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The content of this thesis

This thesis reviews the scientific work of the author between 2013 and 2020, and
it is based on the papers [1–29]. The focus is on the dynamics of integrable models,
involving both equilibrium and out-of-equilibrium situations. Almost all concrete problems
discussed here involve integrable spin chains; other types of integrable models such as
quantum gas models or Quantum Field Theories are mentioned only in passing. Naturally,
as we discuss the contributions of the author, all the key developments in the field are
also reviewed. A few papers of the author from this period, which are only tangentially
related to the main topics of the thesis are not included in this review.

The field of integrability has a rather rich history, and it is very specialized. The
physical questions that we investigate are rather general, but the mathematical tools used
in this field are specifically designed for these models. We made an attempt to focus on
the physics behind the mathematical statements, and in the first Section below we also
explain all the key ideas and common concepts behind integrability. In later Sections we
tried to keep the amount of technical details to a minimum, nevertheless highlighting
the main results of the author and explaining the key mathematical structures involved.
We will present less and less technical details as we progress towards more and more
complicated computations.

The reader should not expect to use the thesis as a stand-alone introduction to inte-
grability. We added many references to textbooks, lecture notes, and reviews written by
leading experts, which might be helpful to the interested reader.
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“I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at you and work and you don’t know why. I
am trying to understand all this better.”

Richard P. Feynman, 1988 [30]

“Because of its underlying mathematical structure and the richness of its results, the
Bethe ansatz has had a remarkable impact on several fields, with many surprises along the
way. Given the recent advances in the manipulation of atoms in optical lattices, no doubt
many more surprises lie ahead.”

Murray T. Batchelor, 2007 [31]

“While there are many important questions in the field of integrable models, one of the
most fundamental questions is the following: Why integrable models exist? This is a highly
non-trivial question.”

Masahito Yamazaki, 2018 [32]
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1 Introduction

1.1 The structure of this thesis

This first Section is a general introduction to integrable models, and integrable spin
chains in particular, and to the questions investigated recently by the author and other
researchers working in this field. Afterwards Sections 2-6 are devoted to 5 closely related
topics where the author contributed: Generalized Gibbs Ensemble (GGE), Integrable ini-
tial states, Exact overlaps, Correlation functions, and Generalized Hydrodynamics (GHD).
Each Section starts with a separate introduction, and ends with a short sub-section dis-
cussing a few open problems. We did not add a separate summary to the document.

Throughout this work we use physical units such that

~ = 1 (reduced Planck constant)
c = 1 (speed of light)
k = 1 (Boltzmann constant).

(1.1)

1.2 History and motivation

Integrable models are special many body systems that allow for an exact solution.
Examples of integrable systems can be found in both classical and quantum physics. In
this work we focus on the quantum mechanical models.

Furthermore, we are interested in models that exist in one spatial dimension. It is
important that there are physical models which can be considered “solvable” and which
exist in higher dimensions: for example free models or certain Conformal Field Theories
in dimensions greater than one. However, our focus lies in 1D.

Adding the time dimension as well, these models are sometimes called 1+1 dimensional
integrable models. It is known that a one dimensional quantum system is equivalent to
a 2D statistical physical system: 1 + 1 = 2. Following this picture, it is natural that our
integrable quantum systems are very closely related to certain integrable 2D statistical
physical models. We will focus on the quantum systems, but the connections to the 2D
models will be mentioned whenever they are relevant.

Let us give a very brief historical overview of this field, omitting the precise definitions
of the models; in many cases the definitions are given later in the text. Here we just
present the key historical developments.

Perhaps the most famous example for a one dimensional integrable model is the Heisen-
berg spin chain, which was solved by Hans Bethe in 1931 [33]. His method is known today
as the (coordinate-) Bethe Ansatz. The historical significance of this work can not be
under-estimated: Even today, almost 90 years later a whole community of researchers is
still working on various aspects of the Bethe Ansatz. Naturally, the method has advanced
and it acquired many extensions and re-formulations. And the theory still provides open
questions to the researchers.

An other early and very important example for an integrable system is the 2D classical
Ising model, which was solved by Lars Onsager in 1944 [34], and which was shown to be
equivalent to free fermions in [35].

Exact solutions of further 1+1 dimensional integrable systems appeared in the follow-
ing decades. They appeared in three rather different areas.
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• Further non-relativistic condensed matter models were found that were solvable by
Bethe’s method in coordinate space. Important examples include the solution of the
XXZ spin chain [36,37] and the δ-function interacting Bose gas [38,39].

• Further 2D classical statistical physical models were solved by Rodney Baxter, see
his book [40]. The main examples are the so-called 6-vertex and 8-vertex models
on a square lattice; they are closely connected to the XXZ and XYZ spin chains,
respectively. The 6-vertex model was solved by the Bethe Ansatz in [41], but the
more complicated case of the 8-vertex model and Baxter’s solution thereof seemed
unrelated at that time.

• In high energy physics, exactly solvable 1+1 dimensional Quantum Field Theories
were found, see for example [42] and references therein. Perhaps the most famous
example is the sine-Gordon model. The methods used here are extensions of the
“analytic S-matrix” program from 3+1 dimensional field theory.

A further class of theories are the classical integrable systems, which also have a rich
history, with many connections to the theories mentioned above.

The three different types of models listed above seemed unrelated for some time, until
it was realized that there are common algebraic structures underlying their solution. The
unification of the framework of integrability can be attributed to the Leningrad group led
by Ludvig Faddeev. Around 1980 they pioneered the theory known today as Quantum
Inverse Scattering Method [43], based on the methods from classical integrability, and
adapting them to the quantum case. The work [44] contains a historical summary of the
key developments, written by Faddeev himself; we strongly recommend this article to the
interested reader.

Perhaps the most important algebraic relation in this theory is the so-called Yang-
Baxter (YB) relation, which underlies the solvability of all the models mentioned above.
The relation is named after C. N. Yang and Baxter who discovered it independently (for
the work of Yang see [45]). In this thesis it is not possible to discuss all the applications of
the YB-relation; various monographs serve this purpose, see for example [46]. Let us just
mention that the YB-relation and its solutions served as inspiration to V. G. Drinfel’d
and M. Jimbo, who discovered the quantum groups in two independent papers [47, 48].
The quantum groups are special Hopf algebras, and their study grew into a separate field
in mathematics.

After the birth of the canonical framework for quantum integrability there was a
steady progress in multiple directions, which lasts even to the present day. The acquired
knowledge in this area is huge. Important results concerning integrable spin chains include:

• The exact computation of the thermodynamics of the models using the so-called
Thermodynamic Bethe Ansatz [49] and Quantum Transfer Matrix (QTM) methods
[50].

• Analytic computation of correlation functions using vertex operator algebras [51],
the Algebraic Bethe Ansatz [52,53], including computations with the QTM method
[50]. By studying the large distance limit of equilibrium correlations it became pos-
sible to confirm the predictions of Conformal Field Theory (CFT) [54].
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• The exact computation of short distance correlations in a relatively simple, factor-
ized form. This will be reviewed in Section 5.2.

• Numerical computation of the correlation functions at intermediate distances [55,
56].

There are many other important results, which concern the theoretical foundations; the
list above focuses on developments which concern measurable quantities.

The reader might wonder: after so much effort devoted to the study of these models,
what kinds of open questions remain? What gives motivation for their further study?

We can give the following answers to these questions.

• Fundamental developments. It might seem suprising, but there have been new
results regarding the fundamental solution of these models even in the last couple of
years. As examples we can mention new developments in the Separation of Variables
approach [57,58], or the computation of (factorized) correlation functions in various
models, including the work of the author discussed in Sections 5 and 6. These
research areas still have many exciting open questions.

• Experiments. It was known for a long time that the integrable spin chains accu-
rately describe the magnetism in certain chrystals, where the effective interactions
are one-dimensional with a good approximation. Examples include the compound
KCuF3, which is described by the Heisenberg spin chain [59]. These materials mo-
tivated the research on equlibrium correlation functions, which were measured typi-
cally with neutron scattering experiments. However, recent technologies with ultra-
cold atoms made it possible to artificially realize the integrable models (see the
reviews [60, 61], or the concrete examples [62–64]). It became possible to measure
the thermodynamical state functions of these models, and to compare them to exact
computations from Bethe Ansatz [65, 66]. Even more recently the non-equlibrium
dynamics was also investigated, see for example [63, 67–71]. These experimtal ad-
vances motivated the study of the:

• Non-equilibrium dynamics. For a long time the community focused only the
equilibrium properties. This only changed in the last ∼10 years, while many key
results appeared only in the last 5-6 years. Quite surprisingly, the nature of equi-
libration/thermalization in integrable models was only understood in these recent
years. Furthermore, there were very few results for correlation functions in highly
excited states, relevant to the experiments mentioned above. This motivated a whole
community of researchers to work on quantum quenches and related non-equilbrium
problems. Most of the present thesis is devoted to this topic, and many open prob-
lems remain.

• AdS/CFT. The discovery of the AdS/CFT correspondence led to an unexpected
cross-fertilization between the fields of theoretical high energy physics and inte-
grable models [72, 73]. It turned out that in the so-called planar limit the CFT in
question can be solved by mapping certain local operators to states of certain inte-
grable (long range interacting) spin chains. The interaction between the researchers
from the two communities led to unexpected advances in both fields. Eventually
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the spectral problem of AdS/CFT was solved in the planar limit [74–76]. Certain
canonical methods of integrability were also developed further, leading sometimes
to unexpected results, see for example [77, 78]. The AdS/CFT correspondence also
provided new integrable initial states for the quantum quench problems; this is dis-
cussed in Section 3.5.

These 4 points constitute ample motivation to continue research on integrable models.

In this brief introduction we did not discuss the various connections to other fields in
mathematics and mathematical physics. A list of such connections is presented later in
Section 1.10.

1.3 Integrable spin chains – examples

In this work we focus on the dynamics of local integrable spin chains. They are defined
by a Hamiltonian H acting on the Hilbert space H = ⊗Lx=1CD. Here L is the length of
the chain and D is the dimension of the local spaces. The Hamiltonian is given by

H =
L∑
x=1

h(x), (1.2)

where h(x) is a Hamiltonian density, which is typically acting on sites x and x + 1. We
assume periodic boundary conditions in almost all cases.

Perhaps the most famous example is the SU(2)-invariant Heisenberg spin chain, also
known as the XXX model. It is given by the Hamiltonian density

h(j) = σj · σj+1 − 1, (1.3)

where σ = {σx, σy, σz}.
The XXZ model is the anisotropic deformation of the XXX chain, which still retains

rotational symmetry around the direction of the chain, and it is given by

h(j) = σxj σ
x
j+1 + σyjσ

y
j+1 + ∆(σzjσ

z
j+1 − 1). (1.4)

Here ∆ is the so-called anisotropy parameter; often we will use the parametrization ∆ =
cosh(η). The Hamiltonian densities above are normalized such that the ferromagnetic
state with all spins up (or down) is an eigenstate with zero eigenvalue.

The completely anisotropic deformation is the XYZ spin chains, whose Hamiltonian
density is conventionally written as

h(j) = Jxσ
x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + Jzσ

z
jσ

z
j+1. (1.5)

It can be shown that (up to basis transformations) this is the most general two-site
Hamiltonian which respects the symmetries of space reflection and spin reflection in three
orthogonal directions. In this model there is no ferromagnetic vacuum state, which makes
its solution much more complicated.

An other class of models with two dimensional local spaces are the so-called XYh
models, where

h(j) = Jxσ
x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + hzσ

z
j . (1.6)
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They can be mapped to free fermionic operators using the Jordan-Wigner transformation
and a further Bogoliubov transformation [79]. Special cases of this model include the
transverse field quantum Ising model, where Jy = 0, and the U(1)-invariant XX model,
where Jx = Jy. The XY model with hz = 0 can be considered as a special case of the
XYZ family as well; note however that adding a non-zero hz leaves the integrable XYZ
family, because the XYZ model with a magnetic field is not integrable.

Models with higher dimensional local spaces include the higher spin SU(2)-related
models such as the integrable spin-1 chain given by [80,81]

h(j) = Sj · Sj+1 − (Sj · Sj+1)2 , (1.7)

where now S denotes the collection of the SU(2)-generators in the spin-1 representation.
It is important that the actual spin-1 Heisenberg chain given by h(j) = Sj · Sj+1 is

not integrable, but its low energy physics is described by an integrable Quantum Field
Theory, the O(3)-σ model [82].

Examples for models with higher rank symmetry groups are the so-called SU(N)-
symmetric fundamental models, where the two-site Hamiltonian is

h(j) = Pj,j+1 − 1, (1.8)

where P is the permutation operator acting on the tensor product CN ⊗ CN . In the
case N = 2 this model coincides with the Heisenberg spin chain (the corresponding
Hamiltonians are proportional to each other). For N = 3 an alternative representation of
the Hamiltonian can be written using the SU(2) generators as

h(j) = Sj · Sj+1 + (Sj · Sj+1)2 − 1. (1.9)

This model is also called the Uimin-Lai-Sutherland spin chain [83–85]. The SU(3)-invariance
of the representation (1.9) is not evident, but the equality of (1.8) and (1.9) follows from
a straightforward computation.

Other important examples are the integrable SO(N)-symmetric fundamental models
for any N ≥ 3, which are given by the two-site Hamiltonian [86]

h(j) =
N − 2

2
Pj,j+1 −Kj,j+1, (1.10)

where K is the so-called trace operator acting on neighbouring spaces. Its matrix elements
are

Kcd
ab = δabδcd. (1.11)

For N = 6 this is relevant to the AdS/CFT correspondence, see [72,87].
Finally we also define the Lieb-Liniger model, also known as the 1D Bose gas, or δ-

function interacting Bose gas [38]. This model is not a spin chain, it is a continuum model,
but its solution is rather similar to that of the Heisenberg spin chains, and we often refer
to it in the text. The Hamiltonian of the model (in secon quantized form) is

HLL =

∫ L

0

dx
(
∂xΨ

†∂xΨ + cΨ†Ψ†ΨΨ
)
. (1.12)

Here L is the size of the system, periodic boundary conditions are understood and Ψ(x, t)
and Ψ†(x, t) are canonical non-relativistic Bose fields satisfying

[Ψ(x, t),Ψ†(y, t)] = δ(x− y). (1.13)

The mass of the particles is set to m = 1/2, and c > 0 is the coupling constant.
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1.4 Dynamics of integrable models

A common property of the integrable models is the existence of an infinite family of
local conservation laws1. This means that there exists (at least one) family of charges Qα,
α = 1, 2, . . . ,∞, such that:

1. The charges are extensive. On an infinite spin chain

Qα =
∞∑

x=−∞

qα(x), (1.14)

such that the operator density qα(x) is of compact support. In continuous models
analogous expressions hold with operator densities that are strictly local.

2. The charges commute:
[Qα, Qβ] = 0. (1.15)

3. The physical Hamiltonian is a member of the series. In spin chains the charges are
chosen typically such that qα(x) is an α-site operator, and in this case Q2 ∼ H.

In recent years it became clear that there exist also the so-called quasi-local charges,
and they also play an important role in the dynamics of these models [89]. In these
cases the support of qα(x) is not compact, and the operator density includes operator
contributions with arbitrary length, although with decreasing amplitudes. The role of
these quasi-local charges is discussed later in Section 2.7.

The most important effect of the conservation laws is the non-diffractive and factorized
scattering in these models. Now we explain these two properties using the language of S-
matrix theory. Our discussion is rather intuitive; we do not attempt to reproduce a rigorous
framework. For a more complete discussion in relativistic integrable QFT see [90].

Let us consider the simple cases when in infinite volume the finite energy excitations
above a vacuum can be parametrized by a finite set of momenta or rapidities λN =
{λ1, . . . , λN}. Examples include the XXX and XXZ Heisenberg spin chains. In scattering
theory we can define the asymptotic in and out states as the eigenstates that arise in the
t → ∓∞ limits. If the rapidities are different, then in these t → ∓∞ limits the centers
of the wave packets associated with the particles become separated from each other. The
asymptotic states are eigenstates of the commuting charge operators. All of these charges
are given by sums (or integrals) of local operator densities, therefore we can argue that
the charges have to act additively on the asymptotic states:

Qα|λN〉in/out = Λα(λN)|λN〉in/out, Λα(λN) =
N∑
j=1

hα(λj). (1.16)

Here hα(λ) is the one-particle eigenvalue function of the charge Qα. Later we will see
that (1.14) holds even in finite volume situation, where |λN〉 are the finite volume Bethe
states. Nevertheless here |λN〉in/out refers to the in- or out-states.

1Actually this property is often used to define the integrability of a system. However, it seems that
in the quantum mechanical case there is no all-encompassing definition of integrability, see the detailed
discussion in [88].
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Consider now a scattering event of a finite number of particles. In a non-integrable
theory the scattering event typically produces a linear combination of states

|λN〉in →
∑
j

cj

∣∣∣µnj〉
out

(1.17)

such that the cj coefficients are non-zero whenever the finite set of conservation laws allow
it, and they depend on the precise details of the scattering event (relative position of the
incoming particles, etc). In the general case there is no restriction on the set of outgoing
momenta, except the requirement that the total energy and total momentum needs to be
conserved.

In contrast, in integrable models we have an infinite number of charges, and all of
their eigenvalues need to be conserved. Typically the hα(λ) functions are algebraically
independent, thus the set of conservation laws results in an infinite number of non-linear
equations for the outgoing rapidities. In the generic case these conservation laws can be
satisfied only if the set of outgoing rapidities is identical to the set of incoming
rapidities. This property is known as non-diffractive scattering [88].

In these cases the S-matrix can be defined simply as the scattering phase (or in more
complicated situations as an actual matrix acting in some inner space) that connects the
in- and out- states with the same set of rapidities. This S-matrix could still depend on
some details of the scattering event, such as the original spatial ordering of the particles.
However, it can be argued that the full S-matrix factorizes into a product of two-
body S-matrices, irrespective of the actual order of the scattering events. This
is a striking consequence of integrability, which was observed in a number of integrable
models whose explicit solution was known. It was later shown in [42, 91, 92] in a rather
general fashion that this property follows from the existence of the extra conservation
laws.

1.5 Consequences for the observable processes

The existence of the charges, and the resulting non-diffractive and factorized scattering
has important consequences for the measurable physical processes. Here we outline three
main effects. Two of them will be discussed later in more detail.

1. Non-decaying oscillations in a concrete experiment. A famous experiment is
the Quantum Newton’s Cradle [63]: here a finite number of particles were trapped,
such that they could move only in one dimension, and even along this dimension
there was an applied trapping potential. When the particle cloud is released from a
position far from the minimum of the trapping potential, the cloud starts to oscillate
as a pendulum would in a harmonic potential. In the experiment two clouds were
released on opposite positions, and started oscillations such that they would scatter
on each other during each period twice, reminding us of the classical Newton’s Cra-
dle. One would expect that the scattering of the atoms would result in momentum
transfer that would thermalize the system. However, no equilibration was observed
over the lifetime of the clouds in the experiment. This striking phenomenon was
attributed to the fact that this 1D system is well described by the Lieb-Liniger
model (1D δ-function interacting Bose gas), which is integrable. As a result of the
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conservation laws the kinetic energy of the colliding atom clouds could not dissipate
into heat. Eventually the system would thermalize due to the integrability breaking
interactions in the real world experiment, but these effects were rather small in the
concrete setup. We note that a few years later the movement of the clouds was
modelled accurately by Generalized Hydrodynamics (see later) [70].

2. Equilibration in the thermodynamic limit: Emergence of the Generalized
Gibbs Ensemble. In recent years the problem of the equilibration of closed systems
(which are sufficiently separated from their environment) received a lot of attention.
In spatially homogeneous situations the systems are expected to equilibrate to steady
states. Here it is important to mention that equilibration is expected on the level of
local correlation functions or other few body observables. The unitary time evolution
dictated by the Schrödinger equation is reversible and it keeps all details of the initial
state, nevertheless if we look at the reduced density matrix of a small subsystem,
then the rest of the system can act as a thermal bath, leading to equilibration. For
generic quantum systems it is expected that such reduced density matrices can be
described by the Gibbs Ensemble [93]. On the other hand, for integrable models
one should also take into account the infinite family of additional conservation laws.
This leads to the concept of the Generalized Gibbs Ensemble (GGE) [94,95], whose
density matrix is of the form

ρ =
e−

∑
α βαQα

Tr e−
∑
α βαQα

. (1.18)

Today it is now generally believed, that isolated integrable models equilibrate to
a properly chosen GGE. It is important that the GGE is not a mere theoretical
concept, becuase it has been already measured in an experimental setup [68] and
it underlies Generalized Hydrodynamics which also has experimental confirmations
[69–71]. In Section 2 we discuss the GGE in more detail.

3. Persistent currents and Generalized Hydrodynamics (GHD). The transport
properties of the intergable models are rather special due to the non-diffractive
scattering of the quasi-particles. The most important consequence is that in the
transport processes there is no dissipation, therefore these models support ballistic
transport and persistent currents. Furthermore, the effects of the interactions can
be described by theoretical methods, and in 2016 this lead to the development of
the GHD [96, 97]. The basics of the GHD and the contributions of the author are
discussed in Section 6.

1.6 The Bethe Ansatz wave function

Here we give a short introduction to the Bethe Ansatz wave function, which describes
the eigenstates of a certain class of integrable spin chains. This class includes those models
where there exists a reference state (vacuum state) which is an eigenstate, and where
the one-particle excitations above it do not have an internal degree of freedom. Examples
include the Heisenberg spin chains and the Lieb-Liniger model. There are other integrable
models where the eigenstates have a more complicated structure. One class of such models
are the multi-component systems solvable by the so-called nested Bethe Ansatz (see later
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in 2.9 and some comments at the end of this sub-section). An other class of models are
those without particle number conservation, such as the XYZ model; these systems will
not be discussed in this thesis.

Turning now to the simplest version of the Bethe Ansatz, let us consider the infinite
volume situation. Let Ψ(x1, . . . , xN) be the wave function which gives the amplitude to
find N particles at positions x1, . . . , xN . In spin chains a particle corresponds to a local
spin excitation: if the vacuum is chosen as the ferromagnetic state with all spins up then
the particles are given by the down spins.

We restrict ourselves to bosonic models (this includes the spin chains), and we treat
the wave function in the so-called fundamental domain

x1 < x2 < · · · < xN . (1.19)

For simplicity here we exclude the points xj = xj+1. This is a valid step in the spin-1/2
Heisenberg spin chain, where only one excitation can occupy a single site. The coordinate
Bethe Ansatz wave function can be constructed even in those models where two or more
particles can be at the same position, for example the higher spin XXX model, see [98].
However, for the simple treatment here we exlude these cases.

The general form of the Bethe Ansatz wave function is [33,52]

Ψ(x1, . . . , xN) =
∑
P∈SN

 N∏
j=1

eixjpPj
∏
j>i

Pj<Pi

S(pi, pj)

 . (1.20)

The interpretation of the formula is as follows. There are N particles in the system with
one-particle momenta pj, j = 1, . . . , N . They move freely as long as any two particles
are well separated from each other. The wave function is a sum over permutations of N
particles, and each term corresponds to a specific spatial ordering of the particles. For
each permutation P ∈ SN the number Pj denotes the final position of the number j. The
interaction between the particles is taken into accound by the S-matrix S(u, v) which in
these simple models is actually a phase. In the wave function there is an S-matrix factor
for each two-body exchange. The dependence on the physical parameters of the model
comes by solving the two-body problem and extracting the two-body S-matrix. The fact
that the wave function is so simple even for N ≥ 3 is a consequence of the integrability and
the factorized scattering described above. The wave function is sometimes called two-body
irreducible.

Depending on the situation more convenient representations can be found. For exam-
ple, typically it is possible to find a new parametrization of the momentum p(λ) with λ
being the rapidity parameter such that the S-matrix becomes a function of the rapidity
differences only:

S(p(λ), p(µ)) = S(λ− µ). (1.21)

This is reminiscent of the Lorentz invariant S-matrix in relativistic QFT.
A further alternative form can be obtained by introducing a function f(u) satisfying

f(u)

f(−u)
= S(u). (1.22)
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Such a function is reminiscent of the two-particle minimal form factor in integrable QFT,
see for example [90]. Using such a function and the rapidity variables an alternative
representation can be written down as

Ψ(x1, . . . , xN) =
∑
P∈SN

[
N∏
j=1

eixjp(λPj )
∏
j>i

f(λi − λj)

]
. (1.23)

Even though we used the same letter Ψ this wave function is just proportional to (1.18)
and not identical to it; we just did not want to burden the reader with a multitude
of notations. In any case the advantage of this representation is that it is manifestly
symmetric with respect to an exchange of the rapidities, whereas the wave function (1.18)
explicitly depends on the ordering within λN .

The model dependence of the wave function comes through the functions p(λ) and
f(λ). In the XXX case we have

eip(λ) =
λ− i/2
λ+ i/2

eiδ(λ) =
λ+ i

λ− i
f(λ) =

λ+ i

λ
. (1.24)

In the XXZ case with ∆ > 1 a typical parametrization is

eip(λ) =
sin(λ− iη/2)

sin(λ+ iη/2)
eiδ(λ) =

sin(λ+ iη)

sin(λ− iη)
f(λ) =

sin(λ+ i)

sin(λ)
. (1.25)

Note that here the fundamental domain for the one-particle rapidities is the segment
[−π/2, π/2].

Putting the model into a finite volume and imposing periodic boundary conditions on
the above wave functions we obtain the Bethe equations

eip(λj)
∏
k 6=j

S(λj − λk) = 1, j = 1, . . . , N. (1.26)

They are quantization conditions for the rapidities, and typically they are highly coupled
non-linear (but algebraic) equations for the rapidities. The physical interpretation of the
Bethe equations is the following: if we take one particle “around the volume”, then the
total phase acquired has to be a multiple of 2π. This total phase consists of the one-
particle propagation and the two-body scattering phases accumulated as the particle is
scattered on all the other particles.

In models with internal degrees of freedom the S-matrix is an actual matrix. In such
models formulas like (1.18) only make sense if the S-matrices act on some vector. Finding
an appropriate vector, such that an analogue of (1.24) can be satisfied is the goal of
the “nested Bethe Ansatz”. The nested Bethe Ansatz will not be reviewed in this thesis,
we refer the reader to the pedagogical book [99] on the Hubbard model, whose solution
involves the same techniques.

1.7 Integrable spin chains and Algebraic Bethe Ansatz

Here we give a brief introduction into an alternative method which allows the solution
of the spin chains: the Algebraic Bethe Ansatz. Although the construction is general, we
restrict ourselves mostly to the spin-1/2 XXZ and XXX models.
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The solution of these models depends on the existence of certain algebraic structures,
satisfying very specific relations. A fundamental object is the so-called R-matrix. Let us
take two vector spaces V1,2 ' CD and let us associate rapidity parameters λ1,2 to the two
vector spaces. The R-matrix is a linear operator R12(λ1, λ2) acting on V1 ⊗ V2, which is
an analytic function of the two rapidities. It satisfies the so-called Yang-Baxter relation,
which is constructed as follows. Let us take 3 vector spaces V1,2,3, and three associated
rapidities λ1,2,3. Then the YB relation is

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) =

= R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2).
(1.27)

Here it is understood that each Rjk acts only on the corresponding vector spaces Vj and
Vk.

It is useful to give a pictorial representation of this relation and the other algebraic
relations that follow from it.

The pictorial representation for the R-matrix can be drawn as a crossing of two lines,
see Fig. 1. Here it is understood that both spaces carry a rapidity parameter, and the
corresponding action is given by R(µ, ν), where µ is the rapidity “coming from the left”.
The action of the R-matrix can be considered as a “scattering” of two spins.

µ

ν

Figure 1: Graphical notaiton for the R-matrix. The crossing denotes the action of R(µ, ν)
on the two vector spaces.

A graphical representation of the Yang-Baxter equation is given by 2. In these pictures
and in the others below it is understood that each crossing signals the action of the cor-
responding R-matrix, and concatenation of lines means matrix multiplication (summing
over the possible states of the internal lines).

λ3

λ2

λ1

=

λ3

λ2

λ1

Figure 2: The Yang-Baxter equation for the R-matrix.

