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1 Introduction

Structural limit theories provide a fruitful connection between finite mathematics and analysis. The

use of infinite (measurable or continuous) structures in the study of large discrete structures is not

new. For example in physics, fluids consist of finitely many particles however it is often convenient

to treat them as continuous structures. In many cases, it is helpful to consider complicated large

structures as approximations of simpler infinite structures. This is exactly the aim of the recently

emerging structural limit theories. Our goal in this thesis is to demonstrate various aspects of such

limit theories with a special emphasis on graph limits. Graph limit theory is at an interesting meet-

ing point of algebra, probability theory, dynamical systems, combinatorics, analysis and statistical

physics. We attempt to highlight many of these directions.

Structural limits can be traced back to the ancient Greeks who discovered that it is useful to

approximate the circle by finite polygones. Such approximations are essential in differential and

integral calculus and so they are basically everywhere in mathematics and physics. In these cases

we start with a given infinite object and we approximate it by finite structures using some kind of

discretization. However what we are interested here goes in the opposite direction. Assume that

we have a growing sequence of fine structures (say graphs) that are meaningfully connected to each

other. For example a simple (possibly randomized) rule produces the sequence. We expect large

members of the sequence to be similar to each other in some sense. It is an interesting question how to

measure this similarity. Furthermore it is often helpful to find some infinite structure which behaves

as a limit object for the sequence. There are various approaches for the question of similarity. One

approach is based on the similarity of certain algebraic invariants associated with the structures.

This is the point where both algebra and statistical physics enters the picture. These invariants can

often be treated as weighted homomorphism numbers or values of partition functions.

The present thesis is mostly built on the results from 4 papers. The first two are about limits of

graphs [65],[51]. Both are joint works with László Lovász and one of them is also joint with Hamed

Hatami. The third paper [80] is the solution of a conjecture by Freedman, Lovász and Schrijver,

and it belongs to the part of graph limit theory which is mostly related to statistical physics. The

fourth paper [82] connects graph limit theory with additive combinatorics and group theory.

1.1 History and basic concepts

The history of structural limits can be traced back all the way to ancient Greeks. Archimedes (287-

212 BC) used polygon approximations of the circle to compute its area. Structural limit theories

are routinely used in physics. Continuous limits are essential in thermodynamics and fluid dynamics

where large but finite particle systems are investigated. On the other hand discrete approximations

of continuous objects such as lattice gauge theory play also an important role in physics.

Many of the above limit theories are based on very simple correspondences between finite objects

and continuous limit objects. Most of the time the finite approximation is directly related to a

continuous space through a prescribed geometric connection. By somewhat abusing the term, we

call such limits scaling limits. Much more mysterious and surprising limit theories emerged more

recently where simple and very general structures are considered such as 0-1 sequences or graphs.

In these theories there is no ”prescribed” geometry to be approximated. The geometry emerges
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from the internal ”logic” of the structure and thus a great variety of geometric, topological and

algebraic structures can appear in the limit. Many of these limit theories are based on taking small

random samples from large structures. We call such limit theories local limit theories. Some other

limit theories are based on observable, large scale properties and we call them global limit theories.

Furthermore there are hybrid theories such as the local-global convergence of bounded degree graphs

[51].

Scaling limits of 0 − 1 sequences: As an illustration we start with a rather simple (warm up)

limit theory for 0 − 1 sequences. Later we will see a different and much more complicated theory

for the same objects. For k ∈ N let [k] := {1, 2, . . . , k}. A 0 − 1 sequence of length k is a function

f : [k]→ {0, 1}. Assume that we are given a growing sequence {fn}∞n=1 of 0− 1 sequences. In what

sense can we say that these sequences converge? A simple and natural approach would be to regard

the set [k] as a discretization of the (0, 1] interval. This way, for a 0 − 1 sequence s of length k we

can define the function s̃ : [0, 1] → {0, 1} by s̃(x) := s(dkxe) (and s̃(0) := 0). Now we can replace

the functions fn by f̃n and use one of the readily available convergence notions for functions on [0, 1]

such as L2 or L1 convergence. Note that they are equivalent for 0 − 1 valued functions. The limit

object in L2 is a Lebesgue measurable function f : [0, 1]→ {0, 1} with the property that the measure

of f−1(1)4f̃−1
n (1) converges to 0 as n goes to infinity. A much more interesting and flexible limit

concept is given by the weak convergence in L2([0, 1]). For 0− 1 valued functions this is equivalent

with the fact that for every interval I = [a, b] ⊆ [0, 1] the measure of I ∩ f̃−1
n (1) converges to some

quantity µ(I) as n goes to infinity. The limit object is a measurable function f : [0, 1]→ [0, 1] with

the property that µ(I) =
∫
I
fdλ where λ is the Lebesgue measure. If f̃n is L2 convergent then its

weak limit is the same as the L2 limit. However many more sequences satisfy weak convergence.

Let {fn}∞n=1 be a sequence of 0−1 sequences. We say that fn is scaling convergent if {f̃n}∞n=1

is a weakly convergent sequence of functions in L2([0, 1]). The limit object (scaling limit) is a

measurable function of the form f : [0, 1]→ [0, 1].

Although scaling convergence is a rather simplistic limit notion we can use it as a toy example

to illustrate some of the fundamental concepts that appear in other, more interesting limit theories.

• Compactness: Every sequence of 0− 1 sequences has a scaling convergent subsequence

• Uniformity norm: Scaling convergence can be metrized through norms. An example for such

a norm is the ”intervall norm” defined by ‖f‖in := supI
∣∣∫
I
fdλ

∣∣. where I runs through all

intervals in (0, 1]. The distance of two 0 − 1 sequences f1 and f2 (not necessarily of equal

lenght) is defined as ‖f̃1 − f̃2‖in.

• Quasi randomness: A 0−1 sequence f is ε-quasi random with density p ∈ [0, 1] if ‖f̃−p‖in ≤
ε. Note that if fn is a sequence of 0−1 sequences such that fn is εn quasi random with density

p and εn goes to 0 then fn converges to the constant p function.

• Random objects are quasi random: Let fn be a random 0 − 1 sequence of length n in

which the probabilty of 1 is p. For an arbitrary ε > 0 we have that if n is large enough then

with probability arbitrarily close to 1 the function fn is ε quasi random.
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• Low complexity approximation (regularization): For every ε > 0 there is some natural

number Nε such that for every 0− 1 sequence f there is a function g : [Nε]→ [0, 1] such that

‖f̃ − g̃‖in ≤ ε. (Note g̃ is defined by the same formula as for 0 − 1 sequences and g̃ is a step

function on [0, 1] with Nε steps.)

Local limits of 0 − 1 sequences: The main problem with scaling convergence is that highly

structured sequences such as periodic sequences like 0, 1, 0, 1, 0, 1, . . . are viewed as quasi random.

The above limit concept is based on a prescribed geometric correspondence between integer intervals

and the continuous [0, 1] interval. A different and much more useful limit concept does not assume

any prescribed geometry. It is based on the local statistical properties of 0 − 1 sequences. For any

given 0− 1 sequence h of length k and f of length n ≥ k we define t(h, f) to be the probability that

randomly chosen k consecutive bits in f are identical to the sequence h (if n < k then we simply

define t(H, f) to be 0).

A sequence {fn}∞n=1 of growing 0− 1 sequences is called locally convergent if for every fix 0− 1

sequence h we have that limn→∞ t(h, fn) exists.

This definition was first used by Furstenberg [40] in his famous correspondence principle stated

in the 70’s, a major inspiration for all modern limit theories. In Furstenberg’s approach finite 0− 1

sequences are regarded as approximations of subsets in certain dynamical systems called measure

preserving systems. A measure preserving system is a probability space (Ω,B, µ) together with a

measurable transformation T : Ω→ Ω with the property that µ(T−1(A)) = µ(A) for every A ∈ B.

Furstenberg’s correspondence principle for Z : Let fn be a locally convergent sequence of 0−1

sequences. Then there is a measure preserving system (Ω,B, µ, T ) and a measurable set S ⊆ Ω such

that for every 0− 1 sequence h : [k]→ {0, 1} the quantity limn→∞ t(h, fn) is equal to the probability

that (1S(x), 1S(xT ), . . . , 1S(xT
k−1

)) = h for a random element x ∈ Ω.

Note that originally the correspondence principle was stated in a different and more general form

for amenable groups. If the group is Z then it is basically equivalent with the above statement. A

measure preserving system is called ergodic if there is no set A ∈ A such that 0 < µ(A) < 1 and

µ(A4T−1(A)) = 0. Every measure preserving system is the combination of ergodic ones and thus

ergodic measure preserving systems are the building blocks of this theory.

We give two examples for convergent 0− 1 sequences and their limits. Let α be a fixed irrational

number. Then, as n tends to infinity, the sequences 1[0,1/2]({αi}), i = 1, 2, . . . , n (where {x} denotes

the fractional part of x) approximate the semicircle in a dynamical system where the circle is rotated

by 2πα degrees. Both the circle and the semicircle appears in the limit. A much more surprising

example (in a slightly different form) is given by Host and Kra in [54]. Let us take two Q-independent

irrational numbers α, β and let ai := 1[0,1/2]({[iβ]iα − i(i− 1)αβ/2}) where [x] denotes the integer

part of x. In this case the limiting dynamical system is defined on a three dimensional compact

manifold called Heisenberg nilmanifold.

Topologization and algebraization: At this point it is important to mention that Furstenberg’s

correspondence principle does not immediately give a ”natural” topological representation of the

limiting measure preserving system. In fact the proof yields a system in which the ground space

is the compact set {0, 1}Z with the Borel σ-algebra, T is the shift of coordinates by one and µ
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is some shift invariant measure. The notion of isomorphism between systems allows us to switch

{0, 1}Z to any other standard Borel space. However in certain classes of systems it is possible to

define a ”nicest” or ”most natural” topology . An old example for such a topologization is given

by Kronecker systems [41]. Assume that the measure preserving map T is ergodic and it has the

property that L2(Ω) is generated by the eigenvectors of the induced action of T on L2(Ω). It turns

out that such systems can be represented as rotations in compact abelian groups (called Kronecker

systems). The problem of topologization is a recurring topic in limit theories. It often comes together

with some form of ”algebraization” in the frame of which the unique nicest topology is used to

identify an underlying algebraic structure that is intimately tied to the dynamics. Again this can

be demonstrated on Kronecker systems where finding the right topology helps in identifying the

Abelian group structure. Note that there is a highly successful and beautiful story of topologization

and algebraization in ergodic theory in which certain factor-systems of arbitrary measure preserving

systems (called characteristic factors) are identified as inverse limits of geometric objects (called

nilmanifolds) arising from nilpotent Lie groups [52],[93]. As this breakthrough was also crucial in

the development of higher order Fourier analysis we will give more details in the next paragraph. In

many limit theories the following general scheme appears .

discrete objects → measurable objects → topological objects → algebraic objects

The first arrow denotes the limit theory, the second arrow denotes topologization and the third arrow

is the algebraization.

Factors: Factor systems play a crucial role in ergodic theory. A factor of a measure preserving

system (Ω,B, µ, T ) is a sub σ-algebra F in B that is T invariant (if B ∈ F then T−1(B) ∈ F). Note

that if F is a factor then (Ω,F , µ, T ) is also a measure preserving system. Often there is a duality

between a system of ”observable quantities” defined through averages and certain factors, called

characteristic factors. For example the averages

t(f) := lim
n→∞

n−1
n∑
i=1

∫
x

f(x)f(T i(x))f(T 2i(x))dµ

defined for bounded measurable functions satisfy that t(f) = t(E(f |K)) where K is the Kronecker

factor of the system (the unique largest factor that is a Kronecker system) and E(f |K) is the

conditional expectation with respect to K. Since conditional expectation is an elementary operation,

this means that properties of t(f) can be completely described in terms of Kronecker systems. The

ergodic theoretic proof [40] of Roth theorem [73] on 3-term arithmetic progressions is based on this

fact and a limiting argument using Furstenberg’s correspondence principle. It turns out that in

every ergodic measure preserving system there is a sequence of increasing, uniquely defined factors

K1 ≤ K2 ≤ . . . which starts with the Kronecker factor. Similarly to Roth’s theorem, the study of

k-term arithmetic progressions can be reduced to Kk−2. The results in [52] and [93] give a complete

geometric description for these factors in terms of nilsystems. Let G be a k-step nilpotent Lie group

and Λ ≤ G be a co-compact subgroup. The space N = {gΛ : g ∈ G} of left cosets of Λ is a finite

dimensional compact manifold on which G acts by left multiplication. It is known that there is a

unique G invariant probability measure µ on N . We have that {N,B, µ, g} is a measure preserving

system for every g ∈ G (where B is the Borel σ-algebra). If g acts in an ergodic way then it is called
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a k-step nilsystem. It was proved in [52] and [93] that for every k the factor Kk of an ergodic system

is the inverse limits of k-step nilsystems.

Local and global limits of graphs: Although Furstenberg’s correspondence principle gives the

first example for a local limit theory, a systematic study of similar structural limit theories started

much later. The general program of studying structures in the limit became popular in the early

2000’s when graph limit theory was born [11],[64],[65],[19],[20],[22]. The motivation to develop an

analytic theory for large networks came partially from applied mathematics. The growing access

to large networks such as social networks, internet graphs and biological networks like the brain

generated a demand for new mathematical tools to understand their approximate structure. An-

other motivation came from extremal combinatorics where inequalities between subgraph densities

are extensively studied. An analytic view of graphs enables the use of powerful methods such as

differential calculus to solve extremal problems. Similarly to ergodic theory certain graph sequences

approximate infinite structures which can not be perfectly represented by finite objects. It turns out

that there are simple extremal problems for graphs which have no precise finite solutions but a nice

exact solution appears in the limit. This is somewhat similar to the situation with the inequality

(x2 − 2)2 ≥ 0 which has no precise solution in Q but it has two solutions in R.

Similarly to 0− 1 sequences graph convergence can be defined through converging sample distri-

butions and thus the convergence notion will depend on the sampling method. Quite surprisingly

there are two different natural sampling methods. The first one works well if the graph has a non

negligible edge density (such graphs are called dense) and the second one is defined only for bounded

degree graphs. Note that on n vertices a dense graph has cn2 edges for some non negligible c > 0

whereas a bounded degree graph has cn edges for some bounded c. This means that dense and

bounded degree graphs are at the two opposite ends of the density spectrum. If a graph is neither

dense nor bounded degree then we call it intermediate.

Let G = (V,E) be a finite graph. In the first sampling method we choose k vertices v1, v2, . . . , vk

independently and uniformly from V and take the graph Gk spanned on these vertices. We regard

Gk as a random graph on [k]. For a graph H on the vertex set [k] let t0(H,G) denote the probability

that Gk = H. In dense graph limit theory, a graph sequence {Gn}∞n=1 is called convergent if for

every fixed graph H the limit limi→∞ t0(H,G) exists. Another equivalent approach is to define

t(H,G) as the probability that a random map from V (H) to V (G) is a graph homomorphism i.e.

it takes every edge of H to an edge of G. This number is called the homomorphism density of H

in G. In a sequence {Gn}∞n=1, the convergence of t(H,Gn) for all graphs H is equivalent with the

convergence of t0(H,Gn) for all graphs H. The advantage of using homomorphism densities is that

they have nicer algebraic properties such as multiplicativity and reflection positivity [64].

For the second sampling method let Gd denote the set of finite graphs with maximum degree

at most d. Let furthermore Grd denote the set of graphs of maximum degree at most d with a

distinguished vertex o called the root such that every other vertex is of distance at most r from o.

Now if G = (V,E) is in Gd then let v be a uniform random vertex in V . Let Nr(v) denote the v-

rooted isomorphism class of the radius r-neighborhood of v in G. We have that Nr(v) is an element

in Grd and thus the random choice of v imposes a probability distribution µ(r,G) on Grd . A graph

sequence {Gn}∞n=1 is called Benjamini-Schramm convergent if µ(r,Gn) is convergent in distribution
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for every fixed r. The convergence notion was introduced in the paper [11] to study random walks

on planar graphs. Colored and directed versions of this convergence notion can be also introduced

in a similar way. Benjamini-Schramm convergence provides a rather general framework for many

different problems. Note that it generalizes the local convergence of 0−1 sequences because one can

represent finite 0−1 sequences by directed paths with 0 and 1 labels on the nodes. Limit objects for

Benjamini-Schram convergent sequences are probability distributions on infinite rooted graphs with

a certain measure preserving property that generalizes the concept of measure preserving system.

Note that Benjamini-Schramm convergence is closely related to group theory. A finitely presented

group is called Sofic if its Cayley graph is the limit of finite graphs in which the edges are directed

and labeled by the generators of the group. Sofic groups are much better understood than general

abstract groups. The study of sofic groups is a fruitful interplay between graph limit theory and

group theory.

Global aspects of graph limit theory arise both in the dense and the bounded degree frameworks.

In case of dense graph limit theory the local point of view is often not strong enough. Although

it turns out that one can represent convergent sequences by so-called graphons [64] i.e. symemtric

measurable functions of the form W : [0, 1]2 → [0, 1] a stronger theorem that connects the conver-

gence with Szemerédi’s regularity lemma is more useful. Szemerédi’s famous regularity lemma is a

structure theorem describing the large scale structure of graphs in terms of quasi rendom parts. A

basic compactness result in dense graph limit theory [65] (see also Theorem 2.1) connects the local

and global point of views. This is used in many applications including property testing [67] and

large deviation principles [26].

The Benjamini-Schramm convergence is inherently a local convergence notion and thus it is not

strong enough for many applications. For example random d-regular graphs are locally tree-like

but they have a highly non-trivial global structure that has not been completely described. The

formalize this problem one needs a refinement of Benjamini-Schramm convergence called local-global

convergence (see definition 3.1). The concept of local-global convergence was successfully used in the

study of eigenvectors of random regular graphs. It was proved by complicated analytic, information

theoretic and graph limit methods in [10] that almost eigenvectors of random regular graphs have

a near Gaussian entry distribution. This serves as an illustrative example for the fact that deep

results in graph theory can be obtained through the limit approach. We give a detailed description

of the theory behind local-global graph convergence in this thesis. The corresponding chapter is

based on the paper [51]. One of the main results is a characterization of local-global limits in terms

of graphins (see theorem 3.3).

We have to mention that the branch of graph limit theory that deals with intermediate graphs

(between dense and bounded degree) is rather underdeveloped. There are numerous competing

candidates for an intermediate limit theory [16],[15],[83],[59],[71], [38]. A recent one [9] unifies many

of these theories. The hope is that at least one of these approaches will become a useful tool to

study real life networks such as connections in the brain or social networks. These networks are

typically of intermediate type.

Limits in additive combinatorics and higher order Fourier analysis: Let A be a finite

Abelian group and S be a subset in A. Many questions in additive combinatorics deal with the
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approximate structure of S. For example Szemerédi’s theorem can be interpreted as a result about

the density of arithemtic progressions of subsets in cyclic groups. It turns out that limit approaches

are natural in this subject. Let M ∈ Zm×n be an integer matrix such that each element in M

is coprime to the order of A. Then we can define the density of M in the pair (A,S) as the

probability that
∑
Mi,jxj ∈ S holds for every i with random uniform independent choice of elements

x1, x2, . . . , xn ∈ A. For example the density of 3 term arithmetic progressions in S is the density

of the matrix ((1, 0), (1, 1), (1, 2)) in S. We say that a sequence {(Ai, Si)}∞i=1 is convergence if the

density of all coprime matrix M in the elements of the sequence converges. This type of convergence

was first investigated in [85] and limit objects were also constructed. The subject is deeply connected

to Gowers norms and the subject of higher order Fourier analysis. In this thesis we describe an

interesting part of this limit theory which deals with special linear patterns (so-called complexiyty one

patterns) including 3 term arithmetic progressions. This special case creates a triple correspondence

between graph limits, additive combinatorics and harmonic analysis. Two major results of this part

of the thesis is theorem 5.13 and theorem 5.9.

Edge coloring models

Homomorphism densities play a crucial role in graph limit theory. If G is a fixed graph then the

numbers t(H,G) satisfy a number of algebraic properties. Quite interestingly it was observed by

Freedman, Lovász and Schrijver [36] that there is a dual version of the homomorphism number which

satisfies similar algebraic properties. While homomorphism number can be viewed as a summation

of certain products over all labelings of the vertices of H by the vertices of G there is similar quantity

which comes from summing certain products over all labelings of the edges of H. However in this

second case the quantity depends on a multivariate function of the form t : Nk → R called an ”edge

coloring model” rather than a graph G. In statistical physics they come up as values of certain

partition functions and they also come up as evaluations of tensor networks.

Assume that C = {c1, c2, . . . , cd} is a finite set of colors and ψ : E(H) → C is C coloring of

the edges of H. To each vertex v of H we can associate a vector vψ in Nd whos i-th coordinate

measures the multiplicity of the color ci on the edges adjacent to v. Then we denote by tψ(H) the

product of vψ over all vertices of H. Finally we by abusing the notation we define t(H) as the sum

of tψ(H) over all C colorings of the edges in H. It is a very natural question (motivated mostly by

statistical physics) to ask which graph parameters arise this way. Lovász, Freedman and Schrijver

formulated three algebraic properties and they conjectured that these properties give an algebraic

characterization of these graph parameters. We present the proof of this conjecture in this thesis

(see Theorem 4.2). The corresponding section is based on the paper [80]. The proof uses a collection

of algebraic methods including invariant theory of the orthogonal groups and some basic algebraic

geometry. Later on these techniques were further developed by various authors and they served as

the basis for many similar follow up theorems.

2 Dense graph limit theory

This chapter is very far from being a complete account of dense graph limit theory. We mostly focus

on basic facts about the graph limit space summarized in a fundamental theorem (see theorem 2.1)
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that connects graph limits with Szemerédi’s famous regularity lemma. In particular it shows that

the regularity lemma (even in stronger forms) can be viewed as a compactness result in analysis.

Along these lines we introduce several basic concepts and a general regularity lemma in Hilbert

spaces which is useful in other sturctural limit theories.

A graphon is a measurable function of the form W : [0, 1]2 → [0, 1] with the property W (x, y) =

W (y, x) for every x, y ∈ [0, 1]. Let W0 denote the set of all graphons. If G is a finite graph on the

vertex set [n] then its graphon representation WG is defined by the formula

W (x, y) = 1E(G)(dnxe, dnye).

For a graph H on the vertex set [k] let

t(H,W ) :=

∫
x1,x2,...,xk∈[0,1]

∏
(i,j)∈E(H)

W (xi, xj) dx1dx2 . . . dxk.

The quantity t(H,W ) is an analytic generalization of the so called homomorphism density defined

for finite graphs. This is justified by the easy observation that t(H,G) = t(H,WG). Let W denote

the set of all bounded measurable function on [0, 1]2 (up to 0 measure change). We will need the

so-called cut norm ‖.‖� on W. Let F : [0, 1]2 → R be a bounded measurable function. Then

‖F‖� := sup
A,B⊆[0,1]

∣∣∣∫
A×B

F (x, y) dxdy
∣∣∣

where A and B run through all measurable sets in [0, 1]. Using this norm we can introduce a measure

for ”similarity” of two graphons U and W by ‖U −W‖�. However this is not the similarity notion

that we use for convergence. We need to factor out by graphon ismorphisms. If ψ : [0, 1]→ [0, 1] is

a measure preserving transformation the we define Wψ(x, y) := W (ψ(x), ψ(y)). It is easy to check

that this transformation on graphons preserves the homomorphism densities: t(H,W ) = t(H,Wψ)

holds for every finite graph H. The next distance was introduced in [65] :

δ�(U,W ) := inf
φ,ψ:[0,1]→[0,1]

‖Uφ −Wψ‖�

where φ and ψ are measure preserving transformations. It is easy to check that δ� is a pseudometrics

i.e. it satisfies all axioms except that d(x, y) = 0 does not necessarily imply that x = y. In

order to get an actual metrics we have to factor out by the equivalence relation ∼δ� defined by

x ∼δ� y ⇔ d(x, y) = 0. Let X0 := W0/ ∼δ� . Since δ�(U,W ) = 0 implies that t(H,U) = t(H,W )

holds for every graph H we have that t(H,−) is well defined on X0. The following result [64],[65] in

graph limit theory is fundamental in many applications.

Theorem 2.1 We have the following statements for the metric space (X0, δ�).

1. The metric δ� defines a compact, Hausdorff, second countable topology on X0.

2. The function X → t(H,X) is a continuous function on X0 for every finite graph H.

Two important corollaries are the following.

Corollary 2.2 Assume that {Gi}∞i=1 is a sequence of graphs such that f(H) := limi→∞ t(H,Gi)

exists for every finite graph H. Then there is a graphon W ∈ W such that f(H) = t(H,W ) holds

for every H.
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Corollary 2.3 Szemerédi’s regularity lemma [87] (even in stronger forms) follows from Theorem

2.1.

Note that, although Corollary 2.2 may be deduced from earlier results on exchangeability [1],

Theorem 2.1 combines both the local and global aspects of convergence and so it is a stronger state-

ment. In some sense it can be regarded as a common generalization of both Szemerédi’s regularity

lemma [87] and a result on exchangeability [1].

Topologization of graph limit theory: In the definition of a graphon W : [0, 1]2 → [0, 1] the

[0, 1] interval on the left hand side is replaceable by any standard probability space (Ω, µ). In general

we need that (Ω, µ) is atomless but for certain special graphons even atoms maybe allowed. Note

that the values of W represent probabilities and so the [0, 1] interval is crucial on the right hand

side. Thus the general form of a graphon is a symmetric measurable function W : Ω × Ω → [0, 1].

Homomorphism densities t(H,W ) are defined for all such general graphons and two of them are

equivalent if all homomorphism densities are the same. The folowing question arises: Given a

graphon W . Is there a most natural topological space X and Borel measure µ on X such that W is

equivalent with a graphon of the form W ′ : X2 → [0, 1]? An answer to this question was given in

[66]. For a genral graphon W : Ω×Ω→ [0, 1] there is a unique purified version of W on some Polish

space X with various useful properties. The language of topologization induced a line of exciting

research in extremal combinatorics. Here we give a brief overview on applications of graphons in

extremal graph theory.

Extremal graphs and graphons: The study of inequalities between subgraph densities and the

structure of extremal graphs is an old topic in extremal combinatorics. A classical example is

Mantel’s theorem which implies that a triangle free graph H on 2n vertices maximizes the number

of edges if H is the complete bipartite graph with equal color classes. Another example is given by

the Chung-Graham-Wilson theorem [27]. If we wish to minimize the density of the four cycle in a

graph H with edge density 1/2 then H has to be sufficiently quasi random. However the perfect

minimum of the problem (that is 1/16) can not be attained by any finite graph but one can get

arbitrarily close to it. Both statements can be conveniently formulated in the framework of dense

graph limit theory. In the first one we maximize t(e,G) in a graph G with the restriction that

t(C3, G) = 0 (where e is the edge and C3 is the triangle). In the second one we fix t(e,G) to be 1/2

and we minimize t(C4, G). Since the graphon space is the completion of the space of graphs it is

very natural to investigate these problems in a way that we replace G by a graphon W . If we fix

finite graphs H1, H2, . . . ,Hk then all possible inequalities between t(H1,W ), t(H2,W ), . . . , t(Hk,W )

are encoded in the k-dimesional point set

L(H1, H2, . . . ,Hk) := {(t(H1,W ), t(H2,W ), . . . , t(Hk,W )) : W ∈ W}.

Note that this is a closed subset in [0, 1]k. As an example let e be a single edge and let P2 denote

the path with two edges. It is easy to prove that t(P2,W ) ≥ t(e,W )2. This inequality is encoded

encoded in L(e, P2) is the form that L(e, P2) ⊆ {(x, y) : y ≥ x2}. We have however that L(e, P2)

carries much more information. The shape of L(H1, H2, . . . ,Hk) is know in very few instances. It

took decades of research to completely describe the two dimensional shape L(e, C3) which gives all

possible inequalities between t(e,W ) and t(C3,W ). The characterization of L(e, C3) was completed
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by Razborov [72] partially using limit methods (a certain differentiation on the graph limit space).

Another direction of research investigates the structure of a graphon W with given subgraph den-

sities. A graphon W is called finitely forcible [68] if there are finitely many graphs H1, H2, . . . ,Hk

such that if t(Hi,W
′) = t(Hi,W ) holds for i = 1, 2, . . . , k for some W ′ ∈ W then W ′ is equivalent

with W . The motivation to study finitely forcible graphons is that they represent a large family of

extremal problems with unique solution. It is very natural to ask how complicated can extremal

graph theory get at the structural level. Originally it was conjectured that finitely forcible graphons

admit a step function structure which is equivalent with the fact that the topologization of the

graphon is a finite space. This was disproved in [68] and various examples were given with more

interesting underlying topolgy. However the topology in all of these examples is compact and finite

dimensional. It was asked in [68] whether this is always the case. Quite surprisingly both conjectures

turned out to be false. Extremal problems with strikingly complicated topologies were constructed

in [43], [28]. This gives a very strong justification of graph limit theory in extremal cobinatorics by

showing that complicated infinite structures are somehow encoded into finite looking problems. The

marriage between extremal graph theory and graph limit theory has turned into a growing subject

with surprising results. It brought topology and analysis into graph theory and gave a deep insight

into the nature and complexity of extremal structures.

