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0. PREFACE 

In 1992, I wrote in the Preface of my book on fractals
1
:   

―The book will also be useful to applied mathematicians, physicists and computer 

scientists looking for new fields for research. A group of these people have devoted a a 

life-time to deconvolve, unwrap, filter, simulate, krige, predict, up- and downward 

continue, to cross-plot and transform and prewhiten, in general to apply the latest what 

mathematics, physics and electronics have to offer to improve data quality and build better 

geological models. Their endeavors are often met with suspicion or hostility: the bitter 

words of John Dowds
2
 are still valid: ―… in the Report, Information Theory was 

mentioned, but I decided it best to avoid unfamiliar words such as entropy, ergodic, 

Markovian, etc. as these words can cause antagonisms.‖ 

The present  Dissertation is dedicated to these  fine and brave people; to the mathematicians, 

physicists and engineers who became Earth scientists.  

Thanks and  acknowledgments are due to my late Professors,  Pál Turán who trained me as pure 

mathematician, and Alfréd Rényi who turned me to Applied Mathematics (he asked me: ―Do you 

want to deal all your life with equations, or with people?‖).  

My work has been partly supported, for many years, by the King Abdulaziz  City for Science and 

Technology, Saudi Arabia, through their several projects in the  National Science Technology 

Innovation Plan. I am also grateful for the financial support from the Project no. 168638 

SENERCONACYT-Hidrocarburos Yacimiento Petrolero como un Reactor Fractal  which 

enabled me to visit and work with the Research Group of Professor Oleschhko in Juriquilla, 

Querétaro, Mexico. I am grateful for Saudi Aramco (Dhahran, Saudi Arabia) for their support 

and the core samples, and the King Fahd University of Petroleum and Minerals (KFUPM, 

Dhahran, Saudi Arabia), my home Institution for almost 25 years.    

Thanks are due to my former partners in Research, Drs. Klavdia Oleschko, Nabil Akbar, Saleh 

Saner, Ahmed Mohiuddin,  Abdulazeez Abdulraheem, and to all my dear students whom I gave a 

hard time by including mathematical derivations in my Geophysics lectures, especially to those 

who became my graduate students and even co-authors
3
. 

Budapest, 31
st
  of March, 2020 

                                                 

1
 Korvin, G. 1992a. Fractal Models in the Earth Sciences. Amsterdam: Elsevier. 

2
  Dowds, J.P. 1969. Oil rocks: Information theory: Markov chains: Entropy. Quart. Col. Sch. Mines 64: 275-293. 

3
 In Appendix 4 I list my papers co-authored by my students. 
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1. INTRODUCTION  

―I KEEP six honest serving-men 

 (They taught me all I knew); 

Their names are What and Why and When  

 And How and Where and Who.‖ 

(Kipling: I Keep Six Honest  Serving Men) 

 

1.A. MY RESEARCH METHODOLOGY. A CASE HISTORY   

 

On  door # 269, my office for 24 years at the Earth Sciences Department of the King Fahd 

University for Petroleum and Minerals (Dhahran, Saudi Arabia), I placed two short mottos,  very 

much loved by my students, not so much by my different Chairmen, who frequently asked me to 

―immediately remove them‖. The ―Laugh at your problems …‖, that I bought at a Novelty Gift 

Store at Surfers Paradise, Queensland, expressed (and still does) my personal attitude; the other, 

that I learned from an American experimental physicist friend of mine, expressed (and still does) 

how I did research. Research, for me,  involves exploring an unknown territory, terra incognita, 
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with a hope and firm belief, that at the end something will come up, that the data – as all my 

research had been based on  measured geophysical or petrophysical data that I considered 

sacrosanct – would  reveal their hidden pattern and help me find the laws of nature what they 

express.  

Galileo Galilei is attributed with the saying, "Mathematics is the language in which God has 

written the universe." Actually the quote paraphrases his words in  Opere Il Saggiatore: ―[The 

universe] cannot be read until we have learnt the language and become familiar with the 

characters in which it is written. It is written in mathematical language, and the letters are 

triangles, circles and other geometrical figures, without which it is humanly impossible to 

comprehend a single word.‖ (My late professor, Alfred Rényi, wrote a beautiful Galilean 

dialogue on this
4
). I subscribe to this view, and can only add that the more complicated a 

geophysical process,  the more complex are its measured data series, and this increased 

complexity would require advanced mathematical tools, rather than ―triangles, circles and other 

geometrical figures‖ to encode their  hidden message. 

I illustrate my philosophy of research on a simple problem (unpublished), which I came across 

around 2010 when, as consultant to a large Mexican Oil Company, I tried to explain the strange 

―staircase like‖ signals observed on pressure build-up curves measured in offshore boreholes 

through carbonate deposits, and to decide, are they just instrument noise, or do they carry 

geologically meaningful information
5
. Figure 1 shows the measured data (Ku-42), and some 

similar pressure build-up curves from my previous experience, containing similar DS ( = Devil’s 

Staircase) signals. 

 

                                                 

4
 Alfréd Rényi 1967.  Dialogues on Mathematics.  San Francisco: Holden-Day, Inc. 

5
 Financial Support, and data, from the Project #168638 SENERCONACYT Hidrocarburos Yacimiento Petrolero 

como un Reactor Fractal are gratefully acknowledged. 
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Fig.1. a-c. DS (Devil‘s Staircase) signals,  a) - on the pressure buildup curve measured in the Ku-

42 borehole (offshore Mexico),  b) – Horner plot of a Pressure Build-up Test, and c) – a 

Schlumberger RFT (Repeated Formation Tester) pressure log. 

  

I followed, as always, heuristic steps to solve  the problem: 

Step 1. First I always ask myself the  basic question of heuristics
6
:  ―Does the problem remind 

you of something  from previous readings and studies?‖. Yes, these signals did remind me of the 

Devil’s Staircase signal which I came across in mathematics, where DS is defined as integral of 

the Cantor set; and in physics where it described the development of magnetization of spin 

systems in an increasing external magnetic field
7
.  

  

Fig, 2. A. Devil’s Staircase as (a) integral of a random Cantor set, and (b) magnetization of a 1-

D Ising spin system in an increasing external magnetic field. (From Bak and Bruisma, 1982). 

I checked the self-similarity of these signals at different magnifications (Fig. 3): 

                                                 

6
 G. Polya, How to Solve It, 2nd ed., Princeton University Press, 1957. 

7
 P. Bak, R. Bruisma: One-dimensional Ising model and the complete Devil's staircase. Phys. Rev. Let., 49 (1982): 

249-251.  
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Fig. 3 The Ku-42 pressure build-up curve at different magnifications. 

Step 2.  In mathematics, the Devil’s Staircase occurs in the evolution of dynamic quantities over 

some fractal set, a Cantor bar, Sierpinski Carpet or Menger Sponge. I made outcrop and  

microscopic studies to check whether  carbonate rocks can indeed be described by such fractal 

models? 

 
Fig.4. On the left, Dr. Korvin (in black shirt) with Colleagues at a carbonate outcrop (in  

Dhahran, Saudi Arabia). On the right, closer view of the outcrop, and SEM image of a sample.  

I found that yes, vugular carbonates look similar at the outcrop, hand-specimen, and SEM 

(Scanninng Electron Microscopy) scales, that is, they are fractal, and they resemble reasonably 

well the Menger Sponge construction.  (Figs. 4 & 5).   
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 Fig. 5. The Menger Sponge
8
 

Step 3. But what are the physical processes that  could lead to DS-like signals in the pressure 

build-up curves? In our case I found two, physicaly plausible, models, described by different  

PDFs (partial differential equations). The first suggests to take the 

 

                                                 

8
 Korvin, G. Fractal Models in the Earth Sciences. Amsterdam: Elsevier 1992: 93. 
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Fig. 6.a. Scheme of the Pressure Equilibration approach. The model  of connected compartments 

on the right is similar to the pore model discussed in our 2014 paper.
9
 In the PDE (diffusion 

equation): P is pressure, t time, x is a spatial coordinate, k permeability,   porosity,   viscosity, 

ct  total compressibility
10

. 

The second plausible physical model is the Washburn Equation
11

 approach:  

.  

 Fig. 6.b. Scheme of the Washburn Equation  approach. In the PDE (Washburn equation) the 

total time t of imbibition into a block of characteristic size  x  satisfies    
   

  
   where x [m] is 

block-size, D [m] is throat diameter, t [sec] is time, 𝛾 [N/m] is surface tension,   [Pa sec] is 

                                                 

9
 Korvin, G., Oleschko, K. & Abdulraheem, A. ‗A simple geometric model of sedimentary rock to connect transfer 

and acoustic properties‘. Arabian Journal of Geosciences 7(3)2014: 1127-1138. 
10

 Doddy Abdassah & Iraj Ershaghi: Triple-porosity systems for representing naturally fractured reservoirs. SPE 

Formation Evaluation, April 1986, 113-127. 
11

 Edward W. Washburn (1921). "The Dynamics of Capillary Flow". Physical Review. 17 (3): 273-283; F.A.L. 

Dullien:  Porous Media: Fluid Transport and Pore Structure. Acad. Press, NY, 1979. 
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dynamic viscosity. I assumed
12

 a value   𝛾 = 0.035 𝑁 𝑚 for the oil/water/grain system, and a 

viscosity   = 2𝑐𝑝 = 2×10
−3

 𝑃𝑎 𝑠𝑒𝑐 which was documented for this well.   

Step 4. If there are more than one possible physical models to explain a phenomenon, all of them 

must be used and (Step 5) their results compared! 

 Fig. 7. Scheme of using the two models 

                                         

 

Fig.8.a. Compartment size histogram 

computed from the Devil‘s Staircase step 

durations, using the  Pressure Equilibration 

model           

 

                                                          

                                                 

12
 From C.L.Vavra, Kaldi, J.G. and Sneider, R.M. (1992). Capillary pressure. In: Development Geology Manual.  

AAPG Methods in Exploration Series No. 10, Tulsa, OK.; Wayne M. Ahr: Geology of Carbonate Reservoirs. The 

Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. John Wiley & 

Sons, Inc., Hoboken, NJ, 2008. 
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Fig.8.b. Compartment size histogram computed from the Devil‘s Staircase step durations, using 

the  Washburn Equation model.   

As we see in Figs. (8a-b), the results are very different! In the Pressure Equilibration model the 

median compartment size is    𝑚 , in the Washburn Equation model x ≈ 1.5m.  

The respective compartment-size estimates are:   √
  

    
    (Pressure Equilibration model), and 

   √
   

  
   (Washburne Equation model). The Washburn model, which assumes non-vugular 

carbonate, leads to much smaller (by one magnitude smaller!) compartment sizes than the 

pressure equilibration model. In order to decide which of the two models should be used we need 

independent information. One way to get an independent estimate for the value of D (diameter of 

the communication channel between adjacent compartments) is to use Lucia‘s porosity-

permeability plot (Fig. 9) for limestones and dolostones
13

, where the parameters along the 

straight lines are the ―throat‖ diameters. One can also use wire-log data including bore-hole wall 

imaging, or the Schlumberger Z-plot (total porosity – transit time plot, see  Fig. 10) where 

carbonates with separate vugs will plot with a smaller slope than the non-vuggy compact 

carbonates
14

.  

                                                 

13
 F. Jerry Lucia: Carbonate Reservoir Characterization. Springer, Berlin-Heidelberg, 1998. 

14
 Lucia op.cit. p. 71. 
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 Fig.9  Fig. 10. 

Fig, 9. Lucia‘s porosity-permeability plot. The parameters along the straight lines are the 

diameters of the channels connecting adjacent compartments. 

Fig. 10. Schlumberger Z-plot.  Vuggy carbonates plot with a smaller slope than the non-vuggy 

compact carbonates 

The basic rule in all my works had been: ―Devil is in the details‖. Watch out for the small 

details! In this case history, I noticed a small detail, the small oscillations on the pressure buildup 

curves which were signals, not noise!    

  

1.B. HOW  DID I USE THESE HEURISTIC STEPS IN MY WORKS? 

1.B.1. ―SELECT THE PROPER MATHEMATICAL APPARATUS!‖ 

In my works, I used many modern tools of applied and theoretical mathematics, such as:  

Calculus of Variation; Campbell‘s Theorems (Poisson processes); Differential geometry; 

Fractal geometry; Homogenization Methods; Hunt‘s theorem (Weierstrass function); 

Information Theory; Integral geometry; Invariant Imbedding; Means and their inequalities; 

Multifractal measures; Random fields; Random graphs; Stochastic differential equations; 

Toeplitz Forms. 

1.B.2. ―SELECT A PHYSICAL PROCESS FOR MODELING THE PROBLEM!‖ 

 I have found powerful analogies in the following fields of Physics to model the problem at hand: 

Effective Medium approximations; Electrodynamics; Fluid Transport; Geodynamics; 

Hydrodynamics; Mechanics of Granular Bodies; Percolation Theory; Phase transitions; 

Radiophysics; Rock Physics; Statistical Physics;Theory of Elasicity; Turbulence; Wave 

Propagation. 
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1.B.3. ―MAKE FIELD EXPERIMENTS, LABORATORY-, OUTCROP AND/OR 

MICROSCOPIC STUDIES!‖ 

I had twenty-eight (28) theoretical studies, but most of my works were based on field 

experiments, laboratory-, outcrop and/or  microscopic measurements. Whenever possible, my 

theoretical results were also checked against published measured data
15

. Sources for my papers 

had been: 

Laboratory Rock Physics  measurements (in 9 studies); GPR Field work  (in 7 studies), 

Microscopy  (in 7 studies); Reflection Seismic data (in 6 studies); Outcrop study (in 3 

studies); Well log data  (in 3 studies); Seismic field experiment (in 2 studies); Remote 

sensing data  (in 2 studies); Aerial photographs  (in 2 studies); Published Rock. Phys. data 

(in 1 study); Meteorological data (in 1 study); Measured soil physics data (in 1 study); 

Published agricultural data (in 1 study); Geographical data (in 1study); Gravity  and 

aeromagnetic anomaly maps (in 1 study). 

  

                                                 

15
 As e.g. the theory developed  in Korvin, G. 1983b. ‗General theorem on mean wave attenuation‘.  Geophysical 

Transactions 29(3):191-202 (awarded by the Best Technical Paper of the Year by the Hungarian Geophysicists’ 

Association) was used to explain measured seismological data  (of  Aki 1980).  
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1.B.4. ―USE ALL PLAUSIBLE  MODELS!‖ 

If there were more than one plausible physical models explaining or describing the measured 

data, I always used all of them simultaneously, and checked their  different answers.     

In my 1992 book
16

, when treating the RNG (Renormalization Group) approach to the bond 

percolation problem on the square lattice, I mentioned that Madden‘s  upscaling model leads to 

the correct critical percolation probability  pc=0.5 , while the Young and Stinchcombe model 

yields pc=0.618. On pp. 210-215, treating the RNG approach to rock damage, I point out that the 

upscaling rule of  Allègre et al. leads to a critical probability pc=0.5896, while a slightly different 

upscaling by Turcotte gives pc=0.49.  

In an experimental study
17

 of my group we pointed out that the permeability model of the 

Russian Mosolov and Dinaryev gives the permeability – porosity law          ⁄   where k is 

permeability, D is fractal dimension of the pore surface, while the model of the German 

researchers Pape et al.  would yield                   ⁄  .  In the  study we used both models to 

estimate the fractal dimension of the pore surface from the experimental data
18

.  (See op.cit.  

Tables I. & II, and Figs. 6 & 7).    

In the (unpublished) Introductory Case History of this Dissertation there are (at least) two 

different physical phenomena which could be used to explain the  Devil’s Staircase signals on 

the pressure up-build record: the Pressure Equilibration Model and the Washburn Equation 

Model (Figs. 6.a&b), and they lead to different results (Figs. 8.a & b) 

1.B.5. MY GOLDEN RULE: ―WATCH OUT FOR THE DETAILS!‖  

My tortuous road to fractals started in early 1970s, in ELGI, the legendary Eötvös Lóránd 

Geophysical Institute. As a budding applied mathematician and seismic programmer, I was 

honored to be asked by my older Colleagues, Tamás Bodoky, Lóránd Sédy, János Lányi, István 

Rákóczy and István Liptai  to interpret -  physically and mathematically - and write up in a nice 

English-language paper, their 2-years-long series of field experiments (1968-1969, in a near-

surface sandy complex of  the Nyírség Region) aiming to find the basic characteristics of the 

seismic signal generated by underground explosions
19

. I was very much puzzled by one of the 

results, namely the dependence of the seismic amplitude A (corrected for spherical divergence), 

on charge weight C (Fig. 12, from Bodoky et al. 1971). 

                                                 

16
 Korvin 1992a: 23-27. 

17
 Korvin et al. 2001.  

18
 Korvin et al. 2001: Tables I. & II, and Figs. 6 & 7. 

19
 Bodoky, T., Korvin, G., Liptai, I. &  Sipos, J. ‗An analysis of the initial seismic pulse near underground 

explosions‘.  Geophysical Transactions 21(3-4)1971: 7-26. 
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Fig. 12. 

The measured data, plotted on double-logarithmic graph paper, perfectly fitted the rule    

      what I found strange (a small detail!).  O‘Brien (1960) found experimentally        and 

I expected the same from dimensional arguments, because a (spherical)  charge  C  has the linear 

size      , it will create a spherical cavity whose size is also proportional to      , the 

equivalent radiator‘s surface around it is proportional to     , and – by the integral form of 

Huyghen‘s principle – the spherical-divergence-corrected seismic amplitude will also be 

proportional to     . How could we obtain          ? There are two possible reasons: a) the 

source was not spherical, but consisted of N pieces  of dynamite sticks of diameter 2r and length 

l; b) or only a part of the surface of the equivalent radiator of radius     whose area S scaled as  

     
      radiated coherent seismic energy. (Note, ―1.62‖ enters as surface dimension instead of 

the theoretical  ―2‖ in        ). Case a) can be excluded, because in the experiment the charge 

weight was varied by using N  dynamite sticks, that is C increased as   𝑁       𝑁, that is 

by theory          and      ⁄ .  The remaining possibility is that only a 1.62-dimensional 

part of the equivalent radiator is emitting coherent seismic energy. In 1972 Mandelbrot‘s 

Fractals: Form, Chance and Dimension (1
st
  Edition), then  his The Fractal Geometry of Nature 

(1982) came out  – reading them, I understood that the explosive-generated cavity had a rough 

surface, and only a 1.62-dimensional part of it contributed to the coherent seismic energy. By 

noting this small detail (        instead of      ⁄ ) helped me to find (one) niche for my 

further studies,  fractals. In 1992 my book on fractals appeared,  followed by 20 papers on their 

diverse applications, some of them co-authored by Saudi Arabian and Mexican students and 

Colleagues. I must add, that I could only notice this small detail, because that time (1971) we 
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still plotted and interpreted graphs, such as those on Fig. 12, manually, and in this process the 

data points have become personal friends, they talked to me! 

2. MY MAIN FIELDS OF RESEARCH 

    Apart from my studies in history, linguistics, pure mathematics, etc., which are outside  this 

Doctoral Dissertation (but are included in my List of Publications), and not mentioning my   

Seminar- and Conference talks, my research has focused on seven fields: Wave propagation in 

random media; Entropy; Mean-field rock physics; Fractals; Petrophysics of porous rocks; 

Seismic Processing, and Geodynamics. Only the first five will be summarized in what follows. 

#1: Wave propagation in random media 

Example: Korvin, G. ‗Is the optical image of a non-Lambertian fractal surface fractal?’  IEEE 

Geoscience and Remote Sensing Letters 2(4)2005:380-383.  (Paper submitted together with my 

Dissertation). Other related papers: Korvin et al. 2017; Adetunji et al. 2008; Oleschko et al. 

2008; Korvin  & Oleschko 2004; Al-Ali et al, 2003; Oleschko et al. 2003;  Oleschko et al. 2002;  

Mohiuddin et al. 2001; Korvin 1985; Korvin1983b; Korvin1982b; Korvin & Armstrong1981; 

Korvin 1980; Korvin1978b; Korvin 1977 &1978; Korvin 1977; Korvin 1973; Bodoky et al. 

1971. 

#2. Entropy 

Example: Korvin, G. ‗Shale compaction and statistical physics‘. Geophysical Journal – Royal 

Astronomical Society 78 (1)1984: 35-50.  (Paper submitted together with my Dissertation). Other 

related papers: Korvin. 2020d; Islam el-Deek et al. 2017; Korvin et al. 2013; Korvin. 2009; 

Oleschko et al. 2004; Korvin 2000.   

#3. Mean-field rock physics 

Example: Korvin, G. ‗Axiomatic characterization of the general mixture rule‘. Geoexploration 

19(4)1982: 267-276. (Paper submitted together with my Dissertation). Other related papers: 

Korvin 2012; Korvin1978.  

#4. Fractals 

Examples: Korvin, G. ‗Fractured but not fractal: Fragmentation of the Gulf of Suez basement‘. 

Pure and Applied Geophysics PAGEOPH 131(1-2)1989: 289-305. (Paper submitted together 

with my Dissertation); Korvin, G. Fractal Models in the Earth Sciences. Amsterdam: Elsevier 

1992. (Book submitted together with my Dissertation). Other related papers: Arizabalo et al. 

2015; Velásquez Valle et al. 2013; Torres-Argüelles et al. 2011; Velázquez-García et al. 2010; 

Oleschko et al. 2010; Arizabalo et al. 2006; Nieto-Samaniego et al.  2005; Arizabalo et al. 2004; 

Hassan et al. 2002; Choudhury et al.  2002; Korvin et al. 2001; Korvin 1996; Korvin 1993.   

#5. Petrophysics of porous rocks 
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Example: G. Korvin. ‗Permeability from Microscopy: Review of a Dream‘. Arabian J. of 

Science & Engineering  41(6)2016: 2045-2065. (Paper submitted together with my Dissertation). 

Other related papers: Minhas et al.  2016; Abdlmutalib et al.  2015; Korvin et al. 2014; 

Abdulraheem et al. 2007; Korvin. & Lux1972.. 

3. SHORT DESCRIPTIONS AND MAIN RESULTS  

3.1. WAVE PROPAGATION IN RANDOM MEDIA 

3.1.A. STOCHASTIC PERTURBATION APPROACH 

My research in this area relied on two modern  tools  of mathematics: random- field theory
20

, and  

perturbation theory of stochastic partial differential equations (PDFs)
21

, and used two important 

theorems: Campbell’s Theorem
22

 (applicable – as e.g. in Korvin 1978b - when the wave 

scatterers are Poisson-distributed in space) and Hunt’s Theorem
23

 (used  - as e.g. in Oleschko et 

al. 2002 - when the wave scatterers are  fractally distributed in space).  