It can be shown that if certain analytic conditions are met, then the R-matrix satisfies
the inversion relation

R1,2(λ1, λ2)R2,1(λ2, λ1) = g(λ1, λ2), (1.28)

where g(u, v) is a symmetric function of u, v. Using a proper normalization of the R-matrix
it can always be chosen as 1. A pictorial representation of this inversion relation is given
in Fig. 3.
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µ

ν
=

µ

ν

Figure 3: The inversion relation for the R-matrix.

Let us now consider a finite volume situation with the Hilbert space H = ⊗Lj=1CD.
Let us also take a further vector space Va called the auxiliary space. Depending on the
situation this may or may not be isomorphic to the physical spaces.

The idea behind the Algebraic Bethe Ansatz is to use this auxiliary spin as a probe,
and “scatter” it on the physical spins of the chain. This way we construct the so-called
monodromy matrix as

Ta(µ) = La,L(µ) . . .La,1(µ). (1.29)

This is an operator acting on Va ⊗H. Here µ is a spectral parameter (rapidity) and the
La,j(µ) are the so-called Lax operators, which act on Va⊗Vj. We require that they satisfy
the so-called RLL relations:

Rb,a(ν, µ)Lb,j(ν)La,j(µ) = La,j(µ)Lb,j(ν)Rb,a(ν, µ), (1.30)

with a, b referring to two different auxiliary spaces.
It follows from (1.25) that

La,j(µ) = Ra,j(µ, ξ0) (1.31)

is a solution to (1.28), where ξ0 can be a fixed parameter of the model. Typically ξ0 = 0.
The transfer matrix (TM) is its partial trace over the auxiliary space:

t(µ) = TraTa(µ). (1.32)

The graphical representation for T (u) and t(u) is given in Fig. 4.

µ

1 2 L

Figure 4: Construction of the monodromy matrix T (µ). The vertical lines correspond to
the physical spaces, whereas the horizontal line represents the auxiliary space. The matrix
T (µ) depends on the rapidity parameter µ associated to the auxiliary space. In this picture
the numbers 1, . . . , L stand for the individual local spaces.

It can be shown that the fundamental exchange relation (1.28) leads to the so-called
RTT relations

Rb,a(ν, µ)Tb(ν)Ta(µ) = Ta(µ)Tb(ν)Rb,a(ν, µ), (1.33)

which are exchange relations between the different monodromy matrix elements. Multi-
plying with the inverse of one of the R-matrices and taking a trace in the auxiliary spaces
we obtain the commutativity of transfer matrices:

[t(µ), t(ν)] = 0. (1.34)
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We define the set of conserved charges as

Qα =

(
d

dµ

)α−1

log(t(µ))

∣∣∣∣∣
µ=0

. (1.35)

This definition is meaningful, and it results in commuting charges:

[Qα, Qβ] = 0. (1.36)

The extensivity of the charges follows from the formal logarithm in the definition.
In this work we deal with models where the R-matrix is of difference form:

R(µ, ν) = R(µ− ν). (1.37)

A famous counter-example is the Hubbard-model, where the R-matrix is not of difference
form [99].

Furthermore, we will focus on the so-called fundamental models, where the Lax oper-
ator is identical to the R-matrix, see (1.29). If the difference property is satisfied then we
are free to set ξ0 = 0.

In the models under consideration the R-matrix satisfies the regularity condition

R(0) = P, (1.38)

where P is the permutation operator. This property is needed to prove that using (1.33)
the charge density for Qα will indeed span α sites [100]. In particular, the operator density
of Q2 is given by

q2(x) = PṘj,j+1(0). (1.39)

and can be identified with the Hamiltonian density, up to additive and multiplicative
normalization.

The monodromy matrix is written with respect to the auxiliary space as

T (u) =

(
A(u) B(u)
C(u) D(u)

)
, (1.40)

where A(u), B(u), C(u), D(u) are operators acting on the physical Hilbert space of the
chain.

Let us now discuss the example of the XXZ and XXX spin chains. In these models
the R-matrix is of the form

R(u) =


1 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 1

 . (1.41)

In the XXX case we have

b(u) =
u

u+ i
, c(u) =

i

u+ i
, (1.42)
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In this normalization of the R-matrix the canonical construction for the charges gives
Q2 = (H − L)/2, where H is given by (1.3) and L is the volume.

For the XXZ spin chain we use the conventional notations

H =
L∑
j=1

(σxj σ
x
j+1 + σyjσ

y
j+1 + ∆(σzjσ

z
j+1 − 1)). (1.43)

For this model the functions in the R-matrix are

b(u) =
sin(u)

sin(u+ iη)
, c(u) =

sin(iη)

sin(u+ iη)
, (1.44)

where ∆ = cosh(η). In this normalization of the R-matrix the we have Q2 = H/(2 sinh η).
Later we also use the function f(λ) which is defined as

f(λ) =
1

b(λ)
(1.45)

for both the XXZ and XXX models.
In these particular models, and in many other models with U(1)-symmetry there exists

a reference state |∅〉 which has the properties that

• It is an eigenvector of the diagonal monodromy matrix elements:

A(u)|∅〉 = a(u)|∅〉, D(u)|∅〉 = d(u)|∅〉. (1.46)

Here a(u) and d(u) are model-specific vacuum eigenvalue functions.

• It is annihilated by C(u) for any u:

C(u)|∅〉 = 0. (1.47)

These conditions hold in the XXX and XXZ chains, where the reference state is the
ferromagnetic product state with all spins up. Then the eigenvalue functions can be de-
termined from the fundamental Lax operators, in particular

a(u) = 1, d(u) = bL(u). (1.48)

The un-normalized Bethe states can then be created as

|λN〉 =
N∏
j=1

B(λj − σ)|∅〉, (1.49)

where we introduced the σ shift for later convenience. It is related to the so-called crossing
symmetry of the R-matrix, and for the XXX and XXZ cases it is given by σ = i/2 and
σ = iη/2, respectively. Clearly, the B-operators act as particle creation operators, but in
contrast with the free case they create states made of interacting spin waves. In particular,
it can be shown that the states (1.47) are actually proportional to the states defined in
(1.21).
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It can be shown using the algebraic methods that these states are eigenstates of the
commuting set of transfer matrices if the rapidities satisfy the Bethe equations (1.24).
The eigenvalue functions of the transfer matrices defined by

t(u)|λN〉 = Λ(u|λN)|λN〉 (1.50)

are found to be

Λ(u|λN) = a(u)
N∏
j=1

f(λj − σ, u) + d(u)
N∏
j=1

f(u, λj − σ). (1.51)

For practical computations it is often needed to know the norm of the vectors (1.47).
Unlike free models, this norm is not determined by the definition of the B-operators only,
instead it is a complicated function of all the rapidities. It was conjectured first by Gaudin,
that the norm is always proportional to the determinant of a matrix, which is basically
the Jacobian of the Bethe equations [101–103]. The statement for the norm is

〈λN |λN〉 =
N∏
j=1

F1(λj)
∏
j<k

F2(λj, λk)× det
N
G, (1.52)

where F1 and F2 are some known functions and G is the N × N matrix, which is to-
day called the Gaudin matrix. The function F1 depends on the normalization of the
B-operators, but the function F2 is completely fixed by the underlying R-matrix. In fact,
it is given by

F2(λj, λk) = f(λj, λk)f(λk, λj). (1.53)

Finally, the matrix elements of G are given by

Gjk =
∂(2πIj)

∂λk
, (1.54)

where we defined the functions Ij through the Bethe equations as

ei2πIj(λj) = eip(λj)
∏
k 6=j

S(λj − λk). (1.55)

For concrete eigenstates the Ij are integer numbers, but it is useful to regard them as
functions of the rapidities. We can use the known explicit functions of the XXZ and XXX
models given above to derive more explicit formulas for the matrix elements of G.

Note that G is the Jacobian of the Bethe equations, which can be written in logary-
thmic form as

Jj(λj) = 2πIj, Ij ∈ Z. (1.56)

The Bethe states are distributed uniformly in the space of momentum quantum numbers
Ij, thus the Gaudin determinant detG describes the density of states in rapidity space.

A simple argument for the validity of the norm conjecture was given in [104] and
a proof using ABA was found in [105]. Similar formulas for the norm hold also in more
complicated nested systems (see below), and their proof is rather involved (for a relatively
early proof see [106], and for recent reviews see [107,108]).
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For future use we introduce the concept of the inhomogeneous spin chain. Let ξL =
{ξ1, . . . , ξL} be a set of complex numbers called inhomogeneities and let us define a mod-
ified monodromy matrix as

Ta(µ) = La,L(µ− ξL) . . .La,1(µ− ξ1). (1.57)

The transfer matrix is still given by the trace, as in (1.30). The physical case producing
the desired Hamiltonian is restored in the limit ξj → 0. If the ξj are non vanishing, then
it is not possible to define local Hamiltonians from the transfer matrix (except in further
special cases such as ξL = {ξ,−ξ, ξ,−ξ, . . . }). However, it is very useful to treat the ξL
as arbitrary parameters: in many cases the physical value of a quantity can be found by
investigating the ξ-dependence of the general case. The inhomogeneities are also crucial
for the so-called Quantum Transfer Matrix method, see Section 2.6.

1.8 Spectrum and thermodynamic limit

For comparison with experiments and sometimes with other theoretical methods we
need to investigate the thermodynamic limit (TDL). The physically most interesting sit-
uation is when the volume L is taken to infinity such that the particle density n = N/L
remains finite. This limit is required to obtain the interesting phenomena in the equilib-
rium and non-equlibrium dynamics, such as algebraically decaying correlations, emergence
of the GHD, ballistic transport in the presence of interactions, superdiffusion, etc.

In order to understand the TDL in Bethe Ansatz solvable models we need to discuss
the spectrum, in other words the solutions to the Bethe equations and their behaviour in
this limit.

Depending on the model the solutions to the Bethe equations can show quite different
behaviour, with different physical meaning. There are the following possibilities:

• Purely real Bethe roots. In some models it is known that all finite volume solu-
tions consist of purely real roots. The most important example for such behaviour
is the repulsive Lieb-Liniger model [38].

• Bethe roots form strings. In some models the typical configuration of a set of
Bethe roots consists of strings. Each string describes a bound state of the fundamen-
tal particles. Let us consider the bound state of n particles, then the roots within
the string are of the form

λj = λc + i
2j − n− 1

2
κ+ iδj, j = 1, . . . n. (1.58)

Here λc is the string center, and κ > 0 is a fixed parameter of the model, which
is determined by the analytic properties of the S-matrix: if S(u) has a pole at
u = iκ then two fundamental particles can form a bound state as above. The δj
parameters are the so-called string deviations; these numbers become exponentiall
small in L in the large volume limit. The string solutions and the corresponding
wave functions can be understood in an explicit way simply by looking at the two-
body wave function (1.18), which in this case indeed describes the wave function of
a bound state.
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Models which support string solutions include the XXX and XXZ spin chains, and
the attractive Lieb-Liniger model. In all cases relevant to our discussion the S-matrix
of the fundamental particles has at most one pole, and there is only one allowed
κ parameter2. Nevertheless the question of which values of n are allowed is rather
delicate. In the XXZ model it depends strongly on the anisotropy parameter ∆, this
is discussed in length in the book [49]. In this thesis we focus on the regimes ∆ > 1
and ∆ = 1 (XXX model), where each n ∈ N is allowed.

For ∆ < 1 there are a number of additional subtleties that lead to interesting
physical consequences, such as a fractal structure in the spin Drude weight (discussed
for example in [109,110]). However, in this work we do not discuss the regime ∆ < 1.

• Nested Bethe Ansatz. In nested Bethe Ansatz there are various types of rapidities
corresponding to the different “levels” of the nesting procedure. Typically all of them
can form strings. This issue is discussed (without proofs) in Section 2.9.

In the models under consideration the string hypothesis is a statement about the
thermodynamic limit of the behaviour of the Bethe roots. There is no strict or rigorous
formulation of this hypothesis, therefore we present it here in our own interpretation. The
string hypothesis states that

• In the TDL almost all solutions to the Bethe equations will consist of strings of
the type (1.56), where the allowed types of strings are model dependent and can be
determined from an analysis with a finite number of particles.

• The string deviations δj decay exponentially with the volume.

• The “outlier” states, i.e. those which do not belong to this classification are rare,
and they do not influence the dynamics in the TDL.

The classification of the Bethe roots, and thus the string hyptohesis itself goes back to
the work of Bethe [33]. He attempted to prove the completeness of the Bethe Ansatz by
comparing the number of solutions of the Bethe equations with a fixed particle number
to the dimension of the appropriate section of the Hilbert space. Today it is believed that
Bethe’s counting of the eigenstates was correct, but some simple assumptions about the
nature of the solutions were wrong. Bethe assumed that all solutions satisfy the string
hypothesis, and that the number of the various string solutions can be computed by
combinatorics, for each volume. These assumptions hold for almost all states: it is today
known that there are rare configurations not obeying the string hypothesis exist, see for
example [111, 112]. Also, it is known that there are various types of singular solutions to
the Bethe equations [113–115], which need to be discussed separately. The self-conjugate
property of the set of Bethe roots was already proven in [116], but there are no further
theorems for the classification of the solutions. In defence of Bethe let us add, that all his
key ideas in his 1931 paper were correct, whereas it took many years for many researchers
to find and characterize all the fine details about the various possibilities for the Bethe
roots.

2This is to be contrasted with integrable QFT models, where the S-matrices typically have more than
one pole in the so-called physical strip [90].
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Let us now discuss the behaviour of the Bethe roots in the thermodynamic limit. As
a first example we consider a simple model where the rapidities do not form strings and
the Bethe equations are of the form (1.24). In logarythmic form this is written as

p(λj)L+
∑
k 6=j

δ(λj − λk) = 2πIj, Ij ∈ Z, j = 1, . . . , N, (1.59)

where S(u) = eiδ(u). Our goal is to take the thermodynamic limit of this equation, without
specifying the physical situation. We derive a simple equation describing the distribution
of Bethe roots, which will be applicable both to the ground states, to finite temperature
states, or any steady state arising in a non-equilibrium situation.

As a first step we introduce the differential root density per volume and per rapidity
ρ(λ). We choose a normalization such that in a volume L and within a window [λ, λ+dλ]
the number of Bethe roots is ρ(λ)dλL. Accordingly, the total particle density is

n =

∫
dλ ρ(λ). (1.60)

Let us also introduce the concept of Bethe holes: a rapidity λ is a “hole” if it satisfies

eip(λ)

N∏
k=1

S(λ− λk) = −1, (1.61)

but it is not an actual Bethe root, it is not present in the set λN 3. A Bethe hole can be
regarded as the analogue of an unoccupied level in a free theory. In the TDL the Bethe
holes also become dense and we introduce their density ρh(λ). It follows from (1.57) that
the two types of densities satisfy the linear integral equation [49]

ρ(λ) + ρh(λ) =
1

2π
p′(λ) +

∫
dω

2π
ϕ(λ− ω)ρ(ω), (1.62)

where we introduced the scattering kernel

ϕ(λ) = δ′(λ). (1.63)

The equation (1.60) does not tell anything about the physical nature of the state in
question; it should be regarded simply as the thermodynamic representation of the fun-
damental Bethe equation (1.57). The physical properties depend on the filling fractions,
which are defined as the ratio

f(λ) =
ρ(λ)

ρ(λ) + ρh(λ)
. (1.64)

Specifying f(λ) characterizes the content of the state in question. For example, for the
ground state of the Lieb-Liniger model with a certain total density f(λ) = 1 within the
Fermi zone [−Λ,Λ] and zero elsewhere. For finite temperature states this Fermi distribu-
tion is smoothened, and it depends on the temperature and chemical potentials. It will be

3Here we used S(0) = −1.
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explained in detail in Section 5 that in equilibrium f(λ) completely determines the local
physical observables. Sometimes it is useful to write (1.60) as

ρ(λ) + ρh(λ) =
1

2π
p′(λ) +

∫
dω

2π
ϕ(λ− ω)f(ω)(ρ(ω) + ρh(ω)). (1.65)

In this form we get a linear equation for the total density ρ(λ) + ρh(λ), and the filling
fraction is used as an input to the equation.

Let us comment on the nomenclature. In recent literature dealing with GHD the
equation (1.60) and analogous relations for more complicated systems are called “Ther-
modynamic Bethe Ansatz” (TBA) equations. This name faithfully represents the origin
and meaning of these equations. However, originally the name TBA referred to a different
concept, namely to the computation of the finite temperature ensembles [49,117,118]. In
these cases the filling fraction f(λ) is also fixed by a non-linear integral equation, whereas
in (1.63) it is a free function. In the present work we use the TBA acronym without
making an explicit distinction between the two meanings; we hope the meaning will be
clear from the context.

In models with string solutions we introduce a root density and hole density function
for each string; they describe the distribution of the string centers, and the corresponding
holes. The resulting integral equations are simple analogues of (1.60). There are standard
steps to bring these equations to the simplest form possible [49]; here we do not review
these computations, we just present some of the final results. For example, in the XXX
model each n-string is allowed for n = 1, 2, . . . . Thus we have the infinite family of
functions ρn(λ), ρn,h(λ) for the string centers and the holes. It can be shown that in this
particular model they satisfy the linear set of equations [49]

ρn(λ) + ρn,h(λ) = δn,1s(λ) +

∫ ∞
ω=−∞

dω

2π
s(λ− ω)(ρn−1,h(ω) + ρn+1,h(ω)). (1.66)

Here δn,1 is the Kronecker-delta, it is understood that ρ0(λ) = ρ0,h(λ) = 0, and

s(λ) =
1

2 cosh(πλ)
. (1.67)

Analogous equations can be obtained also in the XXZ model and for other integrable
models.

It is also useful to give a graphical interpretation of this equation. We can see that
the root and hole densities for the n-strings are coupled through convolution integrals to
the quantities of the n− 1 and n + 1 strings. This is depicted on Fig. 5. Here each node
represents a string type, the links stand for the convolution terms, and the fulll circle
denotes the source term for the 1-strings.

It is very common to represent TBA equations in this form, and the resulting pictures
have an algebraic origin. In all known cases they are given by simply laced Dynkin dia-
grams. The current case can be considered as the infinite dimensional A∞ diagram. For
the discussion of these diagrams in Quantum Field Theory models we refer to [119,120].

Regarding the eigenvalues of the charges the finite volume formulas (1.14) can be
transformed into the integrals

lim
TDL

Λα

L
=

∫
ρ(λ)hα(λ). (1.68)
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. . .

Figure 5: Graphical representation of the TBA equations for the XXX chain.

Once again this formula refers to the simple cases with a single particle type; in more
complicated cases a summation is need for the different paricle types.

1.9 Exactly solvable or exactly solved?

In the previous subsections we showed that the exact eigenstates of these models can
be found with either the coordinate or the Algebraic Bethe Ansatz. The reader might
wonder: Does this mean that the models could be regarded as “solved”? What is then the
purpose of the ongoing research in this direction? What are the difficulties?

Let us shed some light on these questions. Consider the time evolution in an isolated
integrable model, and let |Ψ0〉 be the state of the system at t = 0. We can choose this state
to be the ground state of some other Hamiltonian, or any other state which is physically
relevant (it could be realistically constructed in an experiment). Let us further look at
the real time evolution of an observable O. We can choose O to be a local operator,
or a two-point function, or a more complicated operator product. The standard way to
compute its exact real time evolution is through the spectral series:

〈O(t)〉 =
∑
n,m

〈Ψ0|n〉〈n|O|m〉〈m|Ψ0〉ei(En−Em)t. (1.69)

Here the double sum runs over the eigenstates of the model; for simplicity we consider
here a finite system with a finite number of states.

Let us now discuss the ingredients in this sum.

• Form factors. The objects 〈n|O|m〉 are called the form factors of the operator.
In integrable models a lot of information is known about them, both in relativistic
QFT [90,121] and in the non-relativistic settings [52]. In particular, the form factors
are analytic functions of the rapidities, whose explicit form is known in many cases.
However, computing the thermodynamic limit of these form factors is far from trivial
[54], and considerable effort was spent to study the diagonal matrix elements; for
the contributions of the author see Section 5.

Let us explain the difficulty behind the computations of the form factors. Consid-
ering formula (1.18) for the Bethe Ansatz wave function it is clear that the form
factors should be given by some analytic function of the sets of rapidities. How-
ever, directly applying the exact wave functions we obtain large summations over
permutations, with no immediate clues about any resummations. Thus one needs
alternative approaches, which eventually simplify the resulting sum, such that the
final formulas become tractable, even in the thermodynamic limit.

• Overlaps. The classical works on quantum integrability only focused on ground
state or finite temperature mean values, and not on the non-equilibirum dynamics.
Therefore, practically no results were available for overlaps before 2013. If the initial
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state is a product state or it can be represented in a sufficiently simple form, then
the overlaps can also be expressed as rational functions of the Bethe rapidities.
However, in parallel with the form factors, these functions are given by summations
over permutations, and a priori it is not clear how to get simple and convenient
representations. The contributions of the author to this problem are summarized in
Section 4.

• Summation of the spectral sum. In principle all Bethe states appearing in the
double summation are known: the rapidities are given by solutions of the Bethe
equations (1.24) (putting aside the singular solutions discussed above). However,
the Bethe equations are non-linear equations and the solutions can not be produced
in an explicit way.

In certain situations the summation can be transformed into multiple integrals using
multi-dimensional residue relations, and inserting the Bethe equations as poles of
the integrands, see for example [20, 122]. However, such representations are often
not very useful to find the actual values of the observables.

There are now methods to perform the spectral sum analytically, at least for some
partition functions [123,124], but so far these methods are also limited to relatively
small system sizes.

These problems show that the actual computation of the real-time dynamics is very
far from having been solved, even though the Bethe Ansatz itself is well understood.

We put forward, that the spectral expansion discussed above is not the only way to
treat the real time dynamics. There are exact theoretical methods that operate directly
in infinite volume, see the BQTM method in Section 3. However, the computation of the
actual time dependence of physical quantities is an open problem even in those methods.

1.10 Unexpected connections

We present here a list of unexpected connections between integrable lattice models
and other fields of mathematics and/or theoretical physics. These topics are not discussed
further in the thesis, because they are not related to the dynamics of the spin chains,
which is our main interest. However, we felt it is worthwhile to compile such a list. The
often cited connection to AdS/CFT is not included in this list, because it is relevant to
the thesis and it is discussed for example in Section 3.5.

Unexpected connections include:

• In knot theory the Yang-Baxter relation can be used to generate knot invariants
[125].

• In combinatorics the number of so-called alternating sign matrices can be found
using the partition functions of the integrable 6-vertex model [126,127].

• There is a correspondence between solutions to the Yang-Baxter equation and
partition functions of so-called supersymmetric quiver gauge theories (see the re-
views [32,128]).

28

dc_1819_20

Powered by TCPDF (www.tcpdf.org)



• There is a correspondecne between eigenstates of integrable spin chains and the
vacua of certain supersymmetric gauge theories [129,130].

• Algebro-geometric aspects of the Bethe Ansatz equations and in particular the con-
nections to Langlands dualities were discussed in [131,132].

• In algebraic geometry there is a connection between Schubert calculus and quantum
integrable models, see for example [133].

• The twisted Yangians (originating in the Boundary Yang-Baxter relation, discussed
briefly in Section 3.4) found applications in the representation theory of classical
Lie algebras, see the review [134].

This list is by no means exhaustive, and most likely it can be extended in the future.

2 Generalized Gibbs Ensemble

2.1 Introduction

Thermalization in a closed system is a macroscopic phenomenon which is known from
everyday life. If we pour cold milk into our hot coffee, then the two liquids will mix, the
milk will warm up and the coffee will cool down a bit. This happens on the macroscopic
scale, nevertheless we can ask ourselves: can we explain it using the fundamental laws of
nature? We know that the physics on the atomic scale is described by Quantum Mechanics
(QM), and this raises the question whether the macroscopic laws of classical physics, in
particular those of statistical physics and thermodynamics, could be derived from QM.
This question is of course not new, and its discussion goes back to John von Neumann
[135–137].

In this work we treat equilibration and thermalization of closed quantum systems and
we focus on the paradigm of the quantum quench. The usual definition of the quench
is the following: we take a closed quantum system, we prepare it in the ground state of
a certain Hamiltonian H0, and at t = 0 we suddenly change certain parameters of the
Hamiltonian. Thus for t > 0 the system evolves according to a new Hamiltonian H, which
does not commute with H0 and thus leads to non-trivial real time dynamics. The focus
on quantum quenches is motivated by its simplicity both on the experimental and the
theoretical side [138, 139]. Other often studied protocols include the quantum ramp (a
slower real-time tuning of some parameters) and the Floquet systems (periodic driving),
but these situations will not be considered here.

Let us therefore specify the actual theoretical setup. We consider an integrable Hamil-
tonian H in finite volume L and an initial state |Ψ0〉, which is the state of the system at
t = 0. This can be the ground state of an other Hamiltonian (not necessarily integrable), or
any other state relevant to experiments or computer simulations. In our concrete examples
|Ψ0〉 will be a state with small real-space entanglement, such as a real space product state
or a Matrix Product State (MPS) [140] with small bond dimension (for definitions see
later). It is known that such states are always ground states of a local Hamiltonian [140],
but for our purposes it is not important to specify this original Hamiltonian H0. Instead
we will focus on the properties of our initial states.
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It is important that in the first instance we focus on spatially homogeneous initial
states. To narrow it down, we require that |Ψ0〉 has to be either one-site or two-site shift
invariant. Examples for one-site invariant states are for example the ferromagnetic product
states

|Ψ0〉 = ⊗Lj=1|n〉, |n〉 ∈ C2 (2.1)

or MPS’ with site-independent matrices. An example for two-site invariant state is the
dimerized (or in short: dimer) state

|Ψ0〉 = |D〉 = ⊗L/2j=1

|↑↓〉 − |↓↑〉√
2

. (2.2)

The reason to focus on such states is motivated by their special integrability properties
to be discussed in Sec. 3. But such states are also ground states of local Hamiltonians,
for example the dimer state is the ground state of the Majumdar-Ghosh model [141]. In
these cases we could take the zero momentum combination of |Ψ0〉 and its one-site shifted
version, but we prefer to keep the original two-site products, because they have strictly
zero entanglement between the two-site blocks.

It is our goal to study the time evolution of local observables O. As examples we will
consider short range spin-spin correlation functions such as O = σzjσ

z
j+n with n = 1, 2, 3.

The explicit time dependence is given by the formal expression

〈O(t, L)〉 = 〈Ψ0|eiHtOe−iHt|Ψ0〉. (2.3)

In order to study the phenomenon of equilibration we need to take the t → ∞ limit. In
finite systems strict equilibration does not happen, and this is related to the well-known
effect of quantum revivals. One possibility would be to define an averaging over t in order
to obtain equilibrated values. An other possibility is to take the limit of large system sizes
before taking the long time limit. Thus we study

lim
t→∞

lim
L→∞

〈O(t, L)〉 , (2.4)

and we ask ourselves whether the second limit approaches constant values, and how to
compute them.

If the system thermalizes, then the long time limit is described by the Gibbs Ensemble.
Let us consider now a generic non-integrable quantum spin chain, and let us assume for
simplicity that there is just one relevant conserved quantity, which is the Hamiltonian
itself. In this case the Gibbs averages are given by

〈O〉G =
Tr e−βHO
Tr e−βH

. (2.5)

These averages depend on the temperature T = 1/β, but also on the volume L. We say
that a system thermalizes to temperature T if there is a parameter β = 1/T such that for
all local observables

lim
t→∞

lim
L→∞

〈O(t, L)〉 = lim
L→∞

〈O〉G . (2.6)

If this relation holds then we can apply it to the Hamiltonian density, which is a constant
of motion. Then we also obtain

lim
L→∞

〈Ψ0|H|Ψ0〉
L

= lim
L→∞

〈H〉G
L

. (2.7)
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The mean energy on the r.h.s. is typically a monotonous function of β, so that this relation
uniquely determines β. In simple terms: the energy stored in the initial state determines
the resulting temperature after equilibration.

If there are other conserved quantities such as particle numbers, etc, then they have
to be added to the Gibbs ensemble. This leads to a finite number of additional intensive
parameters, such as chemical potentials.

