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Chapter 1 Short overview of the subject

In the thesis we shall solve Diophantine problems effectively by various methods. To put

our results in the proper context we summarize some of the relevant history.

A Diophantine equation is an equation of the form f(x1, x2, . . . , xn) = 0, where f is a

given function and the unknowns x1, x2, . . . , xn are required to be rational numbers or to be

integers. As a generalization of the concept one may consider rational or integral solutions over

a number field. In the study of Diophantine equations there are some natural questions:

Is the equation solvable?

Is the number of solutions finite or infinite?

Is it possible to determine all solutions?

In Diophantine number theory one general goal is to provide a kind of framework that can be

applied to a large family of equations, problems. Such collections of arguments exist for example

in case of Pellian equations, Runge type equations, Thue equations, elliptic-, hyperelliptic- and

superelliptic equations. In what follows we consider problems related to sequences, either to

arithmetic sequences/progressions or recurrence sequences. In the literature there are many nice

motivating examples, let us mention a few of them. In 1997 Darmon and Merel [47] proved

(following Wiles’ approach) that there are no 3-term (non-trivial) arithmetic progressions of

equal powers greater than two, that is they studied the equation

xn + yn = 2zn.

Bugeaud, Mignotte and Siksek [35] applied a combination of Baker’s method, modular approach

and some classical techniques to show that the perfect powers in the Fibonacci sequence are 0,1,8

and 144, and the perfect powers in the Lucas sequence are 1 and 4, that is they considered the

Diophantine equations

Fm1 = xn1 and Lm2 = yn2 .

There are two classes of problems we investigate in this thesis. In the first class we have a

general family of Diophantine equations and we are interested in solutions coming from a given

sequence. In the second class we deal with problems in which the corresponding Diophantine

equations contains certain type of sequences. Now we provide detailed descriptions of results

related to problems in these ballparks.

An arithmetic progression on a curve F (x, y) = 0, is an arithmetic progression in either

the x or y coordinates. One can pose the following natural question. What is the longest

arithmetic progression in the x coordinates? In case of linear polynomials, Fermat claimed

and Euler proved that four distinct squares cannot form an arithmetic progression. Allison [3]

found an infinite family of quadratics containing an integral arithmetic progression of length

eight and González-Jiménez and Xarles [63] proved that this family has not examples of length
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Chapter 1 Short overview of the subject

longer than eight. Arithmetic progressions on Pellian equations x2 − dy2 = m have been

considered by many mathematicians. Dujella, Pethő and Tadić [50] proved that for any four-term

arithmetic progression, except {0, 1, 2, 3} and {−3,−2,−1, 0}, there exist infinitely many pairs

(d,m) such that the terms of the given progression are y-components of solutions. Pethő and

Ziegler [101] dealt with 5-term progressions on Pellian equations. Aguirre, Dujella and Peral

[1] constructed 6-term arithmetic progression on Pellian equations parametrized by points on

elliptic curve having positive rank. Pethő and Ziegler posed several open problems. One of them

is as follows: "Can one prove or disprove that there are d and m with d > 0 and not a perfect

square such that y = 1, 3, 5, 7, 9 are in arithmetic progression on the curve x2 − dy2 = m?"

Recently, González-Jiménez [60] answered the question: there is not m and d not a perfect

square such that y = 1, 3, 5, 7, 9 are in arithmetic progression on the curve x2 − dy2 = m.

He constructed the related diagonal genus 5 curve and he applied covering techniques and the

so-called elliptic Chabauty’s method. Bremner [25] provided an infinite family of elliptic curve

of Weierstrass form with 8 points in arithmetic progression. González-Jiménez [60] showed that

these arithmetic progressions cannot be extended to 9 points arithmetic progressions. Bremner,

Silverman and Tzanakis [27] dealt with the congruent number curve y2 = x3 − n2x, they

considered integral arithmetic progressions. If F is a cubic polynomial, then the problem is to

determine arithmetic progressions on elliptic curves. Bremner and Campbell [37] found distinct

infinite families of elliptic curves, with arithmetic progression of length eight. Campbell [37]

produced infinite families of quartic curves containing an arithmetic progression of length 9. Ulas

[140] constructed an infinite family of quartics containing a progression of length 12. Restricting

to quartics possessing central symmetry MacLeod [88] discovered four examples of length 14

progressions. Alvarado [4] extended MacLeod’s list by determining 11 more examples of length

14 progressions. Moody [92] proved that there are infinitely many Edwards curves with 9 points

in arithmetic progression. Bremner [26] and independently González-Jiménez [60, 61] proved

using elliptic Chabauty’s method that Moody’s examples cannot be extended to longer arithmetic

progressions. Moody [93] produced six infinite families of Huff curves having the property that

each has rational points with x-coordinate x = −4,−3, . . . , 3, 4. That is he obtained arithmetic

progressions of length 9. Choudhry [40] improved the result of Moody, he found infinitely many

parametrized families of Huff curves on which there are arithmetic progressions of length 9, as

well as several Huff curves on which there are arithmetic progressions of length 11. Buchmann

and Pethő [32] found an interesting unit in the number field K = Q(α) with α7 − 3 = 0. The

unit is given by

10 + 9α+ 8α2 + 7α3 + 6α4 + 5α5 + 4α6.

That is the coordinates (x0, . . . , x6) ∈ Z7 of a solution of the norm form equation NK/Q(x0 +

x1α + . . . + x6α
6) = 1 form an arithmetic progression. In [17] Bérczes and Pethő considered

4
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norm form equations

NK/Q(x0 + x1α+ . . .+ xn−1α
n−1) = m in x0, x1, . . . , xn−1 ∈ Z, (1.1)

where K = Q(α) is an algebraic number field of degree n, and m is a given integer such that

x0, x1, . . . , xn−1 are consecutive terms in an arithmetic progression. They proved that (1.1) has

only finitely many solutions if neither of the following two cases hold:

α has minimal polynomial of the form

xn − bxn−1 − . . .− bx+ (bn+ b− 1)

with b ∈ Z,
nαn

αn−1 −
α
α−1 is a real quadratic number.

In 2006 Bérczes, Pethő and Ziegler [19] studied norm form equations related to Thomas polyno-

mials such that the solutions are coprime integers in arithmetic progression. Bérczes and Pethő

[18] considered (1.1) in cases where the defining polynomials of the number fields are given by

xn − T, (n ≥ 3, 4 ≤ T ≤ 100) and m = 1. They proved that the norm form equation has no

solution in integers which are consecutive elements in an arithmetic progression.

Let us define

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d).

Erdős [52] and independently Rigge [105] proved that f(x, k, 1) is never a perfect square. A

celebrated result of Erdős and Selfridge [53] states that f(x, k, 1) is never a perfect power of an

integer, provided x ≥ 1 and k ≥ 2. That is, they completely solved the Diophantine equation

f(x, k, d) = yl (1.2)

with d = 1. The literature of this type of Diophantine equations is very rich. First consider some

results related to l = 2. Euler proved (see [48] pp. 440 and 635) that a product of four terms in

arithmetic progression is never a square solving (1.2) with k = 4, l = 2. Obláth [95] obtained a

similar statement for k = 5. Saradha and Shorey [110] proved that (1.2) has no solutions with

k ≥ 4, provided that d is a power of a prime number. Laishram and Shorey [78] extended this

result to the case where either d ≤ 1010, or d has at most six prime divisors. Bennett, Bruin,

Győry and Hajdu [14] solved (1.2) with 6 ≤ k ≤ 11 and l = 2. Hirata-Kohno, Laishram, Shorey

and Tijdeman [73] completely solved (1.2) with 3 ≤ k < 110.

Now assume for this paragraph that l ≥ 3.Many authors have considered the more general

equation

f(x, k, d) = byl, (1.3)

where b > 0 and the greatest prime factor of b does not exceed k. Saradha [109] proved that (1.3)

has no solution with k ≥ 4. Győry [66] studied the cases k = 2, 3, he determined all solutions.

Győry, Hajdu and Saradha [68] proved that the product of four or five consecutive terms of an

arithmetical progression of integers cannot be a perfect power, provided that the initial term

is coprime to the difference. Hajdu, Tengely and Tijdeman [71] proved that the product of k

5
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Chapter 1 Short overview of the subject

coprime integers in arithmetic progression cannot be a cube when 2 < k < 39. Győry, Hajdu

and Pintér proved that for any positive integers x, d and k with gcd(x, d) = 1 and 3 < k < 35,

the product x(x+ d) · · · (x+ (k − 1)d) cannot be a perfect power.

Erdős and Graham [51] asked if the Diophantine equation
r∏
i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r, at most finitely many

solutions in positive integers (x1, x2, . . . , xr, y) with xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Skałba

[119] provided a bound for the smallest solution and estimated the number of solutions below

a given bound. Ulas [141] answered the above question of Erdős and Graham in the negative

when either r = ki = 4, or r ≥ 6 and ki = 4. Bauer and Bennett [11] extended this result

to the cases r = 3 and r = 5, they also mention the case considered in the present work, it

is written that an argument of P. G. Walsh based on the ABC conjecture makes it very likely

that in case of r = 2, k1 = k2 = 4 there are only finitely many solutions. They also pointed

out the solution with x = 33. Bennett and Van Luijk [16] constructed an infinite family of

r ≥ 5 non-overlapping blocks of five consecutive integers such that their product is always a

perfect square. Luca and Walsh [85] studied the case (r, ki) = (2, 4). They used the identity

(x−1)x(x+ 1)(x+ 2) = (x2 +x−1)2−1 to reduce the original problem to a Pellian equation

(x2 + x− 1)2 − dy2 = 1,

where d > 1 is a squarefree integer. If (T,U) denotes the minimal solution of the equation

X2 − dY 2 = 1, then one obtains that

Ti = x2 + x− 1

for some i, where Ti + Ui
√
d = (T + U

√
d)i. Luca and Walsh conjectures that the equation

Ti = x2 + x − 1 implies that i ∈ {1, 2} and d = 39270. We note that it corresponds to the

solution

33× 34× 35× 36× 1680× 1681× 1682× 1683 = 33618261602,

the one appearing in [11].

There are many articles concerning the Diophantine equation

Rn = P (x),

whereRn is a linear recursive sequence and P ∈ Z[X] is a polynomial. Several papers have been

published identifying perfect powers, products of consecutive integers, binomial coefficients,

figurate numbers and power sums in the Fibonacci, Lucas, Pell and associated Pell sequences.

6
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These binary recurrence sequences are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2,

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2,

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2,

Q0 = 1, Q1 = 1, Qn = 2Qn−1 +Qn−2 for n ≥ 2.

It follows from a result by Ljunggren [82] that the only squares in the Fibonacci sequence are

F0 = 0, F1 = F2 = 1, F12 = 144. Later it was rediscovered by Cohn [42, 43] and Wyler [147].

Alfred [2] and Cohn [44] determined the perfect squares in the Lucas sequence. In case of

the Pell sequence Pethő [99] and independently Cohn [45] obtained the complete list of perfect

squares. London and Finkelstein [83] and Pethő [97] proved that the only cubes in the Fibonacci

sequence are F0 = 0, F1 = F2 = 1 and F6 = 8. London and Finkelstein [83] also showed the the

only cube in the Lucas sequence is 1. Higher powers were determined by Pethő [98]. Bugeaud,

Mignotte and Siksek [35] applied a combination of Baker’s method, modular approach and some

classical techniques to show that the perfect powers in the Fibonacci sequence are 0,1,8 and 144,

and the perfect powers in the Lucas sequence are 1 and 4.

Another interesting problem is to determine triangular numbers, numbers of the form

Tx = x(x+1)
2 in binary recurrence sequences. Ming [86] proved that the only triangular numbers

in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F4 = 3, F8 = 21 and F10 = 55. It was

shown by Ming [87] that L1 = 1, L2 = 3 and L18 = 5778 are the triangular numbers in the

Lucas sequence. In case of the Pell sequence McDaniel [91] proved that the only triangular

number is 1. Since Tx =
(
x
2

)
, it was a natural question to ask for all solutions of the Diophantine

equations

Fn =

(
x

k

)
, Ln =

(
x

k

)
,

Pn =

(
x

k

)
, Qn =

(
x

k

)
.

It was Szalay [130] who solved the equations Fn, Ln, Pn =
(
x
3

)
. Later Szalay [129] also treated

the equations Fn, Ln =
(
x
3

)
and Fn, Ln, Pn =

∑x
i=1 i

3. Kovács [77] solved completely some

related combinatorial Diophantine equations, e.g.

Pn =

(
x

4

)
and

Fn = Π4(x) = x(x+ 1)(x+ 2)(x+ 3).

Tengely [133] determined the g-gonal numbers in the Fibonacci, Lucas, Pell and associated Pell

sequences for g ≤ 20, where them-th g-gonal number is defined by
m ((g − 2)m− (g − 4))

2
.

In case of genus 2 curves there are two methods to compute the complete set of integral solutions

if the rank of the Mordell-Weil group of the curve is larger. One such method is due to Bugeaud,

7
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Chapter 1 Short overview of the subject

Mignotte, Siksek, Stoll and Tengely [36], it combines Baker’s method and the so-called Mordell-

Weil sieve. A different approach is the hyperelliptic logarithm method developed by Gallegos-

Ruiz [56]. These methods have been applied to combinatorial Diophantine equations that reduce

to genus 2 curves having Mordell-Weil ranks at least 3, see e.g. [57, 134, 135]. As a concrete

example consider binomial near collisions. Blokhuis, Brouwer and de Weger [22] provided the

following identities(
10

5

)
+ 1 =

(
23

2

)
,

(
22

5

)
+ 1 =

(
230

2

)
,

(
62

5

)
+ 1 =

(
3598

2

)
in these cases the problem can be reduced to genus 2 curves. Motivated by the above examples

Gallegos-Ruiz, Katsipis, Tengely and Ulas [57] determined the complete set of integral solutions

of the equation (
n

2

)
=

(
m

5

)
+ d, with − 3 ≤ d ≤ 3.

If d = 3, then the rank of the Mordell-Weil group is 6 and the non-trivial solutions with n ≥ 5

are as follows (
11

5

)
+ 3 =

(
31

2

)
,(

16

5

)
+ 3 =

(
94

2

)
,(

375

5

)
+ 3 =

(
346888

2

)
,(

379

5

)
+ 3 =

(
356263

2

)
.

The rank of the Mordell-Weil group is also 6 if d = 1. In this case the non-trivial solutions are

as follows (
10

5

)
+ 1 =

(
23

2

)
,(

22

5

)
+ 1 =

(
230

2

)
,(

62

5

)
+ 1 =

(
3598

2

)
,(

135

5

)
+ 1 =

(
26333

2

)
,(

139

5

)
+ 1 =

(
28358

2

)
.
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Chapter 2 Norm form equations and arithmetic
progressions

2.1 A problem of Pethő

In 2010 Pethő [96] collected 15 problems in number theory, Problem 6 is based on the

results given in [17].

Problem 2.1. (Problem 6 in [96]): Does there exist infinitely many quartic algebraic integers α

such that
4α4

α4 − 1
− α

α− 1

is a quadratic algebraic number?

The only example mentioned is x4 + 2x3 + 5x2 + 4x + 2 such that the corresponding

element is a real quadratic number (that is a root of x2 − 4x+ 2). Moreover, Bérczes, Pethő in

[17] remark that there are many solutions if we drop assumption of integrality of α. As we will

see the problem in this case is equivalent to the study of existence of rational zeros of family

of four polynomials in six variables. Using Gröbner bases techniques we reduce our problem

to the study of rational zeros of only one (reducible) polynomial. A careful analysis of the

corresponding variety allow us to get 2 infinite families of quartic polynomials defining quartic

algebraic integers such that the algebraic number 4α4

α4−1 −
α
α−1 is quadratic. Unfortunately, in this

case we get real quadratic number only in finitely many cases. However, we are able to show that

the set of quartic algebraic numbers such that the algebraic number 4α4

α4−1 −
α
α−1 is quadratic, is

contained in a certain set given by (explicit) system of algebraic inequalities.

In particular the following is true:

Theorem 2.1
There are infinitely many quartic algebraic integers defined byα4+aα3+bα2+cα+d = 0

for which

β =
4α4

α4 − 1
− α

α− 1

is a quadratic algebraic number. Moreover, there are infinitely many quartic algebraic

numbers α such that β is real quadratic.

2.2 Auxiliary results

We provide two families with infinitely many quadratic polynomials, and we prove that each

of these families contains infinitely many irreducible polynomials.
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Chapter 2 Norm form equations and arithmetic progressions

Lemma 2.1
Let t ∈ Z. The polynomials defined by

f1(x) = x4 + 2x3 + (2t2 + 2)x2 + (4t2 − 4t+ 2)x+ 6t2 − 4t+ 1

are irreducible over Q if and only if t /∈ {0, 1}.

Proof. If there is a linear factor of f1, then there is an integral root. Hence we have that

f1(x) = (x+ s1)(x
3 + s2x

2 + s3x+ s4).

By comparing coefficients one gets that

−s1 − s2 + 2 = 0

−s1s2 + 2t2 − s3 + 2 = 0

−s1s3 + 4t2 − s4 − 4t+ 2 = 0

−s1s4 + 6t2 − 4t+ 1 = 0.

Solving for s2, and s3 from the first two equations and substituting in the others, we get

−s1s4 + 6t2 − 4t+ 1 = 0

−s31 − 2s1t
2 + 2s21 + 4t2 − 2s1 − s4 − 4t+ 2 = 0.

The resultant of the two polynomials with respect to s4 is quadratic in t. The discriminant of this

quadratic polynomial is

(−8)(s1 − 1)2(s41 − 2s31 + 4s21 − 2s1 + 1).

If s1 = 1, then we obtain that t = 0. In this case f1(x) = (x + 1)2(x2 + 1) is reducible. If

s1 6= 1, then−2(s41− 2s31 + 4s21− 2s1 + 1) = U2, since to get an integral t the discriminant has

to be a square. This equations has no rational solution since −2(s41 − 2s31 + 4s21 − 2s1 + 1) < 0

for all s1 ∈ Q. If there are two quadratic factors, then

f1(x) = (x2 + s1x+ s2)(x
2 + s3x+ s4).

As in the previous case we compare coefficients to obtain a system of equations

−s21s2 − 2s2t
2 + 2s1s2 + s22 + 6t2 − 2s2 − 4t+ 1 = 0

−s31 − 2s1t
2 + 2s21 + 2s1s2 + 4t2 − 2s1 − 2s2 − 4t+ 2 = 0.

The resultant of the above equations with respect to s2 is

(−1)(s21 + 2t2 − 2s1 − 4t+ 2)(s41 + 2s21t
2 − 4s31 + 4s21t− 4s1t

2 + 6s21 − 8s1t− 4s1 + 8t).

If s21 + 2t2− 2s1− 4t+ 2 = 0, then we have a quadratic polynomial in t with discriminant

−8s21 + 16s1. It is non-negative if s1 ∈ {0, 1, 2}. If s1 ∈ {0, 1, 2}, then t = 0 or t = 1. Earlier

we handled the case with t = 0, if t = 1, then we have f1(x) = (x2 + 1)(x2 + 2x+ 3).

If s41 + 2s21t
2 − 4s31 + 4s21t − 4s1t

2 + 6s21 − 8s1t − 4s1 + 8t = 0, then the discriminant

with respect to t is

(−8)(s21 − 2s1 + 2)(s41 − 4s31 + 2s21 + 4s1 − 4).

12
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2.2 Auxiliary results

It remains to determine the rational points on the genus 2 curve

C : (−8)(s21 − 2s1 + 2)(s41 − 4s31 + 2s21 + 4s1 − 4) = U2.

If s1 /∈ [−1, 3] then the left hand side is negative, hence there are no rational points (s1, U) on C

with s1 ∈ Z. As s1 is an integer, it can take only the values−1, 0, 1, 2, 3. The values 0, 1, 2 were

considered earlier. If s1 = −1 or 3, then the left hand side of C is 40, which is not a square.

Lemma 2.2
Let t ∈ Z. The polynomials defined by

f2(x) = x4 + 2tx3 + (t2 + 2t+ 2)x2 + (2t2 + 2t)x+ 3t2 − 2t+ 1

are irreducible over Q if and only if t /∈ {0, 2}.

Proof. The approach we apply here is similar to that used in the proof of the previous lemma,

therefore here we only indicate the main steps. First we try to determine linear factors, that we

write

f2(x) = (x+ s1)(x
3 + s2x

2 + s3x+ s4).

By comparing coefficients one gets that

−s1 − s2 + 2t = 0

−s1s2 + t2 − s3 + 2t+ 2 = 0

−s1s3 + 2t2 − s4 + 2t = 0

−s1s4 + 3t2 − 2t+ 1 = 0.

Solving for s2, and s3 from the first two equations and substituting in the others, we get

−s1s4 + 3t2 − 2t+ 1 = 0

−s31 + 2s21t− s1t2 − 2s1t+ 2t2 − 2s1 − s4 + 2t = 0.

The resultant of the two polynomials with respect to s4 is quadratic in t. The discriminant of this

quadratic polynomial is

(−8)(s41 − 2s31 + 4s21 − 2s1 + 1).

This expression is negative for all rational s1, hence there exists no rational solution in t.

If there are two quadratic factors, then

f2(x) = (x2 + s1x+ s2)(x
2 + s3x+ s4).

As in the previous case we compare coefficients to obtain a system of equations

−s21s2 + 2s1s2t− s2t2 + s22 − 2s2t+ 3t2 − 2s2 − 2t+ 1 = 0

−s31 + 2s21t− s1t2 + 2s1s2 − 2s1t− 2s2t+ 2t2 − 2s1 + 2t = 0.

The latter equation can be written as

(−1)(−s1 + t)(−s21 + s1t+ 2s2 − 2t− 2) = 0.
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Chapter 2 Norm form equations and arithmetic progressions

If s1 = t, then s22 − 2s2t + 3t2 − 2s2 − 2t + 1 = 0. The discriminant of this equation with

respect to s2 is (−8)t(t − 2). Hence t ∈ {0, 2}. If t = 0, then f2(x) = (x2 + 1)2. If t = 2,

then f2(x) = (x2 + 2x + 3)2. Consider the case −s21 + s1t + 2s2 − 2t − 2 = 0. We get that

s2 =
s21−s1t+2t+2

2 . Thus we obtain a polynomial equation only in s1 and t given by

(1/4)(−s41 + 4s31t− 5s21t
2 + 2s1t

3 − 4s21t+ 8s1t
2 − 4t3 − 4s21 + 8s1t+ 4t2 − 16t) = 0.

The discriminant with respect to s1 factors as follows

(−1/32)t(t− 2)(t4 − 8t3 + 40t2 − 32t+ 16)2.

The latter expression is a square only if t = 0 or t = 2, so we do not get new reducible

polynomials.

2.3 Proof of Theorem 2.1

Proof. Let f(x) = x4 +ax3 + bx2 + cx+dwith a, b, c, d ∈ Z be an irreducible polynomial in
Z[x] and g(x) = x2+px+q with p, q ∈ Q.Assume that α is a root of f(x) and β = 4α4

α4−1−
α
α−1

is a root of g(x). From g(β) = 0we get a degree 6 polynomial for whichα is a root. Therefore it is
divisible by f(x). Computing the reminder we obtain a cubic polynomial e1 +e2x+e3x

2 +e4x
3

which has to be zero. The coefficients e1, . . . , e4 are as follows:

e1 : −3dpa2 + 5dpa+ 3dpb− 6dp− dqa2 + 2dqa+ dqb− 3dq − 9da2 + 12da+ 9db− 10d+ q,

e2 : 3dpa− 5dp+ dqa− 2dq + 9da− 12d− 3pa2c+ 5pac+ 3pbc− 6pc+ p− qa2c+ 2qac+

+qbc− 3qc+ 2q − 9a2c+ 12ac+ 9bc− 10c,

e3 : −3dp− dq − 9d− 3pa2b+ 5pab+ 3pac+ 3pb2 − 6pb− 5pc+ 3p− qa2b+ 2qab+ qac+

+qb2 − 3qb− 2qc+ 3q − 9a2b+ 12ab+ 9ac+ 9b2 − 10b− 12c+ 1,

e4 : −3pa3 + 5pa2 + 6pab− 6pa− 5pb− 3pc+ 6p− qa3 + 2qa2 + 2qab− 3qa− 2qb− qc+ 4q −

−9a3 + 12a2 + 18ab− 10a− 12b− 9c+ 4.

The Gröbner basis (with respect to the lex ordering d > p > q > a > b > c, the ordering used

throughout the section) for < e1, e2, e3, e4 > contains 19 polynomials. An element of this basis

factors as follows(
1

233

)
· (a− 2b+ c) ·

·(233a4 − 352a3b+ 108a3c+ 168a3 + 368a2b2 − 264a2bc−

−624a2b+ 46a2c2 − 184a2c− 544a2 − 160ab3 + 128ab2c+

352ab2 − 16abc2 + 64abc+ 128ab− 4ac3 − 8ac2 + 768ac+

+640a+ 48b4 − 64b3c− 256b3 + 32b2c2 + 288b2c+ 384b2 −

−8bc3 − 144bc2 − 512bc+ c4 + 24c3 + 96c2 − 640c− 256).

Let us consider the case c = 2b − a. Denote by e1,c, e2,c, e3,c, e4,c the polynomials obtained

by substituting c = 2b − a into e1, e2, e3 and e4. Let us denote by Gc the Gröbner basis for
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2.3 Proof of Theorem 2.1

< e1,c, e2,c, e3,c, e4,c > and compute the ideal Ic,p,q =< Gc > ∩ Q[a, b, d], i.e., we eliminate

the variables p, q. We get that

Ic,p,q =< (9b− 12a− 3d+ 5)2 − 4(3a− 2)2 + 48d > .

The equation (9b − 12a − 3d + 5)2 − 4(3a − 2)2 + 48d = 0 defines a curve, say C, defined

over Q(a) of genus 0 (in the plane (b, d), the conic is irreducible, the determinant of the matrix

of the conic is −46656). The standard method allows us to find the parametrization of C in the

following form

b =
1

36
(9a2 + 36a− 16− 8u− u2), d =

1

36
(9a2 + 36a− 16 + 8u− u2).

However, with b, d given above and the corresponding c = 2b− a we get

f(x) =
1

36
(6x+ u+ 3a− 2)

(
6x3 + (3a− u+ 2)x2 + 2(3a− u− 1)x+ 3(3a− u− 2)

)
,

a reducible polynomial.

Let us consider the second factor that is

F (a, b, c) = 233a4 − 352a3b+ 108a3c+ 168a3 + 368a2b2 − 264a2bc− (2.1)

−624a2b+ 46a2c2 − 184a2c− 544a2 − 160ab3 + 128ab2c+

352ab2 − 16abc2 + 64abc+ 128ab− 4ac3 − 8ac2 + 768ac+

+640a+ 48b4 − 64b3c− 256b3 + 32b2c2 + 288b2c+ 384b2 −

−8bc3 − 144bc2 − 512bc+ c4 + 24c3 + 96c2 − 640c− 256.

First we compute the polynomial for some small fixed values of a. It turns out that F (2, b, c) is

a reducible polynomial given by

(12b2 − 4bc− 96b+ c2 + 12c+ 196)(4b2 − 4bc− 16b+ c2 + 4c+ 20).