Random fields are generalizations of the random (or ―stochastic‖) functions along a line. A 

random function,  {    }    is a family of functions depending on a random parameter  , where 

the independent variable x varies  along some line. A given f(x) picked at random from among all 

possible {    } -s is a realization. At some fixed pont of the line   ,            is a random 

value, it attains different values y with the probabilities P    [       ]          .  The 

following expected values
24

 (taken with respect to α, i.e. over all realizations of {    }  ) are 

often enough to characterize a random function :  〈     〉, 〈 
     〉 〈           〉, termed  

mean value, mean square value and autocorrelation function. A random function is translation 

invariant if its statistical properties do not change with respect to a shift along the line, in 

particular, if  〈    〉  〈    〉  〈     〉  〈     〉 〈           〉  〈             〉   

     |     |   where the function     is the autocorrelation function (ACF) of  f(x).  It is an 

even function,R          . assumes  its maximum at     ,        〈     〉. The 

normalized autocorrelation function is                〈     〉⁄ .   

If x(x,y) or x(x,y,z) is point of the 2-  resp. 3-dimensional Euclidean space,  then  {      }  resp. 

{        }  are called random fields over the plane  or space, a given field       picked out at 

random is  a realization of the field.   

                                                 

20
 Chernov, L. A., 1960: Wave Propagation in a Random Medium. McGraw Hill, New York. 

21
 Karal, F. C. Jr .-Keller , J. B., 1964: Elastic, electromagnetic and other waves in a random medium. J. Math. Phys. 

5 No 4, pp 537-549; Keller, J. B., 1964: Stochastic equations and wave propagation in random media. Proc. Symp. 

Appl. Math. 16: 145-701. 
22

 Rytov, S. M. 1966: Introduction to Statistical Radiophysics. Nauka, Moscow (In Russian). 
23

 B.R. Hunt 1998. The Hausdorff dimension of graphs of Weierstrass functions . Proc.Am.Math.Soc.,126:791. 
24

 The  expected value of a quantity        is denoted by  ̅   or  〈 〉 . 
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A random field is homogeneous if its statistical properties are invariant with respect to a shift, 

that is if 〈    〉  and  〈     〉 are constant, and the autocorrelation function only depends on the 

difference of x and y   〈        〉                   . If the statistical properties of the 

field are also invariant with respect to rotations and reflections,  we speak about an homogeneous 

and isotropic random field. In such a field the autocorrelation is a function of the magnitude of  

         〈        〉       |   |  . The autocorrelation function       𝑎 𝑒 𝑝     ⁄    , 

where  √[                          ]  , belongs to an isotropic field, here     is the 

correlation distance, it is that value of r for which the autocorrelation function decreases to   𝑒⁄    

times its value at     .  

The main ideas of Keller’s method of stochastic perturbations
25

 are as follows:  Suppose the 

wave    satisfies the linear equation       (Eq.1).  The operator is perturbed as 

         𝛾       𝛾                                (Eq. 2)  

where   |   | is a measure of the strength of inhomogeneities of the medium,    𝛾  and 

   𝛾  are operators depending on the random variable  𝛾   , of pdf (probability density 

function)   𝛾 . Expectations with respect to   𝛾  are denoted as 〈 〉  ∫   𝛾   𝛾  𝛾
 

. The 

solution to the random equation 

  [      𝛾       𝛾       ]                          (Eq. 3)  

is a random function of 𝛾 . Let us  try to find the expected wave 〈 〉. Suppose      exists and is 

bounded, then from Eqs. (1 & 3)  

                                                       (Eq. 4). 

Solving (Eq. 4) by successive iterations, we get:  

                        
                       (Eq.5) 

Taking expectances,  〈 〉         〈  〉         〈   
    〉  〈  〉           (Eq.6).  

Solving for    and substituting back to (Eq. 6): 

〈 〉         〈  〉〈 〉        〈    
    〉  〈  〉 

  〈  〉  〈  〉             (Eq. 7). 

Applying L to both sides, dropping the       term  and assuming that 〈  〉    , we get Keller‘s 

equation: 

     〈   
    〉    〈  〉 〈 〉                                (Eq. 8). 

                                                 

25
 Karal, F. C. J r . & Kelle r , J. B., 1964: Elastic, electromagnetic and other waves in a random medium. J. Math. 

Phys. 5 No 4: 537-549; Keller, J. B., 1964: Stochastic equations and wave propagation in random media. Proc. 

Symp. Appl. Math. 16: 145-170. 
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To apply (Eq. 8), we need to express the operator 〈   
    〉. Denote by I the unit operator, and 

by    Dirac‘s delta function, and introduce the Green‘s function         defined as 

                      . Then      ∫               , and in  (Eq. 8) 〈    
    〉〈 〉  

     ∫             
  〈     〉      . With this, Keller‘s (Eq. 8) becomes  

     〈    〉-  〈     〉 ∫             〈        〉    〈     〉〈    〉=0    (Eq. 9 ).  

In my studies I applied this equation for many random wave propagation problems, here I only 

summarize how I dealt with plane wave propagation and scattering on 3-dimensional, and 1-

dimensional  velocity inhomogeneities.
26

 We begin with the (x-f domain) wave equation     
  

          (Eq. 10), where the velocity distribution is given as a power series in terms of the 

small parameter   : 𝑐  𝑐  𝑎             (Eq. 11). I used in my works three different 

velocity models
27

:  

Model 1: 𝑐    𝑐                                                                                  (Eq. 12a) 

Model 2: 𝑐    𝑐    [      ]                                                                    (Eq. 12b) 

Model 3:  𝑐     
     

      
 𝑐     𝑐         𝑐     

       | |         (Eq. 12c) 

Matching Eqs. (12.a-c) with the general form (Eq. 11), the coefficients a, b are: 

Model # Velocity 

Model  

a b Eq. # 

Model 1. 𝑐    𝑐          1 0 13a 

Model 2. 𝑐    𝑐    [      ] 𝑐     0 13b 

Model 3.  
𝑐     

𝑐    

      
 

=𝑐     𝑐         𝑐     
     

   | |    

𝑐     𝑐     13c 

 

Introducing the average wave-number     𝑐 ⁄   , expanding   𝑐 ⁄  into a power series in   

and dropping       terms, the wave equation becomes: 

                                                 

26
 Korvin, G. 1977. ‗Certain problems of seismic and ultrasonic wave propagation in a medium with 

inhomogeneities of random distribution. II. Wave attenuation and scattering on random inhomogeneities‘. 

Geophysical Transactions 24(Supplement 2): 1-38. 
27

 These were introduced in  Eqs. (25.a, b, c) in Korvin, G. ‗Certain problems of seismic and ultrasonic wave 

propagation in a medium with inhomogeneities of random distribution.‘  Geophysical Transactions 21(1973): 5-34. 
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 [  𝛾      𝛾  

    ]               
 [  𝛾        𝛾  

       ]        

(Eq. 14), where we introduced the normalized  random variable          √ 〈     〉⁄  =     ⁄  

(Eq. 15),   and the coefficients  𝛾  and 𝛾     are, in case of the three velocity models:  

Model # Velocity 

Model  
𝛾  𝛾  Eq. # 

Model 1. 𝑐    𝑐            𝑐 ⁄   𝑐 
 ⁄  16a 

Model 2. 𝑐    𝑐    [      ] -2 3 16b 

Model 3.  
𝑐     

𝑐    

      
 

=𝑐     𝑐         𝑐     
     

   | |    

2 1 16c 

 

Comparing Eq. (14) with Eq. (2)  we identify the operators as 

      
 

    𝛾   
     

       𝛾   
      

}                                                    (Eq. 17)       

Obviously, 〈  〉 = 0, 〈     〉      Denote the autocorrelation function (ACF) of      by 

𝑁       〈         〉  (Eq. 18). The Green function is          
   [   |    |]

  |    |
   (Eq.19).  In 

case of homogeneous isotropic random velocity fields 𝑁       〈         〉  𝑁     (Eq. 20), 

where   | |, and Eq. (9) becomes: 

      
    𝛾   

  〈    〉   
     

   
 

  
∫

   [    ]

 
𝑁   〈      〉        (Eq. 21) 

Solutions to Eq. (21) are sought for in the plane-wave form: 〈    〉       [   ]        (Eq. 

22). To  find the volume-integral in Eq. (21), we first integrate over the spherical surface S of 

radius r, centered at x. By the mean-value theorem
28

 for any solution of the wave equation one 

has  

 

    ∫       
 

   
        

  
            (Eq. 23), and from Eq. (21): 

   (    
    𝛾   

      
 

 
𝛾 

 ∫ 𝑒 𝑝[    ]           𝑁     
 

 
)                 (Eq. 24). 

 Since the plane wave  ,   defined by Eq. (22), evidently satisfies the wave equation 

                 (Eq. 25),    we obtain, equating Eqs. (24 and 25), the dispersion relation 

                                                 

28
 Keller, J. B., 1964: Stochastic equations and wave propagation in random media. Proc. Symp. Appl. Math. 16: 

145-701. 
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    𝛾   

      
 

 
𝛾 

 ∫ 𝑒 𝑝[    ]           𝑁     
 

 
,       (Eq. 26) 

which is an equation for k. Its solution is the effective wave-number, expressing the global effect 

of the inhomogeneous medium. Solving Eq. (26) in powers of   (by successive iterations), we 

obtain 
  

  
      𝛾  

  

 
  𝛾 

 ∫          𝑁      
 

 

 

 
    𝛾 

 ∫ [           ]𝑁     
 

 
   

(Eq. 27).      The imaginary part of k is the attenuation coefficient, 

    
      

   
 

 
∫              

 

 
𝑁                     (Eq.28).  

Denoting the integral in Eq.  (28)  by   ⏟     (where ―3‖ refers to 3-dimensional velocity 

inhomogeneities), and making use of Eqs. (16a-c), the respective values of   for the velocity 

models   (12a, b, c) are:  

  (
  

  
 )   ⏟    

      
    ⏟    

      
    ⏟    }

 

 
        Eqs.   (29a-c) 

Model # Velocity Model (Eqs. 12a-c) 𝛾  𝛾  Eq. #   Eq. 

# 

Model 1. 𝑐    𝑐            𝑐 ⁄   𝑐 
 ⁄  16a 

.
  

𝑐 
 /   ⏟    

29a 

Model 2. 𝑐    𝑐    [      ] -2 3 16b     
    ⏟     29b 

Model 3.  
𝑐     

𝑐    

      
 

=𝑐     𝑐         𝑐     
     

   | |    

2 1 16c     
    ⏟     29c 

 

The special case (29c) has also been derived by Chernov (1960) and Karal and Keller (1964). 

For some frequently occurring autocorrelation functions the integral   ⏟     can be easily 

computed using tabulated formulae of integration: 
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Autocorrelation function  Eqn.#   ⏟     Eq. # 

𝑁               ⁄   30  
  
 ⏟
     

    
    

 

      
    

  
31 

𝑁                
 ⁄    32  

  
 ⏟
      

√ 

 
     𝑒 𝑝[   

    
 ]  

33 

𝑁      {

 

 
   | |   | |   

   | |   
 

34 
  
 ⏟
     

 

 
0  (

      

   
)
 

1 
35 

 

The case of one-dimensional velocity inhomogeneities can be similarly dealt with
29

. Instead of 

isotropy, we assume that    is stationary, with normalized  ACF N(r). In the 1-D case the 

dispersion relation  is (instead of Eq. 26)  

     
    𝛾   

     𝛾 
   

 ∫ 𝑒 𝑝[    ]           𝑁     
 

 
   (Eq. 36), its solution to first 

approximation is      
  

  
      𝛾  

     
   

 
∫               

 

 
𝑁         (Eq. 37), that yields 

   𝑚   
    

   
 

 
∫            

 

 
𝑁            (Eq. 38). 

For the ACFs N1, N2, and N3 (Eqs. 30, 32, 34) the integral in Eq. (38) can be evaluated as: 

   
 ⏟
     

        
   

  

     
   

                                                (Eq. 39-1) 

  
 ⏟
     

 √ 

 
   𝑒 𝑝[   

   
 ⁄ ]                          (Eq. 39-2) 

 

  
 ⏟
     

 

 
(  *

      

      
+
 

)                                    (Eq. 39-3)   

In the low-frequency limit (     ) we have 

   
 ⏟
       

 ⏟
       

 ⏟
          

      
 ⏟
       

 ⏟
       

 ⏟
               (Eq. 40) 

that is, in words: if the wave-length is much longer than the characteristic size of the 

inhomogeneities (low-frequency limit)  the attenuation is proportional to    
  in case of 3-

                                                 

29
 See Korvin, G. 1977. ‗Certain problems of seismic and ultrasonic wave propagation in a medium with 

inhomogeneities of random distribution. II. Wave attenuation and scattering on random inhomogeneities‘. 

Geophysical Transactions 24(Supplement 2): 1-38, Section 3 (pp. 7-9). 
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dimensional velocity inhomogeneities (Rayleigh scattering). In case of l-dimensional velocity 

inhomogeneities the attenuation is proportional to    
 .  

Let us now study the high-frequency behaviour of the absorption coefficient in case of 3-

dimensional velocity-inhomogeneities. We start from the dispersion relation: 

     
    𝛾   

      
 

 
𝛾 

 ∫ 𝑒 𝑝[    ]           𝑁     
 

 
,    (Eq. 26) 

For the autocorrelation function 𝑁               ⁄    the integral in Eq. (26) can be evaluated, 

and the first iteration step gives
30

 for k: 

      
    𝛾   

  
  

 
   

 𝛾 
 ,

 

        
   -           (Eq. 41) 

Letting     , we have 
  

  
      𝛾  

    
 

 
 

    
 

 
             (Eq. 42) 

what contradicts the experimental fact
31

 that for high frequencies the absorption coefficient 

satisfies Wiener ‘s causality relation        
       

 
      (Eq. 43). The contradiction indicates 

that for      Eq. (26) must be solved more accurately. By Wiener‘s relation it is reasonable to 

assume that for    , k behaves as     (    
  

  
)    (Eq. 44), where      and    are 

unknown coefficients. Substituting to the dispersion relation (Eq. 26), solving  it by iteration, a 

lengthy computation
32

 gives 

     
 

 
|𝛾  |       

   
 

   

}        (Eq. 45a, b), i.e., from Eq. (44): 

               
   

 𝑚      
 

   
                  (Eq. 46). 

Thus, for very high frequencies, the absorption coefficient tends to a finite limit which is 

independent of the variance of the velocity inhomogeneities. This limit depends on the geometry 

(i.e. correlation distance) of the inhomogeneities only. 

3.1.B. MULTIPLE SCATTERING: INTEGRAL EQUATION APPROACH 

I studied this problem in  case of one-dimensional wave propagation. Consider an 

inhomogeneous layer of thickness L situated parallel to the (x, y) plane, which contains, between 

z= 0 and z=L,  velocity inhomogeneities of the form 𝑐    𝑐         (1-D case of Eq. 12a),  

                                                 

30
 See details in Korvin 1977: 19-24. 

31
 Azimi, Sh.A. et al. 1968: Impulse and transient characteristics of media with linear and quadratic absorption laws. 

Izv. Earth Phys. No 2: 42-54. 
32

 Korvin 1977: 23-24. 
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and let a plane wave                  coming from the half-space z < 0 be incident upon 

this layer. It is assumed that L is much larger than the characteristic size of inhomogeneities. The 

time-independent part of the plane wave satisfies the wave-equation        
  

            (Eq. 

47). Introduce the average wave-number    
 

  
  and the notation      

    

  
   (Eq. 48), we can 

series-develop  
  

  
 in Eq. (47) to powers of   so that the wave-equation becomes  *

  

   
 

  
 +         

           (Eq. 49), where                               (Eq.50). 

Transform Eqs. (49-50) to an integral equation of the Fredholm type
33

:   

                 
 ∫                     

 

 
    (Eq.51), where the Green function is 

        
 

    
𝑒 𝑝[   |    |]. We solve the integral equation by Neumann series (which I 

proved to be convergent
34

 for      
   

      
   , where            [   ]|    |).  

If we define the transmission coefficient T and the reflection coefficient R by the relations:  

     {
 𝑒 𝑝           

𝑒 𝑝        𝑒 𝑝            
         (Eq. 52), the Neumann series gives 

  

  

∑ (
   

 
)
 

 
   ∫ ∫  ∫          

 

 

 

 

 

 
           |   

  |                                        (Eq. 53) 

and 

  

∑ (
   

 
)
 

 
   ∫ ∫  ∫         

 

 

 

 

 

 
           |     |                                   

(Eq. 54). Since we are interested in the expected value of | | , multiply Eq. (53) by its complex 

conjugate and  omit higher-order terms to find: 〈   〉    
    

  

 
∫         

 

 
              

(Eq. 55), where        is the ACF of  .  By Eqs. (48 & 50)                
    

  
  

 (|
 

  
|
 

) (Eq. 56), and we find that for one-dimensional multiple scattering the attenuation 

coefficient describing the amplitude-decrease for moderate distances L is given by 

                                                 

33
 Kay, I. & Silverman, R. A., 1958: Multiple scattering by a random number of dielectric slabs. Nouvo Cimento, IX. 

Serie X. Suppl. No 2: 626-645. 
34

 Korvin 1977: 12-13. 
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 ∫          𝑁        
   

  
 

 

 
                   (Eq. 57),  where 𝑁      is the 

normalized ACF , and      is the power spectrum of the inhomogeneities. Summing up the 

results obtained for the velocity model 𝑐    𝑐           (Eq. 12a), we have: 

In the 3-dimensional case: 

  
  

  
    

 ∫    𝑐 𝑠     𝑁     
 

 
                                   (Eq. 58a) 

In the 1-dimensional case: 

  
  

  
    

 ∫    𝑐 𝑠     𝑁     
 

 
                                    (Eq. 58b)      

In the 1-dimensional case including multiple scattering: 

  
  

  
    

 ∫        𝑁     
 

 
                                             (Eq. 58c)      

It is easy to show that all the above absorption coefficients are positive. Comparing Eqs. (58b) 

and (58c), we find that in the one-dimensional case the multiple scattering decreases the total 

wave attenuation. Internal multiples ―are working against‖ reflection losses, i.e. decrease them. 

(Note: This result was achieved in the early 1970‘s, published in 1977. Thirty years later
35

 I 

returned to this problem and proved that multiple scattering on point-like-scatterers, fractally 

distributed in the 3-D space, also decreases energy losses in the high-frequency spectra of 

propagating signals.) 

EXCURSUS 1. ATTENUATION ON REFLECTION COEFFICIENTS  

Starting out from the expression Eq, (54) of the reflection operator R, its expected value   

〈| | 〉 can be deduced and by simple manipulations
36

  we get the ―conservation of energy‖ 

formula: 〈| | 〉    〈| | 〉 (Eq. 59).  Then it follows that 〈| | 〉    〈| | 〉    
      

  
          i.e. for a moderate distance L one has 〈| | 〉  𝑒 𝑝 * 

      

  
         +  

(Eq. 60). The right-hand side of Eq. (60) can be expressed in terms of the power spectrum 

     of the sequence of reflection coefficients. Indeed, as I proved in 1973
37

 :        

 
  

   

      

   
   (Eq. 61).  Fourier transforming  both sides         

        

   
  , which, 

expressing ω in terms of      leads to  〈| | 〉  𝑒 𝑝[             ]    (Eq. 62), that is 

                                                 

35
 Korvin, G. & Oleschko, K. 2004. ‗Multiple wave scattering from fractal aggregates‘. Chaos, Solitons and 

Fractals19(2): 421-425.  
36

Korvin, G. ‗Certain problems of seismic and ultrasonic wave propagation in a medium with inhomogeneities of 

random distribution.‘  Geophysical Transactions 21(1973):5-34.  
37

 Korvin 1973, Eq. (51). 
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the transmission operator for a series of layers is simply connected to the power spectrum 

of the sequence of reflection coefficients. It should be noted that Eq.  (62) of the operator 

of transmission shows analogy with the formula  |    |  𝑒 𝑝[      ]  (Eq. 63) of  

O‘Doherty and Anstey
38

, where      denotes the amplitude spectrum of the transmitted 

pulse, R( ) is the spectrum of the time-series of the reflection coefficients, and t is two-

way time. This result has a special importance in seismic stratigraphy, because as I had 

shown
39

, the statistics of reflection coefficients is connected to the sedimentation history of 

the sequence of layers.   

3.1.C. FURTHER RESULTS AND APPLICATIONS 

3.1.C.1.  WAVE ATTENUATION IN POROUS ROCKS 

I successfully applied
40

 this technique and the basic result   

  
  
 

  
  

 ∫          𝑁        
   

  
 

 

 
                   (Eq. 64)    

for a probabilistic description of acoustic wave attenuation in porous, two-component rocks. The 

story goes back to 1961 when Fara and Scheidegger proposed the ACF for the description of the 

statistical geometry of porous media: ―. . . Let us assume that an arbitrary line be drawn through 

a given porous medium whose geometry is to be described. Points on the line are to be defined 

by giving their arch length s from an arbitrarily chosen origin. Then, for certain values of s the 

line will pass through void spaces; for other values of s the line will pass through filled spaces. 

We then introduce a function f(s) defined as follows: the value of f(s) is defined as +1 if the line 

at s passes through void space; it is defined as equal to -1 if the line passes through filled 

space‖
41

. Fara and Scheidegger then suggested that the autocorrelation function (or the power 

spectrum) of this random function f(s) be used to characterize the statistical properties of the 

medium. Except in my works, the ideas of  Fara and Scheidegger have apparently never been 

followed up in ultrasonic absorption studies. I could show that there is a definite relationship 

between the autocorrelation function of  f(s) and  the absorption coefficient of ultrasonic waves 

propagating in the rock. Instead of the function f(s) of Fara and Scheidegger I introduced a 

function      defined along a random line traversing a plane section of the porous rock. 

Denoting by c0 average velocity: 𝑐  𝑝  𝑐        𝑐       𝑝  𝑐    𝑐   (Eq. 58), where p  

is porosity,      𝑝 ,        is defined as:  

                                                 

38
 O‘Doherty, R. F., Anstey, N. A.,1971: Reflections on amplitudes. Geoph. Prosp. 19 No 3: 430-458. 

39
 Korvin, G. ‗The kurtosis of reflection coefficients in a fractal sequence of sedimentary layers‘. Fractals-Complex 

Geometry Patterns and Scaling in Nature and  Society  1(2)1993: 263-268. 
40

 Korvin 1977, 1977-78 Part 1., 1980, 1981. 
41

Fara, H.D . Scheidegger, A. E.,1961: Statistical geometry of porous media. Journal Geoph. Res. 66 No 10: 3,279-

3,284.   
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      {
𝑐  𝑐         𝑒    𝑒 𝑎    𝑝𝑎𝑠𝑠𝑒𝑠              
𝑐  𝑐         𝑒    𝑒 𝑎    𝑝𝑎𝑠𝑠𝑒𝑠         𝑎 𝑠       𝑎  

     (Eq. 65). 