2.1 Strong and Weak Regularity Lemma

We start with stating a standard version of the Lemma. For a graph G = (V,E) and for X,Y ⊆ V ,

let eG(X,Y ) denote the number of edges with one endnode in X and another in Y ; edges with both

endnodes in X ∩ Y are counted twice.

Let G be a bipartite graph G with bipartition {U,W}. The ratio d = dG(U,W ) = eG(U,W )
|U |·|W | can

be thought of as the density of edges between U and W . On the average, we expect that for X ⊆ U
and Y ⊆W ,

eG(X,Y ) ≈ d|X| · |Y |.

For two arbitrary subsets of the nodes, eG(X,Y ) may be very far from this “expected value”. If G

is a random graph, then, however, it will be close; random graphs are very “homogeneous” in this

respect. So the following definition captures how “random-like” the bipartite graph G is: We say

that G is ε-regular, if ∣∣∣∣eG(X,Y )

|X| · |Y |
− d
∣∣∣∣ ≤ ε

holds for all subsets X ⊆ U and Y ⊆W such that |X| > ε|U | and |Y | > ε|W |. Notice that we could

not require the condition to hold for small X and Y : for example, if both have one element, then

the quotient eG(X,Y )/(|X| · |Y |) is either 0 or 1.

Let G = (V,E) be a graph (not necessarily bipartite) and let S, T be disjoint subsets of V . We

denote by G[S, T ] the bipartite graph on S ∪ T obtained by keeping just those edges of G that

connect S and T .

A partition {V1, . . . , Vk} of V is called an equipartition if b|V |/kc ≤ |Vi| ≤ d|Vi|/ke for all

1 ≤ i ≤ k.

With these definitions, the Regularity Lemma can be stated as follows:
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Lemma 2.4 (Szemerédi Regularity Lemma, usual form) For every ε > 0 and m > 0 there is

a k = k(ε,m) such that every graph G = (V,E) on at least k nodes has an equipartition {V1, . . . , Vk}
(m ≤ k ≤ k(ε, l)) such that for all but εk2 pairs of indices 1 ≤ i < j ≤ k, the bipartite graph G[Vi, Vj ]

is ε-regular.

Let us restate the Regularity Lemma in a form that is more suited for our discussions. Consider

a graph G = (V,E) and two subsets U,W ⊆ V (not necessarily disjoint). We can measure how

non-random the graph between U and W is by its irregularity

irregG(U,W ) = max
X⊆U,Y⊆V

∣∣eG(X,Y )− d|X| · |Y |
∣∣.

(Note that by scaling up by |X| · |Y |, we can maximize over all sets ⊆ U and Y ⊆ W .) Clearly

irregG(U,W ) ≤ |U | · |W |.

Lemma 2.5 (Szemerédi Regularity Lemma, second form) For every ε > 0 there is a k(ε) >

0 such that every graph G = (V,E) has an equipartition P into k ≤ k(ε) classes V1, . . . , Vk such that∑
1≤i<j≤k

irregG(Vi, Vj) ≤ ε|V |2.

The equivalence of the two forms is easy to prove. One can add further requirements (at the cost

of increasing k(ε)), like the requirement that {V1, . . . , Vk} refines a given partition.

We give one more reformulation for further reference. For u, v ∈ V , let aG(u, v) = 1 if uv ∈ E and

aGu, v = 0 otherwise. For a partition P = {S1, . . . , Sk} of V and u, v ∈ V , let aP(u, v) = dG(Si, Sj)

where u ∈ Si and v ∈ Sj .

Lemma 2.6 (Szemerédi Regularity Lemma, third form) For every ε > 0 there is a k(ε) > 0

such that every graph G = (V,E) has an equipartition P into k ≤ k(ε) classes such that∣∣∣ ∑
uv∈E(H)

(aG(u, v)− aP(u, v)
∣∣∣ ≤ ε

for every graph H on V that is the union of at most k2 complete bipartite graphs.

To see how this implies the previous form, let X = Xij ⊆ Vi and Y = Xji ⊆ Vj attain the

maximum in the definition of irregG(Vi, Vj), and let Hij be a complete bipartite graph between Xij

and Xji. Let H be the union of those Hij for which eG(Xij , Xji) > dG(Vi, Vj) and let H ′ be the

union of the rest. Applying Lemma 2.6 to both H and H ′, we obtain Lemma 2.5.

One feature of the Regularity Lemma, which unfortunately forbids practical applications, is that

k(ε) is very large: the best proof gives a tower of height about 1/ε2, and unfortunately this is not

far from the truth, as was shown by Gowers [44].

A related result with a more reasonable threshold was proved by Frieze and Kannan [39], but they

measure irregularity in a different way. For a partition P = {V1, . . . , Vk} of V , define dij =
eG(Vi,Vj)
|Vi|·|Vj | .

For any two sets S, T ⊆ V (G), we expect that the number of edges of G connecting S to T is about

eP(S, T ) =

k∑
i=1

k∑
j=1

dij |Vi ∩ S| · |Vj ∩ T |.

So we can measure the irregularity of the partition by maxS,T |eG(S, T ) − eP(S, T )|. The Weak

Regularity Lemma [39] says the following.
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Lemma 2.7 (Weak Regularity Lemma) For every ε > 0 and every graph G = (V,E), V has a

partition P into k ≤ 22/ε2 classes V1, . . . , Vk such that for all S, T ⊆ V ,

|eG(S, T )− eP(S, T )| ≤ ε|V |2.

Note that we do not require here that P is an equipartition; it is not hard to see that this version

implies that we could require P to be an equipartition, at the cost of increasing the bound on k to

2c/ε
2

with a larger absolute constant c.

The partition in the weak lemma has substantially weaker properties than the partition in the

strong lemma; these properties are sufficient in some, but not all, applications. The bound on the

number of partition classes is still rather large (exponential), but at least not a tower. We’ll see that

the proof obtains the partition as an “overlay” of only 2/ε2 sets, which in some applications can be

treated as if there were only about 1/ε2 classes, which makes the weak lemma quite efficient (see

e.g. its applications in [2]). We’ll come back to the sharpness of the threshold in Section 2.5.

Other versions of the Regularity Lemma strengthen, rather than weaken, the conclusion (of

course, at the cost of replacing the tower function by an even more formidable value). Such a

“super-strong” Regularity Lemma was proved by Alon, Fisher, Krivelevich and Szegedy [3, 4]. Alon

and Shapira [6] used this to obtain very general results in the theory of “Property Testing” in

computer science.

It turns out that the Regularity Lemma has reformulations in other branches of mathematics. A

probabilistic and information theoretic version was given by Tao [88]. Our goal is to describe three

reformulations in analysis.

2.2 The analytic language

In this part we revisit some of the definitions from the beginning of this chapter and we add new

details. A two-variable function W : [0, 1]2 → R is called symmetric if W (x, y) = W (y, x) for

all 0 ≤ x, y ≤ 1. Recall that W denotes the set of all bounded symmetric measurable functions

W : [0, 1]2 → R and thatW0 denotes the set of symmetric measurable functions W : [0, 1]2 → [0, 1].

We call a function U ∈ W a stepfunction with at most m steps if there is a partition {S1, . . . , Sm} of

[0, 1] such that U is constant on every Si × Sj . From the analytic point of view, we think of graphs

as 0 − 1 valued stepfunctions in W0 such that the steps Si have equal sizes. It is clear that every

such function represents a graph on the vertex set {Si} and every graph arises this way.

Every W ∈ W can be considered as a kernel operator on the Hilbert space L2([0, 1]2) by

(Wf)(x) =

∫ 1

0

W (x, y)f(y) dy.

Besides the standard L2 and L1 norms, we’ll need the following norm on W:

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y) dx dy

∣∣∣∣∣∣ .
For the case of matrices, and up to scaling, this norm is called the “cut norm”; various important

properties of it were proved by Alon and Naor [5] and by Alon, Fernandez de la Vega, Kannan and
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Karpinski [2]. Many of these extend to the infinite case without any change. In particular, ‖W‖�
is within absolute constant factors to the L1 → L∞ norm of W as a kernel operator. Furthermore,

the following useful equations and inequalities are easy to verify:

‖W‖� = sup
f,g:[0,1]→[0,1]

|〈f,Wg〉| ≥ sup
f :[0,1]→[0,1]

|〈f,Wf〉|

≥ sup
S⊆[0,1]

∣∣∣∣∣∣
∫

S×S

W (x, y) dx dy

∣∣∣∣∣∣ ≥ 1

2
‖W‖�. (1)

The Weak Regularity Lemma in these terms asserts the following:

Lemma 2.8 (Weak Regularity Lemma, Analytic Form) For every function W ∈ W0 and ε >

0 there is a stepfunction W ′ ∈ W0 with at most d22/ε2e steps such that ‖W −W ′‖� ≤ ε.

For every W ∈ W and every partition P = {P1, . . . , Pk} of [0, 1] into measurable sets, let

WP : [0, 1]2 → R denote the stepfunction obtained from W by replacing its value at (x, y) ∈ Pi×Pj
by the average of W over Pi × Pj . (This is not defined when λ(Pi) = 0 or λ(Pj) = 0, but this is of

measure 0; here λ denotes the Lebesgue measure.)

It was observed in [2] that we can replace the stepfunction W ′ in Lemma 2.8 by the stepfunction

WP , where P is the partition into the steps of W ′, at the cost of increasing the error ε by a factor

of at most 2. Furthermore, at the cost of replacing the bound 2d2/ε
2e on the number of steps by

2d20/ε2e, we could require that the steps have the same measure.

It can also be shown [20] that finite simple graphs (0-1 valued symmetric stepfunctions) are dense

in the set W0 with respect to the ‖.‖�-norm.

The norm ‖.‖� relates to other norms by the following inequalities. It is trivial that

‖W‖� ≤ ‖W‖1. (2)

The following inequalities, proved in [20], are still simple but less obvious. For every W ∈ W, let

W ◦W denote its square as a kernel operator, i.e.,

(W ◦W )(x, y) =

∫ 1

0

W (x, t)W (t, y) dt.

Then

‖W‖4� ≤ ‖W ◦W‖22 ≤ ‖W‖�‖W‖2∞‖W‖1. (3)

So for functions in W,

‖W ◦W‖1/22 ≤ ‖W‖� ≤ ‖W ◦W‖22.

It can be checked that the left hand side, as a function of W , is a norm. Due to its more explicit

form, this is often easier to handle than ‖W‖�.

We conclude this section with formulating an analytic version of the strong Szemerédi Lemma

(third version). A rectangle in [0, 1] is any set of the form S × T , where S and T are measurable

subsets of [0, 1].
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Lemma 2.9 (Strong Regularity Lemma, Analytic Form) For every ε > 0 there is an integer

k(ε) > 0 such that for every function W ∈ W0 there is a partition P = {S1, . . . , Sk} of [0, 1] into

k ≤ k(ε) sets of equal measure with the following property: For every set R ⊆ [0, 1]2 that is the union

of at most k2 rectangles, we have ∣∣∣∫
R

(W −WP) dx dy
∣∣∣ ≤ ε.

2.3 The Regularity Lemma in Hilbert space

The following lemma is an extension of the Regularity lemma to a very general setting of Hilbert

spaces.

Lemma 2.10 (Regularity Lemma in Hilbert Space) Let K1,K2, . . . be arbitrary nonempty

subsets of a Hilbert space H. Then for every ε > 0 and f ∈ H there is an m ≤ d1/ε2e and

there are fi ∈ Ki (1 ≤ i ≤ m) and γ1, γ2, . . . , γm ∈ R such that for every g ∈ Km+1

|〈g, f − (γ1f1 + · · ·+ γmfm)〉| ≤ ε · ‖g‖ · ‖f‖.

Before proving this lemma, a little discussion is in order. Assume that the sets Kn are subspaces.

Then a natural choice for the function γ1f1 + · · · + γmfm is the best approximation of f in the

subspace K1 + · · · + Km (or an approximately best approximation, if the best does not exist), and

the error f − (γ1f1 + · · ·+ γmfm) is orthogonal (or almost orthogonal) to every g ∈ K1 + · · ·+Km.

The main point in this lemma is that it is also almost orthogonal to the next set Km+1.

Proof. Let

ηk = inf
{γi},{fi}

‖f −
k∑
i=1

γifi‖2,

where the infimum is taken over all γ1, . . . , γk ∈ R and fi ∈ Ki. Clearly we have ‖f‖2 ≥ η1 ≥ η2 ≥
· · · ≥ 0. Hence there is an m ≤ d1/ε2e such that ηm < ηm+1 + ε2‖f‖2. So there are γ1, . . . , γm ∈ R
and fi ∈ Ki such that

‖f −
m∑
i=1

γifi‖2 ≤ ηm+1 + ε2‖f‖2.

Let f∗ =
∑
i γifi, and consider any g ∈ Km+1. By the definition of ηm+1, we have for every real

t that

‖f − (f∗ + tg)‖2 ≥ ηm+1 ≥ ‖f − f∗‖2 − ε2‖f‖2,

or

‖g‖2t2 − 2〈g, f − f∗〉t+ ε2‖f‖2 ≥ 0.

The discriminant of this quadratic polynomial must be nonpositive, which proves the lemma.

We derive some consequences of this Lemma. First, let us apply this lemma to the case when

the Hilbert space is L2([0, 1]2), and each Kn is the set of indicator functions of product sets S × S,

where S is a measurable subset of [0, 1]. Let f ∈ W0, then f∗ =
∑k
i=1 γifi is a stepfunction with at

most 2k steps, and so we get a stepfunction W ∗ ∈ W with at most 2d1/ε
2e steps such that for every

measurable set S ⊆ [0, 1], ∣∣∣∣∫
S×S

(W −W ∗)
∣∣∣∣ ≤ ε.
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It is easy to see that the conclusion implies that for any two measurable sets S, T ⊆ [0, 1],∣∣∣∣∫
S×T

(W −W ∗)
∣∣∣∣ ≤ 2ε,

which implies Lemma 2.8 (up to the factor of 2).

We say that a partition P of [0, 1] is a weak Szemerédi partition for W with error ε, if∣∣∣∣∫
S×S

(W −WP)

∣∣∣∣ ≤ ε
holds for every subset S ⊆ [0, 1]. So every function has a weak Szemerédi partition with error ε,

with at most 22/ε2 classes.

To derive the graph theoretic form of the (weak) Regularity Lemma from lemma 2.10, we rep-

resent the graph G on n nodes by a stepfunction WG: we consider the adjacency matrix A = (aij)

of G, and replace each entry aij by a square of size (1/n) × (1/n) with the constant function aij

on this square. Let A be the algebra of subsets of [0, 1] generated by the intervals corresponding to

nodes of G. We let Kn be the set of indicator functions of product sets S×S (S ∈ A). Analogously

to the proof of Lemma 2.8 above, we get a partition P = {S1, . . . , Sm} of [0, 1] into sets in A such

that ∣∣∣∣∫
S×T

(WG(x, y)− (WG)P(x, y)) dx dy

∣∣∣∣ ≤ 2ε

for all sets S, T ∈ A. This translates into the conclusion of Lemma 2.7.

Next we show how to get the strong analytic form of the Regularity Lemma 2.9; the graph

theoretic form can be obtained similarly (just there is a little extra trouble because of divisibilities).

Let us define a sequence s(1), s(2), . . . of positive integers by s(1) = 1 and s(k + 1) = 2s(1)4···s(k)4 .

Let us apply Lemma 2.10 to the Hilbert space L2([0, 1]2) and the function W as before, but choose

Kn to be the set of stepfunctions with at most s(n) steps. Lemma 2.10 gives us a function W ∗,

which is a stepfunction with at most m = s(1)s(2) . . . s(k) steps; let S1, . . . Sm be these steps. This

stepfunction has the property that for every stepfunction U with at most s(k + 1) steps,∣∣∣∫
[0,1]2

U(W −W ∗) dx dy ≤ ε.

We further partition each Si into an appropriate number of sets of measure 1/m2 (called good

sets and a ”remainder” of measure less than 1/m2. We combine these remainders into single set,

whose measure is less than 1/m. We partition this into sets of size 1/m2; there will be at most m

such sets, which we call bad sets. So we get a partition Q = {T1, . . . , Tm2} of [0, 1] into m2 equal

parts, out of which (say) T1, . . . , Tm2−m are good sets.

Let R ⊆ [0, 1]2 be a set that is the union of m2 rectangles. We claim that∣∣∣∫
R

(W −WQ)
∣∣∣ ≤ 3ε.

We start with removing from R all points in sets Ti × Tj , where either Ti or Tj is bad. The

remaining set R′ is again the union of at most m2 rectangles, and since the measure of R \R′ is less

than 2/m < ε, it suffices to prove that ∣∣∣∫
R′

(W −WQ)
∣∣∣ ≤ 2ε.
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Clearly, the indicator function of R′ is a stepfunction with at most 2m
4 ≤ s(k + 1) steps, and hence

by the conclusion of Lemma 2.10, we have∣∣∣∫
R′

(W −W ∗)
∣∣∣ ≤ ε.

So it suffices to verify that ∣∣∣∫
R′

(WQ −W ∗)
∣∣∣ ≤ ε. (4)

If Ti and Tj are good sets, then both W ∗ and WQ are constant on Ti × Tj , so we can either include

or exclude the rectangle Ti × Tj from R′, and not decrease the left hand side of (4). Doing so for

every pair of good sets, we obtain a set R′′, which is the union of certain sets Ti × Tj , where both

Ti and Tj are good. Thus by the definition of WQ, we have∣∣∣∫
R′′

(WQ −W ∗)
∣∣∣ =

∣∣∣∫
R′′

(W −W ∗)
∣∣∣ ≤ ε

(by the assertion of Lemma 2.10). This concludes the proof of the strong Szemerédi Lemma.

There may be further interesting choices of the Hilbert space H and subsets Kn. For example,

let H = L2[0, 1], and let Kn be the set of polynomials of degree at most 2n. Then we get:

Corollary 2.11 For every ε > 0 and every function f ∈ L2[0, 1] there is a polynomial p ∈ R[x] of

degree d ≤ 2d1/ε
2e such that

〈g, f − p〉 ≤ ε‖f‖ · ‖g‖

for every polynomial g of degree at most 2d.

2.4 The Regularity Lemma as compactness

In this chapter we show that the Regularity Lemma can be formulated as a compactness theorem.

Recall that a map φ : [0, 1] → [0, 1] is measure preserving if λ(φ−1(U)) = λ(U) for every

measurable set U ⊆ [0, 1]. We say that φ is a measure preserving bijection if it is bijective and its

inverse is also measure preserving.

Let W be a function from W. We define Wφ by Wφ(x, y) = W (φ(x), φ(y)). We define a

“distance” on the space W by

δ�(U,W ) = inf
φ
‖Uφ −W‖�,

where φ ranges over all measure preserving bijections [0, 1] → [0, 1]. It is not hard to check

that δ�(U,W ) = δ�(W,U), and that this distance satisfies the triangle inequality. Furthermore,

δ�(U,W ) = δ�(Uφ,W ) for every measure preserving bijection φ.

The distance of two different functions can be 0; various characterizations of when the δ� distance

is 0 are given in [18] and [65].

We construct a metric space X from (W, δ�) by identifying functions U and W with δ�(U,W ) =

0. Let X0 denote the image of W0 under this identification. Informally speaking, the elements of X0

are the isomorphism classes of functions in W0. Clearly the distance δ� is well defined on X0.

The following fact can be regarded as a topological interpretation of the Regularity Lemma. (We

prove it by the methods in [63].)
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Theorem 2.12 The metric space X0 is compact.

Proof. Let W1,W2, . . . be a sequence of functions in W0. We want to construct a subsequence

that has a limit in X0.

Using Lemma 2.8 and the remarks after it, for each k and n we construct a partition Pn,k such

that these partitions and the corresponding stepfunctions Wn,k = WPn,k
∈ W0 satisfy the following.

• ‖Wn −Wn,k‖� ≤ 1/k.

• |Pn,k| = mk (where mk depends only on k).

• The partition Pn,k+1 refines Pn,k for every k.

We’ll only use that δ�(Wn,Wn,k) ≤ 1/k, which means that we can rearrange the range of Wn,k

as we wish; in particular, we may assume that all steps are intervals.

Now we can select a subsequence of the Wn for which the length of the i-th interval of Wn,1

converges for every i, and also the value of Wn,1 on the product of the i-th and j-th intervals

converges for every i and j (as n→∞). It follows then that the sequence Wn,1 converges to a limit

U1 almost everywhere, which itself is a stepfunction with m1 steps that are intervals.

We repeat this for k = 2, 3, . . . , to get subsequences for which Wk,n → Uk almost everywhere,

where Uk is a stepfunction with mk steps that are intervals.

For every k < l, the partition into the steps of Wn,l is a refinement of the partition into the steps

of Wn,k, and hence it is easy to see that the same relation holds for the partitions into the steps of

Ul and Uk. Furthermore, the function Wn,k can be obtained from the function Wn,l by averaging

its value over each step, and it follows that a similar relation holds for Ul and Uk.

Let (X,Y ) be a random point in [0, 1]2 chosen uniformly, then this property of the functions

Uk implies that the sequence (U1(X,Y ), U2(X,Y ), . . . ) is a martingale. Since the random variables

Ui(X,Y ) remain bounded, the Martingale Convergence Theorem (see e.g. [92], Theorem 11.5) im-

plies that this martingale is convergent with probability 1. In other words, the sequence (U1, U2, . . . )

is convergent almost everywhere. Let U be its limit.

Fix any ε > 0. Then there is a k > 3/ε such that ‖U −Uk‖1 < ε/3. Fixing this k, there is an n0

such that ‖Uk −Wn,k‖1 < ε/3 for all n ≥ n0. Then

δ�(U,Wn) ≤ δ�(U,Uk) + δ�(Uk,Wn,k) + δ�(Wn,k,Wn)

≤ ‖U − Uk‖1 + ‖Uk −Wn,k‖1 + δ�(Wn,k,Wn)

≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves that Wn → U in the metric space X0.

Note that in the proof above, the explicit bound on the number of partition classes in the

Regularity Lemma was not used, only that their number is bounded by a function of ε, independent

of the function. This is quite often the case with applications of the Lemma.

Now we show how this compactness statement implies the following strong form of the Regularity

Lemma.
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Lemma 2.13 (Very Strong Regularity Lemma) Let h(ε, t) > 0, (ε > 0, t ∈ N) be an arbitrary

fixed function. Then for every ε > 0 there is a threshold k(ε) such that for every function W ∈ W0

there are two functions W ′, U ∈ W0 such that U is a stepfunction with l ≤ k(ε) steps, and

‖W −W ′‖� ≤ h(ε, l), ‖W ′ − U‖1 ≤ ε.

The role of the two norms could be interchanged: the function W ′′ = U −W ′ +W satisfies

‖W −W ′′‖1 ≤ ε, ‖W ′′ − U‖� ≤ h(ε, 1).

Choosing h(ε, t) = ε, we get Lemma 2.8. Choosing h(ε, t) = ε/t2, it is not hard to see that

the strong form of Szemerédi’s Lemma follows. Choosing h(ε, t) appropriately small, we get the

“super-strong” Regularity Lemma from [3, 4] mentioned in the introduction. Our Lemma is very

closely related to a version of the regularity lemma given by Tao [88].

Proof. We may assume that h is monotone decreasing in its second variable. Let us fix a

number ε > 0. Every function U ∈ W0 is the limit of stepfunctions in the ‖.‖1 norm, hence there is

a stepfunction U ′ ∈ W0 with ‖U−U ′‖1 ≤ ε. Let f(U) denote the minimum number of steps in such a

stepfunction U ′. For a function U ∈ W0, let B(U) denote the open ball {W | δ�(U,W ) < h(ε, f(U))}.
Using Theorem 2.12, we obtain that there is a finite set of functions W1,W2, . . . ,Wt ∈ W0 with

∪ti=1B(Wi) = W0. This means that for every function W ∈ W0 there is a function Wm (1 ≤
m ≤ t) and a stepfunction U0 ∈ W0 with f(Wm) steps such that δ�(W,Wm) < h(ε, f(Wm)) and

‖Wm − U0‖1 < ε.

Set l = f(Wm) and k(ε) = maxti=1 f(Wi). There is a measure preserving bijection φ : [0, 1] 7→
[0, 1] such that ‖W −Wφ

m‖� < h(ε, l). Then U = Uφ0 is a stepfunction with l steps, and W ′ = Wφ
m

satisfies

‖W ′ − U‖1 = ‖Wφ
m − U

φ
0 ‖1 = ‖Wm − U0‖1 < ε

and

δ�(W,W ′) = δ�(W,Wφ
m) = δ�(W,Wm) ≤ h(ε, l),

which completes the proof.

2.5 The Regularity Lemma and covering by small balls

Every function W ∈ W gives rise to a metric on [0, 1] by

d1
W (x1, x2) = ‖W (x1, .)−W (x2, .)‖2 =

(∫ 1

0

(W (x1, y)−W (x2, y))2 dy

)1/2

.

It turns out that for our purposes, the following distance function is more important: we square W

as a kernel operator, and then consider the above distance. More precisely, we define

dW (x1, x2) = d1
W◦W (x1, x2)

=

(∫ 1

0

(∫ 1

0

W (x1, y)W (y, z) dy −
∫ 1

0

W (x2, y)W (y, z) dy
)2

dz

)1/2

.

Our goal is to prove that the (weak) Regularity Lemma is equivalent to the assertion that most of

the metric space ([0, 1], δW ) can be covered by a bounded number of small balls. More exactly:
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Theorem 2.14 Let W ∈ W0 and let P = {P1, . . . , Pk} be a partition of [0, 1] into measurable sets.

(a) If P is a weak Szemerédi partition with error ε2/8, then there is a set S ⊆ [0, 1] with λ(S) ≤ ε
such that for each partition class, Pi \ S has diameter at most ε in the dW metric.

(b) If there is a set S ⊆ [0, 1] with λ(S) ≤ (ε/5)4 such that for each partition class, Pi \ S has

diameter at most (ε/5)2 in the dW metric, then P is a weak Szemerédi partition with error ε.

Combining this fact with the existence of weak Szemerédi partitions, we get the following:

Corollary 2.15 For every function W ∈ W and every ε > 0 there is a partition P =

{P0, P1, . . . , Pk} of [0, 1] into measurable sets with k ≤ 2d64/ε4e such that λ(P0) ≤ ε and for 1 ≤ i ≤ k,

Pi has diameter at most ε in the dW metric.

It is straightforward to formulate this theorem for graphs instead of functions W ∈ W: We

define the distance of two nodes u, v of a graph G by squaring the adjacency matrix, and taking the

euclidean distance between the row vectors corresponding to u and v, divided by n3/2. Then the

statement of the Theorem is analogous, and the proof is the same.

Proof. (a) Suppose that P is a weak Szemerédi partition with error ε2/8. Let R = W −WP ,

then we know that ‖R‖� ≤ ε2/8.

For every x ∈ [0, 1], define

F (x) =

∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds
)2

dz.

Then we have ∫ 1

0

F (x) dx =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

R(x, t)R(x, s)W (s, z)W (t, z) dx ds dt dz.

Fix z and t, then since −1 ≤ R(x, t) ≤ 1 and 0 ≤W (s, z) ≤ 1, we have∫ 1

0

∫ 1

0

R(x, t)R(x, s)W (s, z) dx ds ≤ ε2/4,

and so ∫ 1

0

F (x) dx ≤ ε2/4.

Hence there is a set S ⊆ [0, 1] with measure at most ε such that for x ∈ [0, 1]\S, we have F (x) ≤ ε/4.

Let x, y ∈ [0, 1] \ S be two points in the same partition class of P. Then WP(x, s) = WP(y, s)

for every s ∈ [0, 1], and hence

dW (x, y)2 =

∫ 1

0

(∫ 1

0

(W (x, s)−W (y, s))W (s, z) ds
)2

dz

=

∫ 1

0

(∫ 1

0

(R(x, s)−R(y, s))W (s, z) ds
)2

dz

=

∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds−
∫ 1

0

R(y, s))W (s, z) ds
)2

dz

≤ 2

∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds
)2

dz + 2

∫ 1

0

(∫ 1

0

R(y, s)W (s, z) ds
)2

dz

= 2F (x) + 2F (y) ≤ ε.
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(b) We want to show that ‖W −WP‖� < ε. By (1), it suffices to show that for any 0-1 valued

function f ,

〈f, (W −WP)f〉 ≤ 1

2
ε. (5)

Let us write f = fP + g, where fP(x) is obtained by replacing f(x) by the average of f over the

class Pi containing x. It is easy to check that we have

〈f, (W −WP)f〉 = 〈f + fP ,Wg〉. (6)

By Cauchy-Schwartz,

〈f + fP ,Wg〉 ≤ ‖f + fP‖ · ‖Wg‖ ≤ 2‖Wg‖. (7)

We have

‖Wg‖2 = 〈g,W 2g〉 =

∫
[0,1]3

g(x)W (x, y)W (y, z)g(z) dx dy dz.

For each x, let φ(x) be an arbitrary, but fixed, element of the class Pi containing x such that x /∈ S
(if Pi ⊆ S then we define φ(x) to be 0). Then∫

[0,1]3
g(x)W (x, y)W (y, z)g(z) dx dy dz

=

∫
[0,1]3

g(x)
(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)
g(z) dx dy dz

+

∫
[0,1]3

g(x)W (x, y)W (y, φ(z))g(z) dx dy dz .