Let us study this special case when a = 2. Consider the equation 12b2− 4bc− 96b+ c2 + 12c+

196 = 0. It follows that (c− 2b+ 6)2 + 2(2b− 9)2 = 2. The only integral solutions correspond

with b = 4 or b = 5. If b = 4, then c = 2 and d = 3. We obtain the reducible polynomial

x4 + 2x2 + 4x2 + 2x + 3 = (x2 + 1)(x2 + 2x + 3). If b = 5, then it follows that c = 4 and

d = 2, so we get the polynomial x4 + 2x3 + 5x2 + 4x+ 2. It is the polynomial that also appears

in Pethő’s paper. The set of rational solutions of (c− 2b + 6)2 + 2(2b− 9)2 = 2 can be easily

parametrized with

b =
8t2 + 5

2t2 + 1
, c =

4(t2 − t+ 1)

2t2 + 1
.

With a = 2 and b, c given above we easily compute the values

d =
2
(
3t2 − 2t+ 1

)
2t2 + 1

,

p =
4
(
2t3 − 5t2 + t− 1

)
4t2 + 1

,

q = −
2(4t− 1)

(
3t2 − 2t+ 1

)
4t2 + 1

.

With p, q given above one can easily check that the discriminant of x2 + px + q is positive for
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Chapter 2 Norm form equations and arithmetic progressions

all t ∈ R (and thus for all t ∈ Q).

Consider the other possibility, that is the equation 4b2− 4bc− 16b+ c2 + 4c+ 20 = 0.We

have

(2b− c)2 + 20 = 4(4b− c).

Let u = 2b− c and v = 4b− c.We get that v = u2+20
4 and b = u2−4u+20

8 , c = u2−8u+20
4 . Thus

b = 2t2 + 2,

c = 4t2 − 4t+ 2,

where u = 4t + 2. Let us denote by e′1, e′2, e′3 and e′4 the corresponding polynomials e1, e2, e3
and e4 after the substitution a = 2, b = 2t2 + 2, c = 4t2 − 4t+ 2. Let G′ be the Gröbner basis

of the ideal < e′1, e
′
2, e
′
3, e
′
4 > with respect to the variables d, p, q over polynomial ring Q[t]. We

get that

< G′ > ∩ Q[t][d] =

< t(d− 1 + 4t− 6t2)(t3 + t2 − t− 2), (d− 1 + 4t− 6t2)(7 + d+ 12t− 6t2 − 8t3) >

and thus d = 6t2 − 4t+ 1 or t = 0.

If t = 0, then d = −7 and f(x) is reducible x4 + 2x3 + 2x2 + 2x − 7 = (x − 1)(x3 +

3x2 + 5x+ 7), a contradiction. If d = 6t2 − 4t+ 1, then we have an infinite family of solutions

of Pethő’s question given by

a = 2,

b = 2t2 + 2,

c = 4t2 − 4t+ 2,

d = 6t2 − 4t+ 1,

p = −6 t2 − 6 t+ 1

t2 − t
,

q =
18 t3 − 18 t2 + 7 t− 1

2 (t3 − t2)
.

It follows from Lemma 2.1 that there are infinitely many irreducible polynomials in this family.

By computing the discriminant of the polynomial x2 + px + q we observe that it has two real

roots for t ∈ Q satisfying t ∈ (1−
√

2/2, 1 +
√

2/2) \ {1}.

We computed all integral solutions of the equation F (a, b, c) with −200 ≤ a, b ≤ 200. If

a = 2, then we have all solutions provided by the above formulas and we also obtain a = b =

c = 2 and d = −7. The corresponding polynomial is reducible, it is (x−1)(x3 + 3x2 + 5x+ 7).
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2.3 Proof of Theorem 2.1

The remaining solutions are contained in the following table.

(−30, 197, 420, 706) (−12, 26, 60, 121) (6, 17, 24, 22)

(−28, 170, 364, 617) (−10, 17, 40, 86) (8, 26, 40, 41)

(−26, 145, 312, 534) (−8, 10, 24, 57) (10, 37, 60, 66)

(−24, 122, 264, 457) (−6, 5, 12, 34) (12, 50, 84, 97)

(−22, 101, 220, 386) (−4, 2, 4, 17) (14, 65, 112, 134)

(−20, 82, 180, 321) (−2, 1, 0, 6) (16, 82, 144, 177)

(−18, 65, 144, 262) (0, 2, 0, 1) (18, 101, 180, 226)

(−16, 50, 112, 209) (2, 5, 4, 2)

(−14, 37, 84, 162) (4, 10, 12, 9)

Integral solutions of the equation F (a, b, c) with −200 ≤ a, b ≤ 200.

All these solutions can be described by the formulas

a = 2t, (2.2)

b = t2 + 2t+ 2,

c = 2t2 + 2t,

d = 3t2 − 2t+ 1,

p = −
2
(
3 t2 − 5 t+ 4

)
t2 − 2 t+ 2

,

q =
9 t3 − 12 t2 + 7 t− 2

t3 − 2 t2 + 2 t
.

It follows from Lemma 2.2 that there are infinitely many irreducible polynomials in this family.

By computing the discriminant of the polynomial x2 + px + q we observe that it has two real

roots for t ∈ Q satisfying t ∈ (0, 2).

Remark. We extended the search of the solutions of F (a, b, c) = 0 up to −104 ≤ a, b ≤ 104

and found no additional solutions.

Remark. One can prove that the polynomial f(x) = x4 + ax3 + bx2 + cx+ d with

a = 2, b =
8t2 + 5

2t2 + 1
, c =

4(t2 − t+ 1)

2t2 + 1
, d =

2
(
3t2 − 2t+ 1

)
2t2 + 1

.

has no rational roots for all t ∈ Q. However, if t = (2− s2)/(4s), where s ∈ Q \ {0}, then

f(x) =

(
x2 +

4

s2 + 2
x+

s2 + 4s+ 6

s2 + 2

)(
x2 +

2s2

s2 + 2
x+

3s2 − 4s+ 2

s2 + 2

)
.

Let P be the set of prime numbers, S ⊂ P ∪ {∞}, and recall that a rational number

r = r1/r2 ∈ Q, gcd(r1, r2) = 1, is called S-integral if the set of prime factors of r2 is a subset

of S. For given S, the set of S-integers is denoted by ZS .

Although we were unable to prove that there are infinitely many quartic algebraic integers

α such that the number β = 4α4/(1−α4)−α/(α− 1) is real quadratic, from our result we can

deduce the following:
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Chapter 2 Norm form equations and arithmetic progressions

Corollary 2.1
Let S ⊂ P. Then there are infinitely many a, b, c, d ∈ ZS such that for one of the roots of

x4 + ax3 + bx2 + cx+ d = 0, say α, the number β is real quadratic.

Proof. In order to get the result it is enough to use the parametrization (2.2) by taking t ∈ ZS
satisfying the condition t ∈ (0, 2). Because there are infinitely many such t’s we get the result.

Remark. As an immediate implication of the above result we get that if t = 2m+1
2n for some

m,n ∈ N satisfying 0 < m ≤ 2n − 1, then there is a root α of the corresponding quartic

x4 + ax3 + bx2 + cx + d ∈ ZS [x], with a, b, c, d given by (2.2) and such that β = 4α4/(α4 −
1) − α/(α − 1) is real quadratic. It is quite interesting that in this case (and in fact for any

non-empty set S ⊂ P) we get positive solution of Pethő’s problem, where the phrase quartic

algebraic integer α is replaced by quartic algebraic S-integer α (in the sense that α is a zero of

a monic polynomial with coefficient in ZS).

Remark. Let us note that the equation F (a, b, c) = 0, where F is given by (2.1), defines (an

affine) quartic surface, say V . The existence of the parametric solution presented above leads to

the generic point (by taking t = a/2):

(a, b, c) =

(
a,
a2

4
+ a+ 2,

a2

2
+ a

)
lying on V . This suggest to consider V as a quartic curve defined over the rational function field

Q(a). We call this curve C. A quick computation in MAGMA [23] reveals that the genus of C is
0. This implies that C is Q(a)-rational curve. Moreover, the existence of a Q(a)-rational point

on C given by P =
(
a2

4 + a+ 2, a
2

2 + a
)
allows us to compute rational parametrization which

is defined over Q(a) as follows

b(t) =

∑6
i=0 bni(t)a

i∑4
i=0 bdi(t)a

i
,

c(t) =

∑6
i=0 cni(t)a

i∑4
i=0 cdi(t)a

i
,

d(t) =

∑6
i=0 dni(t)a

i∑4
i=0 ddi(t)a

i
.

where t ∈ Q and bni(t), bdi(t) are given by

i bni(t) bdi(t)

0 663552 t4 − 2211840 t3 + 2764800 t2 − 1536000 t + 320000 331776 t4 − 1105920 t3 + 1382400 t2 − 768000 t + 160000

1 −331776 t4 + 1050624 t3 − 1244160 t2 + 652800 t− 128000 −331776 t4 + 1050624 t3 − 1244160 t2 + 652800 t− 128000

2 −41472 t3 + 105984 t2 − 90240 t + 25600 124416 t4 − 373248 t3 + 419328 t2 − 209280 t + 39200

3 38016 t3 − 89280 t2 + 69696 t− 18080 −20736 t4 + 58752 t3 − 62784 t2 + 30048 t− 5440

4 12960 t4 − 47520 t3 + 62928 t2 − 36240 t + 7748 1296 t4 − 3456 t3 + 3528 t2 − 1632 t + 288

5 −3888 t4 + 11664 t3 − 13248 t2 + 6792 t− 1332 0

6 324 t4 − 864 t3 + 900 t2 − 432 t + 81 0

cni(t) and cdi(t) are as follows
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2.3 Proof of Theorem 2.1

i cni(t) cdi(t)

0 0 165888 t4 − 552960 t3 + 691200 t2 − 384000 t + 80000

1 165888 t4 − 552960 t3 + 691200 t2 − 384000 t + 80000 −165888 t4 + 525312 t3 − 622080 t2 + 326400 t− 64000

2 −82944 t4 + 235008 t3 − 241920 t2 + 105600 t− 16000 62208 t4 − 186624 t3 + 209664 t2 − 104640 t + 19600

3 −20736 t4 + 86400 t3 − 126720 t2 + 79296 t− 18080 −10368 t4 + 29376 t3 − 31392 t2 + 15024 t− 2720

4 20736 t4 − 66528 t3 + 79920 t2 − 42744 t + 8620 648 t4 − 1728 t3 + 1764 t2 − 816 t + 144

5 −4536 t4 + 13176 t3 − 14580 t2 + 7308 t− 1404 0

6 324 t4 − 864 t3 + 900 t2 − 432 t + 81 0

dni(t) and ddi(t) are given by

i cni(t) cdi(t)

0 331776 t4 − 1105920 t3 + 1382400 t2 − 768000 t + 160000 331776 t4 − 1105920 t3 + 1382400 t2 − 768000 t + 160000

1 −663552 t4 + 2211840 t3 − 2764800 t2 + 1536000 t− 320000 −331776 t4 + 1050624 t3 − 1244160 t2 + 652800 t− 128000

2 705024 t4 − 2350080 t3 + 2939904 t2 − 1635840 t + 341600 124416 t4 − 373248 t3 + 419328 t2 − 209280 t + 39200

3 −393984 t4 + 1271808 t3 − 1540224 t2 + 829536 t− 167680 −20736 t4 + 58752 t3 − 62784 t2 + 30048 t− 5440

4 115344 t4 − 353376 t3 + 407880 t2 − 210624 t + 41148 1296 t4 − 3456 t3 + 3528 t2 − 1632 t + 288

5 −16848 t4 + 48384 t3 − 52992 t2 + 26304 t− 5004 0

6 972 t4 − 2592 t3 + 2700 t2 − 1296 t + 243 0

The above parametrizations yield formulas for p and q as well, we have

p(t) =

∑8
i=0 pni(t)a

i∑8
i=0 pdi(t)a

i
,

q(t) =

∑8
i=0 qni(t)a

i∑8
i=0 qdi(t)a

i
,

where pni(t) and pdi(t) are as follows

i pni(t)

0 −764411904 t6 + 3853910016 t5 − 8095334400 t4 + 9068544000 t3 − 5713920000 t2 + 1920000000 t− 268800000

1 1624375296 t6 − 8066138112 t5 + 16689659904 t4 − 18417991680 t3 + 11433369600 t2 − 3785472000 t + 522240000

2 −1576599552 t6 + 7711801344 t5 − 15724855296 t4 + 17109688320 t3 − 10477670400 t2 + 3424128000 t− 466560000

3 901767168 t6 − 4328681472 t5 + 8665989120 t4 − 9262688256 t3 + 5575491072 t2 − 1792177920 t + 240364800

4 −328458240 t6 + 1538403840 t5 − 3007901952 t4 + 3143418624 t3 − 1852477056 t2 + 583908864 t− 76936320

5 77262336 t6 − 350884224 t5 + 666600192 t4 − 678507840 t3 + 390510720 t2 − 120573504 t + 15612432

6 −11384064 t6 + 49828608 t5 − 91598688 t4 + 90593856 t3 − 50882400 t2 + 15399264 t− 1963512

7 956448 t6 − 4012416 t5 + 7116336 t4 − 6832512 t3 + 3747096 t2 − 1113696 t + 140292

8 −34992 t6 + 139968 t5 − 239112 t4 + 222912 t3 − 119556 t2 + 34992 t− 4374

i pdi(t)

0 191102976 t6 − 955514880 t5 + 1990656000 t4 − 2211840000 t3 + 1382400000 t2 − 460800000 t + 64000000

1 −382205952 t6 + 1879179264 t5 − 3849928704 t4 + 4206919680 t3 − 2586009600 t2 + 847872000 t− 115840000

2 346374144 t6 − 1676132352 t5 + 3381460992 t4 − 3640578048 t3 + 2206264320 t2 − 713625600 t + 96256000

3 −185131008 t6 + 879869952 t5 − 1744478208 t4 + 1847079936 t3 − 1101689856 t2 + 351010560 t− 46678400

4 63452160 t6 − 294865920 t5 + 572209920 t4 − 593720064 t3 + 347511168 t2 − 108828288 t + 14251040

5 −14183424 t6 + 64074240 t5 − 121124160 t4 + 122713920 t3 − 70316928 t2 + 21620544 t− 2788424

6 2006208 t6 − 8755776 t5 + 16052256 t4 − 15836256 t3 + 8873352 t2 − 2679360 t + 340884

7 −163296 t6 + 684288 t5 − 1212408 t4 + 1162944 t3 − 637200 t2 + 189216 t− 23814

8 5832 t6 − 23328 t5 + 39852 t4 − 37152 t3 + 19926 t2 − 5832 t + 729

finally, the formulas for qni(t) and qdi(t)

i qni(t)

0 −382205952 t6 + 1911029760 t5 − 3981312000 t4 + 4423680000 t3 − 2764800000 t2 + 921600000 t− 128000000

1 1242169344 t6 − 6210846720 t5 + 12939264000 t4 − 14376960000 t3 + 8985600000 t2 − 2995200000 t + 416000000

2 −1934917632 t6 + 9650700288 t5 − 20059840512 t4 + 22242263040 t3 − 13875148800 t2 + 4617216000 t− 640320000

3 1821450240 t6 − 9005727744 t5 + 18560544768 t4 − 20410417152 t3 + 12630919680 t2 − 4170854400 t + 574144000

4 −1091377152 t6 + 5298628608 t5 − 10725198336 t4 + 11586309120 t3 − 7046019072 t2 + 2287269120 t− 309668800

5 422143488 t6 − 1995010560 t5 + 3934065024 t4 − 4144690944 t3 + 2461317120 t2 − 781454784 t + 103672320

6 −104789376 t6 + 478690560 t5 − 914397984 t4 + 935521920 t3 − 541037520 t2 + 167812512 t− 21823272

7 16119648 t6 − 70777152 t5 + 130483872 t4 − 129400416 t3 + 72863136 t2 − 22105152 t + 2825172

8 −1399680 t6 + 5878656 t5 − 10437336 t4 + 10031040 t3 − 5506488 t2 + 1638144 t− 206550
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Chapter 2 Norm form equations and arithmetic progressions

i qdi(t)

0 0

1 191102976 t6 − 955514880 t5 + 1990656000 t4 − 2211840000 t3 + 1382400000 t2 − 460800000 t + 64000000

2 −382205952 t6 + 1879179264 t5 − 3849928704 t4 + 4206919680 t3 − 2586009600 t2 + 847872000 t− 115840000

3 346374144 t6 − 1676132352 t5 + 3381460992 t4 − 3640578048 t3 + 2206264320 t2 − 713625600 t + 96256000

4 −185131008 t6 + 879869952 t5 − 1744478208 t4 + 1847079936 t3 − 1101689856 t2 + 351010560 t− 46678400

5 63452160 t6 − 294865920 t5 + 572209920 t4 − 593720064 t3 + 347511168 t2 − 108828288 t + 14251040

6 −14183424 t6 + 64074240 t5 − 121124160 t4 + 122713920 t3 − 70316928 t2 + 21620544 t− 2788424

7 2006208 t6 − 8755776 t5 + 16052256 t4 − 15836256 t3 + 8873352 t2 − 2679360 t + 340884

8 −163296 t6 + 684288 t5 − 1212408 t4 + 1162944 t3 − 637200 t2 + 189216 t− 23814

The reader interested in the details of mathematics behind the computation of parametrizations of

rational curves can consult the excellent book of Rafael Sendra, Winkler and Pérez-Díaz [115].

Let us also note that for p, q given above the discriminant of P (x) = x2 + px+ q takes the form

Disc(P ) = −2aP1(a, t) · P2(a, t)Q(a, t)2,

where Q is a rational function, P2 is the polynomial of degree 2 (with respect to the variable t)

with negative discriminant for a ∈ R \ {4} and

P1(a, t) = (9a3 − 116a2 + 524a− 800)t2 − 24(a− 5)(a− 4)2t+ 18(a− 4)3.

We thus see that the polynomialP (x)will have two real roots iff−aP1(a, t) > 0 andQ(a, t) 6= 0.

We observe that if a < 0 then −aP (a, t) is always negative and we get no solutions. Indeed,

if a < 0 then P (a, t) need to be positive. However, 9a3 − 116a2 + 524a − 800 < 0 and

Disct(P1) = −72(a − 4)3(a − 2)2a < 0 and thus P1(a, t) < 0 for all a, t ∈ R. If a > 0

and a 6= 4 there are solutions but the analytic expressions are quite complicated. Instead, in

Figure 2.1, we present a plot of the solutions of the system −aP (a, t) > 0 ∧ Q(a, t) 6= 0

satisfying (a, t) ∈ [0, 10] × [−10, 10]. In particular, if a ∈ (0, 2) and t ∈ Q we get solutions

we are interested in. Unfortunately, we were not able to characterize all pairs (a, t) such that the

corresponding polynomial f(x) = x4 + ax3 + b(t)x2 + c(t)x+ d(t) is irreducible. It seems to

be a rather difficult question.

Finally, if a = 4 then we get (b, c, d, p, q) = (46/3, 20, 25, 165/26, 525/52) and the

polynomial x2 + px+ q has complex roots.

Wewere trying to use the obtained parametrization to find other integer points on the surface

V but without success. If α is not an algebraic integer, then using the above parametrizations

we may obtain real quadratic algebraic numbers. Indeed, if α is a root of the polynomial

x4 + ax3 + bx2 + cx+ d then write β = 4α4

α4−1 −
α
α−1 . As an example let us consider the case

a = 1, t = 1. The above formulas provide that α is a root of the polynomial

x4 + x3 + 97/24x2 + 3/4x+ 17/8

then β is a root of the following polynomial having two real roots

x2 − 6/13x− 51/5.

We can also notice "near misses" solutions of Pethő’s problem, where among the numbers

a, b, c, d only one is genuine rational. All these solutions correspond to a = 2. More precisely,

if α is solution of

x4 + 2x3 +
14

3
x2 + 2x+ 1
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2.3 Proof of Theorem 2.1

0 2 4 6 8 10

-10

-5

0

5

10

Figure 2.1: Real solutions of the inequality −aP1(a, t) > 0, (a, t) ∈ [0, 10] × [−10, 10], are in shaded
region

then β is a root of the polynomial

x2 + 3x− 3

4
.

Similarly, if α is a root of

x4 + 2x3 +
13

3
x2 + 4x+ 4

then β is a root of

x2 +
36

5
x+ 12.
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Chapter 3 Algebraic curves and arithmetic
progressions

3.1 Generalized Huff models of elliptic curves

In 1948 Huff [75] studied a geometric problem and related to it a family of curves now

called Huff curves. He considered rational distance sets. Given a, b ∈ Q∗ such that a2 6= b2.

Determine the set of points (x, 0) ∈ Q2 satisfying that d((0,±a), (x, 0)) and d((0,±b), (x, 0))

are rational numbers, where d denotes the usual Euclidean distance. Consider the Huff curve

ax(y2 − 1) = by(x2 − 1). If there is a rational point (x, y) on the curve, then the point

P =
(

2by
y2−1 , 0

)
is in the distance set. For example, with (a, b) = (2, 5), then the curve

2x(y2 − 1) = 5y(x2 − 1) contains the point (2, 4), and so(
2 · 5 · 4
42 − 1

, 0

)
=

(
8

3
, 0

)
lies in the distance set.

Elliptic curves can be represented in different forms having different arithmetic properties.

Many models have been studied recently: Edwards curves, Huff curves, Montgomery curves,

Weierstrass curves, Hessian curves, Jacobi quartic curves and generalizations. In this section

we deal with arithmetic properties of two generalized Huff models introduced by Wu and Feng

[146] and by Ciss and Sow [41]. These models are as follows

Ha,b : x(ay2 − 1) = y(bx2 − 1)

with a, b ∈ Z and

Hc,d
a,b : ax(y2 − c) = by(x2 − d)

with a, b, c, d ∈ Z. We provide bounds for the size of integral solutions using Runge’s method

[107] combined with reduction method from [131]. In case of the family Ha,b all integral

solutions are classified and in case of Hc,d
a,b the obtained bound is polynomial in a, b, c, d and in

case of many concrete equations the largest integral point is very close to this bound.
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Chapter 3 Algebraic curves and arithmetic progressions

Siegel [116] in 1926 proved that the equation

y2 = a0x
n + a1x

n−1 + . . .+ an =: f(x)

has only a finite number of integer solutions if f has at least three simple roots. In 1929 Siegel

[117] classified all irreducible algebraic curves overQ on which there are infinitely many integral

points. These curves must be of genus 0 and have at most 2 infinite valuations. These results

are ineffective, that is, their proofs do not provide any algorithm for finding the solutions. In the

1960’s Baker [6, 8] gave explicit lower bounds for linear forms in logarithms of the form

Λ =

n∑
i=1

bi logαi 6= 0

where bi ∈ Z for i = 1, . . . , n and α1, . . . , αn are algebraic numbers (6= 0, 1), and

logαi, . . . , logαn

denote fixed determinations of the logarithms. Baker [7] used his fundamental inequalities

concerning linear forms in logarithms to derive bounds for the solutions of the elliptic equation

y2 = ax3 + bx2 + cx+ d.

This bound were improved by several authors see e.g. [24, 69]. Baker and Coates [10] extended

this result to general genus 1 curves. Lang [80] proposed a different method to prove the finiteness

of integral points on genus 1 curves. This method makes use of the group structure of the genus

1 curve. Stroeker and Tzanakis [126] and independently Gebel, Pethő and Zimmer [58] worked

out an efficient algorithm based on this idea to determine all integral points on elliptic curves.

The elliptic logarithm method for determining all integer points on an elliptic curve has been

applied to a variety of elliptic equations (see e.g. [127, 128, 137–139]). The disadvantage of this

approach is that there is no known algorithm to determine the rank of the so-called Mordell-Weil

group of an elliptic curve, which is necessary to determine all integral points on the curve.

There are other methods that can be used in certain cases to determine all integral solutions

of genus 1 curves. Poulakis [104] provided an elementary algorithm to determine all integral

solutions of equations of the form y2 = f(x), where f(x) is quartic monic polynomial with

integer coefficients. Using the theory of Pellian equations, Kedlaya [76] described a method to

solve the system of equations x
2 − a1y2 = b1,

P (x, y) = z2,

where P is a given integer polynomial.

In this section we characterize the arithmetic progressions in case of the curve Ha,b and

we provide infinite families of curves Hc,d
a,b containing arithmetic progressions of length 9. It is

important to note that we only consider arithmetic progressions related to integral points.
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3.2 Integral points on generalized Huff curves

3.2 Integral points on generalized Huff curves

In the following theorem we characterize the integral points on the curve Ha,b.

Theorem 3.1
The Diophantine equation Ha,b : x(ay2 − 1) = y(bx2 − 1) with a, b, x, y ∈ Z has

precisely the following solutions

(a, b, x, y) = (a, b, 0, 0) with a, b ∈ Z,

(a, b, x, y) = (a, a, x, x) with a, x ∈ Z,

(a, b, x, y) = (1, 1,−1, 1),

(a, b, x, y) = (1, 1, 1,−1),

(a, b, x, y) = (−1,−1,−1, 1),

(a, b, x, y) = (−1,−1, 1,−1),

(a, b, x, y) = (a, 2− a,−1, 1) with a ∈ Z,

(a, b, x, y) = (a, 2− a, 1,−1) with a ∈ Z.

A direct consequence of the above theorem is as follows.

Corollary 3.1
Let (x1, y1), (x2, y2), (x3, y3) be solutions of the equationHa,b for some a, b ∈ Z such that

(x1, x2, x3) forms an arithmetic progression and at most one solution (xi, yi) satisfies the

condition xi = yi. Then (x1, x2, x3) = (−3,−1, 1), (−1, 0, 1), (1, 0,−1) or (1,−1,−3).

In case of the second family Hc,d
a,b we have the following result. Define ϕ(a, b, c, d) =

(a2c− 81)(a2c− 81− b2d).

Theorem 3.2
Let a, b, c, d ∈ Z such that abcd(a2c− b2d) 6= 0. Define L1, L2, U1, U2 as follows

L1 = −1
9

√
ϕ(a, b, c, d), U1 = 1

9

√
ϕ(a, b, c, d),

L2 = −1
9

√
−ϕ(a, b,−c,−d), U2 = 1

9

√
ϕ(a, b,−c,−d).

Letm0 = min({0}∪{Li : i = 1, 2, Li ∈ R}) andM0 = max({0}∪{Ui : i = 1, 2, Ui ∈
R}). If (x, y) is an integral point on Hc,d

a,b , then we have that either

x = ±
√

(2a2c− t)(2a2c− t− 2b2d)

b
√

2t
t ∈ {−161, . . . , 161}

or
m0

b
≤ x ≤ M0

b
if b > 0,

M0

b
≤ x ≤ m0

b
if b < 0.

Remark. In case of the curve H−17,−65,2 there is no solution coming from the formula for x, the
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Chapter 3 Algebraic curves and arithmetic progressions

bound is−29 ≤ x ≤ 29.The integral solutions are given by (x, y) ∈ {(−27,−9), (0, 0), (27, 9)},
that is the largest solution is just 2 away from the bound.

On the curves Hc,d
a,b we consider the question of long arithmetic progressions, we have the

following statement.

