretch.

The rest of this Chapter is structured as follows. In Section 4.2, we introduce the basic
notations and models used throughout this Chapter. Next, in Section 4.3 we characterize
the local memory requirements for implementing an important subset of routing algebras,
called delimited regular algebras, and we apply the results to real-world routing policies.
In Section 4.4 we deal with an algebraic interpretation of stretch and we generalize com-
pact routing algorithms to regular algebras. Finally, in Section 4.5 we briefly highlight
some further results that we obtained using the new algebraic compact routing framework
and we position our work in the compact routing literature.

4.2 Formal Model

Next, we introduce a formal model for compact policy routing. Since the basic defini-
tions will often differ from the ones used in the previous chapters (e.g., from now on we
consider undirected graphs instead of directed ones), we re-define the terminology and the
notation for most of the concepts relevant in this context. We also introduce the abstract
algebraic framework that we shall use to cast our results.

4.2.1 Notation and Definitions

Let the communications network be modeled as a finite, connected, simple, undirected
graph G(V, E), let |V| = n and let |E| = m. Communication between nodes is carried
out by sending packets: neighboring nodes exchange packets directly, while remote nodes
communicate through intermediate hops. We assume that nodes v (edges e) are uniquely
identified by a nonnegative integer id(v) (id(e)); we shall often write the short-hand v (e)
in place of id(v) (id(e), respectively). Let d(v) denote the degree of node v € V and let
d = max,ey 0(v). An s —t walk is a sequence of nodes p = (s = vy, vs, ..., v, = t), where
k is the length of the walk and (v;,v;11) € E:Vi=1,...,k —1. A cycle is a walk with
s =t, and a path is a walk that visits a node at most once. See Table 4.1 for a summary
on the notations used in this Chapter.

Policy routing. Generally speaking, a routing policy can be considered as a function
pt, = Pol(Py) that from the set of available s — ¢ paths Py, selects a single preferred
path p}, according to some predefined rules. This definition is broad enough to contain
basically every conceivable policy, including extreme cases like choosing a random path
as well as traditional ones like shortest-path routing.
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Table 4.1: Notation.

G(V,E) a simple connected undirected graph, with the set of nodes V
(V| =n) and the set of edges E (|E| =m)

id(v), id(e) identifier of node v € V or edge e € E

d(v) the degree of node v € V'

p=(s=wvy,vy,...,ux =1t) | an s —t walk, cycle, or path of length k

Pt the set of all s —t paths available in G

pi = Pol(Pst) a routing policy, a function that maps from Ps; to a single pre-
ferred path p,

j the preferred s — ¢t path by a policy Pol

Routing algebras. Below, we leverage the abstract notion of routing algebras from
Sobrinho and Griffin to describe routing policies [39,83,86,91,191,192]. This allows us to
infer generic properties instead of having to define particular routing policies one by one
and building piecemeal compact routing frameworks for each one separately. In addition,
it has been shown that basically all practically important routing policies possess an
algebraic representation [86]. Thus, we shall use the terms routing policy and routing
algebra interchangeably below.

A routing algebra abstracts away the most important concepts of shortest-path rout-
ing, namely weight composition, the method of constructing the weight of a path from
the weights of its constituent edges, and weight comparison, expressing the preference
between edges or paths. Formally, the following properties are presumed.

Definition 4.1. A routing algebra A is defined as a totally ordered commutative semi-
group with a compatible infinity element:

‘A:(W7¢7®7j) Y

where W is the set of (abstract) weights that can be assigned to edges, ¢ € W is a special
infinity weight meaning that an edge/path is not traversable, @ is a composition operator
for weights, and < is weight comparison.

In addition, A satisfies the below requirements.

e (W, ®) is a commutative semigroup
— Closure: wy @ wy € W for all wy,wy € W

— Associativity: (w; @& wy) ® ws = wy & (we & ws) for all wy, we, ws € W

— Commutativity: wy @ wy = wy ® wy for all wy,ws € W
e < is a total order on W

— Reflexivity: w < w for any w € W

— Anti-symmetry: if w; < wy and wy < wq, then wy = wy for any wy, ws € W
— Transitivity: if w; < we and we =X ws, then wy; < w3 for any wq, we, w3 € W
— Totality: for all wy,wy € W either w; < wy or wy < wy

e ¢ is compatible with (W, @) according to <

— Absorptivity: w® p=¢pPw = ¢ for all w e W
— Maximality: w < ¢ for all w € W\ {¢}
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In our framework, routing policies are represented by assigning abstract weights to
edges and defining path preference through the relation < on these weights. Given a
path p = (v1,vg,...,v,) we obtain the weight w(p) of p by combining the weight of its

constituent edges:
k-1

w(p) = @w(%viﬂ) :
i=1
Then, a preferred path in the algebra A between two nodes s and ¢ is simply the one
with the smallest weight according to the relation <:

Pol(Py) = p* : w(p*) X w(p),Vp € Py .

We assume trat ties are broken arbitrarily but deterministically, so that all traffic
demand for an s — ¢ pair is satisfied over a unique unsplittable path.

One easily checks that shortest-path routing corresponds to the algebra (N, oo, +, <),
while widest-path routing, where preferred paths are those with the largest bottleneck
capacity, is simply (N, 0, min, >). See further examples later in Section 4.3.2.

Regularity. A special family of routing algebras, called reqular routing algebras, will
play an essential role below.

Definition 4.2. A routing algebra A = (W, ¢, ®, <) is said to be regular if it satisfies
the following properties.

e Monotonicity (M): wy = wy @ wy for all wy,wy € W.
e Isotonicity (I): w; =< wy = w3 @ wy <X w3 ® wy for all wy, wy, w3 € W.

Note that in what follows we adopt the terminology and definitions of Sobrinho [191],
with the understanding that different authors may adopt different terminology. For in-
stance, what will be called isotonicity here is called monotonicity in conventional order
theory. The reason is that Sobrinho’s terminology seems to be more broadly used in the
literature.

Monotonicity (M) means that prepending an edge (or path) of weight w; with another
edge (or path) of wy can only make it less preferred: ws @ w; = w;. By commutativity,
the same applies to appending edges/paths: w; @ we = w;. Isotonicity (I), on the other
hand, requires < to be compatible with the semigroup (W, ®) in the following sense: if
an edge/path is preferred over some other one, then prepending or suffixing both with
a common edge or path maintains this relation. Isotonicity, consequently, formulates in
pure algebraic terms the interesting property that any subpath of a preferred path is also
preferred.

Below are some further algebraic properties we shall often use to characterize routing
policies [91].

Definition 4.3. Consider the following properties of a routing algebra A = (W, ¢, ®, <).

Delimited (D): wy @ wy # ¢ for all wy,wy € W\ {¢}.
Strictly monotone (SM): w; < wq & wy for all wy,wy € W

Selective (S): wy G wy € {wy,wy} for each wy, wy € W.

Cancellative (N): wy & wy = wy & w3 = we = ws for each wy, wy, w3 € W.

Condensed (C): wy & wy = wy @ ws for each wy, wy, w3 € W.
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From the above, perhaps only delimitedness deserves more explanation. This property
ensures that edges can be combined in an arbitrary sequence without the risk of obtaining
an untraversable path. Intra-domain routing policies, like shortest-path routing or widest-
path routing, are usually delimited, while inter-domain routing policies, like the ones used
in the Border Gateway Protocol (BGP), are usually not.

Composing and decomposing routing algebras. An attractive feature of routing
algebras is that surprisingly complex and expressive policy constructions can be built
using only an elemental set of primitive algebras, by applying simple algebra composition
and decomposition operators [86]. Two of these operators have particular importance in
our context, namely lexicographic products [91] and subalgebras.

Given two routing algebras A = (Wy, ¢a, Ba, =4) and B = (Wp, ¢, ®p, <), the
lezicographic product of A and B is a routing algebra A x B = (W, ¢, @, <) where

o W =W4xWpg
o (wy,v1) ® (wa,ve) = (w1 B4 wa, vy Bp ve) for all wy,ws € W, and vy, v, € Wi

o (wi,v1) X (wa,v9) = {

vy 2p vy i w =4 ws
wy =<4 wy otherwise

Fixing a unique absorptive element for the lexicographic product algebra may pose a
challenge [91]. In the below we concentrate on delimited algebras and we assume that the
input graph instances are such that all link weights are finite; thus, we can set ¢ = (¢4, ¥5)
as the infinity weight of the lexicographic product algebra without loss of generality.

As a simple example, consider the so called widest-shortest-path policy, defined as
(R*, 00,4, <) x (RT,0,min, >), i.e., the lexicographic product of the shortest-path and
the widest-path routing algebras [6]. Here, edge costs and edge capacities are composed
separately and path preference is decided by edge costs with tie-breaking between equal
cost shortest-paths on the path capacity. Note that order matters: the lexicographic
product of the shortest-path and widest-path routing algebras taken in the reverse order,
that is, (R*,0,min,>) x (RT,00,+, <) yields another routing policy called shortest-
widest-path routing [140,219], with completely different scaling properties (see later).

Proposition 4.4. The lexicographic product operator transforms the properties of the
constituent algebras according to the following rules [91]:

o M(A x B) & SM(A) V (M(A) A M(B))
o I(AxB) & I(A) ALB) A (N(A) V C(B))
o SM(A x B) < SM(A) v (M(A) A SM(B))

The second algebra composition operator we consider is subalgebras. Given a rout-
ing algebra A = (W, ¢,®, <) and a weight set W’ C W, the restriction of A4 to W
(W' ¢, @, =) is a subalgebra of A if and only if W’ is closed for @. Subalgeras inherit
the properties of the root algebra, but new ones may also emerge. For instance, the
subalgebra (Z*, 00, +, <) of the weakly monotone algebra (Z* U {0}, 0o, +, <) is strictly
monotone.

Routing model. In order to describe the complex process of policy routing and for-
warding, we generalize the model of routing functions from [73,80]. Note that routing
functions in compact routing connote a completely different concept than routing func-
tions in multipath rate-control as used in the previous Chapter; unfortunately, the diver-
gent terminologies across different disciplines frequently produce such unfortunate name
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collisions in interdisciplinary research. In this model, a packet contains a payload plus a
header® with routing related information. Now, given a routing policy A and a graph G,
a policy routing function is a mapping R : N x N — N x N together with a labeling of the
nodes Ly : V +— N and a labeling of the edges Lg : F — N with the following property:
for each node pair s and ¢ for which a traversable s — ¢ path exists (i.e., a path whose
weight is not equal to ¢), the successive application of R

(hi+17 li+1) = R(Ui, hi)7 Vi=1,...,k—1

yields a preferred path p¥, = (s = vy,...,v;,...,vp = t) according to A and corresponding
edge labels l;11 = (v;,v;11), where h; is some appropriate initial header. We shall say
that R implements A on G for indicating that R produces preferred paths according to
Aon G.

Similarly to |73, 80|, we assume that node labels (or addresses) can be encoded on
clogn bits® for some ¢ constant. We further assume that for each node v; € V' the edges
emanating from v; are labeled locally: Lg(v;,v;) € {1,...,d(v;)}. Additionally, the edge
label /; 41 is understood as coming from the local label space Lg(v;) of v;. These limitations
are to ensure that no extra routing information can be encoded in the labels besides pure
identification. No such limitation exists, however, on the header size.

Routing according to the policy routing function R occurs as follows. Upon receiving a
packet with header h, a node u simply evaluates its local routing function R,(h) = R(u,h)
to obtain a new header A’ and an outgoing port at edge [. Then, u sets the packet’s header
to b’ and forwards it on [. In general, this routing model is suitable to represent oblivious
routing architectures, i.e., ones in which the route of a packet depends only on the contents
of the packet itself and some static forwarding information. Yet, it is broad enough to
capture basically any practically relevant forwarding scheme, like traditional destination-
based and source-destination-based forwarding, label swapping, etc. For further details,
consult [73,80].

Memory requirements of implementing a routing policy. Introducing routing
functions makes it possible to comfortably characterize the local memory needed at net-
work nodes to implement a routing policy.

Definition 4.5. The local memory requirement M 4 of implementing the routing policy
A is defined as:

My = i M

A= B R MaR)

where M 4(R,u) is the minimum number of bits needed to encode the local routing func-
tion R,, R is the set of all policy routing functions implementing A on some graph G,
and G, is the set of all graphs of size n.

A routing policy is said to be incompressible, if M 4 is Q(n). Otherwise A is compress-
1ble. Easily, an incompressible routing policy does not scale well, as the memory needed
to store the local routing process of some node increases with the number of nodes in at
least one graph. On the other hand, compressible routing policies scale well.

SWithout loss of generality, headers can be represented by natural numbers.
SLogarithms are of base 2.
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4.2.2 Problem Formulation

At this point, we have all the definitions in place to focus on our main concern what
we call algebraic compact routing: given a routing algebra describing a particular routing
policy, (i) identify the theoretical bounds on the memory requirements needed to im-
plement that algebra, and (ii) examine the local storage vs. path optimality trade-off.
This trade-off involves designing compact routing schemes that implement the algebra
with sublinear local storage at the price of letting traffic to be routed along non-preferred
paths, whose suboptimality is upper bounded by a suitably defined “abstract” stretch.

From the standpoint of routing, regular algebras manifest the “well-behaved cases” |39,
191,192|. Monotonicity and isotonicity, on the one hand, guarantee that the preferred
paths themselves can be obtained in polynomial time using a generalization of Dijkstra’s
algorithm. On the other hand, in a regular algebra preferred paths terminating at a given
node make up a tree, allowing for a single routing entry to be maintained with respect
to each node and forwarding packets based on the destination address only. This allows
us to store local routing information on at most O(n) bits local memory. We formulate
these ideas as follows.

For some graph G and algebra A, define a destination-based routing function R for
implementing A on G as follows. Let the packet header consist of the identifier of the
packet’s destination and let node u forward a packet destined to some v on the first
edge I, along the preferred path pf,: R,(v) = (v,l,). Sobrinho makes the following
observation [192]:

Proposition 4.6. A can be implemented by a destination-based routing function on any
graph, if and only if A is regular.

One easily sees that R basically corresponds to destination oriented routing tables,
storing a single entry for each destination node. This leads to the following observation.

Observation 4.7. If A is regular, then it can be implemented using O(nlog d) bits local
information.

A key question in compact routing research is whether this trivial routing function
is optimal in the sense that it requires the minimum possible local memory to encode
preferred paths, or there are better algorithms using less local space. For shortest-path
routing in particular, Fraigniaud and Gavoille present the following negative result |73,80].

Proposition 4.8. The shortest-path algebra S = (Z, 00, +, <) is incompressible.

For shortest-path routing at least, routing tables are optimal. For general routing
policies beyond shortest-path routing, no such characterization exists. Therefore, in the
rest of this Chapter we provide a comprehensive algebraic characterization for the memory
requirements of general policy routing. Below we discuss the case of intra-domain routing
policies and delimited routing policies; see [88,175,176,236| for a detailed exposition on
our results for non-delimited algebras that arise in inter-domain routing, e.g., BGP policy
routing.