Consider first  a simplified  model of the random function:          at any given point x  assumes 

the value     with probability p, and    with probability q ,   whereas the number of changes of 

the values in any interval            follows a Poisson distribution of density  .  The 

autocorrelation function is defined as              〈          〉, the average being taken over 

all realizations of     . The product              can  take the following forms:             

{
  
       

      𝑒 𝑒 𝑎 𝑒 𝑎  𝑒 𝑒    𝑚 𝑒     𝑐 𝑎  𝑒𝑠  𝑒  𝑒𝑒       

          𝑒 𝑒 𝑎 𝑒 𝑎        𝑚 𝑒     𝑐 𝑎  𝑒𝑠  𝑒  𝑒𝑒       
  

Denoting x |     | ,                , 𝑝  
     

  ∑
      

     

 
         ∑

        

       

 
   -  

 

 
[𝑝  

     
       ]  

 

 
          [𝑝  

     
       ]      (Eq. 66) 

Observing that     𝑐  𝑐    𝑐  𝑐  , similarly     𝑐  𝑐  𝑝 𝑐  𝑐  , we get 〈 〉     

〈  〉  𝑝  𝑐  𝑐  
 , and Eq. (66) simplifies  to 

        〈  〉          𝑝  𝑐  𝑐  
            (Eq. 67), the corresponding power 

spectrum being    = 𝑝  𝑐  𝑐  
  

 
 

  

         
    (Eq. 68). Applying Eq. (57) it is seen that in a 

two-component porous rock the absorption coefficient is given by        
   

  
  

 
  
 

  
       (Eq. 

68), where      𝑐 ⁄  , 𝑐  𝑝  𝑐    𝑐  , p is porosity,      𝑝 ,   is the Poisson-density 

of pore/grain interfaces along a random line.  

From  Eq.  (68) we see that the coefficient of attenuation in a porous rock: 

 — is zero for zero frequency ;  

— increases with     for low frequencies;  

—for high frequencies the attenuation coefficient tends to a finite, frequency-independent, limit.  

For a given fixed frequency, the attenuation 

 — increases as square of the difference between solid and fluid velocities;  

— decreases with increasing average velocities;  

— attains its maximum as function of porosity when p = 0.5.  

From Eq. (68),  for        (low-frequency approximation) we have 
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    (Eq. 69), where

42
     ⁄  .  A more precise calculation 

yields        
     

     
 
  

  
  

       
 

  
     (Eq. 70).  Equations (69 & 70) are formally similar to 

Ament‘s
43

 equation of scattering on density inhomogeneities:        
  

  
  

  

  
  

       
 

  
       

(Eq. 71) where   is the viscosity of the fluid,    ,   ,    are fluid-, solid- and average densities, 

r1 and r2 are the average pore- and grain-diameters, respectively.  Equation (69) implies that the 

absorption coefficient is inversely proportional to (the square of the) average velocity—this was 

confirmed experimentally  by a  student of mine, L. Gombár
44 

.   

3.1.C.2.  WAVE  ATTENUATION AND  ROCK  ENTROPY 

According to Eqs. (68 or 69) the absorption coefficient is a monotonically increasing function of 

porosity between 0-0.5 and attains its maximum at around p = 0.5. This is confirmed by the 

experimental findings of Shumway  and Hamilton
45

  (Fig. 13).   

  

  Fig. 13. Absorption coefficient vs. porosity dependence for marine sediments (after Shumway 

1960). 

In several works of mine
46

, I tried to explain this important finding. I considered a more general  

n-component rock model, in which  component velocities are { 𝑐    𝑐 }, component 

                                                 

42
 Korvin 1977: 27. 

43
  Ament, W. S., 1953: Sound propagation in gross mixtures. Journal Ac. Soc. Am. 25 No. 4: 638-641.    

44
 Gombár L.: Correlation of attenuation of elastic waves with other petrophysical and lithological properties,  

Geophysical Transactions, 1983. Vol. 29. No.3: 217-228. 
45

Shumway, G., 1960: Sound speed and absorption studies of marine sediments by a resonance method—Part II. 

Geophysics, 25 No 3: 659-682; Hamilton, E. L.,1972: Compressional wave attenuation in marine sediments. 

Geophysics 37 No 4: 620-646.   
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probabilities are {𝑝    𝑝 } with ∑𝑝   , average velocity is  𝑐  ∑𝑝 𝑐 , velocity fluctuation 

is    𝑐  𝑐  so that obviously 〈 〉    and – as  little algebra
47

 yields –   〈  〉  ∑𝑝    
  = 

 
∑∑(𝑐  𝑐 )

 
𝑝 𝑝  

   
 and along any random line traversing the medium the number of interfaces 

between components obeys a Poisson distribution with parameter  .  In this model the ACF is 

〈            〉      |     |  〈  〉        |     |    (Eq. 72) where 

  〈  〉  ∑𝑝    
  =  

∑∑(𝑐  𝑐 )
 
𝑝 𝑝  

   
  (Eq.  73).  

Assume the velocities {𝑐 } are indepent, and uniformly distributed in an interval [𝑐    𝑐   ], let 

  𝑐     𝑐   , then 〈(𝑐  𝑐 )
 
〉  

 

  ∫ ∫ (𝑐  𝑐 )
 
 𝑐  𝑐 

    

    

    

    
=    (Eq. 74). The 

expected value of expression (Eq. 72) with respect to the velocity distribution   

{ 𝑐    𝑐 |𝑝    𝑝 } is  

〈      〉          𝑝  𝑝        | |  
        | | 

 
      𝑝  𝑝   

 
        | | 

 
∑ 𝑝 

 
      𝑝     (Eq. 75), where     is the constant computed in Eq. (74).  

By (Eq. 57),    
   

   
          , that is the absorption coefficient   is proportional to the 

power spectrum of the inhomogeneities, the latter is proportional to the ACF, consequently by 

Eq. (75) it is also proportional to the factor   ∑ 𝑝 
 
      𝑝     (Eq. 76), expressing the 

heterogeneity of the rock. Obviously,     if one of the probabilities is 1; H attains it 

maximum for 𝑝  𝑝    𝑝  
 

 
, and      

   

 
. It is worth-while to compare H with the 

Shannon entropy    ∑ 𝑝 
 
      𝑝   (Eq. 77), used by Byryakovskiy

48
 to characterize the 

heterogeneity of rocks. The entropy also satisfies that     if any 𝑝 =1, it assumes its maximum 

for 𝑝  𝑝    𝑝  
 

 
, and          . It can be proved by series development

49
 that 

close to the maximum (if     ∑  |
 

 
 𝑝  |

 
     ) one has         

 

 
           (Eq. 78) 

(see Fig. 14).  

                                                                                                                                                             

46
 Korvin 1977-78 Pt.1; Korvin 1980, Korvin 1985. 

47
 Korvin 1977-78 Pt.1:  115. 

48
 Byryakovskiy, L. A. 1968: Entropy as criterion of heterogeneity of rocks. Soviet Geol. No 3 pp. 135 -138. (In 

Russian, English translation in Internat. Geol. Rev. 10, No 7). 
49

 Details can be found  in Korvin 1977-78 Pt.1: 112. 
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Fig. 14. Relative heterogeneity factor        and relative entropy        for      . 

EXCURSUS 2. A  SEISMOLOGICAL APPLICATION
50

   

The constancy of the ―quality factor‖ Q over a broad frequency range has been widely 

accepted by seismologists
51

. In seismic exploration as well, a large number of published 

data
52

 prove the nearly linear frequency-dependence of the coefficient of absorption. (The 

quality factor Q and   are connected by  
 

 
 

   

  
)

53
. However, in 1980 Aki

54
, based on an 

analysis of the filtered records of some 900 earthquakes occurring in the region of central 

Japan with focal depths  to 150 km conclusively demonstrated that Q for the shear waves 

in the crust and upper mantle increases with frequency over the range 1-25 Hz, at least in 

the areas studied.  

                                                 

50
 Korvin, G. 1983b. ‗General theorem on mean wave attenuation‘. Geophysical Transactions 29(3):191-202. 

51
 Knopoff, L. 1964: Q. Rev. Geoph. 2, 4: 625-660. 

52
 Attewell, P. B., Ramana, Y. W. 1966: Wave attenuation and internal friction as functions of frequency in rocks. 

Geophysics 31, 6: 1049-1056 
53

 The definitions of the quality factor Q, absorption coefficient   and of other measures of attenuation are 

summarized in Bradley, J. J., Fort, A. N. Jr. 1966: Internal friction in rocks. In: Handbook of Physical Constants 

(Ed. Clark, S. P. Jr). Geol. Soc. Am. Memoir, 97: 175-193. 
54

 Aki, К. 1980: Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth. 

Planet. Int. 21, 1: 50-60. 
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55

 

Fig. 15. Frequency dependence of     (after Aki 1980). 

The descending flank of the curve for frequencies higher than 0.75 Hz was fitted by Dainty 

as 
 

    
 

 

  
   

 

 
  with Qi being the intrinsic Q [Qi = 2000], v the shear wave velocity 

[assumed to be 3.5 km/sec], g0 = 0.01 km
-1

 for the observations in Japan and g0 = = 0.005 

km
-1

 for Central Asia. In 1983 I derived a general asymptotic formula for the high-

frequency behavior of the mean field attenuation coefficient (a version of Eq. 46 of this 

Dissertation) which, for an appropriate and realistic model  of the random velocity 

fluctuation,  explained the frequency-dependence of Q
-1

 in  Aki‘s data. This work of mine
56

 

brought me the Best Technical Paper of the Year award from the MGE (Hungarian 

Geophysicists’ Association).  

3.1.C.3. AN UNSOLVED PROBLEM
57

: ABSORPTION AND ENTROPY 

 

                                                 

55
 Dainty, A.M. 1981: A scattering model to explain seismic Q observations .in the lithosphere between 1 and 30 Hz. 

Geoph. Res. Letters, 8, 11: 1126-1128.  
56

 Korvin, G. 1983b. ‗General theorem on mean wave attenuation‘.  Geophysical Transactions 29(3):191-202. 
57 Korvin, G. ‗A few unsolved problems of applied geophysics‘. Geophysical Transactions 31(4)1985:373-389.     
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In 1978 Beltzer studied elastic wave propagation in randomly porous materials. He concluded 

that ―for low frequency regimes the randomness of porosity leads to an increase in the 

attenuation and dispersion of the elastic wave‖
58

. This is highly plausible and in agreement with 

the general understanding that the heterogeneity of a medium causes additional dissipation of the 

propagating elastic wave. (It is well known, for example, that the sound attenuation in crystalline 

materials is less for a single crystal than for an aggregate.) Prior to Beltzer's work, I  had already 

reported similar conclusions, in connection with elastic waves propagating in a random stack of 

layers (the hypothesis was published in Korvin1977a, its heuristic proof in Korvin1977-78 Pt.1).  

My [1980] paper applied stochastic perturbation for the random wave equation  in order to 

generalize Beltzer‘s results for rocks of random structure. I could show that in multi-component 

rocks the low-frequency attenuation coefficient is proportional to (more exactly, positively 

correlated with) the quantity    ∑ 𝑝 
 
      𝑝   where 𝑝   ∑ 𝑝    is the relative volume 

ratio of the i-th phase. The quantity E  measures the randomness of the constitution of the rock 

and, in Russian literature, is termed ―rock entropy‖
59

. Recall  that in the statistical theory of 

disordered systems the entropy S of a random aggregate of several components always consists 

of two parts:                     +            (Eq. 79, the so-called Flory-Huggins formula
60

 ) , 

where            has the same form as the entropy E in our  Eq. (77). For 2-component rocks we 

had: for        :       
 

 

  

  
 

       
 

  
    

  

  
  

       
 

  
     where     ⁄   (Eq, 69).  A more 

precise calculation gave        
     

     
 
  

  
  

       
 

  
    (Eq. 70), that is    

           
 

  
 ⏟  

        

     ⏟
                    

    𝑝 ⏟  
            

    
       

 

  
 ⏟      

                              

     

 

(Eq. 80): the logarithm
61

 of the attenuation coefficient contains configurational and mixing terms 

as in the Flory-Huggins equation (79).  

It is well known that frequency-dependent attenuation, and the resulting velocity dispersion, lead 

to a distortion of the propagating acoustic pulses; Russian oceonologists
62

 speak about the 

changes of signal entropy during hydroacoustic propagation. That is, we can state the following 

unsolved problem: Derive  attenuation in random media from ―conservation of information‖ 

principles! In other words, prove that ―the loss of information about the signal which had 

propagated through a random medium equals the gain of information about the statistics of the 

                                                 

58
 Beltzer A. 1978: The influence of random porosity on elastic wave propagation. J. Sound Vibr. 58, No. 2: 251-

256. 
59

 Byryakovskiy, L. A. 1968: Entropy as criterion of heterogeneity of rocks. Soviet Geol. No 3 pp. 135 - 138. (In 

Russian, English translation in Internat. Geol. Rev. 10,  No 7). 
60

 Ziman J. M. 1979: Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems. 

Cambridge University Press, Cambridge-London-New York-Melbourne. §. 7.2. 
61

 Throughout the paper ―log‖ means natural logarithm.  
62

 Barkhatov A. N. 1982: Modelling of the propagation of sound waves in the oceans (In Russian). Hydro-

meteoizdat, Leningrad;  Barkhatov A. N., Shmelev I. I. 1969: A study of the under-surface sound channel as 

communication channel, under model conditions (In Russian). Akust. Zhurnal 15, 2. 
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medium’s inhomogeneities.‖ To make the hypothesis plausible, I refer to the common 

observation  that high-entropy, very irregular stacks of layers always strongly attenuate  the 

seismic waves propagating through them
63

 (Fig. 15). 

 

  
Fig. 15. Anomalously large energy-attenuation due to a high-entropy cyclic series of 

layers (after Schoenberger and Levin 1974) 

3.1.D.  SCATTERING ON RANDOM SURFACES, FROM A RANDOM HALF-SPACE, AND 

FROM RANDOM NEAR-SURFACE LAYERS  

In each of the following works
64

 I was responsible for the physical model, the mathematics,  and 

the write-up of the paper; when there were co-authors, they were responsible for the field work, 

data collection, and for the software, if needed.  

3.1.D.1. DIFFUSE REFLECTION FROM A GAUSSIAN RANDOM BOUNDARY
65

 

 It has been since long a basic problem of Hungarian reflection seismology that in many cases we 

could not get but intricated diffuse reflections from the uneven surface of the basement. These 

diffuse reflections consist of random diffraction arrivals coming from the rough surface. They  

follow the basement reflection as a ―diffuse shadow‖ of a few hundred ms length that makes  

                                                 

63
 Schoenberger, M. and Levin, F. K. 1974: Apparent attenuation due to intrabed multiples. Geophysics 39 No 3: 

278-291. 
64

 Korvin 1978b, 1982b, 2005; Korvin & Olechko 2004; Korvin et al. 2017; Oleschko et al. 2002, 2003, 2008. 
65

 Korvin, G. 1982b. ‗Certain problems of seismic and ultrasonic wave propagation in a medium with 

inhomogeneities of random distribution. III. Statistics of  the  diffuse  reflection shadow following  a rough 

reflecting boundary‘. Geophysical Transactions 28(1): 8-19. 
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very difficult to detect eventual deeper reflections. To study this problem, I considered Gaussian, 

differentiable, random surfaces for the case when the wavelength is much shorter than the 

characteristic size of the inhomogeneities. Surface-surface multiple scattering and self-

shadowing of the random surface
66

 have not been taken into account. I derived the expected 

temporal behaviour of the amplitude distribution of the diffuse reflection shadow, using the 

following measurement geometry:  

  

Fig. 16. Measurement geometry. 

The random surface is described by the function         , it is homogeneous and isotropic with 

〈 〉    〈  〉     , with Gaussian distribution function      
 

 √  
𝑒 𝑝[      ⁄ ]   (Eq. 81), 

and correlation function 〈                〉    𝑒 𝑝[     
 ⁄ ]  (Eq.82) where 

             
         

 , r0 is the correlation length. If we consider           along an 

arbitrary line, the power spectrum of  (x) is
67

       
  

 √ 
𝑒 𝑝 * 

   

 
  
 +     (Eq. 83) 

Suppose that   (x) is twice continuously differentiable and introduce the variables 

    
  

  
     

   

   .      Obviously,     and      are also Gaussian and
68

  〈  
 〉  𝛾 

  
  

  
   

〈  
 〉  𝛾 

  
   

  
         (Eqs. 84, 85).  We select on the (x, у) plane an arbitrary straight line passing 

through the origin, say the axis x. Measurements are performed by generating and receiving the 

waves at point P = P(0,0, h), lying on the z axis at a height h above the plane (x, y) (this case 

corresponds to NMO-corrected seismic time-sections). It is supposed that P lies high above the 

                                                 

66
 Beckmann, P.1965: Shadowing of random rough surfaces. IEEE Trans. AP-13 No. 3: 384-388. 

67
 Tatarski, V. I.1961: Wave Propagation in a Turbulent Medium. Dover Publ. Inc. New York. 

68
 Rice, S.O.1944, 1945: The mathematical analysis of random noise. Bell Syst. Techn. J. 23, No. 3 (1944); 24, No 1 

(1945).  
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random surface,         (Eq.  86) .  Let X denote the point     , let   𝑃 ̅̅ ̅̅   (Fig. 16). We 

obtain a reflection from point X if and only if x is a stationary point of the function      𝑃 ̅̅ ̅̅ , 

that is if   
  

  
 

  

  
√                  implying    (  

 

 
)           = 0  (Eq. 87) 

where we introduced the notation       ⁄  . Neglecting  the second term on the l.h.s. of Eq. 

(86) on strength of  (Eq. 86), the necessary and sufficient condition of a reflection from   

     will be the validity of                 (Eq. 88). Denote by N(x) dx the probability of a 

reflection arrival from some surface point      above the interval (x, x + dx). Computation
69

 

gives: 𝑁    
√ 

   
𝑒 𝑝 ( 

 

  

  
 

    ) 𝑒 𝑝 * 
 

  
    𝛾 

 ⁄ +       (Eq. 89). 

Determine now the expected number of reflections        coming from the ring between radii 

x and x + dx around the origin O of the (x, y) plane. If v is the propagation speed of sound waves 

above the plane (x, y) and   √       , then         is the expected number of reflection 

arrivals coming from the surface  , at time instant t = 2R/v. Some geometry, and integration,  

give            𝑒 𝑝 ( 
 

 
     𝛾 

 ⁄ )     (Eq. 90), with   
 √ 

  
 𝑒 𝑝 ( 

 

  
 

  
 

    )   (Eq. 

91).  Since              and 𝛾 
  is independent of h, the expected total number of 

reflections from the Gaussian random surface        is 𝑁     ∫   𝑒 𝑝 * 
 

 
     𝛾 

 ⁄ +
 

 
   

   
 

             (Eq. 92).  The function   𝑒 𝑝 * 
 

 
     𝛾 

 ⁄ + attains its maximum for xmax  

where 
    
 

   𝛾 
 , that is        𝛾   (Eq. 93).  Since, by Eq. (84),    𝛾 

     is the mean square 

slope of the surface        , Eq. (93) has a  simple geometric interpretation (Fig. 17). 

 

 Fig. 17. Condition of reflection from a random Gaussian surface 

                                                 

69
 Korvin, G. 1982b: 9-10. 
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The greatest number of reflections from the random surface   (x, y) is obtained for that angle of 

incidence       for which       〈(
  

  
)
 
〉  𝛾 

  
  

  
 .  The corresponding distance Rmax is, by Eq. 

(93):       √  𝛾 
  , or in terms of two-way travel times, the maximum number of 

backscattered reflections is to be expected at        √  𝛾 
   (Eq. 94) where          ⁄  

    , v is propagation speed above the (x,y) plane.  (See Table 1). If the propagating wave has 

the dominant frequency f , the corresponding wavelength is     ⁄   and the first Fresnel zone 

on the (x, y) plane has the radius       √   ⁄ . The scattering has no important effect unless 

      .  

The derivation required the applicability of geometrical optics , that is the following five 

conditions must be satisfied: 

     C.1 

    C.2 

      C.3 

    √   ⁄   C.4 

 
 

  
 𝛾 

  〈  
 〉  

   

  
  

C.5 

 

Table 1. The diffuse reflection shadow in terms of two-way time: 

the shadow exists between 
         √   𝛾 

  

 

it starts with zero expected energy, its energy  

gradually builds up, attains its maximal value 

around 

 

        √  𝛾 
  

and from that point on it decreases faster than  

exponentially until it disappears around         √   𝛾 
  

 

As an example, consider the case of v = 4000 m/s; f = 40 Hz;  h = 4000 m; r0 = 250 m;     = 

5000 m
2
 (  = 100 m). It is easy to check that conditions C.l-C.5 are met. The time-history of the 

diffuse reflection shadow will be:  

it exists between           𝑠𝑒𝑐 
 

it attains its maximal  

value around 

 

           𝑠𝑒𝑐 

it disappears around             𝑠𝑒𝑐 
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3.1.D.2.  OPTICAL IMAGE OF A NON-LAMBERTIAN FRACTAL SURFACE
70

 

Pentland
71

 proved that if a self-affine surface         with power spectrum      (here      

is spatial frequency) is explored with perpendicularly incident light and the diffuse reflection  

follows Lambert's law            𝛾     𝑐 𝑠           (Eq. 95)   where         is incident wave 

intensity,        is image-intensity,  𝛾      is reflectance,           angle between surface 

normal and  incident wave direction,  then the intensity distribution of the image will have the 

power spectrum          for       .  He  assumed constant reflectance along the surface,  and 

made formal use of the partial derivatives 
       

  
    

       

  
   even though they  almost nowhere 

exists along the surface         if it is fractal.    

 First, in 2003, I gave a correct proof  to  Pentland's Theorem using numerical approximation for 

the partial derivatives, but still assuming Lambertian reflection. Then, in 2004,  I dropped the 

Lambertian Ansatz and only assumed that the reflectance is  proportional to the local 

focusing/defocusing factor of the surface. These factors are related to the Gaussian curvature 

G(x,y) of        .   