Here the last integral is 0, since the integral of g over each partition class is 0. Furthermore,∫
[0,1]3

g(x)
(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)
g(z) dx dy dz

≤

(∫
[0,1]3

g(x)2g(z)2 dx dy dz

)1/2

×

(∫
[0,1]3

(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)2
dx dy dz

)1/2

.

Here the first factor is at most 1, and∫
[0,1]3

(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)2
dx dy dz =

∫ 1

0

dW (z, φ(z))2 dz

=

∫
[0,1]/S

dW (z, φ(z))2 dz +

∫
S

dW (z, φ(z))2 dz ≤ 2(ε/5)4.

Thus ∫
[0,1]3

g(x)W (x, y)W (y, z)g(z) dx dy dz ≤ 21/2(ε/5)2,

and so ‖Wg‖ ≤ 1
521/4ε < 1

4ε. By (6) and (7), this proves (5), and completes the proof.
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2.6 Proof of theorem 2.1

In this section we finish the proof of theorem 2.1. The first part of the theorem is just the statement

of theorem 2.12. It remains to show the continuity of functions of the form W 7→ t(F,W ). We use

the following observation and lemma. It is easy to see that

‖U‖� = sup
0≤f,g≤1

∣∣∣∣∫ 1

0

∫ 1

0

U(x, y)f(x)g(y)

∣∣∣∣ . (8)

Lemma 2.16 Let U,W : [0, 1]2 → [0, 1] be two symmetric integrable functions. Then for every

simple finite graph F ,

|t(F,U)− t(F,W )| ≤ |E(F )| · ‖U −W‖�.

Proof. Let V (F ) = [n] and E(F ) = {e1, . . . , em}. Let et = itjt. Define Et = {e1, . . . , et}. Then

t(F,U)− t(F,W ) =

∫
[0,1]n

( ∏
ij∈E(F )

W (xi, xj)−
∏

ij∈E(F )

U(xi, xj)
)
dx

We can write ∏
ij∈E(F )

W (xi, xj)−
∏

ij∈E(F )

U(xi, xj) =

m−1∑
t=0

Xt(x1, . . . , xn),

where

Xt(x1, . . . , xn) =
( ∏
ij∈Et−1

W (xi, xj)
)( ∏

ij∈E(F )\Et

U(xi, xj)
)

(W (xit , xjt)− U(xit , xjt)).

To estimate the integral of a given term, let us integrate first the variables xit and xjt ; then by (8),∣∣∣∣∫ 1

0

∫ 1

0

Xt(x1, . . . , xn) dxit dxjt

∣∣∣∣ ≤ ‖U −W‖�,
and so

|t(F,U)− t(F,W )| ≤
m−1∑
t=0

∣∣∣∣∣
∫

[0,1]n
Xt(x1, . . . , xn) dx

∣∣∣∣∣ ≤ m‖U −W‖�
as claimed.

Now observe that since t(H,Wφ) = t(H,W ) holds for every measure preserving function φ on

[0, 1] we have by lemma 2.16 that

|t(F,U)− t(F,W )| ≤ |E(F )| · ‖Uφ −Wψ‖�.

holds for every pair of measure preserving functions φ and ψ. It follows that

|t(F,U)− t(F,W )| ≤ |E(F )| · δ�(U,W ).

This completes the proof.
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2.7 Two applications

We conclude with two applications of this characterization of weak Szemerédi partitions. First we

prove that the exponential dependence of the number of classes on ε in Lemma 2.8 is necessary.

Taking an appropriately dense finite subgraph of our construction, one can prove a similar bound

on the threshold in the finite version Lemma 2.7.

Let Sd be the d-dimensional sphere, endowed with the uniform probability measure µ (it does

not matter which probability space we consider as the domain of W , so we may consider Sd instead

of [0, 1]). For x, y ∈ Sd, let

W (x, y) =

{
1, if xTy ≥ 0,

0 otherwise.

We prove:

Proposition 2.17 Every weak Szemerédi partition of W with error ε ≤ 1/(8d+8) contains at least

2d−1 classes.

Proof. We may assume that d ≥ 3. Let ^(x, y) denote the angle (spherical distance) between

the points x, y ∈ Sd. Then clearly

W (2)(x, y) =
1

2
− ^(x, y)

π
.

From this it is routine to verify that for any two points x, y ∈ Sd,

dW (x, y) ≥ 2√
d+ 1

^(x, y). (9)

Let P = {P1, . . . , Pk} be a weak Szemerédi partition of Ω for the function W , with error ε. Then

by Theorem 2.14(a), there is a set T ⊆ Sd with λ(T ) ≤ (8ε)1/2 such that the diameter of Pi\T in the

dW metric is at most (8ε)1/2 for every i. By (9), this implies that the diameter of Pi \T in spherical

distance is at most
√

2ε(d+ 1), and hence its measure satisfies λ(Pi \ T ) ≤ (
√

2ε(d+ 1))d ≤ 2−d.

Since the sets Pi \ T (i = 1, . . . , k) and T cover Sd, we get

k2−d + (8ε)1/2 ≥ 1,

which implies that k ≥ 2d−1.

Thus for a given ε > 0, we get weak Szemerédi partitions with error at most ε with 22/ε2 classes,

and for some functions we need at least (1/4)21/(8ε) classes. It is not clear whether the best threshold

has 1/ε or 1/ε2 in the exponent.

As a second application of Theorem 2.14, we sketch a (somewhat surprising) algorithm to con-

struct a weak Szemerédi partition.

Let W ∈ W0 and ε2/5 > 0. Set

m =

⌈
80

ε2
ln

80

ε2

⌉
2d1012/ε16e.

Choose independent uniform random points X1, . . . , Xm from [0, 1]. Let S1, . . . , Sm be the Voronoi

cells of these points with respect to the metric δW ; in other words, let x ∈ Si if x is closer to Xi
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than to any other Xj ; if there are more than one points Xj at minimum distance from x, then we

assign x to that with smallest subscript. This way get a partition S(X1, . . . , Xm) = {S1, . . . , Sm} of

[0, 1].

Theorem 2.18 With probability at least 3/4, the partition S(X1, . . . , Xm) is a weak Szemerédi

partition with error at most ε.

We have described this algorithm as applied to a function W ∈ W0, but it is straightforward

to modify it so that it applies to a graph G. Our algorithm gives a larger number of classes than

that of Frieze and Kannan [39], and it is also slower (primarily because of the cost of squaring

the adjacency matrix at the beginning). Our purpose with this formulation is to illuminate this

geometric connection.

Proof. Let k = 2d1012/ε16e. By Corollary 2.15, there is a partition {T0, T1, . . . , Tk} of [0, 1] into

k + 1 measurable sets such that λ(T0) ≤ ε2/10 and for 1 ≤ i ≤ k, Ti has diameter at most ε2/10 in

the dW metric. let αi = λ(Ti). Let I be the set of those indices i ∈ {1, . . . , k} for which Ti contains

at least one sample point Xj (we don’t care whether T0 contains a sample point). Then

E
(
λ(∪i/∈ITi)

)
=

k∑
i=1

αi(1− αi)m.

To estimate this sum, let c = ε2/(80k). Then we have

E
(
λ(∪i/∈ITi)

)
=

∑
i: αi≤c

αi(1− αi)m +
∑

i: αi>c

αi(1− αi)m ≤ ck + (1− c)m

≤ ε2

80
+ e−ε

2m/(80k) ≤ ε2

80
+
ε2

80
=
ε2

40
.

So with probability at least 3/4, we have λ(∪i/∈ITi) ≤ ε2/10. In such a case, the set S = ∪i∈ITi ∪T0

has measure λ(S) ≤ ε2/5.

We claim that for j = 1, . . . ,m, the diameter of Sj \ S is at most ε2/5. It suffices to prove

that dW (x,Xj) ≤ ε2/10 for every point x ∈ Sj \ S. Indeed, there is an i ∈ I such that x ∈ Ti.

The set Ti has diameter at most ε2/10, and (since i ∈ I) there is a sample point Xh ∈ Ti. Thus

dW (x,Xh) ≤ ε2/10, but since x belongs to the Voronoi cell of Xj , it follows that dW (x,Xj) ≤ ε2/10.

We are done by Theorem 2.14(b).

3 Local-global limits of bunded degree graphs

The colored neighborhood metric for sparse graphs was introduced by Bollobás and Riordan [14].

The corresponding convergence notion refines a convergence notion introduced by Benjamini and

Schramm [11]. We prove that even in this refined sense, the limit of a convergent graph sequence

(with uniformly bounded degree) can be represented by a graphing. We study various topics related

to this convergence notion such as: Bernoulli graphings, factor of i.i.d processes and hyperfiniteness.

Quite interestingly (or disturbingly) there is no unified theory of graph convergence. Instead

there are various convergence notions that work well in different situations. For example the theory

of dense graph limits works well if the number of edges is quadratic in the number of vertices but it
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trivializes for graphs that are sparser than that. On the other hand the Benjamini–Schramm limit

[11] is only defined for graphs which have a linear number of edges in terms of the vertices. In the

regime between linear and quadratic the situation gets even more complicated.

In this part of the thesis we focus on the very sparse case were graphs have degrees bounded

by some fixed number d (which we consider as fixed throughout). According to Benjamini and

Schramm, a graph sequence {Gn}∞n=1 is convergent if the distribution of the isomorphism types of

neighborhoods of radius r (when a vertex is chosen uniformly at random in Gn) converges for every

fixed r. This notion of convergence is called local convergence, weak convergence or Benjamini–

Schramm convergence.

The following example illustrates why a different, stronger notion of convergence is needed in

some cases. For odd n, let Gn be a d-regular expander graph on n nodes. For even n, let Gn be the

disjoint union of two d-regular expander graphs on n/2 nodes. Assume that the girth of Gn tends

to infinity. Then the sequence Gn is locally convergent, but clearly even and odd members of the

sequence are quite different, and it would be desirable to distinguish them.

Bollobás and Riordan [14] introduced such a finer convergence notion (i.e., fewer sequences

are convergent). A graph sequence {Gn}∞n=1 is convergent in this sense if for every r, k ∈ N and

ε > 0 there is an index l such that if n,m > l then for every coloring of the vertices of Gn with

k colors the distribution of colored neighborhoods of radius r can be approximated with error at

most ε by the colored neighborhood statistics of another coloring of the vertices of Gm. This is

equivalent to saying that Gn and Gm are close in the colored neighborhood metric introduced in

[14]. This finer convergence is sensitive to both local and global properties of the graphs, whereas

the Benjamini–Schramm convergence is only sensitive to local properties. For this reason we call

this notion local-global convergence.

Benjamini and Schramm described a limit object for locally convergent sequences in the form

of an involution-invariant distribution on rooted countable graphs with bounded degree. One can

also describe this limit object as a graphing (Elek [30]), which is a bounded degree graph on a

Borel probability space such that the edge set is Borel measurable and it satisfies a certain measure

preservation property (we will give a precise definition below). Neighborhood statistics in graphings

can be defined by using the probability space structure on the vertex set. Every involution-invariant

distribution can be represented by a graphing. We note that graphings are common generalizations

of bounded degree graphs and measure preserving systems and so they are also interesting from an

ergodic theoretic point of view.

However, the graphing representing the limit object of a locally convergent graph sequence is not

unique: quite different graphings can describe the same involution-invariant distribution. In other

words, a graphing contains more information that just the limiting neighborhood distribution. This

suggests that graphings can be used to represent limit objects for more refined convergence notions.

Indeed, we will show that the limit of a local-global convergent sequence can also be represented

by a graphing in the sense that the graphs converge to the graphing in the colored neighborhood

metric. This means that for every local-global convergent sequence we produce a graphing which

contains both local and global information about the graphs.

We highlight the importance of a special family of graphings called Bernoulli graphings. We show

that with given local statistics the Bernoulli graphings contains the least global information. This
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means that the global properties of a Bernoulli graphing can be modeled with an arbitrary precision

on any other graphing with the same local statistics. Graph sequences that converge to Bernoulli

graphings will be called Bernoulli sequences. For a graph G, Being close to a Bernoulli graphing in

the colored neighborhood metric, means that the local statistics of a coloring on G can be modeled

by a randomized process called local algorithm or factor of i.i.d process.

Roughly speaking a hyperfinite graph sequence is a bounded degree sequence whose members

can be cut into small connected components using a small set of vertices (or equivalently edges). We

prove that a locally convergent hyperfinite sequence is a local-global convergent Bernoulli sequence.

It is an interesting question how to construct non hyper-finite sequences that are Bernoulli. A good

candidate is a growing sequence of random d-regular graphs however this is a hard open problem.

Describing the local-global limits of random d-regular graphs would give a deep understanding of

their structure, and it seems to be one of the most interesting problems in this topic. We describe

a few related conjectures.

3.1 Local-Global convergence of bounded degree graphs

A rooted graph is a pair (G, o) where o is a vertex of a graph G. The radius of a rooted graph is the

distance of the farthest vertex in G to o. We denote by Ur the set of all rooted graphs with radius

r (and all degrees bounded by d). For an integer r > 0, and a vertex v in a graph G, let NG,r(v)

denote the subgraph of G rooted at v and induced by the vertices that are at a distance at most r

from v. Two rooted graphs (G, o) and (G′, o′) are said to be isomorphic if there is an isomorphism

from G to G′ that maps o to o′.

Given a finite graph G and a radius r ≥ 1, we can choose a node v ∈ V (G) uniformly and

randomly, and consider the distribution of NG,r(v). Let PG,r denote this probability measure on

Ur. We say that a sequence (Gn) of finite graph is locally convergent (or Benjamini–Schramm

convergent), if PGn,r converges to a limit distribution as n→∞, for every fixed r ≥ 1.

Note that since Ur is finite, all the usual distances on M(Ur) are topologically equivalent. Most

of the time we work with the total variation distance dvar, defined (in general, for a space X) by

dvar(µ, ν) = sup
A⊆X

|µ(A)− ν(A)|

where A runs through the Borel measurable sets. Denote the set of probability measures on a Borel

space X by M(X).

To define our refinement of local convergence, we consider node colorings. For a finite graph G

let K(k,G) denote the set of all vertex colorings with k colors. Fix integers k and r, and let Ur,k be

the set of all triples (H, o, c) where (H, o) is a rooted graph of radius at most r and c is an arbitrary

k-coloring of V (H). Consider a finite graph G together with an c ∈ K(k,G). Pick a random vertex

v from G, then the restriction of the k-coloring to NG,r(v) is an element in Ur,k, and thus for the

graph G, every c ∈ K(k,G) introduces a probability distribution on Ur,k which we denote by PG,r[c].

Let

QG,r,k :=
{
PG,r[c] : c ∈ K(k,G)

}
⊆M(Ur,k).

These sets are similar to “quotient sets” introduced in [22] for dense graphs, except that there only

edges with given coloring were counted, not larger neighborhoods. Notice that the sets QG,r,k are
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finite, and they are subsets of the finite dimensional space RUr,k

that is independent of the graph G.

Definition 3.1 A sequence of finite graphs {Gn}∞n=1 with all degrees at most d is called locally-

globally convergent if for every r, k ≥ 1, the sequence (QGn,r,k)∞n=1 converges in the Hausdorff distance

inside the compact metric space (M(Ur,k), dvar).

Since compact subsets of a compact metric space form a compact space with respect to the

Hausdorff metric, it follows that every infinite sequence of finite graphs contains a locally-globally

convergent subsequence.

We could have fixed k = 1, to get a metric definition of Benjamini–Schramm convergence. We

don’t know whether k = 2 would give a convergence notion equivalent to local-global convergence.

It is natural to ask if we obtain a different convergence notion if we replace vertex colorings by

edge colorings or other locally defined extra structures. However, it turns out that they can all

be encoded by vertex colorings and thus they don’t lead to different convergence notions. As an

example, we show how to encode edge colorings by vertex colorings.

Let G be a graph with all degrees at most d and let c : E(G) → [k] be an edge coloring of G.

First we can create a new edge coloring c2 : E(G) → [30d3k] such that c2(e) ≡ c(e) modulo k for

every e ∈ E(G) and if c2(e1) = c2(e2) holds then the edges e1 and e2 are of distance at least 3 in

the edge graph of G. It is clear that c2 encodes the coloring c in the sense that local statistics of c2

modulo k give the local statistics of c. Let S denote the set of subsets of [30d3k] of size at most d.

We create the vertex coloring c2 : V (G) → S in the way that c(v) is the set of colors of the edges

incident to v in c2. Now it is easy to see that c3 encodes the coloring c2 in the following way. If

e = (v, w) is an edge in G then c2(e) is the intersection of the sets c3(v) and c3(w).

3.2 Involution-invariant measures and graphings

Benjamini and Schramm [11] associated a limit object with every locally convergent graph sequence

as follows. Let G denote the set of (isomorphism classes of) rooted, connected (possibly infinite)

graphs with all degrees at most d. For a rooted graph (B, o) with radius r, we denote by G(B, o)

the set of all rooted graphs (G, o) such that NG,r(o) ∼= (B, o). For a rooted graph (G, o), we define

a neighborhood basis as G(NG,r(o)). These neighborhoods define a topology on G. It is easy to see

that this is a compact separable space.

The Benjamini–Schramm limit of the locally convergent graph sequence (Gn) is a probability

measure ν on the Borel sets of G, such that

PG,r(B, o)→ ν(G(B, o))

for every r ≥ 1 and every r-ball (B, o).

Not every probability measure on G arises as the limit of a convergent graph sequence. One

property that all limits have is called involution invariance or unimodularity. To define this, let

G̃ denote the space of graphs in G(C) with a distinguished edge incident to the root. We define

continuous transformation α : G̃(C)→ G̃(C) such that α moves the root to the other endpoint of the

distinguished edge. If µ is any probability measure on G(C), then let µ∗ be the unique probability

measure such that dµ∗/dµ(G) is proportional to the degree of the root in G. We define the measure
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µ̃ on G̃(C) such that on a µ∗-random graph we distinguish a random edge incident to the root. The

measure µ is called involution-invariant if µ̃ is invariant under α. Involution-invariant measures on

G(C) form a closed set in the weak topology.

It is easy to see that if µ is a measure on G that is the limit of finite graphs, then it is involution-

invariant. It is not known whether all involution-invariant measures arise as graph limits.

In the dense setting, the set of the symmetric measurable maps w : [0, 1]2 → [0, 1] were used to

generalize the concept of graphs and describe graph limits. For local-global convergence of Defini-

tion 3.1, graphings serve this purpose.

Definition 3.2 Let X be a Polish topological space and let ν be a probability measure on the Borel

sets in X. A graphing is a graph G on V (G) = X with Borel measurable edge set E(G) ⊂ X ×X in

which all degrees are at most d and∫
A

e(x,B)dν(x) =

∫
B

e(x,A)dν(x) (10)

for all measurable sets A,B ⊆ X, where e(x, S) is the number of edges from x ∈ X to S ⊆ X.

If condition (10) holds, then η∗(A×B) =
∫
A
e(x,B)dν(x) defines a measure on the Borel sets of

X×X that is concentrated on E(G), symmetric in the two coordinates, and its marginal ν∗ satisfies

(dν∗/dν)(x) = deg(x). Normalizing by d0 =
∫
X

deg(x) dx, we get a probability distribution η on

the set of edges. We can generate a random edge from η by selecting a random point v from ν∗ and

selecting uniformly a random edge incident with v. Conversely, if we generate a random oriented

edge this way, and the distribution that is obtained is invariant under flipping the orientation, then

(10) follows by Fubini’s Theorem. Note that every finite graph G is a graphing where X = V (G)

and νG is the uniform distribution on V (G).

Let G be a graphing (of degree at most d) on the probability space (X, ν). Then it induces a

measure µG on G: pick a random element x ∈ X and take its connected component Gx rooted

by x. It is easy to see that µG is an involution-invariant measure (in fact, (10) expresses just this

property).

Let G be a graphing as in definition 3.2. A vertex coloring of G with k colors is a measurable

function c : X → [k]. The set of all colorings with k colors will be denoted by K(k,G). We define

PG,r[c] and QG,r,k in a similar way as in a finite graph. (Notice that it makes sense to talk about a

random vertex in G.) The set QG,r,k is a subset of the finite dimensional space RUr,k

, but in general

it is infinite and not closed; we will often use its closure QG,r,k

Now we are ready to state our main theorem.

Theorem 3.3 Let {Gi}∞i=1 be a local-global convergent sequence of finite graphs with all degrees at

most d. Then there exists a graphing G such that QGn,r,k → QG,r,k (n→∞) in Hausdorff distance

for every r and k.

To what degree is the limit object determined? This question leads to different notions of

“isomorphism” between graphings.

Definition 3.4 (a) Two graphings (G1, X1, ν1) and (G2, X2, ν2) are called locally equivalent if for

every r ∈ N the distribution of NG1,r(x1) is the same as the distribution of NG2,r(x2) for random

x1 ∈ X1 and x2 ∈ X2.
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(b) We say that these graphings are locally-globally equivalent if QG1,r,k = QG2,r,k for every

r, k ∈ N.

Local equivalence of two graphings means that they induce the same involution-invariant measure

on G. Local-global equivalence implies local equivalence by setting k = 1.

Definition 3.5 (Local-global partial order) Assume that G1 and G2 are two graphings of max-

imal degree at most d. We say that G1 ≺ G2 if QG1,r,k ⊆ QG2,r,k for every r, k ≥ 1. In particular, G1

and G2 are locally-globally equivalent if and only if both G1 ≺ G2 and G2 ≺ G1 hold.

An easy way to prove a relation G1 ≺ G2 between two graphings is the following. We call a

measure preserving map φ : V (G1) → V (G2) a local isomorphism, if restricted to any connected

component of G1, we get an isomorphism with one of the connected components of G2. Clearly local

isomorphisms can be combined. (However, a local isomorphism may not be invertible!) It is easy to

see that the existence of a local isomorphism G1 → G2 implies that G1 and G2 are locally equivalent,

and G2 ≺ G1.

We are going to study local-global equivalence and local-global partial order in Section 3.6. In

particular, we will show that among all graphings in a local equivalence class, there is always a

smallest and a largest in this partial order.

We conclude this chapter with a few remarks.

Directed graphings. Let X, ν be as in 3.2 and let E(G) ⊂ X × X be the edge set of a directed

Borel graph G of bounded degree. For two set A,B ⊂ X let e(S, T ) = |E(G) ∩ A × B| denote the

number of directed edges from A to B (This quantity may be infinite). Then G is called a (directed)

graphing if ∫
A

e(x,B) dν =

∫
B

e(A, x) dν

holds for any two measurable sets A,B.

Some examples. The simplest example for a directed graphing comes from ergodic theory. Let

T : X → X be a measure preserving transformation which has a measure preserving inverse. Then

the graph {(x, T (x))|x ∈ X} is a directed graphing. More specifically let θ be an irrational number

and T (x) = x+θ on the circle group R/Z. Then {(x, x+θ)|x ∈ R/Z} is an ergodic directed graphing.

A similar but undirected graphing on R/Z is given by the edge set {(x± θ)|x ∈ R/Z}.

Decomposition into maps. The following construction can be used to verify the graphing axiom

(10) in some cases. Let (X, ν) be a measure space. A measure preserving equivalence between

two measurable sets A,B ⊂ X is a map ψ : A → B which is measure preserving and has a

measure preserving inverse. A partial measure preserving equivalence between A and B is a measure

preserving equivalence between A′ ⊂ A and B′ ⊂ B. Let X = X1 ∪ X2 ∪ · · · ∪ Xn be an almost

disjoint (intersections have 0 measure) decomposition of X and for each pair 1 ≤ i < j ≤ n let ψi,j

be a partial measure preserving equivalence between Xi and Xj . Then the symmetrized version

of E = ∪1≤i<j≤n{(x, ψi,j(x))|x ∈ Xi} is the edge set of a graphing. In is not hard to prove that

each graphing has such a decomposition. In fact any measurable coloring of the vertex set in which

vertices of the same color are of distance at least 3 yields such a decomposition. (The existence of
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such a coloring follows from results of Kechris, Solecki and Todorcevic [56].) This construction gives

an upper bound of O(d2) for the number of maps. With more care (considering the line graph of

G), one can reduce this to 2d− 1. It is not known whether d+ 1 maps would suffice. (We come back

to this issue later.)

3.3 Local limits of decorated graphs

In this section we extend the formalism behind the Benjamini–Schramm limits for the case when

vertices are decorated by elements from a compact space. Let C be a second countable compact

Hausdorff space. Let G(C) denote the space of (isomorphism classes of) rooted, connected countable

graphs with all degrees at most d such that the vertices are decorated by elements from C; so

the points of G(C) are triples (G, o,w), where G is a connected countable graph, o ∈ V (G), and

w : V (G)→ C. If C is the trivial (one point) compact space, then G(C) can be identified with the

space G defined earlier. Two important special cases for us will be when C = [0, 1] (weighting by

real numbers in [0, 1]), and C = [k] (coloring by k colors). With a slight abuse of notation, these

will be denoted by G[0, 1] and G[k].

We put a compact topology on G(C) by specifying a basis of it. Let r be an arbitrary natural

number and (H, o) be a finite rooted graph of radius r. Assume furthermore that every vertex

v of (H, o) is decorated by an open set Uv in C. Let S be the collection of all (G, o) ∈ G(C)

where the neighborhood NG,r(o) is isomorphic to (H, o), and furthermore there is an isomorphism

α : NG,r(o) → (H, o) such that the decoration of v is contained in Uα(v) for every v ∈ V (G). It

is easy to see that G(C) with this topology is a compact, second countable, Hausdorff space. As a

consequence, probability measures on G(C) form a compact space in the weak topology.

If G is a finite graph with all degrees at most d in which the vertices are C-labeled, then we

can construct a probability measure µG on G(C) by putting a root o on a randomly chosen vertex

v ∈ V (G) and keeping only the connected component of the root. If {Gi}∞i=1 is a sequence of C-

labeled graphs then we say that they are locally convergent if the corresponding measures {µGi}∞i=1

converge in the weak topology to some measure µ. The measure µ is the limit object of the sequence.

We define involution-invariance completely analogously to the undecorated case, simply replacing

G by G(C) everywhere. Involution-invariant measures on G(C) form a closed set in the weak

topology. It follows that if µ is a measure on G(C) that is the limit of finite colored graphs, then it

is involution-invariant.

Similarly as in the undecorated case, every C-decorated graphing defines an involution-invariant

distribution. Let G be a graphing and c : V (G) → C, a Borel function with values in the compact

space C. Then we can create a measure µG,c on G(C) by picking a random element x ∈ V (G) and

then taking its connected component Gx rooted by x together with the vertex labels given by the

restriction of c to V (Gx). It is easy to see that µG,c is an involution-invariant measure.

We can define a Borel graph G(C) on G(C). The edge set of this graph consists of pairs

((G, o1), (G, o2)) ∈ G(C) × G(C) such that (o1, o2) is an edge in G. Note that loop edges can

arise in this graph. For example if there is an automorphism of G which takes o1 to o2 then (G, o1)

is identified with (G, o2) in G(C). Every involution-invariant measure ν on G(C) is a probability

measure on the vertex set of G(C). This graph is not a graphing in general, because of the problem

with automorphisms, which also lead to loops. It is not hard to show, however, that if with prob-
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ability 1 a ν-random connected component has no automorphisms, then we get a graphing. One

important role of appropriate decorations is to break symmetries and make this graph a graphing.

Let f : G(C) → R be any function. We call f local, if there is a positive integer r such that

f(G, o) depends (measurably) on the decorated r-neighborhood NG,r(o). Clearly every local function

is measurable. Local functions correspond to those functions on finite graphs that can be computed

by a constant-time local algorithm.

3.4 A regularization lemma

The following lemma is the main ingredient in proving Theorem 3.3. It serves as a “regularity

lemma” in our framework for bounded degree graphs.

Lemma 3.6 (Regularization) For positive integers r, k and real number ε > 0, there exists an

integer tr,k,ε such that the following holds. For every graph G with all degrees at most d there exists

a tr,k,ε-vertex coloring q of G such that

• If q(v) = q(w), then either v = w or the distance of v and w in G is at least r + 1,

• For every g ∈ K(k,G), there exists α : [tr,k,ε]→ [k] such that

dvar(PG,r[g], PG,r[α ◦ q]) ≤ ε.

Proof. The space M(Ur,k) is a bounded dimensional compact set with the topology generated

by dvar. Let N be an ε/2-net in M(Ur,k) in dvar. Let NG be the subset of points in N that are at

most ε/2 far from a point of the form PG,r[g] for some g ∈ K(k,G). For each n ∈ NG we choose a

representative xn = P (G, r, k)[gn] such that dvar(n, xn) ≤ ε/2. It is clear that for every g ∈ K(k,G)

there is a point xn such that dvar(P (G, r, k)[g], xn) ≤ ε. Let f be the common refinement of all the

partitions {gn}n∈NG
. Clearly f has a bounded number of partition sets in terms of r, k and d and

it satisfies the third condition.

Now we further refine f to satisfy the first condition. Let f ′ be a proper coloring of the graph G

with (d + 1)r colors in which every two vertices in distance at most r receive different colors. The

common refinement q of f , f ′ satisfies the first condition.