4.3 Scalability of Delimited Routing Policies

In what follows, we discuss the algebraic requirements for a routing policy to be
implementable with sublinear local storage and we also give negative results indicating
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incompressibility of some practically important routing policies. As indicated above, we
concentrate on delimited algebras exclusively; recall, this property ensures that finite
weights combine to finite weights, implying that any concatenation of traversable paths
is guaranteed to yield a traversable path.

4.3.1 Compressibility Characterizations

First, we discuss an important family of delimited routing algebras: monotone and
selective algebras.”

Theorem 4.9. If A is selective and monotone then it is compressible.

In fact, we shall prove a bit more. We shall show that if a routing policy is selective,
then a “preferred” spanning tree always exists with the property that for any s,t € V the
only path p,; contained in the tree is a preferred path. We say that algebra A maps to a
tree, if for any connected graph and any weighing of the edges one can always find such a
“preferred” spanning tree. Then, compressibility follows as routing over a tree is possible
with logn bits local memory [74].

Lemma 4.10. If A is monotone and selective, then A maps to a tree. On the other hand,
if A is delimited and .4 maps to a tree, then A is monotone and selective.

Proof. First, we show that if an algebra A is monotone and selective then it maps to a
tree. Under these assumptions on A, we construct an optimal spanning tree containing
only preferred paths over A. Start with an empty tree T, take the edges in the non-
decreasing order of weights according to <, add an edge to the spanning tree 7" if no cycle
arises, and terminate when 7" spans G. We show that the only in-tree path pl, between
any two nodes s and ¢ is a preferred path over A. To see this, take any other s — ¢ path
pst in G. Due to the way the algorithm proceeds, there is at least one edge (u,v) in pg so
that w(u,v) = w(i, j) for all (,7) in pL. Then, due to selectivity w(pl,) € {w(3,7) : (i,7)
in pl.}, and by monotonicity w(pL) < w(u,v) < w(ps), therefore pl, is a preferred s — ¢
path. This proves sufficiency.

We prove the second statement by contraposition. In particular, we show that if a
delimited algebra A is either non-monotone or non-selective, then in some graphs preferred
paths do not reside in a tree. Obviously, if A is not monotone then the preferred paths
might contain loops. If, on the other hand, .4 is monotone but not selective, then A either
contains a weight w € W so that w @ w > w (auto-selectivity), or A contains two weights
wi, we € W,wy < wy, so that wy & wy = wy. We distinguish the following cases:

e wdw = w: for the case when A violates auto-selectivity, Fig. 4.1a gives a graph in
which the preferred paths are exactly the direct edges and hence do not make up a
tree;

o w; < wy and wy Bws = wo: Fig. 4.1b gives a graph where again preferred paths are
via the direct edges and so no optimal tree arises;

e w; = we and wy; P we = wy: in the graph of Fig. 4.1c, preferred paths are again

precisely the direct edges. To see this, we only need to see that (i) w; < wyBw; Pws,
(M)
but this follows from wy G w Bwy = wyBwy = wy = wy; and (44) we < w1 Bwe B wy

can be seen similarly. Note that for the source-destination pairs that do not reach

"Note that selectivity implies delimitedness.
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Figure 4.1: Counter-examples for different violations of selectivity.

each other via a direct edge any two-hop path is a traversable preferred path, as
w1 B wy = wy & wy < ¢ due to delimitedness. O

Note that delimitedness in Lemma 4.10 is important, as one easily finds non-delimited
algebras that map to a tree even without being selective, under the assumption that each
node has a finite-weight path to each other node. Further note that a special case of
this result for minimum- and maximum-type of weight composition operators appeared
in [12], and [83] gives similar results for special routing algebras called dioids.

Theorem 4.9 suggests that routing policies characterized by selective algebras can be
implemented using tree routing schemes [74,209|, needing only logarithmic sized local
storage (see concrete examples in the next section). In contrast to selective algebras
however, there exists an important family of routing policies that, similarly to shortest-
path routing, can only be implemented using at least {2(n) bits local memory.

Theorem 4.11. If A is delimited and strictly monotone then it is incompressible.
We shall prove a more general claim, of which the above is a simple corollary.

Lemma 4.12. If A contains a delimited strictly monotone subalgebra, then A is incom-
pressible.

Proof. We trace back incompressibility to the incompressibility of minimum-hop routing
(Proposition 4.8), by showing that a delimited, strictly monotone algebra has subalgebras
with the same algebraic structure as shortest-path routing. We use the following basic
facts from semigroup theory [45]. Every element w € W of a semigroup (W, @) generates
a subsemigroup, the so called cyclic semigroup, (W, ®) : W, = {w,w? w?, ...} through
the power operation:

w ifn=1
1

Yn e Zt: w”:{

wdw" " otherwise

If the ordered semigroup (W,®, =) is delimited and strictly monotone, then any of its
cyclic subsemigroups (W, ®) is of infinite order, in which case it is isomorphic to the
semigroup (Z", +) of positive integers under addition through the mapping f : Z* < W,
f(n) =w™. In addition, f is also an order preserving isomorphism between the shortest-
path routing algebra S = (Z%,00,4,<) and (W,,¢,®, =) in this case, as i < j <
w® < w’ due to strict monotonicity. One easily checks this by observing that for any
i< jrw < wew=w" < w. Thus, if A= (W,¢,®, =) has a strictly monotone
subalgebra, then for any graph GG and any labeling of the edges of G by positive integers
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Table 4.2: Local memory requirements of various routing policies.

Algebra Definition Properties | Local memory
Shortest path S=(Z% 00,+,<) SM, I O(n)
Widest-path W = (RT,0,min, >) S, I, M O(logn)
Most reliable path R =((0,1],0,%,>) SM, I O(n)
Usable path U= ({1},0,%,>) S, I, M O(logn)
Widest-shortest-path WS =8xW SM, I O(n)
Most reliable widest-shortest path | MRWS =R x WS SM, —I Q(n)
Shortest-widest-path SW=WxS SM, —I Q(n)

as weights, we can construct a labeling using weights from W so that a path is a shortest
path in the algebra & = (Z', 00,4+, <) if and only if it is a preferred path in A. This
implies that routing in A requires at least as much local memory as shortest-path routing
(i.e., Q(n) by Proposition 4.8), which completes the proof. ]

4.3.2 Applications

We list some of the relevant intra-domain routing policies studied most extensively in
the literature in Table 4.2, together with the algebraic definition, basic properties, and
the local memory requirements as indicated by the above theoretical results. Note that all
listed algebras are delimited, and they are also regular except the last one which is non-
isotone. Here, S is the well-known shortest-path routing algebra, for which Proposition 4.8
provides an adequate incompressibility characterization. Easily, Theorem 4.11 gives the
same characterization.

W denotes the widest-path routing policy [219]. Here, the weight of an edge is its
capacity, the end-to-end capacity of a path equals the bandwidth of its bottleneck edge
(the one with the smallest capacity) and the higher the capacity along a path the more
preferred. This corresponds to the selective regular algebra (R*,0, min,>), and so W
is compressible by Theorem 4.9. In particular, under the tree routing scheme due to
Fraigniaud and Gavoille [74|, widest-path routing can be implemented using 5logn bit
addresses and 3logn bits local memory, or log?n bits using the scheme due to Thorup
and Zwick [209]. Similar is the case for the usable-path routing strategy (U), applied
extensively in Ethernet switching.® However, the rest of the routing policies listed in the
table are incompressible.

Most-reliable-path routing (R) denotes the policy when edges are assigned a reliability
metric denoting the possibility that a packet will be transmitted successfully over the edge,
and the path with the highest probability of success is favored. Easily, R contains the
delimited strictly monotone subalgebra ((0,1),0, %, >) and thereby it is incompressible by
Theorem 4.11. Widest-shortest-path (WS) routing prefers from the set of shortest-paths
the one with the highest free capacity [6], and shortest-widest-path (SW, [140,219]), just
contrarily, prefers the shortest one out of the set of widest paths. These algebras can be
expressed as lexicographic products of the & and W algebras and, by Proposition 4.4,
strictly monotone [91]. Hence, for R and WS, which are isotone, Theorem 4.11 sup-
plies the local memory requirement of €2(n). This characterization is tight apart from a
logarithmic factor, as simple table-based destination-oriented routing requires O(n logn)

8The fact that Ethernet runs over what is called the Spanning Tree Protocol highlights the expres-
siveness of Lemma 4.10.
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bits by Observation 4.7. On the other hand, SV is not isotone. Theorem 4.12 holds for
non-isotone algebras as well, which supplies a Q(n) bits local memory requirement for
SW; nevertheless, at the moment it is an open question whether this characterization is
tight as the trivial routing function for SW stores a separate routing table entry for each
source-destination pair, which needs O(n?logn) bits per router.

4.4 Compact Policy Routing

As has been shown in the previous section, many practically relevant routing policies
are impossible to implement with sublinear size routing tables. In the case of shortest-
path routing, a standard way to improve scalability is to define compact routing schemes.
In these schemes, paths are allowed to be longer than the shortest one, but path increase is
upper bounded by a multiplicative stretch factor k, meaning that the paths yielded by the
compact routing scheme are at most k times as long as the shortest one. In the followings,
we characterize the routing policies that admit similar compact implementations, at least
for a sufficient abstract notion of stretch.

4.4.1 Compact Routing on Regular Algebras

We start with an algebraic generalization of the notion of multiplicative stretch.

Definition 4.13. A routing scheme is of stretch k& over algebra A, if for any path pg
selected by the scheme: w(py) < (w(pf,))*, where pf, is some preferred s — ¢ path in A
and

(w(pi)" = wpl) @ wpy) - @ wpy) - (4.1)

VvV
k times

By (4.1), the above definition indeed generalizes the notion of multiplicative stretch
originally defined for shortest-path routing.

Next, we ask which routing algebras lend themselves to be implemented in sublinear
space using a compact routing scheme that admits a finite stretch.

Theorem 4.14. If a routing algebra A is delimited and regular then there is a stretch-3
compact routing scheme for A.

We show that the stretch-3 shortest-path routing scheme due to Cowen [49] readily
generalizes to regular algebras. Below, we briefly reproduce that scheme. For further
details, see [49] and [209].

For each u € V, choose some node set L C V and with each u € V associate a
landmark 1, as the node closest (according to A) to u in the set L. Additionally, for each
u € V define a ball B(u) ={v € V 1 w(p;,) 2 w(p;,,)}, where p;, refers to the preferred
s —t path for any s and ¢. Finally, let the cluster of u be C(u) = {v € V : u € B(v)}.
When A is regular, one can use the lexicographic lightest-path algorithms in [191,192] to
obtain unique connected clusters for each wu.

The compact routing scheme due to Cowen is a hop-by-hop technique. The label of
node v consists of the triplet (v,l,, port;, ,), where v is the identifier of the node, I, is
the identifier of its corresponding landmark, and port, , is the local port at [, to the
first hop on the preferred path from [, to v. The packet header is the label of the target
node. The routing table at node u ¢ L consists of (v, port,,) tuples with respect to
each v € C(u) U L, where port,,, is again the local port label of the first edge along the
preferred u — v path.

v
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Packet forwarding inside a cluster occurs along preferred paths using the entries in
the local routing tables. To route a packet to a node v outside the cluster, node u first
forwards the packet to v’s landmark, from where it arrives to v using again a direct route.
In particular, when a packet with target v arrives to a node u # v, u checks whether v is
contained in its local routing table. If not, then [,, the landmark of v, is extracted from
the header. If u = [, then the appropriate port label is also extracted from the header,
otherwise it is looked up in the local routing table. Forwarding terminates when u = v.

From Proposition 4.6, we know that if A is regular then standard destination-based
hop-by-hop routing is correct. To show that the above scheme is also correct, the following
crucial fact is enough (observed for shortest-path routing by Cowen in [49]).

Lemma 4.15. Suppose that A is monotone. Now, if u stores an entry in its local routing
table towards some ¢, then the next hop v along the preferred p;, path also stores an entry
to .

Proof. Easily, by monotonicity p;, = py, = pj,; so v also stores an entry for ¢. m

Next, we show that the scheme is stretch-3 on A. As forwarding inside clusters oc-
curs along preferred paths, we only need to prove stretch-3 for indirect forwarding via
landmarks.

Lemma 4.16. If A is regular, then for any u,v € V with v & C(u) : w(p;,;,) ©w(pj,,) =
(w(py.)®.

Proof. (i) by assumption, w(p; ,) =< w(p;,). (ii) by using the triangle inequality:
w(py,,) = wipy,) ©w(p;,,) = wp;,) ®w(p;,) (the latter equlality comes by com-
mutativity). Here, the triangle inequality represents the basic fact that for any triplet
u,v,w € V the u —w — v path of weight w(pj ,,) ® w(p;,,) is a candidate for the preferred
u—v path p; , and therefore w(pj ,) < w(p; ) ®w(p;,,). (4i) using isotonicity, from (i)
and (71) we have w(p;,; ) = w(p;,) ® w(p;,). Combining (i) and (i) by isotonicity we
obtain w(py,, ) & w(pj, ) = wlpy.) © wipy,) © wlpy,). O

Finally, we show that the local information is indeed sublinear. Obviously, addresses
can be encoded on 3logn bits. The size of the local routing table at node u is O(|C'(u)|+
|L|). Using the landmark selection technique given by Cowen one obtains a local memory
requirement of O(n??) [49], which is improved by Thorup and Zwick to O(n'/?) in [209)].

Note that delimitedness is important to be able to apply Cowen’s scheme. If the
algebra is not delimited, then we might not be able to find landmarks reachable from
each node in the first place. And even if we did, the notion “stretch-£” is not well-defined
for non-delimited algebras as it would allow the stretched path to be of infinite weight.
To understand why this is a problem, suppose that for some non-delimited algebra and
for some u — v pair w(p,) < ¢ but w(p},)* = ¢. In such cases, the weight of the
preferred u — v path is finite, but the weight of the path through a landmark may be ¢
by our stretch-3 scheme, which would be clearly wrong as such a path is practically not
traversable from u to v.

An interesting case is when the policy is the widest-path routing algebra V. In this
case, for any n € Z" and any w € W : w"™ = w. Hence, stretch-3 paths are exactly the
preferred paths in this case. The same applies to any selective and monotone algebra.
Thus, Theorem 4.14 in fact gives an alternative proof to the claim that monotone and
selective algebras are compressible.
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Figure 4.2: A sample graph for p = 2, § = 2 if the words for the target nodes are [1, 1], [1, 2],
[2,1] and [2,2].

We argued in Section 4.2.2 that regular algebras are the “well behaved” cases from
the aspect of distributed routing, as they can be implemented by destination-based rout-
ing tables. Our results so far indicate that regular algebras are “well-behaved” from the
standpoint of compact routing as well: not just that we could give a general result char-
acterizing the memory requirements for implementing regular algebras, but we also found
that even when a regular algebra turns out incompressible a stretch-3 compact routing
scheme is guaranteed to exist. In the next section, we show that if regularity fails then
finite stretch compact routing becomes significantly more difficult.

4.4.2 Compact Routing When Isotonicity Fails

We have shown that regularity of a delimited routing algebra is sufficient to define a
stretch-3 compact routing scheme. It is an intriguing question whether it is necessary as
well. At the moment, we do not have an answer to this question. What we can show,
however, is that when isotonicity fails in a very intricate way, then no stretch-k routing
exists for any k constant.