Theorem 3.3
There exist infinitely many tuples (a, b, c, d) ∈ Z4 such that there is a length 9 arithmetic

progression formed by x-coordinates of integral points on the curve Hc,d
a,b .

3.3 Proof of the results

In the proofs of the results the we use several time that the discriminant of a degree 2

polynomial (in some variable) must be a rational square. This is a necessary condition to obtain

integer solutions.

Proof. [Proof of Theorem 3.1] Consider the case a = b.We obtain that

axy(y − x) = x− y.

Therefore x = y is a solution for all x ∈ Z. Assume that x 6= y.We get that axy = −1. Hence

(a, b, x, y) ∈ {(−1,−1,∓1,±1), (1, 1,∓1,±1)} are the possible solutions of the equation, and
one can check that these are in fact solutions.

We may assume that |a| > |b|.We rewrite the equation in the form

byx2 + (1− ay2)x− y = 0.

A necessary condition to obtain integer solution is that the discriminant of the above quadratic

polynomial in x must be a rational square. Thus there exists an integer t such that

F (y) := a2y4 + (4b− 2a)y2 + 1 = t2. (3.1)

We apply Runge’s method [107] to determine all the integral solutions. Define P (y) = ay2 +

2b−a
a .We have that

F (y)−
(
P (y)− 1

a

)2

= 2y2 +
4b

a
− 2

a
− 4b2

a2
+

4b

a2
− 1

a2
,

F (y)−
(
P (y) +

1

a

)2

= −2y2 +
4b

a
+

2

a
− 4b2

a2
− 4b

a2
− 1

a2
.

These two quadratic polynomials have opposite signs if |y| ≥ 3, since |a| > |b|. Therefore one
has that (

P (y)− 1

a

)2

< F (y) = t2 <

(
P (y) +

1

a

)2

if |y| ≥ 3. It yields that t = ±(ay2 + 2b−a
a ). Equation (3.1) implies that b = 0. In this case

y ∈

{
−1

2ax
±
√

1

4a2x2
+

1

a

}
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3.3 Proof of the results

and we obtain that |y| ≤ 1. Therefore we have that |y| < 3. It remains to check the cases

y ∈ {0,±1,±2}. If y = 0, then it follows that x = 0. If y = ±1, then

±bx2 − (a− 1)x∓ 1 = 0.

Hence x = ±1 and b = a or b = 2− a. If y = ±2, then we get that

±2bx2 − (4a− 1)x∓ 2 = 0.

Therefore x ∈ {±1,±2}. If x = ±2, then we get that a = b, a case that has been considered. If

x = ±1, then no solution exists.

Proof. [Proof of Theorem 3.2] Rewrite the equation of Hc,d
a,b as follows

axy2 − b(x2 − d)y − acx = 0.

A necessary condition to obtain integer solution is that the discriminant of the above quadratic

polynomial in y must be a rational square. Hence there exists an integer u for which

G(X) := X4 + (4a2c− 2b2d)X2 + b4d2 = u2,

where X = bx. Let R(X) = X2 + 2a2c − b2d, that is the polynomial part of the Puiseux

expansion of
√
G(X).We obtain that

G(X)− (R(X)− 162)2 = 324X2 − 4 a4c2 + 4 a2b2cd+

648 a2c− 324 b2d− 26244,

G(X)− (R(X) + 162)2 = −324X2 − 4 a4c2 + 4 a2b2cd−

648 a2c+ 324 b2d− 26244.

The roots of the above polynomials are defined in Theorem 3.2 asL1, U1 andL2, U2 respectively.

If X is not an element of the interval

[min(L1, L2),max(U1, U2)],

then

G(X) > (R(X)− 162)2 and G(X) < (R(X) + 162)2.

Since G(X) = u2 we get that u = ±(R(X)− t) for some integer |t| < 162. It follows that

x =
X

b
= ±

√
(2a2c− t)(2a2c− t− 2b2d)

b
√

2t
t ∈ {−161, . . . , 161}.

It remains to bound the "small" solutions, that is to computemin(L1, L2) andmax(U1, U2), these

are roots of the above defined polynomials. We note that we fixed the number 162 appearing in

the above computation based on numerical experiences. It can be replaced by an other constant,

say T. If a and b are large, then a baby step - giant step type algorithm can be used to find a near

optimal value forT, for which the number of integers in the intervals [min(L1, L2),max(U1, U2)]

and [−T + 1, T − 1] is almost as small as possible.

Proof. [Proof of Theorem 3.3] First notice that if (x, y) ∈ Hc,d
a,b then (−x,−y) ∈ Hc,d

a,b . Based

on numerical experience we fix b = ma and d = a + 1 for some integer m. The integral point

(0, 0) is on the curve Hc,d
a,b for any integral tuple (a, b, c, d). If we have an integral solution with
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Chapter 3 Algebraic curves and arithmetic progressions

x = 1, then y2 + amy − c = 0 and a necessary condition to obtain integer solution is that the

discriminant of the above quadratic polynomial in y must be a rational square. Hence

c =
n2 −m2a2

4

for some integer n. In a similar way x = 2 corresponds to an integral solution if 2y2 −m(3 −
a)y − n2−m2a2

2 = 0. Hence 4n2 − 3m2(a2 + 2a− 3) is a square. We look for solutions of the

form n = ua+ v for some u, v ∈ Z.We get that

(v − u)2 − 4u2 + 3m2 = 0.

Parametric solution of the above equation is given by

(v − u, u,m) = (
−2p2 + 6q2

Gp,q
,
p2 + 3q2

Gp,q
,

4pq

Gp,q
),

for some integers p, q, where Gp,q = gcd(−2p2 + 6q2, p2 + 3q2, 4pq). To obtain an integral

solution with x = 3, with a similar argument as the case x = 1 give us that the polynomial

9(a2 − 2a+ 1)p4 − 2(37a2 + 74a− 431)p2q2 + 81(a2 + 6a+ 9)q4

has to be a square. The quartic is singular when its discriminant is 0, so for a = −7,−4, 2

or 5. Using the above formulas we obtain for x = 3 and each values of a the corresponding

y-coordinate of the point in Hc,d
a,b where a, b, c, d are as above:

a y

−7 2(2p− q)(p+ 3q)

−4 1
2(5p+ q)(p+ 3q)

2 1
2(p+ 5q)(p+ 3q)

5 2(p− 2q)(p+ 3q)

.

We handle the case with a = 2, the other three can be treated in a similar way. When a = 2,

then a point on the curve with x = 4 demands

p4 − 34p2q2 + 225q4 + 52pqy − 4y2 = 0,

so that necessarily its discriminant, p4 + 135p2q2 + 225q4, is square. Hence we have a genus 1

curve which has an affine model of the form

C : v2 = u4 + 135u2 + 225 , where u = p/q.

The quartic curve C has the rational point [0 : 1 : 0], then it is an elliptic curve defined over Q.

A Weierstrass model for C is

E2 : Y 2 = X3 + 45X2 − 6300X,

and the isomorphism given in affine coordinates by:

ϕ : C −→ E2 , ϕ(u, v) = (30 + 2u2 + 2v, 270u+ 4u3 + 4uv).

We use the computer algebra software Magma [8] to compute the generator of the Mordell-Weil

group ofE2. The points (60, 0), (0, 0) generate the torsion subgroup and the free part is generated
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3.3 Proof of the results

by

(−30, 450), (−90, 450).

The point (x, y) = (3, 12(p+5q)(p+3q)) ∈ Hc,d
a,b is supposed to be an integral point, therefore we

need to scale p and q such that they have the same parity. To avoid cases with abcd(a2c−b2d) = 0

we need points in C with u-coordinate different from ±1,±3,±5,±15. That is the points that

are not coming from the following points on E2:

(70,±350), (−6,±198), (126,±1386), (−30,±450), (210,±3150),

(−50,±550), (1050,±34650), (−90,±450), (6, 0), (0, 0), (−105, 0).

As examples we compute the cases corresponding to the points 3(−90, 450) and 2(−30, 450).

From 3(−90, 450) we get that p/q = 182745/68681, so we do not need to scale. From

2(−30, 450) we obtain that p/q = 8/13, so we fix (p, q) = (16, 26) to make the y-coordinate

corresponding with the point with x-coordinate equal to 3 an integer.

(p, q) (182745, 68681) (16, 26)

(0, 0) (0, 0)

(±1,±1871528340) (±1,±3534)

points (±2,±31231340040) (±2,±5358)

on Hc,3
2,b (±3,±102280403100) (±3,±6862)

(±4,±164329281885) (±4,±8322)

b 100408874760 3328

c 191420673028273854000 24250308

We note that for a = −7,−4, 5 the corresponding elliptic curve Ea have positive ranks as well

(1, 2 and 1 respectively). More over E2 and E−4 (and E5 and E−7) are isomorphic over Q.
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Chapter 4 Markoff-Rosenberger triples with Fibonacci
components

4.1 Markoff and Markoff-Rosenberger equations

Markoff [89] obtained many nice results related to the equation

x2 + y2 + z2 = 3xyz.

He showed that there exist infinitely many integral solutions. The so-called Markoff equation

defined above has been generalized in many directions by several authors. We focus on the

generalization considered by Rosenberger [106]

ax2 + by2 + cz2 = dxyz. (4.1)

Rosenberger proved that if a, b, c, d ∈ N are integers such that gcd(a, b) = gcd(a, c) =

gcd(b, c) = 1 and a, b, c|d, then non-trivial solutions exist only if

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}.

Silverman [118] studied equation (4.1) with a = b = c = 1 over imaginary quadratic number

fields. Baer and Rosenberger [5] considered solutions of equation (4.1) over imaginary quadratic

number fields. González-Jiménez and Tornero [62] looked for solutions of equation (4.1) in

arithmetic progression that lie in the ring of integers of a number field. González-Jiménez [59]

studied solutions of (4.1) whose coordinates belong to the ring of integers of a number field and

form a geometric progression. A well-known identity related to the Fibonacci numbers

1 + F 2
2n−1 + F 2

2n+1 = 3F2n−1F2n+1

shows that (x, y, z) = (1, F2n−1, F2n+1) is a solution of the Markoff equation for any n ∈ N.

Luca and Srinivasan [84] proved that there are infinitely many solutions (Fi, Fj , Fk) to the

classical Markoff equations (given by the above identity). In this section we extend the result of

Luca and Srinivasan, we determine the solutions (x, y, z) = (Fi, Fj , Fk) of equation (4.1) for

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}.

In the proofs, we simplify the strategy described by Luca and Srinivasan, by providing a direct

way to get a bound for k − j from above.
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Chapter 4 Markoff-Rosenberger triples with Fibonacci components

4.2 Fibonacci components

Theorem 4.1
If (x, y, z) = (Fi, Fj , Fk) is a solution of equation (4.1) and (a, b, c, d) ∈
{(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}, then the complete list of so-

lutions are given by

(a, b, c, d) solutions

(1, 1, 1, 1) {(3, 3, 3)}

(1, 1, 2, 2) {(2, 2, 2)}

(1, 1, 2, 4) {(1, 1, 1), (1, 3, 1), (1, 3, 5), (3, 1, 1), (3, 1, 5)}

(1, 1, 5, 5) {(1, 2, 1), (1, 3, 1), (1, 3, 2), (2, 1, 1), (3, 1, 1), (3, 1, 2)}

(1, 2, 3, 6) {(1, 1, 1), (1, 2, 1), (1, 2, 3), (5, 1, 1)}

.

Proof. A well-known fact is that the n-th Fibonacci number can be written as follows

Fn =
αn − βn

α− β
, where α =

1 +
√

5

2
and β =

1−
√

5

2
.

We also have that for all n ≥ 1

αn−2 ≤ Fn ≤ αn−1.

We note that in the Markoff case, a = b = c and the equation is fully symmetric in (x, y, z). This

symmetry is no longer present in the case of the Rosenberg equation. In the proof we assume

that x ≤ y ≤ z hence we need to consider not only the equation ax2 + by2 + cz2 = dxyz but

also all the permutations of (a, b, c).We provide a bound for i for general (a, b, c, d) and we use

it to get an upper bound for k − j. Based on inequalities from [84] we have
aF 2

i + bF 2
j

Fk
≤ (a+ b)αj ,

∣∣∣∣ βk√5

∣∣∣∣ ≤ αj

5
,
∣∣αiβj + αjβi − βi+j)

∣∣ ≤ 3αj . (4.2)

Suppose (x, y, z) = (Fi, Fj , Fk) for i ≤ j ≤ k is a solution of

aF 2
i + bF 2

j + cF 2
k = dFiFjFk.

We obtain that

c
αk√

5
− dα

i+j

5
= −

aF 2
i + bF 2

j

Fk
+ c

βk√
5
− d

5
(αiβj + αjβi − βi+j).

Taking absolute values and using the inequalities at (4.2) we obtain:∣∣∣∣c αk√5
− dα

i+j

5

∣∣∣∣ ≤ αj

5
(5a+ 5b+ c+ 3d),

and dividing by αi+j
√
5
: ∣∣∣∣c αk−i−j − d√

5

∣∣∣∣ ≤ 5a+ 5b+ c+ 3d√
5αi

. (4.3)

Now define f(n) =
∣∣∣c αn − d√

5

∣∣∣ and let t0 ∈ Z such that f(t0) ≤ f(n) for any n ∈ Z. Then

αi ≤ 5a+ 5b+ c+ 3d√
5f(t0)

. (4.4)
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4.2 Fibonacci components

For a given tuple (a, b, c, d) equation (4.4) provides an upper bound for i, denote it byub(a, b, c, d).

For a given i equation (4.3) yields an upper bound for k−j. For the concrete equationswe consider
these bounds are as follows:

ub(1, 1, 1, 1) = 9,

ub(1, 1, 2, 2) = 8, ub(1, 2, 1, 2) = ub(2, 1, 1, 2) = 9,

ub(1, 1, 2, 4) = ub(1, 2, 1, 4) = ub(2, 1, 1, 4) = 8,

ub(1, 2, 3, 6) = ub(2, 1, 3, 6) = 8, ub(1, 3, 2, 6) = ub(3, 1, 2, 6) = 7,

ub(2, 3, 1, 6) = ub(3, 2, 1, 6) = 11,

ub(1, 1, 5, 5) = 7, ub(1, 5, 1, 5) = ub(5, 1, 1, 5) = 8.

For each (a, b, c, d) and any i ≤ ub(a, b, c, d) one needs to compute the (finitely many) possibil-

ities form = k − j. That is, fixing (a, b, c, d), i andm we study the equation

aF 2
i + bF 2

j + cF 2
j+m − dFiFjFj+m = 0.

We note that the equation above only depends on j. To deal with the concrete cases we use the

following arguments.

(I) We eliminate as many values of i as possible by checking solvability of quadratic equations

aF 2
i + by2 + cz2 − Fiyz = 0.

(II) For fixed m we eliminate equations aF 2
i + bF 2

j + cF 2
j+m − dFiFjFj+m = 0 modulo p,

where p is a prime.

(III) We consider the equation aF 2
i + bF 2

j + cF 2
j+m = dFiFjFj+m as a quadratic in Fj . Then

its discriminant d2F 2
i F

2
j+m−4b(aF 2

i +cF 2
j+m) must be a square. A fundamental identity

for the Fibonacci and Lucas numbers (denoted by Ln, defined by L0 = 2, L1 = 1 and

Ln = Ln−1 + Ln−2 for n ≥ 2) says that

L2
n = 5F 2

n ± 4.

That is we have the system of equations

Y 2
1 = 5X2 ± 4,

Y 2
2 = d2F 2

i X
2 − 4b(aF 2

i + cX2),

where X = Fj+m.Multiplying these equations together yields

Y 2 = (5X2 ± 4)(d2F 2
i X

2 − 4b(aF 2
i + cX2)).

Therefore we reduce our problem to obtain integral points on the above quartic genus 1

curves. Thiswill be realized using theMagma [23] functionSIntegralLjunggrenPoints.

We implemented the above procedure in SageMath [122] and the code can be downloaded

from the URL address http://shrek.unideb.hu/~tengely/MarkoffSolver.sage. De-

tailed computations can be found at

http://shrek.unideb.hu/~tengely/Markoff-Rosenberger-Fibonacci.pdf.
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Chapter 4 Markoff-Rosenberger triples with Fibonacci components

4.2.1 The case with d = 1

We have that 2 ≤ i ≤ 9. In this range the Diophantine equation F 2
i + y2 + z2 = Fiyz is

solvable only for i = 4. If i = 4, then we have that 0 ≤ k − j ≤ 4. The equation 9 + F 2
j +

F 2
j+m − 3FjFj+m = 0 has no solution modulo 3 for m = 1, 2, 3, and it is not solvable modulo

11 form = 4. It remains to consider the casem = 0.We have that k = j, therefore the equation

is simply 9 = F 2
j . Hence, we get the solution (x, y, z) = (3, 3, 3).

4.2.2 Cases with d = 2

Consider the tuple (a, b, c, d) = (1, 1, 2, 2). The bound for i is 8, however only the quadratic

equation related to i = 3 is solvable in integers. If i = 3, then 0 ≤ k − j ≤ 3. We eliminate

the cases m = 1, 2 modulo 7 and the case m = 3 modulo 23. If k = j, then we get that

4 = F 2
j . Hence, we obtain the solution (x, y, z) = (2, 2, 2). There are 2 other subcases here,

(a, b, c, d) = (1, 2, 1, 2) and (2, 1, 1, 2) having the same upper bound for i, namely 9. In case of

(a, b, c, d) = (1, 2, 1, 2) we can eliminate all values of i except i = 3 and 9. If i = 3 we have

4 + 2F 2
j + F 2

j+m − 4FjFj+m = 0,

where 0 ≤ m ≤ 5. Congruence arguments eliminate the cases with m ∈ {1, 2, 3, 4, 5} as

follows:

m 1 2 3 4 5

mod 17 7 19 3 13

The remaining value of m is 0, that yields the equation 4 = F 2
j , so we obtain the solution

(x, y, z) = (2, 2, 2). If i = 9, then the corresponding equation is

1156 + 2F 2
j + F 2

j+m − 68FjFj+m = 0,

where 0 ≤ m ≤ 9. The following table contains the primes used to get a contradiction

m 0 1 2 3 4 5 6 7 8 9

mod 3 7 11 19 11 5 11 7 3 29

In case of (a, b, c, d) = (2, 1, 1, 2) we only need to handle i = 3 for which we get that

0 ≤ m ≤ 5. The equation is given by

8 + F 2
j + F 2

j+m − 4FjFj+m = 0,

and we can eliminate all these (exceptm = 0) as the table below shows

m 1 2 3 4 5

mod 11 7 11 3 13

Ifm = 0, then we have 8 = 2F 2
j and the only solution is (x, y, z) = (2, 2, 2).
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4.2 Fibonacci components

4.2.3 Cases with d = 4

If (a, b, c, d) = (1, 1, 2, 4), then if follows that i = 2 or 4. If (a, b, c, d) = (1, 2, 1, 4), then

we obtain that i = 2 or 4. The last tuple to consider here is (a, b, c, d) = (2, 1, 1, 4) and we get

that i = 2 or 5. We need to handle the equations

1 + F 2
j + 2F 2

j+m − 4FjFj+m = 0,

9 + F 2
j + 2F 2

j+m − 12FjFj+m = 0,

1 + 2F 2
j + F 2

j+m − 4FjFj+m = 0,

9 + 2F 2
j + F 2

j+m − 12FjFj+m = 0,

2 + F 2
j + F 2

j+m − 4FjFj+m = 0,

50 + F 2
j + F 2

j+m − 20FjFj+m = 0.

We provide details in the case of the first equation, the other 5 can be solved in a similar way. We

consider the equation as a quadratic in Fj and follow the argument described in (III). It remains

to solve the quartic Diophantine equations

y2 = 10x4 − 13x2 + 4, y2 = 10x4 + 3x2 − 4.

The integral solutions of these equations can be completely determined using the Magma [23]

procedure SIntegralLjunggrenPoints. In the former case we get that x ∈ {0,±1,±5}. In
case of the latter equation we have that x ∈ {±1}. It follows that Fj+m = 1 or 5 and we get the

solutions (x, y, z) = (1, 1, 1) and (x, y, z) = (1, 3, 5).

4.2.4 Cases with d = 5

Here, we get the following possibilities for i for the 3 tuples

(a, b, c, d) i

(1, 1, 5, 5) {2, 3, 4}

(1, 5, 1, 5) {2, 3, 4}

(5, 1, 1, 5) {2, 3, 5, 7}

.

Consider the tuple (5, 1, 1, 5). If i = 5, then 0 ≤ m ≤ 7 and if i = 7, then 0 ≤ m ≤ 9. All these

cases can be eliminated using congruence arguments: if i = 5, then we have

m 0 1 2 3 4 5 6 7

mod 7 11 11 11 3 11 17 11

and if i = 7, then we obtain

m 0 1 2 3 4 5 6 7 8 9

mod 3 11 13 29 11 19 11 29 3 11

It remains to check the solutions for i = 2 and 3. The equations can be written as follows

5 + F 2
j + F 2

j+m − 5FjFj+m = 0,

20 + F 2
j + F 2

j+m − 10FjFj+m = 0.
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Chapter 4 Markoff-Rosenberger triples with Fibonacci components

As before we reduce the problem to genus 1 curves, we obtain the following 4 equations

y2 = 105x4 − 184x2 + 80,

y2 = 105x4 − 16x2 − 80,

y2 = 30x4 − 49x2 + 20,

y2 = 30x4 − x2 − 20.

The complete set of possible values for Fj is given by {1, 2, 3, 987}. We also know that Fi ∈
{1, 2}, hence one can easily determine Fk. The solutions of the equation x2 + y2 + 5z2 =

5xyz from these cases are given by (x, y, z) = (1, 2, 1), (2, 1, 1), (1, 3, 1), (3, 1, 1), (1, 3, 2) and

(3, 1, 2).

4.2.5 Cases with d = 6

Let us consider the equation x2+2y2+3z2 = 6xyz.Here we can eliminate many quadratic

equations. In the table below we collect the remaining cases.

(a, b, c, d) i

(1, 2, 3, 6) {2, 5}

(2, 1, 3, 6) {2, 3}

(1, 3, 2, 6) {2, 5}

(3, 1, 2, 6) {2, 4}

(2, 3, 1, 6) {2, 3}

(3, 2, 1, 6) {2, 4, 11}

.

We provide details in case of the tuple (3, 2, 1, 6) only, the remaining ones can be treated in a

similar way. We have three values for i, these correspond to the equations

3 + 2F 2
j + F 2

j+m − 6FjFj+m = 0,

27 + 2F 2
j + F 2

j+m − 18FjFj+m = 0,

23763 + 2F 2
j + F 2

j+m − 534FjFj+m = 0.

The last equation corresponds to i = 11. Here, we do not expect any solution so we compute

the possible values of m and try to get a contradiction modulo some prime. It turns out that

0 ≤ m ≤ 13 and all these cases can be handled using congruence arguments. We summarize

the computation in the following table

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13

mod 5 17 19 7 13 5 17 13 7 17 13 13 17 29

Solving the remaining two equations as described in (III) we get that we need to find the
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4.2 Fibonacci components

integral solutions of the Diophantine equations

y2 = 35x4 − 43x2 + 12,

y2 = 35x4 + 13x2 − 12,

y2 = 395x4 − 451x2 + 108,

y2 = 395x4 + 181x2 − 108.

We use the Magma function SIntegralLjunggrenPoints to determine the integral solutions

and we get that Fj ∈ {1, 2}. The tuple we consider is given by (3, 2, 1) and the corresponding

equation is 3F 2
i + 2F 2

j + F 2
k = 6FiFjFk. Since i = 2 or 4 we have Fi ∈ {1, 3}. These

possibilities yield the solutions (x, y, z) = (1, 1, 1), (1, 1, 5), (1, 2, 1) and (3, 2, 1).
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Chapter 5 Erdős-Graham type Diophantine problems

5.1 Product of two blocks of length 4

In this section we consider the Diophantine equation

x(x+ 1)(x+ 2)(x+ 3)(x+m)(x+m+ 1)(x+m+ 2)(x+m+ 3) = y2, (5.1)

where 4 ≤ m ∈ N is a parameter. We provide bounds for the size of solutions and an algorithm

to determine all solutions (x, y) ∈ N2. The method of proof is based on Runge’s method

[64, 72, 107, 108, 112, 131, 145].

Theorem 5.1
If (x, y) ∈ N2 is a solution of (5.1) then

1 ≤ x ≤ 1.08m.

We apply the above theorem to determine all positive integral solutions of (5.1) with

4 ≤ m ≤ 106.

Theorem 5.2
The only solution (x, y) ∈ N2 of (5.1) with 4 ≤ m ≤ 106 is

(x, y) = (33, 3361826160)

withm = 1647.

5.2 Proof of the results

Proof. [Proof of Theorem 5.1] We apply Runge’s method and we prove that large solutions

do not exists and we provide bound for size of the possible small solutions. A solution to the

equation (5.1) gives rise a solution to the equation

F (X) := X(X +m+ 2)(X + 2m+ 2)(X + 3m) = Y 2, (5.2)

where X = x2 + (m+ 3)x. The polynomial part of the Puiseux expansion of F (X)(1/2) is

P (X) = X2 + (3m+ 2)X +m2 + 3m.

We obtain that

F (X)− (P (X)− 1)2 = 2X2 − (4m2 − 6m+ 4)X −m4 − 6m3 − 7m2 + 6m− 1,

F (X)− (P (X) + 1)2 = −2X2 − (4m2 + 6m+ 4)X −m4 − 6m3 − 11m2 − 6m− 1.
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Chapter 5 Erdős-Graham type Diophantine problems

Let α1, α2 be the roots of the quadratic polynomial F (X) − (P (X) − 1)2 and α3, α4 be the

roots of F (X)− (P (X) + 1)2.We define βi, i = 1, 2, 3, 4 as follows

βi =

αi if αi ∈ R,

0 otherwise.

It follows that

F (X)− (P (X)− 1)2 > 0, if X /∈ [min
i
{βi},max

i
{βi}]

and

F (X)− (P (X) + 1)2 < 0, if X /∈ [min
i
{βi},max

i
{βi}].

Hence we get that

(P (X)− 1)2 < F (X) < (P (X) + 1)2, if X /∈ [min
i
{βi},max

i
{βi}].

If (X,Y ) is a solution of (5.2) with X /∈ [mini{βi},maxi{βi}], then

Y = P (X).

It implies that

0 = F (X)− P (X)2 = −4m2X −m4 − 6m3 − 9m2.

That is

X = −
(
m+ 3

2

)2

.

Since X = x2 + (m+ 3)x we get that

x =
−m− 3

2
.

It means that if there exists a large solution, then m has to be odd, x = −m−3
2 and y =

(m−3)(m−1)(m+1)(m+3)
16 . It is a contradiction sincem ≥ 4 and therefore 0 > −m−3

2 = x.

It remains to deal with the small solutions that is those with

X ∈ [min
i
{βi},max

i
{βi}].

Hence we need to compute the roots of the polynomials F (X) − (P (X) − 1)2 and F (X) −
(P (X) + 1)2. These are as follows

α1 = m2 − 3

2
m− 1− 1

2

√
6m4 + 15m2 + 6,

α2 = m2 − 3

2
m− 1 +

1

2

√
6m4 + 15m2 + 6,

α3 = −m2 − 3

2
m− 1− 1

2

√
2m4 − 5m2 + 2,

α4 = −m2 − 3

2
m− 1 +

1

2

√
2m4 − 5m2 + 2.