3.5 Proof of the main theorem

Now we introduce the space X which will serve as a universal Borel space for the limit graphings

of sequences of finite graphs with all degrees at most d. Let C =
∏
k,r,n[tr,k,1/n] be the compact

space with the product topology. We denote by X the compact space G(C) and by E ⊂ X × X
the edge set E(C). Let q : X → C be the function such that q((G, o)) is the color of the root o.

Furthermore for r, k, n ∈ N we define the coloring qr,k,n : X → [tr,k,1/n] as the composition of q with

the projection to the coordinate (r, k, n) in C.

Let {Gi}∞i=1 be a local-global convergent sequence of graphs with all degrees at most d. For each

Gi and triple (r, k, n) ∈ N3 we chose a coloring qir,k,n : V (Gi)→ [tr,k,1/n] guaranteed by lemma 3.6.

Let qi : V (Gi) → C be defined as
∏
r,k,n{qir,k,n(v)} ∈ C. As described in chapter 3.3, each graph
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Gi together with the coloring qi defines a probability measure µi on X by putting the root on a

random vertex of Gi and keeping only the connected component of the root.

By choosing a subsequence from {Gi}∞i=1 we can assume that the sequence {µi}∞i=1 weakly con-

verges to a probability distribution µ on X. Our goal is to show that the Borel graph (X,E) with

the measure µ is a graphing, which represents the local global limit of {Gi}∞i=1.

Let us first observe that for a µ-random element (G, o) in (X,µ) with probability one the vertex

labels V (G) → C are all different. This follows from the fact that the colorings qir,k,n separate

points in Gi that are closer than r + 1, and this property is preserved by the Benjamini–Schramm

limit. This means that if v, w ∈ V (G) are of distance r then their colors projected to the coordinate

(r, k, n) (where k, n are arbitrary) are different.

Lemma 3.7 The measurable graph (X,E, µ) is a graphing.

Proof. Let us introduce the measures {η∗i }∞i=1, similarly as in section 3.2, by

η∗i (A×B) =

∫
A

e(x,B)dµi(x),

(where A,B ⊆ X are measurable, and e(x,B) is the number of edges (x, y) ∈ E with y ∈ B). We

define η∗ analogously. Assume that A,B ⊂ X are open-closed sets. The weak convergence of {µi}∞i=1

implies that limi→∞ η∗i (A×B) = η∗(A×B) and limi→∞ η∗i (B×A) = η∗(B×A). On the other hand

it is clear that for every i we have η∗i (A×B) = η∗i (B×A) since both are equal (up to normalization

by |V (G)|) to the number of edges between the sets {v|(Gi, v) ∈ A} and {v|(Gi, v) ∈ B}. (Here we

use that the vertex labels in Gi are all different.) We obtain that η∗(B × A) = η∗(A × B). Since

such product sets generate the whole σ-algebra on X ×X, the proof is complete.

Lemma 3.8 The probability distributions PGi,r[q
i
r,k,n] converge to PG,r[qr,k,n] for every fixed triple

r, k, n ∈ N where k′ = tr,k,1/n.

Proof. For every point G = (G, o) ∈ X we can associate another rooted graph G′ which is the

connected component of G in the graphing G rooted by G. There is a natural vertex coloring on G′

which is the restriction of the function q to the vertices of G′ and so we can regard G′ as an element

in X. We claim that G is isomorphic (in a root and label preserving way) to G′ with probability

one. We use that with probability one all the vertex labels of G are different. For such graphs G,

the map given by v 7→ (G, v) defines a decoration-preserving isomorphism between G and G′. (The

fact that the vertex labels in G are all different guarantees that the map is one to one.)

Now the claim implies that the probability distribution PG,r[qr,k,n] is the same as the distribution

of NG,r(o) where the vertex labels are projected to the coordinate (r, k, n) and (G, o) is a µ random

element in X. Using the local convergence of {µi}∞i=1 the proof is complete.

Lemma 3.9 For every r, k, n ∈ N there is an index j such that for every i ≥ j and c ∈ K(k,Gi)

there is a coloring c′ of X such that dvar(PGi,r[c]− PG,r[c′]) ≤ 1/n.

Proof. Let k′ = tr,k,1/(2n). By lemma 3.8 there is an index j such that

dvar(PGi,r,k′ [q
i
r,k,2n], PG,r,k′ [qr,k,2n]) ≤ 1/(2n) (11)
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for every index i ≥ j. Let i ≥ j be arbitrary and let c ∈ K(k,Gi) be an arbitrary coloring. Then by

lemma 3.6 there is a map α : [tr,k,1/(2n)]→ [k] such that

dvar(PGi,r[α ◦ qir,k,2n], PGi,r[c]) ≤ 1/(2n).

On the other hand the definition of the total variation distance and (11) guarantee that

dvar(PGi,r[α ◦ qir,k,2n], PG,r[α ◦ qr,k,2n]) ≤ 1/(2n).

It shows that α ◦ qr,k,2n is a good choice for c′.

Lemma 3.10 For every coloring c ∈ K(k,G) and natural number n there is an index j such that

for every i ≥ j there is a coloring c′ ∈ K(k,Gi) such that dvar(PGi,r[c
′]− PG,r[c]) ≤ 1/n.

Proof. Let c : X → [k] be a Borel coloring. Then for every ε > 0 there is another coloring

cε : X → [k] which is continuous and |µ(c−1(i))− µ(c−1
ε (i))| ≤ ε holds for all 1 ≤ i ≤ k. There is an

index jε such that if a ≥ jε then |µa(c−1
ε (i))− µ(c−1(i))| ≤ ε holds for all 1 ≤ i ≤ k. Each coloring

cε induces a coloring f iε on Gi such that the color of a vertex v ∈ V (Gi) is the cε color of the rooted

graph (Gi, v) ∈ X. It is easy to see that PGi,r[f
ε
i ],PG,r[c] and PG,r[cε] are arbitrarily close to each

other if ε is small enough and i ≥ jε. This completes the proof.

3.6 Bernoulli graphings and Bernoulli graph sequences.

Probably the most fundamental graphing construction is the Bernoulli graphing corresponding to

an involution invariant measure. These graphings are closely related to factor of i.i.d processes and

local algorithms. In this chapter we explain their role in local-global convergence.

Definition 3.11 (Bernoulli graphings) Let µ be an involution invariant measure on G. Let ν

be the probability measure on G[0, 1] produced by putting independent random elements from [0, 1]

on the nodes of a µ-random graph. The graph (G[0, 1],E[0, 1]) with the measure ν will be called the

Bernoulli graphing corresponding to µ, and denoted by Gµ.

It is not hard to see that Gµ is a graphing and it represents the involution-invariant distribution

µ (Elek [30]).

Remark 3.12 Perhaps it would be more natural to decorate the nodes of the µ-random graph by

independent bits, or more generally, by colors from [k] for some fixed k ≥ 2. This would yield an

involution-invariant distribution on G[k], but the graph G[k], together with this distribution, would

not necessarily form a graphing.

We define the Bernoulli graphing GB corresponding to an arbitrary graphing G as the Bernoulli

graphing defined by the involution-invariant distribution induced by G. Clearly G and GB are locally

equivalent.

The simplest example for a Bernoulli graphing is provided by the involution invariant measure

which is concentrated on a single d-regular rooted tree. Let T denote the rooted d-regular tree and

let (X, ν) be the probability space in which we put independent random labels from [0, 1] on the
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vertices of T . Two points of X are connected in G if they can be obtained from each other by

replacing the root to a neighboring vertex. It seems to be an interesting problem to decide if the

sets QG,r are all closed.

The following is a related construction. For every graphing G on the probability space (X, ν),

we define its Bernoulli lift G+ as follows. The underlying set X+ of G+ will be pairs (x, ξ), where

x ∈ X and ξ : V (Gx) → [0, 1]. We connect (x, ξ) to (y, υ) if y is a neighbor of x and ξ = υ (note

that if y is a neighbor of x, then Gx = Gy). We can generate a random element of Ω by picking a

ν-random point x ∈ X, and then assigning independent random weights ξ(u) to the nodes u of Gx.

We define two maps φ : V (G+) → V (G) and ψ : V (G+) → V (GB) by φ(x, ξ) = x and

ψ(x, ξ) =
(
Gx, ξ

)
. It is easy to check that the maps φ and ψ are local isomorphisms. This implies

that graphing G is locally equivalent to its Bernoulli lift G+ as well as its Bernoulli graphing GB .

Our main goal in this section is to describe the relationship between G, GB and G+ from the

point of view of local-global equivalence.

Theorem 3.13 Every graphing is local-global equivalent to its Bernoulli lift.

As a corollary of this theorem, we get that Bernoulli graphings are minimal elements in their

local equivalence class:

Corollary 3.14 (Minimality of Bernoulli graphings) For any graphing G, we have GB ≺ G.

Indeed, the relation GB ≺ G+ follows immediately from the construction of the map ψ : V (G+)→
V (GB) above.

To prove Theorem 3.13 we need a definition and a couple of lemmas.

Definition 3.15 (Quasirandom colorings) Let G be a graphing on the space (X, ν) and let

c : X → [k] be a measurable coloring. Let µr,k be the probability distribution on Ur,k obtained

from ν by considering the r-neighborhood of a random element x ∈ X and decorating its vertices by

random independent elements from [k]. We say that c is (r, ε)-quasirandom, if dvar(PG,r[c], µr,k) ≤ ε.

Lemma 3.16 (Existence of quasirandom colorings) Let G be a graphing on the space (X, ν).

Then for every k, r ∈ N, ε > 0 there is an (r, ε)-quasirandom coloring c : X → [k].

Proof. Let C = {0, 1}N be the Cantor set with the uniform measure and let ψ : X → C be

a measurable equivalence between the probability spaces X and C. Let πi : C → {0, 1}i be the

projection to the first i coordinates. The map πi is measure preserving if we consider the uniform

measure on {0, 1}i. Fix k, r ∈ N, and let gi : {0, 1}i → [k] be a uniform random coloring of {0, 1}i

with k colors. Our goal is to show that if i is big enough then with a large probability gi ◦ πi is

(r, ε)-quasirandom.

Claim 1 For every ε1 > 0 and n ∈ N there is an index j such that if x1, . . . , xn ∈ X are independent

ν-random points, then with probability 1− ε1, the map πj separates all the points in ∪ni=1NG,r(xi).

It is easy to see that π = (π1, π2, . . . ) separates the points of ∪ni=1NG,r(xi) with probability one

on Xn. Let Yj denote the set of points (x1, x2, . . . , xn) in Xn for which πj separates the points in
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∪ni=1NG,r(xi). We have that Yj is an increasing chain of measurable sets such that ν(∪∞i=1Yi) = 1.

This shows that for some index j we have ν(Yj) > 1− ε1.

Let x = (x1, . . . , xn) ∈ Xn and let g be a k-coloring ∪ni=1NG,r(xi). Let us choose a random

t ∈ [n] uniformly. Let as say that x is representative if the distribution of NG,r(xt) for a random

t ∈ [n] is ε/6-close to the distribution µr. Let as say that (x, g) is representative if the distribution

of the colored neighborhood (NG,r(xt), g) is ε/3-close to the distribution µr,k.

Let x = (x1, . . . , xn) ∈ Xn be chosen randomly and independently from the distribution ν. We

note that with probability 1, the neighborhoods NG,r(xi) are disjoint. If n is large enough, then

(just by the Law of Large Numbers)

Px(x representative) ≥ 1− ε

6
.

Hence if g is a uniform random k-coloring of ∪ni=1NG,r(xi), and n is large enough, then (by the Law

of Large Numbers again), we have

Px,g((x, g) representative) ≥ 1− ε

3
.

Let us fix n so that this holds.

Next, using Claim I, we fix j so that (for a random x) πj separates all the points in ∪ni=1NG,r(xi)

is probability at least 1 − ε/3. Whenever this happens, the restriction of πj ◦ gj to ∪ni=1NG,r(xi)

is a uniform random k-coloring. In other words, we can generate a uniform random k-coloring of

∪ni=1NG,r(xi) by restricting πj ◦ gj to it if πj separates and randomly k-coloring it otherwise. Thus

Px,gj ((x, πj ◦ gj) representative) ≥ Px,g((x, g) representative)− ε

3
≥ 1− 2ε

3
.

It follows that there is at least one k-coloring gj for which

Px((x, πj ◦ gj) representative) ≥ 1− 2ε

3
.

Let us fix such a gj , then c = πj ◦gj is an (r, ε)-quasirandom k-coloring of X. In fact, we can generate

a random point of x by first generating n independent random points x1, . . . , xn and choosing one of

them, xt, uniformly at random. Then with probability at least 1−2ε/3, (x, πj ◦gj) is representative,

and whenever this happens, then distribution of the colored neighborhood (NG,r(xt), πj ◦ gj) is ε/3-

close to the distribution µr,k. It follows that the total variation distance of (NG,r(xt), πj ◦ gj) from

µr,k, when x is also randomly chosen, is at most ε.

Our next lemma shows that we can approximate any measurable k-coloring of G+ by a k-coloring

that is local and depends only on a discrete approximation of the nodeweights. To be precise, we

define the (m, s)-discretization (m, s ∈ N) as the map ξm,s : X+ → Us,m, where ξm,s(x) is obtained

by considering the neighborhood NG+,s(x), and replacing every nodeweight w(v) by dmw(v)e.

Lemma 3.17 For every r ≥ 1 and ε > 0, and every measurable k-coloring c of G+, there are

positive integers s and m and a map f : Us,m → [k] such that

dvar(PG+,r[c], PG+,r[f ◦ ξs,m]) ≤ ε.
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Proof. Let (X+, ν+) be the underlying space of G+. Let K denote the set of all bounded

functions on X+ that factor through an (m, s)-discretization for some m, s ∈ N. These functions

form a vector space, and the sets ξ−1
m,s(y) (y ∈ Us,m) generate the Borel sets of X+. Hence by the

Monotone Class Theorem, the closure of K under pointwise convergence contains every measurable

function on X+.

In particular, there are positive integers s and m and a function g : Us,m → [k] for which

ν+
{
x ∈ X+ : |c(x)− g(ξs,m(x))| > 1

2

}
<

ε

dr+1
.

Rounding the values of g to the next integer, we get a function f for which

ν
{
x ∈ X+ : c(x) 6= f(ξs,m(x))

}
<

ε

dr+1
.

For a random point x ∈ X+, the probability that the colorings c and f ◦ ξs,m differ on any node in

its r-neighborhood is less than ε. This implies the Lemma.

Now we are able to prove the main theorem in this section.

Proof of Theorem 3.13. Our goal is to approximate every element in QG+,r,k by an element

in QG,r,k with arbitrary precision ε > 0. In other words, we want to construct, for every measur-

able k-coloring of G+, a measurable k-coloring of G that defines a similar distribution of colored

neighborhoods.

We invoke Lemma 3.17 with ε/2 in place of ε to get two integers s,m ≥ 1 and a map f : Us,m →
[k]. Let q be an (s, ε/2)-quasirandom m-coloring of V (G) guaranteed by lemma 3.16, and let G′ =

(G, q) ∈ G[m]. Consider the k-coloring h = f ◦NG′,s. We claim that h has similar statistics as c:

dvar(PG+,r[c], PG,r[h]) ≤ ε

By the choice of f , it suffices to prove that

dvar(PG+,r[f ◦ ξs,m], PG,r[f ◦NG′,s]) ≤
ε

2
.

This follows if we prove that the distributions of ξs,m(y) (where y is a random point of G+) and

NG′,s(x) (where x is a random point of G) are close. But the distribution of ξs,m(y) is just µs,m,

and the distribution of NG′,s(x) is ε/2-close to this by the quasirandomness of q. This completes

the proof. �

The following fact shows another connection between a graphing and the associated Bernoulli

graphing. We say that two graphings are bi-locally isomorphic, if there exists a third graphing that

has local isomorphisms into both. The construction of the Bernoulli lift implies that every graphing

is bi-locally isomorphic with its Bernoulli graphing. Since by the definition of the Bernoulli graphing,

two graphings are weakly equivalent if and only if they have the same Bernoulli graphing, we get

the following more explicit characterization:

Proposition 3.18 Two graphings are locally equivalent if and only if they are bi-locally isomorphic.

To prove this proposition, it suffices to show that bi-local isomorphism is a transitive relation.

This takes some work, which we don’t discuss here; for the details, we refer to [62].

Let us turn to graph sequences. Theorem 3.13 motivates the next definition.
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Definition 3.19 (Bernoulli graph sequences) A graph sequence is called Bernoulli if it con-

verges to a Bernoulli graphing in the local-global sense.

Note that the Bernoulli graphing to which a given Bernoulli sequence converges is fully deter-

mined by the local limit of the sequence. Bernoulli sequences are basically those which have the

least possible global structure among sequences with the same local limit. The following provocative

conjecture was popularized by the third author in the past few years. The considerable effort put

into the topic shows that the solution may require a substantial novel idea.

Conjecture 3.20 (Limits of random d-regular graphs) Let d be a fixed natural number and

let Gi be a random d regular graph on i vertices. Then {Gi}∞i=1 is a Bernoulli sequence with

probability one.

The motivation for this conjecture is that randomness destroys as much global structure as

possible. Notice that if conjecture 3.20 is true then the limit object is the Bernoulli graphing

produced from the d-regular tree. Even the next two weaker conjectures are unsolved.

Conjecture 3.21 A growing sequence of random d-regular graphs is local-global convergent with

probability one.

Conjecture 3.22 For every d there is a Bernoulli graph sequence {Gi}∞i=1 whose local limit is the

d-regular tree.

3.7 Non-standard graphings

Let {Gi}∞i=1 be an arbitrary graph sequence of maximum degree at most d. Let ω be a non-principal

ultrafilter on N. Let G denote the ultraproduct of the graph sequence. The vertex set V of G is

the ultraproduct of the vertex sets Vi of Gi and the edge set E ⊂ V×V is the ultra product of the

edge sets Ei ⊂ Vi × Vi of Gi. It is clear that Gi has maximum degree at most d, since this property

is expressible by a first order formula. We can also construct a σ-algebra A on V and a probability

measure µ on V which is the ultralimit of the uniform distributions on the sets Vi. It is not hard to

check that G satisfies the graphing axiom (10).

If {Gi}∞i=1 is a locally convergent graph sequence, then G has neighborhood frequencies that are

the limits of the neighborhood frequencies of the graphs Gi. If {Gi}∞i=1 is locally-globally convergent,

then QG,r,k is the Hausdorff limit of the sets QGi,r,k.

However, this does not directly prove Theorem 3.3, since (V, µ) is not a separable probability

space. One can complete the proof by choosing an appropriate separable sub-sigma-algebra of G

which preserves the graphing structure. We omit the details here.

An attractive feature of ultralimit graphings is that the sets QG,r,k are all closed. It is not clear

if there is a standard graphing representation of the limit of a convergent sequence with this stronger

property.

3.8 Hyperfinite graphs and graphings

For a graph G, we define τq(G) as the smallest t such that deleting t appropriate nodes, every

connected component of the remaining graph has at most q nodes. We say that a sequence (Gn)∞n=1 of
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finite graphs is (q, ε)-hyperfinite, if lim infn τq(Gn)/|V (Gn)| ≤ ε. We say that (Gn)∞n=1 is hyperfinite,

if for every ε > 0 there is a q ≥ 1 such that (Gn)∞n=1 is (q, ε)-hyperfinite. We can define hyperfiniteness

of a graphing G on underlying space Ω similarly: let τq(G) denote the infimum of numbers a ≥ 0

such that we can delete a Borel set S ⊆ with measure a so that every connected component of the

remaining graphing has at most q nodes. We say that a graphing G is (q, ε)-hyperfinite, if τq(G) ≤ ε,
and we say that G is hyperfinite, if for every ε > 0 there is a q ≥ 1 such that G is (q, ε)-hyperfinite.

Since we are talking about graphs with bounded degree, we could replace deleting nodes by deleting

edges in the definitions above.

Hyperfiniteness in different settings was introduced by different people, see Kechris and Miller

[55], Elek [31], Schramm [78]. Schramm proved that a weakly convergent sequence of graphs is

hyperfinite if and only if its limit is hyperfinite. This does not hold for (q, ε)-hyperfiniteness for

a fixed pair q and ε. (As an easy example, a sequence of random d-regular graphs tend to a

limiting involution invariant distribution (concentrated on the infinite d-regular tree) that is (1, 1/2)-

hyperfinite, but the sequence is not.) On the other hand, a local-global convergent sequence of graphs

behaves nicer:

Proposition 3.23 Let a sequence (Gn)∞n=1 of finite graphs converge to a graphing G in the local-

global sense. Then (Gn)∞n=1 is (q, ε)-hyperfinite if and only if G is (q, ε)-hyperfinite.

Proof. A finite graph G satisfies τq(G) ≤ ε|V (Gn)| if and only if it has a 2-coloring c such that

PG,k,r[c](c(root) = 1) ≤ ε and PG,k,r[c](B) = 0 for every colored r-ball B that contains a connected

all-blue subgraph with k + 1 nodes. A graph G satisfies τq(G) ≤ ε if and only if for every ε′ > ε it

has a 2-coloring c such that PG,k,r[c](c(root) = 1) ≤ ε′ and PG,k,r[c](B) = 0 for every colored r-ball

B that contains a connected all-blue subgraph with k + 1 nodes. The proposition follows by the

definition of local-global convergence to a graphing.

The following important property of hyperfiniteness is closely related to the results of Schramm

[78] and Benjamini, Schramm and Shapira [12]. It can be derived using the graph partitioning

algorithm of Hassidim, Kelner, Nguyen and Onak [50]; a direct proof is given in [62].

Proposition 3.24 Hyperfiniteness is invariant under local equivalence.

Together with Proposition 3.23, the result of Schramm follows easily. We note that (q, ε)-

hyperfiniteness for a fixed q and ε is not invariant under local equivalence, which is shown by

the local-global limits of random d-regular graphs and of random d-regular bipartite graphs.

Our main result about hyperfinite graphings is a strengthening of Corollary 3.14.

Theorem 3.25 Every hyperfinite graphing G is local-global equivalent to its Bernoulli graphing.

Proof. By Proposition 3.24, the Bernoulli graphing GB of a hyperfinite graphing G is also

hyperfinite. By Corollary 3.14, GB ≺ G. It remains to show that G ≺ GB . In other words, for every

coloring of G we have to find a coloring of GB having almost the same local statistics.

Let (X, ν) be the underlying space of G, let c : X → [k] be a measurable coloring, and let us fix

a radius r ∈ N and an ε > 0. Let νB denote the measure of GB , and set ε1 = ε/(8(d + 1)r). Let

S ⊂ G[0, 1] be a subset such that νB(S) ≤ ε1 and every connected component of G[0, 1]\S has at most
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n nodes. Let m ∈ N, and define the coloring b : G[0, 1]→ [m]× {0, 1} by b(x) = (dmw(o)e,1S(x))

where x = (G, o,w). Choosing m large enough, we may assume that the set of point x for NGB ,r(x)

contains another point with the same color has measure at most ε1.

By Corollary 3.14, we have GB ≺ G, which implies that there is a coloring b∗ : X → [m]×{0, 1}
such that

dvar(PG,n[b∗], PGB ,n[b]) ≤ ε1. (12)

It follows from (12) that there are subsets T ⊆ G[0, 1] and T ′ ⊆ X with νB(T ) = ν(T ′) ≤ 4ε1 such

that all points of GB \ T are contained in connected components that have at most n vertices and

whose nodes are colored differently by b, and the same holds for G, T ′ and b∗. Furthermore, for

every ([m] × {0, 1})-colored connected graph H with at most n vertices, the measure of points in

components isomorphic to H (as colored graphs) is the same in GB \ T and G \ T ′. Let VH and V ′H
be these two sets.

For every connected component C of G\T ′ we can specify a “rule”: a function fC : [m]×{0, 1} →
[k] such that c = fC ◦ b∗ on the nodes of C. This splits every set V ′H into at most k2m measurable

sets V ′H,f , that are unions of components of G \ T ′. We can split VH into sets VH,f that are unions

of components of GB \ T , so that νB(VH,f ) = ν(V ′H,f ). Applying the rule f on the components in

VH,f , and coloring the points of T with one of the colors, we get a measurable k-coloring a of GB ,

for which

dvar(PG,r[c], PGB ,r[a]) ≤ (d+ 1)rε1 ≤ ε.

This proves the theorem.

Now we are ready to state and prove our main theorem about convergence of hyperfinite graph

sequences.

Theorem 3.26 Every locally convergent hyperfinite graph sequence is a local-global convergent

Bernoulli sequence.

Proof. Let {Gi}∞i=1 be a locally convergent hyperfinite sequence and let µ be the involution

invariant measure that is the local limit of the sequence. Proposition 3.24 implies that the Bernoulli

graphing B corresponding to µ is hyperfinite. Assume by contradiction that {Gi}∞i=1 does not

converge in the local-global way to B. Then it has a local-global convergent subsequence whose limit

graphing G is not local-global equivalent to GB = B. This however contradicts Theorem 3.25.

Corollary 3.27 Local-global convergence is equivalent to local convergence when restricted to hy-

perfinite graph sequences.

3.9 Graphings as operators and expander graphings

Let G be a Borel graph on the probability space (X,µ). If f : X → C is a measurable function then

we define Gf by

Gf(x) =
∑

(x,v)∈E(G)

f(v).

41

dc_1737_20

Powered by TCPDF (www.tcpdf.org)



It takes a short calculation to show that if G is a graphing then it acts on the Hilbert space L2(X, ν)

as a bounded self-adjoint operator. Let f : X → C be an arbitrary function in ∈ L2(X, ν). Then∫
x

|Gf(x)|2 dν ≤
∫
x

d
∑

(x,v)∈E(G)

|f(v)|2 dν = d

∫
|f(x)|2deg(x) dν ≤ d2‖f‖22.

The equation in the above calculation uses the fact that G satisfies (10). It is clear that (10) is

equivalent to the statement that the action of G is self adjoint in the sense that (Gf, g) = (f,Gg)

holds for every pair f, g of bounded measurable functions. This implies that the action of G is also

self adjoint on L2(X, ν). The Laplace operator corresponding to a graphing is defined as L = D−G
where Df(x) = f(x)deg(x). It is easy to check that

(Lf, f) =

∫
(v,w)∈E(G)

(f(v)− f(w))2 dη∗ (13)

holds in L2(X, ν) and thus L is positive semi definite. It follows from (13) that the multiplicity of

the eigenvalue 0 in L2(X, ν) is 1 if and only if G is ergodic. This is the analogue of a well known

theorem from ergodic theory about the Koopman representation.

Let us restrict our attention to d-regular graphs and graphings. We say that a graphing G is a

c-expander, if for every Borel set S ⊆ X with 0 < ν(S) ≤ 1/2, we have ν(N1(S)) ≥ (1 + c)ν(S).

(Here N1(S) = supx∈S NG,1(x).)

Let (Gn)∞n=1 be a sequence of d-regular graphs that are expanders with expansion c > 0. Let

us select a local-global convergent subsequence, then its limit is a d-regular graphing that is also a

c-expander.

The fact that we can define spectra of graphings allows us to generalize spectral conditions for

expanders to graphings.

The theory of graphings is closely related to the theory of measure preserving systems (In a sense,

it generalizes ergodic theory). In particular, one can define the notion of ergodicity. A graphing G
is ergodic if there is no measurable partition of the vertex set X into positive measure sets X1, X2

such that there is no edge between X1 and X2 or equivalently such that X1 is a union of connected

components of G. Note that graphings, when defined on an uncountable set, are never connected as

graphs and so the notion of ergodicity is a good replacement for the notion of connectivity.

However, expander graphings show that graphings offer new phenomena. Ergodicity is equivalent

to saying that ν(N1(S)) ≥ ν(S) for every set S with 0 < ν(S) ≤ 1/2. Positive expansion is a natural

strengthening of this condition (which never holds for dynamical systems).

3.10 Graphings and local algorithms

Elek and Lippner [32] formulate a correspondence between graphings and local algorithms. We can

make this more precise using the notions of Bernoulli graphings and factor of i.i.d processes:

Measurable graph theoretic statements for Bernoulli graphings correspond to randomized local algo-

rithms for finite graphs.

Let us start with an example. Let T be the d-regular tree with a distinguished root and let Ω

be the compact space [0, 1]V (T ). Let f : Ω → [k] be any measurable function which depends only
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on the isomorphism class of the labeled rooted tree. In other words f is invariant under the action

of the root preserving automorphism group of T . Using the function f we create a random model

of k colorings of T in the following way. First we produce a random element ω ∈ Ω by putting

independent random elements from [0, 1] on the vertices of T and then for every v ∈ V (T ) we define

the color c(v) as the value of f on the labeled tree obtained from ω by placing the root to v. We

say that f is the rule of the coloring process c. Such processes on the tree are called factor of i.i.d

processes. We say that the rule f has radius r if it depends only on the labels on vertices in T that

are of distance at most r from the root.

The following rule (of radius one), in the finite case, is a classical method to construct an

independent set of nodes in a graph (see Alon and Spencer [7], Section ***). Let f : Ω → {0, 1}
be the function which returns 1 if and only if the label on the root is smaller then the labels on all

the neighboring vertices. It is clear that the corresponding random coloring c is the characteristic

function on some independent set on T with probability one. We can view c as a randomized

algorithm which produces an independent set of points of density 1/(d+ 1). The rule f can also be

applied to a finite d-regular graph G, since it has radius one. Let us put random labels from [0, 1]

on the vertices of G and then let us evaluate the rule f at each vertex using only the neighborhood

of radius 1. We get a random {0, 1} coloring of V (G) such that 1’s form an independent set.