In contrast, the integrable models possess an infinite family of conserved charges, which
need to be taken into account. This leads to the:

2.2 Generalized Gibbs Ensemble in integrable models

As discussed in Section 1 integrable models possess an infinite family of conservation
laws. This forbids thermalization in the usual sence. Instead it was proposed in [94] that
integrable models equilibrate to Generalized Gibbs Ensembles (GGE’s). A GGE average
is given by

〈O〉GGE =
Tr e−

∑
j βjQjO

Tr e−
∑
j βjQj

, (2.8)

where βj are Lagrange multipliers, wich can be considered as generalized temperatures
associated to the charges. Note that we are free to choose a basis in the linear space
spanned by the charges, thus the βj strongly depend on these definitions.

If the equilibration to the GGE holds, then similar to eq. (2.7) we find that

lim
L→∞

〈Ψ0|Qj|Ψ0〉
L

= lim
L→∞

〈Qj〉GGE
L

, j = 1, 2, . . . . (2.9)

In principle this infinite set of relations should fix the Lagrange multipliers βj.
The reader might wonder what is the predictive value of the GGE if an infinite set of

parameters are fitted using the above relation. The answer is simple: If the GGE holds,
then the long time limit of all other local observables should be given by (2.8). A further
argument can be given if we go back to finite volume. Then it can be argued that the
number of parameters should scale as a polynomial in L (typically linear or quadratic),
but the number of local operators for which the GGE assumption should hold scales
exponentially with L. We believe that this argument can be made precise, although a
more rigorous treatment has not yet been given in the literature, except in the case of the
free models.

The emergence of the GGE was first investigated and proven in the case of free models
(or models equivalent to free fermions, such as the XX and Ising models) [94,95,142–149].
In such cases it is convenient to choose mode occupation operators as the independent
charges, and then the βj play the role of mode dependent temperatures. The emergence
of such a GGE was measured in an experimental setup [68].

On the other hand, the question proved to be more involved in the interacting spin
chains. The following main difficulties arose:

• What is a complete set of charges that needs to be added to the GGE? Is it generally
true that such a complete set exists for each integrable model?

• Given a complete set, how can we actually compute the parameters of the emerging
GGE?
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• Given the parameters of the GGE, how can we actually compute the GGE averages
of local observables? Exact values are needed for comparisons with experiments or
numerical simulations.

• Are there alternative theoretical methods, at least for a subset of initial states, that
lead to exact results? Do these exact results agree with the GGE predictions?

In the following we discuss these questions in detail.

2.3 Mechanism of equilibration

First let us start with the mechanism of equilibration towards the GGE. It is now
understood that the key steps are dephasing and the so-called Generalized Eigenstate
Thermalization Hypothesis (GETH). Consider the long time limit of the observables in
finite volume, and let us apply the averaging step mentioned above. The formal manipu-
lation of the double sum in (1.67) gives

lim
T→∞

1

T

∫ T

0

dt 〈O(t)〉 =
∑
n

|〈Ψ0|n〉|2 〈n|O|n〉. (2.10)

The collapse of the double sum onto the single sum is the effect of the dephasing; the r.h.s.
above is called the Diagonal Ensemble (DE) of the quantum quench. Here the squared
overlaps play the role of the weight functions.

The reader might notice that we neglected the contributions of possible degenerate
states, and this is indeed an issue to be discussed. Degenerate or nearly degenerate states
can lead to additional effects, such as preserving certain order parameters which would
otherwise vanish in the above sum. Nevertheless let us focus first on the actual DE.

Conservation of the charges implies that the DE will be dominated by states for which
the charge mean values are close to those of the initial state. To be more precise: a simple
computation shows that if the initial state |Ψ0〉 satisfies the cluster property, then for the
relevant states with large overlaps

|〈Ψ0|Qj|Ψ0〉 − 〈n|Qj|n〉|2 ∼ L. (2.11)

Note that the relation is written for the global extensive charges, which means that the
variance of the charge densities will scale as O(1/

√
L), for each Qj. This argument was

given for example in [7].
Standard arguments of statistical physics also show that the GGE averages as given

by (2.8) are also dominated by states for which the charge mean values are close to those
of |Ψ0〉. This is in fact enforced by (2.9).

However, there is no guarantee that the summation in (2.8) and in (2.10) will involve
the same weights. In fact, it is known that in most cases the weights are different (see for
example the pair structure for the integrable overlaps in Section 2.5). Thus in order to
show to equality of (2.8) and (2.10) we need one more ingredient.

The missing piece is the Generalized Eigenstate Thermalization (GETH), which states
that in the thermodynamic limit the mean values of local observables only depend on the
mean values of the charges, and not on the other details of the eigenstates. If the GETH
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holds, then the DE and the GGE give the answer for the local observables, because both
summations involve states with the same macroscopic mean values of the charges.

The GETH was first proposed in [150] and it can be considered as a straightforard
generalization of the Eigenstate Thermalization Hypothesis [151, 152], which is thought
to be responsible for the emergence of the Gibbs Ensemble in non-integrable models [93].

We should add that the ETH and the GETH include an additional statement about the
off-diagonal matrix elements of the operators, namely that they should be much smaller
than the diagonal ones and that they should decay exponentially with the system size.
This condition is needed to ensure that the fluctuations around the time averaged values
are also small in the TDL [153].

2.4 Completeness of charges

Based on the previous arguments, a set {Qα}α=1,2,... of conserved charges is sufficient
for a GGE, if it guarantees that the GETH holds. Let us discuss the diagonal matrix
elemts, i.e. we look at the mean values

lim
TDL
〈n|O|n〉, (2.12)

where it is understood that |n〉 is an exact eigenstate, but we consider the thermodynamic
limit in the given situation. As discussed in 1.8 in large volumes the Bethe states can be
described by root density functions. It is generally believed that in the TDL the mean
values of local observables only depend on the set of root densities, thus we can write

lim
TDL
〈n|O|n〉 = O ({ρ(λ)}) . (2.13)

Here it is understood that if there are multiple particle species then all root densities have
to be treated as separate dynamical quantities.

On top of (2.13) it is also believed that in the TDL the infinite set of local observables
perfectly distinguishes the root density functions. In other words, selecting two different
root densities, corresponding to two different physical situations, there is always a local
observable whose mean value is different in the two cases.

These two statements are plausible and they were assumed since the early days of
the Algebraic Bethe Ansatz [52]. In specific models (2.13) can be proven on a case by
case basis; for the Heisenberg spin chains the author also contributed and the results are
presented in 5. It becomes clear from the construction that the second statement also
holds quite generally.

Regarding the charges the eigenvalues in the TDL are given by (1.66). We can thus
conclude that the GETH is satisfied with a particular set of charges, if the Bethe root
densities can be reconstructed from the infinite set of equations given by (1.66). This
question has to be investigated on a case by case basis, and below we treat the XXZ and
XXX models, where the search for the complete set proved to be highly non-trivial.

In thoses cases when the complete set is found, the Bethe Ansatz computation of the
GGE proceeds as follows:

• The mean values of the charges (or their densities) are computed in |Ψ0〉. Following
(2.11) they will be equal to the mean values of the densities in the Bethe states.
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• The Bethe root densities are reconstructed using (1.66).

• The steady state correlation functions are computed using exact methods, to be
discussed for example in Sec. 5.

Notice that this method completely avoids the explicit determination of the Lagrange
multipliers βj in the GGE.

The reader might wonder about the mathematical rigor behind the construction above.
After all the GGE denisty matrix involves a formal sum over an infinite number of opera-
tors, and we have just claimed that it is not necessary to compute the βj parameters. We
thus completely bypass the problem of whether the GGE density matrix is actually well
defined. This question is studied among others in the rigorous work [154].

2.5 The Quench Action method

Before discussing the GGE in concrete models, we also introduce an alternative theo-
retical tool: the Quench Action (QA) method. This can be used in certain cases to find
the Bethe root distributions of the steady states. It was pioneered in [155]; for a longer
discussion see [156].

The starting point of the QA is the knowledge of the exact overlaps 〈Ψ0|n〉 which
are the weights in the Diagonal Ensemble (2.10). It turns out that in specific cases the
overlaps can be found using analytical tools, moreover they take a special form. These
cases are now called “integrable initial states” [15] and were studied in detail by the author
and collaborators. Closely related methods dealing with these initial states are discussed
in Sec. 3, and the exact overlap formulas are the topic of Sec. 4. Here we just present a
brief overview of their structure, such that the QA method can be introduced.

For simplicity let us again consider a theory with a single particle species (one type
of Bethe roots). For integrable initial states the overlaps are non-zero only if the set of
momenta pN is space reflection invariant. This means that the momenta have to come
in pairs p,−p, or they can include a zero momentum particle as well. On the level of
rapidities this is also means that the set λN have to consist of pairs λ,−λ, or they can
include special rapidities with p(λ) = 0 (or p(λ) = π in spin chains). We will focus on the
case with strict pairs; the cases with zero momentum particles can be treated with simple
modifications.

For such paired rapidities the overlap with the integrable initial state takes the form

|〈Ψ0|λN〉|2 =

N/2∏
j=1

u(λ+
j )× C(λN), (2.14)

where we write
λN = {λ+

1 ,−λ+
1 , . . . , λ

+
N/2,−λ

+
N/2}. (2.15)

In (2.14) the function u(λ) is called the single pair overlap function, and the function
C(λN) is such that it remains O(L0) in the TDL. This function is also explicitly known,
it will be discussed in 4. Quite interestingly, it does not depend on the initial state, and
it is related to the pair structure only. The dependence on |Ψ0〉 is carried only by u(λ).

The physical meaning of the special overlap above is the following: In these cases the
initial state “emits” pairs of particles with opposite momenta. The particles within each
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pair are correlated, because they are always emitted together. The factorization of the
overlap means that the emission amplitudes are independent from each other, thus the
pairs are initially not correlated.

If the overlap takes the above special form, then the quantum quench can be solved:
Assuming that in the long time limit the system will be populated with states with a well
defined root densities, these densities can be determined from a saddle point evaluation
of the Diagonal Ensemble (DE) (2.10). The idea is to transform the summation over
individual states into a functional integral over root densities:∑

n

|〈Ψ0|n〉|2[· · · ] →
∫
D[ρ(λ)]e−SQA[ρ(λ)][· · · ]. (2.16)

Here SQA is the Quench Action, which is a functional of the root densities. It includes
two terms: the extensive part of the logarythm of the overlap expressed using the root
densities, and an entropy term which describes the microcanonical entropy of a given root
distribution. This entropy is normalized such that the requirement of the pair structure
is correctly taken into account. The Quench Action can be regarded as a generalization
of the free energy functional, adapted to the quench setup; its precise form and its de-
tailed derivation can be found for example in [156]. In the formula above [. . . ] denotes an
insertion of local operators, which do not shift the saddle point of the functional integral.

The Bethe root distribution in the steady state is then found by minimizing the Quench
Action. In the simplest cases (with one particle type only) the resulting equation reads
[157,158]

ε(λ) = µ+ log(u(λ))−
∫
dω

2π
ϕ(λ− ω) log(1 + e−ε(ω)). (2.17)

Here ε(λ) is the so-called pseudoenergy function, which is related to the filling fraction
(1.62) through

f(λ) =
1

1 + eε(λ)
, (2.18)

and µ is a chemical potential which might be needed to fix the total particle number to
the desired value. The overlaps are valid for arbitrary total particle number, and µ ensures
that we go from the grand-canonical ensemble to the correct final total particle density.

Eq. (2.17) together with (1.63) completely determine the root densities given that the
exact overlaps are known in factorized form. This can serve as a check of the GGE: If the
root densities computed from a GGE fail to reproduce those of the QA approach then the
charges used in the GGE can not be complete. Such a case will be discussed below.

The equation (2.17) and its generalizations can be called the overlap based TBA (o-
TBA) equations. They have the same structural form as the TBA equations describing
finite temperature situations [49, 117, 118]. We put forward that in some cases already
the form of the o-TBA can give some information about the completeness of the charges.
The arguments leading to (2.17) can be repeated also for the Generalized Gibbs ensemble
(2.8); this leads to the GGE-TBA equations

ε(λ) =
∑
j

βαhα(λ)−
∫
dω

2π
ϕ(λ− ω) log(1 + e−ε(ω)). (2.19)

Comparing (2.19) and (2.17) we see that the two equations can have the same solution
only if the source terms are equal. This means that the GGE is complete, if the source term
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log(u(λ)) can be reproduced by a linear combination of the one-particle charge eigenvalue
functions.

We note that the specific form (2.14) of the overlap is rather different from the weights
in a GGE. Looking at the GGE density matrix there is no need to assume the pair struc-
ture. Thus if the GGE correctly describes the quantum quench, it does so despite having
different weights than those in the Diagonal Ensemble (2.10). The entropic consequences
of this mismatch are discussed for example in [159].

2.6 Generalized Gibbs Ensemble for the Heisenberg spin chain

The XXZ spin chain is one of the simplest and most studied integrable models. It has
some special features which motivate its importance:

• It is experimentally relevant [59,160–162].

• It is interacting and solvable.

• Its Bethe Ansatz solution is relatively simple compared to other models (for example
the multi-component models which require the nested Bethe Ansatz).

• It is a well defined lattice model. This makes it easier to study than for example the
Lieb-Liniger model, which poses difficulties both for a theoretical and a numerical
treatment because it is defined in the continuum (see for example [163]).

These properties motivated the study of the GGE in the XXZ spin chain. The main
question was whether a properly defined GGE can be correct in predicting the steady
states after the quantum quenches.

Research in this direction started around 2013, and eventually the problem was settled
in 2015. The author and the local research group led by Gábor Takács played a decisive
role in this.

The first works to treat a GGE in the XXZ model where [1] and [164] which appeared
around the same time, and which have an almost identical content. Here a construction
was given for the GGE, using the canonical local charges, which are defined from the
transfer matrix through (1.33). The main idea is to construct the GGE ensemble, and
compute mean values of local observables using the Quantum Transfer Matrix (QTM)
formalism [165–168] (see also the review [169] and the lecture notes [50]).

Originally the QTM was devised to treat finite temperature ensembles. Now we review
the key steps.

We start with the following simple relation, which uses the expansion of the transfer
matrix using the charges (1.33):

e−βH = lim
N→∞

(
1− β

N
H

)N
= lim

N→∞

(
t−1(0)t(−cβ/N)

)N
. (2.20)

Here c is some constant which might be needed to relate the canonical Q2 defined in (1.33)
to the conventional normalization of H. In the QTM approach one uses a finite N (also
called Trotter number), and builds a 2D classical partition function for the combination

Z = Tr
(
t−1(0)t(−cβ/N)

)N (2.21)

36

dc_1819_20

Powered by TCPDF (www.tcpdf.org)



.

−cβ/N

0

−cβ/N
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Figure 6: An example for a partition function (2.21) with L = 6 and N = 2. The horizontal
lines correspond to the action of the original transfer matrices in (2.21); each crossing
depicts the action of a local Lax operator, see Fig. 1. Periodic boundary conditions are
understood in both directions. The QTM is built as the transfer matrix which acts in the
horizontal direction, thus it is built from the Lax operators along one column.

using the Lax operators that enter the definition of the transfer matrix. The operator
t−1(0) is actually a shift operator, which can also be represented in this framework. The
Trotter limit N → ∞ will be taken at the end of the computation to actually generate
the thermal operator e−βH .

In a finite volume L and at a finite N the trace given by (2.21) can be interpreted
as a partition function of the six-vertex model on a lattice of size L×N . The statistical
weights of the 6-vertex model are given by the matrix elements of the local Lax operators,
which in this case are identical to those of the R-matrix given by (1.39). This relation
between the quantum spin chain and the vertex model is explained in detail for example
in [40, 170]. It can considered as a concrete demonstration of the general statement that
a D dimensional quantum system is always equivalent to a D + 1 dimensional classical
statistical model, where the connection is given by Feynman’s path integral. For the
present situation sometimes the term “lattice path integral” is also used.

As a second step, the resulting partition function is evaluated by constructing a new
transfer matrix τ(u) acting in the orthogonal direction: this is the Quantum Transfer
Matrix (QTM) acting on a total number of 2N sites (corresponding to the product of 2N
operators in (2.21)), such that the partition function in question is expressed as

Z = Tr τL(0). (2.22)

The QTM τ(u) is a transfer matrix of an inhomogeneous chain, where the inhomogeneities
are determined by the temperature. For a pictorial interpretation see 6.

As a third step one investigates the large L limit at finite N ; the commutativity of
the N → ∞ and L → ∞ limit is a separate problem which needs to be proven, but all
existing numerical data and the experience with analytical computations confirm that
this is a valid step and the L → ∞ can be taken even at finite N . Furthermore, in all
relevant cases it was found that the QTM is gapped, with a finite gap that remains for
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all large N . Therefore, the trace above can be computed with exponential accuracy as

Z ≈ ΛL(0), (2.23)

where now Λ(0) is the largest eigenvalue of the QTM, still slightly depending on N . This
eigenvalue determines the free energy of the model, and the corresponding eigenvector
can be used to compute the finite temperature mean values of local observables.

Here we do not give the details of the computations behind the QTM method, because
there are a large number of technical steps which should be discussed. Instead we refer
to [50,169] and here just give a brief overview of the results. Furthermore we focus on the
massive regime with ∆ = cosh(η) > 1 .

In large volumes the partition function (2.20) can be expressed as

logZ = −fL+ . . . ,

where the dots denote exponentially small corrections in L. The free energy density is
given by

f = −
∫
C

dω

2πi

sinh η log(1 + a(ω))

sinhω sinh(ω + η)
. (2.24)

Here a(λ) is an auxiliary function defined on the complex plane which satisfies the non-
linear integral equation (NLIE), which in the Trotter limit reads

log a(λ) =− βq2(λ)−
∫
C

dω

2πi

sinh 2η log(1 + a(ω))

sinh(λ− ω + η) sinh(λ− ω − η)
. (2.25)

The contour C in the equations above depends on ∆. For the ∆ > 1 regime it can be
chosen as a union of two straight line segments:

C = [−iπ/2 + α, iπ/2− α] ∪ [iπ/2− α,−iπ/2 + α],

where α < η/2 is an arbitrary parameter. Note that the first line segment runs upwards
and the second runs downwards. The function q2(λ) is related to the one-particle energy
and it is given by

q2(µ) =
cosh(µ)

sinh(µ)
− cosh(µ+ η)

sinh(µ+ η)
.

Finite temperature correlation functions can be computed within this formalism, and
the auxiliary function a(λ) specifies the “physical data” for the computations. This is
reviewed in Sec. 5.

The main new result of the works [1, 164] is the evaluation of the GGE partition
functions

Z = Tr e−
∑
j βjQj (2.26)

by choosing appropriate spectral parameters in the Trotter expansion. The key idea is
to use the expansion (1.33) of the tranfer matrices to generate the charges using some
products of the form

t(ξ1) . . . t(ξm) ≈ 1 + cQj, (2.27)

where cj are some constants depending on the inhomogeneities. Once such a formula is
obtained, the combination e−βjQj can be generated by the Trotterization. The key idea of
this method appeared earlier in [171].
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Eventually one obtains the NLIE for the GGE

log a(λ) =−
∑
j

βjqj(λ)−
∫
C

dω

2πi

sinh 2η log(1 + a(ω))

sinh(λ− ω + η) sinh(λ− ω − η)
, (2.28)

where

qj(µ) =

((
∂

∂u

)j−1

log
sinh(u− µ− η)

sinh(u− µ)

)∣∣∣∣∣
u=0

. (2.29)

Note that compared to (2.25) only the source term is replaced in (2.28), such that it
mirrors the structure of the GGE density matrix.

In [1] this NLIE was used to give predictions for steady state correlations after a
specific quantum quench. The example was the quench from the Néel state. The work [1]
actually treated the so-called truncated GGE, where only a finite number of charges were
added, and the dependence on the truncation level was also investigated. At this point
the complete picture explained in Section 2.4 was not yet understood, and [1] used the
direct approach of fitting the βj parameters through (2.9). This proved to be possible for
a small number of charges. However, at that time it was not possible to compare these
results to other theoretical or numerical (or perhaps experimental) results, so the nature
of the GGE was not yet clarified in these works.

A further important step was taken in the parallel works [6,172], which appeared side
by side in Phys. Rev. Lett. In these papers alternative numerical approaches were applied
to test the GGE predictions for steady state correlators. Both works reached the conclusion
that the GGE built only on the local charges fails to describe the physical properties of
the steady state. This was an unexpected result at that time, which contributed to the
eventual understanding of the GGE.

The methods and results of [6,172] are almost identical, and they only differ in certain
points. Here we describe our work [6] in more detail. Here one of the the key ideas was to
apply a Matrix Product State (MPS) algorithm to simulate the real time dynamics after
a quench, in the hope of obtaining the equilibrated correlation functions with sufficient
precision. This turned out to be possible. The actual algorithm used was the so-called
iTEBD (infinite Time Evolving Block Decimation) [173,174] method; the numerical com-
putations were carried out by Miklós Werner, who was a PhD student at that time. The
focus was on two particular initial states, namely the Néel state and the dimer state given
by (2.2); the time evolution was generated by the XXZ Hamiltonian with ∆ > 1. For the
Néel state the GGE predictions were taken from [1], whereas for the dimer state they were
taken from [175], which applied methods similar to [164]. A direct comparison revealed
that the GGE predictions are clearly wrong for the dimer state, and they appeared to be
slightly wrong also for the Néel state, although in that particular case the difference was
smaller. An example for the mismatch between the GGE and the o-TBA predictions is
presented in Figure 7.

The papers [6, 172] did not find a solution to the observed failure of the GGE. Some
possible explanations at that time were:

1. The set of the conserved charges used in the GGE is not complete, and new charges
could complete is.

2. Some other ingredient in the derivation is faulty.
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Figure 7: An example for the mismatch between the prediction of the strictly local GGE
and the actual real time evolution. The data shows the time dependence of the correlator
〈σz1σz4〉 in the quench where the initial state is the dimer state. The model is the XXZ chain
with ∆ = 4. The numerical data is obtained with the iTEBD algorythm. The dotted line
shows the GGE prediction. The dashed line shows the Quench Action (o-TBA) prediction.
The numerical data of the iTEBD program is to be trusted until the entanglement in the
system is not too large; this can be monitored within the program. The grey are shows
those times when the iTEBD data is not to be trusted anymore. We can see a relaxation
towards the QA prediction within the white area. This confirms that the QA method is
correct and the GGE built on the local charges is not complete. Figure taken from [6].

3. The main idea of the GGE is simply wrong.

Later it was found out that the first explanation is correct.
On a technical level the failure of the local GGE is manifested in the TBA equations.

We explain this point in more detail here.
For a GGE of the form (1.16) where the Qα are the canonical charges the resulting

GGE-TBA equations take the form [6,172]

log(ηn(λ)) =− δn,1
∞∑
α=2

βα

(
d

dλ

)α−2

s(λ)+

+

∫ ∞
ω=−∞

dω

2π
s(λ− ω)(log(1 + ηn−1(ω)) + log(1 + ηn+1(ω))),

(2.30)

where we defined
ηn(λ) =

ρn(ω)

ρn,h(ω)
. (2.31)

It is important that in these equations only the first component n = 1 has a source term.
This is in contrast with the result of the Quench Action method, described in Section

2.5. In the QA method the resulting o-TBA equations are of the form

log(ηn(λ)) =dn(λ) +

∫ ∞
ω=−∞

dω

2π
s(λ− ω)(log(1 + ηn−1(ω)) + log(1 + ηn+1(ω))), (2.32)
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where the dn(λ) source terms are typically non-zero functions that can be derived from
the factorized overlaps. For later use we present the main formulas for them. We have

dn = −gn + s ? (gn−1 + gn+1), with g0 = 0, (2.33)

where gn(u) is the overlap pair amplitude for the n-strings, given by

gn(λ) = −
n∑
k=1

log
(
u(λ+ iη(n+ 1− 2k)/2)

)
, (2.34)

where u(λ) is the amplitude for a single rapidity pair, see (2.14).
This construction for the dn might seem complicated, but contour deformations of the

convolutions in (2.33) result in relatively simple final functions, which depend only on
the analytic structure of the single particle overlap u(λ). In some concrete cases explicit
formulas were given in [9,172], but they are not relevant for our discussion. We just note
that all dn(λ) are non-zero for both the Néel and Dimer states, which were investigated
in [6, 172].

The apparent contradiction between the two sets of equations was resolved in the
work [176]. Here it was shown that a complete GGE can be built using the so-called
quasi-local charges of the model, and that such a complete GGE indeed reproduces the
TBA equations (2.32). In order to explain the main results we first discuss the quasi-local
charges.

2.7 Quasi-local charges and the complete GGE

The quasi-local charges were discovered in a series of works by Tomaž Prosen and his
collaborators [177–179]; for a pedagogical review see [89]. An independent work from the
same time was [180].

The essence of quasi-locality is that the new charges are still extensive in the volume,
but the condition that the charge densities should be strictly local operators is relaxed.
Instead, the new charge densities can include operator contributions with arbitrarily in-
creasing length, although with strongly decreasing amplitudes. The precise definition is
the following:

Let A(L) be a series of operators acting on spin chains of varying length L. We call
the series quasi-local if it satisfies the following conditions:

1. A(L) is traceless for every L.

2. In large volumes the Hilbert-Schmidt norm squared increases linearly with L:

Tr A†(L)A(L) ∼ L (2.35)

3. For every strictly local operator B which does not depend on L the operator overlap
defined as

Tr A†(L)B (2.36)

has a finite L→∞ limit.
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The first condition is required for technical reasons, in order to avoid divergent contribu-
tions proportional to the identity operator. The second condition clearly holds for strictly
local charges, and it also holds in those cases when the operator densities have long tails
with quickly decreasing amplitudes. The third condition reflects the requirement that the
local action of the charges should not depend on the thermodynamic limit.

The quasi-local charges that were found in the integrable spin chains are of the form

A(L) =
L∑
x=1

a(x, L), (2.37)

with a translationally invariant operator density a(x, L) that has a finite L → ∞ limit
such that the formal expression

A =
∞∑

x=−∞

a(x), a(x) = lim
L→∞

a(x, L) (2.38)

acting on the infinite chain is meaningful. Furthermore, the limiting density can be written
as

a(x) =
∞∑
r=1

ar(x), (2.39)

where ar(x) are strictly local operators acting on r neighbouring sites, and their norm
scales as

‖ar(x)‖ ∼ e−ξr, (2.40)

where ξ > 0 is a characteristic decay length of the operator in question. These decay
lengths can depend on the particular charge, but it is important that each charge has
exponentially decaying tails.

It was first realized in [179] that the quasi-local charges can be simply obtained by the
so-called higher-spin or fused transfer matrices. These TM’s were known since the early
days of algebraic Bethe Ansatz, but it was not realized that they yield the quasi-local
charges and that they are so crucial for the GGE. Now we give a very brief introduction
into the construction of these charges, without presenting all technical details. We focus
on the XXX case.

The key idea is to construct transfer matrices which carry higher dimensional repre-
sentations of the SU(2) group. To this order we introduce Lax operators LΛ(µ) that act
on the tensor product Cs+1 ⊗ C2, where Cs+1 is the new auxiliary space, s = 1, 2, . . . is
the representation index and Λ signals the SU(2) representation of dimension s+ 1. The
physical spaces of the spin chain (the sites) are not modified. We require that the Lax
operators satisfy the higher dimensional RLL relations:

RΛb,Λa
b,a (ν, µ)LΛb

b,j(ν)LΛa
a,j(µ) = LΛa

a,j(µ)LΛb
b,j(ν)RΛb,Λa

b,a (ν, µ). (2.41)

Here a and b stand for two auxiliary spaces and j signals a physical space. Furthermore,
RΛb,Λa
b,a (ν, µ) is the R-matrix acting on the tensor product of two auxiliary spaces. Consis-

tency requires that for three arbitrary representations the following Yang-Baxter relation
is satisfied:

RΛ1,Λ2

12 (λ1, λ2)RΛ1,Λ3

13 (λ1, λ3)RΛ2,Λ3

23 (λ2, λ3) =

= RΛ2,Λ3

23 (λ2, λ3)RΛ1,Λ3

13 (λ1, λ3)RΛ1,Λ2

12 (λ1, λ2).
(2.42)
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It is possible to construct such R-matrices and Lax operators using the so-called fusing
procedure [181,182].

