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Chapter 1

Introduction

1.1 Notations

• C the set of complex numbers

• D “ tz P C : |z| ă 1 u the unit disc

• T “ tz P C : |z| “ 1 u the unit circle

• C` “ tz P C : Impzq ą 0u the upper half plane

• ApDq the set of analytic functions on the unit disc D

• ApC`q the set of analytic functions on C`

• }fr}2 :“
´

1
2π

ş2π

0
|fpreitq|2 dt

¯1{2

• H2pDq the Hardy space of the unit disc

• H2pTq the Hardy space of the unit circle

• H2
pC`q “

"

h P ApC`q : sup

"
ż

R
|hpx` iyq|2 dx : y ą 0

*

ă 8

*

, the Hardy space

of the upper half plane

• H2pRq “ tf P L2pRq, supf̂ Ă r0,`8qu

• ApDq the disc algebra of the unit disc

• Kpz, wq “ kwpzq “
1

1´wz
z, w P D the Szegő or Cauchy kernel on the disc

• C : C` Ñ D, Cpωq “ i´ω
i`ω

the Cayley transform
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• dAαpzq :“ α`1
π
p1´ |z|2qα dxdy , z “ x` iy, the weighted area measure on D

• Apα :“ tf P ApDq :
ş

D |fpzq|
pdAαpzq ă 8u, α ą ´1, 0 ă p ă 8 the weighted

Bergman spaces

• A2 “ A2
0 the Bergman space

• Kαpξ, zq “
1

p1´zξqα`2 the reproducing kernel in the weighted Bergman space A2
α

• Pα : L2pD, dAαq Ñ A2
α, Pαfpzq “

ş

D fpξq
1

p1´ξzqα`2dAαpξq the weighted Bergman

projection

• The affine group: A “ tpa, bq : a P p0,`8q, b P Ru with the following operation
pa1, b1q ˝ pa2, b2q “ pa1a2, a1b2 ` b1q

• Upa,bqfpxq “ |a|´1{2fpa´1x´ bq representation of the affine group on L2pRq

• Wψfpa, bq “ xf, Upa,bqψy the continuous affine wavelet transform

• pG, ¨q a locally compact topological group

• pH, x¨, ¨yq a Hilbert-space

• Ux : H Ñ H px P Gq a unitary representation of the group on some Hilbert space
H

• pVgfqpxq :“ xf, Uxgy px P G, f, g P Hq the voice transform of f P H generated by
the representation U and by the parameter g P H

• Aw “ tg P H : Vgg P L
1
wpGqu ‰ t0u the set of analyzing vectors for an integrable

representation associated to the weight w

• H1
w “ tf P H : Vgf P L

1
wpGqu the simplest Banach space where atomic decomposi-

tions can be obtained

• Bapzq :“ ε z´b
1´b̄z

pz P C, bz ‰ 1q the Blaschke function

• B :“ Dˆ T and a “ pb, εq P B the set of the parameters

• ρpz1, z2q :“ |z1´z2|
|1´z1z2|

“ |Bpz2,1qpz1q| pz1, z2 P Dq the pseudohyperbolic metric

• B :“ D ˆ T let us define the operation induced by the function composition in the
following way: Ba1 ˝ Ba2 “ Ba1˝a2 . The set of the parameters B with the induced
operation is called the Blaschke group

• pUa´1fqpzq :“

?
eiθp1´|b|2q

p1´bzq
f
´

eiθpz´bq

1´bz

¯

`

z “ eit P T, a “ pb, eiθq P B
˘

representation

of the Blaschke group on H2pTq.
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• Z`
npρ, θq :“

a

2n` |`| ` 1R
|`|
|`|`2npρqe

i`θ, ` P Z, n P N the complex Zernike polyno-
mials in polar coordinates

• R|`|
|`|`2npρq “ ρ|`|P

p0,|`|q
n p2ρ2´1q the radial terms R

|`|
|`|`2npρq expressed by Jacobi poly-

nomials

• pUα
a´1fqpzq :“ ei

α`2
2
ψ p1´|b|

2q
α`2
2

p1´bzqα`2 f
´

eiψ z´b
1´bz

¯

pa “ pb, eiψq P Bq the representation of

the Blaschke group on the weighted Bergman space A2
α

• Φn “ Φa
n pn P N˚q where Φ1pzq “

?
1´|a1|2

1´a1z
,Φnpzq “

?
1´|an|2

1´anz

śn´1
k“1 Bakpzq, n ě 2

the Malmquist-Takenaka system (M-T) in H2pTq

• Ψ1pzq “
1?
π

Φ1p´1q

z´λa1
, Ψnpzq “

1?
π

Φnp´1q

z´λan

śn´1
k“1

z´λak
z´λak

, λa :“ C´1paq “ i1´a
1`a

the

Malmquist-Takenaka system (M-T) in H2pC`q
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1.2 Affine wavelets and multiresolution in L2pRq
In 1982 Morlet, a French geophysicist was the first who introduced the concept of a

‘wavelet’ [113]. Wavelet means a small wave. The wavelet transform was at that time
new tool for seismic signal analysis. Immediately, Grossmann, a theoretical physicists,
studied the inverse formula for the wavelet transform. The joint collaboration of Morlet
and Grossmann [86] yielded a detailed mathematical study of the continuous wavelet
transforms and their various applications, of course without the realization that similar
results had already been obtained in 1950’s by Calderon, Littlewood, Paley and Franklin.
However, the rediscovery of the old concepts provided a new method for decomposing a
function or a signal. For details one can see Morlet et al. [113], Debnath [54].

First let us recall the basic concepts of the classical one dimensional continuous affine
wavelet transform and multiresolution. The affine wavelet multiresolution comes from the
discretization of the continuous affine wavelet transform, defined by

Wψfpa, bq “ |a|
´1{2

ż

R
fptqψpa´1t´ bqdt, f, ψ P L2

pRq, pa, bq P R` ˆ R. (1.1)

There is a rich bibliography of the affine wavelet theory (see for example Grossmann,
Morlet [86], Grossmann, Morlet, Paul [87], Daubechies [45], Meyer [112], Chui [35] etc.).
One important question is the construction of the discrete version, i.e., to find ψ so that
the discrete translates and dilates

ψn,k “ 2´n{2ψp2´nx´ kq (1.2)

form a (orthonormal) basis in L2pRq, which generate a multiresolution (see Daubechies
[45], Heil, Walnut [94], Mallat[109] etc.). The coefficients of a function f with respect to
the system (1.2) are the values of the continuous wavelet transform in a discrete subset
of the parameter domain xf, ψn,ky “ Wψfp2

n, kq. Knowing the coefficients with respect
to the orthonormal basis (1.2), the function f can be reconstructed from the values of
the continuous wavelet transform, if we know that on a discrete subset of the set of
the parameters. This is why we call the reconstruction of the functions using the wavelet
coefficients with respect to the system (1.2) the discretization of the continuous transform
(1.1).

It turned out that multiresolution representations are very effective for analyzing the
information content of images. A multiresolution representation provides a simple hierar-
chical framework for interpreting the image information. In the classical theory of affine
wavelets the definition of multiresolution analysis is the following:

Definition 1.2.1. Let Vj, j P Z be a sequence of subspaces of L2pRq. The collections
of spaces tVj, j P Zu is called a multiresolution analysis with wavelet function ψ if the
following conditions hold:

1. (nested) Vj Ă Vj`1
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2. (density) YVj “ L2pRq
3. (separation) XVj “ t0u
4. (basis) The function ψ belongs to V0 and the set t2n{2ψp2nx ´ kq, k P Zu is a

(orthonormal) bases in Vn.

Applying the dilatation we arrive to higher resolution level (fpxq P Vn ô fp2xq P
Vn`1), and applying the translation we remain on the same level of the resolution.

The simplest example is the multiresolution generated by the Haar wavelets due
to Alfréd Haar (1909)(see [91]). The Haar wavelets can be derived from the following
function using the dilation and translation:

hpxq :“

$

’

&

’

%

1 px P r0, 1{2qq

´1 px P r1{2, 1qq

0 px P Rzr0, 1qq,

h0pxq “ hpxq, hnkpxq :“ 2´n{2hp2nx´ kq

px P r0, 1q, n, k P Nq.

The Haar system is orthogonal in the Hilbert space L2 :“ L2pr0, 1qq with respect to the
usual scalar product, and the Haar-Fourier series of a function f P L1pr0, 1qq converges to
the function in both norm and almost everywhere.

Haar introduced this system to show that the problem formulated by Hilbert has a
solution. The Fourier series expansion with respect to phn, n P Nq of a continuous function
is convergent uniformly to the function, although phn, n P Nq are not continuous. In this
respect the Haar wavelet system is essentially different from the trigonometric system. It
turned out that the Haar system is a very important example in many respects. Using
the Paley inequality, Marczinkiewicz proved that that the Haar system is unconditionally
basis in Lp for p ą 1.

Faber in 1910 (see [62]), Schauder in 1927, (see [136]), independently took the integral
of the Haar system and introduced a new system, the so called Faber-Schauder system.
Franklin in 1928 applying the Gram-Schmidt orthogonalization to the Faber-Schauder
system obtained the Franklin system (see [74]), which is a basis not only in L2r0, 1s but
also in Cr0; 1s. Marcinkiewicz showed that the Haar system is a basis also for Lpr0, 1s,
1 ă p ă 1. Starting from 1960 Ciesielski and Uljanov showed that the Haar system is
very important also in functional analysis.

In 1974 Bockarev (see [16]) applying the analytic extension to the unit disc of Franklin
system constructed the first basis in the disc algebra ApDq. In this way he gave an answer
to a problem formulated by Banach 40 years earlier. A survey paper containing all these
properties of the Haar system is written by Schipp in 2015 (see[140] and the references
therein).

The fact that the members of the Haar system are not continuous, make them inappro-
priate for approximating smooth functions. Starting from 1980 Meyer and Daubechies -
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among others - started to construct smooth orthonormal systems, so called wavelets from
a single function ψ called mother wavelet, of the form

ψn,kpxq “ 2n{2ψp2nx´ kq px P R, ψ P L2
pRq, }ψ}2 “ 1q.

Except from the Haar system, the construction of such systems is a hard task. Taking the
Fourier transform pψ instead of the mother wavelet ψ itself turned to be a good starting
point. Despite of the fact that ψ cannot be given in an explicit form generally the wavelet
Fourier series enjoy nice convergence and approximation properties. The kernel functions
of the partial sums can be well estimated and the wavelet Fourier coefficients can be
calculated by a fast algorithm.

Since 1980 the wavelet analysis is flourishing and has many applications in practical
problems. It turned out that wavelet analysis is an exciting new method for solving
difficult problems in mathematics, physics, and engineering, with modern applications
as diverse as wave propagation, data compression, signal processing, image processing,
pattern recognition, computer graphics, the detection of aircraft and submarines and other
medical image technology. Wavelets allow complex information such as music, speech,
images and patterns to be decomposed into elementary forms at different positions and
scales and subsequently reconstructed with high precision. Signal transmission is based on
transmission of a series of numbers. The series representation of a function is important
in all types of signal transmission. In many cases the wavelet transform of a function
appeared as an improved version of Fourier transform. Fourier transform is a powerful
tool for analyzing the components of a stationary signal. But it is failed for analyzing
the non stationary signal where as wavelet transform allows the components of a non-
stationary signal to be analyzed. For example Sifuzzaman, Islam, Ali in [148] showed in
many cases the advantages of wavelet transform compared to Fourier transform.

Meyer and others, formulated the following question: Is it any ”regular” wavelet
orthonormal bases of the form

ψ0pxq “ ψpxq, ψn,kpxq :“ 2n{2ψp2nx´ kq

and multiresolution generated by this bases in H2pRq “ tf P L2pRq, supf̂ Ă r0,`8qu?
Auscher in 1995 published results connected to this question in [11]. The word regular
includes smoothness, localization, and cancellation of ψ, see the exact conditions in [11].
He showed the nonexistence of a regular wavelet that generates a wavelet basis in space
H2pRq, i.e., applying dilation and translation to a single function, or discretizing the
continuous affine wavelet transform, leads to negative answer if we impose some strong
”regularity” conditions.

As we will see later we will approach the construction of multiresolution in H2pRq
by taking the analytic extension of these functions to the Hardy space of the upper half
plane H2

pC`q, because if f P H2
pC`q then its non tangential boundary limit function

exists almost everywhere and the limit function f belongs to H2pRq.
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Questions: Is it any other way to construct analytic (very regular) wavelets? Is it
possible to generate muliresolution type decomposition in Hardy spaces of the unit disc
and respectively in the Hardy space of the upper half plane or in other sub spaces of
analytic functions? Is it any other continuous transform whose discretization leads to
answer the previous questions?

In this thesis we collect the results obtained by the author in the last years connected to
wavelets and multiresolution in analytic function spaces, like Hardy spaces and weighted
Bergman spaces.

1.3 Analytic function spaces

1.3.1 Hardy spaces

Let us denote by D “ tz P C : |z| ă 1 u the unit disc and by T “ tz P C : |z| “ 1 u
the unit circle. Let us denote by ApDq the set of analytic functions on the unit disc D .
Taking the integral means

}fr}2 :“

ˆ

1

2π

ż 2π

0

|fpreitq|2 dt

˙1{2

of a function f P ApDq we define the Hardy space of the unit disc H2pDq as the class of
functions in ApDq for which }f}H2 :“ sup0ără1 }fr}2 ă 8. It is known that the boundary
function fpeitq :“ limrÑ1 fpre

itq exists a.e. for every f P H2pDq and f belongs to L2pTq on
T. The Hardy space of the unit circle H2pTq is a Hilbert space and contains the boundary
values of the functions from H2pDq. The linear space H2pTq is a Hilbert space with the
scalar product

xf, gy :“
1

2π

ż 2π

0

fpeitqgpeitq dt.

The norm induced by this scalar product satisfies the following relation: }f}H2 “ }f}L2pTq.
The spaceH8pDq is the collection of functions f P ApDq for which }f}H8 :“ supzPD |fpz| ă
8. The disc algebra ApDq , i.e., the set of functions analytic on D and continuous on its
closure is a closed subspace of H8pDq.

The Hardy spaces of the unit disc are applied intensively not only in the theories
of complex functions and Fourier series but, as it turned out in the 1960’s, in particular
H2pDq, and H8pDq, are the proper Banach spaces for mathematical modeling of problems
in control and operator theories (see for ex. Chui, Chen [36], Ward, Partington [172],
Partington [134], Bokor, Athans [17]).

The transfer function f of a discrete linear time invariant system belongs toH2pTq or to
H8pDq. The main problem is to give a good approximation of f from some measurements
made on the unit circle or in the unit disc.

9
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The reproducing kernel in H2pTq or H2pDq is given by

Kpz, wq “ kwpzq “
8
ÿ

n“0

wnzn “
1

1´ wz
z, w P D.

This function is called the Szegő or Cauchy kernel on the disk. Every function f P H1pDq
can be recovered from its boundary limit function using the Cauchy reproducing kernel,
i.e.,

fpzq “
1

2π

ż 2π

0

fpeitq

eit ´ z
eitdt “

1

2πi

ż

T

fpξq

1´ zξ
dξ.

Let us denote by C` “ tz P C : Impzq ą 0u the upper half plane, and let us consider
ApC`q the set of analytic functions on C`. The Hardy space of the upper half plane is
defined by

H2
pC`q “

"

h P ApC`q : sup

"
ż

R
|hpx` iyq|2 dx : y ą 0

*

ă 8

*

.

If f P H2
pC`q then its non tangential boundary limit function exists almost everywhere

and the limit function f satisfies

f P H2
pRq “ tf P L2

pRq, supf̂ Ă r0,`8qu.

For more detailed description of the Hardy spaces see for example Cima, Ross [37],
Mashregi [111].

The unit disk D and the upper half-plane C` can be mapped to one-another by
means of Möbius transformations, i.e., by the Cayley transform, which maps C` to D and
is defined by

Cpωq “
i´ ω

i` ω
, ω P C`. (1.3)

The correspondence between the boundaries is given by

eis “ Cptq “
i´ t

i` t
, t P R, s P p´π, πq,

which implies that s “ 2 arctanptq, t P R.

With the Cayley transform, the linear transformation from H2
pDq to H2

pC`q is defined
for f P H2

pDq by

Tf :“
1
?
π

1

ω ` i
pf ˝ Cq (1.4)

and is an isomorphism between these spaces. Consequently, the theory of the real line is
a close analogy with what we have for the circle. But there are major differences too. For

10
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example in the Hardy space of the unit disc the polynomials are dense, however dense
subsets in the Hardy space of the upper half plane are harder to find.

In the case of the unit disc a main tool in the proofs is the Cauchy formula for the
unit disc. In the case of the upper half plane the analogue is the Cauchy formula for the
upper half plane, which is the following: for any function F P HppC`q, 1 ď p ă `8, if
F psq is its non-tangential boundary limit, then

F pzq “
1

2πi

ż 8

´8

F psq

s´ z
ds, z P C`. (1.5)

1.3.2 Weighted Bergman spaces

In this section we summarize the basic results connected to the weighted Bergman
spaces (see [56, 93, 187]). Denote the weighted area measure on D by

dAαpzq :“
α ` 1

π
p1´ |z|2qα dxdy , z “ x` iy.

For all α ą ´1 the weighted Bergman spaces Apα are subsets of analytic functions with
the following property

Apα :“ tf P ApDq :

ż

D
|fpzq|pdAαpzq ă 8u.

For p “ 2, the set A2
α is a Hilbert space, with the following scalar product:

xf, gyα :“

ż

D
fpzqgpzqdAαpzq.

For α “ 0 we get back the unweighted case, A2 “ A2
0, which is called the Bergman space

(see [56, 93]). For 0 ă p ă 8, and ´1 ă α ă 8 the weighted Bergman space Apα is
a closed subspace of LppD, dAαq “ Lp. For any function f P Apα, and for any compact
subset E of D, there exists a positive constant C “ Cpn,E, p, αq, such that

supt|f pnqpzq| : z P Ku ő C}f}Apα .

This inequality implies, that the point-evaluation map is a bounded linear functional on
Apα, and the norm convergence in Apα implies the locally uniform convergence on D.

The weighted Bergman space A2
α is a reproducing kernel Hilbert space, and the repro-

ducing kernel, the weighted Bergman kernel, is given by the following formula

Kαpξ, zq “
1

p1´ zξqα`2
.

For ´1 ă α ă `8, the weighted Bergman projection, defined by

Pα : L2
pD, dAαq Ñ A2

α, Pαfpzq “

ż

D
fpξq

1

p1´ ξzqα`2
dAαpξq,

11

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



is an orthogonal projection operator, which satisfies Pαf “ f for every f P A2
α. The

projection operator can be extended to L1pD, dAαq, by mapping each f P L1pD, dAαq to
an analytic function, and Pαf “ f , for every f P A1

α (see [93] p. 6).

1.4 The voice transform

In order to construct wavelet transforms and multiresolution in the analytic function
spaces let us consider a general approach of the continuous affine wavelet transform.
Grossmann, Morlet, Paul in [87] observed that the properties of the continuous affine
wavelet transform are related to the properties of a representation of the affine group.

Let us consider the set of affine functions

t`pa,bqpxq “ ax` b : RÑ R : pa, bq P p0,`8q ˆ Ru.

The composition operation `1 ˝ `2pxq “ a1a2x ` a1b2 ` b1 will induce in the set of the
parameters

A “ tpa, bq : a P p0,`8q, b P Ru

the following operation: pa1, b1q ˝ pa2, b2q “ pa1a2, a1b2 ` b1q. The set of the parameters A
with the induced operation is a group, namely the affine group. Then

Upa,bqfpxq “ |a|
´1{2fpa´1x´ bq

defines a representation of the affine group on L2pRq. The continuous affine wavelet
transform given by (1.1) can be expressed in terms of the representation as follows:

Wψfpa, bq “ xf, Upa,bqψy.

We can observe also that the wavelet coefficients with respect to the wavelet system
(1.2) can be expressed by the values of the continuous wavelet transform

xf, ψn,ky “ Wψfp2
´n, kq,

i.e., we take the values of the continuous wavelet transform on the following discrete subset
of the affine group:

Λ “ tp2´n, kq : n P Z, k P Zu.

Inversion formulas for the continuous wavelet transform and the properties of this
transform in different function spaces were studied by Weisz and Szarvas in [178, 179,
180, 182].

If instead of affine group we consider a locally compact topological group pG, ¨q (with
left invariant Haar measure m) and a unitary representation Ux : H Ñ H px P Gq of the
group on some Hilbert space H, we can define a very general continuous transform: the
voice transform.
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First let us revise the definition of the unitary representation. Let us consider a
Hilbert-space pH, x¨, ¨yq and let us U denote the set of unitary bijections U : H Ñ H.
Namely, the elements of U are bounded linear operators which satisfy xUf, Ugy “ xf, gy
pf, g P Hq. The set U with the composition operation pU ˝ V qf :“ UpV fq pf P Hq is a
group, the neutral element of which is I the identity operator on H and the inverse element
of U P U is the operator U´1 which is equal to the adjoint operator of U : U´1 “ U˚.
The homomorphism of the group pG, ¨q on the group pU , ˝q satisfying

iq Ux¨y “ Ux ˝ Uy px, y P Gq,
iiq G Q xÑ Uxf P H is continuous for all f P H
is called the unitary representation of pG, ¨q on H.
The voice transform of f P H generated by the representation U and by the parameter

g P H is the (complex-valued) function on G defined by

pVgfqpxq :“ xf, Uxgy px P G, f, g P Hq. (1.6)

The name ”voice transform” for this very general transform was used by Grossmann,
Morlet, Paul in [87].

For any representation U : GÑ U and for each f, g P H the voice transform Vgf is a
continuous and bounded function on G and Vg : H Ñ CpGq is a bounded linear operator.

The set of continuous bounded functions defined on the group G with the norm defined
by }F } :“ supt|F pxq| : x P Gu form a Banach space. From the unitarity of Ux : H Ñ H
follows that, for all x P G

|pVgfqpxq| “ |xf, Uxgy| ď }f}}Uxg} “ }f}}g},

consequently, }Vg} ď }g}.
The Gábor transform (Short-time Fourier transform) is also a special voice transform

generated by a representation of the Heisenberg group (see for ex. Heil, Walnut[94],
Gröchenig [90], etc.). In [69, 176] Feichtinger and Weisz proved inversion formulas for the
short-time Fourier transform, and in [70, 177] they studied the properties of this transform
in Wiener amalgams and Hardy spaces.

Another special voice transform which is important from the point of view of the
applications is the shearlet transform studied by Labate, Lim, Kutyniok, Weiss, Sauer for
ex. in [105, 102, 103] etc..

Analyzing the question of discretization of these special voice transforms it turned out
that different techniques are required. In the case of the affine wavelet transform one
possibility is the construction of multiresolution analysis, for detailed description see for
example Mallat [109].

H.G. Feichtinger and K.H. Gröchenig have established a rather general approach, giv-
ing an attempt to describe in a unified fashion the properties of the continuous affine
wavelet transform and the STFT (Short-time Fourier transform) by taking a group theo-
retical view-point. They described a general discretization technique for the voice trans-

13

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



forms induced by irreducible, square integrable and integrable group representations, giv-
ing atomic decompositions for large families of Banach spaces, the so called coorbit spaces
(see papers of Fiechtinger, Gröchenig [64, 66, 65, 89]).

A voice transform Vg generated by an unitary representation U is one-to-one for all
g P Hzt0u if U is irreducible. Consequently the invertibility of Vg it is connected to the
irreducibility of the representation U which generate the a voice transform.

A representation U is called irreducible if the only closed invariant subspaces of H,
i.e., closed subspaces H0 which satisfy UxH0 Ă H0 (x P G), are t0u and H. Since the
closure of the linear span of the set tUxg : x P Gu is always a closed invariant subspace
of H, it follows that U is irreducible if and only if the collection tUxg : x P Gu is a closed
system for any g P H, g ‰ 0.

The function Vgf is continuous on G but in general is not square integrable. If there
exist g P H, g ‰ 0 such that Vgg P L

2
mpGq, then the representation U is square integrable

and the g is called admissible for U . For a fixed square integrable U the collection
of admissible elements of H will be denoted by H2. If the representation is unitary,
irreducible and square integrable, normalizing the vector g P H2 if necessary, the voice
transform Vg : H Ñ L2

mpGq will be isometric, i.e.,

rVgf, Vghs “ xf, hy , pf, h P Hq, (1.7)

where the left hand side is the scalar product generated by the left Haar measure of the
group G. For proof see for example Weil, Walnut [94] or Schipp, Wade [142]. Formula
(1.7) is the analogue of the Plancherel formula for the Fourier transform, which can be
interpreted as the low of energy conservation of signals.

An important consequence of this is the following reproducing formula: For convenient
normalized g P H2 we have the following convolution relation (on G):

Vgf “ Vgf ˚ Vgg, f P H. (1.8)

Atomic decomposition results were proved for one and n-dimensional classical Hardy
spaces HppRq, HppRdq. These spaces are very important in harmonic analysis and summa-
bility theory. The first atomic decomposition results of the Hardy spaces can be found in
Coifman and Weiss [41]. An atom is a simple, easy to handle function. The tempered dis-
tribution of the Hardy spaces is decomposed into a sum of atoms. The advantage of this
decomposition is that many theorems need to be proved for atoms, only. Beyond these,
the Hardy spaces have been introduced for martingales as well (see e.g.Weisz [174]). In
Weisz [175, 182] detailed proofs for the atomic decomposition of the one and n-dimensional
Hardy spaces are presented.

Feichtinger, Gröchenig in [64, 66, 65, 89] described a unified approach to atomic de-
composition through integrable group representations. By a specific choice of a group and
a suitable group representations formula (1.8) and its extensions permit non-orthogonal
wavelet expansion for Besov-Triebel-Lizorkin spaces on Rn, the Gábor-type expansions
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for modulation spaces and atomic decomposition results. The atoms for all these spaces
are transforms of a single function, where the transformations are given by a certain uni-
tary group representation. Formula (1.8) and its extensions are the very reasons for the
unification of all different examples mentioned before.

Feichtinger, Gröchenig in [64, 66, 65, 89], in order to obtain atomic decomposition
by discretization of the voice transform, imposed stronger integrability condition on the
representation U which generates the transform.

Let us consider a positive, continuous submultiplicative weight w on G, i.e., wpxyq ď
wpxqwpyq, wpxq ě 1, @x, y P G. Assume that the representation is integrable i.e., the set
of analyzing vectors is not trivial:

Aw “ tg P H : Vgg P L
1
wpGqu ‰ t0u. (1.9)

With this assumption the reproducing formula given by the convolution (1.8) can be
discretized. Let us define the simplest Banach space where atomic decompositions can be
obtained:

H1
w “ tf P H : Vgf P L

1
wpGqu. (1.10)

The definition of H1
w is independent of the choice of g P Aw.

The simplest atomic decomposition result is for the space H1
w which tells us that:

For any g P Awzt0u there exists a collection of points txiu Ă G such that any f P H1
w

can be written as

f “
ÿ

λipfqUxig, with
ÿ

i

|λipfq|wpxiq ď C0}f}H1
w

(1.11)

where the sum is absolutely convergent in H1
w.

This atomic decomposition result was extended also for more general Banach spaces,
namely for the coorbit spaces in Feichtinger, Gröchenig [66, 65, 89]. In section 3.4 we will
present more details connected to these results and applying this atomic decomposition
results we will present new atomic decomposition results obtained by the author in [127]
for weighted Bergman spaces.

I would like to mention that this research field is still flourishing. In the last pe-
riod the coorbit theory was developed for non-integrable representations satisfying some
LppGq, p ą 1 integrability condition (see the work of Dahlke, Steidel, Teschke, Kutyniok,
Fornasier, Rauhut, Christensen, Olafson, De Mari, De Vito, Vigogna [34, 48, 49, 50, 52,
53]).

1.5 The main contribution of the thesis

In this thesis we present the main results of the author (and her coauthors) connected
to the voice transforms of the Blaschke group. Because the Blaschke function plays
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an important role in the theory of analytic functions (see for example the factorization
theorem in the Hardy spaces) it occurred naturally to use the group generated by the
composition of the Blaschke functions, instead of the affine group, in order to construct
analytic wavelets.

The first results in this direction were obtained by Pap and Schipp in [122, 123],
where it was introduced the Blaschke group and the voice transform of the Blaschke
group generated by a representation of the group on the Hardy space of unit circle.

The congruence transformation and the pseudo-hyperbolic distance in the Poincare
model of the hyperbolic geometry can be described using the Blaschke functions. This
motivated to call the introduced new transform hyperbolic wavelet transform. In the next
chapters we present results obtained by the author in this direction.

In section 2.1 we introduce the Blaschke group and we study the main properties of
this group.

In section 2.2 we present results connected to the properties of the continuous voice
transforms, so called hyperbolic wavelet transform, generated by a representation of the
Blaschke group on the Hardy space [122, 123]. Analyzing the question of discretization
of this voice transforms it turned out that the Feichtinger-Gröchenig theory cannot be
applied, because the square integrability and the integrability conditions are not satisfied,
but it was showed that it is possible to construct an adapted version of multiresolution.

In subsection 2.2.1 it is presented the construction of an adapted multiresolution
(MRA) and analytic wavelets in the Hardy space of the unity disc proposed by Pap
in [126]. It turned out that the introduced analytic wavelet system has many advantages,
and can be applied efficiently in the approximation of the transfer functions of the systems
(see Pap [126, 129]). In the construction of the multiresolution in the Hardy space of the
unit circle, we avoid the classical Fourier technique, instead we use complex technique,
the localized Cauchy kernels corresponding to a discrete countable subset A of the unit
disc, in order to construct multiresolution analysis in H2pTq and the Cauchy formula in
the proofs. It has been showed that the resolution levels are spanned by a special ratio-
nal analytic orthonormal wavelet system, i.e., by the Malmquist-Takenaka system with a
special localization of the poles. In [129] it was proved that the levels of the multireso-
lution form a complete model set for the disc algebra of the unit disc, and it was given
an estimation of the error therm for the proposed approximation process for a family of
analytic functions.

In subsection 2.2.2 are presented results connected to the projection operator pPnf, n P
Nq to the n-th resolution level of the multiresolution. These results were published by
Pap in [126, 129].

Subsection 2.2.3 contains an algorithm for the computation of the wavelet coefficients
based on measurements. In [126] it has been shown that the coefficients of the projection
operator Pnf can be computed exactly if we know the values of the functions on

Ťn
k“0Ak.

Comparing the presented adapted multiresolution with the classical affine multireso-
lution we observe that this has the following advantages:
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1. The levels of the multiresolution are finite dimensional, which makes easier to find
a basis on every level, but in the same time the density condition remains valid.

2. We have constructed analytic orthonormal rational wavelet bases on the resolution
levels given by an explicit formula.

3. We can compute the wavelet coefficients exactly measuring the values of the function
f at the points of the set A “

Ťn
k“0Ak Ă D. Based on these measurements we can write

exactly the projection operator pPnf, n P Nq which is convergent in H2pTq norm on the
unit circle to f , and Pnfpzq Ñ fpzq uniformly on every compact subset of the unit disc.

4. At the same time Pnfpzq is the best approximant interpolation operator on the
set the

Ťn
k“0Ak inside the unit circle for the analytic continuation of f . Based on these

properties it can be used for H2pDq identification if we measure the values of function on
this set.

The question of recovery of analytic functions from values measured in the open unit
disc was also studied by Totik, see [164], where it has been proved that in Hp or in the
disc algebra if we can measure the values of a function f on a non Blaschke sequence,
say pzkqkPN, then there are polynomials pn,j such that

řn
j“1 fpzjqpn,j tends to f in norm.

This is a beautiful theoretical result. From practical point of view the only difficulty is
that we can not determine exactly the coefficients of these polynomials from the values
of the measurements fpzkqkPN. For this reason we consider that, our method is suitable
from the point of view of applications.

In subsection 2.2.4 another new property of the hyperbolic wavelet basis is presented,
which is not characteristic to the affine wavelets, namely the discrete orthogonality. In
[126] it has been proved also that it is possible to construct wavelets using the reproducing
kernels of the multiresolution levels, similar as in Bultheel, González-Vera [25].

In section 2.3 are included results of Feichtinger and Pap. They showed that it is
possible to construct similar analytic wavelets and adapted multiresolution in the Hardy
space of the upper half plane (see Feichtinger, Pap [67]). The transition to the upper half
plane is made using the Cayley-transform. The obtained adapted multiresolution in the
Hardy space of the upper half plane inherits all the nice properties of the multiresolution
presented in the section 2.2.

As long as the theory of wavelet constructions on the Hardy space of the unit disc pre-
sented in [126] is suitable for time frequency-domain description of discrete-time-invariant
dynamical systems, the adaptation to the upper half plane can be used in system the-
ory to describe the spectral behavior of continuous-time-invariant systems. In the same
time the constructed wavelet system is a new example of ”very regular” wavelet system
in H2pRq with analytic continuation to the upper half plane. It has been also studied
the approximation and identification of transfer functions of a continuous-time-invariant
systems.

In the case of the Hardy space of the unit disc the construction of dense subsets is
not so difficult. For example, the polynomials are dense. In the Hardy space of the upper
half plane dense subsets are harder to find. Applying the Daubechies theory it can be
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shown that choosing as mother wavelet ψpyq “ p1 ` iyq´p for p ě 2 we can generate
a frame for the Hardy space of the upper half plane. For p “ 3 Ward, Partington in
[171] described a rational wavelet decomposition of the Hardy–Sobolev class of the half
plane. The case p “ 1, the Cauchy kernel case, dos not fall under the Daubechies theory
since does not have vanishing mean value, but Ward and Partington have shown that the
system ψj,k “ 2j{2ψp2jy ´ b0kq, j, k P Z does constitute a fundamental set for the upper
half plan algebra.