Modern Differential Geometry helps to express the focusing/defocusing of light by local surface 

curvatures. Compute first the area of a small cap of intrinsic radius λ on a sphere of radius R at 

the point           𝑠   𝑐 𝑠   𝑠   𝑠     𝑐 𝑠 ). The intrinsic metric  on the sphere is 

  𝑠             𝑠         ;  that is               𝑠              ; the 

Gauss curvature is      ⁄ . The area of a polar cap of intrinsic radius λ is: 

       ∫     𝑠            ⁄

 
(  𝑐 𝑠

 

 
)      

 

  

 

  
   ,  

this is a special case of  Schoen's Lemma
72

 for general surfaces: ―If the Gauss curvature at the 

point P=F(x,y) is G(x,y), then the area of a small disk of  intrinsic radius   |      |   ⁄  

around P is             
 

  
     (Eq. 96).‖   From Eq. (96) the defocusing factor (for 

positive curvature) or focusing factor (for negative curvature) is  

      𝑐          (  〈
 

 
〉 )  (Eq. 97),  where c is a constant,   is wavelength.  The ACF 

(autocorrelation function) of the optical image is  

   =〈                〉  〈  𝑃     〉  〈{  𝑐    𝑃 {  𝑐      }}〉  

  𝑐   〈  𝑃     〉  . To relate the ACF of I(x,y) to the ACF of the surface, write 

                                                 

70
 Korvin, G. ‗Is the optical image of a non-Lambertian fractal surface fractal?’  IEEE Geoscience and Remote 

Sensing Letters 2(4)2005:380-383.  
71

 Alex P. Pentland 1984. Fractal-Based Description of Natural Scenes. IEEE Transactions on Pattern Analysis and 

Machine Intelligence PAMI-6:661-674.   
72

 Schoen, Richard M. (1984), "Conformal deformation of a Riemannian metric to constant scalar curvature", 

Journal of Differential Geometry  20 (2): 479–495. 
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(    
    

 )
 
 
 ,    

  

  
,      

   

    
   , and make the following assumptions: 

A1. Smallness:   
    

    

A2. Finiteness: 〈  〉        
 

  
∫   

 

  
              

 

  
[      ]    

        

 〈   〉      

A3. F(x,y) is isotropic and translation invariant.  

I also assumed that the four-product theorem
73

 approximately holds for the derivatives: 

A4. For any four 1
st
  and  2

nd
 -order derivatives: 〈    〉  〈  〉〈  〉  〈  〉〈  〉  〈  〉〈  〉 

 With these assumptions, neglecting the constant additive term and higher-order terms:  

〈  𝑃     〉  〈[    𝑃     𝑃     
  𝑃 ][                

    ]〉    

 〈[   {  
  𝑃    

  𝑃 }]  [   {  
       

    }]〉  

Then I proved (using  Wiener‘s technique
74

), and then applied, the identities:   

        
 

  

                  
 

  

                    
 

  

             ,  

for the  computation of  〈  𝑃     〉  term-by-term in order to derive the sought-for relation 

between the fractal surface F(x,y) and its optical image I(x,y) . Assuming that F(x,y) scales as 

 〈[                 ] 〉         (where  √       ), I  obtained  by a very lengthy 

calculation         〈[    𝑃     𝑃     
  𝑃 ][                

    ]〉    

 [   {  
  𝑃    

  𝑃 }]  [   {  
       

    }]⌋
|   |  

 

      𝑐  𝑠   𝑐  𝑠  | |
      | |       | |      ,  

whence Fourier Ttransform gives that for high spatial frequencies the power spectrum of the 

image falls of as        , that is I proved - without the Lambertian Ansatz - that the optical 

image inherits the fractal dimension of the mapped surface.      

  

                                                 

73
 Julius Bendat 1981. Nonlinear System Analysis and Identification from Random Data. New York: Wiley-

Interscience.  
74

  Wiener, Norbert 1949. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York: Wiley. 
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3.1.D.3. WAVE SCATTERING ON POISSON-DISTRIBUTED AND FRACTALLY-

DISTRIBUTED
75

 INHOMOGENEITIES IN A HALF-SPACE 

The basic difference between the two cases is, that - in  the 3-D space -  the total number    of 

scatterers distributed according to a Poisson process of density   in a volume of characterisctic 

size R   scales as       , while the total number of fractally distributed scatterers scales as 

      with        As we shall see, the  treatment of the two models requires different 

mathematical techniques. 

3.1.D.3.1. SOURCE-GENERATED RANDOM NOISE OVER POISSON-DISTRIBUTED  

SCATTERERS
76

   

We start out from the wave equation      
 

  
 
   

   
     (Eq. 97) where the inhomogeneous 

velocity is of the form   𝑐  𝑐       〈 〉⁄    〈         〉      𝑐 
  , termed previously as 

velocity model (Eq.29.b). Neglecting multiple scattering the solution to Eq. (97) is  

     
     

  
∭         

 (    
  ⁄ )

   
       (Eq. 98), where F is the backscattered signal detected 

at (0,0,0),   √         is the distance to the inhomogeneity, V is the domain containing 

the inhomogeneities, and        𝑐 ⁄  where    is the dominant frequency of the source-signal 

s(t). In case of isolated ―point-like‖ inhomogeneities (―diffracting points‖)          

∑                    )    (Eq. 99), where          )    are coordinates of the i
th

 diffracting 

point and           )  is the 3-dimensional Dirac delta function. Inserting  Eq. (99) into (98) we 

get       ∑ 𝑎   𝑠          (Eq. 100), where 𝑎  
       

 

    
      

   

  
. The function F(t) in Eq. 

(100) can be made stationary by the usual AGC or TAR (Automatic Gain Control, True 

Amplitude Recovery) seismic processing steps, the (two-way) arrival times ti can be assumed 

Poisson-distributed, because of the independence, homogeneity and rarity of the diffraction 

points.
77

  

We shall need Campbell’s Theorem
78

 about the ACF of the function      ∑ 𝑎   𝑠       : 

Suppose  that the amplitudes 𝑎  are independent Gaussian, with 〈𝑎  〉    〈𝑎 
 〉  𝑎 , the     time 

instants are Poisson-distributed with density  , that is the probability that there are exactly  N 

                                                 

75
 Berry called diffractals those waves that have encountered fractals.  See: M.V. Berry 1979. Diffractals. Journal of 

Physics A: Mathematical and General 12(6): 781-797. 
76

 Korvin, G. 1978b. ‗Correlation properties of source-generated random noise, scattered on velocity 

inhomogeneities ‘. Acta Geod.  Geoph. et Mont. Acad.  Sci. Hung.13(1-2)1978: 201-210. 
77

 Jánossy,L., Rényi, A. and Aczél, J.  On composed Poisson distributions. Pt.1. Acta Math. 1(1950): 209-224. 
78

 R y t o v, S. M., 1966: Introduction to Statistical Radiophysics. Nauka, Moscow (In Russian). 
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arrivals in a time-interval [     ] is 𝑒 𝑝[   ]
     

  
 , the wavelet s(t) is of  zero mean 

(∫ 𝑠       
 

  
, and it is identically zero outside some finite interval [      ], then  

       〈          〉   𝑎 ∫ 𝑠   𝑠       
 

 
.     (Eq. 101). 

We shall also need a  generalization of this formula for the case of cross-correlation, due to 

Olshevsky
79

: 

Let       ∑ 𝑎   𝑠          ) and       ∑ 𝑎   𝑠          ) be two processes where 𝑠   and 

𝑠  are different functions, both depending on a random parameter  . If the distribution function 

of   is     , and the definition of 𝑎  and   are as in Campbell’s Theorem, then 

〈            〉   𝑎 ∬     
 

∫ 𝑠   𝑠        
 

 
     (Eq. 102) 

The measurement geometry is shown in Fig. 18. We shall investigate the spatial-temporal 

correlation of the source-generated seismic noise F1 observed at receiver G1 at time t0  and at 

another receiver G2 (which is a distance r apart) at time instant     . The geophones are at the 

points        
 ⁄       and       ⁄      , the source is at           , the z-axis points 

downwards. Denote by R the source-diffractor distance   ̅̅ ̅̅ , assume that     (far field). 

 

Fig. 18. Measurement geometry: O =source, G1 & G2 are receivers at positions x1 and x2 . 

The backscattered noise records received by G1 and G2 are: 

      ∑ 𝑎  𝑠      
         

 
       (Eq. 103a) 

      ∑ 𝑎  𝑠      
  (     )

 
      (Eq. 103b), 

                                                 

79
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where            
 

  
𝑐 𝑠 𝑠            (Eq. 104).   

If the distribution of the diffracting points Di is circularly symmetric, and with respect to depth is 

W(z), then, putting     𝑠   , we have           𝑠     𝑐 𝑠    and  using  

Olshevsky’s Theorem (Eq. 102) we get  - after lengthy integrations
80

  - the   spatio-temporal 

correlation of the two signals: 

       〈            〉 𝑐  𝑠    〈𝑎 〉
 

  
∫ ∫    𝑠     ∫ 𝑠   

       

 

 

  

  

  

  

 

   

𝑠 (    
       

 
)  𝑐 𝑠      𝑐  𝑠    〈𝑎 〉

 

  
∫ ∫    𝑠    

  

  

  

 
    [     

   𝑐 𝑠 𝑠    ] 𝑐 𝑠           (Eq. 105) 

where the integration limits are    𝑎 𝑐    ((  
 

 
)  ⁄ );    𝑎 𝑐    ((  

 

 
)  ⁄ ). In the 

derivation I assumed the  quasi-harmonicity of s(t), what allowed me to write 

 ∫ 𝑠   𝑠        𝑐  𝑠  𝑐 𝑠  
 

  
     (Eq. 106) where    is the apparent circular frequency 

of the signal. 

Three particular cases of Eq. (105) are important: 

a) If r=0,        𝑐  𝑠    〈𝑎 〉
 

  
∫ ∫    𝑠    

  

  

  

 
    [    ] 𝑐 𝑠      that is, by Eq. 

(106),  Eq. (105) reduces to Campbell’s formula. 

b) Let      and assume the scatterers are within a near-surface thin layer. Then     , 
 

 
    

that is    𝑎 𝑐             
 

  
      

 

  
       . Assuming that   is uniformly 

distributed in (      )  that is      
 

|       |
 

 

 
, we obtain for the normalized correlation 

function 

      
    

    
 𝑐  𝑠               (Eq. 106). This correlation function fairly well agrees with 

the correlation function found in model experiments
81

 (Fig. 19).  

 

                                                 

80
 For details see Korvin 1978b: 205. 

81
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Fig. 19. Experimental correlation function for near-surface scatterers. Solid line: wide band 

noise, dashed line: filtered noise. From Levin & Robinson (1969). 

c) Let      and assume the scatterers are within an infinite half-space. Then in Eq. (105)   

changes from    ⁄  to  , W is uniform, and an easy calculation
82

 gives the basic result for the 

normalized correlation function:      
    

    
   

       

    
       (Eq. 107). The different mathematical 

forms of Eqs. (106) and (107) can be used to distinguish the two scattering mechanisms (i.e. 

coming from near-surface, or from the half-space).  

 

3.1.D.3.2. THE OBSERVED WAVE-FORM OVER FRACTAL SCATTERERS
83

 

 

  

 
 

Fig.20. a. View of a monolith, removed from the soil at a Mexican site; b.  its wall, showing 

macro- and micro-layers; c. Common-offset display of the GPR (Ground Penetrating Radar, with 

225 MHz antenna) measurement, carried out on the top of the monolith. (From Oleschko et al. 

2002). 

 

Soil is heterogeneous at a wide range of length scales. Microscopy had proved the fractal nature 

of soil in the range 0.008 to 3mm; in our field studies in 2002 we extended this range to the 

                                                 

82
 See Korvin 1978b: 207. 

83
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macroscale (       -   𝑚 ). In water-saturated porous soil the high-permittivity points are 

associated with pore space, which is known to be a mass fractal
84

, so our basic idea for designing 

the field experiment shown in Fig. 20 had been that microwaves scattered on these high-

permittivity points and recorded by GPR would also show a signal with fractal properties. 

Indeed, I could prove mathematically, that the backscattered radar signal has the same 

Hausdorff-dimension
85

 as the mass-fractal dimension of the high-permittivity points in the 

explored soil. Assssume that a narrow-band radar signal is sent to a soil layer between      

    , where depth axis points downwards, both source and receivers are at        .  If soil 

resistivity is between        𝑚, and with moderate permittivity contrasts, multiple scattering 

can be neglected, and the received signal is       ∑   
   
   (  )  (  )    [   𝑐 ]   Eq. (108), 

where     (  )  is scattered intensity from a soil element with scattering vector   ,   (  ) is the 

number of scatterers with the same   , c is average wave velocity in soil. By Hunt’s Theorem
86

 , 

if    (  )    (  )  (  ) satisfies the conditions (i)  𝑎|  |  |    |   |  |  for some   𝑎  

  𝑎       𝑎    , and (ii)          
     

   |  |
     , then A(t) is a self-affine function with 

Hurst exponent H. The graph of A(t) has a fractal dimension D = 2-H which is the same as the 

mass fractal dimension of scatterers in the planar soil section.  

We assume that   (  ) scales as   (  )  |  |
  

    (Eq. 109). As most scatterers are randomly 

oriented 2-dimensional objects (platelets of clay, cracks, fissures, etc.), for a single scatterer 

  (  )  |  |
  

   (Eq. 110). In a fractal soil both solid grains and pores belong to a finite number 

of geometrically decreasing size classes
87

, that is in the radar‘s penetration range only a finite 

number of scattering vectors       can occur, and ordering them by increasing length, condition 

(i) can be satisfied.  By Eqs. (109 &110)   (  )    (  )  (  )   |  |
    

 and indeed, taking 

the limit in condition (ii):           
     

   |  |
 =       (in the plane of measurement). 

Consequently, the graph of A(t) has the same fractal dimension as the mass fractal dimension of 

the scatterers in the plane of measurement.  

 

We also verified the relation        between the mass fractal dimension of the high-

permittivity points in the plane of measurement, and the self-affinity exponent H of radar traces 

by numerically solving
88

 the wave equation of the EM field: 

                                                 

84
 Korvin, G. 1992a. Fractal Models in the Earth Sciences. Amsterdam: Elsevier. 

85
 Korvin 1992a: 172.  

86
 B.R. Hunt 1988.. The Hausdorff dimension of graphs of Weierstrass functions .Proc.Am.Math.Soc.,126:791.  

87
 Hansen, J. P. and  Skjeltorp, A.T.1988. Fractal pore space and rock permeability implications. Physical Review B 

(Condensed Matter) 38(4): 2635-2638. 
88

Details are  in Gabor Korvin, Ruben V. Khachaturov,  Klaudia Olechko. Gerardo Ronquillo, Maria de Jesus 

Correa Lopez & Juan-José Garcia. ‗Computer simulation of microwave propagation in heterogeneous and fractal 

media‘.  Computers & Geosciences 100(2017): 156-165. 
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         [𝑠              ]    (Eq. 111) 

where   𝑐⁄  is wave number in vacuum,    yaw-angle of incident wave,        complex 

dielectric permittivity. Left- and right boundary conditions are  

  
        𝛾          𝛾 𝑒             (Eq, 112.a) 

  
        𝛾                              (Eq, 112.b) 

where     √  , 𝛾         , 𝛾    √𝑠              , and 𝑒  is initial wave amplitude. 

Equation (111) was approximated to the 2
nd

 order by a symmetric difference scheme, and solved 

by the complex version of Samarskii‘s sweep method
89

. 

 
Fig.21. EM wave-propagation modeling with the EMSoil-2.0, Maxwell image-exploration 

program. Permittivity is assumed to be proportional to gray-scale value of the image. 

 

 EXCURSUS 3. MULTIPLE WAVE SCATTERING FROM FRACTAL 

AGGREGATES
90

 

In the previous Section (3.1.D.3.2.) I described a  mathematical model  to relate the fractal 

dimension of the GPR record measured over a soil layer to the dimension of the self-

similar pore structure of the soil. The signals returning from the fractal structure are self-

affine functions of time, and their Hurst exponent  H was found simply related to the mass-

                                                 

89
 Samarskii, A.A.,1989. The Theory of Difference Schemes. (In Russian.), Nauka, Moscow. 

90
 Korvin, G. & Oleschko, K. ‗Multiple wave scattering from fractal aggregates‘. Chaos, Solitons and Fractals 

19(2)2004: 421-425. 
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fractal dimension  D  of the scatterers. To prove this mathematically for the case of the 

GPR, the scattered wave field was considered as a generalized Weierstrass function 

      ∑   
   
   (  )  (  )    [   𝑐 ]  (Eq. 108), we assumed a hierarchic grain-size- and 

pore-size distribution and applied Hunt’s theorem to arrive at a relation between  H  and  

D. A relation between  H  and  D was indeed derived but multiple scattering had to be 

neglected because of the difficulties of its analytic treatment. Also in literature, both the 

conventional Fourier framework treatment of fractal scattering
91

  and the time-domain 

approach
92

 neglect multiple scattering. We studied
93

  the general problem, to see how 

multiples affect the fractal dimension of the wave field and found a probabilistic estimate 

for the spectral contribution of waves multiply scattered by the fractal structure (Eqs. 4.9 

and 4.11 of Korvin & Oleschko 2004). These equations show that for extended fractal 

media with strong scattering cross-section, multiple scattering affects the value of the 

fractal dimension of the scattered wave field: it decreases the wavefield‘s Hausdorff 

dimension. It was also found (Eq. 4.8  of  Korvin & Oleschko 2004) that multiply scattered 

waves in the fractal medium create  spurious resonance(s) in the high-frequency (―blue‖) 

part of the received wavefield‘s spectrum. 

3.2. ENTROPY 

3.2. A. SHALE  COMPACTION MAXIMIZES ENTROPY
94

  

EXCURSUS  4. THE MAXIMUM ENTROPY METHOD  Suppose a measurable rock 

property   can assume values belonging to L distinct ranges Λ1 ,  
 …,    . If we measure   

on a large number N of samples, we will find N1  values in range Λ1 ,   
 …,     values in 

range ΛL. Letting   𝑁  ∑ 𝑁  
 
      𝑝   

  

 
 ,  the set of numbers  

{𝑝  𝑝    𝑝 },   𝑝    ∑ 𝑝 
 
                                      (Eq. 113) 

constitute a discrete probability distribution. It can represent different degrees of 

randomness: the distribution  𝑝    𝑝  𝑝    𝑝      is not random; the 

distribution 

                                                 

91
 Radlinski,A.P.  et al. Fractal geometry of rocks. Phys. Rev. Lett. 1999;82:3078–81; Allain, C. &  Cloitre, M. 

Optical Fourier transforms of fractals. In: Pietronero L, & Tosatti E, (eds). Fractals in Physics. Amsterdam: 

Elsevier; 1986: 61–64; Guerin C. et al. Electromagnetic scattering from multi-scale rough surfaces. Wave Random 

Media 1997;7:331–49. 
92

 Guerin, C.A. & Holschneider, M. Time-dependent scattering on fractal measures. J Math Phys 1998;39(8):4165–

94; Guerin, C.A. &, Holschneider, M. Scattering on fractal measures. J Phys A: Math Gen 1996; 29:7651–67. 
93

 Korvin & Oleschko 2004. 
94

 Korvin, G. ‗Shale compaction and statistical physics‘. Geophysical Journal – Royal Astronomical Society 78 

(1)1984: 35-50.; Korvin, G. 2020d. ‗Statistical Rock Physics‘ In:  B. S. Daya Sagar, Quiming Cheng, Jennifer 

McKinley and Frits Agterberg (Eds.) Earth Sciences Series. Encyclopedia of Mathematical Geosciences. Springer 

(In Press). 
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 𝑝  
 

 
 𝑝  

 

 
 𝑝      𝑝       is not too random, the distribution where all 

lithologies are equally possible,   𝑝  𝑝  𝑝    𝑝   
 

 
    is as random as posible. 

To characterize quantitatively the ―randomness‖ of the distribution  {𝑝  𝑝    𝑝 } , count 

how many ways one can classify the N samples such that  𝑁    𝑝 𝑁 belongs to   Λ1  ,  

𝑁   𝑝 𝑁 to     , …,  𝑁  𝑝 𝑁   to ΛL . The number of such classifications is given by 

  
  

           
  (Eq. 114). The larger is Π, the more random the distribution. Instead of   

it is easier to estimate log Π (―log‖ always means natural logarithm in this Dissertation),                       
        𝑁     𝑁        𝑁   (Eq. 115). If n>>1 we have  the approximate 

Stirling's formula                                              

 ∫                     
 

 
      (Eq. 116). Using this approximation in Eq. (115):   

     𝑁   𝑁  ∑ 𝑁 
 
      𝑁   ∑ 𝑁 

 
      

  

 
  𝑁∑

  

 

 
      

  

 
  

  𝑁∑ 𝑝 
 
      𝑝  𝑁    𝑝  𝑝     𝑝                            (Eq. 117) 

where   𝑝  𝑝     𝑝    ∑ 𝑝 
 
      𝑝   is the Shannon entropy of the probability 

distribution  𝑝  𝑝     𝑝  .  

In Rock Physics we frequently have to solve an over-determined system of equations  

                         
   

   

                        
   

}                             (Eq. 118)         

In the Maximum Entropy (ME) Technique we accept that particular solution of this system   

whose Shannon entropy  is maximal.    

 3.2.A.1. A THEORETICAL DERIVATION OF ATHY‘S LAW 

By Athy‘s law
95

 (Athy 1930) in thick pure shale porosity decreases with depth as 

                                                                    (Eq. 119) 

where      is porosity at depth z ,      porosity at the surface, and k a constant. Assuming all 

pores have the same volume, the porosity of a rock is proportional to the number of pores in a 

unit volume of the rock.  Athy 's rule states in this case that the pores in compacted shales are 

distributed in such a manner that their number in a unit volume of rock exponentially decreases 

with depth. There are several analogies of this rule in Statistical Physics. The most familiar is the 

barometric equation of Boltzmann expressing the density      of the air at altitude z as                 

           𝑒 𝑝 * 
   

  
+       (Eq. 120) ,  where m is the mass of a single gas molecule, g 

gravity acceleration, k Boltzmann‘s constant,  T absolute temperature. In Statistical Physics
96 

Boltzmann‘s barometric equation  is derived from the assumptions that the gas particles move 

                                                 

95
 Athy, L.., 1930. Compaction and oil migration. Bull. Am. Ass. Petrol. Geol.  14: 25-35.   

96
 Landau, L.D. & Lifshitz, E.M.,1980. Statistical Physics. Pt.1. (Vol. 5 of Course of Theoretical Physics). 

Pergamon Press: Oxford, pp. 106-114. 
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independently of each other and the system tends toward its most probable  (maximum entropy) 

state.   

During compaction of shale,   water is expulsed and clay particles rearrange themselves  towards 

a more dense  system of packing. In Korvin (1981) I adopted Litwiniszyn‘s model
97

 and 

considered  shale compaction history as an upward migration of pores. Take a rectangular prism 

P of the present-day shale  of unit cross-section reaching down to the basement  at depth      , 

and suppose its mean porosity is     i.e. it contains a fractional volume        of fluid and a 

volume          of solid clay particles. Assume that the compaction process is ergodic, i.e. it 

tends towards the maximum-entropy  final state. Neglecting the actual depositional history we 

assume for time t = 0 an initial condition where a prism of water of unit cross-section, 

height       and density      had been overlain by solid clay of height         and density 

           (Fig. 22). 

  

 

Fig. 22. The initial stage of deposition. 