Then we define the higher dimensional monodromy matrices as

TΛ
a (µ) = LΛ

a,L(µ) . . .LΛ
a,1(µ). (2.43)

This is an operator acting on Va⊗H. The higher dimensional transfer matrix is its partial
trace over the auxiliary space:

tΛ(µ) = TraTΛ
a (µ). (2.44)

It follows from the RLL relations that all these transfer matrices commute:[
tΛ1(µ1), tΛ2(µ2)

]
= 0. (2.45)

It is customary to denote the transfer matrices as ts(µ), where s = 1, 2, . . . is the repre-
sentation index.

The TM’s obtained this way are not independent, they satisfy a set of functional
equations called the Hirota equation or T -system [183–188]. For example in the SU(2)
case discussed here we have

ts(µ+ i/2)ts(µ− i/2) = ts+1(µ)ts−1(µ) + Φs(µ), (2.46)

where t0(µ) = 1 by definition and Φs(µ) is a scalar function which depends on the precise
multiplicative normalization of the Lax operators. As a result of these equations, each
ts(µ) can be expressed using the fundamental t1(µ), see for example the determinant
formulas found in [189].

Relation (2.46) can be considered the “quantum deformation” of a simple fusion rule
from the representation theory of the group SU(2). If we label the irreducible repre-
sentations in the same way as Λs, such that Λ1 is the defining representation and the
dimensionality of Λs is s+ 1, then the following holds for the representations:

Λs ⊗ Λs = Λs+1 ⊗ Λs−1 ⊕ Λ0. (2.47)

The structure of eq. (2.46) mirrors (2.47) with the extra changes regarding the spectral
parameters. This a generic feature of the T -system: even for models with higher rank
symmetries they always mirror some simple fusion rules from the corresponding represen-
tation theory. This is why the set of the higher transfer matrices is often called the fusion
hierarchy of the model.

Returning to the GGE, it was a crucial observation of [179] that a family of quasi-local
charges can be defined as

Xs(µ) = (−i)∂µ log(ts(µ)). (2.48)

Here the pre-factor of (−i) is just a matter of convention. The µ-derivative acts on the log-
arythm of the transfer matrices; this is only a formal definition. A constructive definition
can be given as

Xs(µ) = (−i)t̄s(−µ)∂µts(µ), (2.49)

where t̄s(µ) is an asymptotic inverse satisfying

lim
L→∞
‖t̄s(−µ)ts(µ)− 1‖ = 0 (2.50)
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for µ within some neighbourhood of µ = 0. It can be argued that this asymptotic in-
verse is the space reflected transfer matrix (see later in (3.7)). For concrete proofs of the
asymptotic inversion relation see [179, 190]; such relations go back to the early days of
integrability, see for example [191].

It is relatively easy to show that the definition (2.48) yields an extensive operator for
every s and µ. However, the proof of the conditions for quasi-locality is not trivial. It was
proposed in [179] that the operators Xs(µ) are quasi-local for every s if µ is inside the
so-called physical strip with |=(µ)| < 1/2. However, this was proven only for small values
of s. For a discussion of these issues we refer to [89,179].

There are two ways to see that the set {Xs(µ)} produces a complete GGE. First, it is
possible to derive the GGE-TBA equations for a density matrix of the form

ρ ∼ exp

(
−
∞∑
s=1

∫
dµ

2π
βs(µ)Xs(µ)

)
, (2.51)

where now the Lagrange mutpliers βs(µ) depend both on the discrete spin index and on
the continuous rapidity parameter. It is relatively easy to show that the resulting TBA-
equation does indeed reproduce any QA-TBA of the form (2.32) with arbitrary source
terms for each node.

The second way to see that this set of charges is complete is perhaps more enlightening:
It is possible to show that the GETH holds. To be more precise, it can be shown that the
initial values of the charge densities defined as

Ωs(µ) = lim
L→∞

〈Ψ0|Xs(λ)|Ψ0〉
L

(2.52)

completely specify the set of Bethe root densities. The mean values of Xs(µ) are conserved
during time evolution, thus the functions Ωs(µ) have to coincide with the same mean values
evaluated on those Bethe states that populate the system after the quench. It was shown
in [176] that the following relation holds:

ρs,h(µ) = as+1(µ) +
1

2π
lim
ε→0

[Ωs(µ+ i/2− ε) + Ωs(µ− i/2 + ε)] , (2.53)

where ρs,h(µ) is the density of holes for the s-strings and as+1(µ) are some known functions
that do not depend on the Bethe state. After specifying all hole densities the actual root
densities can be computed using the integral equations (1.64). The resulting relation is

ρs(µ) =
1

2π

{
lim
ε→0

[Ωs(µ+ i/2− ε) + Ωs(µ− i/2 + ε)]− Ωs+1(µ)− Ωs−1(µ)
}
. (2.54)

Thus the mean values of Xs(µ) indeed completely specify the particle content of the Bethe
states.

The second part of the GETH, namely that the Bethe root densities completely specify
the mean values of other local correlations is a separate issue and it is discussed in Section
5.

The reader might wonder why the operators Xs are needed if the functional equations
(2.46) connect all transfer matrices to each other. The Hirota equations imply that every
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ts(µ) is completely determined by t1(µ), which means that in finite volume the eigenvalues
of the fundamental transfer matrix completely determine all other TM’s. Furthermore they
contain enough information to extract the values of the Bethe roots [192,193].

The reason why we need all Xs separately lies in the thermodynamic limit. It turns
out that in the TDL a lot of information is lost if we only look at t1(µ), but this informa-
tion is retained in the other members of the hierarchy. In more mathematical terms: the
eigenvalue of t1(µ) is given by (1.49), and it is a sum of two terms. In the TDL one term
becomes dominant, and considerable information is lost when the other term is eventu-
ally scaled to zero. This information is then retained in the other members of the fusion
hierarchy, because the other members are constructed from t1(µ) after adding shifts of
±i/2 to the argument µ, and these shifts influence which term in t1(µ) becomes dominant.
Looking at this more carefully it turns out that eventually the complete fusion hierarchy
is needed to retain all the information, which was stored in t1(µ) in a finite volume.

In [194] a slightly different point of view was suggested for the construction of the GGE.
In this work root density operators ρ̂s(µ) were introduced whose eigenvalues coincide with
the root density functions. It was shown in [194] that ρ̂s(µ) can be expressed using Xs(µ),
the relation is essentially the combination of (2.53) and (1.64). In this approach the
operators ρ̂s(µ) are added into the GGE density matrix, giving a transparent physical
meaning: we have a separate Lagrange multiplier for each particle type and each rapidity
(or momentum) value. However, the operators ρ̂s(µ) are not quasi-local anymore, so the
statistical physical interpretation of the GGE obtained this way is less clear.

One more alternative framework is given in [195], where the Quantum Transfer Ma-
trix formulation of the complete GGE is given. This construction can be cosidered as
a generalization of the work [1] of the author so that the quasi-local charges are also
included.

The relation (1.64) is an example for the so-called “string-charge duality” (the term
was coined in [196]). This duality means that for each particle type (which are the various
strings in the Heisenberg chains) there should be a particular conserved charge which fixes
its value. This correspondence was already mentioned in Section 2.3 above. Whereas the
first works [6, 172] showed that the original set of local charges does not give a complete
correspondence, the papers [176, 196] argued that the “duality” between the descriptions
holds when the quasi-local charges are included.

Above we investigated the XXX model in more detail, but the XXZ case can be treated
using similar steps. In the case of ∆ > 1 analogous equations hold with slightly different
concrete functions involved. However, for the case of ∆ < 1 some extra steps are needed.
The original paper [196] only treated spin-flip invariant states. In the more general case the
string-charge duality only holds if a spin-flip non-invariant family of conserved operators
is also added to the GGE. This problem was eventually solved in [197], which showed how
to complete the string charge duality for states that are not spin-flip invariant.

We should also note that more formal aspects of the GGE were investigated using
rigorous mathematical steps in [154].

2.8 Truncated GGE

It is important to discuss the physical meaning of the GGE. We have shown that
starting from the relatively simple concept given by formula (1.16) the technical details
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lead to rather involved constructions. The connections to the original statistical physical
ideas behind the Gibbs or Generalized Gibbs Ensembles are not so clear anymore. It is
our opinion that the “string-charge duality” should be regarded as the final answer to this
question, and it is more adequate to refer to the “GETH” instead of the “GGE”. The reason
is simply that the relations like (2.53) completely fix the root densities using information
from the conserved charges, and there is no statistical physical reasoning involved: there
is no “maximum entropy principle” in this construction.

On the other hand, it is an interesting (and for experiments highly relevant) question
whether a truncated GGE with a finite number of charges can well approximate the
emerging steady states. This was investigated in the case of the Ising model in [149] and
in the case of the XXZ spin chain in [14].

In the latter work [14] the author and his collaborators showed that in the XXZ chain
the exact predictions of the string-charge duality can always be obtained by a sequence of
truncated GGE’s (tGGE’s), if the number of charges added is gradually increased towards
infinity and if the Lagrange multipliers are chosen accordingly (possibly also depending
on the truncation number). From a mathematical point of view this boils down to prov-
ing that every source term in (2.32) can be reproduced by the corresponding functions
appearing in the tGGE construction. Furthermore, the statement was also demonstrated
on concrete examples.

Generically it was observed that the spatial locality plays a very important role in the
tGGE. Both works [14,149] concluded that the spatially localized (short range) correlation
functions strongly depend on the Lagrange multipliers of the short range charges. In
contrast, the dependence is much weaker when we also consider the longer range charges,
or the quasi-local charges with higher spin indices. It is important that this observation
was made by focusing on concrete examples, therefore it should be not considered as
rigorous statement. Nevertheless it agrees with the common lore that in the Heisenberg
chain the higher strings (bound states with a big number of constituents) do not affect
correlation functions in the most relevant physical situations.

Examples for the correlation functions within a truncated GGE are given in Figure
8. Here the idea is to take a truncation number n and consider the first n charges from
each family Xs(u) with s = 1, . . . , n. Thus at each n a total number of n2 discrete charges
are taken into account. The particular quench from the Dimer initial state is considered.
The Lagrange multipliers for these charges are found numerically by requiring that the
truncated GGE gives the correct values for the charges, equal to the mean values in
the initial state. Then the local correlation functions are computed within this truncated
GGE, following the methods described in Sec. 5. The data shows that as n is increased, the
numerical values for these local correlation functions indeed converge, and the asymptotic
value is equal to the one obtained from the Quench Action. Thus the truncated GGE
indeed converges to the exact solution of the quench. We can see that good fits are
obtained with a total number of 62 = 36 charges; similar convergence was observed in all
cases.

2.9 GGE in models with higher rank symmetry groups

The success of the GGE in the paradigmatic XXZ chain propagated the belief that
some version of the GGE should indeed exist in every integrable model. However, there
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Figure 8: Evaluation of a few local observables within the truncated GGE for the dimer
quench. The correlators σz1σza, a = 2, 3, 4 are plotted as a function of the truncation index
n. At each truncation step a total of n2 charges are included in the truncated GGE. The
horizontal line shows the correlators computed using the Quench Action solution. The
value of the anisotropy is ∆ = 3.

is no canonical construction for the GGE which would work for every integrable model.
The reason for this is that the class of integrable spin chains is actually wider that the
class of models considered above.

We focused on models with nearest neighbour interactions, and in these cases the QISM
method gives all the charges and eventually also the GGE. However, there are other types
of models, where such a construction is not known. One such class is made of the long-
range models (such as the Haldane-Shastry or the Inozemtsev chains [198–200]), where
the construction of the conserved charges is more involved [201] and far from understood.
The GGE has not yet been established in these models.

An other class of models where the GGE was not known are the nearest neighbour
interacting models related to higher rank symmetries. A famous example is the 1D Hub-
bard model [99] or the SU(N)-symmetric spin chains. These models can be solved by
the nested Bethe Ansatz, which is generally much more complicated than the simple one
used in the one-component models. Therefore, much less is known about the correlation
functions and the dynamics of these systems.

The work [202] treated the transport properties of the Hubbard model within General-
ized Hydrodynamics (for an introduction into this theory see Section 6). However, for this
model the complete GGE is not yet established, therefore [202] made some assumptions,
and the justification is simply based on the success of the GGE for the Heisenberg model.
Other works considered the real time dynamics in nested models [21,22,203,204]; all these
works focused on the so-called integrable quenches (see next Section), and the question
of the complete GGE was not elaborated upon.

Motivated by these works, the author and a collaborator considered the SU(3)-symmetric
local spin chain in [190] and showed that the complete GGE of the Heisenberg chain can
be generalized also to this more complicated model.

The Hamiltonian of the general SU(N)-symmetric local chain is given by

H =
∑
j

Pj,j+1 − 1, (2.55)

where Pj,j+1 is the permutation operator acting on the tensor product CN ⊗ CN of the
local Hilbert spaces of two neighbouring spins.
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The model can be solved by the nested Bethe Ansatz for every N > 2 (for the algebraic
treatment see for example [205], or the recent introduction [108]). The eigenstates are
described by different sets of rapidities

λ
(a)
Na

= {λ(a)
1 , . . . , λ

(a)
Na
}, (2.56)

such that each set corresponds to a different “nesting level”, denoted by the index a =
1, . . . , N − 1, and Na is the number of elements of the particular set. The first level
corresponds to the physical, momentum carrying degrees of freedom (particles above a
vacuum state), whereas the higher levels describe the internal degrees of freedom of the
multi-particle spin waves. The corresponding Bethe equations can be found for example
in [190].

It is known that generally the rapidities of all nesting levels can form strings. Therefore
the “particles” of the model can be characterized by two discrete indices (the nesting level
a and a string length s) and a continuous rapidity parameter µ. In the TDL the Bethe
root distribution can thus be described by the densities ρ(a)

s (µ) with a = 1, . . . , N − 1 and
s = 1, 2, . . . .

In [190] we considered the question whether there are quasi-local operators that fix
the complete set {ρ(a)

s (µ)} of root densities. In the case of N = 3 we constructed these
charges and provided proof for the quasi-locality in a few concrete cases. For the general
N we made analogous conjectures, but were not able to provide a rigorous proof. The
actual statements are rather technical, so here we just describe the main results.

In the SU(N)-symmetric models there exists a transfer matrix tΛ(µ) (2.44) for each
irreducible representation of the symmetry group. These representations are characterized
by Young diagrams. It is known that the rectangular Young diagrams play a special role in
the algebraic description: they satisfy the T-system or Hirota equations mentioned above.
For a rectangular diagram with a rows and s columns let t(a)

s (µ) denote the corresponding
transfer matrix. The Hirota equation reads

t(a)
s (µ+ i/2)t(a)

s (µ− i/2) = t
(a)
s+1(µ)t

(a)
s−1(µ)+t(a+1)

s (µ)t(a−1)
s (µ),

a = 1, . . . , N − 1, s = 1, 2, . . . .
(2.57)

The boundary conditions to these functional relations depend on some arbitrary choices,
as discussed in detail in [183–185]. In our work we used the conventions t(a)

0 = 1, t(N)
s = 1

and t(0)
s was set to a fixed function.

In analogy with (2.48) we defined the charge generating functions

X(a)
s (µ) = (−i)∂µ log(t(a)

s (µ)). (2.58)

In the case of N = 3 we proved that two of these charges are quasi-local if µ is in the
physical strip |=(µ)| < 1/2. It is conjectured that the same statement holds in all the
other cases.

The main result in [190] is the string-charge relation

ρ(a)
s (µ) = lim

L→∞

1

2πL

(
X(a)
s (µ+ i/2) +X(a)

s (µ− i/2)−X(a)
s+1(µ)−X(a)

s−1(µ)
)
, (2.59)

where the shifts of ±i/2 should be understood as limiting values from within the physical
strip. This relation was proven in detail for N = 3 and conjectured for generic N based
on the algebraic similarities between the different models. It is a generalization of (2.54).
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Let us add a comment about this result, in relation with the history of the field. The
string-charge duality is a recent result, which was motivated by the research on quantum
quenches. In contrast, the T-system equations had been studied for a long time. They are
ubiquitous tools in the theory of integrable models, and they are relevant in numerous
aspects, see the giant review [188]. The authors of [188] write in the introduction: “We
therefore look forward to the next review to come, hopefully someday by some author,
bringing a delightful renewal.”. We believe that the string-charge relations are such new
results, which deserve to be mentioned in any future review of the T-system.

2.10 Open problems

As discussed above, the questions about the GGE have been completely solved in the
Heisenberg spin chains and also in the SU(3)-symmetric fundamental model. At present
it is widely believed that for each integrable model there is a corresponding GGE, even
though there is no general construction for this. As an example we can mention the case of
the Hubbard model, or the long range spin chains, where this issue has not yet been solved.
Nevertheless, currently there is little motivation to work out the particular details in the
remaining models, and the interest of the community shifted to the transport phenomena.

We believe that there are still some interesting open problems. For example in the
repulsive Lieb-Liniger model it is not known how to make a direct invertible relation
between the root density and transfer matrix eigenvalues, and it is not known hot to solve
generic quench problems in that model. Also, as far as we know the emergence of the
GGE has not yet been rigorously proven: the arguments we presented above contain a
number of assumptions. Very important progress was made in [154], where the ill-defined
concept of the GGE density matrix was placed on firm footing, and the statement of
“equilibration to a GGE” was proven given some physically sound conditions are satisfied.
Then the missing step is just to prove these conditions; for the details we refer to [154].

3 Integrable initial states

3.1 Introduction

In the previous Section we showed that in integrable models the GGE completely
describes the steady states that emerge after the quantum quenches. Nevertheless the
question remains: how can we actually compute the physical quantities in these quench
situations? Objects of interest could be the time evolution and the long time limit of local
observables, or the entanglement entropies.

The long time limit of local observables is in principle fixed by the GGE, but their ac-
tual determination is still quite complicated. Above we have argued that the complete set
of conserved charges fixes the Bethe root distributions through the string-charge relations
(see eq. (2.54) or (2.59)). These root distributions completely determine the correlation
functions, see Section 5. However, the full set of Bethe root distributions can be obtained
only if the mean values of all charges are known in the initial state, see for example the
Ωs(µ) defined in (2.52). These quantities are independent from each other and need to
be determined individually for every s. If the initial state is a product state, then there
are simple Matrix Product State based methods to compute them [164,175]. But it is not

49

dc_1819_20

Powered by TCPDF (www.tcpdf.org)



possible to determine all of them in analytic form. A practical way out of this situation is
to compute the first few root densities, and to leave the rest unspecified; such a procedure
would be analogous to the truncated GGE. An other possibility is to focus on the so-called
integrable quenches.

The term integrable quench was coined by the author and collaborators in [15]. There
are multiple technical definitions of such quenches (or initial states), which will be ex-
plained below. In simple words we call an initial state |Ψ0〉 integrable if it has
special properties which makes the quench problem solvable. Of course we need
to specify what solvable means in this context.

Here we list a few properties of these states, which characterize the solvability:

• There are methods to compute the exact overlaps between the initial state and the
Bethe states (see Section 4). These overlaps take the special factorized form given
by (2.14).

• The (density of the) Loschmidt echo can be computed using analytic tools. Let us
define

G(t) = log
∣∣〈Ψ0|e−iHt|Ψ0〉

∣∣ . (3.1)

In large volumes L this quantity behaves as G(t) ∼ Lg(t), where g(t) is a quantity
analogous to the free energy density. For integrable quenches it can be computed
analytically (see Section 3.7).

• The Bethe root densities characterising the steady states emerging after the quenches
can be computed analytically. The actual calculation is recursive in nature, and can
be performed on a computer rather easily (see Section 3.7).

• The time evolution of entanglement entropy can be computed in a simple semi-
classical picture, yielding the correct asymptotic behaviour [206] (see Section 3.9).

The properties above were observed somewhat independently by a couple of authors
and they were scattered in the literature. It was largely due to the author and collaborators
that all of them were linked to the integrability of the initial state, which seems to be the
basis for all of these properties. This will be explained in the sub-sections below.

It is important that the content of this Section is restricted to interacting theories.
The same structures also exist in free theories, but in those cases a wider class of initial
states can be regarded as “solvable”, see for example [207].

3.2 Integrable boundaries in time and space

Here we explain the main physical ideas behind the integrable initial states. The basic
picture goes back to the seminal work of Ghoshal and Zamolodchikov [208] from ’93, which
considered equilibrium properties of integrable QFT with boundaries. The implementation
of these ideas in spin chains and making the connection to the quench problems was done
by the author and his collaborators (see [15] and some other articles that will be discussed
below).

Let us consider finite time evolution in a finite volume situation. For the moment we
do not specify the nature of our model, it can be a spin chain or a QFT. We consider the
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e−βH

e−LH
′

|Ψ0〉

|Ψ0〉

Figure 9: Pictorial representation of the partition function (3.2). The state |Ψ0〉 plays
the role of boundaries in time, and the (Euclidean) time evolution is generated by H.
Periodic boundary conditions are understood in the space direction. The same partition
function can be evaluated by a different evolution operator H ′ which acts in the horizontal
direction; this system will have two integrable boundary conditions and in this channel
the partition function will be given by a trace, due to the original periodic boundaries.

Loschmidt amplitude in Euclidean time:

Z(β, L) = 〈Ψ0|e−βH |Ψ0〉. (3.2)

Here the same (unspecified) state |Ψ0〉 is chosen as the initial and final state, and Z(β, L)
is a quantity which can be understood as a partition function of a 2D classical system. We
will see that in the spin chains this classical model is actually known, it is the six-vertex
model or one of its generalizations. If we view (3.2) in the physical picture as it is written,
then |Ψ0〉 plays the role of boundaries in time, andH generates the time evolution between
the initial and final (Euclidean) times 0 and β.

The same partition function can be evaluated alternatively if we build a transfer ma-
trix or Hamiltonian which acts in the space direction. In a pictorial representation this
corresponds to rotating the model by 90 degrees. In this new picture the state |Ψ0〉 plays
the role of boundaries in space, and a new transfer matrix or Hamiltonian H ′ generates
time evolution. In this new time direction we have a trace, corresponding to the periodic
boundary conditions in the original model. The new rotated channel is sometimes called
“crossed” or “mirror” channel (the latter term is used commonly in the AdS/CFT litera-
ture). If the original model was Lorentz-invariant, then in imaginary time it is Euclidean
invariant, and then H ′ is identical to the original H up to boundary terms. However, in
the generic situation H ′ is different from H. For a pictorial interpretation see Fig. 9.

Having established this correspondence between the two channels the key observation
is that the initial state |Ψ0〉 is integrable iff the boundary conditions for H ′ are also
integrable. In other words, the same boundary has to be “integrable” irrespective whether
it is used as a boundary in space or in time.

The relatively simple case of integrable relativistic QFT was considered in [208], where
this connection between the two channels was made explicit. In order to explain the results
of this paper we should review the theory of boundary QFT. This is beyond the scope of
the present work, therefore we refer the reader to [208, 209]. Below we will just use some
central elements of this theory.

In the case of integrable boundary conditions there is a reflection matrix R which
describes the reflection amplitudes off the boundary, and this reflection is completely
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elastic (dissipationless) and factorized, in complete analogy with the S-matrix. In the
simplest case with only one particle type in the spectrum this reflection matrix is descibed
by a rapidity dependent phase R(θ). In more complicated cases it is actually a matrix
and it has to satisfy the so-called boundary Yang-Baxter relation, which (in some other
form) will be reviewed later.

Let us consider the local conserved charges of the original model. Typically we can
divide the charges into two sets according to their space reflection properties. In the
most typical case the Hamiltonian and the charges Q2s, s ≥ 1 are even under space
reflection, whereas the charges Q2s+1 are odd. In [208] it was shown using arguments from
Conformal Field Theory that any state |Ψ0〉 which corresponds to an integrable boundary
in the crossed channel satisfies the conditions

Q2s+1|Ψ0〉 = 0. (3.3)

To be more precise, this has to hold for all charges which are kept intact by the boundary
in the crossed channel; we will see that in the spin chains the condition holds for every
odd charge. Eq. (3.3) can be considered as a definition of an integrable state, as it was
suggested by us in [15].

The first simple consequence of (3.3) is the “pair-structure” for the overlaps. Let us
compute the finite volume overlap between the state |Ψ0〉 and a Bethe state |λN〉. Inserting
an odd charge Q2s+1 we get

0 = 〈Ψ0|Q2s+1|λN〉 =

(
N∑
j=1

h2s+1(λj)

)
〈Ψ0|λN〉. (3.4)

Here h2s+1(λ) are the one-particle eigenvalues of the charges, which are odd functions of
λ. We can see that the overlap can be non-vanishing only if the sum of these eigenvalues
is zero, for all odd charges. These eigenvalue functions are linearly independent from each
other, thus the relation can be satisfied only for very special configurations. It is easy
to see that the only possibility is that the set of rapidities consists of pairs λ,−λ and
possibly it can also include zero momentum particles (in spin chains a further possibility
is a lattice momentum π).

It was also shown in [208] using QFT arguments that in infinite volume the initial
state can be written formally as

|Ψ0〉 = N exp

(∫ ∞
0

dλ

4π
K(λ)A(−λ)A(λ)

)
, (3.5)

where A(λ) are the so-called Fadeev-Zamolodchikov creation operators, N is an irrelevant
normalization factor andK(λ) as the pair amplitude for the overlaps. This form is identical
to a “squeezed state”, and most importantly it results in factorized overlaps with states
respecting the pair structure. The issue of zero momentum particles has to be treated
separately [208,210].

A further key result of [208] was a direct connection between the pair amplitude and
the reflection factors in the crossed channel. It was found that

K(λ) = R(iπ/2− λ). (3.6)
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The interpretation of this relation is the following: There are two different processes in the
two different channels which share the same microscopic origin, therefore their amplitudes
must be the same. One such process is the pair creation amplitude in the original picture,
and the other process is the reflection of a particle off the boundary in the crossed channel.
The shift of iπ/2 simply reflects the Euclidean rotation of 90 degrees.

Even though the main results (3.5)-(3.6) were derived in ’93, the connection to quench
problems and the spin chain overlaps was not recognized for a long time. Below we discuss
the integrable initial states in the spin chains; for a recent treatment of integrable quenches
in QFT we refer to [211,212].

3.3 Integrable states of integrable spin chains

As it was mentioned above, the first papers dealing with quantum quenches in the
interacting Heisenberg chain [6,9,172,176,213] considered initial states which were product
states of local two-site blocks. The main examples were the Néel and the dimer states. At
that time it was not known that both of these states are actually integrable, and many of
the observed properties of these states follow from their integrability.

The first remarkable property was the pair structure for the overlaps, which was ob-
served for the Néel state in [214] (for an earlier result in the Lieb-Liniger model see [157]).
Furthermore it was found that the overlaps have the factorized form (2.14) and the pair
amplitude was also computed. The papers [196, 213] also assumed that the so-called Y -
system equation holds for the solution of the overlap-TBA equations; this property will
also be discussed below. At that time there was no deeper understanding of these prop-
erties.

The first paper to discuss the underlying mathematical structure was [15], which was
built on the preceding works [3, 13]. Now we summarize the key ideas.

The first step is to relate the condition (3.3) to the action of transfer matrices, so that
the special algebraic properties of the states and the Lax operators can be exploited. To
this order we introduce the space reflected transfer matrix as

t̄(µ) = TraT̄a(µ), T̄a(µ) = La,1(µ) . . .La,L(µ). (3.7)

Here we focused on the fundamental representation, but the same construction can be
repeated for the higher dimensional TM’s as well.

Let Π be the space reflection operator on the spin chain. Then clearly we have

t̄(µ) = Πt(µ)Π. (3.8)

If the Lax operators have an appropriate normalization then the canonical charges defined
as (1.33) satisfy the space reflection properties

ΠQsΠ = (−1)sQs. (3.9)

It is then easy to see that the condition (3.3) is compatible with

t(µ)|Ψ0〉 = t̄(µ)|Ψ0〉. (3.10)

The complete equivalence between (3.3) and (3.10) is not yet established; (3.10) implies
two-site shift invariance, whereas this property is not immediately clear from (3.3). Nev-
ertheless all known cases satisfy both conditions.
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As far as we know (3.10) is specific to spin chains; it was not present in the work [208].
Its physical meaning is less transparent, nevertheless it is a very convenient starting point
for the further computations.