Theorem 4.17. Let £ > 1 and let A = (W, ¢, ®, <) be a monotone algebra with the
property that for any p > 2 there exists a set of weights {wy,ws,...,w,} € W so that

vll.?je {]‘7"'7p}7i%j:
w; & w; = w and w; O w; = w?k . (4.2)

Then, there is no stretch-k routing scheme with sublinear memory requirement at all
nodes.

Proof. Borrowing the idea from [73], we present a family of graphs on which any stretch-k
implementation of A requires 2(n) bits at some nodes. Start with a set of nodes ¢; € C,
|C| =p > 2. Toeach ¢; € C, add § > 2 neighbors z;;,i € {1,...,p},j € {1,...,0} and
label the edges by w;. Finally, add 6" nodes ¢ € T and connect these to the z;; nodes
according to the following rule: for each ¢t € T' take the alphabet consisting of the symbols
(1,...,0), construct a word of length p from this alphabet and add an edge from z;; to ¢
if the ith symbol in the word is exactly j. Label any (z;;,t) edge by w;. Fig. 4.2 gives an
example.

By monotonicity and (4.2), the preferred path p}, , from any ¢; € C to any ¢t € T' is
the min-hop path, so w(p}, ;) = w; ® w; = w;. Fraigniaud and Gavoille in [73] show that
encoding these paths in the above family of graphs requires Q(n log §) bits of storage space
at the nodes in C. Intuitively speaking, the idea is that there are 20(n*) (different graphs
on n nodes in this graph family, and to encode the min-hop paths the routing algorithm
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needs to be able to differentiate among them, which requires ©(n) local storage space on
at least one node. See [73] for a detailed exposition of this idea.

Unfortunately, any stretch-k£ compact routing scheme for & finite needs to encode the
exact same min-hop paths. By construction, any non-preferred path p,, ; goes through at
least two edges of weight w; for some j € {1,...,p},j # ¢, and hence is at least of stretch
B w(pe,) = wi wi ©w; Dwy 2 (w; ® wy) B (w; © wy) (g w; @ w; i (w})* = w(ps, )",
where (i) is by associativity and commutativity, (i7) is by monotonicity, and (7ii) is by

(4.2). O

A key to the above result is the weight set with the special structure (4.2), an extreme
form of strict monotonicity. For k > 2, (4.2) violates isotonicity, therefore the theorem
does not apply to regular algebras. But to many non-regular algebras it does. For the
shortest-widest-path policy in particular, one easily generates the weights w; with the
required properties. Let w; = (b;,¢;), where b; denotes the capacity and ¢; a positive
cost, and for each i = 1,...,p choose b; = i and let ¢; = (2k)""'. One easily checks
that this construction satisfies (4.2), since if ¢ < j then b; < b; implies (b;, ¢;) + (b, ¢;) =
(biyci + ¢j) > (bj, c;)?*, while from ¢; < 2ke; < ¢; we get (b, ¢; + ¢;) > (b, ;). This
implies that the shortest-widest-path policy does not admit a compact implementation for
any finite stretch by Theorem 4.17.

4.5 Related Work

Thanks to the tenacious research efforts in the field of compact routing, we now have
a sufficient insight into the theoretical scalability of shortest path routing. Motivated
by the fact that many routing applications adopt a significantly more complex policy
to classify paths than pure shortest-path routing, we have shown an algebraic approach
towards generalizing the theory of compact routing to policy routing. We presented some
“landmark” theorems, which can be used as guidelines to classify routing policies based
on the respective algebraic properties, and we identified some algebraic requirements for
effectively trading between path preference and memory. As an important message, we
identified delimitedness and regularity as the cornerstones of compact policy routing,
allowing for a generic compressibility theory to be formulated as well as defining a finite
stretch compact routing scheme. The fact that regular algebras are exactly the ones that
can be efficiently implemented in a distributed way [86,91,191,192| makes these algebras
highly attractive for designing future routing policies [187].

Routing policies that are described by non-regular algebras, however, have turned out
very difficult to characterize, both in terms of the memory requirements for implementing
them at the network nodes as well as in terms of constant-stretch compact routing approx-
imations. Crucially, several highly important examples of non-regular policies occur in
the context of the Border Gateway Protocol (BGP), the inter-domain routing mechanism
that glues the Internet together [102,216].

In a sequel to the work presented above, we extended the framework of algebraic
compact routing to the non-regular BGP policies and we provided a comprehensive char-
acterization [175,176]. For this, we modeled BGP policies at multiple increasingly richer
levels of policy expressiveness. At the first, elemental level, BGP policy routing corre-
sponds to the so called provider-customer routing policy, where the autonomous domains
that constitute the large-scale structure of the the Internet, the so called Autonomous
Systems (AS), sell wholesale transit service to each other. It turns out that the resultant
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policy, under mild regularity conditions, is compressible. At the second level of BGP
policy routing, we extend the pure-transit model with admitting peer relationships to
also exist between ASes, in which nodes voluntarily exchange traffic with each other in a
settlement-free manner. We show that the resultant valley-free routing policy is incom-
pressible. We also find that all extensions of this policy to furtuer complexities of BGP
policy routing are likewise incompressible, including valley-free with local preference and
valley-free with local preference and tie-breaking on AS-path length.

Our results paint a pessimistic picture on the long-term sustainability of Internet
routing, providing the first ever theoretical evidence that BGP policy routing, the prevalent
routing policy across the Internet, is fundamentally unscalable. Our results in this regard
are completely in line with the mounting empirical evidence on the worrying scalability
issues the current-day Internet inter-domain routing ecosystem exhibits [119, 148, 233|.
See more on this matter in the next Chapter.

Motivated by the fundamental incompressibility of Internet routing, in [88] we at-
tempted to define suitable compact routing schemes for BGP policy routing. Unfortu-
nately, most of our results are negative: not just that BGP policy routing is incompressible
but essentially no “reasonable” definition of stretch exists that would admit a compressible
approximation for BGP policy routing.

Finally, in [236] we extended the algebraic compact routing framework to service
function chaining [93]. Here, network functions, like intrusion detection, network address
translation, or video transcoding, are realized as standalone or virtualized middleboxes
scattered throughout the network, and packets must pass through these functions in
specific order. In the setting of service function chaining many of the assumptions we
made in our algebraic framework are violated; for instance preferred paths may contain
loops (i.e., they degrade to preferred walks) and even computing the preferred path (the
preferred-walk computation problem) may prove intractable over certain algebras. Still,
we were able to give a comprehensive characterization on the computational complexity
and the compressibility of many practically relevant service function chaining problems.
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Chapter 5

Scalable Internet Routing: The
Information-theoretic Perspective

rI:{ROUGHOUT its several decades of history, the Internet has evolved from an experimen-
tal academic network to a global communications infrastructure. Most of the architectural
transitions that have taken place in the background, from the ARPANET protocols to
IP, from classful addressing to classless, from IP version 4 to version 6, were (and are)
largely fueled by concerns regarding the ability of the network, and the underlying design
principles, to accommodate future growth. In this Chapter, we take a new look at the
scalability of Internet routing through an information-theoretic lens. In contrast to the,
mostly negative, worst-case results of the previous Chapter, our findings below are mostly
positive: we introduce a new model that reduces Internet routing tables to simple sequen-
tial strings, which then lend themselves readily to an information-theoretical analysis,
and we show that these string representations, although indeed “incompressible” in the
worst-case sense, admit dramatic space-reduction using special-purpose forwarding-table
compression algorithms on particular inputs, like e.g., graphs structured similarly as the
large-scale Internet topology. We then apply our information-theoretical methodology to
the problem of compressing IP forwarding tables and we show orders of magnitude space
reduction beyond what is available with state-of-the-art techniques.

5.1 Preliminaries

5.1.1 Internet Packet Forwarding

Today, computer networks are built on the distributed destination-based hop-by-hop
routing paradigm. Routers maintain forwarding tables to associate incoming packets with
next-hop routers based on the destination address encoded in the packet headers, and sub-
sequent routers use the same mechanism to deliver packets hop-by-hop to the intended
target. Correspondingly, routers must keep enough information in internal memory to
be able to forward any packet, with any destination address, to the right next-hop. Un-
surprisingly, it is precisely this point where Internet scalability issues are manifesting
themselves most visibly [63,119,148,233|: as the routed IP address space grows so do the
forwarding tables and when routers run out of memory (or TCAM space) major outages
spark throughout the Internet, as it happened in August 2014, the infamous 512kday [168|.

We created an Internet data plane measurement infrastructure to understand the long-

29
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Figure 5.1: Number of IPv4 prefixes and information-theoretical entropy bound from empirical
data on rtr2.vh.hbone.hu and the linear fit, during 18 months in 2014 and 2015.

term trends affecting Internet scalability and we publish daily statistics and downloadable
datasets to the Internet community at the Internet Routing Entropy Monitor website.”
We were scraping roughly two dozen IPv4 forwarding tables every day during 2014 and
2015 from operational IP routers located in the Internet Default Free Zone.'® Throughout
this time, the number of entries in the forwarding tables has grown more than 11 percent
to well over half a million'? (see Fig. 5.1). Strikingly, our statistics at the same time
also indicate that the effective information content stored in the forwarding tables, in
terms of the information-theoretic entropy bound we define later, has remained relatively
stable (increased by only 0.5%), suggesting that the memory footprint of the compressed
representation of these forwarding tables was constantly around 70 Kbytes within this time
frame. If the entropy bound is consistently and robustly invariant to the network size, as
our measurements seem to indicate, then this can potentially mask the expansion of the
Internet from operators and alleviate rising scalability concerns for the time coming [233].

The systematic study of the memory implications of large-scale routing was pioneered
by Kleinrock and Kamoun in their seminal paper [121]. They pointed out that scalability
is the central design requirement for very large networks and concluded that some form of
forwarding state compression is inevitable. On the traces of McQuillan [145] they proposed
a hierarchical routing scheme, whereby nodes keep detailed forwarding information only
about nearby nodes and apply gradually more coarse-grained state aggregation as distance
increases. This way, they realized significant forwarding table reduction at the price of only
limited increase in path length. In this regard, Kleinrock’s work can be easily regarded
as the first systematic study on compact shortest-path routing; see the previous Chapter
and [127,209]. Underlying Kleinrock’s result is the observation that the assignment of
node addresses may encode substantial knowledge about the network topology and this
knowledge can be readily leveraged to shrink forwarding tables. Hierarchical routing still
lives on in today’s Internet routing architecture and it remains the only viable option,
with well-known scaling properties, to engineer large-scale address spaces to our days (see
e.g., RNR [1], GSE [160], Nimrod 38|, ISLAY [113]).

9See http://lendulet.tmit.bme.hu/fib_comp

10The DFZ is made up by the Internet core routers that maintain full BGP routing tables and can
route any packet without relying on any router of “last resort”, i.e., a default gateway.

1 This figure has increased to well beyond 800,000 entries since then, as of 2020.
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Hierarchical routing has some intrinsic limitations. First, node addresses serve as
“names” that encode the entire upstream cluster hierarchy, which causes problems with
handling topology changes, failure recovery, and renumbering [217]. A flat address space,
on the other hand, would introduce an extra name-to-address mapping step in all com-
munication sessions [1|. Second, hierarchical routes are decidedly sub-optimal (i.e., worse
than the best available path in the topology), while in most real-life scenarios optimal
routing is a must. This is especially so in Internet inter-domain policy routing, where mis-
taking a customer route for a much more costly provider route or a trusted third-party for
an unreliable intermediary can be detrimental, so much so that a suitable notion of path
length stretch cannot even be defined in this setting; recall Theorem 4.17 from the pre-
vious Chapter. This seems inevitable, in that hierarchical addressing for optimal routing
is provably suboptimal unless the underlying topology happens to be a tree.

It seems that we are in a trap here: our theoretical results from the previous Chapter
indicate that Internet routing is fundamentally unscalable in the worst-case sense for all
relevant routing policies, and not even decidedly suboptimal routing helps here as long as
we want to exert tight control on the allowed path-length stretch. This situation has been
recognized by the network community as well. In 2007, the “Internet Architecture Board
Workshop on Routing and Addressing” [148], an invitation-only event organized by the
experts responsible for the architectural oversight of Internet protocols and procedures,
concluded that scalability is among the most prominent risks endangering the future
growth of the Internet [148] (but see [63] for contrasting opinions). Indeed, operators are
facing the consequences of rapid forwarding table growth each day, where constantly in-
creasing fast memory on router line cards boosts silicon footprint, heat production, power
budget, and the CAPEX/OPEX associated with IP network gear, and forces operators
into rapid upgrade cycles [119,233].

However, there may still be a way out of this trap: all known theoretical results so far
are of worst-case nature, in the sense that there must be at least one worst-case graph
where the local memory requirement of storing the forwarding table grows dramatically
with the network size. But what if the Internet topology does not exhibit this worst-
case behavior? What if Internet routing in particular is still compressible, due to some
yet unknown special property of the IP address space or the high-level graph topology,
despite the prohibitive worst-case characterizations? In this Chapter, we present a series
of forwarding table compression schemes that prove remarkably efficient on Internet-like
graphs, suggesting that maybe the Internet indeed admits substantial reduction of the
routing state that has to be maintained by routers, beyond the worst-case bounds.

5.1.2 Forwarding Table Compression

Data compression is widely used in processing large volumes of information. Not
just that convenient compression tools are available to curtail the memory footprint of
basically any data, but these tools also come with solid information-theoretical guarantees
that the compressed size is indeed minimal, in terms of some suitable notion of entropy
[32,48]. Correspondingly, data compression has found its use in basically all aspects of
computation and networking practice, ranging from text or multimedia compression [235|
to the very heart of communications protocols [222] and operating systems [27].

Traditional compression algorithms do not admit standard queries, like pattern match-
ing or random access, right on the compressed form, which severely hinders their appli-
cability. An evident workaround is to decompress the data prior to accessing it, but this
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pretty much defeats the whole purpose. The alternative is to maintain a separate in-
dex dedicated solely to navigate the content, but the sheer size of the index can become
prohibitive in many cases [100, 155].

A recent theoretical breakthrough on compressed data structures, however, offers a
way to overcome these issues. A compressed data structure (or compressed self-index) is,
loosely speaking, an entropy-sized index on some data that allows complete recovery of
the original content as well as fast queries'? on it [55,64,68,100,141,154,155,166,235]. As
the compressed form occupies much smaller space than the original representation, the
time required to answer a query is often far less than if the data had not been compressed
in the first place [55,235]. Compressed data structures, therefore, turn out one of the rare
cases in computer science where there is no space-time trade-off.

Compressed self-indexes, and accompanying software tools, exist for a broad set of
applications; from compressors for sequential data like bitmaps (RRR), [166]) and text
documents (CGlimpse [64], wavelet trees [68]); compression frontends to information re-
trieval systems and search engines (MG4J [214], LuceneTransform [139]) and dictionar-
ies (MG [221], Succint [2]|); to specialized tools for structured data, like XML/HTML/
DOM (XGRIND [210|, XBZIPINDEX [67]|, Xpress [149]), graphs (WebGraph [220]), 3D mod-
els (Edgebreaker [182]), genomes and protein sequences (COMR1 [202]), multimedia, source
and binary program code, formal grammars, etc. [221]. With the advent of replacements
for the standard file compression tools (LZgrep [156]) and generic libraries (1ibcds [154]),
compressed data structures have become mainstream.