Such algorithms (corresponding to a rule of bounded radius) are called local algorithms. On the

other hand we can view f as the characteristic function of a single (non random) independent set

in the Bernoulli graphing corresponding to the tree T . Indeed, let G be the Bernoulli graphing

corresponding to T . The vertex set on G is G[0, 1] however in G almost every vertex is represented

by a version of [0, 1]V (T ) and so we van evaluate or function f for almost every point. It is clear now

that f−1(1) is an independent measurable set in G.

A general definition of factor of i.i.d processes can be obtained through Bernoulli graphings. Let

µ be an involution invariant measure on G and let Gµ be the corresponding Bernoulli graphing on

G[0, 1]. Let f : G[0, 1] → [k] be a Borel function. Then the involution-invariant measure µB,f on

G[k] has the property that it projects to µ when the labels on the vertices are forgotten. In other

words µB,f puts a k-coloring process on the graphs generated by µ. The measure µB,f is called a

factor of i.i.d process on µ. The rule of the process is the function f . We say that the rule f has

radius r if f(G1) = f(G2) whenever the balls of radius r in G1 and G2 are isomorphic as rooted

labeled graphs.

We can approximate the rule f with an arbitrary precision ε with another rule f ′ of finite radius

r (which depends on ε) in the sense that ν(x|f(x) 6= f ′(x)) ≤ ε. An advantage of the finite radius

approximation is that it can be used for local algorithms on finite graphs. Let G be a finite graph

of maximal degree at most d, and let us put random labels from [0, 1] on the vertices in G. Then

f ′ defines a new coloring of G such that the color of a vertex v is computed using f ′ for the labeled

neighborhood of radius r of v.

Nondeterministic property testing. The connection of the two convergence notions can be

illuminated by the following algorithmic considerations. Given a (very large) graph G with bounded

degree, we use the following sampling method to gain information: we select randomly and uniformly

a node of G, and explore its neighborhood with radius r. We can repeat this t times. There are
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a number of algorithmic tasks (parameter estimation, property testing) that can be studied in this

framework; we only sketch a simple version of property testing, and its connection with local-global

convergence.

It will be convenient to introduce the edit distance for graphs with bounded degree. For two

graphs on the same node set V (G) = V (G′), we define

d1(G,G′) =
1

n
|E(G)4E(G′)|.

For a graph property P, let P−ε = {G ∈ G : d1(G,P) > ε}.
We say that the graph property P is testable, if for every ε > 0 there are integers r, t ≥ 1 such

that given any graph G that is large enough, taking t samples of radius r as described above, we can

guess whether the graph has property P: if G ∈ P, then our guess should be “YES” with probability

at least 2/3; if G ∈ P−ε, then the answer should be “NO” with probability at least 2/3. A locally

convergent graph sequence cannot contain infinitely many graphs from both P and P−ε.
Now let us say that P is nondeterministically testable, if there is an integer k ≥ 1, and a testable

property Q of k-colored graphs with bounded degree, such that G ∈ P if and only if there is a

k-coloring c such that (G, c) ∈ Q. This k-coloring is a “witness” for our conclusion. As an example,

the property “G is the disjoint union of two graphs with at least |V (G)|/1000 nodes” is not testable,

but it is nondeterministically testable (a witness is a 2-coloring with no edge between the 2 colors).

A local-global convergent graph sequence cannot contain infinitely many graphs from both P and

P−ε.

3.11 Concluding remarks

Even finer limit notions. Limit graphings can represent even finer information than local-global

convergence. Consider the following examples. Let 0 < a < 1 be an irrational number, and consider

the following three graphings: (a) Ca is obtained by connecting every point x ∈ [0, 1] to the two

points x ± a (mod 1); (b) C′a consists of two disjoint copies of Ca (both with weight 1/2); (c) C′′a
is obtained by taking two copies of [0, 1] (call them upper and lower), each with mass 1/2, and

connecting every lower point x ∈ [0, 1] to the two upper points x± a (mod 1).

These three graphings are weakly isomorphic, and either one of them represents the local-global

limit of the sequence of cycles. But they are “different”: there is no measure preserving isomorphism

between them, and this has combinatorial reasons. The graphing C′a is “disconnected” (non-ergodic),

while C′′a is “bipartite”: it has a partition into two sets with positive measure such that every edge

connects the two classes. The graphing Ca does not have any partition with either one of these

properties (even if we allow an exceptional subset of measure 0). This follows from basic ergodic

theory.

It seems that the graphing Ca should represent the limit of odd cycles, C′a should represent the

limit of graphs consisting of a pair of odd cycles, while C′′a should represent the limit of even cycles.

A theory of convergence that would explain this example has not been worked out, however.

We know [17] that local convergence is equivalent to right-convergence where the target graph

is in a small neighborhood of the looped complete graph with all edgeweights 1. Can local-global

convergence be characterized by some stronger form of right convergence?
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4 Edge coloring models and reflection positivity

The motivation of this chapter comes from statistical physics as well as from combinatorics and

topology. The general setup in statistical mechanics can be outlined as follows. Let G be a graph

and let C be a finite set of ”states” or ”colors”. We think of G as a crystal in which either the edges

or the vertices are regarded as ”sites” which can have states from C. In the first case we speak about

edge coloring models and in the second case about vertex coloring models. A configuration

of the whole system is a function which associates a state with each site. The states are interacting

with each other at the vertices in edge coloring models and along edges in vertex coloring models. A

weight is associated with each such interaction which is a real (or complex) number depending on the

interacting states (in vertex coloring models there are additional weights associated the the states).

A concrete model is usually given by these numbers. The partition function can be interpreted as

a graph parameter which is computed by summing the products of the weights over all possible

configurations of the system represented by G. It proves to be useful to extend this graph parameter

linearly to the vector space of formal linear combinations of graphs. The elements of this vector space

are called quantum graphs. Quantum graphs that can be obtained by gluing together a quantum

graph with its reflected version (using the distributive law) are called reflection symmetric. However

there are two different reasonable definitions of gluing. In the first one we glue along unfinished

edges and in the second one along vertices. Correspondingly we get the notions edge reflection

symmetric and vertex reflection symmetric quantum graphs. A graph parameter is called

edge reflection positive (resp. vertex reflection positive) if it takes non negative values on

edge-reflection symmetric (resp. vertex reflection symmetric) quantum graphs. It is a simple fact

that the partition function in edge coloring models is edge reflection positive and is vertex-reflection

positive in vertex coloring models. A surprising result proved by M. H. Freedman, L. Lovász and

A. Schrijver (see [36]) says that vertex reflection positivity is almost enough to characterize the

partition functions of vertex coloring models. The extra condition that they need is that the ranks

of certain matrices (which describe the gluing operation and are called connection matrices) are

growing at most exponentially. They conjectured that similar characterization can be given for edge

reflection positive graph parameters. The main result of this chapter (theorem 4.2) is the proof of

this conjecture in a strong version where we replace the condition on the rank growth by a week

and natural condition namely that the graph parameter is multiplicative for taking disjoint union

of graphs.

The major difficulty of the proof is coming from a fact which is interesting on its own right: In

contrast with vertex coloring models, partition functions of edge coloring models don’t determine

the weights. There is an action of the orthogonal group on different edge coloring models, which

leaves the corresponding partition function invariant. This phenomenon explains why it is difficult

to reconstruct an edge coloring model from its partition function. In contrast with vertex coloring

models we are searching for an orbit of the orthogonal group rather than one specific object. Our

main tools to handle this difficulty are commutative algebra and the theory of invariants of the

orthogonal group.

A topological version of the above described reflection symmetry and reflection positivity arises

in topological quantum field theory (see [8] and [35]) where the gluing operation is defined on the
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formal linear space of manifolds with a fixed boundary.

We should also emphasize that the subject has a close connection to pure combinatorics. The par-

tition function of a vertex coloring model can be interpreted as the number of graph homomorphisms

into a fixed graph. This shows that the number of proper colorings and many related important

graph parameters are coming from vertex coloring models (see [36]). In many other cases where we

count certain structures in a graph (perfect matchings, fully packed loop configurations etc...) it

turns out that this number is the value of the partition function of an edge coloring model. The

orthogonal invariance of edge coloring models generates interesting equations between such numbers

(A simple example is shown in Chapter 4.8). Another peculiar fact, that we show, is that vertex

coloring models can be represented by complex valued edge coloring models such that the values

of the two partition functions are identical. In some special cases the representing edge coloring

model is also real valued and in this case the corresponding graph parameter is both vertex and edge

reflection positive. We show that the Ising model is such an example. Finally We mention that a

version of vertex coloring models with an infinite number of states is worked out and characterized

in [63]. In such a model the states are elements of a measure space on which the weights are given

by a measurable function. From the combinatorial point of view, these vertex coloring models can

be regarded as limits of sequences of finite graphs and such objects are relevant to extremal combi-

natorics. In Chapter 4.7 we point out that some of these infinite models can be represented by edge

coloring models with finitely many states.

4.1 Circles and Quantum graphs

Throughout this part of the thesis it will be convenient to extend the concept of graphs by introducing

edges that are not incident to any vertex. We call such edges circle edges and picture them as

topological circles. Formally, a circle is an element of the edge set which has no endpoints. Let

G denote the set of isomorphism classes of graphs, in which loops, circles and multiple edges are

allowed. We denote by ∅ ∈ G the empty graph whose vertex and edge sets are both empty. If

G1, G2 ∈ G are two graphs then their disjoint union G1 ∪G2 is defined to be a graph whose vertex

set and edge set is the disjoint union of those of G1 and G2. Every element of G is the disjoint union

of an ordinary (circle free) graph and a finite number of circles.

Let R be an arbitrary commutative ring with 1. An R-valued graph parameter is a map f : G →
R. We say that f is multiplicative if f(G1 ∪G2) = f(G1)f(G2) for any two graphs G1, G2 ∈ G and

f(∅) = 1.

Let F be a field and let Q(F ) denote the vectorspace of finite F−linear combinations of elements

of G. The elements of Q(F ) are called quantum graphs. The operation of taking disjoint union can

be extended to quantum graphs by using the distributive law. It is easy to see that Q(F ) becomes

an F -algebra with 1 if we introduce disjoint union as multiplication. If the ring R is an F -algebra

then any multiplicative graph parameter f : G → R extends uniquely to an algebra homomorphism

f : Q(F )→ R. As a consequence we have that the image of Q(F ) is a subalgebra of R.

The usual setting is that F is the field of real numbers and R is either the field of real numbers or

a polynomial ring over the reals. For this reason we use the shorthand notation Q instead of Q(R).
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4.2 Edge reflection positivity

In this section we will need the notion of graphs with outgoing (open) edges. An outgoing edge can

be pictured as an edge which goes out from the graph but is not finished. It can also happen that

such an edge goes out in both directions and so it is not incident to any of the verteces. However

the behavior of these edges is different from circles because we want to maintain the possibility of

finishing them. To define this concept precisely we need to introduce the set of ”open ends” O(G) of a

graph G. A graph G with outgoing edges is a triple (V (G), E(G), O(G)) where (O(G)∪V (G), E(G))

is a graph in G with the property that the degrees of open ends are exactly 1.

We define Gk to be the set of all graphs with exactly k open ends which are labeled by the

numbers 1, 2, . . . , k. There is a natural operation

g : Gk × Gk → G

which is called gluing and defined in the following way. Let G1 and G2 be two graphs in Gk. Let

us take the disjoint union of them and identify their open ends which have the same label. This

way we obtain a graph in G in which there are k labeled vertices of degree 2. Finally we eliminate

these vertices (and their two incident edges) by introducing a new edge which connects their two

neighbors directly. It is easy to see that the resulting graph does not depend on the order in which

we eliminate the labeled vertices. Note also that the resulting graph may contain circles even if

the original two graphs did not have any. This explains the importance of circles. The notation of

gluing is also defined for graphs with no outgoing edges, but in this case gluing is the same as taking

disjoint union.

Let Qk denote the vectorspace of formal R-linear combinations of elements of Gk. Now the gluing

operation extends uniquely to a symmetric bilinear form

g : Qk ×Qk → Q.

We say that a quantum graph Q ∈ Q is edge reflection symmetric if Q = g(H,H) for some quantum

graph H ∈ Qk with k ≥ 0. A graph parameter f : G → R is called edge reflection positive if its linear

extension f : Q → R takes non-negative values on all edge reflection symmetric quantum graphs. In

other words f is edge reflection positive if and only if the bilinear forms

f ◦ g : Qk ×Qk → R

are positive semi-definite for all k ≥ 0. One can write up the matrices of these scalar products in the

natural basis Gk and obtain the so-called connection matrices M(k, f). These are infinite matrices

whose rows and columns are indexed by the elements of Gk and the entry in the intersection of the

row corresponding to G1 and the column corresponding to G2 is f(g(G1, G2)).

4.3 Edge coloring models and the characterization theorem

Let R be a commutative R-algebra with 1. (Usually R = R or a polynomial ring over R.) Let

C = {c1, c2, . . . , cd} be a finite set of size d whose elements will be referred as colors. An R-valued

edge coloring model is given by a function t : Nd → R where 0 is considered to be a natural number.

For every edge coloring model we are going to define an associated graph parameter t : G → R. Let
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v ∈ V (G) be a vertex and let ψ : E(G)→ C be a coloring of the edge set of a graph G. We denote

by vψ ∈ Nd the vector whose i-th coordinate is the number of edges with color ci incident to vertex

v. It is important that loop edges are counted twice. Now we define tψ(G) by

tψ(G) =
∏

v∈V (G)

t(vψ)

and t(G) by

t(G) =
∑

ψ:E(G)→C

tψ(G).

It is clear that t is a multiplicative graph parameter if we define the empty product to be 1 and

moreover the value of t on a single circle is the number of colors (which is d).

Let k ≥ 0 be a natural number and let G ∈ Gk be a graph with k labeled outgoing edges. We say

that a coloring ψ : E(G) → C is an extension of a coloring χ : O(G) → C of the open ends if each

open end o ∈ O(G) has the same color as the unique edge incident to o. We denote this relation by

ψ > χ. For a coloring χ : O(G)→ C we introduce tχ(G) by

tχ(G) =
∑

ψ:E(G)→C, ψ>χ

tψ(G)

Now let G1 and G2 be two graphs in Gk. Since the open ends in both G1 and G2 are labeled

by numbers 1, 2, . . . , k we can say, by abusing the notation, that any coloring χ : {1, 2, . . . , k} → C
is also a coloring of O(G1) and O(G2). Assume that ψ1 > χ in G1 and ψ2 > χ in G2 for the same

coloring χ. Then there is a coloring ψ = g(ψ1, ψ2) of the edges of G = g(G1, G2) ∈ G which is

obtained by gluing together ψ1 and ψ2. This coloring has the property that vψ = vψ1
if v ∈ V (G1)

and vψ = vψ2
if v ∈ V (G2). It follows that

tψ(G) = tψ1
(G1)tψ2

(G2)

and that

t(G) =
∑

χ:{1,2,...,k}→C

tχ(G1)tχ(G2). (14)

It is clear that the previous equality also holds for G1, G2 ∈ Qk and G = g(G1, G2) ∈ Q if we

extend the invariants t and tχ linearly to quantum graphs from Q and Qk. As a consequence we get

that real valued edge coloring models give rise to edge reflection positive graph parameters:

Proposition 4.1 Let t : Nd → R be a real valued edge coloring model. Then the graph parameter

t : G → R is edge reflection positive.

Proof. Let k ≥ 0 ba a natural number and Q = g(H,H) for some H ∈ Gk. Using equation (14)

we have that

t(Q) =
∑

χ:{1,2,...,k}→C

tχ(H)2 ≥ 0.

Our main theorem is the converse of the previous statement.
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Theorem 4.2 Let f : G → R be an edge reflection positive and multiplicative graph parameter.

Then there is an edge coloring model t : Nd → R such that the corresponding graph parameter equals

to f .

The subsequent chapters will lead to the proof of this theorem.

4.4 Universal edge coloring models

Let us fix a natural number d and let us introduce algebraically independent variables xv for each

vector v ∈ Nd. Let Pd denote the polynomial ring R[{xv | v ∈ Nd}]. The universal edge coloring model

td corresponding to d is a Pd valued edge coloring model which is given by the function td(v) = xv.

An important property of these models is that real valued edge coloring models t with d colors are

in one to one correspondence with homomorphisms % : Pd → R where the correspondence is given

by the equation %(xv) = t(v). Note that if t and % correspond to each other then t(Q) = %(td(Q))

for all Q ∈ Q.

Let us introduce

Id = {td(Q) | Q ∈ Q}.

Since td is multiplicative we have that Id is a subring of Pd. We will prove later that Id is the set

of all elements in Pd which are invariant under a certain ”natural” action of the orthogonal group

Od(R).

4.5 Action of the orthogonal group on edge coloring models

Let d be a natural number and let V be the vectorspace consisting of the formal R-linear combinations

of the colors c1, c2, . . . , cd. We say that V is the color space and the elements of V will be called

quantum colors. The space V is endowed with an euclidean scalar product for which c1, c2, . . . , cd is

an orthonormal basis. Let us fix an edge coloring model t : Nd → R. For every natural number n

we define a symmetric n-linear form ln on V by

ln(ci1 , ci2 , . . . , cin) = t(m1,m2, ...,md)

where mi denotes the number of occurrence of the color ci on the list ci1 , ci2 , . . . , cin .

Let α be an orthogonal transformation of V . We denote by uα the image of a vector u ∈ V

under the action of α. We define a new edge coloring model tα by

tα(i1, i2, . . . , id) = ln(cαj1 , c
α
j2 , . . . , c

α
jn)

where n = i1 + i2 + · · ·+ id and d ≥ j1, j2, . . . , jn ≥ 1 is an arbitrary sequence of integers such that

|{k | jk = m}| = im. The goal of this section is to prove the following.

Proposition 4.3 Let G ∈ G be an arbitrary graph. Then t(G) = tα(G).

Let G ∈ G be a fixed circle free graph. A half edge in G is an ordered pair (v, e) of a vertex v and

an edge e such that v and e are forming an incident pair. For each edge e ∈ E(G) we introduce two

half edges h(e, 1) = (v1, e) and h(e, 2) = (v2, e) where v1 and v2 are the two endpoints of e. In case
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e is a loop, we think of h(e, 1) and h(e, 2) as different objects although the corresponding ordered

pairs are the same. We denote by H(G) = {h(e, i) | e ∈ E(G), i ∈ {1, 2}} the set of half edges in G.

For each half edge h(e, i), we introduce an isomorphic copy of V which we denote by Ve,i. In

each such space Ve,i there is a natural basis whose elements correspond to the colors c1, c2, . . . , cd.

We denote the elements of this basis by c1,e,i, c2,e,i, . . . , cd,e,i. Let

W =
⊗

e∈E(G), i∈{1,2}

Ve,i

be the tensor product of all these spaces. For the edge coloring model t : Nd → R we define a linear

form m : W → R by

m
( ⊗
e∈E(G) , i∈{1,2}

ue,i

)
=

∏
v∈V (G)

ld(v)(u(v, 1), u(v, 2), . . . , u(v, d(v))

where ue,i ∈ Ve,i are arbitrary elements, d(v) is the degree of the vertex v and

u(v, 1), u(v, 2), . . . , u(v, d(v)) is the list of those ue,i-s for which the half edge h(e, i) is incident

to v. Since every half edge is incident to exactly one vertex we have that the right hand side is multi

linear in the vectors ue,i and thus by the universal property of the tensor product there is a unique

m which satisfies the equation.

Let us consider the spaces We = Ve,1⊗Ve,2 associated to the edges of G. A basis of We is formed

by the elements ci,e,1 ⊗ cj,e,2 where 1 ≤ i, j ≤ d. Thus the elements of We can be represented as

matrices whose rows and columns are indexed by the elements of C. Let Je =
∑d
i=1 ci,e,1 ⊗ ci,e,2 be

the element of We which correspond to the identity matrix and let

J =
⊗

e∈E(G)

Je ∈
⊗

e∈E(G)

We = W.

We have that

J =
∑

ψ:E(G)→{1,2,...,d}

⊗
e∈E(G) , i∈{1,2}

cψ(e),e,i .

Since the terms of this sum correspond to the colorings of the edges in G it follows that

t(G) = m(J).

Let J0 denote the element
∑d
i=1 ci ⊗ ci in V ⊗ V .

Lemma 4.4 If b1, b2, . . . , bd is an orthonormal basis in V then J0 =
∑d
i=1 bi ⊗ bi.

Proof. Assume that bj =
∑d
i=1 aj,ici for some real numbers aj,i. Then the matrix A = {ai,j} is

orthogonal and thus AAT = 1. Now

d∑
j=1

bj ⊗ bj =

d∑
j=1

d∑
i=1

d∑
k=1

a(j, i)a(j, k)ci ⊗ ck =

d∑
i=1

d∑
k=1

δi,kci ⊗ ck = J0.

Recall that α was an orthogonal transformation of V and thus cα1 , c
α
2 , . . . , c

α
d is an orthonormal

basis in V . By lemma 4.4 we obtain that
∑d
i=1 c

α
i,e,1 ⊗ cαi,e,2 = Je and so
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J =
∑

ψ:E(G)→{1,2,...,d}

⊗
e∈E(G) , i∈{1,2}

cαψ(e),e,i = Jα

We obtain that

t(G) = m(J) = m(Jα) = tα(G)

for all circle free graphs G.

Now let H ∈ G be an arbitrary graph which is the disjoint union of a circle free graph G and n

circles. The equation

t(H) = t(G)dn = tα(G)dn = tα(H)

completes the proof of proposition 4.3.

4.6 Action of the orthogonal group on the polynomial ring Pd

Recall that Pd is the polynomial ring R[{xv | v ∈ Nd}] and the universal edge coloring model td is

given by the map td : v → xv. For a fixed orthogonal transformation α of the color space V we have

a new edge coloring model tαd : Nd → Pd. Using that Pd is a free commutative R-algebra with free

generators {xv | v ∈ Nd} we get that the map

xv → tαd (v)

extends to an algebra endomorphism α : Rd → Rd. Since α−1 induces another endomorphism which

is both right and left inverse for α it turns out that α is an automorphism of Rd. Proposition 4.3

implies that

Corollary 4.5 The elements of the subring Id < Rd are invariant under the action of α for all

orthogonal transformations α.

We define the hight h(xv) of a variable xv ∈ Pd to be the sum of the components of v. The hight

of a monomial xv1xv2 . . . xvr is defined to be the multiset {h(xv1), h(xv2), . . . , h(xvr )}. We denote

by WS the linear subspace generated by all the monomials in Pd of hight S. It is clear that Pd is

the direct sum of the spaces WS where S runs over all possible finite multisets of the non negative

integers. We show that these subspaces are invariant under the action of the orthogonal group. To

see this let us fix an element α ∈ O(V ). Since (xv1xv2 . . . xvr )α = xαv1x
α
v2 . . . x

α
vr it is enough to prove

that xαv is a linear combination of variables of hight n = h(xv) for all v. Let us represent v by a

multiset of colors {ci1 , ci2 , . . . , cin}. We have that

xαv = tαd (v) = ln(cαi1 , c
α
i2 , . . . , c

α
in).

By the multilinearity of ln the right hand side of the above equation can be written as a linear

combination of some monomials of the form ln(ck1 , ck2 , . . . , ckn) which are all variables of hight n.
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4.7 vertex coloring models as edge coloring models

A vertex coloring model (see [36]) is given by a finite weighted graph H with real edge weights

βH(i, j) and positive vertex weights αH(i). If G is a simple graph then the homomorphism function

(or partition function) hom(G,H) is defined by

hom(G,H) =
∑

φ:V (G)→V (H)

∏
v∈V (G)

αH(φ(v))
∏

uv∈E(G)

βH(φ(u), φ(v)).

We show that the graph parameter hom(G,H) can be represented by the partition function of an

edge coloring model where the number of colors is the rank of the matrix of the edge weights in H.

Let B be the symmetric matrix of the edge weights βH(i, j). From elementary linear algebra we

know that

B = λ1u1u1
T + λ2u2u2

T + · · ·+ λrurur
T

for some real column vectors ui and numbers λi ∈ {1,−1} where r is the rank of B. Let t be the

edge coloring model given by

t(s1, s2, . . . , sr) =

|V (H)|∑
j=1

αH(j)

r∏
i=1

(ui(j)
√
λi)

si .

Using that βH(i, j) =
∑r
k=1 uk(i)uk(j)λk we get that t(G) = hom(G,H) for an arbitrary simple

graph G. It is worth mentioning that if B is positive semidefinite then the numbers λi are all 1

and the representing edge coloring model is real valued. However there are cases when the edge

coloring model is real valued without this condition. A simple example is the Ising model which can

be represented by a weighted graph on 2 vertices with β(1, 1) = β(2, 2) = a ≥ 0 , β(1, 2) = β(2, 1) =

b ≥ 0 and α(1) = α(2) = 1. It is easy to compute that the corresponding edge coloring model is

given by

t(s1, s2) = 2
(a+ b

2

) s1
2
(a− b

2

) s2
2

if s2 is even

t(s1, s2) = 0 if s2 is odd.

It is an interesting phenomenon that the number of colors needed to represent a vertex coloring

model by an edge coloring model depends only on the rank of the adjacency matrix of the weighted

graph. This leads to a family of infinite vertex coloring models which are still representable by

ordinary edge coloring models. Let w : [0, a]2 → R be a bounded symmetric measurable function

such that

w(x, y) =

r∑
i=1

λifi(x)fi(y)

for some bounded measurable functions fi and numbers λi ∈ {1,−1}. Regarding the function w as

an infinite adjacency matrix one can define an analogy of the homomorphism function by

tw(G) =

∫
x1,x2,...,xm

∏
(i,j)∈E(G) , i<j

w(xi, xj) dx1 dx2 . . . dxm

where G is an arbitrary graph with |V (G)| = m such that the vertices of G are indexed by the num-

bers {1, 2, . . . ,m}. Note that tw is a vertex reflection positive and multiplicative graph parameter.
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Let us introduce the following edge coloring model

t(s1, s2, . . . , sr) =

∫
x∈[0,a]

r∏
i=1

(fi(x)
√
λi)

si dx.

It can be calculated easily that tw(G) = t(G) and that if λi = 1 for all i then t gives rise to a real

valued edge coloring model.

4.8 Graph parameters from combinatorics

Many interesting graph parameters can be obtained from the following special family of edge coloring

models. Let S be a subset of Nr and let tS : Nr → R be the function with tS(v) = 1 if s ∈ S and

tS(v) = 0 if s /∈ S. Let G be a simple graph. The next table lists a few examples.

S combinatorial meaning of tS(G)
{1} × N number of perfect machings
{2} × N number of fully packed loop configurations
{0, 1} × N number of matchins
{0, 2} × N number of loop configurations
{0, d} × N number of d-regular subgraphs
{0, 1}d number of proper edge colorings with d colors

{(b, c, d)|b+ d ≡ c+ d ≡ 0 (2)} number of nowhere zero 4-flows
{(2, 0, 0), (0, 2, 0), (0, 0, 1)} × N permanent of the adjacency matrix

Using the orthogonal invariance of partition functions one can create peculiar equations. For

example by rotating the firs example on the list with 45-degree we get the edge coloring model

t(a, b) =
√

2
−(a+b)

(a− b)

whose partition function is again the number of perfect matchings. In other words, the partition

function of the model t(a, b) = a− b is 2|E(G)| times the number of perfect matchings in G.

4.9 Open questions

Let f be an edge coloring model with d colors and let M(k, f) denote its k-th connection matrix

(see chapter 4.2). It is not hard to see [37] that rk(M(k, f)) ≤ dk.

Question 4.6 What are the possible sequences rk(M(k, f)) , k = 1, 2, 3, . . . ?

The analogy of this question for vertex coloring models was answered by L. Lovász in [61].

The next question is motivated by chapter 4.7.

Question 4.7 Which are those vertex coloring models whose partition functions are edge reflection

positive.

We know only two examples: The Ising model and the vertex coloring models with positive semidef-

inite adjacency matrices.
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4.10 The value of a circle

Let k be a natural number and let Mk denote the set of those graphs G in Gk which are circle free

and V (G) = ∅. In particular the Edge set of G is a perfect matching on the k open ends. It follows

that if k is an odd number then Mk is empty. We denote by QMk the subspace generated by Mk

in Qk.

Assume that k = 2n for some natural number n and let Ak denote the subset of all elements G

ofMk with the property that each edge of G connects an open end with label ≤ n and another open

end with label > n. The elements of Ak can be represented by permutations of the set {1, 2, . . . , n} in

the way that a permutation π correspond to a matching aπ ∈ Ak where the open end i is connected

with π(i) + n for all 1 ≤ i ≤ n. Now the definition of gluing implies that g(aπ, a%) is a graph which

is the disjoint union of c(π%−1) circles where c(σ) denotes the number of cycles in a permutation σ.

Recall d be the value of f on a single circle. Using the multiplicativity of f we have that

f(g(aπ, a%)) = d c(π%−1).

Let Mn be a matrix whose rows and columns are indexed by permutations from the symmetric

group Sn and the entry in the intersection if the row corresponding to π and column corresponding

to % is d c(π%−1). The assumption that f is reflection positive implies that Mn must be a positive

semidefinite matrix for every n. We will prove that this is only possible if d is a non negative integer.