 

Fig. 23. Definition of the macroscopic states  

                                                 

97
 Litwiniszyn, J. 1974. Stochastic Methods in the Mechanics of Granular Bodies. International Centre for 

Mechanical Sciences. Courses and Lecture Notes no. 93. Springer-Verlag:Wien. 
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Divide the prism of water into    ―particles‖ (water-filled pores), each of volume      , which  at 

time t = 0 started to migrate upwards independently of each other, until the final (maximum 

entropy) state had been reached. The initial potential energy of the system had been 

                         ,                                    (Eq. 121)                                          

where initial porosity and particle number are connected by   
   

  
  .   Divide the prism P into 

N equal slabs of thickness          ⁄  , denote the i
th

 slab by 𝛾           𝑁     ,   and   

divide the prism   P  into   𝑁      ⁄  non-overlapping small cubes (Fig. 23).  We have  

  𝑁  if      is sufficiently small.  We rank the N* possible positions, called ―states‖, of a pore 

into N groups:  a pore is said to belong to the group 𝛾    if and only if its centre (x, y, z) lies 

within the slab 𝛾 . This implies every group 𝛾   contains         ⁄  states.  Suppose that   𝑁    

pores are found in state 𝛾  .  The numbers 𝑁  satisfy two constraints, the conservation of pore-

particle number, and the conservation of total potential energy: 

∑ 𝑁 
   
                                                           (Eq. 122a) 

 ∑   𝑁 
   
                                                        (Eq. 122b)  

where E is the total energy (see Eq. 121);      is the potential energy of a single pore particle in 

group 𝛾 , due to buoyancy: 

   =g                                                (Eq. 123)  

The set of numbers  {𝑁 } determine the macroscopic distribution of pores inside the prism P.                               

Apart from a constant factor, the entropy of the distribution is  

  ∑ 𝑁    
  

  

   
                                                 (Eq. 124) 

Denote the average number of pore particles in group   𝛾   by     ̅  , then  ̅  𝑁  ⁄  , 

   ∑  ̅    
 

 ̅ 

   
        (Eq. 125)   and the constraints (122a, b) become 

  ∑  ̅ 
   
      ,   ∑  ̅   

   
                       (Eq. 126a, b)                                                                    

The pore particles will migrate to such a position where the entropy (Eq. 124) is maximal. To 

maximize the entropy subject to the constraints (126a, b), we introduce Lagrange multipliers  

    , and assume that     

 

  ̅ 
(   

 

 
  

 

 
)              𝑁     , that is   ̅  𝑒 𝑝        , wherefrom  𝑒 𝑝   

 

   
 ,     

 

 
   and        

 

   
 𝑒 𝑝 * 

 

       
+                            (Eq. 127) 

Identifying the first factor  in Eq. (127) with surface porosity     ,  the equation becomes   

          𝑒 𝑝 * 
        

  
+         (Eq. 128). an equation that reproduces Athy's compaction 

law.  
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3.2.B. APPLICATIONS OF ENTROPY  

3.2.B.1.  ENTROPY AS PORE DETECTOR
98

 

In a later study,  Shannon entropy occurred in a very  different  context, namely as the entropy of 

shortest distance (ESD) between  geographic elements  ("elliptical intrusions", "lineaments", 

"points") on a map, or between "vugs", "fractures" and "pores" in the microscopic image of  

rocks. The procedure is applicable at all scales, from micrographs to aerial photos. 

In the probabilistic treatment of irregularly placed points the distances to nearest neighbor, and 

their probability distribution, have become standard tool to characterize spatial relationships in 

populations
99

. It was first proved by Hertz
100

, that if  𝑁    points  are distributed on the plane 

with density , and for every point NiPi ,,1,  its distance to the nearest neighbor is 

Niri ,,1,  then the expected value of ir  is 

                        
2

11

lim 


 N

r

r

N

i

N

                               (Eq. 129) 

For a regular square lattice, all distances  ir  are equal, and the Shannon entropy of the distance-

to-nearest-neighbor distribution is 0. The more irregular is the lattice, the larger will be the range 

of the values in the set  ir , and consequently, the larger will be its Shannon entropy. If, for a 

randomly selected point iP , we define   ijrrdistp jii  ,min  where dist is the Euclidean 

distance, then i

W

i

i ppH ln
1




 is a measure of the irregularity of the point distribution. And, 

(because H only depends on the probabilities, but not on the actual distances) this measure is 

scale-free.  

 

The "shortest distance to neighboring element" idea was first studied in the PhD Thesis (in 

Economic Geology) of B. Sterligov
101

.  Later, our group realized that by associating his  three 

geographic elements  "ellipses", "lineaments", "points" with the microscopically observable 

"vugs", "fractures" and "pores" of triple-porosity naturally fractured vuggy carbonates, we get a 

powerful new tool for the digital processing, analysis, and classification of the void space in 

carbonates, and other reservoir rocks. The procedure is applicable at all scales, from micrographs 

to aerial photos. 

                                                 

98
 Korvin, G., Sterligov, B., Oleschko, K. & Cherkasov, S. ‗Entropy of shortest distance (ESD) as pore detector and 
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99
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Ecology, 35(4): 445-453. 
100
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101
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crustales: developpement méthodologique et applications à l'Yennisei Ridge (Russie). Ph.D. Thesis, Lomonosov 

State University, Moscow & Institut des Sciences de la Terre d'Orleáns. 
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Out of the many possible applications of the ESD  concept, only the sliding window entropy 

filtering for pore boundary enhancement will be discussed.  Using standard notations of 

geometry
102

, if A and B are sets in the n-dimensional Euclidean space nR  of finite measure 

 )(,)( BA  ,  then their Minkowski sum is defined as 
ByAx

yxBA



;

)(         (Eq. 130) 

In the special case when B is an n-dimensional hypersphere, we call BAArS );( the 

extended sphere of radius r around A. In the 2-dimensional (planar) case, assuming that the set A 

is convex, and denoting the length of its circumference by c(A), by Tomiczková’s Theorem
103

 the 

area of the extended sphere );( ArS is a monotone increasing quadratic function of the radius r: 

  )()()()()();( 2 ArcrAArcBAArS                     (Eq. 131) 

 

Consider now a "pore" A in the digital image, suppose the distance of A from the nearest pore is 

D. Let  denote pixel size, select a reasonable large   dd -size (say 1010  pixels) window 

W, where d is less than half the distance of A from the closest pore, i.e.  N
D

d
2

. The 

"pore" in the image is distinguished with a separate color, or a distinct range of values of gray 

scale. The boundary of the pore is generally diffuse, not clearly defined. For its better definition 

we introduce the following sequence of planar sets (see Fig. 24):  

 

 

   
 

 

Fig. 24.Illustration of the sliding window entropy technique for a better definition of the 

boundary of the pore 0A .  

                                                 

102
 Mark de Berg, Marc van Kreveld, Mark Overmars & Otfried Schwarzkopf, 1997: Computational Geometry. 

Algorithms and Applications. Springer Verlag, Berlin; Mark Berman, 1977: Distance distributions associated with 

Poisson processes of geometric figures. J. Appl. Prob. 14:195-199. 
103

 Svĕtlana Tomiczková, 2005: Area of the Minkowski sum of two convex sets. Proc. 25
th

  Conf. on Geometry & 

Computer Graphics, Sept. 12-16, 2005, Prague:255-260. 
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The sliding window W, which moves out of 0A , has a size less than half the distance to the 

nearest pore. The sequence NAAA  10 is strictly increasing, the difference sets  

1\  kkk AA  ),,1( Nk  form one-pixel-wide "rings" or "halos" around 0A . 

 

);2/();(

);2(

);(

);0(

2

1

0

ADSANSA

ASA

ASA

ASAA

N 









                            (Eq. 132) 

The sequence of these sets satisfies (where in the 2-D case the measure μ is area) 

NAAAA  10  and    NAAA   1)( .             (Eq. 133a, b) 

Taking set-theoretical differences between successive extended spheres around A of respective 

radii k and  1k  we get a sequence of rings N ,,1   ),,2;1( Nk  around the pore A 

defined as: 1\  kkk AA  ),,1( Nk  . If the moving window W is closer to the pore A than 

D/2  then        NWWAWW   1                       (Eq. 134)  

and, consequently, (because the rings are distinct): 

 



N

i

iWAWW
1

)()(   .                                                    (Eq. 135) 

Suppose the square-shaped window W moves, without rotation, staying parallel to its original 

position, along a linear path as shown in Fig. 24. In the figure, W starts to move from a position 

where it is fully inside A, AW  , then it passes through intermediate positions when only a part 

of W is inside the pore: AW , ;WAW  up to a final position when W is fully outside 

the pore and it is covered by M successive rings: 1; 




kA
Mk

ki

i .  

In any position of the moving window, the altogether 
2d pixels in W define the set of distances 

 dddd  ,,,,, 1111   where ij  is the shortest distance (with the precision of pixel-size ) 

between the pixel Wpij  and the pore A, dji ,,2,1,  . Considering these distances as random 

variables, we can compute their empirical probability distribution  Nk pppp ,,,,, 10  where  

  2/# dkp ijijk   ,                                                         (Eq. 136) 

and the Shannon entropy of this distribution 



N

k

kk ppH
1

ln . Consider the three possible 

positions of the window W. If W is fully inside A, AW  , then all distances ij  are 0, so that 

 0,1 10  Nppp   and 0H . If W is fully outside A but still inside the extended sphere 

of radius N around A, then in a typical case it will have non-empty intersections with d 

consecutive rings: 
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 iW   for dNkdkkki  11;1,,1,  ,      (Eq. 137)  in such a way that each 

intersection contains about d pixels, and in the set iW  all distances are equal to some i . In 

this case, the typical probability distribution will be  

 otherwisepanddkikfordddp ii 01/1/ 2  .       (Eq. 138).  

The corresponding Shannon entropy is d
dd

H
d

i

ln
1

ln
11

0

 




.        (Eq. 139)                                                                               

Consider now when part of the window W lies inside pore A, the rest of it is outside in such a 

way that it has non-empty intersections with the first l rings: AW ,  iW   for 

li ,,2,1   where .dl   In a typical case each intersection with the rings contains about d 

pixels, and in the set iW  all distances are equal to i . In this case the probability distribution 

is  











 otherwisepand
d

pp
d

dld
p il 0

1
; 12

2

0                   (Eq. 140) 

which yields the entropy  d
d

l

d

l

d

l
H ln1ln1 

















 .                                  (Eq. 141) 

Figure 25 shows, for the case when W consists of 1010  pixels, how the Shannon entropy  

(Eq. 141) increases as W gradually moves out from the pore.  

 

 
Fig. 25. Change of the Shannon entropy (Eq. 141).   

 

As seen from this graph, we can define the boundary A  of the pore A with the following 

algorithm: Select the size of W less than the half distance between nearest pores. In any position 

of the moving window W compute the distances  dddd  ,,,,, 1111  of its 
2d pixels from 

the nearest pore with the precision of pixel-size . Define the probability distribution 

 Nk pppp ,,,,, 10   where   2/# dkp ijijk   (see Eq. 136), and calculate the Shannon 
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entropy 



N

k

kk ppH
1

ln . When W is fully inside a pore, then 0H , when W is moving out of 

the pore, step by step, the entropy of distances from the nearest pore will increase to dln  

(according to Eq. 141). The maximal possible entropy of the distribution of distances  

 dddd  ,,,,, 1111   would occur when all ij are different, and this would be twice as 

large as H in Eq. (139): 

 

d
dd

H
d

j

d

i

ln2
1

ln
1

1
22

1

max  


                                                                     (142) 

 

 

If we select W  as ( 1010 ) pixels, in Eq, (139) 303.210lnln d , and it is reasonable to define 

the interior of the pore with the inequality 2ln
1

 


N

k

kk ppH . The boundary obtained in this 

way can be further smoothed using some  2-D filtering, or shaping algorithm.  

  

3.2.B.2.  RELATIVE ENTROPY TRIANGLE  IN AGROECOMETRY
104

 

 

Some 20 years ago I was asked by a Mexican partner to find an algorithm to plot the well-being 

function of a  country, state, or any other complex Economic-Social-Ecologic System on an 

ECON-SOC-ECOL ternary diagram. The main problem  had been that the economic, social and 

ecologic variables are sometimes fuzzy concepts, semantic variables, and even if all three can be 

expressed in numbers, then not in commensurable units (as e.g. ECON = Gross National Income 

[US$], SOC = Life Expectancy [Years], ECOL= Per capita CO2 emission per year [Megaton]).  

I recalled the famous "how to keep the forecaster honest" paradigm
105

 from the early years of 

Information Theory, which asked how to design a payoff system which would force the 

forecaster to give an unbiased prediction of an unknown  distribution of probabilities. It had been 

proved mathematically
106

 that the way to do this is intimately connected  with Shannon entropy.  

Let the probability of the i
th

 possible event be Nipi ,,1,  and suppose the forecaster gets a  

payoff    Nipf i ,,1,  if he predicts this event,  that is his expected payoff is   ii pfp . If 

we want to keep the forecaster honest, we must select a function  ipf  such that for any other 

probability distribution Niqi ,,1,   one has  

                                                 

104
 Klavdia Oleschko, Benjamin Figuerora-Sandoval, Gabor Korvin & Maria Martinez Menes. ‗Agroecometry: a 

toolbox for the design of virtual agriculture‘. Agricultura, sociedad  y desarollo 1(4)2004: 53-71 (In English & 

Spanish). 
105

 I.J.Good, 1952: Rational decisions. J. Roy. Stat. Soc. Ser. B. 14: 107-114; I.J. Good, 1954: Uncertainty and 

Business Decisions. Liverpool University Press, Liverpool; J. McCarthy, 1956: Measures of the value of 

information. Proc. Nat'l. Acad. Sci. 10, 1956: 42(9): 654-655. 
106

 P. Fischer, 1972: On the  inequality    iiii qfppfp     . Metrika 18, 199-208; J. Aczél & Z. Daróczy, 

1957: On Measures of Information and their Characterization. Academic Press, New York. 
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   iiii qfppfp                                (Eq. 143) 

that is, the expected payoff is maximal if the forecaster predicts the events according to their  

correct probability. In a brilliant paper, my childhood friend and university school-mate Pál 

Fischer proved
107

 that the only function satisfying Inequality (143) is )log()( pconstpf  that 

is – apart from a constant factor – the expected payoff is the Shannon entropy   

  ii ppH log . Putting aside the "forecaster" analogy, we can say that the only reasonable 

and unbiased quantitative "value" what we can associate with the information about a 

probability distribution Nipi ,,1,  is its entropy,   ii ppH log . 

This consideration had been one of the motivations for our group to introduce the TRISA 

relative-entropy triangle to analyze and conveniently plot the joint development and mutual 

dependency of three variables, measured in incommensurable units
108

.    

In order to solve the problem, one has to transform the economy, social, and ecology variables to 

dimensionless  variables ecolsocecon ppp ,,  between [0,1] such that  1 ecolsocecon ppp , because 

otherwise we cannot work with a ),,( ecolsocecon ppp  ternary diagram. I present the method that I 

worked out in case of countries of the world. Any other complex economic-social-ecologic 

system could be treated along the same lines.The algorithm consists of seven steps. 

Step 1) Design a number 2015econN of possible classes of economy where the economy of 

any country can belong: 
econNECONECONECON ,,, 21   .  

The classes 
econNECONECONECON ,,, 21  should be arranged in increasing order of merit, so 

that according to some plausable criterion 2ECON  is  ‖better‖ than 1ECON , etc. In a similar 

way the possible social indicators for the countries should be divided to a number 2015socN  

possible classes 
socNSOCSOCSOC ,,, 21   arranged in increasing order of merit;  and the possible 

ecologic measuress should be classified to a number 2015ecolN groups 

lecoNECOLECOLECOL ,,, 21  arranged in increasing order of merit. 

Step 2) Use published statistics of N (N about 100 or more) countries for the last few years and 

prepare empirical histograms for the distribution of the variables ECON, SOC, ECOL among the 

classes defined in Step 1.   

Step 3) Find a meaningful and objective well-being function W to characterize the stage of 

development of a country (for instance Gross National Product in US $ /population, or Gross 

Agricultural Product/area of cultivated land, etc.). Let the well-being function of the i-th country 

be ),,2,1( NiWi  . If country i belongs to  economy class jECON , social class kSOC , 

ecology class lECOL , then define  

                                                 

107
 Fischer op. cit. 

108
 Oleschko et al. 2004.  TRISA is acronym for Triangle of Sustainability of Agroecosystems.  
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10;

10;

10;







i

ecol

i

i

soc

i

i

econ

i

ecol
N

l
ecol

soc
N

k
soc

econ
N

j
econ

                                              (Eq. 144a) 

Step 4) Fit W linearly as 

iiii ecolsoceconW                                            (Eq. 144b) 

where the coefficients  ,,  are optimal in the least mean squares sense: 

minecolsoceconW iiii

N

i




2

1

)(                            (Eq. 144c) 

Step 5) The histograms constructed in Step 2 define three probability distributions. For the case 

of economy, for example (as there are N  countries and econN economic clases), if there are 

,, )(

2

)(

1

econecon NN  countries in classes ,, 21 ECONECON , such that ,1
1

)( 


econN

j

econ

jN  denoting  

 

N

N
p

econ

jecon

j

)(

)(        (Eq. 145a), we get a complete probability distribution 









 


econN

j

econ

jecon

econ

j pNjp
1

)()( 1,,,1,  . We similarly define the other two complete probability 

distributions  









 


socN

k

soc

ksoc

soc

ksoc

k pNk
N

N
p

1

)(

)(

)( 1;,,1,                                       (Eq. 145b) 

and  









 


eecolN

k

ecol

kecol

ecol

kecol

k pNk
N

N
p

1

)(

)(

)( 1;,,1,                                             (Eq. 145c) 

The set of probabilities 
)()()( ecol

l

soc

k

econ

j ppp  , corresponding to  the event that a given country 

falls to the j-th economic, k-th social and l-th ecologic class, also form a complete distribution 

.1
1 1 1


  

ecol

l

soc

k

N

j

N

k

N

l

econ

j ppp
econ soc ecol

 

Step 6) The total Shannon entropy of the complete probability distribution       

 
lkj

ecol

l

soc

k

econ

j ppp
,,

)()()(   is  


  


econ soc ecolN

j

N

k

N

l

totalH
1 1 1

log)()()(  ecol

l

soc

k

econ

j ppp  )()()( ecol

l

soc

k

econ

j ppp   


  


econ soc ecolN

j

N

k

N

l1 1 1

 )()()( ecol

l

soc

k

econ

j ppp )()()( loglog ecol

l

soc

k

econ

j ppp   .                    (Eq. 146) 
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If we observe a new ―event‖ (another country)  
lkj ECOLSOCECONA ,, , this contributes a 

partial entropy  

   )()()( ecol

l

soc

k

econ

jjkl pppH log)()()(  ecol

l

soc

k

econ

j ppp  )()()( ecol

l

soc

k

econ

j ppp         (Eq. 147) 

         

to the total entropy totalH . The relative weights of information which the economic, social, and 

ecologic variables contribute to jklH  are as follows: 

 

)()()(

)(

)()()()()()(

)()()()(.
)(

,

logloglog

log

logloglog

log

ecol

l

soc

k

econ

j

econ

j

ecol

l

soc

k

econ

j

ecol

l

soc

k

econ

j

econ

j

ecol

l

soc

k

econ

j
def

econ

relativej

ppp

p

pppppp

pppp
h









                      (Eq. 148a) 

and, similarly, 

)()()(

)(

)(

,
logloglog

log
ecol

l

soc

k

econ

j

soc

ksoc

relativek
ppp

p
h


                                         (Eq. 148b) 

)()()(

)(

)(

,
logloglog

log
ecol

l

soc

k

econ

j

ecol

lecol

relativel
ppp

p
h


                                          (Eq. 148c) 

These relative weights of information are dimensionless,  between 0 and 1, and their sum is 1:   

1)(

,

)(

,

)(

,  ecol

rell

soc

relk

econ

relj hhh .                                                     (Eq. 149) 

Consequently, these variables can be used as coordinates along the sides of the ECON-SOC-

ECOL equilateral triangle (instead of the original, incommensurable variables ECON, SOC, and 

ECOL) to plot the isoline representation of any function F(ECON,SOC,ECOL) of the original 

variables inside the triangle )(

,

)(

,

)(

, ,, ecol

rell

soc

relk

econ

relj hhh . 

Step 7 (Final step): Finally, we shall construct two ternary plots, one for the relative entropy 

dynamics, one for the well-being function dynamics. As there are econN possible economy classes, 

socN  possible social classes, eecolN possible ecology classes, altogether ecolsocecon NNN   points 

are to be plotted inside both ternary diagrams. The combination of variables

 
lkj ECOLECOLSOCSOCECONECON  ;;  will correspond to the ternary coordinates 

 )(

,

)(

,

)(

, ,, ecol

rell

soc

relk

econ

relj hhh
 
along the sides of the triangle, where 

)(

,

)(

,

)(

, ,, ecol

rell

soc

relk

econ

relj hhh  can be computed 

using Eqs. (145a-c, 148a-c). In the ternary diagram for entropy we plot the relative entropy of 

the event    lkj ECOLSOCECONA ,,  with respect to the total entropy: 

 
total

ecol

l

soc

k

econ

j

lkjrel
H

ppp
ECOLSOCECONH

)()()(

,,


     (Eq. 150) ,                                                

where totalH  is given by Eq. (146). In the ternary diagram for well-being function, if for the i-th 

country the parameters are lkj ECOLSOCECON ,,  we plot, at the point  )(

,

)(

,

)(

, ,, ecol

rell

soc

relk

econ

relj hhh

inside the triangle, instead of the original iW , the smoothed value 
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ecolsocecon

smoothed
N

l

N

k

N

j
W  

 

    (cf. Eqs. 144a-1c) instead of the original iW , to 

eliminate random fluctuations. An example
109

, for  such a triangle is shown below:  

 

Fig. 26. Experimental points in the TRISA triangle. To see with increased accuracy the clustering 

of points,  the triangle is divided fractally, as in a Sierpinski gasket
110

. Any sub-triangle can be 

zoomed, and studied separately.  

 

3.3. MEAN-FIELD ROCK PHYSICS
111

 

The question of generalized mean values has occupied me through my career, from an early 

paper with my friend Gyula Katona (1966) on mean values defined on directed graphs, to my 

latest review paper (2020) where I devote a chapter to ―mean field theories‖. 

3.3.A. GENERALIZED MEAN VALUES FOR SEISMIC VELOCITIES  

 

Suppose we are given a composite material consisting of two phases of respective volume 

fractions P, Q; P + Q =  , and suppose these constituents are uniformly distributed within the 

total volume. Suppose g is some physically measurable property that assumes the values 

                                                 

109
 Oleschko et al. 2004: Fig. 3. 

110
 Korvin, G. 1992a. Fractal Models in the Earth Sciences. Amsterdam: Elsevier: 93. 

111
 G. Katona  & Korvin, G. ‗Functions defined on a directed graph‘. Theory of Graphs. Proc. Symp.Tihany, Hung., 

Sept. 1966: 209-213; G. Korvin. & Lux, I.  ‗An analysis of the propagation of sound waves in porous media by 

means of the Monte Carlo method‘. Geophysical Transactions  21(3-4)1972: 91-106; Korvin, G. 1978c. ‗The 

hierarchy of velocity formulae: Generalized mean value theorems.’Acta Geod. Geoph. et Mont. Acad.  Sci. Hung. 