The multiresolution analysis in the Hardy space of the upper half plane introduced
by Feichtinger, Pap in [67] is generated by localized Cauchy kernels, consequently dos
not fall under the Daubechies theory. But it gives an example of analytic wavelets and
an adapted multiresolution also for the boundary limits of the functions from the Hardy
space of the upper half plane, i.e., in H2pRq. In this sense it is connected to the problem
formulated by Meyer of construction of regular wavelets, presented in the introduction.

In section 2.4 is presented the relation between the Zernike functions and the hyper-
bolic wavelet transform. More exactly the matrix elements of the representation of the
Blaschke group on the Hardy space of the unit disc U given by (2.3) can be expressed
by the Zernike functions. An important consequence of this connection is the addition
formula for Zernike functions. The addition formula for Zernike functions was one of open
problems formulated in connection to Zernike functions. These results were published in
[123] by Pap, Schipp and in the survey paper by Pap [129].

Zernike polynomials are often used to express wave-front data in optical tests, since
they are made up of terms that are of the same form as the types of aberrations often
observed. The first order wave-front aberrations coefficients can be obtained as the coeffi-
cients of the Zernike polynomials expansion of the wave-front, and they are called Zernike
moments of the wave-front. The orthogonal system of Zernike functions was introduced
by Fritz Zernike a Dutch physicist and winner of the Nobel prize for Physics in [185], to
model symmetries and aberrations of optical systems (e.g., telescopes).

Although, the approximation of Zernike coefficients were obtained from measurements
at discrete corneal points and via discrete computations, the developers of the corneal
measurement devices and shape-evaluation programs could not rely on the discrete or-
thogonality before the discrete orthogonality of Zernike functions was not proved. Not
surprisingly, the discrete orthogonality of Zernike functions was a target of research for
some time see for example by Wyant, Creath in [173]. In subsection 2.4.3 it is proved the
discrete orthogonality of Zernike functions. This result was published in [121] by Pap,
Schipp.

Subsection 2.4.4 it is shown how can be applied the discrete orthogonlity of Zernike
functions in corneal topography. As we presented in the previous subsection, Pap and
Schipp introduced a discrete subset of points of the unit disc and a discrete measure on
it ensuring discrete orthogonality of the Zernike functions. These points can be used as
places of measurements in order to calculate the Zernike-based representations. Using
computer implementations it was studied their precision for some test surfaces, including
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three ”cornea-like” test surfaces, as well. These results were published and analyzed by
Soumelidis, Fazekas, Schipp, Pap in [155, 156, 157]. The test surfaces considered herein
include centrally positioned and shifted cones, pyramids, and some cornea-like surfaces.
With these spatial points as input points, discrete Zernike transformation was carried out.
The resulting Zernike coefficients were then used to geometrically reconstruction of the
optically smooth corneal surface. The error-surfaces were compared to the ones resulting
from the Zernike-based reconstructions of a cornea-like mathematical surface that had
been properly fitted to the input data.

The numerical computations, reconstructions and experiments are based on the ap-
proximation of the continuous Zernike moments of the corneal surface G, This is a con-
sequence of Theorem 2.4.2, which implies that the continuous moments are the limit of
the discrete Zernike moments, computed based on the measurements on the set X of the
discretization defined by (2.30).

If we take TN an arbitrary linear combination of Zernike polynomials of degree less than
2N , using the discrete orthogonality and the continuous orthogonality property we obtain
that the coefficients Amn can be expressed exactly by the discrete Zernike coeffitients. This
means that we can determine the exact value of the Zernike coefficients (moments) of TN
if we can measure the values of TN on the points of the set X defined by (2.30). This
means that with the construction of the set X we give answer to the question where the
so called Placido ring system is worth situated. In this case we can reconstruct exactly
TN if we measure its values on the discretization mash X.

The hyperbolic wavelet transform presented in Chapter 2 can be applied also for de-
termining the poles of rational functions (Schipp, Soumelidies [143]), the eigenvalues of
matrices (Schipp, Soumelidies [144]) and for system identification (Bokor, Schipp, Soume-
lidis [21, 22, 23]).

In Chapter 3 we consider the case m “ α ` 2, when formula (2.1) defines a represen-
tation of the Blaschke group on the weighted Bergman space.

In section 3.1 it is proved that the representation is unitary irreducible representation
of the Blaschke group on weighted Bergman space A2

α (see Pap [125]).
Section 3.2 contains properties of the continuous hyperbolic wavelet transform gener-

ated by representation (2.1). These results follow from the general theory of the voice
transform.

In section 3.3 for α ě 0,m “ α`2 P N we give an orthogonal rational wavelet system,
and we show that the Bergman projection operator can be expressed with this system.
These results were published by Pap in [125, 127]. For α P N in [125] Pap computed
the matrix elements of the representation (3.1). In the computation we use the Cauchy
formula, for this reason the condition α P N is important. The computations follow
the same line as in the case of the Hardy space presented in the previous chapter. In
this case the matrix elements can be expressed using the Jacobi polynomials (see [125]).
The computation of the matrix elements for α R N would involve the fractional Cauchy
formula, which is a recent topic of the research. For this case the determination of the
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matrix elements of the representation is an open problem.
In section 3.4 it is analyzed the question of discretization of the hyperbolic wavelet

transform defined by (3.3). It turned out that depending on the value of α different
techniques are required. In the introduction of the section we presented a short summary
of the theory introduced by Feichtinger and Gröchenig, the so called a unified approach
to atomic decomposition through integrable group representations in Banach spaces and
coorbit theory.

In the unified approach of the atomic decomposition a useful tool is the Q-density,
the V-separated property and the bounded uniform partitions of the unity of the locally
compact group.

In subsection 3.4.1, using the hyperbolic metric, we describe the Q density from right,
and the separation from right in the Blaschke-group. Using this we can give an example
of bounded uniform partitions of the unity from right. In the general theory of atomic
decomposition it is used the Q-density from the left, but in Blaschke group it is easier
the geometrical interpretation of Q density from right. This is the reason why we made a
small modification in the discretizing operator which corresponds to the Q–density from
the right in order to obtain atomic decomposition in the weighted Bergman spaces.

In subsection 3.4.2 we study the integrability of the hyperbolic wavelet transform
defined by formula (3.3). For certain weighted Bergman spaces both square integrability
and integrability conditions are satisfied .

Consequently in these cases it can be applied the Feichtinger-Gröchenig theory, and
in this way we can obtain new atomic decomposition results in these weighted Bergman
spaces (see Pap [127]). These results are presented in subsection 3.4.3. We obtain that
every function from the minimal Möbius invariant space B1 of the analytic functions
will generate an atomic decomposition in some weighted Bergman spaces. More exactly
we get atomic decomposition of f P H1, with atoms of the form Uα

x´1
i

g, g P B1 Y t1u.

From Theorem 3.4.7 follows that for p ą 2 ` 4
α

we have Apα Ă H1, consequently the
previous atomic decomposition is true also for Apα under the mentioned restrictions to the
parameters. For the special case g “ 1 we obtain the following atomic decomposition:

if f P Apα, α ą 0, and p ą 2 ` 4
α

, f “
ř

λipfqU
α
x´1
i

1 “
ř

λipfq
p1´|bi|

2q
α`2
2

p1´bizqα`2 , holds, which

is very similar to the atomic decomposition obtained with complex analysis techniques
(see [187], pp. 69). The difference is that in our case we have `1 information about
the coefficients instead of `p information and the convergence is in H1 norm instead of
Apα. Using the classical techniques of the complex analysis in the atomic decomposition

of a function f P Apβ, the atoms are of form (see [187], pp. 69) p1´|xi|
2qa

p1´xizqb
. Applying the

Feichtinger-Gröchenig theory we obtain more general atoms for the weighted Bergman
spaces, i.e., every function g P B1 generates an atomic decomposition for f P Apα with
atoms of the form Uα

x´1
i

g.

In the unweighted case and in some weighted Bergman spaces the Feichtinger-Gröchenig
theory can be not applied, because the the integrability condition is not satisfied. In these
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cases it is shown, that analogously to the case of the Hardy spaces, is possible to construct
multiresolution and analytic wavelets (see Pap [128, 133]). These results are presented in
section 3.5. In [128] Pap showed that, it is possible to construct a multiresolution analysis
(MRA), using localized Bergman kernels in special sampling points. Later in [133] the
result was extended for weighted Bergman spaces.

Although the main idea is the same as in the case of the Hardy space, the construction
of the MRA in the weighted Bergman space is more complicated, than in the Hardy space.
The first step of the construction is the construction of a new example of sampling set
for the weighted Bergman space, which is related to the Blaschke group operation. The
construction of sampling sets in weighted Bergman space is difficult in general. If once we
have this the constructed discretization scheme, the construction of the multiresolution
levels are similar to the case of Hardy space. The next difficulty is to describe the orthog-
onal wavelets on the resolution levels, because in the case of the weighted Bergman space,
they can be not given explicitly in closed form. But we can give an algorithm to generate
them, and using this we can prove that the projection to the resolution levels has similar
interpolation properties like in the case of Hardy space. This projection operator gives
opportunity of practical realization of the hyperbolic wavelet representation of a function
belonging to the weighted Bergman space, if we can measure the values of the function
on a given set of points inside the unit disc. We also studied the convergence properties
of the hyperbolic wavelet representation.

In the construction of the MRA in weighted Bergman spaces we use frames obtained by
localization of the weighted Bergman kernel in a set of sampling points connected to the
Blaschke group, so called hypebolic wavelet frames. Recently, tight affine wavelet frames
derived by the multiresolution analysis are used to open a few new areas of applications of
frames. The application of tight wavelet frames in image restorations is one of them that
includes image inpainting, image denoising, image deblurring and blind deburring, and
image decompositions. [10, 47, 158]. An up to date monograph in this domain is [104],
where are collected the most important ones and multivariate results connected to affine
wavelet frames (framelets) and the related MRA-s, and their application in the image
recovery from incomplete observed data, including the tasks of inpainting and image/video
enhancement. In the recovery of missing data from incomplete and/or damaged and noisy
samples, application of wavelet methods based on frames is more advanced due to the
redundancy of frame systems. In the context of the introduced hyperbolic wavelet frames
would be interesting to study similar properties.

The plan of this section is as follows. In subsection 3.5.1 we introduce a discrete subset
of the Blaschke group, which is a sampling set for the weighted Bergman space, see (3.22).
In subsection 3.5.2, using this special sampling set, we consider hyperbolic wavelet frames
(see (3.24) and and using them we construct an analogue of MRA decomposition in
the weighted Bergman space. First the different resolution spaces will be defined using
the introduced non-orthogonal hyperbolic wavelet frames. Applying the Gram-Schmidt
orthogonalization we consider the rational orthogonal basis on the n-th multiresolution
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level Vn. This system is the analogue of the Malmquist-Takenaka system in the Hardy
spaces, possesses similar properties and is connected to the contractive zero divisors of a
finite set in Bergman space.

In subsection 3.5.3 we prove that the projection operator Pnfpzq on the resolution level
Vn is convergent in A2

α norm to f , and is also an interpolation operator on the set the
Ťn
k“0Ak, where Ak is defined by (3.23) with minimal norm and Pnfpzq Ñ fpzq uniformly

on every compact subset of the unit disc (see Theorem 3.5.2).
In subsection 3.5.4 it is presented the algorithm for computation of the wavelet co-

efficients measuring the values of the function f on the constructed sampling set (3.22).
Based on this we can write exactly the projection operator pPnf, n P Nq on the n-th
resolution level.

Based on the MRA constructions in the Hardy and weighted Bergman spaces (see
[126, 128, 133]) Nowak and Pap in [116] summarized the main idea of these constructions,
describing in general the new method of construction of analytic wavelets which is applied
in both, Hardy and weighted Bergman spaces. This method should be applied in more
general setting in reproducing kernel Hilbert spaces.

The analytic wavelet constructed in Chapter 2 is, in fact, a Malquist -Takenaka system
with a special localization of poles. In Chapter 4 we present results connected to Malquist
-Takenaka systems in generality. We give an overview of the discretization results con-
nected to Malmquist–Takenaka systems for the unit disc and upper half plane. We prove
that the discretization nodes on the real line have similar properties like the discretization
nodes on the unit circle: they satisfy some equilibrium conditions and they are stationary
points of some logarithmic potential. The problem whether they are the minimum of
a logarithmic potential was formulated and solved in a special case. These results were
published by Pap and Schipp in [137, 118, 119, 130]. The formulated problem was solved
in generality recently in [79] by Marcell Gaál, Béla Nagy, Zsuzsanna Nagy-Csiha, Szilárd
Révész.

In Chapter 5 we present quaternionic extension of some results connected to the
Blaschke group and Malmquist-Takenaka system.

Quaternions play an important role in modeling the time and space dependent prob-
lems in physics and engineering. For example in engineering applications unit quaternions
are used to describe the three dimensional rotations. In the last years quaternions gained a
new life due to their applicability in signal processing. This is due to both, the applicability
of quaternion-valued functions to color-coded images as well as the link to new concepts of
higher-dimensional phases, like the hypercomplex signal of Bülow or the monogenic signal
by Larkin and Felsberg (see [27, 71, 106]). Another important field, where quaternions
play an important role is the quantum theory. Adler, a world-renowned theoretical physi-
cist, in his book Quaternionic Quantum Mechanics and Quantum Fields [2], provides an
introduction to the problem of formulating quantum field theories in quaternionic Hilbert
space. This well-written treatise is a very significant contribution to theoretical physics.
Bernardo Vargas in the review of this book mentioned that the quaternionic formalism
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is to improve some treatments of theoretical physics. But the full power of quaternions
would be even more important by using quaternionic analysis.

This motivates to extend the results of modern harmonic analysis, like the wavelet
theory, to quaternion variable function spaces.

A first step in this direction is to give the quaternionic analogue of the Blaschke group.
The main obstacle in the study of quaternion-valued matrices and functions, as expected,
comes from the non-commutative nature of quaternionic multiplication.

Our work was inspired also by the paper of P. Cerejeiras, M. Ferreira and U. Kähler
[30], where the monogenic wavelet transform for quaternion valued functions on the three
dimensional unit ball in R3 was introduced. The construction is based on representations
of the group of Möbius transformations which maps the three dimensional unit ball onto
itself.

In section 5.2 we introduce the quaternionic analogue of the Blaschke group and we
list the main subgroups of this groups. The results were published by Pap and Schipp in
[131].

Beside the monogenic quaternionic function theory, where many difficulties appear
when we want to make analysis, the theory of slice regular functions (introduced in 2006
by Gentili, Stoppato, Struppa [80, 81, 82]) and the analysis on this field, would be an
alternative tool for the quantum theory. To introduce new orthonormal systems in the
slice regular Hardy space, is therefore an interesting topic that is worthwhile to be studied.

In [120, 135] Pap, Schipp and Qian, Sprossig, Wang respectively, following two different
ways, introduced two analogues of the M-T systems in the set of quaternions. While in
the complex case both ways give the same M-T system, in the quaternionic setting this
is not anymore true. The drawback of both constructions is that these extensions will
not inherit all the nice properties of the before mentioned complex M-T system, e.g., the
system introduced by Pap and Schipp is not analytic in the quaternionic setting. The
system introduced by Qian, Sprossig, Wang, is monogenic but can not be written in closed
form.

Pap in [132] introduced a new generalization of the complex Malmquist-Takenaka sys-
tem in the quaternionic slice regular Hardy space, which is slice regular and in same time
can be given in closed form. In Section 5.3 results connected to slice regular Malmquist-
Takenaka system are presented.
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Chapter 2

Hyperbolic wavelet transform and
multiresolution in the Hardy spaces

2.1 The Blaschke group

The Blaschke group was introduced by Pap and Schipp in [122, 123]. Let us denote
the unit disc and the unit circle by D :“ tz P C : |z| ă 1u, T :“ tz P C : |z| “ 1u. Instead
of linear functions let us consider the following rational linear functions:

Bapzq :“ ε
z ´ b

1´ b̄z
pz P C, bz ‰ 1q

the so called Blaschke functions. Let us denote the set of the parameters B :“ DˆT and
a “ pb, εq P B. If a P B, then Ba is an 1-1 map on T, and D, respectively.

The disc D with the pseudohyperbolic metric

ρpz1, z2q :“
|z1 ´ z2|

|1´ z1z2|
“ |Bpz2,1qpz1q| pz1, z2 P Dq

is a complete metric space. This metric is invariant with respect to Blaschke functions:

ρpBpb,1qpz1q, Bpb,1qpz2qq “ ρpz1, z2q pz1, z2 P D, b P Dq.

This property characterizes the Blaschke functions. Namely, for every f which is analytic
and bounded in D with }f}8 ď 1 we have ρpfpz1q, fpz2qq ď ρpz1, z2q, and equality holds
in a point z P D if and only if f is a Blaschke function.

The restrictions of the Blaschke functions on the set D or on T with the operation
pBa1 ˝ Ba2qpzq :“ Ba1pBa2pzqq form a group. In the set of the parameters B :“ D ˆ T
let us define the operation induced by the function composition in the following way:
Ba1 ˝Ba2 “ Ba1˝a2 . The set of the parameters B with the induced operation is called the
Blaschke group. The Blaschke group pB, ˝q will be isomorphic with the group ptBa, a P
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Bu, ˝q. If we use the notations aj :“ pbj, εjq, j P t1, 2u and a :“ pb, εq “: a1 ˝ a2, then the
components of a are given by

b “
b1ε2 ` b2

1` b1b2ε2
“ Bp´b2,1qpb1ε2q, ε “ ε1

ε2 ` b1b2

1` ε2b1b2

“ Bp´b1b2,ε1qpε2q.

The neutral element of the group pB, ˝q is e :“ p0, 1q P B and the inverse element of
a “ pb, εq P B is a´1 “ p´bε, εq.

Since Ba : T Ñ T is bijection there exists a function βa : R Ñ R such that Bape
itq “

eiβaptq pt P Rq, where βa can be expressed in an explicit form. Let us introduce the
function

γrptq :“

ż t

0

1´ r2

1´ 2r cos s` r2
ds pt P R, 0 ő r ď 1q.

Then

βaptq :“ θ ` ϕ` γrpt´ ϕq, pa “ preiϕ, eiθq P B, t P R, θ, ϕ P I :“ r´π, πqq.

For the derivatives one has

β1aptq “
1´ r2

|1´ beit|2
“

1´ r2

1´ 2r cospt´ ϕq ` r2
.

Hence it follows that β : RÑ R is a strictly increasing function.
The integral of the function f : BÑ C, with respect to the left invariant Haar measure

m of the group pB, ˝q (see [122]) can be expressed as
ż

B
fpaq dmpaq “

1

2π

ż

I

ż

D

fpb, eitq

p1´ |b|2q2
db1db2dt,

where a “ pb, eitq “ pb1 ` ib2, e
itq P Dˆ T.

It can be shown that this integral is invariant with respect to the left translation
a Ñ a0 ˝ a and under the inverse transformation a Ñ a´1, consequently this group is
unimodular.

The Blaschke functions play an important role not only in system identification, in
factorization of functions belonging to Hardy spaces. They can be used also to represent
the congruence’s in the Poincaré model of the Bolyai-Lobachevsky geometry. On this
basis in the construction of wavelets we take them instead of the affine transforms in R
and we introduce the called hyperbolic or analytic wavelets. More exactly, we considered
the voice transforms of the Blaschke group generated by a representation of this group on
the Hardy space of the unit circle, on Bergman and weighted Bergman space respectively
and we studied the properties of these transforms.

The representations on the Hardy space of the unit circle and weighted Bergman space
respectively can be given by a single formula:

pUm
a´1fqpzq :“

˜

ei
1
2
ψ p1´ |b|

2q
1
2

p1´ bzq

¸m

f

ˆ

eiψ
z ´ b

1´ bz

˙

, pa “ pb, eiψq P Bq. (2.1)
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For m “ 1 if f P H2pTq then (2.1) is a representation of the Blaschke group on the
Hardy space H2pTq . For m “ α ` 2 if f P A2

α then (2.1) is a representation of the
Blaschke group on the weighted Bergman space A2

α.
In what follows we will present the most important results connected to the continuous

hyperbolic wavelet transforms induced by the representations (2.1), i.e.,

pV m
ρ fqpa

´1
q :“ xf, Um

a´1ρy. (2.2)

The name hyperbolic wavelet transform was used first time by Schipp in [140] and refers
to the connection to the hyperbolic geometry.

2.2 The hyperbolic wavelet transform on the Hardy

space of the unit circle

2.2.1 Multiresolution in the Hardy space of the unit circle

In this section we consider the case m “ 1. First results connected to this case were
published jointly with Schipp in [122, 123]. It was proved that formula

pUa´1fqpzq :“

a

eiθp1´ |b|2q

p1´ bzq
f

ˆ

eiθpz ´ bq

1´ bz

˙

`

z “ eit P T, a “ pb, eiθq P B
˘

, (2.3)

(we take the principal rank of the square root) defines a representation of the Blaschke
group on H2pTq. Let us consider the induced voice transform, the so called hyperbolic
wavelet transform:

pVgfqpa
´1
q :“ xf, Ua´1gy pf, g P H2

pTqq. (2.4)

First we studied the properties of the continuous voice transforms generated by repre-
sentations of the Blaschke group on the Hardy space [122, 123]. Analyzing the question of
discretization of this voice transforms it turned out that the Feichtinger-Gröchenig the-
ory can be not applied, because the square integrability and the integrability conditions
are not satisfied. But it is possible to construct an adapted multiresolution and analytic
wavelets in the Hardy space of the unity disc. It turned out that the introduced analytic
wavelet system has many advantages, and can be applied efficiently in the approximation
of the transfer functions of the systems (see Pap [126, 129]). Comparing this with the
classical affine multiresolution we observe that this has the following advantages:

1. The levels of the multiresolution are finite dimensional, which makes easier to find
a basis on every level, but in the same time the density condition remains valid.

2. We have constructed analytic orthonormal rational wavelet bases on the resolution
levels given by an explicit formula.

3. We can compute the wavelet coefficients exactly measuring the values of the function
f at the points of the set A “

Ťn
k“0Ak Ă D. We can write exactly the projection operator
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pPnf, n P Nq which is convergent to f inH2pTq norm on the unit circle, and Pnfpzq Ñ fpzq
uniformly on every compact subset of the unit disc.

4. At same time Pnfpzq is the best approximant interpolation operator on the set the
Ťn
k“0Ak inside the unit circle for the analytic continuation of f .

It was showed also that the matrix elements of the representation can be given by
the Zernike functions which play an important role in expressing the wave front data in
optical tests. An important consequence of this connection is the addition formula for
Zernike functions (see Pap, Schipp [123]).

The hyperbolic wavelet transform can be applied also for determining the poles of ratio-
nal functions (Schipp, Soumelidies [143]), the eigenvalues of matrices (Schipp, Soumelidies
[144] and for system identification (Bokor, Schipp, Soumelidis [21, 22, 23]).

Theorem 2.2.1 (Pap, Schipp [122]). The mapping pUaqaPB defined by (2.3) defines an
irreducible unitary representation of the Blaschke group on H2pTq with respect to the inner
product

xf, gy :“
1

2π

ż

I
fpeisqgpeisq ds pf, g P H2

pTqq,

namely
xUaf, Uagy “ xf, gy pf, g P H

2
pTq, a P Bq.

For the proof see [122]. The representation can be extended unitarily to L2pTq, but the
irreducibility condition will not be anymore true, because H2pTq is a nontrivial invariant
subspace of L2pTq of the representation.

In [123, 129] the square integrability of the representation was studied. It can be
proved that ρ “ 1 is not admissible. In order to compute Vρρpa

´1q for ρ “ 1 we can use
the Cauchy formula and we get that Vρρpa

´1q “
a

eiθp1´ |b|2q. It is easy to prove that
Vρρ R L

2pBq. Indeed we have:

ż

B
|Vρρpaq|

2dmpaq “

ż

D

1

1´ |b|2
db1db2 “ 8.

It can be also proved that for every ρ P H2pTq we have Vρρ R L
2pBq, consequently

the representation is not square integrable. But for every p ą 2 we have Lp integrability
conditions.

Lemma 2.2.2. For ρ “ 1 we have Vρρ P L
ppBq for every p ą 2.

Also some weighted square integrability are still satisfied. Unfortunately, the weight
function does not satisfy the condition wpaq ě 1, imposed for the weights in the coorbit-
theory.

Lemma 2.2.3. Let us consider the radial weight function wpaq “ p1´ |b|2qα with α ą 0,
then Vρρ P L

2pB, wq, and Vρρ P L
ppB, wq for every p ą 2´ 2α.
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These results show that for the hyperbolic wavelet transform (2.4) the square inte-
grability, or weighted square integrability required for the discretization theory developed
by Feichtinger, Gröchenig is not satisfied (see [129]). In order to solve the discretisation
problem, Pap in [126] introduced an adapted multiresolution in H2pTq. Avoiding the
classical Fourier technique, using the localized Cauchy kernels corresponding to a discrete
countable subset A of the unit disc, a multiresolution analysis in H2pTq was constructed.
This can be used for H2pDq identification if we measure the values of function on this set.
It has been showed that the resolution levels are spanned by a special rational analytic
orthonormal wavelet system, i.e., by the Malmquist-Takenaka system with a special lo-
calization of the poles. In this subsection we give an overview of the construction given in
[126]. In [129] it was proved that the levels of the multiresolution form a complete model
set for the disc algebra of the unit disc, and it was given an estimation of the error term
for the proposed approximation process.

Let us remind that in the construction of affine wavelet multiresolutions the dilatation
is used to obtain a higher resolution level (fpxq P Vn ô fp2xq P Vn`1), and applying
the translation we remain on the same level of resolution. If we want to construct a
multiresolution in H2pTq we have to find the analogue of dilation by 2 and the analogue
of translation. The analogue of dilation will be the action of the representation trough a
discrete subgroup B1 of the Blaschke group.

Let us consider the following discrete subgroup of the Blaschke group:

B1 “

"

prk, 1q : rk “
2k ´ 2´k

2k ` 2´k
, k P Z

*

. (2.5)

It can be proved that prk, 1q ˝ prn, 1q “ prk`n, 1q and

ρprk, rnq :“
|rk ´ rn|

|1´ rkrn|
“

ˇ

ˇ

ˇ

ˇ

ˇ

2k´2´k

2k`2´k
´ 2n´2´n

2n`2´n

1´ 2k´2´k

2k`2´k
2n´2´n

2n`2´n

ˇ

ˇ

ˇ

ˇ

ˇ

“ |rk´n|.

As a consequence we get that the sequence prk, k P Nq forms an equidistant division
of the interval r0, 1q in the pseudo hyperbolic metric.

Let us consider the following discrete subset in the unit disc:

A “ tzk` “ rke
i 2π`
22k , ` “ 0, 1, ¨ ¨ ¨ , 22k

´ 1, k “ 0, 1, 2, ¨ ¨ ¨ ,8u (2.6)

and for a fixed k P N let the level k be the collection of the points from circle with radius
rk:

Ak “ tzk` “ rke
i 2π`
22k , ` P t0, 1, ¨ ¨ ¨ , 22k

´ 1u u. (2.7)

The points of A determine a similar decomposition to the Whitney cube decomposition
of the unit disc (see for ex. [Partington, 1997] [134], pp.80). For our purpose it is more
convenient to choose prk, n P Nq as radius of the concentric circles because they are related
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to the Blaschke group operation, i.e., prk, 1q ˝ prn, 1q “ prk`n, 1q, and form this property
we can derive the analogue property of the dilatation.

Let us consider the scaling function ϕ “ 1. Let us define the 0-th resolution level
by: V0 “ tcϕ, c P Cu. Let us consider the non-orthogonal wavelets on the n-th level the
localized and normalized Cauchy kernels corresponding to points Ynk“0Ak, given by

ϕk`pzq “

a

p1´ r2
kq

p1´ zk`zq
, k “ 0, ¨ ¨ ¨ , n, ` “ 0, 1, ¨ ¨ ¨ , 22k

´ 1, (2.8)

which can be obtained from ϕ using the representation Uprn,1q´1 , and the translations

ϕk`pe
it
q “ pUpprk,1q´1ϕqpeipt´

2π`

22k
q
q.

Let us define the n-th resolution level by the linear span of all these localized Cauchy
kernels:

Vn “ tf : DÑ C, fpzq “
n
ÿ

k“0

22k´1
ÿ

`“0

ck`ϕk`, ck,` P C u. (2.9)

In [126] it has been proved that the collections of spaces tVj, j P Nu satisfy analogue
conditions of the affine multiresolution, i.e.,

1. (nested) Vj Ă Vj`1,

2. (density) YVj “ H2pT q

3. (analog of dilatation) Upr1,1q´1pVjq Ă Vj`1

4. (basis) There exist tψk`, k “ 0, ¨ ¨ ¨ , n, ` “ 0, 1, ¨ ¨ ¨ , 22k ´ 1u (orthonormal) bases in
Vn.

This is the adapted multiresolution (MRA) in H2pTq.
In order to construct the orthonormal bases tψk`, k “ 0, ¨ ¨ ¨ , n, ` “ 0, 1, ¨ ¨ ¨ , 22k ´ 1u

in Vn we apply the Gram-Schmidt orthogonalization to the following non-orthogonal basis
in Vn:

"

1

1´ zk`z
, ` “ 0, 1, ¨ ¨ ¨ , 22k

´ 1, k “ 0, 1, ¨ ¨ ¨ , n.

*

.

The result of the Gram-Schmidt orthogonalization for this set of analytic linearly inde-
pendent functions can be written in closed form. As a result we obtain the Malmquist–
Takenaka system corresponding to the set Ynk“0Ak (see [110], [163]):

ψm`pzq “

a

1´ r2
m

1´ zm`z

m´1
ź

k“0

22k´1
ź

j“0

z ´ zkj
1´ zkjz

`´1
ź

j1“0

z ´ zmj1

1´ zmj1z
(2.10)

p` “ 0, 1, ¨ ¨ ¨ , 22m
´ 1, m “ 0, 1, 2, ¨ ¨ ¨ , nq.
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In this way we have constructed an analytic rational orthonormal wavelet system on
the resolution level Vn, i.e.,

xψm`, ψm1`1y “
1

2π

ż 2π

0

ψm`pe
it
qψm1`1peitqdt “ δmm1δ``1 , (2.11)

p` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, 1, 2, ¨ ¨ ¨ ,8q.

From the Gram-Schmidt orthogonalization process it follows that:

Vn “ spantψk`, ` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, ¨ ¨ ¨ , nu.

Because the points of the set A satisfy the non-Blaschke condition

ÿ

k,`

p1´ |zk`|q “
ÿ

k

22k

ˆ

1´
2k ´ 2´k

2k ` 2´k

˙

“
ÿ

k

2 ¨ 2k

2k ` 2´k
“ 8, (2.12)

the Malmquist–Takenaka system corresponding to the set A is a basis in H2pTq, i.e.,

ď

nPN

Vn “ H2
pTq

in H2pTq norm, consequently the density property is also satisfied.
In signal processing and system identification the Malmquist–Takenaka system is more

efficient then the trigonometric system in the determination of the transfer functions. This
field has also a rich bibliography (see for example Akcay, Ninness [3], Akcay, Ninness, [4],
Ninness, Gustafsson [115], Soumelidies, Bokor, Schipp [151, 153] etc.).

The wavelet space Wn is the orthogonal complement of Vn in Vn`1. In our case, as it
was shown in [126], Wn is given as

Wn “ spantψn`1`, ` “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1u.

To prove this we will use the Cauchy integral formula: every function f P H1 can be
recovered from its boundary function, i.e.,

fpzq “
1

2π

ż 2π

0

fpeitq

eit ´ z
eitdt.

If f P Vn, one has fpzq “
řn
k“0

ř22k´1
`“0 ck`ϕk`, then

xψn`1j, fy “
n
ÿ

k“1

22k´1
ÿ

`“0

ck`xψn`1j, ϕk`y “

n
ÿ

k“1

22k´1
ÿ

`“0

ck`

b

1´ r2
kψn`1`pzk`q “ 0, j “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1.
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Consequently
xf, ψn`1jy “ 0,

and
ψn`1j K Vn, pj “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1q.

From
Vn`1 “ Vn

à

spantϕn`1,j, j “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1u

it follows that Wn is an 22pn`1q dimensional space and

Wn “ spantψn`1`, ` “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1u.

Consequently we have generated a multiresolution in H2pTq and we have constructed an
analytic rational orthogonal wavelet system.

In what follows we show that the levels of the constructed multiresolution form a CMS
for the disc algebra of the unit disc and we give some estimation for the convergence error.

The discrete lattice A has also certain near-density property, i.e. no point in the
unit disc is too far in the pseudo-hyperbolic metric from a point of A. This leaves open
the question if the resolution levels form a complete model set (CMS) for ApDq, which
seems to be a harder question. In order to prove this we will show that A satisfies the
Hayman-Lyons condition.

Let us consider the Whitney cube division of D. For n “ 1, 2, ¨ ¨ ¨ and k “ 0, 1, ¨ ¨ ¨ , 2n´
1, we define

Qn,k “

"

z : 1´
1

2n
ď |z| ď 1´

1

2n`1
,

2kπ

2n
ď argz ď

2pk ` 1qπ

2n

*

.

If A P D we set An,k “ AXQn,k, yn,k “ p1´
1

2n
qe

2πk
2n , and we define

spθq “ spθ, Aq “
ÿ

An,k‰H

ˆ

1´ |yn,k|

|yn,k ´ eiθ|

˙2

.

We say that A satisfies the Hayman-Lyons condition if and only if, spθq “ `8 for all
θ P r0, 2πs.

Theorem 2.2.4 (Pap [129]). The points of the lattice A satisfy the Hayman-Lyons con-
dition, which implies that the corresponding localized Cauchy kernels form a fundamental
set and tVnunPN form a CMS in the disc algebra ApDq.