The matrix Mn is acting on the space of formal linear combinations of the group elements of Sn

which is the group algebra R[Sn]. Let

w =
∑
π∈Sn

sgn(π)π.

We have that

wMk =
∑

π,%∈Sn

sgn(π)d c(π%−1)% =
∑

π,%∈Sn

sgn(π%−1)d c(π%−1)sgn(%)% = w
(∑
π∈Sn

sgn(π)dc(π)
)

This means that w is an eigenvector of Mn with eigenvalue∑
π∈Sn

sgn(π)dc(π) = d(d− 1)(d− 2) . . . (d− n+ 1).

The positive semidefinitness of Mn implies that d(d − 1) . . . (d − n + 1) must be a non negative

number for every natural number n and so d is a non negative integer.

As the next lemma shows, the fact that the circle value is a non negative integer is the first step

towards the existence of an edge coloring model representing f .

Lemma 4.8 Let t be an arbitrary edge coloring model with d colors. Then f(g(H,K)) = t(g(H,K))

for every pair H,K ∈ QMk.

Proof. The quantum graph g(H,K) is the linear combination of graphs consisting only of circles.

The multiplicativity of f shows that the value of t and f must be the same on such a graph.

Using the terminology of section 4.3, we have that

Lemma 4.9 Let t be any edge coloring model with d colors and let H ∈ QMk then f(g(H,H)) =

t(g(H,H)) = 0 if and only if tχ(H) = 0 for all colorings χ : {1, 2, . . . , k} → C.
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4.11 Lifting to the universal edge coloring model

Recall that d is the circle value of f and td is the universal edge coloring model with d colors. In

this section we prove that

Lemma 4.10 If Q ∈ Q is an arbitrary quantum graph and td(Q) = 0 then f(Q) = 0.

Proof. For a graph G ∈ G we define its hight h(G) to be the multiset of the degrees of the vertices

in G. From the definition of the universal edge coloring model it follows that td(G) ∈Wh(G). Every

quantum graph Q ∈ Q can be written in the form
∑
S QS where QS is a quantum graph which is

a linear combination of graphs of hight S. We have that td(Q) =
∑
S td(QS) and td(QS) ∈ WS for

every multiset S. It follow that td(Q) = 0 implies that td(QS) = 0 for all multiset S. Thus we can

assume that Q is homogeneous in the sense that each graph component of Q has the same hight S.

Let G ∈ G be a graph which is the disjoint union of a circle free graph H and n circles. Both

f and td vanish on the quantum graph G − dnH. This means that one can eliminate circles in a

quantum graph without changing the value of f and td on it. Thus we can assume that Q is a

combination of circle free graphs.

Assume that S consists of n numbers an their sum is k. Let GS be a graph in Gk with the

following properties:

1. |V (GS)| = n

2. |E(GS)| = |O(G)| = k

3. Each edge e ∈ E(G) connects an open end with a vertex

4. The multiset of the degrees of the verteces is S.

It is clear that GS is unique up to a relabeling of the open ends. It is also clear that for every

graph G of hight S there is a matching M ∈ Mk such that G = g(GS ,M). This implies that our

quantum graph Q can be written in the form g(GS ,M) where M is in QMk.

Let Pv ⊆ O(G) denote the set of those open ends which are connected to the vertex v ∈ V (G)

in GS and let P = {Pv|v ∈ V (G)} be the partition formed by these sets. We denote by K ≤ Sk the

automorphism group of P. It is clear that g(GS ,M) is isomorphic to g(GS ,M
σ) for all σ ∈ K. Let

M̂ =
1

|K|
∑
σ∈K

Mσ.

We have that

f(Q) = f(g(GS ,M)) = f(g(GS , M̂))

and

0 = td(Q) = td(g(GS ,M)) = td(g(GS , M̂))

.

Using equation (14) from chapter 4.3 we get that

0 = td(Q) =
∑

χ:{1,2,...,k}→C

tdχ(GS)tdχ(M̂).
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The group K is acting on the colorings χ : {1, 2, . . . , k} → C. An orbit of this action can be described

as a multiset Xχ of multisets such that the elements of Xχ are multisets of colors describing the

color distributions in different partition sets of P. The value of tdχ(GS) depends only on the orbit

of χ because GS and GσS are isomorphic for every σ ∈ K. Moreover tdχ(GS) is a monomial of hight

S of the form xv1xv2 . . . xvn where the vectors vi describe multisets of colors which can be seen at

different vertices and the list v1, v2, . . . , xn describes Xχ. On the other hand tdχ(M̂) is a real number

which depend also only the orbit of χ because M̂ is K symmetric. By using the fact that different

monomials are linearly independent over R we obtain that tdχ(M̂) must be 0 for all colorings χ.

This implies by lemma 4.9 that td(g(M̂, M̂)) = 0 and so by lemma 4.8 we get that f(g(M̂, M̂)) = 0.

Since f(g(−,−)) is a positive semidefinite form it follows that f(g(Y, M̂)) = 0 for all Y ∈ Gk. In

particular

f(Q) = f(g(GS , M̂)) = 0.

Corollary 4.11 There exists a homomorphism f̂ : Id → R such that f(Q) = f̂(td(Q)) for every

quantum graph Q ∈ Q.

Proof. Recall that Q has an R-algebra structure and that Id is the image of Q under the algebra

homomorphism td : Q → Pd. On the other hand f : Q → R is an algebra homomorphism because f

is multiplicative. According to the main result of this section we have that

ker(td) ⊆ ker(f) ⊆ Q

and this completes the proof.

4.12 Representing invariants of the orthogonal group with quantum
graphs

The main result of this section is the following.

Lemma 4.12 If p ∈ Pd is invariant under the action of the orthogonal group Od(R) then there is a

quantum graph Q ∈ Q such that td(Q) = p.

Before we start proving lemma 4.12 we describe a construction which will be useful in this and

in later sections.

tensor construction: Let X be an arbitrary finite set with a partition Y = {Y1, Y2, . . . , Yn} on

its elements. Let Vx be an isomorphic copy of the color-space V = 〈c1, c2, . . . , cd〉R for each element

x ∈ X and let

T (X,Y) =
⊗
x∈X

Vx.

Let ln denote the symmetric n-linear form from chapter 4.5 associated with the universal edge

coloring model td. For each partition set Yi we define a multilinear form m̂i by applying l|Yi| for

the spaces {Vx|x ∈ Yi}. The product
∏k
i=1 m̂i defines a multilinear form in the spaces {Vx|x ∈ X}.

By factoring m̂ trough the tensor product T (X,Y) we get an R-linear form m : T (X,Y) → Pd.
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The space T (X,Y) admits a euclidean scalar product which comes from the euclidean structure on

V . An orthonormal basis for this scalar product is formed by the different tensor products of the

color vectors. This basis will be called the color basis. The orthogonal group Od(R) which preserves

the scalar product on V is also acting on T (X,Y) by taking the tensor product of the actions on

Vx. This action has the property that m(tα) = m(t)α where t ∈ T (X,Y) and α ∈ Od(R). Let

S = {|Y1|, |Y2|, . . . , |Yn|} be the multiset of the sizes of the partition sets. If we substitute color

vectors into the multilinear form m̂ we get all the monomial of hight S in Pd. It follows that m

maps T (X,Y) to Ws surjectively.

Proof of lemma 4.12 We know from chapter 4.6 that Pd is the direct sum (as a vectorspace)

of the spaces WS where each WS is invariant (as a subspace) under the action of Od(R). It follows

that if p is an invariant element of Od(R) then each WS component pS of p must be invariant too.

Since p is the sum of its WS components it is enough to find quantum graphs QS with td(QS) = pS

for each multiset S.

Let S = {s1, s2, . . . , sn} be a fixed multiset of natural numbers and let k =
∑
i si. Let D =

{D1, D2, . . . , Dn} be a partition of the index set {1, 2, . . . , k} such that |Di| = si for all 1 ≤ i ≤ n.

Let W = T ({1, 2, . . . , k},D) and let W 0 be the kernel of the map m. We have that the space W 0 is

invariant under Od(R) and W/W 0 is isomorphic to WS in a way that the induced action of Od(R)

on W/W 0 commutes with this isomorphism. By abusing the notation we identify WS with W/W 0.

Let p1 be a preimage of pS under the homomorphism W →W/W 0 and let

p̄ =

∫
α∈Od(R)

pα1 dν

where ν is the normalized Haar measure on the orthogonal group Od(R). Since pS is invariant in

WS = W/W 0 it follows that p̄ is also a preimage of pS under the map W → W/W 0. Furthermore

we have that p̄ is an invariant of Od(R).

The first fundamental theorem of Weyl [91] describes the space of invariant elements in W

by determining a generating system for it. The elements of this generating system correspond to

partitions of the set {1, 2, . . . , k} into two element subsets. In particular if k is an odd number then

the only invariant is the zero vector. Assume that k is even and let E = {E1, E2, . . . , Ek/2} be such

a partition. Let χ : E → C be a coloring of the partition sets. The function χ induces a coloring

χ̂ : {1, 2, . . . , k} → C such that χ̂(j) = χ(Eij ) for 1 ≤ j ≤ k where ij denotes the number for which

j ∈ Eij . We define gχ to be the tensor product⊗
i∈{1,2,...,k}

χ̂(i)

where χ̂(i) ∈ Vi. The invariant which correspond to E is

g =
∑
χ:E→C

gχ.

We define a graph G ∈ G associated to the invariant g. Let V (G) = {v1, v2, . . . , vn} and

E(G) = {e1, e2, . . . , ek/2}. The edge ei connects the vertices vi1 and vi2 where one element of

Ei is in the partition set Di1 and the other element of Ei is in the partition set Di2 . In other words,
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the vertices of G correspond to the partition sets in D, the edges correspond to the partition sets

in E and the edge corresponding to Ei is incident to the vertex corresponding to Dj if and only if

E1 ∩Dj 6= ∅.
Now the spaces Vi are in a one to one correspondence with the half edges in G and the form m

coincides with the one defined in chapter 4.5. It follows that m(g) = td(G).

Using Weyl’s theorem we have that p̄ =
∑r
i=1 λigi for some real numbers λi and invariants gi

where for each gi there is a graph Gi ∈ G with m(g1) = td(Gi). It follows that

pS = m(p̄) =

r∑
i=1

λitd(Gi) = td

( r∑
i=1

λiGi

)
.

4.13 Projection to subalgebras of the matrix algebra

Let A be a subalgebra of the full matrix algebra Mn(R) such that A = {MT |M ∈ A}. The bilinear

function (M,K) = tr(MKT ) defines a euclidean scalar product on Mn(R). Let PA denote the

orthogonal projection to A.

Lemma 4.13 If M is a symmetric positive semidefinite matrix then PA(M) = K2 for some sym-

metric matrix K ∈ A.

Proof. Since A is invariant under transposing we have that PA(M) is a symmetric matrix in A.

First we prove that the eigenvalues of PA(M) are all nonnegative. Let λ1, λ2, . . . , λk be the set of

the positive eigenvalues of PA(M), let p(x) = (x− λ1)(x− λ2) . . . (x− λk) and let H = p(PA(M)).

Using that PA is self adjoint and that HT = H ∈ A have that

tr(PA(M)H2) = (PA(M), H2) = (M,PA(H2)) = (M,H2) = tr(MH2) = tr(HMH) ≥ 0.

Since tr(PA(M)H2) is a positive linear combination of the negative eigenvalues of PA(M) it follows

that the eigenvalues of PA(M) must be all nonnegative.

Let g ∈ R[x] be a polynomial such that g(λi) =
√
λi for 1 ≤ i ≤ k. Now K = g(PA(M)) satisfy

both K2 = PA(M) and K ∈ A.

4.14 Genaralized Brauer algebras

Let S denote the set of finite multisets of the positive integers. Let µ(S) denote the sum of the

elements of a multiset S ∈ S. For each multiset S ∈ S we introduce a set O(S) of size µ(S) and we

define a partition P (S) on the elements of O(S) such that the multiset of the sizes of the partition

sets in P (S) is S. The algebra Ad consists of the formal linear combinations of triples

a(S1, S2,M)

where S1, S2 ∈ S and M is a perfect matching on the set O(S1) ∪O(S2). The product

a(S1, S2,M1)a(S3, S4,M2)

is defined to be 0 if S2 6= S3. If S2 = S3 then M1 ∪M2 is the edge set of a graph G with node set

O(S1) ∪ O(S2) ∪ O(S4) such that nodes in O(S2) have degree 2 and nodes in O(S1) ∪ O(S4) have
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degree 1. This means that G is the union of node disjoint pathes and cycles. Replacing each path

by a single edge we get a matching M3 on O(S1) ∪ O(S4). Assume that the number of cycles in G

is n. The product a(S1, S2,M1)a(S2, S4,M2) is defined to be dna(S1, S4,M3).

We introduce the transpose map on Ad as the unique linear extension of the map

a(S1, S2,M)T = a(S2, S1,M).

Let Ad(S1, S2) denote the space spanned by the elements a(S1, S2,M) where M runs through all

perfect matchings of O(S1) ∪O(S2). We have that

Ad =
⊕

S1,S2∈S
Ad(S1, S2).

Let

Ad(S) =
⊕
S1∈S

Ad(S1, S)

and

Ad(S)T =
⊕
S1∈S

Ad(S, S1).

For an arbitrary basis element a(S1, S2,M) we define τ(a(S1, S2,M)) ∈ G, τ1(a(S1, S2,M)) ∈ Gµ(S2)

and τ2(a(S1, S2,M)) ∈ Gµ(S1) in the following way. By identifying nodes in O(S1)∪O(S2) belonging

to the same partition set of P (S1) ∪ P (S2) we get τ(a(S1, S2,M)). By identifying nodes in O(S1)

(resp O(S2)) belonging to the same partition set of P (S1) (resp. P (S2)) and defining O(S2) (resp.

O(S1)) to be the set of open edges we get τ1(a(S1, S2,M)) (resp. τ2(a(S1, S2,M)). The map τ

extends linearly to a map τ : Ad → Q and the maps τ1, τ2 extend to maps

τ1 : Ad(S)→ Qµ(S) , τ2 : Ad(S)T → Qµ(S).

Lemma 4.14 If b ∈ Ad then f(τ(bbT )) ≥ 0.

Proof. We use that

b =
∑

S∈S,µ(S)≤m

bS

where bS ∈ Ad(S) for all S and m is a large-enough natural number. Since

bbT =
∑

S∈S,µ(S)≤m

bSb
T
S

it suffices to show that f(τ(bSb
T
S )) ≥ 0 for all S. Using that τ1(bS) = τ2(bTS ) we obtain that

Q = g(τ1(bS), τ2(bTS )) is a reflection symmetric quantum graph. The graph τ(bSb
T
S ) can be obtained

from Q by a process where in each step we delete a circle from a graph component and multiply it

by d. Using that the circle value of f is d, and that f is multiplicative and edge reflection positive

we have that

f(τ(bSb
T
S )) = f(Q) ≥ 0.
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Now we describe a matrix representation of the algebra Ad which will be of crucial importance

in the next section. Let us introduce the notation M(X,Y ) for the space of real matrices whose rows

are indexed by the set X and whose columns are indexed by the set Y where X and Y are finite sets.

Recall that C = {c1, c2, . . . , cd} is a set with d colors. Let S1, S2 ∈ S be two multisets and let M be

a perfect matching on O(S1) ∪ O(S2). We say that a coloring of O(S1) ∪ O(S2) is compatible with

M if the two endpoints of each matching edge have the same color. First we represent a(S1, S2,M)

by a matrix whose rows are indexed by colorings O(S1) → C and whose columns are indexed by

colorings O(S2) → C. The entry in the intersection of the row χ and column ψ is 1 if the coloring

χ×ψ : O(S1)∪O(S2)→ C is compatible with M and is 0 otherwise. By extending this representation

linearly to Ad(S1, S2) we obtain a map

ω : Ad(S1, S2)→M(CO(S1) , CO(S2)).

The reader can check easily that the map ω satisfies the identity

ω(a(S1, S2,M1)a(S2, S3,M2)) = ω(a(S1, S2,M1))ω(a(S2, S3,M2)).

It follows that ω(b1b2) = ω(b1)ω(b2) if b1 ∈ Ad(S1, S2) and b2 ∈ Ad(S2, S3). Let

Âd(S1, S2) = M(CO(S1) , CO(S2))

and let

Âd =
⊕

S1,S2∈S
Âd(S1, S2).

The space Âd is endowed with a natural algebra structure in the following way. Assume that

b1 ∈ Âd(S1, S2) , b2 ∈ Âd(S3, S4).

If S2 = S3 then b1b2 is the usual matrix product and if S2 6= S3 then b1b2 is defined to be 0. This

multiplication rule defines a multiplication on the whole space Âd. It is clear that the map ω extends

to an algebra homomorphism ω : Ad → Âd. Let

Ad,r =
⊕

S1,S2∈S, µ(S1),µ(S2)≤r

Ad(S1, S2)

and let

Âd,r =
⊕

S1,S2∈S, µ(S1),µ(S2)≤r

Âd(S1, S2)

The space Ad,r is a subalgebra of Ad and the space Âd,r is a subalgebra of Âd. Moreover, ω maps

Ad,r into Âd,r. It is easy to see that Âd,m is the full matrix algebra

M
( ⋃
S∈S, µ(S)≤r

CO(S) ,
⋃

S∈S, µ(S)≤r

CO(S)
)

and that ω(bT ) = ω(b)T for all b ∈ Ad,r. This implies in particular that ω(Ad,r) is a subalgebra of

the matrix algebra Âd,r which is closed under taking transpose. Let us define the euclidean scalar
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product (b1, b2) = tr(b1b2) on Âd,r. The spaces Âd(S1, S2) are orthogonal to each other in Âd,r for

different pairs (S1, S2). Since ω(Ad(S1, S2)) is contained in Âd(S1, S2) we have that

ω(Ad,r) =
⊕

S1,S2∈S, µ(S1),µ(S2)≤r

ω(Ad(S1, S2))

where all the direct summands are orthogonal to each other. Let Pd,r denote the orthogonal projec-

tion of Âd,r to ω(Ad,r) and let Pd,r(S1, S2) denote the orthogonal projection of Âd,r to ω(Ad(S1, S2))

where µ(S1), µ(S2) ≤ r. The above properties imply that the restriction of Pd,r to the space

Âd(S1, S2) is Pd,r(S1, S2).

Now we use the tensor construction from chapter 4.12. Let us observe that the elements of

the color basis in the space T (O(S1) ∪ O(S2), P (S1) ∪ P (S2)) correspond to colorings O(S1) ∪
O(S2) → C and the elementary matrices in Âd(S1, S2) also correspond to such colorings. This

gives an isometry between the euclidean spaces T (O(S1) ∪ O(S2), P (S1) ∪ P (S2)) and Âd(S1, S2).

By abusing the notation, we will identify the these spaces. Now the tensor construction defines

maps m : Âd(S1, S2) → Pd for all S1, S2 ∈ S. These maps have a unique common linear extension

m : Âd → Pd.

Let us observe that

T (O(S1) ∪O(S2), P (S1) ∪ P (S2)) = T (O(S1), P (S1))⊗ T (O(S2), P (S2))

and that for v1 ∈ T (O(S1), P (S2)), v2 ∈ T (O(S2), P (S2)) we have that

m(v1)m(v2) = m(v1 ⊗ v2).

Let

B̂d,m =
⊕

S∈S, µ(S)≤m

T (O(S), P (S)).

Is is clear that

B̂d,m ⊗ B̂d,m = Âd,m

and that

m(v1 ⊗ v2) = m(v1)m(v2)

for an arbitrary pair v1, v2 ∈ B̂d,m.

4.15 The averaging operator

We define the averaging operator ξ : Pd → Id by

ξ(g) =

∫
α∈Od(R)

gα dν

where ν is the normalized Haar measure on the orthogonal group Od(R).

Lemma 4.15 The following diagram is commutative:
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Âd,r - Pd
m

?
ω(Ad,r)

Pd,r

- Id
?m

ξ

-Ad,r

��
��

��
��

��
��

��
��

�1

?
Q

ω

τ

- R
?f

td f̂

Proof. Note that each map on the diagram is R-linear and so it is enough to check the commu-

tativity for an appropriately chosen generating system of the spaces.

First we prove that ξ ◦ m = m ◦ Pd,m by checking it for the spaces Âd(S1, S2). Recall that

Âd(S1, S2) is identified with the euclidean space T = T (O(S1) ∪ O(S2), P (S1) ∪ P (S2)) and that

the orthogonal group Od(R) is acting on T by taking the tensor product of the actions on V . This

action commutes with the map m and so we have that

m
(∫

α∈Od(R)

tα dν
)

= ξ(m(t))

for all t ∈ T . Since the action of Od(R) preserves the scalar product on T one gets that
∫
α∈Od(R)

tα dν

is the orthogonal projection of t to the space of invariant elements. Therefore it suffices to prove that

ω(Ad,r) is the space of invariants. This follows from Weyl’s first fundamental theorem as described

in chapter 4.12.

One gets m ◦ ω = td ◦ τ by showing that

m(ω(a(S1, S2,M))) = td(τ(a(S1, S2,M)))

for all triples S1, S2,M . This follows immediately from the definitions.

The statement f̂ ◦ td = f is proved in corollary 4.11.

Lemma 4.16 If g ∈ Pd then for a sufficiently large natural number r there is a symmetric positive

semi-definite matrix M in Âd,r such that m(M) = g2.

Proof. If r is a large-enough natural number then

g =
∑

S∈S,µ(S)≤r

gS

where gS is an element of WS . Let us represent each gS by an element tS in the space T (O(S), P (S))

such that m(tS) = gS . This is possible because m is a surjective map to WS . Setting

t =
∑

S∈S, µ(S)≤m

tS ∈ B̂d,m

we have that m(t) = g and that m(t ⊗ t) = g2. On the other hand t ⊗ t is represented as a rank 1

positive semi-definite matrix M in Âd,r.
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Lemma 4.17 If g ∈ Pd then f̂(ξ(g2)) ≥ 0.

Proof. Using lemma 4.16 we get that for a sufficiently large r there is a symmetric positive semi-

definite matrix M ∈ Âd,r such that m(M) = g2. From lemma 4.13 we obtain that Pd,r(M) = K2

where K is a symmetric matrix from ω(Ad,r). Let K̄ be a preimage of K under the map ω. We

have that ω(K̄K̄T ) = K2. By lemma 4.14 it follows that f(τ(K̄K̄T )) ≥ 0. Lemma 4.15 implies that

f(τ(K̄K̄T )) = f̂(m(ω(K̄K̄T ))) = f̂(m(K2)).

It follows that f̂(m(Pd,r(M))) ≥ 0. Using lemma 4.15 again we obtain that f̂(ξ(m(M))) ≥ 0 which

completes the proof.

4.16 Extension of f̂ to Pd

In this section we finish the proof of our main theorem by showing that f̂ : Id → R extends to a

homomorphism f̄ : Pd → R. This is clearly enough because the edge coloring model defined by

t(v) = f̄(xv), v ∈ Nd

is a real valued edge coloring model which represents the graph parameter f . We will need the

following well known consequence of the so-called Positivestellensatz (see: [13]).

Theorem 4.18 Let g ∈ R[x1, x2, . . . , xn] be a polynomial such that it has no root in Rn. Then there

exist polynomials p, f1, f2, . . . , fh for some natural number h such that

pg = 1 + f2
1 + f2

2 + · · ·+ f2
h .

Let Pd,r be the subring of Pd which is generated by the variables {xv | h(v) ≤ r, v ∈ Nd}. Since

Pd,r is the direct sum of the spaces WS where S is a multiset of {0, 1, . . . , r} we have that Pd,r is

invariant under the action of Od(R). Lemma 4.12 shows that Id,r = Id ∩ Pd,r is the set of invariant

polynomials in Pd,r. Let Nd,r be the kernel of the homomorphism f̂ : Id,r → R.

Lemma 4.19 The homomorphism f̂ : Id,r → R extends to a homomorphism f̄r : Pd,r → R.

Proof. First of all note that Pd,r is a polynomial ring with tr =
∑r
i=0

(
i+d−1
d−1

)
variables. It

suffices to prove that there is a point x in Rtr which is a common root for all the polynomials in

Nd,r because the substitution of x into polynomials from Pd would yield a homomorphism of the

required form. Let M be the ideal generated by Nd,r in Pd,r. Since Pd,r is Noetherian we have that

there are finitely many polynomials g1, g2, . . . , gk ∈ Nd,r which generate M as an ideal. We prove by

contradiction that g1, g1, . . . , gk have a common root. Assume that it is not true. Then s =
∑k
i=1 g

2
i

is a polynomial in Nd,r which is positive everywhere in Rtr . Using theorem 4.18 we get that there

is a polynomial p ∈ Pd,r such that

ps = 1 + f2
1 + f2

2 + · · ·+ f2
h

for some natural number h. Applying the averaging operator ξ for both sides we get that

ξ(p)s = 1 + ξ(f2
1 ) + ξ(f2

2 ) + · · ·+ ξ(f2
h)
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because s is invariant under the action of Od(R). The left side is an element of Nd,r since Nd,r is an

ideal in Id,r and ξ(p) is an element of Id,r. This is a contradiction because lemma 4.17 shows that

f̂(1 + ξ(f2
1 ) + ξ(f2)2 + · · ·+ ξ(f2

h)) ≥ 1

which means that the right side in not an element of Nd,r.

Lemma 4.20 The map f̂ : Id → R extends to a homomorphism f̄ : Pd → R.

Proof. Let

gs =
∑

h(v)=s, v∈Nd

g2
v .

It is easy to see that gs = td(Gs) where Gs is the graph with two nodes which are connected by s

edges. This implies that gs is an element of Id. Let f̄r be a map described by lemma 4.19. If r ≥ s
then gs is in Pd,r and

f(Gs) = f̂(gs) =
∑

h(v)=s, v∈Nd

f̄r(gv)
2.

It follows that |f̄r(gv)| ≤
√
f(Gs) for all v ∈ Nd. Using these inequalities we have that there is

an infinite sequence r1 < r2 < . . . of natural numbers such that f̂ri(xv) is convergent for all fixed

vector v ∈ Nd. This means that f̂ri(p) is convergent for all polynomial p ∈ Pd and the limit is a

homomorphism which is an extension of f̂ to Pd.

5 Limits of functions on groups

The so-called graph limit theory (see [63], [65], [20], [61]) gives an analytic approach to a large

class of problems in graph theory. A very active field of applications is extremal graph theory

where, roughly speaking, the goal is to find the maximal (or minimal) possible value of a graph

parameter in a given family of graphs and to study the structure of graphs attaining the extremal

value. A classical example is Mantel’s theorem which implies that a triangle free graph H on 2n

vertices maximizes the number of edges if H is the complete bipartite graph with equal color classes.

Another example is given by the Chung-Graham-Wilson theorem [27]. If we wish to minimize the

density of the four cycles in a graph H with edge density 1/2 then H has to be sufficiently quasi

random. However the perfect minimum of the problem (that is 1/16) can not be attained by any

finite graph but one can get arbitrarily close to it. Such problems justify graph limit theory where in

an appropriate completion of the set of graphs the optimum can always be attained if the extremal

problem satisfies a certain continuity property. Furthermore one can use variational principles at

the exact maximum or minimum bringing the tools of differential calculus into graph theory.

Extremal graph (and hypergraph) theory has a close connection to additive combinatorics. It is

well known that the triangle removal lemma by Szemerédi and Ruzsa implies the qualitative version

of Roth’s theorem on three term arithmetic progressions. The proof relies on an encoding of an

integer sequence (or a subset in an abelian group) by a graph that is rather similar to a Cayley

graph. Such representations of additive problems in graph theory hint at a limit theory for subsets

in abelian groups that is closely connected to graph limit theory. This new limit theory, that is
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actually a limit theory for functions on abelian groups, was initiated by the author in [81], [84] and

[85] in a rather general form.

Motivated by Szemerédi’s theorem on arithmetic progressions Gowers initiated a theory of higher

order Fourier analysis in [45] (for a textbook on the topic see [89]). He introduced a sequence of

norms ‖.‖Uk
(called uniformity norms) for functions on finite abelian groups. Roughly speaking,

in k-th order Fourier analysis functions with small Uk+1 norm are considered to be “random like”.

Seperation of noise and structure is a central topic in higher order Fourier analysis. The bigger k

is the more functions are considered to be structured and their description gets increasingly hard.

Correspondingly, there is a hierarchy of increasingly fine limit notions related to k-th order Fourier

analysis as k goes to infinity and the limit objects get increasingly complex. The focus of this part

of the thesis is the linear case k = 1 that was called “harmonic analytic limit” in [81]. This case is

interesting on its own right, covers numerous important questions and is illustrative for the more

general limit concept.

We introduce metric, convergence and limit objects for subsets in abelian groups. More generally,

since subsets can be represented by their characteristic functions, we study the convergence of

functions on abelian groups. This extends the range of possible applications of our approach to

problems outside additive combinatorics.