13(1-2)1978: 211-222;  Korvin, G. 1982a.‗Axiomatic characterization of the general mixture rule‘. Geoexploration 

19(4): 267-276; Korvin, G. ‗A few unsolved problems of applied geophysics‘. Geophysical Transactions 

31(4)1985:373-389; Korvin, G. ‗Bounds for the resistivity anisotropy in thinly-laminated sand-shale‘. Petrophysics 

53(1)2012: 14-21; 4. Korvin, G. 2020d. ‗Statistical Rock Physics‘ in B. S. Daya Sagar, Quiming Cheng, Jennifer 

McKinley and Frits Agterberg (Eds.) Earth Sciences Series. Encyclopedia of Mathematical Geosciences. Springer 

(In Press). 
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          ,  respectively, for the two constituents, and a value g for the composite. Suppose, 

further, that the value of g is unambiguously determined by the volume fractions P, Q and the 

specific properties         :           𝑃         (Eq.  151). In Korvin [1982a] it is shown 

that, if a set of physically plausible conditions are  met, the only possible functional form of 

        𝑃    is the ―general mixture rule‖ 

          𝑃    {   
         

 }  ⁄                   (Eq. 152) 

for some real        , or            𝑃      
   

     (Eq. 153) which follows from Eq. 

(152) by l’Hospital’s rule for t   0. Here,  Ф is porosity, defined as      𝑃    .  

The general mean values have the important property
112

  that for                       

           the expression {   
         

 }  ⁄    is a strictly monotonously increasing 

function of t in          . In case of sound speeds in fluid-filled sedimentary rocks the general 

rules (152-153), contain, in particular, the following widely used velocity formulae: for t = -2 the 

―approximate Wood equation‖
113

; for t = - 1 the ―time-average‖ equation
114

;  for t = 0 the 

―vugular carbonate‖ formula
115

; for t = 1 the average velocity formula
116

]. Tegland‘s method of 

sand-shale ratio determination
117

 also assumes a ―t = - 1‖- type time average equation; Mateker‘s 

[1971] effective attenuation factor
118

 in an alternating sequence of thick sand-shale layers is a 

linear weighted (i.e. ―t = 1‖) combination of the specific attenuations, further examples from 

different fields of geophysics are listed in Korvin (1978c, 1982 a). The functional forms (152-

153) were derived in Korvin (1982a) from the following set of conditions.  (The derivation was 

based on the Theory of Functional Equations, particularly on the results of Aczél
119

.) 

Condition 1.  Reflexivity:         𝑃       for all                ; 

Condition 2. Idempotency:         𝑃      for all    ;                for all    ; 

Condition 3. Homogeneity (of 0
th

  order) with respect to the volume fractions:  

        𝑃             𝑃     for all P, Q    such  that 𝑃           ;                                                         

Condition 4. Internity. The property g measured on the composite lies between the specific 

values           of the constituents; if         , say, then for 𝑃        : 

                     𝑃                ;  

                                                 

112
 Beckenbach E. F.& Bellman R. 1961: Inequalities. Springer Verlag, Berlin-Göttingen-Heidelberg. § 1.16. 

113
 Waterman P. C. S. & Truell R. 1961 : Multiple scattering of waves. J. Math. Phys., 2, 4: 512-537; Korvin 1977, 

1978c.   

114
 Wyllie M. R. J., Gregory A. R., Gardner L. W. 1956: Elastic wave velocities in heterogeneous and porous media. 

Geophysics, 21, 1: 41-70. 
115

Meese A. D., Walther H. C. 1967: An investigation of sonic velocities in vugular carbonates. 8
th

  SPWLA Symp., 

Denver.   
116

 Berry J. E. 1959: Acoustic velocity in porous media. J. Pet. Technol, II, 10: 262-270. 
117

 Tegland E. R. 1970: Sand-shale ratio determination from seismic interval velocity. 23
rd

  Ann. Midwestern Mtg., 

SEG, AAPG, Dallas. 
118

 Mateker E. J. Jr. 1971: Lithologic predictions from seismic reflections. Oil and Gas J. (Nov. 8, 1971): 96-100. 
119

 Aczél. J. 1946: The notion of mean values. Nor. Vidensk. Selsk. Forh., 19: 83-86; Aczél J: 1961: Vorlesungen 

über Funktionalgleichungen und ihre Anwendungen. VEB Deutscher Verlag der Wissenschaften. Berlin. 
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Condition 5. Bi-symmetry: Given two composites, the first consisting of  𝑃        parts of 

materials of            properties; the second of 𝑃       parts of materials of           properties, 

then the following two expressions for the measured property g of the four- component aggregate 

must be equal: 

 [        𝑃              𝑃      𝑃     𝑃     ]  

 [        𝑃  𝑃                  𝑃  𝑃        ] ; 

Condition 6. Monotonicity with respect to the volume fractions: 

If       say, 𝑃               then         𝑃             𝑃      ;   

Condition 7. Monotonicity with respect to the physical properties: If 𝑃      ,       then 

        𝑃            𝑃   ; 

Condition 8. Homogeneity (of first order) with respect to the physical properties: 

          𝑃             𝑃     for all 𝑃     such that 𝑃          . 

 

I proved
120

 that if the function         𝑃     , defining the effective physical property        of 

a two-component material, satisfies Conditions 1-8 then it must be of the form 

             𝑃    {   
         

 }  ⁄  for some real    , or        
   

     

where   𝑃  𝑃    .  

 

 
Fig. 27. Porosity-velocity master curves for sandstone (from Korvin 1978c). 

 

                                                 

120
 Korvin 1982a .  
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Figure 27 shows porosity-velocity curves for sandstone, for different values of the parameter t 

(          1545 m/s;            5542 m/s)
121

. The sandstone data are best fitted by a t = 

-0.6 curve, i.e. by the formula      {       
                 

    }
       ⁄

  (Eq, 154). 

In 1985,  I posed the problem, what is the physical meaning (if any) of the parameter t in Eq. 

(152).  Does t = - 0.6 have any particular significance  for sandstone?  There exists  another, 

variational ,  approach  for the determination of the effective properties of composite materials, 

culminating in the celebrated HS (Hashin – Shtrikman) bounds on the effective properties in 

terms of the specific ones
122

.  In my 1985 paper I also asked, is it possible  to  reconcile the 

functional equation approach (of  K o r v in 1978c, 1982a, discussed here) with the  HS 

variational approach, or at least to use HS bounds to derive non-trivial bounds for parameter  t. 

 

3.3.B. RESISTIVITY ANISOTROPY IN THINLY-LAMINATED SAND-SHALE 

In this research
123

, awarded by SPWLA (Society of Well Log Analysts) the Best Technical Paper 

of the Year 2012, I studied the electric resistivity anisotropy of thinly laminated sand-shale 

formations, for the case when both sandstone and shale are  electrically anisotropic, and derived 

simple upper- and lower bounds for the possible maximal and minimal values for the coefficient 

of resistivity anisotropy in such formations. 

The introduction of induction logging tools with multi-directional coils
124

 has made possible to 

independently measure horizontal and vertical effective resistivities h and v in wells and to 

derive from them vertical and horizontal shale resistivities sh_v and sh_h, and a single resistivity 

value sd for the sandstone which is considered isotropic. In this study I dealt with the more 

general case when both sandstone and shale are electrically anisotropic.  

Suppose we have a horizontal stack of inherently anisotropic shale layers of horizontal resistivity 

sh_h and vertical resistivity sh_v alternating with anisotropic sandstone layers of horizontal 

resistivity sd_h and vertical resistivity sd_v. The volume fractions of shale and sand, respectively, 

are Vsh and Vsd with 10  shV , 10  sdV ; in the absence of any further lithology 1 sdsh VV .  

The two volume fractions are assumed as known, because  they can be estimated from Gamma 

Ray log, SP log, or porosity crossplots. 

                                                 

121
 The Berea, Boise, Miocene, Page sandstone data are taken from Meese A.D.& Walther H.C.1967: An 

investigation of sonic velocities in vugular carbonates. 8
th

  SPWLA Symp., Denver; the Texas data are from Hicks W. 

G. & Berry J. E. 1956: Application of continuous velocity logs to determination of fluid saturation of reservoir 

rocks. Geophysics, 21, 3: 739-754. 
122

  Hashin Z. & Shtrikman S. 1963: A variational approach to the theory of the elastic behaviour of multiphase 

materials. J. Mech. Phys. Solids. 11: 127-140; Hashin Z. 1964: Theory of mechanical behaviour of heterogeneous 

media. Appl. Mech. Rev. 17, No. 1: 1-9. 
123

 Korvin, G. ‗Bounds for the resistivity anisotropy in thinly-laminated sand-shale‘. Petrophysics 53(1)2012: 14-21.   
124

 Kriegshäuser, B.,  Fanini, O., Forgang, S., Itskovich, G., Rabinovich, M., Tabarovsky, L., Yu, L., Epov, M. & 

V.D. Horst J., 2000: "A new multicomponent induction logging tool to resolve anisotropic formations", SPWLA 40
th

  

Logging Symp.; Clavaud, J.-B., R. Nelson, U. K. Guru & H. Wang, 2005: ―Field example of enhanced hydrocarbon 

estimation in thinly laminated formation with a triaxial array induction tool: A laminated sand-shale analysis with 

anisotropic shale,‖ SPWLA Annual Logging Symp., New Orleans, Louisiana. 
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My assumption, that  both sand and shale are electrically anisotropic, generalizes the model of 

Klein et al. (1997) who assumed isotropy for both sand and shale, and it also improves upon 

published models
125

 where only the shale is taken as  anisotropic but sand is assumed isotropic.  

The Klein equations
126

 , which are based on Kirchoff's laws for laminated composites
127

, express 

the effective horizontal resistivity h and effective vertical resistivity v of the whole stack of 

sand-shale layers in terms of specific resistivities: 












hsd

sd

sh

sh

vsdsdshsh

VV

VV





1   Eqs. (155a and b)  

From (155a),  
sh

sdsdv

sh
V

V 



           Eq. (156), where the sand resistivity  sd is obtained by 

solving the quadratic equation  02  CBA sdsd         Eq. (157), with 

 






 22222 




















sd
V

sh
V

h

sd
Vvh

C
h

v
sd

V
sh

V
h

B

sd
VA

     Eq. (158. a-c) 

Here  hv  /  (which is always greater than 1) is the anisotropy coefficient of the layered 

structure. Clavaud et al. (2005) assumed that the sand is isotropic with resistivity sd, but the 

shale layers are inherently anisotropic with two different resistivities sh_v and sh_h. (Fig. 28). 

 
 

Fig. 28. The model for isotropic  sand, anisotropic shale. (From Clavaud et al., 2005) 

                                                 

125
 Clavaud et al. op. cit.; Minh, Ch.C.,, J.-B. Clavaud, P. Sundararaman, S. Froment, E. Caroli, O. Billon, G. Davis 

& R. Fairbairn, 2007: "Graphical analysis of laminated sand-shale formations in the presence of anisotropic shales", 

World Oil. 228 No. 9.   
126

Klein, J.D., Martin, P.R. & Allen, D.F.1997.  ―The petrophysics of electrically anisotropic reservoirs‖, The Log 

Analyst, 38, No. 3.  
127

 Maxwell, James Clerk, 1891: A Treatise on Electricity and Magnetism. Clarendon, London (Repr. edn. by Dover, 

New York, 1954); Grant, F.S., &  West, G.F., 1965: Interpretation Theory in Applied Geophysics.  McGraw-Hill 

Book Co., New York; Mei, Chiand. C. & Bogdan Vernescu, 2010: Homogenization Methods for Multiscale 

Mechanics. World Scientific, Singapore. 

dc_1811_20

Powered by TCPDF (www.tcpdf.org)



62 

 

In this case Kirchoff ‗s rules give   












hsd

sd

hsh

sh

vsdsdvshsh

VV

VV





1

_

_

      Eqs. (159a and b)  

As 
hshvshsh __ /    is known from some independent measurement, Eqs. (159a and b) can 

be written as  

 













hsd

sd

hsh

sh

vsdsdhshshsh

VV

VV





1

_

_

2

  Eqs. (160a and b), i.e. 
2_

shsh

sdsdv

hsh
V

V







   Eq. (161), 

02  CBA sdsd    Eq. (162), the coefficients are 

sd
Vvh

C

sd
V

shsh
V

h
B

sd
VA













 



2222  Eqs.(163. a-c) 

 

I considered the most general case. I realized that a reasonably strong (
hsdvsdsd __ /  

between 1 and 2) inherent electrical anisotropy can develop in a shale-free sandstone, especially 

if it is hydrocarbon bearing
128

. In such cases sand anisotropy cannot be excluded, and a more 

general set of equations must be used than Clavaud's or Klein's:  













hhsd

sd

hsh

sh

vvsdsdvshsh

VV

VV





1

__

__

                  Eqs. (164a and b) 

Using known anisotropy values (measured on cores or obtained from logs in nearby thick shale 

and sand) 
hshvshsh __ /   and 

hsdvsdsd __ /   ,  Eqs. (164a and b) become: 













hhsd

sd

hsh

sh

vhsdsdsdhshshsh

VV

VV





1

__

_

2

_

2

   Eqs. (165a and b).  From Eq. (165a): 

2

_

2

_

shsh

hsdsdsdv

hsh
V

V







     Eq. (166), 0_

2

_  CBA hsdhsd    Eq. (167a), 

where from 

A

ACBB
hsd

2

42

_


   Eq. (167b), with 

sd
Vvh

C

sd
V

shsh
V

h
B

sdsd
VA














 



2222

2

     Eq.(168a-c)  

 

                                                 

128
 Anderson, B., I. Bryant, M. Lüling, Brian Spies, K. Helbig, 1994: "Oilfield anisotropy: Its origins and electrical 

characteristics", Oilfield Review, October 1994: 48-56; Jing. X.D., Al-Harthy, S. & King, S., 2002:  "Petrophysical 

properties and anisotropy of sandstones under true-triaxial stress conditions". Petrophysics 43: 358-362; Kennedy, 

D. & Herrick, D., 2004: "Conductivity anisotropy in shale-free sandstone". Petrophysics 45: 38-58.   
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For sd = 1, Eqs. (165a & b) reduce to Clavaud‘s equations, and when both 1 shsd   we get 

back Klein's equations. To recognize the pioneering role of these authors, I called  Eqs. (165a, b)  

Generalized Klein-Clavaud Equations. 

 

As seen from Eqs. (166  to 168),  in the general case of parallel, intrinsically anisotropic sand 

and shale layers, the anisotropic sand- and shale resistivitivities can be obtained in three steps:  

(1) computing A, B, C; (2) solving the quadratic equation (Eq. 167 a) for sd_h; (3) then 

computing sh_h using Eq. (166). The specific vertical resistivities are  obtained as 

 sh_v = 2
shsh_h, sd_v = 2

sdsd_h .  

 

For these calculations we need the following input data: 

- three values inferred from well log measurements: Vsh (shale volume), h (horizontal 

resistivity of the formation, parallel with the bedding), v (vertical resistivity of the 

formation, perpendicular to the bedding); 

- two computed values:  shsd VV 1  (sand volume),  and hv  /  (formation 

anisotropy); 

- core-derived or defaulted specific anisotropy values: sd and sh. 

 

The independent parameters which are needed in Eqs. (168 a-c) span a 5-dimensional space  

(Vsh, h, v, sd, sh), where they satisfy the obvious contraints that 10  shV ; h  and v are 

positive real numbers; and none of the specific anisotropies sd and sh is less than one. To see 

why specific anisotropies cannot be less than one, consider the two cases presented in Figs. 29 

and 30.   

  

  
 

Figure 29. Example for a "physical" situation. (From Korvin 2012) 
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Fig. 30. A "nonphysical" case. 

 

 

 Table 2. Parameters used for constructing Figs. 29 & 30 

(From Korvin 2012) 

Fig. 

# 

Vsh sd_h 

m 

sd_v 

m 

sd sh_h 

m 

sh_v 

m 

sh 

2. 0 to 

1 

12 

 

18 1.5 

=1.22 

3 9 3 

=1.73 

3. 0 to 

1 

3 2 0.82 18 12 0.82 

 

Figure 29 shows the vertical and horizontal resistivities of a formation, computed by the 

Generalized Klein-Clavaud Equations (165a & b), as function of shale volume. The specific 

sand- and shale resistivities used for the calculation are contained in Table 2. The plot presents a 

reasonable situation: for all shale volumes one has v>h that is 1/  hv  , as it should 

be. In Fig. 30, on the other hand, for two ranges of Vsh (very small  and very large shale volumes) 

there arises  a "nonphysical" case: v<h that is 1/  hv  . As seen in Table 2,   in case of 

Fig. 29  both specific anisotropies are greater than one, while when constructing Fig.30, both 

were, unphysically, less than one. 

 

A little algebra shows that the simultaneous fulfillment of    

;12

_

_
 sh

hsh

vsh





12

_

_
 sd

hsd

vsd





   (Inequalities 169 a & b) 
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guarantees that if the solutions v and h of the Generalized Klein-Clavaud Equations are 

positive and real, then they satisfy 1/  hv  . Indeed, from Eqs. (165a, b) and (169) 


hsd

sd

hsh

sh

h

VV

__

1

 vsd

sd

vsh

sh VV

__ 
 , i.e. vvsdsdvshsh

vsd

sd

vsh

sh

h VV
VV




 
















__

1

__

. 

In the last step I used Jensen's theorem
129

 according to which for any two unequal positive 

numbers their weighted harmonic mean is less than their arithmetic mean. 

 

Some further numerical experimentation in the parameter space (Vsh, h, v, sd, sh) reveals that 

Conditions (169a & b), in themselves, still do not guarantee that the quadratic equation  

0_

2

_  CBA hsdhsd   (where the coefficients are computed from Eqs. 168 a-c) would have a 

real positive solution for sd_h. The question naturally arises: is there a way to characterize those 

points (Vsh, h, v, sd, sh) of the parameter space for which the Generalized Klein-Clavaud 

Equations have physically meaningful (real and positive) solutions for  sd_h and  sh_h? I 

proved
130

 the following two theorems: 

 

THEOREM 1. The overall  anisotropy of the layered sand/shale formation satisfies the 

inequalities    2

/

2

/

222222
,max2 sdshshsdsdshsdsdshshsdsdshsh VVVVVV        Eq. (170), 

 

where hv  / ,  
hshvshsh __ /   , 

hsdvsdsd __ /   , and I introduced the "cross-

anisotropies"  
hsdvshsdsh __/ /   , 

hshvsdshsd __/ /   .  

 

THEOREM 2. If the parameters (Vsh, Vsd, , sd, sh) satisfy   22
  sdsdshsh VV Eq. (171)   

then the generalized Klein-Clavaud Equations (165a&b) have physically meaningful (real and 

positive) solutions sh_h, sh_v, sd_h, sd_v .  

 

The lower bound in Inequality (170) can be used in the numerical or graphical interpretation of 

triaxial induction logs to exclude such "nonphysical" cases when the graphical or numerical 

solutions would result in negative, or complex-valued specific resistivities, or in unrealistic 

formation anisotropies for which 1/  hv  . 

3.4. FRACTALS
131
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Fig. 31. My 1992 book. The book cover is not a computer-generated fractal, but photo of the 

Tertiary limestone cliffs, the Nullarbor karst, Australia. (Courtesy Dr. Yvonne Bone & Dr. Noel 

P. James) 
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My research in fractals (which started, rather than reached its zenith, with my 1992 book) has 

been so much diversified, that I can only review three short topics to which I contributed, to  

illustrate the beauty and wide applicability of fractals.   

 

3.4. A. SCALING OF TORTUOSITY IN SEDIMENTARY ROCKS
132

 

 

 

Fig. 32. Tortuosity scaling model 

I developed a new model for the scaling of hydraulic tortuosity in a 2D cross-section of   

granular porous sedimentary rocks using heuristic arguments.  Let (Fig. 32)  L be the vertical size 

of the section considered (hydraulic flow goes from top to bottom); Φ porosity (in fraction); τ 

tortuosity (= expected  hydraulic path length/Euclidean length between two randomly selected 

points, 1 ); 000 ,, APr  characteristic size, characteristic perimeter, characteristic area of the 

grains (in the 2D section); Z average number of pores adjacent to a grain (in the 2D section). We 

shall denote by APD / the exponent in the celebrated Mandelbrot's perimeter-area law
133

 stated 

for the grains seen  in 2D section: 

 𝑃  𝑃 (
√  

  
)
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             (Eq. 172) 

I proved the following: The average hydraulic path of the flow from top to bottom is given by the 

equation 
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Note that for 1 we have 1 ; for 0 there are no pores at all, that is 0Z  and 

consequently  as it should be. Equation (173) can be derived with a scaling argument: 

Along a randomly selected top-to-bottom vertical line of length L by the De-Lesse principle of 

stereology
134

 a total length L of the line goes through pore space. Along such parts of the line 

the flow goes along a straight line. The remaining  L1  length of the vertical line is filled by 

grains, the fluid path would meet 
 

0

1

r

L
grains if it could flow along a straight vertical line. 

But it cannot proceed straight, as we see on Fig. 32. Every time the flow reaches a grain it 

changes direction and continues in a "throat" following the curvature of the grain's perimeter. By 

the definition of the grain/pore coordination number Z, the periphery P of a grain is adjacent to 

Z grains, so that every individual "detour" adds a length 








Z

P
 to the hydraulic path.  This detour  

is, by Mandelbrot's Eq. (172) equal to  
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what is the same as Eq. (173) to be proven. 

 

I note that in most theoretical predictions of tortuosity, there is explicit or implicit dependence on 

porosity. In the Lattice Gas (LG) model of Koponen‘s group 1)1(8.0  ; in their 

percolation model 
 

 m

c

a

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1
1  (a and m are fitting parameters)

135
. Comiti and Renaud
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used cube-shaped grains and got  











1
ln1 P  (P is a fitting parameter). Yu's  2D model

137
 

uses square-shaped grains, and yields the scaling law 
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1  (the porosity dependence enters through the term " av " which is a 

complicated function of porosity (op. cit., Eq. (2)).   
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3.4. B. FRACTAL DISTRIBUTION  OF THE SOUTH AUSTRALIAN GRAVITY STATION 

NETWORK
138

 

In any country, the distribution of gravity stations is the result of a multistage decision process: 

in Australia, for example (i) the reconnaissance surveys totalling over 170, 000 stations have 

been completed by the Bureau of Mineral Resources using stations approximately 11 km apart 

(in South Australia and Tasmania 7 km apart), (ii) semi-regional surveys are usually read on a 

0.5-2 km grid, according to the gravity response expected, and (iii) the detailed gravity surveys 

use stations with 100-500m spacing
139

 . Because of the  irregularity and sparsity of the stations 

there are interpolation errors, estimated
140

  by Barlow with the formula     √    (where  

            and    is interstation distance in km). Barlow concluded that   can be as high 

as 2.1 mgal for the Australian regional gravity survey, and 1.3 mgal where a more dense data 

coverage has been obtained. 