Curiously though, compressed data structures have found limited use in networking,
despite that Internet routing is affected critically by skyrocketing volumes of information
to store (as we described previously). Indeed, there has been a flurry of activity to
find space-efficient forwarding table representations |15, 40, 56,59-61, 90, 95,97, 104, 138,
143,159,190, 194,197,211, 215,223,231], yet very few of these go beyond ad-hoc schemes
and compress to information-theoretic limits, let alone come with a convenient notion of
entropy. But even these heuristic schemes have brought about an impressive reduction in
forwarding table size in the recent years: from the initial 24 bytes/entry (prefix trees [190]),
use of hash-based schemes [15,215], path- and level-compressed multibit tries [40,159,197],
tree-bitmaps [61], etc., have reduced the memory tax to just about 2-4.5 bytes/entry
[56,211,231]. Meanwhile, lookup performance has also improved [159].

The evident questions whether there is an ultimate limit on FIB aggregation, and
whether FIBs can be reduced to fit into fast router memory entirely, have been asked
several times before [40,56,60,197]. But to answer these questions, we need to go be-
yond conventional approaches to forwarding table compression and find (i) appropriate
notions for forwarding table entropy that set clear and provable limits on forwarding table
compression for particular inputs and (ii) new compressed data structures that encode to
entropy-bounded space and support lookup and update in optimal time. This Chapter is
dedicated to the theory and practice of such forwarding table compression schemes.

5.1.3 Contributions

The main goal of this Chapter is to augment the worst-case characterizations from the
previous Chapter and present a systematic study of the practical memory requirements
of hop-by-hop destination-based routing. We take a principled approach: we introduce

12Think of a version of the venerable gzip(1) tool that would allow to grep(1) into the compressed
file without explicitly deflating it first.
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Table 5.1: Notation.

G(V,E) a simple connected undirected graph on n nodes

Oy node degree of node v € V

Y ={ci,c9,...,¢5}, |X| =0 | alphabet of size 0

id(v) a globally unique integer id for node v, id(v) € [1,n]

port(v, u) a locally unique (to node v) port id for edge (v, u), port(v,u) €
[1,0,], (v,u) € E

w address width (usually logn)

T a forwarding table in the form of a binary prefix tree

t the number of nodes in T’

L the set of leaves in T'

l the label map L — ¥ = [1,§], specifying for each v € L the
corresponding next-hop label [(v) € X

certain entropy-like measures to describe the compressed size of forwarding state and we
provide an information-theoretic analysis to uncover the fundamental scaling properties of
large-scale hop-by-hop routing. This way, ours is the first study that translates problems
related to routing scalability to the language of information theory and gives verifiable
space-time characterizations on forwarding table complexity for particular inputs.

Our contributions are as follows:

e First, we concentrate on the simple model familiar from the previous Chapter where
node addresses constitute an unstructured (flat) address space. In this model,
forwarding tables are modeled as sequential strings, admitting tight memory re-
quirement characterizations using Shannon’s entropy measures and standard data
compression techniques. We consider increasingly more complex models for address
space design and we give the corresponding entropy measures as well as algorithms
that attain these entropy bounds.

e Second, we consider a hierarchical routing model that is tailored to describe the
Internet routing architecture. This model is much more complex than the previous
one, as now the address space has an intricate internal structure and our information-
theoretic framework must adequately reproduce this structure. Crucially, we can
still follow our principled approach and give a descriptive and theoretically sound
entropy notion to characterize the memory requirements of forwarding tables over
a structured address space, and we also show the corresponding compressed data
structures that provably admit the entropy bounds.

The rest of this Chapter is organized as follows. In Section 5.2 we give a short back-
ground on information theory and data compression. Then, in Section 5.3 we present
our forwarding tables over flat address spaces, in Section 5.4 we extend the analysis to
hierarchical address spaces, and in Section 5.5 we show analytically that the two entropy
notions under these seemingly disparate models are fundamentally related to each other.
Finally, Section 5.6 surveys related literature and positions are our work in the larger
context of Internet scalability research.

5.2 A Primer on Data Compression

Information theory is concerned with the storage, encoding, and transmission of text
messages and the quantification of the information content thereof. A key measure in
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information theory is empirical entropy, the average number of bits needed to encode one
symbol of a given text, which directly transforms into bounds on the efficiency of any
data compression scheme [32,48,96].

There are various approaches to represent the empirical entropy for an input text,
relative to a model of the source that generates it. In the following discussions we shall
assume that this model is static, that is, the compression scheme can use only information
that is available from the source a priori but it does not depend on the particular instance
of data that is being encoded. Of course, finding the best model for some problem domain
is the real difficult part in information theory.

5.2.1 No-information Model

Suppose that we do not possess any explicit knowledge on the input string s apart
from its length n and the alphabet ¥ = {¢1,¢a,...,¢5}, |X| = § it is defined on (see
Table 5.1 for a summary of notation). Then, encoding s is equivalent to being able to
distinguish any two of the possible §” strings we can get as input, which needs at least

I(s) =log(d") = nlogd bits (5.1)

of storage space. All logarithms below are taken to the base 2 and we assume 0log0 = 0.
For brevity, we do not differentiate between [logn| and log n unless otherwise noted. The
quantity I(s) given by (5.1) is called the information-theoretical lower bound for storing
s, referring to that we cannot hope for any compression beyond I(s) unless the source
discloses some further knowledge on the strings it generates.

5.2.2 Zero-order Model

Suppose now that, beyond the alphabet ¥ and length n, we also know the number of
occurrences n. of each symbol ¢ € ¥ in s, but we do not have any a priori knowledge
on the way symbols follow each other. Yet, we can use this limited amount of additional
knowledge to compress s beyond the information-theoretical lower bound. The lower
bound on the amount of memory needed to represent one symbol of s in this context is
given by the zero-order empirical entropy of s, defined as

Hy(s) = Z fle log " bits (5.2)

n n
ceY ¢

It is easy to see that Hy(s) < logd with Hy(s) = logd if and only if the empirical symbol
distribution in s is uniform (i.e., =+ = =2 = ).

Recall, Hy(s) gives the information content for a single bit of the input. For storing
the entire input string s, the zero-order entropy bound of nHy(s) bits gives a trivial lower
bound. Crucially, this is also an upper limit on the storage size of s as there are well-
known compression schemes (e.g., Huffman coding, arithmetic coding) that attain roughly
the the zero-order entropy bound; the real bound is nHy(s) 4+ o(n) bits [32,48].

As we do not have knowledge about the way symbols are laid out in s apart from the
relative frequencies <, we are confined to conservatively believe that the symbols follow
cach other randomly.'® Consequently, the zero-order storage bound does not depend on the

actual order in which symbols appear in s (c.f., (5.2)); e.g., using a zero-order compressor

13For instance, the zero-order entropy of English text is around 5 bits per character [32].
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the string mississippi and the anagram miiiisssspp encode to the same size, roughly
20 bits (Hy ~ 1.823 in both cases), despite that the latter seems much more organized.

Here, p. = =¢,c € ¥ is called the empirical probability distribution for s. When
the succession of symbols in s is essentially random (i.e., subsequent symbols can be
regarded as if chosen independently) and n is large then p, approaches the probability of
¢ appearing in s and the empirical entropy Hy(s) converges to the conventional Shannon

entropy » .. pclog/p..
5.2.3 Higher-order Models

In practice, subsequent symbols in a text often do not follow each other haphazardly.
Rather, certain symbols appear more frequently in certain contexts and almost never in
others, like in normal English text the letter “q” is almost certain to be succeeded by the
letter “u” while basically never by the letter “c” or “h” [32,54]. In general, for any k > 0
integer define the k-contezt for the symbol s[i] appearing at some position i € [k+1,n] in
s as the k-long string s[i — k| ... s[i — 1] immediately preceding s[i] and for any k-context
g € ¥F let nge denote the number of times ¢ is followed by symbol ¢ in s. Then, the
k-order empirical entropy

Ne Nge N
Hy(s)=>_ - > —log (5.3)

ceEX qEZk e

gives a lower bound to the output size of any text compressor that encodes each symbol
with a codeword that depends only on the k-context preceding the symbol and the symbol
itself [69,142|. Hy < Hj_; and it is generally held that Hj converges to the “real” empirical
entropy for large k. In practice usually taking & = 4 or 5 is enough and Hj decreases
very slowly even after £ = 1. Using this definition, the k-order empirical entropy bound
is simply nHj(s) bits.

As opposed to the zero-order model, in a higher-order model the arrangement of the
symbols in s does count: the more organized the string the better the prediction of a
symbol from its k-context and so the smaller the k-order entropy and the size of the
compressed string. For instance, for the string mississippi H; ~ 0.8 bits but for the
visibly more regular anagram miiiisssspp we get only H; ~ 0.6 bits. This suggests that
in a setting where we are to a certain extent free to choose the arrangement of the symbols
in some string we should strive for more order, which would then directly translate into
better compressibility through the notion of higher-order entropy.!> At the extreme, if we
can reorder a string into a few runs of identical symbols (like in the example miiiisssspp)
we realize maximum compression by simple run-length encoding [32,48|.

5.2.4 Compressed Data Structures

In the context of forwarding table compression, our aim is not only to squeeze as much
data into as small memory as possible, but we also want to execute certain operations in
place; most importantly, fast random access to any position in the string and, possibly,
arbitrary updates to the content as well [180]. Traditional data compression schemes,

14 And the latter is also much less meaningful at the same time, which nicely demonstrates how the above
notion of “information content” is a purely artificial metric that has nothing to do with our anthropocentric
perception of information.

15See e.g., the Burrows-Wheeler Transform for a practical compression scheme that rests on this
observation [142]
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like Huffman coding or run-length encoding, do not support such operations without first
decompressing the data. Thanks to recent advances on compressed data structures, how-
ever, there are now a well-tested suite of compression schemes that allow fast operations
right on the compressed form.

Static compressed self-indexes implement fast random access to the compressed string
but no updates (without a complete rebuild from scratch). When the size of the alphabet
is small, say, 0 = O(logn), generalized wavelet trees [65] attain nHy(s) + o(n) bits of
space and O(logn) random access, while the schemes in [69] and [16] attain nHg(s) +
o(nloglogn) bits space for any £ = o(logn) with random access in O(logloglogn)
time. Dynamic compressed indexes permit updates to any position as well: the scheme
in [141] attains nHy(s) + o(nloglogn) bits space and random access and update in
O(lognloglogn) time. For precise definitions, generic storage bounds, and higher-order
string indexers, see [66,100,155,235].

5.3 Forwarding Table Compression Over a Flat Ad-
dress Space

In this Section, we consider a model where there is no structure in the address space,
the case of flat addresses. In this model the fact that two addresses are close to each
other in the address space (e.g., addresses are integers and the difference of two addresses
is small) does not necessarily connote any special meaning apart from the fact that the
addresses happen to be similar. This is in contrast to hierarchical routing, e.g., the
Internet, where two nodes’ proximity in the address space usually implies their proximity
in the routing hierarchy, and usually also geographic proximity (see the next Section).
The flat address space model is used in MPLS label switching, Ethernet forwarding, and
many clean-slate routing designs [34].

5.3.1 Formal Model

We adopt the notion of routing functions from the previous Chapter to characterize
the local memory requirement of hop-by-hop destination-based routing over a flat address
space. Below, we briefly review the most important definitions and assumptions from
there; see also [80] and [179].

Let G(V, E) be a simple connected undirected graph on n nodes. We presume a
flat address space on V: each node v € V is labeled with a globally unique integer
id(v) € [1,n]. Note that ids are the only “addresses” we use to identify nodes and as
such they are of global scope. The question whether we are allowed to assign/control the
assignment of node ids will prove essential, we shall return to this crucial question soon.
Each outgoing port (v,u) € E of each node v € V is also labeled with a locally unique
port id port(v,u) € [1,0,], where 4, denotes the node degree of v. Port ids are local and
hence can be selected arbitrarily'® in the range [1, d,].

We further presume that some routing policy (e.g., shortest-path, min-hop path,
valley-free) has been fixed in advance and packet forwarding must strictly obey the paths
emerging from this policy. As far as our model is concerned, however, we do not assume
any particularity about the routing policies themselves, apart from that at each node

16The compact routing literature distinguishes between the designer port model where port ids are
assigned by the designer, and the fixed-port model where port ids are set by an adversary [8]. In our
model these two cases coincide.
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it assigns a single, well-defined output port with respect to each other node in the net-
work, so that packets destined to that node must be forwarded via the corresponding port
assigned by the policy.

The routing function R, at node v is the usual destination-based hop-by-hop routing
function (recall Section 4.4.1). Packet headers contain the id of the destination node, say,
u, and the local routing function R, at each node v stores the output port to pass the
packet on whenever the destination id in the packet header is exactly u. In particular,
the routing function R, : [1,n] — [1,d,] maps a destination node id to the corresponding
outgoing port at node v, more closely, the local port id of the corresponding link. We
suppose that each node v € V' is aware of its own id (this immediately imposes log(n)
bits lower space bound for storing s, that we shall omit from here onwards) and hence
can identify packets destined to itself, so we shall set R, (id(v)) arbitrarily.

It is convenient to think of R, as a string of length n on the alphabet ¥, = [1,d,], so
that the symbol s,[i] at position i € [1,n] gives the output port to be used to forward
packets towards the node whose id is 7. To stress this string-view, from now on we shall
use the string-notation s, to denote the local routing function of a node v. A forwarding
decision in this setting reduces to a random access on s,, which most compressed string
self-indexes support out-of-the-box (see Section 5.2.2). Modifications, furthermore, are
simple string updates.

Example 5.1. A sample network and the corresponding shortest-path routing functions
for two node address assignments are given in Fig. 5.2; in particular, Fig. 5.2a shows a
random node id assignment and Fig. 5.2b gives a node id assignment that we chose for
a particular purpose that we reveal later. Consider the first example in Fig. 5.2a and
consider the thick node, with id 12. The routing function s;5 of node 12 is also given in
the figure. Now, suppose that node 12 receives a packet with a header that identifies node
3 as the destination. Then, forwarding occurs as follows: node 12 looks up its routing
function s;5 at position 4 (one plus the destination node id 3 since node ids are of base
0), finds the next-hop label 1 at this position, and hence forwards the packet at edge 1 to
node 23 along the shortest path. Node 23 in turn will likewise consult its routing function
s93 and forwards the packet at the port corresponding to the symbol at position 4 in s93.

This example shows that the “source model”, the abstract model that defines how
node ids are generated, largely determines the attainable storage size of forwarding tables.
Below, we enumerate several increasingly stronger models for network address space layout
and we specify the corresponding entropy bounds for storing the routing functions in the
specific address space model, along with the suitable compression schemes that attain
these entropy bounds.

5.3.2 Graph-Independent Case

Suppose that the source does not reveal any further knowledge on the graph and the
selected forwarding paths other than the number of nodes n. Then, all we know is that
the routing functions will comprise n symbols, each coming from the alphabet ¥, = [1, n].
We are bound to assume |¥,| = n, since the only upper limit on the alphabet size that
holds in any simple graph is that the maximum degree is at most n — 1, plus we need
another symbol to distinguish packets destined to the node itself.