From the Hayman-Lyons condition and Theorem [2] of Ward, Partington [172] it
follows that

W “

"

1

1´ zk`z
, zk` P A

*
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is a fundamental set for ApDq. From this it follows that Y8k“1Vk is dense in ApDq, con-
sequently the multiresolution levels form a CMS for the disc algebra. This means that if
f P ApDq for arbitrary ε ą 0, there exists λk,` P C and such that

›

›

›

›

›

fpzq ´
N
ÿ

k“1

λk,`
1

1´ zk,`z

›

›

›

›

›

8

ă ε, (2.13)

which implies that the set W is fundamental in the disc algebra of the unit disc.

2.2.2 The properties of the projection operator corresponding
to the n-th resolution level

Let us consider the orthogonal projection operator of an arbitrary function f P H2pTq
on the subspace Vn given by

Pnfpzq “
n
ÿ

k“0

22k´1
ÿ

`“0

xf, ψk,`yψk,`pzq, (2.14)

called also the projection of f at scale or resolution level n.
In [126] Pap proved that the analytic continuation in the unit disc of the projection

Pnf on the n-th resolution level is at the same time an interpolation operator in the unit
disc until the n-th level. This interpolation property is not true for the projections on the
classical affine multiresolution levels.

Theorem 2.2.5 (Pap [126]). For every f P H2pTq the projection of f on Vn converges in
norm to f , and Pnfpzq Ñ fpzq uniformly on every compact subset of the unit disc. More-
over for every f P H2pTq the projection operator Pnf is an interpolation operator at the

points zmj “ rme
i 2πj

22m , pj “ 0, ¨ ¨ ¨ , 22m ´ 1, m “ 0, ¨ ¨ ¨ , nq for the analytic continuation
of f in the unit disc.

Proof. The non-Blaschke condition (2.12) implies that for every f P H2pTq the
projection of f on Vn converges in norm to f , i.e., we have

}f ´ Pnf}H2pTq Ñ 0, nÑ 8.

Since convergence in H2pTq implies uniform convergence for the analytic continuation of f
inside the unit disc on every compact subset, we conclude that Pnfpzq Ñ fpzq uniformly
on every compact subset of the unit disc.

In order to prove the interpolation property of Pnf let us consider the kernel function
of this projection operator given by

KNpz, ξq “
n
ÿ

k“0

22k´1
ÿ

`“0

ψk`pξqψk`pzq, N “

n
ÿ

k“0

22k´1
ÿ

`“0

1 “
4n`1 ´ 1

3
. (2.15)
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According to the Christoffel-Darboux formula the kernel function can be written in closed
form

KNpz, ξq “ p1´ zξq
´1

¨

˝1´
n
ź

k“0

22k´1
ź

`“0

z ´ zk`
1´ zk`z

n
ź

k“0

22k´1
ź

`“0

ξ ´ zk`
1´ zk`ξ

˛

‚“ (2.16)

“ p1´ zξq´1

˜

1´
n
ź

k“0

z22k ´ r22k

k

1´ r22k
k z22k

n
ź

k“0

ξ22k ´ r22k
k

1´ r22k
k ξ22k

¸

.

From this relation it follows that the values of the kernel-function at the points zmj, pj “
0, ...., 22m ´ 1, m “ 0, ..., nq are equal to localized Cauchy kernels

Kpzmj, ξq “
1

1´ zmjξ
.

From this property and the Cauchy integral formula we get that the interpolation property
holds, i.e.,

Pnfpzmjq “ xf,KNp., zmjqy “
1

2π

ż 2π

0

fpeitq

1´ zmje´it
dt “ fpzmjq

pj “ 0, ¨ ¨ ¨ , 22m
´ 1, m “ 0, ¨ ¨ ¨ , nq.

We are interested to know the behavior of Pn on the unit circle and the convergence
in H8 norm. An estimation of the rate of the convergence would also be interesting. In
what follows we will concentrate our attention to these questions.

Theorem 2.2.6 (Pap [129]). If f P ApDq is a rational function of the form

fpzq “
M
ÿ

`“1

am
1´ γmz

, γm “ rme
iαm P D, (2.17)

then }f ´ Pnf}H8 Ñ 0.

Proof. For

fpzq “
M
ÿ

`“1

am
1´ γmz

, γm P D, γm “ αm ` iβm P D

using the Cauchy formula we can compute the wavelet coefficients:

xf, ψk`y “
M
ÿ

m“1

amψk`pγmq. (2.18)
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Using the Christophel–Darboux formula for the Malmquist–Takenaka system Pnfpzq
can be written as

Pnfpzq “
n
ÿ

k“0

22k´1
ÿ

`“0

xf, ψk`yψk`pzq “
n
ÿ

k“0

22k´1
ÿ

`“0

M
ÿ

m“1

amψk`pγmqψk`pzq “

“

M
ÿ

m“1

am

n
ÿ

k“0

22k´1
ÿ

`“0

ψk`pγmqψk`pzq “
M
ÿ

`“1

am
1´BNpγmqBNpzq

p1´ γmzq
,

where

BNpzq “
n
ź

k“0

22k´1
ź

`“0

z ´ zk`
1´ zk`z

, N “

n
ÿ

k“0

22k´1
ÿ

`“0

1 “
4n`1 ´ 1

3
.

Now we are ready to estimate the error |fpzq ´ Pnfpzq| for |z| ď 1:

|fpzq ´ Pnfpzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

m“1

am
BNpγmqBNpzq

p1´ γmzq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

BNpzq
M
ÿ

m“1

amBNpγmq

p1´ γmzq

ˇ

ˇ

ˇ

ˇ

ˇ

“

“ |BNpzq|

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

m“1

amBNpγmq

p1´ γmzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

M
ÿ

m“1

|am||BNpγmq|

|1´ γmz|
ď

M
ÿ

`“1

|am||BNpγmq|

1´ rm
.

Because the points of the setA form a non-Blaschke sequence we have limNÑ8 |BNpγmq| “
0, which implies that this last sum tends to zero if N Ñ 8, consequently }f´Pnf}H8 Ñ 0
on the closed unit disc. Using similar estimates as in Akcay, Ninness [4] for the error term
we get

|BNpγmq| “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

k“0

22k´1
ź

`“0

γm ´ zk`
1´ zk`γm

ˇ

ˇ

ˇ

ˇ

ˇ

ď exp

˜

´
1

2
p1´ |γm|q

ÿ

k,`

p1´ |zk`|q

¸

,

ÿ

k,`

p1´ |zk`|q “ 2
n
ÿ

k“0

2k

2k ` 2´k
ě n` 1.

From here we get that the error term has an exponential decay:

|fpzq ´ Pnfpzq| ď exp

ˆ

´
1

2
min
m
p1´ |γm|qpn` 1q

˙ M
ÿ

m“1

|am|

1´ rm
.

For analytic functions on a disc Dp0, Rq with radius R ą 1 and bounded magnitude
|fpzq| ă K, Akcay, Ninness [4] proved the following error estimation:

}f ´ Pnf}8 ď
KR

R ´ 1
exp

˜

R ´ 1

2R

ÿ

k,`

p1´ |zk`|q

¸

.

From here we get that

}f ´ Pnf}8 ď
KR

R ´ 1
exp

ˆ

R ´ 1

2R
pn` 1q

˙

.
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2.2.3 Reconstruction algorithm using the wavelet base

Due to a result of Walsh (see for example in Chui, Chen [36] pp. 93), for every
f P H2pDq there exists a unique f̂n P Vn such that

}f̂n ´ f}“ inf
fnPVn

}fn ´ f},

and f̂n is uniquely determined by the interpolation conditions

f̂npzmjq “ fpzmjq, pj “ 0, ¨ ¨ ¨ , 22m
´ 1, m “ 0, ¨ ¨ ¨ , nq.

From Theorem 2.2.5 it follows that the best approximant is given by (2.14) i.e., f̂npzq “
Pnfpzq. Chui and Chen also proposed a computational scheme for the expression of the
best approximant in the base tϕk`, ` “ 0, 1, ¨ ¨ ¨ , 22k ´ 1, k “ 0, ..., nu.

In [126] Pap introduced a new computational scheme for the best approximant in the
wavelet base tψk`, ` “ 0, 1, ¨ ¨ ¨ , 22k ´ 1, k “ 0, ¨ ¨ ¨ , nu.

For the best approximant Pnf the set of coefficients

tbk` “ xf, ψk`y, ` “ 0.1, ¨ ¨ ¨ , 22k
´ 1 k “ 0, 1, ¨ ¨ ¨ , nu

is called the discrete hyperbolic wavelet transform of the function f . Thus it is important
to have an efficient algorithm for the computation of the coefficients.

In [126] it has been shown that the coefficients of the projection operator Pnf can be
computed exactly if we know the values of the functions on

Ťn
k“0Ak. For this reason we

express first the function ψk` using the bases tϕk1`1 `
1 “ 0, 1, ¨ ¨ ¨ , 22k1 ´ 1, k1 “ 0, ¨ ¨ ¨ , ku,

i.e., we write the partial fraction decomposition of ψk`:

ψk`pξq “
k´1
ÿ

k1“0

22k
1
´1

ÿ

`1“0

ck1`1
1

1´ zk1`1ξ
`
ÿ̀

j“0

ckj
1

1´ zkjξ
.

Using the orthogonality of the functions tψk1`1 `
1 “ 0, 1, ¨ ¨ ¨ , 22k1 ´ 1, k1 “ 0, ¨ ¨ ¨ , ku and

the Cauchy formula we get that

δknδ`m “ xψnm, ψk`y “
k´1
ÿ

k1“0

22k
1
´1

ÿ

`1“0

ck1`1ψnmpzk1`1q `
ÿ̀

j“0

ckjψnmpzkjq,

pm “ 0, 1, ¨ ¨ ¨ , 22n
´ 1, n “ 0, ¨ ¨ ¨ , kq.

If we order these equalities so that we write first the relations for n “ k and m “

`, `´ 1, ¨ ¨ ¨ , 0 respectively, then for n “ k´ 1 and m “ 22pk´1q´ 1, 22pk´1q´ 2, ¨ ¨ ¨ , 0, etc.,
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this is equivalent to

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
0
0
.
.
.
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

ψk`pzk`q 0 0 . . . 0
ψk`´1pzk`q ψk`´1pzk`´1q 0 . . . 0
ψk`´2pzk`q ψk`´2pzk`´1q 0 . . . 0

...
...

ψ00pzk`q ψ00pzk`´1q ψ00pzk`´2q . . . ψ00pz00q

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

ck`
ck`´1

ck`´2
...
c00

˛

‹

‹

‹

‹

‹

‚

.

Because of the elements from the main diagonal are different from zero, this system
has a unique solution pck`, ck`´1, ck`´2, ..., c00q

T . If we determine this vector, then we can
compute the exact value of xf, ψk,`y knowing the values of f on the set

Ťn
k“0Ak.

Indeed, using again the partial fraction decomposition of ψk` and the Cauchy integral
formula we get that

xf, ψk`y “
k´1
ÿ

k1“0

22k
1
´1

ÿ

`1“0

ck1`1xfpξq,
1

1´ zk1`1ξ
y `

ÿ̀

j“0

ckjxfpξq,
1

1´ zkjξ
y “

“

k´1
ÿ

k1“0

22k
1
´1

ÿ

`1“0

ck1`1fpzk1`1q `
ÿ̀

j“0

ckjfpzkjq.

The question of recovery of analytic functions from values measured in the open unit
disc was also studied by Totik, see [164], where it has been proved that in Hp or in the
disc algebra if we can measure the values of a function f on a non Blaschke sequence,
say pzkqkPN, then there are polynomials pn,j such that

řn
j“1 fpzjqpn,j tends to f in norm.

From practical point of view the only difficulty is that we can not determine exactly the
coefficients of these polynomials from the values of the measurementsfpzkqkPN.

Fridli, Gilián and Schipp in [77] introduced the planar version of the Malmquist-
Takenaka system, i.e., when the Hardy space of the unit circle is replaced by the Bergman
space of the unit disc, in order to develop an effective method for approximating surfaces.
They generalized the reconstruction method presented before for the planar MT system.
The coefficients of the projection operator with respect to the planar Malmquist-Takenaka
system can be computed also using the values of the function on inverse poles and using
them it can be written the projection operator exactly.

In [31] Cerejeiras, Chen, Gomes and Hartmann, used a compressed sensing approach
to the reconstruction of a given signal in terms of Takenaka-Malmquist systems. They
presented some numerical experiments using TakenakaMalmquist systems in the study of
transfer functions in systems identification. For the numerical calculations they used the
Matlab toolbox -1-Magic which adopts a Linear Programming to minimize the -norm of
our coefficients x subject t oy “ Ax using the primal-dual interior point method with A
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being our sampling matrix. They need to choose our points ai for the Blaschke products.
For this they choose the grid (2.6) introduced by Pap in [126]. From this grid they took
N randomly chosen points, i.e., a vector a “ pa1, ..., aNq. They made the simulation using
Matlab 8.5.0(R2015a). They still could get a decent approximation with a dramatically
smaller running time. From this example they redraw the following observations:

1. Within the same number of measurements, when |z0| is near to zero we have the
best reconstruction in the least time.

2. When the modulus of the parameter z0 is close to 1 it requires more samples to
reconstruct the signal.

3. The reconstruction is better in case when |aj ´ r| ă ε with ε relatively small and
the parameter aj being randomly chosen.

Taking into account these two last examples they formulated the following observa-
tions:

1. Using the same number of measurements their method provides a better approxi-
mation than the approach in the thesis of Shuang [147];

2. Moreover, the same relative error is attained with their method by using a smaller
number of sampling points.

Recently Abdollahi and Rahimi using the affine group constructed another example
of adapted multiresolution and orthonormal wavelet on H2pDq (see [1]).

In [32] Cerejeiras , Kähler, Legatiuk published results on interpolation of monogenic
functions in the higher dimensional unit ball of Rd`1 using reproducing kernels and ran-
domly chosen interpolation points. The main theoretical results are proved based on the
concept of uniformly discrete sequences. In addition to the classical difficulties of hyper-
complex interpolation, the problem of the choice of the nodes is an additional obstacle
in practical applications of monogenic interpolation. They point out that for example,
in the classic case of the unit disc in C, there exist several ways of choosing uniform
interpolation points, since it is easy to create a uniform grid on the unit circle see. One
example is exactly the greed (2.6) introduced in [126]. This is not any more true for the
sphere in higher dimensions.

2.2.4 Discrete orthogonality of the hyperbolic wavelet basis

Another new property of the hyperbolic wavelet basis, which is not characteristic to
the affine wavelets, is the discrete orthogonality. In [126] it has been proved also that it is
possible to construct wavelets using the reproducing kernels of the multiresolution levels,
similar as Bultheel, González-Vera in [25]. In this subsection we will give an overview of
these results.

The reproducing kernel K : T ˆ T Ñ C of a subspace V Ă H2pTq is defined by its
reproducing property, i.e.,

@ f P V fpwq “ xf,Kp., wqy, w P T.
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Let us consider the special subspace Vn “ spantψk,`, ` “ 0, 1, ¨ ¨ ¨ , 22k´1, k “ 0, 1, ¨ ¨ ¨ , n u

(with dimension N “
řn
k“0

ř22k´1
`“0 1 “ 4n`1´1

3
). We recall that if an orthonormal bases is

considered in Vn, then the reproducing kernel or Dirichlet kernel of the system is given by

KNpξ, wq :“
n
ÿ

k“0

22k´1
ÿ

`“0

ψk,`pwqψk,`pξq

and it is independent of the choice of the orthonormal system. For a fixed w such repro-
ducing kernels are known to be localized in the neighborhood of ξ “ w.

The orthogonal projection operator onto Vn, defined by (2.14) can be expressed with
the reproducing kernel as follows:

Pnfpwq “ xf,KNp., wqy f P H2
pTq.

For a set of distinct points wN “ tw1, w2, ..., wNu on T among the points of analyticity
of KN one has

xKNp., wiq, KNp., wjqy “ KNpwj, wiq.

We remind that the reproducing kernel of the multiresolution level Vn can be written
in closed form for z ‰ ξ, z, ξ P T:

KNpz, ξq “ p1´ zξq
´1

¨

˝1´
n
ź

k“1

22k´1
ź

`“0

z ´ zk`
1´ zk`z

n
ź

k´1

22k´1
ź

`“0

ξ ´ zk`
1´ zk`ξ

˛

‚“

“ p1´ zξq´1

˜

1´
n
ź

k“1

z22k ´ r22k

k

1´ r22k
k z22k

n
ź

k´1

ξ22k ´ r22k
k

1´ r22k
k ξ22k

¸

.

From the definition of KN for z “ ξ “ eit we get that:

KNpe
it, eitq “

n
ÿ

k´1

22k´1
ÿ

`“0

ψk`peitqψk`pe
it
q “

n
ÿ

k´1

22k´1
ÿ

`“0

1´ r2
k

|1´ zk`eit|2

“

n
ÿ

k´1

22k´1
ÿ

`“0

β1k`ptq.

The finite Blaschke product which appears in the expression of the kernel function for
z “ eit can be expressed also with the beta functions as follows:

n
ź

k“1

22k´1
ź

`“0

z ´ zk`
1´ zk`z

“ eiNβpNqptq,
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where

βpNqptq;“
1

N

n
ÿ

k“1

22k´1
ÿ

`“0

βk`ptq,

βk`ptq :“ βpzk`,1q “
2π`

22k
` 2arctan22k tan

pt´ 2π`
22k
q

2
.

The function βpNqptq is a monotonically increasing, invertible and differentiable function
mapping of R onto itself. Using the fact that

n
ź

k“1

22k´1
ź

`“0

z ´ zk`
1´ zk`z

“

n
ź

k“1

z22k ´ r22k

k

1´ r22k
k z22k

,

we obtain that the expression of the βpNqptq can be expressed by a single sum as follows:

βpNqptq;“
1

N

n
ÿ

k“1

22k´1
ÿ

`“0

βk`ptq “
1

N

n
ÿ

k“1

2arctan
1´ r22k

k

1` r22k
k

tan 22k´1t.

Consequently, we have:

KNpe
it, eiθq “

sinN βN ptq´βN pθq
2

sin t´θ
2

ei
NpβN ptq´βN pθqq´pt´θq

2 .

Let us denote the set of equidistant nodes on the unit circle, i.e., the N th roots of the
unity by

UN “ te
iνj : j “ 0, ¨ ¨ ¨ , N ´ 1u.

and let
WN :“ twj “ eiγj : γj “ β´1

N pνjq, j “ 0, ¨ ¨ ¨ , N ´ 1u.

Let us define the discrete scalar product

rf, gsN :“
ÿ

ξPWN

fpξqgpξq

KNpξ, ξq
“

ÿ

ξPWN

fpξqgpξq

Nβ1
pNqpγq

where ξ “ eiγ.
It can be shown that the finite collection of the orthonormal functions tψk`, ` “

0, 1, ¨ ¨ ¨ , 22k´1, k “ 0, 1, ¨ ¨ ¨ , n u will be discrete orthogonal regarding the discrete scalar
product. This is a special case of the result obtained by Pap, Schipp in [118].

Theorem 2.2.7 (Pap [126]). The finite collection of analytic wavelets tψk`, ` “ 0, 1, ¨ ¨ ¨ , 22k´

1, k “ 0, 1, ¨ ¨ ¨ , n u forms a discrete orthonormal system with respect to the scalar product
r., .sN , namely

rψk`, ψk1`1sN “ δkk1δ``1 .
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It is true that for any set of distinct points wN “ tw1, w2, ¨ ¨ ¨ , wNu on T the system

tKNpwi, ξq, i “ 1, ¨ ¨ ¨ , Nu

forms a basis for Vn.
The question is whether it is possible to choose the points of wN such that this basis

is orthogonal on T . In that case we would have a bases of orthogonal rational kernels at
every level of the multiresolution.

Theorem 2.2.8 (Pap [126]). The set
#

KNpξ, wiq
a

KNpwi, wiq
, wi P WN, i “ 0, 1, ¨ ¨ ¨ , N ´ 1

+

forms an orthonormal and a discrete orthonormal basis regarding to the discrete scalar
product r., .sN for Vn.

It is possible also to give a reproducing kernel basis for the 22n`2 dimensional wavelet
space Wn analogue. Obviously the reproducing kernel for Wn is

knpz, wq “ KN`1pz, wq ´KNpz, wq “
22n`2´1
ÿ

`“0

ψn`1`pzqψn`1`pwq.

One interesting question is the following: Can we find 22n`2 numbers on the unit circle
such that the functions tknpz, wnjq : j “ 0, 1, 2, ¨ ¨ ¨ , 22n`2 ´ 1u form an orthogonal basis
for Wn? The following theorem is providing a positive answer.

Let us denote by

wn “ twn`1j, j “ 0, 1, 2, ¨ ¨ ¨ , 22n`2
´ 1u

the roots of order 22n`2 of the unity.
Let us consider the discrete scalar product defined over wn defined by

rf, gsn :“
ÿ

ξPwn

fpξqgpξq

knpξ, ξq
. (2.19)

Theorem 2.2.9 (Pap [126]). The set
#

knpwn`1j, ξq
a

knpwn`1j, wn`1jq
, wn`1j P wn, i “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1

+

forms an orthogonal basis and a discrete orthonormal basis regarding to the discrete scalar
product r., .sn for Wn, i.e.,

xknpz, wn`1jq, knpz, wn`1j1qy “ 0, j ‰ j1, j, j1 “ 0, 1, 2, ¨ ¨ ¨ , 22n`2
´ 1.

«

knpwn`1i, ξq
a

knpwn`1i, wn`1iq
,

knpwn`1j, ξq
a

knpwn`1j, wn`1jq

ff

n

“ δij, i, j “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1.
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2.3 Multiresolution in the Hardy space of the upper

half plane

2.3.1 Transition to the upper half plane, motivation

Let us denote by C` “ tz P C : Impzq ą 0u the upper half plane, and let us consider
ApC`q the set of analytic functions on C`. The Hardy space of the upper half plane is
defined by

Hp
pC`q “

"

h P ApC`q : sup

"
ż

R
|hpx` iyq|p dx : y ą 0

*

ă 8

*

.

If f P H2
pC`q, then its non tangential boundary limit function exists almost everywhere

and
f P H2

pRq “ tf P L2
pRq, supf̂ Ă r0,`8qu.

For more detailed description of the Hardy spaces see for example Cima, Ross [37],
Mashregi [111].

As we have referred in the introduction, Meyer between others, formulated the follow-
ing question: Is it any ”regular” wavelet orthonormal bases of the form

ψ0pxq “ ψpxq, ψn,kpxq :“ 2n{2ψp2nx´ kq

and multiresolution generated by this bases in H2pRq. Auscher in 1995 published results
connected to this question in [11]. The word regular includes smoothness, localization,
and cancellation of ψ, see the exact conditions in [11]. He showed the nonexistence of a
regular wavelet that generates a wavelet basis in space H2pRq, i.e., in this space applying
dilation and translation to a single function, or discretizing the continuous affine wavelet
transform, leads to negative answer if we impose some ”regularity” conditions.

As we will see later we will approach the construction of multiresolution in H2pRq by
taking the analytic extension of this functions to the Hardy space of the upper half plane
H2
pC`q, because if f P H2

pC`q then its non tangential boundary limit function exists
almost everywhere and the limit function f satisfies f P H2pRq.

Making the transition to the upper half plane of the results presented in the previous
section we show that it is possible to generate multiresolution type decomposition in
Hardy spaces of the upper half plane too. These results were published by in [67]. In this
section we present these results: how it can be construct a rational analytic orthogonal
wavelet system in the Hardy space of the upperhalf plane which generates an adapted
multiresolution. All the advantages enumerated in the previous section are valid in this
case too. Measuring the values of the function f at the points of the set B “

Ťn
k“0Bk Ă

C` we can write exactly the projection operator on the n-th resolution level pP 1nf, n P Nq.
This is convergent to f in H2pC`q norm, is the best approximant interpolation operator
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on the set the
Ťn
k“0Bk and P 1nfpzq Ñ fpzq uniformly on every compact subset of the

upper half plane.
The restriction to the real line of the introduced hyperbolic analytic wavelet basis

given explicitly by

tΨk`, ` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, ¨ ¨ ¨ , n, ¨ ¨ ¨ u

generates an adapted multiresolution in H2pRq.
As long as the theory of wavelet constructions on the Hardy space of the unit disc

presented in [126] are suitable for time frequency-domain description of discrete-time-
invariant dynamical systems, the adaptation to the upper half plane can be used in system
theory to describe the spectral behavior of continuous-time-invariant systems. It has been
also studied the approximation and identification of transfer functions of a continuous-
time-invariant systems.

In the case of the Hardy space of the unit disc where the polynomials are dense, however
dense subsets in the Hardy space of the upper half plane are harder to find. Applying the
Daubechies theory it can be shown that choosing as mother wavelet ψpyq “ p1 ` iyq´p

for p ě 2 we can generate a frame for the Hardy space of the upper half plane. For
p “ 3 Ward, Partington in [171] described a rational wavelet decomposition of the Hardy–
Sobolev class of the half plane. The case p “ 1, the Cauchy kernel case, dos not fall under
the Daubechies theory since does not have vanishing mean value, but Ward and Partington
have shown that the system ψj,k “ 2j{2ψp2jy´b0kq, j, k P Z does constitute a fundamental
set for the upper half plan algebra. The multiresolution introduced by Feichtinger, Pap
in [67] uses localized Cauchy kernels for Hardy space of the upper half plane and uses
complex techniques in the proofs.

The unit disk D and the upper half-plane C` can be mapped to one-another by
means of Möbius transformations, i.e., by the Cayley transform, which maps C` to D and
is defined by

Cpωq “
i´ ω

i` ω
, ω P C`. (2.20)

The correspondence between the boundaries is given by

eis “ Cptq “
i´ t

i` t
, t P R, s P p´π, πq,

which implies that s “ 2 arctanptq, t P R.

With the Cayley transform, the linear transformation from H2
pDq to H2

pC`q is defined
for f P H2

pDq by

Tf :“
1
?
π

1

ω ` i
pf ˝ Cq (2.21)

and is an isomorphism between these spaces. Consequently the theory of the real line is
a close analogy with what we have for the circle.
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In the case of the unit disc a main tool in the proofs was the Cauchy formula for the
unit disc. In the case of the upper half plane the analogue is the Cauchy formula for the
upper half plane, which is the following: for any function F P HppC`q, 1 ď p ă `8, if
F psq is its non-tangential boundary limit, then

F pzq “
1

2πi

ż 8

´8

F psq

s´ z
ds, z P C`. (2.22)

2.3.2 A special discrete subset in the upper half plane

In the case of the Hardy space of the unit circle the analogue of the dilation by 2 was
the action of the representation of the Blaschke group U corresponding to the discrete
subgroup defined by

B1 “

"

prk, 1q : rk “
2k ´ 2´k

2k ` 2´k
, k P Z

*

,

and the multiresolution was constructed using the localized Cauchy kernels corresponding
to the set

A “ tzk` “ rke
i 2π`
22k , ` “ 0, 1, ¨ ¨ ¨ , 22k

´ 1, k “ 0, 1, 2, ¨ ¨ ¨ ,8u

and the k-th resolution levels, k P N, were associated to

Ak “ tzk` “ rke
i 2π`
22k , ` P t0, 1, ¨ ¨ ¨ , 22k

´ 1u u.

The inverse Cayley transform C´1pzq “ i1´z
1`z

takes the unit circle in the real axis and the
unit disc in the upper half plane. Let us consider the image of the set A trough the inverse
Cayley transform, in this way we obtain the following points of the upper half plane:

ak` “ C´1
pzk`q “

2rk sin 2π`
22k

1´ 2rk cos 2π`
22k
` r2

k

` i
1´ r2

k

1´ 2rk cos 2π`
22k
` r2

k

“ αk` ` iβk`, (2.23)

Bk “ tak`, ` P t0, 1, ¨ ¨ ¨ , 2
2k
´ 1u u, (2.24)

B “ tak`, ` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, 1, 2, ¨ ¨ ¨ ,8u. (2.25)

The points from B are in the upper half plane, and every point from Bk is on the circle

with center p0,
1`r2k
1´r2k

q and radius Rk “
2rk

1´r2k
. It is easy to show that the points from B do

not satisfy the Blaschke condition for the upper half plane. Indeed,

8
ÿ

k“0

22k´1
ÿ

`“0

βk`
1` |ak`|2

“

8
ÿ

k“0

22k´1
ÿ

`“0

1´ r2
k

2p1` r2
kq
“

8
ÿ

k“0

22k

22k ` 2´2k
“ 8. (2.26)
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2.3.3 Multiresolution in the Hardy space of the the upper half
plane

Using the lattice B we introduce an adapted multiresolution in the space H2pC`q.
Definition 2. A sequence tV 1j , j P Nu of subspaces of H2pC`q is called a multireso-

lution in H2pC`q if the following conditions hold:
1. (nested) V 1j Ă V 1j`1,

2. (density) YV 1j “ H2pC`q,
3. (analogue of dilatation) pTUpr1,1q´1T´1qV 1n Ă V 1n`1,
4. (basis) There exist Ψn,` (orthonormal) bases in V 1n.
In order to construct a multiresolution in H2pC`q let us consider the function φ “
1?

πpz`iq
and let consider V 10 “ tcφ, c P Cu. Let us consider the nonorthogonal hyper-

bolic wavelets at the n-th level, the localized Cauchy kernels for the upper half plane
corresponding to the set Ynk“1Bk:

φk`pzq “

c

βk`
π

1

z ´ ak`
k “ 0, ¨ ¨ ¨ , n, ` “ 0, 1, ¨ ¨ ¨ , 22k

´ 1,

and let us define the n-th resolution level by

V 1n “ tf : DÑ C, fpzq “
n
ÿ

k“0

22k´1
ÿ

`“0

ck`φk`, ck` P C u.

The closed subset V 1n is spanned by

tφk`, ` “ 0, 1, ¨ ¨ ¨ ., 22k
´ 1, k “ 0, ¨ ¨ ¨ , nu.

In this way we have obtained a sequence of closed, nested subspaces of H2pC`q for z P C`,

V 10 Ă V 11 Ă V 12 Ă ¨ ¨ ¨V
1
n Ă ¨ ¨ ¨ H

2
pC`q.

The elements of B are different complex numbers, consequently the corresponding
finite subset of localized Cauchy kernels

"

1

z ´ ak`
, ` “ 0, 1, ¨ ¨ ¨ 22k

´ 1, k “ 0, 1, ¨ ¨ ¨ , n.

*

are linearly independent and they form a nonorthogonal basis in V 1n. Applying the Gram-
Schmidt orthogonalization for this set of analytic linearly independent functions we obtain
the Malmquist -Takenaka system corresponding to upper half plane and the set Ynk“0Bk:

Ψm`pzq “

c

βm`
π

1

z ´ am`

m´1
ź

k“0

22k´1
ź

j“0

z ´ akj
z ´ akj

`´1
ź

j1“0

z ´ amj1

z ´ amj1
,
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pm “ 0, 1, ¨ ¨ ¨ , n, ` “ 0, 1, ¨ ¨ ¨ , 22m
´ 1q.

From the Gram-Schmidt orthogonalization process it follows that

V 1n “ spantΨk`, ` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, ¨ ¨ ¨ , nu.

From (2.26) it follows that the Malmquist–Takenaka system corresponding to the set
B is a complete orthonormal system in H2pC`q.

From the completeness of the system tΨk`, ` “ 0, 1, ¨ ¨ ¨ , 22k ´ 1, k “ 0,8u in the
Hilbert space H2pC`q, it follows that this system is also a closed system, consequently
the density property it is valid in norm, i.e.,

ď

nPN

V 1n “ H2
pC`q.

From the previous section we have seen that the multiresolution in the Hardy space
of the unit disc is defined by a single function ϕ “ 1 and the analogue of the dilatation
and translation as follows

Vn “ spantϕk`, ` “ 0, 1, ¨ ¨ ¨ , 22k
´ 1, k “ 0, ¨ ¨ ¨ , nu,

where

ϕn`pzq “

a

p1´ r2
nq

p1´ zn`zq
“ pUpzn`,1q´1ϕqpzq “ pUprn,1q´1ϕqpeipt´

2π`
22n

q
q, ` “ 0, 1, ¨ ¨ ¨ , 22n

´ 1.

We observe that taking the image of ϕn,` through the Cayley function

T pϕn,`qpωq “
1

?
πpi` ωq

a

1´ r2
n

1´ zn,`
i´ω
i`ω

“

c

βn,`
π

ipi` an,`q
?

2|i` an,`|

1

ω ´ an,`
“ Bk,`φn,`pωq,

where Bk` “
ipi`an,`q?
2|i`an,`|

is a constant. From this we get that V 1n “ T pVnq. We have seen

that if a function f P Vn, then Upr1,1q´1f P Vn`1, because

Upr1,1q´1pϕk,`qpe
it
q “ Upr1,1q´1rpUprk,1q´1ϕqspeipt´

2π`

22k
q
q “

rpUprk`1,1q
´1ϕqspe

ipt´ 2π4`

22pk`1q q P Vn`1, k “ 1, ¨ ¨ ¨ , n, ` “ 1, ¨ ¨ ¨ , 22k
´ 1.

Consequently we have that
TUpr1,1q´1T´1V 1n Ă V 1n`1.

The wavelet space W 1
n is the orthogonal complement of V 1n in V 1n`1. Analogously as in

the previous section it can be proved that

W 1
n “ spantΨn`1`, ` “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1u.
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For an arbitrary fpzq “
řn
k“0

ř22k´1
`“0 ck,`φk` P V

1
n using the Cauchy formula for the upper

half plane we obtain that

xΨn`1j, fy “
n
ÿ

k“1

22k´1
ÿ

`“0

ck,`xΨn`1j, φk,`y “

n
ÿ

k“1

22k´1
ÿ

`“0

ck,`

c

βk`
π

2πiΨn`1`pzk`q “ 0, j “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1.

Consequently,
xf,Ψn`1,jy “ 0, f P V 1n

which implies that
Ψn`1,j K V 1n, pj “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1q.