  

Fig. 33. A dense part of the South Australian gravity network: the Adelaide gravity stations. 

(From Korvin et al. 1990).  

In 1986 Lovejoy and his group
141

 proved that the World Meteorological Station Network is a 

1.75-dimensional fractal set on the 2-D surface of the Earth, which is ―highly regrettable‖ since 

                                                 

138
 Korvin, G., Boyd, D.M. &  O'Dowd, R. ‗Fractal characterization of the South Australian gravity station network‘. 

Geophysical Journal International 100(3)1990: 535-539. 
139

 Fraser, A. R., Moss, F. J. & Turpie, A., 1976. Reconnaissance gravity survey of Australia, Geophysics, 41, 1337-

1345; Lynch, A. M. & King, A. R.; 1983. A review of parameters affecting the accuracy and resolution of gravity 

surveys.  Bull. Aust. Soc. Expl. Geophys., 14, 131-142. 
140

 Barlow, B. C., 1977. Data limitations on model complexity; 2-D gravity modelling with desk-top calculators. 

Bull. Austr. Soc. Expl. Geophys., 8, 139-143; Sazhina, N. & Grushinsky, N., 1971. Gravity Prospecting, Mir 

Publishers, Moscow. 
141

 Lovejoy, S. & Schertzer, D., 1986. Scale invariance, symmetries, fractals, and stochastic simulations of 

atmospheric phenomena, Bull. Am. Meteor. Soc., 67, 21-32. Lovejoy, S., Schertzer, D. & Ladoy, P., 1986a. Fractal 

characterization of inhomogeneous geophysical measuring networks, Nature, 319, 43-44. Lovejoy, S., Schertzer, D. 

& Ladoy, P., 1986b. Outlook brighter on weather forecasts, Nature, 320,401; Schertzer, D. & Lovejoy, S., 1985. 
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‗to detect phenomena, not only must a network have sufficient spatial resolution, it must also 

have sufficient dimensional resolution. Whenever                              , sparsely 

distributed phenomena with dimension less than     -    cannot be detected‘ (Lovejoy et al. 

1986a). In our study, we determined the  fractal dimension (more precisely, the correlation 

dimension)  for the South Australian gravity station network. 

 EXCURSUS 5. CORRELATION DIMENSION OF FRACTAL POINT SETS
142

  

The standard (Mandelbrot‘s) method of estimating the fractal dimension of a planar point 

set is to divide a large square containing the set into       equal squares and to count the 

number N(X) of those small squares containing points of the set. For fractal point sets 

𝑁          (Eq. 174a) , and               is the corresponding fractal dimension. 

Another  method consists of taking circles or squares of increasing size and counting how 

many points they contain. For fractal point sets the number of points in a circle of radius X 

scales as    𝑁           (Eq.174b) where    and     are not necessarily equal. 

Grassberger and  Procaccia introduced the density correlation function of a point set A as  

     {𝑁 𝑚 𝑒     𝑝𝑎  𝑠    𝑝    𝑠 𝑠 𝑐    𝑎           |     |   }   (Eq.174c)  

and proved that for fractal sets            (Eq.174d)  where the exponent    is the same 

as     of (Eq.174b).  They  proved that Mandelbrot‘s fractal dimension    (of Eq. 174a) 

and the correlation dimension     are related by         (Eq.174e).   Since Inequality 

(Eq.174e) is quite tight in most cases, in most applications  it is tacitly assumed that 

      mainly because numerically
1
 the determination of   ,  is much easier.  

In order to determine the correlation dimension of the South Australian gravity network, we 

computed the correlation function by determining the cumulative frequency distribution 

(Eq.174c)    of the interstation distances for a total number of 65, 049 stations. The distances 

were determined by spherical trigonometry, neglecting elevations. On double logarithmic plot 

(Fig. 34) the cumulative frequency distribution becomes a straight line over more than 2 decades 

of distance, proving the fractal character of the station distribution. The correlation dimension, 

determined from the slope of this straight line was surprisingly low:         . 

 

                                                                                                                                                             

Generalised scale invariance in turbulent phenomena, Phys.Chem. Hydrodyn., 6, 623-635. Schertzer, D. & Lovejoy, 

S., 1986. Generalised scale invariance and anisotropic inhomogeneous fractals in turbulence, in: Fractals in Physics, 

pp. 457-460, Eds Pietronero, L. & Tosatti, E., North-Holland, Amsterdam; Korvin, G. 1992a. Fractal Models in the 

Earth Sciences. Amsterdam: Elsevier:120-126. 
142

 B. Mandelbrot, 1982. The Fractal Geometry of Nature. W.H. Freeman & Co., NY; Grassberger, P. & Procaccia, 

I., 1983a. Measuring the strangeness of strange attractors, Physica, 9D, Nos 1 and 2, 189-208; Grassberger, P. & 

Procaccia, I., 1983b. Characterisation of strange attractors, Phys. Rev. Lett., 50, 346-349. 
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Fig. 34. Cumulative frequency distribution of the interstation distances for the South Australian 

gravity station network. (From Korvin et al. 1990). 

The observable  Bouguer gravity anomaly field is band-limited, i.e. there exists a geologically 

meaningful shortest wavelength         such that the power spectrum        ) of the Bouguer 

anomaly field is zero for wavenumbers       )  for which   
    

  
 

    
   (Eq. 175). 

If the region is a square of side X then – by  the 2-D form of Shannon's sampling theorem
143

 – 

the  gravity field can only be restored from its sampled values if at least 𝑁   
  

    
  (Eq. 176) 

samples are taken along a regular  grid. For a fractal network of dimension d < 2, the number of 

stations within a square of side X scales as    rather than    with increasing X, i.e. the network 

becomes more and more sparse and falls short of the Shannon condition  (Eq. 176). Sampling 

along this low-dimensional point set will preserve some aliasing  frequencies and this will lead 

to spurious anomalies if we interpolate onto a more dense regular grid. Though all wavenumbers 

will be affected, high-wavenumber (short-wavelength) information will be most seriously 

distorted. Such fractal analyses of sparse networks will be helpful in the optimal location of the 

necessary additional stations. 

 3.4. C. IS THE GULF OF SUEZ BASEMENT FRACTAL?
144

 

                                                 

143
 Brillouin, L., 1962. Science and Information Theory, 2
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  edn, Academic Press, New York: Chapter 8. 

144
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PAGEOPH 131(1-2)1989: 289-305; Korvin, G. 1992a. Fractal Models in the Earth Sciences. Amsterdam: Elsevier; 
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Geophysical studies
145

 revealed that the Palaeozoic basement of the Gulf of Suez consists of an 

enormous number of fault blocks whose network qualitatively resembles the contraction- crack 

polygons which can be found in nature in a wide variety of materials and on all scales (mud 

cracks, hardening concrete, age cracking in paintings, etc.
146

). The fault network of the Gulf of 

Suez basement forms a rather uniformly spaced polygonal pattern, most of the blocks are four-

sided (Figs. 35, 36), the lengths of block sides parallel with the Gulf of Suez axis are 

exponentially distributed  (Fig. 37a).  By carefully analyzing the fault network, I found that  a 

power-law size distribution associated with fractal (scale-free) fragmentation can be ruled out. 

  

Fig. 35. A detail of the structural map of the Palaeozoic basement of the Gulf of Suez. Contour 

lines show depth to basement in thousand feet. (After Hammouda 1986). 

                                                                                                                                                             

‗Spatial distribution, scaling and self-similar behavior of fracture arrays in the Los Planes Fault, Baja California Sur, 

Mexico‘. Pure and Applied Geophysics 162(5)2005: 805-826.   
145

 Hammouda, H. M. (1986), Study and Interpretation of Basement Structural Configuration in the Southern Part 

of Gulf of Suez using Aeromagnetic and Gravity data.  Ph.D. Thesis, Faculty of Science, Cairo University. 
146
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Fig.36.  Rose diagram showing the directional distribution of the sides of fault blocks in the Gulf 

of Suez basement. The two main peaks correspond to the "Gulf of Suez" trend (N20-40
o
W) and 

the "cross" trend (N40-50
o
E  structural directions). (From Korvin 1989). 

 
Fig. 37a. 

 
Fig. 37b 

 
Fig.37c. 

 
 

Fig. 38.  

 

Figs. 37.a-c. Empirical cumulative frequency curves N(r) of the relative number of block sides 

greater than r. Curve 1: lengths of the "cross trend" sides (N40-50
o
E);  Curve 2: lengths of the 

"Gulf of Suez trend" sides (N20-40
o
W);  Curve 3: perimeter of the basement blocks in case of 

Figs. 37b and 37c, and quarter perimeters in Fig. 37a. Fig. 37a is semilogorithmic plot,  Fig. 37b 

is a lognormal probability plot; Fig. 37c is log-log plot. Exponential distributions show up as 

straight lines on grid a, lognormal distributions on grid b and power-law (―fractal‖) distributions 

on grid c. (From Korvin 1989). 

Fig. 38. Log-log plot of the empirical cumulative frequency curve of the relative number N(r) of 

blocks  whose sieve diameter (i.e., diameter of the smallest circumscribed circle) is larger than r. 

(From Korvin 1989). 
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Fig. 39. Area-perimeter relation for the Gulf of Suez basement blocks. The lines   𝑃 , 

  𝑃    𝑃  ⁄    𝑃   ⁄    𝑃 correspond, in turn, to the fractal dimensions D = 1; 6/5; 4/3 

and 2. (From Korvin 1989). 

The cumulative frequency distribution of fragment size is usually approximated by one of the 

following functions: (a) by an exponential distribution
147

: 𝑁    𝑒 𝑝[ |   ⁄ | ]     (Eq. 177a) 

where N(r) is number of fragments greater than r,     and   are constants; (b) by a lognormal 

distribution
148

 : N(r)~∫
 

       
 𝑒 𝑝 [ 

 

   ,   
    

 
-
 

]
 

 
     ( Eq. 177b), where   ,    and b are 

constants; and (c)  by the power-law distribution
149

: 𝑁        ⁄    (           (Eq. 177c). 

In experimental studies the most commonly used measure of size is the "sieve diameter"
150

: for 

the particles passing through the sieve with opening diameter r their size is regarded as less than 

r .  The distribution Eq. (177c) is exhibited by many geographical objects over a limited range of 

sizes. Korčak (1940) first described this distribution
151

 for the areas of islands, Mandebrot
152

 

proved that  Korčak law is the consequence of the repetitive subdivision of geometric figures and 

the exponent α  is related to the fractal dimension of the objects which are usually self-similar, 

that is their arbitrarily small substructures look statistically similar to the whole object   

                                                 

147
 Brown,W.K.,Karp, R. R.& Grady, D. Z.1983. Fragmentation of the Universe, Astrophys. and Space Science 94: 

401-412. 
148

 Epstein, B. 1947. The Mathematical Description of Certain Breakage Mechanisms Leading to the Logarithmico-
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149

 Mandelbrot, B. B. 1982. The Fractal Geometry of Nature, Freeman, San Francisco;  Rothrock, D. A. & 

Thorndike, A. S. 1984, Measuring the Sea Ice Floe Size Distribution.  J. Geophys. Res. 89C: 6477-6486; Turcotte, 

D. L. 1986. Fractals and Fragmentation, J. Geophys. Res. 9IB:1921-1926.   
150

 Epstein op. cit. 
151

 Korčak, J. 1940, Deux types fondamentaux de distribution statistique, Bull. Inst. Int. Stat. 30, 295-299. 
152

 Mandelbrot, B. B. 1975, Stochastic models for the Earth's Relief, the Shape and the Fractal Dimension of the 
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under proper magnification. The power-law size distribution observed in the fragmentation of 

earth materials (rocks and sea ice) is consequence of the scale invariance of the fragmentation 

mechanism, that is the pre-existing zones or planes of weakness where breakage occurs, exist on 

all scales
153

. In fractal fragmentation theories it is assumed that the flaws leading to damage  

have a hierarchical structure, where a fracture at the macroscopic scale is caused by the 

accumulation of micro-fractures at lesser scales. The formalization of this principle  has led to 

the RNG (Renormalization Group) methods of predicting rock failure
154

.  

The basement map (only a small part of it is shown in Fig. 35) contains 242 blocks. Most of 

them (220) are four-sided, eight are two-sided, seventeen are three-sided and fifteen are five-

sided. As in the absence of asymmetrical tectonic forces  the surface of a homogeneous medium 

will be criss-crossed  by a hexagonal crack system
155

, the predominance of four-sided blocks 

suggests anistropic stress. This is corroborated by the rose diagram of block sides (Fig. 36). 

There are two distinct directional sets: one parallel to the Gulf of Suez axis (N20-40
o
W) and an 

almost perpendicular "cross trend" (N40-50
o
E)

156
 . Thus, the system is oriented orthogonal

157
. 

 I separately studied the following size parameters (Figs. 37.a-c, & 38): length of the "cross 

trend" block sides (curve 1 in Figs. 37a-c); length of the "Gulf of Suez trend" sides (curve 2 in 

Figs. 37a-c); perimeters of the blocks (curve 3 in Figs. 37a-c, see also Fig. 39); "sieve diameter 

Fig. 38); and  area of the blocks (Figure 39). 

On the basis of Fig.  (37c & 38), and by visually inspecting Fig. 35, which shows a uniform 

spacing between the fault lines (rather than a scale-free Apollonian gasket associated with fractal 

fragmentation
158

), , the power-law distribution of the size parameters can be ruled out. As a 

matter of fact, a power-law block-size distribution would correspond to scale invariance, while 

                                                 

153
 Matsushita, M. 1985. Fractal viewpoint of Fracture and Accretion, J. Phys. Soc. Japan. 54:857-860; Turcotte op. 

cit. 
154
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Northwestern Edge of the Red Sea, Phil. Trans. R. Soc. Lond. A317, 129-139. 
157

 According to  the classification of  Lachenbruch, A. H. 1962. Mechanics of Thermal Contraction Cracks and Ice-

wedge Polygons in Permafrost. Geol. Soc. Am. Spec. Paper 70, 69 pp. 
158

 Rothrock, D. A., and Thorndike, A. S. 1984. Measuring the Sea Ice Floe Size Distribution, J. Geophys. Res. 89C: 

6477-6486; MatsushitA, M. 1985. Fractal viewpoint of Fracture and Accretion.  J. Phys. Soc. Japan. 54, 857-860. 
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contraction-crack polygons always have a characteristic length related to the elastic properties 

and thickness of the contracting layer
159

.   

The exponential distribution of the length of the (N20-40
o
W) block sides reminds us of 

fragmentation processes leading to such size distribution. Griffith showed that if the energy 

consumed in breaking is proportional to the new surface formed, then (the Maxwell- Boltzmann) 

energy partition law  leads to an exponential size distribution of  the resulting particles. Gilvarry 

derived the exponential distribution of fragment size in processes where the breakage proceeds 

along pre-existing Poisson-distributed flaws. Within the framework of Gilvarry‘s theory the 

value of r0 = 4.66 km figuring in the size distribution 𝑁    𝑒 𝑝[    ⁄ ] of curve 2 in Fig. (37a) 

equals the mean spacing between pre-existing Poisson-distributed flaws. The Poisson 

distribution of flaws prior to fragmentation is also in concord with the finding that most of the 

blocks are four-sided, as we know from Statistical Geometry that if a plane is dissected by 

Poisson-distributed random straight lines, the expected number of sides of the resulting 

polygons will be four
160

.The lognormal distribution of the length of the (N40-50
o
E)  block sides 

calls for a reconsideration of the work of Epstein who explained the lognormal size distribution 

of fragments assuming a  scale-invariant and iterative breaking process
161

.  

 As Fig. (39) shows, there is a fair correlation between the area of the blocks and a power of their 

perimeter with an exponent slightly less than two. It is well-known that for a set of random 

planar figures bounded by irregular curves of fractal dimension D, the area and perimeter are 

related by Mandelbrot‘s rule  𝑃  (√ )
 

  (Eq. 178, same as  Eq. 172 above ). Thus, the 

exponents 2, 5/3, 3/2, 1 indicated in Fig. (39) correspond, in turn,  to perimeters of fractal 

dimension D = 1, D = 6/5, D = 4/3, D = 2. As most of the points  in Fig. (39) cluster in the range 

1.2 < D < 1.33 of  low fractal dimensions, this is a further indication that the fragmentation of the 

Gulf of Suez basement is not fractal. 

In an attempt to model the fractal relief of the earth, Mandelbrot
162

  started out from Poisson-

distributed random straight lines dissecting a plane, in each case subjected the two sides to 

random vertical displacements in order to create "cliffs" and repeated this process ad infinitum. 

The fault network, and the vertical displacement of the blocks, observed in the Gulf of Suez 

                                                 

159
 Neal, J. T., Langer, A. M., & Kerr, P. F. 1968. Giant Desiccation Polygons of Great Basin Playas. Geol. Soc. 

Amer. Bull. 79, 69-70. 
160

 Kendall, M. G., and Moran, P. A. P., Geometrical Probability. Griffin and Co., London, 1963. 
161

 Epstein, B. 1947. The Mathematical Description of Certain Breakage Mechanisms Leading to the Logarithmico-

normal Distribution, J. Franklin Inst. 244, 471-477; Gilvarry, J. J. 1964. Fracture of Brittle Solids. Distribution 

Function for Fragment Size in Single Fracture. (Theoretical). J. Appl. Phys. 32, 391-399;  Griffith, L. 1943. A 

Theory of the Size Distribution of Particles in a Comminuted System. Can. J. Research 21A: 57-64.   
162

 Mandelbrot, B. B. 1975.  Stochastic models for the Earth's Relief, the Shape and the Fractal Dimension of the 

Coastlines, and the Number-Area Rule for Islands. Proc. Nat. Acad. Sci. USA 72: 3825-3828. 
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Palaeozoic Basement, resemble an early stage of this random geomorphological process. Using 

modern terminology, they resemble  a prefractal.
163

 

3.5. PETROPHYSICS OF POROUS ROCKS
164

   

3.5.A.  PERMEABILITY OF KAOLINITE-BEARING SANDSTONES 

EXCURSUS 6.  PERCOLATION THEORY
165

 

Percolation Theory was invented by S. R. Broadbent who worked on the design of gas 

masks for use in coal mines. The masks contained porous carbon granules into which the 

gas could penetrate. Broadbent found that if the pores were large enough and sufficiently 

well connected, the gas could permeate the interior of the granules; but if the pores were 

                                                 

163
 Prefractals are sets that are only fractal in a limited range of scales. That is, their iterative generation stopped  

after some finite steps. See e.g. Behzad Ghanbarian-Alavijeh, Humberto Millán & Guanhua Huang 2010. A review 

of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Canadian 

Journal of Soil Science 91(1): 1-14. 

164
 Korvin, G. 2020d. ‗Statistical Rock Physics‘ in B. S. Daya Sagar, Quiming Cheng, Jennifer McKinley and Frits 

Agterberg (eds.) Earth Sciences Series. Encyclopedia of Mathematical Geosciences. Springer (In Press); Islam el-

Deek, Osman Abdullatif & Gabor Korvin, ‗Heterogeneity analysis of reservoir porosity and permeability in the late 

Ordovician glacio-fluvial Sarah formation paleovalleys, central Saud Arabia. Arab. J. Geosci. 10(2017): 400-417; G. 

Korvin. 2016b. ‗Permeability from Microscopy: Review of a Dream‘.Arabian J. of Science & Engineering  

41(6)2016: 2045-2065; Naeem-Ur-Rehman Minhas, Bilal Saad,  Maaruf Hussain & Gabor Korvin. ‗Big Data hiding 

in small rocks: Case study of advanced microscopy and image processing to aid upstream asset development‘.  

Paper SPE-KSA-233(2016); Abdlmutalib, A., Abdullatif, O., Korvin, G. & Abdulraheem, A. ‗The relationship 

between lithological and geomechanical properties of tight carbonate rocks from Upper Jubaila and Arab-D Member 

outcrop analog, Central Saudi Arabia‘. Arabian Journal of Geosciences 8(12)2015: 1031–1048; Korvin, G., 

Oleschko, K. & Abdulraheem, A. ‗A simple geometric model of sedimentary rock to connect transfer and acoustic 

properties‘. Arabian Journal of Geosciences 7(3)2014: 1127-1138; Korvin, G., Sterligov, B., Oleschko, K. & 

Cherkasov, S. ‗Entropy of shortest distance (ESD) as pore detector and pore-shape classifier‘. Entropy 15 (6)2013: 

2384-2397; Korvin, G. ‗Bounds for the resistivity anisotropy in thinly-laminated sand-shale‘. Petrophysics 

53(1)2012: 14-21; Oleschko, K., Korvin, G., Flores, L., Brambila, F., Gaona, C., Parrot, J.-F.,  Ronquillo, G. & 

Zamora, S. ‗Probability density function: A tool for simultaneous monitoring of pore/solid roughness and moisture 

content‘. Geoderma 160(1)2010: 93-104; A. Abdulraheem, E. Sabakki, M. Ahmed, A. Ventala, I. Raharja, & G. 

Korvin. ‗Estimation of permeability from wireline logs in a Middle Eastern Carbonate Reservoir using fuzzy logics‘. 

Paper SPE-105350(2007); Korvin, G., Mohiuddin, M.A. & Abdulraheem, A. ‗Experimental investigation of the 

fractal dimension of the pore surface of sedimentary rocks under pressure‘. Geophysical Transactions 44(1)2001: 3-

19;  Korvin, G. 1992b ‗A percolation model for the permeability of kaolinite-bearing sandstones‘. Geophysical 

Transactions 37(2-3): 177-209; Korvin, G. 1982a.‗Axiomatic characterization of the general mixture rule‘. 

Geoexploration 19(4): 267-276; 70. Korvin, G. ‗Effect of random porosity on elastic wave attenuation‘.  

Geophysical Transactions 26(1980): 43-56; Korvin, G. 1978c. ‗The hierarchy of velocity formulae: Generalized 

mean value theorems.’Acta Geod. Geoph. et Mont. Acad.  Sci. Hung. 13(1-2)1978: 211-222; G. Korvin. & Lux, I.  

‗An analysis of the propagation of sound waves in porous media by means of the Monte Carlo method‘.  