The simplest possible cases for the integrable initial states are the two-site product
states of the form

|Ψ0〉 = ⊗L/2j=1|ψ〉, |ψ〉 ∈ C2 ⊗ C2. (3.11)

The two-site invariance is motivated by the known example and the algebraic structure
to be discussed below. Note that the one-site invariant states are naturally included in
this class.

The work [15] established a concrete connection between states of the form (3.11) and
the theory of boundary integrability. It was shown there that a two-site product state
satisfies the integrability condition for each L if the two-site block is derived from a so-
called boundary K-matrix. The boundary K-matrices are fundamental building blocks for
integrable lattice models with boundaries. They were introduced by E. Sklyanin in [215].
The key idea here is that in systems with boundaries (in space) the transfer matrix has to
be constructed from two “rows” of Lax operators, with two boundary insertions describing
the interactions with the boundary. An example for such a double row TM will be given
later.

The K-matrices in question are matrices acting on the auxiliary space C2 and they
satisfy the so-called Boundary Yang-Baxter equation, which is a relation for operators
acting on C2 ⊗ C2:

R1,2(u− w)K1(u)R1,2(u+ w)K2(w) = K2(w)R1,2(u+ w)K1(u)R1,2(u− w). (3.12)

It was shown in [15] that a state of the form (3.11) is integrable, if the two-site block is
given by

ψjk = (CK(−η/2))jk, (3.13)

where C is a crossing matrix characteristic of the model, and η is the crossing parameter.
In the Heisenberg chains C = σy and η is i for the XXX case and acosh(∆) for the XXZ
case.

The proof that (3.10) holds for such a two site state is a generalization of the famous
train-argument which shows the commutativity of the transfer matrices using the local
exchange relations. Here the relation (3.12) is used consecutively to obtain the desired
result. For the concrete steps of the proof we refer to [15].

The connection (3.13) is somewhat analogous to the result (3.6), although (3.13) con-
cerns the building blocks of the states and not the overlap/reflection amplitudes. Never-
theless it is similar in spirit, because it connects objects from the two different channels,
as explained above.

In the Heisenberg chains all solutions of the BYB are known [216]. We do not give the
formulas here, we merely state that the generic solution has three complex free parameters.
In accordance with this there is a K-matrix solution for every two-site block. This means
that every two-site block produces an integrable initial state. This explains why
the earlier studies with the Néel and Dimer states were so successful: because the states
themselves are rather special.

In [15] the higher spin Heisenberg chains were also treated. In these cases the K-
matrices still form a three parameter family: they can be obtained by direct solution of
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the corresponding BYB equations, or by the so-called fusion procedure [217,218]. In these
cases the dimension of the local Hilbert spaces is larger, therefore not all two-site states
are integrable. Solutions of quench problems in some integrable cases were found earlier
in [219], and exact formulas for the integrable two-site states of the spin-1 XXZ chain can
be found in [15].

The sub-sequent works [21, 22] also treated the SU(3)- and more generally SU(N)-
symmetric fundamental models, given by Hamiltonian (2.55). Here it was found that the
integrable two-site states form two families: either they are symmetric, or anti-symmetric
with respect to space reflection, but there are no further conditions for them. A central
and important example (within the symmetric ones) is the so-called delta-state, where
the un-normalized two-site block is

ψjk = δjk, j, k = 1, . . . N, (3.14)

with δjk being the Kronecker-delta. This two-site block gives an integrable initial state in
every SU(N)-symmetric model.

Having reviewed these basic examples the question remains: what are the most general
translationally invariant integrable initial states? In the next Section we show that the
this class is much wider.

3.4 Integrable Matrix Product States

Let us consider a spin chain with local dimension N and periodic Matrix Product
States (MPS’) given by

|Ψω〉 =
N∑

j1,...,jL=1

trA [ωjL . . . ωj2ωj1 ] |jL, . . . , j2, j1〉. (3.15)

Here |jL, . . . , j2, j1〉 are the real space basis vectors with jk = 1, . . . , N and k = 1 . . . L
with L being the length of the chain. The matrices ωj act on some auxiliary space denoted
by A. For a pictorial representation see Fig. 10. We note that two sets of matrices ωj and
ω′j describe the same state if they are connected by a similarity transformation S as

ωj = Sω′jS
−1, j = 1, . . . , N. (3.16)

This is as essential observation which is used in the proofs of the integrability condition.
MPS’ were developed to describe and approximate 1D many body states with rel-

atively low entanglement, such as ground states of gapped models [140, 220]. Here we
do not attempt to review the huge literature of MPS’, instead we focus on the concrete
applications to integrable models.

It was observed in a series of works [221–225] that certain concrete MPS’ are in-
tegrable initial states in the fundamental SU(N) and SO(N) symmetric model. These
works concern certain correlation functions in the AdS/CFT correspondence, and it is
quite remarkable that the integrable MPS were discovered using field theory computa-
tions. This is one more example of the cross-fertilization bewteen these related fields. In
these works the integrability structure of the states was not understood, instead they just
found that the overlaps have the pair structure and the factorized form, which is a clear
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ω

j4

ω

j3

ω

j2

ω

j1

Figure 10: A pictorial representation of the Matrix Product State (3.15) built from the
one-site block ω. Here the outgoing indices jk = 1, . . . , N , k = 1, . . . , L represent the
physical degrees of freedom, and the horizontal lines denote the action of the matrices
ωjk . The matrices are assumed to act from the right to the left; the arrow on the leftmost
horizontal link signals this convention. The trace in the definition (3.15) implies periodic
boundary conditions.

sign of integrability. The actual integrability condition was proven in one case in [226],
but the relation to the general theory was not known at that time.

The systematic treatment of the integrable MPS was given in [23] and subsequently
in [27]. Here we summarize the main findings of [23]; a few concrete examples for integrable
MPS are given in Section 3.5.

Let us denote the collection of matrices {ωj}j=1,...,N acting on VA simply as ω. Moti-
vated by the two-site product states we will also consider two-site invariant MPS. Further-
more, we will consider inhomogeneous (rapidity dependent) cases. Based on experience
from the two-site states we can expect to find integrable two-site invariant MPS. There-
fore we introduce the collection of matrices {ψjk(u)}j,k=1,...,N (also called two-site blocks)
acting on VA. We will use the simplified notation ψ(u).

It was shown in [23] that the following is a sufficient condition for the integrability of
the MPS:

Ř23(u)(ω ⊗ ψ(u)) = Ř12(u)(ψ(u)⊗ ω). (3.17)

This is a relation in the triple tensor product of physical spaces V3 ⊗ V2 ⊗ V1, and the
elements are matrices acting on VA. A pictorial representation is given in Fig. 11. The
matrix Ř(u) is defined simply as

Ř(u) = PR(u), (3.18)

where R(u) is the fundamental R-matrix of the model and P is the permutation operator.
Relation (3.17) was termed the “square root relation”, because it involves half of the

steps of the full Boundary Yang-Baxter (BYB) relation. It was a new result of [23]. The
key steps of the proof of the integrability condition (3.10) are the following:

1. The two states on the two sides of (3.10) are written as a “dressed” MPS (the
original matrices ωj and the Lax operators from the transfer matrices are glued into
an extended MPS with a tensor product auxiliary space).

2. For these “dressed MPS” the eq. (3.17) is essentially a similarity transformation like
(3.16). Thus the two sides of (3.10) are equal.

It was also shown in [23] that under some reasonable conditions the initial condition
for ψ(u) at u = 0 turns out to be the original MPS itself:

ψab(0) ∼ ωaωb. (3.19)
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ω ψ(u)

−uu

c b a

=

ψ(u) ω

−uu

c b a

Figure 11: A pictorial interpretation of the “square root relation” (3.17), which describes
the exchange of the two-site block ψ(u) and the one-site block ω. This is a relation
in V3 ⊗ V2 ⊗ V1 ⊗ End(VA) and the outgoing indices c, b, a describe the basis states in
V3 ⊗ V2 ⊗ V1. Fixing c, b, a we obtain matrices acting on VA. The local Ř matrices acting
at the crossings are defined such that their argument is always the rapidity coming from
the right minus the rapidity coming from the left. Thus we get an action of Ř(u) on both
sides, but on different vector spaces.

Thus the solution ψ(u) of (3.17) can be regarded as the “Baxterization” of the original
set of matrices.

At present it is not known, whether the square root relation is useful for any other
purpose, but it turned out to be a very convenient tool to perform the baxterization,
because the relation itself is only linear in ψ(u) and has less components than the full
BYB.

In contrast, the relevant full BYB can be written as

Ř12(v − u)Ř23(u+ v)(ψ(v)⊗ ψ(u)) = Ř34(v − u)Ř23(u+ v)(ψ(u)⊗ ψ(v)), (3.20)

which is satisfied by the two-site block ψ(u). This is a relation in V4⊗V3⊗V2⊗V1⊗End(VA),
and it is understood that the Ř matrices act on the respective components in the tensor
product. For a graphical interpretation of (3.20) see Fig. 12. We note that this particular
form corresponds to the so-called twisted Boundary Yang-Baxter relation, which was also
called the KYBE in a subsequent work [227].

Working out the components we can see that it is similar to the original BYB (3.12),
but there are certain differences in the arrangement of the R-matrices which are actually
rather important. Such twisted BYB equations were already studied for systems with
boundaries (in space) [228,229].

It was shown in [23] that if some irreducibility conditions are satisfied, then the solution
of the square root relation also solves the KYBE. In all known cases it was observed that
if the integrable MPS is one-site invariant, then there is an object ψ(u) which satisfies
both the square-root relation and the KBYE.

It is important to discuss the symmetry properties of the MPS. A certain integrable
MPS is said to belong to the class (G,G′) with Lie groups G and G′, if the spin chain in
question isG-symmetric and the MPS enjoys residual symmetryG′. All known solutions to
the KYBE are such that (G,G′) is a so-called symmetric pair (also called a Gelfand-pair).
Examples include (SU(N), SO(N)) or (SO(N), SO(D) × SO(N − D). For a discussion
of this observation see [230].

If the symmetric pair is specified, then the abstract algebraic structure behind the
twisted BYB is called the twisted Yangian [231, 232]. Having found a solution to the
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ψ(v) ψ(u)

−vv u −u

V4 V3 V2 V1⊗ ⊗ ⊗

d c b a

=

ψ(u) ψ(v)

−uu v −v

V4 V3 V2 V1⊗ ⊗ ⊗

d c b a

Figure 12: A pictorial representation for the BYB relation for the two-site MPS. V1,2,3,4

denote the physical vector spaces, and a, b, c, d are the physical indices. The matrices in
the MPS act in the auxiliary space from the right to left. The local Ř matrices acting at
the crossings are defined such that their argument is always the rapidity coming from the
right minus the rapidity coming from the left.

twisted BYB with the given symmetry properties means that a certain representation of
the abstract algebra was found. Thus the classification of all integrable MPS is in principle
given by the representation theory of the twisted Yangians, which is well studied [233].
However, the problem of having one-site invariant MPS (corresponding to the factorization
condition (3.19)) was not yet studied in the literature, simply because it did not come up
in the abstract representation theory. Let us add that this is an area still in development:
a number of open questions were treated only in a series of recent works, see for example
[234,235].

3.5 Examples and applications to AdS/CFT

The AdS/CFT correspondence [72,236] connects two very different theories which are
believed to be the description of the same physical system: a 3+1 dimensional conformal
QFT on one side, and a string theory on a curved anti-de Sitter space on the other side.
Integrable models play a special role in this correspondence: in the so-called ’t Hooft limit
the scaling dimensions of gauge invariant composite operators are given by the eigenvalues
of an integrable spin chain. This was observed first at the tree-level in the perturbative
expansion of the ’t Hooft coupling, and it was later extended to higher orders. At tree level
the corresponding Hamiltonian is completely local with a two-site interaction, whereas at
higher orders it recieves long range interaction terms. For reviews we refer to [72,73].

In this correspondence the simplest setting is when all multi-point functions are trans-
lationally invariant. However, it is also important to study situations when there are
branes present in the AdS spacetime. In this case the CFT side is described by a bound-
ary CFT. It is very natural to study the properties of such boundary field theories. In
these cases the simplest objects are the one-point functions of scaling operators, which
are not zero due to the breaking of the conformal symmetry. If an operator O(x) has
scaling dimension κ such that the two-point function behaves in translationally invariant
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Euclidean space-time as

〈O(x)O(0)〉 ∼ 1

x2κ
, (3.21)

then in the boundary setting the one-point functions have the form

〈O(x)〉 ∼ 1

zκ
, (3.22)

where x is the full space-time coordinate and z is the Euclidean distance from the bound-
ary. Usually the operators are normalized such that the proportionality coefficient in
(3.21) is set to unity, and in this case the amplitude of the one-point function in (3.22)
is a non-trivial quantity which carries information about the operator and also about the
interactions with the boundary. In the studies of these brane situations it is the goal to
determine this amplitude using exact methods. For a recent review (which also discusses
some of the results below) see [237].

Quite remarkably it was found in [221–225] that the amplitude for the one-point
functions is essentially an overlap in the integrable spin chains that describe the scaling
operators. To be more precise, one has to compute an overlap between a certain MPS
which is determined by the field theory computations involving the boundary, and an
eigenstate of the corresponding spin chain, which describes the operator in question. This
picture holds at the tree level, and it can be extended to include higher order corrections,
which describe long range interactions both for the spin chain and the MPS.

It was observed in [221–225] that all the MPS that naturally come up lead to integrable
overlaps. This was eventually explained in [23, 27], where the connections to the KYBE
and the twisted Yangian were worked out in detail. On top of the rigorous proof of the
integrability condition this led to the computation of new overlap formulas: in the most
recent paper [27] the author and his collaborators (Tamás Gombor and an international
team) solved a particular case which was beyond the reach of the earlier brute force
methods, see for example [225].

The computations are rather technical, especially for the case treated in [27]. Here
we just list some of the integrable MPS’ found, together with their baxterization. The
actual AdS/CFT situations (with the different brane scenarios), which led to the first
discoveries of these MPS’ can be found in the works [221–225]; here we just focus on the
integrability properties and the formulas relevant to the spin chains. We stress once more
that the concrete formulas for the MPS were derived by the international researchers of the
AdS/CFT correspondence, and the new addition of the author and his local collaborator
Tamás Gombor was finding the Baxterization (thus proving the integrability of the MPS)
and eventually deriving some new overlap formulas.

• Case (SU(3), SO(3))

The MPS is given by the Pauli matrices:

ωa = σa, a = x, y, z. (3.23)

This MPS was discovered in the works [221–223] which studied it first after the
restriction to an SU(2) subgroup, and then eventually also in SU(3) case. The
corresponding Baxterization is found to be [23]

ψab(u) = σaσb − 2uδab. (3.24)
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It is interesting that this MPS is the ground state of the famous AKLT model [238],
but here it shows up quite independently.

• Case (SU(3), SO(3)), higher dimensional cases

The MPS is given by the spin-s representation of the SU(2)-algebra:

ωa = Sa, [Sa, Sb] = iεabcSc, a, b, c = 1 . . . 3. (3.25)

The Baxterization is

ψab(u) = SaSb + u[Sa, Sb]− u2δab. (3.26)

Going back to s = 1/2, i.e. setting Sa = σa/2 and using the special properties of the
Pauli matrices we obtain the previous solution up to some normalization factor.

• Case (SU(N), SO(N)), Dirac matrices

The MPS is given by

ωa = γa, {γa, γb} = 2δab, a, b = 1 . . . N, (3.27)

The Baxterization is
ψab(u) = γaγb − 2uδab. (3.28)

Clearly this is a generalization of (3.24).

• Case (SO(N), SO(D)× SO(N −D)), Dirac matrices

The MPS is given by

ωa =

{
γa for a = 1 . . . D

0 for a = D + 1 . . . N.
(3.29)

For N = 6 and D = 5 this MPS was studied in [225]. The exact overlaps were not
found at that time, and they were only derived later in [27].

In this case let us divide the components into two subsets 1 . . . D and D + 1 . . . N .
The solution has a block form, which means that ψab(u) is zero if a and b are from
different subsets. Furthermore

ψab(u) =

{
(−2u+ C)γaγb + (2u2 + (D − 2C)u)δab for a = 1 . . . D

u(D − 2u)δab for a = D + 1 . . . N.
(3.30)

It can be checked that all of these solutions satisfy both the BYB and the square root
relation. They were found by solving the latter.

The above formulas were used to clarify the representation theoretical origin of the so-
lutions, and to find the exact overlap formulas. Furthermore they can be used to construct
the Loschmidt amplitude, as explained below.
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3.6 The Loschmidt echo and the Boundary QTM

In this Section we show how the Baxterization can be used to compute the Loschmidt
amplitude and to give a solution to the quantum quenches.

We consider the evaluaton of the partition function (3.2) for some β ∈ R. We will
focus on the large volume behaviour, which is expected to be exponentially decaying in
the volume:

Z(β, L) = 〈Ψ0|e−βH |Ψ0〉 ∼ e−g(β)L. (3.31)

Here g(β) is a generalization of the free energy, which depends on both the initial state
and the Euclidean time s. In the literature it is often called dynamical free energy.

This quantity can show non-analytic behaviour with respect to the variable β. This
happens because even though Z(β, L) is analytic in β for any finite L, the L →∞ limit
typically does not commute with analytic continuation in β. The non-analytic points of
the dynamical free energy are called dynamical phase transitions. In certain cases they are
connected to underlying quantum phase transitions, when the quantum quench connects
models from topologically different quantum phases [239, 240]. However, sometimes they
can appear even “accidentally”. Dynamical phase transitions were observed experimentally
in [241].

In integrable spin chains (3.31) can be evaluated by the same methods that we de-
scribed in Section 2.6 for the thermal partition functions. The action of the thermal
operator e−βH is computed in a Trotter approximation, and the approximate partition
functions

ZN(β, L) = 〈Ψ0|
(
t−1(0)t(−cβ/N)

)N |Ψ0〉 (3.32)

are then evaluated in the crossed channel. We remind that here t(u) is the fundamental
transfer matrix, N is the Trotter number, and c is just a model-dependent constant.

The new addition here is the presence of the initial and final states, which in the rotated
channel become boundaries in space, as explained in 3.2. It was first shown in the work [3]
by the author that boundary states constructed from K-matrices as given by (3.13) lead
to the double row transfer matrices known in boundary integrability. Thus the work [3]
laid the foundation for understanding the integrability of the initial states. It is interesting
that this work appeared 4 years before the integrability conditions were understood and
2 years before the GGE for the Heisenberg chain was clarified. The work [3] focused on
the Néel and Dimer initial states.

Now we give the main formulas for this construction, already allowing for integrable
MPS, and not just the two-site product states considered in [3]. Instead of the ho-
mogeneous chain it is useful to introduce an alternating sequence of inhomogeneities
(−u1, u1,−u2, u2, . . . ,−uL/2, uL/2). The parameters uj will play the role of spectral pa-
rameters for double-row transfer matrices.

We define inhomogeneous transfer matrices as

t(v|u1, . . . , uL/2) = Tr T (v|u1, . . . , uL/2),

T (v|u1, . . . , uL/2) = R0L(v − uL/2)R0,L−1(v + uL/2) . . . R02(v − u1)R01(v + u1).
(3.33)

Here the L inhomogeneities are of alternating signs, and in the notation we write them
as (u1, . . . , uL/2).

61

dc_1819_20

Powered by TCPDF (www.tcpdf.org)



We also define inhomogeneous initial states as

|Ψ(u1, u2, . . . , uL/2)〉 =
N∑

i1,...,iL=1

tr0

[
ψiL,iL−1

(uL/2) . . . ψi2,i1(u1)
]
|iL, . . . , i1〉, (3.34)

where ψjk(u) is the Baxterization of the original, physical MPS, which are reproduced in
the homogeneous limit uj → 0 due to the initial condition (3.19).

We define the inhomogeneous dual MPS vectors as

〈
Ψ(u1, u2, . . . , uL/2)

∣∣ =
N∑

i1,...,iL=1

tr0

[
ψiL,iL−1

(−uL/2) . . . ψi2,i1(−u1)
]
〈iL, . . . , i1|. (3.35)

It is an important technical detail that the rapidity parameters are taken with a sign
difference.

Let us consider the partition functions

Z(v1, . . . , vm|u1, . . . , uL/2) =〈
Ψ(u1, . . . , uL/2)

∣∣ m∏
j=1

t(vj|u1, . . . , uL/2)
∣∣Ψ(u1, . . . , uL/2)

〉
.

(3.36)

It can be shown that these are completely symmetric in both the u- and the v-parameters.
Symmetry with respect to vj, j = 1 . . .m follows from the commutativity of the transfer
matrices, whereas symmetry with respect to uj, j = 1 . . . L/2 follows from the BYB
equations [23].

A pictorial representation for these partition functions is given in Fig. 13. Notice that
this construction is the lattice analogoue of the partition function drawn in Fig. 9.

The partition functions (3.36) allow for an alternative evaluation, which leads to the
introduction of the double row Quantum Transfer Matrices, which act in the horizontal
direction, see the pictorial representation Fig. 13. It can be read off Fig. 13 (or it can be
established by purely algebraic means) that their explicit form is

T (u|v1, . . . , vm) =

N∑
a1,a2,b1,b2=1

ψb2,b1(u)⊗
[
Ta2b2(−u| − v1, . . . ,−vm)Ta1b1(u| − v1, . . . ,−vm)

]
⊗ ψa2,a1(−u).

(3.37)

Alternatively this can be computed as

T (u) = Tr
(
M(u)KT (−u)

)
, (3.38)

where
M(u) = T (−u)K(u)T T (u) (3.39)

is the “quantum monodromy matrix”, and the products and traces above are to be un-
derstood in the indices a1,2, b1,2 which originally label the states of the physical spin
chain.
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.

v1

v2

v3

v4

ψ(u1) ψ(u2) ψ(u3)

ψ(−u1) ψ(−u2) ψ(−u3)

u1 −u1 u2 −u2 u3 −u3

Figure 13: An example for a partition function with integrable boundaries. In the original
physical picture the bottom and top rows are interpreted as the MPS which serve as
the initial and final states for some discrete time evolution. Alternatively, the partition
function can be evaluated by the Quantum Transfer Matrix, which acts in the horizontal
direction: in this picture the two-site blocks play the role of integrable boundaries, with
an additional degree of freedom at the boundary. The physical case of the original MPS
(3.15) is obtained by setting uj = 1, j = 1, . . . , L/2, after using the factorization (3.19).

The partition function is then evaluated as

Z(v1, . . . , vm|u1, . . . , uL/2) = Tr

L/2∏
j=1

T (uj|v1, . . . , vm)

 . (3.40)

The symmetry of Z with respect to an exchange of the u variables is equivalent to the
commutativity condition

[T (u1), T (u2)] = 0, (3.41)

which can be proven directly using the various Yang-Baxter relations.
The object T (u) can be called Boundary Quantum Transfer Matrix (BQTM) or simply

just the crossed channel TM. It is evident from (3.40) that for fixed N the large L
behaviour of the partition function is determined by the largest eigenvalues of the BQTM.
Thus we need to understand how to compute these eigenvalues and investigate their
N →∞ limits.

It was already observed in the thermal case that such Quantum Transfer Matrices are
typically gapped in the strong sence, namely that they have a single leading eigenvalue,
such that the gap remains finite even in the N → ∞ Trotter limit. Furthermore, it was
assumed that the N →∞ and L→∞ limits can be exchanged [50]. There is no general
proof that this is always a valid step, but concrete computations confirm it in certain
cases, for example it is rigorously proven the in the thermal case the correct result is
obtained [242].
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Similar behaviour was also observed in the case of the QTM. Numerical computations
showed that the QTM remains gapped in some neighbourhood of β = 0 even if we allow
complex values of β. Then the remaining task is to find exact formulas for the leading
eigenvalue Λ(s) of the QTM. In a proper normalization we have

g(β) = − log(Λ(β)). (3.42)

The diagonalization of Boundary TM’s of the form (3.38) is a challenging problem for
generic boundary K-matrices. There are a number of special cases when known methods
can be applied, such cases will be reviewed below. However, there is no general recipe
available. It is known that in the Heisenberg chain the diagonalization is easy if the K-
matrix has scalar entries and is diagonal, see the original work [215] or [243] for a modern
treatment. On the other hand, the case of generic off-diagonalK-matrices is more involved,
see for example [244]. The situation is even more complicated for nested systems, already
for the diagonal cases, see for example [245,246].

Below we list a few examples where the BQTM could be solved with exact methods.

3.7 The Loschmidt echo and the solution of the quenches

The paper [3] considered the following special class of two-site states:

|Ψ0〉 = ⊗L/2j=1|ψ〉, |ψ〉 =
|↑↓〉 − α|↓↑〉√

1 + |α|2
, α ∈ C. (3.43)

These correspond to diagonal K-matrices, if the connection (3.13) is used with the ap-
propriate crossing matrix C = σy. The parameter α is arbitrary; the choices α = 0 and
α = 1 produce the Néel and Dimer states, respectively.

In these cases the standard tools of boundary integrability could be used due to the
diagonal nature of the K-matrices. We do not review the computation, instead we just
cite the main result for the dynamical free energy. It was found that g(β) can be expressed
using a certain auxiliary function a(u), which is a solution of a single non-linear integral
equation (NLIE). This equation is a generalization of the corresponding NLIE from the
thermal case, and it reads

log a(u) = log(k(u))− 4β
sinh2 η

sinh(u) sinh(u+ η)
−

−
∫
C

dω

2πi

sinh(2η)

sinh(u− ω + η) sinh(u− ω − η)
log(A(ω)),

(3.44)

where the integral runs over a certain contour C which encirles all Bethe roots of the
QTM; it depends on the anisotropy ∆, precise details can be found in [3]. Furthermore
we defined

A(u) =
1 + a(u)

1 + k(u)
, (3.45)

where k(u) is a complex function which carries informaiton about the initial state. Finally
the dynamical free energy is expressed as

g(β) =
1

2
log Λ =

1

2

∫
C

dω

2πi

sinh η

sinh(ω) sinh(ω + η)
log(A(ω)). (3.46)
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For the Néel state it was found that

k(u) =
sinh(λj + η)

sinh(λj − η)

sinh(2λj − η)

sinh(2λj + η)
.

We refrain from giving the general formula for arbitrary α.
It was shown in [3] that this system of equations allows for an effective numerical

treatment and they reproduce some known results in certain limits.
Around the same time a similar work appeared as an e-print [247], which proposed

different equations for the same quantity, yielding different results. As far as we know,
the work [247] was eventually not published in a journal.

An alternative method for finding g(β) was developed in the sub-sequent work [13],
written in collaboration with international researchers. Here the idea was to use to fusion
hierarchy (T -system) of the Boundary QTM’s to derive TBA-type equations for g(β),
which would eventually become generalizations of (3.49). The idea of using the T -system
to derive TBA equations was not new, this goes back to [248]. However, earlier work did
not consider the same methods for the boundary cases.

The first step is to show that there is a fusion hierarchy of the BQTM’s, a set of higher
TM’s denoted as Ts(u), satisfying the Hirota equations (2.46) (the work [13] only focused
on the XXZ chain with ∆ > 1; the ∆ < 1 case needs to be treated separately, leading to
slighlty different Hirota equations). This T -system for boundary situations was already
considered earlier in [249], and it was shown there that if the Lax operators use the same
normalization as in the bulk cases, then the scalar functions Φj(u) entering the Hirota
equations carry information about the boundary K-matrices.

The second step is establishing the so-called Y -system, which is also well known step;
the Y -system is a set of functional relations encoding the structure of the TBA equations
[188,248]. For the Heisenberg chains in the cases mentioned above it reads

Yj(u+ iη/2)Yj(u− iη/2) = (1 + Yj+1(u))(1 + Yj−1(u)) (3.47)

with the initial condition Y0(u) = 0. The Y -functions are constructed from the T -functions
as

Yj(u) =
Tj+1(u)Tj−1(u)

Φj(u)
, (3.48)

where Φj(u) is the scalar function mentioned above. The equivalence between (2.46) and
(3.47) is easy to prove, and is discussed at length in the review [188]. In our case the
T -functions are given by the eigenvalues of the fused BQTM’s Tj(u).