From
V 1n`1 “ V 1n

à

spantφn`1j, j “ 0, 1, ¨ ¨ ¨ , 22n`2
´ 1u

it follows that W 1
n is an 22pn`1q dimensional space and

W 1
n “ spantΨn`1`, ` “ 0, 1, ¨ ¨ ¨ , 22n`2

´ 1u.

2.3.4 The projection operator corresponding to the n-th resolu-
tion level

Let us consider the orthogonal projection operator of an arbitrary function f P H2pC`q
on the subspace V 1n given by

P 1nfpzq “
n
ÿ

k“0

22k´1
ÿ

`“0

xf,Ψk`yΨk`pzq.

This operator is called the projection of f at resolution level n.

Theorem 2.3.1 (Feichtinger, Pap [67]). For f P H2pC`q the projection operator P 1nf
is an interpolation operator at the points

amj pj “ 0, ¨ ¨ ¨ , 22m
´ 1, m “ 0, ¨ ¨ ¨ , nq.

In [67] it has been shown that the projection P 1nf is also the solution of a minimal
norm interpolation problem and

}f ´ P 1nf}H2pC`q Ñ 0, nÑ 8.
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The computation of the wavelet coefficients in the wavelet basis tΨk`, ` “ 0, 1, ¨ ¨ ¨ , 22k´

1, k “ 0, ¨ ¨ ¨ , nu and of the best approximant P 1nf can be made similarly as in the case
of the unit disc presented in the previous section (see Pap, Feichtinger [67]). Based on
the the results of Eisner, Pap obtained in [59] it can be proved the discrete orthogonality
of the obtained wavelet system (see [60]). It has been proved also that it is possible to
construct wavelets using the reproducing kernels of the multiresolution levels.

In [38] Coifman and Peyriére in the same spirit as the studies of hyperbolic wavelets
presented here considered orthogonal decompositions of invariant subspaces of Hardy
spaces, these relate to the Blaschke based phase unwinding decompositions. They proved
convergence in Lp. In particular they build an explicit multiscale wavelet basis. They also
discuss the relation to various generalizations of the Takenaka–Malmquist bases, both for
the torus and the upper half plane. In particular they show that there is a multiscale
analysis of H2pRq, and that, at each level, there is a function whose translates make an
orthonormal basis. The main difference is that they use different grids, which allows to
get a formalism very close to wavelets.

Soumelidis in [149] developed a new idea to find the poles of a linear dynamical system
without using further assumptions on system structure. He used the hyperbolic wavelet
transform. It has been shown that the Laguerre representations play significant role in
this theory, as the wavelets generated by them can analytically be expressed, hence special
attention was paid to them hereafter.

2.4 Connection between the hyperbolic wavelet trans-

form and Zernike polynomials. Applications

Zernike functions play an important role in expressing the wavefront data in optical
tests. In what follows we will present the relation between the Zernike functions and the
hyperbolic wavelet transform. More exactly the matrix elements of the representation
representation U of the Blaschke group on the Hardy space of the unit disc given by (2.3)
can be expressed by the Zernike functions. An important consequence of this connection
is the addition formula for Zernike functions. In this section we present these results
published in [123] by Pap, Schipp and in the survey paper by Pap [129]. We also include
the discrete orthogonality of Zernike functions published in [121] by Pap, Schipp and
connections with corneal topography.

2.4.1 The Zernike polynomials

The orthogonal system of Zernike functions was introduced by Fritz Zernike (a Dutch
physicist, winner of the Nobel prize for Physics) in [185] to model symmetries and aber-
rations of optical systems (e.g., telescopes). Zernike polynomials are used to express
wavefront data in optical tests, since they are made up of terms that are of the same

47

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



form as the types of abberations often observed. The first order wavefront abberations
coefficients can be obtained as the coefficients of the Zernike polynomials expansion of
the wavefront, and they are called Zernike moments of the wavefront.

There exist an infinity of complete sets of polynomials in two real variables x, y which
are orthogonal regarding to the area measure of the unit disc. The circle polynomials of
Zernike are distinguished from the other sets by their invariance with respect to rotations
of axes about origin. A pure mathematical point of view, is better to consider the complex
Zernike polynomials in polar coordinates given by

Z`
npρ, θq :“

a

2n` |`| ` 1R
|`|
|`|`2npρqe

i`θ, ` P Z, n P N. (2.27)

The radial terms R
|`|
|`|`2npρq are related to the Jacobi polynomials in the following way:

R
|`|
|`|`2npρq “ ρ|`|P p0,|`|qn p2ρ2

´ 1q.

The orthogonality relation for radial terms and complex Zernike polynomials are given
by:

ż 1

0

R
|`|
|`|`2npρqR

|`|
|`|`2n1pρqρdρ “

1

2p|`| ` 2n` 1q
δnn1 , (2.28)

1

π

ż 2π

0

ż 1

0

Z`
npρ, φqZ

`1
n1pρ, φqρdρdφ “ δnn1δ``1 . (2.29)

To compute the wave-front data the real and imaginary part of the complex Zernike
functions are used, see for example in [173]. For our purpose we prefer the complex
Zernike functions, because the addition formula and the discrete orthogonality of this
function can be proved using this form. This is similar to the real and complex trigono-
metric system: we can take the real trigonometric system t1, cosnx, sinnx, n P N˚u or the
complex trigonometric system teinx “ cosnx ` i sinnx, n P Zu. In the complex form we
can view them as the characters of the group pR,`q. The addition formula for the trigono-
metric functions is a consequence of the properties of the characters einpx`yq “ einxeiny.
Also the discrete orthogonality of the complex trigonometric system, the base of the dis-
crete Fourier transform, is a consequence of the properties of the complex roots of the
unity. We will see that something similar happens in the case of the complex Zernike
polynomials too.

2.4.2 The matrix elements of the representation of the Blaschke
group

The matrix elements of the representation U with respect to the basis tεn : n P Nu are
by definition vmnpa

´1q :“ xεn, Ua´1εmy. They can be expressed using the trigonometric
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system εnpϕq :“ einϕ pn P Z, ϕ P I “ r´π, πsq and the associated Legendre polynomials
given by

P `
npxq :“

x´`

n!
rp1´ xqnxn``spnq, P´`n pxq :“ p´1q`P `

npxq px P r0, 1s, n, ` P Nq,

which are orthogonal on r0, 1s with respect to the weight function x` for a fix `:

ż 1

0

P `
mpxqP

`
npxqx

` dx “ δmn
1

2n` |`| ` 1
pn,m P N, ` P Zq.

For a “ preiϕ, eiψq we have

vmnpa
´1
q :“ xεn, Ua´1εmy “

“
e´ipm`1{2qψ

?
1´ r2

2π

ż π

´π

pe´it ´ re´iϕqm

p1´ reip´t`ϕqqm`1
eint dt.

Performing the change of variables t “ s` ϕ, we obtain that

vmnpa
´1
q “

e´ipm`1{2qψeipn´mqϕ
?

1´ r2

2π

ż π

´π

einspe´is ´ rqm

p1´ re´isqm`1
dt “

“
?

1´ r2e´ipm`1{2qψeipn´mqϕαmnprq,

where

αmnprq :“
1

2π

ż π

´π

pe´is ´ rqm

p1´ re´isqm`1
eins ds “

1

2π

ż π

´π

p1´ reisqm

peis ´ rqm`1
eipn`1qs ds.

In this last integral performing the change of variables ζ “ eis and applying the Cauchy
integral formula we get that

αmnprq :“
1

2πi

ż

T

p1´ rζqm

pζ ´ rqm`1
ζn dζ “

“
r´n

m!

dm

dzm
rp1´ rzqmprzqnsz“r “

r´n`m

m!

dm

dxm
rp1´ xqmxnsx“r2 .

If n ě m let us denote n “ m ` `, then αmnprq can be expressed by the associated
Legendre polynomials, namely:

αmnprq “ P `
mpr

2
q “ p´1qmr`P p0,`qm p2r2

´ 1q.

Consequently,

vmnpa
´1
q “

?
1´ r2e´ipm`1{2qψeipn´mqϕp´1qmr`P p0,`qm p2r2

´ 1q “
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“

?
1´ r2

?
m` n` 1

e´ipm`1{2qψ
p´1qmZn´m

m pr, ϕq,

where Zn´m
m pr, ϕq are the complex Zernike polynomials. If n ă m, then

vmnpa
´1
q :“ xεn, Ua´1εmy “ xUaεn, εmy “ xεm, Uaεny “ vnmpaq “

“

?
1´ r2

?
m` n` 1

e´ipm`1{2qψ
p´1qmZm´n

n pr, ϕq.

Analyzing these two cases we have that the matrix elements of the representation U are
given by the following formula:

vmnpa
´1
q “

?
1´ r2

?
m` n` 1

e´ipm`1{2qψ
p´1qmZ

|m´n|
mintn,mupr, ϕq.

It is known that in general the matrix elements of any representation satisfy the following
so called addition formula:

vmnpa1 ˝ a2q “
ÿ

k

vmkpa1qvknpa2q pa1, a2 P Bq.

From this relation we obtain the following addition formula for Zernike functions:

?
1´ r2

a

pn`m` 1qp1´ r2
1qp1´ r

2
2q
e´ipm`1{2qψZ

|n´m|
mintm,nupr, ϕq “

ÿ

k

p´1qke´ipm`1{2qψ1e´ipk`1{2qψ2

a

pm` k ` 1qpn` k ` 1q
Z
|k´m|
mintm,kupr1, ϕ1qZ

|n´k|
mintk,nupr2, ϕ2q,

where aj :“ prje
iϕj , eiψjq, j P t1, 2u and a :“ preiϕ, eiψq “ a1 ˝ a2.

It is not as simple like the addition formula for the trigonometric system, but we
can discover the analogies replacing the group pR,`q by the Blaschke group pB, ˝q, the
characters by the representation U , the addition formula is a consequence of the properties
of the representation.

Starting from the Zernike functions and considering the congruence transformations
on the Poincare or Cayley-Klein models, in [108] Lócsi and Schipp constracted a more
general orthonormal system on the disc, the so called rational Zernike functions. In the
construction it is used the representation Ua (2.3).

2.4.3 Discrete orthogonality of complex Zernike functions

Although the approximation of Zernike coefficients An` “
1
π

ş2π

0

ş1

0
fpρ, φqZ`

npρ, φqρdρdφ
of the wave front function f were obtained from measurements at discrete corneal points
and via discrete computations, the developers of the corneal measurement devices and
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shape-evaluation programs could not rely on the discrete of Zernike functions before it
was not proved. Not surprisingly, the discrete orthogonality of Zernike functions was
a target of research for some time. See for example the question formulated by Wyant,
Creath in [173]. In this subsection we prove the discrete orthogonality of Zernike functions.
This result was published in [121] by Pap, Schipp.

Let us consider the set of complex Zernike functions of degree less then 2N .

tZ`
npρ, θq :“

a

2n` |`| ` 1R
|`|
|`|`2npρqe

i`θ, ` P Z, n P N, |`| ` 2n ă 2Nu.

This set contains Np2N ` 1q linearly independent two variables complex valued polyno-
mials of degree less than 2N .

Pap, Schipp in [121] introduced a set of points in the unit disc and correspondingly a
discrete measure and proved that regarding to the discrete measure the complex Zernike
functions of degree less than 2N are discrete orthogonal. In order to present this property
we need the following notations and quadrature formula.

Let us denote by λNk P p´1, 1q, k P t1, ..., Nu the roots of Legendre polynomials PN of
order N , and for j “ 1, ..., N, let

`Nj pxq :“
px´ λN1 q...px´ λ

N
j´1qpx´ λ

N
j`1q...px´ λ

N
Nq

pλNj ´ λ
N
1 q...pλ

N
j ´ λ

N
j´1qpλ

N
j ´ λ

N
j`1q...pλ

N
j ´ λ

N
Nq
,

be the corresponding fundamental polynomials of Lagrange interpolation. Denote by

ANk :“

ż 1

´1

`Nk pxqdx, p1 ď k ď Nq

the corresponding Cristoffel-numbers. Then for every polynomial f of order less then 2N
the following quadrature formula holds (see Szegő [162])

ż 1

´1

fpxqdx “
N
ÿ

k“1

fpλNk qANk .

In order to prove the discrete orthogonality of Zernike functions let us define the
following numbers with the help of the roots of Legendre polynomials of order N ,

ρNk :“

c

1` λNk
2

, k “ 1, N.

Let us consider the set of nodal points in the unit circle on which the discrete orthogonality
holds:

X :“

"

zjk :“

ˆ

ρNk ,
2πj

4N ` 1

˙

, k “ 1, N, j “ 0, 4N

*

, (2.30)
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and let us define a weight correspondingly to each nodal point:

νpzjkq :“
ANk

2p4N ` 1q
.

On the set of nodal points X let us consider the following discrete integral:

ż

X

fpρ, φqdνN :“
N
ÿ

k“1

4N
ÿ

j“0

f

ˆ

ρNk ,
2πj

4N ` 1

˙

ANk
2p4N ` 1q

. (2.31)

Theorem 2.4.1 (Pap, Schipp [121]). The Zernike functions with order less then 2N
are discrete orthogonal regarding to the discrete scalar product induced by the discrete
measure, i.e.,

ż

X

Zm
n pρ, φqZ

m1
n1 pρ, φqdνN “ δnn1δmm1 ,

if n` n1 ` |m| ď 2N ´ 1,n` n1 ` |m1| ď 2N ´ 1, n, n1 P N, m,m1 P Z.

Proof. Writing explicitly the orthogonality of the radial terms we get

1

2p2n` |m| ` 1q
δnn1 “

ż 1

0

R
|m|
2n`|m|pρqR

|m|
2n1`|m|pρqρdρ “

ż 1

0

ρ2|m|P p0,|m|qn p2ρ2
´ 1qP

p0,|m|q
n1 p2ρ2

´ 1qρdρ.

If in this last integral we perform the change of variables u :“ 2ρ2´ 1, then we obtain
the following:

1

2p2n` |m| ` 1q
δnn1 “

1

4

ż 1

´1

ˆ

1` u

2

˙|m|

P p0,|m|qn puqP
p0,|m|q
n1 puqdu.

Let us denote by fpρq :“
`

1`u
2

˘|m|
P
p0,|m|q
n puqP

p0,|m|q
n1 puq and ρNk :“

b

1`λNk
2
, k “ 1, N .

Then the order of f is n ` n1 ` |m|. We observe that Z0
Npρ

N
k , φq “ P

p0,0q
N p2pρNk q

2 ´ 1q “
PNpλ

N
k q “ 0. If n ` n1 ` |m| ď 2N ´ 1, then it can be applied the quadrature formula

presented before:

1

2p2n` |m| ` 1q
δnn1 “

ż 1

0

R
|m|
2n`|m|pρqR

|m|
2n1`|m|pρqρdρ “

1

4

N
ÿ

k“1

fpλNk qANk “

“
1

4

n
ÿ

k“1

ANk R
|m|
2n`|m|pρ

N
k qR

|m|
2n1`|m|pρ

N
k q.
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We obtain that

ż

X

Zm
n pρ, φqZ

m1
n1 pρ, φqdνN “

N
ÿ

k“1

4N
ÿ

j“0

Zm
n pρ

N
k ,

2πj

4N ` 1
qZm1

n1 pρ
N
k ,

2πj

4N ` 1
q
ANk

2p4N ` 1q
“

a

2n` |m| ` 1
a

2n1 ` |m1| ` 1

2p4N ` 1q

N
ÿ

k“1

ANk R
|m|
2n`|m|pρ

N
k qR

|m|
2n1`|m|pρ

N
k q

4N
ÿ

j“0

eipm´m
1q

2πj
4N`1 .

If m ‰ m1, the first sum it is equal to 0, and if m “ m1, then it is equal to 4N ` 1.
Consequently

ż

X

Zm
n pρ, φqZ

m1
n1 pρ, φqdνN “

δmm1

a

2n` |m| ` 1
a

2n1 ` |m| ` 1

2

N
ÿ

k“1

ANk R
|m|
2n`|m|pρ

N
k qR

|m|
2n1`|m|pρ

N
k q “

δmm12
a

2n` |m| ` 1
a

2n1 ` |m| ` 1

ż 1

0

R
|m|
2n`|m|pρqR

|m|
2n1`|m|pρqρdρ “ δmm1δnn1 .

Theorem 2.4.2 (Pap, Schipp [121]). For all f P CpDq,

lim
NÑ8

ż

X

fdνN “
1

π

ż 2π

0

ż 1

0

fpρ, φqρdρdφ.

Proof. This theorem is a consequence of the Banach-Steinhaus theorem. Let us de-
note by CpDq the set of continuous functions on the closure of the unit disc and introduce

the bounded linear functionals ANpfq “
ş

X
fdνN , Apfq “ 1

π

ş2π

0

ş1

0
fpρ, φq ρ dρ dφ. We will

check that all conditions of the Banach-Steinhaus theorem are satisfied for the functionals
AN : CpDq Ñ C and A : CpDq Ñ C. Let us denote by Z the set of all Zernike circle
polynomials. It can be proved that Z is a dense subset of CpDq on the base of Stone-
Weierstrass theorem, because of the points of CpDq are separated by the functions in Z.
Namely, if pρ, φq ‰ pρ1, φ1q, ρ, ρ1 P r0, 1s, φ, φ1 P r0, 2φs, then Z1

0pρ, φq ‰ Z1
0pρ

1, φ1q. As we
have mentioned in introduction, the product of two Zernike functions can be expressed
as a finite linear combination of Zernike functions. From [Szegő [162] pp. 48 (3.4.5)] it
follows that AN is a bounded linear operator, namely

||AN || “
N
ÿ

k“1

4N
ÿ

j“0

|ANk |
2p4N ` 1q

“

N
ÿ

k“1

|ANk |
2

“ 1 ă 8.

From the orthonormality property it follows that for all z “ Zm
n P Z and for all N so that

2n ` |m| ă 2N ´ 1 we have ANpzq ´ Apzq “ 0, consequently limNÑ8 |ANpzq ´ Apzq| “
0, z P Z. Applying the Banach-Stainhaus theorem we get that

|ANpfq ´ Apfq| Ñ 0, for all f P CpDq, N Ñ 8.

53

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



In fact this theorem means that the limit of the p0, 0q´th discrete Zernike coefficient is
equal by the p0, 0q´th continuous Zernike coefficient. In an analogous way can be proved
that in general the discrete Zernike coefficients of the function f from CpDq tend to the
corresponding continuous Zernike coefficients. Based on this theoretical results it can be
given a very efficient approximation algorithm for the Zernike moments, which has not
only good convergence properties, but in some cases gives the exact values of them.

2.4.4 Zernike moments, applications

The purpose of a cornea topographic examination is to determine and display the
shape and the optical power of the living cornea. Due to the high refractive power of the
human cornea, the knowledge of its detailed topography is of great diagnostic importance.
The corneal surface can be modeled as a surface over the unit disk and can be described
by a two variable function gpx, yq. The application of the polar transform to variables x
and y results in x “ ρ cosφ, y “ ρ cosφ, where ρ P r0, 1s and φ P r0, 2φs are the radial and
azimuthal variables over the unit disc. Using the polar coordinates for the description of
the corneal surface we have the function Gpρ, φq “ gpρ cosφ, ρ cosφq. Nowadays, the oph-
thalmologists are quite familiar with the ”smoothly waving” Zernike-surfaces. They use
these surfaces to characterize various symmetries and aberrations of an optical system:
those of human eyes. In case of corneal topography, the symmetries and the aberra-
tions of the corneal surfaces are examined with and computationally reconstructed by
corneal topographer devices. In case of wavefront analysis, the optical features of the
eye-ball is measured with a Shack-Hartmann wavefront-sensor. These characterizations
are given partly in the form of Zernike coefficients. As the optical aberrations may cause
serious accuracy problems, and are significant factors to be considered in planning of
sight-correcting operations, wide range of statistical data concerning the eyes of various
groups of people is available concerning the most important Zernike coefficients. This is
the reason why elaboration of measurement patterns are important. Although, Zernike
coefficients were obtained from measurements at discrete corneal points and via discrete
computations, the developers of the corneal measurement devices and shape-evaluation
programs could not rely on the discrete orthogonality before the discrete orthogonality of
Zernike functions was not proved. Not surprisingly, the discrete orthogonality of Zernike
functions was a target of research for some time. The meshes of points ensuring discrete
orthogonality of the Zernike functions presented in the previous subsection where used
to calculate the Zernike-based representations and their precisions for some test surfaces,
including three ”cornea-like” test surfaces, as well. These results were published and
analyzed by Soumelidis, Fazekas, Schipp, Pap in [155, 156, 157]. Experimental results
were reported concerning the precision of the Zernike-based surface representation over
the unit disk. The test surfaces considered herein include centrally positioned and shifted
cones, pyramids, and some cornea-like surfaces. With these spatial points as input points,
discrete Zernike transformation was carried out. The resulting Zernike coefficients were
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then used to geometrically reconstruction of the optically smooth corneal surface. Then,
the error-surfaces were compared to the ones resulting from the Zernike-based reconstruc-
tions of a cornea-like mathematical surface that had been properly fitted to the input
data.

The numerical computations, reconstructions and experiments are based on the ap-
proximation of the continuous Zernike moments of the corneal surface G. This is a
consequence of Theorem 2.4.2, which implies that the continuous moments

Amn “
1

π

ż 2π

0

ż 1

0

Gpρ1, φ1qZm
n pρ

1, φ1qρ1dρ1dφ1

are the limit of the discrete Zernike moments, computed based on the measurements on
the set X of the discretization defined by (2.30):

A1mn “

ż

X

Gpρ1, φ1qZm
n pρ

1, φ1qdνNpρ
1, φ1q.

If instead of Gpρ, φq we take

TNpρ, φq “
ÿ

2n`|m|ő2N´1

AmnZ
m
n pρ, φq,

an arbitrary linear combination of Zernike polynomials of degree less than 2N , then using
the discrete orthogonality and the continuous orthogonality property we obtain that the
coefficients Amn can be expressed exactly by the discrete Zernike coeffitients:

Amn “
1

π

ż 2π

0

ż 1

0

TNpρ
1, φ1qZm

n pρ
1, φ1qρ1dρ1dφ1,

Amn “

ż

X

TNpρ
1, φ1qZm

n pρ
1, φ1qdνNpρ

1, φ1q.

This means that we can determine the exact value of the Zernike coefficients (moments)
of TN if we can measure the values of TN on the points of the set X. This means that
with the construction of the set X we give an answer to the question where the Placido
ring system is worth situated.

In this case we can reconstruct TN exactly if we measure its values on the discretization
mash X:

TNpρ, φq “
ÿ

2n`|m|ő2N´1

1

π

ż 2π

0

ż 1

0

TNpρ
1, φ1qZm

n pρ
1, φ1qρ1dρ1dφ1Zm

n pρ, φq “

1

π

ż 2π

0

ż 1

0

TNpρ
1, φ1q

ÿ

2n`|m|ő2N´1

Zm
n pρ

1, φ1qZm
n pρ, φqρ

1dρ1dφ1
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and

TNpρ, φq “
ÿ

2n`|m|ő2N´1

ż

X

TNpρ
1, φ1qZm

n pρ
1, φ1qdνNpρ

1, φ1qZm
n pρ, φq “

ż

X

TNpρ
1, φ1q

ÿ

2n`|m|ő2N´1

Zm
n pρ

1, φ1qZm
n pρ, φqdνNpρ

1, φ1q.

Navarro and Arines in [114] studied three different aspects of complete modal rep-
resentation with discrete Zernike polynomials, critical sampling in non redundant grids,
including also the greed (2.30) where the discrete orthogonality holds. They concluded
that the type of sampling pattern has decisive influence on the quality of the reconstruc-
tions. For instance, orthogonal discrete ZPs are efficient for wavefront fitting. They
formulated that there are three different problems that one has to face when implement-
ing practical applications (either numerical or experimental): (1) Lack of completeness
of ZPs; (2) Lack of orthogonality of ZPs and (3) Lack of orthogonality of ZP derivatives.
To overcome these limitations, the general standard procedure is to apply a strong over-
sampling (redundancy) and reconstruct the wavefront by standard least squares fit. The
advantage of a strong redundancy is to minimize the reconstruction noise, but it has two
main disadvantages. When one reconstructs fewer modes than measures, then there is a
high probability of having cross coupling and aliasing in the modal wavefront estimation .
They studied these three problems and provide practical solutions, which are tested and
validated through realistic numerical simulations.

In [28] Carnicer and Godes analyzed the interpolation problem arising in critical sam-
pling, that is, using a minimal sample. The interpolant is expressed as a linear combina-
tion of Zernike polynomials, whose coefficients represent relevant optical features of the
wavefront. They studied the propagation of errors of the polynomial values and their
coefficients, obtaining bounds for the Lebesgue constants and condition numbers. They
proposed a node distribution leading to low Lebesgue constants and condition numbers
for degrees up to 20 is proposed. The weights of the quadrature rule can be determined by
imposing exactness for polynomials up to a given degree. The exactness condition leads
to a linear system. Unfortunately, the solutions of the linear system need not be posi-
tive. Only well distributed points in the circle will lead to nonnegative sets of weights.
They concluded that if the nodes have a particular distribution, for example it is the
set of nodes (2.30), proposed by us, it is possible to obtain samples leading to good
approximation properties. If N ě p3n ` 1q{2, then all polynomials of degree n can be
reconstructed from the corresponding discrete data by a formula based on the discrete
orthogonality of the Zernike polynomials on the given set of nodes and convergence of
the estimates of the coefficients can be ensured if N Ñ 8. They remark that in this
case the number of samples is at least about 18 times the dimension of the space of
polynomials pn ` 1qpn ` 2q{2. Another choice with about n2 points on the unit disk is
rl,j “ cospl{nq, θl,j “ jπ{pn ` 1q, l “ 0, ..., n, j “ 0, ..., n and good approximation proper-
ties has been proposed. Critical sampling, that is, using a minimal number of samples
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#I “ pn` 1qpn` 2q{2, has been recently proposed. A reason for proposing critical sam-
pling is that measuring too many data of a wavefront can be expensive. A critical sample
allows to reduce the least squares problem to a polynomial interpolation problem. If the
solution exists and is unique, it is independent of the choice of the weights. They pose
the polynomial interpolation problem corresponding to critical sampling and analyze the
stability of the solution and the propagation of errors through the introduction of con-
dition numbers and Lebesgue constants. They obtain bounds for the condition of the
Zernike basis and apply these bounds to relate the condition number of the problem of
finding the Zernike coefficients in terms of the data with the Lebesgue constant of the
interpolation problem. They also propose a choice of the nodes leading to low Lebesgue
constants and low condition numbers. The choice of the nodes is given explicitly by a
formula. They compare their results with choices suggested by the previous other au-
thors. They obtained also the Lebesgue constant for the sample (2.30) proposed by us
and weights associated to the discrete orthogonality formula. Finally they compare the
values of the Lebesgue constants for different choices. Oversampling tends to reduce the
Lebesgue constant. However, using too many data may lead to an increasing computa-
tional cost without a significative reduction of the Lebesgue constant. The advantage of
sample (2.30) is that it is associated to a discrete orthogonality formula, giving rise to an
explicit formula for the approximations to the Zernike coefficients.

Shi, Sui, Liu, Peng, and Yang in [146] studied the mathematical construction and per-
turbation analysis of Zernike discrete orthogonal points (2.30). As they formulated the
Zernike polynomials are discrete orthogonal over the constructed set (2.30) mathemati-
cally, which can be used to deal with the engineering problems. But we not analyzed the
locating tolerance of sampling points, since the actual sampling points will not coincide
with the ideal ones exactly in practice. They studied the locating errors by perturbation
analysis, and the requirements of the positioning precision are not very strict. Using
computer simulations they show that this approach provides a very accurate wavefront
reconstruction with the proposed sampling set.

Gray in [85] investigated the field dependence of the aberration functions of rotation-
ally nonsymmetric optical imaging systems. He pointed out that our result published
in [121] refers to complex number form of the Zernike polynomials and a finite set of
complex number on which the Zernike polynomials are orthogonal over a finite set of
discrete points across a unit radius disk. In Appendix III of [85] he provides a derivation
of the discrete orthogonality properties and equations for the real number form of the
Zernike polynomials used in this dissertation. The results were used as part of a Gaussian
quadrature (GQ) method for obtaining the Zernike expansion coefficients of the wavefront
aberration function expansion.

With the our result from [121] it is possible to select a finite number of data points
over the unit radius disk such that all the Zernike functions of order max n or less remain
orthogonal over these discrete data points, provided that the functions data values can be
exactly represented by a sum of Zernike polynomials of order less than or equal to max n
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. The number of data points needed is dependent on the maximum radial order max n of
the Zernike polynomials needed to exactly define the function over the unit radius disk.
One drawback to this result is that the value of max n that exactly defines the function of
interest over the disk is not in general known. With the discrete sampling and finite subset
of the Zernike polynomials, including the next higher order Zernike polynomial will change
all the lower order coefficients. However, the change is of the order of the coefficient of the
next highest order Zernike polynomial included. Then, assuming the function converges
for low values of max n, only a small number of Zernike polynomials need to be considered
for an acceptable approximation of the function expressed as an expansion in low order
Zernike polynomials. Another potential drawback is that the highest order Zernike needed
to accurately represent the function (to expand a given function) may be so large that the
number of data points across the unit disk is too large to be practicable. Additionally,
the higher the value of max n the more concern there is for the numeric accuracy of the
calculated Zernike polynomial values. On the other hand, a significant advantage of our
method from [121] is that there is no data fitting operation involved. The coefficients are
calculated directly from the equations by use of the Gaussian Quadrature (GQ) technique.
Gray in [85], using our result and incorporating an improvement pointed out by Shi, et al.
[146], derived for the real number Zernike form polynomials. Therefore, this derivation, in
terms of real number Zernike polynomials, was necessary in order to obtain the equations
needed for his research.

Kaye, Personen in [96] developed novel MRI tools for visualization of the focal spot
and for adaptive focusing of ultrasound. In this work, it is shown how using Zernike poly-
nomials, actively utilized in optics, can increase the efficiency of MR-ARFI-based adaptive
focusing, making it a more suitable technique for clinical applications. They construct
a simulation of non-iterative adaptive focusing algorithm based on Zernike Polynomials.
Discrete Zernike polynomials were calculated using the Matlab Zernike function (zern-
fun.m) (P. Fricker, MATLAB Central File Exchange, 2005) The novel adaptive algorithm
was sampled at the px, yq, taking in consideration also the discrete sampling (2.31) pro-
posed by us.
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Chapter 3

Hyperbolic wavelet transform,
atomic decomposition and
multiresolution in weighted Bergman
spaces

In this chapter we consider the case m “ α ` 2, when formula (2.1) defines a repre-
sentation of the Blaschke group on the weighted Bergman space. The properties of the
continuous voice transforms generated by representations (2.1) were studied in [125, 127].
Analyzing the question of discretization of these voice transforms it turned out that dif-
ferent techniques are required. In the first chapter we presented a short summary of the
theory introduced by Feichtinger and Gröchenig, the so called unified approach to atomic
decomposition through integrable group representations in Banach spaces. For certain
weighted Bergman spaces, both square integrability and integrability conditions are sat-
isfied . Consequently, it can be applied the Feichtinger-Gröchenig theory, and in this way
we can be obtained new atomic decomposition results is certain weighted Bergman spaces
(see Pap [127]). In the unweighted case and also in some weighted Bergman spaces the
Feichtinger-Gröchenig theory cannot be applied, because the integrability condition is not
satisfied. In this case it is shown that, analogously to the case of the Hardy spaces, it is
possible to construct a multiresolution and analytic wavelets in weighted Bergman spaces
(see Pap [128, 133]).
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3.1 The representation of the Blaschke group on the

weighted Bergman space A2
α

In [125], [124] the voice transform induced by a representation of the Blaschke group on
the weighted Bergman spaces was studied. Let us consider the following set of functions

Fapzq :“

a

εp1´ |b|2q

1´ b̄z
pa “ pb, εq P B, z P Dq.

For every power α (α ě 0q, Fa induces a unitary representation of Blaschke group on the
space A2

α. Namely, let define

Uα
a f :“ rFa´1s

α`2f ˝B´1
a pa P B, α ě 0, f P A2

αq. (3.1)

The representation (3.1) has the following explicit form

pUα
a´1fqpzq :“ ei

α`2
2
ψ p1´ |b|

2q
α`2
2

p1´ bzqα`2
f

ˆ

eiψ
z ´ b

1´ bz

˙

pa “ pb, eiψq P Bq.

Let us consider the scalar product in the weighted Bergman space

xf, gy “ xf, gyα :“

ż

D
fpzqgpzq dAαpzq. (3.2)

Theorem 3.1.1 (Pap [125]). For all α ě 0, Uα
a pa P Bq defined by (3.1) is a unitary

representation of the Blaschke group B on the weighted Bergman space A2
α.

For α P N in [125] Pap computed the matrix elements of the representation (3.1).
The computations follow the same line as in the case of the Hardy space presented in
the previous chapter. In this case the matrix elements can be expressed using the Jacobi
polynomials (see [125]).

Theorem 3.1.2 (Pap [125]). The representation Ua pa P Bq is irreducible on the weighted
Bergman space A2

α, (α ě 0).

3.2 Properties of the hyperbolic wavelet transform

induced by representation Uα
a

It is simpler to take the expression of the representation (3.1) for a´1 P B, correspond-
ingly it is easier to study the induced voice transform, the so called hyperbolic wavelet
transform in the weighted Bergman space in a´1 P B, pa “ pb, eiψq P B, f, ρ P A2

αq:

pVgfqpa
´1
q “ pVgfqp´bε, εq :“ xf, Uα

a´1gyα. (3.3)

60

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



Based on Theorem 3.1.1 and Theorem 3.1.2, the irreducibility and unitarity of the
representation, and the the general theory of the voice transform, we obtain the analogue
of the Plancherel formula for the hyperbolic wavelet transform defined by (3.3) and the
invertibility of this transform (see [94, 142]). In what follows we present these results and
we give a class of admissible elements.