Since m ≥ 4, we obtain that 6m4 + 15m2 + 6 ≥ 0 and 2m4 − 5m2 + 2 ≥ 0. Therefore

α1, α2, α3, α4 ∈ R and we have

α3 < α4 < α1 < α2.
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5.3 Algorithm to solve (5.1) for fixedm

We need to solve the system of inequalities

0 ≤ x2 + (m+ 3)x− α3,

0 ≥ x2 + (m+ 3)x− α2.

The first inequality is true for all x ≥ 1. The second inequality implies that

−1

2
m− 1

2

√
5m2 + 2

√
6m4 + 15m2 + 6 + 5− 3

2
≤ x

and

x ≤ −1

2
m+

1

2

√
5m2 + 2

√
6m4 + 15m2 + 6 + 5− 3

2
.

The lower bound is negative ifm > 0, hence we have that x > 0, in case of the upper bound we

obtain that x ≤ 1.08m ifm ≥ 4.

5.3 Algorithm to solve (5.1) for fixedm

Theorem 5.1 says that if there is a solution (x, y) ∈ N2 of the Diophantine equation

(5.1), then 1 ≤ x ≤ 1.08m. If m is small, then one can easily enumerate all solutions since

the bound is linear in m. For larger values of m one can apply a sieve method similar to the

Sieve of Eratosthenes, which eliminates composite numbers using small primes. There are

many generalizations of the Sieve of Eratosthenes to solve different problems in number theory,

cryptography (see e.g. [120] III.4.). We followed the steps described below to solve completely

(5.1) in case of 4 ≤ m ≤ 106.

(i) Define

f(x) = x(x+ 1)(x+ 2)(x+ 3)(x+m)(x+m+ 1)(x+m+ 2)(x+m+ 3),

F (p) = {a : a ∈ [0 . . . p − 1] and f(a) mod p is a square in Fp} and for a given interval

I

SI = {a : a ∈ I ∩ N such that f(a) is a square}.
(ii) If 4 ≤ m ≤ 1000 one computes S[1,1.08m] by direct enumeration.

(iii) Ifm > 1000. Let N = log30 1.08m andM = N
√

1.08m.

(iv) Let p1, p2, . . . , p2N be primes such that

p1 < p2 < . . . < pN ≤M < pN+1 < . . . < p2N .

(v) Compute F (pi) for all i = 1, 2, . . . , 2N.

(vi) Sort the sets F (pi) such that
|F (pij )|
pij

<
|F (pij+1)|
pij+1

.

(vii) Using theChinese remainder theoremdetermine I = {a : a ∈ [1, 1.08m]∩N, a mod pi1 ∈
F (pi1), a mod pi2 ∈ F (pi2), . . . , a mod piN ∈ F (piN )}.

(viii) Compute SI .

Note that here we used small primes around 30 having product about 1.08m. For very small

primes |F (p)|/p is close to one since in this case for a given a ∈ [0, . . . , p − 1] we have that a

43

dc_1892_21

Powered by TCPDF (www.tcpdf.org)



Chapter 5 Erdős-Graham type Diophantine problems

is a root of f(x). As an example consider the casem = 1647. Here we have pi1 = 47, pi2 = 37

and
|F (pi1)|
pi1

≈ 0.4468,
|F (pi2)|
pi2

≈ 0.5676.

Using the Chinese remainder theoremwe obtain a set I having cardinality 441. So the cardinality

of the search space is reduced by a factor about 4. We implemented the above algorithm in Sage

[122].

5.4 On products of disjoint blocks of arithmetic progressions

In this section we present some related Diophantine equations involving products of con-

secutive integers. Let us recall that Bauer and Bennett [11] proved that for each positive integer

j and a j tuple (k1, . . . , kj) the Diophantine equation

y2 = x(x+ 1)

j∏
i=1

ki−1∏
l=0

(xi + l) (5.3)

has infinitelymany solutions in positive integers x, x1, . . . , xj . However, the proof they presented

produces solutions which grow exponentially. In the light of this result one can ask whether in

some cases we can find solutions in polynomials with integer coefficients. In this direction we

offer the following:

Theorem 5.3
The Diophantine equations

x(x+ 1)y(y + 1)(y + 2) = z2, (5.4)

x(x+ 1)y(y + 1)(y + 2)(y + 3) = z2 (5.5)

have infinitely many solutions in the ring Z[t]. Moreover, the Diophantine equation

x(x+ 1)y(y + 1)(y + 2)(y + 3)(y + 4) = z2 (5.6)

has at least two solutions in the ring Z[t].

Let us introduce the notation

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d).

The next results deal with the question of whether the product of disjoint blocks of consecutive

integers can be a product of two consecutive integers. We thus consider the Diophantine equation

r∏
i=1

f(xi, ki, 1) = y(y + 1). (5.7)

This question concerning the solvability in integers of the equation (5.7) can be seen as a

variation on Erdős and Graham question. We have the following:
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5.4 On products of disjoint blocks of arithmetic progressions

Theorem 5.4
The Diophantine equations

x(x+ 1)y(y + 1)(y + 2) = z(z + 1), (5.8)

x(x+ 1)y(y + 1)(y + 2)(y + 3) = z(z + 1) (5.9)

have infinitely many solutions in the ring Z[t]. Moreover, for k1 = 3, r ≥ 2 and each

r − 1-tuple k2, . . . , kr of positive integers the Diophantine equation (5.7) has at least six

solutions in the ring Z[x2, . . . , xr].

Theorem 5.5
The Diophantine equation

x(x+ 1)y(y + 1) = z(z + 1)(z + 2)(z + 3) (5.10)

has infinitely many solutions in positive integers satisfying the condition (z − x)(z − x+

2) 6= 0.

In [142] the second author proved that the system of Diophantine equations
x(x+ 1) + y(y + 1) = p(p+ 1)

y(y + 1) + z(z + 1) = q(q + 1)

z(z + 1) + x(x+ 1) = r(r + 1)

has infinitely many solutions in integers satisfying the condition 0 < x < y < z. One can ask

whether similar phenomenon holds for the multiplicative version of the above system. More

precisely: does the system of Diophantine equations
x(x+ 1)y(y + 1) = p(p+ 1)

y(y + 1)z(z + 1) = q(q + 1)

z(z + 1)x(x+ 1) = r(r + 1)

(5.11)

have infinitely many solutions in integers satisfying the condition 1 < x < y < z? Motivated

by this question we prove the following:

Theorem 5.6
The system (5.11) has infinitely many solutions in the ring of polynomials Z[t].

Consider the Diophantine equations

(x− b)x(x+ b)(y − b)y(y + b) = z2 (5.12)

and

(x− b)x(x+ b)(y − b)y(y + b) = (z − b)z(z + b) (5.13)

where b ∈ N is a parameter. If a solution (x, y, z) satisfies b | x and b | y, we call it trivial. If
b = 1, then Sastry [65] noted that (5.12) has infinitely many positive integer solutions (x, y, z),

where y = 2x− 1 and (x+ 1)(2x− 1) is a square. Zhang and Cai [148] proved that there exist
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Chapter 5 Erdős-Graham type Diophantine problems

infinitely many nontrivial positive integer solutions of the Diophantine equation (5.12) if b ≥ 2

is an even integer. They note that it is likely that for odd b ≥ 3 integers there are also infinitely

many solutions. They showed that (5.13) has infinitely many nontrivial positive integer solutions

for b = 1, and the set of rational solutions of it is dense in the set of real solutions for b ≥ 1. They

posed the following question. Are all the nontrivial positive integer solutions of (5.13) for b = 1

with x ≤ y given by (F2n−1, F2n+1, F
2
2n), n ≥ 1? We prove that all “large” solutions have this

shape while “small” solutions belong to certain intervals. We have the following statements.

Theorem 5.7
Let (x, y, z) be a nontrivial positive integer solution of equation (5.12) and k = y − x.
Either

x = −
48 b2k − 3 k3 ± 2

(
4 b2 − k2

)√
−48 b2 + 3 k2

6 (16 b2 − k2)

or

1 ≤ x ≤ max
1≤i≤3

Bi,

where

B1 = 2 max

∣∣∣∣−6 b2k2 +
3

8
k4 ± 3

2
k

∣∣∣∣ ,
B2 = 2 max

∣∣∣∣−6 b2k3 +
3

8
k5 ∓ b2 ± 3

8
k2
∣∣∣∣1/2 ,

B3 = 2 max

∣∣∣∣−b4k2 − 1

4
b2k4 − 1

64
k6 ± 1

4
b2k ± 1

32
k3 − 1

64

∣∣∣∣1/3 .
Corollary 5.1
If 3 ≤ b ≤ 13, b is odd and 2b < k ≤ 300, then all nontrivial positive integer solutions of
equation (5.12) are as follows

b (x, y, z) b (x, y, z) b (x, y, z)

3 (5, 12, 360) 5 (145, 343, 11083800) 7 (250, 507, 45103500)

3 (7, 18, 1260) 5 (33, 280, 877800) 9 (15, 36, 9720)

3 (4, 21, 504) 5 (16, 275, 277200) 9 (21, 54, 34020)

3 (8, 33, 3960) , (35, 60, 95760) 7 (10, 27, 3060) 9 (12, 63, 13608)

3 (10, 42, 8190) 7 (105, 128, 1552320) 9 (24, 99, 106920) , (105, 180, 2585520)

3 (7, 45, 5040) 7 (8, 42, 2940) , (41, 75, 167280) 9 (11, 90, 17820)

3 (32, 87, 146160) 7 (34, 75, 125460) 9 (30, 126, 221130)

3 (93, 245, 3437280) 7 (9, 56, 7056) 9 (21, 135, 136080)

3 (125, 363, 9662400) 7 (32, 91, 152880) 9 (25, 153, 220320)

3 (77, 333, 4102560) 7 (13, 98, 38220) 9 (10, 171, 30780)

5 (7, 30, 2100) 7 (42, 128, 388080) 9 (96, 261, 3946320)

5 (11, 49, 11088) 7 (8, 105, 11760) 11 (91, 119, 1113840)

5 (6, 49, 2772) 7 (8, 128, 15840) 11 (13, 132, 37752)

5 (11, 55, 13200) 7 (12, 140, 55860) 11 (12, 253, 66792)

5 (6, 55, 3300) , (21, 70, 54600) 7 (18, 169, 154440) 13 (22, 77, 55440)

5 (7, 75, 8400) 7 (32, 189, 458640) 13 (14, 169, 42588)

5 (19, 100, 79800) 7 (11, 169, 61776) 13 (15, 182, 70980)

5 (3605, 3703, 48773919600) 7 (185, 363, 17387040) 13 (99, 288, 4767840)

Table 1

Remark. We computed all nontrivial solutions with 3 ≤ b ≤ 25, b is odd and 2b < k ≤ 300.

There are 144 such solutions, the list can be downloaded from http://math.unideb.hu/
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5.5 Proofs of the results

media/tengely-szabolcs/XblockYblockZ2.txt. We note that the total running time of our

calculations was 11.6 hours on an Intel Core i5 2.6GHz PC.

Theorem 5.8
Let (x, y, z) be a nontrivial positive integer solution of equation (5.13) with b = 1. Either

(x, y, z) = (F2n−1, F2n+1, F
2
2n) for some n ≥ 1

or

1 ≤ x ≤ −1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4,

where k = y − x.

Based on the previous theorem we have the following numerical result.

Corollary 5.2
If 4 ≤ k ≤ 5000, then all nontrivial positive integer solutions of equation (5.13) with

b = 1 have the form (x, y, z) = (F2n−1, F2n+1, F
2
2n) for some n ≥ 1.

5.5 Proofs of the results

Before we present the proofs let us note that if (Z ′, X ′) is a solution of the Diophantine

equation Z2 −AX2 = B and (Z,X) is s solution of Z2 −AX2 = 1 withX 6= 0, then for each

n the pair (Zn, Xn), where

Z0 = Z ′ X0 = X ′, Zn = Z · Zn−1 +AX ·Xn−1, Xn = X · Zn−1 + Z ·Xn−1

is solution of Z2 −AX2 = B.

In order to shorten the notation we write

fk(x) := f(x, k, 1) = x(x+ 1) · . . . · (x+ k − 1).

Proof. [Proof of Theorem 5.3] We observe that the equation (5.4) can be rewritten in the

following form

Z2 − f3(y)X2 = −f3(y). (5.14)

with Z = 2z and 2x+ 1 = X . In order to solve this equation we take y = t2 + 1 and we observe

that the equation (5.14) has the solution

Z ′ = tf3(t
2 + 1), X ′ = t4 + 3t2 + 1.

Moreover, we note that the Diophantine equation Z2 − f3(t2 + 1)X2 = 1 has the nontrivial

solution

Z = t4 + 3t2 + 1, X = t.

According to remark given at the beginning of the section we see that for each n the pair of
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Chapter 5 Erdős-Graham type Diophantine problems

polynomials (Zn, Xn) defined by the recurrence relations

Z0 = tf3(t
2 + 1),

X0 = t4 + 3t2 + 1,

Zn = (t4 + 3t2 + 1)Zn−1 + tf3(t
2 + 1)Xn−1,

Xn = tZn−1 + (t4 + 3t2 + 1)Xn−1,

is a solution of the equation (5.14). It is clear from the definition that Zn, Xn ∈ Z[t] for

each n ∈ N. Moreover, by simple induction on n we check that Xn(2t) ≡ 1 (mod 2) and

Zn(2t) ≡ 0 (mod 2) in the ring of polynomials Z[t]. As a consequence we get that for each n

the pair of polynomials

xn(t) =
1

2
(Xn(2t)− 1), zn(t) =

1

2
Zn(2t)

is the solution of equation (5.4) in the ring Z[t].

In order to get the polynomial solutions of the equation (5.5) we use the same method as

above. We take y = t, where t is a variable and we rewrite our equation in the form

Z2 − f4(t)X2 = −f4(t) (5.15)

with Z = 2z and X = 2x+ 1. We found that

Z ′ = f4(t), X ′ = t2 + 3t+ 1

is a solution of the equation (5.15) and the pair

Z = t2 + 3t+ 1, X = 1

solves the equation Z2 − f4(t)X2 = 1. We thus see that for each n ∈ N the pair of polynomials

(Zn, Xn) defined by the recurrence relations

Z0 = f4(t),

X0 = t2 + 3t+ 1,

Zn = (t2 + 3t+ 1)Zn−1 + f4(t)Xn−1,

Xn = Zn−1 + (t2 + 3t+ 1)Xn−1,

is a solution of the equation (5.15) in the ring Z[t]. Similarly as in the previous case one can

easily check thatXn(2t) ≡ 1 (mod 2) and Zn(2t) ≡ 0 (mod 2) in Z[t] and in consequence, for

each n the pair of polynomials with integer coefficients

xn(t) =
1

2
(Xn(2t)− 1), zn(t) =

1

2
Zn(2t)

is the solution of the equation (5.5).

Finally, in order to show that the equation (5.6) has polynomial solutions we performed

numerical search and found that triplets of polynomials

x = 2t(t+ 1)(2t− 1)(2t+ 3), y = 4t2 + 4t− 3, z = 2x(y + 2)(2t+ 1)(2t2 + 2t− 1),

x = (2t2 + 2t+ 1)(4t2 + 4t+ 5), y = (2t+ 1)2, z = 4x(y + 2)(2t+ 1)(t2 + t+ 1)

satisfy the equation (5.6).
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Proof. [Proof of Theorem 5.4]We proceed in the same way as in the proof of Theorem 5.3. This

time we take y = 4t2 + 1, where t is a variable. In this situation our equation (5.8) is equivalent

with the following one:

Z2 − f3(4t2 + 1)X2 = 1− f3(4t2 + 1), (5.16)

where Z = 2z + 1 and X = 2x+ 1. We found that the pair of polynomials

Z ′ = 128t7 + 192t5 − 16t4 + 88t3 − 12t2 + 12t− 1, X ′ = 16t4 + 12t2 − 2t+ 1

satisfies the equation (5.16). Moreover, the pair

Z = 16t4 + 12t2 + 1, X = 2t

satisfies the corresponding equation Z2− f3(4t2 + 1)X2 = 1. As a consequence we see that for

each n ∈ N the pair of polynomials (Zn, Xn) defined by the recurrence relations

Z0 = 128t7 + 192t5 − 16t4 + 88t3 − 12t2 + 12t− 1,

X0 = 16t4 + 12t2 − 2t+ 1,

Zn = (16t4 + 12t2 + 1)Zn−1 + 2tf3(4t
2 + 1)Xn−1,

Xn = 2tZn−1 + (16t4 + 12t2 + 1)Xn−1,

is a solution of the equation (5.15) in the ring Z[t]. A simple induction shows that for each n ∈ N

we have XnZn ≡ 1 (mod 2) in the ring Z[t] and thus the pair

xn =
1

2
(Xn − 1), zn =

1

2
(Zn − 1)

is the solution of the equation (5.8) with y = 4t2 + 1.

We consider now the equation (5.9) with y = t. It is equivalent with the following one:

Z2 − f4(t)X2 = 1− f4(t), (5.17)

where Z = 2z + 1 and X = 2x+ 1. We found that the pair of polynomials

Z ′ = 2t6 + 18t5 + 58t4 + 78t3 + 36t2 − 1, X ′ = 2t4 + 12t3 + 20t2 + 6t− 1

satisfies the equation (5.17). Moreover, the pair

Z = t2 + 3t+ 1, X = 1

satisfies the corresponding equation Z2 − f4(t)X2 = 1. As a consequence we see that for each

n ∈ N the pair of polynomials (Zn, Xn) defined by the recurrence relations

Z0 = 2t6 + 18t5 + 58t4 + 78t3 + 36t2 − 1,

X0 = 2t4 + 12t3 + 20t2 + 6t− 1,

Zn = (t2 + 3t+ 1)Zn−1 + f4(t)Xn−1,

Xn = Zn−1 + (t2 + 3t+ 1)Xn−1,

is a solution of the equation (5.17) in the ring Z[t]. A simple induction shows that for each n ∈ N

we have X2n(2t+ 1)Z2n(2t+ 1) ≡ 1 (mod 2) in the ring Z[t] and thus the pair

xn =
1

2
(X2n(2t+ 1)− 1), zn =

1

2
(Z2n(2t+ 1)− 1)
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Chapter 5 Erdős-Graham type Diophantine problems

is the solution of the equation (5.9) with y = t.

Finally, in order to prove the last statement of our theorem let us put

A =
r∏
i=2

f(xi, ki, d)

and consider the curve

C : Ax(x+ d)(x+ 2d) = y(y + d).

From geometric point of view C can be seen as a genus one curve defined over rational function

field Q(A, d). The Weierstrass equation for C is given by

C ′ : Y 2 = X3 + 12AdX2 + 32A2d2X + 16A2d2,

where the corresponding maps are the following:

ϕ : C 3 (x, y) 7→ (X,Y ) = (4Ax, 4A(2y + d)) ∈ C ′,
ϕ−1 : C ′ 3 (X,Y ) 7→ (x, y) =

(
X
4A ,

Y−4Ad
8A

)
∈ C.

Now using the trivial points with y = 0 lying on C we can define the points

P1 = ϕ((0, 0)) = (0, 4Ad),

P2 = ϕ((−d, 0)) = (−4Ad, 4Ad),

P3 = ϕ((−2d, 0)) = (−8Ad, 4Ad).

One can easily check that for each i, j ∈ {1, 2, 3}, i 6= j the points 2Pi and 2Pi + 2Pj have

polynomials with integer coefficients as coordinates and the same is true for the points ϕ−1(2Pi)

and ϕ−1(2Pi + 2Pj). This leads us to the solutions of the equation defining C:

x = Ad2 − d, y = −A2d3

x = Ad2 − d, y = A2d3 − d,
x = 4Ad2 + d, y = 8A2d3 + 6Ad2

x = 4Ad2 + d, y = −8A2d3 − 6Ad2 − d
x = 4Ad2 − 3d, y = 8A2d3 − 6Ad2

x = 4Ad2 − 3d, y = −8A2d3 + 6Ad2 − d.

From the definition of A we know that it is essentially a polynomial in Z[x2, . . . , xr] and hence

we get the statement of our theorem.

Proof. [Proof of Theorem 5.5] In order to get the statement of our theorem we consider the

intersection of the surface, say S, defined by the equation (5.10) and the plane L defined by the

equation

L : x+ y = 4z + 5.

We then observe that S ∩ L = C1 ∪ C2, where

C1 : (2z − 4x+ 1)2 − 3(2x+ 1)2 = −2,

C2 : (2z + 4x+ 5)2 − 5(2x+ 1)2 = −4.

Using standard methods we find that all solutions in positive integers of corresponding Pell type
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5.5 Proofs of the results

equations U2 − 3V 2 = −2 and U ′ 2 − 5V ′ 2 = −4 are

U0 = 1, V0 = 1, Un+1 = 2Un + 3Vn, Vn+1 = Un + 2Vn,

U ′0 = 1, V ′0 = 1, U ′n+1 = 9U ′n + 20V ′n, V ′n+1 = 4U ′n + 9V ′n

respectively. One can easily check, by induction on n, that VnV ′n ≡ 1 (mod 2) and UnU ′n ≡
1 (mod 2) and in consequence, for each n ∈ N the triplets

xn = 1
2(Vn − 1), yn = 1

2(4Un + 7Vn − 1), zn = 1
2(Un + 2Vn − 3),

xn = 1
2(V ′n − 1), yn = 1

2(9V ′n − 4Un − 1), zn = 1
2(U ′n − 2V ′n − 3)

are non-trivial solutions in non-negative integers of the equation (5.10).

Remark. Without much of work one can find that the related Diophantine equation

x(x+ 1)y(y + 1) = z(z + 1)(z + 2)

has infinitely many solutions in positive integers satisfying the condition x+ 1 < y, (y− z)(y−
z − 1) 6= 0. In fact, the above equation has polynomial solutions of the following form:

x = t, y = t2 + t− 2, z = (t− 1)(t+ 2),

x = t, y = t2 + t+ 1, z = t(t+ 1),

x = 8t+ 3, y = 8t2 + 7t+ 1, z = 2(8t2 + 7t+ 1),

x = 8t+ 4, y = 8t2 + 9t+ 2, z = 2(8t2 + 9t+ 2).

Proof. [Proof of Theorem 5.6] In fact we prove a slightly stronger result, i.e. that the system

(5.11) has infinitely many polynomial solutions with x = t. In order to do that let us observe

that the first equation from the system (5.11) is equivalent with the following one:

P 2 − t(t+ 1)Y 2 = 1− t(t+ 1), (5.18)

with P = 2p + 1 and Y = 2y + 1. This equation has infinitely many solutions in polynomials

P, Y ∈ Z[t]. Indeed, the equation (5.18) is satisfied by P = 1, Y = 1 and the related equation

P 2 − t(t+ 1)Y 2 = 1 has the solution

P ′ = 2t+ 1, Y ′ = 2.

As a consequence we see that for each n ∈ N the pair (Pn, Yn) of polynomials defined by the

recurrence relations 

P0 = 1

Y0 = 1

Pn = (2t+ 1)Pn−1 + 2t(t+ 1)Yn−1

Yn = 2Pn−1 + (2t+ 1)Yn−1

is a solution of the equation (5.18). We thus see that the polynomials

y = yn = 1
2(Yn − 1) p = pn = 1

2(Pn − 1)

z = zn = yn+1 r = rn = pn+1

satisfy the first and third equation in the system (5.11). In order to get the result it is enough to

prove that with our choice of x, y, z the second equation in the system (5.11) is satisfied too, i.e.
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Chapter 5 Erdős-Graham type Diophantine problems

y(y + 1)z(z + 1) = yn(yn + 1)yn+1(yn+1 + 1) = q(q + 1) for some q ∈ Z[t]. This is easy due

to the identity

f

(
u− 1

2

)
f

(
2v + (2t+ 1)u− 1

2

)
− f

(
(v − u)((2t2 + 4t+ 1)u+ (2t+ 3)v)

4(t2 + t− 1)

)
= (v2 − t(t+ 1)u2 − 1 + t(t+ 1))H(u, v),

where 4(t2 + t− 1)H is a polynomial in Z[u, v, t] and f(x) = x(x+ 1). If we put now u = Yn,

v = Pn then we have the equalities

yn =
1

2
(u− 1), yn+1 =

2v + (2t+ 1)u− 1

2
,

and simple induction reveals that

v − u = Pn − Yn ≡ 0 (mod 2(t2 + t− 1)) and uv = YnPn ≡ 1 (mod 2)

in the ring Z[t]. As a consequence of our reasoning we see that for each n ∈ N the function

qn =
(Pn − Yn)((2t2 + 4t+ 1)Yn + (2t+ 3)Pn)

4(t2 + t− 1)

is a polynomial in Z[t] and thus we get the result.

Proof. [Proof of Theorem 5.7] In the proof we will use the following result of Fujiwara [55].

Lemma 5.1
Put p(z) =

∑n
i=0 aiz

i, an 6= 0, where ai ∈ R for all i = 0, 1, . . . , n. Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{∣∣∣∣an−1an

∣∣∣∣ , ∣∣∣∣an−2an

∣∣∣∣1/2 , . . . , ∣∣∣∣ a02an

∣∣∣∣1/n
}
.

Without loss of generality we may assume k > 0. We apply Runge’s method to determine

a bound for the size of integral solutions. Let F (x) = (x− b)x(x+ b)(x+ k − b)(x+ k)(x+

k + b).The polynomial part of the Puiseux expansion of

((x− b)x(x+ b)(x+ k − b)(x+ k)(x+ k + b))1/2

is

P (x) = x3 +
3

2
kx2 +

(
−b2 +

3

8
k2
)
x− 1

2
b2k − 1

16
k3.

We have that

256F (x)− (16P (x)− 1)2 = 32x3 +
(
−192 b2k2 + 12 k4 + 48 k

)
x2 +

+
(
−192 b2k3 + 12 k5 − 32 b2 + 12 k2

)
x− 64 b4k2 − 16 b2k4 − k6 − 16 b2k − 2 k3 − 1,

256F (x)− (16P (x) + 1)2 = −32x3 +
(
−192 b2k2 + 12 k4 − 48 k

)
x2 +

+
(
−192 b2k3 + 12 k5 + 32 b2 − 12 k2

)
x− 64 b4k2 − 16 b2k4 − k6 + 16 b2k + 2 k3 − 1.

Fujiwara’s result implies that all roots of these cubic polynomials satisfy |x| ≤ max1≤i≤3Bi,
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where

B1 = 2 max

∣∣∣∣−6 b2k2 +
3

8
k4 ± 3

2
k

∣∣∣∣ ,
B2 = 2 max

∣∣∣∣−6 b2k3 +
3

8
k5 ∓ b2 ± 3

8
k2
∣∣∣∣1/2 ,

B3 = 2 max

∣∣∣∣−b4k2 − 1

4
b2k4 − 1

64
k6 ± 1

4
b2k ± 1

32
k3 − 1

64

∣∣∣∣1/3 .
Therefore if |x| > max1≤i≤3Bi, then either

(16P (x) + 1)2 < 256F (x) = (16y)2 < (16P (x)− 1)2

or

(16P (x)− 1)2 < 256F (x) = (16y)2 < (16P (x) + 1)2.