It is then easy to see that the graph-independent case maps to the no-information
model of Section 5.2.1, and the respective storage size characterizations bring over as
follows.
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s12=222122221111012221112121 s7=111112202222222222211111

(a) random address space (b) optimized address space

Figure 5.2: Sample graph from Kleinrock’s original paper [121] with port ids and routing
function for the thick node over different address spaces; (a) in the name-independent model with
randomly assigned flat node ids (average zero-order routing function entropy Hy ~ Hg = 1.1 bit);
and (b) in the name-dependent model with “optimized” flat node ids minimizing the first-order
entropy by brute force search (Hy > H; = 0.355 bit). Observe that nearby nodes are mapped to
close-to-each-other node ids in the optimized address space (b), which translates into three-fold
space reduction compared to the random address space case (a).

Theorem 5.1. Given a graph G on n nodes, for any v € V storing the routing function
s, requires at least nlogn bits. In addition, there is an encoding scheme that stores s, in
at most nlogn bits and supports lookups in O(1) time.

Proof. The proof is trivial. By (5.1), nlogn bits of information is needed to at least
differentiate between any two string instances when the alphabet size is n, so nlogn is
a lower bound in the graph-independent model. At the same time this is also an upper
bound: any naive sequential string encoding will attain the information-theoretical lower
bound that stores each next-hop symbol on logn bits, yielding nlogn bits space for the
entire routing function and supporting O(1) access to a random position. O

As we have shown in the previous Chapter, this bound coincides with the general
worst-case lower bound for shortest-path routing as per Gavoille and Pérennés (see Propo-
sition 4.8), which we proved to be valid for many routing policies beyond shortest paths
(recall Theorem 4.11 and Table 4.2). As we argued therein this is bad news, as super-
linearly scaling memory for mere packet forwarding in a network growing as rapidly as
the Internet would put routers under endless memory stress [233]. Things are not that
hopeless though because particular graphs and routing policies may admit significant
space-reduction beyond the prohibitive worst-case, as we show next.

5.3.3 Name-Independent Case

Consider the following model. Suppose we know the input graph G of size n, the
next-hop alphabet ¥, = [1,d,] for each v € V| and the routing policy that assigns the
paths. However, we assume that the node ids id(v) : v € V are not part of the input;
we only know that the ids uniquely identify the nodes but in other respects we assume
they were chosen by an adversary in [1,n]. Correspondingly, in this model the symbols
of the routing function s, are known but s, itself is not, since the succession of symbols
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in the routing function is dependent on the (possibly adversary) assignment of node ids.
Correspondingly, the memory at each node must be large enough to store any routing
function that may arise over any permutation of ids. See Fig. 5.2a.

Even though we do not know the routing function itself, we may still use any statistics
on its contents for compression that is invariant to reordering. In the below, we use
the next-hop distribution n; : i € [1,d,],v € V, where n; denotes the number of times
output port id ¢ appears as a next-hop port in s,, since this statistics is easy to compute
from the routing policy and does not change when reassigning the node ids. Easily,
the name-independent model maps to the zero-order model of information-theory, which
uses the statistics i/n : ¢ € [1,0,] for compression and thereby does not depend on the
assignment of node ids that is beyond our control (Section 5.2.2). In many practically
relevant graphs, use of a zero-order compression may yield significant memory savings
beyond the information-theoretic lower bound as we show in [124].

The below bounds apply on the attainable compression in the name-independent case.

Theorem 5.2. Given a graph G on n nodes, a node v € V, the next-hop alphabet
¥, = [1,0,], and the routing policy that assigns next-hops at v, let n; denote the number of
times the routing policy assigns output port id i € [1,4,] as a next-hop to any destination
node u € V : u # v. Then, storing the routing function s, requires at least nHy(v) bits
memory, where Hy(v) is the empirical entropy of s, over any assignment of node ids:

Ho(v) = Ho(s,) = > %mgﬁ . (5.4)

) n;
746[1,6’0}

In addition, there is an encoding scheme that stores s, in at most nHy(v) + o(n) bits and
supports lookups in O(logn).

Proof. Proving that nHy(v) bits is a lower-bound for storing s, in the name-independent
model is trivial, using basic ideas available in every textbook on data compression [32,48|.
We still reproduce the proof briefly below to demonstrate the main idea and to refer the
reader back to this proof later when these ideas can be reused in other contexts.

Assuming an adversarial node id assignment, any algorithm storing s, will need to
be able to distinguish all routing functions in which the next-hop port id 1 appears at
exactly (:1) positions, port id 2 appears at (";2"1) positions, etc., putting the number of
distinct routing functions to

<n)(n—n1) (n—...—n(gv_l) n!
n ny ) ns [, nd

Then, uniquely identifying each possible routing function will need log H"—Ll, =nHy(v) +
o(n) bits, using the Stirling formula: Inn! ~nlnn —n + O(Inn). Z

To prove that nHy(v) + o(n) bits is also an upper bound, we may use essentially any
compressed string self-index from [16, 69| (recall Section 5.2.4); e.g., generalized wavelet
trees [65] and Huffman-shaped wavelet trees will attain nHy(v) + o(n) bits of space and
O(logn) random access. O

We note that the above upper bound is for the static case, i.e., when there is no need
to support fast updates. For the dynamic case, where we want to support updates to
the compressed forwarding table without a full re-build, we cannot reach this size at the
moment: the best known encodings attain nHy(s) + o(nloglogn) bits space and random
access and update in O(lognloglogn) time [141]. For more details, see [66,100,155,235].
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Example 5.2. Consider the running example in Fig. 5.2. The first address space was
obtained by assigning ids to nodes by a random shuffle of the integers [1, n|, see Fig. 5.2a.
The entropy of the corresponding routing function for the thick node (see the figure) is
Hy = 1.1 bit in the zero-order model, roughly equal to the first-order entropy H; due to
the independence of node ids. This setting illustrates the name-independent model where
we have no control over the assignment of node ids, and the best we can do is to assume
that node ids were set by an adversary, and thereby effectively random.

5.3.4 Name-dependent Case

In the final model we discuss in the context of the flat address space model, we again
require the graph G to be fixed but we are now free to assign node ids. This case is usually
referred to as the name-dependent model in the compact routing literature [127| and, as
one easily checks, it maps to the higher-order models of information-theory (Section 5.2.3).

Indeed, the sequence of next-hop ports in the routing functions is completely deter-
mined by the node id assignment, which in this case may not be some arbitrary permu-
tation like in the zero-order model. Rather, the id space could be carefully optimized in
order to encode maximum information about the underlying topology into the ids proper
and so the (otherwise flat) node id space in the higher-order model can function as a
structured address space for the network at hand (see the next Section). This in turn
might make it possible to compress routing functions more efficiently, by the fact that a
carefully chosen node id space would transform into small higher-order entropy.

The corresponding space bounds are then as follows.

Theorem 5.3. Given a graph G on n nodes, the assignment of node ids id(u) : u € V,
a node v € V, the next-hop alphabet ¥, = [1,0,], and the routing policy that assigns
next-hops at v, let n; denote the number of times the routing policy assigns output port
id ¢ € [1,0,] as a next-hop to any destination node v € V : v # v and let ny, be the
number of times the routing policy assigns exactly the next-hop sequence ¢ € [1,,]*
the k addresses before an address to which next-hop ¢ is assigned. Then, encoding the
routing function s, needs at least nHy(v) bits for any k& > 0 integer, where

Hy(w) = Hi(s) = > an’ n (5.5)

4€[1,60]k $€[1,6,] T

In addition, there is an encoding scheme that stores s, in at most nHy(v) + o(n) bits for

any k = 0(1olgoign) and supports lookups in O(lognloglogn) time.

Proof. The proof for the lower-bound part is a trivial based in the ideas in the proof of
Theorem 5.2, but see also [48]. For attaining the above entropy bounds, one may use the
higher-order string indexers in [67,69). O

The question arises then how to assign node ids to minimize the above higher-order
entropy bound, that is, how to design the address space? A possible strategy would be to
map (topologically) adjacent nodes to consecutive node ids, based on the intuitive idea
that from a far-away point in the graph such adjacent nodes would most probably be
reached through the next-hop port, which would then allow to use the context of some
node (i.e., the next-hop ports for the nodes mapped to preceding node ids) to guess the
next-hop port for this node. The below example illustrates this strategy.
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Example 5.3. Consider again Fig. 5.2. The second address space here was obtained by
“de-randomizing” the address space in order to demonstrate the difference of the higher-
order model from the zero-order setting, see Fig. 5.2b. This address space was found by
a brute force algorithm, which aims to find the permutation 7 of the node id space [1,n|
that minimizes the average first-order entropy of nodes’ routing functions:

min % Z Hy(m(sy)) -

veV

The resultant “optimized” address space is far from being random: in fact, it has the
curious property that nodes that are close to each other in the graph are mapped to nearby
node ids in the address space, which translates to three-fold space reduction compared
to a random address space: H; = 0.355 < Hy = 1.1. This setting illustrates the name-
dependent model, where we have control over the node ids and hence we can find an
address assignment that minimizes the higher-order entropy. See more on address space
optimization in [124].

5.4 Forwarding Table Compression in Hierarchical Rout-
ing

So far we have discussed forwarding table compression over a “flat” address space.
The very purpose to adopt this flat address space was to eliminate intrinsic address
space “structure”; this way, the flat node ids allow us to model forwarding tables as
simple “unstructured” sequences of symbols (strings) and develop the related space bounds
and encoding schemes using basic results from information theory and compressed data
structures. Curiously though, as we gradually moved from the simple zero-information
model and the name-independent model to the more complex name-dependent model,
and the related “optimized” address spaces, we could gradually introduce address space
structure in the form of “node id proximity” (recall Example 5.3), and thereby attain higher
compression. Nevertheless, the address space structure has remained highly elusive, buried
underneath an intricate higher-order information-theoretical argument. In this Section,
we make this argumentation explicit and turn to discuss forwarding table compression
over the exemplary structured address space: hierarchical routing [121].

5.4.1 Formal Model

Hierarchical routing. The main motivation in hierarchical routing is to curtail the
amount of routing state that is stored in network nodes using geographical or topolog-
ical “graph aggregation” [121]. The idea is to hierarchically partition the network into
increasingly smaller groups (or clusters) of nodes based on topological proximity and
then representing entire clusters with a single entry in the forwarding tables. The top-
level cluster contains all nodes and lower-level clusters iteratively partition the respective
upper-level cluster into smaller groups. A node’s address is the top-down concatenation of
cluster ids that contain it. This allows each node to calculate the lowest common cluster
to any other node, which will then serve as an index into the forwarding table for sending
packets to that node. The forwarding table itself contains one entry per node in the same
lowest-level cluster, one entry per each parent-level cluster, etc., all the way up to the
top-level.
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Figure 5.3: Sample graph from Kleinrock’s original paper on hierarchical routing [121], with
hierarchies and node addresses as of therein.

Example 5.4. Fig. 5.3 reproduces the hierarchical clustering from Kleinrock’s original
paper [121] on the running example Fig. 5.2. Here, node 1.1.1 maintains a separate
entry for each node in its own cluster (i.e., all nodes with addresses 1.1.%), one entry
per each second-level cluster (addresses 1.%*) in its own top-level cluster, and one for each
top cluster. Easily, the address space is now hierarchical, where a node’s location in the
graph is fully described by the succession of increasingly larger higher-level clusters that
contain it (plus its own id), rendering the address space structure explicit that was only
implicit in flat addressing.

Forwarding table compression is implicit in hierarchical routing, in that just by the
act of aggregating entire groups of nodes into a single cluster and representing the entire
cluster with a single entry in the forwarding table already delivers substantial routing
state space reduction. On top of this, we can usually attain further compression using a
sophisticated prefix tree compression algorithm, as we show below. This state aggregation
does not come for free, however: as clusters are aggregated higher up in the cluster
hierarchy we gradually lose the precise information on the small-scale topology of low-
level clusters, which may then lead to suboptimal routing.

Example 5.5. Consider again Fig. 5.3 and assume shortest-path routing. Here, node
1.1.1 maintains a single entry with respect to each node with address in 2.*.* even
though, for strict shortest-path routing, it would need to maintain separate forwarding
table entries to reach 2.1.1 and, say, 2.2.3, because the corresponding shortest paths
take different next-hop ports from 1.1.1.

Consequently, state aggregation in hierarchical routing necessarily incurs path-length
increase. This is in sharp contrast to the name-dependent model on flat addresses (Sec-
tion 5.3.4), where our forwarding table compression schemes were required to precisely
reproduce the optimal paths (as per the routing policy). In hierarchical routing subopti-
mality is not only allowed, it is inherent in the routing model. Fortunately, the resultant
path-length growth (usually referred to as path inflation in the related literature [196])
is not significant: in the case of the Internet, which relies on hierarchical routing (see
below), empirical studies confirm that path dilation affects only a limited fraction of
source-destination pairs and the resultant stretch remains under 120-150% [50, 196].
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IP forwarding tables. In his seminal paper [121], Kleinrock has laid down the concep-
tual foundations for a scalable routing architecture for large-scale networks. However, it
was the ARPANET, and later the Internet and the Internet Protocol (IP) suite, which
has turned the conceptual idea to tangible reality that is still operational, 40 years after
the original paper. Below, we develop a formal model for representing IP forwarding ta-
bles and then we define the corresponding compression schemes. In what follows we shall
concentrate on version 4 of the IP suite exclusively (IPv4); the results transform to IPv6
with trivial modifications.

Clusters, as per hierarchical routing, are called subnets in IP routing. Node ids in
[Pv4 are 32-bit unsigned integers and a subnet in this address space is defined by a subnet
prefiz X/Y (in the so called CIDR notation), where Y is prefix-length and X is the 32 —Y
bit subnet identifier (counting from the MSB in network-byte order) usually denoted in
the “dotted decimal notation”. This way, the prefix 0.0.0.0/0 (or simply 0/0) covers
the entire IPv4 address space and, oppositely, a subnet with prefix length 32 identifies
a single IP address. In addition, a prefix A/B contains the more specific prefix C/D if A
is a prefix of C of length B < D. A prefix matches an IP address if the IP address is a
(fully-specified) more specific subnet for the prefix. For more detail on IP addressing, the
reader is referred to the textbook [26].

The IP routing model implements a slightly modified version of hierarchical routing.
Similarly to hierarchical routing the IP forwarding table represents the entire subnet with
a single entry, but whereas in hierarchical routing the forwarding table stores each remote
cluster at most once, in IP routing we allow a subnet to be specified multiple times; in
particular, not just the subnet prefix but all the “less specific” subnets that “contain” it as a
more specific may also be explicitly stored, with a distinct next-hop label (see Example 5.6
below). Disambiguation in such cases occurs by the longest prefiz matching (LPM) rule:
whenever multiple subnet prefixes match an IP address then the forwarding table lookup
algorithm must return the most specific matching prefix, with the corresponding next-hop
label. Efficiently supporting this complex longest-prefix-matching semantics is perhaps
one of the most difficult aspects of IP forwarding.