Theorem 3.2.1 (Pap [125]). If pA2
αq
˚ denotes the set of admissible elements from A2

α,
then there is a symmetric positive bilinear map B : pA2

αq
˚ ˆ pA2

αq
˚ Ñ R such that

rVρ1f1, Vρ2f2s “ Bpρ1, ρ2qxf1, f2yα pf1, f2 P A
2
α, ρ1, ρ2 P pA

2
αq
˚
q, (3.4)

where

rF,Gs :“

ż

B
F paqGpaq dmpaq

and dmpaq is the Haar measure of the group B.

In unweighted case (α “ 0), Pap, Schipp in [124] gave a direct proof of this result,
from which it turns out that every ρ form the Bergman space is admissible and the voice
transform induced by Ua “ U2

a satisfies

rVρ1f, Vρ2gs “ 4πxρ1, ρ2y xf, gy pf, g, ρ1, ρ2 P A
2
0pDqq.

For the unweighted case (α “ 0) Pap, Schipp in [124] proved also the following two
admissible criteria:

Theorem 3.2.2 (Pap, Schipp [124]). Every ρn “ zn pn P Nq is admissible, namely:
ż

B
|Vρnρnpaq|

2dmpaq ă 8.

Theorem 3.2.3 (Pap, Schipp [124]). Every element ρ P H8pDq is admissible, namely:
ż

B
|Vρρpaq|

2dmpaq ă 8.

From the general theory (see [142], [94]) and Theorem 3.2.1 it follows that:

Theorem 3.2.4 (Pap [125]). The voice transform generated by representation Uα
a (a P B)

is one to one in A2
α.

The function Vρf is continuous and bounded on B. Theorem 3.2.1 implies that for
α ě 0 every element from A2

α is admissible. Moreover, taking in consideration that the
Blaschke group is unimodular Theorem 3.2.1 implies that for f, g P A2

α such that g ‰ 0
and Bpg, gq “ }Cg}2 “ 1 the following reproducing formula is valid:

Vgf “ Vgf ˚ Vgg, i.e., Vgfpy
´1
q “

ż

B
Vgfpx

´1
qVggpx ˝ y

´1
qdmpxq. (3.5)
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3.3 Construction of orthogonal rational wavelets in

the weighted Bergman spaces

In this section we give an orthogonal rational wavelet system for α ě 0,m “ α`2 P N,
and we show that the Bergman projection operator can be expressed with this system
and the voice transforms as it was shown in [124, 125]. Let us consider the shift operator

pSϕqpzq “ zϕpzq pϕ P A2
αq.

Denote by

ϕa,npzq :“

d

Γpn`mq

n!Γpmq
pUa´1Snϕqpzq

`

a “ pb, εq P B,m P N,m ě 2, ϕ P A2
α, n P N.

˘

If we consider as mother wavelet ϕ “ 1 P A2
α, then the corresponding rational wavelets

are :

ϕa,npzq “

d

Γpn`mq

n!Γpmq

rεp1´ |b|2qs
m
2

p1´ bzqm

ˆ

εpz ´ bq

1´ bz

˙n

, n P N.

Taking into account the unitarity of the representation Ua it follows that they form an
orthonormal system in A2

α, for every a P B.
We observe that if we consider the neutral element of the group a “ e “ p0, 1q P B,

then we reobtain the classical orthonormal basis in A2
α, namely

ϕnpzq “ ϕe,npzq “

d

Γpn`mq

n!Γpmq
zn, n P N.

Theorem 3.3.1 (Pap [125]). For all z P D and a P B, m “ α`2 ě 2, α P N the weighted
Bergman projection operator Pα : L2pD, dAαq Ñ A2

α can be represented as

Pαfpzq “
8
ÿ

n“0

Vϕnfpa
´1
qϕa,npzq pa P Bq.

Consequences.
1. Every f from A2

α can be represented as

fpzq “
8
ÿ

n“0

Vϕnfpa
´1
qϕa,npzq pa P B, z P Dq.

2. For every a P B for m “ α ` 2, α P N the functions

ϕa,npzq “

d

Γpn`mq

n!Γpmq

rεp1´ |b|2qs
m
2

p1´ bzqm

ˆ

εpz ´ bq

1´ bz

˙n

, pz P D, n P Nq
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form an orthonormal rational basis in A2
α.

3. We can deduce the following characterization of the poles. Let function f P A2
α.

Then f has n-tuple pole at 1
b

outside of the unit disc if and only if for a “ pb, εq P B,

Vϕnfpa
´1
q ‰ 0, and for all k, k ą n, Vϕkfpa

´1
q “ 0.

3.4 The hyperbolic wavelet transform on the weighted

Bergman spaces and the coorbit theory

We have already mentioned in the introduction that H. G. Feichtinger and K. H.
Gröchenig described a unified approach to atomic decomposition through integrable group
representations in Banach spaces generated by the voice transforms of certain groups.
They described a general discretization technique for the voice transforms induced by
irreducible, square integrable and integrable group representations, giving atomic decom-
positions for large families of Banach spaces, the so called coorbit spaces (see papers of
Feichtinger, Gröchenig [64, 66, 65, 89]).

Studying the properties of a hyperbolic wavelet transform of the Blaschke group gen-
erated by the representation of this group on the weighted Bergman space, outlined by
the general theory, developed by Feichtinger and Gröchenig, we obtain that every func-
tion from the minimal Möbius invariant space will generate an atomic decomposition in
the weighted Bergman spaces. These results were obtained by Pap in [127]. In order to
present these results, first we summarize their technique.

In the unified approach of the atomic decomposition a useful tool is the Q-density,
the V-separated property and the bounded uniform partitions of the unity of the locally
compact group.

Using the hyperbolic metric we can describe the Q density from right, and the sepa-
ration from right in the Blaschke-group. Using this we can give an example of bounded
uniform partitions of the unity from right. In the general theory of atomic decomposition
it is used the Q-density from the left, this is the reason why we will make a small modifi-
cation in the discretizing operator which corresponds to the Q–density from the right in
order to obtain atomic decomposition in the weighted Bergman spaces.

In what follows we will outline how it can be obtained atomic decomposition results
in H1, defined by (1.10), following the exposition published in [64] for the case when the
weight function w “ 1. Assume that U is an irreducible unitary representation of the
group G on the Hilbert space H which is integrable, i.e., there is a g P Hzt0u such that
ş

G
|Vggpaq|dmpaq ă 8, and which is continuous, i.e., Uag is a continuous map of G into H

for all a P G. For certain spaces Y of functions on G for which the convolution operator
is defined and is continuous for g P A, the coorbit spaces are defined in the following way:

CopY q “ tf P H1˚ : Vgf P Y u, (3.6)
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and this is independent of the choice of g P A. Place on CopY q the norm }f}CopY q “
}Vgf}Y . For example

H “ CopL2
pGqq, H1

“ CopL1
pGqq.

At the same time it is defined an appropriate sequence space Yd corresponding to Y (for
example if Y “ LppGq then Yd “ `ppZq). Let us consider

S “ tF P Y : F “ Vgf for some f P CopY qu. (3.7)

The convolution operator defined by (3.5), which is the identity on S, can be approx-
imated by a discrete operator, similar to a Riemann sum using the so called bounded
uniform partition of the unity.

Definition 3.4.1. Given a compact set Q with non-void interior, a countable family
X “ pxiq in G is said to be Q-dense if

Ť

xiQ “ G. It is separated, if for some compact
neighborhood V of the unity we have xjV X xiV “ H, j ‰ i. We say that Ψ “ tψkukPN is
a bounded uniform partition of unity of size Q (Q-BUPU) if for an open neighborhood Q
of unity in G with compact closure there exist points in xi in G such that

• 0 ď ψipxq ď 1,

• suppψi Ă xiQ,

•
ř

i ψipxq “ 1,

• supzPB #ti P N : z P xiQ
1u ă 8 for any Q1 Ă G compact.

In order to approximate by a discrete sum Vgf let write the reproducing formula (3.5)
in the form

ż

G

VgfpxqVggpx
´1yqdmpxq “ Vgfpyq,

which is a convolution operator on G, namely F “ Vgf , and F “ F ˚ Vgg. Define the
operators TF “ F ˚Vgg and TΨ on Y , associated to a particular bounded uniform partition
of unity Ψ, by

TΨpyq “
ÿ

i

xF, ψiyVggpx
´1
i yq. (3.8)

From Lemma 4.3 of [64] it follows that if F P L1pGq the sequence of coefficients
Λ “ pλiqiPN, given by λi “ xF, ψiy belongs to `1, more precisely, given a fixed compact
neighborhood Q of unity there exists a constant C0 such that the norms of the linear
operators F Ñ Λ are uniformly bounded by C0 for all Q-BUPUs. Conversely, if g P A
and Λ “ pλiqiPN P `1 then F :“

ř

i λ1Vggpx
´1
i yq P L1pGq, the sum being absolutely

convergent in L1pGq and there is a universal constant C1 such that }F }1 ď C1}Λ}`1 . As
a consequence, the set of operators tTΨu, where Ψ runs through the family of Q-BUPUs
acts uniformly bounded on L1pGq.
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Lemma 4.5 of [64] says that the net tTΨu of Q-BUPUs directed according to inclusions
of the neighborhoods Q of unity is norm convergent to T as operators on L1pGq. As a
consequence, it can be obtained the following atomic decomposition result for H1

Theorem 3.4.2. (see [64]) For any g P Azt0u, normalized by }Cg}2 “ 1, there exist
a small neighborhood Q of identity and a constant C0 (both only dependent of g), such
that for any collection of points txiu Ă G which is Q-dense and and V -separated and any
bounded uniform partition of unity Ψ associated to txiu any f P H1 can be written as

f “
ÿ

λipfqUxig, with
ÿ

i

|λipfq| ď C0}f}H1 ,

where the sum is absolutely convergent in H1. The coefficients λipfq “ xT´1
Ψ Vgf, ψiy

depend linearly on f .

Thus this gives an atomic decomposition of f P H1 with atoms Uxig which can be
viewed as generalizations of the frames to Banach spaces, other than Hilbert spaces. This
result has extension to coorbit spaces (see papers of Fiechtinger, Gröchenig [64, 66, 65,
89]).

3.4.1 Bounded uniform partition on Blaschke-group

In what follows we present results published by Pap in [127], where it was shown
that in the Blaschke group there exist right bounded uniform partitions of the unity and
the question of the integrability of the hyperbolic wavelet transform given by (3.3) was
studied. It turned out that the constant function f “ 1 and every function from the
minimal Möbius invariant space B1 (defined by (3.12)) satisfy the integrability condition.
It is shown that in the case of the weighted Bergman spaces, where the weight is generated
by α ą 0, the general theory of atomic decomposition can be applied and in this way we
can find new atoms for these spaces.

As we have seen before, in the unified approach of the atomic decomposition the Q
density, the V -separated property and the bounded uniform partitions of the unity are
the basic starting points.

Our aim is to construct a Q-dense and V -separated sequences in the Blaschke group.
As we will see, it is easier to show and see the geometrical interpretation, of the Q-density
from right, i.e., there is a sequence pxiqiPN in B such that

Ť

Qxi “ B, and separated from
right (for some compact neighborhood V of the unity we have V xj X V xi “ H, j ‰ i)
and there exist also bounded uniform partitions of the unity.

The Q density from the left is, in general, not the same as the Q-density from right,
if the group is non commutative, as it is the case of the Blaschke group.

Recall that the hyperbolic and pseudo-hyperbolic distance of two points from the unit
disc is given by

βpz, wq “
1

2
log

1` ρpz, wq

1´ ρpz, wq
, ρpz, wq “

ˇ

ˇ

ˇ

ˇ

z ´ w

1´ wz

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇBpw,1qpzq
ˇ

ˇ , (3.9)
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and the hyperbolic disc or Bergman disc of radius r ą 0 and center b is

Dpb, rq “ tz P D : βpz, bq ă ru. (3.10)

Lemma 3.4.3 (Pap [127]). Let consider r ą 0 and Q “ Q1 ˆ T, where Q1 “ tz P D :
|z| ă tanh ru. Then there exists a sequence xn “ pbn,´1q P B which is Q-dense from the
right, i.e.,

Ť

Qxn “ B and V -separated from right, i.e., V xn X V xm “ H, n ‰ m, and
there is also a corresponding right bounded uniform partition of the unity corresponding
to txnu.

Proof of Lemma 3.4.3. Due to Lemma 2.13 from [93] pp. 39, for every fix r,
0 ă r ă `8, and N positive integer there exists a sequence tbnunPN P D such that the
disc is covered by the hyperbolic discs tDpbn, rqunPN, and if m ‰ n then βpbn, bmq ě

r
2

and
every z P D belongs to at most N hyperbolic discs Dpbn, rq. We observe that z P Dpb, rq
is equivalent with z P tz P D : ρpz, bq ă tanh r ă 1u “ Bpb,´1qptz P D : |z| ă tanh ruq “
Bpb,´1qpQ1q (see [56] pp. 40). Then for

Qxn “ tx ˝ xn : x “ pb, εq P Qu “ tpBpbn,´1qpbq, Bp´bbn,εqp´1qq : b P Q1, ε P Tu

“ tDpbn, rqu ˆ T,

from this we obtain that
Ť

Qxn “ B. If we take V “ V1 ˆ T with V1 “ tz P D : |z| ă
tanh r

4
u, then V xn X V xm “ φ for m ‰ n. Now we are ready to give an example of right

bounded uniform partition of unity. Due to Lemma 2.28 from [187] pp. 63, there exists
a Borel set Dk satisfying the following conditions:

• Dpbk, r4q Ă Dk Ă Dpbk, rq,

• Dm XDn “ φ,

• D “
Ť

Dk.

Then Bpbk,´1qptz P D : |z| ă tanh r
4
uq Ă Dk Ă Bpbk,´1qptz P D : |z| ă tanh ruq. Let

consider ψk “ χDkˆT the characteristic function of the set Dk ˆ T. Then Ψ “ tψkukPN is
a bounded uniform partition of unity from right of size Q. Indeed, for all i P N,

• 0 ď ψipxq ď 1,

• suppψi Ă Qxi,

•
ř

i ψipxq “ 1, x P B.

• supzPB #ti P N : z P Q1xiu ă 8 for any Q1 Ă B compact.
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We shall consider the set of Q-bounded uniform partitions of unity from right (Q-
RBUPUs) as a net directed by inclusion of the associated neighborhoods, and write Ψ Ñ

8 if these neighborhoods run trough a neighborhood base of identity. In the general theory
of atomic decomposition it is used the Q-density from the left, this is the reason why in
the next subsection we will make a small modification in the discretizing operator which
corresponds to the Q–density from the right in order to obtain atomic decomposition in
the weighted Bergman spaces.

3.4.2 Integrability of the hyperbolic wavelet transform induced
by representation Uα

a

We observe that the hyperbolic wavelet transform given by formula (3.3) can be ex-
pressed by the weighted Bergman projection operator in the following way:

Vgfpa
´1
q “ xf, Ua´1gyα “ e

α`2
2
ψ
p1´ |b|2q

α`2
2 Pαpf ¨ gpBaqq, (3.11)

pa “ pb, eiψq P B, f, g P A2
αq.

First we will study the integrability of the voice transform, i.e., we show that there exists
an element g P A2

α, g ‰ 0 such that

ż

B
|Vggpa

´1
q|dmpaq ă 8.

Theorem 3.4.4 (Pap [127]). If α ą 0, then the representation Uα
a´1 is integrable.

Proof of 3.4.4. Let us consider g “ 1 P A2
α. Using (3.11) we get:

Vggpa
´1
q “ e

α`2
2
ψ
p1´ |b|2q

α`2
2 Pαpg ¨ gpBaqq

“ e
α`2
2
ψ
p1´ |b|2q

α`2
2

ż

D

1

p1´ zbqα`2
dAαpzq “ e

α`2
2
ψ
p1´ |b|2q

α`2
2 .

Then
ż

B
|Vggpa

´1
q|mpaq “

ż

D
p1´ |b|2q

α`2
2

1

p1´ |b|2q2
dApbq “

“

ż 1

0

p1´ rq
α
2
´1dr “

2

α
ă 8.

Thus we have that
A1
“ tg P A2

α : Vgg P L
1
pBqu ‰ t0u.

From Theorem 3.2.1, (3.5) and the connection with the weighted Bergman projection
it follows that in Bpg, gq “ C}g}2 the value of the constant C is

a

π{pα ` 1q.
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We will show that the integrability condition is also satisfied by every g from the
minimal Möbius invariant space of analytic functions (see [8], [9]), denoted by B1, which
contains exactly the analytic functions on the unit disc which admit the representation

gpzq “
8
ÿ

j“0

λj
z ´ bj

1´ bjz
, |bj| ď 1,

8
ÿ

j“0

|λj| ă 8. (3.12)

It is easy to prove that for 1 ď p and ´1 ă α the space B1 is included in Apα.

Theorem 3.4.5 (Pap [127]). For α ą 0 every g from the minimal Möbius invariant space
of analytic functions satisfies the integrability condition, i.e., the space B1 is a subset of
A1.

Proof of Theorem 3.4.5.
In order to prove this theorem we will use the following result (see [93]). For any

´1 ă α ă `8 and any real β, let

Iα,βpzq “

ż

D

p1´ |w|2qα

|1´ zw|2`α`β
dApwq, z P D.

Then we have the estimates

Iα,βpzq „

$

’

&

’

%

1, β ă 0,

log 1
1´|z|2

, β “ 0,
1

p1´|z|2qβ
, β ą 0

as |z| Ñ 1´.
For g P B1 we have the following estimate:

|Vggpa
´1
q| “

ˇ

ˇ

ˇ
e
α`2
2
ψ
p1´ |b|2q

α`2
2 Pαpg ¨ gpBaqq

ˇ

ˇ

ˇ
ď

ď p1´ |b|2q
α`2
2

ż

D

˜

8
ÿ

j

|λj|

¸2
1

|1´ zb|α`2
dAαpzq “

“ p1´ |b|2q
α`2
2

˜

8
ÿ

j

|λj|

¸2

Iα,0pbq.

When |b| Ñ 1´ we have Iα,0pbq „ log 1
1´|b|2

. For α ą 0,

ż

D
p1´ |b|2q

α`2
2 log

1

1´ |b|2
1

p1´ |b|2q2
dApbq “ ´

ż 1

0

p1´ rq
α´2
2 logp1´ rqdr “
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“ ´

«

2

α
p1´ yq

α
2 logp1´ yq ´

ˆ

2

α

˙2

p1´ yq
α
2

ff1

0

“
4

α2
.

From this it follows that
ż

B
|Vggpa

´1
q|dmpaq ă `8.

From now on we choose the parameter function g always from the space B1 Y t1u, we
also restrict the domain of the definition of the voice transform for a “ pb, 1q P B. We
show that the voice transform Vgf can be defined not only for f belonging to A2

α but
under some assumptions on the parameters Vgf has sense for f P Apβ, and we will study
some growth properties of the voice transform.

Theorem 3.4.6 (Pap [127]). Let fix the function g from B1 Y t1u. If ´1 ă α, β ă `8,
1 ď p, pβ ` 1q ă pα ` 1qp, then for every f P Apβ the voice transform is well defined. If
a “ pb, 1q P B, then

Vgfpa
´1
q “ Vgfp´b, 1q “ p1´ |b|

2
q
α`2
2 F1pbq,

where F1pbq P A
p
β, and

lim
|b|Ñ1´

p1´ |b|2q
β`2
p
´α`2

2 |Vgfpbq| “ 0.

Proof of Theorem 3.4.6. In the proof we will use the following result (see for
example in [93]): suppose ´1 ă α, β ă `8 and 1 ď p ă `8. Then Pα is a bounded
projection from LppD, dAβq onto Apβ if and only if pβ ` 1q ă pα ` 1qp.

From this result and the connection of the voice transform with the weighted Bergman
projection (3.11), for g “ 1 the proof is immediately.

If g P B1, then

gpzq “
8
ÿ

j“0

λj
z ´ bj

1´ bjz
“

8
ÿ

j“0

λjBpbj ,1qpzq, |bj| ď 1,
8
ÿ

j“0

|λj| ă 8.

This implies that

gpBapzqq “
8
ÿ

j“0

λjBpbj ,1q˝apzq P B1,
8
ÿ

j“0

|λj| ă 8.

We show that if f P Apβ, then f ¨ gpBaq P L
ppD, dAβq. This follows immediately from the

following inequality:

|fpzqgpBapzq|
p
ď |fpzq|p

˜

`8
ÿ

j“1

|λjBpbj ,1q˝apzq|

¸p

ď |fpzq|p

˜

`8
ÿ

j“1

|λj|

¸p

.
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From here it follows that if ´1 ă α, β ă `8, 1 ď p and pβ ` 1q ă pα ` 1qp, then Pα is
a bounded projection from LppD, dAβq onto Apβ, which implies that, for every g P B1 and
f P Apβ the voice transform

Vgfpa
´1
q “ e

α`2
2
ψ
p1´ |b|2q

α`2
2 Pαpf ¨ gpBaqq,

is well defined. If we consider a “ pb, 1q and denote by

F1pbq “ Pαpf ¨ gpBa´1qq,

then F1 P A
p
β. For all F1 P A

p
β, if ´1 ă β ă `8, p ą 0, we have (see [187])

|F1pbq| ď
}F1}Apβ

p1´ |b|2q
β`2
p

, b P D, (3.13)

the exponent of p1´ |b|2q is best possible, and it can be obtained the following improved
behavior of F1 near the boundary:

lim
|b|Ñ1´

|F1pbq|p1´ |b|
2
q
β`2
p “ 0.

This implies that

lim
|b|Ñ1´

p1´ |b|2q
β`2
p
´α`2

2 |Vgfpbq| “ 0.

For α “ β and p “ 2 it follows that, if f P A2
α, then

lim
|b|Ñ1´

|Vgfpbq| “ 0.

The next theorem gives information about the simplest Banach space where the
Feichtinger-Gröchenig theory can be applied in order to obtain new atomic decompo-
sition results for the set defined by

H1
“ tf P A2

α : Vgf P L
1
pBqu. (3.14)

Theorem 3.4.7 (Pap [127]). Let g P B1 Y t1u, α ą 0, p ě 1 and p ą max
 

β`1
α`1

, 4`2β
α

(

.
Then for every f P Apβ the voice transform Vgf is integrable, i.e., Vgf P L

1pBq.
As an immediate consequence we get that for α “ β ą 0, p ą 2 ` 4

α
we have that

Apα Ă H1.

Proof of Theorem 3.4.7 We have to show that if the assumptions of the theorem
are satisfied, then

ż

B
|Vgfpa

´1
q|dmpaq ă `8.
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Using Theorem 3.4.6 and (3.13) we obtain that

ż

B
|Vgfpa

´1
q|dmpaq “

ż

D
p1´ |b|2q

α´2
2 |F1pbq|dApbq ď

ď }F1}Apβ

ż

D
p1´ |b|2q

α´2
2
´

2`β
p dApbq “

“ }F1}Apβ

ż

D
p1´ r2

q
α´2
2
´

2`β
p 2rdr “ }F1}Apβ

1
α
2
´

2`β
p

ă `8.

3.4.3 New atomic decomposition results in weighted Bergman
spaces

Now we are ready to apply the general theory of Feichtinger and Gröchenig in order to
obtain atomic decompositions in weighted Bergman spaces. From this result, as a special
case, we reobtain some well known atomic decompositions in the weighted Bergman spaces
obtained by complex techniques, but also we get new atomic decompositions for these
spaces. As we have mentioned earlier in the Blaschke group, it is easier to give Q-RBUPU,
it is more convenient to compute the voice transform given by (3.3) in a´1 P B. Taking
into account that the Blaschke group is unimodular, the reproducing formula (3.5), can
be written as follows

Vgfpy
´1
q “

ż

B
Vgfpx

´1
qVggpx ˝ y

´1
qdmpxq, f, g P A2

α, g ‰ 0, }Cg} “ 1. (3.15)

From Theorem 3.4.7 for α “ β ą 0, p ą 2 ` 4
α

, g P B1 Y t1u we have the inclusion
Apα Ă H1, where H1 “ tf P A2

α : Vgf P L
1pBqu, and }f}H1 “ }Vgf}L1pBq ď C2}F1}Apβ

. Let

denote F py´1q “ Vgfpy
´1q, Gpy´1q “ Vggpy

´1q, then the reproducing formula (3.15) is a
convolution operator T , TF “ F ‹ G. To discretize this for F,G P L1pBq by means of
Q-RBUPU we will use the modified version of the operator (3.8) given by

TΨF py
´1
q “

ÿ

i

xF, ψiyLx´1
i
Gpy´1

q, F,G P L1
pBq, (3.16)

which is composed of a coefficients mapping F Ñ pλiqiPN with

λi “ xF, ψiy “

ż

B
F py´1

qψipyqdmpyq

and a convolution operator

pλiqiPN Ñ
ÿ

i

λiLx´1
i
G “ p

ÿ

i

λiδx´1
i
q ‹G.
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Our aim is to approximate the convolution operator TF “ F ‹G by the modified operator
(3.16). Analogous to Lemma 4.3 from [64] it can be proved that:

i) For F P L1pBq the sequence of coefficients pλiqiPN given by λi “ xF, ψiy belongs to
`1, and the norms of the linear operators F Ñ pλiqiPN are uniformly bounded.

ii) Given G P L1pBq , pλiqiPN P `
1 and any family X “ pxiqiPN in the group one has

F py´1
q “

ÿ

i

λiLx´1
i
Gpy´1

q P L1
pBq,

the sum being absolutely convergent in L1pBq, and there is a universal constant C1 such
that }F }1 ď C1}pλiqiPN}1.

There is valid also the analogue of Lemma 4.5 from [64], the only differences in the
proof arise because of Q-RBUPU.

Lemma 3.4.8 (Pap [127]). The net set tTΨu of Q-RBUPU, directed according to inclu-
sions of the neighborhoods Q to te “ p0, 1qu, is norm convergent as operators on L1pBq:
limΨÑ0 |||TΨ ´ T |||1 “ 0.

Proof. The proof follows the steps of the proof of Lemma 4.5 from [64], the only
difference occurs when we decompose the integral over the group using the R-BUPUs.
For a given F P L1pBq we can give the following estimate:

}TF ´ TΨF }1 “

›

›

›

›

›

˜

ÿ

i

pFψi ´ xF, ψiyδx´1
i
q ‹G

¸
›

›

›

›

›

1

ď

ď
ÿ

i

›

›

›

›

ż

Qxi

F py´1
qψipLy´1G´ Lx´1

i
Gqdy

›

›

›

›

1

ď

ď
ÿ

i

ż

Qxi

|F py´1
q|ψi}pLy´1G´ Lx´1

i
Gq}dy ď

ď
ÿ

i

sup
uPQ

}pLx´1
i u´1G´ Lx´1

i
Gq}x|F |, ψiy ď

ď sup
uPQ

}pLu´1G´Gq}1
ÿ

i

x|F |, ψiy ď ωQpGqC0}F }1,

where ωQpGq “ supuPQ }pLu´1G´Gq}1. Since Q “ Q1 ˆ T is invariant under the inverse
operation i.e., u P Q if and only if u´1 P Q, we have that ωQpGq “ supuPQ }pLu´1G´Gq}1 “
supuPQ }pLuG ´ Gq}1 is the modulus of continuity of G with respect to }.}1. Thus from
G P L1pBq we have that

|||TΨ ´ T |||1 ď C0ωQpGq Ñ 0 for QÑ teu.
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Now, taking in consideration that

VgpU
α
a´1fq “ La´1Vgf,

from Lemma 3.4.8 we get in analogous way as in [64] the Theorem 4.7 that TΨ has an
inverse and we get the following atomic decomposition result:

Theorem 3.4.9 (Pap [127]). For any g P A1, g ‰ 0 and }Cg} “ 1 there exist a neigh-
borhood Q of the identity and a constant C1 ą 0, both depending only on g such that for
every Q-dense family pxiqiPN from right of the Blaschke group any f P H1 can be written
as

fpzq “
ÿ

i

λipU
α
x´1
i
gqpzq with

ÿ

i

|λi| ď C1}f}H1 , (3.17)

the series is absolutely convergent in H1. The coefficients depend linearly on f , namely
λi “

ş

D T
´1
Ψ pVgfpy

´1qqψipyqdApyq.

Thus this gives an atomic decomposition of f P H1 with atoms Uα
x´1
i

g, g P A1. For

example one good choice is g P B1 Y t1u Ă A1. From Theorem 3.4.7 it follows that for
p ą 2` 4

α
we have Apα Ă H1, consequently the previous atomic decomposition is true also

for Apα under the mentioned restrictions to the parameters.
The Q-density from right of the set txi “ pbi,´1quiPN in the language of the complex

analysis is equivalent to the ε-net property of tbiuiPN, with ε “ tanh r (see [93] pp. 172).
From Lemma 8 ([56] pp. 188) for the lower density of the set tbiu we have

D´ptbiuq ě
p1´ tanh rq2

2 tanh2 r
.

Using Theorem 5.23 from [93] pp. 161, we have that a separated sequence tbiu is a
sampling sequence for Apα if and only if

D´ptbiuq ą
α ` 1

p
.

Let choose r so small that

p1´ tanh rq2

2 tanh2 r
ą
α ` 1

p
,

then tbiu is a sampling sequence for Apα.
Then for the special case g “ 1 we obtain the following atomic decomposition: if

f P Apα, α ą 0, and p ą 2` 4
α

,

f “
ÿ

λipfqU
α
x´1
i

1 “
ÿ

λipfq
p1´ |bi|

2q
α`2
2

p1´ bizqα`2
, (3.18)
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holds, which is very similar to the atomic decompositions obtained with complex analysis
techniques (see [187], pp. 69). The difference is that in our case we have `1 information
about the coefficients instead of `p information and the convergence is in H1 norm instead
of Apα. Using the classical techniques of the complex analysis in the atomic decomposition
of a function f P Apβ, the atoms are of form (see [187], pp. 69)

p1´ |xi|
2qa

p1´ xizqb
.

Applying the Feichtinger – Gröchenig theory we obtain more general atoms for the
weighted Bergman spaces, for example every function g P B1 generates an atomic decom-
position for f P Apα with atoms of the form

Uα
x´1
i
g.

3.5 Multiresolution in weighted Bergman spaces

In the previous subsection we presented atomic decomposition results in weighted
Bergman spaces. It turned out that in the proofs of the results it was essential the
integrability of the hyperbolic wavelet transform defined by (3.3). Consequently, these
results are valid only for some weighted Bergman spaces. But what does happen when
the integrability condition is not satisfied?

For example the unweighted case α “ 0, in the Bergman space, the integrability
condition of the representation is not satisfied. Consequently, in this case the presented
atomic decomposition results are not valid. In [128] Pap showed that, it is possible to
construct a multiresolution analysis, using localized Bergman kernels in special sampling
points. Later in [133] the result was extended for weighted Bergman spaces. In this
subsection we present these discretization results. Pap showed that, as in the case of the
Hardy spaces presented in the second chapter, an analogue of MRA decomposition can
be constructed also in the weighted Bergman spaces.

Based on the MRA constructions in the Hardy and weighted Bergman spaces (see
[126, 128, 133]) Nowak and Pap in [116] summarized the main idea of these constructions,
describing a new method of construction of analytic wavelets which is applied in both of
Hardy and weighted Bergman spaces. This method should be applied in the more general
setting of reproducing kernel Hilbert spaces.

Although the main idea is similar to the case of the Hardy space, the construction of
the MRA in the weighted Bergman space is more complicated than in the Hardy space.
The first step is the construction of a new example of sampling set for the weighted
Bergman space, which is related to the Blaschke group operation. This step is difficult in
general. If once we have this, then the construction of the multiresolution levels are similar
to the case of Hardy space. The next difficulty is to describe the orthogonal wavelets on
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the resolution levels, because in the case of the weighted Bergman space, they cannot be
given explicitly in closed form. But we can give an algorithm to generate them, and using
this we can prove that the projection to the resolution levels has similar interpolation
properties like in the case of Hardy space. This projection operator gives opportunity of
practical realization of the hyperbolic wavelet representation of a function belonging to
the weighted Bergman space, if we can measure the values of the function on a given set of
points inside the unit disc. We also studied the convergence properties of the hyperbolic
wavelet representation.

In the construction of the MRA in weighted Bergman spaces we use frames obtained by
localization of the weighted Bergman kernel. The localization is made in a set of sampling
points connected to the Blaschke group. In this way we obtain so called hyperbolic wavelet
frames. Recently, tight affine wavelet frames derived by the multiresolution analysis
are used to open a few new areas of applications of frames. The application of tight
wavelet frames in image restorations is one of them that includes image inpainting, image
denoising, image deblurring and blind deburring, and image decompositions [10, 47, 158].
An up to date monograph in this domain is [104], where are collected the most important
one- and multivariate results connected to affine wavelet frames (framelets) and the related
MRA-s and their applications. In the recovery of missing data from incomplete and/or
damaged and noisy samples, application of wavelet methods based on frames is more
advanced due to the redundancy of frame systems. In the context of the introduced
hyperbolic wavelet frames it would be interesting to study similar properties.

The plan of this section is as follows. We introduce a discrete subset of the Blaschke
group, which is a sampling set for the weighted Bergman space. Using this special sam-
pling set, we consider hyperbolic wavelet frames and we construct an analogue of MRA
decomposition in the weighted Bergman space. First the different resolution spaces will
be defined using the introduced non-orthogonal hyperbolic wavelet frames. Applying the
Gram-Schmidt orthogonalization we consider the rational orthogonal basis on the n-th
multiresolution level Vn. This system is the analogue of the Malmquist-Takenaka system
in the Hardy spaces, possesses similar properties and is connected to the contractive zero
divisors of a finite set in Bergman space. We prove that the projection operator Pnfpzq on
the resolution level Vn is convergent to f in A2

α norm, and is also interpolation operator on
the set the

Ťn
k“0Ak, where Ak is defined by (3.23) with minimal norm and Pnfpzq Ñ fpzq

uniformly on every compact subset of the unit disc.
Compared with the classical affine multiresolution, according to the obtained results,

we can conclude the following advantages of the constructed hyperbolic multiresolution
in Apα.