Hence y = ±P (x). It remains to solve the equation F (x) = P (x)2. It follows that

x = −
48 b2k − 3 k3 ± 2

(
4 b2 − k2

)√
−48 b2 + 3 k2

6 (16 b2 − k2)
.

Proof. [Proof of Theorem 5.8] We apply Runge’s method to determine an upper bound for the

size of possible positive integer solutions of the equation

F (x) := (x− 1)x(x+ 1)(x+ k − 1)(x+ k)(x+ k + 1) = (z − 1)z(z + 1),

where y = x+ k for some positive integer k. We have that

(x2 + kx− 1)3 < F (x) < (x2 + kx)3

if x is large. In fact, the second inequality is true if k > 1. The roots of the polynomial

F (x)− (x2 + kx− 1)3 are as follows

−1

2
k − 1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 ≈ −1

2
k
(√

5 + 1
)
,

−1

2
k − 1

2

√
3 k2 − 2 k

√
k2 + 4 + 4 ≈ −k,

−1

2
k +

1

2

√
3 k2 − 2 k

√
k2 + 4 + 4 ≈ 1

k3
,

−1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 ≈ 1

2
k
(√

5− 1
)
.

Therefore if

x > −1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4,

then the first inequality is valid. Similarly we obtain that

(z − 1)3 < (z − 1)z(z + 1) < (z + 1)3

if z /∈ {−1, 1}. Assume that x > −1
2 k + 1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 and z /∈ {−1, 1}. We

obtain that

(x2 + kx− 1)3 − (z + 1)3 < 0 < (x2 + kx)3 − (z − 1)3.

It follows that z = x2+kx−1 or z = x2+kx. If z = x2+kx, then (k2+2kx+2x2−2)(k+x)x =

0 and we get that either x = 0, x = −k or |k| ≤ 2. In the latter case k = 1 or 2 and we obtain
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overlapping blocks, a contradiction.

If z = x2 + kx− 1, then (k2− kx−x2 + 1)(k+x)x = 0 and we have that x = 0, x = −k
or

x = −1

2
k ± 1

2

√
5k2 + 4.

Since x is a positive integer it follows that k = F2n. It yields that either x = F2n−1 or

x = −F2n+1. The latter is negative so the only possible positive solution is x = F2n−1. Since

y = x+k, we obtain that y = F2n+1. Thus (x, y, z) = (F2n−1, F2n+1, F
2
n) provides solutions.

Proof. [Proof of Corollary 5.2] We wrote a Sage [122] code to determine all integral solution

of equation (5.13) with b = 1 in the interval provided by Theorem 5.8.

5.6 An additive Erdős-Graham type problem

For k = 0, 1, 2, . . . put

fk(x) =
k∑
i=0

i∏
j=0

(x+ j).

For the first few values of k we have

f0(x) = x, f1(x) = x+ x(x+ 1) = x(x+ 2),

f2(x) = x+ x(x+ 1) + x(x+ 1)(x+ 2) = x(x+ 2)2.

In general, fk(x) is a monic polynomial of degree k + 1. Further, the coefficients of the fk(x)

are positive integers, which could easily be expressed as sums of consecutive Stirling numbers

of the first kind.

In this section we are interested in the equation

fk(x) = yn (5.19)

in integers x, y, k, n with k ≥ 0 and n ≥ 2. Without loss of generality, throughout the section

we shall assume that n is a prime. Our first theorem gives a general effective finiteness result for

equation (5.19).

Theorem 5.9
For the solutions of equation (5.19) we have the following:

i) if k ≥ 1 and y 6= 0,−1 then n < c1(k),

ii) if k ≥ 1 and n ≥ 3 then max(n, |x|, |y|) < c2(k),

iii) if k ≥ 1, k 6= 2, and n = 2 then max(|x|, |y|) < c3(k).

Here c1(k), c2(k), c3(k) are effectively computable constants depending only on k.

The following theorem describes all solutions of equation (5.19) for k ≤ 10.
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Theorem 5.10
Let 1 ≤ k ≤ 10 such that k 6= 2 if n = 2. Then equation (5.19) has the only solutions

(x, y) = (−2, 0), (0, 0), k, n arbitrary; (x, y) = (−1,−1), k, n arbitrary with n ≥ 3;

(x, y, k, n) = (−4, 2, 1, 3), (2, 2, 1, 3), (2, 2, 2, 5).

Remark. Note that the assumptions in Theorems 5.9 and 5.10 are necessary: equation (5.19)

has infinitely many solutions (x, y, k, n) with k = 0, with y = 0 or −1, and with k = 2, n = 2.

These solutions can be described easily.

5.7 Proof of Theorem 5.9

To prove Theorem 5.9 we need three lemmas. To formulate them, we have to introduce

some notation. Let g(x) be a non-zero polynomial with integer coefficients, of degree d and

height H . Consider the Diophantine equation

g(x) = yn (5.20)

in integers x, y, n with n being a prime.

The next lemma is a special case of a result of Tijdeman [132]. For a more general version,

see [113].

Lemma 5.2
If g(x) has at least two distinct roots and |y| > 1, then in equation (5.20) we have

n < c4(d,H), where c4(d,H) is an effectively computable constant depending only on

d,H .

The next lemma is a special case of a theorem of Brindza [28].

Lemma 5.3
Suppose that one of the following conditions holds:

i) n ≥ 3 and g(x) has at least two roots with multiplicities coprime to n,

ii) n = 2 and g(x) has at least three roots with odd multiplicities.

Then in equation (5.20)we havemax(|x|, |y|) < c5(d,H), where c5(d,H) is an effectively

computable constant depending only on d,H .

The last assertion needed to prove Theorem 5.9 describes the root structure of the polynomial

family fk(x).

Lemma 5.4
We have

f0(x) = x, f1(x) = x(x+ 2), f2(x) = x(x+ 2)2.

Beside this, for k ≥ 3 all the roots of the polynomial fk(x) are simple. In particular, 0 is
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a root of fk(x) for all k ≥ 0, and −2 is a root of fk(x) for all k ≥ 1.

Proof. For k = 0, 1, 2 the statement is obvious. In the rest of the proof we assume that k ≥ 3.

It follows from the definition that x is a factor of fk(x) (or, 0 is a root of fk(x)) for all

k ≥ 0. Further, since

x+ x(x+ 1) = x(x+ 2),

the definition clearly implies that x + 2 is a factor (or, −2 is a root) of fk(x) for k ≥ 1. So it

remains to prove that all the roots of fk(x) (k ≥ 3) are simple.

For this observe that by the definition we have

fk(1) > 0, fk(−1) = −1 < 0, fk(−1.5) > 0.

The last inequality follows from the fact that writing

Pi(x) = x(x+ 1) . . . (x+ i)

for i = 0, 1, 2, . . . , we have that Pi(−1.5) > 0 for i ≥ 1. Hence fk(−1.5) ≥ −1.5 + 0.75 +

0.375 + 0.5625 > 0 for k ≥ 3. Further, as one can easily check, for i = −3, . . . ,−k − 1 we

have

(−1)ifk(i) > 0.

These assertions (by continuity) imply that fk(x) has roots in the intervals

(−1, 1), (−1.5,−1), (−3,−1.5), (−4,−3), (−5,−4), . . . , (−k − 1,−k).

(Note that in the first and third intervals the roots are 0 and −2, respectively.) Hence fk(x) has

deg(fk(x)) = k + 1 distinct real roots, and the lemma follows.

Now we are ready to give the proof of Theorem 5.9.

Proof. [Proof of Theorem 5.9] i) Let k ≥ 1. By Lemma 5.4 we have that fk(x) is divisible by

x(x + 2) in Z[x]. In particular, the polynomial fk(x) has two distinct roots, namely 0 and −2.

Further, observe that fk(x) does not take the value 1 for x ∈ Z. Indeed, since x(x+ 2) divides

fk(x), it would be possible only for x = −1. However, for that choice by definition we clearly

have fk(−1) = −1 for any k ≥ 0. Hence equation (5.19) has no solution with y = 1, and our

claim follows by Lemma 5.2.

ii) Let k ≥ 1 and n ≥ 3. Recall that n is assumed to be a prime. By the explicit form

of f1(x) and f2(x) we see that 0 and −2 are roots of these polynomials of degrees coprime to

n. Hence the statement follows from part i) of Lemma 5.3 in these cases. Let k ≥ 3. Then by

Lemma 5.4, all the roots of fk(x) are simple. Since now the degree k + 1 of fk(x) is greater

than two, our claim follows from part i) of Lemma 5.3.

iii) Let k ≥ 1, k 6= 2 and n = 2. In case of k = 1, equation (5.19) now reads as

x(x+ 2) = y2.

Since x(x+ 2) = (x+ 1)2 − 1, our claim obviously follows in this case. Let now k ≥ 3. Then
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by Lemma 5.4, all the roots of fk(x) are simple. As now the degree k + 1 of fk(x) is greater

than two, by part ii) of Lemma 5.3 the assertion follows also in this case.

5.8 Linear forms in logarithms

In this section, we use linear forms in logarithms to give a bound for n for the solution

(u, v, n) of equations of the form

aun − bvn = c

under certain conditions. These bounds will be used in the proof of Theorem 5.10 for n ≥ 3.

Such equations have been studied by many authors. Note that bounds for such equations were

obtained in [12, 67]. We refer to [12] for earlier results. However, in these papers the restrictions

put on the coefficients a, b, c are not valid in the cases we need later on.

We begin with some preliminaries for linear forms in logarithms. For an algebraic number

α of degree d over Q, the absolute logarithmic height h(α) of α is given by

h(α) =
1

d

(
log |a|+

d∑
i=1

log max(1, |α(i)|)

)
where a is the leading coefficient of the minimal polynomial of α over Z and the α(i)’s are the

conjugates of α. When α = p
q ∈ Q with (p, q) = 1, we have h(α) = max(log |p|, log |q|).

The following result is due to Laurent [81, Theorem 2].

Theorem 5.11
Let a1, a2, h, % and µ be real numbers with % > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log %, H =

h

λ
+

1

σ
,

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Let α1, α2 be non-zero algebraic numbers and let logα1 and logα2 be any determinations

of their logarithms. Without loss of generality we may assume that |α1| ≥ 1, |α2| ≥ 1.

Let

Λ = |b2 logα1 − b2 logα2| b1, b2 ∈ Z, b1 > 0, b2 > 0,

where b1, b2 are positive integers. Suppose thatα1 andα2 aremultiplicatively independent.

Put D = [Q(α1, α2) : Q]/[R(α1, α2) : R] and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
,

ai ≥ max {1, % log |αi| − log |αi|+ 2Dh(αi)} , (i = 1, 2),

a1a2 ≥ λ2.

(5.21)
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Then

log Λ ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

,

C ′ =

√
Cσωθ

λ3µ
.

We use Theorem 5.11 to give a bound for n for the equation aun − bvn = c. For this, we

need the following lemma.

Lemma 5.5
Let a, b, c be positive integers with b > a > 0 and abc ≤ 4 · 2018957 · 99 · 467. Then the

equation aun − bvn = ±c with u > v > 1 implies

u

v
≤


1.00462 if b ≤ 100 and n ≥ 1000

1.00462 if b ≤ 10000 and n ≥ 2000

1.00267 if n ≥ 10000

(5.22)

and

u > v ≥


217 if b ≤ 100 and n ≥ 1000

217 if b ≤ 10000 and n ≥ 2000

375 if n ≥ 10000.

(5.23)

Proof. From aun − bvn = ±c, we get (uv )n = b
a ±

c
avn ≤ b + 1/4 since n ≥ 1000 and

c ≤ 2100a. Therefore

u

v
≤


1000
√

100 + 1/4 if b ≤ 100 and n ≥ 1000

2000
√

10000 + 1/4 if b ≤ 10000 and n ≥ 2000

10000
√

4 · 2018957 · 99 · 467 + 1/4 if n ≥ 10000

implying (5.22). The assertion (5.23) follows easily from (5.22) by observing that 1 ≤ u− v ≤
0.00462v, 0.00462v, 0.00267v according as b ≤ 100, n ≥ 1000 or b ≤ 10000, n ≥ 2000, or

n ≥ 10000, respectively.

Proposition 5.1
Let a, b, c be positive integers with c ≤ 2ab. Then the equation

aun − bvn = ±c (5.24)

58

dc_1892_21

Powered by TCPDF (www.tcpdf.org)



5.8 Linear forms in logarithms

in integer variables u > v > 1, n > 3 implies

n ≤


max{1000, 824.338 log b+ 0.258} if b ≤ 100

max{2000, 769.218 log b+ 0.258} if 100 < b ≤ 10000

max{10000, 740.683 log b+ 0.234} if b > 10000.

(5.25)

In particular, n ≤ 3796, 7084, 19736 when b ≤ 100, 10000, 4 · 9 · 11 · 467 · 2018957,

respectively.

Remark. We note here that when c ≤ 3, we can get a much better bound, see [15]. However,

we will follow a more general approach.

Proof. We can rewrite (5.24) as ∣∣∣∣ ba (uv)n − 1

∣∣∣∣ =
c

aun
.

Let

Λ =

∣∣∣∣n log
u

v
− log

b

a

∣∣∣∣ .
Then Λ ≤ 2c

aun implying

log Λ ≤ −n log u+ log

(
2c

a

)
≤ −n log u+ log(4b) (5.26)

since c ≤ 2ab. We now apply Theorem 5.11 to get a lower bound for Λ. We follow the proof of

[81, Corollary 1, 2]. Let

α1 =
u

v
, α2 =

b

a
, b1 = n, b2 = 1

so that h(α1) = log u, h(α2) = log b and D = 1. Let m = 8 and we choose %, µ, q0, u0, b0 as

follows:

b % µ q0 u0 b0

b ≤ 100 5.7 0.54 log 1.00462 218 log 4

b ≤ 10000 5.6 0.57 log 1.00462 218 log 5

b > 10000 5.6 0.59 log 1.00267 log 376 log 10000

By Lemma 5.5, we have u ≥ u0, log(u/v) ≤ q0 and b ≥ b0. We take

a1 = (%− 1)q0 + 2 log u, a2 = (%+ 1) log b,

and

h = max

{
m, log

(
n

a2
+

1

a1

)
+ 1.81 + log λ

}
.

Then (5.21) is satisfied. In fact, we have

h ≥ m, a1 ≥ (%− 1)q0 + 2 log u0, a2 ≥ (%+ 1) log b0.

As in the proof of [81, Corollary 1, 2], we get

log Λ ≥ −C ′′m(%+ 1)(log b)((%− 1)q0 + 2 log u), h2

where C ′′m is the constant C ′′ obtained in [81, Section 4, (28)] by putting h = m, a1 =

59

dc_1892_21

Powered by TCPDF (www.tcpdf.org)



Chapter 5 Erdős-Graham type Diophantine problems

(%− 1)q0 + 2 log u0 and a2 ≥ (%+ 1) log b0. Putting Cm = C ′′m(%+ 1), we get

log Λ ≥ −Cm(log b)((%− 1)q0 + 2 log u)(max(m,hn))2,

where

hn = log

(
n

(%+ 1) log b
+

1

2 log u+ (%− 1)q0

)
+ εm,

and

(Cm, εm) =


(5.8821, 2.2524) if b ≤ 100,

(5.4890, 2.2570) if b ≤ 10000,

(5.3315, 2.2662) if b > 10000.

Comparing this lower bound of log Λ with the upper bound (5.26), we obtain

n ≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u

)
+

log 4b

log u

≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0

(5.27)

since u ≥ u0. Recall thatm = 8. We now consider two cases.

Assume hn ≥ 8. Then

n ≥ n0 :=

{
exp(m− εm)− 1

2 log u+ (%− 1)q0

}
(%+ 1) log b

and hn0 = 8. Since the last expression of (5.27) is a decreasing function of n, we have for

n ≥ n0 that

0 ≤
Cmh

2
n(log b)

(
2 + (%−1)q0

log u0
+ 1

log u0

)
+ log 4

log u0
− n

log b

≤
Cmh

2
n0

(log b)
(

2 + (%−1)q0
log u0

+ 1
log u0

)
+ log 4

log u0
− n0

log b

≤Cmm2

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

(log u0)(log b)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u+ (%− 1)q0

≤Cmm2

(
2 +

(%− 1)q0
log x0

+
1

log u0

)
+

log 4

(log u0)(log b0)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u0 + (%− 1)q0
< 0

since u ≥ u0 and b ≥ b0. This is a contradiction.

Therefore hn < 8. Then from (5.27), we get

n ≤ Cmm2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0
,

wherem = 8. Henceweget the assertion (5.25) by putting explicit values ofm = 8, Cm, %, µ, q0, u0, b0

in the above inequality. The statement following (5.25) is clear.
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5.9 Proof of Theorem 5.10 for n ≥ 3

Throughout this section we assume that n ≥ 3 is a prime.

Suppose first that k = 1 or 2. Then equation (5.19) can be rewritten as

x(x+ 2)k = yn.

We see that for every n odd, (x, n) = (−1, n) is a solution. Hence we may suppose that

x /∈ {−2,−1, 0}. Hence gcd(x, x+ 2) ≤ 2 gives

x = 2αun, x+ 2 = 2βvn

with non-negative integers α, β and coprime integers u, v. This implies

2βvn − 2αun = 2(1)n.

Using now results of Darmon and Merel [47] and Ribet [105], our statement easily follows in

this case.

Let k ≥ 3. Then equation (5.19) can be rewritten as

yn = fk(x) = x(x+ 2)gk(x)

where gk(x) is a polynomial of degree k − 1. We see that for every k, (x, n) = (−1, n) is

a solution. Hence we may suppose that x /∈ {−2,−1, 0}. Then we have either x > 0 or

x < x+ 2 < 0.

We see that (x, x + 2) = 1, 2 with 2 only if x is even, (x, gk(x))|gk(0) and (x +

2, gk(x))|gk(−2). Also gk(x) is odd for every x. The values of gk(0) and −gk(−2) are

given in Table 5.1.

k 3 4 5 6 7 8 9 10

gk(0) 5 17 7 · 11 19 · 23 2957 23117 204557 2018957

−gk(−2) 1 3 32 3 · 11 32 · 17 32 · 97 34 · 73 32 · 11 · 467

Table 5.1: Values of gk(0) and −gk(−2) for 3 ≤ k ≤ 10

If x = vn, x + 2 = un are both n-th powers, then we have un − vn = 2 giving the trivial

solution x + 2 = 1, x = −1 which is already excluded. Hence we can suppose that either x or

x+ 2 is not n-th power. Thus we can write

x = 2δ1s1t
n−1
1 un1 , x+ 2 = 2δ23ν2s2t

n−1
2 un2 , gk(x) = 3ν3(s1s2)

n−1t1t2u
n
3 ,

where

s1t1|gk(0), s2t2|gk(−2) with (s1, t1) = (s2, t2) = 1, 3 - s1s2t1t2,

and

δ1, δ2 ∈ {(0, 0), (1, n− 1), (n− 1, 1)},

and (ν2, ν3) = (0, 0) or

ν2 ∈ {1, · · · , ord3(gk(−2))}, ν3 = n− ν2 or vice versa.
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Further, each of si, ti is positive and u1, u2 are of the same sign. From x+ 2− x = 2, we get

3ν2s2t1(t2u2)
n − s1t2(t1u1)n = 2t1t2 if δ1 = δ2 = 0, ν2 ≤ ord3(gk(−2));

s2t1(3t2u2)
n − 3ν3s1t2(t1u1)

n = 2 · 3ν3t1t2 if δ1 = δ2 = 0, ν2 > ord3(gk(−2));

3ν2s2t1(2t2u2)
n − 4s1t2(t1u1)

n = 4t1t2 if δ1 = 1, ν2 ≤ ord3(gk(−2));

4 · 3ν2s2t1(t2u2)n − s1t2(2t1u1)n = 4t1t2 if δ2 = 1, ν2 ≤ ord3(gk(−2));

s2t1(6t2u2)
n − 4 · 3ν3s1t2(t1u1)n = 4 · 3ν3t1t2 if δ1 = 1, ν2 > ord3(gk(−2));

4s2t1(3t2u2)
n − 3ν3s1t2(2t1u1)

n = 4 · 3ν2t1t2 if δ2 = 1, ν2 > ord3(gk(−2)).

These equations are of the form aun − bvn = c with u, v of the same sign. Note that from the

equation aun − bvn = c, we can get back x, x+ 2 by

x =
2bvn

c
, x+ 2 =

2aun

c
.

We see from Table 1 that the largest value of max(a, b) is given by k = 10 and equation

(6 · 11 · 467u2)
n − 4 · 32 · 11 · 467 · 2018957un1 = 4 · 32 · 11 · 467.

We observe that |c| ≤ 2ab
s1s2
≤ 2ab. Further, from (gk(0), gk(−2)) = 1, we get (s2t1, s1t2) = 1

giving (a, b) = 1. We first exclude the trivial cases.

1. Let a = b. Then a = b = 1 since gcd(a, b) = 1. Further s1t2 = s2t1 = 1 and 3ν2 = 1

or 3ν3 = 1 implying c = 2 and we have un − vn = 2 for which we have the trivial solution

u = 1, v = −1. Then x = −1, x + 2 = 1 which gives fk(x) = (−1)n for all odd n which is a

trivial solution. Thus we now assume a 6= b and further x 6= −1.

2. Suppose uv = 1. Then c|2a and c|2b giving c = 2 since (a, b) = 1 and hence we

have a − b = ±2. This implies 3ν2s2(±1) − s1(±1) = 2 as in other cases, c > 2. We find

that the only such possibilities are 3(1) − 1(1) = 2, 9(−1) − 11(−1) = 2, 9(1) − 7(1) = 2.

Hence x ∈ {1,−11, 7}. This with x = 2δ1s1t
n−1
1 un1 = s1(±1) gives x = 1, k ≤ 10 or

(x, k) ∈ {(−11, 5), (7, 5)} and we check that x = 1, k = 2 is the only solution. Thus we now

suppose that uv > 1.

3. Suppose u = v. Then (a − b)vn = c implying c
a−b ∈ Z. Further c

a−b = vn is an

n-th power. We can easily find such triples (a, b, c) and exponents n. For such triples, we have

x = bc
a−b and we check for fk(x) being an n-th power. There are no solutions. Thus we can now

suppose u 6= v.

4. Suppose u = ±1. Then c|2a, v 6= ±1 and vn = ±a−c
b ∈ Z. We find all such triplets

(a, b, c) and the exponents n. Then x+ 2 = ±2a
c or x = ±2a

c − 2. We check for fk(x) being an

n-th power. We find that there are no solutions. Hence we now assume u 6= ±1.

5. Suppose v = ±1. Then c|2b and un = c−±b
a ∈ Z is a power. We find such triples

(a, b, c) and the exponent n. Then x = ±2b
c and we check for fk(x) being an n-th power. There

are no solutions.
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Hence from now on, we consider the equation aun − bvn = c with

a ≥ 1, b ≥ 1, c > 1, |u| > 1, |v| > 1 and a 6= b, u 6= v.

If u, v is a solution of aun − bvn = c with u, v negative, then we have a(−u)n − b(−v)n = −c
with −u,−v positive. Therefore it is sufficient to consider the equation aun − bvn = ±c with
u > 1, v > 1. Recall that abc ≤ 4 · 9 · 11 · 467 · 2018957. Hence we have for n ≥ 40 that(u

v

)n
=
b

a
± c

vn
≥ b

a
− c

2n
≥ 1 +

1

a
− c

240
> 1 if a < b;(v

u

)n
=
a

b
± c

un
≥ a

b
− c

2n
≥ 1 +

1

b
− c

240
> 1 if a > b.

Thus for n > 37, we have u > v if a < b and v > u if a > b. By Proposition 5.1, we get

n ≤


max{1000, 824.338 log b+ 0.258} if b ≤ 100

max{2000, 769.218 log b+ 0.258} if 100 < b ≤ 10000

max{10000, 740.683 log b+ 0.234} if b > 10000.

(5.28)

when a < b. We now exclude these values of n.

For every prime n, let r be the least positive integer such that nr + 1 = p is a prime. Then

both un and vn are r-th roots of unity modulo p. Since fk(x) = yn, fk(x) is also an r-th root of

unity modulo p. Let U(p, r) be the set of r-th roots of unity modulo p. Recall that x = 2bvn

c .

For every 3 ≤ k ≤ 10, we first list all possible triples (a, b, c). Given a triple (a, b, c), we

have a bound n ≤ n0 := n0(a, b, c) given by (5.28). For every prime n ≤ n0, we check for

solutions aα− bβ ≡ ±c modulo p for α, β ∈ U(p, r). We now restrict to such pairs (α, β). For

any such pair (α, β), we check if fk(2βc ) modulo p is in U(p, r). We find that there are no such

pairs (α, β). The case a > b can be handled similarly, and now new solutions arise.

Therefore, we have no further solutions (k, x, y) of the equation fk(x, y). Hence the proof

of Theorem 5.10 is complete for n ≥ 3.

5.10 Proof of Theorem 5.10 for n = 2

For k = 1 equation (5.19) reads as

f1(x) = (x+ 1)2 − 1 = y2.

Hence the statement trivially follows in this case.

Let k = 3. Equation (5.19) has the form

x4 + 7x3 + 15x2 + 10x = x(x+ 2)(x2 + 5x+ 5) = y2.

Here we use the MAGMA [23] procedure

IntegralQuarticPoints([1,7,15,10,0])

to determine all integral points. We only obtain the solutions with x = 0,−2 and y = 0.

Consider the case k = 4. The hyperelliptic curve is as follows

x(x+ 2)(x3 + 9x2 + 24x+ 17) = y2.
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Chapter 5 Erdős-Graham type Diophantine problems

We obtain that

x = d1u
2
1,

x+ 2 = d2u
2
2,

x3 + 9x2 + 24x+ 17 = d3u
2
3,

where d3 ∈ {±1,±3,±17,±3 ·17}. It remains to determine all integral points on certain elliptic

curves defined by the third equation, that is we use the MAGMA procedure

IntegralPoints(EllipticCurve([0, 9d3, 0, 24d23, 17d33])).

We note that these procedures are based on methods developed by Gebel, Pethő and Zimmer [58]

and independently by Stroeker and Tzanakis [126]. Once again, we obtain the solutions with

x = 0,−2 and y = 0.

We apply Runge’s method [64, 107, 145] in the cases k = 5, 7, 9.We follow the algorithm

described in [131]. First we determine the polynomial part of the Puiseux expansions of
√
fk(x).

These expansions yield polynomials P1(x), P2(x) such that either

d2fk(x)− P1(x)2 > 0,

d2fk(x)− P2(x)2 < 0

or

d2fk(x)− P1(x)2 < 0,

d2fk(x)− P2(x)2 > 0

for some d ∈ Z and x /∈ Ik, where Ik is a finite interval. We summarize some data in Table 5.2.

k d P1(x), P2(x) Ik
5 1 P1(x) = x3 + 8x2 + 16x+ 5 [−10, 3]

P2(x) = x3 + 8x2 + 16x+ 6

7 16 P1(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 473 [−282, 148]
P2(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 474

9 2 P1(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 528 [−291, 278]
P2(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 530

Table 5.2: Data corresponding to the values k = 5, 7, 9

We only provide details of the method in case of k = 9, the other two cases can be solved

in a similar way. We obtain that

4f9(x)− P1(x)2 = 4x5 − 1045x4 − 17958x3 − 108973x2 − 284408x− 278784,

4f9(x)− P2(x)2 = −4x5 − 1229x4 − 19470x3 − 114297x2 − 291684x− 280900.