Example 5.6. A sample IP forwarding table is given in Fig. 5.4a. This table stores
for a set of subnet prefixes (i.e., for different clusters as per hierarchical routing) the
corresponding output port along the preferred path in the form of an opaque next-hop
label. Whereas in hierarchical routing the forwarding table stores each cluster at most
once, in [P routing we allow a subnet to appear multiple times in the forwarding table;
e.g., for the subnet 96.0.0.0/3 we have a direct entry as well as a separate entry for its
immediate “parent” less specific subnet 64.0.0.0/2, the grand-parent 0.0.0.0/1, and
the top-level subnet 0.0.0.0/0. Then, the IP address 96.0.0.1 (binary form 011...)
is matched by all these prefixes and the longest matching subnet prefix is 96.0.0.0/3,
assigning the next-hop label 1 to any packet received with this [P address as destination;
for 79.120.55.19 (binary form 010...) the LPM result is 64.0.0.0/2 and the lookup
result is the corresponding next-hop label 2; and finally for 152.66.240.111 (binary 1. . .)
the only matching prefix is the top-level prefix 0.0.0.0/0 and so packets destined to this
address are to be forwarded to the “default gateway”, identified by the next-hop label 2.

Let N denote the number of entries in the FIB and let 6 = |X| denote the number
of next-hops. An IP router does not keep an adjacency with every other router in the
Internet and so § < N; specifically we assume that § is O(polylog N) or O(1) [44,207|.
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Figure 5.4: Representations of an IP forwarding table: (a) tabular form with subnet address
in CIDR notation, binary format, and next-hop address label; (b) prefix tree with edge labels
marked; (c) leaf-pushed trie; and (d) XBW-b transform (see later).

Finally, let W denote the width of the address space in bits (e.g., W = 32 for [Pv4 and
W = 128 for IPv6).

Trivially, the tabular representation of IP forwarding tables (see Fig. 5.4a) is not the

most efficient one. The storage size is (W + 1g )N bits (recall Observation 4.7 from the
previous Chapter), but what is worse a single lookup or update operation would require
looping through the entire table, taking O(N) time, which is clearly prohibitive when
IP routers regularly store almost a million prefixes (N ~ 10°) and support hundreds
of millions of lookups per second. This makes IP packet forwarding one of the most
compelling use cases for compressed data structures.
Prefix trees. For hierarchical routing, and for IP forwarding in particular, binary prefix
trees (or tries [190]) support lookup and update much more efficiently than the tabular
form. A trie is a labeled ordinal tree, in which every path from the root node to a leaf
corresponds to an IP prefix and lookup is based on successive bits of the destination
address: if the next bit is 0 proceed to the left sub-trie, otherwise proceed to the right,
and if the corresponding child is missing then return the last label encountered along the
way. Prefix trees generally improve the time to perform a lookup or update from linear
to O(W) steps, at the cost of increasing memory size to roughly O(N log N) bits.

Example 5.7. The prefix tree for the sample IP forwarding table is given in Fig. 5.4b.
The LPM search for the IP address 79.120.55.19 (binary form: 010...) goes as follows:
we start from the root and we store the node’s next-hop label 2 in a temporary variable,
take the left child along the edge marked with the label 0 since the first bit is 0 to arrive
to a node labeled with 3, we overwrite the temporary variable storing the best match
found so far to 3, then we take the right child storing label 2 again, and then we notice
that the left child is missing so we terminate the search and return the last label found,
i.e., 2. Similarly, the LPM result for 152.66.240.111 (binary 1...) is next-hop label 2
as found in the root node since the LPM search terminates at the first (missing) child.

Obtaining a prefix-free form. There is a considerable literature on compressed rep-
resentations for general labeled trees and related notions of entropy, see a recent survey
in [67]. Unfortunately, none of these proposals can be used readily for IP forwarding table
compression due to the special semantics of IP lookups. In particular, whereas in stan-
dard labeled tries and search trees it is enough to return the (single) label identified by
the search key, in IP forwarding the longest-prefix-matching semantics requires to either
return all matching prefixes or, better yet, make an additional search on less specifics to
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find the smallest prefix that contains the search key (i.e., the IP address). The major
difficulty in IP forwarding table compression is, therefore, to modify a well-known trie
compression scheme from the literature in a way as to support LPM lookups and, at the
same time, controlling the analytical storage size bounds.

The main idea in our schemes is to explicitly “disambiguate” the prefix tree prior to
subjecting it to information-theoretical analysis and compression, in a way that forwarding
equivalence is maintained: the disambiguated prefix tree will return exactly the same
result for each LPM search as the original IP forwarding table would do but it will possess
a certain set of properties that will make it much simpler to compress.

In order to convert the prefix tree into a unique, normalized form we adopt the leaf-
pushing technique. In leaf-pushing, a preorder traversal first pushes labels from the parent
nodes towards the leaves and then, in a second postorder traversal, each parent with
identically labeled leaves is substituted with a leaf marked with the children’s label.

Next, we introduce some terminology that will be useful later.

e A proper binary trie is such that it possesses the following nice structure: any node
is either a leaf node or it is an interior node with exactly two children. A leaf-pushed
trie is a proper trie.

e A leaf-labeled trie has the property that interior nodes do not maintain labels while
all leaves are explicitly labeled. Leaf-pushed tries are leaf-labeled.

e By the previous property there are no “less specifics” in the leaf-pushed trie, implying
that the transformed IP forwarding table is prefiz-free.

e The leaf-pushed trie is forwarding-equivalent with the original trie; for proofs see
our earlier work [120], also [60,193,197].

e Given a leaf-labeled trie, the string composed by enumerating the leaf labels in
breadth-first-search order from left to right is called the label map of the trie.

Example 5.8. The leaf-pushed prefix tree for the sample IP forwarding table is given
in Fig. 5.4c. Observe that the leaf-pushed trie is proper, leaf-labeled, and prefix-free; in
addition, the label map of the trie is given by the string “23221” (see S, in Fig. 5.4d). The
LPM search goes similarly as before, always tracking the edge whose label coincides with
the subsequent bit of the IP address, but this time we do not need to memorize temporary
lookup results since, due to the edge-labeling property and by the prefix tree being proper
we are guaranteed to terminate in a labeled leaf node whose label we immediately return.
For instance, for the IP address 79.120.55.19 (binary form: 010...) we land at the
downmost third leaf counted from the left, marked with the next-hop label 2. Observe
that this LPM result is exactly the same as in the tabular form and in the original prefix
tree; this illustrates that leaf-pushing yields a forwarding equivalent representation.

5.4.2 Compressing IP Forwarding Tables

The main reason why we introduced the leaf-pushed representation is that, by its
“nice” properties, it yields a labeled prefix tree form in which LPM search boils down
to a simple tree traversal, just like on any ordinary search tree. This observation then
opens up the opportunity to leverage existing information-theoretical analysis, and the
corresponding compressed encoding schemes from the literature, to reduce the size of IP
forwarding tables.

In the rest of this Section, we prove our main result on compressing forwarding tables
in hierarchical routing in general, and in IP forwarding in particular.
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Theorem 5.4. Suppose we are given an [P forwarding table 7" as a proper, binary, leaf-
labeled trie 7" with n leaves and label map s defined on the label alphabet ¥ = [1,4].
Then, storing 7" requires at least 2n + nHy(s) bits of memory, where Hy(s) is the zero-
order empirical entropy, as of (5.4), of the label map s. In addition, there is an encoding
scheme that stores T" in at most 2n+mnHy(s)+o(n) bits so that lookup on the compressed
representation terminates in O(W) time if § = O(polylogn).

In the rest of this Section, we prove the Theorem through a series of technical lemmas.
Entropy bounds. First, we show that 2n 4+ nHy(s) bits is a lower bound for storing T'.

Lemma 5.5. Let T be a proper, binary, leaf-labeled trie with n leaves and label map s.
Then, storing T requires at least 2n+nHy(s) bits of memory, where Hy(s) is the empirical
entropy of the label map s as given by (5.4).

Proof. The lower bound is justified with a counting argument. The number of proper
binary trees on n leaves is given by the (n — 1)-th Catalan number C,,_; = %(2::12),
therefore we need at least 1gC,,_1 = 2n — ©(logn) bits to encode the tree itself [67,106].
Storing the label map defined on the n leaves of T' requires an additional nHy(s) bits,
using the same arguments as in the proof of Theorem 5.2, and since the tree and the label

map are independent we get the required result. O

Intuitively speaking, the entropy of the tree structure corresponds to the information-

theoretic limit of 2n bits as we do not assume any regularity in this regard. To this, the
leaf-labels add an extra nHj bits of entropy.
Encoding scheme. Next, we present our compressed IP forwarding table data structure
that we call the Burrows-Wheeler transform for binary leaf-labeled tries (XBW-b). This
data structure combines several existing schemes into a single versatile IP forwarding table
representation; namely, the tree compressor comes from Jacobson [106] and the Burrows-
Wheeler transform from [67], but we adopted these structures from general labeled trees
to leaf-labeled binary tries; and see also [174, 180].

Let T be a proper, leaf-labeled binary prefix tree, let ¢ be the number of nodes in T,
let L be the set of leaves, let n = |L|, and let | be a mapping L — ¥ = [1, d] specifying
for a leaf v the corresponding next-hop label [(v) € ¥. The following claims hold:

P1: Either v € L, or v has exactly two children.
P2: t =2n—-1=0(n).

The main idea in XBW-b is serializing T" into a bitstring S; that encodes the tree
structure and a string S, on the alphabet ¥ = [1, 4] that encodes the labels, and then
using a lossless string compressor to obtain the storage size bounds. Correspondingly, the
XBW-b transform is defined as the tuple xbwb(T") = (57, S,), where

e Sy is a bitstring of size t = 2n — 1 with zero in position ¢ if the i-th node of T" in
level-order is an interior node and 1 if it is a leaf; and

e S, is the leaf-map, i.e., the string of size n on the alphabet ¥ that encodes the leaf
label {(v) for each v € L.

Example 5.9. For our sample FIB, the leaf-pushed trie and the corresponding XBW-b
transform are given in Fig. 5.4c and Fig. 5.4d, respectively.
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Construction and IP lookup. In order to generate the XBW-b transform, one needs
to fill up the strings S; and S, starting from the root and traversing 7" in a breadth-first-
search order. Meanwhile, two counters are maintained: ¢ is used to enumerate the nodes
and index into S7, while j counts the leaves and indexes S,. For every node we decide
whether it is an interior node, in which case the corresponding entry of Sy is set to zero,
or it is a leaf and so Sy is set to 1 and the leaf label is appended to S,.

i1 e 1
BFS-TRAVERSE (node v, integer i, integer j)
if v ¢ L then Sy[i] <0
else Sifi] + 1; Salj] < l(v); j+ j+1
14 1+1
end BFS-TRAVERSE

The following statement is now obvious.

Lemma 5.6. Given a proper binary, leaf-labeled trie T' on n leaves, xbwb(7") can be built
in O(n) time.

The transform xbwb(7") has some appealing properties. By being based on a breadth-
first-search traversal, the children of some node, if exist, are stored on consecutive indices
in Sy and S,,. In fact, all nodes at the same level of T" are mapped to consecutive indices.

The next step is to actually compress the strings. This promises easier than compress-
ing T directly as xbwb(7T), constituted by two sequential string representations, lacks
the intricate structure of tries. An obvious choice would be to apply some standard
string compressor (like the venerable gzip(1) tool), but this would not admit navigation
queries like “get all children of a node” without first decompressing the transform. Thus,
we rather use a compressed string self-index [67, 68, 106, 166] to store xbwb(7), which
facilitates efficient navigation immediately on the compressed form.

The way string indexers usually realize navigability is to implement a certain set of
simple primitive in-place operations. Given a string S[1,¢] on the alphabet 3, a symbol
s € 3, and integer ¢ € [1,t], these primitives are as follows:

e access(S, q): return the symbol at position ¢ in S;

e rank,(S,¢): return the number of times symbol s occurs in the prefix S[1, q]; and

e select,(S, q): return the position of the ¢g-th occurrence of symbol s in S.

Curiously, these simple primitives, if implemented in optimal time (e.g., in O(1) or
O(logn) [16,65,69]), admit strikingly complex queries to be implemented and supported
efficiently. In particular, the IP lookup routine on xbwhb(T") takes the following form.

1: lookup (address a)

2 g+ 0,11

3 while ¢ < W

4 if access(Sr,i7) = 1 then
5: return access(Sy, rank; (S7,1))
6 r < ranko(Sy, 1)

7 f+2r

8 Jj < bits(a, q, 1)

9: i f+7

10: g q+1

11: end while
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12: end lookup

The code walks through the successive bits of the input address (line 3). In each
iteration, first it checks if the actual node, encoded at index i in xbwb(7T'), is a leaf node
(line 4). If it is, then rank, (Sy, ) specifies how many leaves were found in the course of the
BFS-traversal before this one and then the corresponding label is returned from S, (line
5). If, on the other hand, the actual node is an interior node, then r gives the number of
interior nodes before this one (line 6). As one easily checks, in a level-ordered tree traversal
the children of the r-th interior node are encoded from position 2r consecutively [106],
thus f gets the index of the first child of the actual node (line 7). Next, we obtain the
index j of the child to be visited next from the input address (line 8), we set the current
index to f + j (line 9), and then we carry on with the iteration.

Memory size bounds. Next, we show that XBW-b encodes a leaf-labeled trie to
entropy-constrained size.

Lemma 5.7. Let T be a proper, leaf-labeled binary prefix tree with n leaves on an
alphabet of size O(polylogn), and let Hy denote the empirical entropy of the label map.
Then, xbwb(T") can be stored on at most 2n + nHy(S,) + o(n) bits so that lookup on
xbwb(7") terminates in O(W) time.

Proof. Encode S; on 2n + o(n) bits using the RRR succinct bitstring index [166] (or our
enhanced version called R3D3 in slightly smaller space [151]), which supports select and
rank in O(1). In addition, S, can be stored on nHy + o(n) bits using generalized wavelet
trees so that access is O(1) under the assumption that the alphabet size is O(polylogn) [68|
or in O(log n) otherwise, or the Huffman-shaped wavelet tree construction [16] with access
in O(logn). The xbwb lookup routine calls the rank and access primitives on S; at
most once in each iteration, yielding O(W) complexity for the maximum possible W
iterations, and the access primitive on S, at most once, for another O(1) steps for 68| (or
O(logn) = O(W) for [16] or § = Q(polylogn)), to obtain O(W) complexity in total. [

Finally, we note that above zero-order entropy bounds can be easily strengthened to
higher-order entropy; see [174]. The particular bounds are 2n+nHy(S,)+o(n) bits space,
where Hy is the k-th order entropy of the label distribution for any k& = o(logsn), and
lookup in O(W) time.

5.5 The Relation of Entropy Notions

The most prominent large-scale network of our days is the Internet. As we have seen,
similarly to Kleinrock’s hierarchical routing scheme the address space of the Internet is
also structured: host addresses are aggregated into varying sized subnets based common
address prefixes and forwarding tables specify routes with respect to those prefixes using
the longest-prefix-matching semantics.