Geophysical Transactions  21(3-4)1972: 91-106. 
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 Broadbent S. R. 1954: Discussion on Symposium on Monte Carlo Methods. J. Roy. Statistic. Soc. B. 68 p.; 

Hammersley J. M. 1983: Origins of percolation theory. In: Deutscher G., Zallen R. and Adler J. (Eds.) Percolation 

Structures and Processes. Ann. Israel Phys. Soc. 5, pp. 48-57; Zallen R. 1983: Introduction to percolation: A model 

for all seasons. In: Deutscher G., Zallen R. and Adler J. (Eds.) Percolation Structures and Processes. Ann. Israel 

Phys. Soc. 5, pp. 4-16;  Ziman J. M. 1979: Models of Disorder. Cambridge U. Press, Cambridge. 
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too small or inadequately connected, the gas would not get beyond the granules‘ surface. 

There was a critical porosity and pore interconnectedness, above which the mask worked 

well and below which it was ineffective. Thresholds of this sort are typical of percolation 

processes. In the bond- percolation problem we assume that a fraction 1-p ( 0 < p < 1) of 

the bonds of a regular grid are randomly cut and a fraction p are left uncut.  

 

Fig. 40. Randomly cut electric network as example for percolation (after Zallen 1983) 

Then there exists a critical fraction 𝑝  (called percolation threshold) such that there is no 

continuous connection along the bonds of the network between the opposite faces for 

𝑝  𝑝   , and there exists a connection with probability 1 for  𝑝  . For the 2-dimensional 

square lattice the percolation threshold is 0.5. In the more general case the percolation 

threshold depends on the dimensionality of the network, d, and on its coordination number 

Z (the average number of bonds connected to any node of the network), but it is 

independent of the detailed structure of the network. Table 2 lists coordination numbers 

and percolation thresholds for some common networks. In d-dimensions, the percolation 

thresholds and coordination numbers conform closely to the empirical rule: 

 𝑝 =      ⁄  . 
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Table 2.  Lattices with their Percolation Probabilities
  
(From Korvin 1992: 22; 1992a) 

Lattice Dimension Coordination number 

Z 
𝑝  

Honeycomb 2 3 0.6527 

Square 2 4 0.5 

Triangular 2 6 0.3473 

Tetrahedral (diamond) 2 4 0.39 

Simple Cubic 3 6 0.25 

Body Centered Cubic 3 8 0.18 

Face Centered Cubic 3 12 0.12 

Hexagonal Close 

Packing 

3 12 0.12 

Close to the percolation threshold ( 𝑝  𝑝  ) the nodes which are connected with each 

other by continuous paths form large clusters of average size    , called the correlation 

length. The correlation length diverges for 𝑝  𝑝  𝑝  𝑝     as     𝑝  𝑝  
   , for 3-

dimensional networks          , independently of the coordination number.   Percolation 

between two opposite nodes of a cluster, a distance    apart, takes place along tortuous zig-

zag paths. Near the percolation threshold the length L( ) of a typical flow path will grow as 

a power of   :         𝑝  𝑝  
  for 𝑝  𝑝  𝑝  𝑝  . As the correlation length    is the 

natural length scale in percolation problems, we define the tortuosity of the percolation 

path as:             ⁄     𝑝  𝑝  
     where, for different models of the 

percolation path the tortuosity exponents 𝛾 are compiled in Table 3. 

Table 3. Tortuosity Exponents (after Korvin 1992: 29, 1992a) 

Model of the percolation  

path
 
 

 

𝛾 Note 

Straight line through the   

correlation length    

0 3D  percolation 

Minimum path 0.25 3D  percolation 

Conductive  path 0.29 3D  percolation-conduction 

Self-avoiding random walk on 

uncut bonds 

0.58 3D  percolation 

Brownian motion in 3D 0.83  

Brownian motion on a   - 

dimensional fractal 

    (     

  ) 

By the ―Alexander-Orbach conjecture‖ 

  (
 

 
)     (Korvin 1992a: 29 
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I applied
166

 Percolation  Theory  to explain a set  of controversial permeability vs. porosity 

measurements
167

 (Fig. 41) on 638 cylindrical kaolinite-bearing sandstone core plugs cut from 

Eromanga Basin
168

, South Australia wells. (Kaolinite is a ―discrete-particle‖ clay
169

, it is 

preferentially deposited in the throats of the sandstone‘s pores, completely blocking  them.). 

Absolute grain density and Cation Exchange Capacity (CEC) were determined on 246 plugs. 

Forty-seven samples were subject to X-ray diffraction analysis to find the distribution of the bulk 

mineralogy and the mineralogy of the < 2  m fraction. Sixty samples were submitted for 

electrical properties  determination, using simulated formation brines, twenty-one of these had 

repeat measurements of conductivity in NaCl brines of differing salinity. (Results are tabulated 

in Gravestock & Alexander op. cit.). Five grain-size categories were selected (see Fig. 41) by 

visual examination: coarse-, medium- and fine sandstone, siltstone and mudrock. Fine sandstone 

samples were further sub-divided into two sets: those with permeability of 100 md or more, and 

those with less than 100 md permeability 

 

Fig. 41. Porosity—permeability trends by visual grain-size [from Gravestock & Alexander 1988] 

                                                 

166
 Korvin 1992: 28-33; 1992a. 

167
 Gravestock D. I & Alexander E. M. 1986: Porosity and permeability of reservoirs and caprocks in the Eromanga 

Basin, South Australia. The Australian Petroleum Exploration Association Journal 26: 202-213. 
168

 Eromanga Basin (Fig. 42) is  Australia‘s largest onshore hydrocarbon province, covers an area approximately  

1,000,000  km
2
 , within which up to 3,000 m of Jurassic to Late Cretaceous sediments are preserved. The sequence 

consists of a lower suite of continental deposits which unconformably overlie deeper Palaeozoic basins or older 

metamorphic and igneous rocks, and an upper suite of transgressive marine sediments which in turn are overlain by 

thick paralic to continental strata. Numerous oil and gas accumulations have been discovered in the lower suite. 
169 

According to the classification of  Neasham J. W. 1977. The morphology of dispersed clay in sandstone 

reservoirs and its effects on sandstone shaliness, pore space and fluid flow properties. SPE Paper 6858. 
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Fig. 42. Location map of the study area.  

I realized that If the pore structure of a sedimentary rock is  converted to a discrete lattice by 

letting pores correspond to nodes, and throats to bonds, then  the continuous Darcy flow 

becomes a lattice percolation. For kaolinite-bearing sandstones, if a given throat is completely 

blocked by kaolinite the corresponding bond will be considered as ‗cut‘. If  any throat is open 

with probability p and blocked by kaolinite particles with probability q = 1-p , then in the 

equivalent bond-percolation problem  a fraction q of the bonds are randomly cut. There exists  a 

percolation threshold such that the fluid cannot flow through the sample for 𝑝  𝑝  and 

percolation starts for 𝑝  𝑝 . At the onset of percolation the fluid particles  follow zig-zag paths, 

the closer is p to 𝑝 , the greater will be the length L(x) of a typical path between two nodes, 

which are geometrically a distance x apart.  (Fig. 43). 

 

Fig. 43. Fluid transfer through kaolinite-bearing sandstone (a) and the corresponding lattice 

percolation model (b). Nodes correspond to pores, uncut bonds to open throats, cut bonds to 

throats blocked by kaolinite particles. The symbolic ‗current‘ can be an arbitrary transfer 

process. 
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Express the Kozeny-Carman (KC) equation in terms of the hydraulic radius  as 

    
    

 

 
   

 

  ,    (more precisely,   [𝑚 ]  
     [  ]  

 
 

 

      ), let    denote the volume 

fraction of kaolinite ,    porosity, then the ratio of open pore space to the total space filled by 

pores or clays is 𝑝  
 

        
  .   The tortuosity tends to infinity with 𝑝  𝑝  𝑝  𝑝    as  

   𝑝  𝑝  
  , that is     

 

    𝑝  𝑝  
  . Define a percolation function PERC as 

𝑃    {
   𝑝  𝑝 

   𝑝  𝑝  
      𝑝  𝑝  

     𝑝  𝑝 
        (Eq. 179) 

where  𝑃     ,  the normalizing constant     is chosen such as to make PERC(1)=1, that is 

       𝑝  
   ⁄    . To find the prefactor  in the asymptotic law 

 

  
  𝑝  𝑝  

     , we 

consider clean sand with        kaolinite content, in which case  p= 1 and PERC(1) = 1,  that is 

for    we can  choose a reasonable average tortuosity for clean sands, say      .  Geometrical 

considerations give       
 

 
 

        

          
  √𝑝   (where        , r  is mean grain radius). 

The final expression for k becomes, as function of          (porosity, grain radius, coordination 

number, and kaolinite volume content): 

  {
    

 

   
         (

    

    
)
   

𝑝  𝑝 

 𝑝  𝑝 

                              (Eq. 180) 

  with            𝑝      ⁄   ;  𝑝  
 

        
   ;            

 

 
 

        

          
  √𝑝   . 

There is a good correlation between measured permeabilities, and permeabilities computed with 

Eq. (180) using the parameters shown in Table 4 and  Fig. 45: 

Table 4. Summary of data used to construct Figure 44 
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Fig. 44. Crossplot of measured vs. computed permeabilities 

  

Fig. 45. Optimal percolation parameters Zopt and PEXopt for the five different lithologies . Z = 

coordination number, PEX = percolation exponent,    fractal dimension of the tortuous flow 

path.  

Figure 45, showing the optimum percolation parameters (Zopt, PEXopt)  for the different 

lithologies,  has two horizontal scales: the percolation exponent PEX and the fractal dimension   

of the percolating fluid path. The two values are related by: PEX = 1.66 (  - 1) for 3-dimensional 

percolation
170

. 

                                                 

170
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Equations (179-180) only apply for sandstones containing ‗discrete particle‘ type clay
171

, for 

example, kaolinite. In their derivation, I used an  empirical equation which I established for the 

Eromanga Basin samples:              (Eq. 181), where CEC is in meq /100 g, and    is the 

weight proportion of the clay size (< 2  m ) fraction, determined from semiquantitative XRD. 

For any other region a new calibration should be found  between kaolinite  content and CEC.  

The most important finding of the study had been that the vanishing permeability at and below 

the percolation threshold can be ascribed to the divergence of tortuosity. I expect this conclusion 

to remain valid for other clay morphologies, though different percolation models would describe 

the effect of pore-lining (chlorite) and pore-bridging (illite) clays. Mixed clay morphologies (as 

e.g. Permian sandstones from the Cooper Basin, South Australia, where the illite/kaolinite ratio 

has been found
172

 to depend on the grain-size of the host rock) pose an intriguing, if not 

intractable, challenge.   

3.5.B. A NEW GEOMETRIC MODEL OF SEDIMENTARY ROCK
173

 

Apart from living organism, rocks are the most complicated structures in the world:

  

Fig. 46a. Sedimentary  rocks under the SEM. 

                                                 

171
 Neasham J. W. 1977. The morphology of dispersed clay in sandstone reservoirs and its effects on sandstone 

shaliness, pore space and fluid flow properties. SPE Paper 6858. 
172

 Schulz-Rojahn J. P. & Phillips S. E. 1989: Diagenetic alteration of Permian reservoir sandstones in the 

Nappameri Trough and adjacent areas, southern Cooper Basin. Proc. of the Cooper and Eromanga Basins Conf., 

Adelaide: 629-645.  
173

 Korvin, G., Oleschko, K. & Abdulraheem, A. ‗A simple geometric model of sedimentary rock to connect transfer 

and acoustic properties‘. Arabian Journal of Geosciences 7(3)2014: 1127-1138.  
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Fig. 46b. Turbidite sandstone core from Campos Basin, Brazil (From: Grochau & Gurevich, 

Geophysics 73(2)2008: E59-E65). 

Between 2010-2015,  I worked on  the following research problem,  raised
174

 by dr. Nabil Akbar 

of Saudi Aramco, Dhahran, Saudi Arabia: Suppose we are given the measured porosity    , 

permeability k, and cementation exponent m of a sedimentary rock. Find an equivalent rock 

model characterized  by the following three  geometric, and one  topological properties: 

- r  (average pore radius) 

- d (average distance between two nearest pores) 

-   (average throat diameter) 

- Z (average coordination number
175

 of a pore) 

The model should be derivable from values of  k, m,   measured at atmospheric pressure, 

and it should exactly reproduce the measured values. 

 

Fig. 47. The parameters r, d, δ, Z . (Z=3 in this case).  

                                                 

174
 Akbar, N.A. (1993). Seismic signatures of reservoir transport properties and pore fluid distribution.  Ph. D. 

Thesis, Stanford University, Stanford;  N. A.  Akbar, Mavko G, Nur A, Dvorkin J.  1994. Seismic signatures of 

reservoir properties and pore fluid distribution. Geophysics 59(8):1222–1236.  
175

 The coordination number Z is the average number of throats emerging from one pore.  
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(Here: porosity  Φ =volume of empty space/total volume; permeability     is in Darcy units in the 

Equation      
 

 

  

  
  where Vx is fluid-flow rate in the x-direction,   is viscosity, P fluid 

pressure; cementation exponent m is the exponent  in Archie‘s Law              ).  

 EXCURSUS 7.  ROCK INVERSION THEORY – WHY 3 PARAMETERS? 

Consider a rock whose pores are fluid-filled ellipsoids with semi-axes (a, b, c), a pore is 

connected to Z nearby pores with throats which have a length l and an elliptic cross-section 

with semi axes (r1, r2 ).  

We measure M bulk data B1, ,…,BM such as density, porosity, permeability, VP, VS etc, for  

 N pressure steps {P1,…, PN}. Elasticity- and Transport Theory yield equations for how 

geometric parameters {a, b, c, l, r1, r2, Z} change as functions of pressure and how the bulk 

properties depend on pressure. 

Each geometric rock property a, b, c, l, r1, r2, Z has a probability distribution. For example  

―a‖  can take different values ai with   Prob(a=ai) = p(a)i where  p(a)i=1. {p(a)i} is called 

the spectrum of a. The procedure ROCK PHYSICS  ROCK TEXTURE  INVERSION 

involves  finding  the spectra of geometric parameters from  the M bulk properties 

measured at N pressure steps. There are three cases: 

CASE a) # of unknowns = # of equations (Direct nonlinear inversion, analytical solution 

only exists in special cases) 

CASE b)  # of unknowns < # of equations (Gauss'  Least Mean Squares  approach) 

CASE c) # of unknowns > # of equations (Out of the   number of  possible solutions we 

either accept (c1) the MOST UNIFORM one (Tikhonov Regularization), or (c2) the  

MOST HETEROGENEOUS one (Maximum Entropy Method).) 

But why do we use only three parameters? Because four are way too much! By Neumann‘s 

famous saying: Give me four  parameters, and I will fit an elephant, give me a fifth, and I 

will make it wiggle its trunk. (Actually,
176

 the contours of an elephant can be fit using 30  

real coefficients, or 4 complex ones in the parametric Fourier representation      

∑    
 𝑐 𝑠     

 𝑠      
         ∑ (  

 
𝑐 𝑠     

 
𝑠    ) 

   .  

  

                                                 

176
 J. Wei, "Least Square Fitting of an Elephant," CHEMTECH  5(2), 1975:128–129; Jügen Mayer, Khaled Khairy 

and Jonathon Howard. Drawing an elephant with four complex parameters, American Journal of Physics  78(2010): 

648-649. 
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Fig. 48. Fitting an elephant: LHS: (Wei, 1975) sketch of an elephant, fitting with 5, 10, 20 

and 30 sine coefficients; RHS: (Mayer et al., 2010) (a) four complex coeficients, (b) five 

complex coefficients make it wiggle its trunk. 

We  recall, that many times in Rock Physics  three parameters can describe a complex 

rock-physical process, as for example, in the Cole-Cole model of IP (Induced Potential)  in 

metal-bearing rocks. Figure 49 shows the equivalent circuit model of the IP effect:  

 Fig. 49. 

R0 is resistance of host rock, R1 resistance of the pore-filler liquid, Zm is complex 

impedance for the metallic grains. In the Cole-Cole model 

        *   (  
 

        
)+  (Eq. 181), governed by three parameters      c. 

Historically, out of the three inversion approaches, my group used LMS inversion to find 

pore surface fractal dimension from porosity vs. pressure,  and permeability vs.  pressure 

data, for  sandstones  and carbonates
177

. Apparently, Tikhonov Regularization  has not been 

used yet for rock inversion – though  promising. Doyen
178

  found with ME-inversion the 

                                                 

177
 Korvin, G., Mohiuddin, M.A. & Abdulraheem, A.‗Experimental investigation of the fractal dimension of the pore 

surface of sedimentary rocks under pressure‘. Geophysical Transactions 44(1)2001: 3-19. 
178

 Doyen, P. E.,1987. Crack geometry of igneous rocks: a maximum entropy inversion of elastic and transport 

properties. J. Geophys. Res. 92 (B8): 8169-8181. Also discussed in Korvin, G. 2020d. ‗Statistical Rock Physics‘ in 
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spectrum of crack shape for Westerly granite from porosity-, compressibility-, resistivity-,  

and permeability data at different  pressures. Our study, discussed here, has been the first 

direct inversion! 

As compared to Doyen‘s ME model, we simplified the rock-model as follows: 

Table 5.  Simplified assumptions 

Assumptions of Doyen‘s  Max Entropy  model  Our simplified assumptions 

The pores are fluid-filled ellipsoids with semi 

axes (a, b, c), each pore is connected to Z 

nearby pores with throats of length l and 

elliptic cross-section with semi axes (r1, r2). 

The pores are fluid-filled spheres with radius r, 

each pore is connected to Z nearby pores with 

throats of length d and circular cross-section 

with diameter  .  

One measures M bulk data B1, ,…,BM for  N 

pressure steps {P1,…,PN} 
We measure three  bulk data  , k, m  for a 

single pressure step only. 

 

We made the following theoretical assumptions:  (a)    𝑚  𝑚     (from effective medium 

theory of granular materials
179

); (b)   
 

 
    

 

   
 

   (Kozeny-Carman Equation
180

); (c) 

       ⁄   (non standard assumption, it follows from a work of Peres-Rosales
 
and

 
 Archie‘s 

Law), where Z is  coordination number, m cementation exponent, S specific surface,    porosity, 

τ  tortuosity,    permeability.  We obtained the following, exact and easily computable, 

mathematical solution:    

    (Eqs. 182.a-c) 

Results for a typical carbonate sample (Khuff limestone,  red color indicates  pore space are 

shown in Fig. 50.  

                                                                                                                                                             

B. S. Daya Sagar, Quiming Cheng, Jennifer McKinley and Frits Agterberg (Eds.) Earth Sciences Series. 

Encyclopedia of Mathematical Geosciences. Springer (In Press) 
179

 Yonezawa, F. & Cohen, M.H. 1983. Granular effective medium approximation. J Appl Phys.54:2895–2899. 
180

 Walsh, J.B.& Brace, W.F.1984.The effect of pressure on porosity and the transport property of rock. J Geophys 

Res 89B(11):9425–9431. 
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Fig. 50. The geometrical properties          computed from       𝑚   using Eqs. (182.a-c).   

The proposed equivalent geometric model of sedimentary rocks belongs to the family of effective 

medium models
181

, the parameters (Z, r, δ, and d) can be easily derived from a few measured 

rock properties (k, Φ, and m). The converse is also true: from the values (Z, r, δ, and d), one can 

easily calculate the bulk rock properties (k, Φ, and m). If the specific matrix-  and fluid properties 

are also known, the elastic constants and the P- and S-velocities can be calculated both for fully 

saturated and partially  saturated rocks. The dc resistivity can be computed from (Z, r, δ, d) in 

case of complete saturation by Archie‘s law, but for partial saturation, we need a further rock 

property, the saturation exponent n. In our model, we could not derive the saturation exponent n 

in terms of (Z, r, δ, d) or ( k, Φ, and m) using physical arguments. Also, we have not succeeded 

to describe relative permeabilities for two-phase flow. The geometric model works well for 

sandstones; for carbonates, the resulting pore parameters are not physically impossible, but they 

show only order-of-magnitude agreement with the microscopic rock structure. The model 

assumed statistical homogeneity and isotropy of the rock volume, which might be true for a 

small cutting, less true for plug-sized samples, and certainly not  valid on reservoir scale. Issues 

of upscaling the model to reservoir scale, making it heterogeneous and anisotropic,  are among 

the further tasks to be solved – I leave this to the next generation. 

                                                 

181
 Kachanov M (1994). Elastic solids with many cracks and related problems. Adv Appl Mech 30:259–345; Sayers 

CM, Kachanov M (1995). Microcrack induced elastic wave anisotropy of brittle rocks. J. Geophys. Res. 100:4149–

4156;  Schubnel A, Guéguen Y (2003). Dispersion and anisotropy in cracked rocks. J. Geophys. Res.  108:2001; 

Fortin J, Schnubnel A, Guéguen Y (2005). Elastic wave velocities and permeability evolution during compaction of 

Bleuswiller sandstone. Int.J .Rock. Mech. Min. Sci. 42:873–889. 
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Autónoma de México;  

KFUPM = King Fahd 

University of Petroleum 

& Minerals. 

SaudiArabia) 

2017 Islam el-

Deek  

et al. 

Heterogeneity analysis Islam el-

Deek 

KFUPM 

2017 Jarrah et al. Types and nature of fracture Jarrah KFUPM 

2017 Korvin et al. Computer simulation  

of microwave 

Lopez & 

Garcia 

UNAM 

2015 Abdlmutalib 

et al. 

The relationship between 

lithological and geomechanical 

properties 

Abdlmutalib KFUPM 

2015 Arizabalo 

et al. 

Multifractal analysis of 

atmospheric 

Arizabalo UNAM 

2013 Velásquez 

Valle et al. 

Spatial variability of the Hurst 

exponent 

Velásquez 

Valle 

UNAM 

2011 Torres-

Argüelles 

et al. 

Fractal metrology for 

biogeosystems 

Torres-

Argüelles 

UNAM 

2010 Velázquez-

García et al. 

Land cover monitoring   Velázquez-

García 

UNAM 

2010 Oleschko 

et al. 

Probability density function Flores UNAM 

2008 Adetunji et 

al. 

Mapping the internal structure Adetunji KFUPM 

2008 Oleschko 

et al. 

Mapping soil fractal 

dimension 

Flores UNAM 
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et al. 

Estimation of permeability Sabakki KFUPM 

2006 Arizabalo 

et al. 

Lacunarity of geophysical well 

logs 

Arizabalo UNAM 

2004 Arizabalo 

et al. 

Fractal and cumulative trace 

analysis 

Arizabalo UNAM 

2004 Oleschko 

et al. 

Agroecometry: a toolbox Maria 

Martinez 

Menes 

UNAM 

2003 Al-Ali et al. Vibrator attribute Al-Ali KFUPM 

2003 Oleschko Fractal radar scattering Flores UNAM 
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et al. 

2002 Oleschko 

et al. 

Fractal scattering of 

microwaves 

Flores UNAM 

1990 Korvin et al. Fractal characterization O‘Dowd ADELAIDE 
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