The third step is transforming the Y -system into integral equations of the TBA type.
This step was first performed in [248] for the thermal case. Similar ideas were also present
in [196], and the connection between the Y -system and the TBA is discussed in many
papers dealing with integrable QFT [119] and with the AdS/CFT correspondence [72]. The
key idea is that the functional connections of the Y -system correspond to the convolution
terms in the TBA, and the analytic properties (presence of certain poles or zeros, and
possibly the asymptotic behaviour for large rapidities) determine the source terms of the
TBA.

In [13] we performed the same analysis for the BQTM’s relevant to the Loschmidt
amplitude. It was found that in some neighbourhood of β = 0 the resulting TBA equations
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are of the form

log(Yn(λ)) = −2βs(λ)δn,1 + dn(λ)+

+

∫ ∞
ω=−∞

dω

2π
s(λ− ω)(log(1 + Yn−1(ω)) + log(1 + Yn+1(ω))).

(3.49)

Here the first source term is only present for the first node, in accordance with the TBA
source term in the thermal case, see (2.30). For the XXX case the function s(λ) is given
by (1.65). In the XXZ case an analogous equation holds, and the s-function can be found
in [13]. The additional source terms dn(λ) above depend on the initial state, some concrete
examples (including new cases) were given in [13]. Finally, the eigenvalue of the BQTM
is given by

log(Λ) =

∫
du

2π
s(u)

[
2βa(u) + log

(
1 + Y1(u)

1 + Y
(0)

1 (u)

)]
. (3.50)

Here a(u) is some known function, Y1(u) comes from the solution of (3.49), and Y (0)
1 (u)

corresponds to the solution at β = 0 (see below).
The structural form of (3.49) is rather similar to the o-TBA equations (2.32); the

only difference is the addition of the thermal term. In fact, if the overlaps are known,
then (3.49) can be derived with the Quench Action method. However, we stress that
the work [13] did not use the TBA reasoning, only the rigorous T -system and Y -system
equations (and some numerical analysis about the poles/zeroes of the functions involved).
The source terms dn(λ) are determined from the analytic structure, and not from the
overlaps. The identification of the Y -functions of (3.49) (which come from an algebraic
set of functional relations) and the η-functions of (2.32) (which come from the Quench
Action method, using statistical reasoning) is made only afterwards. For the thermal
case this correspondence was first observed in [248] , and our work explained the same
connection for the quench problem.

It is very important to notice that the β → 0 limit we reproduce the Quench Action
TBA equations. Thus in this trivial limit, which corresponds to the a very complicated
evaluation of the simple identity

1 = 〈Ψ0|Ψ0〉, (3.51)

we get back to the solution of the quantum quench. This was exploited in our work [13].
The trivial limit can be achieved with setting the Trotter number to N = 0 (thus having
no transfer matrices in (3.32)); in this patological case the T -functions and Y -functions
of the BQTM can be computed exactly without the need for any Bethe Ansatz solution
of the BQTM. Thus the exact solution of the quench can be given simply based
on the T -system and Y -system.

The same ideas were used in [196, 213] to find exact solutions for the quenches from
the Néel state, and these works assumed the T -system and Y -system equations. However,
it was only our work which clarified, that these equations hold only because the initial
state in question is integrable. The Y -system equations are explicitly broken in all other
cases, as it is discussed in [194].

Here we refrain from giving the explicit formulas for the Y -functions in terms of the
initial state, we simply state that once the initial state is specified and the corresponding
K-matrix is known, then the Y -functions can be computed in a straightforward way.
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Concrete examples can be found in [13]. The method also works for integrable MPS,
and for the more complicated nested systems, although the concrete computations can
become lengthy. We will return to the importance of the Y -system equations and (3.49)
in Section 4: we will show there that (3.49) carry enough information to determine the
overlaps themselves.

It is important that the equations (3.49) do not hold for arbitrary β, because analytic
properties of the functions involved can change with β. For example, singularities crossing
the integration contours lead to additional source terms; this is a phenomenon known from
iQFT, see for example [250]. This was also observed in our sub-sequent work [18], where
explicit examples for this were given. Furthermore, the phenomenon of dynamical phase
transition (DPT) was also studied there. It was shown, that level crossings of the BQTM
can be observed with these techniques. As explained above, a level crossing leads to a
non-analytic behaviour in g(β), because this quantity always follows the larges eigenvalue
of the BQTM. Regarding the physical interpretation of the DPT we did not find a general
conclusion.

In the works [21, 22] we also considered the integrable states of the SU(3)-symmetric
fundamental model. As explained above, in this case the integrable product states are
either symmetric or anti-symmetric with respect to space reflection. The anti-symmetric
case is somewhat trivial, so we focused on the symmetric case with the two-site block
given by

|ψ〉 ∼ α|11〉+ β|22〉+ γ|33〉, α, β, γ ∈ C, (3.52)

where |n〉 with n = 1, 2, 3 is a basis of C3.
We constructed the fusion hierarchy of the BTQM’s in this model, and many of the

technical details were new. We also computed the exact solution for the quenches. It was
already explained in Sec. 2.9 that in this model the fusion hierarchy involves two families
of fused transfer matrices t(1)

s (u) and t(2)
s (u). In accordance with this there are two families

of Y -functions, which we denote as Y (1)
s (u) and Y (2)

s (u). The precise relations between the
T - and Y -functions can be found in [21, 22]. Instead of going into the many technical
details, we just give a simple result for the case α = β = γ = 1, which is the so-called
δ-state. It was found that in this case

1 + Y
(1)

1 (u) = 1 + Y
(2)

1 (u) = 3
u2 + 1/4

u2
. (3.53)

A new technical step of the works [21,22] was showing that even the root distributions
ρ

(1,2)
s (u) can be computed directly from the BQTM. First we can notice that in each model

there is a relation of the form

ρ(a)
s (u) ∼ ∂Y

(a)
s (u)

∂β
. (3.54)

The proportionality factor depends on some conventions. For the XXZ case this relation
is seen directly by comparing (3.49) with (1.64).

As a second step it was shown the derivative above can be computed from a BQTM’s
with Trotter number N = 1, whose diagonalization is relatively easy even with exact
diagonalization, without using integrability methods. This method was worked out for
the δ-state and exact formulas were given for the first two root distributions.
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With this we showed that for integrable initial states the quantum quench can
be solved completely, without using the concept of the GGE, or the string-
charge relations, or the Quench Action method. In fact, the results of [21, 22]
were a central motivation behind our work [190] discussed in Section 2.9. We believe that
the concept of integrable initial states is more fundamental than the Quench Action itself,
because the applicability of the QA hinges on the existence of factorized overlap formulas,
which only exist for integrable states (see Section 4).

3.8 Further possibilities for integrable states

Following the work of the author and collaborators the concept of integrable states
was generalized even further by other researchers. In [251] an interesting overlap was
studied in the SO(6)-symmetric chain, where the pair structure for the rapidities is even
more “twisted”: rapidities are paired from different levels of the nesting procedure. The
explanation for such a behaviour was given in [227]. It was found that in models with
higher rank symmetries the possibilities for integrability conditions are wider than simply
requiring (3.10). For different transfer matrices of the fusion hierarchy different types of
conditions can be required, switching between the “twisted” and “original” BYB. Here we
do not discuss these possibilities in detail, we refer the reader to [227].

3.9 Entanglement evolution

The pair structure for the overlaps is one of the most important consequences of
integrability of the initial state. From a physical point of view it means that the initial
state only emits particle pairs, which start to propagate in opposite direction. The particles
within the pairs are correlated with each other, but at t = 0 the pairs themselves are not
correlated. This follows from the fact that the overlap consists of pair amplitudes.

These simple observations were used to derive a semi-classical result for the entan-
glement evolution after the quantum quenches [206]. The idea is to consider the mutual
entanglement between a segment of length l and the rest of the system. In the simplest
case of l = ∞ we consider the mutual entanglement between two half-infinite parts of
the chain. At t = 0 the two halves are typically unentangled, and for large times the
entanglement will grow linearly with time. It was shown in [206] that the slope of this
linear growth can be computed exactly using a simple semi-classical picture, based on the
pair structure. The idea goes back to similar computations in Conformal Field Theory
(CFT) [252]: it is argued that the entanglement between two systems A and B at some
time t is caused by those particle pairs, which are created somewhere in the system at
t = 0 and from which one member propagates to sub-system A and the other one to
sub-system B at time t. This reasoning uses a semi-classical picture for the propagation
of quasi-particles. If the speed of propagation is known, then concrete formulas can be
derived for the entanglement production. For the details see the works [206,253]; we note
that even nested spin chains were treated with this method, see [204].

Here we do not discuss the formulas for the entanglement, we simply just stress that it
is the integrability condition which underlies these successful computations. As far as we
know the entanglement evolution of non-integrable states has not yet been considered in
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the literature. Naturally we expect the same qualitative behaviour, but it is not obvious
whether exact formulas exist for the asymptotic growth.

3.10 Open problems

All the methods that we discussed in this Section contribute to the solution of the
quantum quenches. However, we did not find observables which would show a qualitative
difference between the integrable and non-integrable initial states. On a qualitative level
the behaviour of the correlation functions is rather similar for all types of quenches. The
special techniques discussed in this Section make it possible to find analytic solutions, but
there is no marked difference in the qualitative behaviour of the local observables. It is
an open question whether there are any measurable quantities which would make a clear
distinction between integrable and non-integrable quenches.

A further open problem in this topic is the complete classification of one-site invariant
integrable MPS with a given symmetry class (G,G′), where the Lie groups G and G′ ⊂ G
form a symmetric pair. As discussed above, it is now known that they correspond to
representations of the twisted Yangian. In principle these representations are known: they
are obtained from a dressing of some fundamental solutions, so that the dressing is given
by local Lax operators (for the details see our work [23]). However, these solutions are
generally two-site invariant and it is generally not known which ones produce one-site
invariant MPS in the homogeneous limit. But one might argue that finding a classification
is not so important, given that the relevant examples are provided by AdS/CFT anyway,
and at present there is no other motivation to study these more complicated integrable
states.

An other open problem is that so far the understanding of integrable initial states
is limited to local spin chains with nearest neghbour interactions. It is known that long
range spin chains are relevant to AdS/CFT and there are other long range models (such
as the Haldane-Shastry or the Inozemtsev chains [198–200]) which have been studied
thoroughly. At present it is not known how to extend our construction to these models.
This problem deserves further investigation, especially in light of the interest from the
AdS/CFT community (see the references also in the next Section).

4 Exact overlaps

4.1 Introduction

In this Section we consider exact overlaps. First we focus on the simple cases when
the Bethe states can be characterized by a single set of rapidities λN . It is our goal to
find exact formulas for the overlaps

〈Ψ0|λN〉, (4.1)

where |Ψ0〉 is an integrable initial state.
The reader might wonder what is the reason for setting this goal. After all, at the

end of the last Section we explained that the quantum quenches can be solved with the
BQTM methods, without any information about the overlaps. We can give the following
two motivations for the overlap computations.
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First of all, there are naturally the historical reasons: Before 2014-2015 the only way
to give an exact solution was the Quench Action method, which relied on the knowledge
of the overlaps. This motivated the first work of the author on the topic [4], and also the
excellent work [157] of the Amsterdam group, which solved an interaction quench in the
Lieb-Liniger model. Furthermore, the overlaps of the spin chain played a central role in
the study of the GGE, as discussed in Section 2.6.

Soon afterwards most of the experts working with non-equlibrium dynamics lost their
interest in the exact overlaps once the status of the GGE was clarified. The interest of the
community turned to the transport phenomena, and Generalized Hydrodynamics (GHD)
was born (see Section 6). Exact overlaps were not used in GHD.

However, around the same time (2015-2016) came the new source of inspiration from
AdS/CFT. As discussed in Section 3.5 it turned out that in this correspondence the one-
point functions of boundary CFT are described by exact overlaps with integrable initial
states. This line of research was continued until the present day, and rather involved
overlap formulas were derived along the way. The eventual goal is to compare these one-
point functions to string theory predictions. This explains the interest of the researchers
in the full exact solutions in the very complicated, long range spin chains, that describe
the operators of AdS/CFT at higher loops; for very recent papers on the subject see
[227, 254–257]. We should also note that certain three point functions are also described
by exact overlaps, see [251,258].

In the overlap computations to be discussed the starting point is the state |Ψ0〉, where
we can assume that the integrability condition is proven and the corresponding K-matrix
(solution to the BYB equations) is known. Then the task of computing the overlaps from
the K-matrices is very similar to what was achieved by Ghoshal and Zamolodchikov,
see Section 3.2. In particular, it is desirable to find something similar to eq. (3.6) which
connects the boundary data (K-matrix in our case) to the overlap data (pair amplitudes).
It turns out that in the spin chains these relations are much more involved, and can not
be summarized in a simple equation like (3.6).

4.2 Exact overlaps - first results

Up to our knowledge the first paper to compute the overlaps in interacting spin chains
was [4] by the author 4 (examples for overlaps in free fermionic models were known even
earlier, but we do not review these papers here). This paper predates the integrability
condition laid down in [15], nevertheless the connection between K-matrices and the
initial states was already given here. The particular object considered here was the overlap
between the Bethe states of the XXZ chains and the special states given by (3.43) which
correspond to diagonal K-matrices.

In this work the off-shell overlaps were considered. An off-shell state is an element
of the Hilbert space of the form (1.47) where the rapidities do not satisfy the Bethe
equations. Thus such states are not eigenstates of the transfer matrices. It follows that
the integrability condition can not be applied to the states, and the overlaps will not
display the pair structure.

4Personal comment: From all my papers this is the only one which was mentioned as reference [1] in
an other work. See [259].
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In [4] an exact determinant formula was derived for such off-shell overlaps. The result
is basically the so-called Tsushiya-determinant, first derived in [260] in the framework
of boundary integrability. This result was only an intermediate step for the follow-up
works, therefore we do not give the corresponding formulas here. Nevertheless we note
the determinant in question was transformed into a more convenient form in [261], which
treated the boundary free energy of the XXZ chains.

Afterwards a factorized overlap formula appeared in [157], which described overlaps
with the Bose Einstein condensate (BEC) in the Lieb-Liniger model. This result was based
on coordinate Bethe Ansatz computations. Finally the work [214] (also by the Amsterdam
group) derived a factorized overlap formula in the XXZ chain, building on the results of
our work [261]. Now we describe this overlap formula; we put forward that it already
displays almost all features of the more complicated cases.

The paper [214] considered the on-shell states, where the rapidities satisfy the Bethe
equations. For the first time it was proven (withouth the integrability condition) that the
non-zero overlaps have the pair structure. For simplicity we focus on states without the
special rapidities, thus we assume that the set of rapidities consists of pairs only. We will
denote

{λN} = {λ+
N/2} ∪ {−λ

+
N/2}. (4.2)

The paper [214] considered the Néel state |Ψ0〉 = |N〉 and the overlap was found to be

|〈Ψ0|{±λ+}N/2〉|2

〈{±λ+}N/2|{±λ+}N/2〉
=

N/2∏
j=1

uNéel(λ
+
j )×

detN/2G
+
jk

detN/2G
−
jk

, (4.3)

where uNéel(λ) is the pair amplitude given by

uNéel(λ) =
tan(λj + iη/2) tan(λj − iη/2)

4 sin2(2λj)
(4.4)

and the N/2×N/2 matrices G± are called Gaudin-like determinants and are given by

G±jk = δjk

−Lϕη/2(λ+
j ) +

L/4∑
l=1

ϕ+
η (λ+

j , λ
+
l )

− ϕ±η (λ+
j , λ

+
k ) (4.5)

with

ϕ±η (λ, µ) = ϕη(λ− µ)± ϕη(λ+ µ)

ϕx(λ) =
sinh(2x)

sinh(λ+ ix) sinh(λ− ix)
.

(4.6)

For states with the pair structute the full Gaudin determinant factorizes as

detG = detG+ detG−. (4.7)

Some important remarks are in order. First, it can be shown that the ratio of the
determinants remains finite even in the TDL; thus they only contribute an O(1) piece to
log(|〈Ψ0|λN〉|2), while the product of the pair amplidutes is extensive in the volume and
thus most relevant.
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Second, this form is reminiscent of the results of Ghoshal and Zamolodchikov, except
these determinants. In fact, the formal squeezed state (3.5) implies that for multi-particle
states the total amplitude will be given by the product of the pair amplitudes.

Quite interestingly, these determinants appeared already in [262], where the overlaps
with finite volume boundary states were considered, focusing only on integrable QFT.
In other words, [262] constructed the finite volume version of the squeezed state (3.5) of
Ghoshal and Zamolodchikov. The paper [262] does not include explicit matrices for all
N , but the concrete formulas up to N = 4 and the reasoning behind them makes it clear
that [262] had the same results. Unfortunately, that work only treated QFT situations
and the results about the determinants were forgotten, even by the author. Therefore, the
paper [262] from 2010 did not have any influence on the overlap computations.

Despite the lack of historical continuity, here we summarize the key argument of [262],
which gives a fairly straightforward (but not rigorous) derivation of the Gaudin-like de-
terminants. Consider the boundary one-point function in integrable QFT

〈Ψ0|O(x, t)|0〉, (4.8)

where O(x, t) is any local operator, the boundary state |Ψ0〉 is given by (3.5), and the
system is directly in infinite volume. We can also consider the same quantity in the finite
volume situation, where (3.5) is replaced by a finite volume boundary state with unknown
overlaps.

The one-point function can be expanded into a spectral series by inserting a complete
set of states between |Ψ0〉 and O(x, t):

〈Ψ0|O(x, t)|0〉 =
∑
λN

〈Ψ0|λN〉〈λN |O(x, t)|0〉, (4.9)

where the sum runs over all N and all Bethe states. We observe the emergence of the
overlaps (in both finite and infinite volumes) and of the form factors

〈λN |O(x, t)|0〉, (4.10)

once again, both in finite and infinite volumes. The space and time dependence can be
separated using the energy and momentum of the multi-particle states, but this is not
important at the moment.

It can be argued that for any massive theory the finite size effects can be only exponen-
tially small in L. This should hold separately for the contribution of each N -article sector
in the spectral sum. Eventually this will give a relation between the finite volume and
infinite volume overlaps. It is known that the ratio of the finite and infinite volume form
factors of the type (4.10) is given by the square root of the Gaudin determinant (see eq.
(6.19) below, or [263]), and this factor has to be present also in the finite volume overlap
in order to have it canceled. But one should also take into account that in finite volume
we have a sum over the discrete Bethe states, while in infinite volume we have some fixed
single particle integration measures. If the volume is large enough, the summation over
Bethe states can be replaced by integrals, given that we take into account the density
of states up to all orders in 1/L, leaving only exponentially small corrections to the in-
tegrals. For the overlaps in question only the states with the pair structure contribute,
thus we need their density of states. Similar to (1.52) this is given by a Jacobian, which
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is actually detG−. Putting everything together, the finite volume overlap formula should
have a factor of √

detG

detG−
(4.11)

on top of the product of pair amplitudes. For the squared overlap we obtain an extra
factor of

detG

(detG−)2
=

detG+

detG−
, (4.12)

and this is indeed present in (4.3). We remind that (4.3) was found from a direct and
rigorous computation in the spin chains, whereas the argument above is not completely
rigorous. Nevertheless the same result is obtained.

This argument shows that the overlaps with an arbitrary integrable state |Ψ0〉 should
alwasy have a form

|〈Ψ0|{±λ+}N/2〉|2

〈{±λ+}N/2|{±λ+}N/2〉
= Z(N,L)×

N/2∏
j=1

u(λ+
j )×

detN/2G
+
jk

detN/2G
−
jk

, (4.13)

where u(λ) is the pair amplitude and Z(N,L) is a factor that does not depend on the
rapidities. These ingredients depend on the initial state, whereas the ratio of Gaudin-like
determinants should be universal.

We will see that this statement holds for all two-site product states in the XXZ model,
and many other cases even in more complicated models; in nested Bethe Ansatz the G±
matrices have to be replaced by the appropriate generalizations. However, in the case of
integrable MPS’ it is not guaranteed that the exact formula is so simple: in the most
general case we can have formulas of the type

|〈Ψ0|{±λ+}N/2〉|2

〈{±λ+}N/2|{±λ+}N/2〉
= P (λN)×

detN/2G
+
jk

detN/2G
−
jk

, (4.14)

where P (λN) can be sums of products of the type

N/2∏
j=1

u(λ+
j ) (4.15)

for rapidities from various levels of the nesting. Concrete examples will be given below.
Having understood the general structure of the integrable overlaps, the remaining

task is to determine the pair amplitudes using the initial state (or the corresponding K-
matrices). This will generalize the classical result (3.6). There are two possible types of
derivations: the first (and easier) way is to assume that a formula like (4.14) holds, and
then the task is to fix its ingredients. The second, much more involved way is to actually
prove the full determinant formula from scratch. As far as we know this has only been
done in models related to the SU(2)-group, and there is not a single case in nested Bethe
Ansatz when the overlap formula was actually proven for all particle numbers. Existing
computations involve the coordinate Bethe Ansatz, with which only low particle numbers
can be reached. Most of the works of the author also follow the first way, although in [28]
we also made a step towards rigorous proofs in more complicated cases. This line of
research is still active.
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4.3 Exact overlaps from TBA

The paper [214] derived the overlaps with the Néel state, and this result was easily
extended to states of the form (3.43) in [9] using a trick of [4]. These states correspond to
diagonal K-matrices, and at that time it was not clear, whether a formula like (4.13) could
hold also for the non-diagonal case. This was later settled in [16], where the factorized
overlaps were computed for an arbitrary two-site product state.

The paper [16] assumed that a formula like (4.13) exists and it fixed the functions
involved using a combination of the overlap based TBA and BQTM methods. The results
were then checked by comparing it to numerical data from exact diagonalization. As
mentioned above, the sub-sequent work [28] also presented rigorous proofs in some new
cases with non-diagonal K-matrices, but first we review the techniques of [16].

The central tool of [16] is the set of TBA equations for the solution of the quench. It
was explained in the Sections above, that this TBA can be derived in two ways:

• Eq. (2.32) can be derived using the Quench Action method, given that the overlap
has a factorized structure.

• Eq. (3.49) can be derived for the Loschmidt amplitude using the BQTM, and the
β → 0 limit corresponds to the solution of the quench, when we can identify ηn(λ) =
Yn(λ).

The BQTM method implies the Y -system equations, and the identification also means
that the Y -system equations hold for the η-functions of the Quench Action method. This
was also proven in a more direct way in [16]: it was shown that if the source terms come
from factorized overlaps, then the Y -system is automatically satisfied. Thus factorized
overlaps can only exist for those intial states where the η-functions satisfy
the Y -system. This seemingly very technical statement is actually important: it tells
us that we can not expect to find algebraically factorized overlaps for states which are
not integrable. This was not clear in the literature, and there was an expectation in the
community that overlap formulas might exist even in the non-integrable cases, see for
example the unsuccessful attempt [264] to find such formulas.

The idea of [16] is to have a direct comparison of the source terms dn(λ). On the
one hand side they can be obtained from the pair amplitude u(λ) through (2.33)-(2.34).
On the other hand, they can be derived from (3.49) as well, using the exact solution for
Yn(λ) from the BQTM method. This comparison results in a relatively simple condition:
It turns out that the two sets of equations (2.32) and (3.49) are identical, if the functions

hj(λ) = uj(λ)Yj(λ), uj(λ) =

j∏
k=1

u(λ+ iη(n+ 1− 2k)/2) (4.16)

are free of singularities on the physical strip. Note that here uj(λ) is the pair amplitude
for the j-strings.

The Y -functions can be computed from the BTQM; it is actually enough to compute
Y1(λ), the remaining ones are determined recursively by the Y -system equations. Then
the conditions for hj(λ) completely fix the poles and zeroes of u(λ). The important point
is that each hj(λ) only tests a region |=(λ)| < η/2, but they depend on the original u-
functions with shifted variables, therefore they scan the whole rapidity space. In [16] only
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the function h1(λ) was considered, while higher functions were needed in the sub-sequent
work [27].

Let us present here the main result of [16]. We parametrize the un-normalized two-site
block with three parameters α, β, θ as

ψ11(α, β, θ) =− eθ sinh(η)

ψ12(α, β, θ) =2(− sinh(α) cosh(β) cosh(η/2) + cosh(α) sinh(β) sinh(η/2))

ψ21(α, β, θ) =2(sinh(α) cosh(β) cosh(η/2) + cosh(α) sinh(β) sinh(η/2))

ψ22(α, β, θ) =e−θ sinh(η).

(4.17)

This is not an ad hoc parametrization, it follows from (3.13) and the characterization of
K-matrices [216]. The normalized overlap is found to be

|〈Ψ0|{±λ+}N/2〉|2

〈{±λ+}N/2|{±λ+}N/2〉
=
|eθ(L−2N)| sinhL(η)

|N |L/2

N/2∏
j=1

u(λj)×
detN/2G

+
jk

detN/2G
−
jk

(4.18)

with u(λ) given by

u(λ) =
vsαv

s
α∗v

c
βv

c
β∗

vsη/2v
c
η/2v

s
0v
c
0

, (4.19)

where we introduced the short-hand notation

vsκ(λ) = sin(λ+ iκ) sin(λ− iκ) vcκ(λ) = cos(λ+ iκ) cos(λ− iκ). (4.20)

The normalization factor N is simply

N =
2∑

j,k=1

|ψjk|2. (4.21)

The formula (4.19) connects the initial state (or equivalently, the parameters of the bound-
ary K-matrix) to the pair amplitude in the overlap. It can be considered a generalization
of (3.6). The relation is more complicated, because in the spin chain the K-matrix does
not immediately describe reflection factors, moreover the non-diagonal K-matrices corre-
spond to boundaries that break particle number conservation.

4.4 Overlaps for AdS/CFT

As mentioned above, there are a number of cases when the spin chain overlaps are
relevant to AdS/CFT. In lots of cases coordinate Bethe Ansatz computations were used
by other researchers to try to find the overlaps [221–225]. The idea is to assume a formula
like (4.14) and try to find the function P (λN), which is assumed to be a polynomial in
the products of the form (4.15). If this function is simple, then there is a good chance
that explicit computations with low particle numbers can determine it. However, for
complicated cases this can turn out to be impossible.

One such case was encountered in [225], where coordinate Bethe Ansatz did not lead
to any compact formula, despite considerable effort of the researchers. Nevertheless, after
joining forces we were able to find the compact and exact formula in [27]. This required a
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combination of the BQTM method described above and the representation theory of the
twisted Yangian. Now we describe this result, but we restrict the technical details to a
minimum.

The overlap in question involves the SO(6)-symmetric fundamental model, with the
Hamiltonian given by (1.10). It is known that this model is solvable by the nested Bethe
Ansatz with two levels of nesting. This structure is a result of the identification of Lie
algebras so(6) ' sl(4); the defining representation of SO(6) can be identified with the
anti-symmetric tensor representation of SU(4). Then the standard formulas of the SU(N)-
symmetric models can be used. In accordance, there are three types of rapidities, which
can be denoted as

{uN0 ,vN+ ,wN−}. (4.22)

Bethe equations for them can be found in the paper [27].
The overlaps in question involve states with residual symmetry SO(5), thus they

belong to the class (SO(6), SO(5)). The one-site invariant MPS are given by

ωj =

{
Gj if j < 6

0 if j = 6,
(4.23)

where the matrices Gj, j = 1, . . . , 5 are symmetrically fused gamma matrices in dimension
5. In the simplest case with no fusion Gj = γj, j = 1, . . . , N , and this corresponds to the
case given earlier in (3.29).

We constructed the Baxterization for these MPS and computed the corresponding
Y -functions. However, it was known from coordinate Bethe Ansatz, that the overlaps are
rather complicated: they involve some unknown polynomial P like in (4.14) and are not
of a simple product form. In these cases the BTQM and TBA methods can only fix the
leading term in the polynomial. We performed this computation, we found the leading
term, which was confirmed by coordinate BA to be present in the formula. But this did
not help finding the remaining terms.