1. The levels of the multiresolution are finite dimensional, which makes easier to find
a basis on every level, but at the same time the density condition remains valid.

2. We can compute the wavelet coefficients exactly measuring the values of the function
f at the points of the set A “

Ť8

k“0Ak Ă D defined by (3.23). We can write exactly the
projection operator pPnf, n P Nq on the n-th resolution level.
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3. At the same time Pnfpzq is the best approximate interpolation operator on the set
the

Ťn
k“0Ak inside the unit circle for the analytic continuation of f .

3.5.1 Special discrete subsets in B and their sampling property

Let us start with the definition of the main concepts. For 0 ă p ă 8, a sequence of
points Γ “ tzk : k P Nu in the unit disc is sampling sequence for Apα, if there exist positive
constants A and B such that

A||f ||p ď
8
ÿ

k“1

|fpzkq|
p
p1´ |zk|

2
q
2`α

ď B||f ||p, f P Apα.

For p “ 2, this inequality can be expressed in an equivalent form, using the localized
weighted Bergman kernels in zk. If

ϕkpzq “ Kpz, zkq{}Kpz, zkq} “
p1´ |zk|

2q
α`2
2

p1´ zkzqα`2

is the localized and normalized weighted Bergmen kernel, then the previous inequality is
equivalent with the following

A||f ||2 ď
8
ÿ

k“1

|xf, ϕky|
2
ď B||f ||2, f P A2.

However, this last inequality shows that, tϕkpzq, k P Nu will constitute a frame for A2
α, if

and only if Γ “ tzk : k P Nu is a sampling set for A2
α. The Bergman spaces Apα do have

sampling sequences, but their construction is a difficult task. Some explicit examples are
due to Seip, Duren, Schuster, Horowitz, Luecking (see for ex in [56]). An Apα sampling
sequence is never an Apα zero-set, consequently a sampling set is a set of uniqueness (the
values of the function in the sampling set determine uniquely the function). A total
characterization of sampling sequences can be given with the uniformly discrete property
and upper and lower Seip density of the set (see [56]). But the computation of the upper
and lower density of a set is, in general, difficult. Duren, Schuster and Vukotic in [57]
gave sufficient conditions based on the pseudo-hyperbolic metric which can be applied
in the construction of the sampling sets without computing the Seip density. Using this
sufficient condition it is easier to verify, if a set of points from the unit disc is sampling set.
We remind that he pseudo-hyperbolic metric in the unit disc is defined by the formula

ρpz, yq “

ˇ

ˇ

ˇ

ˇ

y ´ z

1´ yz

ˇ

ˇ

ˇ

ˇ

py, z P Dq.

A sequence of points Γ “ tzku in the unit disc is uniformly discrete (separated), if

δpΓq “ inf
j‰k

ρpzj, zkq “ δ ą 0.
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For 0 ă ε ă 1, a sequence of points Γ “ tzk : k P Nu in the unit disc is said to be ε-net, if
each point z P D has the property ρpz, zkq ă ε for some zk in Γ. An equivalent statement
is, that D “

Ť8

k“1 ∆pzk, εq, where ∆pzk, εq denotes a pseudo-hyperbolic disc.
In [57] it is shown that, if Γ is ε-net, then its lower density satisfies the following

inequality

D´pΓq ě
p1´ εq2

2ε2
.

If Γ is separated (uniformly discrete), and D´pΓq ą pα ` 1q{p, then is a sampling set for
Apα (Theorem 5.23 of [93]). We will use this last sufficient condition in order to construct
a sampling sequence in Apα.

Question: Is it possible to find a discrete subset tak` “ pzk`, 1q P Bu of the Blaschke
group, a function ϕ00 P A

2
α, and to generate an adapted version of the multiresolution in

the weighted Bergman space A2
α using the images of this single function tUα

ak`
ϕ00u trough

the representation?
In order to answer the formulated question first we construct a sampling set in the

weighted Bergman space A2
αpDq, which is a discrete subset of the Blaschke group. Let us

consider the following one parameter subgroups of the Blaschke group:

B1 :“ tpr, 1q : r P p´1, 1qu, B2 :“ tp0, εq : ε P Tu. (3.19)

These subgroups generate B, i.e.,

a “ p0, ε2q ˝ p0, ε1q ˝ pr, 1q ˝ p0, ε1q pa “ prε1, ε2q P B, r P r0, 1q, ε1, ε2 P Tq.

The subgroup B1 is the analogue of the group of dilation, B2 is the analogue of the
group of translation (see Schipp [139]).

The group operation pr, 1q “ pr1, 1q ˝ pr2, 1q in B1 can be expressed using the tangent
hyperbolic and its inverse (ath) in the following way

r “
r1 ` r2

1` r1r2

“ thpath r1 ` ath r2q pr1, r2 P p´1, 1qq. (3.20)

Let denote r “ thα, ri “ thαi, i “ 1, 2. Then from

pr1, 1q ˝ pr2, 1q “ pthα1, 1q ˝ pthα2, 1q “ pth pα1 ` α2q, 1q,

it follows that pB1, ˝q is isomorphic to pR,`q. It is known that pZ,`q is a subgroup of
pR,`q, hence B1 “ tpth k, 1q, k P Zu is an one parameter subgroup of pB1, ˝q (see [154]).

Let a ą 1, and let us consider the following subset of pB, ˝q:

B3 “

"

prk, 1q : rk “
ak ´ a´k

ak ` a´k
, k P Z

*

. (3.21)
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It can be proved that pB3, ˝q is a discrete subgroup of pB, ˝q, where we have the following
composition rule: prk, 1q˝prn, 1q “ prk`n, 1q. The pseudo-hyperbolic distance of the points
rk, rn has the property:

ρprk, rnq :“
|rk ´ rn|

|1´ rkrn|
“

ˇ

ˇ

ˇ

ˇ

ˇ

ak´a´k

ak`a´k
´ an´a´n

an`a´n

1´ ak´a´k

ak`a´k
an´a´n

an`a´n

ˇ

ˇ

ˇ

ˇ

ˇ

“ |rk´n|.

This property implies that the sequence prk, k P Nq forms an equidistant division of the
interval r0, 1q in the pseudo-hyperbolic metric.

Let Npa, kq, k ě 1, Npa, 0q :“ 1, be an increasing sequence of natural numbers. Let
us consider the following set of points z00 :“ 0,

A “ tzk` “ rke
i 2π`
N , ` “ 0, 1, ..., Npa, kq ´ 1, k “ 0, 1, 2, ...u. (3.22)

For a fixed k P N, let

Ak “ tzk` “ rke
i 2π`
Npa,kq , ` P t0, 1, ..., Npa, kq ´ 1u u. (3.23)

be the set of uniformly distributed points on the circle with radius rk. This set of points
will generate the level k of the multiresolution.

The question is how to choose a and N “ Npa, kq such that A to be a sampling set
in the weighted Bergman space ApαpDq. The question was answered by Pap first for the
unweighted case, for α “ 0 in [128], then extended in general in [133]. It was proved that
for a convenient choice of a and Npa, kq one has

1. A is uniformly discrete,
2. A is an ε-net set for some 0 ă ε ă 1.

Theorem 3.5.1 (Pap [133]). Let a ą 1 and let pNpa, kq “ a2kb, k ě 1q. Choose 0 ă
b ă 8 such that Npa, kq P N, and consider the set of points A defined by (3.22). Let us

denote by K :“ 1` pa´a´1q2

4
` a2

4b2
π2. If

a

1´ 1{K ă
1

1`
b

2pα`1q
p

,

then A is a sampling set for Apα.

Proof of Theorem 3.5.1.
In [128] Pap proved that, if there exists b “ limkÑ8Npa, kqa

´2k, and if pNpa, kqa´2k, k ě
1q is increasing sequence and b is finite, then A is uniformly discrete and the separation
constant satisfies

δ ě min

"

r1,
1

?
1` b2

*

.
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In [128] it was also proved, that if pNpa, kqa´2k, k ě 1q is decreasing and 0 ă b ă 8,

then the set A is ε0-net, where ε0 “
a

1´ 1{K, with K :“ 1` pa´a´1q2

4
` a2

4b2
π2.

Indeed, for given z “ reiθ P D we take k and j P t0, 1, ¨ ¨ ¨Npa, kq ´ 1u such that

rk ă r ď rk`1, θ P
”

2πj
Npa,kq

, 2πpj`1q
Npa,kq

¯

, θkj “
2πj

Npa,kq
. Then

1

1´ ρ2pz, zkjq
“
p1´ rrkq

2 ` 4rrk sin2 θ´θkj
2

p1´ r2qp1´ r2
kq

“ 1`
pr ´ rkq

2 ` 4rrk sin2 θ´θkj
2

p1´ r2qp1´ r2
kq

ď

1`
pr ´ rkq

2 ` 4rrk
π2

N2pa,kq

p1´ r2qp1´ r2
kq

“ 1`
pa´ a´1q2

4
`
pa2k`2 ´ a´2k´2qpa2k ´ a´2kq

4

π2

N2pa, kq
.

If pNpa, kqa´2k, k ě 1q is decreasing and b “ limkÑ8Npa, kqa
´2k P p0,8q, then the last

term in the previous inequality is upper bounded by

K :“ 1`
pa´ a´1q2

4
`

a2

4b2
π2.

Then for ε0 “
a

1´ 1{K, we have ρpz, zkjq ă ε0.
If Npa, kqa´2k “ b, for k ě 1, and 0 ă b ă 8, then A is in the same time uniformly

discrete and ε0-net. In [57] it is shown that if A is ε0-net, then the lower density of the
set satisfies

D´pAq ě p1´ ε0q
2

2ε20
.

If A is separated (is a uniformly discrete) and D´pAq ą pα ` 1q{p then it is a sampling
set for Apα (see Theorem 5.23 of [93]).

Using this results we get that if

ε0 “
a

1´ 1{K ă
1

1`
b

2pα`1q
p

,

then

D´pAq ě p1´ ε0q
2

2ε20
ą pα ` 1q{p,

which implies that A is a sampling set for Apα.
Remarks
1. As it was showed in [128], for α “ 0, from this theorem we obtain that if A is a

sampling set for the Bergman space Ap, then

pa´ a´1
q
2
ă 2p,

therefore a must be in the interval p1,
?

2p`
?

2p`4
2

q. Then we can always choose N “ Npa, kq
big enough, such that the sampling condition to be satisfied.
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2. From the point of view of computations and to have on every circle the less possible
points, for p “ 2, α “ 0 a convenient choice is a “ 2, and Np2, kq “ 22k`β for k ě 1 with
β a fixed integer. Then b “ 2β, and the smallest value for β for which the sampling
condition is satisfied is β “ 3. Also, on the k-th circle we will have N1p2, kq “ 22k`3

equidistant points corresponding to the roots of order 22k`3 of the unity. If a “
?

2, then
for sampling we need N1p

?
2, kq “ 2k`2 points.

3. For p “ 2, α ą ´1 in order to have A a sampling set for A2
α we have to choose a

and the number of the points Npa, kq “ a2kb on the level k such that

pa´ a´1q2

4
`

a2

4b2
π2
ă

1
?
α ` 1

.

From now on we will concentrate on this case and using this special sampling set we will
construct multiresolution analysis in the A2

α.

3.5.2 Multiresolution analysis in the weighted Bergman space
A2
α

For p “ 2 using the set (3.22) satisfying the conditions of the Theorem 3.5.1 we
define multiresolution in the weighted Bergman space. To show the analogy with the
affine wavelet multiresolution, we first represent the levels Vn by non-orthogonal frames
associated to the set (3.22), then we construct an orthonormal bases on the Vn. We give
also an orthogonal basis in Wn which is orthogonal to Vn. We will show that the analogue
of the Malmquist-Takenaka systems for weighted Bergman space will span the resolution
spaces, and the density property will be fulfilled, i.e.,

Ť8

k“1 Vk “ A2
α in norm.

We show that the projection Pnf on the n-th resolution level is an interpolation
operator in the unit disc until the n-th level, which converges in A2

α norm to f .

Let us consider a ą 1, denote by rk “
ak´a´k

ak`a´k
, k P N, and the concentric circles with

radius rk. On the circle with radius rk let us consider Nk “ Npa, kq equidistantly situated

points zk` “ rke
i 2π`
Npa,kq , such that Npa, kq “ a2kb P N satisfies

0 ă b ă 8, pa´ a´1
q
2
` π2a

2

b2
ă 4

1
?
α ` 1

.

If these conditions are satisfied then, due to Theorem 3.5.1 the set A given by (3.22) is
a sampling set for A2

α. This implies that the set of normalized and localized weighted
Bergman kernels in these points

#

ϕk`pzq “
p1´ r2

kq
α`2
2

p1´ zk`zq2`α
, ϕ00 “ 1, k “ 0, 1, ¨ ¨ ¨ , ` “ 0, 1, ¨ ¨ ¨Npa, kq ´ 1

+
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will constitute a frame system for A2
α. This frame system can be derived from a single

function using the representation and the discrete subset A of the Blaschke group in the
following way:

ϕk`pzq “ pU
α
pzk`,1q´1ϕ00qpzq.

Due to this observation, we can consider them as an analogue of affine wavelet frames,
and we call them hyperbolic wavelet frames.

From the frame theory (see for example in [90]), it follows that every function f from
A2
α can be represented as

fpzq “
ÿ

pk,`q

ck`ϕklpzq

for some tck`u P `
2, with the series converging in A2

α norm. The determination of the
coefficients is related to the construction of the inverse frame operator (see [90]), which is
not an easy task in general. In [128, 133] Pap constructed a new approximation process
for f P A2

α, and gave an exactly defined algorithmic scheme for the determination of the
coefficients.

Let us consider the function ϕ00 “ 1 and let define V0 :“ tcϕ00, c P Cu. Let us
consider the non-orthogonal hyperbolic wavelets at the first level

ϕ1`pzq “ pU
α
pz1`,1q´1ϕ00qpzq “

p1´ r2
1q

α`2
2

p1´ z1`zq2`α
, ` “ 0, 1, ¨ ¨ ¨ , Npa, 1q ´ 1.

They can be obtained from ϕ10 using the analogue of translation operator which in the
unit disc is a multiplication by a unimodular complex number, and from ϕ00 using first
the representation operator Upr1,1q´1 followed by the translation operator

ϕ1`pzq “ ϕ10pze
´ 2πi`
Npa,1q q “ pUα

pr1,1q´1ϕ00qpze
´ 2πi`
Npa,1q q.

In order to define the levels of the muliresolution let us define the first resolution level as
follows:

V1 :“

#

f : DÑ C, fpzq “
1
ÿ

k“0

Npa,kq´1
ÿ

`“0

ck`ϕk`, ck` P C

+

.

Let us consider the nonorthogonal wavelets on the n-th level

ϕn`pzq “ pU
α
pzn`,1q´1ϕ00qpzq “

p1´ r2
nq

α`2
2

p1´ zn`zqα`2
, ` “ 0, 1, ..., Npa, nq ´ 1, (3.24)

which can be obtained from ϕn0 using the translation operator, and from ϕ00 using the
representation Uα

pprn´1,1q˝pr1,1qq´1 , and the translations

ϕn,`pzq “ pU
α
pprn´1,1q˝pr1,1qq´1ϕ00qpze

´i 2π`
Npa,nq q.
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Let us define the n-th resolution level by

Vn :“

#

f : DÑ C, fpzq “
n
ÿ

k“0

Npa,kq´1
ÿ

`“0

ck`ϕk`, ck` P C

+

. (3.25)

The closed subset Vn is spanned by

tϕk`, ` “ 0, 1, ..., Npa, kq ´ 1, k “ 0, ..., nu.

Continuing this procedure we obtain a sequence of closed, nested subspaces of A2
α for

z P D,
V0 Ă V1 Ă V2 Ă .....Vn Ă .... A2

α.

Due to Theorem 3.5.1 the normalized kernels

tϕklpzq, k “ 0, 1, ¨ ¨ ¨ , ` “ 0, 1, ¨ ¨ ¨Npa, kq ´ 1u

form a frame system for A2
α. This implies, that this is a complete and closed set in norm,

consequently the density property is satisfied, i.e.,

ď

nPN

Vn “ A2
α.

From now on, for simplicity, we consider a “ 2 and Np2, kq “ 22kb, b P N satisfies the
following conditions:

0 ă b ă 8, p2´ 2´1
q
2
` π2 22

b2
ă 4

1
?
α ` 1

.

For α “ 0 a good choice is Np2, kq “ 22k`3. In general on the circle k-th we will have
Np2, kq “ 22kb points.

We show that, if f P Vn, then Uα
pr1,1q´1f P Vn`1. This is the analogue of the dilation.

For this it is sufficient to show that, for k “ 0, 1, .., n, ` “ 0, 1, ..., 22kb´ 1, we have

Uα
pr1,1q´1pϕk`qpzq “ Uα

pr1,1q´1rpUα
prk,1q´1ϕ00qspze

´i 2π`

22kb
q
q “

“ rpUα
prk`1,1q´1ϕ00qspze

´i 2π4`

22pk`1qb q “ ϕk`1`1 P Vn`1,

for `1 “ 4` P t0, 1, ..., 22pk`1qb´ 1u.
Summarizing we have constructed a sequence of subspaces pVj, j P Nq of A2

α with
following properties:

1. (nested) Vj Ă Vj`1 Ă A2
α,

2. (density) YVj “ A2
α,

3. (analog of dilatation) Uα
pr1,1q´1pVjq Ă Vj`1,
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4. (basis) There exist tϕk`, k “ 0, 1, .., n, ` “ 0, 1, ..., 22kb´1u (orthonormal or frame)
bases in Vj.

This is the adapted definition of the multiresolution analysis in the weighted Bergman
spaces. These four properties are required for pVj, j P Nq to form a hyperbolic wavelet
multiresolution analysis (MRA) in the weighted Bergman spaces.

Because A is a sampling set, it follows that it is a set of uniqueness for A2
α. This means,

that every function f P A2
α is uniquely determined by the values tfpzk`q, zk` P Au. In [186]

Zhu described in general, how can be recaptured a function from a Hilbert space, when
the values of the function on a set of uniqueness are known, and developed in details this
process in the Hardy space. At the beginning we will follow the steps of the recapturation
process, and we will combine this with the multiresolutin analysis. The elements of the
set A are different numbers, which implies that the localized weighted Bergman kernels

"

1

p1´ zk`zq2`α
, ` “ 0, 1, ..., Np2, kq ´ 1, k “ 0, 1, ..., n.

*

are linearly independent, and constitute a non-orthogonal basis in Vn.
Using Gram-Schmidt orthogonalization process they can be orthogonalized. Denote

by ψk` the resulting functions. They form a system, which can be viewed as the ana-
logue of the Malmquist–Takenaka system in the Hardy space. These functions can be
obtained using the following two methods. The first method arises from the orthogo-
nalization procedure. To describe this, let reindex the points of the set A as follows:
a1 “ z00, a2 “ z10, a3 “ z11, ¨ ¨ ¨ , aNp2,1q`1 “ z1Np2,1q´1, ¨ ¨ ¨ , am “ zk` ¨ ¨ ¨ , k “ 0, 1, ...., ` “
0, 1, ..., Np2, kq ´ 1, and denote by Kαpz, zk`q “

1
p1´zk`zq2`α

:“ Kpz, amq. The resulted
orthonormal system is

φ00pzq “ φpa1, zq “
Kαpz, a1q

}Kαp., a1q}
,

φk`pzq “ φpa1, a2, ..., am, zq “

“ Kpz, amq ´
m´1
ÿ

i“1

φpa1, a2, ..., ai, zq
xKp., amq, φpa1, a2, ..., ai, .qy

}φpa1, a2, ..., ai, .q}2
.

Thus the normalized functions
"

ψk`pzq “
φk`pzq

}φk`}
, k “ 1, 2, ¨ ¨ ¨ , ` “ 0, 1, ¨ ¨ ¨ , Np2, kq ´ 1

*

become an orthonormal system. Applying similar construction in Hardy space, with the
Cauchy kernel as reproducing kernel, the result of the orthogonalization process can be
written in closed form using the Blaschke products, and in this way we get the Malmquist-
Takenaka system. Unfortunately, in our situation the result of the orthogonalization
cannot be written in closed form, and the properties of the system cannot be seen from
the previous construction.
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Another approach for the construction is given by Zhu in [186]. He proved that, the
result of the Gram-Schmidt process is connected to some reproducing kernels, and the
contractive zero divisors. Let denote Am “ ta1, a2, ¨ ¨ ¨ amu a set of distinct points in the
unit disc. Let HAm be the subspace of A2

α consisting of all functions in A2
α which vanish

on Am. HAm is a closed subspace of A2
α and denote by KAm the reproducing kernel of

HAm . These reproducing kernels satisfies the recursion formula

KAm`1pz, wq “ KAmpz, wq ´
KAmpz, am`1qKAmpam`1, wq

KAmpam`1, am`1q
,m ě 0, (3.26)

KA0 :“ Kαpz, wq “
1

p1´ wzq2`α
.

The result of the Gram-Schmidt process gives the orthonormal hyperbolic wavelet system
in the weighted Bergman space and can be expressed as

Kpz, a1q
a

Kpa1, a1q
,

KA1pz, a2q
a

KA1pa2, a2q
, ¨ ¨ ¨

KAm´1pz, amq
a

KAm´1pam, amq
, ¨ ¨ ¨ . (3.27)

One element of the constructed orthonormal system corresponding to zk` “ am and de-
noted by

ψk`pzq “
KAm´1pz, amq

a

KAm´1pam, amq
, (3.28)

is the solution of the problem

suptRefpamq : f P HAm´1 , }f} ď 1u.

These extremal functions in the context of the Bergman spaces have been studied by
Hedenmalm [92]. The main result in [92] is that the function

KAm´1pz, amq
a

KAm´1pam, amq

is a contractive divisor on the Bergman space, vanishes on Am´1, and if A is not a zero
set for A2, as is in our case, the functions converge to 0 as m Ñ 8. In Hardy space the
partial products of a Blaschke product corresponding to a nonzero set own all these nice
properties.

From the Gram-Schmidt orthogonalization process it follows, that

Vn “ spantψk`, ` “ 0, 1, ..., Np2, kq ´ 1, k “ 0, ¨ ¨ ¨ , nu.

The wavelet space Wn is the orthogonal complement of Vn in Vn`1. We will prove that

Wn “ spantψn`1`, ` “ 0, 1, ..., Np2, n` 1q ´ 1u. (3.29)
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Indeed if f P Vn, one has fpzq “
řn
k“0

řNp2,kq´1
`“0 ck`ϕk` Ă A2

α, then using that ϕk` is a
localized property reproducing kernel and

ψn`1`pzk`q “
KAmpzk`, am`1q

a

KAmpam`1, am`1q
“ 0

(because KAm is the reproducing kernel of HAm consisting of all functions in A2
α which

vanish on Am). We obtain that

xψn`1j, fy “
n
ÿ

k“0

Np2,kq´1
ÿ

`“0

ck`xψn`1j, ϕk`y “

n
ÿ

k“0

Np2,kq´1
ÿ

`“0

ck`p1´ r
2
kq

α`2
2 ψn`1`pzk`q “ 0, j “ 0, 1, ..., Np2, n` 1q ´ 1.

We have proved that for f P Vn
xf, ψn`1jy “ 0,

which is equivalent with

ψn`1j K Vn, pj “ 0, 1, ..., Np2, n` 1q ´ 1q.

From
Vn`1 “ Vn

à

spantϕn`1,j, j “ 0, 1, ..., Np2, n` 1q ´ 1u

it follows that, Wn is an Np2, n` 1q dimensional space and

Wn “ spantψn`1`, ` “ 0, 1, ..., Np2, n` 1q ´ 1u.

3.5.3 The projection operator corresponding to the n-th resolu-
tion level

Let us consider the orthogonal projection operator of an arbitrary function f P A2
α on

the multiresolution level Vn defined by (3.25), given by

Pnfpzq “
n
ÿ

k“0

Np2,nq´1
ÿ

`“0

xf, ψk`yψk`pzq. (3.30)

This operator is called the projection of f at nth scale or resolution level.
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Theorem 3.5.2 (Pap [133]). For any f P A2
α the projection operator Pnf is at the same

time an interpolation operator in the points

zk` “ rke
i 2π`
Np2,kq , p` “ 0, ...., Np2, kq ´ 1, k “ 0, ..., nq.

For any f P A2
α the projection operator Pnf is norm convergent in A2

α to f i.e.,

}f ´ Pnf} Ñ 0, nÑ 8,

and uniformly convergent inside the unit disc on every compact subset.

Proof of Theorem 3.5.2. Let us consider N “ 1`Np2, 1q ` ¨ ¨ ¨ `Np2, nq, and the
corresponding kernel function of the projection operator

KNpz, ξq “
n
ÿ

k“0

Np2,kq´1
ÿ

`“0

ψk`pξqψk`pzq “

N
ÿ

m“1

KAm´1pz, amq
a

KAm´1pam, amq

˜

KAm´1pξ, amq
a

KAm´1pam, amq

¸

“

N
ÿ

m“1

KAm´1pz, amqKAm´1pam, ξq

KAm´1pam, amq
.

From the recursion relation (3.26) it follows that

KNpz, ξq “
N
ÿ

m“1

pKAm´1pz, ξq ´KAmpz, ξqq “ Kpz, ξq ´KAN pz, ξq. (3.31)

From this relation and KAN pzk`, ξq “ 0 for zk`, p` “ 0, ...., Np2, kq´1, k “ 0, ..., nq it fol-
lows that the values of the kernel-function KNpz, ξq in these points zk` p` “ 0, ...., Np2, kq´
1, k “ 0, ..., nq are equal to the localized weighted Bergman kernels

KNpzkl, ξq “
1

p1´ zk`ξq2`α
.

As a consequence we get that

Pnfpzk`q “

ż

D
fpwqKNpzk`, wqdAαpwq “

ż

D

fpwq

p1´ wzk`q2`α
dAαpwq “ fpzk`q

for ` “ 0, ...., Np2, kq ´ 1, k “ 0, ..., n. We obtain that Pnf is an interpolation operator
for every f P A2

α on the set Ynk“0Ak.
Because tψk`, k “ 0, ¨ ¨ ¨ ,8, ` “ 0, 1, ..., Np2, kq ´ 1u is a closed set in the Hilbert

space A2
α, we have that }f ´ Pnf} Ñ 0 as n Ñ 8. Since convergence in A2

α norm
implies uniform convergence on every compact subset inside the unit disc, we conclude
that Pnfpzq Ñ fpzq uniformly on every compact subset of the unit disc. From Theorem
5.3.1 of [134] there exists a unique f̂n P Vn with minimal norm such that

p2.32q f̂npzk`q “ fpzk`q, p` “ 0, ...., Np2, kq ´ 1, k “ 0, ..., nq,

f̂n is uniquely determined by the interpolation conditions and is equal to the orthogonal
projection of f on Vn, thus f̂npzq “ Pnfpzq.
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3.5.4 Reconstruction algorithm

In what follows we propose a computational scheme for the best approximant in the
wavelet base tψk`, ` “ 0, 1, ..., Np2, kq ´ 1, k “ 0, ..., nu.

The set of coefficients of the best approximant Pnf

tbk` “ xf, ψk`y, ` “ 0.1, ¨ ¨ ¨ , Np2, kq ´ 1 k “ 0, 1, ¨ ¨ ¨ , nu (3.32)

is the (discrete) hyperbolic wavelet transform of the function f P A2
α. Thus it is important

to have an efficient algorithm for the computation of the coefficients.
The coefficients of the projection operator Pnf can be computed, if we know the values

of the functions on
Ťn
k“0Ak. For this reason we express first the function ψk` using the

bases tϕk1`1 `
1 “ 0, 1, ¨ ¨ ¨ , Np2, k1q ´ 1, k1 “ 0, ¨ ¨ ¨ , ku, i.e., we write the partial fraction

decomposition of ψk` :

ψk`pξq “
k´1
ÿ

k1“0

Np2,k1q´1
ÿ

`1“0

ck1`1
1

p1´ zk1`1ξq2`α
`
ÿ̀

j“0

ckj
1

p1´ zkjξq2`α
. (3.33)

Using the orthogonality of the functions tψk1`1 `
1 “ 0, 1, ¨ ¨ ¨ , Np2, k1q´1, k1 “ 0, ¨ ¨ ¨ , ku

and the properties of the reproducing kernel we obtain that the coefficients of the pro-
jection operators can be computed exactly if we know the values of the function on the
sampling set, i.e.,

xf, ψk`y “
k´1
ÿ

k1“0

Np2,k1q´1
ÿ

`1“0

ck1`1

B

fpξq,
1

p1´ zk1`1ξq2`α

F

`
ÿ̀

j“0

ckj

B

fpξq,
1

p1´ zkjξq2`α

F

“

(3.34)

“

k´1
ÿ

k1“0

Np2,k1q´1
ÿ

`1“0

ck1`1fpzk1`1q `
ÿ̀

j“0

ckjfpzkjq.

In [33] Christensen, Gröchening, Olafsson derived atomic decomposition and frames for
weighted Bergman spaces of several complex variables on the unit ball. Theorem 1.2. of
this paper is a generalization for n dimensional weighted Bergman spaces of the theorem
obtained by Pap in [127]. They also obtain frame expansions for the n dimensional
Bergman spaces, which is related to the existence of sampling, analogous tho the results
presented in this section for the one dimensional unit disc.
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Chapter 4

Equilibrium conditions for the
Malmquist–Takenaka systems

In Chapter 2 in the construction of analytic wavelets appeared the Malquist -Takenaka
system with a special localization of poles. In this chapter we will present results connected
to these systems in generality. We give an overview of the discretization results connected
to Malmquist–Takenaka systems for the unit disc and upper half plane. We prove that
the discretization nodes on the real line have similar properties like the discretization
nodes on the unit circle: they satisfy some equilibrium conditions and they are stationary
points of some logarithmic potential. The problems whether they are the minimum of
a logarithmic potential was formulated and solved in a special case. These results were
published by Pap and Schipp in [137, 118, 119, 130]. The formulated problem was solved
in generality recently in [79] by Marcell Gaál, Béla Nagy, Zsuzsanna Nagy-Csiha, Szilárd
Révész.

4.1 Malmquist–Takenaka systems

The first mention of rational orthonormal systems in the Hardy space of complex
variable functions seems to have occurred in the work of Takenaka and Malmquist [110,
163]. These systems can be viewed as extensions of the trigonometric system on the unit
circle, that corresponds to the special choice when all poles are located at the origin.

This orthonormal system is generated by a sequence a “ pa1, a2, ...q of complex num-
bers, an P D of the unit disc D and can be expressed by the Blaschke functions

Bapzq :“
z ´ a

1´ az
pa P D, z P C, 1´ bz ‰ 0q.

On the unit circle, Ba can be written in the form

Bape
it
q “ eiβaptq pt P R, a “ reiτ P Dq,
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where

βaptq :“ τ ` γspt´ τq, γsptq :“ 2 arctan

ˆ

s tan
t

2

˙ ˆ

t P r´π, πq, s :“
1` r

1´ r

˙

and γs is extended to R by γspt ` 2πq “ 2π ` γsptq pt P Rq. For the detailed description
of the β functions see [20].

The Malmquist-Takenaka system (M-T) Φn “ Φa
n pn P N˚q is defined by

Φ1pzq “

a

1´ |a1|
2

1´ a1z
,Φnpzq “

a

1´ |an|2

1´ anz

n´1
ź

k“1

Bakpzq, n ě 2. (4.1)

When all the parameters are equal, i.e., an “ a, n P N˚, we obtain the so called discrete
Laguerre system and particularly, when an “ 0, n P N˚ we obtain the trigonometric
system. These functions form an orthonormal system on the unit circle i.e.,

xΦn,Φmy “
1

2π

ż 2π

0

Φnpe
it
qΦmpeitqdt “ δmn pm,n P N˚q,

where δnm is the Kronecker symbol. If the sequence a “ pa1, a2, ...q satisfies the non-
Blaschke condition

ÿ

ně1

p1´ |an|q “ `8,

then the corresponding M-T system is complete in the Hardy space of the unit disc.
In system theory the M-T systems are often used to identify the transfer function

of the system. Fridli, Lócsi and Schipp in [76] used the M-T system in ECG signal
processing. Recently Fridli, Gilian and Schipp in [77] introduced the analogue of the M-T
system which is orthogonal on the unit disc regarding to the area measure. In [75] the
construction of biorthogonal rational systems was studied.

Using the transforms given by (2.20) and (2.21) we can make the transition to the
upper half plane. The system

Ψnpzq :“ pTΦnqpzq “ pTfqpzq :“
1
?
π

1

i` z
ΦnpCpzqq p=z ě 0, n P N˚q,

which is an analogue of the Malmquist-Takeneka system for the upper half plane, is
orthonormal in L2pRq. It is easy to check that for a P D with a˚ :“ 1{a,

λa :“ C´1
paq “ i

1´ a

1` a
P C`, λa˚ “ λa,

a

1´ |a|2

|1` a|
“
a

=λa, (4.2)

and

b̃apzq “ bap´1q
z ´ λa

z ´ λa
, r̃apzq “ rap´1q

z ` i

z ´ λa
pz P C`q. (4.3)
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This implies that the functions Ψn “ TΦn pn P N˚q are of the form

Ψ1pzq “
1
?
π

Φ1p´1q

z ´ λa1
, Ψnpzq “

1
?
π

Φnp´1q

z ´ λan

n´1
ź

k“1

z ´ λak
z ´ λak

. (4.4)

Moreover, if the following non-Blaschke condition for the upper half plane is satisfied
8
ÿ

k“1

=λk
1` |λk|2

“ 8,

then pΨn, n P N˚q is a complete orthonormal system for H2pC`q.