So far, we have seen two, seemingly unrelated approaches to deal with this structure
in [P forwarding table compression. First, there is the “natural” prefix tree representation
as above, where address space structure is encoded in the “tree” index S;. The other
approach, based on Section 5.3.4, models the TP address space as a flat id space (of
size 232 in the case of IPv4), defines a forwarding table on top of this flat id space as a
simple string, and represents “structure” in the address space using the following higher-
order argumentation: (1) on the Internet, geographic proximity strongly correlates with
proximity in the address space, in that endhosts close to each other will often be numbered
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from the same subnet; (2) if two hosts belong to the same subnet then there is a very
good chance that they will be assigned the same next-hop label in the IP forwarding table
at other nodes (but not 100% due to that more specific prefixes may selectively cover
parts of the subnet); (3) therefore the symbol in the forwarding table corresponding to an
endhost can be reliably predicted from its context, i.e., the next-hop symbol for endhosts
in the same subnet; and finally (4) by the foregoing arguments the more “structure” there
is in the address space the smaller the higher-order entropy of the forwarding tables. This
idea is perhaps best captured by the following (in)famous principle of hierarchical routing
that is often referred to as Rekhter’s Law [148|:

“Addressing can follow topology or topology can follow addressing. Choose one.”

Below, we argue that these two notions, and the related entropy bounds, are not
unrelated; in other words, representing address space structure in the hierarchical routing
model can be either explicitly encoded into a prefix tree, or it can be represented as the
higher-order statistics of the forwarding table “string representation”; strikingly, as our
next result shows the two representations are storage-space-wise identical up to small
error terms.

Let T be the proper, leaf-labeled binary prefix tree representation of an IP forwarding
table, let W be the depth, let n be the number of leaves in 7', let 9 denote the number
of distinct next-hop labels in T, and let My be the minimum space bound for storing 7.
Furthermore, let S be an equivalent string-representation for 7', obtained as concatenating
for each individual W-bit address the corresponding next-hop port into a string of 2"
entries, and let Mg be the compressed size of S.

We show that the following holds for Mp and Mg.

Theorem 5.8. My < Mg < KMy for some 1 < K <1+ %log%

Proof. We know that that My = n(2 + HI), where H{ is the zero-order entropy of the
empirical next-hop port distribution on the leaves of T'. Since My is minimal My < Mg.
Next, we show Mg < K Mr for some proper K constant.

Let 2 : 4 € [1,0] and %2 : 4, j € [1,0] be the zero- and first-order statistics of the
empirical port distribution on the leaves of T' and let ZZJV 1€ [1, 6] 21‘,{, 1,5 € [1,0]
be the zero- and first-order statistics of the empirical symbol distribution in .S. Denote
by H;(S) the first-order empirical entropy of S. Since 1 logx is concave:

li Zz ) 3 z
9= g st < 3 g (lom g + X0 st )
i J

where [} is the number of times port ¢ is followed by port ¢ mapped from the same leaf of
T and [;; is when the second i comes from another leaf. Then, l;; = n;; and I = 1; — n;
and hence

2WH1 Z IOg

Nij
i 1
TS 2
Snloge+n§ —10g—+nH1(T)§n loge + log — + Ho(T) |
— N n; n

where Hy(T') < Hy(T) is the first-order entropy of the leaf-string in 7. We get that Mg =

2WH,(S) < n(loge + (W —logn) + Hy(T)) and hence K = MS < H°+1°g;;jfg logn O
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Table 5.2: Compressed size of some real IPv4 forwarding tables samples from [180], using the
compressed prefix tree representation as per Theorem 5.4 (Myp) and the higher-order compressed
string representation as per Theorem 5.3 (Mg).

My [Kbytes| | Mg [Kbytes| | K
taz 56 85 1.52
hbone 142 186 1.3
access(d) 90 118 1.31
as1221 115 162 1.4
as4637 41 66 1.6
as6447 277 294 1.06
as6730 209 253 1.21
fib_600k 157 168 1.07

For a typical real IPv4 forwarding table, Hy ~ O(1), n ~ 150,000, W = 24 (very few
prefixes are more specific than 24, see [180]), we get K ~ 3. Similar argumentation for
[Pv6 yields K ~ 7. Consequently, the size of T" is intimately related to the size of .S and so
our compressed string-representation very closely models trie-based IP forwarding tables.
Table 5.2 confirms this finding empirically, by showing the memory size bounds for a set
of real-life IPv4 forwarding tables from [180] with W = 24. The results indicate that the
real value of K might be closer to 1.1-1.5. Strikingly, both our representations compress

to very small size (below 300 Kbytes), which is 1-3 orders of magnitude improvement from
earlier work [15,56,59,61,90,97,104, 159,197,215, 223,231].

5.6 Related Work

In line with the unprecedented growth of the routed Internet and the emerging scala-
bility concerns thereof [101,119,233]|, finding efficient IP forwarding table representations
has been a heavily researched question in the past. Judging from the sheer quantity of
recent work [95,138,211,231], the problem of scaling IP forwarding tables does not seem
to have been solved completely yet.

The major challenges are (1) the steadily growing routed IP address range (recall
Fig. 5.1), (2) the intrinsic complexity of IP lookups, requiring specialized algorithms to
support the longest prefix matching semantics, and (3) the vast increase in line rates
modern routers have to support efficiently. These days, an operational IP router needs
to support hundreds of millions of LPM lookups per second over an IP forwarding table
that contains more than 750,000 prefixes, and counting. Note that IP lookup cost is per
packet and should be optimized to the extreme to meet wire speed. A way to achieve that
is to store the forwarding table in on-chip fast memory, such as CPU caches or FPGA
block RAM, which is limited in size and very expensive but supports about 10 times faster
random access than off-chip DRAM. This creates a very strong motivation to compress
IP forwarding tables to the smallest size possible, while still supporting efficient LPM
lookups on the compressed representation.

The idea to store IP forwarding tables in prefix trees dates back to the BSD kernel
implementation of Patricia trees [190]. This representation consumes a massive 24 bytes
per node, and a single IP lookup might cost 32 memory accesses. Storage space and
search time can be saved on by expanding nodes’ strides to obtain a multibit trie [40],
see e.g., controlled prefix expansion [104, 197|, level- and path-compressed tries [159],
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Lulea [56], Tree Bitmaps [61] and successors [15,194,227], etc. Early attempts to shrink
the routing table focused on cleverly relabeling the prefix tree to contain the minimum
number of entries (see ORTC and derivatives [60,211]). An opposite approach presented
in [227] is to deliberately increase (or “explode”) the IP forwarding table to support fast
lookups, by splitting it into a constant size on-chip data-structure that supports finding the
longest prefix very efficiently and a much larger, but less performance-sensitive, off-chip
data structure that then provides the next-hop for the found prefix. Further forward-
ing table representations include hash-based schemes [15,215], dynamic pipelining [97],
CAMs [143], Bloom-filters [59], binary search trees and search algorithms [90,231], mas-
sively parallelized lookup engines [95,231], forwarding table caching [138], and different
combinations of these (see the text book [223]).

Curiously, none of these prior works comes with information-theoretic space bounds,
or any sorts of analytic storage size characterization apart from, usually overly loose and
largely prohibitive, worst-case bounds. Although next-hop entropy itself appears in [211],
but no analytical evaluation ensued. This is worrisome, since unknown algorithmic corner-
cases and runaway space-time complexity may result that the network infrastructure built
on top of these schemes may exhibit certain hard-to-explain performance regressions in
unexpected situations. Apart from an operational network debugging nightmare, this
unlocks yet unseen cyberphysical threats, as a malicious user may easily exploit these al-
gorithmic deficiencies to launch denial of service attack on a communication network. We
show such an attack in our recent work [51], where we exploit an algorithmic corner case
in the most popular SDN switch, Open vSwitch, whereby we send a carefully fine-tuned
mix of random packets to drive the switch into a state where the space-time complexity
of the internal forwarding table data structure skyrockets, slowing the switch from the
normal gigabits per second speed to a mere 10-100 kilobits per second.

In contrast, our IP forwarding table compression schemes come with theoretically
proven space limits, and thus predictable memory footprint and lookup complexity un-
der any workload. Crucially, our space characterizations are not of generic worst-case
nature, like in the previous Chapter where unscalability meant that there is at least one
graph where a routing policy is incompressible, but rather our framework gives specific
bounds for particular inputs, graphs, routing policies, address spaces, etc. Our compres-
sion algorithms are, therefore, opportunistic [64], in the sense that whenever a problem
instance admits compression our algorithms will attain maximum possible space reduc-
tion subject to stringent information-theoretic analysis, which may go way beyond what
a generic IP forwarding table encoding scheme would allow.

The latest reported forwarding table size bounds for >400K prefixes range from 780
KBytes (DXR, [231]) to 1.2 Mbytes (SMALTA, [211]) and > 24 Mbytes [76,159]. Our
IP forwarding table compression scheme, XBW-b, improves this to just 100-300 Kbytes,
which easily fits into today’s SRAMs or can be realized right in chip logic with modern
FPGAs.

These improvements have been made possible by the recent advances on compressed
data structures in theoretical computer science research [55,64, 68,100,141, 154,155,166,
235]. A compressed data structure not only provides compression to entropy limited
size for the underlying data, but also provides quick operations (like access, rank, select)
on the compressed form in place. Jacobson in his seminal work [106] defined succinct
encodings of trees that support navigational queries in optimal time within information-
theoretically limited space. He was also the first to recognize the importance of the select
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and rank primitives and pointerless data structures. Jacobson’s bitmap-based techniques
later found important use in forwarding table aggregation [15,61,194]. With the extensive
use of bitmaps, XBW-b can be seen as a radical rethinking of these schemes, inspired by
the state-of-the-art in succinct and compressed data structures.

The results presented in this Chapter constitute only a small fraction of the work
we have done in the general field of routing scalability research and IP forwarding table
compression. Below, we highlight some of our recent results in the field.

One direction was to combine several independently proposed techniques to attain the
greatest possible compression on IP forwarding tables. Using higher-order compressors,
level-compression, and several novel ideas, we were able to reduce real-life IP forwarding
table instances to a mere 70-120 Kbytes, while still supporting fast LPM lookups [174].
Another goal we tackled was to maximize the applicability of forwarding table compres-
sion. Two important limitations of XBW-b are that it is static, meaning that updates mean
full reconstruction, and relatively slow: while pointerless compressed data structures for
bitstring encoding are theoretically optimal in terms of complexity, the implementations
are still not up to the extreme speed requirements in modern IP routers.

Correspondingly, in [120,180, 181 we substituted the pointerless data structures used
in XBW-b for a trie-based approach that yielded unprecedented lookup speed and full
dynamism through quick updates. The idea was to essentially re-invent the classic prefix
tree, borrowing the basic mechanisms from the Lempel-Ziv (LZ78) string compression
scheme [32,48]. LZ78 attains entropy by parsing the text into unique sub-strings, yielding
a form that contains no repetitions. Tree threading is a generalization of this technique
to unlabeled trees, converting the tree into a Directed Acyclic Graph (DAG) by merging
isomorphic sub-trees [104,114,193,199]. In [180, 181] we took a step further and applied
this idea to labeled trees, merging sub-tries taking into account both the underlying tree
structure and the labels [31,46|. If the trie is highly regular then this will eliminate
all recurrent sub-structures, producing a representation that contains no repetitions and
hence admits entropy bounds like LZ78. The resultant technique is called trie-folding. In
[180,181] we were able to show that the compressed prefix-DAGs produced by trie-folding
satisfy the same IP forwarding table entropy size bounds as XBW-b as of Theorem 5.4
up to a small constant factor. In [120], we reduced the memory footprint even further by
combining trie-folding with controlled level-compression.

The basic idea of folding a labeled tree into a DAG is not particularly new; in fact, this
is the basis of many tree compacting schemes [114|, space-efficient ordered binary deci-
sion diagrams and deterministic acyclic finite state automata [31], common subexpression
elimination in optimizing compilers [46], and it has also been used in forwarding table ag-
gregation [104,193,199| earlier. Perhaps the closest to trie-folding is Shape graphs [193],
where common sub-trees, without regard to the labels, are merged into a DAG. How-
ever, this necessitates storing a giant hash for the next-hops, making updates expensive
especially considering that the underlying trie is leaf-pushed. Trie-folding, in contrast,
takes labels into account when merging and also allows cheap updates. What is more,
our prefix-DAGs provably attain a entropy-constrained size besides fast operations, and
in this regard our research is still unparalleled until today.
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Chapter 6

Summary of New Results

rI;E final Chapter in this Dissertation is devoted to re-state the results scattered
throughout the earlier chapters, but this time in a structured form.

The main theme of the Dissertation is interdisciplinary approaches to classical open
problems in network communications. Accordingly, in the below summary the results will
be organized by the problem domain addressed. For each problem, the main contribution
is claimed first and then follow the individual “sub-claims”.

6.1 Fairness in Internet Routing: The Geometric Per-
spective

The first main result closes a decade-old problem first raised in [133, Section “When
bottleneck and water-filling become less obvious’|. Our approach is interdisciplinary:
applying geometric arguments to a problem that was formerly addressed in a graph-
theoretic framework allows us to get surprisingly deep new insights into the structure of
the problem. Consult Table 2.1 for the notation used below.

Thesis 1. I defined the general maz-min fair bandwidth allocation problem as an extension
of the classical fixed-path max-min fair bandwidth allocation problem where the forwarding
path of each user is not part of the input. Using a geometric approach, I gave a tight
characterization for the set of feasible allocations in the generalized problem, I provided
a interpretation of different notions of fairness in the geometric model, I extended the
bottleneck argumentation from the fived-path model to the general setting and identified
certain “bottleleck cuts” as the equivalent of “bottleneck links” in the fixed-path modelm
and I gave a generalized water-filling algorithm to compute it that runs in polynomial
time provided the input is also of polynomial size.

The first claim characterizes the set of feasible bandwidth allocations in a capacitated
network G.. For the full version see Theorem 2.8, also [169-171,173|.

Thesis 1.1. For any network configuration G, the feasible set T(G.) of the generalized
rate allocation problem is a convex polyhedron. Additionally, if G. is reqular then T(G.)
15 bounded, full-dimensional, and down-monotone. In general the size of the half-space
representation of T(G.) may grow exponentially with the network size (irrepresentability).

As a weak form of fairness, the second claim characterizes the so called “non-dominated”
bandwidth allocations, which have the property that the allocation of a specific user can

83



dc 1738 20
84 Rétvari, Gabor D.Sc. Dissertation

be increased only at the price of decreasing the allocation of another user. For a precise
definition of what we mean by “fairness” in this context see Section 2.2; and for the full
version of the claim see Theorem 2.12, also [169-171,173].

Thesis 1.2. Consider a feasible rate allocation 6 € T(G.) and let N C K denote the
set of non-dominated users at 0. Then, N # 0 if and only if there exists an inequality
BT0 < b that is (i) valid, i.e., for each 0’ € T(G.) : 70" < b; (ii) tight, i.e., 70 = b; and
(iii) complementary: (B)r > 0 if and only if k € N.

As a much stronger fairness notion, the following claim gives a characterization for
Pareto-efficient allocations for which all users are non-dominated. For the full version of
the claim see Observation 2.13 and Theorem 2.14, also [169-171,173].

Thesis 1.3. A rate allocation 6 € T(G.) is Pareto-efficient, if and only if there exists an
inequality B0 < b that is (i) valid, i.e., for each 0 € T(G,.) : 70" < b; (ii) tight, i.e.,
BT0 = b; and (iii) strictly positive: Yk € K : (8), > 0.