If x > 278, then

(P1(x)− 2y)(P1(x) + 2y) < 0 < (P2(x)− 2y)(P2(x) + 2y).

If P2(x) − 2y < 0 and P2(x) + 2y < 0, then P1(x) − 2y < −2 and P1(x) + 2y < −2,

which implies that (P1(x) − 2y)(P1(x) + 2y) > 0, a contradiction. If P2(x) − 2y > 0 and

64

dc_1892_21

Powered by TCPDF (www.tcpdf.org)



5.10 Proof of Theorem 5.10 for n = 2

P2(x) + 2y > 0, then P1(x)− 2y > −2 and P1(x) + 2y > −2. It follows that

P1(x)− 2y = −1 or P1(x) + 2y = −1.

Consider the case x < −291. Here we get that

(P2(x)− 2y)(P2(x) + 2y) < 0 < (P1(x)− 2y)(P1(x) + 2y).

If P1(x) − 2y > 0 and P1(x) + 2y > 0, then we have a contradiction. If P1(x) − 2y < 0 and

P1(x) + 2y < 0, then P2(x)− 2y < 2 and P2(x) + 2y < 2, therefore

P2(x)− 2y = 1 or P2(x) + 2y = 1.

Thus if we have a solution (x, y) ∈ Z2, then either x ∈ I9 (provided in Table 2.) or y =

±(x5 + 23x4 + 189x3 + 1331/2x2 + 1819/2x + 529/2). We obtain only the trivial integral

solutions (x, y) = (−2, 0), (0, 0).

It remains to handle the cases k = 6, 8, 10. Observe that since in this case the degree of

fk(x) is odd, the solutions to (5.19) with x ≤ 0 can be easily found. In fact, we get that all such

solutions have x = 0,−2. So in what follows, without loss of generality we may assume that

x > 0.

Consider the equation related to k = 6. We have

x = d1u
2
1,

x+ 2 = d2u
2
2,

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = d3u
2
3,

with some positive integers d1, d2, d3. Checking the possible values of d1, d2, d3, we get that

x = 2α119α423α5u21,

x+ 2 = 2α13α211α3u22,

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23,

where αi ∈ {0, 1} and ui ∈ Z.Working modulo 720 it follows that the above system of equations

has solutions only if (α2, α3, α4, α5) ∈

{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

We describe an argument which works for all cases except the one with (α2, α3, α4, α5) =

(0, 0, 0, 1). Combining the first two equations yields

(x+ 1)2 − 3α211α319α423α5(2α1u1u2)
2 = 1,

a Pell equation. Computing the fundamental solution of the Pell equation provides a formula for

x. Substituting it into the equation

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23

we get a contradiction modulo some positive integerm. The following table contains the possible
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tuples and the corresponding integerm.

(α2, α3, α4, α5) m (α2, α3, α4, α5) m

(0, 0, 1, 0) 11 (0, 0, 1, 1) 13

(0, 1, 0, 0) 13 (0, 1, 0, 1) 29

(0, 1, 1, 1) 37 (1, 0, 0, 0) 5

(1, 0, 0, 1) 11 (1, 0, 1, 1) 29

(1, 1, 0, 1) 13 (1, 1, 1, 0) 29

(1, 1, 1, 1) 43

As an example we deal with (α2, α3, α4, α5) = (0, 1, 1, 1). The fundamental solution of the Pell

equation is

208− 3
√

11 · 19 · 23.

If there exists a solution, then

x =
(208− 3

√
11 · 19 · 23)k + (208 + 3

√
11 · 19 · 23)k

2
− 1

for some k ∈ N. If x satisfies the above equation, then

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 (mod 37) ∈ {17, 20, 22, 29}

and 11 · 19 · 23u23 (mod 37) ∈

{0, 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36},

a contradiction. It remains to resolve the equation corresponding to the tuple (α2, α3, α4, α5) =

(0, 0, 0, 1). Here we have that

F (x) = x(x5 + 20x4 + 151x3 + 529x2 + 833x+ 437) = (23u1u3)
2

a Diophantine equation satisfying Runge’s condition. Define

P1(x) = 2x3 + 20x2 + 51x+ 18,

P2(x) = 2x3 + 20x2 + 51x+ 20.

The two cubic polynomials

4F (x)− P1(x)2 = 4x3 + 11x2 − 88x− 324

and

4F (x)− P2(x)2 = −4x3 − 69x2 − 292x− 400

have opposite signs if x /∈ [−12, 5]. The inequalities

P1(x)2 − 4y2 < 0 < P2(x)2 − 4y2,

P2(x)2 − 4y2 < 0 < P1(x)2 − 4y2

imply that if there exists a solution, then y = x3 + 10x2 + 51
2 x+ 19

2 . The polynomial

(x+ 2)F (x)−
(
x3 + 10x2 +

51

2
x+

19

2

)2
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5.11 The equation ym = gT (x) for T ∈ An, with n ≥ 3

has no integral root. Thus it remains to check the cases x ∈ [−12, 5].We obtain only the trivial

solutions.

The above procedure also works in the cases k = 8 and 10. For k = 8 we get that

x = 2α123117α4u21,

x+ 2 = 2α13α297α3u22,

f8(x)

x(x+ 2)
= 3α297α323117α4u23

for some αi ∈ {0, 1} and ui ∈ Z, and in case of k = 10 we can write

x = 2α12018957α5u21,

x+ 2 = 2α13α211α3467α4u22,

f10(x)

x(x+ 2)
= 3α211α3467α42018957α5u23

for some αi ∈ {0, 1} and ui ∈ Z. After that, we exclude as many putative exponent tuples

working modulo 720 as we can. The remaining exponent tuples are treated via Pell equations and

congruence arguments. Everything worked in a similar way as previously. The largest modulus

used to eliminate tuples is 37.

Remark. We note that the total running time of our calculations was only half an our on a

normal PC. The most time consuming part was the application of the Runge’s method, it took

approximately twenty minutes.

5.11 The equation ym = gT (x) for T ∈ An, with n ≥ 3

Let N denote the set of positive integers, N0 the set of non-negative integers and N≥k will

denote the set of non-negative integers ≥ k. For n ∈ N0 we write

pa(x) =
a∏
i=0

(x+ j).

Moreover, we define the set

An = {(a1, . . . , ak) ∈ Nk0 : ai < ai+1 for i = 1, 2, . . . k−1, ak < n and k ∈ {1, . . . , n−1}}.

For givenm ∈ N≥2 and T = (a1, . . . , ak) ∈ An we consider the Diophantine equation

ym = gT (x), where gT (x) := pn(x) +
k∑
i=1

pai(x). (5.29)

The cardinality ofAn is 2n− 1, hence for a givenm we deal with 2n− 1 Diophantine equations.

We note that equation (5.29), in case of T = (0, 1, . . . , n− 1) ∈ An, was studied in a paper
by Hajdu, Laishram and Tengely [70] see also Section 5.6. They proved that for n ≥ 1 and

m ≥ 2 (with n 6= 2 in case of m = 2) equation (5.29) has only finitely many integer solutions.

Moreover, they were also able to solve the equation explicitly for n ≤ 10.

In this section we consider equation (5.29) for T ∈ An, n ≥ 3 with some additional

constraints on the shape of the sequence T . However, before we state our findings we will recall
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some general results concerning the solvability in integers x, y,m of Diophantine equations of

the form

ym = g(x), (5.30)

where g ∈ Z[x] is fixed of degree d and height H , where by height of the polynomial g we

understand the maximum of the modulus of the coefficients.

The following lemma, due to Tijdeman [136], will be one of our main tools.

Lemma 5.6
If g(x) has at least two distinct roots and |y| > 1, then in the Diophantine equation (5.30)

we have m < c1(d,H), where c1(d,H) is an effectively computable constant depending

only on d and H .

The next result is a special case of a theorem of Brindza [28].

Lemma 5.7
Suppose that one of the following conditions holds:

1. m ≥ 3 and g(x) has at least two roots with multiplicities co-prime tom,

2. m = 2 and g(x) has at least three roots with odd multiplicities.

Then all integer solutions of equation (5.30) satisfies max{|x|, |y|} ≤ c2(d,H), where

c2(d,H) is an effectively computable constant depending only on d and H .

In order to apply the above results to our Diophantine equation (5.29) we collect basic

properties of the sequence of polynomials (gT )T∈An in the following. We note that in [13]

the authors provided effective finiteness result for the equation gT (x) = aym + b in case of

T = (0, 1, . . . , n− 1).

Lemma 5.8
Let n ∈ N≥2, T = (a1, . . . , ak) ∈ An and a1 ≥ 1.

1. We have gT (x) = pa1(x)hT (x), where hT ∈ Z[x] and deg hT = n− (a1 + 1).

2. The roots x = −i, i = 0, . . . , a1 of the polynomial gT are simple. In particular, the

polynomial gT (x) has at least two roots with odd multiplicity.

3. If n ≥ 5 and a1 = 1, a2 = 3, a3 ≥ 5, then the polynomial hT (x) is not a square of

a polynomial with integer coefficients. In particular, the polynomial gT (x) has at

least three roots with odd multiplicity.

4. The equation gT (x) = ±1 has no solutions in integers.

Proof. We have

gT (x) = pn(x) +

k∑
i=1

pai(x),

where 1 ≤ a1 < a2 < . . . < ak < n. In particular, pa1(x)|pai(x) for i = 1, . . . , k and obviously
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pa1(x)|pn(x). We also have the general identity

pa+b(x) = pb(x)pa−1(x+ b+ 1).

Consequently, we obtain the following relation

gT (x) = pa1(x)(1 + gT ′(x+ a1 + 1)),

where T ′ = (a2 − a1 − 1, a3 − a1 − 1, . . . , ak − a1 − 1, n− a1 − 1). We thus have hT (x) =

1 + gT ′(x + a1 + 1). Now, let us observe that for x0 = 0, . . . ,−a1 and any a > a1 we have

pa(x0 + a1 + 1) > 0. This implies that hT (x0) = 1 + gT ′(x0 + a1 + 1) > 0 and thus the roots

0,−1, . . . ,−a1, of the polynomial gT (x) are all simple. Consequently, under our assumptions

on n and T , the polynomial gT (x) has at least two roots with multiplicity equal to one.

If a1 = 1, a2 = 3 and a3 ≥ 5 then we get that

hT (0) = lim
x→0

gT (x)

x(x+ 1)
= 1 + gT ′(2) ≡ 1 + 2 · 3 ≡ 3 (mod 4),

hT (−1) = lim
x→−1

gT (x)

x(x+ 1)
= 1 + gT ′(1) ≡ 1 + 1 · 2 ≡ 3 (mod 4).

In particular, the polynomial hT (x) cannot be a square of a polynomial with integer coefficients

and thus has at least one root of odd multiplicity. Consequently, the polynomial gT (x) has at

least three roots of odd multiplicity.

Let us observe that if gT (x) = ±1 for some x ∈ Z, then necessarily x · . . . · (x+a1) = ±1,

which is clearly impossible for a1 ≥ 1.

Remark. We note that in general we cannot have similar result in the case a1 = 0. Indeed, if

n = 3 and T = (0, 1) then

gT (x) = x(x+ 2)3.

Consequently, the equation gT (x) = y3 has infinitely many integer solutions of the form (x, y) =

(t3, t(t3 + 2)), where t ∈ Z. Moreover, let us note that in this case the equation gT (x) = y4

has infinitely many rational solutions. Indeed, let us take y = t(x + 2). We get the equation

t4(x + 2)4 = x(x + 2)3. Consequently, by solving for x we see that for each t ∈ Q \ {−1, 1}
the pair

(x, y) =

(
2t4

1− t4
,

2t

1− t4

)
is a solution of our equation.

Remark. Let us observe that the above lemma can be further generalized. Indeed, instead of

working with the polynomial pn(x) one can consider a more general form. Let us consider the

polynomial

Pp,q,n(x) =

n∏
i=0

(px+ q),

where p ∈ N, q ∈ Z and |q| < p. Then, for T = (a1, . . . , ak) ∈ An, n ∈ N, a similar lemma can
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be proved for the polynomial

Gp,q,T (x) = Pp,q,n(x) +
k∑
i=1

Pp,q,ai(x).

As an immediate consequence of the above lemmas we get the following result.

Theorem 5.12
Let n ∈ N≥2, T = (a1, . . . , ak) ∈ An. If a1 ≥ 2 or a1 = 1, a2 = 3, a3 ≥ 5 then for the

integer solutions of the Diophantine equation ym = gT (x) we have:

1. if y 6= 0, thenm < c1(n),

2. ifm ≥ 3, then max{m, |x|, |y|} < c2(n),

3. ifm = 2, then max{|x|, |y|} < c3(n).

Here c1(n), c2(n), c3(n) are effectively computable constants depending only on n.

Proof. The first part is an immediate consequence of Lemma 5.8 and Lemma 5.6.

In order to get the second part we note that the roots x = 0,−1 of the polynomial gT (x)

are simple. Moreover, the degree deg gT (x) = n+ 1 is grater then two, and our claims follows

from the second part of Lemma 5.7.

Finally, in order to get the last part from the statement we note that the roots x = 0,−1,−2

of the polynomial gT (x) are simple (in case of a1 ≥ 2) or that the roots x = 0,−1 are simple and

we have one more root with odd multiplicity of the polynomial hT (x) (which is a consequence

of the third part of Lemma 5.8). Moreover, the degree deg gT (x) = n + 1 is grater then two,

and our claims follows from the second part of Lemma 5.7.

Remark. The crucial property which guarantees the finiteness of the set of integer solutions of

equation (5.29) is the number of multiple roots of the polynomial gT , with T ∈ An.

5.12 Rational solutions of the equation y2 = gT (x) with
T ∈ An, n ≤ 5.

Let n ∈ N and for given T ∈ An let us consider the algebraic curve CT : y2 = gT (x). Let

us write gen(T ) := genus(CT ) - the genus of the curve CT and JT := Jac(CT ) - the Jacobian

variety associated with CT . Moreover, we define r(T ) := rank(JT ) - the rank of the Jacobian

variety JT . As usual, by CT (Q) we will denote the set of all rational points on the curve CT and

by CT (Z) - the set of integral points on CT .

If T ∈ A2, A3 or A4, then using standard method of parametrization of curves we get the

description of the set of rational points in cases such that gen(T ) = 0, e.g. for T = (0) we have

gT (x) = x(x2+5x+5)2 and the description of the setCT (Q) is {(t2, t(t4+5t2+5)) : t ∈ Q}.
If T ∈ A2, A3 or A4 and gen(T ) = 1, then we get the list of integral points (rational points

in case of rank 0 curves) by MAGMA [23]. If T ∈ A4, then we also obtain genus 2 curves,
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fortunately, in each case, the rank of the Jacobian variety JT associated with CT is bounded

by 1. Thus in each case we can apply Chabauty’s method [39] in order to find complete set of

rational points on the curve CT . The procedures in case of genus 2 curves were implemented

in Magma based on papers by Stoll [123–125]. For example, if n = 5 and T = (4), then

gen(T ) = 2, rT = 1 and the set of finite rational points on the curve CT is as follows

CT (Q) = {(−6, 0), (−4, 0), (−3, 0), (−2, 0), (−1, 0), (0, 0), (−12/7,±720/7)}.

Similarly, if T = (2, 3, 4) then gen(T ) = 2, rT = 1 and

CT (Q) = {(−38/11,±1368/11), (−4, 0), (−2, 0), (0, 0)}.

5.13 Application of Runge method for several equations
ym = gT (x).

Consider the Diophantine equations y2 = gT (x) for T ∈ A5, A7, A9, A11 and A13. In
all cases gT (x) is a monic polynomial of degree 6, hence Runge’s condition is satisfied. An
algorithm to solve such Diophantine equations is given in [131], we followed it to determine the
integral solutions. We note that in case of T ∈ A13 there are 213 − 1 equations to be solved
and the bounds obtained by Runge’s method are of size 106. Therefore we applied a modified
version of the reduction argument used in [131]. We illustrate the idea through an example. If
T = (2, 3, 4, 5, 7, 9, 10, 12), then the equation is given by

y2 = (x10 + 85x9 + 3200x8 + 70211x7 + 993342x6 + 9458533x5 + 61303921x4 + 266606990x3 +

742982499x2 + 1194792102x+ 838752409)(x+ 4)(x+ 2)(x+ 1)x

The polynomial part of the Puiseux expansion of gT (x)1/2 is given by

PT (x) = x7 +46x6 +
1693

2
x5 +

15931

2
x4 +

323643

8
x3 +

212995

2
x2 +

1953743

16
x+

574129

16
.

We obtain that

256gT (x)− (16PT (x)− 1)2 has roots in the interval Ia := [−68, . . . , 2.018× 106],

256gT (x)− (16PT (x) + 1)2 has roots in the interval Ib := [−1.01× 106, . . . , 0].

Hence it remains to solve the equations

y2 = gT (x) with x ∈ [−1.01× 106, . . . , 2.018× 106],

PT (x)2 − gT (x) = 0.

Therefore the total number of equations to handle is 3026952. We compute the appropriate

intervals in case of two positive integers k1, k2 :

256gT (x)− (16PT (x)− k1)2 has roots in the interval I1,

256gT (x)− (16PT (x) + k2)
2 has roots in the interval I2.
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For some fixed k1, k2 we determine the integral solutions of the equations

y2 = gT (x) with x ∈ I1 ∪ I2,

(PT (x) + k/16)2 − gT (x) = 0 for some values of k depending on k1, k2.

The goal is to reduce the number of these type of equations. Based on numerical experiences

we start with k1 = |Ia|1/4, k2 = |Ib|1/4, where | · | denotes the number of integers in the given

interval. We compute the intervals I1, I2 for these values of k1, k2. If the number of equations

is smaller than in the previous step, then k1 = 2|Ia|1/4 and k2 = 2|Ib|1/4. Therefore at the end
we will have k1 = i1|Ia|1/4 and k1 = i2|Ib|1/4 for some integers i1, i2. In the above example the

interval Ia is reduced to [−69, . . . , 2280] in 23 steps, so k1 = 851, the interval Ib is reduced to

[−1674, . . . , 0] in 20 steps, thus k2 = 620. The number of equations to handle before reduction

was more than 3 million, after the above reduction it is less than 6000.

We also note that equations for which gcd(m,n + 1) ≥ 2 can be solved using Runge’s

method. For example if n = 14 and T = (10, 11, 12, 13), then we have

ym =
(
x3 + 39x2 + 504x+ 2157

)
(x+ 12)p10(x),

an equation that can be solved usingRunge’smethod form = 3, 5 and 15. We note that in all cases

only the trivial solutions with y = 0 exist. In this way we were able to determine all solutions

of equation (5.29) with (m,n) ∈ {(5, 3), (8, 3), (11, 3), (4, 5), (9, 5), (6, 7)}. According to our

computations we see that there are very few solutions of the equation ym = gT (x) with xy 6= 0.

This may suggest to treat the equation ym = gT (x) as an equation in infinitely many variables

and look for its solutions in m ∈ N≥2, n ∈ N, T = (a1, . . . , ak) ∈ An and x, y ∈ Z satisfying

the condition xy 6= 0. However, stating the problem in this way one can easily get infinitely

many solutions. We observed that the equation y3 = x(x + 2)3 = gT (x), with n = 3 and

T = (0, 1) has infinitely many solutions of the form (x, y) = (u3, (u(u3 + 2)). Thus, by taking

u < 0, we see that for each n ∈ N≥3 and T ′ ∈ An of the form T ′ = (0, 1, a3, . . . , ak), where

a3 ≥ |u| we have gT ′(u) = (u(u3 + 2))3. This is a consequence of the vanishing of pai(u) for

ai ≥ |u|. Let us also note that essentially each negative value of x which is a solution of the

equation ym = gT (x) for somem ∈ N and T ∈ An leads in the same way to infinitely many of

T ′ such that ym = gT ′(x).

Let us introduce the set

N := {x ∈ N≤0 : there is (m,n, T ) ∈ N≥2 × N≥2 ×An : ym = gT (x) for some y > 0}.

We saw that −u3 ∈ N for u ∈ N. Let us also note that −9,−5,−4 ∈ N . Indeed, the

pair (x, y) = (−9, 252) is a solution of the equation y2 = gT (x) for n = 5, T = (3) and

(x, y) = (−5,−5) is a solution of the equation y3 = gT (x) for n = 4, T = (0). Moreover,

(x, y) = (−4, 6) is a solution of the equation y2 = gT (x) for n = 3, T = (1). We do not know

any other elements of N . However, if we allow x to be rational, then we get some additional
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interesting solutions. Indeed, one can easily prove the identities:

p4k+3

(
−4k − 1

2

)
+ p4k−1

(
−4k − 1

2

)
=

(
16k2 + 32k + 11

4k+1

2k−1∏
i=0

(2i+ 1)

)2

,

p4k+1

(
−4k − 1

2

)
+ p4k

(
−4k − 1

2

)
+ p4k−1

(
−4k − 1

2

)
=

(
4k + 3

22k+1

2k−1∏
i=0

(2i+ 1)

)2

In order to prove the first equality we note p4k+3(x) + p4k−1(x) = p4k−1(x)(x2 + (8k + 3)x+

16k2 + 12k + 1)2. Moreover,

p4k−1

(
−4k − 1

2

)
=

2k−1∏
i=0

(
−4k − 1

2
+ i

)(
−4k − 1

2
+ i+ 2k

)

=
1

42k

2k−1∏
i=0

(4k − 2i− 1)(2i+ 1) =
1

42k

2k−1∏
i=0

(2i+ 1)2,

where last equality follows from the equality of sets {2i+ 1 : i ∈ {0, 2k−1}} = {4k−2i−1 :

i ∈ {0, 2k − 1}}.

In order to prove the second equality it is enough to note the identity p4k+1(x) + p4k(x) +

p4k−1(x) = p4k−1(x)(x+ 1)2.

We known only very few solutions of the equation from the question above. For the

convenience of the reader we collect them in the table below:

x [m, n, T ]

1 [2, 4, (0)], [2, 5, (0, 4)], [2, 5, (0, 1, 2)], [2, 6, (0)], [2, 6, (3, 4)], [2, 7, (0, 3, 4, 5, 6)],

[2, 8, (0, 3, 7)], [2, 8, (0, 1, 2, 5)], [2, 9, (0, 1, 2, 5, 6, 7], [2, 14, (0, 1, 2, 6, . . . , 13)]

[3, 5, (0, 1, 2)], [5, 3, (1, 2)], [7, 4, (1, 2)]

2 [2, 3, (2)], [2, 5, (2, 3)], [7, 3, (0, 1)]

4 [2, 6, (0, 4)]

Solutions of the equation ym = gT (x) with positive values of x.

One can also ask about positive rational solutions but we were unable to prove anything

similar like in the case of negative solutions.

Let us also observe that the problem concerning the existence of solutions with x = 1

is equivalent with the problem of finding integer solutions of the Diophantine equation of

polynomial-factorial type

ym =

n∑
i=1

(ai + 1)!

in non-negative integers a1, a2, . . . and y,m ∈ N. This is a consequence of the equality

pa(1) = (a+ 1)!.
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5.14 Some results concerning an additive version of Erdős-Graham
question

The problem of Erdős and Graham [51] asking for the integer solution of the equation given

by

ym = PT (x1, . . . , xn), (5.31)

where T ∈ Bn, PT (x1, . . . , xn) = pa1(x1) · . . . · pan(xn) and

Bn = {(a1, . . . , an) ∈ Nn : ai ≤ ai+1 for i = 1, 2, . . . n− 1}.

Here we impose the natural condition for solutions: xi + ai < xi+1 for i = 1, . . . , k − 1. In

the literature there are many nice results dealing with special cases of the problem of Erdős and

Graham and its various generalizations. In order to get more information on this problem one

can consult the papers [11, 16, 85, 119, 141].

Motivated by research devoted to the study of equation (5.31) it is quite natural to consider

a multi-variable and additive version of the classical equation ym = pn(x). as well. More

precisely, we are interested in the problem of existence of integer solution of the Diophantine

equation

zm = GT (x1, . . . , xn), (5.32)

where for a given T = (a1, . . . , an) ∈ Bn we put

GT (x1, . . . , xn) =

n∑
i=1

pai(xi).

In this section we study the problem of existence of integer solutions of the Diophantine

equation (5.32). We are mainly interested in the case when m = 2, 3 and consider the related

Diophantine equations for certain sequences chosen from the set B2.

From geometric point of view equation (5.32) defines an algebraic variety of dimension n

and degree max{m, an +n}. As usual, the general expectation (when dealing with Diophantine
equations with small degree and many variables) is the following. If m is not too large and

max{a1, . . . , am} is relatively small comparedwithm, then equation (5.32) should have infinitely

many solutions in integers.

Remark. Let us recall that if a1 = 2 or a1 = a2 = 3, then for each n− 2 tuple (a3, . . . , an) ∈
Bn−2, the Diophantine equation

y2 = pa1(x1)pa2(x2) . . . pan(xn)

has infinitely many solutions in positive integers (x1, . . . , xn) satisfying the condition xi + ai <

xi+1 for i = 1, . . . , n−1. This was proved by Bauer and Bennett in [11]. An (additive) analogue

of the above result of Bauer and Bennett can be obtained via the identities

p1(x− 1) + x = x2, p2(x− 1) + x = x3

with x =
∑n

i=2 pai(xi).
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By applying results from the theory of Pellian equations combining with certain polynomial

identities we dealt with certain equations of the form zm = pi(x) + pi(y).We proved that there

are infinitely many solutions (x, y, z) in integers (polynomials). For example, ifm ≡ 1 (mod 2)

then the Diophantine equation

zm = p1(x) + p1(y)

has a polynomial solution

x = 2
n−1
2 tm − 1, y = 2

n−1
2 tm, z = 2t2.

Now we concentrate on the case m = 3 with (n, a1, a2) = (2, 2, 2), i.e., we consider the

Diophantine equation

z3 = p2(x) + p2(y). (5.33)

From the general observation given on the beginning of this section we have the solution

x = t, y = t(t+1)(t+2)−1, where t is an integer parameter. We thus are interested in different

solutions (x, y, z) of equation (5.33), i.e., do not satisfying the relation y = x(x+ 1)(x+ 2)−1.

However, before we present our result we will need a well known property of Pell type equations.

More precisely, if (X,Z) = (X ′, Z ′) is a particular solution of the Diophantine equation

X2−AZ2 = B and (X,Z) = (X ′′, Z ′′) withZ ′′ 6= 0, is a solution of the equationX2−AZ2 =

1, then for each n ∈ N, the pair (X,Z) = (Xn, Zn), defined recursively by X0 = X ′, Z0 = Z ′

and for n ≥ 1 by

Xn = X ′′ ·Xn−1 +AZ ′′ · Zn−1, Zn = Z ′′ ·Xn−1 +X ′′ · Zn−1, (5.34)

is the solution of the equation X2 −AZ2 = B.

Theorem 5.13
The Diophantine equation (5.33) has infinitely many solutions (x, y, z) in polynomials

with integer coefficients and satisfying degt x = degt y.