The solution was to use the representation theory of the twisted Yangian, which is
the abstract algebraic structure behind the twisted BYB, and to relate the complicated
cases to more simple, fundamental overlaps. This part of the computation was the work of
Tamás Gombor. The method is an extension of the highest weight method to the Yangian,
where the weights are not just numbers but polynomials in the rapidity variable. We do
not review this computation here, we merely cite the main result.

Let |Ψγ〉 be the MPS constructed from the 5 dimensional Gamma matrices, and let
|Ψ0〉 be a one-site invariant product state given by the vector

ωj =

{
0 if j < 6

1 if j = 6,
(4.24)

Note that quite naturally this vector also enjoys SO(5)-symmetry. It was found by Tamás
Gombor is our work [27] that in some appropriate normalization

〈Ψγ|{uN0 ,vN+ ,wN−}〉 = Λ× 〈Ψ0|{uN0 ,vN+ ,wN−}〉, (4.25)

where Λ is a known eigenvalue of a specific transfer matrix from the fusion hierarchy of
the model. Precise details are found in the paper.
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This formula tells us that it is enough to find the overlap with the simple scalar state,
and then the complications with the MPS are all included in the eigenvalue function Λ,
which is actually a sum of products of the form (3.29).

Luckily, the BTQM-TBA method described above was sufficient to find this simple
overlap. We computed the Baxterization, the corresponding Y -functions, and the com-
binations like (4.16). Investigating the poles and zeroes of these functions was enough
to find the overlap with this simple state, and eventually (4.25) produced the overlaps
relevant to the AdS/CFT one-point functions.

For all the details of this computation we refer to the original work. Let us however note
that even the published paper [27] is very brief and many details are left out due to length
reasons. This is common practice in those cases when the model is very complicated, due
to the higher rank symmetry groups involved.

We note that we also performed similar computations for overlaps with other symmetry
classes, for example in the class (SO(6), SO(3) × SO(3)). However, in those cases we
did not find new relevant overlap formulas, our contribution is just the representation
theoretical understanding of the results derived earlier by the coordinate Bethe Ansatz.
A large part of these computations remained unpublished.

4.5 Rigorous proofs

As it was mentioned above, the methods we described so far fix the pre-factors in
front of the Gaudin-like determinants, once we accepted that a formula like (4.14) should
hold. Recently there have been new attemts to rigorously prove the complete formula.
We remind that in the case of the Néel state (and the states of the form (3.43)) an exact
proof is available, but this is restricted to diagonal K-matrices and it is not clear how to
generalize it to other cases.

A completely different method was introduced in [28]. Here the idea is to use the
coordinate Bethe Ansatz formulas to derive a rigorous proof for all particle numbers.
Earlier attempts also used the coordinate BA wave function, but they only treated cases
with fixed low particle numbers. It was a completely new addition of [28] that recursive
formulas were found which eventually prove the exact formulas. Now we summarize this
method.

Let us write the coordinate BA wave function (1.21) as

Ψ(x1, . . . , xN) =
∑
P∈SN

F(P )Ψfree(x1, . . . , xN), (4.26)

where the sum runs over the permutations of the rapidities, Ψfree is a free wave function
given by

Ψfree =
N∏
j=1

eixjp(λPj ) (4.27)

and F(P ) is the factor which takes into account the interaction between the particles:

F(P ) =
∏
j>i

f(λi − λj). (4.28)
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For technical reasons it is useful to introduce the variables lj = eipj = eip(λj) which
are the one-particle eigenvalues of the one-site shift operator. Clearly, Ψfree(x1, . . . , xN) is
the product of the powers of these variables. Furthermore, in the concrete cases it can be
shown that the f -function is a rational function of two l-variables, thus the overall factor
F(P ) is also a rational function of the permuted l-variables.

The first step is to compute the overlaps with the free wave functions:

〈Ψ0|Ψfree〉. (4.29)

If the initial state is a one-site or two-site invariant product state, then such overlaps are
relatively easy to compute in closed form. Summations of the type

x2∑
x=x1

lx (4.30)

can be performed using known formulas for geometric series. In the final result the volume
L will enter only through the exponents, in combinations similar to

lL − 1

l − 1
. (4.31)

Thus the resulting formula for (4.29) will be a rational function of the l-variables and the
variables aj = lLj . It is useful to treat the a-variables as independent.

Turning to the full overlap, it is still true that the final formula will be a rational
function of the l- and a-variables. However, the summation over the permutations is not
tractable in the generic case, therefore we can not expect to find compact formulas.

The computation described so far is off-shell: we have not yet used the Bethe equations.
We know from the general proofs regarding the integrability of the state |Ψ0〉 that for
on-shell states only those Bethe states will have non-zero overlap, which satisfy the pair
requirement (possibly also including some exceptional rapidities). This information is used
to find the factorized overlap formulas.

Let us denote by SN(lN ,aN) the full overlap function. Let us further denote by S̃N(lN)
the function which is obtained from SN by the formal substitution of the Bethe equations.
This means that for each aj we substitute the “right hand side” of the Bethe equations.
It turns out that this function S̃N(lN) is identically zero! The reason is that the overlaps
have to vanish for almost all states, and it is easy to prove that the corresponding rational
function has to be zero (it can be shown with some generalization that we are actually
showing the vanishing of the rational function at infinitely many points).

Then the question remains: how to get the final non-zero overlaps? The trick is to
focus on combinations of the type

a1a2 − 1

l1l2 − 1
, (4.32)

which can be shown to appear as factors in various terms in SN(lN ,aN). Now we focus on
the case of only two particles. In this case if we substitute the Bethe equations for a1 and
a2 and we also assume the pair structure then we get identically zero in the numerator.
However, the actual combination is of the form 0/0, which gives a finite answer: for two
particles the above formula leads to the finite value L.
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We can see that the vanishing of S̃N(lN) is due to our artificial way of treating the
l- and a-variables as separate. However, it is actually these terms of the type 0/0 which
give a finite contribution to the final on-shell overlap, so we need to determine them by
treating the variables as separate.

Let us consider the completely paired limit:

l2j−1l2j → 1, a2j−1a2j → 1, j = 1, . . . , N/2, (4.33)

and let us further investigate the apparent pole at say l1l2 = 1. It was shown in [28] in
concrete cases that the formal pole of SN around the point l1l2 = 1 is of the form

SN(L) ∼ a1a2 − 1

l1l2 − 1
F (λ1)

N∏
j=3

f(λ1 − λj)f(−λ1 − λj)Smod
N−2(�1, �2, L), (4.34)

where Smod
N−2 is the formal overlap for N−2 particles not including 1 and 2, evaluated with

the following modified a-variables:

amod
j =

f(lj, l1)

f(l1, lj)

f(lj, 1/l1)

f(1/l1, lj)
aj. (4.35)

In (4.34) F (λ) is a rational function of the l-variable which carries the dependence on the
initial state. Unfortunately the proof of (4.34) is not available in the general case, only
particular states were considered. Nevertheless these include new cases with non-diagonal
K-matrices.

It can be shown that (4.34) contains enough information to completely prove the
factorized overlap formulas of the type (4.13). For the pair amplitude the result is

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
, (4.36)

where F (λ) stems from (4.34) and f(λ) is a characteristic function of the model defined
in (1.43).

The proof of the final overlap formula goes back to the ideas of Korepin used to prove
the norm formula with the original Gaudin determinant [105]. In fact, the whole method
was motivated by this old work, it was merely just adapted to the case of the overlaps.
Perhaps it is not surprising that the results of similar final formulas require proofs with
similar methods. This also means that we do not expect that a really simple rigorous
proof will be found: the complexity of the proofs of the overlaps have to be at least as
complicated as the easiest rigorous proof of the original norm formula.

This method of [28] is rather complicated but it can give a good starting point for later
works. We expect that at least some partial simplification of the method will be possible.
For example, it should be possible to prove (4.34) with algebraic methods, without an
explicit summation of the wave function in coordinate space. Research in this direction is
in progress in collaboration with Tamás Gombor.

Finally we note that [28] did not only consider the XXZ spin chain, but also the so-
called SL(2,R) chain, where the local Hilbert space is infinite dimensional. This model is
also important for AdS/CFT. The proof described above is easily adapted to that model
as well.
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4.6 Open problems

As it was described above, there are now multiple methods available to compute the
exact overlaps. However, a lot remains to be done.

First of all, the method of the last Section needs to be simplified, and also it needs to
be adapted to the nested cases. Going further, it would be important to find methods that
work also for the long range deformed models, which are important to AdS/CFT. The long
range interaction terms correspond to higher loop corrections in the CFT, and comparison
with string theory requires to have exact formulas with all such contributions included.
At present little is known about the integrable states of the long range deformed chains,
although some preliminary results appeared in [255,256] (see also [227,257]). Perhaps the
method of the Separation of Variables (SoV) [265] could help in this situation.

We also note that there are a number of models where overlaps have not yet been
computed, such as the XYZ chain or the Hubbard model. However, at present there is
little motivation to pursue this direction.

5 Correlation functions

5.1 Introduction

The computation of correlation functions of the integrable spin chains has a very rich
history, and it is practically impossible to review it in this thesis. Unfortunately there
is no single review article or book which includes all the various methods and recent
developments. Therefore we refer the interested reader to the following works:

• The book [52] summarizes the basics of Algebraic Bethe Ansatz and the early ap-
proaches towards the correlation functions. These approaches are barely used any-
more.

• The habilitation thesis of Karol Kozlowski [54] is a recent work, which summarizes
almost all the modern methods, and the works of him and his collaborators on the
correlation functions. Here the focus is on the derivation of the asymptotic (large
distance and large time limit) behaviour of the equilibrium correlations.

• The short paper [168] can be used as a friendly introduction to the theory of fac-
torized correlation functions. The practical results of this theory will be explained
below, because this is the method which was used in the solution of the quantum
quenches and this is where the author also contributed.

• Recent developments in the so-called Separation of Variables (SoV) method can be
found in the paper [266], where the history of the field is thouroughly reviewed. The
author has not yet used the (SoV), therefore this method will not be considered
below.

• Recent results about scalar products and form factors in nested systems are reviewed
in [267].
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The difficulty of computing the correlation functions lies in the Bethe Ansatz itself. The
wave function is explicitly known as a sum over permutations, and the local correlators
of the type

〈λN |O|λN〉 (5.1)
with O being any short range operator can be written down using a double sum over
permutations. The individual terms can be evaluated explicitly, but performing the sum-
mation is very difficult. We note that alternative representations using summations over
bipartite partitions were also derived [52], but this was only a slight improvement. More ef-
fective methods involving scalar products and form factors (based on the famous Slavnov-
determinant [268]) were developed starting from the beginning of the 90’s. This led to
multiple integral formulas for the short range correlations. Later it was understood that
these multiple integrals can be expressed as sums of products of simple integrals, and this
led to the theory of factorized correlation functions, also known as the Hidden Grassmann
Structure. Before turning to this theory let us explain why these theories were needed for
quench problems, and what was missing before the work of the author.

Basically all of the works mentioned above focused on the correlation functions in the
ground state or in finite temperature ensembles. This was motivated by both theory and
experiments. In materials whose magnetism is well described by the 1D spin chains the
neutron scattering experiments naturally probe the ground state, or perhaps the finite T
cases [59, 160]. Furthermore, in gapless models the ground state correlations are special,
they decay algebraically with non-integer powers, and direct comparison can be made to
the predictions of Conformal Field Theory [54].

However, more recently both the experiments and the theory shifted towards the non-
equilibrium setup, and this motivated the study of correlation functions in highly excited
states. Computing the full time dependence of physical quantities is very difficult, and a
simpler goal is to study the properties of the emerging steady-states after the quenches,
as explained in Section 2. For the correlations in these states practically no results were
available before 2014. In most situations it is the correlation of local observables which
is measured in an experiment, therefore simply just finding the root densities after the
quench is not enough to compare to experimental data. Exceptions to this are the time-
of-flight measurements which give information about the root densities in quantum gases
(see for example the recent work [71]), but naturally such methods do not exist for spin
chains.

Let us now go back to the questions of GGE and GETH discussed in Section 2.
The GETH includes the statement that the mean values of the complete set of charges
determine all local correlation functions in the model. In 2 we explained that the string-
charge duality fixes the Bethe root distributions, once the mean values of the charges
are known. Clearly, this is only half of the story, and it needs to be shown that the root
densities fix all local correlations. Furthermore, in integrable models it is expected that
eventually some concrete exact formulas will be found for the correlation functions, and in
the ideal case they will be simple enough that they can be used in practical computations.

This question was especially timely in 2014, when the status of the GGE was not yet
clear and it was required to have hard tests of the GGE predictions [6,172]. At that time
there were no methods that could treat the correlations of the emergent steady states.
Both works [6, 172] employed the Hellmann-Feynman theorem to find the mean value
of the nearest neighbour z − z correlation in the XXZ chain. On the other hand, our

81

dc_1819_20

Powered by TCPDF (www.tcpdf.org)



papers [5,6,12] went further and we presented formulas for basically all local correlations.
This was based on the immense work of the leading scientists of the field who developed
the theory of factorized correlation functions (to be reviewed below).

Our results on correlation functions are important also for Generalized Hydrodynam-
ics; the connection will be explained in Section 6.

5.2 Factorized correlation functions

The theory of factorized correlation functions was developed in a series of works with
contributions from many researchers [269–276]. The history of this theory started with
the work [277] of Boos and Korepin who observed that some concrete multiple integral
formulas for correlations of the XXX chain can be factorized (see also [278]). Afterwards
this was developed into a full algebraic theory. In our opinion this is one of the most
advanced theories in integrability, and it is fair to say that only a handful of researchers
understand it in all details. Unfortunately the author is not one of them. However, it is
relatively easy to understand the main results, and to contribute to certain parts of the
theory. Now we summarize these main results.

The theory deals with the normalized mean values of the form

〈Ψ|O|Ψ〉, (5.2)

where O is a short range operator of the Heisenberg chain (the XXZ and XXX cases
need to be treated separately), and |Ψ〉 is an eigenvector of the commuting set of transfer
matrices. It is important that there is no restriction on the size of the system (other than
it has to be bigger than the length of O), and both the finite and infinite size cases can be
considered. The works cited above only treated the ground state and finite temperature
cases, and the extension to arbitrary excited states was the contribution of the author.

The main statement of the theory is that each mean value can be expressed using just
a few functions. To be more precise, the mean values are expressed as combinations of
the Taylor coefficients of some functions with one or two auxiliary variables. The number
of functions depend on the model: In the XXZ chain it is enough to consider just two
functions (commonly denoted as ω(µ, ν) and ω′(µ, ν)) for operators that are symmetric
with respect to spin-flip. For generic operators an additional function ϕ(µ) is also needed.
In the XXX case the situation is more involved: for operators that are SU(2)-symmetric
(or for states with zero magnetization) it is enough to consider just a single function
ω(µ, ν), whereas the full solution in the generic case is not yet known. We note that even
the XYZ model was treated in [279] and it is conjectured that three functions with two
variables are enough to describe all correlation functions in that model.

From a practical point of view the theory of factorized correlations consists of two
parts:

• The algebraic part. This part of the theory uses the so-called hidden Grassmann
structure, an algebraic construction on the space of the operators, to express the
mean values of given operators using the functions mentioned above. This part is
completely independent of the physical situation: it concerns only the operators
themselves. Nevertheless the factorization only holds for the mean values of the
operators in the eigenstates, and clearly not for the operators themselves.
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• The physical part. This part specifies the functions mentioned above depending
on the concrete physical situation. For example it gives specific values to ω(µ, ν)
depending on the temperature, magnetic field, etc. It is this part where the author
also contributed.

The functions mentioned above have their origin in the two-site density matrix of an
inhomogeneous spin chain, where the parameters µ, ν are the inhomogeneities (see (1.55)).
This is why it is sometimes said in the literature that all correlations can be expressed
using the two-site density matrix. It should be noted that the factorized correlations can
also be found with a set of recursive equations satisfied by the inhomogeneous multi-site
density matrix [280].

We now give a flavour for the results of the algebraic part. In the XXX chain let us
consider states with zero total magnetization. Then short range z− z correlations can be
expressed as [276] 5

〈σz1σz2〉 =
1

3
(1−Ψ0,0) (5.3)

〈σz1σz3〉 =
1

3
(1− 4Ψ0,0 + Ψ1,1 −

1

2
Ψ2,0) (5.4)

〈σz1σz4〉 =
1

108
(288Ψ1,1 − 15Ψ2,2 + 10Ψ3,1 + 2Ψ0,0(−162− 42Ψ1,1 + 3Ψ2,2 − 2Ψ3,1)+

+ Ψ2,0(−156 + 12Ψ1,1 − 6Ψ2,0) + Ψ1,0(84Ψ1,0 − 12Ψ2,1 + 4Ψ3,0) + 36),
(5.5)

where
Ψn,m = ∂nµ∂

m
ν Ψ(x1, x2)|µ,ν=0. (5.6)

and Ψ(µ, ν) is a function which is related to the above mentioned ω(µ, ν) in a linear way.
For our purposes the function Ψ(µ, ν) is more convenient.

Let us give now the formulas for the physical part. Prior to the work of the author
this was known for the finite temperature cases, or the ground states in finite or infinite
volume. We focus again on the XXX case and follow the notations of [168]. Let a(λ) be
an auxiliary function defined by the non-linear integral equation

log(a(λ)) = a0(λ)−
∫
C

dω

2π

2 log(1 + a(ω))

1 + (λ− ω)2
, (5.7)

where C is a closed contour encircling the real line. The physical situation is encoded in
the source term a0(λ).

For the ground state in finite volume L we have

a0(λ) = L log
λ− i/2
λ+ i/2

. (5.8)

In this case the auxiliary function encodes the position of the Bethe roots λN through
the conditions

1 + a(λj) = 0. (5.9)
5The paper [276] has a misprint: In formula (11) the coefficient of the term (1, 0)(3, 0) for 〈σz

1σ
z
4〉 is

written as -4/27, whereas correctly it is 4/27. This misprint was discovered by the author after some
numerical tests, and at that time it caused some confusion and one or two weeks of delay. The correct
formula was later confirmed by Frank Göhmann (Wuppertal).
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It can be shown that if the contour C encircles all Bethe roots then (5.9) together with
(5.7) is equivalent to the Bethe equations (1.24) with (1.23).

For finite temperature T we have

a0(λ) =
2

T

1

λ(λ+ i)
. (5.10)

In this case the conditions (5.9) encode the Bethe roots of the Quantum Transfer Matrix
(see Section 2.6 and [50,169]).

We require T > 0 or L <∞; in this approach the ground state of the infinite volume
system is singular which needs separate treatment.

The function Ψ(µ, ν) is then expressed as 6

Ψ(µ, ν) =

∫
C

dω

2π

1

1 + a(ω)

G(ω|ν)

(ω − µ)(ω − µ− i)
, (5.11)

where G(ω|ν) is a further auxiliary function with parameter ν satisfying the linear equa-
tion

G(ω|ν) = − 1

(ω − ν)(ω − ν − i)
+

∫
C

dκ

2π

1

1 + a(κ)

2G(κ|ν)

1 + (κ− ω)2
. (5.12)

In the XXZ model there are analogous formulas for the function Ψ(µ, ν) (or ω(µ, ν)),
whereas ω′(µ, ν) is given by a similar definition, although with different source terms for
the linear integral equations. We refer the reader to [281, 282] for the practical formulas
and examples of the numerical data.

The formulas above might seem complicated, but in fact this system of equations is
very convenient for numerical computations. The auxiliary function a(λ) can be found
easily, simple iterations of the convolution converge very quickly. Afterwards one usually
computes the Taylor coefficients of Ψ(µ, ν) directly, by expanding the functions involved
in ω and ν. This is straightforward and the resulting linear integral equations are also
easily solved. Finally the formulas for the algebraic part are already available, and simple
substitutions into formulas like (5.3)-(5.5) immediately give the final numerical results. It
is very rare even for integrable models that numerically exact correlation functions can
be computed in such an effective way.

5.3 The physical part in excited states

Before 2014 the physical part of the theory was only known for the ground states and
the finite temperature cases. Motivated by the quench problems the author and his MSc
student Márton Mestyák extended the physical part to arbitrary excited states in [5]. This
work was based on a simple explicit computation and the observation of some analogies
between various formulas. Therefore the main results of [5] were only conjectures at that
time. This work considers the infinite volume limit directly.

The only rigorous computation of [5] was the application of the Hellmann-Feynman
(HF) theorem to the nearest neighbour correlator. It follows from the theorem and the
expression (1.41) for the Hamiltonian density that

〈λN |σzjσzj+1|λN〉 =
1

L

∂E(λN)

∂∆
, (5.13)

6Our Ψ-function is one half of the Ψ-function of [168].
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where E(λN) is the exact energy eigenvalue of the given state. The derivative on the r.h.s.
above is easy to evaluate, and the resulting equations turn out to have similar structure
as the equations for the physical part in the QTM formalism. However, the HF theorem
can be applied for any excited state, and all intermediate computations use the Bethe
root densities. Thus it was possible to conjecture the formulas for the functions ω(µ, ν)
and ω′(µ, ν) based only on this single non-trivial example. As the formulas only involve
the Bethe root densities, we can call the results the TBA form of the physical part. We
summarize it now in the XXX case.

Let ρn(λ) and ρn,h(λ) be the densities for the n-strings and their holes. Then we define
parameter dependent auxiliary functions ρ̃n(λ|ν) through the equations

ρ̃n(λ|ν) = δn,1s(λ− ν) +

∫ ∞
ω=−∞

dω

2π
s(λ− ω)

(
ρ̃n−1(λ|ν)

1 + ηn−1(ω)
+

ρ̃n+1(λ|ν)

1 + ηn+1(ω)

)
, (5.14)

where ηn(λ) is defined in (2.31). Comparing with (1.64) we can see that for ν = 0

ρ̃n(λ|0) = ρn(λ) + ρn,h(λ). (5.15)

Thus ρ̃n(λ|ν) should be considered as a parameter-dependent generalization of the root
density functions. The information about the actual physical densities enters (5.14) through
the functions ηn(λ).

Finally

Ψ(µ, ν) = G(µ, ν) +

∫
dλ

2π
s(λ− µ)

ρ̃1(λ|ν)

1 + η1(λ)
, (5.16)

where G(µ, ν) is a known function independent of the physical situation. We note that
the specific formula (5.16) is unpublished, and [5] included a slightly more complicated
form. We plan to publish this version in an upcoming work.

In [5] similar formulas were given for ω(µ, ν) and ω′(µ, ν) also in the XXZ case. After-
wards, the conjectures were tested against numerics: more complicated correlators were
computed in the thermal case using both the established QTM and the conjectured TBA
input for the physical part, and exact agreement was observed. Afterwards, the formu-
las were used in the paper [6] in combination with the Quench Action method, and this
proved to essential in the investigation of the GGE.

The follow-up paper of the author [12] took a different path: it considered the finite
volume case only and it aimed at deriving algebraic formulas instead of the integral
representations. This has various advantages as we will see.

The starting point was the paper [283] which dealt with the correlation functions of
finite chains in detail. The idea of [12] was to transform the various integrals in [283] into
summation over the Bethe roots. If a contour integral involves the factor 1/(1 + a(λ))
then there is a pole for each Bethe root. The contour integral can be expressed as a sum
over its residues, which will thus include a sum over the Bethe roots, on top of some
additional poles of the integrand. This is a known and straightforward procedure. In fact,
the derivation of the integral equation (5.7) proceeds through the same steps, just in the
opposite order. The important observation of [12] was that for the physical part there
is no need to use the integral representations. This had historical reasons, but switching
back to algebraic formulas is very useful.
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For the function Ψ(µ, ν) in a Bethe state |λN〉 the following algebraic result was found
in [12]:

Ψ(µ, ν) = h(µ) ·G−1 · h(ν). (5.17)

Here G is the N ×N Gaudin matrix defined by (1.52), and h(x) with x = µ, ν is a vector
of length N with components

(h(x))j = h(x− λj), (5.18)

where h(x) is a characteristic function of the model describing the one-particle charge
eigenvalues. Explicitly it is given by

h(x) = p′(x), (5.19)

where the one-particle momentum function p(x) is given by (1.22) and (1.23).
A similar formula can be derived also for the other function ω′(µ, ν), for the details

we refer to [12].
Strictly speaking the result (5.17) was derived only for the ground state, because the

starting point of [283] was also the finite volume ground state. However, in these algebraic
and analytic computations no information is used about the nature of the state in question.
The only input is that the contours encircle all Bethe roots, and no extra roots (holes)
other than known special poles of the integrand. Therefore, all the steps of [283] and [12]
can be repeated for all excited states, thus (5.17) can be considered a rigorous general
result. However, in order to avoid potential small mistakes, formula (5.17) was also tested
numerically in [12] for a large number of excited states in small volumes, and complete
agreement was found.

Formula (5.17) concerns the exact Bethe roots in finite volume. In order to prove
the conjectured formulas (5.16)-(5.14) one needs to deal with the string solutions, and
take the thermodynamic limit using the string hypothesis. It is known that in the TDL
the Gaudin matrix describes a convolution of the type (5.14), thus multiplying with G−1

corresponds to solving such a linear integral equation. The precise details of taking the
TDL can be found in the MSc thesis of Márton Borsi, and will be published in early 2021
in a paper written in collaboration with Márton Borsi and Levente Pristyák.

After the appearance of the paper [12] the formula (5.17) remained relatively unknown
in the community. Perhaps the reason for this is that two groups of researchers, namely
those working on the algebraic aspects of correlations and those working on the non-
equilibrium problems (like the questions regarding the GGE) had different background
and different interests, and the technical details about excited state correlations seemed
too remote to both groups. Furthermore, the physical meaning behind the function Ψ(µ, ν)
or its Taylor coefficients was not known at that time. This situation changed when the
author realized that the same formula describes the mean values of current operators.
This was a central question in the new theory of Generalized Hydrodynamics (GHD),
and announcing this connection raised interest in the formula. This will be explained in
Section 6.

5.4 Open problems

Perhaps the most important open question in this topic is whether there are factorized
correlation functions in other, more complicated integrable spin chains or other integrable
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models. The existence of the Hidden Grassmann Structure discussed above seems to be
a special feature of the XXZ and XXX models, with an interesting extension to the XYZ
model discussed in [279]. A similar factorization procedure was developed in [284] by
the author for the local correlators in the Lieb-Liniger model, but there the algebraic
structures behind the factorization are not known.

At present there are clear signs that in models related to higher rank symmetries such
a general factorization scheme can not exist. One the one hand side, explicit computation
of few-site operators shows the absence of factorization with a finite number of functions
[285, 286]. Nevertheless these works were able to compute at least a few short range
correlators; for similar computations on the O(N)-symmetric models see [287]. On the
other hand, even some computations based on classical integrability confirm that the
higher rank case is fundamentally different [288].

The absence of a general factorization scheme does not mean that there are no prac-
tically useful results in higher rank spin chains. It is still possible that there is a subset
of SU(N)-symmetric operators in the SU(N)-symmetric chains, whose mean values can
be computed effectively. In Section 6 it is shown that the current operators belong to
this class, with mean values given by formulas similar to (5.17). At present the class of
operators whose mean values factorize into combinations of a single basic function Ψ(µ, ν)
is not yet known, and it is one of the future directions to explore.

6 Current operators and Generalized Hydrodynamics

6.1 Introduction

As we discussed in Section 2 the main questions around the GGE for interacting
integrable models were settled in 2014-2015. Afterwards the attention of the community
turned to spatially inhomogeneous situations, to quantum transport. In 2016 the theory
of Generalized Hydrodynamics (GHD) was initiated in the independent papers [96, 97].
The theory was originally devised to treat the ballistic modes in the large time and large
distance limit, but very soon it turned out that even the diffusive corrections can be
treated within the theory [289–292]. Recent works [293–298] also treated the phenomenon
of super-diffusion. We should note that the tranport properties of integrable models,
and in particular the Drude weights were already considered in earlier works (see for
example [299–304]), but the treatment of the full real time dynamics (in the large scale
limit) became only possible with GHD. The theory was already applied successfully to
describe real world experiments, see the recent works [69–71].