In the first part of the chapter we study a metric d̂ and related convergence notion for l2 functions

on discrete (not necessarily commutative) groups. It is important that the metric d̂ allows us to

compare two functions defined on different groups. In chapter 5.2 we introduce a distance d for

measurable functions f ∈ L2(A1), g ∈ L2(A2) defined on compact abelian groups A1, A2 such that

d(f, g) := d̂(f̂ , ĝ) where f̂ and ĝ denote the Fourier transforms of f and g. In additive combinatorics,

we can use the distance d to compare subsets in finite abelian groups in the following way. If S1 ⊆ A1

and S2 ⊆ A2 are subsets in finite abelian groups A1 and A2 then their distance is d(1S1
, 1S2

). This

allows us to talk about convergent sequences of subsets in a sequence of abelian groups.

A crucial property of the metric d (see theorem 5.9) is that it puts a compact topology on the

set of all pairs (f,A) where A is a compact abelian group and f is a measurable function on A with

values in a fixed compact convex set K ⊂ C. As a consequence we have that any sequence of subsets

{Si ⊆ Ai}∞i=1 in finite abelian groups Ai has a convergent sub-sequence with limit object which is a

measurable function of the form f : A→ [0, 1] where A is some compact abelian group. This result

is analogous to graph limit theory where graph sequences always have convergent subsequences with

limit object which is a symmetric measurable function of the form W : [0, 1]2 → [0, 1].

The success of a limit theory depends on how many interesting parameters are continuous with

respect to the convergence notion. The parameters that are most interesting in additive combina-

torics are densities of linear configurations. A linear configuration is given by a finite set of linear

forms i.e. homogeneous linear multivariate polynomials over Z. For example a 3 term arithmetic

progression is given by the linear forms a, a+ b, a+ 2b. If f is a bounded measurable function on a

compact abelian group A then we can compute the density of 3-term arithmetic progressions in f as

the expected value Ea,b∈A(f(a)f(a+ b)f(a+ 2b)) according to the normalized Haar measure on A.

This density concept can be generalized to an arbitrary linear configuration L = {L1, L2, . . . , Lk}
and the density of L in f is denoted by t(L, f) (see formula (15) and the following sentence.). Gow-

ers and Wolf introduced a complexity notion [47] for linear configurations called true complexity
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(see definition 5.12). A useful upper bound for the true complexity is the so-called Cauchy-Schwarz

complexity developed by Green and Tao in [48].

We prove the following fact (for precise formulation see theorem 5.13).

Theorem: If L has true complexity at most 1 then the density function of L is continuous in the

metric d.

Examples for linear configurations of complexity 1 include the 3-term arithmetic progression

(this was shown in [48]), the parallelogram a, a + b, a + c, a + b + c, and the system LH :=

{xi + xj : (i, j) ∈ E(H)} where H is an arbitrary finite graph on {1, 2, . . . , n}. The last example

gives a close connection with graph limit theory. The density of LH in f ∈ L∞(A) is equal to the

density of the graph H in the symmetric kernel W : A×A→ C defined by W (x, y) = f(x+y). Note

that if f has values in [0, 1] then W is a graphon in the graph limit language. We will elaborate on

this connection in chapter 5.9.

Let L be an arbitrary linear configuration. For 0 ≤ δ ≤ 1 and n ∈ N let ρ(δ, n,L) denote the

minimal possible density of L in subsets of Zn of size at least δn. Let ρ(δ,L) := lim infp→∞ ρ(δ, p,L)

where p runs through the prime numbers. A result by Candela and Sisask [25] implies that the

lim inf can be relaced by lim in the definition of ρ(δ,L). Note that the qualitative version of Roth’s

theorem is equivalent with the fact that ρ(δ,L) > 0 if δ > 0 and L = {a, a+ b, a+ 2b}.

Theorem 5.1 Let L be a linear configuration of true complexity at most 1. For every 0 ≤ δ ≤ 1 we

have that

ρ(δ,L) = min
A,f

(t(L, f))

where f runs through all measurable functions of the form f : A→ [0, 1] with E(f) = δ on compact

abelian groups A with torsion-free Pontrjagin dual groups.

We emphasize that in theorem 5.1 we obtain ρ(δ,L) as an actual minimum and thus there is

some function fδ,L realizing the value ρ(δ). If for example L = {a, a + b, a + 2b} then it is not

hard to deduce the qualitative version of Roth’s theorem from theorem 5.1 using Lebesgue’s density

theorem. We sketch the proof at the end of chapter 5.9. It would be very interesting to find the

explicit form of a minimizer fδ,L for every δ or even to obtain any information on fδ,L like on which

abelian group it is defined?

It is important to mention that our convergence notion behaves quite differently from usual con-

vergence notions in functional analysis. There is an example for a convergent sequence of functions,

all of them defined on the circle (complex unit circle with multiplication or equivalently the quotient

group R/Z), but the limit object exists only on the torus (see the example at the end of chapter

5.2).

In the proofs we will extensively use ultralimit methods. Ultralimit methods in graph and

hypergraph regularization and limit theory were first introduced in [33]. There are two different

reasons to use these methods. One is that they seem to help to get rid of a great deal of technical

difficulties and provide cleaner proofs for most of our statements. The other reason is that they

point to an interesting connection between ergodic theory and our limit theory. The ultraproduct A
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of compact abelian groups {Ai}∞i=1 behaves as a measure preserving system. Our limit concept can

easily be explained through a factor F(A) of A which is a variant of the so called Kronecker factor.

5.1 A limit notion for functions on discrete groups

For an arbitrary group G we denote by l2(G) the Hilbert space of all functions f : G → C such

that ‖f‖22 =
∑
g∈G |f(g)|2 < ∞. If f ∈ l2(G) and ε ≥ 0 then we denote by suppε(f) the set

{g : g ∈ G, |f(g)| > ε}| In particular, supp(f) := supp0(f) is the support of f . Not that if ε > 0

then |suppε(f)| ≤ ‖f‖22/ε2 and supp(f) = ∪∞n=1supp1/n(f) is a countable (potentially finite) set. We

denote by 〈f〉 the subgroup of G generated by supp(f). It is clear that 〈f〉 is a countable (potentially

finite) group.

Two functions f1 ∈ l2(G1) and f2 ∈ l2(G2) are called isomorphic if there is a group isomorphism

α : 〈f1〉 → 〈f2〉 such that f1 = f2 ◦ α. Let us denote by M the isomorphism classes of l2 functions

on groups. Our goal is to define a metric space structure on M. We will need the next definition.

Definition 5.2 Let G1 and G2 be groups. A partial isomorphism of weight n is a bijection φ :

S1 → S2 between two subsets S1 ⊆ G1, S2 ⊆ G2 such that gα1
1 gα2

2 . . . gαn
n = 1 holds if and only if

φ(g1)α1φ(g2)α2 . . . φ(gn)αn = 1 for every sequence gi ∈ S1, αi ∈ {−1, 0, 1} with 1 ≤ i ≤ n.

Definition 5.3 Let f1 ∈ l2(G1) and f2 ∈ l2(G2). An ε-isomorphism between f1 and f2 is a

partial isomorphism φ : S1 → S2 of weight d1/εe between sets with suppε(f1) ⊆ S1 ⊆ G1 and

suppε(f2) ⊆ S2 ⊆ G2 such that |f1(g)− f2(φ(g))| ≤ ε holds for every g ∈ S1. We define d̂(f1, f2) as

the infimum of all ε’s such that there is an ε-isomorphism between f1 and f2.

Note that both partial isomorphism and ε-isomorphism are symmetric notions in the sense that

if φ is a partial isomorphism (resp. ε-isomorphism) the φ−1 is also a partial isomorphism (resp.

ε-isomorphism).

Proposition 5.4 The function d̂ is a metric on M.

Proof. First we show that d̂(f1, f2) = 0 if and only if f1 and f2 are isomorphic. If f1 is isomorphic

to f2 then it is clear that d(f1, f2) = 0. For the other direction assume w.l.o.g. that ‖f2‖2 ≤ ‖f1‖2.

Let αn : S1,n → S2,n be an 1/n-isomorphism between f1 to f2 for every n. Clearly, for every

element g ∈ supp(f1) there are finitely many possible elements in the sequence {αn(g)}∞n=1 since

limn→∞ f2(αn(g)) = f1(g) and there are finitely many elements h in G2 on which |f2(h)| > |f1(g)|/2.

Using that the support of f1 is countable we obtain that there is a subsequence {βn} of {αn} such

that the sequences {βn(g)} stabilize (become constant) after finitely many steps for every g with

|f1(g)| > 0. This defines a map β = limβn from supp(f1) to supp(f2). It is clear that β extend to

an injective homomorphism from 〈f1〉 to 〈f2〉 and it satisfies f2(β(g)) = f1(g) for every g ∈ 〈f1〉.
Using ‖f2‖2 ≤ ‖f1‖2 it follows that every element in supp(f2) is in the image of β and so β is a

value preserving isomorphism between 〈f1〉 and 〈f2〉.
It remains to check the triangle inequality for the metric d. Assume that α : S1 → S2 is an

ε-isomorphism between f1 and f2 and assume that β : S′2 → S3 is an ε′-isomorphism between f2

and f3. Without loss of generality we can assume (by reversing arrows if necessary) that ε′ ≥ ε. We
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have the following inclusions:

β−1(suppε′+ε(f3)) ⊆ β−1(suppε′(f3)) ⊆ β−1(S3) = S′2,

β−1(suppε′+ε(f3)) ⊆ suppε(f2) ⊆ S2,

α(suppε′+ε(f1)) ⊆ suppε′(f2) ⊆ S2 ∩ S′2.

Let T2 = β−1(suppε′+ε(f3)) ∪ suppε′(f2) (observe that T2 ⊆ S2 ∩ S′2) and let T1 = α−1(T2), T3 =

β(T2). We have that suppε′+ε(f1) ⊆ T1 and suppε′+ε(f3) ⊆ T3. Let γ : T1 → T3 be the restriction

of β ◦ α to T1. Using T2 ⊆ S2 ∩ S′2 we get that γ is a bijection. To complete the proof of the

triangle inequality we show that γ is an (ε′ + ε)-isomorphism. We have that γ is a bijection and

that |f1(g1) − f3(γ(g1))| ≤ ε′ + ε holds for every g ∈ T1. It remains to check that γ is a partial

isomorphism of weight d1/(ε′ + ε)e. This follows form the fact that the composition of a partial

isomorphism of weight n and a partial isomorphism of weight m is a partial isomorphism of weight

min(n,m). However the minimum of d1/εe and d1/ε′e is at least d1/(ε′ + ε)e.

Lemma 5.5 Assume that a sequence {fi}∞i=1 of l2 functions on abelian groups converge in d̂ to

f ∈ l2(G). Then 〈f〉 is also abelian.

Proof. Let g1, g2 ∈ supp(f) be two elements. Let ε = min(|f(g1)|/2, |f(g2)|/2, 1/4). Then by

convergence of fi there is an index i such that there is an ε-isomorphism φ between f and fi. Since

g1, g2 ∈ suppεf we have that φ is defined on g1, g2 and φ(g1)φ(g2)φ(g1)−1φ(g2)−1 = 1 implies that

g1g2g
−1
1 g−1

2 = 1 because ε < 1/4.

For every real number a > 0 let Ma denote the subset of M consisting of equivalence classes of

functions f ∈ l2(G) with ‖f‖2 ≤ a.

Proposition 5.6 The metric space (Ma, d̂) is compact for every a > 0.

For the proof of proposition 5.6 we will need the next lemma. Let Fr denote the free group in r

generators.

Lemma 5.7 Assume that {Gn}∞n=1 is a sequence of groups and for every n we have a sequence of

elements {gn,i}∞i=1 in Gn. Then there is a sequence of elements {gi}∞i=1 in some group G and a set

S ⊆ N such that for every r ∈ N and word w ∈ Fr there is a natural number Nw such that if k ∈ S
and k > Nw then w(gk,1, gk,2, . . . , gk,r) = 1 if and only if w(g1, g2, . . . , gr) = 1.

Proof. Let {wi}∞i=1 be an arbitrary ordering of the words in ∪∞r=1Fr with wi ∈ Fri . We

construct a sequence of infinite subsets Si ⊆ N in a recursive way. Assume that S0 = N. If Si−1 is

already constructed then we construct Si in a way that Si is an infinite subset in Si−1 and either

wi(gs,1, gs,2, . . . , gs,ri) = 1 holds for every s ∈ Si or wi(gs,1, gs,2, . . . , gs,ri) 6= 1 holds for every s ∈ Si.
This can be clearly achieved since Si−1 is infinite and thus at least one of the two options holds

infinitely many times for indices inside Si−1. We then choose a sequence {si}∞i=1 such that si ∈ Si and

si < sj hold for every pair i < j. We obtain for {si}∞i=1 that for every r ∈ N and word w ∈ Fr either

w(gsi,1, gsi,2, . . . , gsi,r) = 1 holds with finitely many exceptions or wr(gsi,1, gsi,2, . . . , gsi,r) 6= 1 holds
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with finitely many exceptions. Let W denote the collection of words for which the first case holds.

Let G be the group with generators {gi}∞i=1 and relations {w(g1, g2, . . . , gr) = 1|r ∈ N, w ∈ Fr ∩W}.
It is clear form the construction of W that every relation that G satisfies in its generators is already

listed in W . This follows from the fact that if a word w is not in W then for an arbitrary finite

subset W ′ in W there is a witness among the groups Gsi in which w does not hold but all words in

W ′ hold. Now we have that S = {si}∞i=1 and G with {gi}∞i=1 satisfies the lemma.

Proof of proposition 5.6. Let {fn : Gn → C}∞n=1 be a sequence of functions of l2 norm at

most a. For every n let {gn,i}∞i=1 be an ordering of the elements in supp(fn) in such a way that

|fn(gn,i)| ≥ |fn(gn,j)| whenever i < j. If supp(fn) is finite then, to make the list infinite, we add

additional elements from outside supp(fn) to the list. If the group Gn is finite then we enlarge Gn

to an infinite group containing Gn (say Gn × Z) such that fn takes the value 0 on the new group

elements and then we can make the list infinite with elements from outside Gn.

Let S ⊆ N, G and {gi}∞i=1 be chosen for the sequences {gn,i}∞i=1 according to lemma 5.7. Let

S′ ⊆ S be an infinite subset of S such ai := limn→∞,n∈S′ fn(gn,i) exists for every i ∈ N. Now we

define the function f : G → C such that f(gi) = ai inside the set {gi}∞i=1 and f(g) = 0 for the rest

of the elements. It is clear that f is well defined since gn,i 6= gn,j holds for every n if i 6= j and thus

gi 6= gj . It is clear that ‖f‖2 ≤ lim infn∈S′ ‖fn‖2 and thus ‖f‖2 ≤ a.

To create an ε-isomorphism between f and fn (if n ∈ S′ is big enough) we consider the sets

Tn = {gn,i : i ≤ a2/ε2} and the set T = {gi : i ≤ a2/ε2}. Let αn : Tn → T be the bijection defined

by αn(gn,i) = gi. It is clear that suppε(fn) ⊆ Tn holds for every n and that suppε(f) ⊆ S. The

construction guarantees that |fn(g) − f(αn(g)| ≤ ε holds if n ∈ S′ is big enough. Furthermore the

property given by lemma 5.7 shows that αn is a partial isomorphism of weight m for an arbitrary

m ∈ N if n ∈ S′ is big enough. This completes the proof.

5.2 Convergence notions on compact Abelian groups

In this chapter we deal with compact abelian groups, Haar measure, Fourier transform and Pontrja-

gin duality. The tools that we use are covered in the textbook [77]. Compact abelian groups in this

thesis will be assumed to be second countable and thus the Pontrjagin dual group is always count-

able. For a compact abelian group G we denote by L2(G) the Hilbert space of Borel measurable

complex valued functions f on G with
∫
|f |2 dµ ≤ ∞ where µ is the normalized Haar measure.

If H ⊆ G is a closed subgroup of G then we have that τH : G → G/H is continuous and Haar

measure preserving. Let L2
H(G) denote the Hilbert sub-space τH ◦ L2(G/H) in L2(G). We have

that L2
H1

(G)∩L2
H2

(G) = L2
〈H1,H2〉(G). It follows that for f ∈ L2(G) there is a unique largest closed

subgroup H(G, f) such that f ∈ L2
H(G,f)(G). In other words H(G, f) is the largest closed subgroup

of G such that there is a unique function f ′ ∈ L2(G/H(G, f)) with f = τH(G,f) ◦ f ′. It is clear

that H(G/H(G, f), f ′) is trivial. We say that the function f ′ ∈ L2(G/H(G, f)) is the economic

representation of f ∈ L2(G).

The economic representation can also be described through Fourier transforms. Let Ĝ denote

the Pontrjagin dual of G and let f̂ ∈ l2(Ĝ) denote the Fourier transform of f . For a closed subgroup

H ⊆ G we have a natural embedding of Ĝ/H into Ĝ. We have that f ∈ L2
H(G) if and only Ĝ/H

contains the support of f̂ inside Ĝ. It follows that the economic representation f ′ of f is the Fourier
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transform of the restriction of f to the group 〈supp(f̂)〉 generated by the support of f̂ . In particular

f ′ is defined on the dual group of 〈supp(f̂)〉 which the factor group of G with the subgroup H that

is the intersection of the kernels of the characters in 〈supp(f̂)〉.
Let f1 ∈ L2(G1) and f2 ∈ L2(G2) be functions on the compact abelian groups G1 and G2 with

economic representations (f ′1, G1/H(G1, f1)) and (f ′2, G2/H(G2, f2)). We say that f1 and f2 are

isomorphic if and only if there is a continuous isomorphism φ : G1/H(G1, f1)→ G2/H(G2, f2) such

that f ′1 = φ ◦ f ′2. It is clear that this notion of isomorphism is an equivalence relation. Using the

above dual description of economic representations we have that f1 and f2 is isomorphic if and only

f̂1 is isomorphic to f̂2 in the sense of chapter 5.1.

Note that f1, f2 are isomorphic if and only if there is a third function f3 ∈ L2(G3) and continuous

epimorphisms αi : Gi → G3 for i = 1, 2 such that f3(αi(g)) = fi(g) holds for almost every g with

respect to the Haar measure in Gi. This follows from the fact that the economic representations of

f1 and f2 must factor through α1 and α2.

Let H denote the set of isomorphism classes of Borel measurable L2 functions on compact abelian

groups. We introduce the distance d on H by d(f1, f2) := d̂(f̂1, f̂2). The metric d induces a

convergence notion on H. If we say {fi}∞i=1 is convergent then we mean convergence in d if not

stated explicitly in which other meaning it is convergent. Let Ha denote the set of functions in H
with L2-norm at most a. Using the fact that Fourier transform preserves the L2-norm we have by

lemma 5.5 and proposition 5.6 the following statement.

Proposition 5.8 (Ha, d) is a compact metric space for every a > 0.

For a set K ⊆ C let H(K) denote the set of functions in H which take values in K. We will

prove the next theorem.

Theorem 5.9 If K ⊆ C is a compact convex set then (H(K), d) is a compact metric space.

Corollary 5.10 If {fi}∞i=1 is a sequence of {0, 1} valued functions in H converging to f in the

metric d then the values of f are in the interval [0, 1].

Theorem 5.9 is somewhat surprising. The metric d is given in terms of Fourier transforms however

it is not trivial to relate the set of values of a function to the properties of its Fourier transform.

The condition that K is convex turns out to be necessary in theorem 5.9. Corollary 5.10 is useful

when we study limits of sets in abelian groups by the limits of their characteristic functions. We

give the proof of theorem 5.9 in a later chapter.

In general if {fi}∞i=1 converges to f (in the sense of this chapter) it is not necessarily true that

{‖fi‖2}∞i=1 converges to ‖f‖2. We only have that lim supi→∞ ‖fi‖2 ≥ ‖f‖2. This motivates the next

definition. We say that a sequence {fi}∞i=1 in H is tightly convergent if it converges in d and the

limit f satisfies limi→∞ ‖fi‖2 = ‖f‖2. Tight convergence can be metrized by the distance

d′(f1, f2) := d(f1, f2) + |‖f1‖2 − ‖f2‖2|.

Convergence in d′ is stronger than convergence in d and it has stronger consequences. To formulate

our result we need the following notation. For a measurable function f on a compact abelian group

A we denote by µf the probability distribution of f(x) where x is chosen randomly from A according

to the Haar measure. The measure µf is a Borel probability distribution on C.
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Theorem 5.11 Let {fi}∞i=1 be a sequence of uniformly bounded functions in H converging to f in

d′. Then µfi converges to µf in the weak topology of measures.

Note that the above theorem is not true for convergence in d. A trivial example for a tightly

convergent sequence is an L2-convergent sequence of functions on a fixed compact abelian group A.

However there are more interesting examples. We finish this chapter with an example which shows

that a sequence of L2 functions on the circle group R/Z can have a limit (even in d′) which can

not be defined on the circle group. The limit object exists on the torus. Let fn(x) = e2iπx + e2inπx

defined on R/Z for n ∈ N. It is easy to see that fn is convergent and the limit is the function

f(x, y) = e2iπx + e2iπy on the torus R/Z × R/Z. Note that the sequence fn is tightly convergent

since ‖fn‖2 = ‖f‖2 =
√

2.

5.3 Densities of linear configurations in functions on Abelian groups

In this chapter we state our main theorem regarding the convergence of the densities of linear

configurations of complexity 1. We will follow the language introduced by Gowers and Wolf in [47].

Recall from the introduction that a linear form is a homogeneous linear multivariate polynomial

with coefficients in Z. If L = λ1x1 + λ2x2 + · · · + λnxn is a linear form then we can evaluate it

in an arbitrary abelian group A by giving values from A to the variables xi and thus it becomes a

function of the form L : An → A. A system L1, L2, . . . , Lk of linear forms determines a type of linear

configuration. An example for a linear configuration is the 3-term arithmetic progression which is

encoded by the linear forms x1, x1 + x2, x1 + 2x2. Assume that A is a compact abelian group

and F = {fi}ki=1 is a system of bounded measurable functions in L∞(A). Assume furthermore that

L = {L1, L2, . . . , Lk} is a sytem of linear forms in Z(x1, x2, . . . , xn). Then it is usual to define the

density of the configuration L in F by the formula

t(L,F) := Ex1,x2,...,xn∈A

k∏
i=1

fi(Li(x1, x2, . . . , xn)). (15)

If fi = f for every 1 ≤ i ≤ k in the function system F then we use the notation t(L, f) for

t(L,F).

In this chapter we address the following type of problem.

Assume that L = {L1, L2, . . . , Lk} is a linear configuration and A is a class of compact abelian

groups. Under what conditions on L and A is the function f 7→ t(L, f) continuous in the metric d

when functions are assumed to be uniformly bounded measurable functions on groups in A ?

The role of the class A is to exclude certain degeneracies that occur for number theoretic reasons.

For example the linear form 2x becomes degenerated on the elementary abelian group (Z/2Z)m. We

will need the following definition introduced by Gowers and Wolf in a slightly different form in [47].

Definition 5.12 Let L = {L1, L2, . . . , Lk} be a linear configuration. The true complexity of L
in a class A of abelian groups is the smallest number m ∈ N with the following property. For every

ε > 0 there exists δ > 0 such that if A ∈ A is any abelian group and F = {fi}ki=1 is a system of

measurable functions with |fi| ≤ 1 and ‖fj‖Um+1
≤ δ for some j then t(L,F) ≤ ε.
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In the above definition ‖.‖Um+1 denotes Gowers’s m+ 1-th uniformity norm. Our main theorem

states is the following.

Theorem 5.13 Let a > 0. Let L be a linear configuration and A be a family of compact abelian

groups such that L has true complexity at most 1 in A. Then f → t(L, f) is continuous with respect

to the metric d for measurable functions f ∈ L∞(A) with A ∈ A and |f | ≤ a.

5.4 Ultraproducts and ultralimits

Let ω be a non principal ultrafilter on the natural numbers. Let {Xi}∞i=1 be a sequence of sets.

For two elements x = (x1, x2, . . . ) and y = (y1, y2, . . . ) in the product
∏∞
i=1Xi we say that x ∼ω y

if {i : xi = yi} ∈ ω. It is well known that ∼ω is an equivalence relation. The set
∏
ωXi :=(∏∞

i=1Xi

)
/ ∼ω is called the ultraproduct of the sets Xi.

Let T be a compact Polish space and let {ti}∞i=1 be a sequence in T . The ultralimit limω ti is the

unique point t in T with the property that for every open set U containing t the set {i : ti ∈ U} is

in ω. (This definition implies that limω ti is always an element of the closure of the set {ti : i ∈ N}.)
Let {fi : Xi → T}∞i=1 be a sequence of functions. We define f = limω fi as the function on

∏
ωXi

whose value on the equivalence class of (x1, x2, . . . ) is limω fi(xi).

Let {Xi, µi}∞i=1 be pairs where Xi is a compact Polish space and µi is a probability measure on

the Borel sets of Xi. We denote by X the ultraproduct space
∏
ωXi. The space X has the following

structures on it.

Strongly open sets: We call a subset of X strongly open if it is the ultraproduct of open sets

{Si ⊂ Xi}∞i=1.

Open sets: We say that S ⊂ X is open if it is a countable union of strongly open sets. Open sets on

X form a σ-topology. This is similar to a topology but it has the weaker axiom that only countable

unions of open sets are required to be open.

Lemma 5.14 X with the above σ-topology is countably compact. This means that if X is covered

by countably many open sets then there is a finite sub-system which covers X.

Proof. Since every open set is a countable union of strongly open sets it is clearly enough to

prove the statement for covering systems of X with strongly open sets. Let {Oi}∞i=1 be such a system.

Now each Oi is the ultra product of open sets {Wk,i ⊆ Xk}∞k=1. Let Wk := ∪iWk,i. We have that∏
ωWk ⊇ ∪iOi = X and thus

∏
ωWk = X. It follows that K := {k : Wk = Xk} is in ω. For each

k ∈ K let f(k) denote the largest natural number such that ∪f(k)
i=1 Wk,i 6= Xk (if Wk,1 = Xk then f(k)

is defined to be 0). By compactness of Xk we have that f(k) is finite. Let us construct a sequence

{xk}∞k=1 such that xk ∈ Xk \ (∪f(k)
i=1 Wk,i) if k ∈ K and xk is arbitrary if k ∈ N \K. The equivalence

class of (x1, x2, . . . ) ∈ X is covered by some element Ot from the covering system. It follows that

the set K ′ := {k : xk ∈ Wk,t} is in ω. This means that f(k) < t holds for every k ∈ K ∩K ′ and

thus ∪ti=1Wk,i = Xk holds for k ∈ K ′ ∩K. Since K ∩K ′ ∈ ω we have that ∪ti=1Oi = X.

Borel sets and measurable sets: A subset of X is called Borel if it is in the σ-algebra generated by

strongly open sets. A subset of X is called measurable if it is in the the completion of the Borel

σ-algebra.
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Ultralimit measure: If S ⊆ X is a strongly open set of the form S =
∏
ω Si then we define µ(S)

as limω µi(Si). It is a classical fact that µ extends as a probability measure to the σ-algebra of all

measurable sets on X. If X is he ultra product of finite sets then the statement can be found in [33],

(See proposition 2.2). The proof of the general case is not much different. A good exposition of the

subject is Evan Warner’s PhD thesis [90] where the statement is discussed in its full generality.

Ultralimit functions: Let T be a compact Hausdorff topological space. Let {fi : Xi → T}∞i=1 be

a sequence of Borel measurable functions. We call functions of the form f = limω fi ultralimit

functions. It is easy to see that ultralimit functions can always be modified on a 0 measure set

that they become measurable in the Borel σ-algebra on X. This means that ultralimit functions are

automatically measurable in the completion of the Borel σ-algebra.

Measurable functions: It is an important fact (see proposition 5.1 in [33] and proposition 3.8 in

[90]) that every bounded measurable function on X is almost everywhere equal to some ultralimit

function f = limω fi.

Continuity: A function f : X→ T from X to a topological space T is called continuous if f−1(U) is

open in X for every open set in T . It follows from lemma 5.14 that the image f(X) of a continuous

function f : X → T in T is countably compact with respect to the restriction of the topology of

T to f(X). If T is metrizable then also f(X) is metrizable and thus contably compactness implies

compactness. We will need the next lemma.

Lemma 5.15 A continuous function f : X→ Rn is the ultralimit of uniformly bounded continuous

functions fi : Xi → Rn.

Proof. Observe first that it is enough to prove the statement for functions of the form f :

X → R and the general statement follows by coordinate wise application. We have that f(X) is

a compact subset in R and thus f(X) ∈ (−a, a) for some a ∈ R+. Let ε > 0 be fixed and let

Ui = (−a − ε + iε/2,−a + iε/2) for i = 1, 2, . . . , t = d4a/εe. It is clear that the intervals Ui cover

(−a, a). For each 1 ≤ i ≤ t we have that f−1(Ui) is the union of countably many strongly open sets

{Qi,j}∞j=1. By ∪i,jQi,j = ∪if−1(Ui) = X and lemma 5.14 we have that there is a finite sub-system

{Sk}rk=1 of {Qi,j}i,j which covers X. Let us choose points {xk ∈ Sk}rk=1. Let {Sk,j ∈ Xj}∞j=1 be

sequences of open sets for every 1 ≤ k ≤ r such that
∏
ω Sk,j = Sk holds. Using that {Sk}rk=1 covers

X we have that T := {j : ∪kSk,j = Xj} is in ω. For every j ∈ T we can choose a partition of unity

{ρk,j : Xj → [0, 1]}rk=1 subordinated to the covering {Sk,j}rk=1. The functions ρk,j are continuous

and their sum is the constant 1 function. Furthermore ρk,j is supported on Sk,j . If j ∈ N \ T we

define ρk,j to be 0. Now let fj :=
∑r
k=1 ρk,jf(xk) for j ∈ N. Let f ′ := limω fj and ρk := limω ρk,j .