4.2 Discrete orthogonality of the Malmquist-Takenaka

systems

First let us recall the discrete orthogonality of the Malmquist–Takenaka system for
the unit disc. The Blaschke product BN “

śN
j“1Baj on the unit circle can be written as

BNpe
it
q “

N
ź

j“1

Bajpe
it
q “ eipβa1 ptq`¨¨¨`βaN ptqq pt P R, N “ 1, 2...q.

This implies that the solutions of the equation

w ´ a1

1´ a1w
¨
w ´ a2

1´ a2w
¨ ¨ ¨

w ´ aN
1´ aNw

“ e2πiδ
pδ P Rq (4.5)

are given by

wk :“ eiτk , τk :“ θ´1
N p2πppk ´ 1q ` δq{Nq pk “ 1, 2, ...Nq, (4.6)

where θ´1
N is the inverse of the function

θNptq :“
1

N
pβa1ptq ` ¨ ¨ ¨ ` βaN ptqq pt P Rq.

Let us consider

TN :“ Ta,δ
N :“ twk “ eiτk : k “ 1, 2, ..., Nu pN “ 1, 2, ...q, (4.7)

the set of solutions of the equation (4.5). We name TN the set of discretization nodes on
the unit circle. Let us consider the weight function ρN given for w P T by

1

ρNpwq
:“

N
ÿ

k“1

1´ |ak|
2

|1´ akw|2
pw P T, N “ 1, 2, ...q.

The discrete orthogonality of the Laguerre, Kautz was investigated by Schipp [137],
and later for Malmquist–Takenaka systems was investigated by Pap and Schipp in [118],
where it was proved the following theorem:
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Theorem 4.2.1 (Pap, Schipp [118]). The finite collection of functions Φn p1 ď n ď Nq
forms a discrete orthonormal system with respect to the scalar product

rF,GsN :“
ÿ

wPTa,δ
N

F pwqGpwqρNpwq,

namely
rΦn,ΦmsN “ δmn p1 ď m,n ď Nq.

Lócsi in [107] analyzed the efficiency of numerical methods, as the bisection method
and Newtons method, in the case of calculating non-equidistant discretizations (4.7) gen-
erated by Blaschke products. In the case of Blaschke products, the inverse of the argument
function has no explicit form, numerical methods are needed to solve the arising non-linear
equations. We have as many equations as the number of points in the discretization to
generate. He made several experiments concerning the calculation of non-equidistant dis-
cretizations generated by Blaschke products and the associated argument functions. He
managed to reduce the time needed for the calculation (using the bisection method) to
about 50–70 percent of the original time by introducing a better order of the discrete
points to calculate. Further improvements have been measured by applying Newtons
algorithm combined with the above.

Kovács, in his PhD thesis [98], provides subroutines for evaluating Blaschke functions,
MT and biorthogonal rational systems along with continuous and discrete implementa-
tions, implementations of the real valued MT systems, of the continuous and of the dis-
crete biorthogonal systems, and signal processing applications with experiments on ECG
recordings. These results were published also in journals [99, 100] by Kovács and Lócsi.
They introduced a fast algorithm to compute the non-uniform discretization points for
discrete rational orthogonal and biorthogonal systems. In order to do that, they needed
new concepts for constructing an effective numerical solution. Namely, a good estima-
tion process is developed for the sampling points based on the monotonic behavior of
the argument function. Then, a sequence of fixed-point iteration is executed starting
with appropriate initial values. Furthermore, they perform tests for the convergence of
some root-finding algorithms in order to achieve the best accuracy. These methods are
compared in terms of evaluation time and step number. A new Matlab toolbox has been
introduced together with signal processing methods which can be useful in a wide range
of applications. For instance, these systems are capable of representing different types of
discrete-time series. Both equidistant and non-uniform discretizations can be used. Four
types of signal representations are available due to different classes of rational function
systems. Moreover, two Matlab GUIs were implemented for educational purposes.

The first GUI is called blaschke-tool. It can be used to visualize the connection
between the position of the inverse pole and the values of the argument function. In
order to demonstrate the properties of the MT systems, they build up the GUI called
malmquist-tool. Here, the user can change the positions, the number and the multiplicities
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of inverse poles, interactively. The argument function is also displayed on the unit disc.
Furthermore, all the members of the MT system can be visualized according to the selected
inverse poles. It is not only the complex case, but the real valued MT-Fourier expansions
are implemented as well. Moreover, both the real and the complex discretizations are
available for interpolation purposes.

The analogue of the previous theorem for the Malmquist–Takenaka system of the
upper half plane was proved by Eisner and Pap in [59]. The transformation formulas to
the upper half plane imply that

B̃Npzq :“ BNpCpzqq “ BNp´1q
N
ź

k“1

z ´ λak
z ´ λak

.

Let us consider the set of discretization points and the weight for the Malmquist-Takenaka
system on the upper half plane

Ra,δ
N :“ tC´1

pwq : w P Ta,δ
N u “ C´1

pTa,δ
n q, ρ̃Nptq :“ πp1` t2qρNpCptqq pt P Rq.

Then by Theorem 4.2.1 we get that

δmn “
ÿ

zPC´1pTa,δ
N q

ΦnpCpzqqΦmpCpzqqρNpCpzqq “ π
ÿ

zPRa,δ
N

ΨpzqΨmpzq|i` z|
2ρNpCpzqq.

Thus we get that the Malmquist-Takenaka system of the upper half plane is also
discrete orthogonal, i.e.,

Theorem 4.2.2 (Eisner, Pap [59]). The finite collection of functions Ψn p1 ď n ď Nq
forms a discrete orthonormal system with respect to the weight function ρ̃N :

ÿ

zPRa,δ
N

ΨpzqΨmpzqρ̃Npzq “ δmn p1 ď m,n ď Nq.

We mention that, based on the discrete orthogonality of the Malmquist–Takenaka
systems, Szabó, Eisner, Király, Pilgermájer, Pap in [161, 59, 97] introduced new rational
interpolation operators and studied their properties. In the case of the upper half plane
the introduced interpolation operator gives an exact interpolation for the Runge test
function.

4.3 Equilibrium condition on the unit circle

The set of the discretization nodes on the unit circle satisfies an equilibrium condition
and is a stationary point for a logarithmic potential function. These results were published
first for the discrete Laguarre case by Schipp in [137], and in more generality for M-T
system by Pap and Schipp in [119, 118]. Here we present a short overview of them.
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Let us consider the following notations: for any complex number z P Czt0u set z˚ :“
1{z and introduce the polynomials

ω1pwq :“
N
ź

k“1

pw ´ akq, ω2pwq :“
N
ź

k“1

p1´ akwq,

ωpwq :“ ω11pwqω2pwq ´ ω
1
2pwqω1pwq pz P Cq.

It is clear that ω is a polynomial of degree 2N ´ 2. It can be proved (see [118]) that if c
is a root of ω with multiplicity m then c˚ is also a root of ω with the same multiplicity.
Denote by c1, c

˚
1 , ..., cN´1, c

˚
N´1 the roots of ω.

Theorem 4.3.1 (Pap, Schipp [118]). For every δ P R the numbers wn :“ eiτn P Ta,δ
N ,

τn :“ θ´1
N p2πppn´ 1q ` δq{Nq pn “ 1, 2, ..., Nq are the solutions of the equilibrium equa-

tions
N
ÿ

k“1,k‰n

1

wn ´ wk
“

1

2

N´1
ÿ

j“1

ˆ

1

wn ´ cj
`

1

wn ´ c˚j

˙

pn “ 1, ..., Nq. (4.8)

The electrostatic interpretation of (4.8) is the following: if negative unit charges are
placed to the points ck and c˚k, then n positive unit charges places to the points wj will
be in equilibrium in the external field generated by the negative charges.

In the case of discrete Laguerre functions a1 “ ¨ ¨ ¨ “ aN “ a and ωpwq “ Np1 ´
|a|2qpw´aqN´1p1´awqN´1. Thus the roots of ω are a and a˚ with multiplicity N ´1, i.e.,
c1 “ ¨ ¨ ¨ “ cN´1 “ a. In the case of Kautz system N “ 2M , a1 “ a3 “ ¨ ¨ ¨ “ a2M´1 “ a,
a2 “ a4 “ ¨ ¨ ¨ “ a2M “ b :“ a and consequently

ωpwq “ Ωpwqrpw ´ aqpw ´ bqp1´ awqp1´ bwqsM´1,

where Ωpwq “M rp1´ |a|2qpw´ bqp1´ bwq ` p1´ |b|2qpw´ aqp1´ awqs. Thus in this case
c1, c

˚
1 are the roots of Ω, c2 “ ¨ ¨ ¨ “ cM “ a, cM`1 “ ¨ ¨ ¨ “ c2M´1 “ b. In the special case

a1 “ a2 “ ... “ 0 from the Malmquist– Takenaka system we reobtain the trigonometric
system, the corresponding sets of discretization are

TδN :“ te2πipn´1`δq{N : n “ 1, 2, . . . , Nu p0 ď δ ă 1q.

In this case the equilibrium condition becomes:

N
ÿ

k“1,k‰n

1

wn ´ wk
“
N ´ 1

2
¨

1

wn
pn “ 1, ..., Nq.

This special case can be found for example in the book [7] p. 425, moreover for this case
the following minimum property is true: the potential energy

W pv1, ¨ ¨ ¨ , vNq “ ´ log
ź

1ďjăkďN

|vk ´ vj| pv1, ¨ ¨ ¨ , vN P Tq
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attains its minimum when vk “ wk P Tδn ( k “ 1, ..., N).
This special case is the so called Stieltjes problem on the unit circle and has the

following interpretation: if N freely moving unit charges lie on thin circular conductor of
unit radius, then the potential energy of the system is W pv1, ¨ ¨ ¨ , vNq and this is minimal
if the charges are located in TδN , and this minimum is equal to ´N

2
logN .

This motivates the interest in the examination of similar minimum property in general
for the discretization points of M-T system given by (4.7):

wn “ eiτn P Ta,δ
N , τn :“ θ´1

N p2πppn´ 1q ` δq{Nq pn “ 1, 2, ..., Nq.

In [119] the following theorem was proved:

Theorem 4.3.2 (Pap [119]). The point pw1, w2, ..., wNq P Ta,δ
N is a stationary point of

the logarithmic potential

W pv1, ..., vNq “ ´ log

˜

ź

1ďjăkďN

|vj ´ vk|
N´1
ź

k“1

N
ź

j“1

p|vj ´ ck||vj ´ c
˚
k|q
´1{2

¸

(4.9)

pv1 “ eit1 , ..., vN “ eitN P Tq,
i.e.,

BW peiτ1 , ..., eiτN q

Btn
“ 0 pn “ 1, ..., Nq. (4.10)

For vj P T we have

|vj ´ c
˚
k| “ |vj ´ 1{ck| “ |1{vj ´ 1{ck| “ |vj ´ ck|{|ck|,

and consequently replacing in (4.9) ck by c˚k we get a function which differs from W by an
additive constant. Thus if negative unit charges are placed to the points ck, the n positive
unit charges places to the points wj, will be in equilibrium in the external field generated
by the negative charges.

In a natural way the following question arises for the general case: is the stationary
point pw1, w2, ..., wNq a minimum point for the potential function W? The transition to
the upper half plane of these results permitted to answer this question.

4.4 Equilibrium condition on the real line

In this section we present the transition of the equilibrium condition to the upper half
plane. In what follows we prove that the discretization nodes on the real line satisfy an
analogue equilibrium property. For λ1, ¨ ¨ ¨ , λN P C` let us consider the polynomials

φ1pzq :“
N
ź

k“1

pz ´ λkq, φ2pzq :“
N
ź

k“1

pz ´ λkq,
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φpzq :“ φ11pzqφ2pzq ´ φ
1
2pzqφ1pzq pz P Cq.

It is clear that φ is a polynomial of degree 2N ´ 2. It is easy to prove that if d is a root of
φ with multiplicity m then d is also a root of φ with the same multiplicity. Let us denote
by d1, d1, . . . , dN´1, dN´1 the roots of φ, i.e.,

φpzq “
N´1
ź

j“1

pz ´ djqpz ´ djq pz P Cq. (4.11)

The numbers ak :“ Cpλkq pk “ 1, ¨ ¨ ¨ , Nq are in D and by (4.3)

BNpCpzqq “ BNp´1q
N
ź

k“1

z ´ λk

z ´ λk
“ BNp´1q

φ1pzq

φ2pzq
.

The functions ω1, φ1, ω2, φ2 and ω, φ can be expressed by each others:

pi` zqNω1pCpzqq “ ω1p´1qφ1pzq, pi` zq
Nω2pCpzqq “ ω2p´1qφ2pzq

pi` zq2N´2ωpCpzqq “ ´ω1p´1qω2p´1qφpzq (4.12)

and consequently ωpCpdjqq “ 0, if dj ‰ ´i.
Denote wδ1, ¨ ¨ ¨ , w

δ
N P T the N (pairwise distinct) solutions of the equation BNpwq “

e2πiδ. Then the numbers tk :“ tδk :“ C´1pwδkq P R pk “ 1, ¨ ¨ ¨ , Nq are the solutions of

φ1pzq

φ2pzq
“ q :“ e2πiδ

{BNp´1q P T (4.13)

and we have the following equilibrium condition for the discretization points of the
Malmquist-Takenaka system of the upper half plane:

Theorem 4.4.1 (Pap, Schipp [130]). Let q P T and denote by tn “ tδn P R pn “
1, 2, . . . , Nq the solutions of (4.13), where δ P r0, 1q. Then the following equilibrium
conditions are satisfied:

N
ÿ

k“1,k‰n

1

tn ´ tk
“

1

2

N´1
ÿ

j“1

ˆ

1

tn ´ dj
`

1

tn ´ dj

˙

pn “ 1, ¨ ¨ ¨ , Nq. (4.14)

Proof of Theorem 4.4.1. By the definition of tk it follows that gpzq :“ φ1pzq ´
qφ2pzq “ 0 if and only if z “ tk pk “ 2, . . . , Nq. Set

fpzq “
N
ź

k“1

pz ´ tkq.

The polynomials f and g have the same degree and roots, therefore f “ λg with λ P C,
a constant.
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It is easy to see that

g2ptnq

2g1ptnq
“

f2ptnq

2f 1ptnq
“

N
ÿ

k“1,k‰n

1

tn ´ tk
pn “ 1, 2, . . . , Nq.

By the definition of tn,
φ1ptnq

φ2ptnq
“ q pn “ 1, 2, . . . , Nq.

On the other hand we get that:

g2ptnq

g1ptnq
“
φ21ptnq ´ qφ

2
2ptnq

φ11ptnq ´ qφ
1
2ptnq

“
φ2ptnqφ

2
1ptnq ´ φ1ptnqφ

2
2ptnq

φ2ptnqφ11ptnq ´ φ1ptnqφ12ptnq
“
φ1ptnq

φptnq
.

From (4.11) we have

φ1ptq

φptq
“

N´1
ÿ

k“1

ˆ

1

t´ dk
`

1

t´ dk

˙

and our claim is proved.
In the special case, when a1 “ ¨ ¨ ¨ “ aN “ a “ r P r0, 1q, we have by (4.2),

λj :“ C´1
paq “ i

1´ r

1` r
“ ip, p :“

1´ r

1` r
ą 0 pj “ 1, 2, . . . , Nq.

By the definition of βa and θN in this case we have

θNptq “ βrptq “ γsptq “ 2 arctanps tanpt{2qq, θ´1
N ptq “ γ1{sptq, s “

1` r

1´ r
.

By (4.6) the solution of BNpwq “ e2πiδ are wk “ eiτk , where

τk “ γ1{sp2πpk ´ 1` δq{Nq pk “ 1, 2, . . . , Nq,

consequently for tk “ C´1peiτkq we get

tk “ tanpτk{2q “
1

s
tan

´ π

N
pk ´ 1` δq

¯

“ p tan
´ π

N
pk ´ 1` δq

¯

.

Thus in the case λ1 “ λ2 “ ... “ λN “ ip pp ą 0q the corresponding nodal points are
tn “ p tanppn´ 1` δqπ{Nq p0 ď δ ă 1q. In this case the equilibrium condition becomes:

N
ÿ

k“1,k‰n

1

tn ´ tk
“
N ´ 1

2

ˆ

1

tn ´ ip
`

1

tn ` ip

˙

pn “ 1, ..., Nq.
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Let us introduce the analogue for the upper half plane of the potential function W given
by (4.9) :

V px1, ..., xNq “ ´ log

˜

ź

1ďjăkďN

|xj ´ xk|
N´1
ź

k“1

N
ź

j“1

p|xj ´ dk||xj ´ dk|q
´1{2

¸

(4.15)

px1, ..., xNq P RN , pd1, ..., dN´1q P CN´1
` .

Obviously (4.14) is equivalent to

BV pt1, ..., tNq

Bxn
“ 0 pn “ 1, ..., Nq, (4.16)

i.e., pt1, t2, ..., tNq is a stationary point of the potential function V . The function V can
be expressed by

Vdps, tq :“
|s´ t|

|ps´ dqpt´ dq|
ps, t P R, d P C`q.

Namely, using the identity p|x´ d||x´ d|q´1{2 “ |x´ d|´1 px P R, d P C`q we get

V px1, x2, ¨ ¨ ¨ , xNq “ ´
1

N ´ 1
log

˜

ź

1ďjăkďN

N´1
ź

`“1

Vd`pxj, xkq

¸

. (4.17)

In a similar way the potential W in (4.9) can by expressed by the functions

Wcpv, wq :“
|v ´ w|

|pv ´ cqpw ´ cq|
pc P D, v, w P Tq.

Namely,

W pv1, ¨ ¨ ¨ , vNq “ ´
1

N ´ 1
log

˜

ź

1ďjăkďN

N´1
ź

`“1

Wc`pvj, vkq

¸

.

The functions V and W are closely connected. It is easy to see that

WcpKpx1q, Kpx2qq “
2

|1` c|2
VK´1pcqpx1, x2q px1, x2 P R, c P Dq.

This implies

Theorem 4.4.2 (Pap, Schipp [130]). If dk P C`, ck “ Cpdkq pk “ 1, . . . , N ´ 1q then

W pCpx1q, . . . , CpxNqq “ V px1, . . . , xNq ` const ppx1, ¨ ¨ ¨ , xNq P RN
q,

consequently pt1, ¨ ¨ ¨ , tNq P RN is a minimum position for V, if and only if

w1 “ Cpt1q, . . . , wN “ CptNq P T

is a minimum position for W .
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For the function V we can give a geometrical interpretation. Let us consider the
triangle in the complex plan with vertices s, t P R, d P C` and denote by α the angle at
the vertex d. Then by the area formula |s´ t|=d “ |d´ s||d´ t| sinα ,

Vdps, tq “
sinα

=d
.

Instead of V we investigate the maximum of the function

T pxq :“ T px1, x2, ¨ ¨ ¨ , xNq :“
ź

1ďjăkďN

N´1
ź

`“1

Vd`pxj, xkq px P R
N
q.

Theorem 4.4.3 (Pap, Schipp [130]). In the special case of discrete Laguerre-system
i.e., if

λ1 “ ¨ ¨ ¨ “ λN “ ip pp ą 0q (4.18)

the function T attains its maximum at tδn “ p tanppn´ 1` δqπ{Nq, where p0 ď δ ă 1, n “
1, . . . , Nq.

Proof of Theorem 4.4.3. Let x1 ă x2 ă ¨ ¨ ¨ ă xN , P “ ip and denote the angle
xjPxj`1? by αj p1 ď j ă Nq. Then the function T is constant times of

Spαq :“
ź

1ďjăkďN

sinαjk, αjk :“ αj ` ¨ ¨ ¨ ` αk´1,

α “ pα1, . . . , αN´1q P A :“ tα P RN´1 : 0 ă αj, α1 ` ¨ ¨ ¨ ` αN´1 ă πu.

The function S does not depend on the position of x1. In addition S is continuous and
non negative and vanishes at the boundary of A. Thus S has a maximum position in
A. In addition, this position is uniquely determined. To show this, let us suppose that
α11, . . . , α

1
N´1 and α21, . . . , α

2
N´1 are two position of this kind. Denote αj :“ pα1j`α

2
j q{2 pj “

1, . . . , N ´ 1q. Since

sin s sin t ď sin2

ˆ

s` t

2

˙

p0 ď s, t ď πq,

we have
Spα1qSpα”q ď S2

pαq,

the equality sign being taken if and only if α1j “ α2j “ αj pj “ 1, . . . , N ´ 1q. This
establishes the uniqueness. The maximum position α̃ is the solution of

BSpα̃q

Bαj
“ 0 pj “ 1, . . . , N ´ 1q.
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It is easy to see that α̃j “ π{N pj “ 1, . . . , N ´ 1q. Fix x1 and denote by δj the
angle at vertices xj of the triangle Pxj0. Then in the maximum position of S we have
δj “ δj´1`π{N pj “ 2, . . . , Nq, i.e., δj “ δ1`pj´1qπ{N pj “ 1, 2, . . . , Nq. Consequently,

xN´j`1 “ p tanpπ{2´ δN´j`1q “ p tanpπ{2´ δ1 ´ pN ´ jqπ{Nq “

“ p tanp´π{2´ δ1 ` π{N ` pj ´ 1qπ{Nq “ p tanpδπ{N ` pj ´ 1qπ{Nq

pj “ 1, 2, . . . , Nq,

where δπ{N :“ ´π{2 ´ δ1 ` π{N . Thus xN´j`1 “ tδj pj “ 1, 2, . . . .Nq and we get the
equilibrium positions in the Theorem.

We note that Totik in [165] following the ideas of the presented proof gave an elemen-
tary proof for the transfinite diameter of the unit circle.

In [130] Pap and Schipp solved the question connected to minimum for a special case
of M-T system, for the discrete Laguarre system, and formulated the problem in general
for M-T systems as an open problem.

Problem. Does the function V defined before in the position t1, t2, ..., tN P R attain
its minimum ?

The formulated problem was solved in generality recently in [79] by Marcell Gaál, Béla
Nagy, Zsuzsanna Nagy-Csiha, Szilárd Révész. The question was answered positively using
a recent result given by Semmler and Weger [145]. They showed that the equilibrium
condition satisfied by the discretization nodes (see Theorem 4.3.1 and Theorem 4.4.1)
are equivalent that they arise from critical points of a logarithmic potential energy. In
[79] the authors first studied on the unit circle a quite general logarithmic energy which
is determined by a signed measure, and prove that after inverse Cayley transform the
transformed energy on the real line differs only in an additive constant. Next using the
result of Semmler and Wegert they could give an affirmative answer to the question posed
by Pap and Schipp. The a positive answer given to this question in general is proved with
different method than the proof of the presented special case.
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Chapter 5

Quaternionic extension of some
results

Quaternions play an important role in modeling the time and space dependent prob-
lems in physics and engineering. For example in engineering applications unit quaternions
are used to describe the three dimensional rotations. In the last years quaternions gained
a new life due to their applicability in signal processing. This is due to the applicability of
quaternion-valued functions to color-coded images as well as the link to new concepts of
higher-dimensional phases, like the hypercomplex signals of Bülow or the monogenic sig-
nals by Larkin and Felsberg (see [27, 71, 106]). Another important field, where quaternions
play an important role is quantum theory. Adler, a world-renowned theoretical physicist,
in his book Quaternionic Quantum Mechanics and Quantum Fields [2], provides an in-
troduction to the problem of formulating quantum field theories in quaternionic Hilbert
space. This well-written treatise is a very significant contribution to theoretical physics.
Bernardo Vargas in the review of this book mentioned that the quaternionic formalism
is to improve some treatments of theoretical physics. But the full power of quaternions
would be even more important by using quaternionic analysis.

This motivates to extend the results of modern harmonic analysis, like the wavelet
theory, to quaternion variable function spaces.

A first step in this direction is to give the quaternionic analogue of the Blaschke group.
The main obstacle in the study of quaternion-valued matrices and functions, as expected,
comes from the non-commutative nature of quaternionic multiplication.

Cerejeiras, Ferreira and Kähler [30] constructed monogenic wavelet transforms for
quaternion valued functions on the three dimensional unit ball in R3. The construction
is based on representations of the group of Möbius transformations which maps the three
dimensional unit ball onto itself.

In section 5.2 we introduce the four dimensional quaternionic analogue of the Blaschke
group and we list the main subgroups of this groups. The results were published by Pap
and Schipp in [131].
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Beside the monogenic quaternionic function theory, where many difficulties appear
when we want to make analysis, the theory of slice regular functions and the analysis
on this field would be an alternative tool for the quantum theory. To introduce new
orthonormal systems in the slice regular Hardy space, is therefore an interesting topic
that is worthwhile to be studied.

In [120, 135] Pap, Schipp and Qian, Sprossig, Wang respectively, following two different
ways, introduced two analogues of the M-T systems in the set of quaternions. While in
the complex case both ways give the same M-T system, in the quaternionic setting this
is not anymore true. The drawback of both constructions is that these extensions will
not inherit all the nice properties of the before mentioned complex M-T system, e.g., the
system introduced by Pap and Schipp is not analytic in the quaternionic setting. The
system introduced by Qian, Sprossig, Wang, is monogenic but can not be written in closed
form.

Pap in [132] introduced a new generalization of the complex Malmquist-Takenaka sys-
tem in the quaternionic slice regular Hardy space, which is slice regular and in same time
can be given in closed form. In Section 5.3 results connected to slice regular Malmquist-
Takenaka system are presented. We proved that, similar to the complex case, under
certain conditions of the parameters of the system this is a complete orthonormal system
in the slice regular Hardy space of the unit ball. We also proved that the associated
projection operator pPnf, n P Nq is convergent in H2pDq norm to f , and Pnfpzq Ñ fpzq
uniformly on every compact subset of the unit ball. In the same time the restriction of
Pnfpzq to a slice DI is an interpolation operator of f .

5.1 Quaternions

Quaternions are extensions of complex numbers. In order to introduce the quaternionic
analogue of the Blaschke group it is convenient to use the matrix representation of the
quaternions, because it makes possible to use the properties of the matrices at different
computations.

Let us denote by

E :“ E0 :“

ˆ

1 0
0 1

˙

, E1 :“

ˆ

i 0
0 ´i

˙

, E2 :“

ˆ

0 1
´1 0

˙

, E3 :“

ˆ

0 i
i 0

˙

(5.1)

the quaternion units, where i P C is the complex imaginary unit. Similar to the property
i2 “ ´1 of the complex unit, the quaternion units satisfy the following equations: E2

j “

´E pj “ 1, 2, 3q. Since E1E2 “ ´E2E1 “ E3, E2E3 “ ´E3E2 “ E1,E3E1 “ ´E1E3 “ E2,
the set t˘Ej : j “ 0, 1, 2, 3u is closed with respect to multiplication. Let us denote by

Q :“
!

Z :“
3
ÿ

j“0

zjEj : z “ pz0, z1, z2, z3q P R4
)

(5.2)
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the set of quaternions, which is a non-commutative field with the unit element E and null
element the null-matrix Θ P C2ˆ2. Let us denote by

Z :“ z0E0 ´

3
ÿ

j“1

zjEj “ Z˚, |Z| :“
´

3
ÿ

j“0

z2
j

¯1{2

, ZZ˚ “ |Z|2E,

the analogue of the conjugate which in matrix representation is Z˚, the adjoint matrix of
Z P C2ˆ2, and the absolute value of the Z “

ř3
j“0 zjEj P Q. The map Z Ñ |Z| defines a

multiplicative norm:

|Z1 ` Z2| ď |Z1| ` |Z2|, |Z1 ¨ Z2| “ |Z1| |Z2| pZ1, Z2 P Qq.

The multiplicative inverse of a nonzero quaternion Z P Q in matrix representation is
Z´1 “ Z˚{|Z|2. The analogue of the complex torus and unit disc in the set of the
quaternions are defined by T :“ tZ P Q : |Z| “ 1u, and D :“ tZ P Q : |Z| ă 1u
respectively. From the property of the norm it follows that T is a multiplicative subgroup
of the multiplicative group of Q, which can be identified by the matrix group SU2.

Taking into account that RE and R are isomorphic (RE u R) and CE u C, the field
pQ,`, ¨q can be considered as an extension of R and C, respectively. The purely imaginary
quaternion Ic :“

ř3
j“1 cjEj pc “ pc1, c2, c3q P R3q satisfies the equation I2

c “ ´|c|
2E. The

map c Ñ Ic is a linear isomorphism between R3 and the set of purely imaginary quaternion
J :“ tZ “ Ic : c P R3u “ tZ P Q : spurpZq “ 0u, consequently R3 and J can be identified.

The two dimensional subspace

Qc :“ tQcpzq :“ xE ` yIc : z “ x` ıy P Cu Ă Q pc P R3, |c| “ 1q (5.3)

of Q is called the slice of Q in the direction of the vector c. The map Qc : C Ñ Qc is a
linear isomorphism. From I2

c “ ´E p|c| “ 1q it follows that

Qcpz1 ` z2q “ Qcpz1q `Qcpz2q, Qcpz1 z2q “ Qcpz1qQcpz2q pz1, z2 P Cq, (5.4)

and obviously Qcpzq “ Q˚cpzq pz P Cq. This implies that the map Qc is an isometric
isomorphism between the fields C and Qc.

In the literature it is used also the algebraic representation of the quaternions. Let i, j
and k satisfy the following identities: i2 “ j2 “ k2 “ ´1, ij “ ´ji “ k, ki “ ´ik “ j,
named as Hamilton’s rules. A quaternion q can be represented as q “ z0 ` z1i ` z2j `
z3k, pzn P R, n “ 0, 1, 2, 3q. Let the set of quaternions be denoted by

H :“ tq “ z0 ` z1i` z2j ` z3k : zn P R, n “ 0, 1, 2, 3u.

The conjugate of a quaternion q is given by q “ z0´z1i´z2j´z3k, and the quaternion
norm is }q} “

?
q.q “

?
q.q “

a

z2
0 ` z

2
1 ` z

2
2 ` z

2
3 . We mention that the product of

quaternions is not commutative in general and a.b “ b.a. The multiplicative inverse of q
is q´1 “ q{qq and pH,`, .q is a noncommutative field (skew field).
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Comparing the algebraic representation with the matrix representation, E0 corre-
sponds to 1, E1 to i, E2 to j, E3 to k, Z to q and Z˚ to q respectively. The two
representations are equivalent. We use both representations, depending on which is more
convenient for our purpose.

As we have mentioned the complex numbers and their extensions, the quaternions are
very useful in the description of many problems in geometry and physics. For example the
rotations in the Euclidian plane C can be described using the map z Ñ εz where ε, z P C
are complex numbers and ε “ eiα P T pα P Rq. In this case α is the angle of the rotation.

If instead of complex numbers we use quaternions, we can describe the rotations in R3

with a relatively simple map. In order to illustrate this, we use the analogue of the Euler
formula eit “ cos t` i sin t pt P Rq:

etIc “ E cos t` Ic sin t pt P R, c P R3, |c| “ 1q. (5.5)

From this it follows that, similarly to unit complex numbers, every unit quaternion S “
z0E ` Iz pz “ pz1, z2, z3q P R3q, |S| “ 1 can be represented as S “ etIc , where cos t “
z0, c “ z{|z|.

The relation spurpSZS˚q “ spurpZq pS P T, Z P Qq implies that the map Z Ñ SZS˚

takes the subspace J, which is isomorphic with R3, in itself and can be interpreted as a
rotation around the axis c of the space R3 with angle 2t. The image of the slice Qc trough
this rotation will be the slice Qb for which Ib “ SIcS

˚ pS P Tq, i.e., Qb “ SQcS
˚. The

polar representation of the quaternion Z P Q can be written as

Z “ ρetIc pρ “ |Z|, t P R, Ic P Jq. (5.6)

5.2 The Blaschke group over the set of quaternions.

Pap and Schipp in [131] introduced the quaternionic analogue of the Blaschke group.
The Blaschke functions can be defined also among quaternions. The formulas are very

similar to the complex case:

BApZq :“ pZ ´ AqpE ´ A˚Zq´1
pA P D, Z P D :“ tZ P Q : |Z| ď 1uq. (5.7)

It can be proved that these quaternionic Blaschke functions have many analogous prop-
erties of the complex Blaschke functions (see [13]). One of this is:

1´ |BApZq|
2
“
p1´ |A|2qp1´ |Z|2q

|E ´ A˚Z|2
pA P D, Z P Dq. (5.8)

From this it follows that, similar to the complex case, for any A P D the function BA

takes the quaternion unit disc D into D, and the quaternion unit torus T into T.
Because of the non commutativity of the product operation in Q, in order to generate

the quaternion analogue of the complex Blaschke group, we have to introduce a right and
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left unit quaternion factor from T in (5.7) instead of the multiplication by complex ε P T.
We consider in Q the following function:

CApZq :“ pE ´ ZA˚q0 :“
E ´ ZA˚

|E ´ ZA˚|
pA P D, Z P Dq. (5.9)

It is obvious that CA takes D into T, and CZpAq “ C˚ApZq pA,Z P Dq.
First we show that for the extended quaternion Blaschke functions, given by (5.7), an

analogous rule of composition holds.

Theorem 5.2.1 (Pap, Schipp [131]). For every A1, A2 P D and Z P D we have

BA1pBA2pZqq “ UBApZqV
˚,

where
A “ B´A2pA1q, U “ C´A2pA1q, V “ C´A˚2 pA

˚
1q. (5.10)

We observe that for the complex unit parameter ε, in the quaternion case it corresponds
a right and left unit quaternion. The product of these two factors in the complex case,
where we can interchange the order of the terms, gives the analogue of the ε factor.

To get a collection of functions closed with respect to the composition operation ˝ it
is convenient to introduce the parameter set B :“ TˆDˆT and the function set

B :“ tBa :“ UBAV
˚ : a “ pU,A, V q P Bu. (5.11)

For the extended quaternion Blaschke functions we have

|BapZq| “ |BApZq| ď
|A| ` |Z|

1` |A||Z|
pA P D, Z P Dq (5.12)

and Ba takes D into D. Applying formula (5.10) for A1 “ A, A2 “ ´A we get U “ V “ E
and

BApB´ApZqq “ B´ApBApZqq “ Z pZ P D, A P Tq.