The contribution of the author and his students to GHD concerns the proof of a
conjectured formula for the current mean values in spin chains [24, 25, 29]. Now we first
describe this conjecture and in the following sub-sections we present three different proofs.

We focus on the large scale limit of the transport phenomena in the integrable models:
we consider physical situations where the variations of local observables are very small
on the characteristic length and time scales of the model. In these cases we expect that
some kind of hydrodynamic approximation can describe the dynamics of the model. To
be more precise, GHD assumes the existence of fluid cells: regions in space that are
much larger than the microscopic length scales, but small enough that we can assume
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local equilibration within the fluid cell. Then the physical parameters of the fluid cells
become space and time dependent, such that their variation is slow, and the condition
of local equlibration can hold throughout the dynamics. It is important that this is just
an approximation, and at present there is no rigorous derivation of GHD. However, once
local equilibration is assumed, the hydrodynamic equations for the real time dynamics
can be derived rigorously within this approximation. It is this part where the author also
contributed.

In Section 2 it was explained that in integrable models each equilibrium situation is
characterized by some kind of GGE. If there are local equilibria with time dependent
parameters, then this means that the parameters of the GGE become space and time
dependent as well. Then the task is to find hydrodynamic equations that govern the flow
of these parameters. The GGE’s can be parametrized either by the Lagrange multipliers,
or the mean values of the charges, or the Bethe Ansatz root densities. Flow equations can
be derived by concentrating on the charges.

For simplicity let us now assume that there is a complete set of charges {Qα} with a
single index α. As discussed in 2.7 the quasi-local charges are also needed in the Heisenberg
chain; but let us now not burden ourselves with the various notations regarding the
complete set. The operator densities will be denoted as qα(x).

In spatially inhomogeneous situations the mean values of the charge densities 〈qα〉
become space and time dependent. Local charge conservation means the existence of
current operators Jα(x) that satisfy the continuity equation for operators

∂tqα(x) + ∂xJα(x) = 0. (6.1)

For simplicity we wrote here the formulas relevant to continuum cases; the precise relations
in the lattice situation will be given below.

Local equilibration implies that it is enough to focus on the mean values of the charges,
because they characterize the GGE. Thus it is enough to focus on the equation

∂t 〈qα(x, t)〉+ ∂x 〈Jα(x, t)〉 = 0. (6.2)

Here the time dependence means that the operator equation is evaluated in the state of
the system at time t.

If local equilibration holds for local operators, then the mean values of the currents
have to be function of the GGE parameters. In other words the current mean values are
given by a complicated functional of the charge mean values:

〈Jα〉 = Jα({〈qβ〉}β=1,...,∞). (6.3)

If these functionals are known, then substituting them back to (6.2) we obtain a closed set
of flow equations for 〈qα(x, t)〉. These will be first order differential equations, with a com-
plicated coupling between the different charges. They can be considered a generalization
of the Euler equation known from classical hydrodynamics.

It is important that the assumption (6.3) refers to local equilibration in a strong
sense, where currents are determined only by the local mean values of the charges. This
approximation leads to the description of the ballistic part of the transport, inlcuding
the Drude weights. However, better approximations can be given when the current mean
value is expressed as a derivative expansion: the dependence of the currents on the first
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spatial derivatives ∂xqβ(x) describes the diffusive corrections. We do not discuss these
corrections here, instead we refer to [289–292].

The functional form of the current mean values was not known before 2016. Both
papers [96, 97] conjectured a general results, which expresses the current mean values
using the Bethe root densities as

〈Jα〉 =

∫
dλ veff(λ)hα(λ)ρ(λ). (6.4)

Here we assumed for simplicity that there is one particle species in the spectrum; the
extension to multiple particle types such as string solutions is straightforward. Above
hα(λ) is the one-particle eigenvalue of the charge in question (see (1.14)) and veff(λ) is
an effective velocity which describes the propagation of a particle with rapidity λ in the
presence of the other particles. The precise form of this effective velocity can be found
in [96,97]; for our purpose it is important that

veff(λ) =
dEdr(λ)

dPdr(λ)
, (6.5)

where Edr and Pdr are the “dressed energy” and “dressed momentum” obtained after the
addition of a particle with rapidity λ into the local equilibrium.

We can thus see that (6.4) is an essentially semi-classical formula: the flow of each
charge consists of the one-particle charges carried by the individual particles, multiplied
by a semi-classical propagation speed. This speed takes into account the scattering of the
particles, and this is the only constituent of the formula which depends on the interactions.

Let us discuss this semi-classical pciture in more detail, following the reasoning in [305].
In a free model the particles propagate with the group velocity v = dE/dp. However, in
a non-integrable interacting model we can not expect to get a formula like (6.4), because
the quasi-particles with given energy typically decay into low energy modes. Such decays
are forbidden in integrable models due to the dissipationless scattering. Thus, if a quasi-
particle is excited in the system, then it will propagate without dissipation in the presence
of the other particles, even if there are interactions. The only effect of the interactions is
the addition of phase shifts to the wave function; these phase shifts are additive due to the
factorized scattering. It is known that in every two-body scattering the phase factors cause
a displacement (or equivalently, a time delay) of the propagating wave packet [306–308].
The displacement is proportional to dδ/dp, where δ(p) is the scattering phase shift. As
the particle propagates in the sea of the other particles, these phase shifts and thus the
displacements accumulate, modifying the average velocity of the wave packet. It was shown
in [305] that this argument exactly reproduces the veff(λ) found in [96,97].

The flow equations of GHD are found if we also use the expression for the charge mean
values:

〈qα〉 =

∫
dλ hα(λ)ρ(λ). (6.6)

Assuming that each fluid cell is large enough so that it has a well defined Bethe root
density ρ(λ), we can make these function space and time dependent and substitute (6.6)
and (6.4) back to (6.2):∫

dλ hα(λ)∂tρ(λ|x, t) +

∫
dλ hα(λ)∂x (veff(λ)ρ(λ|x, t)) . (6.7)
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Note that veff(λ) depends on the root densities, thus the differential with respect to x also
acts on it.

Let us write the above expression as∫
dλ hα(λ)

[
∂tρ(λ|x, t) + ∂x (veff(λ)ρ(λ|x, t))

]
= 0. (6.8)

If the set of charges is complete, then the only way that all such expressions are zero is if

∂tρ(λ|x, t) + ∂x (veff(λ)ρ(λ|x, t)) = 0. (6.9)

This is the fundamental flow equation of GHD, which can be considered as a generalization
of the Euler equation from classical HD. In concrete cases it can be solved numerically,
so that the full complexity of quantum mechanics is replaced by a coupled set of ordinary
first order differential equations. In certain situations even analytical solutions can be
found [97,309].

Despite all the successes of the theory (including the discussion of diffusion and super-
diffusion) the complete and rigorous proof of (6.4) remained elusive for a long time. First
of all, it was known that the statement holds in models equivalent to free bosons or free
fermions [310]. In interacting cases proofs were given in various settings. The original
paper included a proof for relativistic QFT [96]; see also [311] and the recent work [312].
Regarding spin chains the statement was proven for the spin-current in [110]. In the case of
the Toda chain it was discussed in [313], and [314] includes a rather general proof based
on the existence of a conserved current (a current operator which is itself a conserved
charge). However, there was no microscopic proof for the interacting spin chains, which
would start from first principles.

A new contribution of the author was to consider the current mean values in finite vol-
ume; all previous proofs worked basically in the thermodynamic limit. It was conjectured
by the author in 2017 that a formula like (5.17) should describe the finite volume mean
values. However, the publication of the actual proof was only achieved in collaboration
with two students in 2019-2020 [24]. Afterwards two independent proofs of the same state-
ments were given in [25] and [29]; the latter work includes a new algebraic construction
for the current operators. Below we present the exact finite volume formula valid in the
spin chains and other related models, and we also sketch the three different proofs of it.

6.2 Current mean values in finite volume

Here we discuss the results of [24], which concern the mean values of the current and
the so-called generalized current operators in integrable spin chains. The focus is on the
Heisenberg chains; extension to other models can be considered with the methods of the
follow-up work [29].

In spin chains the current operator Jα(x) describing the flow of charge Qβ is defined
through the continuity equation

i [H, qα(x)] = Jα(x)− Jα(x+ 1). (6.10)

This operator definition makes sense in every volume where qα(x) is well defined. It
follows from the commutativity of H and Qα, and from the locality of the densities, that
the operator equation always has a solution in the form of a local operator.
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For the mean values of these currents the following exact result was found in [24]:

〈λN |Jα(x)|λN〉 = e′ ·G−1 · hα. (6.11)

Here the quantities e′ and hα are N -dimensional vectors with elements

(e′)j =
∂e(λj)

∂λ
, (hα)j = hα(λj), (6.12)

where e(λ) is the one-particle energy eigenvalue function. Furthermore, G−1 is the inverse
of the Gaudin matrix. Let us remind that the Gaudin matrix is defined by (1.52), where the
Ij are the momentum quantum numbers of the states. Notice the similarity of equations
(6.11) and (5.17).

It is possible to give a semi-classical interpretation to (6.11). Let us write it as

〈λN |Jα(x)|λN〉 =
1

L

N∑
j=1

veff(λj)hα(λj), (6.13)

where we defined the quantities

veff(λj) =
L

2π

∂E

∂Ij
, (6.14)

where E is the total energy of the state.
Now we argue that (6.14) is the finite volume version of (6.5). This is true because

the small changes in the dressed momentum and dressed energy can be traced back to
small changes in the momentum quantum numbers and the overall finite volume energy,
respectively:

δEdr(λj) ∼ δE, δPdr(λj) ∼ δ

(
2πIj
L

)
. (6.15)

Also, it can be proven rigorously that in the TDL the formula (6.5) is reproduced; this
will be published soon with Márton Borsi and Levente Pristyák.

Besides showing the equivalence of the two formulas for veff, it is also possible to
construct a semi-classical picture for the finite volume current mean values. To this order
consider now N particles moving in a finite volume L with periodic boundary conditions.
Let us make the semi-classical approximation that each particle has a well defined position
and let us ignore the issue of wave packet dispersion. It follows from the Bethe Ansatz wave
function that as long as particles are far away they don’t interact and they propagate freely
with the group velocity. However, every two-body scattering event leads to a displacement
(time delay). These displacements accumulate over a long time, as the particles move
around, leading to a well defined average propagation speed. It was shown by Márton
Borsi in his TDK (Scientific Students’ Association) work in 2019 that the average velocity
computed form this semi-classical picture is exactly equal to (6.14); this computation was
included in the paper [24].

The reader might argue that this semi-classical picture is problematic, because the
spreading of the wave packet is completely ignored even though we are considering the
large time limit in a finite volume. This objection is actually relevant, and at present there
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is no known solution to this. The problem of the diffusion of the wave packet is already
present in the derivation of [305]. Perhaps the more rigorous methods of [315] could solve
this problem. However, it is known that (6.11) is the exact result in Quantum Mechanics,
therefore there was no more activity devoted to the semi-classical interpretation of it.

Before turning to the proof of (6.11) let us consider two generalizations. First, we
can also consider the generalized current operators, that describe the flow of the charge
Qα under the time evolution generated by Qβ. They are defined through the operator
equation

i [Qβ, qα(x)] = Jα,β(x)− Jα,β(x+ 1). (6.16)

For the mean values of these generalized current operators the following result was derived
in [24]:

〈λN |Jα,β(x)|λN〉 = h′β ·G−1 · hα. (6.17)

Here h′β is an N -element vector with components h′β(λj), and prime denotes differentia-
tion. The analogy with (6.11) and (5.17) is evident.

Second, the same problem of finite volume mean values was also considered for in-
tegrable QFT in [312]. There a different derivation was presented, leading to a result
that has basically the same structural form as (6.11), but it also includes field theoretical
correction terms.

6.3 Proof using a form factor expansion

The main difficulty in proving (6.11) and (6.17) was that there were no explicit for-
mulas for the current operators. The continutity equations are rather implicit. Taking
the mean value on the two sides of (6.10) or (6.16) gives indentically zero. Thus it was
not clear how to get information about the mean values. We put forward the an explicit
construction for the current operators was eventually found in the work [29] of the author,
but first we discuss the first two proofs of the main statement. We focus on proving (6.11);
the proof of (6.17) is completely analogous.

The idea of [24] is to use the special properties of form factors (matrix elements of
local operators) in integrable models. It is known that the finite volume mean values are
not independent from the off-diagonal matrix elements. The continuity equations yield
information about these off-diagonal elements, and this can be used to construct the
mean values.

In any finite volume and for any two Bethe states with the same particle numbers we
have

i

(
N∑
j=1

e(λj)− e(µj)

)
〈λN |Qα(x)|µN〉 =

(
1−

N∏
j=1

ei(p(µj)−p(λj))

)
〈λN |Jα(x)|µN〉. (6.18)

For the infinite volume form factors of an operator O we use the notation FO(λN |µN);
it is known that the normalized finite volume matrix elements are [263]

〈λN |O|µN〉 =
FO(λN |µN)√

detN G(λN) detN G(µN)
, (6.19)

where the two Gaudin determinants stem basically from the norm of the Bethe Ansatz
wave functions.
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Even though the relation (6.18) stems from finite volume, it can be extended by
analytic continuation also to the form factors, where there is no restriction on the Bethe
roots.

In order to describe the finite volume mean values, let us define the so-called symmetric
evaluation of the (infinite volume) diagonal form factors as

FOs (λN) = lim
ε→0

FO(λ1 + ε, . . . , λN + ε|λN , . . . , λ1). (6.20)

Furthermore, it is useful to define the functions ρN(λ1, . . . , λN) as the N × N Gaudin
determinants evaluated at the set of rapidities {λ1, . . . , λN}. In the notations we suppress
the index N and write simply

ρ(λN) = detG(λN). (6.21)

We remind that the Gaudin determinants describe the norms of Bethe wave functions for
eigenstates, ie. for sets of rapidities satisfying the Bethe equations. On the other hand,
the functions ρ(λN) are defined for arbitrary sets of rapidities.

The finite volume mean values of local operators can be computed through the expan-
sion

〈λN |O(0)|λN〉 =

∑
{λ+}∪{λ−}

FOs ({λ+})ρ({λ−})

ρ(λN)
, (6.22)

where the summation runs over all partitionings of the set of the rapidities into {λ+} ∪
{λ−}. The partitionings include those cases when either subset is the empty set, and in
these cases it is understood that ρ(∅) = 1 and FOs (∅) = 〈O〉 is the v.e.v. The relation
(6.22) is exact when the Bethe Ansatz wave functions are exact eigenstates of the model.
It was first proposed in [316] in integrable QFT, and for the integrable spin chains it was
proven first in [317] and then independently in [24].

The key idea of [24] was to use the above expansion theorem twice. First it can be
used to extract the symmetric form factors of the charge density operators, because the
chage mean values are known. Then relation (6.18) gives the symmetric form factors of
the current operators. Finally, the expansion theorem can be used a second time to find
the explicit formula for the current mean values.

We do not reproduce this computation here; the details are quite lengthy and they
involve somewhat cumbersome graph theoretical arguments. Also, the proof of the expan-
sion theorem is rather lengthy and it is not immediately clear why it holds. Therefore it
seemed that this proof can not be the final answer to the question, and it prompted the
author to look for alternative, more transparent proofs.

6.4 Proof using long range deformations

It was realized in [25] that the theory of long range deformed spin chains can be used
to give a proof of the current mean values. However, this proof can not be considered
entirely rigorous, because certain statements regarding the long range chains have not
yet been rigorously proven either. Nevertheless the connection is rather interesting and it
might lead to new developments.
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Long range deformed spin chains were discovered in the context of the AdS/CFT
conjecture [72,73]. As described above in Section 3.5, the scaling dimensions of certain local
operators on the CFT side are given by the solution of an integrable spi chains. At tree
level this spin chain is local with a two-site interaction term [87,318,319]. However, higher
loop corrections induce longer range interactions in the Hamiltonian. Quite interestingly,
the full finite volume Hamiltonian is not known in this theory, but its solution is: it is
believed to be given by the so-called Quantum Spectral Curve method (see [74, 75] and
the more recent introduction [76]).

Despite the fact that the full Hamiltonian is not known, the first few long range
terms were studied in detail, and a systematic theory for the long range deformations was
developed in the series of works [320–322].

The idea of the long range deformation can be summarized as follows. Let us assume
that κ is a deformation parameter, such that κ = 0 corresponds to a strictly local spin
chain. Let us further assume that in infinite volume we can deform the set of commuting
conserved charges

{Qα} → {Qκ
α}, (6.23)

such that commutativity is preserved at each κ:

[Qκ
α, Q

κ
β] = 0. (6.24)

Obviously there are many ways to perform such a deformation, and many cases yield
trivial results. For example it is possible to perform a linear mixing of the charges, or
we can also continuously change one free parameter of the integrable model in question,
such as the ∆ parameter of the XXZ chain. Such deformations do not yield new physical
theories.

However, two new classes of deformations were identified in [321] which actually change
the model, and yield new physical systems. One such class is the so-called boost type of
deformation, and the other class is the deformation by the so-called bi-local operators.
Here we do not discuss the details of these deformations; instead we explain the role of
the current operators in this procedure.

It was realized in [24] that the boost-type of deformations are actually triggered by the
current operators. In other words, for each α there is a class of models with deformation
parameter κ, such that the Hamiltonian

Hκ = H0 + κ
∑
x

Jα(x) + . . . (6.25)

belongs to a commuting family of charges. The dots signal higher order corrections in κ.
It is important that in most cases the Jα do not commute with the original Hamilto-

nian, thus the deformation yields a genuinely new model.
It is known from [321] that the effect of such a deformation is to change the dispersion

relation of the one-particle states. To be more precise, to linear order we have

p(λ) → pκ(λ) = p(λ) + κhα(λ) + . . . , (6.26)

while the one-particle energy eigenvalues (as a function of the rapidity) are kept intact.
This phenomenon can be actually understood from the form (6.25) without referring to
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integrability. However, it was also shown in [321] that the deformation does not affect the
S-matrix of the theory, thus the only effect is a change in the propagation factors.

The idea of [25] is to use the Hellmann-Feynman theorem to find the current mean
values. To be more precise, if Eκ is the exact eigenenergy of a state |Ψ〉 with respect to
the Hamiltonian (6.25) in a fixed volume, then

〈Ψ|Jα(x)|Ψ〉 =
1

L

dEκ

dκ

∣∣∣∣
κ=0

. (6.27)

The method known as asymptotic Bethe Ansatz states that the finite volume energies are
still determined by the formula

E =
∑
j

e(λj), (6.28)

but we need to substitute the deformed rapidity parameters that are solutions of the
deformed Bethe equations

eip
κ(λj)

∏
k 6=j

S(λj − λk) = 1, j = 1, . . . , N. (6.29)

Combining (6.28), (6.29) and (6.26) and substituting the deformation of the energy back
into (6.27) we obtain the statement (6.11) that we intended to prove.

The advantage of this method is that it can be applied in a variety of models. In [25]
it was also applied to the SU(3)-symmetric fundamental model, where prior to this work
basically nothing was known about the current operators. However, a disadvantage of the
method is that the statements of the asymptotic Bethe Ansatz are proven only order by
order in κ, and thus they can not be considered completely rigorous.

It is important that the deformation of the Bethe equations and the spectrum was
already known in [321], but it was the work [25] that showed that the deforming operators
are actually the currents. This also means that if there are new results for current operators
(see next Section), then they could also advance the topic of the long range chains and
thus AdS/CFT.

Before turning to our final proof, let us mention that the second class of long range
deformations (involving the so-called bi-local operators) were discussed in the parallel
papers [26, 323], where it was shown that they are the lattice analogues of the famous
T T̄ -deformations known from CFT and integrable QFT [324–326]. This line of research
is currently in progress.

6.5 Algebraic proof

As mentioned above, the continuity equations (6.10) and (6.16) are rather implicit
and it is not evident how to construct the current operators themselves. This problem
was solved in the work [29]. Here a completely new construction was worked out which
goes back to the fundamentals of Algebraic Bethe Ansatz: the local Lax operators. We
remind that the charges themselves are derived from the transfer matrices as given in eq.
(1.33). However, there was no such definition for the currents. Now we summarize the
new construction of [29].
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µ

1 x L

Figure 14: The generating function q(µ, x) for the charge densities is obtained by taking a
derivative with respect to the rapidity at a single site. Here periodic boundary conditions
are understood. The crossing with the dot denotes the action of −i∂µR(µ, 0).

The first step is to consider the generating function for the charges, instead of the
individual Qα with the discrete indices α. This is rather standard: we define

Q(µ) ≡ (−i)t−1(µ)
d

dν
t(µ). (6.30)

In practical computations the inverse of the transfer matrix can be replaced by the space
reflected TM (3.7), which acts as an asymptotic inverse. However, this is not important
for the discussion.

The Taylor coefficients of the operator above will produce the Qα as given by (1.33).
The next step is to find the density for the generating function Q(µ). Writing Q(µ) =∑L
x=1 q(µ, x) we can identify

q(µ, x) ≡ (−i)t−1(µ)Tra
[
T [L,x+1]
a (µ)∂µLa,x(µ)T [x−1,1]

a (µ)
]
. (6.31)

Here we defined the partial monodromy matrices acting on a segment [x1 . . . x2] as

T [x2,x1]
a (µ) = La,x2(µ) . . .La,x1(µ). (6.32)

A graphical representation of the generating function is given in Fig. 14.
We also define a generating function for the current operators. Naturally this will be a

function of two auxiliary variables and a space coordinate. It is defined implicitly through

i [Q(ν), q(µ, x)] = J(µ, ν, x)− J(µ, ν, x+ 1). (6.33)

It is our goal to derive explicit formulas for J(µ, ν, x).
First it can be shown using a repeated action of the Yang-Baxter equation that the

solution of the analogous operator equation

t−1(ν) [t(ν), q(µ, x)] = Ω(µ, ν, x)− Ω(µ, ν, x− 1), (6.34)

is given by

Ω(µ, ν,x) = t−1(ν)t−1(µ)Trab
[
T [L,x+1]
a (µ)T

[L,x+1]
b (ν)Θa,b(µ, ν)T [x,1]

a (µ)T
[x,1]
b (ν)

]
. (6.35)

where a and b are two different auxiliary spaces and

Θa,b(µ, ν) = (−i)Rb,a(ν, µ)∂µRa,b(µ, ν) (6.36)

is an operator insertion acting only on the auxiliary spaces. A pictorial representation of
Ω(µ, ν, x) is given in Fig. 15. Note that apart from the t−1 operators Ω is a “double row”
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Figure 15: The operator Ω(µ, ν, x) positioned at site x. Here periodic boundary conditions
are assumed in the horizontal direction. As before, the dot denotes derivative with respect
to a rapidity parameter. Altogether the operator insertion in the middle is given by eq.
(6.36).

matrix product operator, and the only difference compared to a product of two transfer
matrices is the insertion Θa,b(µ, ν), which couples two monodromy matrices.

Taking a ν-derivative on the l.h.s. of (6.34) we recognize the continuity equation (6.33)
and identify

J(µ, ν, x) = −t(ν)∂νΩ(µ, ν, x− 1)t−1(ν). (6.37)

Let |Ψ〉 be an arbitrary eigenstate of the commuting transfer matrices. For the mean
values we get:

〈Ψ|J(µ, ν, x)|Ψ〉 = −∂ν〈Ψ|Ω(µ, ν, x− 1)|Ψ〉. (6.38)

This connects the ν-derivatives of Ω(µ, ν, x) to the current mean values. To complete the
picture, it can be shown that the initial value at ν = 0 is given by Ω(µ, 0, x) = q(µ, x).
Thus Ω not only describes all (generalized) currents, but also all charge densities.

The construction of the operator Ω(µ, ν) is the central result of [29]. Even though all
its constitutents (the Lax operators and their derivatives) are well known, this particular
combination did not appear earlier in the literature.

It was shown in [29] that Ω(µ, ν) is symmetric with respect to its variables iff the
R-matrix is of the difference form:

R(µ, ν) = R(µ− ν). (6.39)

Examples for this are the fundamental SU(N)-invariant models and the XXZ and XYZ
chains. A famous counter-example is the one dimensional Hubbard model.

The mean values of Ω(µ, ν) can be obtained with a trick that was originally developed
in [327]: it can be shown that the mean values are related to a transfer matrix eigenvalue
in an auxiliary problem, namely in an enlarged spin chain with two extra sites. This is a
rather technical computation, and we do not discuss its details. Let us however present
the end result: it was shown in [29] that

〈λN |Ω(µ, ν)|λN〉 = Ψ(µ, ν) + . . . , (6.40)

where Ψ(µ, ν) is the function defined in (5.17) and the dots signal correction terms that
decay for small µ, ν at least as µL or νL.

Looking at the connection (6.38), and considering the expansion of Ψ(µ, ν) we can
see that the statement (6.11) is indeed reproduced by this computation. The correction
terms mentioned above do not influence this computation, because for both the charges
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and the currents we are only considering cases that fit into a given volume, thus we do
not consider terms that are higher order in µ or ν.

The relation (6.40) might seem somewhat misterious at first. After all the operator
Ω(µ, ν) was constructed to describe all the current operators, which are local operators
with varying range. On the other hand, it was mentioned in Section 5.2 that the function
Ψ(µ, ν) originates in the two-site density matrix of the inhomogeneous spin chain. This
seems to be a rather different situation.

In the XXX case the Taylor coefficients of Ψ(µ, ν) are the building blocks for the
factorized correlation functions (in the XXZ case an other function ω′(µ, ν) is also needed).
The mean value of a generic short range operator is expressed as sums of products of these
Taylor coefficients. Our computation shows that the generalized current operators
are those special operators whose mean values are linear in Ψ(µ, ν).

It is possible to give a more direct connection between Ω(µ, ν) and the theory of
factorized correlation functions. It was shown in [29] that if we define Ω(µ, ν) for an
inhomogeneous chain with an analogous formula, and then specify the parameters µ, ν
to two selected inhomogeneities, then actually we obtain a certain component of the
corresponding two-site reduced density matrix. To be more precise, the following can be
proven in a straightforward way:

Ω(ξ1, ξ2, x = 2) = Θ1,2(ξ1, ξ2). (6.41)

This means that for these special values Ω(µ, ν, x) becomes an ultra-local operator acting
only on the first two sites. This is the direct bridge to the theory of factorized correlation
functions. The result (6.41) is analogous to the “solution of the inverse problem” [328,329],
where the monodromy matrix elements can be specialized such that they become ultra-
local operators acting on single sites only.

The great advantage of the construction of [29] is that it uses basic and microscopic
objects such as fundamental R-matrices, and that the constuction is largely model in-
dependent. It can be considered as a natural extension of the basics of Algebraic Bethe
Ansatz to accomodate the current operators as well. The direct connection to the factor-
ized correlation functions is very promising, and it might advance the theory of correlation
functions in more complicated models such as the nested Bethe Ansatz systems.

6.6 Open problems

Generalized Hydrodynamics is a recent but already quite advanced theory. In this
thesis we did not review the tremendous progress within GHD. Therefore the list of open
problems that we discuss here are also limited to the topics where the author contibuted.
However, we would like to draw the attention of the reader to a Special Issue of the
journal JSTAT, which is expected to appear in 2021 (after the completion of this thesis),
and which is planned to give a complete review of the topic.

Regarding the current mean values it would be interesting to consider models without
particle conservation (such as the XYZ model) or some more complicated nested systems
such as the Hubbard model. Investigating the currents is certainly possible with the
extension of the methods discussed here. Looking further, it would be important to derive
more rigorous proofs for the Drude weights of generic charges, see [109,330]. Perhaps this
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could be achieved by some generalization of the method of [299], in combination with the
insights of our works [25,29].

And looking even further, it would be interesting to derive rigorous conditions for the
existence of fluid cells, which underlies all computations in GHD. At present this is just
a well justified assumption.

The reader might argue that deriving actual proofs is not that important, once the
physical processes are well understood. GHD has already shown many examples, where
the actual statements were found quite soon and the proofs were supplied only much
later, if they have been found at all. However, the field of integrability is special, because
generally we have many computations under control, and the author believes that it is
worthwhile to push forward the rigorous computations. Sometimes new connections to
other fields are uncovered along the way, as the recent papers [25,29] have clearly shown.
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