By the additivity of ultra limits we have that f ′ =
∑r
k=1 ρkf(xk) and that

∑r
k=1 ρk = 1X. Now let

x ∈ X be arbitrary. We have that whenever a set f−1(Ui) contains x then |f(x)−f(xi)| ≤ ε because

f(Ui) has diameter at most ε. since f ′(x) is a convex combination of the values {f(xi) : x ∈ Ui} we

have that |f ′(x)− f(x)| ≤ ε holds everywhere.

Now for an arbitrary ε > 0 we produced a sequence of continuous function {fj}∞i=1 such that

| limω fj − f |sup ≤ ε and that ‖fj‖sup ≤ ‖f‖sup holds for every j ∈ N. Now we produce sequences

for m ∈ N recursively. If m = 1 then let {f1
j }∞j=1 be a sequence which satisfies the above conditions

with ε = 1/2 for f . In general if {fm−1
j }∞j=1 is already produced then we produce a new sequence
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{fmj }∞j=1 with ε = 1/2m for the function f −
∑m−1
l=1 limω f

m
j . Note that if m > 1 then we have that

‖fmj ‖sup ≤ 1/2m−1 holds for every j. It follows that gj :=
∑∞
m=1 f

m
j is continuous. It is also clear

that limω gj = f .

Lemma 5.16 Let T be a compact Polish space. Then the ultra limit of continuous functions {fi :

Xi → T} is continuous.

Proof. Let f = limω fi. Let U be an open set in T . We can choose a countable family of

open sets {Wj}∞j=1 such that U = ∪jWj and W̄j ⊆ U . We claim that f−1(U) = ∪j
∏
ω f
−1
i (Wj).

Let j be fixed and assume that x ∈
∏
ω f
−1
i (Wj). It follows from the basic properties of ultra

limits that f(x) ∈ W̄j ⊆ U . This implies that f−1(U) contains
∏
ω f
−1
i (Wj) for every j. To see

the other containment of the claim let x ∈ f−1(U). We have that there is j such that f(x) ∈ Uj .
Assume that x is the equivalence class of (x1, x2, . . . ). We have by the properties of ultra limits that

{i : fi(xi) ∈ Uj} has to be in ω and thus x ∈
∏
ω f
−1
i (Wj).

5.5 The Fourier σ-algebra

If A is a compact Abelian group then linear characters are continuous homomrphisms of the form

χ : A→ C where C is the complex unit circle with multiplication as the group operation. Note that

on compact abelian groups we typically use + as the group operation. However if we think of C as

a subset of C then we are forced to use multiplicativ notation. On the other hand, if we think of C
as the group R/Z then we are basically forced to use additive notation.

Linear characters are forming the Fourier basis in L2(A). In particular linear characters generate

the whole Borel σ-algebra on A. Assume now that A =
∏
ω Ai is the ultraproduct of compact

abelian groups. Linear characters of A can be similarly defined as for compact abelian groups. In

this case we require them to be continuous in the σ-topology on A.

Proposition 5.17 A function χ ∈ L∞(A) is a linear character if and only if χ = limω χi for some

sequence {χi ∈ L∞(Ai)}∞i=1 of linear characters.

The proof of the proposition relies on a rigidity result saying that almost linear characters on

compact groups can be corrected to proper characters. For a function f we denote by f∗ the point

wise complex conjugate of f .

Lemma 5.18 For every ε > 0 there is δ > 0 such that if f : A → C is a continuous function on a

compact abelian group A with the property that |f(x+a)f∗(x)− f(y+a)f∗(y)| ≤ δ , ||f(x)|− 1| ≤ δ
for every x, y, a ∈ A and |f(0)− 1| ≤ δ then there is a character χ of A such that |χ(x)− f(x)| ≤ ε
holds for every x ∈ A.

Proof. As a tool we introduce group theoretic expected values of random variables taking values

in C. Let l denote the arc length metric on the circle group C ' R/Z normalized by the total length

2π. It is clear that the metric l is topologically equivalent with the complex metric |x − y| on C.
Assume that a random variable X takes its values in an arc of the circle group of length 1/3. Then
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there is a lift Y of X to R such that Y +Z = X and Y takes its values in an interval of length 1/3. The

lift Y with this property is unique up to an integer shift. Then we define E(X) ∈ R/Z as E(Y ) +Z.

Switching to multiplicative notation in C this expected value satisfies E(X1X2) = E(X1)E(X2) where

X1, X2 take values in an arc of length 1/6.

Let us define f2(x) = f(x)/|f(x)|. If δ < 1 then f(x) 6= 0 on A and thus f2 is defined on A.

If δ > 0 is small enough then for every fixed t the function x 7→ f(x + t)f∗(x) takes values in an

arc of length at most 1/6. For every t ∈ A let g(t) = Ex(f(x + t)f∗(x)) where E is the group

theoretic expected value. If δ is small enough then |g(t) − f(t)| ≤ ε holds for every t ∈ A because

|f(x + t)f∗(x) − f(t)f∗(0)| ≤ δ and f(0) is close to 1. Using our multiplicativity property of E we

have for every pair a, b ∈ A that

g(a+ b)g∗(b) = Ex(f(x+ a+ b)f∗(x)f∗(x+ b)f(x)) = Ex(f(x+ a+ b)f∗(x+ b)) =

= Ex((x+ a)f∗(x)) = g(a).

This implies that g is a linear character of A.

Now we are ready to prove proposition 5.17

Proof. The continuity of χ guarantees that χ = limω fi for some sequence of continuous functions

fi on Ai (see lemma 5.15). The fact that χ is a character implies that there is a sequence δi such

that fi satisfies the conditions of lemma 5.18 with δi for every i and limω δi = 0. It follows by lemma

5.18 that there is a sequence of linear characters χi on Ai such that limω max(|χi − fi|) = 0. Thus

we have that limω χi = limω fi = χ.

Proposition 5.17 implies that the set of linear characters of A (also as a group) is equal to∏
ω Âi. We denote this set by Â. If f ∈ L2(A) then the Fourier transform of f on A is the function

f̂ ∈ l2(Â) defined by f̂(χ) = (f, χ). If f = limω fi then we have that f̂ = limω f̂i.

It was observed in [83] that linear characters of A no longer span L2(A). This shows that in

general we only have ‖f̂‖2 ≤ ‖f‖2 instead of equality. Furthermore the σ-algebra F(A) generated by

linear characters on A is smaller than the whole ultraproduct σ-algebra on A. (The only exception

is the case when A is a finite group. This can happen if the groups Ai are finite and there is a

uniform bound on their size.)

We call F(A) the Fourier σ-algebra on A. The fact that the Fourier σ-algebra is not the

complete σ-algebra on A gives rise to the interesting operation f 7→ E(f |F(A)) that isolates the

“Fourier part” of a function f ∈ L2(A). Using that linear characters of A are closed with respect to

multiplication we obtain that linear characters are forming a basis in L2(F(A)). This implies that

if f ∈ L2(A) then f̂ = ĝ where g = E(f |F(A)). Thus we have that ‖f̂‖2 = ‖ĝ‖2 = ‖E(f |F(A))‖2.

In particular ‖f‖2 = ‖f̂‖2 holds if and only if f is measurable in F(A).

The Fourier σ-algebra has an elegant description in terms of the second Gowers norm U2. Recall

that the U2 norm [46],[45] of a function f ∈ L∞(A) on a compact abelian group A is defined by

‖f‖U2
=
(
Ex,a,b∈Af(x)f∗(x+ a)f∗(x+ b)f(x+ a+ b)

)1/4

. (16)

The next lemma gives a description of the U2-norm in terms of Fourier analysis.

Lemma 5.19 If f ∈ L∞(A) then ‖f‖U2
= ‖f̂‖4 and thus ‖f̂‖∞ ≤ ‖f‖U2

≤ (‖f‖2‖f̂‖∞)1/2.
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One can define ‖f‖U2 by the formula (16) for functions on ultraproduct groups. With this

definition we have that ‖f‖U2 = limω ‖fi‖U2 whenever f = limω fi. The main difference from the

compact case is that ‖.‖U2 is no longer a norm for functions in L∞(A). It is only a semi-norm.

However the next lemma shows that ‖.‖U2 is a norm when restricted to L∞(F(A)) and that F(A)

is the largest σ-algebra with this property.

Lemma 5.20 If g ∈ L∞(A) then ‖g‖U2 = 0 if and only if g is orthogonal to L2(F(A)). A function

f ∈ L∞(A) is measurable in F(A) if and only if f is orthogonal to every function g ∈ L∞(A) with

‖g‖U2 = 0. In particular we have that ‖.‖U2 is a norm on L∞(F(A)).

Proof. We can assume that g = limω gi for some sequence of functions {gi ∈ L∞(Ai)}∞i=1 such

that ‖gi‖∞ ≤ ‖g‖∞ holds for every i. Assume first that ‖g‖U2
= 0. Let χ = limω χi be an ultralimit

of linear characters. Using lemma 5.19 we have that |(gi, χi)| ≤ ‖ĝi‖∞ ≤ ‖gi‖U2
and thus

|(g, χ)| = lim
ω
|(gi, χi)| ≤ lim

ω
‖gi‖U2 = ‖g‖U2 = 0.

It follows that g is orthogonal to the space L2(F(A)) spanned by linear characters of A. For the

other direction assume that g 6= 0 is orthogonal L2(F(A)). For every i we choose a linear character

χi on Ai such that |(gi, χi)| = ‖ĝi‖∞. We have by lemma 5.19 and by ‖gi‖2 ≤ ‖gi‖∞ ≤ ‖g‖∞ that

|(gi, χi)| ≥ ‖gi‖2U2
‖g‖−1
∞ . Then we have for χ = limω χi that 0 = |(g, χ)| ≥ (limω ‖gi‖2U2

)‖g‖−1
∞ . It

follows that ‖g‖U2
= 0.

Now we prove the second part of the statement. If f ∈ L∞(F(A)) then by the first part of the

statement f has to be orthogonal to every g ∈ L∞(A) with ‖g‖U2
= 0. For the other direction assume

that f ∈ L∞(A) is orthogonal to every g ∈ L∞(A) with ‖g‖U2
= 0. Let h := f − E(f |F(A)) ∈

L∞(A). Note that since E is an orthogonal projection it follows that (f, h) = ‖h‖22. From

E(h|F(A)) = E(f − E(f |F(A))|F(A)) = E(f |F(A))− E(f |F(A)) = 0

we have that h is orthogonal to the whole space L2(F(A)) and so by the first statement it follows

that ‖h‖U2
= 0. It implies by our assumption on f that that (f, h) = 0 and thus ‖h‖22 = 0. Now we

have that h = 0 and f = E(f |F(A)) is measurable in F(A).

Let Q̂ : L2(A) → M be such that Q̂(f) is the isomorphism class of f̂ in M. Let furthermore

Q(f) denote the isomorphism class in H representing the Fourier transform of Q̂(f). Note that

Q(f) = Q(E(f |F(A))). We have that Q(f) can be represented as a measurable function on some

second countable compact abelian group with ‖Q(f)‖2 ≤ ‖f‖2 which in some sense imitates f .

However it is not even clear from this definition that if f is a bounded function then Q(f) is also

bounded. The next theorem provides a structure theorem for functions in L∞(F(A)) and describes

Q(f).

Theorem 5.21 A function f ∈ L∞(A) is measurable in F(A) if and only if there is a continuous,

surjective, measure preserving homomorphism φ : A→ A to some second countable compact abelian

group A and a function h ∈ L∞(A) such that f = h ◦ φ (up to 0 measure change). Furthermore

d(h,Q(f)) = 0 implying that the isomorphism class of h is Q(f).
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Proof. Assume first that f = h◦φ for some homomorphism φ and function h as in the statement.

Let h =
∑∞
i=1 λiχi be the Fourier decomposition of h converging in L2(A) where χi is a sequence

of linear characters of A. We have that χi ◦ φ is a linear character of A for every i. The measure

preserving property of φ implies that f =
∑∞
i=1 λi(χi ◦ φ) and thus f is measurable in F(A).

For the other direction assume that f ∈ L∞(F(A)). Then f =
∑∞
i=1 aiχi for some (distinct)

linear characters {χi}∞i=1 of A where the convergence is in L2(A) and ‖f‖22 =
∑∞
i=1 |ai|2. Let us

consider the homomorphism φ : A → C∞ such that the i-th coordinate of φ(x) = χi(x). (Recall

that C is the group R/Z or equivalently the complex unit circle with respect to multiplication. The

group C∞ is a compact abelian group.) Using the continuity of φ we have that the image A of φ is

a closed subgroup in C∞. Let ν denote the Borel measure on A satisfying ν(S) = µ(φ−1(S)) where

µ is the ultralimit measure on A. The fact that φ is a homomorphism implies that ν is a group

invariant Borel probability measure on A and thus ν is equal to the normalized Haar measure. In

other words φ is measure preserving with respect to the Haar measure on A.

Let us denote by αi the i-th coordinate function on A. It is clear that {αi}∞i=1 is a system of

linear characters of A. Since φ is surjective it induces an injective homomorphism φ̂ : Â→ Â defined

by φ̂(χ) = χ ◦ φ with the property that φ̂(αi) = χi holds for every i. We have that h =
∑∞
i=1 aiαi

(which is defined up to a 0 measure set on A) is convergent in L2 and has the property that f = h◦φ
(up to a 0 measure set). The fact that φ̂ is an injective homomorphism implies that d̂(ĥ, f̂) = 0 and

thus d(h,Q(f)) = 0.

If L is a system of linear forms and f ∈ L∞(A) then we can define t(L, f) by the formula (15)

using the ultralimit measure on A.

Proposition 5.22 Let f ∈ L∞(F(A)) and let L be a system of linear forms. Then t(L, f) =

t(L,Q(f)). Furthermore if L has complexity 1 in a family A of compact abelian groups, A is an

ultraproduct of groups in A and f ∈ L∞(A) then t(L, f) = t(L,Q(f)).

Proof. For the first part we use theorem 5.21. We get that f = h ◦ φ for some measure

preserving homomorphsim φ : A → A. It follows that t(L, f) = t(L, h) = t(L,Q(f)). For the

sencond part let f = limω fi and g = E(f |F(A)) = limω gi for some functions with ‖fi‖∞ ≤ ‖f‖∞
and ‖gi‖∞ ≤ ‖g‖∞. We have that limω ‖fi − gi‖U2

= ‖f − g‖U2
= 0. Then using that L has

complexity 1 we obtain t(L,Q(f)) = t(L,Q(g)) = t(L, g) = limω t(L, gi) = limω t(L, fi) = t(L, f).

5.6 The ultraproduct descriptions of d̂ and d convergence

We give a simple and useful description of d̂-convergence using ultrafilters. The price that we pay for

the simplicity is that we don’t get an explicit metric onM, we only get the concept of convergence.

Theorem 5.23 Let a > 0. Assume that {fi}∞i=1 is a sequence in Ma that converges to f in d̂ then

f is isomorphic to limω fi for every (non-principal) ultrafilter ω. Consequently a sequence {fi}∞i=1

in Ma is convergent in d̂ if and only if the isomorphism class of limω fi-limit doesn’t depend on the

choice of the ultrafilter ω.

Proof. For every i let αi : Ti → Si be an εi-isomorphism between fi and f with Ti ⊆ Gi, Si ⊆ G
such that limi→∞ εi = 0. Assume that {hi}∞i=1 represents an element h in

∏
ω Gi that is in supp(g)
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where g = limω fi. We have for some set S ∈ ω that |fi(hi)| > |g(h)|/2 and εi ≤ |g(h)|/4 for i ∈ S.

It follows that αi(hi) ∈ supp|g(h)|/4(f) holds for every i ∈ S. Since supp|g(h)|/4 is finite we have that

limω αi(hi) exists and it is an element in G that we denote by β(h). The map β : supp(g)→ supp(f)

is a partial isomorphism of arbitrary high weight and so it extends to an isomorphism from 〈g〉 to

〈f〉. It is clear that β is also an isomorphism between f and g.

Corollary 5.24 Let a > 0. Assume that {fi}∞i=1 is a sequence of functions with fi ∈ L∞(Ai) and

‖fi‖∞ ≤ a for some sequence {Ai}∞i=1 of compact abelian groups. If {fi}∞i=1 converges to f ∈ Ha in

the metric d then f = Q(limω fi) for an arbitrary (non-principal) ultrafilter ω.

Proof. Since the Fourier transform of f ′ = limω fi is the ultralimit of the Fourier transforms of

fi we have by theorem 5.23 that d̂(f̂ ′, f̂) = 0. It follows that Q(f ′) = f .

Corollary 5.25 Let a > 0. Assume that {fi}∞i=1 is a convergent sequence of functions with fi ∈
L∞(Ai) and ‖fi‖∞ ≤ a for some sequence {Ai}∞i=1 of compact abelian groups. Then the limit f of

{fi}∞i=1 can be represented as a function on some compact abelian group A such that the dual group

of A is a subgroup in
∏
ω Âi.

Proof. We have by corollary 5.24 that f = Q(limω fi). This means that f̂ has an injective

embedding into Â where A =
∏
ω Ai. By Â =

∏
ω Âi the proof is complete.

Corollary 5.25 gives a useful restriction on the structure of the group on which the limit function

of a convergent seqence is defined. For example if Ai are growing groups of prime order then the

limit function is defined on a compact group whose dual group is torsion-free. On the other hand if

p is a fix prime and fi is defined on Zip then the limit function is defined on the compact group Z∞p .

5.7 Proofs of theorems 5.9, 5.11, 5.13

For the proofs of theorem 5.9 and theorem 5.11 assume that {fi}∞i=1 is a convergent sequence in

H(K) for some convex compact set K ⊆ C. Corollary 5.24 implies that the limit is Q(f) where

f = limω fi. Note that f takes its values in K. We have that Q(f) = Q(g) where g = E(f |F(A)).

It follows by theorem 5.21 that g = h ◦ φ for some measure preserving homomorphism φ : A → A

and the isomorphism class of h is Q(g). Since g is a projection of f to a σ-algebra we have that g

(and thus h) takes its values in K. This completes the proof of theorem 5.9.

For the proof of theorem 5.11 assume that fi is tightly convergent and K = {x : x ∈ C, ‖x‖ ≤ a}.
Then, using the above notation we have that ‖g‖2 = ‖h‖2 = limi→∞ ‖fi‖2 = limω ‖fi‖2 = ‖f‖2
where we use tightness in the second equality. This is only possible if f = g and thus µh = µf =

limω µfi holds. Since this is true for every ultrafilter ω we obtain that limi→∞ µfi = µh holds with

respect to weak convergence of measures.

To prove theorem 5.13 assume that L has complexity 1 and fi is a d convergent sequence as above.

Using the above notation and proposition 5.22 we have that limω t(L, fi) = t(L, f) = t(L,Q(f))

where (using corollary 5.24) Q(f) is equal to the d-limit of the sequence {fi}∞i=1. Since this is true

for every ultrafilter ω the proof is complete.
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5.8 Proof of theorem 5.1

For the proof of theorem 5.1 we will need the next proposition which is interesting on its own right.

Proposition 5.26 Let B be a compact abelian group with torsion-free dual group and let f : B →
[0, 1] be an arbitrary measurable function. Then there are subsets Sp ⊆ Zp for every prime number

p such that the functions 1Sp converge to f .

Lemma 5.27 For every ε > 0 there is N(ε) such that if A is a finite abelian group with |A| ≥ N(ε)

and f : A→ [0, 1] is a function then there is a function h : A→ {0, 1} such that ‖f − h‖U2
≤ ε.

Proof. Let us fix ε > 0. Let f : A → [0, 1] be a function on a finite abelian group. Let h be

the random function on A whose distribution is uniquely determined by the following properties:

1.) h is {0, 1}-valued, 2.) {h(a) | a ∈ A} is an independent system of random variables and 3.)

E(h(a)) = f(a) holds for every a ∈ A. We claim that with a large probability the function h− f has

U2 norm at most ε if |A| is big enough. Obsereve that Xa := h(a) − f(a) is a random variable for

each a ∈ A with 0 expectation and ‖Xa‖∞ ≤ 1. The random variables Xa are all independent. Let

χ : A→ C be a linear character. Then we have that (h−f, χ) = |A|−1
∑
a∈AXaχ(a). By Chernoff’s

bound we have that P(|(h−f, χ)| ≥ ε2) is exponentially small in |A|. This implies that if |A| is large

enough then with probability close to 1 we have that ‖ĥ− ĝ‖∞ ≤ ε2 and thus by lemma 5.19 we get

‖h− g‖U2 ≤ ε holds in these cases.

Proof of proposition 5.26. For a number n let a(n) denote the minimum of d(1S , f) where S is a

subset in Zn. The statement of the proposition is equivalent with limp→∞ a(n) = 0 where p runs

through the prime numbers. Assume by contradiction that there is ε > 0 and a growing infinite

sequence {pi}∞i=1 of prime numbers with a(pi) > ε. Let Ai = Zpi and A =
∏
ω Ai. We have that

Â =
∏
ω Âi '

∏
ω Ai = A. Since A is not only an abelian group but a field of 0 characteristic with

uncountably many elements we have that A (and thus Â) as an abelian group is isomorphic to an

infinite direct sum of Q+. It follows that the torsion-free group B̂ has an embedding φ̂ : B̂ → Â into

Â. This embedding induces a continuous homomorphsim φ : A → B in the way that φ(x) denotes

the unique element in B such that χ(φ(x)) = φ̂(χ)(x) holds for every χ ∈ B̂.

Let g = f ◦ φ. We have that g : A → [0, 1] is a measurable function and thus g = limω gi for

a system of functions {gi : Ai → [0, 1]}∞i=1. By lemma 5.27 for every i we can find a 0 − 1 valued

function g′i such that limi→∞ ‖g′i − gi‖U2 = 0. By choosing a subsequence we can assume that both

{g′i}∞i=1 and {gi}∞i=1 are d-convergent. Let g′ = limω g
′
i. We have that ‖g− g′‖U2 = 0 and thus since

g is measurable in F(A) we have that g = E(g′|F(A)). By corollary 5.24 we obtain that the d limit

of {g′i}∞i=1 is f . This implies that 0 = lim d(g′i, f) ≥ lim inf a(pi) ≥ ε which is a contradiction.

Now we are ready to prove theorem 5.1. First observe that in Proposition 5.26 we can assume

with no additional cost that the sets Sp have density at least E(f). This follows from the fact that

their densities converge to E(f) and so it is enough to set a few values to 1 (with density tending to

0). This observation together with Proposition 5.26 and theorem 15 imply that if f : A→ [0, 1] is a

measurable function with E(f) = δ on an abelian group with torsion-free dual then ρ(δ,L) ≤ t(L, f).

It remains to find a function where equality holds. For every p prime let Sp ⊆ Zp be such that

|Sp|/p ≥ δ and that t(L, 1Sp
) is minimal possible. We can choose a d-convergent subsequence

79

dc_1737_20

Powered by TCPDF (www.tcpdf.org)



{fi}∞i=1 from 1Sp such that limi→∞ t(L, fi) = ρ(δ,L). Let f be the limit of {fi}∞i=1. By theorem 15

we have that t(L, f) = limi→∞ t(L, fi) = ρ(δ,L). Corollary 5.25 guarantess that f is defined on a

group whose dual is torsion-free.

5.9 Connection to dense graph limit theory and concluding remarks

Let H and G be finite graphs. The density of H in G is the probability that a random map from

V (H) to V (G) takes edges to edges. We denote this quantity by t(H,G). One can generalize this

notion of density for the case when G is replaced by a symmetric bounded measurable function

W : Ω2 → C where (Ω, µ) is a probability space. Then t(H,W ) is defined by

t(H,W ) :=

∫
x1,x2,...,xn∈Ω

∏
(i,j)∈E(H)

W (xi, xj) dµn

where the verices of H are indexed by {1, 2, . . . , n}. It is easy to check that if Ω = V (G) , µ is

the uniform distribution on V (G) and W : V (G)2 → {0, 1} is the adjacency matrix of G then

t(H,G) = t(H,W ).

In the framework of dense graph limit theory, a sequence of graphs {Gi}∞i=1 is called convergent

if for every fixed graph H the sequence {t(H,Gi)}∞i=1 is convergent. It was proved in [63] that for

a convergent graph sequence {Gi}∞i=1 there is a limit object of the form of a symmetric measurable

function W : Ω2 → [0, 1] (called a graphon) such that for every graph H we have limi→∞ t(H,Gi) =

t(H,W ).

In the above theorem Ω can be chosen to be [0, 1] with the uniform measure however in many

cases it is more natural to use other probability spaces. We investigate the case when (Ω, µ) is

a compact abelian group A with the normalized Haar measure. Let f : A → C be a bounded

measurable function and let Wf : A2 → C be defined by Wf (x, y) := f(x + y). As it was pointed

out in the introduction, for a finite graph H the density t(H,Wf ) is equal to t(L, f) where LH :=

{xi + xj : (i, j) ∈ E(H)}. Using this correspondence and our results in this chapter we get the

following theorem on graph limits.

Theorem 5.28 Let {fi : Ai → K}∞i=1 be a sequence of measurable functions on compact abelian

groups with values in a compact convex set K ⊆ C. Assume that limi→∞ t(H,Wfi) exists for every

graph H. Then there is a measurable function f : A → K on a compact abelian group A such that

limi→∞ t(H,Wfi) = t(H,Wf ) holds for every graph H.

Proof. By chosing a subsequence we can assume by theorem 5.9 that {fi}∞i=1 is convergent in

d with limit f : A→ K. Then by theorem 15 we obtain that limi→∞ t(LH , fi) = t(LH , f) holds for

every graph H. This completes the proof.

Theorem 5.28 is closely related to the results in [69]. Let f : G→ [0, 1] be a measurable function

on a compact but not necessarily commutative group. Assume that the technical condition f(g) =

f(g−1) holds for every g ∈ G. Then the function W : G2 → [0, 1] defined by W (x, y) = f(xy−1) is

symmetric. We call graphons of this type Cayley graphons. It was proved in [69] that limits of Cayley

graphons are also Cayley graphons. This theorem implies that one can talk about limits of functions

on compact topological groups and the limit objects are also functions on compact topological groups.
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Another direction of generalization in the commutative setting is when we consider densities of linear

configurations of higher complexity. As it was showed in [85], this refinement of the limit concept

leads to more complicated limit objects that are measurable functions on nilmanifolds and nilspaces.

As we promised in the introduction of the chapter we finish by showing that theorem 5.1 implies

the qualitative version of Roth’s theorem. Assume by contradiction that ρ(δ,L) = 0 holds for some

δ > 0. Then there is a function f : A → [0, 1] such that t(L, f) = 0 with E(f) = δ. It is easy to

see that if S is the support of f then t(L, 1S) = 0 also holds and E(1S) ≥ δ. Since A is the inverse

limit of finite dimensional torus groups we have that there is a factor map τ : A → Tn to a finite

dimensional torus such that E(1S |τ) > 3/4 holds on a positive measure set τ−1(Q) where Q ⊆ Tn
is Borel measurable. We have that

0 = t(L, 1S) ≥ t(L, 1S1τ−1(Q)) ≥ t(L, 1τ−1(Q))/4 = t(L, 1Q)/4

where the only nontrivial inequality is the second one. To see this observe that for almost every

3-term arithmetic progression inside τ−1(Q) a random translate with some element from ker(τ) is

with probability at least 1/4 inside τ−1(Q)∩S. This is true because E(1S1τ−1(Q)) > 3/4 holds inside

τ−1(Q). It remains to show that on Tn there is no positive density set Q with 0 density copies of

L. By Lebesgue density theorem we can find intervals I1, I2, . . . , In ⊆ T1 for every ε > 0 such that

Q intersects C := ×ni=1Ii in a way that it has density at least 1− ε in C. It is easy to see that if ε

is small enough then C ∩Q most contain a positive density copies of L.
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graph. European J. of Comb., 32 (2011), no. 7, pp. 1000–1017.

[27] F. Chung, R.L. Graham, R.M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), no. 4,

pp. 345–362.

[28] W. Cooper, T. Kaiser, D. Král, J. A. Noel, Weak regularity and finitely forcible graph limits,

Electronic Notes in Discrete Mathematics, 49 (2015), pp. 139–143.

[29] M. Einsiedler, T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in

Mathematics, 259. Springer-Verlag London, Ltd., London, 2011.

[30] G. Elek, On limits of finite graphs, Combinatorica 27 (2007), no. 4, pp. 503–507.

[31] G. Elek: The combinatorial cost, Enseign. Math. bf53 (2007), pp. 225–235.

[32] G. Elek, G. Lippner, Borel oracles. An analytical approach to constant-time algorithms, Proc.

Amer. Math. Soc. 138 (2010), no. 8, pp. 2939–2947.

[33] G. Elek, B. Szegedy, A measure-theoretic approach to the theory of dense hypergraphs, Adv. in

Math. 231 (2012), no. 3-4, pp. 1731–1772.
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[45] W. T. Gowers, Fourier analysis and Szemerédi’s theorem, Proceedings of the International

Congress of Mathematics 1 (1998), pp. 617–629.
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