Proof. The factorization p2(x) + p2(y) = (x + y + 2)(x2 − xy + y2 + x + y) suggests

a reasonable assumption that there are solutions of (5.33) satisfying the divisibility condition

(x+y+2)|z. After some numerical experiments we observed that the quotient z/(3(x+y+2))

is square of an integer. We thus write z = 3t2(x + y + 2), where t is a variable taking integer

values. We cancel the common factor x+ y + 2 and left with the equation of Pell type

U2 − 3(108t6 − 1)V 2 = 12(2916t6 − 135t6 + 1), (5.35)

where

U = 3(108t6 − 1)(x+ 1), V = (54t6 + 1)x+ 2(27t6 − 1)y + 108t6 − 1

or equivalently

x =
U

3(108t6 − 1)
− 1, y =

3(108t6 − 1)V − (54t6 + 1)U

6(27t6 − 1)(108t6 − 1)
− 1.

In other words, in order to construct polynomial solutions of equation (5.33) it is enough to
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prove that there are infinitely many polynomial solutions (U, V ) of equation (5.35) satisfying the

congruence relations

U ≡ 0 (mod 3(108t6 − 1)),

3(108t6 − 1)V − (54t6 + 1)U ≡ 0 (mod 6(27t6 − 1)(108t6 − 1)).

We observe that equation (5.35) has the solution

U ′ = 3(6t3 + 1)(108t6 − 1), V ′ = 108t6 + 18t3 − 1.

Moreover, the equation

U2 − 3(108t6 − 1)V 2 = 1

has the solution

U ′′ = (6t2 − 1)(36t4 + 6t2 + 1), V ′′ = 12t3.

Consequently, following the remark given before the statement of our theorem, we see that for

each n ∈ N0 the pair (Un, Vn) of polynomials, where U0 = U ′, V0 = V ′ and

Un = (6t2 − 1)(36t4 + 6t2 + 1)Un−1 + 36(108t6 − 1)t3Vn−1,

Vn = 12t3Un−1 + (6t2 − 1)(36t4 + 6t2 + 1)Vn−1,

for n ≥ 1, is the solution of equation (5.35). First of all, we note that the leading coefficients

of the polynomials Un and Vn are positive. Consequently, by induction on n, we easily get the

equalities:

degUn(t) = 3(2n+ 3), deg Vn(t) = 6(n+ 1).

Moreover, having the values of degrees of our polynomials we can easily compute the leading

coefficients:

LC(Un(t)) =
9

2
432n+1, LC(Vn(t)) =

1

4
432n+1.

Next, we observe that U0 = 3(6t3 + 1)(108t6 − 1) ≡ 0 (mod 3(108t6 − 1)) and from the

recurrence relation for Un we get that for n ≥ 1 the following congruence holds

Un ≡ Un−1 (mod 3(108t6 − 1)).

Thus, by induction on n we immediately get that Un ≡ 0 (mod 3(108t6 − 1)) for each n ∈ N.

The proof that for each n ∈ N0 we have 3(108t6−1)Vn−(54t6+1)Un ≡ 0 (mod 6(27t6−
1)(108t6 − 1)) is more complicated. First of all we note that

3(108t6 − 1)V0 − (54t6 + 1)U0 ≡ 6(1− 6t3)(27t6 − 1)(108t6 − 1)

≡ 0 (mod 6(27t6 − 1)(108t6 − 1)).

and thus the congruence we are interested in is satisfied for n = 0. In order to prove that the
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same is true for n ∈ N, it is enough to prove the following congruences:

Un ≡ (108t6 − 1)

(
3

4
(7An −An−1)t3 +An

)
(mod λ(t)),

Vn ≡ 9(63An − 9An−1 − 72)t9 + 108Ant
6 − 3

4
(7An −An−1 − 32)t3 −An (mod λ(t)),

where λ(t) = 6(27t6 − 1)(108t6 − 1), A0 = 1, A1 = 15 and for n ≥ 2 we have An =

14An−1 − An−2. We omit the tiresome proof of the above congruences and the fact that

7An − An−1 ≡ 0 (mod 4) for n ∈ N. It uses only induction and the recurrence relations

satisfied by the sequences (Un)n∈N0 , (Vn)n∈N0 and (An)n∈N0 .

Consequently, we get that for each n ∈ N0 the polynomials xn, yn defined by

xn(t) =
Un(t)

3(108t6 − 1)
− 1, yn(t) =

3(108t6 − 1)Vn(t)− (54t6 + 1)Un(t)

6(27t6 − 1)(108t6 − 1)
− 1,

with zn(t) = 3t2(xn(t) + yn(t) + 2) are the solutions of the Diophantine equation (5.33). Our

theorem is proved.

For example, for n = 1, 2 we get the following polynomial solutions of equation (5.33):

x1 = 2(1296t9 + 216t6 − 9t3 − 1), x2 = 6t3(186624t12 + 31104t9 − 2160t6 − 216t3 + 5),

y1 = −2(1296t9 − 216t6 − 9t3 + 1), y2 = −6t3(186624t12 − 31104t9 − 2160t6 + 216t3 + 5),

z1 = 6t2(432t6 − 1), z2 = 6t2(186624t12 − 1296t6 + 1)

Remark. Tracing back our construction of the polynomials Un, Vn from the proof of the above

theorem one can easily prove that

deg xn(t) = deg yn(t) = 3(2n+ 1)

for n ∈ N0 and the expressions for the leading coefficients are as follows

LC(xn(t)) = −LC(yn(t)) = 6 · 432n.

Moreover, one can prove (a rather unexpected) equality yn(t) = xn(−t) for each n ∈ N.

Remark. The family of polynomial solutions of equation (5.33) constructed in the proof of

Theorem 5.13, has quite unexpected property: xn(t) = yn(−t) for each n ∈ N0. Moreover,

there are no n ∈ Z such that both xn(t) and yn(t) are positive. Consequently, an interesting

question arises whether there are infinitely many solution of equation (5.33) satisfying y > x > 0

and y 6= x(x + 1)(x + 2) − 1. In order to find such solutions we performed numerical search

and found that in the range 0 < x < y < 105 we have only 10 solutions satisfying required

conditions. The solutions are the following:

(x, y) =(97, 277), (176, 551), (263, 1104), (495, 503), (1244, 2472), (3986, 31706),

(4505, 12781), (24047, 30599), (26642, 40684), (94743, 96255).

Remark. In the range 1 ≤ x ≤ y ≤ 105, equation z2 = p2(x)+p2(y) has 619 integer solutions.

This relatively large number suggests the existence of a polynomial solution. We were tried quite

hard to construct parametric solutions but we failed.
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Theorem 5.14
Let i ∈ {3, 4}. The equation z2 = pi(x) + pi(y) has infinitely many solutions in positive

integers.

Proof. In order to get the result we are looking for rational numbers a, b such that the polynomial

Fa,b,i(x) := pi(x) + pi(ax + b) has multiple roots. The necessary and sufficient condition for

this property is the vanishing of the discriminant of the polynomial Fa,b,i. We define the curve

in (a, b) plane in the following way:

Ci : Disc(Fa,b,i(x)) = 0.

Let i = 3. The genus of the curve C3 is equal to 3. As a consequence of Faltings theorem we get

that there are only finitely many required pairs (a, b). Due to the identity p3(−x − 3) = p3(x)

we can consider the points on C3 with a > 0 only. Using Magma procedure PointSearch

we found that there are only six pairs of required shape in the range max{H(a), H(b)} ≤ 105,

whereH(r) is the height of the rational number r. There are in total 16 rational points on C3 in

this range. More precisely, we have (a, b) ∈ A3, where

A3 =

{
(1, 1), (1,−3), (3,−1), (3, 7),

(
1

3
,
1

3

)
,

(
1

3
,−7

3

)}
.

One can also observe that the pairs of points (3,−1), (1/3, 1/3) and (3, 7), (1/3,−7/3) lead to

the same quadratic equations. We thus left with the pairs (1, 1), (1,−3), (3,−1) and (3, 7).

If (a, b) = (1, 1), then p3(x) + p3(x+ 1) = 2(x+ 1)(x+ 3)(x+ 2)2. The solutions of the

quadratic equation v2 = 2(x+ 2)2 − 2 are given by

x =
1

2
((3 + 2

√
2)n + (3− 2

√
2)n)− 2, v =

√
2((3 + 2

√
2)n − (3− 2

√
2)n),

and the corresponding value of z is then z = (x+ 2)v.

Using exactly the same methods we cover the cases (a, b) = (3,−1), (3, 7). In the former

case we deal with the equation v2 = 2(41x2 + 30x + 1), with non-trivial solution (x, v) =

(1, 12) (the corresponding value of z is z = xv). In the letter case we deal with the equation

2(41x2 + 216x+ 280) = z2, with non-trivial solution (x, v) = (4, 60) (the corresponding value

of z = (x+ 3)v. In both cases we get infinitely many positive solutions. We omit the standard

details.

If (a, b) = (1,−3) then p3(x) + p3(x − 3) = 2(x2 + 11)x2. However, 2 is a quadratic

non-residue of 11 and we get no solutions.

If i = 4 then

Disc(Fa,b,4(x)) = G1(a, b)G2(a, b),

where

G1(a, b) = 24u4− 100u3v+ 105u2v2− 40uv3 + 5v4,where we put u = a+ 1, v = b+ 4.

The polynomial G1 is irreducible and the unique solution of the equation G1(a, b) = 0 is given

by (a, b) = (−1,−4). Then p4(x)+p4(−x−4) = 0 and we get infinitely many integer solutions
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but with z = 0.

The second factor is a huge polynomial of degree 12 (with respect to each variable) which

defines the curve in (a, b) plane in the following way:

C4 : G2(a, b) = 0.

The genus of the curve C4 is 3 (relative small with comparison of the degree of the defining

polynomial) and thus the set of rational points is finite. We used procedure PointSearch one

more time and find that the curve C4 contains relatively many rational points. Indeed, in the

range max{H(a), H(b)} < 105 we found 16 rational points. We have (a, b) ∈ A4, where

A4 = {(−1,−8), (−1,−6), (−1, 2), (−1, 0),

(
1

4
,−15

4

)
,

(
1

4
,−13

4

)
,

(
1

4
,
1

4

)
,(

1

4
,
3

4

)
,

(
2

3
,−5

3

)
,

(
2

3
,
1

3

)
,

(
3

2
,
5

2

)
, (4,−3), (4,−1), (4, 13)}.

If (a, b) ∈ A4 \{(−1, 0), (−1,−2)}, then the equation z2 = p4(x) +p4(ax+ b) defines a genus

1 curve (and thus there are only finitely many integer solutions in this case) or defines a genus 0

curve with only finitely many integral solutions.

In the first case we have p4(x) + p4(−x) = 20x2(x2 + 5), i.e., 5(x2 + 5) need to be square.

Hence 5 divides x. Write x = 5t. That is we obtain an equation of the form

v2 − 5t2 = 4.

The solutions of the above equation are well-known: (v, t) = (L2m, F2m) for some m ∈ N,

where, as usual Fn denotes n-th Fibonacci number F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 and

Ln denotes n-th Lucas number defined recursively by L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2. To

obtain integral solution the number F2m has to be even, thereforem is divisible by 3. It follows

that if t = 5F6n, n ∈ N, then the pair(
−5F6n

2
,
25F12n

2

)
is the solution of the equation z2 = p4(x) + p4(−x).

Using similar approach one can easily check that if (a, b) = (−1,−2), then we get quadratic

equation with infinitely many solutions. We omit the details.

Remark. Let us note the identities

p4(x)+p4(−x−6) = −10(x+2)(x+4)(x+3)2, p4(x)+p4(−x−8) = −20(x2+8x+21)(x+4)2,

which can be used to prove that the equation−z2 = p4(x) + p4(y) has infinitely many solutions

in integers.

Remark. It seems that the question concerning the existence of positive integer solutions of the

equation z2 = p4(x) + p4(y) is more difficult. We performed numerical search for solutions in

the range 0 < x ≤ y ≤ 105 and found any.
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6.1 A result by Nemes and Pethő

Let A,B,R0, R1 be integers. A binary linear recurrence sequence Rn is defined by two

initial values (R0, R1) and by the relation

Rn+1 = ARn −BRn−1, n ≥ 1.

Such a sequence is called non-degenerate if |R0| + |R1| > 0 and the quotient of the roots,

α1, α2 ∈ C of the characteristic polynomial ofRn (defined by x2−Ax+B) is not a root of unity.

Let us introduce some additional notation. Let D = A2 − 4B and C = R2
1 − AR1R0 + BR2

0.

Let Tk(x) denote the Chebishev polynomial of degree k, defined by T0(x) = 2, T1(x) = x

and Tn+1(x) = xTn(x) − Tn−1(x) for n ≥ 1. The following elegant characterization is due to

Nemes and Pethő [94].

Theorem 6.1
Let Rn be a non-degenerated second order recurrence with |B| = 1, and P =∑d

k=0AkX
k be a polynomial with integer coefficients of degree d ≥ 2. Let be

q = −BmC/D and E = 2(d − 1)A2
d−1 − 4dAdAd−2. If the equation Rn = P (x)

has infinitely many integer solutions n, x, then

P (x) = ε
√
qTd

(
2d|Ad|
η
√
E

+
2Ad−1

η
√
E

)
,

where ε and η are either 1 or −1. Furthermore, either x is an integer root of P ′(x)

or d|Ad|x + Ad−1 is contained in the union of finitely many second order recurrence

sequences with discriminants Di, where D/Di are squares of integers.

Based on this result Nemes and Pethő noted that the equation Fn = P (x) can have

infinitely many solutions only when the degree of P is odd. They also remarked that the

assumptions of the theorem are not sufficient, i.e., the equation Rn = P (x) may have finitely

many solutions even if the polynomial is of the expected form. In fact they noted that the equation

Ln = P (x) = 3x2 − 2 = T2(
√

3x) although of expected form, has no integer solutions. Thus,

it is quite natural to ask whether we can construct an explicit form of polynomial P such that the

equation Ln = P (x) has infinitely many integer solutions. Similar question can be asked for the

sequence of Fibonacci numbers (Fn)n∈N. As we will see such construction can be performed

for quite general class of Lucas sequences, with particular examples being Fibonacci and Lucas

sequences. Indeed, in Section 6.2 we consider the sequences (Pn(a))n∈N, (Qn(a))n∈N, where

a ∈ C \ {−1, 0, 1} and

Pn(a) =
an − a−n

a− a−1
, Qn(a) = an + a−n.

We show that for each k ∈ N+ there is a square-free polynomial Fk(a, t) ∈ Q(a)[t] of degree
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2k − 1 such that the Diophantine equation Fk(a, t) = Pm(a) has infinitely many solutions

in positive integers t,m. Similarly, we prove that for each k ∈ N+ there is a polynomial

Gk ∈ Z[t] of degree k + 1 such that the Diophantine equation Gk(t) = Qm(a) has infinitely

many solutions in positive integers t,m. By an appropriate specialization a = a0 we get

polynomials Fk(a0, t), Gk(t) ∈ Z[t] such that the equations

Fk(a0, t) = Fn, Gk(t) = Ln

have infinitely many solutions in integers. Moreover, an additional advantage of our construction

is the possibility to determine the explicit form of the discriminants of our polynomials. In Sec-

tion 6.3 we present results of our numerical calculations concerning the existence of degree two

polynomials f such that the Diophantine equation f(x) = Fm, where Fm is the mth Fibonacci

number, has at least four solutions in integers x,m. Moreover, based on our computations we

state several conjectures and certain general problems

Finally, in the last sectionwe characterize integral solutions of several Diophantine equations

related to representations of Fibonacci numbers by shifted triangular numbers, that is we resolve

the equations (
x

2

)
+ d = Fn for − 20 ≤ d ≤ 20.

Moreover, by investigating certain genus two curves we characterize all integral solutions of

the Diophantine equation
(
x
5

)
= Fn. Our result complement earlier findings concerning integer

solutions of the equation
(
x
k

)
= Fn, where k ≤ 4.

6.2 Polynomials representing infinitely many Fibonacci and related
numbers

Which polynomials P ∈ Z[X] represent many different Fibonacci numbers? For a given

polynomial we may expect only finitely many solutions of the equation P (x) = Fn. Indeed, we

recall the identity L2
n = 5F 2

n ± 4 and thus, if we are interested in finding integer solutions of the

equation P (x) = Fn, then it is enough to find all integer solutions of the Diophantine equation

y2 = 5P (x)2 ± 4.

The above equation defines a hyperelliptic curve, sayC. From Siegel theoremwe know that if the

polynomial 5P (x)2 ± 4 can not be represented in the form f1(x)2f2(x) for certain polynomials

f1, f2 ∈ Q[x], where f2 is a square-free polynomial of degree ≥ 3, then there are only finitely

many integral points on the curve C. In consequence, we have only finitely many solutions of

the related equation P (x) = Fn.

We would like to determine polynomials Pd of a given degree d > 1 such that the set

{Pd(x) : x ∈ Z} contains many Fibonacci numbers.

In case of d = 2 the polynomials P2,k(x) = 3x2 + (6k + 2)x + k(3k + 2) represent the
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6.2 Polynomials representing infinitely many Fibonacci and related numbers

Fibonacci numbers 0, 1, 5, 8, 21, 4181 since

P2,k(−k) = 0, P2,k(−k − 1) = 1, P2,k(−k + 1) = 5,

P2,k(−k − 2) = 8, P2,k(−k − 3) = 21, P2,k(−k + 37) = 4181.

Here we remark that obviously the above family comes from a given polynomial, namely 3x2+2x

by applying the substitution x := x+k. Therefore, if we consider the question of representability

of a given number by a polynomial Pd(x) = Adx
d +Ad−1x

d−1 + . . . of degree d with Ad > 0,

then without loss of generality we can assume that |Ad−1| ≤ dAd. Indeed, we can always write

Ad−1 = dAdk+ r for some k ∈ Z with 0 ≤ r < dAd and thus after the substitution x := x+ k

we get a polynomial in the required form.

It is clear from Lagrange interpolation formula that for a given d we may construct a

polynomial of degree d representing d+ 1 Fibonacci numbers. For example in case of d = 3 we

use the points (0, 0), (1, 1), (2, 2), (3, Fn) to obtain the polynomial(
1

6
Fn −

1

2

)
x3 +

(
−1

2
Fn +

3

2

)
x2 +

1

3
Fnx.

The polynomial has integral coefficients if n ≡ 0 (mod 4) and n 6≡ 0 (mod 3). Hence we may

take F16 = 987 to get 164x3 − 492x2 + 329x. The latter polynomial represents the Fibonacci

numbers 0, 1, 2, 987.

We prove that there exist odd degree polynomials representing infinitely many Fibonacci

numbers and related sequences.

Theorem 6.2
For a ∈ C \ {−1, 0, 1} let us consider the sequence (Pn(a))n∈N, where

Pn = Pn(a) =
an − a−n

a− a−1
.

Then, for any given k ∈ N+ there is a square-free polynomial Fk(a, t) ∈ Z
[
1
2

]
[t] of

degree 2k − 1 such that the Diophantine equation Fk(a, t) = Pn has infinitely many

solutions in integers t, n.

The most difficult part of the proof of the above theorem is square-freeness of polynomial

Fk(a, t). In order to do that we will compute discriminant of the polynomial Fk(a, t). Thus, we

recall below the notion of a resultant of two polynomials and a discriminant.

LetK be a field and consider the polynomials F,G ∈ K[x] given by

F (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

G(x) = bmx
m + bm−1x

m−1 + . . .+ b1x+ b0.
(6.1)

The resultant of the polynomials F,G is defined as

Res(F,G) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj),

whereα1, . . . , αn and β1, . . . , βm are the roots ofF andG respectively (viewed in an appropriate
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Chapter 6 Polynomial values of recurrence sequences

field extension ofK). We define the discriminant of the polynomial F in the following way:

Disc(F ) =
(−1)

n(n−1)
2

an
Res(F, F ′).

We collect basic properties of the resultant of the polynomials F,G:

Res(F,G) = amn

n∏
i=1

G(αi) = bnm

m∏
i=1

F (βi), (6.2)

Res(F,G) = (−1)nm Res(G,F ), (6.3)

Res(F,G1G2) = Res(F,G1) Res(F,G2). (6.4)

Moreover, if F (x) = a0 is a constant polynomial then, unless F = G = 0, we have

Res(F,G) = Res(a0, G) = Res(G, a0) = am0 . (6.5)

Finally, we recall an important result concerning the formula for the resultant of the polyno-

mial G and F , provided that F (x) = q(x)G(x) + r(x). More precisely, we have the following.

Lemma 6.1
Let F,G ∈ K[x] be given by (6.1) and suppose that F (x) = q(x)G(x) + r(x) for some

q, r ∈ K[x]. Then we have the formula

Res(G,F ) = bdegF−deg rm Res(G, r).

The proof of the above lemma can be found in [102] (see also [49]).

Proof. [Proof of Theorem 6.2] We define the sequence (Fk(a, t))n∈N+ of polynomials in a

recursive way. More precisely, we put

F1(a, t) = t, F2(a, t) =
1

a2
t((a2 − 1)2t2 + 3a2),

Fk(a, t) =
(a2 − 1)2t2 + 2a2

a2
Fk−1(a, t)− Fk−2(a, t), k ≥ 3,

and prove that for each k, n ∈ N+ the following identity holds

Fk(a, Pn) = P(2k−1)n. (6.6)

From the recursive definition it is clear that degFk(a, t) = 2k − 1 for k ∈ N+. The proof

that the polynomial Fk(a, t) has the property given by (6.6) can be easily performed by induction

on k. Indeed, we note that F1(a, Pn) = Pn and the identity

P 3
n =

a2

(a2 − 1)2
(P3n − Pn)

implies that P3n = 1
a2
Pn((a2 − 1)2P 2

n + 3a2) = F2(a, Pn). We thus proved that our statement

is true for k = 1, 2. Assuming now that it is true for k − 1 and k − 2 and using the recurrence

formula, it easy (but a bit tiresome) calculation to see that our statement holds also for k. Indeed,

the only thing we need to check is that the following identity

P(2k−1)n(a) =
(a2 − 1)2t2 + 2a2

a2
P2(k−1)−1(a)− P2(k−2)−1(a)

holds. We omit the simple details.

In order to finish the proof we need to show that for any given k, the polynomial Fk is
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6.2 Polynomials representing infinitely many Fibonacci and related numbers

square-free, i.e., it has not multiple roots (in a suitable field extension). To prove our result we

compute the discriminant Disc(Fk(a, t)). More precisely, we prove the formula

Disc(Fk(a, t)) = (−1)k+122(k−1)(2k − 1)2k−1
(
a2 − 1

a

)2(k−1)(2k−3)
.

Here, and in the sequel, by a discriminant or a resultant we mean discriminant and resultant with

respect to the variable t.

To compute the discriminant we are interested in, we will consider the polynomialHk(a, t)

instead ofFk(a, t), whereHk(a, t) = Fk(a, t)/t. Note that the sequence (Hk(a, t))k∈N+ satisfies

the same recurrence relation as the sequence (Fk(a, t))k∈N+ . The reason that we consider the

polynomialsHk(a, t) is the non-vanishing of the value ofHk(a, 0). In fact, by a simple induction

we get that Hk(a, 0) = 2k − 1. It is clear that the computation of the discriminant of Fk(a, t)

is equivalent with the computation of the discriminant of Hk(a, t). Indeed, from the identity

Fk(a, t) = tHk(a, t) we get that F ′k(a, t) = Hk(a, t) + tH ′k(a, t). This allow us to get the

identity

Disc(Fk(a, t)) = (2k − 1)2 Disc(Hk(a, t)).

In the sequel we will need the following formula connecting polynomials Hk−1(a, t),

Hk(a, t), H
′
k(a, t). More precisely, we have

f1(a, t)Hk(a, t) = f2(a, t)H
′
k(a, t) + 2(2k − 1)a2Hk−1(a, t),

where

f1(a, t) = 2((a2 − 1)2(k − 1)t2 + (2k − 3)a2), f2(a, t) = t((a2 − 1)2t2 + 4a2).

The above identity can be easily proved by induction on k. We are in position to compute the

resultant of the polynomials Hk(a, t), H
′
k(a, t) and hence the discriminant of Hk(a, t) via the

formula

Disc(Hk(a, t)) = (−1)(k−1)(2k−3)
(

a

a2 − 1

)2(k−1)
Res(Hk(a, t), H

′
k(a, t)). (6.7)

In order to simplify the notation we will write Hk instead of Hk(a, t).

Instead of computing Res(Hk, H
′
k) we compute

Res(Hk, f2) Res(Hk, H
′
k) = Res(Hk, f2H

′
k)

= Res(Hk, f1Hk − 2(2k − 1)a2Hk−1) by Lemma 6.1

=
(
a2−1
a

)8(k−1)
Res(Hk,−2(2k − 1)a2Hk−1) by (6.4)

=
(
a2−1
a

)8(k−1)
Res(Hk,−2(2k − 1)a2) Res(Hk, Hk−1) by (6.5)

=
(
a2−1
a

)8(k−1)
(2(2k − 1)a2)2(k−1) Res(Hk, Hk−1).

We show that if Vk = Res(Hk, Hk−1), then the sequence (Vk)k∈N+ satisfies a recurrence

relation

Vk =

(
a2 − 1

a

)4(k−1)
Vk−1.

85

dc_1892_21

Powered by TCPDF (www.tcpdf.org)



Chapter 6 Polynomial values of recurrence sequences

Indeed, we have the following chain of equalities

Vk = Res(Hk, Hk−1) = Res(Hk−1, Hk) by (6.3)

= Res
(
Hk−1,

1
a2

((a2 − 1)2t2 + 2a2)Hk−1 −Hk−2
)

=
(
a2−1
a

)8(k−2)
Res(Hk−1, Hk−2) =

(
a2−1
a

)8(k−2)
Vk−1 by Lemma 6.1.

Using the identity V2 = Res(H2, H1) = 1 we immediately get that for k ≥ 2 we have the

formula

Vk =

k∏
i=2

(
a2 − 1

a

)8(i−2)
=

(
a2 − 1

a

)4(k−1)(k−2)
.

To finish the computation of Res(Hk, H
′
k) we need to compute the value of Res(Hk, f2). The

following formula can be deduced from the definition of the resultant:

Res(Hk, f2) = Res(Hk, t) Res(Hk, (a
2 − 1)2t2 + 4a2)

= (2k − 1) Res(Hk, (a
2 − 1)2t2 + 4a2)

= (2k − 1)(a2 − 1)4(k−1).

Finally, we obtain the formula for Res(Hk, H
′
k) in the following form

Res(Hk, H
′
k) =

Res(Hk, f2H
′
k)

Res(Hk, f2)
= 22(k−1)(2k − 1)2k−1

(
a2 − 1

a

)4(k−1)2

and using the formula (6.7) we get the explicit value of Disc(Hk(a, t)).

Remark. One can check by induction on k that each term of the sequence (Fk(a, t))k∈N+

corresponds to a solution of a certain Pell type equation. More precisely, for each k ∈ N+ we

have the identity

(2k − 1)2((a2 − 1)2Fk(a, t)
2 + 4a2) = ((a2 − 1)2t2 + 4a2)F ′k(a, t)

2.

Our general result allow us to prove the following.