This implies that BA : D Ñ D, BA : T Ñ T is bijective and B´1
A “ B´A.

The set of functions B is closed with respect to the inverse operation. In order to
prove this we will use the formula

U˚BApUZV
˚
qV “ BU˚AV pZq pA P D, U, V P Tq. (5.13)

Let us introduce the map a “ pU,A, V q Ñ pa :“ UAV ˚ from B to D. Based on the
previous relation it follows that any function of the form

Ba “ UBAV
˚
pa “ pU,A, V q P Bq
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has an inverse given by

B´1
a pZq “ U˚B´UAV ˚pZqV “ U˚B´papZqV. (5.14)

Indeed, BapXq “ UBApXqV
˚ “ Z is equivalent to, B´1

a pZq “ X “ B´ApU
˚ZV q.

From this we get
B´1
a pZq “ U˚B´UAV ˚pZqV “ U˚B´papZqV.

It can be proved that the set of functions B is closed with respect to function compo-
sition, consequently pB, ˝q is a transformation group on D and T respectively, called the
quaternion Blascke transformation group.

Theorem 5.2.2 (Pap, Schipp [131]). For any two functions Ba1 ,Ba2 P B

paj “ pUj, Aj, Vjq P B, j “ 1, 2q,

we have
Ba1 ˝ Ba2 “ Ba pa “ pU,A, V q P Bq,

where
A “ B´1

a2
pA1q, U “ U1C´pa2pA1qU2, V “ V1C´ppa2q˚pA

˚
1qV2. (5.15)

The unit element of this group is Be, where e “ pE,Θ, Eq.
The bijection B Q a Ñ Ba P B induces in the set of the parameters B an operation,

a1da2 “ a for which Ba1 ˝Ba2 “ Ba. The set of the parameters with the induced operation
pB,dq is the quaternionic Blaschke group. In the set of the parameters the inverse a´ of
an element a “ pU,A, V q is the element for which Ba´ “ B´1

a where a´ “ pU˚,´pa, V ˚q.

If instead of a1 we put z and instead of a2 we put a´, then xa´2 “ ´U
˚
2U2AV

˚
2 V2 “ ´A,

and in the set of the parameters the right translations z Ñ z d a´ can be described as
follows:

zd a´ “ pU1CApZqU
˚
2 , U2BApZqV

˚
2 , V1CA˚pZ

˚
qV ˚2 q. (5.16)

Proof of Theorem 5.2.2. We use that BA3pU3ZV
˚

3 q “ U3BU˚3 A3V3pZqV
˚

3 with the
parameters U3 “ U2, V3 “ V2, U

˚
3A3V3 “ A2. Then A3 “ U3A2V

˚
3 “ U2A2V

˚
2 , and the

following relation is true:

Ba2pZq “ U2BA2pZqV
˚

2 “ BU2A2V
˚
2
pU2ZV

˚
2 q “ B

pa2ppzq,

where pa2 “ U2A2V
˚

2 ,pz “ U2ZV
˚

2 . Using the previous relation and Theorem 5.2.1 we get

Ba1pBa2pZqq “ U1BA1pBpa2ppzqqV
˚

1 .

Applying again Theorem 5.2.1 for the parameters A1,pa2,pz:

BA1pBpa2ppzqq “ U 1BA1pU2ZV
˚

2 qV
1˚
“ U 1U2BU˚2 A

1V2pZqV
˚

2 V
1˚,
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where
A1 “ B´pa2pA1q, U

1
“ C´pa2pA1q, V

1
“ C´pa˚2 pA

˚
1q.

From here we get the formula

Ba1 ˝ Ba2 “ Ba “ UBAV
˚,

A “ U˚2B´pa2pA1qV2, U “ U1C´pa2pA1qU2, V “ V1C´pa˚2 pA
˚
1qV2.

In papers [168, 169, 170, 72, 73], for the complex case, and also for higher dimension,
using C´apzq, Bapzq were introduced and studied the operations

a‘ z “ B´apzq, gyrra, zs “ C´apzq,

and using them it was defined the gyro group. Our description makes possible to avoid
the complicated gyro group description, and is more useful also from the point of view of
the extensions for higher dimension.

In what follows we list some subgroups of B. The set tBρE : ρ P I :“ p´1, 1qu is a
subgroup of B, satisfying Bρ1E ˝Bρ2E “ Bρ1˝ρ2E, where

ρ1 ˝ ρ2 “
ρ1 ` ρ2

1` ρ1ρ2

pρ1, ρ2 P Iq (5.17)

is the real Blaschke group operation on I.
Another subgroup can be generated if we choose the parameters and variable Z on

the same slice. First let us observe that if Aj “ Qcpajq pj “ 1, 2q and Z “ Qcpzq belong
to the same slice, then

BAjpZq “ QcpBajpzqq, BA1pBA2pZqq “ QcpBa1pBa2pzqq, B
´1
A1
pZq “ QcpB

´1
a1
pzqq. (5.18)

These imply

BA1pBA2pZqq “ QcpBa1pBa2pzqqq, B
´1
A pZq “ QcpB

´1
a pzqq,

A “ Qcpaq, Aj “ Qcpajq, Z “ Qcpzq pa, aj P D, z P D, j “ 1, 2q.

Set Dc “ DXQc, Tc “ TXQc. Then it follows that the collection

Bc :“ tUBAV
˚ : A P Dc, U, V P Tcu

is a transformation group on Dc and Tc respectively, isomorphic to the complex Blaschke
transformation group.

Another interesting subgroup of the quaternion Blaschke group is induced by the
following subset.
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Theorem 5.2.3 (Pap, Schipp [131]). Let εpAq :“ pE ´A˚q{|E ´A| pA P Dq. Then the
subset

A :“ tAA “ εpAqBAεpAq : A P Du Ă B (5.19)

is an one parameter subgroup of B. Moreover,

iq AApEq “ E pA P Dq,

iiq A´1
A “ AA´ , A´ “ ´εpAqAεpAq,

iiiq AA1 ˝AA2 “ AA, A “ AA´2 pA1q,

(5.20)

5.3 Slice regular Malmquist-Takenaka system in the

quaternionic Hardy spaces

Pap in [132] introduced a new generalization of the complex Malmquist-Takenaka
system in the quaternionic slice regular Hardy space, which is slice regular and in same
time can be given in closed form. In this section we present results connected to this
system.

5.3.1 Slice regular functions

The theory of slice regular functions of a quaternionic variable (often simply called
regular functions) was introduced in 2006 by Gentili, Stoppato, Struppa [80, 81] and repre-
sents a natural quaternionic counterpart of the theory of complex holomorphic functions.
This recent theory has been growing very fast and was developed in a series of papers,
including in particular [40, 43, 44, 160], where most of the recent advances are discussed.
The detailed up-to-date theory appears in the monograph [82]. The theory of regular
functions is presently expanding in many directions.

Set S “ tq P H : q2 “ ´1u to be the 2-sphere of purely imaginary units in H, and for
I P S let LI be the complex plane R` RI. We have

H “ YIPSLI .

To recall the definition of slice regular functions we will first describe the natural
domains of definition for such functions (for the definitions and main results see the
monograph [82] and the reference list therein).

Definition 5.3.1. Let Ω be a domain in H that intersects the real axis. Then:
1. Ω is called a slice domain if, for all I P S, the intersection ΩI with the complex

plane LI is a domain of LI ;
2. Ω is called a symmetric domain if for all x, y P R, x` yI P Ω implies x` yS Ă Ω.
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Definition 5.3.2. Let Ω Ă H be a slice domain. A function f : Ω Ñ H is said to
be (slice) regular if, for all I P S, its restriction fI to ΩI is holomorphic, i.e., it has
continuous partial derivatives and satisfies

BIfpx` yIq :“
1

2

ˆ

B

Bx
` I

B

By

˙

fIpx` yIq “ 0. (5.21)

Lemma 5.3.3. (Splitting Lemma). If f is a regular function on a slice domain, then for
every I P S and for every J P S, J orthogonal to I, there exist two holomorphic functions
F,G : ΩI Ñ LI , such that for every z “ x` yI P I, we have

fIpzq “ F pzq `GpzqJ. (5.22)

As shown in [81], if we consider the open unit ball D of H, the class of regular functions
coincides with the class of convergent power series of type

ř

ně0 q
nan, with all an P H.

The direct extension of the Blaschke function, presented before, is not slice regular.
In general the product of two slice regular functions is not slice regular.

Definition 5.3.4. Let f, g : D Ñ H be regular functions and let fpqq “
ř

nPN q
nan

and gpqq “
ř

nPN q
nbn be their power series expansions. The regular product of f and g

(referred as their ˚-product) is the regular function defined by

f ˚ gpqq “
ÿ

nPN

qn
n
ÿ

k“0

akbn´k (5.23)

on the same ball D.

We can define two additional operations on regular functions.

Definition 5.3.5. Let f : D Ñ H be a regular function and let fpqq “
ř

nPN q
nan be

its power series expansion. The regular conjugate of f is the regular function defined
by f cpqq “

ř

nPN q
nan on the same ball D. The symmetrization of f is the function

f s “ f ˚ f c “ f c ˚ f .

Definition 5.3.6. Let f be a regular function on a symmetric slice domain Ω. If f ‰ 0
on Ω, the regular reciprocal of f is the function

f´˚ “ pf sq´1f c.

One way to generalize Blaschke functions over the set of quaternions would be the
direct extension of the before mentioned formula over the quaternions, i.e., let define the
quaternionic variable Blaschke function like in the matrix representation by

Bapqq :“ p1´ qaq´1
pq ´ aq “

1

λa,q
p1´ qaqpq ´ aq “

1

λa,q
p1´ aqqpq ´ aq, (5.24)
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λa,q “ p1´ qaqp1´ qaq “ p1´ aqqp1´ qaq, a P D, q P D,

where D denotes the quaternionic unit ball. This function is not slice regular.
Recently in [5, 14, 160] it was introduced and studied another quaternionic extension

of the Blaschke functions, the so called slice regular Blaschke functions.

Definition 5.3.7. The slice regular Blaschke function is defined by

Bapqq “ p1´ qaq´˚ ˚ pq ´ aq, a P D, q P D. (5.25)

This function inherits all the nice properties of the complex Blaschke functions, i.e., is
a regular fractional transformations (regular Möbius transformation) that maps the open
quaternionic unit ball D onto itself and the boundary of unit ball T onto itself bijectively
(see [5, 6, 14, 160]).

The classical and regular Blaschke functions are related in the following way:

Bapqq “ p1´ qaq´˚ ˚ pq ´ aq “ BapTapqqq,

where Tapqq “ p1´ qaq
´1qp1´ qaq is a diffeomorphism of D.

It can also be proved that the factors in the definition of the regular Blaschke product
commute, that is

Bapqq “ p1´ qaq´˚ ˚ pq ´ aq “ pq ´ aq ˚ p1´ qaq´˚.

One of the most fertile chapters of the theory of complex holomorphic functions con-
sists of the theory of Hardy spaces. In the papers [5, 6, 63] the quaternionic counterpart of
complex Hardy spaces was introduced, and their basic and fundamental properties were
investigated.

Definition 5.3.8. Let f : D Ñ H be a regular function and let 0 ă p ă `8. Set

}f}p “ sup
IPS

lim
rÑ1´

1

2π

ˆ
ż 2π

0

|fpreIθq|pdθ

˙1{p

, (5.26)

and set
}f}8 “ sup

qPD
|fpqq|. (5.27)

Then, for any 0 ă p ď `8, we define the quaternionic Hardy space HppDq as

Hp
pDq “ tf : D Ñ H|f is slice regular and }f}p ă `8u. (5.28)

In [5, 6, 63] the main properties and features of the quaternionic Hp-norms were
studied, and the initial properties of the quaternionic Hp spaces were established. It
turned out that many properties of the complex Hardy spaces have their quaternionic
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analogs. The boundary behavior of functions f in HppDq is very similar to the complex
case, i.e., for almost every θ P r0, 2πq, the limit

lim
rÑ1´

fpreIθq “ rfIpe
Iθ
q (5.29)

exists for all I P S and belongs to LppBDIq. The properties of the boundary values of the
˚-product of two functions, each belonging to some HppDq space was investigated. The
classical Hp kernels, and in particular the Poisson kernel, to the quaternionic setting was
extended and the Poisson-type and Cauchy-type representation formulas for all f P HppDq
were deduced. Analogues of outer and inner functions and singular factors on D were
given, whose definitions (when compared with those used in the complex case) clearly
resent of the peculiarities of the non commutative quaternionic setting. Factorization
properties of Hp functions were established. The Blaschke factors of a function f in
HppDq are built from the zero set of f using the regular Blaschke functions; it can be
obtained also a complete factorization result, in terms of an outer, a singular and a
Blaschke factor, for a subclass of regular functions, namely for the one-slice-preserving
functions.

It is valid the following:

Theorem 5.3.9. (Splitting Formula) If f P HppDq for some p P p0,`8s, then for any
I P S, the splitting of f on LI with respect to J P S, J orthogonal to I, is fIpzq “
F pzq `GpzqJ , and the holomorphic functions F and G are both in HppDIq.

In analogy with the complex case, the space H2pDq is special. Indeed the 2-norm
turns out to be induced by an inner product. Let f P H2pDq and let fpqq “

ř

ně0 q
nan

be its power series expansion. Then the square of the 2-norm of f coincides with

}f}2 “
ÿ

ně0

|an|
2. (5.30)

This result permits a way to define an inner product on the space H2pDq. In fact, if
f, g P H2pDq, let fpqq “

ř

ně0 q
nan, gpqq “

ř

ně0 q
nbn be their power series expansions,

based on previous result, then their inner product is defined by

xf, gy “ lim
rÑ1

1

2π

ż 2π

0

gpreIθqfpreIθqdθ “
ÿ

ně0

bnan, (5.31)

for any I P S.
Thanks to the existence of the radial limit it is possible to obtain integral representa-

tions for functions in HppDq for p P r1,`8s (see [82, 42]).

Theorem 5.3.10. If f P HppDq for p P r1,`8s, then for any I P S, fI is the Poisson
integral and the Cauchy integral of its radial limit f̃I , i.e.,

fIpre
Iθ
q “

1

2π

ż 2π

0

1´ r2

1´ 2rcospθ ´ tq ` r2
f̃Ipe

It
qdt (5.32)

110

dc_1842_20

Powered by TCPDF (www.tcpdf.org)



and

fIpzq “
1

2πI

ż

BDI

dξ

ξ ´ z
f̃Ipξq. (5.33)

The next result, on the other hand, is a more powerful Cauchy Formula, which allows
the reconstruction of f on the entire open set of definition, by using its values on a single
slice.

Theorem 5.3.11. (Cauchy Formula). Let f be a regular function on a symmetric slice
domain Ω. If U is a bounded symmetric open set with U Ă Ω, I P S, and if BUI is a finite
union of disjoint rectificable Jordan curves, then, for q P U ,

fpqq “
1

2π

ż

BUI

ps´ qq´˚dsIfIpsq, (5.34)

where dsI “ ´Ids and ps´ qq´˚ denotes the regular reciprocal of ps´ qq.

Theorem 5.3.12. (Zero set structure). Let f be a regular function on a symmetric slice
domain. If f does not vanish identically, then its zero set consists of the union of isolated
points and isolated 2-spheres of the form x` yS with x, y P R, y ‰ 0.

Spheres of zeros of real dimension 2 are a peculiarity of regular functions.
Let f be a regular function on a symmetric slice domain. A 2-dimensional sphere

x` yS Ă Zf of zeros of f is called a spherical zero of f and is represented by an element
x`yI of such a sphere, called a generator of the spherical zero x`yS. Any zero of f that
is not a generator of a spherical zero is called an isolated zero (or a non spherical zero or
simply a zero) of f .

Theorem 5.3.13. Let p P p0,`8s, f P HppDq, f ‰ 0 and let tbnunPN be its sequence of
zeros. Then tbnunPN satisfies the Blaschke condition

ÿ

ně0

p1´ |bn|q ă `8.

Holomorphic functions defined on a domain ΩI , symmetric with respect to the real
axis in the complex plane LI , extend uniquely to the smallest symmetric slice domain of
H containing ΩI .

Theorem 5.3.14. (Extension Lemma). Let Ω be a symmetric slice domain and choose
I P S. If fI : ΩI Ñ H is holomorphic, then setting

fpx` yJq “
1

2
rfIpx` yIq ` fIpx´ yIqs `

JI

2
rfIpx´ yIq ´ fIpx` yIqs (5.35)

extends fI to a regular function f : Ω Ñ H. Moreover f is the unique extension and it is
denoted by extpfIq.
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5.3.2 The regular quaternionic Malmquist-Takenaka system

The extension of the M-T systems for quaternions (see Pap [120]) was described as
follows: let us consider a sequence a “ pa1, a2, ¨ ¨ ¨ q of quaternions, |an| ă 1, pn P N˚q
and the classical quaternionic extension of Blaschke-functions Ba. The functions Φn “

Φa
n pn P N˚q are defined very similarly to the complex case by the quaternionic product

Φ1pzq “
a

1´ |a1|
2p1´ za1q

´1,

Φnpzq “
a

1´ |an|2

˜

n´1
ź

k“1

Bakpzq

¸

p1´ zanq
´1
pz P B, n “ 2, 3, ...q. (5.36)

Unfortunately, they are not regular functions anymore. But still for their Dirichlet kernel
it was possible to prove the analogue of the Darboux-Christoffel formula (see Pap [120]).
When all the parameters are equal, that is an “ a “ reθI “ rpcos θ ` I sin θq pn P N˚q, we
obtain the quaternionic analogue of the discrete Laguerre system. Even in this special
case the orthogonality is not yet proved, but a discrete orthogonality property of this
particular case can be proved(see [120]).

In [135] Qian, Sprossig, Wang studied the decompositions of functions in the quater-
nionic monogenic Hardy spaces into linear combinations of the basic functions in the
orthogonal rational systems, which can be obtained in the respective contexts through
Gram-Schmidt orthogonalization process on shifted Cauchy kernels. While in the com-
plex case, following these two ways we get the same system, here in the quaternionic case
it has not been proved yet, that the two methods give the same.

In this section we will consider the slice regular analog of the Malmquist-Takenaka
system and we will investigate the properties of this system. The results were published
in Pap [132].

Let us consider a sequence a “ pa1, a2, ...q of quaternions in the unit ball, i.e., |an| ă
1, pn P N˚q. The slice regular analogue of the Malmquist-Takenaka system can be ex-
pressed by the slice regular quaternionic Blaschke-functions Banpqq “ p1 ´ qanq

´˚ ˚ pq ´
anq “ pq ´ anq ˚ p1 ´ qanq

´˚. Namely, the functions Φn “ Φa
n pn P N˚q are defined very

similarly to the complex case, but here we use the slice regular product of the factors:

Φ1pzq “
a

1´ |a1|
2p1´ za1q

´˚,

Φnpzq “
a

1´ |an|2

˜

˚

n´1
ź

k“1

Bakpzq

¸

˚ p1´ zanq
´˚
pz P B, n “ 2, 3, ...q, (5.37)

where ˚
ś

means the ˚-product of the factors. Because Bapqq is a slice regular function
and the ˚-product of two slice regular functions is slice regular, in this way we generate a
slice regular system.

When all the parameters are equal, namely an “ a “ reθI “ rpcos θ` I sin θq pn P N˚q,
then we get the slice regular analogue of the discrete Laguerre system,

L1pzq “
a

1´ |a|2p1´ zaq´˚,
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Lnpzq “
a

1´ |a|2

˜

˚

n´1
ź

k“1

Bapzq

¸

˚ p1´ zaq´˚ pz P B, n “ 2, 3, ...q,

When all the parameters are 0, i.e., an “ 0 pn P N˚q we obtain Φnpzq “ zn, the quater-
nionic analogue of the trigonometric system.

Lemma 5.3.15 (Pap, [132]). The slice regular analogue of the discrete Laguerre system
can be written in the following form:

Lnpzq “
a

1´ |a|2pz ´ aq˚n ˚ p1´ zaq´˚pn`1q
pz P B, n “ 2, 3, ...q.

This can be proved by induction, using the commutativity property of the factors in
Bapzq “ p1´ zaq´˚ ˚ pz ´ aq “ pz ´ aq ˚ p1´ zaq´˚.

Theorem 5.3.16 (Pap [132]). If all the parameters of the slice regular Malmquist -
Takenaka system given by (5.37) are on the same slice, i.e., there exists I P S such that
an “ rne

θnI “ rnpcos θn ` I sin θnq prn ă 1, n P N˚q, then Φn, pn P N˚q is a slice regular
orthonormal system in H2pDq.

Proof of Theorem 5.3.16. Recall the definition of the inner product on the space
H2pDq: if fpqq “

ř

ně0 q
nan and gpqq “

ř

ně0 q
nbn, then their inner product is

xf, gy “
ÿ

ně0

bnan “ lim
rÑ1

1

2π

ż 2π

0

gpreIθqfpreIθqdθ

for any I P S. Let I be the direction fixed by an “ rne
θnI “ rnpcos θn ` I sin θnq. On

DI “ DX LI the regular Blaschke product is slice preserving i.e., if a P DI we have

BapDIq Ă DI .

Moreover, an easy computation shows that for a, q P DI :

p1´ qaq´˚ “ p1´ qaq´1, Bapqq “ Bapqq.

Indeed, if a P DI and q P DI taking in consideration the commutativity of the product
on the slice DI it follows that:

p1´ qaq ˚ p1´ qaq “ p1´ qaqp1´ qaq,

which implies that

p1´ qaq´˚ “ rp1´ qaq ˚ p1´ qaqs´1
p1´ qaq “ rp1´ qaqp1´ qaqs´1

p1´ qaq “ p1´ qaq´1.

The classical and regular Blaschke functions are related in the following way:

Bapqq “ p1´ qaq´˚ ˚ pq ´ aq “ BapTapqqq,
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where Tapqq “ p1´ qaq
´1qp1´ qaq. If a P DI and q P DI taking again in consideration the

commutativity of the product on the slice DI it follows that Tapqq “ p1´qaq
´1qp1´qaq “ q

and Bapqq “ BapTapqqq “ Bapqq.
From the slice preserving property and the Splitting Lemma of slice regular functions

it follows that for every z “ x`Iy P DI we have Bapzq “ F pzq, where F pzq is holomorphic
in DI . This implies that the slice regular ˚-product on this slice is equal to the point-wise
product of the factors, moreover on the slice DI we have:

Φnpzq “
a

1´ |an|2

˜

˚

n´1
ź

k“1

Bakpzq

¸

˚ p1´ zanq
´˚
“
a

1´ |an|2

˜

n´1
ź

k“1

Bakpzq

¸

p1´ zanq
´1,

and the order of the factors, can be interchanged, because the pointwise product is com-
mutative on the slice DI .

Slice regular Blaschke functions and classical Blaschke functions map the unit ball into
the unit ball, and the boundary into itself, consequently |Bape

IθqBapeIθq| “ 1. Taking
into account these properties, the commutativity of the product on the slice DI , and the
Cauchy formula, in the proof we can follow the same line as in the complex case:

xΦn,Φny “ lim
rÑ1´

1

2π

ż 2π

0

ΦnpreIθqΦnpre
Iθ
qdθ “

p1´ |an|
2
q

1

2π

ż 2π

0

p1´ eIθanq´1p1´ eIθanq
´1dθ “ 1.

For m ą n we have:

xΦn,Φmy “ lim
rÑ1´

1

2π

ż 2π

0

ΦnpreIθqΦmpre
Iθ
qdθ “

“
1

2π

ż 2π

0

ΦnpeIθqΦmpe
Iθ
qdθ “

“
1

2π

ż 2π

0

a

1´ |an|2

˜

n´1
ź

k“1

Bakpe
Iθq

¸

p1´ eIθanq´1
a

1´ |am|2

˜

m´1
ź

k“1

Bakpe
Iθ
q

¸

p1´eIθamq
´1dθ

“
a

1´ |an|2
a

1´ |am|2
m´1
ź

k“n

Bakpanqp1´ anamq
´1
“ 0.

Theorem 5.3.17 (Pap [132]). If all the parameters of the slice regular Malmquist -
Takenaka system are on the same slice satisfying the non-Blaschke condition

ř

ně0p1 ´
|an|q “ `8, then the system Φn, pn P N˚q is complete in H2pDq.
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Proof of Theorem 5.3.17. To prove that the system is complete in H2pDq we need
to prove the following implication: if for an f P H2pDq we have that xf,Φny “ 0, n P N˚,
then f ” 0. According to the Splitting Lemma there exist two holomorphic functions
F,G : DI Ñ LI , such that for every z “ x`yI P DI , we have fIpzq “ F pzq`GpzqJ , where
J is orthogonal to I. Moreover F,G P H2pDIq. Then from xf,Φny “ 0, n P N we get that
xF,Φny “ 0 and xG,Φny “ 0, n P N. Because on the slice DI the functions F,G are slice
preserving holomorphic functions, analogue as in the case of the complex M-T, which is
complete under the assumption of the theorem, we get that F pzq “ Gpzq “ 0, z P DI .
Consequently fIpzq “ 0, z P DI .

According to the Extension Lemma holomorphic functions defined on a domain ΩI ,
symmetric with respect to the real axis in the complex plane LI , extend uniquely to the
smallest symmetric slice domain of H containing ΩI . We apply this to the unit ball D
and his slice DI . Then for f P H2pDq we have

fpx` yJq “
1

2
rfIpx` yIq ` fIpx´ yIqs `

JI

2
rfIpx´ yIq ´ fIpx` yIqs

extends fI uniquely to a regular function f : D Ñ H. Taking into consideration that
fIpzq “ 0, z P DI , we have fpzq “ 0, z P D.

The theorem says that although we consider all the parameters of the slice regular
Malmquist-Takenaka system on the same slice, i.e., if there exists I P S such that an “
rne

θnI “ rnpcos θn`I sin θnq prn ă 1, n P N˚q, and they satisfy the non-Blaschke condition,
then the function f P H2pDq is determined uniquely by the coefficients pxf,Φny, n P N˚q.

5.3.3 The properties of the projection operator

For f P H2pDq according to the Splitting Lemma, there exist two holomorphic func-
tions F,G : DI Ñ LI , such that for every z “ x`yI P DI , we have fIpzq “ F pzq`GpzqJ ,
where J is orthogonal to I. Moreover F,G P H2pDIq. Let us consider the boundary limit
of functions f in H2pDq. Similarly to the complex case, for almost every θ P r0, 2πq, the
limit

lim
rÑ1´

fpreIθq “ fIpe
Iθ
q “ F peIθq `GpeIθqJ

exists for all I P S and in this case fIpe
Iθq, F peIθq, GpeIθq belong to L2pBBIq.

If all the parameters of the slice regular Malmquist-Takenaka system are on the same
slice, i.e., there exists I P S such that an “ rne

θnI “ rnpcos θn ` I sin θnq prn ă 1, n P N˚q,
let us consider the orthogonal projection operator of an arbitrary function f P H2pDq on
the subspace Vn spanned by the functions tΦk, k “ 1, ¨ ¨ ¨ , nu

Pnfpzq “
n
ÿ

k“1

Φkpzqxf,Φky, (5.38)
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where the value of the scalar product xf,Φky is

xf,Φky “ lim
rÑ1´

1

2π

ż 2π

0

ΦkpreIθqfpre
Iθ
qdθ “

lim
rÑ1´

1

2π

ż 2π

0

ΦkpreIθqF pre
Iθ
qdθ ` lim

rÑ1´

1

2π

ż 2π

0

ΦkpreIθqGpre
Iθ
qdθJ.

On the slice DI we have:

Φnpzq “
1

a

1´ |an|2

˜

˚

n´1
ź

k“1

Bakpzq

¸

˚ p1´ zanq
´˚
“

1
a

1´ |an|2

˜

n´1
ź

k“1

Bakpzq

¸

p1´ zanq
´1
“ Φnpzq,

consequently the coefficients of the projection operator can be expressed by

xf,Φky “
1

2π

ż 2π

0

ΦkpeIθqF pe
Iθ
qdθ `

1

2π

ż 2π

0

ΦkpeIθqGpe
Iθ
qdθJ.

If
ř

ně0p1 ´ |an|q “ `8, then the system Φn, pn P N˚q is complete in H2pDq, this
implies that for every f P H2pDq the projection of f on Vn converges in norm to f , i.e.,
we have

}f ´ Pnf} Ñ 0, nÑ 8.

Since convergence in norm implies uniform convergence inside the unit ball D on every
compact subset, we conclude that Pnfpzq Ñ fpzq uniformly on every compact subset of
the unit ball.

Theorem 5.3.18. If the parameters of the slice regular Malmquist-Takenaka system are
on the same slice, i.e., there exists I P S such that an “ rne

θnI prn ă 1, n P N˚q, then for
all f P H2pDq the restriction of the projection operator Pnf to the slice DI of the unit
ball is an interpolation operator in the points a` “ r`e

θ`I p` P t1, ¨ ¨ ¨ , nuq.

Proof of Theorem 5.3.18. The restriction of the projection Pnf to the slice DI can
be written in closed form as follows:

pPnqIfpzq “
n
ÿ

k“0

pΦkqIpzqxf,Φky “

1

2π

ż 2π

0

n
ÿ

k“0

pΦkqIpzqΦkpeIθqF pe
Iθ
qdθ `

1

2π

ż 2π

0

n
ÿ

k“0

pΦkqIpzqΦkpeIθqGpe
Iθ
qdθJ.
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For the Dirichlet kernel of the classical extension over the set of the quaternions of the
M-T system we have an analogue of Darboux-Christoffel formula (see [120]):

D˚npz, wq :“
n
ÿ

`“1

Φ`pzqp1´ zwqΦ`pwq “ 1´
n
ź

`“1

Ba`pzq
N
ź

`“1

Ban´``1
pwq,

for all z, w P D, z ‰ w. Taking the restriction of the Dirichlet kernel to the slice DI,
where the product is commutative, and using the slice preserving property of Φ`pzq on
DI we get that the restriction of the projection operator on the slice DI can be expressed
very similar to the complex case:

pPnqIfpzq “

“
1

2π

ż 2π

0

p1´ ze´Iθq´1

˜

1´
n
ź

`“1

Ba`pzq
n
ź

`“1

Ban´``1
peIθq

¸

F peIθqdθ`

`
1

2π

ż 2π

0

p1´ ze´Iθq´1

˜

1´
n
ź

`“1

Ba`pzq
n
ź

`“1

Ban´``1
peIθq

¸

GpeIθqdθJ.

From here using the Cauchy formula we get that the restriction of the projection Pnf to
the slice DI is an interpolation operator for the points z “ a`, ` “ 1, ¨ ¨ ¨ , n. Indeed we
have:

pPnqIfpa`q “
1

2π

ż 2π

0

p1´ a`e
´Iθ
q
´1F peIθqdθ `

1

2π

ż 2π

0

p1´ a`e
´Iθ
q
´1GpeIθqdθJ “

F pa`q `Gpa`qJ “ fIpa`q.
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[8] Arazy J., Fisher S., Peetre J., Möbius invariant function spaces, J. Reine Angew.
Math. 363 (1985), 110–145.

[9] Arazy J., Some aspects of the minimal, Möbius-invariant space of analytic functions
on the unit disc, Interpolation spaces and allied topics in analysis, Proc. Conf., Lund,
Sweden, 1983, Lect. Notes Math. 1070, (1984), 24–44.

[10] Ashino R., Desjardins S. J., Nagase M., Vaillancourt R., Wavelet frames and mul-
tresolution analysis,
https:{{www.researchgate.net{publication{228691488.

[11] Auscher P., Solution of two problems on wavelets, The Journal of Geometric Anal-
ysis 5 (1995), No. 2, 181-236.

118

dc_1842_20

Powered by TCPDF (www.tcpdf.org)
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[26] Bultheel A., González-Vera P., Hendriksen E., Njastad O., Orthogonal Rational
Functions, vol. 5, Cambridge Monographs on Applied and Computational Mathe-
matics, Cambridge University Press, 1999.
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minimal Möbius invariant space of

analytic functions, 68
Morlet, 6
mother wavelet, 8
Multiresolution in the Hardy space of

the unit circle, 26
Multiresolution in the Hardy space of

the upper half plane, 41
Multiresolution in weighted Bergman

spaces, 59, 74, 80

Pap, 16, 23, 28, 47, 112, 114
Pap, Schipp, 16, 18, 23, 47, 51, 61, 99,

103
projection operator, 32, 46, 85, 115
pseudohyperbolic metric, 24

Q dense, 64
Q density from right, 20, 65
Qian, Sprossig, Wang, 23
quadrature formula, 51
quaternionic Blaschke function, 103

quaternionic Blaschke group, 103, 105
quaternions, 22, 100

Reconstruction algorithm, 35, 87
representation of the affine group, 12
representations of Blaschke group, 25

sampling sets, 21, 76–78
Schauder, 7
Schipp, 7, 26
Schipp, Soumelidies, 19
Schipp, Wade, 14
separated, 64
separated from right, 65
separation from right, 20
Sifuzzaman, Islam, Ali, 8
slice regular Blaschke function, 109
slice regular functions, 23, 107, 108
slice regular Malmquist-Takenaka

system, 107, 112
square integrable, 14
Szarvas, 12

Takenaka, Malmquist, 88
Totik, 17, 36, 99

Uljanov, 7
unitary representation, 12

voice transform, 12, 13

Ward, Partington, 18
wavelet, 6, 8
wavelet transforms, 6
weighted area measure, 11
weighted Bergman kernel, 11
weighted Bergman projection, 11
weighted Bergman spaces, 11
Weil, Walnut, 14
Weisz, 12–14

Zernike, 18, 47
Zernike functions, 18, 47, 51
Zernike moments, 54, 55

134

dc_1842_20

Powered by TCPDF (www.tcpdf.org)