Finally, a max-min fair allocation is such that, loosely speaking, “there is no way to
make any person better off without hurting anybody else who is already poorer”; for a
precise definition, see Definition 2.5. The existence and uniqueness of the max-min fair
allocation is stated in Corollary 2.11. The next result gives the characterization as in the
previous cases; for the full version see Theorem 2.15, also [169-171,173|.

Thesis 1.4. A rate allocation € T(G.) is maz-min fair, if and only if for each user k € K
there exists an inequality 310" < b that is (i) valid, i.e., for each 0’ € T(G.) : 1§ < b;
(ii) tight, i.e., 370 = b; and (i) maz-min complementary: VI € K : (8); > 0 if and only
if 0, < 6.

The water-filling algorithm is a commonplace iterative polynomial-time algorithm to
obtain a max-min fair bandwidth allocation in the fixed-path model; see the classic text-
book [26]. The below claim merely states the correctness of a natural generalization of
this algorithm to the routing-independent version; the algorithm itself is given in Algo-
rithm 2.1 and the claim is given in full as Corollary 2.16, see also [169-171,173].

Thesis 1.5. The generalized water-filling algorithm given by Algorithm 2.1 is correct to
obtain a max-min fair allocation over T(G,).

The algorithm runs in polynomial time provided that the input, in particular the
throughput polytope, is of polynomial size. This, however, is not guaranteed in general
due to the irrepresentability of the throughput polytope; see Theorem 2.8 and also [29].

The final result translates the bottleneck argumentation from the geometric setting,
where bottlenecks were represented as wvalid ingeualities or half-spaces, into the realm of
graph-theory. Namely, this concluding result will represent bottlenecks as certain bottle-
neck cuts of the graph: the cut is a “bottleneck” as the links of the cut are guaranteed to
be filled to capacity no matter how we realize the max-min fair allocation (by a routing)
and also “max-min fair” in a very specific sense (see below). The full exposition of the idea
is given in Section 2.4.2, the claim itself is given in Theorem 2.19, see also [169-171,173|.

Thesis 1.6. Given a network configuration G., an allocation of rates 0 € T(G..) is maz-
man fair if and only if for each user k € IC there is a cut Cy in G, so that
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oV (i,7) € C : Z Z ug = ¢ for any routing u € M(G.) that realizes 6
lGch PqEPl ( ,])GPq
and

OZEICCIC@HISGIC,

where K¢, C K denotes the set of users whose source is separated away from the respective
destination by Cy.

6.2 Adaptive Routing: The Control-theoretic Perspec-
tive

The second main result addresses the problem of multipath rate-adaptive routing and

approaches the problem in a novel interdisciplinary setting, by casting it in a control-

theoretic framework instead of the conventional flow-theoretical arguments. This model

allows to design general routing controllers that do not rely on static or estimated traffic

matrices but rather dynamically adapt to varying demands. Consult Table 2.1 for the
notation used below.

Thesis 2. I formulated the rate-adaptive multipath routing problem in the framework of
constrained optimal control. I showed that for any network there exists an optimal rate-
adaptive multipath routing algorithm that is (i) stable, (ii) optimal with respect to any
optional linear or quadratic objective function, and (iii) feasible, in that it can accommo-
date any admissible traffic matrix in the network without violating link capacities. Finally,
I gave a new complexity characterization for optimal routing controllers.

The control-theoretic model is specified in Section 3.2.3: given a network configuration
G., the ORAR model is defined by the plant:

wr(t+1) = a(t) — 7 Y up(t) Vk e K (D)
2 (0) = O Vk e K (I)

the constraints (C):

kek
ug(t) > 0 Vk e K (C2)
zi(t) > 0 Vk e K (C3)
and the payoff (P):
min P(u(.), #(0)) = qfz(N) + - rfu(t) + ¢ x(t) . (P)

The first result states that this system is “well-behaved” in a control-theoretic sense;
see Lemma 3.4 for the full claim, also [157,158,177,178§].

Thesis 2.1. If a network configuration G. is reqular and q; >0, r" >0, and ¢" > 0,
then the system is both controllable and observable under the ORAR model.
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The second result guarantees the existence of a control law under the ORAR model.
For a full version of the result see Lemma 3.5, also [157,158,177,178].

Thesis 2.2. Given a regular network configuration G, consider the ORAR model defined
by the plant (D)—(1), the constraints (C), and the payoff (P), and suppose that qJTc’ > 0,
T >0 and q© > 0. Then, for any N > 0 there exists a control law uy(.) that, starting
from any initial state 0 = [0y : k € K| (I), regulates the network according to the dynamics
(D), satisfying conditions (C) and optimizing the payoff function (P).

It turns out that obtaining the control law amounts to solving a multiparametric linear
program. In the below, we assume N = 1 and we call the resultant 1-step control law the
ORAR control.

The subsequent results state useful properties of the optimal control law: continu-
ity (see Lemma 3.6), stability (see Lemma 3.7), convexity of the value function (see
Lemma 3.8), and feasibility (see Lemma 3.9), see the full context in [157,158,177,178|.

Thesis 2.3. The ORAR control law u(6) is a continuous and piecewise affine function of
0: u(f) = Fif + g; whenever 0 € R;, for some closed polyhedral control regions R; in RX.

Thesis 2.4. The ORAR control law u(.) is asymptotically stable.

Thesis 2.5. The ORAR control law u(.) optimizes any linear payoff whenever q]? > 0,
T >0 and ¢© > 0, and the value function is continuous, convex, and piecewise affine.

Thesis 2.6. The set of initial states for which the ORAR controller converges in 1 step
to the origin (the 1-step feasible set) equals T'(G.).

The final result gives a new complexity characterization for the ORAR control law.
For a full exposition of the result see Theorem 3.10, also [158].

Thesis 2.7. Given a reqular network configuration G., consider the ORAR model with
an empty payoff, dynamics (D), initial condition (I), constraints (C), and the terminal
condition x(1) = 0 : Vk € K (T). Then, the number of control regions in the 1-step
ORAR control law for the system (D)-(I)-(C)-(T) is upper bounded by the size of the

minimal boundary-triangulation of T'(G.).

6.3 Scalable Internet Routing: The Algebraic Perspec-
tive

The next set of results casts the fundamental scalability properties of different routing
policies in an unorthodox abstract algebraic framework. Consult Table 4.1 for the notation
used below.

Thesis 3. [ introduced an algebraic compact routing framework, an extension of com-
pact routing from shortest-path routing to arbitrary routing polices that admit an algebraic
definition. I identified the algebraic requirements for a policy to be implementable with
sublinear memory at each node (compressible), I showed that certain algebraic proper-
ties guarantee superlinear scaling (incompressible), and I gave a comprehensive scalability
characterization for most intra-domain routing policies relevant to practice. By general-
1zing the notion of stretch, I showed that incompressible reqular routing policies admit a
compressible stretch-3 implementation and I gave the first negative result indicating that
certain routing policies remain incompressible even for arbitrary constant stretch.
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The algebraic compact routing framework framework rests on a set of definitions (see
Section 4.2); namely, routing algebras that give an abstract description of a routing pol-
icy (see Definition 4.1), a set of simple algebraic properties of routing algebras, including
monotonicity and strict monotonicity, isotonicity, and regularity (see Definition 4.2), and
selectivity (see Definition 4.3), and finally the formal definition of the memory require-
ments of a routing policy /routing algebra (see Definition 4.5) and the related notions of
compressibility and incompressibility. Our framework characterizes the scalability of in-
dividual routing policies in terms of the abstract properties of respective routing algebras.

The first result gives the “good news”™ if a routing algebra is selective then it scales
well. The full result is stated in Theorem 4.9, see also [88,175,176,236|.

Thesis 3.1. If a routing algebra is selective and monotone then it is compressible.

The second result gives the “bad news” most practical routing algebras, including
shortest-path routing, do not admit a scalable implementation. The result and the proof
are given in Theorem 4.11, see also [88,175,176,236].

Thesis 3.2. If a routing algebra is delimited and strictly monotone then it is incompress-
ible.

Interestingly, just these two claims (with some prior results from the literature, see
e.g., Proposition 4.7) are enough to give a comprehensive scalability characterization for
most routing policies used in intra-domain Internet routing; see the Table 4.2. With the
exception of the shortest-widest-path routing policy, all characterizations are tight.

The following two claims extend the framework from an “optimal routing” context,
where the routing algorithm must precisely reproduce the path as requested by the routing
policy, to the framework or compact routing, where the algorithm is allowed to digress
from the optimal path as long as the weight of the selected path is bounded by a constant
stretch factor. Here, a routing scheme is said to be of stretch k over algebra A, if for any
path p,; selected by the scheme: w(py) = w(p?,)*, where p?, is a preferred s — ¢ path in
A (see Definition 4.13.

The next result on algebraic compact routing gives the “good news”; see Theorem 4.14
for the full result and see also [88,175,176,236].

Thesis 3.3. If a routing algebra is delimited and reqular then it admits a compressible
stretch-3 routing scheme.

The final claim, however, states a strong negative result: namely, there are routing
policies (e.g., the notorious shortest-widest-path policy) that do not admit any constant-
stretch routing scheme; see Theorem 4.17 and also [88,175,176,236].

Thesis 3.4. Let k > 1 and let A = (W, ¢, P, X) be a monotone algebra with the property
that for any p > 2 there exists a set of weights {wy,ws,...,w,} C W so that Vi,j €
{1,...,p},i # j: wi ®w; = w?* and w; & w; = w]zk. Then, there is no stretch-k routing
scheme for A with sublinear memory requirement at all nodes.

6.4 Scalable Internet Routing: The Information-theoretic

Perspective

The final set of results augment the worst-case characterizations from algebraic com-
pact routing to characterize the practical memory requirements of hop-by-hop destination-
based routing on particular inputs (instead of worst-case graphs). As such, in these set of
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results the input graph (or at least some characteristic statistics on it) is also part of the
input, contrary to the previous characterizations that hold for all graphs. The approach
is again interdisciplinary: casting the problem in an information-theoretic model certain
entropy-like measures are introduced and then the compressed size of forwarding state
is described in terms of these entropy notions. Consult Table 5.1 for the notations used
below.

The main result is as follows.

Thesis 4. [ presented a series of increasingly tighter entropy measures to characterize
the attainable forwarding table compression ratio over an unstructured address space as
gradually more and more information about the input forwarding table is revealed to the
encoder. I also gave the respective compression schemes that attain these entropy mea-
sures, while still providing fast in-place lookup on the compressed state. I considered an
idealistic model of the hierarchical Internet routing architecture, I gave an entropy notion
for this model, and I designed a forwarding table compression algorithm that attains this
entropy bound with fast in-place lookup.

The “flat” address space model is formally defined in Section 5.3.1. The first result
gives tight memory bounds for the graph independent case, where we have zero prior
knowledge on the problem apart from the network size. The result itself is given in its
full version in Theorem 5.1; see also [123,124].

Thesis 4.1. Given a graph G(V, E) on n nodes, suppose that the only available informa-
tion to the encoder is the size n of G. Then, for any v € V' storing the routing function s,
requires at least nlogn bits of space. In addition, there is an encoding scheme that stores
Sy in at most nlogn bits and supports lookups in O(1) time.

The next result strengthens the previous one to the name-independent model, where
we know the routing policy and hence the exact next-hop port associated with each
destination node in the routing function s,, but we have no control over the assignment
of node ids. In this model, we must be able to store the routing function arising over any
permutation of node ids, even adversarial ones. The corresponding memory bounds are
as follows; see Theorem 5.2 and also [123,124].

Thesis 4.2. Given a graph G(V, E) on n nodes, suppose that the encoder is aware of
the next-hop labels in s, : v € V and an adversarial assignment of node ids. Then,
storing the routing function s, for any v € V' requires at least nHy(v) bits, where Hy(v) =
Zz‘e[l,év} ~ log n% 1s the empirical zero-order entropy of s, taken over an arbitrary node
id assignment and n; denotes the number of times output port id i € [1,6,] appears as a
next-hop port in s,. In addition, there is an encoding scheme that stores s, in at most
nHy(v) + o(n) bits, supporting random access in O(logn).

The final characterization for flat address spaces considers the strongest model, the
name-dependent model. Here, we have control over the assignment of node ids and hence
the succession of next-hop symbols in the routing function is known a priori. The space-
time characterization in this model is stated at full in Theorem 5.3, see also [123,124].

Thesis 4.3. Given a graph G on n nodes, with each node assigned a fized id in [1,n].
Then, encoding the routing function s, : v € V for v € V needs at least nHy(v) bits
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for any k > 0 integer, where Hy(v) = Z Z —log —~, n, is as previously, and
. n Ng;
q€[1,5,]F i€[1,6,]
ngi is the number of times port i succeeds the k-long port sequence q € [1,6,]F in s,. In
addition, there is an encoding scheme that stores s, in at most nHy(v) + o(n) bits for any

k= o(log’ign) and supports lookups in O(lognloglogn) time.

The next set of results casts the problem in a hierarchical address space that is a
better model for the current Internet. In this model, forwarding tables are represented as
prefix trees with considerable internal “structure”. As such, it is much more difficult to
develop the corresponding information-theoretical arguments, since this time the intrinsic
structure of the forwarding tables must be correctly reflected by our entropy notions and
encoding schemes. The formal model is given in Section 5.4.1.

The main result concerning hierarchical routing gives a tight characterization of the
forwarding table size attainable within the hierarchical routing model; the full result is in
Theorem 5.4, see also [120,174, 180, 181].

Thesis 4.4. Let an IP forwarding table T be given as a proper, binary, leaf-labeled trie
T with n leaves and label map s defined on the label alphabet ¥ = [1,0]. Then, storing
T requires at least 2n + nHy(s) bits of memory, where Hy(s) is the zero-order empirical
entropy of the label map s. In addition, there is an encoding scheme that stores T in at
most 2n + nHy(s) + o(n) bits so that longest-prefix matching on the compressed represen-
tation terminates in O(W) time if § = O(polylogn), where W denotes the address width
in bits.

The final result concludes the information-theoretic developments: namely, it can be
shown that the higher-order space characterization given under the flat model and the
zero-order space characterization given under the hierarchical model are not independent,
but rather they are intricately related to each other. In particular, the following result
makes the relation between the size of the representation over a hierarchical address
space, Mr, and that of the equivalent flat address space, denoted by Mg, explicit. The
full version is in Theorem 5.8, see also [123,124].

Thesis 4.5. Given an IP forwarding table, let T be the proper, leaf-labeled binary prefix
tree representation and let My be the minimum space bound for storing T, and let S be
an equivalent string-representation for T, obtained as concatenating for each individual
W -bit address the corresponding next-hop port into a string of 2V entries. Let Mg be the
compressed size of S. Then, My < Mg < KMy for some 1 < K <1+ %log %

For a typical real IPv4 forwarding table we get K ~ 3, for IPv6 K ~ 7. The empirical
results obtained on real-life IPv4 forwarding tables from [180] (see Table 5.2) indicate
that the real value of K might be closer to 1.1-1.5 for IPv4, which gives a very close
correspondence between the two metrics.
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