Corollary 6.1

If a = i
√
5−1
2 , where i2 = −1, then

P4n−3(a) = F4n−3, P1−4n(a) = F4n−1

and the polynomialFk(a, t) has integer coefficients, and for each k ∈ N+, theDiophantine

equation

Fk

(
i

√
5− 1

2
, t

)
= Fn (6.8)

has infinitely many solutions in integers t, n.

Proof. From the Binet formula for the nth Fibonacci number we easily get the expressions

for P4n−3(a) and P1−4n(a). Moreover, we observe that for a = i
√
5−1
2 , i2 = −1, we have

(a2 − 1)2/a2 = −5 and thus from the definition of Fk(a, t) we get that our polynomial has

integer coefficients. The existence of infinitely many integer solutions of the equation (6.8) is
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also clear. Indeed, from Theorem 6.2 for each k, n ∈ N+ we have the identity

Fk

(
i

√
5− 1

2
, (−1)k+1F2n−1

)
= F(2k−1)(2n−1).

Example 6.1. First few polynomials Fk(a, (−1)k+1t) for a = i
√
5−1
2 , i2 = −1, are given in the

table below.

n Fk(a, (−1)k+1t)

2 t
(
5t2 − 3

)
3 5t

(
5t4 − 5t2 + 1

)
4 t

(
125t6 − 175t4 + 70t2 − 7

)
5 t

(
5t2 − 3

) (
125t6 − 150t4 + 45t2 − 3

)
6 t

(
3125t10 − 6875t8 + 5500t6 − 1925t4 + 275t2 − 11

)
7 t

(
15625t12 − 40625t10 + 40625t8 − 19500t6 + 4550t4 − 455t2 + 13

)
The polynomials Fk(a, (−1)k+1t) for a = i

√
5−1
2 , i2 = −1, and k = 2, . . . , 7.

Remark. It is not difficult to observe that for the sequence Qn = Qn(a) = an + a−n, where

a ∈ C \ {−1, 0, 1}, one can construct a polynomialGk ∈ Z[t] of degree k such that the equation

Gk(x) = Qm(a) has infinitely many solutions in x,m ∈ N+. Indeed, in order to do see that it

is enough to observe that the following (easily to establish) identity holds:

Qkn(a) = Qn(a)Q(k−1)n(a)−Q(k−2)n(a).

Thus, if we define G1(t) = t, G2(t) = t2 − 2 and Gk(t) = tGk−1(t) − Gk−2(t) for k ≥ 2,

then we have Gk(Qn) = Qkn and hence the result. Moreover, it is not difficult to show that

the polynomial Gk is square-free. Indeed, essentially the same type of reasoning as presented

in the proof of second part of Theorem 6.2 can be used for the computation of Disc(Gk(t)).

Indeed, the only non-obvious fact we need to know is the existence of the formula connecting

Gk, G
′
k, Gk−1. The mentioned formula takes the form

ktGk(t) = (t2 − 4)G′k(t) + 2kGk−1(t),

and the rest of the proof goes exactly in the same way as in the case of Fk(a, t). As a final result

we get the formula Disc(Gk(t)) = 2k−1kk. Moreover, it is easy to prove (by induction on k)

that the following identity holds:

(k + 1)2(Gk(t)
2 − 4) = (t2 − 4)G′k(t)

2.

We omit the details.

In particular, if a =
√
5−1
2 , then one can easily check that Q2n(a) = L2n, where Ln is nth

Lucas number. Thus, as consequence, we get that there is a polynomial Gk ∈ Z[t] of degree

k + 1 such that the Diophantine equation Gk(t) = Lm has infinitely many solutions in integers

k,m. Indeed, it is enough to note the identity

Gk(L2n) = L2kn.
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6.3 Numerical and experimental results

In light of Theorem 6.2 it is natural to ask about construction of polynomials of even degree,

say d, which represent “many” Fibonacci numbers. We are very modest here and asks about the

existence of polynomials f ∈ Q[x] of degree d such that the Diophantine equation f(x) = Fm

has at least d+ 2 solutions. We are especially interested in the case d = 2.

To find interesting examples we performed the following search strategy. We first generated

the set

A = {(Fp, Fq, Fr, Fs) : p, q, r, s ∈ {2, . . . , 100}}

and then for each quadruple with pairwise distinct elements v ∈ A (there are exactly 3764376

elements of this kind in A) we looked for the degree two polynomial f such that

f(1) = Fp, f(2) = Fq, f(3) = Fr, f(4) = Fs. (6.9)

Note that a degree two polynomial is defined by three coefficients and thus our system of

equation (6.9) is over-determined. Thus, we cannot expect too many solutions (if any). In fact,

with this approach we found 93 polynomials with required properties. Browsing through the set

of solutions we were able to find three infinite families (fi,n)n∈N+ , i = 1, 2, 3, of degree two

polynomials satisfying required conditions. More precisely, we define

f1,n(x) = (F2n+1x− L2n)((3F2n+1 − F2n − F2n−3)x− 2F2n − 5F2n−1 + F2n−5),

f2,n(x) = F2n+3x
2 − (3F2n+3 − F2n)x+ 2F2n+3 − F2n−2,

f3,n(x) = (F2nx− F2n+1 + F2n−3)((F2n+2 − F2n−2)x− 5F2n−1).

With fi,n defined above it is easy to check that the following equalities are true:

f1,n(1) = F4n−2 f1,n(2) = F4n f1,n(3) = F4n+4 f1,n(4) = F4n+6,

f2,n(1) = F2n−1 f2,n(2) = F2n+1 f2,n(3) = F2n+5 f2,n(4) = F2n+7,

f3,n(1) = F4n−4 f3,n(2) = F4n−2 f3,n(3) = F4n+2 f3,n(4) = F4n+4.

Note that from the result of Nemes and Pethőwe know that for eachn ∈ N+ and i ∈ {1, 2, 3}
the Diophantine equation fi,n(x) = Fm has only finitely many solutions in integers.

It should be noted that among 93 polynomials found by the above described search, there is

only one which do not belong to the sequences (fi,n)n∈N, i ∈ {1, 2, 3}. This sporadic polynomial

is the following:

f(x) =
1

2
(x2 − x+ 4). (6.10)

Unexpectedly, it represents five Fibonacci numbers. More precisely, all non-negative integer

solutions (x,m) of the Diophantine equation f(x) = Fm are

(x,m) = (0, 3), (1, 3), (2, 4), (3, 5), (4, 6), (22, 13).

For the proof of this result see Theorem 6.3 below. Let us also note that f(x) = tx−1 + 2,
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where tx = x(x+ 1)/2 is the xth triangular number. Thus the problem of finding non-negative

solutions of Diophantine equation f(x) = Fm is equivalent with the finding triangular numbers

of the form Fm − 2.

We performed similar analysis in case of Lucas numbers and were able to spot one infinite

family (gn)n∈N≥4
, where

gn(x) = Lnx
2 − (Ln+2 + Ln−4)x+ 5Ln−2.

Then

gn(1) = Ln−4, gn(2) = Ln−2, gn(3) = Ln+2, gn(4) = Ln+4.

Remarkably, if g ∈ Z[x] is of degree 2 and satisfies

g(1) = Lp, g(2) = Lq, g(3) = Lr, g(4) = Ls

for p < q < r < s ≤ 100 then there is n ≤ 45 satisfying g(x) = gn(x).

We performed similar search in the case of degree 4 polynomials. More precisely, we were

interested in finding examples of polynomials f ∈ Q[x] of degree 4 such that f represents at

least 6 Fibonacci numbers. We first generated the set

B = {(Fp, Fq, Fr, Fs, Fu, Fv) : p, q, r, s, u, v ∈ {2, . . . , 60}}

and then for each sextuple with pairwise distinct elements w ∈ B (there are exactly 45057474

elements of this kind in B) we looked for a polynomial f of degree ≤ 4 such that

f(1) = Fp, f(2) = Fq, f(3) = Fr, f(4) = Fs, f(5) = Fu, f(6) = Fv. (6.11)

In the considered range we found only four polynomials of degree ≤ 4 representing at least

six Fibonacci polynomials. They are given in the table below together with the known integer

solutions of the equation f(x) = Fm,m ≥ 0.

f(t) Known solutions of f(x) = Fm(
t3 − 6t2 + 23t− 12

)
/6 (1, 1), (1, 2), (2, 4), (3, 5),

(4, 6), (5, 7), (6, 8)(
101t4 − 1064t3 + 4369t2 − 7162t+ 3780

)
/12 (1, 3), (2, 4), (3, 11),

(4, 13), (5, 15), (6, 17)(
245t4 − 3080t3 + 13729t2 − 23290t+ 12420

)
/12 (1, 3), (2, 4), (3, 13)

(4, 14), (5, 15), (6, 17)(
t4 − 6t3 + 35t2 − 6t+ 96

)
/24 (−4, 10), (−2, 7), (1, 5), (2, 6),

(3, 7), (4, 8), (5, 9), (6, 10)

The polynomials f ∈ Q[x] of degree 3 ≤ d ≤ 4 such that f(x) represents at least six Fibonacci

numbers together with the set of known integral solutions of the corresponding Diophantine

equation f(x) = Fm.

We note that in case of the polynomial f(x) = (x3 − 6x2 + 23x− 12)/6 the Diophantine

equation f(x) = Fm can be reduced to genus 2 curves by using the identity L2
n = 5F 2

n ± 4.
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Therefore one may try to apply the method developed in [36] to determine a complete list of

integral solutions. The hyperelliptic curves y2 = 5f(x)2 ± 4 define genus 2 curves and their

Jacobians have rank 4. It turns out to be difficult to provide generators of the Mordell-Weil

groups that is required to apply the method based on Baker’s linear forms in logarithms and the

so-called Mordell-Weil sieve.

Remark. We note that for any given even d ∈ N+ it is possible to construct a polynomial

Gd ∈ Q[x] of degree d such that the equationGd(x) = Fm has at least d+2 solutions in integers

x,m. Indeed, we learned that if we defineGd as the unique polynomial of degree d with rational

coefficients satisfying the system of equations

Gd(0) = Fd+2, Gd(1) = Fd+3, . . . , Gd(d− 1) = F2d, Gd(d) = F2d+2,

then additional the equality Gd(−1) = Fd+1 holds [74, Equation (3.1)].

6.4 Fibonacci numbers represented by shifted triangular numbers

Motivated by the example given by (6.10) we deal with the family of equations

tx−1 + d =

(
x

2

)
+ d = Fn for − 20 ≤ d ≤ 20. (6.12)

Theorem 6.3
All non-negative integral solutions n with−20 ≤ d ≤ 20 of equation (6.12) are as follows

d = −20, n ∈ {1, 2, 6, 13, 15}, d = −19, n ∈ {3}, d = −18, n ∈ {4},

d = −16, n ∈ {5, 11}, d = −15, n ∈ {0, 7, 8}, d = −14, n ∈ {1, 2},

d = −13, n ∈ {3, 6}, d = −12, n ∈ {4}, d = −11, n ∈ {9, 10}, d = −10, n ∈ {0, 5},

d = −9, n ∈ {1, 2, 12}, d = −8, n ∈ {3, 7}, d = −7, n ∈ {4, 6, 8}, d = −6, n ∈ {0},

d = −5, n ∈ {1, 2, 5, 19}, d = −4, n ∈ {3}, d = −3, n ∈ {0, 4, 16},

d = −2, n ∈ {1, 2, 6, 7, 9, 11}, d = −1, n ∈ {0, 3, 5, 14}, d = 0, n ∈ {0, 1, 2, 4, 8, 10},

d = 1, n ∈ {1, 2, 3, 17}, d = 2, n ∈ {3, 4, 5, 6, 13}, d = 3, n ∈ {4, 7}, d = 4, n ∈ {5},

d = 5, n ∈ {5, 6}, d = 6, n ∈ {8, 9}, d = 7, n ∈ {6, 7}, d = 8, n ∈ {6, 12, 24},

d = 10, n ∈ {7, 10}, d = 11, n ∈ {8, 11}, d = 12, n ∈ {7}d = 13, n ∈ {7, 9},

d = 15, n ∈ {8, 15}, d = 18, n ∈ {8}, d = 19, n ∈ {9, 10}, d = 20, n ∈ {8}.

Proof. We use the following well-known identity related to the sequences Fn and Ln

L2
n − 5F 2

n = 4(−1)n. (6.13)

The above identity yields the hyperelliptic curves

Cd,± : y2 = 5x4 − 10x3 + (20d+ 5)x2 − 20dx+ 20d2 ± 16.

We searched for small solutions on these curves. If no points were found, then we used the

Magma procedure TwoCoverDescent() [30] to show that there exist no solutions. In case that
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certain small solutions exist we used the Magma procedure IntegralQuarticPoints() based

on results obtained by Tzanakis [137]. As an example consider the case d = −5. Since (0,−22)

is a point on the curveC−5,− we used IntegralQuarticPoints([ 5, -10, -95, 100, 484

],[0,-22]) to determine a complete list of integral solutions. It turns out that there are solutions

only if

x ∈ {−91,−4,−3,−2, 0, 1, 3, 4, 5, 92}.

Similarly, (−3,−6) is a point on C−5,+. Therefore via IntegralQuarticPoints([ 5, -10,

-95, 100, 516 ],[-3,-6]) it follows that

x ∈ {−3, 4}.

Thus we have the solutions (
4

2

)
− 5 = F1 = F2,(

5

2

)
− 5 = F5,(

92

2

)
− 5 = F19.
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Let us consider the Diophantine equations

Ln =

(
X

5

)
(6.14)

and

Fn =

(
X

5

)
(6.15)

with X ≥ 5.We have the following results.

Theorem 6.4
The only positive solution of equation (6.14) with X ≥ 5 is (n,X) = (1, 5).

Theorem 6.5
The integral solutions of equation (6.15) with X ≥ 5 are given by (n,X) ∈
{(1, 5), (2, 5), (8, 7)}.

6.5.1 Integral points via Baker’s method and the Mordell-Weil sieve

Consider the hyperelliptic curve

C : y2 = F (x) := x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0, (6.16)

where bi ∈ Z. Let α be a root of F and J(Q) be the Jacobian of the curve C.We have that

x− α = κξ2
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where κ, ξ ∈ K = Q(α) and κ comes from a finite set. By knowing the Mordell-Weil group

of the curve C it is possible to provide a method to compute such a finite set. To each coset

representative
∑m

i=1(Pi −∞) of J(Q)/2J(Q) we associate

κ =

m∏
i=1

(
γi − αd2i

)
,

where the set {P1, . . . , Pm} is stable under the action of Galois, all y(Pi) are non-zero and

x(Pi) = γi/d
2
i where γi is an algebraic integer and di ∈ Z≥1. If Pi, Pj are conjugate then we

may suppose that di = dj and so γi, γj are conjugate. We have the following lemma (Lemma

3.1 in [36]).

Lemma 6.2
Let K be a set of κ values associated as above to a complete set of coset representatives

of J(Q)/2J(Q). Then K is a finite subset of OK and if (x, y) is an integral point on the

curve (6.16) then x− α = κξ2 for some κ ∈ K and ξ ∈ K.

As an application of his theory of lower bounds for linear forms in logarithms, Baker [9]

gave an explicit upper bound for the size of integral solutions of hyperelliptic curves. This result

has been improved by many authors (see e.g. [20], [21], [28], [33], [103], [114], [121] and

[144]).

In [36] an improved completely explicit upper bound were proved combining ideas from

[33], [34], [35], [79], [90], [100], [144], [143]. Now we will state the theorem which gives the

improved bound. We introduce some notation. Let K be a number field of degree d and let r

be its unit rank and R its regulator. For α ∈ K we denote by h(α) the logarithmic height of the

element α. Let

∂K =


log 2
d if d = 1, 2,

1
4

(
log log d
log d

)3
if d ≥ 3

and

∂′K =

(
1 +

π2

∂2K

)1/2

.

Define the constants

c1(K) =
(r !)2

2r−1dr
, c2(K) = c1(K)

(
d

∂K

)r−1
,

c3(K) = c1(K)
dr

∂K
, c4(K) = rdc3(K),

c5(K) =
rr+1

2∂r−1K

.

Let

∂L/K = max

{
[L : Q] , [K : Q]∂′K ,

0.16[K : Q]

∂K

}
,

whereK ⊆ L are number fields. Define

C(K,n) := 3 · 30n+4 · (n+ 1)5.5 d2 (1 + log d).
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The following theorem will be used to get an upper bound for the size of the integral solutions of

our equation. It is Theorem 3 in [36].

Theorem 6.6
Let α be an algebraic integer of degree at least 3 and κ be an integer belonging to

K. Denote by α1, α2, α3 distinct conjugates of α and by κ1, κ2, κ3 the corresponding

conjugates of κ. Let

K1 = Q(α1, α2,
√
κ1κ2), K2 = Q(α1, α3,

√
κ1κ3), K3 = Q(α2, α3,

√
κ2κ3),

and

L = Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).

In what follows R stands for an upper bound for the regulators of K1, K2 and K3 and r

denotes the maximum of the unit ranks ofK1,K2,K3. Let

c∗j = max
1≤i≤3

cj(Ki)

and

N = max
1≤i,j≤3

∣∣∣NormQ(αi,αj)/Q(κi(αi − αj))
∣∣∣2

and

H∗ = c∗5R+
logN

min1≤i≤3[Ki : Q]
+ h(κ).

Define

A∗1 = 2H∗ · C(L, 2r + 1) · (c∗1)2∂L/L ·
(

max
1≤i≤3

∂L/Ki

)2r

·R2,

and

A∗2 = 2H∗ +A∗1 +A∗1 log{(2r + 1) ·max{c∗4, 1}}.

If x ∈ Z\{0} satisfies x− α = κξ2 for some ξ ∈ K then

log|x| ≤ 8A∗1 log(4A∗1) + 8A∗2 +H∗ + 20 log 2 + 13 h(κ) + 19 h(α).

To obtain a lower bound for the possible unknown integer solutions we are going to use the

so-called Mordell-Weil sieve. The Mordell-Weil sieve has been successfully applied to prove the

non-existence of rational points on curves (see e.g. [29], [31], [54] and [111]).

Let C/Q be a smooth projective curve (in our case a hyperelliptic curve) of genus g ≥ 2.

Let J be its Jacobian. We assume the knowledge of some rational point on C, so letD be a fixed

rational point on C and let  be the corresponding Abel-Jacobi map:

 : C → J, P 7→ [P −D].

LetW be the image in J of the known rational points on C and D1, . . . , Dr generators for the

free part of J(Q). By using the Mordell–Weil sieve we are going to obtain a very large and

smooth integer B such that

(C(Q)) ⊆W +BJ(Q).
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Let

ϕ : Zr → J(Q), ϕ(a1, . . . , ar) =
∑

aiDi,

so that the image of ϕ is the free part of J(Q). The variant of the Mordell-Weil sieve explained

in [36] provides a method to obtain a very long decreasing sequence of lattices in Zr

BZr = L0 ) L1 ) L2 ) · · · ) Lk

such that

(C(Q)) ⊂W + ϕ(Lj)

for j = 1, . . . , k.

The next lemma [36, Lemma 12.1] gives a lower bound for the size of rational points whose

image are not in the setW.

Lemma 6.3
Let W be a finite subset of J(Q) and L be a sublattice of Zr. Suppose that (C(Q)) ⊂
W + ϕ(L). Let µ1 be a lower bound for h− ĥ and

µ2 = max

{√
ĥ(w) : w ∈W

}
.

Denote by M the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and let

λ1, . . . , λr be its eigenvalues. Let

µ3 = min
{√

λj : j = 1, . . . , r
}

and m(L) the Euclidean norm of the shortest non-zero vector of L. Then, for any

P ∈ C(Q), either (P ) ∈W or

h((P )) ≥ (µ3m(L)− µ2)2 + µ1.

6.5.2 Proof of Theorem 6.4

In this section first we prove a lemma and than we use it to prove Theorem 6.4.

Lemma 6.4
(a) The integral solutions of the equation

C+ : Y 2 = X2(X + 15)2(X + 20) + 180000000 (6.17)

are

(X,Y ) ∈ {(25,−15000), (25, 15000)}.

(b) There are no integral solution of the equation

C− : Y 2 = X2(X + 15)2(X + 20)− 180000000. (6.18)

Proof. [Proof of Lemma 6.4] We start with the proof of part (a). Let J(Q)+ be the Jacobian of

the genus two curve (6.17). Using MAGMA [23] we obtain that J(Q)+ is free of rank 1 with
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Mordell-Weil basis given by

D = (25, 15000)−∞.

The MAGMA programs used to compute these data are based on Stoll’s papers [123], [124],

[125]. The rank of the Jacobian of C+ is 1, so classical Chabauty’s method (see e.g. [38], [39],

[46]) can be applied. The Chabauty procedure of MAGMA provides an upper bound for the

number of rational points on the curve and in this case it is equal to the number of known points.

Therefore

C+(Q) = {∞, (25,±15000)}.

Nowwe deal with part (b). Let J(Q)− be the Jacobian of the genus two curve (6.18). Using

MAGMA we determine a Mordell-Weil basis which is given by

D1 = (ω1,−200ω1) + (ω1,−200ω1)− 2∞,

D2 = (ω2, 120000) + (ω2, 120000)− 2∞,

where ω1 is a root of the polynomial x2 − 5x+ 1500 and ω2 is a root of x2 + 195x+ 13500.

Let f = x2(x + 15)2(x + 20) − 180000000 and α be a root of f . We will choose for

coset representatives of J(Q)−/2J(Q)− the linear combinations
∑2

i=1 niDi,where ni ∈ {0, 1}.
Then

x− α = κξ2,

where κ ∈ K andK is constructed as described in Lemma 6.2. We have thatK = {1, α2− 5α+

1500, α2 +195α+13500, α4 +190α3 +14025α2 +225000α+20250000}. By local arguments

it is possible to restrict the set K further (see e.g. [29], [30]). In our case one can eliminate

α2 − 5α+ 1500, α2 + 195α+ 13500

by local computations in Q2 and

α4 + 190α3 + 14025α2 + 225000α+ 20250000

by local computations in Q3. It remains to deal with the case κ = 1.We apply Theorem 6.6 to

get a large upper bound for log |x|. AMAGMA code were written to obtain the bounds appeared

in [36], it can be found at

http://www.warwick.ac.uk/∼maseap/progs/intpoint/bounds.m. We used the above

Magma functions to compute an upper bound corresponding to the case κ = 1. It turned out to

be

1.58037× 10285.

The set of known rational points on the curve (6.18) is {∞}. LetW be the image of this set in

J(Q)−. Applying the Mordell-Weil implemented by Bruin and Stoll and explained in [36] we

obtain that (C(Q)) ⊆W +BJ(Q)−, where

B = 26 · 32 · 52 · 72 · 112 · 132 · 19 · 23 · 31 · 41 · ·43 · 47 · 61 · 67 · 79 · 83 · 109 · 113 · 127,
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that is

B = 678957252681082328769065398948800.

Now we use an extension of the Mordell-Weil sieve due to Samir Siksek to obtain a very long

decreasing sequence of lattices in Z2. After that we apply Lemma 6.3 to obtain a lower bound

for possible unknown rational points. We get that if (x, y) is an unknown integral point, then

log |x| ≥ 7.38833× 101076.

This contradicts the bound for log |x| we obtained by Baker’s method.

Finally we prove Theorem 6.4.

Proof. [Proof of Theorem 6.4] We will use the following well known property of the sequences

Fn and Ln :

L2
n − 5F 2

n = 4(−1)n.

We have that (
X

5

)2

± 4 = 5F 2
n .

The above equation can be reduced to two genus two curves given by (6.17) and (6.18), where

Y = 535!Fn and X = 5x2 − 20x. By Lemma 6.4 we have that X = 25 and we also have that

X = 5x2−20x. That is it remains to solve a quadratic equation in x.We obtain that x ∈ {−1, 5}.
Hence the only positive solution of equation (6.14) is (n, x) = (1, 5), that is

1 = L1 =

(
5

5

)
.

6.5.3 Proof of Theorem 6.5

Proof. In case of equation (6.15) by applying the identity (6.13) we obtain

5

(
X

5

)2

± 4 = L2
n.

Hence we need to compute the integral solutions of the equations

Cδ : y2 = x2(x+ 15)2(x+ 20) + 4 · 54 · (5!)2 · δ,

where δ ∈ {−1, 1} and x = 5X2− 20X. That is we deal with genus 2 curves. By using Magma

[23] we can determine generators of the Mordell-Weil groups based on Stoll’s papers [123],

[124], [125]. Let us denote the Jacobians of the curves Cδ by Jδ, where δ ∈ {−1, 1}. We get

that J−1 is free of rank 2 with Mordell-Weil basis given by (in Mumford representation)

d1 =< x− 25, 3000 >,

d2 =< x2 + 75x+ 1500, 600x+ 24000 >
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and J1 is free of rank 4 with Mordell-Weil basis given by

D1 =< x, 6000 >,

D2 =< x+ 40, 4000 >,

D3 =< x2 + 15x, 6000 >,

D4 =< x2 + 15x− 1000, 200x+ 4000 > .

Baker’s method [9] can be applied to get large upper bounds Bδ for log |x|. Using the improve-

ments given in [36] and [56] we obtain that

B−1 = 2.26 · 10493 and B1 = 1.11 · 10503.

Every integral point on the curves can be expressed in the forms

P −∞ =
2∑
i=1

midi and P −∞ =
4∑
i=1

niDi,

wherem1,m2, n1, n2, n3 and n4 are integers. According to Proposition 6.2 in [56] we compute

the period matrix and the hyperelliptic logarithms with 1200 digits of precision in case of both

curves. The hyperelliptic logarithms of the divisors di are as follows

ϕ(d1) = (−0.018478 . . .+ i0.009553 . . . ,−0.397546 . . .+ i0.372090 . . .) ∈ C2,

ϕ(d2) = (0.020606 . . .− i0.005882 . . . ,−0.861905 . . .+ i0.814915 . . .) ∈ C2.

In case of the rank 4 curve we obtain

ϕ(D1) = (−0.020382 . . .+ i0.004844 . . . ,−1.182385 . . .− i0.446046 . . .) ∈ C2,

ϕ(D2) = (−0.013432 . . .− i0.004844 . . . ,−1.326128 . . .− i0.446046 . . .) ∈ C2,

ϕ(D3) = (−0.011009 . . .+ i0.004844 . . . ,−0.854126 . . .− i0.446046 . . .) ∈ C2,

ϕ(D4) = (−0.007101 . . .− i0.004844 . . . ,−1.160439 . . .− i0.446046 . . .) ∈ C2.

Based on Proposition 6.2 in [56] we set K := 101000 for both curves and the reductions yield

that

||(m1,m2)|| ≤ 45.65 and ||(n1, n2, n3, n4)|| ≤ 103.27.

Repeat reductions withK := 1020, 1014, 1012 provide the following bounds

||(m1,m2)|| ≤ 6.36 and ||(n1, n2, n3, n4)|| ≤ 13.73.

Enumeration of possible linear combinations up to these bounds provide that

x ∈ {−40,−20,−15, 0, 25, 105, 1425/4}.

It remains to determine the corresponding values of X, these are as follows

X ∈ {−3,−1, 0, 1, 2, 3, 4, 5, 7}.

Therefore X = 5, n = 1, 2 and X = 7, n = 8 are the only non-trivial solutions.
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